FINAL

INITIAL PHASE REPORT GROUNDWATER INVESTIGATION RAMSDELL QUARRY LANDFILL

RAVENNA ARMY AMMUNITION PLANT RAVENNA, OHIO

PREPARED FOR

US Army Corps of Engineers®

LOUISVILLE DISTRICT

CONTRACT No. DACA27-97-D-0025 Delivery Order 003

98-162P(PM65-4Si)/011599

INITIAL PHASE REPORT GROUNDWATER INVESTIGATION RAMSDELL QUARRY LANDFILL RAVENNA ARMY AMMUNITION PLANT RAVENNA, OHIO

Prepared for: U.S. Army Corps of Engineers Louisville District Under Contract Number DACA27-97-D-0025 Delivery Order No. 003

Prepared by: SCIENCE APPLICATIONS INTERNATIONAL CORPORATION 800 Oak Ridge Turnpike Oak Ridge, Tennessee 37831

January 1999

EX	ECUT	IVE SUN	/MARY	v			
1.0	INTI	RODUCT	ΓΙΟΝ				
	1.1		OSE OF STUDY				
	1.2		ACKGROUND				
		1.2.1	Site Description				
		1.2.2	Previous Investigations				
	1.3		TORGANIZATION				
2.0	INV	ESTIGA	TION RESULTS				
	2.1		NDWATER REGIME AND MONITORING				
		2.1.1	Soil Borings and Subsurface Geology				
		2.1.2	Monitoring Well Installation				
		2.1.3	Slug Test Results				
		2.1.4	Groundwater Sampling				
		2.1.5	Geotechnical Results				
		2.1.6	Survey Results				
	2.2		SURFACE WATER AND SEDIMENT SAMPLING				
		2.2.1	Survey Results				
		2.2.2	Geotechnical Sampling Results				
		2.2.3	Surface Water Sampling Results				
		2.2.4	Sediment Sampling Results				
		2.2.5	Continuous Water Level Data Collection				
3.0	CON	ICLUSIC	DNS	3-1			
	3.1	GROU	NDWATER CONDITIONS AND QUALITY				
	3.2		ACE WATER/SEDIMENT CONDITIONS AND QUALITY				
	3.3		OW-UP INVESTIGATION				
4.0	REF	ERENCE	ES	4-1			
	pendix						
А			ell Boring Logs	A-1			
В		•	ell Construction Diagrams/				
		-	nent Records				
С	-		l				
D			ytical Data				
E			Data				
F							
G			nce Report				
Н			pling Logs				
Ι	Daily Quality Control ReportsI-1						

CONTENTS

List of Figures

1-1	RVAAP Installation Map	1-3
1-2	Photograph of RQL, Looking Southeast from Ramsdell Road	1-5
1-3	RQL Topography and Original Well Locations	1-7
2-1	RQL Groundwater Investigation Monitoring Well	
	and Pond Sampling Locations	2-3
2-2	Lithologic Cross Section A-A'	2-4
2-3	Potentiometric Surface Map for Ramsdell Quarry, July 1998 (New Monitoring Wells)	2-5
2-4	Potentiometric Surface Map for Ramsdell Quarry, July 1998 (Previously Installed	
	Monitoring Wells)	2-11
2-5	Summary of Explosives Results in Groundwater	2-15
2-6	Photograph of Staff Gauge at Ramsdell Quarry Landfill Pond,	
	Looking Southeastward from Northwest Corner of Pond	2-23
	Looking Southeastward from Northwest Corner of Pond	2-2

List of Tables

1-1	List of Analytes for Ramsdell Quarry Landfill Semiannual	
	Groundwater Monitoring	1-9
2-1	Static Water Level Measurements, July 23 to 28, 1998	2-7
2-2	Horizontal Hydraulic Conductivities Measured During the RQL	
	Groundwater Investigation	2-9
2-3	Summary of Filtered TAL Metals Results for Groundwater at RQL	2-16
2-4	Sediment Sampling Data, Ramsdell Quarry Landfill Pond	2-18
2-5	Summary of TAL Metals Results for RQL Pond Sediments	2-21

List of Acronyms

amsl	above mean sea level
AOC	area of concern
BGS	below ground surface
DNB	dinitrobenzene
DNT	dinitrotoluene
MCL	Maximum Contaminant Level
OAC	Ohio Administrative Code
Ohio EPA	Ohio Environmental Protection Agency
OVA	organic vapor analyzer
PAH	polynuclear aromatic hydrocarbon
PID	photoionization detector
PVC	polyvinyl chloride
RQL	Ramsdell Quarry Landfill
RVAAP	Ravenna Army Ammunition Plant
SVOC	semivolatile organic compound
TAL	Target Analyte List
TNT	trinitrotoluene
USACE	U.S. Army Corps of Engineers
USAEHA	U.S. Army Environmental Hygiene Agency
UXO	unexploded ordnance
VOC	volatile organic compound

EXECUTIVE SUMMARY

This report documents the results of the initial phase of the Groundwater Investigation of Ramsdell Quarry Landfill (RQL) at Ravenna Army Ammunition Plant (RVAAP), Ravenna, Ohio. The initial phase of the Groundwater Investigation was conducted for RVAAP by Science Applications International Corporation under contract DACA27-97-D-0025, Delivery Order No. 003, with the U.S. Army Corps of Engineers (USACE), Louisville District. The Groundwater Investigation is conducted in a manner consistent with the Department of Defense Installation Restoration Program guidelines, following work plans reviewed and commented on by the Ohio Environmental Protection Agency, Northeast District Office, Division of Solid and Infectious Waste.

ES.1 OBJECTIVES

This Groundwater Investigation Report summarizes the results of the initial phase of field activities conducted in July 1998 at RQL. The specific objectives of the Groundwater Investigation are as follows:

- to assess the hydrogeologic conditions and groundwater quality of shallow groundwater beneath the site using monitoring wells of known integrity suited to this purpose;
- to evaluate the RQL pond water and sediment for evidence of contamination, either via the groundwater pathway, or by surface runoff of contaminated soils to the pond;
- to establish whether there is a hydraulic connection between shallow groundwater and the pond and to continuously monitor water levels in six monitoring wells and the pond for one year for this purpose; and
- to provide for the quarterly collection of samples of upgradient and downgradient groundwater and surface water for one year, and during two significant hydrogeologic events, to maintain compliance with post-closure monitoring requirements.

ES.2 FIELD INVESTIGATION

The RQL Groundwater Investigation is organized in two distinct phases of data collection and analysis. The initial phase, completed in July 1998, consisted of the following activities:

- installation, development, testing, sampling, and instrumentation of six new monitoring wells;
- testing, sampling, and water level measurements at five monitoring wells constructed in 1988;
- sampling of sediments and surface water at the RQL pond;
- construction of an instrumented staff gauge at the RQL pond; and
- surveying of all monitoring wells and pond sediment/surface water sampling locations.

The initial field effort was conducted in accordance with the *Facility-Wide Sampling and Analysis Plan for Ravenna Army Ammunition Plant* (USACE 1996a) and the *Sampling and Analysis Plan Addendum for the Groundwater Investigation of the Former Ramsdell Quarry Landfill* (USACE 1998). The initial phase of the investigation specifically addresses the first two objectives as stated above, and provides

the basis for the remaining objectives to be accomplished. These field activities are the subject of this report.

The follow-up phase consists of the collection of groundwater samples from each of the six newly installed monitoring wells and collection of samples from one surface water location. This work is to be repeated for the next three quarters and in two separate hydrogeologic events (i.e., either a storm or a prolonged dry period), ending in 1999. The purpose of this monitoring is to establish a statistically sound data set to determine whether contaminants are migrating via groundwater from the former landfill. In addition, follow-up work will consist of continuous water-level measurements using data loggers on the six new wells, and monthly manual water level readings on the previously installed monitoring wells, for a period of one year following the installation of the six new wells. The results of sampling in each quarter will be the subject of three individual quarterly reports.

ES.3 GROUNDWATER HYDROGEOLOGY AND FLOW

Six monitoring wells were installed as a part of the initial phase of the Groundwater Investigation. A staff gauge was installed in the pond to provide correlative pond surface elevation data to groundwater elevations. RQL and the adjacent pond are underlain by weathered, fractured fine- to medium-grained, sandstones of the Sharon Member of the Pennsylvanian Pottsville Formation. All of the wells are completed in the most shallow water-bearing zone in this stratigraphic unit. Open, recemented, and highly weathered fractures were observed throughout the drilled intervals. Fracturing occurs both along bedding planes and as joints in massive zones. Groundwater circulates along fractures, as evidenced by limonitic or black oxidized stainings and coatings on the rock or on grains. The pervasive character of fracturing in the sandstone suggests that vertical movement of groundwater through both the primary and secondary porosity takes place at RQL to some degree.

Water level measurements in the six new wells and pond staff gauge indicate a local hydraulic gradient to the northeast. Water level measurements from the original five monitoring wells (which are screened deeper than the new wells) collected during the same week, and historical information for water levels in the summer months, illustrate the same general potentiometric surface geometry. These data indicate a high degree of vertical communication between the zones across permeable primary and secondary flow paths in the highly fractured and weathered sandstones at RQL.

The pond is small and shallow, and much of its former extent is now covered with vegetation. RQL pond is underlain by bedrock, covered to varying degrees by fine-grained sediment. The presence of this sediment may effectively reduce the amount of any hydraulic communication that may exist between the water-bearing zone in the sandstone and the pond, especially at times when the water level (i.e., the hydraulic head) in the pond is low. However, water levels in the pond have appeared to mimic those in the original monitoring wells and in the newly installed wells between the landfill toe and the pond.

ES.4 ANALYTICAL RESULTS

The results of the Groundwater Investigation initial sampling at RQL are summarized in the following sections.

ES.4.1 Groundwater

Groundwater contains low levels of explosives such as RDX, 1,3-dinitrobenzene, and nitrotoluenes. Two explosives were identified in the newly designated upgradient well, RQLmw-006. These explosives also occur in one or more of the downgradient wells. The propellant nitroglycerine was also identified in the upgradient well, and in one downgradient well, in low concentrations. These occurrences suggest a contaminant source upgradient of the former quarry, or reversal of flow in the groundwater system transporting contaminants upgradient. Arsenic, cobalt, and nickel were identified in filtered samples from RQLmw-006 and five or more downgradient wells. Volatile organic compounds (VOCs) and semivolatile organic compounds (SVOCs) were not present above detection levels in groundwater.

ES.4.2 Sediment

Sediment has accumulated to a depth of 1.2 m (4 ft) or greater in some places in the pond. Sediment samples from the 0- to 0.15-m (0- to 0.5-ft) sampling interval appear to harbor the greatest concentrations of contaminants. The explosive HMX was found in five of the eight locations, in two of these at depths of 0.15 to 0.60 m (0.5 to 2 ft) or greater. The propellant nitrocellulose was present in two samples in low concentrations.

Numerous polynuclear aromatic hydrocarbons were present in five of the eight sediment sampling locations in concentrations up to 2000 mg/kg. VOCs were generally not present above detection levels.

ES.4.3 Surface Water

The water depth in July 1998 varied from 0 to 0.97 m (0 to 3.18 ft). An instrumented staff gauge was established at the point where the water is deepest. Explosives, propellants, cyanide, VOCs, and SVOCs were not detected above detection levels in the pond water. Most of the metals in filtered surface water samples were non-detects, with the exception of iron, magnesium, and manganese, which were detected in most samples. Arsenic and barium were present in three or fewer samples at low concentrations.

ES.5 CONCLUSIONS

The results of the initial phase of sampling and measurements at RQL provide an assessment of summer (dry weather) conditions at the site, using new monitoring wells for the collection of chemical and hydraulic data. Follow-up sampling will provide information on the temporal variations in groundwater and surface water chemistry and movement. These data will be provided in quarterly monitoring reports and integrated in an annual summary report at the conclusion of the Groundwater Investigation.

1.0 INTRODUCTION

This report documents the results of the initial phase of the Groundwater Investigation of Ramsdell Quarry Landfill (RQL) at Ravenna Army Ammunition Plant (RVAAP), Ravenna, Ohio. The initial phase of the Groundwater Investigation was conducted for RVAAP by Science Applications International Corporation under contract DACA27-97-D-0025, Delivery Order No. 003, with the U.S. Army Corps of Engineers (USACE), Louisville District. The Groundwater Investigation is conducted in a manner consistent with the Department of Defense Installation Restoration Program guidelines, following work plans reviewed and commented on by the Ohio Environmental Protection Agency (Ohio EPA), Northeast District Office, Division of Solid and Infectious Waste.

The RQL Groundwater Investigation at RVAAP, in Ravenna, Ohio (Figure 1-1), was conducted in July 1998 to provide a supplemental characterization of the shallow groundwater flow regimes and chemical water quality at this closed solid waste disposal facility. With this evaluation, the USACE seeks to close data gaps and to address potential impacts upon the groundwater from the former RQL and pre-landfill disposal activities. Data from this investigation may be used to establish that the new groundwater monitoring system meets the requirements of Ohio Administrative Code (OAC) 3745-27-10(B). Although this groundwater investigation is independent of semiannual post-closure monitoring, groundwater monitoring activities performed in this investigation shall be, to the extent possible, consistent with the requirements of OAC 3745-27-10.

1.1 PURPOSE OF STUDY

The purposes of the RQL Groundwater Investigation are as follows:

- to assess the hydrogeologic conditions and groundwater quality in shallow groundwater beneath the site using monitoring wells of known integrity suited to this purpose;
- to evaluate the RQL pond water and sediment for evidence of contamination, via the groundwater pathway, or as a result of incipient contamination from historical operations on the quarry floor;
- to establish whether there is a hydraulic connection between shallow groundwater and the pond, and to continuously monitor water levels in six monitoring wells and the pond for one year for this purpose; and
- to provide for the quarterly collection of samples of upgradient and downgradient groundwater and surface water for one year, and during two significant hydrogeologic events, to maintain compliance with post-closure monitoring requirements.

The work performed for this investigation included the installation, development, testing, sampling, and instrumentation of six new monitoring wells, as well as the sampling and testing of the five existing monitoring wells, and pond sediment and surface water sampling.

THIS PAGE INTENTIONALLY LEFT BLANK

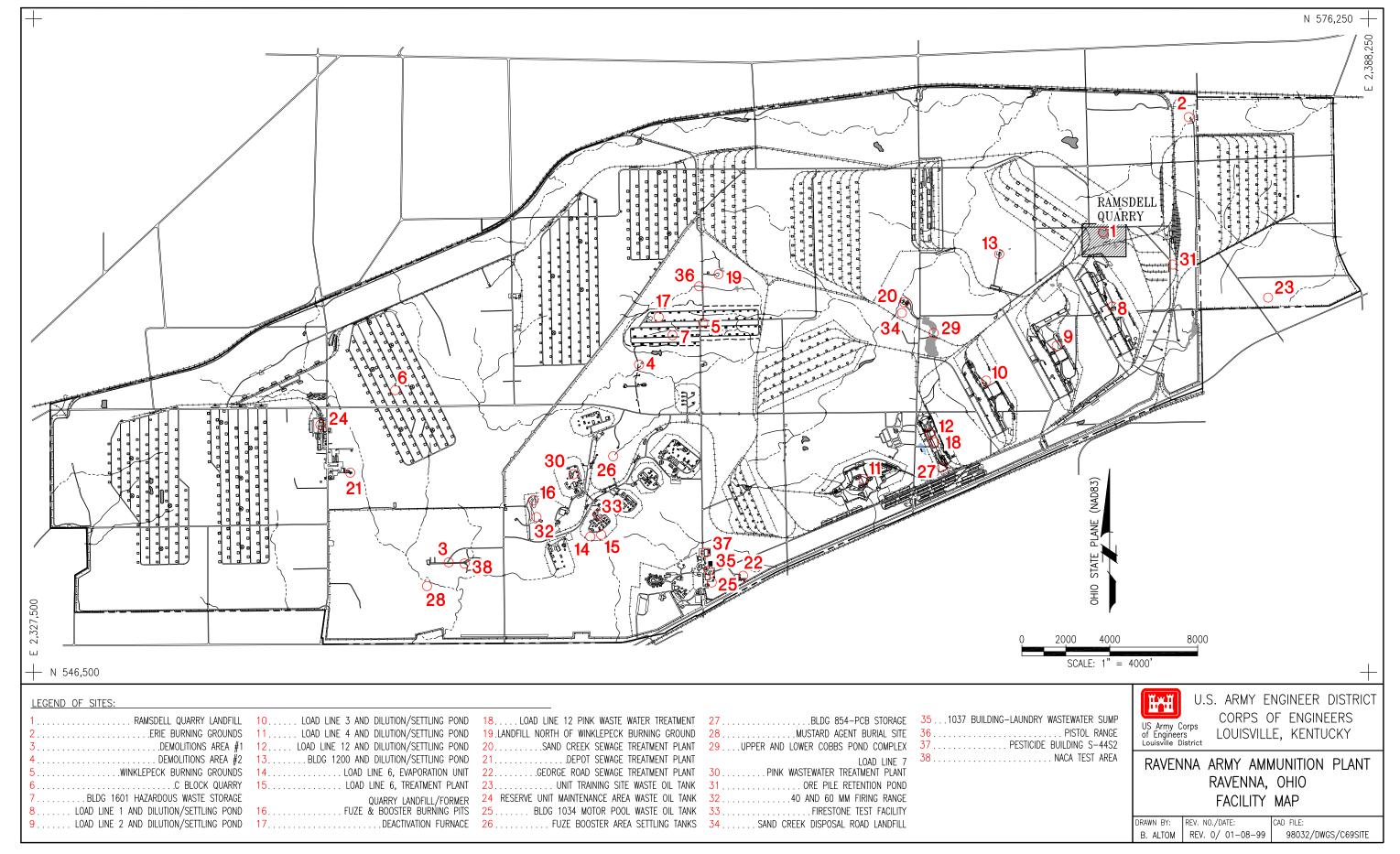


Figure 1-1. RVAAP Installation Map

1.2 SITE BACKGROUND

1.2.1 Site Description

A detailed history of process operations and waste processes for each area of concern (AOC) at RVAAP is presented in the *Preliminary Assessment for the Ravenna Army Ammunition Plant, Ravenna, Ohio* (USACE 1996b). The following is a summary of the history and of the related contaminants for RQL.

RQL (designated AOC RVAAP-01) is located in the western and southern portion of the abandoned Ramsdell Quarry (Figure 1-1), in the northeast corner of RVAAP. The quarry was excavated about 9 to 12 m (30 to 40 ft) below existing grade into the Sharon Member sandstone and conglomerate bedrock.

The original unconsolidated glacial material overlying the sandstone was only a few feet (<10 ft) thick and appears to have been entirely removed. The quarry was abandoned before 1941 and was used as a landfill from 1941 until 1989. In addition, from 1946 to the 1950s, the bottom of the quarry was used to burn waste explosives from Load Line 1. Approximately 18,000 225-kg (500-lb) incendiary or napalm bombs were reported to have been burned in the abandoned quarry. Liquid residues from annealing operations were also dumped in the quarry. There is currently no historical information on how the quarry was used from the 1950s to 1976.

From 1976 until the landfill was closed in 1989, only nonhazardous solid waste was deposited in the abandoned quarry. In 1978, a portion of the abandoned quarry was permitted as a sanitary landfill by the State of Ohio. The permit required a 30-m (100-ft) buffer be maintained between the landfill and the pond; the extent of the pond prior to this time is not known.

Figures 1-2 and 1-3 depict current conditions at the RQL and adjacent pond. The closed landfill is U-shaped and has a compacted-soil cover that is vegetated and appears to be intact. The pond is generally less than 1.3 m (4 ft) deep and is underlain by thin deposits of sediment over bedrock.

Based upon available information and past uses of the abandoned quarry, wastes may include domestic, commercial, and industrial solid and liquid wastes, including explosives (e.g., TNT, RDX, Composition B), napalm, gasoline, acid dip liquor, annealing residue (e.g., sulfuric acid, shell casings, sodium orthosilicate, chromic acid, and alkali), aluminum chloride, and inert material. Interviews with former RVAAP personnel have indicated that much of the landfilled wastes and debris at the abandoned quarry were removed in the 1980s.

A much smaller quarry (also abandoned) was located directly southeast of RQL (Figure 1-3). Although some aerial photographs have shown a small pond in this location, the pond is evidently of seasonal character, because no standing water was present at this location at the time of the field investigation. No documentation about potential waste disposed in this quarry is available.

Closure of the permitted sanitary landfill was completed in May 1990 under State of Ohio solid waste regulations (OAC 3745-27-10). A requirement of closure was installation and semiannual monitoring of five monitoring wells (see Figure 1-3).

1.2.2 Previous Investigations

Groundwater samples from RQL have been collected since 1987, beginning with semiannual detection monitoring in five open boreholes. Monitoring wells MW-1 through MW-5 (shown in

THIS PAGE INTENTIONALLY LEFT BLANK

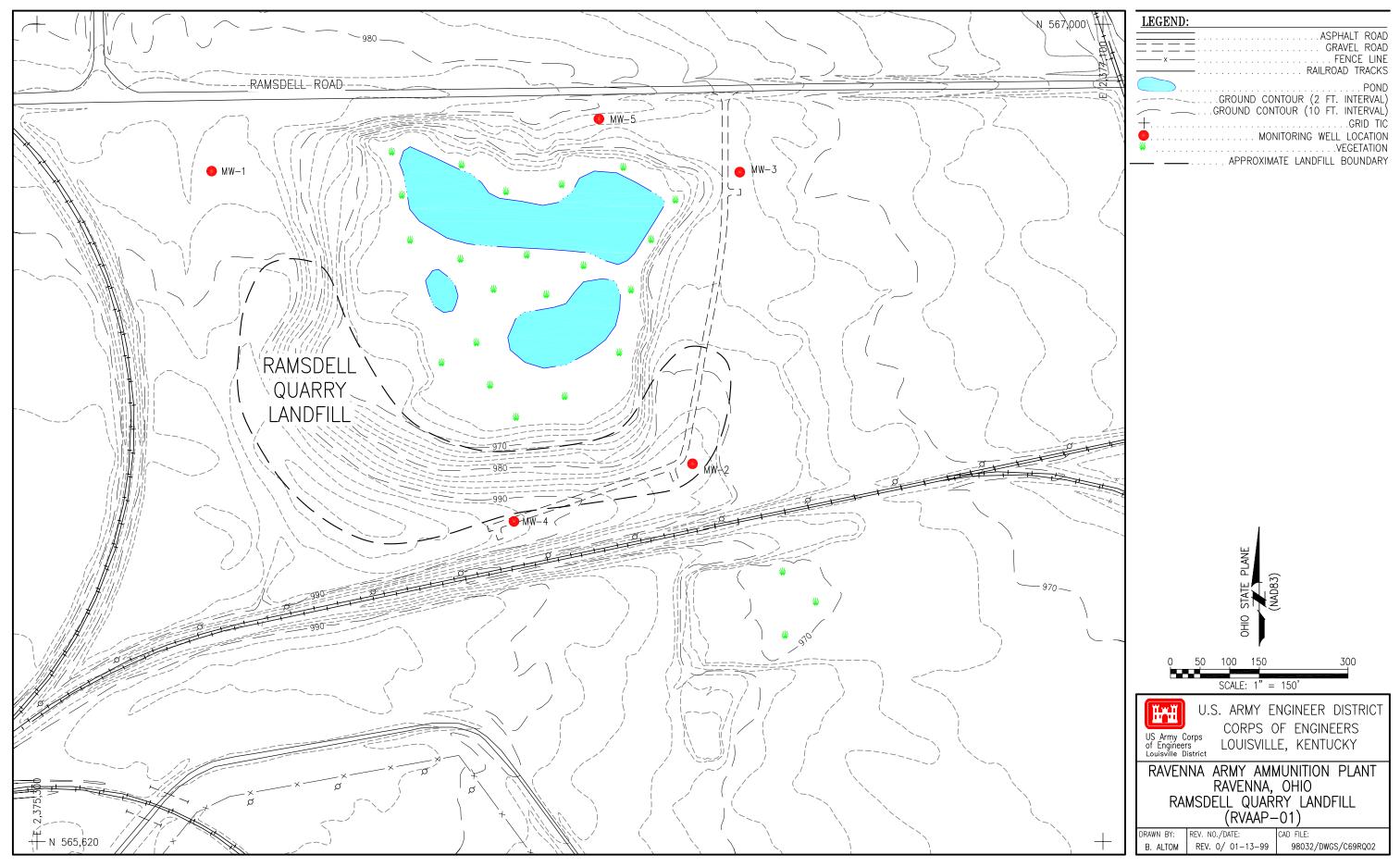


Figure 1-3. RQL Topography and Original Well Locations

Figure 1-3) were completed in these boreholes in January 1988 (USAEHA 1992), and semiannual monitoring continued until November 1991, when quarterly sampling was initiated. Quarterly sampling continued through February 1993. The wells have been sampled semiannually since February 1993.

RVAAP has performed semiannual groundwater monitoring of these constituents according to the requirements of OAC 3745-27-10 (March 1990), specified in a Groundwater Monitoring Plan for the Ramsdell Quarry Landfill (Revised), dated March 1995 (RVAAP 1995). In the semiannual monitoring program, unfiltered samples are analyzed for the volatile organic compounds (VOCs), five explosives, eleven metals, and indicator parameters listed in Table 1-1. In addition, the Portage County Health Department has sampled and analyzed surface water from the RQL pond.

The plan submitted to Ohio EPA for the closure of RQL in 1989 provides additional characterization information about the site. The closure plan contains stratigraphic information as well as lithologic cross-sections showing the elevation of the lower limit of waste placement for the sanitary landfill. According to the design drawings filed as a part of this plan, the lower limit of waste placement was many feet above the water level in the pond, which was presumed to mimic the elevation of the potentiometric surface.

Significant gaps in the monitoring data gathered before this Groundwater Investigation have been identified by Ohio EPA (Ohio EPA 1997) that prevent the determination of whether closure requirements are being met. The most significant deficiencies are as follows:

- Placement of the original monitoring wells (installed in 1988) is such that only one well (MW-5) is downgradient from the RQL. Prior to this effort, there were no monitoring wells located immediately downgradient of the toe of the landfill. Ohio regulations require a minimum of three downgradient wells at all times.
- Discrepancies in relative water level elevations in the five original wells during semiannual measurement events obscure whether a seasonal shift (reversal) in groundwater flow direction is occurring.
- Monitoring wells installed for detection monitoring in 1988 were screened 3 to 9 m (10 to 30 ft) below the water table, resulting in a concern that the present upgradient wells do not monitor the same water-bearing interval as the downgradient well.
- No information exists to determine the relationship between water levels in the uppermost groundwater zone and the surface of the pond.
- Explosives were detected in groundwater from all five monitoring wells in at least three sampling events, thus casting some doubt as to the integrity of the "upgradient" well (MW-4).
- Indicator parameters such as specific conductance and total dissolved solids continue to be analyzed, and upgradient/downgradient differences may result from variations in the sandstone intervals in which wells are screened rather than from the impact of the landfill on groundwater.

Arsenic Barium Cadmium Calcium Chromium Copper	Acetone Acrolein Acrylonitrile Benzene Bromodichloromethane cis-1,3-Dichloropropene trans-1,3-Dichloropropene Ethylbenzene		
Cadmium Calcium Chromium	Acrylonitrile Benzene Bromodichloromethane cis-1,3-Dichloropropene trans-1,3-Dichloropropene Ethylbenzene		
Calcium Chromium	Benzene Bromodichloromethane cis-1,3-Dichloropropene trans-1,3-Dichloropropene Ethylbenzene		
Chromium	Benzene Bromodichloromethane cis-1,3-Dichloropropene trans-1,3-Dichloropropene Ethylbenzene		
	<i>cis</i> -1,3-Dichloropropene <i>trans</i> -1,3-Dichloropropene Ethylbenzene		
Copper	<i>trans</i> -1,3-Dichloropropene Ethylbenzene		
	Ethylbenzene		
ron	Ethylbenzene		
Lead			
Magnesium	Ethyl Methacrylate		
Mercury	Bromoform		
Potassium	Bromomethane		
Nickel	2-Butanone		
Selenium	Carbon Disulfide		
Silver	Carbon Tetrachloride		
Sodium	Chlorobenzene		
Zinc	Chloroethane		
Explosives	2-Chloroethyl Vinyl Ether		
Frinitrotoluene	Chloroform		
2,4-Dinitrotoluene	Chloromethane		
2,6-Dinitrotoluene	Dichlorodifluoromethane		
IMX	1,1-Dichloroethane		
RDX	1,2-Dichloroethane		
norganic/Indicator Parameters	2-Hexanone		
Fotal Alkalinity	Methylene Chloride		
Chloride	4-Methyl 2-Pentanone		
Chemical Oxygen Demand	1,1-Dichloroethene		
Cyanide	trans-1,2-Dichloroethene		
Specific Conductivity	Styrene		
Dissolved Fluoride	1,1, 2,2-Tetrachloroethene		
MBAS, Colorimetric	Toluene		
Nitrate (as N)	1,1,1-Trichloroethane		
Ammonia (as N)	1,1,2-Trichloroethane		
ъН	Trichloroethene		
Fotal Dissolved Solids	Trichlorofluoromethane		
Sulfate	1,2,3-Trichloropropane		
Fotal Organic Carbon	Vinyl Acetate		
Temperature	Vinyl Chloride		
Nitrate-nitrite	Xylene		
Phosphorus	Phenols		
Furbidity			

Table 1-1. List of Analytes for Ramsdell Quarry Landfill Semiannual Groundwater Monitoring

Source: USAEHA 1992

In summary, previous evaluations of groundwater at RQL have produced inconclusive results. Statistical analysis of water quality indicator parameters has shown some local impacts on the groundwater (e.g., specific conductance, total organic carbon, and total dissolved solids have been statistical triggers in both upgradient and downgradient wells).

USACE recently completed (February 1998) a topographic survey of RQL, including collection of new elevation data on the existing monitoring wells at the site. Topography of the site is now accurate to within 0.006 m (0.02 ft). A survey of the elevations of the existing wells was performed to correct discrepancies in water level elevations noted in the semiannual data. As a part of this Groundwater Investigation, the existing monitoring wells were re-surveyed, and the elevations shown for the wells in this report are the most recent.

1.3 REPORT ORGANIZATION

This Groundwater Investigation was designed to fill the data gaps described above, and to resolve uncertainties about the chemical quality and the physical groundwater regime beneath RQL. The field sampling efforts performed in this Groundwater Investigation consist of an initial phase and a follow-up phase. The initial field effort consisted of the following:

- installation, development, testing, sampling, and instrumentation of six new monitoring wells;
- sampling and water level measurements at the five existing wells;
- sampling of sediments and surface water at the RQL pond;
- construction of an instrumented staff gauge at the RQL pond; and
- surveying of all new monitoring wells and pond sediment/surface water sampling locations.

The follow-up phase will consist of the collection of groundwater samples from each of the six newly installed monitoring wells and the collection of surface water samples from one location, in each of the next three quarters and in two separate storm events, to compile statistics for the analytical parameters being evaluated at RQL. In addition, follow-up work will consist of continuous water level measurements using data loggers on the six new wells and the pond, and monthly manual water level readings on the previously installed monitoring wells, for a period of one year following the installation of the six new wells. Continuous monitoring of pond and water levels in the new monitoring wells will provide much useful data to analyze the relationship of the pond to the site groundwater regime. The results of sampling in each quarter will be the subject of each of three quarterly reports to USACE.

The initial phase of sampling is the subject of this report. Section 2 describes the field activities conducted, provides a discussion of the geologic and hydrologic conditions at RQL based on the field investigation findings, and discusses the analytical results from the initial field effort. Section 3 presents conclusions of the initial phase effort. Appendixes A through I contain boring logs, well construction diagrams, slug test data, analytical data, geotechnical data, survey data, UXO characterization results, sediment sampling logs, and daily quality control reports, respectively.

2.0 INVESTIGATION RESULTS

All sampling activities, including drilling, sample collection and preservation, decontamination, sample management, and documentation for the Groundwater Investigation at RQL were conducted according to guidance in the *Facility-Wide Sampling and Analysis Plan for Ravenna Army Ammunition Plant* (USACE 1996a) and the *Sampling and Analysis Plan Addendum for the Groundwater Investigation of the Former Ramsdell Quarry Landfill* (USACE 1998).

2.1 GROUNDWATER REGIME AND MONITORING

The purposes of the Groundwater Investigation at RQL are to determine the shallow groundwater hydrogeologic conditions, including groundwater flow direction, seasonal changes, and the hydraulic and geochemical relationships between the surface water in the pond and the groundwater. These characteristics must be clearly defined to evaluate whether the closed landfill is in compliance with Ohio solid waste regulations' post-closure requirements. Specifically, analytical results from the upgradient monitoring well (RQLmw-006) are to be compared with those results from the wells downgradient of the landfill (RQLmw-007, -008, and -009) to fulfill regulatory requirements for detection monitoring. Statistical comparisons are necessary to determine whether groundwater contamination is emanating from the landfill and migrating from the site. Additionally, data from the new monitoring wells RQLmw-010 and -011, in conjunction with other data, will provide information about the pond downgradient of the landfill.

2.1.1 Soil Borings and Subsurface Geology

As a former rock quarry, RQL's surroundings are characterized by bedrock exposed on the ground surface, with negligible natural soil cover. Figure 2-1 illustrates that, between the surface of the pond and the top of the closed landfill, there are approximately 13 m (40 ft) of topographic relief representing the former extent of quarrying in this area.

Six monitoring wells were installed to monitor the shallow groundwater at RQL. Drilling was accomplished using coring and air-rotary drilling equipment. The locations of the monitoring well borings are shown in Figure 2-1. These locations were selected based on water level data from the existing wells, which suggest that the groundwater flow direction in the uppermost water-bearing zone is northward, away from the landfill. Three of the borings (RQLmw-007, -008, and -009) are located below the toe (hydraulically downgradient) of RQL, two (RQLmw-010 and -011) are located downgradient of the pond, and one (RQLmw-006) is located upgradient of the landfill. Each of the new wells is located at least 30 m (100 ft) from any of the previously installed wells.

Lithologic logging was performed using cores from each of the six monitoring well borings. Correlations of stratigraphy between the new wells and the five original wells is problematic, because lithologies in the five original wells were logged from cuttings lifted from the borehole by compressed air, and the new wells were logged from undisturbed core samples. The core samples are more representative of subsurface conditions than the cuttings and are the basis of the geological interpretations in this report. Cores from the six new monitoring wells are stored at RVAAP.

The boring logs are presented in Appendix A. Information from the boring logs was used to construct a lithologic cross-section through the site (Figures 2-2 and 2-3). Figure 2-2 shows that the RQL is underlain by weathered, fractured, fine- to medium-grained quartzose sandstones of the

THIS PAGE INTENTIONALLY LEFT BLANK

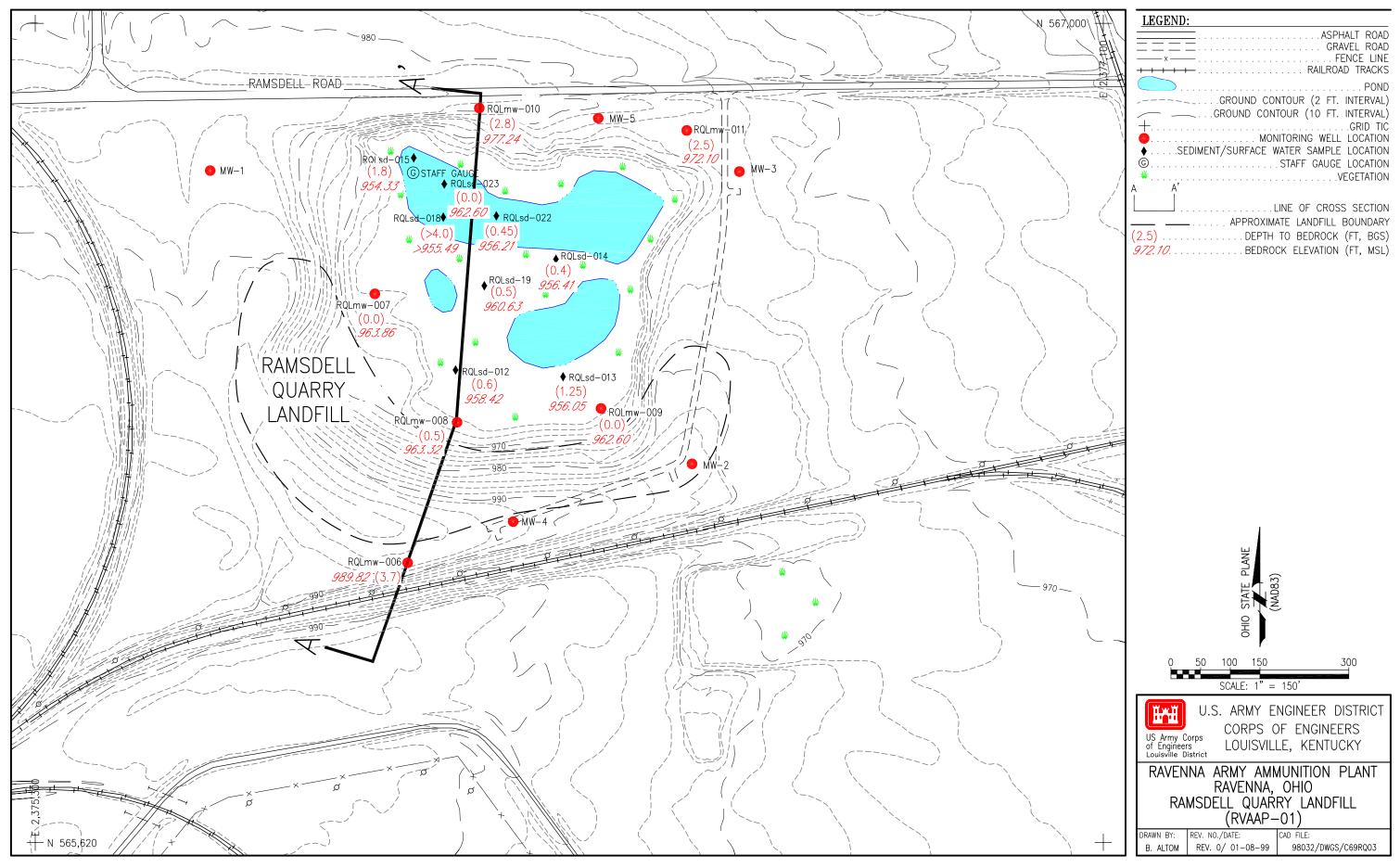
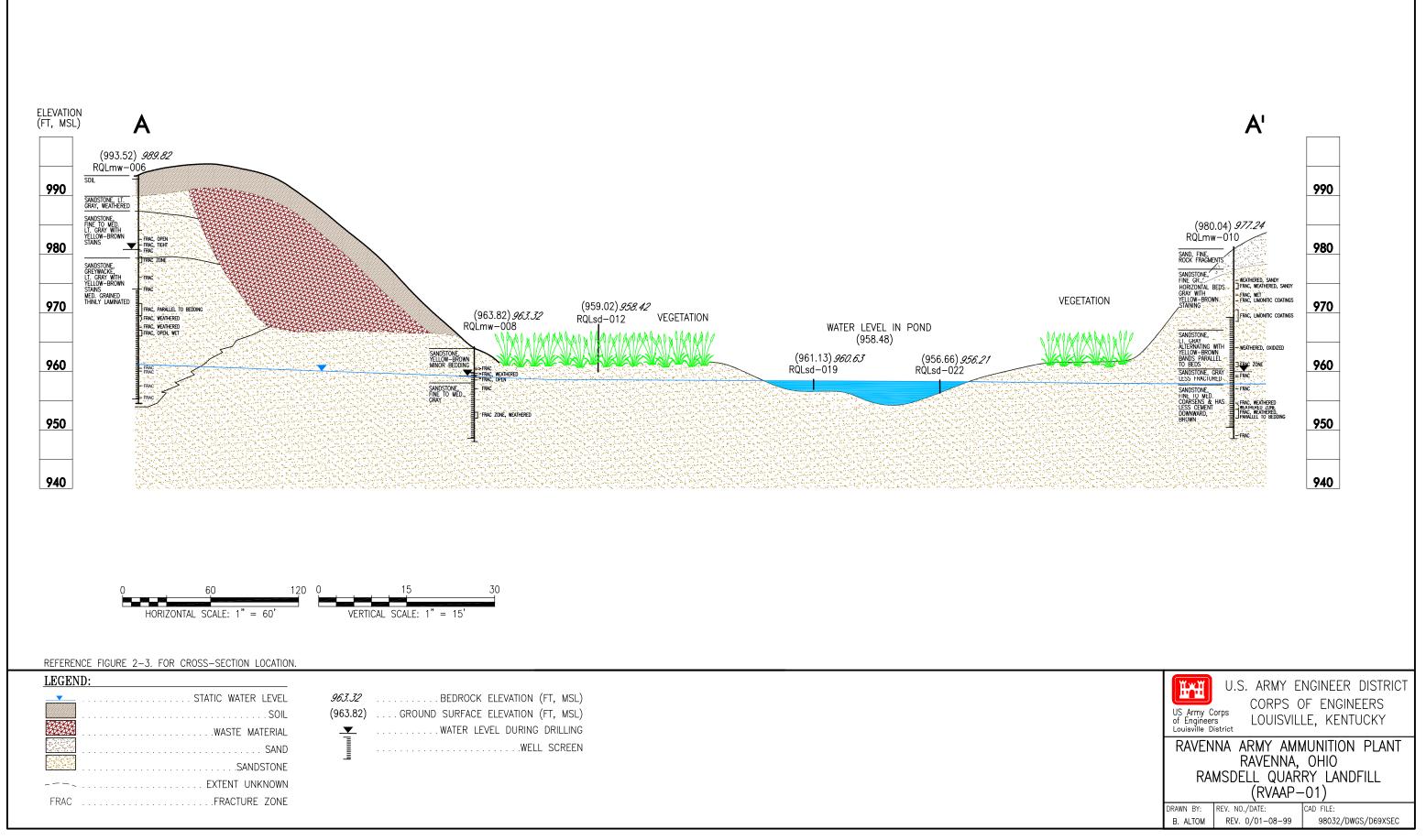



Figure 2-1. RQL Groundwater Investigation Monitoring Well and Pond Sampling Locations.

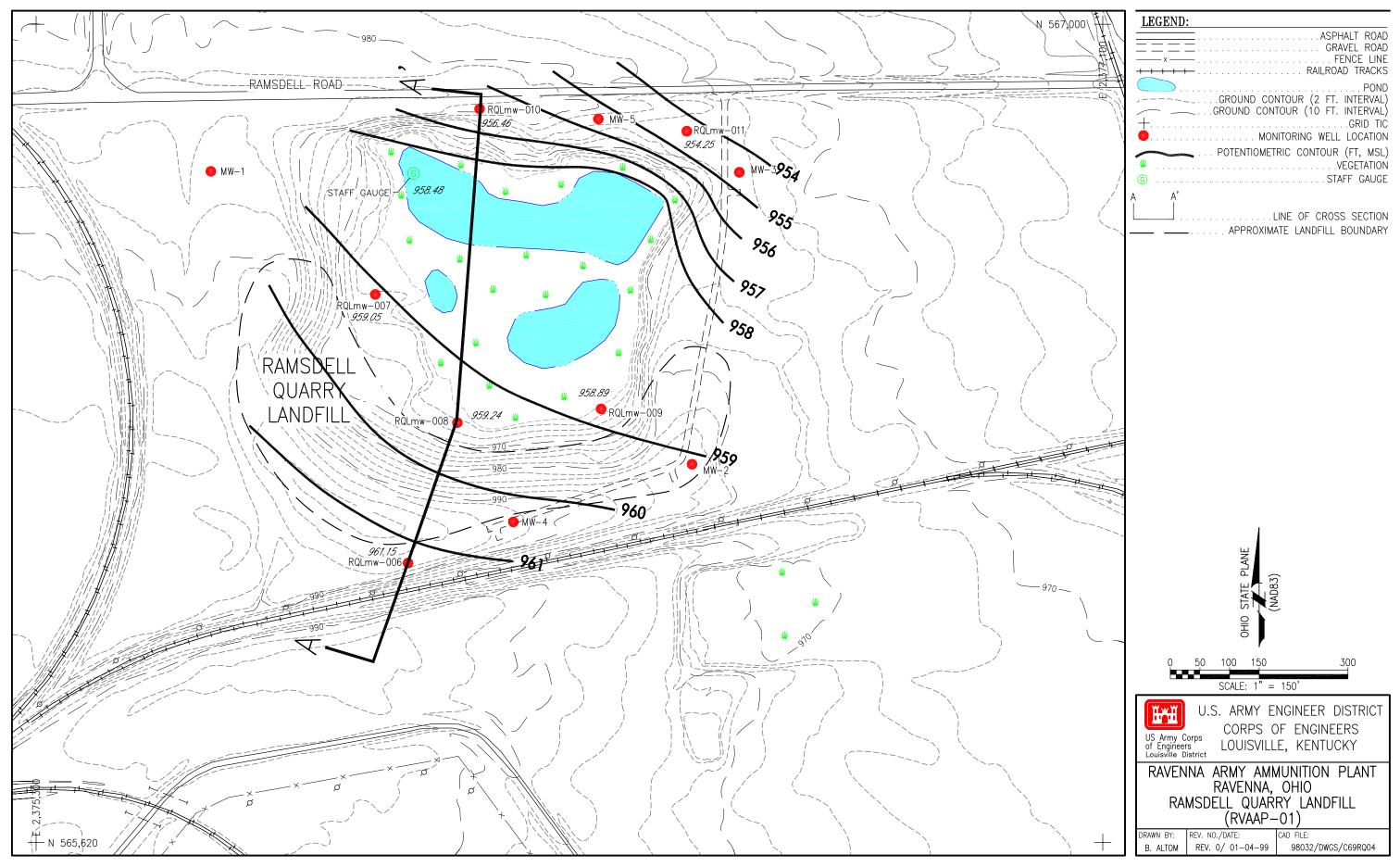


Figure 2-3. Potentiometric Surface Map for Ramsdell Quarry, July 1998 (New Monitoring Wells)

Sharon Member of the Pennsylvanian Pottsville Formation. Lithologies appear to be quite uniform across the site, with the exception of an occurrence of a more competent (unfractured), gray, poorly sorted sandstone with thinly bedded shale at RQLmw-006 and RQLmw-011. This lithology differs significantly from the surrounding quartz sandstones in that it contains a wider range of particle sizes and other non-quartz minerals. Thin bedding-plane laminations, consisting of finer-grained gray or black material, were observed in all cores. The Sharon Member is characterized by widespread cross-bedding. Bedding planes or laminations in cores range in orientation from horizontal to approximately 100 degrees from the core axis.

Open, recemented, and highly weathered fractures were observed in each of the cores. Fracturing occurs both parallel to and at oblique angles to bedding planes, as well as in massive zones. Weathering along fractures has been sufficient to completely break down the cement in some cases. Groundwater circulates along fractures, as evidenced by limonitic or black oxidized stainings and coatings on the rock or on grains. The pervasive character of fracturing in the sandstone suggests that vertical movement of groundwater through permeable primary and secondary flow pathways takes place at RQL to some degree.

2.1.2 Monitoring Well Installation

Following air-rotary overdrilling of the cored boreholes to achieve a 15-cm (6-in.) diameter borehole, monitoring wells were constructed at each of the six locations. All six wells were constructed as aboveground installations. Details of monitoring well construction are provided in Appendix B of this report. Well installation followed procedures described in the *Facility-Wide Sampling and Analysis Plan* (USACE 1996a) and the *Sampling and Analysis Plan Addendum for the Groundwater Investigation of the Former Ramsdell Quarry Landfill* (USACE 1998), with the following exceptions noted. Concurrence with Ohio EPA and USACE technical managers was obtained before each modification was made.

- (1) RQLmw-006, RQLmw-010, and RQLmw-011 were completed with 6-m (20-ft) screens instead of 3-m (10-ft) screens, to ensure that the wells would produce a sufficient amount of water for sampling, or to ensure that the potentiometric surface intersected the screen. Because of the presence of water near the tops of the holes during drilling (potentially fracture storage), it was difficult to determine where the most productive water-bearing zones were.
- (2) RQLmw-007, -008, and -009 were constructed with a modified surface casing designed to prevent frost heaving effects, because of these wells' proximity to the pond. The water level in the pond may rise high enough to partially inundate the well pads. A corrugated polyvinyl chloride (PVC) liner was placed outside the protective casing prior to filling the annular space from the frost line to the surface with concrete. The construction change allows the well pads to heave without affecting the protective well casing or well riser/screen string.
- (3) Because the static water levels at RQLmw-007, -008, and -009 were close to the ground surface elevation, the filter pack in each well was reduced to a height of 0.30 to 0.33 m (1 to 1.1 ft) above the top of the screen, rather than the specified 1 m (3 ft), to allow adequate space for a 0.6-m (2-ft) bentonite seal and 0.85 to 1 m (2.8 to 3 ft) of grout. This modification to approved well construction specifications allows for construction of shallow wells with 3-m (10-ft) screens, without compromising the integrity of the filter pack or seal.
- (4) Additional development of well RQLmw-006 was required over 12 days to achieve stable field parameter values (i.e., pH, conductance; see Appendix B).

There are noteworthy differences in the construction details between the previously existing and the newly installed wells. The six newly installed wells are constructed of 5-cm (2-in.) diameter PVC risers and 3-m (10-ft) or 6-m (20-ft) screens, with Global #7 filter packs and bentonite grout seals (as noted above), in accordance with the Facility-Wide Sampling and Analysis Plan (USACE 1996a). The screens were set such that the span of the monitored intervals ranged from 1.79 to 11.97 m (5.9 to 39.4 ft) below ground surface (BGS). Well construction diagrams for the six wells, designated RQLmw-006 through RQLmw-011, are provided in Appendix B of this report. The original wells, designated MW-1 through MW-5, were installed in 1988. They were constructed of 5-cm (2-in.) PVC pipe with 3-m (10-ft) screens; the interval spanned by the well screens ranges from 10.6 to 16.7 m (35 to 55 ft) BGS (Table 2-1). The borings for these wells extended to the top of the Meadville Shale, or roughly 48 m (160 ft) BGS, and were later backfilled with clean sand and gravel to 3 m (10 ft) below the base of the screen when the wells were installed (Ohio Drilling Co. 1988). Bentonite pellets were emplaced from that depth to the bottom of the screen. No well construction diagrams have been provided for these wells. Some differences in chemical quality are to be expected between the water from the new monitoring wells and the water from the original wells. For example, the condition of the grout seals and nonstandard construction may affect groundwater chemistry and sample quality in the original wells. Details of the completion of the monitoring wells are summarized in Table 2-1.

Monitoring Well ID	Water Level (ft below top of casing)	1998 Surveyed Top of Casing Elevation (ft amsl)	1998 Surveyed Ground Surface Elevation (ft amsl)	Water Level Elevation (ft amsl)	Screened Interval Elevation (ft amsl)
MW-1	27.88	986.13	985.53	958.25	930–940 ^a
MW-2	24.28	981.90	982.74	957.62	942–952 ^a
MW-3	19.90	975.54	973.55	955.64	929–939 ^a
MW-4	32.04	991.80	990.85	959.76	935–945 ^a
MW-5	21.65	977.38	976.14	955.73	938–948 ^a
RQLmw-006	34.24	995.39	993.52	961.15	954.12–974.12
RQLmw-007	6.86	965.91	963.86	959.05	947.91–957.91
RQLmw-008	6.84	966.08	963.82	959.24	947.82–957.82
RQLmw-009	5.69	964.58	962.60	958.89	946.7–956.7
RQLmw-010	25.68	982.14	980.04	956.46	947.58–967.58
RQLmw-011	22.32	976.57	974.60	954.25	942.2–962.2
Pond Staff Gauge		961.66		958.48	

Table 2-1. Static Water Level Measurements, July 23 to 28, 1998

^aEstimated according to Ohio Drilling Co. (1988)

amsl = above mean sea level

2.1.3 Slug Test Results

Following sampling of the six newly installed and the five previously existing monitoring wells at RQL, slug tests were performed on each well to determine the hydraulic conductivity of the geologic material surrounding each well.

Slug testing followed the provisions of the *Sampling and Analysis Plan Addendum for the Groundwater Investigation of the Former Ramsdell Quarry Landfill* (USACE 1998). These analyses estimate horizontal hydraulic conductivities in the screened interval of each well. Rising-head tests were completed after each well had fully recovered from groundwater sampling, using automated data collection software and a notebook computer.

The results of the slug tests performed during July 1998 are presented in Appendix C. They reveal moderately high horizontal hydraulic conductivities in the weathered and fractured sandstone units underlying RQL. Typical hydraulic conductivities for sandstones range from 10^{-3} to 10^{-8} cm/s (Freeze and Cherry 1979). The calculated results for the 11 wells at RQL are shown in Table 2-2. The wells generally show conductivities in the sandstone ranging from 10^{-3} to 7×10^{-4} cm/s. However, it should be noted that, because construction details on the original wells (e.g., height of seal above the screen, borehole diameter) were not available, assumptions regarding well dimensions and completion were used to interpret the slug test data for these wells. The five original wells generally have hydraulic conductivities slightly higher than those in the new wells. Hydraulic conductivities in new wells screened below 16 ft BGS (i.e., 20-ft screens) were approximately an order of magnitude less than in the shallow wells screened above 16 ft BGS. Fracturing in the sandstone units undoubtedly contributes to the high observed conductivities in the monitoring wells at RQL.

2.1.4 Groundwater Sampling

2.1.4.1 Water Levels

New monitoring wells were developed following completion, according to criteria defined in the *Sampling and Analysis Plan Addendum for the Groundwater Investigation of the Former Ramsdell Quarry Landfill* (USACE 1998). Following well development, water levels were measured from the top of casing. Water levels measured during the initial phase of fieldwork have been tied to the surveyed elevation of the top of casing at each well, to present accurately the potentiometric surface and groundwater flow direction at RQL (Table 2-1).

Static water levels above the top of the well screen were observed in each of the original wells, and in RQLmw-007, RQLmw-008, and RQLmw-009, adjacent to the pond. These findings suggest either (1) a confined or semiconfined water-bearing zone, rather than an unconfined, "water table" system; or (2) hydraulic communication along fracture zones. In the wells at the toe of the landfill, this effect may result from the presence of the pond. In the other wells, elevated water levels may be the result of hydraulic communication among the fractures in the sandstone.

Figure 2-3 is a potentiometric surface map for shallow groundwater, as measured on July 23 - 28, 1998, using data from the six new wells. Initial water levels were collected on the day the well was sampled, due to an oversight in the field. Water level measurements in the six new wells indicate a local hydraulic gradient to the northeast. Water level measurements from the original five monitoring wells for the same dates, and historical information for water levels in the summer months, illustrate the same general potentiometric surface trend with respect to the newly surveyed top-of-casing elevations. However, July 1998 water levels in the original wells indicate

Monitoring Well ID	Screened Interval (depth BGS, ft)	Total Depth (ft)	Geologic Material Adjacent to Screen	Hydraulic Conductivity (cm/s)
MW-1	45-55	54.26	gray-white sandstone	1.6×10^{-3}
MW-2	35-45	44.60	white sandstone	4.7×10^{-3}
MW-3	35-45	46.86	brown sandstone	2.3×10^{-3}
MW-4	45-55	56.98	white sandstone	1.8×10^{-3}
MW-5	33-43	40.76	brown sandstone	1.5×10^{-3}
RQLmw-006	19.4 - 39.4	42.08	weathered, fractured sandstone	2.0×10^{-4}
RQLmw-007	5.95 - 15.95	18.66	weathered, fractured sandstone	9.2×10^{-3}
RQLmw-008	6 – 16	18.70	fractured sandstone	5.4×10^{-3}
RQLmw-009	5.9 - 15.9	18.84	fractured sandstone	2.0×10^{-3}
RQLmw-010	12.46 - 32.46	35.36	weathered, fractured sandstone	6.7×10^{-4}
RQLmw-011	12.4 - 32.4	35.36	weathered, fractured sandstone	3.9×10^{-4}

 Table 2-2. Horizontal Hydraulic Conductivities Measured

 During the RQL Groundwater Investigation

Source: MW-1 through MW-5, according to Ohio Drilling Co. (1988).

potentiometric surface elevations from 0.30 to 0.60 m (1 to 2 ft) lower than those observed in the newly installed wells. One possible explanation for the disparities in water levels in wells screened in a deeper stratigraphic interval is that vertical communication is taking place to varying degrees in the highly fractured and weathered sandstones at RQL.

The data in Table 2-1 show that the upgradient well, RQLmw-006, is screened approximately 2.7 m (9 ft) above the screened interval in the previous upgradient well, MW-4. MW-1 is also screened significantly lower than any of the new wells, at 283 to 286 m (930 to 940 ft) amsl. However, RQLmw-007, -008, -009, -010, and -011 are screened at depths that overlap with the screened intervals of MW-2, MW-3, and MW-5. Figure 2-4 is a potentiometric surface map for shallow groundwater, as measured on July 23-28, 1998, using data from the original five wells.

2.1.4.2 Discussion of Analytical Results

All eleven monitoring wells were initially sampled for explosives, propellants (nitroguanidine, nitrocellulose, and nitroglycerine), Target Analyte List (TAL) metals, cyanide, VOCs, and semivolatile organic compounds (SVOCs). Groundwater was submitted for analysis of both total (unfiltered) and dissolved (filtered) TAL metals. The validated analytical data for the groundwater sampling effort are presented in their entirety in Appendix D. Tables in Appendix D present the data both by analyte and by sample station. Standard method reporting limits for some VOC compounds (vinyl chloride, tetrachloroethene, trichloroethene) are higher than promulgated drinking water standards; however, any estimated detected values less than reporting limits are provided.

THIS PAGE INTENTIONALLY LEFT BLANK

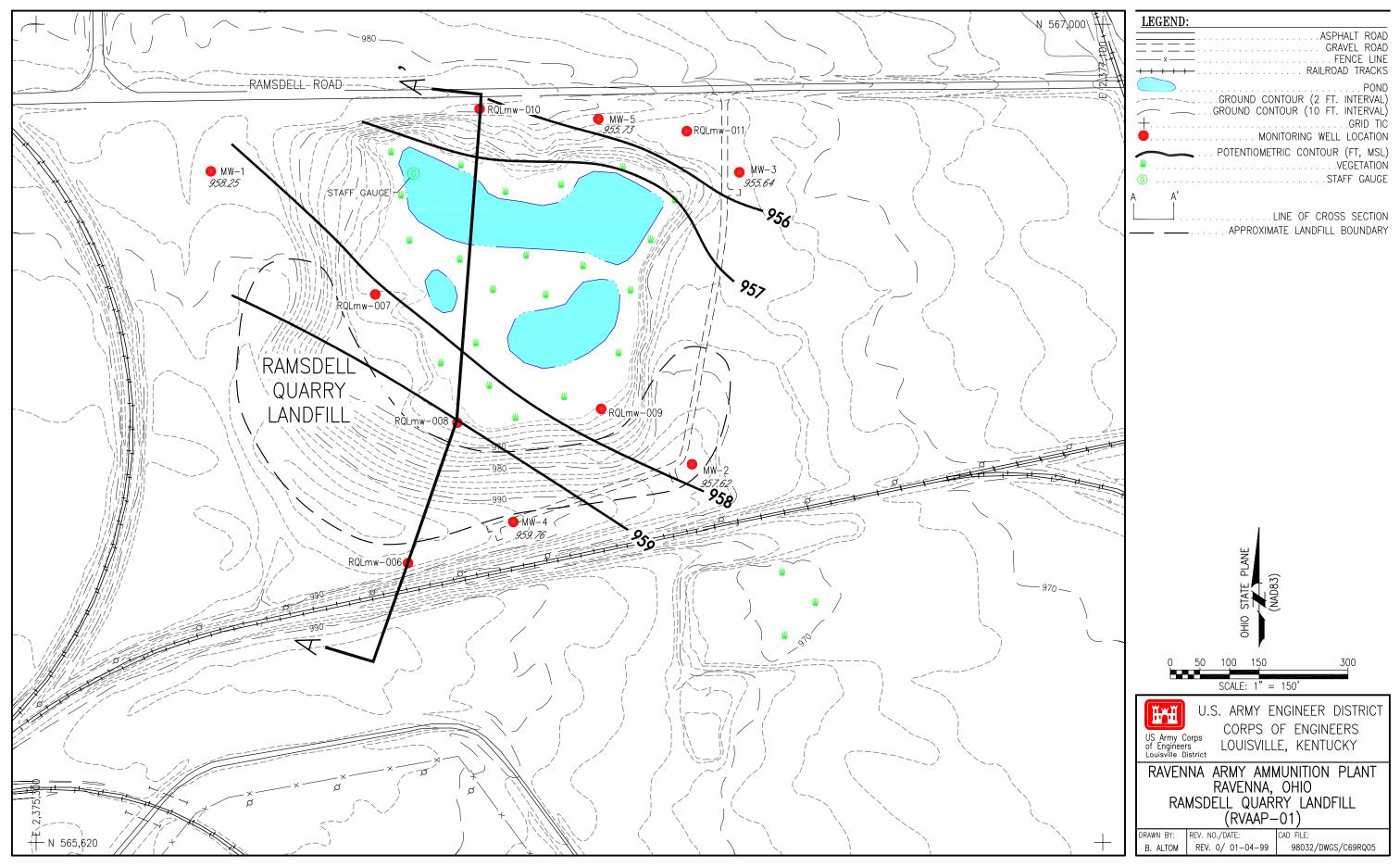


Figure 2-4. Potentiometric Surface Map for Ramsdell Quarry, July 1998 (Previously Installed Monitoring Wells)

The eleven wells were field screened for VOCs using a hand-held photoionization detector (PID) organic vapor analyzer (OVA) during groundwater sample collection. Generally, volatile organics were not detected in the breathing zone; however, 0.2 to 95 ppm of organic vapors were measured above the cores for RQLmw-006, -007, -008, and -009. In addition, field measurements of pH, temperature, specific conductance, and dissolved oxygen were recorded for each sample.

Aside from construction differences, there were differing approaches to the purging and sampling of the two sets of monitoring wells in the initial phase of this Groundwater Investigation. The six new wells were purged using a micro-purge method and dedicated equipment, including sampling pumps and tubing. Very small amounts of water (typically less than 3 gallons) were removed from the wells during micro-purging, and samples were withdrawn from the wells using the dedicated pump. Samples from the newly installed wells will continue to be sampled with this equipment throughout the Groundwater Investigation. In contrast, the previously existing wells were purged using conventional equipment and methods described in the *Facility-Wide Sampling and Analysis Plan* (USACE 1996a). Three well volumes were removed from the wells (from 20 to 28 gallons), and purging was terminated when water quality readings of pH, turbidity, and conductivity stabilized for three consecutive readings. Purging and sampling were performed on the original wells because a one-time use of dedicated equipment for the sampling of these wells was not cost-justified. No re-development of the original wells was attempted as a part of this study. These differences may contribute further to the observed variations in the analytical results between the two sets of wells from the initial phase of sampling.

The following sections discuss the chemical quality of groundwater at RQL.

Explosives

Trace quantities of nine explosives were detected in RQL groundwater. The results of groundwater analyses are as follows:

- No explosives were detected in groundwater from RQLmw-007, -009, or -010.
- Trinitrotoluene (TNT) was found in MW-5 at 0.27 μ g/L.
- 2,6-Dinitrotoluene (DNT) was present at 0.085J μg/L in MW-4 (a "J" indicates an estimated quantity).
- 2,4-DNT was present at 0.13 μ g/L in RQLmw-008.
- HMX was found in RQLmw-008 at 0.06J µg/L, and at 0.076J µg/L in RQLmw-011.
- RDX was found in MW-2, MW-3, and RQLmw-006, at 0.14J, 0.28J, and 0.12J μg/L, respectively.
- Tetryl was found in MW-1 at 0.0685 μ g/L, and at 0.12 μ g/L in MW-4.
- 1,3-Dintrobenzene (DNB) was detected at 0.099J μ g/L in RQLmw-006.
- 4-Nitrotoluene was detected at $0.082 \,\mu\text{g/L}$ in MW-5.
- Nitrobenzene was detected once, at 0.091J µg/L in RQLmw-011.

Figure 2-5 displays the distributions of these explosives in groundwater samples.

Propellants

Nitroglycerine was detected in two samples of groundwater. RQLmw-008 had 2J μ g/L of nitroglycerine; RQLmw-006 had 2.8J μ g/L. No other propellants were detected in RQL groundwater during the initial phase of sampling.

TAL Metals and Cyanide

Metals were analyzed in both filtered and unfiltered samples from each groundwater sampling location. Both sets of results are discussed below. However, filtered sample results are more representative of the true composition of the groundwater than the unfiltered results. Essential nutrients such as calcium, potassium, and sodium were present above detection levels in all samples, but are not further discussed as they are not considered potential contaminants at RQL.

In the unfiltered groundwater samples, the results of the analyses are as follows:

- Neither antimony nor silver were detected.
- Cadmium, chromium, and vanadium were detected only in MW-2, at 19, 23.3, and 22.4J μ g/L, respectively.
- MW-2 was the locus of maximum concentrations for 11 of the 23 TAL metals.
- Arsenic was detected in all wells, except for MW-3, RQLmw-009, and RQLmw-010, at concentrations ranging from 3.3J to 108 µg/L; concentrations exceeded the Maximum Contaminant Level (MCL) in samples from wells MW-2 (108 µg/L), RQLmw-007 (89.4 µg/L), and RQLmw-008 (51.6 µg/L).
- Cobalt was detected in MW-1, MW-2, MW-4, RQLmw-006, RQLmw-008, and RQLmw-011 at concentrations ranging from 29.7 to 196 μg/L.
- Trace amounts of mercury were reported from 0.09J to 0.29 μ g/L in 8 of 11 wells.
- Lead was detected only in three wells: at 4.2 μ g/L in MW-1, 74.8 μ g/L in MW-2, and 2.4 μ g/L in MW-4.
- In the upgradient well RQLmw-006, arsenic, barium, and cobalt were present at 15, 30.2J, and 196 µg/L, respectively. Iron, manganese, nickel, and zinc were present at 1760, 5550, 937, and 47.8 µg/L, respectively.

Arsenic was present in the unfiltered groundwater samples at concentrations above the MCL for drinking water (0.05 mg/L) in all three locations where it was detected (MW-2 at 108 μ g/L; RQLmw-007 at 59.4 μ g/L; and RQLmw-008 at 51.6 μ g/L). MCLs for cadmium, nickel, thallium, and lead were exceeded at MW-2.

THIS PAGE INTENTIONALLY LEFT BLANK

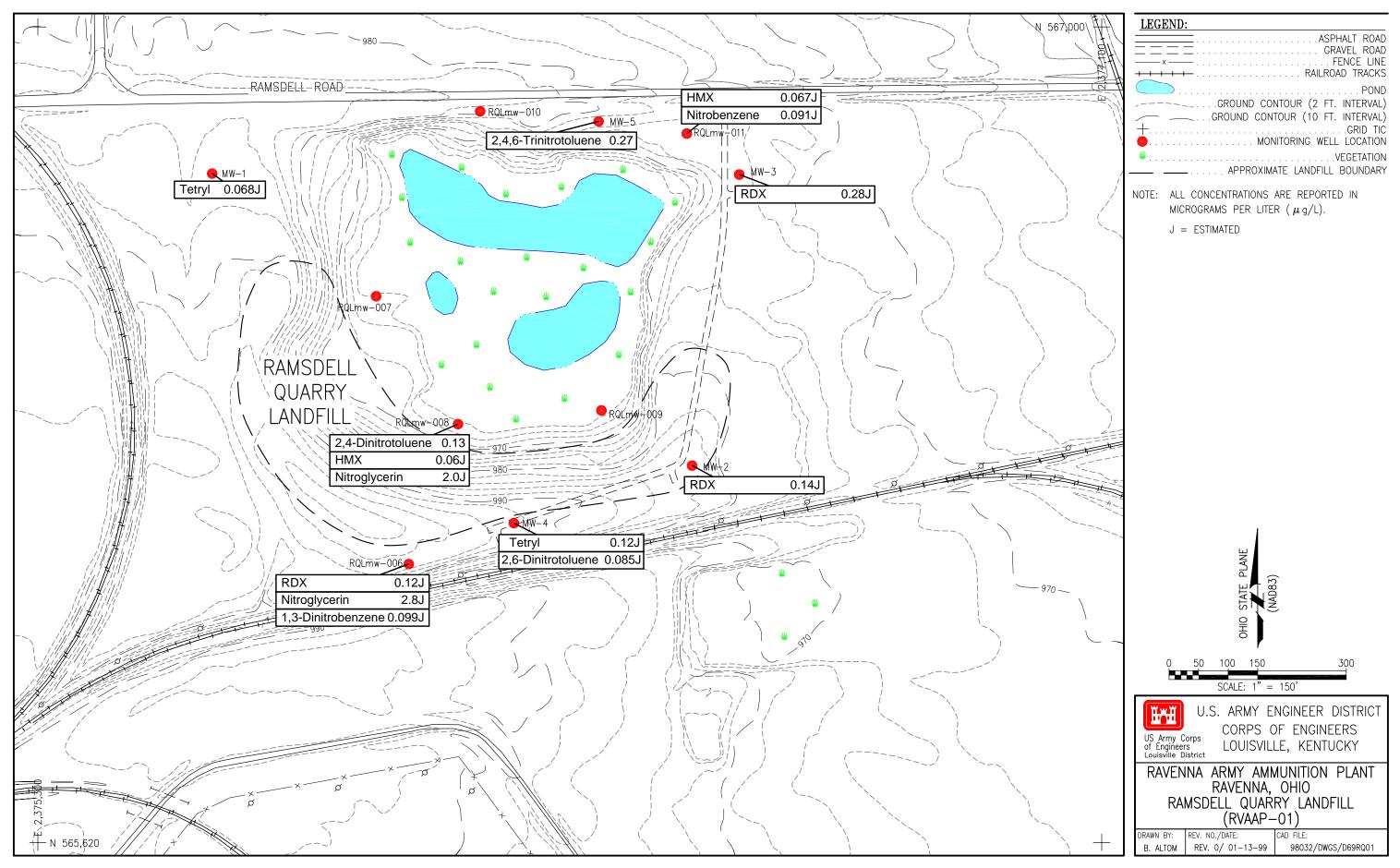


Figure 2-5. Summary of Explosives Results in Groundwater

For the filtered groundwater samples, the results of the analyses are as follows:

- Five of the 23 TAL metals analyzed in filtered groundwater were not detected. These were antimony, chromium, lead, selenium, and silver.
- The upgradient well RQLmw-006 had low estimated concentrations of arsenic (9.9J μg/L) and barium (29.7 μg/L). Cobalt was present at 206 μg/L. The concentration of iron was 1240 μg/L. Manganese was present at 5460 μg/L, and nickel at 945 μg/L. Zinc was measured at 41.7 μg/L.
- Cadmium was detected in well MW-2 ($2.4 \mu g/L$) and copper in MW-4 ($3.4 \mu g/L$).

In the monitoring wells, filtered TAL metals were detected as shown in Table 2-3. The maximum value for arsenic exceeds the primary MCL for drinking water. The maximum values for iron and manganese exceed secondary MCLs.

Analyte	No. of Detects	Minimum	Maximum	Location of Maximum
Antimony	ND			
Arsenic	6	3.1	62.7	RQLmw-007
Barium	9	16.7	62.6	RQLmw-007
Beryllium	1	0.91J		RQLmw-011
Cadmium	1	2.4		RQLmw-002
Chromium	ND			
Cobalt	6	18.7J	206	RQLmw-006
Copper	1	3.4		RQLmw-004
Iron	9	93.5J	140,000	RQLmw-008
Lead	ND			
Magnesium	11	9190	67,700	RQLmw-007
Manganese	11	12.6J	6960	RQLmw-005
Mercury	9	0.081J	0.1J	RQLmw-011
Nickel	11	15J	945	RQLmw-006
Selenium	ND			
Silver	ND			
Thallium	5	1.1J	1.9J	RQLmw-008
Zinc	10	29.6	1040	RQLmw-002
Cyanide was not present at concentrations above detection limits in the groundwater at RQL.				

Table 2-3. Summary of Filtered TAL Metals Results for Groundwater at RQL (concentrations in µg/L)

ND = not detected

NOTE: Number of detects shown in table includes duplicates as well as primary samples.

VOCs

The occurrence of VOCs was limited to 4 of the 11 monitoring wells during the initial phase of sampling. No VOCs were reported at concentrations above detection levels in monitoring wells MW-1 through MW-5, RQLmw-007 or -009. However, VOCs were reported near or below the laboratory detection levels (estimated quantities) in three monitoring wells. RQLmw-006 had acetone, benzene, and carbon disulfide (8.1J, 0.52J, and 2.4J μ g/L, respectively). Acetone was detected in well RQLmw-008 at a

concentration of 9 μ g/L. RQLmw-010 and -011 both had toluene in low concentrations, at 0.72J and 0.51J μ g/L, respectively.

SVOCs

No SVOCs were present at concentrations above detection limits in the groundwater at RQL. Two sets of SVOC analyses for groundwater samples are presented in Appendix C. Two analyses were required because matrix spike/matrix spike duplicate recoveries were less than 10%. In addition, surrogate compound recoveries were zero. Analytical method protocol specified re-extraction and re-analysis of the samples. Due to the time delay, the re-extraction occurred outside the official holding time and the subsequent data are qualified as estimated (J flag) or undetected estimated (UJ) with a reason code of A01 (extraction holding times exceeded). Validation concludes that the original data should be rejected while the re-analysis should be used with the estimated qualification.

2.1.5 Geotechnical Results

One geotechnical soil sample was collected from each of two representative soil intervals during drilling of monitoring well boreholes. One geotechnical soil sample each was collected from monitoring well boreholes RQLmw-006 and RQLmw-011. Soil cover was not present at the remaining boreholes. The samples were analyzed for grain size, moisture content, Atterberg limits, and Unified Soil Classification, in accordance with the *Sampling and Analysis Plan Addendum for the Groundwater Investigation of the Former Ramsdell Quarry Landfill* (USACE 1998). Results of the geotechnical analyses are presented in their entirety in Appendix E.

2.1.6 Survey Results

Appendix F presents the survey (X,Y, and Z) coordinates of all sampling points established during the RQL Groundwater Investigation. Table 2-1 summarizes the elevation data for the six newly installed and five original monitoring wells, all of which were surveyed in July 1998.

2.2 POND SURFACE WATER AND SEDIMENT SAMPLING

The chemical water quality of the pond at RQL was evaluated through sampling of both surface water and sediment in the initial phase of the Groundwater Investigation. Because of the potential for unexploded ordnance (UXO) submerged in the pond, all sampling activities in the RQL pond were overseen by a certified UXO specialist. No evidence of UXO was encountered during the investigation. However, non-UXO debris such as steel-reinforced concrete, pipes, scrap metal, culverts, and an empty metal drum were identified in the pond (see Appendix G).

The RQL pond is shown in Figure 2-1. The pond is small and shallow, and about 50% of its former area is now vegetated with cattails. Although the pond is underlain by bedrock, thin deposits of fine-grained sediment have accumulated on top of the rock, in places to a depth of 1.2 m (4 ft) or greater. Portions of the pond with sufficient water to allow sediment to accumulate are quite limited; however, in the main body of the pond (northernmost body) the distribution is laterally continuous. Water depths and sediment thicknesses were measured at each of the sediment sampling stations during sample collection (Table 2-4). The maximum water depth encountered was 0.9 m (3 ft) in RQLsd-022. The maximum depth to bedrock was encountered at RQLsd-018, where the sediment thickness on top of rock is greater than 1.2 m (4 ft). Appendix H presents the descriptions of all sediments sampled. Sediment depths where cattails and other vegetation have grown are not known. The pond sediment may reduce the amount of any hydraulic communication to some degree between the water-bearing zone in the sandstone and the pond,

especially at times when the water level (i.e., hydraulic head) in the pond is low. However, the limited thickness and discontinuous distribution across the quarry limits this effect.

Sediment Sample Location ID	Sediment Thickness (ft)	Description	
RQLsd-012 (-017)	0.6	Poorly sorted gravel, traces of silt and sand, dark grey	
RQLsd-013 (-020)	1.25	Silty clay with organic debris and traces of fine sand, light grey	
RQLsd-014 (-021)	0.4	Silt with organic debris and traces of gravel, black	
RQLsd-015 (-024)	1.8	1.8 Silt and clay with traces of gravel, black	
RQLsd-018	> 4.0	Silt with coarse sand to medium, organic debris	
RQLsd-019	0.5	Clay with silt and traces of gravel, roots, light brown	
RQLsd-022	0.45	Silt with gravel and sand, black	
RQLsd-023	1.2	Silt with some gravel and clay, dark grey	

Table 2-4. Sediment Sampling Data, Ramsdell Quarry Landfill Pond

2.2.1 Survey Results

The field sampling team measured the water level in the pond from the surveyed staff gauge. The water level elevation at RQL pond at the time of the initial sampling effort was 958.48 ft amsl.

2.2.2 Geotechnical Sampling Results

One geotechnical sample was collected at each of the sediment sampling locations from representative sediment sampling intervals. The samples were analyzed for grain size, Atterberg limits, and Unified Soil Classification, in accordance with the *Sampling and Analysis Plan Addendum for the Groundwater Investigation of the Former Ramsdell Quarry Landfill* (USACE 1998). Moisture content was not evaluated because the samples were water saturated. Results of the geotechnical analyses are presented in their entirety in Appendix E.

2.2.3 Surface Water Sampling Results

The objective of surface water sampling at RQL pond was to determine whether pre-existing contamination related to past burning activities has impacted sediment or water quality in the pond. Four locations were selected for surface water sample collection in the initial sampling effort (see Figure 2-1). These locations are also the sites of four of the eight sediment samples collected as part of this investigation (see Section 2.2.4). All surface water samples were analyzed for explosives, propellants, TAL metals, cyanide, VOCs, and SVOCs. Surface water was analyzed for both total (unfiltered) and dissolved (filtered) metals. Water from the pond will also be collected during the follow-up phases of sampling and analyzed for the same parameters as in the initial phase. The same location (RQLsw-015) will be sampled each time for consistency and to establish trends within the main body of the pond over time. Surface water samples were collected before sediment sampling began, to minimize the likelihood of sediment suspension affecting surface water quality. The analytical data for surface water collected during this investigation are presented in Appendix C.

2.2.3.1 Explosives

Explosives were not present at concentrations above detection limits in the surface water at RQL.

2.2.3.2 Propellants

Propellants were not present at concentrations above detection limits in the surface water at RQL.

2.2.3.3 TAL Metals and Cyanide

Metals were analyzed in both filtered and unfiltered samples from each surface water sampling location. Both sets of results are discussed below. However, filtered sample results are more representative of the true composition of the surface water than the unfiltered results. Essential nutrients such as calcium, potassium, and sodium were present above detection levels in all samples, but are not further discussed as they are not considered potential contaminants at RQL.

In the unfiltered surface water samples, antimony, beryllium, and silver were not detected. Barium, iron, magnesium, and manganese were detected in all four samples. The majority of the other metal ions were found in RQLsw-013, with RQLsw-014 and -015 having only barium, iron, magnesium, manganese, lead, and zinc above detection limits. The maximum concentration of every TAL metal detected was found at RQLsw-012. Arsenic concentrations ranged from 23 to 41.7 μ g/L. Iron concentrations varied from 377 to 84,300 ug/L. Lead was present in RQLsw-013 and -012, at 38.2 and 110 μ g/L, respectively. Magnesium was detected at concentrations from 30,800 to 202,000 μ g/L, and manganese varied from 67.2 to 5130 μ g/L.

Comparison of unfiltered surface water sample data to statewide water quality criteria for the protection of human health (OAC 3745-1-07) indicated exceedances for iron and manganese. Iron was present above the criterion for soluble iron (300 μ g/L) in all four samples. Manganese also exceeded its criterion of 50 μ g/L (total recoverable) in all four samples. No exceedances were observed for arsenic or zinc. Nitrate, chloride, dissolved solids, and sulfate also have criteria; however, these constituents were not analyzed as part of the investigation.

Most of the 23 metals and cyanide in filtered surface water samples were non-detects, with the exception of iron, magnesium, and manganese. Iron concentrations ranged from 51.5 to 213 μ g/L. Magnesium concentrations ranged from 28,900 to 168,000 μ g/L, and manganese from 8.8J to 316 μ g/L. The maximum manganese value exceeds the statewide water quality criterion of 50 μ g/L for total recoverable manganese. Aluminum was also present at RQLsw-012 at 92.9J μ g/L, and at 72J μ g/L at RQLsw-013. Arsenic was present at 3.7J μ g/L at RQLsw-013. Barium was detected in RQLsw-012 at 45.8J μ g/L, RQLsw-013 at 15.2J μ g/L, 38.5 μ g/L at RQLsw-014, and 22.9J μ g/L at RQLsw-015; however, barium was also present in laboratory blanks. No other metals were detected in the filtered samples.

2.2.3.4 VOCs

VOCs were not present at concentrations above detection limits in the surface water at RQL.

2.2.3.5 SVOCs

SVOCs were not present at concentrations above detection limits in the surface water at RQL.

2.2.4 Sediment Sampling Results

The objective of sediment sampling was to determine if the former landfill or pre-landfill waste disposal activities have resulted in a release of contaminants to the pond. Eight locations in the pond were targeted for sediment sample collection during the initial field effort. These samples were analyzed for explosives,

propellants, TAL metals, cyanide, VOCs, and SVOCs. The analytical results for sediments (dry weight basis) are presented in their entirety in Appendix C of this report. Geotechnical analyses of sediments included grain size, Atterberg limits, and Unified Soil Classification (moisture content was omitted because the samples were all water saturated). Sediment sampling locations are shown in Figure 2-1.

Sediments were collected at each location from the sediment-water interface to a depth of 0.5 ft below the interface, or refusal. If there was no refusal, sediment was sampled from 0.5 to 2 ft and, if possible, from 2 to 4 ft. At RQLsd-018, for example, sampling of sediment was performed in all three depth intervals, and there was no refusal at 4 ft. At RQLsd-013, sediments were collected at 1.25 ft, and at RQLsd-023, 1.2 ft. RQLsd-015 was sampled from 0.0 to 0.5 ft and from 0.5 to 2 ft, refusing on unknown material. All other samples were collected from 0 to 0.5 ft or less.

2.2.4.1 Explosives

Explosives were present in very low concentrations in seven of the eight sediment sampling locations. A summary of these results is as follows:

- TNT was detected in three locations: RQLsd-012 at 0.021J mg/kg, and RQLsd-018 and RQLsd-019 at 0. 047J mg/kg.
- HMX was detected at five locations. RQLsd-012, -018, -019, -022, and -023 had detections of HMX in the 0.0 to 0.5-ft interval. In addition, the 0.5- to 2.0-ft and the 2- to 4-ft intervals in RQLsd-018 and the 0.5 to 2-ft interval in RQLsd-023 had small quantities of HMX. Concentrations ranged from 0.11J to 0.14mg/kg.
- 2,6-DNT was detected in RQLsd-012, RQLsd-022, and RQLsd-023, in concentrations of 0.076J, 0.064J, and 0.34J mg/kg, respectively.
- 2,4-DNT was detected in the 0.5- to 2-ft interval at RQLsd-023.
- 2-Nitrotoluene, 3-nitrotoluene, and 4-nitrotoluene were detected in low, estimated quantities in RQLsd-013, RQLsd-014, RQLsd-23, and RQLsd-012.

2.2.4.2 Propellants

Propellants were not present in sediments at concentrations above detection levels, with the exception of three occurrences of nitrocellulose. Nitrocellulose was detected at RQLsd-015 in the 0- to 0.5-ft sample at 4.3 mg/kg, and in the 0.5- to 2-ft sample at 2.3 mg/kg. Nitrocellulose occurred in the field duplicate sample of RQLsd-012 (0 to 0.5 ft) at 1.7J mg/kg.

2.2.4.3 TAL Metals and Cyanide

Of the 23 metals analyzed in pond sediments, antimony and silver were never detected above detection limits. Occurrences of selenium, thallium, and cadmium were limited to five or fewer of the eight sediment sampling locations. The remaining analytes were present above detection limits in nearly every sample. In general, where two or more depth intervals were sampled, concentrations of metals decreased with increasing depth. Sampling location RQLsd-022 had the greatest number (11) of maximum concentrations of the TAL metals. A summary of the metals results for sediments is shown in Table 2-5. Where multiple depth intervals were sampled, the depth interval of the maximum concentration is noted. Cyanide was detected at 2.8 mg/kg in one sediment sample, RQLsd-023, in the 0- to 0.5-ft interval.

Analyte	No. of Detects	Minimum	Maximum	Location of Maximum			
Arsenic	12	7.6	32.5	RQLsd-022			
Barium	12	33J	145	RQLsd-022			
Beryllium	9	0.33	0.65	RQLsd-018, 0.5- to 2 ft			
Cadmium	4	1.4	6.4	RQLsd-018			
Chromium	12	8.7	30.9	RQLsd-022			
Cobalt	12	5J	33.6	RQLsd-022			
Copper	12	19.5	134	RQLsd-022			
Iron	12	13,700	54,500	RQLsd-018, 0.5- to 2 ft			
Lead	12	21.1	87.2	RQLsd-022			
Magnesium	12	1300J	58,000J	RQLsd-022			
Manganese	12	189J	2590J	RQLsd-022			
Mercury	12	0.033J	0.89J	RQLsd-012			
Nickel	12	12.8	86.8	RQLsd-022			
Selenium	5	0.6	2	RQLsd-013, 0- to 0.5 ft			
Thallium	3	1.2	1.9	RQLsd-022			
Vanadium	12 9J 40.7 RQLsd-013, 0- to		RQLsd-013, 0- to 0.5 ft				
Zinc	12	100	894	RQLsd-022			

Table 2-5. Summary of TAL Metals Results forRQL Pond Sediments (concentrations in mg/kg)

2.2.4.4 VOCs

VOCs were reported at concentrations near the laboratory detection levels in sediment. Acetone was detected in every sampling location except for RQLsd-019. Concentrations of acetone ranged from 3.7J to 26J μ g/kg, with the highest concentration encountered at 0.5 to 2 ft in RQLsd-024. 2-Butanone was detected in RQLsd-013, -015, and -023 at concentrations ranging from 6.5J to 10J μ g/kg. There was one occurrence of methylene chloride above detection levels, in RQLsd-019 at 0.73 μ g/kg.

2.2.4.5 SVOCs

Polynuclear aromatic hydrocarbons (PAHs) were detected in five of the eight sampling locations. At RQLsd-012, -014, -015, -018, and -023, PAHs such as benzo(a) anthracene, fluoranthene, pyrene, and others were detected at concentrations ranging from 65J to 2000 µg/kg. This maximum value (for phenanthrene) was observed in the 0- to 0.5-ft sample at RQLsd-012. Some PAHs were also detected in the 0.5- to 2-ft intervals at RQLsd-015 and -023. PAHs were not detected in samples from RQLsd-013, -019, or -022.

2-Methylnaphthalene and acenaphthene were detected in the 0- to 0.5-ft sample at RQLsd-012, at 110J and 340J μ g/kg, respectively.

2.2.5 Continuous Water Level Data Collection

In order to monitor water levels in RQL pond continuously until the completion of all groundwater and surface water sampling activities performed as a part of this Groundwater Investigation, a staff gauge with automated data collection capability was installed at the pond in July 1998. Figure 2-6 is a photograph of the completed platform and staff gauge.

The data logger collects and records water level data on a daily basis for the duration of sampling activities at RQL. The data will be downloaded to a notebook computer on site, at a minimum, during every groundwater sampling event or manual water level measurement event. Because the electronic pressure transducer used to automatically record data is submerged, it must be removed during the months in which the pond freezes. A visual gauge (scaled to 0.10 ft) installed on the platform can be used during winter months and is visible from the shore.

Figure 2-6. Photograph of Staff Gauge at Ramsdell Quarry Landfill Pond, Looking Southeastward from Northwest Corner of Pond

3.0 CONCLUSIONS

The results of the initial phase of sampling and measurements at RQL provide an assessment of summer conditions at the site. Follow-up work will provide information on temporal variations in groundwater and surface water chemistry, groundwater flow directions, and the degree of connectivity between RQL pond and the shallow groundwater system.

3.1 GROUNDWATER CONDITIONS AND QUALITY

- Groundwater flow is to the northeast across the site under a gentle (0.008) gradient.
- Shallow groundwater occurs within both primary and secondary porosity in the highly fractured, highly weathered Sharon sandstones.
- Groundwater in upgradient well RQLmw-006 contains low concentrations of the explosives RDX and 1,3-dinitrobenzene. These compounds also occur in one or more of the downgradient wells. The propellant nitroglycerine was found in the upgradient well, with the only other occurrence in RQLmw-008.
- Cobalt, nickel, and arsenic were identified in filtered samples from RQLmw-006 and five or more downgradient wells.
- SVOCs and VOCs were not present above detection levels in groundwater.
- Cyanide was not detected in groundwater.
- Vertical movement of groundwater and a substantial degree of interconnection may explain the similarities in water levels observed in the original wells, screened in deeper stratigraphic intervals, and the new wells, installed in shallow bedrock.

3.2 SURFACE WATER/SEDIMENT CONDITIONS AND QUALITY

- The elevation of the water surface in the pond during the initial sampling event was 958.48 ft amsl at the staff gauge. The staff gauge was set at the location where the pond is deepest.
- Surface water samples contained no explosives, propellants, VOCs, or SVOCs in concentrations above detection limits. Iron, magnesium, and manganese were the most frequently detected metals, with two or fewer occurrences each of arsenic, barium, and aluminum.
- Sediment samples exhibited the greatest amounts of explosives and other contaminants in the 0- to 0.5-ft interval. HMX was found in five of the eight locations, and at depths of 0.5 to 2 ft or greater in two of these. Nitrocellulose occurs in RQLsd-015, where no explosives were detected, and in RQLsd-012, in concentrations less than 5 mg/kg. PAHs were also present in five of the eight sampling locations and may reflect the former sites of open burning of wastes. These occurrences may result from either runoff or incipient contamination from historical operations on the quarry floor.

- Sediment has accumulated to a depth of 1.2 m (> 4 ft) at some locations in the pond. Water depth varies from 0 to 1m (0 to 3.18 ft). Thick sediment accumulations may diminish the amount of hydraulic communication between the pond and the shallow water-bearing zone.
- The potential connection between the pond and the shallow groundwater system cannot be discerned with only the initial data.

3.3 FOLLOW-UP INVESTIGATION

Five additional groundwater and surface water sampling events will follow the initial phase. These additional events began in September 1998. In addition, water level measurements will continue to be monitored daily in the six newly installed wells, monthly in the previously existing wells at RQL, and daily in RQL pond. As the data are assembled and analyzed, results will be reported to USACE each quarter. Upon completion of a full year of sampling of groundwater at RQL, an annual report will be prepared to integrate the observations made throughout a full year of water quality monitoring.

4.0 REFERENCES

Freeze. R. A., and J. Cherry. 1979. Groundwater. Prentice Hall, Englewood Cliffs, NJ. 604 pp.

Ohio Drilling Co. 1988. Geologic/Hydrogeologic Survey and Monitoring Well Placement Proposal for the Ramsdell Quarry Area in the Army Ammunition Plant.

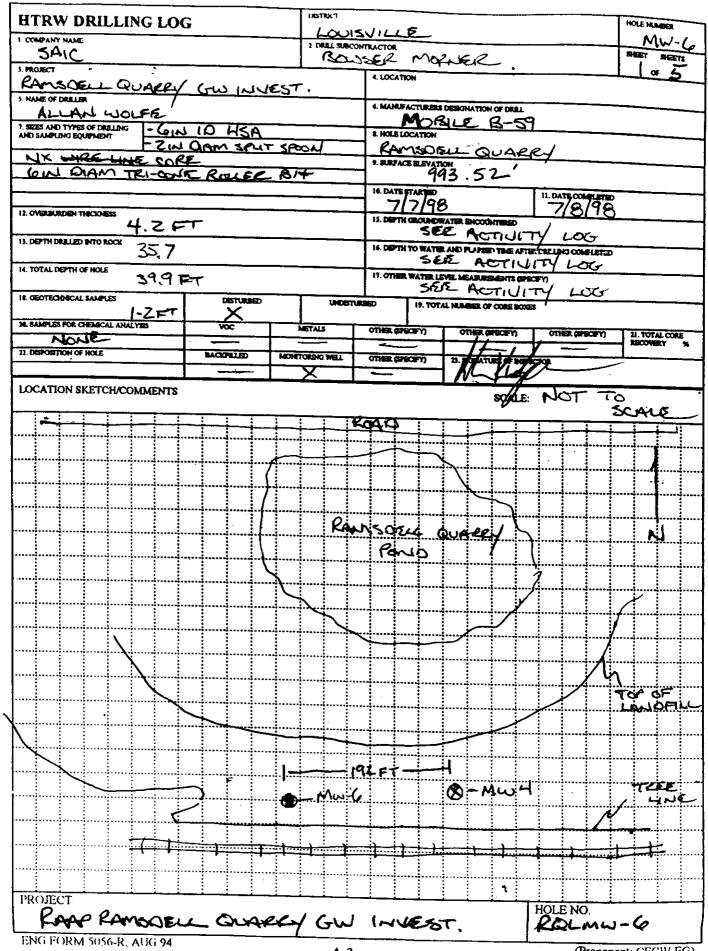
Ohio EPA (Ohio Environmental Protection Agency). 1997. Interoffice Memorandum from Diane Kurlich to Jarnal Singh, Subject: Ramsdell Landfill, July 30, 1997.

RVAAP. 1995. Ravenna Army Ammunition Plant Ramsdell Quarry Landfill Groundwater Monitoring Plan.

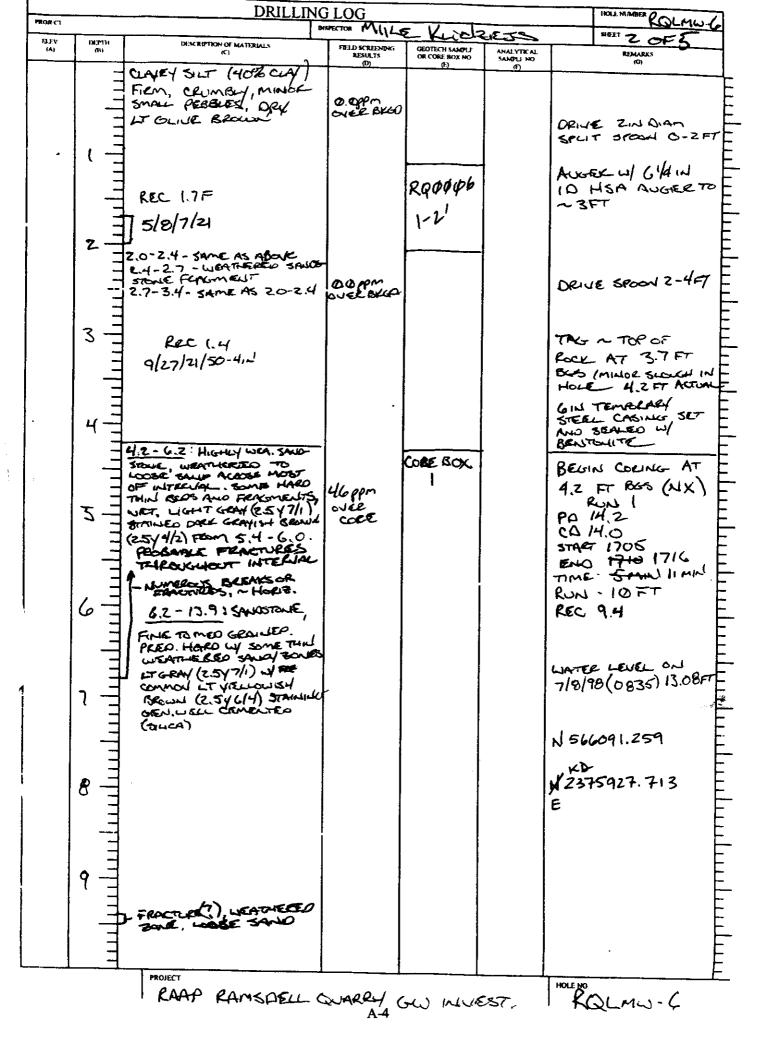
USACE (U.S. Army Corps of Engineers). 1996a. Facility-Wide Sampling and Analysis Plan for Ravenna Army Ammunition Plant, Ravenna, Ohio.

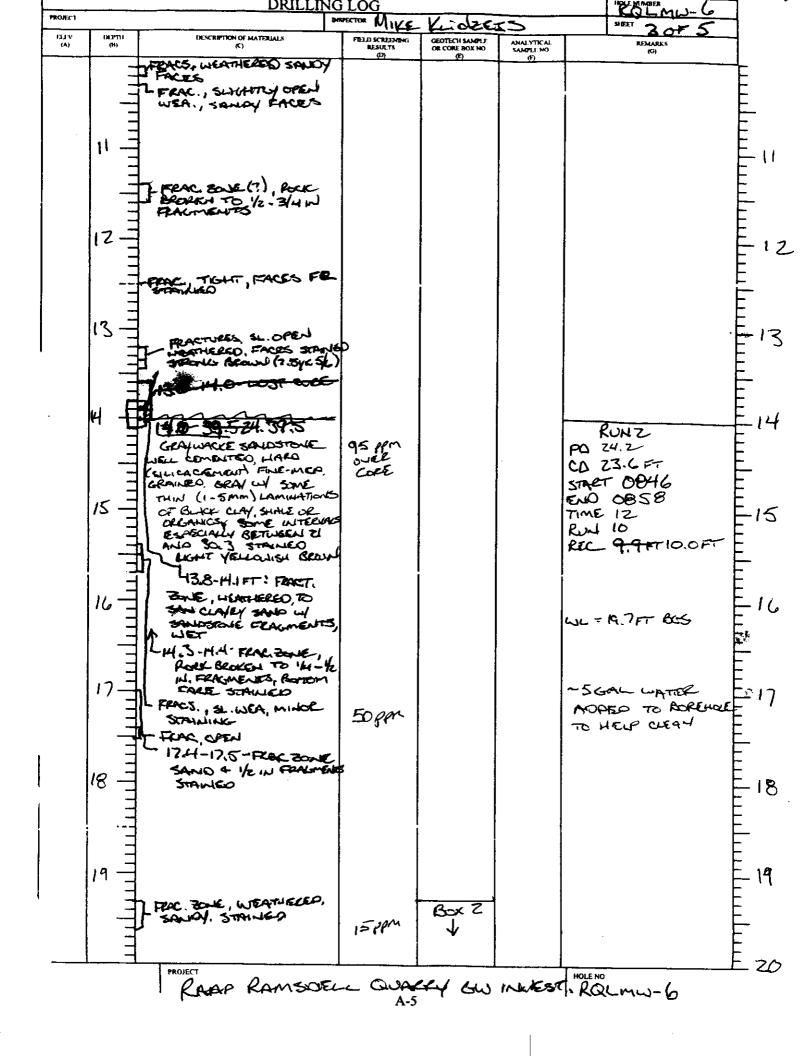
USACE. 1996b. Preliminary Assessment for the Ravenna Army Ammunition Plant, Ravenna, Ohio.

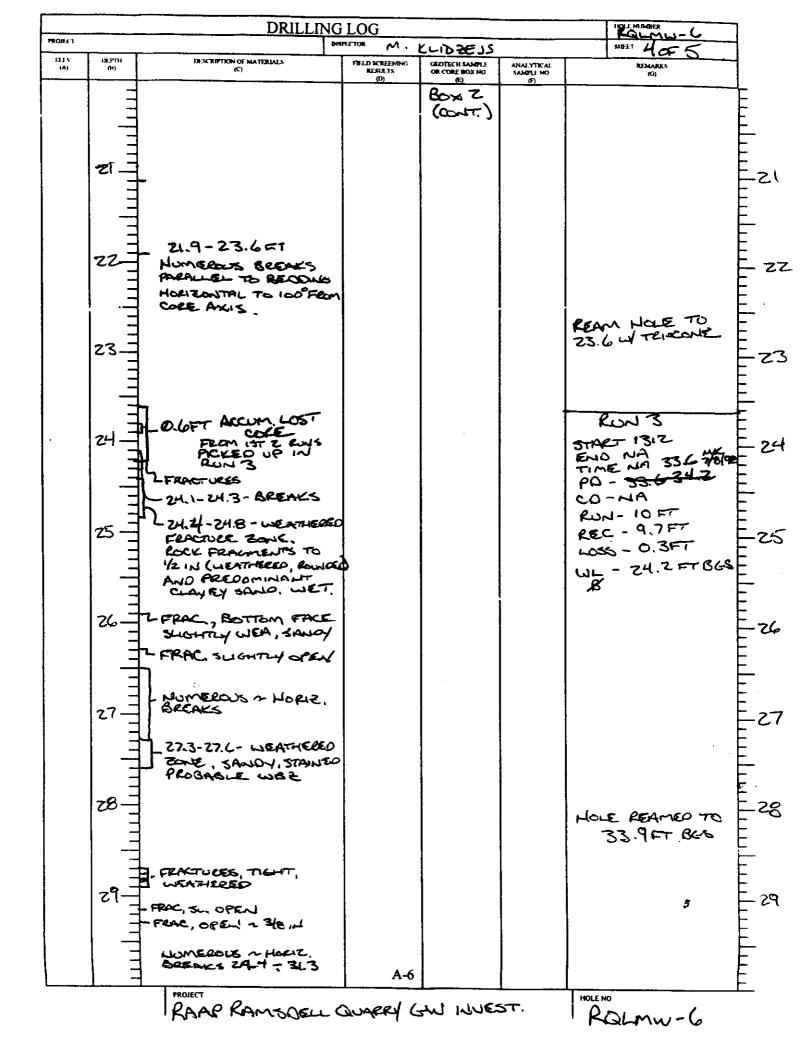
USACE. 1998. Sampling and Analysis Plan Addendum for the Groundwater Investigation of the Former Ramsdell Quarry Landfill, Ravenna Army Ammunition Plant.

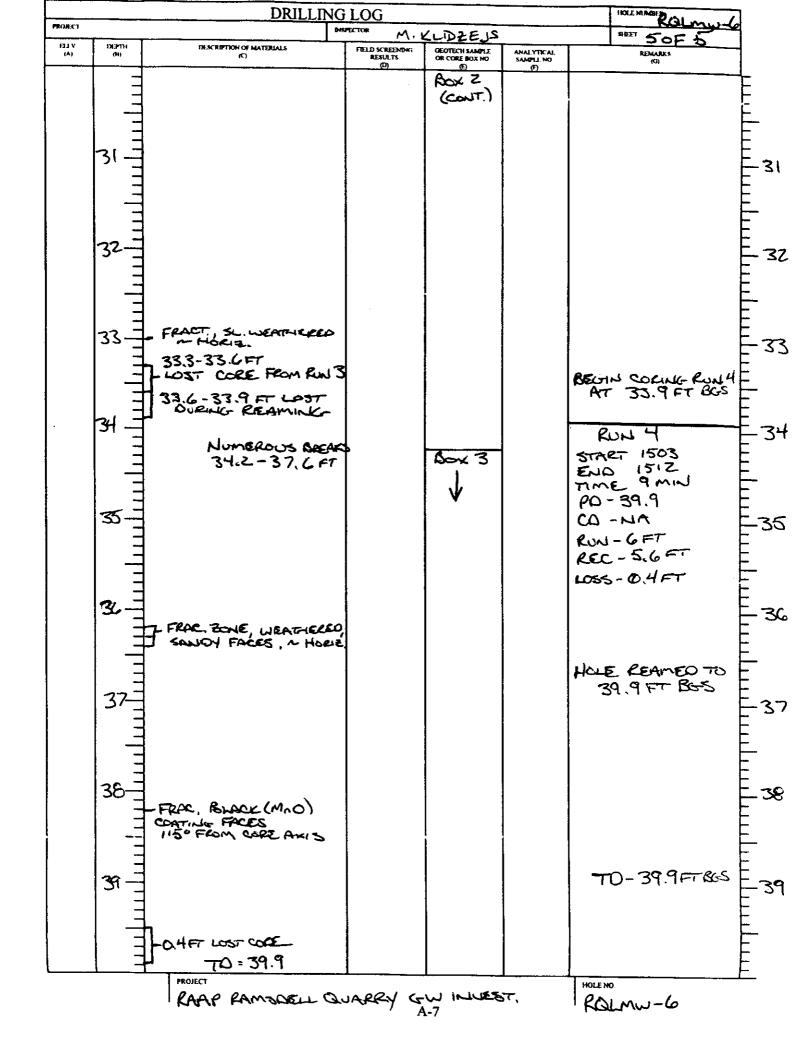

USAEHA. 1992. Ground-Water Quality Assessment Plan Outline, Ramsdell Quarry Landfill, Ravenna Army Ammunition Plant, Ravenna, Ohio. Ground-Water Consultation No. 38-26-KF95-92.

APPENDIX A

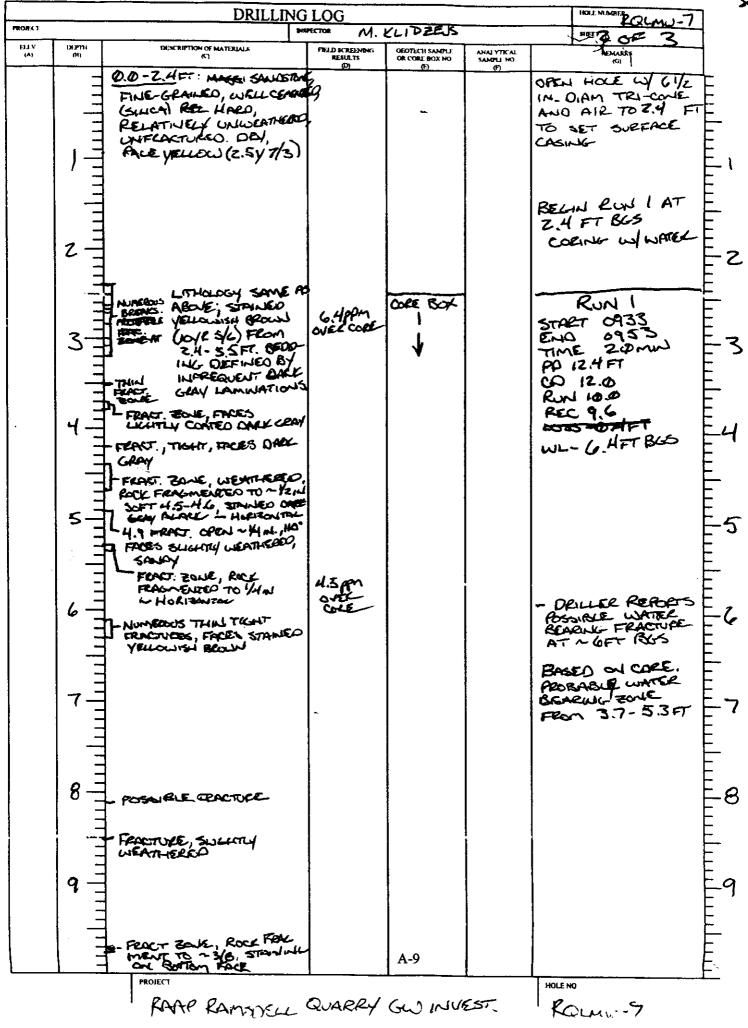

MONITORING WELL BORING LOGS

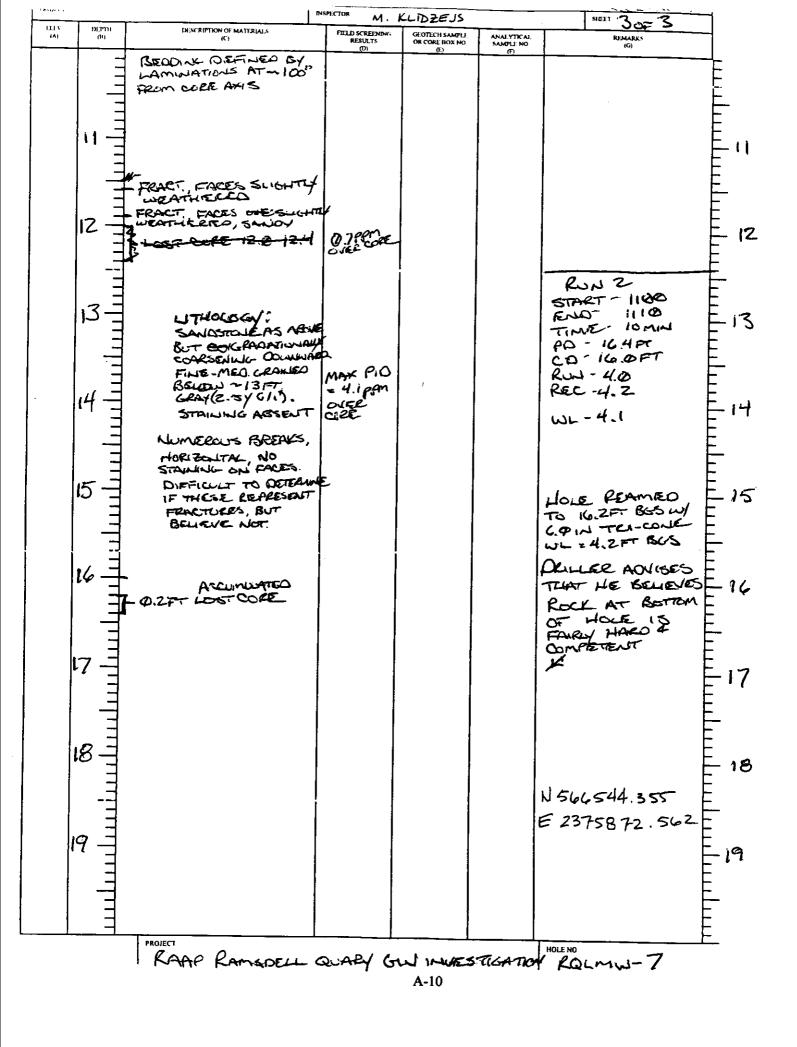

INITIAL PHASE REPORT GROUNDWATER INVESTIGATION RAMSDELL QUARRY LANDFILL RAVENNA ARMY AMMUNITION PLANT


·



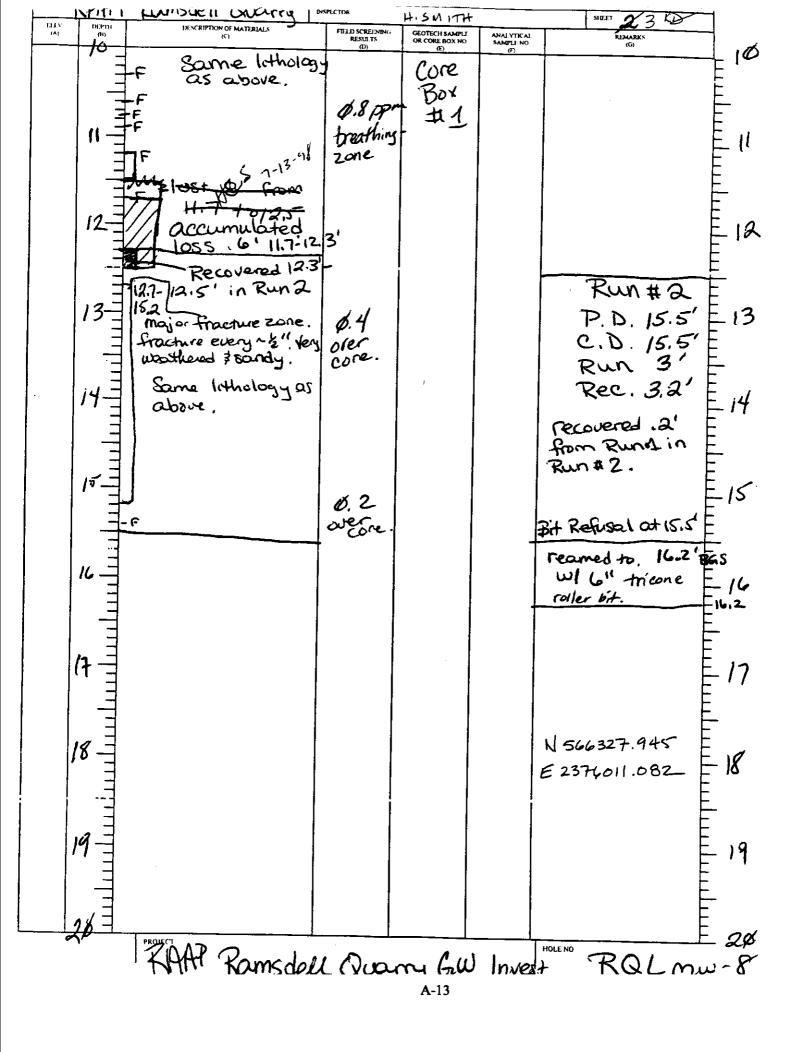
(Proponent: CECW-EG)





HTRW DRILLING LOG		2 DRAL SUBCO	UISVIL	LE							
SAIC		Bow	SER M	orn	ER				SHEET		
RAAP RAMSOELL QUAP	Red Goal in	1.1557	4. LOCATE	ON		·····		- ·			
S. NAME OF DRELLER			6. MANUE	ACTURERS	DESIGNATIO	NOFDREL					
S. NAME OF DRELER ALLAN WOLFE 7. SZES AND TYPES OF DRELING AND SAMPLING EQUIPMENT	L M	4 MANUFACTURERS DESIGNATION OF DREL MOBILE B-59 4. HOLE LOCATION									
	RICONE				MAP	BEL	പ				
- NX COFE			9. SURFAC	E ELEVAT	3.84	, /					
	······································	·····	I. DATE	TARTED			LIL DAT				
12. OVERBURDEN THICKNESS	<u> </u>		711	98			7/1	2/98	5		
13. DEPTH DINILLED INTO ROCK			D. DEFTR	13. DEPTH GROUNDWATER ENCOONTERED STRESS				RST	TWATER		
16.2FT	-		14. DEPTH	TO WATE	1.2 F	D TRAC ADVI	RDEULISK	COMPLET	Ð,		
16.2F7 14. TOTAL DEPTH OF HOLE 16.2F7			IT. OTHER	WATER LE	VEL MEASUR	BMENTS (SPE	> / am	5m	2		
18. GEOTECHNICAL SAMPLES	DISTURSED	UNDETL			L NUMBER O						
NONE 30. SAMPLES FOR CREMICAL ANALYSS			-				3	١			
NONE		METALS	OTHER (SPE	arn)	OTHER (SPECIFY)		OTHE	R (FISCHY) 21. TC		
22. DISPOSITION OF HOLE		TORING WELL	OTHER (SPE	icem)	1. 201	RE OF BE					
LOCATION SKETCH/COMMENTS		X			<u> Mil</u>	~4	dp	\leq	 		
EXCATION SKETCH/COMMENTS						SCALE:	N	ר זכ	50 50		
								1			
		¥	OA0								
						†					
	·····	\leftarrow				ļļ					
		······			<u> </u>						
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		RAM	SOCL	<b></b>		$\overline{\mathbf{N}}$					
XX		Q	)ACC /					,			
			Ponic	2		)	/				
						/	1		1		
			$\rightarrow$				1				
				••••••	•••••		<b>/</b>				
						1		····			
						Ţ					
						/			· · · · ·		
		••••••									
	/										
	10	POFI	AND	n - A	<b>.</b>						
								····			
PROJECT		<u> </u>				<u> </u>	HOLE				
							LUCI D	MIO I			

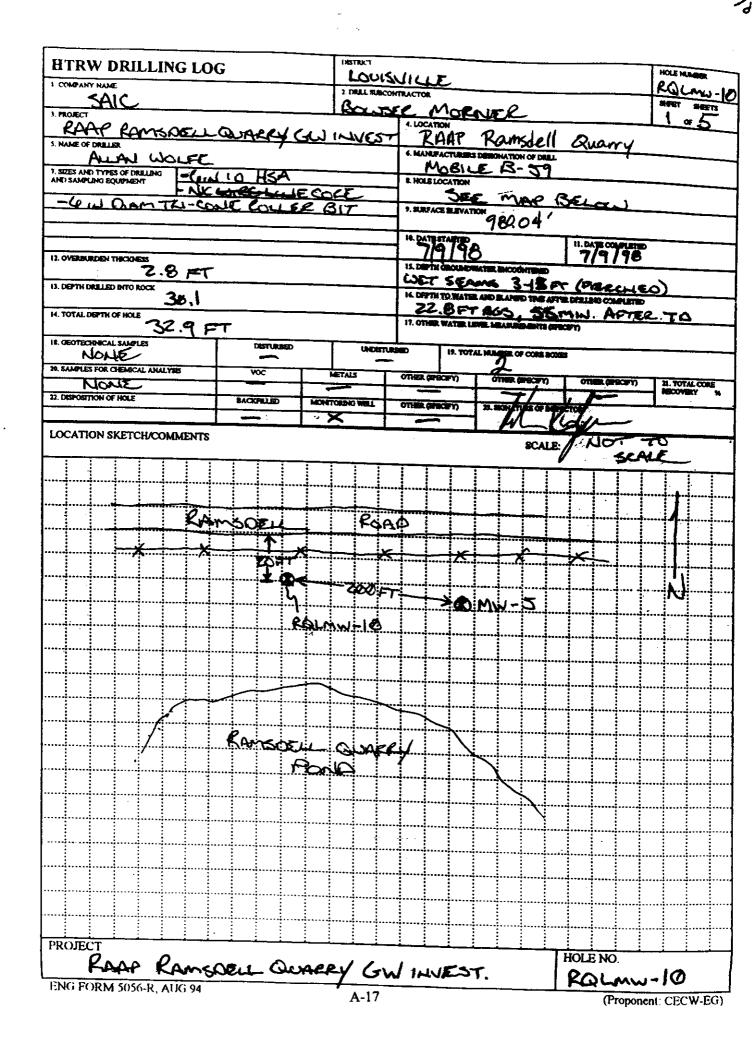
·,

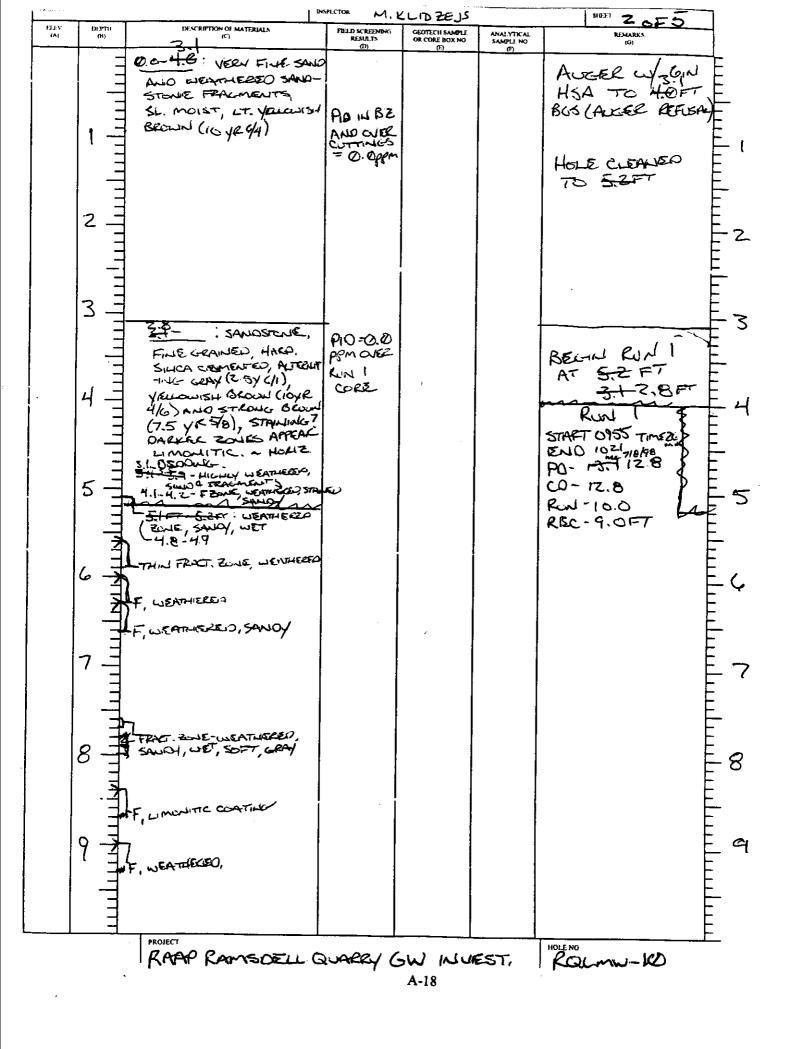


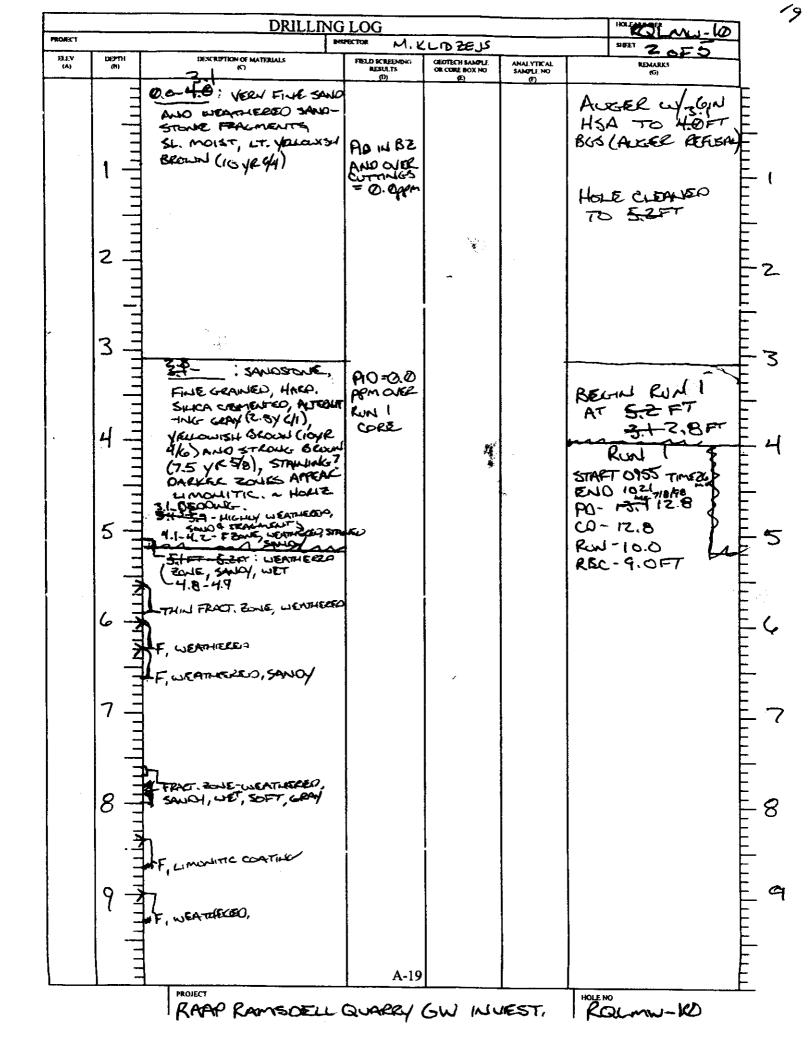


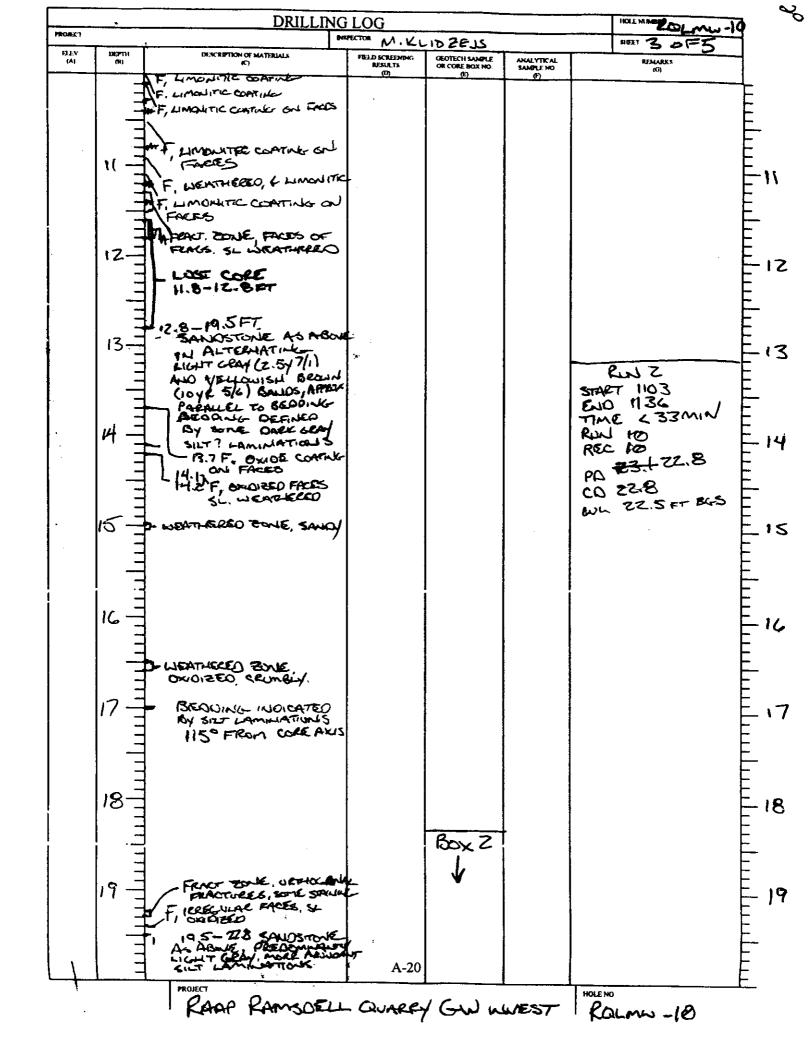

Louisville OGTRK'T **HTRW DRILLING LOG** Rolman & I COMPANY NA 2 DRUL SUBCONTRACTOR BOWSer - Morner 5A1C -PROF GW Invest 4. LOCATION Quarry Ramsdell Quan S NAME OF B-59 MObile 0 re Drill 7. SIZES AND TYPES OF DRELLING 6% " tricone bit 8. HOLE LOCATION AND SAMPLING EQUIPMENT Ramsdell Qua "" tricone 963.82 AX-core 10. DATE STARTED 11. DATE COMPLETED 01-12-98 <u>Ø7. [[-98</u> 12. OVERBUILDEN THICKNESS IS. DEPTH GROUNDWATER ENCODITERED تح , ح 13. DEPTH DRILLED INTO ROCK 16. DEPTH TO WATER AND BLAPSED THE AFTER DELLING COMPLETED 16.2 15.7 14. TOTAL DEPTH OF HOLE 16.2 17. OTHER WATER LEVEL MEASURENTS (IPSCIPY) 18. GEOTECHNICAL SAMPLES DISTURBED UNDERTURNED 19. TOTAL NUMBER OF CORE BOXES 20. SAMPLES FOR CHENGCAL ANALYSIS VOC METALS OTHER (S OTHER OFFICEY BCTTY) 21. TOTAL CORE 22. DISPOSITION OF HOLE BACKFELLED MONTORS OTHER OF BOATY 23.1 deat mg LOCATION SKETCH/COMMENTS SCALE: none Ramsde gad DOD Omu-P FOP OF Canofil PROJECT HOLE NO. ROLMW-8 RAAP Ransdell Quarry GW. Invest (Proponent: CECW-EG)

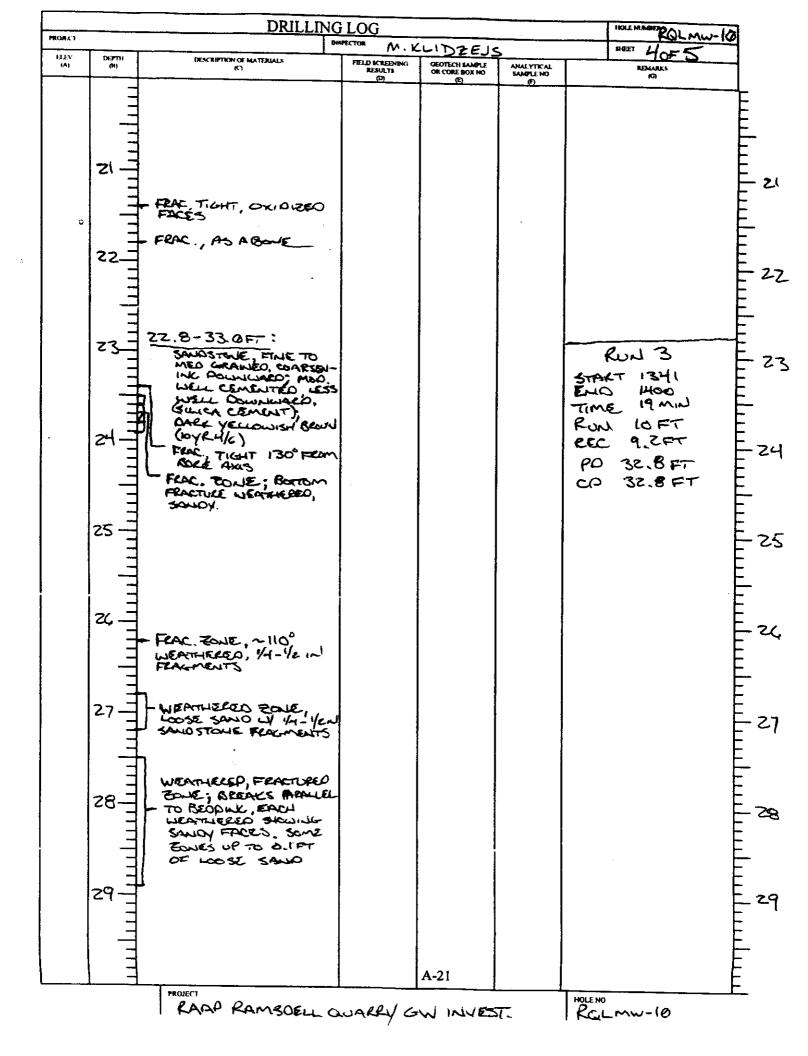
57


OU INVERT SAME MUSGEN LYVANY H.SMITH - 09 3 DESCRIPTION MATERIALS 13.EV (A) 00731 FTELD SCREENING RESULTS GEOTECH SAMPLE OR CORE BOX NO ANALYTICAL SAMPLE NO 10 REMARKS Ð Ø О Ð Soil TO ,51 Opened hole wi Roots sorber organics comman Installed temporty 6/2" dia. tricoire Ø.5 pm Sand Stone. Fine-Nied レイ. grained. Stained dk: Breathing 6" casim yellowish trown (loves/4 2.51 B63 Zone Weathered along fractures where fractured sand 3friable Unweathered rock is hard. Silica 2 cement. Moderately well 2 Sortcolograins, cored w/ nr bits 11.7pp! Same Inthology OVER ON DHE BOX as above actual 2.5' Bagin Runl Color Seen here unless Z Porel 20rel 井工 3 Staining indicated Octual Color is H.gu -F P.D 12.5 11.7 Ċ.D. 2.547/1 (• Run 10' Large fracture area E 9.2' Rec. Sandy & weathered accumulated Loss . Sandy, weathered. Fracture from 11.7-125 F 5 5 ellowish h-Baur F-15.8'-7.0 aining love 14) 6.37Pr Neathered / Sandy C Driller states ما "water 9+~6-73 on Cor F Ø. LR Horizontal · FI bedding mm scale breathi throughout core 20re mil the /de staining along fractures. 8 8 9 9 F Ramsdell Quarry GW Invest ROLMW-8 10 A-12





DISTRA'T **HTRW DRILLING LOG** ouisville ROLINUS I COMPANY NAME 2 DRAL SINCONTRACTOR H1C ruser Norner SHEE J RAAP Ramsdell Quarry Gulinvest anstell Que my 1 Nolfe A MANUFACTURERS DESIGNATION OF DREL B-59 Mobile 7. SIZES AND TYPES OF DRILLING AND SAMPLING EQUIPMENT Ramsd 62" tricone rollerbit Lot tricone moller bit 962 60 ΛY \$ core barre 14. DATE STARTED 11. DATE COMPLETED 12. OVERBURDEN THICKNESS 15. DEPTH GROUNDWATER ENCOUNTIRED over burden NO 13. DEPTH DRILLED INTO ROCK 16. DEPTH TO WATER AND B APERD THE AFTER DIRLING COLDUCTED 6-5 16.4 14. TOTAL DEPTH OF HOLE 17. OTHER WATER LEVEL MEASUREMENTS (SPECEY) IS. GEOTECHNICAL SAMPLES DISTURBED UNDISTURIED 19. TOTAL NUMBER OF CORE BOXES 20. SAMPLES FOR CHEMICAL ANALYSIS VOC METALS OTHER OF BOAT OTHER (SPECIFY) COPPOETO 21. TOTAL CORE RECOVERY % 22. DISPOSITION OF HOLE BACKFILLED MONTH PARTY OTH R GPSCEY) Katha mt LOCATION SKETCH/COMMENTS SCALE: NONE RAMSDER SOUL POND 8 mu 9 of cond fill TDP PROJECT AP Ramsdell Quary GW Invest. HOLE NO. Ralmw - 9 (Proponent: CECW-EG)


Kalmw-9 HOLEMAN DRILLING LOG Ramstell Guarry NUMECTON KAAP полат SIDET H.SMITH DESCRIPTION OF MATERIALS ELEV (A) DEPTN (H) FTELD SCREENING RESULTS GEOTECH SAMPLE OR CORE BOX NO ANALYTICAL SAMPLE NO REMARKS Φ iΩ) oversurden. 10 Open hole with E Bactground 62 tricome roller Rock is fine-med. graines. Stained dark BS bit to 2.2'BGS Ø.ØPPM yellowish brown (OVRAN) Rock outcrops - 1 や Weathered along fractures Sandy & friable along at ground surface 1. Øppm no over burden. Practutes. where unweathered, ra is hard. Well sorted grains willier cement. 2 Fractured weathered RUN #1 Sandy zone. Fractures at least every 2" ConeBox 8-8-8.3 *1 P.D. C.D. 8.2 3 Dark yellow brown staining (104R516) 3 ÷ Run. C. PID. reading Rec. 6.1 presdent as main color throught runal start: 1027 1.57pm Horizontal bedding end: 1045 on MM Scale seen throught core 3.0 PPr over core Froquest zone, weathered TIME 18 min Stained, Sandy Loss .1' from 8,2'-8.3' 5 5--C E Practices soundy Pstained Loose No return water ما ۰F Driller states probable fracture = ۰F water. Fractured wasthered Bandy zone. 8 8 Bottom tagged at 8.2' PID Breaks way &" Stained (lightly) readings. RUN #2 P.D. 12.2 055 9 12.0 F zone stained, sandy Weathered. C.D ppm 3.9 RUN overcore 3.3 REC 16 10 Ramsdell Quarry GW Invest. RQL PROJECT mw-9 RAAP

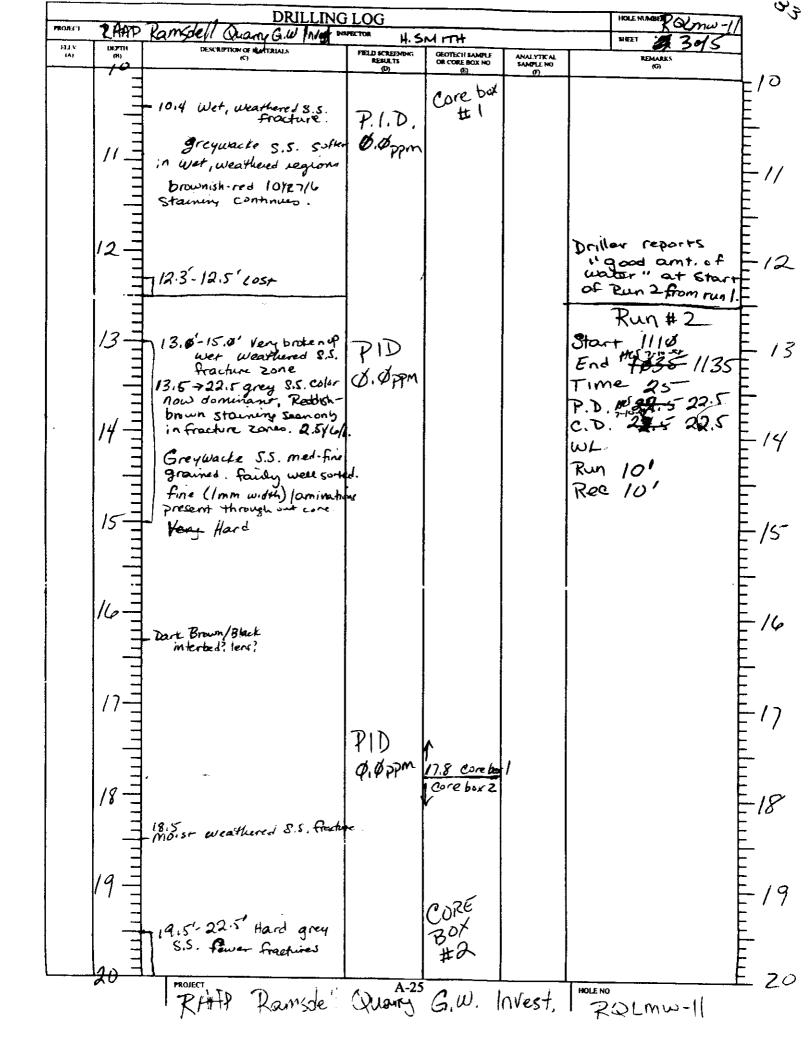

many 4.5Mitt SIGET KOZ ELLA (A) DEPTH DESCRIPTION OF MATERIALS FTELD SCREENING RESULTS (D) GEOTECH SAMPLE OR CORE BOX NO ANALYTICAL SAMPLE NO (F) REMARKS (G) Ð <u>-</u>1Ø Horizontel bedding (amineth on mm Scale Huroug Flore Core. LOSS . 6' from CORE DIG 11.6-12.2 overcore Box # 1 Staining on Core still represents The main color on this d.8 pp - 11 run. Practine 20me Reamed to 12.2 Before Run 3 w/6" tricone bit: ·6' LOST Polt Depth for run 12 12 #2 = 12.2 Same lithology RUN#3 as above oper core Color now unstailer PID (mostly) 1+. grey or C 16.5 9 P PD 13 16.4 CD 13 2.547/1 Sppr 4.3' F Well Sorted fine -RUN 4.1 REC Med. grained sand 1220 14 F Stone. fine intertact 14 Start 1236 END dark & light quy horizonte laminations 16min TIME Silica Cement. Loss . 2' from 15 15--F Hard. 16.3-16.5 ]( 16 16.3 Bottom of recover LOST. 2' from 16.3' Bottom of core K.S. 17 17 18 - 18 N 566351.199 E 2376253.654 19 19 ₽ 20 PROJECT RAAP Ramsdell Quarry GW In17050 ROZMW-9 A-16



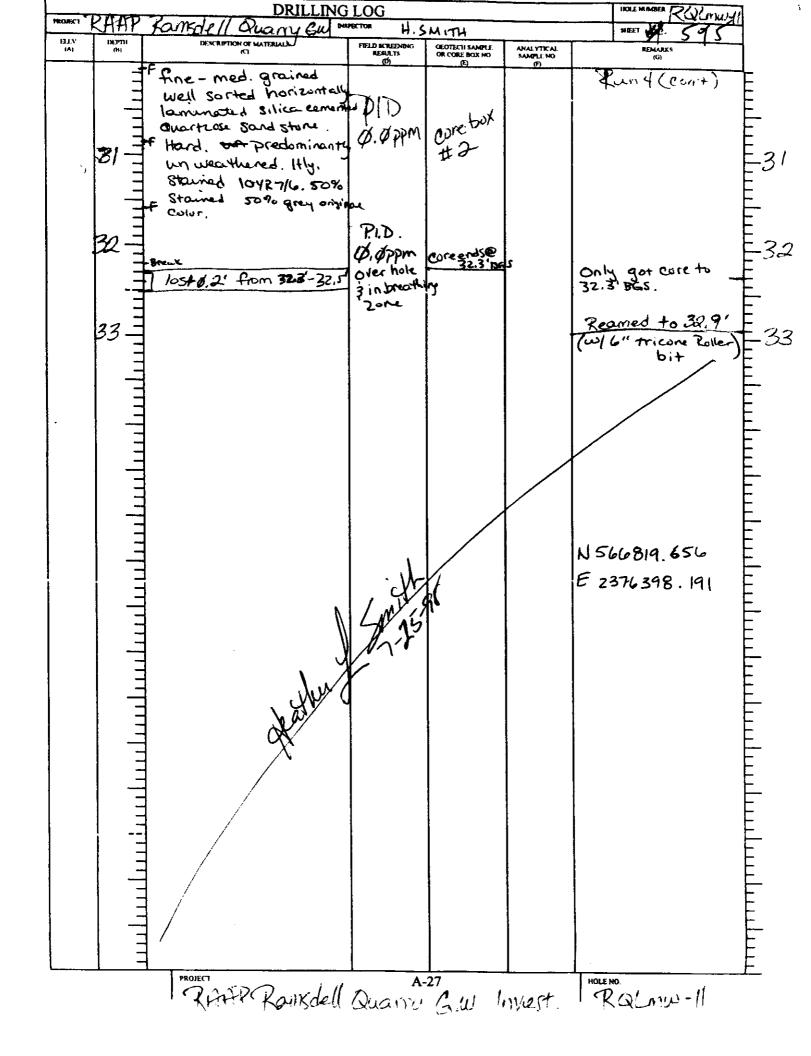






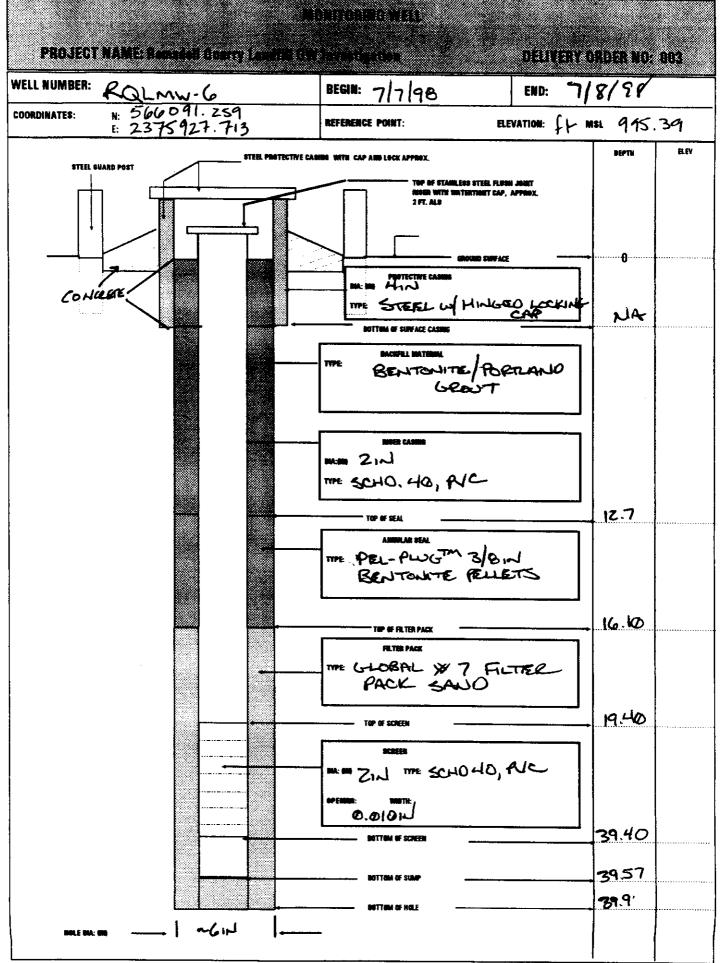

		DRILLING	LOG				HOLE MANDER ROLMU-IC	1
юліст	······		тесток М.	KLIDZET	5		HEET 5 OF 5	1
ELLV (A)	01027134 (71)	DESCRUTION OF MATERIALS	FTELD SCREENING RESULTS	GEOTECH SAMPLE OR CORE BOX NO.	ANALYTICAL SAMPLENO	1	NEHANKS (9)	1
		- LOOSE SAND AND FERS	ტ <u></u>	(6)	<u><u> </u></u>		(v)	
	2	J FRACTURES, WEATERED						
	2	-FRACTURE, 145° WRATTHERED FREES				Ho	S TO OF 32.9FT	
	1111	32.0-32.8 LOST COLC				57	s to of seith Bus.	سيليم
	331111							
								السل
							66857.393 376048.582	
								سليبينا
	<u> </u>	PROJECT RAAP RAMSDELL C		A-22				F


INSTRU-1 **HTRW DRILLING LOG** Louisville HOLE I COMPANY NAME Ralmw-11 2 DRILL SUBCONTRACTOR Bouser Morner HE LT amsdell Quarry G.W. Investigation 4. LOCATION andell Qua 6. MANUFACTURINE D INATION OF DRILL obile 59 7. SIZES AND TYPES OF DIRILLIN AND SAMPLING EQUIPMENT HSA 8. HOLE LOCATION dia Solf spon pl uarn core 9. SURFACE ELEVATION dia tricone .0 6.+ 14. DATE STARTED H. DATE COMPLE 10 - 9 12. OVERBUILDEN THICKNESS 2.51 15. DETH CROUNDWATEL 13. DEPTH DRILLED INTO ROCK 30.4 CITELENCO MALER AND BLANED THE AFTER DELINE OF HITEL 14. TOTAL DEPTH OF HOLE 32. 17. OTHER WATER LEVEL MEASUREMENTS (FRCFY) 18. GEOTECHINCAL SAMPLIES DISTURBED UNDISTURGED 19. TOTAL MANUEL OF CORE BOR 29. SAMPLES FOR CHEMICAL ANALYSIS VOC METALS OTHER (I 22. DISPOSITION OF HOLE BACKERLED TORING OTHER OFFICE I LOCATION SKETCH/COMMENTS none SCALE: Ramsdell Road  $\otimes mw - 5$ & RQLmw-11 LOOT NOTIN ۱ PON( PROJECT RAAP Ramsdell Quarry GW Invest. HOLE NO. RQLMW-11 ENG FORM 5056-R, AUG 94 A-23 (Proponent: CECW-EG)

s)






HOLE MARGER LMW-1 DRILLING LOG คณะกั RAAP Ran Kdell Quarry Gu DISPECTOR H.SMITH SHEET 7 415 ALES (A) 06910 DESCRIPTION OF MATERIALS FBLD SCREENING RESULTS GEOTECH SAMPLE OR CORE BOX NO ANALYTICAL SAMPLE NO **(**C) REMARKS hard greywarke S.S. ത ΖIJ 20 Run 2 cont Color 2.54 8/1 (grey) few fractures PID very little weathering or 2 Ø.Ø PPM Staining 21 BZ 21.7-22.3 stained Al.9 Fracture, sandy weathered 22 22 core-TDLOST Run 3 Fracture zone 22.5-23.3 Run 3 404 92 no staining, Fracturesovery 23 #2 -23.2 Staining returns 10YR 6/6 Beaunst PD 27.8 27.8 CD WL , 8.5' from Bottom PID Start 1345 23.9-24.1 Poorly sorted, mai. 0.0 to CS. grained Sandstone Dpm Very Stamed 10184/16 Very weathered (thetawar Interthing Very weathered (thetawar Interthing 24 1400 End ppm 15 min Time Run 5,3 over core Rec 5.3 Red oxidized spots 25 along core from. 7 F~ 25 sh ... 25.9 - 27.1 Fracture zone 25'-25:4' ~ ev. d. 15'. Some 19r. YT2S (upto d. 101' tia). RX Still grey incolor when BODIEN. Staingron other ither on the all of the star ۰F 26 26 Lithology from R6.4 Thru Row 3 is cs. grained -med gr. Sstore. -J-Core -F Dark stamm, 1048 314 F (OK Yellowistorown)along -F frammer Pot N 21 tractures. ¥7 -F Highly weathered - stained Run 4 F0-278 £6-RUN 4 28 Medics gr. lithologythin 28.3 Bothen return to P.D 82.5 Pid guartzace sandstone wi CD 32.4 6.5 Aun bottom Ø.Øppm WL Silica Cement & fine horizont + treations laminations w/ H. Stainy Zone zone Start 1443 29  $\mathcal{Q}^{q}$ End 1452 on core, core. Time 9 min Run 4.7 Rec. 4.5 30 HOLENO RISLINIUI-II PROJECT ~ A-26 RAAP Pamsdell GARAMONIGW Invest.



