Ohio Environmental Protection Agency (Ohio EPA) And Ravenna Army Ammunition Plant (RVAAP) 2023 Correspondences

Mike DeWine, Governor Jon Husted, Lt. Governor Anne M. Vogel, Director

Received - January 2, 2024

December 27, 2023

TRANSMITTED ELECTRONICALLY

Mr. Kevin Sedlak Restoration Program Manager ARNG-ILE Clean Up Camp James A Garfield JTC 1438 State Route 534 SW Newton Falls, OH 44444 RE: US Army Ammunition Plt RVAAP Remediation Response Project Records Remedial Response Portage County ID#267000859137

Sent via email to: Kevin.m.sedlak.ctr@army.mil

Subject: Response to Ohio EPA Comments on the "Draft Uniform Federal Policy-Quality Assurance Project Plan (UFP-QAPP) for Additional Delineation Sampling at RVAAP-34 Sand Creek Disposal Road Landfill" dated November 15, 2023

Dear Mr. Sedlak:

The Ohio Environmental Protection Agency (Ohio EPA) has received and reviewed the

"Response to Ohio EPA Comments on the "Draft Uniform Federal Policy-Quality Assurance Project Plan (UFP-QAPP) for Additional Delineation Sampling at RVAAP-34 Sand Creek Disposal Road Landfill" at the Former Ravenna Army Ammunition Plant, Portage and Trumbull Counties, Ohio (Camp James A. Garfield). This document was received at Ohio EPA's Northeast District Office (NEDO), Division of Environmental Response and Revitalization (DERR) via email on November 15, 2023¹. The response was prepared for the United States Army Corps of Engineers (USACE) on behalf of the National Guard Bureau by Leidos.

Based on our review of the Army National Guard's Response to Ohio EPA comments provided in your letter dated November 15, 2023, we find the responses generally acceptable, and the document can be finalized. Please be sure that all agreed-upon changes, additions, and clarifications are provided in the final document.

This letter is an official response from Ohio EPA that will be maintained as a public record.

Northeast District Office 2110 E. Aurora Road Twinsburg, Ohio A4087 U.S.A. 330 | 953 1200 epa.ohio.gov

The State of Ohio is an Equal Opportunity Employer and Provider of ADA Services

¹http://edocpub.epa.ohio.gov/publicportal/ViewDocument.aspx?docid=2630991

US Army Ammunition Plt RVAAP December 27, 2023 Page 2 of 2

If you have any questions, please contact me at kevin.palombo@epa.ohio.gov.

Sincerely,

Kn Ml b

Kevin M. Palombo Environmental Specialist Division of Environmental Response and Revitalization

KP/cm

ec: Angela Cobbs, Chenega Reliable Services Katie Tait, OHARNG RTLS, CJAG Steve Kvaal, USACE Louisville Nathaniel Peters, USACE Louisville Jennifer Tierney, Chenega Reliable Services Megan Oravec, Ohio EPA, NEDO, DERR Natalie Oryshkewych, Ohio EPA, NEDO, DERR Liam McEvoy, Ohio EPA, NEDO, DERR Thomas Schneider, Ohio EPA, SWDO, DERR Carrie Rasik, Ohio EPA, CO, DERR

Mike DeWine, Governor Jon Husted, Lt. Governor Anne M. Vogel, Director

November 8, 2023

TRANSMITTED ELECTRONICALLY

Mr. Kevin Sedlak Restoration Program Manager ARNG-ILE Clean Up Camp James A Garfield JTC 1438 State Route 534 SW Newton Falls, OH 44444 Sent via email to: Kevin.m.sedlak.ctr@army.mil RE: US Army Ammunition Plt RVAAP Remediation Response Project Records Remedial Response Portage County ID#267000859137

Subject: Ohio EPA Comments of the "Draft Uniform Federal Policy-Quality Assurance Project Plan (UFP-QAPP) for Additional Delineation Sampling at RVAAP-34 Sand Creek Disposal Road Landfill" dated August 28, 2023

Dear Mr. Sedlak:

The Ohio Environmental Protection Agency (Ohio EPA) has received and reviewed the "Draft Uniform Federal Policy-Quality Assurance Project Plan (UFP-QAPP) for Additional Delineation Sampling at RVAAP-34, Sand Creek Disposal Road Landfill" at the Former Ravenna Army Ammunition Plant, Portage and Trumbull Counties, Ohio (Camp Garfield).¹ This document was received via email by Ohio EPA's Northeast District Office (NEDO), Division of Environmental Response and Revitalization (DERR), on August 31, 2023. The report was prepared for the United States Army Corps of Engineers on behalf of the National Guard Bureau by Leidos under Contract Number W912QR-21-D-0016. Comments on the document based on Ohio EPA's review are provided below. Please provide responses to the enclosed comments in accordance with the Directors Findings and Orders.

Draft Uniform Federal Policy-Quality Assurance Project Plan (UFP-QAPP) for Additional Delineation Sampling at RVAAP-34 Sand Creek Disposal Road Landfill

After the most recent remedial activities took place, chemicals of concern concentrations at four areas (SCsb-037M, SCsb-049M, SCss-060M, and SCss-062M) at the Sand Creek Disposal Road

http://edocpub.epa.ohio.gov/publicportal/ViewDocument.aspx?docid=2540281

Northeast District Office 2110 F. Aurora Road Twinsburg, Ohlo 44087 U.S.A. 330 | 963 1200 epa.ohlo.gov

Received 09 NOV 2023

The State of Ohio is an Equal Opportunity Employer and Provider of ADA Services

US Army Ammunition Plt RVAAP November 8, 2023 Page 2 of 3

Landfill were still above cleanup goals (CUGs), as presented in the Remedial Action Completion Report for Soil, Sediment, and Surface Water at Multiple Areas of Concern (Alaniz-Endpoint 2022). Concentrations of arsenic at SCsb-037M and SCss-062M and benzo(a)pyrene at SCsb-049M and SCss-060M did not completely meet CUGs, and each area requires further delineation to guide additional soil excavation.

COMMENTS

Comment 1: Section 17.2

Section 17.2 has the statement, "Leidos assumes that the historical data and additional delineation sampling will be adequate for Ohio EPA's acceptance for completion of the RI Addendum." Ohio EPA agrees with this assumption as long as the phrase 'additional delineation sampling' includes additional yet-to-be proposed step-out sampling locations should the data collected from the QAPP proposed sample locations report back chemical concentrations in soil above clean up goals (CUGs).

Comment 2: Section 17.3.1: SCsb-037M

Section 17.3.1 reports that during the previous excavation "the excavation floor [was] 12 feet". However, section 10.3, Table 10-1 and Figure 10-3 report that after the previous excavation the excavation floor depth was 14 feet below ground surface (bgs). Please clarify the depth of the previous excavation and include that depth and an interval(s) below that depth to determine the vertical extent of the arsenic contamination. While the section states that "sampling beyond 14 feet bgs is not required, as the Resident Receptor exposure depth only extends to 13 feet" deeper soil can be brought up to a shallower depth in the future without proper management and/or remedial activities, and thus be introduced into a residential receptor exposure depth.

Comment 3: Figure 17-1: RVAAP-34 Sand Creek Disposal Road Landfill – Proposed Sample Locations

Should sample locations be added/shifted to be located straight out from the corners of those formerly excavated areas that have two perpendicular sides with detections above CUGs? For example, at SCsb-037M should a sample location be added/shifted to be directly out from the NE, SE and SW corners depicted on Figure 17-1; at SCsb-049M should a sample location be added/shifted to be directly out from the SE corner, etc.?

This "Draft Uniform Federal Policy-Quality Assurance Project Plan (UFP-QAPP) for Additional Delineation Sampling at RVAAP-34, Sand Creek Disposal Road Landfill" was reviewed by personnel from Ohio EPA. Additional information is necessary to approve the document. If you have questions

US Army Ammunition Plt RVAAP November 8, 2023 Page 3 of 3

or would like to set up a meeting to discuss these comments, you can contact me at kevin.palombo@epa.ohio.gov.

Sincerely,

Kn Ml 6

Kevin M. Palombo Environmental Specialist Division of Environmental Response and Revitalization

KP/cm

ec: Angela Cobbs, Chenega Reliable Services Katie Tait, OHARNG RTLS, CJAG Steve Kvaal, USACE Louisville Nathaniel Peters, USACE Louisville Megan Oravec, Ohio EPA, NEDO, DERR Natalie Oryshkewych, Ohio EPA, NEDO, DERR Liam McEvoy, Ohio EPA, NEDO, DERR Thomas Schneider, Ohio EPA, SWDO, DERR Carrie Rasik, Ohio EPA, CO, DERR

August 31, 2023

Ohio Environmental Protection Agency DERR-NEDO Attn: Mr. Kevin Palombo, Site Coordinator 2110 East Aurora Road Twinsburg, OH 44087-1924

Subject:Ravenna Army Ammunition Plant (RVAAP) Restoration Program, Portage/Trumbull
Counties, Draft Uniform Federal Policy-Quality Assurance Project Plan (UFP-QAPP),
RVAAP-34 Sand Creek Disposal Road Landfill (Work Activity No. 267000859137)

Dear Mr. Palombo:

For your review, an electronic version of the *Draft Uniform Federal Policy-Quality Assurance Project Plan for Additional Delineation Sampling at RVAAP-34 Sand Creek Disposal Road Landfill* has been sent using the Ohio EPA LiquidFile system. A hardcopy and CD can be sent upon request by Ohio EPA.

This plan was prepared for the Army National Guard in support of the RVAAP Restoration Program. Please contact the undersigned at 614-336-6000, ext 2053 or <u>kevin.m.sedlak.ctr@army.mil</u> if there are issues or concerns with this submission.

Sincerely,

TAIT.KATHRYN.SE Digitally signed by TAIT.KATHRYN.SERENA.12895082 RENA.1289508275 Date: 2023.08.31 11:32:50 -04'00'

FOR Kevin M. Sedlak RVAAP Restoration Program Manager Army National Guard Directorate

cc: Megan Oravec, Ohio EPA, NEDO Tom Schneider, Ohio EPA, SWDO Katie Tait, OHARNG Steve Kvaal, USACE Louisville Nathaniel Peters, II, USACE Louisville Jed Thomas, Leidos Ryan Laurich, Leidos Jennifer Tierney, Chenega

October 13, 2023

Ohio Environmental Protection Agency DERR-NEDO Attn: Mr. Kevin Palombo, Site Coordinator 2110 East Aurora Road Twinsburg, OH 44087-1924

Subject: Ravenna Army Ammunition Plant (RVAAP) Restoration Program, Portage/Trumbull Counties, Draft Facility-wide Groundwater 2023 Semi-Annual Report (Work Activity No. 267000859036)

Dear Mr. Palombo:

An electronic version of the *Draft Facility-wide Groundwater Monitoring Program RVAAP-66 Facility-wide Groundwater Semi-Annual Report for Spring 2023 Sampling Event* will be sent using the Ohio EPA LiquidFile system. Due to file size, Appendix E containing the laboratory data packages are not included with the electronic version of this report and are available upon request.

This report was prepared for the Army National Guard in support of the RVAAP Restoration Program. Please contact the undersigned at 330-235-2153 or <u>kevin.m.sedlak.ctr@army.mil</u> if there are issues or concerns with this submission.

Sincerely,

TAIT.KATHRYN.SE Digitally signed by TAIT.KATHRYN.SERENA.1289508275 RENA.1289508275 Date: 2023.10.13 07:49:39 -04'00'

FOR Kevin M. Sedlak RVAAP Restoration Program Manager Army National Guard Directorate

ec: Natalie Oryshkewych, Ohio EPA, NEDO Liam McEvoy, Ohio EPA, NEDO Tom Schneider, Ohio EPA, SWDO Katie Tait, OHARNG Steve Kvaal, USACE Louisville Jay Trumble, USACE Louisville Jed Thomas, Leidos Ryan Laurich, Leidos Jennifer Tierney, Chenega

NATIONAL GUARD BUREAU **111 SOUTH GEORGE MASON DRIVE ARLINGTON VA 22204-1373**

September 8, 2023

Ohio Environmental Protection Agency **DERR-NEDO** Attn: Mr. Kevin Palombo, Project Coordinator 2110 East Aurora Road Twinsburg, OH 44087-1924

Subject: Notification of Field Work, Ravenna Army Ammunition Plant (RVAAP) Restoration Program, Portage/Trumbull Counties, RVAAP-66 Facility-wide Groundwater (Work Activity No. 267-000-859-036)

Dear Mr. Palombo:

In accordance with the Director's Final Findings and Orders, Section XIII, #28, for the RVAAP Restoration Program, the Army National Guard (ARNG) is providing notification of field activities at the former RVAAP (Camp James A. Garfield) 15 days prior to the scheduled start date. These field activities and tentative schedule are below:

09/25/23-10/6/23: Groundwater sampling per the 2023 Addendum.

In the event that the schedule above needs to change, ARNG will provide an e-mail notification with revised dates. Please contact the undersigned at 330-235-2153, or kevin.m.sedlak.ctr@army.mil if there are issues or concerns with this submission.

Sincerely,

TAIT.KATHRYN.SERE Digitally signed by TAIT.KATHRYN.SERENA.1289508275 NA.1289508275

Date: 2023.09.08 08:10:22 -04'00'

FOR Kevin M. Sedlak **RVAAP** Restoration Program Manager Army National Guard Directorate

Natalie Oryshkewych, Ohio EPA, DERR-NEDO cc: Liam McEvoy, Ohio EPA, DERR-NEDO Tom Schneider, Ohio EPA-SWDO Katie Tait, OHARNG Steve Kvaal, USACE Louisville Jay Trumble, USACE Louisville Jed Thomas, Leidos Ryan Laurich, Leidos

July 27, 2023

Ohio Environmental Protection Agency DERR-NEDO Attn: Mr. Kevin Palombo, Site Coordinator 2110 East Aurora Road Twinsburg, OH 44087-1924

Subject: Feasibility Study Monitoring Well Installation for RVAAP-66 Facility-wide Groundwater – Liquid Investigation Derived Waste Letter Report and Request for Land Application (Frac Tank: LEIDOS-FWGW-074-L), Ravenna Army Ammunition Plant (RVAAP) Restoration Program, Portage/Trumbull Counties, Work Activity No. 267000859036

Dear Mr. Palombo:

Attached for your review is the liquid Investigation-Derived Waste (IDW) Letter Report and Request for Land Application for recovered liquid as part of the RVAAP-66 Facility-wide Groundwater Monitoring Program Feasibility Study well installations. Although we do not typically request your review and approval on IDW reports, we are sending this submittal for your review so that we may land apply the recovered liquid at Building 1036 at Camp James A. Garfield. We would like to conduct the land application as soon as possible. Your timely review is much appreciated.

This letter report was prepared for the Army National Guard in support of the RVAAP Restoration Program. Please contact the undersigned at 614-336-6000, ext 2053 or <u>kevin.m.sedlak.ctr@army.mil</u> if there are issues or concerns with this submission.

Sincerely,

TAIT.KATHRYN.SE Pigitally signed by TAIT.KATHRYN.SERENA.12895082 RENA.1289508275 Total: 2023.07.27 08:59:19 -04'00' FOR Kevin M. Sedlak RVAAP Restoration Program Manager Army National Guard Directorate

cc: Natalie Oryshkewych, Ohio EPA, NEDO Liam McEvoy, Ohio EPA, NEDO Megan Oravec, Ohio EPA, NEDO Tom Schneider, Ohio EPA, SWDO Katie Tait, OHARNG Steve Kvaal, USACE Louisville Jay Trumble, USACE Louisville Jed Thomas, Leidos Ryan Laurich, Leidos Jennifer Tierney, Chenega

July 24, 2023

Ms. Katie Tait, OHARNG Camp James A. Garfield - Environmental Office 1438 State Route 534 SW Newton Falls, OH 44444

 Subject: Feasibility Study Monitoring Well Installation Plan for RVAAP-66 Facility-wide Groundwater – Liquid Investigation-Derived Waste (IDW) Characterization and Disposal Plan
 References: 1) Contract No. W912OR-16-D-0003, Delivery Order No. W912OR18F0337,

References: 1) Contract No. W912QR-16-D-0003, Delivery Order No. W912QR18F0337, Groundwater Investigation and Reporting Services, RVAAP Restoration Program

Dear Ms. Tait:

Leidos completed installation of 12 monitoring wells in support of the Feasibility Study (FS) for Facilitywide Groundwater (FWGW) from March 13, 2023 to May 30, 2023. All work was performed in accordance with the 2022 Feasibility Study Monitoring Well Installation Plan (Leidos 2022). These activities resulted in the generation of a liquid Investigation Derived Waste (IDW) consisting of well development/purge water and equipment decontamination fluids (liquinox wash water, 10% nitric acid, isopropanol, and deionized water). The purpose of this letter report is to characterize and classify the IDW and request approval for land application at Camp James A. Garfield (CJAG) (former RVAAP). This letter report follows guidance established by the following:

- Remedial Investigation Work Plan for Groundwater and Environmental Investigation Services for RVAAP-66 Facility-Wide Groundwater (RIWP) (TEC-Weston JV, 2016); and
- Facility-Wide Sampling and Analysis Plan for Environmental Investigations (FWSAP) (SAIC, 2011).

Water recovered from the FS well installation activities was containerized in a 20,000-gallon Frac Tank containing approximately 13,217 gallons of purged groundwater and equipment decontamination fluids (Table 1). On May 30, 2023, the frac tank (LEIDOS-FWGW-074-L) was sampled (sample ID: FWGIDW-230301-WW) for IDW characterization parameters: Toxicity Characteristic Leaching Procedure (TCLP) volatile organic compounds (VOCs), TCLP semi-VOCs (SVOCs), TCLP metals, TCLP herbicides, TCLP pesticides, total cyanide, nitrate, nitrite, sulfide, polychlorinated biphenyls (PCBs), corrosivity (pH), and flashpoint. Following Section 7.1.1 of the RIWP and Section 8.4.2 of the FWSAP, a grab sample was collected via disposable bailer from the frac tank.

Container Number	Container Type and Size	Contents	Generation Date	Waste Type	Disposal Recommendation
LEIDOS-FWGW-074-L	20,000 Frac Tank	13,217 gallons drilling/purge/decon water	3/24/2023 - 5/22/2023	Non-Hazardous	Land Application

Table 1. Summary of Investigation-Derived Wastes and Disposal Recommendation

Analytical Screening

Upon receipt of the laboratory results, the analytical data were reviewed to determine if the waste was potentially hazardous and if the waste could be discharged to the land surface.

The data were compared to disposal screening criteria from the following sources:

- Concentration of Contaminants for Toxicity Characteristic (40 Code of Federal Regulations [CFR] 261.24), as listed in Table 8-1 of the FWSAP;
- Table 8-2 of the FWSAP; and
- 40 CFR 261.21 Characteristic of Ignitability;
- 40 CFR 261.22 Characteristic of Corrosivity;
- 40 CFR 261.23 Characteristic of Reactivity; and
- Toxic Substances Control Act (TSCA) PCB disposal requirements.

If analytical results do not exceed disposal criteria, then the IDW can be classified as "nonhazardous." If analytical results do exceed disposal criteria, then the IDW must be classified as "hazardous." Using the analytical results, this waste is characterized as Nonhazardous, per comparison to the provisions established in the Resource Conservation and Recovery Act (RCRA) and in the *Facility-Wide Sampling and Analysis Plan* (USACE 2011). Attachment A (Table A.1) compares the sample results to the disposal screening criteria. The laboratory analytical report is included as Attachment B. The container log is presented in Attachment C.

Comparison of the analytical results against the TCLP screening criteria shows the liquid IDW is non-hazardous. Three TCLP metals (barium, cadmium, and chromium) were detected at estimated quantities well below applicable screening criteria, all other TCLP metals were undetected. TCLP herbicides, TCLP pesticides, TCLP SVOCs, TCLP VOCs, and PCBs results were all non-detect.

Conclusions and Recommendations

Based on the observed analytical results and previous approvals for land application, Leidos recommends that the liquid IDW from Frac Tank LEIDOS-FWGW-074-L is applied on-site via land application. Liquid IDW from Frac Tank LEIDOS-FWGW-074-L will be filtered through a 100 μ m bag filter and straw bale prior to discharging to a well vegetated area near Building 1036 at CJAG (see figure presented in Attachment D). The IDW water will be released at a rate that will prevent ponding of water and/or runoff and will not be released directly to surface water features, such as creeks, ditches, streams, or storm/sanitary sewer lines. Prior to initiating land application, the procedure and setup will be reviewed by the CJAG Environmental Specialist for final approval.

