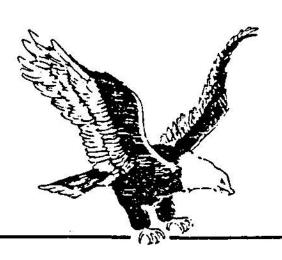
APPENDIX A

RESULTS OF PREVIOUS INVESTIGATIONS AT THE ERIE BURNING GROUNDS

APPENDIX A-1

SELECTED PORTIONS FROM PREVIOUS ENVIRONMENTAL INVESTIGATIONS AT ERIE BURNING GROUNDS INSTALLATION ASSESSMENT (1978)

XT0136 MEIDUP

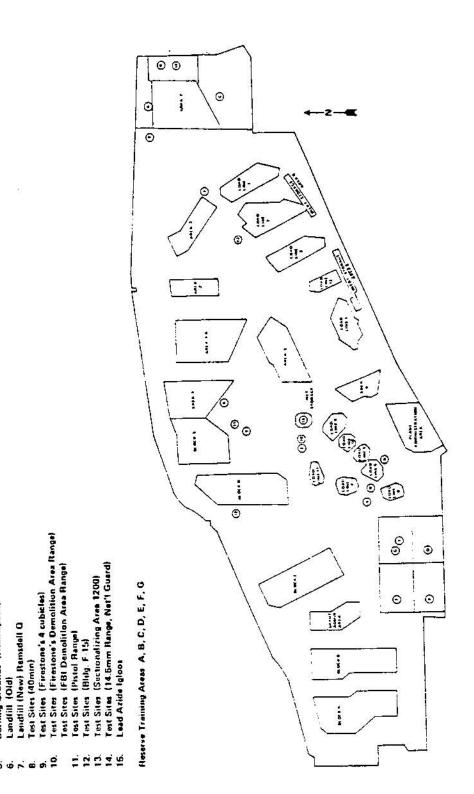

INSTALLATION ASSESSMENT

OF

RAVENNA ARMY AMMUNITION PLANT

REPORT NO. 132

NOVEMBER 1978



US ARMY TOXIC AND HAZARDOUS MATERIALS AGENCY

ABERDEEN PROVING GROUND, MARYLAND 21010

DISTRIBUTION LIMITED TO US GOVERNMENT AGENCIES ONLY, FOR PRCTECTION OF PRIVILEGED INFORMATION EVALUATING ANOTHER COMMAND: NOVEMBER 1978 OTHER REQUESTS FOR THIS DOCUMENT MUST BE REFERRED TO: COMMANDER, RAVENNA ARMY AMMUNITION PLANT, RAVENNA, OH 40266

Demotition Area (Old)
Demotition Area (New)
Burning Grounds (TRK 49)
Burning Grounds (Fuze & Baoster)
Burning Grounds (Winklepeck)

+255456784E

The Ammonium Nitrate Plant Load Line 12 was operated to produce ammonium nitrate for explosives and fertilizers. There were no wash water collection tanks or settling ponds in Load Line 12 during these operations. All residues, dusts, and spills were washed into the storm drainage system.

Since 1942, millions of pounds of waste have been destroyed at the burning grounds. There are three areas where wastes could have been burned, and two areas where demolition activities occurred. The first is Track 49, or the Erie Burning Grounds (3), located north of Area 7. It was used during World War II for the destruction of TNT and propellant. Next, north of Load Line 8, are the Fuze and Booster Burning Pits (4), named such because of their proximity to the fuze and booster load lines, and not because they were exclusively used for the destruction of fuzes and boosters. This area was active between 1945-1948. The third and present burning area is the Winklepeck Burning Grounds (5) dating from about 1948. The first Demolition Area (1) was used between 1945-1949 and was located west of Greenleaf Road and south of South Patrol Road. Since then, the area northwest of Load Line 11 just across Newton Fall Road (2) has been the current demolition grounds. All burning and demolition areas were used extensively not only for production wastes, but also for many demilitarization operations that have occurred at RVAAP. Although specific dates have been given, use of all the disposal areas actually overlaps, especially immediately after World War II when large quantities of returning munitions had to be destroyed. Furthermore, some burning took place at demolition grounds, but no demolition activities occurred at burning areas.

In addition to explosives waste, sanitary wastes from family housing, offices, and the hospital were routinely disposed of by burning. Pit 4 in the northwest part of the burning grounds was used for this purpose. A wire cage to protect the paper and ash from winds surrounded the pit. Since the practice of open pit burning has not been allowed for the past few years, the installation has taken to landfilling this waste at Ramsdell Quarry (7) in an EPA approved manner.

Between 1952-1954 and again between 1969-1971, a total of 136 million (approximately 2.6 million per month) M54 primers were manufactured in Load Line 10. Aside from normal explosives residue, associated with this production on a monthly basis was the generation of 22.5 kilograms of antimony sulfide and 11.25 kilograms of lead thiocyanate waste. These two toxic materials were also disposed of by burning with other contaminants.

In order to eliminate open field burning of future waste materials, RVAAP presently has submitted requests for the acquisition of an Explosive Waste and Contaminated Waste Incinerator. The explosive waste incinerator is programmed to be installed in 1981, but no action has been

A-8

APPENDIX A-2

SELECTED PORTIONS FROM PREVIOUS ENVIRONMENTAL INVESTIGATIONS AT ERIE BURNING GROUNDS REASSESSMENT OF RVAAP (1982)

I'I

REASSESSMENT OF RAVENNA ARMY AMMUNITION PLANT, RAVENNA, OHIO Report No. 132R

J.D. Wienand, J.J. Cichowicz, and N.P. Leibel

CHEMICALS SYSTEMS LABORATORY
Environmental Technology Division
Installation Restoration Branch
Aberdeen Proving Ground, Md. 21010

December 1982

Report for Period Apr. 8-10, 1981

Distribution limited to U.S. Government Agencies only for protection of privileged information evaluating another command: December 1982. Other requests for this document must be referred to: Commander, Ravenna Army Ammunition Plant, Ravenna, Ohio 44266.

Prepared for:

COMMANDER
Ravenna Army Ammunition Plant
Ravenna, Ohio 44266

and

U.S. ARMY TOXIC AND HAZARDOUS MATERIALS AGENCY Assessment Division Aberdeen Proving Ground, Md. 21010

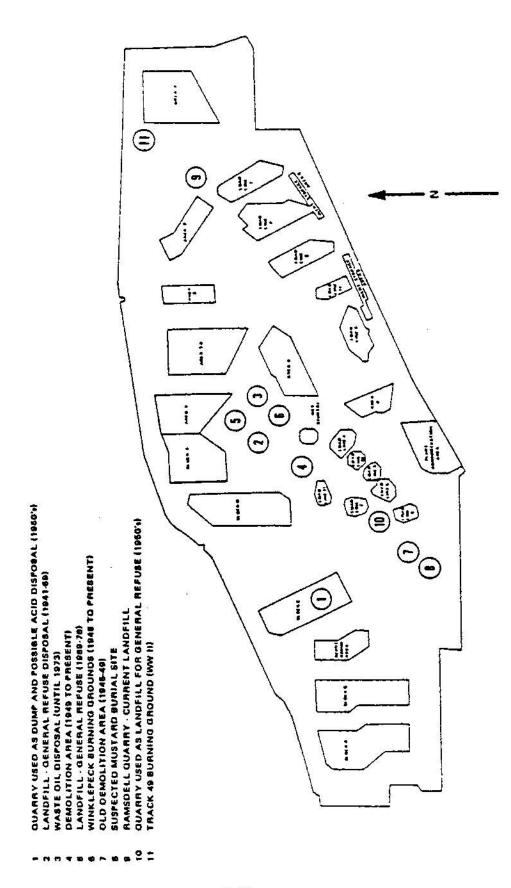
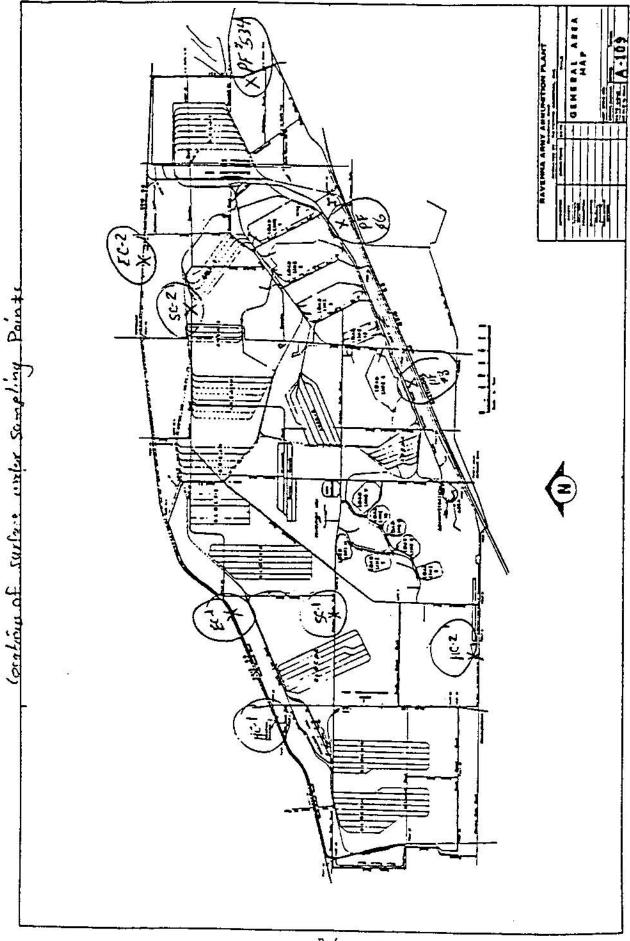



Fig. 1. Sites on RVAAP

APPENDIX A-3

SELECTED PORTIONS FROM PREVIOUS ENVIRONMENTAL INVESTIGATIONS AT ERIE BURNING GROUNDS

WATER QUALITY SURVEILLANCE PROGRAM RESULTS
(1980 - 1992)

March 12, 1980

Ra: Water Quality Surveillance Program

PARAMETER	SAMPLE STATION								
	EC-1	EC-2	SC-1	SC-2	HC-1	HC-2	PF #8	PF ≢6	PF #534
он	Q	Q	Q	Q	Q	0	Q	Q	0
Temperature	0	Q	Q.	Q	Q	Q	Q	Q	0
Specific Conductance	o	Q	Q	Q	Q	Q	Q	Q	0_
Total Suspended Solids	q	Q	0	Q	Q	Q	0	Q	q
Biochemical Oxygen Demand -5 day	0	Q	Q	Q	Q	9	Q	Q	Q
Total Organic Carbon	s	s	S	s	s	s	s	s	5
Total Kjehldal Nitrogen	s	s	s	S	s	S	s	s	s
Mitrate	s	s	5	s	s	s_	s	s	s
Nitrite	s	s	S	s	s	s	s	s	s
Phosphorous	s	s	s	s	s	s	s	s	s
Oil & Grease	Q	Q	Q	Q	Q	Q	0	Q	Q
Dissolved Oxygen	Q	q	Q	Q	Q	Q	Q	Q	0
TNT		A		A		A	Α	Α	A
RDX		A		A		A	Α	Α_	Α
Copper	Α_	A	A	A	Α_	A	A	A	A
Chromium, Total (Hex & Tri)	A		A	A	A	<u> </u>	Α	<u> </u>	Α
Zinc	A	A	A	A	A	A	A .	A	Α_
Lead	Α_		A	A	<u> </u>	<u> </u>	A	A	<u> </u>
Fecal Coliform	Q -	Q	Q	0	Q	Q	Q _	0	Q

Q = Quarterly - 4/times a year (Harch, June, September & December)

NOTE: (1) All samples will be taken as a grab sample unless otherwise notified at a future date.

S = Semi-Annually - 2 times a year (June (June & September A = Annual - Once a year (September).

⁽²⁾ The Wastewater Treatment Plant Operator will be responsible for obtaining the Grab Samples.