# **APPENDIX B**

# MONITORING WELL CONSTRUCTION DIAGRAMS/ WELL DEVELOPMENT RECORDS

# INITIAL PHASE REPORT GROUNDWATER INVESTIGATION RAMSDELL QUARRY LANDFILL RAVENNA ARMY AMMUNITION PLANT



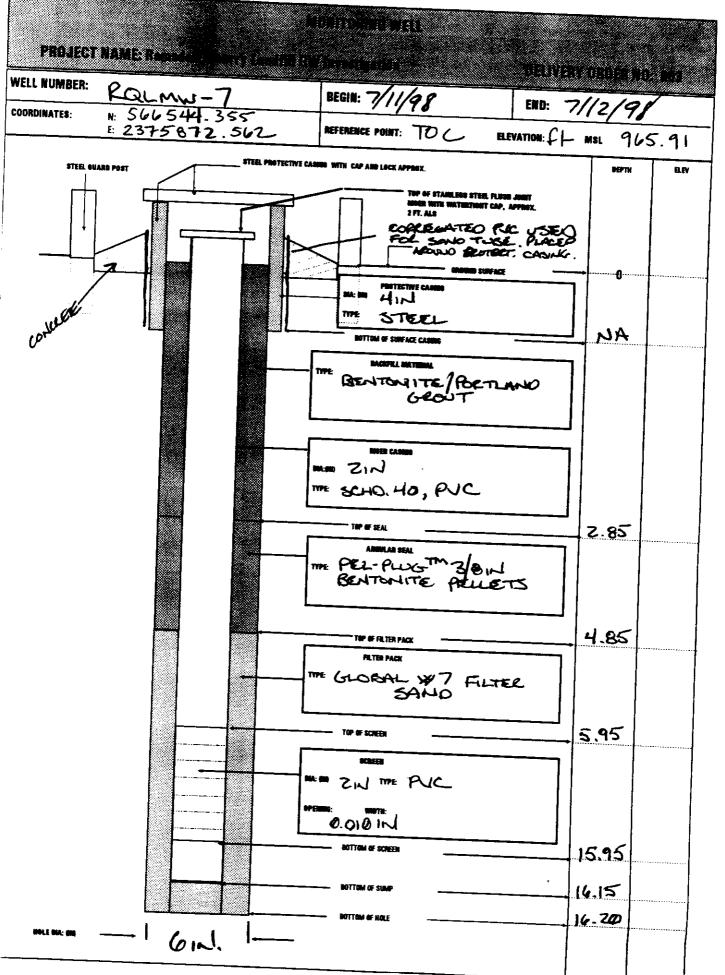
PROJECT NAME: Ramadell Quarry Landfill GW Investigation

DELIVERY ORDER NO: 003

PAGE OF /

WELL NUMBER AND LOCATION: RQLANW-G

DATE	TIME	GALLONS REMOVED	TEMP(C)	SPECIFIC CONDUCTIVITY (CMHOSICM)	pH (Standard Units)	TURBIDITY	TOTAL GALLONS RE <del>MO</del> VED	WELL VOLUMES REMOVED	COMMENTS
7/12/98	3 (040	1/4 cm	12.7	Ø.7ø9	7.13	>999	1/4 GAL		FIRST WATER REMOVED
7/13/98	0825	14	196	0.798	6.12	103	ZOBLAL	~5 、	REMOVED ON 7/12/98
7/13/98	0845	5	11.0	0.751	5.94	98	25%	~6 ~	UN 7/13/99
7/14/98		8		<u></u>			33/2		WELL NORY ADARE
7/15/98	1105						·····		BGALS REMOVED OF
7/15/78		1/14	15,711,5	0.76.	6.01	183	3334		-7/14/98 LATER REMAIRS ON 155 - 7/15/98
7/15/98	51112	4	13:4	0.893	6.08	-13	373/4		2 Dey
	<u> </u>			<u>96</u> 7/24/92					132 gal. Irmut. 7/224 4921 rn 0
7/24/98	<i>1</i> 921	1	<u>tz.</u> 1	\$,762	6.06	281	414	~ lø	which to establish stable
	<b>0</b> 924	1	11.6	<u>ن</u> .735	6.23	215	42/4		
L	6417	1	11.6	e.779	6.25	177	43/4	× 1¢.5	STABLE
5. Jent	gave verbe	0.K. ti	K. Donin	ie to remove	marimum	up 5 well	volumes an	I real st	ability. Unable to
ILMOUR S	tian the	water holded	due to ve	11 cavitation.	·				
					- 94 2/20	18			


RECORDED BY: Mind Contract (Signature and Date)

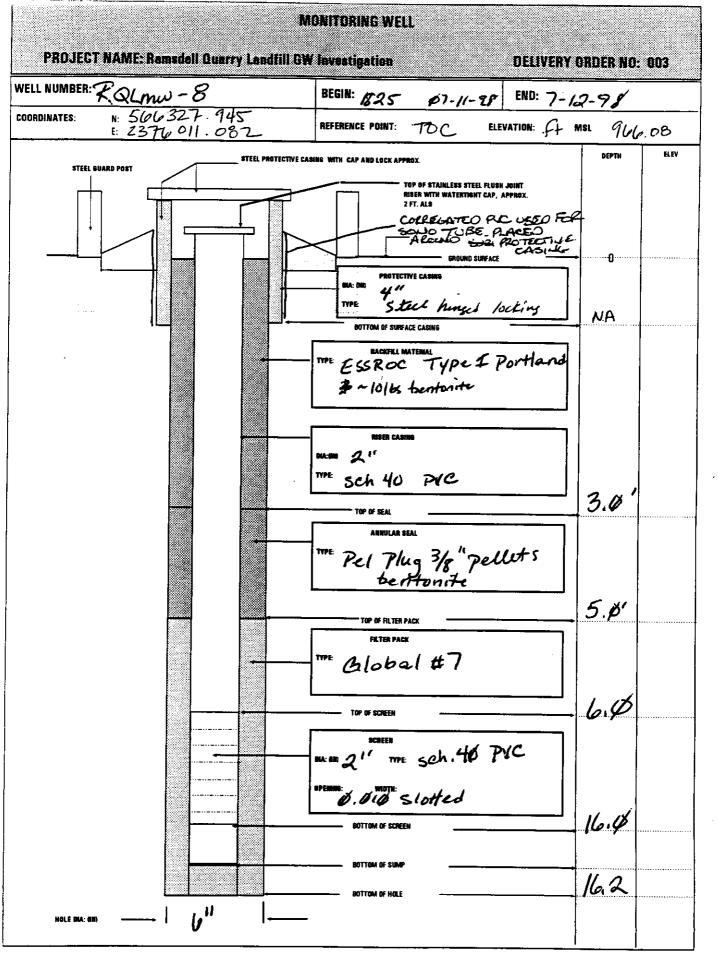
**QA CHECK BY:** 

(Signature and Date)

B4

14




48

PROJECT NAME: Ramsdell Quarry Landfill GW Investigation

DELIVERY ORDER NO: 003 PAGE _____OF ____

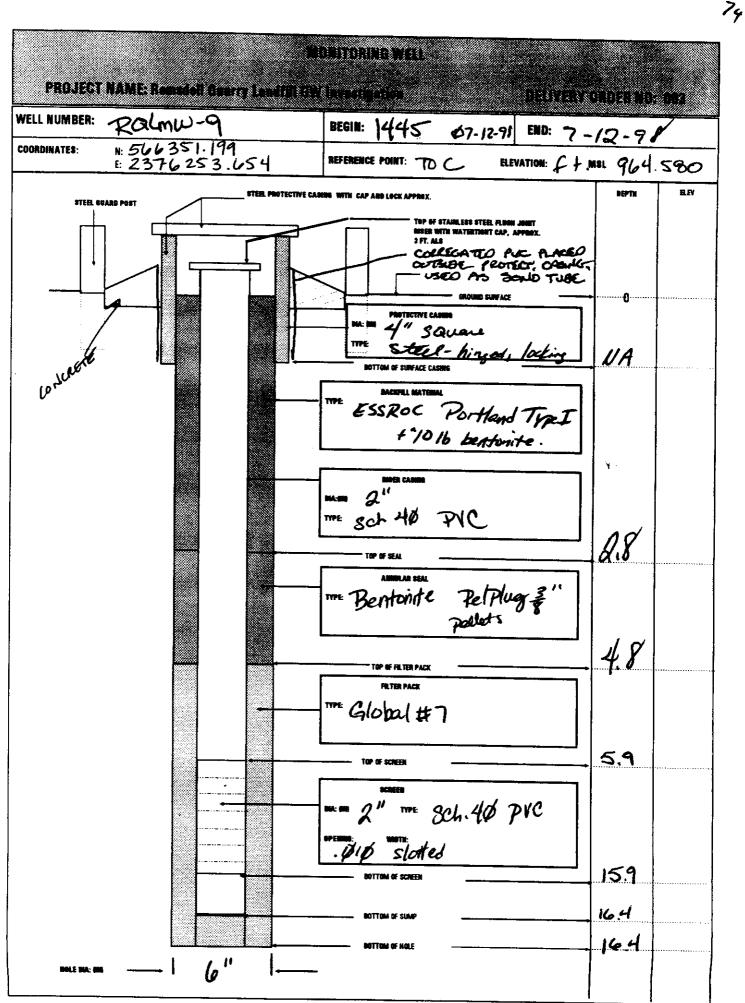
WE	ELE N	IUMBER /	AND LOCATION	RGILM,	w-7_	RAMSOLL	Carper	1			
	DA	ATE	TIME	GALLONS REMOVED	TEMP(C)	SPECIFIC CONDUCTIVITY	pH (Standard Units)	TURBIDITY	TOTAL GALLONS REMOVED	WELL VOLUMES REMOVED	COMMENTS
7	<u>7</u> ,	4198	10000	~	20.1	1.29	6.36	999	21	~!	INITIAL WATER
	Ť		1006	6.5	16.2	1.29	6.40	615	4.5	1+	
	+	+	1013	6.5	16.1	1.26	6.40	999	13.0	2+	·
			1020	6.5	16.1	1.27	6.41	2002	19.5	3+	
	+	ب ۱	1028	8	16.1	1.30	6.40	66	27.5	4+	
	+	1	1035	8	16.1	1.30	6.39	76	35.5	5+	DEURLOPMENT Scinitiale
-	へ		1053	~20	16.1	1.30	6.41	10	~ 55	28/2	AFTER STABILITY TO REALER TURBIDITY
┢	<u> </u>	<u> </u>	1		<u>+</u> ,						KADOR TURBINITY
┢			<u> </u>								
┢			<b> </b>	<u> </u>			XIII-				
$\vdash$			+		-		52/	1			
$\left  - \right $	<u> </u>		+				6.1	1/20			
┢			+	+			1				
┢			+	+	+						
┢			<u> </u>	+	+		+	1			5. 
┢			+	1.11	/		-	1	-	· · · ·	
L ,	RECI	ORDED BY	N: Mit	-that	27/	14/98		QA CHECK I	BY:	(Signature and Date)	······································
				(Signature and Da	ate)			!		Olynami v en a ann	

**B-**6



**B-7** 

1


## PROJECT NAME: Remodell Quarry Landfill GW Investigation

DELIVERY ORDER NO: 003

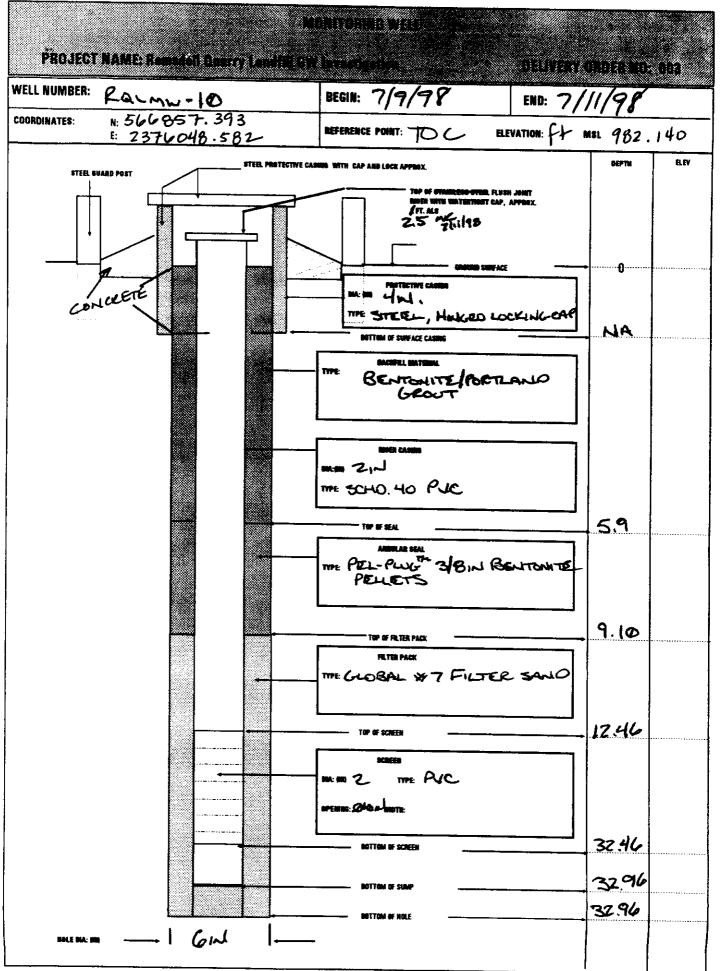
PAGE 1 OF

#### GALLONS SPECIFIC pН TOTAL WELL DATE TIME REMOVED TEMP(C) CONDUCTIVITY (Standard Units) TURBIDITY GALLONS VOLUMES COMMENTS (uMHOS/CM) REMOVED REMOVED l 6.48 999 41 7/14/98 1212 1.52 17.4 ١. WITIAL 12-18 349 67 71+ 0 15.6 1.25 6.11 6 1224 149 1.20 137 13 6.17 24 1228 14.9 1.15 3+ 6.20 10 19 6 6 44 14.9 6.25 25 1734 1.20 10 1240 6 1.14 31 5+ 6.22 14.7 10 LETE: WATER CLEAR AFTER DENEROFMENT AT 1240. PHOTOCHAPH OF FINAL WATER TAKEN AT 15:30. WATTER IN CONTAINER CHANKED COLOR (CLEHE TO ORDANCE - RED) IN LAPSE. MK p/14/88 **RECORDED BY:** QA CHECK BY: (Signaturg and Date) (Signature and Date) s ti ند ب^ا

## WELL NUMBER AND LOCATION: ROLM. 8, ROMSOELL QUARRY



PROJECT NAME: Romsdell Quarry Landfill GW Investigation


DELIVERY ORDER NO: 003

PAGE _ _ OF _ _

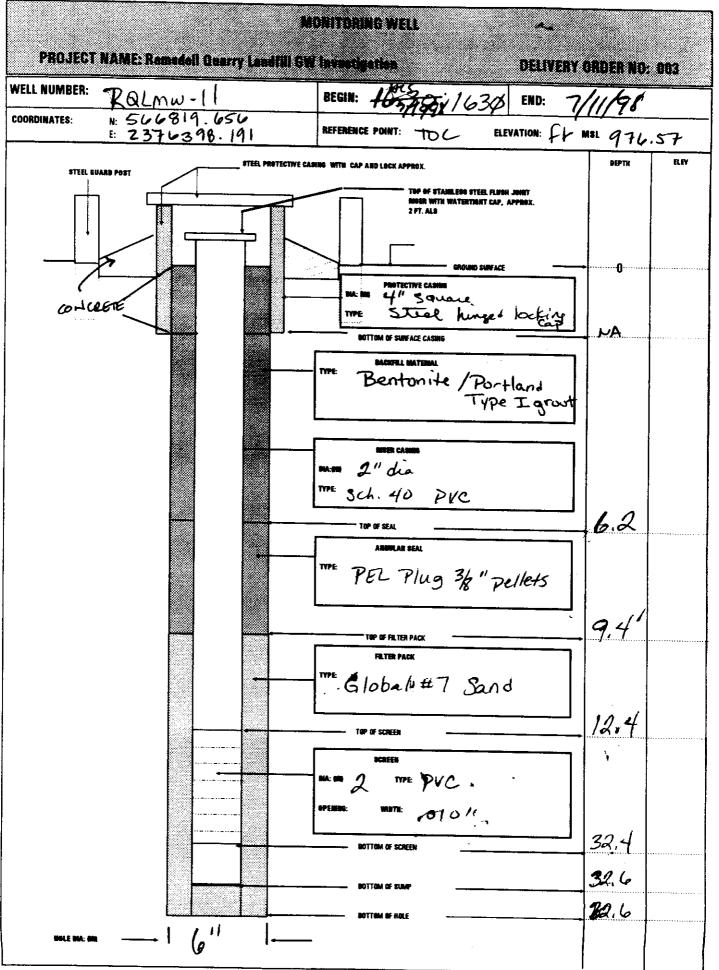
WELL NUMBER AND LOCATION: Reserve - 9

DATE	TIME	GALLONS REMOVED	TEMP(C)	SPECIFIC CONDUCTIVITY (LMHDSICM)	pH (Standard Units)	TURBIDITY	TOTAL GALLONS REMOVED	WELL VOLUMES REMOVED	COMMENTS
7/14/98	1416	~1	18.3	0.364	6.68	769	gel	21	WITIAL READING
	1420	8	17.4	0.408	6.52	77	168	[+	
	1425	8	17.0	0.416	6.51	GJ	2516	2+	
	1432	8	16.5	0.426	6.49	10	37 24	3+	
	1439	8	16.5	0.445	6.50	10	37 24 4832.	4+	
	1445	8	16.5	0.445	6.55	10	- 40	54	
 	1454	ଞ	16.4	0.447	6.52	IØ	48	6+	
· · · · · · · · · · · · · · · · · · · ·			M	7/14/96					
				· // /C					
	<u></u>								
	1	111							
RECORDED BY:		ISignature and Dat		98		QA CHECK BY		ignature and Date)	······································
						· · · · · · · · · · · · · · · · · · ·			

B-10



**~**_{\$}


PROJECT NAME: Romsdell Quarry Landfill GW Investigation

DELIVERY ORDER NO: 003

PAGE OF

DATE	TIME	GALLONS REMOVED	TEMP(C)	SPECIFIC CONDUCTIVITY (LAMHQS/CM) M S/CM	pH (Standard Units)	TURBIDITY	TOTAL GALLONS REMOVED	WELL VOLUMES REMOVED	COMMENTS
7/13/18	1020	~1/4	135	0.419	6.59	991	~ 1/4	<١	INITIAL READING
	1035	5.5	12.8	0.610	653	999	5,75	~1	
	1340	60	144	0.620	6.68	123	65	٨.	
•	13 1742	40	j6.3	0.614	6.94	35	iø5		
	1800	5	14.9	\$.665	6.81	57	110		
	1813	5	14.5	10.697	6.85	97 -	115		
	1828	5	H.9	Ø.688	6.75	83	120		
	1839	5	14.9	0.643	6.71	63	125		Tirameters Stable
		and the second second	· · · · · · · · · · · · · · · · · · ·						
				NE	<7/13/			:	
						)			
									· · · · · · · · · · · · · · · · · · ·
		-							
							·		
RECORDED BY:	UN	Char 1	_ 7/13	175		QA CHECK B	Y:		
		Signature and Dat	te)					Signature and Date)	

WELL NUMBER AND LOCATION: ROLMw-10



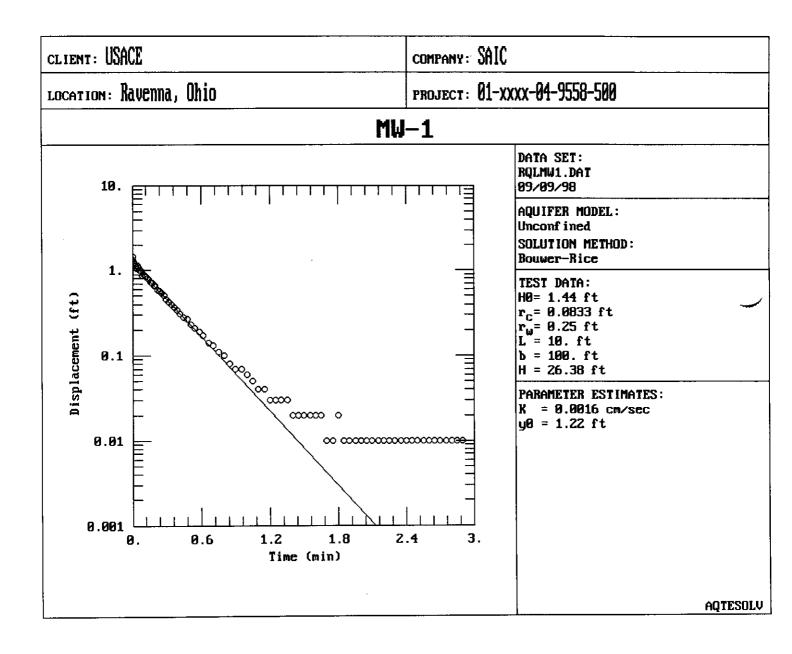
 $\mathcal{C}$ 

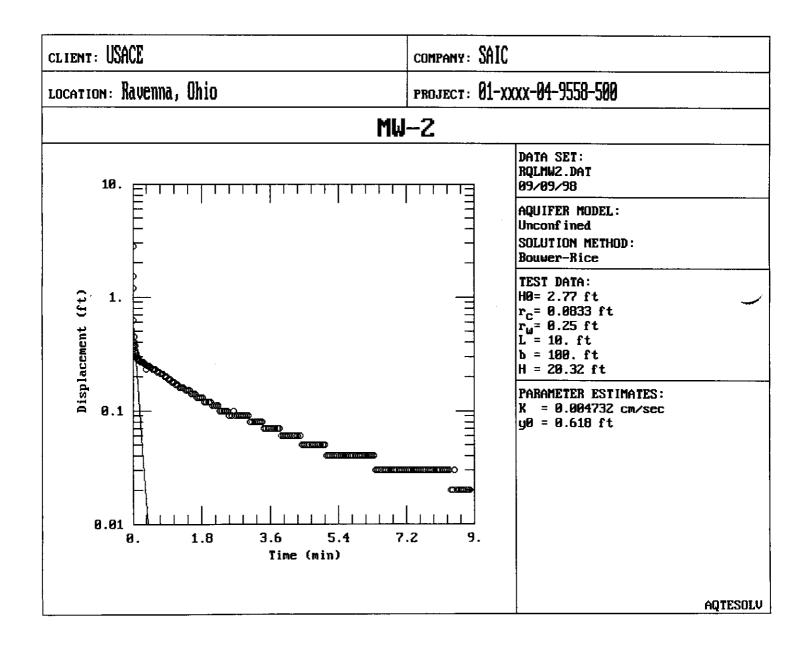
PROJECT NAME: Remadell Quarry Landfill GW Investigation

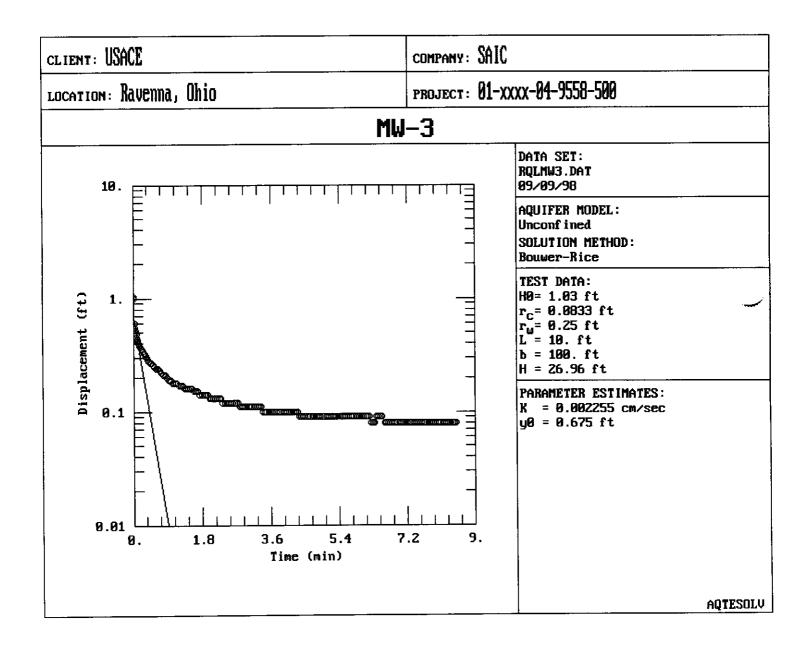
•.(

DELIVERY ORDER NO: 003 OF PAGE _

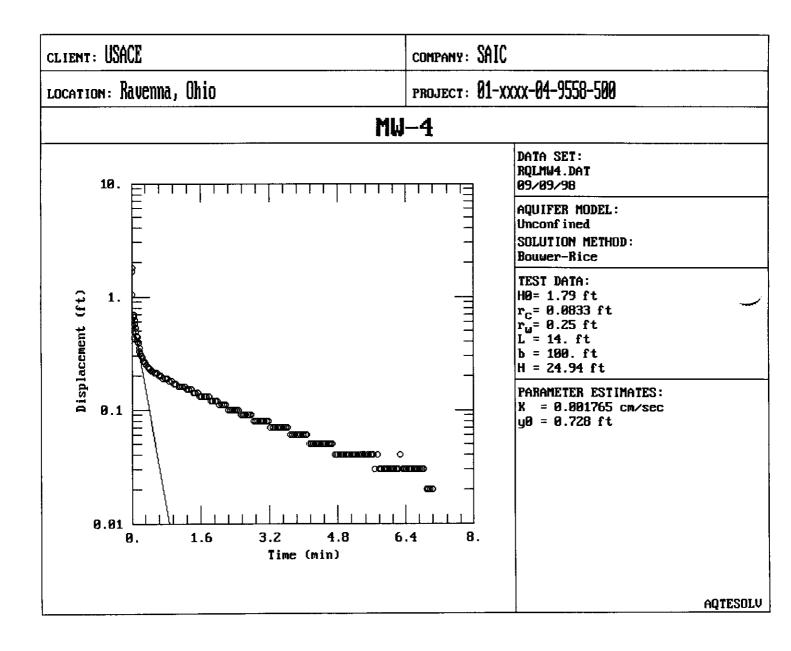
DATE	TIME	GALLONS REMOVED	TEMP(C)	SPECIFIC Conductivity ("Mhosicm)	pH (Standard Units)	TURBIDITY	TOTAL GALLONS REMOVED	WELL VOLUMES REMOVED	COMMENTS
\$7-14-98	693¢	-2	12.7	0.233	5.90	999	12	(21	initial reading
1	1305	~/3Ø 210 ⁸⁰	13.2	Ø. 70.684	6.50	m 10	-/30		
	1610	21080	16.1	0.681	6.49	671	Z10	٨.	
	161B	7	13.6	0.720	6.36	496	217		
	1624	7	13.8	0.692	6.47	174	ZZ4		
	1632	7	14.(	0.672	6.48	101	-231		
	1643	7	14.5	0.687	6.44	10	238		
	1648	?	ાલન	0.678	6.48	la	246		
	1455		14.3	6.698	6.47	10	252		
		′	Ĺ'		′		<u> </u> '		
				· · · · · · · · · · · · · · · · · · ·	<u> </u>		'		
		['	'						
	[!	['	· · · · · · · · · · · · · · · · · · ·		['				
					<u> </u>		!		<u></u>
					<u> </u> '	<u> </u>	!		
ECORDED BY:	THE	he :	7/14/9	26		QA CHECK B	JY:		


B-14

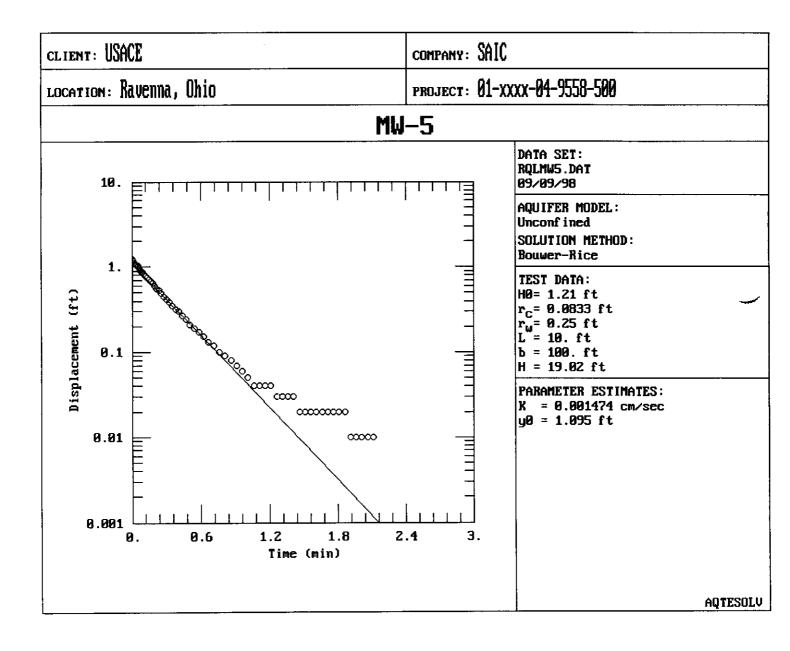

-

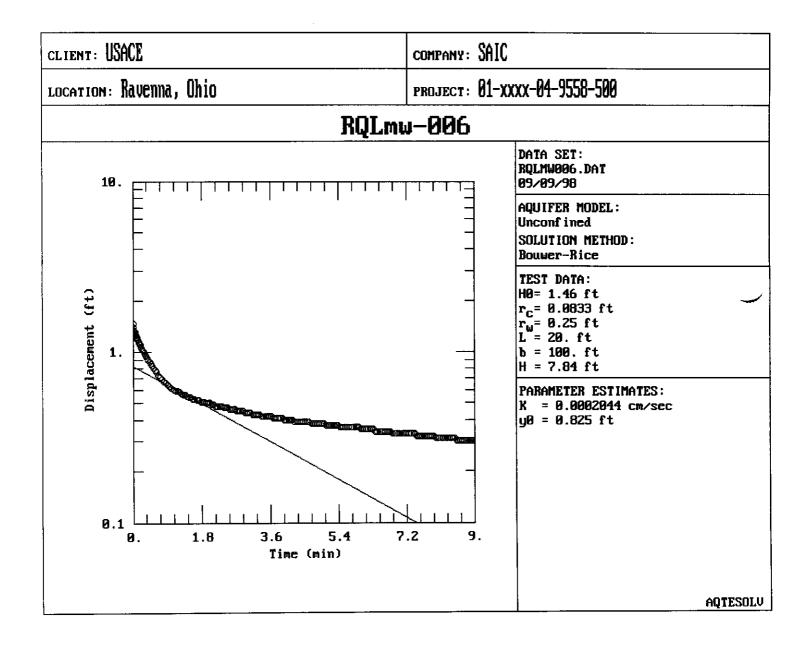

## **APPENDIX C**

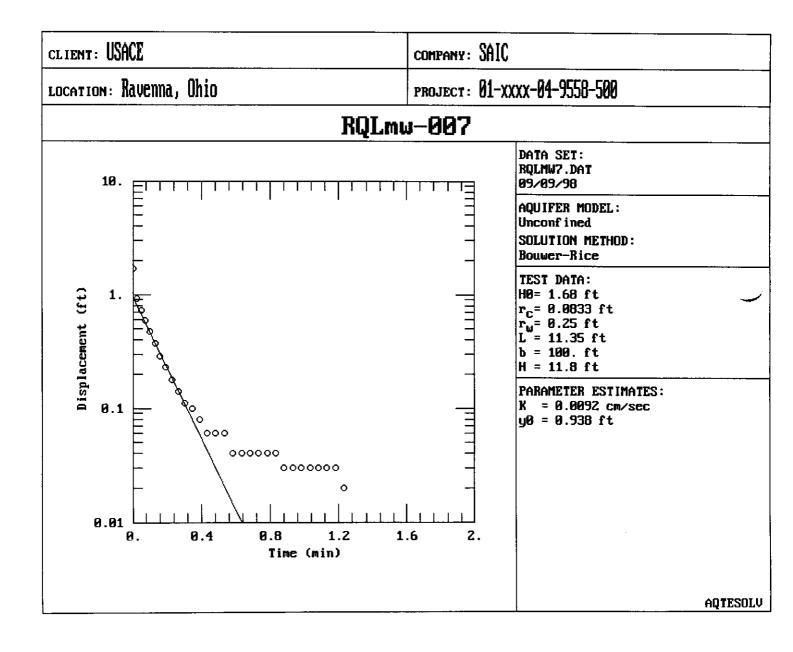
## SLUG TEST DATA

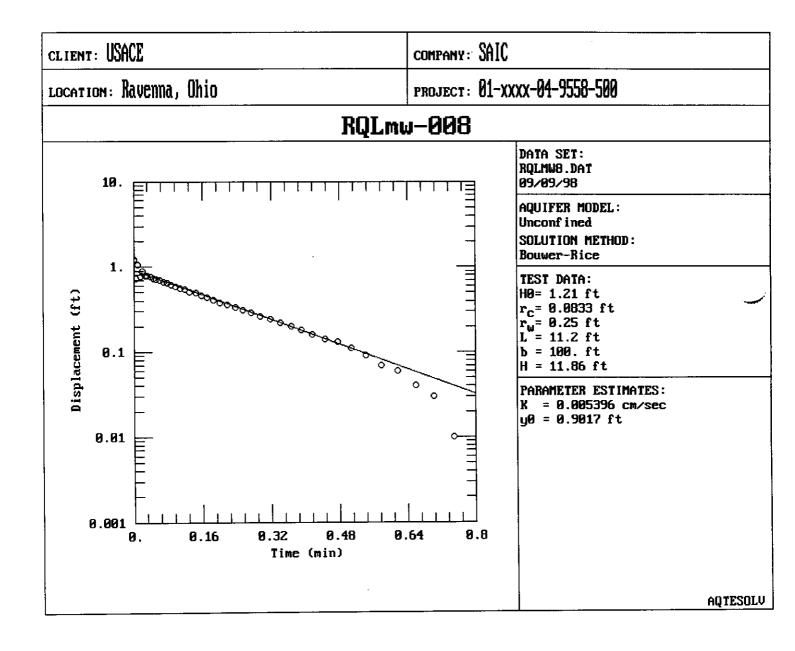

## INITIAL PHASE REPORT GROUNDWATER INVESTIGATION RAMSDELL QUARRY LANDFILL RAVENNA ARMY AMMUNITION PLANT

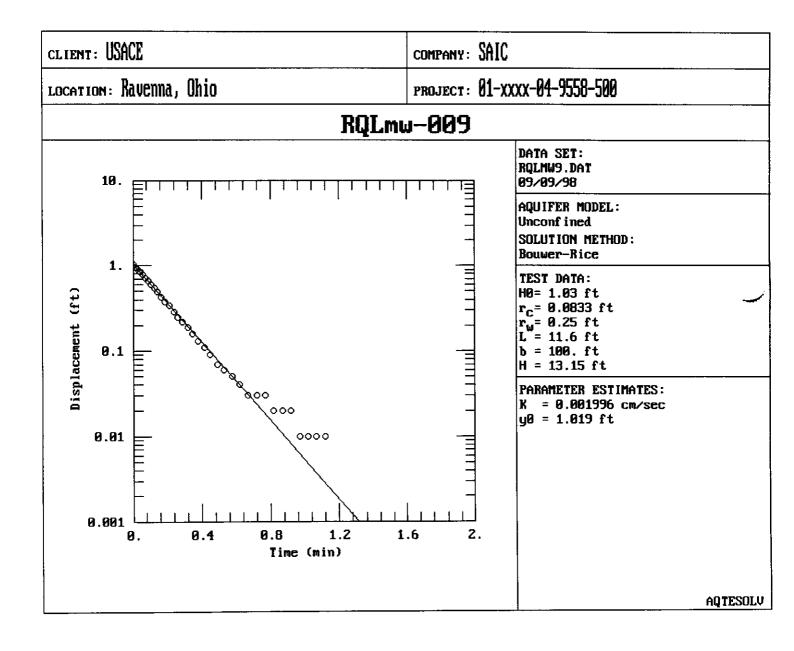


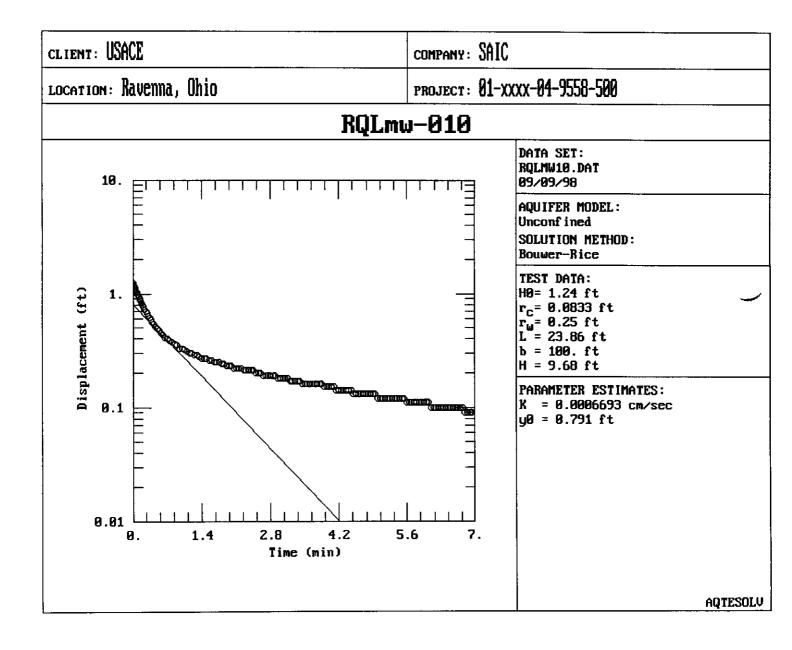


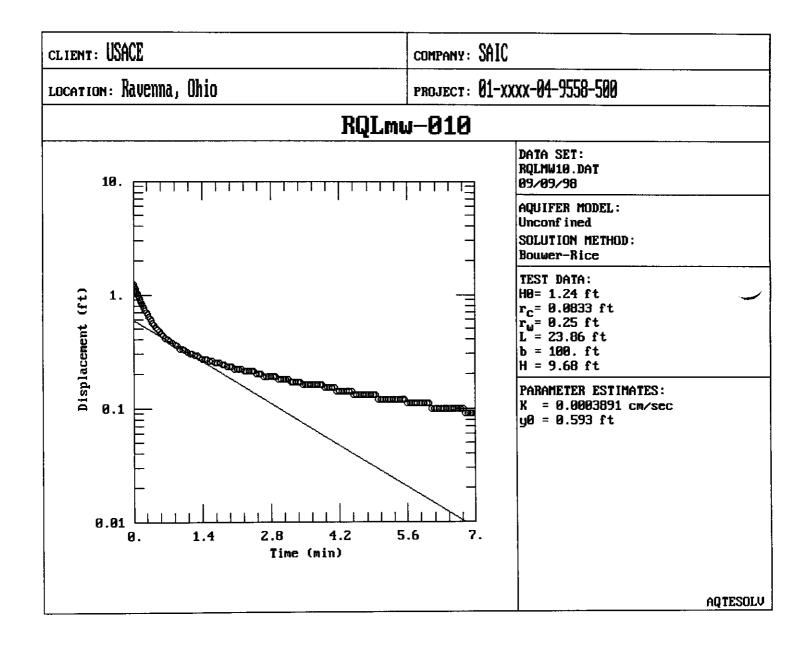



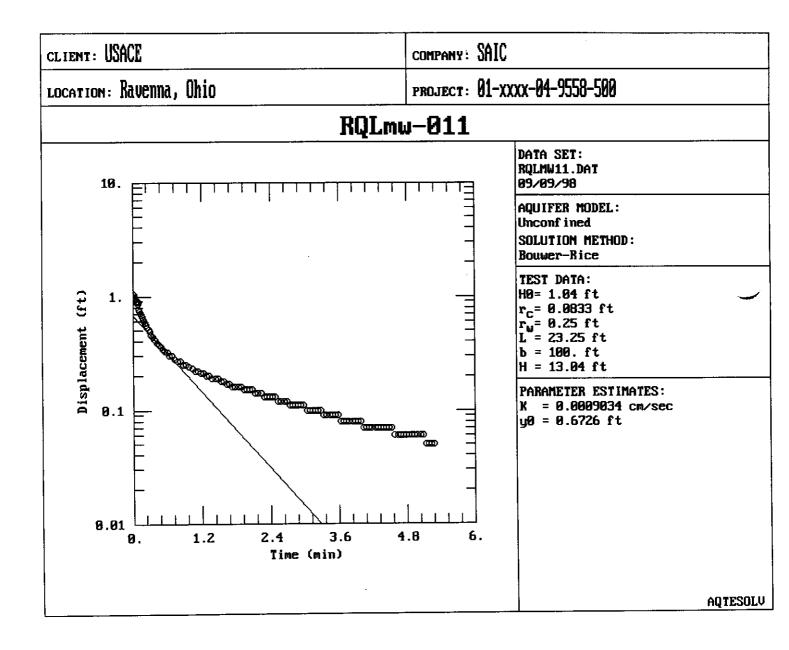


C-5





#### C-6














## **APPENDIX D**

## CHEMICAL ANALYTICAL DATA

## INITIAL PHASE REPORT GROUNDWATER INVESTIGATION RAMSDELL QUARRY LANDFILL RAVENNA ARMY AMMUNITION PLANT

## DATA VALIDATION REASON CODES

## Organic, Inorganic, and Radiological Analytical Data

#### Holding Times

- A01 Extraction holding times were exceeded.
- A02 Extraction holding times were grossly exceeded.
- A03 Analysis holding times were exceeded.
- A04 Analysis holding times were grossly exceeded.
- A05 Samples were not preserved properly.
- A06 Professional judgement was used to qualify the data.

#### **GC/MS Tuning**

- B01 Mass calibration was in error, even after applying expanded criteria.
- B02 Mass calibration was not performed every 12 hours.
- B03 Mass calibration did not meet ion abundance criteria.
- B04 Professional judgement was used to qualify the data.

### Initial/Continuing Calibration - Organics

- C01 Initial calibration RRF was <0.05.
- C02 Initial calibration RSD was >30%.
- C03 Initial calibration sequence was not followed as required.
- C04 Continuing calibration RRF was <0.05.
- C05 Continuing calibration %D was >25%.
- C06 Continuing calibration was not performed at the required frequency.
- C07 Resolution criteria were not met.
- C08 RPD criteria were not met.
- C09 RSD criteria were not met.
- C10 Retention time of compounds was outside windows.
- C11 Compounds were not adequately resolved.
- C12 Breakdown of endrin or DDT was >20%.
- C13 Combined breakdown of endrin/DDT was > 30%.
- C14 Professional judgement was used to qualify the data.

## Initial/Continuing Calibration - Inorganics

- D01 ICV or CCV were not performed for every analyte.
- D02 ICV recovery was above the upper control limit.
- D03 ICV recovery was below the lower control limit.
- D04 CCV recovery was above the upper control limit.
- D05 CCV recovery was below the lower control limit.
- D06 Standard curve was not established with the minimum number of standards.
- D07 Instrument was not calibrated daily or each time the instrument was set up.
- D08 Correlation coefficient was <0.995.
- D09 Mid range cyanide standard was not distilled.
- D10 Professional judgement was used to qualify the data.

#### ICP and Furnace Requirements

- E01 Interference check sample recovery was outside the control limit.
- E02 Duplicate injections were outside the control limit.
- E03 Post digestion spike recovery was outside the control limit.
- E04 MSA was required but not performed.
- E05 MSA correlation coefficient was <0.995.
- E06 MSA spikes were not at the correct concentration.
- E07 Serial dilution criteria were not met.
- E08 Professional judgement was used to qualify the data.

#### <u>Blanks</u>

- F01 Sample data were qualified as a result of the method blank.
- F02 Sample data were qualified as a result of the field blank.
- F03 Sample data were qualified as a result of the equipment rinsate.
- F04 Sample data were qualified as a result of the trip blank.
- F05 Gross contamination exists.
- F06 Concentration of the contaminant was detected at a level below the CRQL.
- F07 Concentration of the contaminant was detected at a level less than the action limit, but greater than the CRQL.
- F08 Concentration of the contaminant was detected at a level that exceeds the action level.
- F09 No laboratory blanks were analyzed.
- F10 Blank had a negative value  $>2\times$ 's the IDL.
- F11 Blanks were not analyzed at required frequency.
- F12 Professional judgement was used to qualify the data.

#### Surrogate/Radiological Chemical Recovery

- Surrogate/radiological chemical recovery was above the upper control limit. G01
- G02 Surrogate/radiological chemical recovery was below the lower control limit.
- G03 Surrogate recovery was <10%.
- G04 Surrogate recovery was zero.
- G05 Surrogate/radiological chemical recovery data was not present.

3

- G06 Professional judgement was used to qualify the data.
- G07 Radiological chemical recovery was <20%.
- G08 Radiological chemical recovery was >150%.

#### Matrix Spike/Matrix Spike Duplicate (MS/MSD) 15

- **H01** MS/MSD recovery was above the upper control limit;
- H02 MS/MSD recovery was below the lower control limit.
- H03 MS/MSD recovery was <10%.
- H04 MS/MSD pairs exceed the RPD limit.
- H05 No action was taken on MS/MSD results.
- H06 Professional judgement was used to qualify the data.
- H07 Radiological MS/MSD recovery was <20%.
- H08 Radiological MS/MSD recovery was >160%.
- H09 Radiological MS/MSD samples were not analyzed at the required frequency.

. .:

i. 1

#### Matrix Spike

- **I01** MS recovery was above the upper control limit.
- **IO2** MS recovery was below the lower control limit.
- I03 MS recovery was <30%.
- **I04** No action was taken on MS data.
- 105 Professional judgement was used to qualify the data.

#### Laboratory Duplicate

- J01 Duplicate RPD/radiological duplicate error ratio (DER) was outside the control limit.
- J02 Duplicate sample results were  $>5\times$  the CRDL.
- J03 Duplicate sample results were  $<5 \times$  the CRDL.
- J04 Professional judgement was used to qualify the data.
- J05 Duplicate was not analyzed at the required frequency.

#### Internal Area Summary

- K01 Area counts were outside the control limits.
- K02 Extremely low area counts or performance was exhibited by a major drop off.
- K03 IS retention time varied by more than 30 seconds.
- K04 Professional judgement was used to qualify the data.

### Pesticide Cleanup Checks

- L01 10% recovery was obtained during either check.
- L02 Recoveries during either check were > 120%.
- L03 GPC Cleanup recoveries were outside the control limits.
- L04 Florisil cartridge cleanup recoveries were outside the control limits.
- L05 Professional judgement was used to qualify the data.

### **Target Compound Identification**

- M01 Incorrect identifications were made.
- M02 Qualitative criteria were not met.
- M03 Cross contamination occurred.
- M04 Confirmatory analysis was not performed.
- M05 No results were provided.
- M06 Analysis occurred outside 12 hr GC/MS window.
- M07 Professional judgement was used to qualify the data.
- M08 The %D between the two pesticide/PCB column checks was >25%.

## Compound Quantitation and Reported CROLs

- N01 Quantitation limits were affected by large off-scale peaks.
- N02 MDLs reported by the laboratory exceeded corresponding CRQLs.
- N03 Professional judgement used to qualify the data.

#### Tentatively Identified Compounds (TICs)

- 001 Compound was suspected laboratory contaminant and was not detected in the blank.
- O02 TIC result was not above  $10 \times$  the level found in the blank.
- O03 Professional judgement was used to qualify analytical data.

## Laboratory Control Samples (LCSs)

- LCS recovery was above upper control limit. P01
- P02 LCS recovery was below lower control limit.
- P03 LCS recovery was < 50%.
- P04 No action was taken on the LCS data.
- LCS was not analyzed at required frequency. P05 **P06**
- Radiological LCS recovery was <50% for aqueous samples; <40% for solid samples. P07
- Radiological LCS recovery was > 150% for aqueous samples; > 160% for solid samples.
- P08 Professional judgement was used to qualify the data.

### Field Duplicate

- Field duplicate RPDs were >30% for waters and/or >50% for soils. Q01
- Radiological field duplicate error ratio (DER) was outside the control limit. Q02
- Duplicate sample results were  $>5\times$  the CRDL. Q03
- Duplicate sample results were  $<5\times$  the CRDL. **O**04

### **Radiological Calibration**

- Efficiency calibration criteria were not met. **R01**
- Energy calibration criteria were not met. R02
- Resolution calibration criteria were not met. **R03**
- Background determination criteria were not met. **R04**
- Quench curve criteria were not met. R05
- **R06** Absorption curve criteria were not met.
- Plateau curve criteria were not met. **R07**
- Professional judgement was used to qualify the data. **R08**

## **Radiological Calibration Verification**

- Efficiency verification criteria were not met. S01
- Energy verification criteria were not met. S02
- Resolution verification criteria were not met. S03
- Background verification criteria were not met. S04
- Cross-talk verification criteria were not met. S05
- Professional judgement was used to qualify the data. **S06**

#### Radionuclide Quantitation

- T01 Detection limits were not met.
- T02 Analytical uncertainties were not met and/or not reported.
- T03 Inappropriate aliquot sizes were used.
- T04 Professional judgement was used to qualify the data.

### System Performance

V01 High background levels or a shift in the energy calibration were observed.

.

- V02 Extraneous peaks were observed.
- V03 Loss of resolution was observed.
- V04 Peak-tailing or peak splitting that may result in inaccurate quantitation were observed.

 $\phi_{i}=\frac{1}{2}(1-1)$ 

V05 Professional judgement was used to qualify the data.

#### Laboratory Oualifiers

- U Indicates that the compound was analyzed for but not detected. The sample quantitation limit (SQL) must be corrected for dilution. For a soil/sediment sample, the value must also be corrected for percent moisture.
- J --- Indicates an estimated value. This qualifier is used either when estimating a concentration for tentatively identified compounds (TICs) where a 1:1 response is assumed, or when the mass spectral data indicates the presence of a compound that meets the identification criteria but the result is less than the SQL but greater than zero.
- N Indicates presumptive evidence of a compound. This qualifier is used only for TICs, where the identification is based on a mass spectral library search.
- P Used for pesticide/PCB target analytes when there is greater than 25% difference for detected concentrations between the two GC columns.
- C -- Applies to pesticide results where the identification has been confirmed by gas chromatography/mass spectrometry (GC/MS). If GC/MS confirmation was attempted but was unsuccessful, this qualifier is not applied; instead a laboratory-defined qualifier is used.
- B -- Used when the compound is found in the associated blank as well as in the sample. It indicates possible/probable blank contamination and alerts the data user to take appropriate action. This qualifier is used for TICs as well as for positively identified target compounds.
- E Identifies compounds whose concentrations exceed the calibration range of the GC/MS instrument for that specific analysis.
- D Identifies all compounds identified in an analysis at a secondary dilution factor. This qualifier alerts data users that any discrepancies between the concentrations reported may be due to dilution of the sample or extract.
- A Indicates that a TIC was a suspected aldol-condensation product.
- X Indicates that other specific qualifiers were required to properly define the results. If used, the qualifier must be fully described and such description must be included in the Sample Data Summary Package and SDG narrative.

#### Validation Oualifiers

- U Indicates that the compound was analyzed for but was not detected above the reported SQL.
- UJ Indicates that the compound was not detected above the reported SQL. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the compound in the sample.
- J Indicates that the compound was positively identified. The associated numerical value is the approximate concentration of the compound in the sample.
- N The analysis indicates the presence of a compound for which there is presumptive evidence to make a "tentative identification."
- NJ Indicates that the analysis indicates the presence of a compound that has been "tentatively identified" and the associated numerical value represents its approximate concentration.
- R Indicates that the sample results for the compound are unusable due to serious deficiencies in the ability to analyze the sample and meet quality control criteria. The presence or absence of the compound cannot be verified.
- = Indicates that the value has been validated and that the compound has been positively identified and the associated concentration value is accurate.

#### Laboratory Oualifiers

- B Indicates that the reported value was obtained from a reading that was less than the Contract Required Detection Limit (CRDL), but greater than or equal to the Instrument Detection Limit (IDL).
- U Indicates that the analyte was analyzed for but not detected.
- E Used when the reported value was estimated because of the presence of interference.
- M Indicates that the duplicate injection precision was not met.
- N Indicates that the spiked sample recovery was not within control limits.
- S Indicates that the reported value was determined by the method of standard additions (MSA).
- W Used when the post-digestion spike for furnace atomic absorption analysis was not within control limits (85 - 115%), while sample absorbance was less than 50% of spike absorbance.
- * Indicates that the duplicate analysis was not within control limits.
- + Indicates that the correlation coefficient for the MSA was less than 0.995.

#### Validation Oualifiers

- U Indicates that the analyte was analyzed for but was not detected above the reported sample quantitation limit.
- UJ Indicates that the analyte was not detected above the reported SQL. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.
- J Indicates that the analyte was positively identified. The associated numerical value is the approximate concentration of the analyte in the sample.
- R Indicates that the sample results for the analyte are unusable due to serious deficiencies in the ability to analyze the sample and meet quality control criteria. The presence or absence of the analyte cannot be verified.
- = Indicates that the value has been validated and that the analyte has been positively identified and the associated concentration value is accurate.

## Data Qualifiers for Radiochemical Analytical Data

#### Laboratory Qualifiers

- < The numerical value reported was less than the MDA.
- N The sample results were qualified to denote poor spike recovery.
- * The sample results were qualified to denote poor duplicate results.

#### Validation Ovalifiers

- U Indicates that the radionuclide was analyzed for but was not detected above the reported sample quantitation limit.
- J Indicates that the radionuclide was positively identified. The associated numerical value is the approximate concentration of the radionuclide in the sample.
- N The analysis indicates the presence of a radionuclide for which there was presumptive evidence to make a "tentative identification."
- DL The detection limit requirements were not met. The data quality objectives may not be met.
- UI Indicates that there was uncertain identification for gamma spectroscopy. The radionuclide peaks are detected but fail to meet the positive identification criteria.
- R Indicates that the sample results for the radionuclide are unusable due to serious deficiencies in the ability to analyze the sample and meet quality control criteria. The presence or absence of the radionuclide cannot be verified.
- = Indicates that the value has been validated and that the radionuclide has been positively identified and the associated concentration value is accurate.

#### Laboratory Qualifiers

- U Indicates that the analyte was analyzed for but was not detected above the reported sample quantitation limit.
- J Indicates that the analyte was positively identified. The associated numerical value is the approximate concentration of the analyte in the sample.

#### Validation Qualifiers

- U Indicates that the analyte was analyzed for but was not detected above the reported sample quantitation limit.
- UJ Indicates that the analyte was not detected above the reported SQL. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.
- J Indicates that the analyte was positively identified. The associated numerical value is the approximate concentration of the analyte in the sample.
- R Indicates that the sample results for the analyte are unusable due to serious deficiencies in the ability to analyze the sample and meet quality control criteria. The presence or absence of the analyte cannot be verified.
- = Indicates that the value has been validated and that the analyte has been positively identified and the associated concentration value is accurate.

# D1. BY ANALYTE – GROUNDWATER, SEDIMENT, AND SURFACE WATER

Station Sample Id Date Filtered Sample Type		MW-1 RQ0001 07/14/98 Total Grab	MW-1 RQ0001 07/14/98 Dissolved Grab	MW-2 RQ0002 07/13/98 Total Grab	MW-2 RQ0002 07/13/98 Dissolved Grab	MW-3 RQ0003 07/13/98 Total Grab	MW-3 RQ0003 07/13/98 Dissolved Grab	MW-4 RQ0004 07/13/98 Total Grab
Cyanide	MG/L	0.01 U		0.01 U		0.01 U		0.01 U
1,3,5-Trinitrobenzene	UG/L	0.2 U		0.2 U		0.2 U		0.27 U
1,3-Dinitrobenzene	UG/L	0.2 U		0.2 U		0.2 U		0.27 U
2,4,6-Trinitrotoluene	UG/L	0.2 U		0.2 U		0.2 U		0.27 U
2,4-Dinitrotoluene	UG/L	0.13 U		0.13 U		0.13 U		0.18 U
2,6-Dinitrotoluene	UG/L	0.13 U		0.13 U		0.13 U		0.085 J
2-Nitrotoluene	UG/L	0.2 U		0.2 U		0.2 U		0.27 U
3-Nitrotoluene	UG/L	0.2 U		0.2 U		0.2 U		0.27 U
4-Nitrotoluene	UG/L	0.2 U		0.2 U		0.2 U		0.27 U
HMX	UG/L	0.5 U		0.5 U		0.5 U		0.68 U
Nitrobenzene	UG/L	0.2 U		0.2 U		0.2 U		0.27 U
Nitrocellulose as N	MG/L	0.02 U		0.02 U		0.02 U		0.02 U
Nitroglycerin	UG/L	<b>2.5</b> U		2.5 U		2.5 U		2.5 U
Nitroguanidine	UG/L	<b>20</b> U		<b>20</b> U		20 U		<b>20</b> U
RDX	UG/L	0.5 U		0.14 J		0.28 J		0.68 U
Tetryl	UG/L	0.068 J		0.2 U		0.2 U		0.12 J
Aluminum	UG/L	751 J	200 U	87700 J	200 U	93.9 J	200 U	2960 J
Antimony	UG/L	5 U	5 U	5 U	5 U	5 U	5 U	5 U
Arsenic	UG/L	15.8 =	10 U	108 =	3.2 J	5 U	10 U	9.1 =
Barium	UG/L	27.5 J	17.9 U	181 J	42.7 J	48.1 J	45.5 J	64.5 J
Beryllium	UG/L	4 U	5 U	3.6 J	5 U	4 U	5 U	4 U
Cadmium	UG/L	5 U	5 U	19 =	2.4 J	5 U	5 U	5 U
Calcium	UG/L	56100 =	58200 =	91300 =	85800 =	156000 =	152000 =	118000 =
Chromium	UG/L	10 U	10 U	23.3 =	10 U	10 U	10 U	3.8 J
Cobalt	UG/L	47.2 J	38.8 J	90.6 =	50 U	50 U	50 U	29.7 J
Copper	UG/L	12.9 J	25 U	72.8 =	25 U	3.7 J	3.8 J	14 J
Iron	UG/L	19700 =	3270 =	55600 =	100 U	221 =	100 U	<b>988</b> 0 =
Lead	UG/L	4.2 =	3 U	74.8 =	<b>3</b> U	3 U	3 U	2.4 J
Magnesium	UG/L	22500 =	23400 =	29700 =	18500 =	37900 =	36700 =	22100 =
Manganese	UG/L	2320 =	2410 =	<b>449</b> 0 =	614 =	28.1 =	12.6 J	5770 =
Mercury	UG/L	0.16 J	0.081 J	0.29 =	0.087 J	0.14 J	0.094 J	0.16 J
Nickel	UG/L	117 =	109 =	169 =	18.8 J	<b>40</b> U	40 U	76.8 =

Station Sample Id Date Filtered Sample Type		MW-1 RQ0001 07/14/98 Total Grab	MW-1 RQ0001 07/14/98 Dissolved Grab	MW-2 RQ0002 07/13/98 Total Grab	MW-2 RQ0002 07/13/98 Dissolved Grab	MW-3 RQ0003 07/13/98 Total Grab	MW-3 RQ0003 07/13/98 Dissolved Grab	MW-4 RQ0004 07/13/98 Total Grab
Potassium	UG/L	5840 =	6260 =	5790 =	3340 J	15800 =	15500 =	2250 J
Selenium	UG/L	5 U	5 U	4.8 J	5 U	5 U	5 U	5 U
Silver	UG/L	10 U	10 U	10 U	10 U	10 U	10 U	10 U
Sodium	UG/L	4650 U	3910 U	<b>2920</b> U	2050 U	7660 =	7590 =	2070 U
Thallium	UG/L	<b>2</b> U	2 U	3.7 =	1.1 J	2 U	2 U	2 U
Vanadium	UG/L	50 U	50 U	22.4 J	50 U	50 U	50 U	50 U
Zinc	UG/L	596 =	374 =	1040 =	168 =	41.9 =	71.4 =	381 =
1,2,4-Trichlorobenzene	UG/L	10 UJ		10 UJ		10 UJ		10 UJ
1,2-Dichlorobenzene	UG/L	10 UJ		10 UJ		10 UJ		10 UJ
1,3-Dichlorobenzene	UG/L	10 UJ		10 UJ		10 UJ		10 UJ
1,4-Dichlorobenzene	UG/L	10 UJ		10 UJ		10 UJ		10 UJ
2,2'-oxybis (1-chloropropane)		10 UJ		10 UJ		10 UJ		10 UJ
2,4,5-Trichlorophenol	UG/L	25 UJ		25 UJ		25 UJ		25 UJ
2,4,6-Trichlorophenol	UG/L	10 UJ		10 UJ		10 UJ		10 UJ
2,4-Dichlorophenol	UG/L	10 UJ		10 UJ		10 UJ		10 UJ
2,4-Dimethylphenol	UG/L	10 UJ		10 UJ		10 UJ		10 UJ
2,4-Dinitrophenol	UG/L	25 UJ		25 UJ		25 UJ		25 UJ
2,4-Dinitrotoluene	UG/L	10 UJ		10 UJ		10 UJ		10 UJ
2,6-Dinitrotoluene	UG/L	10 UJ		10 UJ		10 UJ		10 UJ
2-Chloronaphthalene	UG/L	10 UJ		10 UJ		10 UJ		10 UJ
2-Chlorophenol	UG/L	10 UJ		10 UJ		10 UJ		10 UJ
2-Methylnaphthalene	UG/L	10 UJ		10 UJ		10 UJ		10 UJ
2-Methylphenol	UG/L	10 UJ		10 UJ		10 UJ		10 UJ
2-Nitroaniline	UG/L	25 UJ		25 UJ		25 UJ		25 UJ
2-Nitrophenol	UG/L	10 UJ		10 UJ		10 UJ		10 UJ
3,3'-Dichlorobenzidine	UG/L	10 UJ		10 UJ		10 UJ		10 UJ
3-Nitroaniline	UG/L	25 UJ		25 UJ		25 UJ		25 UJ
4,6-Dinitro-o-Cresol	UG/L	25 UJ		25 UJ		25 UJ		25 UJ
4-Bromophenyl-phenyl Ether	UG/L	10 UJ		10 UJ		10 UJ		10 UJ
4-Chloroaniline	UG/L	10 UJ		10 UJ		10 UJ		10 UJ
4-Chlorophenyl-phenylether	UG/L	10 UJ		10 UJ		10 UJ		10 UJ
4-Methylphenol	UG/L	10 UJ		10 UJ		10 UJ		10 UJ

Station Sample Id Date Filtered Sample Type		MW-1 RQ0001 07/14/98 Total Grab	MW-1 RQ0001 07/14/98 Dissolved Grab	MW-2 RQ0002 07/13/98 Total Grab	MW-2 RQ0002 07/13/98 Dissolved Grab	MW-3 RQ0003 07/13/98 Total Grab	MW-3 RQ0003 07/13/98 Dissolved Grab	MW-4 RQ0004 07/13/98 Total Grab
4-Nitroaniline	UG/L	<b>25</b> UJ		25 UJ		25 UJ		25 UJ
4-Nitrophenol	UG/L	<b>25</b> UJ		25 UJ		25 UJ		25 UJ
4-chloro-3-methylphenol	UG/L	10 UJ		10 UJ		10 UJ		10 UJ
Acenaphthene	UG/L	10 UJ		10 UJ		10 UJ		10 UJ
Acenaphthylene	UG/L	10 UJ		10 UJ		10 UJ		10 UJ
Anthracene	UG/L	10 UJ		10 UJ		10 UJ		10 UJ
Benzo(a)anthracene	UG/L	10 UJ		10 UJ		10 UJ		10 UJ
Benzo(a)pyrene	UG/L	10 UJ		10 UJ		10 UJ		10 UJ
Benzo(b)fluoranthene	UG/L	10 UJ		10 UJ		10 UJ		10 UJ
Benzo(g,h,i)perylene	UG/L	10 UJ		10 UJ		10 UJ		10 UJ
Benzo(k)fluoranthene	UG/L	10 UJ		10 UJ		10 UJ		10 UJ
Bis(2-chloroethoxy)methane	UG/L	10 UJ		10 UJ		10 UJ		10 UJ
Bis(2-chloroethyl)ether	UG/L	10 UJ		10 UJ		10 UJ		10 UJ
Bis(2-ethylhexyl)phthalate	UG/L	10 UJ		10 UJ		10 UJ		10 UJ
Butyl Benzyl Phthalate	UG/L	10 UJ		10 UJ		10 UJ		10 UJ
Carbazole	UG/L	10 UJ		10 UJ		10 UJ		10 UJ
Chrysene	UG/L	10 UJ		10 UJ		10 UJ		10 UJ
Di-n-butyl Phthalate	UG/L	10 UJ		10 UJ		10 UJ		10 UJ
Di-n-octyl Phthalate	UG/L	10 UJ		10 UJ		10 UJ		10 UJ
Dibenzo(a,h)anthracene	UG/L	10 UJ		10 UJ		10 UJ		10 UJ
Dibenzofuran	UG/L	10 UJ		10 UJ		10 UJ		10 UJ
Diethyl Phthalate	UG/L	10 UJ		10 UJ		10 UJ		10 UJ
Dimethyl Phthalate	UG/L	10 UJ		10 UJ		10 UJ		10 UJ
Fluoranthene	UG/L	10 UJ		10 UJ		10 UJ		10 UJ
Fluorene	UG/L	10 UJ		10 UJ		10 UJ		10 UJ
Hexachlorobenzene	UG/L	10 UJ		10 UJ		10 UJ		10 UJ
Hexachlorobutadiene	UG/L	10 UJ		10 UJ		10 UJ		10 UJ
Hexachlorocyclopentadiene	UG/L	10 UJ		10 UJ		10 UJ		10 UJ
Hexachloroethane	UG/L	10 UJ		10 UJ		10 UJ		10 UJ
Indeno(1,2,3-cd)pyrene	UG/L	10 UJ		10 UJ		10 UJ		10 UJ
Isophorone	UG/L	10 UJ		10 UJ		10 UJ		10 UJ
N-Nitroso-di-n-propylamine	UG/L	10 UJ		10 UJ		10 UJ		10 UJ

Station Sample Id Date Filtered Sample Type		MW-1 RQ0001 07/14/98 Total Grab	MW-1 RQ0001 07/14/98 Dissolved Grab	MW-2 RQ0002 07/13/98 Total Grab	MW-2 RQ0002 07/13/98 Dissolved Grab	MW-3 RQ0003 07/13/98 Total Grab	MW-3 RQ0003 07/13/98 Dissolved Grab	MW-4 RQ0004 07/13/98 Total Grab
N-Nitrosodiphenylamine	UG/L	10 UJ		10 UJ		10 UJ		10 UJ
Naphthalene	UG/L	10 UJ		10 UJ		10 UJ		10 UJ
Nitrobenzene	UG/L	10 UJ		10 UJ		10 UJ		10 UJ
Pentachlorophenol	UG/L	25 UJ		25 UJ		25 UJ		25 UJ
Phenanthrene	UG/L	10 UJ		10 UJ		10 UJ		10 UJ
Phenol	UG/L	10 UJ		10 UJ		10 UJ		10 UJ
Pyrene	UG/L	10 UJ		10 UJ		10 UJ		10 UJ
1,1,1-Trichloroethane	UG/L	5 U		5 U		5 U		5 U
1,1,2,2-Tetrachloroethane	UG/L	5 U		5 U		5 U		5 U
1,1,2-Trichloroethane	UG/L	5 U		5 U		5 U		5 U
1,1-Dichloroethane	UG/L	5 U		5 U		5 U		5 U
1,1-Dichloroethene	UG/L	5 U		5 U		5 U		5 U
1,2-Dichloroethane	UG/L	<b>5</b> U		5 U		5 U		5 U
1,2-Dichloroethene	UG/L	5 U		5 U		5 U		5 U
1,2-Dichloropropane	UG/L	5 U		5 U		5 U		5 U
1,3-cis-Dichloropropene	UG/L	5 U		5 U		5 U		5 U
1,3-trans-Dichloropropene	UG/L	5 U		5 U		5 U		5 U
2-Butanone	UG/L	10 U		10 U		10 U		10 U
2-Hexanone	UG/L	10 U		10 U		10 U		10 U
4-Methyl-2-pentanone	UG/L	10 U		10 U		10 U		10 U
Acetone	UG/L	10 U		10 U		10 U		10 U
Benzene	UG/L	5 U		5 U		5 U		5 U
Bromodichloromethane	UG/L	5 U		5 U		5 U		5 U
Bromoform	UG/L	5 U		5 U		5 U		5 U
Bromomethane	UG/L	10 U		10 U		10 U		10 U
Carbon Disulfide	UG/L	5 U		5 U		5 U		5 U
Carbon Tetrachloride	UG/L	5 U		5 U		5 U		5 U
Chlorobenzene	UG/L	5 U		5 U		5 U		5 U
Chloroethane	UG/L	10 U		10 U		10 U		10 U
Chloroform	UG/L	5 U		5 U		5 U		5 U
Chloromethane	UG/L	10 U		10 U		10 U		10 U
Dibromochloromethane	UG/L	5 U		5 U		5 U		5 U

Station Sample Id Date Filtered Sample Type		MW-1 RQ0001 07/14/98 Total Grab	MW-1 RQ0001 07/14/98 Dissolved Grab	MW-2 RQ0002 07/13/98 Total Grab	MW-2 RQ0002 07/13/98 Dissolved Grab	MW-3 RQ0003 07/13/98 Total Grab	MW-3 RQ0003 07/13/98 Dissolved Grab	MW-4 RQ0004 07/13/98 Total Grab
Ethylbenzene	UG/L	5 U		5 U		<b>5</b> U		5 U
Methylene Chloride	UG/L	5 U		5 U		5 U		5 U
Styrene	UG/L	5 U		5 U		<b>5</b> U		5 U
Tetrachloroethene	UG/L	5 U		5 U		<b>5</b> U		5 U
Toluene	UG/L	5 U		5 U		5 U		5 U
Trichloroethene	UG/L	5 U		5 U		<b>5</b> U		5 U
Vinyl Chloride	UG/L	10 U		10 U		10 U		10 U
Xylenes, Total	UG/L	5 U		<b>5</b> U		5 U		5 U

Station Sample Id Date Filtered Sample Type		MW-4 RQ0004 07/13/98 Dissolved Grab	MW-5 RQ0047 07/13/98 Total Field Duplicate	MW-5 RQ0047 07/13/98 Dissolved Field Duplicate	MW-5 RQ0005 07/13/98 Total Grab	MW-5 RQ0005 07/13/98 Dissolved Grab	RQLmw-006 RQ0007 07/25/98 Total Grab	RQLmw-006 RQ0007 07/25/98 Dissolved Grab
Cyanide	MG/L		0.01 U		0.01 U		0.01 UJ	
1,3,5-Trinitrobenzene	UG/L		0.2 U		0.2 U		0.2 UJ	
1,3-Dinitrobenzene	UG/L		0.2 U		0.2 U		0.099 J	
2,4,6-Trinitrotoluene	UG/L		0.26 =		0.27 =		0.2 UJ	
2,4-Dinitrotoluene	UG/L		0.13 U		0.13 U		0.13 UJ	
2,6-Dinitrotoluene	UG/L		0.13 U		0.13 U		0.13 UJ	
2-Nitrotoluene	UG/L		0.2 U		0.2 U		0.2 UJ	
3-Nitrotoluene	UG/L		0.2 U		0.2 U		0.2 UJ	
4-Nitrotoluene	UG/L		0.082 J		0.2 U		0.2 UJ	
HMX	UG/L		<b>0.5</b> U		0.5 U		0.5 UJ	
Nitrobenzene	UG/L		0.2 U		0.2 U		0.2 UJ	
Nitrocellulose as N	MG/L		0.02 U		<b>0.02</b> U		0.2 U	
Nitroglycerin	UG/L		2.5 U		<b>2.5</b> U		2.8 J	
Nitroguanidine	UG/L		<b>20</b> U		20 U		20 U	
RDX	UG/L		0.5 U		0.5 U		0.12 J	
Tetryl	UG/L		0.2 U		0.2 U		0.2 UJ	
Aluminum	UG/L	<b>200</b> U	59.4 J	54.4 J	<b>200</b> U	200 U	200 U	<b>200</b> U
Antimony	UG/L	5 U	5 U	5 U	5 U	5 U	5 U	5 U
Arsenic	UG/L	10 U	5.4 =	4 J	3.3 J	3.1 J	15 =	9.9 J
Barium	UG/L	42.7 J	17.4 U	17.7 U	16.7 U	16.6 U	30.2 J	29.7 J
Beryllium	UG/L	5 U	4 U	5 U	4 U	5 U	4 U	5 U
Cadmium	UG/L	5 U	5 U	5 U	5 U	5 U	5 U	5 U
Calcium	UG/L	109000 =	47600 =	52900 =	51100 =	53300 ==	98800 =	94000 =
Chromium	UG/L	10 U	10 U	10 U	10 U	10 U	10 U	10 U
Cobalt	UG/L	22.7 J	50 U	50 U	50 U	50 U	196 =	206 =
Copper	UG/L	3.4 J	4.3 J	25 U	<b>25</b> U	<b>25</b> U	<b>25</b> U	<b>25</b> U
Iron	UG/L	4650 =	7990 =	6090 =	8260 =	6690 =	1780 =	1240 =
Lead	UG/L	3 U	3 U	3 U	3 U	3 U	3 U	3 U
Magnesium	UG/L	21100 =	30000 =	32300 =	32900 =	34100 =	38500 =	37200 =
Manganese	UG/L	5220 =	6270 =	6830 =	6650 =	6960 =	5550 J	5460 J
Mercury	UG/L	0.081 J	0.085 J	0.092 J	0.098 J	0.087 J	0. <b>2</b> U	0.2 U
Nickel	UG/L	51.4 =	40 U	17.6 J	15.1 J	15 J	<b>937</b> =	945 =

**†**1

Station Sample Id Date Filtered Sample Type		MW-4 RQ0004 07/13/98 Dissolved Grab	MW-5 RQ0047 07/13/98 Total Field Duplicate	MW-5 RQ0047 07/13/98 Dissolved Field Duplicate	MW-5 RQ0005 07/13/98 Total Grab	MW-5 RQ0005 07/13/98 Dissolved Grab	RQLmw-006 RQ0007 07/25/98 Total Grab	RQLmw-006 RQ0007 07/25/98 Dissolved Grab
Potassium	UG/L	1620 J	4010 J	4350 J	4440 J	4540 J	2910 J	2910 J
Selenium	UG/L	5 U	5 U	5 U	5 U	5 U	5 U	5 U
Silver	UG/L	10 U	10 U	10 U	10 U	10 U	10 U	10 U
Sodium	UG/L	<b>2050</b> U	4130 U	<b>3950</b> U	<b>3990 U</b>	4150 U	1760 J	1900 J
Thallium	UG/L	2 U	1.3 J	<b>2</b> U	2 U	<b>2</b> U	2 U	2 U
Vanadium	UG/L	50 U	50 U	50 U	50 U	50 U	50 U	50 U
Zinc	UG/L	155 =	<b>20</b> U	20 U	<b>20</b> U	20 U	47.8 =	41.7 =
1,2,4-Trichlorobenzene	UG/L		10 UJ		10 UJ		10 UJ	
1,2-Dichlorobenzene	UG/L		10 UJ		10 UJ		10 UJ	
1,3-Dichlorobenzene	UG/L		10 UJ		10 UJ		10 UJ	
1,4-Dichlorobenzene	UG/L		10 UJ		10 UJ		10 UJ	
2,2'-oxybis (1-chloropropane)	UG/L		10 UJ		10 UJ		10 UJ	
2,4,5-Trichlorophenol	UG/L		25 UJ		25 UJ		25 UJ	
2,4,6-Trichlorophenol	UG/L		10 UJ		10 UJ		10 UJ	
2,4-Dichlorophenol	UG/L		10 UJ		10 UJ		10 UJ	
2,4-Dimethylphenol	UG/L		10 UJ		10 UJ		10 UJ	
2,4-Dinitrophenol	UG/L		25 UJ		25 UJ		25 UJ	
2,4-Dinitrotoluene	UG/L		10 UJ		10 UJ		10 UJ	
2,6-Dinitrotoluene	UG/L		10 UJ		10 UJ		10 UJ	
2-Chloronaphthalene	UG/L		10 UJ		10 UJ		10 UJ	
2-Chlorophenol	UG/L		10 UJ		10 UJ		10 UJ	
2-Methylnaphthalene	UG/L		10 U <b>J</b>		10 UJ		10 UJ	
2-Methylphenol	UG/L		10 UJ		10 UJ		10 UJ	
2-Nitroaniline	UG/L		25 UJ		25 UJ		25 UJ	
2-Nitrophenol	UG/L		10 UJ		10 UJ		10 UJ	
3,3'-Dichlorobenzidine	UG/L		10 UJ		10 UJ		10 UJ	
3-Nitroaniline	UG/L		25 UJ		25 UJ		25 UJ	
4,6-Dinitro-o-Cresol	UG/L		25 UJ		25 UJ		25 UJ	
4-Bromophenyl-phenyl Ether	UG/L		10 UJ		10 UJ		10 UJ	
4-Chloroaniline	UG/L		10 UJ		10 UJ		10 UJ	
4-Chlorophenyl-phenylether	UG/L		10 UJ		10 UJ		10 UJ	
4-Methylphenol	UG/L		10 UJ		10 UJ		10 UJ	

Station Sample Id Date Filtered Sample Type		MW-4 RQ0004 07/13/98 Dissolved Grab	MW-5 RQ0047 07/13/98 Total Field Duplicate	MW-5 RQ0047 07/13/98 Dissolved Field Duplicate	MW-5 RQ0005 07/13/98 Total Grab	MW-5 RQ0005 07/13/98 Dissolved Grab	RQLmw-006 RQ0007 07/25/98 Total Grab	RQLmw-006 RQ0007 07/25/98 Dissolved Grab
4-Nitroaniline	UG/L		25 UJ		<b>25</b> UJ		25 UJ	
4-Nitrophenol	UG/L		25 UJ		25 UJ		25 UJ	
4-chloro-3-methylphenol	UG/L		10 UJ		10 UJ		10 UJ	
Acenaphthene	UG/L		10 UJ		10 UJ		10 UJ	
Acenaphthylene	UG/L		10 UJ		10 UJ		10 UJ	
Anthracene	UG/L		10 UJ		10 UJ		10 UJ	
Benzo(a)anthracene	UG/L		10 UJ		10 UJ		10 UJ	
Benzo(a)pyrene	UG/L		10 UJ		10 UJ		10 UJ	
Benzo(b)fluoranthene	UG/L		10 UJ		10 UJ		10 UJ	
Benzo(g,h,i)perylene	UG/L		10 UJ		10 UJ		10 UJ	
Benzo(k)fluoranthene	UG/L		10 UJ		10 UJ		10 UJ	
Bis(2-chloroethoxy)methane	UG/L		10 UJ		10 UJ		10 UJ	
Bis(2-chloroethyl)ether	UG/L		10 UJ		10 UJ		10 UJ	
Bis(2-ethylhexyl)phthalate	UG/L		10 UJ		10 UJ		10 UJ	
Butyl Benzyl Phthalate	UG/L		10 UJ		10 UJ		10 UJ	
Carbazole	UG/L		10 UJ		10 UJ		10 UJ	
Chrysene	UG/L		10 UJ		10 UJ		10 UJ	
Di-n-butyl Phthalate	UG/L		10 UJ		10 UJ		10 UJ	
Di-n-octyl Phthalate	UG/L		10 UJ		10 UJ		10 UJ	
Dibenzo(a,h)anthracene	UG/L		10 UJ		10 UJ		10 UJ	
Dibenzofuran	UG/L		10 UJ		10 UJ		10 UJ	
Diethyl Phthalate	UG/L		10 UJ		10 UJ		10 UJ	
Dimethyl Phthalate	UG/L		10 UJ		10 UJ		10 UJ	
Fluoranthene	UG/L		10 UJ		10 UJ		10 UJ	
Fluorene	UG/L		10 UJ		10 UJ		10 UJ	
Hexachlorobenzene	UG/L		10 UJ		10 UJ		10 UJ	
Hexachlorobutadiene	UG/L		10 UJ		10 UJ		10 UJ	
Hexachlorocyclopentadiene	UG/L		10 UJ		10 UJ		10 UJ	
Hexachloroethane	UG/L		10 UJ		10 UJ		10 UJ	
Indeno(1,2,3-cd)pyrene	UG/L		10 UJ		10 UJ		10 UJ	
Isophorone	UG/L		10 UJ		10 UJ		10 UJ	
N-Nitroso-di-n-propylamine	UG/L		10 UJ		10 UJ		10 UJ	

+:

Station Sample Id Date Filtered Sample Type		MW-4 MW RQ0004 RQ00 07/13/98 07/13/ Dissolved Tot Grab Field Duplica	47 RQ0047 98 07/13/98 al Dissolved	MW-5 RQ0005 07/13/98 Total Grab	MW-5 RQ0005 07/13/98 Dissolved Grab	RQLmw-006 RQ0007 07/25/98 Total Grab	RQLmw-006 RQ0007 07/25/98 Dissolved Grab
N-Nitrosodiphenylamine	UG/L	10	11	10 UJ		10 UJ	
Naphthalene	UG/L	10	JJ	10 UJ		10 UJ	
Nitrobenzene	UG/L	10	JJ	10 UJ		10 UJ	
Pentachlorophenol	UG/L	25	JJ	25 UJ		25 UJ	
Phenanthrene	UG/L	101	JJ	10 UJ		10 UJ	
Phenol	UG/L	101	JI	10 UJ		10 UJ	
Pyrene	UG/L	10 1	11	10 UJ		10 UJ	
1,1,1-Trichloroethane	UG/L	5	U	5 U		5 UJ	
1,1,2,2-Tetrachloroethane	UG/L	5	U	5 U		5 UJ	
1,1,2-Trichloroethane	UG/L	5	U	5 U		5 UJ	
1,1-Dichloroethane	UG/L	5	U	5 U		5 UJ	
1,1-Dichloroethene	UG/L	5	U	5 U		5 UJ	
1,2-Dichloroethane	UG/L	5	U	5 U		5 UJ	
1,2-Dichloroethene	UG/L	5	U	5 U		5 UJ	
1,2-Dichloropropane	UG/L	5	U	5 U		5 UJ	
1,3-cis-Dichloropropene	UG/L	5	U	5 U		5 UJ	
1,3-trans-Dichloropropene	UG/L	5	U	5 U		5 UJ	
2-Butanone	UG/L	10	U	10 U		10 UJ	
2-Hexanone	UG/L	10	U	10 U		10 UJ	
4-Methyl-2-pentanone	UG/L	10	U	10 U		10 UJ	
Acetone	UG/L	10	U	10 U		8.1 J	
Benzene	UG/L	5	U	5 U		0.52 J	
Bromodichloromethane	UG/L	5	U	<b>5</b> U		5 UJ	
Bromoform	UG/L	5	U	5 U		5 UJ	
Bromomethane	UG/L	10	U	10 U		10 UJ	
Carbon Disulfide	UG/L	5	U	5 U		2.4 J	
Carbon Tetrachloride	UG/L	5	U	5 U		5 UJ	
Chlorobenzene	UG/L	5	U	5 U		5 UJ	
Chloroethane	UG/L	10	U	10 U		10 UJ	
Chloroform	UG/L	5	U	<b>5</b> U		5 UJ	
Chloromethane	UG/L	10	U	10 U		10 UJ	
Dibromochloromethane	UG/L	5	U	5 U		5 UJ	

••

Station Sample Id Date Filtered Sample Type		MW-4 RQ0004 07/13/98 Dissolved Grab	MW-5 RQ0047 07/13/98 Total Field Duplicate	MW-5 RQ0047 07/13/98 Dissolved Field Duplicate	MW-5 RQ0005 07/13/98 Total Grab	MW-5 RQ0005 07/13/98 Dissolved Grab	RQLmw-006 RQ0007 07/25/98 Total Grab	RQLmw-006 RQ0007 07/25/98 Dissolved Grab
Ethylbenzene	UG/L		5 U		5 U		5 UJ	
Methylene Chloride	UG/L		5 U		5 U		5 UJ	
Styrene	UG/L		5 U		5 U		5 UJ	
Tetrachloroethene	UG/L		5 U		5 U		5 UJ	
Toluene	UG/L		5 U		5 U		5 UJ	
Trichloroethene	UG/L		5 U		5 U		5 UJ	
Vinyl Chloride	UG/L		10 U		10 U		10 UJ	
Xylenes, Total	UG/L		<b>5</b> U		<b>5</b> U		5 UJ	

Station Sample Id Date Filtered Sample Type		RQLmw-007 RQ0009 07/22/98 Total Grab	RQLmw-007 RQ0009 07/22/98 Dissolved Grab	RQLmw-008 RQ0011 07/22/98 Total Grab	RQLmw-008 RQ0011 07/22/98 Dissolved Grab	RQLmw-009 RQ0013 07/17/98 Total Grab	RQLmw-009 RQ0013 07/17/98 Dissolved Grab	RQLmw-010 RQ0015 07/25/98 Total Grab
Cyanide	MG/L	0.01 U		0.01 U		0.01 U		0.01 U
1,3,5-Trinitrobenzene	UG/L	0.2 UJ		0.2 U		0.2 U		0.2 U
1,3-Dinitrobenzene	UG/L	0.2 UJ		0.2 U		0.2 U		0.2 U
2,4,6-Trinitrotoluene	UG/L	0.2 UJ		<b>0.2</b> U		0.2 U		0.2 U
2,4-Dinitrotoluene	UG/L	0.13 UJ		0.13 =		0.13 U		0.13 U
2,6-Dinitrotoluene	UG/L	0.13 UJ		0.13 U		0.13 U		0.13 U
2-Nitrotoluene	UG/L	0.2 UJ		0.2 U		0.2 U		0.2 U
3-Nitrotoluene	UG/L	0.2 UJ		0.2 U		0.2 U		0.2 U
4-Nitrotoluene	UG/L	0.2 UJ		0.2 U		0.2 U		<b>0.2</b> U
HMX	UG/L	0.5 UJ		0.06 J		0.5 U		0.5 U
Nitrobenzene	UG/L	0.2 UJ		0.2 U		0.2 U		0.2 U
Nitrocellulose as N	MG/L	0.2 U		0.2 U		<b>0.2</b> U		0.2 U
Nitroglycerin	UG/L	2.5 U		2 J		<b>2.5</b> U		<b>2.5</b> U
Nitroguanidine	UG/L	20 U		20 U		20 U		<b>20</b> U
RDX	UG/L	0.5 UJ		0.5 U		0.5 U		0.5 U
Tetryl	UG/L	0.2 UJ		0.2 U		0.2 U		0.2 U
Aluminum	UG/L	74.3 J	200 U	58.4 J	<b>2</b> 00 U	133 J	83 J	200 U
Antimony	UG/L	5 U	5 U	5 U	5 U	5 U	5 U	5 U
Arsenic	UG/L	<b>59.4</b> =	62.7 =	51.6 =	53.3 =	5 U	5 U	5 U
Barium	UG/L	58.3 J	62.6 J	41.9 J	42.3 J	32.3 J	31.7 J	11.4 J
Beryllium	UG/L	4 U	4 U	4 U	4 U	4 U	4 U	4 U
Cadmium	UG/L	5 U	5 U	5 U	5 U	5 U	5 U	5 U
Calcium	UG/L	147000 =	159000 =	119000 =	120000 =	25900 =	27800 =	57800 =
Chromium	UG/L	10 U	10 U	10 U	10 U	10 U	10 U	10 U
Cobalt	UG/L	50 U	18.7 J	73.8 =	74 =	<b>50</b> U	50 U	50 U
Copper	UG/L	25 U	<b>25</b> U	<b>25</b> U	<b>25</b> U	5.5 J	<b>25</b> U	25 U
Iron	UG/L	61000 =	65600 =	138000 =	140000 =	1600 =	1630 =	288 =
Lead	UG/L	3 U	3 U	3 U	3 U	3 U	<b>3</b> U	3 U
Magnesium	UG/L	61100 =	67700 =	55300 =	55500 =	23500 =	26500 =	27900 =
Manganese	UG/L	3800 =	4100 =	6190 =	6160 =	1010 =	1130 =	2590 J
Mercury	UG/L	0.09 J	0.082 J	0.1 J	0.092 J	0.089 J	0.088 J	0.2 U
Nickel	UG/L	36.5 J	39.4 J	230 =	225 =	40 U	40 U	24.4 J

•

Station Sample Id Date Filtered Sample Type		RQLmw-007 RQ0009 07/22/98 Total Grab	RQLmw-007 RQ0009 07/22/98 Dissolved Grab	RQLmw-008 RQ0011 07/22/98 Total Grab	RQLmw-008 RQ0011 07/22/98 Dissolved Grab	RQLmw-009 RQ0013 07/17/98 Total Grab	RQLmw-009 RQ0013 07/17/98 Dissolved Grab	RQLmw-010 RQ0015 07/25/98 Total Grab
Potassium	UG/L	10700 =	12000 =	9190 =	9420 =	2890 J	3110 J	3430 J
Selenium	UG/L	<b>4.8</b> J	5 U	5 U	5 U	5 U	5 U	5 U
Silver	UG/L	10 U	10 U	10 U	10 U	10 U	10 U	10 U
Sodium	UG/L	21500 =	24000 =	15300 =	15500 =	4190 U	4040 U	4060 J
Thallium	UG/L	1.5 J	1.8 J	2 =	1.9 J	1 J	2 U	<b>2</b> U
Vanadium	UG/L	50 U	50 U	50 U	50 U	50 U	50 U	50 U
Zinc	UG/L	81.7 =	84 =	821 =	772 =	47.2 =	29.6 =	32.3 =
1,2,4-Trichlorobenzene	UG/L	10 U		10 U		10 U		10 U
1,2-Dichlorobenzene	UG/L	10 U		10 U		10 U		10 U
1,3-Dichlorobenzene	UG/L	10 U		10 U		10 U		10 U
1,4-Dichlorobenzene	UG/L	10 U		10 U		10 U		10 U
2,2'-oxybis (1-chloropropane)	UG/L	10 U		10 U		10 U		10 U
2,4,5-Trichlorophenol	UG/L	<b>25</b> U		<b>25</b> U		<b>25</b> U		25 U
2,4,6-Trichlorophenol	UG/L	10 U		10 U		10 U		10 U
2,4-Dichlorophenol	UG/L	10 U		10 U		10 U		10 U
2,4-Dimethylphenol	UG/L	10 U		10 U		10 U		10 U
2,4-Dinitrophenol	UG/L	<b>25</b> U		<b>25</b> U		25 U		<b>25</b> U
2,4-Dinitrotoluene	UG/L	10 U		10 U		10 U		10 U
2,6-Dinitrotoluene	UG/L	10 U		10 U		10 U		10 U
2-Chloronaphthalene	UG/L	10 U		10 U		10 U		10 U
2-Chlorophenol	UG/L	10 U		10 U		10 U		10 U
2-Methylnaphthalene	UG/L	10 U		10 U		10 U		10 U
2-Methylphenol	UG/L	10 U		10 U		10 U		10 U
2-Nitroaniline	UG/L	25 U		<b>25</b> U		<b>25</b> U		25 U
2-Nitrophenol	UG/L	10 U		10 U		10 U		10 U
3,3'-Dichlorobenzidine	UG/L	10 U		10 U		10 U		10 U
3-Nitroaniline	UG/L	<b>25</b> U		<b>25</b> U		25 U		25 U
4,6-Dinitro-o-Cresol	UG/L	25 U		<b>25</b> U		25 U		25 U
4-Bromophenyl-phenyl Ether		10 U		10 U		10 U		10 U
4-Chloroaniline	UG/L	10 U		10 U		10 U		10 U
4-Chlorophenyl-phenylether	UG/L	10 U		10 U		10 U		10 U
4-Methylphenol	UG/L	10 U		10 U		10 U		10 U

Station Sample Id Date Filtered Sample Type		RQLmw-007 RQ0009 07/22/98 Total Grab	RQLmw-007 RQ0009 07/22/98 Dissolved Grab	RQLmw-008 RQ0011 07/22/98 Total Grab	RQLmw-008 RQ0011 07/22/98 Dissolved Grab	RQLmw-009 RQ0013 07/17/98 Total Grab	RQLmw-009 RQ0013 07/17/98 Dissolved Grab	RQLmw-010 RQ0015 07/25/98 Total Grab
4-Nitroaniline	UG/L	<b>25</b> U		<b>25</b> U		<b>25</b> U		25 U
4-Nitrophenol	UG/L	<b>25</b> U		<b>25</b> U		25 U		25 U
4-chloro-3-methylphenol	UG/L	10 U		10 U		10 U		10 U
Acenaphthene	UG/L	10 U		10 U		10 U		10 U
Acenaphthylene	UG/L	10 U		10 U		10 U		10 U
Anthracene	UG/L	10 U		10 U		10 U		10 U
Benzo(a)anthracene	UG/L	10 U		10 U		10 U		10 U
Benzo(a)pyrene	UG/L	10 U		10 U		10 U		10 U
Benzo(b)fluoranthene	UG/L	10 U		10 U		10 U		10 U
Benzo(g,h,i)perylene	UG/L	10 U		10 U		10 U		10 U
Benzo(k)fluoranthene	UG/L	10 U		10 U		10 U		10 U
Bis(2-chloroethoxy)methane	UG/L	10 U		10 U		10 U		10 U
Bis(2-chloroethyl)ether	UG/L	10 U		10 U		10 U		10 U
Bis(2-ethylhexyl)phthalate	UG/L	10 U		10 U		10 U		10 U
Butyl Benzyl Phthalate	UG/L	10 U		10 U		10 U		10 U
Carbazole	UG/L	10 U		10 U		10 U		10 U
Chrysene	UG/L	10 U		10 U		10 U		10 U
Di-n-butyl Phthalate	UG/L	10 U		10 U		10 U		10 U
Di-n-octyl Phthalate	UG/L	10 U		10 U		10 U		10 U
Dibenzo(a,h)anthracene	UG/L	10 U		10 U		10 U		10 U
Dibenzofuran	UG/L	10 U		10 U		10 U		10 U
Diethyl Phthalate	UG/L	10 U		10 U		10 U		10 U
Dimethyl Phthalate	UG/L	10 U		10 U		10 U		10 U
Fluoranthene	UG/L	10 U		10 U		10 U		10 U
Fluorene	UG/L	10 U		10 U		10 U		10 U
Hexachlorobenzene	UG/L	10 U		10 U		10 U		10 U
Hexachlorobutadiene	UG/L	10 U		10 U		10 U		10 U
Hexachlorocyclopentadiene	UG/L	10 UJ		10 UJ		10 U		10 UJ
Hexachloroethane	UG/L	10 U		10 U		10 U		10 U
Indeno(1,2,3-cd)pyrene	UG/L	10 U		10 U		10 U		10 U
Isophorone	UG/L	10 U		10 U		10 U		10 U
N-Nitroso-di-n-propylamine	UG/L	10 U		10 U		10 U		10 U

Station Sample Id Date Filtered Sample Type		RQLmw-007 RQ0009 07/22/98 Total Grab	RQLmw-007 RQ0009 07/22/98 Dissolved Grab	RQLmw-008 RQ0011 07/22/98 Total Grab	RQLmw-008 RQ0011 07/22/98 Dissolved Grab	RQLmw-009 RQ0013 07/17/98 Total Grab	RQLmw-009 RQ0013 07/17/98 Dissolved Grab	RQLmw-010 RQ0015 07/25/98 Total Grab
N-Nitrosodiphenylamine	UG/L	10 U		10 U		10 U		10 U
Naphthalene	UG/L	10 U		10 U		10 U		10 U
Nitrobenzene	UG/L	10 U		10 U		10 U		10 U
Pentachlorophenol	UG/L	25 U		<b>25</b> U		2 <b>5</b> U		25 U
Phenanthrene	UG/L	10 U		10 U		10 U		10 U
Phenol	UG/L	10 U		10 U		10 U		10 U
Pyrene	UG/L	10 U		10 U		10 U		10 U
1,1,1-Trichloroethane	UG/L	5 U		5 U		5 U		5 U
1,1,2,2-Tetrachloroethane	UG/L	5 U		5 U		5 U		5 U
1,1,2-Trichloroethane	UG/L	5 U		5 U		5 U		5 U
1,1-Dichloroethane	UG/L	5 U		5 U		5 U		5 U
1,1-Dichloroethene	UG/L	5 U		5 U		5 U		5 U
1,2-Dichloroethane	UG/L	5 U		5 U		5 U		5 U
1,2-Dichloroethene	UG/L	5 U		5 U		5 U		5 U
1,2-Dichloropropane	UG/L	5 U		5 U		5 U		5 U
1,3-cis-Dichloropropene	UG/L	5 U		5 U		5 U		5 U
1,3-trans-Dichloropropene	UG/L	5 U		5 U		5 U		5 U
2-Butanone	UG/L	10 U		10 U		10 U		10 U
2-Hexanone	UG/L	10 U		10 U		10 U		10 U
4-Methyl-2-pentanone	UG/L	10 U		10 U		10 U		10 U
Acetone	UG/L	10 U		9 J		10 U		10 U
Benzene	UG/L	5 U		5 U		5 U		5 U
Bromodichloromethane	UG/L	5 U		<b>5</b> U		5 U		5 U
Bromoform	UG/L	5 U		<b>5</b> U		5 U		5 U
Bromomethane	UG/L	10 U		10 U		10 U		10 U
Carbon Disulfide	UG/L	5 U		5 U		5 U		5 U
Carbon Tetrachloride	UG/L	5 U		5 U		5 U		5 U
Chlorobenzene	UG/L	5 U		5 U		5 U		5 U
Chloroethane	UG/L	10 U		10 U		10 U		10 U
Chloroform	UG/L	5 U		5 U		5 U		5 U
Chloromethane	UG/L	10 U		10 U		10 U		10 U
Dibromochloromethane	UG/L	5 U		5 U		5 U		5 U

.

-

Station Sample Id Date Filtered Sample Type		RQLmw-007 RQ0009 07/22/98 Total Grab	RQLmw-007 RQ0009 07/22/98 Dissolved Grab	RQLmw-008 RQ0011 07/22/98 Total Grab	RQLmw-008 RQ0011 07/22/98 Dissolved Grab	RQLmw-009 RQ0013 07/17/98 Total Grab	RQLmw-009 RQ0013 07/17/98 Dissolved Grab	RQLmw-010 RQ0015 07/25/98 Total Grab
Ethylbenzene	UG/L	5 U		5 U		5 U		5 U
Methylene Chloride	UG/L	5 U		5 U		5 U		5 U
Styrene	UG/L	5 U		5 U		5 U		5 U
Tetrachloroethene	UG/L	5 U		5 U		5 U		5 U
Toluene	UG/L	5 U		5 U		5 U		0.72 J
Trichloroethene	UG/L	5 U		5 U		5 U		5 U
Vinyl Chloride	UG/L	10 U		10 U		10 U		10 U
Xylenes, Total	UG/L	5 U		<b>5</b> U		5 U		5 U

Station Sample Id Date Filtered Sample Type		RQLmw-010 RQ0015 07/25/98 Dissolved Grab	RQLmw-011 RQ9047 07/27/98 Total Field Duplicate	RQLmw-011 RQ9047 07/27/98 Dissolved Field Duplicate	RQLmw-011 RQ0017 07/27/98 Total Grab	RQLmw-011 RQ0017 07/27/98 Dissolved Grab
Cyanide	MG/L		0.01 UJ		0.01 UJ	
1,3,5-Trinitrobenzene	UG/L		0.2 UJ		0.2 UJ	
1,3-Dinitrobenzene	UG/L		0.2 UJ		0.2 UJ	
2,4,6-Trinitrotoluene	UG/L		0.2 UJ		0.2 UJ	
2,4-Dinitrotoluene	UG/L		0.13 UJ		0.13 UJ	
2,6-Dinitrotoluene	UG/L		0.13 UJ		0.13 UJ	
2-Nitrotoluene	UG/L		0.2 UJ		0.2 UJ	
3-Nitrotoluene	UG/L		0.2 UJ		0.2 UJ	
4-Nitrotoluene	UG/L		0.2 UJ		0.2 UJ	
HMX	UG/L		0.076 J		0.067 J	
Nitrobenzene	UG/L		0.092 J		0.0 <b>91</b> J	
Nitrocellulose as N	MG/L		0.2 U		0.2 U	
Nitroglycerin	UG/L		2.5 UJ		2.5 UJ	
Nitroguanidine	UG/L		<b>20</b> U		<b>20</b> U	
RDX	UG/L		0.5 UJ		0.5 UJ	
Tetryl	UG/L		0.2 UJ		0.2 UJ	
Aluminum	UG/L	200 U	832 =	698 =	1400 =	776 =
Antimony	UG/L	5 U	5 U	5 U	5 U	5 U
Arsenic	UG/L	10 U	<b>8</b> .5 =	12.6 =	11.9 =	11.3 =
Barium	UG/L	16.7 J	35.5 J	37.2 J	38.6 J	38.2 J
Beryllium	UG/L	5 U	0.87 J	0.89 J	1 J	0.91 J
Cadmium	UG/L	5 U	5 U	5 U	5 U	5 U
Calcium	UG/L	66600 =	14700 =	15300 =	15100 =	15200 =
Chromium	UG/L	10 U	10 U	10 U	10 U	10 U
Cobalt	UG/L	50 U	48.5 J	55.3 =	57.8 =	57.1 =
Copper	UG/L	25 U	3.9 J	25 U	25 U	25 U
Iron	UG/L	93.5 J	5300 =	5700 =	6000 =	5630 =
Lead	UG/L	3 U	3 U	3 U	3 U	3 U
Magnesium	UG/L	26800 =	8550 =	9230 =	9440 =	9190 =
Manganese	UG/L	3480 J	1650 J	1760 J	1780 J	1720 J
Mercury	UG/L	0. <b>2</b> U	0.2 U	0.2 U	0.2 U	0.1 J
Nickel	UG/L	34.8 J	139 =	155 =	162 =	158 =

Station Sample Id Date Filtered Sample Type		RQLmw-010 RQ0015 07/25/98 Dissolved Grab	RQLmw-011 RQ9047 07/27/98 Total Field Duplicate	RQLmw-011 RQ9047 07/27/98 Dissolved Field Duplicate	RQLmw-011 RQ0017 07/27/98 Total Grab	RQLmw-011 RQ0017 07/27/98 Dissolved Grab
Potassium	UG/L	3570 J	4380 J	4810 J	5060 =	4960 J
Selenium	UG/L	5 U	5 U	5 U	5 U	5 U
Silver	UG/L	10 U	10 U	10 U	10 U	10 U
Sodium	UG/L	5490 J	2160 J	1710 J	1780 J	1780 J
Thallium	UG/L	<b>2</b> U	2.8 =	1.4 J	2 U	1.7 J
Vanadium	UG/L	<b>50</b> U	50 U	50 U	50 U	50 U
Zinc	UG/L	38.8 =	83.3 =	77.2 =	82.5 =	94.4 =
1,2,4-Trichlorobenzene	UG/L		10 UJ		10 UJ	
1,2-Dichlorobenzene	UG/L		10 UJ		10 UJ	
1,3-Dichlorobenzene	UG/L		10 UJ		10 UJ	
1,4-Dichlorobenzene	UG/L		10 UJ		10 UJ	
2,2'-oxybis (1-chloropropane)	UG/L		10 UJ		10 UJ	
2,4,5-Trichlorophenol	UG/L		25 UJ		25 UJ	
2,4,6-Trichlorophenol	UG/L		10 UJ		10 UJ	
2,4-Dichlorophenol	UG/L		10 UJ		10 UJ	
2,4-Dimethylphenol	UG/L		10 UJ		10 UJ	
2,4-Dinitrophenol	UG/L		25 UJ		25 UJ	
2,4-Dinitrotoluene	UG/L		10 UJ		10 UJ	
2,6-Dinitrotoluene	UG/L		10 UJ		10 UJ	
2-Chloronaphthalene	UG/L		10 UJ		10 UJ	
2-Chlorophenol	UG/L		10 UJ		10 UJ	
2-Methylnaphthalene	UG/L		10 UJ		10 UJ	
2-Methylphenol	UG/L		10 UJ		10 UJ	
2-Nitroaniline	UG/L		25 UJ		25 UJ	
2-Nitrophenol	UG/L		10 UJ		10 UJ	
3,3'-Dichlorobenzidine	UG/L		10 UJ		10 UJ	
3-Nitroaniline	UG/L		25 UJ		25 UJ	
4,6-Dinitro-o-Cresol	UG/L		25 UJ		25 UJ	
4-Bromophenyl-phenyl Ether	UG/L		10 UJ		10 UJ	
4-Chloroaniline	UG/L		10 UJ		10 UJ	
4-Chlorophenyl-phenylether	UG/L		10 UJ		10 UJ	
4-Methylphenol	UG/L		10 UJ		10 UJ	

Station Sample Id Date Filtered Sample Type	07/2 Diss	v-010 RQLmw-011 0015 RQ9047 25/98 07/27/98 olved Total Grab Field Duplicate	RQLmw-011 RQ9047 07/27/98 Dissolved Field Duplicate	RQLmw-011 RQ0017 07/27/98 Total Grab	RQLmw-011 RQ0017 07/27/98 Dissolved Grab
4-Nitroaniline	UG/L	25 UJ		25 UJ	
4-Nitrophenol	UG/L	25 UJ		25 UJ	
4-chloro-3-methylphenol	UG/L	10 UJ		10 UJ	
Acenaphthene	UG/L	10 UJ		10 UJ	
Acenaphthylene	UG/L	10 UJ		10 UJ	
Anthracene	UG/L	10 UJ		10 UJ	
Benzo(a)anthracene	UG/L	10 UJ		10 UJ	
Benzo(a)pyrene	UG/L	10 UJ		10 UJ	
Benzo(b)fluoranthene	UG/L	10 UJ		10 UJ	
Benzo(g,h,i)perylene	UG/L	10 UJ		10 UJ	
Benzo(k)fluoranthene	UG/L	10 UJ		10 UJ	
Bis(2-chloroethoxy)methane	UG/L	10 UJ		10 UJ	
Bis(2-chloroethyl)ether	UG/L	10 UJ		10 UJ	
Bis(2-ethylhexyl)phthalate	UG/L	10 UJ		10 UJ	
Butyl Benzyl Phthalate	UG/L	10 UJ		10 UJ	
Carbazole	UG/L	10 UJ		10 UJ	
Chrysene	UG/L	10 UJ		10 UJ	
Di-n-butyl Phthalate	UG/L	10 UJ		10 UJ	
Di-n-octyl Phthalate	UG/L	10 UJ		10 UJ	
Dibenzo(a,h)anthracene	UG/L	10 UJ		10 UJ	
Dibenzofuran	UG/L	10 UJ		10 UJ	
Diethyl Phthalate	UG/L	10 UJ		10 UJ	
Dimethyl Phthalate	UG/L	10 UJ		10 UJ	
Fluoranthene	UG/L	10 UJ		10 UJ	
Fluorene	UG/L	10 UJ		10 UJ	
Hexachlorobenzene	UG/L	10 UJ		10 UJ	
Hexachlorobutadiene	UG/L	10 UJ		10 UJ	
Hexachlorocyclopentadiene	UG/L	10 UJ		10 UJ	
Hexachloroethane	UG/L	10 UJ		10 UJ	
Indeno(1,2,3-cd)pyrene	UG/L	10 UJ		10 UJ	
Isophorone	UG/L	10 UJ		10 UJ	
N-Nitroso-di-n-propylamine	UG/L	10 UJ		10 UJ	

Station Sample Id Date Filtered Sample Type	J	RQLmw-010 RQ0015 07/25/98 Dissolved Grab	RQLmw-011 RQ9047 07/27/98 Total Field Duplicate	RQLmw-011 RQ9047 07/27/98 Dissolved Field Duplicate	RQLmw-011 RQ0017 07/27/98 Total Grab	RQLmw-011 RQ0017 07/27/98 Dissolved Grab
N-Nitrosodiphenylamine	UG/L		10 UJ		10 UJ	
Naphthalene	UG/L		10 UJ		10 UJ	
Nitrobenzene	UG/L		10 UJ		10 UJ	
Pentachlorophenol	UG/L		25 UJ		25 UJ	
Phenanthrene	UG/L		10 UJ		10 UJ	
Phenol	UG/L		10 UJ		10 UJ	
Pyrene	UG/L		10 UJ		10 UJ	
1,1,1-Trichloroethane	UG/L		5 UJ		5 UJ	
1,1,2,2-Tetrachloroethane	UG/L		0.84 J		5 UJ	
1,1,2-Trichloroethane	UG/L		5 UJ		5 UJ	
1,1-Dichloroethane	UG/L		5 UJ		5 UJ	
1,1-Dichloroethene	UG/L		5 UJ		5 UJ	
1,2-Dichloroethane	UG/L		5 UJ		5 UJ	
1,2-Dichloroethene	UG/L		5 UJ		5 UJ	
1,2-Dichloropropane	UG/L		5 UJ		5 UJ	
1,3-cis-Dichloropropene	UG/L		5 UJ		5 UJ	
1,3-trans-Dichloropropene	UG/L		5 UJ		5 UJ	
2-Butanone	UG/L		10 UJ		10 UJ	
2-Hexanone	UG/L		10 UJ		10 UJ	
4-Methyl-2-pentanone	UG/L		10 UJ		10 UJ	
Acetone	UG/L		10 UJ		10 UJ	
Benzene	UG/L		5 UJ		5 UJ	
Bromodichloromethane	UG/L		5 UJ		5 UJ	
Bromoform	UG/L		0.35 J		5 UJ	
Bromomethane	UG/L		10 UJ		10 UJ	
Carbon Disulfide	UG/L		5 UJ		5 UJ	
Carbon Tetrachloride	UG/L		5 UJ		5 UJ	
Chlorobenzene	UG/L		5 UJ		5 UJ	
Chloroethane	UG/L		10 UJ		10 UJ	
Chloroform	UG/L		5 UJ		5 UJ	
Chloromethane	UG/L		10 UJ		10 UJ	
Dibromochloromethane	UG/L		5 UJ		5 UJ	

Station Sample Id Date Filtered Sample Type		RQLmw-010 RQ0015 07/25/98 Dissolved Grab	RQLmw-011 RQ9047 07/27/98 Total Field Duplicate	RQLmw-011 RQ9047 07/27/98 Dissolved Field Duplicate	RQLmw-011 RQ0017 07/27/98 Total Grab	RQLmw-011 RQ0017 07/27/98 Dissolved Grab
Ethylbenzene	UG/L		5 UJ		5 UJ	
Methylene Chloride	UG/L		5 UJ		5 UJ	
Styrene	UG/L		5 UJ		5 UJ	
Tetrachloroethene	UG/L		5 UJ		5 UJ	
Toluene	UG/L		5 UJ		0.51 J	
Trichloroethene	UG/L		5 UJ		5 UJ	
Vinyl Chloride	UG/L		10 UJ		10 UJ	
Xylenes, Total	UG/L		5 UJ		5 UJ	

Station Sample Id Date		RQLsd-012 RQ0053 07/08/98	RQLsd-012 RQ0065 07/27/98	RQLsd-012 RQ0023 07/08/98	RQLsd-012 RQ0064 07/27/98	RQLsd-013 RQ0032 07/08/98	RQLsd-013 RQ0033 07/08/98	RQLsd-014 RQ0035 07/08/98
Depth (ft)		0 - 1	0 - 0	0 - 1	0 - 0	0 - 1	1 - 2	0 - 1
Filtered		Total						
Sample Type		Field Duplicate	Field Duplicate	Grab	Grab	Grab	Grab	Grab
Cyanide	MG/KG	<b>0.78</b> U	0.98 UJ	0.7 U	0.87 UJ	1.9 U	1 U	0.98 U
1,3,5-Trinitrobenzene	MG/KG	0.25 U	0.25 UJ	0.25 U	0.25 UJ	0.25 U	0. <b>2</b> 5 U	0.25 U
1,3-Dinitrobenzene	MG/KG	0.25 U	0.25 UJ	0.25 U	0.25 UJ	0.25 U	0. <b>25</b> U	0.25 U
2,4,6-Trinitrotoluene	MG/KG	0.25 U	0.25 UJ	0.021 J	0.25 UJ	0.25 U	0. <b>2</b> 5 U	0.25 U
2,4-Dinitrotoluene	MG/KG	0.25 U	0.25 UJ	0.25 U	0.25 UJ	0.25 U	0.25 U	0.25 U
2,6-Dinitrotoluene	MG/KG	0.076 J	0.25 UJ	0.25 U	0.25 UJ	0.25 U	0.25 U	0.25 U
2-Nitrotoluene	MG/KG	0.25 U	0.25 UJ	0.25 U	0.25 UJ	0.07 J	0.25 U	0.25 U
3-Nitrotoluene	MG/KG	0.25 U	0.25 UJ	0.25 U	0.25 UJ	0.25 U	0.25 U	0.071 J
4-Nitrotoluene	MG/KG	0.07 J	0.25 UJ	0.25 U	0.25 UJ	0.25 U	0.25 U	0.25 U
HMX	MG/KG	0.11 J	0.5 UJ	0.13 J	0.5 UJ	0.15 J	0.5 U	0.5 U
Nitrobenzene	MG/KG	0.25 U	0.25 UJ	0.25 U	0.25 UJ	0.25 U	0.25 U	0.25 U
Nitrocellulose as N	MG/KG	2 U	1.7 J	2 U	2 U	2 U	2 U	<b>2</b> U
Nitroglycerin	MG/KG	2.5 U	2.5 UJ	<b>2.5</b> U	2.5 UJ	2.5 U	2.5 U	<b>2.5</b> U
Nitroguanidine	MG/KG	0.25 U	0.25 U	0.25 R	0.25 U	0.25 U	0.25 U	0.25 U
RDX	MG/KG	0.5 U	0.5 UJ	0.5 U	0.5 UJ	0.5 U	0.5 U	0.5 U
Tetryl	MG/KG	0.65 U	0.65 UJ	0.65 R	0.65 UJ	0.65 U	0.65 U	0.65 U
Aluminum	MG/KG	8270 =	11500 =	8460 =	9300 =	22100 =	4300 =	3550 =
Antimony	MG/KG	0.78 UJ	1.5 J	0.7 UJ	1.9 J	1.9 UJ	1 UJ	0.98 UJ
Arsenic	MG/KG	14.9 =	15.4 =	11 =	12.6 =	15.2 =	13.4 =	17.5 =
Barium	MG/KG	77 =	108 =	77.3 =	91.8 =	118 =	33 J	70.3 =
Beryllium	MG/KG	0.36 J	0.42 J	0.38 J	0.34 J	.59 J	1 U	0.98 U
Cadmium	MG/KG	0. <b>78</b> U	0.98 U	0.7 U	0.87 U	1.9 U	1 U	0.98 U
Calcium	MG/KG	11400 J	14600 =	12200 J	11000 =	1530 J	1270 J	23700 J
Chromium	MG/KG	15.3 =	19.6 =	14.7 =	17.3 =	<b>29</b> .1 =	8.7 =	12.8 =
Cobalt	MG/KG	7.3 J	10.1 =	7.1 =	8.9 =	10.8 J	5 J	8 J
Copper	MG/KG	64 =		48.2 =	48.8 =	41.1 =	19.5 =	134 =
Iron	MG/KG	25300 =	28400 =	21200 =	25400 =	28600 =	13700 =	21800 =
Lead	MG/KG	79.5 =		27.1 =	36.3 =	38.4 =	21.1 =	43.9 =
Magnesium	MG/KG	19100 J		22100 J	13100 =	4660 J	2180 J	18900 J
Manganese	MG/KG	2120 J		829 J	1000 =	223 J	432 J	1240 J
Mercury	MG/KG	0.099 J		0.89 J	0.12 J	0.15 J	.048 J	.067 J
moreary		0.077 0		•••••		•		

D-37

.

Station Sample Id Date		RQLsd-012 RQ0053 07/08/98	RQLsd-012 RQ0065 07/27/98	RQLsd-012 RQ0023 07/08/98	RQLsd-012 RQ0064 07/27/98	RQLsd-013 RQ0032 07/08/98	RQLsd-013 RQ0033 07/08/98	RQLsd-014 RQ0035 07/08/98
Depth (ft)		0 - 1 Tatal	0 - 0 T- 4-1	0 - 1 Tatal	0 - 0 T-4-1	0 - 1 Tatal	1 - 2 Tatal	0 - 1 Tetel
Filtered		Total	Total Field Durkieste	Total Grab	Total Grab	Total	Total	Total
Sample Type		Field Duplicate	rield Duplicate	Grad	Grad	Grab	Grab	Grab
Nickel	MG/KG	17.2 =	24.4 =	15.3 =	21.5 =	30.1 =	12.8 =	23 =
Potassium	MG/KG	994 J	1590 =	895 J	1320 =	3300 J	713 J	421 J
Selenium	MG/KG	0.78 U	0.98 U	0.7 U	0.87 U	2 =	1 U	0.98 U
Silver	MG/KG	1.6 U	2 U	1.4 U	1.7 U	3.7 U	<b>2</b> .1 U	<b>2</b> U
Sodium	MG/KG	10 <b>8</b> J	116 J	137 J	73.3 J	1870 U	1050 U	41 J
Thallium	MG/KG	1.3 J	0.98 U	0.7 U	0.87 U	1.9 U	1 U	0. <b>98</b> U
Vanadium	MG/KG	15.7 =	22.7 =	14.4 =	19.2 =	40.7 =	9 J	10.1 =
Zinc	MG/KG	106 =	1 <b>55</b> =	100 =	147 =	214 =	135 =	285 =
1,2,4-Trichlorobenzene	UG/KG	<b>520</b> U	650 UJ	460 U	580 UJ	1200 U	690 U	650 U
1,2-Dichlorobenzene	UG/KG	520 U	650 UJ	460 U	580 UJ	1200 U	<b>690</b> U	<b>650</b> U
1,3-Dichlorobenzene	UG/KG	520 U	650 UJ	<b>460</b> U	580 UJ	1200 U	690 U	650 U
1,4-Dichlorobenzene	UG/KG	520 U	650 UJ	<b>460</b> U	580 UJ	1200 U	690 U	650 U
2,2'-oxybis (1-chloropropane)	UG/KG	520 U	650 UJ	460 U	580 UJ	1200 U	690 U	650 U
2,4,5-Trichlorophenol	UG/KG	520 U	650 UJ	460 U	580 UJ	1200 U	690 U	650 U
2,4,6-Trichlorophenol	UG/KG	<b>520</b> U	650 UJ	460 U	580 UJ	1200 U	690 U	650 U
2,4-Dichlorophenol	UG/KG	520 U	650 UJ	460 U	580 UJ	1200 U	690 U	650 U
2,4-Dimethylphenol	UG/KG	520 U	650 UJ	460 U	580 UJ	1200 U	690 U	650 U
2,4-Dinitrophenol	UG/KG	1200 U	1600 UJ	1100 U	1400 UJ	<b>3000</b> U	1700 U	1600 U
2,4-Dinitrotoluene	UG/KG	<b>520</b> U	650 UJ	460 U	580 UJ	1200 U	690 U	650 U
2,6-Dinitrotoluene	UG/KG	520 U	650 UJ	<b>460</b> U	580 UJ	1200 U	690 U	650 U
2-Chloronaphthalene	UG/KG	520 U	650 UJ	<b>460</b> U	580 UJ	1200 U	690 U	650 U
2-Chlorophenol	UG/KG	520 U	650 UJ	<b>460</b> U	580 UJ	1 <b>200</b> U	690 U	650 U
2-Methylnaphthalene	UG/KG	<b>520</b> U	650 UJ	110 J	580 UJ	1 <b>20</b> 0 U	690 U	650 U
2-Methylphenol	UG/KG	<b>520</b> U	650 UJ	460 U	580 UJ	1200 U	690 U	650 U
2-Nitroaniline	UG/KG	1200 U	1600 UJ	1100 U	1400 UJ	3000 U	1700 U	1600 U
2-Nitrophenol	UG/KG	520 U	650 UJ	460 U	580 UJ	1200 U	690 U	650 U
3,3'-Dichlorobenzidine	UG/KG	520 U	650 UJ	460 U	580 UJ	1200 U	<b>69</b> 0 U	650 U
3-Nitroaniline	UG/KG	1200 U	1600 UJ	1100 U	1400 UJ	3000 U	1700 U	1600 U
4,6-Dinitro-o-Cresol	UG/KG	1200 U	1600 UJ	1100 U	1400 UJ	3000 U	1700 U	1600 U
4-Bromophenyl-phenyl Ether	UG/KG	520 U	650 UJ	460 U	580 UJ	1200 U	690 U	650 U
4-Chloroaniline	UG/KG	520 U	650 UJ	460 U	580 UJ	1200 U	<b>690</b> U	650 U

Station Sample Id Date		RQLsd-012 RQ0053 07/08/98	RQLsd-012 RQ0065 07/27/98	RQLsd-012 RQ0023 07/08/98	RQLsd-012 RQ0064 07/27/98	RQLsd-013 RQ0032 07/08/98	RQLsd-013 RQ0033 07/08/98	RQLsd-014 RQ0035 07/08/98
Depth (ft)		0 - 1	0 - 0	0 - 1	0 - 0	0 - 1	1 - 2	0 - 1
Filtered		Total						
Sample Type		Field Duplicate	Field Duplicate	Grab	Grab	Grab	Grab	Grab
4-Chlorophenyl-phenylether	UG/KG	520 U	650 UJ	<b>46</b> 0 U	580 UJ	1200 U	690 U	650 U
4-Methylphenol	UG/KG	520 U	650 UJ	<b>46</b> 0 U	580 UJ	<b>1200</b> U	690 U	650 U
4-Nitroaniline	UG/KG	1200 U	1600 UJ	1100 U	1400 UJ	<b>3000</b> U	1700 U	1600 U
4-Nitrophenol	UG/KG	1200 U	1600 UJ	1100 U	1400 UJ	3000 U	1700 U	1600 U
4-chloro-3-methylphenol	UG/KG	520 U	650 UJ	460 U	580 UJ	1200 U	690 U	650 U
Acenaphthene	UG/KG	<b>520</b> U	650 UJ	340 J	580 UJ	1200 U	690 U	650 U
Acenaphthylene	UG/KG	520 U	650 UJ	460 U	580 UJ	1200 U	690 U	650 U
Anthracene	UG/KG	110 J	200 J	710 =	68 J	1200 U	690 U	650 U
Benzo(a)anthracene	UG/KG	290 J	500 J	<b>690</b> =	180 J	1200 U	690 U	<b>650</b> U
Benzo(a)pyrene	UG/KG	270 J	480 J	510 =	190 J	1200 U	690 U	650 U
Benzo(b)fluoranthene	UG/KG	330 J	610 J	580 =	250 J	1200 U	690 U	650 U
Benzo(g,h,i)perylene	UG/KG	160 J	220 J	230 J	97 J	1 <b>200</b> U	690 U	650 U
Benzo(k)fluoranthene	UG/KG	140 J	260 J	250 J	110 J	1200 U	<b>690</b> U	650 U
Bis(2-chloroethoxy)methane	UG/KG	520 U	650 UJ	460 U	580 UJ	1200 U	690 U	650 U
Bis(2-chloroethyl)ether	UG/KG	<b>520</b> U	650 UJ	460 U	580 UJ	1200 U	690 U	650 U
Bis(2-ethylhexyl)phthalate	UG/KG	520 U	650 UJ	460 U	580 UJ	1200 U	690 U	650 U
Butyl Benzyl Phthalate	UG/KG	520 U	650 UJ	460 U	580 UJ	1200 U	690 U	650 U
Carbazole	UG/KG	120 J	650 UJ	410 J	580 UJ	1200 U	690 U	650 U
Chrysene	UG/KG	290 J	500 J	590 =	190 J	1200 U	<b>690</b> U	650 U
Di-n-butyl Phthalate	UG/KG	520 U	650 UJ	460 U	580 UJ	1200 U	690 U	650 U
Di-n-octyl Phthalate	UG/KG	520 U	650 UJ	460 U	580 UJ	1200 U	690 U	650 U
Dibenzo(a,h)anthracene	UG/KG	520 U	650 UJ	460 U	580 UJ	1200 U	690 U	650 U
Dibenzofuran	UG/KG	520 U	650 UJ	240 J	580 UJ	1200 U	690 U	650 U
Diethyl Phthalate	UG/KG	520 U	650 UJ	460 U	580 UJ	1200 U	690 U	650 U
Dimethyl Phthalate	UG/KG	520 U	650 UJ	460 U	580 UJ	1200 U	690 U	650 U
Fluoranthene	UG/KG	630 =	1100 J	1800 =	380 J	1200 U	690 U	120 J
Fluorene	UG/KG	520 U	650 UJ	390 J	580 UJ	1200 U	<b>690</b> U	650 U
Hexachlorobenzene	UG/KG	520 U	650 UJ	460 U	580 UJ	1200 U	690 U	650 U
Hexachlorobutadiene	UG/KG	<b>520</b> U	650 UJ	460 U	580 UJ	1200 U	690 U	650 U
Hexachlorocyclopentadiene	UG/KG	520 U	650 UJ	460 U	580 UJ	1200 U	690 U	650 U
Hexachloroethane	UG/KG	520 U	650 UJ	460 U	580 UJ	1200 U	690 U	650 U

Station Sample Id Date Depth (ft)		RQLsd-012 RQ0053 07/08/98 0 - 1	RQLsd-012 RQ0065 07/27/98 0 - 0	RQLsd-012 RQ0023 07/08/98 0 - 1	RQLsd-012 RQ0064 07/27/98 0 - 0	RQLsd-013 RQ0032 07/08/98 0 - 1	RQLsd-013 RQ0033 07/08/98	RQLsd-014 RQ0035 07/08/98 0 - 1
Filtered		Total	0-0 Total	U - I Total	U-U Total	U-1 Total	1 - 2 T- 4-1	
Sample Type			Field Duplicate	Grab	Grab	Grab	Total Grab	Total Grab
Sample Type		Field Duplicate	rield Duplicate	Grab	Grad	Grad	Grad	Grad
Indeno(1,2,3-cd)pyrene	UG/KG	180 J	250 J	270 J	100 J	1200 U	690 U	650 U
Isophorone	UG/KG	520 U	650 UJ	460 U	580 UJ	1200 U	690 U	650 U
N-Nitroso-di-n-propylamine	UG/KG	520 U	650 UJ	<b>460</b> U	580 UJ	1200 U	690 U	650 U
N-Nitrosodiphenylamine	UG/KG	520 U	650 UJ	460 U	580 UJ	1200 U	690 U	650 U
Naphthalene	UG/KG	520 U	650 UJ	100 J	580 UJ	1200 U	690 U	650 U
Nitrobenzene	UG/KG	520 U	650 UJ	460 U	580 UJ	1200 U	690 U	650 U
Pentachlorophenol	UG/KG	520 U	650 UJ	460 U	580 UJ	1200 U	690 U	650 U
Phenanthrene	UG/KG	400 J	600 J	2000 ==	230 J	1200 U	690 U	650 U
Phenol	UG/KG	<b>520</b> U	650 UJ	460 U	580 UJ	1200 U	690 U	650 U
Pyrene	UG/KG	480 J	<del>9</del> 00 J	1200 J	310 J	1200 U	690 U	99 J
1,1,1-Trichloroethane	UG/KG	<b>7.8</b> U	9.8 UJ	7 U	8.7 UJ	19 U	10 U	9.8 U
1,1,2,2-Tetrachloroethane	UG/KG	7.8 U	9.8 UJ	7 U	8.7 UJ	19 U	10 U	<b>9.8</b> U
1,1,2-Trichloroethane	UG/KG	<b>7.8</b> U	9.8 UJ	7 U	8.7 UJ	19 U	10 U	9.8 U
1,1-Dichloroethane	UG/KG	7. <b>8</b> U	9.8 UJ	7 U	8.7 UJ	19 U	10 U	9.8 U
1,1-Dichloroethene	UG/KG	7.8 U	9.8 UJ	7 U	8.7 UJ	19 U	10 U	9.8 U
1,2-Dichloroethane	UG/KG	7.8 U	9.8 UJ	7 U	8.7 UJ	19 U	10 U	9.8 U
1,2-Dichloroethene	UG/KG	<b>7.8</b> U	9.8 UJ	7 U	8.7 UJ	19 U	10 U	<b>9.8</b> U
1,2-Dichloropropane	UG/KG	7.8 U	9.8 UJ	7 U	8.7 UJ	19 U	10 U	<b>9.8</b> U
1,3-cis-Dichloropropene	UG/KG	7.8 U	9.8 UJ	7 U	8.7 UJ	19 U	10 U	<b>9.8</b> U
1,3-trans-Dichloropropene	UG/KG	7.8 U	9.8 UJ	7 U	8.7 UJ	19 U	10 U	9.8 U
2-Butanone	UG/KG	31 U	39 UJ	<b>28</b> U	35 UJ	35 J	6.5 J	<b>39</b> U
2-Hexanone	UG/KG	31 U	39 UJ	28 U	35 UJ	75 U	42 U	39 U
4-Methyl-2-pentanone	UG/KG	31 U	39 UJ	28 U	35 UJ	75 U	42 U	39 U
Acetone	UG/KG	31 U	39 UJ	3.7 J	35 UJ	98 J	19 J	8.7 J
Benzene	UG/KG	7.8 U	9.8 UJ	7 U	8.7 UJ	19 U	10 U	<b>9.8</b> U
Bromodichloromethane	UG/KG	7.8 U	9.8 UJ	7 U	8.7 UJ	19 U	10 U	<b>9.8</b> U
Bromoform	UG/KG	7.8 U	9.8 UJ	7 U	8.7 UJ	19 U	10 U	<b>9.8</b> U
Bromomethane	UG/KG	16 U	20 UJ	14 U	17 UJ	37 U	21 U	<b>20</b> U
Carbon Disulfide	UG/KG	7.8 U	9.8 UJ	7 U	8.7 UJ	19 U	10 U	9.8 U
Carbon Tetrachloride	UG/KG	<b>7.8</b> U	9.8 UJ	7 U	8.7 UJ	<b>19</b> U	10 U	9.8 U
Chlorobenzene	UG/KG	7.8 U	9.8 UJ	7 U	8.7 UJ	19 U	10 U	9.8 U

Station Sample Id Date Depth (ft) Filtered Sample Type		RQLsd-012 RQ0053 07/08/98 0 - 1 Totai Field Duplicate	RQLsd-012 RQ0065 07/27/98 0 - 0 Total Field Duplicate	RQLsd-012 RQ0023 07/08/98 0 - 1 Total Grab	RQLsd-012 RQ0064 07/27/98 0 - 0 Total Grab	RQLsd-013 RQ0032 07/08/98 0 - 1 Total Grab	RQLsd-013 RQ0033 07/08/98 1 - 2 Total Grab	RQLsd-014 RQ0035 07/08/98 0 - 1 Total Grab
Chloroethane	UG/KG	16 U	20 UJ	14 U	17 UJ	37 U	<b>21</b> U	<b>2</b> 0 U
Chloroform	UG/KG	7. <b>8</b> U	9.8 UJ	7 U	8.7 UJ	19 U	10 U	<b>9.8</b> U
Chloromethane	UG/KG	16 U	20 UJ	14 U	17 UJ	37 U	<b>21</b> U	<b>20</b> U
Dibromochloromethane	UG/KG	7.8 U	9.8 UJ	7 U	8.7 UJ	19 U	10 U	9.8 U
Ethylbenzene	UG/KG	7.8 U	9.8 UJ	7 U	8.7 UJ	19 U	10 U	9.8 U
Methylene Chloride	UG/KG	<b>7.8</b> U	9.8 UJ	7 U	8.7 UJ	19 U	10 U	<b>9.8</b> U
Styrene	UG/KG	<b>7.8</b> U	9.8 UJ	7 U	8.7 UJ	19 U	10 U	9.8 U
Tetrachloroethene	UG/KG	<b>7.8</b> U	9.8 UJ	7 U	8.7 UJ	19 U	10 U	9.8 U
Toluene	UG/KG	7.8 U	9.8 UJ	7 U	8.7 UJ	19 U	10 U	9.8 U
Trichloroethene	UG/KG	7.8 U	9.8 UJ	7 U	8.7 UJ	19 U	10 U	9.8 U
Vinyl Chloride	UG/KG	16 U	20 UJ	14 U	17 UJ	37 U	21 U	20 U
Xylenes, Total	UG/KG	<b>7.8</b> U	9.8 UJ	7 U	<b>8</b> .7 UJ	19 U	10 U	9.8 U

Station Sample Id Date		RQLsd-015 RQ0044 07/08/98	RQLsd-015 RQ0045 07/08/98	RQLsd-018 RQ0026 07/08/98	RQLsd-018 RQ0027 07/08/98	RQLsd-018 RQ0028 07/08/98	RQLsd-019 RQ0029 07/08/98	RQLsd-022 RQ0054 07/08/98
Depth (ft)		0 - 1	1 - 2	0 - 1	1 - 2	2 - 4	0 - 1	0 - 1
Filtered		Total						
Sample Type		Grab	Grab	Grab	Grab	Grab	Grab	Field Duplicate
Cyanide	MG/KG	1 U	0.84 U	0.87 U	0. <b>8</b> U	0.65 U	0.54 U	1 U
1,3,5-Trinitrobenzene	MG/KG	0.25 U						
1,3-Dinitrobenzene	MG/KG	0.25 U						
2,4,6-Trinitrotoluene	MG/KG	0.25 U	0.25 U	0.25 U	0.25 U	0.047 J	0.25 U	0.25 U
2,4-Dinitrotoluene	MG/KG	0.25 U	0.047 J	0.033 J				
2,6-Dinitrotoluene	MG/KG	0.25 U						
2-Nitrotoluene	MG/KG	0.25 U						
3-Nitrotoluene	MG/KG	0.25 U						
4-Nitrotoluene	MG/KG	0.25 U						
HMX	MG/KG	0.5 U	0.5 U	0.11 J	0.14 J	0.13 J	0.13 J	0.13 J
Nitrobenzene	MG/KG	0.25 U						
Nitrocellulose as N	MG/KG	4.3 =	2.3 =	2 U	<b>2</b> U	<b>2</b> U	2 U	<b>2</b> U
Nitroglycerin	MG/KG	2.5 U	2.5 U	<b>2.5</b> U	2.5 U	<b>2</b> .5 U	<b>2.5</b> U	2.5 U
Nitroguanidine	MG/KG	0.25 U						
RDX	MG/KG	0.5 U						
Tetryl	MG/KG	0.65 U						
Aluminum	MG/KG	21200 =	13500 =	13400 =	11600 =	12200 =	5560 =	8000 =
Antimony	MG/KG	1 UJ	0.84 UJ	0.87 UJ	0.8 UJ	0.65 UJ	0.54 UJ	1 UJ
Arsenic	MG/KG	15.9 =	10.3 =	9.5 =	16.9 =	7.6 =	12.3 =	25.3 =
Barium	MG/KG	141 =	113 =	118 =	98.4 =	73.3 =	35.9 =	112 =
Beryllium	MG/KG	.65 J	.52 J	0.39 J	0.65 J	.33 J	0.18 U	0.39 U
Cadmium	MG/KG	1 U	0.84 U	6.4 =	1.7 =	0.65 U	0.54 U	1.8 =
Calcium	MG/KG	6410 J	7750 J	4020 J	9180 J	4870 J	614 J	38800 J
Chromium	MG/KG	30.5 =	20.9 =	20.2 =	18.3 =	21 =	9 =	21.4 =
Cobalt	MG/KG	13.3 =	11.6 =	8.6 J	14.3 =	8.2 =	13.9 =	25.1 =
Copper	MG/KG	46.4 =	44 =	29 =	20.6 =	48.7 =	20.7 =	96.2 =
Iron	MG/KG	40900 =	31500 =	18500 =	54400 =	20500 =	16800 =	30600 =
Lead	MG/KG	66.6 =	51.3 =	56.1 =	54.5 =	25.3 =	26.7 =	63.9 =
Magnesium	MG/KG	5320 J	6180 J	4240 J	7060 J	9820 J	1300 J	44700 J
Manganese	MG/KG	585 J	561 J	233 J	402 =	359 J	189 J	2160 J
Mercury	MG/KG	. <b>18</b> J	0.2 =	0.084 J	.088 J	.039 J	.033 J	.073 J

D-42

Station Sample Id Date Depth (ft)		RQLsd-015 RQ0044 07/08/98 0 - 1	RQLsd-015 RQ0045 07/08/98 1 - 2	RQLsd-018 RQ0026 07/08/98 0 - 1	RQLsd-018 RQ0027 07/08/98 1 - 2	RQLsd-018 RQ0028 07/08/98 2 - 4	RQLsd-019 RQ0029 07/08/98 0 - 1	RQLsd-022 RQ0054 07/08/98 0 - 1
Filtered		Total						
Sample Type		Grab	Grab	Grab	Grab	Grab	Grab	Field Duplicate
Nickel	MG/KG	35.1 =	29.2 =	21.9 =	20.1 =	19.2 =	28.4 =	64.7 =
Potassium	MG/KG	3010 J	1420 J	1330 J	1120 J	1670 J	447 J	636 J
Selenium	MG/KG	1 U	0.84 U	1.1 =	0.91 =	0.8 =	0.6 =	1 U
Silver	MG/KG	<b>2.1</b> U	1.7 U	1.7 U	1.6 U	1.3 U	1.1 U	2 U
Sodium	MG/KG	58.2 J	28.9 J	43 J	41.4 J	46.4 J	540 U	79.6 J
Thallium	MG/KG	1 U	1.2 =	1.2 =	1.8 =	0.65 U	<b>0.54</b> U	1 U
Vanadium	MG/KG	38.1 =	23.6 =	28 =	28.9 =	22.4 =	10.5 =	16.7 =
Zinc	MG/KG	427 =	282 =	255 =	237 =	107 =	124 =	711 =
1,2,4-Trichlorobenzene	UG/KG	<b>680</b> U	550 U	580 U	530 U	430 U	360 U	670 U
1,2-Dichlorobenzene	UG/KG	<b>680</b> U	550 U	580 U	530 U	430 U	360 U	670 U
1,3-Dichlorobenzene	UG/KG	680 U	550 U	580 U	530 U	<b>430</b> U	<b>360</b> U	670 U
1,4-Dichlorobenzene	UG/KG	680 U	550 U	580 U	530 U	<b>430</b> U	360 U	670 U
2,2'-oxybis (1-chloropropane)	UG/KG	680 U	550 U	580 U	530 U	430 U	360 U	670 U
2,4,5-Trichlorophenol	UG/KG	680 U	550 U	580 U	530 U	430 U	360 U	670 U
2,4,6-Trichlorophenol	UG/KG	<b>680</b> U	550 U	580 U	<b>530</b> U	430 U	360 U	670 U
2,4-Dichlorophenol	UG/KG	680 U	550 U	580 U	530 U	<b>430</b> U	360 U	670 U
2,4-Dimethylphenol	UG/KG	680 U	550 U	580 U	530 U	430 U	360 U	670 U
2,4-Dinitrophenol	UG/KG	1600 U	1300 U	1400 U	1300 U	1000 U	<b>860</b> U	1600 U
2,4-Dinitrotoluene	UG/KG	<b>680</b> U	550 U	580 U	530 U	430 U	360 U	670 U
2,6-Dinitrotoluene	UG/KG	680 U	550 U	580 U	530 U	<b>43</b> 0 U	360 U	670 U
2-Chloronaphthalene	UG/KG	680 U	550 U	580 U	530 U	<b>430</b> U	360 U	670 U
2-Chlorophenol	UG/KG	<b>68</b> 0 U	550 U	580 U	530 U	430 U	360 U	670 U
2-Methylnaphthalene	UG/KG	680 U	550 U	580 U	530 U	430 U	360 U	670 U
2-Methylphenol	UG/KG	<b>680</b> U	550 U	580 U	530 U	430 U	360 U	670 U
2-Nitroaniline	UG/KG	1600 U	1300 U	1400 U	1300 U	1000 U	860 U	1600 U
2-Nitrophenol	UG/KG	680 U	550 U	580 U	530 U	<b>430</b> U	360 U	670 U
3,3'-Dichlorobenzidine	UG/KG	680 U	550 U	580 U	530 U	430 U	360 U	670 U
3-Nitroaniline	UG/KG	1600 U	1300 U	1400 U	1300 U	1000 U	<b>860</b> U	1600 U
4,6-Dinitro-o-Cresol	UG/KG	1600 U	1300 U	1400 U	1300 U	1000 U	<b>86</b> 0 U	1600 U
4-Bromophenyl-phenyl Ether	UG/KG	<b>68</b> 0 U	550 U	580 U	530 U	430 U	<b>36</b> 0 U	670 U
4-Chloroaniline	UG/KG	680 U	550 U	580 U	<b>530</b> U	430 U	360 U	670 U

.

