
FINAL

RCRA Closure Field Investigation Report for the Deactivation Furnace Area, Open Detonation Area, Building 1601, and Pesticides Building Ravenna Army Ammunition Plant, Ravenna, Ohio

PREPARED FOR

U.S. ARMY CORPS OF ENGINEERS LOUISVILLE DISTRICT

CONTRACT NO. DACA27-97-D-0025 Delivery Order 0002

JUNE 1998

Science Applications international Corporation An Employee-Owned Company

FINAL

RCRA Closure Field Investigation Report for the Deactivation Furnace Area, Open Detonation Area, Building 1601, and Pesticides Building Ravenna Army Ammunition Plant, Ravenna, Ohio

JUNE 1998

Prepared by:

SCIENCE APPLICATIONS INTERNATIONAL CORPORATION 655 Metro Place South, Suite 745 Dublin, Ohio 43017

TABLE OF CONTENTS

.

TABLE OF CONTENTS i
LIST OF FIGURES ii
LIST OF TABLES
LIST OF APPENDICES ii
ACRONYMS AND ABBREVIATIONS iii
1. INTRODUCTION 1
2.OPEN DETONATION AREA22.1Geologic Description42.2Analytical Results5
3. DEACTIVATION FURNACE AREA 5 3.1 Geologic Description 8 3.2 Analytical Results 10
4. BUILDING 1601 (CONTAINER STORAGE UNIT) 12 4.1 Geologic Description 12 4.2 Analytical Results 14
5.PESTICIDES BUILDING145.1Geologic Description145.2Analytical Results16
REFERENCES

.

LIST OF FIGURES

•

Figure 1.	Sample Locations at the Open Detonation Area	3
Figure 2.	Detections of Explosive Constituents at the Open Detonation Area	6
Figure 3.	Soil Boring Locations at the Deactivation Furnace Area	9
Figure 4.	Soil Boring Location at the 1601 Container Storage Building 1	3
Figure 5.	Sample Locations at the Pesticides Building 1	
Figure 6.	Detections of Pesticides and PCBs at the Pesticides Building 1	7

LIST OF TABLES

Table 1.	Depth to Refusal at the Open Detonation Area 4
Table 2.	Comparison of Field Calorimetry and Analytical Laboratory Results 7
Table 3.	Maximum Concentrations of Metals at the Open Detonation Area 7
Table 4.	Maximum Concentrations of Metals at the Deactivation Furnace Area 11
Table 5.	Maximum Concentrations of Metals in Slag at the Deactivation
	Furnace Area

LIST OF APPENDICES

Appendix A	Analytical Results
Appendix B	Metals Data Summary
Appendix C	Boring Logs
Appendix D	Results of Field Screening for Explosives
Appendix E	Quality Assurance Laboratory Results

ACRONYMS AND ABBREVIATIONS

AOC	area of concern
BGS	below ground surface
DFA	Deactivation Furnace Area
DNT	dinotrotoluene
GPS	global positioning system
ODA	Open Detonation Area
OEPA	Ohio Environmental Protection Agency
PCB	polychlorinated biphenyl
ррb	parts per billion
RCRA	Resource Conservation and Recovery Act
RDX	1,3,5-hexahydro-1,3,5-trinitrohydrazine
RVAAP	Ravenna Army Ammunition Plant
SB	soil boring
SS	surface soil sample
TAL	target analyte list
TNT ·	2,4,6-trinitrotoluene
USACE	U.S. Army Corps of Engineers
UXO	unexploded ordnance

•

•...

1. INTRODUCTION

This report presents the results of the investigation conducted at five areas of concern (AOCs) at the Ravenna Army Ammunition Plant (RVAAP). Three of these AOCs are regulated under the Resource Conservation and Recovery Act (RCRA), and the results of these investigations will be used to support RCRA closure activities at these RCRA units. The three units are the Open Detonation Area (ODA) in Demolition Area #2, known as RVAAP-04, Building 1601 (Container Storage Unit), and the Deactivation Furnace Area (DFA), both in Winklepeck Burning Grounds (RVAAP-05). In addition, two AOCs that had not been previously investigated, Pesticides Building S44-56 (RVAAP-37) and the potential Mustard Agent Burial Site (RVAAP-28), were evaluated as part of this study. The investigation was conducted in November 1997, and consisted of surface and subsurface soil sampling chemical and geotechnical laborator analyses, and geophysical surveys.

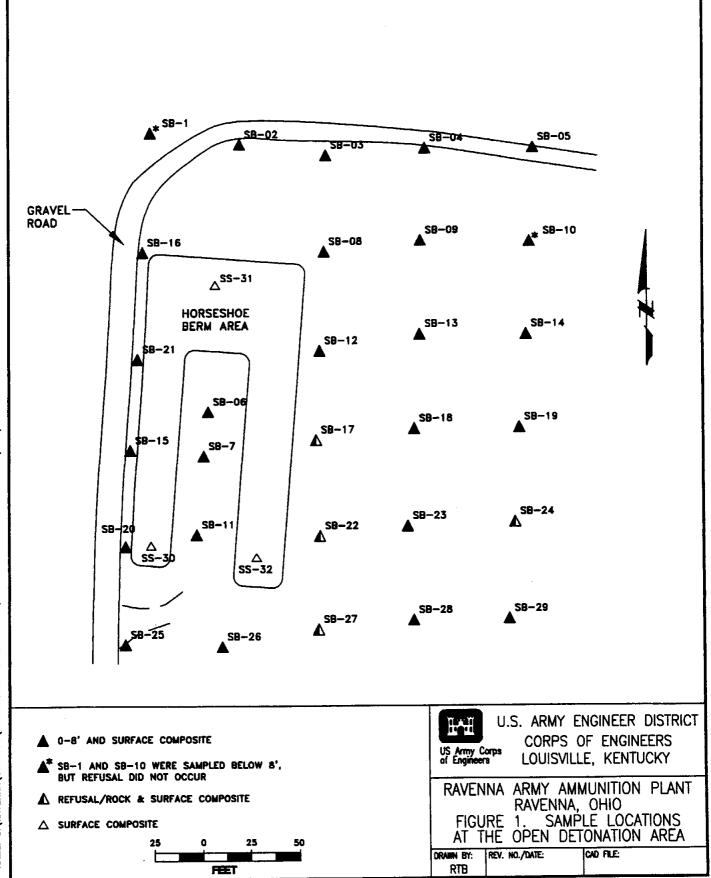
The objective of this report is to document the findings of the investigations with minimal interpretation. The interpretation of the data reported herein will be accomplished during the design phase of RCRA closure. The results of sampling in the Open Detonation Area, Building 1601, the Deactivation Furnace, and the Pesticides Building are discussed in this report. The results of geophysical survey performed at the Mustard Agent Burial Site are described in a brief letter report submitted under separate cover (SAIC 1998).

The objectives of this study were as follows:

- support the closure design for the RCRA units by providing additional characterization information specified in the Closure Plans (USACE 1997a, 1997b, 1997c). Closure activities are scheduled to begin at these sites in the Spring of 1998; and
- 2. provide characterization information on the Pesticides Building and Mustard Agent Burial Site that will enable RVAAP to evaluate whether remedial action or corrective measures may be appropriate for these sites.

The sampling strategy for each site is explained in each section, followed by a brief explanation of the geology and an abbreviated description of any soil contamination identified as a result of sampling.

All investigation activities described in this report, including sample collection, sample analyses, data validation, and data reporting, adhere to the Facility-Wide Sampling and Analysis Plan for Ravenna Army Ammunition Plant (USACE 1996) and were conducted in accordance with the Health and Safety Plans included in the Closure Plans.


2. OPEN DETONATION AREA

The purposes of the investigation at the ODA were to determine subsurface stratigraphy, groundwater conditions, and levels of contamination in soils within the RCRA unit boundary, in support of RCRA closure activities. Surface and subsurface soils were collected to define the vertical extent of soil contamination. Soil sampling was accomplished using direct-push sampling technology (Geoprobe[©]).

All soil samples collected from the surface and subsurface intervals were analyzed for Target Analyte List (TAL) metals by EPA methods SW846-6010, and for 2,4,6-trinitrotoluene (TNT) and 2,4-dinitrotoluene using field colorimetric methods (Jenkins et al. 1997). In addition, 15% of the samples were sent to the contract laboratory for analysis of explosives and propellants by EPA method SW846-8330. Geotechnical analysis of soil also was performed by an independent laboratory to determine soil classification, grain size, moisture content, Atterberg limits, specific gravity, and soil pH. In addition, geologic conditions were evaluated to support the closure design process. Complete analytical results and geotechnical analysis data are presented in Appendix A. A summary of the TAL metals data is presented in Appendix B.

The ODA was investigated with 29 borings advanced using a Geoprobe[©] as well as 32 composite surface soil samples taken to a depth of four inches. The sampling locations and general layout of the ODA are shown in Figure 1. Investigation activities at the ODA were performed in accordance with the Closure Plan's Sampling and Analysis Plan in order to characterize nature and vertical extent of soil contamination within the RCRA unit boundary resulting from the past demolition of munitions in trenches and pits at the site. The sampling points were located on a rectangular grid on a 50-ft spacing within the RCRA unit boundary. Part of the investigation at the ODA included revising existing plan drawings of the site to more accurately depict the shape and dimensions of the horseshoe-shaped earthen berm relative to the RCRA facility boundary. All soil borings in the ODA were located using a global positioning system (GPS), which has an accuracy to within one meter. The study also included collection of surface composite samples on the berm and a determination of the depth to bedrock and groundwater at selected borings.

Because of the nature of the past use of the Open Detonation Area, unexploded ordnance (UXO) clearance was required to move about the site and to perform sampling activities. No UXO was encountered during subsurface sampling, but one UXO item (a potentially live grenade) was encountered on the ground near soil boring SB-03. That grenade was left undisturbed at the location it was discovered.

2.1 Geologic Description

The 29 soil borings were continuously cored with the Geoprobe[®] unit. Samples were composited in 2-ft intervals for geochemical analysis. While 23 Geoprobe[®] borings were completed at a depth of 8 ft BGS, six were driven to depth in order to estimate the depth to bedrock. Refusal occurred at four of these locations. The location and depth to refusal are indicated in Table 1. At SB10, the boring was terminated at 20 ft without encountering bedrock. The boring at SB01 was terminated at 14 ft due to the presence of water in the 11-14 ft run. The soil boring logs are included in Appendix C.

Soil Sample Location	Depth to Refusal (feet BGS)	
SB17	12.0	
SB22	12.0	
SB24	14.0	
SB27	4.3	

Table 1. Depth to Refusal at the Open Detonation Area

Weathered shale was recovered from the coring device in the bottom of SB24. No other information on bedrock lithology is available from this investigation.

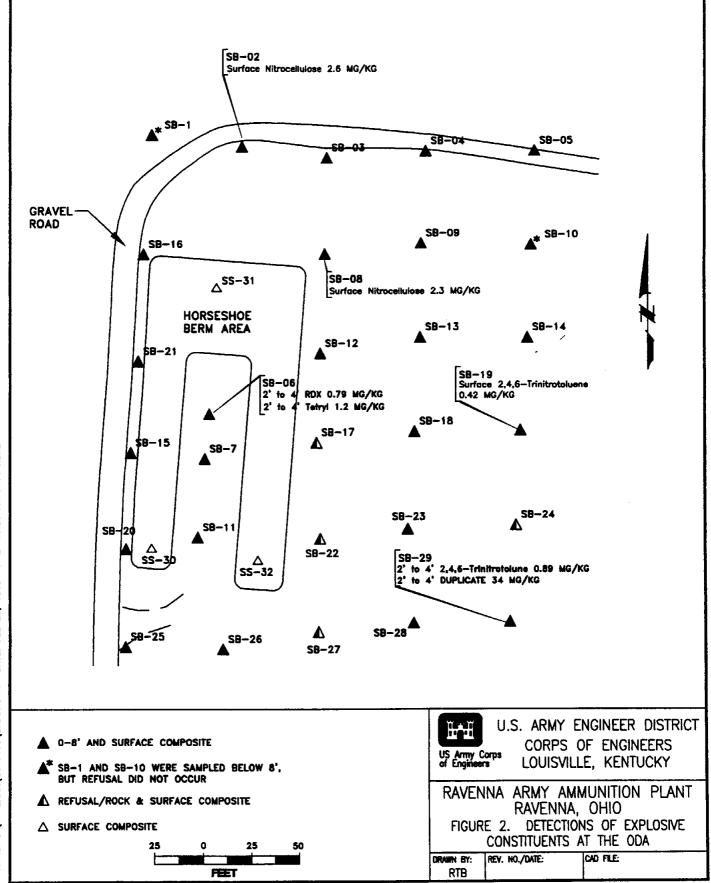
Conditions at the site during the field investigation were wet, with large patches of saturated or nearly-saturated ground throughout the RCRA unit, as a result of recent precipitation as well as surface runoff from the hillside on which the ODA is situated. The soil borings were sounded with an electronic water level meter for an estimation of depth to groundwater. Although groundwater was encountered during Geoprobe[©] drilling in only one boring (SB01), water was present in the open holes after completion in three additional holes. Two of these locations (SB06 and SB11) are inside the bermed area, where surface drainage was generally poor, and may be indicative of perched water on shallow bedrock.

Water was present in SB01 initially at 10.5 ft BGS, then at 6 ft BGS after the hole collapsed from 14 to 10 ft BGS. In SB06, water was present 1.1 ft BGS upon completion of the boring, then at the ground surface after the hole collapsed from 8 ft to 4.75 ft BGS. At SB11, water was present at 7.4 ft BGS upon completion of the boring, then at 5.3 ft BGS after the hole collapsed from 7.8 to 7.2 ft BGS. Finally, in SB24, water occurred at 3.1 ft BGS at the time of completion of the 14-ft boring. The hole collapsed over the next two hours from 14 to 4.4 ft BGS, and the water level rose to 2.4 ft BGS. Water was not present in any of the other borings in the ODA.

Surface and subsurface unconsolidated materials in the ODA are generally silty clays, silty sands, and, less commonly, poorly sorted sands and gravels typical of the Lavery Till deposits found elsewhere in the eastern half of the RVAAP installation. Thin seams of sand were commonly observed in the subsurface, as were traces of gravel. Given the magnitude of soil disturbance and reworking as a consequence of past open detonation of munitions at the site, it is unlikely that the subsurface stratigraphy is contiguous among the 8-ft borings. The vast majority of soils to a depth of 8-ft within the RCRA area have been significantly reworked.

2.2 Analytical Results

Surface and subsurface soil samples were collected at 2-ft continuous intervals from 29 soil boring locations at ODA. Three additional surface soil samples were collected from the top of the horseshoe-shaped berm. Samples were analyzed to determine explosives and target analyte list (TAL) metals concentrations.


TAL metals were analyzed in every soil sample taken from the ODA. Maximum concentrations for metals are presented below in Table 2.

Explosives were present in five soil samples analyzed by the contract laboratory. As shown in Figure 2, TNT was present in one surface soil (SB19) and two 2-4 ft soil samples (SB29 and duplicate), ranging in concentration from <1 to 34 ppm. RDX and tetryl were detected once, in the 2-4 ft interval at SB06, inside the bermed area. No other explosives were detected. Table 3 shows the comparison of TNT and DNT results for field and contract laboratory analysis. As shown by this comparison, field analysis tended to overestimate the concentration of explosives in the soil, resulting in a poor correlation of results from these two methods. The field screening data logs are included in Appendix D.

The propellant nitrocellulose was detected in two surface soil samples (SS02 and SS08) at concentrations of 2.3 to 2.6 ppm. No other detections of propellants were noted at ODA.

3. DEACTIVATION FURNACE AREA

The purposes of the investigation at the DFA were to determine subsurface stratigraphy, groundwater conditions, and levels of contamination within the the RCRA boundary, which extends 21 ft outward from the remaining walls on the west and north, and 21 ft from the former eastern wall, and south from the furnace control room to Pallet Road D West (Figure 3). Soil samples collected were analyzed for explosives and TAL metals according to the Facility-Wide Sampling and Analysis Plan (USACE 1996) by EPA methods SW846-8330 and SW846-6010/7000, respectively, to further substantiate the chemical data evaluation presented in the Closure Plan (USACE, 1997c). In addition, geotechnical analyses (moisture content, soil classification, grain size analysis, specific gravity, and Atterberg limits) were performed to support the closure design for the DFA.

Analyte	Max. Conc. (mg/kg)	Depth Interval (ft BGS)	Location	Analyte	Max. Conc. (mg/kg)	Depth Interval (ft BGS)	Location
Aluminum	16,900	2.0-4.0	SB26	Magnesium	16,700	4.0-6.0	SB18
Antimony	355	0.0-2.0	SB26	Manganese	1360	0.0-2.0	SB20
Arsenic	110	0.0-2.0	SB26	Mercury	0.84	0.0-2.0	SB19
Barium	552	0.0-0.3	SS14	Nickel	84.7	6.0-8.0	SB22
Beryllium	2.9	0.0-0.3	SS25	Potassium	3280	4.0-6.0	SB03
Cadmium	11.2	2.0-4.0	SB07	Selenium	ND		
Calcium	202,000	0.0-0.3	SS01	Silver	ND		
Chromium	25.6	4.0-6.0	SB03	Sodium	ND		
Cobalt	ND			Thallium	0.83	6.0-8.0	SB03
Copper	3200	0.0-2.0	SB12	Vanadium	30.7	2.0-4.0	SB26
Iron	41,500	2.0-4.0	SB17	Zinc	806	0.0-2.0	SB11
Lead	40,800	0.0-2.0	SB26				

Table 2. Maximum Concentrations of Metals at the Open Detonation Area

ND = Not Detected

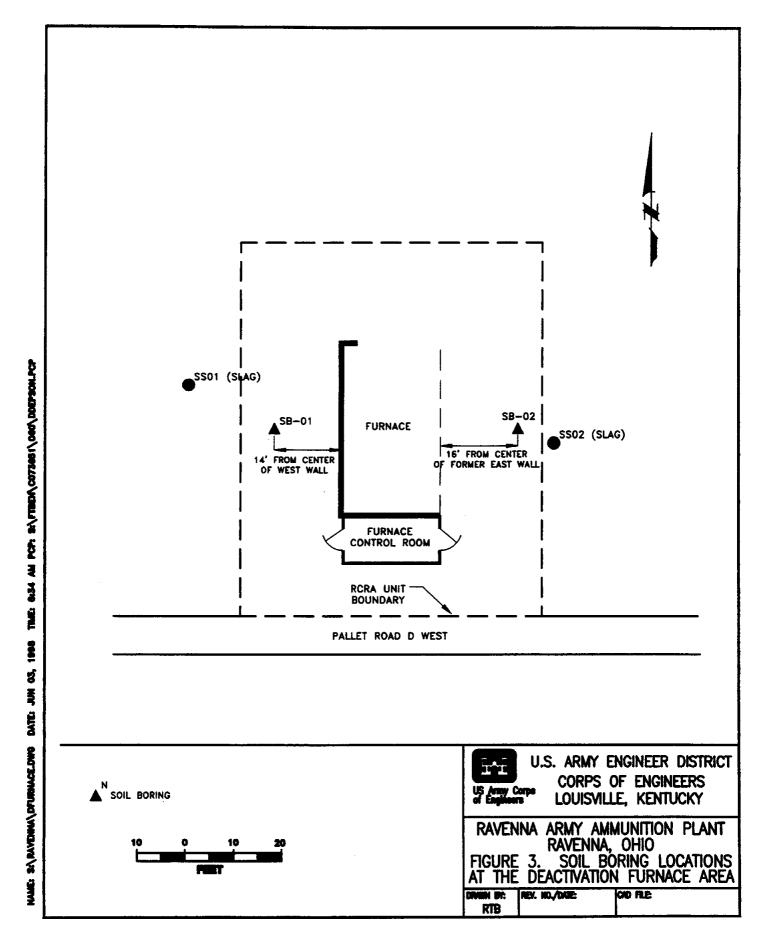
.

Table 3.	Comparison of Fie	ld Colorimetry and	d Analytical Laborato	ry Results
----------	-------------------	--------------------	-----------------------	------------

Location	TNT - lab	lab qual.	TNT - field (mg/kg)	DNT - lab (mg/kg)	lab qual.	DNT - field (mg/kg)
DF1154-SB01-2.0-4.0	0.25	U	1.280	0.25	U	0.630
OD1001-SS01-0.0-0.3	0.25	U	ND	0.25	U	ND
OD1002-SS02-0.0-0.3	0.25	U	ND	0.25	U	ND
OD1003-SS03-0.0-0.3	0.25	U	ND	0.25	U	ND
OD1004-SS04-0.0-0.3	0.25	U	315.000	0.25	U	224.000
OD1008-SS08-0.0-0.3	0.25	U	ND	0.25	U	ND
OD1011-SS11-0.0-0.3	0.25	U	ND	0.25	U	ND
OD1013-SS13-0.0-0.3	0.25	U	ND	0.25	U	ND
OD1015-SS15-0.0-0.3	0.25	U	ND	0.25	U	ND

Location	TNT - lab	lab qual.	TNT - field (mg/kg)	DNT - lab (mg/kg)	lab qual.	DNT - field (mg/kg)
OD1017-SS17-0.0-0.3	0.25	U	ND	0.25	U	ND
OD1019-SS19-0.0-0.3	0.25	U	ND	0.25	U	ND
OD1024-SS24-0.0-0.3	0.25	U	ND	0.25	U	ND
OD1026-SS26-0.0-0.3	0.25	U	1.570	0.25	U	0.970
OD1027-SS27-0.0-0.3	0.25	U	0.260	0.25	U	ND
OD1028-SS28-0.0-0.3	0.25	U	ND	0.25	U	ND
OD1032-SS32-0.0-0.3	0.25	U	ND	0.25	U	ND
OD1044-SB03-6.0-8.0	0.25	U	0.990	0.25	U	0.510
OD1051-SB05-4.0-6.0	0.25	U	0.231	0.25	U	1.140
OD1054-SB06-2.0-4.0	0.25	U	ND	0.25	U	ND
OD1077-SB12-0.0-2.0	0.25	U	ND	0.25	U	ND
OD1093-SB16-0.0-2.0	0.25	U	ND	0.25	U	ND
OD1105-SB19-0.0-2.0	0.42		0.077	0.25	U	0.380
OD1123-SB23-4.0-6.0	0.25	U	ND	0.25	U	ND
OD1139-SB27-4.0-6.0	0.25	U	ND	0.25	U	ND
OD1146-SB29-2.0-4.0	0.89		1.970	0.25	U	0.940
OD1148-SB29-6.0-8.0	0.25	U	2.240	0.25	U	0.970
OD1222-SB05-4.0-6.0 ¹	0.25	U	1.140	0.25	U	0.670
OD1223-SB06-2.0-4.0 ²	0.25	U	ND	0.25	U	ND
OD1224-SB29-2.0-4.0 ³	34.00		1.970	2.50	U	0.940

¹duplicate of OD1051 ²duplicate of OD1054


U = non-detectsND = not detected

³duplicate of OD1146

The geology of the DFA was investigated with two Geoprobe[©] borings within the RCRA unit boundary of the site. The first boring, SB-1, was placed 14 ft west of the center of the western wall of the furnace barrier. The second, SB-2, was placed 16 ft east of the center of the now-demolished eastern wall of the barrier. These locations are shown in Figure 3. Slag samples also were collected from the surface in the locations shown in Figure 3, and analyzed to determine the slag's composition.

Geologic Description 3.1

The ground surface of the site is covered by slag and is underlain by a variety of fill materials ranging in composition from silty to sandy clays. The fine-grained fill material extends to a

depth of approximately 7 feet, and overlies a well- to poorly-sorted brown sand. Traces of clay and gravel were observed in the uppermost 1 ft of this material. Thereafter, the sand was fairly homogeneous. Based on the samples collected for lithologic logging, the sand appears to be at least 8 ft thick. Geochemical samples were collected to 10 ft BGS in both borings, and geotechnical samples were collected to 16 ft BGS in SB-01. Thereafter, the Geoprobe[©] was pushed to refusal. In SB-1, refusal was not reached when the operator had used all the available extension rods at a depth of 43 ft. In SB-02, refusal occurred at 43 ft BGS, and the probe was hammered from 37 to 43 ft. The nature of this resistant material was not determined during the investigation.

Saturated soils indicative of a water table aquifer were present in both borings. Soils were saturated at 12 ft BGS in SB-01, and 9.6 ft BGS in SB-02 in the well-sorted sand.

3.2 Analytical Results

Soil samples were collected for analysis during Geoprobe[©] operations in 2-ft intervals continuously from 0 to 10-ft BGS. In addition, a surface composite sample was collected at each of the soil boring locations. All samples were analyzed in the field using colorimetric methods for the explosive constituents TNT and DNT. All samples were analyzed by the contract laboratory for TAL metals. In addition, one surface composite soil samples was analyzed by the laboratory for explosives and propellants. Geotechnical samples also were collected in 2-ft intervals to 10 ft in the Geoprobe[®] borings. The analytical results are presented in Appendix A of this report.

No explosives or propellants were detected in either the soil boring samples or the surface composite samples. This finding corroborates the 1991-1993 sampling data that showed no detectable quantities of explosives remaining in DFA soils.

TAL metals were analyzed in every soil sample and in the two slag samples collected at the DFA. Maximum concentrations for metals detected in both soil and slag are presented in Table 4. Table 5 presents the maximum concentration for each metal in the slag alone.

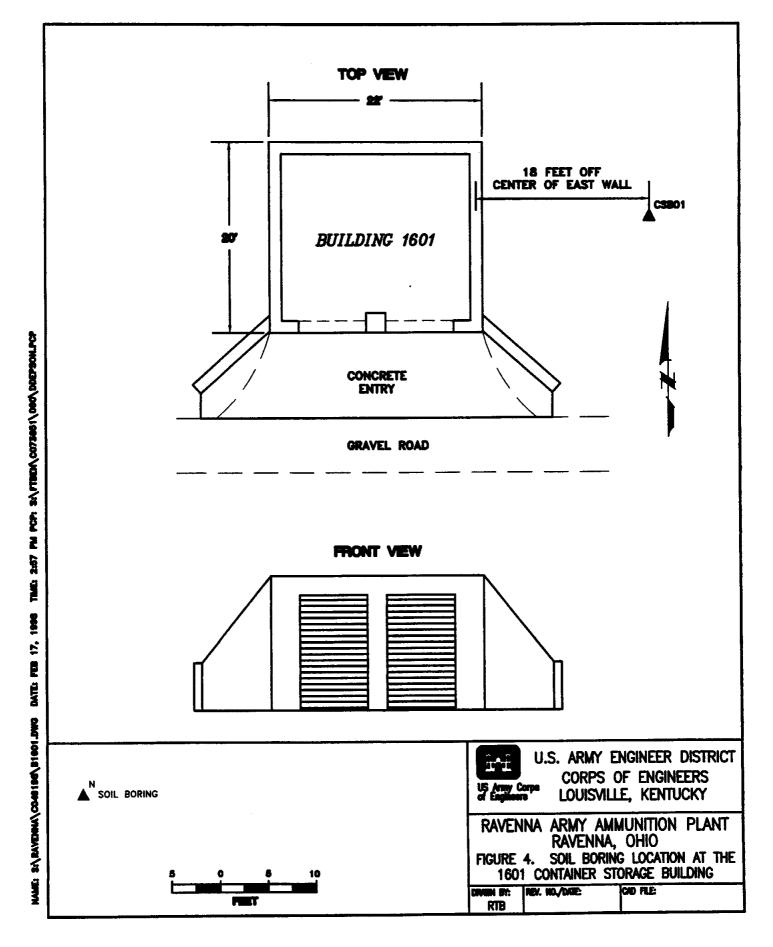
Analyte	Max. Conc. (mg/kg)	Depth Interval (ft BGS)	Location	Analyte	Max. Conc. (mg/kg)	Depth Interval (ft BGS)	Location
Aluminum	31,100	0.0-0.5	slag	Magnesium	30,500	0.0-0.5	slag
Antimony	2.3	0.0-0.5	SS02	Manganese	3300	0.0-0.5	slag
Arsenic	171	0.0-0.5	SS02	Mercury	ND		
Barium	487	0.0-0.5	slag	Nickel	28.6	4.0-6.0	SB01
Beryllium	5.3	0.0-0.5	slag	Potassium	4190	4.0-6.0	SB02
Cadmium	8.9	0.0-0.5	SS02	Selenium	ND		
Calcium	258,000	0.0-0.5	slag	Silver	ND		
Chromium	23.0	4.0-6.0	SB02	Sodium	2350	0.0-0.5	slag
Cobalt	ND			Thallium	1.5	0.0-0.5	slag
Copper	545	0.0-0.5	SS02	Vanadium	30.1	4.0-6.0	SB02
Iron	29,000	0.0-2.0	SB02	Zinc	667	0.0-0.5	SS02
Lead	144	0.0-0.5	SS02				

Table 4. Maximum Concentrations of Metals at the Deactivation Furnace Area

ND = Not Detected

Analyte	Maximum Concentration (mg/kg)	Analyte	Maximum Concentration (mg/kg)
Aluminum	31,100	Magnesium	30,500
Antimony	ND	Manganese	3300
Arsenic	4.2	Mercury	ND
Barium	487	Nickel	9.7
Beryllium	5.3	Potassium	2560
Cadmium	6.7	Selenium	ND
Calcium	258,000	Silver	ND
Chromium	16.4	Sodium	2350
Cobalt	ND	Thallium	1.5
Copper	14.1	Vanadium	11.1
Iron	23,100	Zinc	38.4
Lead	7.3		

Table 5. Maximum Concentrations of Metals in Slag at theDeactivation Furnace Area


ND = Not Detected

4. **BUILDING 1601 (CONTAINER STORAGE UNIT)**

Building 1601 is situated in Winklepeck Burning Grounds (RVAAP-05) along Pallet Road B West. Geotechnical properties of soil as well as subsurface lithologic conditions were assessed during the RCRA Field Investigation to support future closure activities at this RCRA unit.

4.1 Geologic Description

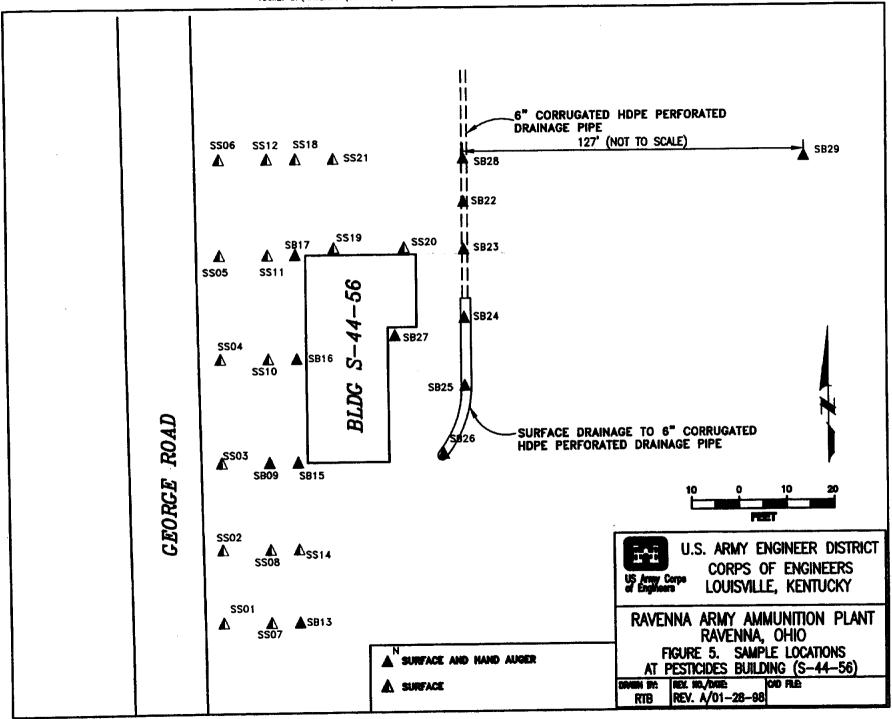
The geology of the site was investigated by advancing one Geoprobe[©] boring into the soils at a location approximately 18 ft from the center of the eastern wall of the building, as shown in Figure 4. The unconsolidated materials at the site consist of glacial clays with

varying proportions of silt and sand. The uppermost 4 ft BGS consisted of coarse to fine sands with some silt. The sand was saturated at 3.0 to 4.0 ft, and underlain by clays to approximately 8.0 ft BGS. Another saturated zone was encountered in a sandy silty clay at 8.0 to 9.0 ft BGS, which was also underlain by clay to 11.0 ft BGS. The boring was not logged below this depth, and no further geotechnical samples were collected. The boring was terminated at a depth of 28.5 ft BGS without refusing on bedrock. No geochemical analyses were performed on samples from the Geoprobe[©] boring at Building 1601.

A surface composite soil sample also was collected from three subsamples at the location of the Geoprobe[©] boring.

4.2 Analytical Results

No samples collected at the 1601 Building were submitted for geochemical analysis. Geotechnical results are provided in Appendix A.


5. **PESTICIDES BUILDING**

The Pesticides Building (S44-56) was investigated with soil samples collected from 29 locations (Figure 5). Samples were collected at 0.0-0.5 ft BGS and at 1.0 to 2.0 ft BGS at twelve locations. At the remaining 17 locations, only surface soil samples (0.0-0.5 ft) were collected. Sampling was conducted on a geometrical grid on the west side of the building, and at discrete locations underneath the building and along the ditch behind it. Surface soil samples were discrete rather than composite samples, and all soils collected at the site were analyzed for pesticides/PCBs and herbicides only, according to EPA methods specified in the Facility-Wide Sampling and Analysis Plan (USACE 1996). Herbicides analyzed include 2,4-D, 2,4,5-T, and 2,4,5-TP.

One Geoprobe[©] boring was placed at SB-09, west of the southwest corner of the building. Figure 5 shows the general site layout and the locations of the soil samples.

5.1 Geologic Description

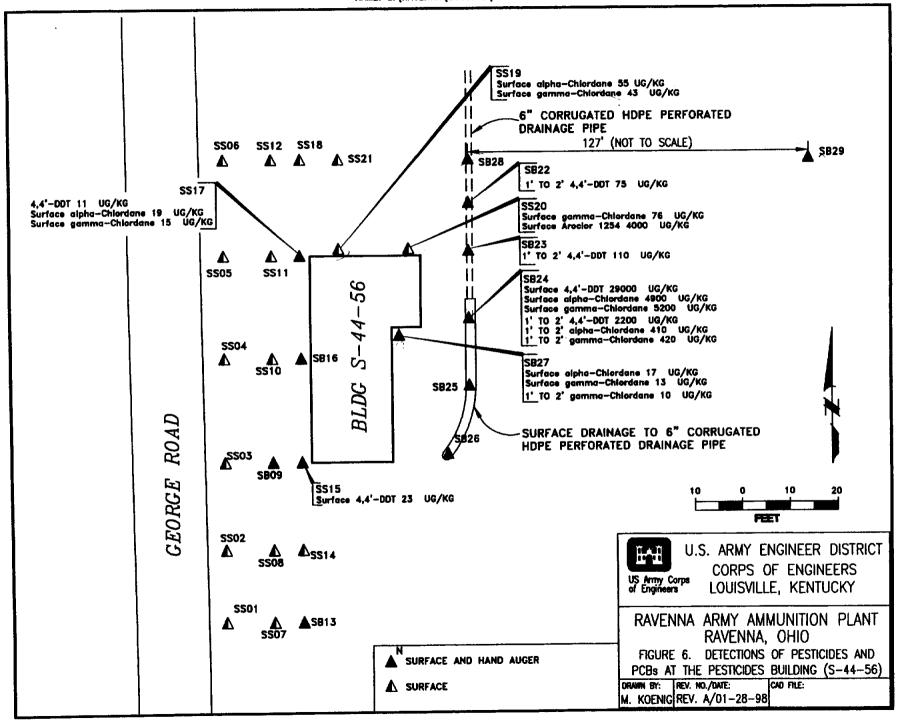
The area west of the Pesticides Building is covered with 1 to 5.5 inches of 3/8' to 1/2' crushed stone over about 8-inches of a sandstone McAdam base course. At the sampling locations nearest George Road and in the driveway to the building, the crushed stone layer is underlain by 2.5 to 3-inches of asphalt pavement. At SB-09 and the other surface soil sampling locations, the surface material is underlain by silty clays or silty gravels. The impermeable nature of the substrate below the crushed stone/base course is evident from the ponding of precipitation on the surface. During the investigation, the crushed slag was water-saturated on the north side of the Pesticides Building.

NAME: S:\RAVENNA\C049198\SMPL4456.DWG DATE: JUN 03, 1998 TIME: 6:38 AM PCP: S:\FTBEN\C073651\060\DDEPSON.PCP

15

Subsurface soil samples from the 1.0 to 2.0-ft interval consisted predominantly of silts, sandy silts, and clayey silts, with some organic matter present in the samples from the drainage ditch. SB-09 was found to contain predominantly silty clays with stringers of fine sand at 5.0 to 6.0 ft and 13.0 ft BGS. A saturated sand zone approximately 0.5 ft thick was encountered at 17.0 ft BGS, and was underlain again by silty clays. The boring log for SB-09 at the Pesticides Building is provided in Appendix C.

5.2 Analytical Results


Several pesticides were observed in the surface soils closest to the building. The compounds detected were alpha-chlordane, gamma-chlordane, 4,4-DDT, and the polychlorinated biphenyl (PCB) Aroclor-1254. Soil samples taken at locations SS15, SS17,SS19, SS20, SS24, and SS27 all contained one or more of these analytes in concentrations above detection limits. The maximum concentration of any of these compounds in surface soil samples was 29,000 parts per billion (ppb) of 4,4-DDT in SS24, in the ditch directly behind the Pesticides Building. Sample SS-20, located in a sump beneath the building, was the site of the only detection of Aroclor-1254, at 4000 ppb. This detection may result from PCB-laden oils leaking from the sump's electric motor onto the accumulated soil on the underlying concrete slab.

Detections of pesticides in the subsurface (1-2 ft) samples were limited to SS22, SS23, SS24, and SS27 (note that there was no corresponding surface soil sample in SS22). The greatest concentrations of these compounds in the subsurface soils were observed in SS24, with 420 ppb gamma-chlordane, 410 ppb alpha-chlordane, and 2200 ppb 4,4-DDT.

SB-09 was advanced to a depth of 34 ft using a Geoprobe[®]. Samples were collected for chemical analysis continuously at two-foot intervals to a depth of 8.0 ft and for geotechnical analysis to a depth of 20 ft. No pesticide/PCBs or herbicides were detected at depth at SB-09. No water was present in the borehole.

Figure 6 shows contaminant detections for soils at the Pesticides Building, and Appendix A presents the analytical results.

NAME: S:\RAVENNA\CO49198\BLDG4456.DWG DATE: APR 16, 1998 TIME: 8:23 AM PCP: S:\PCP\MON.PCP

REFERENCES

- Jenkins, T.F., Grant, C.L., Grar, G.S., Thorne, P.G., Schumacher, P.W., and Ranney, T.A., 1997. Sampling Error Associated with Collection and Analysis of Soil Samples at TNT-Contaminated Sites, Field Analytical Chemistry and Technology. Vo. 1, No. 3, p. 151-163.
- Ohio Environmental Protection Agency, 1993. Closure Plan Review Guidance for RCRA Facilities. Interim Final, September 1, 1993.
- Science Applications International Corporation (SAIC), 1998. Draft Letter Report to United States Army Corps of Engineers (USACE), dated January 16, 1998.
- USACE, 1996. Facility-Wide Sampling and Analysis Plan for Ravenna Army Ammunition Plant. Prepared by SAIC.
- USACE, 1997a. Revised Closure Plan for the Open Detonation Area. Prepared by SAIC, October 1997.
- USACE, 1997b. Revised Closure Plan for the Container Storage Unit (Building 1601). Prepared by SAIC, October 1997.
- USACE, 1997c. Draft Revised Closure Plan for the Deactivation Furnace Area. Prepared by SAIC, September 1997.

APPENDIX A

ANALYTICAL RESULTS

· .

.

. . . .

APPENDIX A

Collected: 11/21/97

RCRA Field Investigations, 1997 Ravenna Army Ammunition Plant

Location: Deactivation Furnace Area

0.0-2.0 FT

Station: SB01

DFA-SB-001-1153-SO

Field Sample Type: Composite - Subsurface Soil

Metals	Result	Units	Quali Lab	fiers Data
Aluminum	14800	MG/KG		
Antimony	0.57	MG/KG	U	UJ
Arsenic	12.7	MG/KG		
Barium	81.0	MG/KG		
Beryllium	0.79	MG/KG		
Cadmium	0.57	MG/KG	U	
Calcium	19000	MG/KG		
Chromium	20.4	MG/KG		
Cobalt	17.1	MG/KG	U	
Copper	33.4	MG/KG		
iron	23700	MG/KG	MBB	
Lead	16.4	MG/KG		
Magnesium	6450	MG/KG		
Manganese	458	MG/KG		
Mercury	0.11	MG/KG	U	
Nickel	26.0	MG/KG		
Potassium	3230	MG/KG		
Selenium	0.57	MG/KG	U	
Silver	1.1	MG/KG	U	
Sodium	570	MG/KG	U	
Thallium	0.57	MG/KG	U	
Vanadium	25.3	MG/KG		
Zinc	93.0	MG/KG		J

Data Qualifiers:

Station: SB01

DFA-SB-001-1154-SO

2.0-4.0 FT Field Sample Type: Composite - Subsurface Soil

Collected: 11/21/97

Explosives	Result	Units	Quali Lab	fiers Data
1,3,5-Trinitrobenzene	0.25	MG/KG	U	
1,3-Dinitrobenzene	0.25	MG/KG	U	
2,4,6-Trinitrotoluene	0.25	MG/KG	U	
2,4-Dinitrotoluene	0.25	MG/KG	U	
2,6-Dinitrotoluene	0.25	MG/KG	U	
2-Nitrotoluene	0.25	MG/KG	U	
3-Nitrotoluene	0.25	MG/KG	U	
4-Nitrotoluene	0.25	MG/KG	U	
HMX	0.50	MG/KG	U	
Nitrobenzene	0.25	MG/KG	U	
Nitroglycerin	2.5	MG/KG	U	
RDX	0.50	MG/KG	U	
Tetryl	0.65	MG/KG	U	
Metals	Result	Units	Quali Lab	fiers Data
Aluminum	10000		LAU	Data
Antimony	10800	MG/KG		
Arsenic	0.58	MG/KG	U	UJ
Barium	13.0	MG/KG		
Beryllium	56.7	MG/KG		
Cadmium	0.58	MG/KG	U	
Calcium	0.58	MG/KG	U	
Chromium	25000	MG/KG		
Cobalt	17.5	MG/KG	U	
	17.3	MG/KG	U	
Copper	21.4	MG/KG		
Iron	23100	MG/KG	MBB	
Lead	10.7	MG/KG		
Magnesium	5840	MG/KG		
Manganese	350	MG/KG		
Mercury	0.12	MG/KG	U	
Nickel	26.0	MG/KG		
Potassium	2210	MG/KG	••	
Selenium	0.58	MG/KG	U	
Silver	1.2	MG/KG	U	
Sodium	576	MG/KG	U	
Thallium	0.58	MG/KG	U	
Vanadium	19.6	MG/KG		
Zinc	65.8	MG/KG	L	J

Data Qualifiers:

Station: SB01

DFA-SB-001-1155-SO 4.0-6.0 FT Field Sample Type: Composite - Subsurface Soil

Collected: 11/21/97

			Qualifiers		
Metals	Result	Units	Lab	<u>Data</u>	
Aluminum	11700	MG/KG			
Antimony	0.58	MG/KG	U	UJ	
Arsenic	12.7	MG/KG			
Barium	. 64.6	MG/KG			
Beryllium	0.58	MG/KG	U		
Cadmium	0.58	MG/KG	U		
Calcium	26500	MG/KG			
Chromium	18.1	MG/KG			
Cobalt	17.5	MG/KG	U		
Copper	20.2	MG/KG			
Iron	24000	MG/KG	MBB		
Lead	11.4	MG/KG			
Magnesium	7150	MG/KG			
Manganese	405	MG/KG			
Mercury	0.12	MG/KG	U		
Nickel	28.6	MG/KG			
Potassium	2300	MG/KG			
Selenium	0.58	MG/KG	U.		
Silver	1.2	MG/KG	U		
Sodium	583	MG/KG	U		
Thallium	0.58	MG/KG	U		
Vanadium	21.0	MG/KG			
Zinc	65.8	MG/KG		J	

Data Qualifiers:

Station: SB01

DFA-SB-001-1156-SO 6.0-8.0 FT Field Sample Type: Composite - Subsurface Soil

Collected: 11/21/97

Metals	Result	Units	Quali Lab	fiers Data
Aluminum	7290	MG/KG		
Antimony	0.59	MG/KG	U	UJ
Arsenic	15.3	MG/KG		
Barium	39.6	MG/KG		
Beryllium	0.59	MG/KG	U	
Cadmium	0.59	MG/KG	U	
Calcium	19300	MG/KG		
Chromium	11.8	MG/KG		
Cobalt	17.7	MG/KG	U	
Copper	20.7	MG/KG		
Iron	19500	MG/KG	MBB	
Lead	9.9	MG/KG		
Magnesium	4530	MG/KG		
Manganese	314	MG/KG		
Mercury	0.12	MG/KG	U	
Nickel	17.5	MG/KG		
Potassium	1440	MG/KG		
Selenium	0.59	MG/KG	U	
Silver	1.2	MG/KG	U	
Sodium	590	MG/KG	U	
Thallium	0.59	MG/KG	U	
Vanadium	13.7	MG/KG		
Zinc	56.4	MG/KG		J

Data Qualifiers:

Station: SB01

Field Sample Type: Composite - Subsurface Soil 8.0-10 FT DFA-SB-001-1157-SO

Collected: 11/21/97

			Quali	fiers
Metals	Result	Units	Lab	Data
Aluminum	5650	MG/KG		
Antimony	0.56	MG/KG	U	UJ
Arsenic	11.6	MG/KG		
Barium	22.2	MG/KG	U	
Beryllium	0.56	MG/KG	U	
Cadmium	0.56	MG/KG	U	
Calcium	1890	MG/KG		
Chromium	9.6	MG/KG		
Cobalt	16.7	MG/KG	U	
Copper	22.5	MG/KG		
Iron	17100	MG/KG	MBB	
Lead	9.5	MG/KG		
Magnesium	1990	MG/KG		
Manganese	458	MG/KG		
Mercury	0.11	MG/KG	U	
Nickel	17.4	MG/KG		
Potassium	998	MG/KG		
Selenium	0.56	MG/KG	U	
Silver	1.1	MG/KG	U	
Sodium	556	MG/KG	U	
Thallium	0.56	MG/KG	U	
Vanadium	10.8	MG/KG		
Zinc	58 .6	MG/KG		J

Data Qualifiers:

Station: SB02

DFA-SB-002-1158-SO 0.0-2.0 FT Field Sample Type: Composite - Subsurface Soil

Collected: 11/23/97

Metals	s Result Un		Qualifiers Lab D		
Aluminum	13900	MG/KG		Data	
Antimony	0.59	MG/KG	U	UJ	
Arsenic	20.6	MG/KG	U	0.	
Barium	65.9	MG/KG			
Beryllium	1.0	MG/KG			
Cadmium	0.59	MG/KG	U		
Calcium	2190	MG/KG	_		
Chromium	22.2	MG/KG			
Cobalt	17.6	MG/KG	U		
Copper	25.0	MG/KG	-		
Iron	29000	MG/KG	MBB		
Lead	13.7	MG/KG			
Magnesium	4020	MG/KG			
Manganese	288	MG/KG			
Mercury	0.12	MG/KG	U		
Nickel	27.9	MG/KG			
Potassium	2640	MG/KG			
Selenium	0.59	MG/KG	U		
Silver	1.2	MG/KG	U		
Sodium	588	MG/KG	U		
Thallium	0.59	MG/KG	U		
Vanadium	24.8	MG/KG			
Zinc	96.6	MG/KG		J	

Data Qualifiers:

Station: SB02

Field Sample Type: Composite - Subsurface Soil DFA-SB-002-1159-SO 2.0-4.0 FT

Collected: 11/23/97

Metals	Result	Units	Qualif Lab	fiers Data
Aluminum	14200	MG/KG		
Antimony	0.57	MG/KG	U	UJ
Arsenic	13.1	MG/KG		
Barium	72.4	MG/KG		
Beryllium	0.67	MG/KG		
Cadmium	0.57	MG/KG	U	
Calcium	18800	MG/KG		
Chromium	20.7	MG/KG		
Cobalt	17.1	MG/KG	U	
Соррег	21.4	MG/KG		
Iron	25500	MG/KG	MBB	
Lead	11.2	MG/KG		
Magnesium	5900	MG/KG		
Manganese	395	MG/KG		
Mercury	0.11	MG/KG	U	
Nickel	27.7	MG/KG		
Potassium	3120	MG/KG		
Selenium	0.57	MG/KG	U	
Silver	1.1	MG/KG	U	
Sodium	569	MG/KG	U	
Thallium	0.57	MG/KG	U	
Vanadium	26.3	MG/KG		
Zinc	67.9	MG/KG		J

Data Qualifiers:

Station: SB02

DFA-SB-002-1160-SO

4.0-6.0 FT Field Sample Type: Composite - Subsurface Soil

Collected: 11/23/97

			Quali	fiers
Metals	Result	Units	Lab	<u>Data</u>
Aluminum	16600	MG/KG		
Antimony	0.57	MG/KG	U	UJ -
Arsenic	13.4	MG/KG		
Barium	80.9	MG/KG		
Beryllium	0.74	MG/KG		
Cadmium	0.57	MG/KG	U	
Calcium	25400	MG/KG		
Chromium	23.0	MG/KG		
Cobalt	17.1	MG/KG	U	
Copper	21.1	MG/KG		
Iron	25800	MG/KG	MBB	
Lead	12.9	MG/KG		
Magnesium	6240	MG/KG		
Manganese	388	MG/KG		
Mercury	0.11	MG/KG	U	
Nickel	28.5	MG/KG		
Potassium	4190	MG/KG		
Selenium	0.57	MG/KG	U	
Silver	1.1	MG/KG	U	
Sodium	570	MG/KG	U	
Thallium	0.57	MG/KG	U	
Vanadium	30.1	MG/KG		
Zinc	75.1	MG/KG		J

· Data Qualifiers:

Station: SB02

Field Sample Type: Composite - Subsurface Soil 6.0-8.0 FT DFA-SB-002-1161-SO

Collected: 11/23/97

Metals	Result	Units	Qualif Lab	fiers Data
Aluminum	4830	MG/KG		
Antimony	0.56	MG/KG	U	UJ
Arsenic	13.5	MG/KG		
Barium	27.8	MG/KG		
Beryllium	0.56	MG/KG	U	
Cadmium	0.56	MG/KG	U	
Calcium	3420	MG/KG		
Chromium	8,5	MG/KG		
Cobalt	16.9	MG/KG	U	
Copper	18.4	MG/KG		
Iron	16600	MG/KG	MBB	
Lead	10.1	MG/KG		
Magnesium	2220	MG/KG		
Manganese	306	MG/KG		
Mercury	0.11	MG/KG	U	
Nickel	15.1	MG/KG		
Potassium	760	MG/KG		
Selenium	0.56	MG/KG	U	
Silver	1.1	MG/KG	U	
Sodium	563	MG/KG	U	
Thallium	0.56	MG/KG	U	
Vanadium	8.9	MG/KG		
Zinc	57.4	MG/KG		J

Data Qualifiers:

•

Station: SB02

DFA-SB-002-1162-SO 8.0-10 FT Field Sample Type: Composite - Subsurface Soil

Collected: 11/23/97

Metals	Result		Qualifiers	
		Units	Lab	Data
Aluminum	6150	MG/KG		
Antimony	0.55	MG/KG	U	UJ
Arsenic	14.9	MG/KG		
Barium	38.6	MG/KG		
Beryllium	0.55	MG/KG	U	
Cadmium	0.55	MG/KG	U	
Calcium	3580	MG/KG		
Chromium	10.3	MG/KG		
Cobalt	16.5	MG/KG	U	
Copper	22.5	MG/KG		
Iron	18300	MG/KG	MBB	
Lead	12.8	MG/KG		
Magnesium	2230	MG/KG		
Manganese	578	MG/KG		
Mercury	0.11	MG/KG	U	
Nickel	22.7	MG/KG		
Potassium	1250	MG/KG		
Selenium	0.55	MG/KG	U	
Silver	1.1	MG/KG	U	
Sodium	550	MG/KG	U	
Thallium	0.55	MG/KG	U	
Vanadium	11.8	MG/KG		
Zinc	71.4	MG/KG		J

Data Qualifiers:

0.0-0.5 FT

Station: SS01

DFA-SS-001-1151-SO

Field Sample Type: Split Sample

Collected: 11/24/97

Metals	Result	Units	Quali <u>Lab</u>	fiers Data
Aluminum	14500	MG/KG		
Antimony	0.60	MG/KG	U	UJ
Arsenic	12.5	MG/KG		
Barium	108	MG/KG		
Beryllium	1.0	MG/KG		
Cadmium	1.7	MG/KG		J
Calcium	25800	MG/KG		
Chromium	18.4	MG/KG		
Cobalt	18.0	MG/KG	U	
Copper	46.3	MG/KG		
Iron	22800	MG/KG		
Lead	34.4	MG/KG		
Magnesium	7000	MG/KG		
Manganese	678	MG/KG		
Mercury	0.12	MG/KG	U	
Nickel	24.4	MG/KG		
Potassium	2800	MG/KG		
Selenium	0.60	MG/KG	U	
Silver	1.2	MG/KG	U	
Sodium	599	MG/KG	U	
Thallium	0.60	MG/KG	U	
Vanadium	22.5	MG/KG		
Zinc	178	MG/KG		J

Data Qualifiers:

Station: SS01

DFA-SS-001D-1225-SO

0.0-0.5 FT Field Sample Type: Field Duplicate

Collected: 11/24/97

Metals	Result	Units	Quali Lab	ifiers Data
Aluminum	13400	MG/KG		
Antimony	0.96	MG/KG		J
Arsenic	11.0	MG/KG		
Barium	128	MG/KG		
Beryllium	1.2	MG/KG		
Cadmium	2.8	MG/KG		J
Calcium	31700	MG/KG		
Chromium	15.2	MG/KG		
Cobalt	17.4	MG/KG	U	
Copper	83.4	MG/KG		
Iron	19500	MG/KG		
Lead	46.5	MG/KG		
Magnesium	7380	MG/KG		
Manganese	792	MG/KG		
Mercury	0.12	MG/KG	U	
Nickel	21.3	MG/KG		
Potassium	2060	MG/KG		
Selenium	0.58	MG/KG	U	
Silver	1.2	MG/KG	U	
Sodium	580	MG/KG	U	
Thallium	0.58	MG/KG	U	
Vanadium	17.3	MG/KG		
Zinc	219	MG/KG		J

Data Qualifiers:

Station: SS01

DFA-SS-001S-1149-SO

Field Sample Type: Grab - Slag 0.0-0.5 FT

Collected: 11/24/97

	Result	Units	Quali	
Metals	Kesuit		_Lab_	Data
Aluminum	25800	MG/KG		
Antimony	0.54	MG/KG	U	IJ
Arsenic	2.4	MG/KG		
Barium	487	MG/KG		
Beryllium	5.3	MG/KG		_
Cadmium	0.99	MG/KG		J
Calcium	174000	MG/KG		
Chromium	12.4	MG/KG		
Cobalt	16.1	MG/KG	U	
Copper	14.1	MG/KG		
Iron	23100	MG/KG		
Lead	5.4	MG/KG		
Magnesium	30500	MG/KG		
Manganese	3170	MG/KG		
Mercury	0.11	MG/KG	U	
Nickel	4.3	MG/KG	U	
Potassium	1920	MG/KG		
Selenium	0.54	MG/KG	U	
Silver	1.1	MG/KG	U	
Sodium	1580	MG/KG		
Thallium	0.74	MG/KG		
Vanadium	11.1	MG/KG		
Zinc	28.0	MG/KG		1

Data Qualifiers:

Station: SS02

DFA-SS-002-1152-SO

0.0-0.5 FT Field Sample Type: Composite - Surface Soil

Collected: 11/24/97

<i></i>			Quali	Qualifiers	
Metals	Result	Units	Lab	Data	
Aluminum	15400	MG/KG			
Antimony	2.3	MG/KG		J	
Arsenic	171	MG/KG			
Barium	128	MG/KG			
Beryllium	1.1	MG/KG			
Cadmium	8.9	MG/KG		J	
Calcium	33900	MG/KG			
Chromium	18.9	MG/KG			
Cobalt	18.3	MG/KG	U		
Copper	. 545	MG/KG			
Iron	19200	MG/KG			
Lead	144	MG/KG			
Magnesium	6260	MG/KG			
Manganese	924	MG/KG			
Mercury	0.12	MG/KG	U		
Nickel	21.7	MG/KG			
Potassium	2190	MG/KG			
Selenium	0.61	MG/KG	U		
Silver	1.2	MG/KG	U		
Sodium	609	MG/KG	U		
Thallium	0.61	MG/KG	U		
Vanadium	17.8	MG/KG			
Zinc	667	MG/KG		J	

Data Qualifiers:

Station: SS02

Field Sample Type: Field Duplicate DFA-SS-002D-1226-SO 0.0-0.5 FT

Collected: 11/24/97

١

Metals	Result	Units	Quali Lab	ifiers Data
Aluminum	10600	MG/KG		
Antimony	0.89	MG/KG		J
Arsenic	69.9	MG/KG		
Barium	77.2	MG/KG		
Beryllium	0.61	MG/KG	U	
Cadmium	2.9	MG/KG		J
Calcium	14500	MG/KG		
Chromium	16.5	MG/KG		
Cobalt	18.2	MG/KG	U	
Copper	158	MG/KG		
Iron	22000	MG/KG		
Lead	57.6	MG/KG		
Magnesium	4070	MG/KG		
Manganese	434	MG/KG		
Mercury	0.12	MG/KG	U	
Nickel	24.1	MG/KG		
Potassium	1850	MG/KG		
Selenium	0.61	MG/KG	U	
Silver	1.2	MG/KG	U	
Sodium	606	MG/KG	U	
Thallium	0.61	MG/KG	U	
Vanadium	18.1	MG/KG		
Zinc	272	MG/KG		J

Data Qualifiers:

Station: SS02

DFA-SS-002S-1/150-30

0.0-0.5 FT Field Sample Type: Grab - Slag

Collected: 11/24/97

			Quali	fiers
Metals	Result	Units	Lab	Data
Aluminum	31100	MG/KG		
Antimony	1.0	MG/KG	U	UJ
Arsenic	4.2	MG/KG		
Barium	328	MG/KG		
Beryllium	4.4	MG/KG		
Cadmium	6.7	MG/KG		J
Calcium	258000	MG/KG		
Chromium	16.4	MG/KG		
Cobalt	15.1	MG/KG	U	
Copper	7.9	MG/KG		
Iron	701	MG/KG		
Lead	7.3	MG/KG		
Magnesium	30200	MG/KG		
Manganese	3300	MG/KG		
Mercury	0.10	MG/KG	U	
Nickel	9.7	MG/KG		
Potassium	2560	MG/KG		
Selenium	1.0	MG/KG	U	
Silver	1.0	MG/KG	U	
Sodium	2350	MG/KG		
Thallium	1.5	MG/KG		
Vanadium	5.0	MG/KG	U	
Zinc	38.4	MG/KG		J

Data Qualifiers:

Location: Open Detonation Area Station: SB01

ODA-SB-001-1033-SO	0.0-2.0 FT	Field Sample Type:	Composite - Subsurface Soil
--------------------	------------	--------------------	-----------------------------

Collected: 11/21/97

Metals	Result	Units	Quali Lab	fiers Data
Aluminum	11100	MG/KG		
Antimony	0.57	MG/KG	U	UJ
Arsenic	16.2	MG/KG		
Barium	59.5	MG/KG		J
Beryllium	0.57	MG/KG		
Cadmium	0.57	MG/KG	U	
Calcium	11800	MG/KG		J
Chromium	17.4	MG/KG		
Cobalt	17.1	MG/KG	U	
Copper	19.7	MG/KG		J
Iron	27000	MG/KG		
Lead	11.7	MG/KG		
Magnesium	4610	MG/KG		
Manganese	311	MG/KG		
Mercury	0.11	MG/KG	U	
Nickel	25.5	MG/KG		
Potassium	1880	MG/KG		
Selenium	0.57	MG/KG	U	
Silver	1.1	MG/KG	U	
Sodium	570	MG/KG	U	
Thallium	0.57	MG/KG	U	
Vanadium	18.7	MG/KG		
Zinc	69.0	MG/KG		J

Data Qualifiers:

Station: SB01

ODA-SB-001-1034-SO 2.0-4.0 FT Field Sample Type: Composite - Subsurface Soil

Collected: 11/21/97

			Quali	fiers
Metals	Result	Units	Lab	Data
Aluminum	8710	MG/KG		
Antimony	0.57	MG/KG	U	UJ
Arsenic	17.4	MG/KG		
Barium	46.2	MG/KG		
Beryllium	0.57	MG/KG	U	
Cadmium	0.57	MG/KG	U	
Calcium	7960	MG/KG		J
Chromium	14.2	MG/KG		J
Cobalt	17.1	MG/KG	U	
Copper	19.8	MG/KG		J
Iron	25900	MG/KG		
Lead	11.6	MG/KG		
Magnesium	3960	MG/KG		
Manganese	781	MG/KG		
Mercury	0.11	MG/KG	U	
Nickel	34.9	MG/KG		
Potassium	1670	MG/KG		
Selenium	0.57	MG/KG	U	
Silver	1.1	MG/KG	U	
Sodium	569	MG/KG	U	
Thallium	0.57	MG/KG	U	
Vanadium	16.0	MG/KG		
Zinc	63.0	MG/KG		

Data Qualifiers:

Station: SB01

Field Sample Type: Composite - Subsurface Soil 4.0-6.0 FT ODA-SB-001-1035-SO

Collected: 11/21/97

		A.	Quali	fiers
Aetals	Result	Units	<u>Lab</u>	Data
Juminum	9640	MG/KG		
Antimony	0.59	MG/KG	U	UJ
Arsenic	17.8	MG/KG		
Barium	35.7	MG/KG		
Beryllium	0.59	MG/KG	U	
Cadmium	0.59	MG/KG	U	
Calcium	7420	MG/KG		
Chromium	15.8	MG/KG		
Cobalt	17.7	MG/KG	U	
Copper	19.8	MG/KG		
ron	27800	MG/KG		
Lead	11.2	MG/KG		
Magnesium	4790	MG/KG		
Manganese	441	MG/KG		
Mercury	0.12	MG/KG	U	
Nickel	28.1	MG/KG		
Potassium	1680	MG/KG		
Selenium	0.59	MG/KG	U	
Silver	1.2	MG/KG	U	
Sodium	590	MG/KG	U	
Thallium	0.59	MG/KG	U	
Vanadium	16.7	MG/KG		
Zinc	66.1	MG/KG		

Data Qualifiers:

L-Serial dilution criteria not met MBB-Detected in method blank at less than 5% of sample amount PF-RPD greater than 50% difference between columns J-Estimated value U-Not detected UJ-Not detected, associated value uncertain

Station: SB01

ODA-SB-001-1036-SO	6.0-8.0 FT	Field Sample Type:	Composite - Subsurface Soil
			Composite Cassariace Don

Collected: 11/21/97

Metals	Result	Units	Quali <u>Lab</u>	fiers Data
Aluminum	13600	MG/KG		
Antimony	0.60	MG/KG	U	UJ
Arsenic	20.4	MG/KG		
Barium	59.0	MG/KG		
Beryllium	0.60	MG/KG	U	
Cadmium	0.60	MG/KG	U	
Calcium	17000	MG/KG		
Chromium	20.1	MG/KG		
Cobalt	17.9	MG/KG	U	
Copper	22.0	MG/KG		
Iron	29000	MG/KG		
Lead	10.2	MG/KG		
Magnesium	6030	MG/KG		
Manganese	430	MG/KG		
Mercury	0.12	MG/KG	U	
Nickel	27.8	MG/KG		
Potassium	2870	MG/KG		
Selenium	0.60	MG/KG	U	
Silver	1.2	MG/KG	U	
Sodium	598	MG/KG	U	
Thallium	0.60	MG/KG	U	
Vanadium	24.9	MG/KG		
Zinc	64.5	MG/KG		

Data Qualifiers:

.

.

Station: SB01

ODA-SB-001-1233-SO 12-14 FT Field Sample Type: Composite - Subsurface Soil

Collected: 11/21/97

Metals	Result	Units	Quali Lab	fiers Data
Aluminum	6550	MG/KG		
Antimony	0.59	MG/KG	U	UJ
Arsenic	13.3	MG/KG		
Barium	36.5	MG/KG		
Beryllium	0.59	MG/KG	U	
Cadmium	0.59	MG/KG	U	UJ
Calcium	21300	MG/KG		
Chromium	11.6	MG/KG		
Cobalt	17.8	MG/KG	U	
Copper	16.9	MG/KG		
Iron	17700	MG/KG		
Lead	9.4	MG/KG		
Magnesium	2810	MG/KG		
Manganese	326	MG/KG		
Mercury	0.12	MG/KG	U	
Nickel	16.8	MG/KG		
Potassium	1460	MG/KG		
Selenium	0.59	MG/KG	U	
Silver	1.2	MG/KG	U	
Sodium	594	MG/KG	U	
Thallium	0.59	MG/KG	U	
Vanadium	12.8	MG/KG		
Zinc	51.8	MG/KG		

Data Qualifiers:

Station: SB02

ODA-SB-002-1037-SO 0.0-2.0 FT Field Sample Type: Composite - Subsurface Soil

Collected: 11/18/97

Metals	Result	Units	Qualifiers Lab Data
Aluminum	10800	MG/KG	
Antimony	0.60	MG/KG	U UJ
Arsenic	15.2	MG/KG	
Barium	108	MG/KG	
Beryllium	0.64	MG/KG	
Cadmium	0.60	MG/KG	U
Calcium	2050	MG/KG	
Chromium	17.8	MG/KG	
Cobalt	18.0	MG/KG	U
Copper	20.8	MG/KG	
Iron	25200	MG/KG	
Lead	13.6	MG/KG	
Magnesium	3240	MG/KG	
Manganese	343	MG/KG	
Mercury	0.12	MG/KG	U
Nickel	37.6	MG/KG	
Potassium	1710	MG/KG	
Selenium	0.60	MG/KG	U
Silver	1.2	MG/KG	U
Sodium	600	MG/KG	U
Thallium	0.60	MG/KG	U
Vanadium	20.0	MG/KG	
Zinc	74.9	MG/KG	

Data Qualifiers:

Station: SB02

ODA-SB-002-1038-SO	2.0-4.0 FT	Field Sample Type:	Composite - Subsurface Soil
			-

Collected: 11/18/97

Ietals	Result	Units	Quali	
			Lab	Data
Juminum	11500	MG/KG		
Intimony	0.57	MG/KG	U	UJ
rsenic	15.8	MG/KG		
Barium	54.4	MG/KG		
Beryllium	0.57	MG/KG	U	
Cadmium	0.57	MG/KG	U	
Calcium	16400	MG/KG		
Chromium	18.4	MG/KG		
Cobalt	17.2	MG/KG	U	
Copper	17.3	MG/KG		
ron	25300	MG/KG		
Lead	11.3	MG/KG		
Magnesium	4240	MG/KG		
Manganese	330	MG/KG		
Мегсигу	0.11	MG/KG	U	
Nickel	26.9	MG/KG		
Potassium	2290	MG/KG		
Selenium	0.57	MG/KG	U	
Silver	1.1	MG/KG	U	
Sodium	573	MG/KG	U	
Thallium	0.57	MG/KG	U	
Vanadium	20.3	MG/KG		
Zinc	62.6	MG/KG		

Data Qualifiers:

Station: SB02

ODA-SB-002-1039-SO

.

4.0-6.0 FT Field Sample Type: Composite - Subsurface Soil

Collected: 11/18/97

Metals	Result	Units	Quali Lab	fiers Data
Aluminum	9570	MG/KG		
Antimony	0.60	MG/KG	U	UJ
Arsenic	19.5	MG/KG		
Barium	44.9	MG/KG		
Beryllium	0.60	MG/KG	U	
Cadmium	0.60	MG/KG	U	
Calcium	5250	MG/KG		
Chromium	16.5	MG/KG		
Cobalt	18.1	MG/KG	U	
Copper	19.4	MG/KG		
Iron	26700	MG/KG		
Lead	11.7	MG/KG		
Magnesium	3550	MG/KG		
Manganese	449	MG/KG		
Mercury	0.12	MG/KG	U	
Nickel	27.8	MG/KG		
Potassium	1500	MG/KG		
Selenium	0.60	MG/KG	U	
Silver	1.2	MG/KG	U	
Sodium	602	MG/KG	U	
Thallium	0.60	MG/KG	U	
Vanadium	17.7	MG/KG		
Zinc	68.2	MG/KG		

Data Qualifiers:

Location: Open Detonation Area Station: SB02

ODA-SB-002-1040-SO

6.0-8.0 FT Field Sample Type: Composite - Subsurface Soil

Collected: 11/18/97

Metals	D		Quali	fiers
	Result	Units	Lab	Data
Aluminum	14800	MG/KG		
Antimony	0.62	MG/KG	U	UJ
Arsenic	19.2	MG/KG		
Barium	61.2	M G /KG		
Beryllium	0.69	MG/KG		
Cadmium	0.62	MG/KG	U	
Calcium	2520	MG/KG		
Chromium	24.1	MG/KG		
Cobalt	18.7	MG/KG	U	
Copper	21.0	MG/KG		
Iron	34600	MG/KG		
Lead	13.5	MG/KG		
Magnesium	4840	MG/KG		
Manganese	430	MG/KG		
Mercury	0.12	MG/KG	U	
Nickei	34.6	MG/KG		
Potassium	2970	MG/KG		
Selenium	0.62	MG/KG	U	
Silver	1.2	MG/KG	U	
Sodium	622	MG/KG	U	
Thallium	0.62	MG/KG	U	
Vanadium	26.3	MG/KG		
Zinc	77.1	MG/KG		

Data Qualifiers:

This page intentionally left blank

.

.

Station: SB03

Collected: 11/18/97

			Quali	fiers
Metals	Result	Units	Lab	Data
Aluminum	15200	MG/KG		
Antimony	0.59	MG/KG	U	UJ
Arsenic	12.8	MG/KG		
Barium	101	MG/KG		
Beryllium	0.64	MG/KG		
Cadmium	0.59	MG/KG	U	
Calcium	16300	MG/KG		
Chromium	24.0	MG/KG		
Cobalt	17.7	MG/KG	U	
Copper	21.9	MG/KG		
Iron	28800	MG/KG		
Lead	15.8	MG/KG		
Magnesium	5760	MG/KG		
Manganese	413	MG/KG		
Mercury	0.12	MG/KG	U	
Nickel	36.2	MG/KG		
Potassium	2540	MG/KG		
Selenium	0.59	MG/KG	U	
Silver	1.2	MG/KG	U	
Sodium	590	MG/KG	U	
Thallium	0.59	MG/KG	U	
Vanadium	28.1	MG/KG		
Zinc	74.7	MG/KG		

Data Qualifiers:

Station: SB03

ODA-SB-003-1042-SO

2.0-4.0 FT Field Sample Type: Composite - Subsurface Soil

Collected: 11/18/97

Metals	Result	Units	Quali	
	Kesuit	<u> </u>	Lab	Data
Aluminum	11500	MG/KG		
Antimony	0.57	MG/KG	U	UJ
Arsenic	12.3	MG/KG		
Barium	70.9	MG/KG		
Beryllium	0.57	MG/KG	U	
Cadmium	0.57	MG/KG	U	
Calcium	27800	MG/KG		
Chromium	19.2	MG/KG		
Cobalt	17.2	MG/KG	U	
Copper	20.6	MG/KG		
Iron	25400	MG/KG		
Lead	11.1	MG/KG		
Magnesium	7710	MG/KG		J
Manganese	366	MG/KG		
Mercury	0.11	MG/KG	U	
Nickel	29.5	MG/KG		
Potassium	2020	MG/KG		
Selenium	0.57	MG/KG	U	
Silver	1.1	MG/KG	U	
Sodium	575	MG/KG	U	
Thallium	0.57	MG/KG	U	
Vanadium	21.8	MG/KG		
Zinc	66.5	MG/KG		J

Data Qualifiers:

Station: SB03

Field Sample Type: Composite - Subsurface Soil ODA-SB-003-1043-SO 4.0-6.0 FT

Collected: 11/18/97

Metals	etals Result	Units	Qualifiers	
	Kesuit		Lab	Data
Aluminum	14000	MG/KG		
Antimony	0.59	MG/KG	U	UJ
Arsenic	15.8	MG/KG		
Barium	80.3	MG/KG		
Beryllium	0.69	MG/KG		
Cadmium	0.59	MG/KG	U	
Calcium	29000	MG/KG		
Chromium	25.6	MG/KG		
Cobalt	17.6	MG/KG	U	
Copper	22.0	MG/KG		
Iron	37200	MG/KG		
Lead	14.2	MG/KG		
Magnesium	7000	MG/KG		J
Manganese	546	MG/KG		
Mercury	0.12	MG/KG	U	
Nickel	34.1	MG/KG		
Potassium	3280	MG/KG		
Selenium	0.59	MG/KG	U	
Silver	1.2	MG/KG	U	
Sodium	588	MG/KG	U	
Thallium	0.61	MG/KG		
Vanadium	30.5	MG/KG		
Zinc	72.1	MG/KG	L	J

Data Qualifiers:

Station: SB03

ODA-SB-003-1044-SO 6.0-8.0 FT Field Sample Type: Composite - Subsurface Soil

Collected: 11/18/97

Explosives	Result	Units	Quali Lab	fiers Data
1,3,5-Trinitrobenzene	0,25	MG/KG	 U	
1,3-Dinitrobenzene	0.25	MG/KG	Ŭ	
2,4,6-Trinitrotoluene	0.25	MG/KG	Ū	
2,4-Dinitrotoluene	0.25	MG/KG	Ū	
2,6-Dinitrotoluene	0.25	MG/KG	U	
2-Nitrotoluene	0.25	MG/KG	U	
3-Nitrotoluene	0.25	MG/KG	U	
4-Nitrotoluene	0.25	MG/KG	U	
HMX	0.50	MG/KG	U	
Nitrobenzene	0.25	MG/KG	U	
Nitrocellulose (as N)	2.1	MG/KG	U	UJ
Nitroglycerin	2.5	MG/KG	U	
Nitroguanidine	0.25	MG/KG	U	UJ
RDX	0.50	MG/KG	U	
Tetryl	0.65	MG/KG	U	
			Quali	fiers
Metals	Result	Units	Lab	Data
Aluminum	9500	MG/KG		
Antimony	0.57	MG/KG	U	UJ
Arsenic	17.8	MG/KG		
Barium	64.7	MG/KG		
Beryllium	0.57	MG/KG	U	
Cadmium	0.57	MG/KG	U	
Calcium	10600	MG/KG		
Chromium	15.7	MG/KG		
Cobalt	17.2	MG/KG	U	
Copper	18.6	MG/KG		
Iron	25300	MG/KG		
Lead	11.1	MG/KG		
Magnesium	4580	MG/KG		J
Manganese	1020	MG/KG		
Mercury	0.11	MG/KG	U	
Nickel	34.9	MG/KG		
Potassium	1900	MG/KG		
Selenium	0.57	MG/KG	U	
Silver	1.1	MG/KG	U	
Sodium	573	MG/KG	U	
Thallium	0.83	MG/KG		
Vanadium	17.2	MG/KG		
Zinc	66.4	MG/KG		J

Data Qualifiers:

Station: SB04

Field Sample Type: Composite - Subsurface Soil ODA-SB-004-1045-SO 0.0-2.0 FT

Collected: 11/19/97

Metals	Result	Units	Quali Lab	fiers Data
Aluminum	12500	MG/KG		
Antimony	0.58	MG/KG	U	UJ
Arsenic	10.1	MG/KG		
Barium	133	MG/KG		
Beryllium	0.58	MG/KG	U	
Cadmium	0.58	MG/KG	U	
Calcium	103000	MG/KG		
Chromium	16.1	MG/KG		
Cobalt	17.4	MG/KG	U	
Copper	30.7	MG/KG		
Iron	20100	MG/KG		
Lead	11.2	MG/KG		
Magnesium	3630	MG/KG		
Manganese	311	MG/KG		
Mercury	0.12	MG/KG	U	
Nickel	21.6	MG/KG		
Potassium	1700	MG/KG		
Selenium	0.58	MG/KG	U	
Silver	1.2	MG/KG	U	
Sodium	580	MG/KG	U	
Thallium	0.58	MG/KG	U	
Vanadium	20.3	MG/KG		
Zinc	58.1	MG/KG		

Data Qualifiers:

Station: SB04

ODA-SB-004-1046-SO 2.0-4.0 FT Field Sample Type: Composite - Subsurface Soil

Collected: 11/19/97

Metals	Result	Units	Quali Lab	fiers Data
Aluminum	11500	MG/KG		
Antimony	0.58	MG/KG	U	UJ
Arsenic	18.6	MG/KG		
Barium	59.8	MG/KG		
Beryllium	0.58	MG/KG	U	
Cadmium	0.58	MG/KG	U	
Calcium	12100	MG/KG		
Chromium	17.1	MG/KG		
Cobalt	17.3	MG/KG	U	
Copper	20.4	MG/KG		
Iron	26800	MG/KG		
Lead	11.5	MG/KG		
Magnesium	4970	MG/KG		
Manganese	366	MG/KG		
Mercury	0.12	MG/KG	U	UJ
Nickel	26.3	MG/KG		
Potassium	2350	MG/KG		
Selenium	0.58	MG/KG	U	
Silver	1.2	MG/KG	U	
Sodium	577	MG/KG	U	
Thallium	0.58	MG/KG	U	
Vanadium	19.2	MG/KG		
Zinc	62.9	MG/KG	L	J

Data Qualifiers:

Station: SB04

ODA-SB-004-1047-SO 4.0-6.0 FT	Field Sample Type: Composite - Subsurface Soil
-------------------------------	--

Collected: 11/19/97

Metals	Result	Units	Quali Lab	fiers Data
Aluminum	11300	MG/KG		
Antimony	0.57	MG/KG	U	UJ
Arsenic	17.7	MG/KG		
Barium	51.7	MG/KG		
Beryllium	0.57	MG/KG	U	
Cadmium	0.57	MG/KG	U	
Calcium	7150	MG/KG		
Chromium	17.1	MG/KG		
Cobalt	17.0	MG/KG	U	
Copper	19.8	MG/KG		
Iron	27000	MG/KG		
Lead	12.1	MG/KG		
Magnesium	4990	MG/KG		
Manganese	352	MG/KG		
Mercury	0.11	MG/KG	U	UJ
Nickel	26.7	MG/KG		
Potassium	2260	MG/KG		
Selenium	0.57	MG/KG	U	
Silver	1.1	MG/KG	U	
Sodium	567	MG/KG	U	
Thallium	0.57	MG/KG	U	
Vanadium	18.7	MG/KG		
Zinc	64.4	MG/KG		J

Data Qualifiers:

.

Station: SB04

ODA-SB-004-1048-SO 6.0-5	3.0 FT	Field Sample Type:	Composite - Subsurface Soil
--------------------------	--------	--------------------	-----------------------------

Collected: 11/19/97

		•	Qualifiers	
Metals	Resuit	Units	Lab	Data
Aluminum	13100	MG/KG		
Antimony	0.58	MG/KG	U	UJ
Arsenic	17.4	MG/KG		
Barium	53.4	MG/KG		
Beryllium	0.58	MG/KG	U	
Cadmium	0.58	MG/KG	U	
Calcium	11700	MG/KG		
Chromium	20.2	MG/KG		
Cobalt	17.4	MG/KG	U	
Copper	19.9	MG/KG		
Iron	27300	MG/KG		
Lead	12.3	MG/KG		
Magnesium	5240	MG/KG		
Manganese	522	MG/KG		
Mercury	0,12	MG/KG	U	UJ
Nickel	29.0	MG/KG		
Potassium	2920	MG/KG		
Selenium	0.58	MG/KG	U	
Silver	1.2	MG/KG	U	
Sodium	579	MG/KG	U	
Thallium	0.58	MG/KG	U	
Vanadium	22.4	MG/KG		
Zinc	65.2	MG/KG		J

Data Qualifiers:

Station: SB05

ODA-SB-005-1049-SO 0.0-2.0 FT Field Sample Type: Split Sample

Collected: 11/20/97

Metais	Result	Units	Qualifiers Lab Data
Aluminum	11500	MG/KG	
Antimony	0.59	MG/KG	U
Arsenic	21.6	MG/KG	
Barium	70.0	MG/KG	
Beryllium	0.59	MG/KG	U
Cadmium	0.59	MG/KG	U
Calcium	25400	MG/KG	
Chromium	17.9	MG/KG	
Cobalt	17.7	MG/KG	U
Copper	19.2	MG/KG	
Iron	· 30200	MG/KG	
Lead	11.1	MG/KG	
Magnesium	4140	MG/KG	
Manganese	350	MG/KG	
Mercury	0.12	MG/KG	U
Nickel	34.1	MG/KG	
Potassium	1340	MG/KG	
Selenium	0.59	MG/KG	U
Silver	1.2	MG/KG	U
Sodium	591	MG/KG	U
Thallium	0.59	MG/KG	U
Vanadium	17.7	MG/KG	
Zinc	64.1	MG/KG	

Data Qualifiers:

Station: SB05

ODA-SB-005-1050-SO

2.0-4.0 FT Field Sample Type: Composite - Subsurface Soil

Collected: 11/20/97

			Quali	fiers
Metals	Result	Units	<u>Lab</u>	<u>Data</u>
Aluminum	11900	MG/KG		
Antimony	0.58	MG/KG	U	UJ
Arsenic	18.1	MG/KG		
Barium	60.2	MG/KG		
Beryllium	0.58	MG/KG	U	
Cadmium	0.58	MG/KG	U	
Calcium	28100	MG/KG		
Chromium	17.9	MG/KG		
Cobalt	17.5	MG/KG	U	
Copper	21.3	MG/KG		
Iron	27100	MG/KG		
Lead	11.8	MG/KG		
Magnesium	4500	MG/KG		
Manganese	334	MG/KG		
Mercury	0.12	MG/KG	U	
Nickel	28.0	MG/KG		
Potassium	1950	MG/KG		
Selenium	0.58	MG/KG	U	
Silver	1.2	MG/KG	U	
Sodium	582	MG/KG	U	
Thallium	0.58	MG/KG	U	
Vanadium	19.3	MG/KG		
Zinc	65.0	MG/KG		

Data Qualifiers:

.