Since the former RVAAP, under RCRA, is the generator of this material, Leidos requests concurrence or direction on the waste classification. Following your concurrence, and Ohio EPA approval of this IDW

Report and proposed land application methodology, Leidos will proceed with appropriate land application as described.

If you have any questions, or require additional information, please do not hesitate to contact me at (330) 998-4246.

Leidos Ryan Laurich

Ryan Laurich Deputy Project Manager

cc: Kevin Sedlak, ARNG, Camp James A. Garfield Jay Trumble, USACE Louisville Jed Thomas, Leidos

ATTACHMENT A

Laboratory Analytical Results Sample FWGIDW-230301-WW

			Sample Id				FWGIDW-230301- WW
			Date				5/30/2023
Analyte	CAS Number	Units	Specific Method	Basis	Regulatory Level Citation	Regulatory Level	Sample Result
Arsenic	7440-38-2	mg/L	Metals (ICP)	TCLP	40 CFR 261.24	5	<0.014 U
Barium	7440-39-3	mg/L	Metals (ICP)	TCLP	40 CFR 261.24	100	0.007 J
Cadmium	7440-43-9	mg/L	Metals (ICP)	TCLP	40 CFR 261.24	1	0.00023 J
Chromium	7440-47-3	mg/L	Metals (ICP)	TCLP	40 CFR 261.24	5	0.00087 J
Lead	7439-92-1	mg/L	Metals (ICP)	TCLP	40 CFR 261.24	5	<0.0075 U
Mercury	7439-97-6	mg/L	Metals (ICP)	TCLP	40 CFR 261.24	0.2	<0.00008 U
Selenium	7782-49-2	mg/L	Metals (ICP)	TCLP	40 CFR 261.24	1	<0.019 U
Silver	7440-22-4	mg/L	Metals (ICP)	TCLP	40 CFR 261.24	5	<0.006 U
2,4-D	94-75-7	mg/L	Herbicides (GC)	TCLP	40 CFR 261.24	10	<0.004 UM
Silvex (2,4,5-TP)	93-72-1	mg/L	Herbicides (GC)	TCLP	40 CFR 261.24	1	<0.002 U
Chlordane (technical)	12789-03-6	mg/L	Organochlorine Pesticides (GC)	TCLP	40 CFR 261.24		<0.004 U
Endrin	72-20-8	mg/L	Organochlorine Pesticides (GC)	TCLP	40 CFR 261.24	0.02	<0.0002 U
Heptachlor epoxide	1024-57-3	mg/L	Organochlorine Pesticides (GC)	TCLP	40 CFR 261.24	0.008	<0.0002 U
Heptachlor	76-44-8	mg/L	Organochlorine Pesticides (GC)	TCLP	40 CFR 261.24	0.008	<0.0002 U
Methoxychlor	72-43-5	mg/L	Organochlorine Pesticides (GC)	TCLP	40 CFR 261.24	10	<0.0005 U
Toxaphene	8001-35-2	mg/L	Organochlorine Pesticides (GC)	TCLP	40 CFR 261.24	0.5	<0.0075 U
gamma-BHC (Lindane)	58-89-9	mg/L	Organochlorine Pesticides (GC)	TCLP	40 CFR 261.24	0.4	<0.0002 U
1,4-Dichlorobenzene	106-46-7	mg/L	Semivolatile Organic Compounds (GC/MS)	TCLP	40 CFR 261.24	7.5	<0.0032 U
2,4,5-Trichlorophenol	95-95-4	mg/L	Semivolatile Organic Compounds (GC/MS)	TCLP	40 CFR 261.24	400	<0.008 U
2,4,6-Trichlorophenol	88-06-2	mg/L	Semivolatile Organic Compounds (GC/MS)	TCLP	40 CFR 261.24	2	<0.008 U
2,4-Dinitrotoluene	121-14-2	mg/L	Semivolatile Organic Compounds (GC/MS)	TCLP	40 CFR 261.24	0.13	<0.008 U
2-Methylphenol	95-48-7	mg/L	Semivolatile Organic Compounds (GC/MS)	TCLP	40 CFR 261.24	200	<0.008 U
3 & 4 Methylphenol	15831-10-4	mg/L	Semivolatile Organic Compounds (GC/MS)	TCLP	40 CFR 261.24	200	<0.008 U
Hexachlorobenzene	118-74-1	mg/L	Semivolatile Organic Compounds (GC/MS)	TCLP	40 CFR 261.24	0.13	<0.008 U
Hexachlorobutadiene	87-68-3	mg/L	Semivolatile Organic Compounds (GC/MS)	TCLP	40 CFR 261.24	0.5	<0.008 U
Hexachloroethane	67-72-1	mg/L	Semivolatile Organic Compounds (GC/MS)	TCLP	40 CFR 261.24	3	<0.008 U
Nitrobenzene	98-95-3	mg/L	Semivolatile Organic Compounds (GC/MS)	TCLP	40 CFR 261.24	2	<0.008 U
Pentachlorophenol	87-86-5	mg/L	Semivolatile Organic Compounds (GC/MS)	TCLP	40 CFR 261.24	100	<0.048 U
Pyridine	110-86-1	mg/L	Semivolatile Organic Compounds (GC/MS)	TCLP	40 CFR 261.24	5	<0.048 UQ
1,1-Dichloroethene	75-35-4	mg/L	Volatile Organic Compounds (GC/MS)	TCLP	40 CFR 261.24	0.7	<0.008 U
1,2-Dichloroethane	107-06-2	mg/L	Volatile Organic Compounds (GC/MS)	TCLP	40 CFR 261.24	0.5	<0.008 UH

Table A.1 Liquid IDW Sample Results FWDIDW-230301-WW

Sample Id							FWGIDW-230301- WW
	1		Date				5/30/2023
Analyte	Analyte CAS Number Units		Specific Method Bas		Regulatory Level Citation	Regulatory Level	Sample Result
2-Butanone (MEK)	78-93-3	mg/L	Volatile Organic Compounds (GC/MS)	TCLP	40 CFR 261.24	200	<0.12 UH
Benzene	71-43-2	mg/L	Volatile Organic Compounds (GC/MS)	TCLP	40 CFR 261.24	0.5	<0.008 U
Carbon tetrachloride	56-23-5	mg/L	Volatile Organic Compounds (GC/MS)	TCLP	40 CFR 261.24	0.5	<0.008 U
Chlorobenzene	108-90-7	mg/L	Volatile Organic Compounds (GC/MS)	TCLP	40 CFR 261.24	100	<0.008 U
Chloroform	67-66-3	mg/L	Volatile Organic Compounds (GC/MS)	TCLP	40 CFR 261.24	6	<0.008 U
Tetrachloroethene	127-18-4	mg/L	Volatile Organic Compounds (GC/MS)	TCLP	40 CFR 261.24	0.7	<0.008 U
Trichloroethene	79-01-6	mg/L	Volatile Organic Compounds (GC/MS)	TCLP	40 CFR 261.24	0.5	<0.004 U
Vinyl chloride	75-01-4	mg/L	Volatile Organic Compounds (GC/MS)	TCLP	40 CFR 261.24	0.2	<0.01 U
PCB-1016	12674-11-2	mg/L	Polychlorinated Biphenyls (PCBs) by Gas Chromatography	Total	40 CFR 761.60	50	<0.00041 UQ
PCB-1221	11104-28-2	mg/L	Polychlorinated Biphenyls (PCBs) by Gas Chromatography	Total	40 CFR 761.60	50	<0.00026 U
PCB-1232	11141-16-5	mg/L	Polychlorinated Biphenyls (PCBs) by Gas Chromatography	Total	40 CFR 761.60	50	<0.00061 U
PCB-1242	53469-21-9	mg/L	Polychlorinated Biphenyls (PCBs) by Gas Chromatography	Total	40 CFR 761.60	50	<0.00092 U
PCB-1248	12672-29-6	mg/L	Polychlorinated Biphenyls (PCBs) by Gas Chromatography	Total	40 CFR 761.60	50	<0.00031 U
PCB-1254	11097-69-1	mg/L	Polychlorinated Biphenyls (PCBs) by Gas Chromatography	Total	40 CFR 761.60	50	<0.00026 U
PCB-1260	11096-82-5	mg/L	Polychlorinated Biphenyls (PCBs) by Gas Chromatography	Total	40 CFR 761.60	50	<0.00041 UQ
PCB-1262	37324-23-5	mg/L	Polychlorinated Biphenyls (PCBs) by Gas Chromatography	Total	40 CFR 761.60	50	<0.00051 U
PCB-1268	11100-14-4	mg/L	Polychlorinated Biphenyls (PCBs) by Gas Chromatography	Total	40 CFR 761.60	50	<0.00092 U
Cyanide, Total	57-12-5	mg/L	Cyanide, Total	Total	40 CFR 261.23	See Note 1	<0.009 U
Flashpoint	N/A	Deg C	Ignitability, Pensky-Martens Closed-Cup Method	Total	40 CFR 261.21	>60°C (140°F)	>160
Nitrate as N	14797-55-8	mg/L	Anions, Ion Chromatography	Total	N/A		0.52
Nitrite as N	14797-65-0	mg/L	Anions, Ion Chromatography	Total	N/A		0.13 J
Sulfide	18496-25-8	mg/L	Sulfide, Acid Soluble and Insoluble (Titrimetric)	Total	40 CFR 261.23	See Note 1	<2 U
Temperature	STL00038	Degrees C	Temperature	Total	N/A		20.8 HF
pH adj. to 25 deg C	STL00204	SU	рН	Total	40 CFR 261.22	$2 \le pH \le 12.5$	7.8 HF

Table A.1 Liquid IDW Sample Results FWDIDW-230301-WW (Continued)

All analyses were from sample collected on 5/30/2023 under sample ID FWGIDW-230301-WW.

Waste with PCB concentrations greater than 50 ppm (mg/L) are regulated and to be disposed in accordance with the Toxic Substances Control Act (TSCA).

Note 1: The US Environmental Protection Agency requires generators to use their knowledge to make a D003 determination per CFR 261.23(a)(5) for cyanide or sulfide-bearing wastes.

U = Undetected at the Limit of Detection

 $\mathbf{J}=\mathbf{E}stimated:$ The analyte was positively identified; the quantitation is an estimation

Q = One or more quality control criteria failed

M = Manual integrated compound.

HF = Field parameter with a holding time of 15 minutes. Test performed by laboratory at client's request.

HF = Field parameter with a holding time of 15 minutes. Test performed by laboratory at client's request.

H = Sample was prepped or analyzed beyond the specified holding time. This does not meet regulatory requirements.

J1 = Estimated: The quantitation is an estimation due to discrepancies in meeting certain analyte-specific quality control criteria.

NB = No burn

-- = No regulatory standards for determination of hazardous waste exist.

ATTACHMENT B

Laboratory Analytical Report Job Number: 280-177167-1: Containing Sample FWGIDW-230301-WW

Environment Testing

ANALYTICAL REPORT

PREPARED FOR

Attn: Rita Schmon-Stasik Leidos, Inc. Picatinny Arsenal 356 Ninth Avenue Suite 106 Dover, New Jersey 07801 Generated 6/29/2023 7:09:54 PM

JOB DESCRIPTION

RVAAP FWGW FS Well Install 2023

JOB NUMBER

280-177167-1

Eurofins Denver 4955 Yarrow Street Arvada CO 80002

See page two for job notes and contact information.

Eurofins Denver

Job Notes

This report may not be reproduced except in full, and with written approval from the laboratory. The results relate only to the samples tested. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

The test results in this report relate only to the samples as received by the laboratory and will meet all requirements of the methodology, with any exceptions noted. This report shall not be reproduced except in full, without the express written approval of the laboratory. All questions should be directed to the Eurofins TestAmerica Project Manager.

Authorization

atul f. M. Enter

Generated 6/29/2023 7:09:54 PM

5

Authorized for release by Patrick McEntee, Client Service Manager Patrick.McEntee@et.eurofinsus.com (303)736-0107

Table of Contents

Cover Page	1
Table of Contents	3
Definitions	4
Case Narrative	6
Detection Summary	10
Method Summary	11
Sample Summary	12
Client Sample Results	13
Surrogate Summary	19
QC Sample Results	23
QC Association	44
Chronicle	52
Certification Summary	54
Chain of Custody	56
Receipt Checklists	60

Definitions/Glossary

Client: Leidos, Inc. Project/Site: RVAAP FWGW FS Well Install 2023

Qualifiers

Qualifiers		 3
GC/MS VOA Qualifier	Qualifier Description	
H	Sample was prepped or analyzed beyond the specified holding time. This does not meet regulatory requirements.	
М	Manual integrated compound.	5
U	Undetected at the Limit of Detection.	
GC/MS Semi	VOA	
Qualifier	Qualifier Description	
J	Estimated: The analyte was positively identified; the quantitation is an estimation	
Q	One or more quality control criteria failed.	
U	Undetected at the Limit of Detection.	8
GC Semi VO	Α	
Qualifier	Qualifier Description	9
Μ	Manual integrated compound.	
Q	One or more quality control criteria failed.	
U	Undetected at the Limit of Detection.	
LCMS		
Qualifier	Qualifier Description	
D	The reported value is from a dilution.	
Μ	Manual integrated compound.	
U	Undetected at the Limit of Detection.	
Metals		
Qualifier	Qualifier Description	
J	Estimated: The analyte was positively identified; the quantitation is an estimation	
U	Undetected at the Limit of Detection.	
General Che	mistry	
Qualifier	Qualifier Description	
Н	Sample was prepped or analyzed beyond the specified holding time. This does not meet regulatory requirements.	
HE	Field parameter with a holding time of 15 minutes. Test performed by laboratory at client's request	

- Field parameter with a holding time of 15 minutes. Test performed by laboratory at client's request. HF
- J Estimated: The analyte was positively identified; the quantitation is an estimation
- Estimated: The quantitation is an estimation due to discrepancies in meeting certain analyte-specific quality control criteria. J1
- Manual integrated compound. Μ
- U Undetected at the Limit of Detection.

Glossary

Abbreviation	These commonly used abbreviations may or may not be present in this report.
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CFU	Colony Forming Unit
CNF	Contains No Free Liquid
DER	Duplicate Error Ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL	Detection Limit (DoD/DOE)
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision Level Concentration (Radiochemistry)
EDL	Estimated Detection Limit (Dioxin)
LOD	Limit of Detection (DoD/DOE)
LOQ	Limit of Quantitation (DoD/DOE)
MCL	EPA recommended "Maximum Contaminant Level"
MDA	Minimum Detectable Activity (Radiochemistry)
MDC	Minimum Detectable Concentration (Radiochemistry)
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)

Client: Leidos, Inc. Project/Site: RVAAP FWGW FS Well Install 2023

Glossary (Continued)

Abbreviation	These commonly used abbreviations may or may not be present in this report.
MPN	Most Probable Number
MQL	Method Quantitation Limit
NC	Not Calculated
ND	Not Detected at the reporting limit (or MDL or EDL if shown)
NEG	Negative / Absent
POS	Positive / Present
PQL	Practical Quantitation Limit
PRES	Presumptive
QC	Quality Control
RER	Relative Error Ratio (Radiochemistry)
RL	Reporting Limit or Requested Limit (Radiochemistry)
RPD	Relative Percent Difference, a measure of the relative difference between two points
TEF	Toxicity Equivalent Factor (Dioxin)
TEQ	Toxicity Equivalent Quotient (Dioxin)
TNTC	Too Numerous To Count

Job ID: 280-177167-1

Laboratory: Eurofins Denver

Narrative

CASE NARRATIVE

Client: Leidos, Inc.

Project: RVAAP FWGW FS Well Install 2023

Report Number: 280-177167-1

With the exceptions noted as flags or footnotes, standard analytical protocols were followed in the analysis of the samples and no problems were encountered or anomalies observed. In addition all laboratory quality control samples were within established control limits, with any exceptions noted below. Each sample was analyzed to achieve the lowest possible reporting limit within the constraints of the method. In some cases, due to interference or analytes present at high concentrations, samples were diluted. For diluted samples, the reporting limits are adjusted relative to the dilution required.

Calculations are performed before rounding to avoid round-off errors in calculated results.

All holding times were met and proper preservation noted for the methods performed on these samples, unless otherwise detailed in the individual sections below.

RECEIPT

The samples were received on 5/31/2023 10:40 AM. Unless otherwise noted below, the samples arrived in good condition, and where required, properly preserved and on ice. The temperatures of the 2 coolers at receipt time were 1.0° C and 3.7° C.

TCLP VOLATILE ORGANIC COMPOUNDS (GC-MS)

Samples FWGIDW-230301-WW (280-177167-1) and FWGIDW-230301-WS (280-177167-2) were analyzed for TCLP volatile organic compounds (GC-MS) in accordance with 1311. The samples were leached on 05/31/2023 and 06/09/2023 and analyzed on 06/09/2023, 06/12/2023 and 06/14/2023.

Reanalysis of the following samples was performed outside of the analytical holding time due to failure of quality control parameters in the initial analysis. FWGIDW-230301-WW (280-177167-1) These sample was reanalyzed for 2-Butanone and 1,2-Dichloroethane.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

TCLP SEMIVOLATILE ORGANIC COMPOUNDS (GC-MS)

Samples FWGIDW-230301-WW (280-177167-1) and FWGIDW-230301-WS (280-177167-2) were analyzed for TCLP semivolatile organic compounds (GC-MS) in accordance with SW-846 1311/8270D. The samples were leached on 06/05/2023 and 06/08/2023, prepared on 06/06/2023 and 06/09/2023 and analyzed on 06/08/2023 and 06/14/2023.

Internal Standard (ISTD) retention times for the following samples were outside the acceptance criteria of +/-0.5 minutes from the mid-point of the initial calibration: FWGIDW-230301-WS (280-177167-2) and (CCVIS 280-615329/2). The samples were within +/-0.5 minutes from the daily calibration verification; therefore, no corrective action was required per the laboratory's SOP. preparation batch 280-614928 and 280-615134 and analytical batch 280-615329

The laboratory control sample and/or the laboratory control sample duplicate (LCS/LCSD) for preparation batch 280-615475 and 280-615587 and analytical batch 280-616031 recovered outside control limits for the following analyte(s): Pyridine. Pyridine has been identified as a poor performing analyte when analyzed using this method; therefore, re-extraction/re-analysis was not performed. Batch precision also exceeded control limits for these analyte(s). These results have been reported and qualified.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

TCLP ORGANOCHLORINE PESTICIDES (GC)

Job ID: 280-177167-1 (Continued)

Laboratory: Eurofins Denver (Continued)

Samples FWGIDW-230301-WW (280-177167-1) and FWGIDW-230301-WS (280-177167-2) were analyzed for TCLP Organochlorine Pesticides (GC) in accordance with SW 846 1311/8081B. The samples were leached on 06/05/2023 and 06/08/2023, prepared on 06/08/2023 and 06/09/2023 and 06/09/2023

Surrogate DCB Decachlorobiphenyl recovered outside lower control limits on the back column in the continuing calibration verification (CCV) (CCVIS 280-616066/4) in 280-616066. Surrogates recovered in control in sample and all other QC and all analytes are reported from the front column.

No analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

POLYCHLORINATED BIPHENYLS (PCBS) - Solid

Sample FWGIDW-230301-WS (280-177167-2) was analyzed for polychlorinated biphenyls (PCBs) in accordance with EPA SW-846 Method 8082A. The samples were prepared on 06/12/2023 and analyzed on 06/14/2023.

The following samples in preparation batch 280-615721 and analytical batch 280-616027 required a sulfuric acid clean-up, via EPA Method 3665A, to reduce matrix interferences: FWGIDW-230301-WS (280-177167-2), (LCS 280-615721/2-A), (MB 280-615721/1-A).

The following samples FWGIDW-230301-WS (280-177167-2) in preparation batch 280-615721 could not be thoroughly homogenized before sub-sampling was performed due to sample matrix: The sample was a clay that could not be fully removed from the sample container.

No analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

POLYCHLORINATED BIPHENYLS (PCBS) - Water

Sample FWGIDW-230301-WW (280-177167-1) was analyzed for polychlorinated biphenyls (PCBs) in accordance with SW-846 8082A. The samples were prepared on 06/02/2023 and analyzed on 06/07/2023.