Station Sample Id Date		RQLsd-015 RQ0044 07/08/98	RQLsd-015 RQ0045 07/08/98	RQLsd-018 RQ0026 07/08/98	RQLsd-018 RQ0027 07/08/98	RQLsd-018 RQ0028 07/08/98	RQLsd-019 RQ0029 07/08/98	RQLsd-022 RQ0054 07/08/98
Depth (ft)		0 - 1	1-2	0 - 1	1 - 2	2 - 4	0 - 1	0 - 1
Filtered		Total						
Sample Type		Grab	Grab	Grab	Grab	Grab	Grab	Field Duplicate
4-Chlorophenyl-phenylether	UG/KG	680 U	550 U	580 U	530 U	430 U	360 U	670 U
4-Methylphenol	UG/KG	680 U	550 U	580 U	530 U	430 U	<b>36</b> 0 U	670 U
4-Nitroaniline	UG/KG	1600 U	1300 U	1400 U	1300 U	1000 U	<b>86</b> 0 U	1600 U
4-Nitrophenol	UG/KG	1600 U	1300 U	1400 U	1300 U	1000 U	<b>86</b> 0 U	1600 U
4-chloro-3-methylphenol	UG/KG	680 U	550 U	580 U	530 U	<b>430</b> U	360 U	670 U
Acenaphthene	UG/KG	680 U	550 U	580 U	530 U	430 U	360 U	670 U
Acenaphthylene	UG/KG	680 U	550 U	580 U	530 U	430 U	360 U	670 U
Anthracene	UG/KG	680 U	550 U	180 J	72 J	430 U	360 U	670 U
Benzo(a)anthracene	UG/KG	99 J	71 J	430 J	200 J	430 U	<b>360</b> U	670 U
Вепzo(a)pyrene	UG/KG	110 J	73 J	340 J	<b>2</b> 10 J	<b>430</b> U	360 U	670 U
Benzo(b)fluoranthene	UG/KG	170 J	100 J	430 J	270 J	430 U	360 U	670 U
Benzo(g,h,i)perylene	UG/KG	680 U	550 U	170 J	140 J	430 U	360 U	670 U
Benzo(k)fluoranthene	UG/KG	680 U	550 U	180 J	95 J	430 U	360 U	670 U
Bis(2-chloroethoxy)methane	UG/KG	680 U	550 U	580 U	530 U	430 U	360 U	670 U
Bis(2-chloroethyl)ether	UG/KG	680 U	550 U	580 U	530 U	<b>430</b> U	<b>36</b> 0 U	670 U
Bis(2-ethylhexyl)phthalate	UG/KG	680 U	550 U	580 U	530 U	430 U	360 U	670 U
Butyl Benzyl Phthalate	UG/KG	680 U	550 U	580 U	530 U	430 U	360 U	670 U
Carbazole	UG/KG	680 U	550 U	130 J	530 U	430 U	360 U	670 U
Chrysene	UG/KG	120 J	84 J	410 J	210 J	<b>43</b> 0 U	360 U	670 U
Di-n-butyl Phthalate	UG/KG	680 U	550 U	580 U	530 U	<b>430</b> U	360 U	670 U
Di-n-octyl Phthalate	UG/KG	680 U	550 U	580 U	530 U	430 U	360 U	670 U
Dibenzo(a,h)anthracene	UG/KG	680 U	550 U	580 U	530 U	430 U	360 U	670 U
Dibenzofuran	UG/KG	680 U	550 U	580 U	530 U	<b>430</b> U	360 U	670 U
Diethyl Phthalate	UG/KG	680 U	550 U	580 U	530 U	<b>430</b> U	360 U	670 U
Dimethyl Phthalate	UG/KG	680 U	550 U	580 U	530 U	430 U	360 U	670 U
Fluoranthene	UG/KG	220 J	150 J	1000 =	450 J	65 J	67 J	670 U
Fluorene	UG/KG	680 U	550 U	580 U	530 U	430 U	<b>360</b> U	670 U
Hexachlorobenzene	UG/KG	680 U	550 U	<b>580</b> U	530 U	430 U	<b>360</b> U	670 U
Hexachlorobutadiene	UG/KG	680 U	550 U	580 U	530 U	<b>430</b> U	360 U	670 U
Hexachlorocyclopentadiene	UG/KG	680 U	550 U	580 U	530 U	<b>430</b> U	360 U	670 U
Hexachloroethane	UG/KG	680 U	550 U	580 U	530 U	430 U	360 U	670 U

Station Sample Id Date Depth (ft)		RQLsd-015 RQ0044 07/08/98 0 - 1	RQLsd-015 RQ0045 07/08/98 1 - 2	RQLsd-018 RQ0026 07/08/98 0 - 1	RQLsd-018 RQ0027 07/08/98 1 - 2	RQLsd-018 RQ0028 07/08/98 2 - 4	RQLsd-019 RQ0029 07/08/98 0 - 1	RQLsd-022 RQ0054 07/08/98 0 - 1
Filtered		Total	Total	Total	Total	Z- <del>4</del> Total	Total	U-1 Total
Sample Type		Grab	Grab	Grab	Grab	Grab		Field Duplicate
						Grup	Grab	Picia Duplicate
Indeno(1,2,3-cd)pyrene	UG/KG	86 J	550 U	200 J	140 J	430 U	360 U	670 U
Isophorone	UG/KG	680 U	550 U	580 U	530 U	430 U	360 U	670 U
N-Nitroso-di-n-propylamine	UG/KG	680 U	550 U	<b>580</b> U	530 U	430 U	360 U	670 U
N-Nitrosodiphenylamine	UG/KG	680 U	550 U	580 U	530 U	430 U	360 U	670 U
Naphthalene	UG/KG	<b>680</b> U	550 U	580 U	530 U	430 U	360 U	670 U
Nitrobenzene	UG/KG	680 U	550 U	580 U	530 U	430 U	360 U	670 U
Pentachlorophenol	UG/KG	680 U	550 U	580 U	530 U	430 U	360 U	670 U
Phenanthrene	UG/KG	94 J	550 U	700 =	310 J	430 U	360 U	670 U
Phenol	UG/KG	680 U	550 U	580 U	530 U	430 U	360 U	670 U
Pyrene	UG/KG	170 J	130 J	780 =	310 J	58 J	53 J	670 U
1,1,1-Trichloroethane	UG/KG	10 U	8.4 U	8.7 U	8 U	6.5 U	5.4 U	10 U
1,1,2,2-Tetrachloroethane	UG/KG	10 U	<b>8.4</b> U	<b>8.7</b> U	8 U	6.5 U	5.4 U	10 U
1,1,2-Trichloroethane	UG/KG	10 U	<b>8.4</b> U	<b>8.7</b> U	8 U	6.5 U	5.4 U	10 U
1,1-Dichloroethane	UG/KG	10 U	<b>8.4</b> U	8.7 U	8 U	6.5 U	5.4 U	10 U
1,1-Dichloroethene	UG/KG	10 U	<b>8.4</b> U	8.7 U	8 U	6.5 U	5.4 U	10 U
1,2-Dichloroethane	UG/KG	10 U	8.4 U	8.7 U	8 U	6.5 U	5.4 U	10 U
1,2-Dichloroethene	UG/KG	10 U	<b>8.4</b> U	<b>8.7</b> U	8 U	6.5 U	5.4 U	10 U
1,2-Dichloropropane	UG/KG	10 U	<b>8.4</b> U	8.7 U	8 U	6.5 U	5.4 U	10 U
1,3-cis-Dichloropropene	UG/KG	10 U	8.4 U	8.7 U	8 U	6.5 U	5.4 U	10 U
1,3-trans-Dichloropropene	UG/KG	10 U	<b>8.4</b> U	8.7 U	8 U	6.5 U	5.4 U	10 U
2-Butanone	UG/KG	10 J	9.3 J	5.7 J	32 U	26 U	22 U	9.5 J
2-Hexanone	UG/KG	41 U	34 U	35 U	32 U	26 U	22 U	40 U
4-Methyl-2-pentanone	UG/KG	<b>41</b> U	34 U	35 U	32 U	26 U	22 U 22 U	40 U
Acetone	UG/KG	34 J	38 J	17 J	15 J	20 0 7.6 J	22 U 22 U	40 C 35 J
Benzene	UG/KG	10 U	8.4 U	8.7 U	8 U	6.5 U	5.4 U	10 U
Bromodichloromethane	UG/KG	10 U	8.4 U	8.7 U	8 U	6.5 U	5.4 U	10 U
Bromoform	UG/KG	10 U	8.4 U	8.7 U	8 U	6.5 U	5.4 U	10 U 10 U
Bromomethane	UG/KG	21 U	17 U	17 U	16 U	13 U	J.4 U 11 U	10 U 20 U
Carbon Disulfide	UG/KG	10 U	3.4 J	8.7 U	8 U	6.5 U	5.4 U	20 U 10 U
Carbon Tetrachloride	UG/KG	10 U	8.4 U	8.7 U	8 U	6.5 U	5.4 U 5.4 U	10 U
Chlorobenzene	UG/KG	10 U	8.4 U	8.7 U	8 U	6.5 U	5.4 U	10 U
		•	00	0.1 0	00	0.5 0	J.4 U	10.0

Station Sample Id Date Depth (ft) Filtered Sample Type		RQLsd-015 RQ0044 07/08/98 0 - 1 Total Grab	RQLsd-015 RQ0045 07/08/98 1 - 2 Total Grab	RQLsd-018 RQ0026 07/08/98 0 - 1 Total Grab	RQLsd-018 RQ0027 07/08/98 1 - 2 Total Grab	RQLsd-018 RQ0028 07/08/98 2 - 4 Total Grab	RQLsd-019 RQ0029 07/08/98 0 - 1 Total Grab	RQLsd-022 RQ0054 07/08/98 0 - 1 Total Field Duplicate
Chloroethane	UG/KG	<b>21</b> U	17 U	17 U	16 U	13 U	11 U	<b>2</b> 0 U
Chloroform	UG/KG	10 U	8.4 U	<b>8</b> .7 U	8 U	6.5 U	5.4 U	10 U
Chloromethane	UG/KG	<b>21</b> U	17 U	17 U	16 U	13 U	11 U	20 U
Dibromochloromethane	UG/KG	10 U	<b>8.4</b> U	8.7 U	8 U	6.5 U	5.4 U	10 U
Ethylbenzene	UG/KG	10 U	<b>8.4</b> U	8.7 U	8 U	6.5 U	5.4 U	10 U
Methylene Chloride	UG/KG	- 10 U	<b>8.4</b> U	8.7 U	8 U	1.2 J	0.73 =	10 U
Styrene	UG/KG	10 U	<b>8.4</b> U	<b>8.7</b> U	<b>8</b> U	6.5 U	5.4 U	10 U
Tetrachloroethene	UG/KG	10 U	<b>8.4</b> U	8.7 U	<b>8</b> U	6.5 U	5.4 U	10 U
Toluene	UG/KG	10 U	<b>8.4</b> U	8.7 U	8 U	6.5 U	5.4 U	10 U
Trichloroethene	UG/KG	10 U	<b>8.4</b> U	8.7 U	8 U	6.5 U	5.4 U	10 U
Vinyl Chloride	UG/KG	21 U	17 U	17 U	16 U	13 U	11 U	20 U
Xylenes, Total	UG/KG	10 U	8.4 U	8.7 U	<b>8</b> U	6.5 U	5.4 U	10 U

Page 10

D-46

Station Sample Id Date Depth (ft)		RQLsd-022 RQ0038 07/08/98 0 - 1	RQLsd-023 RQ0041 07/08/98 0 - 1	RQLsd-023 RQ0042 07/08/98 1 - 2
Filtered		Total	Total	Total
Sample Type		Grab	Grab	Grab
Cyanide	MG/KG	1.1 U	2.8 =	0.86 U
1,3,5-Trinitrobenzene	MG/KG	0.25 U	0.25 U	
1,3-Dinitrobenzene	MG/KG	0.25 U	0.25 U	0.25 U 0.25 U
2,4,6-Trinitrotoluene	MG/KG	0.25 U	0.25 U	0.25 U
2,4-Dinitrotoluene	MG/KG	0.064 J	0.25 U	0.23 U 0.034 J
2,6-Dinitrotoluene	MG/KG	0.25 U	0.25 U	0.034 J 0.25 U
2-Nitrotoluene	MG/KG	0.25 U	0.25 U	0.25 U
3-Nitrotoluene	MG/KG	0.25 U	0.25 U	0.13 J
4-Nitrotoluene	MG/KG	0.25 U	0.25 U	0.13 J 0.25 U
HMX	MG/KG	0.12 J	0.5 U	0.13 J
Nitrobenzene	MG/KG	0.25 U	0.25 U	0.25 U
Nitrocellulose as N	MG/KG	2 U	0.25 C 2 U	0.25 U 2 U
Nitroglycerin	MG/KG	2.5 U	2.5 U	2.5 U
Nitroguanidine	MG/KG	0.25 U	0.25 U	0.25 U
RDX	MG/KG	0.5 U	0.25 U	0.5 U
Tetryl	MG/KG	0.65 U	0.65 U	0.65 U
Aluminum	MG/KG	12200 =	14700 =	12300 =
Antimony	MG/KG	1.1 UJ	1 UJ	0.86 UJ
Arsenic	MG/KG	32.5 =	25.5 =	18.2 =
Barium	MG/KG	145 =	125 =	98.4 =
Beryllium	MG/KG	.58 J	0.54 J	.56 J
Cadmium	MG/KG	2.5 =	1.4 =	0.86 U
Calcium	MG/KG	46900 J	28400 J	15700 J
Chromium	MG/KG	30.9 =	26 =	20.1 =
Cobalt	MG/KG	33.6 =	19.4 =	16.8 =
Copper	MG/KG	124 =	80.5 =	51.2 =
Iron	MG/KG	41400 =	40200 =	32200 =
Lead	MG/KG	87.2 =	73.3 =	48.4 =
Magnesium	MG/KG	58000 J	16000 J	12000 J
Manganese	MG/KG	2590 J	1820 J	894 J
Mercury	MG/KG	.11 J	.12 J	.13 J

Station Sample Id Date Depth (ft) Filtered Sample Type		RQLsd-022 RQ0038 07/08/98 0 - 1 Total Grab	RQLsd-023 RQ0041 07/08/98 0 - 1 Total Grab	RQLsd-023 RQ0042 07/08/98 1 - 2 Total Grab
Nickel	MG/KG	86.8 =	52.3 =	43.2 =
Potassium	MG/KG	1120 J	1700 J	1400 J
Selenium	MG/KG	1.1 U	1 U	0.86 U
Silver	MG/KG	2.2 U	2.1 U	1.7 U
Sodium	MG/KG	109 J	78.6 J	42.5 J
Thallium	MG/KG	1.9 =	1 U	42.5 J 0.86 U
Vanadium	MG/KG	23.4 =	27 =	21 =
Zinc	MG/KG	894 =	634 =	428 =
1,2,4-Trichlorobenzene	UG/KG	730 U	680 U	570 U
1,2-Dichlorobenzene	UG/KG	730 U	680 U	570 U
1,3-Dichlorobenzene	UG/KG	730 U	680 U	570 U
1,4-Dichlorobenzene	UG/KG	730 U	680 U	570 U
2,2'-oxybis (1-chloropropane)	) UG/KG	730 U	680 U	570 U
2,4,5-Trichlorophenol	UG/KG	730 U	680 U	570 U
2,4,6-Trichlorophenol	UG/KG	730 U	680 U	570 U
2,4-Dichlorophenol	UG/KG	730 U	680 U	570 U
2,4-Dimethylphenol	UG/KG	730 U	680 U	570 U
2,4-Dinitrophenol	UG/KG	1800 U	1600 U	1400 U
2,4-Dinitrotoluene	UG/KG	730 U	680 U	570 U
2,6-Dinitrotoluene	UG/KG	730 U	680 U	570 U
2-Chloronaphthalene	UG/KG	<b>730</b> U	680 U	570 U
2-Chlorophenol	UG/KG	730 U	680 U	570 U
2-Methylnaphthalene	UG/KG	730 U	680 U	570 U
2-Methylphenol	UG/KG	730 U	680 U	570 U
2-Nitroaniline	UG/KG	1800 U	1600 U	1400 U
2-Nitrophenol	UG/KG	730 U	680 U	570 U
3,3'-Dichlorobenzidine	UG/KG	730 U	680 U	570 U
3-Nitroaniline	UG/KG	1800 U	1600 U	1400 U
4,6-Dinitro-o-Cresol	UG/KG	1800 U	1600 U	1400 U
4-Bromophenyl-phenyl Ether	UG/KG	730 U	680 U	570 U
4-Chloroaniline	UG/KG	730 U	680 U	570 U

•

Station Sample Id Date Depth (ft)		RQLsd-022 RQ0038 07/08/98 0 - 1	RQLsd-023 RQ0041 07/08/98 0 - 1	RQLsd-023 RQ0042 07/08/98 1 - 2
Filtered		Total	Total	Total
Sample Type		Grab	Grab	Grab
4-Chlorophenyl-phenylether	UG/KG	<b>73</b> 0 U	680 U	570 U
4-Methylphenol	UG/KG	<b>730</b> U	680 U	570 U
4-Nitroaniline	UG/KG	<b>1800</b> U	1600 U	1400 U
4-Nitrophenol	UG/KG	1800 U	1600 U	1400 U
4-chloro-3-methylphenol	UG/KG	730 U	680 U	570 U
Acenaphthene	UG/KG	730 U	680 U	570 U
Acenaphthylene	UG/KG	730 U	680 U	570 U
Anthracene	UG/KG	730 U	680 U	570 U
Benzo(a)anthracene	UG/KG	<b>730</b> U	680 U	570 U
Benzo(a)pyrene	UG/KG	730 U	680 U	570 U
Benzo(b)fluoranthene	UG/KG	730 U	680 U	570 U
Benzo(g,h,i)perylene	UG/KG	730 U	680 U	570 U
Benzo(k)fluoranthene	UG/KG	730 U	680 U	570 U
Bis(2-chloroethoxy)methane	UG/KG	<b>730</b> U	680 U	570 U
Bis(2-chloroethyl)ether	UG/KG	730 U	680 U	570 U
Bis(2-ethylhexyl)phthalate	UG/KG	730 U	680 U	570 U
Butyl Benzyl Phthalate	UG/KG	<b>730</b> U	680 U	570 U
Carbazole	UG/KG	<b>730</b> U	6 <b>80</b> U	570 U
Chrysene	UG/KG	730 U	680 U	570 U
Di-n-butyl Phthalate	UG/KG	730 U	680 U	570 U
Di-n-octyl Phthalate	UG/KG	<b>730</b> U	680 U	570 U
Dibenzo(a,h)anthracene	UG/KG	<b>730</b> U	680 U	570 U
Dibenzofuran	UG/KG	730 U	680 U	570 U
Diethyl Phthalate	UG/KG	730 U	680 U	570 U
Dimethyl Phthalate	UG/KG	730 U	680 U	570 U
Fluoranthene	UG/KG	730 U	82 J	81 J
Fluorene	UG/KG	730 U	680 U	570 U
Hexachlorobenzene	UG/KG	730 U	680 U	570 U
Hexachlorobutadiene	UG/KG	730 U	680 U	570 U
Hexachlorocyclopentadiene	UG/KG	730 U	680 U	570 U
Hexachloroethane	UG/KG	730 U	680 U	570 U
			•	

Station Sample Id Date		RQLsd-022 RQ0038 07/08/98	RQLsd-023 RQ0041 07/08/98	RQLsd-023 RQ0042 07/08/98
Depth (ft)		0 - 1	0 - 1	1 - 2
Filtered		Total	Total	Total
Sample Type		Grab	Grab	Grab
Indeno(1,2,3-cd)pyrene	UG/KG	<b>730</b> U	680 U	570 U
Isophorone	UG/KG	<b>730</b> U	680 U	570 U
N-Nitroso-di-n-propylamine	UG/KG	730 U	680 U	570 U
N-Nitrosodiphenylamine	UG/KG	730 U	680 U	570 U
Naphthalene	UG/KG	<b>730</b> U	680 U	570 U
Nitrobenzene	UG/KG	730 U	680 U	570 U
Pentachlorophenol	UG/KG	730 U	680 U	570 U
Phenanthrene	UG/KG	730 U	680 U	570 U
Phenol	UG/KG	<b>730</b> U	680 U	570 U
Pyrene	UG/KG	730 U	89 J	75 J
1,1,1-Trichloroethane	UG/KG	11 U	10 U	8.6 U
1,1,2,2-Tetrachloroethane	UG/KG	11 U	10 U	8.6 U
1,1,2-Trichloroethane	UG/KG	11 U	10 U	8.6 U
1,1-Dichloroethane	UG/KG	11 U	10 U	8.6 U
1,1-Dichloroethene	UG/KG	11 U	10 U	<b>8.6</b> U
1,2-Dichloroethane	UG/KG	11 U	10 U	8.6 U
1,2-Dichloroethene	UG/KG	11 U	10 U	8.6 U
1,2-Dichloropropane	UG/KG	11 U	10 U	<b>8.6</b> U
1,3-cis-Dichloropropene	UG/KG	11 U	10 U	<b>8.6</b> U
1,3-trans-Dichloropropene	UG/KG	11 U	10 U	8.6 U
2-Butanone	UG/KG	<b>44 U</b>	9.6 J	6.8 J
2-Hexanone	UG/KG	<b>44</b> U	41 U	35 U
4-Methyl-2-pentanone	UG/KG	44 U	41 U	35 U
Acetone	UG/KG	12 J	34 J	26 J
Benzene	UG/KG	11 U	10 U	8.6 U
Bromodichloromethane	UG/KG	11 U	10 U	8.6 U
Bromoform	UG/KG	11 U	10 U	8.6 U
Bromomethane	UG/KG	<b>22</b> U	21 U	17 U
Carbon Disulfide	UG/KG	11 U	10 U	8.6 U
Carbon Tetrachloride	UG/KG	11 U	10 U	<b>8.6</b> U
Chlorobenzene	UG/KG	11 U	10 U	<b>8.6</b> U

Page 15

Station Sample Id Date Depth (ft) Filtered Sample Type		RQLsd-022 RQ0038 07/08/98 0 - 1 Total Grab	RQLsd-023 RQ0041 07/08/98 0 - 1 Total Grab	RQLsd-023 RQ0042 07/08/98 1 - 2 Total Grab
Chloroethane	UG/KG	22 U	21 U	17 U
Chloroform	UG/KG	11 U	10 U	8.6 U
Chloromethane	UG/KG	22 U	21 U	17 U
Dibromochloromethane	UG/KG	11 U	10 U	8.6 U
Ethylbenzene	UG/KG	11 U	10 U	8.6 U
Methylene Chloride	UG/KG	11 U	10 U	8.6 U
Styrene	UG/KG	11 U	10 U	8.6 U
Tetrachloroethene	UG/KG	11 U	10 U	8.6 U
Toluene	UG/KG	11 U	10 U	8.6 U
Trichloroethene	UG/KG	11 U	10 U	8.6 U
Vinyl Chloride	UG/KG	<b>22</b> U	<b>21</b> U	17 U
Xylenes, Total	UG/KG	11 U	10 U	8.6 U

D-51

Station Sample Id Date Filtered Sample Type		RQLsw-012 RQ0051 07/08/98 Total Field Duplicate		RQLsw-012 RQ0018 07/08/98 Total Grab	RQLsw-012 RQ0018 07/08/98 Dissolved Grab	RQLsw-013 RQ0019 07/08/98 Total Grab	RQLsw-013 RQ0019 07/08/98 Dissolved Grab	RQLsw-014 RQ0020 07/08/98 Total Grab
Cyanide	MG/L	0.01 U		0.01 U		0.01 U		0.01 U
1,3,5-Trinitrobenzene	UG/L	0.45 UJ		0.42 UJ		0.65 U		0.2 U
1,3-Dinitrobenzene	UG/L	0.45 UJ		0.42 UJ		0.65 U		0.2 U
2,4,6-Trinitrotoluene	UG/L	0.45 UJ		0.42 UJ		0.65 U		0.2 U
2,4-Dinitrotoluene	UG/L	0.3 UJ		0.27 UJ		0.42 U		0.13 U
2,6-Dinitrotoluene	UG/L	0.3 UJ		0.27 UJ		0.42 U		0.13 U
2-Nitrotoluene	UG/L	0.45 UJ		0.42 UJ		0.65 U		0.2 U
3-Nitrotoluene	UG/L	0.45 UJ		0.42 UJ		0.65 U		0.2 U
4-Nitrotoluene	UG/L	0.45 UJ		0.42 UJ		0.65 U		0.2 U 0.2 U
HMX	UG/L	1.1 UJ		1 UJ		1.6 U		0.2 U 0.5 U
Nitrobenzene	UG/L	0.45 UJ		0.42 UJ		0.65 U		0.5 U
Nitrocellulose as N	MG/L	0.0 <b>2</b> U		0.02 U		0.02 U		0.02 U
Nitroglycerin	UG/L	5.7 UJ		5.2 UJ		8.1 U		2.5 U
Nitroguanidine	UG/L	<b>20</b> U		20 U		20 U		2:5 U 20 U
RDX	UG/L	1.1 UJ		1 UJ		1.6 U		0.5 U
Tetryl	UG/L	0.45 UJ		0.42 UJ		0.65 U		0.5 U 0.2 U
Aluminum	UG/L	39400 =	84 J	49600 =	92.9 J	25500 =	72 J	200 U
Antimony	UG/L	5 U	5 U	5 U	5 U	5 U	5 U	200 U 5 U
Arsenic	UG/L	41.7 =	10 U	39.3 =	10 U	23 =	3.7 J	5 U
Barium	UG/L	406 =	45.8 J	405 =	51.1 J	175 J	15.2 J	40.1 J
Beryllium	UG/L	1.4 U	5 U	1.3 U	5 U	4 U	5 U	40.1 J 4 U
Cadmium	UG/L	2.1 J	5 U	1.5 J	5 U	5 U	5 U	4 U 5 U
Calcium	UG/L	63300 =	19000 =	58300 =	20200 =	15100 =	12300 =	18000 =
Chromium	UG/L	57.2 =	10 U	64.7 =	10 U	29.7 =	12500 10 U	10 U
Cobalt	UG/L	32 J	50 U	29.5 J	50 U	50 U	50 U	10 U 50 U
Copper	UG/L	165 =	25 U	160 =	25 U	44.9 =	25 U	25 U
Iron	UG/L	84300 =	100 U	80200 =	51.5 J	42700 =	213 =	828 =
Lead	UG/L	110 =	3 U	99.2 =	3 U	38.2 =	213 – 3 U	828 = 3 U
Magnesium	UG/L	201000 =	154000 =	202000 =	168000 =	73500 =	67600 =	3 U 33000 =
Manganese	UG/L	5130 =	273 =	4630 =	316 =	831 =	22.3 =	33000 = 67.2 =
Mercury	UG/L	0.27 =	0.2 U	0.26 =	0.2 U	.15 J	0.2 U	07.2 = 0.2 U
Nickel	UG/L	70.8 =	40 U	67.9 =	40 U	35.1 J	40 U	0.2 U 40 U

Station Sample Id Date Filtered Sample Type		RQLsw-012 RQ0051 07/08/98 Total Field Duplicate	RQLsw-012 RQ0051 07/08/98 Dissolved Field Duplicate	RQLsw-012 RQ0018 07/08/98 Total Grab	RQLsw-012 RQ0018 07/08/98 Dissolved Grab	RQLsw-013 RQ0019 07/08/98 Total Grab	RQLsw-013 RQ0019 07/08/98 Dissolved Grab	RQLsw-014 RQ0020 07/08/98 Total Grab
Potassium	UG/L	6440 J	1400 J	9550 J	1560 J	4730 J	1020 J	1050 J
Selenium	UG/L	4.2 J	5 U	5 U	5 U	5 U	5 U	5 U
Silver	UG/L	10 U	10 U	10 U	10 U	10 U	10 U	10 U
Sodium	UG/L	4450 J	3160 J	4460 J	3220 J	2450 J	2140 J	1490 J
Thallium	UG/L	2 J	2 UJ	1.7 J	2 UJ	1.8 J	2 UJ	2 UJ
Vanadium	UG/L	68.6 =	<b>50</b> U	85.3 =	50 U	40.3 J	50 U	50 U
Zinc	UG/L	531 =	20 U	492 =	20 U	264 =	20 U	20 U
1,2,4-Trichlorobenzene	UG/L	10 U		10 U		10 U	200	10 U
1,2-Dichlorobenzene	UG/L	10 U		10 U		10 U		10 U
1,3-Dichlorobenzene	UG/L	10 U		10 U		10 U		10 U
1,4-Dichlorobenzene	UG/L	10 U		10 U		10 U		10 U
2,2'-oxybis (1-chloropropane)	) UG/L	10 U		10 U		10 U		10 U
2,4,5-Trichlorophenol	UG/L	<b>25</b> U		25 U		25 U		25 U
2,4,6-Trichlorophenol	UG/L	10 U		10 U		10 U		29 U 10 U
2,4-Dichlorophenol	UG/L	10 U		10 U		10 U		10 U
2,4-Dimethylphenol	UG/L	10 U		10 U		10 U		10 U
2,4-Dinitrophenol	UG/L	<b>25</b> U		<b>25</b> U		25 U		25 U
2,4-Dinitrotoluene	UG/L	10 U		10 U		10 U		10 U
2,6-Dinitrotoluene	UG/L	10 U		10 U		10 U		10 U
2-Chloronaphthalene	UG/L	10 U		10 U		10 U		10 U
2-Chlorophenol	UG/L	10 U		10 U		10 U		10 U
2-Methylnaphthalene	UG/L	10 U		10 U		10 U		10 U
2-Methylphenol	UG/L	10 U		10 U		10 U		10 U
2-Nitroaniline	UG/L	25 U		25 U		25 U		25 U
2-Nitrophenol	UG/L	10 U		10 U		10 U		10 U
3,3'-Dichlorobenzidine	UG/L	10 U		10 U		10 U		10 U 10 U
3-Nitroaniline	UG/L	<b>25</b> U		<b>25</b> U		25 U		10 U 25 U
4,6-Dinitro-o-Cresol	UG/L	25 U		<b>25</b> U		25 U		23 U 25 U
4-Bromophenyl-phenyl Ether	UG/L	10 U		10 U		10 U		23 U 10 U
4-Chloroaniline	UG/L	10 U		10 U		10 U		10 U 10 U
4-Chlorophenyl-phenylether	UG/L	10 U		10 U		10 U		10 U 10 U
4-Methylphenol	UG/L	10 U		10 U		10 U		10 U

Station Sample Id Date Filtered Sample Type		RQLsw-012 RQ0051 07/08/98 Total Field Duplicate	RQLsw-012 RQ0051 07/08/98 Dissolved Field Duplicate	RQLsw-012 RQ0018 07/08/98 Total Grab	RQLsw-012 RQ0018 07/08/98 Dissolved Grab	RQLsw-013 RQ0019 07/08/98 Total Grab	RQLsw-013 RQ0019 07/08/98 Dissolved Grab	RQLsw-014 RQ0020 07/08/98 Total Grab
4-Nitroaniline	UG/L	<b>25</b> U		<b>25</b> U		25 U		<b>25</b> U
4-Nitrophenol	UG/L	25 U		25 U		25 U		25 U
4-chloro-3-methylphenol	UG/L	10 U		10 U		10 U		10 U
Acenaphthene	UG/L	10 U		10 U		10 U		10 U
Acenaphthylene	UG/L	10 U		10 U		10 U		10 U
Anthracene	UG/L	10 U		10 U		10 U		10 U
Benzo(a)anthracene	UG/L	10 U		10 U		10 U		10 U
Benzo(a)pyrene	UG/L	10 U		10 U		10 U		10 U
Benzo(b)fluoranthene	UG/L	10 U		10 U		10 U		10 U
Benzo(g,h,i)perylene	UG/L	10 U		10 U		10 U		10 U
Benzo(k)fluoranthene	UG/L	10 U		10 U		10 U		10 U
Bis(2-chloroethoxy)methane	UG/L	10 U		10 U		10 U		10 U
Bis(2-chloroethyl)ether	UG/L	<b>10</b> U		10 U		10 U		10 U
Bis(2-ethylhexyl)phthalate	UG/L	10 U		10 U		10 U		10 U
Butyl Benzyl Phthalate	UG/L	10 U		10 U		10 U		10 U
Carbazole	UG/L	10 U		10 U		10 U		10 U 10 U
Chrysene	UG/L	10 U		10 U		10 U		10 U
Di-n-butyl Phthalate	UG/L	10 U		10 U		10 U		10 U 10 U
Di-n-octyl Phthalate	UG/L	10 U		10 U		10 U		10 U
Dibenzo(a,h)anthracene	UG/L	10 U		10 U		10 U		10 U
Dibenzofuran	UG/L	10 U		10 U		10 U		10 U
Diethyl Phthalate	UG/L	10 U		10 U		10 U		10 U
Dimethyl Phthalate	UG/L	10 U		10 U		10 U		10 U
Fluoranthene	UG/L	10 U		10 U		10 U		10 U
Fluorene	UG/L	10 U		10 U		10 U		10 U
Hexachlorobenzene	UG/L	10 U		10 U		10 U		10 U 10 U
Hexachlorobutadiene	UG/L	10 U		10 U		10 U		10 U 10 U
Hexachlorocyclopentadiene	UG/L	10 U		10 U		10 U		10 U
Hexachloroethane	UG/L	10 U		10 U		10 U		
Indeno(1,2,3-cd)pyrene	UG/L	10 U		10 U		10 U		10 U 10 U
Isophorone	UG/L	10 U		10 U		10 U		
N-Nitroso-di-n-propylamine	UG/L	10 U		10 U		10 U		10 U 10 U

.,

Station Sample Id Date Filtered Sample Type		RQLsw-012 RQ0051 07/08/98 Total Field Duplicate	RQLsw-012 RQ0051 07/08/98 Dissolved Field Duplicate	RQLsw-012 RQ0018 07/08/98 Total Grab	RQLsw-012 RQ0018 07/08/98 Dissolved Grab	RQLsw-013 RQ0019 07/08/98 Total Grab	RQLsw-013 RQ0019 07/08/98 Dissolved Grab	RQLsw-014 RQ0020 07/08/98 Total Grab
N-Nitrosodiphenylamine	UG/L	10 U		10 U		10 U		10 U
Naphthalene	UG/L	10 U		10 U		10 U		10 U
Nitrobenzene	UG/L	10 U		10 U		10 U		10 U
Pentachlorophenol	UG/L	<b>25</b> U		25 U		<b>25</b> U		25 U
Phenanthrene	UG/L	10 U		10 U		10 U		10 U
Phenol	UG/L	10 U		10 U		10 U		10 U
Pyrene	UG/L	10 U		10 U		10 U		10 U
1,1,1-Trichloroethane	UG/L	5 U		5 U		5 U		5 U
1,1,2,2-Tetrachloroethane	UG/L	5 U		5 U		5 U		5 U
1,1,2-Trichloroethane	UG/L	5 U		5 U		5 U		5 U
1,1-Dichloroethane	UG/L	5 U		5 U		5 U		5 U
1,1-Dichloroethene	UG/L	5 U		5 U		5 U		5 U
1,2-Dichloroethane	UG/L	5 U		5 U		5 U		5 U
1,2-Dichloroethene	UG/L	5 U		5 U		5 U		5 U
1,2-Dichloropropane	UG/L	5 U		5 U		5 U		5 U
1,3-cis-Dichloropropene	UG/L	5 U		5 U		5 U		5 U
1,3-trans-Dichloropropene	UG/L	5 U		5 U		5 U		5 U
2-Butanone	UG/L	10 U		10 U		10 U		10 U
2-Hexanone	UG/L	10 U		10 U		10 U		10 U 10 U
4-Methyl-2-pentanone	UG/L	10 U		10 U		10 U		10 U
Acetone	UG/L	10 U		10 U		10 U		10 U
Benzene	UG/L	5 U		5 U		5 U		5 U
Bromodichloromethane	UG/L	5 U		5 U		5 U		5 U
Bromoform	UG/L	5 U		5 U		5 U		5 U
Bromomethane	UG/L	10 U		10 U		10 U		10 U
Carbon Disulfide	UG/L	5 U		5 U		5 U		10 U 5 U
Carbon Tetrachloride	UG/L	5 U		5 U		5 U		5 U
Chlorobenzene	UG/L	5 U		5 U		5 U		5 U
Chloroethane	UG/L	10 U		10 U		10 U		5 U 10 U
Chloroform	UG/L	5 U		5 U		5 U		10 U 5 U
Chloromethane	UG/L	10 U		10 U		10 U		5 U 10 U
Dibromochloromethane	UG/L	5 U		5 U		5 U		5 U

Station Sample Id Date Filtered Sample Type	F	.sw-012 RQ0051 7/08/98 Total Iplicate	RQLsw-012 RQ0051 07/08/98 Dissolved Field Duplicate	RQLsw-012 RQ0018 07/08/98 Total Grab	RQLsw-012 RQ0018 07/08/98 Dissolved Grab	RQLsw-013 RQ0019 07/08/98 Total Grab	RQLsw-013 RQ0019 07/08/98 Dissolved Grab	RQLsw-014 RQ0020 07/08/98 Total Grab
Ethylbenzene	UG/L	5 U		5 U		5 U		5 U
Methylene Chloride	UG/L	5 U		5 U		5 U		5 U
Styrene	UG/L	5 U		5 U		5 U		5 U
Tetrachloroethene	UG/L	5 U		5 U		5 U		5 U
Toluene	UG/L	5 U		5 U		5 U		5 U
Trichloroethene	UG/L	5 U		5 U		5 U		5 U
Vinyl Chloride	UG/L	10 U		10 U		10 U		10 U
Xylenes, Total	UG/L	5 U		5 U		5 U		5 U

Station Sample Id Date Filtered Sample Type		RQLsw-014 RQ0020 07/08/98 Dissolved Grab	RQLsw-015 RQ0021 07/08/98 Total Grab	RQLsw-015 RQ0021 07/08/98 Dissolved Grab
Cyanide	MG/L		0.01 U	
1,3,5-Trinitrobenzene	UG/L		0.2 U	
1,3-Dinitrobenzene	UG/L		0.2 U	
2,4,6-Trinitrotoluene	UG/L		0.2 U	
2,4-Dinitrotoluene	UG/L		0.13 U	
2,6-Dinitrotoluene	UG/L		0.13 U	
2-Nitrotoluene	UG/L		0.2 U	
3-Nitrotoluene	UG/L		0.2 U	
4-Nitrotoluene	UG/L		<b>0.2</b> U	
HMX	UG/L		0.5 U	
Nitrobenzene	UG/L		0.2 U	
Nitrocellulose as N	MG/L		0.02 U	
Nitroglycerin	UG/L		2.5 U	
Nitroguanidine	UG/L		20 U	
RDX	UG/L		0.5 U	
Tetryl	UG/L		0.2 U	
Aluminum	UG/L	<b>200</b> U	200 U	200 U
Antimony	UG/L	5 U	5 U	5 U
Arsenic	UG/L	10 U	5 U	10 U
Barium	UG/L	38.5 J	31.4 J	22.9 J
Beryllium	UG/L	5 U	4 U	5 U
Cadmium	UG/L	5 U	5 U	5 U
Calcium	UG/L	18000 =	16800 =	14100 =
Chromium	UG/L	10 U	10 U	10 U
Cobalt	UG/L	50 U	50 U	50 U
Copper	UG/L	<b>25</b> U	25 U	25 U
Iron	UG/L	169 =	377 =	78.2 J
Lead	UG/L	3 U	3 U	<b>3</b> U
Magnesium	UG/L	33200 =	30800 =	28900 =
Manganese	UG/L	40.6 =	72 =	8.8 J
Mercury	UG/L	0.2 U	0.2 U	0.2 U
Nickel	UG/L	40 U	<b>40</b> U	40 U

٩.

Station Sample Id Date Filtered Sample Type		RQLsw-014 RQ0020 07/08/98 Dissolved Grab	RQLsw-015 RQ0021 07/08/98 Total Grab	RQLsw-015 RQ0021 07/08/98 Dissolved Grab
Potassium	UG/L	1060 J	1520 J	1690 J
Selenium	UG/L	5 U	5 U	5 U
Silver	UG/L	10 U	10 U	10 U
Sodium	UG/L	1510 J	1570 J	1670 J
Thallium	UG/L	2 U	2 UJ	<b>2</b> U
Vanadium	UG/L	50 U	50 U	50 U
Zinc	UG/L	20 U	16.9 J	20 U
1,2,4-Trichlorobenzene	UG/L		10 U	
1,2-Dichlorobenzene	UG/L		10 U	
1,3-Dichlorobenzene	UG/L		10 U	
1,4-Dichlorobenzene	UG/L		10 U	
2,2'-oxybis (1-chloropropane	) UG/L		10 U	
2,4,5-Trichlorophenol	UG/L		25 U	
2,4,6-Trichlorophenol	UG/L		10 U	
2,4-Dichlorophenol	UG/L		10 U	
2,4-Dimethylphenol	UG/L		10 U	
2,4-Dinitrophenol	UG/L		25 U	
2,4-Dinitrotoluene	UG/L		10 U	
2,6-Dinitrotoluene	UG/L		10 U	
2-Chloronaphthalene	UG/L		10 U	
2-Chlorophenoi	UG/L		10 U	
2-Methylnaphthalene	UG/L		10 U	
2-Methylphenol	UG/L		<b>10</b> U	
2-Nitroaniline	UG/L		25 U	
2-Nitrophenol	UG/L		10 U	
3,3'-Dichlorobenzidine	UG/L		10 U	
3-Nitroaniline	UG/L		25 U	
4,6-Dinitro-o-Cresol	UG/L		25 U	
4-Bromophenyl-phenyl Ether	UG/L		10 U	
4-Chloroaniline	UG/L		10 U	
4-Chlorophenyl-phenylether	UG/L		10 U	
4-Methylphenol	UG/L		10 U	

Station Sample Id Date Filtered Sample Type		RQLsw-014 RQ0020 07/08/98 Dissolved Grab	RQLsw-015 RQ0021 07/08/98 Total Grab	RQLsw-015 RQ0021 07/08/98 Dissolved Grab
4-Nitroaniline	UG/L		25 U	
4-Nitrophenol	UG/L		25 U	
4-chloro-3-methylphenol	UG/L		10 U	
Acenaphthene	UG/L		10 U	
Acenaphthylene	UG/L		10 U	
Anthracene	UG/L		10 U	
Benzo(a)anthracene	UG/L		10 U	
Benzo(a)pyrene	UG/L		10 U	
Benzo(b)fluoranthene	UG/L		10 U	
Benzo(g,h,i)perylene	UG/L		10 U	
Benzo(k)fluoranthene	UG/L		10 U	
Bis(2-chloroethoxy)methane	UG/L		10 U	
Bis(2-chloroethyl)ether	UG/L		10 U	
Bis(2-ethylhexyl)phthalate	UG/L		10 U	
Butyl Benzyl Phthalate	UG/L		10 U	
Carbazole	UG/L		10 U	
Chrysene	UG/L		10 U	
Di-n-butyl Phthalate	UG/L		10 U	
Di-n-octyl Phthalate	UG/L		10 U	
Dibenzo(a,h)anthracene	UG/L		10 U	
Dibenzofuran	UG/L		10 U	
Diethyl Phthalate	UG/L		10 U	
Dimethyl Phthalate	UG/L		10 U	
Fluoranthene	UG/L		10 U	
Fluorene	UG/L		10 U	
Hexachlorobenzene	UG/L		10 U	
Hexachlorobutadiene	UG/L		10 U	
Hexachlorocyclopentadiene	UG/L		10 U	
Hexachloroethane	UG/L		10 U	
Indeno(1,2,3-cd)pyrene	UG/L		10 U	
Isophorone	UG/L		10 U	
N-Nitroso-di-n-propylamine	UG/L		10 U	

-

Station Sample Id Date Filtered Sample Type		RQLsw-014 RQ0020 07/08/98 Dissolved Grab	RQLsw-015 RQ0021 07/08/98 Total Grab	RQLsw-015 RQ0021 07/08/98 Dissolved Grab
N-Nitrosodiphenylamine	UG/L		10 U	
Naphthalene	UG/L		10 U	
Nitrobenzene	UG/L		10 U	
Pentachlorophenol	UG/L		25 U	
Phenanthrene	UG/L		10 U	
Phenol	UG/L		10 U	
Pyrene	UG/L		10 U	
1,1,1-Trichloroethane	UG/L		5 U	
1,1,2,2-Tetrachloroethane	UG/L		5 U	
1,1,2-Trichloroethane	UG/L		5 U	
1,1-Dichloroethane	UG/L		5 U	
1,1-Dichloroethene	UG/L		5 U	
1,2-Dichloroethane	UG/L		5 U	
1,2-Dichloroethene	UG/L		5 U	
1,2-Dichloropropane	UG/L		5 U	
1,3-cis-Dichloropropene	UG/L		5 U	
1,3-trans-Dichloropropene	UG/L		5 U	
2-Butanone	UG/L		10 U	
2-Hexanone	UG/L		10 U	
4-Methyl-2-pentanone	UG/L		10 U	
Acetone	UG/L		10 U	
Benzene	UG/L		5 U	
Bromodichloromethane	UG/L		5 U	
Bromoform	UG/L		5 U	
Bromomethane	UG/L		10 U	
Carbon Disulfide	UG/L		5 U	
Carbon Tetrachloride	UG/L		5 U	
Chlorobenzene	UG/L		5 U	
Chloroethane	UG/L		10 U	
Chloroform	UG/L		5 U	
Chloromethane	UG/L		10 U	
Dibromochloromethane	UG/L		5 U	

Station Sample Id Date Filtered Sample Type		RQLsw-014 RQ0020 07/08/98 Dissolved Grab	RQLsw-015 RQ0021 07/08/98 Total Grab	RQLsw-015 RQ0021 07/08/98 Dissolved Grab
Ethylbenzene	UG/L		5 U	
Methylene Chloride	UG/L		5 U	
Styrene	UG/L		5 U	
Tetrachloroethene	UG/L		5 U	
Toluene	UG/L		5 U	
Trichloroethene	UG/L		5 U	
Vinyl Chloride	UG/L		10 U	
Xylenes, Total	UG/L		5 U	

.

.

**D2. BY SAMPLE STATION – ALL MEDIA** 

7

#### Location: Ramsdell Quarry Landfill Station : MW-1 Existing Well

#### RQLmw-001-0001-GW

1-GW	Field Sample Type: Grab Matrix: Groundwater						Collected: (	07/14/98
Sample Type	Cyanide	Result	Units	Qual Lab	ifiers Data	Validation Code		
REG	Cyanide	0.01	MG/L	<u> </u>	U		-	
Sample Type	Metais	Result	Units	Qual Lab	ifiers Data	Validation Code		
REG	Aluminum		UG/L		J	101	-	
REG REG	Antimony Arsenic		UG/L UG/L	U	U =			
REG	Barium		UG/L	в	J			
REG	Beryllium		UG/L	U	U			
REG REG	Cadmium Calcium	5 56100	UG/L	U	U =			
REG	Chromium		UG/L	U	Ū			
REG	Cobalt	47.2	UG/L	8	J			
REG	Copper		UG/L	в	J			
REG REG	Iron Lead	19700	UG/L UG/L		=			
REG	Magnesium	22500			-			
REG	Manganese	2320	UG/L		=			
REG	Mercury		UG/L	В	J			
REG REG	Nickel Potassium		UG/L UG/L		=			
REG	Selenium		UG/L	U	Ū			
REG	Silver		UG/L	Ŭ	Ŭ			
REG	Sodium		UG/L	В	U	F06		
REG	Thallium		UG/L	U	U			
REG REG	Vanadium Zinc		UG/L UG/L	U	U =			
NEQ.	2.00	000	00/2		-			
Sample Type	Filtered Metals	Result	Units	Quall Lab	fiers Data	Validation Code		
REG	Aluminum		UG/L	U	U		-	
REG	Antimony	-	UG/L	U	U			
REG REG	Arsenic Barium		UG/L UG/L	U B	บ บ	F06		
REG	Beryilium		UG/L	Ŭ	Ŭ	FUO		
REG	Cadmium		UG/L	Ū	Ū			
REG	Calcium	58200			=			
REG	Chromium		UG/L	U	Ů			
REG REG	Cobalt Copper		UG/L UG/L	B U	n 1			
REG	Iron		UG/L	U	=			
REG	Lead		UG/L	U	U			
REG	Magnesium	23400			=			
REG	Manganese		UG/L	-	=			
REG REG	Nickel	0.081	UG/L UG/L	8	J =			
REG	Potassium		UG/L		=			
REG	Selenium		UG/L	U	U			
REG	Silver		UG/L	U	U	_		
REG	Sodium		UG/L	в	U	F06		
REG REG	Thallium Vanadium		UG/L UG/L	U U	U U			
REG	Zinc		UG/L	Ũ	=			
Sample		_ /		Quali		Validation		
Туре	Explosives	Result	Units	Lab	Data	Code	_	
REG	1,3,5-Trinitrobenzene		UG/L	U	U		-	
REG	1,3-Dinitrobenzene		UG/L	U	U			
REG REG	2,4,6-Trinitrotoluene 2,4-Dinitrotoluene		UG/L UG/L	บ บ	U U			
REG	2,6-Dinitrotoluene		UG/L	Ŭ	Ŭ			
REG	2-Nitrotoluene		UG/L	Ŭ	U			
REG	3-Nitrotoluene		UG/L	U	U			
REG	4-Nitrotoluene		UG/L	U	U U			
REG REG	HMX Nitrobenzene		UG/L UG/L	U U	U			
REG	Nitrocellulose as N		MG/L	Ŭ	Ŭ			
REG	Nitroglycerin		UG/L	U	U			
	· · · · · · · · · · · · · · · · · · ·							_

# Location: Ramsdell Quarry Landfill Station: MW-1 Existing Well

Sample Type	Explosives	Result	Units		ualifiers ab Data	Validation Code	
REG	Nitroguanidine		UG/L	- <del></del>			
REG	RDX		UG/L	UU	U U		
REG	Tetryl	0.068		J	ì		
Sample Type	Semi-Volatile Organics	Result	Units		ualifiers ab Data	Validation Code	
REA	1,2,4-Trichlorobenzene	10	UG/L	υ	UJ	A01	
REA	1,2-Dichlorobenzene	10	UG/L	U	UJ	A01	
REA	1,3-Dichlorobenzene		UG/L	U	UJ	A01	
REA	1,4-Dichlorobenzene		UG/L	U	UJ	A01	
REA REA	2,2'-oxybis (1-chloropropane)		UG/L	U	UJ	A01	
REA	2,4,5-Trichlorophenol 2,4,6-Trichlorophenol		UG/L UG/L	U U	U) UJ	A01 A01	
REA	2,4-Dichlorophenol		UG/L	Ŭ	UJ	A01 A01	
REA	2,4-Dimethylphenol		UG/L	Ŭ	UJ UJ	A01	
REA	2,4-Dinitrophenol		UG/L	Ŭ	UJ	A01	
REA	2.4-Dinitrotoluene		UG/L	ŭ	ŰĴ	A01	
REA	2.6-Dinitrotoluene		UG/L	Ũ	UJ	A01	
REA	2-Chloronaphthalene		UG/L	Ŭ	UJ	A01	
REA	2-Chlorophenol	10	UG/L	υ	UJ	A01	
REA	2-Methylnaphthalene	10	UG/L	U	UJ	A01	
REA	2-Methylphenol	10	UG/L	U	UJ	A01	
REA	2-Nitroaniline		UG/L	U	ບປ	A01	
REA	2-Nitrophenol		UG/L	U	UJ	A01	
REA	3,3'-Dichlorobenzidine		UG/L	U	UJ	A01	
REA	3-Nitroaniline		UG/L	U	UJ	A01	
REA	4,6-Dinitro-o-Cresol		UG/L	U	UJ	A01	
REA REA	4-Bromophenyl-phenyl Ether		UG/L	U	UJ	A01	
REA	4-Chloroaniline		UG/L UG/L	ป บ	UJ UJ	A01	
REA	4-Chlorophenyl-phenylether 4-Methylphenol		UG/L	Ŭ	UJ	A01 A01	
REA	4-Nitroaniline		UG/L	ŭ	UJ	A01	
REA	4-Nitrophenol		UG/L	ŭ	UJ	A01	
REA	4-chloro-3-methylphenol		UG/L	Ū	ŬĴ	A01	
REA	Acenaphthene		UG/L	Ū	IJ	A01	
REA	Acenaphthylene	10	UG/L	U	UJ	A01	
REA	Anthracene	10	UG/L	U	UJ	A01	
REA	Benzo(a)anthracene		UG/L	U	UJ	A01	
REA	Benzo(a)pyrene		UG/L	U	UJ	A01	
REA	Benzo(b)fluoranthene		UG/L	U	UJ	A01	
REA REA	Benzo(g,h,i)perylene		UG/L	U	IJ	A01	
REA	Benzo(k)fluoranthene Bis(2-chloroethoxy)methane		UG/L UG/L	U U	UJ UJ	A01 A01	
REA	Bis(2-chloroethyl)ether		UG/L	Ŭ	00	A01	
REA	Bis(2-ethylhexyl)phthalate		UG/L	Ŭ	ບມ	A01	
REA	Butyl Benzyl Phthalate		UG/L	Ū	ບັ້	A01	
REA	Carbazole		UG/L	Ū	ŬĴ	A01	
REA	Chrysene		UG/L	Ū	IJ	A01	
REA	Di-n-butyl Phthalate		UG/L	U	UJ	A01	
REA	Di-n-octyl Phthalate		UG/L	U	UJ	A01	
REA	Dibenzo(a,h)anthracene		UG/L	U	UJ	A01	
REA	Dibenzofuran		UG/L	U	UJ	A01	
REA	Diethyl Phthalate		UG/L	U	ບມ	A01	
REA	Dimethyl Phthalate		UG/L	U	ຍມ	A01	
REA REA	Fluoranthene Fluorene		UG/L UG/L	U U	ຄາ ດາ	A01 A01	
REA	Hexachlorobenzene		UG/L	U	01	A01	
REA	Hexachlorobutadiene		UG/L	Ŭ	UJ	A01	
REA	Hexachlorocyclopentadiene		UG/L	ŭ	UJ UJ	A01.C05	
REA	Hexachloroethane		UG/L	Ŭ	UJ	A01	
REA	Indeno(1,2,3-cd)pyrene		UG/L	Ŭ	UJ	A01	
REA	Isophorone		UG/L	Ū	UJ	A01	
REA	N-Nitroso-di-n-propylamine		UG/L	U	UJ	A01	
REA	N-Nitrosodiphenylamine		UG/L	U	UJ	A01	
REA	Naphthalene		UG/L	U	UJ	A01	
REA	Nitrobenzene		UG/L	U	UJ	A01	
REA	Pentachlorophenol		UG/L	U	UJ	A01	
REA	Phenanthrene	10	UG/L	U	UJ	A01	

### Location: Ramsdell Quarry Landfill Station : MW-1 Existing Well

Sample Type	) Semi-Volatile Organics	Result		Units	Qu La	ualifiers b Data	Validation Code	
REA	Pyrene		10	UG/L	U	ÛĴ	A01	<u></u>
Sample Type	semi-Volatile Organics	Result		Units	Qu La	ualifiers b Data	Validation Code	
REG	1,2,4-Trichlorobenzene		10	UG/L	υ	U	11-02	_
REG	1,2-Dichlorobenzene			UG/L	U	U		
REG	1,3-Dichlorobenzene			UG/L	U	U		
REG REG	1,4-Dichlorobenzene 2,2'-oxybis (1-chloropropane)			UG/L UG/L	ม ป	U U		
REG	2,4,5-Trichlorophenol			UG/L	ŭ	R	G04	
REG	2,4,6-Trichlorophenol			UG/L	Ū	R	G04	
REG	2,4-Dichlorophenol			UG/L	U	R	G04	
REG	2,4-Dimethylphenol			UG/L	U	R	G04	
REG REG	2,4-Dinitrophenol 2,4-Dinitrotoluene			UG/L UG/L	U U	R U	G04	
REG	2,6-Dinitrotoluene			UG/L	Ŭ	Ŭ		
REG	2-Chloronaphthalene		10	UG/L	U	U		
REG	2-Chlorophenol			UG/L	U	R	G04,H03	
REG	2-Methylnaphthalene			UG/L	U	Ŭ		
REG REG	2-Methylphenol 2-Nitroaniline			UG/L UG/L	U U	R U	G04	
REG	2-Nitrophenol			UG/L	Ŭ	R	G04	
REG	3,3'-Dichlorobenzidine			UG/L	Ŭ	Ü		
REG	3-Nitroaniline		25	UG/L	U	U		
REG	4,6-Dinitro-o-Cresol			UG/L	U	R	G04	
REG	4-Bromophenyl-phenyl Ether			UG/L	U	U		
REG REG	4-Chloroaniline 4 Chlorophonyl phonylothor			UG/L UG/L	U U	U U		
REG	4-Chlorophenyl-phenylether 4-Methylphenol			UG/L	ŭ	R	G07	
REG	4-Nitroaniline			UG/L	Ŭ	บ		
REG	4-Nitrophenol		25	UG/L	U	R	G04,H03	
REG	4-chloro-3-methylphenol			UG/L	U	R	H03,G04	
REG	Acenaphthene			UG/L	U	U		
REG REG	Acenaphthylene Anthracene			UG/L UG/L	U U	บ บ		
REG	Benzo(a)anthracene			UG/L	Ŭ	บั		
REG	Benzo(a)pyrene			UG/L	Ū	บ		
REG	Benzo(b)fluoranthene			UG/L	U	ບ		
REG	Benzo(g,h,i)perylene			UG/L	U	U		
REG REG	Benzo(k)fluoranthene Bis(2-chloroethoxy)methane			UG/L UG/L	U U	U U		
REG	Bis(2-chloroethyl)ether			UG/L	Ŭ	Ŭ		
REG	Bis(2-ethylhexyl)phthalate			UG/L	Ŭ	Ū		
REG	Butyl Benzyl Phthalate			UG/L	U	U		
REG	Carbazole			UG/L	Ų	U		
REG	Chrysene Dia batha Dhibatata			UG/L	U	U		
REG REG	Di-n-butyl Phthalate Di-n-octyl Phthalate			UG/L UG/L	บ บ	U U		
REG	Dibenzo(a,h)anthracene			UG/L	Ŭ	Ŭ		
REG	Dibenzofuran			UG/L	Ũ	Ū		
REG	Diethyl Phthalate			UG/L	U	U		
REG	Dimethyl Phthalate			UG/L	U	U		
REG	Fluoranthene			UG/L	U U	บ บ		
REG REG	Fluorene Hexachlorobenzene			UG/L UG/L	Ŭ	U		
REG	Hexachlorobutadiene			UG/L	Ŭ	บั		
REG	Hexachlorocyclopentadiene			UG/L	Ū	Ū		
REG	Hexachloroethane			UG/L	U	U		
REG	Indeno(1,2,3-cd)pyrene			UG/L	U	U		
REG	Isophorone			UG/L	U	U		
REG REG	N-Nitroso-di-n-propylamine N-Nitrosodiphenylamine			UG/L UG/L	U U	U U		
REG	Naphthalene			UG/L	Ŭ	บ		
REG	Nitrobenzene			UG/L	Ŭ	Ŭ		
REG	Pentachlorophenol			UG/L	U	R	H03,G04	
REG	Phenanthrene			UG/L	U	U	0041100	
REG REG	Phenol Pyrene			UG/L UG/L	บ บ	R U	G04,H03	

Sample Type	Volatile Organics	Result	Units	Qual Lab	i <b>fiers</b> Data	Validation Code
REG	1,1,1-Trichloroethane	5	UG/L	<u> </u>	U	
REG	1,1,2,2-Tetrachloroethane	5	UG/L	U	Ū	
REG	1,1,2-Trichloroethane	5	UG/L	Ū	Ū	
REG	1,1-Dichloroethane	5	UG/L	Ú	Ū	
REG	1,1-Dichloroethene	5	UG/L	Ū	Ū	
REG	1,2-Dichloroethane	5	UG/L	U	U	
REG	1,2-Dichloroethene	5	UG/L	υ	U	
REG	1,2-Dichloropropane	5	UG/L	υ	U	
REG	1,3-cis-Dichloropropene	5	UG/L	U	U	
REG	1,3-trans-Dichloropropene	5	UG/L	υ	U	
REG	2-Butanone	10	UG/L	U	U	
REG	2-Hexanone	10	UG/L	U	U	
REG	4-Methyl-2-pentanone	10	UG/L	U	U	
REG	Acetone	10	UG/L	Ŭ	Ū	
REG	Benzene	5	UG/L	U	Ū	
REG	Bromodichloromethane	5	UG/L	Ű	Ū	
REG	Bromoform	5	UG/L	U	Ū	
REG	Bromomethane	10	UG/L	U	υ	
REG	Carbon Disulfide	5	UG/L	U	U	
REG	Carbon Tetrachloride	5	UG/L	Ū	Ū	
REG	Chlorobenzene	5	UG/L	Ū	U	
REG	Chloroethane	10	UG/L	Ŭ	Ŭ	
REG	Chloroform	5	UG/L	Ū	Ŭ	
REG	Chloromethane	10	UG/L	Ū	Ū	
REG	Dibromochloromethane	5	UG/L	Ú -	Ŭ	
REG	Ethylbenzene	5	UG/L	Ū	Ū	
REG	Methylene Chloride		UG/L	Ū	Ū	
REG	Styrene		UG/L	Ū	Ŭ	
REG	Tetrachloroethene	5	UG/L	Ū	Ū	
REG	Toluene		UG/L	Ū	Ū	
REG	Trichloroethene		UG/L	Ū	Ū	
REG	Vinyl Chloride	-	UG/L	Ŭ	Ŭ	
REG	Xylenes, Total		UG/L	Ŭ	Ŭ	
_	• •	-		-	-	

Location: Ramsdell Quarry Landfill Station: MW-2 Existing Well

RQLmw-002-0002-GV

Sample Type	Cyanide	Result	Units	Qual Lab	iflers Data	Validation Code		
		· · · · ·						
REG	Cyanide	0.01	MG/L	U	U			
Sample Type	Metals	Result	Units	Qual Lab	ifiers Data	Validation Code		
REG	Aluminum	87700	UG/L		J	101	_	
REG	Antimony	5	UG/L	U	ប			
REG	Arsenic	108	UG/L		=			
REG	Barium	181	UG/L	в	J			
REG	Beryllium	3.6	UG/L	в	J			
REG	Cadmium	19	UG/L		=			
REG	Calcium	91300	UG/L		=			
REG	Chromium	23.3	UG/L		=			
REG	Cobalt	90.6	UG/L		=			
REG	Copper	72.8	UG/L		=			
REG	Iron	55600	UG/L		=			
REG	Lead	74.8	UG/L		=			
REG	Magnesium	29700	UG/L		=			
REG	Manganese	4490	UG/L		=			
REG	Mercury	0.29	UG/L		=			
REG	Nickel	169	UG/L		=			
REG	Potassium	5790	UG/L		=			
REG	Selenium	4.8	UG/L	в	J			
REG	Silver	10	UG/L	U	U			
REG	Sodium	2920	UG/L	в	U	F06		
REG	Thallium	3.7	UG/L		=			
REG	Vanadium	22.4	UG/L	в	J			
REG	Zinc	1040	UG/L		=			
Sample					lifiers	Validation		
Туре	Filtered Metals	Result	Units	Lab	Data	Code		
REG	Aluminum	200	UG/L	U	U			
REG	Antimony	5	UG/L	U	U			

Location:	Ramsdell Qu	arry Landfill
Station :	MW-2	Existing Well

#### RQLmw-002-0002-GW

.

		· · · · ·			oundwa	
ample Type	Filtered Metals	Result	Units	Quali Lab	fiers Data	Validation Code
REG	Arsenic		UG/L	В	J	
REG REG	Barium Beryllium		UG/L UG/L	B บ	n 1	
REG	Cadmium		UG/L	8	J	
REG	Calcium	85800		8	-	
REG	Chromium		UG/L	U	U	
REG	Cobalt		UG/L	Ŭ	Ŭ	
REG	Copper		UG/L	Ū	Ū	
REG	Iron	100	UG/L	U	U	
REG	Lead	3	UG/L	U	U	
REG	Magnesium	18500			=	
REG	Manganese	•••	UG/L	_	=	
REG	Mercury		UG/L	В	J	
REG REG	Nickel Potassium		UG/L UG/L	B B	J	
REG	Selenium		UG/L	U U	ม บ	
REG	Silver		UG/L	Ŭ	Ŭ	
REG	Sodium		UG/L	в	Ŭ	F06
REG	Thallium		UG/L	в	Ĵ	
REG	Vanadium		UG/L	Ũ	Ŭ	
REG	Zinc	168	UG/L		=	
ampie Type	Explosives	Result	Units	Quali Lab	fiers Data	Validation Code
REG	1,3,5-Trinitrobenzene					
REG	1,3-Dinitrobenzene		UG/L	U	Ŭ	
REG	2,4,6-Trinitrotoluene		UG/L	Ŭ	ŭ	
REG	2,4-Dinitrotoluene		UG/L	Ū	Ū	
REG	2,6-Dinitrotoluene	0.13	UG/L	U	υ	
REG	2-Nitrotoluene	0.2	UG/L	U	U	
REG	3-Nitrotoluene		UG/L	U	U	
REG	4-Nitrotoluene		UG/L	U	U	
REG	HMX		UG/L	U	U	
REG REG	Nitrobenzene		UG/L	U	U	
REG	Nitrocellulose as N Nitroglycerin		MG/L UG/L	U U	U U	
REG	Nitroguanidine		UG/L	U	Ŭ	
REG	RDX		UG/L	J	Ĵ	
REG	Tetryl		UG/L	Ŭ	Ŭ	
ample Type	Semi-Volatile Organics	Result	Units	Quali Lab	fiers Data	Validation Code
REA	1,2,4-Trichlorobenzene		UG/L	U	0J	A01
REA	1,2-Dichlorobenzene		UG/L	U	υJ	A01
REA	1,3-Dichlorobenzene		UG/L	U	UJ	A01
REA	1,4-Dichlorobenzene	10	UG/L	U	UJ	A01
REA	2,2'-oxybis (1-chloropropane)	10	UG/L	U	UJ	A01
REA REA	2,2'-oxybis (1-chloropropane) 2,4,5-Trichlorophenol	10 25	UG/L UG/L	U U	UJ	A01
REA REA REA	2,2'-oxybis (1-chloropropane) 2,4,5-Trichlorophenol 2,4,6-Trichlorophenol	10 25 10	UG/L UG/L UG/L	U U U	UJ UJ	A01 A01
REA REA REA REA	2,2'-oxybis (1-chloropropane) 2,4,5-Trichlorophenol 2,4,6-Trichlorophenol 2,4-Dichlorophenol	10 25 10 10	UG/L UG/L UG/L UG/L	U U	UJ	A01 A01 A01
REA REA REA	2,2'-oxybis (1-chloropropane) 2,4,5-Trichlorophenol 2,4,6-Trichlorophenol 2,4-Dichlorophenol 2,4-Dimethylphenol	10 25 10 10 10	UG/L UG/L UG/L	U U U U	01 01 01	A01 A01
REA REA REA REA REA	2,2'-oxybis (1-chloropropane) 2,4,5-Trichlorophenol 2,4,6-Trichlorophenol 2,4-Dichlorophenol	10 25 10 10 10 25	UG/L UG/L UG/L UG/L UG/L	บ บ บ บ	01 01 01	A01 A01 A01 A01
REA REA REA REA REA REA	2,2'-oxybis (1-chloropropane) 2,4,5-Trichlorophenol 2,4,6-Trichlorophenol 2,4-Dichlorophenol 2,4-Dimethylphenol 2,4-Dimitrophenol	10 25 10 10 10 25 10	UG/L UG/L UG/L UG/L UG/L UG/L	บ บ บ บ บ	01 01 01 01 01	A01 A01 A01 A01 A01
REA REA REA REA REA REA	2,2'-oxybis (1-chloropropane) 2,4,5-Trichlorophenol 2,4,6-Trichlorophenol 2,4-Dichlorophenol 2,4-Dimethylphenol 2,4-Dinitrophenol 2,4-Dinitrotoluene	10 25 10 10 10 25 10 10	UG/L UG/L UG/L UG/L UG/L UG/L UG/L	U U U U U U U	01 01 01 01 01 01 01	A01 A01 A01 A01 A01 A01
REA REA REA REA REA REA REA	2,2'-oxybis (1-chloropropane) 2,4,5-Trichlorophenol 2,4,6-Trichlorophenol 2,4-Dichlorophenol 2,4-Dimethylphenol 2,4-Dimitrophenol 2,4-Dinitrotoluene 2,6-Dinitrotoluene	10 25 10 10 10 25 10 10 10	UG/L UG/L UG/L UG/L UG/L UG/L UG/L	U U U U U U U U	01 01 01 01 01 01 01 01	A01 A01 A01 A01 A01 A01 A01
REA REA REA REA REA REA REA REA	2,2'-oxybis (1-chloropropane) 2,4,5-Trichlorophenol 2,4,6-Trichlorophenol 2,4-Dichlorophenol 2,4-Dimethylphenol 2,4-Dinitrophenol 2,4-Dinitrotoluene 2,6-Dinitrotoluene 2-Chloronaphthalene	10 25 10 10 10 25 10 10 10 10	UG/L UG/L UG/L UG/L UG/L UG/L UG/L	U U U U U U U U U		A01 A01 A01 A01 A01 A01 A01 A01
REA REA REA REA REA REA REA REA REA REA	2,2'-oxybis (1-chloropropane) 2,4,5-Trichlorophenol 2,4,6-Trichlorophenol 2,4-Dichlorophenol 2,4-Dimethylphenol 2,4-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2-Chloronaphthalene 2-Chlorophenol 2-Methylnaphthalene 2-Methylphenol	10 25 10 10 10 25 10 10 10 10 10	UG/L UG/L UG/L UG/L UG/L UG/L UG/L UG/L			A01 A01 A01 A01 A01 A01 A01 A01 A01 A01
REA REA REA REA REA REA REA REA REA REA	2,2'-oxybis (1-chloropropane) 2,4,5-Trichlorophenol 2,4,6-Trichlorophenol 2,4-Dichlorophenol 2,4-Dimethylphenol 2,4-Dimitrotoluene 2,6-Dinitrotoluene 2-Chloronaphthalene 2-Chlorophenol 2-Methylnaphthalene 2-Methylphenol 2-Nitroaniline	10 25 10 10 10 25 10 10 10 10 10 10 25	UG/L UG/L UG/L UG/L UG/L UG/L UG/L UG/L			A01 A01 A01 A01 A01 A01 A01 A01 A01 A01
REA REA REA REA REA REA REA REA REA REA	2,2'-oxybis (1-chloropropane) 2,4,5-Trichlorophenol 2,4,6-Trichlorophenol 2,4-Dichlorophenol 2,4-Dinitrophenol 2,4-Dinitrophenol 2,4-Dinitrotoluene 2,6-Dinitrotoluene 2-Chloronaphthalene 2-Chlorophenol 2-Methylnaphthalene 2-Methylphenol 2-Nitroaniline 2-Nitrophenol	10 25 10 10 10 25 10 10 10 10 10 10 25 10	UG/L UG/L UG/L UG/L UG/L UG/L UG/L UG/L	<b>ບບບບບບບບບບບບບບບບບບບບບບບບບບບບບບບບບບບບບ</b>		A01 A01 A01 A01 A01 A01 A01 A01 A01 A01
REA REA REA REA REA REA REA REA REA REA	2,2'-oxybis (1-chloropropane) 2,4,5-Trichlorophenol 2,4,6-Trichlorophenol 2,4-Dinitrophenol 2,4-Dinitrophenol 2,4-Dinitrotoluene 2,4-Dinitrotoluene 2,6-Dinitrotoluene 2-Chloronaphthalene 2-Chlorophenol 2-Methylnaphthalene 2-Methylphenol 2-Nitroaniline 2-Nitrophenol 3,3'-Dichlorobenzidine	10 25 10 10 25 10 10 10 10 10 10 10 10 25 10	UG/L UG/L UG/L UG/L UG/L UG/L UG/L UG/L	<b>ບບບບບບບບບບບບບບບບບບບບບບບບບບບບບບ</b> ບ		A01 A01 A01 A01 A01 A01 A01 A01 A01 A01
REA REA REA REA REA REA REA REA REA REA	2,2'-oxybis (1-chloropropane) 2,4,5-Trichlorophenol 2,4,6-Trichlorophenol 2,4-Dichlorophenol 2,4-Dimethylphenol 2,4-Dinitrotoluene 2,6-Dinitrotoluene 2-Chloronaphthalene 2-Chlorophenol 2-Methylnaphthalene 2-Methylphenol 2-Nitroaniline 3,3'-Dichlorobenzidine 3-Nitroaniline	10 25 10 10 10 10 10 10 10 10 25 10 10 25	UG/L UG/L UG/L UG/L UG/L UG/L UG/L UG/L	v v v v v v v v v v v v v v v v v v v		A01 A01 A01 A01 A01 A01 A01 A01 A01 A01
REA REA REA REA REA REA REA REA REA REA	2,2'-oxybis (1-chloropropane) 2,4,5-Trichlorophenol 2,4,6-Trichlorophenol 2,4-Dichlorophenol 2,4-Dinitrophenol 2,4-Dinitrotoluene 2,6-Dinitrotoluene 2-Chloronaphthalene 2-Chlorophenol 2-Methylnaphthalene 2-Methylphenol 2-Nitroaniline 2-Nitroaniline 3,3'-Dichlorobenzidine 3-Nitroaniline 4,6-Dinitro-o-Cresol	10 25 10 10 10 25 10 10 10 25 10 10 25 10 25 25	UG/L UG/L UG/L UG/L UG/L UG/L UG/L UG/L	<b>ບບບບບບບບບບບບບບບບບບບບບບບບບບບບບບບບບບບບບ</b>		A01 A01 A01 A01 A01 A01 A01 A01 A01 A01
REA REA REA REA REA REA REA REA REA REA	2,2'-oxybis (1-chloropropane) 2,4,5-Trichlorophenol 2,4,6-Trichlorophenol 2,4-Dichlorophenol 2,4-Dimethylphenol 2,4-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2-Chlorophenol 2-Methylnaphthalene 2-Methylphenol 2-Methylphenol 2-Nitroaniline 3,3'-Dichlorobenzidine 3-Nitroaniline 4,6-Dinitro-o-Cresol 4-Bromophenyl-phenyl Ether	10 25 10 10 25 10 10 10 10 25 10 10 25 10 25 10	UG/L UG/L UG/L UG/L UG/L UG/L UG/L UG/L			A01 A01 A01 A01 A01 A01 A01 A01 A01 A01
REA REA REA REA REA REA REA REA REA REA	2,2'-oxybis (1-chloropropane) 2,4,5-Trichlorophenol 2,4,6-Trichlorophenol 2,4-Dichlorophenol 2,4-Dimethylphenol 2,4-Dinitrotoluene 2,6-Dinitrotoluene 2-Chloronaphthalene 2-Chlorophenol 2-Methylphenol 2-Methylphenol 2-Nitroaniline 2-Nitroaniline 3,3'-Dichlorobenzidine 3-Nitroaniline 4,6-Dinitro-o-Cresol 4-Bromophenyl-phenyl Ether 4-Chloroaniline	10 25 10 10 25 10 10 10 10 25 10 10 25 10 10 25 10 10 25 10	UG/L UG/L UG/L UG/L UG/L UG/L UG/L UG/L			A01 A01 A01 A01 A01 A01 A01 A01 A01 A01
REA REA REA REA REA REA REA REA REA REA	2,2'-oxybis (1-chloropropane) 2,4,5-Trichlorophenol 2,4,6-Trichlorophenol 2,4-Dichlorophenol 2,4-Dimethylphenol 2,4-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2-Chlorophenol 2-Methylnaphthalene 2-Methylphenol 2-Methylphenol 2-Nitroaniline 3,3'-Dichlorobenzidine 3-Nitroaniline 4,6-Dinitro-o-Cresol 4-Bromophenyl-phenyl Ether	10 25 10 10 25 10 10 10 10 10 25 25 25 10 10 10 10 25 20 10 10	UG/L UG/L UG/L UG/L UG/L UG/L UG/L UG/L			A01 A01 A01 A01 A01 A01 A01 A01 A01 A01

Matrix: Groundwater

Collected: 07/13/98

Field Sample Type: Grab

#### Location: Ramsdell Quarry Landfill Station : MW-2 Existing Well

### RQLmw-002-0002-GW

Sample Type	Semi-Volatile Organics	Result		Units	Quali Lab	ifiers Data	Validation Code
REA	4-Nitrophenol		25	UG/L	<u> </u>	UJ	A01
REA	4-chloro-3-methylphenol			UG/L	Ŭ	UJ	A01
REA	Acenaphthene			UG/L	Ŭ	IJ	A01
REA	Acenaphthylene			UG/L	Ŭ	UJ	A01
REA	Anthracene			UG/L	ŭ	UJ	A01
REA	Benzo(a)anthracene			UG/L	Ũ	UJ	A01
REA	Benzo(a)pyrene			UG/L	Ū	ŬĴ	A01
REA	Benzo(b)fluoranthene			UG/L	Ū	ŪJ	A01
REA	Benzo(g,h,i)perviene		10	UG/L	U	ŪĴ	A01
REA	Benzo(k)fluoranthene		10	UG/L	U	UJ	A01
REA	Bis(2-chloroethoxy)methane			UG/L	Ū	ŪJ	A01
REA	Bis(2-chloroethyl)ether		10	UG/L	Ū	UJ	A01
REA	Bis(2-ethylhexyl)phthalate		10	UG/L	U	UJ	A01
REA	Butyl Benzyl Phthalate		10	UG/L	U	UJ	A01
REA	Carbazole		10	UG/L	U	UJ	A01
REA	Chrysene		10	UG/L	U	UJ	A01
REA	Di-n-butyl Phthalate		10	UG/L	U	UJ	A01
REA	Di-n-octyl Phthalate		10	UG/L	U	UJ	A01
REA	Dibenzo(a,h)anthracene		10	UG/L	U	UJ	A01
REA	Dibenzofuran		10	UG/L	U	UJ	A01
REA	Diethyl Phthalate		10	UG/L	U	UJ	A01
REA	Dimethyl Phthalate		10	UG/L	U	UJ	A01
REA	Fluoranthene		10	UG/L	U	UJ	A01
REA	Fluorene		10	UG/L	U	UJ	A01
REA	Hexachlorobenzene		10	UG/L	U	UJ	A01
REA	Hexachlorobutadiene		10	UG/L	U	UJ	A01
REA	Hexachlorocyclopentadiene		10	UG/L	U	UJ	A01,C05
REA	Hexachloroethane		10	UG/L	U	UJ	A01
REA	Indeno(1,2,3-cd)pyrene		10	UG/L	U	UJ	A01
REA	Isophorone		10	UG/L	U	IJ	A01
REA	N-Nitroso-di-n-propylamine		10	UG/L	U	UJ	A01
REA	N-Nitrosodiphenylamine		10	UG/L	U	IJ	A01
REA	Naphthalene		10	UG/L	U	บม	A01
REA	Nitrobenzene		10	UG/L	U	บม	A01
REA	Pentachlorophenol		25	UG/L	U	IJ	A01
REA	Phenanthrene		10	UG/L	U	UJ	A01
REA	Phenol		10	UG/L	U	UJ	A01
REA	Pyrene		10	UG/L	U	UJ	A01

Туре	Semi-Volatile Organics	Beeult		Qualifiers		Validation	
• •		Result	Units	Lab	Data	Code	
REG	1,2,4-Trichlorobenzene		UG/L	U	U		
REG	1,2-Dichlorobenzene	10	UG/L	U	U		
REG	1,3-Dichlorobenzene	10	UG/L	U	U		
REG	1,4-Dichlorobenzene	10	UG/L	U	U		
REG	2,2'-oxybis (1-chloropropane)	10	UG/L	U	U		
REG	2,4,5-Trichlorophenol	25	UG/L	U	R	G04	
REG	2,4,6-Trichlorophenol	10	UG/L	U	R	G04	
REG	2,4-Dichlorophenol	10	UG/L	U	R	G04	
REG	2,4-Dimethylphenol	10	UG/L	U	R	G04	
REG	2,4-Dinitrophenol	25	UG/L	U	R	G04	
REG	2,4-Dinitrotoluene	10	UG/L	U	U		
REG	2,6-Dinitrotoluene	10	UG/L	U	U		
REG	2-Chloronaphthalene	10	UG/L	U	U		
REG	2-Chlorophenol	10	UG/L	U	U		
REG	2-Methylnaphthalene	10	UG/L	υ	U		
REG	2-Methylphenol	10	UG/L	U	R	G04	
REG	2-Nitroaniline	25	UG/L	U	U		
REG	2-Nitrophenol	10	UG/L	U	R	G04	
REG	3,3'-Dichlorobenzidine	10	UG/L	U	U		
REG	3-Nitroaniline	25	UG/L	U	U		
REG	4,6-Dinitro-o-Cresol	25	UG/L	U	R	G04	
REG	4-Bromophenyl-phenyl Ether	10	UG/L	U	U		
REG	4-Chloroaniline		UG/L	U	U		
REG	4-Chlorophenyl-phenylether		UG/L	U	U		
REG	4-Methylphenol		UG/L	U	R	G04	
REG	4-Nitroaniline	25	UG/L	U	U		
REG	4-Nitrophenol	_	UG/L	U	R	G04	
REG	4-chloro-3-methylphenol	10	UG/L	U	R	G04	

.

#### Location: Ramsdell Quarry Landfill Station : MW-2 Existing Well

Sample	,				Q	ualifiers	Validation	
Туре	Semi-Volatile Organics	Result	U	Units	Li	ab Data	Code	
REG	Acenaphthene		10 L	JG/L	Ū	U		_
REG	Acenaphthylene		10 U	JG/L	υ	U		
REG	Anthracene			JG/L	U	Ų		
REG REG	Benzo(a)anthracene			JG/L	U.	U		
REG	Benzo(a)pyrene Benzo(b)fuoraethana			JG/L JG/L	U U	U U		
REG	Benzo(b)fluoranthene Benzo(g,h,i)perylene			JG/L	Ŭ	U		
REG	Benzo(k)fluoranthene			JG/L	Ŭ	Ŭ		
REG	Bis(2-chloroethoxy)methane			JG/L	Ū	Ū		
REG	Bis(2-chloroethyl)ether		10 L	JG/L	U	U		
REG	Bis(2-ethylhexyl)phthalate		10 L		U	U		
REG	Butyl Benzyl Phthalate		10 L		U	U		
REG	Carbazole		10 L		U	U		
REG REG	Chrysene Di-n-butyl Phthalate			JG/L JG/L	U U	U U		
REG	Di-n-octyl Phthalate			JG/L	U	Ŭ		
REG	Dibenzo(a,h)anthracene			JG/L	U	Ŭ		
REG	Dibenzofuran		10 L		ŭ	Ŭ		
REG	Diethyl Phthalate			JG/L	Ũ	Ŭ		
REG	Dimethyl Phthalate			JG/L	U	U		
REG	Fluoranthene			JG/L	U	U		
REG	Fluorene			JG/L	U	U		
REG	Hexachlorobenzene			JG/L	U	U		
REG REG	Hexachlorobutadiene Hexachlorocyclopentadiene			JG/L JG/L	U U	U U		
REG	Hexachloroethane			JG/L	Ŭ	U		
REG	Indeno(1,2,3-cd)pyrene			JG/L	Ŭ	Ŭ		
REG	Isophorone			JG/L	Ŭ	Ū		
REG	N-Nitroso-di-n-propylamine		10 L	JG/L	U	U		
REG	N-Nitrosodiphenylamine		10 L	JG/L	U	U		
REG	Naphthalene			JG/L	U	U		
REG	Nitrobenzene			JG/L	U	U		
REG REG	Pentachlorophenol Phenanthrene			JG/L JG/L	U U	R U	G04	
REG	Phenol			JG/L	Ŭ	R	G04	
							801	
REG	Pyrene		10 L	101	U	U		
			10 L	JG/L		-	Validation	
REG Sample Type		Result		Units	Q	U ualifiers ab Data	Validation Code	
Sample		Result			Q	ualifiers		_
Sample Type REG REG	Volatile Organics	Result	ן 5 נ 5 נ	Jnits JG/L JG/L	Q La U U	ualifiers ab Data U U		_
Sample Type REG REG REG	Volatile Organics 1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane 1,1,2-Trichloroethane	Result	ן 5 נ 5 נ 5 נ	J <b>G/L</b> JG/L JG/L JG/L	Q La U U U	ualifiers ab Data U U U		_
Sample Type REG REG REG REG	Volatile Organics 1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane 1,1,2-Trichloroethane 1,1-Dichloroethane	Result	ן 5 נ 5 נ 5 נ 5 נ	Jnits JG/L JG/L JG/L JG/L	Q La U U U U	ualifiers ab Data U U U U U		-
Sample Type REG REG REG REG REG	Volatile Organics 1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane 1,1,2-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethane	Result	ן 5 נ 5 נ 5 נ 5 נ	JG/L JG/L JG/L JG/L JG/L JG/L		ualifiers ab Data U U U U U U U		-
Sample Type REG REG REG REG REG REG	Volatile Organics 1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane 1,1,2-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,2-Dichloroethane	Result	เ 5 เ 5 เ 5 เ 5 เ 5 เ	Jnits JG/L JG/L JG/L JG/L JG/L JG/L		ualifiers ab Data U U U U U U U U		-
Sample Type REG REG REG REG REG REG REG	Volatile Organics 1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane 1,1,2-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane	Result	ן 5 נ 5 נ 5 נ 5 נ 5 נ	Jnits JG/L JG/L JG/L JG/L JG/L JG/L	<b>Q</b> La U U U U U U U U U U	ualifiers ab Data U U U U U U U U U U		-
Sample Type REG REG REG REG REG REG	Volatile Organics 1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane 1,1,2-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,2-Dichloroethane	Result	ן 5 ג 5 ג 5 ג 5 ג 5 ג 5 ג	Jnits JG/L JG/L JG/L JG/L JG/L JG/L		ualifiers ab Data U U U U U U U U		-
Sample Type REG REG REG REG REG REG REG	Volatile Organics 1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane 1,1,2-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloropropane	Result		Jnits JG/L JG/L JG/L JG/L JG/L JG/L JG/L		ualifiers ab Data U U U U U U U U U U U U		_
Sample Type REG REG REG REG REG REG REG REG	Volatile Organics 1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane 1,1,2-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloropthane 1,2-Dichloropthane 1,3-cis-Dichloropthane	Result		Jnits JG/L JG/L JG/L JG/L JG/L JG/L JG/L JG/L		ualifiers ab Data U U U U U U U U U U U U U U U U U U		_
Sample Type REG REG REG REG REG REG REG REG REG REG	Volatile Organics 1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane 1,1,2-Trichloroethane 1,1-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloropthene 1,3-cis-Dichloropropene 1,3-cis-Dichloropropene 2-Butanone 2-Hexanone	Result	 5   5   5   5   5   5   5   5   10   10	Jnits JG/L JG/L JG/L JG/L JG/L JG/L JG/L JG/L		ualifiers ab Data U U U U U U U U U U U U U U U U U U		_
Sample Type REG REG REG REG REG REG REG REG REG REG	Volatile Organics 1,1,1-Trichloroethane 1,1,2-Tetrachloroethane 1,1,2-Trichloroethane 1,1-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloropthene 1,3-cis-Dichloropropene 1,3-cis-Dichloropropene 2-Butanone 2-Hexanone 4-Methyl-2-pentanone	Result	ן 5 נ נ 5 נ נ 5 נ נ 5 נ נ 10 נ 10 נ 10 נ	Jnits JG/L JG/L JG/L JG/L JG/L JG/L JG/L JG/L		ualifiers ab Data U U U U U U U U U U U U U U U U U U		_
Sample Type REG REG REG REG REG REG REG REG REG REG	Volatile Organics 1,1,1-Trichloroethane 1,1,2-Tetrachloroethane 1,1,2-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,2-Dichloroethane 1,2-Dichloropethane 1,2-Dichloropropane 1,3-cis-Dichloropropene 1,3-trans-Dichloropropene 2-Butanone 2-Hexanone 4-Methyl-2-pentanone Acetone	Result	ן 5 נ נ 5 נ נ נ 5 נ נ נ 5 נ נ 10 נ 10 נ 10 נ 10 נ	Jnits JG/L JG/L JG/L JG/L JG/L JG/L JG/L JG/L		ualifiers ab Data U U U U U U U U U U U U U U U U U U		_
Sample Type REG REG REG REG REG REG REG REG REG REG	Volatile Organics 1,1,1-Trichloroethane 1,1,2-Tetrachloroethane 1,1,2-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloropropane 1,3-cis-Dichloropropane 1,3-cis-Dichloropropane 1,3-trans-Dichloropropane 2-Butanone 2-Hexanone 4-Methyl-2-pentanone Acetone Benzene	Result	L 5 L 5 L 5 L 5 L 5 L 5 L 10 L 10 L 10 L 10 L 5 L	Jnits JG/L JG/L JG/L JG/L JG/L JG/L JG/L JG/L		ualifiers ab Data U U U U U U U U U U U U U U U U U U		_
Sample Type REG REG REG REG REG REG REG REG REG REG	Volatile Organics 1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane 1,1,2-Trichloroethane 1,1-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloropthene 1,2-Dichloropthene 1,2-Dichloropthene 1,3-cis-Dichloropropene 1,3-trans-Dichloropropene 2-Butanone 2-Hexanone 4-Methyl-2-pentanone Acetone Benzene Bromodichloromethane	Result	L 5 L 5 J 5 J 5 J 5 J 5 J 5 J 10 L 10 L 10 L 5 J 5 J 5 J 5 J 5 J 5 J 5 J 5 J 5 J 5 J	Jnits JG/L JG/L JG/L JG/L JG/L JG/L JG/L JG/L		ualifiers ab Data U U U U U U U U U U U U U U U U U U		_
Sample Type REG REG REG REG REG REG REG REG REG REG	Volatile Organics 1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane 1,1,2-Trichloroethane 1,1-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloropthene 1,2-Dichloropthene 1,2-Dichloropthene 1,3-cis-Dichloropthene 1,3-cis-Dichloropthene 2-Butanone 2-Butanone 2-Butanone 2-Hexanone 4-Methyl-2-pentanone Acetone Benzene Bromodichloromethane Bromoform	Result	 5 5 5 5 5 5 5 5 5 10 1 1 1 1 5 5 1 1 1 1	Jnits JG/L JG/L JG/L JG/L JG/L JG/L JG/L JG/L		ualifiers ab Data U U U U U U U U U U U U U U U U U U		_
Sample Type REG REG REG REG REG REG REG REG REG REG	Volatile Organics 1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane 1,1,2-Trichloroethane 1,1-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloropthene 1,2-Dichloropthene 1,3-cis-Dichloropropene 1,3-cis-Dichloropropene 1,3-trans-Dichloropropene 2-Butanone 2-Hexanone 2-Hexanone 4-Methyl-2-pentanone Acetone Benzene Bromodichloromethane Bromodichloromethane	Result	 5 5 L L L 5 5 L L L L L L L L L L L L L	Jnits JG/L JG/L JG/L JG/L JG/L JG/L JG/L JG/L		ualiflers ab Data U U U U U U U U U U U U U U U U U U		_
Sample Type REG REG REG REG REG REG REG REG REG REG	Volatile Organics 1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane 1,1,2-Trichloroethane 1,1-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroptopane 1,3-cis-Dichloropropene 1,3-trans-Dichloropropene 2-Butanone 2-Hexanone 4-Methyl-2-pentanone Acetone Benzene Bromodichloromethane Bromoform Bromomethane Carbon Disulfide	Result	5 L L L L L L L L L L L L L L L L L L L	Jnits JG/L JG/L JG/L JG/L JG/L JG/L JG/L JG/L		ualifiers ab Data U U U U U U U U U U U U U U U U U U		_
Sample Type REG REG REG REG REG REG REG REG REG REG	Volatile Organics 1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane 1,1,2-Trichloroethane 1,1-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloropthene 1,2-Dichloropthene 1,3-cis-Dichloropropene 1,3-cis-Dichloropropene 1,3-trans-Dichloropropene 2-Butanone 2-Hexanone 2-Hexanone 4-Methyl-2-pentanone Acetone Benzene Bromodichloromethane Bromodichloromethane	Result	5 5 L L L L L L L L L L L L L L L L L L	Jnits JG/L JG/L JG/L JG/L JG/L JG/L JG/L JG/L		ualiflers ab Data U U U U U U U U U U U U U U U U U U		_
Sample Type REG REG REG REG REG REG REG REG REG REG	Volatile Organics 1,1,1-Trichloroethane 1,1,2-Tetrachloroethane 1,1,2-Trichloroethane 1,1-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroptopane 1,3-cis-Dichloropropene 1,3-cis-Dichloropropene 2-Butanone 2-Hexanone 4-Methyl-2-pentanone Acetone Benzene Bromodichloromethane Bromoform Bromomethane Carbon Disulfide Carbon Tetrachloride	Result	5 5 5 5 5 5 5 5 5 5 10 1 10 1 1 5 1 1 5 1 1 5 1 1 1 1	Jnits JG/L JG/L JG/L JG/L JG/L JG/L JG/L JG/L		ualifiers ab Data U U U U U U U U U U U U U U U U U U		_
Sample Type REG REG REG REG REG REG REG REG REG REG	Volatile Organics 1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane 1,1,2-Trichloroethane 1,1-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloropthene 1,2-Dichloropthene 1,3-cis-Dichloropropene 1,3-cis-Dichloropropene 2-Butanone 2-Hexanone 4-Methyl-2-pentanone Acetone Benzene Bromodichloromethane Bromorethane Carbon Disulfide Carbon Tetrachloride Chlorobenzene Chloroethane Chloroethane	Result	5 5 5 5 5 5 5 5 10 10 10 5 5 10 10 10 10 10 10 10 10 10 10 10 10 10	Jnits JG/L JG/L JG/L JG/L JG/L JG/L JG/L JG/L		ualifiers ab Data U U U U U U U U U U U U U U U U U U		_
Sample Type REG REG REG REG REG REG REG REG REG REG	Volatile Organics 1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane 1,1,2-Trichloroethane 1,1-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroptopane 1,3-cis-Dichloropropene 1,3-cis-Dichloropropene 2-Butanone 2-Butanone 2-Butanone 2-Hexanone 4-Methyl-2-pentanone Acetone Benzene Bromodichloromethane Bromomethane Carbon Disulfide Carbon Tetrachloride Chloroethane Chloroethane Chloroform	Result	5 L L L L L L L L L L L L L L L L L L	Jnits JG/L JG/L JG/L JG/L JG/L JG/L JG/L JG/L JG/L JG/L JG/L JG/L JG/L JG/L JG/L JG/L JG/L JG/L JG/L JG/L JG/L JG/L JG/L JG/L JG/L JG/L JG/L JG/L JG/L JG/L JG/L JG/L JG/L JG/L JG/L JG/L JG/L JG/L JG/L JG/L JG/L JG/L JG/L JG/L JG/L JG/L JG/L JG/L JG/L JG/L JG/L JG/L JG/L JG/L JG/L JG/L JG/L JG/L JG/L JG/L JG/L JG/L JG/L JG/L JG/L JG/L JG/L JG/L JG/L JG/L JG/L JG/L JG/L JG/L JG/L JG/L JG/L JG/L JG/L JG/L JG/L JG/L JG/L JG/L JG/L JG/L JG/L JG/L JG/L JG/L JG/L JG/L JG/L JG/L JG/L JG/L JG/L JG/L JG/L JG/L JG/L JG/L JG/L JG/L JG/L JG/L JG/L JG/L JG/L JG/L JG/L JG/L JG/L JG/L JG/L JG/L JG/L JG/L JG/L JG/L JG/L JG/L JG/L JG/L JG/L JG/L JG/L JG/L JG/L JG/L JG/L JG/L JG/L JG/L JG/L JG/L JG/L JG/L JG/L JG/L JG/L JG/L JG/L JG/L JG/L JG/L JG/L JG/L JG/L JG/L JG/L JG/L JG/L		ualifiers ab Data U U U U U U U U U U U U U U U U U U		_
Sample Type REG REG REG REG REG REG REG REG REG REG	Volatile Organics 1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane 1,1,2-Trichloroethane 1,1-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloropthene 1,2-Dichloropthene 1,3-cis-Dichloropropene 1,3-cis-Dichloropropene 2.Butanone 2.Hexanone 2.Hexanone 4.Methyl-2-pentanone Acetone Benzene Bromodichloromethane Bromodichloromethane Carbon Disulfide Carbon Tetrachloride Chloroethane Chloroform Chloroethane Dibromochloromethane	Result	 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	Jnits JG/L JG/L JG/L JG/L JG/L JG/L JG/L JG/L		ualifiers ab Data U U U U U U U U U U U U U U U U U U		
Sample Type REG REG REG REG REG REG REG REG REG REG	Volatile Organics 1,1,1-Trichloroethane 1,1,2-Tetrachloroethane 1,1,2-Trichloroethane 1,1-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroptopane 1,3-cis-Dichloropropene 1,3-cis-Dichloropropene 2-Butanone 2-Hexanone 4-Methyl-2-pentanone Acetone Benzene Bromodichloromethane Bromoform Bromomethane Carbon Disulfide Carbon Tetrachloride Chlorobenzene Chloromethane Dibromochloromethane Ethylbenzene	Result	55555555510000000000000000000000000000	Jnits JG/L JG/L JG/L JG/L JG/L JG/L JG/L JG/L		ualiflers ab Data U U U U U U U U U U U U U U U U U U		
Sample Type REG REG REG REG REG REG REG REG REG REG	Volatile Organics 1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane 1,1,2-Trichloroethane 1,1-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloropthene 1,2-Dichloropthene 1,3-cis-Dichloropropene 1,3-cis-Dichloropropene 2.Butanone 2.Hexanone 2.Hexanone 4.Methyl-2-pentanone Acetone Benzene Bromodichloromethane Bromodichloromethane Carbon Disulfide Carbon Tetrachloride Chloroethane Chloroform Chloroethane Dibromochloromethane	Result	5 5 5 5 5 5 5 5 10 10 1 10 1 10 1 10 1	Jnits JG/L JG/L JG/L JG/L JG/L JG/L JG/L JG/L		ualifiers ab Data U U U U U U U U U U U U U U U U U U		

# Location: Ramsdell Quarry Landfill Station : MW-2 Existing Well

RQLmw-002-0002-GW		Field Sample Type: (	Collected: 07/13/98					
Sample Type	Volatile Organics	Result		Units	Qual Lab	ifiers Data	Validation Code	
REG	Trichloroethene		5	UG/L	υ	U		_
REG	Vinyl Chloride		10	UG/L	U	U		
REG	Xylenes, Total		5	UG/L	U	U		

# Location: Ramsdell Quarry Landfill Station : MW-3 Existing Well

Sample Type		Result	Units	Quali Lab	ifiers Data	Validation Code	
REG	Cyanide	0.01	MG/L	U	U		-
Sample Type		Result	Units	Qual Lab	ifiers Data	Validation Code	
REG	Aluminum	93.9	UG/L	в	J	101	-
REG	Antimony		UG/L	U	U		
REG	Arsenic		UG/L	U	U		
REG	Barium		UG/L	В	J		
REG REG	Beryllium		UG/L	U	U		
REG	Cadmium Calcium	5 156000	UG/L	U	U =		
REG	Chromium		UG/L	υ	- ປ		
REG	Cobait		UG/L	Ŭ	Ŭ		
REG	Copper		UG/L	В	J		
REG	Iron		UG/L	-	=		
REG	Lead		UG/L	U	บ		
REG	Magnesium	37900			=		
REG	Manganese	28.1	UG/L		∓		
REG	Mercury		UG/L	в	J		
REG	Nickel		UG/L	U	U		
REG	Potassium	15800			=		
REG	Selenium		UG/L	U	U		
REG	Silver		UG/L	U	U		
REG REG	Sodium Thallium		UG/L	υ	= ປ		
REG	Vanadium		UG/L UG/L	U	U		
REG	Zinc		UG/L	U	=		
	Ling	- · · · ·	00,1				
Sample		Beauth		Quai	ifiers Data	Validation Code	
Туре	Filtered Metals	Result	Units	Lab	vala		
Type REG			Units UG/L	U	U		_
		200					-
REG REG REG	Aluminum Antimony Arsenic	200 5 10	UG/L UG/L UG/L	U U U	U U U		-
REG REG REG REG	Aluminum Antimony Arsenic Barium	200 5 10 45.5	UG/L UG/L UG/L UG/L	บ บ บ 8	1 0 0		-
REG REG REG REG REG	Aluminum Antimony Arsenic Barium Beryllium	200 5 10 45.5 5	UG/L UG/L UG/L UG/L UG/L	บ บ บ 8 บ	U U U U U		_
REG REG REG REG REG	Aluminum Antimony Arsenic Barium Beryllium Cadmium	200 5 10 45.5 5 5	UG/L UG/L UG/L UG/L UG/L UG/L	บ บ บ 8	0 1 0 0 0		_
REG REG REG REG REG REG	Aluminum Antimony Arsenic Barium Beryllium Cadmium Cadmium	200 5 10 45.5 5 5 152000	UG/L UG/L UG/L UG/L UG/L UG/L	U U B U U	U U U U =		-
REG REG REG REG REG REG REG	Aluminum Antimony Arsenic Barium Beryllium Cadmium Cadmium Calcium Chromium	200 5 10 45.5 5 5 152000 10	UG/L UG/L UG/L UG/L UG/L UG/L UG/L	U U B U U U	U U U U U U U U U		-
REG REG REG REG REG REG REG	Aluminum Antimony Arsenic Barium Beryllium Cadmium Cadmium Calcium Chromium Cobalt	200 5 10 45.5 5 5 152000 10 50	UG/L UG/L UG/L UG/L UG/L UG/L UG/L UG/L	U U B U U	U U U U U U U U U U U U		-
REG REG REG REG REG REG REG REG	Aluminum Antimony Arsenic Barium Beryllium Cadmium Calcium Chromium Cobalt Copper	200 5 10 45.5 5 152000 10 50 3.8	UG/L UG/L UG/L UG/L UG/L UG/L UG/L UG/L	U U U B U U U U	1 0 1 0 1 1 0 1 0 1 0		-
REG REG REG REG REG REG REG	Aluminum Antimony Arsenic Barium Beryllium Cadmium Cadmium Calcium Chromium Cobalt	200 5 10 45.5 5 152000 10 50 3.8 100	UG/L UG/L UG/L UG/L UG/L UG/L UG/L UG/L	U U B U U U B	U U U U U U U U U U U U		_
REG REG REG REG REG REG REG REG REG	Aluminum Antimony Arsenic Barium Beryllium Cadrium Calcium Chromium Cobalt Copper Iron	200 5 10 45.5 5 152000 10 50 3.8 100	UG/L UG/L UG/L UG/L UG/L UG/L UG/L UG/L	U U B U U U B U	0 0 0 0 0 1 0 1 0 1 0 1 0 1 0 0		_
REG REG REG REG REG REG REG REG REG REG	Aluminum Antimony Arsenic Barium Beryllium Cadrium Calcium Chromium Cobalt Copper Iron Lead	200 5 10 45.5 5 152000 10 50 3.8 100 3 36700	UG/L UG/L UG/L UG/L UG/L UG/L UG/L UG/L	U U B U U U B U	2 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0		_
REG REG REG REG REG REG REG REG REG REG	Aluminum Antimony Arsenic Barium Beryllium Cadmium Cadmium Calcium Chromium Cobalt Copper Iron Lead Magnesium	200 5 10 45.5 5 152000 10 50 3.8 100 3 36700 12.6	UG/L UG/L UG/L UG/L UG/L UG/L UG/L UG/L	บ บ 8 บ บ บ 8 บ บ บ	1 1 1 1 1 1 1 1 1 1 1 1 1 1		_
REG REG REG REG REG REG REG REG REG REG	Aluminum Antimony Arsenic Barium Beryllium Cadmium Calcium Chromium Cobalt Copper Iron Lead Magnesium Manganese	200 5 10 45.5 5 152000 10 50 3.8 100 3 36700 12.6 0.094 40	UG/L UG/L UG/L UG/L UG/L UG/L UG/L UG/L	บ บ 8 บ บ 8 บ บ 8 บ	1 0 1 0 0 1 0 1 0 1 0 1 0 1 0		_
REG REG REG REG REG REG REG REG REG REG	Aluminum Antimony Arsenic Barium Beryllium Cadmium Calcium Chromium Cobalt Copper Iron Lead Magnesium Manganese Mercury Nickel Potassium	200 5 10 45.5 5 152000 10 50 3.8 100 3 36700 12.6 0.094 40 15500	UG/L UG/L UG/L UG/L UG/L UG/L UG/L UG/L	U U B U U B U U B B U U	= 7 7 7 7 7 7 7 7 7 7 7 7 7 7		_
REG REG REG REG REG REG REG REG REG REG	Aluminum Antimony Arsenic Barium Beryllium Cadmium Calcium Chromium Cobalt Copper Iron Lead Magnesium Manganese Mercury Nickel Potassium Selenium	200 5 10 45.5 5 152000 10 50 3.8 100 3 36700 12.6 0.094 40 15500 5	UG/L UG/L UG/L UG/L UG/L UG/L UG/L UG/L	บ บ บ บ บ บ บ บ บ บ บ บ บ บ บ บ บ บ บ	n n n n n n n n n n n n n n n n n n n		_
REG REG REG REG REG REG REG REG REG REG	Aluminum Antimony Arsenic Barium Beryllium Cadmium Cadmium Calcium Chromium Cobalt Copper Iron Lead Magnesium Manganese Mercury Nickel Potassium Selenium Silver	200 5 10 45.5 5 152000 10 50 3.8 100 3 36700 12.6 0.094 40 15500 5 10	UG/L UG/L UG/L UG/L UG/L UG/L UG/L UG/L	U U B U U B U U B B U U	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		_
REG REG REG REG REG REG REG REG REG REG	Aluminum Antimony Arsenic Barium Beryllium Cadmium Cadmium Calcium Chromium Cobalt Copper Iron Lead Magnesium Manganese Mercury Nickel Potassium Selenium Silver Sodium	200 5 10 45.5 5 152000 10 50 3.8 100 3 36700 12.6 0.094 40 15500 5 10 7590	UG/L UG/L UG/L UG/L UG/L UG/L UG/L UG/L	บ บ ม บ บ บ บ ม บ บ บ บ บ บ บ บ บ บ บ บ	= 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		_
REG REG REG REG REG REG REG REG REG REG	Aluminum Antimony Arsenic Barium Beryllium Cadmium Cadmium Calcium Chromium Cobalt Copper Iron Lead Magnesium Manganese Mercury Nickel Potassium Selenium Silver Sodium Thallium	200 5 10 45.5 5 152000 10 50 3.8 100 3 36700 12.6 0.094 40 15500 5 10 7590 2	UG/L UG/L UG/L UG/L UG/L UG/L UG/L UG/L	บ บ บ บ บ บ บ บ บ บ บ บ บ บ บ บ บ บ บ	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		_
REG REG REG REG REG REG REG REG REG REG	Aluminum Antimony Arsenic Barium Beryllium Cadmium Cadmium Calcium Chromium Cobalt Copper Iron Lead Magnesium Manganese Mercury Nickel Potassium Selenium Silver Sodium Thallium Vanadium	200 5 10 45.5 5 152000 10 50 3.8 100 38 100 336700 12.6 0.094 40 15500 5 10 7590 2	UG/L UG/L UG/L UG/L UG/L UG/L UG/L UG/L	บ บ ม บ บ บ บ ม บ บ บ บ บ บ บ บ บ บ บ บ	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		_
REG REG REG REG REG REG REG REG REG REG	Aluminum Antimony Arsenic Barium Beryllium Cadmium Cadmium Calcium Chromium Cobalt Copper Iron Lead Magnesium Manganese Mercury Nickel Potassium Selenium Silver Sodium Thallium	200 5 10 45.5 5 152000 10 50 3.8 100 38 100 336700 12.6 0.094 40 15500 5 10 7590 2	UG/L UG/L UG/L UG/L UG/L UG/L UG/L UG/L	บ บ บ บ บ บ บ บ บ บ บ บ บ บ บ บ บ บ บ	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		_
REG REG REG REG REG REG REG REG REG REG	Aluminum Antimony Arsenic Barium Beryllium Cadmium Cadmium Cobalt Copper Iron Lead Magnesium Manganese Mercury Nickel Potassium Selenium Silver Sodium Thallium Vanadium Zinc	200 5 10 45.5 5 152000 10 50 3.8 100 38 100 336700 12.6 0.094 40 15500 5 10 7590 2	UG/L UG/L UG/L UG/L UG/L UG/L UG/L UG/L	บ บ 8 บ บ 8 บ บ 8 บ บ บ บ บ บ บ บ บ บ บ	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Validation	_

Location:	Ramsdell Q	uarry Landfill
Station :	MW-3	Existing Well

Samp	<b></b>			0	Barr	M-11-4		
Туре		Result	Units	Lab	lfiers Data	Validation Code		
REG	1,3,5-Trinitrobenzene	0.2	UG/L	<u> </u>	U		-	
REG	1,3-Dinitrobenzene		UG/L	Ū	Ū			
REG	2,4,6-Trinitrotoluene	0.2	UG/L	U	U			
REG	2,4-Dinitrotoluene	0.13	UG/L	U	U			
REG	2,6-Dinitrotoluene	0.13	UG/L	U	U			
REG	2-Nitrotoluene	0.2	UG/L	υ	U			
REG	3-Nitrotoluene		UG/L	U	U			
REG	4-Nitrotoluene		UG/L	U	U			
REG	НМХ		UG/L	U	U			
REG	Nitrobenzene		UG/L	U	U			
REG	Nitrocellulose as N		MG/L	U	U			
REG	Nitroglycerin		UG/L	U	U			
REG	Nitroguanidine		UG/L	U	U			
REG REG	RDX Tetryl		UG/L UG/L	J	J			
REG	Teuyi	0.2	UG/L					
Samp Type		Result	Units	Quali Lab	ifiers Data	Validation Code		
REA	1,2,4-Trichlorobenzene		UG/L	U	ÚJ	A01		
REA	1,2-Dichlorobenzene		UG/L	U	UJ	A01		
REA	1,3-Dichlorobenzene		UG/L	U	UJ	A01		
REA	1,4-Dichlorobenzene		UG/L UG/L	U U	UJ UJ	A01		
REA	2,2'-oxybis (1-chloropropane)		UG/L	U	UJ	A01		
REA REA	2,4,5-Trichlorophenol		UG/L	U	UJ UJ	A01 A01		
REA	2,4,6-Trichlorophenol		UG/L	Ŭ	UJ	A01		
REA	2,4-Dichlorophenol 2,4-Dimethylphenol		UG/L	Ŭ	UJ	A01		
REA	2,4-Dinitrophenol		UG/L	Ŭ	UJ	A01		
REA	2,4-Dinitrotoluene		UG/L	ŭ	UJ	A01		
REA	2,6-Dinitrotoluene		UG/L	ŭ	UJ UJ	A01		
REA	2-Chloronaphthalene		UG/L	Ŭ	ŰĴ	A01		
REA	2-Chlorophenol		UG/L	Ŭ	IJ	A01		
REA	2-Methylnaphthalene		UG/L	Ũ	UJ	A01		
REA	2-Methylphenol		UG/L	Ū	ŪJ	A01		
REA	2-Nitroaniline		UG/L	Ū	UJ	A01		
REA	2-Nitrophenol	10	UG/L	U	UJ	A01		
REA	3,3'-Dichlorobenzidine	10	UG/L	U	UJ	A01		
REA	3-Nitroaniline	25	UG/L	U	UJ	A01		
REA	4,6-Dinitro-o-Cresol	25	UG/L	U	UJ	A01		
REA	4-Bromophenyl-phenyl Ether	10	UG/L	U	UJ	A01		
REA	4-Chloroaniline	10	UG/L	U	UJ	A01		
RÉA	4-Chlorophenyl-phenylether		UG/L	ບ	U1	A01		
REA	4-Methylphenol		UG/L	U	IJ	A01		
REA	4-Nitroaniline		UG/L	U	UJ	A01		
REA	4-Nitrophenol		UG/L	U	UJ	A01		
REA	4-chloro-3-methylphenol		UG/L	U	UJ	A01		
REA	Acenaphthene		UG/L	U	UJ	A01		
REA	Acenaphthylene		UG/L	U	U)	A01		
REA	Anthracene Benna (a) anthracena		UG/L	U	IJ	A01		
REA	Benzo(a)anthracene		UG/L	U U	U) UJ	A01 A01		
REA	Benzo(a)pyrene Benzo(b)fluoranthene		UG/L UG/L	U	UJ	A01		
REA REA	Benzo(b)fluoranthene Benzo(a bi)perviene		UG/L	Ŭ	UJ	A01		
REA	Benzo(g,h,i)perylene Benzo(k)fluoranthene		UG/L	Ŭ	UJ	A01		
REA	Bis(2-chloroethoxy)methane		UG/L	Ŭ	0J	A01		
REA	Bis(2-chloroethyl)ether		UG/L	U	UJ	A01		
REA	Bis(2-ethylhexyl)phthalate		UG/L	U	UJ	A01		
REA	Butyl Benzyl Phthalate		UG/L	Ŭ	UJ	A01		
REA	Carbazole		UG/L	Ŭ.	UJ	A01		
REA	Chrysene		UG/L	Ŭ,	υĴ	A01		
REA	Di-n-butyl Phthalate		UG/L	Ū	UJ	A01		
REA	Di-n-octyl Phthalate		UG/L	Ŭ	UJ	A01		
REA	Dibenzo(a,h)anthracene		UG/L	Ū	UJ	A01		
REA	Dibenzofuran		UG/L	Ú	UJ	A01		
REA	Diethyl Phthalate		UG/L	U	UJ	A01		
REA	Dimethyl Phthalate		UG/L	U	UJ	A01		
REA	Fluoranthene	10	UG/L	U	UJ	A01		
REA	Fluorene	10	UG/L	U	UJ	A01		

• ³

#### Location: Ramsdell Quarry Landfill Station : MW-3 Existing Well

Sample				Qu	alifiers	Validation		
Туре	Semi-Volatile Organics	Result	Units	La	b Data	Code		
REA	Hexachlorobutadiene		UG/L	U	UJ	A01	_	
REA	Hexachlorocyclopentadiene		UG/L	U	LU	A01,C05		
REA	Hexachloroethane		UG/L	U	UJ	A01		
REA REA	Indeno(1,2,3-cd)pyrene		UG/L	U	UJ	A01		
REA	Isophorone		UG/L	U	UJ	A01		
REA	N-Nitroso-di-n-propylamine N-Nitrosodiphenylamine		UG/L	U U	UJ	A01		
REA	Naphthaiene		UG/L UG/L	U	UJ UJ	A01 A01		
REA	Nitrobenzene		UG/L	Ŭ	UJ	A01		
REA	Pentachlorophenol		UG/L	Ŭ	UJ	A01		
REA	Phenanthrene		UG/L	Ŭ	UJ UJ	A01		
REA	Phenol		UG/L	Ŭ	UJ	A01		
REA	Pyrene		UG/L	Ŭ	ŰĴ	A01		
Sample				0	alifiers	Validation		
Туре	Semi-Volatile Organics	Result	Units	Lai	) Data	Validation Code		
REG	1,2,4-Trichlorobenzene		UG/L	U	U		—	
REG	1,2-Dichlorobenzene		UG/L	U	U			
REG	1,3-Dichlorobenzene		UG/L	U	U			
REG	1,4-Dichlorobenzene		UG/L	U	U			
REG	2,2'-oxybis (1-chloropropane)	•-	UG/L	U	U			
REG	2,4,5-Trichlorophenol		UG/L	U	R	G04		
REG	2,4,6-Trichlorophenol		UG/L	U	R	G04		
REG REG	2,4-Dichlorophenol		UG/L	U	R R	G04		
REG	2,4-Dimethylphenol		UG/L UG/L	U U		G04		
REG	2,4-Dinitrophenol 2,4-Dinitrotoluene		UG/L	U	R U	G04		
REG	2,6-Dinitrotoluene		UG/L	U	Ŭ			
REG	2-Chloronaphthalene		UG/L	U	Ŭ			
REG	2-Chlorophenoi		UG/L	Ŭ	Ŭ			
REG	2-Methylnaphthalene		UG/L	ŭ	Ŭ			
REG	2-Methylphenol		UG/L	Ŭ	Ř	G04		
REG	2-Nitroaniline		UG/L	Ŭ	Ü			
REG	2-Nitrophenol		UG/L	Ŭ	R	G04		
REG	3,3'-Dichlorobenzidine		UG/L	Ŭ	Ü			
REG	3-Nitroaniline		UG/L	Ū	Ū			
REG	4,6-Dinitro-o-Cresol	25	UG/L	U	R	G04		
REG	4-Bromophenyl-phenyl Ether	10	UG/L	U	U			
REG	4-Chloroaniline	10	UG/L	U	U			
REG	4-Chiorophenyl-phenylether	10	UG/L	ย	U			
REG	4-Methylphenol	10	UG/L	IJ	R	G04		
REG	4-Nitroaniline	25	UG/L	U	U			
REG	4-Nitrophenol		UG/L	U	R	G04		
REG	4-chloro-3-methylphenol		UG/L	U	U			
REG	Acenaphthene		UG/L	U	U			
REG	Acenaphthylene		UG/L	U	U			
REG	Anthracene		UG/L	U	U			
REG	Benzo(a)anthracene		UG/L	U	U			
REG	Benzo(a)pyrene		UG/L	U	U			
REG	Benzo(b)fluoranthene		UG/L	U	U			
REG	Benzo(g,h,i)perylene		UG/L	U	U			
REG	Benzo(k)fluoranthene		UG/L	U	U			
REG	Bis(2-chloroethoxy)methane		UG/L	U	U			
REG	Bis(2-chloroethyl)ether		UG/L	U	U			
REG	Bis(2-ethylhexyl)phthalate		UG/L	U	U			
REG	Butyl Benzyl Phthalate		UG/L	U	U			
REG	Carbazole		UG/L	U	U			
REG REG	Chrysene Di-n-butyl Phthalate		UG/L UG/L	U U	บ บ			
REG	Di-n-octyl Phthalate		UG/L	Ŭ	Ŭ			
REG	Dibenzo(a,h)anthracene		UG/L	Ŭ	U			
REG	Dibenzofuran		UG/L	Ŭ	ŭ			
REG	Diethyl Phthalate		UG/L	ບ	Ŭ			
REG	Dimethyl Phthalate		UG/L	Ŭ	Ŭ			
REG	Fluoranthene		UG/L	Ŭ	บั			
REG	Fluorene		UG/L	Ŭ	Ŭ			
REG	Hexachlorobenzene		UG/L	Ŭ	Ŭ			
		10		-	-			
REG	Hexachlorobutadiene		UG/L	U	U			

3

#### Location: Ramsdell Quarry Landfill Station : MW-3 Existing Well

Sample	}			Qua	lifiers	Validation		
Туре	Semi-Volatile Organics	Result	Units			Code		
REG	Hexachloroethane	10 1	JG/L	- <del>U</del>	U		_	
REG	Indeno(1,2,3-cd)pyrene		UG/L		Ū			
REG	Isophorone	10 (	UG/L		Ũ			
REG	N-Nitroso-di-n-propylamine		UG/L		Ū			
REG	N-Nitrosodiphenylamine		UG/L	-	Ū			
REG	Naphthalene	10 1	UG/L	Ū	Ŭ			
REG	Nitrobenzene		UG/L	-	Ū			
REG	Pentachlorophenol		UG/L		Ř	G04		
REG	Phenanthrene		JG/L	-	Ŭ			
REG	Phenol		JG/L	-	R	G04		
REG	Pyrene		JG/L	Ū	U			
Sample	3			Qua	lifiers	Validation		
Туре	Volatile Organics	Result	Units			Code		
REG	1,1,1-Trichloroethane		JG/L		U		_	
REG	1,1,2,2-Tetrachloroethane		JG/L	U	U			
REG	1,1,2-Trichloroethane		JG/L	U	U			
REG	1,1-Dichloroethane		JG/L	U	U			
REG	1,1-Dichloroethene		JG/L	U	U			
REG	1,2-Dichloroethane		JG/L	U	U			
REG	1,2-Dichloroethene	5 L	JG/L	U	U			
REG	1,2-Dichloropropane	5 L	JG/L	U	U			
REG	1,3-cis-Dichloropropene	5 L	JG/L	U	U			
REG	1,3-trans-Dichloropropene	5 L	JG/L	U	U			
REG	2-Butanone	10 L	JG/L	U	U			
REG	2-Hexanone	10 L	JG/L	U	U			
REG	4-Methyl-2-pentanone	10 L	JG/L	U	U			
REG	Acetone	10 L	JG/L	U	U			
REG	Benzene	5 L	JG/L	U	U			
REG	Bromodichloromethane	5 (	JG/L	U	U			
REG	Bromoform	5 (	JG/L	U	U			
REG	Bromomethane	10 L	JG/L	U	U			
REG	Carbon Disulfide	5 L	JG/L	U	U			
REG	Carbon Tetrachloride	5 (	JG/L	U	U			
REG	Chlorobenzene	5 L	JG/L	U	U			
REG	Chloroethane	10 L	JG/L	U	U			
REG	Chloroform	5 (	JG/L	U	U			
REG	Chloromethane	10 L	JG/L	U	U			
REG	Dibromochloromethane	5 L	JG/L	U	U			
REG	Ethylbenzene	5 L	JG/L	U	U			
REG	Methylene Chloride	5 L	JG/L	U	U			
REG	Styrene	5 (	JG/L	Ú	Ú			
REG	Tetrachloroethene	5 L	JG/L	Ũ	Ŭ			
REG	Toluene		JG/L	Ŭ	Ŭ			
REG	Trichloroethene		JG/L	ů	ŭ			
REG	Vinyl Chloride	10 1		Ŭ	ŭ			
REG	Xylenes, Total		JG/L	Ŭ	Ŭ			

Location: Ramsdell Quarry Landfill Station : MW-4 Existing Well

RQLmw-004-0004-GW	Imple ype     Cyanide     Result     Units     Qualifie       EG     Cyanide     0.01     MG/L     U     U       Imple ype     Metals     0.01     MG/L     U     U       EG     Aluminum     2960     UG/L     J       EG     Antimony     5     UG/L     U       EG     Aritimony     5     UG/L     U       EG     Barium     64.5     UG/L     U       EG     Beryllium     4     UG/L     U       EG     Cadmium     5     UG/L     U       EG     Cadmium     5     UG/L     U	roundwa	ter	Collected: 07/13/98			
Sample Type		Result	Units			Validation Code	a.
REG	Cyanide	0.01	MG/L	<u> </u>	U		_
Sample Type		Result	Unite			Validation Code	
REG	Aluminum	2960	UG/L		J	101	
REG	Antimony	5	UG/L	U	U		
REG	Arsenic	9.1	UG/L		=		
REG	Barium	64.5	UG/L	в	J		
REG	Beryllium	4	UG/L	U	U		
REG	Cadmium	5	UG/L	U	U		
REG	Calcium	118000	UG/L		=		
REG	Chromium	3.8	UG/L	в	J		
REG	Cobalt	29.7	UG/L	в	J		

Matrix: Groundwater

Collected: 07/13/98

Field Sample Type: Grab

Location:	Ramsdell	Quarry Landfill
Station :	MW-4	Eviction Well
station :	MIYY-4	Existing Well

REA

REA

REA

REA

1,4-Dichlorobenzene

2,4,5-Trichlorophenol

2,4,6-Trichlorophenol

2,2'-oxybis (1-chloropropane)

#### RQLmw-004-0004-GW

Sample Type	Metals	Result	Units	Qu Lai	allfiers Data	Validation Code
REG	Copper	14	ŪG/L	<u>в</u>	J	
REG	Iron		UG/L	-	=	
REG	Lead		UG/L	в	J	
REG	Magnesium		UG/L	-	=	
REG	Manganese		UG/L		=	
REG	Mercury		UG/L	в	J	
REG	Nickel		UG/L	-	=	
REG	Potassium		UG/L	в	J	
REG	Selenium	5	UG/L	ū	Ŭ	
REG	Silver	10	UG/L	Ū	Ū	
REG	Sodium		UG/L	8	Ū	F06
REG	Thallium		UG/L	ū	Ū	
REG	Vanadium		UG/L	Ŭ	Ŭ	
REG	Zinc		UG/L	-	=	
Sample				-	alifiers	Validation
Туре	Filtered Metals	Result	Units	Lat		Code
REG	Aluminum		UG/L	U	U	
REG	Antimony	-	UG/L	U	U	
REG	Arsenic	10	UG/L	U	U	
REG	Barium		UG/L	в	J	
REG	Beryllium		UG/L	U	U	
REG	Cadmium		UG/L	U	U	
REG	Calcium	109000			=	
REG	Chromium		UG/L	U	U	
REG	Cobalt		UG/L	в	J	
REG	Copper		UG/L	В	J	
REG	Iron		UG/L		=	
REG	Lead	-	UG/L	U	U	
REG	Magnesium	21100			=	
REG	Manganese		UG/L		=	
REG	Mercury		UG/L	в	J	
REG	Nickel		UG/L		=	
REG	Potassium	. = .	UG/L	в	J	
REG	Selenium		UG/L	υ	U	
REG	Silver		UG/L	U	U	
REG	Sodium		UG/L	в	U	F06
REG	Thallium		UG/L	U	U	
REG	Vanadium		UG/L	U	U	
REG	Zinc	155	UG/L		=	
amale				0	lifione	Validation

Sample				Qual	lfiers	Validation
Туре	Explosives	Result	Units	Lab	Data	Code
REG	1,3,5-Trinitrobenzene	0.27	UG/L	U	U	
REG	1,3-Dinitrobenzene	0.27	UG/L	υ	U	
REG	2,4,6-Trinitrotoluene	0.27	UG/L	υ	U	
REG	2,4-Dinitrotoluene	0.18	UG/L	υ	บ	
REG	2,6-Dinitrotoluene	0.085	UG/L	J	J	
REG	2-Nitrotoluene	0.27	UG/L	υ	ប	
REG	3-Nitrotoluene	0.27	UG/L	U	U	
REG	4-Nitrotoluene	0.27	ÜG/L	υ	U	
REG	HMX	0.68	UG/L	υ	υ	
REG	Nitrobenzene	0.27	UG/L	υ	U	
REG	Nitrocellulose as N	0.02	MG/L	U	U	
REG	Nitroglycerin	2.5	UG/L	U	U	
REG	Nitroguanidine	20	UG/L	U	U	
REG	RDX	0.68	UG/L	U	U	
REG	Tetryl	0.12	UG/L	J	J	
Sample				Qual	iflers	Validation
Туре	Semi-Volatile Organics	Result	Units	Lab	Data	Code
REA	1,2,4-Trichlorobenzene	10	UG/L	Ū	UJ	A01
REA	1,2-Dichlorobenzene	10	UG/L	U	UJ	A01
REA	1,3-Dichlorobenzene	10	UG/L	U	ບມ	A01

10 UG/L

10 UG/L

25 UG/L

10 UG/L

υ

U

U

U

UJ

IJ

IJJ

UJ

A01 A01

A01

A01

#### Location: Ramsdell Quarry Landfill Station : MW-4 Existing Well

 Sample				b M	atrix: Gr			Collected: 0	
Sample Type	Semi-Volatile Organics	Result		Units	Quai Lab	lifiers Data	Validation Code		
REA	2,4-Dichlorophenol		10	UG/L	U	UJ	A01	-	
REA	2.4-Dimethylphenol			UG/L	U	UJ	A01		
REA REA	2,4-Dinitrophenol			UG/L	U	UJ	A01		
REA	2,4-Dinitrotoluene 2,6-Dinitrotoluene			UG/L UG/L	U	UJ	A01		
REA	2-Chloronaphthalene			UG/L UG/L	U U	U) UJ	A01 A01		
REA	2-Chlorophenoi			UG/L	Ŭ	UJ	A01		
REA	2-Methylnaphthalene			UG/L	Ŭ	UĴ	A01		
REA	2-Methylphenol			UG/L	Ũ	ÛĴ	A01		
REA	2-Nitroaniline			UG/L	U	UJ	A01		
REA	2-Nitrophenol			UG/L	U	UJ	A01		
REA REA	3,3'-Dichlorobenzidine 3-Nitroaniline			UG/L	U	UJ	A01		
REA	3-Nitroaniine 4,6-Dinitro-o-Cresol			UG/L UG/L	U U	U) UJ	A01 A01		
REA	4-Bromophenyl-phenyl Ether			UG/L UG/L	U	ΠĴ	A01 A01		
REA	4-Chloroaniline			UG/L	Ŭ	บม	A01		
REA	4-Chlorophenyl-phenylether			UG/L	ŭ	ŰĴ	A01		
REA	4-Methylphenol			UG/L	Ū	UJ	A01		
REA	4-Nitroaniline			UG/L	U	UJ	A01		
REA	4-Nitrophenol			UG/L	U	UJ	A01		
REA	4-chloro-3-methylphenol			UG/L	U	UJ	A01		
REA	Acenaphthene			UG/L	U	UJ	A01		
REA REA	Acenaphthylene Anthracene			UG/L UG/L	U U	ດາ ດາ	A01		
REA	Benzo(a)anthracene			UG/L UG/L	U	01 01	A01 A01		
REA	Benzo(a)pyrene			UG/L	U	U1	A01		
REA	Benzo(b)fluoranthene			UG/L	Ŭ	U1	A01		
REA	Benzo(g,h,i)perylene			UG/L	Ŭ	UJ	A01		
REA	Benzo(k)fluoranthene		10	UG/L	U	UJ	A01		
REA	Bis(2-chloroethoxy)methane			UG/L	บ	UJ	A01		
REA	Bis(2-chloroethyl)ether			UG/L	U	UJ	A01		
REA	Bis(2-ethylhexyl)phthalate			UG/L	U	UJ	A01		
REA REA	Butyl Benzyl Phthalate Carbazole			UG/L	U	UJ	A01		
REA	Chrysene			UG/L UG/L	U U	ເບ	A01 A01		
REA	Di-n-butyl Phthalate			UG/L	Ŭ	0J 0J	A01 A01		
REA	Di-n-octyl Phthalate			UG/L	Ŭ	UJ	A01		
REA	Dibenzo(a,h)anthracene			UG/L	Ŭ	UJ	A01		
REA	Dibenzofuran		10	UG/L	U	UJ	A01		
REA	Diethyl Phthalate			UG/L	U	UJ	A01		
REA	Dimethyl Phthalate			UG/L	U	UJ	A01		
REA	Fluoranthene			UG/L	U	UJ	A01		
REA REA	Fluorene Hexachiorobenzene			UG/L	U U	UJ UJ	A01		
REA	Hexachlorobutadiene			UG/L UG/L	U	UJ UJ	A01 A01		
REA	Hexachlorocyclopentadiene			UG/L	U	UJ UJ	A01 A01,C05		
REA	Hexachloroethane			UG/L	U	UJ	A01,005		
REA	Indeno(1,2,3-cd)pyrene			UG/L	Ŭ	UJ	A01		
REA	Isophorone			UG/L	Ŭ	UJ	A01		
REA	N-Nitroso-di-n-propylamine			UG/L	U	UJ	A01		
REA	N-Nitrosodiphenylamine			UG/L	U	UJ	A01		
REA	Naphthalene			UG/L	U	UJ	A01		
REA	Nitrobenzene			UG/L	บ	UJ	A01		
REA REA	Pentachlorophenol Phenanthrene			UG/L	ย	UJ	A01		
REA	Phenol			UG/L UG/L	U U	U] UJ	A01 A01		
REA	Pyrene			UG/L	Ŭ	U1	A01		
Sample Type	Semi-Volatile Organics	Result		Units	Quali	iflers Data	Validation Code		
REG	1,2,4-Trichlorobenzene		10	UG/L	Lab U	Uata	Code	-	
REG	1,2,4-Erichlorobenzene			UG/L UG/L	U	U			
REG	1,3-Dichlorobenzene			UG/L	U	υ			
REG	1,4-Dichlorobenzene			UG/L	Ū	Ŭ			
REG	2,2'-oxybis (1-chloropropane)		10	UG/L	U	U			
REG	2,4,5-Trichlorophenol			UG/L	U	R	G04		
REG	2,4,6-Trichlorophenol			UG/L	U	R	G04		
REG	2,4-Dichlorophenol		10	UG/L	U	R	G04		

ŧ

#### Location: Ramsdell Quarry Landfill Station : MW-4 Existing Well

Sample Type	Semi-Volatile Organics	Result		lits	Qu La	ualifiers b Data	Validation	<u>.                                    </u>	
							Code		
REG REG	2,4-Dinitrophenol 2,4-Dinitrotoluene		5 UG		U	U			
REG					U	U			
REG	2,6-Dinitrotoluene		0.00		U	U			
	2-Chloronaphthalene		0.00		U	U			
REG	2-Chlorophenol		) UG		U	U			
REG	2-Methylnaphthalene		) UG		U	U	_		
REG	2-Methylphenol		) UG		U	R	G04		
REG	2-Nitroaniline		5 UG		U	U			
REG	2-Nitrophenol		0.00		U	R	G04		
REG	3,3'-Dichlorobenzidine		0 00		U	U			
REG	3-Nitroaniline		5 UG		U	U			
REG	4,6-Dinitro-o-Cresol		5 UG		U	R	G04		
REG	4-Bromophenyl-phenyl Ether	1	o ue	i/L	U	U			
REG	4-Chloroaniline	1	00	5/L	U	U			
REG	4-Chlorophenyl-phenylether		0.06		U	U			
REG	4-Methylphenol		D NG		U	R	G04		
REG	4-Nitroaniline	2	5 UG	5/L	U	U			
REG	4-Nitrophenol	2	5 UG	VL	U	R	G04		
REG	4-chloro-3-methylphenol	10	) UG	/L	U	U			
REG	Acenaphthene	10	0 00	i/L	U	U			
REG	Acenaphthylene		) UG		Ū	Ū			
REG	Anthracene		) UG		Ũ	Ŭ			
REG	Benzo(a)anthracene		00		Ŭ	Ŭ			
REG	Benzo(a)pyrene		UG		Ŭ	Ŭ			
REG	Benzo(b)fluoranthene		Ū.		Ŭ	Ŭ			
REG	Benzo(g,h,i)perylene		UG		Ŭ	Ŭ			
REG	Benzo(k)fluoranthene		UG		Ŭ	Ŭ			
REG	Bis(2-chloroethoxy)methane		000	_	Ŭ	Ŭ			
REG	Bis(2-chloroethyl)ether		UG		ŭ	ŭ			
REG	Bis(2-ethylhexyl)phthalate		UG		Ŭ	Ŭ			
REG	Butyi Benzyi Phthalate		UG		Ŭ	Ŭ			
REG	Carbazole		UG		Ŭ	Ŭ			
REG	Chrysene		) UG		ŭ	Ŭ			
REG	Di-n-butyl Phthalate		) UG		Ŭ	Ŭ			
REG	Di-n-octyl Phthalate		) UG		Ŭ	Ŭ			
REG					Ŭ	U			
REG	Dibenzo(a,h)anthracene Dibenzofuran		) UG ) UG		Ŭ	U			
REG	Diethyl Phthalate		) UG		Ŭ	Ŭ			
REG	Dimethyl Phthalate		) UG		Ŭ	Ŭ			
REG	Fluoranthene		) UG			Ŭ			
					U				
REG	Fluorene		) UG		U	U			
REG	Hexachiorobenzene		) UG		U	U			
REG	Hexachlorobutadiene		UG		U	U			
REG	Hexachlorocyclopentadiene		) UG		U	U			
REG	Hexachloroethane		) UG	_	U	U			
REG	Indeno(1,2,3-cd)pyrene		) UG		U	U			
REG	Isophorone		) UG		U	U			
REG	N-Nitroso-di-n-propylamine		) UG		U	U			
REG	N-Nitrosodiphenylamine		) UG		U	U			
REG	Naphthalene	10	) UG	/L	U	U			
REG	Nitrobenzene	10	) UG	/L	U	U			
REG	Pentachlorophenol	2	5 UG	/L	U	R	G04		
REG	Phenanthrene		) UG		Ū	U			
REG	Phenol		) UG		Ū	R	G04		
REG	Pyrene		) UG		Ŭ	U			
Sample						alifiers	Validation		
Туре	Volatile Organics	Result	Un	its	La	b Data	Code		
REG	1,1,1-Trichloroethane		UG	/L	U	U		-	
REG	1,1,2,2-Tetrachloroethane		5 UG		Ū	Ū			
REG	1,1,2-Trichloroethane		5 UG		Ŭ	Ŭ			
REG	1,1-Dichloroethane		5 UG		Ŭ	ŭ			
REG	1,1-Dichloroethene		5 UG		Ŭ	Ŭ			
REG			5 UG		U	U			
REG	1,2-Dichloroethane		5 UG		U	U			
	1,2-Dichloroethene				U	U			
REG	1,2-Dichloropropane		5 UG		-				
REG	1,3-cis-Dichloropropene		5 UG 5 UG		U U	U U			
REG	1,3-trans-Dichloropropene								

a, '

# Location: Ramsdell Quarry Landfill Station : MW-4 Existing Well

QLmw-004-0004-GW		Field Sample Type: Gra	b N	latrix: Gr	oundwat	ər	Collected: 07/13/9
Sampi Type	e Volatile Organics	Result	Units	Qual Lab	lfiers Data	Validation Code	·
REG	2-Hexanone	10	UG/L	- <del>U</del>	<u> </u>	·	_
REG	4-Methyl-2-pentanone	10	UG/L	U	U		
REG	Acetone	10	UG/L	U	U		
REG	Benzene	5	UG/L	Ū	Ū		
REG	Bromodichloromethane	5	UG/L	Ú	Ū		
REG	Bromoform		UG/L	Ū	Ŭ		
REG	Bromomethane		UG/L	Ŭ	ŭ		
REG	Carbon Disulfide	5	UG/L	Ū	Ū		
REG	Carbon Tetrachloride		UG/L	Ū	Ũ		
REG	Chlorobenzene		UG/L	Ū	Ū		
REG	Chloroethane		UG/L	Ū	Ū		
REG	Chloroform		UG/L	ũ	Ŭ		
REG	Chloromethane		UG/L	Ū	Ŭ		
REG	Dibromochloromethane		UG/L	ū	Ŭ		
REG	Ethylbenzene		UG/L	ū	Ū		
REG	Methylene Chloride		UG/L	ŭ	Ŭ		
REG	Styrene		UG/L	ŭ	Ū		
REG	Tetrachloroethene		UG/L	ŭ	Ŭ		
REG	Toluene		UG/L	ŭ	Ŭ		
REG	Trichloroethene		UG/L	ŭ	ŭ		
REG	Vinyl Chloride		UG/L	ŭ	Ŭ		
REG	Xylenes, Total		UG/L	ŭ	Ŭ		

# Location: Ramsdell Quarry Landfill Station : MW-5 Existing Well

#### RQLmw-005-0005-GW

0005-GW		Field Sample Type: Gra	b N	latrix:	Groundwa	ter	Collected:	07/13/98
Sample Type	Cyanide	Result	Units	Qu La	u <b>alifiers</b> lb Data	Validation Code		
REG	Cyanide	0.01	MG/L	U	U		-	
Sample Type	Metals	Result	Units	Qı La	ualifiers Ib Data	Validation Code		
REG	Aluminum	200	UG/L	. <u>u</u>		101	•••	
REG	Antimony		UG/L	Ū	Ū			
REG	Arsenic		UG/L	В	Ĵ			
REG	Barium	16.7	UG/L	В	บ้	F06		
REG	Beryllium		UG/L	Ū	Ŭ			
REG	Cadmium		UG/L	Ũ	Ŭ			
REG	Calcium	51100	UG/L	-	=			
REG	Chromium	10	UG/L	U	U			
REG	Cobalt		UG/L	Ũ	Ŭ			
REG	Copper		UG/L	ŭ	Ŭ			
REG	Iron		UG/L	-	=			
REG	Lead		UG/L	υ	บ			
REG	Magnesium	32900	UG/L		=			
REG	Manganese	6650	UG/L		=			
REG	Mercury	0.098	UG/L	в	J			
REG	Nickel	15.1	UG/L	в	J			
REG	Potassium	4440	UG/L	в	J			
REG	Selenium	5	UG/L	U	U			
REG	Silver	10	UG/L	U	U			
REG	Sodium	3990	UG/L	в	U	F06		
REG	Thallium	2	UG/L	υ	U			
REG	Vanadium	50	UG/L	U	U			
REG	Zinc	20	UG/L	U	U			
Sample				Q	ualifiers	Validation		
Туре	Filtered Metals	Result	Units	La		Code		
REG	Aluminum	200	UG/L	U	U		_	
REG	Antimony	5	UG/L	U	U			
REG	Arsenic	3.1	UG/L	в	J			
REG	Barium	16.6	UG/L	в	U	F06		
REG	Beryllium	5	UG/L	U	U			
REG	Cadmium	5	UG/L	U	U			
REG	Calcium	53300	UG/L		=			
REG	Chromium	10	UG/L	U	U			

### Location: Ramsdell Quarry Landfill Station : MW-5 Existing Well

Туре	Filtered Metals	Result	Units		ualifie ab [	ers Data	Validation Code	,
REG	Cobalt		UG/L	<u> </u>				_
REG	Copper		UG/L	บ	U			
REG	Iron		UG/L	U	=			
REG	Lead		UG/L	U	Ū			
REG	Magnesium	34100		0	=			
REG	Manganese		UG/L					
REG	Mercury			в	=			
REG	Nickel		UG/L	В	J			
REG	Potassium		UG/L	В	J			
REG	Selenium		UG/L	В	J			
REG	Silver		UG/L	U	U			
REG	Sodium		UG/L	U	U			
REG			UG/L	В	U		F06	
	Thallium		UG/L	U	U			
REG	Vanadium		UG/L	U	U			
REG	Zinc	20	UG/L	U	U			
iample Type	Explosives	Result	Units	Qı La	ualifie 16 E	ers Data	Validation Code	
REA	Nitroglycerin	2.5	UG/L	U	Ű			_
Sample		<b>B 1</b>	11		ualifie		Validation	
Type REG	Explosives 1.3,5-Trinitrobenzene	Result	Units UG/L	La 	њ С 	Data	Code	_
REG	1.3-Dinitrobenzene		UG/L	U	υ			
REG	2,4,6-Trinitrotoluene		UG/L	v	=			
REG	2,4-Dinitrotoluene		UG/L	U	= U			
REG	2,6-Dinitrotoluene		UG/L	Ŭ	U			
REG	2-Nitrotoluene		UG/L	Ŭ	U			
REG	3-Nitrotoluene				ບ			
REG	4-Nitrotoluene		UG/L	U U	U			
REG	HMX		UG/L	Ŭ				
REG	Nitrobenzene		UG/L	-	U			
REG			UG/L	U	U			
	Nitrocellulose as N		MG/L	U	U			
REG	Nitroguanidine		UG/L	U	U			
REG	RDX	0.5	UG/L	U U	U U			
REG	Tetryl				-			
	Tetryl		UGIL		, el lífico	-	Volidation	
	·	Result	Units		ualifie b D	rs )ata	Validation Code	
Sample Type REA	Semi-Volatile Organics 1,2,4-Trichlorobenzene	Result 10	Units UG/L	Qu La	ib D U	Jata	Code A01	_
Sample Type REA REA	Semi-Volatile Organics 1,2,4-Trichlorobenzene 1,2-Dichlorobenzene	Result 10 10	Units UG/L UG/L	Qu La U U	ib D U. U.	J J	Code A01 A01	_
Sample Type REA REA REA	Semi-Volatile Organics 1,2,4-Trichlorobenzene 1,2-Dichlorobenzene 1,3-Dichlorobenzene	Result 10 10 10	Units UG/L UG/L UG/L	Qu La U U U U	16 D U. U. U.	)ata J J J J	Code A01 A01 A01	_
Sample Type REA REA REA REA	Semi-Volatile Organics 1,2,4-Trichlorobenzene 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene	Result 10 10 10 10 10	Units UG/L UG/L UG/L UG/L	<b>Q</b> u La U U U U	16 D U. U. U. U.	J J J J J	Code A01 A01 A01 A01	_
Sample Type REA REA REA REA REA REA	Semi-Volatile Organics 1,2,4-Trichlorobenzene 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 2,2'-oxybis (1-chloropropane)	Result 10 10 10 10 10 10	Units UG/L UG/L UG/L UG/L UG/L	Qu La U U U U U U	10 D ບ. ບ. ບ. ບ.	J J J J J J J J	Code A01 A01 A01 A01 A01	_
Sample Type REA REA REA REA REA REA	Semi-Volatile Organics 1,2,4-Trichlorobenzene 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 2,2'-oxybis (1-chloropropane) 2,4,5-Trichlorophenol	Result 10 10 10 10 10 10 25	Units UG/L UG/L UG/L UG/L UG/L UG/L	Qu La U U U U U U U U U	10 ມີ ບູ ບູ ບູ ບູ	J J J J J J J J J	Code A01 A01 A01 A01 A01 A01 A01	_
Sample Type REA REA REA REA REA REA REA	Semi-Volatile Organics 1,2,4-Trichlorobenzene 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 2,2'-oxybis (1-chloropropane) 2,4,5-Trichlorophenol 2,4,6-Trichlorophenol	Result 10 10 10 10 10 10 25 10	Units UG/L UG/L UG/L UG/L UG/L UG/L	Qu La U U U U U U U U U	16 D U U U U U U	)ata J J J J J J J J J J J	Code A01 A01 A01 A01 A01 A01 A01 A01	_
Sample Type REA REA REA REA REA REA REA REA	Semi-Volatile Organics 1,2,4-Trichlorobenzene 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 2,2'-oxybis (1-chloropropane) 2,4,5-Trichlorophenol 2,4,6-Trichlorophenol 2,4-Dichlorophenol	Result 10 10 10 10 10 10 25 10 10	Units UG/L UG/L UG/L UG/L UG/L UG/L UG/L	Qu La U U U U U U U U U U U U	16 D U. U. U. U. U. U.	J J J J J J J J J J J J J	Code A01	_
Sample Type REA REA REA REA REA REA REA REA REA	Semi-Volatile Organics 1,2,4-Trichlorobenzene 1,2-Dichlorobenzene 1,3-Dichlorobenzene 2,2-oxybis (1-chloropropane) 2,4,5-Trichlorophenol 2,4,6-Trichlorophenol 2,4-Dichlorophenol 2,4-Dimethylphenol	Result 10 10 10 10 10 25 10 10 10	Units UG/L UG/L UG/L UG/L UG/L UG/L UG/L	Qu La U U U U U U U U U U U U U	16 ມີ ບູ. ບູ. ບູ. ບູ. ບູ. ບູ. ບູ.	)ata J J J J J J J J J J J J J J J J	Code A01	_
Sample Type REA REA REA REA REA REA REA REA REA REA	Semi-Volatile Organics 1,2,4-Trichlorobenzene 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 2,2'oxybis (1-chloropropane) 2,4,5-Trichlorophenol 2,4-5-Trichlorophenol 2,4-Dichlorophenol 2,4-Dimethylphenol 2,4-Dimitrophenol	Result 10 10 10 10 10 25 10 10 10 10 25	Units UG/L UG/L UG/L UG/L UG/L UG/L UG/L UG/L		16 D U U U U U U U U U	)ata ) ) ) ) ) ) ) ) ) ) ) ) )	Code A01	_
Sample Type REA REA REA REA REA REA REA REA REA REA	Semi-Volatile Organics 1,2,4-Trichlorobenzene 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 2,2-oxybis (1-chloropropane) 2,4,5-Trichlorophenol 2,4-Dichlorophenol 2,4-Dichlorophenol 2,4-Dinitrophenol 2,4-Dinitrophenol 2,4-Dinitrophenol 2,4-Dinitrophenol 2,4-Dinitrophenol	Result 10 10 10 10 10 25 10 10 10 25 10	Units UG/L UG/L UG/L UG/L UG/L UG/L UG/L UG/L			)ata J J J J J J J J J J J J J	Code A01	_
Sample Type REA REA REA REA REA REA REA REA REA REA	Semi-Volatile Organics 1,2,4-Trichlorobenzene 1,2-Dichlorobenzene 1,3-Dichlorobenzene 2,4-Dichlorobenzene 2,2-oxybis (1-chloropropane) 2,4,5-Trichlorophenol 2,4-Dichlorophenol 2,4-Dichlorophenol 2,4-Dinitrophenol 2,4-Dinitrophenol 2,4-Dinitrophenol 2,4-Dinitrotoluene 2,6-Dinitrotoluene	Result 10 10 10 10 10 25 10 10 10 25 10 10 10 10 10	Units UG/L UG/L UG/L UG/L UG/L UG/L UG/L UG/L			)ata ) ) ) ) ) ) ) ) ) ) ) ) )	Code A01	_
Sample Type REA REA REA REA REA REA REA REA REA REA	Semi-Volatile Organics 1,2,4-Trichlorobenzene 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 2,2'-oxybis (1-chloropropane) 2,4,5-Trichlorophenol 2,4-5-Trichlorophenol 2,4-Dinitrophenol 2,4-Dinitrophenol 2,4-Dinitrophenol 2,4-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2-Chloronaphthalene	Result 10 10 10 10 10 25 10 10 10 25 10 10 10 25 10 10	Units UG/L UG/L UG/L UG/L UG/L UG/L UG/L UG/L			)ata ) ) ) ) ) ) ) ) ) ) ) ) )	Code A01	
Sample Type REA REA REA REA REA REA REA REA REA REA	Semi-Volatile Organics 1,2,4-Trichlorobenzene 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 2,2'-oxybis (1-chloropropane) 2,4,5-Trichlorophenol 2,4,5-Trichlorophenol 2,4-Dichlorophenol 2,4-Dinitrophenol 2,4-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene	Result 10 10 10 10 10 25 10 10 25 10 10 10 10 10 10	Units UG/L UG/L UG/L UG/L UG/L UG/L UG/L UG/L			3ata J J J J J J J J J J J J J	Code A01	_
Sample Type REA REA REA REA REA REA REA REA REA REA	Semi-Volatile Organics 1,2,4-Trichlorobenzene 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 2,2'-oxybis (1-chloropropane) 2,4,5-Trichlorophenol 2,4,6-Trichlorophenol 2,4-Dichlorophenol 2,4-Dinitrophenol 2,4-Dinitrotoluene 2,6-Dinitrotoluene 2-Chlorophenol 2-Methylnaphthalene	Result 10 10 10 10 10 25 10 10 10 25 10 10 10 10 10 10	Units UG/L UG/L UG/L UG/L UG/L UG/L UG/L UG/L			3ata J J J J J J J J J J J J J	Code A01	_
Sample Type REA REA REA REA REA REA REA REA REA REA	Semi-Volatile Organics 1,2,4-Trichlorobenzene 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 2,2'-oxybis (1-chloropropane) 2,4,5-Trichlorophenol 2,4,5-Trichlorophenol 2,4-Dichlorophenol 2,4-Dinitrophenol 2,4-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene	Result 10 10 10 10 10 25 10 10 10 25 10 10 10 10 10 10	Units UG/L UG/L UG/L UG/L UG/L UG/L UG/L UG/L			3ata J J J J J J J J J J J J J	Code A01	_
Sample Type REA REA REA REA REA REA REA REA REA REA	Semi-Volatile Organics 1,2,4-Trichlorobenzene 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 2,2'-oxybis (1-chloropropane) 2,4,5-Trichlorophenol 2,4,6-Trichlorophenol 2,4-Dichlorophenol 2,4-Dinitrophenol 2,4-Dinitrotoluene 2,6-Dinitrotoluene 2-Chlorophenol 2-Methylnaphthalene	Result 10 10 10 10 10 25 10 10 10 25 10 10 10 10 10 10 10 10	Units UG/L UG/L UG/L UG/L UG/L UG/L UG/L UG/L			Jata       J       J       J       J       J       J       J       J       J       J       J       J       J       J       J       J       J       J       J       J       J       J       J	Code A01	_
Sample Type REA REA REA REA REA REA REA REA REA REA	Semi-Volatile Organics 1,2,4-Trichlorobenzene 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 2,2'-oxybis (1-chloropropane) 2,4,5-Trichlorophenol 2,4,6-Trichlorophenol 2,4-Dinethylphenol 2,4-Dinitrophenol 2,4-Dinitrophenol 2,4-Dinitrotoluene 2,6-Dinitrotoluene 2-Chloronaphthalene 2-Chlorophenol 2-Methylinaphthalene 2-Methyliphenol	Result 10 10 10 10 10 10 25 10 10 10 10 10 10 10 10 10 10 10 25	Units UG/L UG/L UG/L UG/L UG/L UG/L UG/L UG/L	<b>Q.</b> La V V V V V V V V V V V V V V V V V V V		J           J           J           J           J           J           J           J           J           J           J           J           J           J           J           J           J           J           J           J           J           J           J           J           J           J           J           J           J           J           J           J           J           J           J           J           J           J           J           J           J           J           J           J           J           J           J           J           J           J           J           J           J           J	Code           A01	_
Sample Type REA REA REA REA REA REA REA REA REA REA	Semi-Volatile Organics 1,2,4-Trichlorobenzene 1,2-Dichlorobenzene 1,3-Dichlorobenzene 2,4-Dichlorobenzene 2,4-S-Trichlorophenol 2,4-5-Trichlorophenol 2,4-Dinitrophenol 2,4-Dinitrophenol 2,4-Dinitrophenol 2,4-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2-Chloronaphthalene 2-Methyliphenol 2-Methyliphenol 2-Nitrophenol 3,3'-Dichlorobenzidine	Result 10 10 10 10 10 25 10 10 10 10 10 10 10 10 10 10 10 10 10	Units UG/L UG/L UG/L UG/L UG/L UG/L UG/L UG/L		b C U,	J           J           J           J           J           J           J           J           J           J           J           J           J           J           J           J           J           J           J           J           J           J           J           J           J           J           J           J           J           J           J           J           J           J           J           J           J           J           J           J           J           J           J           J           J           J           J           J           J           J           J           J           J           J	Code           A01	_
Sample Type REA REA REA REA REA REA REA REA REA REA	Semi-Volatile Organics 1,2,4-Trichlorobenzene 1,2-Dichlorobenzene 1,3-Dichlorobenzene 2,2-oxybis (1-chloropropane) 2,4,5-Trichlorophenol 2,4-Dichlorophenol 2,4-Dichlorophenol 2,4-Dinitrophenol 2,4-Dinitrophenol 2,4-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2-Chloronaphthalene 2-Methylphenol 2-Methylphenol 2-Nitroaniline 2-Nitrophenol	Result 10 10 10 10 10 25 10 10 10 10 10 10 10 10 10 10 10 10 10	Units UG/L UG/L UG/L UG/L UG/L UG/L UG/L UG/L		b C U,	J           J           J           J           J           J           J           J           J           J           J           J           J           J           J           J           J           J           J           J           J           J           J           J           J           J           J           J           J	Code           A01	_
Sample Type REA REA REA REA REA REA REA REA REA REA	Semi-Volatile Organics 1,2,4-Trichlorobenzene 1,2-Dichlorobenzene 1,3-Dichlorobenzene 2,4-Dichlorobenzene 2,4-S-Trichlorophenol 2,4-5-Trichlorophenol 2,4-Dinitrophenol 2,4-Dinitrophenol 2,4-Dinitrophenol 2,4-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2-Chloronaphthalene 2-Methyliphenol 2-Methyliphenol 2-Nitrophenol 3,3'-Dichlorobenzidine	Result 10 10 10 10 25 10 10 10 25 10 10 10 10 10 10 25 10 10 10 10 10 25 10 10 10 25	Units UG/L UG/L UG/L UG/L UG/L UG/L UG/L UG/L		b C UUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUU	J           J           J           J           J           J           J           J           J           J           J           J           J           J           J           J           J           J           J           J           J           J           J           J           J           J           J           J           J           J           J           J           J           J           J           J           J           J           J           J           J           J           J           J           J           J           J           J           J           J           J           J           J           J	Code           A01	_
Sampe Type REA REA REA REA REA REA REA REA REA REA	Semi-Volatile Organics 1,2,4-Trichlorobenzene 1,2-Dichlorobenzene 1,3-Dichlorobenzene 2,2-oxybis (1-chloropropane) 2,4,5-Trichlorophenoi 2,4-5-Trichlorophenoi 2,4-Dinitrophenol 2,4-Dinitrophenol 2,4-Dinitrophenol 2,4-Dinitrotoluene 2,6-Dinitrotoluene 2-Chlorophenol 2-Methylinaphthalene 2-Chlorophenol 2-Methylinaphthalene 2-Nitroaniline 3,3'-Dichlorobenzidine 3-Nitroaniline	Result 10 10 10 10 25 10 10 25 10 10 10 10 10 10 10 10 10 10 10 25 10 10 25 10 10 25 25	Units UG/L UG/L UG/L UG/L UG/L UG/L UG/L UG/L		b C U,	Jata           J           J           J           J           J           J           J           J           J           J           J           J           J           J           J           J           J           J           J           J           J           J           J           J           J           J           J           J           J           J           J           J           J           J           J           J           J           J           J           J           J           J           J           J           J           J           J           J           J           J           J           J           J	Code           A01	_
Sampe Type REA REA REA REA REA REA REA REA REA REA	Semi-Volatile Organics 1,2,4-Trichlorobenzene 1,2-Dichlorobenzene 1,3-Dichlorobenzene 2,2'-oxybis (1-chloropropane) 2,4,5-Trichlorophenol 2,4,6-Trichlorophenol 2,4-Dinitrophenol 2,4-Dinitrophenol 2,4-Dinitrophenol 2,4-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2-Chlorophenol 2-Methylinaphthalene 2-Methylinaphthalene 2-Methylinaphthalene 2-Methylinaphthalene 3,3'-Dichlorobenzidine 3-Nitroaniline 4,6-Dinitro-Cresol	Result 10 10 10 10 25 10 10 25 10 10 25 10 10 10 10 25 10 10 25 10 10 25 10 10 25 10 10 10 10 10 25 10 10 10 10 10 10 10 10 10 10 10 10 10	Units UG/L UG/L UG/L UG/L UG/L UG/L UG/L UG/L		b C U,	Jata           J           J           J           J           J           J           J           J           J           J           J           J           J           J           J           J           J           J           J           J           J           J           J           J           J           J           J           J           J           J           J           J           J           J           J           J           J           J           J           J           J           J           J           J           J           J           J           J           J           J           J           J           J	Code A01	_
Sampe REAA REAA REAA REAAAAAAAAAAAAAAAAAAAAA	Semi-Volatile Organics 1,2,4-Trichlorobenzene 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 2,2'-oxybis (1-chloropropane) 2,4,5-Trichlorophenol 2,4,6-Trichlorophenol 2,4-Dinitrophenol 2,4-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2-Chlorophenol 2-Methylnaphthalene 2-Methylnaphthalene 2-Methylphenol 2-Nitroaniline 3,3'-Dichlorobenzidine 3-Nitroaniline 4,6-Dinitro-Cresol 4-Bromophenyl-phenyl Ether	Result 10 10 10 10 10 10 25 10 10 10 10 10 10 10 10 10 10 10 25 10 10 25 10 10 10 10 10 10 10 10 10 10 10 10 10	Units UG/L UG/L UG/L UG/L UG/L UG/L UG/L UG/L		b C U, U, U, U, U, U, U, U, U, U, U, U, U, U	J           J           J           J           J           J           J           J           J           J           J           J           J           J           J           J           J           J           J           J           J           J           J           J           J           J           J           J           J           J           J           J           J           J           J           J           J           J           J           J           J           J           J           J           J           J           J           J           J           J           J           J           J           J	Code A01	_
Sampe REA REA REA REA REA REA REA REA REA REA	Semi-Volatile Organics 1,2.4-Trichlorobenzene 1,2-Dichlorobenzene 1,3-Dichlorobenzene 2,2-oxybis (1-chloropropane) 2,4,5-Trichlorophenol 2,4-5-Trichlorophenol 2,4-Dinitrophenol 2,4-Dinitrophenol 2,4-Dinitrotoluene 2,6-Dinitrotoluene 2-Chloronaphthalene 2-Chloronaphthalene 2-Methyliphenol 2-Methyliphenol 2-Nitroaniline 2-Nitroaniline 3,3-Dichlorobenzidine 3-Nitroaniline 3-Nitroaniline 4-Bromophenyl-phenyl Ether 4-Chloroaniline	Result 10 10 10 10 10 10 10 10 10 10 10 10 10	Units UG/L UG/L UG/L UG/L UG/L UG/L UG/L UG/L		b C U. U.U. U.U. U.U. U.U. U.U. U.U. U.U. U.U. U.U. U.U. U.U. U.U. U.U. U.U. U.U. U.U. U.U. U.U. U.U. U.U. U.U. U.U. U.U. U.U. U.U. U.U. U.U. U.U. U.U. U.U. U.U. U.U. U.U. U.U. U.U. U.U. U.U. U.U. U.U. U.U. U.U. U.U. U.U. U.U. U.U. U.U. U.U. U.U. U.U. U.U. U.U. U.U. U.U. U.U. U.U. U.U. U.U. U.U. U.U. U.U. U.U. U.U. U.U. U.U. U.U. U.U. U.U. U.U. U.U. U.U. U.U. U.U. U.U. U.U. U.U. U.U. U.U. U.U. U.U. U.U. U.U. U.U. U.U. U.U. U.U. U.U. U.U. U.U. U.U. U.U. U.U. U.U. U.U. U.U. U.U. U.U. U.U. U.U. U.U. U.U. U.U. U.U. U.U. U.U. U.U. U.U. U.U. U.U. U.U. U.U. U.U. U.U. U.U. U.U. U.U. U.U. U.U. U.U. U.U. U.U. U.U. U.U. U.U. U.U. U.U. U.U. U.U. U.U. U.U. U.U. U.U. U.U. U.U. U.U. U.U. U.U. U.U. U.U. U.U. U.U. U.U. U.U. U.U. U.U. U.U. U.U. U.U. U.U. U.U. U.U. U.U. U.U. U.U. U.U. U.U. U.U. U.U. U.U. U.U. U.U. U.U. U.U. U.U. U.U. U.U. U.U. U.U. U.U. U.U. U.U. U.U. U.U. U.U. U.U. U.U. U.U. U.U. U.U. U.U. U.U. U.U. U.U. U.U. U.U. U.U. U.U. U.U. U.U. U.U. U.U. U.U. U.U. U.U. U.U. U.U. U.U. U.U. U.U. U.U. U.U. U.U. U.U. U.U. U.U. U.U. U.U. U.U. U.U. U.U. U.U. U.U. U.U. U.U. U.U. U.U. U.U. U.U. U.U. U.U. U.U. U.U. U.U. U.U. U.U. U.U. U.U. U.U. U.U. U.U. U.U. U.U. U.U. U.U. U.U. U.U. U.U. U.U. U.U. U.U. U.U. U.U. U.U. U.U. U.U. U.U. U.U. U.U. U.U. U.U. U.U. U.U. U.U. U.U. U.U. U.U. U.U. U.U. U.U. U.U. U.U. U.U. U.U. U.U. U.U. U.U. U.U. U.U. U.U. U.U. U.U. U.U. U.U. U.U. U.U. U.U. U.U. U.U. U.U. U.U. U.U. U.U. U.U. U.U. U.U. U.U. U.U. U.U. U.U. U.U. U.U. U.U. U.U. U.U. U.U. U.U. U.U. U.U. U.U. U.U. U.U. U.U. U.U. U.U. U.U. U.U. U.U. U.U. U.U. U.U. U.U. U.U. U.U. U.U. U.U. U.U. U.U. U.U. U.U. U.U. U.U. U.U. U.U. U.U. U.U. U.U. U.U. U.U.U. U.U.U.U.	J           J           J           J           J           J           J           J           J           J           J           J           J           J           J           J           J           J           J           J           J           J           J           J           J           J           J           J           J           J           J           J           J           J           J           J           J           J           J           J           J           J           J           J           J           J           J           J           J           J           J           J           J           J	Code A01	
Sampe REAA REAA REAAAAAAAAAAAAAAAAAAAAAAAAAA	Semi-Volatile Organics 1,2,4-Trichlorobenzene 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 2,2'oxybis (1-chloropropane) 2,4,5-Trichlorophenol 2,4-Dichlorophenol 2,4-Dinitrophenol 2,4-Dinitrophenol 2,4-Dinitrotoluene 2,6-Dinitrotoluene 2-Chloronaphthalene 2-Chlorophenol 2-Methylphenol 2-Nitroaniline 2-Nitroaniline 3,3'-Dichlorobenzidine 3,3'-Dichlorobenzidine 3-Nitroaniline 4,6-Dinitro-o-Cresol 4-Bromophenyl-phenyl Ether 4-Chloroaniline	Result 10 10 10 10 10 10 25 10 10 10 10 10 10 10 10 10 10 10 10 10	Units UG/L UG/L UG/L UG/L UG/L UG/L UG/L UG/L		b C U U U U U U U U U U U U U U U U U U	Jata           J           J           J           J           J           J           J           J           J           J           J           J           J           J           J           J           J           J           J           J           J           J           J           J           J           J           J           J           J           J           J           J           J           J           J           J           J           J           J           J           J           J           J           J           J           J           J           J           J           J           J           J           J	Code           A01           A01	
Sampe REAA REAA REAAAAAAAAAAAAAAAAAAAAAAAAAA	Semi-Volatile Organics 1,2,4-Trichlorobenzene 1,2-Dichlorobenzene 1,3-Dichlorobenzene 2,2-oxybis (1-chloropropane) 2,4,5-Trichlorophenol 2,4-Dinitrophenol 2,4-Dinitrophenol 2,4-Dinitrophenol 2,4-Dinitrotoluene 2,6-Dinitrotoluene 2-Chloronaphthalene 2-Chloronaphthalene 2-Chlorophenol 2-Methylphenol 2-Nitroaniline 2-Nitroaniline 3-Nitroaniline 4,6-Dinitro-Cresol 4-Bromophenyl-phenyl Ether 4-Chlorophenol	Result 10 10 10 10 10 25 10 10 10 10 10 10 10 10 10 10 10 10 10	Units UG/L UG/L UG/L UG/L UG/L UG/L UG/L UG/L		b         C           U.U         U.U	Jata           J           J           J           J           J           J           J           J           J           J           J           J           J           J           J           J           J           J           J           J           J           J           J           J           J           J           J           J           J           J           J           J           J           J           J           J           J           J           J           J           J           J           J           J           J           J           J           J           J           J           J           J           J	Code           A01           A01	
Sampe REAA REAA REAAAAAAAAAAAAAAAAAAAAAAAAAA	Semi-Volatile Organics 1,2,4-Trichlorobenzene 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 2,2'oxybis (1-chloropropane) 2,4,5-Trichlorophenol 2,4-Dichlorophenol 2,4-Dinitrophenol 2,4-Dinitrophenol 2,4-Dinitrotoluene 2,6-Dinitrotoluene 2-Chloronaphthalene 2-Chlorophenol 2-Methylphenol 2-Nitroaniline 2-Nitroaniline 3,3'-Dichlorobenzidine 3,3'-Dichlorobenzidine 3-Nitroaniline 4,6-Dinitro-o-Cresol 4-Bromophenyl-phenyl Ether 4-Chloroaniline	Result 10 10 10 10 10 25 10 10 10 10 10 10 10 10 10 10 10 10 10	Units UG/L UG/L UG/L UG/L UG/L UG/L UG/L UG/L		b C U U U U U U U U U U U U U U U U U U	J           J           J           J           J           J           J           J           J           J           J           J           J           J           J           J           J           J           J           J           J           J           J           J           J           J           J           J           J           J           J           J           J           J	Code           A01	