Station: SB05

Field Sample Type: Composite - Subsurface Soil 4.0-6.0 FT ODA-SB-005-1051-SO

Collected: 11/20/97

· · · · · · · · · · · · · · · · · · ·			Qualif	liers
Explosives	Result	Units	_Lab	Data
1,3,5-Trinitrobenzene	0.25	MG/KG	U	
1,3-Dinitrobenzene	0.25	MG/KG	U	
2,4,6-Trinitrotoluene	0.25	MG/KG	U	
,4-Dinitrotoluene	0.25	MG/KG	U	
2,6-Dinitrotoluene	0.25	MG/KG	U	
-Nitrotoluene	0.25	MG/KG	U	
3-Nitrotoluene	0.25	MG/KG	U	
4-Nitrotoluene	0.25	MG/KG	U	
IMX	0.50	MG/KG	U	
Nitrobenzene	0.25	MG/KG	U	
Nitrocellulose (as N)	2.0	MG/KG	U	UJ
Nitroglycerin	2.5	MG/KG	U	
Nitroguanidine	0.25	MG/KG	U	UJ
RDX	0.50	MG/KG	U	
Fetryl	0.65	MG/KG	U	
			Quali	fiers
Metals	Result	Units	Lab	Data
Aluminum	8400	MG/KG		
Antimony	0.58	MG/KG	U	UJ
Arsenic	20.9	MG/KG		
Barium	34.8	MG/KG		
Beryllium	0,58	MG/KG	U	
Cadmium	0.58	MG/KG	U	
Calcium	18300	MG/KG		
Chromium	13.7	MG/KG		
Cobalt	17.4	MG/KG	U	
Copper	19.5	MG/KG		
Iron	26100	MG/KG		
Lead	11.3	MG/KG		
Magnesium	4450	MG/KG		
Manganese	397	MG/KG		
Mercury	0.12	MG/KG	U	
Nickel	26.5	MG/KG		
Potassium	1340	MG/KG		
Selenium	0.58	MG/KG	U	
Silver	1.2	MG/KG	U	
Sodium	581	MG/KG	U	
Thallium	0.58	MG/KG	U	
Vanadium	14.4	MG/KG		
	59.6	MG/KG		
Zinc	59.0	1410/120		

Data Qualifiers:

Station: SB05

ODA-SB-005-1052-SO 6.0-8.0 FT Field Sample Type: Composite - Subsurface Soil

Collected: 11/20/97

Metals	Result	Units	Quali Lab	fiers Data
Aluminum	10800	MG/KG		
Antimony	0.62	MG/KG	U	UJ
Arsenic	20.5	MG/KG		
Barium	37.3	MG/KG		
Beryllium	0.62	MG/KG	U	
Cadmium	0.62	MG/KG	U	
Calcium	7140	MG/KG		
Chromium	17.6	MG/KG		
Cobalt	18.6	MG/KG	U	
Copper	. 21.8	MG/KG		
Iron	31000	MG/KG		
Lead	12.6	MG/KG		
Magnesium	6290	MG/KG		
Manganese	442	MG/KG		
Mercury	0.12	MG/KG	U	
Nickel	31.8	MG/KG		
Potassium	1530	MG/KG		
Selenium	. 0.62	MG/KG	U	
Silver	1.2	MG/KG	U	
Sodium	619	MG/KG	U	
Thallium	0.62	MG/KG	U	
Vanadium	17.7	MG/KG		
Zinc	67.2	MG/KG		

Data Qualifiers:

Station: SB05

ODA-SB-005D-1222-SO 4.0-6.0 FT Field Sample Type: Field Duplicate

Collected: 11/20/97

			Qualifiers	
Explosives	Result	Units	<u>Lab</u>	Data
1,3,5-Trinitrobenzene	0.25	MG/KG	U	
1,3-Dinitrobenzene	0.25	MG/KG	U	
2,4,6-Trinitrotoluene	0.25	MG/KG	U	
2,4-Dinitrotoluene	0.25	MG/KG	U	
2,6-Dinitrotoluene	0.25	MG/KG	U	
2-Nitrotoluene	0.25	MG/KG	U	
3-Nitrotoluene	0.25	MG/KG	U	
4-Nitrotoluene	0.25	MG/KG	U	
HMX	0.50	MG/KG	U	
Nitrobenzene	0.25	MG/KG	U	
Nitrocellulose (as N)	2.1	MG/KG	U	UJ
Nitroglycerin	2.5	MG/KG	U	
Nitroguanidine	0.25	MG/KG	U	UJ
RDX	0.50	MG/KG	U	
Tetryl	0.65	MG/KG	U	

Data Qualifiers:

Station: SB06

ODA-SB-006-1053-SO 0.0-2.0 FT Field Sample Type: Composite - Subsurface Soil

Collected: 11/21/97

Metals	Result	Units	Quali Lab	fiers Data
Aluminum	9810	MG/KG		
Antimony	0.58	MG/KG	U	UJ
Arsenic	14.8	MG/KG		
Barium	72.5	MG/KG		J
Beryllium	0.58	MG/KG	U	
Cadmium	4.5	MG/KG		
Calcium	6400	MG/KG		J
Chromium	14.9	MG/KG		
Cobalt	17.4	MG/KG	U	
Copper	79.0	MG/KG		1
Iron	24800	MG/KG		
Lead	30.1	MG/KG		
Magnesium	3690	MG/KG		
Manganese	390	MG/KG		
Mercury	0.12	MG/KG	U	
Nickel	21.7	MG/KG		
Potassium	1950	MG/KG		
Selenium	0.58	MG/KG	U	
Silver	1.2	MG/KG	U	
Sodium	581	MG/KG	U	
Thallium	0.58	MG/KG	U	
Vanadium	17.3	MG/KG		
Zinc	134	MG/KG		J

Data Qualifiers:

Station: SB06

ODA-SB-006-1054-SO 2.0-4.0 FT Field Sample Type: Composite - Subsurface Soil

Collected: 11/21/97

	.	TT •/	Quali	fiers
Explosives	Result	Units	<u>Lab</u>	Data
1,3,5-Trinitrobenzene	0.25	MG/KG	U	
1,3-Dinitrobenzene	0.25	MG/KG	U	
2,4,6-Trinitrotoluene	0.25	MG/KG	U	
2,4-Dinitrotoluene	0.25	MG/KG	U	
2,6-Dinitrotoluene	0.25	MG/KG	U	
2-Nitrotoluene	0.25	MG/KG	U	
3-Nitrotoluene	0.25	MG/KG	U	
4-Nitrotoluene	0.25	MG/KG	U	
HMX	0.50	MG/KG	U	
Nitrobenzene	0.25	MG/KG	U	
Nitrocellulose (as N)	2.4	MG/KG		UJ
Nitroglycerin	2.5	MG/KG	U	
Nitroguanidine	0.25	MG/KG	U	J
RDX	0.50	MG/KG	U	
Tetryl	0.65	MG/KG	U	
			Qual	ifiers
Metals	Result	Units	_Lab_	<u>Data</u>
Aluminum	8450	MG/KG		
Antimony	0.53	MG/KG	U	UJ
Arsenic	15.8	MG/KG		
Barium	41.9	MG/KG		
Beryllium	0.53	MG/KG	U	
Cadmium	2.1	MG/KG		
Calcium	5720	MG/KG		J
Chromium	13.6	MG/KG		J
Cobalt	15.8	MG/KG	U	
Copper	39.5	MG/KG		J
Iron	20800	MG/KG		
Lead	37.1	MG/KG		
Magnesium	3560	MG/KG		
Manganese	349	MG/KG		
Mercury	0.11	MG/KG	U	
Nickel	31.9	MG/KG		
Potassium	1720	MG/KG		
Selenium	0.53	MG/KG	U	
Silver	1.1	MG/KG	Ū	
Sodium	527	MG/KG	Ū	
Thallium	0.53	MG/KG	Ū	
Vanadium	14.7	MG/KG	-	
	81.3	MG/KG		
Zinc	81.3	MQ/NO		

Data Qualifiers:

5

Station: SB06

ODA-SB-006-1055-SO

4.0-6.0 FT Field Sample Type: Composite - Subsurface Soil

Collected: 11/21/97

			Quali	fiers
Metals	Result	Units	Lab	Data
Aluminum	4700	MG/KG		
Antimony	0.60	MG/KG		
Arsenic	99.4	MG/KG		
Barium	39.3	MG/KG		
Beryllium	0.57	MG/KG	U	
Cadmium	0.57	MG/KG	U	
Calcium	7080	MG/KG		J
Chromium	9.2	MG/KG		
Cobalt	17.2	MG/KG	U	
Copper	16.0	MG/KG		
ron	28400	MG/KG		
ead	20.2	MG/KG		
Agnesium	2770	MG/KG		
Manganese	667	MG/KG		
Aercury	0.11	MG/KG	U	
Nickel	18.1	MG/KG		
Potassium	9 98	MG/KG		
Selenium	0.57	MG/KG	U	
Silver	1.1	MG/KG	U	
Sodium	573	MG/KG	U	
Thallium	0.57	MG/KG	U	
Vanadium	9.6	MG/KG		
Zinc	60.1	MG/KG		

Data Qualifiers:

Station: SB06

Field Sample Type: Composite - Subsurface Soil ODA-SB-006-1056-SO 6.0-8.0 FT

Collected: 11/21/97

Metals	Result	Units	Quali Lab	fiers Data
Aluminum	5450	MG/KG		
Antimony	0.56	MG/KG	U	
Arsenic	22.0	MG/KG		
Barium	22.6	MG/KG	U	
Beryllium	0.56	MG/KG	U	
Cadmium	0.56	MG/KG	U	
Calcium	4950	MG/KG		UJ
Chromium	10.2	MG/KG		
Cobalt	16.9	MG/KG	U	
Copper	13.8	MG/KG		
Iron	21400	MG/KG		
Lead	8.6	MG/KG		
Magnesium	2830	MG/KG		
Manganese	315	MG/KG		
Mercury	0.11	MG/KG	U	
Nickel	18.5	MG/KG		
Potassium	971	MG/KG		
Selenium	0.56	MG/KG	U	
Silver	1.1	MG/KG	U	
Sodium	564	MG/KG	U	
Thallium	0.56	MG/KG	U	
Vanadium	10.8	MG/KG		
Zinc	61.9	MG/KG		

Data Qualifiers:

Station: SB06

ODA-SB-006D-1223-SO 2.0-4.0 FT Field Sample Type: Field Duplicate

Collected: 11/21/97

Explosives	Result	Units	Qualifiers	
			_Lab	Data
1,3,5-Trinitrobenzene	0.25	MG/KG	U	
1,3-Dinitrobenzene	0.25	MG/KG	U	
2,4,6-Trinitrotoluene	0.25	MG/KG	U	
2,4-Dinitrotoluene	. 0.25	MG/KG	U	
2,6-Dinitrotoluene	0.25	MG/KG	U	
2-Nitrotoluene	0.25	MG/KG	U	
3-Nitrotoluene	0.25	MG/KG	U	
4-Nitrotoluene	0.25	MG/KG	U	
HMX	0.50	MG/KG	U	
Nitrobenzene	0.25	MG/KG	U	
Nitrocellulose (as N)	4.4	MG/KG		UJ
Nitroglycerin	2.5	MG/KG	U	
Nitroguanidine	0.25	MG/KG	U	J
RDX	0.79	MG/KG		
Tetryl	1.2	MG/KG		

Data Qualifiers:

Station: SB07

Field Sample Type: Composite - Subsurface Soil ODA-SB-007-1057-SO 0.0-2.0 FT

Collected: 11/21/97

Metals			Qualifiers	
	Result	Units	Lab	Data
Aluminum	7310	MG/KG		
Antimony	0.72	MG/KG		J
Arsenic	16.7	MG/KG		
Barium	194	MG/KG		J
Beryllium	0.56	MG/KG	U	
Cadmium	2.3	MG/KG		
Calcium	4050	MG/KG		J
Chromium	13.2	MG/KG		
Cobalt	16.9	MG/KG	U	_
Copper	108	MG/KG		J
Iron	25000	MG/KG		
Lead	192	MG/KG		
Magnesium	3040	MG/KG		
Manganese	334	MG/KG		
Mercury	0.11	MG/KG	U	
Nickel	20.9	MG/KG		
Potassium	1170	MG/KG		
Selenium	0.56	MG/KG	U	
Silver	1.1	MG/KG	U	
Sodium	564	MG/KG	U	
Thallium	0.56	MG/KG	U	
Vanadium	14.1	MG/KG		
Zinc	187	MG/KG		J

Data Qualifiers:

Station: SB07

ODA-SB-007-1058-SO 2.0-4.0 FT Field Sample Type: Composite - Subsurface Soil

Collected: 11/21/97

Metals	Result	Units	Qualifiers Lab Data
Aluminum	8170	MG/KG	
Antimony	3.2	MG/KG	J
Arsenic	16.0	MG/KG	
Barium	296	MG/KG	
Beryllium	0.58	MG/KG	U
Cadmium	11.2	MG/KG	
Calcium	4150	MG/KG	J
Chromium	14.7	MG/KG	J
Cobalt	17.5	MG/KG	U
Copper	454	MG/KG	J
Iron	22300	MG/KG	
Lead	281	MG/KG	
Magnesium	3100	MG/KG	
Manganese	350	MG/KG	
Mercury	0.12	MG/KG	U
Nickel	50.6	MG/KG	
Potassium	1450	MG/KG	
Selenium	0.58	MG/KG	U
Silver	1.2	MG/KG	U
Sodium	583	MG/KG	U
Thallium	0.58	MG/KG	U
Vanadium	15.7	MG/KG	
Zinc	373	MG/KG	

Data Qualifiers:

.

Station: SB07

ODA-SB-007-1059-SO 4.0-6.0 FT Field Sample Type: Composite - Subsurface Soil

Collected: 11/21/97

Metals	Result	Units	Qualifiers Lab Data
Aluminum	5780	MG/KG	
Antimony	1.6	MG/KG	J
Arsenic	10.8	MG/KG	
Barium	73.4	MG/KG	
Beryllium	0.57	MG/KG	U
Cadmium	2.6	MG/KG	
Calcium	2040	MG/KG	
Chromium	10.2	MG/KG	
Cobalt	17.0	MG/KG	U
Соррег	53.4	MG/KG	
Iron	18200	MG/KG	
Lead	105	MG/KG	
Magnesium	2070	MG/KG	
Manganese	290	MG/KG	
Mercury	0.11	MG/KG	U
Nickel	21.2	MG/KG	
Potassium	1110	MG/KG	
Selenium	0.57	MG/KG	U
Silver	1.1	MG/KG	U
Sodium	567	MG/KG	U
Thallium	0.57	MG/KG	U
Vanadium	12.6	MG/KG	
Zinc	87.1	MG/KG	

Data Qualifiers:

Station: SB07

ODA-SB-007-1060-SO

6.0-8.0 FT Field Sample Type: Composite - Subsurface Soil

Collected: 11/21/97

Metals	s Result Units	Tinita	Qualifiers	
			Lab	Data
Aluminum	4910	MG/KG		
Antimony	0.55	MG/KG	U	UJ
Arsenic	9.3	MG/KG		
Barium	21.9	MG/KG	U	
Beryllium	0.55	MG/KG	U	
Cadmium	0.55	MG/KG	U	
Calcium	14100	MG/KG		
Chromium	9.1	MG/KG		
Cobalt	16.5	MG/KG	U	
Copper	15.3	MG/KG		
Iron	24400	MG/KG		
Lead	9.9	MG/KG		
Magnesium	2250	MG/KG		
Manganese	467	MG/KG		
Mercury	0.11	MG/KG	U	
Nickel	16.1	MG/KG		
Potassium	966	MG/KG		
Selenium	0.55	MG/KG	U	
Silver	1.1	MG/KG	U	
Sodium	548	MG/KG	U	
Thallium	0.55	MG/KG	U	
Vanadium	11.5	MG/KG		
Zinc	54.7	MG/KG		

Data Qualifiers:

Station: SB08

ODA-SB-008-1061-SO 0.0-2.0 FT Field Sample Type: Composite - Subsurface Soil

Collected: 11/18/97

Metals	Result	Units	Quali Lab	fiers Data
Aluminum	7700	MG/KG		
Antimony	0.57	MG/KG	U	UJ
Arsenic	15.1	MG/KG		
Barium	30.8	MG/KG		
Beryllium	0.57	MG/KG	U	
Cadmium	0.57	MG/KG	U	
Calcium	6990	MG/KG		
Chromium	14.1	MG/KG		
Cobalt	17.0	MG/KG	U	
Copper	16.2	MG/KG		
Iron	22900	MG/KG		
Lead	9.8	MG/KG		
Magnesium	3880	MG/KG		J
Manganese	274	MG/KG		
Mercury	0.11	MG/KG	U	
Nickel	21.9	MG/KG		
Potassium	1330	MG/KG		
Selenium	0.57	MG/KG	U	
Silver	1.1	MG/KG	U	
Sodium	567	MG/KG	U	
Thallium	0.57	MG/KG	U	
Vanadium	13.7	MG/KG		
Zinc	58.5	MG/KG		J

Data Qualifiers:

Station: SB08

ODA-SB-008-1062-SO 2.0-4.0 FT Field Sample Type: Composite - Subsurface Soil

Collected: 11/18/97

Metals				Qualifiers Lab Data	
Aluminum	7050	MG/KG			
Antimony	0.60	MG/KG	U	UJ	
Arsenic	15.9	MG/KG			
Barium	30.7	MG/KG			
Beryllium	0.60	MG/KG	U		
Cadmium	0.60	MG/KG	U		
Calcium	9540	MG/KG			
Chromium	13.1	MG/KG			
Cobalt	17.9	MG/KG	U		
Copper	. 20.3	MG/KG			
Iron	23400	MG/KG			
Lead	12.2	MG/KG			
Magnesium	4290	MG/KG		J	
Manganese	229	MG/KG			
Mercury	0.12	MG/KG	U		
Nickel	22.1	MG/KG			
Potassium	1250	MG/KG			
Selenium	0.60	MG/KG	U		
Silver	1.2	MG/KG	U		
Sodium	595	MG/KG	U		
Thallium	0.60	MG/KG	U		
Vanadium	13.7	MG/KG			
Zinc	67.2	MG/KG		J	

Data Qualifiers:

Station: SB08

ODA-SB-008-1063-SO

4.0-6.0 FT Field Sample Type: Composite - Subsurface Soil

Collected: 11/18/97

۰.

			Quali	fiers
Metais	Result	Units	Lab	Data
Aluminum	9 80 0	MG/KG		
Antimony	0.60	MG/KG	U	UJ
Arsenic	23.3	MG/KG		
Barium	35.4	MG/KG		
Beryllium	0.60	MG/KG	U	
Cadmium	0.60	MG/KG	U	
Calcium	14000	MG/KG		
Chromium	16.2	MG/KG		
Cobalt	17.9	MG/KG	U	
Copper	25.6	MG/KG		
Iron	27300	MG/KG		
Lead	12.6	MG/KG		
Magnesium	7250	MG/KG		J
Manganese	333	MG/KG		
Mercury	0.12	MG/KG	U	
Nickel	24.7	MG/KG		
Potassium	1990	MG/KG		
Selenium	0.60	MG/KG	U	
Silver	1.2	MG/KG	U	
Sodium	596	MG/KG	U	
Thallium	0.60	MG/KG	U	
Vanadium	18.5	MG/KG		
Zinc	65.7	MG/KG		J

Data Qualifiers:

Station: SB08

ODA-SB-008-1064-SO

6.0-8.0 FT Field Sample Type: Composite - Subsurface Soil

Collected: 11/18/97

Metals	Result	Units	Quali Lab	ifiers Data
Aluminum	11100	MG/KG		
Antimony	0.61	MG/KG	U	UJ
Arsenic	22.8	MG/KG		
Barium	41.0	MG/KG		
Beryllium	0.61	MG/KG	U	
Cadmium	0.61	MG/KG	U	
Calcium	5170	MG/KG		
Chromium	19.1	MG/KG		
Cobalt	18.4	MG/KG	U	
Copper	19.0	MG/KG		
Iron	29700	MG/KG		
Lead	11.9	MG/KG		
Magnesium	5230	MG/KG		J
Manganese	325	MG/KG		
Mercury	0.12	MG/KG	U	
Nickel	28.8	MG/KG		
Potassium	2340	MG/KG		
Selenium	0.61	MG/KG	U	
Silver	1.2	MG/KG	U	
Sodium	614	MG/KG	U	
Thallium	0.61	MG/KG	U	
Vanadium	20.5	MG/KG		
Zinc	67.3	MG/KG		J

Data Qualifiers:

Station: SB09

ODA-SB-009-1065-SO 0.0-2.0 FT Field Sample Type: Composite - Subsurface Soil

Collected: 11/19/97

Metals	Result	Units	Quali Lab	fiers Data
Aluminum	10800	MG/KG		
Antimony	0.59	MG/KG	U	IJ
Arsenic	18.0	MG/KG		
Barium	44.2	MG/KG		
Beryllium	0.59	MG/KG	U	
Cadmium	0.59	MG/KG	U	
Calcium	3570	MG/KG		
Chromium	16.9	MG/KG		
Cobalt	17.8	MG/KG	U	
Copper	20.6	MG/KG		
Iron	27700	MG/KG		
Lead	12.6	MG/KG		
Magnesium	4270	MG/KG		
Manganese	356	MG/KG		
Mercury	0.12	MG/KG	U	UJ
Nickel	26.9	MG/KG		
Potassium	1840	MG/KG		
Selenium	0.59	MG/KG	U	
Silver	1.2	MG/KG	U	
Sodium	593	MG/KG	U	
Thallium	0.59	MG/KG	U	
Vanadium	17.8	MG/KG		
Zinc	66.2	MG/KG		J

Data Qualifiers:

Station, SDV7

ODA-SB-009-1066-SO 2.0-4.0 FT Field Sample Type: Composite - Subsurface Soil

Collected: 11/19/97

Metals		** */	Qual	ifiers
	Result	Units	Lab	Data
Aluminum	10100	MG/KG		
Antimony	0.55	MG/KG	U	UJ
Arsenic	17.1	MG/KG		
Barium	38.7	MG/KG		
Beryllium	0.55	MG/KG	U	
Cadmium	0.55	MG/KG	U	
Calcium	5650	MG/KG		
Chromium	15.3	MG/KG		
Cobalt	16.6	MG/KG	U	
Copper	19.3	MG/KG		
Iron	24900	MG/KG		
Lead	10.9	MG/KG		
Magnesium	4230	MG/KG		
Manganese	385	MG/KG		
Mercury	0.11	MG/KG	U	UJ
Nickel	25.3	MG/KG		
Potassium	2110	MG/KG		
Selenium	0.55	MG/KG	U	
Silver	1.1	MG/KG	U	
Sodium	553	MG/KG	U	
Thailium	0.55	MG/KG	U	
Vanadium	17.1	MG/KG		
Zinc	60.7	MG/KG		J

Data Qualifiers:

Station: SB09

Field Sample Type: Composite - Subsurface Soil 4.0-6.0 FT ODA-SB-009-1067-SO

Collected: 11/19/97

Metals	Result	Units	Quali Lab	fiers Data
Aluminum	8030	MG/KG		
Antimony	0.56	MG/KG	U	UJ
Arsenic	15.8	MG/KG		
Barium	32.9	MG/KG		
Beryllium	0.56	MG/KG	U	
Cadmium	0.56	MG/KG	U	
Calcium	6390	MG/KG		
Chromium	13.1	MG/KG		
Cobalt	16.8	MG/KG	U	
Copper	18.2	MG/KG		
Iron	24300	MG/KG		
Lead	11.1	MG/KG		
Magnesium	4200	MG/KG		
Manganese	266	MG/KG		
Mercury	0.11	MG/KG	U	UJ
Nickel	20.9	MG/KG		
Potassium	1510	MG/KG		
Selenium	0.56	MG/KG	U	
Silver	1.1	MG/KG	U	
Sodium	559	MG/KG	U	
Thallium	0.56	MG/KG	U	
Vanadium	14.0	MG/KG		
Zinc	58.0	MG/KG		J

Data Qualifiers:

.

ODA-SB-009-1068-SO

6.0-8.0 FT Field Sample Type: Composite - Subsurface Soil

Collected: 11/19/97

Metals	Result	Units	Quali Lab	fiers Data
Aluminum	9610	MG/KG		
Antimony	0.59	MG/KG	U	UJ
Arsenic	22.6	MG/KG		
Barium	43.9	MG/KG		
Beryllium	0.59	MG/KG	U	
Cadmium	0.59	MG/KG	U	
Calcium	6630	MG/KG		
Chromium	15.6	MG/KG		
Cobalt	17.6	MG/KG	U	
Copper	19.3	MG/KG		
Iron	26500	MG/KG		
Lead	13.3	MG/KG		
Magnesium	4880	MG/KG		
Manganese	263	MG/KG		
Mercury	0.12	MG/KG	U	UJ
Nickel	21.4	MG/KG		
Potassium	2060	MG/KG		
Selenium	0.59	MG/KG	U	
Silver	1.2	MG/KG	U	
Sodium	585	MG/KG	U	
Thallium	0.59	MG/KG	U	
Vanadium	17.1	MG/KG		
Zinc	59.4	MG/KG	·	J

Data Qualifiers:

Station: SB10

ODA-SB-010-1069-SO	0.0-2.0 FT	Field Sample Type: Split Sample	
--------------------	------------	---------------------------------	--

Collected: 11/20/97

Metals	Result	Units	Quali Lab	fiers Data
Aluminum	12400	MG/KG		
Antimony	0.58	MG/KG	U	UJ
Arsenic	18.9	MG/KG		
Barium	65.1	MG/KG		
Beryllium	0.58	MG/KG	U	
Cadmium	0.58	MG/KG	U	
Calcium	4540	MG/KG		J
Chromium	19.5	MG/KG		
Cobalt	17.5	MG/KG	U	
Copper	51.2	MG/KG		J
Iron	28700	MG/KG		
Lead	16.0	MG/KG		
Magnesium	4500	MG/KG		
Manganese	379	MG/KG		
Mercury	0.12	MG/KG	U	UJ
Nickel	29.6	MG/KG		
Potassium	2130	MG/KG		
Selenium	0.58	MG/KG	U	
Silver	1.2	MG/KG	U	
Sodium	584	MG/KG	U	
Thallium	0.58	MG/KG	U	
Vanadium	21.0	MG/KG		
Zinc	81.9	MG/KG		J

Data Qualifiers:

Station: SB10

ODA-SB-010-1070-SO 2.0-4.0 FT Field Sample Type: Composite - Subsurface Soil

Collected: 11/20/97

Metals	Result	Units	Quali Lab	fiers Data
Aluminum	9640	MG/KG		
Antimony	0.57	MG/KG	U	UJ
Arsenic	15.9	MG/KG		
Barium	38.7	MG/KG		
Beryllium	0.57	MG/KG	U	
Cadmium	0.57	MG/KG	U	
Calcium	6170	MG/KG		J
Chromium	15.8	MG/KG		
Cobalt	17.1	MG/KG	U	
Copper	20.0	MG/KG		J
Iron	25200	MG/KG		
Lead	11.4	MG/KG		
Magnesium	4320	MG/KG		
Manganese	255	MG/KG		
Mercury	0.11	MG/KG	U	UJ
Nickel	23.8	MG/KG		
Potassium	1720	MG/KG		
Selenium	0.57	MG/KG	U	
Silver	1.1	MG/KG	U	
Sodium	571	MG/KG	U	
Thallium	0.57	MG/KG	U	
Vanadium	16.1	MG/KG		
Zinc	62.3	MG/KG		J

Data Qualifiers:

.

Station: SB10

ODA-SB-010-1071-SO 4.0-	6.0 FT	Field Sample Type:	Composite - Subsurface Soil	Collecte
-------------------------	--------	--------------------	-----------------------------	----------

ted: 11/20/97

Metals	Result	Units	Quali	
wietais			Lab	Data
Aluminum	11000	MG/KG		
Antimony	0.59	MG/KG	U	UJ
Arsenic	18.2	MG/KG		
Barium	37.5	MG/KG		
Beryllium	0.59	MG/KG	U	
Cadmium	0.59	MG/KG	U	
Calcium	8380	MG/KG		J
Chromium	17.1	MG/KG		
Cobalt	17.8	MG/KG	U	
Copper	20.5	MG/KG		J
Iron	27800	MG/KG		
Lead	11.6	MG/KG		
Magnesium	4830	MG/KG		
Manganese	298	MG/KG		
Мегсигу	0.12	MG/KG	U	UJ
Nickel	25.7	MG/KG		
Potassium	1940	MG/KG		
Selenium	0.59	MG/KG	U	
Silver	1.2	MG/KG	U	
Sodium	592	MG/KG	U	
Thallium	0.59	MG/KG	U	
Vanadium	18.6	MG/KG		
Zinc	66.5	MG/KG		J

Data Qualifiers:

Station: SB10

ODA-SB-010-1072-SO 6.0-8.0 FT Field Sample Type: Composite - Subsurface Soil

Collected: 11/20/97

Aetals Result		Units	Qualifiers Lab Da	
Aluminum	8650	MG/KG		
Antimony	0.57	MG/KG	U	IJ
Arsenic	15.2	MG/KG		
Barium	33.5	MG/KG		
Beryllium	0.57	MG/KG	U	
Cadmium	0.57	MG/KG	U	
Calcium	6860	MG/KG		J
Chromium	13.8	MG/KG		
Cobalt	17.1	MG/KG	U	
Copper	18.4	MG/KG		J
Iron	23600	MG/KG		
Lead	10.6	MG/KG		
Magnesium	4040	MG/KG		
Manganese	333	MG/KG		
Mercury	0.11	MG/KG	U	UJ
Nickel	22.3	MG/KG		
Potassium	1600	MG/KG		
Selenium	0.57	MG/KG	U	
Silver	1.1	MG/KG	U	
Sodium	569	MG/KG	U	
Thallium	0.57	MG/KG	U	
Vanadium	15.3	MG/KG		
Zinc	62.7	MG/KG		J

Data Qualifiers:

ODA-SB-010-1239-SO 12-14 FT Field Sample Type: Composite - Subsurface Soil

Collected: 11/20/97

Metals	Result	Units	Quali Lab	fiers Data
Aluminum	6490	MG/KG		
Antimony	0.56	MG/KG	U	UJ
Arsenic	19.4	MG/KG		
Barium	28.6	MG/KG		
Beryllium	0.56	MG/KG	U	
Cadmium	0.56	MG/KG	U	
Calcium	45700	MG/KG		J
Chromium	10.2	MG/KG		
Cobalt	16.7	MG/KG	U	
Copper	15.6	MG/KG		J
Iron	· 21900	MG/KG		
Lead	8.9	MG/KG		
Magnesium	3530	MG/KG		
Manganese	467	MG/KG		
Mercury	0.11	MG/KG	U	UJ
Nickel	21.6	MG/KG		
Potassium	1340	MG/KG		
Selenium	0.56	MG/KG	U	
Silver	1.1	MG/KG	U	
Sodium	557	MG/KG	U	
Thallium	0.56	MG/KG	U	
Vanadium	11.8	MG/KG		
Zinc	49.8	MG/KG		J

Data Qualifiers:

ODA-SB-010-1241-SO 16-18 FT Field Sample Type: Composite - Subsurface Soil

Collected: 11/20/97

N#: 4 1			Qualifiers	
Metals	Result	Units	Lab	Data
Aluminum	7340	MG/KG		
Antimony	0.56	MG/KG	U	UJ
Arsenic	16.8	MG/KG		
Barium	28.4	MG/KG		
Beryllium	0.56	MG/KG	U	
Cadmium	0.56	MG/KG	U	
Calcium	8130	MG/KG		J
Chromium	12.4	MG/KG		
Cobalt	16.8	MG/KG	U	
Copper	17.2	MG/KG		J
Iron	22400	MG/KG		
Lead	8.6	MG/KG		
Magnesium	5030	MG/KG		
Manganese	333	MG/KG		
Mercury	0.11	MG/KG	U	IJ
Nickel	21.7	MG/KG		
Potassium	1440	MG/KG		
Selenium	0.56	MG/KG	U	
Silver	1.1	MG/KG	U	
Sodium	560	MG/KG	U	
Thallium	0.56	MG/KG	U	
Vanadium	12.5	MG/KG		
Zinc	50.3	MG/KG		J

Data Qualifiers:

Station: SB10

ODA-SB-010-1242-SO	19-20 FT	Field Sample Type: Composite - Subsurface Soi	l Collected

Collected:	11	/20	/97
-------------------	----	-----	-----

Metals	Result	Units	Quali Lab	fiers Data
Aluminum	4690	MG/KG		
Antimony	0.55	MG/KG	U	UJ
Arsenic	13.3	MG/KG		
Barium	21.8	MG/KG	U	
Beryllium	0.55	MG/KG	U	
Cadmium	0.55	MG/KG	U	
Calcium	4680	MG/KG		J
Chromium	9.9	MG/KG		
Cobalt	16.4	MG/KG	U	
Copper	13.5	MG/KG		J
Iron	17200	MG/KG		
Lead	10.9	MG/KG		
Magnesium	2980	MG/KG		
Manganese	270	MG/KG		
Mercury	0.11	MG/KG	U	UJ
Nickel	18.0	MG/KG		
Potassium	948	MG/KG		
Selenium	0.55	MG/KG	U	
Silver	1.1	MG/KG	U	
Sodium	546	MG/KG	U	
Thallium	0.55	MG/KG	U	
Vanadium	9.1	MG/KG		
Zinc	62.8	MG/KG		J

Data Qualifiers:

ODA-SB-011-1073-SO

0.0-2.0 FT Field Sample Type: Composite - Subsurface Soil

Collected: 11/21/97

Metals	Result	Units	Quali Lab	ifiers Data
Aluminum	11400	MG/KG		
Antimony	17.8	MG/KG		J
Arsenic	30.7	MG/KG		
Barium	173	MG/KG		J
Beryllium	0.58	MG/KG		
Cadmium	1.9	MG/KG		
Calcium	4120	MG/KG		J
Chromium	18.6	MG/KG		
Cobalt	17.2	MG/KG	U	
Copper	. 172	MG/KG		J
Iron	37300	MG/KG		
Lead	4950	MG/KG		
Magnesium	3920	MG/KG		
Manganese	454	MG/KG		
Mercury	0.11	MG/KG	U	
Nickel	31.7	MG/KG		
Potassium	2190	MG/KG		
Selenium	0.57	MG/KG	U	
Silver	1.1	MG/KG	U	
Sodium	574	MG/KG	U	
Thallium	0.57	MG/KG	U	
Vanadium	24.3	MG/KG		
Zinc	806	MG/KG		J

Data Qualifiers:

Station: SB11

ODA-SB-011-1074-SO 2.0-4.0 FT Field Sample Type: Composite - Subsurface Soil

Collected: 11/21/97

Metals	Result	Units	Quali Lab	fiers Data
Aluminum	8350	MG/KG		
Antimony	1.1	MG/KG		J
Arsenic	15.2	MG/KG		
Barium	81.1	MG/KG		
Beryllium	0.57	MG/KG	U	
Cadmium	1.2	MG/KG		
Calcium	3480	MG/KG		J
Chromium	13.8	MG/KG		J
Cobalt	17.0	MG/KG	U	
Copper	50.4	MG/KG		J
Iron	23100	MG/KG		
Lead	168	MG/KG		
Magnesium	2500	MG/KG		
Manganese	336	MG/KG		
Mercury	0.15	MG/KG		
Nickel	19.1	MG/KG		
Potassium	1370	MG/KG		
Selenium	0.57	MG/KG	U	
Silver	1.1	MG/KG	U	
Sodium	567	MG/KG	U	
Thallium	0.57	MG/KG	U	
Vanadium	15.7	MG/KG		
Zinc	114	MG/KG		

Data Qualifiers:

ODA-SB-011-1075-SO

4.0-6.0 FT Field Sample Type: Composite - Subsurface Soil

Collected: 11/21/97

Metals	Result	Units	Qualifiers Lab Data
Aluminum	8590	MG/KG	
Antimony	2.8	MG/KG	J
Arsenic	14.6	MG/KG	
Barium	44.9	MG/KG	
Beryllium	0.56	MG/KG	U
Cadmium	0.56	MG/KG	U
Calcium	1800	MG/KG	
Chromium	14.9	MG/KG	
Cobalt	16.9	MG/KG	U
Copper	9 8 .7	MG/KG	
Iron	22800	MG/KG	
Lead	478	MG/KG	
Magnesium	2310	MG/KG	
Manganese	375	MG/KG	
Mercury	0.11	MG/KG	U
Nickel	23.0	MG/KG	
Potassium	1520	MG/KG	
Selenium	0.56	MG/KG	U
Silver	1.1	MG/KG	U
Sodium	564	MG/KG	U
Thallium	0.56	MG/KG	U
Vanadium	16.7	MG/KG	
Zinc	295	MG/KG	

Data Qualifiers:

Station: SB12

Field Sample Type: Split Sample ODA-SB-012-1077-SO 0.0-2.0 FT

Collected: 11/18/97

Fundaciona	Result	Units	Qualifiers	
Explosives			<u>Lab</u>	<u>Data</u>
1,3,5-Trinitrobenzene	0.25	MG/KG	U	
1,3-Dinitrobenzene	0.25	MG/KG	U	
2,4,6-Trinitrotoluene	0.25	MG/KG	U	
2,4-Dinitrotoluene	0.25	MG/KG	U	
2,6-Dinitrotoluene	0.25	MG/KG	U	
2-Nitrotoluene	0.25	MG/KG	U	
3-Nitrotoluene	0.25	MG/KG	U	
4-Nitrotoluene	0.25	MG/KG	U	
HMX	0.50	MG/KG	U	
Nitrobenzene	0.25	MG/KG	U	
Nitrocellulose (as N)	2.1	MG/KG	U	UJ
Nitroglycerin	2.5	MG/KG	U	
Nitroguanidine	0.25	MG/KG	U	UJ
RDX	0.50	MG/KG	U	
Tetryl	0.65	MG/KG	U	
			Quali	ifiers
Metals	Result	Units	Lab	Data_
Aluminum	9460	MG/KG		
Antimony	0.59	MG/KG	U	UJ
Arsenic	15.7	MG/KG		
Barium	83.2	MG/KG		
Beryllium	0.59	MG/KG	U	
Cadmium	1.4	MG/KG		
Calcium	10500	MG/KG		
Chromium	16.2	MG/KG		
Cobalt	17.8	MG/KG	U	
Copper	3200	MG/KG		
Iron	24300	MG/KG		
Lead	168	MG/KG		
Magnesium	3780	MG/KG		J
Manganese	403	MG/KG		
Mercury	0.14	MG/KG		
Nickel	23.8	MG/KG		
Potassium	1280	MG/KG		
Selenium	0.59	MG/KG	U	
Silver	1.2	MG/KG	U	
Sodium	594	MG/KG	Ū	
Thallium	0.59	MG/KG	Ū	
Vanadium	18.1	MG/KG	-	
	724	MG/KG		J
Zinc	724			•

Data Qualifiers:

.

ODA-SB-012-1078-SO 2.0-4.0 FT Field Sample Type: Composite - Subsurface Soil

Collected: 11/18/97

Metals	Result	Units	Quali Lab	fiers Data
Aluminum	8300	MG/KG		
Antimony	0.58	MG/KG	U	UJ
Arsenic	16.4	MG/KG		
Barium	42.8	MG/KG		
Beryllium	0.58	MG/KG	U	
Cadmium	0.58	MG/KG	U	
Calcium	12000	MG/KG		
Chromium	14.4	MG/KG		
Cobalt	17.3	MG/KG	U	
Copper	50.9	MG/KG		
Iron	23400	MG/KG		
Lead	14.0	MG/KG		
Magnesium	4070	MG/KG		J
Manganese	507	MG/KG		
Mercury	0.12	MG/KG	U	
Nickel	23.2	MG/KG		
Potassium	1820	MG/KG		
Selenium	0.58	MG/KG	U	
Silver	1.2	MG/KG	U	
Sodium	577	MG/KG	U	
Thallium	0.58	MG/KG	U	
Vanadium	16.2	MG/KG		
Zinc	202	MG/KG		J

Data Qualifiers:

Station: SB12

ODA-SB-012-1079-SO 4.0-6.0 FT Field Sample Type: Composite - Subsurface Soil

Collected: 11/18/97

Metals	Result	Units	Quali Lab	fiers Data
Aluminum	8800	MG/KG		
Antimony	0.55	MG/KG	U	UJ
Arsenic	17.2	MG/KG		
Barium	30.6	MG/KG		
Beryllium	0.55	MG/KG	U	
Cadmium	0.55	MG/KG	U	
Calcium	9030	MG/KG		
Chromium	14.9	MG/KG		
Cobalt	16.5	MG/KG	U	
Соррег	23.4	MG/KG		
Iron	22100	MG/KG		
Lead	11.6	MG/KG		
Magnesium	5130	MG/KG		J
Manganese	288	MG/KG		
Mercury	0.11	MG/KG	U	
Nickel	22.9	MG/KG		
Potassium	2010	MG/KG		
Selenium	0.55	MG/KG	U	
Silver	1.1	MG/KG	U	
Sodium	550	MG/KG	U	
Thallium	0.55	MG/KG	U	
Vanadium	16.3	MG/KG		
Zinc	57.1	MG/KG		J

Data Qualifiers:

Station: SB12

ODA-SB-012-1080-SO 6.0-8.0 FT Field Sample Type: Composite - Subsurface Soil

Collected: 11/18/97

Metals	Result	Units	Quali <u>Lab</u>	fiers Data
Aluminum	8500	MG/KG		
Antimony	0.56	MG/KG	U	UJ
Arsenic	15.1	MG/KG		
Barium	31.4	MG/KG		
Beryllium	0.56	MG/KG	U	
Cadmium	0.56	MG/KG	U	
Calcium	8550	MG/KG		
Chromium	14.7	MG/KG		
Cobalt	16.8	MG/KG	U	
Copper	17.1	MG/KG		
Iron	23300	MG/KG		
Lead	10.9	MG/KG		
Magnesium	5120	MG/KG		J
Manganese	331	MG/KG		
Mercury	0.11	MG/KG	U	
Nickel	22.9	MG/KG		
Potassium	1940	MG/KG		
Selenium	0.56	MG/KG	U	
Silver	1.1	MG/KG	U	
Sodium	561	MG/KG	U	
Thallium	0.56	MG/KG	U	
Vanadium	15.7	MG/KG		
Zinc	63.6	MG/KG		J

Data Qualifiers:

Station: SB13

ODA-SB-013-1081-SO 0.0-2.0 FT Field Sample Type: Composite - Subsurface Soil

Collected: 11/19/97

Metals	Result	Units	Quali <u>Lab</u>	fiers Data
Aluminum	8300	MG/KG		
Antimony	0.56	MG/KG	U	UJ
Arsenic	16.3	MG/KG		
Barium	37.5	MG/KG		
Beryllium	0.56	MG/KG	U	
Cadmium	0.56	MG/KG	U	
Calcium	7230	MG/KG		
Chromium	12.7	MG/KG		
Cobalt	16.9	MG/KG	U	
Copper	91.5	MG/KG		
Iron	21500	MG/KG		
Lead	11.7	MG/KG		
Magnesium	4140	MG/KG		
Manganese	557	MG/KG		
Mercury	0.11	MG/KG	U	UJ
Nickel	21.9	MG/KG		
Potassium	1360	MG/KG		
Selenium	0.56	MG/KG	U	
Silver	1.1	MG/KG	U	
Sodium	564	MG/KG	U	
Thallium	0.56	MG/KG	U	
Vanadium	13.1	MG/KG		
Zinc	69.2	MG/KG		J

Data Qualifiers:

.

Station: SB13

ODA-SB-013-1082-SO 2.0-4.0 FT Field Sample Type: Composite - Subsurface Soil

Collected: 11/19/97

Metals	Result	Units	Qualifier	
			<u>Lab</u>	Data
Aluminum	7130	MG/KG		
Antimony	0.56	MG/KG	U	UJ
Arsenic	13.5	MG/KG		
Barium	45.6	MG/KG		
Beryllium	0.56	MG/KG	U	
Cadmium	0.56	MG/KG	U	
Calcium	16500	MG/KG		
Chromium	11.7	MG/KG		
Cobalt	16.9	MG/KG	U	
Copper	33.5	MG/KG		
Iron	20800	MG/KG		
Lead	11.4	MG/KG		
Magnesium	4980	MG/KG		
Manganese	586	MG/KG		
Mercury	0.11	MG/KG	U	UJ
Nickel	20.0	MG/KG		
Potassium	1270	MG/KG		
Selenium	0.56	MG/KG	U	
Silver	1.1	MG/KG	U	
Sodium	562	MG/KG	U	
Thallium	0.56	MG/KG	U	
Vanadium	11.8	MG/KG		
Zinc	61.7	MG/KG		J

Data Qualifiers:

ODA-SB-013-1083-SO 4.0-6.0 FT Field Sample Type: Composite - Subsurface Soil

Collected: 11/19/97

Metals	Result	Units	Quali Lab	fiers Data
Aluminum	7740	MG/KG		
Antimony	0.55	MG/KG	U	UJ
Arsenic	13.5	MG/KG		
Barium	30.7	MG/KG		
Beryllium	0.55	MG/KG	U	
Cadmium	0.55	MG/KG	U	
Calcium	7980	MG/KG		
Chromium	12.8	MG/KG		
Cobalt	16.5	MG/KG	U	
Copper	17.4	MG/KG		
Iron	. 22300	MG/KG		
Lead	8.7	MG/KG		
Magnesium	5080	MG/KG		
Manganese	343	MG/KG		
Mercury	0.11	MG/KG	U	UJ
Nickel	21.1	MG/KG		
Potassium	1600	MG/KG		
Selenium	0.55	MG/KG	U	
Silver	1.1	MG/KG	U	
Sodium	549	MG/KG	U	
Thallium	0.55	MG/KG	U	
Vanadium	14.0	MG/KG		
Zinc	53.8	MG/KG		J

Data Qualifiers:

Station: SB13

ODA-SB-013-1084-SO

.

6.0-8.0 FT Field Sample Type: Composite - Subsurface Soil

Collected: 11/19/97

	Desult	TT	Quali	
Metals	Result	Units	<u>Lab</u>	Data
Aluminum	7990	MG/KG		
Antimony	0.55	MG/KG	U	UJ
Arsenic	15.4	MG/KG		
Barium	33.2	MG/KG		
Beryllium	0.55	MG/KG	U	
Cadmium	0.55	MG/KG	U	
Calcium	8800	MG/KG		
Chromium	15.2	MG/KG		
Cobalt	16.6	MG/KG	U	
Copper	23.7	MG/KG		
Iron	23600	MG/KG		
Lead	15.0	MG/KG		
Magnesium	5230	MG/KG		
Manganese	365	MG/KG		
Mercury	0.11	MG/KG	U	UJ
Nickel	22.2	MG/KG		
Potassium	1640	MG/KG		
Selenium	0.55	MG/KG	U	
Silver	1.1	MG/KG	U	
Sodium	552	MG/KG	U	
Thallium	0.55	MG/KG	U	
Vanadium	13.9	MG/KG		
Zinc	58.6	MG/KG		J

Data Qualifiers:

.

ODA-SB-014-1085-SO 0.0-2.0 FT Field Sample Type: Composite - Subsurface Soil

Collected: 11/20/97

Metals	Demit	T T*4	Qualifiers	
	Result	Units	_Lab	<u>Data</u>
Aluminum	8900	MG/KG		
Antimony	0.55	MG/KG	U	UJ
Arsenic	13.8	MG/KG		
Barium	65.7	MG/KG		
Beryllium	0.90	MG/KG		
Cadmium	0.79	MG/KG		
Calcium	29200	MG/KG		J
Chromium	8.7	MG/KG		
Cobalt	16.6	MG/KG	U	
Copper	49.9	MG/KG		J
Iron	17300	MG/KG		
Lead	16.0	MG/KG		
Magnesium	7590	MG/KG		
Manganese	512	MG/KG		
Mercury	0.11	MG/KG	U	UJ
Nickel	15.0	MG/KG		
Potassium	826	MG/KG		
Selenium	0.55	MG/KG	U	
Silver	1.1	MG/KG	U	
Sodium	552	MG/KG	U	
Thallium	0.55	MG/KG	U	
Vanadium	9.2	MG/KG		
Zinc	177	MG/KG		J

Data Qualifiers:

Station: SB14

ODA-SB-014-1086-SO 2.0-4.0 FT Field Sample Type: Composite - Subsurface Soil

Collected: 11/20/97

Metals	Result	Units	Quali Lab	fiers Data
Aluminum	5630	MG/KG		
Antimony	0.60	MG/KG	U	UJ
Arsenic	16.3	MG/KG		
Barium	28.1	MG/KG		
Beryllium	0.60	MG/KG	U	
Cadmium	0.60	MG/KG	U	
Calcium	8450	MG/KG		J
Chromium	10.0	MG/KG		
Cobalt	17.9	MG/KG	U	
Copper	. 22.1	MG/KG		J
Iron	20500	MG/KG		
Lead	11.7	MG/KG		
Magnesium	4040	MG/KG		
Manganese	335	MG/KG		
Mercury	0.12	MG/KG	U	UJ
Nickel	18.1	MG/KG		
Potassium	978	MG/KG		
Selenium	0.60	MG/KG	U	
Silver	1.2	MG/KG	U	
Sodium	598	MG/KG	U	
Thallium	0.60	MG/KG	U	
Vanadium	10.7	MG/KG		
Zinc	57.7	MG/KG		J

Data Qualifiers:

ODA-SB-014-1087-SO 4.0-6.0 FT Field Sample Type: Composite - Subsurface Soil

Collected: 11/20/97

Metals	Result	Units	Quali	
·····			Lab	Data
Aluminum	8000	MG/KG		
Antimony	0.57	MG/KG	U	UJ
Arsenic	16.3	MG/KG		
Barium	36.3	MG/KG		
Beryllium	0.57	MG/KG	U	
Cadmium	0.57	MG/KG	U	
Calcium	78 60	MG/KG		
Chromium	13.7	MG/KG		
Cobalt	17.2	MG/KG	U	
Copper	21.4	MG/KG		
Iron	24100	MG/KG		
Lead	10.9	MG/KG		
Magnesium	4370	MG/KG		
Manganese	564	MG/KG		
Mercury	0.11	MG/KG	U	
Nickel	25.4	MG/KG		
Potassium	1360	MG/KG		
Selenium	0.57	MG/KG	U	
Silver	1.1	MG/KG	U	
Sodium	575	MG/KG	U	
Thallium	0.57	MG/KG	U	
Vanadium	14,0	MG/KG		
Zinc	62.0	MG/KG		

Data Qualifiers:

ODA-SB-014-1088-SO 6.0-8.0 FT Field Sample Type: Composite - Subsurface Soil

Collected: 11/20/97

Metals	Result	Units	Qualifiers Lab Data
Aluminum	7030	MG/KG	
Antimony	0.56	MG/KG	U UJ
Arsenic	17.8	MG/KG	
Barium	31.9	MG/KG	
Beryllium	0.56	MG/KG	U
Cadmium	0.56	MG/KG	U
Calcium	7770	MG/KG	
Chromium	11.8	MG/KG	
Cobalt	16.8	MG/KG	U
Copper	17.4	MG/KG	
Iron	23800	MG/KG	
Lead	10.0	MG/KG	
Magnesium	3560	MG/KG	
Manganese	351	MG/KG	
Mercury	0.11	MG/KG	U
Nickel	19.8	MG/KG	
Potassium	1330	MG/KG	
Selenium	0.56	MG/KG	U
Silver	1.1	MG/KG	U
Sodium	560	MG/KG	U
Thallium	0.56	MG/KG	U
Vanadium	13.0	MG/KG	
Zinc	64.7	MG/KG	

Data Qualifiers:

ODA-SB-015-1089-SO

0.0-2.0 FT Field Sample Type: Composite - Subsurface Soil

Collected: 11/21/97

Metals		TT 1 .	Qualifiers	
	Result	Units	Lab	Data
Aluminum	5590	MG/KG		
Antimony	0.58	MG/KG	U	UJ
Arsenic	10.2	MG/KG		
Barium	. 35.1	MG/KG		
Beryllium	0.58	MG/KG	U	
Cadmium	0.58	MG/KG	U	
Calcium	25700	MG/KG		
Chromium	9.0	MG/KG		
Cobalt	17.5	MG/KG	U	
Copper	12.6	MG/KG		J
Iron	13000	MG/KG		
Lead	17.4	MG/KG		
Magnesium	1500	MG/KG		
Manganese	303	MG/KG		
Mercury	0.12	MG/KG	U	
Nickel	10.8	MG/KG		
Potassium	826	MG/KG		
Selenium	0.58	MG/KG	U	
Silver	1.2	MG/KG	U	
Sodium	583	MG/KG	U	
Thallium	0.58	MG/KG	U	
Vanadium	10.6	MG/KG		
Zinc	51.3	MG/KG		

Data Qualifiers:

Station: SB15

	ODA-SB-015-1090-SO	2.0-4.0 FT	Field Sample Type:	Composite - Subsurface Soil	
--	--------------------	------------	--------------------	-----------------------------	--

Collected: 11/21/97

Metals	Result	Units	Quali Lab	fiers Data
Aluminum	11800	MG/KG		
Antimony	0.61	MG/KG	U	UJ
Arsenic	14.2	MG/KG		
Barium	51.0	MG/KG		
Beryllium	0.61	MG/KG	U	
Cadmium	0.61	MG/KG	U	
Calcium	1320	MG/KG		
Chromium	16.7	MG/KG		
Cobalt	18.2	MG/KG	U	
Copper	19.1	MG/KG		J
Iron	22300	MG/KG		
Lead	22.0	MG/KG		
Magnesium	2400	MG/KG		
Manganese	533	MG/KG		
Mercury	0.12	MG/KG	U	
Nickel	23.1	MG/KG		
Potassium	1870	MG/KG		
Selenium	0.61	MG/KG	U	
Silver	1.2	MG/KG	U	
Sodium	607	MG/KG	U	
Thallium	0.61	MG/KG	U	
Vanadium	21.4	MG/KG		
Zinc	79.7	MG/KG		

Data Qualifiers:

ODA-SB-015-1091-SO 4.0-6.0 FT Field Sample Type: Composite - Subsurface Soil Collected

Collected: 11/21/97

Metals	Result	Units	Qualif Lab	iers Data
Aluminum	8400	MG/KG		
Antimony	0.62	MG/KG	U	
Arsenic	13.9	MG/KG		
Barium	42.1	MG/KG		
Beryllium	0.62	MG/KG	U	
Cadmium	0.62	MG/KG	U	
Calcium	1290	MG/KG		
Chromium	13.1	MG/KG		
Cobalt	18.5	MG/KG	U	
Copper	17.6	MG/KG		J
Iron	21100	MG/KG		
Lead	25.9	MG/KG		
Magnesium	2160	MG/KG		
Manganese	387	MG/KG		
Mercury	0.12	MG/KG	U	
Nickel	21.0	MG/KG		
Potassium	976	MG/KG		
Selenium	0.62	MG/KG	U	
Silver	1.2	MG/KG	U	UJ
Sodium	617	MG/KG	U	
Thallium	0.62	MG/KG	U	
Vanadium	15.5	MG/KG		
Zinc	63.1	MG/KG		

Data Qualifiers:

ODA-SB-015-1092-SO 6.0-8.0 FT Field Sample Type: Composite - Subsurface Soil

Collected: 11/21/97

Metals	Result	Units	Quali	
			<u>Lab</u>	Data
Aluminum	10600	MG/KG		
Antimony	0.62	MG/KG	U	UJ
Arsenic	12.1	MG/KG		
Barium	57.5	MG/KG		
Beryllium	0.62	MG/KG	U	
Cadmium	0.62	MG/KG	U	
Calcium	1570	MG/KG		
Chromium	14.9	MG/KG		
Cobalt	18.6	MG/KG	U	
Copper	16.8	MG/KG		J
Iron	19100	MG/KG		
Lead	34.3	MG/KG		
Magnesium	2290	MG/KG		
Manganese	274	MG/KG		
Mercury	0.14	MG/KG		
Nickel	16.5	MG/KG		
Potassium	1410	MG/KG		
Selenium	0.62	MG/KG	U	
Silver	1.2	MG/KG	U	
Sodium	619	MG/KG	U	
Thallium	0.62	MG/KG	U	
Vanadium	20.1	MG/KG		
Zinc	91.1	MG/KG		

Data Qualifiers:

Station: SB16

ODA-SB-016-1093-SO 0.0-2.0 FT Field Sample Type: Composite - Subsurface Soil

Collected: 11/21/97

Explosives	Result	Units	Qualifiers Lab Data	
1,3,5-Trinitrobenzene	0.25	MG/KG	U	Data
1,3-Dinitrobenzene	0.25	MG/KG	Ŭ	
2,4,6-Trinitrotoluene	0.25	MG/KG	Ŭ	
2,4-Dinitrotoluene	0.25	MG/KG	Ŭ	
2,6-Dinitrotoluene	0.25	MG/KG	Ŭ	
2-Amino-4,6-dinitrotoluene	0.25	MG/KG	Ŭ	
2-Nitrotoluene	0.25	MG/KG	Ū	
3-Nitrotoluene	0.25	MG/KG	Ū	
4-Amino-2,6-dinitrotoluene	0.25	MG/KG	U	
4-Nitrotoluene	0.25	MG/KG	Ū	
HMX	0.50	MG/KG	Ū	
Nitrobenzene	0.25	MG/KG	Ū	
Nitrocellulose (as N)	2.0	MG/KG	Ū	UJ
Nitroglycerin	2.5	MG/KG	Ū	
Nitroguanidine	0.25	MG/KG	Ū	IJ
RDX	0.50	MG/KG	Ū	
Tetryl	0.65	MG/KG	Ū	
Metals	Result	Units	Qualifiers	
micrais	Kcsuit		Lab	Data
Aluminum	878 0	MG/KG		
Antimony	0.56	MG/KG	U	UJ
Arsenic	15.9	MG/KG		
Barium	44.4	MG/KG		J
Beryllium	0.56	MG/KG		
Cadmium	0.56	MG/KG	U	
Calcium	28600	MG/KG		J
Chromium	17.6	MG/KG		
Cobalt	16.9	MG/KG	U	
Copper	18.7	MG/KG		J
Iron	24100	MG/KG		
Lead	11.0	MG/KG		
Magnesium	3100	MG/KG		
Manganese	379	MG/KG		
Mercury	0.11	MG/KG	U	
Nickel	23.4	MG/KG		
Potassium	1350	MG/KG		
Selenium	0.56	MG/KG	U	
Silver	1.1	MG/KG	U	
Sodium	565	MG/KG	U	
Thallium	0.56	MG/KG	U	
Vanadium	15.0	MG/KG		
Zinc	59.7	MG/KG		J

Data Qualifiers:

•

ODA-SB-016-1094-SO

D 2.0-4.0 FT Field Sample Type: Composite - Subsurface Soil

Collected: 11/21/97

Metals	Result	Timita	Quali	fiers
		Units	<u>Lab</u>	<u>Data</u>
Aluminum	11000	MG/KG		
Antimony	0.61	MG/KG	U	UJ
Arsenic	19.3	MG/KG		
Barium	48.2	MG/KG		
Beryllium	0.66	MG/KG		
Cadmium	0.61	MG/KG	U	
Calcium	2080	MG/KG		J
Chromium	18.1	MG/KG		J
Cobalt	18.4	MG/KG	U	
Copper	20.9	MG/KG		J
Iron	30000	MG/KG		
Lead	12.1	MG/KG		
Magnesium	3700	MG/KG		
Manganese	308	MG/KG		
Mercury	0.12	MG/KG	U	
Nickel	29.5	MG/KG		
Potassium	1810	MG/KG		
Selenium	0.61	MG/KG	U	
Silver	1.2	MG/KG	U	
Sodium	613	MG/KG	U	
Thallium	0.61	MG/KG	U	
Vanadium	18.2	MG/KG	-	
Zinc	67.3	MG/KG		

Data Qualifiers:

ODA-SB-016-1095-SO 4.0-6.0 FT Field Sample Type: Composite - Subsurface Soil

Collected: 11/21/97

Metals	Result	Units	Quali Lab	fiers Data
Aluminum	7210	MG/KG		
Antimony	0.58	MG/KG	U	
Arsenic	20.0	MG/KG		
Barium	33.2	MG/KG		
Beryllium	0.58	MG/KG	U	
Cadmium	0.58	MG/KG	U	
Calcium	1680	MG/KG		UJ
Chromium	12.6	MG/KG		
Cobalt	17.3	MG/KG	U	
Copper	. 18.1	MG/KG		
Iron	. 23900	MG/KG		
Lead	10.5	MG/KG		
Magnesium	2620	MG/KG		
Manganese	336	MG/KG		
Mercury	0.12	MG/KG	U	
Nickel	20.2	MG/KG		
Potassium	1190	MG/KG		
Selenium	0.58	MG/KG	U	
Silver	1.2	MG/KG	U	
Sodium	578	MG/KG	U	
Thallium	0.58	MG/KG	U	
Vanadium	13.5	MG/KG		
Zinc	60.2	MG/KG		

Data Qualifiers:

ODA-SB-016-1096-SO

6.0-8.0 FT Field Sample Type: Composite - Subsurface Soil

Collected: 11/21/97

Metals	Decili	T T 1 /	Qualifiers	
	Result	Units	Lab	Data
Aluminum	9000	MG/KG		
Antimony	0.58	MG/KG	U	UJ
Arsenic	20.2	MG/KG		
Barium	38.3	MG/KG		
Beryllium	0.58	MG/KG	U	
Cadmium	0.58	MG/KG	U	
Calcium	2600	MG/KG		
Chromium	15.2	MG/KG		
Cobalt	17.4	MG/KG	U	
Copper	19.7	MG/KG		
Iron	28400	MG/KG		
Lead	10.5	MG/KG		
Magnesium	3560	MG/KG		
Manganese	438	MG/KG		
Mercury	0.12	MG/KG	U	
Nickel	25.6	MG/KG		
Potassium	1460	MG/KG		
Seleniúm	0.58	MG/KG	U	
Silver	1.2	MG/KG	U	
Sodium	580	MG/KG	U	
Thallium	0.58	MG/KG	U	
Vanadium	15.9	MG/KG	_	
Zinc	65.5	MG/KG		

Data Qualifiers:

•

Station: SB17

ODA-SB-017-1097-SO 0.0-2.0 FT Field Sample Type: Composite - Subsurface Soil

Collected: 11/18/97

Metals	Result	Units	Quali Lab	fiers Data
Aluminum	11700	MG/KG		
Antimony	0.57	MG/KG	U	UJ
Arsenic	17.5	MG/KG		
Barium	66.7	MG/KG		
Beryllium	0.57	MG/KG	U	
Cadmium	1.6	MG/KG		
Calcium	2590	MG/KG		
Chromium	18.4	MG/KG		
Cobalt	17.2	MG/KG	U	
Copper	405	MG/KG		
Iron	25900	MG/KG		
Lead	40.5	MG/KG		
Magnesium	3380	MG/KG		J
Manganese	373	MG/KG		
Mercury	0.30	MG/KG		
Nickel	24.4	MG/KG		
Potassium	2170	MG/KG		
Selenium	0.57	MG/KG	U	
Silver	1.1	MG/KG	U	
Sodium	574	MG/KG	U	
Thallium	0.57	MG/KG	U	
Vanadium	22.4	MG/KG		
Zinc	178	MG/KG		J

Data Qualifiers:

Station: SB17

ODA-SB-017-1098-	S	D
------------------	---	---

2.0-4.0 FT Field Sample Type: Composite - Subsurface Soil

Collected: 11/18/97

Aetals			Quali	fiers
	Result	Units	<u>Lab</u>	Data
Aluminum	9000	MG/KG		
Antimony	0.57	MG/KG	U	UJ
Arsenic	17.0	MG/KG		
Barium	36.2	MG/KG		
Beryllium	0.77	MG/KG		
Cadmium	0.57	MG/KG	U	
Calcium	3280	MG/KG		
Chromium	15.0	MG/KG		
Cobalt	. 17.1	MG/KG	U	
Copper	28.9	MG/KG		
Iron	41500	MG/KG		
Lead	13.1	MG/KG		
Magnesium	2670	MG/KG		J
Manganese	531	MG/KG		
Mercury	0.11	MG/KG	U	
Nickel	19.9	MG/KG		
Potassium	1510	MG/KG		
Selenium	0.57	MG/KG	U	
Silver	1.1	MG/KG	U	
Sodium	571	MG/KG	U	
Thallium	0.57	MG/KG	U	
Vanadium	21.2	MG/KG		
Zinc	76.8	MG/KG		J

Data Qualifiers:

ODA-SB-017-1099-SO

4.0-6.0 FT Field Sample Type: Composite - Subsurface Soil

Collected: 11/18/97

•..

Metals	_ .		Qualifiers	
	Result	Units	Lab	Data
Aluminum	7900	MG/KG		
Antimony	0.56	MG/KG	U	UJ
Arsenic	18.0	MG/KG		
Barium	36.2	MG/KG		
Beryllium	0.56	MG/KG	U	
Cadmium	0.56	MG/KG	U	
Calcium	4040	MG/KG		
Chromium	14.0	MG/KG		
Cobalt	16.7	MG/KG	U	
Copper	53.2	MG/KG		
Iron	23500	MG/KG		
Lead	13.9	MG/KG		
Magnesium	2910	MG/KG		J
Manganese	371	MG/KG		
Mercury	0.12	MG/KG		
Nickel	22.6	MG/KG		
Potassium	1220	MG/KG		
Selenium	0.56	MG/KG	U	
Silver	1.1	MG/KG	U	
Sodium	556	MG/KG	U	
Thallium	0.56	MG/KG	U	
Vanadium	15.6	MG/KG		
Zinc	89.9	MG/KG		J

Data Qualifiers:

Station: SB17

ODA-SB-017-1100-SO

6.0-8.0 FT Field Sample Type: Composite - Subsurface Soil

Collected: 11/18/97

۰.

Metals		.	Quali	Qualifiers	
	Result	Units	Lab	Data	
Aluminum	8080	MG/KG			
Antimony	0.57	MG/KG	U	UJ	
Arsenic	17.9	MG/KG			
Barium	36.0	MG/KG			
Beryllium	0.57	MG/KG	U		
Cadmium	0.57	MG/KG	U		
Calcium	5990	MG/KG			
Chromium	15.5	MG/KG			
Cobalt	17.1	MG/KG	U		
Copper	24.4	MG/KG			
Iron	23100	MG/KG			
Lead	12.5	MG/KG			
Magnesium	3480	MG/KG		J	
Manganese	385	MG/KG			
Mercury	0.11	MG/KG	U		
Nickel	39.2	MG/KG			
Potassium	1660	MG/KG			
Selenium	0.57	MG/KG	U		
Silver	1.1	MG/KG	U		
Sodium	570	MG/KG	U		
Thallium	0.57	MG/KG	U		
Vanadium	16.5	MG/KG			
Zinc	72.2	MG/KG		J	

Data Qualifiers:

Station: SB18

ODA-SB-018-1101-SO

0.0-2.0 FT Field Sample Type: Composite - Subsurface Soil

Collected: 11/19/97

Metals	Result	Units	Quali Lab	fiers Data
Aluminum	7960	MG/KG		
Antimony	0.57	MG/KG	U	UJ
Arsenic	19.5	MG/KG		
Barium	. 32.2	MG/KG		
Beryllium	0.57	MG/KG	U	
Cadmium	0.57	MG/KG	U	
Calcium	8580	MG/KG		
Chromium	13.0	MG/KG		
Cobalt	17.0	MG/KG	U	
Copper	18.1	MG/KG		
Iron	25200	MG/KG		
Lead	10.2	MG/KG		
Magnesium	4070	MG/KG		
Manganese	508	MG/KG		
Mercury	0.11	MG/KG	U	UJ
Nickel	21.5	MG/KG		
Potassium	1450	MG/KG		
Selenium	0.57	MG/KG	U	
Silver	1.1	MG/KG	U	
Sodium	567	MG/KG	U	
Thallium	0.57	MG/KG	U	
Vanadium	13.9	MG/KG		
Zinc	61.1	MG/KG		J

Data Qualifiers:

ODA-SB-018-1102-SO	2.0-4.0 FT	Field Sample Type:	Composite - Subsurface Soil
--------------------	------------	--------------------	-----------------------------

Collected: 11/19/97

Metals	Result	Units	Quali Lab	fiers Data
Aluminum	8170	MG/KG		
Antimony	0.57	MG/KG	U	UJ
Arsenic	19.0	MG/KG		
Barium	45.7	MG/KG		
Beryllium	1.0	MG/KG		
Cadmium	0.57	MG/KG	U	
Calcium	15800	MG/KG		
Chromium	12.3	MG/KG		
Cobalt	17.1	MG/KG	U	
Copper	15.4	MG/KG		
Iron	20300	MG/KG		
Lead	9.8	MG/KG		
Magnesium	3100	MG/KG		
Manganese	455	MG/KG		
Mercury	0.11	MG/KG	U	UJ
Nickel	18.2	MG/KG		
Potassium	2070	MG/KG		
Selenium	0.57	MG/KG	U	
Silver	1.1	MG/KG	U	
Sodium	568	MG/KG	U	
Thallium	0.57	MG/KG	U	
Vanadium	14.9	MG/KG		
Zinc	51.2	MG/KG		J

Data Qualifiers:

Station: SB18

ODA-SB-018-1103-SO

4.0-6.0 FT Field Sample Type: Composite - Subsurface Soil

Collected: 11/19/97

Metals	etals Result		Quali <u>Lab</u>	fiers Data
Aluminum	4820	MG/KG		
Antimony	0.55	MG/KG	U	UJ
Arsenic	13.7	MG/KG		
Barium	22.2	MG/KG	U	
Beryllium	0.55	MG/KG	U	
Cadmium	0.55	MG/KG	U	
Calcium	28700	MG/KG		
Chromium	7.5	MG/KG		
Cobalt	16.6	MG/KG	U	
Copper	16.6	MG/KG		
Iron	15700	MG/KG		
Lead	12.9	MG/KG		
Magnesium	16700	MG/KG		
Manganese	343	MG/KG		
Mercury	0.11	MG/KG	U	UJ
Nickel	15.5	MG/KG		
Potassium	915	MG/KG		
Selenium	0.55	MG/KG	U	
Silver	1.1	MG/KG	U	
Sodium	554	MG/KG	U	
Thallium	0.55	MG/KG	U	
Vanadium	9.1	MG/KG		
Zinc	51.7	MG/KG		J

Data Qualifiers:

ODA-SB-018-1104-SO

6.0-8.0 FT Field Sample Type: Composite - Subsurface Soil

Collected: 11/19/97

Metals		T T 1 .	Quali	fiers
	Result	<u>Units</u>	Lab	Data
Aluminum	6560	MG/KG		
Antimony	0.57	MG/KG	U	UJ
Arsenic	16.2	MG/KG		
Barium	24.5	MG/KG		
Beryllium	0.57	MG/KG	U	
Cadmium	0.57	MG/KG	U	
Calcium	8840	MG/KG		
Chromium	10.9	MG/KG		
Cobalt	17.1	MG/KG	U	
Copper	19.4	MG/KG		
Iron	24000	MG/KG		
Lead	10.9	MG/KG		
Magnesium	3440	MG/KG		
Manganese	439	MG/KG		
Mercury	0.11	MG/KG	U	UJ
Nickel	22.8	MG/KG		
Potassium	1270	MG/KG		
Selenium	0.57	MG/KG	U	
Silver	1.1	MG/KG	U	
Sodium	570	MG/KG	U	
Thallium	0.57	MG/KG	U	
Vanadium	12.1	MG/KG		
Zinc	69.0	MG/KG		J

Data Qualifiers:

Station: SB19

ODA-SB-019-1105-SO

0.0-2.0 FT Field Sample Type: Split Sample

Collected: 11/20/97

Explosives	Result	Units	Quali Lab	fiers Data
1,3,5-Trinitrobenzene	0.25	MG/KG	U	
1,3-Dinitrobenzene	0.25	MG/KG	U	
2,4,6-Trinitrotoluene	0.42	MG/KG		
2,4-Dinitrotoluene	0.25	MG/KG	U	
2,6-Dinitrotoluene	0.25	MG/KG	U	
2-Nitrotoluene	0.25	MG/KG	U	
3-Nitrotoluene	0.25	MG/KG	U	
4-Nitrotoluene	0.25	MG/KG	U	
HMX	0.50	MG/KG	U	
Nitrobenzene	0.25	MG/KG	U	
Nitrocellulose (as N)	2.3	MG/KG		UJ
Nitroglycerin	2.5	MG/KG	U	
Nitroguanidine	0.25	MG/KG	U	J
RDX	0.50	MG/KG	U	
Tetryl	0.65	MG/KG	U	
Metals	D14	T T	Qualit	
	Result	Units	<u>Lab</u>	Data
Aluminum	8460	MG/KG		
Antimony	0.56	MG/KG	U	UJ
Arsenic	15.4	MG/KG		
Barium	165	MG/KG		
Beryllium	0.56	MG/KG	U	
Cadmium	2.3	MG/KG		
Calcium	5700	MG/KG		
Chromium	14.0	MG/KG		
Cobalt	16.9	MG/KG	U	
Copper	2860	MG/KG		
Iron	23100	MG/KG		
Lead	36.9	MG/KG		
Magnesium	3670	MG/KG		
Manganese	370	MG/KG		
Mercury	0.84	MG/KG		
Nickel	22.3	MG/KG		
Potassium	1310	MG/KG		
Selenium	0.56	MG/KG	U	
Silver	1.1	MG/KG	Ŭ	
Sodium	564	MG/KG	Ū	
Thallium	0.56	MG/KG	Ŭ	
Vanadium	14.5	MG/KG	Ŭ	
Zinc	580	MG/KG		
	580	DA\DIVI		

Data Qualifiers:

Station: SB19

ODA-SB-019-1106-SO

2.0-4.0 FT Field Sample Type: Composite - Subsurface Soil

Collected: 11/20/97

Metals	Result	Units	Quali Lab	fiers Data
Aluminum	7670	MG/KG		Data
Antimony	0.56	MG/KG	U	UJ
Arsenic	14.4	MG/KG		
Barium	47.7	MG/KG		
Beryllium	0.56	MG/KG	U	
Cadmium	1.6	MG/KG		
Calcium	7390	MG/KG		
Chromium	13.5	MG/KG		
Cobalt	16.7	MG/KG	U	
Copper	73.3	MG/KG		
Iron	21700	MG/KG		
Lead	25.9	MG/KG		
Magnesium	4060	MG/KG		
Manganese	405	MG/KG		
Mercury	0.37	MG/KG		
Nickel	21.0	MG/KG		
Potassium	1330	MG/KG		
Selenium	0.56	MG/KG	U	
Silver	1.1	MG/KG	U	
Sodium	555	MG/KG	U	
Thallium	0.56	MG/KG	U	
Vanadium	13.4	MG/KG		
Zinc	184	MG/KG		

Data Qualifiers:

Station: SB19

ODA-SB-019-1107-SO	4.0-6.0 FT	Field Sample Type: Composite - Subsurface Soil	Collected: 11/20/97
--------------------	------------	--	---------------------

Metals	Result	Units	Qualifiers Lab Data
Aluminum	8960	MG/KG	
Antimony	0.55	MG/KG	U UJ
Arsenic	14.5	MG/KG	
Barium	38.9	MG/KG	
Beryllium	0.55	MG/KG	U
Cadmium	0.58	MG/KG	
Calcium	9850	MG/KG	
Chromium	15.4	MG/KG	
Cobalt	16.6	MG/KG	U
Copper	42.5	MG/KG	
Iron	23100	MG/KG	
Lead	24.2	MG/KG	
Magnesium	4980	MG/KG	
Manganese	336	MG/KG	
Mercury	0.79	MG/KG	
Nickel	22.0	MG/KG	
Potassium	1810	MG/KG	
Selenium	0.55	MG/KG	U
Silver	1.1	MG/KG	U
Sodium	552	MG/KG	U
Thallium	0.55	MG/KG	U
Vanadium	15.6	MG/KG	
Zinc	94.0	MG/KG	

Data Qualifiers:

Station: SB19

ODA-SB-019-1108-SO

6.0-8.0 FT Field Sample Type: Composite - Subsurface Soil

Collected: 11/20/97

Metals	Result	Units	Quali	
	Kesuit	Ulins	<u>Lab</u>	Data
Aluminum	4430	MG/KG		
Antimony	0.56	MG/KG	U	UJ
Arsenic	17.7	MG/KG		
Barium	22.7	MG/KG		
Beryllium	0.56	MG/KG	U	
Cadmium	0.56	MG/KG	U	
Calcium	5700	MG/KG		
Chromium	8.1	MG/KG		
Cobalt	16.7	MG/KG	U	
Copper	17.2	MG/KG		
Iron	16100	MG/KG		
Lead	8.7	MG/KG		
Magnesium	2970	MG/KG		
Manganese	307	MG/KG		
Mercury	0.11	MG/KG	U	
Nickel	14.4	MG/KG		
Potassium	852	MG/KG		
Selenium	0.56	MG/KG	U	
Silver	1.1	MG/KG	U	
Sodium	557	MG/KG	U	
Thallium	0.56	MG/KG	U	
Vanadium	9.3	MG/KG		
Zinc	57.6	MG/KG		

Data Qualifiers:

.

Station: 5020

ODA-SB-020-1109-SO 0.0-2.0 FT Field Sample Type: Composite - Subsurface Soil

Collected: 11/21/97

Metals	Result	Units	Quali Lab	fiers Data
Aluminum	8530	MG/KG		
Antimony	0.58	MG/KG	U	UJ
Arsenic	14.0	MG/KG		
Barium	53.2	MG/KG		
Beryllium	0.58	MG/KG	U	
Cadmium	0.58	MG/KG	U	
Calcium	2430	MG/KG		
Chromium	13.6	MG/KG		
Cobalt	17.5	MG/KG	U	
Copper	35.4	MG/KG		J
Iron	21400	MG/KG		
Lead	16.3	MG/KG		
Magnesium	2190	MG/KG		
Manganese	1360	MG/KG		
Mercury	0.12	MG/KG	U	
Nickel	18.2	MG/KG		
Potassium	1110	MG/KG		
Selenium	0.58	MG/KG	U	
Silver	1.2	MG/KG	U	
Sodium	582	MG/KG	U	
Thallium	0.58	MG/KG	U	
Vanadium	15.4	MG/KG		
Zinc	79.6	MG/KG		

Data Qualifiers:

ODA-SB-020-1110-SO

2.0-4.0 FT Field Sample Type: Composite - Subsurface Soil

Collected: 11/21/97

Matala.			Quali	fiers
Metals	Result	Units	<u>Lab</u>	Data
Aluminum	8410	MG/KG		
Antimony	0.60	MG/KG	U	UJ
Arsenic	15.5	MG/KG		
Barium	34.1	MG/KG		
Beryllium	0.60	MG/KG	U	
Cadmium	0.60	MG/KG	U	
Calcium	2670	MG/KG		
Chromium	13.6	MG/KG		
Cobalt	17.9	MG/KG	U	
Copper	. 24.7	MG/KG		J
Iron	21700	MG/KG		
Lead	12.7	MG/KG		
Magnesium	2980	MG/KG		
Manganese	406	MG/KG		
Mercury	0.13	MG/KG		
Nickel	23.7	MG/KG		
Potassium	1270	MG/KG		
Selenium	0.60	MG/KG	U	
Silver	1.2	MG/KG	U	
Sodium	595	MG/KG	U	
Thallium	0.60	MG/KG	U	
Vanadium	14.9	MG/KG		
Zinc	78.2	MG/KG		

Data Qualifiers:

ODA-SB-020-1111-SO 4.0-6.0 FT Field Sample Type: Composite - Subsurface Soil

Collected: 11/21/97

Metals	Result	Units	Quali Lab	fiers Data
Aluminum	9520	MG/KG		
Antimony	0.56	MG/KG	U	UJ
Arsenic	14.1	MG/KG		
Barium	37.7	MG/KG		
Beryllium	0.56	MG/KG	U	
Cadmium	0.56	MG/KG	U	
Calcium	1220	MG/KG		
Chromium	14.0	MG/KG		
Cobalt	16.8	MG/KG	U	
Copper	21.4	MG/KG		
Iron	20000	MG/KG		
Lead	12.1	MG/KG		
Magnesium	2250	MG/KG		
Manganese	309	MG/KG		J
Mercury	0.13	MG/KG		
Nickel	21.6	MG/KG		
Potassium	1560	MG/KG		
Selenium	0.56	MG/KG	U	
Silver	1.1	MG/KG	U	
Sodium	561	MG/KG	U	
Thallium	0.56	MG/KG	U	
Vanadium	17.2	MG/KG		
Zinc	66.0	MG/KG		

Data Qualifiers:

ODA-SB-021-1113-SO

0.0-2.0 FT Field Sample Type: Composite - Subsurface Soil

Collected: 11/21/97

Metals	Result	Units	Qualifiers		
	Acount	<u> </u>	Lab	<u>Data</u>	
Aluminum	7980	MG/KG			
Antimony	0.58	MG/KG	U	UJ	
Arsenic	14.7	MG/KG			
Barium	42.3	MG/KG			
Beryllium	0.58	MG/KG	U		
Cadmium	0.58	MG/KG	U		
Calcium	3110	MG/KG			
Chromium	13.2	MG/KG			
Cobalt	17.4	MG/KG	U		
Copper	56.1	MG/KG		J	
Iron	22900	MG/KG			
Lead	14.1	MG/KG			
Magnesium	3370	MG/KG			
Manganese	471	MG/KG			
Mercury	0.12	MG/KG	U		
Nickel	22.0	MG/KG			
Potassium	1190	MG/KG			
Selenium	0.58	MG/KG	U		
Silver	1.2	MG/KG	U		
Sodium	580	MG/KG	U		
Thallium	0.58	MG/KG	U		
Vanadium	13.6	MG/KG			
Zinc	88.6	MG/KG			

Data Qualifiers:

Station: SB21

ODA-SB-021-1114-SO

2.0-4.0 FT Field Sample Type: Composite - Subsurface Soil

Collected: 11/21/97

Watala.	Dec.K	TT . 1 4	Quali	fiers
Metals	Result	Units	<u>Lab</u>	Data
Aluminum	7120	MG/KG		
Antimony	0.57	MG/KG	U	UJ
Arsenic	15.6	MG/KG		
Barium	. 30.0	MG/KG		
Beryllium	0.57	MG/KG	U	
Cadmium	0.57	MG/KG	U	
Calcium	12600	MG/KG		
Chromium	12.6	MG/KG		
Cobalt	17.1	MG/KG	U	
Соррег	20.6	MG/KG		J
Iron	24600	MG/KG		
Lead	11.7	MG/KG		
Magnesium	7170	MG/KG		
Manganese	388	MG/KG		
Mercury	0.11	MG/KG	U	
Nickel	25.1	MG/KG		
Potassium	1290	MG/KG		
Selenium	0.57	MG/KG	U	
Silver	1.1	MG/KG	U	
Sodium	571	MG/KG	U	
Thallium	0.57	MG/KG	U	
Vanadium	13.1	MG/KG		
Zinc	60.0	MG/KG		

Data Qualifiers:

Station: SB21

ODA-SB-021-1115-SO

4.0-6.0 FT Field Sample Type: Composite - Subsurface Soil

Collected: 11/21/97

36 - 1			Qualifiers		
Metals	Result	Units	Lab	Data	
Aluminum	7280	MG/KG			
Antimony	0.57	MG/KG	U	UJ	
Arsenic	13.2	MG/KG			
Barium	30.6	MG/KG			
Beryllium	0.57	MG/KG	U		
Cadmium	0.57	MG/KG	U		
Calcium	10800	MG/KG			
Chromium	14.1	MG/KG			
Cobait	17.0	MG/KG	U		
Copper	19.8	MG/KG		J	
Iron	23400	MG/KG			
Lead	10.1	MG/KG			
Magnesium	5900	MG/KG			
Manganese	365	MG/KG			
Mercury	0.11	MG/KG	U		
Nickel	82.5	MG/KG			
Potassium	1430	MG/KG			
Selenium	0.57	MG/KG	U		
Silver	1.1	MG/KG	U		
Sodium	568	MG/KG	U		
Thallium	0.57	MG/KG	U		
Vanadium	13.4	MG/KG			
Zinc	77.4	MG/KG			
Zinc	77.4	MG/KG			

Data Qualifiers:

Station: SB21

ODA-SB-021-1116-SO 6.0-8.0 FT Field Sample Type: Composite - Subsurface Soil

Collected: 11/21/97

Metals	Result	Units	Quali <u>Lab</u>	fiers Data
Aluminum	10100	MG/KG		
Antimony	0.57	MG/KG	U	UJ
Arsenic	17.6	MG/KG		
Barium	39.5	MG/KG		
Beryllium	0.57	MG/KG	U	
Cadmium	0.57	MG/KG	U	
Calcium	7980	MG/KG		
Chromium	16.3	MG/KG		
Cobalt	17.1	MG/KG	U	
Copper	20.6	MG/KG		J
Iron	25400	MG/KG		
Lead	11.0	MG/KG		
Magnesium	4530	MG/KG		
Manganese	451	MG/KG		
Mercury	0.11	MG/KG	U	
Nickel	26.1	MG/KG		
Potassium	2310	MG/KG		
Selenium	0.57	MG/KG	U	
Silver	1,1	MG/KG	U	
Sodium	571	MG/KG	U	
Thallium	0.57	MG/KG	U	
Vanadium	18.4	MG/KG		
Zinc	69.1	MG/KG		

Data Qualifiers:

.1

ODA-SB-022-1117-SO 0.0-2.0 FT Field Sample Type: Composite - Subsurface Soil

Collected: 11/18/97

Metals	Result	Units	Quali _Lab	fiers Data
Aluminum	6780	MG/KG		
Antimony	0.55	MG/KG	U	UJ
Arsenic	11.9	MG/KG		
Barium	23.5	MG/KG		
Beryllium	0.55	MG/KG	U	
Cadmium	0.55	MG/KG	U	
Calcium	11600	MG/KG		
Chromium	11.9	MG/KG		
Cobalt	16.4	MG/KG	U	
Copper	15.5	MG/KG		
Iron	18500	MG/KG		
Lead	8.1	MG/KG		
Magnesium	3890	MG/KG		J
Manganese	389	MG/KG		
Mercury	0.11	MG/KG	U	
Nickel	18.1	MG/KG		
Potassium	1660	MG/KG		
Selenium	0.55	MG/KG	U	
Silver	1.1	MG/KG	U	
Sodium	546	MG/KG	U	
Thallium	0.55	MG/KG	Ū	
Vanadium	13.8	MG/KG		
Zinc	48.9	MG/KG		J

Data Qualifiers:

Station: SB22

ODA-SB-022-1118-SO 2.0-4.0 FT Field Sample Type: Composite - Subsurface Soil

Collected: 11/18/97

Metals	Result	Units	Quali Lab	fiers Data
Aluminum	7320	MG/KG		
Antimony	0.55	MG/KG	U	UJ
Arsenic	13.3	MG/KG		
Barium	30.9	MG/KG		
Beryllium	0.55	MG/KG	U	
Cadmium	0.55	MG/KG	U	
Calcium	10400	MG/KG		
Chromium	13.7	MG/KG		
Cobait	16.4	MG/KG	U	
Copper	15.0	MG/KG		
Iron	19400	MG/KG		
Lead	8.4	MG/KG		
Magnesium	5230	MG/KG		J
Manganese	335	MG/KG		
Mercury	0.11	MG/KG	U	
Nickel	26.8	MG/KG		
Potassium	1760	MG/KG		
Selenium	0.55	MG/KG	U	
Silver	1.1	MG/KG	U	
Sodium	546	MG/KG	U	
Thallium	0.55	MG/KG	U	
Vanadium	14.9	MG/KG		
Zinc	49.1	MG/KG		J

Data Qualifiers:

ODA-SB-022-1119-SO

4.0-6.0 FT Field Sample Type: Composite - Subsurface Soil

Collected: 11/18/97

Metals	Result	Units	Quali	
		<u> </u>	Lab	Data
Aluminum	3760	MG/KG		
Antimony	0.55	MG/KG	U	UJ
Arsenic	12.6	MG/KG		
Barium	25.6	MG/KG		
Beryllium	0.55	MG/KG	U	
Cadmium	0.55	MG/KG	U	
Calcium	20000	MG/KG		
Chromium	7.8	MG/KG		
Cobalt	16.5	MG/KG	U	
Copper	16.9	MG/KG		
Iron	18000	MG/KG		
Lead	9.2	MG/KG		
Magnesium	3610	MG/KG		J
Manganese	449	MG/KG		
Mercury	0.11	MG/KG	U	
Nickel	15.9	MG/KG		
Potassium	678	MG/KG		
Selenium	0.55	MG/KG	U	
Silver	1.1	MG/KG	U	
Sodium	551	MG/KG	U	
Thallium	0.55	MG/KG	Ū	
Vanadium	8.3	MG/KG		
Zinc	56.3	MG/KG		J

Data Qualifiers:

ODA-SB-022-1120-SO

6.0-8.0 FT Field Sample Type: Composite - Subsurface Soil

Collected: 11/18/97

Metals	Result	Units	Quali	
			<u>Lab</u>	Data
Aluminum	4390	MG/KG		
Antimony	0.56	MG/KG	U	UJ
Arsenic	9.2	MG/KG		
Barium	28.9	MG/KG		
Beryllium	0.56	MG/KG	U	
Cadmium	0.56	MG/KG	U	
Calcium	14600	MG/KG		
Chromium	12.3	MG/KG		
Cobalt	16.7	MG/KG	U	
Copper	14.4	MG/KG		
Iron	15500	MG/KG		
Lead	9.0	MG/KG		
Magnesium	3990	MG/KG		J
Manganese	363	MG/KG		
Mercury	0.11	MG/KG	U	
Nickel	84.7	MG/KG		
Potassium	950	MG/KG		
Seleniúm	0.56	MG/KG	U	
Silver	1.1	MG/KG	U	
Sodium	555	MG/KG	U	
Thallium	0.56	MG/KG	U	
Vanadium	10.2	MG/KG		
Zinc	54.7	MG/KG		J

Data Qualifiers:

ODA-SB-023-1121-SO

0.0-2.0 FT Field Sample Type: Composite - Subsurface Soil

Collected: 11/20/97

Metals	Result	Units	Quali Lab	fiers Data
Aluminum	7690	MG/KG		
Antimony	0.55	MG/KG	U	UJ
Arsenic	16.7	MG/KG		
Barium	26.7	MG/KG		
Beryllium	0.55	MG/KG	U	
Cadmium	0.55	MG/KG	U	
Calcium	6730	MG/KG		J
Chromium	12.8	MG/KG		
Cobalt	16.5	MG/KG	U	
Copper	18.2	MG/KG		J
Iron	21200	MG/KG		
Lead	15.3	MG/KG		
Magnesium	3830	MG/KG		
Manganese	325	MG/KG		
Mercury	0.11	MG/KG	U	UJ
Nickel	19.0	MG/KG		
Potassium	1700	MG/KG		
Selenium	0.55	MG/KG	U	
Silver	1.1	MG/KG	U	
Sodium	550	MG/KG	U	
Thallium	0.55	MG/KG	U	
Vanadium	14.6	MG/KG		
Zinc	58.5	MG/KG		J

Data Qualifiers:

ODA-SB-023-1122-SO

2.0-4.0 FT Field Sample Type: Composite - Subsurface Soil

Collected: 11/20/97

B <i>H</i> = 4 = 1			Quali	fiers
Metals	Result	Units	<u>Lab</u>	Data
Aluminum	5270	MG/KG		
Antimony	0.55	MG/KG	Ū	UJ
Arsenic	35.7	MG/KG		
Barium	25.8	MG/KG		
Beryllium	0.55	MG/KG	U	
Cadmium	0.55	MG/KG	U	
Calcium	10400	MG/KG	L	J
Chromium	9.9	MG/KG		
Cobalt	16.4	MG/KG	U	
Copper	. 15.2	MG/KG	L	J
Iron	22000	MG/KG		
Lead	13.7	MG/KG		
Magnesium	3330	MG/KG		
Manganese	320	MG/KG		
Mercury	0.11	MG/KG	U	UJ
Nickel	23.0	MG/KG		
Potassium	1110	MG/KG		
Selenium	0.55	MG/KG	U	
Silver	1.1	MG/KG	U	
Sodium	548	MG/KG	U	
Thallium	0.55	MG/KG	U	
Vanadium	10.8	MG/KG		
Zinc	46.9	MG/KG	L	J

Data Qualifiers:

ODA-SB-023-1123-SO

4.0-6.0 FT Field Sample Type: Composite - Subsurface Soil

Collected: 11/20/97

Explosives	Result	Units	Quali Lab	fiers Data
1,3,5-Trinitrobenzene	0.25	MG/KG	U	
1,3-Dinitrobenzene	0.25	MG/KG	Ū	
2,4,6-Trinitrotoluene	0.25	MG/KG	Ū	
2,4-Dinitrotoluene	0.25	MG/KG	Ū	
2,6-Dinitrotoluene	0.25	MG/KG	Ū	
2-Nitrotoluene	0.25	MG/KG	Ū	
3-Nitrotoluene	0.25	MG/KG	U	
4-Nitrotoluene	0.25	MG/KG	U	
HMX	0.50	MG/KG	U	
Nitrobenzene	0.25	MG/KG	U	
Nitrocellulose (as N)	2.0	MG/KG	U	UJ
Nitroglycerin	2.5	MG/KG	U	
Nitroguanidine	0.25	MG/KG	U	UJ
RDX	0.50	MG/KG	U	
Tetryi	0.65	MG/KG	U	
			Quali	fiers
Metals	Result	Units	Lab	Data
Aluminum	6040	MG/KG		
Antimony	0.56	MG/KG	U	UJ
Arsenic	12.7	MG/KG		
Barium	24.6	MG/KG		
Beryllium	0.56	MG/KG	U	
Cadmium	0.56	MG/KG	U	
Calcium	6830	MG/KG		J
Chromium	12.3	MG/KG		
Cobalt	16.8	MG/KG	U	
Copper	15.4	MG/KG		J
Iron	17000	MG/KG		
Lead	9.6	MG/KG		
Magnesium	3090	MG/KG		
Manganese	313	MG/KG		
Mercury	0.11	MG/KG	U	UJ
Nickel	16.5	MG/KG		
Potassium	1190	MG/KG		
Selenium	0.56	MG/KG	U	
Silver	1.1	MG/KG	U	
Sodium	559	MG/KG	Ū	
Thallium	0.56	MG/KG	Ū	
	11.1	MG/KG	-	
Vanadium		INICI/INICI		

Data Qualifiers:

•

Station: SB23

Collected: 11/20/97

		~~ 4	Quali	Qualifiers	
Metals	Result	Units	Lab	Data	
Aluminum	7100	MG/KG			
Antimony	0.62	MG/KG	U	UJ	
Arsenic	12.3	MG/KG			
Barium	25.0	MG/KG	U		
Beryllium	0.62	MG/KG	U		
Cadmium	0.62	MG/KG	U		
Calcium	10500	MG/KG		J	
Chromium	11.7	MG/KG			
Cobalt	18.7	MG/KG	U		
Соррег	16.3	MG/KG		J	
Iron	21300	MG/KG			
Lead	9.8	MG/KG			
Magnesium	4340	MG/KG			
Manganese	324	MG/KG			
Mercury	0.12	MG/KG	U	UJ	
Nickel	19.0	MG/KG			
Potassium	1500	MG/KG			
Selenium	0.62	MG/KG	U		
Silver	1.2	MG/KG	U		
Sodium	624	MG/KG	U		
Thallium	0.62	MG/KG	U		
Vanadium	13.3	MG/KG			
Zinc	56.0	MG/KG		J	

Data Qualifiers:

ODA-SB-024-1125-SO

0.0-2.0 FT Field Sample Type: Split Sample

Collected: 11/20/97

Metals	Result	Units	Qualifiers	
A 1			<u>Lab</u>	Data
Aluminum	11200	MG/KG		
Antimony	0.58	MG/KG	U	UJ
Arsenic	16.6	MG/KG		
Barium	125	MG/KG		
Beryllium	0.58	MG/KG	U	
Cadmium	2.4	MG/KG		
Calcium	4390	MG/KG		
Chromium	16.3	MG/KG		
Cobalt	17.3	MG/KG	U	
Copper	238	MG/KG		
Iron	25100	MG/KG		
Lead	35.2	MG/KG		
Magnesium	3740	MG/KG		
Manganese	326	MG/KG		
Mercury	0.17	MG/KG		
Nickel	24.0	MG/KG		
Potassium	1430	MG/KG		
Selenium	0.58	MG/KG	U	
Silver	1.2	MG/KG	U	
Sodium	575	MG/KG	U	
Thallium	0.58	MG/KG	U	
Vanadium	17.0	MG/KG		
Zinc	214	MG/KG		

Data Qualifiers:

Station: SB24

ODA-SB-024-1126-SO	2.0-4.0 FT	Field Sample Type: Composite - Subsurface Soil	Collected:
--------------------	------------	--	------------

Collected: 11/20/97

Metals	Result	Units	Quali Lab	fiers Data
Aluminum	9260	MG/KG		
Antimony	0.57	MG/KG	U	UJ
Arsenic	15.7	MG/KG		
Barium	79.8	MG/KG		
Beryllium	0.57	MG/KG	U	
Cadmium	1.4	MG/KG		
Calcium	3780	MG/KG		
Chromium	15.2	MG/KG		
Cobalt	17.1	MG/KG	U	
Соррег	124	MG/KG		
Iron	23900	MG/KG		
Lead	34.6	MG/KG		
Magnesium	3440	MG/KG		
Manganese	316	MG/KG		
Mercury	0.17	MG/KG		
Nickel	23.0	MG/KG		
Potassium	1240	MG/KG		
Selenium	0.57	MG/KG	U	
Silver	1.1	MG/KG	U	
Sodium	571	MG/KG	U	
Thallium	0.57	MG/KG	U	
Vanadium	15.4	MG/KG		
Zinc	197	MG/KG		

Data Qualifiers:

Station: SB24

ODA-SB-024-1127-SO

4.0-6.0 FT Field Sample Type: Split Sample

Collected: 11/20/97

Metals		ww. s.	Qualifiers	
	Result	Units	Lab	Data
Aluminum	4520	MG/KG		
Antimony	0.57	MG/KG	U	UJ
Arsenic	13.8	MG/KG		
Barium	22.9	MG/KG	U	
Beryllium	0.57	MG/KG	U	
Cadmium	0.57	MG/KG	U	
Calcium	3280	MG/KG		
Chromium	8.9	MG/KG		
Cobalt	17.2	MG/KG	U	
Copper	39.4	MG/KG		
Iron	17600	MG/KG		
Lead	9.1	MG/KG		
Magnesium	2340	MG/KG		
Manganese	320	MG/KG		
Mercury	0.11	MG/KG	U	
Nickel	16.6	MG/KG		
Potassium	899	MG/KG		
Selenium	0.57	MG/KG	U	
Silver	1.1	MG/KG	U	
Sodium	573	MG/KG	U	
Thallium	0.57	MG/KG	U	
Vanadium	9.7	MG/KG		
Zinc	61.6	MG/KG		

Data Qualifiers:

Station: SB24

ODA-SB-024-1128-SO 6.0-8.0 FT Field Sample Type: C

T Field Sample Type: Composite - Subsurface Soil

Collected: 11/20/97

Metals	Result	Units	Qualifiers	
			Lab	Data
Aluminum	6080	MG/KG		
Antimony	0.55	MG/KG	U	UJ
Arsenic	11.0	MG/KG		
Barium	21.9	MG/KG	U	
Beryllium	0.55	MG/KG	U	
Cadmium	0.55	MG/KG	U	
Calcium	7230	MG/KG		
Chromium	10.6	MG/KG		
Cobalt	16.4	MG/KG	U	
Copper	14.2	MG/KG		
Iron	18100	MG/KG		
Lead	11.8	MG/KG		
Magnesium	3820	MG/KG		
Manganese	312	MG/KG		
Mercury	0.11	MG/KG	U	
Nickel	18.2	MG/KG		
Potassium	1290	MG/KG		
Selenium	0.55	MG/KG	U	
Silver	1.1	MG/KG	U	
Sodium	548	MG/KG	U	
Thallium	0.55	MG/KG	U	
Vanadium	12.2	MG/KG		
Zinc	48.1	MG/KG		

Data Qualifiers:

Station: SB24

ODA-SB-024-1257-SO

12-14 FT Field Sample Type: Composite - Subsurface Soil

Collected: 11/20/97

Metais	Result	Units	Qualifiers Lab Data	
Aluminum	7950	MG/KG		
Antimony	0.55	MG/KG	U UJ	
Arsenic	15.0	MG/KG		
Barium	35.8	MG/KG		
Beryllium	0.55	MG/KG	U	
Cadmium	0.55	MG/KG	U	
Calcium	11400	MG/KG		
Chromium	13.4	MG/KG		
Cobalt	16.5	MG/KG	U	
Copper	18.2	MG/KG		
Iron	22900	MG/KG		
Lead	9.6	MG/KG		
Magnesium	5780	MG/KG		
Manganese	390	MG/KG		
Mercury	0.11	MG/KG	U	
Nickel	22.9	MG/KG		
Potassium	1560	MG/KG		
Selenium	0.55	MG/KG	U	
Silver	1.1	MG/KG	U	
Sodium	549	MG/KG	U	
Thallium	0.55	MG/KG	U	
Vanadium	13.6	MG/KG		
Zinc	58.3	MG/KG		

Data Qualifiers:

Field Sample Type: Composite - Subsurface Soil ODA-SB-025-1129-SO 0.0-2.0 FT

Collected: 11/21/97

Metals	Result	Units	Qualifiers Lab Data	
Aluminum	9900	MG/KG		
Antimony	0.58	MG/KG		J
Arsenic	9.6	MG/KG		
Barium	114	MG/KG		
Beryllium	0.65	MG/KG		
Cadmium	0.87	MG/KG		
Calcium	35000	MG/KG		
Chromium	15.0	MG/KG		
Cobalt	17.2	MG/KG	U	
Copper	102	MG/KG		J
Iron	14200	MG/KG		
Lead	50.1	MG/KG		
Magnesium	3630	MG/KG		
Manganese	529	MG/KG		
Mercury	0.11	MG/KG	U	
Nickel	12.6	MG/KG		
Potassium	1300	MG/KG		
Selenium	0.57	MG/KG	U	
Silver	1.1	MG/KG	U	
Sodium	573	MG/KG	U	
Thallium	0.57	MG/KG	U	
Vanadium	12.3	MG/KG		
Zinc	200	MG/KG		

Data Qualifiers:

Location: Open Detonation Area Station: SB25

ODA-SB-025-1130-SO

2.0-4.0 FT Field Sample Type: Composite - Subsurface Soil

Collected: 11/21/97

Metals	§ Domit	** •.	Qualifiers	
	Result	Units	Lab	Data
Aluminum	10500	MG/KG		
Antimony	0.60	MG/KG		J
Arsenic	15.1	MG/KG		
Barium	52.6	MG/KG		
Beryllium	0.59	MG/KG	U	
Cadmium	0.59	MG/KG	U	UJ
Calcium	5250	MG/KG		
Chromium	16.2	MG/KG		
Cobalt	17.8	MG/KG	U	
Copper	26.6	MG/KG		
Iron	23300	MG/KG		
Lead	15.5	MG/KG		
Magnesium	2900	MG/KG		
Manganese	551	MG/KG		
Mercury	0.12	MG/KG	U	
Nickel	28.7	MG/KG		
Potassium	1380	MG/KG		
Selenium	0.59	MG/KG	U	
Silver	1.2	MG/KG	U	
Sodium	594	MG/KG	U	
Thallium	0.59	MG/KG	U	
Vanadium	18.5	MG/KG		
Zinc	77.0	MG/KG		

Data Qualifiers:

Location: Open Detonation Area Station: SB25

.