The following samples in preparation batch 280-614674 and analytical batch 280-615208 required a sulfuric acid clean-up, via EPA Method 3665A, to reduce matrix interferences: FWGIDW-230301-WW (280-177167-1), (LCS 280-614674/4-A), (LCSD 280-614674/5-A) and (MB 280-614674/1-A).

The method blank (MB) associated with preparation batch 280-614674 and analytical batch 280-615208 recovered above the upper control limit for DCB Decachlorobiphenyl (Surr). The samples associated with this MB are in control for surrogate; therefore, the data have been reported. The associated samples are impacted: FWGIDW-230301-WW (280-177167-1) and (MB 280-614674/1-A).

The continuing calibration verification (CCV) associated with preparation batch 280-614674 and analytical batch 280-615208 recovered above the upper control limit for PCB-1260, PCB-1016, Tetrachloro-m-xylene (Surr) and DCB Decachlorobiphenyl (Surr). The samples associated with this CCV were non-detects for the affected analytes; therefore, the data have been reported. The associated samples are impacted: FWGIDW-230301-WW (280-177167-1) and (CCV 280-615208/35).

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

HERBICIDES BY LC/MS

Samples FWGIDW-230301-WW (280-177167-1) and FWGIDW-230301-WS (280-177167-2) were analyzed for herbicides by LC/MS in accordance with SW846 8321A. The samples were leached on 06/05/2023 and 06/08/2023 and analyzed on 06/07/2023 and 06/09/2023.

Sample FWGIDW-230301-WS (280-177167-2)[10X] required dilution prior to analysis. The reporting limits have been adjusted accordingly.

The following sample in preparation batch 280-614928 and analytical batch 280-615278 was diluted due to the nature of the leach fluid causing internal standard failure: FWGIDW-230301-WS (280-177167-2), (LB 280-614928/1-A), (LCS 280-614928/2-A), (280-177167-A-2-A MS) and (280-177167-A-2-A MSD). Elevated reporting limits (RLs) are provided.

No analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

4

5

Job ID: 280-177167-1 (Continued)

Laboratory: Eurofins Denver (Continued)

TCLP METALS

Samples FWGIDW-230301-WW (280-177167-1) and FWGIDW-230301-WS (280-177167-2) were analyzed for TCLP metals in accordance with EPA SW846 Methods 1311/6010C. The samples were leached on 06/05/2023 and 06/08/2023, prepared on 06/07/2023 and 06/12/2023 and 06/12/2023.

Barium and Chromium were detected in method blank LB 280-614928/1-C at levels that were below one half the LOQ.

Chromium was detected in method blank LB3 280-615475/1-B at a level that was below one half the LOQ.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

TCLP MERCURY

Samples FWGIDW-230301-WW (280-177167-1) and FWGIDW-230301-WS (280-177167-2) were analyzed for TCLP mercury in accordance with SW-846 1311/7470. The samples were leached on 06/05/2023 and 06/08/2023, and prepared and analyzed on 06/07/2023 and 06/09/2023.

No analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

IGNITABILITY - Water

Sample FWGIDW-230301-WW (280-177167-1) was analyzed for Ignitability in accordance with EPA SW-846 Method 1010A. The samples were analyzed on 06/13/2023.

No analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

IGNITABILITY FOR SOLIDS

Sample FWGIDW-230301-WS (280-177167-2) was analyzed for ignitability for solids in accordance with EPA SW-846 Method 1030. The samples were analyzed on 06/12/2023.

The following sample did not ignite: FWGIDW-230301-WS (280-177167-2); therefore, an ignitability value could not be obtained. The result has been reported as "No Burn" (NB).

No samples ignited, therefore, there were no sample duplicates. A LCSD was added which met acceptability criteria.

No analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

TOTAL CYANIDE - Solid

Sample FWGIDW-230301-WS (280-177167-2) was analyzed for Total Cyanide in accordance with 9012B. The samples were prepared and analyzed on 06/08/2023.

No analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

TOTAL CYANIDE - Water

Sample FWGIDW-230301-WW (280-177167-1) was analyzed for Cyanide, Total in accordance with 9012B. The samples were analyzed on 06/06/2023.

No analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

TOTAL SULFIDE - Solid

Sample FWGIDW-230301-WS (280-177167-2) was analyzed for total sulfide in accordance with EPA SW-846 Method 9034. The samples were prepared and analyzed on 06/01/2023.

Sulfide exceeded the RPD limit for the MSD of sample FWGIDW-230301-WSMSD (280-177167-2) in batch 280-614559. Sample non-homogeneity is suspected.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Job ID: 280-177167-1 (Continued)

Laboratory: Eurofins Denver (Continued)

TOTAL SULFIDE - Water

Sample FWGIDW-230301-WW (280-177167-1) was analyzed for sulfide in accordance with EPA SW-846 Method 9034. The samples were prepared and analyzed on 06/06/2023.

No analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

CORROSIVITY (PH) - Water

Sample FWGIDW-230301-WW (280-177167-1) was analyzed for Corrosivity (pH) in accordance with EPA SW-846 9040C. The samples were analyzed on 06/02/2023.

pH adj. to 25 deg C exceeded the RPD limit for the duplicate of sample 280-177173-1. Refer to the QC report for details.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

CORROSIVITY (PH) - Solid

Sample FWGIDW-230301-WS (280-177167-2) was analyzed for Corrosivity (pH) in accordance with EPA SW-846 Method 9045D. The samples were leached on 06/06/2023 and analyzed on 06/06/2023.

No analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

ANIONS, ION CHROMATOGRAPHY - Water

Sample FWGIDW-230301-WW (280-177167-1) was analyzed for Anions, Ion Chromatography in accordance with 9056A (48 Hours). The samples were analyzed on 05/31/2023.

Due to the concentration of nitrate in the spiked sample, the matrix spike/ matrix spike duplicate result was higher than the highest calibration point for this analyte. The % recoveries were within % recovery limits so the results have been qualified and reported.FWGIDW-230301-WW (280-177167-1), (280-177167-L-1 MS) and (280-177167-L-1 MSD)

Due to the concentration of nitrite in the spiked sample, the matrix spike/ matrix spike duplicate result was higher than the highest calibration point for this analyte. The % recoveries were within % recovery limits so the results have been qualified and reported.FWGIDW-230301-WW (280-177167-1), (280-177167-L-1 MS) and (280-177167-L-1 MSD)

No analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

ANIONS, ION CHROMATOGRAPHY - Solid

Sample FWGIDW-230301-WS (280-177167-2) was analyzed for anions in accordance with SW 846 9056A (48 Hours). The samples were leached on 06/09/2023 and analyzed on 06/10/2023.

Due to the concentration of nitrate in the spiked sample and the matrix spike reagent, the matrix spike/ matrix spike duplicate result was higher than the highest calibration point for this analyte. The % recoveries were within % recovery limits so the results have been qualified and reported.FWGIDW-230301-WS (280-177167-2), (280-177167-F-2-D MS) and (280-177167-F-2-E MSD)

No analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

PERCENT SOLIDS

Sample FWGIDW-230301-WS (280-177167-2) was analyzed for percent solids in accordance with ASTM D2216-90. The samples were analyzed on 06/01/2023.

No analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Detection Summary

Client: Leidos, Inc. Project/Site: RVAAP FWGW FS Well Install 2023

Client Sample ID: FWGIDW-230301-WW

Analyte	Result	Qualifier	LOQ	DL	Unit	Dil Fac	Method	Prep Type
Barium	0.0070	J	0.010	0.00082	mg/L	1	6010C	TCLP
Cadmium	0.00023	J	0.0050	0.00013	mg/L	1	6010C	TCLP
Chromium	0.00087	J	0.010	0.00066	mg/L	1	6010C	TCLP
Flashpoint	>160		1.00	1.00	Degrees F	1	1010A	Total/NA
pH adj. to 25 deg C	7.8	HF	0.1	0.1	SU	1	9040C	Total/NA
Temperature	20.8	HF	1.0	1.0	Degrees C	1	9040C	Total/NA
Nitrate as N	0.52		0.50	0.090	mg/L	1	9056	Total/NA
Nitrite as N	0.13	J	0.50	0.049	mg/L	1	9056	Total/NA

Client Sample ID: FWGIDW-230301-WS

Analyte	Result	Qualifier	LOQ	DL	Unit	Dil Fac D	Method	Prep Type
Trichloroethene	0.094		0.010	0.0030	mg/L	1	8260B	TCLP
Barium	0.38		0.050	0.0041	mg/L	1	6010C	TCLP
Cadmium	0.0047	J	0.025	0.00065	mg/L	1	6010C	TCLP
Chromium	0.0083	J	0.050	0.0033	mg/L	1	6010C	TCLP
Lead	0.020	J	0.045	0.014	mg/L	1	6010C	TCLP
Ignitability	NB				mm/sec	1	1030	Total/NA
pH adj. to 25 deg C	10.7	HF	0.1	0.1	SU	1	9045D	Soluble
Temperature	21.3	HF	1.0	1.0	Degrees C	1	9045D	Soluble

5

Lab Sample ID: 280-177167-1

Method Summary

Client: Leidos, Inc. Project/Site: RVAAP FWGW FS Well Install 2023

5 6 7

Method	Method Description	Protocol	Laboratory
3260B	Volatile Organic Compounds (GC/MS)	SW846	EET DEN
3270D	Semivolatile Organic Compounds (GC/MS)	SW846	EET DEN
3081B	Organochlorine Pesticides (GC)	SW846	EET DEN
3082A	Polychlorinated Biphenyls (PCBs) by Gas Chromatography	SW846	EET DEN
3321A Herb	Herbicides (LC/MS)	SW846	EET DEN
5010C	Metals (ICP)	SW846	EET DEN
7470A	Mercury (CVAA)	SW846	EET DEN
1010A	Ignitability, Pensky-Martens Closed-Cup Method	SW846	EET DEN
1030	Ignitability, Solids	SW846	EET SAV
9012B	Cyanide, Total and/or Amenable	SW846	EET DEN
9034	Sulfide, Acid Soluble and Insoluble (Titrimetric)	SW846	EET DEN
9040C	рН	SW846	EET DEN
9045D	рН	SW846	EET DEN
9056	Anions, Ion Chromatography	SW846	EET DEN
9056A	Anions, Ion Chromatography	SW846	EET DEN
Voisture	Percent Moisture	EPA	EET DEN
1311	TCLP Extraction	SW846	EET DEN
3010A	Preparation, Total Metals	SW846	EET DEN
3510C	Liquid-Liquid Extraction (Separatory Funnel)	SW846	EET DEN
3546	Microwave Extraction	SW846	EET DEN
5030B	Purge and Trap	SW846	EET DEN
7470A	Preparation, Mercury	SW846	EET DEN
9012B	Cyanide, Total and/or Amenable, Distillation	SW846	EET DEN
9030B	Sulfide, Distillation (Acid Soluble and Insoluble)	SW846	EET DEN
OI Leach	Deionized Water Leaching Procedure	ASTM	EET DEN

Protocol References:

ASTM = ASTM International

EPA = US Environmental Protection Agency

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

EET DEN = Eurofins Denver, 4955 Yarrow Street, Arvada, CO 80002, TEL (303)736-0100

EET SAV = Eurofins Savannah, 5102 LaRoche Avenue, Savannah, GA 31404, TEL (912)354-7858

Eurofins Denver

Client: Leidos, Inc. Project/Site: RVAAP FWGW FS Well Install 2023

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
280-177167-1	FWGIDW-230301-WW	Water	05/30/23 12:45	05/31/23 10:40
280-177167-2	FWGIDW-230301-WS	Solid	05/30/23 11:30	05/31/23 10:40

Method: SW846 8260B - Volatile Organic Compounds (GC/MS) - TCLP

Client Sample ID: FWGIDW-230301-WW
Date Collected: 05/30/23 12:45
Date Received: 05/31/23 10:40

Analyte	Result	Qualifier	LOQ	DL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethene	0.0080	U	0.010	0.0023	mg/L			06/12/23 21:45	1
Benzene	0.0080	U	0.010	0.0031	mg/L			06/12/23 21:45	1
Carbon tetrachloride	0.0080	U	0.010	0.0057	mg/L			06/12/23 21:45	1
Chlorobenzene	0.0080	U	0.010	0.0042	mg/L			06/12/23 21:45	1
Chloroform	0.0080	U	0.010	0.0036	mg/L			06/12/23 21:45	1
Tetrachloroethene	0.0080	U	0.010	0.0040	mg/L			06/12/23 21:45	1
Trichloroethene	0.0040	U	0.010	0.0030	mg/L			06/12/23 21:45	1
Vinyl chloride	0.010	U	0.020	0.0051	mg/L			06/12/23 21:45	1
Surrogate	%Recoverv	Qualifier	Limits				Prepared	Analvzed	Dil Fac

Sunoyale	/arecovery	Quaimer	LIIIIIIS		Frepareu	Analyzeu	DiiFac
1,2-Dichloroethane-d4 (Surr)	82		64 - 129	-		06/12/23 21:45	1
4-Bromofluorobenzene (Surr)	95		78 - 121			06/12/23 21:45	1
Dibromofluoromethane (Surr)	88		79 - 119			06/12/23 21:45	1
Toluene-d8 (Surr)	102		78 - 120			06/12/23 21:45	1

Client Sample ID: FWGIDW-230301-WS Date Collected: 05/30/23 11:30 Date Received: 05/31/23 10:40

Analyte	Result	Qualifier	LOQ	DL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	0.0080	U	0.010	0.0031	mg/L			06/09/23 04:09	1
2-Butanone (MEK)	0.12	U	0.15	0.060	mg/L			06/09/23 04:09	1
Carbon tetrachloride	0.0080	U	0.010	0.0057	mg/L			06/09/23 04:09	1
Chlorobenzene	0.0080	U	0.010	0.0042	mg/L			06/09/23 04:09	1
Chloroform	0.0080	U	0.010	0.0036	mg/L			06/09/23 04:09	1
1,2-Dichloroethane	0.0080	UM	0.010	0.0054	mg/L			06/09/23 04:09	1
1,1-Dichloroethene	0.0080	U	0.010	0.0023	mg/L			06/09/23 04:09	1
Tetrachloroethene	0.0080	U	0.010	0.0040	mg/L			06/09/23 04:09	1
Trichloroethene	0.094		0.010	0.0030	mg/L			06/09/23 04:09	1
Vinyl chloride	0.010	U	0.020	0.0051	mg/L			06/09/23 04:09	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	99		78 - 120			-		06/09/23 04:09	1
1,2-Dichloroethane-d4 (Surr)	103		64 - 129					06/09/23 04:09	1
4-Bromofluorobenzene (Surr)	101		78 - 121					06/09/23 04:09	1
Dibromofluoromethane (Surr)	100		79 - 119					06/09/23 04:09	1

Method: SW846 8260B - Volatile Organic Compounds (GC/MS) - TCLP - RA

Client Sample ID: FWGIDW-230301-WW Date Collected: 05/30/23 12:45 Date Received: 05/31/23 10:40

Result	Qualifier	LOQ	DL	Unit	D	Prepared	Analyzed	Dil Fac
0.0080	UH	0.010	0.0054	mg/L			06/14/23 20:57	1
0.12	UH	0.15	0.060	mg/L			06/14/23 20:57	1
%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
99		64 - 129					06/14/23 20:57	1
92		78 - 121					06/14/23 20:57	1
102		79 - 119					06/14/23 20:57	1
102								
	0.0080 0.12 %Recovery 99	99 92	0.0080 U H 0.010 0.12 U H 0.15 %Recovery Qualifier Limits 99 64 - 129 92 78 - 121	0.0080 U H 0.010 0.0054 0.12 U H 0.15 0.060 %Recovery Qualifier Limits 99 64 - 129 92 78 - 121	0.0080 U H 0.010 0.0054 mg/L 0.12 U H 0.15 0.060 mg/L %Recovery Qualifier Limits 99 64 - 129 78 - 121	0.0080 U H 0.010 0.0054 mg/L 0.12 U H 0.15 0.060 mg/L %Recovery Qualifier Limits 99 64 - 129 78 - 121	0.0080 U H 0.010 0.0054 mg/L 0.12 U H 0.15 0.060 mg/L %Recovery Qualifier Limits Prepared 99 64 - 129 78 - 121 1000000000000000000000000000000000000	0.0080 U H 0.010 0.0054 mg/L 06/14/23 20:57 0.12 U H 0.15 0.060 mg/L 06/14/23 20:57 %Recovery Qualifier Limits Prepared Analyzed 99 64 - 129 06/14/23 20:57 06/14/23 20:57 92 78 - 121 06/14/23 20:57 06/14/23 20:57

Lab Sample ID: 280-177167-2

Lab Sample ID: 280-177167-1

Matrix: Solid

Matrix: Water

Lab Sample ID: 280-177167-1

Eurofins Denver

Matrix: Water

9 10 11

8

Method: SW846 8270D - Semivolatile Organic Compounds (GC/MS) - TCLP

108

Client Sample ID: FWGIDW-230301-WW Date Collected: 05/30/23 12:45 Date Received: 05/31/23 10:40

Analyte	Result	Qualifier	LOQ	DL	Unit	D	Prepared	Analyzed	Dil Fac
1,4-Dichlorobenzene	0.0032	U	0.0040	0.0014	mg/L		06/09/23 14:55	06/14/23 14:04	1
2,4-Dinitrotoluene	0.0080	U	0.010	0.0014	mg/L		06/09/23 14:55	06/14/23 14:04	1
Hexachlorobenzene	0.0080	U	0.010	0.00086	mg/L		06/09/23 14:55	06/14/23 14:04	1
Hexachlorobutadiene	0.0080	U	0.010	0.0029	mg/L		06/09/23 14:55	06/14/23 14:04	1
Hexachloroethane	0.0080	U	0.010	0.0045	mg/L		06/09/23 14:55	06/14/23 14:04	1
2-Methylphenol	0.0080	U	0.010	0.00077	mg/L		06/09/23 14:55	06/14/23 14:04	1
3 & 4 Methylphenol	0.0080	U	0.010	0.00080	mg/L		06/09/23 14:55	06/14/23 14:04	1
Nitrobenzene	0.0080	U	0.010	0.0013	mg/L		06/09/23 14:55	06/14/23 14:04	1
Pentachlorophenol	0.048	U	0.050	0.020	mg/L		06/09/23 14:55	06/14/23 14:04	1
Pyridine	0.048	UQ	0.050	0.018	mg/L		06/09/23 14:55	06/14/23 14:04	1
2,4,5-Trichlorophenol	0.0080	U	0.010	0.00090	mg/L		06/09/23 14:55	06/14/23 14:04	1
2,4,6-Trichlorophenol	0.0080	U	0.010	0.00071	mg/L		06/09/23 14:55	06/14/23 14:04	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	78		44 - 119				06/09/23 14:55	06/14/23 14:04	1
2-Fluorophenol (Surr)	77		19 - 119				06/09/23 14:55	06/14/23 14:04	1
2,4,6-Tribromophenol (Surr)	98		43 - 140				06/09/23 14:55	06/14/23 14:04	1
Nitrobenzene-d5 (Surr)	90		44 - 120				06/09/23 14:55	06/14/23 14:04	1
Phenol-d5 (Surr)	63		10 - 115				06/09/23 14:55	06/14/23 14:04	1

50 - 134

Client Sample ID: FWGIDW-230301-WS Date Collected: 05/30/23 11:30 Date Received: 05/31/23 10:40

Terphenyl-d14 (Surr)