Re: Water Quality Surveillance Program

PARAMETER	SAMPLE STATION EC-1 EC-2 SC-1 SC-2 HC-1 HC-2 PF #8 PF #6								
	EC-1	EC-2	SC-1	SC-2	HC-1	HC-2	PF #8	PF #6	PF #5
Но	Q	Q	Q	Q	Q	Q	Q	Q	Q
Temperature	Q	Q	Q ·	Q	Q	Q	Q	Q	Q
Specific Conductance	Q	Q	Q	Q	Q	Q	Q	Q	2
Total Suspended Solids	Q	Q	Q	Q	Q	Q	Q	Q	Q
Biochemical Oxygen Demand -5 day	Q	Q	Q	Q	Q	Q	Q ·	Q	Q
Total Organic Carbon	s	s	s	S	S	s	S	s	S
Total Kjehldal Nitrogen	s	s	s	s	s_	s	s	s	S
Nitrate	s	s	s	s	s	s	s	s	S
Nitrite	s	s	S	s	s	s	s	s	s
Phosphorous	s	S	s	s	s	s	s	s	s_
Oil & Grease	Q	Q	Q	Q	Q	Q	Q	Q	Q
Dissolved Oxygen	Q	Q	Q	Q	Q	Q	Q	Q	Ç
TNT		A		A		A	A	A	A
RDX		A		A		A	A	Α	A
Copper	A	A	A	A	A	A	A	A	A
Chromium, Total (Hex & Tri)	A	A	A	A	A	A	A	A	A_
Zinc	A	A	A	A	i A	A	A	A	A
Lead	- _A	A	A	A	A	A	A	A	A
Fecal Coliform	Q	Q	Q	Q	l q	l _Q	Q	Q	Q

Q = Quarterly - 4/times a year (March, June, September & December)

NOTE: (1) All samples will be taken as a grab sample unless otherwise notified at a future date.

S = Semi-Annually - 2 times a year (June (June & September

A = Annual - Once a year (September).

⁽²⁾ The Wastewater Treatment Plant Operator will be responsible for obtaining the Grab Samples. A-17

RAVENNA ARMY AMMUNITION PLANT


WATER QUALITY SURVEILLANCE PROGRAM

Ravenna Arsenal, Inc.

March 12, 1980

SAMPLING STATIONS

A.	EAGLE CREEK	Influent Effluent	(North of Area #1 & Block E) (North of Area #3)			
В.	SAND CREEK	Influent Effluent	(1/2 Mi. West of Slagle Rd.) (Smalley Road Bridge)			
c.	HINCKLEY CREEK	Influent Effluent	(500 Ft. West of Post #32 - Rte. 80) (East of Post #24 - Charleston Perimeter Rd.)			
D.	PARSHALL FLUME (Area #8)	Effluent	(Between Wayland-Wilcox and Parris Windham Rds on South Perimeter Fence Line Rd.)			
E.	PARSHALL FLUME (Area #6)	Effluent	(South of Kelly's Pond and East of Post #20 on South Perimeter Fence Line Rd.)			
F.	PARSHALL FLUME	Effluent	(Rte. #534)			
	Nomenclature:		Sampling Station:			
	EC-1	Influent	Eagle Creek			
	EC-2	Effluent	Eagle Creek			
	SC-1	Influent	Sand Creek			
	SC-2	Effluent	Sand Creek			
	HC-1	Influent	Hinckley Creek			
	HC-2	Effluent	Hinckley Creek			
	PF #8	Effluent	Parshall Flume - Area #8			
	PF #6	Effluent	Parshall Flume - Area #6			
	PF #534	Effluent	Parshall Flume - Rte. #534.			

TITA Thermo Analytical Inc.

IMAIERG

7777 Exchange Street Cieveland, OH 44125-3337

1216/447-0790

Ravenna Arsenal 8451 State Route 5 Ravenna, Ohio 44266

Attn: Mr. Joe Mound

Samples Received: 9/04/87

Date: November 5, 1987

Project Number: V2466

Results reported in mg/l

except where noted.

TMA-Cleve Sample ID's 43454-43461

	FINAL I	REPORT		<u> 2003</u> 25	F	li in je	~	
D	2.02	<u>-</u>	12.22	2222			SPO >	
Parameters	EC1	EC2	<u>HC1</u>	HC2	PF8	PF534	<u>sc1</u>	SC2
pH (S.U.)	7.8	7.8	7.6	7.9	7.9	7.9	7.9	8.0
Specific Conductivity (uhmos/cm)	500	430	590	390	430	460	470	460
Total Suspended Solids	12	13	10	15	12	8	9	8
Nitrate	<0.010		<0.010		<0.010	<0.010	<0.010	
Nitrite	<0.010		<0.010	0.016	0.014	0.012	0.015	0.015
Total Phosphorus	0.062	0.054	0.15	0.064	0.054	0.040	0.044	0.054
Oil & Grease	2	2	<1	5	1 030	4	9	10 070
Copper		<0.010				<0.010	<0.010	
Total Chromium	<0.030	<0.030			<0.030 <0.01	<0.030 <0.01	<0.030	<0.030 <0.01
Hexavalent Chromium	<0.01	<0.030	<0.01	(0.0)		<0.01		<0. 030
Trivalent Chromium - Zinc	<0.010		<0.010		0.021	0.099		<0.010
Lead		<0.020				<0.020		<0.020
Fecal Coliform -	90	500	038	130	340	81	160	78
Total Organic Carbon	5.7	3.5	4.6	4.9	6.6	1.8	5.9	4.3
Total Kjeldahl Nitrogen	0.44	0.65	0.96	0.52	0.70	0.60	0.60	0.52
INI/ug/1	<1.6	<1.5	<1.6	<1.6	<1.6	<16	<1.6	<1_5
RNX/ug/11	(15)	<1.5	45	4.8	<1.5	(64)	(5.4)	18)
	٠	1781 1781	7.				-,	-
2 200	and a constant	ت. سنر	Jane Jane	1		+ 3	1 V W	
0-12/	3.0	() -{	10-1	<i>t</i>	1	14,	and To	Believ
KUX 0 \) 1 358	î	3	22 6		//			
	Anoro	ved by:	1/4	mans	1 km	2441		6
/ W	пррго		Gunays		5			
//9, N T			Laborat					
Way to					<i>[</i>		1	7
	3	41 A	20 , ,	, ,	1	T 1	1 1	1
A CONTRACTOR OF THE PROPERTY O	7 W	out 7 f	FORE L	y t	in of	Tr -	e st	1. 1
(~), " b	1 h	6 'A'	y	0 5		72 F	n urd.	lon
7/	74.71	1: '	r. 0.	21,1	v in	01/201	- 1	2 B) B

TIVIA Thermo Analytical Inc. Analytical Report Project: V2925 Report Date: 01-29-88

7777 EXCHANGE STREET CLEVELAND, DH 44125 (216) 447-0790

Client P.D. 10604-CH-3 Report: 30175	Samples Recyd: 01-20-58 Refer Questions To: GUNARS ZIKMANIS				
Client: RAVENNA ARSENAL	Approved: The WD-				
RAVENNA, OH 44266 Attention: TOM CHANDA					
	Residual Samples Will Be Hel TWO WEEKS ###	đ			
Retest From November 5, 1987					
Client I.D.: EAGLE ERG Sample No.: 01/181 Matrix: GROUND Date Sampled: 01-13-	CREEK INFLUENT (Ec-1) 1989 D WATER -ES				
Parameter	Result Units	Ĺ			
RDX	<0.50 ug/L				
AVERAGE OF DUPLICATE RUNS	•				
Client I.D.: HINKLE ERG Sample No.: 01/12: Matrix: GROUNI Date Sampled: 01-13-	EY CREEK(RT BO) (HC-1) 1990 D WATER -68				
Parameter	Result Units	Ē.			
RDX	<0.50 ug/L				
ERG Sample No.: O Matrix: G	F534 01/181991 PROUND WATER 01-13-88	E			
Parameter	Result Unit:	<u>5</u>			
RDX	<0. 25 ug/L				
ERG Sample No.: 01/18	(D WATER				

Parameter

RDX

Result

CO. 25

Units

ug/L

Attn: Mr. Al Custar

Samples Received: 8/04/83

Data: August 31, 1983

Project Number: 6511

Results reported in mg/l except where noted.

Parameter	EC-1 21,323	EC-2 21,824	HC-1 21,825	HC-2 21,825	PF-5 21,827	PF-8 21,328	PF-534 21,829	SC-1 21,830	SC-2 21,831
¹ не	7.E	7.5	7.4	7.3	7.4	7.0	7.5	7.5	7.5
Conductivity ²	k1 10	360	380	290	360	140	390	290	360
Total Suspended Solids	4	22	13	8	6	13	7	7	4
Biochemical Oxygen Demand	3	2	5	3	2	2	3	2	4
Total Organic Carbon	4	3	4	5	5	9	4	5	2
Total Kjeldahl Nitrogen	0.14	0.16	0.15	0.27	0.44	0.95	0.057	0.12	0.093
Nitrate	0.71	0.45	0.10	0.07	0.15	0.10	0.02	0.01	0.11
Nitrite	<0.010	<0.010	<0.010	0.010	0.01	<0.010	<0.010	<0.010	<0.010
Total Phosphorus	0.03	0.02	0.08	0.05	0.02	0.04	0.06	0.02	0.07
Oil & Grease	4	3	3	2	2	3	2	<1	2
Dissolved Oxygen	8.8	8.3	6.2	5.5	7.2	6.3	6.9	7.0	7.2
· Copper	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	K0.020	<0.020	<0.020
Chromium	<0.024	<0.040	<0.040	<0.040	<0.040	<0.040	<0.040	<0.040	<0.040
.Hexavalent Chromium	<0.010	<0.010	<0.010	0.010	<0.010	<0.010	<5.010	<0.010	<0.010
·linc	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	K0.020
. Lead	<0,050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0. 050
Fecal Coliform	TNTC	320	TNTC	220	160	120	120	590	400
7 87	*****	ND-10		NE-10	ND-10	ND-10	ND-10		NC-10
ROX		ND-10		ND-10	ND-10	ND-10	ND-10		MD-10

¹pH is reported as S.J.

 $^4 \rm TNT$ and RDX are both reported as ug/1 ND-non-detectable. Detection limits are shown next to "ND" notations.

Certified by:

Art Czabaniuk

Laboratory Manager

² Conductivity is reported as phmos/cm

²Fecal Coliform is reported as /100 ml

ANALYTICAL REPORT ENVIRONMENTAL RESEARCH GROUP, INC.

Project: V9367 Report Date: 10-30-85

	Client I.D.: HC-2 ERG Sample No.: 09/137684 Matrix: NATURAL WATER		
Parameter		Result	Units
ZINC pH		ND (0.02) 7.6	mg/L S. U.
	Client I.D.: PF-8 ERG Sample No.: 09/137685 Matrix: NATURAL WATER		59
Parameter		Result	Units
ORGANIC CARBON, TOTAL		4	mg/L
AVERAGE D HEXAVALENT CHROMIUM CHROMIUM, TOTAL	F DUPLICATE RUNS	0. 07 0. 03	mg/L mg/L
FECAL COLIFORM BACTERIA SPECIFIC CONDUCTANCE COPPER, TOTAL		4200 500 CO. 02	TC/.1L umho/cm mg/L
BIDCHEMICAL DXYGEN DEMA LEAD, TOTAL NITRATE NITROGEN	ND	ND (0.05) 0.03	mg/L mg/L mg/L
NITRITE NITROGEN KJELDAHL NITROGEN, TOTA OIL AND GREASE	L	ND (0.01) 0.46 <1	mg/L mg/L mg/L
OXYGEN, DISSOLVED PHOSPHORUS, TOTAL RDX		7. 2 0. 35 ND (10)	mg/L mg/L ug/L
SUSPENDED SOLIDS TEMPERATURE TIME		7 60 11: 09	mg/L degF AM
Comments:	FLOW RATE IS LOW		
TNT ZINC pH		ND (10) <0.02 8.0	ug/L mg/L S. U.
	Client I.D.: PF-534 ERG Sample No.: 09/137686 Matrix: NATURAL WATER		
Parameter		Result	Units
DRGANIC CARBON, TOTAL HEXAVALENT CHROMIUM CHROMIUM, TOTAL		ND (1) 0.11 <0.02	mg/L mg/L mg/L
FECAL COLIFORM BACTERIA SPECIFIC CONDUCTANCE COPPER, TOTAL	A-23	1400 430 <0.02	TC/ 1L umho/cm mg/L
BIOCHEMICAL DXYGEN DEMA LEAD, TOTAL		<1 <0. 05	mg/L mg/L

Project: V9367 Report Date: 10-30-85

Client I.D.: PF-534 ERG Sample No.: 09/137686 Matrix: NATURAL WATER

Parameter	<u>Result</u>	Units
NITRATE NITROGEN	0. 04	mg/L
NITRITE NITROGEN	ND (0.01)	mg/L
KJELDAHL NITROGEN, TOTAL	0.14	mg/L
DIL AND GREASE	<1	mg/L
DXYGEN. DISSOLVED	5.6	mg/L
PHOSPHORUS, TOTAL	0.35	mg/L
RDX	ND (10)	ug/L
SUSPENDED SOLIDS	4	mg/L
TEMPERATURE	57	degF
TIME	9: 36	AM
Comments: FLOW RATE IS NORMAL		
TNT	ND (10)	mg/L
ZINC	-0.02	mg/L
pH	-6.8	S. U.