ODA-SB-025-1131-SO 4.0-6.0 FT Field Sample Type: Composite - Subsurface Soil

Collected: 11/21/97

Metals	Result	Units	Quali <u>Lab</u>	fiers Data
Aluminum	11100	MG/KG		
Antimony	0.61	MG/KG	U	UJ
Arsenic	15.6	MG/KG		
Barium	50.1	MG/KG		
Beryllium	0.61	MG/KG	U	
Cadmium	0.61	MG/KG	U	UJ
Calcium	2200	MG/KG		
Chromium	16.7	MG/KG		
Cobalt	18.2	MG/KG	U	
Copper	20.3	MG/KG		
Iron	24200	MG/KG		
Lead	14.1	MG/KG		
Magnesium	2690	MG/KG		
Manganese	363	MG/KG		
Mercury	0.12	MG/KG	U	
Nickel	28.7	MG/KG		
Potassium	1560	MG/KG		
Selenium	0.61	MG/KG	U	
Silver	1.2	MG/KG	U	
Sodium	605	MG/KG	U	
Thallium	0.61	MG/KG	U	
Vanadium	21.1	MG/KG		
Zinc	64.6	MG/KG		

Data Qualifiers:

.

Station: SB26

ODA-SB-026-1133-SO

0.0-2.0 FT Field Sample Type: Composite - Subsurface Soil

Collected: 11/21/97

Metals			Qualifiers	
	Result	Units	Lab Dat	
Aluminum	9850	MG/KG		
Antimony	355	MG/KG	J	
Arsenic	110	MG/KG		
Barium	115	MG/KG		
Beryllium	0.61	MG/KG	U	
Cadmium	1.8	MG/KG	J	
Calcium	3300	MG/KG		
Chromium	15.9	MG/KG		
Cobalt	18.2	MG/KG	U	
Copper	199	MG/KG		
Iron	21100	MG/KG		
Lead	40800	MG/KG		
Magnesium	2830	MG/KG		
Manganese	425	MG/KG		
Mercury	0.15	MG/KG		
Nickel	19.7	MG/KG		
Potassium	1440	MG/KG		
Selenium	0.61	MG/KG	U	
Silver	1.2	MG/KG	U	
Sodium	605	MG/KG	U	
Thallium	0.69	MG/KG		
Vanadium	16.8	MG/KG		
Zinc	281	MG/KG		

Data Qualifiers:

Station: SB26

ODA-SB-026-1134-SO 2.0-4.0 FT Field Sample Type: Composite - Subsurface Soil

Collected: 11/21/97

	- .		Quali	fiers
Metals	Result	Units	Lab	Data
Aluminum	16900	MG/KG		
Antimony	3.3	MG/KG		J
Arsenic	15.9	MG/KG		
Barium	110	MG/KG		
Beryllium	0.64	MG/KG		
Cadmium	0.63	MG/KG	U	UJ
Calcium	1830	MG/KG		
Chromium	23.6	MG/KG		
Cobalt	18.8	MG/KG	U	
Copper	41.8	MG/KG		
Iron	. 28000	MG/KG		
Lead	186	MG/KG		
Magnesium	3400	MG/KG		
Manganese	790	MG/KG		
Mercury	0.13	MG/KG	U	
Nickel	24.5	MG/KG		
Potassium	2160	MG/KG		
Selenium	0.63	MG/KG	U	
Silver	1.3	MG/KG	U	
Sodium	626	MG/KG	U	
Thallium	0.63	MG/KG	U	
Vanadium	30.7	MG/KG		
Zinc	94.2	MG/KG		

Data Qualifiers:

Location: Open Detonation Area Station: SB26

ODA-SB-026-1135-SO

4.0-6.0 FT Field Sample Type: Composite - Subsurface Soil

Collected: 11/21/97

Aluminum 13300 MG/KG Antimony 1.7 MG/KG Arsenic 14.6 MG/KG Barium 90.1 MG/KG Beryllium 0.61 MG/KG U Cadmium 0.61 MG/KG Cadmium 0.61 MG/KG U Cadmium 0.61 MG/KG U U Calcium 1740 MG/KG U U Calcium 1740 MG/KG U U Cobalt 18.8 MG/KG U U Copper 39.3 MG/KG U U Copper 39.3 MG/KG U U Lead 175 MG/KG MG/KG U Magnesium 2780 MG/KG U Nickel 19.8 MG/KG Marcury 0.12 MG/KG U Nickel U Nickel Sodium 1350 MG/KG U Sodium Sodium G1	Metals		TT 1 ,	Quali	fiers
Antimony 1.7 MG/KG Arsenic 14.6 MG/KG Barium 90.1 MG/KG Beryllium 0.61 MG/KG U Cadmium 0.61 MG/KG U U Cadmium 0.61 MG/KG U U Cadmium 0.61 MG/KG U U Cadium 1740 MG/KG U U Calcium 1740 MG/KG U U Cobalt 18.8 MG/KG U U Cobalt 18.3 MG/KG U U Copper 39.3 MG/KG U U Lead 175 MG/KG U Magnesium 2780 MG/KG Marganese 1000 MG/KG U Mickel Nickel U Mickel U Mickel Mickel U Mickel		Result	Units	Lab	Data
Arsenic 14.6 MG/KG Barium 90.1 MG/KG Beryllium 0.61 MG/KG U Cadmium 0.61 MG/KG U U Cadmium 0.61 MG/KG U U Cadmium 0.61 MG/KG U U Cadmium 1740 MG/KG U U Cadmium 18.8 MG/KG U U Cobalt 18.3 MG/KG U U Copper 39.3 MG/KG U U Copper 39.3 MG/KG U U Magnesium 26900 MG/KG MG/KG U Magnesium 2780 MG/KG U U Magnesium 19.8 MG/KG U U Nickel U Nickel U U NG/KG U U Nickel U NG/KG U U NG/KG U Silver 1.2 MG/KG U U Silver 1.2 MG/KG U U <t< td=""><td>Aluminum</td><td>13300</td><td>MG/KG</td><td></td><td></td></t<>	Aluminum	13300	MG/KG		
Barium 90.1 MG/KG Beryllium 0.61 MG/KG U Cadmium 0.61 MG/KG U U Cadmium 0.61 MG/KG U U Calcium 1740 MG/KG U U Calcium 1740 MG/KG U U Chromium 18.8 MG/KG U U Cobalt 18.3 MG/KG U U Copper 39.3 MG/KG U U Iron 26900 MG/KG MG/KG U Magnesium 2780 MG/KG U U Magnese 1000 MG/KG U U Nickel 19.8 MG/KG U U Nickel 19.8 MG/KG U U Selenium 0.61 MG/KG U U Sodium 611 MG/KG U U Sodium 611 MG/KG U U	Antimony	1.7	MG/KG		J
Beryllium0.61MG/KGUCadmium0.61MG/KGUUCalcium1740MG/KGUUCalcium1740MG/KGUUChromium18.8MG/KGUUCobalt18.3MG/KGUUCopper39.3MG/KGUULead175MG/KGUUMagnesium2780MG/KGUNickelMaganese1000MG/KGUNickelUNickel19.8MG/KGUNickelUSelenium0.61MG/KGUSilverUSilver1.2MG/KGUUSodium611MG/KGUUVanadium0.61MG/KGUU	Arsenic	14.6	MG/KG		
Cadmium 0.61 MG/KG U U Calcium 1740 MG/KG U U Chromium 18.8 MG/KG U U Cobalt 18.3 MG/KG U U Cobalt 18.3 MG/KG U U Copper 39.3 MG/KG U U Lead 175 MG/KG MG/KG U Magnesium 2780 MG/KG U U Magnesium 2780 MG/KG U U Nickel 19.8 MG/KG U U Nickel 19.8 MG/KG U U Nickel 19.8 MG/KG U U Selenium 0.61 MG/KG U U Silver 1.2 MG/KG U U Sodium 611 MG/KG U U Vanadium 26.4 MG/KG U U	Barium	90.1	MG/KG		
Calcium1740MG/KGChromium18.8MG/KGCobalt18.3MG/KGCobalt18.3MG/KGCopper39.3MG/KGIron26900MG/KGLead175MG/KGMagnesium2780MG/KGManganese1000MG/KGMercury0.12MG/KGVickel19.8MG/KGPotassium1350MG/KGSelenium0.61MG/KGUSilver1.2MG/KGUSodium611MG/KGUSodium0.61MG/KGUSodium26.4MG/KG	Beryllium	0.61	MG/KG	U	
Chromium18.8MG/KGCobalt18.8MG/KGCobalt18.3MG/KGU39.3MG/KGIron26900MG/KGLead175MG/KGMagnesium2780MG/KGMaganese1000MG/KGMercury0.12MG/KGNickel19.8MG/KGPotassium0.61MG/KGSelenium0.61MG/KGSilver1.2MG/KGUSodium611MG/KGUVanadium26.4MG/KG	Cadmium	0.61	MG/KG	U	UJ
Cobalt16.0MG/KGCobalt18.3MG/KGU39.3MG/KGIron26900MG/KGLead175MG/KGMagnesium2780MG/KGMaganese1000MG/KGMarcury0.12MG/KGVickel19.8MG/KGPotassium0.61MG/KGSelenium0.61MG/KGSilver1.2MG/KGU1000MG/KGSodium611MG/KGManadium0.61MG/KG	Calcium	1740	MG/KG		
Copper39.3MG/KGIron26900MG/KGLead175MG/KGMagnesium2780MG/KGManganese1000MG/KGMercury0.12MG/KGVickel19.8MG/KGPotassium1350MG/KGSelenium0.61MG/KGUSilver1.2MG/KGUU11MG/KGSodium611MG/KGU1001MG/KGManganese0.61MG/KGSodium611MG/KGSodium0.61MG/KGU1.2MG/KGSodium0.61MG/KGManganese0.61MG/KGManganese0.61MG/KGSodium0.61MG/KGManganese0.61MG/KGManganese0.61MG/KGManganese0.61MG/KGManganese0.61MG/KGManganese0.61MG/KGManganese0.61MG/KGManganese0.61MG/KGManganese0.61MG/KGManganese0.61MG/KGManganese0.61MG/KGManganese0.61MG/KGManganese0.61MG/KG	Chromium	18.8	MG/KG		
Iron26900MG/KGLead175MG/KGMagnesium2780MG/KGManganese1000MG/KGMercury0.12MG/KGWickel19.8MG/KGPotassium1350MG/KGSelenium0.61MG/KGU1.2MG/KGSoliver1.2MG/KGSolium611MG/KGManadium0.61MG/KG	Cobalt	18.3	MG/KG	U	
Lead175MG/KGMagnesium2780MG/KGManganese1000MG/KGMercury0.12MG/KGVickel19.8MG/KGPotassium1350MG/KGSelenium0.61MG/KGSilver1.2MG/KGU19.8USodium611MG/KGManual0.61MG/KGManual0.61MG/KGManual0.61MG/KGManual0.61MG/KGManual0.61MG/KGManual0.61MG/KGManual0.61MG/KGManual0.61MG/KG	Copper	39.3	MG/KG		
Magnesium2780MG/KGManganese1000MG/KGMercury0.12MG/KGWickel19.8MG/KGPotassium1350MG/KGSelenium0.61MG/KGSilver1.2MG/KGSodium611MG/KGManganese0.61MG/KGManganese0.61MG/KGManganese0.61MG/KGManganese0.61MG/KGManganese0.61MG/KGManganese0.61MG/KGManganese0.61MG/KGManganese0.61MG/KGManganese0.61MG/KGManganese0.61MG/KGManganese0.61MG/KGManganese0.61MG/KGManganese0.61MG/KGManganese0.61MG/KGManganese0.61MG/KG	Iron	26900	MG/KG		
Manganese1000MG/KGMercury0.12MG/KGUNickel19.8MG/KGPotassium1350MG/KGSelenium0.61MG/KGUSilver1.2MG/KGUSodium611MG/KGUThallium0.61MG/KGU	Lead	175	MG/KG		
Mercury0.12MG/KGUNickel19.8MG/KGPotassium1350MG/KGSelenium0.61MG/KGUSilver1.2MG/KGUSodium611MG/KGUThallium0.61MG/KGUVanadium26.4MG/KGU	Magnesium	2780	MG/KG		
Nickel19.8MG/KGPotassium1350MG/KGSelenium0.61MG/KGUSilver1.2MG/KGUSodium611MG/KGUThallium0.61MG/KGUVanadium26.4MG/KGU	Manganese	1000	MG/KG		
Potassium1350MG/KGSelenium0.61MG/KGUSilver1.2MG/KGUSodium611MG/KGUThallium0.61MG/KGUVanadium26.4MG/KGU	Mercury	0.12	MG/KG	U	
Selenium0.61MG/KGUSilver1.2MG/KGUSodium611MG/KGUThallium0.61MG/KGUVanadium26.4MG/KGU	Nickel	19.8	MG/KG		
Silver1.2MG/KGUSodium611MG/KGUThallium0.61MG/KGUVanadium26.4MG/KG	Potassium	1350	MG/KG		
Sodium611MG/KGUThallium0.61MG/KGUVanadium26.4MG/KG	Selenium	0.61	MG/KG	U	
Thallium0.61MG/KGUVanadium26.4MG/KG	Silver	1.2	MG/KG	U	
Vanadium 26.4 MG/KG	Sodium	611	MG/KG	U	
Vanadium 26.4 MG/KG	Thallium	0.61	MG/KG	U	
	Vanadium				
	Zinc	72.9	MG/KG		

Data Qualifiers:

Station: SB26

ODA-SB-026-1136-SO	6.0-8.0 FT	Field Sample Type:	Composite - Subsurface Soil	
--------------------	------------	--------------------	-----------------------------	--

Collected: 11/21/97

Metals	Result	Units	Qualif Lab	iers Data
Aluminum	10300	MG/KG		
Antimony	1.8	MG/KG		J
Arsenic	15.1	MG/KG		
Barium	121	MG/KG		
Beryllium	0.61	MG/KG	U	
Cadmium	4.1	MG/KG		J
Calcium	2680	MG/KG		
Chromium	15.8	MG/KG		
Cobalt	18.2	MG/KG	U	
Copper	120	MG/KG		
Iron	22800	MG/KG		
Lead	285	MG/KG		
Magnesium	3230	MG/KG		
Manganese	. 292	MG/KG		
Mercury	0.15	MG/KG		
Nickel	21.3	MG/KG		
Potassium	2010	MG/KG		
Selenium	0.61	MG/KG	U	
Silver	1.2	MG/KG	U	
Sodium	605	MG/KG	U	
Thallium	0.61	MG/KG	U	
Vanadium	19.0	MG/KG		
Zinc	128	MG/KG		

Data Qualifiers:

Station: SB27

0.0-2.0 FT Field Sample Type: Composite - Subsurface Soil

Collected: 11/20/97

Metals	Result	TT *4-	Qual	ifiers
	Kesuit	Units	Lab	Data
Aluminum	8330	MG/KG		
Antimony	0.58	MG/KG	U	UJ
Arsenic	15.6	MG/KG		
Barium	69.8	MG/KG		
Beryllium	0.58	MG/KG	U	
Cadmium	0.58	MG/KG	U	
Calcium	1410	MG/KG		J
Chromium	13.2	MG/KG		
Cobalt	. 17.5	MG/KG	U	
Copper	43.5	MG/KG		J
Iron	23800	MG/KG		
Lead	16.7	MG/KG		
Magnesium	2650	MG/KG		
Manganese	372	MG/KG		
Mercury	0.12	MG/KG	U	UJ
Nickel	21.7	MG/KG		
Potassium	1190	MG/KG		
Selenium	0.58	MG/KG	U	
Silver	1.2	MG/KG	U	
Sodium	583	MG/KG	U	
Thallium	0.58	MG/KG	U	
Vanadium	14.5	MG/KG		
Zinc	88.7	MG/KG		J

Data Qualifiers:

Lòcation: Open Detonation Area Station: SB27

ODA-SB-027-1138-SO 2.0-4.0 FT Field Sample Type: Composite - Subsurface Soil

Collected: 11/20/97

Metals	Result	Units	Quali Lab	fiers Data
Aluminum	11200	MG/KG		
Antimony	0.58	MG/KG	U	UJ
Arsenic	13.9	MG/KG		
Barium	38.6	MG/KG		
Beryllium	0.58	MG/KG	U	
Cadmium	0.58	MG/KG	U	
Calcium	2080	MG/KG		l
Chromium	18.4	MG/KG		
Cobalt	17.5	MG/KG	U	
Copper	18.9	MG/KG		J
Iron	27500	MG/KG		
Lead	10.0	MG/KG		
Magnesium	4500	MG/KG		
Manganese	391	MG/KG		
Mercury	0.12	MG/KG	U	IJ
Nickel	31.1	MG/KG		
Potassium	1720	MG/KG		
Selenium	0.58	MG/KG	U	
Silver	1.2	MG/KG	U	
Sodium	584	MG/KG	U	
Thallium	0.58	MG/KG	U	
Vanadium	18.0	MG/KG		
Zinc	68.5	MG/KG		J

Data Qualifiers:

Location: Open Detonation Area Station: SB27

ODA-SB-027-1139-SO

4.0-6.0 FT Field Sample Type: Composite - Subsurface Soil

Collected: 11/20/97

Explosives	Result	Units	Quali Lab	fiers Data
1,3,5-Trinitrobenzene	0.25	MG/KG	U	Data
1,3-Dinitrobenzene	0.25	MG/KG	Ŭ	
2,4,6-Trinitrotoluene	0.25	MG/KG	Ŭ	
2,4-Dinitrotoluene	0.25	MG/KG	Ŭ	
2,6-Dinitrotoluene	0.25	MG/KG	Ŭ	
2-Nitrotoluene	0.25	MG/KG	Ŭ	
3-Nitrotoluene	0.25	MG/KG	Ŭ	
4-Nitrotoluene	0.25	MG/KG	Ŭ	
HMX	0.50	MG/KG	Ŭ	
Nitrobenzene	0.25	MG/KG	Ŭ	
Nitrocellulose (as N)	2.1	MG/KG	Ū	UJ
Nitroglycerin	2.5	MG/KG	Ŭ	0,
Nitroguanidine	0.25	MG/KG	Ū	UJ
RDX	0.50	MG/KG	Ŭ	0.
Tetryl	0.65	MG/KG	Ŭ	
B.F. 1			Quali	fiers
Metais	Result	Units	Lab	Data
Aluminum	8960	MG/KG		
Antimony	0.61	MG/KG	U	UJ
Arsenic	13.1	MG/KG		
Barium	38.5	MG/KG		
Beryllium	0.61	MG/KG	U	
Cadmium	0.61	MG/KG	U	
Calcium	2010	MG/KG		J
Chromium	15.7	MG/KG		
Cobalt	18,4	MG/KG	U	
Copper	19.5	MG/KG		J
Iron	23300	MG/KG		
Lead	10.5	MG/KG		
Magnesium	3160	MG/KG		
Manganese	406	MG/KG		
Mercury	0.12	MG/KG	U	UJ
Nickel	24.4	MG/KG	_	
Potassium	1700	MG/KG		
Selenium	0.61	MG/KG	U	
Silver	1.2	MG/KG	Ŭ	
Sodium	615	MG/KG	Ŭ	
			J	
				J
Soulum Thallium Vanadium Zinc	615 0.61 16.4 64.2	MG/KG MG/KG MG/KG MG/KG	U U	

Data Qualifiers:

Station: SB28

.

ODA-SB-028-1141-SO 0.0-2.0 FT Field Sample Type: Split Sample

Collected: 11/20/97

Metals	Result	Units	Quali Lab	fiers Data
Aluminum	10500	MG/KG		
Antimony	0.57	MG/KG	U	UJ
Arsenic	15.3	MG/KG		
Barium	42.1	MG/KG		
Beryllium	0.57	MG/KG	U	
Cadmium	0.57	MG/KG	U	
Calcium	3620	MG/KG		J
Chromium	15.4	MG/KG		
Cobalt	17.2	MG/KG	U	
Copper	23.2	MG/KG		J
Iron	22500	MG/KG		
Lead	12.2	MG/KG		
Magnesium	2840	MG/KG		
Manganese	375	MG/KG		
Mercury	0.11	MG/KG	U	UJ
Nickel	20.9	MG/KG		
Potassium	2000	MG/KG		
Selenium	0.57	MG/KG	U	
Silver	1.1	MG/KG	U	
Sodium	575	MG/KG	U	
Thallium	0.57	MG/KG	U	
Vanadium	18.5	MG/KG		
Zinc	69.7	MG/KG		J

Data Qualifiers:

.

Location: Open Detonation Area Station: SB28

ODA-SB-028-1142-SO

2.0-4.0 FT Field Sample Type: Composite - Subsurface Soil

Collected: 11/20/97

Metals		TT T .	Quali	fiers
	Result	Units	Lab	Data
Aluminum	7200	MG/KG		
Antimony	0.56	MG/KG	U	UJ
Arsenic	18.3	MG/KG		
Barium	22.9	MG/KG		
Beryllium	0.56	MG/KG	U	
Cadmium	0.56	MG/KG	U	
Calcium	7510	MG/KG		J
Chromium	12.0	MG/KG		
Cobalt	16.9	MG/KG	U	
Copper	37.6	MG/KG		J
Iron	22600	MG/KG		
Lead	10.8	MG/KG		
Magnesium	4410	MG/KG		
Manganese	388	MG/KG		
Mercury	0.11	MG/KG	U	UJ
Nickel	22.0	MG/KG		
Potassium	1310	MG/KG		
Selenium	0.56	MG/KG	U	
Silver	1.1	MG/KG	U	
Sodium	563	MG/KG	Ū	
Thallium	0.56	MG/KG	Ū	
Vanadium	13.0	MG/KG	-	
Zinc	64.1	MG/KG		J

Data Qualifiers:

Station: SB28

ODA-SB-028-1143-SO

4.0-6.0 FT Field Sample Type: Composite - Subsurface Soil

Collected: 11/20/97

Metals		** •.	Quali	fiers
	Result	Units	Lab	<u>Data</u>
Aluminum	7670	MG/KG		
Antimony	0.57	MG/KG	U	UJ
Arsenic	16.4	MG/KG		
Barium	34.2	MG/KG		
Beryllium	0.57	MG/KG	U	
Cadmium	0.57	MG/KG	U	
Calcium	9190	MG/KG		J
Chromium	13.0	MG/KG		
Cobalt	17.2	MG/KG	U	
Copper	26.7	MG/KG		J
Iron	25100	MG/KG		
Lead	11.7	MG/KG		
Magnesium	4690	MG/KG		
Manganese	415	MG/KG		
Mercury	0.11	MG/KG	U	UJ
Nickel	21.2	MG/KG		
Potassium	1390	MG/KG		
Selenium	0.57	MG/KG	U	
Silver	1.1	MG/KG	U	
Sodium	573	MG/KG	U	
Thallium	0.57	MG/KG	U	
Vanadium	13.7	MG/KG		
Zinc	85.9	MG/KG		J

Data Qualifiers:

Station: SB28

ODA-SB-028-1144-SO

6.0-8.0 FT Field Sample Type: Composite - Subsurface Soil

Collected: 11/20/97

Nf = 4 = 1 =	.		Quali	fiers
Metals	Result	Units	Lab	Data
Aluminum	10200	MG/KG		
Antimony	0.57	MG/KG	U	UJ
Arsenic	17.5	MG/KG		
Barium	53.0	MG/KG		
Beryllium	0.57	MG/KG	U	
Cadmium	0.57	MG/KG	U	
Calcium	12500	MG/KG		J
Chromium	16.6	MG/KG		
Cobalt	17.1	MG/KG	U	
Copper	19.8	MG/KG		J
Iron	26900	MG/KG		
Lead	11.6	MG/KG		
Magnesium	5880	MG/KG		
Manganese	390	MG/KG		
Mercury	0.11	MG/KG	U	UJ
Nickel	26.1	MG/KG		
Potassium	2000	MG/KG		
Selenium	0.57	MG/KG	U	
Silver	1.1	MG/KG	U	
Sodium	570	MG/KG	U	
Thallium	0.57	MG/KG	U	
Vanadium	17.9	MG/KG		
Zinc	61.0	MG/KG		J

Data Qualifiers:

.

Station: SB29

ODA-SB-029-1145-SO 0.0-2.0 FT Field Sample Type: Composite - Subsurface Soil

Collected: 11/20/97

Metals	Result	Units	Quali Lab	fiers <u>Data</u>
Aluminum	8940	MG/KG		
Antimony	0.57	MG/KG	U	UJ
Arsenic	14.8	MG/KG		
Barium	112	MG/KG		
Beryllium	0.57	MG/KG	U	
Cadmium	1.3	MG/KG		
Calcium	3640	MG/KG		
Chromium	13.7	MG/KG		
Cobalt	17.2	MG/KG	U	
Copper	65.5	MG/KG		
Iron	22600	MG/KG		
Lead	20.1	MG/KG		
Magnesium	3270	MG/KG		
Manganese	380	MG/KG		
Mercury	0.18	MG/KG		
Nickel	20.9	MG/KG		
Potassium	1160	MG/KG		
Selenium	0.57	MG/KG	U	
Silver	- 1.1	MG/KG	U	
Sodium	573	MG/KG	U	
Thallium	0.57	MG/KG	U	
Vanadium	15.5	MG/KG		
Zinc	122	MG/KG		

Data Qualifiers:

Station: SB29

ODA-SB-029-1146-SO

2.0-4.0 FT Field Sample Type: Composite - Subsurface Soil

Collected: 11/20/97

Explosives	Result	Units	Quali Lab	fiers Data
1,3,5-Trinitrobenzene	0.25	MG/KG	U	
1,3-Dinitrobenzene	0.25	MG/KG	U	
2,4,6-Trinitrotoluene	0.89	MG/KG		
2,4-Dinitrotoluene	0.25	MG/KG	U	
2,6-Dinitrotoluene	0.25	MG/KG	U	
2-Nitrotoluene	0.25	MG/KG	U	
3-Nitrotoluene	0.25	MG/KG	U	
4-Nitrotoluene	0.25	MG/KG	U	
HMX	0.50	MG/KG	U	
Nitrobenzene	0.25	MG/KG	U	
Nitrocellulose (as N)	2.1	MG/KG		UJ
Nitroglycerin	2.5	MG/KG	U	
Nitroguanidine	0.25	MG/KG	U	J
RDX	0.50	MG/KG	U	
Tetryl	0.65	MG/KG	U	
			Quali	liers
Metals	Result	Units	Lab	Data
Aluminum	9890	MG/KG		
Antimony	0.59	MG/KG	U	UJ
Arsenic	16.7	MG/KG		
Barium	74.3	MG/KG		
Beryllium	0.59	MG/KG	U	
Cadmium	1.3	MG/KG		
Calcium	2610	MG/KG		
Chromium	15.5	MG/KG		
Cobalt	17.8	MG/KG	U	
Copper	70.0	MG/KG		
Iron	26100	MG/KG		
Lead	22.3	MG/KG		
Magnesium	3150	MG/KG		
Manganese	336	MG/KG		
Mercury	0.18	MG/KG		
Nickel	22.6	MG/KG		
Potassium	1220	MG/KG		
Selenium	0.59	MG/KG	U	
Silver	1.2	MG/KG	U	
Sodium	593	MG/KG	U	
	727			
Thallium			U	
	0.59 1 7.8	MG/KG MG/KG	U	

Data Qualifiers:

4.0-6.0 FT

Station: SB29

ODA-SB-029-1147-SO

Field Sample Type: Split Sample

Collected: 11/20/97

Metals	Result	Units	Quali Lab	fiers <u>Data</u>
Aluminum	4240	MG/KG		
Antimony	0.57	MG/KG	U	UJ
Arsenic	10.3	MG/KG		
Barium	24.4	MG/KG		
Beryllium	0.57	MG/KG	U	
Cadmium	7.4	MG/KG		
Calcium	3370	MG/KG		
Chromium	9.7	MG/KG		
Cobalt	17.0	MG/KG	U	
Copper	28.4	MG/KG		
Iron	· 20400	MG/KG		
Lead	17.8	MG/KG		
Magnesium	1980	MG/KG		
Manganese	269	MG/KG		
Mercury	0.11	MG/KG	U	
Nickel	20.5	MG/KG		
Potassium	747	MG/KG		
Selenium	0.57	MG/KG	U	
Silver	1.1	MG/KG	U	
Sodium	567	MG/KG	U	
Thallium	0.57	MG/KG	U	
Vanadium	8.9	MG/KG		
Zinc	141	MG/KG		

Data Qualifiers:

Location: Open Detonation Area Station: SB29

ODA-SB-029-1148-SO

1

6.0-8.0 FT Field Sample Type: Composite - Subsurface Soil

Collected: 11/20/97

Emplosition		TT 1 .	Quali	fiers
Explosives	Result	Units	<u>Lab</u>	<u>Data</u>
1,3,5-Trinitrobenzene	0.25	MG/KG	U	
1,3-Dinitrobenzene	0.25	MG/KG	U	
2,4,6-Trinitrotoluene	0.25	MG/KG	U	
2,4-Dinitrotoluene	0.25	MG/KG	U	
2,6-Dinitrotoluene	0.25	MG/KG	U	
2-Amino-4,6-dinitrotoluene	0.25	MG/KG	U	
2-Nitrotoluene	0.25	MG/KG	U	
3-Nitrotoluene	0.25	MG/KG	U	
4-Amino-2,6-dinitrotoluene	0.25	MG/KG	U	
4-Nitrotoluene	0.25	MG/KG	U	
HMX	0.50	MG/KG	U	
Nitrobenzene	0.25	MG/KG	U	
Nitrocellulose (as N)	2.9	MG/KG		UJ
Nitroglycerin	2.5	MG/KG	U	
Nitroguanidine	0.25	MG/KG	U	J
RDX	0.50	MG/KG	U	
Tetryl	0.65	MG/KG	U	
•			0	e
Metals	Result	Units	Quali Lab	Data
Aluminum	7100	MG/KG		
Antimony	0.55	MG/KG	U	UJ
Arsenic	11.7	MG/KG		
Barium	24.7	MG/KG		
Beryllium	0.55	MG/KG	U	
Cadmium	0.55	MG/KG	U	
Calcium	10900	MG/KG		
Chromium	11.4	MG/KG		
Cobalt	16.5	MG/KG	U	
Copper	15.4	MG/KG		
Iron	22400	MG/KG		
Lead	8.3	MG/KG		
Magnesium	4770	MG/KG		
Manganese	557	MG/KG		
Mercury	0.11	MG/KG	U	IJ
Nickel	19.1	MG/KG	-	
Potassium	1460	MG/KG		
Selenium	0.55	MG/KG	U	
Silver	1.1	MG/KG	Ŭ	
Sodium	550	MG/KG	Ŭ	
Thallium	0.55	MG/KG	Ŭ	
Vanadium	13.0	MG/KG	U	
				J
Zinc	48.9	MG/KG		J

Data Qualifiers:

•1

Station: SB29

ODA-SB-029D-1224-SO	2.0-4.0 FT	Field Sample Type:	Field Duplicate
---------------------	------------	--------------------	-----------------

Collected: 11/20/97

			Qualifiers		
Explosives	Result	Units	Lab_	Data	
1,3,5-Trinitrobenzene	2.5	MG/KG	U		
1,3-Dinitrobenzene	2.5	MG/KG	U		
2,4,6-Trinitrotoluene	34	MG/KG			
2,4-Dinitrotoluene	2.5	MG/KG	U		
2,6-Dinitrotoluene	2.5	MG/KG	U		
2-Nitrotoluene	2.5	MG/KG	U		
3-Nitrotoluene	2.5	MG/KG	U		
4-Nitrotoluene	2.5	MG/KG	U		
HMX	5.0	MG/KG	U		
Nitrobenzene	2.5	MG/KG	U		
Nitrocellulose (as N)	2.1	MG/KG	U	UJ	
Nitroglycerin	25	MG/KG	U		
Nitroguanidine	0.25	MG/KG	U	UJ	
RDX	5.0	MG/KG	U		
Tetryl	6.5	MG/KG	U		

Data Qualifiers:

Station: SS01

ODA-SS-001-1001-SO

0.0-0.3 FT Field Sample Type: Composite - Surface Soil

Collected: 11/19/97

Explosives	Result	Units	Quali Lab	fiers Data
1,3,5-Trinitrobenzene	0.25	MG/KG		Data
1,3-Dinitrobenzene	0.25	MG/KG	U	
2,4,6-Trinitrotoluene	0.25	MG/KG	Ŭ	
2,4-Dinitrotoluene	0.25	MG/KG	Ŭ	
2,6-Dinitrotoluene	0.25	MG/KG	Ŭ	
2-Nitrotoluene	0.25	MG/KG	Ŭ	
3-Nitrotoluene	0.25	MG/KG	Ŭ	
4-Nitrotoluene	0.25	MG/KG	Ŭ	
HMX	0.50	MG/KG	Ŭ	
Nitrobenzene	. 0.25	MG/KG	Ŭ	
Nitrocellulose (as N)	2.1	MG/KG	U	UJ
Nitroglycerin	2.5	MG/KG	U	01
Nitroguanidine	0.25	MG/KG	Ŭ	J
RDX	0.50	MG/KG	Ŭ	3
Tetryl	0.65	MG/KG	U	
	0.05	MO/NO	U	
Metals	Result	Units	Qualit Lab	iiers Data
Aluminum	7290	MG/KG		
Antimony	0.57	MG/KG	U	IJ
Arsenic	9.1	MG/KG	Ŭ	0,
Barium	117	MG/KG		
Beryllium	0.57	MG/KG	U	
Cadmium	0.57	MG/KG	Ŭ	
Calcium	161000	MG/KG	0	
Chromium	10.4	MG/KG		
Cobalt	17.1	MG/KG	U	
Copper	47.7	MG/KG	U	
Iron	15400	MG/KG		
Lead	16.8	MG/KG		
Magnesium	3140	MG/KG		
Manganese	469	MG/KG		
Mercury	0.11	MG/KG	U	UJ
Nickel	17.6	MG/KG	U	01
Potassium	1320	MG/KG		
Selenium	0.57	MG/KG	U	
Silver				
Sodium	1.1	MG/KG	U	
Thallium	570	MG/KG	U	
Vanadium	0.57	MG/KG	U	
Zinc	12.6	MG/KG		
	82.1	MG/KG		J

Data Qualifiers:

Station: SS01

Field Sample Type: Field Duplicate 0.0-0.3 FT ODA-SS-001D-1208-SO

Collected: 11/19/97

		TT	Qualifiers	
Metals	Result	Units	Lab	Data
Aluminum	6070	MG/KG		
Antimony	0.53	MG/KG	U	UJ
Arsenic	7.5	MG/KG		
Barium	113	MG/KG		
Beryllium	0.53	MG/KG	U	
Cadmium	0.58	MG/KG		
Calcium	202000	MG/KG		
Chromium	8.7	MG/KG		
Cobalt	15.9	MG/KG	U	
Соррег	36.1	MG/KG		
Iron	11700	MG/KG		
Lead	11.3	MG/KG		
Magnesium	3340	MG/KG		
Manganese	514	MG/KG		
Mercury	0.11	MG/KG	U	UJ
Nickel	15.3	MG/KG		
Potassium	1100	MG/KG		
Selenium	0.53	MG/KG	U	
Silver	1.1	MG/KG	U	
Sodium	529	MG/KG	U	
Thallium	0.53	MG/KG	U	
Vanadium	10.8	MG/KG		
Zinc	57.6	MG/KG		1

Data Qualifiers:

Station: SS02

ODA-SS-002-1002-SO

0.0-0.3 FT Field Sample Type: Composite - Surface Soil

Collected: 11/19/97

Explosives	Result	Units	Quali Lab		
1,3,5-Trinitrobenzene	0.25	MG/KG	<u> </u>	Data	
1,3-Dinitrobenzene	0.25	MG/KG	U		
2,4,6-Trinitrotoluene	0.25	MG/KG	Ŭ		
2,4-Dinitrotoluene	0.25	MG/KG	Ŭ		
2,6-Dinitrotoluene	0.25	MG/KG	Ŭ		
2-Nitrotoluene	0.25	MG/KG	Ŭ		
3-Nitrotoluene	0.25	MG/KG	Ŭ		
4-Nitrotoluene	0.25	MG/KG	Ŭ		
HMX	0.50	MG/KG	Ū		
Nitrobenzene	0.25	MG/KG	Ū		
Nitrocellulose (as N)	2.6	MG/KG	•	J	
Nitroglycerin	2.5	MG/KG	U	Ū	
Nitroguanidine	0.25	MG/KG	Ŭ	UJ	
RDX	0.50	MG/KG	Ŭ		
Tetryl	0.65	MG/KG	Ŭ		
			Quali	fiers	
Metals	Result	Units	Lab	Data	
Aluminum	7630	MG/KG			
Antimony	0.64	MG/KG	U	UJ	
Arsenic	13.3	MG/KG			
Barium	96.8	MG/KG			
Beryllium	0.64	MG/KG	U		
Cadmium	1.0	MG/KG	-		
Calcium	6930	MG/KG			
Chromium	13.8	MG/KG			
Cobalt	19.1	MG/KG	U		
Copper	89.3	MG/KG			
ron	20700	MG/KG			
ead	61.7	MG/KG			
Magnesium	2990	MG/KG		J	
Manganese	329	MG/KG		•	
Mercury	0.13	MG/KG	U		
Nickel	21.1	MG/KG	Ũ		
Potassium	1270	MG/KG			
Selenium	0.64	MG/KG	U		
Silver	1.3	MG/KG	U		
Sodium	637	MG/KG	U		
Thallium	0.64	MG/KG	U		
	V.04	D/D/M	U		
/anadium	14.9	MG/KG			

Data Qualifiers:

Station: SS02

Field Sample Type: Field Duplicate ODA-SS-002D-1209-SO 0.0-0.3 FT

Collected: 11/19/97

Metals	Result	Units	Qualif Lab	fiers Data
Aluminum	8910	MG/KG		
Antimony	0.75	MG/KG		J
Arsenic	14.6	MG/KG		
Barium	92.2	MG/KG		
Beryllium	0.65	MG/KG	U	
Cadmium	1.4	MG/KG		
Calcium	7340	MG/KG		J
Chromium	15.2	MG/KG		
Cobalt	19.4	MG/KG	U	
Copper	93.9	MG/KG		J
Iron	22500	MG/KG		
Lead	78.5	MG/KG		1
Magnesium	3320	MG/KG		
Manganese	325	MG/KG		
Mercury	0.80	MG/KG		
Nickel	22.0	MG/KG		
Potassium	1450	MG/KG		
Selenium	0.65	MG/KG	U	
Silver	1.3	MG/KG	U	
Sodium	647	MG/KG	U	
Thallium	0.65	MG/KG	U	
Vanadium	16.7	MG/KG		
Zinc	214	MG/KG	MBB	J

Data Qualifiers:

Station: SS03

ODA-SS-003-1003-SO

0.0-0.3 FT Field Sample Type: Composite - Surface Soil

Collected: 11/19/97

Explosives	Result	Units	Quali	
1,3,5-Trinitrobenzene	0.25	MG/KG	<u>Lab</u> U	Data
1,3-Dinitrobenzene	0.25	MG/KG MG/KG	U	
2,4,6-Trinitrotoluene	0.25	MG/KG	U	
2,4-Dinitrotoluene	0.25	MG/KG MG/KG	UU	
2,6-Dinitrotoluene	0.25	MG/KG	UU	
2-Nitrotoluene	0.25	MG/KG MG/KG	UU	
3-Nitrotoluene	0.25	MG/KG MG/KG	U U	
4-Nitrotoluene	0.25	MG/KG MG/KG	Ŭ	
HMX	0.50	MG/KG MG/KG	UU	
Nitrobenzene	0.30	MG/KG MG/KG	U	
Nitrocellulose (as N)	2.2	MG/KG	U	IJ
Nitroglycerin	2.2		U	01
Nitroguanidine	0.25	MG/KG	U	***
RDX	0.23	MG/KG		UJ
Fetryl	0.50	MG/KG MG/KG	U U	
	0.05	MG/KG	U	
Metals	Decult	¥7_24_	Quali	fiers
	Result	Units	<u>Lab</u>	Data
Aluminum	14100	MG/KG		
Antimony	0.61	MG/KG	U	
Arsenic	15.0	MG/KG		
Barium	62.3	MG/KG		
Beryllium	0.61	MG/KG	U	
Cadmium	0.61	MG/KG	U	
Calcium	12500	MG/KG		J
Chromium	21.4	MG/KG		
Cobalt	18.4	MG/KG	U	
Copper	71.7	MG/KG		J
ron	26300	MG/KG		
ead	20.2	MG/KG		J
Aagnesium	3320	MG/KG		-
Manganese	329	MG/KG		
Aercury	0.12	MG/KG	U	
Vickel	23.5	MG/KG	•	
Potassium	2170	MG/KG		
Selenium	0.61	MG/KG	U	
ilver	1.2	MG/KG	Ŭ	
odium	612	MG/KG	Ŭ	
hallium	0.61			
Thallium Tanadium	0.61 25.3	MG/KG MG/KG	U	

Data Qualifiers:

Station: SS03

Field Sample Type: Field Duplicate ODA-SS-003D-1210-SO 0.0-0.3 FT

Collected: 11/19/97

Metals	Result	Units	Qualif Lab	iers Data
Aluminum	13800	MG/KG		
Antimony	0.61	MG/KG	U	UJ
Arsenic	14.8	MG/KG		
Barium	73.4	MG/KG		
Beryllium	0.61	MG/KG	U	
Cadmium	0.61	MG/KG	U	_
Calcium	801 0	MG/KG		J
Chromium	22.8	MG/KG		
Cobalt	18.4	MG/KG	U	_
Copper	51.8	MG/KG		J
Iron	27200	MG/KG		
Lead	19.5	MG/KG		J
Magnesium	3640	MG/KG		
Manganese	398	MG/KG		
Mercury	0.12	MG/KG	U	
Nickel	26.1	MG/KG		
Potassium	2030	MG/KG		
Selenium	0.61	MG/KG	U	
Silver	1.2	MG/KG	U	
Sodium	612	MG/KG	U	
Thallium	0.61	MG/KG	U	
	25.6	MG/KG		
Vanadium Zinc	103	MG/KG	MBB	J

Data Qualifiers:

Station: SS04

ODA-SS-004-1004-SO

0.0-0.3 FT Field Sample Type: Composite - Surface Soil

Collected: 11/19/97

Explosives	Result	Units	Qual Lab	ifiers Data
1,3,5-Trinitrobenzene	0.25	MG/KG	U	
1,3-Dinitrobenzene	0.25	MG/KG	Ŭ	
2,4,6-Trinitrotoluene	0.25	MG/KG	Ŭ	
2,4-Dinitrotoluene	. 0.25	MG/KG	Ŭ	
2,6-Dinitrotoluene	0.25	MG/KG	Ŭ	
2-Amino-4,6-dinitrotoluene	0.25	MG/KG	Ŭ	
2-Nitrotoluene	0.25	MG/KG	Ū	
3-Nitrotoluene	0.25	MG/KG	Ū	
4-Amino-2,6-dinitrotoluene	0.25	MG/KG	Ū	
4-Nitrotoluene	0.25	MG/KG	U	
HMX	0.50	MG/KG	Ū	
Nitrobenzene	0.25	MG/KG	U	
Nitrocellulose (as N)	2.6	MG/KG		UJ
Nitroglycerin	2.5	MG/KG	U	
Nitroguanidine	0.25	MG/KG	U	J
RDX	0.50	MG/KG	Ū	-
Tetryl	0.65	MG/KG	U	
Metals			Quali	fiers
	Result	Units	Lab	<u>Data</u>
Aluminum	8920	MG/KG		
Antimony	0.58	MG/KG	U	UJ
Arsenic	11.8	MG/KG		
Barium	98.4	MG/KG		
Beryllium	0.58	MG/KG	U	
Cadmium	0.86	MG/KG		
Calcium	75400	MG/KG		J
Chromium	14.1	MG/KG		
Cobalt	17.3	MG/KG	U	
Copper	89.1	MG/KG		J
Iron	18600	MG/KG		
Lead	17.3	MG/KG		J
Magnesium	3240	MG/KG		
Manganese	430	MG/KG		
Mercury	0.12	MG/KG	U	
Nickel	20.8	MG/KG		
Potassium	1710	MG/KG		
Selenium	0.58	MG/KG	U	
Silver	1.2	MG/KG	U	
Sodium	577	MG/KG	U	
Thallium	0.58	MG/KG	U	
Vanadium	16.3	MG/KG		
Zinc	85.2	MG/KG	MBB	J

Data Qualifiers:

Station: SS04

.

Field Sample Type: Field Duplicate 0.0-0.3 FT ODA-SS-004D-1211-SO

Collected: 11/19/97

Metals	Result	Units	Qualif Lab	ïers Data
Aluminum	5500	MG/KG		
Antimony	0.56	MG/KG	U	UJ
Arsenic	7.3	MG/KG		
Barium	92.0	MG/KG		
Beryllium	0.56	MG/KG	U	
Cadmium	0.64	MG/KG		
Calcium	167000	MG/KG		J
Chromium	8.8	MG/KG		
Cobalt	16.7	MG/KG	U	
Copper	47.5	MG/KG		J
Iron	12300	MG/KG		
Lead	12.6	MG/KG		J
Magnesium	2930	MG/KG		
Manganese	476	MG/KG		
Mercury	0.11	MG/KG	U	
Nickel	15.6	MG/KG		
Potassium	979	MG/KG		
Selenium	0.56	MG/KG	U	
Silver	1.1	MG/KG	U	
Sodium	557	MG/KG	U	
Thallium	0,56	MG/KG	U	
Vanadium	9.7	MG/KG		
Zinc	60.7	MG/KG	MBB	l

Data Qualifiers:

.

Location: Open Detonation Area Station: SS05

ODA-SS-005-1005-SO

0.0-0.3 FT Field Sample Type: Composite - Surface Soil

Collected: 11/19/97

Metals	Result	Units	Quali	
Aluminum			<u>Lab</u>	<u>Data</u>
Antimony	8860	MG/KG	**	
Arsenic	0.60	MG/KG	U	IJ
Barium	12.8	MG/KG		
Beryllium	69.4	MG/KG		
Cadmium	0.60	MG/KG	U	
Calcium	0.61	MG/KG		
Chromium	48700	MG/KG		J
	14.4	MG/KG		
Cobalt	17.9	MG/KG	U	
Copper	56.0	MG/KG		J
Iron	20500	MG/KG		
Lead	17.6	MG/KG		J
Magnesium	2930	MG/KG		
Manganese	· 397	MG/KG		
Mercury	0.12	MG/KG	U	
Nickel	20.4	MG/KG		
Potassium	1120	MG/KG		
Selenium	0.60	MG/KG	U	
Silver	1.2	MG/KG	Ŭ	
Sodium	595	MG/KG	Ŭ	
Fhallium	0.60	MG/KG	U	
Vanadium	17.0	MG/KG	U	
Zinc	90.5	MG/KG	MBB	J

Data Qualifiers:

Location: Open Detonation Area Station: SS05

Field Sample Type: Field Duplicate ODA-SS-005D-1212-SO 0.0-0.3 FT

Collected: 11/19/97

Metals	Result	Units	Qualif Lab	iers Data
Aluminum	5490	MG/KG		
Antimony	0.58	MG/KG	U	UJ
Arsenic	19.6	MG/KG		
Barium	64.4	MG/KG		
Beryllium	0.58	MG/KG	U	
Cadmium	0.80	MG/KG		
Calcium	137000	MG/KG		J
Chromium	10.7	MG/KG		
Cobalt	17.5	MG/KG	U	
Copper	64.2	MG/KG		J
Iron	16900	MG/KG		
Lead	16.8	MG/KG		J
Magnesium	2790	MG/KG		
Manganese	441	MG/KG		
Mercury	0.12	MG/KG	U	
Nickel	17.3	MG/KG		
Potassium	862	MG/KG		
Selenium	0.58	MG/KG	U	
Silver	1.2	MG/KG	U	
Sodium	582	MG/KG	U	
Thallium	0.58	MG/KG	U	
Vanadium	10.4	MG/KG		
Zinc	73.8	MG/KG	MBB	J

Data Qualifiers:

Station: SS06

.*

ODA-SS-006-1006-SO 0.0-0.3 FT Field Sample Type: Composite - Surface Soil

Collected: 11/23/97

Metals	Result	Units	Qualifiers	
			<u>Lab</u>	Data
Aluminum	9170	MG/KG		
Antimony	0.63	MG/KG	U	UJ
Arsenic	16.5	MG/KG		
Barium	81.5	MG/KG		
Beryllium	0.63	MG/KG	U	
Cadmium	1.2	MG/KG		
Calcium	5990	MG/KG		
Chromium	15.5	MG/KG		
Cobalt	18.8	MG/KG	U	
Copper	101	MG/KG		
Iron	22700	MG/KG	MBB	
Lead	22.0	MG/KG		
Magnesium	3670	MG/KG		
Manganese	402	MG/KG		
Mercury	0.13	MG/KG	U	
Nickel	22.0	MG/KG		
Potassium	1690	MG/KG		
Selenium	0.63	MG/KG	U	
Silver	1.3	MG/KG	Ŭ	
Sodium	628	MG/KG	Ŭ	
Thallium	0.63	MG/KG	Ŭ	
Vanadium	16.8	MG/KG	U	
Zinc	145	MG/KG		

Data Qualifiers:

Location: Open Detonation Area Station: SS06

ODA-SS-006D-1213-SO

Field Sample Type: Field Duplicate 0.0-0.3 FT

Collected: 11/23/97

Metals	Result	Units	Quali <u>Lab</u>	fiers Data
Aluminum	8280	MG/KG		
Antimony	0.68	MG/KG		J
Arsenic	14.0	MG/KG		
Barium	63.2	MG/KG		
Beryllium	0.66	MG/KG	U	
Cadmium	1.8	MG/KG		J
Calcium	11000	MG/KG		
Chromium	14.0	MG/KG		
Cobalt	19.8	MG/KG	U	
Copper	102	MG/KG		
Iron	21100	MG/KG		
Lead	36.6	MG/KG		
Magnesium	3850	MG/KG		
Manganese	333	MG/KG		
Mercury	0.13	MG/KG		
Nickel	21.5	MG/KG		
Potassium	1390	MG/KG		
Selenium	0.66	MG/KG	U	
Silver	1.3	MG/KG	U	
Sodium	660	MG/KG	U	
Thallium	0.66	MG/KG	U	
Vanadium	14.9	MG/KG		
Zinc	162	MG/KG		

Data Qualifiers:

Station: SS07

ODA-SS-007-1007-SO

0.0-0.3 FT Field Sample Type: Composite - Surface Soil

Collected: 11/23/97

Regult	Timita	Qualifiers	
Acount		Lab	Data
8600	MG/KG		
0.62	MG/KG	U	UJ
15.5	MG/KG		
61.3	MG/KG		
0.62	MG/KG	U	
0.95	-		
8890			
14.1	_		
		II	
		U	
		MBB	
	_		
	-		
		-	
	MG/KG	U	
0.62	MG/KG	U	
15.9	MG/KG		
125	MG/KG		
	0.62 15.5 61.3 0.62 0.95 8890 14.1 18.6 . 95.8 20800 24.3 3760 365 0.23 20.9 1640 0.62 1.2 621 0.62 15.9	8600 MG/KG 0.62 MG/KG 15.5 MG/KG 61.3 MG/KG 0.62 MG/KG 0.62 MG/KG 0.62 MG/KG 0.95 MG/KG 14.1 MG/KG 18.6 MG/KG 20800 MG/KG 24.3 MG/KG 3760 MG/KG 365 MG/KG 0.23 MG/KG 1640 MG/KG 1.2 MG/KG 1.2 MG/KG 0.62 MG/KG 1.2 MG/KG 1.2 MG/KG 0.62 MG/KG 15.9 MG/KG	Result Units Lab 8600 MG/KG U 0.62 MG/KG U 15.5 MG/KG U 0.62 MG/KG U 0.95 MG/KG U 0.95 MG/KG U 14.1 MG/KG U .95.8 MG/KG U .95.8 MG/KG MBB 24.3 MG/KG MBB 24.3 MG/KG MBB 24.3 MG/KG U .95.8 MG/KG U .023 MG/KG U .023 MG/KG U .062 MG/KG U .12 MG/KG U .062 MG/KG U .062 MG/KG U .062 <

Data Qualifiers:

Station: SS07

Field Sample Type: Field Duplicate 0.0-0.3 FT ODA-SS-007D-1214-SO

Collected: 11/23/97

	Result	Units	Quali	
Metals	Kesuit		Lab	Data
Aluminum	8740	MG/KG		
Antimony	0.62	MG/KG	U	UJ
Arsenic	13.8	MG/KG		
Barium	71.6	MG/KG		
Beryllium	0.62	MG/KG	U	_
Cadmium	1.1	MG/KG		J
Calcium	6160	MG/KG		
Chromium	14.5	MG/KG		
Cobalt	18.7	MG/KG	U	
Copper	94.8	MG/KG		
Iron	21000	MG/KG		
Lead	24.3	MG/KG		
Magnesium	3710	MG/KG		
Manganese	342	MG/KG		
Mercury	0.15	MG/KG		
Nickel	21.2	MG/KG		
Potassium	1400	MG/KG		
Selenium	0.62	MG/KG	U	
Silver	1.2	MG/KG	U	
Sodium	624	MG/KG	U	
Thallium	0.62	MG/KG	U	
Vanadium	15.8	MG/KG		
Zinc	158	MG/KG		

Data Qualifiers:

Station: SS08

ODA-SS-008-1008-SO

0.0-0.3 FT Field Sample Type: Composite - Surface Soil

Collected: 11/19/97

Explosives	Result	Units	Quai Lab	
1,3,5-Trinitrobenzene	0.25	MG/KG	_ <u>Lau</u> U	Data
1,3-Dinitrobenzene	0.25	MG/KG	U	
2,4,6-Trinitrotoluene	0.25	MG/KG	U	
2,4-Dinitrotoluene	0.25	MG/KG	U	
2,6-Dinitrotoluene	0.25	MG/KG	U	
2-Nitrotoluene	0.25	MG/KG	U	
3-Nitrotoluene	0.25	MG/KG	Ŭ	
4-Nitrotoluene	0.25	MG/KG	U	
HMX	0.50	MG/KG	U	
Nitrobenzene	0.25	MG/KG	U U	
Nitrocellulose (as N)	2.3	MG/KG	U	J
Nitroglycerin	2.5	MG/KG	U	J
Nitroguanidine	0.25	MG/KG MG/KG	U	UJ
RDX	0.25	MG/KG	U U	0J
Tetryl	0.65	MG/KG	UU	
-	0.05	MO/KO	U	
Metals	Decult	T T •/	Quali	liers
	Result	Units	Lab	Data
Aluminum	8270	MG/KG		
Antimony	0.65	MG/KG		UJ
Arsenic	14.7	MG/KG		
Barium	67.3	MG/KG		
Beryllium	0.61	MG/KG	U	
Cadmium	0.69	MG/KG		
Calcium	8060	MG/KG		J
Chromium	17.1	MG/KG		-
Cobalt	18.4	MG/KG	U	
Copper	76.7	MG/KG	-	J
Iron	30800	MG/KG		•
Lead	20.9	MG/KG		J
Magnesium	3590	MG/KG		•
Manganese	494	MG/KG		
Mercury	0.12	MG/KG	U	
Nickel	23.3	MG/KG	Ŭ	
Potassium	1110	MG/KG		
Selenium	0.61	MG/KG	U	
Silver	1.2	MG/KG	Ŭ	
Sodium	612	MG/KG	Ŭ	
Thallium	0.61	MG/KG	U	
Vanadium	17.1	MG/KG	0	
Zinc	17.1	MG/KG	MBB	J
- -	100	DA\DIVI	IVIDD	J

Data Qualifiers:

0.0-0.3 FT

Station: SS08

ODA-SS-008D-1215-SO

Field Sample Type: Field Duplicate

Collected: 11/19/97

Metals	Result	Units	Qualifi Lab	ers Data
Aluminum	10700	MG/KG		
Antimony	0.59	MG/KG	U	
Arsenic	14.9	MG/KG		
Barium	85.7	MG/KG		
Beryllium	0.59	MG/KG	U	
Cadmium	0.78	MG/KG		
Calcium	4110	MG/KG		
Chromium	17.4	MG/KG		
Cobalt	17.8	MG/KG	U	
Copper	93.3	MG/KG		
Iron	25000	MG/KG		
Lead	25.0	MG/KG		J
Magnesium	3430	MG/KG		
Manganese	648	MG/KG		
Mercury	0.12	MG/KG	U	
Nickel	23.0	MG/KG		
Potassium	1400	MG/KG		
Selenium	0.59	MG/KG	U	
Silver	1.2	MG/KG	U	
Sodium	594	MG/KG	U	
Thallium	0.59	MG/KG	U	
Vanadium	20.9	MG/KG		
Zinc	158	MG/KG	MBB	

Data Qualifiers:

Station: SS09

ODA-SS-009-1009-SO

0.0-0.3 FT Field Sample Type: Composite - Surface Soil

Collected: 11/19/97

Result	Units	Qualifiers	
		Lab	<u>Data</u>
11200	MG/KG		
0.60	MG/KG	U	IJ
18.1	MG/KG		
50.9	MG/KG		
0.60	MG/KG	U	
0.60	MG/KG	U	
1950	MG/KG		J
18.5	MG/KG		
17.9	MG/KG	U	
19.7	MG/KG		J
28200	MG/KG		
11.6	MG/KG		J
3660	MG/KG		
351	MG/KG		
0.12	MG/KG	U	
28.2	MG/KG		
2020	MG/KG		
0.60	MG/KG	U	
1.2	MG/KG	U	
595	MG/KG	U	
0.60		U	
20.0	MG/KG		
68.3	MG/KG	MBB	J
	$\begin{array}{c} 11200\\ 0.60\\ 18.1\\ 50.9\\ 0.60\\ 0.60\\ 1950\\ 18.5\\ 17.9\\ 1950\\ 18.5\\ 17.9\\ 19.7\\ 28200\\ 11.6\\ 3660\\ 351\\ 0.12\\ 28.2\\ 2020\\ 0.60\\ 1.2\\ 595\\ 0.60\\ 20.0\\ \end{array}$	11200 MG/KG 0.60 MG/KG 18.1 MG/KG 50.9 MG/KG 0.60 MG/KG 0.60 MG/KG 1950 MG/KG 1950 MG/KG 1950 MG/KG 1950 MG/KG 1950 MG/KG 197 MG/KG 197 MG/KG 197 MG/KG 11.6 MG/KG 3660 MG/KG 351 MG/KG 0.12 MG/KG 28.2 MG/KG 2020 MG/KG 1.2 MG/KG 595 MG/KG 0.60 MG/KG 0.60 MG/KG 1.2 MG/KG 0.60 MG/KG	Result Units Lab 11200 MG/KG U 0.60 MG/KG U 18.1 MG/KG U 18.1 MG/KG U 0.60 MG/KG U 0.60 MG/KG U 0.60 MG/KG U 0.60 MG/KG U 1950 MG/KG U 1950 MG/KG U 1950 MG/KG U 1950 MG/KG U 1977 MG/KG U 19.7 MG/KG U 28200 MG/KG U 3660 MG/KG U 28200 MG/KG U 28200 MG/KG U 28200 MG/KG U 282 MG/KG U 28.2 MG/KG U 2020 MG/KG U 1.2 MG/KG U 1.2 MG/

Data Qualifiers:

Station: SS09

Field Sample Type: Field Duplicate ODA-SS-009D-1216-SO 0.0-0.3 FT

Collected: 11/19/97

.

Metals	Result	Units	Qualifiers	
			<u>Lab</u>	Data
Aluminum	11500	MG/KG		
Antimony	0.59	MG/KG	U	UJ
Arsenic	16.8	MG/KG		
Barium	61.7	MG/KG		
Beryllium	0.59	MG/KG	U	
Cadmium	0.59	MG/KG	U	
Calcium	2600	MG/KG		J
Chromium	18.5	MG/KG		
Cobalt	17.8	MG/KG	U	
Соррег	28.0	MG/KG		J
Iron	26000	MG/KG		
Lead	15.2	MG/KG		J
Magnesium	3450	MG/KG		
Manganese	447	MG/KG		
Mercury	0.12	MG/KG	U	
Nickel	28.3	MG/KG		
Potassium	2290	MG/KG		
Selenium	0.59	MG/KG	U	
Silver	1.2	MG/KG	U	
Sodium	592	MG/KG	U	
Thallium	0.59	MG/KG	U	
Vanadium	22.3	MG/KG		
Zinc	77.9	MG/KG	MBB	J

Data Qualifiers:

.

ODA-SS-010-1010-SO

0.0-0.3 FT Field Sample Type: Composite - Surface Soil

Collected: 11/19/97

Metals	Result	Units	Quali		
A 1		<u> </u>	Lab	Data	
Aluminum	11800	MG/KG			
Antimony	0.60	MG/KG	U	UJ	
Arsenic	17.3	MG/KG			
Barium	. 84.3	MG/KG			
Beryllium	0.60	MG/KG	U		
Cadmium	0.60	MG/KG	U		
Calcium	3530	MG/KG		J	
Chromium	19.6	MG/KG			
Cobalt	18.0	MG/KG	U		
Copper	29.1	MG/KG		J	
Iron	29000	MG/KG			
Lead	13.9	MG/KG		J	
Magnesium	4040	MG/KG		-	
Manganese	333	MG/KG			
Mercury	0.12	MG/KG	U		
Nickel	31.5	MG/KG	-		
Potassium	1540	MG/KG			
Selenium	0.60	MG/KG	U		
Silver	1.2	MG/KG	Ū		
Sodium	600	MG/KG	Ŭ		
Fhallium	0.60	MG/KG	U		
Vanadium	21.5	MG/KG	U		
Zinc			MOD	Ţ	
	85.0	MG/KG	MBB	1	

Data Qualifiers:

Station: SS10

Field Sample Type: Field Duplicate 0.0-0.3 FT ODA-SS-010D-1217-SO

Collected: 11/19/97

			Qualifier	
Metals	Result	Units	Lab	Data
Aluminum	13700	MG/KG		
Antimony	0.61	MG/KG	U	UJ
Arsenic	13.0	MG/KG		
Barium	123	MG/KG		
Beryllium	0.86	MG/KG		
Cadmium	0.61	MG/KG	U	_
Calcium	3640	MG/KG		J
Chromium	22.0	MG/KG		
Cobalt	18.3	MG/KG	U	_
Copper	25.4	MG/KG		J
Iron	26500	MG/KG		_
Lead	14.1	MG/KG		J
Magnesium	4060	MG/KG		
Manganese	537	MG/KG		
Mercury	0.12	MG/KG	U	
Nickel	35.1	MG/KG		
Potassium	2130	MG/KG		
Selenium	0.61	MG/KG	U	
Silver	1.2	MG/KG	U	
Sodium	612	MG/KG	U	
Thallium	0.61	MG/KG	U	
Vanadium	25.1	MG/KG		
Zinc	70.8	MG/KG	MBB	J

Data Qualifiers:

Station: SS11

ODA-SS-011-1011-SO

0.0-0.3 FT Field Sample Type: Composite - Surface Soil

Collected: 11/23/97

Explosives	Result	Units	Quali Lab	fiers Data
1,3,5-Trinitrobenzene	0.25	MG/KG	U	Data
1,3-Dinitrobenzene	0.25	MG/KG	U	
2,4,6-Trinitrotoluene	0.25	MG/KG	Ŭ	
2,4-Dinitrotoluene	0.25	MG/KG	U	
2,6-Dinitrotoluene	0.25	MG/KG	U	
2-Nitrotoluene	0.25	MG/KG	Ŭ	
3-Nitrotoluene	0.25	MG/KG	U	
4-Nitrotoluene	0.25	MG/KG	Ŭ	
HMX	0.50	MG/KG	U	
Nitrobenzene	0.25	MG/KG	Ŭ	
Nitrocellulose (as N)	7.1	MG/KG	0	UJ
Nitroglycerin	2.5	MG/KG	U	01
Nitroguanidine	0.25	MG/KG	Ŭ	J
NDX	0.50	MG/KG	U U	J
Fetryl	0.65	MG/KG	UU	
	0.05	MG/KG	U	
Metals	D			liers
	Result	Units	<u>Lab</u>	Data
Aluminum	9790	MG/KG		
Antimony	0.66	MG/KG	U	UJ
Arsenic	15.8	MG/KG		
Barium	109	MG/KG		
Beryllium	0.66	MG/KG	U	
Cadmium	2.5	MG/KG		
Calcium	4730	MG/KG		
Chromium	18.9	MG/KG		
Cobalt	19.7	MG/KG	U	
Copper	156	MG/KG	-	
ron	25300	MG/KG	MBB	
ead	34.0	MG/KG		
Agnesium	3950	MG/KG		
Manganese	373	MG/KG		
Aercury	0.15	MG/KG		
lickel	25.3	MG/KG		
otassium	1980	MG/KG		
elenium	0.66	MG/KG	U	
ilver	1.3	MG/KG	U U	
odium	657	MG/KG MG/KG	U	
hallium	Λ <u>ζ ζ</u>			
hallium Tanadium	0.66 17.5	MG/KG MG/KG	U	

Data Qualifiers:

Station: SS11

Field Sample Type: Field Duplicate 0.0-0.3 FT ODA-SS-011D-1218-SO

Collected: 11/23/97

		Units	Quali	
Metals	Result		Lab	Data
Aluminum	7650	MG/KG		
Antimony	0.62	MG/KG	U	UJ
Arsenic	13.1	MG/KG		
Barium	68.8	MG/KG		
Beryllium	0.62	MG/KG	U	_
Cadmium	1.3	MG/KG		J
Calcium	5520	MG/KG		
Chromium	13.1	MG/KG	_	
Cobalt	18.7	MG/KG	U	
Соррег	128	MG/KG		
Iron	20100	MG/KG		
Lead	24.0	MG/KG		
Magnesium	3540	MG/KG		
Manganese	378	MG/KG		
Mercury	0.17	MG/KG		
Nickel	20.7	MG/KG		
Potassium	1240	MG/KG		
Selenium	0.62	MG/KG	U	
Silver	1.2	MG/KG	U	
Sodium	622	MG/KG	U	
Thallium	0.62	MG/KG	U	
Vanadium	13.8	MG/KG		
Zinc	264	MG/KG		

Data Qualifiers:

Station: SS12

.1

ODA-SS-012-1012-SO

0.0-0.3 FT Field Sample Type: Composite - Surface Soil

Collected: 11/19/97

Metals	Result	TTasida	Quali	fiers
		Units	Lab	<u>Data</u>
Aluminum	8930	MG/KG		
Antimony	0.60	MG/KG		J
Arsenic	14.5	MG/KG		
Barium	75.6	MG/KG		
Beryllium	0.60	MG/KG	U	
Cadmium	1.2	MG/KG		
Calcium	5780	MG/KG		J
Chromium	15.0	MG/KG		
Cobalt	17.9	MG/KG	U	
Copper	103	MG/KG		J
Iron	21100	MG/KG		
Lead	92.8	MG/KG		J
Magnesium	3560	MG/KG		-
Manganese	358	MG/KG		
Mercury	0.12	MG/KG	U	
Nickel	20.7	MG/KG	•	
Potassium	1650	MG/KG		
Selenium	0.60	MG/KG	U	
Silver	1.2	MG/KG	Ŭ	
Sodium	598	MG/KG	Ŭ	
Thallium	0.60	MG/KG	Ŭ	
Vanadium	16.8	MG/KG	Ŭ	
Zinc	192	MG/KG	MBB	J

Data Qualifiers:

Station: SS12

ODA-SS-012D-1219-SO 0.0-0.3 FT

Field Sample Type: Field Duplicate

Collected: 11/19/97

Metals	Result	Units	Quali Lab	
Aluminum	10100	MG/KG		Data
Antimony	0.64	MG/KG		J
Arsenic	15.2	MG/KG		J
Barium	77.4	MG/KG MG/KG		
Beryllium	0.59	MG/KG	U	
Cadmium	1.3	MG/KG	Ŭ	
Calcium	5500	MG/KG		J
Chromium	16.1	MG/KG		5
Cobalt	17.6	MG/KG	U	
Copper	119	MG/KG	-	J
Iron	23400	MG/KG		-
Lead	28.8	MG/KG		J
Magnesium	3480	MG/KG		-
Manganese	374	MG/KG		
Mercury	0.13	MG/KG		
Nickel	22.5	MG/KG		
Potassium	1760	MG/KG		
Selenium	0.59	MG/KG	U	
Silver	1.2	MG/KG	U	
Sodium	587	MG/KG	U	
Thallium	0.59	MG/KG	U	
Vanadium	18.7	MG/KG		
Zinc	181	MG/KG	MBB	J

Data Qualifiers:

ODA-SS-013-1013-SO

2

0.0-0.3 FT Field Sample Type: Composite - Surface Soil

Collected: 11/19/97

.

Explosives	Result	Units	Quali		
			<u>Lab</u>	Data	
1,3,5-Trinitrobenzene	0.25	MG/KG	U		
1,3-Dinitrobenzene	0.25	MG/KG	U		
2,4,6-Trinitrotoluene	0.25	MG/KG	U		
2,4-Dinitrotoluene	0.25	MG/KG	U		
2,6-Dinitrotoluene	0.25	MG/KG	U		
2-Nitrotoluene	0.25	MG/KG	U		
3-Nitrotoluene	0.25	MG/KG	U		
4-Nitrotoluene	0.25	MG/KG	U		
HMX	0.50	MG/KG	U		
Nitrobenzene	· 0.25	MG/KG	U		
Nitrocellulose (as N)	7.4	MG/KG		UJ	
Nitroglycerin	2.5	MG/KG	U		
Nitroguanidine	0.25	MG/KG	U	J	
RDX	0.50	MG/KG	U		
Tetryl	0.65	MG/KG	U		
Metals		T T 1 .	Qualif	ïers	
	Result	Units	Lab	<u>Data</u>	
Aluminum	11700	MG/KG			
Antimony	0.60	MG/KG	U	UJ	
Arsenic	16.6	MG/KG			
Barium	59.1	MG/KG			
Beryllium	0.60	MG/KG	U		
Cadmium	0.71	MG/KG			
Calcium	5330	MG/KG			
Chromium	17.9	MG/KG			
Cobalt	18.0	MG/KG	U		
Copper	96.9	MG/KG	•		
Iron	27300	MG/KG			
Lead	18.3	MG/KG			
Magnesium	4580	MG/KG			
Manganese	374	MG/KG			
Mercury	0.12	MG/KG	U	IJ	
Nickel	26.4	MG/KG	U	01	
Potassium	20.4 1760				
Selenium	0.60	MG/KG	U		
Silver		MG/KG			
Sodium	1.2	MG/KG	U		
Thallium	599	MG/KG	U		
Vanadium	0.60	MG/KG	U		
	20.0	MG/KG		_	
Zinc	102	MG/KG		J	

Data Qualifiers:

ODA-SS-013D-1220-SO 0.0-0.3 FT Field Sample Type: Field Duplicate

Collected: 11/19/97

Metals	Result	Units	Quali Lab	fiers Data
Aluminum	13000	MG/KG		
Antimony	0.59	MG/KG	U	UJ
Arsenic	11.7	MG/KG		
Barium	48.6	MG/KG		
Beryllium	0.59	MG/KG	U	
Cadmium	0,59	MG/KG	U	
Calcium	2010	MG/KG		
Chromium	17.3	MG/KG		
Cobalt	17.8	MG/KG	U	
Copper	30.4	MG/KG		
Iron	22200	MG/KG		
Lead	13.6	MG/KG		
Magnesium	2870	MG/KG		
Manganese	185	MG/KG		
Mercury	0.12	MG/KG	U	UJ
Nickel	15.5	MG/KG		
Potassium	1200	MG/KG		
Selenium	0.59	MG/KG	U	
Silver	1.2	MG/KG	U	
Sodium	592	MG/KG	U	
Thallium	0.59	MG/KG	U	
Vanadium	25.8	MG/KG		
Zinc	62.5	MG/KG		J

Data Qualifiers:

Station: SS14

ODA-SS-014-1014-SO

0.0-0.3 FT Field Sample Type: Composite - Surface Soil

Collected: 11/19/97

Metals	Result	Units	Quali Lab	ifiers Data
Aluminum	10600	MG/KG		
Antimony	0.60	MG/KG	U	IJ
Arsenic	16.0	MG/KG	-	
Barium	72.5	MG/KG		
Beryllium	0.60	MG/KG	U	
Cadmium	1.4	MG/KG	-	
Calcium	4640	MG/KG		J
Chromium	17.3	MG/KG		-
Cobalt	18.1	MG/KG	U	
Copper	127	MG/KG		J
Iron	24800	MG/KG		
Lead	29,4	MG/KG		J
Magnesium	3740	MG/KG		
Manganese	383	MG/KG		
Mercury	0.12	MG/KG	U	
Nickel	24.6	MG/KG		
Potassium	1980	MG/KG		
Selenium	0.60	MG/KG	U	
Silver	1.2	MG/KG	Ū	
Sodium	604	MG/KG	Ū	
Thallium	0.60	MG/KG	Ŭ	
Vanadium	19.8	MG/KG	-	
Zinc	190	MG/KG	MBB	J

Data Qualifiers:

ODA-SS-014D-1221-SO 0.0-0.3 FT Field Sample Type: Field Duplicate

Collected: 11/19/97

Metals	Result	Units	Quali Lab	fiers Data
Aluminum	12000	MG/KG		Data
Antimony	0.60	MG/KG	U	IJ
Arsenic	15.7	MG/KG	0	0.
Barium	552	MG/KG		
Beryllium	0.60	MG/KG	U	
Cadmium	0.79	MG/KG	0	
Calcium	3860	MG/KG		J
Chromium	19.0	MG/KG		-
Cobalt	17.9	MG/KG	U	
Copper	96.3	MG/KG	-	J
Iron	25200	MG/KG		·
Lead	23200	MG/KG		J
Magnesium	3770	MG/KG		·
Manganese	353	MG/KG		
Mercury	0.14	MG/KG		
Nickel	26.0	MG/KG		
Potassium	2020	MG/KG		
Selenium	0.60	MG/KG	U	
Silver	1.2	MG/KG	Ū	
Sodium	598	MG/KG	Ū	
Thallium	0,60	MG/KG	Ŭ	
Vanadium	21.7	MG/KG	Ť	
Zinc	126	MG/KG	MBB	J

Data Qualifiers:

ODA-SS-015-1015-SO 0.0-0.3 FT Field Sample Type: Composite - Surface Soil

Collected: 11/23/97

Explosives	Result	Units	Quali	
1,3,5-Trinitrobenzene			<u>Lab</u>	<u>Data</u>
1,3-Dinitrobenzene	0.25	MG/KG	U	
2,4,6-Trinitrotoluene	0.25	MG/KG	U	
2,4-Dinitrotoluene	0.25	MG/KG	U	
2,6-Dinitrotoluene	0.25	MG/KG	U	
2-Nitrotoluene	0.25	MG/KG	U	
3-Nitrotoluene	0.25	MG/KG	U	
4-Nitrotoluene	0.25	MG/KG	U	
HMX	0.25	MG/KG	U	
Nitrobenzene	0.50	MG/KG	U	
	0.25	MG/KG	U	
Nitrocellulose (as N)	2.4	MG/KG	U	UJ
Nitroglycerin	2.5	MG/KG	U	
Nitroguanidine	0.25	MG/KG	U	UJ
RDX	0.50	MG/KG	U	
Tetryl	0.65	MG/KG	U	
Metals	-		Qualifiers	
	Result	Units	Lab	Data
Aluminum	6660	MG/KG		
Antimony	0.60	MG/KG	U	UJ
Arsenic	12.9	MG/KG		
Barium	73.3	MG/KG		
Beryllium	0,60	MG/KG	U	
Cadmium	0.82	MG/KG		
Calcium	10100	MG/KG		
Chromium	13.1	MG/KG		
Cobalt	18.1	MG/KG	U	
Copper	78.5	MG/KG	-	
Iron	21500	MG/KG	MBB	
Lead	24.9	MG/KG		
Magnesium	2510	MG/KG		
Manganese	379	MG/KG		
Mercury	0.12	MG/KG	U	
Nickel	20.4	MG/KG	Ũ	
Potassium	1170	MG/KG		
Selenium	0.60	MG/KG	U	
Silver	1.2		U	
Sodium		MG/KG		
Fhallium	602	MG/KG	U	
Vanadium	0.60	MG/KG	U	
	12.7	MG/KG		
Zinc	164	MG/KG		

Data Qualifiers:

Station: SS16

ODA-SS-016-1016-SO Field Sample Type: Composite - Surface Soil 0.0-0.3 FT

Collected: 11/23/97

			Quali	Qualifiers	
Metals	Result	Units	Lab	Data	
Aluminum	12600	MG/KG			
Antimony	0,57	MG/KG	U	UJ	
Arsenic	15.6	MG/KG			
Barium	62.9	MG/KG			
Beryllium	0.61	MG/KG			
Cadmium	0.57	MG/KG	U		
Calcium	79900	MG/KG			
Chromium	17.0	MG/KG			
Cobalt	17.2	MG/KG	U		
Copper	391	MG/KG			
Iron	16500	MG/KG	MBB		
Lead	39.1	MG/KG			
Magnesium	3740	MG/KG			
Manganese	460	MG/KG			
Mercury	0.11	MG/KG	U		
Nickel	17.4	MG/KG			
Potassium	1560	MG/KG			
Selenium	0.57	MG/KG	U		
Silver	1.1	MG/KG	U		
Sodium	574	MG/KG	U		
Thallium	0.57	MG/KG	U		
Vanadium	14.2	MG/KG			
Zinc	77.9	MG/KG			

Data Qualifiers:

Station: 551/

ODA-SS-017-1017-SO

0.0-0.3 FT Field Sample Type: Composite - Surface Soil

Collected: 11/19/97

Explosives	Result	Units	_	ifiers Dete
1,3,5-Trinitrobenzene	0.25	MG/KG	Lab_ U	Data
1,3-Dinitrobenzene	0.25	MG/KG	U	
2,4,6-Trinitrotoluene	0.25	MG/KG	U	
2,4-Dinitrotoluene	0.25	MG/KG MG/KG	U U	
2,6-Dinitrotoluene	0.25	MG/KG	U U	
2-Nitrotoluene	0.25	MG/KG	U	
3-Nitrotoluene	0.25	MG/KG	U	
4-Nitrotoluene	0.25		U	
HMX	0.23	MG/KG		
Nitrobenzene		MG/KG	U	
Nitrocellulose (as N)	0.25	MG/KG	U	•
Nitroglycerin	2.8	MG/KG		J
Nitroguanidine	2.5	MG/KG	U	
RDX	0.25	MG/KG	U	UJ
Tetryl	0.50	MG/KG	U	
renyi	0.65	MG/KG	U	
Metals	Result	Units	Quali	
Aluminum			<u>Lab</u>	Data
Antimony	7900	MG/KG	••	
Arsenic	0.59	MG/KG	U	UJ
Barium	14.3	MG/KG		
Beryllium	72.8	MG/KG	••	
Cadmium	0.59	MG/KG	U	
Calcium	1.5	MG/KG		
	5160	MG/KG		J
Chromium	13.8	MG/KG		
Cobalt	17.7	MG/KG	U	
Copper	136	MG/KG		J
ron	. 21300	MG/KG		
Lead	27.7	MG/KG		. J
Agnesium	3280	MG/KG		
Aanganese	344	MG/KG		
Mercury	0.33	MG/KG		
lickel	21.5	MG/KG		
otassium	1310	MG/KG		
elenium	0.59	MG/KG	U	
ilver	1.2	MG/KG	U	
odium	591	MG/KG	U	
	591 0,59	MG/KG MG/KG	U U	
odium	591 0.59 14.7	MG/KG MG/KG MG/KG	U U	

Data Qualifiers:

Station: SS18

ODA-SS-018-1018-SO 0.0-0.3 FT Field Sample Type: Composite - Surface Soil

Collected: 11/23/97

A 1	11800		Lab	Data
Aluminum	11000	MG/KG		
Antimony	0.61	MG/KG	U	UJ
Arsenic	14.3	MG/KG		
Barium	74.5	MG/KG		
Beryllium	0.61	MG/KG	U	
Cadmium	0.76	MG/KG		
Calcium	3810	MG/KG		
Chromium	17.9	MG/KG		
Cobalt	18.2	MG/KG	U	
Copper	76.1	MG/KG		
Iron	23100	MG/KG		
Lead	20.9	MG/KG		
Magnesium	3760	MG/KG		
Manganese	339	MG/KG		
Mercury	0.12	MG/KG	U	
Nickel	24.5	MG/KG		
Potassium	2400	MG/KG		
Selenium	0.61	MG/KG	U	
Silver	1.2	MG/KG	U	
Sodium	605	MG/KG	U	
Thallium	0.61	MG/KG	U	
Vanadium	21.0	MG/KG		
Zinc	137	MG/KG		

Data Qualifiers:

Station: SS19

,

.