J:40								
Result	Qualifier	LOQ	DL	Unit	D	Prepared	Analyzed	Dil Fac
0.0032	U	0.0040	0.0014	mg/L		06/06/23 18:16	06/08/23 17:54	1
0.0080	U	0.010	0.0014	mg/L		06/06/23 18:16	06/08/23 17:54	1
0.0080	U	0.010	0.00086	mg/L		06/06/23 18:16	06/08/23 17:54	1
0.0080	U	0.010	0.0029	mg/L		06/06/23 18:16	06/08/23 17:54	1
0.0080	U	0.010	0.0045	mg/L		06/06/23 18:16	06/08/23 17:54	1
0.0080	U	0.010	0.00077	mg/L		06/06/23 18:16	06/08/23 17:54	1
0.0080	U	0.010	0.00080	mg/L		06/06/23 18:16	06/08/23 17:54	1
0.0080	U	0.010	0.0013	mg/L		06/06/23 18:16	06/08/23 17:54	1
0.048	U	0.050	0.020	mg/L		06/06/23 18:16	06/08/23 17:54	1
0.048	U	0.050	0.018	mg/L		06/06/23 18:16	06/08/23 17:54	1
0.0080	U	0.010	0.00090	mg/L		06/06/23 18:16	06/08/23 17:54	1
0.0080	U	0.010	0.00071	mg/L		06/06/23 18:16	06/08/23 17:54	1
%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
77		44 - 119				06/06/23 18:16	06/08/23 17:54	1
69		19 - 119				06/06/23 18:16	06/08/23 17:54	1
97		43 - 140				06/06/23 18:16	06/08/23 17:54	1
80		44 - 120				06/06/23 18:16	06/08/23 17:54	1
62		10 - 115				06/06/23 18:16	06/08/23 17:54	1
102		50 - 134				06/06/23 18:16	06/08/23 17:54	1
	Result 0.0032 0.0080 97 80 62	Result Qualifier 0.0032 U 0.0080 U 0.048 U 0.0080 U 0.0097 80	$\begin{tabular}{ c c c c } \hline Result & Qualifier & LOQ \\ \hline 0.0032 & U & 0.0040 \\ \hline 0.0080 & U & 0.010 \\ \hline 0.0080 & U & 0.050 \\ \hline 0.048 & U & 0.050 \\ \hline 0.048 & U & 0.050 \\ \hline 0.048 & U & 0.050 \\ \hline 0.0080 & U & 0.010 \\ \hline 0.0080 & U & 0.010 \\ \hline 0.0080 & U & 0.010 \\ \hline 0.0080 & U & 0.110 \\ \hline 0.0080 & U & 0.110 \\ \hline 0.0080 & U & 0.110 \\ \hline 0.0080 & U & 0.010 \\ \hline 0.0080 & U & 0.110 \\ \hline 0.0080 & U$	$\begin{tabular}{ c c c c c } \hline Result Qualifier & LOQ & DL \\ \hline 0.0032 U & 0.0040 & 0.0014 \\ \hline 0.0080 U & 0.010 & 0.0014 \\ \hline 0.0080 U & 0.010 & 0.0086 \\ \hline 0.0080 U & 0.010 & 0.0029 \\ \hline 0.0080 U & 0.010 & 0.0045 \\ \hline 0.0080 U & 0.010 & 0.0045 \\ \hline 0.0080 U & 0.010 & 0.00077 \\ \hline 0.0080 U & 0.010 & 0.00080 \\ \hline 0.0080 U & 0.010 & 0.0013 \\ \hline 0.0080 U & 0.010 & 0.0013 \\ \hline 0.0080 U & 0.050 & 0.020 \\ \hline 0.048 U & 0.050 & 0.018 \\ \hline 0.0080 U & 0.010 & 0.00090 \\ \hline 0.0080 U & 0.010 & 0.00091 \\ \hline \end{tabular} $	$\begin{tabular}{ c c c c c c } \hline Result Qualifier & LOQ & DL Unit \\ \hline 0.0032 U & 0.0040 & 0.0014 mg/L \\ \hline 0.0080 U & 0.010 & 0.0014 mg/L \\ \hline 0.0080 U & 0.010 & 0.0029 mg/L \\ \hline 0.0080 U & 0.010 & 0.0029 mg/L \\ \hline 0.0080 U & 0.010 & 0.0045 mg/L \\ \hline 0.0080 U & 0.010 & 0.00077 mg/L \\ \hline 0.0080 U & 0.010 & 0.00080 mg/L \\ \hline 0.0080 U & 0.010 & 0.0013 mg/L \\ \hline 0.0080 U & 0.010 & 0.0013 mg/L \\ \hline 0.0080 U & 0.050 & 0.020 mg/L \\ \hline 0.0080 U & 0.010 & 0.00090 mg/L \\ \hline 0.0080 U & 0.010 & 0.00090 mg/L \\ \hline 0.0080 U & 0.010 & 0.00071 mg/L \\ \hline \end{tabular}$	$\begin{tabular}{ c c c c c c } \hline Result Qualifier & LOQ & DL Unit & D \\ \hline 0.0032 U & 0.0040 & 0.0014 mg/L \\ \hline 0.0080 U & 0.010 & 0.0014 mg/L \\ \hline 0.0080 U & 0.010 & 0.00086 mg/L \\ \hline 0.0080 U & 0.010 & 0.0029 mg/L \\ \hline 0.0080 U & 0.010 & 0.0045 mg/L \\ \hline 0.0080 U & 0.010 & 0.00077 mg/L \\ \hline 0.0080 U & 0.010 & 0.00080 mg/L \\ \hline 0.0080 U & 0.010 & 0.0013 mg/L \\ \hline 0.0080 U & 0.050 & 0.020 mg/L \\ \hline 0.048 U & 0.050 & 0.018 mg/L \\ \hline 0.0080 U & 0.010 & 0.00090 mg/L \\ \hline 0.0080 U & 0.010 & 0.00071 mg/L \\ \hline \hline 0.0080 U & 0.010 & 0.00071 mg/L \\ \hline \hline \end{tabular}$	ResultQualifierLOQDLUnitDPrepared 0.0032 U 0.0040 0.0014 mg/L $06/06/23$ 18:16 0.0080 U 0.010 0.0014 mg/L $06/06/23$ 18:16 0.0080 U 0.010 0.0008 mg/L $06/06/23$ 18:16 0.0080 U 0.010 0.0029 mg/L $06/06/23$ 18:16 0.0080 U 0.010 0.0029 mg/L $06/06/23$ 18:16 0.0080 U 0.010 0.0029 mg/L $06/06/23$ 18:16 0.0080 U 0.010 0.0045 mg/L $06/06/23$ 18:16 0.0080 U 0.010 0.00077 mg/L $06/06/23$ 18:16 0.0080 U 0.010 0.00080 mg/L $06/06/23$ 18:16 0.0080 U 0.010 0.0013 mg/L $06/06/23$ 18:16 0.0080 U 0.010 0.0013 mg/L $06/06/23$ 18:16 0.0080 U 0.010 0.0090 mg/L $06/06/23$ 18:16 0.0080 U 0.010 0.00090 mg/L $06/06/23$ 18:16 0.0080 U 0.010 0.00090 mg/L $06/06/23$ 18:16 0.0080 U 0.010 0.00090 mg/L $06/06/23$ 18:16 0.0080 U 0.010 0.00071 mg/L $06/06/23$ 18:16 0.0080 U 0.010 0.00071 mg/L $06/06/23$ 18:16 0.0080 U 0.010 0.00071 mg/L $06/06/23$ 18:16 </td <td>$\begin{array}{ c c c c c c c c c c c c c c c c c c c$</td>	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$

6/29/2023

Matrix: Water

Lab Sample ID: 280-177167-1

Lab Sample ID: 280-177167-2 Matrix: Solid

06/09/23 14:55 06/14/23 14:04

Job ID: 280-177167-1

14

1

Matrix: Water

Lab Sample ID: 280-177167-1

06/09/23 15:02 06/14/23 17:09

06/09/23 15:02 06/14/23 17:09

Lab Sample ID: 280-177167-2

Method: SW846 8081B - Organochlorine Pesticides (GC) - TCLP

Client Sample ID: FWGIDW-230301-WW Date Collected: 05/30/23 12:45 Date Received: 05/31/23 10:40

Date Received: 05/31/23 10:40									
Analyte	Result	Qualifier	LOQ	DL	Unit	D	Prepared	Analyzed	Dil Fac
Endrin	0.00020	U	0.00050	0.000079	mg/L		06/09/23 15:02	06/14/23 17:09	1
Heptachlor	0.00020	U	0.00050	0.000077	mg/L		06/09/23 15:02	06/14/23 17:09	1
Heptachlor epoxide	0.00020	U	0.00050	0.000075	mg/L		06/09/23 15:02	06/14/23 17:09	1
gamma-BHC (Lindane)	0.00020	U	0.00050	0.000069	mg/L		06/09/23 15:02	06/14/23 17:09	1
Methoxychlor	0.00050	U	0.0010	0.00013	mg/L		06/09/23 15:02	06/14/23 17:09	1
Toxaphene	0.0075	U	0.020	0.0037	mg/L		06/09/23 15:02	06/14/23 17:09	1
Chlordane (technical)	0.0040	U	0.0050	0.0014	mg/L		06/09/23 15:02	06/14/23 17:09	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac

Surrogate	%Recovery	Qualifier	Limits
Tetrachloro-m-xylene	50		28 - 115
DCB Decachlorobiphenyl	76		34 - 122

Client Sample ID: FWGIDW-230301-WS Date Collected: 05/30/23 11:30 Date Received: 05/31/23 10:40

Analyte	Result	Qualifier	LOQ	DL	Unit	D	Prepared	Analyzed	Dil Fac
Endrin	0.00020	U	0.00050	0.000079	mg/L		06/08/23 12:12	06/09/23 23:45	1
Heptachlor	0.00020	U	0.00050	0.000077	mg/L		06/08/23 12:12	06/09/23 23:45	1
Heptachlor epoxide	0.00020	U	0.00050	0.000075	mg/L		06/08/23 12:12	06/09/23 23:45	1
gamma-BHC (Lindane)	0.00020	U	0.00050	0.000069	mg/L		06/08/23 12:12	06/09/23 23:45	1
Methoxychlor	0.00050	U	0.0010	0.00013	mg/L		06/08/23 12:12	06/09/23 23:45	1
Toxaphene	0.0075	U	0.020	0.0037	mg/L		06/08/23 12:12	06/09/23 23:45	1
Chlordane (technical)	0.0040	U	0.0050	0.0014	mg/L		06/08/23 12:12	06/09/23 23:45	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	72		28 - 115				06/08/23 12:12	06/09/23 23:45	1
DCB Decachlorobiphenyl	81		34 - 122				06/08/23 12:12	06/09/23 23:45	1

Method: SW846 8082A - Polychlorinated Biphenyls (PCBs) by Gas Chromatography

Client Sample ID: FWGIDV Date Collected: 05/30/23 1 Date Received: 05/31/23 1	2:45						Lab Sam	ple ID: 280-17 Matrix:	7167-1 Water
Analyte	Result	Qualifier	LOQ	DL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	0.41	UQ	1.0	0.13	ug/L		06/02/23 16:17	06/07/23 21:26	1
PCB-1221	0.26	U	1.0	0.22	ug/L		06/02/23 16:17	06/07/23 21:26	1
PCB-1232	0.61	U	1.0	0.17	ug/L		06/02/23 16:17	06/07/23 21:26	1
PCB-1242	0.92	U	1.0	0.43	ug/L		06/02/23 16:17	06/07/23 21:26	1
PCB-1248	0.31	U	1.0	0.093	ug/L		06/02/23 16:17	06/07/23 21:26	1
PCB-1254	0.26	U	1.0	0.12	ug/L		06/02/23 16:17	06/07/23 21:26	1
PCB-1260	0.41	UQ	1.0	0.16	ug/L		06/02/23 16:17	06/07/23 21:26	1
PCB-1262	0.51	U	1.0	0.23	ug/L		06/02/23 16:17	06/07/23 21:26	1
PCB-1268	0.92	U	1.0	0.37	ug/L		06/02/23 16:17	06/07/23 21:26	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	93	Q	25 - 120				06/02/23 16:17	06/07/23 21:26	1
DCB Decachlorobiphenyl	134	Q	30 - 136				06/02/23 16:17	06/07/23 21:26	1

1

1

Matrix: Solid

Job ID: 280-177167-1

5

8

Method: SW846 8082A - Polychlorinated Biphenyls (PCBs) by Gas Chromatography

Date Collected: 05/30/23								Matrix	
Date Received: 05/31/23 1	0:40							Percent Solid	ls: 80.0
Analyte	Result	Qualifier	LOQ	DL	Unit	D	Prepared	Analyzed	Dil Fa
PCB-1016	38	UM	83	26	ug/Kg	¢	06/12/23 12:18	06/14/23 14:14	
PCB-1221	75	U	120	39	ug/Kg	¢	06/12/23 12:18	06/14/23 14:14	
PCB-1232	27	UM	83	13	ug/Kg	¢	06/12/23 12:18	06/14/23 14:14	
PCB-1242	75	UM	83	23	ug/Kg	¢	06/12/23 12:18	06/14/23 14:14	
PCB-1248	38	UM	83	20	ug/Kg	₽	06/12/23 12:18	06/14/23 14:14	
PCB-1254	38	U	83	14	ug/Kg	¢	06/12/23 12:18	06/14/23 14:14	
PCB-1260	38	U	83	21	ug/Kg	₽	06/12/23 12:18	06/14/23 14:14	
PCB-1262	27	U	83	6.8	ug/Kg	₽	06/12/23 12:18	06/14/23 14:14	
PCB-1268	75	U	83	26	ug/Kg	¢	06/12/23 12:18	06/14/23 14:14	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
Tetrachloro-m-xylene	84		44 - 130				06/12/23 12:18	06/14/23 14:14	
DCB Decachlorobiphenyl	70		59 - 130				06/12/23 12:18	06/14/23 14:14	

Method: SW846 8321A Herb - Herbicides (LC/MS) - TCLP

Client Sample ID: FWGIDW-2 Date Collected: 05/30/23 12:4							Lab San	ple ID: 280-17 Matrix	
Date Received: 05/31/23 10:4	-							Wath	. Water
Analyte		Qualifier	LOQ	DL	Unit	D	Prepared	Analyzed	Dil Fac
2,4-D	4.0	UM	5.0	1.6	ug/L			06/09/23 20:43	1
Silvex (2,4,5-TP)	2.0	U	5.0	0.97	ug/L			06/09/23 20:43	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2,4-Dichlorophenylacetic acid (Surr)	90		25 - 125					06/09/23 20:43	1
Client Sample ID: FWGIDW-2	30301-WS						Lab Sam	ple ID: 280-17	7167-2
Date Collected: 05/30/23 11:3								·	: Solid
Date Received: 05/31/23 10:4	0								
Analyte	Result	Qualifier	LOQ	DL	Unit	D	Prepared	Analyzed	Dil Fac
2,4-D	40	UM	50	16	ug/L			06/07/23 19:05	10
Silvex (2,4,5-TP)	20	U	50	9.7	ug/L			06/07/23 19:05	10
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
	98							06/07/23 19:05	

Method: SW846 6010C - Metals (ICP) - TCLP

Client Sample ID: FWGIDW-230301-WW Date Collected: 05/30/23 12:45

Date Received: 05/31/23 10:40

Analyte	Result	Qualifier	LOQ	DL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	0.014	U	0.015	0.0044	mg/L		06/12/23 07:57	06/12/23 15:57	1
Barium	0.0070	J	0.010	0.00082	mg/L		06/12/23 07:57	06/12/23 15:57	1
Cadmium	0.00023	J	0.0050	0.00013	mg/L		06/12/23 07:57	06/12/23 15:57	1
Chromium	0.00087	J	0.010	0.00066	mg/L		06/12/23 07:57	06/12/23 15:57	1
Lead	0.0075	U	0.0090	0.0027	mg/L		06/12/23 07:57	06/12/23 15:57	1
Selenium	0.019	U	0.020	0.0063	mg/L		06/12/23 07:57	06/12/23 15:57	1
Silver	0.0060	U	0.010	0.0020	mg/L		06/12/23 07:57	06/12/23 15:57	1
	Analyte Arsenic Barium Cadmium Chromium Lead Selenium	Analyte Result Arsenic 0.014 Barium 0.0070 Cadmium 0.00023 Chromium 0.00087 Lead 0.019	Analyte Result Qualifier Arsenic 0.014 U Barium 0.0070 J Cadmium 0.00023 J Chromium 0.00087 J Lead 0.0175 U Selenium 0.019 U	Analyte Result Qualifier LOQ Arsenic 0.014 U 0.015 Barium 0.0070 J 0.010 Cadmium 0.00023 J 0.0050 Chromium 0.00087 J 0.010 Lead 0.0175 U 0.0090 Selenium 0.019 U 0.020	Analyte Result Qualifier LOQ DL Arsenic 0.014 U 0.015 0.0044 Barium 0.0070 J 0.010 0.0082 Cadmium 0.00023 J 0.0010 0.00066 Lead 0.0075 U 0.0090 0.0027 Selenium 0.019 U 0.020 0.0063	Analyte Result Qualifier LOQ DL Unit Arsenic 0.014 U 0.015 0.0044 mg/L Barium 0.0070 J 0.010 0.00082 mg/L Cadmium 0.00023 J 0.010 0.00066 mg/L Chromium 0.00087 J 0.010 0.00066 mg/L Lead 0.0075 U 0.0090 0.0027 mg/L Selenium 0.019 U 0.020 0.0063 mg/L	Analyte Result Qualifier LOQ DL Unit D Arsenic 0.014 U 0.015 0.0044 mg/L P Barium 0.0070 J 0.010 0.00082 mg/L P Cadmium 0.00023 J 0.010 0.00066 mg/L P Chromium 0.00087 J 0.010 0.00066 mg/L P Lead 0.019 U 0.020 0.0063 mg/L	Analyte Result Qualifier LOQ DL Unit D Prepared Arsenic 0.014 U 0.015 0.0044 mg/L 06/12/23 07:57 Barium 0.0070 J 0.010 0.0082 mg/L 06/12/23 07:57 Cadmium 0.00023 J 0.0050 0.00013 mg/L 06/12/23 07:57 Chromium 0.00087 J 0.010 0.00066 mg/L 06/12/23 07:57 Lead 0.0075 U 0.010 0.0027 mg/L 06/12/23 07:57 Selenium 0.019 U 0.020 0.0063 mg/L 06/12/23 07:57	AnalyteResultQualifierLOQDLUnitDPreparedAnalyzedArsenic0.014U0.0150.0044mg/L06/12/23 07:5706/12/23 15:57Barium0.0070J0.0100.00082mg/L06/12/23 07:5706/12/23 15:57Cadmium0.00023J0.00500.00013mg/L06/12/23 07:5706/12/23 15:57Chromium0.00087J0.0100.00066mg/L06/12/23 07:5706/12/23 15:57Lead0.0075U0.00900.0027mg/L06/12/23 07:5706/12/23 15:57Selenium0.019U0.0200.0063mg/L06/12/23 07:5706/12/23 15:57

Eurofins Denver

Matrix: Water

Lab Sample ID: 280-177167-1

Client: Leidos, Inc. Project/Site: RVAAP FWGW FS Well Install 2023 Job ID: 280-177167-1