SD-Sample damaged FR-See field report for result SR-See attached report NA-Result not applicable to test

ND-Nondetected, Detection limit in () C-Positive result at an unquantifiable concentration below indicated level

Ravenna Arsenal, Inc. Date: September 30, 1981 Eavenna, Chio 44266

ERG Project #4485

Attn: Al Custar ERG Sample # 14,734

Samples Received: 9/17/81

Client ID - PF 534

Parameter	Results	Units
рH	7.7	s.U.
Biochemical Oxygen Demand	3	mg/1
Suspended Solids	2	mg/1
Conductivity	315	umho/cm
Total Organic Carbon	6	mg/l
Total Kjelčahl Nitrogen	0.67	mg/l
Nitrate	0.021	mg/l
Nitrite	0.019	mg/l
Total Phosphorus	0.36	mg/l
Cil & Grease	<1	mg/l
Dissolved Cxygen	7.3	mg/l
Hexavalent Chromium	<0.010	mg/l
Copper	<0.010	mg/l
Chromium	<0.020	mg/l
Zinc	<0.010	mg/l
Lead	<0.2	mg/1
Fecal Coliform	32	/100 ml
RDX	ND	*:
TNT	ND	**

^{*}Detection limit for RDX is 10 µg/l. **Detection limit for TNT is 0.18 µg/l.

Attn: Al Custar

Samples Received: 3/26/81

Date: March 31, 1981

Project Number: 4007

ERG-Cleve Sample ID	Ravenna Sample ID	Parameter	Results
13,102	EC-1	ЪĦ	6.2 S.U.
13,103	EC-2		7.1 5.0.
13,194	HC-1	я	6.6 S.U.
13,105	HC-2	11	6.6 S.U.
13,106	sc-1	, n	7.0 5.0.
13,107	SC-2	n	7.0 E.U.
13,108	PF-534	п	6.8 3.0.
13,109	PF#6	n	6.7 s.U.
13,110	PF # 8	п	7.0 5.0.
13,102	EC-1	Biochemical Oxygen Demand	5
13,103	EC-2	5	<1
13,104	HC-1	•	7
13,105	HC-2	9	<1.
13,106	SC-1		<1
13,107	SC-2	n	<1
13,108	PF-534	п	<1
13,109	PF # 6	•	<1
13,110	PF#8	M	5

Page 1 of 4

ERG-Cleve Sample ID	Ravenna Sample ID	Parameter .	Results
13,102	EC-1	Dissolved Oxygen	10.3
13,103	EC-2	n	11.6
13,104	HC-1	M	10.7
13,105	HC-2	Ħ	10.2
13,106	SC-1	M	12.7
13,107	SC-2	и	12.5
13,108	PF-534	"	9.3
13,109	PF#6	, w	13.1
13,110	PF#8	· ·	12.1
13,102	EC-1	Fecal	<1.2
13,103	EC-2	**	31
13,104	HC-1	Ü	12_
13,105	HC-2	ë	4
13,106	SC-1	ø	4
13,107	SC-2	•	<1.3
13,108	PF-534	W.	13
13,109	PF#6	11.	<1.2
13,110	PF#8	H	15

Page 2 of 4

ERG-Cleve Sample ID	Ravenna Sample ID	Parameter	Results
13,102	EC-1	Conductivity	230 µmho/cm
13,103	EC-2	ñ	220 umho/cm
13,104	HC-1	n	170 umbo/em
13,105	HC-2	ч	145 µmho/em
13,106	SC-1	8 11	175 µmho/cm
13,107	SC-2	e et	190 umbo/cm
13,108	PF-534	ın.	130 umho/cm
13,109	PF#6	п	195 umho/cm
13,110	PF #8)t	225 umho/cm
13,102	EC-1	Oil & Grease	1
13,103	EC-2	æ	.<1
13,104	HC-1	H	<1
13,105	RC−2	16	2
13,106	SC-1	,10	1
13,107	SC-2	n	1
13,108	PF-534		1
13,109	PF#6	90	1
13,110	PF#8	**	1

ERG-Cleve Sample ID	Ravenna Sample ID	Parameter	Results
13,102	EC-1	Suspended Solids	1
13,103	EC-2	Ħ	3
13,104	HC-1	it	<1
13,105	HC-2	н	3
13,106	SC-1	π	1
13,107	SC-2	n	6
13,108	PF-534	•	5
13,109	PF #6	m	2
13,110	PF#8	u	4

cc: Tom Chanda Jack Powell

Certified by:

Art Czabaniuk Laboratory Manager

Page 4 of 4 A-29

ENVIRONMENTAL RESEARCH GROUP, INC.

Attn: Al Custar

Samples Received: 12/4/80

Date: December 31, 1980

Project Number: 3661

ERG-Cleve Sample ID	Ravenna Sample ID	Parameter Temp.	Results
12,263	EC-1	рн 33 ° F	7.0 S.U.
12,164	EC-2	, 35° 1'	6.9 S.U.
12,165	HC-1	. 33° '	6.6 3.0.
12,166	BC-2	. 33°"	5.8 S.U.
12,167	SC-1	" 33°/1	7.0 S.U.
12,168	SC-2	_{**} 33°/	6.8 S.U.
12,169	PF-534	4 33°	6.6 s.v.
12,170	PF-6	" 33°"	6.6 S.U.
12,171	PF-8	330.1	6.8 S.U.
12,163	EC-1	Conductivity	560 umho/em
12,164	EC-2	<u>u</u>	320 umho/cm
12,165	HC-1	W	380 pmho/cm
12,166	HC-2	O	370 umho/cm
12,167	SC-1	Ħ	7400 umho/cm
12,168	SC-2	•	370 umho/cm
12,169	PF-534	11	370 µmho/cm
12,170	PF-6	×	230 umho/cm
12,171	PF-8	•	360 unho/cm

Page 1 of 4

Attn: Al Custar

Samples Received: 12/4/80

Date: December 31, 1980

Project Number: 3661

ERG-Cleve Sample ID	Ravenna Sample ID	Parameter	Results
12,163	EC-1	Suspended Solids	ব্
12,164	EC-2		4
12,165	HC-1	7	3
12,166	HC-2	**	4
12,167	SC-1	N.	7
12,168	SC-2	•	4
12,169	PF-534	H	ļ 16
12,170	PF-6		7
12,171	PF-8	n	14
12,163	EC-1	Biochemical Oxygen Demand	<1
12,164	EC-2		<1
12,165	HC-1	Ħ	<1
12,166	HC-2	P	<1
12,167	SC-1	*	11
12,168	SC-2	Ħ	<1
12,169	PF-534	ő	<1
12,170	PF-6	B .	<1
12,171	PF-8		<1

Page 2 of 4

Attn: Al Custar

Samples Received: 12/4/80

Date: December 31, 1980

Project Number: 3661

ERG-Cleve Sample ID	Ravenna Sample ID	Parameter	Results
12,163	EC-1	Oil & Grease	1
12,164	EC-2	#	<1
12,165	ac-1	×	<1
12,166	HC-2	35	a
12,167	SC-1		<1
12,158	SC-2		(1
12,169	PF-534	n	Ç <1
12,170	PF-6	ď	<1
12,171	PF-8	14	3
12,163	EC-1	Dissolved Oxygen	11.7
12,164	EC-2		11.8
12,165	HC-1	h	10.8
12,166	HC-2	H N	11.9
12,167	sc-1	H	12.3
12,168	SC-2	76	12.0
12,169	PF-534	, d	11.4
12,170	PF-6		11.8
12,171	FF-8	n	11.9

Attn: Al Custar

Samples Received: 12/4/80

Date: December 31, 1980

Project Number: 3661

Results reported in mg/l except where noted.

ERG-Cleve Sample ID	Ravenna Sample ID	Parameter	Re	esults
12,163	EC-1	Fecal	1120	120/100 ml
12,164	EC-2	**	2000	200/100 ml
12,165	HC-1	ार	2000	360/100 ml
12,166	HC-2	ાલ	620	62/100 ml
12,167	sc-1	i B	620	62/100 ml
12,168	SC-2	71	520	52/100 ml
12,169	PF-534		€ 500	50/100 ml
12,170	PF-6	Ħ	350	35/100 ml
12,171	PF-8	n		TNTC*

^{*}Too numerous to count.

Certified by:

Laboratory Manager Environmental Research

Attn: Al Custar

Samples Received: 9/4/80

Date: September 30, 1980

Project Number: 3384

ERG-Cleve Sample ID	Ravenna Sample ID	Parameter	Results (Fm)
11,302	EC-1	PH	6.7 s.v. 62.
11,303	EC-2	: 99.	7.4 S.U. 63° f
11,304	sc-1	.n.	7.4 S.U. 657
11,305	SC-2	n	7.5 S.U. 64
11,306	HC-1	: h	7.2 s.v. $\dot{\epsilon}^{3^c}$
11,307	HC-2	ın	7.4 S.U. 63°
11,308	PF-8	: H	7.4 S.U. 60%
11,309	PF-6		NR
11,310	PF-534	in ®	7.3 S.U. 65
11,302	EC-1	Conductivity	440 umho/cm
11,303	EC-2	n	150 umho/cm
11,304	SC-1	п	320 µmho/cm
11,305	SC-2	Ħ	420 umho/cm
11,306	HC-1	49	480 umho/cm
11,307	HC-2	an .	420 µmho/cm
11,308	PF-8	Ħ	420 umho/cm
11,309	PF-6	T qq	NR
11,310	PF-534	**	400 umho/cm

Attn: Al Custar

Samples Received: 9/4/80

Date: September 29, 1980

Project Number: 3384

ERG-Cleve Sample ID	Ravenna Sample ID	Parameter	Results
11,302	EC-1	Suspended Solids	12
11,303	EC-2	•	3
11,304	sc-1		7
11,305	SC-2	n	4
11,306	HC-1	N	3
11,307	HC-2	Ħ	19
11,308	PF-8	Ħ	4
11,309	PF-6	Ħ	NR
11,310	PF-534	п	: 4
		Biochemical Oxygen	à
11,302	EC-2	Demand	2
11,303	EC-2	n:	<1
11,304	SC-1	in .	2
11,305	SC-2	CMF.	<1
11,306	HC-1	n	4
11,307	HC-2		2
11,308	PF-8	i eq	1
11,309	PF-6	· 19	NR
11,310	PF-534	'n	2

Attn: Al Custar

Samples Received: 9/4/80

Date: September 29, 1980

Project Number: 3384

ERG-Cleve Sample ID	Ravenna Sample ID	Parameter	Results
11,302 ~	EC-1	Total Organic Carbon	32
11,303	EC-2	T	11
11,304	SC-1	Ħ	8
11,305	SC-2	IN.	22
11,306	HC-1	n	28
11,307	HC-2	n	12
11,308	PF-8	н	25
11,309	PF-6	•	NR
11,310	PF-534	· ·	6
11,302	EC-1	Total Kjeldahl Nitrogen	0.20
11,303	EC-2	194	<0.010
11,304	SC-1	'n	<0.010
11,305	SC-2	***	0.15
11,306	HC-1	*	0.22
11,307	HC-2	*	0.091
11,308	PF-8	<u>n</u>	<0.010
11,309	PF-6	n	NR
11,310	PF-534	by .	<0.010

Attn: Al Custar

Samples Received: 9/4/80

Date: September 29, 1980

Project Number: 3384

ERG-Cleve Sample ID	Ravenna Sample ID	Parameter	Results
11,302	EC-1	Nitrate	0.69
11,303	EC-2	*	0.11
11,304	SC-1	. n	0.024
11,3-5	SC-2	**	0.029
11,306	HC-1	•	0.065
11,307	HC-2	Ħ	0.19
11,308	PF-8	п	0.12
11,309	PF-6	r	NR
11,310	PF-534	•	0.040
11,302	EC-1	Nitrite	0.016
11,303	EC-2	7	<0.010
11,304	SC-1		<0.010
11,305	SC-2	•	<0.010
11,306	HC-1		0.015
11,307	HC-2		0.015
11,308	PF-8		0.012
11,309	PF-6		NR
11,310	PF-534	n	<0.010

Page 4 of 9

Attn: Al Custar

Samples Received: 9/4/80

Date: September 29, 1980

Project Number: 3384

ERG-Cleve	Ravenna	N _{OF} ·	
Sample ID	Sample ID	Parameter	Results
11,302	EC-1	Total Phosphorus	<0.030
11,303	EC-2	н	0.072
11,304	sc-l	h	<0.030
11,305	SC-2	n	0.041
11,306	HC-1	Ħ	0.14
11,307	HC-2	n	<0.030
11,308	PF-8	n	0.069
11,309	PF-6	H	NR
11,310	PF-534	n	<0.030
11,302	EC-1	Oil & Grease	<1
11,303	EC-2	H)	<1
11,304	SC-1	N	<1
11,305	SC-2	H.	<1
11,306	HC-1	n	<1
11,307	HC-2	•	<1
11,308	PF-8	•	<1
11,309	PF-6	n	NR
11,310	PF-534	Ħ	<1
	0.0		