ODA-SS-019-1019-SO

0.0-0.3 FT Field Sample Type: Composite - Surface Soil

Collected: 11/19/97

Explosives	Result	Units	Quali _Lab	fiers Data
1,3,5-Trinitrobenzene	0.25	MG/KG	U	Dala
1,3-Dinitrobenzene	0.25	MG/KG	U	
2,4,6-Trinitrotoluene	0.25	MG/KG	U	
2,4-Dinitrotoluene	0.25	MG/KG	U	
2,6-Dinitrotoluene	0.25	MG/KG	U	
2-Nitrotoluene	0.25	MG/KG	U	
3-Nitrotoluene	0.25	MG/KG	U	
4-Nitrotoluene	0.25	MG/KG	U	
HMX	0.25	MG/KG MG/KG	U	
Nitrobenzene	0.30	MG/KG MG/KG	U	
Nitrocellulose (as N)	2.1	MG/KG	U	UJ
Nitroglycerin	2.1	MG/KG	U	01
Nitroguanidine	0.25		U	
RDX	0.23	MG/KG MG/KG	U	UJ
Tetryi	0.50	MG/KG	U	
	0.05	MO/KO	U	
Metals	Result	Units	Qualif Lab	
Aluminum	10100		Lav	Data
Antimony	10100	MG/KG		
Arsenic	0.58	MG/KG	U	UJ
Barium	16.5	MG/KG		
Beryllium	80.9	MG/KG		
Cadmium	0.58	MG/KG	U	
Calcium	1.3	MG/KG		*
Chromium	4870	MG/KG		J
Cobalt	17.2	MG/KG		
Copper	17.4	MG/KG	U	_
iron	167	MG/KG		J
Lead	23600	MG/KG		_
	24.0	MG/KG		J
Magnesium	3690	MG/KG		
Manganese	342	MG/KG		
Mercury	0.17	MG/KG		
	24.0	MG/KG		
Potassium	1660	MG/KG		
Selenium	0.58	MG/KG	U	
Silver	1.2	MG/KG	U	
Sodium	579	MG/KG	U	
Thallium	0.58	MG/KG	U	
· · ·		10000		
/anadium /inc	18.0	MG/KG		

Data Qualifiers:

Station: SS20

ODA-SS-020-1020-SO 0.0-0.3 FT Field Sample Type: Composite - Surface Soil

Collected: 11/23/97

Metals	Result	Units	Quali Lab	fiers Data
Aluminum	7580	MG/KG		
Antimony	0.59	MG/KG	U	UJ
Arsenic	11.0	MG/KG		
Barium	66.4	MG/KG		
Beryllium	0.59	MG/KG	U	
Cadmium	1.0	MG/KG		
Calcium	22800	MG/KG		
Chromium	11.7	MG/KG		
Cobalt	17.7	MG/KG	U	
Соррег	129	MG/KG		J
Iron	16900	MG/KG		
Lead	22.5	MG/KG		
Magnesium	2920	MG/KG		
Manganese	371	MG/KG		
Mercury	0.12	MG/KG	U	
Nickel	17.0	MG/KG		
Potassium	1400	MG/KG		
Selenium	0.59	MG/KG	U	
Silver	1.2	MG/KG	U	
Sodium	591	MG/KG	U	
Thallium	0.59	MG/KG	U	
Vanadium	12.8	MG/KG		
Zinc	181	MG/KG		

Data Qualifiers:

ODA-SS-021-1021-SO

0.0-0.3 FT Field Sample Type: Composite - Surface Soil

Collected: 11/23/97

Metals	Result	Units	Quali	
Aluminum			Lab	Data
	8510	MG/KG		
Antimony	0.69	MG/KG	U	UJ
Arsenic	13.0	MG/KG		
Barium	127	MG/KG		
Beryllium	0.69	MG/KG	U	
Cadmium	1.8	MG/KG		
Calcium	8000	MG/KG		
Chromium	19.3	MG/KG		
Cobalt	20.8	MG/KG	U	
Copper	126	MG/KG		J
Iron	24300	MG/KG		-
Lead	29.5	MG/KG		
Magnesium	3490	MG/KG		
Manganese	455	MG/KG		
Mercury	0.16	MG/KG		
Nickel	18.7	MG/KG		
Potassium	1680	MG/KG		
Selenium	0.69	MG/KG	U	
Silver	1.4	MG/KG	U	
Sodium				
Fhallium	693	MG/KG	U	
Vanadium	0.69	MG/KG	U	
	14.2	MG/KG		
Zinc	215	MG/KG		

Data Qualifiers:

Station: SS22

ODA-SS-022-1022-SO 0.0-0.3 FT Field Sample Type: Composite - Surface Soil

Collected: 11/19/97

Metals	Result	Units	Qualifiers Lab Data
Aluminum	9880	MG/KG	
Antimony	0.59	MG/KG	U
Arsenic	15.7	MG/KG	
Barium	202	MG/KG	
Beryllium	0.59	MG/KG	U
Cadmium	1.7	MG/KG	
Calcium	6000	MG/KG	
Chromium	17.9	MG/KG	
Cobalt	17.6	MG/KG	U
Copper	167	MG/KG	
Iron	22600	MG/KG	
Lead	35.0	MG/KG	
Magnesium	3470	MG/KG	
Manganese	365	MG/KG	
Mercury	0.15	MG/KG	
Nickel	22.6	MG/KG	
Potassium	1880	MG/KG	
Selenium	0.59	MG/KG	U
Silver	1.2	MG/KG	U
Sodium	587	MG/KG	U
Thallium	0.59	MG/KG	U
Vanadium	17.9	MG/KG	
Zinc	260	MG/KG	MBB

Data Qualifiers:

ODA-SS-023-1023-SO

.'

0.0-0.3 FT Field Sample Type: Composite - Surface Soil

Collected: 11/23/97

Metals	Result	Units	Quali	
Aluminum	9920		<u>Lab</u>	Data
Antimony	0.58	MG/KG MG/KG	U	TTT
Arsenic	16.4	MG/KG MG/KG	U	UJ
Barium	43.6	MG/KG		
Beryllium	0.58	MG/KG MG/KG	U	
Cadmium	0.58	MG/KG MG/KG	U U	
Calcium	1750	MG/KG	U	
Chromium	15.8	MG/KG MG/KG		
Cobalt	15.8	MG/KG MG/KG	U	
Copper	22.4	MG/KG MG/KG	U	J
Iron	23800	MG/KG MG/KG		3
Lead	12.5	MG/KG MG/KG		
Magnesium	2780	MG/KG		
Manganese	363	MG/KG MG/KG		
Mercury	0.12		U	
Nickel	22.4	MG/KG	U	
Potassium	22.4	MG/KG MG/KG		
Selenium			TT	
Silver	0.58	MG/KG	U	
Sodium	1.2	MG/KG	U	
Thallium	581	MG/KG	U	
Vanadium	0.58	MG/KG	U	
Zinc	18.4	MG/KG		
	72.6	MG/KG		

Data Qualifiers:

Station: SS24

ODA-SS-024-1024-SO 0.0-0.3 FT Field Sample Type: Composite - Surface Soil

Collected: 11/23/97

	- .	TT •.	Quali	fiers
Explosives	Result	Units	Lab	Data
1,3,5-Trinitrobenzene	0.25	MG/KG	U	
,3-Dinitrobenzene	0.25	MG/KG	U	
,4,6-Trinitrotoluene	0.25	MG/KG	U	
,4-Dinitrotoluene	0.25	MG/KG	U	
,6-Dinitrotoluene	0.25	MG/KG	U	
-Nitrotoluene	0.25	MG/KG	U	
-Nitrotoluene	0.25	MG/KG	U	
-Nitrotoluene	0.25	MG/KG	U	
MX	0.50	MG/KG	U	
litrobenzene	0.25	MG/KG	U	
litrocellulose (as N)	2.3	MG/KG		UJ
litroglycerin	2.5	MG/KG	U	
litroguanidine	0.25	MG/KG	U	J
DX	0.50	MG/KG	U	
`etryl	0.65	MG/KG	U	
			Quali	fiers
fletals	Result	Units	_Lab	Data
luminum	10200	MG/KG		
Antimony	0.62	MG/KG		J
Arsenic	15.3	MG/KG		
arium	117	MG/KG		
Beryllium	0.61	MG/KG	U	
Cadmium	1.4	MG/KG		
Calcium	6590	MG/KG		
Chromium	15.9	MG/KG		
Cobalt	18.2	MG/KG	U	,
Copper	102	MG/KG		
ron	28000	MG/KG	MBB	
lead	28.9	MG/KG		
Magnesium	3630	MG/KG		
Manganese	417	MG/KG		
Vercury	0.17	MG/KG		
Nickel	22.4	MG/KG		
Potassium	1980	MG/KG		
Selenium	0.61	MG/KG	U	
Silver	1.2	MG/KG	Ū	
Sodium	608	MG/KG	Ū	
Thallium	0.61	MG/KG	Ū	
Vanadium	17.9	MG/KG	-	
	190	MG/KG		
Zinc	190	IVIQ/XU		

Data Qualifiers:

ODA-SS-025-1025-SO

0.0-0.3 FT Field Sample Type: Composite - Surface Soil

Collected: 11/23/97

Metals	Result	Units	Quali	
Aluminum	12100		<u>Lab</u>	<u>Data</u>
Antimony	12100 0.60	MG/KG	* 7	
Arsenic		MG/KG	U	UJ
Barium	9.5 106	MG/KG		
Beryllium		MG/KG		
Cadmium	2.9	MG/KG		
Calcium	0.87	MG/KG		
Chromium	57500	MG/KG		
Cobalt	11.5	MG/KG		
Copper	18.0	MG/KG	U	
Iron	. 62.8	MG/KG		J
Lead	15100	MG/KG		
	17.8	MG/KG		
Magnesium	11200	MG/KG		
Manganese	788	MG/KG		
Mercury	0.12	MG/KG	U	
Nickel	14.6	MG/KG		
Potassium	1850	MG/KG		
Selenium	0.60	MG/KG	U	
Silver	1.2	MG/KG	U	
Sodium	600	MG/KG	Ū	
Thallium	0.60	MG/KG	Ŭ	
Vanadium	13.8	MG/KG	0	
Zinc	100	MG/KG		

Data Qualifiers:

ODA-SS-026-1026-SO

0.0-0.3 FT Field Sample Type: Composite - Surface Soil

Collected: 11/23/97

Explosives	D	Units	Quali	fiers
Explosives	Result		Lab	Data
1,3,5-Trinitrobenzene	0.25	MG/KG	U	
1,3-Dinitrobenzene	0.25	MG/KG	U	
2,4,6-Trinitrotoluene	0.25	MG/KG	U	
2,4-Dinitrotoluene	0.25	MG/KG	U	
2,6-Dinitrotoluene	0.25	MG/KG	U	
2-Nitrotoluene	0.25	MG/KG	U	
3-Nitrotoluene	0.25	MG/KG	U	
4-Nitrotoluene	0.25	MG/KG	U	
HMX	0.50	MG/KG	U	
Nitrobenzene	0.25	MG/KG	U	
Nitrocellulose (as N)	19.9	MG/KG		UJ
Nitroglycerin	2,5	MG/KG	U	
Nitroguanidine	0.25	MG/KG	U	J
RDX	0.50	MG/KG	U	
Tetryl	0.65	MG/KG	U	
			Quali	fiers
Metals	Result	Units	Lab	<u>Data</u>
Aluminum	7310	MG/KG		
Antimony	0.88	MG/KG		J
Arsenic	15.0	MG/KG		
Barium	142	MG/KG		
Beryllium	0.78	MG/KG	U	
Cadmium	1.2	MG/KG		
Calcium	8070	MG/KG		
Chromium	20.9	MG/KG		
Cobalt	23.4	MG/KG	U	
Copper	118	MG/KG		
Iron	29000	MG/KG	MBB	
Lead	35.4	MG/KG		
Magnesium	3440	MG/KG		
Manganese	504	MG/KG		
Mercury	0.16	MG/KG	U	
Nickel	26.1	MG/KG		
Potassium	1340	MG/KG		
Selenium	0.78	MG/KG	U	
Silver	1.6	MG/KG	U	
Sodium	781	MG/KG	Ŭ	
Thallium	0.78	MG/KG	Ŭ	
	14.1	MG/KG		
Vanadium		MG/KG		
Zinc	246	WU/KU		

Data Qualifiers:

ODA-SS-027-1027-SO 0.0-0.3 FT Field Sample Type: Composite - Surface Soil

Collected: 11/23/97

Explosives	Result	Units	Quali Lab	ifiers Data
1,3,5-Trinitrobenzene	0.25	MG/KG	<u></u> U	Data
1,3-Dinitrobenzene	0.25	MG/KG	Ŭ	
2,4,6-Trinitrotoluene	0.25	MG/KG	Ŭ	
2,4-Dinitrotoluene	0.25	MG/KG	Ŭ	
2,6-Dinitrotoluene	0.25	MG/KG	Ŭ	
2-Nitrotoluene	0.25	MG/KG	Ŭ	
3-Nitrotoluene	0.25	MG/KG	Ŭ	
4-Nitrotoluene	0.25	MG/KG	Ŭ	
HMX	0.50	MG/KG	Ŭ	
Nitrobenzene	0.25	MG/KG	Ŭ	
Nitrocellulose (as N)	4.6	MG/KG	Ū	UJ
Nitroglycerin	2.5	MG/KG	U	0,
Nitroguanidine	0.25	MG/KG	U	J
RDX	0.50	MG/KG	U	J
Tetryl	0.65	MG/KG	U U	
5	0.05	MO/KO	U	
Metals	Descrit		Qualif	fiers
	Result	Units	Lab	Data
Aluminum	8650	MG/KG		
Antimony	0.67	MG/KG	U	UJ
Arsenic	12.9	MG/KG		
Barium	99.5	MG/KG		
Beryllium	0.67	MG/KG	U	
Cadmium	1.4	MG/KG	_	
Calcium	3840	MG/KG		
Chromium	14.0	MG/KG		
Cobalt	20.0	MG/KG	U	
Copper	85.5	MG/KG	-	
Iron	20000	MG/KG	MBB	
Lead	33.9	MG/KG		
Magnesium	3340	MG/KG		
Manganese	319	MG/KG		
Mercury	0.13	MG/KG	U	
Nickel	20.2	MG/KG	U	
Potassium	1770	MG/KG		
Selenium	0.67	MG/KG	U	
Silver	1.3	MG/KG	U U	
Sodium	668	MG/KG	U	
Fhallium				
Vanadium	0.67	MG/KG	U	
Zinc	15.7	MG/KG		
	157	MG/KG		

Data Qualifiers:

ODA-SS-028-1028-SO 0.0-0.3 FT Field Sample Type: Composite - Surface Soil

Collected: 11/23/97

_Lab U U U U U U U U U U U U U U U U U U U	Data UJ J ifiers Data UJ
U U U U U U U U U U U U U U U U U U U	J ifiers Data
U U U U U U U U U U U U U U U U U U Lab	J ifiers Data
U U U U U U U U U U U U U U U U Lab	J ifiers Data
U U U U U U U U U U U U U U Lab	J ifiers Data
U U U U U U U U U U U Lab	J ifiers Data
U U U U U U U U Qualit Lab	J ifiers Data
U U U U U U Qualit Lab	J ifiers Data
U U U U U Quali Lab	J ifiers Data
U U U U Quali Lab	J ifiers Data
U U U Quali Lab	J ifiers Data
U U U Quali Lab	J ifiers Data
U U U Quali Lab	fiers Data
U U Quali Lab	fiers Data
U Quali Lab	<u>Data</u>
Quali Lab	<u>Data</u>
Lab	<u>Data</u>
U	IJ
U	UJ
U	
U	
MBB	
U	
U	
£ 1	
0	
	บ บ บ บ บ

Data Qualifiers:

ODA-SS-029-1029-SO

0.0-0.3 FT Field Sample Type: Composite - Surface Soil

Collected: 11/23/97

Metals	Result	Units	Qualii Lab	fiers Data
Aluminum	8770	MG/KG		
Antimony	0.61	MG/KG	U	IJ
Arsenic	14.1	MG/KG	- -	0.
Barium	. 77.6	MG/KG		
Beryllium	0.61	MG/KG	U	
Cadmium	1.2	MG/KG	-	
Calcium	3730	MG/KG		
Chromium	14.8	MG/KG		
Cobalt	18.2	MG/KG	U	
Copper	102	MG/KG	-	J
Iron	21000	MG/KG		•
Lead	22.3	MG/KG		
Magnesium	3210	MG/KG		
Manganese	342	MG/KG		
Mercury	0.12	MG/KG	U	
Nickel	21.2	MG/KG	Ū	
otassium	1520	MG/KG		
Selenium	0.61	MG/KG	U	
Silver	1.2	MG/KG	Ŭ	
Sodium	606	MG/KG	Ŭ	
Thallium	0.61	MG/KG	Ŭ	
Janadium	15.7	MG/KG	v	
linc	149	MG/KG		

Data Qualifiers:

Station: SS30

Field Sample Type: Composite - Surface Soil ODA-SS-030-1030-SO 0.0-0.3 FT

Collected: 11/23/97

Metals	Result	Units	Quali Lab	fiers Data
Aluminum	10600	MG/KG		
Antimony	0.65	MG/KG	U	UJ
Arsenic	14.4	MG/KG		
Barium	87.9	MG/KG		
Beryllium	0.65	MG/KG	U	
Cadmium	1.5	MG/KG		
Calcium	3610	MG/KG		
Chromium	17.3	MG/KG		
Cobalt	19.5	MG/KG	U	
Copper	98.7	MG/KG		J
Iron	23300	MG/KG		
Lead	37.8	MG/KG		
Magnesium	3390	MG/KG		
Manganese	380	MG/KG		
Mercury	0.18	MG/KG		
Nickel	22.7	MG/KG		
Potassium	2450	MG/KG		
Selenium	0.65	MG/KG	U	
Silver	1.3	MG/KG	U	
Sodium	651	MG/KG	U	
Thallium	0.65	MG/KG	U	
Vanadium	18.5	MG/KG		
Zinc	171	MG/KG		

Data Qualifiers:

ODA-SS-031-1031-SO

0.0-0.3 FT Field Sample Type: Composite - Surface Soil

Collected: 11/23/97

Metals	Result	Units	Quali Lab	fiers Data
Aluminum	11300	MG/KG		
Antimony	0.67	MG/KG		J
Arsenic	14.7	MG/KG		
Barium	106	MG/KG		
Beryllium	1.0	MG/KG		
Cadmium	1.5	MG/KG		
Calcium	15000	MG/KG		
Chromium	14.7	MG/KG		
Cobalt	18.5	MG/KG	U	
Copper	107	MG/KG		J
Iron	22000	MG/KG		
Lead	90.2	MG/KG		
Magnesium	5300	MG/KG		
Manganese	422	MG/KG		
Mercury	0.12	MG/KG	U	
Nickel	20.4	MG/KG		
Potassium	1930	MG/KG		
Selenium	0.62	MG/KG	U	
Silver	1.2	MG/KG	U	
Sodium	615	MG/KG	U	
Thallium	0.62	MG/KG	U	
Vanadium	16.2	MG/KG		
Zinc	269	MG/KG		

Data Qualifiers:

ODA-SS-032-1032-SO

0.0-0.3 FT Field Sample Type: Composite - Surface Soil

Collected: 11/23/97

Explosives	Result	Units	Quali Lab	fiers Data
1,3,5-Trinitrobenzene	0.25	MG/KG	U	
1,3-Dinitrobenzene	0.25	MG/KG	U	
2,4,6-Trinitrotoluene	0.25	MG/KG	U	
2,4-Dinitrotoluene	0.25	MG/KG	U	
2,6-Dinitrotoluene	0.25	MG/KG	U	
2-Nitrotoluene	0.25	MG/KG	U	
3-Nitrotoluene	0.25	MG/KG	U	
4-Nitrotoluene	0.25	MG/KG	U	
HMX	0.50	MG/KG	U	
Nitrobenzene	0.25	MG/KG	U	
Nitrocellulose (as N)	6.8	MG/KG		UJ
Nitroglycerin	2.5	MG/KG	U	
Nitroguanidine	0.25	MG/KG	U	J
RDX	0.50	MG/KG	U	
Tetryl	0.65	MG/KG	U	
			Quali	fiers
Metals	Result	Units	Lab	Data
Aluminum	9470	MG/KG		
Antimony	0.79	MG/KG		J
Arsenic	19.1	MG/KG		
Barium	94.6	MG/KG		
Beryllium	0.66	MG/KG	U	
Cadmium	1.9	MG/KG		
Calcium	4470	MG/KG		
Chromium	25.5	MG/KG		
Cobalt	19.9	MG/KG	U	
Copper	203	MG/KG		
Iron	36300	MG/KG	MBB	
Lead	35.1	MG/KG		
Magnesium	2880.	MG/KG		
Manganese	432	MG/KG		
Mercury	0.13	MG/KG	U	
Nickel	33.1	MG/KG		
Potassium	2280	MG/KG		
Selenium	0.66	MG/KG	U	
Silver	1.3	MG/KG	U	
Sodium	663	MG/KG	U	
Thallium	0.66	MG/KG	U	
Vanadium	17.2	MG/KG		
·	197	MG/KG		

Data Qualifiers:

Location: Pesticides Building

Station: SB09

PB-SB-009-1164-SO

2.0-4.0 FT Field Sample Type: Composite - Subsurface Soil

Collected: 11/22/97

Pesticides and/or PCBs	Result	Units	Qualifiers Lab Data
2,4,5 - T	24	UG/KG	U
2,4,5-TP (Silvex)	24	UG/KG	U
2,4-D	95	UG/KG	U
4,4'-DDD	3.9	UG/KG	U
4,4'-DDE	3.9	UG/KG	U
4,4' - DDT	3.9	UG/KG	U
Aldrin	2.0	UG/KG	U
Aroclor 1016	20	UG/KG	U
Aroclor 1221	20	UG/KG	U
Aroclor 1232	20	UG/KG	U
Aroclor 1242	20	UG/KG	U
Aroclor 1248	20	UG/KG	U
Aroclor 1254	39	UG/KG	U
Aroclor 1260	39	UG/KG	U
Dieldrin	3.9	UG/KG	U
Endosulfan I	2.0	UG/KG	U
Endosulfan II	3.9	UG/KG	U
Endosulfan sulfate	3.9	UG/KG	U
Endrin	3.9	UG/KG	U
Endrin aldehyde	3.9	UG/KG	U
Endrin ketone	3.9	UG/KG	U
Heptachlor	2.0	UG/KG	U
Heptachlor epoxide	2.0	UG/KG	U
Methoxychlor	20	UG/KG	U
Toxaphene	99	UG/KG	U
alpha-BHC	2.0	UG/KG	U
alpha-Chlordane	2.0	UG/KG	U
beta-BHC	2.0	UG/KG	U
delta-BHC	2.0	UG/KG	U
gamma-BHC (Lindane)	2.0	UG/KG	U
gamma-Chlordane	2.0	UG/KG	U

Data Qualifiers:

PB-SB-009-1165-SO

4.0-6.0 FT Field Sample Type: Composite - Subsurface Soil

Collected: 11/22/97

2,4,5-T 2,4,5-TP (Silvex) 2,4-D 4,4'-DDD 4,4'-DDE 4,4'-DDT Aldrin Aroclor 1016 Aroclor 1221 Aroclor 1232 Aroclor 1242 Aroclor 1248 Aroclor 1254	25 25 100 4.2 4.2 4.2 2.2 22 22 22 22	UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG	บ บ บ บ บ บ	
2,4-D 4,4'-DDD 4,4'-DDE 4,4'-DDT Aldrin Aroclor 1016 Aroclor 1221 Aroclor 1232 Aroclor 1242 Aroclor 1248 Aroclor 1254	100 4.2 4.2 4.2 2.2 22 22	UG/KG UG/KG UG/KG UG/KG UG/KG	บ บ บ บ	
4,4'-DDD 4,4'-DDE 4,4'-DDT Aldrin Aroclor 1016 Aroclor 1221 Aroclor 1232 Aroclor 1242 Aroclor 1248 Aroclor 1254	4.2 4.2 4.2 2.2 22 22	UG/KG UG/KG UG/KG UG/KG	ប ប ប	
4,4'-DDE 4,4'-DDT Aldrin Aroclor 1016 Aroclor 1221 Aroclor 1232 Aroclor 1242 Aroclor 1248 Aroclor 1254	4.2 4.2 2.2 22 22	UG/KG UG/KG UG/KG	U U	
4,4'-DDT Aldrin Aroclor 1016 Aroclor 1221 Aroclor 1232 Aroclor 1242 Aroclor 1248 Aroclor 1254	4.2 2.2 22 22	UG/KG UG/KG	U	
Aldrin Aroclor 1016 Aroclor 1221 Aroclor 1232 Aroclor 1242 Aroclor 1248 Aroclor 1254	2.2 22 22	UG/KG		
Aroclor 1016 Aroclor 1221 Aroclor 1232 Aroclor 1242 Aroclor 1248 Aroclor 1254	22 22		U	
Aroclor 1221 Aroclor 1232 Aroclor 1242 Aroclor 1248 Aroclor 1254	22	UG/KG		
Aroclor 1232 Aroclor 1242 Aroclor 1248 Aroclor 1254			U	
Aroclor 1242 Aroclor 1248 Aroclor 1254	22	UG/KG	U	
Aroclor 1248 Aroclor 1254	<i>L</i> L	UG/KG	U	
Aroclor 1254	. 22	UG/KG	U	
	22	UG/KG	U	
	42	UG/KG	U	
Aroclor 1260	42	UG/KG	U	
Dieldrin	4.2	UG/KG	U	
Endosulfan I	2.2	UG/KG	U	
Endosulfan II	4.2	UG/KG	U	
Endosulfan sulfate	4.2	UG/KG	U	
Endrin	4.2	UG/KG	U	
Endrin aldehyde	4.2	UG/KG	U	
Endrin ketone	4.2	UG/KG	U	
Heptachlor	2.2	UG/KG	U	
Heptachlor epoxide	2.2	UG/KG	U	
Methoxychlor	22	UG/KG	U	
Toxaphene	110	UG/KG	U	
alpha-BHC	2.2	UG/KG	U	
alpha-Chlordane	2.2	UG/KG	U	
beta-BHC	2.2	UG/KG	U	
delta-BHC	2.2	UG/KG	U	
gamma-BHC (Lindane)	2.2	UG/KG	U	
gamma-Chlordane		UG/KG		

Data Qualifiers:

Location: Pesticides Building

Station: SB09

PB-SB-009-1166-SO

6.0-8.0 FT Field Sample Type: Composite - Subsurface Soil

Collected: 11/22/97

Pesticides and/or PCBs	Result	Units	Quali Lab	fiers Data
2,4,5-T	24	UG/KG	<u> </u>	
2,4,5-TP (Silvex)	24	UG/KG	U	
2,4-D	96	UG/KG	U	
4,4'-DDD	4.0	UG/KG	U	
4,4'-DDE	4.0	UG/KG	U	
4,4' - DDT	4.0	UG/KG	U	
Aldrin	2.0	UG/KG	U	
Aroclor 1016	20	UG/KG	U	
Aroclor 1221	20	UG/KG	U	
Aroclor 1232	20	UG/KG	U	
Aroclor 1242	20	UG/KG	U	
Aroclor 1248	20	UG/KG	U	
Aroclor 1254	40	UG/KG	U	
Aroclor 1260	40	UG/KG	U	
Dieldrin	4.0	UG/KG	U	
Endosulfan I	2.0	UG/KG	U	
Endosulfan II	4.0	UG/KG	U	
Endosulfan sulfate	4.0	UG/KG	U	
Endrin	4.0	UG/KG	U	
Endrin aldehyde	4.0	UG/KG	U	
Endrin ketone	4.0	UG/KG	U	
Heptachlor	2.0	UG/KG	U	
Heptachlor epoxide	2.0	UG/KG	U	
Methoxychlor	20	UG/KG	U	
Toxaphene	100	UG/KG	U	
alpha-BHC	2.0	UG/KG	U	
alpha-Chlordane	2.0	UG/KG	Ū	
beta-BHC	2.0	UG/KG	Ū	
delta-BHC	2.0	UG/KG	Ū	
gamma-BHC (Lindane)	2.0	UG/KG	Ū	
gamma-Chlordane	2.0	UG/KG	Ū	

Data Qualifiers:

Location: Pesticides Building

Station: SB09

.

PB-SS-001-1163-SO

0.0-2.0 FT Field Sample Type: Composite - Subsurface Soil

Collected: 11/22/97

Pesticides and/or PCBs	Result	Units	Quali Lab	fiers Data
2,4,5-T	23	UG/KG	U	
2,4,5-TP (Silvex)	23	UG/KG	U	
2,4-D	93	UG/KG	U	
4,4'-DDD	3.8	UG/KG	U	
4,4'-DDE	3.8	UG/KG	U	
4,4'-DDT	3.8	UG/KG	U	
Aldrin	2.0	UG/KG	U	
Aroclor 1016	20	UG/KG	U	
Aroclor 1221	20	UG/KG	U	
Aroclor 1232	20	UG/KG	U	
Aroclor 1242	20	UG/KG	U	
Aroclor 1248	20	UG/KG	U	
Aroclor 1254	38	UG/KG	U	
Aroclor 1260	38	UG/KG	U	
Dieldrin	3.8	UG/KG	U	
Endosulfan I	2.0	U G/KG	U	
Endosulfan II	3.8	UG/KG	U	
Endosulfan sulfate	3.8	UG/KG	U	
Endrin	3.8	UG/KG	U	
Endrin aldehyde	3.8	UG/KG	U	
Endrin ketone	3.8	UG/KG	U	
Heptachlor	2.0	UG/KG	U	
Heptachlor epoxide	2.0	UG/KG	U	
Methoxychlor	20	UG/KG	U	
Toxaphene	96	UG/KG	U	
alpha-BHC	2.0	UG/KG	U	
alpha-Chlordane	2.0	UG/KG	U	
beta-BHC	2.0	UG/KG	U	
delta-BHC	2.0	UG/KG	U	
gamma-BHC (Lindane)	2.0	UG/KG	U	
gamma-Chlordane	2.0	UG/KG	U	

Data Qualifiers:

PB-SB-013-1169-SO

1.0-2.0 FT Field Sample Type: Split Sample

Collected: 11/22/97

Pesticides and/or PCBs	Result	Units	Qualif Lab	ïers Data
2,4,5-T	22	UG/KG	U	
2,4,5-TP (Silvex)	22	UG/KG	U	
2,4-D	88	UG/KG	U	
4,4'-DDD	36	UG/KG	U	
4,4'-DDE	36	UG/KG	U	
4,4'-DDT	36	UG/KG	U	
Aldrin	19	UG/KG	U	
Aroclor 1016	190	UG/KG	U	
Aroclor 1221	190	UG/KG	U	
Aroclor 1232	190	UG/KG	U	
Aroclor 1242	190	UG/KG	U	
Aroclor 1248	190	UG/KG	U	
Aroclor 1254	360	UG/KG	U	
Aroclor 1260	360	UG/KG	U	
Dieldrin	36	UG/KG	U	
Endosulfan I	19	UG/KG	U	
Endosulfan II	36	UG/KG	U	
Endosulfan sulfate	36	UG/KG	U	
Endrin	36	UG/KG	U	
Endrin aldehyde	36	UG/KG	U	
Endrin ketone	36	UG/KG	U	
Heptachlor	19	UG/KG	U	
Heptachlor epoxide	19	UG/KG	U	
Methoxychlor	190	UG/KG	U	
Toxaphene	910	UG/KG	U	
alpha-BHC	19	UG/KG	U	
alpha-Chlordane	19	UG/KG	U	
beta-BHC	19	UG/KG	U	
delta-BHC	19	UG/KG	U	
gamma-BHC (Lindane)	19	UG/KG	Ū	
gamma-Chlordane	19	UG/KG	Ū	

Data Qualifiers:

.1

PB-SB-015-1173-SO

Field Sample Type: Composite - Subsurface Soil 1.0-2.0 FT

Collected: 11/22/97

Pesticides and/or PCBs	Result	Units	Quali	
resticities and of reds		<u></u>	Lab	Data
2,4,5-T	24	UG/KG	U	
2,4,5-TP (Silvex)	24	UG/KG	U	
2,4-D	94	UG/KG	U	
4,4'-DDD	39	UG/KG	U	
4,4'-DDE	39	UG/KG	U	
4,4 '-DD T	39	UG/KG	U	
Aldrin	20	UG/KG	U	
Aroclor 1016	200	UG/KG	U	
Aroclor 1221	200	U G/KG	U	
Aroclor 1232	200	UG/KG	U	
Aroclor 1242	200	UG/KG	U	
Aroclor 1248	200	UG/KG	U	
Aroclor 1254	390	UG/KG	U	
Aroclor 1260	390	UG/KG	U	
Dieldrin	39	UG/KG	U	
Endosulfan I	20	UG/KG	U	
Endosulfan II	39	UG/KG	U	
Endosulfan sulfate	39	UG/KG	U	
Endrin	39	UG/KG	U	
Endrin aldehyde	39	UG/KG	U	
Endrin ketone	39	UG/KG	U	
Heptachlor	20	UG/KG	U	
Heptachlor epoxide	20	UG/KG	U	
Methoxychlor	200	UG/KG	U	
Toxaphene	980	UG/KG	U	
alpha-BHC	20	UG/KG	U	
alpha-Chlordane	20	UG/KG	U	
beta-BHC	20	UG/KG	U	
delta-BHC	20	UG/KG	U	
gamma-BHC (Lindane)	20	UG/KG	U	
gamma-Chlordane	20	UG/KG	Ŭ	

Data Qualifiers:

PB-SB-016-1175-SO

1.0-2.0 FT Field Sample Type: Composite - Subsurface Soil

Collected: 11/22/97

Pesticides and/or PCBs	Result	Units	Quali Lab	fiers Data
2,4,5-T	24	UG/KG	U	
2,4,5-TP (Silvex)	24	UG/KG	U	
2,4-D	95	UG/KG	U	
4,4'-DDD	3.9	UG/KG	U	
4,4'-DDE	3.9	UG/KG	U	
4,4'-DDT	3.9	UG/KG	U	
Aldrin	2.0	UG/KG	U	
Aroclor 1016	20	UG/KG	U	
Aroclor 1221	20	UG/KG	U	
Aroclor 1232	20	UG/KG	U	
Aroclor 1242	20	UG/KG	U	
Aroclor 1248	20	UG/KG	U	
Aroclor 1254	39	UG/KG	U	
Aroclor 1260	39	UG/KG	U	
Dieldrin	3.9	UG/KG	U	
Endosulfan I	2.0	UG/KG	U	
Endosulfan II	3.9	UG/KG	U	
Endosulfan sulfate	3.9	UG/KG	U	
Endrin	3.9	UG/KG	U	
Endrin aldehyde	3.9	UG/KG	U	
Endrin ketone	3.9	UG/KG	U	
Heptachlor	2.0	UG/KG	U	
Heptachlor epoxide	2.0	UG/KG	U	
Methoxychlor	20	UG/KG	U	
Toxaphene	99	UG/KG	Ū	
alpha-BHC	2.0	UG/KG	Ū	
alpha-Chlordane	2.0	UG/KG	Ū	
beta-BHC	2.0	UG/KG	Ū	
delta-BHC	2.0	UG/KG	Ū	
gamma-BHC (Lindane)	2.0	UG/KG	Ū	
gamma-Chlordane	2.0	UG/KG	Ū	

Data Qualifiers:

PB-SB-017-1177-SO

1.0-2.0 FT Field Sample Type: Composite - Subsurface Soil

Collected: 11/22/97

			Qualifiers	
Pesticides and/or PCBs	Result	Units	<u>Lab</u>	Data
2,4,5-T	24	UG/KG	U	
2,4,5-TP (Silvex)	24	UG/KG	U	
2,4-D	96	UG/KG	U	
4,4'-DDD	. 20	UG/KG	U	
4,4'-DDE	20	UG/KG	U	
4,4'-DDT	20	UG/KG	U	
Aldrin	10	UG/KG	U	
Arocior 1016	100	UG/KG	U	
Aroclor 1221	100	UG/KG	U	
Aroclor 1232	100	UG/KG	U	
Aroclor 1242	100	UG/KG	U	
Aroclor 1248	100	UG/KG	U	
Aroclor 1254	200	UG/KG	U	
Aroclor 1260	200	UG/KG	U	
Dieldrin	20	U G/KG	U	
Endosulfan I	10	UG/KG	U	
Endosulfan II	20	UG/KG	U	
Endosulfan sulfate	20	UG/KG	U	
Endrin	20	UG/KG	U	
Endrin aldehyde	20	UG/KG	U	
Endrin ketone	20	UG/KG	U	
Heptachlor	10	UG/KG	U	
Heptachlor epoxide	10	UG/KG	U	
Methoxychlor	100	UG/KG	U	
Toxaphene	500	UG/KG	U	
alpha-BHC	10	UG/KG	U	
alpha-Chlordane	10	UG/KG	U	
beta-BHC	10	UG/KG	U	
delta-BHC	. 10	UG/KG	U	
gamma-BHC (Lindane)	10	UG/KG	U	
gamma-Chlordane	10	UG/KG	U	

Data Qualifiers:

PB-SB-003-1171-SO

1.0-2.0 FT Field Sample Type: Composite - Subsurface Soil

Collected: 11/24/97

esticides and/or PCBs Result		Units	Quali Lab	fiers Data
2,4,5-T	22	UG/KG	U	
2,4,5-TP (Silvex)	22	UG/KG	U	
2,4 - D	89	UG/KG	U	
4,4'-DDD	18	UG/KG	U	
4,4'-DDE	18	UG/KG	U	
4,4'-DDT	75	UG/KG		J
Aldrin	9.4	UG/KG	U	
Aroclor 1016	94	UG/KG	U	
Aroclor 1221	94	UG/KG	U	
Aroclor 1232	94	UG/KG	U	
Aroclor 1242	94	UG/KG	U	
Aroclor 1248	94	UG/KG	U	
Aroclor 1254	180	UG/KG	U	
Aroclor 1260	180	UG/KG	U	
Dieldrin	18	UG/KG	U	
Endosulfan I	9.4	UG/KG	U	
Endosulfan II	18	UG/KG	U	
Endosulfan sulfate	18	UG/KG	U	
Endrin	18	UG/KG	U	
Endrin aldehyde	18	UG/KG	U	
Endrin ketone	18	UG/KG	U	
Heptachlor	9.4	UG/KG	U	
Heptachlor epoxide	9.4	UG/KG	U	
Methoxychlor	94	UG/KG	U	
Toxaphene	460	UG/KG	U	
alpha-BHC	9.4	UG/KG	U	
alpha-Chlordane	9.4	UG/KG	U	
beta-BHC	9.4	UG/KG	Ū	
delta-BHC	9.4	UG/KG	Ŭ	
gamma-BHC (Lindane)	9.4	UG/KG	Ū	
gamma-Chlordane	9.4	UG/KG	Ū	

Data Qualifiers:

PB-SB-007-1179-SO

1.0-2.0 FT Field Sample Type: Composite - Subsurface Soil

Collected: 11/24/97

Pesticides and/or PCBs	Result	Units	Quali Lab	fiers Data
2,4,5-T	24	UG/KG	U	
2,4,5-TP (Silvex)	24	UG/KG	U	
2,4-D	95	UG/KG	U	
4,4'-DDD	78	U G/K G	U	
4,4'-DDE	78	UG/KG	U	
4,4'-DDT	110	UG/KG		J
Aldrin	40	UG/KG	U	
Aroclor 1016	400	UG/KG	U	
Aroclor 1221	400	UG/KG	U	
Aroclor 1232	400	UG/KG	U	
Aroclor 1242	400	UG/KG	U	
Aroclor 1248	400	UG/KG	U	
Aroclor 1254	780	UG/KG	U	
Aroclor 1260	780	UG/KG	U	
Dieldrin	78	UG/KG	U	
Endosulfan I	40	UG/KG	U	
Endosulfan II	78	UG/KG	U	
Endosulfan sulfate	78	UG/KG	U	
Endrin	78	UG/KG	U	
Endrin aldehyde	78	UG/KG	U	
Endrin ketone	78	UG/KG	U	
Heptachlor	40	UG/KG	U	
Heptachlor epoxide	40	UG/KG	U	
Methoxychlor	400	UG/KG	U	
Toxaphene	2000	UG/KG	U	
alpha-BHC	40	UG/KG	U	
alpha-Chlordane	40	UG/KG	U	
beta-BHC	40	UG/KG	U	
delta-BHC	40	UG/KG	U	
gamma-BHC (Lindane)	40	UG/KG	U	
gamma-Chlordane	40	UG/KG	U	

Data Qualifiers:

PB-SB-008-1181-SO

1.0-2.0 FT

Field Sample Type: Composite - Subsurface Soil

Collected: 11/24/97

Pesticides and/or PCBs	Result	Units	Qualifiers Lab Data
2,4,5-T	24	UG/KG	U
2,4,5-TP (Silvex)	24	UG/KG	U
2,4-D	95	UG/KG	U
4,4'-DDD	390	UG/KG	U
4,4'-DDE	390	UG/KG	U
4,4'-DDT	2200	UG/KG	
Aldrin	200	UG/KG	U
Aroclor 1016	2000	UG/KG	U
Aroclor 1221	2000	UG/KG	U
Aroclor 1232	2000	UG/KG	U
Aroclor 1242	2000	UG/KG	U
Aroclor 1248	2000	UG/KG	U
Aroclor 1254	3900	UG/KG	U
Aroclor 1260	3900	UG/KG	U
Dieldrin	390	UG/KG	U
Endosulfan I	200	UG/KG	U
Endosulfan II	390	UG/KG	U
Endosulfan sulfate	390	UG/KG	U
Endrin	390	UG/KG	U
Endrin aldehyde	390	UG/KG	U
Endrin ketone	390	UG/KG	U
Heptachlor	200	UG/KG	U
Heptachlor epoxide	200	UG/KG	U
Methoxychlor	2000	UG/KG	U
Toxaphene	9800	UG/KG	U
alpha-BHC	200	UG/KG	U
alpha-Chlordane	410	UG/KG	
beta-BHC	200	UG/KG	U
delta-BHC	200	UG/KG	U
gamma-BHC (Lindane)	200	UG/KG	Ū
gamma-Chlordane	420	UG/KG	-

Data Qualifiers:

PB-SB-009-1183-SO

1.0-2.0 FT Field Sample Type: Composite - Subsurface Soil

Collected: 11/24/97

Pesticides and/or PCBs	Result	Units	Qualifiers Lab Data	
2,4,5-T	25	UG/KG	U	
2,4,5-TP (Silvex)	25	UG/KG	U	
2,4-D	100	UG/KG	U	
4,4'-DDD	4.2	UG/KG	U	
4,4'-DDE	4.2	UG/KG	U	
4,4'-DDT	4.2	UG/KG	U	
Aldrin	2.2	UG/KG	U	
Arocior 1016	22	UG/KG	U	
Aroclor 1221	22	UG/KG	U	
Aroclor 1232	22	UG/KG	U	
Aroclor 1242	22	UG/KG	U	
Aroclor 1248	22	UG/KG	U	
Aroclor 1254	42	UG/KG	U	
Aroclor 1260	42	UG/KG	U	
Dieldrin	4.2	UG/KG	U	
Endosulfan I	2.2	UG/KG	U	
Endosulfan II	4.2	UG/KG	U	
Endosulfan sulfate	4.2	UG/KG	U	
Endrin	4.2	UG/KG	U	
Endrin aldehyde	4.2	UG/KG	U	
Endrin ketone	4.2	UG/KG	U	
Heptachlor	2.2	UG/KG	U	
Heptachlor epoxide	2.2	UG/KG	U	
Methoxychlor	22	UG/KG	U	
Toxaphene	110	UG/KG	U	
alpha-BHC	2.2	UG/KG	U	
alpha-Chlordane	2.2	UG/KG	U	
beta-BHC	2.2	UG/KG	U	
delta-BHC	- 2.2	UG/KG	U	
gamma-BHC (Lindane)	2.2	UG/KG	U	
gamma-Chlordane	2.2	UG/KG	U	

Data Qualifiers:

PB-SB-010-1185-SO

1.0-2.0 FT Field Sample Type: Composite - Subsurface Soil

Collected: 11/22/97

Pesticides and/or PCBs	Result	Units	Qualifiers Lab Data
2,4,5 - T	24	UG/KG	U
2,4,5-TP (Silvex)	24	UG/KG	U
2,4-D	96	UG/KG	U
4,4'-DDD	4.0	UG/KG	U
4,4'-DDE	4.0	UG/KG	U
4,4'-DDT	4.0	UG/KG	U
Aldrin	2.0	UG/KG	U
Aroclor 1016	20	UG/KG	U
Aroclor 1221	20	UG/KG	U
Aroclor 1232	20	UG/KG	U
Aroclor 1242	20	UG/KG	U
Aroclor 1248	20	UG/KG	U
Aroclor 1254	40	UG/KG	U
Aroclor 1260	40	UG/KG	U
Dieldrin	4.0	UG/KG	U
Endosulfan I	2.0	UG/KG	U
Endosulfan II	4.0	UG/KG	U
Endosulfan sulfate	4.0	UG/KG	U
Endrin	4.0	UG/KG	U
Endrin aldehyde	4.0	UG/KG	U
Endrin ketone	4.0	UG/KG	U
Heptachlor	2.0	UG/KG	U
Heptachlor epoxide	2.0	UG/KG	U
Methoxychlor	20	UG/KG	U
Toxaphene	100	UG/KG	U
alpha-BHC	2.0	UG/KG	U
alpha-Chlordane	2.0	UG/KG	U
beta-BHC	2.0	UG/KG	U
delta-BHC	2.0	UG/KG	U
gamma-BHC (Lindane)	2.0	UG/KG	U
gamma-Chlordane	2.0	UG/KG	U

Data Qualifiers:

PB-SB-011-1187-SO

1.0-2.0 FT Field Sample Type: Composite - Subsurface Soil

Collected: 11/24/97

Pesticides and/or PCBs	Result	Units	Qualifiers	
	Ittyuit		Lab	Data
2,4,5-T	24	UG/KG	U	
2,4,5-TP (Silvex)	24	UG/KG	U	
2,4-D	95	UG/KG	U	
4,4'-DDD	20	UG/KG	U	
4,4'-DDE	20	UG/KG	U	
4,4'-DDT	20	UG/KG	U	
Aldrin	10	UG/KG	U	
Aroclor 1016	100	UG/KG	U	
Aroclor 1221	100	UG/KG	U	
Arocior 1232	. 100	UG/KG	U	
Aroclor 1242	100	UG/KG	U	
Aroclor 1248	100	UG/KG	U	
Aroclor 1254	200	UG/KG	U	
Aroclor 1260	200	UG/KG	U	
Dieldrin	20	UG/KG	U	
Endosulfan I	10	UG/KG	U	
Endosulfan II	20	UG/KG	U	
Endosulfan sulfate	20	UG/KG	U	
Endrin	20	UG/KG	U	
Endrin aldehyde	20	UG/KG	U	
Endrin ketone	20	UG/KG	U	
Heptachlor	10	UG/KG	U	
Heptachlor epoxide	10	UG/KG	U	
Methoxychlor	100	UG/KG	U	
Toxaphene	490	UG/KG	U	
alpha-BHC	10	UG/KG	U	
alpha-Chlordane	10	UG/KG	U	
beta-BHC	10	UG/KG	U	
delta-BHC	10	UG/KG	U	
gamma-BHC (Lindane)	10	UG/KG	U	
gamma-Chlordane	10	UG/KG		

Data Qualifiers:

Station: SB28

PB-SB-012-1189-SO

1.0-2.0 FT Field Sample Type: Composite - Subsurface Soil

Collected: 11/24/97

Pesticides and/or PCBs	Result	Units	Qualifiers Lab Data
2,4,5-T	24	UG/KG	U
2,4,5-TP (Silvex)	24	UG/KG	U
2,4-D	95	UG/KG	U
4,4'-DDD	78	UG/KG	U
4,4'-DDE	78	UG/KG	U
4,4'-DDT	78	UG/KG	U
Aldrin	40	UG/KG	U
Aroclor 1016	400	UG/KG	U
Aroclor 1221	400	UG/KG	U
Aroclor 1232	400	UG/KG	U
Aroclor 1242	400	UG/KG	U
Aroclor 1248	400	UG/KG	U
Aroclor 1254	780	UG/KG	U
Aroclor 1260	780	UG/KG	U
Dieldrin	78	UG/KG	U
Endosulfan I	40	UG/KG	U
Endosulfan II	78	UG/KG	U
Endosulfan sulfate	78	UG/KG	U
Endrin	78	UG/KG	U
Endrin aldehyde	78	UG/KG	U
Endrin ketone	78	UG/KG	U
Heptachlor	40	UG/KG	U
Heptachlor epoxide	40	UG/KG	U
Methoxychlor	400	UG/KG	U
Toxaphene	2000	UG/KG	U
alpha-BHC	40	UG/KG	U
alpha-Chlordane	40	UG/KG	U
beta-BHC	40	UG/KG	U
delta-BHC	40	UG/KG	U
gamma-BHC (Lindane)	40	UG/KG	U
gamma-Chlordane	40	UG/KG	U

Data Qualifiers:

.

```
PB-SB-013-1191-SO
```

Field Sample Type: Composite - Subsurface Soil 1.0-2.0 FT

Collected: 11/24/97

Pesticides and/or PCBs	Result	Units	Qualifiers Lab Data	
2,4,5-T	26	UG/KG	U	
2,4,5-TP (Silvex)	26	UG/KG	U	
2,4-D	100	UG/KG	U	
4,4'-DDD	4.3	UG/KG	U	
4,4'-DDE	4.3	UG/KG	U	
4, 4'-DD T	4.3	UG/KG	U	
Aldrin	2.2	UG/KG	U	
Aroclor 1016	22	UG/KG	U	
Aroclor 1221	22	UG/KG	U	
Aroclor 1232	22	UG/KG	U	
Aroclor 1242	22	UG/KG	U	
Aroclor 1248	22	UG/KG	U	
Aroclor 1254	43	UG/KG	U	
Aroclor 1260	43	UG/KG	U	
Dieldrin	4.3	UG/KG	U	
Endosulfan I	2.2	UG/KG	U	
Endosulfan II	4.3	UG/KG	U	
Endosulfan sulfate	4.3	U G/KG	U	
Endrin	4.3	UG/KG	U	
Endrin aldehyde	4.3	U G/K G	U	
Endrin ketone	4.3	UG/KG	U	
Heptachlor	2.2	UG/KG	U	
Heptachlor epoxide	2.2	UG/KG	U	
Methoxychlor	22	UG/KG	U	
Toxaphene	110	UG/KG	U	
alpha-BHC	2.2	UG/KG	U	
alpha-Chlordane	2.2	UG/KG	U	
beta-BHC	2.2	UG/KG	U	
delta-BHC	2.2	UG/KG	U	
gamma-BHC (Lindane)	2.2	UG/KG	U	
gamma-Chlordane	2.2	UG/KG	U	

Data Qualifiers:

PB-SS-001-1206-SO

0.0-0.5 FT Field Sample Type: Composite - Surface Soil

Collected: 11/22/97

Pesticides and/or PCBs	PCBs Result Units		Quali Lab	fiers Data
2,4,5-T	22	UG/KG	U	
2,4,5-TP (Silvex)	22	UG/KG	U	
2,4 - D	90	UG/KG	U	
4,4'-DDD	19	UG/KG	U	
4,4'-DDE	19	UG/KG	U	
4,4'-DDT	19	UG/KG	U	
Aldrin	9.6	UG/KG	U	
Aroclor 1016	96	UG/KG	U	
Aroclor 1221	96	UG/KG	U	
Aroclor 1232	. 96	UG/KG	U	
Aroclor 1242	96	UG/KG	U	
Aroclor 1248	96	UG/KG	U	
Aroclor 1254	190	UG/KG	U	
Aroclor 1260	190	UG/KG	U	
Dieldrin	19	UG/KG	U	
Endosulfan I	9.6	UG/KG	U	
Endosulfan II	19	UG/KG	U	
Endosulfan sulfate	19	UG/KG	U	
Endrin	19	UG/KG	U	
Endrin aldehyde	19	UG/KG	U	
Endrin ketone	19	UG/KG	U	
Heptachlor	9.6	UG/KG	U	
Heptachlor epoxide	9.6	UG/KG	U	
Methoxychlor	96	UG/KG	U	
Toxaphene	470	UG/KG	U	
alpha-BHC	9.6	UG/KG	U	
alpha-Chlordane	9.6	UG/KG	U	
beta-BHC	9.6	UG/KG	U	
delta-BHC	9.6	UG/KG	U	
gamma-BHC (Lindane)	9.6	UG/KG	U	
gamma-Chlordane	9.6	UG/KG	U	

Data Qualifiers:

PB-SS-002-1203-SO

Field Sample Type: Composite - Surface Soil 0.0-0.5 FT

Collected: 11/22/97

			Qualifiers	
Pesticides and/or PCBs	Result	Units	Lab	Data
2,4,5-T	23	UG/KG	U	
2,4,5-TP (Silvex)	23	UG/KG	U	
2,4-D	90	UG/KG	U	
4,4'-DDD	19	UG/KG	U	
4,4'-DDE	19	UG/KG	U	
4,4'-DDT	19	UG/KG	U	
Aldrin	9.6	UG/KG	U	
Aroclor 1016	96	UG/KG	U	
Aroclor 1221	96	UG/KG	U	
Aroclor 1232	96	UG/KG	U	
Aroclor 1242	96	UG/KG	U	
Aroclor 1248	96	UG/KG	U	
Aroclor 1254	190	UG/KG	U	
Aroclor 1260	190	UG/KG	U	
Dieldrin	19	UG/KG	U	
Endosulfan I	9.6	UG/KG	U	
Endosulfan II	19	UG/KG	U	
Endosulfan sulfate	19	UG/KG	U	
Endrin	19	UG/KG	U	
Endrin aldehyde	19	UG/KG	U	
Endrin ketone	19	UG/KG	U	
Heptachlor	9.6	UG/KG	U	
Heptachlor epoxide	9.6	UG/KG	U	
Methoxychlor	96	UG/KG	U	
Toxaphene	470	UG/KG	U	
alpha-BHC	9.6	UG/KG	U	
alpha-Chlordane	9.6	UG/KG	U	
beta-BHC	9.6	UG/KG	U	
delta-BHC	9.6	UG/KG	U	
gamma-BHC (Lindane)	9.6	UG/KG	U	
gamma-Chlordane	9.6	UG/KG	U	

Data Qualifiers:

Station: SS03

PB-SS-003-1192-SO

0.0-0.5 FT Field Sample Type: Composite - Surface Soil

Collected: 11/22/97

Pesticides and/or PCBs	Result	Units	Qualifiers Lab Data
2,4,5-T	23	UG/KG	U
2,4,5-TP (Silvex)	23	UG/KG	U
2,4-D	93	UG/KG	U
4,4'-DDD	19	UG/KG	U
4,4'-DDE	19	UG/KG	U
4,4'-DDT	19	UG/KG	U
Aldrin	9,9	UG/KG	U
Aroclor 1016	99	UG/KG	U
Aroclor 1221	99	UG/KG	U
Aroclor 1232	99	UG/KG	U
Aroclor 1242	99	UG/KG	U
Aroclor 1248	99	UG/KG	U
Aroclor 1254	190	UG/KG	U
Aroclor 1260	190	UG/KG	U
Dieldrin	19	UG/KG	U
Endosulfan I	9.9	UG/KG	U
Endosulfan II	19	UG/KG	U
Endosulfan sulfate	19	UG/KG	U
Endrin	19	UG/KG	U
Endrin aldehyde	19	UG/KG	U
Endrin ketone	19	UG/KG	U
Heptachlor	9.9	UG/KG	U
Heptachlor epoxide	9.9	UG/KG	U
Methoxychlor	99	UG/KG	U
Toxaphene	480	UG/KG	U
alpha-BHC	9.9	UG/KG	U
alpha-Chlordane	9.9	UG/KG	U
beta-BHC	9.9	UG/KG	U
delta-BHC	9.9	UG/KG	U
gamma-BHC (Lindane)	9.9	UG/KG	U
gamma-Chlordane	9.9	UG/KG	U

Data Qualifiers:

PB-SS-004-1194-SO

0.0-0.5 FT Field Sample Type: Composite - Surface Soil

Collected: 11/22/97

Pesticides and/or PCBs	Result	Units	Qualifiers Lab Dat
2,4,5-T	24	UG/KG	U
2,4,5-TP (Silvex)	24	UG/KG	U
2,4-D	98	UG/KG	U
4,4'-DDD	20	U G/KG	U
4,4'-DDE	. 20	UG/KG	U
4,4'-DDT	20	UG/KG	U
Aldrin	10	UG/KG	U
Aroclor 1016	100	UG/KG	U
Aroclor 1221	100	UG/KG	U
Aroclor 1232	100	UG/KG	U
Aroclor 1242	100	UG/KG	U
Arocior 1248	100	UG/KG	U
Aroclor 1254	200	UG/KG	U
Aroclor 1260	200	UG/KG	U
Dieldrin	20	UG/KG	U
Endosulfan I	10	UG/KG	U
Endosulfan II	20	UG/KG	U
Endosulfan sulfate	20	UG/KG	U
Endrin	20	UG/KG	U
Endrin aldehyde	20	UG/KG	U
Endrin ketone	20	UG/KG	U
Heptachlor	10	UG/KG	U
Heptachlor epoxide	10	UG/KG	U
Methoxychlor	100	UG/KG	U
Toxaphene	510	UG/KG	U
alpha-BHC	10	UG/KG	U
alpha-Chlordane	10	UG/KG	U
beta-BHC	10	UG/KG	U
delta-BHC	10	UG/KG	U
gamma-BHC (Lindane)	. 10	UG/KG	U
gamma-Chlordane	10	UG/KG	U

Data Qualifiers:

Station: SS05

PB-SS-005-1196-SO

0.0-0.5 FT Field Sample Type: Composite - Surface Soil

Collected: 11/22/97

Pesticides and/or PCBs	Result	Units	Qualifiers Lab Data
2,4,5-T	28	UG/KG	U
2,4,5-TP (Silvex)	28	UG/KG	U
2,4 - D	110	UG/KG	U
4,4'-DDD	4.6	UG/KG	U
4,4' - DDE	4.6	UG/KG	U
4,4'-DDT	4.6	UG/KG	U
Aldrin	2.4	UG/KG	U
Aroclor 1016	24	UG/KG	U
Aroclor 1221	24	UG/KG	U
Aroclor 1232	24	UG/KG	U
Aroclor 1242	24	UG/KG	U
Aroclor 1248	24	UG/KG	U
Aroclor 1254	46	UG/KG	U
Aroclor 1260	46	UG/KG	U
Dieldrin	4.6	UG/KG	U
Endosulfan I	2.4	UG/KG	U
Endosulfan II	4.6	UG/KG	U
Endosulfan sulfate	4.6	UG/KG	U
Endrin	4.6	UG/KG	U
Endrin aldehyde	4.6	UG/KG	U
Endrin ketone	4.6	UG/KG	U.
Heptachlor	2.4	UG/KG	U
Heptachlor epoxide	2.4	UG/KG	U
Methoxychlor	24	UG/KG	U
Toxaphene	120	UG/KG	U
alpha-BHC	2.4	UG/KG	U
alpha-Chlordane	2.4	UG/KG	U
beta-BHC	2.4	UG/KG	U
delta-BHC	2.4	UG/KG	U
gamma-BHC (Lindane)	2.4	UG/KG	U
gamma-Chlordane	2.4	UG/KG	U

Data Qualifiers:

Station: SS06

PB-SS-006-1198-SO

Field Sample Type: Composite - Surface Soil 0.0-0.5 FT

Collected: 11/22/97

	Descil	Units	Qualifiers	
Pesticides and/or PCBs	Result		<u>Lab</u>	Data
2,4,5-T	23	UG/KG	U	
2,4,5-TP (Silvex)	23	UG/KG	U	
2,4-D	90	UG/KG	U	
4,4'-DDD	19	UG/KG	U	
4,4'-DDE	19	UG/KG	U	
4,4'-DDT	19	UG/KG	U	
Aldrin	9.6	UG/KG	U	
Aroclor 1016	96	UG/KG	U	
Aroclor 1221	96	UG/KG	U	
Aroclor 1232	96	UG/KG	U	
Aroclor 1242	96	UG/KG	U	
Aroclor 1248	96	UG/KG	U	
Aroclor 1254	190	UG/KG	U	
Aroclor 1260	190	UG/KG	U	
Dieldrin	19	UG/KG	U	
Endosulfan I	9.6	UG/KG	U	
Endosulfan II	19	UG/KG	U	
Endosulfan sulfate	19	UG/KG	U	
Endrin	19	UG/KG	U	
Endrin aldehyde	19	UG/KG	U	
Endrin ketone	19	UG/KG	U	
Heptachlor	9.6	UG/KG	U	
Heptachlor epoxide	9.6	UG/KG	U	
Methoxychlor	96	UG/KG	U	
Toxaphene	470	UG/KG	U	
alpha-BHC	9.6	UG/KG	U	
alpha-Chlordane	9.6	UG/KG	U	
beta-BHC	9.6	UG/KG	U	
delta-BHC	9.6	UG/KG	U	
gamma-BHC (Lindane)	9.6	UG/KG	U	
gamma-Chlordane	9.6	UG/KG	U	

Data Qualifiers:

PB-SS-006D-1227-SO

0.0-0.5 FT Field Sample Type: Field Duplicate

Collected: 11/22/97

Pesticides and/or PCBs	Result	Units	Quali Lab	fiers Data
2,4,5-T	23	UG/KG	 U	Data
2,4,5-TP (Silvex)	23	UG/KG	Ŭ	
2,4 - D	92	UG/KG	Ū	
4,4'-DDD	. 19	UG/KG	Ū	
4,4'-DDE	19	UG/KG	U	
4,4'-DDT	19	UG/KG	U	
Aldrin	9.8	UG/KG	U	
Aroclor 1016	98	UG/KG	U	
Aroclor 1221	98	UG/KG	U	
Aroclor 1232	98	UG/KG	U	
Arocior 1242	98	UG/KG	U	
Aroclor 1248	98	UG/KG	U	
Aroclor 1254	190	UG/KG	U	
Aroclor 1260	190	UG/KG	U	
Dieldrin	19	UG/KG	U	
Endosulfan I	9.8	UG/KG	U	
Endosulfan II	19	UG/KG	U	
Endosulfan sulfate	19	UG/KG	U	
Endrin	19	UG/KG	U	
Endrin aldehyde	19	UG/KG	U	
Endrin ketone	19	UG/KG	U	
Heptachlor	9. 8	UG/KG	U	
Heptachlor epoxide	9.8	UG/KG	U	
Methoxychlor	98	UG/KG	U	
Toxaphene	480	UG/KG	U	
alpha-BHC	9. 8	UG/KG	U	
alpha-Chlordane	9.8	UG/KG	U	
beta-BHC	9.8	UG/KG	U	
delta-BHC	· 9.8	UG/KG	U	
gamma-BHC (Lindane)	9.8	UG/KG	U	
gamma-Chlordane	9.8	UG/KG	U	

Data Qualifiers:

PB-SS-007-1204-SO

0.0-0.5 FT Field Sample Type: Composite - Surface Soil

Collected: 11/22/97

Pesticides and/or PCBs	Ď14	TT	Qualifiers	
resticides and/or PCDs	Result	Units	Lab	Data
2,4,5-T	22	UG/KG	U	
2,4,5-TP (Silvex)	22	UG/KG	U	
2,4-D	87	UG/KG	U	
4,4'-DDD	3.6	UG/KG	U	
4,4'-DDE	3.6	UG/KG	U	
4,4'-DDT	3.6	UG/KG	U	
Aldrin	1.8	UG/KG	U	
Aroclor 1016	18	UG/KG	U	
Aroclor 1221	18	UG/KG	U	
Aroclor 1232	18	UG/KG	U	
Aroclor 1242	18	UG/KG	U	
Aroclor 1248	18	UG/KG	U	
Aroclor 1254	36	UG/KG	U	
Aroclor 1260	36	UG/KG	U	
Dieldrin	3.6	UG/KG	U	
Endosulfan I	1.8	UG/KG	U	
Endosulfan II	3.6	UG/KG	U	
Endosulfan sulfate	3.6	UG/KG	U	
Endrin	3.6	UG/KG	U	
Endrin aldehyde	3.6	UG/KG	U	
Endrin ketone	3.6	UG/KG	U	
Heptachlor	1.8	UG/KG	U	
Heptachlor epoxide	1.8	UG/KG	U	
Methoxychlor	18	UG/KG	U	
Toxaphene	90	UG/KG	U	
alpha-BHC	1.8	UG/KG	U	
alpha-Chlordane	1.8	UG/KG	U	
beta-BHC	1.8	UG/KG	U	
delta-BHC	1.8	UG/KG	U	
gamma-BHC (Lindane)	1.8	UG/KG	U	
gamma-Chlordane	1.8	UG/KG	Ŭ	

Data Qualifiers:

Station: SS08

.

PB-SS-008-1205-SO

0.0-0.5 FT Field Sample Type: Composite - Surface Soil

Collected: 11/22/97

Pesticides and/or PCBs	Result	Units	Qualifiers Lab Dat
2,4,5-T	22	UG/KG	U
2,4,5-TP (Silvex)	22	UG/KG	U
2,4-D	89	UG/KG	U
4,4'-DDD	18	UG/KG	U
4,4'-DDE	18	UG/KG	U
4,4'-DDT	18	UG/KG	U
Aldrin	9.4	UG/KG	U
Aroclor 1016	94	UG/KG	U
Aroclor 1221	94	UG/KG	U
Aroclor 1232	94	UG/KG	U
Aroclor 1242	94	UG/KG	U
Arocior 1248	94	UG/KG	U
Aroclor 1254	180	UG/KG	U
Aroclor 1260	180	UG/KG	U
Dieldrin	18	UG/KG	U
Endosulfan I	9.4	UG/KG	U
Endosulfan II	18	UG/KG	U
Endosulfan sulfate	18	UG/KG	U
Endrin	18	UG/KG	U
Endrin aldehyde	18	UG/KG	U
Endrin ketone	18	UG/KG	U
Heptachlor	9.4	UG/KG	U
Heptachlor epoxide	9.4	UG/KG	U
Methoxychlor	94	UG/KG	U
Toxaphene	460	UG/KG	U
alpha-BHC	9.4	UG/KG	U
alpha-Chlordane	9.4	UG/KG	U
beta-BHC	9.4	UG/KG	U
delta-BHC	9.4	UG/KG	U
gamma-BHC (Lindane)	9.4	UG/KG	U
gamma-Chlordane	9.4	UG/KG	U

Data Qualifiers:

PB-SS-009-1167-SO

0.0-0.5 FT Field Sample Type: Composite - Surface Soil

Collected: 11/22/97

Pesticides and/or PCBs	Result	Units	Qualifiers Lab Data
2,4,5-T	23	UG/KG	U
2,4,5-TP (Silvex)	23	UG/KG	U
2,4-D	91	UG/KG	U
4,4'-DDD	37	UG/KG	U
4,4'-DDE	37	UG/KG	U
4,4'-DDT	37	UG/KG	U
Aldrin	19	UG/KG	U
Aroclor 1016	190	UG/KG	U
Aroclor 1221	190	UG/KG	U
Aroclor 1232	· 190	UG/KG	U
Aroclor 1242	190	UG/KG	U
Aroclor 1248	190	UG/KG	U
Aroclor 1254	370	UG/KG	U
Aroclor 1260	370	UG/KG	U
Dieldrin	37	UG/KG	U
Endosulfan I	19	UG/KG	U
Endosulfan II	37	UG/KG	U
Endosulfan sulfate	37	UG/KG	U
Endrin	37	UG/KG	U
Endrin aldehyde	37	UG/KG	U
Endrin ketone	37	UG/KG	U
Heptachlor	19	UG/KG	U
Heptachlor epoxide	19	UG/KG	U
Methoxychlor	190	UG/KG	U
Toxaphene	940	UG/KG	U
alpha-BHC	19	UG/KG	U
alpha-Chlordane	19	UG/KG	U
beta-BHC	19	UG/KG	U
delta-BHC	19	UG/KG	U
gamma-BHC (Lindane)	19	UG/KG	U
gamma-Chlordane	19	UG/KG	U

Data Qualifiers:

Station: SS10

PB-SS-010-1207-SO

0.0-0.5 FT Field Sample Type: Composite - Surface Soil

Collected: 11/22/97

.

Pesticides and/or PCBs	esticides and/or PCBs Result			Qualifiers Lab Data	
2,4,5-T	22	UG/KG	U		
2,4,5-TP (Silvex)	22	UG/KG	U		
2,4-D	89	UG/KG	U		
4,4'-DDD	18	UG/KG	U		
4,4'-DDE	18	UG/KG	U		
4,4'-DDT	18	UG/KG	U		
Aldrin	9.5	UG/KG	U		
Aroclor 1016	95	UG/KG	U		
Aroclor 1221	95	UG/KG	U		
Aroclor 1232	95	UG/KG	U		
Aroclor 1242	95	UG/KG	U		
Aroclor 1248	95	UG/KG	U		
Aroclor 1254	180	UG/KG	U		
Arocior 1260	180	UG/KG	U		
Dieldrin	18	UG/KG	U		
Endosulfan I	9.5	UG/KG	U		
Endosulfan II	18	UG/KG	U		
Endosulfan sulfate	18	UG/KG	U		
Endrin	18	UG/KG	U		
Endrin aldehyde	18	UG/KG	U		
Endrin ketone	18	UG/KG	U		
Heptachlor	9.5	UG/KG	U		
Heptachlor epoxide	9.5	UG/KG	U		
Methoxychlor	95	UG/KG	U		
Toxaphene	460	UG/KG	U		
alpha-BHC	. 9.5	UG/KG	U		
alpha-Chlordane	9.5	UG/KG	U		
beta-BHC	9.5	UG/KG	U		
delta-BHC	9.5	UG/KG	U		
gamma-BHC (Lindane)	9.5	UG/KG	U		
gamma-Chlordane	9.5	UG/KG	U		

Data Qualifiers:

•

PB-SS-011-1193-SO

Field Sample Type: Composite - Surface Soil 0.0-0.5 FT

Collected: 11/22/97

Pesticides and/or PCBs	Result	Units	Quali Lab	fiers Data
2,4,5-T	23	UG/KG	U	
2,4,5-TP (Silvex)	23	UG/KG	U	
2,4-D	91	UG/KG	U	
4,4'-DDD	19	UG/KG	U	
4,4'-DDE	19	UG/KG	U	
4,4'-DDT	19	UG/KG	U	
Aldrin	9.7	UG/KG	U	
Aroclor 1016	97	UG/KG	U	
Aroclor 1221	97	UG/KG	U	
Aroclor 1232	97	UG/KG	U	
Aroclor 1242	97	UG/KG	U	
Aroclor 1248	97	UG/KG	U	
Aroclor 1254	190	UG/KG	U	
Aroclor 1260	190	UG/KG	U	
Dieldrin	19	UG/KG	U	
Endosulfan I	9.7	UG/KG	U	
Endosulfan II	19	UG/KG	U	
Endosulfan sulfate	19	UG/KG	U	
Endrin	19	UG/KG	U	
Endrin aldehyde	19	UG/KG	U	
Endrin ketone	19	UG/KG	U	
Heptachlor	9.7	UG/KG	U	
Heptachlor epoxide	9.7	UG/KG	U	
Methoxychlor	97	UG/KG	U	
Toxaphene	470	UG/KG	U	
alpha-BHC	9.7	UG/KG	U	
alpha-Chlordane	9.7	UG/KG	U	
beta-BHC	9.7	UG/KG	U	
delta-BHC	9.7	UG/KG	U	
gamma-BHC (Lindane)	9.7	UG/KG	U	
gamma-Chlordane	9.7	UG/KG	U	

Data Qualifiers:

L-Serial dilution criteria not met MBB-Detected in method blank at less than 5% of sample amount PF-RPD greater than 50% difference between columns J-Estimated value U-Not detected UJ-Not detected, associated value uncertain

.

PB-SS-012-1195-SO

0.0-0.5 FT Field Sample Type: Composite - Surface Soil

Collected: 11/22/97

Pesticides and/or PCBs	Result	Units	Quali Lab	fiers Data
2,4,5-T	23	UG/KG	U	
2,4,5-TP (Silvex)	23	UG/KG	U	
2,4-D	91	UG/KG	U	
4,4'-DDD	19	UG/KG	U	
4,4'-DDE	19	UG/KG	U	
4,4'-DDT	19	UG/KG	U	
Aldrin	9.7	UG/KG	U	
Aroclor 1016	97	UG/KG	U	
Aroclor 1221	97	UG/KG	U	
Aroclor 1232	. 97	UG/KG	U	
Aroclor 1242	. 97	UG/KG	U	
Aroclor 1248	97	UG/KG	U	
Aroclor 1254	190	UG/KG	U	
Aroclor 1260	190	UG/KG	U	
Dieldrin	19	UG/KG	U	
Endosulfan I	9.7	UG/KG	U	
Endosulfan II	19	UG/KG	U	
Endosulfan sulfate	19	UG/KG	U	
Endrin	19	UG/KG	U	
Endrin aldehyde	19	UG/KG	U	
Endrin ketone	19	UG/KG	U	
Heptachlor	9.7	UG/KG	U	
Heptachlor epoxide	9.7	UG/KG	U	
Methoxychlor	97	UG/KG	U	
Toxaphene	470	UG/KG	U	
alpha-BHC	9.7	UG/KG	U	
alpha-Chlordane	9.7	UG/KG	U	
beta-BHC	9.7	UG/KG	U	
delta-BHC	9.7	UG/KG	U	
gamma-BHC (Lindane)	9.7	UG/KG	Ū	
gamma-Chlordane	9.7	UG/KG	Ŭ	

Data Qualifiers:

```
PB-SS-013-1168-SO
```

0.0-0.5 FT Field Sample Type: Composite - Surface Soil

Collected: 11/22/97

Pesticides and/or PCBs	Result	Units	Quali Lab	fiers Data
2,4,5-T	22	UG/KG	U	
2,4,5-TP (Silvex)	22	UG/KG	U	
2,4-D	87	UG/KG	U	
4,4'-DDD	36	UG/KG	U	
4,4'-DDE	36	UG/KG	U	
4,4'-DDT	36	UG/KG	U	
Aldrin	18	UG/KG	U	
Aroclor 1016	180	UG/KG	U	
Aroclor 1221	180	UG/KG	U	
Aroclor 1232	180	UG/KG	U	
Aroclor 1242	180	UG/KG	U	
Aroclor 1248	180	UG/KG	U	
Aroclor 1254	360	UG/KG	U	
Aroclor 1260	360	UG/KG	U	
Dieldrin	36	UG/KG	U	
Endosulfan I	18	UG/KG	U	
Endosulfan II	36	UG/KG	U	
Endosulfan sulfate	36	UG/KG	U	
Endrin	36	UG/KG	U	
Endrin aldehyde	36	UG/KG	U	
Endrin ketone	36	UG/KG	U	
Heptachlor	18	UG/KG	U	
Heptachlor epoxide	18	UG/KG	U	
Methoxychlor	180	UG/KG	U	
Toxaphene	900	UG/KG	U	
alpha-BHC	18	UG/KG	U	
alpha-Chlordane	18	UG/KG	U	
beta-BHC	18	U G/KG	U	
delta-BHC	18	UG/KG	U	
gamma-BHC (Lindane)	18	UG/KG	U	
gamma-Chlordane	18	UG/KG	U	

Data Qualifiers:

Station: SS14

PB-SS-014-1170-SO

0.0-0.5 FT Field Sample Type: Composite - Surface Soil

Collected: 11/22/97

Pesticides and/or PCBs	Result	Units	Qualifiers Lab Data
2,4,5-T	23	UG/KG	U
2,4,5-TP (Silvex)	23	UG/KG	U
2,4-D	92	UG/KG	U
4,4'-DDD	38	UG/KG	U
4,4'-DDE	38	UG/KG	U ·
4,4'-DDT	38	UG/KG	U
Aldrin	20	UG/KG	U
Aroclor 1016	200	UG/KG	U
Aroclor 1221	200	UG/KG	U
Aroclor 1232	200	UG/KG	U
Aroclor 1242	200	UG/KG	U
Aroclor 1248	200	UG/KG	U
Aroclor 1254	380	UG/KG	U
Aroclor 1260	380	UG/KG	U
Dieldrin	38	UG/KG	U
Endosulfan I	20	UG/KG	U
Endosulfan II	38	UG/KG	U
Endosulfan sulfate	38	UG/KG	U
Endrin	38	UG/KG	U
Endrin aldehyde	38	UG/KG	U
Endrin ketone	38	UG/KG	U
Heptachlor	20	UG/KG	U
Heptachlor epoxide	20	UG/KG	U
Methoxychlor	200	UG/KG	U
Toxaphene	960	UG/KG	U
alpha-BHC	20	UG/KG	U
alpha-Chlordane	20	UG/KG	U
beta-BHC	20	UG/KG	U
delta-BHC	20	UG/KG	U
gamma-BHC (Lindane)	20	UG/KG	U
gamma-Chlordane	20	UG/KG	U

Data Qualifiers:

Station: SS15

PB-SS-015-1172-SO

Field Sample Type: Composite - Surface Soil 0.0-0.5 FT

Collected: 11/22/97

Pesticides and/or PCBs	Result	Units	Quali Lab	fiers Data
2,4,5-T	22	UG/KG	 U	
2,4,5-TP (Silvex)	22	UG/KG	U	
2,4-D	90	UG/KG	U	
4,4'-DDD	18	UG/KG	U	
4,4'-DDE	18	UG/KG	U	
4,4'-DDT	23	UG/KG	PF	
Aldrin	9.5	UG/KG	U	
Aroclor 1016	95	UG/KG	U	
Aroclor 1221	95	UG/KG	U	
Aroclor 1232	95	UG/KG	U	
Aroclor 1242	95	UG/KG	U	
Aroclor 1248	95	UG/KG	U	
Aroclor 1254	180	UG/KG	U	
Aroclor 1260	180	UG/KG	U	
Dieldrin	18	UG/KG	U	
Endosulfan I	9.5	UG/KG	U	
Endosulfan II	18	UG/KG	U	
Endosulfan sulfate	18	UG/KG	U	
Endrin	18	UG/KG	U	
Endrin aldehyde	18	UG/KG	U	
Endrin ketone	18	UG/KG	U	
Heptachlor	9.5	UG/KG	U	
Heptachlor epoxide	9.5	UG/KG	U	
Methoxychlor	95	UG/KG	U	
Toxaphene	470	UG/KG	U	
alpha-BHC	9.5	UG/KG	U	
alpha-Chlordane	9.5	UG/KG	U	
beta-BHC	9.5	UG/KG	U	
delta-BHC	. 9.5	UG/KG	U	
gamma-BHC (Lindane)	9.5	UG/KG	U	
gamma-Chlordane	9.5	UG/KG	U	

Data Qualifiers:

PB-SS-016-1174-SO

0.0-0.5 FT Field Sample Type: Composite - Surface Soil

Collected: 11/22/97

Pesticides and/or PCBs	Result	Units	Quali Lab	fiers Data
2,4,5-T	24	UG/KG	 U	Data
2,4,5-TP (Silvex)	24	UG/KG	Ū	
2,4-D	97	UG/KG	U	
4,4'-DDD	20	UG/KG	U	
4,4'-DDE	20	UG/KG	U	
4,4'-DDT	20	UG/KG	U	
Aldrin	10	UG/KG	U	
Aroclor 1016	100	UG/KG	U	
Aroclor 1221	100	UG/KG	U	
Aroclor 1232	100	UG/KG	U	
Aroclor 1242	100	UG/KG	U	
Aroclor 1248	100	UG/KG	U	
Aroclor 1254	200	UG/KG	U	
Arocior 1260	200	UG/KG	U	
Dieldrin	20	UG/KG	U	
Endosulfan I	10	UG/KG	U	
Endosulfan II	20	UG/KG	U	
Endosulfan sulfate	20	UG/KG	U	
Endrin ,	20	UG/KG	U	
Endrin aldehyde	20	UG/KG	U	
Endrin ketone	20	UG/KG	U	
Heptachlor	10	UG/KG	U	
Heptachlor epoxide	10	UG/KG	U	
Methoxychlor	100	UG/KG	U	
Toxaphene	500	UG/KG	U	
alpha-BHC	10	UG/KG	U	
alpha-Chlordane	10	UG/KG	U	
beta-BHC	10	UG/KG	U	
delta-BHC	10	UG/KG	U	
gamma-BHC (Lindane)	10	UG/KG	U	
gamma-Chlordane	10	UG/KG	U	

Data Qualifiers:

PB-SS-017-1176-SO

Field Sample Type: Composite - Surface Soil 0.0-0.5 FT

Collected: 11/22/97

esticides and/or PCBs	Result	Units	-	Qualifiers	
Pesticides and/or PCDs	Kesun		Lab	Data	
2,4,5-T	22	UG/KG	U		
2,4,5-TP (Silvex)	22	UG/KG	U		
2,4-D	89	UG/KG	U		
4,4'-DDD	3.7	UG/KG	U		
4,4'-DDE	3.7	UG/KG	U		
4,4'-DDT	11	UG/KG		J	
Aldrin	1.9	UG/KG	U		
Aroclor 1016	19	UG/KG	U		
Aroclor 1221	19	UG/KG	U		
Aroclor 1232	19	UG/KG	U		
Aroclor 1242	19	UG/KG	U		
Aroclor 1248	19	UG/KG	U		
Aroclor 1254	37	UG/KG	U		
Aroclor 1260	37	UG/KG	U		
Dieldrin	3.7	UG/KG	U		
Endosulfan I	1.9	UG/KG	U		
Endosulfan II	3.7	UG/KG	U		
Endosulfan sulfate	3.7	UG/KG	U		
Endrin	3.7	UG/KG	U		
Endrin aldehyde	3.7	UG/KG	U		
Endrin ketone	3.7	UG/KG	U		
Heptachlor	1.9	UG/KG	U		
Heptachlor epoxide	1.9	UG/KG	U		
Methoxychlor	19	UG/KG	U		
Toxaphene	92	UG/KG	U		
alpha-BHC	1.9	UG/KG	U		
alpha-Chlordane	19	UG/KG	PF		
beta-BHC	1.9	UG/KG	U		
delta-BHC	1.9	UG/KG	U		
gamma-BHC (Lindane)	1.9	UG/KG	U		
gamma-Chlordane	15	UG/KG		J	

Data Qualifiers:

.

PB-SS-018-1199-SO

0.0-0.5 FT Field Sample Type: Composite - Surface Soil

Collected: 11/22/97

Pesticides and/or PCBs	Result	Units	Qualifie	
2,4,5-T	22	UG/KG	U	
2,4,5-TP (Silvex)	22	UG/KG	U	
2,4 - D	87	UG/KG	U	
4,4' -DD D	36	UG/KG	U	
4,4'-DDE	36	UG/KG	U	
4,4'-DDT	36	UG/KG	U	
Aldrin	19	UG/KG	U	
Aroclor 1016	190	UG/KG	U	
Aroclor 1221	190	UG/KG	U	
Aroclor 1232	190	UG/KG	U	
Aroclor 1242	190	UG/KG	U	
Aroclor 1248	190	UG/KG	U	
Aroclor 1254	360	UG/KG	U	
Aroclor 1260	360	UG/KG	U	
Dieldrin	36	UG/KG	U	
Endosulfan I	19	UG/KG	U	
Endosulfan II	36	UG/KG	U	
Endosulfan sulfate	36	UG/KG	U	
Endrin	36	UG/KG	U	
Endrin aldehyde	36	UG/KG	U	
Endrin ketone	36	UG/KG	U	
Heptachlor	19	UG/KG	U	
Heptachlor epoxide	19	UG/KG	U	
Methoxychlor	190	UG/KG	U	
Toxaphene	900	UG/KG	U	
alpha-BHC	19	UG/KG	U	
alpha-Chlordane	19	UG/KG	U	
beta-BHC	19	UG/KG	U	
delta-BHC	. 19	UG/KG	U	
gamma-BHC (Lindane)	19	UG/KG	U	
gamma-Chlordane	19	UG/KG	U	

Data Qualifiers:

Station: SS18

PB-SS-018D-1228-SO

Field Sample Type: Field Duplicate 0.0-0.5 FT

Collected: 11/22/97

			Qualifiers	
Pesticides and/or PCBs	Result	Units	Lab	Data
2,4,5-T	23	UG/KG	U	
2,4,5-TP (Silvex)	23	UG/KG	U	
2,4 -D	92	UG/KG	U	
4,4'-DDD	38	UG/KG	U	
4,4'-DDE	38	UG/KG	U	
4,4'-DDT	38	UG/KG	U	
Aldrin	20	UG/KG	U	
Aroclor 1016	200	UG/KG	U	
Aroclor 1221	200	UG/KG	U	
Aroclor 1232	200	UG/KG	U	
Aroclor 1242	200	UG/KG	U	
Aroclor 1248	200	UG/KG	U	
Aroclor 1254	380	UG/KG	U	
Aroclor 1260	380	UG/KG	U	
Dieldrin	38	UG/KG	U	
Endosulfan I	20	UG/KG	U	
Endosulfan II	38	UG/KG	U	
Endosulfan sulfate	38	UG/KG	U	
Endrin	38	UG/KG	U	
Endrin aldehyde	38	UG/KG	U	
Endrin ketone	38	UG/KG	U	
Heptachlor	20	UG/KG	U	
Heptachlor epoxide	20	UG/KG	U	
Methoxychlor	200	UG/KG	U	
Toxaphene	950	UG/KG	U	
alpha-BHC	20	UG/KG	U	
alpha-Chlordane	20	UG/KG	U	
beta-BHC	20	UG/KG	U	
delta-BHC	20	UG/KG	U	
gamma-BHC (Lindane)	20	UG/KG	U	
gamma-Chlordane	20	UG/KG	U	

Data Qualifiers:

PB-SS-019-1200-SO

0.0-0.5 FT Field Sample Type: Composite - Surface Soil

Collected: 11/22/97

			Qualifiers	
Pesticides and/or PCBs	Result	<u>Units</u>	<u>Lab</u>	Data
2,4,5-T	23	UG/KG	U	
2,4,5-TP (Silvex)	23	UG/KG	U	
2,4-D	91	UG/KG	U	
4,4'-DDD	38	UG/KG	U	
4,4'-DDE	38	UG/KG	U	
4,4'-DDT	38	UG/KG	U	
Aldrin	19	UG/KG	U	
Aroclor 1016	190	UG/KG	U	
Aroclor 1221	190	UG/KG	U	
Aroclor 1232	190	UG/KG	U	
Aroclor 1242	190	UG/KG	U	
Aroclor 1248	190	UG/KG	U	
Aroclor 1254	380	UG/KG	U	
Aroclor 1260	380	UG/KG	U	
Dieldrin	38	UG/KG	U	
Endosulfan I	19	UG/KG	U	
Endosulfan II	38	UG/KG	U	
Endosulfan sulfate	38	UG/KG	U	
Endrin	38	UG/KG	U	
Endrin aldehyde	38	UG/KG	U	
Endrin ketone	38	UG/KG	U	
Heptachlor	19	UG/KG	U	
Heptachlor epoxide	19	UG/KG	U	
Methoxychlor	190	UG/KG	U	
Toxaphene	950	UG/KG	U	
alpha-BHC	19	UG/KG	U	
alpha-Chlordane	19	UG/KG	U	
beta-BHC	19	UG/KG	U	
delta-BHC	19	UG/KG	U	
gamma-BHC (Lindane)	19	UG/KG	U	
gamma-Chlordane	19	UG/KG	U	
0				

Data Qualifiers:

.

PB-SS-019D-1229-SO

Field Sample Type: Field Duplicate 0.0-0.5 FT

Collected: 11/22/97

Pesticides and/or PCBs	Result	Units	Quali <u>Lab</u>	fiers Data
2,4,5-T	23	UG/KG	U	
2,4,5-TP (Silvex)	23	UG/KG	U	
2,4-D	93	UG/KG	U	
4,4'-DDD	19	UG/KG	U	
4,4'-DDE	19	U G/KG	U	
4.4'-DDT	19	UG/KG	U	
Aldrin	9.9	UG/KG	U	
Aroclor 1016	99	UG/KG	U	
Aroclor 1221	99	UG/KG	U	
Aroclor 1232	99	UG/KG	U	
Aroclor 1242	99	UG/KG	U	
Aroclor 1248	99	UG/KG	U	
Aroclor 1254	190	UG/KG	U	
Aroclor 1260	190	UG/KG	U	
Dieldrin	19	UG/KG	U	
Endosulfan I	9,9	UG/KG	U	
Endosulfan II	19	UG/KG	U	
Endosulfan sulfate	19	UG/KG	U	
Endrin	19	UG/KG	U	
Endrin aldehyde	19	UG/KG	U	
Endrin ketone	19	UG/KG	U	
Heptachlor	9.9	UG/KG	U	
Heptachlor epoxide	9.9	UG/KG	U	
Methoxychlor	99	UG/KG	U	
Toxaphene	480	UG/KG	U	
alpha-BHC	9.9	UG/KG	U	
alpha-Chlordane	55	UG/KG	PF	
beta-BHC	9.9	UG/KG	U	
delta-BHC	9.9	UG/KG	U	
gamma-BHC (Lindane)	9.9	UG/KG	U	
gamma-Chlordane	43	UG/KG		J

Data Qualifiers:

Station: SS20

PB-SS-020-1201-SO

```
0.0-0.5 FT
```

.