Client Sample ID: FWGIDW-2303 Date Collected: 05/30/23 11:30						Lab Sam	ole ID: 280-17 Matrix	7167-2 : Solid	
Date Received: 05/31/23 10:40 Analyte	Rosult	Qualifier	LOQ	וח	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	0.071		0.075	0.022			06/07/23 14:07	06/08/23 13:17	1
Barium	0.38	0	0.050	0.0041	-		06/07/23 14:07	06/08/23 13:17	1
Cadmium	0.0047		0.025	0.00065	0			06/08/23 13:17	1
Chromium	0.0083		0.050	0.0033				06/08/23 13:17	 1
Lead	0.020		0.045	0.014	0			06/08/23 13:17	1
Selenium	0.095		0.10	0.032	0			06/08/23 13:17	1
Silver	0.030		0.050	0.0098				06/08/23 13:17	
ethod: SW846 7470A - Me	rcury (C	VAA) - T	CLP						
Client Sample ID: FWGIDW-2303						Lab Sam	ole ID: 280-17	7167-1	
Date Collected: 05/30/23 12:45								Matrix	Water
Date Received: 05/31/23 10:40									
Analyte	Result	Qualifier	LOQ	DL	Unit	D	Prepared	Analyzed	Dil Fac
/lercury	0.000080	U	0.00020	0.000061	mg/L		06/09/23 14:00	06/09/23 17:36	1
Client Sample ID: FWGIDW-2303	201_WS						Lah Sami	ole ID: 280-17	7167-2
Date Collected: 05/30/23 11:30	501-445						Lab Salin		: Solid
Date Received: 05/31/23 10:40								Watin	. 30114
Analyte	Pocult	Qualifier	LOQ	וח	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	0.000080		0.00020	0.000061			06/07/23 16:11	06/07/23 21:19	1 - Dil Fac
vicioury	0.000000	0	0.00020	0.000001	ilig/L		00/07/20 10:11	00/01/20 21:10	
eneral Chemistry									
	301-WW						Lab Sam	ole ID: 280-17	7167-1
Client Sample ID: FWGIDW-2303	301-WW						Lab Sam	ple ID: 280-17 Matrix	
Client Sample ID: FWGIDW-2303 Date Collected: 05/30/23 12:45	301-WW						Lab Sam	ole ID: 280-17 Matrix:	
Client Sample ID: FWGIDW-2303 Date Collected: 05/30/23 12:45 Date Received: 05/31/23 10:40		Qualifier	LOQ	DL	Unit	D	Lab Sam		
Client Sample ID: FWGIDW-230: Date Collected: 05/30/23 12:45 Date Received: 05/31/23 10:40 Analyte		Qualifier			Unit Degrees F	D		Matrix	Water
Client Sample ID: FWGIDW-2303 Date Collected: 05/30/23 12:45 Date Received: 05/31/23 10:40 Analyte Flashpoint (SW846 1010A)	Result			1.00	Degrees F	<u>D</u>		Matrix: Analyzed	Water Dil Fac
Client Sample ID: FWGIDW-2303 Date Collected: 05/30/23 12:45 Date Received: 05/31/23 10:40 Analyte Flashpoint (SW846 1010A) Cyanide, Total (SW846 9012B)	Result >160	U	1.00	1.00 0.0050	Degrees F	<u>D</u>		Matrix: Analyzed 06/13/23 14:04	Water Dil Fac
Client Sample ID: FWGIDW-2303 Date Collected: 05/30/23 12:45 Date Received: 05/31/23 10:40 Analyte Flashpoint (SW846 1010A) Cyanide, Total (SW846 9012B) Sulfide (SW846 9034)	Result >160 0.0090 2.0	U U	1.00 0.010	1.00 0.0050 1.6	Degrees F mg/L	_ <u>D</u>	Prepared	Matrix: Analyzed 06/13/23 14:04 06/06/23 10:36	Water Dil Fac 1 1
Client Sample ID: FWGIDW-230: Date Collected: 05/30/23 12:45 Date Received: 05/31/23 10:40 Analyte Flashpoint (SW846 1010A) Cyanide, Total (SW846 9012B) Sulfide (SW846 9034) oH adj. to 25 deg C (SW846 9040C)	Result >160 0.0090 2.0 7.8	U U HF	1.00 0.010 4.0 0.1	1.00 0.0050 1.6 0.1	Degrees F mg/L mg/L SU	_ <u>D</u>	Prepared	Matrix: Analyzed 06/13/23 14:04 06/06/23 10:36 06/06/23 12:08 06/02/23 16:11	Water Dil Fac
Client Sample ID: FWGIDW-230: Date Collected: 05/30/23 12:45 Date Received: 05/31/23 10:40 Analyte Flashpoint (SW846 1010A) Cyanide, Total (SW846 9012B) Sulfide (SW846 9034) DH adj. to 25 deg C (SW846 9040C) Temperature (SW846 9040C)	Result >160 0.0090 2.0 7.8 20.8	U U HF	1.00 0.010 4.0 0.1 1.0	1.00 0.0050 1.6 0.1 1.0	Degrees F mg/L mg/L SU Degrees C	_ <u>D</u>	Prepared	Matrix: <u>Analyzed</u> 06/13/23 14:04 06/06/23 10:36 06/06/23 12:08 06/02/23 16:11 06/02/23 16:11	Dil Fac
Client Sample ID: FWGIDW-230: Date Collected: 05/30/23 12:45 Date Received: 05/31/23 10:40 Analyte Flashpoint (SW846 1010A) Cyanide, Total (SW846 9012B) Sulfide (SW846 9034) oH adj. to 25 deg C (SW846 9040C) Temperature (SW846 9040C) Nitrate as N (SW846 9056)	Result >160 0.0090 2.0 7.8	U U HF HF	1.00 0.010 4.0 0.1	1.00 0.0050 1.6 0.1	Degrees F mg/L mg/L SU Degrees C mg/L	_ <u>D</u>	Prepared	Matrix: Analyzed 06/13/23 14:04 06/06/23 10:36 06/06/23 12:08 06/02/23 16:11	Water 1 1 1 1 1 1 1
Client Sample ID: FWGIDW-230: Date Collected: 05/30/23 12:45 Date Received: 05/31/23 10:40 Analyte Flashpoint (SW846 1010A) Cyanide, Total (SW846 9012B) Sulfide (SW846 9034) DH adj. to 25 deg C (SW846 9040C) Temperature (SW846 9040C) Nitrate as N (SW846 9056) Nitrite as N (SW846 9056)	Result >160 0.0090 2.0 7.8 20.8 0.52 0.13	U U HF HF	1.00 0.010 4.0 0.1 1.0 0.50	1.00 0.0050 1.6 0.1 1.0 0.090	Degrees F mg/L mg/L SU Degrees C mg/L	_ <u>D</u>	Prepared 06/06/23 12:06	Matrix: <u>Analyzed</u> 06/13/23 14:04 06/06/23 10:36 06/02/23 10:36 06/02/23 16:11 06/02/23 16:11 05/31/23 18:16 05/31/23 18:16	Water Dil Fac 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Client Sample ID: FWGIDW-230: Date Collected: 05/30/23 12:45 Date Received: 05/31/23 10:40 Analyte Flashpoint (SW846 1010A) Cyanide, Total (SW846 9012B) Sulfide (SW846 9034) DH adj. to 25 deg C (SW846 9040C) Femperature (SW846 9040C) Nitrate as N (SW846 9056) Nitrite as N (SW846 9056) Client Sample ID: FWGIDW-2303	Result >160 0.0090 2.0 7.8 20.8 0.52 0.13	U U HF HF	1.00 0.010 4.0 0.1 1.0 0.50	1.00 0.0050 1.6 0.1 1.0 0.090	Degrees F mg/L mg/L SU Degrees C mg/L	_ <u>D</u>	Prepared 06/06/23 12:06	Matrix: <u>Analyzed</u> 06/13/23 14:04 06/06/23 10:36 06/06/23 12:08 06/02/23 16:11 06/02/23 16:11 05/31/23 18:16 05/31/23 18:16 05/31/23 18:16	Water Dil Fac 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 7167-2
Client Sample ID: FWGIDW-230: Date Collected: 05/30/23 12:45 Date Received: 05/31/23 10:40 Analyte Flashpoint (SW846 1010A) Cyanide, Total (SW846 9012B) Sulfide (SW846 9034) pH adj. to 25 deg C (SW846 9040C) Temperature (SW846 9040C) Nitrate as N (SW846 9056) Nitrite as N (SW846 9056) Client Sample ID: FWGIDW-230: Date Collected: 05/30/23 11:30	Result >160 0.0090 2.0 7.8 20.8 0.52 0.13	U U HF HF	1.00 0.010 4.0 0.1 1.0 0.50	1.00 0.0050 1.6 0.1 1.0 0.090	Degrees F mg/L mg/L SU Degrees C mg/L	_ <u>D</u>	Prepared 06/06/23 12:06	Matrix: <u>Analyzed</u> 06/13/23 14:04 06/06/23 10:36 06/06/23 12:08 06/02/23 16:11 06/02/23 16:11 05/31/23 18:16 05/31/23 18:16 05/31/23 18:16	Water Dil Fac 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 7167-2
Client Sample ID: FWGIDW-230: Date Collected: 05/30/23 12:45 Date Received: 05/31/23 10:40 Analyte Flashpoint (SW846 1010A) Cyanide, Total (SW846 9012B) Sulfide (SW846 9034) DH adj. to 25 deg C (SW846 9040C) Temperature (SW846 9040C) Nitrate as N (SW846 9040C) Nitrite as N (SW846 9056) Client Sample ID: FWGIDW-2303 Date Collected: 05/30/23 11:30 Date Received: 05/31/23 10:40	Result >160 0.0090 2.0 7.8 20.8 0.52 0.13 301-WS	U U HF HF J	1.00 0.010 4.0 0.1 1.0 0.50 0.50	1.00 0.0050 1.6 0.1 1.0 0.090 0.049	Degrees F mg/L SU Degrees C mg/L mg/L	<u>D</u>	Prepared 06/06/23 12:06 Lab Sam	Matrix: Analyzed 06/13/23 14:04 06/06/23 10:36 06/06/23 12:08 06/02/23 16:11 06/02/23 16:11 05/31/23 18:16 05/31/23 18:16 05/31/23 18:16 05/31/23 18:16 01e ID: 280-17 Matrix	Dil Fac 1 </td
Client Sample ID: FWGIDW-2303 Date Collected: 05/30/23 12:45 Date Received: 05/31/23 10:40 Analyte Flashpoint (SW846 1010A) Cyanide, Total (SW846 9012B) Sulfide (SW846 9034) oH adj. to 25 deg C (SW846 9040C) Temperature (SW846 9040C) Nitrate as N (SW846 9056) Nitrite as N (SW846 9056) Client Sample ID: FWGIDW-2303 Date Collected: 05/30/23 11:30 Date Received: 05/31/23 10:40 Analyte	Result >160 0.0090 2.0 7.8 20.8 0.52 0.13 301-WS Result	U U HF HF	1.00 0.010 4.0 0.1 1.0 0.50	1.00 0.0050 1.6 0.1 1.0 0.090 0.049	Degrees F mg/L SU Degrees C mg/L mg/L	D	Prepared 06/06/23 12:06	Matrix: <u>Analyzed</u> 06/13/23 14:04 06/06/23 10:36 06/06/23 12:08 06/02/23 16:11 06/02/23 16:11 05/31/23 18:16 05/31/23 18:16 05/31/24	Water Dil Fac 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Client Sample ID: FWGIDW-2303 Date Collected: 05/30/23 12:45 Date Received: 05/31/23 10:40 Analyte Flashpoint (SW846 1010A) Cyanide, Total (SW846 9012B) Sulfide (SW846 9034) pH adj. to 25 deg C (SW846 9040C) Temperature (SW846 9040C) Nitrate as N (SW846 9056) Nitrite as N (SW846 9056) Client Sample ID: FWGIDW-2303 Date Collected: 05/30/23 11:30 Date Received: 05/31/23 10:40 Analyte	Result >160 0.0090 2.0 7.8 20.8 0.52 0.13 301-WS	U U HF HF J	1.00 0.010 4.0 0.1 1.0 0.50 0.50	1.00 0.0050 1.6 0.1 1.0 0.090 0.049	Degrees F mg/L SU Degrees C mg/L mg/L		Prepared 06/06/23 12:06 Lab Sam	Matrix: Analyzed 06/13/23 14:04 06/06/23 10:36 06/06/23 12:08 06/02/23 16:11 06/02/23 16:11 05/31/23 18:16 05/31/23 18:16 05/31/23 18:16 05/31/23 18:16 01e ID: 280-17 Matrix	Dil Fac 1 </td
Client Sample ID: FWGIDW-2303 Date Collected: 05/30/23 12:45 Date Received: 05/31/23 10:40 Analyte Flashpoint (SW846 1010A) Cyanide, Total (SW846 9012B) Sulfide (SW846 9034) pH adj. to 25 deg C (SW846 9040C) Temperature (SW846 9040C) Nitrate as N (SW846 9056) Nitrite as N (SW846 9056) Client Sample ID: FWGIDW-2303 Date Collected: 05/30/23 11:30 Date Received: 05/31/23 10:40 Analyte Ignitability (SW846 1030) Percent Moisture (EPA Moisture)	Result >160 0.0090 2.0 7.8 20.8 0.52 0.13 301-WS Result	U U HF HF J	1.00 0.010 4.0 0.1 1.0 0.50 0.50	1.00 0.0050 1.6 0.1 1.0 0.090 0.049	Degrees F mg/L SU Degrees C mg/L mg/L		Prepared 06/06/23 12:06 Lab Sam	Matrix: <u>Analyzed</u> 06/13/23 14:04 06/06/23 10:36 06/06/23 12:08 06/02/23 16:11 06/02/23 16:11 05/31/23 18:16 05/31/23 18:16 05/31/24	Water Dil Fac 1 <td< td=""></td<>

Client Sample ID: FWGIDW-230301-WS Date Collected: 05/30/23 11:30

Matrix: Solid Percent Solids: 80.0 Date Received: 05/31/23 10:40 Analyte **Result Qualifier** LOQ DL Unit D Prepared Analyzed Dil Fac Cyanide, Total (SW846 9012B) 0.45 U 0.57 x 06/08/23 09:43 06/08/23 13:37 0.28 mg/Kg 1 Sulfide (SW846 9034) 9.3 U J1 12 5.0 mg/Kg 06/01/23 11:49 06/01/23 13:56 06/01/23 13:56 06/01/23 13:56 06/01/23 13:56 06/01/23 13:56 06/01/23 13:56 06/01/23 13:56 06/01/23 13:56 06/01/23 13:56 06/01/23 13:56 06/01/23 13:56 06/01/23 13:56 06/01/23 13:56 06/01/23 13:56 06/01/23 13:56 06/01/23 13:56 06/01/23 13:56 06/01/23 13:56 06/01/23 13:56 06/01/23 06/01 06/01 06/01 06/01/23 06/01/23 06/01/23 06/01/23 06/01/23 06/01/23 06/01/23 06/01/23 06/01/23 06/01/23 06/01/23 06/01/23 06/01/23 06/01 06/01/23 06/01 06/ 1

Eurofins Denver

Lab Sample ID: 280-177167-2

Client: Leidos, Inc. Project/Site: RVAAP FWGW FS Well Install 2023

Job ID: 280-177167-1

General Chemistry - Soluble

Client Sample ID: FWGIDW-2303 Date Collected: 05/30/23 11:30 Date Received: 05/31/23 10:40					Lab Sample ID: 280-177167-2 Matrix: Solid			ļ		
Analyte	Result	Qualifier	LOQ	DL	Unit	D	Prepared	Analyzed	Dil Fac	
pH adj. to 25 deg C (SW846 9045D)	10.7	HF	0.1	0.1	SU			06/06/23 11:58	1	ŝ
Temperature (SW846 9045D)	21.3	HF	1.0	1.0	Degrees C			06/06/23 11:58	1	
Client Sample ID: FWGIDW-230301-WS Date Collected: 05/30/23 11:30							Lab San	nple ID: 280-17 Matrix	7167-2 : Solid	
Date Received: 05/31/23 10:40						Percent Solid	ls: 80.0			
Analyte	Result	Qualifier	LOQ	DL	Unit	D	Prepared	Analyzed	Dil Fac	
Nitrate as N (SW846 9056A)	5.8	U	6.2	1.1	mg/Kg	¢		06/10/23 05:36	1	
Nitrite as N (SW846 9056A)	5.8	UH	6.2	1.6	mg/Kg	☆		06/10/23 05:36	1	

Eurofins Denver
Prep Type: TCLP

Prep Type: TCLP

Method: 8260B - Volatile Organic Compounds (GC/MS) Matrix: Solid

							гіер туре	. 10tal/11/
			Pe	ercent Surr	ogate Recov	ery (Accepta	nce Limits)	
		DCA	TOL	BFB	DBFM			
Lab Sample ID	Client Sample ID	(64-129)	(78-120)	(78-121)	(79-119)			
LCS 280-614442/2-A	Lab Control Sample	102	100	104	99			
Surrogate Legend								
DCA = 1,2-Dichloroeth	nane-d4 (Surr)							
TOL = Toluene-d8 (Su	rr)							
BFB = 4-Bromofluorob	penzene (Surr)							
DBFM = Dibromofluor	omethane (Surr)							

Method: 8260B - Volatile Organic Compounds (GC/MS) Matrix: Solid

			Pe	ercent Surro	ogate Recovery (/	Acceptance Limits
		TOL	DCA	BFB	DBFM	
.ab Sample ID	Client Sample ID	(78-120)	(64-129)	(78-121)	(79-119)	
80-177167-2	FWGIDW-230301-WS	99	103	101	100	
_B 280-614442/1-A	Method Blank	100	106	99	104	
LCSD 280-614442/3-A	Lab Control Sample Dup	99	103	100	100	
Surrogate Legend						
TOL = Toluene-d8 (Sur	r)					
DCA = 1,2-Dichloroeth	ane-d4 (Surr)					
BFB = 4-Bromofluorob	enzene (Surr)					
DBFM = Dibromofluoro	omethane (Surr)					

Method: 8260B - Volatile Organic Compounds (GC/MS)

Matrix: Water

Percent Surrogate Recovery (Acceptance Limits) DCA BFB DBFM TOL (64-129) (78-121) (79-119) (78 - 120)Lab Sample ID **Client Sample ID** 280-177167-1 FWGIDW-230301-WW 82 95 88 102 280-177167-1 - RA FWGIDW-230301-WW 99 92 102 97 LB3 280-615640/1-A Method Blank 83 95 89 99 LB3 280-615640/1-A Method Blank 98 94 101 98 LCS 280-615640/2-A Lab Control Sample 84 97 90 99 LCS 280-615640/2-A 101 96 Lab Control Sample 98 95 LCSD 280-615640/3-A Lab Control Sample Dup 85 99 91 100 LCSD 280-615640/3-A Lab Control Sample Dup 100 93 101 97

Surrogate Legend

DCA = 1,2-Dichloroethane-d4 (Surr)

BFB = 4-Bromofluorobenzene (Surr)

DBFM = Dibromofluoromethane (Surr)

TOL = Toluene-d8 (Surr)

Method: 8270D - Semivolatile Organic Compounds (GC/MS) Matrix: Solid

Prep Type: TCLP

		Percent Surrogate Recovery (Acceptance Limits)							
		FBP	2FP	TBP	NBZ	PHL	TPHL		
Lab Sample ID	Client Sample ID	(44-119)	(19-119)	(43-140)	(44-120)	(10-115)	(50-134)		
280-177167-2	FWGIDW-230301-WS	77	69	97	80	62	102		

Eurofins Denver

Surrogate Summary

Client: Leidos, Inc. Project/Site: RVAAP FWGW FS Well Install 2023

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Matrix: Solid

		Percent Surrogate Recovery (Acceptance Limits)						
		FBP	2FP	TBP	NBZ	PHL	TPHL	
Lab Sample ID	Client Sample ID	(44-119)	(19-119)	(43-140)	(44-120)	(10-115)	(50-134)	
LB 280-614928/1-B	Method Blank	82	58	89	80	46	96	
LCS 280-614928/2-B	Lab Control Sample	82	69	85	76	66	88	
Surrogate Legend								
FBP = 2-Fluorobipheny	1							

2FP = 2-Fluorophenol (Surr)

TBP = 2,4,6-Tribromophenol (Surr)

NBZ = Nitrobenzene-d5 (Surr)

PHL = Phenol-d5 (Surr)

TPHL = Terphenyl-d14 (Surr)

Method: 8270D - Semivolatile Organic Compounds (GC/MS)

Matrix: Water

		Percent Surrogate Recovery (Acceptance Limits)							
		FBP	2FP	TBP	NBZ	PHL	TPHL		
Lab Sample ID	Client Sample ID	(44-119)	(19-119)	(43-140)	(44-120)	(10-115)	(50-134)		
280-177167-1	FWGIDW-230301-WW	78	77	98	90	63	108		
LB3 280-615475/1-D	Method Blank	85	82	99	96	67	115		
LCS 280-615475/2-D	Lab Control Sample	90	74	102	94	61	104		
LCSD 280-615475/3-B	Lab Control Sample Dup	90	77	105	94	64	105		

Surrogate Legend

FBP = 2-Fluorobiphenyl

2FP = 2-Fluorophenol (Surr)

TBP = 2,4,6-Tribromophenol (Surr)

NBZ = Nitrobenzene-d5 (Surr)

PHL = Phenol-d5 (Surr)

TPHL = Terphenyl-d14 (Surr)

Method: 8081B - Organochlorine Pesticides (GC) Matrix: Solid

			Percent Surrogate Recovery (Acceptance Limits)				
		TCX1	DCBP1				
Lab Sample ID	Client Sample ID	(28-115)	(34-122)				
280-177167-2	FWGIDW-230301-WS	72	81				
LB 280-614928/1-E	Method Blank	73	78 M				
LCS 280-614928/2-E	Lab Control Sample	88	92				
LCS 280-614928/2-G	Lab Control Sample	77	84				
LCSD 280-614928/3-B	Lab Control Sample Dup	83	88				

Surrogate Legend

TCX = Tetrachloro-m-xylene

DCBP = DCB Decachlorobiphenyl

Method: 8081B - Organochlorine Pesticides (GC)