#### Location: Ramsdell Quarry Landfill Station : MW-5 Existing Well

Sample				Qui	lifiers	Validation	<u> </u>
Туре	Semi-Volatlle Organics	Result	Units			Code	
REA	Acenaphthylene	1	0 UG/L	- <del>u</del>		A01	_
REA	Anthracene	1	0 UG/L	U	θJ	A01	
REA	Benzo(a)anthracene	1	0 UG/L	U	UJ	A01	
REA	Benzo(a)pyrene	1	0 UG/L	U	UJ	A01	
REA	Benzo(b)fluoranthene	1	0 UG/L	U	UJ	A01	
REA	Benzo(g,h,i)perylene	1	0 UG/L	U	UJ	A01	
REA	Benzo(k)fluoranthene	1	0 UG/L	U	UJ	A01	
REA	Bis(2-chloroethoxy)methane	1	0 UG/L	U	UJ	A01	
REA	Bis(2-chloroethyl)ether	1	0 UG/L	U	IJ	A01	
REA	Bis(2-ethylhexyl)phthalate	1	0 UG/L	U	ບມ	A01	
REA	Butyl Benzyl Phthalate	1	0 UG/L	U	UJ	A01	
REA	Carbazole	1	0 UG/L	U	UJ	A01	
REA	Chrysene	1	0 UG/L	U	UJ	A01	
REA	Di-n-butyl Phthalate	1	0 UG/L	U	UJ	A01	
REA	Di-n-octyl Phthalate	1	0 UG/L	U	UJ	A01	
REA	Dibenzo(a,h)anthracene	1	0 UG/L	U	UJ	A01	
REA	Dibenzofuran	1	0 UG/L	U	UJ	A01	
REA	Diethyl Phthalate	1	0 UG/L	U	UJ	A01	
REA	Dimethyl Phthalate	1	0 UG/L	บ	UJ	A01	
REA	Fluoranthene	1	0 UG/L	U	UJ	A01	
REA	Fluorene		0 UG/L	Ū	UJ	A01	
REA	Hexachlorobenzene		0 UG/L	Ū	ŬĴ	A01	
REA	Hexachlorobutadiene	1	0 UG/L	Ū	ŬĴ	A01,C05	
REA	Hexachlorocyclopentadiene		0 UG/L	Ū	ŬĴ	A01	
REA	Hexachloroethane		0 UG/L	ū	ŰĴ	A01	
REA	Indeno(1,2,3-cd)pyrene		0 UG/L	Ŭ	UĴ	A01	
REA	Isophorone		0 UG/L	Ŭ	UĴ	A01	
REA	N-Nitroso-di-n-propylamine		0 UG/L	Ŭ	UJ	A01	
REA	N-Nitrosodiphenylamine		0 UG/L	Ŭ	ÛĴ	A01	
REA	Naphthalene		0 UG/L	Ŭ	UJ UJ	A01	
REA	Nitrobenzene		0 UG/L	ŭ	UJ	A01	
REA	Pentachlorophenol		5 UG/L	ŭ	UJ	A01	
REA	Phenanthrene		0 UG/L	ŭ	UJ	A01	
REA	Phenol		0 UG/L	Ŭ	UJ	A01	
REA	Pyrene		0 UG/L	Ŭ	UJ UJ	A01	
				•			
Sample	-						
Sample Type	Semi-Volatile Organics	Result	Units		lifiers	Validation Code	
		Result		Qua	lifiers	Validation	_
Type REG	Semi-Volatile Organics 1,2,4-Trichlorobenzene	Result 1	Units UG/L	Qua Lab	lifiers Data U	Validation	_
Type REG REG	SemI-Volatile Organics 1,2,4-Trichlorobenzene 1,2-Dichlorobenzene	Result 1 1	Units 0 UG/L 0 UG/L	Qua Lab U U	U U U	Validation	_
Type REG REG REG	SemI-Volatile Organics 1,2,4-Trichlorobenzene 1,2-Dichlorobenzene 1,3-Dichlorobenzene	Result 1 1 1	Units UG/L UG/L UG/L UG/L	Qua Lab U U U	U U U U U	Validation	_
Type REG REG REG REG	SemI-Volatile Organics 1,2,4-Trichlorobenzene 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene	Result 1 1 1 1 1	Units 0 UG/L 0 UG/L 0 UG/L 0 UG/L	Qua Lab U U U U U	U U U U U U U	Validation	-
Type REG REG REG REG REG	SemI-Volatile Organics 1,2,4-Trichlorobenzene 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 2,2'-oxybis (1-chloropropane)	Result 1 1 1 1 1 1	Units 0 UG/L 0 UG/L 0 UG/L 0 UG/L 0 UG/L	Qua Lab U U U U U U	U U U U U U U U U	Validation Code	_
Type REG REG REG REG REG REG	SemI-Volatile Organics 1,2,4-Trichlorobenzene 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 2,2'-oxybis (1-chloropropane) 2,4,5-Trichlorophenoi	Result 1 1 1 1 1 2	Units 0 UG/L 0 UG/L 0 UG/L 0 UG/L 5 UG/L	Qua Lab U U U U U U U U U	U Data U U U U U U R	Validation Code	_
Type REG REG REG REG REG REG	SemI-Volatile Organics 1,2,4-Trichlorobenzene 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 2,2'-oxybis (1-chloropropane) 2,4,5-Trichlorophenol 2,4,6-Trichlorophenol	Result 1 1 1 1 1 2 1 2	Units 0 UG/L 0 UG/L 0 UG/L 0 UG/L 5 UG/L 0 UG/L	Qua Lab U U U U U U U U U U	U Data U U U U U R R R	G04 G04	_
Type REG REG REG REG REG REG REG	SemI-Volatile Organics 1,2,4-Trichlorobenzene 1,2-Dichlorobenzene 1,3-Dichlorobenzene 2,2'-oxybis (1-chloropropane) 2,4,5-Trichlorophenol 2,4,6-Trichlorophenol 2,4-Dichlorophenol	Result 1 1 1 1 1 1 2 1 1 2 1	Units 0 UG/L 0 UG/L 0 UG/L 0 UG/L 0 UG/L 0 UG/L 0 UG/L	Qua Lab U U U U U U U U U U U	U U U U U U U U R R R R	G04 G04 G04	_
Type REG REG REG REG REG REG REG	SemI-Volatile Organics 1,2,4-Trichlorobenzene 1,2-Dichlorobenzene 1,3-Dichlorobenzene 2,2'-oxybis (1-chloropropane) 2,4,5-Trichlorophenol 2,4,6-Trichlorophenol 2,4-Dichlorophenol 2,4-Dimethylphenol	Result 1 1 1 1 1 2 1 1 1 1 1 1	Units 0 UG/L 0 UG/L 0 UG/L 0 UG/L 0 UG/L 0 UG/L 0 UG/L 0 UG/L	Qua Lab U U U U U U U U U U U U U	litiers Data U U U U U R R R R R R	G04 G04 G04 G04 G04	_
Type REG REG REG REG REG REG REG REG	SemI-Volatile Organics 1,2,4-Trichlorobenzene 1,2-Dichlorobenzene 1,3-Dichlorobenzene 2,4-Dichlorobenzene 2,4,5-Trichlorophenol 2,4,6-Trichlorophenol 2,4-Dichlorophenol 2,4-Dimethylphenol 2,4-Dimitrophenol	Result 1 1 1 1 1 2 1 1 1 1 2 1 1 2 2 1 1 2 2	Units 0 UG/L 0 UG/L 0 UG/L 0 UG/L 0 UG/L 0 UG/L 0 UG/L 0 UG/L 5 UG/L	Qua Lab U U U U U U U U U U U U U	J <b>lifiers</b> Data U U U U U U R R R R R R	G04 G04 G04	_
Type REG REG REG REG REG REG REG REG REG	SemI-Volatile Organics 1,2,4-Trichlorobenzene 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 2,2-oxybis (1-chloropropane) 2,4,5-Trichlorophenol 2,4-Dichlorophenol 2,4-Dinitrophenol 2,4-Dinitrophenol 2,4-Dinitrophenol 2,4-Dinitrophenol 2,4-Dinitrophenol	Result 1 1 1 1 1 2 1 1 1 1 2 1 1 2 1 1 2 1	Units 0 UG/L 0 UG/L 0 UG/L 0 UG/L 0 UG/L 0 UG/L 0 UG/L 5 UG/L 0 UG/L	Qua Lab	U Data Data U U U U U U R R R R R R U U	G04 G04 G04 G04 G04	_
Type REG REG REG REG REG REG REG REG REG REG	SemI-Volatile Organics 1,2,4-Trichlorobenzene 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 2,2'-oxybis (1-chloropropane) 2,4,5-Trichlorophenol 2,4,6-Trichlorophenol 2,4-Dinitrophenol 2,4-Dinitrophenol 2,4-Dinitrophenol 2,4-Dinitrotoluene 2,6-Dinitrotoluene	<b>Result</b> 1 1 1 1 1 2 1 1 1 1 2 1 1 1 1 1 1	Units 0 UG/L 0 UG/L 0 UG/L 0 UG/L 0 UG/L 0 UG/L 0 UG/L 0 UG/L 0 UG/L 0 UG/L	Qua Lab U U U U U U U U U U U U U U U U U U	lifiers Data U U U U U R R R R R R R U U U	G04 G04 G04 G04 G04	_
Type REG REG REG REG REG REG REG REG REG REG	Semi-Volatile Organics 1,2,4-Trichlorobenzene 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 2,2'-oxybis (1-chloropropane) 2,4,5-Trichlorophenol 2,4,6-Trichlorophenol 2,4-Dinitrophenol 2,4-Dinitrophenol 2,4-Dinitrophenol 2,4-Dinitrotoluene 2,6-Dinitrotoluene 2-Chloronaphthalene	Result 1 1 1 1 1 2 1 1 1 2 1 1 1 1 1 1 1	Units 0 UG/L 0 UG/L 0 UG/L 0 UG/L 0 UG/L 0 UG/L 0 UG/L 0 UG/L 0 UG/L 0 UG/L	Qua Lab U U U U U U U U U U U U U U U U U U U	lifiers Data U U U U U U R R R R R R U U U U	G04 G04 G04 G04 G04	_
Type REG REG REG REG REG REG REG REG REG REG	SemI-Volatile Organics 1,2,4-Trichlorobenzene 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 2,2'-oxybis (1-chloropropane) 2,4,5-Trichlorophenol 2,4,6-Trichlorophenol 2,4-Dichlorophenol 2,4-Dinitrophenol 2,4-Dinitrophenol 2,4-Dinitrophenol 2,4-Dinitrophenol 2,4-Dinitrophenol 2,4-Dinitrophenol 2,4-Dinitrophenol 2,4-Dinitrophenol 2,4-Dinitrophenol 2,4-Dinitrophenol 2,4-Dinitrophenol 2,4-Dinitrophenol	Result 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1	Units 0 UG/L 0 UG/L	Qua Lab U U U U U U U U U U U U U U U U U U U	lifiers Data U U U U U U R R R R R R R U U U U U	G04 G04 G04 G04 G04	_
Type REG REG REG REG REG REG REG REG REG REG	SemI-Volatile Organics 1,2,4-Trichlorobenzene 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 2,2'-oxybis (1-chloropropane) 2,4,5-Trichlorophenol 2,4,6-Trichlorophenol 2,4-Dichlorophenol 2,4-Dinitrophenol 2,4-Dinitrophenol 2,4-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene	<b>Result</b> 1 1 1 1 1 2 1 1 1 2 1 1 1 1 1 1 1 1	Units 0 UG/L 0 UG/L	Qua Lab U U U U U U U U U U U U U U U U U U U	lifiers Data U U U U U U R R R R R R R U U U U U U	<b>Validation</b> <b>Code</b> G04 G04 G04 G04 G04	_
Type REG REG REG REG REG REG REG REG REG REG	SemI-Volatile Organics 1,2,4-Trichlorobenzene 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 2,2'-oxybis (1-chloropropane) 2,4,5-Trichlorophenol 2,4,6-Trichlorophenol 2,4-Dinethylphenol 2,4-Dinitrophenol 2,4-Dinitrotoluene 2,6-Dinitrotoluene 2-Chloronaphthalene 2-Chlorophenol 2-Methylnaphthalene 2-Methylphenol	<b>Result</b> 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1	Units 0 UG/L 0 UG/L	Qua Lab U U U U U U U U U U U U U U U U U U U	Ilifiers Data U U U U U U R R R R R R R U U U U U U	G04 G04 G04 G04 G04	_
Type REG REG REG REG REG REG REG REG REG REG	SemI-Volatile Organics 1,2,4-Trichlorobenzene 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 2,2'-oxybis (1-chloropropane) 2,4,5-Trichlorophenol 2,4,6-Trichlorophenol 2,4-Dinitrophenol 2,4-Dinitrophenol 2,4-Dinitrotoluene 2,6-Dinitrotoluene 2-Chloronaphthalene 2-Chlorophenol 2-Methylphenol 2-Methylphenol 2-Nitroaniline	Result 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1	Units 0 UG/L	Qua Lab U U U U U U U U U U U U U U U U U U U	lifiers Data U U U U U U R R R R R R R U U U U U U	<b>Validation</b> <b>Code</b> G04 G04 G04 G04 G04 G04	_
Type REG REG REG REG REG REG REG REG REG REG	SemI-Volatile Organics 1,2,4-Trichlorobenzene 1,2-Dichlorobenzene 1,3-Dichlorobenzene 2,4-Dichlorobenzene 2,4-S-Trichlorophenol 2,4,6-Trichlorophenol 2,4-Dinitrophenol 2,4-Dinitrophenol 2,4-Dinitrophenol 2,4-Dinitrotoluene 2,6-Dinitrotoluene 2-Chlorophenol 2-Methylnaphthalene 2-Methylnaphthalene 2-Nitroaniline 2-Nitroaniline	Result 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1	Units 0 UG/L 0 UG/L	Qua Lab U U U U U U U U U U U U U U U U U U U	Ilifiers Data U U U U U U R R R R R R R U U U U U U	<b>Validation</b> <b>Code</b> G04 G04 G04 G04 G04	_
Type REG REG REG REG REG REG REG REG REG REG	SemI-Volatile Organics 1,2,4-Trichlorobenzene 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 2,2'-oxybis (1-chloropropane) 2,4,5-Trichlorophenol 2,4,6-Trichlorophenol 2,4-Dinitrophenol 2,4-Dinitrophenol 2,4-Dinitrotoluene 2,6-Dinitrotoluene 2-Chloronaphthalene 2-Chlorophenol 2-Methylphenol 2-Methylphenol 2-Nitroaniline	Result 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1	Units 0 UG/L	Qua Lab U U U U U U U U U U U U U U U U U U U	Ilifiers Data U U U U U U U R R R R R R R U U U U U	<b>Validation</b> <b>Code</b> G04 G04 G04 G04 G04 G04	_
Type REG REG REG REG REG REG REG REG REG REG	SemI-Volatile Organics 1,2,4-Trichlorobenzene 1,2-Dichlorobenzene 1,3-Dichlorobenzene 2,4-Dichlorobenzene 2,4-S-Trichlorophenol 2,4,6-Trichlorophenol 2,4-Dinitrophenol 2,4-Dinitrophenol 2,4-Dinitrophenol 2,4-Dinitrotoluene 2,6-Dinitrotoluene 2-Chlorophenol 2-Methylnaphthalene 2-Methylnaphthalene 2-Nitroaniline 2-Nitroaniline	Result 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1	Units 0 UG/L 0 UG/L	Qua Lab U U U U U U U U U U U U U U U U U U U	Ilifiers Data U U U U U U R R R R R R R U U U U U U	<b>Validation</b> <b>Code</b> G04 G04 G04 G04 G04 G04	_
Type REG REG REG REG REG REG REG REG REG REG	Semi-Volatile Organics 1,2,4-Trichlorobenzene 1,2-Dichlorobenzene 1,3-Dichlorobenzene 2,2-oxybis (1-chloropropane) 2,4,5-Trichlorophenol 2,4,6-Trichlorophenol 2,4-Dinitrophenol 2,4-Dinitrophenol 2,4-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2-Chlorophenol 2-Methylnaphthalene 2-Methylnaphthalene 2-Nitroaniline 2-Nitroaniline 2-Nitrophenol 3,3'-Dichlorobenzidine	Result 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1	Units 0 UG/L 0 UG/L	Qua Lab U U U U U U U U U U U U U U U U U U U	Ilifiers Data U U U U U U U R R R R R R R U U U U U	<b>Validation</b> <b>Code</b> G04 G04 G04 G04 G04 G04	_
Type REG REG REG REG REG REG REG REG REG REG	Semi-Volatile Organics 1,2,4-Trichlorobenzene 1,2-Dichlorobenzene 1,3-Dichlorobenzene 2,2'-oxybis (1-chloropropane) 2,4,5-Trichlorophenol 2,4,6-Trichlorophenol 2,4-Dinitrophenol 2,4-Dinitrophenol 2,4-Dinitrotoluene 2,6-Dinitrotoluene 2-Chloronaphthalene 2-Chlorophenol 2-Methylphenol 2-Methylphenol 2-Methylphenol 3,3'-Dichlorobenzidine 3-Nitroaniline	Result 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1	Units 0 UG/L	Qua Lab U U U U U U U U U U U U U U U U U U U	Ilifiers Data U U U U U U R R R R R R R U U U U U U	<b>Validation</b> Code G04 G04 G04 G04 G04 G04 G04	_
Type REG REG REG REG REG REG REG REG REG REG	Semi-Volatile Organics 1,2,4-Trichlorobenzene 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 2,4,5-Trichlorophenol 2,4,5-Trichlorophenol 2,4,6-Trichlorophenol 2,4-Dinitrophenol 2,4-Dinitrophenol 2,4-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2-Chlorophenol 2-Methylnaphthalene 2-Methylphenol 2-Nitroaniline 3,3'-Dichlorobenzidine 3-Nitroaniline 4,6-Dinitro-o-Cresol	Result 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1	Units 0 UG/L	Qua Lab U U U U U U U U U U U U U U U U U U U	Ilifiers Data U U U U U U U R R R R R U U U U U U U	<b>Validation</b> Code G04 G04 G04 G04 G04 G04 G04	_
Type REG REG REG REG REG REG REG REG REG REG	Semi-Volatile Organics 1,2,4-Trichlorobenzene 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 2,2'-oxybis (1-chloropropane) 2,4,5-Trichlorophenol 2,4,6-Trichlorophenol 2,4-Dichlorophenol 2,4-Dinitrotoluene 2,4-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2-Chlorophenol 2-Methylinaphthalene 2-Methylinaphthalene 2-Methylinaphthalene 2-Mitroaniline 3,3'-Dichlorobenzidine 3-Nitroaniline 4,6-Dinitro-o-Cresol 4-Bromophenyl-phenyl Ether	Result 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1	Units 0 UG/L 5 UG/L 5 UG/L 0 UG/L 5 UG/L 5 UG/L 5 UG/L 5 UG/L	Qua Lab U U U U U U U U U U U U U U U U U U U	Ilifiers Data U U U U U U R R R R R R U U U U U U U	<b>Validation</b> Code G04 G04 G04 G04 G04 G04 G04	
Type REG REG REG REG REG REG REG REG REG REG	Semi-Volatile Organics 1,2,4-Trichlorobenzene 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 2,2'-oxybis (1-chloropropane) 2,4,5-Trichlorophenol 2,4,6-Trichlorophenol 2,4-Dichlorophenol 2,4-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,7-Dichlorobenzidine 3,3'-Dichlorobenzidine 4,6-Dinitro-o-Cresol 4,6-Dinitro-o-Dinitrotoluene 1,6-Dinitrotoluene 1,6-Dinitrotoluene 1,6-Dinitrotoluene 1,6-Dinitrotoluene 1,6-Dinitrotoluene 1,6-Dinitrotoluene 1,6-Dinitrotoluene 1,6-Dinitrotoluene 1,6-Dinitrotoluene 1,6-Dinitrotoluene 1,6-Dinitrotoluene 1,6-Dinitrotoluene 1,6-Dinitrotoluene 1,6-Dinitrotoluene 1,6-Dinitrotoluene 1,6-Dinitrotoluene 1,6-Dinitrotoluene 1,6-Dinitrotoluene 1,6-Dinitrotoluene 1,6-Dinitrotoluene 1,6-Dinitrotoluene 1,6-Dinitrotoluene	Result 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Units 0 UG/L	Qua Lab U U U U U U U U U U U U U U U U U U U	lifiers Data U U U U U U R R R R R R U U U U U U U	<b>Validation</b> Code G04 G04 G04 G04 G04 G04 G04	_
Type REG REG REG REG REG REG REG REG REG REG	SemI-Volatile Organics 1,2,4-Trichlorobenzene 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 2,2'-oxybis (1-chloropropane) 2,4,5-Trichlorophenol 2,4,6-Trichlorophenol 2,4-Dichlorophenol 2,4-Dinitrotphenol 2,4-Dinitrotphenol 2,4-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene	Result 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1	Units 0 UG/L	Qua Lab U U U U U U U U U U U U U U U U U U U	<b>ilifiers</b> Data U U U U U U R R R R R R R V U U U U U U	Validation Code G04 G04 G04 G04 G04 G04 G04	_
Type REG REG REG REG REG REG REG REG REG REG	Semi-Volatile Organics 1,2,4-Trichlorobenzene 1,2-Dichlorobenzene 1,3-Dichlorobenzene 2,4-Dichlorobenzene 2,4-Dichlorophenol 2,4,5-Trichlorophenol 2,4-Dinitrophenol 2,4-Dinitrophenol 2,4-Dinitrotoluene 2,4-Dinitrotoluene 2,6-Dinitrotoluene 2-Chlorophenol 2-Methylnaphthalene 2-Chlorophenol 2-Methylphenol 2-Nitroaniline 3,3'-Dichlorobenzidine 3-Nitroaniline 4,6-Dinitro-Cresol 4-Bromophenyl-phenyl Ether 4-Chloroaniline 4-Chlorophenol	Result 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1	Units 0 UG/L	Qua Lab U U U U U U U U U U U U U U U U U U U	Ilifiers Data U U U U U U R R R R R R R U U U U U U	Validation Code G04 G04 G04 G04 G04 G04 G04	
Type REG REG REG REG REG REG REG REG REG REG	Semi-Volatile Organics           1,2,4-Trichlorobenzene           1,2-Dichlorobenzene           1,3-Dichlorobenzene           1,4-Dichlorobenzene           2,2-oxybis (1-chloropropane)           2,4,5-Trichlorophenol           2,4,6-Trichlorophenol           2,4-Dinitrophenol           2,4-Dinitrophenol           2,4-Dinitrophenol           2,4-Dinitrophenol           2,4-Dinitrophenol           2,4-Dinitrotoluene           2,6-Dinitrotoluene           2,6-Dinitrotoluene           2-Chlorophenol           2-Methylaphthalene           2-Methylaphthalene           2-Methylaphthalene           2-Methylaphthalene           2-Nitroaniline           3,3'-Dichlorobenzidine           3,3'-Dichlorobenzidine           3,3'-Dichlorobenzidine           3-Nitroaniline           4.6-Dinitro-o-Cresol           4-Bromophenyl-phenyl Ether           4-Chlorophenyl-phenylether           4-Chlorophenyl-phenylether           4-Nitroaniline           4-Nitroaniline           4-Nitroaniline           4-Nitroaniline           4-Nitroaniline           4-Nitroaniline           4-Nitroaniline           4-Ni	Result 1 1 1 1 1 1 2 1 1 1 2 1 1 1 1 1 1 1 1	Units 0 UG/L	Qua Lab U U U U U U U U U U U U U U U U U U U	Ilifiers Data U U U U U U U U U U U U U U U U U U	Validation Code	
Type REG REG REG REG REG REG REG REG REG REG	SemI-Volatile Organics 1,2,4-Trichlorobenzene 1,2-Dichlorobenzene 1,3-Dichlorobenzene 2,2'-oxybis (1-chloropropane) 2,4,5-Trichlorophenol 2,4,6-Trichlorophenol 2,4-Dinitrophenol 2,4-Dinitrophenol 2,4-Dinitrotoluene 2,6-Dinitrotoluene 2-Chloronaphthalene 2-Chlorophenol 2-Methylphenol 2-Methylphenol 3,3'-Dichlorobenzidine 3-Nitroaniline 4,6-Dinitro-Cresol 4-Bromophenyl-phenyl Ether 4-Chloroaniline 4-Chlorophenol 4-Bromophenyl-phenylether 4-Chloroaniline 4-Chloroaniline 4-Nitroaniline 4-Nitroaniline	Result 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1	Units 0 UG/L	Qua Lab U U U U U U U U U U U U U U U U U U U	Ilifiers Data U U U U U U U U U U U U U U U U U U	Validation Code	
Type REG REG REG REG REG REG REG REG REG REG	Semi-Volatile Organics           1,2,4-Trichlorobenzene           1,2-Dichlorobenzene           1,3-Dichlorobenzene           1,4-Dichlorobenzene           2,2-oxybis (1-chloropropane)           2,4,5-Trichlorophenol           2,4,6-Trichlorophenol           2,4-Dinitrophenol           2,4-Dinitrophenol           2,4-Dinitrophenol           2,4-Dinitrophenol           2,4-Dinitrophenol           2,4-Dinitrotoluene           2,6-Dinitrotoluene           2,6-Dinitrotoluene           2-Chlorophenol           2-Methylaphthalene           2-Methylaphthalene           2-Methylaphthalene           2-Methylaphthalene           2-Nitroaniline           3,3'-Dichlorobenzidine           3,3'-Dichlorobenzidine           3,3'-Dichlorobenzidine           3-Nitroaniline           4.6-Dinitro-o-Cresol           4-Bromophenyl-phenyl Ether           4-Chlorophenyl-phenylether           4-Chlorophenyl-phenylether           4-Nitroaniline           4-Nitroaniline           4-Nitroaniline           4-Nitroaniline           4-Nitroaniline           4-Nitroaniline           4-Nitroaniline           4-Ni	Result 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1	Units 0 UG/L	Qua Lab U U U U U U U U U U U U U U U U U U U	Ilifiers Data U U U U U U U U U U U U U U U U U U	Validation Code	

Location:	Ramsdell	Quarry Landfill
Station :	MW-5	Existing Well

Ô	······		ь м 	Aatrix: G			Collected:	
Sample Type	Semi-Volatile Organics	Result	Units	Qua Lab	allfiers Data	Validation Code		
REG	Benzo(a)anthracene	10	UG/L	- <del>U</del>			_	
REG	Benzo(a)pyrene		UG/L	Ŭ	Ŭ			
REG	Benzo(b)fluoranthene	10	UG/L	U	Ŭ			
REG	Benzo(g,h,i)perylene	10	UG/L	U	U			
REG	Benzo(k)fluoranthene	10	UG/L	U	U			
REG	Bis(2-chloroethoxy)methane	10	UG/L	U	U			
REG	Bis(2-chloroethyl)ether		UG/L	U	U			
REG	Bis(2-ethylhexyl)phthalate		UG/L	U	U			
REG	Butyl Benzyl Phthalate		UG/L	U	U			
REG	Carbazole		UG/L	U	U			
REG	Chrysene		UG/L	U	U			
REG	Di-n-butyl Phthalate		UG/L	U	U			
REG REG	Di-n-octyl Phthalate		UG/L	U	U			
REG	Dibenzo(a,h)anthracene Dibenzofuran		UG/L	U	U			
REG	Diethyl Phthalate		UG/L UG/L	U U	บ บ			
REG	Dimethyl Phthalate		UG/L	U	U			
REG	Fluoranthene		UG/L	ŭ	U			
REG	Fluorene		UG/L	Ŭ	U			
REG	Hexachlorobenzene		UG/L	Ŭ	Ŭ			
REG	Hexachlorobutadiene		UG/L	บั	U			
REG	Hexachlorocyclopentadiene		UG/L	ŭ	Ŭ			
REG	Hexachloroethane		UG/L	Ŭ	Ŭ			
REG	Indeno(1,2,3-cd)pyrene		UG/L	Ŭ	Ŭ			
REG	Isophorone		UG/L	Ŭ	Ŭ			
REG	N-Nitroso-di-n-propylamine		UG/L	ŭ	Ŭ			
REG	N-Nitrosodiphenylamine	10	UG/L	Ŭ	Ū			
REG	Naphthalene	10	UG/L	Ū	U			
REG	Nitrobenzene	10	UG/L	U	U			
REG	Pentachlorophenol	25	UG/L	U	R	G04		
REG	Phenanthrene	10	UG/L	U	U			
REG	Phenol	10	UG/L	U	R	G04		
REG	Pyrene	10	UG/L	U	U			
Sample				Qua	liflers	Validation		
Sample Type	Volatile Organics	Result	Units	Qua Lab	liflers Data	Validation Code		
Type REG	1,1,1-Trichloroethane	5	UG/L	Lab U	Data U		-	
Type REG REG	1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane	5 5	UG/L UG/L	Lab U U	Data U U		_	
Type REG REG REG	1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane 1,1,2-Trichloroethane	5 5 5	UG/L UG/L UG/L	Lab U U U	Data U U U		-	
Type REG REG REG REG	1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane 1,1,2-Trichloroethane 1,1-Dichloroethane	5 5 5 5 5	UG/L UG/L UG/L UG/L	Lab U U U U	Data U U U U		_	
Type REG REG REG REG REG	1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane 1,1,2-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethane	5 5 5 5 5 5 5	UG/L UG/L UG/L UG/L UG/L	Lab U U U U U U	Data U U U U U U		-	
Type REG REG REG REG REG REG	1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane 1,1,2-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,2-Dichloroethane	5 5 5 5 5 5 5 5 5	UG/L UG/L UG/L UG/L UG/L UG/L	Lab U U U U U U U	Data U U U U U U U		_	
Type REG REG REG REG REG REG	1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane 1,1,2-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane	5 5 5 5 5 5 5 5 5 5 5	UG/L UG/L UG/L UG/L UG/L UG/L	- Lab U U U U U U U U U	Data U U U U U U U U U		-	
Type REG REG REG REG REG REG REG	1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane 1,1,2-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane	5 5 5 5 5 5 5 5 5	UG/L UG/L UG/L UG/L UG/L UG/L UG/L	Lab U U U U U U U U	Data U U U U U U U U U		-	
Type REG REG REG REG REG REG REG REG	1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane 1,1,2-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloropropane 1,3-cis-Dichloropropane	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	UG/L UG/L UG/L UG/L UG/L UG/L UG/L UG/L	- Lab U U U U U U U U U U U	Data U U U U U U U U U U U U		_	
Type REG REG REG REG REG REG REG REG REG	1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane 1,1,2-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloropthane 1,2-Dichloropthane 1,3-cis-Dichloropthane 1,3-trans-Dichloropthane	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	UG/L UG/L UG/L UG/L UG/L UG/L UG/L UG/L	Lab U U U U U U U U U U U U	Data U U U U U U U U U U U U U		_	
Type REG REG REG REG REG REG REG REG REG REG	1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane 1,1,2-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroptopane 1,3-cis-Dichloropropene 1,3-trans-Dichloropropene 2-Butanone	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	UG/L UG/L UG/L UG/L UG/L UG/L UG/L UG/L	Lab U U U U U U U U U U U U U U	Data U U U U U U U U U U U U		_	
Type REG REG REG REG REG REG REG REG REG REG	1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane 1,1,2,2-Tetrachloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloropropane 1,3-cias-Dichloropropane 1,3-trans-Dichloropropene 2-Butanone 2-Hexanone	5 5 5 5 5 5 5 5 5 5 5 5 10 10	UG/L UG/L UG/L UG/L UG/L UG/L UG/L UG/L	- Lab U U U U U U U U U U U U U U U U U	Data U U U U U U U U U U U U U U U		_	
Type REG REG REG REG REG REG REG REG REG REG	1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane 1,1,2-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloropthene 1,3-trans-Dichloropropene 1,3-trans-Dichloropropene 2-Butanone 2-Hexanone 4-Methyl-2-pentanone	5 5 5 5 5 5 5 5 5 5 5 5 5 10 10	UG/L UG/L UG/L UG/L UG/L UG/L UG/L UG/L	- Lab U U U U U U U U U U U U U U U U U U	Data U U U U U U U U U U U U U U U U		_	
Type REG REG REG REG REG REG REG REG REG REG	1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane 1,1,2,2-Tetrachloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloropropane 1,3-cias-Dichloropropane 1,3-trans-Dichloropropene 2-Butanone 2-Hexanone	5 5 5 5 5 5 5 5 5 5 5 5 10 10 10 10	UG/L UG/L UG/L UG/L UG/L UG/L UG/L UG/L	- Lab U U U U U U U U U U U U U U U U U U U	Data U U U U U U U U U U U U U U U U U		_	
Type REG REG REG REG REG REG REG REG REG REG	1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane 1,1,2-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloropropane 1,3-cis-Dichloropropane 1,3-trans-Dichloropropene 2-Butanone 2-Hexanone 4-Methyl-2-pentanone Acetone Benzene	5 5 5 5 5 5 5 5 5 5 5 5 10 10 10 10 10 5 5 5 5	UG/L UG/L UG/L UG/L UG/L UG/L UG/L UG/L	- Lab U U U U U U U U U U U U U U U U U U U	Data U U U U U U U U U U U U U U U U U U		_	
Type REG REG REG REG REG REG REG REG REG REG	1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane 1,1,2-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroptopane 1,3-cis-Dichloroptopene 1,3-trans-Dichloroptopene 2-Butanone 2-Hexanone 4-Methyl-2-pentanone Acetone	5 5 5 5 5 5 5 5 5 5 5 5 5 10 10 10 10 5 5 5 5	UG/L UG/L UG/L UG/L UG/L UG/L UG/L UG/L	- Lab U U U U U U U U U U U U U U U U U U U	Data U U U U U U U U U U U U U U U U U		_	
Type REG REG REG REG REG REG REG REG REG REG	1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane 1,1,2-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloropropane 1,3-cis-Dichloropropene 1,3-cis-Dichloropropene 2-Butanone 2-Butanone 2-Hexanone 4-Methyl-2-pentanone Acetone Benzene Bromodichloromethane Bromoform	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	UG/L UG/L UG/L UG/L UG/L UG/L UG/L UG/L	- Lab U U U U U U U U U U U U U U U U U U U	Data U U U U U U U U U U U U U U U U U U		_	
Type REG REG REG REG REG REG REG REG REG REG	1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane 1,1,2-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloropropane 1,3-cis-Dichloropropene 1,3-trans-Dichloropropene 2-Butanone 2-Butanone 2-Hexanone 4-Methyl-2-pentanone Acetone Benzene Bromodichloromethane Bromoform Bromomethane	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 10 10 10 10 5 5 5 5	UG/L UG/L UG/L UG/L UG/L UG/L UG/L UG/L	- Lab U U U U U U U U U U U U U U U U U U U	Data U U U U U U U U U U U U U U U U U U		_	
Type REG REG REG REG REG REG REG REG REG REG	1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane 1,1,2-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloropropane 1,3-cis-Dichloropropene 1,3-cis-Dichloropropene 2-Butanone 2-Butanone 2-Hexanone 4-Methyl-2-pentanone Acetone Benzene Bromodichloromethane Bromoform	5 5 5 5 5 5 5 5 5 5 5 5 5 5 10 10 10 10 5 5 5 5	UG/L UG/L UG/L UG/L UG/L UG/L UG/L UG/L	- Lab U U U U U U U U U U U U U U U U U U U	Data U U U U U U U U U U U U U U U U U U		_	
Type REG REG REG REG REG REG REG REG REG REG	1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane 1,1,2,2-Tichloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloropropane 1,3-cis-Dichloropropene 1,3-trans-Dichloropropene 2-Butanone 2-Hexanone 4-Methyl-2-pentanone Acetone Benzene Bromodichloromethane Bromoform Bromomethane Carbon Disulfide	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	UG/L UG/L UG/L UG/L UG/L UG/L UG/L UG/L	- Lab U U U U U U U U U U U U U U U U U U U	Data U U U U U U U U U U U U U U U U U U		_	
Type REG REG REG REG REG REG REG REG REG REG	1,1,1-Trichloroethane         1,1,2-Tetrachloroethane         1,1-Dichloroethane         1,1-Dichloroethane         1,1-Dichloroethane         1,1-Dichloroethane         1,2-Dichloroethane         1,2-Dichloroethane         1,2-Dichloroethane         1,2-Dichloroethane         1,2-Dichloroethane         1,2-Dichloropthane         1,3-cis-Dichloropropane         1,3-trans-Dichloropropene         2-Butanone         2-Hexanone         4-Methyl-2-pentanone         Acetone         Benzene         Bromodichloromethane         Bromoform         Bromomethane         Carbon Disulfide         Carbon Tetrachloride	5 5 5 5 5 5 5 5 5 5 5 10 10 10 10 5 5 5 5	UG/L UG/L UG/L UG/L UG/L UG/L UG/L UG/L	- Lab U U U U U U U U U U U U U U U U U U U	Data U U U U U U U U U U U U U U U U U U		_	
Type REG REG REG REG REG REG REG REG REG REG	1,1,1-Trichloroethane 1,1,2-Tetrachloroethane 1,1,2-Tichloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroptopane 1,3-cis-Dichloropropene 2-Butanone 2-Hexanone 2-Hexanone 4-Methyl-2-pentanone Acetone Benzene Bromodichloromethane Bromoform Bromomethane Carbon Disulfide Carbon Tetrachloride Chlorobenzene	5 5 5 5 5 5 5 5 5 5 5 10 10 10 5 5 5 5 5	UG/L UG/L UG/L UG/L UG/L UG/L UG/L UG/L	- Lab U U U U U U U U U U U U U U U U U U U	Data U U U U U U U U U U U U U U U U U U		_	
Type REG REG REG REG REG REG REG REG REG REG	1,1,1-Trichloroethane         1,1,2,2-Tetrachloroethane         1,1,2,2-Trichloroethane         1,1-Dichloroethane         1,1-Dichloroethane         1,2-Dichloroethane         1,2-Dichloroethane         1,2-Dichloroethane         1,2-Dichloroethane         1,2-Dichloroethane         1,2-Dichloroethane         1,2-Dichloroptopane         1,3-cis-Dichloropropene         1,3-trans-Dichloropropene         2-Butanone         2-Hexanone         2-Hexanone         4-Methyl-2-pentanone         Acetone         Benzene         Bromodichloromethane         Bromoferm         Bromomethane         Carbon Disulfide         Carbon Tetrachloride         Chlorobenzene         Chlorobenzene	5 5 5 5 5 5 5 5 5 5 5 5 5 10 10 10 10 10 5 5 5 10 5 5 5 10 5 5 5 5	UG/L UG/L UG/L UG/L UG/L UG/L UG/L UG/L	- Lab U U U U U U U U U U U U U U U U U U U	<b>Data</b> ປ ບ ບ ບ ບ ບ ບ ບ ບ ບ ບ ບ ບ ບ ບ ບ ບ ບ ບ		_	
Type REG REG REG REG REG REG REG REG REG REG	1,1,1-Trichloroethane         1,1,2,2-Tetrachloroethane         1,1,2,2-Trichloroethane         1,1-Dichloroethane         1,1-Dichloroethane         1,2-Dichloroethane         1,2-Dichloroethane         1,2-Dichloroethane         1,2-Dichloroethane         1,2-Dichloroethane         1,2-Dichloroethane         1,2-Dichloropropane         1,3-trans-Dichloropropene         2-Butanone         2-Hexanone         Choroberzene         Bromorthane         Carbon Disulfide         Carbon Tetrachloride         Chloroethane         Chloroethane	5 5 5 5 5 5 5 5 5 5 5 5 10 10 10 10 10 5 5 5 10 5 5 10 5 5 5 10 5 5 5 5	UG/L UG/L UG/L UG/L UG/L UG/L UG/L UG/L	- Lab U U U U U U U U U U U U U	<b>Data</b> ປ ບ ບ ບ ບ ບ ບ ບ ບ ບ ບ ບ ບ ບ ບ ບ ບ ບ ບ		_	
Type REG REG REG REG REG REG REG REG REG REG	1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane 1,1,2-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloropropane 1,3-cis-Dichloropropene 1,3-cis-Dichloropropene 2-Butanone 2-Butanone 2-Hexanone 2-Hexanone 4-Methyl-2-pentanone Acetone Benzene Bromodichloromethane Bromoform Bromomethane Carbon Tetrachloride Chlorobenzene Chlorobenzene Chloroethane Chloroform Chloromethane	5 5 5 5 5 5 5 5 5 5 5 5 10 10 10 10 10 10 5 5 5 5	UG/L UG/L UG/L UG/L UG/L UG/L UG/L UG/L	- Lab U U U U U U U U U U U U U U U U U U U	Data U U U U U U U U U U U U U U U U U U		_	
Type REG REG REG REG REG REG REG REG REG REG	1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane 1,1,2-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloropropane 1,3-cis-Dichloropropene 1,3-cis-Dichloropropene 2-Butanone 2-Butanone 2-Hexanone 4-Methyl-2-pentanone Acetone Benzene Bromodichloromethane Bromomethane Carbon Tetrachloride Chlorobenzene Chloroethane Chloroethane Dibromochloromethane	5 5 5 5 5 5 5 5 5 5 5 5 5 10 10 10 5 5 5 5	UG/L UG/L UG/L UG/L UG/L UG/L UG/L UG/L	- Lab U U U U U U U U U U U U U	Data U U U U U U U U U U U U U U U U U U		_	
Type REG REG REG REG REG REG REG REG REG REG	1,1,1-Trichloroethane         1,1,2-Tetrachloroethane         1,1-Zirichloroethane         1,1-Dichloroethane         1,1-Dichloroethane         1,1-Dichloroethane         1,2-Dichloroethane         1,2-Dichloroethane         1,2-Dichloroethane         1,2-Dichloroethane         1,2-Dichloropthene         1,3-crans-Dichloropropene         2-Butanone         2-Hexanone         4-Methyl-2-pentanone         Acetone         Benzene         Bromodichloromethane         Bromoform         Bromomethane         Carbon Disulfide         Carbon Tetrachloride         Chlorobenzene         Chloroform         Chloromethane         Dibromochloromethane         Enverene         Bromoform         Bromoform         Bromomethane         Chlorobenzene         Chlorobenzene         Chloroform         Chloromethane         Dibromochloromethane         Ethylbenzene	5 5 5 5 5 5 5 5 5 5 5 10 10 5 5 5 5 5 5	UG/L UG/L UG/L UG/L UG/L UG/L UG/L UG/L	- Lab U U U U U U U U U U U U U	Data U U U U U U U U U U U U U U U U U U			
Type REG REG REG REG REG REG REG REG REG REG	1,1,1-Trichloroethane         1,1,2-Tetrachloroethane         1,1-Dichloroethane         1,1-Dichloroethane         1,1-Dichloroethane         1,1-Dichloroethane         1,2-Dichloroethane         1,2-Dichloroethane         1,2-Dichloroethane         1,2-Dichloroethane         1,2-Dichloroethane         1,2-Dichloropthene         1,3-cis-Dichloropropene         2-Butanone         2-Hexanone         4-Methyl-2-pentanone         Acetone         Benzene         Bromodichloromethane         Bromoform         Bromomethane         Carbon Disulfide         Carbon Tetrachloride         Chloroethane         Chloroform         Chloromethane         Dibromochloromethane         Ethylbenzene         Methylene Chloride	5 5 5 5 5 5 5 5 5 5 5 10 10 5 5 5 5 5 5	UG/L UG/L UG/L UG/L UG/L UG/L UG/L UG/L	- Lab U U U U U U U U U U U U U	Data U U U U U U U U U U U U U U U U U U			
Type REG REG REG REG REG REG REG REG REG REG	1,1,1-Trichloroethane         1,1,2-Tetrachloroethane         1,1,2-Trichloroethane         1,1-Dichloroethane         1,1-Dichloroethane         1,1-Dichloroethane         1,2-Dichloroethane         1,2-Dichloroethane         1,2-Dichloroethane         1,2-Dichloroethane         1,2-Dichloroethane         1,2-Dichloroethane         1,2-Dichloropropane         1,3-trans-Dichloropropene         2-Butanone         2-Hexanone         4-Methyl-2-pentanone         Acetone         Benzene         Bromodichloromethane         Bromoform         Bromomethane         Carbon Disulfide         Carbon Tetrachloride         Chloroethane         Chloroform         Chloromethane         Dibromochloromethane         Eithylbenzene         Methylene Chloride         Styrene	5 5 5 5 5 5 5 5 5 5 5 5 5 10 10 10 5 5 5 5	UG/L UG/L UG/L UG/L UG/L UG/L UG/L UG/L	- U U U U U U U U U U U U U U U U U U U	Data U U U U U U U U U U U U U U U U U U		_	
Type REG REG REG REG REG REG REG REG REG REG	1,1,1-Trichloroethane         1,1,2-Tetrachloroethane         1,1,2-Trichloroethane         1,1-Dichloroethane         1,1-Dichloroethane         1,2-Dichloroethane         1,2-Dichloroethane         1,2-Dichloroethane         1,2-Dichloroethane         1,2-Dichloroethane         1,2-Dichloroethane         1,2-Dichloroethane         1,2-Dichloropropane         1,3-cis-Dichloropropene         2-Butanone         2-Hexanone         Bornomethane         Bromoferm         Bromothane         Chlorobenzene         Chloroethane	5 5 5 5 5 5 5 5 5 5 5 5 5 10 10 10 10 10 10 5 5 5 5	UG/L UG/L UG/L UG/L UG/L UG/L UG/L UG/L	- U U U U U U U U U U U U U U U U U U U	Data U U U U U U U U U U U U U U U U U U			

Sample				Qual	iflers	Validation		
Туре		Result	Units	Lab	Data	Code		
REG	Cyanide	0.01	MG/L	U	U	<u> </u>		
Sample				Qual	lfiers	Validation		
Туре	Metals	Result	Units	Lab	Data	Code		
REG	Aluminum		UG/L	8	J	101	_	
REG REG	Antimony Arsenic		UG/L UG/L	U	U =			
REG	Barium		UG/L	в	Ū	F06		
REG	Beryllium		UG/L	Ū	Ŭ	,		
REG	Cadmium	5	UG/L	U	U			
REG	Calcium	47600			=			
REG	Chromium		UG/L	U	U			
REG REG	Cobalt Copper		UG/L UG/L	U B	J U			
REG	Iron		UG/L	Б	=			
REG	Lead		UG/L	U	U			
REG	Magnesium	30000			=			
REG	Manganese	6270	UG/L		=			
REG	Mercury		UG/L	в	J			
REG	Nickel		UG/L	U	U			
REG	Potassium		UG/L	B	J			
REG REG	Selenium Silver		UG/L UG/L	ี บ	U II			
REG	Sodium		UG/L UG/L	B	U U	F06		
REG	Thallium		UG/L	B	J	100		
REG	Vanadium		UG/L	Ũ	Ů			
REG	Zinc		UG/L	Ŭ	Ŭ			
Sample				Qual	( <b>G</b>	Validadiaa		
Туре	Filtered Metals	Result	Units	Lab	Data	Validation Code		
REG	Aluminum	54.4	UG/L	В	J	***	_	
REG	Antimony	5	UG/L	U	U			
REG	Arsenic		UG/L	В	J			
REG	Barium		UG/L	В	U	F06		
REG	Beryllium		UG/L	U	U			
REG REG	Cadmium Calcium		UG/L	U	U =			
REG	Chromium	52900	UG/L	U	- U			
REG	Cobalt		UG/L	Ŭ	Ŭ			
REG	Copper		UG/L	Ū	Ū			
REG	Iron	6090	UG/L		Ξ			
REG	Lead	3	UG/L	U	U			
REG	Magnesium	32300			=			
REG	Manganese		UG/L		=			
REG REG	Mercury Nickel	0.092		B B	J			
REG	Potassium		UG/L UG/L	В	J			
REG	Selenium		UG/L	Ŭ	J U			
REG	Silver		UG/L	Ŭ	Ŭ			
REG	Sodium		UG/L	В	Ū	F06		
REG	Thallium		UG/L	U	U			
REG	Vanadium		UG/L	U	U			
REG	Zinc	20	UG/L	U	U			
Sample		_		Qual		Validation		
Туре	Explosives	Result	Units		Data	Code	_	
REA	Nitroglycerin	2.5	UG/L	U	U			
Sample	Evelopium	<b>n</b> 4	11-24-	Qual		Validation		
Type REG	Explosives	Result	Units UG/L	Lab	Data	Code	_	
REG	1,3,5-Trinitrobenzene 1,3-Dinitrobenzene		UG/L UG/L	UU	U U			
REG	2,4,6-Trinitrotoluene		UG/L	-	=			
REG	2,4-Dinitrotoluene		UG/L	U	U			
REG	2,6-Dinitrotoluene		UG/L	Ū	Ū			
REG	2-Nitrotoluene		UG/L	U	U			
REG	3-Nitrotoluene		UG/L	U	U			
REG	4-Nitrotoluene		UG/L	J	J			
REG	HMX	0.5	UG/L	U	U			
REG	Nitrobenzene		UG/L	U	U			

r

Location:	Ramsdell	Quarry Landfill
Station :	MW-5	Existing Well

Sample Type	Explosives	Result	Units	Qu Lat	allfiers Data	Validation Code		
	-					Code	_	
REG	Nitrocellulose as N		MG/L	U	U			
REG REG	Nitroguanidine RDX		UG/L	U U	U			
REG	Tetryl		UG/L UG/L	U	U U			
Sample Type	Semi-Volatile Organics	Result	Units	Qu: Lat	alifiers Data	Validation Code		
REA	1,2,4-Trichlorobenzene	10	UG/L	υ	UJ	A01	_	
REA	1,2-Dichlorobenzene		UG/L	U	UJ	A01		
REA	1,3-Dichlorobenzene		UG/L	U	UJ	A01		
REA REA	1,4-Dichlorobenzene 2,2'-oxybis (1-chloropropane)		UG/L UG/L	บ บ	UJ UJ	A01 A01		
REA	2,4,5-Trichlorophenol		UG/L	Ŭ	UJ	A01		
REA	2,4,6-Trichlorophenol		UG/L	ŭ	UJ	A01		
REA	2,4-Dichlorophenol	10	UG/L	U	ŬJ	A01		
REA	2,4-Dimethylphenol		UG/L	U	UJ	A01		
REA	2,4-Dinitrophenol		UG/L	U	UJ	A01		
REA REA	2,4-Dinitrotoluene 2,6-Dinitrotoluene		UG/L UG/L	U U	UJ UJ	A01		
REA	2,6-Dinitrotoloene 2-Chloronaphthalene		UG/L	U	UJ	A01 A01		
REA	2-Chlorophenol		UG/L	Ŭ	UJ	A01		
REA	2-Methylnaphthalene		UG/L	Ū	UJ	A01		
REA	2-Methylphenol		UG/L	U	UJ	A01		
REA	2-Nitroaniline		UG/L	U	UJ	A01		
REA	2-Nitrophenol		UG/L	U	UJ	A01		
REA REA	3,3'-Dichlorobenzidine 3-Nitroaniline		UG/L UG/L	U U	UJ UJ	A01 A01		
REA	4,6-Dinitro-o-Cresol		UG/L	Ŭ	UJ UJ	A01		
REA	4-Bromophenyl-phenyl Ether		UG/L	Ū	IJJ	A01		
REA	4-Chloroaniline	10	UG/L	U	UJ	A01		
REA	4-Chlorophenyi-phenylether		UG/L	U	UJ	A01		
REA	4-Methylphenol		UG/L	U	UJ	A01		
REA REA	4-Nitroaniline 4-Nitrophenol		UG/L UG/L	U U	UJ	A01 A01		
REA	4-chloro-3-methylphenol		UG/L	Ŭ	UJ	A01		
REA	Acenaphthene		UG/L	Ū	UJ	A01		
REA	Acenaphthylene		UG/L	U	UJ	A01		
REA	Anthracene		UG/L	U	UJ	A01		
REA REA	Benzo(a)anthracene		UG/L UG/L	U U	UJ UJ	A01 A01		
REA	Benzo(a)pyrene Benzo(b)fluoranthene		UG/L	Ŭ	0J	A01		
REA	Benzo(g,h,i)perylene		UG/L	Ŭ	UJ	A01		
REA	Benzo(k)fluoranthene	10	UG/L	Ū	UJ	A01		
REA	Bis(2-chloroethoxy)methane	10	UG/L	U	UJ	A01		
REA	Bis(2-chloroethyl)ether		UG/L	U	UJ	A01		
REA REA	Bis(2-ethylhexyl)phthalate Butyl Benzyl Phthalate		ปG/L ปG/L	U U	UJ UJ	A01 A01		
REA	Carbazole		UG/L	Ŭ	<del>ປ</del> ມ	A01		
REA	Chrysene		UG/L	Ŭ	ŰĴ	A01		
REA	Di-n-butyl Phthalate		UG/L	U	UJ	A01		
REA	Di-n-octyl Phthalate		UG/L	U	UJ	A01		
REA	Dibenzo(a,h)anthracene		UG/L	U	UJ	A01		
REA REA	Dibenzofuran Diethyl Phthalate		UG/L UG/L	บ บ	U) UJ	A01 A01		
REA	Dimethyl Phthalate		UG/L	Ŭ	U1	A01		
REA	Fluoranthene		UG/L	Ŭ	ŰĴ	A01		
REA	Fluorene	10	UG/L	Ū	UJ	A01		
REA	Hexachlorobenzene		UG/L	Ų	UJ	A01		
REA	Hexachlorobutadiene		UG/L	U	UJ	A01		
REA	Hexachlorocyclopentadiene		UG/L UG/L	U U	U) UJ	A01,C05 A01		
REA REA	Hexachloroethane Indeno(1,2,3-cd)pyrene		UG/L	U	UJ	A01		
REA	Isophorone		UG/L	Ŭ	UĴ	A01		
REA	N-Nitroso-di-n-propylamine		UG/L	Ū	IJ	A01		
REA	N-Nitrosodiphenylamine		UG/L	U	UJ	A01		
REA	Naphthalene		UG/L	U	UJ	A01		
REA	Nitrobenzene		UG/L UG/L	บ บ	U) UJ	A01 A01		
REA	Pentachlorophenol	25	U CI L	0	00	AV1		

1

#### Location: Ramsdell Quarry Landfill Station : MW-5 Existing Well

•

Sample Type	Semi-Volatile Organics	Result		Units	Qual Lab	ifiers Data	Validation Code		
REA REA	Phenol Pyrene	<u> </u>		UG/L UG/L	U U	UJ UJ	A01 A01	_	
Sample Type	Semi-Volatile Organics	Result		Units	Quali Lab	iflers Data	Validation Code		
REG	1,2,4-Trichlorobenzene		10	UG/L	υ	υ	·,		
REG	1,2-Dichlorobenzene		10	UG/L	Ū	Ŭ			
REG	1,3-Dichlorobenzene			UG/L	U	υ			
REG	1,4-Dichlorobenzene			UG/L	U	U			
REG	2,2'-oxybis (1-chloropropane)			UG/L	U	U			
REG REG	2,4,5-Trichlorophenol			UG/L UG/L	U U	R R	G04 G04		
REG	2,4,6-Trichlorophenol 2,4-Dichlorophenol			UG/L	U	R	G04		
REG	2,4-Dimethylphenol			UG/L	υ	R	G04		
REG	2,4-Dinitrophenol			UG/L	ย	R	G04		
REG	2,4-Dinitrotoluene		10	UG/L	ប	U			
REG	2,6-Dinitrotoluene			UG/L	U	U			
REG	2-Chloronaphthalene			UG/L	U	U	_		
REG	2-Chlorophenol			UG/L	U	R	G04		
REG	2-Methylnaphthalene			UG/L	U	U	C04		
REG REG	2-Methylphenol			UG/L UG/L	U U	R U	G04		
REG	2-Nitroaniline 2-Nitrophenol			UG/L	บ	R	G04		
REG	3,3'-Dichlorobenzidine			UG/L	บั	Ü	004		
REG	3-Nitroaniline			UG/L	บั	Ŭ			
REG	4,6-Dinitro-o-Cresol			UG/L	บ	R	G04		
REG	4-Bromophenyl-phenyl Ether		10	UG/L	U	υ			
REG	4-Chloroaniline			UG/L	บ	U			
REG	4-Chlorophenyi-phenylether			UG/L	U	U			
REG	4-Methylphenol			UG/L	ບ	R	G04		
REG REG	4-Nitroaniline			UG/L UG/L	U U	U U			
REG	4-Nitrophenol 4-chloro-3-methylphenol			UG/L	Ŭ	Ŭ			
REG	Acenaphthene			UG/L	Ŭ	Ŭ			
REG	Acenaphthylene			UG/L	Ū	Ū			
REG	Anthracene			UG/L	Ū	Ū			
REG	Benzo(a)anthracene		10	UG/L	U	U			
REG	Benzo(a)pyrene			UG/L	U	U			
REG	Benzo(b)fluoranthene			UG/L	U	U			
REG	Benzo(g,h,i)perylene			UG/L	U.	U			
REG	Benzo(k)fluoranthene			UG/L	U U	U			
REG REG	Bis(2-chloroethoxy)methane			UG/L UG/L	U	บ บ			
REG	Bis(2-chloroethyl)ether Bis(2-ethylhexyl)phthalate			UG/L	Ŭ	Ŭ			
REG	Butyl Benzyl Phthalate			UG/L	Ŭ	Ŭ			
REG	Carbazole			UG/L	Ū	Ū			
REG	Chrysene		10	UG/L	U	U			
REG	Di-n-butyl Phthalate			UG/L	U	U			
REG	Di-n-octyl Phthalate			UG/L	U	U			
REG	Dibenzo(a,h)anthracene			UG/L	U	U			
REG	Dibenzofuran			UG/L	U	υ			
REG	Diethyl Phthalate			UG/L UG/L	U U	U U			
REG REG	Dimethyl Phthalate Fluoranthene			UG/L	Ŭ	U			
REG	Fluorene			UG/L	ŭ	Ŭ			
REG	Hexachlorobenzene			UG/L	บั	ŭ			
REG	Hexachlorobutadiene			UG/L	Ū	Ū			
REG	Hexachlorocyclopentadiene		10	UG/L	U	U			
REG	Hexachloroethane			UG/L	U	U			
REG	Indeno(1,2,3-cd)pyrene			UG/L	U	U			
REG	Isophorone			UG/L	U	U			
REG	N-Nitroso-di-n-propylamine			UG/L	U	U			
REG	N-Nitrosodiphenylamine			UG/L UG/L	ป ป	บ บ			
REG REG	Naphthalene Nitrobenzene			UG/L	Ŭ	Ŭ			
REG	Pentachlorophenol			UG/L	ŭ	R	G04		
REG	Phenanthrene			UG/L	บิ	Ũ			
REG	Phenol			UG/L	U	R	G04		
REG	Pyrene			UG/L	U	U			

Sample Type	Volatile Organics	Result	Units	Qual Lab	ifiers Data	Validation Code
REG	1,1,1-Trichloroethane	5	UG/L	υ	U	
REG	1.1.2.2-Tetrachloroethane	5	UG/L	U	U	
REG	1,1,2-Trichloroethane	5	UG/L	U	U	
REG	1,1-Dichloroethane	5	UG/L	U	U	
REG	1,1-Dichloroethene	5	UG/L	U	υ	
REG	1,2-Dichloroethane	5	UG/L	U	U	
REG	1,2-Dichloroethene	5	UG/L	U	U	
REG	1,2-Dichloropropane	5	UG/L	U	U	
REG	1.3-cis-Dichloropropene	5	UG/L	U	U	
REG	1,3-trans-Dichloropropene	5	UG/L	U	U	
REG	2-Butanone	10	UG/L	U	U	
REG	2-Hexanone	10	UG/L	υ	U	
REG	4-Methyl-2-pentanone	10	UG/L	U	U	
REG	Acetone	10	UG/L	U	U	
REG	Benzene	5	UG/L	U	U	
REG	Bromodichloromethane	5	UG/L	U	U	
REG	Bromoform	5	UG/L	U	U	
REG	Bromomethane	10	UG/L	υ	U	
REG	Carbon Disulfide	5	UG/L	U	U	
REG	Carbon Tetrachloride	5	UG/L	υ	U	
REG	Chiorobenzene	5	UG/L	υ	U	
REG	Chloroethane	10	UG/L	υ	U	
REG	Chloroform	5	UG/L	U	U	
REG	Chioromethane	10	UG/L	υ	U	
REG	Dibromochloromethane	5	UG/L	U	ປ	
REG	Ethylbenzene	5	UG/L	υ	υ	
REG	Methylene Chloride	5	UG/L	U	บ	
REG	Styrene	5	UG/L	υ	U	
REG	Tetrachloroethene	5	UG/L	Ú	Ú	
REG	Toluene	5	UG/L	U	U	
REG	Trichloroethene	5	UG/L	Ū	Ū	
REG	Vinyl Chloride	10	UG/L	U	U	
REG	Xylenes, Total	5	UG/L	Ū	Ū	
	•					

#### Location: Ramsdell Quarry Landfill Station : ROI mw-006 Initial Phas

Station,	KQLIIIW-000	1111/1911 1.11926

Sample			•	Ousl	fiers	Validation		
	Cyanide	Result	Units	Lab	Data	Code		
REG	Cyanide	0.01	MG/L	Ū	UJ	A05	_	
Sample Type	Metals	Result	Units	Quai Lab	iflers Data	Validation Code		
REG	Aluminum	200	UG/L	U	U		_	
REG	Antimony	5	UG/L	U	U			
REG	Arsenic	15	UG/L		=			
REG	Barium	30.2	UG/L	В	J			
REG	Beryllium	4	UG/L	U	U			
REG	Cadmium	5	UG/L	U	U			
REG	Calcium	98800	UG/L		=			
REG	Chromium	10	UG/L	U	U			
REG	Cobait	196	UG/L		=			
REG	Copper	25	UG/L	U	U			
REG	Iron	1780	UG/L		Ξ			
REG	Lead	3	UG/L	U	U			
REG	Magnesium	38500	UG/L		=			
REG	Manganese	5550	UG/L		J	102		
REG	Mercury	0.2	UG/L	υ	U	101		
REG	Nickel	937	UG/L		=			
REG	Potassium	2910	UG/L	в	J			
REG	Selenium	5	UG/L	U	U			
REG	Silver	10	UG/L	ບ	U			
REG	Sodium	1760	UG/L	В	J	F10		
REG	Thallium	2	UG/L	U	U			
REG	Vanadium	50	UG/L	U	U			
REG	Zinc	47.8	UG/L		=			
Sample Type	Filtered Metals	Result	Units	Qua Lab	lifiers Data	Validation Code		
REG	Aluminum		UG/L	- <del></del>	U		_	

#### Location: Ramsdell Quarry Landfill Station : RQLmw-006 Initial Phase

Sample					ualifiers	Vali	dation
Туре	Filtered Metals	Result	Units	La	ab Data		Code
REG	Antimony	5	UG/L	U	U	·	
REG	Arsenic	9.9	UG/L	в	J		
REG	Barium	29.7	UG/L	в	J		
REG	Beryllium	5	UG/L	U	U		
REG	Cadmium		UG/L	Ų	U		
REG	Calcium	94000			=		
REG	Chromium		UG/L	U	U		
REG	Cobalt		UG/L		=		
REG	Copper		UG/L	U	U		
REG	Iron		UG/L		=		
REG REG	Lead	-	UG/L	U	U		
REG	Magnesium Manganese	37200	UG/L		= J	100	
REG	Mercury		UG/L	U	J	102	
REG	Nickel		UG/L	U	=		
REG	Potassium		UG/L	в	J		
REG	Selenium		UG/L	บั	Ů		
REG	Silver		UG/L	ū	Ũ		
REG	Sodium		UG/L	в	1	F10	
REG	Thallium		UG/L	บ	Ŭ		
REG	Vanadium		UG/L	Ŭ	Ŭ		
REG	Zinc	41.7	UG/L		=		
Sample Type	Explosives	Result	Units	Qu	ualifiers Ib Data		dation Code
REG	1.3.5-Trinitrobenzene		UG/L		UJ	A05	-009
REG	1.3-Dinitrobenzene	0.099		ĩ	J	A05	
REG	2.4.6-Trinitrotoluene		UG/L	Ū	ŬJ	A05	
REG	2,4-Dinitrotoluene		UG/L	Ū	IJ	A05	
REG	2.6-Dinitrotoluene		UG/L	Ū	ยม	A05	
REG	2-Nitrotoluene		UG/L	Ū	ยม	A05	
REG	3-Nitrotoluene		UG/L	U	UJ	A05	
REG	4-Nitrotoluene	0.2	UG/L	U	UJ	A05	
REG	НМХ	0.5	UG/L	U	UJ	A05	
REG	Nitrobenzene	0.2	UG/L	U	UJ	A05	
REG	Nitrocellulose as N	0.2	MG/L	U	U		
REG	Nitroglycerin	2.8	UG/L		J	A05	
REG	Nitroguanidine		UG/L	U	U		
REĠ REG	RDX Tetryl		UG/L UG/L	U J	U) I	A05 A05	
Samak				~	ualifiers		dation
Sampie Type	Semi-Volatile Organics	Result	Units	La			Code
REG	1,2,4-Trichlorobenzene	10	UG/L	υ	IJ	A05	
REG	1,2-Dichlorobenzene		UG/L	U	UJ	A05	
REG	1,3-Dichlorobenzene		UG/L	U	UJ	A05	
NEG	1,0-01011010001120110	10	0.01		UJ	A05	
REG	1,4-Dichlorobenzene		UG/L	U	UJ		
		10		U U	UJ	A05	
REG REG REG	1,4-Dichlorobenzene	10 10	UG/L			A05 A05	
REG REG REG REG	1,4-Dichlorobenzene 2,2'-oxybis (1-chloropropane)	10 10 25	UG/L UG/L	U	01 01 01	A05	
REG REG REG	1,4-Dichlorobenzene 2,2'-oxybis (1-chloropropane) 2,4,5-Trichlorophenol	10 10 25 10	UG/L UG/L UG/L	U U	U) UJ	A05 A05	
REG REG REG REG	1,4-Dichlorobenzene 2,2'-oxybis (1-chloropropane) 2,4,5-Trichlorophenol 2,4,6-Trichlorophenol	10 10 25 10 10	UG/L UG/L UG/L UG/L	U U U	01 01 01	A05 A05 A05	
REG REG REG REG REG	1,4-Dichlorobenzene 2,2'-oxybis (1-chloropropane) 2,4,5-Trichlorophenol 2,4,6-Trichlorophenol 2,4-Dichlorophenol	10 10 25 10 10 10	UG/L UG/L UG/L UG/L UG/L	U U U U	01 01 01 01	A05 A05 A05 A05	
REG REG REG REG REG	1,4-Dichlorobenzene 2,2'-oxybis (1-chloropropane) 2,4,5-Trichlorophenol 2,4,6-Trichlorophenol 2,4-Dichlorophenol 2,4-Dimethylphenol	10 10 25 10 10 10 25	UG/L UG/L UG/L UG/L UG/L UG/L	U U U U U	01 01 01 01 01 01	A05 A05 A05 A05 A05	
REG REG REG REG REG REG REG	1,4-Dichlorobenzene 2,2'-oxybis (1-chloropropane) 2,4,5-Trichlorophenol 2,4,6-Trichlorophenol 2,4-Dichlorophenol 2,4-Dimethylphenol 2,4-Dimitrophenol	10 10 25 10 10 10 25 10 25 10	UG/L UG/L UG/L UG/L UG/L UG/L UG/L UG/L	บ บ บ บ บ	01 01 01 01 01 01 01 01	A05 A05 A05 A05 A05 A05 A05 A05	
REG REG REG REG REG REG REG REG	1,4-Dichlorobenzene 2,2'-oxybis (1-chloropropane) 2,4,5-Trichlorophenol 2,4,6-Trichlorophenol 2,4-Dichlorophenol 2,4-Dinitrophenol 2,4-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene	10 10 25 10 10 10 25 10 10 10	UG/L UG/L UG/L UG/L UG/L UG/L UG/L UG/L	บ บ บ บ บ บ บ บ บ	00 00 00 00 00 00 00 00 00 00 00 00 00	A05 A05 A05 A05 A05 A05 A05 A05	
REG REG REG REG REG REG REG REG REG	1,4-Dichlorobenzene 2,2'-oxybis (1-chloropropane) 2,4,5-Trichlorophenol 2,4,6-Trichlorophenol 2,4-Dichlorophenol 2,4-Dinitrophenol 2,4-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2-Chloronaphthalene 2-Chlorophenol	10 10 25 10 10 10 25 10 10 10	UG/L UG/L UG/L UG/L UG/L UG/L UG/L UG/L	ບ ບ ບ ບ ບ ບ ບ ບ ບ ບ ບ ບ ບ ບ ບ	01 01 01 01 01 01 01 01 01 01	A05 A05 A05 A05 A05 A05 A05 A05 A05	
REG REG REG REG REG REG REG REG REG REG	1,4-Dichlorobenzene 2,2'-oxybis (1-chloropropane) 2,4,5-Trichlorophenol 2,4,6-Trichlorophenol 2,4-Dichlorophenol 2,4-Dimethylphenol 2,4-Dinitrothuene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2-Chloronaphthalene 2-Chlorophenol 2-Methylnaphthalene	10 10 25 10 10 10 25 10 10 10 10 10	UG/L UG/L UG/L UG/L UG/L UG/L UG/L UG/L		10 10 10 10 10 10 10 10 10 10 10 10	A05 A05 A05 A05 A05 A05 A05 A05 A05 A05	
REG REG REG REG REG REG REG REG REG REG	1,4-Dichlorobenzene 2,2'-oxybis (1-chloropropane) 2,4,5-Trichlorophenol 2,4,6-Trichlorophenol 2,4-Dichlorophenol 2,4-Dimethylphenol 2,4-Dimitrophenol 2,4-Dinitrotoluene 2,6-Dinitrotoluene 2-Chloronaphthalene 2-Chlorophenol 2-Methylnaphthalene 2-Methylphenol	10 10 25 10 10 10 25 10 10 10 10 10 10	UG/L UG/L UG/L UG/L UG/L UG/L UG/L UG/L		10 10 10 10 10 10 10 10 10 10 10 10 10 1	A05 A05 A05 A05 A05 A05 A05 A05 A05 A05	
REG REG REG REG REG REG REG REG REG REG	1,4-Dichlorobenzene 2,2'-oxybis (1-chloropropane) 2,4,5-Trichlorophenol 2,4,6-Trichlorophenol 2,4-Dichlorophenol 2,4-Dinitrophenol 2,4-Dinitrotoluene 2,6-Dinitrotoluene 2-Chloronaphthalene 2-Chlorophenol 2-Methylnaphthalene 2-Methylphenol 2-Nitroaniline	10 10 25 10 10 10 25 10 10 10 10 10 10 25 25	UG/L UG/L UG/L UG/L UG/L UG/L UG/L UG/L	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	10 10 10 10 10 10 10 10 10 10 10 10 10 1	A05 A05 A05 A05 A05 A05 A05 A05 A05 A05	
REG REG REG REG REG REG REG REG REG REG	1,4-Dichlorobenzene 2,2'-oxybis (1-chloropropane) 2,4,5-Trichlorophenol 2,4,6-Trichlorophenol 2,4-Dichlorophenol 2,4-Dinitrophenol 2,4-Dinitrotoluene 2,4-Dinitrotoluene 2,6-Dinitrotoluene 2-Chloronaphthalene 2-Chlorophenol 2-Methylnaphthalene 2-Methylphenol 2-Nitroaniline 2-Nitrophenol	10 10 25 10 10 10 25 10 10 10 10 10 10 25 10	UG/L UG/L UG/L UG/L UG/L UG/L UG/L UG/L	<b>೧</b> ೧೧ ೧ ೧ ೧ ೧ ೧ ೧ ೧ ೧ ೧ ೧ ೧ ೧ ೧ ೧ ೧ ೧ ೧	10 10 10 10 10 10 10 10 10 10 10 10 10 1	A05 A05 A05 A05 A05 A05 A05 A05 A05 A05	
REG REG REG REG REG REG REG REG REG REG	1,4-Dichlorobenzene 2,2'-oxybis (1-chloropropane) 2,4,5-Trichlorophenol 2,4,6-Trichlorophenol 2,4-Dinichorophenol 2,4-Dinitrophenol 2,4-Dinitrotoluene 2,6-Dinitrotoluene 2-Chloronaphthalene 2-Chlorophenol 2-Methylnaphthalene 2-Methylphenol 2-Nitrophenol 3,3'-Dichlorobenzidine	10 10 25 10 10 10 25 10 10 10 10 10 10 10 10 25 10 10 10	UG/L UG/L UG/L UG/L UG/L UG/L UG/L UG/L	<b>0000000000000000000000000000000000000</b>		A05 A05 A05 A05 A05 A05 A05 A05 A05 A05	
REG REG REG REG REG REG REG REG REG REG	1,4-Dichlorobenzene 2,2'-oxybis (1-chloropropane) 2,4,5-Trichlorophenol 2,4,6-Trichlorophenol 2,4-Dichlorophenol 2,4-Dinitroblenol 2,4-Dinitroblene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2-Chlorophenol 2-Methylnaphthalene 2-Methylphenol 2-Nitroaniline 3,3'-Dichlorobenzidine 3-Nitroaniline	10 10 25 10 10 25 10 10 10 10 10 25 10 10 25 10 25	UG/L UG/L UG/L UG/L UG/L UG/L UG/L UG/L	<b>0000000000000000000000000000000000000</b>	10 10 10 10 10 10 10 10 10 10 10 10 10 1	A05 A05 A05 A05 A05 A05 A05 A05 A05 A05	
REG REG REG REG REG REG REG REG REG REG	1,4-Dichlorobenzene 2,2'-oxybis (1-chloropropane) 2,4,5-Trichlorophenol 2,4,6-Trichlorophenol 2,4-Dichlorophenol 2,4-Dinitroblenol 2,4-Dinitrobluene 2,6-Dinitrotoluene 2-Chlorophenol 2-Methylnaphthalene 2-Methylnaphthalene 2-Methylphenol 2-Nitroaniline 3,3'-Dichlorobenzidine 3-Nitroaniline 4,6-Dinitro-o-Cresol	10 10 25 10 10 10 25 10 10 10 10 10 10 25 10 25 25 25	UG/L UG/L UG/L UG/L UG/L UG/L UG/L UG/L	<b>0000000000000000000000000000000000000</b>	10 10 10 10 10 10 10 10 10 10 10 10 10 1	A05 A05 A05 A05 A05 A05 A05 A05 A05 A05	
REG REG REG REG REG REG REG REG REG REG	1,4-Dichlorobenzene 2,2'-oxybis (1-chloropropane) 2,4,5-Trichlorophenol 2,4,6-Trichlorophenol 2,4-Dichlorophenol 2,4-Dinitrophenol 2,4-Dinitrotoluene 2,4-Dinitrotoluene 2,6-Dinitrotoluene 2-Chlorophenol 2-Methylnaphthalene 2-Methylphenol 2-Mitroaniline 2-Nitroaniline 3,3'-Dichlorobenzidine 3-Nitroaniline 4,6-Dinitro-o-Cresol 4-Bromophenyl-phenyl Ether	10 10 25 10 10 10 25 10 10 10 10 10 25 10 10 25 10 25 10	UG/L UG/L UG/L UG/L UG/L UG/L UG/L UG/L		ה ה ה ה ה ה ה ה ה ה ה ה ה ה ה ה ה ה ה	A05           A05	
REG REG REG REG REG REG REG REG REG REG	1,4-Dichlorobenzene 2,2'-oxybis (1-chloropropane) 2,4,5-Trichlorophenol 2,4,6-Trichlorophenol 2,4-Dichlorophenol 2,4-Dinitroblenol 2,4-Dinitrobluene 2,6-Dinitrotoluene 2-Chlorophenol 2-Methylnaphthalene 2-Methylnaphthalene 2-Methylphenol 2-Nitroaniline 3,3'-Dichlorobenzidine 3-Nitroaniline 4,6-Dinitro-o-Cresol	10 10 25 10 10 10 25 10 10 10 10 10 25 10 10 25 10 10 25 10 10 25 10 10 25 10	UG/L UG/L UG/L UG/L UG/L UG/L UG/L UG/L	<b>0000000000000000000000000000000000000</b>	10 10 10 10 10 10 10 10 10 10 10 10 10 1	A05 A05 A05 A05 A05 A05 A05 A05 A05 A05	

Matrix: Groundwater

Collected: 07/25/98

Field Sample Type: Grab

# Location: Ramsdell Quarry Landfill Station : RQLmw-006 Initial Phase

#### RQLmw-006-0007-GW

Sample Type	Semi-Volatile Organics	Result	Units	Qual Lab	ifiers Data	Validation Code
REG	4-Nitroaniline	25	UG/L	<u> </u>	UJ	A05
REG	4-Nitrophenol		UG/L	Ŭ	ບັ	A05
REG	4-chloro-3-methylphenol		UG/L	Ŭ	UJ	A05
REG	Acenaphthene		UG/L	Ŭ	ŬĴ	A05
REG	Acenaphthylene		UG/L	ŭ	ŬĴ	A05
REG	Anthracene		UG/L	Ū	ŬĴ	A05
REG	Benzo(a)anthracene		UG/L	Ū	ŪĴ	A05
REG	Benzo(a)pyrene		UG/L	Ũ	ŬĴ	A05
REG	Benzo(b)fluoranthene		UG/L	Ū	ŬĴ	A05
REG	Benzo(g,h,i)perylene		UG/L	Ū	UJ	A05
REG	Benzo(k)fluoranthene		UG/L	Ū	IJJ	A05
REG	Bis(2-chloroethoxy)methane	10	UG/L	Ū	ŪJ	A05
REG	Bis(2-chloroethyl)ether	10	UG/L	Ú	บับ	A05
REG	Bis(2-ethylhexyl)phthalate	10	UG/L	U	UJ	A05
REG	Butyl Benzyl Phthalate	10	UG/L	U	UJ	A05
REG	Carbazole	10	UG/L	U	UJ	A05
REG	Chrysene	10	UG/L	U	UJ	A05
REG	Di-n-butyl Phthalate	10	UG/L	U	UJ	A05
REG	Di-n-octyl Phthalate	10	UG/L	U	UJ	A05
REG	Dibenzo(a h)anthracene	10	UG/L	U	UJ	A05
REG	Dibenzofuran	10	UG/L	U	IJ	A05
REG	Diethyl Phthalate	10	UG/L	U	UJ	A05
REG	Dimethyl Phthalate	10	UG/L	U	UJ	A05
REG	Fluoranthene	10	UG/L	U	UJ	A05
REG	Fluorene	10	UG/L	U	UJ	A05
REG	Hexachlorobenzene	10	UG/L	U	IJĴ	A05
REG	Hexachlorobutadiene	10	UG/L	U	UJ	A05
REG	Hexachlorocyclopentadiene	10	UG/L	U	UJ	A05,C05
REG	Hexachloroethane	10	UG/L	U	IJJ	A05
REG	Indeno(1,2,3-cd)pyrene	10	UG/L	U	UJ	A05
REG	Isophorone	10	UG/L	υ	บม	A05
REG	N-Nitroso-di-n-propylamine	10	UG/L	U	UJ	A05
REG	N-Nitrosodiphenylamine	10	UG/L	U	UJ	A05
REG	Naphthalene	10	UG/L	U	UJ	A05
REG	Nitrobenzene	10	UG/L	U	UJ	A05
REG	Pentachlorophenol	25	UG/L	U	UJ	A05
REG	Phenanthrene	10	UG/L	U	UJ	A05
REG	Phenol	10	UG/L	U	UJ	A05
REG	Pyrene	10	UG/L	U	UJ	A05

Sample				Qual	ifiers	Validation	
Туре	Volatile Organics	Result	Units	Lab	Data	Code	
REG	1,1,1-Trichloroethane	5	UG/L	Ū	UJ	A05	
REG	1,1,2,2-Tetrachloroethane	5	UG/L	υ	ยม	A05	
REG	1,1,2-Trichloroethane	5	UG/L	υ	IJ	A05	
REG	1,1-Dichloroethane	5	UG/L	U	IJJ	A05	
REG	1,1-Dichloroethene	5	UG/L	U	UJ	A05	
REG	1,2-Dichloroethane	5	UG/L	U	IJ	A05	
REG	1,2-Dichloroethene	5	UG/L	U	υJ	A05	
REG	1,2-Dichloropropane	5	UG/L	U	UJ	A05	
REG	1,3-cis-Dichloropropene	5	UG/L	U	UJ	A05	
REG	1,3-trans-Dichloropropene	5	UG/L	U	UJ	A05	
REG	2-Butanone	10	UG/L	U	UJ	A05	
REG	2-Hexanone	10	UG/L	U	UJ	A05	
REG	4-Methyl-2-pentanone	10	UG/L	U	UJ	A05	
REG	Acetone	8.1	UG/L	J	J	C02,A05	
REG	Benzene	0.52	UG/L	J	J	A05	
REG	Bromodichloromethane	5	UG/L	U	UJ	A05	
REG	Bromoform	5	UG/L	U	UJ	A05	
REG	Bromomethane	10	UG/L	U	UJ	A05	
REG	Carbon Disulfide		UG/L	J	J	A05	
REG	Carbon Tetrachloride		UG/L	U	ບມ	A05	
REG	Chlorobenzene	-	UG/L	U	UJ	A05	
REG	Chloroethane	10	UG/L	U	UJ	A05	
REG	Chloroform	5	UG/L	U	UJ	A05	
REG	Chloromethane		UG/L	U	UJ	A05	
REG	Dibromochloromethane		UG/L	U	UJ	A05	
REG	Ethylbenzene		UG/L	U	UJ	A05	
REG	Methylene Chloride	5	UG/L	U	UJ	A05	

RQLmw-006-0007-GW		Field Sample Type: G	ab N	latrix: Gr	oundwa	ter	Collected:	07/25/98
Sample Type	Volatile Organics	Result	Units	Qual Lab	ifiers Data	Validation Code		
REG	Styrene		5 UG/L	- <del></del>	UJ	A05	_	
REG	Tetrachloroethene		5 UG/L	U	UJ	A05		
REG	Toluene		5 UG/L	U	UJ	A05		
REG	Trichloroethene		5 UG/L	U	UJ	A05		
REG	Vinyl Chloride	1	0 UG/L	U	UJ	A05		
REG	Xylenes, Total		5 UG/L	U	UJ	A05		

Location: Ramsdell Quarry Landfill Station: RQLmw-007 Initial Phase

Sample Type	e Cyanide	Result	Units	Qu La	alifiers b Data	Validation Code
REG	Cyanide	0.01	MG/L	U	U	
Sample Type	a Metals	Result	Units	Qu La	allfiers b Data	Validation Code
REG	Aluminum		UG/L	B	J	101
REG REG	Antimony Arsenic		UG/L UG/L	U	U =	
REG	Barium	58.3	UG/L	в	J	
REG	Beryllium		UG/L	U	U	
REG	Cadmium		UG/L	U	U	
REG	Calcium	147000			=	
REG	Chromium		UG/L	U	U	
REG	Cobalt		UG/L	U	U	
REG	Copper		UG/L	U	U	
REG	Iron	61000			=	
REG	Lead		UG/L	υ	ປ =	
REG	Magnesium	61100			=	
REG	Manganese		UG/L			
REG	Mercury		UG/L	B B	J J	
REG REG	Nickel		UG/L UG/L	D	J =	
REG	Potassium Selenium		UG/L	в	J	
REG	Silver		UG/L	Ŭ	ů	
REG	Sodium		UG/L	Ŭ	=	
REG	Thallium		UG/L	в	J	
REG	Vanadium		UG/L	Ŭ	Ŭ	
REG	Zinc		UG/L	Ū	=	
Sampl	•			Q	ualifiers	Validation
	¢.				b Data	Code
Туре	Filtered Metals	Result	Units			
Type REG	Filtered Metals Aluminum	200	UG/L	- <del>U</del>	U	
Type REG REG	Filtered Metals Aluminum Antimony	200	UG/L UG/L		U U	
Type REG REG REG	Filtered Metals Aluminum Antimony Arsenic	200 5 62.7	UG/L UG/L UG/L		U U =	
Type REG REG REG REG	Filtered Metals Aluminum Antimony Arsenic Barium	200 5 62.7 62.6	UG/L UG/L UG/L UG/L	U U B	U U = t	
Type REG REG REG REG REG	Filtered Metals Aluminum Antimony Arsenic Barium Beryllium	200 5 62.7 62.6 4	UG/L UG/L UG/L UG/L UG/L	U U B U	U = U	
Type REG REG REG REG REG REG	Filtered Metals Aluminum Antimony Arsenic Barium Beryllium Cadmium	200 5 62.7 62.6 4 5	UG/L UG/L UG/L UG/L UG/L	U U B	U = U U	
Type REG REG REG REG REG REG	Filtered Metals Aluminum Antimony Arsenic Barium Beryllium Cadmium Calcium	200 5 62.7 62.6 4 5 159000	UG/L UG/L UG/L UG/L UG/L UG/L	B U U	U = U U =	
Type REG REG REG REG REG REG REG	Filtered Metals Aluminum Antimony Arsenic Barium Beryllium Cadmium Calcium Chromium	200 5 62.7 62.6 4 5 159000 10	UG/L UG/L UG/L UG/L UG/L UG/L UG/L	B U U U U	n 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
Type REG REG REG REG REG REG REG REG	Filtered Metals Aluminum Antimony Arsenic Barium Beryllium Cadmium Calcium Chromium Cobalt	200 5 62.7 62.6 4 5 159000 10 10 18.7	UG/L UG/L UG/L UG/L UG/L UG/L UG/L	U U B U U B	L L L L L L L L L L L L L L L L L L L	
Type REG REG REG REG REG REG REG REG REG	Filtered Metals Aluminum Antimony Arsenic Barium Beryllium Cadmium Calcium Chromium Cobalt Copper	200 5 62.7 62.6 4 5 159000 10 18.7 25	UG/L UG/L UG/L UG/L UG/L UG/L UG/L UG/L	B U U U U	0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
Type REG REG REG REG REG REG REG REG REG	Filtered Metals Aluminum Antimony Arsenic Barium Beryllium Cadmium Calcium Chromium Cobalt Copper Iron	200 5 62.7 62.6 4 5 159000 10 18.7 25 65600	UG/L UG/L UG/L UG/L UG/L UG/L UG/L UG/L	U U U U U U U U U U	n 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
Type REG REG REG REG REG REG REG REG REG REG	Filtered Metals Aluminum Antimony Arsenic Barium Beryllium Cadmium Calcium Chromium Cobalt Copper Iron Lead	200 5 62.7 62.6 4 5 159000 10 18.7 25 65600	UG/L UG/L UG/L UG/L UG/L UG/L UG/L UG/L	U U B U U B	n 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
Type REG REG REG REG REG REG REG REG REG REG	Filtered Metals Aluminum Antimony Arsenic Barium Beryllium Cadmium Calcium Chromium Cobalt Copper Iron Lead Magnesium	200 5 62.7 82.6 4 5 159000 10 18.7 25 65600 3 87700	UG/L UG/L UG/L UG/L UG/L UG/L UG/L UG/L	U U U U U U U U U U	n 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
Type REG REG REG REG REG REG REG REG REG REG	Filtered Metals Aluminum Antimony Arsenic Barium Beryllium Cadmium Calcium Chromium Cobalt Copper Iron Lead Magnesium Manganese	200 5 62.7 62.6 4 5 159000 10 18.7 25 65600 3 87700 4100	UG/L UG/L UG/L UG/L UG/L UG/L UG/L UG/L			
Type REG REG REG REG REG REG REG REG REG REG	Filtered Metals Aluminum Antimony Arsenic Barium Beryllium Cadmium Calcium Chromium Cobalt Copper Iron Lead Magnesium Manganese Mercury	200 5 62.7 62.6 4 5 159000 10 18.7 25 65600 3 67700 4100 0.082	UG/L UG/L UG/L UG/L UG/L UG/L UG/L UG/L	U U U U U U B U U B U U B	ι = - - - - - - - - - - - - - - - - - - -	
Type REG REG REG REG REG REG REG REG REG REG	Filtered Metals Aluminum Antimony Arsenic Barium Beryllium Cadmium Cadmium Calcium Chromium Cobalt Copper Iron Lead Magnesium Manganese Mercury Nickel	200 5 62.7 62.6 4 5 159000 10 18.7 25 65600 3 67700 4100 0.082 39.4	UG/L UG/L UG/L UG/L UG/L UG/L UG/L UG/L		Γ 	
Type REG REG REG REG REG REG REG REG REG REG	Filtered Metals Aluminum Antimony Arsenic Barium Beryllium Cadmium Cadmium Calcium Chromium Cobalt Copper Iron Lead Magnesium Manganese Mercury Nickel Potassium	200 5 62.7 62.6 4 5 159000 10 18.7 25 65600 3 87700 4100 0.082 39.4 12000	UG/L UG/L UG/L UG/L UG/L UG/L UG/L UG/L	U U U U U U B U U B B B	- Γ 	
Type REG REG REG REG REG REG REG REG REG REG	Filtered Metals Aluminum Antimony Arsenic Barium Beryllium Cadmium Calcium Chromium Cobalt Copper Iron Lead Magnesium Manganese Mercury Nickel Potassium Selenium	200 5 62.7 62.6 4 5 159000 10 18.7 25 65600 3 3 67700 4100 0.082 39.4 12000	UG/L UG/L UG/L UG/L UG/L UG/L UG/L UG/L	U U U U U B U U B B U	Π Π Π Π Π Π Π Π Π Π Π Π	
Type REG REG REG REG REG REG REG REG REG REG	Filtered Metals Aluminum Antimony Arsenic Barium Beryllium Cadmium Cadmium Calcium Chromium Cobalt Copper Iron Lead Magnesium Manganese Mercury Nickel Potassium Selenium Silver	200 5 62.7 82.6 4 5 159000 10 18.7 25 65600 3 87700 4100 0.082 39.4 12000 5 10	UG/L UG/L UG/L UG/L UG/L UG/L UG/L UG/L	U U U U U U B U U B B B	- Γ 	
Type REG REG REG REG REG REG REG REG REG REG	Filtered Metals Aluminum Antimony Arsenic Barium Beryllium Cadmium Cadmium Calcium Chromium Cobalt Copper Iron Lead Magnesium Manganese Mercury Nickel Potassium Selenium Silver Sodium	200 5 62.7 82.6 4 5 159000 10 18.7 25 65600 3 87700 4100 0.082 39.4 12000 5 10 24000	UG/L UG/L UG/L UG/L UG/L UG/L UG/L UG/L	U U U U U U U B U U U U U U U U	=	
Type REG REG REG REG REG REG REG REG REG REG	Filtered Metals Aluminum Antimony Arsenic Barium Beryllium Cadmium Cadmium Calcium Chromium Cobalt Copper Iron Lead Magnesium Manganese Mercury Nickel Potassium Selenium Silver	200 5 62.7 62.6 4 5 159000 10 18.7 25 65600 3 65600 3 97700 4100 0.082 39.4 12000 ( 11 24000 1.5	UG/L UG/L UG/L UG/L UG/L UG/L UG/L UG/L	U U U U U B U U B B U	Ω Π Π Π Π Π Π Π Π Π Π Π Π Π Π Π Π Π	

Sample Type	Explosives	Result	Units	Qual Lab	ifiers Data	Validation Code
REG	1,3,5-Trinitrobenzene	0.2	UG/L	U	UJ	G06
REG	1.3-Dinitrobenzene	0.2	UG/L	U	UJ	G06
REG	2,4,6-Trinitrotoluene	0.2	UG/L	U	UJ	G06
REG	2,4-Dinitrotoluene	0.13	UG/L	U	UJ	G06
REG	2,6-Dinitrotoluene	0.13	UG/L	U	UJ	G06
REG	2-Nitrotoluene	0.2	UG/L	Ų	UJ	G06
REG	3-Nitrotoluene	0.2	UG/L	U	ปม	G06
REG	4-Nitrotoluene	0.2	UG/L	U	UJ	G06
REG	НМХ	0.5	UG/L	U	UJ	G06
REG	Nitrobenzene	0.2	UG/L	U	UJ	G06
REG	Nitrocellulose as N	0.2	MG/L	U	U	
REG	Nitroglycerin	2.5	UG/L	U	U	
REG	Nitroguanidine	20	UG/L	Ū	Ū	
REG	RDX	0.5	UG/L	U	ÛĴ	G06
REG	Tetryl	0.2	UG/L	Ū	UJ	G06

Sample Type	Semi-Volatile Organics	Result	Units	Qu Lai	alifiers b Data	Validation Code
REG	1,2,4-Trichlorobenzene	10	UG/L	U	U	
REG	1,2-Dichlorobenzene	10	UG/L	U	U	
REG	1,3-Dichlorobenzene	10	UG/L	U	U	
REG	1,4-Dichlorobenzene	10	UG/L	U	U	
REG	2,2'-oxybis (1-chloropropane)	10	UG/L	U	U	
REG	2,4,5-Trichlorophenol	25	UG/L	U	U	
REG	2,4,6-Trichlorophenol	10	UG/L	U	U	
REG	2,4-Dichlorophenol	10	UG/L	U	U	
REG	2,4-Dimethylphenol	10	UG/L	U	U	
REG	2,4-Dinitrophenol	25	UG/L	U	U	
REG	2,4-Dinitrotoluene	10	UG/L	U	U	
REG	2,6-Dinitrotoluene	10	UG/L	U	U	
REG	2-Chloronaphthalene	10	UG/L	U	U	
REG	2-Chlorophenol	10	UG/L	U	U	
REG	2-Methylnaphthalene	10	UG/L	U	U	
REG	2-Methylphenol	10	UG/L	U	U	
REG	2-Nitroaniline	25	UG/L	U	U	
REG	2-Nitrophenol	10	UG/L	U	U	
REG	3,3'-Dichlorobenzidine	10	UG/L	U	U	
REG	3-Nitroaniline	25	UG/L	U	U	
REG	4,6-Dinitro-o-Cresol	25	UG/L	U	U	
REG	4-Bromophenyi-phenyi Ether	10	UG/L	U	U	
REG	4-Chloroaniline	10	UG/L	U	U	
REG	4-Chiorophenyi-phenyiether	10	UG/L	U	U	
REG	4-Methylphenol	10	UG/L	U	U	
REG	4-Nitroaniline	25	UG/L	U	U	
REG	4-Nitrophenol	25	UG/L	U	U	
REG	4-chloro-3-methylphenol	10	UG/L	U	Ų	
REG	Acenaphthene	10	UG/L	U	U	
REG	Acenaphthylene	10	UG/L	U	U	
REG	Anthracene	10	UG/L	U	U	
REG	Benzo(a)anthracene	10	UG/L	U	U	
REG	Benzo(a)pyrene	10	UG/L	U	U	
REG	Benzo(b)fluoranthene	10	UG/L	U	U	
REG	Benzo(g,h,i)perylene	10	UG/L	U	U	
REG	Benzo(k)fluoranthene	10	UG/L	U	U	
REG	Bis(2-chloroethoxy)methane	10	UG/L	U	υ	
REG	Bis(2-chloroethyl)ether	10	UG/L	U	U	
REG	Bis(2-ethylhexyl)phthalate	10	UG/L	บ	U	
REG	Butyl Benzyl Phthalate	10	UG/L	U	U	
REG	Carbazole	10	UG/L	U	U	
REG	Chrysene	10	UG/L	U	U	
REG	Di-n-butyl Phthalate	10	UG/L	υ	U	
REG	Di-n-octyl Phthalate	10	UG/L	υ	U	
REG	Dibenzo(a,h)anthracene	10	UG/L	υ	U	
REG	Dibenzofuran	10	UG/L	U	U	
REG	Diethyl Phthalate	10	UG/L	ບ	U	
REG	Dimethyl Phthalate	10	UG/L	U	U	
REG	Fluoranthene		UG/L	U	U	
REG	Fluorene	10	UG/L	U	U	
REG	Hexachlorobenzene	10	UG/L	U	U	
REG	Hexachlorobutadiene	10	UG/L	U	U	
REG	Hexachlorocyclopentadiene	10	UG/L	υ	UJ	C05
REG	Hexachloroethane	10	UG/L	U	U	
REG	Indeno(1,2,3-cd)pyrene	10	UG/L	U	U	
REG	Isophorone	10	UG/L	U	U	
	-					

# Location: Ramsdell Quarry Landfill Station : RQLmw-007 Initial Phase

 Care of		···				
Sample Type	Semi-Volatile Organics	Result	Units	Qualifiers Lab Data	Validation Code	
REG	N-Nitroso-di-n-propylamine	10	UG/L	<u> </u>		
REG	N-Nitrosodiphenylamine		UG/L	ŪŪ		
REG	Naphthalene	10	UG/L	Ŭ Ū		
REG	Nitrobenzene	10	UG/L	ŪŪ		
REG	Pentachiorophenol		UG/L	υŬ		
REG	Phenanthrene		UG/L	υŪ		
REG	Phenol		UG/L	υŪ		
REG	Pyrene		UG/L	Ū Ū		
Sample				Qualifiers	Validation	
Туре	Volatile Organics	Result	Units	Lab Data	Code	
REG	1,1,1-Trichloroethane	5	UG/L	υυ		
REG	1,1,2,2-Tetrachloroethane	5	UG/L	U U		
REG	1,1,2-Trichloroethane	5	UG/L	υU		
REG	1,1-Dichloroethane	5	UG/L	UU		
REG	1,1-Dichloroethene	5	UG/L	υυ		
REG	1,2-Dichloroethane	5	UG/L	υυ		
REG	1,2-Dichloroethene	5	UG/L	υυ		
REG	1,2-Dichloropropane	5	UG/L	U U		
REG	1,3-cis-Dichloropropene	5	UG/L	υu		
REG	1.3-trans-Dichloropropene	5	UG/L	υu		
REG	2-Butanone	10	UG/L	ŬŪ		
REG	2-Hexanone	10	UG/L	υŪ		
REG	4-Methyl-2-pentanone	10	UG/L	Ŭ Ū		
REG	Acetone	10	UG/L	ບ່ິຍ		
REG	Benzene	5	UG/L	Û Û		
REG	Bromodichloromethane	5	UG/L	U U		
REG	Bromoform	5	UG/L	ŪŪ		
REG	Bromomethane		UG/L	ŬŪ		
REG	Carbon Disulfide		UG/L	ŬŪ		
REG	Carbon Tetrachloride		UG/L	υŪ		
REG	Chlorobenzene		UG/L	บับ		
REG	Chloroethane		UG/L	υÜ		
REG	Chloroform		UG/L	Ŭ Ŭ		
REG	Chloromethane		UG/L	U U		
REG	Dibromochloromethane		UG/L	υü		
REG	Ethylbenzene		UG/L	U U		
REG	-		UG/L	0 0		
REG	Methylene Chloride		UG/L	U U		
REG	Styrene	-		-		
-	Tetrachloroethene		UG/L	U U		
REG	Toluene		UG/L	U U		
REG	Trichloroethene		UG/L	υυ		
REG	Vinyl Chloride		UG/L	U U		
REG	Xylenes, Total	5	UG/L	υu		

# Location: Ramsdell Quarry Landfill Station : RQLmw-008 Initial Phase

-0011-GW		Field Sample Type: Gra	b M	atrix: Gr	oundwa	ter	Collected: 07/22/9
Sample Type	Cyanide	Result	Units	Qual Lab	iflers Data	Validation Code	
REG	Cyanide	0.01	MG/L	U	U		-
Sample Type	Metals	Result	Units	Qual Lab	ifiers Data	Validation Code	
REG	Aluminum	58.4	UG/L	B	J	101	_
REG	Antimony	5	UG/L	U	U		
REG	Arsenic	51.6	UG/L		=		
REG	Barium	41.9	UG/L	в	J		
REG	Beryllium	4	UG/L	U	U		
REG	Cadmium	5	UG/L	U	U		
REG	Calcium	119000	UG/L		=		
REG	Chromium	10	UG/L	υ	U		
REG	Cobalt	73.8	UG/L		=		
REG	Copper	25	UG/L	U	U		
REG	Iron	138000	UG/L		Ξ		
REG	Lead	3	UG/L	U	υ		

Location:	Ramsdell Qua	
Station :	RQLmw-008	initial Phase

Туре	a Metals	Result	Units	Qua Lab	lifiers Data	Validation Code
REG	Magnesium	55300				
REG	Manganese		UG/L		-	
REG	Mercury		UG/L	в	J	
REG	Nickel		UG/L	0	=	
REG	Potassium		UG/L		=	
REG	Selenium		UG/L	U	Ū	
REG	Silver		UG/L	Ŭ	U	
REG	Sodium	15300		U	=	
REG	Thallium				-	
			UG/L			
REG REG	Vanadium Zinc		UG/L UG/L	U	U =	
Sample Type	e Filtered Metals	Result	Units	Qua Lab	lifiers Data	Validation Code
REG	Aluminum		UG/L	· <u> </u>	U .	
REG	Antimony		UG/L	Ū	Ū	
REG	Arsenic		UG/L		Ξ	
REG	Barium		UG/L	в	J	
REG	Beryllium		UG/L	Ū	Ŭ	
REG	Cadmium		UG/L	ŭ	Ŭ	
REG	Calcium	120000		•	=	
REG	Chromium		UG/L	U	Ū	
REG	Cobalt		UG/L	v	=	
REG	Copper		UG/L	U	Ū	
REG	Iron	140000		0	=	
REG	Lead		UG/L	U	Ū	
REG		3 55500		U	=	
REG	Magnesium		UG/L		=	
	Manganese			в	J	
REG	Mercury		UG/L	D	3	
REG	Nickel		UG/L		=	
REG	Potassium		UG/L			
REG	Selenium		UG/L	U	U	
REG	Silver		UG/L	U	U	
REG	Sodium	15500		-	=	
REG	Thallium		UG/L	В	J	
REG			UG/L	U	U =	
REG	Zinc	112	UG/L		-	
Sample	e Explosives	Result	Units	Qua Lab	llfiers Data	Validation Code
Туре	•				U	
REG	1,3,5-Trinitrobenzene		UG/L	U		
REG REG	1,3,5-Trinitrobenzene 1,3-Dinitrobenzene	0.2	UG/L	U	U	
REG REG REG	1,3,5-Trinitrobenzene 1,3-Dinitrobenzene 2,4,6-Trinitrotoluene	0.2 0.2	UG/L UG/L		U U	
REG REG REG REG	1,3,5-Trinitrobenzene 1,3-Dinitrobenzene 2,4,6-Trinitrotoluene 2,4-Dinitrotoluene	0.2 0.2 0.13	UG/L UG/L UG/L	U U	U U =	
REG REG REG REG REG	1,3,5-Trinitrobenzene 1,3-Dinitrobenzene 2,4,6-Trinitrotoluene 2,4-Dinitrotoluene 2,6-Dinitrotoluene	0.2 0.2 0.13 0.13	UG/L UG/L UG/L UG/L	บ บ บ	U U = U	
REG REG REG REG REG REG	1,3,5-Trinitrobenzene 1,3-Dinitrobenzene 2,4,6-Trinitrotoluene 2,4-Dinitrotoluene 2,6-Dinitrotoluene 2-Nitrotoluene	0.2 0.2 0.13 0.13 0.13 0.2	UG/L UG/L UG/L UG/L UG/L	บ บ บ บ	U U = U U	
REG REG REG REG REG REG REG	1,3,5-Trinitrobenzene 1,3-Dinitrobenzene 2,4,6-Trinitrotoluene 2,4-Dinitrotoluene 2,6-Dinitrotoluene 2-Nitrotoluene 3-Nitrotoluene	0.2 0.2 0.13 0.13 0.13 0.2 0.2	UG/L UG/L UG/L UG/L UG/L UG/L	U U U U U	U U = U U U	
REG REG REG REG REG REG REG	1,3,5-Trinitrobenzene 1,3-Dinitrobenzene 2,4,6-Trinitrotoluene 2,4-Dinitrotoluene 2,6-Dinitrotoluene 2-Nitrotoluene 3-Nitrotoluene 4-Nitrotoluene	0.2 0.2 0.13 0.13 0.2 0.2 0.2 0.2	UG/L UG/L UG/L UG/L UG/L UG/L	ບ ບ ນ ບ ນ ນ	U U U U U U U	
REG REG REG REG REG REG REG REG	1,3,5-Trinitrobenzene 1,3-Dinitrobenzene 2,4,6-Trinitrotoluene 2,4-Dinitrotoluene 2,6-Dinitrotoluene 2-Nitrotoluene 3-Nitrotoluene 4-Nitrotoluene HMX	0.2 0.2 0.13 0.13 0.2 0.2 0.2 0.2 0.2	UG/L UG/L UG/L UG/L UG/L UG/L UG/L	1 N N N N	U U U U U U U J	
REG REG REG REG REG REG REG REG	1,3,5-Trinitrobenzene         1,3-Dinitrobenzene         2,4,6-Trinitrotoluene         2,4-Dinitrotoluene         2,6-Dinitrotoluene         2,6-Dinitrotoluene         2-Nitrotoluene         3-Nitrotoluene         4-Nitrotoluene         HMX         Nitrobenzene	0.2 0.2 0.13 0.13 0.2 0.2 0.2 0.2 0.2 0.06	UG/L UG/L UG/L UG/L UG/L UG/L UG/L UG/L	0 0 0 0 0	U = U U U J U	
REG REG REG REG REG REG REG REG	1,3,5-Trinitrobenzene 1,3-Dinitrobenzene 2,4,6-Trinitrotoluene 2,4-Dinitrotoluene 2,6-Dinitrotoluene 2-Nitrotoluene 3-Nitrotoluene 4-Nitrotoluene HMX	0.2 0.2 0.13 0.13 0.2 0.2 0.2 0.2 0.06 0.2 0.2 0.2 0.2 0.2	UG/L UG/L UG/L UG/L UG/L UG/L UG/L MG/L	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	U = U U U U U U U U U U	
REG REG REG REG REG REG REG REG	1,3,5-Trinitrobenzene         1,3-Dinitrobenzene         2,4,6-Trinitrotoluene         2,4-Dinitrotoluene         2,6-Dinitrotoluene         2,6-Dinitrotoluene         2-Nitrotoluene         3-Nitrotoluene         4-Nitrotoluene         HMX         Nitrobenzene	0.2 0.2 0.13 0.13 0.2 0.2 0.2 0.2 0.06 0.2 0.2 0.2 0.2 0.2	UG/L UG/L UG/L UG/L UG/L UG/L UG/L UG/L	0 0 0 0 0	U = U U U J U	
REG REG REG REG REG REG REG REG REG	1,3,5-Trinitrobenzene         1,3-Dinitrobenzene         2,4,6-Trinitrotoluene         2,4-Dinitrotoluene         2,6-Dinitrotoluene         2,6-Dinitrotoluene         2-Nitrotoluene         3-Nitrotoluene         4-Nitrotoluene         HMX         Nitrobenzene         Nitrocellulose as N	0.2 0.2 0.13 0.13 0.2 0.2 0.2 0.06 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2	UG/L UG/L UG/L UG/L UG/L UG/L UG/L MG/L	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	U = U U U U U U U U U U	
REG REG REG REG REG REG REG REG REG	1,3,5-Trinitrobenzene 1,3-Dinitrobenzene 2,4,6-Trinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2-Nitrotoluene 3-Nitrotoluene HMX Nitrobenzene Nitrocellulose as N Nitroglycerin	0.2 0.2 0.13 0.13 0.2 0.2 0.2 0.2 0.06 0.2 0.2 0.2 2 0.2 20	UG/L UG/L UG/L UG/L UG/L UG/L UG/L UG/L	ר ה ה ה ח ח ח ח	1 0 0 0 0 0 0 0 0 0 0	
REG REG REG REG REG REG REG REG REG REG	1,3,5-Trinitrobenzene         1,3-Dinitrobenzene         2,4,6-Trinitrotoluene         2,4-Dinitrotoluene         2,6-Dinitrotoluene         2,6-Dinitrotoluene         3-Nitrotoluene         3-Nitrotoluene         4-Nitrotoluene         HMX         Nitrocellulose as N         Nitroglycerin         Nitroguanidine	0.2 0.2 0.13 0.13 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 20 0.5	UG/L UG/L UG/L UG/L UG/L UG/L UG/L UG/L	ດ ດ ດ ດ ດ ດ	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
REG REG REG REG REG REG REG REG REG REG	1,3,5-Trinitrobenzene 1,3-Dinitrobenzene 2,4,6-Trinitrotoluene 2,4-Dinitrotoluene 2,6-Dinitrotoluene 2-Nitrotoluene 3-Nitrotoluene 4-Nitrotoluene HMX Nitrobenzene Nitrocellulose as N Nitroglycerin Nitroglycerin Nitroguanidine RDX Tetryl	0.2 0.2 0.13 0.13 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 20 0.5	UG/L UG/L UG/L UG/L UG/L UG/L UG/L UG/L	0 0 0 0 0 0 0 0	ย 	Validation Code
REG REG REG REG REG REG REG REG REG REG	1,3,5-Trinitrobenzene 1,3-Dinitrobenzene 2,4,6-Trinitrotoluene 2,4-Dinitrotoluene 2,6-Dinitrotoluene 2-Nitrotoluene 3-Nitrotoluene 4-Nitrotoluene HMX Nitrobenzene Nitrocellulose as N Nitroglycerin Nitroglycerin Nitroguanidine RDX Tetryl	0.2 0.2 0.13 0.13 0.2 0.2 0.2 0.2 0.2 20 0.5 0.2 20 0.5 0.2	UG/L UG/L UG/L UG/L UG/L UG/L UG/L UG/L	U U U U U U U U U U U U U U U U U U U	ย 	
REG REG REG REG REG REG REG REG REG REG	1,3,5-Trinitrobenzene         1,3-Dinitrobenzene         2,4,6-Trinitrotoluene         2,4-Dinitrotoluene         2,4-Dinitrotoluene         2,4-Dinitrotoluene         2,6-Dinitrotoluene         3-Nitrotoluene         3-Nitrotoluene         4-Nitrotoluene         HMX         Nitrocellulose as N         Nitroglycerin         Nitroguanidine         RDX         Tetryl	0.2 0.3 0.13 0.2 0.2 0.2 0.2 0.2 0.2 20 0.5 0.2 20 0.5 0.2 20 0.5 0.2 20 0.5 0.2	UG/L UG/L UG/L UG/L UG/L UG/L UG/L UG/L	U U U U U U U U U U U U U U U U U	U U U U U U U U U U U U U U U U U U	
REG REG REG REG REG REG REG REG REG REG	1,3,5-Trinitrobenzene         1,3-Dinitrobenzene         2,4,6-Trinitrotoluene         2,4-Dinitrotoluene         2,4-Dinitrotoluene         2,6-Dinitrotoluene         2,6-Dinitrotoluene         3-Nitrotoluene         3-Nitrotoluene         4-Nitrotoluene         4-Nitrotoluene         HMX         Nitrocellulose as N         Nitroglycerin         Nitroguanidine         RDX         Tetryl         e         Semi-Volatile Organics	0.2 0.2 0.13 0.13 0.2 0.2 0.2 0.2 0.6 0.2 20 0.5 0.2 20 0.5 0.2 20 0.5 0.2 20 0.5 0.2 20 0.5 0.2 20 0.5 0.2 20 0.5 0.2 20 0.5 0.2 20 0.1 30 0.1 30 0.1 30 0.1 30 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.	UG/L UG/L UG/L UG/L UG/L UG/L UG/L UG/L	U U U U U U U U U U U U U U U U U U	บ 	
REG REG REG REG REG REG REG REG REG REG	1,3,5-Trinitrobenzene         1,3-Dinitrobenzene         2,4,6-Trinitrotoluene         2,4-Dinitrotoluene         2,6-Dinitrotoluene         2,6-Dinitrotoluene         2-Nitrotoluene         3-Nitrotoluene         4-Nitrotoluene         HMX         Nitrocellulose as N         Nitroguanidine         RDX         Tetryl         8         1,2,4-Trichlorobenzene         1,2-Dichlorobenzene	0.2 0.2 0.13 0.13 0.2 0.2 0.2 0.2 0.2 0.2 0.2 20 0.5 0.2 20 0.5 0.2 20 0.5 0.2 10 0.5 0.2 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.2 0.2 0.1 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2	UG/L UG/L UG/L UG/L UG/L UG/L UG/L UG/L	U U U U U U U U U U U U U U U U U	ม 	
REG REG REG REG REG REG REG REG REG REG	1.3.5-Trinitrobenzene         1.3-Dinitrobenzene         2.4.6-Trinitrotoluene         2.4.6-Trinitrotoluene         2.4.0initrotoluene         2.6-Dinitrotoluene         2.6-Dinitrotoluene         3-Nitrotoluene         4-Nitrotoluene         HMX         Nitrobenzene         Nitrotoluene         HMX         Nitroglycerin         Nitroguanidine         RDX         Tetryl         e         Semi-Volatile Organics         1.2.4-Trichlorobenzene         1.3-Dichlorobenzene         1.3-Dichlorobenzene         1.4-Dichlorobenzene	0.2 0.2 0.13 0.13 0.2 0.2 0.2 0.06 0.2 2 20 0.5 0.2 20 0.5 0.2 20 0.5 0.2 10 10 10 10 10	UG/L UG/L UG/L UG/L UG/L UG/L UG/L UG/L	U U U U U U U U U U U U U U U U U U U	ບ = ບ ບ ບ ບ ບ ງ ບ ນ ບ <b>U</b> ບ <b>U</b> ບ ບ ບ ບ ບ ບ ບ ບ ບ ບ ບ ບ ບ ບ ບ ບ ບ ບ ບ	
REG REG REG REG REG REG REG REG REG REG	1.3.5-Trinitrobenzene         1.3-Dinitrobenzene         2.4.6-Trinitrotoluene         2.4.6-Trinitrotoluene         2.4-Dinitrotoluene         2.6-Dinitrotoluene         2.6-Dinitrotoluene         3-Nitrotoluene         4-Nitrotoluene         HMX         Nitrodenzene         Nitrocellulose as N         Nitroglycerin         Nitroguanidine         RDX         Tetryl         Semi-Volatile Organics         1.2.4-Trichlorobenzene         1.3-Dichlorobenzene         1.4-Dichlorobenzene         2.2'-oxybis (1-chloropropane)	0.2 0.2 0.13 0.13 0.2 0.2 0.2 0.06 0.2 2 20 0.5 0.2 20 0.5 0.2 <b>Result</b> 10 10 10 10 10	UG/L UG/L UG/L UG/L UG/L UG/L UG/L UG/L	U U U U U U U U U U U U U U U U U U U	ບ 	
REG REG REG REG REG REG REG REG REG REG	1.3.5-Trinitrobenzene         1.3-Dinitrobenzene         2.4.6-Trinitrotoluene         2.4.6-Trinitrotoluene         2.4.6-Trinitrotoluene         2.4.6-Trinitrotoluene         2.4.6-Trinitrotoluene         2.4.6-Trinitrotoluene         2.4.6-Trinitrotoluene         2.4.6-Trinitrotoluene         3-Nitrotoluene         3-Nitrotoluene         HMX         Nitrocellulose as N         Nitroglycerin         Nitroguanidine         RDX         Tetryl         8         Semi-Volatlie Organics         1.2.4-Trichlorobenzene         1.3-Dichlorobenzene         1.4-Dichlorobenzene         2.2-oxybis (1-chloropropane)         2.4.6-Trichlorophenol	0.2 0.2 0.13 0.13 0.2 0.2 0.2 0.06 0.2 2 20 0.5 0.2 20 0.5 0.2 <b>Result</b> 10 10 10 10 10 25	UG/L UG/L UG/L UG/L UG/L UG/L UG/L UG/L	U U U U U U U U U U U U U U U U U U U	ບ = ບ ບ ບ ບ ບ ບ ບ ນ J ບ ບ ນ J ບ ບ <b>liflers</b> <b>Data</b> ບ ບ ບ ບ ບ ບ ບ ບ ບ ບ ບ ບ ບ ບ ບ ບ ບ ບ ບ	
REG REG REG REG REG REG REG REG REG REG	1.3,5-Trinitrobenzene         1.3-Dinitrobenzene         2.4,6-Trinitrotoluene         2.4-Dinitrotoluene         2.4-Dinitrotoluene         2.4-Dinitrotoluene         2.6-Dinitrotoluene         3-Nitrotoluene         3-Nitrotoluene         3-Nitrotoluene         3-Nitrotoluene         4-Nitrotoluene         HMX         Nitrocellulose as N         Nitroguanidine         RDX         Tetryl         8         Semi-Volatile Organics         1.2,4-Trichlorobenzene         1.3-Dichlorobenzene         1.4-Dichlorobenzene         2.2-oxybis (1-chloropropane)         2.4,6-Trichlorophenol         2.4,6-Trichlorophenol	0.2 0.2 0.13 0.13 0.2 0.2 0.2 0.06 0.2 2 20 0.5 0.2 20 0.5 0.2 7 20 0.5 0.2 20 0.5 0.2 20 0.5 0.2 20 0.5 0.2 10 10 10 10 10 10 10 10 10 10 10 10 10	UG/L UG/L UG/L UG/L UG/L UG/L UG/L UG/L	U U U U U U U U U U U U U U U U U U U	ບ 	
REG REG REG REG REG REG REG REG REG REG	1.3.5-Trinitrobenzene         1.3-Dinitrobenzene         2.4.6-Trinitrotoluene         2.4.6-Trinitrotoluene         2.4.6-Trinitrotoluene         2.4.6-Trinitrotoluene         2.4.6-Trinitrotoluene         2.4.6-Trinitrotoluene         2.4.6-Trinitrotoluene         2.4.6-Trinitrotoluene         3-Nitrotoluene         3-Nitrotoluene         HMX         Nitrocellulose as N         Nitroglycerin         Nitroguanidine         RDX         Tetryl         8         Semi-Volatlie Organics         1.2.4-Trichlorobenzene         1.3-Dichlorobenzene         1.4-Dichlorobenzene         2.2-oxybis (1-chloropropane)         2.4.6-Trichlorophenol	0.2 0.2 0.13 0.13 0.2 0.2 0.2 0.06 0.2 20 0.5 0.2 20 0.5 0.2 20 0.5 0.2 20 0.5 0.2 20 0.5 0.2 20 0.5 0.2 20 0.5 0.2 20 0.5 0.2 20 0.5 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2	UG/L UG/L UG/L UG/L UG/L UG/L UG/L UG/L	U U U U U U U U U U U U U U U U U U U	ບ 	

*

#### Location: Ramsdell Quarry Landfill Station : RQLmw-008 Initial Phase

Sample Type	Semi-Volatile Organics	Result	Units		ualifiers ub Data	Validation Code	
REG	2,4-Dinitrotoluene						_
REG	2,6-Dinitrotoluene		UG/L	U	U		
REG	2-Chloronaphthalene		UG/L	U	U		
REG			UG/L	U	U		
REG	2-Chlorophenol		UG/L	U	U		
REG	2-Methylnaphthalene		UG/L	U	U		
REG	2-Methylphenol		UG/L	U	U		
	2-Nitroaniline		UG/L	U	U		
REG	2-Nitrophenol		UG/L	U	U		
REG	3,3'-Dichlorobenzidine		UG/L	U	U		
REG	3-Nitroaniline		UG/L	U	U		
REG	4,6-Dinitro-o-Cresol		UG/L	U	U		
REG	4-Bromophenyl-phenyl Ether	10	UG/L	U	U		
REG	4-Chloroaniline	10	UG/L	U	U		
REG	4-Chlorophenyl-phenylether	10	UG/L	U	U		
REG	4-Methylphenol	10	UG/L	U	U		
REG	4-Nitroaniline	25	UG/L	U	U		
REG	4-Nitrophenol	25	UG/L	U	U		
REG	4-chloro-3-methylphenol		UG/L	Ŭ	Ū		
REG	Acenaphthene		UG/L	Ū	Ŭ		
REG	Acenaphthylene		UG/L	ŭ	Ŭ		
REG	Anthracene		UG/L	Ŭ	Ŭ		
REG	Benzo(a)anthracene		UG/L	Ŭ	Ŭ		
REG	Benzo(a)pyrene		UG/L	Ŭ	U		
REG	Benzo(b)fluoranthene		UG/L	Ŭ	U		
REG	Benzo(g,h,i)perylene		UG/L UG/L	U	U		
REG	Benzo(k)fluoranthene		UG/L	U	U		
REG	Bis(2-chloroethoxy)methane		UG/L	U	UU		
REG	Bis(2-chloroethyl)ether						
REG			UG/L	U	U		
REG	Bis(2-ethylhexyl)phthalate		UG/L	U	U		
	Butyl Benzyl Phthalate		UG/L	U	U		
REG	Carbazole		UG/L	U	U		
REG	Chrysene		UG/L	U	U		
REG	Di-n-butyl Phthalate		UG/L	U	U		
REG	Di-n-octyi Phthalate	10	UG/L	U	U		
REG	Dibenzo(a,h)anthracene	10	UG/L	U	U		
REG	Dibenzofuran	10	UG/L	U	U		
REG	Diethyl Phthalate	10	UG/L	U	U		
REG	Dimethyl Phthalate	10	UG/L	U	U		
REG	Fluoranthene	10	UG/L	υ	Ū		
REG	Fluorene		UG/L	Ū	Ŭ		
REG	Hexachlorobenzene		UG/L	Ū	ŭ		
REG	Hexachlorobutadiene		UG/L	Ŭ	Ū		
REG	Hexachlorocyclopentadiene		UG/L	Ŭ	ŬJ	C05	
REG	Hexachloroethane		UG/L	Ŭ	Ű		
REG	Indeno(1,2,3-cd)pyrene		UG/L	Ŭ	Ŭ		
REG	Isophorone		UG/L	Ŭ	Ŭ		
REG	N-Nitroso-di-n-propylamine						
REG			UG/L	U	U		
	N-Nitrosodiphenylamine		UG/L	U	U		
REG	Naphthalene		UG/L	U	U		
REG	Nitrobenzene		UG/L	U	U		
REG	Pentachlorophenol		UG/L	υ	IJ		
REG	Phenanthrene		UG/L	U	U		
REG	Phenol	10	UG/L	U	U		
REG	Pyrene	10	UG/L	U	Ŭ		
<b>.</b> .							
Sample Type	Volatile Organics	Result	Units	Qu Lai	alifiers b Data	Validation Code	
							-
REG	1,1,1-Trichloroethane		UG/L	U	U		
REG	1,1,2,2-Tetrachloroethane		UG/L	U	U		
REG	1,1,2-Trichloroethane		UG/L	U	U		
REG	1,1-Dichloroethane		UG/L	U	υ		
REG	1,1-Dichloroethene	5	UG/L	υ	U		
REG	1,2-Dichloroethane		UG/L	U	U		
REG	1,2-Dichloroethene		UG/L	Ū	Ū		
REG	1,2-Dichloropropane		UG/L	Ū	Ū		
REG	1,3-cis-Dichloropropene		UG/L	Ŭ	Ŭ		
REG	1,3-trans-Dichloropropene		UG/L	Ŭ	U		
REG	· ·						
REG	2-Butanone	10	UG/L	U	U		

•

Sample		<b>_</b>		Ouel	iflers	Validation	·	
Туре	Volatile Organics	Result	Units	Lab	Data	Code		
REG	4-Methyl-2-pentanone		UG/L	U	U	,	_	
REG	Acetone	9	UG/L	Ĵ	Ĵ	C02		
REG	Benzene		UG/L	Ū	Ū	•••		
REG	Bromodichloromethane		UG/L	Ū	Ū			
REG	Bromoform		UG/L	Ū	ŭ			
REG	Bromomethane		UG/L	Ū	Ū			
REG	Carbon Disulfide		UG/L	ū	ŭ			
REG	Carbon Tetrachloride		UG/L	Ŭ	Ū			
REG	Chlorobenzene		UG/L	ม	Ŭ			
REG	Chloroethane		UG/L	Ū	Ū			
REG	Chloroform		UG/L	Ū	Ū			
REG	Chloromethane		UG/L	Ū	Ū			
REG	Dibromochloromethane	5	UG/L	Ū	Ŭ			
REG	Ethylbenzene		UG/L	Ū	ŭ			
REG	Methylene Chloride		UG/L	ŭ	Ŭ			
REG	Styrene		UG/L	ū	Ū			
REG	Tetrachioroethene		UG/L	ŭ	Ŭ			
REG	Toluene		UG/L	Ŭ	บั			
REG	Trichloroethene		UG/L	ŭ	ŭ			
REG	Vinyl Chloride		UG/L	Ŭ	Ŭ			
REG	Xylenes, Total		UG/L	Ŭ	ŭ			

#### Location: Ramsdell Quarry Landfill Station : RQLmw-009 Initial Phase

#### RQLmw-009-0013-GW

Sample Type	Cyanide	Result	Units	Qua	lifiers Data	Validation Code	
REG	Cyanide		MG/L	- <del></del>	U		_
Sample				Qua	lifiers	Validation	
Туре	Metals	Result	Units	Lab	Data	Code	
REG	Aluminum	133	UG/L	В	J	101	_
REG	Antimony	5	UG/L	U	U		
REG	Arsenic	5	UG/L	U	Ū		
REG	Barium	32.3	UG/L	в	Ĵ		
REG	Beryllium	4	UG/L	U	U		
REG	Cadmium	5	UG/L	U	U		
REG	Calcium	25900	UG/L		=		
REG	Chromium	10	UG/L	U	U		
REG	Cobalt	50	UG/L	U	U		
REG	Copper	5.5	UG/L	в	J		
REG	Iron	1600	UG/L		=		
REG	Lead	3	UG/L	U	υ		
REG	Magnesium	23500	UG/L		=		
REG	Manganese	1010	UG/L		=		
REG	Mercury	0.089	UG/L	в	J		
REG	Nickel	40	UG/L	U	U		
REG	Potassium	2890	UG/L	в	J		
REG	Selenium	5	UG/L	U	U		
REG	Silver	10	UG/L	U	U		
REG	Sodium	4190	UG/L	в	U	F06	
REG	Thallium	1	UG/L	в	J		
REG	Vanadium	50	UG/L	U	U		
REG	Zinc	47.2	UG/L		=		
Sample				Qua	lifiers	Validation	
Туре	Filtered Metals	Result	Units	Lab	Data	Code	
REG	Aluminum	83	UG/L	B	J	•	-

Sampre				્યાશ	(Tiers	validation
Туре	Filtered Metals	Result	Units	Lab	Data	Code
REG	Aluminum	83	UG/L	B	J	
REG	Antimony	5	UG/L	U	U	
REG	Arsenic	5	UG/L	U	U	
REG	Barium	31.7	UG/L	в	J	
REG	Beryllium	4	UG/L	U	U	
REG	Cadmium	5	UG/L	U	U	
REG	Calcium	27800	UG/L		=	
REG	Chromium	10	UG/L	U	U	
REG	Cobalt	50	UG/L	U	U	

Location:	Ramsdell Quar	TV Landfill
Station :	RQLmw-009	Ínitial Phase

#### RQLmw-009-0013-GW

3-GW		Field Sample Type: Gra	b N	Aatrix: Gr	oundwa	iter	Collected: 07/17/98
Sample Type	Filtered Metals	Result	Units	Qual Lab	ifiers Data	Validation Code	······································
REG	Copper		UG/L	- <del>u</del>	U		_
REG	Iron		UG/L	-	=		
REG	Lead		UG/L	U	U		
REG	Magnesium	26500	UG/L		=		
REG	Manganese	1130	UG/L		=		
REG	Mercury	0.088	UG/L	в	J		
REG	Nickel	40	UG/L	U	Ŭ		
REG	Potassium	3110	UG/L	B	J		
REG	Selenium	5	UG/L	U	Ŭ		
REG	Silver	10	UG/L	U	U		
REG	Sodium	4040	UG/L	в	U	F06	
REG	Thallium	2	UG/L	U	U		
REG	Vanadium	50	UG/L	U	U		
REG	Zinc	29.6	UG/L		=		

Sample Type	Explosives	Result	Units	Qual Lab	ifiers Data	Validation Code
REG	1,3,5-Trinitrobenzene	0.2	UG/L	U	U	·
REG	1,3-Dinitrobenzene	0.2	UG/L	υ	Ū	
REG	2,4,6-Trinitrotoluene	0.2	UG/L	U	บ	
REG	2,4-Dinitrotoluene	0.13	UG/L	Ū	Ū	
REG	2,6-Dinitrotoluene	0.13	UG/L	U	Ū	
REG	2-Nitrotoluene	0.2	UG/L	Ū	Ũ	
REG	3-Nitrotoluene	0.2	UG/L	Ú	Ū	
REG	4-Nitrotoluene	0.2	UG/L	Ū	Ŭ	
REG	НМХ	0.5	UG/L	Ū	Ū	
REG	Nitrobenzene	0.2	UG/L	Ū.	Ū	
REG	Nitrocellulose as N	0.2	MG/L	Ũ	Ū	
REG	Nitroglycerin	2.5	UG/L	Ŭ	Ū	
REG	Nitroguanidine	20	UG/L	Ũ	Ū	
REG	RDX		UG/L	ŭ	Ŭ	
REG	Tetryl		UG/L	Ŭ	Ŭ	

Sample Type	Semi-Volatile Organics	Result	Units	Qual Lab	ifier <b>s</b> Data	Validation Code
REG	1,2,4-Trichlorobenzene		UG/L	U	υ	
REG	1,2-Dichlorobenzene	10	UG/L	บ้	Ū	
REG	1,3-Dichlorobenzene	10	UG/L	U	Ŭ	
REG	1,4-Dichlorobenzene	10	UG/L	Ū	Ŭ	
REG	2,2'-oxybis (1-chloropropane)	10	UG/L	Ū	U	
REG	2,4,5-Trichlorophenol	25	UG/L	Ū	U	
REG	2,4,6-Trichlorophenol	10	UG/L	Ū	U	
REG	2,4-Dichlorophenol	10	UG/L	Ŭ	U	
REG	2,4-Dimethylphenol	10	UG/L	Ū	Ŭ	
REG	2,4-Dinitrophenol	25	UG/L	Ŭ	Ū	
REG	2,4-Dinitrotoluene	10	UG/L	Ŭ	Ū	
REG	2,6-Dinitrotoluene	10	UG/L	Ű	Ū	
REG	2-Chloronaphthalene	10	UG/L	Ū	Ū	
REG	2-Chlorophenol	10	UG/L	Ū	U	
REG	2-Methylnaphthalene	10	UG/L	Ū	Ŭ	
REG	2-Methylphenol	10	UG/L	Ū	Ŭ	
REG	2-Nitroaniline	25	UG/L	Ŭ	Ū	
REG	2-Nitrophenol	10	UG/L	Ú	U	
REG	3,3'-Dichlorobenzidine	10	UG/L	U	U	
REG	3-Nitroaniline	25	UG/L	Ū	Ŭ	
REG	4,6-Dinitro-o-Cresol	25	UG/L	Ū	U	
REG	4-Bromophenyl-phenyl Ether	10	UG/L	Ŭ	Ū	
REG	4-Chloroaniline	10	UG/L	Ŭ	Ū	
REG	4-Chlorophenyl-phenylether	10	UG/L	U	Ū	
REG	4-Methylphenol	10	UG/L	U	U	
REG	4-Nitroaniline	25	UG/L	U	U	
REG	4-Nitrophenol	25	UG/L	U	U	
REG	4-chloro-3-methylphenol	10	UG/L	U	U	
REG	Acenaphthene	10	UG/L	U	U	
REG	Acenaphthylene	10	UG/L	U	U	
REG	Anthracene	10	UG/L	U	U	
REG	Benzo(a)anthracene	10	UG/L	U	U	
REG	Benzo(a)pyrene	10	UG/L	U	U	

8

#### Location: Ramsdell Quarry Landfill Station : RQLmw-009 Initial Phase

Sample	· · · · · · · · · · · · · · · · · · ·			latrix: G	lifiore	Validation	Collected:	
Туре	Semi-Volatile Organics	Result	Units	Qua Lab	lifiers Data	Validation Code		
REG	Benzo(b)fluoranthene		UG/L	- <del>.</del>	U	· · · · · · · · · · · · · · · · · · ·	_	
REG	Benzo(g,h,i)perylene		UG/L	Ŭ	Ŭ			
REG	Benzo(k)fluoranthene		UG/L	Ū	Ū			
REG	Bis(2-chloroethoxy)methane		UG/L	Ŭ	Ū			
REG	Bis(2-chloroethyl)ether	10	UG/L	Ų	U			
REG	Bis(2-ethylhexyl)phthalate	10	UG/L	U	U			
REG	Butyl Benzyl Phthalate	10	UG/L	U	U			
REG	Carbazole	10	UG/L	U	U			
REG	Chrysene	10	UG/L	U	U			
REG	Di-n-butyl Phthalate	10	UG/L	U	U			
REG	Di-n-octyl Phthalate	10	UG/L	U	U			
REG	Dibenzo(a,h)anthracene	10	UG/L	U	U			
REG	Dibenzofuran	10	UG/L	U	U			
REG	Diethyl Phthalate	10	UG/L	U	U			
REG	Dimethyl Phthalate	10	UG/L	U	U			
REG	Fluoranthene	10	UG/L	U	U			
REG	Fluorene	10	UG/L	U	U			
REG	Hexachlorobenzene	10	UG/L	U	U			
REG	Hexachlorobutadiene	10	UG/L	U	U			
REG	Hexachlorocyclopentadiene	10	UG/L	U	U			
REG	Hexachloroethane	10	UG/L	Ū	Ŭ			
REG	Indeno(1,2,3-cd)pyrene	10	UG/L	Ū	Ū			
REG	Isophorone		UG/L	Ū	Ŭ			
REG	N-Nitroso-di-n-propylamine		UG/L	Ū	Ū			
REG	N-Nitrosodiphenylamine		UG/L	Ũ	บั			
REG	Naphthalene		UG/L	Ŭ	Ŭ			
REG	Nitrobenzene		UG/L	Ŭ	Ŭ			
REG	Pentachlorophenol		UG/L	Ŭ	Ŭ			
REG	Phenanthrene		UG/L	Ŭ	Ŭ			
REG	Phenol		UG/L	Ŭ	ŭ			
REG	Pyrene		UG/L	Ŭ	ŭ			
Sample				Qua	liflers	Validation		
Sample Type	Volatile Organics	Result	Units	Qua Lab	liflers Data	Validation Code		
Type REG			Units UG/L				-	
Type REG REG	Volatile Organics 1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane	5		Lab	Data		-	
Type REG	Volatile Organics	5 5	UG/L	Lab	Data U		-	
Type REG REG	Volatile Organics 1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane	5 5 5	UG/L UG/L	Lab U U	Data U U		-	
Type REG REG REG	Volatile Organics 1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane 1,1,2-Trichloroethane	5 5 5 5 5	UG/L UG/L UG/L	Lab U U U U	Data U U U U		-	
Type REG REG REG REG	Volatile Organics 1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane 1,1,2-Trichloroethane 1,1-Dichloroethane	5 5 5 5 5 5 5	UG/L UG/L UG/L UG/L	Lab U U U U U	Data U U U U U		-	
Type REG REG REG REG REG	Volatile Organics 1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane 1,1,2-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethane	5 5 5 5 5 5 5 5 5 5 5	UG/L UG/L UG/L UG/L UG/L UG/L	Lab U U U U U U U	Data U U U U U U		-	
Type REG REG REG REG REG	Volatile Organics 1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane 1,1,2-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,2-Dichloroethane	5 5 5 5 5 5 5 5 5 5 5	UG/L UG/L UG/L UG/L UG/L UG/L	Lab U U U U U U U U U	Data U U U U U U U U		-	
Type REG REG REG REG REG REG REG	Volatile Organics 1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane 1,1,2-Trichloroethane 1,1-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane	5 5 5 5 5 5 5 5 5 5 5 5	UG/L UG/L UG/L UG/L UG/L UG/L		Data U U U U U U U U U		-	
Type REG REG REG REG REG REG REG	Volatile Organics 1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane 1,1,2-Trichloroethane 1,1-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloropropane	5 5 5 5 5 5 5 5 5 5 5 5 5 5	UG/L UG/L UG/L UG/L UG/L UG/L UG/L		Data U U U U U U U U U U		-	
Type REG REG REG REG REG REG REG REG	Volatile Organics 1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane 1,1,2-Trichloroethane 1,1-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloropropane 1,3-cis-Dichloropropane	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	UG/L UG/L UG/L UG/L UG/L UG/L UG/L UG/L		Data U U U U U U U U U U U		-	
Type REG REG REG REG REG REG REG REG REG	Volatile Organics 1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane 1,1,2-Trichloroethane 1,1-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloropropane 1,3-cis-Dichloropropene 1,3-trans-Dichloropropene	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	UG/L UG/L UG/L UG/L UG/L UG/L UG/L UG/L	Lab - - - - - - - - - - - - -	Data           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U		-	
Type REG REG REG REG REG REG REG REG REG	Volatile Organics 1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane 1,1,2-Trichloroethane 1,1-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloropropane 1,3-cis-Dichloropropene 1,3-trans-Dichloropropene 2-Butanone 2-Hexanone	5 5 5 5 5 5 5 5 5 5 10 10	UG/L UG/L UG/L UG/L UG/L UG/L UG/L UG/L	Lab U U U U U U U U U U U U U U	Data           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U		-	
Type REG REG REG REG REG REG REG REG REG REG	Volatile Organics 1,1,1-Trichloroethane 1,1,2-Tetrachloroethane 1,1-2-Trichloroethane 1,1-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloropthane 1,3-cis-Dichloropropane 1,3-trans-Dichloropropene 2-Butanone	5 5 5 5 5 5 5 5 5 5 5 10 10 10	UG/L UG/L UG/L UG/L UG/L UG/L UG/L UG/L	Lab U U U U U U U U U U U U U U U U U	Data           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U		_	
Type REG REG REG REG REG REG REG REG REG REG	Volatile Organics          1,1,1-Trichloroethane         1,1,2,2-Tetrachloroethane         1,1,2-Trichloroethane         1,1-Dichloroethane         1,1-Dichloroethane         1,2-Dichloroethane         1,2-Dichloroethane         1,2-Dichloroethane         1,2-Dichloropethene         1,2-Dichloropropane         1,3-cis-Dichloropropene         1,3-trans-Dichloropropene         2-Butanone         2-Hexanone         4-Methyl-2-pentanone	5 5 5 5 5 5 5 5 5 5 10 10 10 10	UG/L UG/L UG/L UG/L UG/L UG/L UG/L UG/L	Lab U U U U U U U U U U U U U U U U U U	Data         -           U         -           U         U           U         U           U         U           U         U           U         U           U         U           U         U           U         U           U         U           U         U           U         U           U         U           U         U           U         U           U         U		_	
Type REG REG REG REG REG REG REG REG REG REG	Volatile Organics          1,1,1-Trichloroethane         1,1,2,2-Tetrachloroethane         1,1,2-Trichloroethane         1,1-Dichloroethane         1,1-Dichloroethane         1,2-Dichloroethane         1,2-Dichloroethane         1,2-Dichloroethane         1,2-Dichloroethane         1,2-Dichloroethane         1,2-Dichloropropane         1,3-cis-Dichloropropane         1,3-trans-Dichloropropene         2-Butanone         2-Hexanone         4-Methyl-2-pentanone         Acetone	5 5 5 5 5 5 5 5 5 5 10 10 10 10 10 5 5 5 5	UG/L UG/L UG/L UG/L UG/L UG/L UG/L UG/L	Lab U U U U U U U U U U U U U	Data         -           U         -           U         -           U         -           U         -           U         -           U         -           U         -           U         -           U         -           U         -           U         -           U         -           U         -           U         -           U         -           U         -           U         -           U         -           U         -           U         -           U         -           U         -           U         -		_	
Type REG REG REG REG REG REG REG REG REG REG	Volatile Organics          1,1,1-Trichloroethane         1,1,2,2-Tetrachloroethane         1,1,2-Trichloroethane         1,1-Dichloroethane         1,1-Dichloroethane         1,2-Dichloroethane         1,2-Dichloroethane         1,2-Dichloroethane         1,2-Dichloroethane         1,2-Dichloropropane         1,3-cis-Dichloropropane         1,3-cis-Dichloropropene         2-Butanone         2-Hexanone         4-Methyl-2-pentanone         Acetone         Benzene	5 5 5 5 5 5 5 5 5 5 10 10 10 10 5 5 5 5	UG/L UG/L UG/L UG/L UG/L UG/L UG/L UG/L	Lab U U U U U U U U U U U U U	Data         -           U         -           U         U           U         U           U         U           U         U           U         U           U         U           U         U           U         U           U         U           U         U           U         U           U         U           U         U           U         U           U         U           U         U		_	
Type REG REG REG REG REG REG REG REG REG REG	Volatile Organics 1,1,1-Trichloroethane 1,1,2-Tetrachloroethane 1,1,2-Trichloroethane 1,1-Dichloroethane 1,2-Dichloroethane 1,2-Dichloropthene 1,2-Dichloropropane 1,3-cis-Dichloropropene 1,3-trans-Dichloropropene 2-Butanone 2-Hexanone 4-Methyl-2-pentanone Accetone Benzene Bromodichloromethane Bromodichloromethane	5 5 5 5 5 5 5 5 5 5 10 10 10 10 5 5 5 5	UG/L UG/L UG/L UG/L UG/L UG/L UG/L UG/L	Lab U U U U U U U U U U U U U	Data         -           U         -           U         U           U         U           U         U           U         U           U         U           U         U           U         U           U         U           U         U           U         U           U         U           U         U           U         U           U         U           U         U           U         U           U         U		_	
Type REG REG REG REG REG REG REG REG REG REG	Volatile Organics 1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane 1,1,2-Trichloroethane 1,1-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloropropane 1,3-cis-Dichloropropene 1,3-trans-Dichloropropene 2-Butanone 2-Hexanone 4-Methyl-2-pentanone Acetone Benzene Bromodichloromethane	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 10 10 10 5 5 5 5	UG/L UG/L UG/L UG/L UG/L UG/L UG/L UG/L	Lab U U U U U U U U U U U U U	Data         -           U         -           U         -           U         -           U         -           U         -           U         -           U         -           U         -           U         -           U         -           U         -           U         -           U         -           U         -           U         -           U         -           U         -           U         -           U         -           U         -           U         -           U         -           U         -		_	
Type REG REG REG REG REG REG REG REG REG REG	Volatile Organics 1,1,1-Trichloroethane 1,1,2-Tetrachloroethane 1,1,2-Trichloroethane 1,1-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloropthane 1,2-Dichloropropane 1,3-cis-Dichloropropene 2-Butanone 2-Hexanone 2-Hexanone 4-Methyl-2-pentanone Acetone Benzene Bromodichloromethane Bromoform Bromomethane Carbon Disulfide	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	UG/L UG/L UG/L UG/L UG/L UG/L UG/L UG/L	Lab U U U U U U U U U U U U U	Data           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U      U		_	
Type REG REG REG REG REG REG REG REG REG REG	Volatile Organics 1,1,1-Trichloroethane 1,1,2-Tretrachloroethane 1,1-2-Trichloroethane 1,1-Dichloroethane 1,2-Dichloroethane 1,2-Dichloropethane 1,2-Dichloropropane 1,3-cis-Dichloropropene 1,3-trans-Dichloropropene 2-Butanone 2-Hexanone 4-Methyl-2-pentanone Acetone Benzene Bromodichloromethane Bromoform Bromomethane Carbon Disulfide Carbon Tetrachloride	5 5 5 5 5 5 5 5 5 5 5 10 10 10 10 5 5 5 5	UG/L UG/L UG/L UG/L UG/L UG/L UG/L UG/L	Lab U U U U U U U U U U U U U	Data         -           U         -           U         U           U         U           U         U           U         U           U         U           U         U           U         U           U         U           U         U           U         U           U         U           U         U           U         U           U         U           U         U           U         U           U         U           U         U           U         U           U         U           U         U           U         U           U         U           U         U		_	
Type REG REG REG REG REG REG REG REG REG REG	Volatile Organics           1,1,1-Trichloroethane           1,1,2,2-Tetrachloroethane           1,1,2,2-Trichloroethane           1,1-Dichloroethane           1,1-Dichloroethane           1,2-Dichloroethane           1,2-Dichloroethane           1,2-Dichloroethane           1,2-Dichloropthene           1,3-cis-Dichloropropene           1,3-trans-Dichloropropene           2-Butanone           2-Hexanone           4-Methyl-2-pentanone           Acetone           Benzene           Bromodichloromethane           Carbon Disulfide           Carbon Tetrachloride           Chlorobenzene	5 5 5 5 5 5 5 5 5 5 5 10 10 5 5 5 5 5 5	UG/L UG/L UG/L UG/L UG/L UG/L UG/L UG/L	Lab U U U U U U U U U U U U U	Data           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U		_	
Type REG REG REG REG REG REG REG REG REG REG	Volatile Organics           1,1,1-Trichloroethane           1,1,2,2-Tetrachloroethane           1,1,2,2-Trichloroethane           1,1-Dichloroethane           1,1-Dichloroethane           1,1-Dichloroethane           1,2-Dichloroethane           1,2-Dichloroethane           1,2-Dichloropthane           1,3-cis-Dichloropropane           1,3-cis-Dichloropropene           2-Butanone           2-Hexanone           4-Methyl-2-pentanone           Acetone           Benzene           Bromodichloromethane           Carbon Disulfide           Carbon Tetrachloride           Chlorobethane           Chlorobethane	5 5 5 5 5 5 5 5 5 5 5 10 10 10 10 10 5 5 5 5	UG/L UG/L UG/L UG/L UG/L UG/L UG/L UG/L	ບ ບ ບ ບ ບ ບ ບ ບ ບ ບ ບ ບ ບ ບ	Data           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U		_	
Type REG REG REG REG REG REG REG REG REG REG	Volatile Organics           1,1,1-Trichloroethane           1,1,2,2-Tetrachloroethane           1,1,2,2-Trichloroethane           1,1-Dichloroethane           1,1-Dichloroethane           1,2-Dichloroethane           1,2-Dichloroethane           1,2-Dichloroethane           1,2-Dichloropthene           1,3-cis-Dichloropropene           1,3-trans-Dichloropropene           2-Butanone           2-Hexanone           4-Methyl-2-pentanone           Acetone           Benzene           Bromodichloromethane           Carbon Disulfide           Carbon Tetrachloride           Chlorobenzene	5 5 5 5 5 5 5 5 5 5 5 10 10 10 10 10 5 5 5 5	UG/L UG/L UG/L UG/L UG/L UG/L UG/L UG/L	<b>Lab</b> - - - - - - - - - -	Data           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U		_	
Type REG REG REG REG REG REG REG REG REG REG	Volatile Organics           1,1,1-Trichloroethane           1,1,2-Tetrachloroethane           1,1,2-Trichloroethane           1,1,2-Trichloroethane           1,1-Dichloroethane           1,1-Dichloroethane           1,2-Dichloroethane           1,2-Dichloroethane           1,2-Dichloroethane           1,2-Dichloroethane           1,3-cis-Dichloropropane           1,3-cis-Dichloropropene           2-Butanone           2-Hexanone           4-Methyl-2-pentanone           Acetone           Benzene           Bromodichloromethane           Carbon Disulfide           Carbon Tetrachloride           Chlorobenzene           Chloroform           Chloroform	5 5 5 5 5 5 5 5 5 5 5 10 10 10 10 10 5 5 5 5	UG/L UG/L UG/L UG/L UG/L UG/L UG/L UG/L	<b>Lab</b> ບ ບ ບ ບ ບ ບ ບ ບ ບ ບ ບ ບ ບ	Data           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U      U           U           U           U           U           U           U           U           U           U           U           U           U           U		_	
Type REG REG REG REG REG REG REG REG REG REG	Volatile Organics           Volatile Organics           1,1,1-Trichloroethane           1,1,2-Tetrachloroethane           1,1,2-Trichloroethane           1,1-Dichloroethane           1,1-Dichloroethane           1,2-Trichloroethane           1,2-Dichloroethane           1,2-Dichloroethane           1,2-Dichloroethane           1,3-cis-Dichloropropane           1,3-trans-Dichloropropene           2-Hexanone           4-Methyl-2-pentanone           Acetone           Benzene           Bromodichloromethane           Carbon Tetrachloride           Chlorobenzene           Chloroform           Chloroform           Chloromethane           Dibromochloromethane	5 5 5 5 5 5 5 5 5 5 5 10 10 10 10 10 5 5 5 5	UG/L UG/L UG/L UG/L UG/L UG/L UG/L UG/L	ເ <mark>ມຍ</mark> ບ ບ ບ ບ ບ ບ ບ ບ ບ ບ ບ ບ ບ ບ ບ ບ ບ ບ ບ	Data           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U      U           U           U           U           U           U           U           U           U           U           U           U           U           U		_	
Type REG REG REG REG REG REG REG REG REG REG	Volatile Organics           Volatile Organics           1,1,1-Trichloroethane           1,1,2-Tetrachloroethane           1,1,2-Trichloroethane           1,1-Dichloroethane           1,1-Dichloroethane           1,1-Dichloroethane           1,2-Dichloroethane           1,2-Dichloroethane           1,2-Dichloroethane           1,2-Dichloropropane           1,3-cis-Dichloropropene           1,3-trans-Dichloropropene           2-Hexanone           2-Hexanone           A-Methyl-2-pentanone           Acetone           Benzene           Bromodichloromethane           Bromodichloromethane           Carbon Disulfide           Carbon Tetrachloride           Chlorobenzene           Chloroform           Chloromethane           Dibromochloromethane	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	UG/L UG/L UG/L UG/L UG/L UG/L UG/L UG/L	ເ <mark>ມຍ</mark> ບ ບ ບ ບ ບ ບ ບ ບ ບ ບ ບ ບ ບ ບ ບ ບ ບ ບ ບ	Data           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U      U           U           U           U           U           U           U           U           U           U           U           U           U           U		_	
Type REG REG REG REG REG REG REG REG REG REG	Volatile Organics           Volatile Organics           1,1,1-Trichloroethane           1,1,2-Tetrachloroethane           1,1,2-Trichloroethane           1,1-Dichloroethane           1,1-Dichloroethane           1,2-Dichloroethane           1,2-Dichloroethane           1,2-Dichloroethane           1,2-Dichloroethane           1,2-Dichloropthane           1,3-trans-Dichloropropene           2-Butanone           2-Hexanone           4-Methyl-2-pentanone           Acetone           Benzene           Bromodichloromethane           Garbon Disulfide           Carbon Tetrachloride           Chloroethane           Chloroethane           Chloroethane           Dibromochloromethane           Ethylbenzene           Methyles Chloride	5 5 5 5 5 5 5 5 5 5 5 10 10 5 5 5 5 5 5	UG/L UG/L UG/L UG/L UG/L UG/L UG/L UG/L	ເ <mark>ມຍ</mark> ບ ບ ບ ບ ບ ບ ບ ບ ບ ບ ບ ບ ບ ບ ບ ບ ບ ບ ບ	Data           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U      U      U      U      U      U      U      U      U      U      U      U      U      U      U      U      U      U      U      U      U     U <t< td=""><td></td><td>_</td><td></td></t<>		_	
Type REG REG REG REG REG REG REG REG REG REG	Volatile Organics           Volatile Organics           1,1,1-Trichloroethane           1,1,2-Tetrachloroethane           1,1,2-Trichloroethane           1,1-Dichloroethane           1,1-Dichloroethane           1,2-Dichloroethane           1,2-Dichloroethane           1,2-Dichloropthane           1,2-Dichloropthene           1,3-cis-Dichloropropene           1,3-trans-Dichloropropene           2-Butanone           2-Hexanone           4-Methyl-2-pentanone           Acetone           Benzene           Bromodichloromethane           Bromodichloromethane           Carbon Disulfide           Carbon Tetrachloride           Chloroethane           Chloroethane           Chloroethane           Dibromochloromethane           Ethylbenzene           Methylene Chloride           Styrene	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	UG/L UG/L UG/L UG/L UG/L UG/L UG/L UG/L	<b>Lab</b> ບບບບບບບບບບບບບບບບບບບບບບບບບບບບບບບບບບບບ	Data           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U      U           U           U           U           U           U           U           U           U           U           U           U           U           U		_	
Type REG REG REG REG REG REG REG REG REG REG	Volatile Organics          1,1,1-Trichloroethane         1,1,2,2-Tetrachloroethane         1,1,2-Trichloroethane         1,1-Dichloroethane         1,1-Dichloroethane         1,1-Dichloroethane         1,2-Dichloroethane         1,2-Dichloroethane         1,2-Dichloropropane         1,3-cis-Dichloropropene         1,3-cis-Dichloropropene         2-Butanone         2-Hexanone         4-Methyl-2-pentanone         Acetone         Benzene         Bromodichloromethane         Carbon Disulfide         Carbon Tetrachloride         Chloroethane         Chloroform         Chloromethane         Dibromochloromethane         Ethylbenzene         Methylene Chloride         Styrene         Tetrachloroethene	5 5 5 5 5 5 5 5 5 5 5 10 10 10 10 10 5 5 5 5	UG/L UG/L UG/L UG/L UG/L UG/L UG/L UG/L	<b>Lab</b> ບບບບບບບບບບບບບບບບບບບບບບບບບບບບບບບບບບບບ	Data           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U      U         U      U </td <td></td> <td>_</td> <td></td>		_	
Type REG REG REG REG REG REG REG REG REG REG	Volatile Organics          1,1,1-Trichloroethane         1,1,2.2-Tetrachloroethane         1,1,2-Trichloroethane         1,1.2-Trichloroethane         1,1-Dichloroethane         1,1-Dichloroethane         1,2-Dichloroethane         1,2-Dichloroethane         1,2-Dichloropropane         1,3-cis-Dichloropropene         1,3-cis-Dichloropropene         2-Butanone         2-Hexanone         4-Methyl-2-pentanone         Acetone         Benzene         Bromodichloromethane         Carbon Disulfide         Carbon Tetrachloride         Chloroethane         Chloroform         Chloroform         Chloromethane         Ethylbenzene         Methylene Chloride         Styrene         Tetrachloroethene         Toluene	5 5 5 5 5 5 5 5 5 5 5 10 10 10 10 10 5 5 5 5	UG/L UG/L UG/L UG/L UG/L UG/L UG/L UG/L	<b>Lab</b> ບບບບບບບບບບບບບບບບບບບບບບບບບບບບບບບບບບບບ	Data           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U      U      U      U		_	
Type REG REG REG REG REG REG REG REG REG REG	Volatile Organics          1,1,1-Trichloroethane         1,1,2,2-Tetrachloroethane         1,1,2-Trichloroethane         1,1-Dichloroethane         1,1-Dichloroethane         1,1-Dichloroethane         1,2-Dichloroethane         1,2-Dichloroethane         1,2-Dichloropropane         1,3-cis-Dichloropropene         1,3-cis-Dichloropropene         2-Butanone         2-Hexanone         4-Methyl-2-pentanone         Acetone         Benzene         Bromodichloromethane         Carbon Disulfide         Carbon Tetrachloride         Chloroethane         Chloroform         Chloromethane         Dibromochloromethane         Ethylbenzene         Methylene Chloride         Styrene         Tetrachloroethene	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	UG/L UG/L UG/L UG/L UG/L UG/L UG/L UG/L	<b>Lab</b> ບບບບບບບບບບບບບບບບບບບບບບບບບບບບບບບບບບບບ	Data           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U      U         U      U </td <td></td> <td>_</td> <td></td>		_	

.