Field Sample Type: Composite - Surface Soil

Collected: 11/22/97

Pesticides and/or PCBs	Result	Units	Quali Lab	fiers <u>Data</u>
2,4,5-T	27	UG/KG	U	
2,4,5-TP (Silvex)	27	UG/KG	U	
2,4-D	110	UG/KG	U	
4,4'-DDD	90	UG/KG	U	
4,4'-DDE	90	UG/KG	U	
4,4'-DDT	90	UG/KG	U	
Aldrin	47	UG/KG	U	
Aroclor 1016	470	UG/KG	U	
Aroclor 1221	470	UG/KG	U	
Aroclor 1232	470	UG/KG	U	
Aroclor 1242	470	UG/KG	U	
Aroclor 1248	470	UG/KG	U	
Aroclor 1254	4000	UG/KG		J
Aroclor 1260	900	UG/KG	U	
Dieldrin	90	UG/KG	U	
Endosulfan I	47	UG/KG	U	
Endosulfan II	90	UG/KG	U	
Endosulfan sulfate	90	UG/KG	U	
Endrin	90	UG/KG	U	
Endrin aldehyde	90	UG/KG	U	
Endrin ketone	90	UG/KG	U	
Heptachlor	47	UG/KG	U	
Heptachlor epoxide	47	UG/KG	U	
Methoxychlor	470	UG/KG	U	
Toxaphene	2300	UG/KG	U	
alpha-BHC	47	UG/KG	U	
alpha-Chlordane	47	UG/KG	U	
beta-BHC	47	UG/KG	U	
delta-BHC	47	UG/KG	U	
gamma-BHC (Lindane)	47	UG/KG	U	
gamma-Chlordane	76	UG/KG		J

Data Qualifiers:

PB-SS-021-1202-SO

Field Sample Type: Composite - Surface Soil 0.0-0.5 FT

Collected: 11/22/97

Pesticides and/or PCBs	Result	Units	Quali Lab	fiers Data
	24	UG/KG	U	ata
2,4,5-T	24 24	UG/KG UG/KG	U	
2,4,5-TP (Silvex)	24 95	UG/KG	Ŭ	
2,4-D	19	UG/KG	Ŭ	
4,4'-DDD	19	UG/KG	Ŭ	
4,4'-DDE	19	UG/KG	Ū	
4,4'-DDT	19	UG/KG	Ū	
Aldrin	100	UG/KG	Ū	
Aroclor 1016	100	UG/KG	Ū	
Aroclor 1221	100	UG/KG	Ŭ	
Aroclor 1232	· 100	UG/KG	Ū	
Aroclor 1242	100	UG/KG	Ŭ	
Aroclor 1248	100	UG/KG	Ŭ	
Aroclor 1254	190 190	UG/KG	Ŭ	
Aroclor 1260	190	UG/KG	Ŭ	
Dieldrin	19	UG/KG	Ŭ	
Endosulfan I		UG/KG	Ŭ	
Endosulfan II	19		U	
Endosulfan sulfate	19	UG/KG	U	
Endrin	19	UG/KG	U U	
Endrin aldehyde	19	UG/KG	U U	
Endrin ketone	19	UG/KG	U U	
Heptachlor	10	UG/KG		
Heptachlor epoxide	10	UG/KG	U	
Methoxychlor	100	UG/KG	U	
Toxaphene	490	UG/KG	U	
alpha-BHC	10	UG/KG	U	
alpha-Chlordane	10	UG/KG	U	
beta-BHC	10	UG/KG	U	
delta-BHC	10	UG/KG	U	
gamma-BHC (Lindane)	10	UG/KG	U	
gamma-Chlordane	10	UG/KG	U	

Data Qualifiers:

Station: SS21

PB-SS-021D-1230-SO

.

0.0-0.5 FT Field Sample Type: Field Duplicate

Collected: 11/22/97

.

Pesticides and/or PCBs	Result	Units	Qualifiers Lab Data
2,4,5-T	23	UG/KG	U
2,4,5-TP (Silvex)	23	UG/KG	U
2,4-D	91	UG/KG	U
4,4'-DDD	19	UG/KG	U
4,4'-DDE	19	UG/KG	U
4,4'-DDT	19	UG/KG	U
Aldrin	9.7	UG/KG	U
Aroclor 1016	97	UG/KG	U
Aroclor 1221	97	UG/KG	U
Aroclor 1232	97	UG/KG	U
Aroclor 1242	97	UG/KG	U
Aroclor 1248	97	UG/KG	U
Aroclor 1254	190	UG/KG	U
Aroclor 1260	190	UG/KG	U
Dieldrin	19	UG/KG	U
Endosulfan I	9.7	UG/KG	U
Endosulfan II	19	UG/KG	U
Endosulfan sulfate	19	UG/KG	U
Endrin	19	UG/KG	U
Endrin aldehyde	19	UG/KG	U
Endrin ketone	19	UG/KG	U
Heptachlor	9.7	UG/KG	U
Heptachlor epoxide	9.7	UG/KG	U
Methoxychlor	97	UG/KG	U
Toxaphene	470	UG/KG	U
alpha-BHC	9.7	UG/KG	U
alpha-Chlordane	9.7	UG/KG	U
beta-BHC	9.7	UG/KG	U
delta-BHC	9.7	UG/KG	U
gamma-BHC (Lindane)	9.7	UG/KG	U
gamma-Chlordane	9.7	UG/KG	U

Data Qualifiers:

•

PB-SS-023-1178-SO

0.0-0.5 FT Field Sample Type: Split Sample

Collected: 11/22/97

Pesticides and/or PCBs	Result	Units	Quali Lab	fiers Data
2,4,5-T	25	UG/KG	U	
2,4,5-TP (Silvex)	25	UG/KG	U	
2,4-D	100	UG/KG	U	
4,4'-DDD	82	UG/KG	U	
4,4'-DDE	82	UG/KG	U	
4,4'-DDT	82	UG/KG	U	
Aldrin	42	UG/KG	U	
Aroclor 1016	420	UG/KG	U	
Aroclor 1221	420	UG/KG	U	
Aroclor 1232	420	UG/KG	U	
Aroclor 1242	420	UG/KG	U	
Aroclor 1248	420	UG/KG	U	
Aroclor 1254	820	UG/KG	U	
Aroclor 1260	820	UG/KG	U	
Dieldrin	82	UG/KG	U	
Endosulfan I	42	UG/KG	U	
Endosulfan II	82	UG/KG	U	
Endosulfan sulfate	82	UG/KG	U	
Endrin	82	UG/KG	U	
Endrin aldehyde	82	UG/KG	U	
Endrin ketone	82	UG/KG	U	
Heptachlor	42	UG/KG	U	
Heptachlor epoxide	42	UG/KG	U	
Methoxychlor	420	UG/KG	U	
Toxaphene	2100	UG/KG	U	
alpha-BHC	42	UG/KG	U	
alpha-Chlordane	42	UG/KG	U	
beta-BHC	42	UG/KG	U	
delta-BHC	42	UG/KG	U	
gamma-BHC (Lindane)	42	UG/KG	U	
gamma-Chlordane	42	UG/KG	U	

Data Qualifiers:

PB-SS-024-1180-SO

0.0-0.5 FT Field Sample Type: Composite - Surface Soil

Collected: 11/22/97

			Qualifiers	
Pesticides and/or PCBs	Result	Units	Lab	Data
2,4,5-T	30	UG/KG	U	
2,4,5-TP (Silvex)	30	UG/KG	U	
2,4-D	120	UG/KG	U	
4,4'-DDD	4900	UG/KG	U	
4,4'-DDE	4900	UG/KG	U	
4,4'-DDT	29000	UG/KG		
Aldrin	2500	UG/KG	U	
Aroclor 1016	25000	UG/KG	U	
Aroclor 1221	25000	UG/KG	U	
Aroclor 1232	25000	UG/KG	U	
Arocior 1242	25000	UG/KG	U	
Aroclor 1248	25000	UG/KG	U	
Aroclor 1254	49000	UG/KG	U	
Aroclor 1260	49000	UG/KG	U	
Dieldrin	4900	UG/KG	U	
Endosulfan I	2500	UG/KG	U	
Endosulfan II	4900	UG/KG	U	
Endosulfan sulfate	4900	UG/KG	U	
Endrin	4900	UG/KG	U	
Endrin aldehyde	4900	UG/KG	U	
Endrin ketone	4900	UG/KG	U	
Heptachlor	2500	UG/KG	U	
Heptachlor epoxide	2500	UG/KG	U	
Methoxychlor	25000	UG/KG	U	
Toxaphene	120000	UG/KG	U	
alpha-BHC	2500	UG/KG	U	
alpha-Chlordane	4900	UG/KG		
beta-BHC	2500	UG/KG	U	
delta-BHC	2500	UG/KG	U	
gamma-BHC (Lindane)	2500	UG/KG	U	
gamma-Chlordane	5200	UG/KG		

Data Qualifiers:

PB-SS-025-1182-SO

0.0-0.5 FT Field Sample Type: Composite - Surface Soil

Collected: 11/22/97

Pesticides and/or PCBs	Result	Units	Qualifiers	
resuctues and/or FCBs	Kcsun	<u> </u>	Lab	Data
2,4,5-T	29	UG/KG	U	
2,4,5-TP (Silvex)	29	UG/KG	U	
2,4-D	120	UG/KG	U	
4,4'-DDD	. 48	UG/KG	U	
4,4'-DDE	48	UG/KG	U	
4,4'-DDT	48	UG/KG	U	
Aldrin	25	UG/KG	U	
Aroclor 1016	250	UG/KG	U	
Aroclor 1221	250	UG/KG	U	
Aroclor 1232	250	UG/KG	U	
Aroclor 1242	250	UG/KG	U	
Aroclor 1248	250	UG/KG	U	
Aroclor 1254	480	UG/KG	U	
Aroclor 1260	480	UG/KG	U	
Dieldrin	48	UG/KG	U	
Endosulfan I	25	UG/KG	U	
Endosulfan II	48	UG/KG	U	
Endosulfan sulfate	48	UG/KG	U	
Endrin	48	UG/KG	U	
Endrin aldehyde	48	UG/KG	U	
Endrin ketone	48	UG/KG	U	
Heptachlor	25	UG/KG	U	
Heptachlor epoxide	25	UG/KG	U	
Methoxychlor	250	UG/KG	U	
Toxaphene	1200	UG/KG	U	
alpha-BHC	25	UG/KG	U	
alpha-Chlordane	25	UG/KG	U	
beta-BHC	25	UG/KG	U	
delta-BHC	25	UG/KG	U	
gamma-BHC (Lindane)	25	UG/KG	U	
gamma-Chlordane	25	UG/KG	U	

Data Qualifiers:

Station: SS26

PB-SS-026-1184-SO

0.0-0.5 FT Field Sample Type: Composite - Surface Soil

Collected: 11/24/97

Pesticides and/or PCBs	Result	Units	Qualifiers Lab Data
2,4,5-T	31	UG/KG	U
2,4,5-TP (Silvex)	31	UG/KG	U
2,4-D	120	UG/KG	U
4,4'-DDD	25	UG/KG	U
4,4'-DDE	25	UG/KG	U
4,4'-DDT	25	UG/KG	U
Aldrin	13	UG/KG	U
Aroclor 1016	130	UG/KG	U
Aroclor 1221	130	UG/KG	U
Aroclor 1232	130	UG/KG	U
Aroclor 1242	130	UG/KG	U
Aroclor 1248	130	UG/KG	U
Aroclor 1254	250	UG/KG	U
Aroclor 1260	250	UG/KG	U
Dieldrin	25	UG/KG	U
Endosulfan I	13	UG/KG	U
Endosulfan II	25	UG/KG	U
Endosulfan sulfate	25	UG/KG	U
Endrin	25	UG/KG	U
Endrin aldehyde	25	UG/KG	U
Endrin ketone	25	UG/KG	U
Heptachlor	13	UG/KG	U
Heptachlor epoxide	13	UG/KG	U
Methoxychlor	130	UG/KG	U
Toxaphene	630	UG/KG	U
alpha-BHC	13	UG/KG	U
alpha-Chlordane	13	UG/KG	U
beta-BHC	13	UG/KG	U
delta-BHC	13	UG/KG	U
gamma-BHC (Lindane)	13	UG/KG	U
gamma-Chlordane	13	UG/KG	U

Data Qualifiers:

L-Serial dilution criteria not met MBB-Detected in method blank at less than 5% of sample amount PF-RPD greater than 50% difference between columns J-Estimated value U-Not detected UJ-Not detected, associated value uncertain

Station: SS27

PB-SS-027-1186-SO

Field Sample Type: Composite - Surface Soil 0.0-0.5 FT

Collected: 11/22/97

Pesticides and/or PCBs	Result	Units	Quali Lab	fiers Data
2,4,5-T	23	UG/KG	U	
2,4,5-TP (Silvex)	23	UG/KG	U	
2,4-D	93	UG/KG	U	
4,4'-DDD	19	UG/KG	U	
4,4'-DDE	19	UG/KG	U	
4,4'-DDT	19	UG/KG	U	
Aldrin	9.8	UG/KG	U	
Aroclor 1016	98	UG/KG	U	
Aroclor 1221	98	UG/KG	U	
Aroclor 1232	98	UG/KG	U	
Aroclor 1242	98	UG/KG	U	
Aroclor 1248	98	UG/KG	U	
Aroclor 1254	190	UG/KG	U	
Aroclor 1260	190	UG/KG	U	
Dieldrin	19	UG/KG	U	
Endosulfan I	9.8	UG/KG	U	
Endosulfan II	19	UG/KG	U	
Endosulfan sulfate	19	UG/KG	U	
Endrin	19	UG/KG	U	
Endrin aldehyde	19	UG/KG	U	
Endrin ketone	19	UG/KG	U	
Heptachlor	9.8	UG/KG	U	
Heptachlor epoxide	9.8	UG/KG	U	
Methoxychlor	98	UG/KG	U	
Toxaphene	480	UG/KG	U	
alpha-BHC	9.8	UG/KG	U	
alpha-Chlordane	17	UG/KG	PF	
beta-BHC	9.8	UG/KG	U	
delta-BHC	9.8	UG/KG	U	
gamma-BHC (Lindane)	9. 8	UG/KG	U	
gamma-Chlordane	13	UG/KG		J

Data Qualifiers:

L-Serial dilution criteria not met MBB-Detected in method blank at less than 5% of sample amount PF-RPD greater than 50% difference between columns J-Estimated value U-Not detected UJ-Not detected, associated value uncertain

Station: SS28

PB-SS-028-1188-SO

0.0-0.5 FT Field Sample Type: Composite - Surface Soil

Collected: 11/22/97

Pesticides and/or PCBs	Result	Units	Quali: Lab	fiers Data
2,4,5-T	22	UG/KG	U	
2,4,5-TP (Silvex)	22	UG/KG	U	
2,4-D	88	UG/KG	U	
4,4'-DDD	. 36	UG/KG	U	
4,4'-DDE	36	UG/KG	U	
4,4'-DDT	36	UG/KG	U	
Aldrin	19	UG/KG	U	
Aroclor 1016	190	UG/KG	U	
Aroclor 1221	190	UG/KG	U	
Aroclor 1232	190	UG/KG	U	
Aroclor 1242	190	UG/KG	U	
Aroclor 1248	190	UG/KG	U	
Aroclor 1254	360	UG/KG	U	
Aroclor 1260	360	UG/KG	U	
Dieldrin	36	UG/KG	U	
Endosulfan I	19	UG/KG	U	
Endosulfan II	36	UG/KG	U	
Endosulfan sulfate	36	UG/KG	U	
Endrin	36	UG/KG	U	
Endrin aldehyde	36	UG/KG	U	
Endrin ketone	36	UG/KG	U	
Heptachlor	19	UG/KG	U	
Heptachlor epoxide	19	UG/KG	U	
Methoxychlor	190	UG/KG	U	
Toxaphene	920	UG/KG	U	
alpha-BHC	19	UG/KG	U	
alpha-Chlordane	19	UG/KG	U	
beta-BHC	19	UG/KG	U	
delta-BHC	- 19	UG/KG	U	
gamma-BHC (Lindane)	19	UG/KG	U	
gamma-Chlordane	19	UG/KG	Ū	

Data Qualifiers:

L-Serial dilution criteria not met MBB-Detected in method blank at less than 5% of sample amount PF-RPD greater than 50% difference between columns J-Estimated value U-Not detected UJ-Not detected, associated value uncertain

Location: Pesticides Building

Station: SS29

PB-SS-029-1190-SO

0.0-0.5 FT Field Sample Type: Composite - Surface Soil

Collected: 11/22/97

Pesticides and/or PCBs	Result	Units	Quali: Lab	
	a			Data
2,4,5-T	35	UG/KG	U	
2,4,5-TP (Silvex)	35	UG/KG	U	
2,4-D	140	UG/KG	U	
4,4'-DDD	110	UG/KG	U	
4,4'-DDE	110	UG/KG	U	
4,4' -D DT	110	UG/KG	U	
Aldrin	59	UG/KG	U	
Aroclor 1016	590	UG/KG	U	
Aroclor 1221	590	UG/KG	U	
Aroclor 1232	590	UG/KG	U	
Aroclor 1242	590	UG/KG	U	
Aroclor 1248	590	UG/KG	U	
Aroclor 1254	1100	UG/KG	U	
Aroclor 1260	1100	UG/KG	U	
Dieldrin	110	UG/KG	U	
Endosulfan I	59	UG/KG	U	
Endosulfan II	110	UG/KG	U	
Endosulfan sulfate	110	UG/KG	U	
Endrin	110	UG/KG	U	
Endrin aldehyde	110	UG/KG	U	
Endrin ketone	110	UG/KG	U	
Heptachlor	59	UG/KG	U	
Heptachlor epoxide	59	UG/KG	U	
Methoxychlor	590	UG/KG	U	
Toxaphene	2900	UG/KG	U	
alpha-BHC	59	UG/KG	U	
alpha-Chlordane	59	UG/KG	U	
beta-BHC	59	UG/KG	Ū	
delta-BHC	59	UG/KG	Ū	
	59	UG/KG	Ŭ	
gamma-BHC (Lindane) gamma-Chlordane	59	UG/KG	Ŭ	

Data Qualifiers:

L-Serial dilution criteria not met MBB-Detected in method blank at less than 5% of sample amount PF-RPD greater than 50% difference between columns J-Estimated value U-Not detected UJ-Not detected, associated value uncertain

/

Client: CTL Project No.: Date: SAIC 97050931 December 19, 1997

Soil Description & Moisture Content Army Ammunition Plant Ravenna, Ohio

Sample I.D.	Description	Moisture Content (%)
CS1272	Brown SILTY FINE TO COARSE SAND	12.8
CS1273	Brown FINE SAND, Traces of Fine to Coarse Gravel	15.7
CS1274	Brown SANDY SILT	21.3
CS1275	Brown Lean CLAY with Sand [CL]	20.2
CS1276	Brown and Gray SANDY SILTY CLAY [CL-ML]	23.5
CS1277	Brown SANDY SILT	18.2
CS1278	Brown SILTY FINE TO MEDIUM SAND	13.5
DF1151	Brown SILTY FINE TO COARSE SAND AND GRAVEL	17.9
DF1152	Dark Brown SILT with Roots	18.8
DF1153	Brown SANDY SILT	15.8
DF1154	Brown SANDY SILT	14.2
DF1155	Brown SANDY SILT	15.9
DF1156	Brown SILTY FINE TO COARSE SAND AND GRAVEL	18.4
DF1157	Brown SILTY SAND [SM]	19.2
DF1158	Brown SANDY SILT with Roots	16.9
DF1159	Brown SANDY SILT with Roots	14.9
DF1160	Brown SANDY SILT with Roots	14.6
DF1161, 6'-8'	Brown SILTY FINE SAND with Silt Seams	10.9

Page 1 of 12

.

Soil Description & Moisture Content Army Ammunition Plant Ravenna, Ohio

Sample I.D.	Description	Moisture Content (%)
DF1162, 8'-10'	Brown SILTY FINE TO COARSE SAND AND GRAVEL	11.2
DF1261, 10'-12'	Brown SILTY SAND, [SM]	14.2
DF1262, 12'-14'	Brown FINE SAND	22.3
DF1263	Brown SILTY SAND [SM]	19.7
OD1001	Grayish Brown SILTY SAND AND GRAVEL	8.4
OD1002	Brown SILT, Traces of Clay	22.0
OD1003	Brown and Gray SILTY CLAY	24.4
OD1004	Brown and Gray SILTY SAND AND GRAVEL	12.1
OD1005	Brown and Gray SANDY SILT with Gravel	17.5
OD1006	Brown and Gray SILT with Roots	26.8
OD1007	Grayish Brown SILTY CLAY with Roots	19.1
OD1008	Brown SILTY CLAY	21.9
OD1009	Brown SILTY CLAY	20.0
OD1010	Brown SILTY CLAY	20.6
OD1011	Brown and Gray CLAYEY SILT with Roots	25.2
OD1012	Brown and Gray CLAYEY SILT with Roots	18.4
OD1013	Brown CLAYEY SILT with Roots	17.4
OD1014	Brown CLAYEY SILT with Roots	19.3
OD1015	Brown CLAYEY SILT with Roots	18.1

Page 2 of 12

•

Soil Description & Moisture Content Army Ammunition Plant Ravenna, Ohio

Sample I.D.	Description	Moisture Content (%)
OD1016	Brown and Gray SILTY SAND AND GRAVEL	10.1
OD1017	Brown CLAYEY SILT with Roots	18.2
OD1018	Brown CLAYEY SILT with Roots	18.5
OD1019	Brown CLAYEY SILT with Roots	17.1
OD1020	Brown CLAYEY SILT with Roots	19.9
OD1021	Brown CLAYEY SILT with Roots	18.6
OD1022	Brown CLAYEY SILT with Roots	16.7
OD1023	Brown CLAYEY SILT with Roots	17.0
OD1024	Brown CLAYEY SILT with Roots	22.3
OD1025	Brown SILTY FINE TO COARSE SAND AND GRAVEL with Roots	7.6
OD1026	Brown and Gray SILT, Some Fine Sand	25.7
OD1027	Brown and Gray SILT, Some Fine Sand with Cobbles	12.2
OD1028	Brown and Gray SILT, Some Fine Sand with Cobbles	24.8
OD1029	Brown CLAYEY SILT	23.0
OD1030	Brown SILT with Roots	22.7
OD1031	Brown SILT with Roots	18.9
OD1032	Brown SILT with Roots	25.8
OD1033	Brown SANDY SILT, Traces of Fine to Coarse Gravel	12.5
OD1034	Brown SANDY SILT, Traces of Fine to Coarse Gravel	13.7

Page 3 of 12

ι,

Soil Description & Moisture Content Army Ammunition Plant Ravenna, Ohio

Sample I.D.	Description	Moisture Content (%)
OD1035	Brown SILT	28.2
OD1036	Brown SILT	19.8
OD1037	Brown CLAYEY SILT with Roots	12.3
OD1038	Brown CLAYEY SILT with Roots	13.4
OD1039	Brown CLAYEY SILT with Roots	14.0
OD1040	Brown SILT	21.2
OD1041	Brown CLAYEY SILT	18.0
OD1042	Brown CLAYEY SILT	14.0
OD1043	Brown SILTY CLAY	18.5
OD1044	Brown CLAYEY SILT	15.1
OD1045	Brown CLAYEY SILT	16.1
OD1046	Brown CLAYEY SILT	14.3
OD1047	Brown CLAYEY SILT	13.0
OD1048	Brown CLAYEY SILT	13.9
OD1049	Brown and Gray SILTY CLAY	17.7
OD1050	Brown CLAYEY SILT	16.6
OD1051	Brown CLAYEY SILT	14.1
OD1052	Brown SILT, Traces of Clay	22.1
OD1053	Brown CLAYEY SILT	15.3
OD1054	Brown and Gray SANDY SILT	11.7

Page 4 of 12

Soil Description & Moisture Content Army Ammunition Plant Ravenna, Ohio

Sample I.D.	Description	Moisture Content (%)
OD1055	Brown FINE TO COARSE SAND AND GRAVEL	11.8
OD1056	Brown FINE TO COARSE SAND AND GRAVEL	10.7
OD1057	Brown CLAYEY SILT with Roots	14.9
OD1058	Brown CLAYEY SILT with Roots	15.0
OD1059	Brown and Gray SANDY SILT, Some Fine to Coarse Gravel	12.1
OD1060	Brown and Gray SANDY SILT, Some Fine to Coarse Gravel	9.4
OD1061	Brown and Gray SANDY SILT, Some Fine to Coarse Gravel with Shale	12.9
OD1062	Brown CLAYEY SILT	12.0
OD1063	Brown SILT, Traces of Clay	23.6
OD1064	Brown and Gray SANDY SILT with Cobbles	13.5
OD1065	Brown CLAYEY SILT with Roots	14.6
OD1066	Brown SILT	12.7
OD1067	Brown SILT, Traces of Clay	12.1
OD1068	Brown SILTY CLAY with Sand [CL-ML]	15.1
OD1069	Brown CLAYEY SILT with Roots	17.2
OD1070	Brown SILT, Traces of Clay	14.2
OD1071	Brown SILT, Traces of Clay	17.5
OD1072	Brown SILT, Traces of Clay, Traces of Fine to Coarse Sand and Gravel	14.5

Page 5 of 12

Client: CTL Project No.: Date:

•

SAIC 97050931 December 19, 1997

Soil Description & Moisture Content Army Ammunition Plant Ravenna, Ohio

Sample I.D.	Description	Moisture Content (%)
OD1073	Brown SANDY SILT with Roots and Organics	15.0
OD1074	Brown CLAYEY SILT	14.7
OD1075	Brown SANDY SILT, Traces of Fine to Coarse Gravel	12.3
OD1077	Brown CLAYEY SILT with Roots	16.8
OD1078	Brown and Gray SANDY SILT	13.5
OD1079	Gray SANDY SILTY CLAY [CL-ML]	9.7
OD1080	Gray SANDY SILT	10.8
OD1081	Brown SILT	17.2
OD1082	Brown and Gray SANDY SILT	12.3
OD1083	Gray SANDY SILT	10.0
OD1084	Gray SANDY SILT	10.1
OD1085	Brown CLAYEY SILT, Traces of Roots	17.2
OD1086	Brown SILT, Some Fine Sand	17.7
OD1087	Brown SILT, Some Fine Sand	13.5
OD1088	Brown SILT, Some Fine Sand	12.1
OD1089	Brown FINE TO COARSE SAND AND GRAVEL	13.1
OD1090	Brown and Gray CLAYEY SILT	20.7
OD1091	Moist, Brown and Gray CLAYEY SILT	22.2
OD1092	Moist, Brown and Gray CLAYEY SILT	22.8
OD1093	Brown SANDY SILT	11.5

Page 6 of 12

J

•

Soil Description & Moisture Content Army Ammunition Plant Ravenna, Ohio

Sample LD.	Description	Moisture Content (%)
OD1094	Brown SILT, Traces of Clay	21.6
OD1095	Brown CLAYEY SILT	27.9
OD1096	Brown SILT	13.1
OD1097	Brown SANDY SILT	12.9
OD1098	Brown SANDY SILT	12.5
OD1099	Brown SANDY SILT	13.2
OD1100	Brown SANDY SILTY CLAY [CL-ML]	11.3
OD1101	Brown CLAYEY SILT	13.9
OD1102	Brown SANDY SILT	14.2
OD1103	Brown SANDY SILT	10.6
OD1104	Brown FINE TO COARSE SAND AND GRAVEL	13.1
OD1105	Brown SANDY SILT	11.9
OD1106	Brown and Gray SANDY SILT	12.0
OD1107	Brown and Gray SANDY SILT	10.9
OD1108	Brown SILTY FINE SAND	13.4
OD1109	Brown SANDY SILT	15.8
OD1110	Brown CLAYEY SILT	21.9
OD1111	Brown and Gray CLAYEY SILT	18.8
OD1113	Brown SANDY SILT	15.1
OD1114	Brown SANDY SILT	13.4

Page 7 of 12

Client:SCTL Project No.:9Date:1

۰.

SAIC 97050931 December 19, 1997

Soil Description & Moisture Content Army Ammunition Plant Ravenna, Ohio

Sample I.D.	Description	Moisture Content (%)
OD1115	Brown SANDY SILT	13.3
OD1116	Brown CLAYEY SILT	14.6
OD1117	Gray SANDY SILT	7.9
OD1118	Brown and Gray SANDY SILT	9.9
OD1119	Brown SANDY SILT with Sandstone Fragments	9.7
OD1120	Brown SANDY SILT with Sandstone Fragments	11.5
OD1121	Brown and Gray SANDY SILT	8.7
OD1122	Wet, Brown and Gray SANDY SILT	21.2
OD1123	Brown SANDY SILT with Sandstone Fragments	10.5
OD1124	Brown SANDY SILT with Sandstone Fragments	11.2
OD1125	Brown CLAYEY SILT with Roots	15.0
OD1126	Brown CLAYEY SILT with Roots	13.8
OD1127	Brown SANDY SILT, Some Fine to Coarse Gravel	12.0
OD1128	Brown and Gray SANDY SILT	8.9
OD1129	Brown SANDY SILT, Some Fine to Coarse Gravel	11.4
OD1130	Brown SANDY SILT, Some Fine to Coarse Gravel	15.2
OD1131	Brown and Gray SANDY SILTY CLAY [CL-ML]	19.4
OD1133	Brown CLAYEY SILT with Roots	19.2
OD1134	Brown CLAYEY SILT with Roots	22.4
OD1135	Brown CLAYEY SILT with Roots	22.2

Page 8 of 12

.

Soil Description & Moisture Content Army Ammunition Plant Ravenna, Ohio

Sample I.D.	Description	Moisture Content (%)
OD1136	Brown SILT, Traces of Clay	20.5
OD1137	Brown SILT, Traces of Clay	15.0
OD1138	Brown SILT, Traces of Clay	18.6
OD1139	Brown SILT, Traces of Clay	17.9
OD1141	Brown SILT with Roots	11.0
OD1142	Brownish Gray SANDY SILT	12.3
OD1143	Brownish Gray SANDY SILT	14.3
OD1144	Brown and Gray SANDY SILT, Traces of Fine to Coarse Gravel	15.0
OD1145	Brown CLAYEY SILT	16.7
OD1146	Brown SANDY SILT	15.1
OD1147	Brown and Gray SANDY SILT	11.5
OD1148		1.7
OD1233	Brown SILTY SAND AND GRAVEL	14.0
OD1239	Brown and Gray SANDY SILT with Shale	10.4
OD1241	Gray SANDY SILT	9.9
OD1242	Brown SANDY SILT	11.9
OD1257	Gray SANDY SILT	10.2
PB1163	Wet, Brown and Gray SILTY SAND AND GRAVEL	21.0
PB1164	Brown CLAYEY SILT	20.5

Page 9 of 12

Client:SAICCTL Project No.:97050Date:Decent

.

.

97050931 December 19, 1997

Soil Description & Moisture Content Army Ammunition Plant Ravenna, Ohio

Sample I.D.	Description	Moisture Content (%)
PB1165	Brown and Gray SANDY SILT	22.1
PB1166	Brown and Gray CLAYEY SILT	17.5
PB1167	Wet, Dark Gray SAND AND GRAVEL	12.7
PB1168	Gray SAND AND GRAVEL	9.7
PB1169	Gray SAND AND GRAVEL	9.1
PB1170	Dark Brown SAND AND GRAVEL	11.3
PB1171	Dark Brown SAND AND GRAVEL with Roots	13.7
PB1172	Brownish Gray SAND AND GRAVEL	9.6
PB1173	Brown CLAYEY SILT	24.6
PB1174	Dark Brown SILTY SAND AND GRAVEL	16.3
PB1175	Brown and Gray CLAYEY SILT with Sand and Gravel	14.7
PB1176	Dark Brown SAND AND GRAVEL with Roots	6.9
PB1177	Brown and Gray SILTY CLAY	22.8
PB1178	Dark Brown SAND AND GRAVEL with Organics	15.6
PB1179	Dark Brown SAND AND GRAVEL with Organics	17.1
PB1180	Wet, Dark Gray SILTY SAND AND GRAVEL	33.6
PB1181	Wet, Brown and Gray SILTY CLAY	36.1
PB1182	Wet, Brown and Gray SILTY CLAY	37.8
PB1183	Brown CLAYEY SILT	25.0
PB1184	Dark Brown SILT with Organics	63.7

Page 10 of 12

Soil Description & Moisture Content Army Ammunition Plant Ravenna, Ohio

Sample I.D.	Description	Moisture Content (%)
PB1185	Dark Brown CLAYEY SILT	25.0
PB1186	Brown CLAYEY SILT	14.8
PB1187	Brown CLAYEY SILT	10.6
PB1188	Dark Brown SAND AND GRAVEL with Organics	9.9
PB1189	Dark Brown SAND AND GRAVEL with Organics	18.8
PB1190	Dark Brown SILT with Organics	85.7
PB1191	Wet, Gray SANDY SILT	36.0
PB1192	Wet, Dark Gray SAND AND GRAVEL with Roots	16.2
PB1193	Brown SAND AND GRAVEL	15.6
PB1194	Wet, Dark Brown SAND AND GRAVEL	17.5
PB1195	Wet, Dark Brown SAND AND GRAVEL	14.5
PB1196	Wet, Dark Brown SAND AND GRAVEL	16.0
PB1198	Brown SAND AND GRAVEL	13.0
PB1199	Brown SAND AND GRAVEL	12.6
PB1200	Brown SANDY SILT	14.1
PB1202	Brown SAND AND GRAVEL	15.0
PB1203	Brown SAND AND GRAVEL	14.7
PB1204	Gray SAND AND GRAVEL	11.0
PB1205	Brown SAND AND GRAVEL	7.8
PB1206	Gray SAND AND GRAVEL	18.1

Page 11 of 12

Soil Description & Moisture Content Army Ammunition Plant Ravenna, Ohio

Sample I.D.	Description	Moisture Content (%)
PB1207	Wet, Brown SAND AND GRAVEL	9.5
PB1283	Brown and Gray SILTY CLAY	21.6
PB1284	Brown SILT [CL]	20.2
PB1285	Brown CLAYEY SILT	16.5
PB1286	Brown CLAYEY SILT	16.6
PB1287	Brown SILTY CLAY with Sand [CL-ML]	26.9
PB1288	Gray CLAYEY SILT with Fine Sand	18.8

<u>SMP ID</u>	STATION	<u>Depth</u>
CS1272	SB01	0-2 ft.
CS1273	SB01	2-4 ft.
CS1274	SB01	4-6 ft.
CS1275	SB01	6-8 ft.
CS1276	SB01	8-10 ft.
CS1277	SB01	10-11 ft.
CS1278	SS01	0.0-0.5 ft.
DF1149	SS01	0.0-0.5 ft.
DF1150	SS02	0.0-0.5 ft.
DF1151	SS01	0.0-0.5 ft.
DF1152	SS02	0.0-0.5 ft.
DF1153	SB01	0-2 ft.
DF1154	SB01	2-4 ft.
DF1155	SB01	4-6 ft.
DF1156	SB01	6-8 ft.
DF1157	SB01	8-10 ft.
DF1158	SB02	0-2 ft.
DF1159	SB02	2-4 ft.
DF1160	SB02	4-6 ft.
DF1161	SB02	6-8 ft.
DF1162	SB02	8-10 ft.
DF1225	SS01	0.0-0.5 ft.
DF1226	SS02	0.0-0.5 ft.
DF1261	SB01	10-12 ft.
DF1262	SB01	12-14 ft.
DF1263	SB01	14-16 ft.
OD1001	SS01	0.0-0.3 ft.
OD1002	SS02	0.0-0.3 ft.
OD1003	SS03	0.0-0.3 ft.
OD1003	SB03	
OD1004	SS04	0.0-0.3 ft.
OD1005	SS05	0.0-0.3 ft.
OD1006	SS06	0.0-0.3 ft.
OD1007	SS07	0.0-0.3 ft.
OD1008	SS08	0.0-0.3 ft.
OD1009	SS09	0.0-0.3 ft.
OD1010	SS10	0.0-0.3 ft.
OD1011	SS11	0.0-0.3 ft.
OD1012	SS12	0.0-0.3 ft.
OD1013	SS13	0.0-0.3 ft.
OD1014	SS14	0.0-0.3 ft.
OD1015	SS15	0.0-0.3 ft.
OD1016	SS16	0.0-0.3 ft.

Locate "Sample I.D." from Soil Description Report to Identify Sample Location and Depth Interval

SMP ID STATION		<u>Depth</u>
OD1017	SS17	0.0-0.3 ft.
OD1018	SS18	0.0-0.3 ft.
OD1019	SS19	0.0-0.3 ft.
OD1020	SS20	0.0-0.3 ft.
OD1021	SS21	0.0-0.3 ft.
OD1022	SS22	0.0-0.3 ft.
OD1023	SS23	0.0-0.3 ft.
OD1024	SS24	0.0-0.3 ft.
OD1025	SS25	0.0-0.3 ft.
OD1026	SS26	0.0-0.3 ft.
OD1027	SS27	0.0-0.3 ft.
OD1028	SS28	0.0-0.3 ft.
OD1029	SS29	0.0-0.3 ft.
OD1030	SS30	0.0-0.3 ft.
OD1031	SS31	0.0-0.3 ft.
OD1032	SS32	0.0-0.3 ft.
OD1033	SB01	0-2 ft.
OD1034	SB01	2-4 ft.
OD1035	SB01	4-6 ft.
OD1036	SB01	6-8 ft.
OD1037	SB02	0-2 ft.
OD1038	SB02	2-4 ft.
OD1039	SB02	4-6 ft.
OD1040	SB02	6-8 ft.
OD1041	SB03	0-2 ft.
OD1042	SB03	2-4 ft.
OD1043	SB03	4-6 ft.
OD1044	SB03	6-8 ft.
OD1045	SB04	0-2 ft.
OD1046	SB04	2-4 ft.
OD1047	SB04	4-6 ft.
OD1048	SB04	6-8 ft.
OD1049	SB05	0-2 ft.
OD1050	SB05	2-4 ft.
OD1051	SB05	4-6 ft.
OD1052	SB05	6-8 ft.
OD1053	SB06	0-2 ft.
OD1054	SB06	2-4 ft.
OD1055	SB06	4-6 ft.
OD1056	SB06	6-8 ft.
OD1057	SB07	0-2 ft.
OD1058	SB07	2-4 ft.
OD1059	SB07	4-6 ft.

.

.

.

SMP ID	STATION	Depth
0D1060	SB07	6-8 ft.
OD1060	SB07	0-0 ft.
OD1062	SB08	2-4 ft.
OD1063	SB08	4-6 ft.
OD1064	SB08	6-8 ft.
OD1065	SB09	0-2 ft.
OD1066	SB09	2-4 ft.
OD1067	SB09	4-6 ft.
OD1068	SB09	6-8 ft.
OD1069	SB10	0-2 ft.
OD1070	SB10	2-4 ft.
OD1071	SB10	4-6 ft.
OD1072	SB10	6-8 ft.
0D1072	SB11	0-2 ft.
OD1074	SB11	2-4 ft.
OD1075	SB11	4-6 ft.
OD1076	SB11	
OD1077	SB12	0-2 ft.
OD1078	SB12	2-4 ft.
OD1079	SB12	4-6 ft.
OD1080	SB12	6-8 ft.
OD1081	SB13	0-2 ft.
OD1082	SB13	2-4 ft.
OD1083	SB13	4-6 ft.
OD1084	SB13	6-8 ft.
OD1085	SB14	0-2 ft.
OD1086	SB14	2-4 ft.
OD1087	SB14	4-6 ft.
OD1088	SB14	6-8 ft.
OD1089	SB15	0-2 ft.
OD1090	SB15	2-4 ft.
OD1091	SB15	4-6 ft.
OD1092	SB15	6-8 ft.
OD1093	SB16	0-2 ft.
OD1094	SB16	2-4 ft.
OD1095	SB16	4-6 ft.
OD1096	SB16	6-8 ft.
OD1097	SB17	0-2 ft.
OD1098	SB17	2-4 ft.
OD1099	SB17	4-6 ft.
OD1100	SB17	6-8 ft.
OD1101	SB18	0-2 ft.
OD1102	SB18	2-4 ft.

SMP ID	STATION	<u>Depth</u>
OD1103	SB18	4-6 ft.
OD1104	SB18	6-8 ft.
OD1105	SB19	0-2 ft.
OD1106	SB19	2-4 ft.
OD1107	SB19	4-6 ft.
OD1108	SB19	6-8 ft.
OD1109	SB20	0-2 ft.
OD1110	SB20	2-4 ft.
OD1111	SB20	4-6 ft.
OD1112	SB20	
OD1113	SB21	0-2 ft.
OD1114	SB21	2-4 ft.
OD1115	SB21	4-6 ft.
OD1116	SB21	6-8 ft.
OD1117	SB22	0-2 ft.
OD1118	SB22	2-4 ft.
OD1119	SB22	4-6 ft.
OD1120	SB22	6-8 ft.
OD1121	SB23	0-2 ft.
OD1122	SB23	2-4 ft.
OD1123	SB23	4-6 ft.
OD1124	SB23	6-8 ft.
OD1125	SB24	0-2 ft.
OD1126	SB24	2-4 ft.
OD1127	SB24	4-6 ft.
OD1128	SB24	6-8 ft.
OD1129	SB25	0-2 ft.
OD1130	SB25	2-4 ft.
OD1131	SB25	4-6 ft.
OD1132	SB25	
OD1133	SB26	0-2 ft.
OD1134	SB26	2-4 ft.
OD1135	SB26	4-6 ft.
OD1136	SB26	6-8 ft.
OD1137	SB27	0-2 ft.
OD1138	SB27	2-4 ft.
OD1139	SB27	4-6 ft.
OD1140	SB27	
OD1141	SB28	0-2 ft.
OD1142	SB28	2-4 ft.
OD1143	SB28	4-6 ft.
OD1144	SB28	6-8 ft.
OD1145	SB29	0-2 ft.

ι.

<u>SMP ID</u>	STATION	<u>Depth</u>		
OD1146	SB29	2-4 ft.		
OD1147	SB29	4-6 ft.		
OD1148	SB29	6-8 ft.		
OD1208	SS01	0.0-0.3 ft.		
OD1209	S\$02	0.0-0.3 ft.		
OD1210	<u>SS03</u>	0.0-0.3 ft.		
OD1211	SS04	0.0-0.3 ft.		
OD1212	SS05	0.0-0.3 ft.		
OD1213	SS06	0.0-0.3 ft.		
OD1214	SS07	0.0-0.3 ft.		
OD1215	SS08	0.0-0.3 ft.		
OD1216	<u>SS09</u>	0.0-0.3 ft.		
OD1217	SS10	0.0-0.3 ft.		
OD1218	SS11	0.0-0.3 ft.		
OD1219	S\$12	0.0-0.3 ft.		
OD1220	SS13	0.0-0.3 ft.		
OD1221	SS14	0.0-0.3 ft.		
OD1222	SB05	4-6 ft.		
OD1223	SB06	2-4 ft.		
OD1224	SB29	2-4 ft.		
OD1233	SB01	12-14 ft.		
OD1239	SB10	12-14 ft.		
OD1241	SB10	16-18 ft.		
OD1242	SB10	19-20 ft.		
OD1243	SB17	8-10 ft.		
OD1244	SB17	10-12 ft.		
OD1257	SB24	12-14 ft.		
PB1163	SB09	0-2 ft.		
PB1164	SB09	2-4 ft.		
PB1165	SB09	4-6 ft.		
PB1166	SB09	6-8 ft.		
PB1167	SS09	0.0-0.5 ft.		
PB1168	SS13	0.0-0.5 ft.		
PB1169	SB13	1-2 ft.		
PB1170	SS14	0.0-0.5 ft.		
PB1171	SB22	1-2 ft.		
PB1172	SS15	0.0-0.5 ft.		
PB1173	SB15	1-2 ft.		
PB1174	SS16	0.0-0.5 ft.		
PB1175	SB16	1-2 ft.		
PB1176	SS17	0.0-0.5 ft.		
PB1177	SB17	1-2 ft.		
PB1178	SS23	0.0-0.5 ft.		

5

	STATION	Depth
SMP ID	STATION	Depth
PB1179	SB23	1-2 ft.
PB1180	<u>SS24</u>	0.0-0.5 ft.
PB1181	SB24	1-2 ft.
PB1182	SS25	0.0-0.5 ft.
PB1183	SB25	1-2 ft.
PB1184	SS26	0.0-0.5 ft.
PB1185	SB26	1-2 ft.
PB1186	SS27	0.0-0.5 ft.
PB1187	SB27	1-2 ft.
PB1188	SS28	0.0-0.5 ft.
PB1189	SB28	1-2 ft.
PB1190	SS29	0.0-0.5 ft.
PB1191	SB29	1-2 ft.
PB1192	SS03	0.0-0.5 ft.
PB1193	SS11	0.0-0.5 ft.
PB1194	SS04	0.0-0.5 ft.
PB1195	SS12	0.0-0.5 ft.
PB1196	SS05	0.0-0.5 ft.
PB1198	SS06	0.0-0.5 ft.
PB1199	SS18	0.0-0.5 ft.
PB1200	SS19	0.0-0.5 ft.
PB1201	SS20	0.0-0.5 ft.
PB1202	SS21	0.0-0.5 ft.
PB1202	SS02	0.0-0.5 ft.
PB1203	SS02 SS07	0.0-0.5 ft.
PB1204	SS08	0.0-0.5 ft.
PB1205	SS01	0.0-0.5 ft.
	SS10	0.0-0.5 ft.
PB1207		and the second
PB1227	SS06	0.0-0.5 ft.
PB1228	SS18	0.0-0.5 ft.
PB1229	SS19	0.0-0.5 ft.
PB1230	SS21	0.0-0.5 ft.
PB1283	SB09	8-10 ft.
PB1284	SB09	10-12 ft.
PB1285	SB09	12-14 ft.
PB1286	SB09	14-16 ft.
PB1287	SB09	16-18 ft.
PB1288	SB09	18-20 ft.

`

Client:	SAIC	Sample #	CS-1275	Date:	12/03/97
Project:	Army Ammunition Plant	Location:	SB01	Tech:	M.E.
	Ravenna, Ohio	Depth:	6-8 ft.	Gs:	2.71
Project #	97050931				

Total		Hydrometer	
Sample		Sample	
Weight =	223.51 grams	Weight =	40.66 grams

Sieve	Weight	%	%
Sizes	Retaine	Retained	Passing
1"	0.0	0.0	100.0
3/4"	0.0	0.0	100.0
3/8"	0.0	0.0	100.0
#4	0.4	0.2	99.8
#10	1.8	0.8	99.2
#40	10.8	4.8	95.2
#200	4.6	15.6	84.4

Elapsed		Temp.	Corrected	d		Effective	Particle
Time	Hydro	Correct.	Hydro	% Total		Length	Diameter
(min)	Reading	Value	Readin	in Susp.	K	(cm)	(mm)
2	41.0	4.5	36.5	84.43	0.01297	10.34	0.0295
15	29.5	4.5	25.0	57.83	0.01297	12.22	0.0117
60	20.0	4.5	15.5	35.86	0.01297	13.77	0.0062
250	15.0	4.5	10.5	24.29	0.01297	14.58	0.0031
1440	11.5	4.5	7.0	16.19	0.01297	15.16	0.0013

Summa	ary of Grain Size Distributio
0	% GRAVEL
1	% COARSE SAND
4	% MEDIUM SAND
11	% FINE SAND
53	% SILT
31	% CLAY (<0.005mm)

Atterberg Limits	3
Liquid Limit	30
Plastic Limit	19
Plasticity Index	11

20.2%

Soil Description:	LEAN CLAY, with	Sand		
Unified Soil Classi AASHTO Soil Clas	-	CL A-6a	- (9)	

Client:	SAIC	Sample #	CS-1276	Date:	12/03/97
Project:	Army Ammunition Plant	Location:	SB01	Tech:	M.E.
	Ravenna, Ohio	Depth:	8-10 ft.	Gs:	2.69
Project #	97050931		·		

Total		Hydrometer	
Sample		Sample	1
Weight =	284.98 grams	Weight =	43.53 grams

Sieve	Weight	%	%
Sizes	Retaine	Retained	Passing
1"	0.0	0.0	100.0
3/4"	0.0	0.0	100.0
3/8"	3.8	1.3	98.7
#4	10.4	3.7	96.3
#10	18.0	6.3	93.7
#40	35.0	12.3	87.7
#200	10.7	33.9	66.1

Elapsed Time	Hydro	Temp. Correct.	Corrected Hydro	d % Total		Effective Length	Particle Diameter
(min)	Reading	Value	Readin	in Susp.	K	(cm)	(<u>mm</u>)
2	36.0	4.5	31.5	62.96	0.01297	11.15	0.0306
15	24.0	4.5	19.5	38.97	0.01297	13.11	0.0121
60	18.0	4.5	13.5	26.98	0.01297	14.09	0.0063
250	14.0	4.5	9.5	18.99	0.01297	14.75	0.0032
1440	12.0		7.5	14.99	0.01297	15.07	0.0013

Summa	Summary of Grain Size Distributio					
4	% GRAVEL					
-	% COARSE SAND					
6	% MEDIUM SAND					
22	% FINE SAND					
41	% SILT					
24	% CLAY (<0.005mm)					

Atterberg Limits	<u></u>
Liquid Limit	24
Plastic Limit	17
Plasticity Index	7

Natural Moisture Content 23.5%

Soil Description: SA	NDY SILTY CLA	AY	
Unified Soil Classificat AASHTO Soil Classific		CL-ML A-4a (7)	

Client:	SAIC	Sample #	DF-1157	Date:	12/03/97
Project:	Army Ammunition Plant	Location:	SB01	Tech:	M.E.
	Ravenna, Ohio	Depth:	8-10 ft.	Gs:	2.67
Project #	97050931				

Total		Hydrometer	
Sample		Sample	
Weight =	156.33 grams	Weight =	40.70 grams

Sieve	Weight	%	%
Sizes		Retained	Passing
1"	0.0	0.0	100.0
3/4"	0.0	0.0	100.0
3/8"	0.0	0.0	100.0
#4	1.5	0.9	99.1
#10	13.9	8.9	91.1
#40	97.5	62.4	37.6
#200	21.5	82.3	17.7

Elapsed		Temp.	Corrected	d		Effective	Particle
Time	Hydro	Correct.	Hydro	% Total		Length	Diameter
(min)	Reading	Value	Readin	in Susp.	K	(cm)	(mm)
2	22.0	4.5	17.5	16.10	0.01309	13.44	0.0339
15	16.5	4.5	12.0	11.04	0.01309	14.34	0.0128
60	14.0	4.5	9.5	8.74	0.01309	14.75	0.0065
250	12.0	4.5	7.5	6.90	0.01309	15.07	0.0032
1440	10.0	4.5	5.5	5.06	0.01309	15.4	0.0014

Summ	Summary of Grain Size Distributio					
1	% GRAVEL					
8	% COARSE SAND					
54	% MEDIUM SAND					
20	% FINE SAND					
g	% SILT					
8	% CLAY (<0.005mm)					

.

Atterberg	Limits

Liquid Limit N.P. Plastic Limit N.P. Plasticity Index N.P.

Natural Moisture Content 19.2%

Soil Description: SILTY SAND		
Unified Soil Classification System:	SM	
AASHTO Soil Classification(ODOT):	A-1-b	 · · · · · · · · · · · · · · · · · · ·

Client:	SAIC	Sample #	DF-1261	Date:	12/03/97
Project:	Army Ammunition Plant	Location:	SB01	Tech:	M.E.
-	Ravenna, Ohio	Depth:	10-12 ft.	Gs:	2.67
Project #	97050931				

Total		Hydrometer	
Sample		Sample	
Weight =	265.28 grams	Weight =	40.30 grams

Sieve	Weight	%	%
Sizes	Retaine	Retained	Passing
1"	0.0	0.0	100.0
3/4"	0.0	0.0	100.0
3/8"	3.0	1.1	98.9
#4	12.8	4.8	95.2
#10	30.9	11.6	88.4
#40	127.5	48.1	51.9
#200	22.5	77.1	22.9

Elapsed Time	Hydro	Temp. Correct.	Corrected Hydro	d % Total		Effective Length	Particle Diameter
(min)			Readin	in Susp.	К	(cm)	(mm)
2	21.0	4.5	16.5	21.16	0.01309	13.6	0.0341
15	15.5	4.5	11.0	14.11	0.01309	14.5	0.0129
60	13.0	4.5	8.5	10.90	0.01309	14.91	0.0065
250	11.5	4.5	7.0	8.98	0.01309	15.16	0.0032
1440	10.0	4.5	5.5	7.05	0.01309	15.4	0.0014

Summary of Grain Size Distributio				
5	% GRAVEL			
7	% COARSE SAND			
37	% MEDIUM SAND			
29	% FINE SAND			
12	% SILT			
10	% CLAY (<0.005mm)			

Atterberg Limits		
Liquid Limit	N.P.	
Plastic Limit	N.P.	
Plasticity Index	N.P.	

14.2%

Soil Description: SILTY SAND		
Unified Soil Classification System:	SM	
AASHTO Soil Classification(ODOT):	A-3a	. <u></u>

Client:	SAIC	Sample # DF-1263	Date:	12/03/97
Project:	Army Ammunition Plant	Location: SB01	Tech:	M.E.
	Ravenna, Ohio	Depth: 14-16 ft.	Gs:	2.68
Project #	97050931			

Total		Hydrometer	
Sample		Sample	
Weight =	236.97 grams	Weight =	84.29 grams

Sieve	Weight	%	%
Sizes	Retaine	Retained	Passing
1"	0.0	0.0	100.0
3/4"	0.0	0.0	100.0
3/8"	0.0	0.0	100.0
#4	0.0	0.0	100.0
#10	0.5	0.2	99.8
#40	65.0	27.4	72.6
#200	66.0	84.2	15.8

Elapsed		Temp.	Correcte	d .		Effective	Particle
Time	Hydro	Correct.	Hydro	% Total		Length	Diameter
(min)	Reading	Value	Readin	in Susp.	Κ	(cm)	(mm)
2	21.0	4.5	16.5	14.13	0.01309	13.6	0.0341
15	17.0	4.5	12.5	10.70	0.01309	14.26	0.0128
60	14.0	4.5	9.5	8.13	0.01309	14.75	0.0065
250	12.0	4.5	7.5	6.42	0.01309	15.07	0.0032
1440	10.0	4.5	5.5	4.71	0.01309	15.4	0.0014

Summa	Summary of Grain Size Distributio					
0	% GRAVEL					
_	% COARSE SAND					
27	% MEDIUM SAND					
57	% FINE SAND					
9	% SILT					
7	% CLAY (<0.005mm)					

Attarbarg	Limito
Atterberg	LINNIS

Liquid Limit N.P. Plastic Limit N.P. Plasticity Index N.P.

Natural Moisture Content 19.7%

Soil Description: SILTY SAND		
Unified Soil Classification System:	SM	
AASHTO Soil Classification(ODOT):	A-3a	

Client:	SAIC	Sample # OD-1068	Date:	12/04/97
	Army Ammunition Plant	Location : 5009	Tech:	M.E.
	Ravenna, Ohio	Depth : 6-8 ft	Gs:	2.70
Project #	97050931			

Total			Hydrometer		
Sample			Sample		
Weight =	204.70	grams	Weight =	40.92	grams

Sieve	Weight	%	%
Sizes	Retained	Retained	Passing
1"	0.0	0.0	100.0
3/4"	0.0	0.0	100.0
3/8"	1.0	0.5	99.5
#4	2.3	1.1	98.9
#10	4.7	2.3	97.7
#40	14.5	7.1	92.9
#200	7.6	24.3	75.7

Elapsed Time (min)	Hydro Reading	Temp. Correct. Value	Corrected Hydro Reading	% Total in Susp.	к	Effective Length (cm)	Particle Diameter (mm)
2	32.0	4.5	27.5	61.81	0.01297	11.81	0.0315
15	22.0	4.5	17.5	39.33	0.01297	13.44	0.0123
60	16.0	4.5	11.5	25.85	0.01297	14.42	0.0064
250	13.0	4.5	8.5	19.10	0.01297	14.91	0.0032
1440	11.0	4.5	6.5	14.61	0.01297	15.24	0.0013

1440	11.0	4.5	6.5	14.61	0.01297	15.24	
Summar	y of Grain S	Size Distri	bution		Atter	berg Limit	S
-	% GRAVEL % COARSE				•	id Limit c Limit	

5 % MEDIUM SAND 17 % FINE SAND

23 % CLAY (<0.005mm)

53 % SILT

Plastic Limit19Plasticity Index5

24

Natural	Moisture	Content
	15.1%	

Soil Description: SILTY CLAY, with S	Sand		
Unified Soil Classification System:	CL-ML		
AASHTO Soil Classification(ODOT):	A-4b (8)	<u></u>

Client:	SAIC	Sample #	OD-1079	Date:	12/04/97
Project:	Army Ammunition Plant	Location:	SB12	Tech:	M.E.
	Ravenna, Ohio	Depth:	4-6 ft.	Gs:	2.72
Project #	97050931				

Total		Hydrometer	
Sample		Sample	
Weight =	197.37 grams	Weight =	41.88 grams

Sieve	Weight	%	%
Sizes	Retaine	Retained	Passing
1"	0.0	0.0	100.0
3/4"	0.0	0.0	100.0
3/8"	4.9	2.5	97.5
#4	8.8	4.5	95.5
#10	13.8	7.0	93.0
#40	27.1	13.7	86.3
#200	9.1	32.4	67.6

Elapsed Time	Hydro	Temp. Correct.	Correcte Hydro	d % Total		Effective Length	Particle Diameter
(min)	Reading		Readin	in Susp.	К	(cm)	(mm)
2	35.0	4.5	30.5	61.97	0.01297	11.32	0.0309
15	22.5	4.5	18.0	36.57	0.01297	13.36	0.0122
60	16.5	4.5	12.0	24.38	0.01297	14.34	0.0063
250	13.0	4.5	8.5	17.27	0.01297	14.91	0.0032
1440	10.0	4.5	5.5	11.17	0.01297	15.4	0.0013

Summa	Summary of Grain Size Distributio				
5	% GRAVEL				
3	% COARSE SAND				
7	% MEDIUM SAND				
19	% FINE SAND				
45	% SILT				
21	% CLAY (<0.005mm)				

Atterberg Limits	5

Liquid Limit 23 Plastic Limit 17 Plasticity Index

6

Natural Moisture Content 9.7%

Soil Description:	SANDY SILTY CLA	NY	
Unified Soil Classif	ication System:	CL-ML	
AASHTO Soil Clas	sification(ODOT):	A-4a (7)	

Client:	SAIC	Sample #	OD-1100	Date:	12/04/97
Project:	Army Ammunition Plant	Location:	SB17	Tech:	M.E.
	Ravenna, Ohio	Depth:	6-8 ft.	Gs:	2.69
Project #	97050931				

Total		Hydrometer	
Sample		Sample	
Weight =	212.93 grams	Weight =	40.52 grams

Sieve	Weight	%	%
Sizes	Retaine	Retained	Passing
1"	0.0	0.0	100.0
3/4"	0.0	0.0	100.0
3/8"	5.3	2.5	97.5
#4	8.4	4.0	96.0
#10	13. 9	6.5	93.5
#40	30.8	14.5	85.5
#200	13.8	43.7	56.3

Elapsed Time	Hydro	Temp. Correct.	Corrected Hydro	d % Total		Effective Length	Particle Diameter
(min)	Reading	Value	Readin	in Susp.	κ	(cm)	(mm)
2	27.0	4.5	22.5	47.10	0.01301	12.62	0.0327
15	20.0	4.5	15.5	32.44	0.01301	13.77	0.0125
60	15.5	4.5	11.0	23.03	0.01301	14.5	0.0064
250	13.0	4.5	8.5	17.79	0.01301	14.91	0.0032
1440	10.0	4.5	5.5	11.51	0.01301	15.4	0.0013

Summary of Grain Size Distributio						
4	% GRAVEL					
3	% COARSE SAND					
8	% MEDIUM SAND					
29	% FINE SAND					
35	% SILT					
21	% CLAY (<0.005mm)					

Atterberg Limits	S
Liquid Limit	23
Plastic Limit	16
Plasticity Index	7

Natural Moisture Content 11.3%

Soil Description: SANDY SILTY CLA	Y
Unified Soil Classification System:	CL-ML
AASHTO Soil Classification(ODOT):	A-4a (5)

Client:	SAIC	Sample # OD-1131	Date:	12/04/97
Project:	Army Ammunition Plant	Location: SB-25	Tech:	M.E.
	Ravenna, Ohio	Depth: 4-6 ft.	Gs:	2.70
Project #	97050931			

Total	· · · · · · · · · · · · · · · · · · ·	Hydrometer	
Sample		Sample	
Weight =	233.07 grams	Weight =	41.72 grams

Sieve	Weight	%	%
Sizes	Retaine	Retained	Passing
1"	0.0	0.0	100.0
3/4"	0.0	0.0	100.0
3/8"	6.0	2.6	97.4
#4	11.0	4.7	95.3
#10	15.0	6.4	93.6
#40	30.5	13.1	86.9
#200	11.6	37.2	62.8

Elapsed Time	Hydro	Temp. Correct.	Corrected Hydro	d % Total		Effective Length	Particle Diameter
(min)	Reading	Value	Readin	in Susp.	K	(cm)	(mm)
2	32.0	4.5	27.5	56.71	0.01297	11.81	0.0315
15	22.5	4.5	18.0	37.12	0.01297	13.36	0.0122
60	18.5	4.5	14.0	28.87	0.01297	14.01	0.0063
250	15.0	4.5	10.5	21.65	0.01297	14.58	0.0031
1440	12.0	4.5	7.5	15.47	0.01297	15.07	0.0013

Summa	Summary of Grain Size Distributio					
5	% GRAVEL					
2	% COARSE SAND					
7	% MEDIUM SAND					
24	% FINE SAND					
36	% SILT					
26	% CLAY (<0.005mm)					

.

Atterberg Limits	3
Liquid Limit	25
Plastic Limit	18
Plasticity Index	7

Natural Moisture Content 19.4%

Soil Description: SANDY SILTY CLA	Y	
Unified Soil Classification System: AASHTO Soil Classification(ODOT):	CL-ML A-4a (6)	

Client:	SAIC			Sample #	PB-1284	Date:	12/04/97
Project:		nunition P	ant	Location:		Tech:	M.E.
	Ravenna,			Depth:	10-12 ft.	Gs:	2.72
Project #							
			······				
	Total			Hydromet	ег		
	Sample			Sample			
	Weight =	247.78	grams	Weight =	41.15	grams	
		Sieve	Weight	%	%		
		Sizes	-	Retained			
		1"	0.0	0.0	100.0		
		3/4"	0.0	0.0	100.0		
		3/8"	1.4	0.6	99.4		
		#4	3.6	1.5	98.5		
		#10	5.2	2.1	97.9		
		#40	10.5	4.2	95.8		
		#200	4.5	14.6	85.4		
Elapsed		Temp.	Correcte			Effective	Particle
Time	Hydro	Correct.	Hydro	% Total		Length	Diameter
(min)	Reading		Readin		<u> </u>	(cm)	(mm)
2		4.5	32.5		0.01297	10.99	0.0304
15						13.44	
60				29.84		14.18	0.0063
250		4.5		21.81	0.01297	14.75	0.0032
1440	11.5	4.5	7.0	16.07	0.01297	15.16	0.0013
			- 4 - 11 - 41	1	A 44		-14-
Summ	ary of Gra	in Size Di	stributio		Atte	erberg Lin	lits
1				1	1		

2	umma	iry of Grain Size Distributio
	2	% GRAVEL
	_	% COARSE SAND
	-	
	_	% MEDIUM SAND
		% FINE SAND
	58	% SILT
	27	% CLAY (<0.005mm)

.

Atterberg Limit	5
Liquid Limit	27
Plastic Limit	19
Plasticity Index	8

Natural Moisture Content 20.2%

Soil Description: SILT		
Unified Soil Classification System:	CL	
AASHTO Soil Classification(ODOT):	A-4b (8)	

Client:	SAIC	Sample #	PB-1287	Date:	12/04/97
Project:	Army Ammunition Plant	Location:	SB09	Tech:	M.E.
	Ravenna, Ohio	Depth:	16-18 ft.	Gs:	2.70
Project #	97050931				

Total		Hydrometer	
Sample		Sample	
Weight =	249.21 grams	Weight =	40.46 grams

	Sieve	Weight	%	%
	Sizes	Retaine	Retained	Passing
F	1"	0.0	0.0	100.0
;	3/4"	0.0	0.0	100.0
	3/8"	0.0	0.0	100.0
1	#4	1.1	0.4	99.6
	#10	2.8	1.1	98.9
1	#40	9.9	4.0	96.0
	#200	6.3	18.9	81.1

Elapsed	14	Temp.	Correcte			Effective	Particle
Time	Hydro	Correct.	Hydro	% Total		Length	Diameter
(min)	Reading	Value	Readin	in Susp.	κ	(cm)	(mm)
2	36.0	4.5	31.5	73.99	0.01297	11.15	0.0306
15	23.5	4.5	19.0	44.63	0.01297	13.2	0.0122
60	19.0	4.5	14.5	34.06	0.01297	13.93	0.0062
250	15.0	4.5	10.5	24.66	0.01297	14.58	0.0031
1440	12.5	4.5	8.0	18.79	0.01297	14.99	0.0013

Summary of Grain Size Distributio				
0	% GRAVEL			
1	% COARSE SAND			
3	% MEDIUM SAND			
15	% FINE SAND			
51	% SILT			
30	% CLAY (<0.005mm)			

.

.

Atterberg Limits	5
Liquid Limit	28
Plastic Limit	22
Plasticity Index	6

Natural Moisture Content 26.9%

Soil Description: SILTY CLAY, with S	Sand
Unified Soil Classification System:	CL-ML
AASHTO Soil Classification(ODOT):	A-4b (8)

Consulting Engineers • Testing • Inspection Services • Analytical Laboratories

Report on Sample of Soil

Project No.:97311222/97311227/97050931December 11, 1997Client:Science Applications International Corporation
4031 Colonel Glenn Highway, Suite 3000
Beavercreek, Ohio 45431 - Attn: Kathy DominicIdentification:Eleven soil samples received 12-5-97, identified below.

TEST METHOD: ASTM D4972-89

TEST RESULTS:

Sample ID	<u>pH (S.U.)</u>
CS 1275	5.58
CS 1276	7.78
DF 1157	7.64
DF 1261	7.88
DF 1263	7.63
OD 1068	8.04
OD 1079	7.54
OD 1100	7.85
OD 1131	7.36
PB 1284	6.81
PB 1287	7.47

Respectfully submitted,	ſ
Λ / I	/
Richard Herrold, Chemist	

RH/gm

APPENDIX B

METALS DATA SUMMARY

.

RVAAP DEACTIVATION FURNACE AREA

	DEPTH			A	L REAL	DINGS	IN MG/	G											I	10.1		∣тн∣		ZN
BORING	(FT)	AL	SB	AS	BA	BE	CD	CA	CR	co	CU	FE	PB	MG	MN	HG	NI	PO	SE IS	AG <1.1	NA <570	<0.57	25.3	93.0
SB01	0-2	14800	< 0.57	12.7	81.0	0.79	<0.57	19000	20.4	<17.1	33.4	23700	16.4	6450	457	<0.11	26.0	3230	<0.57	<1.1	<576	<0.58	19.6	65.8
	2-4	10800	<0.58	13.0	56.7	0.58	<0.58	25000	17.5	<17.3	21.4	23100	10.7	5840	350	<0.12	26.0	2210	<0.58	<1.2	<583	<0.58	21.0	65.8
	4-6	11700	<0.58	12.7	64.6	<.58	<0.58	26500	18.1	<17.5	20.2	24000	11.4	7150	405	<0.12	28.6	2300 1440	<0.58 <0.59	<1.2	<590	<0.59	13.7	56.4
	6-8	7290	<0.59	15.3	39.6	<0.59	<0.59	19300	11.8	<17.7	20.7	19500	9.9	4530	314	<0.12	17.5	998	<0.55	<1.1	<556	<0.56	10.8	58.6
	8-10	5650	<0.56	11.6	<22.2	<0.56	<0.56	1890	9.6	<16.7	22.5	17100	9.5	1990	458	<0.11	17.4	230	NU.30	\$1.1	-000	-0.00		••••
													40.7	1000	200		27.9	2640	<0.59	<1.2	<588	<0.59	24.8	96.6
SB02	0-2	13900	<0.59	20.6	65.9	1.00	<0.59	2190	22.2	<17.6	25.0	29000	13.7	4020	288	<0.12 <0.11	27.5	3120	<0.57	<1.1	<569	<0.57	26.3	67.9
	2-4	14200	<0.57	13.1	72.4	0.67	<0.57	18800	20.7	<17.1	21.4	25500	11.2 12.9	5900 6240	395 388	<0.11	28.5	4190	< 0.57	<1.1	<570	<0.57	30.1	75.1
	4-6	16600	<0.57	13.4	60.9	0.74	<0.57	25400	23.0	<17.1	21.1	25800 16600	10.1	2220	306	<0.11	15.1	760	<0.56	<1.1	<563	<d.56< td=""><td>8.9</td><td>57.4</td></d.56<>	8.9	57.4
	6-8	4830	<0.56	13.5	27.8	<0.56	< 0.56	3420	6.5	<16.9	18.4 22.5	18300	12.8	2230	578	<0.11	22.7	1250	<0.55	<1.1	550	<0.55	11.8	71.4
	8-10	6150	<0.55	14.9	38.6	<0.55	<0.55	3580	10.3	<16.5	22.5	10300	72.0	22.50	5.0				-					
							0.99	174000	12.4	<16.1	14.1	23100	5.4	30500	3170	<0.11	<4.3	1920	<0.54	<1.1	1580	0.74	11.1	28.0
SLAG01	0 - 0.5	25800	• Y	2.4	487.0	5.30	<0.08	4280	15.7	10.3	57.4	28100	16.9	3400	376	0.12	23.2	1580	<0.6	<0.4	57	<1.0	18.5	92.3
MRD QA	0 - 0.5	10700	<0.60	16.4	53.1	0.61	~0.00	4200												. . .			<u>ا</u>	
	0.05	45.400	2.30	171.0	126.0	1.10	8.90	33900	18.9	<18.3	545.0	19200	144.0	6260	924	<0.12	21.7	2190	<0.61	<1.2	<609	<0.61	17.8	667.0
SLAG02	0 - 0.5	15400	2.30	171.0	120.0	1.10	0.50	00000	10.0	1				, ,	•	•	·							
	REGION 9	77000	31.0	0.38	5300	0.14	1 38.0	1	30.0	4600	2800	1	400	1	3200	6.5	1500	i	380	380	1	6.1	540	23000
RESIDEN	PRG'S	17000	31.0	0.50	3300		00.0							1	Į	t					1	1	ļ	
4004.00			2.21	14.72		5.0	5.0	i	39.11		27.35		28.1			1	41.3	1	Į			1	1	84.35
1991 BG			2.21	1		0.0		1				1		1		1					1			72.1
PHIBG		15600		19.6	75		0.29		18.7	1		1	17.9		728	80.0			2.6	<0.24				12.1
FRIBG		1.2000		, 0.0		1				1											1			
PH II BG		To		Be	c) Determin	ed		l	1	1	1	1		1	1	Ι.	1	1	I	1	1	ŧ.	1
	I	• • •	1	•	•			-																

TAL LEVELS

OPEN DEMOLITION AREA RVAAP

TAL LEVELS

	DEPTH			Δt	L REAL		N MG/	(G																
BORING I	(FT)	AL I	SB	AS	BA 1	BE	CD	CA	CR	co I	cu	FE	PB	MG	MN	HG	NI	PO	SE	AG	NA	тн	VN	ZN
SB01	0-2	11100	<0.57	16.2	59.5	0.57	< 0.57	11800	17.4	<17.1	19.7	27000	11.7	4610	311	<0.11	25.5	1880	<0.57	<1.1	<570	<0.57	18.7	69.0
SS-01	0-0.3	7290	<0.57	9.1	117.0	<0.57	<0.57	161000	10.4	<17.1	47.7	15400	16.8	3140	469	<0.11	17.6	1320	<0.57	<1.1	<570	<0.57	12.6	82.1
S-01 DU	0-0.3	6070	<0.53	7.5	113.0	<0.53	0.58	202000	8.7	<15.9	36.1	11700	11.3	3340	514	<0 11	15.3	1100	<0.53	<1.1	<529	<0.53	10.8	57.6
12.21 - 4	2-4	8710	<0.57	17.4	46.2	<0.57	<0.57	7960	14.2	<17.1	19.8	25900	11.6	3960	781	<0.11	34.9	1670	<0.57	<1.1	<569	<0.57	16.0	63.0
I	4-6	9640	<0.59	17.8	35.7	<.59	<0.59	7420	15.8	<17.7	19.8	27800	11.2	4790	441	<0.12	28.1	1680	<0.59	<1.2	<5 90	<0.59	16.7	66.1
	6-8	13600	<0.60	20.4	59.0	<0.60	<0. 6 0	17000	20.1	<17.9	22.0	29000	10.2	6030	430	<0.12	27.8	2870	<0.60	<1.2	<598	<0.60	24.9	64.5
	12-14	6550	<0.59	13.3	36.5	<0.59	<0.59	21300	11.6	<17.8	16.9	17700	9.4	2810	326	<0.12	16.8	146D	<0.59	<1.2	<594	<0.59	12.8	51.8
1															_								22 0	74.0
SB02	0-2	10800	<0.60	15.2	108.0	0.64	<0.60	2050	17.8	<18.0	20.8	25200	13.6	3240	343	<0.12	. 37.6	1710	<0.60	<1.2	<600	<0.60	20.0	74.9
SS-02	0-0.3	7630	<0.64	13.3	96.8	<0.64	1.00	6930	13.8	<19.1	89.3	20700	61.7	2990	329	<0.13	21.1	1270	<0.64	<1.3	<637 <647	<0.64 <0.65	14.9 16.7	214.0
S-02 DU	0.0.3	8910	0.75	14.6	92.2	<0.65	1.40	7340	15.2	<19.4	93 9	22500	78.5	3320	325	0.80	22.0	1450 2290	<0.65 <0.57	< <u>1.3</u> < <u>1.1</u>	<573	<0.57	20.3	62.6
1	2-4	11500	<0.57	15.8	54.4	<0.57	<0.57	16400	18.4	<17.2	17.3	25300	11.3	4240	330	<0.11	26.9 27.8	1500	<0.57	<1.2	<602	<0.60	17.7	68.2
	4-6	9570	<0,60	19 5	44.9	<0.60	<0.60	5250	16.5	<18.1	19.4	26700	11.7	3550	449 430	<0.12 <0.12	34.6	2970	<0.62	<1.2	<622	<0.62	26.3	77.1
ľ	6-8	14800	<0.62	19.2	61.2	0.69	<0.62	2520	24.1	<16.7	21.0	34600	13.5	4840	430	NO. 12	34.0	2310	50.02	- 1. Z	-022	10.02	20.0	• • • •
			-0.50		101.0	0.64	< 0.59	16300	24.0	<17.7	21.9	28800	15.8	5760	413	<0.12	36.2	2540	<0.59	<1.2	<590	0.59	28.1	74.7
SB03	0-2	15200	<0.59 <0.61	12.8 15.0	62 3	0.64 <0.61	<0.59	12500	21.4	<18.4	71.7	26300	20.2	3320	329	<0.12	23.5	2170	<0.61	<1.2	<612	<0.61	25.3	132 0
SS-03	0-0.3	14100 13800			734	<0.01	< 0.61	8010	22.8	<18.4	51.8	27200	19.5	3640	398	<0.12	26.1	2030	<0.61	<1.2	<612	<061	25.6	103.0
1 S-03 DU	0-0.3	11500	<0.61 <0.57	14.8 12.3	70.9	<0.57	<0.57	27800	19.2	<17.2	20.6	25400	11.1	7710	366	<0.11	29.5	2020	< 0.57	<1.1	<575	<0 57	21.8	66.5
	2-4 4-6	14000	< 0.59	12.5	60.3	0.69	<0.59	29000	25.6	<17.6	22.0	37200	14.2	7000	546	<0.12	34.1	3280	<0.59	<1.2	<588	0.61	30.5	72.1
	4-0 6-8	9500	<0.57	17.8	64.7	<0.57	<0.57	10600	15.7	<17.2	18.6	25300	11.1	4580	1020	<0.11	34.9	1900	<0.57	<1.1	<573	0.83	17.2	66.4
	0-0	3300	-0.31	17.0	04.1	-0.01	-0.01	10000															l	
SB04	0-2	12500	<0.58	10.1	133.0	<0.58	<0.58	103000	16.1	<17.4	30 7	20100	11.2	3630	311	<0.12	21.6	1700	<0.58	<1.2	<580	< 0.58	20.3	58 1
SS-04	0.0.3	8920	<0.58	11.8	98.4	<0.58	0.66	75400	14.1	<17.3	89.1	18600	17.3	3240	430	<0.12	20.8	1710	<0.58	<1.2	<577	<0.58	16.3	85.2
S-04 DU	0-0.3	5500	<0.56	7.3	92.0	<0.56	0.64	167000	8.8	<16.7	47.5	12300	12.6	2930	476	<0.11	15.6	979	<0.56	<1.1	<u><557</u>	<d.56< td=""><td>9.7</td><td>60.7</td></d.56<>	9.7	60.7
	2-4	11500	<0.58	18.6	59.8	<0.58	<0.58	12100	17.1	<17.3	20.4	26800	11.5	4970	366	<0.12	26.3	2350	<0.58	<1.2	<\$77	<0.58	19.2	62.9
	4-6	11300	<0.57	17.7	51.7	<0.57	<0.57	7150	17.1	<17.0	19.8	27000	12.1	4990	352	<0.11	26.7	2260	<0.57	<1.1	<567	<0.57	18.7	64.4
	6.8	13100	<0.58	17.4	53.4	<0.58	<0.58	11700	20.2	<17.4	19.9	27300	12.3	5240	522	<0.12	29.0	2920	<0.58	<1.2	<579	<0.58	22.4	65.2
																			- :_ :=					64.4
SB05	0-2	11500	<0.59	21.6	70.0	<0.59	<0.59	25400	17.9	<17.7	19.2	30200	11.1	4140	350	<0.12	34.1	1340	<0.59	<1.2	<591	<0.59	17.7	64.1 74.7
MRD QA	0-2	15300	<0.60	20.9	95.9	0.94	<0.08	4040	22.1	18.2	23.4	37400	14.5	4680	391	0.01	36.20	1770.0	<0.6	< 0.4	60.0	< <u>1.0</u> <0.6	23.40	90.5
\$S-05	0-0.3	8860	<0.60	12.8	69.4	<0.60	0.61	48700	14.4	<17.9	56.0	20500	17.6	2930	397	<0.12	20.4	1120	<0.6	<1.2 <1.2	<595 <582	<0.58	17.u	73.8
SS-5 DUP	0-03	5490	<0.58	19.6	64.4	<0 58	0.80	137000	10.7	<17.5	64.2	16900	16.8	2790	441	<0 12	17.3	862 1950	<0.58 <0.58	<1.2	<582	<0.58	19.3	65.0
	2-4	11900	<0.58	18.1	60 2	<0.58	<0.58	28100	17.9	<17.5	21.3	27100	11.8	4500	334	<0.12	26.5	1340	<0.50	<1.2	<581	<0.58	14.4	59.6
	4-6	8400	<0.58	20.9	34 8	<0.58	<0.58	18300	137	<17.4	195	26100	11.3	4450	397	<0.12	31.8	1530	<0.62	<1.2	<619	<0.62	17 7	67.2
	6-8	10800	<0.62	20 5	37.3	<0.62	<0.62	7140	176	<18.6	21.8	31000	12.6	6290	442	<0.12	31.0	1550	NU.UZ	×1.≠	-013	10.02		
			ļ	l	l		1			ļ	1	I	I	1	I.	I	I	I	1	1	I	I	1	1
	·																					· · · · · · · · · · · · · · · · · · ·		
		-																						
	REGION									1	1 0000		1 400	1	1 2200	165	1500	1	380	380	I	i 6.1	540	23000
RESIDEN	PRG'S	77000	31.0	0.38	5300	0.14	38.0		30.0	4600	2800		400	1	3200	6.5	1300		1 300					
	1	I	1						40.7	ļ		1	17.9		728	0.08		ł	2.6	<0.24	l I			72.1
PH I BG		15600		19.6	75		0.29		18.7			1	17.9		120									
PH II BG		То		Be	L C	1 Determin	l ed			ł								l						ļ
111.00	t	1 10	1	1 20				•	,	•	•	-	•											

@ 003

RVAAP OPEN DEMOLITION AREA

TAL LEVELS

	DEPTH			A	LL REAL	DINGS I	N MG/K	G					1				NI I	PO	SE	AG	NA I	тн I	VN	ZN
BORING	(FT)	AL I	58 I	AS	BA	BE	CD	CA	CR	co	CU	FE	PB	MG	MN	HG <0.12	21.7	1950	<0.58	<1.2	<581	<0.58	17.3	134.0
SBO6	0.2	9810	<0.58	14.B	72.5	<0.58	4.50	6400	14.9	<17.4	79.0	24600	30.1	3690	390	<0.12	22.0	1690	<0.63	<1.3	<628	<0.63	16.8	145.0
55-06	0-0.3	9170	<0.63	16.5	81.5	<0.63	1 20	5990	15.5	<18.8	101.0	22700	22.0	3670	333	0.13	21.5	1390	<0.66	<1.3	<660	<0.66	14.9	162.0
S-06 DU	0-0.3	8280	0.68	14.0	63.2	<0.66	1.60	11000	14.0	<19.8	102.0	21100	36.6	3850	349	<0.11	31.9	1720	<0.53	<1.1	<527	<0.53	14.7	81.3
1277-2	2-4	8450	<0.53	15.8	41.9	<0.53	2.10	5720	1306.0	<15.8	39.5	20800	37.1	3560		<0.11	18.1	998	<0.57	<1.1	<573	<0.57	9.6	60 1
1	4-6	4700	0.60	99 4	39.3	<0.57	<0.57	7080	9.2	<17.2	16.0	28400	20.2	2770	667 315	<0.11	18.5	971	<0.56	<1.1	<564	<0.56	10.8	61.9
	6-8	5450	<0.56	22.0	<22.6	<0.56	<0.56	4950	10.2	<16.9	13.0	21400	8.6	2830	315	-0.11	10.0	517						
															334	<0.11	20.9	1170	<0.56	<1.1	<564	<0.56	14.1	187.0
S807	0-2	7310	0.72	167	194.0	<0.56	2.30	4050	13.2	<16.9	108.0	25000	192.0	3040	365	0.23	20.9	1640	<0.62	<1.2	<621	<0.62	15.9	125.0
SS-07	0-0.3	8600	<0.62	15.5	31.3	<0.62	0.95	8690	14.1	<18.6	95.8	20800	24.3	3710	342	0.15	21.2	1400	<0.62	<1.2	<624	<0.62	15.8	158.0
S-07 DU	0-0.3	8740	<0 62	13.0	71.6	<0.62	1.10	6160	14.5	<18.7	94.8	21000	24.3	3100	350	<0.12	50.6	1450	<0.58	<1.2	<583	<0.58	15.7	373.0
1 E E	2-4	8170	3.20	16.0	296.0	<0.58	11.20	4150	14.7	<17.5	454.0	22300	281.0 105.0	2070	290	<0.11	21.2	1110	<0.57	<1.1	<567	<0.57	12.6	87.1
	4-6	5780	1.60	10.8	73.4	<0.57	2.60	2040	10.2	<17.0	53.4	18200 24400	9.9	2250	467	<0.11	16.1	966	<0.55	<1.1	<548	<0.55	11.5	54 7
	6-8	4910	<0.55	9.3	<21.9	<0.55	<0.55	14100	9.1	<16.5	15.3	24400	5.5	2200				i						
								c		<17.0	16.2	22900	9.8	3680	274	<0.11	21.9	1330	<0.57	<1.1	<567	<0.57	137	58.5
SB06	0-2	7700	<0.57	15.1	30.8	<0.57	<0.57	6990 8060	14.1 17.1	<18.4	76.7	30800	20.9	3590	494	<0.12	23.3	1110	<0.61	<1.2	<612	<0.61	17.1	158.D
SS-08	0-0.3	8270	0.65	14.7	67.3	<0.61	0.69		17.1	<17.6	93.3	25000	25.0	3430	648	<0.12	23.0	1400	<0.59	<12	<594	<0.59	20.9	158 0
S-08 DU	0-0 3	10700	<0.59	14.9	85.7	<0.59	0.78	4110 9540	13.1	<17.9	20.3	23400	12.2	4290	229	<0.12	22.1	1250	<0.60	<1.2	<595	<0 60	13.7	67.2
	2.4	7050	<0.60	15.9	30.7	<0.60	<0.60	9540 14000	16.2	<17.9	25.6	27300	12.6	7250	333	<0 12	24.7	1990	<0.60	<1.2	<596	<0.60	18.5	65.7
	4-6	9900	<0.60	23.3	35.4	<0.60	<0.60	5170	19.1	<18.4	19.0	29700	11.9	5230	326	<0.12	28.8	2340	<0.61	<1.2	<614	<0.61	20.5	67.3
	6-8	11100	<0.61	22.0	41.0	<0.61	< 0.61	5170	10.1	- 10.4														
						<0.59	<0 59	3570	16.9	<17.8	20.6	27700	12.6	4270	356	<0.12	26.9	1840	<0.59	<1.2	<593	<0.59	17.8	66.2 68.3
S B 09	0.2	10800		18.0	44.2 50.9	<0.60	<0.60	1950	18.5	<17.9	19.7	28200	11.6	3660	351	<d.12< td=""><td>28.2</td><td>2020</td><td><0.60</td><td><1.2</td><td><595</td><td><0.60</td><td>20.0</td><td>77.9</td></d.12<>	28.2	2020	<0.60	<1.2	<595	<0.60	20.0	77.9
SS-09	0.03	11200	1	10.1		<0.50	<0.00	2600	18.5	<17.8	28.0	26000	15.2	3450	447	<0.12	28.3	2290	<0.59	<1.2	<592	<0.59	22.3	60.7
S-09 DU	0-0.3	11500		16.8	<u>31.7</u> 38.7	<0.59	<0.55	5650	15.3	<16.6	· · · · · · · · · · · · · · · · · · ·	24900	10.9	4230	385	<0.11	25.3	2110	<0.55	<1.1	<553	<0.55 <0.56	17.1 14.0	50.0
	2-4	10100		17.1	32.9	<0.55	<0.56	6390	13.1	<18.6	18.2	24300	11.1	4200	266	<0.11	20.9	1510	<0.56	<1.1	<559	<0.50	14.0	59.4
	4-6	8030	<0.56	15.8	43.9	<0.59	<0.59	6630	15 8	<17.6	19.3	26500	13.3	4660	263	<0.12	21.4	2060	<0.59	<1.2	<585	<0.59	U.1	55.4
	6-8	9610	<0.59	22.0	1 43.5	-0.05											1.72			<1.2	<584	<0.58	21.0	81.9
1		12400	<0.58	18,9	65.1	<0.58	<0.58	4540	19.5	<17.5	51.2	28700	16.0	4500	379	<0.12	29.6	2130	<0.58	<0.40		<1.0	20.3	78.3
SB10	0-2	12900	•	18.9	71.0	0.72	<0.08	4040	19.7	12.3	47.6	31900	16.4	4490	363	< 0.03	31.1	1910	<0.60	<1.2			21.5	85.0
MRD QA	0-2	11800			84.3	<0.60	<0.60	3530	19.6	<18.0	29.1	29000	13.9	4040	333	<0 12	31.5	2130	<0.61	<1.2	<612	1	25.1	70.8
SS-10	0-0.3	13700		13.0	123.0	0.86	<0.61	3640	22.0	<18.3	25.4	26500	14.1	4060	537	<0.12	35.1	1720	<0.57	1 31	<571		16.1	62.3
S-10 DU	0-0.3	9640		15.9	38.7	<0.57	<0.57	6170	15.8	<17.1		25200	11.4	4320	255	<0.11	32. 8 25.7	1940	<0.59	<1.2	<592		18.6	66.5
	4-6	1100			37.5	<0.59	<0.59	8380	17.1	<17.8	20.5	27800	11.6	4830	298	<0.12	25.7	1600	<0.57	<1.1	<569		15.3	62.7
	6-8	8650		15.2	33.5	< 0.57	<0.57	6860	13 B	<17.1	18.4	23600		4040	333	<0.11	22.3	1340	-	1	<557		11.8	49.8
	12-14	6490			28.6	<0.56	<0.56	45700	10.2	<16.7		21900	1	3530	467	<0.11		1440		1	<560		12.5	50.3
	1	7340	1		28.4	<0 56	<0.56	8130	12.4	<16.8	17.2	22400	8.6	5030	333	<0.11	21.7				1		1	62.8
	16-18							4680	9.9	<16.4	13.5	17200	10.9	2960	270	<0.11	18	948	<0.55	<1.1	1 - 240	1 -0.00	1	
	19-20	4690	1 ~0.33	1 13.5	1 .7.1.0	1 0.00		•	•							; 								
		at														•	1		1	1 200	1	6.1	540	23000
EPA	REGION			1 0.38	1 5300	1 0.14	1 38.0	1	30.0	4600	2800		400	1	3200	6.5	1500		380	380		0.1	1	
RESIDE	PRG'S	1,100	0 31.0	1 0.30	1 3300			1	1	1			1		1	1	1	1	1 20	1 -0.0			1	72.1
		1600	1	19.6	75	1	0.29		18.7			1	17.9	1	728	0.08	i		2.6	<0.2	1		I	1
PHIBG		1560	ๆ	1 5.0	1.2	1	1				1	1		1	1	1	1		1			1	1	
D		То	1	Be		Determin	ned		1	l I	I	1	1	I	1	1	1	1	1	ł	I	•	•	1
PH II BC	21	1 10	1	1 20	•			•	-															

Q 004

RVAAP OPEN DEMOLITION AREA

•

TAL LEVELS

,

	DEPTH	1		A	LL REA	DINGS I	N MG/K	G																
BORING	(FT)	AL	SB	AS	BA	BE	CD	CA	CR	co	CU	FE	P B	MG	MN	HG	NI	PO	SE	AG	NA	TH	VN	ZN
S811	0-2	11400	17.80	30.7	173.0	0.58	1.90	4120	18.6	<17.2	172.0	37300	4950.0	3920	454	<0.11	31.7	2190	<0.57	<1.1	<574	<0.57	24.3	806.0
SS-11	0-0.3	9790	<0.66	15.8	109 D	<0.66	2.50	4730	16.9	<197	156.0	25300	31.0	3950	373	0.15	25.3	1980	<0.66	<1.3	<657	<0.66	17.5	184.0
SS-11 DUP	0-0.3	7650	<0.62	13.1	68.6	<0.62	1.30	5520	13.1	<10.7	128.0	20100	24.0	3540	378	0.17	20.7	1240	<0.62	<1.2	<622	<0.62	13.0	264.0
	2-4	8350	1.10	15.2	01.1	<0.57	1.20	3480	13.8	<17.0	50.4	23100	168.0	2500	336	0.15	19.1	1370	<0.57	<1.1	<567	<0.57	15.7	114.0
	4-6	8590	2.80	14.6	44.9	<0.56	<0.56	1800	14.9	<16.9	98 7	22800	478.0	2310	375	<0.11	23.0	1520	<0.56	<1.1	<564	<0.56	16.7	295 0
										ľ														
SB12	0-2	9460	<0.59	15.7	83.2	<0.59	1.40	10500	16.2	<17.8	3200.0	24300	168.0	3780	403	0.14	<u>23.0</u>	1280	<0.59	_<1.2	<594	<0.59	18.1	724.0
SS-12	0-0.3	8930	0.60	14.5	75.6	<0.60	1.20	5780	15.0	<17.9	103.0	21100	92.8	3560	358	<0.12	20.7	1650	<0.60	<1.2	<598	<0.60	16.8	192.0
SS-12 DUP	0-0.3	10100	0.64	15.2	77.4	<0.59	1.30	5500	16.1	<17.6	119.0	23400	28.8	3480	374	0.13	22.5	1760	<0.59	<1.2	<587	<0.59	18.7	181.0
	2-4	8300	<0.58	16.4	42.8	<0.58	<0.58	12000	14.4	<17.3	50.9	23400	14.0	4070	507	<0.12	23.2	1820	<0.58	<1.2	<577	<0.58	16.2	202.0
	4-6	6800	<0.55	17 2	30.6	<0.55	<0.55	9030	14 9	<16.5	23.4	22100	11.6	5130	288	<0.11	22.9	2010	<0.55	<1.1	<550	<0.55	16.3	57.1
	6-8	8500	<0.56	15.1	31.4	<0.56	<0.56	8550	14.7	<16.8	17.1	23300	10.9	5120	331	<0.11	22.9	1940	<0.56	<1,1	<561	<0.56	15.7	63.6
						i																-0.50		60.0
SB13	0-2	8300	<0.56	16.3	37.5	<0.56	<0.56	7230	127	<16.9	91.5	21500	11.7	4140	557	<0.11	21.9	1360	<0.56	<1.1	<564	<0.56	13.1	69.2 102.0
SS-13	0-0.3	11700	<0.60	16.6	59.1	<0.60	0.71	5330	179	<18.0	96.9	27300	18.3	4580	374	<0.12	26.4	1760	<0.60	<1.2	<599	<0.60 <0.59	20.0 25.B	62 5
SS-13 DUP	0-0 3	13000	< 0.59	11.7	48.6	<0.59	<0.59	2010	17.3	<17.8	30.4	22200	13.6	2870	185	<0.12	15.5	1200 1270	<0.59 <0.56	<1.2 <1.1	<592 <562	<0.59	11.8	61.7
	2-4	7130	<0.56	13.5	45.6	<0.56	<0.56	16500	11.7	<16.9	33.5	20800	11.4	4980	586	<0.11	20.0	1600	<0.55	<1.1	<549	<0.55	14.0	53.8
	4-6	7740	<0.55	13.5	30.7	<0.55	<0.55	7980	12.0	<16.5	17.4	22300	B.7	5080 6020	343 365	<0.11 <0.11	21.1 22.2	1640	<0.55	<1.1	<552	<0.55	13.9	58.6
	6-8	7990	<0.55	15.4	33.2	<0.55	<0.55	8600	15.2	<16.6	23.7	23600	15.0	5230	300	\$0.11	66.6	1040	40.55	~1 .1	-352	-0.00	10.0	00.0
			-0.55		65.7	0.00	0.79	29200	87	<16.6	49.9	17300	16.0	7590	512	<0.11	15.0	626	<0.55	<1.1	<552	<0.55	9.2	177.0
SB14	0-2	8900	<0.55	13.8 16.0	72.5	0.90 <0.60	1.40	4640	17.3	<18.1	127.0	24800	29.4	3740	383	<0.12	24.6	1980	<0.60	<1.2	<604	<0.60	19.8	190.0
55-14 SS-14 DUP	0-0.3	10600 12000	<0.60 <0.60	15.7	552.0	<0.60	0.79	3860	19.0	<17.9	96.3	25200	21.5	3770	353	0.14	26.0	220	<0.60	<1.2	<598	<0.60	21.7	126.0
133-14 DUP	0-0.3 2-4	5630	<0.60	16.3	28.1	<0.60	<0.60	8450	10.0	<17.9	22.1	20500	11.7	4040	335	<0.12	16.1	978	<0.60	<1.2	<598	<0.60	10.7	57.7
	4-6	8000	<0.57	16.3	36.3	<0.57	<0.57	7860	13.7	<17.2	21.4	24100	10.9	4370	564	<0.11	25.4	1360	<0.57	<1.1	<575	<0.57	14.0	62.0
	6-8	7030	<0.56	17.8	31.9	<0.56	<0.56	7770	11.8	<16.8	17.4	23800	10.0	3560	351	<0.11	19.0	1330	<0.56	<1.1	<560	<0.56	13.0	64.7
	0.0		.0.00		••••	0.00			-	i .	:													
SB15	0-2	5590	<0.58	10.2	35.1	<d.58< td=""><td><0.58</td><td>25700</td><td>9.0</td><td><17.5</td><td>12.6</td><td>13000</td><td>17.4</td><td>1500</td><td>303</td><td><0.12</td><td>10.8</td><td>826</td><td><0.58</td><td><1.2</td><td><583</td><td><0.58</td><td>10.6</td><td>51.3</td></d.58<>	<0.58	25700	9.0	<17.5	12.6	13000	17.4	1500	303	<0.12	10.8	826	<0.58	<1.2	<583	<0.58	10.6	51.3
SS-15	0-0.3	8660	<0.60	12.9	73.3	<0.60	0.82	10100	13.1	<18.1	78.5	21500	24.9	2510	379	<0.12	20.4	1170	<0.60	<1.2	<602	<0.60	12.7	164.0
1	2-4	11800	<0.61	14.2	51.0	<0.61	<0.61	1320	167	<18.2	19.1	22300	22.0	2400	533	<0.12	23.1	1870	<0.61	<1.2	<607	<0.61	21.4	7 9 .7
	4-6	8400	<0.62	13.9	42.1	<0.62	<0.62	1290	13.1	<18.5	17.6	21100	25.9	2160	387	<0.12	21.0	976	<0.62	<1.2	<617	<0.62	15.5	63.1
	6-8	10600	<0.62	12.1	57.5	<0.62	<0.62	1570	14.9	<18.6	16.8	19100	34.3	2290	274	0.14	16.5	1410	<0.62	<1.2	<619	<0.62	20.1	91.1
I		• • • • • •	(•	•	•		•	•	· _	•	•	-									
				in a second																				
EPA	REGION 9	1																		_		Ĩ		
RESIDEN	PRG'S	77000	31.0	0.38	5300	0.14	38.0	i 1	30.0	4600	2800	l	400	1	3200	6.5	1500	1	380	380	1	6.1	540	23000
						1							1	ł	1			1	1			Į –		
PHIBG		15600		19.6	75	1	0.29		18.7		1	} `	17.9		728	0.08	l		2.6	<0.24		ļ		72.1
						ĺ						1		1		L		1		1				
PH II BG		To	ļ	8e	[) Determine	ed	ļ			l]		1	1		I	I		ł		1		I

.