Matrix: Water

		Percent Surrogate Recovery (Acceptance Limits)						
		TCX1	DCBP1					
Lab Sample ID	Client Sample ID	(28-115)	(34-122)					
280-177167-1	FWGIDW-230301-WW	50	76 — — — — — — — —					

Prep Type: TCLP

```
|2
|3
```

9

Job ID: 280-177167-1

Prep Type: TCLP

Prep Type: TCLP

Prep Type: TCLP

Surrogate Summary

Client: Leidos, Inc. Project/Site: RVAAP FWGW FS Well Install 2023

Method: 8081B - Organochlorine Pesticides (GC) (Continued)

Matrix:	Water

			Pe	rcent Surrogate Recovery (Acceptance Limits)	
		TCX1	DCBP1		
Lab Sample ID	Client Sample ID	(28-115)	(34-122)		
LB3 280-615475/1-F	Method Blank	65	83		
LCS 280-615475/2-F	Lab Control Sample	71	82		
LCS 280-615475/2-G	Lab Control Sample	66	77		
LCSD 280-615475/3-D	Lab Control Sample Dup	69	84		
LCSD 280-615475/3-E	Lab Control Sample Dup	73	85		

Surrogate Legend

TCX = Tetrachloro-m-xylene

DCBP = DCB Decachlorobiphenyl

Method: 8082A - Polychlorinated Biphenyls (PCBs) by Gas Chromatography Matrix: Solid

Prep Type: Total/NA Percent Surrogate Recovery (Acceptance Limits) TCX1 DCBP1 (44-130) (59-130) Lab Sample ID **Client Sample ID** 280-177167-2 FWGIDW-230301-WS 84 70 LCS 280-615721/2-A 97 Lab Control Sample 101 MB 280-615721/1-A Method Blank 106 107 Surrogate Legend

TCX = Tetrachloro-m-xylene

DCBP = DCB Decachlorobiphenyl

Method: 8082A - Polychlorinated Biphenyls (PCBs) by Gas Chromatography Matrix: Water

Matrix: Water				Prep Type: Total/NA
			Percent	t Surrogate Recovery (Acceptance Limits)
		TCX1	DCBP1	
Lab Sample ID	Client Sample ID	(25-120)	(30-136)	
280-177167-1	FWGIDW-230301-WW	93 Q	134 Q	
LCS 280-614674/4-A	Lab Control Sample	93	134	
LCSD 280-614674/5-A	Lab Control Sample Dup	94	136	
MB 280-614674/1-A	Method Blank	79	142 Q	

Surrogate Legend

TCX = Tetrachloro-m-xylene

DCBP = DCB Decachlorobiphenyl

Method: 8321A Herb - Herbicides (LC/MS) Matrix: Solid

Percent Surrogate Recovery (Acceptance Limits)

		DCPAA		
Lab Sample ID	Client Sample ID	(25-125)		
280-177167-2	FWGIDW-230301-WS	98	 	
280-177167-2 MS	FWGIDW-230301-WS	98		
280-177167-2 MSD	FWGIDW-230301-WS	102		
LB 280-614928/1-A	Method Blank	95		
LCS 280-614928/2-A	Lab Control Sample	104		
Surrogate Legend				

DCPAA = 2,4-Dichlorophenylacetic acid (Surr)

Prep Type: TCLP

Prep Type: TCLP

6/29/2023

Surrogate Summary

Job ID: 280-177167-1

Client: Leidos, Inc. Project/Site: RVAAP FWGW FS Well Install 2023 Method: 8321A Herb - Herbicides (LC/MS) Matrix: Water

Prep Type: TCLP

9

			Percent Surrogate Recovery (Acceptance Limits)	
		DCPAA		
Lab Sample ID	Client Sample ID	(25-125)		5
280-177167-1	FWGIDW-230301-WW	90		
280-177167-1 MS	FWGIDW-230301-WW	96		
280-177167-1 MSD	FWGIDW-230301-WW	94		
LB3 280-615475/1-A	Method Blank	99		
LCS 280-615475/2-A	Lab Control Sample	96		
Surrogate Legend				
Surroyate Legenu				8

DCPAA = 2,4-Dichlorophenylacetic acid (Surr)

Prep Type: Total/NA

Client Sample ID: Lab Control Sample

Method: 8260B - Volatile Organic Compounds (GC/MS)

Lab Sample ID: LCS 280-614442/2-A Matrix: Solid Analysis Batch: 615474

	Spike	LCS	LCS				%Rec
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
2-Butanone (MEK)		2.27		mg/L		113	44 - 150
1,2-Dichloroethane	0.500	0.527		mg/L		105	70 - 135
Benzene	0.500	0.449		mg/L		90	74 - 135
1,1-Dichloroethene	0.500	0.413		mg/L		83	71_136
Carbon tetrachloride	0.500	0.477		mg/L		95	67 - 135
Chlorobenzene	0.500	0.473		mg/L		95	76 - 135
Chloroform	0.500	0.479		mg/L		96	76 - 120
Tetrachloroethene	0.500	0.478		mg/L		96	70 - 135
Trichloroethene	0.500	0.458		mg/L		92	73 - 135
Vinyl chloride	0.500	0.409		mg/L		82	40 - 144

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	102		64 - 129
Toluene-d8 (Surr)	100		78 - 120
4-Bromofluorobenzene (Surr)	104		78 - 121
Dibromofluoromethane (Surr)	99		79 - 119

Lab Sample ID: LB 280-614442/1-A Matrix: Solid Analysis Batch: 615474

	LB	LB							
Analyte	Result	Qualifier	LOQ	DL	Unit	D	Prepared	Analyzed	Dil Fac
2-Butanone (MEK)	0.12	U	0.15	0.060	mg/L			06/08/23 23:56	1
1,2-Dichloroethane	0.0080	UM	0.010	0.0054	mg/L			06/08/23 23:56	1
Benzene	0.0080	U	0.010	0.0031	mg/L			06/08/23 23:56	1
1,1-Dichloroethene	0.0080	U	0.010	0.0023	mg/L			06/08/23 23:56	1
Carbon tetrachloride	0.0080	U	0.010	0.0057	mg/L			06/08/23 23:56	1
Chlorobenzene	0.0080	U	0.010	0.0042	mg/L			06/08/23 23:56	1
Chloroform	0.0080	U	0.010	0.0036	mg/L			06/08/23 23:56	1
Tetrachloroethene	0.0080	U	0.010	0.0040	mg/L			06/08/23 23:56	1
Trichloroethene	0.0040	U	0.010	0.0030	mg/L			06/08/23 23:56	1
Vinyl chloride	0.010	U	0.020	0.0051	mg/L			06/08/23 23:56	1
	LB	LB							
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1.2 Diablaraathana d1 (Curr)	106		64 100			-		06/08/02 02.56	- 1

Sunoguto	<i>/////////////////////////////////////</i>	quanner		, ropurou	7 mary 200	Dirruo
1,2-Dichloroethane-d4 (Surr)	106		64 - 129	· · · · · · · · · · · · · · · · · · ·	06/08/23 23:56	1
Toluene-d8 (Surr)	100		78 - 120		06/08/23 23:56	1
4-Bromofluorobenzene (Surr)	99		78 - 121		06/08/23 23:56	1
Dibromofluoromethane (Surr)	104		79 - 119		06/08/23 23:56	1

Lab Sample ID: LCSD 280-614442/3-A Matrix: Solid Analysis Batch: 615474

	Spike	LCSD	LCSD				%Rec		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
2-Butanone (MEK)	2.00	2.40		mg/L		120	44 - 150	6	32
1,2-Dichloroethane	0.500	0.566		mg/L		113	70 - 135	7	20
Benzene	0.500	0.497		mg/L		99	74 - 135	10	20
1,1-Dichloroethene	0.500	0.456		mg/L		91	71 - 136	10	20

Eurofins Denver

Prep Type: TCLP

Client Sample ID: Method Blank Prep Type: TCLP

Client Sample ID: Lab Control Sample Dup

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

.

Job ID: 280-177167-1

Prep Type: TCLP

Client Sample ID: Lab Control Sample Dup

10

Client Sample ID: Method Blank	
Prep Type: TCLP	
	_

Lab Sample ID: LCSD 280-614442/3-A
Matrix: Solid
Analysia Databy 645474

Spike	LCSD	LCSD				%Rec		RPD
Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
0.500	0.537		mg/L		107	67 - 135	12	21
0.500	0.511		mg/L		102	76 - 135	8	20
0.500	0.522		mg/L		104	76 - 120	9	20
0.500	0.515		mg/L		103	70 - 135	7	20
0.500	0.508		mg/L		102	73 - 135	10	20
0.500	0.449		mg/L		90	40 - 144	9	24
	0.500 0.500 0.500 0.500 0.500 0.500	Added Result 0.500 0.537 0.500 0.511 0.500 0.522 0.500 0.515 0.500 0.508	Added Result Qualifier 0.500 0.537 0.500 0.511 0.500 0.511 0.502 0.500 0.515 0.500 0.515 0.500 0.508 0.508	Added Result Qualifier Unit 0.500 0.537 mg/L mg/L 0.500 0.511 mg/L mg/L 0.500 0.522 mg/L 0.500 0.515 mg/L 0.500 0.515 mg/L 0.500 0.508 mg/L	Added Result Qualifier Unit D 0.500 0.537 mg/L mg/L 0.500 0.511 mg/L 0.500 0.522 mg/L 0.500 0.515 mg/L 0.500 0.508 mg/L	Added Result Qualifier Unit D %Rec 0.500 0.537 mg/L 107 0.500 0.511 mg/L 102 0.500 0.522 mg/L 104 0.500 0.515 mg/L 103 0.500 0.508 mg/L 102	Added Result Qualifier Unit D %Rec Limits 0.500 0.537 mg/L 107 67 - 135 0.500 0.511 mg/L 102 76 - 135 0.500 0.522 mg/L 104 76 - 120 0.500 0.515 mg/L 103 70 - 135 0.500 0.508 mg/L 102 73 - 135	Added Result Qualifier Unit D %Rec Limits RPD 0.500 0.537 mg/L 107 67 - 135 12 0.500 0.511 mg/L 102 76 - 135 8 0.500 0.522 mg/L 104 76 - 120 9 0.500 0.515 mg/L 103 70 - 135 7 0.500 0.508 mg/L 102 73 - 135 10

	LCSD	LCSD	
Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	103		64 - 129
Toluene-d8 (Surr)	99		78 - 120
4-Bromofluorobenzene (Surr)	100		78 - 121
Dibromofluoromethane (Surr)	100		79 - 119

Lab Sample ID: LB3 280-615640/1-A Matrix: Water Analysis Batch: 615800

	LB3	LB3							
Analyte	Result	Qualifier	LOQ	DL	Unit	D	Prepared	Analyzed	Dil Fac
2-Butanone (MEK)	0.12	U	0.15	0.060	mg/L			06/12/23 19:53	1
1,2-Dichloroethane	0.0080	U	0.010	0.0054	mg/L			06/12/23 19:53	1
Benzene	0.0080	U	0.010	0.0031	mg/L			06/12/23 19:53	1
1,1-Dichloroethene	0.0080	U	0.010	0.0023	mg/L			06/12/23 19:53	1
Carbon tetrachloride	0.0080	U	0.010	0.0057	mg/L			06/12/23 19:53	1
Chlorobenzene	0.0080	U	0.010	0.0042	mg/L			06/12/23 19:53	1
Chloroform	0.0080	U	0.010	0.0036	mg/L			06/12/23 19:53	1
Tetrachloroethene	0.0080	U	0.010	0.0040	mg/L			06/12/23 19:53	1
Trichloroethene	0.0040	U	0.010	0.0030	mg/L			06/12/23 19:53	1
Vinyl chloride	0.010	U	0.020	0.0051	mg/L			06/12/23 19:53	1

	LB3 L	LB3				
Surrogate	%Recovery (Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	83		64 - 129		06/12/23 19:53	1
Toluene-d8 (Surr)	99		78 - 120		06/12/23 19:53	1
4-Bromofluorobenzene (Surr)	95		78 - 121		06/12/23 19:53	1
Dibromofluoromethane (Surr)	89		79 - 119		06/12/23 19:53	1

Lab Sample ID: LCS 280-615640/2-A Matrix: Water Analysis Batch: 615800

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
2-Butanone (MEK)	2.00	1.59		mg/L		79	44 - 150	
1,2-Dichloroethane	0.500	0.396		mg/L		79	70 - 135	
Benzene	0.500	0.435		mg/L		87	74 - 135	
1,1-Dichloroethene	0.500	0.452		mg/L		90	71 - 136	
Carbon tetrachloride	0.500	0.470		mg/L		94	67 - 135	
Chlorobenzene	0.500	0.488		mg/L		98	76 - 135	
Chloroform	0.500	0.427		mg/L		85	76 - 120	
Tetrachloroethene	0.500	0.533		mg/L		107	70 - 135	

Eurofins Denver

Prep Type: TCLP

Client Sample ID: Lab Control Sample

Spike

Added

0.500

0.500

Limits

64 - 129

78 - 120

78 - 121

79 - 119

LCS LCS

0.481

0.365

Result Qualifier

Unit

mg/L

mg/L

Lab Sample ID: LCS 280-615640/2-A

Matrix: Water

Trichloroethene

Toluene-d8 (Surr)

Vinyl chloride

Surrogate

Analyte

Analysis Batch: 615800

1,2-Dichloroethane-d4 (Surr)

4-Bromofluorobenzene (Surr)

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

LCS LCS

%Recovery Qualifier

84

99

97

Dibromofluoromethane (Surr) 90 Lab Sample ID: LCSD 280-615640/3-A **Matrix: Water** Analysis Batch: 615800

Client Sample ID: Lab Control Sample Dup Prep Type: TCLP

D %Rec

96

73

%Rec

Limits

73 - 135

40 - 144

	Spike	LCSD	LCSD				%Rec		RPD	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit	
2-Butanone (MEK)	2.00	1.59		mg/L		79	44 - 150	0	32	÷
1,2-Dichloroethane	0.500	0.398		mg/L		80	70 - 135	1	20	
Benzene	0.500	0.433		mg/L		87	74 - 135	0	20	÷.
1,1-Dichloroethene	0.500	0.453		mg/L		91	71 - 136	0	20	
Carbon tetrachloride	0.500	0.473		mg/L		95	67 - 135	1	21	
Chlorobenzene	0.500	0.492		mg/L		98	76 - 135	1	20	
Chloroform	0.500	0.427		mg/L		85	76 - 120	0	20	
Tetrachloroethene	0.500	0.517		mg/L		103	70 - 135	3	20	
Trichloroethene	0.500	0.485		mg/L		97	73 - 135	1	20	
Vinyl chloride	0.500	0.368		mg/L		74	40 - 144	1	24	

	LCSD	LCSD	
Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	85		64 - 129
Toluene-d8 (Surr)	100		78 - 120
4-Bromofluorobenzene (Surr)	99		78 - 121
Dibromofluoromethane (Surr)	91		79 - 119

Lab Sample ID: LB3 280-615640/1-A **Matrix: Water** Analysis Batch: 616166

Client Sample ID: Method Blank Prep Type: TCLP

	LB3	LB3							
Analyte	Result	Qualifier	LOQ	DL	Unit	D	Prepared	Analyzed	Dil Fac
2-Butanone (MEK)	0.12	U	0.15	0.060	mg/L			06/14/23 20:14	1
1,2-Dichloroethane	0.0080	U	0.010	0.0054	mg/L			06/14/23 20:14	1
	LB3	LB3							
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Surrogate 1,2-Dichloroethane-d4 (Surr)	98 %Recovery	Qualifier	Limits 64 - 129				Prepared	Analyzed	Dil Fac
		Qualifier					Prepared		Dil Fac 1 1
1,2-Dichloroethane-d4 (Surr)	98	Qualifier	64 - 129				Prepared	06/14/23 20:14	Dil Fac 1 1 1

Spike Added

2.00

0.500

Limits

64 - 129

78 - 120

78 - 121

79 - 119

Spike

Added

2.00

0.500

Lab Sample ID: LCS 280-615640/2-A

Matrix: Water

2-Butanone (MEK)

1,2-Dichloroethane

Toluene-d8 (Surr)

Analyte

Surrogate

Analyte

2-Butanone (MEK)

1,2-Dichloroethane

Analysis Batch: 616166

1,2-Dichloroethane-d4 (Surr)

4-Bromofluorobenzene (Surr)

Dibromofluoromethane (Surr)

Method: 8260B - Volatile Organic Compounds (GC/MS) (

LCS LCS %Recovery Qualifier

98

96

95

101

		Clie	nt Sar	nple ID	: Lab Con Prep	trol Sa Type:		
LCS	LCS				%Rec			
	Qualifier	Unit	D	%Rec	Limits			ī
2.11		mg/L		105	44 - 150			
0.549		mg/L		110	70 - 135			
								Ì
				ID-1-t	0	Sample	Dun	
	· · ·	liont Sa	mnlo	III'I an			; Dup	
	C	Client Sa	mple	ID: Lac		Type:		
LCSD	LCSD	Client Sa	mple	ID: Lac				
-		Client Sa Unit	mple D	%Rec	Prep		TCLP	
-	LCSD				Prep %Rec	Type:	TCLP RPD	

Client Sample ID: Method Blank

Prep Type: TCLP

Prep Batch: 615134

_
Lab Sample ID: LCSD 280-615640/3-A
Matrix: Water
Analysis Batch: 616166

	LCSD	LCSD	
Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	100		64 - 129
Toluene-d8 (Surr)	97		78 - 120
4-Bromofluorobenzene (Surr)	93		78 - 121
Dibromofluoromethane (Surr)	101		79 - 119

Method: 8270D - Semivolatile Organic Compounds (GC/MS)

Lab Sample ID: LB 280-614928/1-B Matrix: Solid Analysis Batch: 615329

	LB	LB							
Analyte	Result	Qualifier	LOQ	DL	Unit	D	Prepared	Analyzed	Dil Fac
1,4-Dichlorobenzene	0.0032	U	0.0040	0.0014	mg/L		06/06/23 18:16	06/08/23 13:26	1
2,4-Dinitrotoluene	0.0080	U	0.010	0.0014	mg/L		06/06/23 18:16	06/08/23 13:26	1
Hexachlorobenzene	0.0080	U	0.010	0.00086	mg/L		06/06/23 18:16	06/08/23 13:26	1
Hexachlorobutadiene	0.0080	U	0.010	0.0029	mg/L		06/06/23 18:16	06/08/23 13:26	1
Hexachloroethane	0.0080	U	0.010	0.0045	mg/L		06/06/23 18:16	06/08/23 13:26	1
2-Methylphenol	0.0080	U	0.010	0.00077	mg/L		06/06/23 18:16	06/08/23 13:26	1
3 & 4 Methylphenol	0.0080	U	0.010	0.00080	mg/L		06/06/23 18:16	06/08/23 13:26	1
Nitrobenzene	0.0080	U	0.010	0.0013	mg/L		06/06/23 18:16	06/08/23 13:26	1
Pentachlorophenol	0.048	U	0.050	0.020	mg/L		06/06/23 18:16	06/08/23 13:26	1
Pyridine	0.048	U	0.050	0.018	mg/L		06/06/23 18:16	06/08/23 13:26	1
2,4,5-Trichlorophenol	0.0080	U	0.010	0.00090	mg/L		06/06/23 18:16	06/08/23 13:26	1
2,4,6-Trichlorophenol	0.0080	U	0.010	0.00071	mg/L		06/06/23 18:16	06/08/23 13:26	1
	LB	LB							
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	82		44 - 119				06/06/23 18:16	06/08/23 13:26	1
2-Fluorophenol (Surr)	58		19_119				06/06/23 18:16	06/08/23 13:26	1
2,4,6-Tribromophenol (Surr)	89		43 - 140				06/06/23 18:16	06/08/23 13:26	1
Nitrobenzene-d5 (Surr)	80		44 - 120				06/06/23 18:16	06/08/23 13:26	1

Eurofins Denver

Job ID: 280-177167-1

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LB 280-614928/1-B Matrix: Solid

Analysis Batch: 615329

	LB	LB	
Surrogate	%Recovery	Qualifier	Limits
Phenol-d5 (Surr)	46		10 - 115
Terphenyl-d14 (Surr)	96		50 - 134