#### RQLmw-010-0015-GW

5-GW	Fiel	d Sample Type: Gra	b M	atrix: Gr	oundwa	ter	Collected: 0	7/25/
Sample Type	Cyanide	Result	Units	Qual Lab	ifiers Data	Validation Code		
REG	Cyanide	0.01	MG/L	U	U		-	
Sample Type	Metals	Result	Units	Qual Lab	iflers Data	Validation Code		
REG	Aluminum	200	UG/L	U	U		-	
REG	Antimony		UG/L	Ū	Ū			
REG	Arsenic		UG/L	U	U			
REG	Barium		UG/L	В	J			
REG REG	Beryllium Cadmium		UG/L UG/L	U U	U			
REG	Calcium	57800		U	U =			
REG	Chromium		UG/L	U	U			
REG	Cobait	50	UG/L	Ú	Ú			
REG	Copper	25	UG/L	U	U			
REG	Iron		UG/L		=			
REG	Lead		UG/L	U	U			
REG	Magnesium	27900			=			
REG REG	Manganese Mercupy		UG/L		J	102		
REG	Mercury Nickel		UG/L UG/L	U B	U J			
REG	Potassium		UG/L	B	J			
REG	Selenium		UG/L	Ŭ	ŭ			
REG	Silver		UG/L	Ū	Ū			
REG	Sodium	4060	UG/L	в	J	F10		
REG	Thallium	2	UG/L	U	U	E03		
REG	Vanadium		UG/L	U	U			
REG	Zinc	32.3	UG/L		Ξ			
Sample Type	Filtered Metals	Result	Units	Quall Lab	ifier <del>s</del> Data	Validation Code		
REG	Aluminum	200	UG/L	υ	U		•	
REG	Antimony	5	UG/L	U	บ			
REG	Arsenic		UG/L	U	U			
REG	Barium		UG/L	B	J			
REG	Beryllium		UG/L	U	U			
REG REG	Cadmium Calcium	5 66600	UG/L	U	U =			
REG	Chromium		UG/L	υ	υ			
REG	Cobalt		UG/L	ŭ	ບັ			
REG	Copper		UG/L	Ū	Ũ			
REG	Iron	93.5	UG/L	в	J			
REG	Lead	3	UG/L	U	U			
REG	Magnesium	26800			=			
REG	Manganese		UG/L		J	102		
REG	Mercury		UG/L	U	U			
REĠ REG	Nickel Potassium		UG/L UG/L	B B	J			
REG	Selenium		UG/L	Ū	U J			
REG	Silver		UG/L	ŭ	Ŭ			
REG	Sodium		UG/L	-	Ĵ	F10		
REG	Thallium		UG/L	U	U			
REG	Vanadium		UG/L	U	U			
REG	Zinc	38.8	UG/L		=			
Sample	Fynlosiyae	Decult	11034-	Quali		Validation Code		
Туре	Explosives	Result	Units	Lab	Data		-	
REG	1,3,5-Trinitrobenzene		UG/L	U	U			
REG	1,3-Dinitrobenzene		UG/L	U	U			
REG	2,4,6-Trinitrotoluene		UG/L	U	U			
REG REG	2,4-Dinitrotoluene		UG/L	U	บ			
n h i	2,6-Dinitrotoluene		UG/L UG/L	U U	U U			
	2-Nitrotolueze		JUCIL	~				
REG	2-Nitrotoluene 3-Nitrotoluene		UG/L	U	u			
REG REG	3-Nitrotoluene	0.2	UG/L UG/L	U U	U U			
REG		0.2 0.2						
REG REG REG	3-Nitrotoluene 4-Nitrotoluene	0.2 0.2 0.5	UG/L	U	U			
REG REG REG REG	3-Nitrotoluene 4-Nitrotoluene HMX	0.2 0.2 0.5 0.2 0.2	UG/L UG/L	U U	U U			

*

:	Sample Type	Explosives	Result		Units		ualifiers ab Data	Validation Code		
	REG	Nitroguanidine		20	UG/L	Ū			_	
	REG	RDX			UG/L	Ŭ	Ŭ			
	REG	Tetryl			UG/L	Ū	Ŭ			
:	Sample Type	Semi-Volatile Organics	Result		Units		ualifiers ab Data	Validation Code		
	REG REG	1,2,4-Trichlorobenzene			UG/L	U	U		_	
	REG	1,2-Dichlorobenzene 1,3-Dichlorobenzene			UG/L	U	U			
	REG	1,4-Dichlorobenzene			UG/L UG/L	U U	U U			
	REG	2,2'-oxybis (1-chloropropane)			UG/L	Ŭ	U			
	REG	2,4,5-Trichlorophenol			UG/L	Ŭ	Ŭ			
	REG	2,4,6-Trichlorophenol			UG/L	Ŭ	Ŭ			
	REG	2,4-Dichlorophenol			UG/L	ŭ	Ŭ			
	REG	2,4-Dimethylphenol			UG/L	Ũ	Ŭ			
	REG	2,4-Dinitrophenol			UG/L	Ū	Ŭ			
	REG	2.4-Dinitrotoluene			UG/L	Ū	Ŭ			
	REG	2,6-Dinitrotoluene			UG/L	Ū	Ū			
	REG	2-Chloronaphthalene			UG/L	Ŭ	Ū			
	REG	2-Chlorophenol			UG/L	Ū	Ū			
	REG	2-Methylnaphthalene		10	UG/L	U	U			
	REG	2-Methylphenol		10	UG/L	U	U			
	REG	2-Nitroaniline		25	UG/L	U	U			
	REG	2-Nitrophenol		10	UG/L	υ	U			
	REG	3,3'-Dichlorobenzidine		10	UG/L	U	U			
	REG	3-Nitroaniline		25	UG/L	U	U			
	REG	4,6-Dinitro-o-Cresol		25	UG/L	U	U			
	REG	4-Bromophenyl-phenyl Ether		10	UG/L	U	U			
	REG	4-Chloroaniline			UG/L	U	U			
	REG	4-Chlorophenyl-phenylether			UG/L	U	U			
	REG	4-Methylphenol			UG/L	U	U			
	REG	4-Nitroaniline			UG/L	U	U			
	REG REG	4-Nitrophenol			UG/L	U	U U			
	REG	4-chloro-3-methylphenol			UG/L	U	U			
		Acenaphthene			UG/L	U	U			
		Acenaphthylene Anthracene			UG/L UG/L	U U	U U			
	REG	Benzo(a)anthracene			UG/L	U	U			
	REG	Benzo(a)pyrene			UG/L	U	U			
	REG	Benzo(b)fluoranthene			UG/L	υ	Ŭ .			
	REG	Benzo(g,h,i)perylene			UG/L	Ŭ	Ŭ			
	REG	Benzo(k)fluoranthene			UG/L	ŭ	Ŭ			
	REG	Bis(2-chloroethoxy)methane			UG/L	Ū	Ŭ			
	REG	Bis(2-chloroethyl)ether			UG/L	Ū	Ŭ			
	REG	Bis(2-ethylhexyl)phthalate			UG/L	Ū	ŭ			
	REG	Butyl Benzyl Phthalate			UG/L	Ū	Ŭ			
	REG	Carbazole			UG/L	Ū	Ŭ			
		Chrysene			UG/L	Ũ	Ū			
	REG	Di-n-butyl Phthalate			UG/L	Ŭ	Ū			
	REG	Di-n-octyl Phthalate			UG/L	Ū	Ū			
	REG	Dibenzo(a,h)anthracene			UG/L	Ũ	Ŭ			
	REG	Dibenzofuran			UG/L	υ	U			
	REG	Diethyl Phthalate		10	UG/L	U	U			
		Dimethyl Phthalate		10	UG/L	υ	U			
		Fluoranthene			UG/L	U	U			
		Fluorene		10	UG/L	U	U			
		Hexachlorobenzene		10	UG/L	U	U			
		Hexachlorobutadiene		10	UG/L	U	U			
		Hexachlorocyclopentadiene			UG/L	U		C05		
		Hexachloroethane			UG/L	U	U			
		Indeno(1,2,3-cd)pyrene			UG/L	U	U			
		Isophorone			UG/L	U	U			
		N-Nitroso-di-n-propylamine			UG/L	U	U			
		N-Nitrosodiphenylamine			UG/L	U	U			
		Naphthalene			UG/L	U	U			
		Nitrobenzene			UG/L	U	U			
		Pentachiorophenol			UG/L	U	U			
	REG	Phenanthrene		40	UG/L	U	U			

4

#### Location: Ramsdell Quarry Landfill Station : RQLmw-010 Initial Phase

#### RQLmw-010-0015-GW Field Sample Type: Grab Matrix: Groundwater Collected: 07/25/98 Sample Qualifiers Validation Type Semi-Volatile Organics Result Units Lab Data Code REG Pyrene 10 UG/L Ū υ Sample Qualifiers Validation Volatile Organics Туре Result Units Lab Data Code REG 1,1,1-Trichloroethane 5 UG/L U U REG 1,1,2,2-Tetrachloroethane 5 UG/L U υ REG 1,1,2-Trichloroethane 5 UG/L υ U REG 1,1-Dichloroethane 5 UG/L U U REG 1.1-Dichloroethene 5 UG/L U U REG 1.2-Dichloroethane 5 UG/L U υ REG 1,2-Dichloroethene 5 UG/L U υ 1,2-Dichloropropane REG 5 UG/L U U REG 1,3-cis-Dichloropropene 5 UG/L υ U REG 1,3-trans-Dichloropropene 5 UG/L U U REG 2-Butanone 10 UG/L U υ REG 2-Hexanone 10 UG/L U U 4-Methyl-2-pentanone REG 10 UG/L υ U REG Acetone 10 UG/L U U REG Benzene 5 UG/L U. U REG Bromodichloromethane 5 UG/L U U REG Bromoform 5 UG/L U υ REG Bromomethane 10 UG/L U U REG Carbon Disulfide 5 UG/L υ U REG Carbon Tetrachloride 5 UG/L U U REG Chlorobenzene 5 UG/L U U REG Chloroethane 10 UG/L U υ REG Chloroform 5 UG/L υ IJ REG Chloromethane 10 UG/L υ U REG Dibromochloromethane 5 UG/L U U REG Ethylbenzene 5 UG/L υ U REG Methylene Chloride 5 UG/L U υ REG Styrene 5 UG/L U υ Tetrachloroethene REG 5 UG/L U U REG Toluene 0.72 UG/L Л J. REG Trichloroethene 5 UG/L U U REG Vinyl Chloride 10 UG/L U U REG Xylenes, Total 5 UG/L υ U

#### Location: Ramsdell Quarry Landfill Station : RQLmw-011 **Initial Phase**

RQLmw-011-0017-GW		Field Sample Type: Gra	b M	latrix: Gr	oundwa	iter	Collected:	07/27/98
Sampi Type		Result	Units		ifiers Data	Validation Code		
REG	Cyanide	0.01	MG/L	U	nı	A05		
Sampi Type		Result	Units	Qua Lab	lifiers Data	Validation Code		
REG	Aluminum	1400	UG/L		=	• •		
REG	Antimony	5	UG/L	U	U			
REG	Arsenic	11.9	UG/L		=			
REG	Barium	38.6	UG/L	в	J			
REG	Beryllium	1	UG/L	в	J			
REG	Cadmium		UG/L	Ū	Ū			
REG	Calcium	15100			=			
REG	Chromium		UG/L	U	U			
REG	Cobalt		UG/L		=			
REG	Copper		UG/L	U	U			
REG	Iron	6000	UG/L		=			
REG	Lead	3	UG/L	U	U			
REG	Magnesium	9440	UG/L		=			
REG	Manganese	1780	UG/L		J	102		
REG	Mercury	0.2	UG/L	U	U	101		
REG	Nickel	162	UG/L		=			
REG	Potassium	5060	UG/L		=			
REG	Selenium	5	UG/L	U	U			
REG	Silver	10	UG/L	Ū	Ū			

a

Sample Type	Metais	Result	Units	Qua Lab	lifiers Data	v	alidation Code	Collecte
REG	Sodium			-				_
REG	Thallium		UG/L	В	J	F10		
REG	Vanadium		UG/L UG/L	U U	U			
REG	Zinc		UG/L	U	U =			
Sample					lifiers	v	alidation	
Туре	Filtered Metals	Result	Units	Lab	Data	_	Code	
REG REG	Aluminum Antimony		UG/L		=			_
REG	Arsenic		UG/L UG/L	U	U =			
REG	Barium		UG/L	В	J			
REG REG	Beryllium		UG/L	В	J			
REG	Cadmium Calcium		UG/L	Ų	U			
REG	Chromium	15200	UG/L	U	= U			
REG	Cobalt		UG/L	U	=			
REG	Copper		UG/L	U	U			
REG	Iron		UG/L		=			
REG	Lead		UG/L	U	U			
REG REG	Magnesium Manganese		UG/L		=	100		
REG	Mercury		UG/L UG/L	8	J	102		
REG	Nickel		UG/L	U	J =			
REG	Potassium		UG/L	в	J			
REG	Selenium		UG/L	U	U			
REG REG	Silver		UG/L	U	U			
REG	Sodium Thallium	1780	UG/L UG/L	B B	J	F10		
REG	Vanadium		UG/L	Ŭ	J U			
REG	Zinc		UG/L	-	=			
	Explosives	Result	Units	Lab	ifiers Data		lidation Code	_
REG REG	1,3,5-Trinitrobenzene 1,3-Dinitrobenzene		UG/L UG/L	U U	U) UJ	A05 A05		
REG	2,4,6-Trinitrotoluene		UG/L	Ŭ	01	A05		
REG	2,4-Dinitrotoluene		UG/L	Ū	ŬĴ	A05		
REG	2,6-Dinitrotoluene		UG/L	U	UJ	A05		
REG REG	2-Nitrotoluene 3-Nitrotoluene		UG/L	U	UJ	A05		
REG	3-NILIOIOIORNE							
REG			UG/L	U	UJ	A05		
REG REG	4-Nitrotoluene HMX	0.2	UG/L UG/L	U	UJ	A05		
	4-Nitrotoluene		UG/L UG/L UG/L					
REG REG REG	4-Nitrotoluene HMX Nitrobenzene Nitrocellulose as N	0.2 0.067 0.091 0.2	UG/L UG/L UG/L UG/L MG/L	0 1 0	n 1 1 1	A05 A05		
REG REG REG REG	4-Nitrotoluene HMX Nitrobenzene Nitrocellulose as N Nítroglycerin	0.2 0.067 0.091 0.2 2.5	UG/L UG/L UG/L UG/L MG/L UG/L	0 1 1 0	ຄາ ດ າ 1	A05 A05		
REG REG REG REG	4-Nitrotoluene HMX Nitrobenzene Nitrocellulose as N Nitroglycerin Nitroguanidine	0.2 0.067 0.091 0.2 2.5 20	UG/L UG/L UG/L UG/L UG/L UG/L UG/L	U U J U U U	0 0 1 1 1 1 1	A05 A05 A05 A05		
REG REG REG REG REG	4-Nitrotoluene HMX Nitrobenzene Nitrocellulose as N Nitroglycerin Nitroguanidine RDX	0.2 0.067 0.091 0.2 2.5 20 0.5	UG/L UG/L UG/L UG/L MG/L UG/L UG/L	0 0 1 1 1 1 1 1 1 1	ດາ ດ ຄາ ດ 1 1 ດາ	A05 A05 A05 A05 A05		
REG REG REG REG REG REG Sample Type	4-Nitrotoluene HMX Nitrobenzene Nitrocellulose as N Nitroglycerin Nitroguanidine	0.2 0.067 0.091 0.2 2.5 20 0.5	UG/L UG/L UG/L UG/L UG/L UG/L UG/L	U J J U U U U U U U Lab	0 0 1 1 1 1 1	A05 A05 A05 A05 A05 A05	lidation Code	
REG REG REG REG REG Sample Type REG	4-Nitrotoluene HMX Nitrobenzene Nitrocellulose as N Nitroglycerin Nitroguanidine RDX Tetryl Semi-Volatile Organics 1,2,4-Trichlorobenzene	0.2 0.067 0.091 0.2 2.5 20 0.5 0.2 <b>Result</b> 10	UG/L UG/L UG/L UG/L UG/L UG/L Units UG/L	U J J U U U U U U Quali	UJ J U U U U U U U U U U U U U U U U J	A05 A05 A05 A05 A05 A05 A05 Va A05		-
REG REG REG REG REG <b>Sample</b> Type REG REG	4-Nitrotoluene HMX Nitrobenzene Nitrocellulose as N Nitroglycerin Nitroguanidine RDX Tetryl Semi-Volatile Organics 1,2,4-Trichlorobenzene 1,2-Dichlorobenzene	0.2 0.067 0.091 0.2 2.5 20 0.5 0.2 <b>Result</b> 10	UG/L UG/L UG/L UG/L UG/L UG/L UG/L UG/L	U J J U U U U U U U U U U U U U	UJ J U U U U U U U U U U U U U U U U U	A05 A05 A05 A05 A05 A05 A05 Va A05 A05		-
REG REG REG REG REG <b>Sample</b> Type REG REG REG	4-Nitrotoluene HMX Nitrobenzene Nitrocellulose as N Nitroglycerin Nitroguanidine RDX Tetryl Semi-Volatile Organics 1,2,4-Trichlorobenzene 1,2-Dichlorobenzene 1,3-Dichlorobenzene	0.2 0.067 0.091 0.2 2.5 20 0.5 0.2 <b>Result</b> 10 10	UG/L UG/L UG/L UG/L UG/L UG/L UG/L UG/L	U J J U U U U U U U U U U U U U	UJ J U U UJ UJ UJ UJ UJ UJ UJ UJ UJ	A05 A05 A05 A05 A05 A05 A05 A05 A05		-
REG REG REG REG REG <b>Sample</b> Type REG REG REG REG	4-Nitrotoluene HMX Nitrobenzene Nitrocellulose as N Nitroglycerin Nitroguanidine RDX Tetryl Semi-Volatile Organics 1,2,4-Trichlorobenzene 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene	0.2 0.067 0.091 0.2 2.5 20 0.5 0.2 <b>Result</b> 10 10 10	UG/L UG/L UG/L UG/L UG/L UG/L UG/L UG/L	U J J U U U U U U U U U U U U U U	UJ J U U UJ UJ UJ UJ UJ UJ UJ UJ	A05 A05 A05 A05 A05 A05 A05 A05 A05 A05		-
REG REG REG REG REG <b>Sample</b> Type REG REG REG REG	4-Nitrotoluene HMX Nitrobenzene Nitrocellulose as N Nitroglycerin Nitroguanidine RDX Tetryl Semi-Volatile Organics 1,2,4-Trichlorobenzene 1,2-Dichlorobenzene 1,3-Dichlorobenzene	0.2 0.067 0.091 0.2 2.5 20 0.5 0.2 <b>Result</b> 10 10 10 10	UG/L UG/L UG/L UG/L UG/L UG/L UG/L UG/L	U J J U U U U U U U U U U U U U U U	UJ J U U UJ UJ UJ UJ UJ UJ UJ UJ UJ UJ	A05 A05 A05 A05 A05 A05 A05 A05 A05 A05		-
REG REG REG REG REG <b>Sample</b> <b>Type</b> REG REG REG REG REG REG	4-Nitrotoluene HMX Nitrobenzene Nitrocellulose as N Nitroglycerin Nitroguanidine RDX Tetryl Semi-Volatile Organics 1,2,4-Trichlorobenzene 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 2,2'-oxybis (1-chloropropane)	0.2 0.067 0.091 0.2 2.5 20 0.5 0.2 <b>Result</b> 10 10 10 10 10 25 10	UG/L UG/L UG/L UG/L UG/L UG/L UG/L UG/L	U J J U U U U U U U U U U U U U U	UJ J U U UJ UJ UJ UJ UJ UJ UJ UJ	A05 A05 A05 A05 A05 A05 A05 A05 A05 A05		-
REG REG REG REG REG <b>Sample</b> <b>Type</b>	4-Nitrotoluene HMX Nitrobenzene Nitrocellulose as N Nitroglycerin Nitroguanidine RDX Tetryl Semi-Volatile Organics 1,2,4-Trichlorobenzene 1,3-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 2,2'-oxybis (1-chloropropane) 2,4,5-Trichlorophenol 2,4,6-Trichlorophenol 2,4-Dichlorophenol	0.2 0.067 0.091 0.2 2.5 20 0.5 0.2 <b>Result</b> 10 10 10 10 10 25 10	UG/L UG/L UG/L UG/L UG/L UG/L UG/L UG/L	U J J U U U U U U U U U U U U U U U U U	UJ J U U UJ UJ UJ UJ UJ UJ UJ UJ UJ UJ U	A05 A05 A05 A05 A05 A05 A05 A05 A05 A05		-
REG REG REG REG REG <b>Sample</b> <b>Type</b>	4-Nitrotoluene HMX Nitrobenzene Nitrocellulose as N Nitroglycerin Nitroguanidine RDX Tetryl Semi-Volatile Organics 1,2,4-Trichlorobenzene 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 2,2'-oxybis (1-chloropropane) 2,4,5-Trichlorophenol 2,4-Dichlorophenol 2,4-Dichlorophenol 2,4-Dichlorophenol 2,4-Dichlorophenol 2,4-Dichlorophenol	0.2 0.067 0.091 0.2 2.5 20 0.5 0.2 <b>Result</b> 10 10 10 10 10 10 10 10 10 10	UG/L UG/L UG/L UG/L UG/L UG/L UG/L UG/L	U J J U U U U U U U U U U U U U U U U U	UJ J U UJ UJ UJ UJ UJ UJ UJ UJ UJ UJ UJ	A05 A05 A05 A05 A05 A05 A05 A05 A05 A05		-
REG REG REG REG REG <b>Sample</b> <b>Type</b>	4-Nitrotoluene HMX Nitrobenzene Nitrocellulose as N Nitroglycerin Nitroguanidine RDX Tetryl Semi-Volatile Organics 1,2,4-Trichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,4-Dichlorobenzene 2,2'-oxybis (1-chloropropane) 2,4,5-Trichlorophenol 2,4-Dichlorophenol 2,4-Dichlorophenol 2,4-Dichlorophenol 2,4-Dimethylphenol 2,4-Dinitrophenol	0.2 0.067 0.091 0.2 2.5 20 0.5 0.2 <b>Result</b> 10 10 10 10 10 10 10 10 10 10 25 10	UG/L UG/L UG/L UG/L UG/L UG/L UG/L UG/L	U J J U U U U U U U U U U U U U U U U U	UJ J U U UJ UJ UJ UJ UJ UJ UJ UJ UJ UJ U	A05 A05 A05 A05 A05 A05 A05 A05 A05 A05		-
REG REG REG REG REG <b>Sample</b> <b>Type</b>	4-Nitrotoluene HMX Nitrobenzene Nitrocellulose as N Nitroglycerin Nitroglycerin RDX Tetryl Semi-Volatile Organics 1,2,4-Trichlorobenzene 1,2-Dichlorobenzene 1,4-Dichlorobenzene 1,4-Dichlorobenzene 2,2'-oxybis (1-chloropropane) 2,4,6-Trichlorophenol 2,4-Dichlorophenol 2,4-Dichlorophenol 2,4-Dinitrophenol 2,4-Dinitrophenol 2,4-Dinitrotoluene	0.2 0.067 0.091 0.2 2.5 20 0.5 0.2 <b>Result</b> 10 10 10 10 10 10 10 10 10 10 10 10 10	UG/L UG/L UG/L UG/L UG/L UG/L UG/L UG/L	U J J U U U U U U U U U U U U U U U U U	UJ J U U U U U U U U U U U U U U U U U	A05 A05 A05 A05 A05 A05 A05 A05 A05 A05		-
REG REG REG REG REG <b>Sample</b> <b>Type</b> REG REG REG REG REG REG REG REG REG REG	4-Nitrotoluene HMX Nitrobenzene Nitrogelulose as N Nitroglycerin Nitroguanidine RDX Tetryl Semi-Volatile Organics 1,2,4-Trichlorobenzene 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 2,2'-oxybis (1-chloropropane) 2,4,5-Trichlorophenol 2,4-5-Trichlorophenol 2,4-Dichlorophenol 2,4-Dinitrophenol 2,4-Dinitrotoluene 2,6-Dinitrotoluene	0.2 0.067 0.091 0.2 2.5 20 0.5 0.2 <b>Result</b> 10 10 10 10 10 10 10 10 10 10 10 10 10	UG/L UG/L UG/L UG/L UG/L UG/L UG/L UG/L	U J J U U U U U U U U U U U U U U U U U	UJ J U U UJ UJ UJ UJ UJ UJ UJ UJ UJ UJ U	A05 A05 A05 A05 A05 A05 A05 A05 A05 A05		-
REG REG REG REG REG REG REG REG REG REG	4-Nitrotoluene HMX Nitrobenzene Nitrocellulose as N Nitroglycerin Nitroglycerin RDX Tetryl Semi-Volatile Organics 1,2,4-Trichlorobenzene 1,2-Dichlorobenzene 1,4-Dichlorobenzene 1,4-Dichlorobenzene 2,2'-oxybis (1-chloropropane) 2,4,6-Trichlorophenol 2,4-Dichlorophenol 2,4-Dichlorophenol 2,4-Dinitrophenol 2,4-Dinitrophenol 2,4-Dinitrotoluene	0.2 0.067 0.091 0.2 2.5 20 0.5 0.2 <b>Result</b> 10 10 10 10 10 10 10 25 10 10 10 10	UG/L UG/L UG/L UG/L UG/L UG/L UG/L UG/L	U J J U U U U U U U U U U U U U U U U U	UJ J U U U U U U U U U U U U U U U U U	A05 A05 A05 A05 A05 A05 A05 A05 A05 A05		-
REG REG REG REG REG REG REG REG REG REG	4-Nitrotoluene HMX Nitrobenzene Nitrocellulose as N Nitroglycerin Nitroguanidine RDX Tetryl Semi-Volatile Organics 1,2,4-Trichlorobenzene 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 2,2'-oxybis (1-chloropropane) 2,4,5-Trichlorophenol 2,4-5-Trichlorophenol 2,4-Dichlorophenol 2,4-Dinitrophenol 2,4-Dinitrobnenol 2,4-Dinitrobuene 2,6-Dinitrotoluene 2,6-Dinitrotoluene	0.2 0.067 0.091 0.2 2.5 20 0.5 0.2 <b>Result</b> 10 10 10 10 10 10 25 10 10 10 10 10 10 10 10 10 10 10 10 10	UG/L UG/L UG/L UG/L UG/L UG/L UG/L UG/L	U J J U U U U U U U U U U U U U U U U U	UJ J U U UJ UJ UJ UJ UJ UJ UJ UJ UJ UJ U	A05 A05 A05 A05 A05 A05 A05 A05 A05 A05		-

i.

#### Location: Ramsdell Quarry Landfill Station : RQLmw-011 Initial Phase

#### RQLmw-011-0017-GW

7-GW		Field Sample Type: Gra	b N	latrix: Gr	oundwa	iter	Collected: 07/27/
Sample Type	Semi-Volatile Organics	Result	Units	Qual Lab	lfiers Data	Validation	
REG	2-Nitrophenol					-	_
REG	3,3'-Dichlorobenzidine		UG/L UG/L	U	UJ	A05	
REG	3-Nitroaniline		UG/L	U U	UJ	A05	
REG	4.6-Dinitro-o-Cresol		UG/L	U	ບມ	A05	
REG	4-Bromophenyi-phenyi Ether		UG/L	U	UJ UJ	A05 A05	
REG	4-Chloroaniline		UG/L	U			
REG	4-Chlorophenyi-phenylether		UG/L	U	UJ UJ	A05 A05	
REG	4-Methylphenoi		UG/L	U	UJ		
REG	4-Nitroaniline		UG/L	ŭ	ίIJ	A05 A05	
REG	4-Nitrophenol		UG/L	U			
REG	4-chioro-3-methylphenol		UG/L	U	UJ	A05	
REG	Acenaphthene		UG/L	Ŭ	U) UJ	A05	
REG	Acenaphthylene		UG/L			A05	
REG	Anthracene		UG/L	U U	ປງ ປງ	A05	
REG	Benzo(a)anthracene		UG/L	Ŭ	01	A05	
REG	Benzo(a)pyrene		UG/L	U	UJ UJ	A05 A05	
REG	Benzo(b)fluoranthene		UG/L	Ŭ	UJ	A05 A05	
REG	Benzo(g,h,i)perviene		UG/L	Ŭ	UJ	A05	
REG	Benzo(k)fluoranthene		UG/L	Ŭ	UJ	A05	
REG	Bis(2-chloroethoxy)methane		UG/L	Ŭ	00	A05	
REG	Bis(2-chloroethyl)ether		UG/L	Ŭ	UJ UJ	A05	
REG	Bis(2-ethylhexyl)phthalate		UG/L	Ŭ	UJ UJ	A05	
REG	Butyl Benzyl Phthalate		UG/L	Ŭ	C1	A05	
REG	Carbazole		UG/L	Ŭ	0J	A05	
REG	Chrysene		UG/L	Ŭ	UJ	A05	
REG	Di-n-butyl Phthalate		UG/L	Ŭ	UJ UJ	A05	
REG	Di-n-octyl Phthalate		UG/L	Ŭ	UJ	A05	
REG	Dibenzo(a,h)anthracene		UG/L	Ŭ	UJ	A05	
REG	Dibenzofuran		UG/L	Ŭ	UJ	A05	
REG	Diethyl Phthalate		UG/L	Ŭ	UJ	A05	
REG	Dimethyl Phthalate		UG/L	Ŭ	UJ	A05	
REG	Fluoranthene		UG/L	Ŭ	บม	A05	
REG	Fluorene		UG/L	U	UJ UJ	A05 A05	
REG	Hexachlorobenzene		UG/L	Ŭ	UJ 00	A05 A05	
REG	Hexachlorobutadiene		UG/L	U	UJ UJ	A05	
REG	Hexachlorocyclopentadiene		UG/L	Ŭ	UJ		
REG	Hexachloroethane		UG/L	ŭ	UJ	A05,C05	
REG	Indeno(1,2,3-cd)pyrene		UG/L	Ŭ	UJ 00	A05 A05	
REG	Isophorone		UG/L	Ŭ	0J 02		
REG	N-Nitroso-di-n-propylamine		UG/L	Ŭ	01	A05	
REG	N-Nitrosodiphenylamine			-		A05	
REG	Naphthalene		UG/L UG/L	U U	UJ	A05	
REG	Nitrobenzene			+	UJ	A05	
REG	Pentachlorophenol		UG/L	U	UJ	A05	
REG	Phenanthrene		UG/L	U	UJ	A05	
REG	Phenol		UG/L	U	UJ	A05	
REG			UG/L	U	UJ	A05	
NEG	Pyrene	10	UG/L	U	UJ	A05	
Sample				Quali	fiers	Validation	

Sample Type	Volatile Organics	Result	Units	Qual Lab	lfiers Data	Validation Code
<u> </u>					Dala	
REG	1,1,1-Trichloroethane	5	UG/L	U	IJ	A05
REG	1,1,2,2-Tetrachloroethane	5	UG/L	U	UJ	A05
REG	1,1,2-Trichloroethane	5	UG/L	U	UJ	A05
REG	1,1-Dichloroethane	5	UG/L	U	UJ	A05
REG	1,1-Dichloroethene	5	UG/L	U	UJ	A05
REG	1,2-Dichloroethane	5	UG/L	ប	UJ	A05
REG	1,2-Dichloroethene	5	UG/L	U	UJ	A05
REG	1,2-Dichloropropane	5	UG/L	U	UJ	A05
REG	1,3-cis-Dichloropropene	5	UG/L	U	UJ	A05
REG	1,3-trans-Dichloropropene	5	UG/L	U	ŲJ	A05
REG	2-Butanone	10	UG/L	U	UJ	A05
REG	2-Hexanone	10	UG/L	U	UJ	A05
REG	4-Methyl-2-pentanone	10	UG/L	U	UJ	A05
REG	Acetone	10	UG/L	U	UJ	A05
REG	Benzene	5	UG/L	U	IJ	A05
REG	Bromodichloromethane	5	UG/L	U	UJ	A05
REG	Bromoform	5	UG/L	U	UJ	A05
REG	Bromomethane	10	UG/L	U	UJ	A05
REG	Carbon Disulfide	5	UG/L	U	UJ	A05

,

RQLmw-011-0017			Field Sample Type: Gr	ab	Matrix: G	roundwa	ter	Collected: 07	/27/9
	Sample Type	Volatile Organics	Result	Units		llifiers Data	Validation Code		
	REG	Carbon Tetrachloride		UG/L	<del></del>		A05	_	
	REG	Chlorobenzene		5 UG/L	-	ŬĴ	A05		
	REG	Chloroethane	1	) UG/L	Ū	IJ	A05		
	REG	Chloroform		UG/L	Ŭ	ŪĴ	A05		
	REG	Chloromethane	10	) UG/L	Ū	ŬĴ	A05		
	REG	Dibromochloromethane		UG/L	-	ŬĴ	A05		
	REG	Ethylbenzene	:	UG/L	Ū	UJ	A05		
	REG	Methylene Chloride		UG/L	-	U.J	A05		
	REG	Styrene		UG/L	-	ŬĴ	A05		
	REG	Tetrachloroethene		UG/L	Ū	U.J	A05		
	REG	Toluene		UG/L	-	J	A05		
	REG	Trichloroethene		UG/L	Ū	IJ	A05		
	REG	Vinyl Chloride		UG/L	Ŭ	UJ	A05		
	REG	Xylenes, Total		UG/L	Ŭ	UJ	A05		

#### RQLmw-011-9047-FD

Collected: 07/27/98

Sample Type	Cyanide	Result	Units	Qual Lab	lifiers Data	Validation Code
REG	Cyanide	0.01	MG/L	U	UJ	A05
Sample	<b></b>	_			lfiers	Validation
Туре	Metals	Result	Units	Lab	Data	Code
REG	Aluminum		UG/L	•	=	·
REG	Antimony		UG/L	U	U	
REG	Arsenic	8.5	UG/L	-	=	
REG	Barium	35.5	UG/L	в	J	
REG	Beryllium	0.87	UG/L	в	Ĵ	
REG	Cadmium	5	UG/L	U	U	
REG	Calcium	14700	UG/L		=	
REG	Chromium	10	UG/L	U	U	
REG	Cobalt	48.5	UG/L	в	J	
REG	Copper	3.9	UG/L	в	J	
REG	Iron	5300	UG/L		=	
REG	Lead	3	UG/L	U	U	
REG	Magnesium	8550	UG/L		=	
REG	Manganese	1650	UG/L		Ł	102
REG	Mercury	0.2	UG/L	U	U	101
REG	Nickel	139	UG/L		=	
REG	Potassium	4380	UG/L	в	J	
REG	Selenium	5	UG/L	U	U	
REG	Silver	10	UG/L	U	U	
REG	Sodium	2160	UG/L	В	J	F10
REG	Thallium	2.8	UG/L		=	
REG	Vanadium	50	UG/L	U	U	
REG	Zinc	83.3	UG/L		=	

Sample				Quali	iflers	Validation
Туре	Filtered Metals	Result	Units	Lab	Data	Code
REG	Aluminum	698	UG/L		=	***
REG	Antimony	5	UG/L	U	U	
REG	Arsenic	12.6	UG/L		=	
REG	Barium	37.2	UG/L	в	J	
REG	Beryllium	0.89	UG/L	В	J	
REG	Cadmium	5	UG/L	U	U	
REG	Calcium	15300	UG/L		=	
REG	Chromium	10	UG/L	U	U	
REG	Cobalt	55.3	UG/L		=	
REG	Copper	25	UG/L	υ	U	
REG	Iron	5700	ปG/L		=	
REG	Lead	3	UG/L	U	U	
REG	Magnesium	9230	UG/L		=	
REG	Manganese	1760	UG/L		J	102
REG	Mercury	0.2	UG/L	U	U	
REG	Nickel	155	UG/L		=	
REG	Potassium	4810	UG/L	в	J	
REG	Selenium	5	UG/L	U	U	
REG	Silver	10	UG/L	U	U	

ł

~	) 		Field Sample Type: Field Du	pilodue	USM .	ix: Grou	IUWate	r 	Collected: 07/27/
	ample Гуре	Filtered Metals	Result	Units	Qua Lab	lifiers Data	Va	lidation Code	
Ā	REG	Sodium		UG/L	 B		F10		
	REG	Thallium		UG/L	В	Ĵ			
	REG	Vanadium	50	UG/L	U	Ū			
R	REG	Zinc	77.2	UG/L		=			
	ample Type	Explosives	Result	Units	Qua Lab	lifiers Data	Val	lidation Code	
R	REG	1,3,5-Trinitrobenzene		UG/L	<u> </u>	tU	A05		-
	EG	1,3-Dinitrobenzene		UG/L	Ŭ	ŪJ	A05		
	LEG	2,4,6-Trinitrotoluene		UG/L	U	UJ	A05		
	REG REG	2,4-Dinitrotoluene		UG/L	U	UJ	A05		
	EG	2,6-Dinitrotoluene 2-Nitrotoluene		UG/L	U	UJ	A05		
	EG	3-Nitrotoluene		UG/L	U U	UJ .	A05		
	EG	4-Nitrotoluene		UG/L UG/L	บ บ	UJ UJ	A05		
		HMX	0.076		J	1	A05 A05		
	EG	Nitrobenzene	0.092		Ĵ	J	A05		
	EG	Nitrocellulose as N		MG/L	Ů	Ŭ	700		
R	EG	Nitroglycerin		UG/L	ŭ	ŬJ	A05		
R	EG	Nitroguanidine		UG/L	ŭ	υ	700		
R		RDX		UG/L	Ŭ	ŨJ	A05		
R	EG	Tetryl		UG/L	Ŭ	ŰĴ	A05		
	imple 'ype	Semi-Volatile Organics	Result	Units		lifiers Data		idation	
		1,2,4-Trichlorobenzene				<u> </u>		Code	_
		1,2-Dichlorobenzene		UG/L UG/L	U	U) UJ	A05		
		1,3-Dichlorobenzene		UG/L	Ŭ	0J	A05 A05		
		1,4-Dichlorobenzene		UG/L	Ŭ	UJ UJ	A05		
		2.2'-oxybis (1-chloropropane)		UG/L	ŭ	ŰĴ	A05		
R		2,4,5-Trichlorophenol		UG/L	Ŭ	UJ	A05		
R	EG	2,4,6-Trichlorophenol	10	UG/L	Ū	ŪJ	A05		
R	EG	2,4-Dichlorophenol	10	UG/L	U	UJ	A05		
		2,4-Dimethylphenol	10	UG/L	U	UJ	A05		
		2,4-Dinitrophenol	25	UG/L	U	UJ	A05		
		2,4-Dinitrotoluene		UG/L	U	UJ	A05		
		2,6-Dinitrotoluene		UG/L	U	บม	A05		
		2-Chloronaphthalene		UG/L	U	UJ	A05		
		2-Chiorophenol		UG/L	U	UJ	A05		
		2-Methylnaphthalene		UG/L	U	UJ	A05		
		2-Methylphenol 2-Nitroaniline		UG/L UG/L	ป ป	UJ UJ	A05		
		2-Nitrophenol		UG/L	ŭ	UJ UJ	A05 A05		
		3,3'-Dichlorobenzidine		UG/L	Ŭ	UJ	A05 A05		
		3-Nitroaniline		UG/L	ŭ	ŬĴ	A05		
		4,6-Dinitro-o-Cresol		UG/L	Ŭ	UJ	A05		
		4-Bromophenyl-phenyl Ether		UG/L	Ŭ	UJ	A05		
		4-Chloroaniline		UG/L	Ŭ	UJ	A05		
		4-Chlorophenyl-phenylether		UG/L	Ŭ	UJ	A05		
		4-Methylphenol		UG/L	U	IJ	A05		
Ri	EG	4-Nitroaniline		UG/L	U	UJ	A05		
		4-Nitrophenol		UG/L	U	UJ	A05		
		4-chloro-3-methylphenol		UG/L	U	UJ	A05		
		Acenaphthene		UG/L	U	UJ	A05		
		Acenaphthylene		UG/L	U	UJ	A05		
		Anthracene		UG/L	U	UJ	A05		
		Benzo(a)anthracene		UG/L	U	IJ	A05		
		Benzo(a)pyrene		UG/L	U	UJ	A05		
		Benzo(b)fluoranthene		UG/L	U	UJ	A05		
		Benzo(g,h,i)perylene		UG/L	U	UJ	A05		
		Benzo(k)fluoranthene		UG/L	U	UJ	A05		
		Bis(2-chloroethoxy)methane		UG/L	U	UJ	A05		
		Bis(2-chloroethyl)ether Bis(2-ethylhexyl)phthalate		UG/L UG/L	U U	U) UJ	A05 A05		
	-0					UJ UJ	A05 A05		
RI		Rutyl Benzyl Phthelato	10	1 21 - / 1					
RI RI	EG	Butyl Benzyl Phthalate Carbazole		UG/L UG/L	U U				
RI RI RI	EG EG	Butyl Benzyl Phthalate Carbazole Chrysene	10	UG/L UG/L UG/L	บ บ บ	01 01	A05 A05		

ъ

Matrix: Groundwater

Field Sample Type: Field Duplicate

Collected: 07/27/98

Location:	Ramsdell Quar	ry Landfili
Station :	RQLmw-011	Initial Phase

REG

Benzene

Bromoform

Bromomethane

Chlorobenzene

Chloroethane

Ethylbenzene

Styrene

Toluene

Chloroform Chloromethane

**Carbon Disulfide** 

Carbon Tetrachloride

Dibromochloromethane

Methylene Chloride

Tetrachloroethene

Trichloroethene

Vinyl Chloride

Xylenes, Total

Bromodichloromethane

#### RQLmw-011-9047-FD

	11	and complet type. I lead out	mouto	Tricker 6			
Sample Type	Semi-Volatile Organics	Result	Units	Quat Lab	iflers Data	Validation Code	
REG	Di-n-octyl Phthalate	10	UG/L	U	IJ	A05	······
REG	Dibenzo(a,h)anthracene	10	UG/L	U	UJ	A05	
REG	Dibenzofuran	10	UG/L	U	UJ	A05	
REG	Diethyl Phthalate	10	UG/L	U	UJ	A05	
REG	Dimethyl Phthalate	10	UG/L	U	UJ	A05	
REG	Fluoranthene	10	UG/L	U	UJ	A05	
REG	Fluorene	10	UG/L	U	UJ	A05	
REG	Hexachlorobenzene	10	UG/L	U	UJ	A05	
REG	Hexachlorobutadiene	10	UG/L	U	UJ	A05	
REG	Hexachlorocyclopentadiene	10	UG/L	U	IJ	A05,C05	
REG	Hexachloroethane	10	UG/L	U	UJ	A05	
REG	indeno(1,2,3-cd)pyrene		UG/L	υ	UJ	A05	
REG	Isophorone	10	UG/L	U	UJ	A05	
REG	N-Nitroso-di-n-propylamine	10	UG/L	ປ	UJ	A05	
REG	N-Nitrosodiphenylamine	10	UG/L	U	UJ	A05	
REG	Naphthalene	10	UG/L	U	UJ	A05	
REG	Nitrobenzene	10	UG/L	ป	UJ	A05	
REG	Pentachlorophenol	25	UG/L	U	UJ	A05	
REG	Phenanthrene	10	UG/L	บ	UJ	A05	
REG	Phenol	10	UG/L	U	UJ	A05	
REG	Pyrene	10	UG/L	U	UJ	A05	
Sample				Qual	iflers	Validation	
Туре	Volatile Organics	Result	Units	Lab	Data	Code	
REG	1,1,1-Trichloroethane	5	UG/L	U	UJ	A05	_
REG	1,1,2,2-Tetrachloroethane	0.84	UG/L	J	J	A05	
REG	1,1,2-Trichloroethane	5	UG/L	U	UJ	A05	
REG	1,1-Dichloroethane	5	UG/L	U	UJ	A05	
REG	1,1-Dichloroethene	5	UG/L	U	UJ	A05	
REG	1,2-Dichloroethane	5	ປG/L	U	UJ	A05	
REG	1,2-Dichloroethene	5	UG/L	U	ปป	A05	
REG	1,2-Dichloropropane	5	UG/L	U	UJ	A05	
REG	1,3-cis-Dichloropropene	5	UG/L	U	UJ	A05	
REG	1,3-trans-Dichloropropene		UG/L	U	UJ	A05	
REG	2-Butanone	10	UG/L	U	UJ	A05	
REG	2-Hexanone	10	UG/L	U	UJ	A05	
REG	4-Methyl-2-pentanone	10	UG/L	U	UJ	A05	
REG	Acetone	10	UG/L	U	UJ	A05	
	-	-	1104			100	

5 UG/L

5 UG/L

0.35 UG/L

10 UG/L

5 UG/L

5 UG/L

5 UG/L

10 UG/L

5 UG/L

10 UG/L

5 UG/L

10 UG/L

U

U

J

U

U

U

U

υ

υ

υ

U

U

U

U

U

U

U

U

υ

UJ

UJ

J

UJ

UJ

UJ

ບມ

ບມ

UJ

UJ

UJ

UJ

UJ

IJ

UJ

UJ

ÛĴ

UJ

ยม

A05

#### RQLsd-012(p)-0023-SD 0.0 - 0.5 FT

Field Sample Type: Grab Matrix: Sediment

Collected: 07/08/98

		ampie Type. G		nna	nıy: Senimei	H.	Conecte
Sample Type	Cyanide	Result	Units		Qualifiers Lab Data	Validation Code	
REG	Cyanide	0.7	MG/KG	Ū	U		_
Sample Type	Metals	Result	Units		Qualifiers Lab Data	Validation Code	
REG	Aluminum	8460	MG/KG	-	=		-
REG	Antimony		MG/KG		UJ	102	
REG	Arsenic	11	MG/KG		=		
REG	Barium		MG/KG		=		
REG	Beryllium		MG/KG				
REG	Cadmium		MG/KG	U	-		
REG REG	Calcium Chromium		MG/KG		J	102	
REG	Cobalt		MG/KG		=		
REG	Copper		MG/KG MG/KG		=		
REG	Iron		MG/KG		=		
REG	Lead		MG/KG		=		
REG	Magnesium		MG/KG		Ĵ	103	
REG	Manganese		MG/KG	L	Ĵ	E07	
REG	Mercury		MG/KG				
REG	Nickel		MG/KG		=		
REG	Potassium	895	MG/KG		J	F10	
REG	Selenium	0.7	MG/KG	U	U		
REG	Silver	1.4	MG/KG	U	U		
REG	Sodium	137	MG/KG	В	J		
REG	Thallium		MG/KG	U	U		
REG	Vanadium		MG/KG		=		
REG	Zinc	100	MG/KG	М	BB =		
Sample	Explosition	Desult	11-14-		Qualifiers	Validation	
Туре	Explosives	Result	Units		Lab Data	Code	
REG	1,3,5-Trinitrobenzene	0.25	MG/KG	U	U		-
REG	1,3-Dinitrobenzene	0.25	MG/KG	U	U		
REG	2,4,6-Trinitrotoluene	0.021	MG/KG	J	L	H02	
REG	2,4-Dinitrotoluene	0.25	MG/KG	U	U		
REG	2,6-Dinitrotoluene	0.25	MG/KG	U	U		
REG	2-Nitrotoluene		MG/KG		U		
REG	3-Nitrotoluene		MG/KG		U		
REG	4-Nitrotoluene		MG/KG		บ		
REG REG	HMX		MG/KG		J		
REG	Nitrobenzene Nitrocellulose as N		MG/KG	-	U		
REG	Nitroglycerin		MG/KG		U		
REG	Nitroguanidine		MG/KG MG/KG		U R	Ноз	
REG	RDX		MG/KG		Ŭ	103	
REG	Tetryl		MG/KG		R	H03	
	, ou ji	0.00	monto	Č	i v	105	
Sample Type	Semi-Volatile Organics	Result	Units		Qualifiers Lab Data	Validation Code	
REG	1,2,4-Trichlorobenzene	460	UG/KG	υ	<u> </u>		-
REG	1,2-Dichlorobenzene		UG/KG		Ū		
REG	1,3-Dichlorobenzene		UG/KG		Ū		
REG	1,4-Dichlorobenzene	460	UG/KG	Ū	Ū		
REG	2,2'-oxybis (1-chloropropane)	460	UG/KG	U	U		
REG	2,4,5-Trichlorophenol	460	UG/KG	U	U		
REG	2,4,6-Trichlorophenol	460	UG/KG	U	U		
REG	2,4-Dichlorophenol	460	UG/KG	U	U		
REG	2,4-Dimethylphenol	460	UG/KG	U	U		
REG	2,4-Dinitrophenol	1100	UG/KG	U	U		
REG	2,4-Dinitrotoluene		UG/KG		U		
REG	2,6-Dinitrotoluene		UG/KG		U		
REG	2-Chloronaphthalene		UG/KG		U		
REG	2-Chlorophenol		UG/KG		U		
REG	2-Methyinaphthalene		UG/KG		J		
REG	2-Methylphenol		UG/KG		U		
REG	2-Nitroaniline		UG/KG		U		
REG	2-Nitrophenol		UG/KG		U		
REG	3,3'-Dichlorobenzidine		UG/KG		U		
REG	3-Nitroaniline	1100	UG/KG	υ	U		

# Location: Ramsdell Quarry Landfill Station: RQLsd-012 Initial Phase

#### RQLsd-012(p)-0023-SD 0.0 - 0.5 FT

s 24 - 1

#### Field Sample Type: Grab Matrix: Sediment

Collected: 07/08/98

							_
Sample Type	e Semi-Volatile Organics	Result	Units	Qual Lab	lifiers Data	Validation Code	
REG	4,6-Dinitro-o-Cresol	1100	UG/KG	U	U		
REG REG	4-Bromophenyl-phenyl Ether 4-Chloroaniline		UG/KG		U		
REG	4-Chlorophenyl-phenylether		UG/KG UG/KG		ม บ		
REG	4-Methylphenol		UG/KG		Ŭ		
REG	4-Nitroaniline		UG/KG		U		
REG REG	4-Nitrophenol		UG/KG		U		
REG	4-chloro-3-methylphenol Acenaphthene		UG/KG UG/KG		J		
REG	Acenaphthylene		UG/KG		U		
REG	Anthracene		UG/KG		=		
REG	Benzo(a)anthracene		UG/KG		=		
REG REG	Benzo(a)pyrene Benzo(b)fluoranthene		UG/KG UG/KG		=		
REG	Benzo(g,h,i)perylene		UG/KG	J	J		
REG	Benzo(k)fluoranthene		UG/KG		J		
REG	Bis(2-chloroethoxy)methane	460	UG/KG	U	U		
REG	Bis(2-chloroethyl)ether		UG/KG		U		
REG REG	Bis(2-ethylhexyl)phthalate Butyl Benzyl Phthalate		UG/KG		U		
REG	Carbazole		UG/KG UG/KG		U J		
REG	Chrysene		UG/KG	•	=		
REG	Di-n-butyl Phthalate		UG/KG	U	U		
REG	Di-n-octyl Phthalate		UG/KG		U		
REG REG	Dibenzo(a,h)anthracene Dibenzofuran		UG/KG		U		
REG	Diethyl Phthalate		UG/KG UG/KG		n 1		
REG	Dimethyl Phthalate		UG/KG	-	Ŭ		
REG	Fluoranthene		UG/KG	-	=		
REG	Fluorene		UG/KG	-	J		
REG REG	Hexachiorobenzene		UG/KG	-	U		
REG	Hexachlorobutadiene Hexachlorocyclopentadiene		UG/KG UG/KG	-	U U		
REG	Hexachloroethane		UG/KG	-	Ŭ		
REG	Indeno(1,2,3-cd)pyrene		UG/KG		Ĵ		
REG	Isophorone		UG/KG	-	U		
REG REG	N-Nitroso-di-n-propylamine		UG/KG	-	U		
REG	N-Nitrosodiphenylamine Naphthalene		UG/KG UG/KG	-	1 U		
REG	Nitrobenzene		UG/KG	-	Ŭ		
REG	Pentachlorophenol	460	UG/KG	Ū	Ū		
REG	Phenanthrene		UG/KG		=		
REG REG	Phenol Pyrene		UG/KG	U	U	1100	
NLO	ryrene	1200	UG/KG		J	H03	
Sample Type	Volatile Organics	Result	Units	Quali Lab	ifiers Data	Validation Code	
REG	1,1,1-Trichloroethane	7	UG/KG	U	<u> </u>		
REG	1,1,2,2-Tetrachloroethane		UG/KG		Ŭ		
REG	1,1,2-Trichloroethane		UG/KG		U		
REG	1,1-Dichloroethane		UG/KG		U		
REG REG	1,1-Dichloroethene 1,2-Dichloroethane		UG/KG		U		
REG	1,2-Dichloroethene		UG/KG UG/KG		U U		
REG	1,2-Dichloropropane		UG/KG		U		
REG	1,3-cis-Dichloropropene		UG/KG		Ŭ		
REG	1,3-trans-Dichloropropene		UG/KG		U		
REG REG	2-Butanone 2-Hexanone		UG/KG		U		
REG	2-nexanone 4-Methyl-2-pentanone		UG/KG UG/KG		บ บ		
REG	Acetone		UG/KG		J	C05	
REG	Benzene		UG/KG		Ŭ		
REG	Bromodichloromethane		UG/KG		U		
REG REG	Bromoform Bromomethane		UG/KG		U		
REG	Carbon Disulfide		UG/KG UG/KG		U U		
REG	Carbon Tetrachloride		UG/KG		Ŭ		
REG	Chlorobenzene		UG/KG		Ŭ		
REG	Chloroethane	14	UG/KG	U	U		

4

#### RQLsd-012(p)-0023-SD 0.0 - 0.5 FT

Field Sample Type: Grab Matrix: Sediment

Matrix: Sediment

Collected: 07/08/98

Collected: 07/08/98

٠

Sample				Qual	lifiers	Validation
Туре	Volatile Organics	Result	Units	Lab	Data	Code
REG	Chloroform	7	UG/KG	Ū	<u> </u>	
REG	Chloromethane		UG/KG	-	Ŭ	
REG	Dibromochloromethane		UG/KG	-	Ŭ	
REG	Ethylbenzene		UG/KG	-	Ŭ	
REG	Methylene Chloride		UG/KG	-	ŭ	
REG	Styrene		UG/KG	-	Ŭ	
REG	Tetrachloroethene		UG/KG	-	ŭ	
REG	Toluene		UG/KG	-	Ŭ	
REG	Trichloroethene		UG/KG	-	ŭ	
REG	Vinyl Chloride		UG/KG	-	Ŭ	
REG	Xylenes, Total		UG/KG	-	Ŭ	

Field Sample Type: Field Duplicate

#### RQLsd-012(p)-0053-FD 0.0 - 0.0 FT

REG Tetryl

			apireate		141444	00116016		
Sample Type	Cyanide	Result	Units		Qual Lab	lfiers Data	Validation Code	
REG	Cyanide	0.78	MG/KG	U		U	·	_
Sample Type	Metals	Result	Units		Quai Lab	ifiers Data	Validation Code	
REG	Aluminum	8270	MG/KG	_		=		_
REG	Antimony	0.78	MG/KG	U		UJ	102	
REG	Arsenic	14.9	MG/KG			=		
REG	Barium	77	MG/KG			=		
REG	Beryllium	0.36	MG/KG	в		J		
REG	Cadmium	0.78	MG/KG	U		U		
REG	Calcium	11400	MG/KG			J	102	
REG	Chromium	15.3	MG/KG			=		
REG	Cobalt	7.3	MG/KG	В		J		
REG	Copper	64	MG/KG			=		
REG	Iron	25300	MG/KG			=		
REG	Lead	79.5	MG/KG			=		
REG	Magnesium	19100	MG/KG			J	103	
REG	Manganese	2120	MG/KG			J	E07	
REG	Mercury	0.099	MG/KG	В		J		
REG	Nickel	17.2	MG/KG			=		
REG	Potassium	994	MG/KG			J	F10	
REG	Selenium	0.78	MG/KG	ป		U		
REG	Silver	1.6	MG/KG	U		U		
REG	Sodium	108	MG/KG	В		J		
REG	Thallium	1.3	MG/KG	в		J		
REG	Vanadium	15.7	MG/KG			=		
REG	Zinc	106	MG/KG	ME	BB	=		
Sample Type	Explosives	Result	Units		Quali Lab	fiers Data	Validation Code	
REG	1,3,5-Trinitrobenzene	0.25	MG/KG	U		U		_
REG	1,3-Dinitrobenzene	0.25	MG/KG	U		υ		
REG	2,4,6-Trinitrotoluene	0.25	MG/KG	U		U		
REG	2,4-Dinitrotoluene	0.25	MG/KG	U		U		
REG	2,6-Dinitrotoluene	0.076	MG/KG	J		J		
REG	2-Nitrotoluene	0.25	MG/KG	U		U		
REG	3-Nitrotoluene	0.25	MG/KG	υ		U		
REG	4-Nitrotoluene	0.07	MG/KG	J		J		
REG	HMX	0.11	MG/KG	J		J		
REG	Nitrobenzene	0.25	MG/KG	U		U		
REĢ	Nitrocellulose as N	2	MG/KG	U		U		
REG	Nitroglycerin	2.5	MG/KG	U		U		
REG	Nitroguanidine	0.25	MG/KG	U		U		
REG	RDX	0.5	MG/KG	U		U		
DEC	Tabad		MONCE					

ample Type	Semi-Volatile Organics	Result	Units	Quai Lab	lfiers Data	Validation Code
REG	1,2,4-Trichlorobenzene		UG/KG	11	<u> </u>	
REG	1,2-Dichlorobenzene		UG/KG	-	U	
REG	1,3-Dichlorobenzene		UG/KG	-	Ū	
REG	1,4-Dichlorobenzene	520	UG/KG	U	Ų	

0.65 MG/KG U

υ

#### Location: Ramsdell Quarry Landfill Station: RQLsd-012 Initial Phase

#### RQLsd-012(p)-0053-FD 0.0 - 0.0 FT

### Field Sample Type: Field Duplicate Matrix: Sediment

Collected: 07/08/98

3-FU U		Field Sample Type: Field D	uplicate		Matrix: Sedi	ment	Collected:	07/0
Sample Type	Semi-Volatile Organics	Result	Units		Qualifiers Lab Data	Validation Code		
REG	2,2'-oxybis (1-chloropropane)		UG/KG	-	-	·	_	
REG REG	2,4,5-Trichlorophenol		UG/KG		-			
REG	2,4,6-Trichlorophenol		UG/KG		-			
REG	2,4-Dichlorophenol 2,4-Dimethylphenol		UG/KG					
REG	2,4-Dinitrophenol		UG/KG UG/KG		-			
REG	2,4-Dinitrotoluene		UG/KG					
REG	2,6-Dinitrotoluene		UG/KG					
REG	2-Chloronaphthalene		UG/KG					
REG	2-Chlorophenol		UG/KG		-			
REG	2-Methylnaphthalene		UG/KG					
REG	2-Methylphenol	520	UG/KG	U				
REG	2-Nitroaniline	1200	UG/KG	U	U			
REG	2-Nitrophenol	520	UG/KG	U	U			
REG	3,3'-Dichlorobenzidine	520	UG/KG	U	U			
REG	3-Nitroaniline	1200	UG/KG	U	U			
REG	4,6-Dinitro-o-Cresol	1200	UG/KG	Ų	U			
REG	4-Bromophenyl-phenyl Ether	520	UG/KG	U	U			
REG	4-Chloroaniline		UG/KG		-			
REG	4-Chlorophenyl-phenylether		UG/KG					
REG	4-Methylphenol		UG/KG					
REG	4-Nitroaniline		UG/KG					
REG	4-Nitrophenol		UG/KG		-			
REG	4-chloro-3-methylphenol		UG/KG	-	-			
REG REG	Acenaphthene		UG/KG					
REG	Acenaphthylene Anthracene		UG/KG UG/KG					
REG	Benzo(a)anthracene		UG/KG		J J			
REG	Benzo(a)pyrene		UG/KG		L L			
REG	Benzo(b)fluoranthene		UG/KG		J			
REG	Benzo(g,h,i)perylene		UG/KG		J			
REG	Benzo(k)fluoranthene		UG/KG		J			
REG	Bis(2-chloroethoxy)methane		UG/KG					
REG	Bis(2-chloroethyl)ether		UG/KG					
REG	Bis(2-ethylhexyl)phthalate		UG/KG					
REG	Butyl Benzyl Phthalate		UG/KG		ŭ			
REG	Carbazole		UG/KG		Ĵ			
REG	Chrysene		UG/KG		Ĵ			
REG	Di-n-butyl Phthalate	520	UG/KG	U	Ŭ			
REG	Di-n-octyl Phthalate	520	UG/KG	U	U			
REG	Dibenzo(a,h)anthracene	520	UG/KG	U	U			
REG	Dibenzofuran	520	UG/KG	U	U			
REG	Diethyl Phthalate		UG/KG	-	-			
REG	Dimethyl Phthalate		UG/KG	U				
REG	Fluoranthene		UG/KG		=			
REG	Fluorene		UG/KG					
REG	Hexachlorobenzene		UG/KG					
REG	Hexachlorobutadiene		UG/KG		U			
REG	Hexachiorocyclopentadiene		UG/KG		U			
REG	Hexachloroethane		UG/KG		U			
REG	Indeno(1,2,3-cd)pyrene		UG/KG		J			
REG	Isophorone N-Nitroso di p propulamine		UG/KG		U			
REG	N-Nitroso-di-n-propylamine N-Nitrosodiphenylamine		UG/KG		U			
REG REG	Naphthalene		UG/KG		U			
REG	Nitrobenzene		UG/KG		U			
REG	Pentachlorophenol		UG/KG UG/KG		U U			
REG	Phenanthrene		UG/KG		J			
REG	Phenol		UG/KG		Ů			
REG	Pyrene		UG/KG		J			
		400	Jand	3	*			
ample					Qualifiers	Validation		
Туре	Volatile Organics	Result	Units		Lab Data	Code		
REG	1,1,1-Trichloroethane	7 A	UG/KG	Π			_	
REG	1,1,2,2-Tetrachloroethane		UG/KG					
REG	1,1,2-Trichloroethane		UG/KG					
REG	1 1-Dicbloroethane		UG/KG					

D-108

7.8 UG/KG U

7.8 UG/KG U

7.8 UG/KG U

12.40

REG 1,1-Dichloroethane

REG 1,1-Dichloroethene

REG 1,2-Dichloroethane

- 1**1** 

and the second

υ

U

U

#### RQLsd-012(p)-0053-FD 0.0 - 0.0 FT

#### Field Sample Type: Field Duplicate Matrix: Sediment

Collected: 07/08/98

Sample				Qu	alifiers	Validation	·
Туре	Volatile Organics	Result	Units	Lat	) Data	Code	
REG	1,2-Dichloroethene	7.8	UG/KG	U	<u> </u>	<del>-</del>	
REG	1,2-Dichloropropane	7.8	UG/KG	Ū	Ū		
REG	1,3-cis-Dichloropropene	7.8	UG/KG	U	Ū		
REG	1,3-trans-Dichloropropene	7.8	UG/KG	U	Ŭ		
REG	2-Butanone	31	UG/KG	U	U		
REG	2-Hexanone	31	UG/KG	U	Ū		
REG	4-Methyl-2-pentanone	31	UG/KG	U	U		
REG	Acetone	31	UG/KG	U	U		
REG	Benzene	7.8	UG/KG	U	U		
REG	Bromodichloromethane	7.8	UG/KG	υ	U		
REG	Bromoform	7.8	UG/KG	υ	υ		
REG	Bromomethane	16	UG/KG	υ	U		
REG	Carbon Disulfide	7,8	UG/KG	U	U		
REG	Carbon Tetrachloride	7.8	UG/KG	U	U		
REG	Chlorobenzene	7.8	UG/KG	U	Ū		
REG	Chloroethane	16	UG/KG	U	Ŭ		
REG	Chloroform	7.8	UG/KG	υ	U		
REG	Chloromethane	16	UG/KG	Ū	Ū		
REG	Dibromochloromethane	7.8	UG/KG	υ	Ū		
REG	Ethylbenzene	7.8	UG/KG	υ	Ú		
REG	Methylene Chloride	7.8	UG/KG	Ū	Ũ		
REG	Styrene	7.8	UG/KG	Ū	Ū		
REG	Tetrachioroethene	7.8	UG/KG	Ū	Ū		
REG	Toluene	7.8	UG/KG	Ū	Ũ		
REG	Trichloroethene	7.8	UG/KG	Ū	Ũ		
REG	Vinyl Chloride		UG/KG	-	Ū		
REG	Xylenes, Total		UG/KG	-	Ū		

#### RQLsd-012(p)-0064-SD 0.0 - 0.0 FT

REG

2-Nitrotoluene

Field Sample Type: Grab Matrix: Sediment Collected: 07/27/98 Sample Qualifiers Validation Туре Cyanide Result Units Lab Data Code REG Cyanide 0.87 MG/KG U UJ A05 Sample Qualifiers Validation Metals Туре Result Units Lab Data Code REG Aluminum 9300 MG/KG = REG Antimony 1.9 MG/KG 102 L REG Arsenic 12.6 MG/KG = REG Barium 91.8 MG/KG Ξ REG Beryllium 0.34 MG/KG B Л REG Cadmium 0.87 MG/KG U υ REG Calcium 11000 MG/KG = REG Chromium 17.3 MG/KG Ξ REG Cobalt 8.9 MG/KG = REG Copper 48.8 MG/KG Ξ REG Iron 25400 MG/KG Ξ REG Lead 36.3 MG/KG = REG Magnesium 13100 MG/KG = REG Manganese 1000 MG/KG Ξ REG Mercury 0.12 MG/KG B ł REG Nickel 21.5 MG/KG Ŧ REG Potassium 1320 MG/KG Ξ REG Selenium 0.87 MG/KG U U REG Silver 1.7 MG/KG U υ Sodium REG 73.3 MG/KG B F10 Л REG Thallium 0.87 MG/KG U υ REG Vanadium 19.2 MG/KG = REG Zinc 147 MG/KG ≐ Sample Qualifiers Validation Туре Explosives Result Units Lab Data Code REG 1,3,5-Trinitrobenzene 0.25 MG/KG U IJ A05 REG 1,3-Dinitrobenzene 0.25 MG/KG U UJ A05 REG 2,4,6-Trinitrotoluene 0.25 MG/KG U UJ A05 2,4-Dinitrotoluene 0.25 MG/KG U REG UJ A05 REG 2,6-Dinitrotoluene 0.25 MG/KG U UJ A05

0.25 MG/KG U

UJ

A05

#### RQLsd-012(p)-0064-SD 0.0 - 0.0 FT

Field Sample Type: Grab Matrix: Sediment

Collected: 07/27/98

4 1

Sample Type	Explosives	Result	Units	Qual Lab	iflers Data	Validation Code
REG	3-Nitrotoluene	0.25	MG/KG	u		A05
REG	4-Nitrotoluene		MG/KG	-	IJ	A05
REG	НМХ	0.5	MG/KG	Ú	ŬĴ	A05
REG	Nitrobenzene	0.25	MG/KG	U	UJ	A05
REG	Nitrocellulose as N	2	MG/KG	U	U	
REG	Nitroglycerin	2.5	MG/KG	U	IJ	A05
REG	Nitroguanidine	0.25	MG/KG	U	U	
REG	RDX	0.5	MG/KG	U	UJ	A05
REG	Tetryl	0.65	MG/KG	U	UJ	A05

Sample Type	Semi-Volatile Organics	Result	Units	Quali Lab	fiers Data	Validation Code
REA	1,2,4-Trichlorobenzene	580	UG/KG	U	UJ	A01,A05
REA	1,2-Dichlorobenzene	580	UG/KG	U	UJ	A01,A05
REA	1,3-Dichlorobenzene	580	UG/KG	U	UJ	A01,A05
REA	1,4-Dichlorobenzene	580	UG/KG	U	UJ	A01,A05
REA	2,2'-oxybis (1-chloropropane)		UG/KG		UJ	A01,A05
REA	2,4,5-Trichlorophenol		UG/KG		UJ	A01,A05
REA	2,4,6-Trichlorophenol		UG/KG		UJ	A01,A05
REA	2,4-Dichlorophenol		UG/KG	-	IJ	A01,A05
REA	2,4-Dimethylphenol		UG/KG		U)	A01,A05
REA	2,4-Dinitrophenol		UG/KG		UJ	A01,A05
REA	2,4-Dinitrotoluene		UG/KG		UJ	A01,A05
REA	2,6-Dinitrotoluene		UG/KG		UJ	A01,A05
REA	2-Chloronaphthalene			U	UJ	A01,A05
REA	2-Chlorophenol		UG/KG	-	UJ	A01,A05
REA	2-Methylnaphthalene			U	UJ	A01,A05
REA	2-Methylphenol		UG/KG		UJ	A01,A05
REA	2-Nitroaniline			U	UJ	A01,A05
REA	2-Nitrophenol		UG/KG		UJ	A01,A05
REA	3,3'-Dichlorobenzidine			U	0J	A01,A05
REA	3-Nitroaniline			U	U)	A01,A05
REA	4,6-Dinitro-o-Cresol			U	UJ	A01,A05
REA	4-Bromophenyl-phenyl Ether			U	UJ	A01,A05
REA	4-Chloroaniline			U	UJ	A01,A05
REA	4-Chlorophenyl-phenylether			U	UJ	A01,A05
REA	4-Methylphenol			U	UJ	A01,A05
REA	4-Nitroaniline			U	UJ	A01,A05
REA	4-Nitrophenol			U	UJ	A01,A05
REA	4-chloro-3-methylphenol		UG/KG		UJ	A01,A05
REA	Acenaphthene			U	UJ	A01,A05
REA	Acenaphthylene		UG/KG		UJ	A01,A05
REA	Anthracene			U	UJ	A01,A05
REA	Benzo(a)anthracene		UG/KG		UJ	A01,A05
REA	Benzo(a)pyrene			U	UJ	A01,A05
REA	Benzo(b)fluoranthene		UG/KG		UJ	A01,A05
REA	Benzo(g,h,i)perylene			U	UJ	A01,A05
REA	Benzo(k)fluoranthene		UG/KG		UJ	A01,A05
REA	Bis(2-chloroethoxy)methane		UG/KG		UJ	A01,A05
REA	Bis(2-chloroethyl)ether			U	UJ	A01,A05
REA	Bis(2-ethylhexyl)phthalate			U	UJ	A01,A05
REA REA	Butyl Benzyl Phthalate		UG/KG		UJ	A01,A05
	Carbazole		UG/KG	U	UJ	A01,A05
REA	Chrysene Di a butul Phthalata		UG/KG		UJ	A01,A05
REA	Di-n-butyl Phthalate		UG/KG	U	UJ	A01,A05
REA REA	Di-n-octyl Phthalate			U	UJ	A01,A05
-	Dibenzo(a,h)anthracene		UG/KG	U	UJ	A01,A05
REA REA	Dibenzofuran Distbut Bhthalata		UG/KG	U	UJ	A01,A05
	Diethyl Phthalate		UG/KG	U	UJ	A01,A05
REA	Dimethyl Phthalate		UG/KG		01 01	A01,A05
REA REA	Fluoranthene Fluorene		UG/KG UG/KG		01 01	A01,A05 A01,A05
REA			UG/KG		03 03	A01,A05
	Hexachlorobenzene Hexachlorobutadiene		UG/KG			•
REA REA	Hexachlorobutadiene		UG/KG		nn Nn	A01,A05
REA	Hexachlorocyclopentadiene Hexachloroethane		UG/KG		Մյ	A01,A05
						A01,A05
REA REA	Indeno(1,2,3-cd)pyrene		UG/KG UG/KG		01 D1	A01,A05
REA	Isophorone N-Nitroso-di-n-propylamine		UG/KG		UJ	A01,A05 A01,A05
NLA			00/60	J.	00	

#### Location: Ramsdell Quarry Landfill Station : RQLsd-012 Initial Phase

#### RQLsd-012(p)-0064-SD 0.0 - 0.0 FT

Field Sample Type: Grab Matrix: Sediment

Collected: 07/27/98

· · · · · · · · · · · · · · · · · · ·	- 0:0 TT	Field Sample Type: Gi	rado I		seaimer	п
Sample Type	Semi-Volatile Organics	Result	Units	Qual Lab	liflers Data	Validation Code
REA	N-Nitrosodiphenylamine	580	UG/KG	11	LU	401 405
	Naphthalene			-		A01,A05
	Nitrobenzene		UG/KG		UJ	A01,A05
			UG/KG		UJ	A01,A05
	Pentachlorophenol	580	UG/KG	U	UJ	A01,A05
	Phenanthrene	580	UG/KG	U	UJ	A01,A05
REA	Phenol	580	UG/KG	U	UJ	A01 A05
REA	Pyrene	140	UG/KG	J	J	A01,A05
Sample Type	Semi-Volatile Organics	Result	Units	Quai Lab	iflers Data	Validation Code
	1,2,4-Trichlorobenzene		UG/KG		UJ	A05
	1,2-Dichlorobenzene		UG/KG		ĥî	A05
	1,3-Dichlorobenzene		UG/KG		UĴ	A05
	1,4-Dichlorobenzene	580	UG/KG	U	UJ	A05
REG	2,2'-oxybis (1-chloropropane)	580	UG/KG	U	UJ	A05
REG	2,4,5-Trichlorophenol	580	UG/KG	U	ŲJ	A05
	2,4,6-Trichlorophenol		UG/KG		ŬĴ	A05
	2,4-Dichlorophenol		UG/KG			
				-	UJ	A05
	2,4-Dimethylphenol		UG/KG		UJ	A05
	2,4-Dinitrophenol		UG/KG		UJ	A05
	2,4-Dinitrotoluene	580	UG/KG	U	UJ	A05
REG	2,6-Dinitrotoluene	580	UG/KG	U	UJ	A05
	2-Chloronaphthalene		UG/KG		ŰĴ	A05
	2-Chlorophenol		UG/KG		UJ UJ	A05
			UG/KG			
-	2-Methylnaphthalene			-	UJ	A05
	2-Methylphenol		UG/KG		UJ	A05
	2-Nitroaniline	1400	UG/KG	U	UJ	A05
REG	2-Nitrophenol	580	UG/KG	U	UJ	A05
REG	3,3'-Dichlorobenzidine	580	UG/KG	U	UJ	A05
	3-Nitroaniline		UG/KG		IJ	A05,C02
	4,6-Dinitro-o-Cresol		UG/KG		UJ	A05
	4-Bromophenyl-phenyl Ether		UG/KG		UJ	A05
	4-Chloroaniline		UG/KG		01	A05,C05,C02
	4-Chlorophenyl-phenylether	580	UG/KG	U	UJ	A05
REG -	4-Methylphenol	580	UG/KG	U	UJ	A05
	4-Nitroaniline		UG/KG		ίŪ	A05
	4-Nitrophenol		UG/KG		ÛĴ	A05
-	4-chloro-3-methylphenol		UG/KG		01	A05
	•••					
	Acenaphthene		UG/KG		UJ	A05
	Acenaphthylene		UG/KG	-	ÛĴ	A05
	Anthracene		UG/KG	-	1	A05
REG	Benzo(a)anthracene	180	UG/KG	J	J	A05
	Benzo(a)pyrene	190	UG/KG	J	J	A05
	Benzo(b)fluoranthene		UG/KG		J	A05
	Benzo(g,h,i)perylene		UG/KG		J	A05
				-		
	Benzo(k)fluoranthene		UG/KG		J	A05
	Bis(2-chloroethoxy)methane		UG/KG		UJ	A05
REG	Bis(2-chloroethyl)ether	580	UG/KG	U	ÛĴ	A05
REG	Bis(2-ethylhexyl)phthalate	580	UG/KG	U	IJ	A05
	Butyl Benzyl Phthalate		UG/KG		ŬĴ	A05
	Carbazole		UG/KG		UJ	A05
	Chrysene		UG/KG		J	A05
	Di-n-butyl Phthalate		UG/KG		UJ	A05
REG	Di-n-octyl Phthalate	580	UG/KG	U	UJ	A05
REG	Dibenzo(a,h)anthracene	580	UG/KG	υ	UJ	A05
	Dibenzofuran		UG/KG		ŬĴ	A05
	Diethyl Phthalate		UG/KG		UĴ	A05
	Dimethyl Phthalate		UG/KG	-	U	A05
	Fluoranthene		UG/KG		J	A05
REG	Fluorene	580	UG/KG	U	UJ	A05
REG	Hexachlorobenzene	580	UG/KG	U	IJ	A05
	Hexachlorobutadiene		UG/KG		UJ	A05
	Hexachlorocyclopentadiene		UG/KG		UJ	A05
	• •					
DEC 1	Hexachloroethane		UG/KG		U	A05
		100	UG/KG	J	J	A05
REG	Indeno(1,2,3-cd)pyrene					
REG	Indeno(1,2,3-cd)pyrene Isophorone	580	UG/KG	U	UJ	A05
REG REG			UG/KG UG/KG		ມາ ບາ	A05 A05
REG REG REG	Isophorone	580		U		

#### Location: Ramsdell Quarry Landfill Station : RQLsd-012 Initial Phase

Samp	A		**	0	alifiers			
Туре		Result	Units	Lab		Validation Code		
REG	Nitrobenzene	580	UG/KG	U	ÜJ	A05		
REG	Pentachlorophenol	580	UG/KG	U	UJ	A05		
REG	Phenanthrene	230	UG/KG	J	J	A05		
REG	Phenot	580	UG/KG	U	ŪJ	A05		
REG	Pyrene	310	UG/KG	J	J	A05		
Sampi Type		Result	Units	Qua Lab	ulifiers Data	Validation		
REG						Code	_	
	1,1,1-Trichloroethane		UG/KG	-	UJ	A05		
REG	1,1,2,2-Tetrachloroethane		UG/KG		UJ	A05		
REG	1,1,2-Trichloroethane		UG/KG		UJ	A05		
REG	1,1-Dichloroethane		UG/KG	-	UJ	A05		
REG	1,1-Dichloroethene		UG/KG		UJ	A05		
REG	1,2-Dichloroethane		UG/KG	-	UJ	A05		
	1,2-Dichloroethene		UG/KG		UJ	A05		
REG REG	1,2-Dichloropropane		UG/KG		UJ	A05		
REG	1,3-cis-Dichloropropene		UG/KG	-	UJ	A05		
	1,3-trans-Dichloropropene		UG/KG		ບມ	A05		
REG	2-Butanone		UG/KG		UJ	A05		
REG	2-Hexanone		UG/KG		UJ	A05		
REG	4-Methyl-2-pentanone		UG/KG		UJ	A05		
REG REG	Acetone		UG/KG	-	UJ	A05		
	Benzene		UG/KG		UJ	A05		
REG	Bromodichloromethane		UG/KG		UJ	A05		
REG	Bromoform		UG/KG	-	IJ	A05		
REG	Bromomethane		UG/KG	-	IJ	A05		
REG	Carbon Disulfide		UG/KG		UJ	A05		
REG	Carbon Tetrachloride		UG/KG		UJ	A05		
REG			UG/KG	-	UJ	A05		
REG	Chloroethane		UG/KG		UJ	A05		
REG	Chloroform		UG/KG		UJ	A05		
REG	Chloromethane		UG/KG	-	UJ	A05		
REG	Dibromochloromethane		UG/KG	-	UJ	A05		
REG	Ethylbenzene		UG/KG	-	UJ	A05		
REG	Methylene Chloride		UG/KG	-	UJ	A05		
REG	Styrene		UG/KG		UJ	A05		
REG	Tetrachloroethene		UG/KG		UJ	A05		
REG	Toluene		UG/KG		ບມ	A05		
REG	Trichloroethene		UG/KG	-	UJ	A05		
REG	Vinyl Chloride	17	UG/KG	U	UJ	A05		
REG	Xylenes, Total	8.7	UG/KG	U	UJ	A05		

#### RQLsd-012(p)-0065-FD 0.0 - 0.0 FT

Field Sample Type: Field Duplicate

Matrix: Sediment

Collected: 07/27/98

.

Sample				Qua	lifiers	Validation
Туре	Cyanide	Result	Units	Lab	Data	Code
REG	Cyanide	0.98	MG/KG	U	UJ	A05
Sample Type	Metals	Result	Units	Qua Lab	lifiera Data	Validation Code
REG	Aluminum	11500	MG/KG		=	
REG	Antimony	1.5	MG/KG		J	102
REG	Arsenic	15.4	MG/KG		#	
REG	Barium	108	MG/KG		=	
REG	Beryllium	0.42	MG/KG	В	J	
REG	Cadmium	0.98	MG/KG	U	υ	
REG	Calcium	14600	MG/KG		=	
REG	Chromium	19.6	MG/KG		=	
REG	Cobalt	10.1	MG/KG		=	
REG	Copper	58.4	MG/KG		Ξ	
REG	Iron	28400	MG/KG		=	
REG	Lead	40.6	MG/KG		=	
REG	Magnesium	15400	MG/KG		=	
REG	Manganese	1190	MG/KG		=	
REG	Mercury	0.11	MG/KG	в	J	
REG	Nickel	24.4	MG/KG		=	
REG	Potassium	1590	MG/KG		=	
REG	Selenium	0.98	MG/KG	U	U	

Sample Type	Metals	Result	Units		Qualifiers Lab Data	Validation Code	
REG	Silver		MG/KG	ū	U		_
REG	Sodium		MG/KG			F10	
REG	Thallium		MG/KG				
REG	Vanadium		MG/KG	-	=		
REG	Zinc		MG/KG		=		
Sample Type	Explosives	Result	Units		Qualifiers Lab Data	Validation Code	
REG	1,3,5-Trinitrobenzene		MG/KG			A05	-
REG REG	1,3-Dinitrobenzene 2,4,6-Trinitrotoluene		MG/KG MG/KG			A05 A05	
REG	2,4-Dinitrotoluene	0.25	MG/KG	Ū	ŬĴ	A05	
REG REG	2,6-Dinitrotoluene 2-Nitrotoluene		MG/KG			A05	
REG	3-Nitrotoluene		MG/KG MG/KG		UJ	A05 A05	
REG	4-Nitrotoluene		MG/KG		UJ	A05	
REG	НМХ		MG/KG		ŰĴ	A05	
REG	Nitrobenzene	0.25	MG/KG	U	UJ	A05	
REG	Nitrocellulose as N		MG/KG		J		
REG REG	Nitroglycerin		MG/KG		UJ	A05	
REG	Nitroguanidine RDX		MG/KG	-	U	4.05	
REG	Tetryl		MG/KG MG/KG		U) U)	A05 A05	
Sample Type	Semi-Volatile Organics	Result	Units		Qualifiers Lab Data	Validation Code	
REA	1,2,4-Trichlorobenzene	650	UG/KG	u	UJ	A01,A05	-
REA	1,2-Dichlorobenzene		UG/KG		ŰĴ	A01,A05	
REA	1,3-Dichlorobenzene	650	UG/KG	U	UJ	A01,A05	
REA	1,4-Dichlorobenzene	650	UG/KG	U	UJ	A01,A05	
	2,2'-oxybis (1-chloropropane)		UG/KG		UJ	A01,A05	
	2,4,5-Trichlorophenol		UG/KG		UJ	A01,A05	
	2,4,6-Trichlorophenol 2,4-Dichlorophenol		UG/KG UG/KG		UJ LU	A01,A05	
	2,4-Dimethylphenol		UG/KG		UJ UJ	A01,A05 A01,A05	
	2,4-Dinitrophenol		UG/KG		ŬĴ	A01,A05	
REA	2,4-Dinitrotoluene	650	UG/KG	U	UJ	A01,A05	
	2,6-Dinitrotoluene	650	UG/KG	U	ίŲ	A01,A05	
	2-Chloronaphthalene		UG/KG		UJ	A01,A05	
	2-Chlorophenol		UG/KG		UJ	A01,A05	
	2-Methylnaphthalene 2-Methylphenoi		UG/KG UG/KG		UJ	A01,A05	
	2-Nitroaniline		UG/KG		UJ LU	A01,A05 A01,A05	
	2-Nitrophenol		UG/KG		UJ	A01,A05	
	3,3'-Dichlorobenzidine		UG/KG		ŨĴ	A01,A05	
	3-Nitroaniline	1600	UG/KG	U	UJ	A01,A05	
	4,6-Dinitro-o-Cresol		UG/KG		UJ	A01,A05	
	4-Bromophenyl-phenyl Ether		UG/KG		UJ	A01.A05	
	4-Chloroaniline		UG/KG		UJ	A01,A05	
	4-Chlorophenyl-phenylether 4-Methylphenol		UG/KG		UJ	A01,A05	
	4-Nitroaniline		UG/KG UG/KG		ບງ ບງ	A01,A05 A01,A05	
	4-Nitrophenol		UG/KG		UJ	A01,A05	
	4-chloro-3-methylphenol		UG/KG		UJ	A01,A05	
	Acenaphthene		UG/KG		ŰĴ	A01.A05	
	Acenaphthylene		UG/KG		IJJ	A01,A05	
REA	Anthracene		UG/KG		UJ	A01 A05	
	Benzo(a)anthracene		UG/KG		UJ	A01,A05	
	Benzo(a)pyrene		UG/KG		UJ	A01,A05	
	Benzo(a h i)pendene		UG/KG		UJ	A01,A05	
	Benzo(g,h,i)perylene Benzo(k)fluoranthene		UG/KG UG/KG		ດງ ມາ	A01,A05	
	Bis(2-chloroethoxy)methane		UG/KG		UJ	A01,A05 A01,A05	
	Bis(2-chloroethyl)ether		UG/KG		UJ	A01,A05	
	Bis(2-ethylhexyl)phthalate		UG/KG		UJ	A01,A05	
	· · · · · · · · · · · · · · · · · · ·					•	
	Butyl Benzyl Phthalate	650	UG/KG	υ	UJ	A01,A05	

#### RQLsd-012(p)-0065-FD 0.0 - 0.0 FT

#### Field Sample Type: Field Duplicate Matrix: Sediment

Collected: 07/27/98

		/			41A. 901		001100
Sample Type	Semi-Volatile Organics	Result	Units	Qua Lab	lifiers Data	Validation Code	
REA	Di-n-butyl Phthalate		UG/KG	11	UJ	401 405	-
REA	Di-n-octyl Phthalate		UG/KG			A01,A05	
REA	Dibenzo(a,h)anthracene		UG/KG		UJ	A01,A05	
REA	Dibenzofuran		UG/KG		UJ	A01,A05	
REA	Diethyl Phthalate		UG/KG		UJ	A01,A05	
REA	Dimethyl Phthalate			-	UJ	A01,A05	
REA	Fluoranthene		UG/KG		UJ	A01,A05	
REA			UG/KG		IJ	A01,A05	
	Fluorene		UG/KG		UJ	A01,A05	
REA	Hexachlorobenzene		UG/KG		UJ	A01,A05	
REA	Hexachlorobutadiene		UG/KG		UJ	A01,A05	
REA	Hexachlorocyclopentadiene		UG/KG		UJ	A01,A05	
REA	Hexachloroethane		UG/KG		UJ	A01,A05	
REA	Indeno(1,2,3-cd)pyrene	650	UG/KG	U	UJ	A01,A05	
REA	Isophorone	650	UG/KG	U	UJ	A01,A05	
REA	N-Nitroso-di-n-propylamine	650	UG/KG	U	UJ	A01,A05	
REA	N-Nitrosodiphenylamine	650	UG/KG	U	UJ	A01,A05	
REA	Naphthalene	650	UG/KG	U	UJ	A01,A05	
REA	Nitrobenzene	650	UG/KG	Ŭ	IJJ	A01,A05	
REA	Pentachiorophenol		UG/KG		ŰĴ	A01,A05	
REA	Phenanthrene		UG/KG		ŰĴ	A01.A05	
REA	Phenol		UG/KG	-	UJ	A01,A05	
REA	Pyrene		UG/KG		J	A01,A05	
	, yrene	130	UGING	5	J	AULAUS	
Sample Type	Semi-Volatile Organics	Result	Units	Qual Lab	ifiers Data	Validation Code	
REG	1,2,4-Trichlorobenzene	650	UG/KG	U	UJ	A05	-
REG	1,2-Dichlorobenzene		UG/KG		UJ	A05	
REG	1,3-Dichlorobenzene	650	UG/KG	U	UJ	A05	
REG	1,4-Dichlorobenzene		UG/KG	-	ŬĴ	A05	
REG	2,2'-oxybis (1-chloropropane)		UG/KG	-	ŰĴ	A05	
REG	2,4,5-Trichlorophenol		UG/KG		ŰĴ	A05	
REG	2,4,6-Trichlorophenol		UG/KG				
REG	•				UJ	A05	
	2,4-Dichlorophenol		UG/KG		UJ .	A05	
REG	2,4-Dimethylphenol		UG/KG		UJ	A05	
REG	2,4-Dinitrophenol		UG/KG		ÛĴ	A05	
REG	2,4-Dinitrotoluene		UG/KG		UJ	A05	
REG	2,6-Dinitrotoluene		UG/KG		UJ	A05	
REG	2-Chioronaphthalene	650	UG/KG	U	Πî	A05	
REG	2-Chlorophenol	650	UG/KG	U	UJ	A05	
REG	2-Methylnaphthalene	650	UG/KG	U	UJ	A05	
REG	2-Methylphenol	650	UG/KG	U	IJ	A05	
REG	2-Nitroaniline	1600	UG/KG	U	UJ	A05	
REG	2-Nitrophenol	650	UG/KG	u	UJ	A05	
REG	3,3'-Dichlorobenzidine	650	UG/KG	Ū.	UJ	A05	
REG	3-Nitroaniline		UG/KG		ŬĴ	A05,C05,C02	
REG	4.6-Dinitro-o-Cresol		UG/KG		UJ UJ	A05,000,002	
REG	4-Bromophenyl-phenyl Ether						
REG	4-Chloroaniline		UG/KG		UJ	A05	
REG			UG/KG		UJ	A05,C05,C02	
	4-Chlorophenyl-phenylether		UG/KG		UJ	A05	
REG	4-Methylphenol		UG/KG		UJ	A05	
REG	4-Nitroaniline		UG/KG		UJ	A05	
REG	4-Nitrophenol		UG/KG		UJ	A05	
REG	4-chloro-3-methylphenol		UG/KG		UJ	A05	
REG	Acenaphthene		UG/KG		UJ	A05	
REG	Acenaphthylene	650	UG/KG	U	Nî	A05	
REG	Anthracene	200	UG/KG	J	J	A05	
REG	Benzo(a)anthracene	500	UG/KG	J	J	A05	
REG	Benzo(a)pyrene	480	UG/KG	J	J	A05	
REG	Benzo(b)fluoranthene	610	UG/KG	J	J	A05	
REG	Benzo(g,h,i)perylene		UG/KG		Ĵ	A05	
REG	Benzo(k)fluoranthene		UG/KG		J	A05	
REG	Bis(2-chloroethoxy)methane		UG/KG		บา	A05	
REG	Bis(2-chloroethyl)ether		UG/KG		UJ UJ	A05	
REG	Bis(2-ethylhexyl)phthalate						
			UG/KG		UJ	A05	
REG	Butyl Benzyl Phthalate		UG/KG		UJ	A05	
REG	Carbazole		UG/KG		UJ	A05	
REG	Chrysene		UG/KG		J	A05	
REG	Di-n-butyl Phthalate		UG/KG		UJ	A05	
REG	Di-n-octyl Phthalate	650	UG/KG	U	UJ	A05	

D-114

#### RQLsd-012(p)-0065-FD 0.0 - 0.0 FT

#### Field Sample Type: Field Duplicate Matrix: Sediment

Collected: 07/27/98

Sample Type	Semi-Volatile Organics	Result	Units	Qua Lab	liflers Data	Validation Code
REG	Dibenzo(a,h)anthracene	650	UG/KG	U	UJ	A05
REG	Dibenzofuran	650	UG/KG	U	UJ	A05
REG	Diethyl Phthalate	650	UG/KG	U	UJ	A05
REG	Dimethyl Phthalate	650	UG/KG	U	UJ	A05
REG	Fluoranthene	1100	UG/KG		J	A05
REG	Fluorene	650	UG/KG	U	IJ	A05
REG	Hexachlorobenzene	650	UG/KG	U	ŬĴ	A05
REG	Hexachlorobutadiene	650	UG/KG	Ŭ	ŪJ	A05
REG	Hexachlorocyclopentadiene	650	UG/KG	υ	UJ	A05
REG	Hexachloroethane	650	UG/KG	U	ŰĴ	A05
REG	Indeno(1,2,3-cd)pyrene	250	UG/KG	Ĵ	Ĵ	A05
REG	Isophorone	650	UG/KG	U	ŪJ	A05
REG	N-Nitroso-di-n-propylamine		UG/KG		ŬĴ	A05
REG	N-Nitrosodiphenylamine		UG/KG	-	UJ	A05
REG	Naphthalene		UG/KG		UJ	A05
REG	Nitrobenzene		UG/KG		UJ	A05
REG	Pentachlorophenol		UG/KG		UJ	A05
REG	Phenanthrene		UG/KG		J	A05
REG	Phenol		UG/KG		ÛJ J	A05
REG	Pyrene		UG/KG	0	1	A05
Sample				Qual	ifiers	Validation
Туре	Volatile Organics	Result	Units	Lab	Data	Code
REG	1,1,1-Trichloroethane	9.8	UG/KG	U	UJ	A05
REG	1,1,2,2-Tetrachloroethane	9.8	UG/KG	U	UJ	A05
REG	1,1,2-Trichloroethane	9.8	UG/KG	U	UJ	A05
REG	1,1-Dichloroethane	9.8	UG/KG	U	IJ	A05
REG	1,1-Dichloroethene	9.8	UG/KG	U	UJ	A05
REG	1,2-Dichloroethane	9.8	UG/KG	U	UJ	A05
REG	1,2-Dichloroethene	9.8	UG/KG	U	ปม	A05
REG	1,2-Dichloropropane	9.8	UG/KG	U	UJ	A05
REG	1,3-cis-Dichloropropene	9.8	UG/KG	U	UJ	A05
REG	1,3-trans-Dichloropropene	9.8	UG/KG	U	UJ	A05
REG	2-Butanone	30	UG/KG	U	UJ	A05
		00				
REG	2-Hexanone		UG/KG	U	ŲĴ	A05
REG REG		39	UG/KG UG/KG		UJ UJ	A05 A05
	2-Hexanone	39 39		U		
REG	2-Hexanone 4-Methyl-2-pentanone	39 39 39	UG/KG	U U	UJ	A05
REG REG	2-Hexanone 4-Methyl-2-pentanone Acetone	39 39 39 9.8	UG/KG UG/KG	U U U	U) UJ	A05 A05
REG REG REG	2-Hexanone 4-Methyl-2-pentanone Acetone Benzene	39 39 39 9.8 9.8	UG/KG UG/KG UG/KG	U U U U	ຄາ ດາ ດາ	A05 A05 A05
REG REG REG REG	2-Hexanone 4-Methyl-2-pentanone Acetone Benzene Bromodichloromethane	39 39 39 9.8 9.8 9.8 9.8	UG/KG UG/KG UG/KG UG/KG	U U U U U	01 01 01 01 01	A05 A05 A05 A05 A05
REG REG REG REG REG	2-Hexanone 4-Methyl-2-pentanone Acetone Benzene Bromodichloromethane Bromoform	39 39 39 9.8 9.8 9.8 9.8 20	UG/KG UG/KG UG/KG UG/KG UG/KG	U U U U U U	C) C) C) C) C) C) C) C) C) C) C) C) C) C	A05 A05 A05 A05 A05 A05 A05
REG REG REG REG REG REG	2-Hexanone 4-Methyl-2-pentanone Acetone Benzene Bromodichloromethane Bromoform Bromomethane	39 39 9.8 9.8 9.8 9.8 20 9.8	UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG	U U U U U U U	01 01 01 01 01 01 01 01	A05 A05 A05 A05 A05 A05 A05 A05
REG REG REG REG REG REG REG	2-Hexanone 4-Methyl-2-pentanone Acetone Benzene Bromodichloromethane Bromoform Bromomethane Carbon Disulfide	39 39 9.8 9.8 9.8 9.8 20 9.8 9.8	UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG	U U U U U U U U U	01 01 01 01 01 01 01 01 01 01	A05 A05 A05 A05 A05 A05 A05 A05 A05
REG REG REG REG REG REG REG	2-Hexanone 4-Methyl-2-pentanone Acetone Benzene Bromodichloromethane Bromoform Bromomethane Carbon Disulfide Carbon Tetrachloride	39 39 9.8 9.8 9.8 20 9.8 20 9.8 9.8 9.8	UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG		01 01 01 01 01 01 01 01 01 01	A05 A05 A05 A05 A05 A05 A05 A05 A05 A05
REG REG REG REG REG REG REG REG	2-Hexanone 4-Methyl-2-pentanone Acetone Benzene Bromodichloromethane Bromoform Bromomethane Carbon Disulfide Carbon Tetrachloride Chlorobenzene	39 39 38 9.8 9.8 20 9.8 9.8 9.8 9.8 9.8 20	UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG		01 01 01 01 01 01 01 01 01 01	A05 A05 A05 A05 A05 A05 A05 A05 A05 A05
REG REG REG REG REG REG REG REG REG	2-Hexanone 4-Methyl-2-pentanone Acetone Benzene Bromodichloromethane Bromoform Bromomethane Carbon Disulfide Carbon Tetrachloride Chlorobenzene Chlorobenzene Chlorothane	39 39 39 9.8 9.8 9.8 20 9.8 9.8 9.8 9.8 9.8 9.8 9.8	UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG			A05 A05 A05 A05 A05 A05 A05 A05 A05 A05
REG REG REG REG REG REG REG REG REG REG	2-Hexanone 4-Methyl-2-pentanone Acetone Benzene Bromodichloromethane Bromoform Bromomethane Carbon Disulfide Carbon Tetrachloride Chlorobenzene Chlorobenzene Chloroform Chloroform	39 39 9.8 9.8 9.8 20 9.8 9.8 9.8 9.8 9.8 9.8 20 9.8 20	UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG			A05 A05 A05 A05 A05 A05 A05 A05 A05 A05
REG REG REG REG REG REG REG REG REG REG	2-Hexanone 4-Methyl-2-pentanone Acetone Benzene Bromodichloromethane Bromomethane Carbon Disulfide Carbon Tetrachloride Chlorobenzene Chlorobenzene Chloroform Chloromethane Dibromochloromethane	39 39 39 9.8 9.8 20 9.8 9.8 9.8 9.8 20 9.8 20 9.8 20 9.8	UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG			A05 A05 A05 A05 A05 A05 A05 A05 A05 A05
REG REG REG REG REG REG REG REG REG REG	2-Hexanone 4-Methyl-2-pentanone Acetone Benzene Bromodichloromethane Bromoform Bromomethane Carbon Disulfide Carbon Tetrachloride Chlorobenzene Chlorobenzene Chloroethane Chloroform Chloromethane Dibromochloromethane Ethylbenzene	39 39 9.8 9.8 9.8 9.8 20 9.8 9.8 20 9.8 20 9.8 20 9.8 20 9.8	UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG	U U U U U U U U U U U U U U U U U		A05 A05 A05 A05 A05 A05 A05 A05 A05 A05
REG REG REG REG REG REG REG REG REG REG	2-Hexanone 4-Methyl-2-pentanone Acetone Benzene Bromodichloromethane Bromoform Bromomethane Carbon Disulfide Carbon Tetrachloride Chlorobenzene Chlorobenzene Chloroform Chloroform Chloromethane Dibromochloromethane Ethylbenzene Methylene Chloride	39 39 39 9.8 9.8 9.8 20 9.8 9.8 20 9.8 20 9.8 20 9.8 20 9.8 20 9.8	UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG			A05 A05 A05 A05 A05 A05 A05 A05 A05 A05
REG REG REG REG REG REG REG REG REG REG	2-Hexanone 4-Methyl-2-pentanone Acetone Benzene Bromodichloromethane Bromoform Bromomethane Carbon Disulfide Carbon Tetrachloride Chlorobenzene Chlorobenzene Chloroform Chlorormathane Dibromochloromethane Ethylbenzene Methylene Chloride Styrene	39 39 39 9.8 9.8 9.8 20 9.8 9.8 20 9.8 20 9.8 20 9.8 20 9.8 9.8 20 9.8	UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG			A05 A05 A05 A05 A05 A05 A05 A05 A05 A05
REG REG REG REG REG REG REG REG REG REG	2-Hexanone 4-Methyl-2-pentanone Acetone Benzene Bromodichloromethane Bromoform Bromomethane Carbon Disulfide Carbon Disulfide Carbon Tetrachloride Chlorobenzene Chlorobenzene Chloroform Chlororethane Dibromochloromethane Ethylbenzene Methylene Chloride Styrene Tetrachloroethene	39 39 39 9.8 9.8 9.8 20 9.8 20 9.8 20 9.8 20 9.8 20 9.8 9.8 9.8 9.8 9.8	UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG			A05 A05 A05 A05 A05 A05 A05 A05 A05 A05
REG REG REG REG REG REG REG REG REG REG	2-Hexanone 4-Methyl-2-pentanone Acetone Benzene Bromodichloromethane Bromoform Bromomethane Carbon Disulfide Carbon Tetrachloride Chlorobenzene Chlorotentane Chloroform Chloromethane Dibromochloromethane Ethylbenzene Methylene Chloride Styrene Tetrachloroethene Toluene	39 39 39 9.8 9.8 9.8 20 9.8 9.8 20 9.8 20 9.8 20 9.8 9.8 9.8 9.8 9.8 9.8 9.8	UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG	U U U U U U U U U U U U U U U U U U U		A05 A05 A05 A05 A05 A05 A05 A05 A05 A05
REG REG REG REG REG REG REG REG REG REG	2-Hexanone 4-Methyl-2-pentanone Acetone Benzene Bromodichloromethane Bromoform Bromomethane Carbon Disulfide Carbon Tetrachloride Chlorobenzene Chlorobenzene Chlorotentane Chloroform Chloromethane Dibromochloromethane Ethylbenzene Methylene Chloride Styrene Tetrachloroethene Toluene Trichloroethene	39 39 39 9.8 9.8 9.8 20 9.8 8.8 9.8 20 9.8 20 9.8 9.8 9.8 9.8 9.8 9.8 9.8 9.8	UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG	UUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUU		A05 A05 A05 A05 A05 A05 A05 A05 A05 A05
REG REG REG REG REG REG REG REG REG REG	2-Hexanone 4-Methyl-2-pentanone Acetone Benzene Bromodichloromethane Bromoform Bromomethane Carbon Disulfide Carbon Tetrachloride Chlorobenzene Chlorotentane Chloroform Chloromethane Dibromochloromethane Ethylbenzene Methylene Chloride Styrene Tetrachloroethene Toluene	39 39 39 9.8 9.8 9.8 20 9.8 8.8 20 9.8 20 9.8 20 9.8 9.8 9.8 9.8 9.8 9.8 9.8 9.8 9.8 9.8	UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG	UUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUU		A05 A05 A05 A05 A05 A05 A05 A05 A05 A05

Location: Ramsdell Quarry Landfill Station: RQLsd-013 Initial Phase

RQLsd-013(p)-0032-SD 0.	.0 - 0.5 FT	Field Sample Type: G	ab	Matrix: Sediment		Collected: 07/08/
Sample Type	Cyanide	Result	Units	Qualifiers Lab Data	Validation Code	·
REG	Cyanide	1.9	MG/KG	UU		_
Sample Type	Metals	Result	Units	Qualifiers Lab Data	Validation Code	

#### Location: Ramsdell Quarry Landfill Station : RQLsd-013 Initial Phase

#### RQLsd-013(p)-0032-SD 0.0 - 0.5 FT

# Field Sample Type: Grab Matrix: Sediment

Collected: 07/08/98

Cample					_			07/08/
Sample Type	Metals	Result	Units		iualifiers ab Data	Validation Code		
REG	Aluminum	22100	MG/KG		=		-	
REG	Antimony	1.9	MG/KG	U	UJ	102		
REG	Arsenic		MG/KG		=			
REG REG	Barium		MG/KG		=			
REG	Beryllium Cadmium		MG/KG		J			
REG	Calcium		MG/KG		U	100		
REG	Chromium		MG/KG MG/KG	в	J =	102		
REG	Cobalt		MG/KG	R	_ _			
REG	Copper		MG/KG	0	=			
REG	Iron		MG/KG		=			
REG	Lead		MG/KG		=			
REG	Magnesium	4660	MG/KG		J	103		
REG	Manganese	223	MG/KG		J	E07		
REG	Mercury	0.15	MG/KG	в	J			
REG	Nickel		MG/KG		=			
REG	Potassium		MG/KG		J	F10		
REG	Selenium		MG/KG		=			
REG	Silver Sodium		MG/KG		U			
REG REG	Thallium		MG/KG		U			
REG	Vanadium		MG/KG	U	U			
REG	Zinc		MG/KG MG/KG	мві	= ) =			
ample				Q	ualifiers	Validation		
Туре	Explosives	Result	Units		nb Data	Code	_	
REG	1,3,5-Trinitrobenzene		MG/KG		U			
REG REG	1,3-Dinitrobenzene		MG/KG	-	U			
REG	2,4,6-Trinitrotoluene 2,4-Dinitrotoluene		MG/KG	-	U			
REG	2,6-Dinitrotoluene		MG/KG MG/KG		บ บ			
REG	2-Nitrotoluene		MG/KG		J			
REG	3-Nitrotoluene		MG/KG		Ű			
REG	4-Nitrotoluene		MG/KG		Ŭ			
REG	HMX		MG/KG		Ĵ			
REG	Nitrobenzene		MG/KG		Ū			
REG	Nitrocellulose as N	2	MG/KG	Ú.	Ū			
REG	Nitroglycerin	2.5	MG/KG	U	U			
REG	Nitroguanidine	0.25	MG/KG	U	U			
REG	RDX	0.5	MG/KG	U	U			
	Tetryl	0.65	MG/KG	U	U			
REG								
ample	Semi-Volatile Organics	Result	Units	Q: Li	ualifiers Ib Data	Validation Code		
Sample Type				Li	ib Data		-	
ample Type REG	Semi-Volatile Organics	1200	UG/KG	Li	U Data		-	
ample Type REG REG	Semi-Volatile Organics 1,2,4-Trichlorobenzene 1,2-Dichlorobenzene			Li U U	ib Data		-	
ample Type REG REG REG	Semi-Volatile Organics	1200 1200 1200 1200	UG/KG UG/KG	La U U U	U U U		-	
Sample Type REG REG REG REG	Semi-Volatile Organics 1,2,4-Trichlorobenzene 1,2-Dichlorobenzene 1,3-Dichlorobenzene	1200 1200 1200 1200 1200	UG/KG UG/KG UG/KG		U U U U		-	
Sample Type REG REG REG REG REG	Semi-Volatile Organics 1,2,4-Trichlorobenzene 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene	1200 1200 1200 1200 1200 1200	UG/KG UG/KG UG/KG UG/KG		U U U U U U U U U U U U U U U U U U U		-	
REG REG REG REG REG REG REG REG	Semi-Volatile Organics 1,2,4-Trichlorobenzene 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 2,2'-oxybis (1-chloropropane)	1200 1200 1200 1200 1200 1200 1200	UG/KG UG/KG UG/KG UG/KG UG/KG		U U U U U U U U		-	
Sample Type REG REG REG REG REG REG	Semi-Volatile Organics 1,2,4-Trichlorobenzene 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 2,2'-oxybis (1-chloropropane) 2,4,5-Trichlorophenol	1200 1200 1200 1200 1200 1200 1200 1200	UG/KG UG/KG UG/KG UG/KG UG/KG		ND Data		-	
ample Type REG REG REG REG REG REG REG REG	Semi-Volatile Organics 1,2,4-Trichlorobenzene 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 2,2'-oxybis (1-chloropropane) 2,4,5-Trichlorophenol 2,4,6-Trichlorophenol	1200 1200 1200 1200 1200 1200 1200 1200	UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG		ND Data		-	
ample Type REG REG REG REG REG REG REG REG REG	Semi-Volatile Organics 1,2,4-Trichlorobenzene 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 2,2-oxybis (1-chloropropane) 2,4,5-Trichlorophenol 2,4-6-Trichlorophenol 2,4-Dichlorophenol 2,4-Dimethylphenol 2,4-Dimethylphenol	1200 1200 1200 1200 1200 1200 1200 1200	UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG		Ab Data U U U U U U U U U U U U U U U U		-	
ample Type REG REG REG REG REG REG REG REG REG REG	Semi-Volatile Organics 1,2,4-Trichlorobenzene 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 2,2-oxybis (1-chloropropane) 2,4,5-Trichlorophenol 2,4-6-Trichlorophenol 2,4-Dinitrophenol 2,4-Dinitrophenol 2,4-Dinitrotoluene	1200 1200 1200 1200 1200 1200 1200 1200	UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG		Ib         Data           U         U           U         U           U         U           U         U           U         U           U         U           U         U           U         U           U         U           U         U           U         U           U         U           U         U           U         U           U         U           U         U		-	
REG REG REG REG REG REG REG REG REG REG	Semi-Volatile Organics 1,2,4-Trichlorobenzene 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 2,2'-oxybis (1-chloropropane) 2,4,5-Trichlorophenol 2,4-Dichlorophenol 2,4-Dinitrophenol 2,4-Dinitrophenol 2,4-Dinitrotoluene 2,6-Dinitrotoluene	1200 1200 1200 1200 1200 1200 1200 1200	UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG		Ib         Data           U         U           U         U           U         U           U         U           U         U           U         U           U         U           U         U           U         U           U         U           U         U           U         U           U         U           U         U           U         U           U         U           U         U           U         U		-	
REG REG REG REG REG REG REG REG REG REG	Semi-Volatile Organics 1,2,4-Trichlorobenzene 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 2,2'-oxybis (1-chloropropane) 2,4,5-Trichlorophenol 2,4-6-Trichlorophenol 2,4-Dinitrophenol 2,4-Dinitrophenol 2,4-Dinitrophenol 2,4-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene	1200 1200 1200 1200 1200 1200 1200 1200	UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG		Ib         Data           U         U           U         U           U         U           U         U           U         U           U         U           U         U           U         U           U         U           U         U           U         U           U         U           U         U           U         U           U         U           U         U           U         U           U         U           U         U		-	
ample Type REG REG REG REG REG REG REG REG REG REG	Semi-Volatile Organics 1,2,4-Trichlorobenzene 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 2,2'-oxybis (1-chloropropane) 2,4,5-Trichlorophenol 2,4,6-Trichlorophenol 2,4-Dichlorophenol 2,4-Dinitrophenol 2,4-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene	1200 1200 1200 1200 1200 1200 1200 1200	UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG		Ib         Data           U         U           U         U           U         U           U         U           U         U           U         U           U         U           U         U           U         U           U         U           U         U           U         U           U         U           U         U           U         U           U         U           U         U           U         U           U         U           U         U		-	
ample Type REG REG REG REG REG REG REG REG REG REG	Semi-Volatile Organics 1,2,4-Trichlorobenzene 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 2,2'-oxybis (1-chloropropane) 2,4,5-Trichlorophenol 2,4-5-Trichlorophenol 2,4-Dinitrophenol 2,4-Dinitrophenol 2,4-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene	1200 1200 1200 1200 1200 1200 1200 1200	UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG		Ib         Data           U         U           U         U           U         U           U         U           U         U           U         U           U         U           U         U           U         U           U         U           U         U           U         U           U         U           U         U           U         U           U         U           U         U           U         U           U         U           U         U		-	
ample Type REG REG REG REG REG REG REG REG REG REG	Semi-Volatile Organics 1,2,4-Trichlorobenzene 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 2,2'-oxybis (1-chloropropane) 2,4,5-Trichlorophenol 2,4-Dichlorophenol 2,4-Dinitrophenol 2,4-Dinitrotoluene 2,6-Dinitrotoluene	1200 1200 1200 1200 1200 1200 1200 1200	UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG		Ib         Data           U         U           U         U           U         U           U         U           U         U           U         U           U         U           U         U           U         U           U         U           U         U           U         U           U         U           U         U           U         U           U         U           U         U           U         U           U         U           U         U           U         U		-	
ample Type REG REG REG REG REG REG REG REG REG REG	Semi-Volatile Organics 1,2,4-Trichlorobenzene 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 2,2'-oxybis (1-chloropropane) 2,4,5-Trichlorophenol 2,4-Dichlorophenol 2,4-Dichlorophenol 2,4-Dinitrophenol 2,4-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,	1200 1200 1200 1200 1200 1200 1200 1200	UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG		Ib         Data           U         U           U         U           U         U           U         U           U         U           U         U           U         U           U         U           U         U           U         U           U         U           U         U           U         U           U         U           U         U           U         U           U         U           U         U           U         U           U         U           U         U           U         U           U         U		-	
ample Type REG REG REG REG REG REG REG REG REG REG	Semi-Volatile Organics 1,2,4-Trichlorobenzene 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 2,2-oxybis (1-chloropropane) 2,4,5-Trichlorophenol 2,4-Dichlorophenol 2,4-Dinitrophenol 2,4-Dinitrophenol 2,4-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2-Chloronaphthalene 2-Methylnaphthalene 2-Methylphenol 2,Nitroaniline 2-Nitrophenol	1200 1200 1200 1200 1200 1200 1200 1200	UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG		Ib         Data           U         U           U         U           U         U           U         U           U         U           U         U           U         U           U         U           U         U           U         U           U         U           U         U           U         U           U         U           U         U           U         U           U         U           U         U           U         U           U         U           U         U           U         U           U         U		-	
Type REG REG REG REG REG REG REG REG REG REG	Semi-Volatile Organics 1,2,4-Trichlorobenzene 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 2,2-oxybis (1-chloropropane) 2,4,5-Trichlorophenol 2,4-Dinitrophenol 2,4-Dinitrophenol 2,4-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,7-Dinitrotoluene 2,7-Dinitrotoluene 2,7-Dinitrotoluene 2,7-Dinitrotoluene 2,7-Dinitrotoluene 2,7-Dinitrotoluene 2,7-Dinitrotoluene 2,7-Dinitrotoluene 2,7-Dinitrotoluene 2,7-Dinitrotoluene 2,7-Dinitrotoluene 2,7-Dinitrotoluene 2,7-Dinitrotoluene 2,7-Dinitrotoluene 2,7-Dinitrotoluene 2,7-Dinitrotoluene 2,7-	1200 1200 1200 1200 1200 1200 1200 1200	UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG		Ib         Data           U         U           U         U           U         U           U         U           U         U           U         U           U         U           U         U           U         U           U         U           U         U           U         U           U         U           U         U           U         U           U         U           U         U           U         U           U         U           U         U           U         U           U         U           U         U		-	
Sample Type REG REG REG REG REG REG REG REG REG REG	Semi-Volatile Organics 1,2,4-Trichlorobenzene 1,2-Dichlorobenzene 1,3-Dichlorobenzene 2,4-Dichlorobenzene 2,4-5-Trichlorophenol 2,4,5-Trichlorophenol 2,4-Dinitrophenol 2,4-Dinitrophenol 2,4-Dinitrophenol 2,4-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 3,7-Dichlorobenzidine 3,7-Dichlorobenzidine	1200 1200 1200 1200 1200 1200 1200 1200	UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG		Ib         Data           U         U           U         U           U         U           U         U           U         U           U         U           U         U           U         U           U         U           U         U           U         U           U         U           U         U           U         U           U         U           U         U           U         U           U         U           U         U           U         U           U         U           U         U           U         U		-	
Type REG REG REG REG REG REG REG REG REG REG	Semi-Volatile Organics 1,2,4-Trichlorobenzene 1,2-Dichlorobenzene 1,3-Dichlorobenzene 2,4-Dichlorobenzene 2,4-5-Trichlorophenol 2,4,5-Trichlorophenol 2,4-6-Trichlorophenol 2,4-Dinitrophenol 2,4-Dinitrophenol 2,4-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2-Chlorophenol 2-Methylaphthalene 2-Mitroaniline 3-Nitrophenol 3,3'-Dichlorobenzidine 3-Nitroaniline	1200 1200 1200 1200 1200 1200 1200 1200	UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG		ib         Data           U         U           U         U           U         U           U         U           U         U           U         U           U         U           U         U           U         U           U         U           U         U           U         U           U         U           U         U           U         U           U         U           U         U           U         U           U         U           U         U           U         U           U         U           U         U           U         U           U         U           U         U           U         U           U         U		-	
Sample Type REG REG REG REG REG REG REG REG REG REG	Semi-Volatile Organics 1,2,4-Trichlorobenzene 1,2-Dichlorobenzene 1,3-Dichlorobenzene 2,4-Dichlorobenzene 2,4-5-Trichlorophenol 2,4,5-Trichlorophenol 2,4-Dinitrophenol 2,4-Dinitrophenol 2,4-Dinitrophenol 2,4-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 3,7-Dichlorobenzidine 3,7-Dichlorobenzidine	1200 1200 1200 1200 1200 1200 1200 1200	UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG		Ib         Data           U         U           U         U           U         U           U         U           U         U           U         U           U         U           U         U           U         U           U         U           U         U           U         U           U         U           U         U           U         U           U         U           U         U           U         U           U         U           U         U           U         U           U         U           U         U		-	

### RQLsd-013(p)-0032-SD 0.0 - 0.5 FT

### Field Sample Type: Grab Matrix: Sediment

Collected: 07/08/98

Sample Type	Semi-Volatile Organics	Result	Units	Qua Lab	lifiers Data	Validation Code
REG	4-Methylphenol	1200	UG/KG	Ū	U	
REG	4-Nitroaniline		UG/KG	-	Ū	
REG	4-Nitrophenol		UG/KG		Ŭ	
REG	4-chloro-3-methylphenol		UG/KG	-	Ū	
REG	Acenaphthene	1200	UG/KG	Ū	Ū	
REG	Acenaphthylene		UG/KG		Ū	
REG	Anthracene	1200	UG/KG	Ŭ	Ū	
REG	Benzo(a)anthracene		UG/KG		Ū	
REG	Benzo(a)pyrene		UG/KG		Ū	
REG	Benzo(b)fluoranthene		UG/KG		Ū	
REG	Benzo(g,h,i)perylene		UG/KG	-	Ū	
REG	Benzo(k)fluoranthene		UG/KG		Ū	
REG	Bis(2-chloroethoxy)methane		UG/KG		ŭ	
REG	Bis(2-chloroethyl)ether		UG/KG	-	Ŭ	
REG	Bis(2-ethylhexyl)phthalate		UG/KG		Ŭ	
REG	Butyl Benzyl Phthalate		UG/KG		Ũ	
REG	Carbazole		UG/KG		Ŭ	
REG	Chrysene		UG/KG	-	Ŭ	
REG	Di-n-butyl Phthalate		UG/KG		Ŭ	
REG	Di-n-octyl Phthalate		UG/KG		Ŭ	
REG	Dibenzo(a,h)anthracene		UG/KG	-	Ŭ	
REG	Dibenzofuran		UG/KG	-	ยั	
REG	Diethyl Phthalate		UG/KG	_	ŭ	
REG	Dimethyl Phthalate		UG/KG	-	Ū	
REG	Fluoranthene		UG/KG		Ū	
REG	Fluorene		UG/KG	-	ŭ	
REG	Hexachlorobenzene		UG/KG	-	Ŭ	
REG	Hexachlorobutadiene		UG/KG		Ū	
REG	Hexachlorocyclopentadiene		UG/KG		Ŭ	
REG	Hexachloroethane		UG/KG	-	ŭ	
REG	Indeno(1,2,3-cd)pyrene		UG/KG		Ŭ	
REG	Isophorone		UG/KG	+	Ŭ	
REG	N-Nitroso-di-n-propylamine		UG/KG		Ŭ	
REG	N-Nitrosodiphenylamine		UG/KG	-	Ŭ	
REG	Naphthalene		UG/KG	-	Ŭ	
REG	Nitrobenzene		UG/KG	-	Ŭ	
REG	Pentachiorophenol		UG/KG	+	Ŭ	
REG	Phenanthrene		UG/KG	-	Ŭ	
REG	Phenol		UG/KG	-	Ŭ	
REG	Pyrene		UG/KG	-	ŭ	
Sample				0	16	Mattalation
Type	Volatile Organics	Result	Units	Lab	ifiers Data	Validation Code

Sample				Qual	ifiers	Validation
Туре	Volatile Organics	Result	Units	Lab	Data	Code
REG	1,1,1-Trichloroethane		UG/KG	U	υ	
REG	1,1,2,2-Tetrachloroethane	19	UG/KG	U	U	
REG	1,1,2-Trichloroethane	19	UG/KG	U	U	
REG	1,1-Dichloroethane	19	UG/KG	U	U	
REG	1,1-Dichloroethene	19	UG/KG	U	U	
REG	1,2-Dichloroethane	19	UG/KG	U	U	
REG	1,2-Dichloroethene	19	UG/KG	U	U	
REG	1,2-Dichloropropane	19	UG/KG	U	U	
REG	1,3-cis-Dichloropropene	19	UG/KG	U	U	
REG	1,3-trans-Dichloropropene	19	UG/KG	U	U	
REG	2-Butanone	35	UG/KG	1	J	C05
REG	2-Hexanone	75	UG/KG	U	U	
REG	4-Methyl-2-pentanone	75	UG/KG	U	U	
REG	Acetone	98	UG/KG		J	C05
REG	Benzene	19	UG/KG	U	U	
REG	Bromodichloromethane	19	UG/KG	U	U	
REG	Bromoform	19	UG/KG	U	U	
REG	Bromomethane	37	UG/KG	U	U	
REG	Carbon Disulfide	19	UG/KG	U	U	
REG	Carbon Tetrachloride	19	UG/KG	U	U	
REG	Chlorobenzene	19	UG/KG	U	U	
REG	Chloroethane	37	UG/KG	U	U	
REG	Chloroform	19	UG/KG	U	U	
REG	Chloromethane	37	UG/KG	υ	U	
REG	Dibromochloromethane	19	UG/KG	U	U	
REG	Ethylbenzene	19	UG/KG	U	U	

		.0 - 0.5 FT	Field Sample Type: G		mau IA.	Sedimen	τ	Collected:	07/08/9
	Sample Type	Volatile Organics	Result	Units	Qual Lab	ifiers Data	Validation Code	· · ·	
	REG	Methylene Chloride	19	UG/KG	Ū	U			
	REG	Styrene		UG/KG		U			
	REG REG	Tetrachloroethene Toluene		UG/KG		U			
	REG	Trichloroethene		UG/KG		U			
	REG	Vinyl Chloride		UG/KG UG/KG		U U			
	REG	Xylenes, Total		UG/KG		U			
RQLsd-013(p)-003:	3-SD 0	.5 - 2.0 FT	Field Sample Type: G	rab	Matrix: S	Sedimen	t	Collected:	07/08/9
- · · ·	Sample					lfiers	Validation		
	Type		Result	Units	Lab	Data	Code		
	REG	Cyanide	1	MG/KG	iU	U			
	Sample	<b>77</b> / /			Qual	ifiers	Validation		
	Туре	Metals	Result	Units	Lab	Data	Code		
	REG	Aluminum	4300	MG/KG		=			
	REG	Antimony	1	MG/KG	υ	UJ	102		
	REG	Arsenic		MG/KG		=			
	REG	Barium		MG/KG		J			
	REG	Beryllium		MG/KG		U			
	REG REG	Cadmium		MG/KG	-	U	100		
	REG	Calcium Chromium		MG/KG		J	102		
	REG	Cobalt		MG/KG MG/KG		=			
	REG	Copper		MG/KG		J =			
	REG	Iron		MG/KG		=			
	REG	Lead		MG/KG		=			
	REG	Magnesium		MG/KG		J	103		
	REG	Manganese		MG/KG		J	E07		
	REG	Mercury	.048	MG/KG	в	J			
	REG	Nickel	12.8	MG/KG		=			
	REG	Potassium	713	MG/KG	в	J	F10		
	REG	Selenium	1	MG/KG	U	U			
	REG	Silver		MG/KG		Ų			
	REG	Sodium		MG/KG		U			
	REG	Thallium Vanadium		MG/KG		U			
	REG REG	Zinc		MG/KG		= L			
	NEG	Znic	135	MG/KG	MRD	=			
	Sample Type	Explosives	Result	Units	Quall Lab	fiers Data	Validation Code		
		1,3,5-Trinitrobenzene		MG/KG		U		—	
		1,3-Dinitrobenzene		MG/KG		U			
	REG REG	2,4,6-Trinitrotoluene		MG/KG		U			
	REG	2,4-Dinitrotoluene 2,6-Dinitrotoluene		MG/KG		U			
	REG	2-Nitrotoluene		MG/KG MG/KG		U U			
	REG	3-Nitrotoluene		MG/KG		U			
	REG	4-Nitrotoluene		MG/KG		Ŭ			
	REG	HMX		MG/KG		Ŭ			
	REG	Nitrobenzene		MG/KG		Ŭ			
	REG	Nitrocellulose as N		MG/KG		Ū			
	REG	Nitroglycerin		MG/KG		Ŭ			
	REG	Nitroguanidine		MG/KG		U			
	REG	RDX	0.5	MG/KG	U	U			
	REG	Tetryl	0.65	MG/KG	U	U			
:	Sample Type	Semi-Volatile Organics	Result	Units	Quali Lab	fiers Data	Validation Code		
		1.2.4 Triphlorehensens							

Sample				Qual	ifiers	Validation
Туре	Semi-Volatile Organics	Result	Units	Lab	Data	Code
REG	1,2,4-Trichlorobenzene	690	UG/KG	U	U	
REG	1,2-Dichlorobenzene	690	UG/KG	U	U	
REG	1,3-Dichlorobenzene	690	UG/KG	U	U	
REG	1,4-Dichlorobenzene	690	UG/KG	ບ	U	
REG	2,2'-oxybis (1-chloropropane)	690	UG/KG	U	U	
REG	2,4,5-Trichlorophenol	690	UG/KG	U	U	
REG	2,4,6-Trichlorophenol	690	UG/KG	U	U	
REG	2,4-Dichlorophenol	690	UG/KG	U	U	

.

#### Location: Ramsdell Quarry Landfill Station : RQLsd-013 Initial Phase

#### RQLsd-013(p)-0033-SD 0.5 - 2.0 FT

#### Field Sample Type: Grab Matrix: Sediment

Collected: 07/08/98

Sample Type Semi-Volatile Organics	Result	Units		Qualifiers Lab Data	Validation Code	
REG 2,4-Dimethylphenol	690	UG/KG	Ū		·	-
REG 2,4-Dinitrophenol	1700	UG/KG	Û	Ū		
REG 2,4-Dinitrotoluene	690	UG/KG	U	Ú		
REG 2,6-Dinitrotoluene	690	UG/KG	U	U		
REG 2-Chloronaphthalene	690	UG/KG	U	U		
REG 2-Chiorophenol	690	UG/KG	υ	U		
REG 2-Methylnaphthalene	690	UG/KG	υ	U		
REG 2-Methylphenol	690	UG/KG	υ	U		
REG 2-Nitroaniline	1700	UG/KG	υ	U		
REG 2-Nitrophenol	690	UG/KG	U	U		
REG 3,3'-Dichlorobenzidine	690	UG/KG	U	U		
REG 3-Nitroaniline		UG/KG		U		
REG 4,6-Dinitro-o-Cresol	1700	UG/KG	υ	U		
REG 4-Bromophenyl-phenyl Ether	690	UG/KG	U	U		
REG 4-Chloroaniline	690	UG/KG	U	U		
REG 4-Chlorophenyl-phenylether	690	UG/KG	U	U		
REG 4-Methylphenol	690	UG/KG	U	U		
EG 4-Nitroaniline		UG/KG		U		
REG 4-Nitrophenol		UG/KG		U		
EG 4-chloro-3-methylphenol	690	UG/KG	υ	U		
REG Acenaphthene	690	UG/KG	υ	U		
REG Acenaphthylene	690	UG/KG	U	U		
REG Anthracene		UG/KG		U		
EG Benzo(a)anthracene		UG/KG		U		
EG Benzo(a)pyrene		UG/KG	_	U		
EG Benzo(b)fluoranthene		UG/KG	-	U		
REG Benzo(g,h,i)perylene		UG/KG		U		
REG Benzo(k)fluoranthene		UG/KG		U		
REG Bis(2-chloroethoxy)methane		UG/KG		U		
EG Bis(2-chloroethyl)ether		UG/KG		U		
EG Bis(2-ethylhexyl)phthalate		UG/KG	_	U		
REG Butyl Benzyl Phthalate		UG/KG	_	U		
REG Carbazole		UG/KG	-	U		
REG Chrysene		UG/KG		U		
REG Di-n-butyl Phthalate		UG/KG		U		
REG Di-n-octyl Phthalate		UG/KG	-	U		
EG Dibenzo(a,h)anthracene		UG/KG		U		
REG Dibenzofuran		UG/KG		U		
EG Diethyl Phthalate		UG/KG		U		
REG Dimethyl Phthalate		UG/KG		U		
EG Fluoranthene	690	UG/KG	U	U		
REG Fluorene	690	UG/KG	U	U		
REG Hexachlorobenzene		UG/KG	-	U		
REG Hexachlorobutadiene		UG/KG	-	U		
REG Hexachlorocyclopentadiene	690	UG/KG	U	U		
REG Hexachloroethane	690	UG/KG	U	Ü		
REG Indeno(1,2,3-cd)pyrene		UG/KG		บ		
REG Isophorone	690	UG/KG	U	U		
REG N-Nitroso-di-n-propylamine		UG/KG		U		
REG N-Nitrosodiphenylamine		UG/KG		U		
REG Naphthalene		UG/KG		U		
REG Nitrobenzene	690	UG/KG	U	U		
REG Pentachlorophenol		UG/KG		U		
REG Phenanthrene		UG/KG	-	U		
REG Phenol	690	UG/KG	U	U		
REG Pyrene	690	UG/KG	U	U		

Volatile Organics	Result	Units			Code
·					
1,1,1-Trichloroethane	10	UG/KG	บ	U	
1,1,2,2-Tetrachloroethane	10	UG/KG	U	U	
1,1,2-Trichloroethane	10	UG/KG	U	U	
1,1-Dichloroethane	10	UG/KG	U	U	
1,1-Dichloroethene	10	UG/KG	U	U	
1,2-Dichloroethane	10	UG/KG	U	U	
1,2-Dichloroethene	10	UG/KG	U	U	
1,2-Dichloropropane	10	UG/KG	U	U	
1,3-cis-Dichloropropene	10	UG/KG	U	U	
1,3-trans-Dichloropropene	10	UG/KG	U	U	
	1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane 1,1,2-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloropthane 1,2-Dichloropthane 1,3-cis-Dichloropropane	1,1,1-Trichloroethane101,1,2,2-Tetrachloroethane101,1,2-Trichloroethane101,1-Dichloroethane101,1-Dichloroethane101,2-Dichloroethane101,2-Dichloroethane101,2-Dichloroethane101,2-Dichloroethane101,2-Dichloroethane101,2-Dichloroethane101,2-Dichloroethane101,2-Dichloroptopane101,3-cis-Dichloropropene10	1,1,1-Trichloroethane       10       UG/KG         1,1,2,2-Tetrachloroethane       10       UG/KG         1,1,2-Trichloroethane       10       UG/KG         1,1-Dichloroethane       10       UG/KG         1,1-Dichloroethane       10       UG/KG         1,2-Dichloroethane       10       UG/KG         1,2-Dichloroethane       10       UG/KG         1,2-Dichloroethane       10       UG/KG         1,2-Dichloroethane       10       UG/KG         1,2-Dichloroptopane       10       UG/KG         1,2-Dichloroptopane       10       UG/KG         1,3-cis-Dichloroptopane       10       UG/KG	Volatile OrganicsResultUnitsLab1,1,1-Trichloroethane10UG/KGU1,1,2,2-Tetrachloroethane10UG/KGU1,1,2,2-Trichloroethane10UG/KGU1,1-Dichloroethane10UG/KGU1,1-Dichloroethane10UG/KGU1,2-Dichloroethane10UG/KGU1,2-Dichloroethane10UG/KGU1,2-Dichloroethane10UG/KGU1,2-Dichloroethane10UG/KGU1,2-Dichloropropane10UG/KGU1,3-cis-Dichloropropene10UG/KGU	1,1,1-Trichloroethane     10     UG/KG     U       1,1,2,2-Tetrachloroethane     10     UG/KG     U       1,1,2-Trichloroethane     10     UG/KG     U       1,1-Dichloroethane     10     UG/KG     U       1,1-Dichloroethane     10     UG/KG     U       1,1-Dichloroethane     10     UG/KG     U       1,1-Dichloroethane     10     UG/KG     U       1,2-Dichloroethane     10     UG/KG     U       1,2-Dichloropropane     10     UG/KG     U       1,3-cis-Dichloropropane     10     UG/KG     U

### RQLsd-013(p)-0033-SD 0.5 - 2.0 FT

### Field Sample Type: Grab Matrix: Sediment

Collected: 07/08/98

Sample				Qu	alifiers	Validation
Туре	Volatile Organics	Result	Units	La	b Data	Code
REG	2-Butanone	6.5	UG/KG	J	J	C05
REG	2-Hexanone		UG/KG		Ū	
REG	4-Methyl-2-pentanone	42	UG/KG	U	Ŭ	
REG	Acetone	19	UG/KG	J	J	C05
REG	Benzene	10	UG/KG	U	U	
REG	Bromodichloromethane	10	UG/KG	U	U	
REG	Bromoform	10	UG/KG	Ū	Ŭ	
REG	Bromomethane	21	UG/KG	U	Ū	
REG	Carbon Disulfide	10	UG/KG	U	U	
REG	Carbon Tetrachloride	10	UG/KG	Ū	Ū	
REG	Chlorobenzene	10	UG/KG	U	Ū	
REG	Chloroethane	21	UG/KG	Ū	U	
REG	Chloroform	10	UG/KG	Ŭ	Ū	
REG	Chloromethane	21	UG/KG	U	Ū	
REG	Dibromochloromethane	10	UG/KG	U	Ú	
REG	Ethylbenzene	10	UG/KG	U	U	
REG	Methylene Chloride	10	UG/KG	Ú	Ū	
REG	Styrene	10	UG/KG	U	Ū	
REG	Tetrachloroethene	10	UG/KG	U	Ú	
REG	Toluene	10	UG/KG	U	U	
REG	Trichloroethene	10	UG/KG	U	Ū	
REG	Vinyl Chloride	21	UG/KG	υ	Ű	
REG	Xylenes, Total	10	UG/KG	U	Ū	

### Location: Ramsdell Quarry Landfill Station : RQLsd-014 Initial Phase

### RQLsd-014(p)-0035-SD 0.0 - 0.5 FT

)-0035-SD 0	.0 - 0.5 FT	Field Sample Type: G	rab I	Matrix	: Sedimen	t	Collected:	07/08/98
Sample Type	Cyanide	Result	Units	Qu La	alifiers b Data	Validation Code		- <del></del>
REG	Cyanide	0.98	MG/KG	U	υ		_	
Sample Type	Metals	Result	Units	Qu Lai	alifiers b Data	Validation Code		
REG	Aluminum	3550	MG/KG		=	•		
REG	Antimony	0.98	MG/KG	υ	UJ	102		
REG	Arsenic	17.5	MG/KG		=			
REG	Barium	70.3	MG/KG		=			
REG	Beryllium	0.98	MG/KG	υ	U			
REG	Cadmium	0.98	MG/KG	U	U			
REG	Calcium	23700	MG/KG		J	102		
REG	Chromium	12.8	MG/KG		Ŧ			
REG	Cobalt	8	MG/KG	в	J			
REG	Соррег	134	MG/KG		=			
REG	Iron	21800	MG/KG		=			
REG	Lead	43.9	MG/KG		=			
REG	Magnesium	18900	MG/KG		J	103		
REG	Manganese	1240	MG/KG		J	E07		
REG	Mercury	.067	MG/KG	8	J			
REG	Nickel	23	MG/KG		=			
REG	Potassium	421	MG/KG	в	J	F10		
REG	Selenium	0.98	MG/KG	U	U			
REG	Silver	2	MG/KG	U	U			
REG	Sodium	41	MG/KG	В	J			
REG	Thallium	0.98	MG/KG	υ	U			
REG	Vanadium	10.1	MG/KG		=			
REG	Zinc	285	MG/KG	MBB	=			
Sample				Qu	alifiers	Validation		
Туре	Explosives	Result	Units	La	b Data	Code		
REG	1,3,5-Trinitrobenzene	0.25	MG/KG	U	<u> </u>		_	
REG	1,3-Dinitrobenzene	0.25	MG/KG	U	U			
REG	2,4,6-Trinitrotoluene	0.25	MG/KG	U	U			
REG	2,4-Dinitrotoluene	0.25	MG/KG	U	U			
REG	2,6-Dinitrotoluene	0.25	MG/KG	U	U			
REG	2-Nitrotoluene	0.25	MG/KG	U	U			
REG	3-Nitrotoluene	0.071	MG/KG	J	J			

### RQLsd-014(p)-0035-SD 0.0 - 0.5 FT

Field Sample Type: Grab Matrix: Sediment

Collected: 07/08/98

Sample Type	Explosives	Result	Units	Qual Lab	ifiers Data	Validation Code
REG	4-Nitrotoluene	0.25	MG/KG	U	<u> </u>	
REG	НМХ	0.5	MG/KG	ū	ŭ	
REG	Nitrobenzene		MG/KG		Ū	
REG	Nitrocellulose as N		MG/KG		Ū	
REG	Nitroglycerin	2.5	MG/KG	Ū	ŭ	
REG	Nitroguanidine		MG/KG		ū	
REG	RDX		MG/KG		Ŭ	
REG	Tetryl		MG/KG		Ŭ	

Sample Type	Semi-Volatile Organics	Result	Units		Qualifiers .ab Data	Validation Code
REG	1,2,4-Trichlorobenzene		UG/KG	υ	U	
REG	1,2-Dichlorobenzene	650	UG/KG	U	Ŭ	
REG	1,3-Dichlorobenzene	650	UG/KG	U	U	
REG	1,4-Dichlorobenzene	650	UG/KG	U	U	
REG	2,2'-oxybis (1-chloropropane)		UG/KG		U	
REG	2,4,5-Trichlorophenol		UG/KG		U	
REG	2,4,6-Trichlorophenol		UG/KG	-	U	
REG	2,4-Dichlorophenol		UG/KG		U	
REG	2,4-Dimethylphenol		UG/KG		U	
REG REG	2,4-Dinitrophenol		UG/KG		U	
REG	2,4-Dinitrotoluene		UG/KG	-	U	
REG	2,6-Dinitrotoluene		UG/KG		U 	
REG	2-Chioronaphthalene 2-Chiorophenol		UG/KG	-	U	
REG	2-Methylnaphthalene		UG/KG UG/KG		U	
REG	2-Methylphenol		UG/KG	-	U U	
REG	2-Nitroaniline		UG/KG	-	Ŭ	
REG	2-Nitrophenol		UG/KG		Ŭ	
REG	3,3'-Dichlorobenzidine		UG/KG		Ŭ	
REG	3-Nitroaniline		UG/KG		Ŭ	
REG	4,6-Dinitro-o-Cresol		UG/KG		Ŭ	
REG	4-Bromophenyl-phenyl Ether		UG/KG		Ŭ	
REG	4-Chloroaniline		UG/KG	-	Ŭ	
REG	4-Chlorophenyl-phenylether		UG/KG		ů	
REG	4-Methylphenol		UG/KG		Ū	
REĢ	4-Nitroaniline	1600	UG/KG	Ū	Ū	
REG	4-Nitrophenol	1600	UG/KG	Ū	Ū	
REG	4-chioro-3-methylphenol	650	UG/KG	U	U	
REG	Acenaphthene	650	UG/KG	U	U	
REG	Acenaphthylene	650	UG/KG	U	U	
REG	Anthracene	650	UG/KG	U	U	
REG	Benzo(a)anthracene	650	UG/KG	U	U	
REG	Benzo(a)pyrene	650	UG/KG	U	U	
REG	Benzo(b)fluoranthene	650	UG/KG	U	U	
REG	Benzo(g,h,i)perylene		UG/KG		U	
REG	Benzo(k)fluoranthene		UG/KG		U	
REG	Bis(2-chloroethoxy)methane		UG/KG		U	
REG	Bis(2-chloroethyl)ether		UG/KG		U	
REG	Bis(2-ethylhexyl)phthalate		UG/KG		U	
REG	Butyl Benzyl Phthalate		UG/KG		U	
REG	Carbazole		UG/KG		U	
REG	Chrysene		UG/KG		U	
REG REG	Di-n-butyl Phthalate		UG/KG	-	U	
REG	Di-n-octyl Phthalate		UG/KG		U	
REG	Dibenzo(a,h)anthracene Dibenzofuran		UG/KG	-	U	
REG	Diethyl Phthalate		UG/KG		U	
REG	Dimethyl Phthalate		UG/KG		U	
REG	Fluoranthene		UG/KG UG/KG		J	
REG	Fluorene		UG/KG		J	
REG	Hexachlorobenzene		UG/KG		U	
REG	Hexachlorobutadiene		UG/KG		U	
REG	Hexachlorocyclopentadiene		UG/KG		Ŭ	
REG	Hexachloroethane		UG/KG		Ŭ	
REG	Indeno(1,2,3-cd)pyrene		UG/KG		Ŭ	
REG	Isophorone		UG/KG		Ŭ	
REG	N-Nitroso-di-n-propylamine		UG/KG		Ŭ	
REG	N-Nitrosodiphenylamine		UG/KG		Ū	
				-	-	

#### RQLsd-014(p)-0035-SD 0.0 - 0.5 FT Field Sample Type: Grab Matrix: Sediment Collected: 07/08/98 Sample Qualifiers Validation Semi-Volatile Organics Type Result Units Lab Data Code REG Naphthalene 650 UG/KG U U REG Nitrobenzene 650 UG/KG U H REG Pentachlorophenol 650 UG/KG U U Phenanthrene REG 650 UG/KG U U REG Phenol 650 UG/KG U U REG Pyrene 99 UG/KG J J Sample Qualifiers Validation Volatile Organics Туре Result Units Lab Data Code REG 1,1,1-Trichloroethane 9.8 UG/KG U U REG 1,1,2,2-Tetrachloroethane 9.8 UG/KG U υ REG 1.1.2-Trichloroethane 9.8 UG/KG U U REG 1,1-Dichloroethane 9.8 UG/KG U U REG 1,1-Dichloroethene 9.8 UG/KG U U 1.2-Dichloroethane REG 9.8 UG/KG U U REG 1,2-Dichloroethene 9.8 UG/KG U U 1,2-Dichloropropane REG 9.8 UG/KG U υ REG 1,3-cis-Dichloropropene 9.8 UG/KG U U REG 1,3-trans-Dichloropropene 9.8 UG/KG U υ REG 2-Butanone 39 UG/KG U U REG 2-Hexanone 39 UG/KG U U REG 4-Methyl-2-pentanone 39 UG/KG U U REG Acetone 8.7 UG/KG J Ĵ C05 REG Benzene 9.8 UG/KG U U REG Bromodichloromethane 9.8 UG/KG U Ų REG Bromoform 9.8 UG/KG U U REG Bromomethane 20 UG/KG U Ų REG Carbon Disulfide 9.8 UG/KG U υ REG Carbon Tetrachloride 9.8 UG/KG U U Chlorobenzene REG 9.8 UG/KG U U REG Chloroethane 20 UG/KG U υ REG Chloroform 9.8 UG/KG U U REG Chloromethane 20 UG/KG U U REG Dibromochloromethane 9.8 UG/KG U U REG Ethylbenzene 9.8 UG/KG U U REG Methylene Chloride 9.8 UG/KG U U REG Styrene 9.8 UG/KG U U REG Tetrachloroethene 9.8 UG/KG U U REG Toluene 9.8 UG/KG U U REG Trichloroethene 9.8 UG/KG U U REG Vinyl Chloride 20 UG/KG U U REG Xylenes, Total 9.8 UG/KG U U

#### Location: Ramsdell Quarry Landfill Station : RQLsd-015 Initial Phase

QLsd-015(p)-0044-SD 0	.0 • 0.5 FT	Field Sample Type: G	rab I	Matrix: S	Sedimen	t	Collected: 07/08/9
Sample Type	Cyanide	Result	Units	Qual	iflers Data	Validation Code	
REG	Cyanide	1	MG/KG	U	U		_
Sample Type	Metals	Result	Units	Qual Lab	iflers Data	Validation Code	
REG	Aluminum	21200	MG/KG		=		<del></del>
REG	Antimony	1	MG/KG	U	UJ	102	
REG	Arsenic	15.9	MG/KG		=		
REG	Barium	141	MG/KG		=		
REG	Beryllium	.65	MG/KG	в	J		
REG	Cadmium	1	MG/KG	U	U		
REG	Calcium	6410	MG/KG		J	102	
REG	Chromium	30.5	MG/KG		=		
REG	Cobalt	13.3	MG/KG		=		
REG	Copper	46.4	MG/KG		=		
REG	Iron	40900	MG/KG		=		
REG	Lead	66.6	MG/KG		=		
REG	Magnesium	5320	MG/KG		J	103	
REG	Manganese		MG/KG		Ĵ	E07	

### RQLsd-015(p)-0044-SD 0.0 - 0.5 FT

Field Sample Type: Grab Matrix: Sediment

Collected: 07/08/98

		Field Sattiple Type: G	Tap	Matrix	: Segimen	C C	Collect
Sample Type	Metals	Result	Units	Qı La	alifiers b Data	Validation Code	
REG	Mercury	.18	MG/KG	в	J	······	
REG	Nickel	35.1	MG/KG		=		
REG	Potassium	3010	MG/KG		J	F10	
REG	Selenium		MG/KG		U		
REG	Silver		MG/KG	-	U		
REG REG	Sodium		MG/KG		J		
REG	Thallium Vanadium		MG/KG		U		
REG	Zinc		MG/KG MG/KG		=		
		72/	MG/NG		-		
Sample Type	Explosives	Result	l India		alifiers	Validation	
· · · · ·			Units	La		Code	
REG	1,3,5-Trinitrobenzene		MG/KG		U		
REG REG	1,3-Dinitrobenzene 2,4,6-Trinitrotoluene		MG/KG		U		
REG	2,4-Dinitrotoluene		MG/KG MG/KG		ม บ		
REG	2.6-Dinitrotoluene		MG/KG		Ŭ		
REG	2-Nitrotoluene		MG/KG		Ŭ		
REG	3-Nitrotoluene		MG/KG		Ŭ		
REG	4-Nitrotoluene		MG/KG	-	Ū		
REG	НМХ	0.5	MG/KG	IJ	U		
REG	Nitrobenzene	0.25	MG/KG	U	U		
REG	Nitrocellulose as N	4.3	MG/KG		=		
REG	Nitroglycerin		MG/KG	-	U		
REG	Nitroguanidine		MG/KG		U		
REG	RDX		MG/KG	-	U		
REG	Tetryl	0.65	MG/KG	U	U		
6la							
Sample Type	Semi-Volatile Organics	Result	Units	QU Lai	alifiers b Data	Validation Code	
							_
REG	1,2,4-Trichlorobenzene		UG/KG		U		
REG	1,2-Dichlorobenzene		UG/KG		U		
REG REG	1,3-Dichlorobenzene		UG/KG		U		
REG	1,4-Dichlorobenzene 2,2'-oxybis (1-chloropropane)		UG/KG UG/KG		บ บ		
REG	2,4,5-Trichlorophenol		UG/KG		Ŭ		
REG	2,4,6-Trichlorophenol		UG/KG		Ŭ		
REG	2,4-Dichlorophenol		UG/KG		Ū		
REG	2,4-Dimethylphenol		UG/KG		Ū		
REG	2,4-Dinitrophenol	1600	UG/KG	U	U		
REG	2,4-Dinitrotoluene	680	UG/KG	U	U		
REG	2,6-Dinitrotoluene	680	UG/KG	U	U		
REG	2-Chloronaphthalene		UG/KG		U		
REG	2-Chlorophenol		UG/KG		U		
REG	2-Methylnaphthalene		UG/KG		U		
REG	2-Methylphenol		UG/KG		U		
REG	2-Nitroaniline		UG/KG		U		
REG	2-Nitrophenol		UG/KG		U		
REG REG	3,3'-Dichlorobenzidine 3-Nitroaniline		UG/KG		U U		
REG	4,6-Dinitro-o-Cresol		UG/KG UG/KG		U		
REG	4-Bromophenyl-phenyl Ether		UG/KG		Ŭ		
REG	4-Chloroaniline		UG/KG		Ŭ		
REG	4-Chlorophenyl-phenylether		UG/KG		Ŭ		
REG	4-Methylphenol		UG/KG		Ũ		
REG	4-Nitroaniline		UG/KG		Ū		
REG	4-Nitrophenol		UG/KG		U		
REG	4-chloro-3-methylphenol	680	UG/KG	U	U		
REG	Acenaphthene	680	UG/KG	U	U		
REG	Acenaphthylene		UG/KG		U		
REG	Anthracene		UG/KG		U		
REG	Benzo(a)anthracene		UG/KG		J		
REG	Benzo(a)pyrene		UG/KG		J		
REG	Benzo(b)fluoranthene		UG/KG		J		
REG	Benzo(g,h,i)perylene		UG/KG		U		
REG	Benzo(k)fluoranthene		UG/KG		U		
REG	Bis(2-chloroethoxy)methane		UG/KG		U		
REG	Bis(2-chloroethyl)ether	680	UG/KG	U	U		

### RQLsd-015(p)-0044-SD 0.0 - 0.5 FT

### Field Sample Type: Grab Matrix: Sediment

Collected: 07/08/98

		Tield cample Type. 0		ma	UIX. Sedimen		Collected;	07/08/98	
Sample Type	: Semi-Volatile Organics	Result	Units	•	Qualifiers Lab Data	Validation Code			
REG	Bis(2-ethylhexyl)phthalate	680	UG/KG	ΰ	U U		-		
REG	Butyl Benzyl Phthalate	680	UG/KG	U	U				
REG	Carbazole		UG/KG						
REG			UG/KG						
REG	Di-n-butyl Phthalate		UG/KG						
REG REG	Di-n-octyl Phthalate		UG/KG						
REG	Dibenzo(a,h)anthracene		UG/KG						
REG	Dibenzofuran Diethyl Phthalate		UG/KG						
REG	Dimethyl Phthalate		UG/KG						
REG	Fluoranthene		UG/KG						
REG	Fluorene		UG/KG UG/KG		J				
REG	Hexachlorobenzene		UG/KG						
REG	Hexachlorobutadiene		UG/KG						
REG	Hexachlorocyclopentadiene		UG/KG						
REG	Hexachloroethane		UG/KG						
REG	Indeno(1,2,3-cd)pyrene		UG/KG		J				
REG	Isophorone		UG/KG						
REG	N-Nitroso-di-n-propylamine		UG/KG						
REG	N-Nitrosodiphenylamine		UG/KG						
REG	Naphthalene		UG/KG						
REG	Nitrobenzene		UG/KG						
REG	Pentachlorophenol		UG/KG		-				
REG	Phenanthrene	94	UG/KG	J	J				
REG	Phenol	680	UG/KG	U	U				
REG	Pyrene	170	UG/KG	J	J				
Sample Type	Volatile Organics	Result	Units		Qualifiers Lab Data	Validation Code			
				_			-		
REG REG	1,1,1-Trichloroethane		UG/KG						
REG	1,1,2,2-Tetrachloroethane 1,1,2-Trichloroethane		UG/KG						
REG	1,1-Dichloroethane		UG/KG						
REG	1,1-Dichloroethene		UG/KG UG/KG						
REG	1,2-Dichloroethane		UG/KG						
REG	1,2-Dichloroethene		UG/KG						
REG	1,2-Dichloropropane		UG/KG						
REG	1,3-cis-Dichloropropene		UG/KG						
REG	1,3-trans-Dichloropropene		UG/KG						
REG	2-Butanone		UG/KG		J	C05			
REG	2-Hexanone		UG/KG			000			
REG	4-Methyl-2-pentanone		UG/KG						
REG	Acetone		UG/KG		J				
REG	Benzene		UG/KG		Ů				
REG	Bromodichloromethane		UG/KG						
REG	Bromotorm		UG/KG		Ŭ				
REG	Bromomethane		UG/KG		Ū				
REG	Carbon Disulfide		UG/KG						
REG	Carbon Tetrachloride		UG/KG						
REG	Chlorobenzene		UG/KG						
REG	Chloroethane		UG/KG						
REG	Chloroform		UG/KG						
REG	Chloromethane		UG/KG						
REG	Dibromochloromethane	10	UG/KG	U					
REG	Ethylbenzene	10	UG/KG	U	U				
REG	Methylene Chloride	10	UG/KG	U	U				
REG	Styrene	10	UG/KG	υ	U				
REG	Tetrachioroethene	10	UG/KG	U	U				
REG	Toluene	10	UG/KG	υ	U				
REG	Trichloroethene	10	UG/KG	U	U				
REG	Vinyl Chloride	21	UG/KG	U	U				
REG	Xylenes, Total	10	UG/KG	Ų	U				
QLad-015(p)-0045-SD 0	.5 - 2.0 FT	Field Sample Type: G	rab I	Mat	rix: Sediment	t	Collected:	07/08/98	
Sample		Baanik	اسالہ		Qualifiers	Validation			-
iype	Cyanide	Result	Units		Lab Data	Code			

Sample				Qual	ifiers	Validation
Туре	Cyanide	Result	Units	Lab	Data	Code
						<u> </u>
REG	Cyanide	0.8	4 MG/KG	U	U	

.