Page 5 of 9

Attn: Al Custar

Samples Received: 9/4/80

Date: September 29, 1980

Project Number: 3384

ERG-Cleve Sample ID	Ravenna Sample ID	Parameter	Results
11,302	EC-1	Dissolved Oxygen	6.4
11,303	EC-2	Ř	7.0
11,304	sc-1	*	6.9
11,305	SC-2	и	7.5
11,306	HC-1	n _{ii}	4.0
11,307	HC-2	M	6.0
11,308	PF-8	ns	8.1
11,309	PF-6	H	NR
11,310	PF-534		6.8
11,302	EC-1	Copper	0.008
11,303	EC-2	**************************************	0.039
11,304	SC-1	N .	0.012
11,305	SC-2		0.025
11,306	HC-I		0.067
11,307	HC-2	<u>#</u>	0.011
11,308	PF-8	. 11.	0.006
11,309	PF-6	#	NR
11,310	PF-534		0.025

Page 6 of 9

Attn: Al Custar

Samples Received: 9/4/80

Date: September 29, 1980

Project Number: 3384

ERG-Cleve	Ravenna	B g w	
Sample ID	Sample ID	Parameter	Results
11,302	EC-1	Chromium	<0.005
11,303	EC-2	n	<0.005
11,304	sc-1	n	<0.005
11,305	SC-2	n	<0.005
11,306	HC-1	'n	<0.005
11,307	HC-2	(F	<0.005
11,308	PF-8	n	<0.005
11,309	PF-6	™ n	NR
11,310	PF-534	5	<0.005
11,302	EC-1	Hexavalent Chromium	<0.010
11,303	EC-2	*	<0.010
11,304	sc-1	M	<0.010
11,305	SC-2	N.	<0.010
11,306	HC-1	Ď.	<0.010
11,307	HC-2	ř.	<0.010
11,308	PF-8	.a. .	<0.010
11,309	PF-6	n.	NR
11,310	PF-534	n	<0.010

Page 7 of 9

Ravenna Arsenal, Inc. Ravenna, Ohio 44266

Attn: Al Custar

Samples Received: 9/4/80

Date: September 29, 1980

Project Number: 3384

Results reported in mg/l except where noted

ERG-Cleve Sample ID	Ravenna Sample ID	Parameter	Results
11,302	EC-1	Zinc	0.044
11,303	EC-2	Ne	0.050
11,304	SC-1	h	0.023
11,305	SC-2	(n)	0.051
11,3-6	HC-1	.10	0.066
11,307	HC-2	n	0.031
11,308	PF-8	•	0.034
11,309	PF-6	, in	NR
11,310	PF-534		0.035
11,362	EC-1	Lead	<0.039
11,303	EC-2	н	<0.039
11,304	SC-1	•	<0.039
11,305	SC-2	•	<0.039
11,306	HC-1	6	<0.039
11,307	HC-2	0.	<0.039
11,308	PF-8	•	<0.039
11,309	PF-6	•	NR
11,310	PF-534	m i	<0.039

Page 8 of 9 A-41

Ravenna Arsenal, Inc.

Ravenna, Ohio 44266

Attn: Al Custar

Samples Received: 9/4/80

Date: September 29, 1980

Project Number: 3384

Results reported in mg/l except where noted

ERG-Cleve Sample ID	Ravenna Sample ID	Parameter	Results
11,302	EC-1	Fecal Coliform	120/100 ml
11,303	EC-2	*	140/100 ml
11,304	SC-1	N	120/100 ml
11,305	SC-2	•	230/100 ml
11,306	HC-1	M	TNTC
11,307	HC-2		270/100 ml
11,308	PF-8	н	270/100 ml
11,309	PF-6	н	NR
11,310	PF-534	in.	100/100 ml

NR-Not Received

David L. Lanzola Laboratory Manager

ADDENDUM

Ravenna Arsenal, Inc. Ravenna, Ohio 44266 Date: November 6, 1980

Project Number: 3384

Attn: Al Custar

Samples Received: 9/4/80

ERG-Cleve Sample ID	Ravenna Sample ID	Parameter	Results	Detection Limit
11,303	EC-2	TNT	ND	0.04 ppb
11,305	SC-2	(4) 0 00*	ND	0.04 ppb
11,307	HC-2	3 E	ND	0.04 ppb
11,308	PF-8	10	ND	0.04 ppb
11,309	PF-6	H	ND	0.04 ppb
11,310	PF-534	n	ND	0.04 ppb
11,303	EC-2	RDX	ND	12 ppb
11,305	SC-2	Ħ	ND	12 ppb
11,307	HC-2	69	ND	12 ppb
11,308	PF-8	и	ND	12 ppb
11,309	PF-6	n	ND	12 ppb
11,310	PF-534	R	ND	12 ppb

Certified by:

David L. Lanzoll

Laboratory Manager

Ravenna Arsenal, Inc. Ravenna, Ohio 44266

Attn: Al Custar

Date: June 30,1980	Project Number: 3164	Results reported in mg/l except where noted

Nitrite-N	<0.010	<0.010	0.017	<0.010	0.017	<0.010	<0.010	<0,010	<0.010
Nitrate-N	0.50	0.29	0.19	0.062	0.21	0.40	0.18	0.14	0.055
TKN	.088	.044	1.1	0.12	0.088	0.41	0.73	0.36	0.42
Biochemical Oxygen Demand	e	4	7	64	æ	9	S	т	2
Suspended Solids	10	11	7	11	15	16	10	28	ς.
Conductivity	410	390	340	330	360	310	370	260	340
閪	S.U.	=	=	z		=	=	:	=
	7.7	7.5	7.1	7.6	7.5	7.5	7.5	7.4	7.3
Ravenna Sample ID	EC-1	EC-2	sc-1	SC-2	HC-1	HC-2	PF-8	PF-6	PF-534
ERG/Cleve Sample ID	10,740	10,741	10,742	> 10,743	4 10,744	10,745	10,746	10,747	10,748

Samples Received: 6/12/80

Ravenna Arsenal, Inc. Ravenna, Ohio 44266

Attn: Al Custar

Samples Received: 6/12/80

Date: June 30,1980 Project Number: 3164 Results reported in mg/l except where noted

In (Spring)	9. 7.		80	1,000		7.3	4.7	7.3	
form fol	56	0 0	o ,	0 5 m	9 %	00%	, '	\$° &)
Fecal Coliform	110	190	620	310	710	260	330	270	089
Dissolved Oxygen		0.6	9.4	9.6	8.1	7.9	0.8	9.3	8.0
Oil and Grease	C)	τ,	ત	۲٦	ć1	<1	۲,	\$	т
Total Phosphorous	0.11	0.21	0.16	0.075	0.16	0.19	0.19	96.0	0.35
Ravenna Sample ID	EC-1	EC-2	sc-1	SC-2	110-1	HC-2	PF-8	PF-6	PF-534
ERG/Cleve Sample ID	10,740	10,741	10,742	≥ 10,743	45,701	10,745	10,746	10,747	10,748

Certified by: David L. Lanzold Laboratory Manager

Al Custer To:

Ravenna Arsenal, Inc.

Ravenna, Ohio 44266

Date:

March 126, 1980

Subject: Results of analysis of samples

received 3/20/80

Certified by:

Laboratory Manager

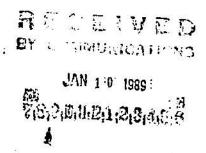
			Results	
Parameter	STORET No.	PF-6	PF-8	PF-534
Dissolved Oxygen	00300	10.8	11.4	9.5
Conductivity		110	170	170
Suspended Solids	00530	2	3	8
Biochemical Oxygen Demand	00310	<1	<1	<1
Oil & Grease	00550	ī	1	2
Fecal Coliform	31616	2.4	4.7	-4.7

Results reported in mg/l

cc: Tom Chanda Jack Powell AQUA TECH ENVIRONMENTAL CONSULTANTS, INC. P.O. BOX 76; STATE ROUTE 100 HELMORE, OHIO 44845

EXPLOSIVES ANALYSIS

METHOD: LIQUID-LIQUID EXTRACTION FOLLOWED BY HIGH PRESSURE LIQUID CHROMATOGRAFHY WITH DIODE ARRAY DEFECTION.


CLIENT: RAVENNA ARSENAL, INC.

8451 STATE ROUTE 5, RAVENNA OHIO 44266-9297

ATEC SAMPLE NO: 19963 CLIENT SAMPLE NO: PF-534 DATE SAMPLED: 12/14/88 DATE RECEIVED: 12/16/88 DATE ANALYZED: 12/20/88

COMPOUND	CONCENTRATION (MG/L)
Trinitrotoluene (TNT)	< 0.05
HMX	< 0.05
RDX	< 0.03

ANALYST	SIGNATURE	Lore L. Reed

IIR L P.O. Bas 15 Melmore Chia 44845 419-337-2659 or 197-2222 P.O. Box 436 151 South Main Etreet Marion Ohio 43202 514-322-4591

LABORATORY ANALYSIS REPORT

DATE REC'D.

12-16-1785

11-17-1998

COMMENTS.

LAB NO.

15002-35

DATE REP'D.

CLIENT NO.

SAMPLE LOCATION SAMPLED BY

LARRY JOHNSON

#9 SUFFACE WATER File - 85,574

DATE SAMPLED TIME SAMPLED

12-14-17 15:00

MR. JGE MOUND

RAVENNA ARSENAL, INC.

3451 ER 5

RAVENDA

CH 44156

STORET	ANALYSIS	RESULT	UNITS	DATE OF ANALYS
0010 01074 01075 01076 01076 01076 01076 0008 0008 0008 0008 0008 0008 0008 0	BOD, 5 DAY CADMIUM, TOTAL, CD CHROMIUM, TOTAL, CR CONDUCTIVITY, LAB COFFER, TOTAL, CU THE SZ225 LEAD, TOTAL, PB NITRATE N NITRITE N DIL/SREASE PHOSPHORUS, TOTAL, F RESIDUE, T. NFLT. (SUSP) TOTAL KJELDAHL N CARBON, TOTAL ORGANID, C ZINC, TOTAL, IN PH, LAB	30	MG/L MG/L MG/L MG/L MG/L MG/L S.T.	10-27-178 10-21-178 12-21-178 12-21-178 12-21-178 12-21-178 12-21-178 12-22-178 12-21-19 12-21-19 12-21-19

LABORATORY CERTIFICATION # 4053

A-48

COPY DISTRIBUTION: WHITE - CLIENT

SIGNED. YELLOW - FILE

RECEIVED MAINTENANCE DEPT.

RAVENNA ARSENAL 8451 STATE ROUTE 5 RAVENNA, OHIO 44266

SURFACE WATERS

TMA ID: 6912 DATE RECEIVED: 11/30/89

				>>			DATE OF	TIME OF
	PARAMETER	bF6	PF8	PF534	METHOD #	ANALYST	ANAL YS IS	ANALYSIS
3	Conductivity (uhmos/cm)	210	310	520	502	ÐF	12/04/89	0060
	Geral Coliform (colonies/100 ml)	1300	15، 1600	<i>↑</i> 710	75.50 D606	-2. NG	12/01/89	1630
	Suspended Solids (mo/l)	2	4	4	2090	ار	12/04/89	1000
A-	P Biochemical Oxygen Demand (mq/1)	₽	₽	₽	203	ಕ	12/05/89	1500
49	Nitrate (mg/l)	<0.01	<0.01	<0.01	4180	٦.	12/07/89	1630
	Nitrite (mq/))	<0.01	<0.01	<0.01	419	7	12/07/89	1630
	Total Kieldahl Nitrogen (mg/1)	1.2	1.2.8	1.4 1.	420A	NG	12/13/89	1315
	Total Phosphorus (mg/1)	0.02	0.05	0.04	424	DF.	12/05/89	1500
	Oil & Grease (mg/1)	₽	Ħ	2	503A	SI	12/06/89	1000
	Cadmium (mg/l)	<0.010	<0.010	<0.010	310A	NG	12/12/89	1200
	Chromium (mg/1)	<0.030	<0.030	<0.030	312A	NG	12/12/89	1200
	Copper (mo/1)	<0.010	<0.010	<0.010	313A	NG	12/12/89	1200
	Lead (mg/l)	<0.020	<0.020	<0.020	316A	NG	12/12/89	1200
	Zinc (mg/1)	0.025	7. 0.013	<0.010	328A	NG	12/12/89	1200
2	Total Ordanic Carbon (mg/l)	14	s,′18	15 +3	505A	MB	12/12/89	1100
	TNT (119/1)	<1.0	<1.0	<1.0	89	15	12/13/89	0060
	RDX (ug/1)	<1.0	<1.0	<1.0	89	HS	12/13/89	0060
	DNT (ug/1), 2-4 & 2-6	<1.0	<1.0	<1.0	89	15	12/13/89	0060

TIVIA
Thermo Analytical Inc.