00

RVAAP OPEN DEMOLITION AREA

TAL LEVELS

	DEPTH			AL	L READ	NGS I	N MG/K	G											1		1			ZN
BORING	(FT)	AL I	SB	AS	BA	BE	CD	CA	CR	co	CU	FE	PB	MG	MN	HG	NI	PO	SE	AG	NA <565		15.0	59.7
SB16	0-2	8780	<0.56	15.9	44.4	0.56	< 0.56	28600	17.6	<16.9	18.7	24100	11.0	3100	379	<0.11	23.4	1350	<0.56	<1.1	<574	0.57	14.2	77.9
SS-16	0-0.3	12600	<0.57	15.6	62.9	0.61	<0.57	79900	17.0	<17.2	391.0	16500	39.1	3740	460	<0.11	17.4	1560	<0.57	<1.1 <1.2	<613	<0.61	10.2	67.3
	2-4	11000	<0.61	19.3	48.2	0.66	< 0.61	2080	18.1	<18.4	20.9	30000	12.1	3700	308	<0.12	29.5	1810	<0.61		<578	<0.58	13.5	60.2
	4-6	7210	<0.58	20.0	33.2	<0.5B	<0.58	1680	12.6	<17.3	18.1	23900	10.5	2620	336	<0.12	20.2	1190	<0.58	<1.2	<580	< 0.50	15.9	65.5
	6-8	9000	<0.58	20.2	38.3	<0.56	<0.58	2600	15.2	<17.4	19.7	28400	10.5	3560	438	<0.12	25.6	1460	<0.58	<1.2	~300	-0.50	15.5	00.5
																					1574	<0.57	22.4	178.0
SB 17	0-2	11700	<0.57	17.5	66.7	<0.57	1.60	2590	18.4	<17.2	405.0	25900	40.5	3380	373	0.30	24.4	2170	<0.57	<1.1	<574 <591	<0.59	14.7	219.0
1 SS-17	0.0.3	7900	<0.59	14.3	72.8	<0.59	1.50	5160	13.8	<17.7	136.0	21300	27.7	_ 3280	344	0.33	21.5	1310	<0.59		<571	<0.53	21.2	76.8
	2-4	9000	<0.57	17.0	36.2	0.77	<0.57	3280	15.0	<17.1	28.9	41500	13.1	2670	531	<0.11	19.9	1510	<0.57	<1.1	-	<0.57	15.6	89.9
	4-6	7900	<0.56	18.0	36.2	<0.56	<0.56	4040	14.0	<16.7	53.2	23500	13.9	2910	371	0.12	22.6	1220	<0.56	<1.1	<556	<0.50	16.5	72.2
	6-8	8080	<0.57	17.9	360	<0.57	<0.57	5990	15.5	<17.1	24.4	23100	12.5	3480	385	<0.11	39.2	1660	<0.57	<11	<570	\$0.57	10.5	12.2
	• •																		-0.67		<567	<0.57	13.9	61.1
SB18	0-2	7960	<0.57	19.5	32.2	<0.57	<0.57	8580	13.0	<17.0	18 1	25200	10.2	4070	508	<0.11	21.5 24.5	1450 2400	<0.57 <0.61	<1.1 <1.2	<605	<0.61	21.0	137.0
SS-18	0.03	11800	<0.61	14.3	74.5	<0.61	0.76	3610	17.9	<18.2	76.1	23100	20.9	3760	339	<0.12 <0.11		2400	<0.61	<1.1	<568	<0.57	14.9	51.2
1	2-4	8170	<0.57	19.0	45.7	1.00	<0.57	15800	12.3	<17.1	15.4	20300	9.8	3100	455		18.2 15.5	915	<0.57	<1.1	<554	<0.55	9.1	51.7
	4-6	4820	<0.55	13.7	<22.2	<0.55	<0.55	28700	7.5	<16.6	16.6	15700	12.9	16700	343	<0.11		1270	<0.55	<1.1	<570	<0.57	12.1	69.0
	6-8	6560	<0.57	16.2	24.5	<0.57	<0.57	8840	10.9	<17.1	19.4	24000	10.9	3440	439	<0.11	22.8	12/0	×0.57	~	-5/6			•••
										l							22.3	1310	<0.56	41.1	<564	<0.56	14.5	580.0
SB19	0-2	8460	<0.56	15.4	165.0	<0,56	2.30	5700	14.0	<16.9	2060.0	23100	36.9	3670	370	0.84	23.8	1510	<0.60	<0.40	75	<1.0	15.4	171.0
MRD QA	0-2	9670	<0.60	15.2	59.7	0.54	2.25	8120	14.8	10.1	98.7	26200	25.4	4570	401	0.17	23.0	1660	<0.50	<1.2	<579	<0.58	18	162
SS-19	0-0.3	10100	<0.58	16.5	80.9	<0.58	1.3	4870	17.2	<17.4	167	23600	<u>24</u> 25.9	4060	405	0.37	21.0	1330	<0.56	<1.1	<555	<0.56	13.4	184.0
•	2-4	7670	<0 56	14.4	47.7	<0.56	1.60	7390	13.5	<16.7	73.3	21700	25.9	4980	336	0.79	22.0	1810	<0.55	<1.1	<552	<0.55	15.6	94.0
	4-6	8960	<0.55	14.5	38.9	<0.55	0.58	9850	15.4	<16.6	42.5	23100	-	2970	307	<0.11	14.4	852	<0.56	<1.1	<557	<0.56	9.3	57.6
	6-8	4430	<0.56	17.7	22.7	<0.56	<0.56	5700	8.1	<16.7	17.2	16100	8.7	2910	307	50.11	17.7							
			ļ	1	1		1					21400	16.2	2190	1360	<0.12	18.2	1110	<0.58	<1.2	<582	<0.58	15.4	79.6
SB20	0-2	8530	<0.58	14.0	53.2	<0.58	<0.58	2430	13.6	<17.5	35.4	21400	16.3 22.5	2920	371	<0.12	17	1400	<0.59	<12	<591	<0.59	12.8	181
SS-20	0-0.3	7580	<0.59	. 11	66.4	<0.59	_ 1	22800	11.7	<17.7	129	21700	12.7	2980	406	0.13	23.7	1270	<0.60	<1.2	<595	<0.60	14.9	78.2
•	2-4	8410	<0.60	15.5	34.1	<0.60	<0.60	2670	13.6	<17.9	24.7	20000		2250	309	0.13	21.6	1560	<0.56	<1.1	<561	<0.56	17.2	66.0
	4-6	9520	<0.56	14.1	37.7	<0.56	ļ <0.56	1220	14.0	<16.8	21.4	1 20000	14.1	2200	1 305	1 0.10				•	•	•		
EPA	REGION	9							1	1	1 0000	1	i 400	:	1 3200	6.5	1 1500	l I	380	380	1	6.1	540	23000
RESIDEN	PRG'S	77000	31.0	0.38	5300	0.14	38.0	1	30.0	4600	2800	1			1 200			1		1		ļ		1
								Į –	1				17.9	1	728	0.08		1	2.6	<0.24		1		72.1
PHIBG		15600		196	75	1	0.29	1	18.7	1		1			1	1			1		1	1	l	4
		1	1	1		1	1				ł		1		1	ł	1		1		1	1	1	
PH # BG	1	Το	l	Be	1 1	Determin	ed	1	I	I	I	I	1	•	•	•	I	•	•	•	•	•		

OPEN DEMOLITION AREA RVAAP

TAL LEVELS

	DEPTH			A	L REAL	DINGS I	N MG/K	G																
BORING	(FT)	AL	SB	AS	BA	BE	CD	CA	CR	CO	CU	FE	PB	MG	MN	HG	NI	PO	SE	AG	NA	TH	VN	ZN
SB21	D-2	7960	<0.58	14.7	42.3	<0.58	<0.58	3110	13.2	<17.4	56.1	22900	14.1	337D	471	<0.12	22.0	1190	<0.58	_<1.2	<580	<0.58	13.6	88.6
SS-21	0-0.3	8510	<0.69	13	127	<0.69	1.8	8000	19.3	<20.8	126	24300	29.5	3490	455	0.16	18.7	1660	<0.69	<1.4	<693	<0.69	14.2	215
	2-4	7120	<0.57	15.6	30.0	<0.57	<0.57	12600	12.6	<17.1	20.6	24600	11.7	7170	388	<0.11	25.1	1290	<0.57	<1.1	<571	<0.57	13.1	60.0
	4-6	7280	<0.57	13.2	30.6	<0.57	<0.57	10800	14.1	<17.0	19.8	23400	10.1	5900	365	<0.11	82.5	1430	<0.57	<1.1	<568	<0.57	13.4	77.4
	6-8	10100	<0.57	17.6	39.5	<0.57	<0.57	7980	16.3	<17.1	20.6	25400	11.0	4530	451	<0.11	26.1	2310	<0.57	<1.1	<571	<0.57	18.4	69.1
													_						-0.00		1540	-0.55	12.0	48.9
SB22	0-2	6780	<0.55	11.9	23.5	<0 55	<0.55	11600	11.9	<16.4	15.5	18500	8.1	3890	389	<u><0.11</u>	18.1	1660	<0.55	<1.1	<546 <587	<0.55	13.6 17.9	260
SS-22	0-0.3	9880	<0.59	15.7	202	<0.59	1.7	6000	17.9	<17.6	167	22600	35	3470	365	0.15	22.6	1880	<0.59	<1.2		<0.59	14.9	49.1
	2-4	7320	<0.55	13.3	30.9	<0.55	<0.55	10400	13.7	<16.4	15.0	19400	8.4	5230	335	<0.11	26.6	1760	<0.55	<1.1	<546 <551	<0.55	(4.3 8.3	56.3
	4-6	3760	<0.55	12.6	25.6	<0.55	<0.55	20000	7.8	<16.5	16.9	18000	9.2	3610	449	<0.11	15.9	678	<0.55	<1.1	<555	<0.55	10.2	50.5 54.7
	6-8	4390	<0.56	9.2	20.9	<0.56	<0.56	14600	12.3	<16.7	14.4	15500	9.0	3990	363	<0.11	84.7	950	<0 56	<1.1	~500	~0.30	10.2	J-1.7
								0720	42.0		10.2	21200	15.3	3830	325	<0.11	19.0	1700	<0.55	<1.1	<550	<0.55	14.6	58.5
SB23	0-2	7690	<0.55	16.7	26.7	<0.55	< 0.55	6730	12.8	<16.5 <17.4	<u>18.2</u> 22.4	23800	12.5	2780	363	<0.12	22.4	2290	<0.58	<1.2	<581	<0.58	18.4	72.6
SS-23	0-0-3	9920	<0.58	16.4	43.6	<0.58	<0.58	1750	15.8	<16.4	15.2	22000	13.7	3330	320	<0.11	23.0	1110	<0.55	<1.1	<548	<0.55	10.8	46.9
	2-4	5270	<0 55	35.7	25.8	< 0.55	<0.55	10400 6830	9.9 12.3 -	<16.8	15.2	17000	9.6	3090	313	<0.11	16.5	1190	<0.56	<1.1	<559	<0.56	11.1	49.8
	4-6	6040	<0.56	12.7	24.6	<0.56	< 0.56		12.3	<18.7	16.3	21300	9.8	4340	312	<0.12	19.0	1500	<0.62	<1.2	<624	<0.62	13.3	56.0
	6-8	7100	<0 62	12.3	<25.0	<0.62	<0.62	10500	11.7		10.3	21300	9.0	-340	312	-0.12	10.0	1000	-0.02					
6004	0.2	11200	<0.58	16.6	125.0	<0.58	2.40	4390	16.3	<17.3	238.0	25100	35 2	3740	326	0.17	24.0	1430	<0.58	<1.2	<575	<0.58	17.0	214 0
SB24 MRD QA	0-2 0-2	11200 11100	< 0.60	15.6	125.0	0.59	1.53	5660	16.7	10.2	195.0	26900	31.1	4130	374	0.26	23.8	1590	<0.60	<0.40	82	<1.0	17.0	206.0
SS-24		10200	0.62	15.3	117	<0.61	1.4	6590	15.9	<18.2	102	28000	28.9	3630	417	0.17	22.4	1980	<0.61	<1.2	<608	<0.61	17.9	190
1 22-24	0.0.3	9260	<0.57	15.7	79.8	<0.57	1.40	3780	15.2	<17.1	124.0	23900	34.6	3440	316	0.17	23.0	1240	<0.57	<u> <1.1</u>	<571	<0.57	15.4	197.0
р · · ·	2-4 4-6	4520	<0.57	13.8	<22.9	<0.57	<0.57	3280	8.9	<17.2	39.4	17600	9.1	2340	320	<0.11	16.6	899	<0.57	<1.1	<573	<0.57	9.7	61.6
MRD QA	4-6	5330	<0.60	15.7	30.6	0.26	<0.08	3740	10.5	6.0	387.0	19000	20.6	2550	258	0.02	16.7	957	<0.6	<0.4	42	<1.0	9.9	114.0
I MUR AU	6-8	6080	<0.55	11.0	<21.9	<0.55	<0.55	7230	10.6	<16.4	14.2	18100	11.8	3820	312	<0.11	18.2	1290	<0.55	<1.1	<548	<0.55	12.2	48.1
	12-14	7950	<0.55	15.0	35.8	<0.55	<0.55	11400	13.4	<16.5	18.2	22900	9.6	5780	390	<0.11	22.9	1560	<0.55	<1.1	<549	<0.55	13.6	58.3
	12-14	1350	~0.55	10.0	00.0		0.00																	
S825	0-2	9900	0.58	9.6	114.0	0.65	0.87	35000	15.0	<17.2	102.0	14200	50.1	3630	529	<0.11	12.6	130D	<0.57	<1.1	<573	<0.57	12.3	200.0
SS-25	0-0.3	12100	<0.60	9.5	106	2.9	0.87	57500	11.5	<18.0	62.6	15100	17.8	11200	780	<0.12	14.6	1850	<0.60	<1.2	<600	<0.60	13.8	100
03-23	2-4	10500	0.60	15.1	52.6	<0.59	<0.59	5250	16.2	<17.8	26.6	23300	15.5	2900	551	<0.12	28.7	1360	<0.59	<1.2	<594	<0.59	18.5	77.0
	4-6	11100		15.6	50.1	<0.61	<0.61	2200	16.7	<18.2	20.3	24200	14.1	2690	363	<0.12	28.7	1560	<0.61	<1.2	<605	<0.61	21.1	64.6
			-0.01					(Ŧ	•	• •				•								
																								_
EPA	REGION 9	4																						
RESIDEN		77000	31.0	0.38	5300	0.14	38.0	1 1	30.0	4600	2800	1 1	400	Ì	3200	6.5	1500		380	380		6.1	540	23000
REGIDEN	1 - 103	1	01.0	0.00								I		•	1	[l						

EPA	REGION 9			_												1	 0.00	000	 £ 1	540	23000
RESIDEN	PRG'S	77000	31.0	0.38	5300	0.14	38.0		30.0	4600	2800	400		3200	6.5	1500	380	380	0.1	340	120000
PHIBG		15600		19.6	75		0.29		18.7			17.9		728	0.08		2.6	<0 24			72.1
PH II BG		To		Be	0	etermine	ed	1				ļ	ļ		l	1					ſ

RVAAP OPEN DEMOLITION AREA

TAL LEVELS

	DEPTH			A 1		dings II	N MG/K	G										oo 1	SE	AG	NA	тн і	VN I	ZN
200000	(FT)	AL I	SB	ASI	BA	BE	CD	CA	CR	co	ÇU	FE	PB	MG	MN	HG	NI 19.7	PO 1440	<0.61	<1.2	<605	<0.69	16.8	281
BORING SB26	0-2	9850	355	110	115	<0.61	1.8	3300	15.9	<18.2	199	21100	40800	2830	425	0.15	26.1	1340	<0.78	<1.6	<781	<0.78	14.1	246
SS-26	0-0.3	7310	0.86	15	142	<0.78	1.2	8070	20.9	<23.4	118	29000	35.4	3440	504	<0.16 <0.13	24.6	2160	<0.63	<1.3	<626	<0.63	30.7	94.2
53.20	2-4	16900	3.3	15.9	110	0.64	<0.63	1830	23.6	<18.8	41.8	28000	186	3400	790	<0.12	19.0	1350	<0.61	<1.2	<611	<0.61	26.4	72.9
	4-6	13300	1.7	14.6	90.1	<0.61	<0.61	1740	18 8	<18.3	39.3	26900	175	2780	1000	0.12	21.3	2010	<061	<1.2	<605	<0.61	19	128
	4^0 6-8	10300	1.8	15.1	121	<0.61	4.1	2680	15.0	<18.2	120	22800	285	3230	292	0.15	21.3	2010				i I		
	0.0	10000														-0.13	21.7	1190	<0.58	<1.2	<583	<0.58	14.5	86.7
6027	0-2	8330	<0.58	15.6	69.8	<0 58	<0.58	1410	13.2	<17.5	43.5	23800	16.7	2650	372	<0.12 <0.13	20.2	1770	<0.67	<1.3	<668	<0.67	15.7	157
SB27	0-0.3	8650	<0.67	<12.9	99.5	<0.67	1.4	3840	14	<20.0	85.5	20000	33.9	3340	319 391	<0.12	31.1	1720	<0.58	<1.2	<584	<0.58	18	68.5
\$S-27	2.4	11200	<0.58	13.9	38.6	<0.58	<0.58	2060	18 4	<17.5	18.9	27500	10	4500		<0.12	24.4	1700	<0.61	<1.2	<615	<0.61	16.4	64.2
	4-6	8960	<0.61	13.1	38.5	<0.61	<0.61	2010	15.7	<18.4	19.5	23300	10.5	3160	406	~U 12	24.4					1		
	4-0	0.000	0.01												075	-0.11	20.9	2000	<0.57	<1.1	<575	<0.57	18.5	69.7
\$ 8 28	0-2	10500	<0 57	15.3	421	<0.57	<0.57	3620	15 4 14.1	<17.2	.23.2	22500	12.2	2840	375	<0.11 <0.12	18	1570	<0.60	<1.2	<596	<0.60	14.3	161
SS-28	0-0.3	6900	<0.60	13.4	82 9	<0.60	1.4	5620	14.1	<17.9	112	19000	30.3	3120	368 388	<0.11	22	1310	<0.56	<1.1	<563	<0.56	13	64.1
33-20	2-4	7200	<0.56	18.3	22.9	<0.56	<0.56	7510	12	<16.9	37.6	22600	10.8	4410	415	<0.11	21.2	1390	<0.57	<1.1	<573	<0.57	13.7	85.9
	4-6	7670	<0.57	16.4	34.2	<0.57	<0.57	9190	13	<17.2	26.7	25100	11.7	4690 5880	390	<0.11	26.1	2000	<0.57	<1.1	<570	<0.57	17.9	61
	6-8	10200	<0.57	17.5	53	<0.57	<0.57	12500	166	<17.1	19.8	26900	11.6	3000	350	~						1		
	•••			}	1									1220	380	0.18	20.9	1160	<0.57	<1.1	<573	<0.57	15.5	122
SB29	0-2	6940	<0.57	14.8	112	<0.57	1.3	3640	13.7	<17.2	65.5	22600	20.1	<u>3270</u> 3210	342	<0.12	21.2	1520	<0.61	<1.2	<608	<0.61	15.7	149
SS-29	0-0.3	8770	<0.60	14.1	77.6	<0.61	1.2	3730	14.0	<18 2	102	21000		3150	336	0.18	22.6	1220	<0.59	<1.2	<593	<0.59	17.8	121
1 33-23	2-4	9890	<0.59	16.7	74.3	<0.59	1.3	2610	15.5	<17.8		26100	22.3 17.8	1980	269	<0.11	20.5	747	<0.57	<1.1	<567	<0.57	8.9	141
÷	4-6	4240	<0.57	10.3	24.2	<0.57	7.4	3370	9.7	<17.0	28.4	20400		3560	384	0.05	20.1	1330	<0.6	<0.4	63	<1.0	13.4	142
MRD QA	4-6	7890	<0.60	14.2	48.3	0.43	5.82	6470	12.8	8.7	54.8	23400		4770	557	<0.11	19.1	1460	<0.55	<1.1	<550	<0.55	13	48.9
Livino dri	6-8	7100	<0.55	11.7	24.7	<0.55	<0.55	10900	11.4	<16.5	15.4	22400	0.3	"""				1	1]		1	•	1
	1		1	1	1	1		l I	l	1	1	I	ł	1	1	I	1	•	•					
	1	•	•	•	-																			
EPA	REGION	əl									1		400	1	3200	6.5	1 1500	1	380	380	1	6.1	540	23000
RESIDEN		77000	31.0	0.38	5300	0.14	38.0		30.0	4600	2800		400	1	1			ļ	1					
NEGIDEN	1	1	1		1	ł	1			1			17.9		728	0.08	1		26	<0.24			1	72.1
PHIBG		15600	ol 👘	196	75		0.29		18.7		1		1 11.8		1				1	1			ł	l
		1	1		1	1	ł	ļ	1		1	1		1	1		1			1		ł	1	4
PH II BG		To	1	Be	1	Determin	ed	1	1	ł	1	1	I	I I	I I	4	•	•	•	-	-			
		•	•	•	-																			

OPEN DEMOLITION AREA RVAAP

TAL LEVELS

	ocoru I	1						<u> </u>																
	DEPTH				LL READ	DINGS I BE	N MG/K	CA	CR	co	cu	FE I	PB	MG	MN	1 н <u>с</u> I		PO I	SE	AG I	NA	ТН	VN	ZN
BORING	(FT) 0-0 3	AL 7290	SB <0.57	AS 9.1	117.0	<0.57	<0.57	161000	10.4	<17.1	47.7	15400	16.8	3140	469	<0.11	17.6	1320	<0.57	<1.1	<570	<0.57	12.6	82.1
SS-01	0-0.3	6070	<0.57	5.1 7.5	113.0	<0.53	0.58	202000	8.7	<15.9	36.1	11700	11.3	3340	514	<0 11	15.3	1100	<0.53	<1.1	<529	<0.53	10.8	57.6
SS-01 DUP SS-02	0.0.3	7630	<0.64	13.3	96.8	<0.64	1.00	6930	13.8	<19.1	89.3	20700	61.7	2990	329	<0.13	21.1	1270	<0.64	<1.3	<637	<0.64	14.9	202.0
55-02 55-02 DUP	0-0.3	6910	0.75	14.6	92.2	<0.65	1.40	7340	15.2	<19.4	93.9	22500	76.5	3320	325	0.80	22.0	1450	<0.65	<1.3	<647	<0.65	16.7	214.0
SS-02 DOF	0.0.3	14100	<0.61	15.0	62.3	<0.61	<0.61	12500	21.4	<18.4	71.7	26300	20.2	3320	329	<0.12	23.5	2170	<0.61	<1.2	<612	<0.61	25.3	132.0
SS-03 DUP	0-0.3	13600	<0.61	14.8	73.4	<0.61	<0.61	8010	22.8	<18.4	51.8	27200	19.5	3640	398	<0.12	26.1	2030	<0.61	<1.2	<612	<0.61	25.6	103.0
SS-04	0-0.3	8920	<0.58	11.8	98.4	<0.58	0.86	75400	14.1	<17.3	89.1	18600	17.3	3240	430	<0.12	20.8	1710	<0.58	<1.2	<577	<0.58	16.3	85.2
SS-04 DUP	0-0.3	5500	<0.56	7.3	92.0	<0.56	0.64	167000	8.8	<16.7	47.5	12300	12.6	2930	476	<0.11	15.6	979	<0.56	<1.1	<557	<0.56	9.7	60.7
SS-05	0-0.3	8860	<0.60	12.B	69.4	<0.60	0.61	48700	14.4	<17.9	56.0	20500	17.6	2930	397	<0.12	20.4	1120	<0.6	<12	<595	<0.6	17.0	90.5
SS-5 DUP	0-0.3	5490	<0.58	19.6	64.4	<0 58	0.60	137000	10.7	<17.5	64.2	16900	16.8	2790	441	<0 12	17.3	862	<0.58	<1.2	<582	<0.58	10.4	73.8
SS-06	0.0.3	9170	<0.63	16.5	815	<0.63	1.20	5990	15.5	<18.8	101.0	22700	22.0	3670	402	<0.13	22.0	1690	<0.63	<1.3	<628	<0.63	16.8	145.0
SS-06 DUP	0-0.3	6260	0.68	14.0	63.2	<0.66	1.80	11000	14.0	<19.8	102.0	21100	36.6	3850	333	D.13	21.5	1390	<0.66	<1.3	<660	<0.66	14.9	162.0
SS-07	0.0.3	8600	<0.62	15.5	31.3	<0.62	0.95	8890	14.1	<18.6	95.8	20800	24.3	3760	365	0.23	20.9	1640	<0.62	<1.2	<621	<0.62	15.9	125.0
SS-07 DUP	0-0.3	8740	<0.62	13.8	71.6	<0.62	1.10	6160	14.5	<187	94.0	21000	24.3	3710	342	0.15	21.2	1400	<0.62	<1.2	<624	<0.62	15.8	158.0
SS-08	D-0.3	8270	0.65	14.7	67.3	<0.61	0.69	8060	17.1	<18.4	76.7	30800	20.9	3590	494	<0.12	23.3	1110	<0.61	<1.2	<612	<0.61	17.1	158.0
SS-08 DUP	0-0 3	10700	<0.59	14.9	85.7	<0.59	078	4110	17.4	<17.8	93.3	25000	25.0	3430	648	<0.12	23.0	1400	<0.59	<1.2	<594	<0.59	20.9	158.0
SS-09	0-0.3	11200	<0.60	18.1	50.9	<0.60	<0.60	1950	18.5	<17.9	19.7	28200	11.6	3660	351	<0 12	28.2	2020	<0.60	<1.2	<595	<0.60	20.0	68.3
SS-09 DUP	0-0 3	11500	<0.59	16.0	31.7	<0.59	<0.59	2600	18.5	<17.8	28.0	26000	15.2	3450	447	<0.12	28.3	2290	< <u>0.59</u>	<1.2	<592	<0.59	22.3	77.9 85.0
SS-10	0-0.3	11800	<0.60	17.3	64.3	<0.60	<0.60	3530	19.6	<16.0	29.1	29000	13.9	4040	333	<0.12	31.5	1540	<0.60	<1.2	<600	<0.60	21.5	70.8
SS-10 DUP	0-0.3	13700	<0.61	13.0	123.0	0.86	<0.61	3640	22.0	<18.3	25.4	26500	14.1	4060	537	<0 12	35.1	2130	<0.61	<1.2	<612	<0.61	25.1 17.5	184.0
SS-11	0-0.3	9790	<0.66	15.8	109.0	<0.66	2.50	4730	18.9	<19.7	156.0	25300	31.0	3950	373	0.15	25.3	1980	<0.66	<1.3	<657 <622	<0.62	17.5 13.8	264.0
SS-11 DUP	0.0.3	7650	<0.62	13.1	68.8	<0.62	1.30	5520	13.1	<18.7	120.0	20100	24.0	3540	378	0.17	20.7	1240	<0.62	<1.2 <1.2	<598	<0.60	16.8	192.0
SS-12	0.03	8930	0.60	14.5	75.6	<0.60	1.20	5780	15.0	<17.9	103.0	21100	92.8	3560	358	<0.12	20.7	1650 1760	<0.60 <0.59	<1.2	<587	<0.59	16.7	181.0
SS-12 DUP	0-0.3	10100	0.64	15.2	77.4	<0.59	1.30	5500	16.1	<17.6	119.0	234D0	28.8	3480	374	0.13 <0.12	22.5	1760	<0.60	<1.2	<599	<0.60	20.0	102.0
SS-13	0-0.3	11700	<0.60	16.6	59.1	<0.60	071	5330	17.9	<18.0	96.9	27300	18.3	4580	185	<0.12	15.5	1200	<0.59	<1.2	<592	<0.59	25.8	62.5
SS-13 DUP	0.03	13000		. 11.7	48.6	<0.59	<0.59	2010	17.3	<17.8	30.4	22200	13.6	2870	383	<0.12	24.6	1980	<0.60	<1.2	<604	<0.60	19.8	190.0
SS-14	0-0.3	10600		16.0	72.5	<0.60	1.40	4640	17.3	<18.1	127.0	24600 25200	29.4	3770	353	0.14	26.0	220	<0.60	<1.2	<598	<0.60	21.7	126.0
SS-14 DUP	0-0.3	12000		15.7	552.0	<0.60	0.79	3860	19.0	<17.9	96.3 78.5	21500	24.9	2510	379	<0.12	20.4	1170	<0.60	<12	<602	<0.60	12.7	164.0
SS-15	0-0.3	6660	<0.60	12.9	73.3	<0.60	0.62	10100	13.1	<18.1	391.0	16500	39.1	3740	460	<0.11	17.4	1560	<0.57	<1.1	<574	0.57	14.2	77.9
SS-16	0.0.3	12600	1 ··· · ·	15.6	62.9	0.61	<0.57	79900	17.0	< <u>17.2</u> < <u>17.7</u>	136.0	21300	27.7	3280	344	0.33	21.5	1310	<0.59	<1.2	<591	<0.59	14.7	219.0
SS-17	0-0.3	7900	<0.59	14.3	72.8	<0.59	1.50	5160	·		76.1	23100	20.9	3760	339	<0.12	24.5	2400	<0.61	<1.2	<605	<0.61	21.0	137.0
SS-18	0-0.3	11800	<0.61	14.3	74.5	<0.61	0.76_	3810	17.9	<18.2	1.10.1	1 23100		1 0100			.1 2217 -			·	·		B	
EPA	REGION 9			1	1	1	1		1 20.0	1 4000	2800	1	400	1	3200	6.5	l 1500	I	1 380	380	1	6.1	540	23000
RESIDEN	PRG'S	77000	31.0	0.38	5300	0.14	38.0	1	30.0	4600	2000		400	1	1		1							
			1	1				1				1	17.9		728	0.08		1	2.6	<0.24				72.1
PHI BG		15600	יו	19.6	75	1	0.29	1	18.7	1	1	1	17.9	1	1.20		1	1		1				1
			1			1	1		1	1	1		ł			1		1				1		
PH II BG	1	Τo	1	Be	1 (Determin	ed	1	1	1	I	I	1	1	1	1		•	•	•	•	•	•	•

.

.

Ø 00 :

TAL LEVELS

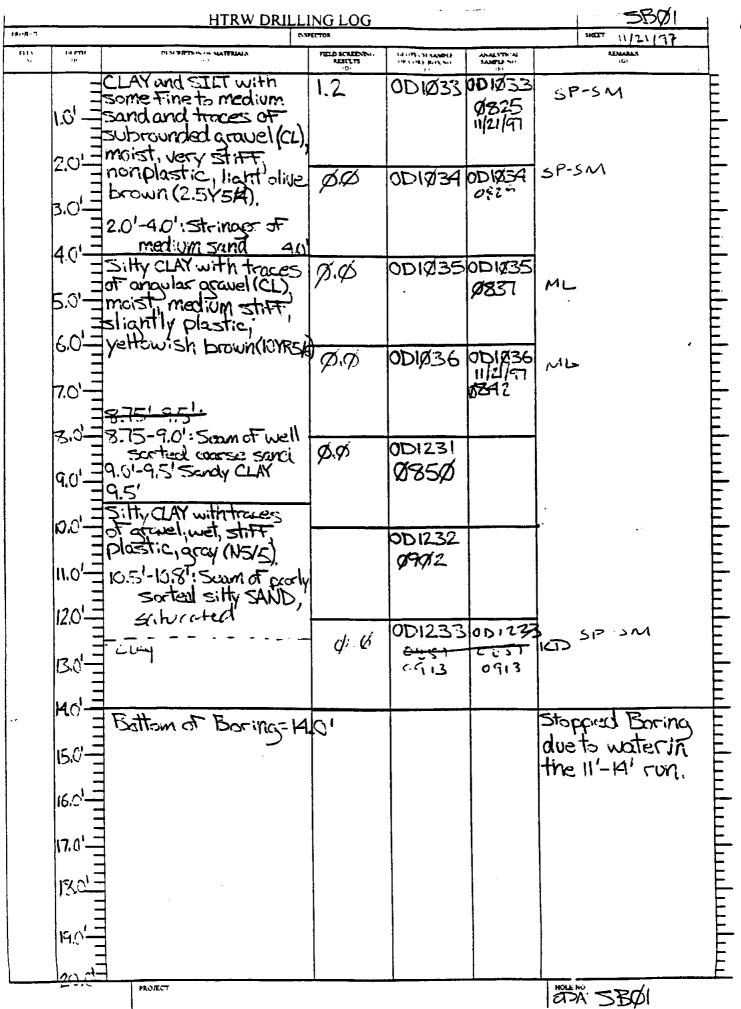
OPEN DEMOLITION AREA RVAAP

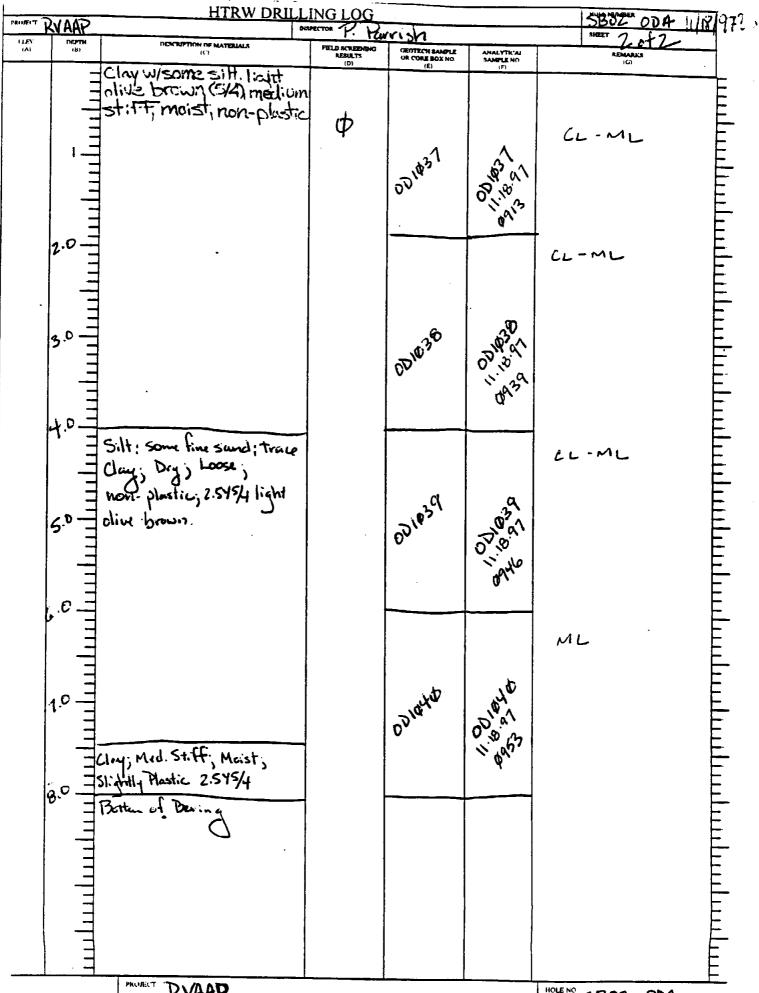
	DEPTH	I		AI	L REAL	DINGS I	N MG/K					er l	ne i	uc l	8.4N	I HG İ	NI	PO	SE	AG į	NA	тн	VN	<u>ZN</u>
BORING SS-19 SS-20 SS-21 SS-22 SS-23 SS-24 SS-25 SS-26 SS-27 SS-28 SS-29 SS-30 SS-31 SS-31 SS-32	DEPTH (FT) 0-0.3 0-0.3 0-0.3 0-0.3 0-0.3 0-0.3 0-0.3 0-0.3 0-0.3 0-0.3 0-0.3 0-0.3 0-0.3 0-0.3 0-0.3 0-0.3	AL 10100 7580 8510 9980 9920 10200 12100 7310 8650 8900 8770 10600 11300 9470	<0.60 0.88 <0.67 <0.60 <0.60 <0.65 0.67	AS 16.5 11 13 15.7 16 4 15.3 9.5 15 <12.9 13.4 14.1 14.4 14.7	BA 80.9 66.4 127 202 43.6 117 106 142 99.5 82.9 77.6 87.9 106 94.6	BE <0.58	CD 1.3 1 1.8 1.7 <0.58 1.4 0.87 1.2 1.4 1.4 1.2 1.5 1.5	CA 4870 22800 8000 6000 1750 6590 57500 8070 3840 5620 3730 3610 15000 4470	CR 17.2 11.7 19.3 17.9 15.8 15.9 11.5 20.9 14 14.1 14.8 17.3 14.7 25.5	CO <17.4 <17.7 <20.8 <17.6 <17.4 <18.2 <18.0 <23.4 <20.0 <17.9 <18.2 <19.5 <18.5 <19.9	98.7 107	FE 23600 16900 24300 238000 28000 15100 29000 29000 19000 21000 23300 22000 36300	PB 24 22.5 29.5 35 12.5 28.9 17.8 35.4 30.3 22.3 37.8 90.2 35.1	MG 3690 2920 3490 3470 2780 3630 11200 3440 3340 3120 3210 3390 5300 2060	MN 342 371 455 365 363 417 788 504 319 368 342 380 422 432	HG 0.17 <0.12 0.16 0.15 <0.12 0.17 <0.12 <0.16 <0.13 <0.12 <0.12 0.18 <0.12 <0.12 <0.12 0.18	24 17 18.7 22.6 22.4 14.6 26.1 20.2 18 21.2 22.7 20.4	1660 1400 1680 1980 2290 1960 1850 1340 1770 1570 1570 1520 2450 1930 2280	3E <0.58 <0.59 <0.69 <0.59 <0.58 <0.61 <0.60 <0.78 <0.67 <0.60 <0.61 <0.65 <0.62 <0.66	<1.2	<pre><579 <591 <693 <587 <581 <608 <600 <781 <668 <598 <606 <651 <615 <663</pre>	<0.58 <0.59 <0.69 <0.59 <0.58 <0.61 <0.60 <0.78 <0.67 <0.60 <0.61 <0.65 <0.62 <0.66	18 12.8 14 2 17.9 18.4 17.9 13.8 14.1 15.7 16.5 16.2 17.2	162 181 215 260 72.6 190 100 246 157 161 149 171 269 197
EPA RESIDEN PH I BG PH II BG		9 77000 15600 To		0.38 19.6 Be	5300 75	0.14 Determin	38.0 0.29 ed		30.0 18.7	4600	2800		400 17.9		3200 728	6.5 0.08	1500		380 2.6	380 <0.24		6.1	540	23000 72.1

APPENDIX C

٠

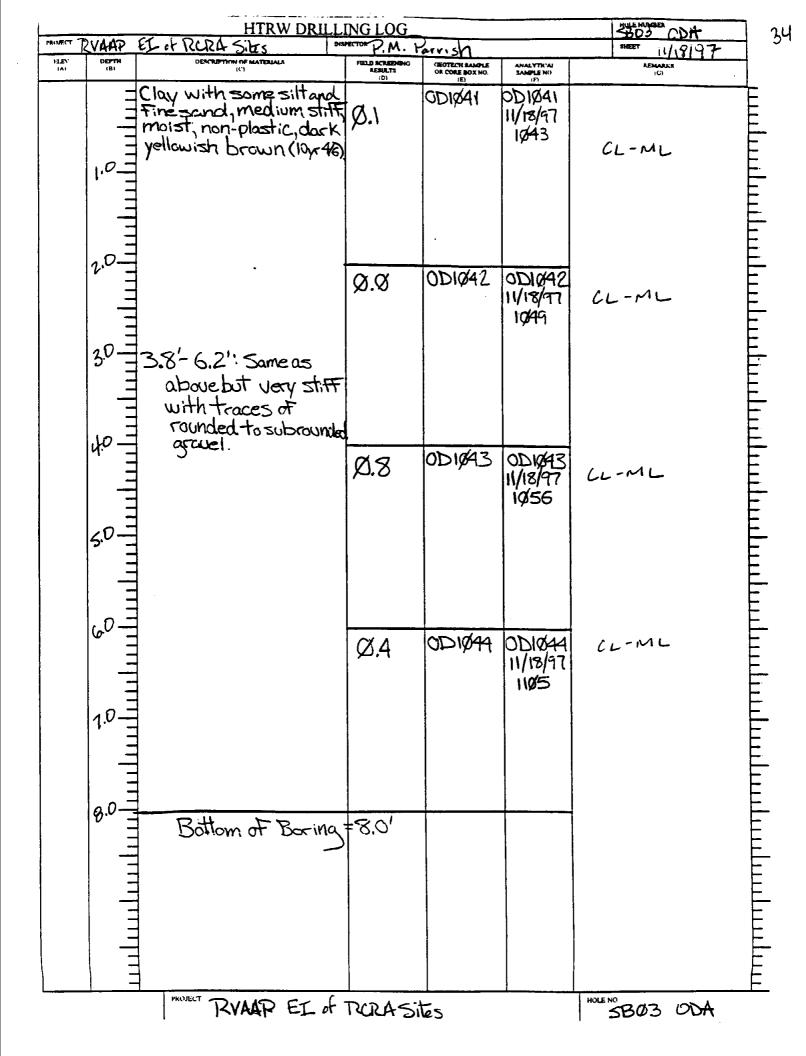
BORING LOGS

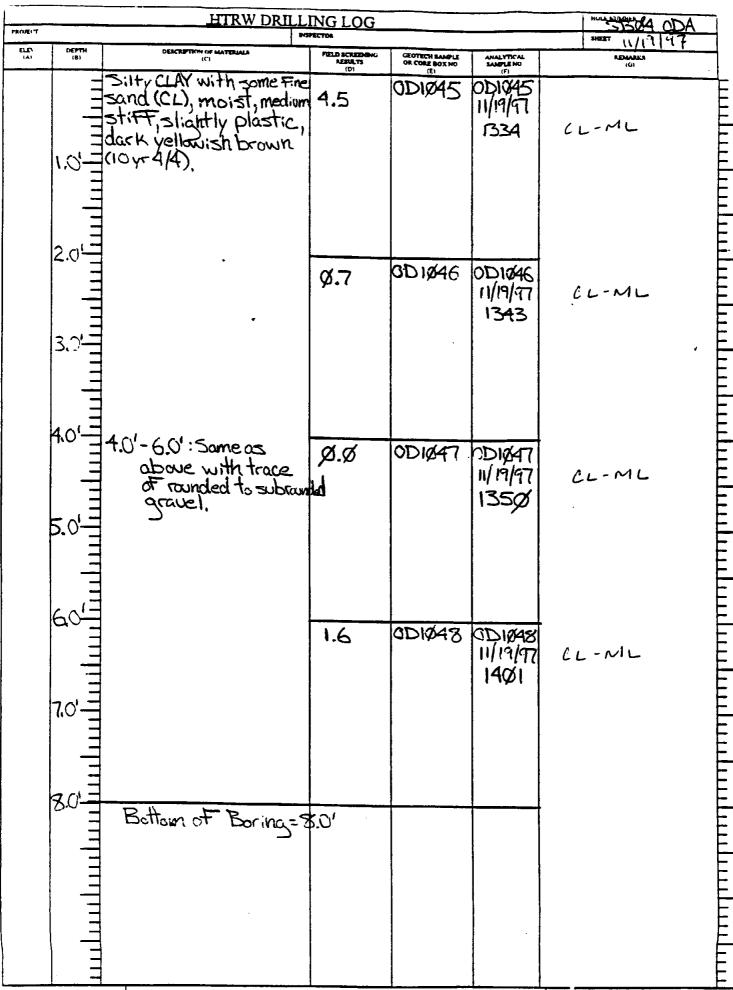

.


CT .	RVADI	RCRA INVESTIGATIONS		OMINIC			HOLE MUNABER SB-1	+
av a	(6)	DESCRIPTION OF MATERIALS	FIELD SCREENING RESULTS	GEOTECH SAMPLE	ANALYTICAL		NEET 11/21/472	-
			(0)	(E)	SAMPLE NG	W	(G) .	
		topsoil, silt to chyzy silt, bown, ML	<i>Þ.</i> Ø	DF1153	DFIIS3			F
	1.0 -	SUF, BRUSA, NIL			1422	15.8		þ
	'··							þ
		all to change IF MI						F
	24-	silt to clayey silt, ML.		DF1154	DEIISH			E
			ϕ . ϕ		1426	142		E
	3¢				1.10-		-	þ
	l' =							þ
	4.0 -							F
	1	•		DFIISS	DFIISS	Γ		E
			Ø.Ø		1430	15.	9	E
	K.Ø —			1			,	F
	Ε, Ι							F
	6.4	CL, sandy, silly, shift yellowish - brinn, moist				 		þ
		Vellauish - brown, moist		IDF1156	DF1156			F
	7.Ø	1	<i>Ф.ø</i>		1435	18.5	/	E
	i I		742					E
	2.0-	COURSE SAND, Well						F
		COURSE SAND, Well sorted, stringer of per-sized gravel SP-SM		DF1157	DEIIST	t		ŧ
		per-sited graver si sit	Ø.Ø	Geotech	1442			þ
	a.d_	sand only ?" clay,	' /	Georech		19,1	l	F
		sand only, 2" clay stringer SM sully sand.				1		F
	u.0_	0 1						E
		contraction and		DF1261				E
		SM, silly sand		1451		417		F
	۱۱.Ø-			Cariban		l		þ
	b I			Geotech				þ
	12	same, wet V				a wind by a couple on	Stands - August	F
				DF1262		~ 7 7 49		E
	13¢	we'll sorted sa-d, wet		1501		72,3		þ
		we in section and section of the						þ
	10.0							þ
		SM. Luckd . 1		DF 1263]			F
		SM, solveated sad, Nminor silt component	4	1505		19.	7	E
	15.0 -	The second				1	ŧ	F
				Gentein		n de	pushed to	F
	16.0-	TD = 16.0 / w/sample	h	<u> </u>	+	Koas	pushed to 43' without	F
			19					þ
	η.α —					rens	sal Boring imated C 1541	F
						וזניש	11 MATER (154)	E
								F
	rg.q				1			þ
								þ
	19.0-							þ
								F
	20.0 -							F
		PROÆCT				HOLE NO	DFASBØ1	

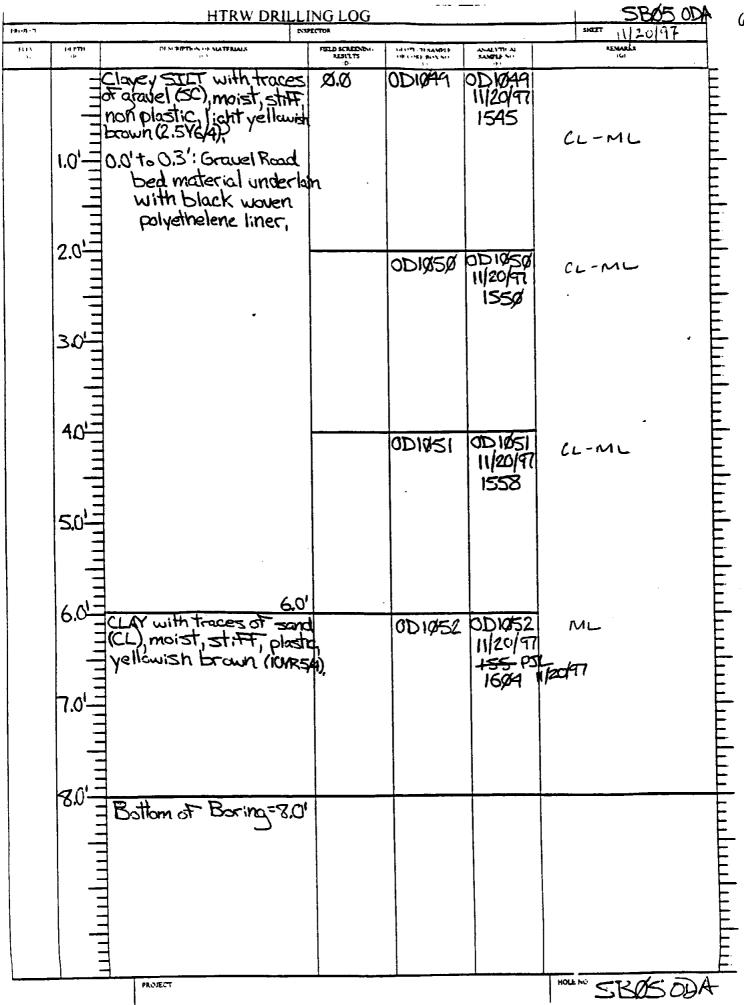
ÆCT	RVAA	HTRW DRILL					HOLE MARKER	38-2
EV	DEPTH	DERCENTION OF MATERIALS	FECTOR Yeur	Parrish				3197
A)	(8)	(C)	TELD SCREENING RESULTS (D)	GEOTECH SAMPLE OR CORE BOX NO. (E)	ANALYTR'AL SAMPLE NO		REMARKS (G)	
	=	2.545/6 light Olive Brown	Øpp-	DFIISB	DFIISB			
	1.0-	Clay, Dure, Dry. Non plastic,	444		Ø995	16	9	
	l "" =	Tree Silt, Trace Fire Sund		2		ru	, 1	
	2.9-	2.545/4 light Olive Brown						
	=	Chy Some Silt. Trave Fre	1	DEIISA	DF1159	-		
	3.¢	Sund, Dry, Median Stiff,	Øpp-		0905	14,	9	
		Loose, Not plastic			4			
	4.¢ -					e		
		•	<i>ф</i>	DI=1160	DF1160			
	5.q-		Øppm		Ø923	14		· · · ,
i						· •		
	60-	E. A. Monive avaut						<u>ن</u> ه
		Same As Above except Denne 6-7:0, SW	<i>d</i>	DFIIGI	DF1161	-		
	7.0-		Opp-		0926	100	î	
	· I	104R4/4 Dark Yellowish Brown					•	F
	84-	Fine to Medium Send; Moist;						
		Loose; Trace Clay, Subengeler to subscunded greens, SW-SAN	<i>7</i> .	DF 1162	DF1162		_	
	9.0-	- Jan	Øppn		0929	11,7	2	ŧ
		7	****					Í
	10.0-	10424/4 Dark Yellawish - Bran						Ē
ľ		Gravel, Some Very Coarse Soud,						ŀ
	<i>∥\$</i> − <u></u>]	Trace Chay; Wit; Loose; Gravel to 40mm; Angular Sh	<i></i>					
	_	praver to roman. Angular Sh	-2~1					Ē
	120-	Bottom of Boring Darding of 10'						ļ
	-	M 10. () J						
	13.0		,					-
			ι. Έ					Ē
	17-9							þ
	Ξ							Ē
	к.¢-							
								F
	10.0							E
	, I	•						F
	17 ″ –	Raine						Ē
	E	Botton of Boring C 43' bas Hammeired last 6'						F
	18.0	p 43 695						F
		i lart 6						
	190-	Hammeira last						F
	15.0							Ē
		PROPECT RUAND		<u> </u>	<u></u>	HOLE NO		

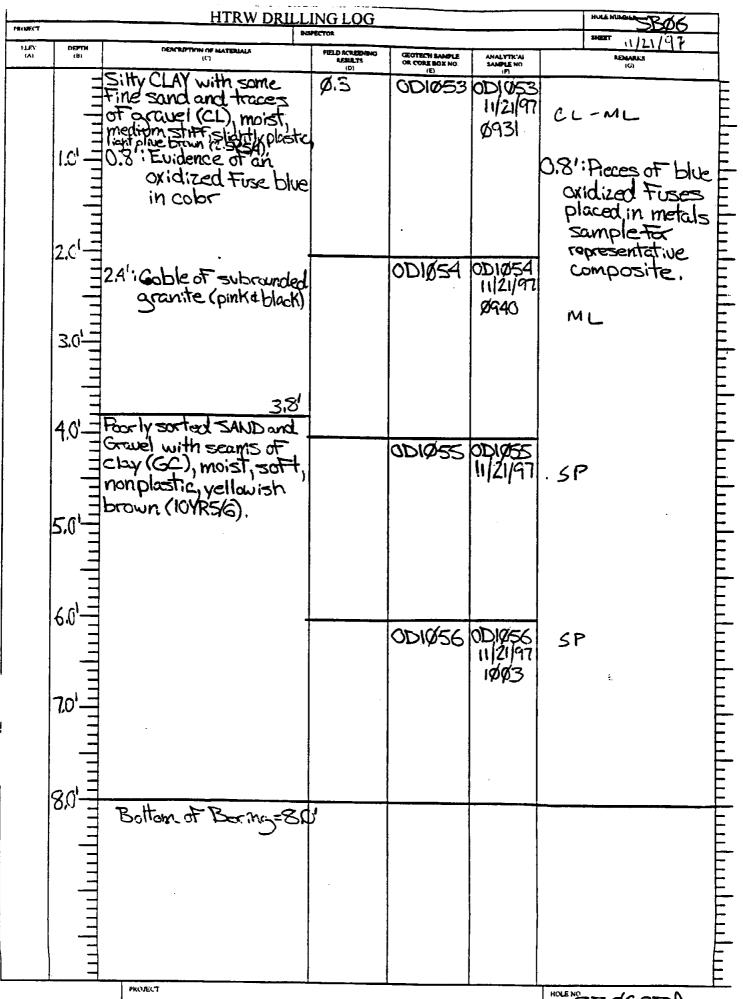
אריד <u>ר</u>	11000	HTRW DRILL				HOLE NUMBER - 9	
		DESCRATINGATIONS DESCRIPTION DE MATEMALS	<u>KD</u>	2 1 Ling		SHEET 11/22/17	33
	(B)	403	FTELD SCREENING RESULTS (D)	GEOTECH SAMPLE OR CORE BOX NO.	ANALYTK'AI SAMPLE NO	REMARKS (G)	: ייך
	-	surface fill material		122111 2	PRILL-3	NO FURTHER	- <u>+</u> z
	_			PB1163	0933	LOG Gulg	F
	1.0-	CL Allering CLEG			\$157		E
	1	CL, silly day, shff,					F
		stavel to 1090, 2.5 yes					F
	12.0-	graver to to to 2.5 yes		PBILLY	POLLA		Ez
	=	4/4 dive brown, dry	$\phi.\phi$	19110-1		MS/MSD (F
	30-	SW-SM	' '		Ø943		Ez
	^{**} =						F
	(₁₂) =	a lass of the soft				(F
	40-			PB1165	PBILOS	1	Fz
	=	CL, less Silf, soft, slightly plantic, color change to GLEY 4/11 durie Sre-1+		1.51165	1002		F
	50-	color change to GLEY				/	F.
		4/1 darle Sre-1+				/	Fu
	···	black sand struger					F
	6.0-			DRUIT	0.0	ł	F-2
			_	PB1166	PBILLO	1	F
	d		1.5		1009		F
	^{7.} Ψ =	color (he-f.)					1-28
		brownin/ grey no Hing				/	F
Ø	0 -	brownin/greymotting				/	Εv
-			0.0	PB1283			F
			U U	1017			E
	99-						<u>-</u> 3
						\	E
	10.0	CL, clay w/fine sand, shiff, moist, nenplastic				}	Esi
	· ′ 1	clay w/ fine sand,	ø.Ø	PB 1284		/	E
		shiff, moist, renplastic	$\varphi \cdot \boldsymbol{v}$	1025		(E
	N9-			Georech			-3
				900,001			F
	120=						F.
		·		PB 1285		TD = 34 ' geoprobe refuserf	- <u> </u> 3,
		sand stringer (fine), sw	$n \sigma$	1030		in format	F
	I3.φ	same strager (time), Sh	φ	10,0		12mon .	-3
ļ		U					F
							F
	44-			PBILSO			F
		CI - ME ILA (IMA GLEY	$\phi \phi$	1038			F
	5.0-	4/12 dark Ste-1			l		F
		/ Contract (and)			{		F
		firm, mist low					F
	1 4 . 7 -	presticity	4	PB1257			F
		•	$\phi.\phi$.	1040			F
	17.9-	K				l	F
		1 Horthe ton		Greatech			E
ĺ		Sourised sand (0.5)					F
	1.0.4-	Sauran I		PB1286	t		È.
		claying silt, cu-me	ற் எ	1344			F
	14.9-		$ \Psi.\Psi $		1		E
				1			F
	20=						F
		PROJECT	1		I		
						HOLE NO PESTS BLDG	SB^


ł	PRSTICIPH					
PROJECT	HTRW DRILL	ING LOG			HULE MORENTE DI	
FLEV	DEPTH DESCRIPTION OF MATTRIALS	FELD SCREENING	Atarrish		MEERT 11/27197	7 21.
(A)	(6) (C)	AESULTS (D)	GEOTECH SAMPLE OR CORE BOX HO.	ANALYTICAL SAMPLE NO	AEMAAKR (G)	- 210
	1.0 - Sud Subargular : moist; Soft; modium plactic	Fill	CS1272 0956	(F)	12.8	
	2.0 - SM 3.0	FIL	651273 0956		157	
	5.0		CS1274 Ø 9 69		21.3	
	1.0	66	CS1275 0959 Geotech		Z0. Z	يساينيناي
	9.0	CL-ML	CS1276 1016 Geotech	-	23.5	luidia
	10.0 - 10Viz S/16 Yellowish Brown Sund; medium to fire; Some Ching; UEF; Slightly Plastic; Loose ML	•	C51277 1010		18.2	i litta lu
	12.0					
	2.584/3 Olive Brown Clay, Some five concedium Sund, Meist, Dence; Medium Plastic ML					أيبيانيا
	Boving Not Logged Bebas . 11' bas					
	28.5 bys botten of					
	Boring Did not Encountur bedrock.				HOLENO	