Metals	Doput	linite			Validation
		UTINGS	Lab	Data	Code
Aluminum	13500	MG/KG		=	· ····
Antimony	0.84	MG/KG	υ	UJ	102
Arsenic	10.3	MG/KG		=	
Barium	113	MG/KG		=	
Beryllium	.52	MG/KG	в	J	
Cadmium	0.84	MG/KG	U		
Calcium	7750	MG/KG	-		102
Chromium	20.9	MG/KG		=	
Cobalt				=	
Copper				=	
Iron				=	
Lead				=	
Magnesium				.1	103
Manganese					E07
Mercury				=	20,
Nickel				=	
Potassium					F10
Selenium			н		, ,,
Silver					
Sodium			-		
			0		
Zinc			MDD	=	
	Arsenic Barium Beryllium Cadmium Calcium Chromium Cobalt Copper Iron Lead Magnesium Manganese Mercury Nickel Potassium Selenium Selenium Silver Sodium Thallium Vanadium	Aluminum         13500           Antimony         0.84           Arsenic         10.3           Barium         113           Beryllium         .52           Cadmium         0.84           Catcium         7750           Chromium         20.9           Cobalt         11.6           Copper         44           Iron         31500           Lead         51.3           Magnesium         6180           Manganese         561           Mercury         0.2           Nickel         29.2           Potassium         1420           Selenium         0.84           Silver         1.7           Sodium         28.9           Thallium         1.2	Aluminum13500MG/KGAntimony0.84MG/KGArsenic10.3MG/KGBarium113MG/KGBarium113MG/KGBeryllium.52MG/KGCadmium0.84MG/KGCadmium0.84MG/KGCatcium7750MG/KGChromium20.9MG/KGCobalt11.6MG/KGCopper44MG/KGIron31500MG/KGLead51.3MG/KGMagnesium6180MG/KGMagnese561MG/KGPotassium0.2MG/KGSelenium0.84MG/KGSilver1.7MG/KGSodium28.9MG/KGThallium1.2MG/KGVanadium23.6MG/KG	MetalsResultUnitsLabAluminum13500MG/KGAntimony0.84MG/KGAntimony0.84MG/KGBarium10.3MG/KGBarium113MG/KGBeryllium.52MG/KGCadmium0.84MG/KGCadmium0.84MG/KGCalcium7750MG/KGChromium20.9MG/KGCobalt11.6MG/KGCopper44MG/KGIron31500MG/KGLead51.3MG/KGMagnasium6180MG/KGMarganese561MG/KGNickel29.2MG/KGPotassium1420MG/KGSelenium0.84MG/KGUsilver1.7MG/KGMilum28.9MG/KGMandaum28.9MG/KG	Aluminum         13500         MG/KG         =           Antimony         0.84         MG/KG         U         UJ           Arsenic         10.3         MG/KG         =           Barium         113         MG/KG         =           Barium         113         MG/KG         =           Beryllium         .52         MG/KG         =           Cadmium         0.84         MG/KG         =           Cadmium         0.84         MG/KG         =           Cadmium         0.84         MG/KG         =           Cobalt         11.6         MG/KG         =           Cobalt         11.6         MG/KG         =           Copper         44         MG/KG         =           Iron         31500         MG/KG         =           Lead         51.3         MG/KG         J           Manganese         561         MG/KG         J           Manganese         561         MG/KG         J           Mercury         0.2         MG/KG         J           Nekel         29.2         MG/KG         J           Selenium         0.84         MG/KG <td< td=""></td<>

Sample Type	Explosives	Result	Units	Qual Lab	ifiers Data	Validation Code
REG	1,3,5-Trinitrobenzene	0.25	MG/KG	υ	U	
REG	1,3-Dinitrobenzene	0.25	MG/KG	υ	U	
REG	2,4,6-Trinitrotoluene	0.25	MG/KG	U	Ü	
REG	2,4-Dinitrotoluene	0.25	MG/KG	Ū	Ū	
REG	2,6-Dinitrotoluene		MG/KG	-	Ū	
REG	2-Nitrotoluene		MG/KG	-	ū	
REG	3-Nitrotoluene		MG/KG	-	Ū	
REG	4-Nitrotoluene		MG/KG	-	Ŭ	
REG	НМХ		MG/KG	-	Ū	
REG	Nitrobenzene		MG/KG	-	Ū	
REG	Nitrocellulose as N		MG/KG	-	=	
REG	Nitroglycerin		MG/KG	U	U	
REG	Nitroguanidine	=	MG/KG	-	Ŭ	
REG	RDX		MG/KG	-	Ŭ	
REG	Tetryi		MG/KG		Ŭ	
Sample				Quali	iflers	Validation

Sample				- QUE	iners	valiciation
Туре	Semi-Volatile Organics	Result	Units	Lab	Data	Code
REG	1,2,4-Trichlorobenzene	550	UG/KG	U		
REG	1,2-Dichlorobenzene	550	UG/KG	U	U	
REG	1,3-Dichlorobenzene	550	UG/KG	U	U	
REĢ	1,4-Dichlorobenzene	550	UG/KG	U	U	
REG	2,2'-oxybis (1-chloropropane)	550	UG/KG	U	U	
REG	2,4,5-Trichlorophenol	550	UG/KG	υ	U	
REG	2,4,6-Trichlorophenol	550	UG/KG	υ	U	
REG	2,4-Dichlorophenol	550	UG/KG	υ	U	
REG	2,4-Dimethylphenol	550	UG/KG	U	U	
REG	2,4-Dinitrophenol	1300	UG/KG	U	U	
REG	2,4-Dinitrotoluene	550	UG/KG	U	U	
REG	2,6-Dinitrotoluene	550	UG/KG	U	U	
REG	2-Chloronaphthalene	550	UG/KG	U	U	
REG	2-Chlorophenol	550	UG/KG	U	U	
REG	2-Methyinaphthalene	550	UG/KG	U	U	
REG	2-Methylphenol	550	UG/KG	U	U	
REG	2-Nitroaniline	1300	UG/KG	U	U	
REG	2-Nitrophenol	550	UG/KG	U	U	
REG	3,3'-Dichlorobenzidine	550	UG/KG	U	U	
REG	3-Nitroaniline	1300	UG/KG	U	U	
REG	4,6-Dinitro-o-Cresol	1300	UG/KG	U	U	
REG	4-Bromophenyl-phenyl Ether	550	UG/KG	U	U	
REG	4-Chloroaniline	550	UG/KG	U	U	
REG	4-Chlorophenyl-phenylether	550	UG/KG	U	U	
REG	4-Methylphenol	550	UG/KG	U	U	
REG	4-Nitroaniline		UG/KG	U	U	
REG	4-Nitrophenol		UG/KG	U	U	
RÉG	4-chloro-3-methylphenol		UG/KG	U	U	
REG	Acenaphthene	550	UG/KG	U	U	

Location: Ramsdell Quarry Landfill Station : RQLsd-015 Initial Phase

### RQLsd-015(p)-0045-SD 0.5 - 2.0 FT

REG

REG

REG

REG

Styrene

Toluene

Tetrachioroethene

Trichloroethene

#### Field Sample Type: Grab Matrix: Sediment

Collected: 07/08/98

	.0 = 2.0 1 1	rieid Sample Type: G	гао	maurix:	Seaimer	rt	Colle
Sample Type	Semi-Volatile Organics	Result	Units	Qua Lab	alifiers Data	Validation Code	
REG	Acenaphthylene	550	UG/KG	U	U	·	-
REG	Anthracene		UG/KG		Ũ		
REG	Benzo(a)anthracene	71	UG/KG	J	J		
REG	Benzo(a)pyrene		UG/KG		J		
REG	Benzo(b)fluoranthene	100	UG/KG	J	J		
REG	Benzo(g,h,i)perylene	550	UG/KG	U	U		
REG	Benzo(k)fluoranthene	550	UG/KG	U	U		
REG	Bis(2-chloroethoxy)methane	550	UG/KG	U	U		
REG	Bis(2-chloroethyl)ether	550	UG/KG	U	U		
REG	Bis(2-ethylhexyl)phthalate	550	UG/KG	U	U		
REG	Butyl Benzyl Phthalate	550	UG/KG	U	U		
REG	Carbazole	550	UG/KG	U	U		
REG	Chrysene	84	UG/KG	J	J		
REG	Di-n-butyl Phthalate	550	UG/KG	U	U		
REG	Di-n-octyl Phthalate		UG/KG		U		
REG	Dibenzo(a,h)anthracene		UG/KG		U		
REG	Dibenzofuran		UG/KG		U		
REG	Diethyl Phthalate		UG/KG	-	U		
REG	Dimethyl Phthalate		UG/KG		U		
REG	Fluoranthene		UG/KG	-	J		
REG REG	Fluorene		UG/KG		υ		
	Hexachiorobenzene		UG/KG	-	U		
REG	Hexachlorobutadiene		UG/KG	-	U		
REG	Hexachlorocyclopentadiene		UG/KG		U		
REG REG	Hexachloroethane		UG/KG		U		
REG	Indeno(1,2,3-cd)pyrene		UG/KG	-	U		
REG	Isophorone		UG/KG	-	U		
REG	N-Nitroso-di-n-propylamine		UG/KG		U		
REG	N-Nitrosodiphenylamine Naphthalene		UG/KG	-	U		
REG	Nitrobenzene		UG/KG UG/KG		U		
REG	Pentachlorophenol		UG/KG		U U		
REG	Phenanthrene		UG/KG		ŭ		
REG	Phenoi		UG/KG		Ŭ		
REG	Pyrene		UG/KG	-	J		
ample				<b>0</b>	lift a ma	Mall 4-41-	
•	Volatile Organics	Result	Units	Lab	lifiers Data	Validation Code	
REG	1,1,1-Trichloroethane	8.4	UG/KG	U	υ		•
REG	1,1,2,2-Tetrachloroethane	8.4	UG/KG	U	บ		
REG	1,1,2-Trichloroethane	8.4	UG/KG	U	U		
REG	1,1-Dichloroethane		UG/KG		U		
REG	1,1-Dichloroethene		UG/KG		U		
REG	1,2-Dichloroethane	8.4	UG/KG	U	U		
REG	1,2-Dichloroethene		UG/KG		U		
REG	1,2-Dichloropropane	8.4	UG/KG	U	U		
REG	1,3-cis-Dichloropropene		UG/KG		U		
REG	1,3-trans-Dichloropropene		UG/KG		U		
REG	2-Butanone		UG/KG		J	C05	
REG	2-Hexanone		UG/KG		U		
REG	4-Methyl-2-pentanone		UG/KG		U		
REG	Acetone		UG/KG		J	C05	
REG	Benzene		UG/KG		U		
REG	Bromodichloromethane		UG/KG		U		
REG	Bromoform		UG/KG		U		
REG	Bromomethane		UG/KG		U		
REG	Carbon Disulfide		UG/KG		J		
REG	Carbon Tetrachloride		UG/KG		U		
REG REG	Chlorobenzene		UG/KG UG/KG		U		
	Chloroethane		IN STATE	U	U		
REC	Chloroethane						
REG	Chloroform	8.4	UG/KG	U	U		
REG	Chloroform Chloromethane	8.4 17	UG/KG UG/KG	ม บ	U		
REG REG	Chloroform Chloromethane Dibromochloromethane	8.4 17 8.4	UG/KG UG/KG UG/KG	U U U	U U		
REG REG REG	Chloroform Chloromethane Dibromochloromethane Ethylbenzene	8.4 17 8.4 8.4	UG/KG UG/KG UG/KG UG/KG	ม ม ม ม	บ บ บ		
REG REG	Chloroform Chloromethane Dibromochloromethane	8.4 17 8.4 8.4 8.4	UG/KG UG/KG UG/KG	ນ ບ ບ ບ ບ	U U		

U

υ

U

U

8.4 UG/KG U

8.4 UG/KG U

8.4 UG/KG U 8.4 UG/KG U

#### RQLsd-015(p)-0045-SD 0.5 - 2.0 FT Field Sample Type: Grab Matrix: Sediment Collected: 07/08/98 Sample Qualifiers Validation Type Volatile Organics Result Units Lab Data Code REG Vinyl Chloride 17 UG/KG U U REG Xylenes, Total 8.4 UG/KG U U

### Location: Ramsdell Quarry Landfill

Station : RQLsd-018 Initial Phase

Sample	·	ield Sample Type: G			Sedimer		Collecte
Туре	Cyanide	Result	Units	Lai	alifiers Data	Validation Code	
REG	Cyanide	0.87	MG/KG	U	U	·	
Sample					alifiers	Validation	
Туре	Metals	Result	Units	Lat	o Data	Code	
REG REG	Aluminum Antimony		MG/KG		=		_
REG	Arsenic		MG/KG MG/KG		UJ =	102	
REG	Barium		MG/KG		=		
REG	Beryllium		MG/KG		J		
REG	Cadmium	6.4	MG/KG		=		
REG	Calcium		MG/KG		J	102	
REG	Chromium		MG/KG		=		
REG REG	Cobalt		MG/KG		ſ		
REG	Copper Iron		MG/KG		-		
REG	Lead		MG/KG MG/KG		=		
REG	Magnesium		MG/KG		J	103	
REG	Manganese		MG/KG		J	E07	
REG	Mercury		MG/KG		Ĵ	_ <del>.</del> .	
REG	Nickel		MG/KG		=		
REG	Potassium		MG/KG		J	F10	
REG	Selenium		MG/KG		=		
REG	Silver		MG/KG	-	U		
REG REG	Sodium Thallium		MG/KG		Ĵ		
REG	Vanadium		MG/KG		=		
REG	Zinc		MG/KG MG/KG		=		
Sample Type	Explosives	Beauth	l India		lifiers	Validation	
		Result	Units	Lab		Code	_
REG REG	1,3,5-Trinitrobenzene 1,3-Dinitrobenzene		MG/KG	-	U		
REG	2,4,6-Trinitrotoluene		MG/KG MG/KG	-	U U		
REG	2,4-Dinitrotoluene		MG/KG	-	Ŭ		
REG	2,6-Dinitrotoluene		MG/KG		Ŭ		
REG	2-Nitrotoluene		MG/KG		ŭ		
REG	3-Nitrotoluene		MG/KG		Ū		
REG	4-Nitrotoluene		MG/KG	-	U		
REG	HMX		MG/KG		J		
REG REG	Nitrobenzene Nitrocellulose as N		MG/KG		U		
REG	Nitroglycerin		MG/KG	-	U U		
REG	Nitroguanidine		MG/KG MG/KG		U U		
REG	RDX		MG/KG	-	Ŭ		
REG	Tetryl		MG/KG		Ŭ		
Sample				Que	lifiers	Validation	
Туре	Semi-Volatile Organics	Result	Units	Lab		Code	
	1,2,4-Trichlorobenzene		UG/KG		U		_
REG	1,2-Dichlorobenzene		UG/KG		U		
REG			UG/KG		U		
REG REG	1,3-Dichlorobenzene						
REG REG REG	1,3-Dichlorobenzene 1,4-Dichlorobenzene	580	UG/KG		U		
REG REG REG REG	1,3-Dichlorobenzene 1,4-Dichlorobenzene 2,2'-oxybis (1-chloropropane)	580 580	UG/KG UG/KG	U	U		
REG REG REG	1,3-Dichlorobenzene 1,4-Dichlorobenzene 2,2'-oxybis (1-chloropropane) 2,4,5-Trichlorophenol	580 580 580	UG/KG UG/KG UG/KG	U U	U U		
REG REG REG REG REG	1,3-Dichlorobenzene 1,4-Dichlorobenzene 2,2'-oxybis (1-chloropropane)	580 580 580 580 580	UG/KG UG/KG	บ บ บ	U		

Location: Ramsdell Quarry Landfill Station : RQLsd-018 Initial Phase

### RQLsd-018(p)-0026-SD 0.0 - 0.5 FT

Field Sample Type: Grab Matrix: Sediment

Collected: 07/08/98

Sample Type	Semi-Volatile Organics	Result	Units		Qualifiers Lab Data	Validation Code	
REG	2,4-Dinitrophenol	1400	UG/KG	υ	U	·	_
REG	2,4-Dinitrotoluene		UG/KG		ប		
REG REG	2,6-Dinitrotoluene 2-Chloronaphthalene		UG/KG UG/KG		U		
REG	2-Chlorophenol		UG/KG	-	U U		
REG	2-Methylnaphthalene		UG/KG		Ŭ		
REG	2-Methylphenol		UG/KG		Ŭ		
REG	2-Nitroaniline		UG/KG		U		
REG	2-Nitrophenol		UG/KG		U		
REG REG	3,3'-Dichlorobenzidine 3-Nitroaniline		UG/KG	-	U		
REG	4,6-Dinitro-o-Cresol		UG/KG UG/KG		U U		
REG	4-Bromophenyl-phenyl Ether		UG/KG		ŭ		
REG	4-Chloroaniline		UG/KG		Ũ		
REG	4-Chlorophenyl-phenylether	580	UG/KG	U	υ		
REG	4-Methylphenol		UG/KG		U		
REG	4-Nitroaniline		UG/KG		U		
REG REG	4-Nitrophenol 4-chloro-3-methylphenol		UG/KG UG/KG		U		
REG	Acenaphthene		UG/KG		U U		
REG	Acenaphthylene		UG/KG		Ŭ		
REG	Anthracene		UG/KG		J		
REG	Benzo(a)anthracene		UG/KG		Ĵ		
REG	Benzo(a)pyrene		UG/KG		J		
REG	Benzo(b)fluoranthene		UG/KG		J		
REG	Benzo(g,h,i)perylene		UG/KG		J		
REG REG	Benzo(k)fluoranthene Bis(2-chloroethoxy)methane		UG/KG UG/KG		J		
REG	Bis(2-chloroethyl)ether		UG/KG		U U		
REG	Bis(2-ethylhexyl)phthalate		UG/KG	_	Ŭ		
REG	Butyl Benzyl Phthalate		UG/KG	-	Ū		
REĠ	Carbazole	130	UG/KG	J	Ŀ		
REG	Chrysene		UG/KG		J		
REG	Di-n-butyl Phthalate		UG/KG		U		
REG REG	Di-n-octyl Phthalate Dibenzo(a,h)anthracene		UG/KG UG/KG		U U		
REG	Dibenzofuran		UG/KG		Ŭ		
REG	Diethyl Phthalate		UG/KG		Ŭ		
REG	Dimethyl Phthalate		UG/KG		Ū		
REG	Fluoranthene		UG/KG		=		
REG	Fluorene		UG/KG		U		
REG	Hexachlorobenzene		UG/KG		U		
REG REG	Hexachlorobutadiene Hexachlorocyclopentadiene		UG/KG		U		
REG	Hexachloroethane		UG/KG UG/KG		UU		
REG	Indeno(1,2,3-cd)pyrene		UG/KG		J		
REG	Isophorone		UG/KG		Ŭ		
REG	N-Nitroso-di-n-propylamine		UG/KG		Ū		
REG	N-Nitrosodiphenylamine		UG/KG		U		
REG	Naphthalene		UG/KG		U		
REG	Nitrobenzene		UG/KG		U		
REG	Pentachlorophenol Phenanthrene		UG/KG	U	U _		
REG REG	Phenol		UG/KG UG/KG	п	= U		
REG	Pyrene		UG/KG	0	=		
ample Type	Volatile Organics	Result	Units		Qualifiers Lab Data	Validation Code	
REG	1,1,1-Trichloroethane		UG/KG	11	<u> </u>		-
REG	1,1,2,2-Tetrachloroethane		UG/KG		U		
REG	1,1,2-Trichloroethane		UG/KG		Ŭ		
REG	1,1-Dichloroethane		UG/KG		Ū		
REG	1,1-Dichloroethene		UG/KG		U		
REG	1,2-Dichloroethane		UG/KG		U		
REG	1,2-Dichloroethene		UG/KG		U		
REG	1,2-Dichloropropane 1,3-cis-Dichloropropene		UG/KG		U		
250		8./	UG/KG	U	U		
REG REG	1,3-trans-Dichloropropene		UG/KG	11	U		

### RQLsd-018(p)-0026-SD 0.0 - 0.5 FT

#### Matrix: Sediment Field Sample Type: Grab

Collected: 07/08/98

.

Sample				Qual	lifiers	Validation		
Туре	Volatile Organics	Result	Units	Lab	Data	Code		
REG	2-Hexanone	35	UG/KG	U	U	· · · · · · · · · · · · · · · · · · ·	_	
REG	4-Methyl-2-pentanone	35	UG/KG	U	U			
REG	Acetone	17	UG/KG	J	J	C05		
REG	Benzene	8.7	UG/KG	U	Ū			
REG	Bromodichloromethane	8.7	UG/KG	U	Ŭ			
REG	Bromoform	8.7	UG/KG	Ŭ	Ū			
REG	Bromomethane		UG/KG		Ũ			
REG	Carbon Disulfide	8.7	UG/KG	Ŭ	Ū			
REG	Carbon Tetrachloride		UG/KG		Ũ			
REG	Chlorobenzene		UG/KG		Ū			
REG	Chloroethane		UG/KG	-	Ŭ			
REG	Chloroform		UG/KG		Ŭ			
REG	Chloromethane		UG/KG		Ŭ			
REG	Dibromochloromethane		UG/KG		Ŭ			
REG	Ethylbenzene		UG/KG		Ŭ			
REG	Methylene Chloride		UG/KG	*	Ŭ			
REG	Styrene		UG/KG		Ŭ			
REG	Tetrachloroethene		UG/KG		Ŭ			
REG	Toluene		UG/KG		Ŭ			
REG	Trichloroethene		UG/KG	-	ŭ			
REG	Vinyl Chloride		UG/KG	-	ū			
REG	Xylenes, Total		UG/KG	-	Ŭ			
7-SD 0.	5 - 2.0 FT	Field Sample Type: G	rab i	Matrix: S	edimen	t	Collected:	07/08/98

### RQLsd-018(p)-0027-SD 0.5 - 2.0 FT

Sample Type	Cyanide	Result	Units	Qu	aliflers Data	Validation Code
REG	Cyanide	0.8	MG/KG	U	U	
Sample Type	Metals	Result	Units	Qu Lai	allfiers Data	Validation Code
REG	Aluminum	11600	MG/KG		=	
REG	Antimony	0.8	MG/KG	U	UJ	102
REG	Arsenic	16.9	MG/KG		=	
REĢ	Barium	98.4	MG/KG		=	
REG	Beryllium	0.65	MG/KG	8	J	
REG	Cadmium	1.7	MG/KG		=	
REG	Calcium	9180	MG/KG		J	102
REG	Chromium	18.3	MG/KG		=	
REG	Cobalt	14.3	MG/KG		=	
REG	Copper	20.6	MG/KG		=	
REĢ	Iron	54400	MG/KG		=	
REG	Lead	54.5	MG/KG		=	
REG	Magnesium	7060	MG/KG		J	E07,103
REG	Manganese	402	MG/KG		=	
REG	Mercury	.088	MG/KG	в	J	
REG	Nickel	20.1	MG/KG		=	
REG	Potassium	1120	MG/KG		J	F10
REG	Selenium	0.91	MG/KG		=	
REG	Silver		MG/KG	U	U	
REG	Sodium	41.4	MG/KG	В	J	
REG	Thallium	1.8	MG/KG		=	
REG	Vanadium	28.9	MG/KG		=	
REG	Zinc	237	MG/KG	MBB	=	
Sample					alifiers	Validation
Туре	Explosives	Result	Units	Lat	Data	Code
REG	1,3,5-Trinitrobenzene		MG/KG	-	U	
REG	1,3-Dinitrobenzene	0.25	MG/KG	U	U	

						<b>U</b> UUU
REG	1,3,5-Trinitrobenzene	0.25	MG/KG	U	U	
REG	1,3-Dinitrobenzene	0.25	MG/KG	U	U	
REG	2,4,6-Trinitrotoluene	0.25	MG/KG	U	υ	
REG	2,4-Dinitrotoluene	0.25	MG/KG	U	U	
REG	2,6-Dinitrotoluene	0.25	MG/KG	U	U	
REG	2-Nitrotoluene	0.25	MG/KG	U	U	
REG	3-Nitrotoluene	0.25	MG/KG	U	U	
REG	4-Nitrotoluene	0.25	MG/KG	U	U	
REG	НМХ	0.14	MG/KG	J	J	
REG	Nitrobenzene	0.25	MG/KG	U	U	
REG	Nitrocellulose as N	2	MG/KG	U	U	

## RQLsd-018(p)-0027-SD 0.5 - 2.0 FT

Field Sample Type: Grab Matrix: Sediment

Collected: 07/08/98

•

027-SD 0	.5 - 2.0 FT	Field Sample Type: Grab Matrix: Sedim		x: Sediment		Collec	
Sample Type	Explosives	Result	Units		ualifiers ab Data	Validation Code	
REG	Nitroglycerin	2.5	MG/KG	υ	<u> </u>		_
REG	Nitroguanidine	0.25	MG/KG	U	U		
REG	RDX		MG/KG		U		
REG	Tetryl	0.65	MG/KG	U	U		
Sample Type	Semì-Volatile Organics	Result	Units		ualifiers ab Data	Validation Code	
REG	1,2,4-Trichlorobenzene	530	UG/KG	U	<u> </u>		_
REG	1,2-Dichlorobenzene		UG/KG		U		
REG	1,3-Dichlorobenzene		UG/KG		U		
REG REG	1,4-Dichlorobenzene 2,2'-oxybis (1-chloropropane)		UG/KG		U		
REG	2,4,5-Trichlorophenol		UG/KG UG/KG		U U		
REG	2,4,6-Trichlorophenol		UG/KG		Ŭ		
REG	2,4-Dichlorophenol		UG/KG		Ū		
REG	2,4-Dimethylphenol	530	UG/KG	U	U		
REG	2,4-Dinitrophenol		UG/KG		U		
REG	2,4-Dinitrotoluene		UG/KG		U		
REG REG	2,6-Dinitrotoluene 2-Chloronaphthalene		UG/KG UG/KG		บ ข		
REG	2-Chlorophenol		UG/KG		U		
REG	2-Methylnaphthalene		UG/KG		Ŭ		
REG	2-Methylphenol		UG/KG		Ŭ		
REG	2-Nitroaniline	1300	UG/KG	U	U		
REG	2-Nitrophenol		UG/KG	-	U		
REG	3,3'-Dichlorobenzidine		UG/KG	-	U		
REG REG	3-Nitroaniline		UG/KG		U		
REG	4,6-Dinitro-o-Cresol 4-Bromophenyl-phenyl Ether		UG/KG UG/KG		U U		
REG	4-Chloroaniline		UG/KG		Ŭ		
REG	4-Chlorophenyl-phenylether		UG/KG		Ŭ		
REG	4-Methylphenol	530	UG/KG	U	U		
REG	4-Nitroaniline		UG/KG		U		
REG	4-Nitrophenol		UG/KG		U		
REG REG	4-chloro-3-methylphenol		UG/KG		U		
REG	Acenaphthene Acenaphthylene		UG/KG UG/KG		U U		
REG	Anthracene		UG/KG		J		
REG	Benzo(a)anthracene		UG/KG		J		
REG	Benzo(a)pyrene	210	UG/KG	J	J		
REG	Benzo(b)fluoranthene		UG/KG		J		
REG	Benzo(g,h,i)perylene		UG/KG		J		
REG REG	Benzo(k)fluoranthene Bis(2-chloroethoxy)methane		UG/KG UG/KG		J		
REG	Bis(2-chloroethyl)ether		UG/KG		UU		
REG	Bis(2-ethylhexyl)phthalate		UG/KG		Ŭ		
REG	Butyl Benzyl Phthalate		UG/KG		Ū		
REG	Carbazole		UG/KG		U		
REG	Chrysene		UG/KG		J		
REG	Di-n-butyl Phthalate		UG/KG		U		
REG REG	Di-n-octyl Phthalate Dibenzo(a,h)anthracene		UG/KG UG/KG		บ บ		
REG	Dibenzofuran		UG/KG		U		
REG	Diethyl Phthalate		UG/KG		Ŭ		
REG	Dimethyl Phthalate		UG/KG		บ		
REG	Fluoranthene	450	UG/KG	J	J		
REG	Fluorene		UG/KG		U		
REG	Hexachlorobenzene		UG/KG		U		
REG REG	Hexachlorobutadiene Hexachlorocyclopentadiene		UG/KG UG/KG		U U		
REG	Hexachioroethane		UG/KG		U		
REG	Indeno(1,2,3-cd)pyrene		UG/KG		J		
REG	Isophorone		UG/KG		Ŭ		
REG	N-Nitroso-di-n-propylamine		UG/KG		U		
REG	N-Nitrosodiphenylamine		UG/KG		U		
REG	Naphthalene		UG/KG		U		
REG REG	Nitrobenzene Pentachlorophenol		UG/KG UG/KG		ม ป		
REG	Phenanthrene		UG/KG		J		
		010		-	-		

### RQLsd-018(p)-0027-SD 0.5 - 2.0 FT

Field Sample Type: Grab Matrix: Sediment

Collected: 07/08/98

Collected: 07/08/98

Sample Type	Semi-Volatile Organics	Result	Units		Qual Lab	ifiers Data	Validation Code
REG	Phenol	530	UG/KG	11		U	·
REG	Pyrene		UG/KG			ſ	
Sample Type	Volatile Organics	Result	Units		Quai Lab	lfiers Data	Validation Code
REG	1.1.1-Trichloroethane			_			
REG	1,1,2,2-Tetrachloroethane		UG/KG UG/KG	-		U	
REG	1,1,2-Trichloroethane			-		U	
REG	1,1-Dichloroethane		UG/KG UG/KG	-		U	
REG	1,1-Dichloroethene	-	UG/KG	-		UU	
REG	1.2-Dichloroethane		UG/KG	-		-	
REG	1.2-Dichloroethene		UG/KG	-		U	
REG	1,2-Dichloropropane		UG/KG	-		U U	
REG	1,3-cis-Dichloropropene		UG/KG	-		-	
REG	1,3-trans-Dichloropropene		UG/KG	-		U U	
REG	2-Butanone		UG/KG	-		U	
REG	2-Hexanone		UG/KG			U	
REG	4-Methyl-2-pentanone		UG/KG			U	
REG	Acetone		UG/KG	-			6.0E
REG	Benzene		UG/KG			L L	C05
REG	Bromodichloromethane		UG/KG	-			
REG	Bromoform		UG/KG			U	
REG	Bromomethane			-		U	
REG	Carbon Disulfide		UG/KG UG/KG			U U	
REG	Carbon Tetrachloride					U	
REG	Chlorobenzene		UG/KG UG/KG			U	
REG	Chloroethane		UG/KG			U	
REG	Chloroform		UG/KG			Ŭ	
REG	Chloromethane		UG/KG	_		Ŭ	
REG	Dibromochloromethane		UG/KG			U	
REG	Ethylbenzene		UG/KG	_		U	
REG	Methylene Chloride		UG/KG			U	
REG	Styrene		UG/KG			Ŭ	
REG	Tetrachloroethene		UG/KG	-		U	
REG	Toluene		UG/KG	-		ប	
REG	Trichloroethene		UG/KG			U	
REG	Vinyl Chloride		UG/KG			U	
REG	Xylenes, Total		UG/KG			U	
NEG.	Ayienes, Tutai	6	UG/KG	U		U	

Sample Type	Cyanide	Result
REG	Cvanide	

RQLsd-018(p)-0028-SD 2.0 - 4.0 FT

REG	Cyanide	0.65	MG/KG	U	U	
Sample Type	Metals	Result	Units	Quai Lab	ifiers Data	Validation Code
REG	Aluminum	12200	MG/KG		=	
REG	Antimony	0.65	MG/KG	U	UJ	102
REG	Arsenic	7.6	MG/KG		=	
REG	Barium	73.3	MG/KG		=	
REG	Beryllium	.33	MG/KG	8	J	
REG	Cadmium	0.65	MG/KG	U	U	
REG	Calcium	4870	MG/KG		J	102
REG	Chromium	21	MG/KG		=	
REĠ	Cobalt	8.2	MG/KG		=	
REG	Copper	48.7	MG/KG		=	
REG	Iron	20500	MG/KG		=	
REG	Lead	25.3	MG/KG		=	
REG	Magnesium	9820	MG/KG		J	103
REG	Manganese	359	MG/KG		J	E07
REG	Mercury	.039	MG/KG	в	J	
REG	Nickel	19.2	MG/KG		Ξ	
REG	Potassium	1670	MG/KG		J	F10
REG	Selenium	0.8	MG/KG		=	
REG	Silver	1.3	MG/KG	U	U	
REG	Sodium	46.4	MG/KG	в	J	
REG	Thallium	0.65	MG/KG	U	U	

Field Sample Type: Grab

Matrix: Sediment

Qualifiers Lab Data

Units

Validation Code

Qualifiers

Lab Data

=

=

Qualifiers

Lab Data

Đ

U

J

U

ŧ

U

υ

Ų

J

U

U

U

U

U

Ų

Qualifiers

Lab Data Validation

Validation

Validation

Code

Code

Code

Collected: 07/08/98

## Station : RQLsd-018

#### Location: Ramsdell Quarry Landfill Initial Phase RQLsd-018(p)-0028-SD 2.0 - 4.0 FT Field Sample Type: Grab Matrix: Sediment Sample Type Metals Result Units REG Vanadium 22.4 MG/KG REG Zinc 107 MG/KG MBB Sample Type Explosives Units Result REG 1,3,5-Trinitrobenzene 0.25 MG/KG U REG 1,3-Dinitrobenzene 0.25 MG/KG U REG 2,4,6-Trinitrotoluene 0.047 MG/KG J REG 2,4-Dinitrotoluene 0.25 MG/KG U REG 2,6-Dinitrotoluene 0.25 MG/KG U REG 2-Nitrotoluene 0.25 MG/KG U REG 3-Nitrotoluene 0.25 MG/KG U REG 4-Nitrotoluene 0.25 MG/KG U REG нмх 0.13 MG/KG J Nitrobenzene 0.25 MG/KG U REG REG Nitrocellulose as N 2 MG/KG U REG Nitroglycerin 2.5 MG/KG U REG Nitroguanidine 0.25 MG/KG U REG RDX 0.5 MG/KG U REG Tetryl 0.65 MG/KG U Sample Type Semi-Volatile Organics Result Units

REG	1,2,4-Trichlorobenzene	430 UG/KG U U
REG	1,2-Dichlorobenzene	430 UG/KG U U
REG	1,3-Dichlorobenzene	430 UG/KG U U
REG	1,4-Dichlorobenzene	430 UG/KG U U
REG	2,2'-oxybis (1-chloropropane)	430 UG/KG U U
REG	2,4,5-Trichlorophenol	430 UG/KG U U
REG	2,4,6-Trichlorophenol	430 UG/KG U U
REG	2,4-Dichlorophenol	430 UG/KG U U
REG	2,4-Dimethylphenol	430 UG/KG U U
REG	2,4-Dinitrophenol	1000 UG/KG U U
REG	2,4-Dinitrotoluene	430 UG/KG U U
REG	2,6-Dinitrotoluene	430 UG/KG U U
REG	2-Chloronaphthalene	430 UG/KG U U
REG	2-Chiorophenol	430 UG/KG U U
REG	2-Methylnaphthalene	430 UG/KG U U
REG	2-Methylphenol	430 UG/KG U U
REG	2-Nitroaniline	1000 UG/KG U U
REG	2-Nitrophenol	430 UG/KG U U
REG	3,3'-Dichlorobenzidine	430 UG/KG U U
REG	3-Nitroaniline	1000 UG/KG U U
REG	4,6-Dinitro-o-Cresol	1000 UG/KG U U
REG	4-Bromophenyl-phenyl Ether	430 UG/KG U U
REG	4-Chloroaniline	430 UG/KG U U
REG	4-Chlorophenyl-phenylether	430 UG/KG U U
REG	4-Methylphenol	430 UG/KG U U
REG	4-Nitroaniline	1000 UG/KG U U
REG	4-Nitrophenol	1000 UG/KG U U
REG	4-chloro-3-methylphenol	430 UG/KG U U
REG	Acenaphthene	430 UG/KG U U
REG	Acenaphthylene	430 UG/KG U U
REG	Anthracene	430 UG/KG U U
REG	Benzo(a)anthracene	430 UG/KG U U
REG	Benzo(a)pyrene	430 UG/KG U U
REG	Benzo(b)fluoranthene	430 UG/KG U U
REG	Benzo(g,h,i)perylene	430 UG/KG U U
REG	Benzo(k)fluoranthene	430 UG/KG U U
REG	Bis(2-chloroethoxy)methane	430 UG/KG U U
REG	Bis(2-chloroethyl)ether	430 UG/KG U U
REG	Bis(2-ethylhexyl)phthalate	430 UG/KG U U
REG	Butyl Benzyl Phthalate	430 UG/KG U U
REG	Carbazole	430 UG/KG U U
REG	Chrysene	430 UG/KG U U
REG	Di-n-butyl Phthalate	430 UG/KG U U
REG	Di-n-octyl Phthalate	430 UG/KG U U
REG	Dibenzo(a,h)anthracene	430 UG/KG U U
	· · · •	

Location:	Ramsdeli Quai	rry Landfill
Station :	RQLsd-018	Initial Phase

Sample Type	Semi-Volatile Organics	Result	Units	Qua Lab	alifiers Data	Validation Code	
REG	Dibenzofuran	430	UG/KG	U	U		
REG	Diethyl Phthalate	430	UG/KG	U	U		
REG	Dimethyl Phthalate	430	UG/KG	U	U		
REG	Fluoranthene	65	UG/KG	J	J		
REG	Fluorene	430	UG/KG	U	U		
REG	Hexachlorobenzene	430	UG/KG	U	U		
REG	Hexachlorobutadiene	430	UG/KG	U	U		
REG	Hexachlorocyclopentadiene	430	UG/KG	U	U		
REG	Hexachloroethane	430	UG/KG	U	U		
REG	Indeno(1,2,3-cd)pyrene	430	UG/KG	U	U		
REG	Isophorone	430	UG/KG	U	U		
REG	N-Nitroso-di-n-propylamine	430	UG/KG	U	U		
REG	N-Nitrosodiphenylamine	430	UG/KG	U	U		
REG	Naphthalene	430	UG/KG	U	U		
REG	Nitrobenzene	430	UG/KG	U	U		
REG	Pentachlorophenol		UG/KG		U		
REG	Phenanthrene		UG/KG		U		
REG	Phenol		UG/KG		Ū		
REG	Pyrene		UG/KG		Ĵ		
Sample	Volatile Organics	Result	Units	Qua Lat	alifiers Data	Validation Code	
REG	1,1,1-Trichloroethane		UG/KG		U		_
REG	1,1,2,2-Tetrachloroethane		UG/KG	-	Ŭ		
REG	1,1,2-Trichloroethane		UG/KG		Ŭ		
REG	1,1-Dichloroethane		UG/KG		Ŭ		
REG	1,1-Dichloroethene		UG/KG		Ŭ		
REG	1,2-Dichloroethane		UG/KG		Ŭ		
REG	1,2-Dichloroethene		UG/KG		ŭ		
REG			UG/KG		Ŭ		
REG	1,2-Dichloropropane		UG/KG		Ŭ		
REG	1,3-cis-Dichloropropene		UG/KG		ŭ		
	1,3-trans-Dichloropropene		UG/KG		ŭ		
REG	2-Butanone				Ŭ		
REG	2-Hexanone		UG/KG				
REG	4-Methyl-2-pentanone		UG/KG		U	005	
REG	Acetone		UG/KG		J	C05	
REG	Benzene		UG/KG		U		
REG	Bromodichloromethane		UG/KG		U		
REG	Bromoform		UG/KG		U		
REG	Bromomethane		UG/KG		U		
REG	Carbon Disulfide		UG/KG		U		
REG	Carbon Tetrachloride	6,5	UG/KG	Ų	U		
REG	Chlorobenzene	6.5	UG/KG	U	U		
REG	Chloroethane	13	UG/KG	U	U		
REG	Chloroform	6.5	UG/KG	U	U		
REG	Chloromethane	13	UG/KG	U	U		
REG	Dibromochloromethane		UG/KG		บ		
REG	Ethylbenzene	6.5	UG/KG	U	U		
REG	Methylene Chloride		UG/KG		J		
REG	Styrene		UG/KG		Ū		
REG	Tetrachloroethene		UG/KG		Ŭ		
REG	Toluene		UG/KG		Ŭ		
1120					Ŭ		
pec.	Trichloroothono						
REG REG	Trichloroethene Vinyl Chloride		UG/KG UG/KG		Ŭ		

RQLsd-019(p)-0029-SD 0.	.0 - 0.5 FT	Field Sample Type: Ge	rab I	Matrix: S	iediment		Collected: 07/08/98
Sample Type	Cyanide	Result	Units	Qual Lab	iflers Data	Validation Code	
REG	Cyanide	0.54	MG/KG	U	U		_
Sample Type	Metals	Result	Units	Qual Lab	ifler <del>s</del> Data	Validation Code	
REG	Aluminum	5560	MG/KG		=		_

Location:	Ramsdell Quar	ry Landfill
Station :	RQLsd-019	Initial Phase

REG REG REG REG REG REG REG REG REG REG	Metais Antimony Arsenic Barium Cadmium Cadmium Calcium Chromium Cobalt Copper Iron Lead Magnesium Magnese	12.3 35.9 0.18 0.54 614 9 13.9 20.7 16800	Units MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG		0 Data UJ = =	Code 102	-
REG REG REG REG REG REG REG REG REG REG	Arsenic Barium Beryllium Cadmium Calcium Chromium Cobalt Copper Iron Lead Magnesium	12.3 35.9 0.18 0.54 614 9 13.9 20.7 16800	MG/KG MG/KG MG/KG MG/KG MG/KG		=	102	
REG REG REG REG REG REG REG REG REG REG	Barium Beryllium Cadmium Calcium Chromium Cobalt Copper Iron Lead Magnesium	35.9 0.18 0.54 614 9 13.9 20.7 16800	MG/KG MG/KG MG/KG MG/KG MG/KG	в			
REG REG REG REG REG REG REG REG REG REG	Beryllium Cadmium Calcium Chromium Cobalt Copper Iron Lead Magnesium	0.18 0.54 614 9 13.9 20.7 16800	MG/KG MG/KG MG/KG MG/KG	в			
REG REG REG REG REG REG REG REG REG REG	Cadmium Calcium Chromium Cobalt Copper Iron Lead Magnesium	0.54 614 9 13.9 20.7 16800	MG/KG MG/KG MG/KG	D	Ū	F06	
REG REG REG REG REG REG REG REG REG	Calcium Chromium Cobalt Copper Iron Lead Magnesium	614 9 13.9 20.7 16800	MG/KG MG/KG	11		F00	
REG REG REG REG REG REG REG REG REG	Chromium Cobalt Copper Iron Lead Magnesium	9 13.9 20.7 16800	MG/KG		U	100	
REG REG REG REG REG REG REG REG	Cobalt Copper Iron Lead Magnesium	13.9 20.7 16800			J	102	
REG REG REG REG REG REG REG	Copper Iron Lead Magnesium	20.7 16800			=		
REG REG REG REG REG REG	Iron Lead Magnesium	16800	MG/KG		=		
REG REG REG REG REG REG	Lead Magnesium		MG/KG		=		
REG REG REG REG REG	Magnesium	26.7			=		
REG REG REG REG			MG/KG		=		
REG REG REG	Manganese		MG/KG		J	103	
REG REG	<del>.</del>		MG/KG		J	E07	
REG	Mercury	.033	MG/KG	8	J		
	Nickel	28.4	MG/KG		=		
REG	Potassium	447	MG/KG	в	J	F10	
	Selenium	0.6	MG/KG		=		
	Silver	1.1	MG/KG	U	U		
	Sodium		MG/KG		Ū		
	Thallium		MG/KG		Ũ		
	Vanadium		MG/KG		=		
	Zinc		MG/KG				
Sample	Explosives	Result	Units	Qu Lai	alifiers b Data	Validation Code	
	1.3.5-Trinitrobenzene		MG/KG		<del>ບ - ເບ</del>		
	1,3-Dinitrobenzene		MG/KG		Ŭ		
	2,4,6-Trinitrotoluene		MG/KG		Ŭ		
	2,4-Dinitrotoluene		MG/KG		J		
	2,6-Dinitrotoluene		MG/KG		Ű		
			MG/KG		Ŭ		
	2-Nitrotoluene		MG/KG		U		
	3-Nitrotoluene						
	4-Nitrotoluene		MG/KG		U		
	HMX		MG/KG		J		
-	Nitrobenzene		MG/KG		U		
REĠ	Nitrocellulose as N		MG/KG		U		
REG	Nitroglycerin	2.5	MG/KG	U	U		
REG	Nitroguanidine	0.25	MG/KG	υ	U		
	RDX Tetryl		MG/KG MG/KG		U U		
	renyi	0.00	MORO				
Sample Type	Semi-Volatile Organics	Result	Units	La	alifiers b Data	Validation Code	
REG	1,2,4-Trichlorobenzene	360	UG/KG	U	U		
	1,2-Dichlorobenzene	360	UG/KG	Ų	U		
	1,3-Dichlorobenzene	360	UG/KG	U	U		
	1,4-Dichlorobenzene		UG/KG		Ū		
	2.2'-oxybis (1-chloropropane)		UG/KG		Ū		
	2,4,5-Trichlorophenoł		UG/KG		Ŭ		
	· · · · · · · · · · · · · · · · · · ·		UG/KG		Ŭ		
	2,4,6-Trichlorophenol				U		
	2,4-Dichlorophenol		UG/KG				
	2,4-Dimethylphenol		UG/KG		U		
	2,4-Dinitrophenol		UG/KG		U		
	2,4-Dinitrotoluene		UG/KG		U		
REG	2,6-Dinitrotoluene		UG/KG		U		
REG	2-Chloronaphthalene	360	UG/KG	U	U		
REG	2-Chiorophenol	360	UG/KG	U	U		
REG	2-Methylnaphthalene	360	UG/KG	U	U		
REG	2-Methylphenol		UG/KG		U		
REG	2-Nitroaniline		UG/KG		Ū		
REG			UG/KG		ŭ		
	2-Nitrophenol		UG/KG		Ŭ		
REG	3,3'-Dichlorobenzidine				U		
REG	3-Nitroaniline		UG/KG				
REG	4,6-Dinitro-o-Cresol		UG/KG		U		
REG	4-Bromophenyl-phenyl Ether		UG/KG		U		
REG	4-Chloroaniline		UG/KG		U		
REG	4-Chlorophenyi-phenyiether		UG/KG UG/KG		U U		

REG

Ethylbenzene

REG Methylene Chloride

Sample Type	Semi-Volatile Organics	Result	Units		Qualifiers Lab Data	Validation Code	
REG	4-Nitroaniline	860	UG/KG	Ū	U		
REG	4-Nitrophenol	860	UG/KG	U	U		
REG	4-chloro-3-methylphenol	360	UG/KG	Ų	U		
REG	Acenaphthene		UG/KG		U		
REG	Acenaphthylene		UG/KG		U		
REG	Anthracene		UG/KG		U		
REG	Benzo(a)anthracene		UG/KG		U		
REG	Benzo(a)pyrene		UG/KG UG/KG		U U		
REG REG	Benzo(b)fluoranthene Benzo(g,h,i)perylene		UG/KG		Ŭ		
REG	Benzo(k)fluoranthene		UG/KG		Ŭ		
REG	Bis(2-chloroethoxy)methane		UG/KG		ŭ		
REG	Bis(2-chloroethyl)ether		UG/KG		Ū		
REG	Bis(2-ethylhexyl)phthalate		UG/KG		U		
REG	Butyl Benzyl Phthalate	360	UG/KG	U	U		
REG	Carbazole	360	UG/KG	U	U		
REG	Chrysene	360	UG/KG	U	U		
REG	Di-n-butyl Phthalate	360	UG/KG	U	U		
REG	Di-n-octyl Phthalate	360	UG/KG	U	U		
REG	Dibenzo(a,h)anthracene	360	UG/KG	U	U		
REG	Dibenzofuran	360	UG/KG	U	U		
REG	Diethyl Phthalate	360	UG/KG	U	U		
REG	Dimethyl Phthalate	360	UG/KG	U	U		
REG	Fluoranthene	67	UG/KG	i J	j		
REG	Fluorene	360	UG/KG	U	U		
REG	Hexachlorobenzene	360	UG/KG	ιŲ	U		
REG	Hexachlorobutadiene		UG/KG				
REG	Hexachlorocyclopentadiene	360	UG/KG	U	U		
REG	Hexachloroethane		UG/KG				
REG	Indeno(1,2,3-cd)pyrene		UG/KG				
REG	Isophorone		UG/KG				
REG	N-Nitroso-di-n-propylamine		UG/KG				
REG	N-Nitrosodiphenylamine		UG/KG				
REG	Naphthalene		UG/KG				
REG	Nitrobenzene		UG/KG				
REG	Pentachlorophenol		UG/KG				
REG	Phenanthrene		UG/KG				
REG	Phenol		UG/KG		1 U		
REG	Pyrene	53	UG/KG	• J			
Sample Type	Volatile Organics	Result	Units		Qualifiers Lab Data	Validation Code	
REG	1,1,1-Trichloroethane	5.4	UG/KG	5 U	·		
REG	1.1.2.2-Tetrachloroethane	5.4	UG/KG	; U	U		
REG	1,1,2-Trichloroethane	5.4	UG/KG	։ Ս	U		
REG	1,1-Dichloroethane		UG/KG				
REG	1,1-Dichloroethene		UG/KG				
REG	1,2-Dichloroethane	5.4	UG/KG	; U	U		
REG	1,2-Dichloroethene	5.4	UG/KG	9 U	U		
REG	1,2-Dichloropropane	5,4	UG/KG	6 U	U		
REG	1,3-cis-Dichloropropene		UG/KG				
REG	1,3-trans-Dichloropropene		UG/KG				
REG	2-Butanone		UG/KG				
REG	2-Hexanone	22	UG/KG	; U	U		
REG	4-Methyl-2-pentanone		UG/KG				
REG	Acetone	22	UG/KG	ະບ	U		
REG	Benzene		UG/KG				
REG	Bromodichloromethane		UG/KG				
REG	Bromoform		UG/KG				
REG	Bromomethane		UG/KG				
REG	Carbon Disulfide		UG/KG				
REG	Carbon Tetrachloride		UG/KG				
REG	Chlorobenzene		UG/KG				
REG	Chloroethane		UG/KG				
REG	Chloroform		UG/KC				
REG	Chloromethane		UG/KC				
REG	Dibromochloromethane		UG/KC				

5.4 UG/KG U

0.73 UG/KG J

Ŭ =

Location:	Ramsdell Quar	ry Landfill
Station :	RQLsd-019	Initial Phase

······································		.0 - 0.5 FT	Field Sample Type: G					
	Sample Type	Volatile Organics	Result	Units	Lab	lifiers Data	Validation Code	
	REG	Styrene	5.4	UG/KG	U	U		
	REG	Tetrachloroethene	5.4	UG/KG	U	U		
	REG	Toluene	5.4	UG/KG	U	U		
	REG	Trichloroethene	5.4	UG/KG	U	U		
	REG	Vinyl Chloride	11	UG/KG	U	U		
	REG	Xylenes, Total	5.4	UG/KG	U	U		

Location: Ramsdell Quarry Landfill Station : RQLsd-022 Initial Phase

Sample		Result	Units	Quai Lab	lfiers Data	Validation Code	
REG	Cyanide Cyanide		MG/KG		U		_
REG	Cyanue	1.1	MORICO	Ū	Ŭ		
Sample Type		Result	Units	Qual Lab	lfiers Data	Validation Code	
REG	Aluminum		MG/KG		=		_
REG	Antimony		MG/KG MG/KG	U	UJ =	102	
REG REG	Arsenic Barium		MG/KG		=		
REG	Beryllium		MG/KG	в	J		
REG	Cadmium		MG/KG	0	=		
REG	Calcium		MG/KG		J	102	
REG	Chromium		MG/KG		=		
REG	Cobalt		MG/KG		=		
REG	Copper		MG/KG		=		
REG	Iron		MG/KG		=		
REG	Lead	87.2	MG/KG		Ξ.		
REG	Magnesium	58000	MG/KG		J	103	
REG	Manganese	2590	MG/KG		J	E07	
REG	Mercury		MG/KG	в	J		
REG	Nickel	86.8	MG/KG		=		
REG	Potassium		MG/KG		J	F10	
REG	Selenium		MG/KG		U		
REG	Silver		MG/KG		U		
REG	Sodium		MG/KG	в	J		
REG	Thallium		MG/KG		=		
REG	Vanadium		MG/KG		=		
REG	Zinc	894	MG/KG	MBB	=		
Sample Type	Explosives	Result	Units	Qua Lab	liflers Data	Validation Code	
REG			MG/KG			•	_
REG	1,3,5-Trinitrobenzene				Ŭ		
neu		D 76	MI / K -				
	1,3-Dinitrobenzene 2.4.6-Trinitrotoluene		MG/KG MG/KG				
REG	2,4,6-Trinitrotoluene	0.25	MG/KG	U	Ų		
REG REG	2,4,6-Trinitrotoluene 2,4-Dinitrotoluene	0.25 0.064	MG/KG MG/KG	1 U	J U		
REG REG REG	2,4,6-Trinitrotoluene 2,4-Dinitrotoluene 2,6-Dinitrotoluene	0.25 0.064 0.25	MG/KG	U J U	Ų		
REG REG REG REG	2,4,6-Trinitrotoluene 2,4-Dinitrotoluene 2,6-Dinitrotoluene 2-Nitrotoluene	0.25 0.064 0.25 0.25	MG/KG MG/KG MG/KG	0 1 1	0 1 0		
REG REG REG	2,4,6-Trinitrotoluene 2,4-Dinitrotoluene 2,6-Dinitrotoluene	0.25 0.064 0.25 0.25 0.25 0.25	MG/KG MG/KG MG/KG MG/KG	U U U U	0 1 0		
REG REG REG REG REG	2,4,6-Trinitrotoluene 2,4-Dinitrotoluene 2,6-Dinitrotoluene 2-Nitrotoluene 3-Nitrotoluene	0.25 0.064 0.25 0.25 0.25 0.25 0.25	MG/KG MG/KG MG/KG MG/KG	0 0 1 1 0	U U U U		
REG REG REG REG REG REG	2,4,6-Trinitrotoluene 2,4-Dinitrotoluene 2,6-Dinitrotoluene 2-Nitrotoluene 3-Nitrotoluene 4-Nitrotoluene	0.25 0.064 0.25 0.25 0.25 0.25 0.25 0.12	MG/KG MG/KG MG/KG MG/KG MG/KG	1 0 0 1 0	0 0 1 0 0		
REG REG REG REG REG REG	2,4,6-Trinitrotoluene 2,4-Dinitrotoluene 2,6-Dinitrotoluene 2-Nitrotoluene 3-Nitrotoluene 4-Nitrotoluene HMX	0.25 0.064 0.25 0.25 0.25 0.25 0.25 0.12 0.25	MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG	0 0 0 1 0 1	1 0 1 1 0		
REG REG REG REG REG REG REG	2,4,6-Trinitrotoluene 2,4-Dinitrotoluene 2,6-Dinitrotoluene 3-Nitrotoluene 4-Nitrotoluene HMX Nitrobenzene	0.25 0.064 0.25 0.25 0.25 0.25 0.25 0.12 0.25 0.25 0.25 0.25 0.25	MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG	0 0 0 0 1 0 1 0	0 0 0 1 0 1 0		
REG REG REG REG REG REG REG REG	2,4,6-Trinitrotoluene 2,4-Dinitrotoluene 2,6-Dinitrotoluene 3-Nitrotoluene 4-Nitrotoluene HMX Nitrobenzene Nitrocellulose as N	0.25 0.064 0.25 0.25 0.25 0.25 0.12 0.25 0.12 0.25 2	MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG	0 0 0 0 0 0 0 0 0 0 0 0 0	0 1 0 1 0 1 0 1 0		
REG REG REG REG REG REG REG REG REG	2,4,6-Trinitrotoluene 2,4-Dinitrotoluene 2,6-Dinitrotoluene 3-Nitrotoluene 4-Nitrotoluene HMX Nitrobenzene Nitrocellulose as N Nitroglycerin	0.25 0.064 0.25 0.25 0.25 0.25 0.12 0.25 2 2.5 0.25	MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG	0 0 0 0 0 0 0 0 0 0	0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
REG REG REG REG REG REG REG REG REG	2,4,6-Trinitrotoluene 2,4-Dinitrotoluene 2,6-Dinitrotoluene 3-Nitrotoluene 4-Nitrotoluene HMX Nitrobenzene Nitrocellulose as N Nitroglycerin Nitroguanidine	0.25 0.064 0.25 0.25 0.25 0.12 0.25 0.12 0.25 2 2.5 0.25 0.5	MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG	0 0 0 0 0 0 0 0 0 0 0 0 0	20010000000000000000000000000000000000		
REG REG REG REG REG REG REG REG REG REG	2,4,6-Trinitrotoluene 2,4-Dinitrotoluene 2,6-Dinitrotoluene 3-Nitrotoluene 4-Nitrotoluene HMX Nitrobenzene Nitrocellulose as N Nitroglycerin Nitroguanidine RDX Tetryl	0.25 0.064 0.25 0.25 0.25 0.12 0.25 0.12 0.25 2 2.5 0.25 0.5	MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0	Validation	
REG REG REG REG REG REG REG REG REG REG	2,4,6-Trinitrotoluene 2,4-Dinitrotoluene 2,6-Dinitrotoluene 3-Nitrotoluene 4-Nitrotoluene HMX Nitrobenzene Nitrocellulose as N Nitroglycerin Nitroguanidine RDX Tetryl	0.25 0.064 0.25 0.25 0.25 0.12 0.25 0.12 0.25 2 2.5 0.25 0.5	MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	U J U U J U U U U U U U U U	Validation Code	
REG REG REG REG REG REG REG REG REG REG	2,4,6-Trinitrotoluene 2,4-Dinitrotoluene 2,6-Dinitrotoluene 3-Nitrotoluene 4-Nitrotoluene HMX Nitrobenzene Nitrocellulose as N Nitroglycerin Nitroguanidine RDX Tetryl	0.25 0.064 0.25 0.25 0.25 0.12 0.25 2 2.5 0.5 0.5 0.65 <b>Result</b> 730	MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG Units UG/KG	U J U U U U U U U U U U U U	U J U U J U U U U U U U U U		
REG REG REG REG REG REG REG REG REG REG	2,4,6-Trinitrotoluene 2,4-Dinitrotoluene 2,6-Dinitrotoluene 3-Nitrotoluene 4-Nitrotoluene HMX Nitrobenzene Nitrocellulose as N Nitroglycerin Nitroguanidine RDX Tetryl	0.25 0.064 0.25 0.25 0.25 0.25 0.25 2 2 2.5 0.25 0.5 0.5 0.65 <b>Result</b> 730 730	MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG Units UG/KG UG/KG	U J U U U U U U U U U U U U U U U U U U	U J U U J U U U U U U U U U U U U U U U		
REG REG REG REG REG REG REG REG REG REG	2,4,6-Trinitrotoluene 2,4-Dinitrotoluene 2,6-Dinitrotoluene 3-Nitrotoluene 3-Nitrotoluene 4-Nitrotoluene HMX Nitrobenzene Nitrocellulose as N Nitroglycerin Nitroguanidine RDX Tetryl Semi-Volatile Organics 1,2,4-Trichlorobenzene	0.25 0.064 0.25 0.25 0.25 0.25 0.12 0.25 0.25 0.5 0.5 0.65 <b>Result</b> 730 730 730	MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG Units UG/KG UG/KG	U J U U U U U U U U U U U U U U U U U U	U J U U U U U U U U U U U U U U U U U U		
	2,4,6-Trinitrotoluene 2,4-Dinitrotoluene 2,6-Dinitrotoluene 3-Nitrotoluene 3-Nitrotoluene 4-Nitrotoluene HMX Nitrobenzene Nitrocellulose as N Nitroglycerin Nitroguanidine RDX Tetryl Semi-Volatile Organics 1,2,4-Trichlorobenzene 1,2-Dichlorobenzene	0.25 0.064 0.25 0.25 0.25 0.25 0.12 0.25 2 2.5 0.25 0.5 0.5 0.5 0.5 0.5 0.5 7.30 730 730 730	MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG Units UG/KG UG/KG	U J U U U U U U U U U U U U U U U U U U	U J U U J U U U U U U U U U U U U		

Sampl Type	Semi-Volatile Organics	Result	Units		Qualifiers .ab Data	Validation Code		
		730	UG/KG	11	 U		-	
REG REG	2,4,5-Trichlorophenol 2,4,6-Trichlorophenol		UG/KG		Ŭ			
REG	2,4-Dichlorophenol		UG/KG		Ū			
REG	2,4-Dimethylphenol		UG/KG		U			
REG	2,4-Dinitrophenol	1800	UG/KG	U	U			
REG	2.4-Dinitrotoluene		UG/KG		U			
REG	2,6-Dinitrotoluene	730	UG/KG	U	U			
REG	2-Chloronaphthalene	730	UG/KG	U	U			
REG	2-Chlorophenol	730	UG/KG	U	U			
REG	2-Methylnaphthalene		UG/KG		ບ			
REG	2-Methylphenol		UG/KG		U			
REG	2-Nitroaniline		UG/KG		U			
REG	2-Nitrophenol		UG/KG		U			
REG	3,3'-Dichlorobenzidine		UG/KG		U			
REG	3-Nitroaniline		UG/KG		U			
REG	4,6-Dinitro-o-Cresol		UG/KG		บ บ			
REG	4-Bromophenyl-phenyl Ether		UG/KG		U			
REG	4-Chloroaniline		UG/KG		U			
REG	4-Chlorophenyi-phenylether		UG/KG UG/KG		Ŭ			
REG	4-Methylphenol		UG/KG		U			
REG	4-Nitroaniline		UG/KG		υ			
REG REG	4-Nitrophenol 4-chloro-3-methylphenol		UG/KG		Ŭ			
REG	Acenaphthene		UG/KG		ŭ			
REG	Acenaphthylene		UG/KG		Ū			
REG	Anthracene		UG/KG		Ū			
REG	Benzo(a)anthracene		UG/KG		Ū			
REG	Benzo(a)pyrene	730	UG/KG	U	U			
REG	Benzo(b)fluoranthene	730	UG/KG	U	U			
REG	Benzo(g,h,i)perylene	730	UG/KG	U	U			
REG	Benzo(k)fluoranthene	730	UG/KG	U	U			
REG	Bis(2-chloroethoxy)methane	730	UG/KG	U	U			
REG	Bis(2-chloroethyl)ether	730	UG/KG	U	U			
REG	Bis(2-ethylhexyl)phthalate	730	UG/KG	U	U			
REG	Butyl Benzyl Phthalate	730	UG/KG	U	U			
REG	Carbazole		UG/KG		U			
REG	Chrysene		UG/KG		U			
REG	Di-n-butyl Phthalate		UG/KG		U			
REG	Di-n-octyl Phthalate		UG/KG		U			
REG	Dibenzo(a,h)anthracene		UG/KG		U			
REG	Dibenzofuran		UG/KG		U			
REG	Diethyl Phthalate		UG/KG		U			
REG	Dimethyl Phthalate		UG/KG		U			
REG	Fluoranthene		UG/KG		บ บ			
REG	Fluorene		UG/KG UG/KG		U			
REG	Hexachiorobenzene		UG/KG		U			
REG	Hexachlorobutadiene		UG/KG	-	U			
REG	Hexachlorocyclopentadiene		UG/KG		Ŭ			
REG REG	Hexachloroethane		UG/KG		Ű			
REG	Indeno(1,2,3-cd)pyrene		UG/KG		Ŭ			
REG	Isophorone N-Nitroso-di-n-propylamine		UG/KG		Ŭ			
REG	N-Nitrosodiphenylamine		UG/KG		Ŭ			
REG	Naphthalene		UG/KG		ŭ			
REG	Nitrobenzene		UG/KG		ŭ			
REG	Pentachlorophenol		UG/KG					
REG	Phenanthrene		UG/KG		_			
REG	Phenol		UG/KG		-			
REG	Pyrene		UG/KG					
ACO.		700		-	-			
Samp	le				Qualifiers	Validation		
	Volatile Organics	Result	Units		Lab Data	Code		
REG	1,1,1-Trichloroethane	11	UG/KG	ទីប			_	
REG			UG/KG					
REG			UG/KC					
REG			UG/KG					
REG			UG/KG					
REG	1,2-Dichloroethane		UG/KG	3 U	U			
			UG/KG		U			

### RQLsd-022(p)-0038-SD 0.0 - 0.5 FT

Matrix: Sediment Field Sample Type: Grab

Collected: 07/08/98

				0	107	Validation
Sample	Volatile Organics	Result	Units	Lab	lifiers Data	Code
Туре	volatile Organics	r.eault	Jaile		Daid	COUR
REG	1,2-Dichloropropane	11	UG/KG	U	U	
REG	1,3-cis-Dichloropropene	11	UG/KG	U	U	
REG	1,3-trans-Dichloropropene	11	UG/KG	U	U	
REG	2-Butanone		UG/KG	-	U	
REĞ	2-Hexanone	44	UG/KG	U	U	
REG	4-Methyl-2-pentanone	44	UG/KG	U	U	
REG	Acetone	12	UG/KG	J	J	C05
REG	Benzene	11	UG/KG	U	U	
REG	Bromodichloromethane	11	UG/KG	U	U	
REG	Bromoform	11	UG/KG	U	U	
REG	Bromomethane	22	UG/KG	U	U	
REG	Carbon Disulfide	11	UG/KG	U	U	
REG	Carbon Tetrachloride	11	UG/KG	U	U	
REG	Chlorobenzene		UG/KG		U	
REG	Chloroethane	22	2 UG/KG	U	U	
REG	Chloroform	11	UG/KG	U	U	
REG	Chloromethane	22	2 UG/KG	U	υ	
REG	Dibromochloromethane	11	UG/KG	U	U	
REG	Ethylbenzene	11	UG/KG	U	U	
REG	Methylene Chloride	11	UG/KG	U	U	
REG	Styrene	11	UG/KG	U	U	
REG	Tetrachloroethene	11	UG/KG	U	U	
REG	Toluene	11	UG/KG	U	Ų	
REG	Trichloroethene	11	UG/KG	U	U	
REG	Vinyl Chloride	22	2 UG/KG	U	υ	
REG	Xylenes, Total	11	I UG/KG	U	U	

### RQLsd-022(p)-0054-FD 0.0 - 0.0 FT

REG

3-Nitrotoluene

Matrix: Sediment Field Sample Type: Field Duplicate

Collected: 07/08/98

Sample					lifiers	Validation
Туре	Cyanide	Result	Units	Lab	Data	Code
REG	Cyanide	1	MG/KG	U	U	<u></u>
Sample Type	Metals	Result	Units	Qua Lab	lifie <b>rs</b> Data	Validation Code
REG	Aluminum	8000	MG/KG		=	
REG	Antimony	1	MG/KG	υ	υJ	102
REG	Arsenic	25.3	MG/KG		=	
REG	Barium	112	MG/KG		=	
REG	Beryllium	0.39	MG/KG	в	U	F06
REG	Cadmium	1.8	MG/KG		=	
REG	Calcium	38800	MG/KG		J	102
REG	Chromium	21.4	MG/KG		=	
REG	Cobalt	25.1	MG/KG		=	
REG	Copper	96.2	MG/KG		=	
REG	Iron	30600	MG/KG		=	
REG	Lead	63.9	MG/KG		=	
REG	Magnesium	44700	MG/KG		J	103
REG	Manganese	2160	MG/KG		J	E07
REG	Mercury	.073	MG/KG	₿	J	
REG	Nickel	64.7	MG/KG		=	
REG	Potassium	636	MG/KG	в	J	F10
REG	Selenium	1	MG/KG	U	U	
REG	Silver	2	MG/KG	U	U	
REG	Sodium	79.6	MG/KG	в	J	
REG	Thallium	1	MG/KG	U	U	
REG	Vanadium	16.7	MG/KG		=	
REG	Zinc	711	MG/KG	MBB	=	
Sample	,			Qua	lifiers	Validation
Туре	Explosives	Result	Units	Lab	Data	Code
REG	1,3,5-Trinitrobenzene	0.25	MG/KG	U	U	
REG	1,3-Dinitrobenzene	0.25	MG/KG	U	U	
REG	2,4,6-Trinitrotoluene	0.25	MG/KG	υ	U	
REG	2,4-Dinitrotoluene	0.033	MG/KG	J	J	
REG	2,6-Dinitrotoluene		MG/KG		U	
REG	2-Nitrotoluene		MG/KG		U	
		0.05	1100/0			

0.25 MG/KG U

U

Location:	Ramsdell Qua	rry Landfill
Station :	RQLsd-022	Initial Phase

		ample Type: Field D			x: Sedi			
Sample Type	Explosives	Result	Units	Qualifi Lab	ers Data	Validation Code		
REG	4-Nitrotoluene	0.25	MG/KG	υι	J .			
REG	HMX		MG/KG					
REG	Nitrobenzene		MG/KG		J			
REG	Nitrocellulose as N		MG/KG		J			
REG	Nitroglycerin		MG/KG		ر ا			
REG	Nitroguanidine		MG/KG		J			
REG	RDX		MG/KG		J			
REG	Tetryl	0.65	MG/KG	UU	J			
Sample Type	Semi-Volatile Organics	Result	Units	Qualifi Lab	ers Data	Validation Code		
REG	1,2,4-Trichlorobenzene		UG/KG		j .		_	
REG	1,2-Dichlorobenzene		UG/KG		J			
REG	1,3-Dichlorobenzene		UG/KG		J			
REG	1,4-Dichlorobenzene		UG/KG	-	J			
REG	2,2'-oxybis (1-chloropropane)		UG/KG		J			
REG	2,4,5-Trichlorophenol		UG/KG		J			
REG	2,4,6-Trichlorophenol		UG/KG		J			
REG	2,4-Dichlorophenol		UG/KG		J			
REG	2,4-Dimethylphenol		UG/KG		J			
REG	2,4-Dinitrophenol		UG/KG		J			
REG	2,4-Dinitrotoluene		UG/KG		J			
REG	2,6-Dinitrotoluene		UG/KG		J			
REG	2-Chloronaphthalene		UG/KG		J			
REG	2-Chlorophenol		UG/KG		J			
REG	2-Methylnaphthalene		UG/KG		u –			
REG	2-Methylphenol		UG/KG		U			
REG	2-Nitroaniline		UG/KG		U			
REG	2-Nitrophenol		UG/KG		U			
REG	3,3'-Dichlorobenzidine		UG/KG		U			
REG	3-Nitroaniline		UG/KG		U			
REG	4,6-Dinitro-o-Cresol		UG/KG		J			
REG	4-Bromophenyl-phenyl Ether		UG/KG	-	J			
RËG	4-Chloroaniline		UG/KG	-	U			
REG	4-Chlorophenyl-phenylether		UG/KG		U			
REG	4-Methylphenol		UG/KG		U			
REG	4-Nitroaniline		UG/KG		U			
REG	4-Nitrophenol		UG/KG		U			
REG	4-chloro-3-methylphenol		UG/KG		U			
REG	Acenaphthene		UG/KG		U			
REG	Acenaphthylene		UG/KG	-	U			
REG	Anthracene		UG/KG	-	U			
REG	Benzo(a)anthracene		UG/KG		U			
REG	Benzo(a)pyrene		UG/KG		U			
REG	Benzo(b)fluoranthene		UG/KG		U			
REG	Benzo(g,h,i)perylene		UG/KG		U			
REG	Benzo(k)fluoranthene		UG/KG		U			
REG	Bis(2-chloroethoxy)methane		UG/KG		U			
REG	Bis(2-chloroethyl)ether		UG/KG		Ų			
REG	Bis(2-ethylhexyl)phthalate		UG/KG		U			
REG	Butyl Benzyl Phthalate		UG/KG	-	U			
REG	Carbazole		UG/KG		υ			
REG	Chrysene	670	UG/KG		U			
REG	Di-n-butyl Phthalate	670	UG/KG		U			
REG	Di-n-octyl Phthalate	670	UG/KG		U			
REG	Dibenzo(a,h)anthracene	670	UG/KG	U	U			
REG	Dibenzofuran	670	UG/KG	U	U			
REG	Diethyl Phthalate	670	UG/KG	U	U			
REG	Dimethyl Phthalate	670	UG/KG	U	U			
REG	Fluoranthene		UG/KG		U			
REG	Fluorene		UG/KG		Ū			
REG	Hexachlorobenzene		UG/KG		Ū			
REG	Hexachlorobutadiene		UG/KG		Ū			
REG	Hexachlorocyclopentadiene		UG/KG		Ŭ			
REG	Hexachloroethane		UG/KG	-	Ŭ			
REG	Indeno(1,2,3-cd)pyrene		) UG/KG		Ŭ			
REG			) UG/KG		Ŭ			
	Isophorone N Nitroso di n propulamine		) UG/KG		Ŭ			
REG	N-Nitroso-di-n-propylamine	0/1	, naura		<b>~</b>			

Location:	Ramsdell Qua	rry Landfill
Station :	RQLsd-022	Initial Phase

Sample				-	alifiers	Validation	
Туре	Semi-Volatile Organics	Result	Units	Lab	Data	Code	
REG	Naphthalene	670	UG/KG	U	U		_
REG	Nitrobenzene		UG/KG		U		
REG	Pentachlorophenol	670	UG/KG	U	U		
REG	Phenanthrene	670	UG/KG	U	U		
REG	Phenol	670	UG/KG	U	U		
REG	Pyrene	670	UG/KG	U	U		
Sample					lifiers	Validation	
Туре	Volatile Organics	Result	Units	Lab	Data	Code	
REG	1,1,1-Trichloroethane		UG/KG	_	U		
REG	1,1,2,2-Tetrachloroethane		UG/KG		U		
REG	1,1,2-Trichloroethane		UG/KG		U		
REG	1,1-Dichloroethane		UG/KG		U		
REG	1,1-Dichloroethene		UG/KG		U		
REG	1,2-Dichloroethane		UG/KG		U		
REG	1,2-Dichloroethene	10	UG/KG	U	U		
REG	1,2-Dichloropropane	10	UG/KG	U	U		
REG	1,3-cis-Dichloropropene	10	UG/KG	U	U		
REG	1,3-trans-Dichloropropene	10	UG/KG	U	U		
REG	2-Butanone	9.5	UG/KG	J	J	C05	
REG	2-Hexanone	40	UG/KG	U	U		
REG	4-Methyl-2-pentanone	40	UG/KG	U	U		
REG	Acetone	35	UG/KG	J	J	C05	
REG	Benzene	10	UG/KG	U	U		
REG	Bromodichloromethane	10	UG/KG	U	U		
REG	Bromoform	10	UG/KG	U	U		
REG	Bromomethane	20	UG/KG	U	ປ		
REG	Carbon Disulfide	10	UG/KG	U	U		
REG	Carbon Tetrachloride	10	UG/KG	U	U		
REG	Chlorobenzene	10	UG/KG	υ	U		
REG	Chloroethane	20	UG/KG	U	U		
REG	Chloroform	10	UG/KG	U	U		
REG	Chloromethane	20	UG/KG	U	υ		
REG	Dibromochloromethane	10	UG/KG	U	U		
REG	Ethylbenzene	10	UG/KG	U	U		
REG	Methylene Chloride		UG/KG		Ū		
REG	Styrene		UG/KG		Ŭ		
REG	Tetrachloroethene		UG/KG		Ū		
REG	Toluene		UG/KG		Ŭ		
REG	Trichloroethene		UG/KG		ŭ		
REG	Vinyl Chloride		UG/KG		Ŭ		
REG	Xylenes, Total		UG/KG		Ŭ		

Location: Ramsdell Quarry Landfill Station : RQLsd-023 Initial Phase

Sample				Quali		Validation	
Туре	Cyanide	Result	Units	Lab	Data	Code	
REG	Cyanide	2.8	MG/KG		=		
Sample Type	Metals	Result	Units	Qual Lab		Validation Code	
REG	Aluminum	14700	MG/KG		=		—
REG	Antimony	1	MG/KG	U	UJ	102	
REG	Arsenic	25.5	MG/KG		=		
REG	Barium	125	MG/KG		=		
REG	Beryllium	0.54	MG/KG	в	J		
REG	Cadmium	1.4	MG/KG		=		
REG	Calcium	28400	MG/KG		J	102	
REG	Chromium	26	MG/KG		=		
REG	Cobalt	19.4	MG/KG		=		
REG	Copper	80.5	MG/KG		=		
REG	Iron	40200	MG/KG		=		
REG	Lead	73.3	MG/KG		=		
REG	Magnesium	16000	MG/KG		J	103	
REG	Manganese	1820	MG/KG		J	E07	

Sample Type	Metals	Result	Units	Quall Lab	fiers Data	Validation Code	
							_
REG REG	Mercury Nickel		MG/KG MG/KG	0	1 =		
REG	Potassium		MG/KG		J	F10	
REG	Selenium		MG/KG		U		
REG	Silver		MG/KG		U		
REG	Sodium		MG/KG		J		
REG	Thallium		MG/KG	U	U =		
REG REG	Vanadium Zinc		MG/KG MG/KG	MBB	=		
Sample				Quali		Validation	
Туре	Explosives	Result		Lab	Data U	Code	
REG REG	1,3,5-Trinitrobenzene 1,3-Dinitrobenzene		MG/KG MG/KG		U		
REG	2,4,6-Trinitrotoluene	0.25	MG/KG	U	U		
REG	2,4-Dinitrotoluene		MG/KG		U		
REG	2,6-Dinitrotoluene		MG/KG		U		
REG	2-Nitrotoluene		MG/KG		U		
REG	3-Nitrotoluene		MG/KG		U		
REG	4-Nitrotoluene		MG/KG		U		
REG	HMX		MG/KG		U U		
REG	Nitrobenzene		MG/KG MG/KG		UU		
REG	Nitrocellulose as N				U		
REG	Nitroglycerin Nitroguanidine		MG/KG MG/KG		U U		
REG REG	Nitroguanidine RDX		MG/KG		Ų		
REG	Tetryl		MG/KG		Ŭ		
Sample	•				ifiers	Validation	
Туре	Semi-Volatile Organics	Result	Units	Lab	Data	Code	_
REG	1,2,4-Trichlorobenzene		UG/KG		U		
REG	1,2-Dichlorobenzene		UG/KG		U U		
REG	1,3-Dichlorobenzene		UG/KG UG/KG		U		
REG REG	1,4-Dichlorobenzene 2,2'-oxybis (1-chloropropane)		UG/KG		Ŭ		
REG	2,4,5-Trichlorophenol		UG/KG		ŭ		
REG	2,4,6-Trichlorophenol		UG/KG		Ū		
REG	2,4-Dichlorophenol	680	UG/KG	υ	U		
REG	2,4-Dimethylphenol	680	UG/KG	U	U		
REG	2,4-Dinitrophenol	1600	UG/KG	U	U		
REG	2,4-Dinitrotoluene		UG/KG		U		
REG	2,6-Dinitrotoluene		UG/KG		U		
REG	2-Chloronaphthalene		UG/KG		U		
REG	2-Chlorophenol		UG/KG UG/KG		U		
REG	2-Methylnaphthalene		UG/KG		U U		
REG	2-Methylphenol		00/100				
			HOKO	11			
REG	2-Nitroaniline	1600	UG/KG		U		
REG REG	2-Nitroaniline 2-Nitrophenol	1600 680	UG/KG	Ú	U		
REG REG REG	2-Nitroaniline 2-Nitrophenol 3,3'-Dichlorobenzidine	1600 680 680	UG/KG UG/KG	U U	U U		
REG REG REG REG	2-Nitroaniline 2-Nitrophenol 3,3'-Dichlorobenzidine 3-Nitroaniline	1600 680 680 1600	UG/KG UG/KG UG/KG	U U U	U U U		
REG REG REG REG REG	2-Nitroaniline 2-Nitrophenol 3,3'-Dichlorobenzidine 3-Nitroaniline 4,6-Dinitro-o-Cresol	1600 680 680 1600 1600	UG/KG UG/KG	U U U U	U U		
REG REG REG REG REG	2-Nitroaniline 2-Nitrophenol 3,3'-Dichlorobenzidine 3-Nitroaniline 4,6-Dinitro-o-Cresol 4-Bromophenyl-phenyl Ether	1600 680 680 1600 1600 680	UG/KG UG/KG UG/KG UG/KG	U U U U U	ม บ บ บ		
REG REG REG REG REG REG	2-Nitroaniline 2-Nitrophenol 3,3'-Dichlorobenzidine 3-Nitroaniline 4,6-Dinitro-o-Cresol 4-Bromophenyl-phenyl Ether 4-Chloroaniline	1600 680 680 1600 1600 680 680	UG/KG UG/KG UG/KG UG/KG		ม บ บ บ บ		
REG REG REG REG REG	2-Nitroaniline 2-Nitrophenol 3,3'-Dichlorobenzidine 3-Nitroaniline 4,6-Dinitro-o-Cresol 4-Bromophenyl-phenyl Ether 4-Chloroaniline 4-Chlorophenyl-phenylether	1600 680 680 1600 1600 680 680 680	UG/KG UG/KG UG/KG UG/KG UG/KG		บ บ บ บ บ		
REG REG REG REG REG REG REG	2-Nitroaniline 2-Nitrophenol 3,3'-Dichlorobenzidine 3-Nitroaniline 4,6-Dinitro-o-Cresol 4-Bromophenyl-phenyl Ether 4-Chloroaniline	1600 680 680 1600 1600 680 680 680 680 680	UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG		ม บ บ บ บ บ		
REG REG REG REG REG REG REG REG	2-Nitroaniline 2-Nitrophenol 3,3'-Dichlorobenzidine 3-Nitroaniline 4,6-Dinitro-o-Cresol 4-Bromophenyl-phenyl Ether 4-Chloroaniline 4-Chlorophenyl-phenylether 4-Methylphenol	1600 680 680 1600 1600 680 680 680 680 680 680 680 680 680	UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG		ບ ບ ບ ບ ບ ບ ບ ບ ບ ບ		
REG REG REG REG REG REG REG REG REG	2-Nitroaniline 2-Nitrophenol 3,3'-Dichlorobenzidine 3-Nitroaniline 4,6-Dinitro-o-Cresol 4-Bromophenyl-phenyl Ether 4-Chloroaniline 4-Chlorophenyl-phenylether 4-Methylphenol 4-Nitroaniline	1600 680 680 1600 1600 680 680 680 680 680 1600	UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG				
REG REG REG REG REG REG REG REG REG	2-Nitroaniline 2-Nitrophenol 3,3'-Dichlorobenzidine 3-Nitroaniline 4,6-Dinitro-o-Cresol 4-Bromophenyl-phenyl Ether 4-Chloroaniline 4-Chlorophenyl-phenylether 4-Methylphenol 4-Nitroaniline 4-Nitrophenol	1600 680 680 1600 1600 680 680 680 1600 160	UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG		ບ ບບ ບ ບ ບ ບ ບ ບ ບ ບ ບ ບ ບ ບ ບ ບ ບ ບ ບ		
REG REG REG REG REG REG REG REG REG	2-Nitroaniline 2-Nitrophenol 3,3'-Dichlorobenzidine 3-Nitroaniline 4,6-Dinitro-O-Cresol 4-Bromophenyl-phenyl Ether 4-Chlorophenyl-phenylether 4-Chlorophenyl-phenylether 4-Nitroaniline 4-Nitroaniline 4-Nitroaniline 4-chloro-3-methylphenol	1600 680 680 1600 1600 680 680 680 680 1600 160	UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG		ນ ບບບນ ມ ບບນ ບ ບ ບ ບ ບ		
REG REG REG REG REG REG REG REG REG REG	2-Nitroaniline 2-Nitrophenol 3,3'-Dichlorobenzidine 3-Nitroaniline 4,6-Dinitro-o-Cresol 4-Bromophenyl-phenyl Ether 4-Chlorophenyl-phenylether 4-Chlorophenyl-phenylether 4-Mitroaniline 4-Nitroaniline 4-Nitroaniline 4-chloro-3-methylphenol Acenaphthene	1600 680 1600 1600 1600 680 680 1600 160	UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG		ນ ບບບນບບບບບບບບບບບບບບບບບບບບ		
REG REG REG REG REG REG REG REG REG REG	2-Nitroaniline 2-Nitrophenol 3,3'-Dichlorobenzidine 3-Nitroaniline 4,6-Dinitro-o-Cresol 4-Bromophenyl-phenyl Ether 4-Chlorophenyl-phenylether 4-Chlorophenyl-phenylether 4-Mitroaniline 4-Nitroaniline 4-Nitrophenol 4-chloro-3-methylphenol Acenaphthene Acenaphthylene	1600 680 680 1600 1600 680 680 680 1600 160	UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG		ນ ບບບນ ບບບນ ບບບ ບບ ບ ບ ບ		
REG REG REG REG REG REG REG REG REG REG	2-Nitroaniline 2-Nitrophenol 3,3'-Dichlorobenzidine 3-Nitroaniline 4,6-Dinitro-o-Cresol 4-Bromophenyl-phenyl Ether 4-Chlorophenyl-phenylether 4-Chlorophenyl-phenylether 4-Nitroaniline 4-Nitrophenol 4-Nitrophenol 4-Chloro-3-methylphenol Acenaphthene Acenaphthylene Anthracene	1600 680 680 1600 1600 680 680 680 1600 160	UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG		<b>ນບບນບບບບບບບບບບບບບ</b> ບ		
REG REG REG REG REG REG REG REG REG REG	2-Nitroaniline 2-Nitrophenol 3,3'-Dichlorobenzidine 3-Nitroaniline 4,6-Dinitro-o-Cresol 4-Bromophenyl-phenyl Ether 4-Chloroaniline 4-Chlorophenyl-phenylether 4-Methylphenol 4-Nitrophenol 4-Nitrophenol 4-chloro-3-methylphenol Acenaphthylene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene	1600 680 680 1600 1600 680 680 1600 1600	UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG		<b>ນບບນມບບບນບບບບບບບບບ</b> ບ		
REG REG REG REG REG REG REG REG REG REG	2-Nitroaniline 2-Nitrophenol 3,3'-Dichlorobenzidine 3-Nitroaniline 4,6-Dinitro-o-Cresol 4-Bromophenyl-phenyl Ether 4-Chloroaniline 4-Chlorophenyl-phenylether 4-Chlorophenyl-phenylether 4-Nitroaniline 4-Nitrophenol 4-Nitrophenol 4-chloro-3-methylphenol Acenaphthylene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(g,h,i)perylene	1600 680 1600 1600 680 680 1600 1600 160	UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG		<b>ບບບບບບບບບບບບບບບບບບບບບບ</b> ບບບບບບບ		
REG REG REG REG REG REG REG REG REG REG	2-Nitroaniline 2-Nitrophenol 3,3'-Dichlorobenzidine 3-Nitroaniline 4,6-Dinitro-o-Cresol 4-Bromophenyl-phenyl Ether 4-Chloroaniline 4-Chlorophenyl-phenylether 4-Methylphenol 4-Nitrophenol 4-Nitrophenol 4-chloro-3-methylphenol Acenaphthylene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene	1600 680 1600 1600 680 680 680 1600 1600	UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG		<b>ນບບນມບບບນບບບບບບບບບ</b> ບ		

### Location: Ramsdell Quarry Landfill Station : RQLsd-023 Initial Phase

Sample				Qualifle	15	Validation		
Туре	Semi-Volatile Organics	Result	Units	Lab D	)ata 	Code	_	
REG	Bis(2-ethylhexyl)phthalate		UG/KG			·	-	
REG	Butyl Benzyl Phthalate		UG/KG					
REG REG	Carbazole		UG/KG UG/KG					
REG	Chrysene Di-n-butyl Phthalate		UG/KG					
REG	Di-n-octyl Phthalate		UG/KG					
REG	Dibenzo(a,h)anthracene	680	UG/KG	υ υ				
REG	Dibenzofuran		UG/KG					
REG	Diethyl Phthalate		UG/KG					
REG	Dimethyl Phthalate		UG/KG					
REG REG	Fluoranthene Fluorene		UG/KG UG/KG					
REG	Hexachlorobenzene		UG/KG	-				
REG	Hexachlorobutadiene		UG/KG					
REG	Hexachlorocyclopentadiene		UG/KG					
REG	Hexachloroethane	680	UG/KG	U U				
REG	Indeno(1,2,3-cd)pyrene	680	UG/KG					
REG	Isophorone		UG/KG					
REG	N-Nitroso-di-n-propylamine		UG/KG					
REG	N-Nitrosodiphenylamine		UG/KG UG/KG					
REG REG	Naphthalene Nitrobenzene		UG/KG					
REG	Pentachlorophenol		UG/KG					
REG	Phenanthrene		UG/KG					
REG	Phenol	680	UG/KG	υυ	l i			
REG	Pyrene	89	UG/KG	JJ				
				<b>A</b>		Ma Rata Ata a		
Sample Type	Volatile Organics	Result	Units	Qualifie Lab E	ere Data	Validation Code		
REG	1,1,1-Trichloroethane	10	UG/KG	U U	,		_	
REG	1,1,2,2-Tetrachloroethane	10	UG/KG	U U	l i			
REG	1,1,2-Trichloroethane		UG/KG					
REG	1,1-Dichloroethane		UG/KG					
REG	1,1-Dichloroethene		UG/KG					
REG	1,2-Dichloroethane		UG/KG					
REG REG	1,2-Dichloroethene 1,2-Dichloropropane		UG/KG					
REG	1,3-cis-Dichloropropene		00000					
		10	UG/KG	U U	,			
REĞ	1,3-trans-Dichloropropene		UG/KG	-				
		10		Ū U	J	C05		
REG	1,3-trans-Dichloropropene	10 9.6 41	UG/KG UG/KG UG/KG	0 0 1 1 0 0	) J	C05		
REG REG REG REG	1,3-trans-Dichloropropene 2-Butanone 2-Hexanone 4-Methyl-2-pentanone	10 9.6 41 41	UG/KG UG/KG UG/KG UG/KG		)   	C05		
REG REG REG REG REG	1,3-trans-Dichloropropene 2-Butanone 2-Hexanone 4-Methyl-2-pentanone Acetone	10 9.6 41 41 34	UG/KG UG/KG UG/KG UG/KG	1 1 0 0 1 1 1 1	1	C05		
REG REG REG REG REG REG	1,3-trans-Dichloropropene 2-Butanone 2-Hexanone 4-Methyl-2-pentanone Acetone Benzene	10 9,6 41 41 34 10	UG/KG UG/KG UG/KG UG/KG UG/KG	0 1 1 1 1 1 1 1 1 1 1 1	1 1 1	C05		
REG REG REG REG REG REG	1,3-trans-Dichloropropene 2-Butanone 2-Hexanone 4-Methyl-2-pentanone Acetone Benzene Bromodichloromethane	10 9.6 41 34 10 10	UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG	0 0 1 1 0 0 0 0 1 1 1 1 1 1	)     	C05		
REG REG REG REG REG REG REG	1,3-trans-Dichloropropene 2-Butanone 2-Hexanone 4-Methyl-2-pentanone Acetone Benzene Bromodichloromethane Bromoform	10 9.6 41 34 10 10 10	UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG	0 0 1 0 0 0 1 1 1 1 1 1 1 1 1	) } ]	C05		
REG REG REG REG REG REG REG REG	1,3-trans-Dichloropropene 2-Butanone 2-Hexanone 4-Methyl-2-pentanone Acetone Benzene Bromodichloromethane Bromodichloromethane Bromomethane	10 9.6 41 34 10 10 10 21	UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	) } }	C05		
REG REG REG REG REG REG REG	1,3-trans-Dichloropropene 2-Butanone 2-Hexanone 4-Methyl-2-pentanone Acetone Benzene Bromodichloromethane Bromoform	10 9.6 41 34 10 10 10 21	UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG		) ) ) ) )	C05		
REG REG REG REG REG REG REG REG	1,3-trans-Dichloropropene 2-Butanone 2-Hexanone 4-Methyl-2-pentanone Acetone Benzene Bromodichloromethane Bromodichloromethane Bromomethane Carbon Disulfide	10 9.6 41 34 10 10 10 21 10	UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG		1 1 1 1 1	C05		
REG REG REG REG REG REG REG REG REG REG	1,3-trans-Dichloropropene 2-Butanone 2-Hexanone 4-Methyl-2-pentanone Acetone Benzene Bromodichloromethane Bromoform Bromomethane Carbon Disulfide Carbon Tetrachloride	10 9.6 41 34 10 10 10 21 10 10 10 21	UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG		) ) ) ) ) ) ) )	C05		
REG REG REG REG REG REG REG REG REG REG	1,3-trans-Dichloropropene 2-Butanone 2-Hexanone 4-Methyl-2-pentanone Acetone Benzene Bromodichloromethane Bromoform Bromomethane Carbon Disulfide Carbon Tetrachloride Chlorobenzene Chloroethane Chloroethane	10 9.6 41 34 10 10 10 21 10 10 10 10 10 10 10 10 10	UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG		) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) )	C05		
REG REG REG REG REG REG REG REG REG REG	1,3-trans-Dichloropropene 2-Butanone 2-Hexanone 4-Methyl-2-pentanone Acetone Benzene Bromodichloromethane Bromoform Bromomethane Carbon Disulfide Carbon Disulfide Carbon Tetrachloride Chlorobenzene Chlorobenzene Chloroform Chloromethane	10 9.6 41 41 34 10 10 10 10 10 10 10 21 10 21 21 21	UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG		1 1 1 1 1 1 1 1 1 1	C05		
REG REG REG REG REG REG REG REG REG REG	1,3-trans-Dichloropropene 2-Butanone 2-Hexanone 4-Methyl-2-pentanone Acetone Benzene Bromodichloromethane Bromodichloromethane Bromomethane Carbon Disulfide Carbon Disulfide Carbon Tetrachloride Chlorobenzene Chloroform Chloroform Chloromethane Dibromochloromethane	10 9.6 41 41 34 10 10 10 10 10 10 21 10 21 10 21 10	UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG		1 1 1 1 1 1 1 1 1 1	C05		
REG REG REG REG REG REG REG REG REG REG	1,3-trans-Dichloropropene 2-Butanone 2-Hexanone 4-Methyl-2-pentanone Acetone Benzene Bromodichloromethane Bromodichloromethane Bromomethane Carbon Disulfide Carbon Tetrachloride Chlorobenzene Chlorobenzene Chloroform Chloromethane Dibromochloromethane Ethylbenzene	10 9.6 41 34 10 10 10 21 10 21 10 21 10 21	UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG		1 1 1 1 1 1 1 1 1 1 1	C05		
REG REG REG REG REG REG REG REG REG REG	1,3-trans-Dichloropropene 2-Butanone 2-Hexanone 4-Methyl-2-pentanone Acetone Benzene Bromodichloromethane Bromoform Bromomethane Carbon Disulfide Carbon Disulfide Carbon Tetrachloride Chlorobenzene Chlorothane Chlorothane Chloromethane Dibromochloromethane Ethylbenzene Methylene Chloride	10 9.6 41 34 10 10 10 21 10 21 10 21 10 21 10 21	UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	C05		
REG REG REG REG REG REG REG REG REG REG	1,3-trans-Dichloropropene 2-Butanone 2-Hexanone 4-Methyl-2-pentanone Acetone Benzene Bromodichloromethane Bromodichloromethane Bromomethane Carbon Disulfide Carbon Tetrachloride Chlorobenzene Chlorobenzene Chloroform Chloromethane Dibromochloromethane Ethylbenzene	10 9.6 41 34 10 10 10 10 10 10 10 10 10 10 10 10 10	UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG		1 1 1 1 1 1 1 1 1 1 1 1 1	C05		
REG REG REG REG REG REG REG REG REG REG	1,3-trans-Dichloropropene 2-Butanone 2-Hexanone 4-Methyl-2-pentanone Acetone Benzene Bromodichloromethane Bromoform Bromomethane Carbon Disulfide Carbon Disulfide Carbon Tetrachloride Chlorobenzene Chlorobenzene Chloromethane Dibromochloromethane Ethylbenzene Methylene Chloride Styrene	10 9.6 41 34 10 10 10 10 10 21 10 21 10 10 21 10 10 10 10 10 10 10 10 10 10 10 10 10	UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG		) 1 1 1 1 1 1 1 1 1 1 1 1 1 1	C05		
REG REG REG REG REG REG REG REG REG REG	1,3-trans-Dichloropropene 2-Butanone 2-Hexanone 4-Methyl-2-pentanone Acetone Benzene Bromodichloromethane Bromoform Bromomethane Carbon Disulfide Carbon Disulfide Carbon Tetrachloride Chlorobenzene Chlorobenzene Chlorothane Chlorothane Dibromochloromethane Ethylbenzene Methylene Chloride Styrene Tetrachloroethene	10 9.6 41 34 10 10 10 21 10 10 21 10 10 21 10 10 10 10 10 10 10 10 10 10 10 10 10	UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	C05		
REG REG REG REG REG REG REG REG REG REG	1,3-trans-Dichloropropene 2-Butanone 2-Hexanone 4-Methyl-2-pentanone Acetone Benzene Bromodichloromethane Bromodichloromethane Bromodichloromethane Carbon Disulfide Carbon Disulfide Carbon Disulfide Carbon Tetrachloride Chlorobenzene Chlorobenzene Chloroform Chloromethane Dibromochloromethane Ethylbenzene Methylene Chloride Styrene Tetrachloroethene Toluene Trichloroethene Vinyl Chloride	10 9.6 41 41 34 10 10 10 10 10 21 10 10 21 10 10 10 10 10 10 10 10 10 10 10 10 10	UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG		7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	C05		
REG REG REG REG REG REG REG REG REG REG	1,3-trans-Dichloropropene 2-Butanone 2-Hexanone 4-Methyl-2-pentanone Acetone Benzene Bromodichloromethane Bromoform Bromomethane Carbon Disulfide Carbon Disulfide Carbon Tetrachloride Chlorobenzene Chloroethane Chloromethane Dibromochloromethane Ethylbenzene Methylene Chloride Styrene Tetrachloroethene Toluene Trichloroethene Vinyl Chloride Xylenes, Total	10 9.6 41 34 10 10 10 10 10 10 10 10 10 10 10 10 10	UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG				Collected	07/08#
REG REG REG REG REG REG REG REG REG REG	1,3-trans-Dichloropropene 2-Butanone 2-Hexanone 4-Methyl-2-pentanone Acetone Benzene Bromodichloromethane Bromodichloromethane Bromodichloromethane Carbon Disulfide Carbon Disulfide Carbon Tetrachloride Chlorobenzene Chlorobenzene Chloromethane Dibromochloromethane Ethylbenzene Methylene Chloride Styrene Tetrachloroethene Toluene Trichloroethene Vinyl Chloride Xylenes, Total 0.5 - 2.0 FT	10 9.6 41 41 34 10 10 10 10 10 21 10 10 21 10 10 10 10 10 10 10 10 10 10 10 10 10	UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG		) ) ) ) ) ) ) ) ) ) ) ) ) )		Collected	07/08/9

Sample Type	Metals	Result	Units	Quali Lab	fiers Data	Validation Code
REG	Aluminum	12300	MG/KG		=	
REG	Antimony	0.86	MG/KG	U	UJ	102
REG	Arsenic	18.2	MG/KG		-	
REG	Barium	98.4	MG/KG		=	
REG	Beryllium	.56	MG/KG	в	1	
REG	Cadmium	0.86	MG/KG	U	U	
REG	Calcium	15700	MG/KG		J	102
REG	Chromium	20.1	MG/KG		=	
REG	Cobalt	16.8	MG/KG		=	
REG	Copper	51.2	MG/KG		=	
REG	Iron	32200	MG/KG		Ξ	
REG	Lead	48.4	MG/KG		=	
REG	Magnesium	12000	MG/KG		J	103
REG	Manganese	894	MG/KG		J	E07
REG	Mercury	.13	MG/KG	в	J	
REG	Nickel	43.2	MG/KG		=	
REG	Potassium	1400	MG/KG		J	F10
REG	Selenium	0.86	MG/KG	U	U	
REG	Silver	1.7	MG/KG	U	U	
REG	Sodium	42.5	MG/KG	в	J	
REG	Thallium	0.86	MG/KG	U	U	
REG	Vanadium	21	MG/KG		=	
REG	Zinc	428	MG/KG	MBB	=	

Sample				Quai	iflers	Validation
Туре	Explosives	Result	Units	Lab	Data	Code
REG	1,3,5-Trinitrobenzene	0.25	MG/KG	U	U	
REG	1,3-Dinitrobenzene	0.25	MG/KG	U	U	
REG	2,4,6-Trinitrotoluene	0.25	MG/KG	U	U	
REG	2,4-Dinitrotoluene	0.034	MG/KG	1	J	
REG	2,6-Dinitrotoluene	0.25	MG/KG	U	ป	
REG	2-Nitrotoluene	0.25	MG/KG	U	U	
REG	3-Nitrotoluene	0.13	MG/KG	J	J	
REG	4-Nitrotoluene	0.25	MG/KG	U	U	
REG	нмх	0.13	MG/KG	J	J	
REG	Nitrobenzene	0.25	MG/KG	U	U	
REG	Nitrocellulose as N	2	MG/KG	ບ	υ	
REG	Nitroglycerin	2.5	MG/KG	U	U	
REG	Nitroguanidine	0.25	MG/KG	U	U	
REG	RDX	0.5	MG/KG	υ	U	
REG	Tetryl	0.65	MG/KG	U	U	
Sample				Qual	lfiers	Validation
Туре	Semi-Volatile Organics	Result	Units	Lab	Data	Code
REG	1,2,4-Trichlorobenzene	570	UG/KG	U	U	

iàha	Jenn-volatile Organica	1/6001/	United			
REG	1,2,4-Trichlorobenzene	570	UG/KG	U	U	
REG	1,2-Dichlorobenzene	570	UG/KG	U	υ	
REG	1,3-Dichlorobenzene	570	UG/KG	U	U	
REG	1,4-Dichlorobenzene	570	UG/KG	U	U	
REG	2,2'-oxybis (1-chloropropane)	570	UG/KG	U	U	
REG	2,4,5-Trichlorophenol	570	UG/KG	U	U	
REG	2,4,6-Trichlorophenol	570	UG/KG	U	U	
REG	2,4-Dichlorophenol	570	UG/KG	U	U	
REG	2,4-Dimethylphenol	570	UG/KG	U	U	
REG	2,4-Dinitrophenol	1400	UG/KG	υ	U	
REG	2,4-Dinitrotoluene	570	UG/KG	U	U	
REG	2,6-Dinitrotoluene	570	UG/KG	U	U	
REG	2-Chloronaphthalene	570	UG/KG	U	U	
REG	2-Chlorophenol	570	UG/KG	U	U	
REG	2-Methylnaphthalene	570	UG/KG	U	υ	
REG	2-Methylphenol	570	UG/KG	U	U	
REG	2-Nitroaniline	1400	UG/KG	U	U	
REG	2-Nitrophenol	570	UG/KG	U	U	
REG	3,3'-Dichlorobenzidine	••••	UG/KG	-	U	
REG	3-Nitroaniline	1400	UG/KG	U	U	
REG	4,6-Dinitro-o-Cresol	1400	UG/KG	U	U	
REG	4-Bromophenyl-phenyl Ether	570	UG/KG	U	U	
REG	4-Chloroaniline	570	UG/KG	U	U	
REG	4-Chlorophenyi-phenylether	• · ·	UG/KG	-	U	
REG	4-Methylphenol		UG/KG	-	U	
REG	4-Nitroaniline		UG/KG		U	
REG	4-Nitrophenol		UG/KG		U	
REG	4-chloro-3-methylphenol		UG/KG		U	
REG	Acenaphthene	570	UG/KG	U	U	

Location: Ramsdell Quarry Landfill Station : RQLsd-023 Initial Phase

### RQLsd-023(p)-0042-SD 0.5 - 2.0 FT

Field Sample Type: Grab Matrix: Sediment

Collected: 07/08/98

Gase         Accemptifylene         S70         UG/KG         U         U           Gastrinscene         S70         UG/KG         U         U           Gastrescentaria         S	_ ·		<b>–</b>			Qualii		Validation
EA         Antinacene         570         UGKG         U           EB         Benzo(a)pyrene         570         UGKG         U           ES         Benzo(a)hyrene         570         UGKG         U           ES         Benzo(a)hyrene         570         UGKG         U         U           ES         En-houly Phthalate         570         UGKG         U         U           ED         Delenzofuran         870         UGKG         U         U           ES         Duentyl Phthalate         570         UGKG         U         U           ES         Duentyl Phthalate         570         UGKG         U         U           ES         Huoranthene         570         UGKG         U	Туре	Semi-Volatile Organics	Result	Units			Data	Code
E         Benzolphambracene         570         UGKG         U           E         Benzolphuoranthene         570         UGKG         U           E         Benzolphuoranthene         570         UGKG         U           E         Benzolphuoranthene         570         UGKG         U         U           E         Bits/2-chiorethorymethane         570         UGKG         U         U           E         Carbazole         570         UGKG         U         U         U           E         Discord/nin         570         UGKG         U         U         U           E         Discord/nin         570         UGKG         U         U         U           E         Discord/nin         570         UGKG         U         U         U <t< td=""><td>REG</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	REG							
E3         Benzojajnrene         570         UGKG         U           E3         Benzoja, h.)perylene         570         UGKG         U           E3         Benzoja, h.)perylene         570         UGKG         U         U           E3         Benzoja, h.)perylene         570         UGKG         U         U           E3         Bit/2-chloredhoxymethane         570         UGKG         U         U           E3         Bit/2-chloredhylether         570         UGKG         U         U           E3         Bit/2-chloredhylether         570         UGKG         U         U           E3         Chronethylether         570         UGKG         U         U           E3         Din-boxyl Phthalate         570         UGKG         U         U           E3         Dinetrol(ram         810         U         U         U         U           E3         Dinetrol(ram         870         UGKG         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U	REG REG							
Benzolphiopanhene         570         UCKKG         U           Benzolphioranhene         570         UCKKG         U           ES         Benzolphioranhene         570         UCKKG         U           ES         Bsig2-bioresthoylpethare         570         UCKKG         U         U           ES         Bsig2-bioresthoylpethalate         570         UCKKG         U         U           ES         Bsig2-bioresthoylpethalate         570         UCKKG         U         U           ES         Bsig2-bioresthoylpethalate         570         UCKKG         U         U           ES         Dishople Philaitate         570         UCKKG         U         U           ES         Dishople Philaitate         570         UCKKG         U         U           ED         Interachinobladiene         570         UCKKG         U         U           ED         Hexachloropolatadiene	REG							
E3         Benzo(g, h)peyinen         570         UG/KG         U           E3         Benzo(g, h)peyinen         570         UG/KG         U         U           E3         Bis(2-chloroethoyyherthane         570         UG/KG         U         U           E3         Bis(2-chloroethyyether         570         UG/KG         U         U           E3         Bis(2-chloroethysether         570         UG/KG         U         U           E3         Bis(2-chloroethysether         570         UG/KG         U         U           E3         Chloroethoyether         570         UG/KG         U         U           E3         Dischoroethylether         570         UG/KG         U         U           E4         Distropolythalate         570         UG/KG         U         U           E5         Distropolythalate         570         UG/KG         U         U           E5         Fluoranthere         570         UG/KG         U         U           E6         Hexachlorobarzene         570         UG/KG         U         U           E6         Hexachlorophane         570         UG/KG         U         U	REG							
EB         Bis/2-chioroethoxymethane         570         UG/KG         U         U           EB         Bis/2-ethylhexyl/phylhalate         570         UG/KG         U         U           EG         Bis/2-ethylhexyl/phylhalate         570         UG/KG         U         U           EG         Bis/2-ethylhexyl/phylhalate         570         UG/KG         U         U           EG         Dirb-Dubyl Phylhalate         570         UG/KG         U         U           EG         Dirb-Dubyl Phylhalate         570         UG/KG         U         U           EG         Dirb-Dubyl Phylhalate         570         UG/KG         U         U           EG         Diebnzofdran         570         UG/KG         U         U           EG         Diebnzofdran         570         UG/KG         U         U           EG         Elvorente         570         UG/KG         U         U           EG         Houronte         570         UG/KG         U         U           EG         Houronte         570         UG/KG         U         U           EG         Houronte         570         UG/KG         U         U	REG						U	
Ele         Bis/2-chioreshytylemer         570         UG/KG         U           EG         Bis/2-chioreshytylemer         570         UG/KG         U         U           EG         Butyl Benzyl Phthalate         570         UG/KG         U         U           EG         Chrysene         570         UG/KG         U         U           EG         Din-Actyl Phthalate         570         UG/KG         U         U           ED         Din-Actyl Phthalate         570         UG/KG         U         U           ED         Din-Actyl Phthalate         570         UG/KG         U         U           ED         Disenco(a,h)anthracene         570         UG/KG         U         U           EG         Hazachkorobenzene         570         UG/KG         U         U <td>REG</td> <td>Benzo(k)fluoranthene</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	REG	Benzo(k)fluoranthene						
E3         Bis/2-ethylhav/j0.hthalate         570         UG/KG         U           E3         Buyf Berzyl Phthalate         570         UG/KG         U           E3         Carbazole         570         UG/KG         U         U           E3         Carbazole         570         UG/KG         U         U           E3         Di-h-octyl Phthalate         570         UG/KG         U         U           E4         Di-hoctyl Phthalate         570         UG/KG         U         U           E5         Diebnzoforan         570         UG/KG         U         U           E5         Diebnzoforan         570         UG/KG         U         U           E6         Fluoranitene         81         UG/KG         U         U           E6         Fluoranitene         570         UG/KG         U         U           E6         Hexachicrobatadiene	REG							
Edit Starty Phinalate         S70 UG/KG U         U           EG         Cahozole         570 UG/KG U         U           EG         Chrysene         570 UG/KG U         U           EG         Dih-cody Phinalate         570 UG/KG U         U           EG         Dih-cody Phinalate         570 UG/KG U         U           EG         Dihenzo(a,h)antinacene         570 UG/KG U         U           ED         Dibenzo(a,h)antinacene         570 UG/KG U         U           ED         Dibenzo(a,h)antinacene         570 UG/KG U         U           ED         Distrophy Phinalate         570 UG/KG U         U           ED         Distrophy Phinalate         570 UG/KG U         U           ED         Editory Phinalate         570 UG/KG U         U           ED         Indemol 1,2,3-colpyrene         570 UG/KG U         U           EG         Hexachlorophanine         570 UG/KG U         U         Editory Phinalate           EG         N-Nitroscoliphenylamine         570 UG/KG U         U         Editory Phinalate           EG         Naphradene         570 UG/KG U         U         Editory Phinalate           EG         N-Nitroscoliphenylamine         570 UG/KG U         U	REG							
EC         Carbascie         570         UG/KG         U           EG         Chrysene         570         UG/KG         U         U           EG         Din-body Phthalate         570         UG/KG         U         U           EG         Din-body Phthalate         570         UG/KG         U         U           EG         Disenzolarian         570         UG/KG         U         U           ED         Distributy Phthalate         570         UG/KG         U         U           EG         Diversold phthalate         570         UG/KG         U         U           EG         Fluoranthene         810         UG/KG         U         U           EG         Hexachlorobenzene         570         UG/KG         U         U           EG         Hexachlorobenzene         570         UG/KG         U         U           EG         Hexachlorophenzene         570         UG/KG         U         U           EG         Nitrosociln-propylamine         570         UG/KG         U         U           EG         Nitrosociln-propylamine         570         UG/KG         U         U           EG	REG							
EC         Chrysene         570         UG/KG         U           EG         Din-buly Phthalate         570         UG/KG         U         U           EG         Dibenzo(a,h)anthracene         570         UG/KG         U         U           EG         Dibenzo(a,h)anthracene         570         UG/KG         U         U           EG         Dibenzo(a,h)anthracene         570         UG/KG         U         U           EG         Districtorian         570         UG/KG         U         U           EG         Districtorian         570         UG/KG         U         U           EG         Indenot/L3.2-odp/ympththalate         570         UG/KG         U         U           EG         Hexachlorobuladiene         570         UG/KG         U         U         E           EG         Indenot/L3.2-odp/ymene         570         UG/KG         U         U         E           EG         Nitrosocilp-enryulamine         570         UG/KG         U         U         E           EG         Nitrobenzene         570         UG/KG         U         U         E           EG         Nitrobenzene         570         UG/K	REG							
EIC         Din-octyl Phthalate         570         UG/KG         U           EG         Dibenzo(a, h)anthracene         570         UG/KG         U         U           EG         Dibenzoluran         570         UG/KG         U         U           EG         Dibenzoluran         570         UG/KG         U         U           EG         Dimetryl Phthalate         570         UG/KG         U         U           EG         Fluoranthrene         81         UG/KG         U         U           EG         Hexachlorobudatione         570         UG/KG         U         U           EG         Hexachlorobudatione         570         UG/KG         U         U           EG         Hexachlorobudatione         570         UG/KG         U         U           EG         Indenci (1,2,3-cd)pyrene         570         UG/KG         U         U           EG         N-Nitosocilh-propylamine         570         UG/KG         U         U           EG         Notitosocilh-propylamine         570         UG/KG         U         U           EG         Notitosocilh-propylamine         570         UG/KG         U         U <t< td=""><td>REG</td><td></td><td>570</td><td>UG/KG</td><td>U</td><td></td><td>U</td><td></td></t<>	REG		570	UG/KG	U		U	
Ed         Dibenzo(a,h)antracene         570         UG/KG         U           EG         Dibenzo(uran         570         UG/KG         U         U           EG         Dibenzo(uran         570         UG/KG         U         U           EG         Dibertyl Phthalate         570         UG/KG         U         U           EG         Fluoranthrene         81         UG/KG         U         U           EG         Hexachlorobenzene         570         UG/KG         U         U           EG         Indenor(1,2,3-odpyrene         570         UG/KG         U         U           EG         Nitrobenzene         570         UG/KG         U         U         EG           EG         Nitrobenzene         570         UG/KG         U         U         EG           EG         Nitrobenzene         570         UG/KG         U         U         EG     <	REG	Di-n-butyl Phthalate						
EC         Dibenzoluran         570         UG/KG         U           EG         Diethyl Phthalate         570         UG/KG         U         U           EG         Dientelyl Phthalate         570         UG/KG         U         U           EG         Fluoranthene         81         UG/KG         U         U           EG         Fluoranthene         81         UG/KG         U         U           EG         Hexachlorobutadiene         570         UG/KG         U         U           EG         Hexachlorobutadiene         570         UG/KG         U         U           EG         Hexachlorobutadiene         570         UG/KG         U         U           EG         Indenot(1,2,3-odp)prene         570         UG/KG         U         U           EG         N-Mitosodiphenylamine         570         UG/KG         U         U           E	REG							
EG         Diethyl Phthalate         570         UG/KG         U           EG         Dimethyl Phthalate         570         UG/KG         J           EG         Fluoranthinene         570         UG/KG         J           EG         Fluoranthinene         570         UG/KG         U         U           EG         Hexachlorobenzene         570         UG/KG         U         U           EG         Hexachlorobenzene         570         UG/KG         U         U           EG         Hexachlorophatalene         570         UG/KG         U         U           EG         Indeno(1,2,3-GU)pyrene         570         UG/KG         U         U           EG         N-Nitroso-din-propylamine         570         UG/KG         U         U           EG         N-Nitroso-din-propylamine         570         UG/KG         U         U           EG         Nethorphatene         570         UG/KG         U         U           EG         Phenanthrene         570         UG/KG         U         U           EG         1,1.2-Trichororethane         8.6         UG/KG         U         U           EG         1,1.1-Trichiororeth	REG							
EG         Dimethyl Phthalate         570         UG/KG         U           EG         Fluoranthene         81         UG/KG         U           EG         Fluoranthene         570         UG/KG         U           EG         Hexachlorobutadiene         570         UG/KG         U           EG         Indeno(1,2,3-cd)pyrene         570         UG/KG         U         U           EG         Nitrosodiphenylamine         570         UG/KG         U         U           EG         Natirobenzene         570         UG/KG         U         U           EG         Phenol         570         UG/KG         U         U	REG							
EG         Fluoranthene         81         UG/KG         J           EG         Fluorene         570         UG/KG         U           EG         Hexachlorobutadiene         570         UG/KG         U           EG         Hexachlorobutadiene         570         UG/KG         U           EG         Hexachlorobutadiene         570         UG/KG         U           EG         Hexachlorobutane         570         UG/KG         U           EG         Indeno(1,2,3-cd)pyrene         570         UG/KG         U           EG         N-Nitroso-din-propylamine         570         UG/KG         U         U           EG         Natirobenzene         570         UG/KG         U         U         E           EG         Natirobenzene         570         UG/KG         U         U         E           EG         Phenanthrene         570         UG/KG         U         U         E           EG         Phenanthrene         570         UG/KG         U         U         E           EG         1,1.2.Trichloroethane         8.6         UG/KG         U         U         E           EG         1,1.2.Trichloroethane <td>REG</td> <td>•</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	REG	•						
EG         Fluorene         570         UG/KG         U         U           EG         Hexachiorobutadiene         570         UG/KG         U         U           EG         Isophorone         570         UG/KG         U         U           EG         Nitrosodiphenylamine         570         UG/KG         U         U           EG         Natiosodiphenylamine         570         UG/KG         U         U           EG         Natiosodiphenylamine         570         UG/KG         U         U           EG         Natiosodiphenylamine         570         UG/KG         U         U           EG         Phenol         570         UG/KG         U         U         U         Ed         Itoinorethane         86         UG/KG         U         U         Ed         Itoinorethane         86         UG/KG         U         U         Ed         Itoinorethane <td< td=""><td>REG</td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	REG	-						
EG         Hexachlorobutadiene         570         UG/KG         U         U           EG         Hexachlorobutadiene         570         UG/KG         U         U           EG         Hexachlorocyclopentadiene         570         UG/KG         U         U           EG         Isophorone         570         UG/KG         U         U           EG         Isophorone         570         UG/KG         U         U           EG         N-Nitroso-din-propylamine         570         UG/KG         U         U           EG         N-Nitroso-din-propylamine         570         UG/KG         U         U           EG         Naphthalene         570         UG/KG         U         U         U           EG         Phenanthrene         570         UG/KG         U         U         U           EG         Phenol         570         UG/KG         U         U         U         U           EG         1,1.2-Trichioroethane         8.6         UG/KG         U         U         U         Code           EG         1,1.2-Trichioroethane         8.6         UG/KG         U         U         U         Ed         I	REG							
EG         Hexachlorocyclopentadiene         570         UG/KG         U           EG         Hexachlorocytlopentanie         570         UG/KG         U         U           EG         Isophorone         570         UG/KG         U         U           EG         Isophorone         570         UG/KG         U         U           EG         N-Nitroso-diphenylamine         570         UG/KG         U         U           EG         N-Nitroso-diphenylamine         570         UG/KG         U         U           EG         Naphthalene         570         UG/KG         U         U           EG         Phenanthrene         570         UG/KG         U         U           EG         Phenanthrene         570         UG/KG         U         U           EG         1,1.1-Trichlorocethane         8.6         UG/KG         U         U           EG         1,1.2.2-Trichloroethane         8.6         UG/KG         U         U           EG         1,1.2.Trichloroethane         8.6         UG/KG         U         U           EG         1,2.2-Trichloroethane         8.6         UG/KG         U         U <td< td=""><td>REG</td><td>Hexachlorobenzene</td><td></td><td></td><td></td><td></td><td>-</td><td></td></td<>	REG	Hexachlorobenzene					-	
EG         Hexachlorosithane         570         UG/KG         U           EG         Indero(1,2,3-d)pyrene         570         UG/KG         U         U           EG         Indero(1,2,3-d)pyrene         570         UG/KG         U         U           EG         N-Nitroso-dinpyropylamine         570         UG/KG         U         U           EG         Phenchlorophenol         570         UG/KG         U         U           EG         Phenol         570         UG/KG         U         U           EG         Pyrene         75         UG/KG         U         U           EG         1,1.2-Trichoroethane         8.6         UG/KG         U         U           EG         1,1.2-Trichoroethane         8.6         UG/KG         U         U           EG         1,1.2-Trichoroethane         8.6         UG/KG         U         U	REG						-	
EG         Indeno(1,2,3-ad)pyrene         570         UG/KG         U         U           EG         Isophorone         570         UG/KG         U         U           EG         N-Nitrosodiphenylamine         570         UG/KG         U         U           EG         N-Nitrosodiphenylamine         570         UG/KG         U         U           EG         Naphthalene         570         UG/KG         U         U           EG         Nitrosodiphenylamine         570         UG/KG         U         U           EG         Nitrobenzene         670         UG/KG         U         U           EG         Phenanthrene         570         UG/KG         U         U           EG         Phenol         570         UG/KG         U         U           EG         1,1.1-Trichloroethane         8.6         UG/KG         U         U           EG         1,1.2-Zietrachoroethane         8.6         UG/KG         U         U           EG         1,1.2-Trichloroethane         8.6         UG/KG         U         U           EG         1,2-Dichloroethane         8.6         UG/KG         U         U	REG						-	
EG         Isophorone         570         UG/KG         U         U           EG         N-Nitroso-din-propylamine         570         UG/KG         U         U           EG         N-Nitroso-din-propylamine         570         UG/KG         U         U           EG         Natiroso-din-propylamine         570         UG/KG         U         U           EG         Natiroso-din-propylamine         570         UG/KG         U         U           EG         Pentachlorophenol         570         UG/KG         U         U           EG         Phenalchlorophenol         570         UG/KG         U         U           EG         Phenol         570         UG/KG         U         U           EG         1,1.1-Trichloroethane         8.6         UG/KG         U         U           EG         1,1.2-Tetrischloroethane         8.6         UG/KG         U         U           EG         1,2-Dichloroethane         8.6         UG/KG         U         U           EG         1,2-Dichloroethane         8.6         UG/KG         U         U           EG         1,2-Dichloroethane         8.6         UG/KG         U         U	REG						-	
EG         N-Nitroso-di-n-propylamine         570         UG/KG         U         U           EG         N-Nitroso-diphenylamine         570         UG/KG         U         U           EG         Napithalene         570         UG/KG         U         U           EG         Nitrobenzene         570         UG/KG         U         U           EG         Phenanthrene         570         UG/KG         U         U           EG         Phenol         570         UG/KG         U         U           EG         Phenol         570         UG/KG         U         U           EG         1,1.1-Trichloroethane         8.6         UG/KG         U         U           EG         1,1.2-Zhetrachloroethane         8.6         UG/KG         U         U           EG         1,1.2-Trichloroethane         8.6         UG/KG         U         U           EG         1,2-Dichloroethane         8.6         UG/KG         U         U           EG         1,2-Dichloroethane         8.6         UG/KG         U         U           EG         1,2-Dichloroethane         8.6         UG/KG         U         U	REG REG						-	
EG         N-Nitrosodiphenylamine         570         UG/KG         U         U           EG         Naphthalene         570         UG/KG         U         U           EG         Nitrobenzene         570         UG/KG         U         U           EG         Pentachlorophenol         570         UG/KG         U         U           EG         Phenanthrene         570         UG/KG         U         U           EG         Phenanthrene         570         UG/KG         U         U           EG         Phenanthrene         570         UG/KG         U         U           EG         1,1.1         Trichloroethane         8.6         UG/KG         U         U           EG         1,1.2.2.Tetrachtoroethane         8.6         UG/KG         U         U         U           EG         1,1.Dichloroethane         8.6         UG/KG         U         U         U           EG         1,2.2.Ichtrachtorothane         8.6         UG/KG         U         U         EG         1.2.1.7:richtorothane         8.6         UG/KG         U         U         EG         1.2.2:richtorothane         8.6         UG/KG         U         U	REG	•					-	
EG       Nitrobenzene       570       UG/KG       U         EG       Pentachlorophenol       570       UG/KG       U         EG       Phenanthrene       570       UG/KG       U       U         EG       Phenol       570       UG/KG       U       U         EG       Phenol       570       UG/KG       U       U         EG       Phenol       570       UG/KG       U       U         EG       1.1.2.7       Erizablio octanae       8.6       UG/KG       U       U         EG       1.1.2.7       Trichloroethane       8.6       UG/KG       U       U       U         EG       1.1.2.7       Trichloroethane       8.6       UG/KG       U       U       U       U       Ed       1.1       Dichloroethane       8.6       UG/KG       U       U       Ed       1.1       Dichloropthane       8.6       UG/KG       U       U       Ed       1.2       Dichloropthane       8.6       UG/KG       U       U       Ed       1.3       Lichoropthane       8.6       UG/KG       U       U       Ed       Ed       I.1       Dichloroptopane       8.6       UG/KG       U	REG						-	
EG       Pentachlorophenol       570       UG/KG       U         EG       Phenanthrene       570       UG/KG       U         EG       Phenol       570       UG/KG       U         EG       Phenol       570       UG/KG       U       U         EG       Phenol       570       UG/KG       U       U         EG       1.1.1-Trichloroethane       8.6       UG/KG       U       U         EG       1.1.2-Trichloroethane       8.6       UG/KG       U       U         EG       1.1.2-Trichloroethane       8.6       UG/KG       U       U         EG       1.1.2-Trichloroethane       8.6       UG/KG       U       U         EG       1.2-Dichloroethane       8.6       UG/KG       U       U         EG       1.2-Dichloroethane       8.6       UG/KG       U       U         EG       1.2-Dichloroethane       8.6       UG/KG       U       U         EG       1.2-Dichloroptopane       8.6       UG/KG       U       U       EG         EG       1.2-Dichloroptopene       8.6       UG/KG       U       U       EG         2.8 Utanone       2.	REG	Naphthalene	570	UG/KG	U		U	
EG       Phenol       570       UG/KG       U       U         EG       Phenol       570       UG/KG       J       J         mple       75       UG/KG       J       J       Validation         Couling       1.1.1-Trichloroethane       8.6       Units       Cualifiers       Validation         EG       1.1.2-Trichloroethane       8.6       UG/KG       U       U       Ed         EG       1.1.2-Trichloroethane       8.6       UG/KG       U       U       Ed         EG       1.1.2-Trichloroethane       8.6       UG/KG       U       U       Ed         EG       1.1.2-Dichloroethane       8.6       UG/KG       U       U       Ed         EG       1.2-Dichloroethane       8.6       UG/KG       U       U       Ed         EG       1.2-Dichloropthane       8.6       UG/KG       U       U       Ed         EG       1.2-Dichloroptopane       8.6       UG/KG       U       U       Ed         EG       1.3-trans-Dichloropropene       8.6       UG/KG       U       U       Ed         EG       2-Hexanone       26       UG/KG       U       U	REG	Nitrobenzene					-	
EG       Phenol       570       UG/KG       U       U         EG       Pyrene       75       UG/KG       J       J         mple       ype       Volatile Organics       Result       Units       Qualifiers       Validation         EG       1,1.1-Trichloroethane       8.6       UG/KG       U       U       U         EG       1,1.2-Trichloroethane       8.6       UG/KG       U       U       U         EG       1,1.2-Trichloroethane       8.6       UG/KG       U       U       U       U         EG       1,1-Dichloroethane       8.6       UG/KG       U       U       U       EG       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I	REG	•						
EGPyrene75UG/KGJJmple ypeVolatile OrganicsResultUnitsLabDataValidation CodeEG1,1.1-Trichloroethane8.6UG/KGUUUEG1,1.2.2-Tetrachloroethane8.6UG/KGUUUEG1,1.2.2-Tetrachloroethane8.6UG/KGUUUEG1,1-Dichloroethane8.6UG/KGUUUEG1,2-Dichloroethane8.6UG/KGUUUEG1,2-Dichloroethene8.6UG/KGUUUEG1,2-Dichloroptopane8.6UG/KGUUUEG1,2-Dichloroptopene8.6UG/KGUUUEG1,3-trans-Dichloropropene8.6UG/KGUUUEG2-Butanone6.8UG/KGUUUEGEG2-Hexanone35UG/KGUUUEGEG2-Hexanone8.6UG/KGUUUEGEG2-Hexanone8.6UG/KGUUEGEG2-Hexanone8.6UG/KGUUEGEG2-Hexanone8.6UG/KGUUEGEG2-Hexanone8.6UG/KGUUEGEG2-Hexanone8.6UG/KGUUEGEGBromodichloromethane8.6UG/KG	REG						_	
mple ype       Volatile Organics       Result       Units       Qualifiers Lab       Validation Oats         EG       1,1,2.Trichloroethane       8.6       UG/KG       U       U         EG       1,1,2.Trichloroethane       8.6       UG/KG       U       U         EG       1,1,2.Trichloroethane       8.6       UG/KG       U       U         EG       1,1.2.Trichloroethane       8.6       UG/KG       U       U         EG       1,1.Dichloroethane       8.6       UG/KG       U       U         EG       1,2.Dichloroethene       8.6       UG/KG       U       U         EG       1,2.Dichloroethene       8.6       UG/KG       U       U         EG       1,2.Dichloropthene       8.6       UG/KG       U       U         EG       1,3.cis.Dichloropropene       8.6       UG/KG       U       U         EG       1,3-trans-Dichloropropene       8.5       UG/KG       U       U         EG       2.Hexanone       35       UG/KG       U       U         EG       2.Hexanone       8.6       UG/KG       U       U         EG       Acetone       2.8       UG/KG       U	REG REG							
ypeVolatile OrganicsResultUnitsLabDataCodeEG1.1.1-Trichloroethane8.6UG/KGUUUEG1.1.2.2-Tetrachloroethane8.6UG/KGUUEG1.1.2.2-Tichloroethane8.6UG/KGUUEG1.1-Dichloroethane8.6UG/KGUUEG1.1-Dichloroethane8.6UG/KGUUEG1.2-Dichloroethane8.6UG/KGUUEG1.2-Dichloroethene8.6UG/KGUUEG1.2-Dichloropropane8.6UG/KGUUEG1.3-cis-Dichloropropene8.6UG/KGUUEG2-Butanone8.6UG/KGUUEG2-Hexanone35UG/KGUUEG2-Hexanone35UG/KGUUEG4-Methyl-2-pentanone35UG/KGUUEGBenzene8.6UG/KGUUEGBromodichloromethane8.6UG/KGUUEGCarbon Disulfide8.6UG/KGUUEGChlorobenzene8.6UG/KGUUEGChloroethane17UG/KGUUEGBromodichloromethane8.6UG/KGUUEGCarbon Disulfide8.6UG/KGUUEGChloroethene8.6UG/KGUU	NLQ	ryielie		00/10			•	
EG       1,1.2.Trichloroethane       8.6       UG/KG       U         EG       1,1.2.2-Trichloroethane       8.6       UG/KG       U       U         EG       1,1.2.2-Trichloroethane       8.6       UG/KG       U       U         EG       1,1.2.2-Trichloroethane       8.6       UG/KG       U       U         EG       1,1-Dichloroethane       8.6       UG/KG       U       U         EG       1,2-Dichloroethane       8.6       UG/KG       U       U         EG       1,2-Dichloroethane       8.6       UG/KG       U       U         EG       1,2-Dichloroethene       8.6       UG/KG       U       U         EG       1,2-Dichloropropane       8.6       UG/KG       U       U         EG       1,3-trans-Dichloropropene       8.6       UG/KG       U       U         EG       2-Butanone       6.8       UG/KG       U       U       EG         EG       2-Hexanone       35       UG/KG       U       U       EG         EG       2-Hexanone       8.6       UG/KG       U       U       EG         EG       2-Hexanone       8.6       UG/KG       U								
EG       1,1,2,2-Tetrachloroethane       8.6       UG/KG       U         EG       1,1,2-Trichloroethane       8.6       UG/KG       U       U         EG       1,1-Dichloroethane       8.6       UG/KG       U       U         EG       1,1-Dichloroethane       8.6       UG/KG       U       U         EG       1,2-Dichloroethane       8.6       UG/KG       U       U         EG       1,2-Dichloroethane       8.6       UG/KG       U       U         EG       1,2-Dichloroethane       8.6       UG/KG       U       U         EG       1,2-Dichloroptopane       8.6       UG/KG       U       U         EG       1,3-trans-Dichloropropene       8.6       UG/KG       U       U         EG       2-Butanone       35       UG/KG       U       U         EG       2-Hexanone       35       UG/KG       U       U         EG       Benzene       8.6       UG/KG       U       U         EG       Bromodichloromethane       8.6       UG/KG       U       U         EG       Bromodorm       8.6       UG/KG       U       U         EG       Br	Sample							
EG1,1,2-Trichloroethane8.6UG/KGUEG1,1-Dichloroethane8.6UG/KGUUEG1,1-Dichloroethane8.6UG/KGUUEG1,2-Dichloroethane8.6UG/KGUUEG1,2-Dichloroethene8.6UG/KGUUEG1,2-Dichloropropane8.6UG/KGUUEG1,3-cis-Dichloropropene8.6UG/KGUUEG1,3-trans-Dichloropropene8.6UG/KGUUEG2-Butanone6.8UG/KGUUEG2-Hexanone35UG/KGUUEG4-Methyl-2-pentanone35UG/KGUUEGBenzene8.6UG/KGUUEGBromodichloromethane8.6UG/KGUUEGBromodinhoromethane17UG/KGUUEGCarbon Disulfide8.6UG/KGUUEGChlorobenzene8.6UG/KGUUEGChloroform8.6UG/KGUUEGChloroomethane17UG/KGUUEGChloroomethane17UG/KGUUEGChloroform8.6UG/KGUUEGChloromethane17UG/KGUUEGChloromethane17UG/KGUUEGChloroomethane8.6UG	Sample Type	Volatile Organics	Result	Units				
EG1.1-Dichloroethane8.6UG/KGUUEG1,1-Dichloroethane8.6UG/KGUUEG1,2-Dichloroethane8.6UG/KGUUEG1,2-Dichloropropane8.6UG/KGUUEG1,3-cis-Dichloropropene8.6UG/KGUUEG1,3-cis-Dichloropropene8.6UG/KGUUEG1,3-cis-Dichloropropene8.6UG/KGUUEG2-Butanone6.8UG/KGUUEG2-Hexanone35UG/KGUUEG2-Hexanone35UG/KGUUEGAcetone26UG/KGUUEGBenzene8.6UG/KGUUEGBromodichloromethane8.6UG/KGUUEGBromomethane17UG/KGUUEGCarbon Disulfide8.6UG/KGUUEGChlorobenzene8.6UG/KGUUEGChlorootmm8.6UG/KGUUEGChloromethane17UG/KGUUEGChloromethane17UG/KGUUEGChloromethane17UG/KGUUEGChloromethane17UG/KGUUEGChloromethane17UG/KGUUEGChloromethane17UG/KGU <td< td=""><td>-</td><td></td><td>8.6</td><td>UG/KG</td><td>U U</td><td></td><td>Data U</td><td></td></td<>	-		8.6	UG/KG	U U		Data U	
EG1,1-Dichloroethane8.6UG/KGUUEG1,2-Dichloroethane8.6UG/KGUUEG1,2-Dichloroethene8.6UG/KGUUEG1,2-Dichloropropane8.6UG/KGUUEG1,3-cis-Dichloropropene8.6UG/KGUUEG2-Butanone6.8UG/KGUUEG2-Butanone35UG/KGUUEG2-Hexanone35UG/KGUUEG4-Methyl-2-pentanone35UG/KGUUEGBenzene8.6UG/KGUUEGBenzene8.6UG/KGUUEGBromodichloromethane8.6UG/KGUUEGCarbon Disulfide8.6UG/KGUUEGChlorobenzene8.6UG/KGUUEGChloroform8.6UG/KGUUEGChloroform8.6UG/KGUUEGChloroform8.6UG/KGUUEGChloroform8.6UG/KGUUEGChloromethane17UG/KGUUEGChloroform8.6UG/KGUUEGChloroform8.6UG/KGUUEGChloroform8.6UG/KGUUEGChloroform8.6UG/KGUUEG	Type REG REG	1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane	8.6	UG/KG UG/KG	U U U		Data U U	
EG1,2-Dichloroethane8.6UG/KGUEG1,2-Dichloroethane8.6UG/KGUUEG1,3-cis-Dichloropropane8.6UG/KGUUEG1,3-cis-Dichloropropene8.6UG/KGUUEG1,3-trans-Dichloropropene8.6UG/KGUUEG2-Butanone6.8UG/KGUUEG2-Hexanone35UG/KGUUEG4-Methyl-2-pentanone35UG/KGUUEGAcetone26UG/KGUUEGBenzene8.6UG/KGUUEGBromodichloromethane8.6UG/KGUUEGBromodethane17UG/KGUUEGCarbon Disulfide8.6UG/KGUUEGChlorobenzene8.6UG/KGUUEGChloroform8.6UG/KGUUEGChlorobenzene8.6UG/KGUUEGChlorobenzene8.6UG/KGUUEGChloromethane17UG/KGUUEGChloromethane17UG/KGUUEGChlorobenzene8.6UG/KGUUEGChloroform8.6UG/KGUUEGChlorobenzene8.6UG/KGUUEGChlorobenzene8.6UG/KGUU<	Type REG REG REG	1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane 1,1,2-Trichloroethane		UG/KG UG/KG UG/KG	ม บ บ บ		Data U U U	
EG1,2-Dichloroethene8.6UG/KGUUEG1,2-Dichloropropane8.6UG/KGUUEG1,3-cis-Dichloropropene8.6UG/KGUUEG1,3-trans-Dichloropropene8.6UG/KGUUEG2-Butanone6.8UG/KGUUEG2-Butanone35UG/KGUUEG2-Hexanone35UG/KGUUEG4-Methyl-2-pentanone35UG/KGUUEGBenzene8.6UG/KGUUEGBromodichloromethane8.6UG/KGUUEGBromoform8.6UG/KGUUEGBromomethane17UG/KGUUEGCarbon Disulfide8.6UG/KGUUEGChlorobenzene8.6UG/KGUUEGChloroform8.6UG/KGUUEGChloromethane17UG/KGUUEGChlorobenzene8.6UG/KGUUEGChloromethane17UG/KGUUEGDibromochloromethane8.6UG/KGUUEGEthylbenzene8.6UG/KGUUEGEthylbenzene8.6UG/KGUUEGEthylbenzene8.6UG/KGUUEGEthylbenzene8.6UG/KGUU	Type REG REG REG REG	1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane 1,1,2-Trichloroethane 1,1-Dichloroethane	8.6 8.6 8.6 8.6	UG/KG UG/KG UG/KG UG/KG	ม บ บ บ บ		Data U U U U	
EG1.2-Dichloropropane8.6 UG/KGUUEG1.3-cis-Dichloropropene8.6 UG/KGUUEG1.3-trans-Dichloropropene8.6 UG/KGUUEG2-Butanone6.8 UG/KGJJC05EG2-Hexanone35 UG/KGUUEG4-Methyl-2-pentanone35 UG/KGUUEGAcetone26 UG/KGJJC05EGBenzene8.6 UG/KGUUEGBromodichloromethane8.6 UG/KGUUEGBromomethane17 UG/KGUUEGCarbon Disulfide8.6 UG/KGUUEGChlorobenzene8.6 UG/KGUUEGChlorobenzene8.6 UG/KGUUEGChlorobenzene8.6 UG/KGUUEGChloromethane17 UG/KGUUEGChloromethane17 UG/KGUUEGChlorobenzene8.6 UG/KGUUEGChloromethane17 UG/KGUUEGChloromethane8.6 UG/KGUUEGDibromochloromethane8.6 UG/KGUUEGEthylbenzene8.6 UG/KGUUEGStyrene8.6 UG/KGUUEGTetrachloroethene8.6 UG/KGUUEGTetrachoroethene8.6 UG/KGUUEGTetrachloroethene8.6 UG/KGU <td>Type REG REG REG REG REG</td> <td>1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane 1,1,2-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethane</td> <td>8.6 8.6 8.6 8.6 8.6 8.6</td> <td>UG/KG UG/KG UG/KG UG/KG UG/KG</td> <td></td> <td></td> <td>Data U U U U U U U</td> <td></td>	Type REG REG REG REG REG	1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane 1,1,2-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethane	8.6 8.6 8.6 8.6 8.6 8.6	UG/KG UG/KG UG/KG UG/KG UG/KG			Data U U U U U U U	
EG1.3-cis-Dichloropropene8.6UG/KGUUEG1.3-trans-Dichloropropene8.6UG/KGJJC05EG2-Butanone6.8UG/KGUUUEG2-Hexanone35UG/KGUUUEG4-Methyl-2-pentanone35UG/KGUUUEGAcetone26UG/KGJJC05EGBenzene8.6UG/KGUUUEGBromodichloromethane8.6UG/KGUUEGBromomethane17UG/KGUUUEGCarbon Disulfide8.6UG/KGUUUEGChlorobenzene8.6UG/KGUUUEGChlorothane17UG/KGUUUEGChlorothane17UG/KGUUUEGChlorothane17UG/KGUUUEGChlorothane17UG/KGUUUEGChlorothene8.6UG/KGUUUEGDibromochloromethane17UG/KGUUUEGEthylbenzene8.6UG/KGUUUEGEthylbenzene8.6UG/KGUUUUEGStyrene8.6UG/KGUUUUUEGTetrachloroethene8.6UG/KG </td <td>Type REG REG REG REG</td> <td>1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane 1,1,2-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,2-Dichloroethane</td> <td>8.6 8.6 8.6 8.6 8.6 8.6 8.6</td> <td>UG/KG UG/KG UG/KG UG/KG UG/KG</td> <td></td> <td></td> <td>Data U U U U U U U U U</td> <td></td>	Type REG REG REG REG	1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane 1,1,2-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,2-Dichloroethane	8.6 8.6 8.6 8.6 8.6 8.6 8.6	UG/KG UG/KG UG/KG UG/KG UG/KG			Data U U U U U U U U U	
EG1,3-trans-Dichloropropene8.6UG/KGUUEG2-Butanone6.8UG/KGJJC05EG2-Hexanone35UG/KGUUEG4-Methyl-2-pentanone35UG/KGJJC05EGBenzene26UG/KGJJC05EGBenzene8.6UG/KGUUUEGBromodichloromethane8.6UG/KGUUUEGBromoform8.6UG/KGUUUEGBromomethane17UG/KGUUUEGCarbon Disulfide8.6UG/KGUUUEGChlorobenzene8.6UG/KGUUUEGChloroethane17UG/KGUUUEGChloromethane17UG/KGUUUEGChloroethane17UG/KGUUUEGChloromethane17UG/KGUUUEGChloromethane17UG/KGUUUEGDibromochloromethane8.6UG/KGUUUEGEthylbenzene8.6UG/KGUUUEGStyrene8.6UG/KGUUUUEGTetrachloroethene8.6UG/KGUUUEGToluene8.6UG/KGUUU<	Type REG REG REG REG REG REG	1,1,1-Trichloroethane         1,1,2,2-Tetrachloroethane         1,1,2-Trichloroethane         1,1-Dichloroethane         1,1-Dichloroethane         1,2-Dichloroethane         1,2-Dichloroethane         1,2-Dichloroethane         1,2-Dichloroethane         1,2-Dichloroethane	- 8.6 8.6 8.6 8.6 8.6 8.6 8.6 8.6	UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG			Data U U U U U U U U U U	
EG2-Hexanone35UG/KGUUEG4-Methyl-2-pentanone35UG/KGUUEGAcetone26UG/KGJJC05EGBenzene8.6UG/KGUUEGBromodichloromethane8.6UG/KGUUEGBromomethane17UG/KGUUEGBromomethane17UG/KGUUEGCarbon Disulfide8.6UG/KGUUEGCarbon Tetrachloride8.6UG/KGUUEGChlorobenzene8.6UG/KGUUEGChloroform8.6UG/KGUUEGChloroform8.6UG/KGUUEGChloromethane17UG/KGUUEGChloromethane8.6UG/KGUUEGEthylbenzene8.6UG/KGUUEGMethylene Chloride8.6UG/KGUUEGStyrene8.6UG/KGUUEGTetrachloroethene8.6UG/KGUUEGToluene8.6UG/KGUU	Type REG REG REG REG REG REG REG	1,1,1-Trichloroethane         1,1,2,2-Tetrachloroethane         1,1,2-Trichloroethane         1,1-Dichloroethane         1,1-Dichloroethane         1,2-Dichloroethane         1,2-Dichloroethane         1,2-Dichloroethane         1,2-Dichloroethane         1,2-Dichloroethane         1,2-Dichloroethane         1,2-Dichloroethane         1,2-Dichloroethane	8.6 8.6 8.6 8.6 8.6 8.6 8.6 8.6 8.6	UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG			<b>Data</b> U U U U U U U U U U U U	
EG4-Methyl-2-pentanone35UG/KGUUEGAcetone26UG/KGJJC05EGBenzene8.6UG/KGUUUEGBromodichloromethane8.6UG/KGUUEGBromoform8.6UG/KGUUEGBromomethane17UG/KGUUEGCarbon Disulfide8.6UG/KGUUEGCarbon Tetrachloride8.6UG/KGUUEGChlorobenzene8.6UG/KGUUEGChloroform8.6UG/KGUUEGChloromethane17UG/KGUUEGChloroform8.6UG/KGUUEGChloromethane17UG/KGUUEGChloromethane8.6UG/KGUUEGEthylbenzene8.6UG/KGUUEGMethylene Chloride8.6UG/KGUUEGTetrachloroethene8.6UG/KGUUEGToluene8.6UG/KGUU	Type REG REG REG REG REG REG REG REG REG	1,1,1-Trichloroethane         1,1,2,2-Tetrachloroethane         1,1,2-Trichloroethane         1,1-Dichloroethane         1,1-Dichloroethane         1,2-Dichloroethane         1,2-Dichloroethane         1,2-Dichloroethane         1,2-Dichloroethane         1,2-Dichloroethane         1,2-Dichloroethane         1,2-Dichloroethane         1,2-Dichloropropane         1,3-cis-Dichloropropene         1,3-trans-Dichloropropene	8.6 8.6 8.6 8.6 8.6 8.6 8.6 8.6 8.6 8.6	UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG			<b>Data</b> U U U U U U U U U U U U U U	Code
EGAcetone26 UG/KG JJC05EGBenzene8.6 UG/KG UUEGBromodichloromethane8.6 UG/KG UUEGBromoform8.6 UG/KG UUEGBromomethane17 UG/KG UUEGCarbon Disulfide8.6 UG/KG UUEGCarbon Tetrachloride8.6 UG/KG UUEGChlorobenzene8.6 UG/KG UUEGChlorobenzene8.6 UG/KG UUEGChlorobenzene17 UG/KG UUEGChlorobenzene8.6 UG/KG UUEGStyrene8.6 UG/KG UUEGStyrene8.6 UG/KG UUEGTetrachlorobethene8.6 UG/KG UUEGToluene8.6 UG/KG UU	Type REG REG REG REG REG REG REG REG REG REG	1,1,1-Trichloroethane         1,1,2,2-Teirachloroethane         1,1,2-Trichloroethane         1,1-Dichloroethane         1,1-Dichloroethane         1,2-Dichloroethane         1,2-Dichloroethane         1,2-Dichloroethane         1,2-Dichloroethane         1,2-Dichloroethane         1,2-Dichloroethane         1,2-Dichloroethane         1,2-Dichloropropane         1,3-cis-Dichloropropene         1,3-trans-Dichloropropene         2-Butanone	8.6 8.6 8.6 8.6 8.6 8.6 8.6 8.6 8.6 8.6	UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG			Data U U U U U U U U U U U U U U J	Code
EGBenzene8.6 UG/KGUUEGBromodichloromethane8.6 UG/KGUUEGBromoform8.6 UG/KGUUEGBromomethane17 UG/KGUUEGCarbon Disulfide8.6 UG/KGUUEGCarbon Tetrachloride8.6 UG/KGUUEGChlorobenzene8.6 UG/KGUUEGChlorobenzene8.6 UG/KGUUEGChloromethane17 UG/KGUUEGChloromethane17 UG/KGUUEGChloromethane17 UG/KGUUEGChloromethane8.6 UG/KGUUEGDibromochloromethane8.6 UG/KGUUEGStyrene8.6 UG/KGUUEGStyrene8.6 UG/KGUUEGToluene8.6 UG/KGUU	Type REG REG REG REG REG REG REG REG REG REG	1,1,1-Trichloroethane         1,1,2,2-Tetrachloroethane         1,1,2-Trichloroethane         1,1-Dichloroethane         1,1-Dichloroethane         1,1-Dichloroethane         1,2-Dichloroethane         1,2-Dichloroethane         1,2-Dichloroethane         1,2-Dichloroethane         1,2-Dichloropthene         1,3-cis-Dichloropropane         1,3-cis-Dichloropropene         2-Butanone         2-Hexanone	8.6 8.6 8.6 8.6 8.6 8.6 8.6 8.6 8.6 8.6	UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG			Data U U U U U U U U U U U U U U U U U U	Code
EGBromodichloromethane8.6UG/KGUUEGBromoform8.6UG/KGUUEGBromomethane17UG/KGUUEGCarbon Disulfide8.6UG/KGUUEGCarbon Tetrachloride8.6UG/KGUUEGChlorobenzene8.6UG/KGUUEGChlorobethane17UG/KGUUEGChloromethane17UG/KGUUEGChloromethane8.6UG/KGUUEGEthylbenzene8.6UG/KGUUEGEthylbenzene8.6UG/KGUUEGStyrene8.6UG/KGUUEGStyrene8.6UG/KGUUEGToluene8.6UG/KGUU	Type REG REG REG REG REG REG REG REG REG REG	1,1,1-Trichloroethane         1,1,2,2-Tetrachloroethane         1,1,2-Trichloroethane         1,1-Dichloroethane         1,1-Dichloroethane         1,1-Dichloroethane         1,2-Dichloroethane         1,2-Dichloroethane         1,2-Dichloroethane         1,2-Dichloroethane         1,2-Dichloropethene         1,3-cis-Dichloropropane         1,3-cis-Dichloropropene         2-Butanone         2-Hexanone         4-Methyl-2-pentanone	8.6 8.6 8.6 8.6 8.6 8.6 8.6 8.6 8.6 8.6	UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG			Data U U U U U U U U U U U U U U U U U U	Code C05
EGBromoform8.6 UG/KGUUEGBromomethane17 UG/KGUUEGCarbon Disulfide8.6 UG/KGUUEGCarbon Tetrachloride8.6 UG/KGUUEGChlorobenzene8.6 UG/KGUUEGChlorobethane17 UG/KGUUEGChloromethane17 UG/KGUUEGChloromethane8.6 UG/KGUUEGEthylbenzene8.6 UG/KGUUEGEthylene Chloride8.6 UG/KGUUEGStyrene8.6 UG/KGUUEGTetrachloroethene8.6 UG/KGUUEGToluene8.6 UG/KGUU	Type REG REG REG REG REG REG REG REG REG REG	1,1,1-Trichloroethane         1,1,2-Tetrachloroethane         1,1,2-Trichloroethane         1,1-Dichloroethane         1,1-Dichloroethane         1,2-Dichloroethane         1,2-Dichloroethane         1,2-Dichloroethane         1,2-Dichloroethane         1,2-Dichloroethane         1,2-Dichloropropane         1,3-trans-Dichloropropene         2-Butanone         2-Hexanone         4-Methyl-2-pentanone         Acetone	8.6 8.6 8.6 8.6 8.6 8.6 8.6 8.6 8.6 8.6	UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG			Data U U U U U U U U U U U U U U U U U U	Code C05
EGBromomethane17UG/KGUUEGCarbon Disulfide8.6UG/KGUUEGCarbon Tetrachloride8.6UG/KGUUEGChlorobenzene8.6UG/KGUUEGChlorobethane17UG/KGUUEGChloroothane17UG/KGUUEGChloroothane17UG/KGUUEGChloromethane17UG/KGUUEGEthylbenzene8.6UG/KGUUEGEthylbenzene8.6UG/KGUUEGStyrene8.6UG/KGUUEGTetrachloroethene8.6UG/KGUUEGToluene8.6UG/KGUU	Type REG REG REG REG REG REG REG REG REG REG	1,1,1-Trichloroethane         1,1,2,2-Tetrachloroethane         1,1,2-Trichloroethane         1,1-Dichloroethane         1,1-Dichloroethane         1,2-Dichloroethane         1,2-Dichloroethane         1,2-Dichloroethane         1,2-Dichloroethane         1,2-Dichloroethane         1,2-Dichloropropane         1,3-trans-Dichloropropene         2-Butanone         2-Hexanone         4-Methyl-2-pentanone         Acetone         Benzene	8.6 8.6 8.6 8.6 8.6 8.6 8.6 8.6 8.6 8.6	UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG			Data U U U U U U U U U U U U U U U U U U	Code C05
EG       Carbon Tetrachloride       8.6 UG/KG       U       U         EG       Chlorobenzene       8.6 UG/KG       U       U         EG       Chlorobenzene       8.6 UG/KG       U       U         EG       Chlorobenzene       17 UG/KG       U       U         EG       Chlorobenzene       8.6 UG/KG       U       U         EG       Chlorobenzene       8.6 UG/KG       U       U         EG       Chlorobenzene       8.6 UG/KG       U       U         EG       Dibromochloromethane       17 UG/KG       U       U         EG       Ethylbenzene       8.6 UG/KG       U       U         EG       Methylene Chloride       8.6 UG/KG       U       U         EG       Styrene       8.6 UG/KG       U       U         EG       Tetrachloroethene       8.6 UG/KG       U       U         EG       Toluene       8.6 UG/KG       U       U	Type REG REG REG REG REG REG REG REG REG REG	1,1,1-Trichloroethane         1,1,2-Teitrachloroethane         1,1,2-Trichloroethane         1,1-Dichloroethane         1,1-Dichloroethane         1,2-Dichloroethane         1,2-Dichloroethane         1,2-Dichloroethane         1,2-Dichloroethane         1,2-Dichloroethane         1,2-Dichloroethane         1,2-Dichloropropane         1,3-cis-Dichloropropene         1,3-trans-Dichloropropene         2-Hexanone         2-Hexanone         4-Methyl-2-pentanone         Acetone         Benzene         Bromodichloromethane	8.6 8.6 8.6 8.6 8.6 8.6 8.6 8.6 8.6 8.6	UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG			Data U U U U U U U U U U U U U U U U U U	Code C05
EGChlorobenzene8.6 UG/KGUUEGChloroethane17 UG/KGUUEGChloroform8.6 UG/KGUUEGChloromethane17 UG/KGUUEGDibromochloromethane8.6 UG/KGUUEGEthylbenzene8.6 UG/KGUUEGStyrene8.6 UG/KGUUEGTetrachloroethene8.6 UG/KGUUEGToluene8.6 UG/KGUU	Type REG REG REG REG REG REG REG REG REG REG	1,1,1-Trichloroethane         1,1,2-Teitrachloroethane         1,1,2-Trichloroethane         1,1-Dichloroethane         1,1-Dichloroethane         1,2-Dichloroethane         1,2-Dichloroethane         1,2-Dichloroethane         1,2-Dichloroethane         1,2-Dichloroethane         1,2-Dichloropropane         1,3-cis-Dichloropropene         1,3-trans-Dichloropropene         2-Butanone         2-Hexanone         4-Methyl-2-pentanone         Accetone         Benzene         Bromodichlorormethane         Bromodichlorormethane	8.6 8.6 8.6 8.6 8.6 8.6 8.6 8.6 8.6 8.6	UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG			Data U U U U U U U U U U U U U U U U U U	Code C05
EGChloroethane17UG/KGUUEGChloroform8.6UG/KGUUEGChloromethane17UG/KGUUEGDibromochloromethane8.6UG/KGUUEGEthylbenzene8.6UG/KGUUEGMethylene Chloride8.6UG/KGUUEGStyrene8.6UG/KGUUEGTetrachloroethene8.6UG/KGUUEGToluene8.6UG/KGUU	Type REG REG REG REG REG REG REG REG REG REG	1,1,1-Trichloroethane         1,1,2-Tetrachloroethane         1,1,2-Trichloroethane         1,1-Dichloroethane         1,1-Dichloroethane         1,1-Dichloroethane         1,2-Dichloroethane         1,2-Dichloroethane         1,2-Dichloroethane         1,2-Dichloroethane         1,2-Dichloropthene         1,3-cis-Dichloropropene         1,3-cis-Dichloropropene         2-Butanone         2-Hexanone         4-Methyl-2-pentanone         Acetone         Benzene         Bromodichloromethane         Bromodichloromethane         Carbon Disulfide	8.6 8.6 8.6 8.6 8.6 8.6 8.6 8.6 8.6 8.6	UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG			Data U U U U U U U U U U U U U U U U U U	Code C05
EGChloroform8.6 UG/KGUUEGChloromethane17 UG/KGUUEGDibromochloromethane8.6 UG/KGUUEGEthylbenzene8.6 UG/KGUUEGMethylene Chloride8.6 UG/KGUUEGStyrene8.6 UG/KGUUEGTetrachloroethene8.6 UG/KGUUEGToluene8.6 UG/KGUU	Type REG REG REG REG REG REG REG REG REG REG	1,1,1-Trichloroethane         1,1,2-Tetrachloroethane         1,1,2-Trichloroethane         1,1-Dichloroethane         1,1-Dichloroethane         1,1-Dichloroethane         1,2-Dichloroethane         1,2-Dichloroethane         1,2-Dichloroethane         1,2-Dichloroethane         1,2-Dichloropthene         1,3-cis-Dichloropropane         1,3-cis-Dichloropropene         2-Butanone         2-Hexanone         4-Methyl-2-pentanone         Acetone         Benzene         Bromodichloromethane         Bromoform         Bromomethane         Carbon Disulfide         Carbon Tetrachloride	8.6 8.6 8.6 8.6 8.6 8.6 8.6 8.6 8.6 8.6	UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG			Data U U U U U U U U U U U U U U U U U U	Code C05
EGChloromethane17UG/KGUUEGDibromochloromethane8.6UG/KGUUEGEthylbenzene8.6UG/KGUUEGMethylene Chloride8.6UG/KGUUEGStyrene8.6UG/KGUUEGTetrachloroethene8.6UG/KGUUEGToluene8.6UG/KGUU	Type REG REG REG REG REG REG REG REG REG REG	1,1,1-Trichloroethane         1,1,2-Teirachloroethane         1,1,2-Trichloroethane         1,1-Dichloroethane         1,1-Dichloroethane         1,1-Dichloroethane         1,2-Dichloroethane         1,2-Dichloroethane         1,2-Dichloroethane         1,2-Dichloroethane         1,2-Dichloropropane         1,3-cis-Dichloropropene         2-Butanone         2-Hexanone         4-Methyl-2-pentanone         Acetone         Benzene         Bromodichloromethane         Bromodern         Carbon Disulfide         Carbon Tetrachloride         Chlorobenzene	- 8.6 8.6 8.6 8.6 8.6 8.6 8.6 8.6 8.6 8.6	UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG			Data U U U U U U U U U U U U U U U U U U	Code C05
EGDibromochloromethane8.6 UG/KGUUEGEthylbenzene8.6 UG/KGUUEGMethylene Chloride8.6 UG/KGUUEGStyrene8.6 UG/KGUUEGTetrachloroethene8.6 UG/KGUUEGToluene8.6 UG/KGUU	Type REG REG REG REG REG REG REG REG REG REG	1,1,1-Trichloroethane         1,1,2-Teirachloroethane         1,1,2-Trichloroethane         1,1-Dichloroethane         1,1-Dichloroethane         1,1-Dichloroethane         1,2-Dichloroethane         1,2-Dichloroethane         1,2-Dichloroethane         1,2-Dichloroethane         1,2-Dichloropthane         1,3-trans-Dichloropropene         2-Butanone         2-Hexanone         2-Hexanone         4-Methyl-2-pentanone         Acetone         Benzene         Bromodichloromethane         Bromoform         Bromomethane         Carbon Disulfide         Carbon Tetrachloride         Chlorobenzene         Chlorobenzene	- 8.6 8.6 8.6 8.6 8.6 8.6 8.6 8.6 8.6 8.6	UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG			Data U U U U U U U U U U U U U U U U U U	Code C05
EGEthylbenzene8.6 UG/KGUUEGMethylene Chloride8.6 UG/KGUUEGStyrene8.6 UG/KGUUEGTetrachloroethene8.6 UG/KGUUEGToluene8.6 UG/KGUU	Type REG REG REG REG REG REG REG REG REG REG	1,1,1-Trichloroethane         1,1,2-Teitrachloroethane         1,1,2-Trichloroethane         1,1-Dichloroethane         1,1-Dichloroethane         1,2-Dichloroethane         1,2-Dichloroethane         1,2-Dichloroethane         1,2-Dichloroethane         1,2-Dichloroethane         1,2-Dichloropropane         1,3-trans-Dichloropropene         2-Butanone         2-Hexanone         4-Methyl-2-pentanone         Acetone         Benzene         Bromodichloromethane         Bromomethane         Carbon Disulfide         Carbon Tetrachloride         Chlorobenzene         Chloroform	8.6 8.6 8.6 8.6 8.6 8.6 8.6 8.6 8.6 8.6	UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG			Data U U U U U U U U U U U U U U U U U U	Code C05
EG     Methylene Chloride     8.6 UG/KG     U     U       EG     Styrene     8.6 UG/KG     U     U       EG     Tetrachloroethene     8.6 UG/KG     U     U       EG     Toluene     8.6 UG/KG     U     U	Type REG REG REG REG REG REG REG REG REG REG	1,1,1-Trichloroethane         1,1,2-Teitrachloroethane         1,1,2-Trichloroethane         1,1-Dichloroethane         1,1-Dichloroethane         1,2-Dichloroethane         1,2-Dichloroethane         1,2-Dichloroethane         1,2-Dichloroethane         1,2-Dichloroethane         1,2-Dichloropropane         1,3-trans-Dichloropropene         2-Butanone         2-Hexanone         4-Methyl-2-pentanone         Acetone         Benzene         Bromodichloromethane         Romomethane         Carbon Disulfide         Carbon Tetrachloride         Chlorobenzene         Chlorobethane         Chlorobethane         Chlorobethane         Chlorobethane         Chlorobethane         Chlorobethane         Chloroethane         Chloroethane         Chloroethane	8.6 8.6 8.6 8.6 8.6 8.6 8.6 8.6 8.6 8.6	UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG			Data U U U U U U U U U U U U U U U U U U	Code C05
EG     Tetrachloroethene     8.6 UG/KG U     U       EG     Toluene     8.6 UG/KG U     U	Type REG REG REG REG REG REG REG REG REG REG	1,1,1-Trichloroethane         1,1,2-Teitrachloroethane         1,1,2-Trichloroethane         1,1-Dichloroethane         1,1-Dichloroethane         1,2-Dichloroethane         1,2-Dichloroethane         1,2-Dichloroethane         1,2-Dichloroethane         1,2-Dichloroethane         1,2-Dichloropropane         1,3-cis-Dichloropropene         1,3-trans-Dichloropropene         2-Hexanone         2-Hexanone         4-Methyl-2-pentanone         Acetone         Benzene         Bromodichloromethane         Bromomethane         Carbon Tetrachloride         Chlorobenzene         Chloroethane         Chloroform         Chloroform         Chloromethane         Dibromochloromethane	8.6 8.6 8.6 8.6 8.6 8.6 8.6 8.6 8.6 8.6	UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG			Data           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U      U	Code C05
EG Toluene 8.6 UG/KG U U	Type REG REG REG REG REG REG REG REG REG REG	1,1,1-Trichloroethane         1,1,2-Teirachloroethane         1,1,2-Trichloroethane         1,1-Dichloroethane         1,1-Dichloroethane         1,1-Dichloroethane         1,2-Dichloroethane         1,2-Dichloroethane         1,2-Dichloroethene         1,2-Dichloropropane         1,3-cis-Dichloropropene         2-Butanone         2-Hexanone         4-Methyl-2-pentanone         Acetone         Benzene         Bromodichloromethane         Bromomethane         Carbon Disulfide         Carbon Tetrachloride         Chlorobenzene         Chloroform         Chloromethane         Chloromethane         Ehylbenzene	8.6 8.6 8.6 8.6 8.6 8.6 8.6 8.6 8.6 8.6	UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG			Data U U U U U U U U U U U U U U U U U U	Code C05
	Type REG REG REG REG REG REG REG REG REG REG	1,1,1-Trichloroethane         1,1,2-Teirachloroethane         1,1,2-Trichloroethane         1,1-Dichloroethane         1,1-Dichloroethane         1,1-Dichloroethane         1,2-Dichloroethane         1,2-Dichloroethane         1,2-Dichloroethane         1,2-Dichloroethane         1,2-Dichloroethane         1,2-Dichloropropane         1,3-trans-Dichloropropene         2-Butanone         2-Hexanone         4-Methyl-2-pentanone         Acetone         Benzene         Bromodichloromethane         Bromodichloromethane         Carbon Disulfide         Carbon Disulfide         Chloroethane         Chloroform         Chloromethane         Dibromochloromethane         Ethylbenzene         Methyleen Chloride         Styrene	8.6 8.6 8.6 8.6 8.6 8.6 8.6 8.6 8.6 8.6	UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG			Data           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U	Code C05
	Type REG REG REG REG REG REG REG REG REG REG	1,1,1-Trichloroethane         1,1,2-Teitrachloroethane         1,1,2-Trichloroethane         1,1-Dichloroethane         1,1-Dichloroethane         1,1-Dichloroethane         1,2-Dichloroethane         1,2-Dichloroethane         1,2-Dichloroethane         1,2-Dichloroethane         1,2-Dichloroethane         1,2-Dichloroptopane         1,3-trans-Dichloropropene         2-Butanone         2-Hexanone         Bromodichloromethane         Bromodichloromethane         Chloroethane         Chloroethane         Dibromochloromethane </td <td>- 8.6 8.6 8.6 8.6 8.6 8.6 8.6 8.6 8.6 8.6</td> <td>UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG</td> <td></td> <td></td> <td>Data U U U U U U U U U U U U U U U U U U</td> <td>Code C05</td>	- 8.6 8.6 8.6 8.6 8.6 8.6 8.6 8.6 8.6 8.6	UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG			Data U U U U U U U U U U U U U U U U U U	Code C05
	Type REG REG REG REG REG REG REG REG REG REG	1,1,1-Trichloroethane         1,1,2-Teitrachloroethane         1,1,2-Trichloroethane         1,1-Dichloroethane         1,1-Dichloroethane         1,2-Dichloroethane         1,2-Dichloroethane         1,2-Dichloroethane         1,2-Dichloroethene         1,2-Dichloroptopane         1,3-trans-Dichloropropene         2-Butanone         2-Hexanone         4-Methyl-2-pentanone         Acetone         Benzene         Bromodichloromethane         Bromomethane         Carbon Disulfide         Carbon Tetrachloride         Chloroethane         Chloroethane         Dibromochloromethane         Dibromochloromethane         Ethylbenzene         Methylene Chloride         Styrene         Tetrachloroethene         Toluene	- 8.6 8.6 8.6 8.6 8.6 8.6 8.6 8.6 8.6 8.6	UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG			Data U U U U U U U U U U U U U U U U U U	Code C05