TMA/ERG
7777 Exchange Street
Cleveland, OH 44125-3337
[218) 447-0790

RAVENNA ARSENAL 8451 STATE ROUTE 5 RAVENNA, OHIO 44266 TMA 10: 0825 DATE RECEIVED: 06/20/91

SURFACE WATERS

	PARAMETER	PF8	PF534	ANALYST	DATE OF ANALYSIS	TIME OF ANALYSIS
	рн (s.u.)	8.0	8.0	JA	06/20/91	1600
	Conductivity (uhmos/cm)	626	469	Æ	06/20/91	0060
	Fecal Collform (colonies/100 ml)	2800	150	WR	06/21/91	1600
	Suspended Solids (mg/l)	4	2	WR	16/60/10	1000
2	Biochemical Oxygen Demand (mg/l)	: ;!	က	¥	06/26/91	1500
A- 50		0.37	0.14	HS	07/13/91	1400
)	Nitrite (mg/l)	<0.01	<0.01	HS	07/13/91	1100
	Total Kjeldahl Nitrogen (mg/l)	<1.0	<1.0	HS	07/16/91	1815
	Total Phosphorus	<0.01	(0.01	HS	07/16/91	1400
	Oil & Grease	₽	₽	HS	07/16/91	1300
	Cadmium	<0.01	<0.01	RZ	07/16/91	1300
	Chromium	<0.03	<0.03	RZ	07/16/91	1400
	Copper	<0.01	<0.01	RZ	16/91/20	1300
	Lead	<0.02	<0.02	RZ	16/91/20	1100
	Zinc	<0.01	<0.01	RZ	07/16/91	1000
	Total Organic Carbon	က	8	WD	06/26/91	0060
	TNT	<1.0	<1.0	Н9	07/03/91	1200
	RDX	<1.0	<1.0	ен	07/03/91	1200
	DNT	<1.0	<1.0	В	07/03/91	1200

t I**ÿi'A** hermo Analytical Inc. MAZERG 177 Exchange Street Liveland, OH 44125-3337 16) 447-0790

RAVENNA ARSENAL 8451 STATE ROUTE 5 RAVENNA, OHIO 44266

SURFACE WATERS

TMA 10: 1680 DATE RECEIVED: 12/03/92/

		DAIE ACCEITED	٠			
			7)		DATE OF	TIME OF
PARAMETER	PF6	PF8	PF534	ANALYST	ANALYSIS	ANALYSIS
рн (s.u.)	6.99	7.44	7.08	MM	12/03/92	1530
Conductivity (uhmos/cm)	172	330	285	MM	12/03/92	1530
Fecal Coliform (colonies/100 ml)	-	224	71	MR	11/26/90	1500
Suspended Solids	6	4	8	JPA	12/04/92	1100
Biochemical Oxygen Demand	2	_		PS	12/08/92	1500
Nitrate	0.080	0.15	0.010	PS	12/16/92	1400
Nitrite	<0.010	<0.010	<0.010	PS	12/04/92	1200
Total Kjeldahl Nitrogen	₽	₹1	€1	RZ	12/14/92	1800
Total Phosphorus	<0.010	0.020	0.060	PS	12/19/92	1350
Oil & Grease	₽	₽	₽	RZ	12/08/92	1100
Phosphate	<0.010	<0.010	<0.010	PS	12/04/92	1350
Cadmium	<0.010	<0.010	<0.010	119	12/14/92	0060
Chromium	<0.030	<0.030	<0.030	81	12/14/92	0060
Copper	<0.010	<0.010	<0.010	BI	12/14/92	0060
Lead	<0.020	<0.020	<0.020	18	12/14/92	0060 .
Zinc	0.010	090.0	<0.010	18	12/14/92	0060
Total Organic Carbon	4.3	4.9	5.9	JB	12/11/92	0060
(1/6n) TNT	<1.0	<1.0	<1.0	SJ	12/11/92	1200
RDX (ug/1)	3.3	<1.0	<1.0	SJ	12/11/92	1200
2,4 DNT (ug/1)	<1.0	<1.0	<1.0	SJ	12/11/92	1200
2,6 DNT (ug/1)	<1.0	<1.0	<1.0	SJ	12/11/92	1200

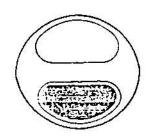
A-51

Results reported in mg/1 unless otherwise specified.

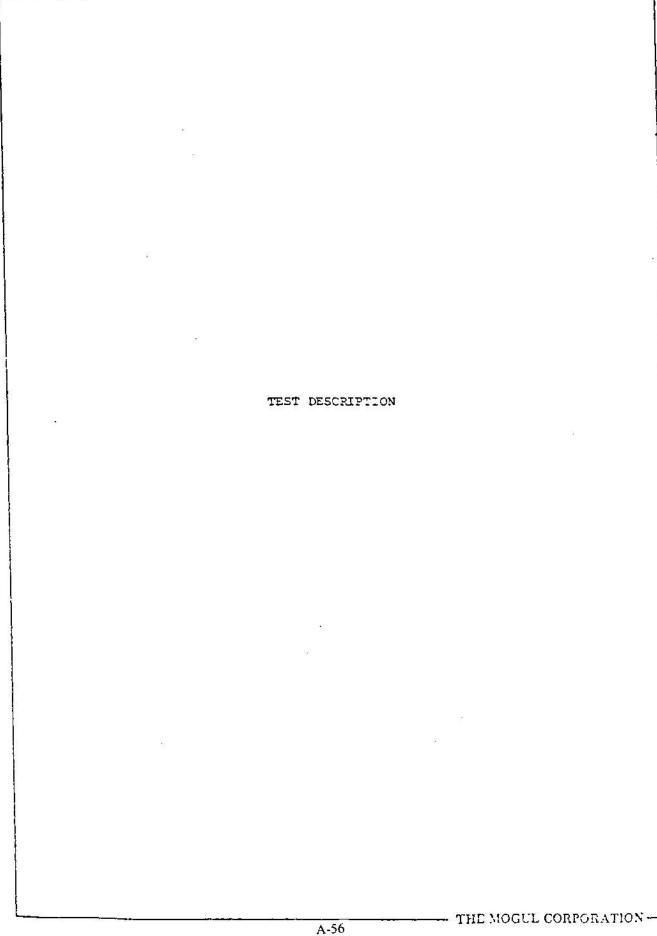
APPENDIX A-4

SELECTED PORTIONS FROM PREVIOUS ENVIRONMENTAL INVESTIGATIONS AT ERIE BURNING GROUNDS SOIL AND SEDIMENT ANALYSES (1982)

SOIL AND SEDIMENT ANALYSES


PERFORMED FOR:

RAVENNA ARSENAL RAVENNA, OHIO


BY:

THE MOGUL CORPORATION CHAGRIN FALLS, OHIO

PASS PROGRAMS

B-4

TEST DESCRIPTION

On May 4 and 5, 1982, Mogul Corporation personnel performed the soil and sediment sampling necessary for the TNT and RDX determinations.

All pond composite sampling consisted of combining four (4) individual pond sediment samples, from various locations in each pond, and then mixing and quartering the composite until one (1) representative sample suitable for analysis was obtained.

All land surface and stream samples were obtained from a test hole of 12"-74" in depth. The entire boring was considered a sample. The samples taken at the ore pile area had a minimum of six inches of surface removed prior to actual sampling in order to remove any transient material that may have been present. Land surface sample sites were selected by the Mogul Corporation personnel.

Grab samples from effluent and influent stream sediments were taken:

(1) Immediately after discharge from the treatment facility; (2) Midpoint of flow route; and (3) At the end of travel prior to exiting from property or emptying into major stream.

Each stream and land surface sample location was physically marked with an orange tipped stake. A sample identification was placed on each location marker.

Soil and sediment sampling sites are as follows:

Locat	ion	Number of Samples
Load Line	#1 Pond	1 Composite
Load Line	#1 Stream .	. 3 Stream Bed
Load Line	#2 Pond	1 Composite
Load Line	#2 Stream	3 Stream Bed
Load Line	#3 Stream	3 Stream Bed
Load Line	#4 Pond	1 Composite
Load Line	#4 Stream	3 Stream Bed
Load Line	#12 Pond	1 Composite
Load Line	#12 Stream	3 Stream Bed

Ravenna Arsenal Ravenna, Ohio

Test Description-Page 2

Ramsdell Quarry Pond
Ramsdell Quarry Pond
Upper Cobbs Pond
Lower Cobbs Pond
Ore Area
Ore Pile Retention Pond

Ore Pile Retention Pond

'C' Black Quarry

Erie Burning Grounds

Total Samples

1 Composite

6 Land Surface *

1 Composite

1 Composite

6 Land surface *

1 Composite

3 Land Surface

5 Land Surface

43

*Includes one (1) background sample obtained in a noncontaminated area.

The analyses for explosives (RDX/TNT) in soil extract samples were performed as follows:

Approximately twenty (20) grams of each soil sample was extracted with ten (10) milliliters of acetonitrile. The acetonitrile extract was certifuged to clarify these solutions prior to analysis by HPLC.

Separation and detection was performed on a Waters Associates High Performance Liquid Chromatograph, Pump Model 6000A, U6K injector, with a Model 450 variable wavelength detector set at 254nm. The reversed phase column was a 25cm X 4.6mm, 5um, Supelcosil RLC-18 column (Supelco, Inc., Bellefonte, PA) held at 22°C. The isocratic mobil phase (75% water, 20% 1-propanol, 5% ethanol) flow as 1.5 ml/min.

Quantitation was based upon data provided by a Columbia Scientific Industries Supergrator 3A computing integrator. Analytical standards of TNT and PDX were supplied by the United States Army Ordinance, Quality Assurance Branch and 100% purity was assumed.

Confirmation was performed with a Tracor 560 Gas Chromatograph with a Nickel 63 electron capture detector operating in pulsed mode. The analytical conditions were as follows: Column - 6' X 2mm ID glass packed with 3% Dexsil 300 on 80/100 Supelcoport; 95% argon/5% methane carrier at 60ml/min; inlet 225°C, detector 300°C, column 150°C/2min then 10°/min to 200°C/8 min.

Results are reported in a tabular form in the data summary which follows this test description.

DATA SUMMARY A-59 - THE MOGUL CORPORATION -

DATA SUMMARY
Explosives in Soil Extracts

Sample ID Number	Sample Location	Soil Percent Moisture	TNT Micro- grams	RDX * Milli-
lA	RM Quarry Background	33.48 .::	ND	ND
2 B	RQ Sample #1A	9.80	ND	ND
3	LL #12 Pond	32.30	ND	מא
4	NO Pond	48.48	ND	1.73
5	LL #4 Composite:	63.83	ИD	ND
6 5	Erie BG ND-2	16.24	ND	ND
-7)	Erie Burning Ground #1	16.33	ND	ND
8	Block #C	8.44	ND	ND
9	Ore Area #6	8.05	ИD	. 76
10	Orea Area Background	23.35	ир	ИD
11	Ore Pond	13.95	ND	1.16
12	LL #4 Stream #1	18.17	ND	ND
13	Stream Sample #2~	15.64	.06	ND
14	LL 4 E 3 Stream	16.37	ND	.54
15	Upper Cobbs Pond	39.49	ИD	1.16
16	LL 1 Stream 1	33.88	. 30	1.51
17	Lower Cobbs Pond	47.87	ND	ИD
18	LL 1 Stream 2	53.33	ИД	1.60
19	LL 1 Stream 3	46.33	ND	1.39
20	LL 1 Pond Composite	46.61	ND	ND
21	Ore Area #4	12.92	ND	1.20