Lab Sample ID: LCS 280-614928/2-B Matrix: Solid Analysis Batch: 615329

Analysis Batch: 615329	Spike	LCS LCS				Prep Batch: 615134 %Rec
Analyte	Added	Result Qualifier	Unit	D	%Rec	Limits
1,4-Dichlorobenzene	0.0800	0.0363	mg/L		45	29 - 112
2,4-Dinitrotoluene	0.0800	0.0670	mg/L		84	57 - 128
Hexachlorobenzene	0.0800	0.0670	mg/L		84	53 - 125
Hexachlorobutadiene	0.0800	0.0432	mg/L		54	22 - 124
Hexachloroethane	0.0800	0.0334	mg/L		42	21 - 115
2-Methylphenol	0.0800	0.0545	mg/L		68	30 - 117
3 & 4 Methylphenol	0.0800	0.0558	mg/L		70	29 - 110
Nitrobenzene	0.0800	0.0534	mg/L		67	45 - 121
Pentachlorophenol	0.160	0.135	mg/L		84	35 - 138
Pyridine	0.160	0.0705	mg/L		44	10 - 120
2,4,5-Trichlorophenol	0.0800	0.0694	mg/L		87	53 - 123
2,4,6-Trichlorophenol	0.0800	0.0703	mg/L		88	50 - 125

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
2-Fluorobiphenyl	82		44 - 119
2-Fluorophenol (Surr)	69		19 - 119
2,4,6-Tribromophenol (Surr)	85		43 - 140
Nitrobenzene-d5 (Surr)	76		44 - 120
Phenol-d5 (Surr)	66		10 - 115
Terphenyl-d14 (Surr)	88		50 - 134

Lab Sample ID: LB3 280-615475/1-D Matrix: Water Analysis Batch: 616031

	LB3	LB3							
Analyte	Result	Qualifier	LOQ	DL	Unit	D	Prepared	Analyzed	Dil Fac
1,4-Dichlorobenzene	0.0032	U	0.0040	0.0014	mg/L		06/09/23 14:55	06/14/23 12:57	1
2,4-Dinitrotoluene	0.0080	U	0.010	0.0014	mg/L		06/09/23 14:55	06/14/23 12:57	1
Hexachlorobenzene	0.0080	U	0.010	0.00086	mg/L		06/09/23 14:55	06/14/23 12:57	1
Hexachlorobutadiene	0.0080	U	0.010	0.0029	mg/L		06/09/23 14:55	06/14/23 12:57	1
Hexachloroethane	0.0080	U	0.010	0.0045	mg/L		06/09/23 14:55	06/14/23 12:57	1
2-Methylphenol	0.0080	U	0.010	0.00077	mg/L		06/09/23 14:55	06/14/23 12:57	1
3 & 4 Methylphenol	0.0080	U	0.010	0.00080	mg/L		06/09/23 14:55	06/14/23 12:57	1
Nitrobenzene	0.0080	U	0.010	0.0013	mg/L		06/09/23 14:55	06/14/23 12:57	1
Pentachlorophenol	0.048	U	0.050	0.020	mg/L		06/09/23 14:55	06/14/23 12:57	1
Pyridine	0.048	U	0.050	0.018	mg/L		06/09/23 14:55	06/14/23 12:57	1
2,4,5-Trichlorophenol	0.0080	U	0.010	0.00090	mg/L		06/09/23 14:55	06/14/23 12:57	1
2,4,6-Trichlorophenol	0.0080	U	0.010	0.00071	mg/L		06/09/23 14:55	06/14/23 12:57	1

Prep Type: TCLP

Prep Type: TCLP

Dil Fac

1

1

Prep Batch: 615134

Client Sample ID: Method Blank

06/06/23 18:16 06/08/23 13:26

06/06/23 18:16 06/08/23 13:26

Client Sample ID: Lab Control Sample

Client Sample ID: Method Blank

Prep Type: TCLP

Prep Batch: 615587

Analyzed

Prepared

6/29/2023

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LB3 280-615475/1-D **Matrix: Water**

Analysis Batch: 616031

Client Sample ID: Method Blank Prep Type: TCLP Prep Batch: 615587

Client Sample ID: Lab Control Sample

	LB3	LB3				
Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	85		44 - 119	06/09/23 14:55	06/14/23 12:57	1
2-Fluorophenol (Surr)	82		19 - 119	06/09/23 14:55	06/14/23 12:57	1
2,4,6-Tribromophenol (Surr)	99		43 - 140	06/09/23 14:55	06/14/23 12:57	1
Nitrobenzene-d5 (Surr)	96		44 - 120	06/09/23 14:55	06/14/23 12:57	1
Phenol-d5 (Surr)	67		10 - 115	06/09/23 14:55	06/14/23 12:57	1
Terphenyl-d14 (Surr)	115		50 - 134	06/09/23 14:55	06/14/23 12:57	1

Lab Sample ID: LCS 280-615475/2-D **Matrix: Water** Analysis Batch: 616031

						-
Analysis Batch: 616031					Prep Batch: 615587	
	Spike	LCS LCS			%Rec	
Analyte	Added	Result Qualifier	r Unit	D %Rec	Limits	
1,4-Dichlorobenzene	0.0800	0.0338	mg/L	42	29 - 112	
2,4-Dinitrotoluene	0.0800	0.0814	mg/L	102	57 - 128	
Hexachlorobenzene	0.0800	0.0793	mg/L	99	53 - 125	
Hexachlorobutadiene	0.0800	0.0395	mg/L	49	22 - 124	
Hexachloroethane	0.0800	0.0312	mg/L	39	21 - 115	
2-Methylphenol	0.0800	0.0662	mg/L	83	30 - 117	
3 & 4 Methylphenol	0.0800	0.0665	mg/L	83	29 - 110	
Nitrobenzene	0.0800	0.0662	mg/L	83	45 - 121	
Pentachlorophenol	0.160	0.143	mg/L	90	35 - 138	
Pyridine	0.160	0.0362 J	mg/L	23	10 - 120	
2,4,5-Trichlorophenol	0.0800	0.0790	mg/L	99	53 - 123	
2,4,6-Trichlorophenol	0.0800	0.0806	mg/L	101	50 - 125	

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
2-Fluorobiphenyl	90		44 - 119
2-Fluorophenol (Surr)	74		19 - 119
2,4,6-Tribromophenol (Surr)	102		43 - 140
Nitrobenzene-d5 (Surr)	94		44 - 120
Phenol-d5 (Surr)	61		10 - 115
Terphenyl-d14 (Surr)	104		50 - 134

Lab Sample ID: LCSD 280-615475/3-B Matrix: Water Analysis Batch: 616031

Client Sample ID: Lab Control Sample Dup Prep Type: TCLP Prep Batch: 615587

					1100 00		
Spike	LCSD LCSD				%Rec		RPD
Added	Result Qualifier	· Unit	D	%Rec	Limits	RPD	Limit
0.0800	0.0332	mg/L		42	29 - 112	2	20
0.0800	0.0828	mg/L		103	57 - 128	2	20
0.0800	0.0775	mg/L		97	53 - 125	2	20
0.0800	0.0346	mg/L		43	22 - 124	13	20
0.0800	0.0290	mg/L		36	21 - 115	7	20
0.0800	0.0700	mg/L		87	30 - 117	6	20
0.0800	0.0679	mg/L		85	29 - 110	2	20
0.0800	0.0662	mg/L		83	45 - 121	0	20
0.160	0.150	mg/L		93	35 - 138	4	20
0.160	0.048 UQ	mg/L		5	10 - 120	126	20
	Added 0.0800 0.0800 0.0800 0.0800 0.0800 0.0800 0.0800 0.0800 0.0800 0.0800 0.0800 0.160	Added Result Qualifier 0.0800 0.0332 0.0800 0.0322 0.0800 0.0828 0.0800 0.0775 0.0800 0.0346 0.0290 0.0800 0.0800 0.0700 0.0800 0.0700 0.0800 0.0700 0.0800 0.0679 0.0800 0.0662 0.160 0.150	Added Result Qualifier Unit 0.0800 0.0332 mg/L 0.0800 0.0828 mg/L 0.0800 0.0775 mg/L 0.0800 0.0346 mg/L 0.0800 0.0346 mg/L 0.0800 0.0290 mg/L 0.0800 0.0700 mg/L 0.0800 0.0679 mg/L 0.0800 0.0662 mg/L 0.160 0.150 mg/L	Added Result Qualifier Unit D 0.0800 0.0332 mg/L mg/L	Added Result Qualifier Unit D %Rec 0.0800 0.0332 mg/L 103 0.0800 0.0828 mg/L 103 0.0800 0.0775 mg/L 97 0.0800 0.0346 mg/L 43 0.0800 0.0290 mg/L 36 0.0800 0.0700 mg/L 87 0.0800 0.0679 mg/L 85 0.0800 0.0662 mg/L 83 0.160 0.150 mg/L 93	Spike LCSD LCSD Mit D %Rec Added Result Qualifier Unit D %Rec Limits 0.0800 0.0332 mg/L Unit D %Rec Limits 0.0800 0.0332 mg/L 103 57 - 128 0.0800 0.0775 mg/L 97 53 - 125 0.0800 0.0346 mg/L 43 22 - 124 0.0800 0.0290 mg/L 36 21 - 115 0.0800 0.0700 mg/L 87 30 - 117 0.0800 0.0679 mg/L 85 29 - 110 0.0800 0.0662 mg/L 83 45 - 121 0.160 0.150 mg/L 93 35 - 138	Spike LCSD LCSD White Mail <

Eurofins Denver

Prep Type: TCLP

5

10

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

78 M

Lab Sample ID: LCSD 280 Matrix: Water)-615475/3-В	\$			C	Client Sa	ample	ID: Lat	Control Prep	Sample Type:	
Analysis Batch: 616031									Prep Ba	atch: 6	15587
-			Spike	LCSD	LCSD				%Rec		RPD
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
2,4,5-Trichlorophenol			0.0800	0.0835		mg/L		104	53 - 123	6	20
2,4,6-Trichlorophenol			0.0800	0.0815		mg/L		102	50 - 125	1	20
	LCSD	LCSD									
Surrogate	%Recovery	Qualifier	Limits								
2-Fluorobiphenyl	90		44 - 119								
2-Fluorophenol (Surr)	77		19 - 119								
2,4,6-Tribromophenol (Surr)	105		43 - 140								
Nitrobenzene-d5 (Surr)	94		44 - 120								
Phenol-d5 (Surr)	64		10 - 115								
Terphenyl-d14 (Surr)	105		50 - 134								

Method: 8081B - Organochlorine Pesticides (GC)

Lab Sample ID: LB 280-614928/1-E Matrix: Solid Analysis Batch: 615561

	LB	LB							
Analyte	Result	Qualifier	LOQ	DL	Unit	D	Prepared	Analyzed	Dil Fac
Endrin	0.00020	U	0.00050	0.000079	mg/L		06/08/23 12:12	06/09/23 21:44	1
Heptachlor	0.00020	U	0.00050	0.000077	mg/L		06/08/23 12:12	06/09/23 21:44	1
Heptachlor epoxide	0.00020	U	0.00050	0.000075	mg/L		06/08/23 12:12	06/09/23 21:44	1
gamma-BHC (Lindane)	0.00020	U	0.00050	0.000069	mg/L		06/08/23 12:12	06/09/23 21:44	1
Methoxychlor	0.00050	U	0.0010	0.00013	mg/L		06/08/23 12:12	06/09/23 21:44	1
Toxaphene	0.0075	U	0.020	0.0037	mg/L		06/08/23 12:12	06/09/23 21:44	1
Chlordane (technical)	0.0040	U	0.0050	0.0014	mg/L		06/08/23 12:12	06/09/23 21:44	1
	LB	LB							
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	73		28 - 115				06/08/23 12:12	06/09/23 21:44	1

DCB Decachlorobiphenyl

Lab Sample ID: LCS 280-614928/2-E Matrix: Solid Analysis Batch: 615561

							The Batom of the	
	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Endrin	0.00500	0.00479	М	mg/L		96	66 - 143	
Heptachlor	0.00500	0.00476	М	mg/L		95	59 - 143	
Heptachlor epoxide	0.00500	0.00469	М	mg/L		94	37 - 142	
gamma-BHC (Lindane)	0.00500	0.00471		mg/L		94	68 - 142	
Methoxychlor	0.00500	0.00536	М	mg/L		107	30 - 150	

34 - 122

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
Tetrachloro-m-xylene	88		28 - 115
DCB Decachlorobiphenyl	92		34 - 122

Client Sample ID: Lab Control Sample Prep Type: TCLP Prep Batch: 615360

06/08/23 12:12 06/09/23 21:44

Client Sample ID: Method Blank

Prep Type: TCLP Prep Batch: 615360

1

Eurofins Denver

Job ID: 280-177167-1

Job ID: 280-177167-1

Method: 8081B - Organochlorine Pesticides (GC) (Continued) Lab Sample ID: LCS 280-614928/2-G **Client Sample ID: Lab Control Sample** Matrix: Solid Prep Type: TCLP Analysis Batch: 615561 Prep Batch: 615360 Spike LCS LCS %Rec Result Qualifier Added Limits Analyte Unit D %Rec Toxaphene 0.200 0.178 mg/L 89 63 - 142 LCS LCS %Recovery Qualifier Surrogate Limits Tetrachloro-m-xylene 77 28 - 115 DCB Decachlorobiphenyl 84 34 - 122 Lab Sample ID: LCSD 280-614928/3-B Client Sample ID: Lab Control Sample Dup Matrix: Solid Prep Type: TCLP Analysis Batch: 615561 **Prep Batch: 615360** Spike LCSD LCSD %Rec Added Result Qualifier Limits RPD Analyte Unit D %Rec Limit 0.200 63 - 142 Toxaphene 0.189 mg/L 95 6 LCSD LCSD %Recovery Surrogate Qualifier Limits Tetrachloro-m-xylene 28 - 115 83 88 34 - 122 DCB Decachlorobiphenyl Lab Sample ID: LB3 280-615475/1-F **Client Sample ID: Method Blank Matrix: Water** Prep Type: TCLP Analysis Batch: 616066 **Prep Batch: 615593** LB3 LB3 LOQ DL Unit Analyte **Result Qualifier** D Prepared Analyzed Dil Fac Endrin 0.00020 U 0.00050 0.000079 mg/L 06/09/23 15:02 06/14/23 14:50 Heptachlor 0.00020 U 0.00050 0.000077 mg/L 06/09/23 15:02 06/14/23 14:50 Heptachlor epoxide 0.00020 U 0.00050 0.000075 mg/L 06/09/23 15:02 06/14/23 14:50 gamma-BHC (Lindane) 0.00020 U 0.00050 0.000069 mg/L 06/09/23 15:02 06/14/23 14:50 0.00013 mg/L 06/09/23 15:02 06/14/23 14:50 Methoxychlor 0.00050 U 0.0010 Toxaphene 0.0075 U 0.020 0.0037 mg/L 06/09/23 15:02 06/14/23 14:50 Chlordane (technical) 0.0040 U 0.0050 0.0014 mg/L 06/09/23 15:02 06/14/23 14:50 LB3 LB3 %Recovery Surrogate Qualifier Limits Prepared Analyzed Dil Fac Tetrachloro-m-xylene 65 28 - 115 06/09/23 15:02 06/14/23 14:50 DCB Decachlorobiphenyl 83 34 - 122 06/09/23 15:02 06/14/23 14:50 Lab Sample ID: LCS 280-615475/2-F **Client Sample ID: Lab Control Sample Matrix: Water** Prep Type: TCLP Analysis Batch: 616066 **Prep Batch: 615593** Spike LCS LCS %Rec Analyte Added **Result Qualifier** Unit D %Rec Limits 0.00500 66 - 143 Endrin 0.00416 mg/L 83 0.00500 76 59 - 143 Heptachlor 0.00379 mg/L 0.00409 Heptachlor epoxide 0.00500 mg/L 82 37 - 142 gamma-BHC (Lindane) 0.00500 0.00411 mg/L 82 68 - 142 Methoxychlor 0.00500 0.00444 89 30 - 150 mg/L LCS LCS %Recovery Qualifier Limits Surrogate Tetrachloro-m-xylene 28 - 115 71

10

RPD

30

1

1

1

1

1

1

1

1

1

Lab Sample ID: LCS 280-	615475/2-F					Clie	nt Sar	nple ID	: Lab Cor	ntrol Sa	ample
Matrix: Water										Type:	
Analysis Batch: 616066									Prep Ba		
- <i>i</i>	LCS										
Surrogate	%Recovery	Qualifier	Limits								
DCB Decachlorobiphenyl	82		34 - 122								
Lab Sample ID: LCS 280-0 Matrix: Water	615475/2-G					Clie	nt Sar	nple ID	: Lab Cor Prep	ntrol Sa Type:	
Analysis Batch: 616066									Prep Ba	atch: 6	15593
			Spike	-	LCS				%Rec		
Analyte			Added		Qualifier	Unit	D	%Rec	Limits		
Toxaphene			0.200	0.209		mg/L		104	63 - 142		
	LCS	LCS									
Surrogate	%Recovery	Qualifier	Limits								
Tetrachloro-m-xylene	66		28 - 115								
DCB Decachlorobiphenyl	77		34 - 122								
Lab Sample ID: LCSD 280	646476/2 D					Night Sc	molo			Sample	
Matrix: Water	-013473/3-0						inpie	ID. Lat		Type:	
Analysis Batch: 616066									Prep Ba		
Analysis Batch. 010000			Spike		LCSD				%Rec		RPI
Analyte			Added	-	Qualifier	Unit	п	%Rec	Limits	RPD	Limi
Endrin	· . <u></u>		0.00500	0.00427	Quaimer		<u></u>	85	66 - 143	2	3
Heptachlor			0.00500	0.00427		mg/L mg/L		85 72	59 - 143	2	30
•			0.00500	0.00339		mg/L		83	39 - 143 37 - 142	2	3
Heptachlor epoxide									37 - 142 68 - 142	2	
gamma-BHC (Lindane)			0.00500	0.00419		mg/L		84			30
Methoxychlor			0.00500	0.00451		mg/L		90	30 - 150	2	30
	LCSD	LCSD									
Surrogate	%Recovery	Qualifier	Limits								
Tetrachloro-m-xylene	69		28 - 115								
DCB Decachlorobiphenyl	84		34 - 122								
Lab Sample ID: LCSD 280	615475/3-5					liont Sa	mnlo	ID: Lak	o Control	Sample	
Matrix: Water							mpic	D. Lui		Type:	
Analysis Batch: 616066									Prep Ba		
Analysis Batch. 010000			Spike	I CSD	LCSD				%Rec		RP
Analyte			Added		Qualifier	Unit	D	%Rec	Limits	RPD	Limi
Toxaphene			0.200	0.211		mg/L		106	63 - 142	1	30
	LCSD	LCSD									
Surrogate	%Recovery		Limits								
Tetrachloro-m-xylene	73		28 - 115								
DCB Decachlorobiphenyl	85		34 - 122								
lethod: 8082A - Polyc	hlorinated	l Biphen	yls (PCBs) by Ga	s Chro	matogi	raphy	/			
				- •							
Lab Sample ID: MB 280-6 Matrix: Water	146/4/1-A						Clie	ent Sam	ple ID: M Prep Ty		
Analysis Batch: 615208									Prep Ba		

Analysis Batch: 615208 **Prep Batch: 614674** MB MB Analyte Result Qualifier LOQ DL Unit D Prepared Analyzed Dil Fac PCB-1016 0.40 UQ 1.0 0.12 ug/L 06/02/23 16:17 06/07/23 20:31 1 PCB-1221 0.25 UQ 1.0 0.21 ug/L 06/02/23 16:17 06/07/23 20:31 1