RQLsd-023(p)-0042-SD 0	.5 - 2.0 FT	Field Sample Type	: Grab	Matrix: S	Sediment		Collected:	07/08/98
Sample Type	Volatile Organics	Result	Units	Qual Lab	ifler <b>s</b> Data	Validation Code		
REG REG	Vinyl Chloride Xylenes, Total		17 UG/KG 8.6 UG/KG	-	U U		_	

Sample Type		Result	Units	Qual Lab	ifiers Data	Validation Code	
REG	Cyanide	0.01	MG/L	U	U		_
Sample				Qual	ifiers	Validation	
Туре	Metals	Result	Units	Lab	Data	Code	_
REG REG	Aluminum Antimony	49600	UG/L UG/L	U	= ប		
REG	Anumony Arsenic		UG/L	U	=		
REĠ	Barium		UG/L		=		
REG	Beryllium		UG/L	В	Ů	F06	
REG REG	Cadmium Calcium	1.5 58300	UG/L UG/L	В	J =		
REG	Chromium		UG/L		=		
REG	Cobalt		ŲG/L	в	J		
REG	Copper		ŲG/L		=		
REG	Iron	80200			=		
REG REG	Lead Magnesium	99.2 202000	UG/L		=		
REG	Magnesium Manganese		UG/L		=		
REG	Mercury		UG/L		=		
REG	Nickel		UG/L		=		
REG	Potassium		UG/L	12	J	F10	
REG	Selenium		UG/L UG/L	U U	U U		
REG REG	Silver Sodium		UG/L	в	J		
REG	Thallium		UG/L	B,Wa	Ĵ	E03	
REG	Vanadium	85,3	UG/L	-	=		
REG	Zinc	492	UG/L		=		
Sample Type	Filtered Metals	Result	Units	Lab	ifiers Data	Validation Code	_
REG	Aluminum		UG/L UG/L	B U	IJ		
REG REG	Antimony Arsenic		UG/L	Ŭ	U		
REG	Barium		UG/L	В	J		
REG	Beryllium	5	UG/L	U	U		
REG	Cadmium		UG/L	U	U		
REG	Calcium	20200		U	≓ U		
REG REG	Chromium Cobalt		UG/L UG/L	Ŭ	Ű		
REG	Copper		UG/L	Ŭ	บั		
REG	Iron	51.5	UG/L	В	J		
REG	Lead		UG/L	U	U		
REG	Magnesium	168000			=		
REG REG	Manganese Mercury		UG/L UG/L	U	= U		
REG	Nickel		UG/L	Ŭ	Ŭ		
REG	Potassium	1560	UG/L	в	J	F10	
REG	Selenium		UG/L	U	U		
REG	Silver		UG/L	U	U		
REG REG	Sodium Thallium		UG/L UG/L	B U,Wa	nn 1	E03	
REG	Vanadium		UG/L	U, •••a U	U	<u> </u>	
REG	Zinc		UG/L	U	U		
Sample Type	e Explosives	Result	Units	Qual Lab	lifiers Data	Validation Code	
	·		UG/L	- <del></del>	UJ	G02	_
REG REG	1,3,5-Trinitrobenzene 1,3-Dinitrobenzene		UG/L	U	UJ	G02 G02	
REG	2,4,6-Trinitrotoluene		UG/L	Ŭ	ŰĴ	G02	
REG	2,4-Dinitrotoluene	0.27	UG/L	υ	UJ	G02	
REG	2,6-Dinitrotoluene		UG/L	U	UJ	G02	
REG	2-Nitrotoluene		UG/L	U U	U) U)	G02 G02	
REG REG	3-Nitrotoluene 4-Nitrotoluene		UG/L UG/L	U	UJ UJ	G02 G02	
REG	HMX		UG/L	ŭ	ŰĴ	G02	
REG	Nitrobenzene	0.42	UG/L	U	IJ	G02	
					1.1		
REG	Nitrocellulose as N Nitroglycerin		MG/L UG/L	U U	UJ U	G02	

Sample				Quel	iflers	Validation		
Type	Explosives	Result	Units	Lab	Data	Code		
REG	Nitroguanidine	20	UG/L	U	U			
REG REG	RDX Tetryl		UG/L UG/L	U U	U) UJ	G02 G02		
REG	Teay	0.42	00/L	U	03	G02		
Sample Type		Result	Units	Qual Lab	ifiers Data	Validation Code		
REG	1,2,4-Trichlorobenzene	10	UG/L	U	Ų		_	
REG	1,2-Dichlorobenzene		UG/L	U	U			
REG REG	1,3-Dichlorobenzene 1,4-Dichlorobenzene		UG/L UG/L	U U	U U			
REG	2,2'-oxybis (1-chloropropane)		UG/L	Ŭ	Ŭ			
REG	2,4,5-Trichlorophenol	25	UG/L	Ū	บ			
REG	2,4,6-Trichlorophenol		UG/L	U	U			
REG	2,4-Dichlorophenol		UG/L	U	U			
REG REG	2,4-Dimethylphenol		UG/L UG/L	U U	U U			
REG	2,4-Dinitrophenol 2,4-Dinitrotoluene		UG/L	U	Ŭ			
REG	2,6-Dinitrotoluene		UG/L	Ũ	Ū			
REG	2-Chloronaphthalene		UG/L	Ų	Ų			
REG	2-Chlorophenol		UG/L	U	U			
REG	2-Methylnaphthalene		UG/L	U U	U U			
REG REG	2-Methylphenol 2-Nitroaniline		UG/L UG/L	U	U			
REG	2-Nitrophenol		UG/L	Ŭ	Ŭ			
REG	3,3'-Dichlorobenzidine		UG/L	Ű	Ú			
REG	3-Nitroaniline		UG/L	U	U			
REG	4,6-Dinitro-o-Cresol		UG/L	U	U			
REG	4-Bromophenyl-phenyl Ether		UG/L UG/L	U U	U U			
REG REG	4-Chloroaniline 4-Chlorophenyl-phenylether		UG/L	Ŭ	Ŭ			
REG	4-Methylphenol		UG/L	Ŭ	Ŭ			
REG	4-Nitroaniline		UG/L	U	U			
REG	4-Nitrophenol		UG/L	U	U			
REG	4-chloro-3-methylphenol		UG/L UG/L	U U	U U			
REG REG	Acenaphthene Acenaphthylene		UG/L	Ŭ	U			
REG	Anthracene		UG/L	Ū	Ū			
REG	Benzo(a)anthracene		UG/L	U	U			
REG	Benzo(a)pyrene		UG/L	U	U			
REG REG	Benzo(b)fluoranthene Benzo(g,h,i)perylene		UG/L UG/L	บ บ	U U			
REG	Benzo(g,n,)perylene Benzo(k)fluoranthene		UG/L	Ŭ	Ŭ			
REG	Bis(2-chloroethoxy)methane		UG/L	Ŭ	Ū			
REG	Bis(2-chloroethyl)ether		UG/L	U	U			
REG	Bis(2-ethylhexyl)phthalate		UG/L	U	U			
REG REG	Butyl Benzyl Phthalate Carbazole		UG/L UG/L	U U	บ บ			
REG	Carbazole Chrysene		UG/L	Ŭ	U			
REG	Di-n-butyl Phthalate		UG/L	Ū	Ū			
REG	Di-n-octyl Phthalate		UG/L	U	U			
REG	Dibenzo(a,h)anthracene		UG/L UG/L	U	U			
REG REG	Dibenzofuran Diethyl Phthalate		UG/L	U U	U U			
REG	Directly Philade Directly Philade		UG/L	Ŭ	Ŭ			
REG	Fluoranthene		UG/L	ŭ	Ŭ			
REG	Fluorene		UG/L	U	U			
REG	Hexachlorobenzene		UG/L	U	U			
REG	Hexachlorobutadiene		UG/L	U U	บ ม			
REG REG	Hexachlorocyclopentadiene Hexachloroethane		) UG/L ) UG/L	U	U			
REG	Indeno(1,2,3-cd)pyrene		UG/L	U	Ŭ			
REG	Isophorone		UG/L	Ū	U			
REG	N-Nitroso-di-n-propylamine		UG/L	U	U			
REG	N-Nitrosodiphenylamine		UG/L	U	U			
REG	Naphthalene		UG/L UG/L	U U	U U			
REG REG	Nitrobenzene Pentachlorophencl		UG/L	U U	Ŭ			
REG	Phenanthrene		) UG/L	Ŭ	Ū			
	Phenol		UG/L	U	U			

REG     Pyrene     10     UG/L     U     U       Sample Type     Volatile Organics     Result     Units     Califiers     Validation Code       REG     1.1.1-Trichloroethane     5     UG/L     U     U       REG     1.1.2-Tetrachtoroethane     5     UG/L     U     U       REG     1.1.2-Trichloroethane     5     UG/L     U     U       REG     1.1.2-Trichloroethane     5     UG/L     U     U       REG     1.1-Dichloroethane     5     UG/L     U     U       REG     1.1-Dichloroethane     5     UG/L     U     U       REG     1.2-Dichloroethane     5     UG/L     U     U       REG     1.2-Dichloroethane     5     UG/L     U     U       REG     1.2-Dichloroethane     5     UG/L     U     U       REG     1.2-Dichloropropene     5     UG/L     U     U       REG     1.2-Dichloropropene     5     UG/L     U     U       REG     2.4sanone     10     UG/L     U     U       REG     2.betanone     10     UG/L     U     U       REG     2.betanone     10     UG/L     U     U	Sample Type	Semi-Volatile Organics	Result	Units	Qual Lab	ifiers Data	Validation Code	
TypeVolatile OrganicsResultUnitsLabDataCodeREG1,1,1-Trichloroethane5UG/LUUUREG1,1,2-Terichloroethane5UG/LUUREG1,1-Dichloroethane5UG/LUUREG1,1-Dichloroethane5UG/LUUREG1,1-Dichloroethane5UG/LUUREG1,2-Dichloroethane5UG/LUUREG1,2-Dichloroethene5UG/LUUREG1,2-Dichloroethene5UG/LUUREG1,2-Dichloroethene5UG/LUUREG1,2-Dichloroethene5UG/LUUREG1,3-trans-Dichloropropene5UG/LUUREG2-Butanone10UG/LUUREG2-Hexanone10UG/LUUREG2-Hexanone10UG/LUUREGBenzene5UG/LUUREGBernzene5UG/LUUREGBromodichloromethane5UG/LUUREGCarbon Disulfide5UG/LUUREGCarbon Disulfide5UG/LUUREGChloroethane10UG/LUUREGChloroethane10UG/LUUREGChloroethane1	REG		10	UG/L	U	U		_
REG1,1,2,2-Tetrachloroethane5UG/LUUREG1,1,2-Trichloroethane5UG/LUUREG1,1-Dichloroethane5UG/LUUREG1,2-Dichloroethane5UG/LUUREG1,2-Dichloroethane5UG/LUUREG1,2-Dichloroethane5UG/LUUREG1,2-Dichloropropane5UG/LUUREG1,3-cis-Dichloropropene5UG/LUUREG2-Butanone10UG/LUUREG2-Hexanone10UG/LUUREG2-Hexanone10UG/LUUREG2-Hexanone10UG/LUUREG8enzene5UG/LUUREG8enzene5UG/LUUREGBromoform5UG/LUUREGBromoform5UG/LUUREGCarbon Disulfide5UG/LUUREGChloroethane10UG/LUUREGChloroethane10UG/LUUREGChloroethane10UG/LUUREGChloroethane10UG/LUUREGChloroethane10UG/LUUREGChloroethane10UG/LUUREGChloroeth			Result	Units	-	-		
REG       1,1,2-Trichloroethane       5       UG/L       U       U         REG       1,1-Dichloroethane       5       UG/L       U       U         REG       1,1-Dichloroethane       5       UG/L       U       U         REG       1,2-Dichloroethane       5       UG/L       U       U         REG       1,2-Dichloroethane       5       UG/L       U       U         REG       1,2-Dichloropropane       5       UG/L       U       U         REG       1,3-trans-Dichloropropene       5       UG/L       U       U         REG       2-Butanone       10       UG/L       U       U         REG       2-Butanone       10       UG/L       U       U         REG       Acetone       10       UG/L       U       U         REG       Acetone       10       UG/L       U       U         REG       Bromodichloromethane       5       UG/L       U       U         REG       Bromodichloromethane       10       UG/L       U       U         REG       Bromodichloromethane       10       UG/L       U       U         REG       Carbon Te		1,1,1-Trichloroethane						_
REG       1,1-Dichloroethane       5 UG/L       U       U         REG       1,1-Dichloroethane       5 UG/L       U       U         REG       1,2-Dichloroethane       5 UG/L       U       U         REG       1,2-Dichloroethane       5 UG/L       U       U         REG       1,2-Dichloroethane       5 UG/L       U       U         REG       1,3-cis-Dichloropropane       5 UG/L       U       U         REG       1,3-trans-Dichloropropene       5 UG/L       U       U         REG       2-Butanone       10 UG/L       U       U         REG       2-Hexanone       10 UG/L       U       U         REG       4-Methyl-2-pentanone       10 UG/L       U       U         REG       Benzene       5 UG/L       U       U         REG       Bromoform       5 UG/L       U       U         REG       Bromomethane       10 UG/L       U       U         REG       Carbon Disulfide       5 UG/L       U       U         REG       Chloroethane       10 UG/L       U       U         REG       Chloroethane       10 UG/L       U       U         REG		1,1,2,2-Tetrachloroethane				U		
REG       1,1-Dichloroethane       5 UG/L       U       U         REG       1,2-Dichloropthane       5 UG/L       U       U         REG       1,2-Dichloropthane       5 UG/L       U       U         REG       1,3-cis-Dichloropthane       5 UG/L       U       U         REG       1,3-cis-Dichloropthane       5 UG/L       U       U         REG       1,3-trans-Dichloropthane       5 UG/L       U       U         REG       2-Butanone       10 UG/L       U       U         REG       2-Hexanone       10 UG/L       U       U         REG       4-Methyl-2-pentanone       10 UG/L       U       U         REG       Benzene       10 UG/L       U       U         REG       Bromodichloromethane       5 UG/L       U       U         REG       Bromodichloromethane       10 UG/L       U       U         REG       Bromodichloromethane       10 UG/L       U       U         REG       Carbon Disulfide       5 UG/L       U       U         REG       Carbon Tetrachloride       5 UG/L       U       U         REG       Chlorobenzene       5 UG/L       U       U	REG	1,1,2-Trichloroethane	5	UG/L	U	U		
REG1,2-Dichloroethane5UG/LUUREG1,2-Dichloroptopane5UG/LUUREG1,3-cis-Dichloropropane5UG/LUUREG1,3-cis-Dichloroptopene5UG/LUUREG1,3-trans-Dichloroptopene5UG/LUUREG2-Butanone10UG/LUUREG2-Hexanone10UG/LUUREG4-Methyl-2-pentanone10UG/LUUREGBenzene5UG/LUUREGBeromodichloromethane5UG/LUUREGBromodichloromethane5UG/LUUREGCarbon Disulfide5UG/LUUREGCarbon Tetrachloride5UG/LUUREGChloromethane10UG/LUUREGChloromethane10UG/LUUREGChloromethane10UG/LUUREGChloromethane10UG/LUUREGChloromethane10UG/LUUREGDibromochloromethane5UG/LUUREGStyrene5UG/LUUREGStyrene5UG/LUUREGTetrachloroethene5UG/LUUREGTetrachloroethene5UG/LU<	REG	1,1-Dichloroethane			-	-		
REG1,2-Dichloroothene5UG/LUUREG1,2-Dichloropropene5UG/LUUREG1,3-cis-Dichloropropene5UG/LUUREG1,3-trans-Dichloropropene5UG/LUUREG2-Butanone10UG/LUUREG2-Hexanone10UG/LUUREG2-Hexanone10UG/LUUREG2-Hexanone10UG/LUUREGAcetone10UG/LUUREGBenzene5UG/LUUREGBromodichloromethane5UG/LUUREGBromodichloromethane10UG/LUUREGCarbon Disulfide5UG/LUUREGCarbon Tetrachloride5UG/LUUREGChlorobenzene5UG/LUUREGChloromethane10UG/LUUREGChlorobenzene5UG/LUUREGChloromethane10UG/LUUREGChloromethane10UG/LUUREGChloromethane10UG/LUUREGChloromethane5UG/LUUREGChloromethane5UG/LUUREGChloromethane5UG/LUUREG<	REG	1,1-Dichloroethene	-		U	U		
REG1,2-Dichloropropane5UG/LUUREG1,3-cis-Dichloropropene5UG/LUUREG1,3-trans-Dichloropropene5UG/LUUREG2-Butanone10UG/LUUREG2-Hexanone10UG/LUUREG4-Methyl-2-pentanone10UG/LUUREG8-none10UG/LUUREGBenzene5UG/LUUREGBeromodichloromethane5UG/LUUREGBromodichloromethane10UG/LUUREGBromodichloromethane10UG/LUUREGCarbon Disulfide5UG/LUUREGCarbon Tetrachloride5UG/LUUREGChlorobenzene5UG/LUUREGChloromethane10UG/LUUREGChloromethane10UG/LUUREGChloromethane5UG/LUUREGDibromochloromethane5UG/LUUREGStyrene5UG/LUUREGStyrene5UG/LUUREGStyrene5UG/LUUREGTetrachlorocethene5UG/LUUREGTetrachlorocethene5UG/LUU	REG	1,2-Dichloroethane	-		U			
REG1.3-cis-Dichloropropene5UG/LUUREG1.3-trans-Dichloropropene5UG/LUUREG2-Butanone10UG/LUUREG2-Hexanone10UG/LUUREG4-Methyl-2-pentanone10UG/LUUREGAcetone10UG/LUUREGBenzene5UG/LUUREGBromodichloromethane5UG/LUUREGBromodirm5UG/LUUREGBromodirm5UG/LUUREGCarbon Disulfide5UG/LUUREGChlorobenzene5UG/LUUREGChlorobenzene5UG/LUUREGChloromethane10UG/LUUREGChloromethane10UG/LUUREGChlorobenzene5UG/LUUREGChloromethane10UG/LUUREGDibromochloromethane5UG/LUUREGStyrene5UG/LUUREGStyrene5UG/LUUREGTerknoloroethene5UG/LUUREGToluene5UG/LUUREGTerknoloroethene5UG/LUUREGTerknoloroethene	REG	1,2-Dichloroethene	5	UG/L	U	U		
REG1,3-trans-Dichloropropene5UG/LUUREG2-Butanone10UG/LUUREG2-Hexanone10UG/LUUREG4-Methyl-2-pentanone10UG/LUUREGAcetone10UG/LUUREGBenzene5UG/LUUREGBromodichloromethane5UG/LUUREGBromomethane5UG/LUUREGBromomethane10UG/LUUREGBromomethane10UG/LUUREGCarbon Disulfide5UG/LUUREGChlorobenzene5UG/LUUREGChlorobenzene5UG/LUUREGChloromethane10UG/LUUREGChloromethane10UG/LUUREGChloropertane5UG/LUUREGChloromethane10UG/LUUREGDibromochloromethane5UG/LUUREGStyrene5UG/LUUREGStyrene5UG/LUUREGStyrene5UG/LUUREGTetrachloroethene5UG/LUUREGTotoloroethene5UG/LUUREGTotoloroethene5	REG	1,2-Dichloropropane	5	UG/L	U	U		
REG2-Butanone10 UG/LUUREG2-Hexanone10 UG/LUUREG4-Methyl-2-pentanone10 UG/LUUREG4-Methyl-2-pentanone10 UG/LUUREGBenzene10 UG/LUUREGBenzene5 UG/LUUREGBromodichloromethane5 UG/LUUREGBromoform5 UG/LUUREGBromoform5 UG/LUUREGCarbon Disulfide5 UG/LUUREGCarbon Tetrachloride5 UG/LUUREGChlorobenzene5 UG/LUUREGChlorothane10 UG/LUUREGChlorothane10 UG/LUUREGChlorothane10 UG/LUUREGChlorothane10 UG/LUUREGDibromochloromethane5 UG/LUUREGDibromochloromethane5 UG/LUUREGEthylbenzene5 UG/LUUREGStyrene5 UG/LUUREGTetrachloroethene5 UG/LUUREGToluene5 UG/LUUREGToluene5 UG/LUUREGToluene5 UG/LUUREGToluene5 UG/LUUREGToluene5 UG/LUUREGTol	REG	1,3-cis-Dichloropropene	5	UG/L	U	U		
REG2-Hexanone10 UG/LUREG4-Methyl-2-pentanone10 UG/LUUREGAcetone10 UG/LUUREGBenzene5 UG/LUUREGBromodichloromethane5 UG/LUUREGBromodirm5 UG/LUUREGBromoform5 UG/LUUREGBromomethane10 UG/LUUREGCarbon Disulfide5 UG/LUUREGCarbon Tetrachloride5 UG/LUUREGChlorobenzene5 UG/LUUREGChloromethane10 UG/LUUREGChloromethane10 UG/LUUREGChloromethane10 UG/LUUREGChloromethane5 UG/LUUREGChloromethane10 UG/LUUREGDibromochloromethane5 UG/LUUREGEthylbenzene5 UG/LUUREGStyrene5 UG/LUUREGStyrene5 UG/LUUREGTetrachloroethene5 UG/LUUREGToluene5 UG/LUUREGToluene5 UG/LUUREGToluene5 UG/LUUREGToluene5 UG/LUUREGToluene5 UG/LUUREGToluene5 UG/L </td <td>REG</td> <td>1,3-trans-Dichloropropene</td> <td>5</td> <td>UG/L</td> <td>U</td> <td>U</td> <td></td> <td></td>	REG	1,3-trans-Dichloropropene	5	UG/L	U	U		
REG4-Methyl-2-pentanone10UG/LUUREGAcetone10UG/LUUREGBenzene5UG/LUUREGBromodichloromethane5UG/LUUREGBromoform5UG/LUUREGBromoform5UG/LUUREGBromoform5UG/LUUREGBromoform5UG/LUUREGCarbon Disulfide5UG/LUUREGCarbon Tetrachloride5UG/LUUREGChlorobenzene5UG/LUUREGChlorobenzene5UG/LUUREGChloromethane10UG/LUUREGChloromethane10UG/LUUREGChloromethane10UG/LUUREGChloromethane10UG/LUUREGChloromethane10UG/LUUREGChloromethane5UG/LUUREGTetrachloroethene5UG/LUUREGTetrachloroethene5UG/LUUREGTetrachloroethene5UG/LUUREGTetrachloroethene5UG/LUUREGTetrachloroethene5UG/LUUREGTetrachloroethene	REG	2-Butanone	10	UG/L	U	U		
REGAcetone10UG/LUUREGBenzene5UG/LUUREGBromodichloromethane5UG/LUUREGBromoform5UG/LUUREGBromomethane10UG/LUUREGBromomethane10UG/LUUREGCarbon Disulfide5UG/LUUREGCarbon Tetrachloride5UG/LUUREGChlorobenzene5UG/LUUREGChlorotofarane10UG/LUUREGChloromethane10UG/LUUREGChloromethane5UG/LUUREGChloromethane5UG/LUUREGChloromethane5UG/LUUREGChloromethane5UG/LUUREGEthylbenzene5UG/LUUREGStyrene5UG/LUUREGToluene5UG/LUUREGToluene5UG/LUUREGToluene5UG/LUU	REG	2-Hexanone	10	UG/L	U	U		
REGAcetone10 UG/LUUREGBenzene5 UG/LUUREGBromodichloromethane5 UG/LUUREGBromoform5 UG/LUUREGBromomethane10 UG/LUUREGCarbon Disulfide5 UG/LUUREGCarbon Tetrachloride5 UG/LUUREGChlorobenzene5 UG/LUUREGChlorotentane10 UG/LUUREGChlorotentane10 UG/LUUREGChlorotentane10 UG/LUUREGChlorotentane10 UG/LUUREGChlorotentane5 UG/LUUREGChloromethane10 UG/LUUREGChloromethane5 UG/LUUREGChloromethane5 UG/LUUREGEthylbenzene5 UG/LUUREGStyrene5 UG/LUUREGToluene5 UG/LUUREGToluene5 UG/LUUREGToluene5 UG/LUUREGToluene5 UG/LUUREGToluene5 UG/LUUREGToluene5 UG/LUUREGToluene5 UG/LUUREGToluene5 UG/LUUREGToluene5 UG/LU<	REG	4-Methyl-2-pentanone	10	UG/L	U	U		
REGBromodichloromethane5UG/LUUREGBromoform5UG/LUUREGBromomethane10UG/LUUREGCarbon Disulfide5UG/LUUREGCarbon Tetrachloride5UG/LUUREGChlorobenzene5UG/LUUREGChloroform5UG/LUUREGChloroform5UG/LUUREGChloromethane10UG/LUUREGChloromethane5UG/LUUREGChloromethane5UG/LUUREGEthylbenzene5UG/LUUREGStyrene5UG/LUUREGTetrachioroethene5UG/LUUREGToluene5UG/LUUREGToluene5UG/LUUREGTrichloroethene5UG/LUU	REG	<i>,</i> ,	10	UG/L	U	U		
REGBromoform5UG/LUUREGBromomethane10UG/LUUREGCarbon Disulfide5UG/LUUREGCarbon Tetrachloride5UG/LUUREGChlorobenzene5UG/LUUREGChloroform5UG/LUUREGChloroform5UG/LUUREGChloromethane10UG/LUUREGDibromochloromethane5UG/LUUREGEthylbenzene5UG/LUUREGStyrene5UG/LUUREGTetrachioroethene5UG/LUUREGToluene5UG/LUUREGToluene5UG/LUUREGTrichloroethene5UG/LUU	REG	Benzene	5	UG/L	U	U		
REGBromomethane10 UG/LUUREGCarbon Disulfide5 UG/LUUREGCarbon Tetrachloride5 UG/LUUREGChlorobenzene5 UG/LUUREGChlorobenzene10 UG/LUUREGChloroform5 UG/LUUREGChloromethane10 UG/LUUREGChloromethane10 UG/LUUREGDibromochloromethane5 UG/LUUREGEthylbenzene5 UG/LUUREGStyrene5 UG/LUUREGTetrachloroethene5 UG/LUUREGTolene5 UG/LUUREGTolene5 UG/LUUREGTolene5 UG/LUUREGTolene5 UG/LUUREGTrichloroethene5 UG/LUUREGTrichloroethene5 UG/LUU	REG	Bromodichloromethane	5	UG/L	U	U		
REGBromomethane10UG/LUUREGCarbon Disulfide5UG/LUUREGCarbon Tetrachloride5UG/LUUREGChlorobenzene5UG/LUUREGChloroethane10UG/LUUREGChloromethane10UG/LUUREGChloromethane10UG/LUUREGChloromethane5UG/LUUREGDibromochloromethane5UG/LUUREGEthylbenzene5UG/LUUREGStyrene5UG/LUUREGStyrene5UG/LUUREGTetrachloroethene5UG/LUUREGToluene5UG/LUUREGTrichloroethene5UG/LUUREGTrichloroethene5UG/LUUREGTrichloroethene5UG/LUUREGTrichloroethene5UG/LUUREGTrichloroethene5UG/LUUREGTrichloroethene5UG/LUUREGTrichloroethene5UG/LUUREGToloroethene5UG/LUUREGToloroethene5UG/LUU	REG	Bromoform	5	UG/L	U	U		
REGCarbon Tetrachloride5UG/LUUREGChlorobenzene5UG/LUUREGChloroethane10UG/LUUREGChloroform5UG/LUUREGChloromethane10UG/LUUREGDibromochloromethane5UG/LUUREGDibromochloromethane5UG/LUUREGEthylbenzene5UG/LUUREGStyrene5UG/LUUREGTetrachloroethene5UG/LUUREGToluene5UG/LUUREGTrichloroethene5UG/LUU		Bromomethane	10	UG/L	U	U		
REGCarbon Tetrachloride5UG/LUUREGChlorobenzene5UG/LUUREGChloroethane10UG/LUUREGChloroform5UG/LUUREGChloromethane10UG/LUUREGDibromochloromethane5UG/LUUREGDibromochloromethane5UG/LUUREGEthylbenzene5UG/LUUREGStyrene5UG/LUUREGTetrachloroethene5UG/LUUREGToluene5UG/LUUREGTrichloroethene5UG/LUU	REG	Carbon Disulfide	5	UG/L	U	U		
REGChlorobenzene5UG/LUUREGChloroethane10UG/LUUREGChloroform5UG/LUUREGChloromethane10UG/LUUREGDibromochloromethane5UG/LUUREGEthylbenzene5UG/LUUREGStyrene5UG/LUUREGStyrene5UG/LUUREGTetrachloroethene5UG/LUUREGToluene5UG/LUUREGTrichloroethene5UG/LUU					Ū	Ū		
REGChloroethane10 UG/LUUREGChloroform5 UG/LUUREGChloromethane10 UG/LUUREGDibromochloromethane5 UG/LUUREGEthylbenzene5 UG/LUUREGMethylene Chloride5 UG/LUUREGStyrene5 UG/LUUREGTetrachloroethene5 UG/LUUREGToluene5 UG/LUUREGTrichloroethene5 UG/LUU								
REGChloroform5UG/LUUREGChloromethane10UG/LUUREGDibromochloromethane5UG/LUUREGEthylbenzene5UG/LUUREGMethylene Chloride5UG/LUUREGStyrene5UG/LUUREGTetrachioroethene5UG/LUUREGToluene5UG/LUUREGTrichloroethene5UG/LUU					-			
REGChloromethane10 UG/LUUREGDibromochloromethane5 UG/LUUREGEthylbenzene5 UG/LUUREGMethylene Chloride5 UG/LUUREGStyrene5 UG/LUUREGTetrachloroethene5 UG/LUUREGToluene5 UG/LUUREGTrichloroethene5 UG/LUUREGTrichloroethene5 UG/LUU					-			
REGDibromochloromethane5 UG/LUUREGEthylbenzene5 UG/LUUREGMethylene Chloride5 UG/LUUREGStyrene5 UG/LUUREGTetrachloroethene5 UG/LUUREGToluene5 UG/LUUREGTrichloroethene5 UG/LUUREGTrichloroethene5 UG/LUU			-		-	-		
REGEthylbenzene5UG/LUUREGMethylene Chloride5UG/LUUREGStyrene5UG/LUUREGTetrachloroethene5UG/LUUREGToluene5UG/LUUREGTrichloroethene5UG/LUU								
REGMethylene Chloride5UG/LUUREGStyrene5UG/LUUREGTetrachloroethene5UG/LUUREGToluene5UG/LUUREGTrichloroethene5UG/LUU					-			
REGStyrene5UG/LUUREGTetrachioroethene5UG/LUUREGToluene5UG/LUUREGTrichloroethene5UG/LUU		•			-			
REGTetrachioroethene5UG/LUUREGToluene5UG/LUUREGTrichloroethene5UG/LUU		•			-	-		
REG         Toluene         5 UG/L         U         U           REG         Trichloroethene         5 UG/L         U         U		•			-	-		
REG Trichloroethene 5 UG/L U U					-			
					-			
REG Vinyl Chloride 10 UG/L U U			-		U			

RQLsw-0	12(p)-0051-FD
Trace of the o	·=(p) •••

Field Sample Type: Field Duplicate Matrix: Surface Water

Collected: 07/08/98

ų,

Sample Type	Cyanide	Result	Units	Qual Lab	ifiers Data	Validation Code
REG	Cyanide	0.01	MG/L	U	U	
Sample Type	Metals	Result	Units	Quai Lab	ifiers Data	Validation Code
REG	Aluminum	39400	UG/L	•	=	
REG	Antimony	5	UG/L	U	U	
REG	Arsenic	41.7	UG/L		=	
REG	Barium	406	UG/L		=	
REG	Beryllium	1.4	UG/L	в	U	F06
REG	Cadmium	2.1	UG/L	в	J	
REG	Calcium	63300	UG/L		Ξ	
REG	Chromium	57.2	UG/L		Ξ	
REG	Cobalt	32	UG/L	В	J	
REG	Copper	165	UG/L		=	
REG	Iron	84300	UG/L		=	
REG	Lead	110	UG/L		=	
REG	Magnesium	201000	UG/L		=	
REG	Manganese	5130	UG/L		=	
REG	Mercury	0.27	UG/L		Ħ	
REG	Nickel	70.8	UG/L		=	
REG	Potassium	6440	UG/L		J	F10
REG	Selenium	4.2	UG/L	B	J	
REG	Silver	10	UG/L	U	U	
REG	Sodium	4450	UG/L	в	J	
REG	Thallium	2	UG/L	Wa	J	E03
REG	Vanadium	68.6	UG/L		=	

### RQLsw-012(p)-0051-FD

Field Sample Type: Field Duplicate Matrix: Surface Water

Collected: 07/08/98

Sample				Qual		Validation
Туре	Metals	Result	Units	Lab	Data	Code
REG	Zinc	531	UG/L		=	
Sample Type	Filtered Metals	Resuit	Units	Quai Lab	iflers Data	Validation Code
REG REG	Aluminum		UG/L	B U	J U	
REG	Antimony Arsenic		UG/L UG/L	U	U	
REG	Barium		UG/L	B	J	
REG	Beryllium		UG/L	Ū	Ū	
REG	Cadmium	5	UG/L	U	U	
REG	Calcium	19000	UG/L		=	
REG	Chromium		UG/L	U	υ	
REG	Cobait		UG/L	U	U	
REG	Copper		UG/L	U	U	
REG REG	iron Lead		UG/L UG/L	U U	U U	
REG	Magnesium	154000		Ŭ	=	
REG	Manganese		UG/L		=	
REG	Mercury	0.2	UG/L	U	U	
REG	Nickel	40	UG/L	U	U	
REG	Potassium		UG/L	В	J	F10
REG	Selenium		UG/L	U	U	
REG	Silver		UG/L	U	Ů	
REG REG	Sodium Thallium		UG/L UG/L	B U.Wa	1 1	E03
REG	Vanadium		UG/L	U,vva U	U	EUS
REG	Zinc		UG/L	Ŭ	Ŭ	
Sample					ifiers	Validation
Туре	Explosives	Result	Units	Lab	Data	Code
REG	1,3,5-Trinitrobenzene	0.45	UG/L	U	UJ	G02
REG	1,3-Dinitrobenzene		UG/L	U	UJ	G02
REG	2,4,6-Trinitrotoluene		UG/L	U	UJ	G02
REG	2,4-Dinitrotoluene		UG/L	U	U)	G02
REG	2,6-Dinitrotoluene		UG/L	U U	υJ	G02 G02
REG REG	2-Nitrotoluene 3-Nitrotoluene		UG/L UG/L	U	nn N	G02 G02
REG	4-Nitrotoluene		UG/L	Ŭ	UJ	G02
REG	HMX		UG/L	Ŭ	ŬĴ	G02
REG	Nitrobenzene	0.45	UG/L	U	UJ	G02
REG	Nitrocellulose as N	0.02	MG/L	U	U	
REG	Nitroglycerin		UG/L	U	UJ	G02
REG	Nitroguanidine		UG/L	U	U	
REG	RDX		UG/L	U	ÛĴ	G02
REG	Tetryl	0.45	UG/L	U	UJ	G02
Sample Type	Semi-Volatile Organics	Result	Units	Qual Lab	ifiers Data	Validation Code
REG	1,2,4-Trichlorobenzene		UG/L	U	U	
REG	1,2-Dichlorobenzene		UG/L	U	U	
REG	1,3-Dichlorobenzene		UG/L	U	U	
REG REG	1,4-Dichlorobenzene 2,2'-oxybis (1-chlcropropane)		UG/L UG/L	U U	U U	
REG	2,4,5-Trichlorophenol		UG/L	U	Ŭ	
REG	2,4,6-Trichlorophenol		UG/L	Ŭ	Ŭ	
REG	2,4-Dichlorophenol		UG/L	Ŭ	Ŭ	
REG	2,4-Dimethylphenol	10	UG/L	υ	U	
REG	2,4-Dinitrophenol		UG/L	U	Ų	
REG	2,4-Dinitrotoluene		UG/L	U	U	
REG	2,6-Dinitrotoluene		UG/L	U	U	
REG	2-Chloronaphthalene		UG/L	U	บ บ	
REG REG	2-Chlorophenol 2 Methylpaphthalene		UG/L UG/L	U U	UU	
REG	2-Methylnaphthalene 2-Methylphenol		UG/L	U	U	
REG	2-Nitroaniline		UG/L	Ŭ	Ŭ	
REG	2-Nitrophenol		UG/L	Ŭ	Ū	
REG	3,3'-Dichlorobenzidine		UG/L	U	U	
REG	3-Nitroaniline	25	UG/L	U	U	

Matrix: Surface Water

Collected: 07/08/98

Field Sample Type: Field Duplicate

### Location: Ramsdell Quarry Landfill Station: RQLsw-012 Initial Phase

### RQLsw-012(p)-0051-FD

REG REG REG REG REG REG REG REG REG REG	Semi-Volatile Organics 4.6-Dinitro-o-Cresol 4-Bromophenyl-phenyl Ether 4-Chlorophenyl-phenylether 4-Chlorophenyl-phenylether 4-Mitroaniline 4-Nitroaniline 4-Nitrophenol 4-chloro-3-methylphenol	Result         Unit           25         UG/L           10         UG/L	U U U	b Data U U U	Code	
REG REG REG REG REG REG REG REG REG REG	4-Bromophenyl-phenyl Ether 4-Chloroaniline 4-Chlorophenyl-phenylether 4-Methylphenol 4-Nitroaniline 4-Nitrophenol	10 UG/L 10 UG/L 10 UG/L 10 UG/L 10 UG/L	U U	Ū		
REG REG REG REG REG REG REG REG REG REG	4-Chloroaniline 4-Chlorophenyl-phenylether 4-Methylphenol 4-Nitroaniline 4-Nitrophenol	10 UG/L 10 UG/L 10 UG/L	U			
REG REG REG REG REG REG REG REG REG REG	4-Chlorophenyl-phenylether 4-Methylphenol 4-Nitroaniline 4-Nitrophenol	10 UG/L 10 UG/L		•		
REG REG REG REG REG REG REG REG REG REG	4-Methylphenol 4-Nitroaniline 4-Nitrophenol	10 UG/L		U		
REG REG REG REG REG REG REG REG REG REG	4-Nitroaniline 4-Nitrophenol		U	Ū		
REG REG REG REG REG REG REG REG REG REG	4-Nitrophenol			Ũ		
REG REG REG REG REG REG REG REG REG REG	A. chloro, 3. methylphenol	25 UG/L	U	Ū		
REG REG REG REG REG REG REG REG REG REG		10 UG/L	Ŭ	Ű		
REG REG REG REG REG REG REG REG REG REG	Acenaphthene	10 UG/L	υ	U		
REG REG REG REG REG REG REG REG REG	Acenaphthylene	10 UG/L	U	U		
REG REG REG REG REG REG REG REG	Anthracene	10 UG/L	U	U		
REG REG REG REG REG REG REG REG	Benzo(a)anthracene	10 UG/L	U	U		
REG REG REG REG REG REG REG	Benzo(a)pyrene	10 UG/L	U	U		
REG REG REG REG REG REG	Benzo(b)fluoranthene	10 UG/L	U	U		
REG REG REG REG REG	Benzo(g,h,i)perylene	10 UG/L	U	U		
REG REG REG REG REG	Benzo(k)fluoranthene	10 UG/L	U	U		
REG REG REG REG	Bis(2-chloroethoxy)methane	10 UG/L	-	U		
REG REG REG	Bis(2-chloroethyl)ether	10 UG/L		U		
REG REG	Bis(2-ethylhexyl)phthalate	10 UG/L		U		
REG	Butyl Benzyl Phthalate	10 UG/L		U		
	Carbazole	10 UG/L		U		
	Chrysene	10 UG/L	-	U		
	Di-n-butyl Phthalate	10 UG/L		U		
	Di-n-octyl Phthalate	10 UG/L		U		
	Dibenzo(a,h)anthracene	10 UG/L		U		
	Dibenzofuran	10 UG/L		U		
	Diethyl Phthalate	10 UG/L		U		
	Dimethyl Phthalate	10 UG/L		U		
	Fluoranthene	10 UG/L		U		
	Fluorene	10 UG/L		U		
	Hexachlorobenzene	10 UG/L	-	U		
	Hexachlorobutadiene	10 UG/L		U		
	Hexachlorocyclopentadiene	10 UG/L	_	U		
	Hexachloroethane	10 UG/L		U		
	Indeno(1,2,3-cd)pyrene	10 UG/L		U		
	Isophorone	10 UG/L	-	U.		
	N-Nitroso-di-n-propylamine	10 UG/L		U.		
	N-Nitrosodiphenylamine	10 UG/L		U		
	Naphthalene	10 UG/L	-	U		
	Nitrobenzene	10 UG/L		U		
	Pentachlorophenol	25 UG/L		U U		
	Phenanthrene	10 UG/L		-		
	Phenol	10 UG/L 10 UG/L		U U		
Sample	Pyrene	10 00/1				

Sample			Qu	alifiers	Validation
Туре	Volatile Organics	Result Unit	ts Lat	o Data	Code
REG	1,1,1-Trichloroethane	5 UG/	L U	U	
REG	1,1,2,2-Tetrachloroethane	5 UG/	ιU	U	
REG	1,1,2-Trichloroethane	5 UG/	ιU	U	
REG	1,1-Dichloroethane	5 UG/	LU	U	
REG	1,1-Dichloroethene	5 UG/	LU	U	
REG	1,2-Dichloroethane	5 UG/	LU	U	
REG	1,2-Dichloroethene	5 UG/	LU	U	
REG	1,2-Dichloropropane	5 UG/	LU	U	
REG	1,3-cis-Dichloropropene	5 UG/	LU	U	
REG	1,3-trans-Dichloropropene	5 UG/	LU	U	
REG	2-Butanone	10 UG/	Lυ	U	
REG	2-Hexanone	10 UG/	ιυ	U	
REG	4-Methyl-2-pentanone	10 UG/	LU	U	
REG	Acetone	10 UG/	ιU	U	
REG	Benzene	5 UG/	LU	U	
REG	Bromodichloromethane	5 UG/	ιU	U	
REG	Bromoform	5 UG/	ιU	U	
REG	Bromomethane	10 UG/	'LU	U	
REG	Carbon Disulfide	5 UG/	ĽU	U	
REG	Carbon Tetrachloride	5 UG/		U	
REG	Chlorobenzene	5 UG/	LU	U	
REG	Chloroethane	10 UG/	ΈU	U	

Matrix: Surface Water

Collected: 07/08/98

## Location: Ramsdell Quarry Landfill Station : RQLsw-012 Initial Phase

### RQLsw-012(p)-0051-FD

Sample				Qual	ifiers	Validation
Туре	Volatile Organics	Result	Units	Lab	Data	Code
REG	Chloroform	5	UG/L	U	U	·
REG	Chloromethane	10	UG/L	U	U	
REG	Dibromochloromethane	5	UG/L	U	υ	
REG	Ethylbenzene	5	UG/L	U	U	
REG	Methylene Chloride	5	UG/L	U	บ	
REG	Styrene	5	UG/L	U	U	
REG	Tetrachloroethene	5	UG/L	U	U	
REG	Toluene	5	UG/L	U	U	
REG	Trichloroethene	5	UG/L	U	U	
REG	Vinyl Chloride	10	UG/L	U	U	
REG	Xylenes, Total	5	UG/L	U	U	

Field Sample Type: Field Duplicate

# Location: Ramsdell Quarry Landfill Station : RQLsw-013 Initial Phase

Sample Type	Cyanide	Result	Units	Qual Lab	ifiers Data	Validation Code		
	Cyanide		MG/L	U	U		-	
Sample Type	Metais	Result	Units	Quai Lab	lfier <del>s</del> Data	Validation Code		
REG	Aluminum	25500	UG/L		=	-	_	
	Antimony		UG/L	U	U			
	Arsenic		UG/L	-	=			
	Barium	175	UG/L	в	J			
REG	Beryllium	4	UG/L	U	U			
REG	Cadmium	5	UG/L	U	U			
REG	Calcium	15100	UG/L		=			
REG	Chromium	29.7	UG/L		=			
REG	Cobalt	50	UG/L	U	U			
REG	Copper	44.9	UG/L		=			
REG	Iron	42700	UG/L		=			
REG	Lead	38.2	UG/L		=			
REG	Magnesium	73500	UG/L		=			
REG	Manganese	831	UG/L		=			
REG	Mercury		UG/L	в	J			
REG	Nickel	35.1	UG/L	в	J			
REG	Potassium	4730	UG/L	В	J	F10		
REG	Selenium	5	UG/L	U	U			
REG	Silver	10	UG/L	U	U			
REG	Sodium	2450	UG/L	в	J			
REG	Thallium	1.8	UG/L	8,Wa	J	E03		
REG	Vanadium	40.3	UG/L	в	J			
REG	Zinc	264	UG/L		=			
Sample				Qua	lifiers	Validation		

Sample				Qual	ifiers	Validation
Туре	Filtered Metals	Result	Units	Lab	Data	Code
REG	Aluminum	72	UG/L	в	J	
REG	Antimony	5	UG/L	U	U	
REG	Arsenic	3.7	UG/L	в	J	
REG	Barium	15.2	UG/L	8	J	
REG	Beryllium	5	UG/L	U	U	
REG	Cadmium	5	UG/L	U	U	
REG	Calcium	12300	UG/L		=	
REG	Chromium	10	UC/L	U	U	
REG	Cobalt	50	UG/L	U	U	
REG	Copper	25	UG/L	U	U	
REG	Iron	213	UG/L		=	
REG	Lead	3	UG/L	U	U	
REG	Magnesium	67600	UG/L		=	
REG	Manganese	22.3	UG/L		=	
REG	Mercury	0.2	UG/L	U	U	
REG	Nickel	40	UG/L	U	U	
REG	Potassium	1020	UG/L	В	J	F10
REG	Selenium	5	UG/L	U	U	
REG	Silver	10	UG/L	U	U	

Sample			o Ma	<b>0</b>		\/_!!!		07/08/9
	Filtered Metals	Result	Units	Lab	ifiers Data	Validation Code		
REG	Sodium	2140	UG/L	в	J		—	
REG	Thallium		UG/L	U,Wa	UJ	E03		
REG REG	Vanadium Zinc		UG/L	บ บ	U			
REG	Zinc	20	UG/L	U	U			
Sample Type	Explosives	Result	Units	Qual Lab	iflers Data	Validation Code		
REG	1,3,5-Trinitrobenzene	0.65	UG/L	υ <u></u>	υ		_	
REG	1,3-Dinitrobenzene	0.65	UG/L	U	U			
REG	2,4,6-Trinitrotoluene		UG/L	U	U			
REG	2,4-Dinitrotoluene		UG/L	U	U			
REG REG	2,6-Dinitrotoluene 2-Nitrotoluene		UG/L UG/L	บ บ	U U			
REG	3-Nitrotoluene		UG/L	Ŭ	Ŭ			
REG	4-Nitrotoluene		UG/L	Ŭ	ŭ			
REG	HMX		ŬĜ/L	Ū	Ū			
REG	Nitrobenzene		UG/L	U	U			
REG	Nitrocellulose as N	0.02	MG/L	U	U			
REG	Nitroglycerin	8.1	UG/L	U	U			
REG	Nitroguanidine		UG/L	υ	U			
REG	RDX		UG/L	U	U			
REG	Tetryl	0.65	UG/L	U	U			
Sample		Result	Linite	Qual		Validation		
Туре	Semi-Volatile Organics		Units	Lab	Data	Code	_	
REG	1,2,4-Trichlorobenzene		UG/L	U	U			
REG	1,2-Dichlorobenzene		UG/L	U	U			
REG	1,3-Dichlorobenzene		UG/L	U	U			
REG REG	1,4-Dichlorobenzene		UG/L UG/L	U U	U U			
REG	2,2'-oxybis (1-chloropropane) 2,4,5-Trichlorophenol		UG/L	Ŭ	U			
REG	2,4,6-Trichlorophenol		UG/L	U	U			
REG	2,4-Dichlorophenol		UG/L	Ŭ	ŭ			
REG	2,4-Dimethylphenol		UG/L	Ŭ	Ŭ			
REG	2,4-Dinitrophenol		UG/L	Ŭ	Ŭ			
REG	2,4-Dinitrotoluene	10	UG/L	Ú	Ŭ			
REG	2,6-Dinitrotoluene	10	UG/L	U	U			
REG	2-Chloronaphthalene	10	UG/L	U	U			
REG	2-Chlorophenol	10	UG/L	U	U			
REG	2-Methyinaphthalene		UG/L	U	U			
REG	2-Methylphenol		UG/L	U	U			
REG	2-Nitroaniline		UG/L	U	U			
REG	2-Nitrophenol		UG/L	U	U			
REG	3,3'-Dichlorobenzidine		UG/L	U	U			
REG	3-Nitroaniline		UG/L	U	U			
REG REG	4,6-Dinitro-o-Cresol 4-Bromophenyl-phenyl Ether		UG/L UG/L	U U	บ ป			
REG	4-Chloroaniline		UG/L	Ŭ	U			
REG	4-Chiorophenyl-phenylether		UG/L	Ŭ	Ŭ			
REG	4-Methylphenol		UG/L	Ŭ	ŭ			
REG	4-Nitroaniline		UG/L	Ŭ	ŭ			
REG	4-Nitrophenol		UG/L	Ŭ	Ŭ			
REG	4-chloro-3-methylphenol		UG/L	Ū	Ū			
REG	Acenaphthene		UG/L	U	Ū			
REG	Acenaphthylene	10	UG/L	U	U			
REG	Anthracene		UG/L	U	U			
REG	Benzo(a)anthracene		UG/L	U	U			
REG	Benzo(a)pyrene		UG/L	U	U			
REG	Benzo(b)fluoranthene		UG/L	U	U			
REG	Benzo(g,h,i)peryl∈ne		UG/L	U	U			
REG	Benzo(k)fluoranthene		UG/L	U	U			
REG	Bis(2-chloroethoxy)methane Bis(2-chloroethyl)athor		UG/L	U	U U			
REG	Bis(2-chloroethyl)ether Bis(2-ethylberyl)phthalate		UG/L UG/L	U U	U			
REG REG	Bis(2-ethylhexyl)phthalate Butyl Benzyl Phthalate		UG/L	U	Ŭ			
REG	Carbazole		UG/L	Ŭ	Ŭ			
					ŭ			
REG	Chrysene	11)	UG/L	U	0			

Location:	Ramsdell Quar	ry Landfill
Station :	RQLsw-013	Initial Phase

### RQLsw-013(p)-0019-S

Sample Type	Semi-Volatile Organics	Result	Units	Qı La	ualiflers Ib Data	Validation Code	
REG	Di-n-octyl Phthalate	10	UG/L	U	U		<u> </u>
REG	Dibenzo(a,h)anthracene	10	UG/L	U	U		
REG	Dibenzofuran	10	UG/L	U	U		
REG	Diethyl Phthalate	10	UG/L	U	U		
REG	Dimethyl Phthalate	10	UG/L	U	U		
REG	Fluoranthene	10	UG/L	U	U		
REG	Fluorene	10	UG/L	U	U		
REG	Hexachlorobenzene	10	UG/L	U	U		
REG	Hexachlorobutadiene	10	UG/L	U	U		
REG	Hexachlorocyclopentadiene	10	UG/L	U	U		
REG	Hexachloroethane	10	UG/L	U	U		
REG	Indeno(1,2,3-cd)pyrene		UG/L	U	U		
REG	Isophorone		UG/L	Ū	Ū		
REG	N-Nitroso-di-n-propylamine		UG/L	Ū	ยั		
REG	N-Nitrosodiphenylamine		UG/L	Ŭ	Ŭ		
REG	Naphthalene		UG/L	Ŭ	Ŭ		
REG	Nitrobenzene		UG/L	Ŭ	Ŭ		
REG	Pentachlorophenol		UG/L	Ŭ	Ŭ		
REG	Phenanthrene		UG/L	Ŭ	Ŭ		
REG	Phenol		UG/L	Ũ	Ŭ		
REG	Pyrene		UG/L	Ŭ	Ŭ		
ample				Q	ualifiers	Validation	
Туре	Volatile Organics	Result	Units	La		Code	
REG	1,1,1-Trichloroethane		UG/L	Ų	U		
REĢ	1,1,2,2-Tetrachloroethane		UG/L	Ų	U		
REĞ	1,1,2-Trichloroethane		UG/L	U	U		
REG	1,1-Dichloroethane		UG/L	Ų	Ų		
REG	1,1-Dichloroethene	5	UG/L	U	U		
REG	1,2-Dichloroethane	5	UG/L	U	U		
REG	1,2-Dichloroethene	5	UG/L	U	υ		
REG	1,2-Dichloropropane	5	UG/L	U	U		
REG	1,3-cis-Dichloropropene	5	UG/L	U	U		
REG	1,3-trans-Dichloropropene	5	UG/L	U	U		
REG	2-Butanone	10	UG/L	U	U		
REG	2-Hexanone	10	UG/L	U	U		
REG	4-Methyl-2-pentanone	10	UG/L	U	U		
REG	Acetone	10	UG/L	U	U		
REG	Benzene	5	UG/L	U	U		
REG	Bromodichloromethane	5	UG/L	U	U		
REG	Bromoform	5	UG/L	U	U		
REG	Bromomethane		UG/L	Ū	Ū		
REG	Carbon Disulfide		UG/L	Ū	Ū		
REG	Carbon Tetrachloride		UG/L	Ŭ	Ŭ		
REG	Chlorobenzene		UG/L	Ŭ	ŭ		
REG	Chloroethane		UG/L	Ŭ	Ŭ		
REG	Chloroform		UG/L	Ŭ	Ŭ		
REG	Chloromethane		UG/L	Ŭ	Ŭ		
REG	Dibromochloromethane		UG/L	Ŭ	Ŭ		
REG	Ethylbenzene		UG/L	Ŭ	Ŭ		
	Methylene Chloride		UG/L	Ű	Ŭ		
PEC	meanyiene onionde		iUG/L	Ŭ	Ű		
	Shurono		, nair	U			
REG	Styrene Totrachlaraothana		1100	11			
REG REG	Tetrachloroethene	5	UG/L	U	U		
REG REG REG	Tetrachloroethene Toluene	5 5	i UG/L	U	U		
REG REG REG REG REG REG	Tetrachloroethene	5 5 5					

# Location: Ramsdell Quarry Landfill Station : RQLsw-014 Initial Phase

RQLsw-014(p)-0020-S		Field Sam	Field Sample Type: Grab Matrix: Surface Water				er	Collected: 07/08/98		
Sample Type	Cyanide		Result	Units	Quali Lab	ifiers Data	Validation Code			
REG	Cyanide		0.01	MG/L	U	U		-		

Sample	Matala	<b>D H</b>		Qualifiers		Validation	
Туре	Metals	Result	Units	Lab	Data	Code	
REG	Aluminum	200	UG/L	U	υ	·	
REG	Antimony	5	UG/L	U	Ų		
REG	Arsenic	5	UG/L	U	U		
REG	Barium	40.1	UG/L	В	J		
REG	Beryllium	4	UG/L	U	U		
REG	Cadmium	5	UG/L	U	U		
REG	Calcium	18000	UG/L		=		
REG	Chromium	10	UG/L	U	U		
REG	Cobalt	50	UG/L	U	U		
REG	Copper	25	UG/L	U	U		
REG	Iron	828	UG/L		=		
REG	Lead	3	UG/L	U	U		
REG	Magnesium	33000	UG/L		=		
REG	Manganese	67.2	UG/L		=		
REG	Mercury	0.2	UG/L	U	υ		
REG	Nickel	40	UG/L	U	U		
REG	Potassium	1050	UG/L	в	J	F10	
REG	Selenium	5	UG/L	U	υ		
REG	Silver	10	UG/L	U	U		
REG	Sodium	1490	UG/L	в	J		
REG	Thallium	2	UG/L	U	UJ	D05	
REG	Vanadium	50	UG/L	U	U		
REG	Zinc	20	UG/L	U	U		
Sample				Qual	iflers	Validation	

Sample				Qual	iflers	Validation
Туре	Filtered Metals	Result	Units	Lab	Data	Code
REG	Aluminum	200	UG/L	U	U	
REG	Antimony	5	UG/L	U	U	
REG	Arsenic	10	UG/L	U	υ	
REG	Barium	38.5	UG/L	в	J	
REG	Beryllium	5	UG/L	U	U	
REG	Cadmium	5	UG/L	ບ	U	
REG	Calcium	18000	UG/L		=	
REG	Chromium	10	UG/L	U	U	
REG	Cobalt	50	UG/L	U	U	
REG	Copper	25	UG/L	U	U	
REG	Iron	169	UG/L		=	
REG	Lead	3	UG/L	U	U	
REG	Magnesium	33200	UG/L		=	
REG	Manganese	40.6	UG/L		=	
REG	Mercury	0.2	UG/L	U	U	
REG	Nickel	40	UG/L	U	U	
REG	Potassium	1060	UG/L	В	J	F10
REG	Selenium	5	UG/L	U	U	
REG	Silver	10	UG/L	U	U	
REG	Sodium	1510	UG/L	В	J	
REG	Thallium	2	UG/L	U	U	
REG	Vanadium	50	UG/L	U	U	
REG	Zinc	20	UG/L	U	U	

Sample				Qualifiers		Validation
Туре	Explosives	Result	Units	Lab	Data	Code
REG	1,3,5-Trinitrobenzene	0.2	UG/L	U	U	
REG	1,3-Dinitrobenzene	0.2	UG/L	U	U	
REG	2,4,6-Trinitrotoluene	0.2	UG/L	U	U	
REG	2,4-Dinitrotoluene	0.13	UG/L	U	U	
REG	2,6-Dinitrotoluene	0.13	UG/L	U	U	
REG	2-Nitrotoluene	0.2	UG/L	U	U	
REG	3-Nitrotoluene	0.2	UG/L	U	U	
REG	4-Nitrotoluene	0.2	UG/L	U	U	
REG	НМХ	0.5	UG/L	U	U	
REG	Nitrobenzene	0.2	UG/L	U	U	
REG	Nitrocellulose as N	0.02	MG/L	U	U	
REG	Nitroglycerin	2.5	UG/L	U	U	
REG	Nitroguanidine	20	UG/L	U	U	
REG	RDX	0.5	UG/L	U	U	
REG	Tetryl	0.2	UG/L	U	U	
Sample				Qual	ifiers	Validation
Туре	Semi-Volatile Organics	Result	Units	Lab	Data	Code
REG	1,2,4-Trichlorobenzene		UG/L	U	U	
REG	1,2-Dichlorobenzene	10	UG/L	U	U	
REG	1,3-Dichlorobenzene	10	UG/L	U	U	

### Location: Ramsdell Quarry Landfill Station : RQLsw-014 Initial Phase

### RQLsw-014(p)-0020-S

20-S		Field Sample Type: Grai	o Ma	atrix: S	Surface Wate	ər	Collected:	07/08/98
Sample Type	Semi-Volatile Organics	Result	Units	Qı La	ualifiers b Data	Validation Code		
REG	1,4-Dichlorobenzene	10	UG/L	U			_	
REG	2,2'-oxybis (1-chloropropane)		UG/L	U	U			
REG	2,4,5-Trichlorophenol		UG/L	U	U			
REG REG	2,4,6-Trichlorophenol 2,4-Dichlorophenol		UG/L UG/L	U U	U U			
REG	2,4-Dimethylphenol		UG/L	Ŭ	Ű			
REG	2,4-Dinitrophenol		UG/L	U	Ŭ			
REG	2,4-Dinitrotoluene		UG/L	U	U			
REG	2,6-Dinitrotoluene		UG/L	U	U			
REG REG	2-Chloronaph <b>thalene</b> 2-Chlorophenol		UG/L UG/L	UU	U U			
REG	2-Methylnaphthalene		UG/L	Ŭ	Ŭ			
REG	2-Methylphenol		UG/L	Ū	Ū			
REG	2-Nitroaniline		UG/L	U	U			
REG	2-Nitrophenol		UG/L	U	U			
REG REG	3,3'-Dichlorobenzidine 3-Nitroaniline		UG/L UG/L	U U	U U			
REG	4,6-Dinitro-o-Cresol		UG/L	Ŭ	Ŭ			
REG	4-Bromophenyl-phenyl Ether		UG/L	Ŭ	Ŭ			
REG	4-Chloroaniline		UG/L	U	U			
REG	4-Chlorophenyl-phenylether		UG/L	U	U			
REG	4-Methylphenol		UG/L	U	U			
REG REG	4-Nitroaniline 4-Nitrophenol		UG/L UG/L	U U	U U			
REG	4-chloro-3-methylphenol		UG/L	Ŭ	Ŭ			
REG	Acenaphthene		UG/L	Ū	Ū			
REG	Acenaphthylene		UG/L	U	U			
REG	Anthracene		UG/L	U	U			
REG	Benzo(a)anthracene		UG/L UG/L	U U	U U			
REG REG	Benzo(a)pyren <b>e</b> Benzo(b)fluor <b>anthene</b>		UG/L	Ŭ	U			
REG	Benzo(g,h,i)perylene		UG/L	Ŭ	Ŭ			
REG	Benzo(k)fluoranthene		UG/L	U	U			
REG	Bis(2-chloroethoxy)methane		UG/L	U	U			
REG	Bis(2-chloroethyl)ether		UG/L	U 	U			
REG REG	Bis(2-ethylhexyl)phthalate Butyl Benzyl Phthalate		UG/L UG/L	U U	U U			
REG	Carbazole		UG/L	บั	Ŭ			
REG	Chrysene	10	UG/L	υ	U			
REG	Di-n-butyl Ph <b>thalate</b>		UG/L	U	U			
REG	Di-n-octyl Phthalate		UG/L	U	U			
REG REG	Dibenzo(a,h) <b>anthracene</b> Dibenzofuran		UG/L UG/L	U U	U U			
REG	Diethyl Phthalate		UG/L	Ŭ	Ŭ			
REG	Dimethyl Phthalate		UG/L	Ū	Ū			
REG	Fluoranthene		UG/L	U	U			
REG	Fluorene		UG/L	U	U			
REG	Hexachlorobenzene		UG/L UG/L	U U	UU			
REG REG	Hexachlorobu <b>tadiene</b> Hexachloroc <b>yclopentadiene</b>		UG/L	U	U U			
REG	Hexachloroethane		UG/L	ŭ	Ŭ			
REG	Indeno(1,2,3-cd)pyrene	10	UG/L	U	U			
REG	Isophorone		ŲG/L	U	U			
REG	N-Nitroso-di-n-propylamine		UG/L	U	U			
REG	N-Nitrosodiphenylamine		UG/L UG/L	U U	U U			
REG REG	Naphthalene Nitrobenzene		UG/L	U U	Ŭ			
REG	Pentachlorophenol		UG/L	Ŭ	Ŭ			
REG	Phenanthrene	10	UG/L	Ū	U			
REG	Phenol		UG/L	U	U			
REG	Pyrene	10	UG/L	U	U			
Sample Type	Volatile Org <b>anics</b>	Result	Units		ualiflers ab Data	Validation Code		
REG	1,1.1-Trichloroethane	E	UG/L	U	<u> </u>		_	
REG	1,1,2,2-Tetrachloroethane	5	UG/L	U	U			
REG	1.1.2-Trichloroethane		UG/L	U	U			
REG	1,1-Dichloroethane		UG/L	U U	U U			
REG	1,1-Dichloroethene				v			<u> </u>

### Ramsdell Quarry Landfill Groundwater Investigation

#### Location: Ramsdell Quarry Landfill Station : RQLsw-014 Initial Phase

Sample				<u>^</u>	lifiers	Validation			
	Туре	Volatile Org <b>anics</b>	Result	Units	Lab		Code		
	REG	1,2-Dichloroethane	5	UG/L	U	U .		_	
	REG	1,2-Dichloroethene	5	UG/L	Ų	U			
	REG	1,2-Dichloropropane	5	UG/L	U	U			
	REG	1,3-cis-Dichloropropene	5	UG/L	U	U			
	REG	1,3-trans-Dichloropropene	5	UG/L	U	U			
	REG	2-Butanone	10	UG/L	U	U			
	REG	2-Hexanone	10	UG/L	U	U			
	REG	4-Methyl-2-pentanone	10	UG/L	U	U			
	REG	Acetone	10	UG/L	U	U			
	REG	Benzene	5	UG/L	U	Ū			
	REG	Bromodichloromethane	5	UG/L	Ū	Ū			
	REG	Bromoform		UG/L	ŭ	Ū			
	REG	Bromomethane		UG/L	ŭ	Ŭ			
	REG	Carbon Disulfide		UG/L	Ū	Ū			
	REG	Carbon Tetrachloride		UG/L	ŭ	Ũ			
	REG	Chlorobenzene		UG/L	ŭ	Ŭ			
	REG	Chloroethane		UG/L	ŭ	Ŭ			
	REG	Chloroform		UG/L	ŭ	ũ			
	REG	Chloromethane	•	UG/L	ŭ	Ŭ			
	REG	Dibromochloromethane		UG/L	Ŭ	Ŭ			
	REG	Ethylbenzene	-	UG/L	ŭ	Ŭ			
	REG	Methylene Chloride		UG/L	ŭ	Ŭ			
	REG	Styrene	-	UG/L	ŭ	Ŭ			
	REG	Tetrachloroethene		UG/L	Ŭ	Ŭ			
	REG	Toluene	5	UG/L	Ŭ	U			
	REG	Trichloroethene	•	UG/L	Ŭ	U			
	REG			UG/L	ŭ	U			
	REG	Vinyl Chloride Xylenes, Total		UG/L	U	U			

### Location: Ramsdell Quarry Landfill

Station :	RQLsw-015	Initial Phase

Sam Tyj		Result	Units	Qual Lab	lifie <b>rs</b> Data	Validation Code	
RE	G Cyanide	0.01	MG/L	U	U	•••••	_
Sam Tyj		Result	Units	Quai Lab	lifler <b>s</b> Data	Validation Code	
RE	Aluminum	200	UG/L	U	U		_
RE	G Antimony	5	UG/L	U	U		
RE	G Arsenic	5	UG/L	U	U		
RE	G Barium	31.4	UG/L	в	J		
RE	G Beryllium	4	UG/L	U	U		
RE		5	UG/L	U	U		
RE	G Calcium	16800	UG/L		=		
RE	G Chromium	10	UG/L	U	U		
RE	G Cobalt	50	UG/L	U	U		
RE	G Copper	25	UG/L	U	U		
RE		377	UG/L		=		
RE	G Lead	3	UG/L	U	U		
RE	G Magnesium	30800	UG/L		=		
RE		72	UG/L		=		
RE		0.2	UG/L	U	U		
RE	G Nickel	40	UG/L	Ų	U		
RE	G Potassium	1520	UG/L	в	J	F10	
RE	G Selenium	5	UG/L	U	U		
RE	G Silver	10	UG/L	U	U		
RE		1570	UG/L	в	J		
RE	G Thallium	2	UG/L	U,Wa	ΟJ		
RE	G Vanadium	50	UG/L	U	U		
RE	G Zinc	16.9	UG/L	В	J		
San					lifiers	Validation	
Ту	e Filtered Metals	Result	Units	Lab	Data	Code	_
RE	3 Aluminum	200	UG/L	<u>u</u>	U		
RE		5	UG/L	U	U		

.

### Ramsdell Quarry Landfill Groundwater Investigation

#### Location: Ramsdell Quarry Landfill Station : RQLsw-015 Initial Phase

)21-S		Field Sample Type: Grat	1415		Irface W		Collected:	9110
Sample Type	Filtered Metals	Result	Units	Qua Lab	liflers Data	Validation Code		
REG	Arsenic	10	UG/L	U	U	·	_	
REG	Barium		UG/L	в	J			
REG	Beryllium		UG/L	U	U			
REG	Cadmium		UG/L	U	U =			
REG REG	Calcium Chromium	14100	UG/L	U	Ū			
REG	Cobalt		UG/L	U	Ŭ			
REG	Copper		UG/L	ŭ	Ŭ			
REG	Iron		UG/L	B	J			
REG	Lead	3	UG/L	U	U			
REG	Magnesium	28900	UG/L		=			
REG	Manganese		UG/L	в	J			
REG	Mercury		UG/L	U	U			
REG	Nickel		UG/L	U	Ų	F10		
REG REG	Potassium Selenium		UG/L UG/L	B U	L L	FIU		
REG	Silver		UG/L	Ŭ	Ŭ			
REG	Sodium		UG/L	в	J			
REG	Thallium		UG/L	Ū	Ŭ			
REG	Vanadium	—	UG/L	Ū	Ū			
REG	Zinc	20	UG/L	U	U			
Sample Type	Explosives	Result	Units	Qua Lab	lifiers Data	Validation Code		
REG	1,3,5-Trinitrobenzene	0.2	UG/L	. <u></u>	U		_	
REG	1,3-Dinitrobenzene	0.2	UG/L	U	U			
REG	2,4,6-Trinitrotoluene	0.2	UG/L	U	U			
REG	2,4-Dinitrotoluene	0.13	UG/L	U	U			
REG	2,6-Dinitrotoluene		UG/L	U	U			
REG	2-Nitrotoluene		UG/L	U	U			
REG	3-Nitrotoluene		UG/L	U	U			
REG	4-Nitrotoluene		UG/L	U	U			
REG	HMX		UG/L	U U	U U			
REG REG	Nitrobenzene Nitrocellulose as N		UG/L MG/L	U	U			
REG	Nitroglycerin		UG/L	ŭ	U			
REG	Nitroguanidine		UG/L	Ŭ	Ŭ			
REG	RDX		UG/L	Ŭ	Ŭ			
REG	Tetryl	0.2	UG/L	U	U			
						Validation		
Sample Type		Result	Units	-	lifiers Data	Code		
Туре	Semi-Volatile Organics	Result	Units	Lab	Data			
Type REG	Semi-Volatile Organics	10	UG/L	-	Data U		_	
Type REG REG	Semi-Volatile Organics 1,2,4-Trichlorobenzene 1,2-Dichlorobenzene	10 10		Lab	Data		-	
Type REG	Semi-Volatile Organics	10 10 10 10	UG/L UG/L	Lab U U	Data U U U U		-	
Type REG REG REG REG REG	Semi-Volatile Organics 1,2,4-Trichlorobenzene 1,2-Dichlorobenzene 1,3-Dichlorobenzene	10 10 10 10 10 10	UG/L UG/L UG/L UG/L UG/L	Lab U U U U U U	Data U U U U U U		-	
Type REG REG REG REG REG REG	Semi-Volatile Organics 1,2-4-Trichlorobenzene 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 2,2'-oxybis (1-chloropropane) 2,4,5-Trichlorophenol	10 10 10 10 10 10 25	UG/L UG/L UG/L UG/L UG/L	Lab U U U U U U U	0ata U U U U U U U U U		_	
Type REG REG REG REG REG REG	Semi-Volatile Organics 1,2,4-Trichlorobenzene 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 2,2'-oxybis (1-chloropropane) 2,4,5-Trichlorophenol 2,4,6-Trichlorophenol	10 10 10 10 10 25 10	UG/L UG/L UG/L UG/L UG/L UG/L	Lab U U U U U U U U	0 0 0 0 0 0 0 0 0 0		_	
Type REG REG REG REG REG REG REG	Semi-Volatile Organics 1,2,4-Trichlorobenzene 1,2-Dichlorobenzene 1,3-Dichlorobenzene 2,2'-oxybis (1-chloropropane) 2,4,5-Trichlorophenol 2,4,6-Trichlorophenol 2,4-Dichlorophenol	10 10 10 10 10 25 10 10	UG/L UG/L UG/L UG/L UG/L UG/L UG/L	Lab U U U U U U U U U	0ata U U U U U U U U U U		_	
Type REG REG REG REG REG REG REG	Semi-Volatile Organics 1,2,4-Trichlorobenzene 1,2-Dichlorobenzene 1,3-Dichlorobenzene 2,2'-oxybis (1-chloropropane) 2,4,5-Trichlorophenol 2,4,6-Trichlorophenol 2,4-Dichlorophenol 2,4-Dimethylphenol	10 10 10 10 10 25 10 10 10 10	UG/L UG/L UG/L UG/L UG/L UG/L UG/L UG/L	Lab U U U U U U U U U U U	Data U U U U U U U U U U U		_	
Type REG REG REG REG REG REG REG REG REG	Semi-Volatile Organics 1,2,4-Trichlorobenzene 1,2-Dichlorobenzene 1,3-Dichlorobenzene 2,2'-oxybis (1-chloropropane) 2,4,5-Trichlorophenol 2,4,6-Trichlorophenol 2,4-Dichlorophenol 2,4-Dimethylphenol 2,4-Dimitrophenol	10 10 10 10 10 25 10 10 10 25	UG/L UG/L UG/L UG/L UG/L UG/L UG/L UG/L	Lab U U U U U U U U U U U U U	Data U U U U U U U U U U U		_	
Type REG REG REG REG REG REG REG REG REG	Semi-Volatile Organics 1,2,4-Trichlorobenzene 1,2-Dichlorobenzene 1,3-Dichlorobenzene 2,2-oxybis (1-chloropropane) 2,4,5-Trichlorophenol 2,4-Dichlorophenol 2,4-Dinitrophenol 2,4-Dinitrophenol 2,4-Dinitrophenol 2,4-Dinitrophenol 2,4-Dinitrophenol 2,4-Dinitrophenol	10 10 10 10 10 25 10 10 10 10 25 10	UG/L UG/L UG/L UG/L UG/L UG/L UG/L UG/L	Lab U U U U U U U U U U U U U	Data U U U U U U U U U U U U U		_	
Type REG REG REG REG REG REG REG REG REG REG	Semi-Volatile Organics 1,2,4-Trichlorobenzene 1,2-Dichlorobenzene 1,3-Dichlorobenzene 2,2'-oxybis (1-chloropropane) 2,4,5-Trichlorophenol 2,4-Dichlorophenol 2,4-Dinitrophenol 2,4-Dinitrophenol 2,4-Dinitrophenol 2,4-Dinitrophenol 2,4-Dinitrophenol 2,4-Dinitrophenol 2,4-Dinitrophenol 2,4-Dinitrophenol	10 10 10 10 10 25 10 10 10 25 10 10 10 25 10	UG/L UG/L UG/L UG/L UG/L UG/L UG/L UG/L	Lab U U U U U U U U U U U U U U U	Data U U U U U U U U U U U U U U U		_	
Type REG REG REG REG REG REG REG REG REG REG	Semi-Volatile Organics 1,2,4-Trichlorobenzene 1,2-Dichlorobenzene 1,3-Dichlorobenzene 2,2'-oxybis (1-chloropropane) 2,4,5-Trichlorophenol 2,4,5-Trichlorophenol 2,4-Dichlorophenol 2,4-Dinitrophenol 2,4-Dinitrophenol 2,4-Dinitrotoluene 2,6-Dinitrotoluene 2-Chloronaphthalene	10 10 10 10 10 10 25 10 10 10 25 10 10 10 10 10	UG/L UG/L UG/L UG/L UG/L UG/L UG/L UG/L	Lab U U U U U U U U U U U U U U U U U	Data U U U U U U U U U U U U U U U U U U		_	
Type REG REG REG REG REG REG REG REG REG REG	Semi-Volatile Organics 1,2,4-Trichlorobenzene 1,2-Dichlorobenzene 1,3-Dichlorobenzene 2,2'-oxybis (1-chloropropane) 2,4,5-Trichlorophenol 2,4-Dichlorophenol 2,4-Dinitrophenol 2,4-Dinitrophenol 2,4-Dinitrophenol 2,4-Dinitrophenol 2,4-Dinitrophenol 2,4-Dinitrophenol 2,4-Dinitrophenol 2,4-Dinitrophenol	10 10 10 10 10 10 25 10 10 25 10 10 10 10 10 10 10	UG/L UG/L UG/L UG/L UG/L UG/L UG/L UG/L	Lab U U U U U U U U U U U U U U U	Data U U U U U U U U U U U U U U U		_	
Type REG REG REG REG REG REG REG REG REG REG	Semi-Volatile Organics 1,2,4-Trichlorobenzene 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 2,2'-oxybis (1-chloropropane) 2,4,5-Trichlorophenol 2,4-Dichlorophenol 2,4-Dinitrophenol 2,4-Dinitroblenel 2,4-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2-Chloronaphthalene 2-Chlorophenol	10 10 10 10 10 10 25 10 10 25 10 10 10 10 10 10 10	UG/L UG/L UG/L UG/L UG/L UG/L UG/L UG/L	Lab U U U U U U U U U U U U U U U U U U U	Data           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U		_	
Type REG REG REG REG REG REG REG REG REG REG	Semi-Volatile Organics 1,2,4-Trichlorobenzene 1,2-Dichlorobenzene 1,3-Dichlorobenzene 2,2'-oxybis (1-chloropropane) 2,4,5-Trichlorophenol 2,4,6-Trichlorophenol 2,4-Dichlorophenol 2,4-Dinitrophenol 2,4-Dinitrophenol 2,4-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene	10 10 10 10 10 10 25 10 10 10 10 10 10 10 10 10 10	UG/L UG/L UG/L UG/L UG/L UG/L UG/L UG/L	Lab U U U U U U U U U U U U U U U U U U U	Data           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U		_	
Type REG REG REG REG REG REG REG REG REG REG	Semi-Volatile Organics 1,2,4-Trichlorobenzene 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 2,2'-oxybis (1-chloropropane) 2,4,5-Trichlorophenol 2,4,6-Trichlorophenol 2,4-Dinitrophenol 2,4-Dinitrophenol 2,4-Dinitrotoluene 2,6-Dinitrotoluene 2-Chloronaphthalene 2-Chlorophenol 2-Methylnaphthalene 2-Methylphenol	10 10 10 10 10 25 10 10 10 25 10 10 10 10 10 10 10 10 10 10 10 10 10	UG/L UG/L UG/L UG/L UG/L UG/L UG/L UG/L	Lab U U U U U U U U U U U U U U U U U U U	Data           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U		-	
Type REG REG REG REG REG REG REG REG REG REG	Semi-Volatile Organics 1,2,4-Trichlorobenzene 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 2,2'-oxybis (1-chloropropane) 2,4,5-Trichlorophenol 2,4,6-Trichlorophenol 2,4-Dinethylphenol 2,4-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2-Chloronaphthalene 2-Chlorophenol 2-Methylphenol 2-Methylphenol 2-Nitroaniline	10 10 10 10 10 25 10 10 10 25 10 10 10 10 10 10 10 10 10 10 10 10 10	UG/L UG/L UG/L UG/L UG/L UG/L UG/L UG/L	Lab U U U U U U U U U U U U U U U U U U U	Data           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U		-	
Type REG REG REG REG REG REG REG REG REG REG	Semi-Volatile Organics 1,2,4-Trichlorobenzene 1,2-Dichlorobenzene 1,3-Dichlorobenzene 2,2'-oxybis (1-chloropropane) 2,4,5-Trichlorophenol 2,4,5-Trichlorophenol 2,4-Dinitrophenol 2,4-Dinitrophenol 2,4-Dinitrophenol 2,4-Dinitrotoluene 2,6-Dinitrotoluene 2-Chlorophenol 2-Methylphenol 2-Methylphenol 2-Methylphenol 2-Nitroaniline 3,3'-Dichlorobenzidine 3-Nitroaniline	10 10 10 10 10 25 10 10 10 25 10 10 10 10 10 10 10 10 10 10 10 10 10	UG/L UG/L UG/L UG/L UG/L UG/L UG/L UG/L	Lab U U U U U U U U U U U U U U U U U U U	Data           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U			
Type REG REG REG REG REG REG REG REG REG REG	Semi-Volatile Organics 1,2,4-Trichlorobenzene 1,2-Dichlorobenzene 1,3-Dichlorobenzene 2,2'-oxybis (1-chloropropane) 2,4,5-Trichlorophenol 2,4,5-Trichlorophenol 2,4-Dichlorophenol 2,4-Dinitroblene 2,4-Dinitroblene 2,4-Dinitrotoluene 2,6-Dinitrotoluene 2-Chlorophenol 2-Methylphenol 2-Methylphenol 2-Nitroaniline 2-Nitrophenol 3,3'-Dichlorobenzidine 3-Nitroaniline 4,6-Dinitro-o-Cresol	10 10 10 10 10 10 25 10 10 10 25 10 10 10 10 10 10 10 25 10 10 25 25 25	UG/L UG/L UG/L UG/L UG/L UG/L UG/L UG/L	Lab U U U U U U U U U U U U U U U U U U U	Data           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U      U           U			
Type REG REG REG REG REG REG REG REG REG REG	Semi-Volatile Organics 1,2,4-Trichlorobenzene 1,2-Dichlorobenzene 1,3-Dichlorobenzene 2,2'-oxybis (1-chloropropane) 2,4,5-Trichlorophenol 2,4,6-Trichlorophenol 2,4-Dichlorophenol 2,4-Dinitrobluene 2,4-Dinitrobluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 3,6-Dinitro-o-Cresol 4-Bromophenyl-phenyl Ether	10 10 10 10 10 10 25 10 10 10 25 10 10 10 10 10 10 25 10 10 10 25 10 10 10 10 25 10 10 10 10 10 10 10 10 10 10 10 10 10	UG/L UG/L UG/L UG/L UG/L UG/L UG/L UG/L	Lab U U U U U U U U U U U U U U U U U U U	Data           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U      U           U			
Type REG REG REG REG REG REG REG REG REG REG	Semi-Volatile Organics 1,2,4-Trichlorobenzene 1,2-Dichlorobenzene 1,3-Dichlorobenzene 2,2'-oxybis (1-chloropropane) 2,4,5-Trichlorophenol 2,4,6-Trichlorophenol 2,4-Dichlorophenol 2,4-Dinitrophenol 2,4-Dinitrobluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2-Chloronaphthalene 2-Chloronaphthalene 2-Methylphenol 2-Methylphenol 2-Mitroaniline 3,3'-Dichlorobenzidine 3-Nitroaniline 4,6-Dinitro-o-Cresol 4-Bromophenyl-phenyl Ether 4-Chloroaniline	10 10 10 10 10 10 25 10 10 25 10 10 10 10 10 10 10 10 25 10 10 25 10 10 10 10 10 10 10 10 10 10 10 10 10	UG/L UG/L UG/L UG/L UG/L UG/L UG/L UG/L	Lab U U U U U U U U U U U U U U U U U U U	Data           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U      U           U			
Type REG REG REG REG REG REG REG REG REG REG	Semi-Volatile Organics 1,2,4-Trichlorobenzene 1,2-Dichlorobenzene 1,3-Dichlorobenzene 2,2'-oxybis (1-chloropropane) 2,4,5-Trichlorophenol 2,4,6-Trichlorophenol 2,4-Dichlorophenol 2,4-Dinitrobluene 2,4-Dinitrobluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 3,6-Dinitro-o-Cresol 4-Bromophenyl-phenyl Ether	10 10 10 10 10 10 25 10 10 10 10 10 10 10 10 10 10 10 10 10	UG/L UG/L UG/L UG/L UG/L UG/L UG/L UG/L	Lab U U U U U U U U U U U U U U U U U U U	Data           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U           U      U           U			

# Location: Ramsdell Quarry Landfill Station : RQLsw-015 Initial Phase

RQLsw-015(p)-0021-S

021-S		Fleid Sample Type: Grab	Ma	trix: Surf	ace wat	er	Collected: 07
Sample Type	e Semi-Volatile Organics	Result	Units	Qualit Lab	iers Data	Validation Code	
REG	4-Nitrophenol		JG/L		<u> </u>		
REG	4-chloro-3-methylphenol		JG/L		Ū		
REG	Acenaphthene		JG/L		U		
REG	Acenaphthylene	10	JG/L	U	U		
REG	Anthracene	10	JG/L	U	U		
REG	Benzo(a)anthracene	10	JG/L	U	U		
REG	Benzo(a)pyrene	10	JG/L	U	U		
REG	Benzo(b)fluoranthene	10	JG/L	U	U		
REG	Benzo(g,h,i)p <b>erylene</b>	10	JG/L	U	U		
REG	Benzo(k)fluoranthene	10	JG/L	U	U		
REG	Bis(2-chloroethoxy)methane		JG/L	U	U		
REG	Bis(2-chloroethyl)ether		JG/L	U	U		
REG	Bis(2-ethylhexyl)phthalate		JG/L	U	U		
REG	Butyl Benzyl Phthalate		JG/L		U		
REG	Carbazole		JG/L		U		
REG	Chrysene		JG/L		U		
REG	Di-n-butyl Phthalate		JG/L		U		
REG	Di-n-octyl Phthalate		JG/L		U		
REG	Dibenzo(a,h)anthracene		JG/L		U		
REG	Dibenzofuran		JG/L		U		
REG	Diethyl Phthalate		JG/L		U		
REG	Dimethyl Phthalate		JG/L		U		
REG	Fluoranthene		JG/L		U		
REG	Fluorene		JG/L		U		
REG	Hexachlorobenzene		JG/L		U		
REG	Hexachlorobutadiene		JG/L		U		
REG	Hexachlorocyclopentadiene		JG/L		U		
REG	Hexachloroethane		JG/L	U	U		
REG	Indeno(1,2,3-cd)pyrene		JG/L		U		
REG	Isophorone		JG/L	U	U		
REG	N-Nitroso-di-n-propylamine		JG/L		U		
REG	N-Nitrosodiphenylamine		JG/L	U	U		
REG	Naphthalene		JG/L		U		
REG	Nitrobenzene		JG/L	U	U		
REG	Pentachlorophenol		JG/L		U		
REG	Phenanthrene		JG/L	-	U		
REG	Phenol		UG/L		U		
REG	Pyrene	10	UG/L	U	U		
Sample Type	e Volatile Organics	Result	Units	Qualii Lab	ilers Data	Validation Code	
REG	1,1,1-Trichloroethane	5	UG/L	U	<u> </u>		-
REG	1,1,2,2-Tetrachloroethane	5	UG/L	U	υ		
REG	1,1,2-Trichloroethane		UG/L	Ū	Ū		
REG	1,1-Dichloroethane		UG/L	Ū	Ū		
REG			0012	Ŷ			
	1,1-Dichloroethene		UG/L	+	Ũ		
REG		5		Ŭ	Ŭ U		
	1,1-Dichloroethene	5 5	UG/L	Ŭ			
REG	1,1-Dichloroet <b>hene</b> 1,2-Dichloroethane	5 5 5	UG/L UG/L	Ŭ U	U		
REG REG	1,1-Dichloroethene 1,2-Dichloroethane 1,2-Dichloroethene 1,2-Dichloropropane 1,3-cis-Dichloropropene	5 5 5 5	UG/L UG/L UG/L	U U U	บ บ บ บ		
REG REG REG	1,1-Dichloroethene 1,2-Dichloroethane 1,2-Dichloroethene 1,2-Dichloropropane	5 5 5 5 5 5	UG/L UG/L UG/L UG/L	ม ม ม ม ม	บ บ บ บ บ		
REG REG REG REG	1,1-Dichloroethene 1,2-Dichloroethane 1,2-Dichloroethene 1,2-Dichloropropane 1,3-cis-Dichloropropene	5 5 5 5 5 5 5 5	UG/L UG/L UG/L UG/L UG/L	U U U U U	บ บ บ บ บ บ		
REG REG REG REG REG	1,1-Dichloroethene 1,2-Dichloroethane 1,2-Dichloroethene 1,2-Dichloropropane 1,3-cis-Dichloropropene 1,3-trans-Dichloropropene	5 5 5 5 5 5 10	UG/L UG/L UG/L UG/L UG/L		บ บ บ บ บ		
REG REG REG REG REG REG	1,1-Dichloroethene 1,2-Dichloroethane 1,2-Dichloroethene 1,2-Dichloropropane 1,3-cis-Dichloropropene 1,3-trans-Dichloropropene 2-Butanone	5 5 5 5 5 10 10	UG/L UG/L UG/L UG/L UG/L UG/L		บ บ บ บ บ บ		
REG REG REG REG REG REG	1,1-Dichloroethene 1,2-Dichloroethane 1,2-Dichloroethene 1,2-Dichloropropane 1,3-cis-Dichloropropene 1,3-trans-Dichloropropene 2-Butanone 2-Hexanone	5 5 5 5 5 5 10 10 10	UG/L UG/L UG/L UG/L UG/L UG/L UG/L		บ บ บ บ บ บ บ บ บ		
REG REG REG REG REG REG REG	1,1-Dichloroethene 1,2-Dichloroethane 1,2-Dichloroethene 1,2-Dichloropropane 1,3-cis-Dichloropropene 1,3-trans-Dichloropropene 2-Butanone 2-Hexanone 4-Methyl-2-pentanone	5 5 5 5 5 10 10 10 10	UG/L UG/L UG/L UG/L UG/L UG/L UG/L UG/L		U U U U U U U U		
REG REG REG REG REG REG REG REG	1,1-Dichloroethene 1,2-Dichloroethane 1,2-Dichloroethene 1,2-Dichloropropane 1,3-cis-Dichloropropene 1,3-trans-Dichloropropene 2-Butanone 2-Hexanone 4-Methyl-2-pentanone Acetone	5 5 5 5 5 10 10 10 10 5	UG/L UG/L UG/L UG/L UG/L UG/L UG/L UG/L		บ บ บ บ บ บ บ บ บ		
REG REG REG REG REG REG REG REG	1,1-Dichloroethene 1,2-Dichloroethane 1,2-Dichloroethene 1,2-Dichloropropane 1,3-cis-Dichloropropene 1,3-trans-Dichloropropene 2-Butanone 2-Hexanone 4-Methyl-2-pentanone Acetone Benzene	5 5 5 5 5 10 10 10 10 10 5 5	UG/L UG/L UG/L UG/L UG/L UG/L UG/L UG/L		บ บ บ บ บ บ บ บ บ		
REG REG REG REG REG REG REG REG REG	1,1-Dichloroethene 1,2-Dichloroethane 1,2-Dichloroethene 1,2-Dichloropropane 1,3-cis-Dichloropropene 1,3-trans-Dichloropropene 2-Butanone 2-Hexanone 4-Methyl-2-pentanone Acetone Benzene Bromodichloromethane	5 5 5 5 5 10 10 10 10 5 5 5 5	UG/L UG/L UG/L UG/L UG/L UG/L UG/L UG/L				
REG REG REG REG REG REG REG REG REG REG	1,1-Dichloroethene 1,2-Dichloroethane 1,2-Dichloroethene 1,2-Dichloropropane 1,3-cis-Dichloropropene 1,3-trans-Dichloropropene 2-Butanone 2-Hexanone 4-Methyl-2-pentanone Acetone Benzene Bromodichloromethane Bromoform	5 5 5 5 10 10 10 10 10 5 5 5 5 10	UG/L UG/L UG/L UG/L UG/L UG/L UG/L UG/L		บ บ บ บ บ บ บ บ บ บ บ บ บ บ บ บ บ บ บ		
REG REG REG REG REG REG REG REG REG REG	1,1-Dichloroethene 1,2-Dichloroethene 1,2-Dichloroethene 1,2-Dichloropropane 1,3-cis-Dichloropropene 1,3-trans-Dichloropropene 2-Butanone 2-Hexanone 4-Methyl-2-pentanone Acetone Benzene Bromodichloromethane Bromoform Bromomethane	5 5 5 5 10 10 10 10 5 5 5 5 5 5 5 5 5 5	UG/L UG/L UG/L UG/L UG/L UG/L UG/L UG/L		บ บ บ บ บ บ บ บ บ บ บ บ บ บ บ บ บ บ บ		
REG REG REG REG REG REG REG REG REG REG	1,1-Dichloroethene 1,2-Dichloroethene 1,2-Dichloroethene 1,2-Dichloropropane 1,3-cis-Dichloropropene 1,3-trans-Dichloropropene 2-Butanone 2-Hexanone 4-Methyl-2-pentanone Acetone Benzene Bromodichloromethane Bromoform Bromomethane Carbon Disulfide	5 5 5 5 5 10 10 10 10 5 5 5 5 5 5 5 5 5	UG/L UG/L UG/L UG/L UG/L UG/L UG/L UG/L		บ บ บ บ บ บ บ บ บ บ บ บ บ บ บ บ บ บ บ		
REG REG REG REG REG REG REG REG REG REG	1,1-Dichloroethene 1,2-Dichloroethene 1,2-Dichloroethene 1,2-Dichloropropane 1,3-cis-Dichloropropene 1,3-trans-Dichloropropene 2-Butanone 2-Hexanone 4-Methyl-2-pentanone Acetone Benzene Bromodichloromethane Bromoform Bromomethane Carbon Disulfide Carbon Tetrachloride	5 5 5 5 5 10 10 10 10 5 5 5 5 5 5 5 5 5	UG/L UG/L UG/L UG/L UG/L UG/L UG/L UG/L		บ บ บ บ บ บ บ บ บ บ บ บ บ บ บ บ บ บ บ		
REG REG REG REG REG REG REG REG REG REG	1,1-Dichloroethene 1,2-Dichloroethene 1,2-Dichloroethene 1,2-Dichloropropane 1,3-cis-Dichloropropene 1,3-trans-Dichloropropene 2-Butanone 2-Hexanone 4-Methyl-2-pentanone Acetone Benzene Bromodichloromethane Bromodichloromethane Bromomethane Carbon Disulfide Carbon Tetrachloride Chlorobenzene	5 5 5 5 10 10 10 10 5 5 5 5 10 5 5 5 10	UG/L UG/L UG/L UG/L UG/L UG/L UG/L UG/L		บ บ บ บ บ บ บ บ บ บ บ บ บ บ บ บ บ บ บ		
REG REG REG REG REG REG REG REG REG REG	1,1-Dichloroethene 1,2-Dichloroethane 1,2-Dichloroptopane 1,2-Dichloroptopane 1,3-cis-Dichloroptopene 1,3-trans-Dichloroptopene 2-Butanone 2-Hexanone 4-Methyl-2-pentanone Acetone Benzene Bromodichloromethane Bromodichloromethane Bromoethane Carbon Disulfide Carbon Tetrachloride Chlorobenzene Chloroethane	5 5 5 5 10 10 10 10 5 5 5 10 5 5 5 10 5 5 5 5	UG/L UG/L UG/L UG/L UG/L UG/L UG/L UG/L		บ บ บ บ บ บ บ บ บ บ บ บ บ บ บ บ บ บ บ		
REG REG REG REG REG REG REG REG REG REG	1,1-Dichloroethene 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloropropane 1,3-cis-Dichloropropene 1,3-trans-Dichloropropene 2-Butanone 2-Butanone 2-Hexanone 4-Methyl-2-pentanone Acetone Benzene Bromodichloromethane Bromodichloromethane Bromoethane Carbon Disulfide Carbon Tetrachloride Chlorobenzene Chloroethane Chloroform	5 5 5 5 10 10 10 10 5 5 5 10 5 10 5 10	UG/L UG/L UG/L UG/L UG/L UG/L UG/L UG/L		<b>い</b> い い い い い い い い い い い い い い い い い い		
REG REG REG REG REG REG REG REG REG REG	1,1-Dichloroethene 1,2-Dichloroethene 1,2-Dichloroethene 1,2-Dichloropropane 1,3-cis-Dichloropropene 1,3-trans-Dichloropropene 2-Butanone 2-Butanone 2-Hexanone 4-Methyl-2-pentanone Acetone Benzene Bromodichloromethane Bromoethane Carbon Disulfide Carbon Disulfide Carbon Tetrachloride Chlorobenzene Chloroform Chloroform	5 5 5 5 10 10 10 10 10 5 5 5 10 5 10 5	UG/L UG/L UG/L UG/L UG/L UG/L UG/L UG/L		<b>い</b> い い い い い い い い い い い い い い い い い い		
REG REG REG REG REG REG REG REG REG REG	1,1-Dichloroethene 1,2-Dichloroethene 1,2-Dichloroethene 1,2-Dichloropropane 1,3-cis-Dichloropropene 1,3-trans-Dichloropropene 2-Butanone 2-Hexanone 4-Methyl-2-pentanone Acetone Benzene Bromodichloromethane Bromomethane Carbon Disulfide Carbon Tetrachloride Chlorobenzene Chloroethane Chloroform Chloromethane Dibromochloromethane	5 5 5 5 10 10 10 10 10 5 5 5 10 5 5 5 5	UG/L UG/L UG/L UG/L UG/L UG/L UG/L UG/L		<b>い</b> い い い い い い い い い い い い い い い い い い		

#### Location: Ramsdell Quarry Landfill Station : RQLsw-015 Initial Phase

:QLsw-015(p)-0021-S		Field Sample Type: Gr	rab	Ma	ıtrix: Su	face Wat	er	Collected: 07/08/98
Sample Type	Volatile Organics	Result	Un	its	Qual Lab	ifiers Data	Validation Code	
REG	Tetrachloroethene		5 UG	/L	U	U		
REG	Toluene		5 UG	/L	U	U		
REG	Trichloroethene		5 UG	/L	U	U		
REG	Vinyl Chloride		IO UG	/L	U	U		
REG	Xylenes, Total		5 UG	/L	U	U		

#### Location: Ramsdell Quarry Landfill Station : QC Initial Phase

#### RQLqc-008-0049-SB

Field Sample Type: Source Water Blank Matrix: Quality Control

Collected: 07/17/98

Sample Type	Cyanide	Result	Units	(	Qualifiers	Validation Code	
REG	Cyanide	0.01	MG/L	U	U		_
Sample Type	Metals	Result	Units		Qualifiers Lab Data	Validation Code	
REG	Aluminum	200	UG/L	U	ป	101	-
REG	Antimony		UG/L	U	U		
REG	Arsenic		UG/L	U	U		
REG	Banum		UG/L	U U	U U		
REG	Beryllium		UG/L UG/L	Ŭ	U		
REG REG	Cadmium Calcium		UG/L	B	J		
REG	Chromium		UG/L	Ű	Ŭ		
REG	Cobalt		UG/L	Ū	Ū		
REG	Copper	25	UG/L	U	U		
REG	Iron	100	UG/L	U	U		
REG	Lead		UG/L	U	U		
REG	Magnesium		UG/L	U	U		
REG	Manganese		UG/L	U	U		
REG	Mercury		UG/L UG/L	BU	IJ		
REG REG	Nickel Potassium		UG/L	Ŭ	Ŭ		
REG	Selenium		UG/L	Ŭ	Ŭ		
REG	Silver		UG/L	Ŭ	Ŭ		
REG	Sodium		UG/L	B	Ū	F01,F06	
REG	Thallium		UG/L	U	υ	•	
REG	Vanadium	50	UG/L	U	Ų		
REG	Zinc	20	UG/L	U	U		
Sample					Qualifiers	Validation	
Туре	Explosives	Result	Units	I	Lab Data	Code	
REG	1,3,5-Trinitrobenzene	0.2	UG/L	υ	U	· ·	_
REG	1,3-Dinitrobenzene		UG/L	υ	U		
REG	2,4,6-Trinitrotoluene		UG/L	U	U		
REG	2,4-Dinitrotoluene		UG/L		=		
REG	2,6-Dinitrotoluene		UG/L	U	U		
REG	2-Nitrotoluene		UG/L UG/L	U U	U U		
REG REG	3-Nitrotoluene 4-Nitrotoluene		UG/L	U	U		
REG	HMX		UG/L	Ŭ	Ŭ		
REG	Nitrobenzene		UG/L	Ŭ	Ū		
REG	Nitrocellulose as N		MG/L	Ū	Ū		
REG	Nitroglycerin	2.5	UG/L	Ų	U		
REG	Nitroguanidine	20	UG/L	U	U		
REG	RDX	0.5	UG/L	υ	U		
REG	Tetryl	0.2	UG/L	U	U		
Sample Type	Semi-Volatile Organics	Result	Units		Qualifiers Lab Data	Validation Code	
REG	1,2,4-Trichlorobenzene		UG/L	Ū	U		
REG	1,2-Dichlorobenzene .		UG/L	U	U		
REG	1,3-Dichlorobenzene		UG/L	U	U		
REG	1,4-Dichlorobenzene		UG/L	U	U		
REG	2,2-oxybis (1-chloropropane)		UG/L	U	U		
REG	2,4,5-Trichlorophenol		UG/L	U U	U U		
REG REG	2,4,6-Trichlorophenol 2,4-Dichlorophenol		UG/L	Ŭ	Ŭ		
REG	2,4-Dimethylphenol		UG/L	Ŭ	Ŭ		
REG	2,4-Dinitrophenol		UG/L	Ū	Ũ		
REG	2,4-Dinitrotoluene		UG/L	Ū	Ŭ		
REG	2,6-Dinitrotoluene	10	) UG/L	U	U		
REG	2-Chloronaphthalene		) UG/L	U	U		
REG	2-Chlorophenol		UG/L	U			
REG	2-Methylnaphthalene		UG/L	U			
REG	2-Methylphenol		) UG/L	U			
REG	2-Nitroaniline		5 UG/L	U U			
REG	2-Nitrophenol		) UG/L ) UG/L	U			
REG REG	3,3'-Dichlorobenzidine 3-Nitroaniline		5 UG/L	U			
NEG.							

Location:	Ramsd	lell Quarry Landfill
Station :	QC	Initial Phase

#### RQLqc-008-0049-SB

Field Sample Type: Source Water Blank Matrix: Quality Control

Collected: 07/17/98

Qualifiers Validation Type Semi-Volatile Organics Result Units Lab Data Code	
REG 4,6-Dinitro-o-Cresol 25 UG/L U U	
REG 4-Bromophenyl-phenyl Ether 10 UG/L U U	
REG 4-Chloroaniline 10 UG/L U U	
REG 4-Chlorophenyl-phenylether 10 UG/L U U	
REG 4-Methylphenol 10 UG/L U U	
REG 4-Nitroaniline 25 UG/L U U	
REG 4-Nitrophenol 25 UG/L U U	
REG 4-chloro-3-methylphenol 10 UG/L U U	
REG Acenaphthene 10 UG/L U U	
REG Acenaphthylene 10 UG/L U U	
REG Anthracene 10 UG/L U U	
REG Benzo(a)anthracene 10 UG/L U U	
REG Benzo(a)pyrene 10 UG/L U U	
REG Benzo(b)fluoranthene 10 UG/L U U	
REG Benzo(g,h,i)perylene 10 UG/L U U	
REG Benzo(k)fluoranthene 10 UG/L U U	
REG Bis(2-chloroethoxy)methane 10 UG/L U U	
REG Bis(2-chloroethyl)ether 10 UG/L U U	
REG Bis(2-ethylhexyl)phthalate 10 UG/L U U	
REG Butyl Benzyl Phthalate 10 UG/L U U	
REG Carbazole 10 UG/L U U	
REG Chrysene 10 UG/L U U	
REG Di-n-butyl Phthalate 10 UG/L U U	
REG Di-n-octyl Phthalate 10 UG/L U U	
REG Dibenzo(a,h)anthracene 10 UG/L U U	
REG Dibenzofuran 10 UG/L U U REG Diethvl Phthalate 10 UG/L U U	
······································	
REG Hexachlorocyclopentadiene 10 UG/L U U REG Hexachloroethane 10 UG/L U U	
REG Indeno(1,2,3-cd)pyrene 10 UG/L U U	
REG Isophorone 10 UG/L U U	
REG N-Nitroso-di-n-propylamine 10 UG/L U U	
REG N-Nitrosodiphenylamine 10 UG/L U U	
REG Naphthalene 10 UG/L U U	
REG Nitrobenzene 10 UG/L U U	
REG Pentachlorophenol 25 UG/L U U	
REG Phenanthrene 10 UG/L U U	
REG Phenol 10 UG/L U U	
REG Pyrene 10 UG/L U U	
Sample Qualifiers Validation	
Type Volatile Organics Result Units Lab Data Code	
REG 1,1,1-Trichloroethane 5 UG/L U U	
REG 1,1,2,2-Tetrachloroethane 5 UG/L U U	
REG 1,1,2-Trichloroethane 5 UG/L U U	
REG 1,1-Dichloroethane 5 UG/L U U	
REG 1,1-Dichloroethene 5 UG/L U U	
REG 1,2-Dichloroethane 5 UG/L U U	
REG 1,2-Dichloroethene 5 UG/L U U	
REG 1,2-Dichloropropane 5 UG/L U U	
REG 1,3-cis-Dichloropropene 5 UG/L U U	
REG 1,3-trans-Dichloropropene 5 UG/L U U	
REG 2-Butanone 10 UG/L U U	
REG 2-Hexanone 10 UG/L U U	
REG 4-Methyl-2-pentanone 10 UG/L U U	
REG Acetone 10 UG/L U U	
REG Benzene 5 UG/L U U	
REG Bromodichloromethane 5 UG/L U U	
REG Bromoform 5 UG/L U U	
REG Bromomethane 10 UG/L U U	
REG Carbon Disulfide 5 UG/L U U	
REG Carbon Tetrachloride 5 UG/L U U	
REG Chlorobenzene 5 UG/L U U	
REG Chloroethane 10 UG/L U U	

#### Ramsdell Quarry Landfill Groundwater Investigation

#### Location: Ramsdell Quarry Landfill Station : QC Initial Phase

RQLqc-008-0049-SB		Field Sample Type: Source Wat	er Blank	Ma	trix: Quali	ity Control	Collected:	07/17/98
Sampl Type		Result	Units	Qua Lab	lifiers Data	Validation Code		
REG	Chloroform	5	UG/L	U	U			
REG	Chloromethane	10	UG/L	U	U			
REG	Dibromochloromethane	5	UG/L	U	U			
REG	Ethylbenzene	5	UG/L	U	U			
REG	Methylene Chloride	0.89	UG/L	J	J			
REG	Styrene	5	UG/L	U	U			
REG	Tetrachloroethene	5	UG/L	U	U			
REG	Toluene	5	UG/L	U	U			
REG	Trichloroethene	5	UG/L	U	U			
REG	Vinyl Chloride	10	UG/L	U	U			
REG	Xylenes, Total	5	UG/L	U	U			
RQLqc-009-0050-ER		Field Sample Type: Equipment	Rinsate	Ma	trix: Quali	ty Control	Collected:	07/17/98
Samp Type		Result	Units	Qua Lab	lifiers Data	Validation Code		
REG	Cyanide	0.01	MG/L	U	U		_	
Samp	e			Qua	lifiers	Validation		
Type	Metals	Result	Units	Lab	Data	Code		

Туре	Metals	Result	Units	Lab	Data	Code
REG	Aluminum	200	UG/L	U	U	101
REG	Antimony	5	UG/L	U	U	
REG	Arsenic	5	UG/L	U	U	
REG	Barium	200	UG/L	Ų	U	
REĠ	Beryllium	4	UG/L	U	U	
REG	Cadmium	5	UG/L	U	U	
REG	Calcium	289	UG/L	в	J	
REG	Chromium	10	UG/L	U	U	
REG	Cobalt	50	UG/L	U	U	
REG	Copper	3.6	UG/L	В	J	
REG	Iron	53.7	UG/L	в	ſ	
REG	Lead	3	UG/L	U	U	
REG	Magnesium	5000	UG/L	U	U	
REG	Manganese	15	UG/L	U	U	
REG	Mercury	0.098	UG/L	в	J	
REG	Nickel	40	UG/L	U	υ	
REG	Potassium	5000	UG/L	U	U	
REG	Selenium	5	UG/L	U	U	
REG	Silver	10	UG/L	U	U	
REG	Sodium	5000	UG/L	U	U	
REG	Thallium	2	UG/L	U	U	E03
REG	Vanadium	50	UG/L	U	U	
REG	Zinc	20	UG/L	U	U	

Sample				Qual	ifiers	Validation
Туре	Explosives	Result	Units	Lab	Data	Code
REG	1,3,5-Trinitrobenzene	0.2	UG/L	U	UJ	G06
REG	1,3-Dinitrobenzene	0.2	UG/L	U	UJ	G06
REG	2,4,6-Trinitrotoluene	0.2	UG/L	U	UJ	G06
REG	2,4-Dinitrotoluene	0.13	UG/L	U	UJ	G06
REG	2,6-Dinitrotoluene	0.13	UG/L	U	UΊ	G06
REG	2-Nitrotoluene	0.2	UG/L	U	ÛĴ	G06
REG	3-Nitrotoluene	0.2	UG/L	U	U1	G06
REG	4-Nitrotoluene	0.2	UG/L	U	0J	G06
REG	НМХ	0.5	UG/L	U	IJ	G06
REG	Nitrobenzene	0.2	UG/L	U	UJ	G06
REG	Nitrocellulose as N	0.2	MG/L	U	U	
REG	Nitroglycerin	2.5	UG/L	U	U	
REG	Nitroguanidine	20	UG/L	U	U	
REG	RDX	0.5	UG/L	U	UJ	G06
REG	Tetryl	0.2	UG/L	U	UJ	G06
Sample				Qual	iflers	Validation
Туре	Semi-Volatile Organics	Result	Units	Lab	Data	Code
REG	1,2,4-Trichlorobenzene	10	UG/L	U	U	
REG	1,2-Dichlorobenzene	10	UG/L	U	U	
REG	1,3-Dichlorobenzene	10	UG/L	U	U	
REG	1,4-Dichlorobenzene	10	UG/L	U	U	

#### Location: Ramsdell Quarry Landfill Station : QC Initial Phase

Sample				Qua	ifiers	Validation		
Туре	Semi-Votatile Organics	Result	Units	Lab	Data	Code	-	
REG	2,2'-oxybis (1-chloropropane)		UG/L	U	U			
REG REG	2,4,5-Trichlorophenol 2,4,6-Trichlorophenol		UG/L UG/L	U U	U U			
REG	2,4-Dichlorophenol		UG/L	U	U			
REG	2,4-Dimethylphenol		UG/L	ŭ	U			
REG	2,4-Dinitrophenol		UG/L	Ŭ	Ŭ			
REG	2,4-Dinitrotoluene		UG/L	Ū	Ū			
REG	2,6-Dinitrotoluene	10	UG/L	U	U			
REG	2-Chloronaphthalene	10	UG/L	U	U			
REG	2-Chlorophenol		UG/L	U	U			
REG	2-Methylnaphthalene		UG/L	U	U			
REG	2-Methylphenol		UG/L	U	U			
REG REG	2-Nitroaniline 2-Nitrophenol		UG/L UG/L	U U	U U			
REG	3,3'-Dichlorobenzidine		UG/L	Ŭ	U			
REG	3-Nitroaniline		UG/L	Ŭ	Ŭ			
REG	4,6-Dinitro-o-Cresol		UG/L	Ũ	Ŭ			
REG	4-Bromophenyl-phenyl Ether	10	UG/L	U	U			
REG	4-Chloroaniline	10	UG/L	U	U			
REG	4-Chlorophenyl-phenylether		UG/L	U	U			
REG	4-Methylphenol		UG/L	U	U			
REG	4-Nitroaniline		UG/L	U	U			
REG	4-Nitrophenol		UG/L	U	U			
REG REG	4-chloro-3-methylphenol Acenaphthene		UG/L UG/L	U U	U U			
REG	Acenaphthylene		UG/L	U	U			
REG	Anthracene		UG/L	Ŭ	Ŭ			
REG	Benzo(a)anthracene		UG/L	Ŭ	Ŭ			
REG	Benzo(a)pyrene		UG/L	Ŭ	Ū			
REG	Benzo(b)fluoranthene		UG/L	U	U			
REG	Benzo(g,h,i)perylene		UG/L	U	U			
REG	Benzo(k)fluoranthene		UG/L	U	U			
REG	Bis(2-chloroethoxy)methane		UG/L	U	U			
REG	Bis(2-chloroethyl)ether		UG/L	U	U =			
REG REG	Bis(2-ethylhexyl)phthalate Butyl Benzyl Phthalate		UG/L UG/L	U	= U			
REG	Carbazole		UG/L	ŭ	Ŭ			
REG	Chrysene		UG/L	ŭ	Ŭ			
REG	Di-n-butyl Phthalate		UG/L	Ū	Ū			
REG	Di-n-octyl Phthalate	10	UG/L	U	U			
REG	Dibenzo(a,h)anthracene	10	UG/L	U	U			
REG	Dibenzofuran	10	UG/L	U	U			
REG	Diethyl Phthalate		UG/L	U	U			
REG	Dimethyl Phthalate		UG/L	U	U			
REG	Fluoranthene		UG/L	U	U			
REG	Fiuorene Hexachlorobenzene		UG/L UG/L	U U	U U			
REG REG	Hexachlorobenzene Hexachlorobutadiene		UG/L	U	U U			
REG	Hexachlorocyclopentadiene		UG/L	Ŭ	U			
REG	Hexachloroethane		UG/L	ŭ	Ŭ			
REG	Indeno(1,2,3-cd)pyrene		UG/L	ŭ	Ŭ			
REG	Isophorone		UG/L	Ū	Ū			
REG	N-Nitroso-di-n-propylamine		UG/L	U	U			
RËG	N-Nitrosodiphenylamine		UG/L	U	U			
REG	Naphthalene		UG/L	U	U			
REG	Nitrobenzene		UG/L	U	U			
REG	Pentachlorophenol		UG/L	U	U			
REG	Phenanthrene		UG/L	U	U			
REG REG	Phenol Pyrene		UG/L UG/L	U U	U U			
NCG		10		-	-			
Sample Type	Volatile Organics	Result	Units	Qua Lab	lifiers Data	Validation Code		
REG	1,1,1-Trichloroethane	5	UG/L	U	U		-	
REG	1,1,2,2-Tetrachloroethane		UG/L	U	U			
REG	1,1,2-Trichloroethane		UG/L	J	J			
REG	1,1-Dichioroethane	5	UG/L	U	U			
REG	1,1-Dichloroethene		UG/L	U	U			

		Quarry Landfill
Station :	QC	Initial Phase

#### RQLqc-009-0050-ER

#### Field Sample Type: Equipment Rinsate Matrix: Quality Control

Collected: 07/17/98

Sample Type	Volatile Organics	Result	Units	Qual Lab	ifiers Data	Validation Code
REG	1,2-Dichloroethene	5	UG/L	U	U	
REG	1,2-Dichloropropane	5	UG/L	U	U	
REG	1.3-cis-Dichloropropene	5	UG/L	U	U	
REG	1,3-trans-Dichloropropene	5	UG/L	U	U	
REG	2-Butanone	10	UG/L	U	U	
REG	2-Hexanone	10	UG/L	U	U	
REG	4-Methyl-2-pentanone	10	UG/L	υ	U	
REG	Acetone	10	UG/L	U	U	
REG	Benzene	5	UG/L	U	U	
REG	Bromodichloromethane	5	UG/L	U	U	
REG	Bromoform	5	UG/L	U	U	
REG	Bromomethane	10	UG/L	U	U	
REG	Carbon Disulfide	5	UG/L	U	U	
REG	Carbon Tetrachloride	5	UG/L	U	U	
REG	Chlorobenzene	5	UG/L	U	U	
REG	Chloroethane	10	UG/L	U	U	
REG	Chloroform	5	UG/L	U	U	
REG	Chioromethane	10	UG/L	Ų	U	
REG	Dibromochloromethane	5	UG/L	U	U	
REG	Ethylbenzene	5	UG/L	U	U	
REG	Methylene Chloride	0.94	UG/L	J	J	
REG	Styrene	5	UG/L	U	U	
REG	Tetrachloroethene	5	UG/L	U	U	
REG	Toluene	5	UG/L	U	U	
REG	Trichloroethene	5	UG/L	Ų	U	
REG	Vinyl Chloride	10	UG/L	U	U	
REG	Xylenes, Total	5	UG/L	U	U	

#### RQLqc-001-0057-TB

Sample				<b>A</b>	L	مريد المراجع المراجع		
Туре '	Volatile Organics	Result	Units	Lab	iflers Data	Validation Code		
REG	1,1,1-Trichloroethane	5	UG/L	- <del>U</del>	U .		_	
REG	1,1,2,2-Tetrachloroethane	0.83	UG/L	J	J			
REG	1,1,2-Trichloroethane	5	UG/L	U	U			
REG	1,1-Dichloroethane	5	UG/L	U	U			
REG	1.1-Dichloroethene	5	UG/L	U	U			
REG	1,2-Dichloroethane	5	UG/L	U	U			
	1.2-Dichloroethene	5	UG/L	U	U			
	1,2-Dichloropropane	5	UG/L	Ū	Ū			
	1,3-cis-Dichloropropene	5	UG/L	Ū	Ū			
	1,3-trans-Dichloropropene		UG/L	Ū	Ŭ			
	2-Butanone	10	UG/L	Ū	Ū			
	2-Hexanone	10	UG/L	Ū	Ū			
-	4-Methyl-2-pentanone	10	UG/L	Ŭ	Ŭ			
	Acetone		UG/L	Ĵ	Ĵ			
	Benzene	5	UG/L	Ū	Ū			
	Bromodichloromethane	-	UG/L	Ŭ	Ũ			
	Bromoform	-	UG/L	Ū	Ū			
	Bromomethane	-	UG/L	Ū	Ū			
	Carbon Disulfide		UG/L	ŭ	Ũ			
	Carbon Tetrachloride	+	UG/L	ŭ	ũ			
	Chlorobenzene	-	UG/L	Ŭ	บั			
	Chloroethane		UG/L	Ŭ	Ŭ			
• • • •	Chloroform		UG/L	Ŭ	Ŭ			
	Chloromethane	-	UG/L	ŭ	Ŭ			
	Dibromochloromethane		UG/L	Ŭ	Ŭ			
	Ethylbenzene	-	UG/L	ŭ	ŭ			
	Methylene Chloride	-	UG/L	Ŭ	Ŭ			
	Styrene	-	UG/L	ŭ	Ŭ			
	Tetrachloroethene	-	UG/L	ŭ	ŭ			
	Toluene		UG/L	Ŭ	Ŭ			
	Trichloroethene	-	UG/L	Ŭ	Ŭ			
	Vinyl Chloride	-	UG/L	Ŭ	Ŭ			
	Xylenes, Total		UG/L	Ŭ	ŭ			
REG	Aylenes, rotal		UGIL	U	0			
QLqc-003-0059-TB		Field Sample Type: Trip Bl	ank	Matrix: (	Quality Co	ontrol	Collected:	07/13/98

Туре	Volatile Organics	F	Result	Units	Lab	Data

Code

### Ramsdell Quarry Landfill Groundwater Investigation

#### Location: Ramsdell Quarry Landfill Station: QC Initial Phase

Sample Type	Volatile Organics	Result	Units	Quali Lab	ifiers Data	Validation Code	
REG	1,1,1-Trichloroethane		UG/L		U		_
REG	1.1.2.2-Tetrachloroethane		UG/L	Ŭ	Ŭ		
REG	1,1,2-Trichloroethane		UG/L	Ŭ	Ŭ		
REG	1.1-Dichloroethane		UG/L	ŭ	Ŭ		
REG	1,1-Dichloroethene	-	UG/L	Ŭ	Ŭ		
REG	1.2-Dichloroethane		UG/L	ŭ	ŭ		
REG	1,2-Dichloroethene		UG/L	Ŭ	Ŭ		
REG	1,2-Dichloropropane		UG/L	Ŭ	Ŭ		
REG	1,3-cis-Dichloropropene		UG/L	Ŭ	Ŭ		
REG	1,3-trans-Dichloropropene		UG/L	Ŭ	Ŭ		
REG	2-Butanone		UG/L	ŭ	Ū		
REG	2-Hexanone		UG/L	ũ	ŭ		
REG	4-Methyl-2-pentanone		UG/L	Ũ	Ŭ		
REG	Acetone		UG/L	J	J	C02	
REG	Benzene		UG/L	Ŭ	U		
REG	Bromodichloromethane		UG/L	Ŭ	Ŭ		
REG	Bromoform		UG/L	Ū	Ū		
REG	Bromomethane		UG/L	Ŭ	Ũ		
REG	Carbon Disulfide		UG/L	ū	Ŭ		
REG	Carbon Tetrachloride		UG/L	ū	Ū		
REG	Chlorobenzene		UG/L	Ŭ	ũ		
REG	Chloroethane		UG/L	Ū	Ū		
REG	Chloroform		UG/L	Ŭ	ŭ		
REG	Chloromethane	-	UG/L	Ŭ	Ŭ		
REG	Dibromochloromethane		UG/L	Ū	Ũ		
REG	Ethylbenzene	_	UG/L	ŭ	Ŭ		
REG	Methylene Chloride		UG/L	Ũ	ŭ		
REG	Styrene		UG/L	Ŭ	Ŭ		
REG	Tetrachloroethene		UG/L	ŭ	ŭ		
REG	Toluene		UG/L	Ŭ	Ŭ		
REG	Trichloroethene		UG/L	Ŭ	Ũ		
REG	Vinyl Chloride		UG/L	Ũ	Ŭ		
REG	Xylenes, Total		UG/L	Ū	Ū		

	ample					Quali		Validation		
1	Туре	Volatile Organics	Result	Unita	6	Lab	Data	Code		
Ā	REG	1,1,1-Trichloroethane	5	UG/L	. ī	U	U		_	
F	REG	1,1,2,2-Tetrachloroethane		UG/L		U	υ			
F	REG	1,1,2-Trichloroethane	5	UG/L	.ι	U	υ			
F	REG	1,1-Dichloroethane	5	UG/L	. l	U	U			
F	REG	1,1-Dichloroethene	5	UG/L	. I	U	U			
F	REG	1,2-Dichloroethane	5	UG/L	. I	U	U			
F	REG	1,2-Dichloroethene	5	UG/L	. L	U	υ			
F	REG	1,2-Dichloropropane	5	UG/L	. ι	υ	U			
F	REG	1,3-cis-Dichloropropene	5	UG/L	. (	υ	U			
F	REG	1,3-trans-Dichloropropene	5	UG/L	. (	U	U			
F	REG	2-Butanone	10	UG/L	. I	Ú	Ú			
	REG	2-Hexanone	10	UG/L	. เ	Ū	Ŭ			
F	REG	4-Methyl-2-pentanone	10	UG/L	. เ	Ů	Ú			
F	REG	Acetone	7.3	UG/L		j	Ĵ	C02		
	REG	Benzene	5	UG/L		Ū	Ū			
	REG	Bromodichloromethane	5	UG/L	. 1	Ū	Ū			
	REG	Bromoform	0.43	UG/L		J	J			
	REG	Bromomethane	10	UG/L	. 1	U	Ū			
	REG	Carbon Disulfide		UG/L	-	Ū	Ū			
	REG	Carbon Tetrachloride	-	UG/L	-	Ū	Ū			
	REG	Chlorobenzene	5	UG/L		Ū	บ			
	REG	Chloroethane	10	UG/L		Ū	Ū			
	REG	Chloroform	5	UG/L	. 1	บ	Ū			
	REG	Chloromethane	10	UG/L		Ū	Ū			
	REG	Dibromochloromethane	5	UG/L	. 1	Ū	Ū			
	REG	Ethylbenzene	5	UG/L	_ 1	Ú	U			
	REG	Methylene Chloride	5	UG/L	. (	Ū	Ū			
	REG	Styrene	-	UG/L	-	Ū	Ū			
	REG	Tetrachloroethene	-	UG/L	-	Ū	Ū			
	REG	Toluene		UG/L		Ŭ	Ŭ			
	REG	Trichloroethene		UG/L		Ŭ	Ŭ			

#### Location: Ramsdell Quarry Landfill Station : QC Initial Phase

RQLqc-004-0060-T			Field Sample Type: Trip Bia	nk	Matrix: C	Juality Co	ontrol	Collected:	07/22/9
	Sample Type	Volatile Organics	Result	Units	Qual Lab	ifiers Data	Validation Code		
	REG	Vinyl Chloride		UG/L	- <del>U</del>	<u> </u>		_	
	REG	Xylenes, Total		UG/L	Ŭ	Ŭ			
RQLqc-005-0061-T	в		Field Sample Type: Trip Bla	Trip Blank Matrix: Quality Control		ontrol	Collected:	07/25/9	
	Sample				Qual	ifiers	Validation		
		Volatile Organics	Result	Units	Lab		Code		
	REG	1,1,1-Trichloroethane	5	UG/L	- <del></del>	U .		<u> </u>	
	REG	1,1,2,2-Tetrachloroethane		UG/L	•	=			
	REG	1,1,2-Trichloroethane		UG/L		=			
	REG	1,1-Dichloroethane		UG/L	U	U			
	REG	1,1-Dichloroethene		UG/L	Ŭ	Ū			
	REG	1,2-Dichloroethane		UG/L	Ŭ	Ū			
	REG	1,2-Dichloroethene		UG/L	Ŭ	Ŭ			
	REG	1,2-Dichloropropane		UG/L	Ŭ	Ũ			
	REG	1,3-cis-Dichloropropene		UG/L	Ŭ	ŭ			
	REG	1,3-trans-Dichloropropene		UG/L	ŭ	ŭ			
	REG	2-Butanone	-	UG/L	Ŭ	Ŭ			
	REG	2-Hexanone		UG/L	ŭ	Ŭ			
	REG	4-Methyl-2-pentanone		UG/L	ŭ	Ŭ			
	REG	Acetone		UG/L	Ū	Ū			
	REG	Benzene		UG/L	Ŭ	Ŭ			
	REG	Bromodichloromethane	-	UG/L	ŭ	ŭ			
	REG	Bromoform		UG/L	·	=			
	REG	Bromomethane		UG/L	U	Ū			
	REG	Carbon Disulfide		UG/L	Ŭ	Ŭ			
	REG	Carbon Tetrachloride		UG/L	Ŭ	Ŭ			
	REG	Chlorobenzene	-	UG/L	ŭ	Ŭ			
	REG	Chloroethane		UG/L	Ŭ	Ŭ			
	REG	Chloroform		UG/L	U	Ŭ			
	REG	Chioromethane		UG/L	ŭ	Ŭ			
	REG	Dibromochloromethane	. –	UG/L	U	Ŭ			
	REG	Ethylbenzene		UG/L	U	Ŭ			
	REG		-	UG/L	U	=			
	REG	Methylene Chloride	+	UG/L	U	Ū			
		Styrene			U	-			
	REG	Tetrachloroethene		UG/L	-	U			
	REG	Toluene		UG/L	U	U			
	REG	Trichloroethene	-	UG/L	U	U			
	REG	Vinyl Chloride		UG/L	U	U			
	REG	Xylenes, Total	5	UG/L	U	U			

Field Sample Type: Trip Blank

#### RQLqc-007-0063-TB

Sample				Quai	ifiers	Validation		
Туре	Volatile Organics	Result	Units	Lab	Data	Code		
REG	1,1,1-Trichloroethane	5	UG/L	U	UJ	A05		
REG	1,1,2,2-Tetrachloroethane	5	UG/L	U	UJ	A05		
REG	1,1,2-Trichloroethane	5	UG/L	U	UJ	A05		
REG	1,1-Dichloroethane	5	UG/L	U	UJ	A05		
REG	1,1-Dichloroethene	5	UG/L	U	UJ 🛛	A05		
REG	1,2-Dichloroethane	5	UG/L	U	UJ	A05		
REG	1,2-Dichloroethene	5	UG/L	U	UJ	A05		
REG	1,2-Dichloropropane	5	UG/L	U	UJ	A05		
REG	1,3-cis-Dichloropropene	5	UG/L	U	UJ	A05		
REG	1,3-trans-Dichloropropene	5	UG/L	U	UJ	A05		
REG	2-Butanone	10	UG/L	U	UJ	A05		
REG	2-Hexanone	10	UG/L	U	UJ	A05		
REG	4-Methyl-2-pentanone	10	UG/L	U	ÛĴ	A05		
REG	Acetone	10	UG/L	U	UJ	A05		
REG	Benzene	5	UG/L	U	UJ	A05		
REG	Bromodichloromethane	5	UG/L	U	UJ	A05		
REG	Bromoform	0.65	UG/L	J	J	A05		
REG	Bromomethane	10	UG/L	U	UJ	A05		
REG	Carbon Disulfide	5	UG/L	U	UJ	A05		
REG	Carbon Tetrachloride	5	UG/L	U	IJ	A05		
REG	Chlorobenzene	5	UG/L	U	UJ	A05		
REG	Chloroethane	10	UG/L	U	UJ	A05		
REG	Chloroform	5	UG/L	U	UJ	A05		
REG	Chloromethane	10	UG/L	U	UJ	A05		
REG	Dibromochloromethane	5	UG/L	U	ŲJ	A05		

Matrix: Quality Control

Collected: 07/27/98

#### Location: Ramsdell Quarry Landfill Station: QC Initial Phase

RQLqc-007-0063-TB		Field Sample Type: Trip Bla	ink	Matrix: (	Quality C	Control	Collected: 07/27/98
Sample Type		Result	Units		lifiers Data	Validation Code	
REG	Ethylbenzene	5	UG/L	- <del></del>	UJ	A05	
REG	Methylene Chloride	0,78	UG/L	Ĵ	J	A05	
REG	Styrene	5	UG/L	U	ŪJ	A05	
REG	Tetrachloroethene	5	UG/L	Ū	ŪJ	A05	
REG	Toluene	0.49	UG/L	J	J	A05	
REG	Trichloroethene	5	UG/L	U	ŪJ	A05	
REG	Vinyl Chloride	10	UG/L	Ū	Ū.J	A05	
REG	Xylenes, Total		UG/L	Ū	ŬĴ	A05	

D-168

## **D3. CASE NARRATIVES AND CHAIN-OF-CUSTODY FORMS**

•

98-162P(doc-4si)/011499

## CASE NARRATIVE

The following report contains the analytical results for seven water samples submitted to Quanterra-North Canton by Science Applications International Corporation from the Ravenna-Ramsdell Quarry Site, project number 01-0380-04-9558-156. The samples were received July 14, 1998, according to documented sample acceptance procedures.

Quanterra utilizes USEPA approved methods in all analytical work. The samples presented in this report were analyzed for the parameters listed on the Analytical Methods Summary page in accordance with the methods indicated.

Explosives and Propellants analyses were performed at Quanterra's Knoxville, TN and West Sacramento, CA facilities. (Because the CA laboratory operates on a different laboratory information [LIMS] system, the West Sacramento data is presented under a separate cover.)

The results included in this report have been reviewed for compliance with the laboratory QA/QC plan. All data have been found to be compliant with laboratory protocol.

## Supplemental QC Information

### SAMPLE RECEIVING

The coolers were received at the North Canton laboratory at temperatures of 3.1, 5.0, 5.8, 5.9 and 3.5°C.

### **GC/MS VOLATILES**

No anomalies were encountered.

Sample(s) which contain results between the MDL and the RL are flagged with "J". There is the possibility of false positive or misidentification at these quantitation levels. In analytical methods requiring confirmation of the analyte reported, confirmation will be performed only down to the standard reporting limit (SRL). The acceptance criteria for quality control criteria may not be met at these quantitation levels.

#### **GC/MS SEMIVOLATILES**

Due to a laboratory error, all samples were initially extracted as Base/Neutrals rather than as full Base/Neutrals & Acids. As a result, all samples exhibited zero recoveries for acid surrogates. Upon reextraction and re-analysis, all surrogates were within acceptance limits; however, the recommended sample holding time had expired. Both sets of data are reported.

Sample(s) which contain results between the MDL and the RL are flagged with "J". There is the possibility of false positive or misidentification at these quantitation levels. In analytical methods requiring confirmation of the analyte reported, confirmation will be performed only down to the standard reporting limit (SRL). The acceptance criteria for quality control criteria may not be met at these quantitation levels.