Data Summary--Page 2

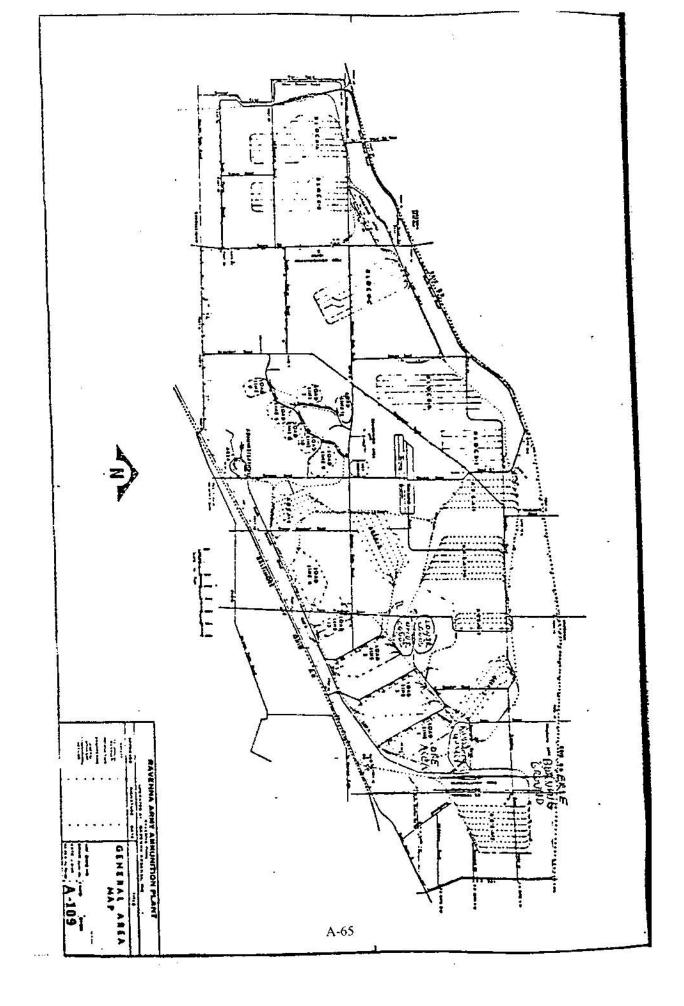
			15		
	22	Ore Area #1	16.14	ND	ND
	23	Ore Area #2	11.83	ND	ND
	24	Ore Area #3	8.19	ИD	ND
	241	Ramsdell Quarry Soil Sample #3	8. 2	ND	ND
	25	Ore Area #5	9.5	.06	1.17
	27	Ore Area #5	26.52	.14	ND
	28	Ramsdell Quarry Soil Sample #5	3.56	ND	ND
	29	Ramsdell Quarry Soil Sample #2	9.01	ND	ND
£	30	Ramsdell Quarry Soil Sample #4	21.03	ND	ИD
<u> </u>	31>	Erie Burning Ground #3	15.40	ND	ЙD
8 . 2000	32	Erie Burning Ground #4	51.72	ND	ND
	33	LL 2 Stream Sample #1	40.51	. 33	1.75
	34	11 #2 Stream #3	33.41	.15	.74
	35	LL #2 Pond	47.51	.27	ND
	36A	LL #2 Stream Sample #2	43.13	.60	.94
	36B	LL #2 Stream Sample #2 .	43.00	.27	1.24
	37	LL 12 Stream #1	40.96	.17	1.12
	38	RQ Background	33.48	ND	1.32
	39	LL 12 Stream Sample #3	58.04	ND	ND
	40	LL 12 Stream #2	54.86	ИD	ND
	41	Block C Sample #3	19.38	ND	ND
	42	LL Stream Sample #2	48.58	ND	ND
	43	Block C Sample #1	19.88	ND	ND

^{*}Results are micrograms per milliliter as dry soil.

ND means Not Detected. The limit of detection is approximately 0.05.

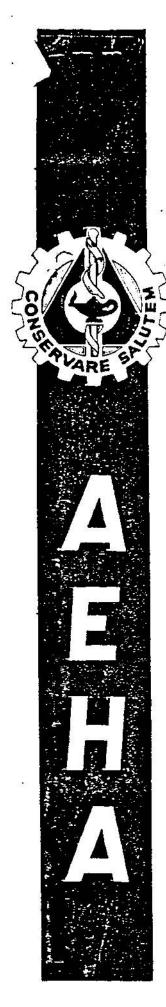
LL means Load Line.

METAL DATA SUMMARY


METAL DATA SUMMARY

Milligrams per Kilogram

Dry Weight


Sample Id Number	Sample Location	Chromium as Cr	Lead as Pb	Mercury as Hg
8	Block #C	290	150	1.24
9	Ore Area #6	15	22	1.04
10	Ore Area Background	25 .	51	1.24
11	Ore Pond	6		<i>₹</i> 0
21	Ore Area #4	15		
22	Ore Area #1	19		
23	Ore Area #2	16		
24	Ore Area #3	15	¥	
25	Ore Area #5	16		
41	Block C Sample 3	13		
43	Block C Sample 1	16		
Blank	22	<1	<1	<.01

GENERAL AREA MAP A-109

APPENDIX A-5

SELECTED PORTIONS FROM PREVIOUS ENVIRONMENTAL INVESTIGATIONS AT ERIE BURNING GROUNDS GROUND-WATER CONTAMINATION STUDY (1988)

UNITED STATES ARMY ENVIRONMENTAL HYGIENE AGENCY

ABERDEEN PROVING GROUND, MD 21010-5422

INTERIM FINAL REPORT
GROUND-WATER CONTAMINATION SURVEY NO. 38-26-0302-89
EVALUATION OF SOLID WASTE MANAGEMENT UNITS
RAVENNA ARMY AMMUNITION PLANT
RAVENNA, OHIO
8-12 AUGUST 1988

Distribution limited to U.S. Government agencies only: protection of privileged information evaluating another command; Oct 88. Requests for this document must be referred to Commander, Ravenna Army Ammunition Plant, Ravenna, OH 44266-9297.

TABLE 1. SOLID WASTE MANAGEMENT UNITS, RAVEWHA ARMY APPRINTION PLANT, RAVEWHA, DRIG

SHOW SILE	SUPPL NAME	SHOUTYDE		
ı	Ramsdell Quarry Landfill	landfill		
y c	Erse Burning Grounds	thermal		
DC.	Demolition Area 41	thermal treatment		
iù.	Dempistion Arga #2	tnermal treatment		
ie	Winklebeck Burning Grounds	inermal irgaiment		
	C Slock Quarry	chemical dump site		
•	Bldg 1681 Kazardous Waste Storage	\$torage		
3	Wastewater Treatment System - Load Line 1	industrial wäste Treatment		
	Wastewater Treatment System - Load Line 2	industrial waste treatment		
10	Mastemater Treatment System - Load Line 3	industrial waste treatment		
11	Wastewater Treatment System - Load Line 4	industrial maste treatment		
12	Load Line 12 bomb Heltout Facility	dentil- tarization		
13	Bldg 1205, Ammunition Sectioning Area	demili- tarization		
14	Load Line 6 Evaporation Unit	evaporation tank		
1\$	Load Line & Treatment Plant	industrial waste treatment		
16	Quarry Langfill/Pond	landfill/ burning area/ bring water lagoon		
17	Deactivation Furnace			
18	Load Line 12 Treatment Plant	industrial waste treatment		
19	Landfill H. of Winklepeck Burning Ground	landfill		
20	Sand Creek STP	sevage treatment		
21	Deast STP	sewage treatment		
22	George Road STP	sewage treatment		
23	Unit Training Equipment Site (Lank Maintainance arga)	underground storage Lank		
24	Reserve Unit Meintenance Area waste 011 Tank	aboveground storage tank		
25	Blog 1034 Motor Pool Waste psi Tank	maste off tank		
26	Fuzz Booster Area - Settling Tanks	wunitions manufacturing		
27	Building ES4, PCE Storage	PCS storage		
21	Pustard Agent Burial Site	possible musterd agent		
29	Upper and Lower Cobbs Fond	burial sedimentation basins		

TABLE 2. SHMU'S REQUIRING ADDITIONAL INVESTIGATION

SWMU Site Number	Type of Investigation Proposed
RVAAP-1	Sample monitoring wells and pond for explosives, volatile organic compounds, acid and base-neutral extractable organics, herbicides, and pesticides. Also sample the pond for priority pollutant metals and mitrates.
RVAAP-3	Soil from bare ground areas should be sampled andanalyzed for explosives and metals.
RVAAP-4	Conduct an RCRA Facility Investigation. 2 See Affached 7/
RVAAP-5	Conduct an RCRA Facility Investigation. Sant. on Expend of Kt
RVAAP-8. 9, 10 · ¿	Monitoring wells need to be installed around the perimeter of the combined areas of Load Lines 1, 2, and 3 (RVAAP 8, 9, 10). Those wells need to be sampled for explosives and heavy metals.
RVAAP+11	Monitoring wells need to be installed around the perimeter of Load Line 4 (RVAAP-11) and sampled for heavy metals and explosives.
RVAAP+12	Monitoring wells need to be installed around the perimeter of the Load Line 12 Bomb Meltout Facility (RVAAP-12) and sampled for heavy metals and explosives.
RVAAP-13	Collect and analyze a series of soil samples in the drainage way upstream, downstream, and under the crushed slag where the wash water was drained. The soil samples should be analyzed for explosives and heavy metals.
RVAAP-16	Sample all three ponds for explosives, volatile organic compounds, acid and base-neutral extractable organics, herbicides, pesticides, priority pollutant heavy metals and selected inorganics.
RVAAP-19	Install monitoring wells around perimeter of the site. Sample the monitoring wells and nearby stream for explosives, volatile organic compounds, acid and base-neutral extractable organics, herbicides, pesticides, priority pollutant heavy metals and selected inorganics.
RVAAP-23	Sample the supply well for petroleum hydrocarbons UTL5 Responsible and heavy metals.
RVAAF-24	Sample the oil in the ditch to verify its composition and determine if heavy metals are $\longrightarrow \ell_0$, ℓ^{14} present.
RVAAP-28 '	Install monitoring wells around the perimeter of the site and sample for degradation products of mustard agent.

Interim Final Rpt, Ground-Water Contamination Surv No. 38-26-0302-89, RVAAP, Ravenna, OH, 8-12 Aug 88

- (2) Three of the line areas, Load Lines 1, 2, and 3 (RVAAP-8, 9, 10), were listed together on Table 2. Because those line areas adjoin each other, the most efficient means of investigating those three areas is to install monitoring wells around the perimeter of the combined areas. An investigative approach similar to this was used previously as part of the reference 22 investigation. Unfortunately, wells installed during that study were not sampled for explosives and have since been destroyed by frost heave.
- (3) An environmental investigation is in progress at one SWMU. RVAAP-14, as part of a required closure plan for that SWMU. That investigation is adequate to determine if a release has occurred at that SWMU.
- (4) No environmental investigations are needed at the remaining SWMU's. Those SWMU's are RVAAP-2, 6, 7, 15, 17, 18, 20, 21, 22, 25, 26, 27, and 29.

CONCLUSIONS.

- a. Additional environmental sampling is needed at 13 SWMU's to determine if a release of hazardous constituents has occurred. Those SWMU's are RVAAP-1, 5, 8, 9, 10, 11, 12, 13, 16, 19, 23, 24, and 28.
- b. Resource Conservation and Recovery Act (RCRA) Facility Investigations are needed at two sites: RVAAP-3 and RVAAP-4.
- c. Investigations are in progress at one SWMU to determine possible corrective or remedial action. That SWMU is RVAAP-14.
- d. No further site specific environmental investigation is needed at the remaining 13 SWMU's due to either the very low potential for release or the demonstrated—lack of a release by environmental investigation. Those SWMU's are RVAAP-2, 6, 7, 15, 17, 18, 20, 21, 22, 25, 26, 27, and 29.

6. RECOMMENDATIONS.

- a. To ensure regulatory compliance with 40 CFR 264.101 and 40 CFR 270.14, the following recommendation is made: implement environmental investigations at 15 SWMU's: RVAAP-1, 3, 4, 5, 8, 9, 10, 11, 12, 13, 16, 19, 23, 24, and 28.
- b. To ensure sound environmental practice, the following recommendations are made:
- (1) Excavate and remove the two underground storage tanks at RVAAP-23 as soon as alternative provisions can be made. Any associated soil contamination should also be removed along with the tanks.

MAP LOCATION/SITE NUMBER. RVAAP-2 (See Figure A-2).

a. Unit Name. Erie Burning Grounds.

b. Unit Characteristics.

- (1) Unit Type. Thermal treatment of munitions by burning.
- (2) General Dimensions. Design Features: 35 acres.
- (3) Approximate Dates of Usage. 1941 1951.
- (4) Operating Practices. Open burning of explosive related items was conducted on the land surface. Large metal items that had been exposed to flame to be decontaminated of explosive residues were collected and processed through scrap and salvage. The ash residues from the burns were left behind.
- (5) Present Condition and Status. The site is now a cattail swamp caused by an infestation of beavers. The area is inhabited by beavers, mink, muskrats, deer, coyotes, hawks, and numerous other forms of wildlife.

c. Waste Characteristics.