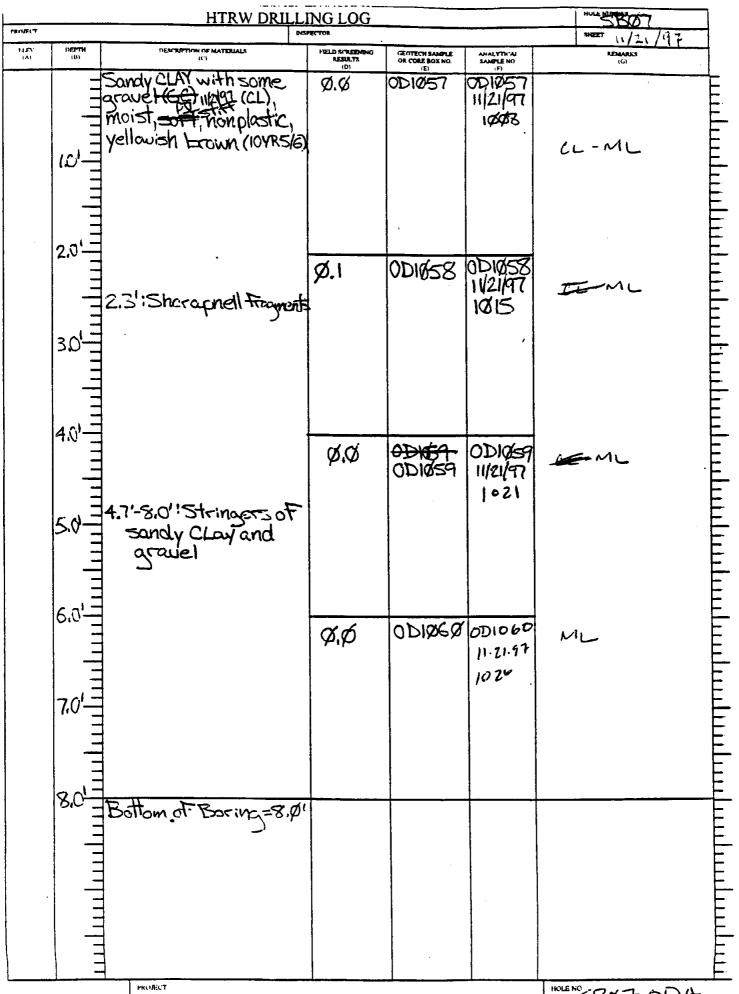


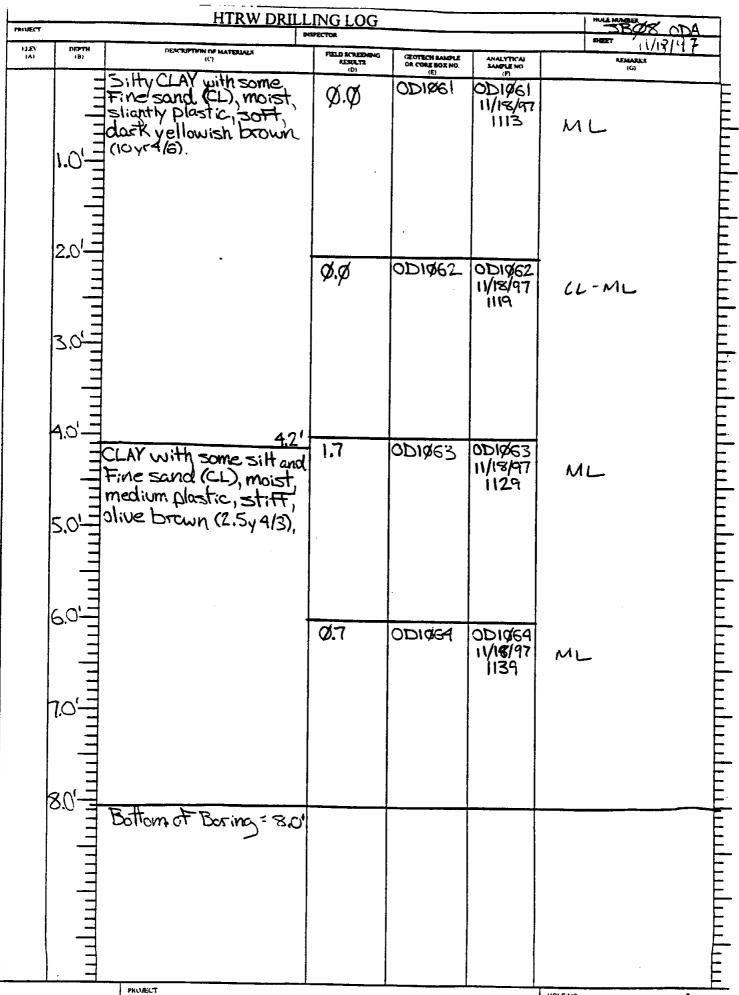
RVAAP


HOLE NO <277 nn4

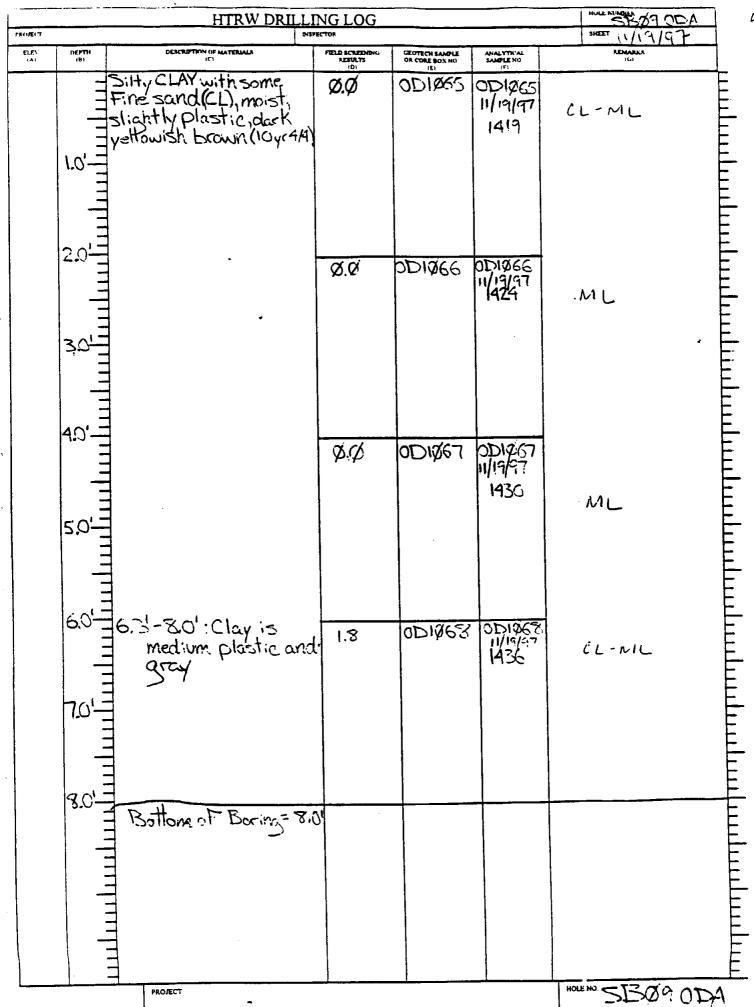


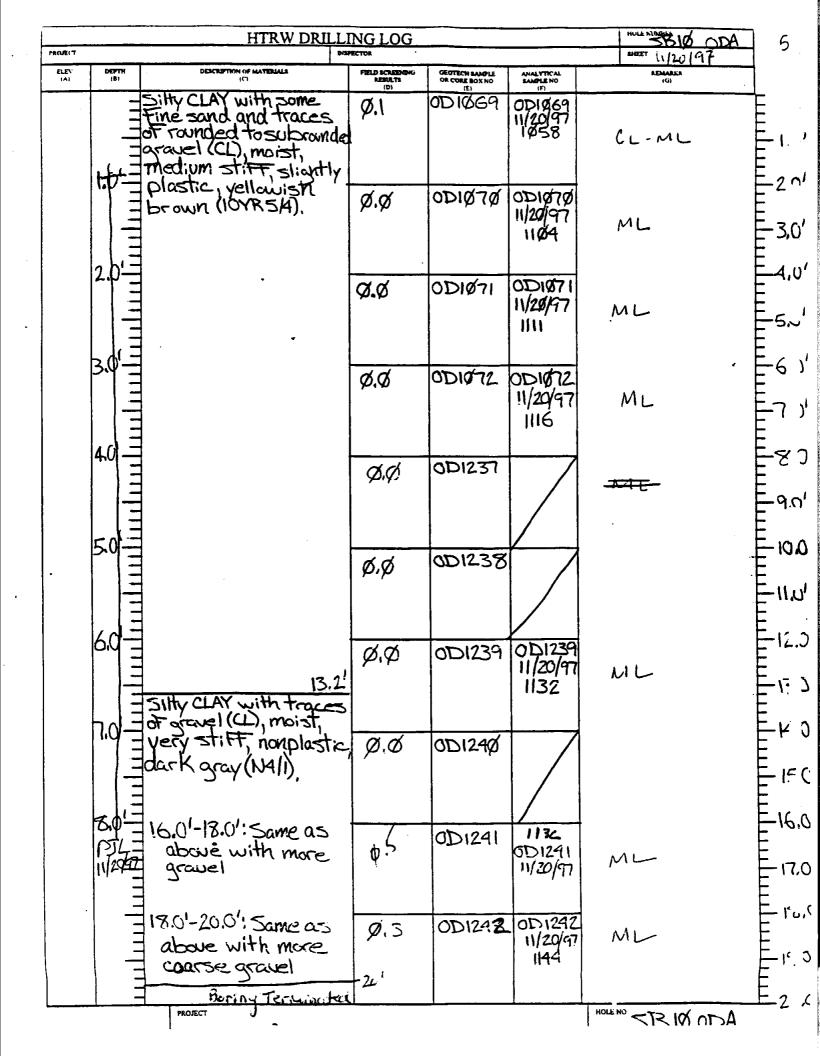
PROJECT

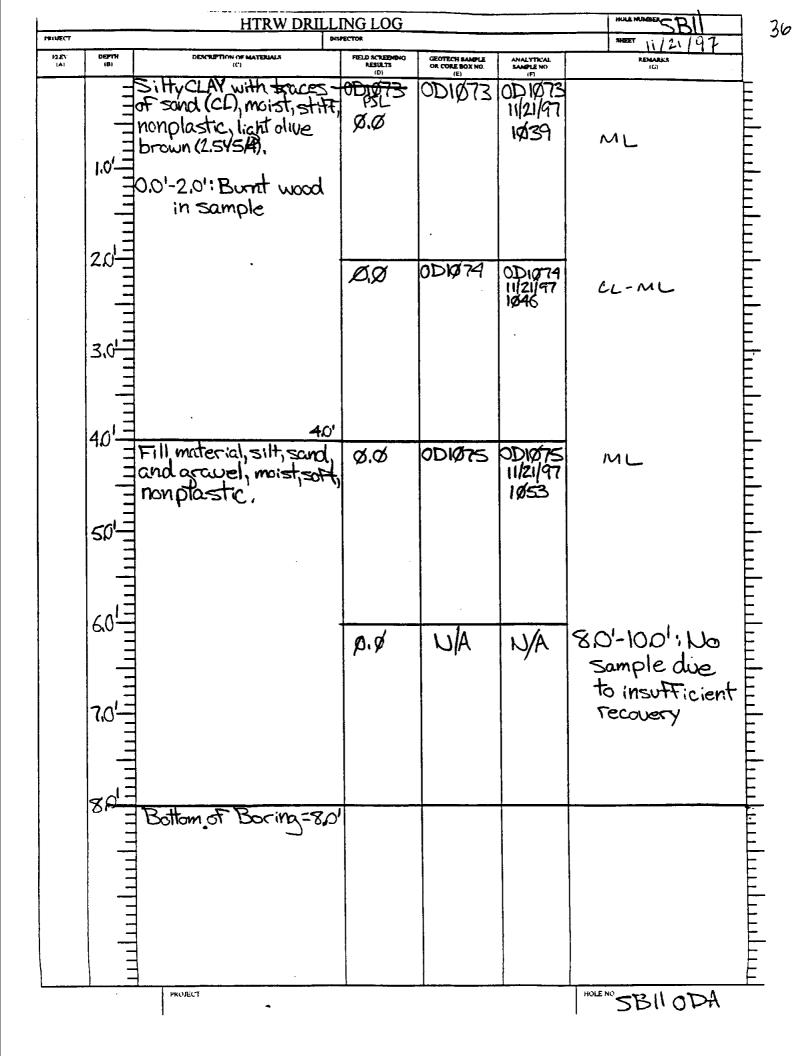

HOLENO - A A

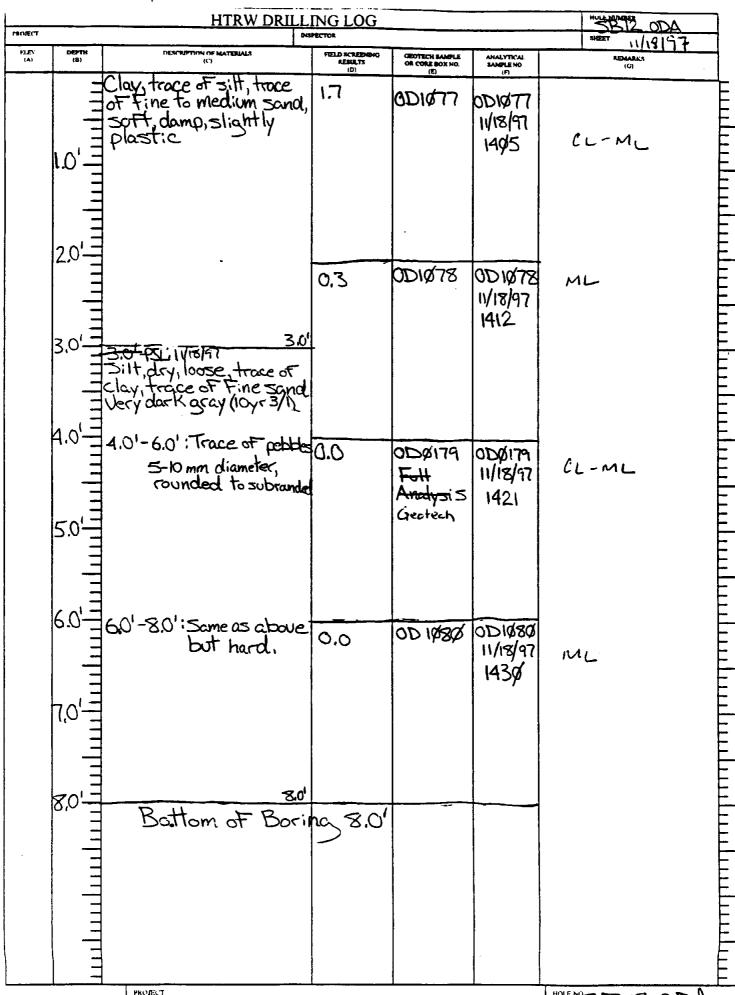

(eE

HOLE NO RAKATA

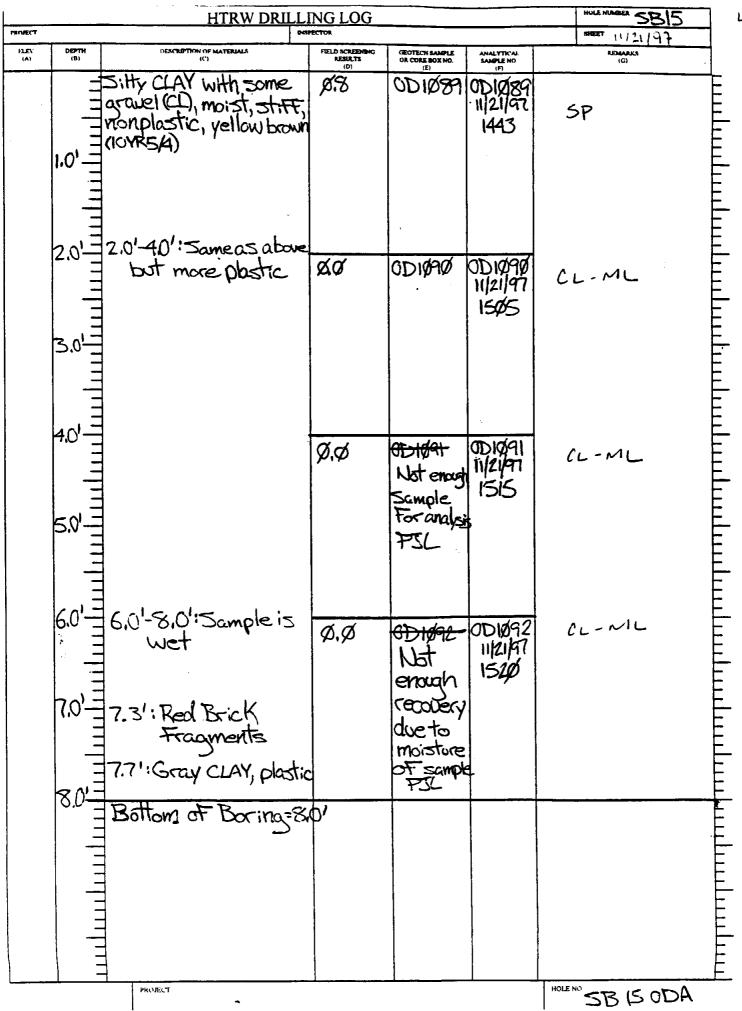


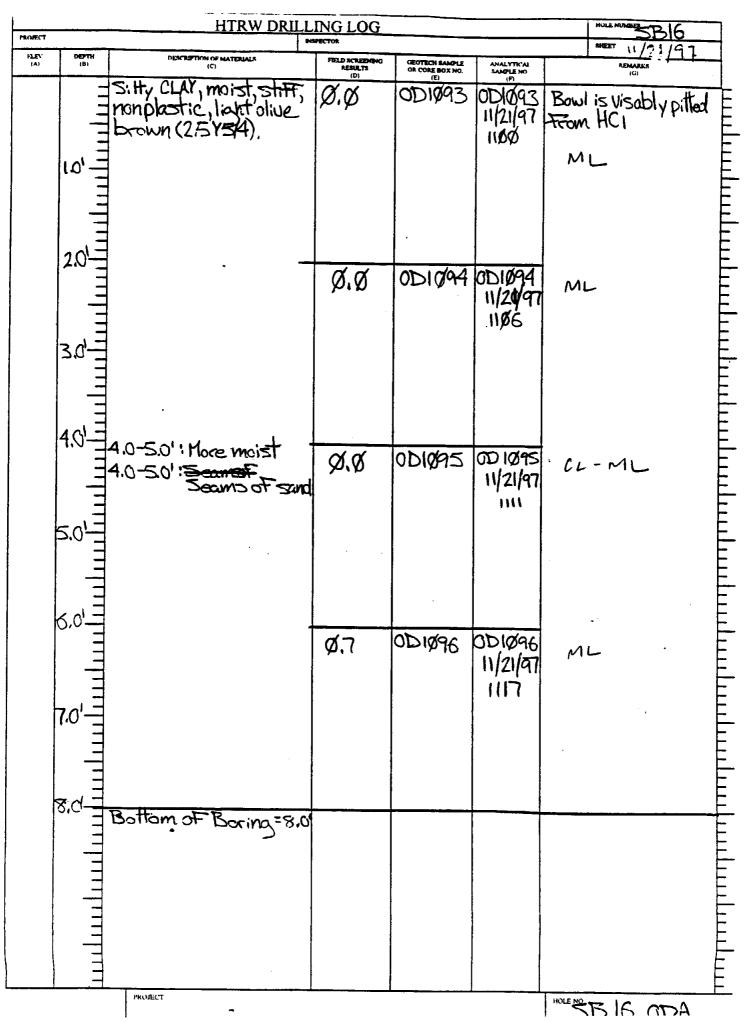

HOLE NO SBOT ODA



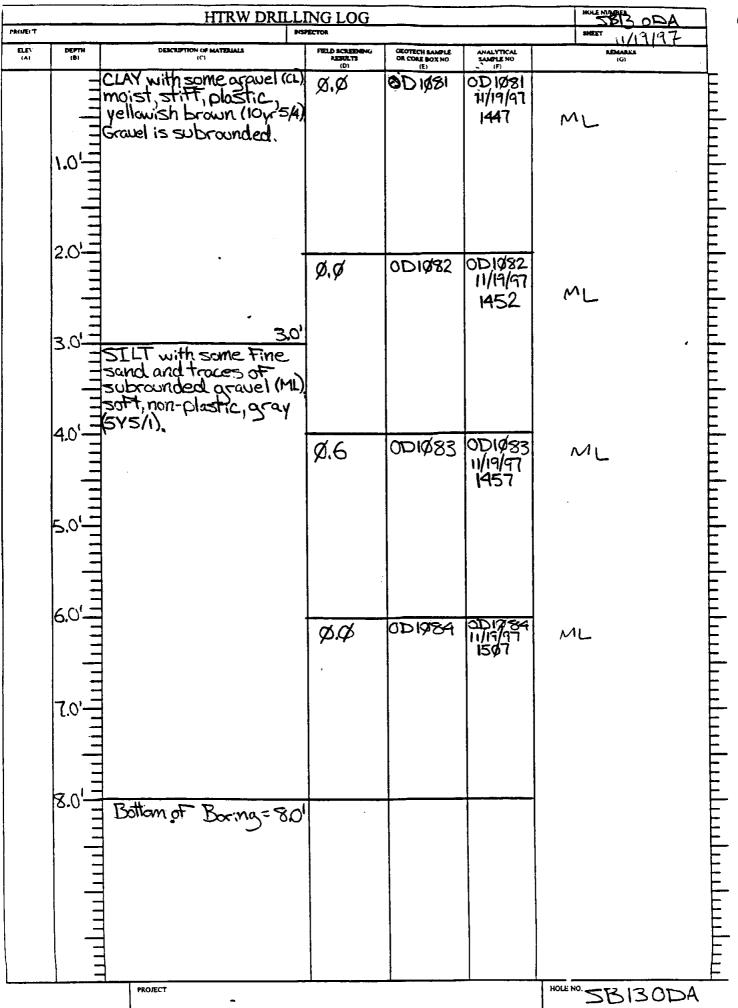

HOLENO TO AT A

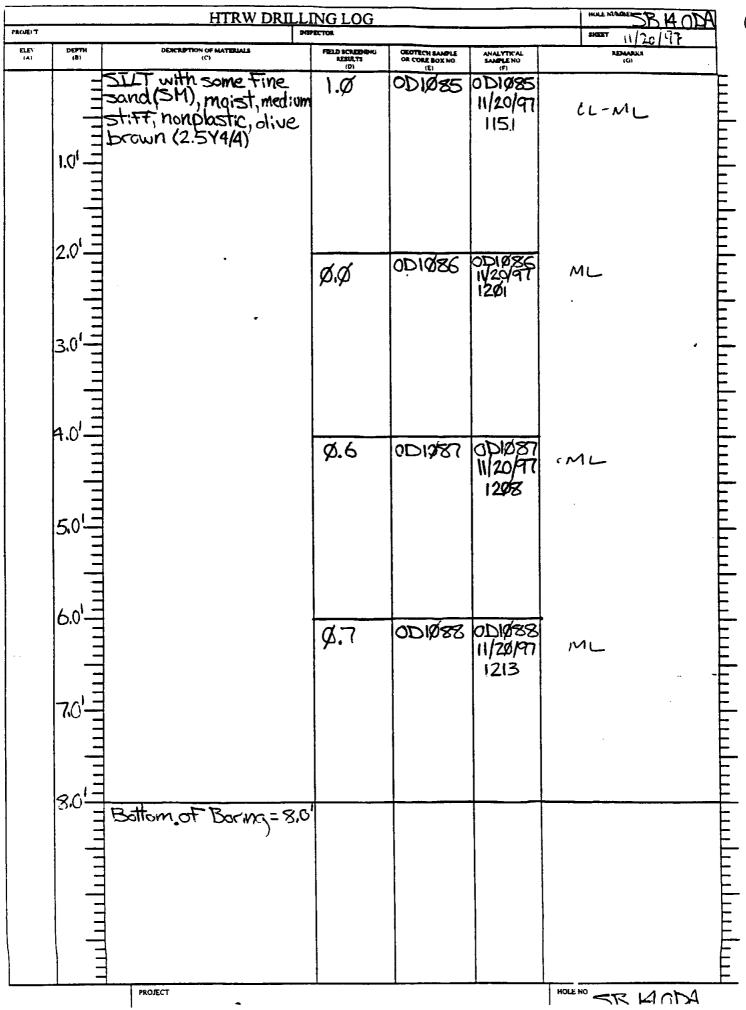
Y Ø



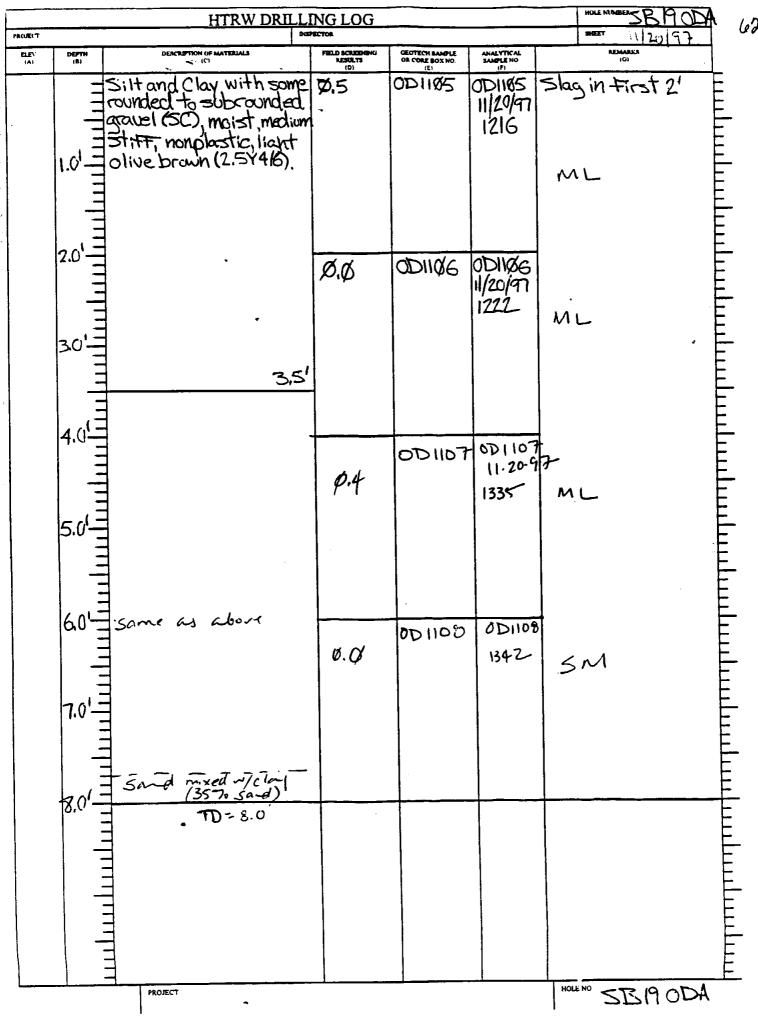


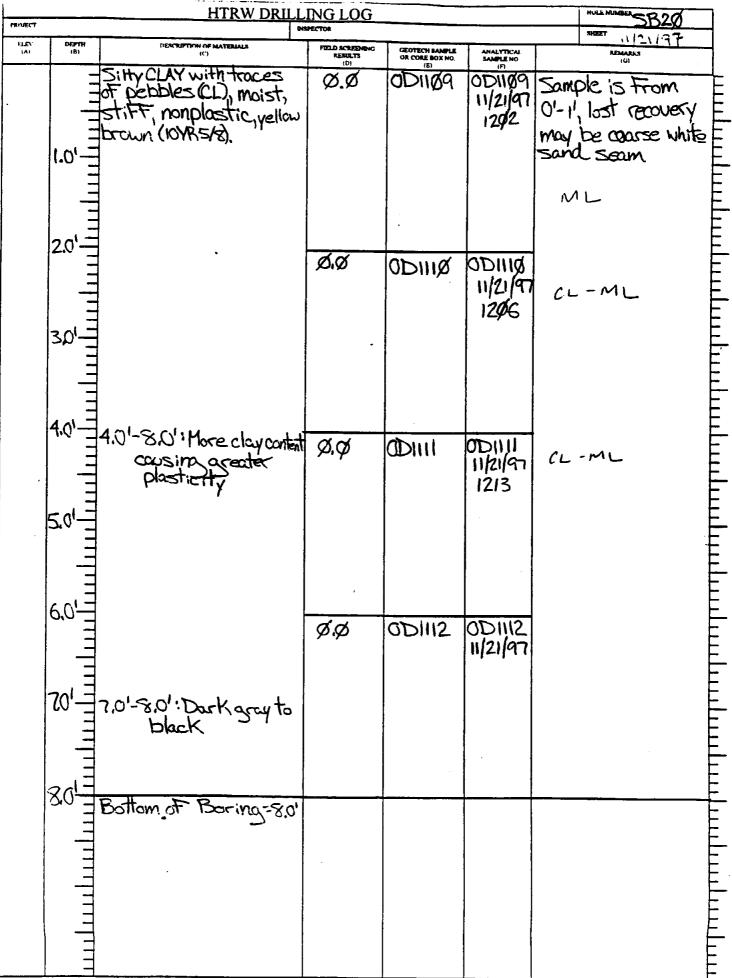
PROJECT


HOLE NO KRIZODA

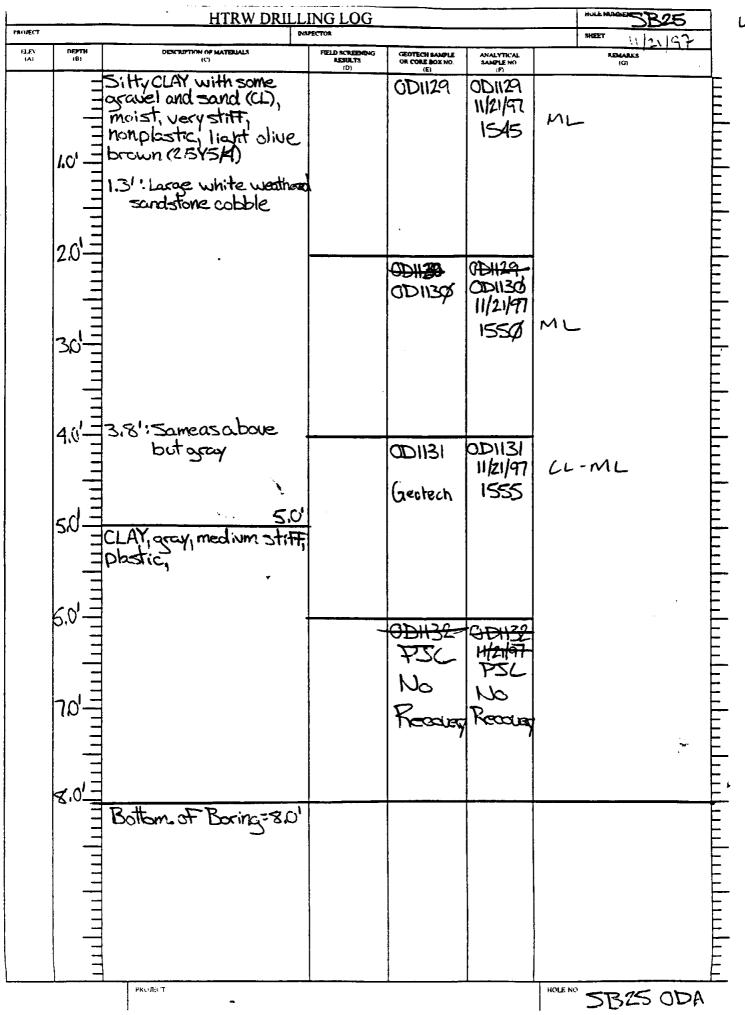

L

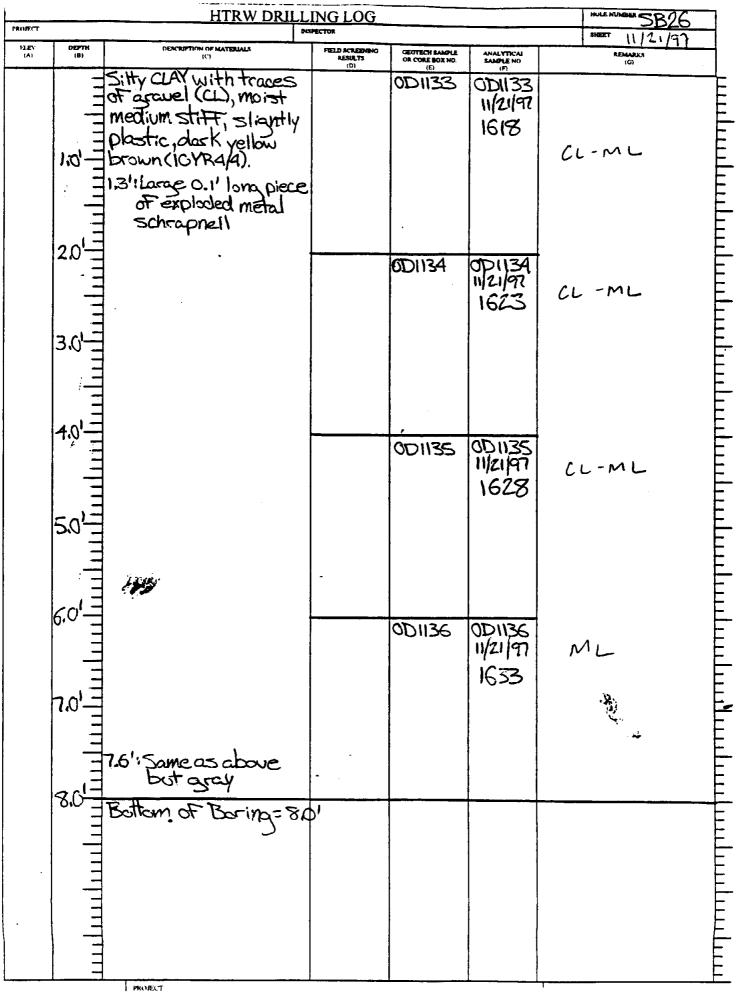
-

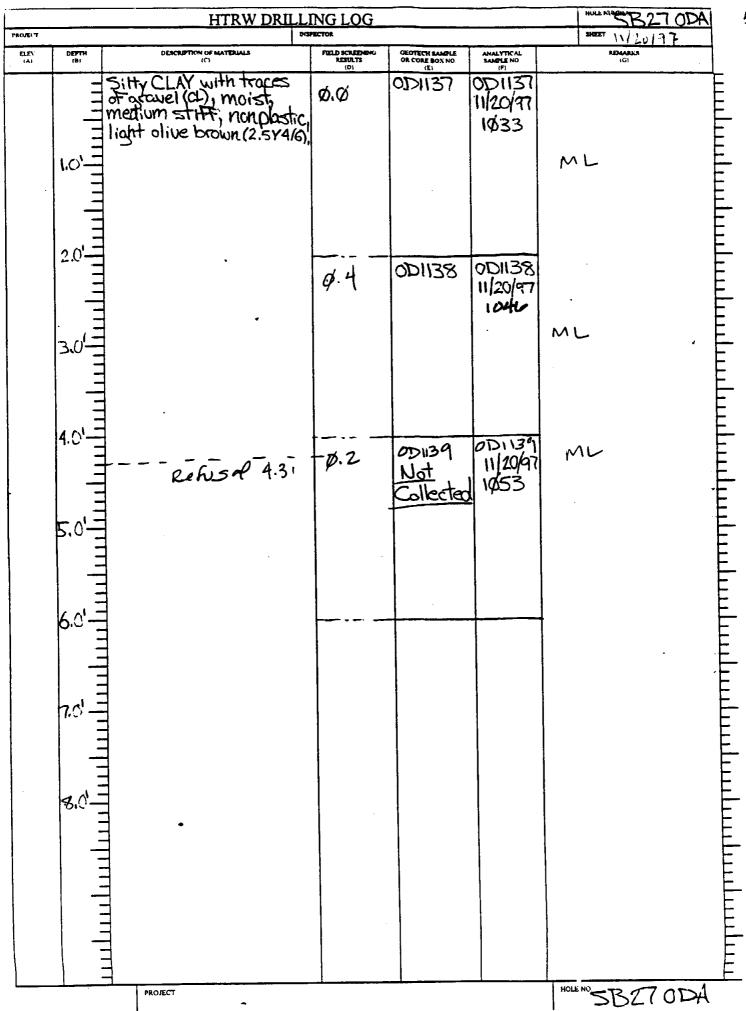

U

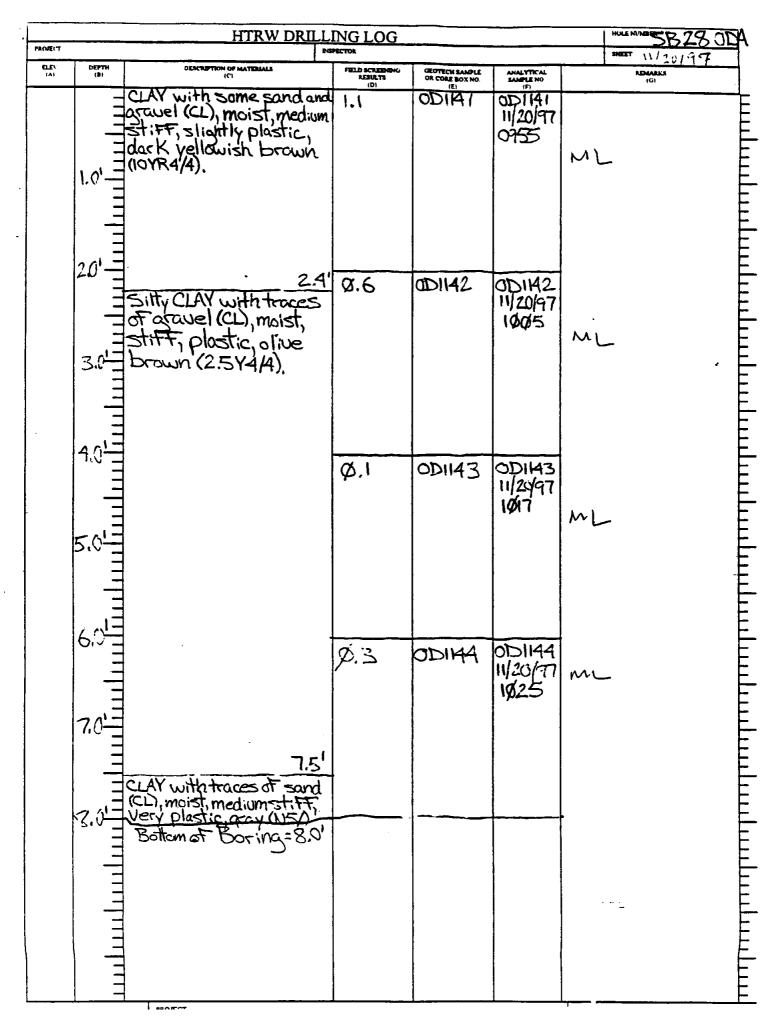

		HTRW DRILL	ING LOG			SBIT ODA
RECT	DEPTH	DESCRIPTION OF MATERIALS	FIELD SCREENING	GEOTECH SAMPLE	ANALYTICAL	SHREET 11/18197
Ā)	(8)	(C)	RESULTS (D)	OR CORE BOX NO. (E)	SAMPLE NO	(0)
		Clay, trace sitt, trace Fine sand, dry, sliantly plastic, and stiff, Olive brown (25y4/4)	Ø.2.	OD 1897	0D1Ø97 11/18/97 1438	ML
		2.21 Clay, some sitt, some fine to medium sand, non- Plastic, dark vellow into	Ø.Ø	0D1Ø98	0D1Ø98 11/18/97 1444	ML
	а 6.0 1 1 1 1 1 1 1 1 1 1 1 1 1	Staining.	Ø.Ø	0D1999	0D1Ø99 11/18/97 1451	ML
	6.0'111 11-10.5	5.51- Same as above with more sand	Ø.Ø	OD1100 Fult Analysis	0D1100 11/18/97 1958	CL-ML
	8.0'-			Georech 0D1243 1503	OD 1243- Wistar	
	10.0 ¹		· · · · ·	0D1244 - 15Ø4	11/18/97 001299 11/18/77 PSL	
	12.0'	Sitt, dry loose, trace of clay trace of fine sand, very dark gray (10 yr 3/1). Bottom of Boring=12.0'	x		11/18/97	ReFusal @ 120'
		•				
					1	HOLE NO SBITODA

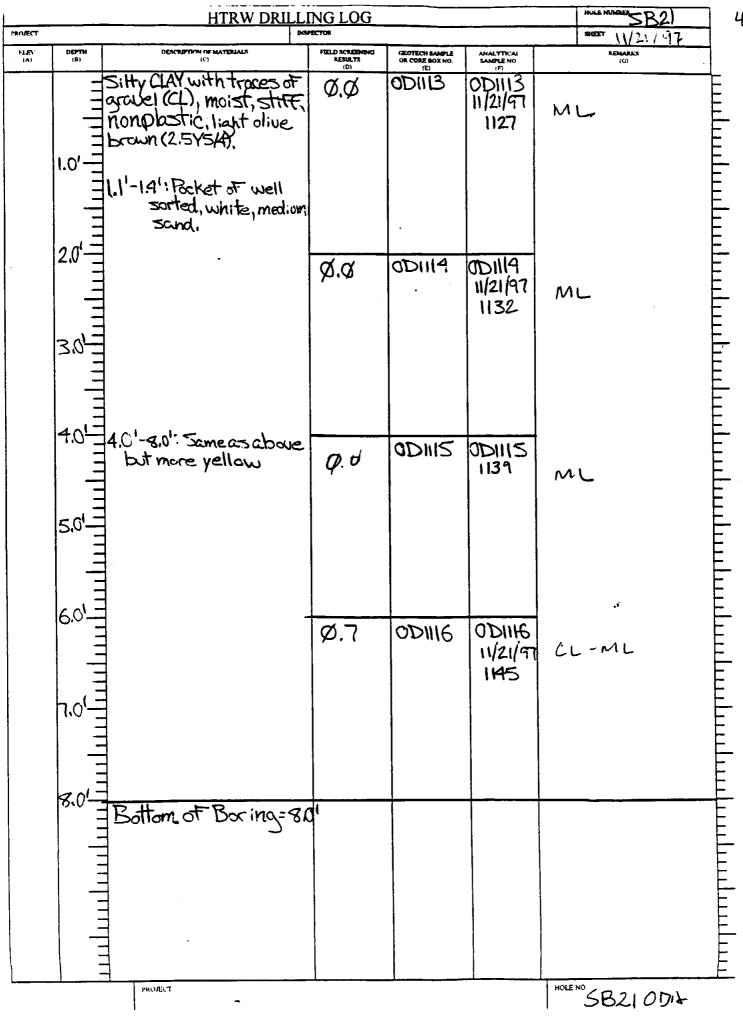
B

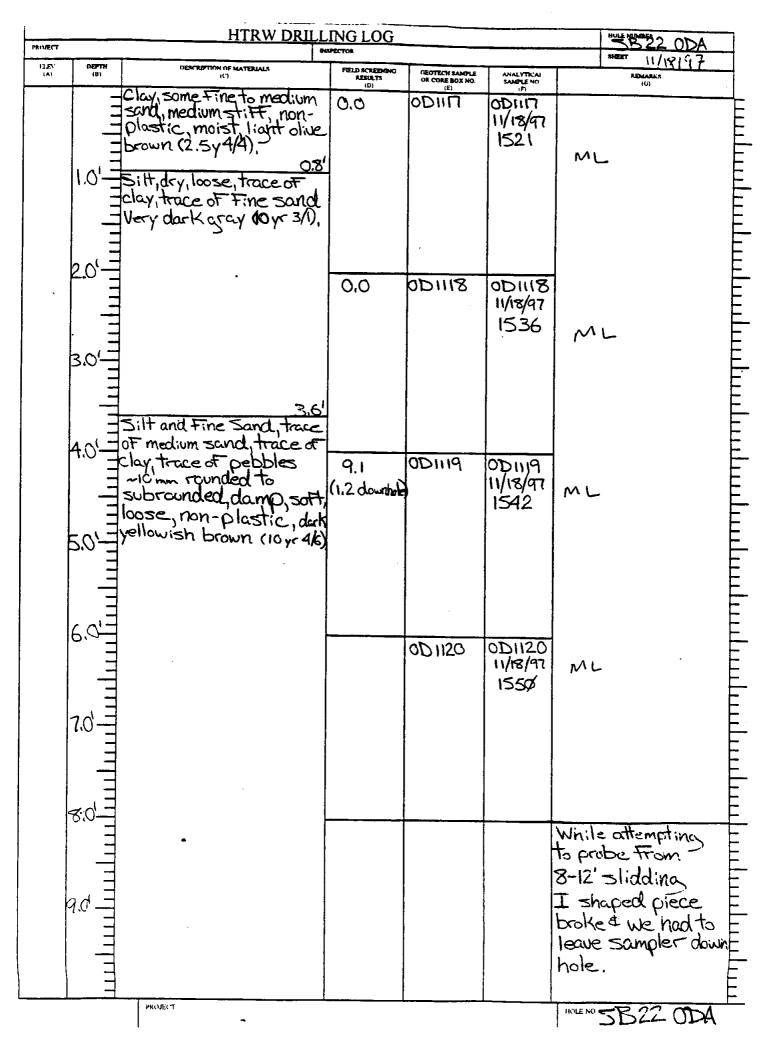

		HTRW DRILL				TO SBA ODA
PROJECT	۲		PECTOR			SHORT 11/19/77
	DEPTH (B)	DESCRIPTION OF MAYERLALS {C1	FIELD SCREIDHING RESULTS (D)	CEOTECH SAMPLE OR CORE BOX NO	ANALYTICAL SAMPLE NO	REMARKS (G)
		Sitty CLAY with some Fine sand and traces of arauel (CL), moist, nonplastic, olive brown (2.544/4),	Ø.Ø	ODIIØI	001101 11/19/97 1514	CL-ML
	2.0 [']	· • •	Ø.7	0D1192	0D110/2 11/19/97 1524	
		4.2 Clayey SAND with some silt (SC), moist, nonplastic yellowish brown (10yr5/4)	ø.ø	ODI1Ø3	0D1103 11/19/97 1528	
		6.5 Silty CLAY with some fine sand and traces, of gravel (CL), moist, nonplastic, Jive brown (2.5444),	Ø.Ø	ODIIØ4	0D1104 11/1997 1535	SP III
	o O IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	Bottomot Boring=8,01				
						E
	•	PROJECT	• • • • • • • • • • • • • • • • • • • •	· · · · · · · · · · · · · · · · · · ·	l	HOLE NOTR FRANC

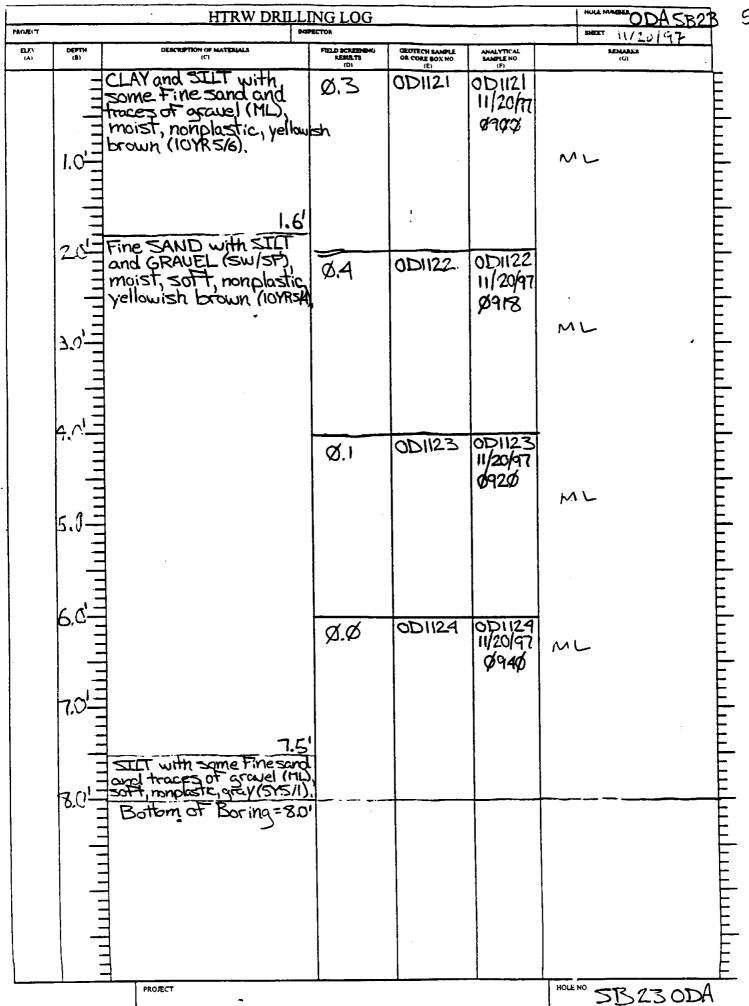

!?



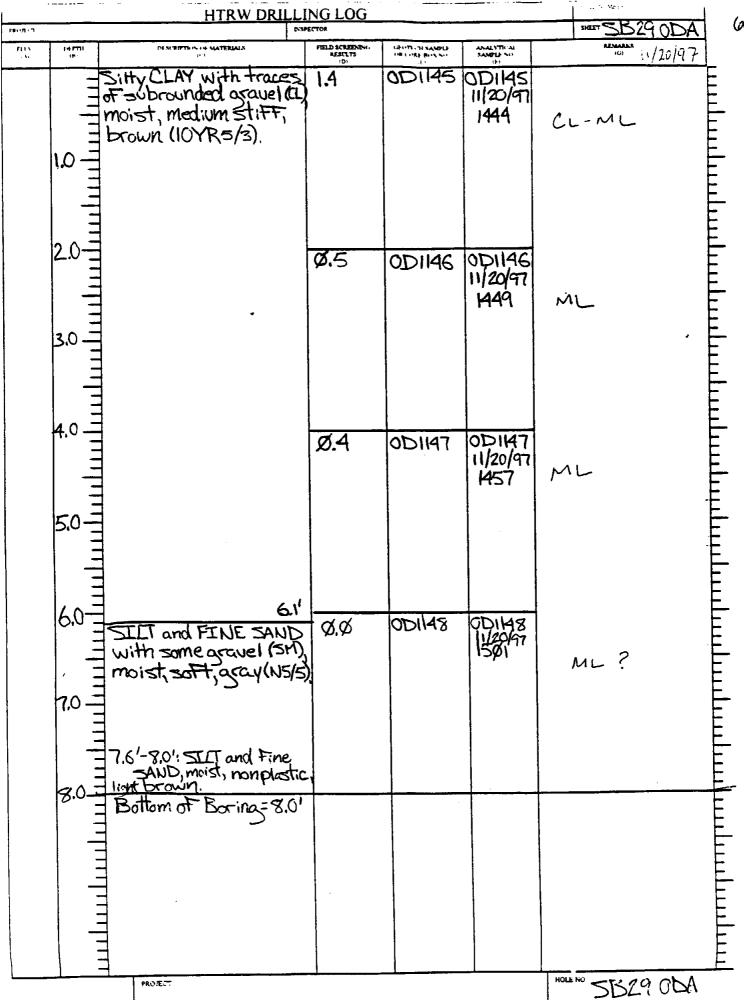

PROJECT




.



Ч



C

		HTRW DRILLI	ING LOG				
P#1059-77		53	PECTOR			SHEET 11/20/97	
FUN - N	1 0 PTN 18	IN SET TERMINE AND MATTERIALS	FELD SCREENTNI	GENTECTI SAMPLE	ANALYTICAL SANELE NO	REMARKS (G)	
	111 101 111	cc, clay with silt, cohesive, mod plastic, gravel Dry	Ø.Ø	001125	001125	- CL-ML	umpu
	20-11-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-	Same, W/ 10% coarse graved.	Ф.Фарт	0D1126	001126 1358 11.2097	- CL·ML	luulu
	4.0-11	trace gravel (SC)SM	Ф. Ррр-	0 [,] D1127	0D1127 1407 11.20.7	ML	huntu
		Sandy SILT with traces of clay (ML), moist		OD1128	°D1128 11/20/97 1414		يبليبيلي
	80 90	of clay (112), moist, medium stiff, nonplastic, gray (N4/1).		OD1255	001255 PSL 11/20/97 Sample		يبليبيلير
				0D1256	Collected OD1256 DI256 II/20/97 Not		uluulu
	136 136	13,5'-4.0':Verv.stiff,		001257	Sampled OD1257 11/20/97 1425	J	ىلىيىلىي
		dark arey to Hlack, plate Shale Fragments				Retusal at 4.0'	
	14.0 15.0 16.0	Bottom of Boring = 14.0'					سليبيلينا
	17.0 180 180						
	τφ.ΦΞ						E

HOLE NO _ A A A A

(da

·

APPENDIX D

RESULTS OF FIELD SCREENING FOR EXPLOSIVES

.

DELIVERY ORDER ND: 0002

SITE: Culibration

DATE: 11/18/97

۰.

ANALYTE	FIELD SAMPLE NO.	SITE ID NO.	DATEITIME COLLECTED		DIL COLUMN	COLOR	EXTRACT ABSORB	BCKGRD ABSORB	BCKGRD ABSORB X2	CORRECT EXTRACT ABSORB	EXTRACT CONC. (mg/L)	SAMPLI CONC. (ug/g)
TNT	Acetome Bkink	NA	1/18/ 1/19/ 1/1/1/1330	NA	NA	Chea T _i	NA	0-#3ø	Ø.96 Ø	, Ø	ø	NA
D.UT	Heetone Blunk	NA	1/16/97 1330	ACA	NA	Chevr			Ø.467Ø	ø	Ø	NA
Twi	4 m3/L		1			Pintish red	р.892 нв-87,	Ø-03Ø	NA		/	
THT	Znall						0.421					
ÍNT	. 8.ms/L						0.193					
TNT	· 4 ~ + /L					•	0.090					
TNT	.2 ms/L		1				0.046					
TNT/ DATE	RBLank					clear	0.018					
DNT	4 mg/2					violet blue	0.829	0.032				
DNT	2 ms/L						OAZZ					
BNT		d	4		d		0.205			9	0	4
COMMENT	, 8 му/с s: А б/шк	= reayon	+ blunk.	Note	3%	H.D.	- H,O	alle	il te	Stel. 5		
SIGNATUR		· 								7 12-3-	97	

TNT and DNT FIELD SCREENING LOGSHEET

 \mathcal{S}

6 TNT and DNT FIELD SCREENING LOGSHEET PROJECT NAME: RVAAP DELIVERY ORDER NO: 0002 DATE: 11/18/97 SITE: Calibration ANALYTE FIELD SHED DATE/TIME COLLECTED COLUMN SMM285 egkert Aesiore EXTRACT CONC (mg/L) BAMPLE CONC. (ug/g) eden variation Aussiantia ABSORD ABSORD ા સંસ્થાર સંસ્થાર અંગ NO. WEIGHT SAMPLE NO. (e) vio hat "/18/97 DNT .4 ms/c NA P.117 NA the 0.032 NA DNT .2~s/c 0,087 R BKuk N ¢ V 0.033 DHT q 4 Z **COMMENTS:**

SIGNATURE(S):

1a

•

1/

QA CHECKED BY: Mat Olloy 12-3-97

DELIVERY ORDER ND: 0002

ANALYTE	FIELD SAMPLE NO.	SITE ID NO.	DATEITIME	SAMPLE WEIGHT (g)		EXTCT COLOR	EXTRACT ABSORB	BCKGRD ABSORB	BCKGRD ABSORB X2	CORRECT EXTRACT ABSORD	EXTRACT CONC. (mg/L)	SAMPL CONC (ug/g)
T/OHT	0D1040	ODA	14/18/97	20.0	NA	clear	0.033	ø.ø13	\$.\$26	Ø.6Ø7	ø.ø34	Ø.17
DNT	0 D 10 40			20.0].	1	ø.\$37	\$.q'11	p.p22	6.615	\$.\$51 \$.674	Ø.26
THT	071064			20.9		clear	\$.\$18	15.Ø21	\$.\$42	0.046	ø.ø29	<i>\$.14</i>
DNT	0D1064			20.9	↓.		\$ \$4Z	B. Ø18	Ø.\$36	¢.¢¢6	ф.92р ф.ф29	0-10 0-10 0-11
TXM .	071062		2	20.1			0,044	p. 923	ø. ø46	- 6.442	ND	ND
7NT	071062			20.1			1.932	0 019	Ø.ø38	- \$.\$\$	DU	NO
TNT	00 1063			20.0			0.028	0.\$18	ø.ø36	-0.008	מא	ND
Ont	001063			20.0			0,029	0-\$15	\$.\$3\$	- 0.001	מע	ND
r NT	001061			20.4			6.543	0.037	0.074	-ø.ø31	מע	an
)NT	001061			20.4			p234	B. Ø32	0.064	-0.030	٥٨	ND
-NT	001042			20.0	9	. 1	p.199	0.164	0.328	- ø. 219	ND	ND
COMMENT	S: Note 1	inghes 1	left in t	liller a	eceptic	-1s for	- 2 hr		6 00 104	/		۲

TNT and DNT FIELD SCREENING LOGSHEET

	2		88			8	2				8	
р	R	П	91	1	38	1.		 13	. 1		Ϋ.	1.8
	×		*	ain a					82	83		

DATE: 11 /19/17

SITE: ODA

AF 1.14 = 3.4130 REDNILV= 4.9020 TOT EXTRACI CONC. SAMPLE SCALCER Alsocals rickerd Arsoni (73)88933 (*(*)88933 19)5932403 ASS(0)78 DATETIME SAMPLE 1212189 SHE D 2 ANANAE <u>Conce</u> COLLECTED WEIGHT COLUMN. NO SAMPLE (mg/L) (0,0,0) (\mathbf{e}) 118/97 0.0% Ø.146 NO 20.0 Ø.292 NA NA -d.296 Clear ODA DNT 0D1042 \$.185 Ø.148 20.0 B. 296 - d. 111 0D1041 +N+ 20.0 158 N. 194 N. 268 - d. 110 DNT 001041 20.0 Ø. Ø98 0. Ø96 0. 192 -6.094 Clear NA TNT OD1043 0.083 0.106 0.172 V. 20.0 DNr -0.089 0D 1043 GP) Ø. Ø13 6.026 0.990 Ø.942 0.202 20.8 8.968 chent 001044 TNT -0.510 Ø.106 Ø. Ø16 Ø. Ø32 Ø. Ø3/ 0.73+ da 20.8 0.063 \$.15Z DNT 601044 NA 0 لم \$.\$34 D.\$68 p.\$37 Z1.2 -6.631 NA 001039 TNT N p. \$29 21.2 0.058 - 0.029 0.029 DNT' 0D1039 \$.651 0.938 0.076 clear 6.02 20.1 001037 NA V p.\$47 ø.\$34 Ø.\$68 V DNT--ø.øzi 001037 A 20.1 Ψ

COMMENTS: Sec comments Py 11, 1

SIGNATURE(S): 1a

QA CHECKED BY: Mat Oblog 12-5-97

ىۋ

TNT and DNT FIELD SCREENING LOGSHEET

DELIVERY ORDER NO: 0002

ANALYTE	Y. 2020 TW FIELD SAMPLE NO.	SITE ID NO.	DATE/TIME COLLECTED	SAMPLE WEIGHT (g)	DIL. Collimn	EXTCT COLOR	EXTRACT ABSORE	BCKGRD ABSORB	BCKGRD ABSORB XX	CORRECT EXTRACT ABSORD	EXTRACT CONC. (mg/L)	SAM COI (Ug
OTNTL	ODIOSB	ODA	1/18/47	21.6	NA	chear	\$. 977	Ø.044	0.088	-ø.ø11	NA	00
DN+'	001038	ODA		21.6		· ·	Ø.\$59	Ø. P39	Ø.Ø78	-0.019	PA	م ا
PTR+ ~	0D1043W	1		20.2			Ø.\$53	Ø. p23	Ø.Ø46	Ø. ØØ?	0.034	Ø. 1
D DNT /	001043~		Ţ	20.2	4		\$.\$35	ø. 102 ø	Ø. Ø4Ø	-0.005	NA	מטק
TNT	001098	ODA	1/18/47	19.9	•]	clew	Ø.133	Ø.142	Ø.284	-\$.151	NA	סה
DN T	001098			19.9		1	¢. \$97	0.127	\$.254	-\$.157		
1NT	001499			ZØ.2		clear CL	¢. 240	Ø.295	Ø. 39ø	- 0.150		
DWT	00 10 99			2.4.2			0.212	Ø.276	Ø.552	- Ø.34Ø		-
TNT	001080			21.2		cleur	Ø.185	Ø.24Z	Ø. 184	- Ø.299		
ONT	001080		_	21.2			Ø.163	Ø.223	Ø.416	-ø.283		
TNT	00/119	J	2	20.3	V	Chew	Ø.118	Ø.156	Q.312	- \$. 194		4
COMMENT	s: @ <u>Sec</u> co	sumerts	13 K RI	E daily = 4.9	102		•	,		· <u>,</u> · · ·		

Ē

٠...

....

SITE: 00A

DATE:

 $\overline{\mathbf{G}}$

RF D.: 14 TNT=4.926 DNT= 3.466

ANALYTE	FIELD SAMPLE NO.	SITE ID NO.	DATEITIME		DIL	EXTOR COLOR	EXTRACT ABSORE	BCKGRD ABSORB		CORRECT EXTRACT ADSORG	EXTRACT CONC. (mg/L)	SAMPLE CONC. (ug/g)
PNT	00/119	ooA	1/18/07	2ø.3	۱ [°]	Chew	6.163	Ø.142	C. 284	- <i>(</i>) . <i> </i> 8/	wA	ND
TNT	001078	1		70.6		CL Claster	Ø.459	•	\$ 1.15	'		
DNT	00/078			20.6		J	0.412	Ø.51Ø	1.øzø	- 0.608		
TNT	01)097			20.0		lleur ll	Ø.315	p.415	Q.83¢	- 6.515		
ONT	001097			24.0		7	6.277	ø.381	4.762	-0.485		
TWT	60 1100			26.4		CL Class	Ø. 222	þ.255	\$.40	- d.ø88		
DNT	ODIIDO			$\mathcal{J}\phi,\phi$		J	6.194	0.220	4.440	- ¢.246		
TNT	001118			20.1	•	CL	¢.\$61	Ø. Ø64	ġ.128	- \$.\$67		
DNT	0D1118			20.1			6.652	Ø.\$59	Ø-118	- \$.066		
TNT	QUIIDO			26.2		Clear	Ф. ф96	Ø.132	9.264	-0.168		
DNJ	001120	1	×	JØ.2	V	V	\$. \$85	Ø.117		-6.149	V	Ń

COMMENTS:

SIGNATURE(S): 10

QA CHECKED BY: Mart Antoy 12-3-97 nto

THE AND DET FIELD SURFERING COGSHEET

SITE: ODA

DATE: 11/20/97

DELIVERY ORDER NO: 0002

AF DW.Y TNT= 4.926 ONT= 3.466

ANALYTE	FIELD SAMPLE NO.	NO.	DATE/TIME COLLECTED	SAMPLE WEIGHT (g)	COLUMN	IEXTCT COLOR	EXTRACT ABSORB	BCKGRD ABSORB	BCKGRD ABSORE XX	CORRECT EXTRACT ABSORG	EXTRACT CONC. (mg/l.)	BAMPLE CONC. (Ug/g)
TNT	001107	ODA	11/18/97	20.0	١	cleur	Ø.126	ø.179	Ø.358	-6.252	NA	NO
DNT	OD 1107	J	1	20.¢			0.109	ø.165	Ø. 330	-Ø.221		
TNT	00 /0/9	ODA	Yielen	19.8		slughtly clow by	Ø.141	<i>p.</i> 144	Ø.288	-0.147		
DNT	00/0/19		J	19.8		1	Ø.124	Ø.132	4.264	-a.rlø		
TWT	00 1014		11/19/97	Jø.3		Shighty Cloud	\$.151	Ø.143	6.286	- 6.135		
DNT	00/014		Ţ	20.3		J	6.133	6.131	Ø. 262	- d.129		
TNT	001917		119/97	20.3		(red) Clear	¢.z18	ø.228	4.456	- 6.238		
	001017			20.3		1	Ø. 184	0.208	0.0416	- d.232		
	ODIOIZ		1/19/47	29.4		Slight Cod	¢.181	Ø.188	6.376	-0.195		
	001012		1 1	20.4		·	6.148	¢.18¢	d.364	-0.212		
	010/10/9		"/18/47	20. Z	ł	singht cloud	4.265		¢.556			\checkmark

COMMENTS:

SIGNATURE(S):

OA CHECKED BY: Met Orloy 12-3 47

	NO.	Nex		(g)					212	AUSC (C	(mg/L)	(09/9)
ONT	001079	DDA	1/18/97	20.2	١	Slacht	Ø.228	Ø.266	4.520	- (d. 247	NA	ND
TNT	40010177		1/18/97	19.9		sloghtly/	Ø.249	Ø 28¢	4.560			
DNT	001077			19.9		Shylet 17 Ularly	Ø.2\$5	Ø.264	6.528			
ÎNT	001010		1/19/97	20.2		stryhtly cloudy	Ø.135	Ø.155	6.310	- \$.15		
DNT	00/010		Ĵ.	20.2		J	6.114	Ø.141	6.282	- Ø. 168		
TNT	ODIØØZ		11/19/97	19.9		cherfield	0.191	¢.15ø	(1.346	- 4.169		
DNT	00 1ØØZ		J	19.9			\$.176	Ø.138	ý. 276	- Ø. 116		
	001008		1/19/97	19.9	-	(and) clourly	Ø.4ø6	Ø17Ø	Q. 94Ø	0.534		
ONT	001008		j j	19.9		Ţ	Ø.347	6.445	6.890	- Ø 543		
INT	001005		1/19/97	19.9		slightly 50	Ø.179	¢.188	0,376	- Ø. 197		
ONT	001005	V	V	19.9	Ń	J		Ø.17.3	'	-0,197	V	V

.

COMMENTS:

SIGNATURE(S):

QA CHECKED BY: Matt Olday 12-3-97

ど

EXTRACT SAMPLE

CONO

CONC

Δ.

. k.

DELIVERY ORDER NO: 0002

٠

<u>RF_f=)</u> ANALYTE	$\frac{T_{i}\circ \overline{T}=Y_{i}}{FIELD}$	SITE ID	000000000000000000000000000000000000000	SAMPLE	Dif			হাজ(বোরায়)	SIGKONS.	CORRECT	EXTRACT	SAM
Allocit	SAMPLE NO.	NQ.	COLLECTED		COLUMN			ABSORB		EXTRACT ABSORB	CONC. (mg/L)	CON (ug)
TWT	00110-1	DOA	1/16/107 1535	19.9	1	Clear Cl	Ø.\$5)	\$17 Ø.\$55	Ø.11Ø	-	NA	N
ONT	00 11 64 00 1068 14		K. +++56	19.9			Ø. Ø.17		\$.\$9Z	_		
TNT	00 1103			2ø.ø		clear cl	Ø,\$78	0.073 0.073	Q.146			
ONT	001103 001013 14		1528 1-1557	2Ø. Ø			ø. 665	Ø.Ø64	4,178	-		
TNT	00 1066		1424	26.2		chen c)	Ø. \$43	¢.\$44	Ø. \$38	-		
DNT	001066		1424	24.2		4	Ø.933	Ø. Ø35	Q.670	-		
INT	00 1068		1436	26.2		cler cl	6.141	\$.161	4.322	5		
ONT	001468		1436	20.2			Ø.121	Ø.142	Ø1284	1		
TNT	001013		1551	2.4.1		elem el sight del	6.117	ø.12ø	Ø.246	1		
DNÍ	601013		1551	24.1			ø.096	Ø.105	Q.21Ø	(
INT	001101	1	1514	20.2	4	Clew Cl	Ø.122	Ø.135	ø. 27ø	/	9	V
COMMENT	S: When r	cyitase ,	ule is	Calw Inte	al for	correcti	J Extra	ct unh	<u>e - "</u>	is melie	utel.	

TNT and DNT FIELD SCREENING LUGSHEET

PROJE	CT NAME: RVA	AP		TNT and	DNT FIELD	SCREENING	LOGSKEE		LIVERY OR	DER NO: O	002	
	ODA		A \ T = 1 =				•		DATE: //	1/21/8	2	<u> </u>
RF &: ANALYTI	000 x00 3000000000000000000000000000000	SITE ID NO.	DATE/TIME COLLECTED	000000000000000000000000000000000000000	COLUMN	COLOR	Extract Absorb	eckgro Absore	ECKORD ABSORS X2	CORRECT EXTRACT ABSORE	EXTRACT CONC. (mg/L)	BAMPLE CONC. (ug/g)
DUT	001101	OOA	17 18/47 1514	2ø. Z	1	Clear Cl	Ø.\$98	Ø.122	Ø.244		Aلر	DU
TWT	001004		1946			Chent real	Marx	ø.119	q. 238	NA		
D.UT	00 100 Y	<u> </u>	1ø46	20.0		chevery cot	\$ 117 p	0.100 0.142	1. NA	· 		-9
TNT	00 1009		<u> (ø)</u>	20.5		energy a	Ø.164	Ø.157	Ø.314		NA	NO
DNT	010 10099	<u> </u>	1101	29.5		<u>ا</u>	Ø.147	Ø.142	Ø.384			
TNT	001067		1430	20.1		chear ch	\$.\$45	<i>ф.</i> ø3/	\$.\$62	-		
QUT	001\$67		143ø	20,1		T '	0,034	Ø. Ø62	0.124			
TNT	00 1022		··· /@·/{	29.9		chent	Ø.133	Ø.117	Ø. 234	_		
ON T	00 10 22		1\$19	2ø.ø		V	Ø.133	0,103 0.117 ju	0.206	-		
TNT	00/003			20.9		clear Usybt A-k	Ø.104	Ø.Ø96	Ø.18Ø	-		(
DNT	001003	$ \downarrow$		2¢. ¢	\checkmark	\downarrow	Ø. \$84	Ø.\$87	Ø. 164		V	Ŵ
COMMEN	TS: <u>Simple</u> O	101004	muxed or	tsee	рсу 41							
SIGNATU	RE(S): 12				<u></u>	QA CHE	CKED BY:	Mat	Eloy.	12.3-	77.	<u></u>

.

1

در 00

.....

DELIVERY ORDER ND: 0002

	SITE:	DA								DATE:/	wt 120/97	// 11/21/	<u></u>
		TNT="		DNT=4,9	75			EXTRACT		Balana	CURRECT	/	SAMPLE
ł	ANALYTE	FIELD SAMPLE NO.	SITE ID NO.	DATEJTIME COLLECTED		DIL COLUMN	COLOR	ABSORE		ABSCRB X2	EXTRACT ABSORE	CONC. (mg/L)	CONC. (ug/g)
~J */2/47	TWT	00 1084	001A	11/ 12/97 1597) .	Chent	Ø. Ø81	Ø.B1	Ø.162		NA	ND
	DWT	00 1084		1 1	20.1	-	4	Ø. 67Ø	Ø. 073	Q.146		1	
	TNT	001001		· · · ·	20.2		clens	0.111	Ø.1¢1	Ø. 202			
	DNT	20 1001			2012		d	\$.097	Ø.\$92	9.184			
	TNT	00 11 \$		· · · ·	20.2		chew	0.123		9.250	-		
	ONT	00 1102			20.2		T F	Ø. 163		Ø. 222	-		
	TNT	00 1665			19.9		Clear	4.115		d, 242	-		
	ONÍ	00 1065		14119	19.9		L		0.106		-		
				1491	29.9		cheur		6.103		-		
	TNT ONT	00 1448			26.0		d	1 · · ·	\$.\$93	7			
	TNT	00 1048		1334		V	clouly	1.7		Ø.69Ø	_	st.	V

THT and ONT FIELD SCREENING LOGSHEET

COMMENTS:

SIGNATURE(S):

DA CHECKED BY: Mats Delay 12-3-97

ş

TNT and DNT FIELD SCREENING LOGSHEET

SITE:	DDA			. ,					DATE: //	121/97		
PF du	***************************************	10700000000000000000000000000000000000	ONT=4.9	\$288276797797797777777777777777				****				
ANALYTE	FIELD SAMPLE NO.	SITE IĎ NO.	DATETIME	2010/07/07/07/07/07/07/07/07/07	COLUMN	ୁର୍ଗାର ଅଧିକାର	Elentéres Absolution		andra an Angena Angena	ADSISTE	EXTRACT CONC. (mg/L)	CONC. (Ug/g)
ONT	001045	ODA	1/14/47 1334		1	e buily	6.305	d. 319	<i>d.6</i> 38	(NA	ND
TUT	00 (98)]	1447		Ţ	cleur	0.072	'	Ø.156			
pNT	01) (681		1447		1	ł	0.662		9.126	-		
TNT	001\$82		1452	2ø.Ø		Chev	Ø. \$32		6.664	(
DNT	00 1682		1452	10.0		1	Ø.øes	\$.\$ZB	q.456	_		
TWT	00/283		1457	20.1		chem	Ø.484	Ø. \$83	<i>d.</i> 176			
ONT	010/083		1457	20.1		_1	¢.\$73	¢. 678	Q.156	-		
TUT	00 1047		1356	19.9		chew	Ø.\$56	Øøø	Ø,120	_		
DUT	60 10547		1356	19.9			Ø.Ø47	Ø.454	9.108			
TNT	001016		1343	20.1		charly	Ø.213	Ø.258	Ø. 516	(
DNT	00 10546	7	1/ 1345	2Ø.1	1		Ø.191	6-232	Ø.464		V	\mathbf{V}

COMMENTS:

)

SIGNATURE(S):

OA CHECKED BY: Mall actor 12-3-9

DELIVERY ORDER NO: 0002

•• •

. . . .

n and the second and the second se TNT and DNT FIELD SCREENING LOGSHEEL DELIVERY ORDER NO: 0002 PROJECT NAME: RVAAP

SITE:	ODA					:			DAȚE:	11/21/47	,	
RF iluily	T.UT = 4.37		= 4.975				i e secore	: হালবেরারেন্টা		PARTICIPAL	1010117/1011	SAMPLE
ANALYTE	FIELD SAMPLE NO.	SITE ID NO.	DATE/TIME COLLECTED	SAMPLE WEIGHT (g)	DIL COLUMN	EXICI COLOR		ABSORB	ABSORB	ABSORE	CONC. (mg/L)	CONC. (Ug/g)
TNT	001004	ωA	11/14/47 10416	Эф .Ф	Y100	red clear	Ø.16Ø	<i>\$.6</i> \$8	Ø. Ø16	Ø-144	Ø.65Ø	315
	001004	00 A	\downarrow		100		ø. 166	¢.bø8	<i>ф.</i> ø16	4.696	<i>\$.448</i>	224
• ·	001087		1/20/9, 1201	20.0	I	chens	p. 610	Ø.Ø47	¢.188		WA	ND
	001687		11				Ø.625	¢.\$38	Ø.076			
TNT	00 1241		1136	26.4		Cheir	Ø.125	Ø.139	9.278			
	001241		1				¢.111	9.128	9.35 L			
TNI	001139		10/53	2¢.2		cleur	0.019	Ø. d 16	Ø.Ø3Z	-		
ONT	OD1139		TT I				0.415	4.013	Q. Ø26		<u> </u>	
IN]	00/088		1213	20.1		chens	6.169	Ø.116	Q.132	<u> </u>		
DNT	00/088						0.\$9.6	Ø. 107	Q. 464	1 -	┞{	
TNT	601086		1261	19,9	\downarrow	Llew	4.458	\$. \$6\$	1 4.120	-	V	\checkmark

COMMENTS:_

がしいかしたい

SIGNATURE(S):

DA CHECKED BY: Mats Bolay 12-7-9

-*31 -31

TNT and DNT FIELD SCREENING LOGSHEET

ANALYTE	FIELD SAMPLE NO	SITE ID NO.	DATESTIME		COLUMN	COLOR		BCKGRD ABSCRB		CORRECT EXTRACT ADSCREE	EXTRACT CONC. (mg/L)	SAM CO (UQ
ONT	0D/086	OPA	1/12/12/12/	19.9	1	chow	¢.\$52	$\phi, \phi_{5,3}$	d. 196	(NA	N
TNT	001085		1/1/20/97 1151	1		elens		ſ	q.210	_		
ONT	001085	-		ł			0.08	<i>ф.</i>ø <i>9</i> 4	4.184			
TNT	001133		1046	20.1	· · ·		\$.\$75	Ø. <i>þ</i> %	Q.172		$\left \right\rangle$	
ONT	001138			1			0.964	C.\$76	9.152			
TNT	001123		0920	20.2	· · ·		Ø.129	0.126	Q.132	-		
ONT	60103						0.112	Ø · 10/8	0.216	~		
TNT	01212.		1144	20.2			Ø. 618	Ø.051	Ø.192			
INT	601242		V	L			1 ' ()		Ø.088	<u> </u>		
TNT	001239		1132	20.2		Clair Cl	Ø.167	Ø.218	¢.436	-		
DNT	001239	\downarrow		2	4	L	Ø.15¢	Ø- 199	Ø.398	-	V	١

L,

DELIVERY ORDER NO: 0002

DELIVERY ORDER NO: 0002

SITE:	ODA								DATE:	<u> </u>		·
Dr Laiy	***************************************		DNJ= 4.9	************************		() () () () () () () () () () () () () (ાનંદ્રવાસ		5106633	EXTRACT	SAMPLE
ANALYTÉ	FIELD SAMPLE NO.	SITE ID NO.	DATE/TIME COLLECTED		DILL COLUMN	COLOR	ABSORB	ABSORB.		EXTRACT ABSCRE	CONC. (mg/L)	CONC. (ug/g)
TNT	00 1257	opA	1/2 /47 1425	82222222222222222222222222222222222222	1	Clear	1.087	Ø.616	0.180 0.00 m-	_	NA	ND
NNT	001257		1 1		ĺ		0.677			<u> </u>	<u> </u>	
TWT	00 1/42		1005	70.3			Ø.114	<i>\$.153</i>	4.346	-		
ONT	001142		1 2	L			0.117	Ø.138	Ø.276.			
TNT	001137		1\$33	27.1		1. ju		<u>ф.ф.г</u>				
ONÍ	001137		<u>↓</u>				· · ·	0.055	· ·			
TNT	01112)		\$996	20.2			\$. \$9\$	1 ' '	l '			
DNÍ	001121						6.900 6.101	4. 68/	1'	_		
TNT	001145		<u>1444</u>	2\$.Ø				¢. ¢92		-		
DNI TNT	00 1127		\$440	20.0	V	V	1 /	1 1	4.242	-	V	V

THE AND DRIVER SERVICE AND SHEET

COMMENTS:_

SIGNATURE(S):

DA CHECKED BY: Mater Mary

PROJEC	FNAME: RVAA	P		TNT and I	DNT FIELO	SCREENING	LOGSHEET		LIVERY OR)ER NO: (1002	
SITE: RF de,		14 5 - 5 - = 0.357	6ØZ 2/ ONT=	3.711					DATE:	(] <i> </i>		2/27
ANALYTE	FIELD SAMPLE NO.	SITE ID ⁴ NO.	DATE/TIME COLLECTED	SAMPLE WEIGHT	DIL Column	EXTER COLOR	ESTRACT ABSORE	BCKGRB ABSCRB		CORRECT EXTRACT AUSCRE	EXTRACT CONC. (mg/L)	SAMPL CONC (US/S)
ONT	001/24	OUA	120/97 \$940	2¢.Ø)	Cleur	0.107	Ø.106	d.212	T	NA	ND
TNT	001106		1222		1		0.06	ф. 083	Ø. 146	-		
DWT	J			Ĺ.			1.053	\$\$\$7B	\$.156			
TWT	001125		1350	20.0			Ø.\$57	6.469	4.138			
DNT	¢		Ú	ł			1.049	\$.\$61	q,122	<u> </u>		
TNT	001108		1342	20.Z			Ø.025	6.624	6.048			
DNT	l		l	1			0.0H	Ø.Ø2	Q. 642	••••••		
TWT	00/049		1545	20.1			6.656	\$.661	Q.122			
ONT	6		V	\checkmark			Ø.Ø47	Ø.Ø56	<i>ф.112</i>			
TNT	001072	· .	1116	14.9			Ø.\$24	0.026	\$.\$1P			
DNÍ		N	VL	\downarrow	V	V	6.626	¢. Ø18	1.036		V	
COMMENT	S:								<u>.</u>			
SIGNATUR	E(S):	a	<u></u>	· · · · · · · · · · · · · · · · · · ·	:	QA CHE	CKED BY:	Max	day	12-3-	- 17	ج

	NGS Lancyddiae - 25	Same and South Same	a - Alta So na an an	a:
DE	ELIVERY OR	RDER NO: (0002	
(- 7 J)	DATE:	11/22/92//	1 11/23/93	2
<u>1 = 7, 41.</u> BCKGRD ABSORB	10000000	CORRECT EXTRACT ABSORE		SAMPLI CONC. (Ug/g)
Ø. ø3¢	\$ \$.\$Lb	6 -	NA	ND
Ø.ØZB	0.050			<u> </u>
Ø.Poz	Ø.164			
φ.077 Φ.Φ'φ	1a \$.154	/ -		
Ø. 125	9.150			
Ø.117	0,234			
Ø. 044	0,089			
0.016	0.080			
\$.010 \$.419	A. 6.029	4 —		
0.067	Ø.134			
T.T.	1		×	
		·	1.621 d.642 -	·

53

d'he sussed

PROJEC	FNAME: RVAAI	p		TNT and	DNT FIELD I	SCREENING	LOGSHEET		LIVERY OR	DER NO: O	002	
site: RF	ODA Rily Tr	IT= 5.	495/0	JT E 03.	413	1			DATE:	11/23/9	7	<u>.</u>
ANALYTE	FIELD SAMPLE NO.	SITE ID NO.	DATETIME COLLECTED			EXTER COLOR	ESTRACI ABSONS	BCKGRO ABSORE	BCRCRD LESCIPE X2	CORRECT EXTRACT ADSCARE	EXTRACT CONC. (mg/L)	SAMPLE CONC. (US/S)
ONT	0D/0/545	ODA	1550	àø.2	1	chew	<i>φ.</i> 027	Ø.615	Q.034		NA	NO
TWT	00 1128		1414	2.4.2			6.033	\$.\$29	¢,058	~	_/_	
DNT	V)	<u> </u>			Ø.025	0.023	Q. 646	-		
TNT	00 1107		/33 J	20.2			Ø.øZ1	Ø.\$16	q.632	-	\downarrow	\checkmark
ONT	Ĵ		V	, , ,			Ø.\$19	\$. \$\$\$9	Ø.018	Ø-\$91	¢.øø3	9.01
JUJ	00 1122		Ø9/B	ŔЯ			Ø. 122	6,695	6.190	20	NA	
ONÍ	¥		Ĵ	J			\$.168		Ø.162	-		1
TNT	010 1126		1358	70.0			Ø.\$53	0.629	0.058			
DNT	1 1		1	1			¢.ø38	(b. ØZ)	0.94/2	1		
TNT	00 1070		1164	19.9			Ø.643	1,055	9.110	-		
ONT	Ŷ	Ý	J	J	\checkmark	V	Ø. Ø34	Ø. Ø49	9.098		A	V

COMMENTS:_

SIGNATURE(S):

4

QA CHECKED BY: MAR BUSY 12-3-47

54

į.

DELIVERY ORDER NO: 0002

-

SITE:	onA								DATE: /	1/22/9	7	
<u>Ré</u> analyte	field Field Sample NO.	SITE ID NO.	DATE/TIME COLLECTED	413 SAMPLE WEIGHT (g)	DIL	EXICI	EXTRACT ABSORB	BCKGRD ABSORB	BCKGRD ABSORE XX	74 CORRECT EXTRACT ABSORD	EXTRACT CONC. (mg/L)	BAMPLE CONC. (Ug/g)
TNI	00/07/	ÓDA		26.2	1	Checr	0.026	<i>ф. 626</i>	\$.\$ 49	· _	NA	פט
ONT			ð	ł			6.019		q.636	-	ł	1
TWT	0101051		1558	26.3			6.060	0.009 0.009	d.d18	9.042	d.231	1-14
ONT	Ý			ð			Ø.Ø5\$	6. 4\$5	0.010	9.044	d-137	6.67
TNT	00 1143		1417	24.2			Ø.\$57	Ø.\$53		-	wA	NO
ONT	\downarrow		¥	1			Ø.651	0.050 0.01010	d.166			1
INT	00 1069		1\$58	19.9		Chev	\$.033	Ф. <i>Ф</i> \$6	q. q ? z	-	\downarrow	
ONT	J		Ļ	J			0.627	6.647	1.014	<i>\$.\$</i> 13	4.044	¢.22
TNT	00 11,05		1216	20.0			4. dug	\$.\$\$	Ø.006	4.914	0.077	Ø.38
DNT	V		4	Ĵ,		V	ø. Ø14	¢.663	0.006	d. \$\$\$B	Ø. \$27	Q.135
TWT A	u HEOD/148	N	156/	20.1	V	pinf slight	\$.146	6.012	9.624	4.08 Z	q. 451	2.24
COMMEN												<u>. </u>

TNT and DNT FIELD SCREENING LOGSHEET

SIGNATURE(S):

An

DA CHECKED BY: Mat Place 12-3-97

PROJEC	T NAME: RVAA	P		TNT and	DNT FIELD	SCREENING	LOGSHEET		LIYERY ORI	DER NO: O	002	
site: Ré <i>f</i>		FA	ANT= 3	412					DATE:	11/23	197	
ANALYTE	FIELD SAMPLE NO.	SITE ID NO.	DATE/TIME COLLECTED	SAMIRAS	DIE	EXTER	EXTRACT ABSORE	BCKGRD ABSORB	BCKGRD ABSORD XX	EXTRACT ADSCREE	EXTRACT CONC. (mg/L)	BAMPLE CONC. (ug/g)
ONT	001148 601146 ya	OOA	150/	20.1	1	slight Pirch	6\$17	Ø. Ø1\$	\$.\$Z\$	d.057	14.145	Ø.97
TNT	001146		144.4	29.1	<u> </u>	Slight	Ø. 134	Ø.Ø.][\$ \$62	0.072	\$ 396	1.97
 DNT	↓	J				slight pivk	Ø.113	Ø, \$E9	Q.658	\$.655	9.188	<i>¢.94</i>
JNT	DEILSZ	OFA	1/21 1418	20-5		chews	6.180	Ø.218	d. 436	-	DA	NG
DNT	4	1	, Ţ	↓ ↓			0.150	Ø. 14B	Ø.396			
TNT	00/133	ODA	1/21/ 1/68	20.6			0.164	$\phi.151$	\$.362	-		
ONT	\downarrow			J			P. 143	Ø.139.	6.178	-		
INT	001136		1/21 1633	2.0.3			6.062	Ø. 664	d. 128	_		
DNT	4			4) /			6.061		-		
INT	001134		hy4, 162)	19.7			Ø. 164	Ø.2\$4	Q.408			
DNÍ		\downarrow		\$	V	V	0.147	4.188		-	V	V
COMMENT	S:			•				•				
SIGNATURI	E(S): <u>Aa</u>				····	QA CHE	CKED BY:	Muð	Olday	123	<u>.97</u>	

Ž

7

لام

SITE:	ODA /	DFA					•	. 1	DATE: /	1/23/	7	
<u>RF</u> analyte	Ruity Tru FIELD SAMPLE NO.	$\frac{\partial T}{\partial T} = \frac{1}{\sum_{i=1}^{n}}$	<u>مرم / [–] (۲۶) pate/Time collected</u>	SAMPLE	DIL	EXTER COLOR		BCKGRD Absorb	BCKGRD ABSORB X2	CORRECT EXTRACT ABSORE	EXTRACT CONC (mg/L)	SAMPLE CONC. (Ug/g)
TNT	001489	ODA	1/2 Vin 14/5	14.9	l	Chew	0.648	Ø. 050	\$.1\$ \$	-	NA	ND
DNJ	V		Į Į	\downarrow			Ø.Ø.38	Q. B 46	4. \$92	1		
TNÍ	001090		1/21/ 1505	19.8			Ø. \$65	Ø. Ø63	¢.126			
DNT	J		L L	r			Ø.055	Ø.\$59	<i>4.1</i> 18			
TNT	01233		1/21/0003	Z¢. Z			Ø.686	Ø.15Ø	Q.360	-		
DNT	J		L L	J			9.924	Ø.143	9.286	-		
TNT	012/08/	· ·	1/21/47 1515	19.8			Γ i	Ø.649		-	<u> </u>	
DNT	\downarrow		<u> </u>	1			6.646	Ø. Ø45	9.090	-	V	v
TNÍ	OFTIST	NOF	121/ 14/26	20.1	 		\$.127	0,046	I '	L .		1.28
ONT	\mathcal{V}	V	4	1		<u> </u>	6.117	0.638	0.\$76	4.63)	Ø.126	1 1
TNT	001135	1 00A	1/21/ 1628	2. ¢	1	1	Ø. 162	0.176	\$.352		NA	ND
		•	•••									

TNT and DNT FIELD SCREENING LOGSHEET

COMMENTS:

SIGNATURE(S):_

nu

QA CHECKED BY: Nath Polog 12-3-97

*

	PROJEC	T NAME: RVAA	P		TNT and	DNT FIELD :	SCREENIN	G LOGSHEET		LIVERY ORI	IER NO: (1002	
	SITE:		1FA = 5.479	/ ONT= 3	576	"/24				DATE: <i>)]</i>	k3/47	<u>, // ۱۱/</u>	24/47
	ANALYTE	FIELD SAMPLE NO.	SITE ID NO.	DATE/TIME COLLECTED	Sample		EXTOT COLOR	EXTRACT ABSORE	BCKGRD ABSORB	BCKGRD ABSORB X2	CORRECT EXTRACT ABSERCE	EXTRACT CONC. (mol.)	SAMPLE CONC: [UG/g]
123	ONT	01135	ODA	1/21/47 1628	20. ø	l	CI	0.136	Ø.163	9.326		NA	ND
, <u>3</u> 4	TNT	DF 1156	DFA	1/21/97	20.4		}	\$. \$59	¢. \$68	ф. <i>В</i> б			
*	DNT				Ł			0.050	6.659	1.118			
	TNT	0D1129	ODA	11/21/97 1545	20.3			Ø.163	ø. 196	9.392	-		
	DNÍ		1	1				Ø. 148	Ø. (72	q.344			
	Tut	OF HSG	DFA	1430	19.9			0.219	Ø.255	d.310	_		
	DNT		4		L			Ø. 235	6.736	0.460	-		
	TWT	001633	DOA	0825 4 24/	21.1			Ø. 636	6.658	Ø.116			
	DNT				ł			Ф. \$ 35	Ø. Ø 44	Ø. Ø98			
	TNT.	001093		1105	20.2		p.n.t	0.693	6.135		-		
	Divt	1	4	↓ ↓	ł		V	0. 686	6.116	Ø.24Ø		V	UY .

COMMENTS:

SIGNATURE(S):

QA CHECKED BY: Matt - Oblog 12-3-97

с б

DELIVERY ORDER NO: 0002

OPA SITE:

DATE: 1 /24/ 87

• 、

	ANALYTE	FIELD SAMPLE NO.	SITE ID NO.	DATE/TIME COLLECTED	SAMPLE WEIGHT (g)	COLUMN	EXICI COLOR	EXTRACT ABSORE	BCKGRU ABSORB	BCKGRD ABSORB K2	CORRECT EXTRACT ABSORB	EXTRACT CONC. (mg/L)	SAMPLE CONC. (ug/g)
- مىر	TNT	001130	ODA	4/41 1130	26.2	1	Chew	Ø. 674	ø. ø?3	4.18%	1	NB	ND
H.	DNT			1	L			Ø.669	6. 679	4.158			
Ĩ	Ywy	00 1131		1555	22.3			6.060	6. 167	4.134	-	 	
	ONT	↓ ↓		1	+			6.056	Ø.056	Ø.112		_/	
	TUT	00 1115		1139	20.7		· .	6.\$15	Ø. 165	\$.13ø	-		
	ONT	L L		4	\downarrow		ļ	0.672	6. 055	Ø.11Ø			
	TUT	00 1055		(11)	26.6		clen	000	Ø.185	9.370			
	ONT			d]	i .	0.16	4.320			
	TNT	00 1073		1039	245.2				6.633	1.066			
T	DNT							6.027 6.02	Ø. 626	1.052	-	 	
1	TNT	00 1114	4		2ø.1			0.948	Ø.Ø42	9.084	-	4	V

.

TNT and DNT FIELD SCREENING LOGSHEET

"Ind COMMENTS:

SIGNATURE(S):___

ДA

DA CHECKED BY: Mato Blog 12-3-97

-9**10**

SITE:	- ODA								DATE:	<u>11/24/2</u>	87	
ANALYTE	FIELD SAMPLE NO.	SITE ID NO.	DATE/TIME COLLECTED	SAMPLE WEIGHT (g)		EXTER COLOR	estrect Absorb		BCKGRD ABSORB X2	CORRECT EXTRACT ABSORE	EXTRACT CONC. Img/CI	SAMPLE CONC (Ug/g)
ONT	0P 1114	our	14	20.1		Chev	Ø. 644	4.41	9.978		NA	ממ
TAJT	00/111		1213	20.0			Ø. 837	фф	d.298	_	1	
ONT				1			8.078	6.696	Ø.192	~		
TNT	001094		1106	29.0			4.044	6.059	q. 118	_		
ONT	V		1	1			Ø.\$38	6.654	<i>\$.148</i>			
TUT	0D1096		<u> </u>	19.9			Ø. 664	¢. \$64	9.128			
DNT		•	J	1			6.059	¢.\$58	Ø.116	-		
TNI	00 1113		1/2]	20.0			4.151	Ø. Ø62	Ø.124	-		
ONT	\downarrow			1			0.045			_		
TNT	0D1169		1202	J.7			Q. 108	Ø. Ø9B	9.196	-		
ONT	\rightarrow	1		\downarrow	J	۲ ا	Ø. 1ø1	•	Ø.176	~	¥	J
COMMENT	S:				· · · ·		• •				- 11	<u> </u>
SIGNATUR	E(S):A					QA CHE	CKED BY:	Matt	Oblog	12-3-9	7	

MA

PROJECT NAME: RVAAP

TNT and DNT FIELD SCREENING LOGSHEET

DELIVERY ORDER NO: 0002

TNT and DNT FIELD SCREENING LOGSHEET

.

PROJECT NAME: RVAAP

DELIVERY ORDER ND: 0002

SITE: ODA / DFA

DATE: 11/24/97

	ANALYTE	FIELD SAMPLE NO.	SITE ID NO.	DATE/TIME COLLECTED		DIL. Column	EXTER	EXTRACT ABSORB	BCKGRD ABSORB		EDRRELT EXTRACT ABSORB	EXTRACT CONC. (mg/L)	SAMPLE CONC. (ug/g)
1	TWT	010 11 16	0019	1/21/42 1145	20.0	1	cl	Q. 169	0.119	Ø.238		NA	20
	PAIT	Ļ			·		\	Ø. 12¢	ø.\$99	4 .198			
	TNI	00 1092		1526	24.8			0.656	Ø.654	¢.iø8			
	ONT	4		1				0.051	Ø Ø18	¢.¢96			
	INT	0171057		<i>(\$\$</i>	20.2			0.217			-		
	ONT	↓						8.123 8.20+	Ø.215	¢.43¢			
3-2-12	TNT	00/060		1026	21.8			p. \$ 18	0.415	¢.19¢			
	<u>n</u> nt	4			• •			0.68)	Þ. 683	Ø. 176			
2.2	TNT	001075		1053	20.6			Ø.226	0.229	d. 458			
~	ONT	\downarrow						6.268	Ø.211	Ø.422			
, l	TNT	OF 1153	OFA	1422	24.8	0	dr	0.141 5-599	\$.122	9.244		V	d

:

1

COMMENTS:

SIGNATURE(S):

ŊД

.

DA CHECKED BY: Mar Boly 12-3-97

DELIVERY ORDER NO: 0002

SITE: 6DA / DFA

DATE: 11/24/97

ANALYTE	FIELD SAMPLE NO.	SITE ID NO.	DATE/TIME COLLECTED	SAMPLE WEIGHT (g)	COLUMN	EXTER COLOR	ABSORS			CORRECT EXTRACT ABSORB	EXTRACT CONC. (mg/L)	SAMPLE CONC. (ug/g)
DNT	0F1153	DEA		20.8		معذك	6.127	<i>b.1</i> 6	d.232		NA	ND
TWT	001058	DDA	1/21 1015	/9.9			d.465	<u>.</u> 	d.6%	-	1	1
PNT	\downarrow						6.432	0.46	¢,632	-		
TOUT	00 1074		1/21 1046	18.9			0.527	Ø. 373	d. 746	(
ONT	+						• '	ø.358	· ·	/		
jut	010/035		0857	20.2					Ø.Ø32	/		
ONT	γ						Ø.Ø21		d.026			
TUT	001054		"/4 6916	19.9		liak	0.225	\$.119		~		
DNT	J					link	0.200	1.11	0.222	-		
TNT	0011056		1003	19.9		6	Ø. \$55	•	¢184	1		
DNT	Ŷ	\checkmark				↓	6-649	•	Ø.174	~	l	¥

COMMENTS:

SIGNATURE(S):_

QA CHECKED BY: Matt Olday 12-3-97

PROJECT NAME: RVAAP

TNT and DNT FIELD SCREENING LOGSHEET

DELIVERY ORDER NO: 0002

	: ODA // C		741/80	= 7/1a	3.7283	.*			DAȚE://	24/2	7/1 11/25	187
ANALY	27666766768 X 2777768687786876768767777777777777	SITE ID NO.	DATE/TIME COLLECTED	SAMPLE	[D][L]	EXTOR COLOR	EXTRACT ABSORB		BCRORD AESORB	CCRRECT EXTRACT XESCRE	EXTRACT CONC. (mg/L)	SAMPLE CONC. (Ug/g)
INT	001053	DDA	"/21 asi	20.2	1	Cleas	0199	\$.083	Ø. 166	~	NA	ND
ONT	ď			1			6.686	0.675	¢.15¢	-		
INT	00 1059		1021	20.2			Ø. 174	6.180	9.360	_		
DNT	1					-	Ø. 154	6.167	6.334			/
TNT	001110		1206	20.2			6.082	Ø. 68 7	Ø.174	1		
DWT	L	ļ		\downarrow			6.074	0.081	0,162	1		ł
TNT	DF 1158	DF4	1/23 0905	2ø.ø	$\sim \Lambda^{+-}$	Cleve	<i>\$.\$78</i>	0.072	6.144	•	NH.	ND
ONT	Bin			\downarrow	,		0.065	0-062	d.124	-	1	1
TNT	0F 1/66		13 0923	20.2			0. \$9\$					
DNT			1 1	\downarrow			6.076			~		
INT	0F1/62	ł	11/ 23 0929	24.0		9		\$.\$97		-		1

COMMENTS:_____

2.

SIGNATURE(S):

NA

QA CHECKED BY: Mats Bolog 12-3-87

en##

PROJECT	NAME: RVAA	P		TNT and	DNT FIELD 3	SCREENING	LOGSHEET	DE	LIVERY ORI	IER ND: O	002	
SITE: <i>LFlai</i>	004/01 by Tati=		INT = 3.732	83					DATE:	<u> /24/</u>	47 1	/25
ÄNALYTE	FIELD SAMPLE NO.	SITE ID NO.		SAMPLE WEIGHT (g)	DIL COLUMN	EXTOR COLOR		BOKGRO ABSORB	BCKGRE ABSORE	EDRRECT EXTRACT ABSORG	EXTRACT CONC. (mg/L)	CONC LIGIO
ant	OF 1162	OFA	11/23 OF14	14.9	l	Chew	ф. \$81	Ø. \$84	Ø.168	(NA	NO
TNT	OF1161	OFA	11/ 123 6920	ZØ.)			\$11B	4.118	Ø.276	-		
ONT	4	d	L L	l			Ø.105	Ø.1Ø3	Ø.746	~		
TNT	010 1031	ODA	723 1325	20.2			Ø.174	Ø. 185	Ø.37Ø	_		
ONT	l	4	1	d		4		Ø. 164	9.328	-		
TUT	00/032	ODYA	1/23 1350	20-1		prak	1- = keber 0,336	4.274	Ø.348			
ONT		ł	d	S		Com	Ø. 282	· .	Q.468			
Trut	00 1830	ODA	11/ 13 1345	20.1			l'	•	¢.25¢			
DNT	d	Ļ	ł	ď			g.ug	6.164	Q.20B			
	0F1152	PFA	1/24 1123	24.6			6. 196	6.182	1.364	-		
ONT	l	d	L	d	V		6.163	F	\$. 30Z	-	V	•
COMMENT	S:											
SIGNATURI	E(S): <u>fa</u>					QA CHI	CKED BY:_	Mutt	011e	1/2	-3-47	<u></u>

£

PROJECT NAME: RVAAP

TNT and DNT FIELD SCREENING LOGSHEET

DELIVERY ORDER NO: 0002

1<u>4</u>7 SITE: ODA DEA DATE: AF fuilt TNT = 5,390'8 PNT = 3,7383 BCKGRD ⇒.∢::?/.(**: DATETIME SAMPLE S 64, (C : 16 357.51.612 B P S1123(0) 9 ANALYTE FIELD 12.81.099 12 98 V 108 esterrates Alessana େଇନାର COLOR ABSORE ્રા રાજ્ય છે. ABSIØRE C (e-(e))) (e-) COLLECTED WEIGHT COLUMN NO SAMPLE (meae) (000).**¦(€**) 800 1/21 0957 d. 390 0.198 6.195 20 JA Cu Clear ODA 129 TNT 001055 ð L 0.157 0.171 0.342 ONT chally 9.642 0.286 0.321 123 1625 20.0 TUT 001025 .267 clady , anto 0. 289 0. 578 s/ DNT 1/24 1048 19.9 6205 0.252 9.504 NFA /lew TNT DEIIST eta 1. 183 0,232 4.464 • NWT L 25 1/21 \$828 24.0 6.672 9,144 001634 ODA TNT 0.954 J 6.065 9.136 NNT 1/23 \$9\$\$ 24.1 199 4.644 NF1159 DFA d.322 TNT 6.16 6.299 0.598 ONT 0.152 26. 0.2251 9.450 121 douz 010 TNT 01036 ODA **COMMENTS:** . QA CHECKED BY: Mat Tolay 12-3 97 SIGNATURE(S): . Au

ŝq

SAMPLE NO. COLLECTED WEIGHT COLLINN DOLOR ABSORD COLLECTED WEIGHT COLLINN DOLOR ABSORD COLLECTED COLLECTED WEIGHT COLLINN DOLOR ABSORD COLLECTED COLL	PROJECT	NAME: RVAA	P		TNT and I	DNT FIELD	SCREENING	TOGSHEET		LIVERY ORI)ER NO: O	002	
SAMPLE NO. COLLECTED WEIGHT COLUMN COLOR ADSCRU ADSCRU<			8 = T.N	97 QNI	- 3.7	583				DATE:	11/25	/97	
TNT OD 1428 ODA 1/33 1354 20/2 11/2 0 22.8 0.180 <th>ANALYTE</th> <th>SAMPLE</th> <th></th> <th></th> <th>Weight</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>0.3.63.0<u>7.056</u>8</th> <th>CONC.</th> <th>SAMPI CONC (ug/g</th>	ANALYTE	SAMPLE			Weight						0.3.63.0 <u>7.056</u> 8	CONC.	SAMPI CONC (ug/g
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	ONT	00 1036	DOA	1/23 684	20.1		chew	Ø.147	62.06	1.412	-	NA	NO
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	TNT	00 1028	ODA	173 1250	24.2		41 mil	0.228	¢. 180	4. 360	-		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	ONT	d	l	l	l		ł	Ø.183	6.161	6.28			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	TWT	150100	00A	1/23 1330	19.9		clew	¢,213	6.229	ø.458			
TWT OD 10/16 OPA $h > 3 D D 23 20.2$ $p. 233$ $p. 316$ $p. 620$ $-$ ONT J J J J J J $p. 233$ $p. 316$ $p. 620$ $-$ ONT J J J J J J J $p. 233$ $p. 316$ $p. 230$ $p. 236$ $p. 246$ <t< td=""><td>ONT</td><td>l</td><td>9</td><td>1 5</td><td></td><td></td><td></td><td>6.194</td><td></td><td>¢.}86</td><td></td><td></td><td></td></t<>	ONT	l	9	1 5				6.194		¢.}86			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	TNT	00 1016	opA		24.2			6.233	Ø. 316	0.620	****		
p_{NT} l d l d l d l d		2	2	d	ł		1	6.210	Ø. 2°¢	Ø.56¢			¥
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	TWT	001027	AGO	1/3 1745	20,1		6-0-12	6.196	6.094	\$.180	6.00	6.653	Ø.Z
TNT OD 1073 ODA 1/23 1232 20.1 Chen \$.157 0.123 0.246 - 1 DNT 0 1 0 1 0 1 0 1 0 1 0 1 0.125 0.117 0.224 - 1		i		6	d		ľ	6.146	6.000				ND
ONT 0 1 d 1 d 1 6.125 6.117 6.224 - 1		010 1073	onA	1/23 1233	20.)		Chen	l'.	τ '	'	~		1
		4	L.	1	i	6	1				-		
SIGNATURE(S): AL QA CHECKED BY: Mar Oblay 12-3-87	COMMENT		TUT	+ 6.26	-3/kg ;	<u>5 /ars</u>							

PROJECT NAME: RVAAP

DELIVERY ORDER NO: 0002

	SITE:	ODA								DATE:	1/25/8	7	
	<u>LF Lii</u> Analyte	FIELD SAMPLE NO.	<u>: 5: 3800</u> Site ID NO.	DATE/TIME COLLECTED	SAMPLE	DIL Column	EXICT	EXTRACT ABSORE	BCKORD ABSORB	BCKGRD ABSORB X2	CORRECT EXTRACT ABSORT	EXTRACT CONC. (mg/L)	SAMPLE CONC. (ug/g)
J.	TNT	001026	ODA	1/23 1233	24.4	l	Pink Charles M	0.214 6.670	Ø.Ø78	Ø. 156	¢.\$58	Ø-343	1.52
	ONT	Ţ	ł		Ĵ			\$.17\$	6.667	ø:134	d.03.6	Ø.184	¢.97
7		001024	ODA	1/23 1240	20.0			¢.238	Ø-264	Ø.528	-	NA	NA
	ONT	1	ł	4				6.212	Ø.24Ø	¢.48¢	-		\vdash
ŗ	TNT	001015	OOA	7/23 12/8	19.9		· .	\$.118	\$ \$90	<i>4.180</i>	-	_/	
	ONT	ļ	d	6	1		- chan	\$.64	¢. ¢ 78	Ø:156			
	TNT	00 1006	ODA	1/23 1152	20.Z		1/4	Ø.172	¢.117	Ø. 234		<u> </u>	
	ONT_	L'		L L	d		chin		¢. 102	\$.201			
	TNT	ON IØIB	ODA	11/23 1228	10.7	↓	fink	¢.139	Ø.\$84	Ø.168		<u> </u>	├ ─ ├ ──
	ONT	J	d	6	V	<u> .</u>			6.675			<u> - </u>	8
	Tiut	001011	ONA	1/23 1244	20.5			\$.116	<i>\$.</i> \$ 86	9.172			¥

H 14

TNT and DNT FIELD SCREENING LOGSHEET

. .

COMMENTS:_____

SIGNATURE(S):_

DA CHECKED BY: Mars Oblog 12-347

PROJEC	rname: Rvaa	P		TNT and I	DNT FIELD :	SCREENING	LOGSHEET		LIVERY ORI	DEA NO: O	002	
SITE:	ODA F huili	TATT = C	. 390B	A1)T -	3 7182				DATE:	1/25/97	7	
ANALYTE	FIELD SAMPLE NO.	SITE ID NO.	DAVENIME	SAMPLE WEIGHT (g)	2005 - 2007 - 2005 - 2007 - 2007 - 2007	EXTER COLOR	EXTRACT ABSORE	BCKGRD ABSORB	HCKGRD ABSORD X1	CORRECT CORRECT ABSIDIE	EXTRACT CONC. (mc/L)	CONC. (ug/g)
ONT	091011	DOA	1/23 1200	20.5	I	Pi~K	p. 692	Ø.674	¢.148	-	NA	ND
TNY	00/007	ODA	1/23 1153	21.0			(p. 1\$3	P.057	Ø.114	_	,	
DNT	Į,		L			J	619	Ø.\$49	Ø. Ø98	1		
TNT	ODIØZI		1/27 1255	20.9		chew.			9.66	-		
ONT	l		1						9.054	1		
TNT	OD 1020	:	1/21 1325	20.2				0.674		-		
ONT	Ú Í		4			1	6.103	Ø.\$65	Ø.130	-		
	of Jan	yk;										
				_								
					the							
		•		1								
COMMENT	S:		··········							_		<u>۔۔۔۔</u>
SIGNATURI	E(S): <u>4n</u>		· · · · · · · · · · · · · · · · · · ·			QA CHE	CKED BY:	Matt	Odry	, 12.	3-97	N-44

96

APPENDIX E

.

QUALITY ASSURANCE LABORATORY RESULTS

CMQA Lab Project No. 4844

2 6 JAN 1998

DEPARTMENT OF THE ARMY CORPS OF ENGINEERS CHEMISTRY & MATERIALS QUALITY ASSURANCE LABORATORY OMAHA, NEBRASKA 68102

Subject: <u>Ouality Assurance Test Results</u>

Project: <u>Ravenna AAP - Env. Investigation at 5 Sites, OH</u> Intended Use: <u>IRP-Army PA/SI</u> Source of Material:

Submitted by: John Jent, CELRL-ED-GE Date Received: 25 Nov 97 Date Sampled: 19-24 Nov 97 Method of Test or Specification: See attached test result sheets

References: Louisville District Request No. W22W9K73387523 dated 04 Dec 1997

-- REMARKS --

- 1. Review comments for project data are presented on the following pages.
- 2. Sample receipt information and analytical data are provided in the following parts of the report.
 - Part A: Sample Receipt Information (1 page) Part B: Chain-of-Custody Information (2 pages) Part C: Quality Assurance Test Results (55 pages)
- 3. The Quality Assurance Test Results are attached; if you 1 questions please contact Laura Percifield at (402)444-433

Submitted by:

Donglas B. Juggart

DOUGLAS B. TAGGART Director, CMQA Laborator

RP1-25-98 Percifield/glm/444-4313

TEST RESULTS

1. SUMMARY

CMQA Laboratory compiled the data package according to the USACE HTRW minimum chemistry reporting requirements. CMQA Laboratory and Continental Analytical Services, Inc. (CAS), performed the analyses using EPA methods. Proper quality control procedures were followed and documented. The method quality control results outlined below support the usability of the data.

2. DISCUSSION

- a. Thirteen soil samples were received by CMQA Laboratory on 25 Nov 97. The samples were analyzed for one or more of the following:
 - · Pesticide/PCB (P/PCB) by EPA method 8081.
 - · Herbicides (Herb) by EPA method 8151.
 - Explosives (EXP) by a modified EPA method 8330M.
 - Metals by EPA method: 7471 for mercury; and 6010 for aluminum, antimony, arsenic, barium, beryllium, cadmium, calcium, chromium, cobalt, copper, iron, lead, magnesium, manganese, nickel, potassium, selenium, silver, sodium, thallium, vanadium, and zinc.

The methods are from SW-846 (1986), "Test Methods for Evaluation of Solid Waste."

Part "A" of this report lists all of the samples received.

- b. The following shipping and chain-of-custody errors were noted for the sample shipments received by CMQA Laboratory.
 - 1) There were no custody seals on the outside of the sample shipping container.
 - 2) The custody papers were not sealed in a plastic bag and taped to the inside of the sample shipping container.

Part "B" of this report contains the chain-of-custody information.

c. The samples were analyzed by CMQA Laboratory and CAS.

Part "C" of this report lists the analytical test results.

3. METHOD QUALITY CONTROL

- a. P/PCB:
 - 1) Surrogate spike recoveries were within acceptable limits.
 - 2) The method blanks were free of contamination.
 - 3) Laboratory duplicate results matched the results from the original field samples.