D-171

## CASE NARRATIVE (continued)

### HPLC - Explosives

A limited volume of sample was extracted due to high particulate levels in sample RQ0004. As a result the reporting limits were elevated.

Sample(s) which contain results between the MDL and the RL are flagged with "J". There is the possibility of false positive or misidentification at these quantitation levels. In analytical methods requiring confirmation of the analyte reported, confirmation will be performed only down to the standard reporting limit (SRL). The acceptance criteria for quality control criteria may not be met at these quantitation levels.

#### METALS

Matrix spike/matrix spike duplicate recoveries were outside the acceptance limits for some analytes. The acceptable laboratory control sample analysis data indicated that the analytical system was operating within control and this condition is most likely due to matrix interference. See the Matrix Spike Report for the affected analytes, which will be flagged with "N".

Matrix spike/spike duplicate relative percent difference (RPD) exceeded the acceptance limits for some analytes. The imprecision may be attributed to sample heterogeneity. See the Matrix Spike Report for the affected analytes which will be flagged with "*".

Matrix spike recovery and relative percent difference (RPD) data were not calculated for some analytes due to the sample concentration reading greater than four times the spike amount. See the Matrix Spike Report for the affected analytes which have been flagged with "NC, MSB".

Samples which contain results between the Method Detection Limit (MDL) and the Reporting Limit (RL) are flagged with "B". There is the possibility of false positive results at these quantitation levels. The acceptance criteria for ICB, CCB, and Method Blank is  $\pm$  the RL.

#### **GENERAL CHEMISTRY**

No anomalies were encountered.



888 Gak Mégo Tampike, Ook Ridge, TN 37831 (423) 481-4688

## CHAIN OF CUSTODY RECORD

LOID

COC NO.:

						REQUESTED PARAMETERS LABORATORY NAME:													
PROJECT NAME: RAMSDELL QUARRY L	ANDFILL GROUNDW	ATER INVESTIGATION	l		<u> </u>	Γ			- me		TEUPA		IERS		[	T	LABORATORY Quanterra Envi		
PROJECT NUMBER: 81-0388-84-8558-1 PROJECT MANAGER: Stove Selecman	56																LABORATORY 4101 Shuilel D North Canton, 1	r. NW	
Sempler (Signature)					4												44720		
former of whe	(Printed Ham	suph T	Wilson				1		3							A Land	PHONE NO: (33	D)968-9792	
Sample ID		Data Collected	Time Cellected	Matrix	VDCe	SVOCE	Employe	Ī			5					No. of Aar		OBSERVATIONS, COMMENTS, Special Instructions	
RQØØØI		7/14/98	<b>0</b> 93ø	WA				X			(	1000				9		mst	
RQ0004	l	<u>10  98 </u>	635				X		2	$\langle \rangle$	1					4		<u>[ · · · · · · · · · · · · · · · · · · ·</u>	·
			,,																
																			•
D-173												an the second							
3				<u> </u>			-												
· · · · · · · · · · · · · · · · · · ·							1.000												
	·····			چ ا															
				7/14	<b>\$</b> -														
	. <u> </u>						- 10 10 10			<u> </u>									
									_										
	·								_										
RELINQUISHED BY:		I	·																
Ind 1 Wh	Date/Time	RECEIVED BY:	. 1	1 .	NTime Loo		TOT	AL NU	MBER	OF C	ONTAIN	IERS:				3	Cooler Temperatu	ire:	[
COMPANY NAME:	7/14/98	COMPANY NAME:	sm land	- 1/4/	48		Ceel	ler ID:							•		FEDEX NUMBER:		
SAIC	1500	Charler	(a	/51	w	ĺ				ε	9							NA	
RECEIVED BY:	Date/Time	RELINQUISHED BY:	••••	Date	/Time			-		_									
Japan & Unitered	7/14/aP				1 91														
COMPANY NAME		COMPANY NAME:	tallar	1		F													
ELINGUISHED BY:	Date/Time		apprende	4:		2													
	Varer i smë	RECEIVED BY:		Date	Time														[
OMPANY NAME:	1	COMPANX NAME:	,, <u></u>																
- · ·		Quant	eva_															1	



488 Dak Ridge Tempile, Oak Ridge, TH 57831 (423) 481-4888

		COC	NO.:

NO.: <u>LØ11</u>

**CHAIN OF CUSTODY RECORD** 

		·—			T" -													·
PROJECT NAME: RAMSDELL QUARRY LA	NDFILL GROUNDW/	ATER INVESTIGATIO	M		┢	Ţ			REC	IVEST	ED PAR	RAMET	IERS					LABORATORY NAME: Quanterra Environmentol
PROJECT NUMBER: 01-0388-04-0558-15 PROJECT MANAGER: Stove Solecman	it	<u> </u>		<u>.</u>														LABORATORY ADDRESS: 4101 Shullel Dr. NW North Centon, OH 44720
Somplar (Signatur aj	(Printed Name	N			1				1_								Ĭ	
Sample 1 W	L	Joseph	J Will	ical													Y jangtan	PHONE NO: (330)968-9792
8 emple (D		Dete Collocted	Time Collected	Metrix	YOC	SYOCA		H		i i							4	DBSERV A TRONS, COMMENTS, SPECIAL INSTRUCTIONS
RQ0001	·	7/14/98	@930	WA	X	X										Ő	8	10 ms/msb
<u>RQ 0059</u>		7/13/98	@859		X												3	
RQ0005			1200		X												3	······································
RQ0047	<u> </u>		1200		X							Ĭ					3	
<u>RQ@@@3</u>	·		1530		X												4	
			1635		X			X									5	
- RQ0002			1735		X												3	
																	-	
			·····	· · · · · · · · · · · · · · · · · · ·	_								<u></u>				-	
																	$\dashv$	
	······································				2												-†	
				-//	1	20											-	
																	4	
RELINQUISHED BY:	Date/Time	RECEIVED BY:		Dele	r N Time		TOT	al nui	<u>esses</u> MBER (	L E DF CO	NTAIN	ERS:	883 		- 10	ा 34		Ceelsr Temperature:
Jane 7 W.L	7/14/98	far yn	lang	7/14/	19 0	)	⊢	er ID:	<u> </u>							2		
COMPANY NAME:		COMPANY NAME:	U								)	11	Ø	0				FEDEX NUMBER: NA-
SAIC	1500	Quarter			Time								<u> </u>					
RECEIVED BY:	Date/Time	RELINQUISHED BY:	RELINQUISHED BY:															
	7/14/97	COMPANY NAME:																
IELINQUISHED BY:	Date/Time	RECEIVED BY:	·	Date	/Time	·												1
		Jami St	ephens	7.14														
OMPANY NAME:		COMPANY NAME:		4:3	Ø													
	l	Ulan	tina															· · · · · · · · · · · · · · · · · · ·



888 Oak Nidge Tampike, Oak Nidge, TB 37831 (423) 481-4888

**CHAIN OF CUSTODY RECORD** 

COC NO .: LOIZ

		-							RE	QUEST	TEO PA	RAME	TERS					LABORATORY N	1464E.	
PROJECT NAME: RAMSDELL QUARRY L	INDFILL GROUNDWA	TER INVESTIGATION	l		_			Т	T		T	Π	Π	T	Т		Т	Quanterra Envir		
PROJECT NUMBER: 81-8388-84-9558-11 PROJECT MANAGER: Steve Solecmen	58																	LABORATORY A 4101 Shuffel Dr North Centon, O 44720	. NW	
Sampler (Signature)	(Printed Name)			[						_										
fresh of Wil		Joseph	J Wilso		i				E									PHONE NO: (330	1966 9792	
Sample (D	······	Date Collected	Time Collected	Matrix	ŽÕŽ	SVOCe													ABSERVATIONS, COMMENTS, SPECIAL INSTAUCTIONS	
RQØØØI		7/14/98	Ø93ø	WA		Sec. 200	X	<b></b>	X								٩	ms	lmsb	
RQ0004		7/13/98	1635			X			X								З			
RQ@@47			1200	4			X										2			
																	Γ			
· ¤												1000								
D-175																				
															ŝ.					
	<u> </u>							12												
	<u>-</u> .						Ż	//	$\lambda$											
								<b>.</b>				100 C								
	<u> </u>	ļ						<u></u>												
ELINQUISHED BY:			<u></u>	┯╍┻																
freed of Will	Date/Time	RECEIVED BY:	1. 1. 1	Data/1			TOT	IL NU	MBER	OF CO	NTAIN	IEAS:				1	4	Cooler Temperatur	ie;	
OMPANY NAME: SAIC	7/14(98 15¢¢	COMPANY NAME:	JODEN Umbaugh 7				Coole	r ID:		E	E8	,						FEDEX NUMBER:	M-	
ECENED BY:	Data/Time 7/4/1/	NELINUUSHED BT:						_										•		
· · · · · · · · · · · · · · · · · · ·		COMPANY NAME:																		
LINQUISHED BY:	Date/Time	RECEIVED BY: J	VED BY: Stephens 7-14 ANY NAME: 4:																	
JMPANY NAME:	Jami Stephens																		1	



888 Dat Noge Tempite, Ook Ridge, TB 37831 (423) 481-4888

## CHAIN OF CUSTODY RECORD

.

								REQU	ESTE	ED PAF	RAME	TERS	_		·	LABORATORY NAME:		
PROJECT NAME: RAMSDELL OUARRY LI	ANDFILL GNUUNDWA	TER INVESTIMATION			$\int$						1			Τ	T	Τ	T	Quanterre Environmentet
PROJECT NUMBER: 01-0380-04-0550-11 PROJECT MANAGER: Stove Solecman	58			·														LABORATORY ADDRESS: 4101 Shuffel Dr. NW North Canton, OH 44720
Sampler (Signe tur aj	(Printed Name				1				1								븰	
Jun 9 Wile	6	Tosent J	WILSON						I	Fiture								PHONE NO: (330)866-9792
Sample ID		Date Collected	Time Collected	Matrix	ş	2025		1	1	1	2							OBSERVATIONS, COMMENTS, SPECIAL INSTRUCTIONS
RQ0002 RQ0003		7/13/98	1735	WA		X	X		X	X	X						9	
RQ0003		¥	153¢	•	L.	X	$ \lambda $		X		X						6	
D-176		+											_					
176											_							
	· · · · · · · · · · · · · · · · · · ·				2													
·					7													
				··			19.											
															1			
																	/	
	•																	
	- <u> </u>	.																
RELINQUISHED BY:	Date/Time	RECEIVED BY:	1 /	Date 7/(4)	Tim la Y			DTAL	VUME	ER O	F CON	TAIN	ERS:			15		Coolar Temperature:
COMPANY NAME:	7/14/98	COMPANY NAME:	mbaugh	-{77	, .,		C.	aler ti	):			_						FEDEX NUMBER:
Stic	1500	Quarter		150	×		Ì					B	4					NA
RECEIPED BY:	Date/Time 7/14/97	RELINQUISHED BY:	•	Data	) Tim	•	Γ									 . <u></u>		
OPIPANY NAME:	]/ " "	COMPANY NAME:																
ELINQUISHED BY:	Date/Time	RECEIVED BY:	techens	Data/			1											
OMPANY NAME:	Jami Stephen																	1



111 d	het Midger	Tempite,	Ost hidge,	11	37831	(423) 481-48	188
-------	------------	----------	------------	----	-------	--------------	-----

## COC NO.:

_ LØ14

.

CHAIN OF CUSTODY RECORD

					Τ				F	26011	ESTE	1 PAD	AMETE	De				
PROJECT NAME: RAMSDELL QUARRY L	ANDFILL GROUNDW/	ATER INVESTIGATION	N			Γ			-j					1	-		T	LABORATORY NAME: Quanterra Environmental
PROJECT NUMBER: 01-0380-04-0550-1					1													
					4													LABORATORY ADDRESS:
PROJECT MANAGER: Stove Selecmen																		4101 Shuffel Dr. NW North Canton, OH
Sampler (Signature)	(Printed Name	·			1													44720
Just of WS	2	Joseph J	Wieson					1	, Total	The second								PHONE NO: 1330/966-9792
Sample ID		Date Collected	Time Collected	Matrix	YOC	SYBC		ł	No.	ł	5							DISSERVATIONS, COMMENTS, d Special Instructions
RQ0003		<u>  13  98</u>	1530	WA				X										2
<u>RQ @@@5</u>	,,,,,,,,		1200			X	X	X	X	X	X						<u> </u>	3
RQ0047		+	1200	4		X		X	X	X	X						-	7
<u> </u>					$\square$				-									
<u> </u>																	1-	
-17;		$\downarrow$															-	
				$\square$													-	
	· · · · · · · · · · · · · · · · · · ·																_	
								14			<b>~</b>						-	
	- <del> </del>	-}									-						$\bot$	
		╂────┤					-	- 	- 88	-		<u></u>	-			- 📓		
								8		8			-					
RELINQUISHED BY:	Date/Time	RECEIVED BY:						×										
Jack 1 Wil	7/14/98	Jaie 1	AL		Time A D		TOT	IL NU	MBE	R OF (	CON	TAINE	RS:				8	Cooler Temperature:
COMPANY NAME:		COMPANY NAME:	nuuu r	-177		Í	Coele	ır ID:								_		FEDEX NUMBER:
SAIC	1500	Quatorg	/	1500	>						4	58	35	•				NA-
HECEIVED BY:	Date/Time	RELINQUISHED BY:		Date	/Time													
disor Um hugh	9/14/98																	
OMANY NAME:		COMPANY NAME:																
ELINQUISHED BY:	Date/Time	RECEIVED BY:		Datej		{												
		Jami S	tophens															
OMPANY NAME:					- 98	3												· · · · · · · · · · · · · · · · · · ·
		COMPANY NAME: Quante	me_	4:3	30													1
		·	·····	<u></u>		Ŀ		·										1

## CASE NARRATIVE

The following report contains the analytical results for eight water samples submitted to Quanterra-North Canton by Science Applications International Corporation from the Ravenna-Ramsdell Quarry Site, project number 01-0380-04-9558-156. The samples were received October 19, 1998, according to documented sample acceptance procedures.

Quanterra utilizes USEPA approved methods in all analytical work. The samples presented in this report were analyzed for the parameters listed on the Analytical Methods Summary page in accordance with the methods indicated.

Explosives and Propellants analyses were performed at Quanterra's Knoxville, TN and West Sacramento, CA facilities.

The results included in this report have been reviewed for compliance with the laboratory QA/QC plan. All data have been found to be compliant with laboratory protocol.

## Supplemental QC Information

### SAMPLE RECEIVING

The coolers were received at the North Canton laboratory at temperatures of 3.3, 0.8, 0.9, 3.0, 1.8, 1.4, and 1.6°C.

### **GC/MS VOLATILES**

No anomalies were encountered.

Sample(s) which contain results between the MDL and the RL are flagged with "J". There is the possibility of false positive or misidentification at these quantitation levels. In analytical methods requiring confirmation of the analyte reported, confirmation will be performed only down to the standard reporting limit (SRL). The acceptance criteria for quality control criteria may not be met at these quantitation levels.

### **GC/MS SEMIVOLATILES**

No anomalies were encountered.

## CASE NARRATIVE (continued)

### HPLC - Explosives

Surrogate recoveries for samples "RQ0096", "RQ0097", "RQ0098" and "RQ0099" were outside the acceptable QC limits, due to matrix interference.

Samples "RQ0096" and "RQ0099" were reported with elevated reporting limits for 2,4-DNT; in addition, "RQ0097" and "RQ0098" were reported with elevated reporting limits for 2,4-DNT and 3-Nitrotoluene due to sample matrix interference.

The matrix spike/matrix spike duplicate recoveries for sample "RQ0099" in batch 8295154 were acceptable for all analytes except RDX, nitrobenzene and 3-nitrotoluene. The laboratory control sample showed acceptable results indicating that the analysis was in control. The matrix spike/matrix spike duplicate results are, therefore, attributed to matrix effects.

Sample(s) which contain results between the MDL and the RL are flagged with "J". There is the possibility of false positive or misidentification at these quantitation levels. In analytical methods requiring confirmation of the analyte reported, confirmation will be performed only down to the standard reporting limit (SRL). The acceptance criteria for quality control criteria may not be met at these quantitation levels.

### METALS

Serial dilution of a sample in this lot indicates that physical and chemical interferences are present. See the sample report pages for the affected analytes which will be flagged with "L".

Samples which contain results between the Method Detection Limit (MDL) and the Reporting Limit (RL) are flagged with "B". There is the possibility of false positive results at these quantitation levels. The acceptance criteria for ICB, CCB, and Method Blank is <u>+</u> the RL.

Method blank contamination occurred.

- All affected analytes which were detected at a level less than 5% of the sample amount are flagged with "MBB".
- Where blank contamination was a common laboratory contaminant, and was less than two times the reporting limit, affected analytes are flagged with "MBD".

Matrix spike recovery and relative percent difference (RPD) data were not calculated for some analytes due to the sample concentration readings greater than four times the spike amount. See the Matrix Spike Report for the affected analytes, which will be flagged with "NC, MSB". Matrix spike/spike duplicate recovery was outside the acceptance limits for some analytes. The acceptable LCS analysis data indicated that the analytical system was operating within control and this condition is most likely due to matrix interference. See the Matrix Spike Report for the affected analyte, which will be flagged with "N".

Matrix spike/spike duplicate relative percent difference (RPD) exceeded the acceptance limits for some analytes. The imprecision may be attributed to sample heterogeneity. See the Matrix Spike Report for the affected analytes which will be flagged with "*".

# CASE NARRATIVE (continued)

.

## **GENERAL CHEMISTRY**

No anomalies were encountered.



## **CASE NARRATIVE**

## QUANTERRA INCORPORATED PROJECT NUMBER 302250

### PROPELLANTS

There were no anomalies associated with this report.



888 Oak Nidge Tumpike, Oak Nidge, 38 37831 (423) 481-4468

## CHAIN OF CUSTODY RECORD

LØ25

COC NO.:

										F	REQU	ESTE	D PARA	METER	S				LABORATORY NAME:
PROJECT NAME: RAMSDELL QUARRY LA	NDFILL GROUNDWA	TER INVEST	TIGATION	<b>I</b>		$\left[ \right]$													Quanterra Environmental
PROJECT NUMBER: 01-0380-04-9558-15 PROJECT MANAGER: Stove Selecmen	6			······															LABORATORY ADDRESS: 4101 Shuffel Dr. NW North Centon, OH 44720
Sampler (Signature) Jach of Wilson	(Printed Name	-	-	Winter					at l	late I	itter of							stdami Via	PHONE NO: (330)968-8782 I
Raconte Sample ID				Time Collected	Matrix	VDC:	SVOCA	Explosives	Propaliante	Metals, Total	Metals, Filter	Cyanide						No. of Bc	ODSERVATIONS, COMMENTS, SPECIAL INSTRUCTIONS
RQOOBL		10/A	kir_	1135	WĄ	X													
Reoloo				1205	1	X	$\mathbf{X}$	X	$\boldsymbol{\lambda}$	X	$\mathbf{X}$	X				• ;		<u>12</u>	,
RQØIOL				1345		X	X	X	$\boldsymbol{X}$	X	X	$\boldsymbol{X}$		_				12	
KQ0096			,	1530		X	$\mathbf{X}$	X	X	X	X	${\boldsymbol{X}}$		_			_	12	
- 7 KQ0102		1	r	1710		X	X	X	X	X	X	$\underline{\lambda}$		_			_	12	
S. RQ 00097		10/2	$\phi   \mathcal{U}$	0950		X	X	X	X	X	X	$\boldsymbol{X}$						12	
Record			Ļ.	1245		X	Х	X	X	$\boldsymbol{\lambda}$	X	$\boldsymbol{\lambda}$				×.		12	
RQ0299			<u>}</u>	1425		$ \Sigma $	X	X	X	X	X	X	<u> </u>					36	MS/MSD Volume
																			•
							2					$ \downarrow$		-					
	······					12	1	4											
\$		<u> </u>						- 4											
					<u> </u>														
RELINQUISHED BY:	Date/Time	REDEVED	) BY:	Λ	Del	la/Time /		TO	TAL A	NUMB	ER O	F COI	NTAINE	RS:					Cooler Temperature: -
Juge of Wil	10/31/98		<u>y v</u>	aman	_ /8/	2//	198	2 C oo	oler IC	D: (	<b>A</b> 4(	رما	D27	1,35	5C ,	, ZS(	¢,		FEDEX NUMBER:
1 SALC	Jonga J W. 10/21/98 Muy Manne COMPANY NAME: 1 SAIC 12:00 DWN TOXA													6,0					NA
REGEIVED BY:	Dat 70/7	te/Time Z <i>1 /</i>	/ 4 3		C		~~~	~	Sen	ر میں اور	- <del>L</del>	In	Ь						
COMPANY NAME:	24	/\	., //	5		50.	۰P	les	λ	<b>`</b>	1 <	معاد	ഗ്	•	also have for refum.				
P RELINQUISHED BY:	Date/Time	RECEIVED	ni L	stephens	Dat 	ielTime 21- 9	• 18		3	E	mp	hy	G	uante	m	C.	n la	15	also have for return.
COMPANY NAME:			y NAME:	Ina	2:4														

## CASE NARRATIVE

The following report contains the analytical results for two water samples submitted to Quanterra-North Canton by Science Applications International Corporation from the Ravenna-Ramsdell Quarry Site, project number 01-0380-04-9558-156. The samples were received July 27, 1998, according to documented sample acceptance procedures.

Quanterra utilizes USEPA approved methods in all analytical work. The samples presented in this report were analyzed for the parameters listed on the Analytical Methods Summary page in accordance with the methods indicated.

Explosives and Propellants analyses were performed at Quanterra's Knoxville, TN and West Sacramento, CA facilities. (Because the CA laboratory operates on a different laboratory information [LIMS] system, the West Sacramento data is presented under a separate cover.)

The results included in this report have been reviewed for compliance with the laboratory QA/QC plan. All data have been found to be compliant with laboratory protocol.

## Supplemental QC Information

### SAMPLE RECEIVING

The cooler was received at the North Canton laboratory at a temperature of 4.4°C.

### **GC/MS VOLATILES**

No anomalies were encountered.

Sample(s) which contain results between the MDL and the RL are flagged with "J". There is the possibility of false positive or misidentification at these quantitation levels. In analytical methods requiring confirmation of the analyte reported, confirmation will be performed only down to the standard reporting limit (SRL). The acceptance criteria for quality control criteria may not be met at these quantitation levels.

### **GC/MS SEMIVOLATILES**

No anomalies were encountered.

Sample(s) which contain results between the MDL and the RL are flagged with "J". There is the possibility of false positive or misidentification at these quantitation levels. In analytical methods requiring confirmation of the analyte reported, confirmation will be performed only down to the standard reporting limit (SRL). The acceptance criteria for quality control criteria may not be met at these quantitation levels.

## CASE NARRATIVE (continued)

### **HPLC** - Explosives

No anomalies were encountered.

Sample(s) which contain results between the MDL and the RL are flagged with "J". There is the possibility of false positive or misidentification at these quantitation levels. In analytical methods requiring confirmation of the analyte reported, confirmation will be performed only down to the standard reporting limit (SRL). The acceptance criteria for quality control criteria may not be met at these quantitation levels.

#### **METALS**

Matrix spike/matrix spike duplicate recoveries were outside the acceptance limits for some analytes. The acceptable laboratory control sample analysis data indicated that the analytical system was operating within control and this condition is most likely due to matrix interference. See the Matrix Spike Report for the affected analytes, which will be flagged with "N".

Matrix spike recovery and relative percent difference (RPD) data were not calculated for some analytes due to the sample concentration reading greater than four times the spike amount. See the Matrix Spike Report for the affected analytes which have been flagged with "NC, MSB".

### **GENERAL CHEMISTRY**

Matrix spike recovery and relative percent difference (RPD) data were not calculated for Total Cyanide due to the sample concentration reading greater than four times the spike amount. See the Matrix Spike Report for the affected analytes which have been flagged with "NC, MSB".

An Employee Owned Company Science Applications International Corporation

COC NO.:

LØIB

.

444 Oak Ridge Tampike, Oak Ridge, TN 37831 (423) 441-4888

## **CHAIN OF CUSTODY RECORD**

· .

ſ		·							ncu	UNL	, 						
PROJECT NAME: RAMSDELL QUARRY LA	NDFILL GROUNDW/	TER INVESTIGATIO	1		╞		T	<b>T</b>	RI	EQUES	STED P	ARAME	TERS	<u></u>	1-1-	<b>—</b> —	LABORATORY NAME: Quanterra Environmental
PROJECT NUMBER: 01-0300-04-9550-11 PROJECT MANAGER: Stove Solecman	58																LABORATORY ADDRESS: 4101 Shulfel Dr. NW North Canton, OH 44720
Sempler (Signatural	(Printed Name	omph J Wi	len					켵	Totai							alei Viale	PHONE NO: (330)968-9792 +
Serrepte (D		Date Collected	Time Cellected	Metrix		SVOCA		Propette	Metaia, Total	Metak, Altr	Cymida					No. of Batt	DOSERVATIONS, COMMENTS, Special Instructions
RQØØ61		7 25 98	Ø818	WA	X	1										2	
Ra0015	<u> </u>		IØ55		X		Х	X	X	χþ	<					12	
<u> </u>					_												
87		$\rightarrow$															
·····		······································		<b>A</b> .												<b> </b>	
				A	+					8						L	
			/	- (1 <b>0</b>	╉				-	<u></u>					_		
									-8						-		
		· · · · · · · · · · · · · · · · · · ·			+		-										
i					+		-								_		
				<u> </u>	+					<u></u>							
RELINGUISHED BY: July 4 W In	Date/Time	REGEINED BY:	1	D	_L Ite/Tim	<u>100001</u> 10	TO.	<u>ensi</u> Tal N	UMBER	3 1 OF CI	ONTAL	NERS:					Caula Tamana
	712-198	RECEIVED BY:	Jenn												15		Cooler Temperature:
COMPANY NAME: SAIC	0723	COMPANY MAME:		1	27	190	1		•	Bľ	73						
RECEIVED BY:	Date/Time		Ex		بر کر کر te/Tim	1									· <u> </u>		NA
0	Decot 1 mile	Y/U/	lum		-												
COMPANY NAME:		COMPANY NAME:	·	- 7/2	-7												
	(	COMPANY NAME:	28RA	83	01	$\sim$											
RELINQUISHED BY:	Date/Time	RECEIVED BY:	- 1 -	Dat	le/Tim	9											
COMPANY NAME:		Jami Ste	phene	717	27(9	18											
UTWERNE NAME:		COMPANY NAME: Quart	F	8'.													1
		_ want	ma		00												

## CASE NARRATIVE

The following report contains the analytical results for six water samples submitted to Quanterra-North Canton by Science Applications International Corporation from the Ravenna-Ramsdell Quarry Site, project number 01-0380-04-9558-156. The samples were received July 24, 1998, according to documented sample acceptance procedures.

Quanterra utilizes USEPA approved methods in all analytical work. The samples presented in this report were analyzed for the parameters listed on the Analytical Methods Summary page in accordance with the methods indicated.

The results included in this report have been reviewed for compliance with the laboratory QA/QC plan. All data have been found to be compliant with laboratory protocol.

## Supplemental QC Information

### SAMPLE RECEIVING

The coolers were received at the North Canton laboratory at temperatures of 5.9, 6.0 and 5.8°C.

Samples RQ0011 and RQ0009 were further preserved for the Cyanide analyses.

### **GC/MS VOLATILES**

The matrix spike/matrix spike duplicate associated with sample RQ0011 in batch 8210308 failed recovery criteria for 1,1-Dichloroethene. The laboratory control sample associated with this batch was in control. This is believed to be a matrix effect; therefore, no further corrective action was taken.

Sample(s) which contain results between the MDL and the RL are flagged with "J". There is the possibility of false positive or misidentification at these quantitation levels. In analytical methods requiring confirmation of the analyte reported, confirmation will be performed only down to the standard reporting limit (SRL). The acceptance criteria for quality control criteria may not be met at these quantitation levels.

#### **GC/MS SEMIVOLATILES**

No anomalies were encountered.

#### HPLC - Explosives

The surrogate recoveries for samples RQ0009 and RQ0050 were 0%. The surrogate has been masked by a coeluting peak.

Sample(s) which contain results between the MDL and the RL are flagged with "J". There is the possibility of false positive or misidentification at these quantitation levels. In analytical methods requiring confirmation of the analyte reported, confirmation will be performed only down to the standard reporting limit (SRL). The acceptance criteria for quality control criteria may not be met at these quantitation levels.

## CASE NARRATIVE (continued)

#### METALS

Matrix spike/spike duplicate spike recoveries were outside the acceptance limits for some analytes. The acceptable laboratory control sample analysis data indicated that the analytical system was operating within control and this condition is most likely due to matrix interference. See the Matrix Spike Report for the affected analytes, which will be flagged with "N".

Matrix spike/spike duplicate relative percent difference (RPD) exceeded the acceptance limits for some analytes. The imprecision may be attributed to sample heterogeneity. See the Matrix Spike Report for the affected analytes which will be flagged with "*".

Matrix spike recovery and relative percent difference (RPD) data were not calculated for some analytes due to the sample concentration reading greater than four times the spike amount. See the Matrix Spike Report for the affected analytes which have been flagged with "NC, MSB".

Samples which contain results between the Method Detection Limit (MDL) and the Reporting Limit (RL) are flagged with "B". There is the possibility of false positive results at these quantitation levels. The acceptance criteria for ICB, CCB, and Method Blank is  $\pm$  the RL.

### **GENERAL CHEMISTRY**

Matrix spike/matrix spike duplicate RPD was outside the acceptance limit for Total Cyanide in batch 8211214. However, the acceptable laboratory control sample analysis data indicated that the analytical system was operating within control and this condition is most likely due to matrix interference.



888 Oak Ridge Tempike, Oak Ridge, TR 37831 (423) 481-4888

1

L015

.

## CHAIN OF CUSTODY RECORD

ARA IPAT MENER BEMARTI & AMARKA &							REQL	JESTE	ED PAI	RAME	TERS					LABORATORY NAME:				
PROJECT NAME: RAMSDELL QUARRY LA	NDFILL GROUNDWA	TER INVESTIGATION	t		$\square$	Τ		1-	Т	Γ	Γ								Quanterra Environmental	
PROJECT NUMBER: 01-0380-04-9550-150 PROJECT MANAGER: Stove Selecman	B																		LABORATORY ADDRESS: 4101 Shuffei Dr. NW North Canton, DH	
Sampler (Signatura)	(Printed Name)		<u></u>																44720	·
Jush of What	5.	suph J b	سعاند				1			There is									PHONE NO: (330)968-9792	
Semple ID		Date Callected	Time Collected	Metrix	VOCe	SVOCE		Į		Metal	J								DBSERVA MONS, COMMENTS,	
RQ0050		7/23/98	084A	WA		X	X	X	X		X								8	
RQ 00 49			1251	1	 	X	$\times$	X	X		X								8	
													-		_		_			
I9															_					
¥			<u>_</u>	7/23/18	_										_		_			
		· · · · · · · · · · · · · · · · · · ·						1	/											
			<u> </u>								$\neg$		$ \rightarrow $				$\perp$			
· · · · · · · · · · · · · · · · · · ·			·	·	_											$\perp$		_		
		·									_		_		_		_	1		
	<u></u>				_		_				_				_		-	2		
		<u>├</u>			_						_				200					
RELITIONSHED BY:	Date/Time	REGELYED BY:	1/1	Data	Time	<u></u>				ie o	5 00	NTAIN						<u> </u>		
- Hune 7 Will COMPANY NAME:	7/24/98	Mein 1	Jeuns	7/24	//	28		oler (					ER9:					6	Cooler Temperature:	
COMPANY NAME:	0800	COMPANY AME:			/ /			olet li	J:					Z	4				FEDEX NUMBER:	
5-0-1		QU ANTEI	VSA	71.	$\sum$	Н	h_								r 				NA	
RECEIVED BY:	Date/Time	REUNQUISHED BY	1	Date/			ľ													
COMPANY NAME:		MM M	enne	7/24	/															
		COMPANY NAME:	YK de	840	N	+														
RELINQUISHED BY:	Date/Time	RECEIVED BY:		Detei																
		Pen	is Burns	7-24																
OMPANY NAME:		COMPANY NAME: (		840	-															
		Q <del>E</del> S		840	, 											_				



888 Oak Midge Tempike, Oak Ridge, TH 37831 (423) 481-4888

## CHAIN OF CUSTODY RECORD

COC NO.:

. . . . .

1016

.

···· • • • • • •

										REQU	IESTE	D PAR	AMET	FRS		_			LABORATORY NAME:
PROJECT NAME: RAMSDELL QUARRY LA	NDFILL GROUNDWA	TER INVESTIGATION	!			Г	Τ	Τ	Γ	T -			T		-T-		Т	7	Quanterra Environmental
PROJECT NUMBER: 01-0300-04-0550-15																			
	·····				1		1												LABORA TORY ADDRESS:
PROJECT MANAGER: Steve Selecman							ł.	1											† 4101 Shuffel Dr. NW North Canton, OH
Sempler (Signature)	(Printed Name)		<u> </u>	·	1		ł											"	44720
- Prove of when		ph J Wills	-						T.	ittered.						ĺ			PHONE NO: (330)988-9792
		Date Callested	Time Collected	Metrix	VOCe	SYOCe			1	1	1								OBGERVATIONS, COMMENTS, SPECIAL INSTRUCTIONS
RQOUUR		7 22 18	wisi	WA	X													3	
R00009			1351	1	k	X	x	X	X		$\overline{\mathcal{A}}$		-					12	· · · · · · · · · · · · · · · · · · ·
Radoll			1654		X						_					8		3	
RQ <i>0050</i>		7/23/98	00049		Ŕ											8		3	
P RODOH		1	1251		x							-				8		3	
RQ0013	·		1433	V	2											8			
				V	Ê						—							3	
							-		-				- 8		- 33	8			
· · · · · · · · · · · · · · · · · · ·							-		-		8		- 8			_			
					計				_					# #					
		·			72		ί.		_										
		<u>├</u>			-				_										
					-				_			<u>.</u>							
RELINQUISHED BY:			1						10.00										
	Date/Time	RECEIVED BY:			l'Time	Y	TO	TAL	IUMB	ER OF	CON	TAINE	RS:				27	)	Cooler Temperature:
Gent J Lo In	7/24/98	COMMANY HAME:	Rumin	_ //^	//4	8	C.	oler IC	);			4			_				FEDEX NUMBER:
1 54 cc	<b>PBACP</b>	Q VANIT	RAN	713	7	×-	Ļ					2	8	НS	52				NA
ECEIVED BY:	Data/Time	REWNQUISHED BY	<u> <u> </u></u>		 /Time		┢						· · · ·						
		My M	un	-7/24	/														
OMPANY NAME:	1	COMPANY NAME:	·· <b>·</b>																
	·	COMPANY NAME:	ZKRA	840	ut .														
ELINQUISHED BY:	Date/Time	RECEIVED BY-		Date	Time		1												
		Den	Bun	07/24	19	1													
OMPANY NAME:		COMPANY NAME	)'			•													
		QES		841															



888 Oak Nidge Tumpike, Ook Nidge, TH 37831 (423) 481-4888

#### --- ·

COC NO .: LOIT

.

.

### CHAIN OF CUSTODY RECORD

						1	REQU	ESTE	D PAR	AME	TERS					LABORATORY NAME:			
PROJECT NAME: RAMSDELL QUARRY LA		I EK INVES HGATION	,											T					Quanterra Environmental
PROJECT NUMBER: 01-0380-04-8558-15 PROJECT MANAGER: \$tovo \$olocman				<u></u>															LABORATORY ADDRESS: 4101 Shuffel Dr. NW North Canton, DH 44720
Sampler (Signature)	(Printed Name)	. <u> </u>		• • • • • • • • • • • • • • • • • • • •	1	Ì		ĺ		7			,					ļ	PHONE NO: (330)988-9792
Port of When	Joy	phJ Wi	1.5-				1		Tetal	Ĩ								1 P	
Semple ID		Date Collected	Time Collected	Natrix	Ş Z	SVOCa		l	Manuk		Cymer 1							Ma. of Bat	OBSERVA TROMS, COMMENTS, Special instructions
Radoll		7/22/98	1654	w.A.		X	×	X	×	×	X							٩	
RQ.0013		7/23/18	1433	↓		×	×	×	×	×	X							9	
	· · · · · · · · · · · · · · · · · · ·																		
Þ																			
193											_								
<u>م</u>			×										_						
			/ حــــــــــــــــــــــــــــــــــــ	3/9 <b>1</b>	-						-								
												-							
									_		$\square$				_				
											_		_						
<u></u>					-														
	T			<u> </u>			_												
RELINGUISHED BY:	Date/Time	RECEIVED BY:	1/la.	34		1_	<u>اار</u>			ER O	FCO	NTAIN	ERS:			!	8		Cooler Temperature:
	7/24/98	COMPANY NAME:	v firme	= //4	7	/A	Co	oler II	):	F	7.			_					FEDEX NUMBER:
COMPANY NAME:	OBAA	COMPANY NAME:	zRIA-	フル	57	Y-	ł			K		א ו		21					
RECEIVED BY:	Dats/Time	RELINDOUSHED BY:	1	0,10	/Tim	•		-											
· · · · · · · · · · · · · · · · · · ·	-	/ //	laun	Thy	/		ĺ												
COMPANY NAME:		COMPANYNAME:	EXAL	8	10	A													
TELINQUISHED BY:	Date/Time	RECEIVED BY:		Date	/Time	,	1												
		<u>i'en</u>	Bur	27-24	/	98													
COMPANY NAME:		COMPANY NAME:	J	840	>		1												
	L	QES_		<u></u>															

D-194

### CASE NARRATIVE

The following report contains the analytical results for nine water samples submitted to Quanterra-North Canton by Science Applications International Corporation from the Ravenna-Ramsdell Quarry Site, project number 01-0380-04-9558-156. The samples were received September 21, 1998, according to documented sample acceptance procedures.

Quanterra utilizes USEPA approved methods in all analytical work. The samples presented in this report were analyzed for the parameters listed on the Analytical Methods Summary page in accordance with the methods indicated.

Explosives and Propellants analyses were performed at Quanterra's Knoxville, TN and West Sacramento, CA facilities.

The results included in this report have been reviewed for compliance with the laboratory QA/QC plan. All data have been found to be compliant with laboratory protocol.

### Supplemental QC Information

#### SAMPLE RECEIVING

The coolers were received at the North Canton laboratory at temperatures of 10.8, 6.9, 7.2, 4.7, 3.8 and 3.7°C.



eas ast Ridge	Turnaite.	Oat Ridee.	7#	37831	(423) 481-4888
ALL DET HARD	conductor.	and week-			1100, 101, 1000

#### CHAIN OF CUSTODY RECORD

COC NO .: LOZ3

										REQ	UEST	ED PA	RAME	TERS					LABORATORY NAME:
PROJECT NAME: RAMSDELL QUARRY LA	NDFILL GROUNDWAT	ER INVESTIGATION			$\square$	1					Γ	Τ							Quanterra Environmentat
PROJECT NUMBER: 01-0380-04-9558-15 PROJECT MANAGER: Steve Selecman	6																	ч	LABORATORY ADDRESS: 4101 Shuffel Dr. NW North Canton, OH 44720
Sampler (Signatura)	(Printed Name)									12								Alai V la	PHONE NO: (330)968-9792 I
Joyn of Will	Joseph	J W.I.	<i>o</i> M					ian ta	L. Tob	HE .								of Bottle	
Semple ID		Date Collected	Time Collected	Matrix	202	SVOC	Explosives	Prope	Menal	Metal	Cyanida							No. of	OBSERVATIONS, COMMENTS, Special instructions
RQØØB4		9/19/98	B914	WA	X													Ъ	
RQOOTØ			Ø93ø	1	$\left  \right\rangle$		X	X	$\lambda$	X	$\cdot$	1						X	MS/MSD !
RQOO69			1325		X	X	X	X	X	X	Y							12	-
RQOO71	,		1535		X	X	X	X	X	×	X							12	
RQOP72		V	1730		X	X	×	X	$ \times$	×	×							1Z	
<u><u><u></u><u></u><u><u></u><u></u><u>RQ</u><u></u><u></u><u></u><u>RQ</u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u></u></u>		9/20/98	1020		X	X	X	X	$\times$	X	X	(						12	
RQ0074			1020		X	X	X	X	X	X	$\succ$							12	
RQO067			1400		X	X	X	X	X	X	X							/Z	CyAnde in W.M. Amber
RQ0073		↓	1458	V	X	X	X	×	×	X	X							12	•
	T	•																	
				n															
				1/20/9	ť	12					_								
				<b>.</b>															
RELINQUISHED BY:	Date/Time	RECEIVED BY:	leason	9	ite/Tir	ne hor	, [						NERS			1	23	3	Cooler Temperature: You
( ongh of la la	9 /z: FB	COMPANDINAME:	lann	- 92	//	Yð	C	ooler	ID:	6	ca	oler	3 \$	\$'5 ;	JI	1, 31	Zφ	,	FEDEX NUMBER:
COMPANY NAME:	0723	,		07	23									Ġ.				_	NA
RECEIVED BY:	Date/Time	REPROVISHED BY	lero-	- 1/2/	ite/Tin	ne Y													
GOMPANY NAME:	•	COMPANY NAME:		0	/		-												
RELINQUISHED BY:	Date/Time	RECEIVED BY:		Da	te/Tin	ar-													
		Jami Ste	phens	Q-7	21-	٩B	,												
COMPANY NAME:		COMPANY NAME:		٩٠.	40	>													

### CASE NARRATIVE

The following report contains the analytical results for fifteen solid samples and six water samples submitted to Quanterra-North Canton by Science Applications International Corporation from the Ramsdell Quarry Landfill Groundwater Investigation. The samples were received July 10 & 11, 1998, according to documented sample acceptance procedures.

Quanterra utilizes USEPA approved methods in all analytical work. The samples presented in this report were analyzed for the parameters listed on the Analytical Methods Summary page in accordance with the methods indicated.

Explosives and Propellants analyses were performed at Quanterra's Knoxville, TN and West Sacramento, CA facilities. (Because the CA laboratory operates on a different laboratory information [LIMS] system, the West Sacramento data is presented under a separate cover.)

The results included in this report have been reviewed for compliance with the laboratory QA/QC plan. All data have been found to be compliant with laboratory protocol.

### **Supplemental QC Information**

#### SAMPLE RECEIVING

The coolers were received at the North Canton laboratory at temperatures ranging from 2.1 to 6.0°C.

Sample RQ0018 was further preserved for the cyanide analysis.

Sample RQ0055 was received at the laboratory, but was not listed on the corresponding chain-ofcustody. Per the client's instructions, the sample was shipped to CECM-QAL on July 10, 1998.

The volatiles containers for samples RQ0026, RQ0053 and RQ0023 were received on July 11, 1998.

#### **GC/MS VOLATILES**

The matrix spike/matrix spike duplicate associated with sample RQ0023 in QC batch 8204133 exhibited Toluene and Chlorobenzene recoveries outside acceptance limits. However, since the associated method blank and laboratory control sample were in control, no corrective action was necessary.

Due to a power failure, no matrix spike/matrix spike duplicate was analyzed for QC batch 8204131. The laboratory control sample met QC criteria, and the data was accepted.

#### **GC/MS SEMIVOLATILES**

The matrix spike/matrix spike duplicate associated with sample RQ0023 in QC batch 8194133 and the MS/MSD in batch 8195116 both exhibited recoveries outside acceptance limits. However, since the associated method blanks and laboratory control samples were in control, no corrective action was necessary for either batch.

### CASE NARRATIVE (continued)

#### GC/MS SEMIVOLATILES (Contd.)

Sample RQ0020 exhibited 2-Fluorobiphenyl recovery outside acceptance limits. However, since the recovery was greater than 10% and all associated quality control met acceptance criteria, no corrective action was taken.

#### HPLC

The matrix spike/matrix spike duplicate associated with sample RQ0023 in QC batch 8195125 exhibited Tetryl and 2,4,6-Trinitrotoluene recoveries outside acceptance limits. However, since the associated method blank and laboratory control sample were in control, no corrective action was necessary.

#### METALS

Method blank contamination occurred.

- All affected analytes which were detected at a level less than 5% of the sample amount are flagged with "MBB".
- Where blank contamination was a common laboratory contaminant, and was less than two times the reporting limit, affected analytes are flagged with "MBD".

Matrix spike recovery and relative percent difference (RPD) data were not calculated for some analytes due to the sample concentration readings greater than four times the spike amount. See the Matrix Spike Report for the affected analytes, which will be flagged with "NC, MSB".

Matrix spike/spike duplicate recovery was outside the acceptance limits for some analytes. The acceptable LCS analysis data indicated that the analytical system was operating within control and this condition is most likely due to matrix interference. See the Matrix Spike Report for the affected analyte, which will be flagged with "N".

Serial dilution of a sample in this lot indicates that physical and chemical interferences are present. See the sample report pages for the affected analytes which will be flagged with "L".

The Matrix Spike Sample Evaluation Report contained in the quality control report was generated as part of the laboratory quality control program requirements. These requirements include the analysis of an MS/MSD on a one in twenty basis. Therefore, the associated MS/MSD may not reflect the same compounds as those of the samples contained in the analytical report.

Post-digestion spike recoveries were outside the acceptance limits for some analytes. The low recoveries may be attributed to matrix interference. See the sample report pages for the affected analytes which will be flagged with "Wa".

D-198

# CASE NARRATIVE (continued)

#### **GENERAL CHEMISTRY**

Matrix spike/spike duplicate recovery was outside the acceptance limits for Cyanide. The acceptable LCS analysis data indicated that the analytical system was operating within control and this condition is most likely due to matrix interference. See the Matrix Spike Report for the affected analyte, which will be flagged with "N".



888 Oak Nidge Tempite, Oak Nidge, 78 37831 (423) 481-4888

## COC NO .: L POI

### CHAIN OF CUSTODY RECORD

ŧ.

SDA IPAT MARE. BARADELL AMARAN										REQU	ÆSTE	ED PA	AMET	ERS					LABORATORY NAME:
PROJECT NAME: RAMSDELL QUARRY LA	MOFILL GROUNDWA	TER INVESTIGA	TION			Τ	Γ	Т	Г	Τ	1							<b>_</b>	Quanterre Environmental
PROJECT NUMBER: 81-0380-04-8558-1	56																		
					-	1			17										LABORATORY ADDRESS: 4101 Shuffel Dr. NW
PROJECT MANAGER: Stove Selecman										Ŋ.									North Canton, OH
Sampler (Signature)	(Printed Neme)	1			1														44720
Jul 1 Wh	5.	SEPH J	- WILSON						k	, Filmer	e l							la tidení V	PHONE NO: (330)966-9792
Sample ID		Data Collect	nd Time Collected	Metrix	3	SVOCe		ĮĮ			Cymid							le, of	OBSERVATIONS, COMMENTS, Special instructions
RQOOZ3	·	7/8/9	B 0945	SD		X	X	X	X									4	
RQ0053			. <i>1</i> 9945			X	X	X	Х									4	*
RQØØZ6	····		1045		L	X	X	X	X									4	
RQ0027			1100			X	X	X	X									Ū	
<u>RQ0028</u>			1115				X	X	X									4	
R <u>RQ @ 28</u>			1145			57	X	X	Ż									Ъ.	
RQ0032			1335			X	X	X	X					<u> </u>				1	
RQ00 33			1350			M	Ŷ	1	X					8				1	
RQ0035			145¢		<b> </b>	X	Ŷ	V	Ϋ́									-1	
RQØØ 38			1525			X	Ż	ŝ	$\mathbf{\nabla}$				- 8	<u> </u>				4	
R00054			1525			X	Ż	Ŵ	Ź								-	<del>I</del>	
RappyI		1	1545				X I	Ŷ								-		궤	
RQ0042		V-	1555			ŶĬ	$\exists$		쉿					<u> </u>				쓌	
RELINQUISHED BY:	Date/Time	RECEIVED BY:			<u>t                                    </u>			TAL A	<u></u>	ER OF	CON	ET A INI		<u>.</u>				4	
Ann 7 Wh	Tlutte	Plug	Menne	- 2/	0								.na: 		5	2		_	Cooler Tamperature:
GOMPANY NAME:	0174	COMPANYNAN	IE:		_		6.00	oler IC	):	G	a	١							FEDEX NUMBER:
		O Stor	TEXAA	72	1					q									NA
RECEIVED BY:	Date/Time	RELINQUISHED	BY:	Dat	e/Time			7	,	~	~	_	<u> </u>		thi				
Deny Burns	7-10-98		·						-	C		5	ter 1		ימי	> (	<i>(</i> a)	سعاد	
	9:00 AM	COMPANY NAM	E:																
ELINOUISHED BY:	Date/Time	RECEIVED BY:																	· · · · ·
	V 410/1910	INCOLITED DI:		Date	)/Time														
OMPANY NAME:		COMPANY NAM	E:	-1															1
	•	· · · · · · · · · · · · · · · · · · ·																	i i



888 Gek Ridge Tempike, Ook Ridge, 18: 37831 (423) 481-4888

### COC NO.:

LØØZ

.

1

## CHAIN OF CUSTODY RECORD

PROJECT NAME: RAMSDELL QUARRY LA		Γ					REQU	ESTE	ED PAF	RAME	TERS	 			LABORATORY NAME:			
		TER INVESTIGATIO	N			Γ	Τ		Γ					T	Т	Τ	Τ	Quanterra Environmental
PROJECT NUMBER: 01-0380-04-8550-15	56																	
PROJECT MANAGER: Stove Selecmen					1				3	1 .								LABORATORY ADDRESS: 4101 Shuffel Dr. NW North Canton, OH
Sampler (Signature)	(Printed Name)	·····						Ĺ									ł	44720
pert of Wel	J	sseph J	Wilson				1	1		- Hine							Of Change V	PHONE NO: (330)968-9792
Sample ID	······································	Date Collected	Time Collected	Matrix	VOCe	SVOCe	1			line i	Crant						10 10 10	OBSERVATIONS, COMMENTS, SPECIAL INSTRUCTIONS
Ra0044	· · · · · · · · · · · · · · · · · · ·	7/8/98	1640	50		X	X	X	X								<u>1</u>	
FQ0045			1645	Ţ		X	X	X	X						8 		닙	
	¥				_													
D-20																		
201											0.000							
																	_	
					7		$\leq$										_	
							78											
							_											
	·								-								T	
ELINQUISHED BY:			/															
	Date/Time	RECEIVED BY:	luna	Datel	Time a		TO	TAL N	UMB	ER OF	CON	TAINE	RS:		6	3		Cooler Temperature:
-Jonach J W J- OMPANY NAME:	rite(tg	COMPANY NAME:	Willin	1/10	<b>,</b>		Cea	oler ID	:									FEDEX NUMBER:
SAIL	0724	V		724							G	91						NA
ECEIVED BY:	Date/Time	RELINQUISHED BY:	······	Date/1	lime			_						<u> </u>	 			
Dessy Burns	7-10-98			_														
Quartena.	9:00tm	COMPANY NAME:																
LINQUISHED BY:	Date/Time	RECEIVED BY:		Date/T	ime													
IMPANY NAME:		COMPANY NAME:		1														
								<u> </u>						<b></b>				

Science Applications International Corporation

888 Gek Ndge Tumpike, Oak Ridge, TH 37831 (423) 481-4688

## CHAIN OF CUSTODY RECORD

.

COC NO .: LOO3

ś

							D20	неот		RAMET					
PROJECT NAME: RAMSDELL QUARRY LANDFILL GROUN	DWATER INVESTIGATION		┢╴			T							Γ	Γ	LABORATORY NAME: Quanterra Environmentat
PROJECT NUMBER: 01-0380-04-9558-158 PROJECT MANAGER: Steve Selecman															LABORATORY ADDRESS: 4101 Shuffel Dr. NW North Centon, OH
Sampler (Elganeture) (Printed			ł				1	í						¥	44720
Joseph J Wl	Joseph J	Wilson			Į.		r Fitner							iottiesi Yiel	PHONE NO: (330)968-8792
Sample 10	······································	Collected Metrix	YOCA	SYOCA	<u>s</u>	Ł		5						No. of Bo	OBSERVATIONS, COMMENTS, SPECIAL INSTRUCTIONS
RQ0021	718/98 1	LIG WA			X	X)	< X	X						9	
	· · ·														
					_		-								
<u>Å</u>			_		- 8									-	
D-202					-					- 8					
			$\exists$	<b>.</b> ,	. 8	8				- 8					
	·				_	-				-		0		_	
	-		_	Ŷ	为	8 8								_	
				-	-8										
						<u> </u>				-	<u> </u>	$\geq$		$\downarrow$	
		—			-	8				_	8-	-		_	
			- 00	-		8 8				- 88	8	_			
ELINQUISHED BY: Date/Time	RECEIVED BY:	Date/	 Time		 TOTA	<u>si</u>	IEER O	. <u> </u>	<u>.</u> T A the						
1mm gul 7/10/9			0	- F	Casle					na: 	. <u> </u>	 -9			color Temperature:
UMPANY NAME:	COMPARE NAME:	22	4	1	0.9410	10.		G	16	·				F	EDEX NUMBER:
	Gula TES RIL		-				<u>.</u>	<u> </u>		·	.,	 			NA
Derry Burne 7-10-9.	RELINQUISHED BY:	Date/1	lime												
DMPANY NAME		·													
Juantena 9130A	n														
LINQUISHED BY: Date/Time	RECEIVED BY:	Date/T	ime												
MPANY NAME:	COMPANY NAME:														

Science Applications International Corporation Science Applications International Corporation

\$

## CHAIN OF CUSTODY RECORD

*

COC NO.: [

Leey

PROJECT NAME: RAMSDELL QUARRY LANDFILL GR								REQU	ESTE	D PAR	AMETE	RS		_		LABORATORY NAME:
	IUNDWATEK INVESTIGATIO	N					1					Ĩ		<b>-</b>		Quenterra Environmentat
PROJECT NUMBER: \$1 8385 44 \$558 156									1							
PROJECT MANAGER: Stove Selecman	led Name)															LABORATORY ADORESS: 4101 Shuffel Dr. NW North Canton, OH 44720
Jun 1 W	- Jo	seph J Wi	ha			E #	Ta a	Ĩ							titles Viale	rhune wu: (330)966-9792
Sempis ID	Date Collected	Time Collected	Metrix	VOCE	SVOCE										l of Ber	OBSERVATIONS, COMMENTS, SPECIAL INISTRUCTIONS
RQ0020	7/8/48	1440	WA		X		$\overline{\mathbf{\lambda}}$	X	Å		-				8	
							4 \		-7							
											- 88			- 88	-	
				- 8					-					-		
D				- 8		-							-			
D		L	$ \rightarrow                                   $		<u></u>		-									
									_							
							$\overline{\ }$	<u>.</u>								
							1	9								
																/
· · · · · · · · · · · · · · · · · · ·													-			
······																
RELINQUISHED BY: Dete/T		1	Detei	<u> </u>	T	OTAL N	iumbi	ER OF (	 C	<u>ainf</u> i	<u> </u>  S•					
COMPANY NAME:	190 17NA 1	100m	_ 7/r	0		ooler iC	·							8	-	Cooler Temperature:
	COMPANY NAME:				Ĩ	40101 IU	•	-		2 1	27	•				FEDEX NUMBER:
- SARC 0721		KR17	724						D	<b>^</b> 1	22					MA
Leng Burro 7-19-	ne RELINQUISHED BY:		Dete/1	ime												
MPANY NAME 7-10-																
Prianterna, 0900	COMPANY NAME:															
	·····															
CLINUOISHED BY: Dete/Ti	NO RECEIVED BY:		Date/Ti	ime												
OMPANY NAME:	COMPANY NAME:		-													



\$

888 Oak Nidge Tampike, Oak Ridge, TH 37831 (423) 481-6888

### CHAIN OF CUSTODY RECORD

1 2

1005

COC NO.:

PROJECT NAME: RAMSDELL QUARRY LANDFILL GRO				L				REQUES	STED	PARAN	AETERS				LABORATORY NAME:
				4	1					IJ					Quanterra Environmental
PROJECT NUMBER: \$1-0380-04-8558-156															
		· · · · · · · · · · · · · · · · · · ·	<u> </u>	4											LABORATORY ADDRESS: 4101 Shuflel Dr. NW
PROJECT MANAGER: Stove Selecman									-	3					North Canton, OH
Samplar (Signaturo) (Prin	d Name)			1										ł	44720
Journ 7 When	Joseph	J Wilso	~			:   j				T N				ortiteel V	PHONE NO: (330)866-9792
Sarrapia (D	Date Collected	Time Collected	Matrix	A0C	SYOC					\$				Ne. of Be	OBSERVATIONS, COMMENTS, SPECIAL INSTRUCTIONS
<u></u>	7/8/98	ø8zø	WA	X										2	
Rapelo		Ø915	1	X										2	
<u> </u>		@915		X										2	· · · · · · · · · · · · · · · · · · ·
<u></u>		1330		X	XX	(X	X	X)	<b>d</b>				- 🕅	11	
- PRR DØ 20		1440		X										Z	
- <u><u><u></u></u><u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u></u>		1610	$\checkmark$	X										2	
RQØØ23		@945	Sto	X						8				1	
RQ 00 53		0945	1	$\mathbf{\dot{\lambda}}$										-	
RQODZ6		1045		$\mathbf{\hat{\lambda}}$						88 88		-			
RQ0027		1100		X						8		-		_1	
RQ0028		1115		Ŷ							<u> </u>	-	-	_4	
RQ @ 0 29		1145		уŀ	8-				-		<u> </u>	-		_[]	
		1335										-			
AELINQUISHED BY: Date/T	RECEIVED BY:	1 1922 1		<u> へ 🛯</u>	<u>∭</u>  _									_1	
		Leun	1 1	(Time		•••••••••		ROFC	ONT	NINERS			8		Cooler Temperature:
COMPANY NAME:	COMPANYMAME:		- 7/0		C	e o ler IE	):								FEDEX NUMBER:
SAIL 071	- QUAR	KAN	724	/					3	Z¢	5				NA
IECEIVED BY: Data/Ti		:	Date	/Time											
- 1 king Burne 7-10-	78							Z	(	$(\alpha)$	-5	for	H	is	Cooler
Duantena 970	COMPANY NAME:											1-			cueite.
			_												
.ELINQUISHED BY: Date/Ti	• RECEIVED BY:		Deta/	Time											
OMPANY NAME:															
Statistics and the state of the	COMPANY NAME:							-							
l															



688 Gol Ridge Tampita, Oct R/dge, TB 37831 - (423) 481-4688

## CHAIN OF CUSTODY RECORD

COC NO.:

LØØG

4

PROJECT NAME: RAMSDELL QUARRY L	ANDFILL GROUNDW/	ATER INVESTIGATION	M						REQ	UEST	ED PAI	RAME	TERS					LABORATORY NAME:
			······································														1	Quanterra Environmental
PROJECT NUMBER: 01-0380-04-9558-1	56									ĺ								
······································	<u> </u>									1						]		LABORATORY ADDRESS: 4101 Shuffel Dr. NW
PROJECT MANAGER: Steve Selecman																		North Canton, DH
Sampler (Signature)	(Printed Name	J															ł	44720
gran I WI	~	Joseph J	Wilson						Hiter a								orthus/Vi	PHONE NO: (330)968-9792
Sample ID		Date Collected	Time Collected	Matrix	20	SVOCE			Metaix, Fita	E							No. of Bol	OBSERVATIONS, COMMENTS, SPECIAL INSTRUCTIONS
<u>RQ0033</u>		7/8/98	1350	57	X												1	
RQ0035	· · · · · · · · · · · · · · · · · · ·	<u> </u>	1450		X												-	
RQ0038			155		X												$\frac{1}{1}$	
RQ0054			1525		X												╣	·
Kon II			1545		X												╎	
			1555		X									-	$\vdash$		뀨	
RODEYY		1	1640		X			-				-	- 					
RQ0045			1645		प्रे			8				- 8					井	
								8 8									4	
						-				_			<u>.</u>					
		<u> </u> [					_	<u> </u>				_						
					4													
	· · · · · · · · · · · · · · · · · · ·	·}}			<u> </u>							-						
		1								00000								
RELINQUISHED BY:	Dete/Time	REFERENCED BY:	1.	Date	Time	T	TOTA	LNUN	IBER O	FCON	IT AINE	ERS;			<u> </u>	<u></u>		Cooler Temperature:
COMPANY NAME:	7/10/50	Mrig V	Jam	Jyle	0	Ī	Cooler	ID:								<u> </u>		FEDEX NUMBER:
SALL	pny	COMPANY NAME:			,							3Z	12	1			1	NA
BECEIVED BY:	DetelTime	QUANE	HUA	729		-+							~	<u>.</u>				
Term Buna	7/10/98	RELINQUISHED BY:		Dete	Time													
OMPANY NAME	1. 7.2	COMPANY NAME:		-1														
Printer	9:00Am	COMPANY MAME:																
ELINQUISHED BY:	Dete/Time	RECEIVED BY:		Datei														
		Sector Mis.		Uale/	i Kîtê													
OMPANY NAME:		COMPANY NAME:		-														

Employee Owned Company Science Applications International Corporation

> พ Sample (D

0018

PROJECT NAME: RAMSDELL QUARRY LANDFILL GROUNDWATER INVESTIGATION

(Printed Name)

888 Oak Nidge Tampike, Oak Nidge, TH 37831 (423) 481-4888

PROJECT NUMBER: 01-0380-04-0550-158

PROJECT MÁNAGER: Steve Selecmen

Aunt 1

RQ

D-206

Sempler (Signature)

· ·		CHAIN	OF (	cus	; <b>TO</b>	DY	RE	COF	RD						(	300	; NC	).:	LOOB	
ER INVESTIGATION					+			REQU	IESTE	ED PA	RAM	ETER	S				··	LA	BORATORY NAME:	
			$\left  \right $					$\left[ \right]$	Γ	Γ	Γ	Γ	Γ	Γ	Γ	Γ	Τ	- Qui	anterre Environmental	
												į					Į Į	410	BORATORY ADDRESS: 01 Shuffel Dr. NW rth Canton, OH 720	
Jough J	- Wilse				l		letais, Tanal	Filters									Buttlesi Visier	PHC	DNE NO: (330)966-9792	
Date Collected	Time Collected	Metrix	VOC.	SVOCA		ł		Menule, Filo	1										OBSERVATIONS, COMMENTS, SPECIAL INSTRUCTIONS	
7/8/9B	0915	WA			$\lambda$	X	X	X	$\lambda$								٩	<b> </b>		·
( ' . 		L																		
					-															
					-		_		_				_							
			Þ		~				_				_		_					
			1	2	4	Ø	$\perp$		$\neg$		-		-		$\square$			 		
<u> </u>		······			_[				_		$\Rightarrow$		$ \downarrow $		_		-		·····	
			L		_		-				_		_		$\triangleleft$		$ \rightarrow $			
					- E	188.2	3	88-88 -	÷ (	80.024	- B	3.665	- E	1000	8	32.3	~			

·····	······································				
RELINQUISHED BY:	Date/Time	RECEIVED BY:	Daja/Time	TOTAL NUMBER OF CONTAINERS:	Cooler Temperature:
- Jung WIL	7/10/48	COMPANY NAME:	7/10	Cooler ID:	FEDEX NUMBER:
SAL HEEDRED BY: Derm Bur	Ø 724 Date/Time	RELINQUISHED BY:	72V DateiTime	B114	
OMPANY NAME:	7/10/98	COMPANY NAME:			
<u>Puanterra</u> ELINGUNSHED BY:	9:00 AM Date/Time	RECEIVED BY:	Date/Time		
OMPANY NAME:		COMPANY NAME:			
	; 				



666 Oak Nidge Tumpika, Oak Nidge, TN 37831 (423) 481-4668

c

## CHAIN OF CUSTODY RECORD

000	No	
COC	พบ	

LOOT

.

							REQUESTED PARAMETERS													
PROJECT NAME: RAMSDELL QUARRY L	NOFILL GROUNDWA	TER INVESTIGATION	l		-	Τ	CADONATON NAME									LABORATORY NAME: Quanterra Environmental				
PROJECT NUMBER: 01-0320-04-8558-158 PROJECT MANAGER: Stove Selecman																		LABORATORY ADDRESS: 4101 Shuffel Dr. NW North Canton, OH		
Sampler (Signature)	(Printed Name			···· ··· ···		[											¥	44720		
fright of Wil		_	5 Wilson				, Jan	i	Ĩ								intthesi Via	PHONE NO: (330)966-9792		
Semple ID		Date Collected	Time Collected	Matrix	Z0C	SVDCA		H	Ì								le. of B	OBSERVA TIONS, COMMENTS, SPECIAL INSTRUCTIONS		
RQ0051		7/8/98	0915	WA		Ň	X	X	×>	(X							9			
		· ·																		
									-						$\square$					
—— p ———														-						
207		··															_			
			<u> </u>		$\neg$					8							_			
									A B								-			
	·····	1	<u> </u>					<u>۴</u>	78											
									-			-					$\downarrow$			
	· · · · · · · · · · · · · · · · · · ·			·													-			
	· · · · ·																			
RELINQUISHED BY:	Date/Time	RECEIVED BY:	( /	Dele	Time		TOT	AL NU	MBER	OF CO	NTAINI	ERS:		2222503	9	2223		Cooler Temperature:		
COMPANY NAME:	07/10/90	COMPANENAME:	Jenn	-7/1	9		Ceo	er ID:							<u> </u>			EDEX NUMBER:		
Sutic	0724	Q.IAN TZ.	XAA	72	Ý					F	φġ	5		-				NA-		
RECEIVED BY:	Date/Time	RELINQUISHED BY:	<b></b>	Datel	_			<u></u>					,							
Reny Burs	1																			
COMPANY NAME:	0980AM	COMPANY NAME:																		
RELINQUISHED BY:	Date/Time	RECEIVED BY:	<u> </u>		Time															
					• WF <b>IC</b>															
COMPANY NAME:		COMPANY NAME:								•										
			· ·				•		<u> </u>											

### CASE NARRATIVE

The following report contains the analytical results for four water samples and two solid samples submitted to Quanterra-North Canton by Science Applications International Corporation from the Ravenna-Ramsdell Quarry Site, project number 01-0380-04-9558-156. The samples were received July 29, 1998, according to documented sample acceptance procedures.

Quanterra utilizes USEPA approved methods in all analytical work. The samples presented in this report were analyzed for the parameters listed on the Analytical Methods Summary page in accordance with the methods indicated.

Explosives and Propellants analyses were performed at Quanterra's Knoxville, TN and West Sacramento, CA facilities. (Because the CA laboratory operates on a different laboratory information [LIMS] system, the West Sacramento data is presented under a separate cover.)

The results included in this report have been reviewed for compliance with the laboratory QA/QC plan. All data have been found to be compliant with laboratory protocol.

### **Supplemental QC Information**

#### SAMPLE RECEIVING

The coolers were received at the North Canton laboratory at temperatures of 6.8, 7.8 and 7.4°C.

#### **GC/MS VOLATILES**

No anomalies were encountered.

Sample(s) which contain results between the MDL and the RL are flagged with "J". There is the possibility of false positive or misidentification at these quantitation levels. In analytical methods requiring confirmation of the analyte reported, confirmation will be performed only down to the standard reporting limit (SRL). The acceptance criteria for quality control criteria may not be met at these quantitation levels.

#### **GC/MS SEMIVOLATILES**

The method blank associated with samples RQ0064 and RQ0065 had contamination in excess of the acceptance criteria. Upon re-extraction and re-analysis, all QC met acceptance criteria, however the holding time had been exceeded. Both sets of data are reported.

The matrix spike/matrix spike duplicates associated with batches 8215126 and 8228102 exhibited RPDs outside acceptance limits. However, since the associated method blank and laboratory control sample were in control, no corrective action was necessary.

Sample(s) which contain results between the MDL and the RL are flagged with "J". There is the possibility of false positive or misidentification at these quantitation levels. In analytical methods requiring confirmation of the analyte reported, confirmation will be performed only down to the standard reporting limit (SRL). The acceptance criteria for quality control criteria may not be met at these quantitation levels.

### CASE NARRATIVE (continued)

#### **HPLC** - Explosives

The matrix spike/matrix spike duplicate associated with batch 8217164 failed recovery and RPD criteria. The laboratory control sample associated with this batch was in control. This is believed to be a matrix effect; therefore, no further corrective action was taken.

Sample(s) which contain results between the MDL and the RL are flagged with "J". There is the possibility of false positive or misidentification at these quantitation levels. In analytical methods requiring confirmation of the analyte reported, confirmation will be performed only down to the standard reporting limit (SRL). The acceptance criteria for quality control criteria may not be met at these quantitation levels.

#### METALS

Matrix spike/matrix spike duplicate recoveries were outside the acceptance limits for some analytes. The acceptable laboratory control sample analysis data indicated that the analytical system was operating within control and this condition is most likely due to matrix interference. See the Matrix Spike Report for the affected analytes, which will be flagged with "N".

Matrix spike/spike duplicate relative percent difference (RPD) exceeded the acceptance limits for some analytes. The imprecision may be attributed to sample heterogeneity. See the Matrix Spike Report for the affected analytes which will be flagged with "*".

Matrix spike recovery and relative percent difference (RPD) data were not calculated for some analytes due to the sample concentration reading greater than four times the spike amount. See the Matrix Spike Report for the affected analytes which have been flagged with "NC, MSB".

#### **GENERAL CHEMISTRY**

No anomalies were encountered.



888 Ook Ridge Tumpike, Ook Ridge, TH 37831 (423) 481 4888

CHAIN OF CUSTODY RECORD

۰.

COC.NO.: Løzø

.

										REQUE	STE	D PAR	LABORATORY NAME:					
PROJECT NAME: RAMSDELL QUARRY L	ANDFILL GROUNDW/	TER INVESTIGATIO	N			T	Τ	Τ	Γ	Π				Π		Т	Т	Quanterra Environmental
PROJECT NUMBER: 01-0300-04-5558-19 PROJECT MANAGER: Stove Solecman	PROJECT NUMBER: 01-0300-04-9558-158 PROJECT MANAGER: Steve Selecman											- 73						LABORATORY ADDRESS: 4101 Shuffel Dr. NW North Cention, OH 44720
Sampler (Signature)	(Printed Name	J			1							*	ł					71/20
form of Wh	Jonp	h. J Wi	),m						Ĩ	Titer a		meh 15						PHONE NO: (330)966-9792
Sample ID		Data Collected	Time Collected	Metrix	, S	SVOCE					5	R						OBSERVATIONS, COMMENTS, SPECIAL INSTRUCTIONS
RODOLT RODOLT		7/27/48	10139	WA		Х	X										4	
Rappo 47		1	<b>8</b> 839		Γ	X	X	X									6	
KQOOLY			0949	SP	$\overline{X}$	X	$\overline{X}$	X	$\square$	<b>,</b>	$\mathbf{r}$	X					5	
Rapols			eg 49		X	抔	$\overline{\lambda}$	X				X	-			-	5	
							È								-	-	Ľ	
				·····	F													
																	-	
							┢─				_						-	
					-		-									- 232		
	<u></u>				-	æ	79								-			
· <u>····································</u>									_		_						<b>_</b>	
							<u> </u>		_	<u> </u>		<u></u>						
·	•			<u>_</u>					_									
		· · · · · · · · · · · · · · · · · · ·																
RELINQUISHED BY:	Date/Time	RECEIVED BY:	Noi .		l/Tim	10	π	OTAL N	UMB	ER OF	CON	TAINEI	7S;			2	Ø	Cooler Temperature:
COMPANY NAME:	7/29/98	COMPANY NAME:	penn	= 7/2	9		0	o eler i E	):									FEDEX NUMBER:
<u>547</u>	0730	COMPANY AME:	RRA-	730	12	r				é	93	τ						
RECEIVED BY;	Date/Time	RELIMOUTSHED BY	The second				┢	-				<u> </u>	<u>-</u>					
		RELIVOUTSHED BY	lum	7/2	9	-												
COMPANY NAME:	1	COMPANYNAME:	·	85														
·		QUANT	RAA	03	- (	,												1
RELINQUISHED BY:	Date/Time	DEAGINEA BY.		Data	/Time		1											1
		Jami SI	ephens	- 7-2														
COMPANY NAME:		COMPANY NAME:																
·····	ļ	Quan	terra	0:5	50	A												



688 Oak Nidge Tempike, Ook Nidge, TH 37831 (423) 481-4888

#### **CHAIN OF CUSTODY RECORD**

٠.

PROJECT NAME: RAMSDELL QUARRY LANDFILL GROUNDWATER INVESTIGATION       LABORATORY NAME: Quanterra Environmental         PROJECT NUMBER: 01-0380-04-9550-156       LABORATORY ADDRESS: 4101 Shuffel Dr. NW         PROJECT MANAGER: Stove Selecmen       Project MANAGER: Stove Selecmen	
PROJECT NUMBER: 01-0380-04-9558-150  PROJECT MANAGER: Stove Selecmen  PROJECT MANAGER: Stove Selecmen  Project Manager: Stove Selecmen  Project Manager: Stove Selecmen	
PROJECT MANAGER: Steve Selecmen  PROJECT MANAGER: Steve Selecmen  Project Steve Selecmen  Printed Nemel  Printed Nemel	
PROJECT MANAGER: Steve Selecmen           Sampler (Signature)         (Printed Name)	
Sampler (Figure bare)	
Sumpler (Signature) (Printed Name)	
	••••••••••••••••••••••••••••••••••••••
Ample of Wilson Joseph J Wilson	
Barrylo IDA     1-5*97     Date Callestad     Time Collestad     Matrix     3     3     3     4     4     5     0     5     0       RQ8047     7/27/48     0839     WA     XXX     3     3	
$\frac{RQ0017}{1}$	-
RELINQUISHED BY:         Date/Time         RECIVED BY:         Date/Time         TOTAL NUMBER OF CONTAINERS:         B         Cooler Temperature:           Sound of the state         7 /29 Mg	
COMPANY NAME: 1724 IS COMPANY NAME: 7/29 Cooler ID: FEDEX NUMBER:	
SATE OTZY CHAPAGE 73012 A53	
RECEIVED BY: Date/Time RELINGUISHED BY: 1 /1 Date/Time	
New Viture 7/29	
COMPANY NAME:	
RELINQUISHED BY: Date/Time RECEIVED BY: Date/Time Date/Time	
COMPANY NAME: 7-29-98	
Quanter 0:50 A	

COC NO.: LØ21



888 Oek Nidge Tumpike, Oek Ridge, TH 37831 (423) 481-4608

COC NO .: LOZZ

. .

#### **CHAIN OF CUSTODY RECORD**

		REQUESTED PARAMETERS										LABORATORY NAME:			
PROJECT NAME: RAMSDELL QUARRY LANDFILL GROUNDWA	TER INVESTIGATION	Y													Quanterra Environmental
PROJECT NUMBER: 01-0380-04-9558-156 PROJECT MANAGER: Stove Selecman															LABORATORY ADDRESS: 4101 Shuffel Dr. NW North Canton, OH 44720
Sampler (Signature) (Printed Name) Shum 1 Will Joseph J Wils-								te la						thes. Vinter	PHONE NO: (330)966-9792 I
Sample ID	Data Collected Time Collected		Matrix	VOCe	SV0C.	Explosives	Propellents	Metala, Total Metala, Filtera	Cyenide					No. of Bottle	OBSERVATIONS, COMMENTS, SPECIAL INSTRUCTIONS
Rix0063 Rix0063 Rix0017 Rix00047 Rix0007	7/27/98	657100	WA	X	Sec. 33									3	
RDB017		6839		X										3	1
Rong47		6879		X										3	
Roman		1449	1	X	X	X	χŅ	< 🕅	$ \lambda $	·				12	<u> </u>
D-213															
3															
·															
		71.	×												
	•	/ /	178												
														-	
RELINQUISHED BY: Date/Time	RECEIVED BY:	no.	Dat	te/Tim	e	TOT	AL NU	MBER	OF C(	DNTAI	IERS:		2	1	Cooler Temperature:
\$5.00 - 10 - 10 - 10 - 10 - 10 - 10 - 10 -	100	jun	71	29	9 Cooler ID:										FEDEX NUMBER:
COMPANY NAME:	COMPANYNAME: COMPANYNAME: COMPANYNAME: CONNTERNA 73									93	5				
RECEIVED BY: Date/Time	RELINQUISHED BY:			e/Tim											L
	Accingoioned B1.				•										
COMPANY NAME:	COMPANY NAME:														
						.									
RELINQUISHED BY: Detel¥ime	RECEIVED BY: Dat			e/Time											
COMPANY NAME:	COMPANY NAME:														

### **APPENDIX E**

### **GEOTECHNICAL DATA**

### INITIAL PHASE REPORT GROUNDWATER INVESTIGATION RAMSDELL QUARRY LANDFILL RAVENNA ARMY AMMUNITION PLANT

Geotechnical Sample ID	Sampling Location	Depth Interval
		(ft)
RQ0006	RQLmw-006	1 - 2
RQ0016	RQLmw-011	0.3 - 1.0
RQ0023	RQLsd-012	0 - 0.5
RQ0028	RQLsd-018	2-4
RQ0029	RQLsd-019	0-0.5
RQ0033	RQLsd-013	0.5 – 1.25
RQ0035	RQLsd-014	0-0.5
RQ0038	RQLsd-022	0-0.45
RQ0042	RQLsd-023	0.5 - 1.2
RQ0044	RQLsd-024	0-0.5

#### Table E-1. Geotechnical Sample Locations and Depths

# SUMMARY TABLE OF RESULTS FOR RAMSDELL QUARRY LANDFILL GROUNDWATER INVESTIGATION

0

SAMPLE NO.	MOISTURE CONTENT (%)		RBERG		CATION	SUEVE A	NALSIS	% PASSD	NG)				······				
RQ0023	<b></b>	LL	PL	P1		3"	2*	11/2*	3/4"	3/8"	#4	#10	#20	#40	#60	#140	#200
RQ(0)28	44.4	35.5	18.7	16.8	CL	100	100	100	100	74.9	59.8	47.0	40.2	35.0	26.1	3.5	0.5
R00029	43.3	<u>50.1</u>	33.8	16.9	MI	100	100	100	100	100	97.3	88.3	78.7	68.4	52.7	9.9	0.9
R00033	<u>22.3</u> 64.9		NP_			100	100	100	94.3	81.7	73.2	67.8	60.9	54,4	43.2	7.1	0.4
ROXI035	89.9		NP			100	100	100	100	96.1	76.7	61.3	55.6	52.2	46.6	3.4	0.3
R00038	103.7	34.7	21.7	13.0	CL	100	100	100	100	98.4	92.5	77.9	68.4	58.5	46.7	9.5	0.3
R00042	68.4		NP			100	100	100	90.8	63.8	50.3	42.8	37.8	33.7	28.3	3.5	0.3
RQ0044	97.1	42.6	31.3	11.3	ML.	100	100	100	100	100	93.2	77.5	69.9	65.9	60.3	9.8	0.6
RQ0006	11.5	43.6	45.8	9.2	CL	100	100	100	100	83.0	74.5	64.7	55.0	46.6	37.4	7.5	0.5
RQ0016	4.2		NP	41.1		100	100	100	100	100	91,4	72.9	48.8	33.9	20.6	4,8	0.4
	ليمد مستسمي مسا	L				100	100	100	93.3	60.7	40.5	33.0	29.8	27.9	25.4	2.8	0.4

## SAMPLE NO.

RQ0023	SC	GRAY CLAYEY SAND
RQU028	MH	BROWNISH GRAY SILTY SOIL
RQ0029	SP	BROWN SAND W/ ORGANICS (ROOTS)
RQ0033	SP	BROWNISH GRAY SAND
RQ0035	SC	DARK BROWN GRAY CLAYEY SAND
RQ0038	SP	ORAY SAND
RQ0042	ML	BROWNISH GRAY SANDY SET
RQ0044	MH	BROWNISH GRAY SILTY SOL
RQ0006	SC	BROWN CLAYEY SAND
RQ0016	SP	YELLOW-ORANGE SAND W/ ROCKS

UC\$

CATLIN Engineers and Scientists Geotechnical Laboratories

.

### **APPENDIX F**

### SURVEY DATA

### INITIAL PHASE REPORT GROUNDWATER INVESTIGATION RAMSDELL QUARRY LANDFILL RAVENNA ARMY AMMUNITION PLANT

	Ground Surface Elevation	Top of Casing Elevation
Well I.D.	(ft)	(ft)
MW-1	985.42	986.22
MW-2	982.73	985.05
MW-3	973.52	976.17
MW-4	990.66	992.06
MW-5	976.11	977.76

Table F-1. 1997 Survey Data for RQL Monitoring Wells (USACE)

`

					Page 1
1	JOB: 987 amsdell (	ect No. 98713.0 7130-4.CR5 Quarry Landfill	TIME: 14:44 © RAAP	DATE: 08-10-1998	*****
	Point	Northing	Basting	Elevation Note	
	#======== 20	566551.954000		963.240 LF 1	▋ヸ゚゚゚゚゚゚゚゚゚゚゚゚゚゚゠゚゚゚゚゠゚゚゚゚゚゚゚゚゚゚゚゚゚゚゚゚゚
	21	566751.960000	2375594.931000	986.130 MW-1	
	22	566857.393000	2376048.582000	982.140 MW-10	
	23	566819.656000	2376398.191000	976.570 MW-11	
1	24	566257.860000	2376407.059000	981.920 MW-2	
	25	566750.378000	2376486.901000	975.570 MW-3	
1	26	566160.412000	2376105.600000	991.800 MW-4	
	27	566840.247000	2376248.946000	977.600 MW-5	
2	28	566091.259000	2375927.713000	995.390 MW-6	
	29	566544.355000	2375872.562000	965.910 MW-7	
1	30	566327.945000	2376011.082000	966.080 MW-8	
í	31	566351.199000	2376253.654000	964.580 MW-9	
	<b>-</b> 32	566867.009000	2376450.822000	973.420 RAV 8	
	_ 101	566544.355000	2375872.562000	965.910 MW-7	
i	102	566857.363000	2376048.566000	982.090 MW-10	
	103	566748.377000	2375936.989000	961.660 STAFF	
	104	566256.253000	2376331.608000	983.120 LP-1A	
•	105	566415.990000	2376008.469000	959.020 RQL.SD.17	
;	106	566557.971000	2376056.962000	961.130 19	
	107	566673.510000	2375987.889000	959.490 18	
	108	566404.695000	2376189.680000	957.300 20	
1	109	566773.518000	2375937.998000	956.130 24	
	110	566729.317000	2375989.573000	956.080 23	
i	111	566675.694000	2376077.227000	956.660 22	
	_ 112	566602.688000	2376177.669000	956.810 21	

### **APPENDIX G**

### **UXO SURVEILLANCE REPORT**

INITIAL PHASE REPORT GROUNDWATER INVESTIGATION RAMSDELL QUARRY LANDFILL RAVENNA ARMY AMMUNITION PLANT

#### SUMMARY REPORT RAVENNA ARMY AMMUNITION PLANT RAVENNA, OHIO RAMSDELL POND AND QUARRY AREA

EOD Technology, Inc. (EODT) was notified by Kathy Dominic and Steve Selecman of SAIC to mobilize one UXO technician on Monday, July 6, 1998, to the Ravenna, Ohio site. The project took two working days to complete with site work commencing July 7, 1998, and concluding July 8, 1998. The task was to conduct UXO avoidance in support of SAIC's soil-sampling activities in and around the Ramsdell Pond and Quarry. During the course of the project, no ordnance and explosives, unexploded ordnance, or ordnance related scrap were encountered.

In ensuring personnel safety, Billy Francis, the EODT UXO technician, assisted SAIC in the on-site training by discussing the types of UXO possibly present and their hazards. In addition, a Schonstedt 72 CD gradiometer and a Schonstedt MG 220 underwater/downhole magnetometer were used to clear access lanes and underwater sampling locations. The only metallic objects encountered were pipes, fittings, various pieces of scrap metal, channel steel, angle iron, culverts, cross ties, and an empty metal drum.

A total of four soil samples were taken in the quarry and four in the pond. The pond was two-to-four feet deep and the pond soil samples were taken from a Jon Boat.

The following personnel were on site at one time or another:

NAME	<u>COMPANY</u>
Steve Selecman	SAIC
Kathy Dominic	SAIC
Joe Wilson	SAIC
Heather Smith	SAIC
Paul Luct	SAIC
Mike Klidezys	SAIC
John Jent	USACE
Kenneth Henn	USACE
Billy Francis	EODT

Summary Report Page 2

Monday, July 6, 1998:

Mobilization - Billy Francis, the EODT UXO technician, mobilized to the Kent, Ohio Holiday Inn, with all necessary equipment and data forwarded to the Holiday Inn. Mr. Francis prepared the equipment and purchased marking material locally.

Tuesday, July 7, 1998:

The weather was very hot and humid. The day consisted of a briefing by Kathy Dominic and Joe Wilson prior to commencing site activities. Billy Francis reconnoitered the site and then cleared access lanes to and around the four quarry soil-sampling locations. The latter part of the day consisted of assisting SAIC in obtaining and checking equipment to include the Jon Boat.

Wednesday, July 8, 1998:

The weather was once again hot and humid. Billy Francis assisted SAIC in obtaining four quarry soil samples and cleared the four underwater soil-sampling locations in support of pond soil sampling.

Thursday, July 9, 1998 Billy Francis was released by SAIC and demobilized from the site.

A copy of the daily log is attached as requested.

MONDAY 6 JULY 1998 Deport owensboro, Uy. P.O.V. 2900 Travel to Kent this EOD Support for S. A. I. C. Ravenna army ammo Plant Rovenna okio. 1315 arrive Kent ohio checked in Holiday Lin Ht. 19 / _V G-5

TUESDAY 75 July 1992 730 Reporter To Kathy Somenie. Project manager for SAIC, Scientific applications Industrial Corporation Ravennae Army amo plant Kavenna, open Introduced & Following members of SAIC on Sile. Joe Wilson Heather Smith - Paul huct Mike Klidzejs. Steve Selecmon Kathy Sominic Representivés pour army lorps of Engineers touisville, Ky, Or Site John Jent Kenneth Henn, 1100 Safety and Work Place by Kathy Dominul. and Joe Wilson for all On Sile personnel. 12. 5 Lunch 1300 Recor of Ramsdell Pond area Clearance of access lanes and Four

IVESDAY 7 July 1998 Sampling Sites outside of ford area, Rest of afternoon Dathered alf tools & Equipment plus 10' Jon Boat te complete Soil Sompling projet fr. Wednesday & Juck 1998 '800 Return & Moter

WEDNESDAY & JULY 1992 330 REPORT TO BUILDING 1036 RAAP Otto. 145 Depart for Komsdell ford, & Complet Soil Sompling and ED-Support M Joe wilson & foul Luct Two Dathering Soil Somples from fond. no loidenies of any Types of ordnonce and to Scrop Ordinance. all Scrop metal tensisted of fipe, fipe Fittings angle Steer Channel Steel metor Drum metal luberts and metal Forme post. no reading from Magnatometer at Soil Sompling Sites The reading M. Under woles Setes Sompled, pour Depth from 1' To 4' Mogimum depthy Completed del Eight (8) Joir Sompling Sites the Sate & readerwater & 4 outside permits of pond. Markelon fond Mol 1830 Retien to Motel Endoy Log Billy J-Frances & July 98 ---

Thursdoy 9 July 1998 0600 Deport akron Ohio Returning to ownslow they completion of Propert. On SATE, no Ees Support was requested by project monage Kathy Dominic & wel detling released after Two (2) doy by project manage 10m was 1 G-9

### **APPENDIX H**

# SEDIMENT SAMPLING LOGS

## INITIAL PHASE REPORT GROUNDWATER INVESTIGATION RAMSDELL QUARRY LANDFILL RAVENNA ARMY AMMUNITION PLANT

HTRW DRILLING LOG DISTRICT ouisville, KY HOLE NUMBER COMPANY NAME RQL=d-Ø17 2 DRILL SUBCONTRACTOR NA SHEET 3. PROJECT Ram 4. LOCATION Landfill VIZOU Ramsdel 6. MANUFACTURERS DESIGNATION OF DREAT S NAME OF DRILLER 7. SIZES AND TYPES OF DRILLING AND SAMPLING EQUIPMENT K)A 3" dia, Stainless stee BOLSO bucket aver, stainly steel bowls -01 and spoons 9. SURFACE ELEVATION 10. DATE STARTED 11. DATE COMPLETED 12. OVERBURDEN THICKNESS Ø.6 NA 13. DEPTH DRILLED INTO ROCK 16. DEPTH TO WATER AND ELAPSED TIME AFTER DRILLING COMPLETED 14. TOTAL DEPTH OF HOLE 6 17. OTHER WATER LEVEL MEASUREMENTS (SPECIFY) 18. GEOTECHNICAL SAMPLES DISTURBED ROUNZZ 20. SAMPLES FOR CREMICAL ANALYSIS UNDISTURBED 19. TOTAL NUMBER OF CORE BOXES JA k VOX METALS OTHER (SPECIFY) RODO 23 RODO STRONOS OTHER (SPECTEY OTHER (SPECIFY) 21. TOTAL CORE RECOVERY * MONITORING WELL 5000 XD BACKFILLED chellant OTHER (SPECIFY) L IA LOCATION SKETCH/COMMENTS Approximate sample locations SCALE: "= 15Ø! Ramsde Bono XMul 9₂₀ ROLSO X MW-3 ·Round-023 Rand-01X Ral-OT Rolat 22 eaend Approximate Landfill Bandry MW-2 sediment sample T SUFFACE HO T Selament PROJECT Statt are HOLE NO RQ ENG FORM \$056-R. AUG 94 H-3

(Proponent: CECW-EG)

TASK TEAM ACTIVITY LOG SHEET LOCATION : HOLSD-(0) PROJECT NAME: Ramsdell Quarry Landfill GW Investigation **DELIVERY ORDER NO: 003** Date (mm/dd/yy): ____ Su M Tu W Th F Sa PAGE 0F Task Team Members: Paul Lucot -ocation:ROLsc Joe Wilson ate#s: R00053 (EOD Technician) Franccis Narrative (include time and location): arse cat tails growing on surface \$ 0.5' of standing water <u>xildina#1ø36</u> -up to collect surface water sample ID 18¢ solit I RQ0052 Poluplicate JD RQ0051 5/cm -000 =D.O. =- 1.91 ma/ lemp. = Z1°C 8.1250 1945-sediment is poorly sorted GRAVEL with traces of sitt and sand, wet, dark gray, gravel is subangular to submunde 2945-Collect sediment sample ID KO0023, split KQ0055 and duplicate TD RQ0053 From 0.0'-Headspace = 199 ppm Daily Weather Conditions: A.M. <u>Mid ZOE, Overcast</u> (~0.75" of rain overnight. NA Juci QA Checked By Jour 1 Wh Recorded By H-4

ROJECT NAME: Ramsdell Quarry Land	ASK TEAM ACTIVITY LOG SH dfill GW Investigation	DELIVERY ORDER NO
late (mm/dd/yy): $\underline{1}\underline{8}\underline{9}\underline{7}\underline{7}$	Su M Tw Th F Sa	PAGE_2_OF_Z
Paul Lucot		
Joe Wilson		
Bill Francais (EOD Te	chnician)	
Varrative (include time and location):		
1020: ReFusal at	Ø.6' on sandsto	ne, bedroc.K.
toto: Spit sample Record ~		
Note: Split Sample ROBOSS arriv	ed @ Omeha Labs abou	
temperature. Will re-collect		$\mathbf{X} \boldsymbol{\rho}$
	1	
		/
	56	
¥	195	
/A	<u></u>	
ly Weather Conditions: A.M. <u>Mid. 80</u>	s ¢overcast (~Ø.75"	of rain overnight)
P.M. NA		
orded By <u>Faul Jucit</u>	QA Checked By Jonn's	1 W.L

TASK TEAM ACTIVITY LOG SHEET Location: RQL=d-018 **PROJECT NAME: Remsdell Quarry Landfill GW Investigation DELIVERY ORDER NO: 003** Date (mm/dd/yy): Su M Tu(W) Th F Sa PAGE OF Task Team Member ocation: RQLsd-018 Secliment Sample#s RQØØ26 Ø.Ø RQØØ27 Ø.5 FOD lec RQQQ28 Narrative (include time and location): Sample location is ~ 5' From south side of pond in thick cat tails to collect sed repare-SIMDLe Sectiment Sample II From 0.05-01.5 KOM261,4091 ppm with some organic debris and scdiment iS traces of sand and gravel brown. We 27 From Ø.5'-2.0' samole. 130.9 Sedment with some coasse sand to medium , sand and arguel are angular to subangular sandstone grave and shale Fragments, traces of organic debris 1115: Collect sediment sample I From 2.0'-4.0' エムシ is Silty CLAY with some poorly sorted. 1.409 ppm diment LAY is mottled CP 050 7/13/98 Daily Weather Conditions: A.M. Mid 80'S OVERCOS of rain ova Recorded By QA Checked By Grad A W.J. H-6

4

•	ł		1		ş	d	ģ	ĝ.	ş	ġ	é	9	ŝ	2	i.	Ś		ĝ,	1		ĝ	ŝ	ģ	ŝ	ġ	ģ	ŝ	Ś	ò	ÿ	Q.	3	3	ų,		ġ	ģ		ŝ	Q.	ŝ	Q	ź	į,	4	ģ	à,	÷		ġ	ł.	ŝ	2	ì	s	ł	Q	ŝ.	g	6	1	2	ŝ	1	١,	ċ		ł	į.		т		i.	-	Ľ				2	9	Ā	1	2	ï	Ĩ	7	3	ł.
Ś	1		٦	ï	¢	1	1	f		ġ	1	F	1		į,	ġ	Ŕ	A	8	8	ł	Ì	Ē	ą	ſ	ŧ	ţ	ł	Ľ	1	Ċ.	v	e	į.	ł	à	Ē	i	٢		ŝ		Ċ	1	H	Í	F	t		Ŧ	Ċ.	8	3		Ċ,	C	Y	Ċ.	C	ì	Л		i.	2	>	ſ	ł	S.	1	ł	1	Ċ.	4	-	ł	L	į,	2	۲	3	l	Ŷ	L	J	ŧ	2	1	L
þ	ľ	1	0	ł	2	1	ŝ		÷.	3	3		2	Ċ.		Z	à	2		Ċ	ŝ	ŝ	č,		5			2	1	5	5	ş	ŝ	0	2	ć	20	ð	Y	1	3	0	Č.	ŝ.	ł	ų	5	1	÷	•	þ	ŝ		ć	5	ं	5	à	÷.		X		ł,	3		0	Ĩ	2	÷	÷		÷	÷.		÷,		-	÷		÷	÷	÷			-	-	-	-

#### **pROJECT NAME: Remsdell Quarry Landfill GW Investigation**

DELIVERY ORDER NO: 003

タマ Date (mm/dd/yy): 0F Su M Tu W Th F Sa PAGE Task Team Members: Paul Luco Location: RQL=019 Sediment Sample#5 Joe Wilson 20 <del>م</del> ر Francais (EOD Technician)

Narrative (include time and location):

----

- Native warm season grasses on surface of location
1140: Go to sample location RQLsd-019
1145 : Collect sediment sample # RQ0028 From 0.0'-0.5'
-sediment is CLAY with some silt and traces of gravel
and grass roots, light brown, moist (P.I.D. = Ø. Oppm)
Retusal@ 0.5' on sandstone bedrock
a l
107
718140
Daily Weather Conditions: A.M. NA
() P.M. Mid 80's, succast (~0.75" of rain last night)
Recorded By P.M. Mid 80's, succast (~0.75" of rain last night) Recorded By Dulf with a Checked By Goup - 1 Und H-7
H-/ /

10 Location : RQLsd ØZ( TASK TEAM ACTIVITY LOG SHEET project NAME: Ramsdell Quarry Landfill GW Investigation **DELIVERY ORDER NO: 003** Su M Tu W Th F Sa Date (mm/dd/yy): _( OF PAGE \ Task Team Members Faul Lucot ocation: RQL=d-020 Sediment Sample#5 Joe Wilson Ø.<u>Ø'-Ø.5</u> .ØØ37 05'-125 Bill Francais (EOD Technician Narrative (include time and location): -sample location has Ø.5' of standing water & dense cat tail growth Set-up at RQLsd-020 330: Collect surface water sample ID# 0H=8.94 Cond= (8.516 m5/cm hrt >1000 D.O. = Ø.16 mu/1 Temp. = 25.8° 1335: Collect sediment sample RG0032 From 0.0'-0.5' LAY with organic debris and traces of 61.7 pm - Dilty ( Fine sand, wet, light gray 33 From (0,5'-1.25' Collect sediment sample # RQØØ -sediment is SILT and poorly sorted Gravel with some organic debris, gravel is angular to subangular, gray, wet on hard sandstone bedrock **Daily Weather Conditions:** A.M.  $\mathcal{N}$ Mid 80's, overcast (~0.75" of rain overnight) Jonah O W J QA Checked By _ H-8

13 Location: RQL=021 ĻĻ TASK TEAM ACTIVITY LOG SHEET **pROJECT NAME: Ramsdell Quarry Landfill GW Investigation DELIVERY ORDER NO: 003** Su M Tu(W) Th F Sa Date (mm/dd/yy): PAGE 0F Task Team Members 2212 K01-----0.2ocation iment Joe Wilson 0,0'-0,5 Sample # (EOD Techician minicis Narrative (include time and location): Socialized Location : ROLSOL-021 (Q0020 144Ø: tacewater sample. is approximately 2.5' deer nH=7.91 50 37(mS/cm_ohi UTU 52 mal <u>lemp.= 24</u> ment sample ID* RQ00 From Ø.0'-0.5' pst 78/98 with Organic debris and PID=Fra canaular sandstone. gravel, gravel traces ot is anaular to sut WP  $\left( \cap \right)$ harc 00 โดเอ 11 13/48 Duity Weather Conditions: A.M. NA 1; d 80's, overcast (Q.75" of rain evernight) ded R QA Checked By H-9

Location: RQL-3d-022 TASK TEAM ACTIVITY LOG SHEET PROJECT NAME: Ramsdell Quarry Landfill GW Investigation DELIVERY ORDER NO: 003 12/98 Nate (mm/dd/yy): ( Su M Tu(W) Th F Sa PAGE OF Task Team Members TN JCO acation: RQL-501-022 Sediment Sample #/s 1. Scip? <u>SUN</u> Duplicate # ; trancais EOT  $\mathsf{R}^{\mathsf{III}}$ lochnician) Narrative (include time and location): Sediment Location: RQL=022 .oarl sample at station ROLsol-022 Samak R Water is approximately 3.0' deep amo = 8.38 su Ø.356 mSkm lonC lor 2 mall emD.= 12 ediment sample and duplicate COM 0.45'some gravel and sand, gravel with sorted and angular 13 DOOR wet. 45' on cobt etusa  $\odot$ boulders and Daily Weather Conditions: A.M. NA d 80% tovern **QA Checked By** H-10

6

TASK TEAM ACTIVITY LOG SHEET Location RQL-0123 pROJECT NAME: Ramsdell Quarry Landfill GW Investigation DELIVERY ORDER NO: 003 Date (mm/dd/yy): ____ Su M Tu W Th F Sa PAGE | OF \ Task Team Members: Luco Location: RQLsd-0123 Sediment Wilson ore. Somple#s. RGØ Technician EOI Francois Narrative (include time and location): Collect sediment sample  $\mathbf{y}_{\mathbf{F}}$ RQ0041 From 0.0'-X5' PI.D= 1999 sediment is SI with some gravel, gravel is poorly d and angular to subaraubr. We ect sediment sample 1 -2.Ø' trom is PID=338 ol ment SILLAND some gravel, .grave is poorly sorted and angular to subangular, dark gray, a wet Refusal@ 1.2' on hard material Water Quality@ RQL=d-023 DH= 8.19 SU ζ, .312 m.S/cm 2 MTU3 7.83 ma/1 24.200 lemp, = Weather Conditions: A.M. N/A Mid 80's # wercast .75" of rain last night) QA Checked By Parci AWD H-11

19

TASK TEAM ACTIVITY LOG SHEET Location : ROLSd-024 PROJECT NAME: Ramsdell Quarry Landfill GW Investigation DELIVERY ORDER NO: 003 Date (mm/dd/yy): 3/8 Su M Tu W Th F Sa Task Team Members: PAGE 0F ( Paul Lin ocation: RQLsd-024 Secliment 10e Sample #5 : RQ 0004 rancais RQØØ4lechnician Narrative (include time and location): Go to sediment location RGL 3d-024 sectiment sample # RQ004 From Ø.0'-0.5' PID=Ø.Ø is SILT and CLAY with traces of gravel, is poorly sorted and angular, black, wet aravel ediment sample # 3(1/1/ rom 0.5'-2,0' PID-ØØ 'menī and CLAY with traces of grave 15 aravel is poorly sort-d and angular, black, wet 1.8' on hard  $(\bigcirc)$ Materic collecte surfacementer, see surfacementer Weather Conditions: A.M. NA 1 id 805 tovercast (0.75" of rain last night) QA Checked By my f

H-	1	2
----	---	---

# **APPENDIX I**

# DAILY QUALITY CONTROL REPORTS

INITIAL PHASE REPORT GROUNDWATER INVESTIGATION RAMSDELL QUARRY LANDFILL RAVENNA ARMY AMMUNITION PLANT

	DATE	1.7	ULY 1998								
DAILY OLIALITY	DAY	SMIT	THFS								
DAILY QUALITY CONTROL REPORT											
CONTROL REPORT	WEATHER	Bright Sun Cesar O	vercast Ram Snow								
COE PROJECT MANAGER JOHN JENT	TEMP	To 32" 02-30" :	30-70 70-85 85 w								
PROJECT RAMSDELL QUARRY LANDFILL G.W.	WIND	Stall Moder.	High Report No.								
JOB NO											
CONTRACT NO. DAZAZI-97-D-0025	HUMIDITY	Dry Moder. H	turnie								
SUB-CONTRACTORS ON SITE: BOWSER-MORNER ()	Sriller); EC	D TECHNO	106155								
(UXO Support)											
FOLLIDMENT ON SITE: La lapite Della initiation	£ /										
EQUIPMENT ON SITE: 1 Mobile Drill rig; 1 Support	TUCK		<u> </u>								
WORK PERFORMED (INCLUDING SAMPLING): SAIC +	B-M Staff	arrived o	7:00 + 0720.								
EOD Tech's Bill Francis @ 0730. Mobilization											
decontamination staging of supplies and materials bolk place. Dutt ing +											
crew arrived 1030. Site orientation / H+S pre-entry briefing was sie-by K. Deminic + J. W. Lam 11:00 - 11:50. Following a Wrich breeks											
Supply cup is Akuta Fills, SAIL returned to											
ad decenned. S. Selecman + SPack arriv	id @ 1336	All S	taff weat								
to ROL to 1) scope out sediment / surface											
water depths is ROL pond 2) Select a low	carin fo	2 pord	data logger								
3) do UXO clearance of pond 4) select	approach	nains fr	2 dale								
ris to well locations at ROL. At	1430, dal	Prijarri	ved at Ral								
Polytope County Health Dept. 's Store Vecke Visent + K. Hen from USACE, Lynn	The the M	n <u>ri Ky</u> e-k	L of vere								
(Metals screening subcontract	on for Los	d Line 1)	. Trsmmerte								
For Hos monitoring arrived @ 1450, 5	o drilling	commence	ed al								
ROLMW-DOG (Opendient well). A	Rin Hon	dersterm	& traitered								
in late afternoon. Following reconnelissa.	nu of R	OL Pone	Dominic								
Selecman, Pack, Lucet, and William (SA)	(), left.	the site	61700.								
Klidjezs, Smith, and B/M : EODT	personnel	Ceft_	C. 1000								
Sym. n.	7.1-										
	7/7/98										
L											

95-005MS/053095

PROJECT RQL Groundwater Investigation	REPORT NO.	1
JOB NO	DATE:	7-7-98

QUALITY CONTROL ACTIVITIES (INCLUDING FIELD CALIBRATIONS): Instrumenty acrived Mini - Rac SV was checked before use. calibrated bday. HEALTH AND SAFETY LEVELS AND ACTIVITIES: Level A - hard have ter protection required @ drill ref. PROBLEMS ENCOUNTERED/CORRECTION ACTION TAKEN: When the Address whether the 5 existing wells will be micropurged or conversionally proced for " 13' deep - will need to build a @ Pond is generally sanding Dial for for staff gauge + data logger schip to accommedate this I Need to address how IDW drums staged at ROL will be staging Rrea moved Bldg. 1036 SPECIAL NOTES: Salvage intractory vardalized abardined houses @RVADE non Neckend. Project staff admonished to stay in RQL area only. TOMORROW'S EXPECTATIONS: Sample surface water Iseds. Reconsider of staff sause. Continue well drilling / installation design QA Check by: ____ 3y:____ (Signature and date) (Signature and date) 5-0054/5/053095

	DATE 7.8.98 DAY SIMITW/THIFTS
DAILY QUALITY CONTROL REPORT	WEATHER Bright Sun Clear Overcast Rain Snow
COE PROJECT MANAGER J. Jent PROJECT ROL Ground water Investigation	TEMP To 32' 22:30' 30:70' 70-45' 45' up WIND Stati procer, Hugh Report No.
JOB NO	HUMIDITY Dry Moder Humer Z
SUB-CONTRACTORS ON SITE: BRINSER - MORRIE (d Support)	Hallers); EOD Tech (UXO
EQUIPMENT ON SITE: Mobile drill ry: 2 barrel lifter truck.	: steam deaner, support truk
WORK PERFORMED (INCLUDING SAMPLING): Surface at RQL pond was in hated + complet water was postponed until to meron Drilling resurred at RQL mw-OOGG-	ted today A Filtering of pending accept of filter.
Water exists in fracture porosity the coper. Therefore by well was set with	It to identify the an fer-
	st location of me saturated
The day. following collection + (	Securing of pond samples
H. Smith departed @ 1730; Klidjez Well Wiss grouted. Geotech Soil the upgraduent well, but there is meteral for geotech. No UXO around the pond during sample EOD Tech. completed work on	s departed 1900 ofter samples were collected
the upgradient well, but there is moteral the crotech. No UXD	very listle unconsol.
around the pond during sample	caller him activities.
	- STU torcey.

95-0054/5/053095

.

.

PROJECT RGL Ground with Investight	REPORT NO. Z-
JOB NO	DATE: 7.8.98

QUALITY CONTROL ACTIVITIES (INCLUDING FIELD CALIBRATIONS): Mini - ray & PIDS calibratid DET METELOG. No other instrumenty used. 27.10.1 TEIne HEALTH AND SAFETY LEVELS AND ACTIVITIES: Level & - hearing nentee leg'd around drill UXO support  $\tilde{\mathcal{S}}_{i},\mathcal{J}_{i}$ PROBLEMS ENCOUNTERED/CORRECTION ACTION TAKEN: (D) Dufficulty identify saturated zone in sandstone bedrock. This makes Settor well in "first water" difficult - - there is "water no LABL as assumed previously. OFT Se -CAm ·~. **SPECIAL NOTES:** <del>(78</del> TOMORROW'S EXPECTATIONS: Begin dilling @ ROLMW- OO7; prep 4-Ship sodiment / surface water Bearn construction ill Gard. ilit By: QA Check by: Jack pwl 7/21/50 1.711 (Signature and date) (Signature and date) 95-005415/053095

	DATE	7.9 98
DAILY QUALITY	DAY [	SMTWTHFS
CONTROL REPORT	WEATHER	Bright Sun Clear Overcast Rain Snow
	1	
COE PROJECT MANAGER _ J. Jent	TEMP	To 32' 32-30' 30-70' 70-85' 85' up
PROJECT <u>RQL</u> Graved water Unvestigation	WIND	Stell Moger. High Report No.
CONTRACT NO.	HUMIDITY	Dry Madager Humid
SUB-CONTRACTORS ON SITE: BRUSEr - Morner	(drillest)	
EQUIPMENT ON SITE: Mobile drill ric; stead	on clauses	i c a a l truch
parcel lifter met.	in neurer	2. SUPPORT FULL
RQL mw - Co 10 The ondition in Subs	1 rd will	1 installation at
those at ROLMW- OOL, WELL INST	TALLED W	BOTTON AT
32.96 FT KG; SCREEN SET FROM 32.46.	-12.46 FT	BUS. ZOFT
SCREEN USED TO INSURE THAT PO	TENTIONET	ric surface
WAS INTERCEPTED BY LIFELL SCREEPE	ind.	
J. Wilson & P. Lucit work on supple ma	<u> </u>	2- 7/4 KE
	48	
	· · · · · · · · · · · · · · · · · · ·	
	····	

.

.

•

		(Commution Sheet)
PROJECT RAAP ROL GW INVEST.	REPORT NO	
JOB NO. OUT	DATE 7/9/90	
QUALITY CONTROL ACTIVITIES (INCLUDING FIEL	D CALIBRATIONS):	
PIDS CALIBRATED (SIZE MATE	E CAL LOG)	
HEALTH AND SAFETY LEVELS AND ACTIVITIES:		
- HELD DAILY HAS TAILGATE	MEETU	
- ALL ACTIVITIES IN LEVEL O	PP6-	
	3 d R	
Juk -		
PROBLEMS ENCOUNTERED/CORRECTION ACTIO		
NONE		
IN IT		
SPECIAL NOTES:		
NONE MY		
r/		
TOMORROW'S EXPECTATIONS:		
	1 1	
- DRILL AND INISTALL MW ROL	mu-11	
11 .		
Al VI Justiche		
By: ////////////////////////////////////	QA Check by: Rent of Well 1/2.	
(orginature and date)	(Signature and	date)

95-005MS/053095

DAILY QUALITY CONTROL REPORT	DATE 7/10/98 DAY SM TW TH S WEATHER Bright Sun Case Overcast Rain Snow TEMP To 32' 22:30' 30-70' 70-45' 45' up
COE PROJECT MANAGER JOHN JENT PROJECT RAAP ROL GW INVEST JOB NO	WIND Stell Moder High Report No.
SUB-CONTRACTORS ON SITE: Bauser-Morniel	
EQUIPMENT ON SITE: 1 MORILE B-59, STEAM O BARREL LIFT TRUCK /MUNICIPE	CLEANER, SUPPORT TRUCK,
WORK PERFORMED (INCLUDING SAMPLING): - DELLED 4 INSTALLED MW ROLMI 32.4 FT BGS. WELL SCREEN: 32.4 SET w/ 20 FT SCREEN TO INSUE BECAUSE WATER BEARING FRACTURE IN THE HOLE IT WAS DIFFICULT WATER BEARING FRACTURES SCREE INTERCEPT HIGH (POSSIBLY PERC	H-12.4 FT BLS. WELL E WELL MADE WATER. S WERE PRESENT HIGH TO DETERMINE LOWER M ALSO PLACED TO NOT
BR A to PROTICTIVE WELL	CED SUFFICIENT WATER
Ju 1 21 146	

95-005M/S/053095

.

PROJECT	RAPP ROL GW INVEST.	
JOB NO	003	-

REPORT NO. 4 DATE: 7/10/78

QUALITY CONTROL ACTIVITIES (INCLUDING STEL	
QUALITY CONTROL ACTIVITIES (INCLUDING FIELD	D CALIBRATIONS):
PID CALIBRATED (SEE MOTE LO	<u>(; )</u>
HEALTH AND SAFETY LEVELS AND ACTIVITIES:	
- HELD DAILY HAS TAILCATE BEI	EFINE
- ALL ACTIVITIES IN LEVEL O PP	E
PROBLEMS ENCOUNTERED/CORRECTION ACTION	TAKEN:
2.	
7/21/2	
12/12	
SPECIAL NOTES:	
TOMORROW'S EXPECTATIONS:	
- DRILL AND INSTALL MW RQU	- inw-7
	······
By: 10 Linder Highes	OA Check by: And a site - 1-160
(Signature and date)	QA Check by: July 1/2/198 (Signature and date)
5-005M/S/053095	(O'grididie and dale)

DAILY QUALITY CONTROL REPORT	DATE 7/1198 DAY SM TWTHFX WEATHER BINGHT SUN CHEAT OVERCARE RUIN SINCH
COE PROJECT MANAGER <u>JOHNI JIENT</u> PROJECT <u>RAAP ROL GW INVIENT</u> JOB NO. <u>003</u> CONTRACT NO. <u>DACA27-97-D-00025</u>	TEMP To 32' 22:30' 30-70' 70-45' 85' up WIND Stat: Mooser High Report No. HUMIDITY Dry Mooser Humed
SUB-CONTRACTORS ON SITE: BOWSER MORNER EQUIPMENT ON SITE: MOBILE B-59, STEAM C BARREL LIFT TRUCK	LEANER STROPT TRUCK,
WORK PERFORMED (INCLUDING SAMPLING): DRILLE W/ BOTTOM AT 16.15 FT BES, ECLEEN 15 INSTALLED ROLMW-B WITH BOTTOM A J. Wilson i P. LILOT WILL ON SHIFF 30-	195-5.95. DELLED AND T 16.2, SCREEN FROM 16.0-6.0
	4

(Continues of	
(Continuation Sheet)	

PROJECT RAAP ROL GW INVEST.	REPORT NO5
JOB NO	DATE: 7/11/98

QUALITY CONTROL ACTIVITIES (INCLUDING FIELD CALIBRATIONS):	
CONSCIENCE 2 P.O. ( ) VI - CALIBRATIONS):	
CALIBRATICO Z PIDO 4 1 HORIBA (STER MISTR LOG)	
	<u> </u>
	<u> </u>
HEALTH AND SAFETY LEVELS AND ACTIVITIES:	
- HELD DAILY HAS TAILGATE BRIEFINK-	
- ALL ACTIVITIES IN LEVEL D.	
PROBLEMS ENCOUNTERED/CORRECTION ACTION TAKEN:	<u> </u>
THOSEEIIG ENCOUNTERED/CORRECTION ACTION TAKEN:	
7/5,	
194	
SPECIAL NOTES:	
TOMORROW'S EXPECTATIONS:	
OBLICK INSTALL ROLMW-9	
W/ Vidu tube	
By: <u>A Check by: <u>A Signature and date</u>) QA Check by: <u>A Signature and date</u>) (Signature and date)</u>	
5-0054/5/053095	

COE PROJECT MANAGER John Junt PROJECT RUMP ROL GW JUNT TILGATTUM JOB NO CONTRACT NO	DATE 7/12/98 DAY M T W TH F S WEATHER Bright Sun Caser Overcast Rain Snow X TEMP To 32' 52:30' 30-70' 70-85' 45' up X WIND Still Moder High Report No. X HUMIDITY Dry Moder Humid
CUP CONTRACTORS ON SITE	
SUB-CONTRACTORS ON SITE:	
EQUEER MORNER	
EQUIPMENT ON SITE: MOBILE B59, STEA	AN CLEANER, SURPORT TRUCK
BARREL-LIFT TRUCK	
· · · · · · · · · · · · · · · · · · ·	
WORK PERFORMED (INCLUDING SAMPLING):	
- Ralmu-9 SET w/ BOTTOM AT	16.4 FT BUS, SCREEN FROM
15.9-5.9FT B-5	
- INITIATED DEVELOPMENT OF P	Dime ( 1) Ell is Product
Showly. ~ ORY AFTER ENERY	· · · · · · · · · · · · · · · · · · ·
- J. Wilson ? P. Lucot work on sun FF	grange, well disclopment and
mount installation & WBG under .	different higk.
	11180
/···	
/	

÷

(Continuation	Sheet

PROJECT	RAAP	ROL	GW	INDES-	
JOB NO.		002			

REPORT NO. 6

UALITY CONTROL ACTIVITIES (INCLUDING	FIELD CALIBRATIONS):
	IBAS (SEE MOTE LOG)
EALTH AND SAFETY LEVELS AND ACTIVIT	
- HELD DAILY HAS TAIL - ALL ACTIVITIES IN	LGATE BRIEFING
- ALL ACTIVITIES IN	LEVEL D PPE
ROBLEMS ENCOUNTERED/CORRECTION A	CTION TAKEN:
	······
X ^k	
12/194	<u></u>
SPECIAL NOTES:	
····	
· · · · · · · · · · · · · · · · · · ·	
	~
OMORROW'S EXPECTATIONS:	
- CONTINUE OSNELOPMENT	OF NEW WELLS
. Mulla notas	QA Check by: (Signature and date)
(Signature and date)	(Signature and date)
P544 \$4053095	

DAILY QUALITY CONTROL REPORT	DATE 7/13/98 DAY S T W TH F S WEATHER Bright Sun Clear Overcast Rain Snow TEMP To 32' 22:30' 30-70' 70-85' 85' 10 WIND Stall Moder High Report No.
JOB NO 063 CONTRACT NO 7474 21 - 97 - D - 00025	
SUB-CONTRACTORS ON SITE: BOUSSER MORNIER EQUIPMENT ON SITE: MOBILE B-59, 5	TEAM PLEALER & RADT TO WIT
BARREL LIFT TRUCK	
WORK PERFORMED (INCLUDING SAMPLING): - DRILL R. (+ AND TODLS DECO - RQLMW-10 DENELOSMENT INIT - J. Willim i P. LINGT Rugh Suppling	TATED 4 COMPLETED
	13/78

---

.

PROJECT	FAAP ROLGWINVEST
JOB NO.	· · · · · · · · · · · · · · · · · · ·

REPORT NO. 7

CALIBRATED Z MILLIRARS (PIC	5142	HARIBAN	(580.	METE CO
			1000	
	· ·			
				·····
		<u> </u>		
				<u> </u>
EALTH AND SAFETY LEVELS AND ACTIVITIE	S:			
- HELD DAILY HAS TAILER		STI K		
- ALL ACTIVITIES IN LEVE				i
			<b>.</b>	·····
ROBLEMS ENCOUNTERED/CORRECTION AC				
NOBLEMS ENCOUNTERED/CORRECTION AC	IN TAKEP	<u>.                                    </u>		
······		· · · · · · · · · · · · · · · · · · ·		
				······
				·····
		···		
	Fc	<del>_</del> ;		
/u_`	*	·····	••••••	
				·····
		<u></u>		
DECIAL NOTES.	· · · · · · · · · · · · · · · · · · ·	<u> </u>		
PECIAL NOTES:				
			$\searrow$	·
	· · · · · · · · · · · · · · · · · · ·			
OMORROW'S EXPECTATIONS:				
-CONTINUE DENELOPMENT OF	- NEW	WELLS		
				-
10- (1-7/13/90	CA Ch	eck by:	1WL	7/21/48

COE PROJECT MANAGER JOHN JENT PROJECT MANAGER JOHN JENT PROJECT RAAP ROL ON JANEST. JOB NO	DATE 7/14/98 DAY SM W TH FS WEATHER Bright Sun Clear Overclast Rain Snow TEMP To 32' 12:30' 30-70' 70-85' 85' up WIND Still Mooser, High Report No. WIND Still Mooser, High Report No. B
SUB-CONTRACTORS ON SITE: BOWSER MORN	ER, CREW EACEPT
TED KEEN DENOBED AT ~ 10	
	· · · · · · · · · · · · · · · · · · ·
EQUIPMENT ON SITE: BARERL-LIFT TR.	
WORK PERFORMED (INCLUDING SAMPLING):	
-INITIATED 4 COMPLETED DEVI	ELOPMENT OF ROLMW-7.
-8,-9, ANO -11.	
- ALL ROL INVESTIGATION DRIM ENTRANCE TO ROLL.	NO STAGED AT WESTER
- J. Wilson & P. LUCOT complete surpling of	enisting wells then work an
Strok management.	
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
- Lev	
198	
2419	
1111	
14"	
14"	

(Continuation Sheet)

PROJECT _	RQL	GW	INVEST	
JOB NO.				

REPORT NO. 8 DATE: 7/14 98

QUALITY CONTROL ACTIVITIES (INCLUDING FIELD CALIBRATIONS):
- CALKRATER 1 HORIBA
HEALTH AND SAFETY LEVELS AND ACTIVITIES:
-HEDD DAILY HAS TAILLATTE MEETING
- ALL ACTIVITIES IN LEVEL O PPE
PROBLEMS ENCOUNTERED/CORRECTION ACTION TAKEN:
2/
1 1198
SPECIAL NOTES:
TOMORROW'S EXPECTATIONS:
- OBTAIN 24-4R AFTER DEVELOPMENT WATER LEVELS
By: 1/1 / whin Thy 198 QA Check by: and a will a 1/21/18
85-005M/S/053095

DAILY QUALITY CONTROL REPORT	DATE 7/15/98 DAY SM TW THFS WEATHER Bright Sun Clear Overcast Rain Snow TEMP To 32' 22:30' 30-70' 70-85' 85' up
COE PROJECT MANAGER <u>EXHAL</u> SENT PROJECT <u>PAGE ROL GW INVEST</u> JOB NO. <u>003</u> CONTRACT NO. <u>DACA 27 - 97 - D - 0025</u>	WIND Still Mader High Report No. HUMIDITY Dry Meser Humed 9
SUB-CONTRACTORS ON SITE: BELIER MORNER (TEO KREA) EQUIPMENT ON SITE: NONIE	DEMOBS AT 20830
WORK PERFORMED (INCLUDING SAMPLING): - OPTAIN ZH HR AFTER DENEL ON ALL NIED LIELLS EXCEP - INSTALLED PRF TROULS (PRESS ALL IZXISTING ROL WELLS - CLEMMP.	ROLMW-6.
9716 ¹⁴⁰	

PROJECT	KAPP	RALGW	INVEST
JOB NO			

REPORT NO. 9 DATE: 71598

QUALITY CONTROL ACTIVITIES (INCLUDING FIELD CALIBRATIONS):
A DURE A STATE A LAL OF THE CALIBRATIONS):
CALIBRATED   HORISA (SEE MIDTE LOG)
HEALTH AND SAFETY LEVELS AND ACTIVITIES:
- HEND HAS BRIEFINK
- ALL ACTIVITIES IN LEVEL O PPE
PROBLEMS ENCOUNTERED/CORRECTION ACTION TAKEN:
Notified that the OA split snaple RODOGSS amud & Omala lab
w/ terperatures > 4 c ± 2 c , will write the string of the
w/ te-produce > 4'c ± 2'c. Will recellent this sample along w/
3
7/15/9E
The
SPECIAL NOTES:
TOMORROW'S EXPECTATIONS: NONE - LAST DAY OF WORK CICLE
By: ML Kulp 7/15/98 QA Check by: Comm of we 7/21/18
By: <u>ML Lun 115/98</u> (Signature and date) QA Check by: <u>Co. M. 7 U.L. 7/21/14</u> (Signature and date) (Signature and date)

95-0054/5/053095

	DATE	07 21 48
	DAY	SMJWTHFS
CONTROL REPORT	WEATHER	Bright Sun Clear Overcast Rain Snow
	TEMP	To 32 02-30 30-70 70-85 65 up
COE PROJECT MANAGER Jun Jent		
PROJECT RVAAP ROL GW Investigation	WIND	Still Moder High Report No.
JOB NO	HUMIDITY	
CONTRACT NODACA 27-97- 5-0025		Dry Moder. Humid 199
SUB-CONTRACTORS ON SITE: SAIC - Je Willen	Heather Smith	th
Adams - GAPT - HERTE & WALKER (ACHW)	- Choster Midley	i James Phillips
	1	·
EQUIPMENT ON SITE: Miniman, Sampling equi	pt	· · · · · · · · · · · · · · · · · · ·
WORK PERFORMED (INCLUDING SAMPLING):		
OBOO-Annue on-site, Heather Smith putting		
- 0845- J. Wilson takes ACHW to points the		- surveyed
1100- J. Wilson H. Swith prep win for give m	we ter long	
- 1200- OFF- STE Er Junch.		
	1 1	
1300- Return for buch. Go to Ron to m How - Return to Forld office, Unable to mate	$\frac{1}{2} \frac{1}{2} \frac{1}$	and get when they is
cubles of prisan transformer. Will a		
this earling. Man affin supplies a		
alter rum & point both develition		
Sampling.		
1700 - All off-site.		
		· · · · · · · · · · · · · · · · · · ·
	=	
	·····	
		· · · · · · · · · · · · · · · · · · ·
7/2:/*	<u> </u>	
· · · · · · · · · · · · · · · · · · ·		
L		

PROJECT _	RUAKE	Ra	نىرى	Investigation
JOB NO		003		

REPORT NO. 10 DATE: 7/21 (10

OUALITY CONTROL ACTIVITIES (INCLUDING THE
QUALITY CONTROL ACTIVITIES (INCLUDING FIELD CALIBRATIONS):
Calibration of Mini RAE PID
2
7/21/94
HEALTH AND SAFETY LEVELS AND ACTIVITIES:
LEVEL 95t Thilgste His metry
72
7/31/48
PROBLEMS ENCOUNTERED/CORRECTION ACTION TAKEN:
She boult to perform Track Develil The Literi
will be to make the processing don't but southly me
slig brught to prove Track Princeholiky Testing duit fit southly m wells du to prove translater cubbs will construct sligs of 1" Pik 3 51 M builth tonight.
7/21/84
7121
SPECIAL NOTED
SPECIAL NOTES: Not
TOMORROW'S EXPECTATIONS:
Groundwater sampling masses St sligs in formerly installed wells
7/21/58
By: Jush 2 W Im 7/21/98 QA Check by:
(Signature and date) (Signature and date)
IS-005M \$7053095

	DATE	7/22/98
DAILY QUALITY	DAY	TWTHFS
CONTROL REPORT		
OONTHOE HEI ONT		Ciear Overcast Rain Snow
COE PROJECT MANAGER		02-30 30-70 70-85 85 up
PROJECT RVANP ROL G.W. INVESTIGATION	WIND Sur	Moder, High Report No.
JOB NO	$\mathbf{x}$	
CONTRACT NO. 77ACA 27 - 97 - D - 0025		Moder Humid
SUB-CONTRACTORS ON SITE: SALE Je Willow	Heither Smith	
ACHW - Chister Midley	James Phillips	
		·
EQUIPMENT ON SITE: M Sampling egrip		
WORK PERFORMED (INCLUDING SAMPLING):		····
0745-Annue @ Blog 1036 Freld Office		
1:000 - Hold His Tailgate Awarting delivery of four Quanterna Labs.	1.L poly wide	month bottles
- Collect gut samples from monitoring wills Righting		
Slugs in 2 of the existing menstering well	(MW-3 and MW-5).	Also install
cmall section of 2" PVC on top of 5	taff grage data layour	L" NC
riser. This is to allow for the transduce	to be hung correc	Hy,
		<u></u>
	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · · ·
	· · · · · · · · · · · · · · · · · · ·	<u></u>
*		
7/22/6		
	·	
	<u> </u>	

95-005M/S/053095

.

·

PROJECT	RVAAP ROLGW INVESTIGATION	REPORT NO.	h
JOB NO	003	DATE:7	22/98

QUALITY CONTROL ACTIVITIES (INCLUDIN		••••••••••••••••••••••••••••••••••••
Calibration of Micropunge Will Witten	re, Man KAE YIB and Honbi U-	W
110		
7/22/46		
HEALTH AND SAFETY LEVELS AND ACTIVI	TIES:	·
- Tailyate Multiny, level +		
7/22/86		
PROBLEMS ENCOUNTERED/CORRECTION	ACTION TAKEN:	
		······
		<u> </u>
~		
7/12/14		
SPECIAL NOTES:	$\backslash$	
TOMORROW'S EXPECTATIONS:		
Continue w/ gw sampling and	perform slug testing	
3y: 0mpl 7 WJm 122/18	QA Check by:	
(Signature and date)		(Signature and date)
5-005MS/053095		

	DATE	7/23 48
DAILY OLIALITY	DAY	SMTWTHFS
CONTROL REPORT	WEATHER	Bright Sun Clear Overcast Rain Snow
	TEMP	To 32' 22-30' 30-70' 70-85' 85' UD
COE PROJECT MANAGER JUL JUL	14/10/10	X
PROJECT RVANP ROL CN Incesting the	WIND	Stall Moder, Hugh Report No.
CONTRACT NO	HUMIDITY	Dry Moder, Humid
SUB-CONTRACTORS ON SITE:		
SAL - Jo Wilson & Heather Smith		
EQUIPMENT ON SITE:	<u></u>	
Minut and sampling equipment		
WORK PERFORMED (INCLUDING SAMPLING):		
0730 - Annu an-site.	<u></u>	
0750 - His Trilfate		
- Du to light rain, and risk of getting up	n shulk Q	Rol all to
Equipment Russite # Raddso. Providence	AIMP IN REA.	
- Perform slug tests on existing wells	MW - 003 0	w MW-OOS.
- install slugs in existing wells mu-o	01 MW-002	And Muccool.
- Collect QC Saize with black # RODO	19 m DI	ASTM His lot # 1800 6024
Ricca chunded Corporation expires	5 199 .	
- Collect ow simple # RETERIS for Rilaw -0	@ <u>],</u>	
- Pak all samples & A.M. ESCALT Service.		
1800 - OPP-Site		
7/27/		

- 1

95-005M/S/053095

- .

PROJECT	RUAAT	Ren Gw	Investigation	REPORT NO.	17.	
JOB NO.		<u> </u>		DATE:	7/23/112	
					,	

QUALITY CONTROL ACTIVITIES (INCLUDING FIELD CALIBRATIONS):
- CIL-1
- Calibration of minitate Pio, Hurbe 4-10 water quality mater, and Oth Will Without
- Clust company rinsate on bladder pump sample * RC0050 - Clust source enter black on DI water, Sample * RC000491.
- Cllet source enter John Ke on DT with Ky 0050
A PE WOR SAMPLE REDOUTI.
24
1/2 same
HEALTH AND SAFETY LEVELS AND ACTIVITIES:
Dt, His takente
7/13 Am
PROBLEMS ENCOUNTERED/CORRECTION ACTION TAKEN:
2/23/14
SPECIAL NOTES: All slugs installed in existing wells have displayed 10,25 ft
of water. The slugs 3,35t, 1/4" PVC should displace - 1.25 Ft of water
in a 2" well, "The hash the shall be shall all splan a starter
in a z" well. Through calculations, we determined these wells respect as a
6" well should (no.22 Ft displand), Suggesting ne set about the filter. TOMORROW'S EXPECTATIONS:
will not sample due to lab. constraints of helding times. Therefore, will partien
sing lests insmill and build pumps prinstall transchure in staff gauge and
rip. for saturdays sompling.
By: WL_ 7/23/98 QA Check by:
(Signature and date) (Signature and date)
RS-005MIS/053085

	DATE	7/24/98	
	DAY	SMTWTHFS	
DAILY QUALITY			
CONTROL REPORT	WEATHER	Bright Sun Clear Overcast Rain Snow	
	,		
	TEMP	To 32' 32-30' 30-70' 70-85' 85' up	
COE PROJECT MANAGER		X	
PROJECT RUMAP ROL GW INVESTICATION	WIND		
JOB NO			
CONTRACT NO. DALA27-97-0-0025	HUMIDITY	Dry Hoder. Humid 13	
SUB-CONTRACTORS ON SITE:			
Sinc - Heather Smith , The Willen			
Activ - chuster Midley, Jenes Phillips		· · · · · · · · · · · · · · · · · · ·	
EQUIPMENT ON SITE:	_	<u></u>	
Mun your , Suppling equipment, etc		-	
WORK PERFORMED (INCLUDING SAMPLING):			
- slug tests on the Following wells			
Ralmer - doi			
	·····		
Rac - de 2	· · · · · · · · · · · · · · · · · · ·	······	
ROLMW - 0004		······	
RQLmu - 007			
ROL mu - OOB	<del></del>		
- Denn and place bladder pump in Rich	mr -all	·····	
- Install 6 chi-to we one section on staff	grane.	· · · · · · · · · · · · · · · · · · ·	
- Press For sampling of Ridma - eige on S. turka	0 °		
< Complete development et REAMEN - 006			
	<u> </u>	······································	-
	· · · · · · · · · · · · · · · · · · ·		
2			
7/24/7		· · · · · · · · · · · · · · · · · · ·	
	<u> </u>		
			-
			—
		N.	

PROJECT	RUAAP REAL GW	INVESTIGATION	REPORT NO.	13	
JOB NO.	003		DATE:	7/24/98	

OUALITY CONTROL ACTIVITIES (INCLUDING FIELD ON INTERFECT	
QUALITY CONTROL ACTIVITIES (INCLUDING FIELD CALIBRATIONS	<u>):</u>
- Calibration of Min Rate Pin, Heiber UNG and Cites Wall With	nk
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
HEALTH AND SAFETY LEVELS AND ACTIVITIES:	
Dr and His fulget	
7/24/12	
PROBLEMS ENCOUNTERED/CORRECTION ACTION TAKEN:	
2/2.14%	
	······································
SPECIAL NOTES:	
TOMORROW'S EXPECTATIONS:	
Sample Rolmu-10 and hopshilly Rolmu-406.	
Slug tot Rolm -009	
By: DAN 7/24/# QA Check by:	
By: <u>Jawn 7 Web 7/24/%</u> QA Check by: (Signature and date)	(Signature and date)
95-005H/S/053095	· · · · · · · · · · · · · · · · · · ·

	DATE 7/25 195	
	DAY	THFS
CONTROL REPORT	WEATHER Bright Sun Cier Overc	ast Rain Snow
	X	
	TEMP To 32' 22:30' 30-70)' 70-85' 85' up
COE PROJECT MANAGER		
PROJECT READY BAL GN CREASTRANTAN	WIND Still Moder High	
JOB NO		- <i>14</i>
SUB-CONTRACTORS ON SITE:	······	
DATE - The Labor Heather the	·	
EQUIPMENT ON SITE:	· ·	
	<u>,</u>	
when any propher propriet to		
WORK PERFORMED (INCLUDING SAMPLING):	<u> </u>	
ARC = Anne anote Held Hes Takte.		
- Re-out slugs in the following:		
Ralma - doz		
ROLAN -003		
These test results may have been alteral	by slux atting caught	
transducer cables will allew to set a m	where the his and rest	ēst,
- Sample ROLMU- 010, SAMple # ROO015.		
- Decos pump from RQLmw-010 and ha	ne ha Ealmer Total	
- Place slug up transferer M ROLING - 00100.		
- Perform shie tests on the following:		
ROL - COP		
RQL MW - OOZ		
RQLmw -003	· · · · · · · · · · · · · · · · · · ·	
- Set transducer in standpipe associat	ind will staff aware	
- Many translater in the following:		
RQLmw-007		
Reilmu - del		
	· \ L	
· · · · · · · · · · · · · · · · · · ·	ins haptep.	·
1800 - off-site,		
R		
7/25/12		

95-005MS/053095

(Continuation)	Sheet)
----------------	--------

PROJECT	KNAAP	Rai	ليامك	INVESTICATION	
JOB NO.		603			

REPORT NO. 14

DATE: 1 25 98

OUALITY CONTROL ACTIVITIES (INCLUDING THE DOMINED
QUALITY CONTROL ACTIVITIES (INCLUDING FIELD CALIBRATIONS):
Calibration ai Min Rife RD, Hendre U-17 and GED Will Wind Flow Cali
4
7/15/1
HEALTH AND SAFETY LEVELS AND ACTIVITIES:
tot, Heith and Salety Tailynte
7/15 4
PROBLEMS ENCOUNTERED/CORRECTION ACTION TAKEN:
7/25 20
SPECIAL NOTES:
TOMORROW'S EXPECTATIONS:
Collect an samples from RQLow - Coll and RQLow - Ope up or dup. & 52A
Split from on of them. 5 mg test Row -oke, Have Translevers and
Slugs in Rame-oll and Rame-ook. Collect sediment sample w/ QC deplicate
and QA split from lastion that there were originally collected from prior to
By: QA Check by: (Signature and date) QA Check by: (Signature and date)

95-005MS/053095

.

	DATE 7/26/98
DAILY QUALITY	DAY SMITWTHFS
CONTROL REPORT	WEATHER Bright Sun Coser Overcast Rain Snow
	$ \mathcal{X} $
COE PROJECT MANAGER John Jent	TEMP To 22' 22:30' 30-70' 70-85' 45' up
PROJECT RVAAP ROL GW JUNGTICATION	
JOB NO	WIND Still Waser. High Report No.
CONTRACT NODACA27-97-D-0025	HUMIDITY BY Moder Humid 15
SUB-CONTRACTORS ON SITE:	
SAIL - JUE WILLIN, Heither Smith	
EQUIPMENT ON SITE:	· · · · · · · · · · · · · · · · · · ·
Min. van, sampling equipment, etc	
WORK PERFORMED (INCLUDING SAMPLING):	
- 0700 - Ama on site. Hold Hes tribuile	
- Forces its problem of GRD =visters. See filmine	these .
- Sig test KOLMW-OND	
- QA loghacks	
- Kiev. Fix tomorrow's sampling	
- 1600 - of sole. Fail of day.	
)
	/
122 Val.	· · · · · · · · · · · · · · · · · · ·
112 104 7 175	

I-31

(Continuation	Sheet
---------------	-------

PROJECT RVAA	P. RQL C	GW INUTSTICATION	REPORT NO.	15	
JOB NO			DATE:	7 26 98	

UALITY CONTROL ACTIVITIES (INCLUI	DING FIELD CALIBRATIONS):
- Calibration of Mim RAE Pio, Horn	be line QED Well Without Flow Gill
and and all sumple	-m 7/26 FB
Collection of go QA Sample	24 7 122 H 29
n	
7/26/40	
EALTH AND SAFETY LEVELS AND ACT	TIVITIES:
tot His Tailate	
	7/21/4
ROBLEMS ENCOUNTERED/CORRECTION	ON ACTION TAKEN
-while at is it on theme	sister @ RREMN-OIL pump control for finlast
	Disconter have all pump control box the last
the country shared that I want	and incoming to the unt. Examination of
	three and ar whit in the line and could be magnelly
and the fill of the fill	upst was culled and they reasoned that the compation
15 star the light minist for the light	They council to ship we a replacement what the computer
	LIA THE ART. A. WITH LYACT BURN SMOTHER BUT AT
- line we the completent of the say	setment psi were increased and unit worked. No of day when publican solved Der. C. Torung and
Samples were relieved due to how	of dry when year with Det it. Torung and
5. Sciencen were notified.	
PECIAL NOTES:	
	5
OMORROW'S EXPECTATIONS:	
+ Sime as verticate a sound RO	In- 1126 Ralino - 209 and TE-Sample 801. 5- 017.
	the sale Aletand that and the sample sale of all the sales
······	
- And 2 10 h - 7/26/98	QA Check by:(Signature and date)
(Signature and date)	

	DATE	07/27/93
DAILY QUALITY	DAY	S M T W TH F S
CONTROL REPORT	WEATHER	Bright Sun Clear Overcast Rain Snow
COE PROJECT MANAGER	TEMP	To 32' 22:30' 30-70' 70-85' 85' up
PROJECT RUMAP ROL ON Sanstyptin	WIND	Still Moder. High Report No.
JOB NO		
CONTRACT NO	HUMIDITY	Dry Moder. Humid
SUB-CONTRACTORS ON SITE:		
5416 - Die Winner Heither Spich		
EQUIPMENT ON SITE:		
Ministen program the prest, etc		
WORK PERFORMED (INCLUDING SAMPLING):		
0700 - Anive a site without His trilyste.	<u>_</u>	
- Collict in sample # RODOIT from star #		
- Cellect QA sample " RUDE48 From str. +	KGLmm - Oli	
- Collect DL Sumple # RODON47 from site #		
- Collect schemet sample = RQ00064 from stat		· ·
- Tellect Stor. DC snaple " RODDLOS from sta		
- collect sent QA surreplet KOOQ666 From 3		
0953 - M. latterson stors by Lat to see how we	1 K. KULSI TOI 7	
10:5- M. Pollerson leaves location	<u> </u>	
- Pack sup QA - MIATS Lab Samples and sh	ip the Feber	<u>te_l/h.</u>
- Collect on sample # ROOM\$7 From str. # Rollan	-006.	
- Set slugs and transducers in ROLMM-OOD	and Kalmu-O.	
1630- K. Dominic amons @ site J. Jert and M.	Patterson Arnor	a little later
11.45 - J. Jut and M. Patterson off site.		
1840 - All off - s.t.		
127 18		
	<u> </u>	······································
		······

95-005M/S/053095

PROJECT	RVANY - KIRL GW	Internation
JOB NO.	203	

REPORT NO. ____/L

DATE: 7/27/49

QUALITY CONTROL ACTIVITI	IES (INCLUDING FIELD CALIBRATIONS):
	ILO (INCLODING FIELD CALIBRATIONS):
- CALIBRITH IF Mon NAE	- Pip, DED Flow Cell and Humber U-102
	DA LOC Sumples
lie - influent sectionent	DALQE sumples
	8.
	7/27/99
IEALTH AND SAFETY LEVEL	
- rot 1965 Tailute	
	2107/00
PROBLEMS ENCOUNTERED	CORRECTION ACTION TAKEN:
~	
PECIAL NOTES:	
OMORROW'S EXPECTATION	<u>VS:</u>
- sly test Rolm	un - 006 and Rall me - tall. S.+ transducers in 11
new wells and st	un - 006 and Ralmer - 011, Sit transducers in all two tests m staff quage for long term water lavel monitoring.
	and the second s
and a set al	27/98 OA Charle hur
(Signature and date	QA Check by:
	e) (Signature and date)
105M S/053095	

	DATE7/28/	/ 98	
DAILY QUALITY	DAY SMX	WTHFS	
CONTROL REPORT		Overcast Rain Snow	
COE PROJECT MANAGER Jhn Jent	TEMP 10 32 12:30	30-70' 70-85' 85' up	
PROJECT RVANP RQL GW INVESTIGATION JOB NO. 003	WIND Stall Mooser	High Report No.	
CONTRACT NO. 04(A21 - 97 - 7 - 0025		Humid	
SUB-CONTRACTORS ON SITE:			
SAIC - Ju Wilson, Henther Smith, K	athy Dommic		
EQUIPMENT ON SITE:	····		
Mini-van, Carge Van, Sampling equipment	, etc.		
WORK PERFORMED (INCLUDING SAMPLING):			
0700 - Amn ersite prifem His Tailante.			
- slug test RQLmm-006			
- she test RGLMW -011			
- Pack up Dak Ridge Supplies to ge bre	ke w/ H. Smith		
- Pick up Thytin Supplies to go ul K. Themis	-L		
- Kent beal Stonge Space for Stering long term mentaring supplies			
1800- OFF S.t.			
	/		
A-1/28	78		
4 <u>1</u> / 25			
/			

PROJECT	_ RNAAP	RQL	GW	INVESTIGATION	_
JOB NO	ECB				

REPORT NO. _____ DATE: ______ 23 48

OUALITY CONTROL ACTIVITIES (INCLUDING		
QUALITY CONTROL ACTIVITIES (INCLUDING	FIELD CALIBRATIONS):	
	2	
	7/20/54	
HEALTH AND SAFETY LEVELS AND ACTIVIT		
Dt Triljete His Mutry		
7/25/4	· · · · · · · · · · · · · · · · · · ·	
PROBLEMS ENCOUNTERED/CORRECTION	ACTION TAKEN:	
7/24/5		
	<u> </u>	
SPECIAL NOTES:		·
	<u> </u>	
TOMORROW'S EXPECTATIONS:		
Son Transducers For long term ment	Ening	
14: - That 7/25/98	QA Check by:	
(Signature and date)		(Signature and date)
5-005M/S/053095		,

	DATE	67 / 29 /98
DAILY QUALITY	DAY	S M T W TH F S
CONTROL REPORT	WEATHER	Bright Sun Clear Overcast Rain Snow
	ТЕМР	To 32' 22:30' 30-70' 70-65' 65' up
PROJECT MANAGER John Jont PROJECT RVANP RQL GW INVESTIGATION	WIND	Stell Maser. High Report No.
JOB NO CONTRACT NO	HUMIDITY	Dry Moder Humid
SUB-CONTRACTORS ON SITE:		
SAIC - Ja Wilzen, Heather Smith		
EQUIPMENT ON SITE:		
Monitum, lepter competer, etc		
WORK PERFORMED (INCLUDING SAMPLING):	.	
OTOG - Ame a site.		
- set transducers in early of the 6 new 1	سوالع مسا	at the etch
quere to begin taking with hals every		
loico hrs tiday.		3 2
- Frish the meb.		
- stop by to tell M. Petterson un will be off	<u>· siti</u> .	
1030 - OFF-5-6.		
2/84		
	<u></u>	
	$\underline{\ }$	

95-005MS/053095

.

PROJECT	RVAAF	RQL	GW	INVESTIGATION	
JOB NO	003				

REPORT NO. <u>18</u> DATE: <u>07/24/98</u>

QUALITY CONTROL ACTIVITIES (INCLUDING		
	G FIELD CALIBRATION	5):
		· · · · · · · · · · · · · · · · · · ·
	2/2	
	7/27/94	
EALTH AND SAFETY LEVELS AND ACTIVIT		
	<u> 1165:</u>	
Dt		
7/07/	5 m	
		<u></u>
ROBLEMS ENCOUNTERED/CORRECTION	ACTION TAKEN:	
		· · · · ·
	······	
		·····
×		· · · · · · · · · · · · · · · · · · ·
7/29/	<u>fy</u>	
PECIAL NOTES:		
OMORROW'S EXPECTATIONS:		
Monthly menturing (downloading) of weter	levely and questerly	sampling.
	U	
- and a with 7/29/98	QA Check by: _	
(Signature and date)	an oneck by:	(Signature and date)
554/S7053095		
	I-38	

_

PROJECT NAME: Ramadell Qua	CONTACT REPORT rry Landfill GW Investigation	DELIVERY ORDER NO: 003
INDIVIDUAL CONTACTED, TITLE, PHONE:		ORIGINATOR:
ERIC ADAMS	-Erjaenal Sinkert	MILE KLIDZESS(SAN
ORGANIZATION:		DATE CONTACTED:
OHIO EPA		Telesery Weite
ADDRESS:	CITY: STATE: ZIP:	Telecon: Visit:
SUBJECT: MODIFIED, FEL	RAMSDELL QUARCY MON	ITORING WELLS MW7, -8,-9
DISCUSSION:	S(SALC, GEOLOGIST)	COMMENTS, ACTION, DATES
	at a frost-heave kesis	TANT
an interaction	FOR RAMSIDELL WUMNEY	
	5 mw-7-8 ANO -4 wa	
Pr Aborneriat	E OUZ TO SITE COUNT	
BECAUSE THE L	HE QUARRY POND AND	
PROKIMITY TO I	L EXISTS FOR THE POLLO	
		KE I
SIGNIFICANT R	ISE OF TROST HEALINKS EX	1 3 75.
TUS PROPOSED	construction was	
THE	PLACEMENT	5
TUBLE OUTSING	THE WELL PAO CONSTRUCT	
CASING, WITH	IDE OF) THE SOUR TUBE	
HERONIA (OUTS	CTION ALLOWS THE WELL	—
لكالم حجم ممم	ALE CITED	
	TIVE CASING OR WELL	
FISER SCREE	I STRINKS	
		5
BOTH TELIC AN	O JAENAL APPROVED THIS	
MODIFIED CON	STRUCTION FOR WELLS	
mw-7, -8, Au	0-9. MIKE KLICHETS IT AN FCO WOULD BE	
INDICATED THE	ALLOW FOR THIS MODIFICE	2170
WRITTEN TO	TY-WIDE SAMPLING AND	
ADJALYSIS PLAN		

INDIVIDUAL CONTRACTOR STARLAL SINUH (ORPA)	CONTACT REPORT PROJECT NAME: Ramadoll Quarry Landfill GW Investigation	DELIVERY ORDER NO: 003
DRGANIZATION: DEPA ADDRESS: CITY: STATE: ZIP: SUBJECT: RAAP ROL MU INSTALLATION! SUBJECT: RAAP ROL MU INSTALLATION! DISCUSSION: ERIC A JARLIAL VISITED THE SITE AT NOT: 30 ON 7/15/98 TO INSPECT THE FINAL COMPLETIONS OF MOLITORIAC FINAL COMPLETIONS OF MOLITORIAC WELLS INSTALLED AT RAMSDELL QUARK. GENERALY. STATED SATISFACTION IN THE CONSTRUCTION, INICLOADED WELLS MIG-7, -8, AND -9, BUILT W/ SOND TURES SAL ALSO WERE PLENSED THAT WELLS MIG-7, -8, AND -9, BUILT W/ SOND TURES SAL ALSO WERE PLENSED THAT WELLS COULD BE INSTALLED IN PLANNED LOCATIONK. THENCE TOOK SEVERAL PLOTOGRAPS	INDIVIDUAL CONTACTED, TITLE, PHONE:	
ADDRESS: CITY: STATE: ZIP: Telecon: Visit: SUBJECT: RAAP RQL MW INISTALLATION! DISCUSSION: ERIC & JARMAL VISITED THE SITE AT NOT: 30 ON 7/15/98 TO INSPECT THE FINAL COMPLETIONS OF MONITORING VIELLS INSTALLED AT RAMSDELL QUAREY. GENERALY. STATED SATISFACTION IN THE CONSTRUCTION, INCLUDIES WELLS MIN-7,-8, AND -9, BUILT W/ SOND TURES THEN DE WERE PLEASED THAT WELLS COULD BE INSTALLED IN PLANNED LOCATIONK. THENDE TOOK SEVERAL PHOTOGRAPHS		DATE CONTACTED:
SUBJECT: RAAP ROL MW INSTALLATION SUBJECT: RAAP ROL MW INSTALLATION DISCUSSION: ERIC & JARNAL VISITED THE SITE AT NOT: 30 ON 7/15/98 TO INSPECT THE AT NOT: 30 ON 7/15/98 TO INSPECT THE FINAL COMPLETIONS OF MONITORING WELLS INSTALLED AT RAMSDELL QUARGY. GENERALLY. STATED SATISFACTION IN THE CONSTRUCTION, INICLUDIES WELLS MIS-7,-8, AND -9, BUILT W/ SOND TURES JAC ALSO WERE PLEASED THAT WELLS COULD BE INSTALLED IN PLANNED LOCATIONS. THENDE TOOK SEVERAL PHOTOGRAPS		Telecon: Visit:
RAAP RQL MW INSTALLATION DISCUSSION: ERIC & JARNAL VISITED THE SITE AT NOG:30 ON 7/15/98 TO INSPECT THE FINIAL COMPLETIONS OF MONITORING WELLS INSTALLED AT RAMSDELL QUARKY. GENERALLY. STATED SATISFACTION IN THE CONSTRUCTION, INCLUDIES WELLS MIG-7, -8, AND -9, BUILT W/ SOND TURES JOEN ALSO WERE PLEASED THAT WELLS COULD BE INSTALLED IN PLANNED LOCATIONK. THENHL TOOK SEVERAL PHOTOGRAPS	ADDRESS: CITY: STATE: ZIP:	
ERICA JARNAL VISITED THE SITE AT NOT:30 ON 7/15/98 TO INSPECT THE FINAL COMPLETIONS OF MONITORING WELLS INSTALLED AT RAMSDELL QUAREY. GENERALLY. STATED SATISFACTION IN THE CONSTRUCTION, INCLUDERG WELLS MID-7,-8, AND -9, BUILT W/ SOND TURES JOEN ALSO WERE PLEASED THAT WELLS COULD BE INSTALLED IN PLANNED LOCATIONK. JARNAL TOOK SEVERAL PHOTOGRAPS	SUBJECT: RAAP ROL MW INSTALLATION	
	DISCUSSION: ERIC & JARNAL VISITED THE SITE AT NOG: 30 ON 7/15/98 TO INSPECT THE FINAL COMPLETIONS OF MONITORING WELLS INSTALLED AT RAMSDELL GUARE GENERALLY. STATIED SATISFACTION IN THE CONSTRUCTION, MICLURES WELLS MIN-7, -8, AND -9, BUILT W/ SOND TURES JOEN ALSO WERE PLEASED THAT WELLS COULD BE INSTALLED IN PLANNED LOCATIONK. THENHE TOOK SEVERAL PHOTOGRAM	