- (1) Specific Wastes Disposed. The ash residues from the burning of explosives waste material containing RDX, TNT, and propellants were left on the site.
- (2) Physical and Chemical Characteristics. Ash residues can contain small amounts of explosives and some heavy metals.
- (3) Migration and Dispersal Characteristics. Explosives and the metals found in the ash-residues show some solubility in water and can be water transported off the site if concentrations are high enough.
- (4) Toxicological Characteristics. The toxicological characteristics of any remaining ash are unknown, but based on the observations of abundant plant and animal life at the site, the known toxiclogical characteristics of explosives and metals and the generally low concentrations that have been found in ash at other sites on this installation (reference 11), and the time that has elapsed since the burning last occurred, the toxicological characteristics of the ash are most likely very low.
- d. <u>Migration Pathways</u>. Possible surface water runoff and infiltration into ground water.

MAP LOCATION/SITE NUMBER. RVAAP-3 (See Figure A-3).

-

a. Unit Name. Demolition Area #1.

b. Unit Characteristics.

- (1) Unit Type. Thermal treatment of munitions by burning.
- (2) General Dimensions. Design Features: 1.5 acres.
- (3) Approximate Dates of Usage. 1941 1949.
- (4) Operating Practices. Munitions, including fuses, boosters, bombs, and mortars, were detonated here on the open ground.
- (5) Present Condition and Status. The site now consists of a circular 1-1.5 foot high berm surrounding a grassed area approximately 1-1.5 acres in size. Around the perimeter of the berm were several small bare ground areas of 100-150 square feet. Munitions fragments including scrap metal, small arms primers, and fuses were observed on the ground surface outside the bermed area.

c. Waste Characteristics.

- (1) Specific Wastes Disposed. Shrapnel and other metallic munitions fragments were allowed to remain on the site after detonation along with possible residual explosives.
- (2) Physical and Chemical Characteristics. The metallic fragments remaining after detonation are essentially inert. The characteristics of various explosives compounds that may be present are listed in Appendix B.
- (3) Migration and Dispersal Characteristics. The solubilities of any residual explosives could result in water transport of the material.
- (4) Toxicological Characteristics. See Appendix B for the toxicological characteristics of the various explosives compounds. The presence of bare ground areas suggests some toxicity to vegetation.
 - d. Migration Pathways. Possible infiltration into ground water.
- e. <u>Evidence of Release</u>. Bare ground areas indicate possible soil contamination.
- f. Exposure Potential. Medium, because of possible soil contamination and leaching into underlying ground water.
- g. Recommendations for Sampling. Soil samples should be collected in the bare ground areas and analyzed for explosives and metals contamination.
 - h. Reference. 5.

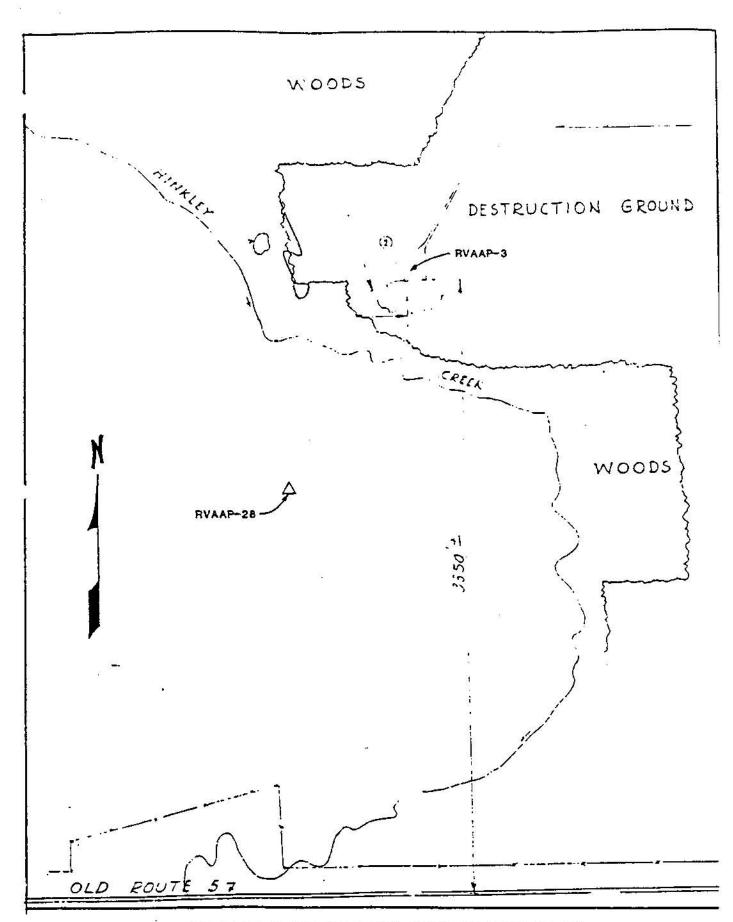


FIGURE A-3. DEMOLITION AREA ≠1 (RVAAP-3)

MUSTARD BURIAL SITE (RVAAP-28)

A-75

APPENDIX A-6

SELECTED PORTIONS FROM PREVIOUS ENVIRONMENTAL INVESTIGATIONS AT ERIE BURNING GROUNDS RCRA FACILITY ASSESSMENT, DRAFT RR/VSI REPORT (1989)

ENVIRONMENTAL PROTECTION AGENCY TECHNICAL ENFORCEMENT SUPPORT AT HAZARDOUS WASTE SITES

NCY DE CE MENTON AND REGION ON THE CONTROL OF THE C

TES IV CONTRACT NO. 68-01-7351 WORK ASSIGNMENT NO. R05031

RAVENNA ARMY AMMUNITION PLANT RAVENNA, OHIO RCRA FACILITY ASSESSMENT DRAFT RR/VSI REPORT

U.S. EPA REGION V

JACOBS ENGINEERING GROUP, INC.

PREPARED BY:
METCALF & EDDY, INC.
111 WEST JACKSON BLVD.
CHICAGO, ILLINOIS 60604

PROJECT NO. 05-B990-00

OCTOBER 5, 1989

6.2 Unit Type: SWMU-2 - Erie Burning Grounds.

Regulatory Status: SWMU, inactive.

- A. Unit Description: A 35-acre site used to thermally treat munitions by opening burning on land surface. Bulk, obsolete, non-spec propellants, conventional explosives, rags, and army box cars, used for transporting explosives throughout the installation were treated at this location. Unspecified large metal items were also treated to remove explosive residue. These items were salvaged and processed as scrap. The ash residue from these burns were left on-site.
- B. Age: 48 years. Period of Operation: 1941 to 1951.
- waste Type: Ash residues from the burning of explosive waste material containing RDX, TNT, propellants, and sanitary wastes from family housing, offices and the base hospitals

waste Volume/Capacity: Unknown. Estimates have reached as high as a million pounds of waste. This estimate however has been identified as an approximate total of wastes destroyed at all the burning grounds.

Waste Constituents: RDX, TNT, heavy metals, and unknown.

- D. Release Controls: None.
- E. Release History: A soil sampling investigation was conducted at the Erie Burning Grounds in May, 1982 by the Mogul Corporation of Chagrin Falls, Ohio. At the direction of RVAAP personnel, 5 soil samples were collected from test borings ranging in depth from 12 inches (in.) to 24 in. and submitted for TNT and RDX analysis. The analyses revealed concentrations below detection limit.
- F. Conclusions:

Boil/Groundwater: There is a potential for releases from this unit to the surrounding soils and groundwater. Because this unit is unlined and because the open burning was conducted on the land surface with the ash residue left on-site, contamination to the soil and groundwater can/may have occurred.

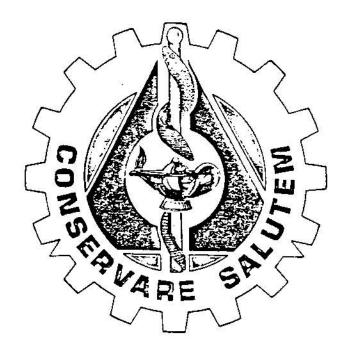
Surface Water: The potential exists for surface water to be contaminated. Metals and explosives show some solubility in water.

There is no potential for releases to the air since this unit is no longer active.

Bubsurface Gas: This unit thermally treated wastes by open burning. Therefore, there is no potential for the generation of subsurface gas.

- VSI Observations: The following observations were made G. by M&E (See Photographs 2 and 3):
 - Unit is believed to be located in a low lying, marshy area presently inhabited by beavers.
 - From M&E's vantage point, no discolored water, odors, or contaminated soil could be identified.
 - Stressed vegetation was not observed.
 - Damage to fauna was not observed.

According to the site representative, Mr. Thomas Chanda, this unit was identified within the Installation Assessment Report prepared by the U.S. Army, Toxic and Hazardous Materials Agency. Mr. Chanda could not confirm the exact location of this unit. His location was based upon assumptions, a set of railroad spurs, and wheel axles from a burned railroad car. Mr. Chanda also stated that this unit treated conventional explosives and propellants. Liquid wastes were not disposed of in this unit that he was aware of. Mr. Chanda also revealed that this area was used for brick manufacturing prior to the purchase by the Army. Evidence of this past usage included a partially submerged flag pole.


H. sample Results: Contamination was not detected in the samples collected in 1982. However, the area that was sampled may not be the correct location of this unit.

Buggested Further Actions: Further research is needed to identify the correct location of this unit. As part $f_{\rm el}$ of the sv, segment samples and surface water samples from the marsh area should be collected and submitted for TCL and explosive analysis. for TCL and explosive analysis. The facility should be requested to provide further documentation, if available, to help identify the location of this unit. If pursued, sampling points could be adjusted to References: 2, 31, 32, 40

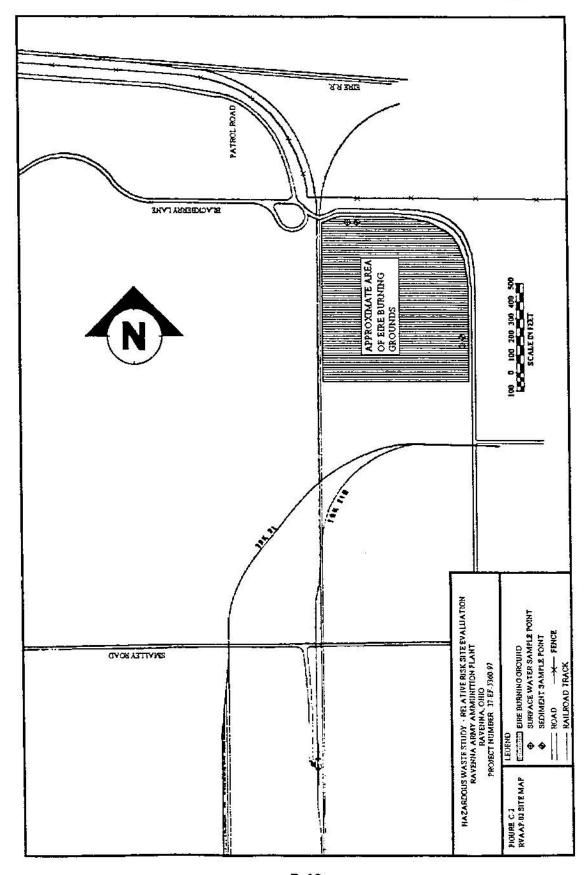
APPENDIX A-7

SELECTED PORTIONS FROM PREVIOUS ENVIRONMENTAL INVESTIGATIONS AT ERIE BURNING GROUNDS RELATIVE RISK SITE EVALUATION (1996)

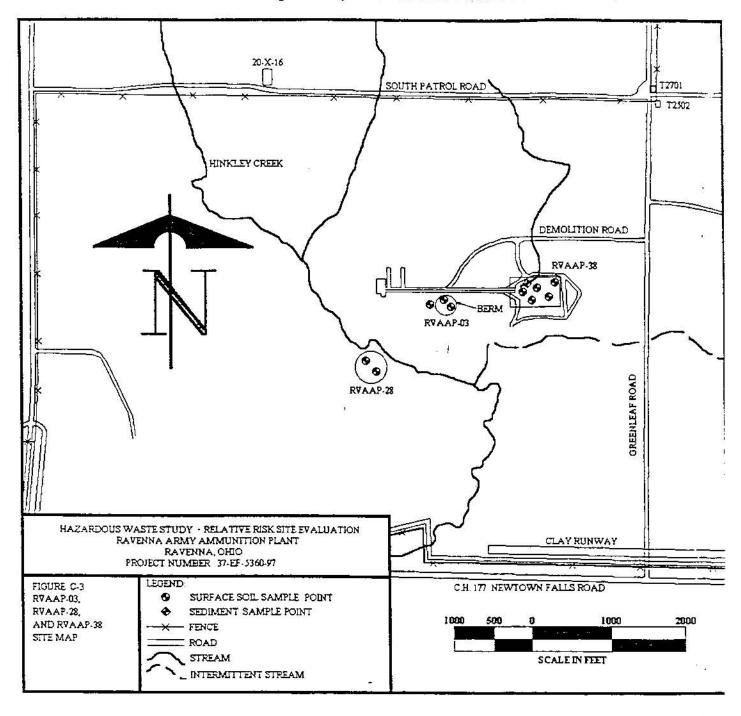
U.S. Army Center for Health Promotion and Preventive Medicine

HAZARDOUS AND MEDICAL WASTE STUDY NO. 37-EF-5360-97
RELATIVE RISK SITE EVALUATION
RAVENNA ARMY AMMUNITION PLANT
RAVENNA, OHIO
28 OCTOBER - 1 NOVEMBER 1996

VOLUME I


Distribution limited to U.S. Government agencies only; protection of privileged information evaluating another command; Mar 97. Requests for this document must be referred to Commander's Representative, Ravenna Army Ammunition Plant. 8451 State Route 5, Ravenna, OH 44266-9297.