CMQA Lab Project No. 4844 Page 3 of 3

- 4) The matrix spike/matrix spike duplicate (MS/MSD) recoveries were within acceptable limits except for 4,4'-DDT and endrin whose batch specific recoveries were out (page C5). Relative percent differences (RPD) for MS/MSD recoveries were within acceptable limits.
- 5) Laboratory control sample (LCS) recoveries were within acceptable limits.
- 6) Holding times were met.
- b. Herbicides:
 - 1) Surrogate spike recoveries were within acceptable limits.
 - 2) The method blanks were free of contamination.
 - 3) The MS recoveries were within acceptable limits. A MSD was not analyzed due to insufficient sample volume (page C16).
 - 4) LCS/LCSD recoveries were within acceptable limits except for dinoseb whose recoveries were outside acceptable limits (page C11). RPD for LCS/LCSD recoveries were within acceptable limits.
 - 5) Holding times were not met (pages C8 and C9).
- c. EXP:
 - 1) Surrogate spike recoveries were within acceptable limits.
 - 2) The method blanks were free of contamination.
 - 3) Laboratory duplicate results matched the results from the original field samples except for tetryl and nitrocellulose whose RPD were above acceptable limits (pages C19 and C29).
 - 4) The MS/MSD recoveries were within acceptable limits except for tetryl whose recoveries were out (page C20). RPD for MS/MSD recoveries were within acceptable limits.
 - 5) LCS recoveries were within acceptable limits.
 - 6) Holding times were met except for sample OD1077 whose extraction holding time was exceeded because of the late arrival of funds (page C17).
- d. Metals:
 - 1) The method blanks were free of contamination except for an estimated concentration of aluminum (page C48).
 - 2) Laboratory duplicate results matched the results from the original field samples.
 - 3) The MS/MSD recoveries were within acceptable limits except for antimony, magnesium, and potassium whose batch specific recoveries were outside acceptable limits (page C50). RPD for MS/MSD recoveries were within acceptable limits.
 - 4) LCS recoveries were within acceptable limits.
 - 5) Holding times were met.

PART A

SAMPLE RECEIPT INFORMATION

QA/QC Table #	Customer Semple #	Date Sampled	Metrix	Lab # Assigned	Tests Assigned	QA Test Results
						Page Number
001	001077	19 Nov 97	Soil	971204-024	Explosives	-43
				971204-024	Nitroglycerine	C17 C22
				971204-024	Nitrocellulose	C27
002	001141	20 Nov 97	a. 21			
		ZU NOV Y/	Soil	971204-027	Metals	C32-C33
003	CD1069	20 Nov 97	Soil	971204-028	Metals	C34-C35
004	001105					
	001105	20 Nov 97	Soil	971204-029	Metals	C36+C37
005	001127	20 Nov 97	Sofi	971204-030	Hetals	-74 -74
AA.		••		77 1204-030	Aelala	C38-C39
006	001147	20 Nov 97	Soil	971204-031	Metals	C40-C41
007	001049	20 Nov 97	Sofl	07100/ 070	W . A	
			3011	971204-032	Metals	C42-C43
800	001125	20 Nov 97	Soil	971204-033	Metals	C44-C45
009	P81169	30				
507	FB1107	22 Nov 97	Soil	971204-025	Herbicides (to CAS)	C8
010	PB1178	22 Nov 97	Soil	971204-026	Herbicides (to CAS)	C9
				771204 020	neibicides (to CAS)	LY
011	PB1169	22 Nov 97	Soil	M970529-001	Pesticides/PCB	C1
012	PB1178	22 Nov 97	Pail			_
		EE NUV Y/	Soil	my/USZY-00Z	Pesticides/PCB	C2
013	DF1151	24 Nov 97	Soil	971204-034	Metals	C46-C47
						0-10-041

-

.

PART B

CHAIN-OF-CUSTODY INFORMATION

1

]

4

ł

- <u></u>	Page No.	Chain-of-Custody No.	Date Signed	
	81	C0E001	24 Nov 97	

			ce Aj	tions			C	h~i	'n o	fr	···stc)("	· ?e	€C ~	~					S' il No
Ŵ	<u></u>		iineinationai u An Employee-Own	orporatio ed Company	/ /	Date_	1/2	410	17			Pa	age_	<u> </u>	_of_	1				CUEODI
<u></u>	Name tit	-Pari	ushda				75		T		Rec	juesi	ed Pa	ramete	ers		······		N O	Laboratory Name MIRD Lubur Tery
	Address <u>JD</u>	1-61-6	lem Huy S	54201	Startic	<u>ak an 45431</u>	SWEYL BOD		0.0	Otta									0	Address 426 S. 18th St.
	Phone Number	<u>(</u> (13) - +)) 431-222	<u>~</u>			19	.	2122	39			ľ						F	Concha NE 68192
	Project Manag	er IXAI RVAA	Dy Vernie	1.C				34846		Subtle									C O	Phone (402) 444 4302
			13.04-0	1/18		.	Ř	3	ы В М	25									N T	
	Sampler (Signa				inted Nam	e)i	17	2 S	S S	۶. ۲										Contact Name Sumple Custodian
	Laboratory No	Tel Matrix		Fail N	1 tar	ish	Reticulus 1R3	Hubinidia	Metals swith	Explosives									N E R	OBSERVATIONS. COMMENTS, SPECIAL INSTRUCTIONS
	coordinately no	SU:	Sample No. PB1167	Uale	Time 258	Sile/Zone PB	X	$\frac{\pi}{X}$	2	<u>u</u>									s	
			PBITE		1610		$\frac{\wedge}{\lambda}$	$\frac{1}{X}$			┠──┨	···							2	1-2'
			00 1141	20.1.47		ODA		~	X		┟╼╶╂				-+			·	2	0.05
				20 14: 97		ODA			X	* 									<u> </u>	0 2' 0-2'
	·			20 1/2197		AUD			X											0-2'
			001127	20 20. 17	1407	AGO			X							-+-	+			4-6'
			001147	20 Nov 97	1457	ODA			X											4-6
			·	PORTUNT	10.0				X											U-2'
				B.NV9	11113					X									2	0-2'
		$-\frac{1}{2}$		20 Hev 97					X										1	0-2'
f			LF1151	24 No: 17	1048	DFA			X										1	0-0.5
ľ																			L.	
F	Belinquiched by	I	<u> </u>	Date	Rec	elved by			I		Date		Total	Numbe					5	
	Signature	10	·	- "24							0010	ľ	instru	uctions			_		9	Shipment Method: FCK Ex SAIC Location (circle)
ŀ	Dui		7		17 Signa	iure							1. Fill are	out forn as (lab	n comp Use onl	lelely e ly).	xcept	lor shade	t	Washington, D.C. 1710 Goodridge Dr., McLean, VA 22102
	Tour P		sn	_ Time	Printe	d Name					Time		2. Ço	mplete i	n ballpo	oint per	1. Draw	rone line		(703) 734-2500 Cak Ridon
	SAIC			140	7								thr	ough er	tors an	d Initial.				800 Oak Bidge Topk - Oak Bidge TN 37830 (615) 482 9031
	.ompany			-		any							3. Rec nun	quest an obers or	nalyses nlv. Cor	using E nsult the	EPA m e proje	ethod cl UAPP	lot.	Paramus Oue Sears Drive, Paramus, NJ 07652
	Relinquished by			Dale	Rece	lyed by	· Л				Date		inst	ructions	. Comp	plete as	show	٦.		(201) 598 0100 Davion
	signalure				Signat	uro 1,	7		15		η_{a}			erence : dicable :			mples	to the		<u>Davion</u> 1321 Research Park Duve, Daviou, OH 15432 1513) 429 6550
	Sented Hame					yu		21	<i>'</i> (ムナ		e all app				_		Columbus
				Time	Printed	l Name			• . <u>-</u> .		Time									655 Metro Place South, Sude 745, Dublio, OH 43017 (614) 793 7600
_	· · · · · · · · · · · · · · · · · · ·	Company						08 z	5	6. Group all sample containers and requested analyses from one sampling location together Do not list individually.			l requestr ation logn	Cincinnale 635 West 20 St. Sude 403. Concionale Off 45203 (513) 721 2600						

Science Applications International Corporation

.

COOLER RECEIPT FORM

UIMS# 4844 MRD Cooler # Number of Coolers Contractor Cooler 5A1C-
PROJECT: KULKING AAP Date received: 11/25/97
USE OTHER SIDE OF THIS FORM TO NOTE DETAILS CONCERNING CHECK-IN PROBLEMS.
A. PRELIMINARY EXAMINATION PHASE: Date cooler opened: 112597 C-of-C Number: COEDA
by (print) Shelly Swink (sign) Helly Junk
1. Did cooler come with a shipping slip (air bill, etc.)?
If YES, enter carrier name & air bill number here: <u>DeDEX 146988295</u>
2. Were custody seals on outside of cooler?
How many & where:, seal date:, seal name
3. Were custody seals unbroken and intact at the date and time of arrival?
4. Did you screen samples for radioactivity using the Geiger Counter
5. Were custody papers sealed in a plastic bag & taped inside to the lid? YES NO
6. Were custody papers filled out properly (ink, signed. etc.)?
7. Did you sign custody papers in the appropriate place?
8. Was project identifiable from custody papers? NO
9. Type of ice: <u>remperature</u> Temperature: <u>4.7</u> ^c Date temperature measured: <u>11/25</u>
10. Describe type of packing in cooler: fullel wrap
11. Were all bottles sealed in separate plastic bags?
B. LOG-IN PHASE: Date samples were logged-in: 12/4/97
by (print) Shelly Swink(sign) Miliciply
12. Did all bottles arrive unbroken & were labels in good condition?
14. Did all bottle labels agree with custody papers?
15 Ware correct containers used for the tests indicated?
15. Were correct preservatives added to samples?
17 Was a sufficient amount of sample sent for tests indicated?
18. Was headspace absent in Volatile samples? If NO. list by QA#:
QA # (cont.)
13 Were the custody papers checked against the sample receipt form? By whom? TP Date: $12/24/47$

BZ

PART C

QUALITY ASSURANCE TEST RESULTS

DEPARTMENT OF THE ARMY Corps of Engineers Missouri River Laboratory

CI

Pesticides/PCBs Sample Report

Project Name: Project Number: Client Sample ID: MRL Sample ID		Date Sampled: 11/22/97 Date Received: 11/25/97 Date Reported: 01/05/98	Matrix Units: Sample & Solids	ug/kg Amount: 25.1 g
Analyst: Asuncion Method: SW-846	1 3540B/3081	Date Extracted: 12/04/97 Date Analyzed : 12/13/97	Dilution Batch 1	on Factor: 1 ID: WG1493
CAS Number	Target Analyte	Result	Laboratory Reporting Limit	Method Detection Limit
309-00-2	Aldrin	<u>ບ</u>	5.6	0.5
319-84-6	Alpha BHC	u	5.6	0.5
319-95-7	Beca BHC	u	11	1
319-86-8	Delta BHC	u	5.6	0.5
58-99-9	Gamma BHC (Lindane)	u	5.6	0.5
57-74-9	Chlordane (Technical)) บ	5.6	0.5
72 - 54 - 8	4,4'-DDD	u	11	1
72-55-9	4,4'-DDE	u	11	1
50-29-3	4,4'-DDT	U	11	1
60-57-1	Dieldrin	u	11	1
959-98-8	Alpha Endosulfan	u	5.6	0.5
33213-65-9	Beta Endosulfan	u	11	1
1031-07-8	Endosulfan Sulfate	u	11	1
72-20-8	Endrin	u	11	1
7421-93-4	Endrin Aldehyde	u	11	1
53494-70-5	Endrin Ketone	u	11	1
76-44-8	Heptachlor	u	5.6	0.5
1024-57-3	Heptachlor Epoxide	บ	5.6	0.5
72-43-5	Methoxychlor	บ	22	2
8001-35-2	Toxaphene	u	84	6
12674-11-2	Aroclor-1016	u	56	5
1104-28-2	Araclor-1221	u	56	5
11141-16-5	Araclor-1232	u	56	S
53469-21-9	Aroclor-1242	u	56	S
12672-29-6	Aroclor-1248	u	56	5
11097-69-1	Aroclor-1254	u	56	5
11096-82-5	Arcclor-1260	u	56	5

u: Selow Method Detection Limit

Laboratory Comments:

	Qua	ality Control		
Surrogate Standard R	Recovery (%)	Acceptable	Spike (ug/kg)	
Decachlorobiphenyl	56 *	60-150	200	
Tetrachloro-meta-xylene	80	52-143	200	
Method Blank : W01493-	-1	Labo	ratory Duplicate : WG1491	- 6
Pesticide Matrix Spike : WG1493-	- 7		Spike Duplicate : WG1493	1-3
PCB Matrix Spike : WG1493-	- 4	PCB Matrix	Spike Duplicate : WG1493	1-5
Pesticide LC3 : WG1493-	- 2			
PCB_LCS : WG1493-	- 3			
	MR Lat	Doratory Approval		
nalyst: ASUNCION 19-DEC-97	Superv:	isor: SPLICHAL 19-DEC-97		QA: MACMILLAN 05-JAN
			FAX: (402) 341-5448	
420 South 18th Street Omaha. NE 6810	02		PHONE: (402) 444-4300	

9

Pesticides/PCBs Sample Report

Project Name: Project Number: Client Sample ID:		Date Sampled: 11/22/97 Date Received: 11/25/97 Date Reported: 01/05/98		ug/kg Amount: 25.1 g			
RL Sample ID :	M970529-002		Solids	: 87.8			
analyst: Asuncion		Date Extracted: 12/04/97	Dilution Factor: 1				
ethod: SW-846 3	5408/8081	Date Analyzed : 12/13/97	Batch 1	(D: WG1493			
CAS Number	Target Analyte	Result	Laboratory Reporting Limit	Method Detection Limit			
309-00-2	Aldrin	u	5.7	0.5			
319-84-6	Alpha BHC	· _	5.7	0.5			
319-85-7	Beca BHC	u	11	I			
319-86-8	Delta SHC	u	5.7	0.5			
58-89-9	Gamma BHC (Lindane)	u	5.7	0.5			
57-74-9	Chlordane (Technical)	u	5.7	0.5			
72-54-8	4,4'-DDD	u	11	l			
72-55-9	4,4'-DDE	u	11	1			
50-29-3	4,4'-DDT	u	11	1			
60-57-1	Dieldrin	u	11	1			
959-98-8	Alpha Endosulfan	u	5.7	0.5			
33213-65-9	Beta Endosulfan	u	11	1			
1031-07-8	Endosulfan Sulfate	u	11	1			
72 - 20 - 3	Endrin	u	11	1			
7421-93-4	Endrin Aldehyde	ч	11	1			
53494-70-5	Endrin Ketone	u	11	1			
76-44-8	Heptachlor	u	5.7	0.5			
1024-57-3	Heptachlor Epoxide	u	5.7	0.5			
72-43-5	Methoxychlor	u .	23	2			
8001-35-2	Toxaphene	ц	85	8			
12674-11-2	Aroclor-1016	u	57	5			
1104-28-2	Aroclor-1221	u	57	5			
11141-16-5	Aroclor-1232	u	57	5			
53469-21-9	Aroclor-1242	น	57	5			
12672-29-6	Aroclor-1248	u	57	5			
11097-69-1	Aroclor-1254	น	57	5			
11096-82-5	Aroclor-1260	u	57	S			

u: Balow Method Detection Limit

Laboratory Comments:

	Q	uality Control		
Surrogate Standard	Recovery (%)	Acceptable	Spike (ug/kg)	
Decachlorobiphenyl	64	60-150	200	
Tetrachloro-meta-xylene	80	52-143	200	
Method Blank : WG	1493-1	Labo	ratory Duplicate : WG14	93-6
Pesticide Matrix Spike : WC			Spike Duplicate : WG14	
PCB Matrix Spike : WC		PCB Matrix	Spike Duplicate : WG14	93-5
Pesticide LCS : WC				
PCB LCS : WC	1493-3			
	MR L	aboratory Approval		
alyst: ASUNCION 19-DEC-97	Super	visor: SPLICHAL 19-DEC-97		QA: MACMILLAN 05-
· · · · · · · · · · · · · · · · · ·			FAX: (402) 341-5448	
120 South 18th Street Omaha NE	68102		PHONE: (402) 444-4300	

PHONE: (402) 444-4300

DEPARTMENT OF THE ARMY Corps of Engineers Missouri River Laboratory

Pesticides/PCBs Method Blank Report

ethod Blank Sample	: ID: WG1493-1	Date Reported: 01/05/98		Matrix: Soil Units: ug/kg
Analyst: Asuncion Method: SW-846 35	5408/8081	Date Extracted: 12/04/97 Date Analyzed: 12/12/97	Dilutic Batch I	DD FACTOR: 1 ID: WG1493
CAS Number	Target Analyte	Result	Laboratory Reporting Limit	Method Detection Limit
309-00-2	Aldrin	u	5.0	0.5
319-84-6	Alpha BHC	u	5.0	0.5
319-85-7	Beta BHC	u	10	1
319-36-8	Delta BHC	น	5.0	0.5
58-89-9	Gamma BHC (Lindane)	ц	5.0	0.5
57-74-9	Chlordane (Technica	1) u	5.0	0.5
72-54-8	4,4'-DDD	u	10	1
72-55-9	4.4'-DDE	u	10	1
50-29-3	4,4'-DDT	u	10	1
60-57-1	Dieldrin	u	10	1
959-98-8	Alpha Endosulfan	u	5.0	0.5
33213-65-9	Beta Endosulfan	u	10	1
1031-07-8	Endosulfan Sulfate	u	10	1
72-20-8	Endrin	u	10	1
7421-93-4	Endrin Aldehyde	Ľ	10	1
53494-70-5	Endrin Ketone	u	10	1
76-44-8	Heptachlor	u	5.0	0.5
1024-57-3	Heptachlor Epoxide	u	5.0	0.5
72-43-5	Methoxychlor	u	20	2
8001-35-2	Toxaphene	u	75	8
12674-11-2	Aroclor-1016	u	50	5
1104-28-2	Aroclor-1221	u	50	5
11141-16-5	Aroclor-1232	u	50	-
53469-21-9	Aroclor-1242	u	50	5
12672-29-6	Aroclor - 1248	u	50	5
11097-69-1	Aroclor-1254	u	50	5
11096-82-5	Aroclor-1260	u	50	5

u: Below Method Detection Limit

Laboratory Comments:

Quality Control								
Surrogate Standard	Recovery (%)	Acceptable	Spike (ug/kg)					
Decachlorobiphenyl Tetrachloro-meta-xylene	88 94	60-150 52-143	200 200					
		MR Laboratory App	roval					
malyst: ASUNCION 19-DEC-97	2	Supervisor: SPLICH	AL 19-DEC-97		QA: MACMILLAN 05-JAN			
				(402) 341-5448	· · ·			

420 South 18th Street Omaha, NE 68102

PHONE: (402) 444-4300

.

Batch ID: WG1493

CEPARTMENT OF THE ARMY Corps of Engineers Missouri River Laboratory

Pesticides/PCBs (Laboratory Matrix Duplicate) Report

LD Sample ID: Sample ID:	WG1493-6 M970524-006	Date Reported:	01/05/98	Matrix:		 -
-				Units:		
				Sample Amount:	25.1 g	
				Solids:	90.9	

Analyst:	Asuncion	Date	Extracted:	12/04/97
Method:	SW-846 3540B/8081		Analyzed:	

CAS Number	Target Analyte	Sample Result	LD Result		Method Detecti Limit	ion RPD	QC D Limits	
309-00-2	Aldrin	u	u	5.5	0.5	NC	52	
319-84-6	Alpha BHC	u u	u	5.5	0.5	NC	36	
319-85-7	Beta BHC	u -	u	11	1	NC	36	
319-86-8	Delta BHC	u	u	5.5	0.5	NC	36	
58-89-9	Gamma BHC (Lindane)	·u	u	5.5	0.5	NC	36	
57-74-9	Chlordane (Technical)	- u	u	5.5	0.5	NC	36	
72-54-8	4,4'-DDD	u	u	11	1	NC	27	
72-55-9	4,4'-DDE	ŭ	ŭ	11	ĩ	NC	27	
50-29-3	4,4'-DDT	- u	u	11	1	NC	27	
60-57-1	Dieldrin	ŭ	u	11	1	NC	33	
959-98-8	Alpha Endosulfan	u	u	5.5	0.5	NC	27	
33213-65-9	Beta Endosulfan	ŭ	_ u	11	1	NC	27	
1031-07-8	Endosulfan Sulface	- u	- u	11	1	NC	27	
72-20-8	Endrin	u	u	11	1	NC	42	
7421-93-4	Endrin Aldehyde	u	u	11	1	NC	42	
53494 - 70 - 5	Endrin Ketone	u	<u>u</u>	11	1	NC	25	
76-44-8	Heptachlor	ŭ	<u>u</u>	5.5	0.5	NC	34	
1024-57-3	Heptachlor Epoxide	u	u	5.5	0.5	NC	34	
72-43-5	Methoxychlor	ŭ	u	22	2	NC	34	
8001-35-2	Toxaphene	u	u	82	8	NC	34	
12674-11-2	Aroclor-1016	u	u	55	5	NC	35	
104-28-2	Aroclor-1221	u	ŭ	55	5	NC	35	
.1141-16-5	Aroclor-1232	ŭ	u	55	5	NC	35	
3469-21-9	Aroclor-1242	- u	u	55	5	NC	35	
2672-29-6	Aroclor-1248	ŭ	u	55	5	NC	35	
1097-69-1	Aroclor-1254	u	u	55	5	NC	35	
1096-82-5	Aroclor-1260	60	64	55	5	6	51	

u: Below Detection Limit

NC: Not Calculable

Laboratory Comments:

RPD = (|Sample Result - LD Result| x 100)/((Sample Result + LD Result)/2)

Surrogate Standard	Recovery	(1)	Acceptable	Spike (ug/kg)	RPD	QC Limits
	Sample	LD				
Decachlorobiphenyl	84	87	60-150	200	3	54
Tetrachloro-meta-xylene	70	79	52-143	200	13	54

Analyst: ASUNCION 19-DEC-97

Supervisor: SPLICHAL 19-DEC-97

420 South 18th Street Omaha, NE 68102

DEPARTMENT OF THE ARMY Corps of Engineers Missouri River Laboratory

5

Pesticides/PCBs(Matrix Spike/Matrix Spike Duplicate)

MS Pest Sample ID: WG1493-7 MS PCB Sample ID: WG1493-4 MSD Pest Sample ID: WG1493-9 MSD PCB Sample ID: WG1493-5 Sample ID: M970524-006 Date Reported: 01/05/98				93-5	Matrix: Soil Units: ug/kg					
nalyst: Asuncion ethod: SW-846 3540B/	D	Date Extracted: 12/04/97				<pre>% Solids: 90.9 Batch ID: WG1493</pre>				
	D	ate Analyzed	1: 12/13,	97					-	
CAS Number	Target Analyte	Sample Result	Spike Added	Conc MS	* Rec MS	QC Limits	Conc MSD	1Rec MSD	RPD	RPD Limits
309-00-2	Aldrin									
319-84-6	Alpha BHC	ų	44	40	90	35-131	44	101	11	52
319-85-7	Beta BHC	u	44	39	90	42-128	44	100	11	36
319-86-8	Delta BHC	u u	44	48	110	42-128	49	112	1	36
58-89-9	Gamma BHC (Lindane)	u	44	47	108	42-128	48	109	1	36
57-74-9	Chlordane (Technical)	u	44 NS	45	103	42-128	49	112	9	36
72 - 54 - 8	4,4'-DDD	u u		u	NC	42-128	u	NC	NC	36
72-55-9	4,4'-DDE	u	44 J		117	50-141	54 J#	124	6	27
50-29-3	4,4'-DDT	-	44	51	115	50-141	52	119	3	27
60-57-1	Dieldrin	u	44	63	144 *	50-141	71	161 *	11	27
959-98-8	Alpha Endosulfan	u	44	47	106	53-134	49	111	4	33
33213-65-9	Beta Endosulfan	u	44	38	86	50-141	40	91	5	27
1031-07-8	Endosulfan Sulfate	u	44	44	100	50-141	46	106	6	27
72-20-8	Endrin	u	44	47	108	50-141	50	113	4	27
7421-93-4	Endrin Aldehyde	u	44 J		146 *	52-140	59 J#	158 *	8	42
53494-70-5	Endrin Ketone	u	44 J		114	52-140	57 J#	129	13	42
76-44-8	Heptachlor	u	44 J		115	52-140	54 J#	122	6	25
1024-57-3	Heptachlor Epoxide	u	44 J		115	37-140	57 J#	130	13	34
72-43-5	Methoxychlor	u	44	47	106	37-140	49	112	5	34
8001-35-2	Toxaphene	u	44	52	119	37-140	56	127	6	34
12674-11-2	Aroclor-1016	u	NS	u	NC	37-140	u	NC	NC	34 -
1104-28-2	Aroclor-1221	u	440	430	99	60-141	450	103	4	35
11141-16-5	Aroclor-1232	u	NS	u	NC	60-141	u	NC	NC	35
53469-21-9	Aroclor-1242	u	NS	u	NC	60-141	u	NC	NC	35
12672-29-6	Aroclor-1248	u	NS	u	NC	60-141	u	NC	NC	35
11097-69-1	Aroclor-1254	U	NS	u	NC	60-141	u	NC	NC	35
11096-82-5	Aroclor-1260	u	NS	u	NC	60-141	u	NC	NC	35
		60	440	420	82	41-149	490	97	14	51

.

u: Below Method Detection Limit

NC: Not Calculable

*: Indicates the value is outside control limits for %Rec.

\S: Compound not spiked.

3: Analyte concentrations noted as estimates due to calibration check acceptance criteria failure.
J: Estimated Concentration.

.

aboratory Comments:

RPD = (|MS Result - MSD Result| x 100)/((MS Result + MSD Result)/2) Normal sample amount is 25 g.

			Quality Control				
Surrogate Standard	Recover	γ (%) MSD	Acceptable	Spike (u	ug/kg)	RPD	QC Limits
Decachlorobiphenyl Tetrachloro-meta-xylene	91 36	91 98	60-150 52-143	200 200		0 13	54 54
		MR	Laboratory Appro	val			
Analyst: ASUNCION 19-DEC-97		Supe	ervisor: SPLICHAL	19-DEC-97	7		QA: MACMILLAN 05-JAN-9
420 South 18th Street Omaha.	NE 58102		·····	·····		02) 341-5448 02) 444-4300	······································

Pesticides (Laboratory Control Sample)

Date Reported: 01/05/98

LCS ID: WG1493-2

Matrix: Soil Units: ug/kg

lyst: Asuncion hod: SW-846 3540B/8081		Date Extracted: 12/04/97 Date Analyzed: 12/13/97 Batch ID: WG1493			MR Pest Code: PESTS-006		
CAS Number	Compound	Result	True Value	Method Detection Limit	Lab Reporting Limit	t Rec	Acceptance Limits (%)
309-00-2	Aldrin	40	40	0.5	5.0	100	35+131
319-84-6	Alpha BHC	41	40	0.5	5.0	103	42-128
319-85-7	Beta BHC	46	40	1	10	114	42-128
319-86-8	Delta BHC	45	40	0.5	5.0	112	42-128
58-89-9	Gamma BHC (Lindane)	46	40	0.5	5.0	116	42-128
57-74-9	Chlordane (Technical)	u	NS	0.5	5.0	NC	42-128
72-54-8	4,4'-DDD	49 J#	40	1	10	124	50-141
72-55-9	4,4'-DDE	50	40	1	10	126	50-141
50-29-3	4,4'-DDT	56	40	ī `	10	141	50-141
60-57-1	Dieldrin	45	40	1	10	112	53-134
959-98-8	Alpha Endosulfan	38	40	0.5	5.0	95	50-141
33213-65-9	Beta Endosulfan	41	40	1		104	50-141
1031-07-3	Endosulfan Sulfate	46	40	1		116	50-141
72-20-8	Endrin	56 J#	40	1		140	52-140
7421-93-4	Endrin Aldehyde	49 J#	40	1		122	52-140
53494-70-5	Endrin Ketone	45 J#	40	1		113	52-140
76-44-8	Heptachlor	52 J#	40	0.5		129	37-140
1024-57-3	Heptachlor Epoxide	46	40	0.5		114	37-140
72-43-5	Methoxychlor	50	40	2		126	37-140
8001-35-2	Toxaphene	u u	NS	â	75	NC	37-140

u: Below Method Detection Limit NC: Not Calculable

#: Analyte concentrations noted as estimates due to calibration check acceptance criteria failure.
J: Estimated Concentration.

MS: Compound not spiked.

Laboratory Comments:

		Quality Contro	1	
Surrogate Standard	Recovery (1)	Acceptable	Spike (ug/kg)	
Decachlorobiphenyl	96	60-150	200	
Tetrachloro-meta-xylene	101	52-143	200	
······································		MR Laboratory App	roval	
Analyst: ASUNCION 19-DEC-97	2	Supervisor: SPLICH	AL 19-DEC-97	QA: MACMILLAN 05-JAN-
			FAX: (402	2) 341-5448

420 South 18th Street Omaha, NE 68102

PHONE: (402) 444-4300

CG

DEPARTMENT OF THE ARMY Corps of Engineers Missouri River Laboratory

PCBs (Laboratory Control Sample)

LCS ID: WG1493-3

Date Reported: 01/05/98

Matrix: Soil Units: ug/kg

lyst: Asuncior hod: SW-846]	540B/8081	Date Extrac Date Analyz Batch ID:		/97	MR	PCB CO	ie: PCBS-006
CAS Number	Compound	Result	True Value	Method Detection Limit	Lab Reporting Limit	t Rec	Acceptance Limits (%)
12674-11-2	Aroclor-1016	340	400	5	50	84	60-141
1104-28-2	Aroclor-1221	u	NS	5	50	NC	60-141
11141-15-5	Aroclor-1232	u u	NS	5	50	NC	60-141
53469-21-9	Aroclor-1242	ц	NS	5	50	NC	60-141
12672-29-6	Aroclor-1248	u	NS	5	50	NC	60-141
11097-69-1	 Aroclor-1254 	u	NS	5	50	NC	60-141
11096-82-5	Aroclor-1260	440	400	5	50	110	41-149

u: Below Method Detection Limit NC: Not Calculable

NS: Compound not spiked. Laboratory Comments:

			Quality Contro	1		
	Surrogate Standard	Recovery (%)	Acceptable	Spike (ug/kg)	, , , <u>, , , , , , , , , , , , , , </u>	
	Decachlorobiphenyl	92	60-150	200		
	Tetrachloro-meta-xylene	92	52-143	200		
	<u></u>		MR Laboratory App	roval		
Analyst:	ASUNCION 19-DEC-97	SUNCION 19-DEC-97 Supervisor: SPLICHAL 19-DEC-97			QA: MACMILLAN 05-JAN-	
<u> </u>			·····	FAX:	(402) 341-5448	

420 South 18th Street Omaha, NE 68102

FAX: (402) 341-5448 PHONE: (402) 444-4300

Client: US Army Corps of Engineers Date Sample Rptd: 12/19/97 Attn: Laura Percifield Date Sample Recd: 12/05/97 420 South 18th Street Continental File No: 5409 Omaha, NE 68102-2586 Continental Order No: 45970 Client P.O.: 4844, WO #1355 Lab Number: 97120574

Sample Description: 971204-H025

Date Sampled: 11/22/97 Time Sampled: 1258

Page:

8

1

Analysis	Concentration	Units	Dilution Factor	Reporting Limit
EPA SW846 8151 Non-Aqueous 2,4,5-T 2,4,5-TP (Silvex) 2,4-D 2,4-DB Dalapon Dicamba Dichloroprop Dinoseb MCPA MCPP Solids, Total	ND(0.02) ND(0.02) ND(0.02) ND(0.11) ND(0.11) ND(0.11) ND(0.11) ND(0.11) ND(11) ND(11) 92.7	mg/kg Dry Wt. mg/kg Dry Wt. % By Weight	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	0.02 0.02 0.02 0.10 0.10 0.10 0.10 10 10 2

Analysis	Date Prepared	Date <u>Analyzed</u>	QC Batch	Analyst	Analytical Method
EPA SW846-8151 Non Aque	12/10/97	12/16/97		JDL	8151
Solids, Total	Na	12/08/97		GT	160.3/SM2540 в

Laboratory analyses were performed on samples utilizing procedures published in Title 40 of the Code of Federal Regulations, Parts 136 or 141, or in EPA Publication, SW-846, 3rd edition, September, 1986 and the latest promulgated update. ND(), where noted, indicates none detected with the reporting limit in parentheses. Samples will be retained for thirty days unless otherwise notified.

CONTINENTAL ANALYTICAL SERVICES, INC.

Bahen Baker Laboratory Director

Page: 2

Client: US Army Corps of Engineers Attn: Laura Percifield 420 South 18th Street Omaha, NE 68102-2586	Date Sample Rptd: 12/19/97 Date Sample Recd: 12/05/97 Continental File No: 5409 Continental Order No: 45970 Client P.O.: 4844,WO #1355
Lab Number: 97120575	Date Sampled: 11/22/97
Sample Description: 971204-H026	Time Sampled: 1610

Dilution Reporting Analysis Concentration Units Factor Limit EPA SW846 8151 Non-Aqueous 2.4.5-T ND(0.02) mg/kg Dry Wt. 1.0 0.02 2,4,5-TP (Silvex) 0.02 ND(0.02) mg/kg Dry Wt. 1.0 2,4-D 0.02 ND(0.02) mg/kg Dry Wt. 1.0 2,4-DB 0.02 ND(0.02) mg/kg Dry Wt. 1.0 Dalapon ND(0.11) mg/kg Dry Wt. 1.0 0.10 Dicamba ND(0.11) mg/kg Dry Wt. 1.0 0.10 Dichloroprop mg/kg Dry Wt. ND(0.11)1.0 0.10 mg/kg Dry Wt. Dinoseb ND(0.11) 1.0 0.10 MCPA mg/kg Dry Wt. 10 ND(11) 1.0 MCPP mg/kg Dry Wt. ND(11) 1.0 10 Solids, Tòtal 89.6 % By Weight 1.0 2

Analysis	Date Prepared	Date <u>Analyzed</u>	QC Batch	Analyst	Analytical Method
EPA SW846-8151 Non Aque	12/10/97	12/16/97		JDL	8151
Solids, Total	N a	12/08/97		GT	160.3/SM2540 в

Laboratory analyses were performed on samples utilizing procedures published in Title 40 of the Code of Federal Regulations, Parts 136 or 141, or in EPA Publication, SW-846, 3rd edition, September, 1986 and the latest promulgated update. ND(), where noted, indicates none detected with the reporting limit in parentheses. Samples will be retained for thirty days unless otherwise notified.

CONTINENTAL ANALYTICAL SERVICES, INC.

. Bann Clifford J. Baker Laboratory pirector

Analytical Services. Inc.

QUALITY CONTROL REPORT METHOD BLANK DATA

Page: 1

3560/88

3560/88

3560/88

3560/88

Client: US Army Corps of Attn: Laura Perc 420 South 18th S Omaha, NE 68102	cifield Street	Date Sample Reported: 12/22/97 Date Sample Received: 12/05/97 Continental File No: 5409 Continental Order No: 45970 Client P.O.: 4844,WO #1355					
Lab Number: 971208BLK1							
Analysis	Concentration	Units	QC Batch	Book/Page			
Solids, Total	100.	% By Weight	971208-1	3575/57			
0	Conclusion of Lab Numbe	er 971208BLK1					
Lab Number: 971210BLK1							
Analysis	Concentration	Units	QC Batch	Book/Page			
EPA SW845-8151 Non Aqueo	ous		9 7 1 210- 1	•			
2,4,5-T	ND(0.02)	mg/kg		3560/88			
2,4,5-TP (Silvex)	ND(0.02)	mg/kg		3560/88			
2,4-D	ND(0.02)	mg/kg		3560/88			
2,4-DB	ND(0.02)	mg/kg		3560/88			
Dalapon	ND(0.10)	mg/kg		3560/88			
Dicamba	ND(0.10)	mg/kg		3560/88			

Conclusion	of	Lab	Number	9	7121	OBLK1

ND(0.10)

ND(0.10)

ND(10)

ND(10)

Quality control analyses were performed on samples at time of analysis in accordance with procedures published in Title 40 of the Code of Federal Regulations, Parts 136 or 141, or in EPA publication, SW-846, 3rd edition, Nov. 1986 and the latest promulgated update.

mg/kg

mg/kg

mg/kg

mg/kg

CONTINENTAL ANALYTICAL SERVICES, INC.

Clifford J. Baker Laboratory pirector

Dichloroprop

Dinoseb

MCPA

MCPP

Kathleen a. mytchell

Jacqueline Cairo M Quality Assurance Officer

LABORATORY CONTROL SAMPLE / LABORATORY CONTROL SAMPLE DUPLICATE DATA Page: 1

Client: US Army Corps of Engineers	Date Sample Reported: 12/22/97
Attn: Laura Percifield	Date Sample Received: 12/05/97
420 South 18th Street	Continental File No: 5409
Omaha, NE 68102-2586	Continental Order No: 45970
	Client P.O.: 4844, WO #1355

Lab Number: 971208LCS1/971208LCSD1

	0C	Spike		Accura (% Rec	-			cision ata
Analysis	Batch	Level Units	LCS	•	Avg.		RPD	Limit
Solids, Total	971208-1	80 % By	103	103	103	90-110	0.0	20
	Conclusion o	f Lab Number:	97120	BLCS1/9	712081	LCSD1		

Lab Number: 971210LCS1/971210LCSD1

	QC	Spike		Accuracy Data (% Recovery)				Precision Data	
Analysis	Batch	Level Un	its LCS	LCSD	Avg.	Limits	RPD	Limit	
EPA SW846-8151 Non	971210-1								
2,4,5-T		0.04 mg	/kg 97.0	94.9	96.0	50-150	2.2	40	
2,4,5-TP (Silvex)		0.04 mg	/kg = 102	100	101	50-150	2.0	40	
2,4-D		0.04 mg		96.4	97.0	50-150	1.2	40	
2,4-DB		0.04 mg		118	119	50-150	1.7	40	
Dalapon		0.04 mg	/kg 80.5	87.8	84.2	50-150	8.7	40	
Dicamba		0.04 mg		103	102	50-150	2.0	40	
Dichloroprop		0.04 mg		91.4	91.9	50-150	1.1	40	
Dinoseb		0.04 mg		0.0K	NA	2-150	**	40	
MCPA		4.0 mg		104	104	50-150	1.0	40	
MCPP		4.0 mg		87.7	86.4	50-150	3.0	40	

K - This analysis did not meet quality control criteria.

** - Average and/or RPD cannot be calculated.

Conclusion of Lab Number: 971210LCS1/971210LCSD1

Quality control analyses were performed on samples at time of analysis in accordance with procedures published in Title 40 of the Code of Federal Regulations, Parts 136 or 141, or in EPA publication, SW-846, 3rd edition, Nov. 1986 and the latest promulgated update.

CONTINENTAL ANALYTICAL SERVICES, INC.

DNL Baker 6rd/J Director atdry

Kathleen a mitchell

Jacqueline Cairo 7 Quality Assurance Officer

C.11

.

QUALITY CONTROL REPORT SAMPLE SURROGATE DATA

Page:

C.12

1

Client: US Army Corps of Engineers	Date Sample Reported: 12/22/97
Attn: Laura Percifield	Date Sample Received: 12/05/97
420 South 18th Street	Continental File No: 5409
Omaha, NE 68102-2586	Continental Order No: 45970
	Client P.O.: 4844, WO #1355

Lab Number: 97120574 Sample Description: 971204-H025

Surrogate	Date <u>Prepared</u>	Date <u>Analyzed</u>	* <u>Recovery</u>	Spike <u>Level</u>	Units	Acceptable % Recovery Range
EPA SW846 8151 Non-Aqueou 2,4-Dichlorophenylaceti	as (Herbici 12/10/97	.des) 12/16/97	89.7	0.10	mg/kg	50.0 - 150
Lab Number: 97120575 Sample Description: 97120	4-H026					
Surrogate	Date Prepared	Date <u>Analyzed</u>	۔ Recovery	Spike Level	Units	Acceptable % Recovery Range
EPA SW846 8151 Non-Aqueou 2,4-Dichlorophenylaceti	s (Herbici) 12/10/97	des) 12/16/97	70.0	0.10	mg/kg	50.0 - 1 50

Quality control analyses were performed on samples at time of analysis in accordance with procedures published in Title 40 of the Code of Federal Regulations, Parts 136 or 141, or in EPA publication, SW-846, 3rd edition, Nov. 1986 and the latest promulgated update.

CONTINENTAL ANALYTICAL SERVICES, INC.

J. Baker brd J. Baker Laboratory Director

Kathleen a. mitchell

Jacqueline Cairo Quality Assurance Officer

QUALITY CONTROL REPORT METHOD BLANK SURROGATE DATA

Page: 1

Client: US Army Corps of Engineers	Date Sample Reported: 12/22/97
Attn: Laura Percifield	Date Sample Received: 12/05/97
420 South 18th Street	Continental File No: 5409
Omaha, NE 68102-2586	Continental Order No: 45970
	Client P.C.: 4844, WO #1355

Lab Number: 971210BLK1

Surrogate	Date <u>Prepared</u>	Date Analyzed	% <u>Recovery</u>	Spike <u>Level</u>	Units	Acceptable % Recovery Range
EPA SW846 8151 Non-Aqueou 2,4-Dichlorophenylaceti	s (Herbici 12/10/97	des) 12/16/97	95.2	0.10	mg/kg	50.0 - 1 50
Conclusion of Lab Number: 971210BLK1						

Quality control analyses were performed on samples at time of analysis in accordance with procedures published in Title 40 of the Code of Federal Regulations, Parts 136 or 141, or in EPA publication, SW-846, 3rd edition, Nov. 1986 and the latest promulgated update.

CONTINENTAL ANALYTICAL SERVICES, INC.

Bake Baker brd 🖊 Laboratory Director

Kathleen a . mitchell -fr

Jacqueline Cairo Quality Assurance Officer

QUALITY CONTROL REPORT LCS/LCSD SURROGATE DATA

Omaha, NE 68102-2586	Date Sample Reported: 12/22/97 Date Sample Received: 12/05/97 Continental File No: 5409 Continental Order No: 45970 Client P.O.: 4844,WO #1355
	CITEIL F.O.: 4844, NO #1333

Lab Number: 971210LCS1/971210LCSD1

Surrogate	Date Prepared	Date Analyzed	Units	Spike <u>Level</u>	% Recovery LCS LCSD	Acceptable % Recovery Range
EPA SW846 8151 Non-Aqueou 2,4-Dichlorophenylaceti			mg/kg	0.10	95.4 99.2	50.0 - 150

Conclusion of Lab Number: 971210LCS1/971210LCSD1

Quality control analyses were performed on samples at time of analysis in accordance with procedures published in Title 40 of the Code of Federal Regulations, Parts 136 or 141, or in EPA publication, SW-846, 3rd edition, Nov. 1986 and the latest promulgated update.

CONTINENTAL ANALYTICAL SERVICES, INC.

Kathleen a mitchell

Jacqueline Cairo Quality Assurance Officer

Danh Cliff Ird J Baker Laboratory Director

14

1

Page:

IRDA REENDALE POAR + Record Kauses 67401 CCP

QUALITY CONTROL REPORT MS/MSD SURROGATE DATA

Page: 1

^15

Client: US Army Corps of Engineers	Date Sample Reported: 12/22/97
Attn: Laura Percifield	Date Sample Received: 12/05/97
420 South 18th Street	Continental File No: 5409
Omaha, NE 68102-2586	Continental Order No: 45970
	Client P.O.: 4844, WO #1355

Lab Number: 97120574MS/97120574MSD Sample Description: 971204-H025

Surrogate	Date <u>Prepared</u>	Date <u>Analyzed</u>	Units	÷.	<pre>% Recovery MS MSD</pre>	Acceptable % Recovery Range
EPA SW846 8151 Non-Aqueou 2,4-Dichlorophenylaceti			mg/kg	0.10	84.9 F	50.0 - 150

F - MS and/or MSD sample data are not available due to insufficient sample volume.

Conclusion of Lab Number: 97120574MS/97120574MSD

Quality control analyses were performed on samples at time of analysis in accordance with procedures published in Title 40 of the Code of Federal Regulations, Parts 136 or 141, or in EPA publication, SW-846, 3rd edition, Nov. 1986 and the latest promulgated update.

CONTINENTAL ANALYTICAL SERVICES, INC.

ha J. Baker Cli Laboratory Director

Kathlen a mitchell

Jacqueline Cairo " Quality Assurance Officer

Analytical Services. Inc.

QUALITY CONTROL REPORT MATRIX SPIKE / MATRIX SPIKE DUPLICATE DATA Page:

Client: US Army Corps of Engineers	Date Sample Reported: 12/22/97
Attn:Laura Percifield	Date Sample Received: 12/05/97
420 South 18th Street	Continental File No: 5409
Omaha, NE 68102-2586	Continental Order No: 45970
	Client P.O.: 4844.WO #1355

Matrix Spike/Matrix Spike Duplicate Data from Sample Batch:

	QC	Spike		Accura (% Rec				cision ata	Labora
Analysis	Batch	Level Units	MS	MSD	Avg.	Limits	RPD	Limit	Number
EPA SW846-8151 Non Aq	971210-1								971205 [°]
2,4-D		0.04 mg/kg	90.5	F	* *	50-150	**	40	
2,4-DB		0.04 mg/kg	109	F	* *	50-150	**	40	
2,4,5-T		0.04 mg/kg	103	F	**	50-150	**	40	
2,4,5-TP (Silvex)		0.04 mg/kg	96.4	F	**	50-150	**	40	
Dalapon		0.04 mg/kg	75.7	F	**	50-150	**	40	
Dicamba		0.04 mg/kg	99.0	2	**	50-150	**	40	
Dichloroprop		0.04 mg/kg	87.1	F	**	50-150	**	40	
Dinoseb		0.04 mg/kg	16.8	F	**	2-150	**	40	
MCPA		4.0 mg/kg	123	F	**	50-150	**	40	
MCPP		4.0 mg/kg	99.1	F	**	50-150	**	40	
Solids, Total	971208-1	0.00 % By	91.0J	-	91.1	#	0.2	#	9712058-

J - MS/MSD cannot be performed for this analysis. Value shown is the result of a duplicate analysis of the sample.

F - MS and/or MSD sample data are not available due to insufficient sample volume.

- Accuracy control limits are not applicable to duplicate analyses.

** - Average and/or RPD cannot be calculated.

+ - The MS/MSD sample analyses were performed on this sample from this Continental order numt r

Quality control analyses were performed on samples at time of analysis in accordance with procedures published in Title 40 of the Code of Federal Regulations, Parts 136 or 141, or in EPA publication, SW-846, 3rd edition, Nov. 1986 and the latest promulgated update.

CONTINENTAL ANALYTICAL SERVICES, INC.

food f. Bahh Lifford J. Baker Director Labor atory

Kathlen a. mitchell

Jacqueline Cairo Quality Assurance Officer

C.16

1

FAMIS No: 4844	Explosives	
	- Env Investigation at 5 Sites	
Customer Sample No: MRD Lab Sample No:		
	25 Nov 97Sample Container:04 Dec 97Dilution Factor:10 Dec 97Concentration Units:	2-4 oz glass 1.0
Analysis Method: Analyst:		9712111122 9712111122A

CAS Number	Compound Name	Result	Reporting Limits
CAS Number 2691-41-0 121-82-4 99-35-4 99-65-0 479-45-8 118-96-7 121-14-2 606-20-2 355-72-78-2 1946-51-0 618-87-1	HMX RDX 1,3,5-TNB 1,3-DNB Tetryl 2,4,6-TNT 2,4-DNT 2,6-DNT 2-Am-4,6-DNT 4-Am-2,6-DNT 3,5-Dinitroaniline	Result u u u 1.88 0.16 J u 0.20 J 0.17 J u	2.20 1.00 0.25 0.25 0.65 0.25 0.25 0.25 0.26 0.25
98-95-3 88-72-2 99-08-1 99-99-0	Nitrobenzene 2-Nitrotoluene 3-Nitrotoluene 4-Nitrotoluene	u u u u	0.26 0.25 0.25 0.25
22 22 0	* MILLOCOTHEUE	u	0.25

u:

Below Reporting Limit Estimated level was below the detection limit. J:

Surrogate Standard	Recovery (%)	Acceptable	Spike(mg/kg)
3,4-Dinitrotoluene	92	75-125	1.25

Laboratory Comments:

Unless marked by "C," positive results were confirmed on a secondary column.

Approved By: Dangles B. Jaggant Date: 12-30-97

C 18

Explosives

FAMIS Number: 4844 Project Name: Ravenna AAP - Env Investigation at 5 Sites QC Identifier: Method Blank

Sample Description: Soil Method: EPA Method 8330 Analyst: S. Schnitker

Date Extracted: 10 Dec 97 Date Analyzed: 11 Dec 97 Batch: 9712111122 Sequence: 9712111122A

RESULTS (mg/kg)

CAS Number	Compound Name	Result	Det Limit
2591-41-0	IMX	u	2.20
121-82-4	RDX	u	1.00
99-35-4	1,3,5-TNB	u	0.25
99-65-0	1,3-DNB	u	0.25
479-45-8	Tetryl	u	0.65
118-96-7	2,4,6-TNT	u	0.25
121-14-2	2,4-DNT	u	0.25
606-20-2	2,6-DNT	u	0.26
355-72-78-2	2-Am-4,6-DNT	u	0.25
1946-51-0	4-Am-2,6-DNT	u	0.26
618-87-1	3,5-Dinitroaniline	u	0.65
98-95-3	Nitrobenzene	u	0.26
88-72-2	2-Nitrotoluene	u	0.25
99-08-1	3-Nitrotoluene	u	0.25
99-9 9- 0	4-Nitrotoluene	u	0.25

u: Below Detection Limit

Surrogate Standard	Recovery (%)	Acceptable	Spike(mg/kg)
3,4-Dinitrotoluene	93	75-125	1.25
			· · · · · · · · · · · · · · · · · · ·

Laboratory Comments:

Approved By: l l

Acnylos B. Jaggart Date: 12-30-97

Explosives

FAMIS Number: 4844 Project Name: Ravenna AAP - Env Investigation at 5 Sites QC Identifier: Laboratory Matrix Duplicate

04 Dec 97 10 Dec 97 11 Dec 97
• ·
LI DEC 97
9712111122
9712111122A

RESULTS (mg/kg)

Run #1		Run	#2		RPD(*)	Acceptable RPD	Detection Limit
u u		u u				25 25	2.20
u u		u u				25 25	0.25 0.25
1.88 0.16	J			J	40 5 12	25	0.65
u u		u		-		25	0.25
0.2 0.17 u	J J	0.: 0.:		J J	13 4	25 25	0.25 0.26 0.65
	u u u 1.88 0.16 u u 0.2	u u u 1.88 0.16 J u u 0.2 J 0.17 J	u u u u u u u u 1.88 1. 0.16 J 0. u u u u 0.2 J 0. 0.17 J 0.	u u u u u u u u 1.88 1.26 0.16 J 0.14 u u u u 0.2 J 0.17 0.17 J 0.16	u u u u u u u u u. 1.88 1.26 0.16 J 0.14 J u u u u u. 0.2 J 0.17 J 0.17 J 0.16 J	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Run #1 Run #2 RPD(*) RPD u u 25 1.88 1.26 40 E 0.16 J 0.14 J u u 25 u u 25 0.16 J 0.17 J 0.2 J 0.17 J 13 0.17 J 13 25 0.17 J 0.16 J 4

u: Below Detection Limit

*: Relative Percent Difference calculated from both sample and duplicate sample results. When a result is below the detection limit, RPD is not reported.

J: Estimated level was below the detection limit.

Surrogate Standard	Recovery Run #1	(%) Run #2	Acceptable	Spike(mg/kg)
3,4-Dinitrotoluene	92	92	75-125	1.25

Laboratory Comments:

Unless marked by "C," positive results were confirmed on a secondary column E: RPO was above the acceptore limits for tarryl five to a matrix interference.

Approved By: Douglas B. Jaggast 1.8.

Date: 12-30-97

19

Explosives

FAMIS Number: 4844 Project Name: Ravenna AAP - Env Investigation at 5 Sites QC Identifier: Matrix Spike, Matrix Spike Duplicate

Sample Description:		Date Dried:	04 Dec 97
MRD Lab Sample No.:		Date Extracted:	10 Dec 97
Client Sample No.:		Date Analyzed:	11 Dec 97
	EPA Method 8330	Batch:	9712111122
Analyst:	S. Schnitker	Sequence:	9712111122.4

RESULTS (mg/kg)

Analyte	Sample Result	Spike Added	Conc MS	%Rec MS	QC Limits	Conc MSD	%Rec MSD	RPD	QC Limi ;
HMX	u	2.50	2.25	90	75-125	2.20	88	2	25
RDX	u	2.50	2.17	87	75-125	2.12	85	3	25
TNB	u	1.25	1.21	97	75-125	1.19	95	2	25
DNB	u	1.25	1.19	95	75-125	1.17	93	2	25
Tetryl	1.88	2.50	3.85	78	60-110	3.08	48*	22	25
TNT	0.16 0	J 1.25	1.27	89	75-125	1.22	84	4	25
2,4-DNT	u	1.25	1.19	95	75-125	1.16	93	3	25

u: Below Detection Limit

MS: Matrix Spike MSD: Matrix Spike Duplicate

%Rec: Percent of the spike recovered from the matrix

*: Recovery percentage out of acceptable quality control limits.

RPD: Relative Percent Difference;

 $RPD = ((|MS - MSD|)/((MS + MSD)/2)) \times 100$

J: Estimated level was below the detection limit.

Surrogate Standard	Recov MS	very (%) MSD	Acceptable	Spike(mg/kg)
3,4-Dinitrotoluene	93	92	75-125	1.25

Laboratory Comments:

Approved By: Demylas B. Jaggart

12-20-9 Date:

CZI

Explosives

FAMIS Number: 4844 **Project Name:** Ravenna AAP - Env Investigation at 5 Sites QC Identifier: Laboratory Control Sample (LCS)

Sample Description:	Soil	Date Extracted:	10 Dec 97
Method:	EPA Method 8330	Date Analyzed:	11 Dec 97
Analyst:	S. Schnitker	Batch:	9712111122
		Sequence:	9712111122A

RESULTS (mg/kg)						
Analyte	True Value	Result	%Rec LCS	QC Limits		
HMX	2.50	2.19	88	60-110		
RDX	2.50	2.04	82	60-110		
TNB	1.25	1.17	94	60-110		
DNB	1.25	1.16	93	60-110		
Tetryl	2.50	2.41	96	60-110		
TNT	1.25	1.09	87	60-110		
2,4-DNT	1.25	1.17	94	60-110		

LCS: Laboratory Control Sample %Rec: Percent of the spike recovered from the matrix

Surrogate Standard	Recovery (%)	Acceptable	Spike(mg/kg)
3,4-Dinitrotoluene	90	75-125	1.25

Laboratory Comments:

Douglas B. Jaggart Date: 12-30-97 Approved By: J.S.

FAMIS Number: 4844 Project Name: Ravenna AAP - Env Investigation at 5 Sites					
Date Sam Date Sample	escription: Soil ple Taken: 19 N Recieved: 25 N iner Used: 1-4 c	lov 97 Cust lov 97	-	OD1077 971204-H024	
Date Extracted:22 Dec 97Date Analyzed:29 Dec 97Extraction Method:SonicationAnalysis Procedure:HPLC-UVAnalyst:S. SchnitkerBatch Number:NGQ29DEC					
	Analysis	Sample Result	Detection Limit		
	Nitroglycerine Nitroguanidine	u u	0.50 2.50		
	Units	mg/kg	mg/kg		
Surrogat RDX	e Recovery	% Recov 98	ery Spike 5.04	Level mg/kg	

u = Below Detection Limits

Approved By: Douglas B. Jaggant Date: 1-8-98 S.S.

FAMIS Number: 4844 Project Name: Ravenna AAP - Env Investigation at 5 Sites QC Identifier: Method Blank

Date Extracted: 22 Dec 97 Date Analyzed: 29 Dec 97 Extraction Method: Sonication Analysis Procedure: HPLC-UV Analyst: S. Schnitker Batch Number: NGQ29DEC

Analysis	Blank Result	Detection Limit
Nitroglycerine	u	0.50
Nitroguanidine	u	2.50
Units	mg/kg	mg/kg
Surrogate Recovery	% Recovery	Spike Level
RDX	95	5.04 mg/kg

u = Below Detection Limits

Approved By: Wanglas B. Jaggant Date: 1-8-98

FAMIS Number: 4844 Project Name: Ravenna AAP - Env Investigation at 5 Sites QC Identifier: Laboratory Duplicate						
Sample Description:SoilDate Sample Taken:19 Nov 97Customer Sample No:OD1077Date Sample Recieved:25 Nov 97Lab Sample No:971204-H024Sample Container Used:1-4 oz.glass						
Date Extracted:22 Dec 97Date Analyzed:29 Dec 97Extraction Method:SonicationAnalysis Procedure:HPLC-UVAnalyst:S. SchnitkerBatch Number:NGQ29DEC						
Analysis	Sample Run # 1	e Results Run # 2	RPD	Acceptable RPD	Detection Limit	
Nitroglycerine Nitroguanidine	u u	u u	NC NC	25 25	0.50 2.50	
Units	mg/kg	mg/kg	8	8	mg/kg	
Surrogate Ro RDX	ecovery	Run # 1 98	% Recovery Run # 2 98	Spike 5.04	Level mg/kg	

NC = Not Calculated RPD = Relative Percent Difference $RPD = [Run 1 - Run 2] \times 100 / [(Run 1 + Run 2) / 2]$

u = Below Detection Limits

Approved By: Dauglas B. Jaggart Date: 1-8-98

								C	25
DEPARTMENT OF THE ARMY Missouri River Division, Corps of Engineers Division Laboratory Omaha, Nebraska									
FAMIS Number: Project Name: QC Identifier:	Ravenna	AAP - Spike/M	Env Inve atrix Sp	estigat pike Du	ion at plicate	5 Sit	es		
Sample Desc Date Sampl Date Sample R Sample Contain	e Taken: ecieved:	: 19 No ⁻ : 25 No ⁻	v 97	Cus	stomer S Lab S			OD1077 971204-H	024
Date Extra Extraction Me Anal	thod: S	22 Dec 97 Sonicatio Schnitke	on	2	nalysis	Proc	lyzed: edure: mber:	HPLC-U	v
	Sample Result	Spike Added	Conc MS	Rec MS	Conc MSD	Rec MSD	RPD	QC Lim %Rec	its RPD
Nitroglycerine Nitroguanidine	u u	10.27 8.05	9.36 7.88	91 98	9.53 9.05	93 112		75-125 75-125	25 25
Units		mg/kg	mg/kg	ક	mg/kg	¥	90	96	
Surrogate I RDX	Recovery	Run	# 1 98	% Reco Run # 99	2	<u></u>	Spike	Level mg/kg	
Rec = Recove u = Below		on Limit	S						
MSD = Matrix RPD = Relati	ve Perc	Duplicat ent Diff 100] /	erence	+ MS	ם) / נ	2]			
Approved By: $\underbrace{\bigcirc}{\textit{S. S.}}$	inglas	B. Jac	Igart	Dat	e: <u>\~</u> 8	3-98	<u>. </u>		

C 26

FAMIS Number: 4844 Project Name: Ravenna AAP - Env Investigation at 5 Sites QC Identifier: Laboratory Control Sample Sample Description: Soil Date Extracted: 22 Dec 97 Date Analyzed: 29 Dec 97 Extraction Method: Sonication Analysis Procedure: HPLC-UV Analyst: S. Schnitker Batch Number: NGQ29DEC Anal Blank Spike Conc Rec QC Limits Res Added LCS LCS %Rec ----_____ --------_ _ _ _ _ _ _ _ . Nitroglycerine u 10.27 9.35 91 75-125 Nitroquanidine u 8.05 8.50 106 75-125 Units mg/kg mg/kg mg/kg 웅 8 Surrogate Recovery % Recovery Spike Level RDX 93 5.04 mg/kg

Anal = Analysis Res = Result Rec = Recovery u = Below Detection Limits

Approved By: Dunglas B. Jaggart Date: 1-8-98

Nitrocellulose

こ ス -

FAMIS No: 4844 Project: Ravenna AAP - Env Investigation at 5 Sites Customer Sample No.: OD1077 MRD Lab Sample No.: 971204-H024 Date Sample Taken: 19 Nov 97 Sample Description: Soil Date Sample Received: 25 Nov 97 Sample Container: 2-4 oz glass Date Dried: 04 Dec 97 Dilution Factor: 1.0 Date Extracted: 10 Dec 97 Concentration Units: mg/kg Date Analyzed: 07 Jan 98 Sample weight: 10.00g Analysis Method: Hydrolysis/Ion Chromatography Batch: N'C29Dec Analyst: S. Schnitker Sequence: N'C07Jan RESULTS (mg/kg)

Analysis for	Result	Detection Limits
Nitrocellulose	1.4 B	0.5

B: Nitrocellulose was detected at 0.8 mg/kg in the method blank associated with this sample.

Approved By: Douglas B. Jaggart Date: 1-21-98

Nitrocellulose

FAMIS No: 4844 Project: Ravenna AAP - Env Investigation at 5 Sites QC Identifier: Method Blank					
Sample Description: Soil Sample analyzed for: Nitrocellulose Method: Hydrolysis/Ion Chromatography Analyst: S. Schnitker					
Date Extracted: Date Analyzed:		Batch Sequence			
RESULTS (mg/kg)					
Analysis for		Result	Detection Limits		
Nitrocellulo	se	0.8	0.5		

u: Below Detection Limit

: /

1.

Approved By: Donglas B. Jaggast Date: 1-21-98

DEPARTMENT OF THE ARMY Missouri River Division, Corps of Engineers Division Laboratory Omaha, Nebraska Nitrocellulose Project: Ravenna AAP - Env Investigation at 5 Sites QC Identifier: Sample Duplicate Customer Sample No.: OD1077 MRD Lab Sample No.: 971204-H024

C24

Date Sample Taken:	19 Nov 97	Sample Description:	Soil
Date Sample Received:	25 Nov 97	Sample Container:	2-4 oz glass
Date Dried:	04 Dec 97	Dilution Factor:	1.0
Date Extracted:	10 Dec 97	Concentration Units:	mg/kg
Date Analyzed:	07 Jan 98	Sample weight:	10.00g

Analysis Method: Hydrolysis/Ion Chromatography Batch: N'C29Dec Analyst: S. Schnitker Sequence: N'C07Jan

LIMS#: 4844

Analysis	Anal Res #1	Anal Res #2	RPD	QC Limit RPD	
Nitrocellulose	1.4	1.0	33 *	25	
Units	mg/kg	mg/kg	25	8	
* Both results	are very near	the detection	limit ca	using a high	RPD.

Anal = Analysis Res = Result u = Below Detection Limits Detection limits may have been affected by low recoveries.

Approved By: Donalas B. Jaggant Date: 1-21-98

DEPARTMENT OF THE ARMY Missouri River Division, Corps of Engineers Division Laboratory Omaha, Nebraska Nitrocellulose LIMS#: 4844 Project: Ravenna AAP - Env Investigation at 5 Sites QC Identifier: Matrix Spike/Matrix Spike Duplicate Customer Sample No.: OD1077 MRD Lab Sample No.: 971204-H024 Date Sample Taken: 19 Nov 97 Sample Description: Soil Date Sample Received: 25 Nov 97 Sample Container: 2-4 oz glass Date Dried: 04 Dec 97 Dilution Factor: 1.0 Date Extracted: 10 Dec 97 Concentration Units: mg/kg Date Analyzed: 07 Jan 98 Sample weight: 10.00g Date Extracted: 29 Dec 97 Date Analyzed: 07 Jan 98 Extraction Method: SW-846 Method 8330M Analysis Procedure: HPLC-UV Analyst: S. Schnitker Batch No.: NGA23JAN Analysis Sample Spike Conc Rec Conc Rec RPD QC Limits Result Added MS MS MSD MSD %Rec RPD - - - -Nitrocellulose 1.40 3.08 2.90 50 3.03 53 4 50-120 25 Units mg/kg mg/kg mg/kg ક ş ÷ જ mg/kg 8

Anal = Analysis Res = Result Rec = Recovery u = Below Detection Limits MS = Matrix Spike MSD = Matrix Spike Duplicate

Approved By: Douglus B. Jaggart Date: 1-21-98 J.L.

C31

DEPARTMENT OF THE ARMY Missouri River Division, Corps of Engineers Division Laboratory Omaha, Nebraska

Nitrocellulose

	nna AAP - Env i ratory Control		at 5 Sites	
Sample Description: Sample analyzed for: Method: Analyst:		se on Chromatogra	phy	-
Date Extracted: Date Analyzed:		Batch: Sequence:	N'C29Dec N'C07Jan	
Analyte	Spike Added	Conc MBS	%Rec MBS 	QC Limits
Nitrocellulose	3.07 mg/kg	2.89 mg/kg	94 %	50-120 %

MBS: Method Blank Spike %Rec: Percent of the spike recovered from the method blank

Approved By: Donalas B. Jaggart Date: 1-21-98

C32

=

DEPARTMENT OF THE ARMY Missouri River Division, Corps of Engineers Division Laboratory Omaha, Nebraska

Thermo Jarrell Ash ICAP Metals

FAMIS Number: 4844
Project Name: Ravenna AAP - Env Investigation at 5 SitesSample Description: SoilDate Sample Taken: 20 Nov 97
Date Sample Taken: 20 Nov 97
Date Sample Received: 25 Nov 97
Client Sample No.: 0D1141MRD Lab Sample No.: 971204-H027Date Sample Received: 25 Nov 97
Date Digested: 17 Dec 97
Date Analyzed: 06 Jan 98
Batch: 9801060826

 			Sequence:	9801061432
	RESULTS	(mg/kg) Dry	Weight	<u> </u>
Analyte	Result	Method Det Limit	Laboratory Reporting Limit	
Al Sb	10700	4	20	
As Ba	u 16.4 53.1	0.6	3.0 3.0	
Be Cd	0.61 u	0.06 0.06 0.08	0.30 0.30 0.40	
Ca Cr	4280 15.7	20 0.4	100 2.0	
Co	10.3	0.6	3.0	

0.4

0.4

0.06

0.4

0.6

0.4

20

1

0.8

0.4

8

8

20

Percent Solids: 86.3

u: Below Method Detection Limit (MDL)

Cu

Fe

Pb

Mg

Mn

Ni

Κ

Se

Ag

Na

Tl

V

Zn

57.4

16.9

28100

3400

1580

376.0

u

u

u

18.5

92.3

57 J

23.2

J: Estimated value, concentration is below limit of quantitation

Laboratory Comments:

Approved By:

Tel Hamos JEB

Date: <u>/13/48</u>

2.0

2.0

0.30

2.0

3.0

2.0

4.0

2.0

40

40

100

100

5

Mercury by AACV

FAMIS Number: 4844 Project Name: Ravenna AAP - Env Investigation at 5 Sites Sample Description: Soil Date Sample Taken: 20 Nov 97 MRD Lab Sample No .: 971204-H027 Date Sample Received: 25 Nov 97 Client Sample No.: 0D1141 Date Digested: 18 Dec 97 Method: EPA Method 7471 Date Analyzed: 19 Dec 97 Dilution Factor: 1.0 Analyst: D. Sanders Batch: 9712191139E RESULTS (mg/kg)

Analyte	Result	Rep Limit
Hg	0.12	0.01

u: Below Detection Limit

DESA

Laboratory Comments: Method Detection Limit = 0.01 ug/L or 0.002 mg/kg

From . N. Arera Approved By:

C33

Thermo Jarrell Ash ICAP Metals

FAMIS Number: 4844 Project Name: Ravenna AAP - Env Investigation at 5 Sites

Sample Description:	Soil	Date Sample Taken:	
MRD Lab Sample No.:	971204-H028	Date Sample Received:	25 Nov 97
Client Sample No.:		Date Digested:	17 Dec 97
	EPA Method 3050/6010	Date Analyzed:	06 Jan 98
Analyst:	T. Shannon	Batch:	9801060826
•		Sequence:	9801061432

RESULTS (mg/kg) Dry Weight

Analyte	Result	Method Det Limit	Laboratory Reporting Limit
	10000		20
Al	12900	4	3.0
Sb	u	0.6	
As	18.9	0.6	3.0
Ba	71.0	0.06	0.30
Be	0.72	0.06	0.30
Cd	u	0.08	0.40
Ca	4040	20	100
Cr	19.7	0.4	2.0
Co	12.3	0.6	3.0
Cu	47.6	0.4	2.0
Fe	31900	8	40
Pb	16.4	0.4	2.0
Mg	4490	8	40
Mn	363.0	0.06	0.30
Ni	31.1	0.4	2.0
K	1910	20	100
Se	u	0.6	3.0
Ag	u	0.4	2.0
Na	70 J	20	100
Tl	u	1	5
v	20.3	0.8	4.0
Zn	78.3	0.4	2.0

Percent Solids: 85.8

u: Below Method Detection Limit (MDL)

J: Estimated value, concentration is below limit of quantitation

Laboratory Comments: Ted Hamos ____ Approved By: TR'8

Mercury by AACV

FAMIS Number: 4844 Project Name: Ravenna AAP - Env Investigation at 5 Sites

Sample Description:SoilDate Sample Taken:20 Nov 97MRD Lab Sample No.:971204-H028Date Sample Received:25 Nov 97Client Sample No.:OD1069Date Digested:18 Dec 97Method:EPA Method 7471Date Analyzed:19 Dec 97Analyst:D. SandersDilution Factor:1.0Batch:9712191139B

	RESULTS (mg/kg)		
Ar	nalyte	Result	Rep Limit
	Нд	0.03	0.01

u: Below Detection Limit

Laboratory Comments: Method Detection Limit = 0.01 ug/L or 0.002 mg/kg

From . N. Ann Approved By: DESA

Date: _____.8.58

30

Thermo Jarrell Ash ICAP Metals

FAMIS Number: 4844 Project Name: Ravenna AAP - Env Investigation at 5 Sites

Sample Description:	Soil	Date Sample Taken:	20 Nov 97
MRD Lab Sample No.:	971204-H029	Date Sample Received:	25 Nov 97
Client Sample No.:	OD1105	Date Digested:	17 Dec 97
Method:	EPA Method 3050/6010	Date Analyzed:	06 Jan 98
Analyst:	T. Shannon	Batch:	9801060826
		Sequence:	9801061432

RESULTS (mg/kg) Dry Weight

		5
Result	Method Det Limit	Laboratory Reporting Limit
9670 u	4 0.6	20 3.0
15.2 59.7	0.6 0.06	3.0 0.30
0.54	0.06	0.30 0.40
8120	20	100 2.0
10.1	0.6	3.0 2.0
26200	8	40 2.0
4570	8	40 0.30
23.8	0.4	2.0 100
u	0.6	3.0 2.0
75 J u	20 1	100
15.4 171.0	0.8 0.4	4.0 2.0
	9670 u 15.2 59.7 0.54 2.25 8120 14.8 10.1 98.7 26200 25.4 4570 401.0 23.8 1510 u u 75 J u 15.4	Result Det Limit 9670 4 u 0.6 15.2 0.6 59.7 0.06 0.54 0.06 2.25 0.08 8120 20 14.8 0.4 10.1 0.6 98.7 0.4 26200 8 25.4 0.4 4570 8 401.0 0.06 23.8 0.4 1510 20 u 0.6 u 0.6 u 0.4 75 J u 1 15.4 0.8

Percent Solids: 88.0

u: Below Method Detection Limit (MDL)

J: Estimated value, concentration is below limit of quantitation

Laboratory Comments:

Approved By:

Ted Shannon

Mercury by AACV

FAMIS Number: 4844 Project Name: Ravenna AAP - Env Investigation at 5 Sites Sample Description: Soil Date Sample Taken: 20 Nov 97

MRD Lab Sample No.:971204-H029Date Sample Received:25 Nov 97Client Sample No.:OD1105Date Digested:18 Dec 97Method:EPA Method 7471Date Analyzed:19 Dec 97Analyst:D. SandersDilution Factor:2.0Batch:9712191139B

Analyte	Result	Rep Limit
Hg	1.08	0.02

u: Below Detection Limit

Laboratory Comments: Method Detection Limit = 0.01 ug/L or 0.002 mg/kg

Frem. N. Arre-Approved By:

Date: 1.8.98

DESA

Thermo Jarrell Ash ICAP Metals

FAMIS Number: 4844 Project Name: Ravenna AAP - Env Investigation at 5 Sites

Sample Description:	Soil	Date Sample Taken:	20 Nov 97
MRD Lab Sample No.:	971204-H030	Date Sample Received:	25 Nov 97
Client Sample No.:	OD1127	Date Digested:	17 Dec 97
	EPA Method 3050/6010	Date Analyzed:	06 Jan 98
Analyst:	T. Shannon	Batch:	9801060826
-		Sequence:	9801061432

RESULTS (mg/kg) Dry Weight

Analyte	Result	Method Det Limit	Laboratory Reporting Limit
Al	5330	A	20
Sb		4	
	u 16 2	0.6	3.0
As	15.7	• 0.6	3.0
Ba	30.6	0.06	0.30
Be	0.26 J	0.06	0.30
Cd	u	0.08	0.40
Ca	3740	20	100
Cr	10.5	0.4	2.0
Co	6.8	0.6	3.0
Cu	387.0	0.4	2.0
Fe	19000	8	40
Pb	20.6	0.4	2.0
Mg	2550	8	40
Mn	258.0	0.06	0.30
Ni	16.7	0.4	2.0
К	957	20	100
Se	u	0.6	3.0
Ag	u	0.4	2.0
Na	42 J	20	100
Tl	u	1	5
v	9.9	0.8	4.0
Zn	114.0	0.4	2.0

Percent Solids: 89.7

u: Below Method Detection Limit (MDL)

J: Estimated value, concentration is below limit of quantitation

Laboratory Comments:

Approved By: JKB

Ted thannon _____

____ Date: <u>__//3/98_</u>__

Mercury by AACV

FAMIS Number: 4844 Project Name: Ravenna AAP - Env Investigation at 5 Sites

Sample Description:		Date Sample Taken: 20 Nov 97
MRD Lab Sample No.:	971204-H030	Date Sample Received: 25 Nov 97
Client Sample No.:	OD1127	Date Digested: 18 Dec 97
Method:	EPA Method 7471	Date Analyzed: 19 Dec 97
Analyst:	D. Sanders	Dilution Factor: 1.0
		Batch: 9712191139B

RESULTS (mg/kg)

Analyte	Result	Rep Limit
Hg	0.02	0.01

u: Below Detection Limit

Laboratory Comments: Method Detection Limit = 0.01 ug/L or 0.002 mg/kg

Frem. N. Am-Approved By:

Date: <u>1.8.98</u>

PESA

C40

Thermo Jarrell Ash ICAP Metals

FAMIS Number: 4844 Project Name: Ravenna AAP - Env Investigation at 5 Sites

Sample Description: So		Date Sample Taken:	20 Nov 97
MRD Lab Sample No.: 97	1204-H031	Date Sample Received:	
Client Sample No.: OD		Date Digested:	
	A Method 3050/6010	Date Analyzed:	06 J an 98
Analyst: T.	Shannon	Batch:	9801060826
		Sequence:	9801061432

RESULTS (mg/kg) Dry Weight

Method Laboratory Analyte Result Det Limit Reporting Limit Al 7890 4 20 Sb 0.6 3.0 u As 14.2 `0.6 3.0 Ba 48.3 0.06 0.30 Be 0.43 0.06 0.30 Cd 5.82 0.08 0.40 Ca 6470 20 100 Cr 12.8 0.4 2.0 Co 8.7 0.6 3.0 Cu 54.8 0.4 2.0 Fe 23400 8 40 Pb 22.8 0.4 2.0 Mg 3560 8 40 Mn 384.0 0.06 0.30 Ni 2.0 20.1 0.4 К 1330 20 100 0.6 0.4 Se 3.0 2.0 u Ag u Na 20 63 J 100 1 Tl u 5 V 13.4 0.8 4.0 Zn 142.0 0.4 2.0

Percent Solids: 88.4

u: Below Method Detection Limit (MDL)

J: Estimated value, concentration is below limit of quantitation

Laboratory Comments:	
Approved By: Jed Ha	Date: 1/3/98

Mercury by AACV

 FAMIS Number: 4844

 Project Name: Ravenna AAP - Env Investigation at 5 Sites

 Sample Description: Soil
 Date Sample Taken: 20 Nov 97

 MRD Lab Sample No.: 971204-H031
 Date Sample Received: 25 Nov 97

 Client Sample No.: 0D1147
 Date Digested: 18 Dec 97

 Method: EPA Method 7471
 Date Analyzed: 19 Dec 97

 Analyst: D. Sanders
 Dilution Factor: 1.0

 RESULTS (mg/kg)
 RESULTS (mg/kg)

Analyte	Result	Rep Limit
Hg	0.05	0.01

u: Below Detection Limit

Laboratory Comments: Method Detection Limit = 0.01 ug/L or 0.002 mg/kg

From . N. Aver-Approved By:

Date: 1.8.98

DESA

Thermo Jarrell Ash ICAP Metals

FAMIS Number: 4844

Project Name: Ravenna AAP - Env Investigation at 5 Sites

Sample Description:		Date Sample Taken:	20 Nov 97
MRD Lab Sample No.:		Date Sample Received:	25 Nov 97
Client Sample No.:		Date Digested:	17 Dec 97
Method:	EPA Method 3050/6010	Date Analyzed:	06 Jan 98
Analyst:	T. Shannon	Batch:	9801060826
		Sequence:	9801061432

RESULTS (mg/kg) Dry Weight

Analyte	Result	Method Det Limit	Laboratory Reporting Limit
Al	15300	4	20
Sb	15500 u		3.0
As	20.9	0.6	
Ba	20.9 95.9	0.6	3.0
Be		0.06	0.30
Cd	0.94	0.06	0.30
Ca	u 1010	0.08	0.40
Cr	4040	20	100
Co	22.1	0.4	2.0
	18.2	0.6	3.0
Cu	23.4	0.4	2.0
Fe	37400	8	40
Pb	14.5	0.4	2.0
Mg	4680	8	40
Mn	391.0	0.06	0.30
Ni	36.2	0.4	2.0
K	1770	20	100
Se	u	0.6	3.0
Ag	u	0.4	2.0
Na	60 J	20	100
Tl	u	1	5
V	23.4	0.8	4.0
Zn	74.7	0.4	2.0

Percent Solids: 82.9

u: Below Method Detection Limit (MDL)

J: Estimated value, concentration is below limit of quantitation

Laboratory Comments:
Approved By: Il thamon
JRB

Date: 1/3/98

Mercury by AACV

FAMIS Number: 4844
Project Name: Ravenna AAP - Env Investigation at 5 SitesSample Description: SoilDate Sample Taken: 20 Nov 97MRD Lab Sample No.: 971204-H032Date Sample Received: 25 Nov 97Client Sample No.: 0D1049Date Digested: 18 Dec 97Method: EPA Method 7471Date Analyzed: 19 Dec 97Analyst: D. SandersDilution Factor: 1.0
Batch: 9712191139B

 RESULTS (mg/kg)		
Analyte	Result	Rep Limit
Нд	0.01	0.01

u: Below Detection Limit

Laboratory Comments: Method Detection Limit = 0.01 ug/L or 0.002 mg/kg

Approved By:

Frem. N. Arer

CYI.

DEPARTMENT OF THE ARMY Missouri River Division, Corps of Engineers Division Laboratory Omaha, Nebraska

Thermo Jarrell Ash ICAP Metals

FAMIS Number: 4844 Project Name: Ravenna AAP - Env Investigation at 5 Sites

Sample Description:	Soil	Date Sample Taken:	20 Nov 97
MRD Lab Sample No.:	971204-H033	Date Sample Received:	25 Nov 97
Client Sample No.:	OD1125	Date Digested:	17 Dec 97
Method:	EPA Method 3050/6010	Date Analyzed:	06 Jan 98
Analyst:	T. Shannon	Batch:	9801060826
		Sequence:	9801061432

Method Laborator	
Analyte Result Det Limit Reporting L:	
Al 11100 4 20	
-	-
· · · · · · · · · · · · · · · · · · ·	
Ba 100.0 0.06 0.3 Be 0.59 0.06 0.3	
Cd 1.53 0.08 0.4 Ca 5660 20 100	ŧŪ
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	h
Co 10.2 0.6 3.0	
Cu 195.0 0.4 2.0	
Fe 26900 8 40	
Pb 31.1 0.4 2.0	h
Mg 4130 8 40	,
Mn 374.0 0.06 0.3	30
Ni 23.8 0.4 2.0	
K 1590 20 100	•
Se u 0.6 3.0)
Ag u 0.4 2.0	
Na 82 J 20 100	
Tl u 1 5	
V 17.0 0.8 4.0)
Zn 206.0 0.4 2.0	

Percent Solids: 86.5

u: Below Method Detection Limit (MDL)

J: Estimated value, concentration is below limit of quantitation

Laboratory Comments: Tel thanon Approved By: JKS

Date: 1/13/98

Mercury by AACV

FAMIS Number: 4844Project Name:Ravenna AAP - Env Investigation at 5 SitesSample Description:SoilDate Sample Taken: 20 Nov 97MRD Lab Sample No.:971204-H033Date Sample Received: 25 Nov 97Client Sample No.:OD1125Date Digested: 18 Dec 97Method:EPA Method 7471Date Analyzed: 19 Dec 97Analyst:D. SandersDilution Factor: 1.0Batch: 9712191139B

	RESULTS (mg	/kg)	
Analyte	Result	Rep Limit	
Hg	0.26	0.01	

u: Below Detection Limit

Laboratory Comments: Method Detection Limit = 0.01 ug/L or 0.002 mg/kg

From . N. Arr. Approved By: DESA

Date: _____/.8.58-____

C45

C-46

Thermo Jarrell Ash ICAP Metals

FAMIS Number: 4844 Project Name: Ravenna AAP - Env Investigation at 5 Sites Sample Description: Soil Date Sample Taken: 24 Nov 97 MRD Lab Sample No.: 971204-H034 Date Sample Received: 25 Nov 97 Client Sample No.: DF1151 Date Digested: 17 Dec 97 Method: EPA Method 3050/6010 Date Analyzed: 06 Jan 98 Batch: 9801060826 Analyst: T. Shannon Sequence: 9801061432

	RESULTS	(mg/kg) Dry	Weight
Analyte	Result	Method Det Limit	Laboratory Reporting Limit
Al	15300	4	20
Sb	u	0.6	3.0
As	11.3	0.6	3.0
Ba	146.0	0.06	0.30
Be	1.68	0.06	0.30
Cd	1.91	0.08	0.40
Ca	37200	20	100
Cr	16.2	0.4	2.0
Co	9.4	0.6	3.0
Cu	53.7	0.4	2.0
Fe	23600	8	40
Pb	36.3	0.4	2.0
Mg	9490	8	40
Mn	801.0	0.06	0.30
Ni	22.9	0.4	2.0
K	2050	20	100
Se	u	0.6	3.0
Ag	u	0.4	2.0
Na	274	20	100
Tl	u	1	5
V	17.9	0.8	4.0
Zn	181.0	0.4	2.0

Percent Solids: 84.8

u: Below Method Detection Limit (MDL)

Id Hamon

J: Estimated value, concentration is below limit of quantitation

Laboratory Comments:

Approved By: JRB

Date: 13/98

Mercury by AACV

FAMIS Number: 4844 Project Name: Ravenna AAP - Env Investigation at 5 Sites Sample Description: Soil Date Sample Taken: 24 Nov 97 MRD Lab Sample No.: 971204-H034 Date Sample Received: 25 Nov 97 Client Sample No.: DF1151 Date Digested: 18 Dec 97 Method: EPA Method 7471 Date Analyzed: 19 Dec 97 Analyst: D. Sanders Dilution Factor: 1.0 Batch: 9712191139B RESULTS (mg/kg)

Analyte	Result	Rep Limit
Hg	u	0.01

u: Below Detection Limit

Laboratory Comments: Method Detection Limit = 0.01 ug/L or 0.002 mg/kg

Frim. N. Avire Approved By: DESA

Date: ____/. 8-98

, U7

Thermo Jarrell Ash ICAP Metals

FAMIS Number: 4844 Project Name: Ravenna AAP QC Identifier: Method Blank	- Env Investigation at 5 Sites	
Sample Description: Soil	Date Ana	a

Sampie	Description:			
-	Method:	EPA	Method	3050/6010
	Analyst:	Τ.	Shannon	

Date Analyzed: 06 Jan 98 Batch: 9801060826 Sequence: 9801061432

Analyst				
	R	ESULTS (mg/)	kg)	
	Analyte	Result	Det Limit	
	Al	5 J	4	
	Sb	u	0.6	
	As	u	0.6	
	Ba	u	0.06	
	Be	u	0.06	
	Cd	u	0.08	
	Ca	u	20	
	Cr	u	0.4	
	Co	u	0.6	
	Cu	u	0.4	
	Fe	u	8	
	Pb	u	0.4	
	Mg	u	8	
	Mn	u	0.06	
	Ni	u	0.4	
	K	u	20	
	Se	u	0.6	
	Ag	u	0.4	
	Na	u	20	
	Tl	u	1	
	V	u	0.8	

u: Below Detection Limit

J: Estimated value, concentration is below limit of quantitation

u

Zn

0.4

Laboratory Comments:

Approved By: Jel Mamon Date: 1/13/98

Thermo Jarrell Ash ICAP Metals

FAMIS Number: 4844 Project Name: Ravenna AAP - Env Investigation at 5 Sites QC Identifier: Laboratory Matrix Duplicate

Sample Description:	Soil	Date Sample Taken:	02 Dec 97
MRD Lab Sample No.:	971203-H002	Date Sample Received:	03 Dec 97
Client Sample No.:	Batch Specific	Date Digested:	17 Dec 97
Method:	EPA Method 3050/6010 '	Date Analyzed:	06 Jan 98
Analyst:	T. Shannon	Batch:	9801060826
		Sequence:	9801061432

RESULTS (mg/kg)

Analyte	Sample Result	Duplicate Result	RPD	Method Detection Limit
// · · · · · · · · · · · · · · ·			· · · · · · · · · · · · · · · · · · ·	
Al	12700	13500	6.1	4
Sb	u	u	NC	0.6
As	5.0	5.4	7.7	0.6
Ba	57.1	62.2	8.5	0.06
Ве	0.52	0.55	5.6	0.06
Cđ	u	u	NC	0.08
Ca	877	988	11.9	20
Cr	14.0	16.1	13.9	0.4
Co	7.2	7.5	4.4	0.6
Cu	24.7	24.2	2.0	0.4
Fe	25300	26500	4.6	8
Pb	23.3	29.5	23.5	0.4
Mg	2970	2900	2.4	8
Mn	1350	1460	7.8	0.06
Ni	15.0	15.0	0.0	0.4
K	888	990	10.9	20
Se	u	u	NC	0.6
Ag	u	u	NC	0.4
Nā	24.3	26.8	9.8	20
Tl	u	u	NC	1
V	22.3	24.6	9.8	0.8
Zn	79.9	83.5	4.4	0.4

NC: Not Calculable RPD Control Limit: \pm 20% (RPD could be higher if the sample results are low)

Laboratory Comments:

Approved By: Jul Mannen

____ Date: <u>//3/98</u>___

C49

Thermo Jarrell Ash ICAP Metals

FAMIS Number: 4844 Project Name: Ravenna AAP - Env Investigation at 5 Sites QC Identifier: Matrix Spike, Matrix Spike Duplicate

Sample Description: Soil	Date Sample Taken: 02 Dec 97
MRD Lab Sample No.: 971203-H	
Client Sample No.: Batch Sp	ecific Date Digested: 17 Dec 97
Method: EPA Meth	od 3050/6010 Date Analyzed: 06 Jan 98
Analyst: T. Shanr	on Batch: 9801060826
-	Sequence: 9801061432

 $n = \alpha \pi \pi m \sigma (--/l_{row})$

Analyte	Samp Resi		Spike Added	Conc MS	%Rec MS	Conc MSD	%Rec MSD	RPD
Al	12700		600	15900	NC	16700	NC	4.9
Sb	12700 u		100	37	37*	37	37*	0.0
As	5.	0	100	99	94	98	93	1.0
Ba	57.		100	161	104	161	104	0.0
Be		.52	40	38	93	38	93	0.0
Cđ	u.		50.	47	94	46	92	2.2
Ca	877		1500	2410	102	2460	106	2.1
Cr	14.	. 0	100	115	101	116	102	0.9
Co	7.		100	104	97	105	98	1.0
Cu	24.		100	125	100	129	104	3.1
Fe	25300		600	27200	NC	30400	NC	11.1
Pb	23.	.3	100	122	99	121	.98	0.8
Mg	2970		1500	4660	113	5180	147*	10.6
Mn	1350		100	1460	NC	1420	NC	2.8
Ni	15.	. 0	100	112	97	115	100	2.6
K	888		1000	2110	122*	2140	125*	1.4
Se	u		100	89	89	89	89	0.0
Ag	u		20	19	95	19	95	0.0
Na	24.	. 3	1500	1530	100	1530	100	0.0
Tl	u		100	94	94	94	94	0.0
V	22.	. 3	100	122	100	123	101	0.8
Zn '	79.	. 9	100	185	105	190	110	2.7
		NC :	Not cal	culable (inh	erent >4X	spike)		
_	_	u:	Below Me	ethod Detect	ion Limit	(MDL)		
%Rec (Control	Limit:	80-120			the comple	regulte	are lo
RPD C	Control	Limit:	± 20% (R)	PD could be	nigner iI	the sample	resurcs	

Approved By: Jed Man

Date: <u>//3/98</u>