Readiness Thru Health


B-10

_ A-85

DESTRUCTION NOTICE - Destroy by any method that will prevent disclosure of contents or reconstruction of the document

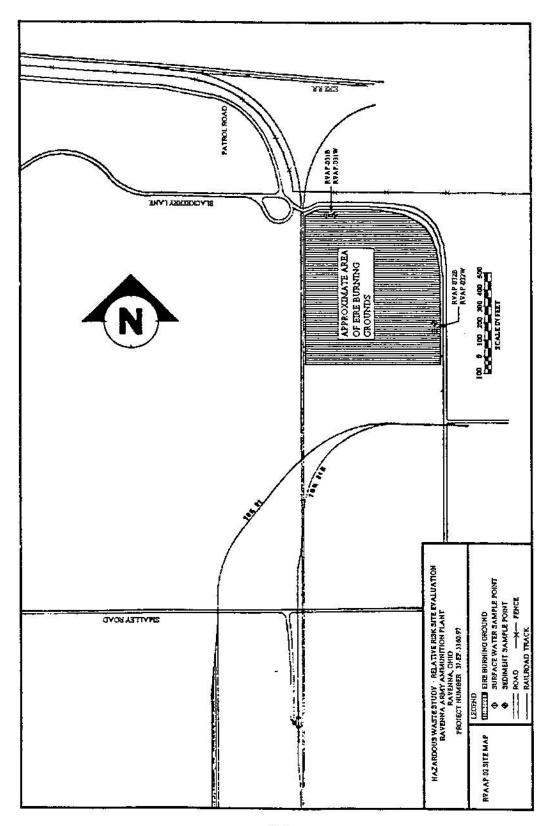
B-19 A-86

- → 1. Site Name: RVAAP-02, Eric Burning Grounds.
 - 2. Site Summary: This site was used from 1941 to 1951 to conduct open burning of explosives and related items. Bulk, obsolete, nonspecification propellants, and conventional explosives from throughout the installation were treated at the site. Metal items were treated to remove explosive residue before being processed as scrap. The area is now a swamp with up to several feet of water in places as a result of beaver activity. Two samples each of the surface water and sediment were collected from the site and analyzed for explosives and metals. There are no nearby workers. However, hunters have access to the site.

3. Pathway Evaluation:

- a. Ground Water: Not Evaluated. There is no ground water associated with this site.
- b. Surface Water/Human Endpoint: High.

(1) Contaminant Hazard Factor: 4.92 = Moderate


Contaminant	Max Concentration (µg/L)	Standard (µg/L)	Ratio	
arsenic	4	4.5	0.89	
barium	29	2600	0.01	
copper	29	1400	0.02	
lead	16	4	4	

- (2) Migration Pathway Factor: Potential. There is no evidence that site contaminants are migrating. However, there are no physical barriers in place to prevent migration.
- (3) Receptor Pathway Factor: Identified. This area is not used for production. However, hunters and fishermen have access to the site and use it for recreational activities. Access to the site is not restricted in any manner.

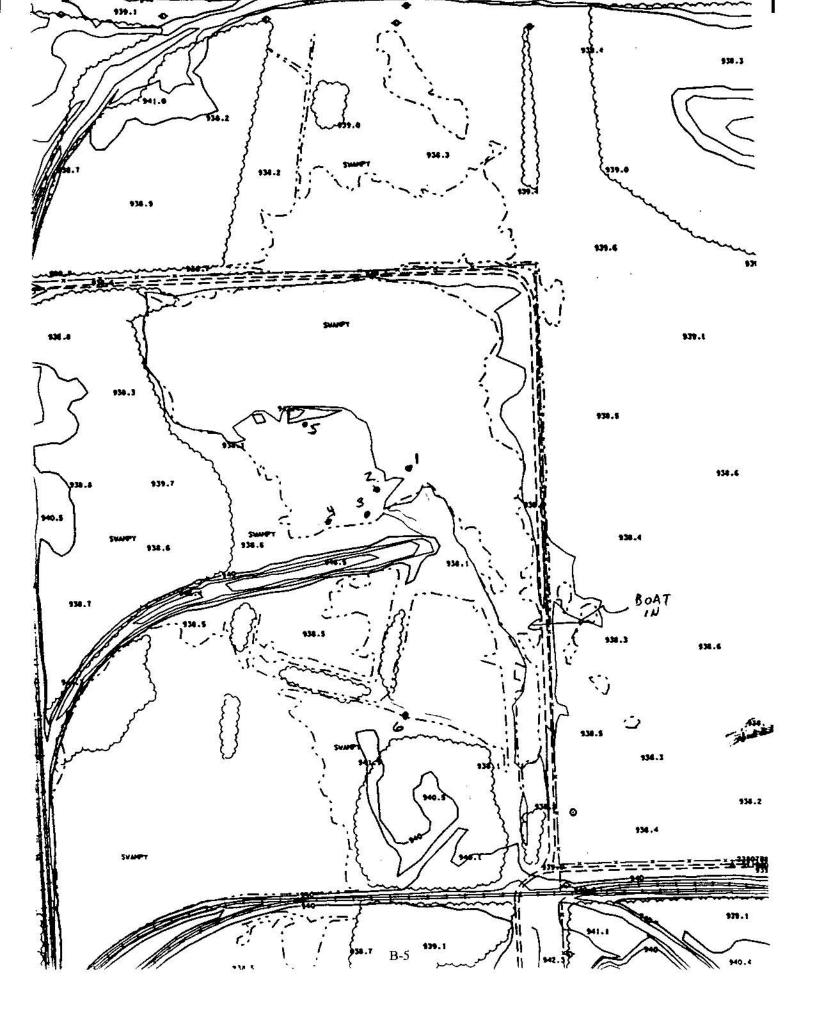
- c. Sediment/Human Endpoint: Medium.
 - (1) Contaminant Hazard Factor: 0.50 = Minimal

Contaminant	Max Concentration (mg/kg)	Standard (mg/kg)	Ratio 0.45	
arsenic	9.94	22		
barium	113	5300	0.02	
chromium	18.6	3000	0.01	
copper	32.8	2800	0.01	
zinc	217	23000	0.01	

- (2) Migration Pathway Factor: Potential. There is no evidence that site contaminants are migrating. However, there are no physical barriers in place to prevent migration.
- (3) Receptor Pathway Factor: *Identified*. This area is not used for production, but hunters and fishermen have access to the site and use it for recreational activities. Access to the site is not restricted in any manner.
- d. Surface Water/Ecological Endpoint: Not Evaluated. The surface water at this site does not impact any critical habitat, as defined in the Primer.
- e. Sediment/Ecological Endpoint: Not Evaluated. The sediment associated with this site does not impact any critical habitat, as defined in the Primer.
 - f. Surface Soil: Not Evaluated. There is no surface soil associated with this site.
- 4. Final Score. High (1), two Media of Concern.

C-4

Summary of Detected Compounds


Summary of Defected Compounds E.A. E.	RVAAP-02	Sediment Surface Water	Sample Number 031B 032B 031W 032W	antimony	arsenic 3.99 9.94 - 0.004	barium 35.7 113 0.029 0.027	cadmium	chromium 3.61 t8.6 -	copper 5.31 32.8 0.029 0.029	lead 0.011 0.016	mercury	zinc 38.3 217 -	2,4,6-INT	- Pincour	
1-00	RVAAP-03	RVAAP-0	Surface Soil	031 032		8.55 9.0	74.7 126	1	19.5 21.1	10.2 13.3		•	61.5 52.6	23,000	
	33	ii.	033	ŗ	5.97	162	41.1	33.8	6.2		0.26	58.2	1		
	RV	Sur	190	•	4.7	32.8		394	11.7	26.8		22.1	•		
	RVAAP-06	KVAAP-06 Surface Soil	062 063	-	12.3 10.4	79.6 104		27.5 163	15.4 20.3	28.8 31.2		59.5 51.5		•	
	RVAAP-15	Surface Soil	151	7	15.0	158		22.6	11.7		a	62.0	1	•	

APPENDIX B

NOVEMBER 1998 FIELD TRIAL AND SITE RECONNAISANCE NOTES

30 NOU 1998 ERIE BURNING GROUNDS SEDIMENT SAMPLING PROCEDURES GENERAL WATER CONDITIONS STAGNANT WATER TYPICALLY 12-18" DEEP MAXIMUM DEPTH = 36" SAMPLES 1-5 ATTEMPTED AT LUCATIONS SHOWN IN LARGE WATER AREA 1 - ATTEMPT MANE FROM BUAT IN EXTENDION ON SAMPLER, LOCATION THOUGHT TO BE NATHER MATTER DETH = 30" SAMPLER CONLD PENETRATE DILLY SEWER MICHES OF LOUSE MATERIAL BEFUSE REFUSA LITTLE OR NO SAMPLE CONLO BE RECOVERED Z-ATTEMPT MADE ONTSOE BUST WHIP WASKES WATTH DESTO 218" LOCATION THOUGHT TO BE NATHRAE SAMPLER PERETRATED & 6" > (2" ORLINICS 4" ORLANICS + CLAY) CIULD NUT PENETRATE > 6" 3- ATTEMPT MADE OUTSIDE BUAT WHIP WADRES, MATINE DEPTHEIS LOCATION HAD NUMEROUS RR TMARRES SAMPLES REFUSED DURING SEVERAL ATTEMITS REACIND DOWN MHAND AND FELT HARD, SMAN GRAEN T SUBJECT FINALLY BROKE LOOSE A PIECE &Z" IN DIAMETER MATERIAL WAS SMOW GRANTL CEMENTED TIGETHER, BEEN ASDUCE FIHALLY PUNCHED SAMPLER TARK A LOCATION & RECOURED ORCAMICS I CLAY BRUEATH HARD LAYER COULD NOT PENETRATE > 6"

4- ATTEMPT MADE OUTSIDE BUILT WITH WHOCK, NATIFIC DEPTHENS
LOCATION HAS DEBAIS BOCON WATTER + 1400 A MARD LAYER
ONCE BROKE THEY HARD LATER, RECOVERED & 6" DECEMES +"
5- ATTEMPT MADE OUTSIDE BURT WITH WADIRS WATER DEDTU-12"
LUXATION THOUGHT TO BE HATURAL
PEARTATED 26" BEFORE REFORM; = 2" ORGANIC/4" city
North to the NET : 1 we A Track 1' -
DENETANTED THE REFUSE REFUSE : 22" ORCHAICS 4" CLAY
CONCLUSIONS / RECOMMENDATIONS
1. SEDIMENT SIMPLENG BEST ACCOMPLISIONS WITH WADDS
WADS: BOAT FOR SUPPLIES, RECOVERING SAMPLE ETC
Z IN ADEAS WI HARD LAYTE, PRUBABLY A BURN APPLA, NEED
TO TAKE A - SAMPLE OF THE HARD LATTE (CROWBAR OR : PICK)
+ A SECOND SAMPLE OF SEO.MENT (26") BELOW
THE HARD LAYER
3 IN AREAS WO A HARD LATIFIC OUT SAMPLE = 6" DEED
15 ALL THAT IS AUSSIBLE
4 MT WATER/LAND BOUNDARY, COMES PRUBABLY HAND ANCIDE
A 6" SAMPLE & EITHER HAND ANGER OR
POWER MIGH & DEEDER SAMRE
. 5 PRUBAGLY DO ALT HAVE A HARD LAYER IN CUT DITUES
. 6. PRUBASIO HAVE HARS LAYER IN BYRN AREAS
7 WILL NEED UXU CLEARENCE FUR ML SAMPLING ON LAND
8 SCEPPIHL MAIN LAND DUBAS HOW WILL HELD WHEN DO
WURK HIERT SUMMOR-FALL DO SAMPLIAC WHELL
9 00 TO ADVANTACES OF HIS WAVER INSTRAD OF BUT - WATER IS LOW (FACE
10. SAMPLE CATCHER MAY HAVE HELPED WITH SAMPLING, FROM BUAT
B-4