Eurofins Denver

Job ID: 280-177167-1

Job ID: 280-177167-1

Lab Sample ID: MB 280-6 Matrix: Water Analysis Batch: 615208		мв					Client Samp	ole ID: Method Prep Type: To Prep Batch:	otal/NA
Analyte		Qualifier	LOQ	DL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1232	0.60	UQ	1.0	0.17	ug/L		06/02/23 16:17	06/07/23 20:31	1
PCB-1242	0.90	UQ	1.0	0.42	ug/L		06/02/23 16:17	06/07/23 20:31	1
PCB-1248	0.30	UQ	1.0	0.092	ug/L		06/02/23 16:17	06/07/23 20:31	1
PCB-1254	0.25	UQ	1.0	0.11	ug/L		06/02/23 16:17	06/07/23 20:31	1
PCB-1260	0.40	UQ	1.0	0.16	ug/L		06/02/23 16:17	06/07/23 20:31	1
PCB-1262	0.50	UQ	1.0	0.22	ug/L		06/02/23 16:17	06/07/23 20:31	
PCB-1268	0.90	UQ	1.0	0.36	ug/L		06/02/23 16:17	06/07/23 20:31	
		МВ							
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	79		25 - 120				06/02/23 16:17	06/07/23 20:31	
DCB Decachlorobiphenyl	142	Q	30 - 136				06/02/23 16:17	06/07/23 20:31	
•	614674/4-A					Clien	t Sample ID:	Lab Control S	
Matrix: Water	614674/4-A					Clien	t Sample ID:	Prep Type: To	otal/NA
Matrix: Water	6 14674/4-A		0.1		_	Clien	t Sample ID:	Prep Type: To Prep Batch:	otal/NA
Matrix: Water Analysis Batch: 615208	6 14674/4-A		Spike	LCS LC Result Qu			·	Prep Type: To Prep Batch: %Rec	otal/NA
Matrix: Water Analysis Batch: 615208 ^{Analyte}	61 4674/4-A		Added	Result Qu		Unit	D %Rec	Prep Type: Te Prep Batch: %Rec Limits	otal/NA
Matrix: Water Analysis Batch: 615208 Analyte PCB-1016	614674/4-A		•	-			·	Prep Type: To Prep Batch: %Rec	otal/NA
Matrix: Water Analysis Batch: 615208 Analyte PCB-1016	614674/4-A		Added	Result Qu		Unit ug/L	_ <mark>D %Rec</mark> 122	Prep Type: Te Prep Batch: %Rec Limits 46 - 129	otal/NA
Matrix: Water Analysis Batch: 615208 Analyte PCB-1016 PCB-1260			Added	Result Qu		Unit ug/L	_ <mark>D %Rec</mark> 122	Prep Type: Te Prep Batch: %Rec Limits 46 - 129	otal/NA
Lab Sample ID: LCS 280-0 Matrix: Water Analysis Batch: 615208 Analyte PCB-1016 PCB-1260 Surrogate Tetrachloro-m-xylene	LCS LCS		Added 2.00 2.00	Result Qu		Unit ug/L	_ <mark>D %Rec</mark> 122	Prep Type: Te Prep Batch: %Rec Limits 46 - 129	otal/NA

Lab Sample ID: LCSD 280-614674/5-A Matrix: Water Analysis Batch: 615208

Analysis Batch: 615208							Prep Ba	itch: 6'	14674
	Spike	LCSD	LCSD				%Rec		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
PCB-1016	2.00	2.46		ug/L		123	46 - 129	1	30
PCB-1260	2.00	2.65		ug/L		132	45 - 134	3	30

	LCSD	LCSD	
Surrogate	%Recovery	Qualifier	Limits
Tetrachloro-m-xylene	94		25 - 120
DCB Decachlorobiphenyl	136		30 - 136

Lab Sample ID: MB 280-615721/1-A Matrix: Solid Analysis Batch: 616027

								op Batom	
	MB	MB							
Analyte	Result	Qualifier	LOQ	DL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	30	UM	66	21	ug/Kg		06/12/23 12:18	06/14/23 11:57	1
PCB-1221	60	U	94	31	ug/Kg		06/12/23 12:18	06/14/23 11:57	1
PCB-1232	21	UM	66	10	ug/Kg		06/12/23 12:18	06/14/23 11:57	1
PCB-1242	60	UM	66	18	ug/Kg		06/12/23 12:18	06/14/23 11:57	1
PCB-1248	30	UM	66	16	ug/Kg		06/12/23 12:18	06/14/23 11:57	1
PCB-1254	30	UM	66	11	ug/Kg		06/12/23 12:18	06/14/23 11:57	1
PCB-1260	30	U	66	17	ug/Kg		06/12/23 12:18	06/14/23 11:57	1
 A second sec second second sec									

Eurofins Denver

10

Client Sample ID: Method Blank Prep Type: Total/NA Prep Batch: 615721

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

lient: Leidos, Inc. roject/Site: RVAAP FWGW F	S Well Inst	all 2	.023										Job ID: 280-17	7167-1
Iethod: 8082A - Polych				s (PCE	3s) ł	эу Ga	s C	hron	nato	gra	phy	, (Cont	inued)	
Lab Sample ID: MB 280-615 Matrix: Solid Analysis Batch: 616027	5721/1-A					-				-			ple ID: Method Prep Type: To Prep Batch: (otal/NA
			MB											
Analyte	Re		Qualifier		LOQ			Unit		D		repared	Analyzed	Dil Fac
PCB-1262			UM		66			ug/Kg				2/23 12:18		1
PCB-1268		60	UM		66		21	ug/Kg			06/1	2/23 12:18	3 06/14/23 11:57	1
		MВ	MB											
Surrogate			Qualifier	Lim	its						P	repared	Analyzed	Dil Fac
Tetrachloro-m-xylene		106			130								3 06/14/23 11:57	1
DCB Decachlorobiphenyl		107		59 -	130						06/1	2/23 12:18	3 06/14/23 11:57	1
Lab Sample ID: LCS 280-61	5721/2-A								Cl	ient	t Sar	mple ID:	Lab Control S	
Matrix: Solid													Prep Type: To	
Analysis Batch: 616027				~				-					Prep Batch:	615721
				Spike		LCS			,		_	~· -	%Rec	
Analyte				Added		Result	Qua		Unit		_ <u>D</u>	<u>%Rec</u>	Limits	
PCB-1016				133		122			ug/Kg			91	47 - 134	
PCB-1260				133		132			ug/Kg			99	53 - 140	
	LCS	LCS	3											
Surrogate	%Recovery	Qua	alifier	Limits										
Tetrachloro-m-xylene	101			44 - 130										
DCB Decachlorobiphenyl	97			59 - 130										
lethod: 8321A Herb - H	erbicides	s (L	C/MS)											
Lab Sample ID: LB 280-614 Matrix: Solid	928/1-A										Clie	∍nt Samj	ple ID: Method Prep Type	
Analysis Batch: 615278														•••=-
		LB	LB											
Analyte	Re	sult	Qualifier		LOQ		DL	Unit		D	P	repared	Analyzed	Dil Fac
2,4-D		40	UM		50		16	ug/L					06/07/23 18:52	10
Silvex (2,4,5-TP)		20	U		50		9.7	ug/L					06/07/23 18:52	10
		IR	LB											
Surrogate	%Recov		LD Qualifier	Lim	ite						Р	repared	Analyzed	Dil Fac
2,4-Dichlorophenylacetic acid (Surr)		95	-		125							epuica	06/07/23 18:52	10
					120								00,01/20 .0.02	
Lab Sample ID: LCS 280-61 Matrix: Solid	4928/2-A								CI	ient	t Sar	nple ID:	Lab Control S Prep Type	
Analysis Batch: 615278													-	
-				Spike		LCS	LCS	3					%Rec	
Analyte				Added		Result		lifier	Unit		D	%Rec	Limits	
2,4-D				200		206	D		ug/L			103	70 - 130	
Silvex (2,4,5-TP)				200		176	D		ug/L			88	70 - 130	
	LCS	1.05	2											
Surrogate	%Recovery			Limits										
2,4-Dichlorophenylacetic acid	104	<u>Quu</u>		25 - 125	•									
(Surr)	101			20-720										

(Surr)

Lab Sample ID: 280-177167-2 MS

Method: 8321A Herb - Herbicides (LC/MS) (Continued)

Client Sample ID: FWGIDW-230301-WS

Matrix: Solid Prep Type: TCLP Analysis Batch: 615278 Sample Sample Spike MS MS %Rec **Result Qualifier** Added **Result Qualifier** %Rec Limits Analyte Unit D 2,4-D 40 U M 200 200 D ug/L 100 70 - 130 ug/L Silvex (2,4,5-TP) 20 U 200 178 D 89 70 - 130 MS MS Surrogate %Recovery Qualifier Limits 2,4-Dichlorophenylacetic acid 98 25 - 125 (Surr) Client Sample ID: FWGIDW-230301-WS Lab Sample ID: 280-177167-2 MSD Prep Type: TCLP Matrix: Solid Analysis Batch: 615278 Sample Sample MSD MSD %Rec RPD Spike **Result Qualifier** Added **Result Qualifier** Unit D %Rec Limits RPD Limit Analyte 2.4-D 40 U M 200 205 D ug/L 102 70 - 130 2 20 200 20 U 178 D 89 70 - 130 20 Silvex (2,4,5-TP) ug/L 0 MSD MSD Limits Surrogate %Recovery Qualifier 102 25 - 125 2,4-Dichlorophenylacetic acid (Surr) Lab Sample ID: LB3 280-615475/1-A **Client Sample ID: Method Blank Matrix: Water** Prep Type: TCLP Analysis Batch: 615604 LB3 LB3 LOQ DL Unit Analyte **Result Qualifier** D Dil Fac Prepared Analyzed 2,4-D 4.0 U 5.0 1.6 ug/L 06/09/23 20:30 1 Silvex (2,4,5-TP) 2.0 U 5.0 0.97 ug/L 06/09/23 20:30 1 LB3 LB3 Limits Dil Fac Surrogate %Recovery Qualifier Prepared Analyzed 2,4-Dichlorophenylacetic acid (Surr) 99 25 - 125 06/09/23 20:30 1 Lab Sample ID: LCS 280-615475/2-A **Client Sample ID: Lab Control Sample** Matrix: Water Prep Type: TCLP Analysis Batch: 615604 Spike LCS LCS %Rec Added Analyte **Result Qualifier** Unit D %Rec Limits 2,4-D 20.0 22.4 ug/L 112 70 - 130 20.0 19.1 95 70 - 130 Silvex (2,4,5-TP) ug/L LCS LCS Surrogate %Recovery Qualifier Limits 25 - 125 2,4-Dichlorophenylacetic acid 96 (Surr) Lab Sample ID: 280-177167-1 MS Client Sample ID: FWGIDW-230301-WW **Matrix: Water** Prep Type: TCLP Analysis Batch: 615604 Sample Sample Spike MS MS %Rec %Rec **Result Qualifier** Added **Result Qualifier** Unit Limits Analyte D 2,4-D 4.0 UM 20.0 22.0 110 70 - 130 ug/L

Method: 8321A Herb - Herbicides (LC/MS) (Continued)

Analysis Batch: 615604											
	Sample	Sample	Spike	MS	MS				%Rec		
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits		
Silvex (2,4,5-TP)	2.0	U	20.0	21.3		ug/L		106	70 - 130		
	MS	MS									
Surrogate	%Recovery	Qualifier	Limits								
2,4-Dichlorophenylacetic acid (Surr)	96		25 - 125								
Lab Sample ID: 280-1771	167-1 MSD					Clien	t Sam	ple ID:	FWGIDW-	-23030 ⁻	1-WV
Matrix: Water								•		Type:	
Analysis Batch: 615604											
	Somple	Sample	Spike	MSD	MSD				%Rec		RPE
	Sample				- ···						
Analyte	•	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limi
Analyte 2,4-D	Result	•	Added	Result 22.4	Qualifier	ug/L	D	%Rec 112	Limits 70 - 130	RPD 2	
	Result	Qualifier U M			Qualifier		D				Limi 20 20
2,4-D	Result 4.0 2.0	Qualifier U M	20.0	22.4	Qualifier	ug/L	<u>D</u>	112	70 - 130	2	20
2,4-D	Result 4.0 2.0	Qualifier U M U MSD	20.0	22.4	Qualifier	ug/L	<u>D</u>	112	70 - 130	2	20

Matrix: Solid Analysis Batch: 615432

	LB	LB							
Analyte	Result	Qualifier	LOQ	DL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	0.071	U	0.075	0.022	mg/L		06/07/23 14:07	06/08/23 12:01	1
Barium	0.00484	J	0.050	0.0041	mg/L		06/07/23 14:07	06/08/23 12:01	1
Cadmium	0.0023	U	0.025	0.00065	mg/L		06/07/23 14:07	06/08/23 12:01	1
Chromium	0.00402	J	0.050	0.0033	mg/L		06/07/23 14:07	06/08/23 12:01	1
Lead	0.038	U	0.045	0.014	mg/L		06/07/23 14:07	06/08/23 12:01	1
Selenium	0.095	U	0.10	0.032	mg/L		06/07/23 14:07	06/08/23 12:01	1
Silver	0.030	U	0.050	0.0098	mg/L		06/07/23 14:07	06/08/23 12:01	1

Lab Sample ID: LCS 280-614928/2-C Matrix: Solid

Analysis Batch: 615432 Prep Batch: 615163 Spike LCS LCS %Rec Analyte Added Result Qualifier Unit D %Rec Limits 87 - 113 Arsenic 8.00 7.77 mg/L 97 Barium 15.0 88 - 113 14.3 mg/L 95 6.00 mg/L 88 - 113 Cadmium 5.74 96 Chromium 10.0 9.71 mg/L 97 90 - 113 mg/L Lead 10.0 9.39 94 86 - 113 Selenium 6.00 5.71 mg/L 95 83 - 114 84 - 115 Silver 1.25 1.24 mg/L 100

7167-1

Client Sample ID: Method Blank Prep Type: TCLP Prep Batch: 615163

Client Sample ID: Lab Control Sample

Prep Type: TCLP

Method: 6010C - Metals (ICP) (Continued)

Client Sample ID: Method Blank Prep Type: TCLP Prep Batch: 615545

Lab Sample ID: LB3 280-615475/1-B Matrix: Water Analysis Batch: 615825

	LB3	LB3							
Analyte	Result	Qualifier	LOQ	DL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	0.014	U	0.015	0.0044	mg/L		06/12/23 07:57	06/12/23 15:48	1
Barium	0.0020	U	0.010	0.00082	mg/L		06/12/23 07:57	06/12/23 15:48	1
Cadmium	0.00045	U	0.0050	0.00013	mg/L		06/12/23 07:57	06/12/23 15:48	1
Chromium	0.000770	J	0.010	0.00066	mg/L		06/12/23 07:57	06/12/23 15:48	1
Lead	0.0075	U	0.0090	0.0027	mg/L		06/12/23 07:57	06/12/23 15:48	1
Selenium	0.019	U	0.020	0.0063	mg/L		06/12/23 07:57	06/12/23 15:48	1
Silver	0.0060	U	0.010	0.0020	mg/L		06/12/23 07:57	06/12/23 15:48	1

Lab Sample ID: LCS 280-615475/2-B Matrix: Water

Analysis Batch: 615825							Prep Batch: 615545	
	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Arsenic	1.60	1.65		mg/L		103	87 - 113	
Barium	3.00	3.12		mg/L		104	88 - 113	
Cadmium	1.20	1.21		mg/L		101	88 - 113	
Chromium	2.00	2.02		mg/L		101	90 - 113	
Lead	2.00	2.05		mg/L		103	86 - 113	
Selenium	1.20	1.21		mg/L		101	83 - 114	
Silver	0.250	0.261		mg/L		104	84 - 115	

Lab Sample ID: 280-177167-1 MS Matrix: Water Analysis Batch: 615825

Analysis Datch. 013025									riep Daton. 010040
	Sample	Sample	Spike	MS	MS				%Rec
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits
Arsenic	0.014	U	1.60	1.67		mg/L		104	87 - 113
Barium	0.0070	J	3.00	3.15		mg/L		105	88 - 113
Cadmium	0.00023	J	1.20	1.22		mg/L		101	88 - 113
Chromium	0.00087	J	2.00	2.04		mg/L		102	90 - 113
Lead	0.0075	U	2.00	2.07		mg/L		104	86 - 113
Selenium	0.019	U	1.20	1.22		mg/L		102	83 - 114
Silver	0.0060	U	0.250	0.265		mg/L		106	84 - 115

Lab Sample ID: 280-177167-1 MSD Matrix: Water Analysis Batch: 615825

Client Sample ID: FWGIDW-230301-WW Prep Type: TCLP

Analysis Batch: 615825									Prep Ba	atch: 61	15545
	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Arsenic	0.014	U	1.60	1.66		mg/L		104	87 - 113	1	20
Barium	0.0070	J	3.00	3.13		mg/L		104	88 - 113	1	20
Cadmium	0.00023	J	1.20	1.21		mg/L		101	88 - 113	1	20
Chromium	0.00087	J	2.00	2.02		mg/L		101	90 - 113	1	20
Lead	0.0075	U	2.00	2.06		mg/L		103	86 - 113	1	20
Selenium	0.019	U	1.20	1.21		mg/L		101	83 - 114	1	20
Silver	0.0060	U	0.250	0.262		mg/L		105	84 - 115	1	20

Eurofins Denver

Client Sample ID: FWGIDW-230301-WW Prep Type: TCLP Prep Batch: 615545

Client Sample ID: Lab Control Sample

Prep Type: TCLP

Client: Leidos, Inc. Project/Site: RVAAP FWGW FS Well Install 2023

Job ID: 280-177167-1

Lab Sample ID: LB 280-61492	28/1-D									Cli	ent Samp	ole ID: Meth		
Matrix: Solid												Prep Ty		
Analysis Batch: 615344		LB	IB									Prep Batcl	1: 01	15217
Analyte	Re		Qualifier		LOQ		DL	Unit	I) I	Prepared	Analyzed	[Dil Fac
Mercury	0.000	0800	U	0.0	0020	0.000	0061	mg/L		06/	07/23 16:11	06/07/23 20:3	84	1
Lab Sample ID: LCS 280-6149	928/2-D								Clie	nt Sa	mple ID:	Lab Contro	l Sa	ample
Matrix: Solid											•	Prep Ty		
Analysis Batch: 615344												Prep Batcl		
				Spike		LCS	LCS					%Rec		
Analyte				Added		Result	Qua	lifier	Unit	D	%Rec	Limits		
Mercury				0.00500	(0.00497			mg/L		99	82 - 119		
Lab Sample ID: LB3 280-6154	175/1-C									Cli	ent Sam	ole ID: Meth	od E	Blanl
Matrix: Water												Prep Ty	pe: '	TCL
Analysis Batch: 615705												Prep Batcl	1: <mark>61</mark>	1555(
		LB3	LB3											
Analyte			Qualifier		LOQ			Unit	[Prepared	Analyzed		Dil Fa
Mercury	0.000	0080	U	0.00	0020	0.000	0061	mg/L		06/	09/23 14:00	06/09/23 17:3	31	
Lab Sample ID: LCS 280-6154	475/2-C								Clie	nt Sa	mple ID:	Lab Contro	l Sa	ample
Matrix: Water											- C	Prep Ty		
Analysis Batch: 615705												Prep Batcl	1: <mark>61</mark>	1555(
				Spike		LCS	LCS					%Rec		
Analyte				Added		Result	Qua	lifier	Unit	D	%Rec	Limits		
Mercury				0.00500	(0.00500			mg/L		100	82 - 119		
Lab Sample ID: 280-177167-1	MS								Client	San	nple ID: F	WGIDW-23)301	1-WN
Matrix: Water												Prep Ty		
Analysis Batch: 615705												Prep Batcl	n: 61	15550
	Sample		•	Spike		-	MS					%Rec		
Analyte	Result		lifier	Added		Result	Qua	lifier	Unit	D		Limits		
Mercury	0.000080	U		0.00500	(0.00508			mg/L		102	82 - 119		
Lab Sample ID: 280-177167-1	MSD								Client	San	nple ID: F	WGIDW-23	0301	1-WV
Matrix: Water												Prep Ty	pe: '	TCL
Analysis Batch: 615705												Prep Batcl	ı: <mark>6</mark> 1	1555(
	Sample	Sam	ple	Spike		MSD	MSD)				%Rec		RPI
Analyte	Result		lifier	Added		Result	Qua	lifier	Unit	D	%Rec	Limits F	PD	Limi
Mercury	0.000080	U		0.00500	(0.00504			mg/L		101	82 - 119	1	1
					_									
lethod: 1010A - Ignitabili	ity, Per	ısky	/-Marte	ns Clo	sed	-Cup	Me	thoc	1					

ampic ib.	mour		ann
Prep	Type:	Tota	I/NA

Analysis Batch: 615923									
-	MB	MB							
Analyte	Result	Qualifier	LOQ	DL	Unit	D	Prepared	Analyzed	Dil Fac
Flashpoint	>160.0		1.00	1.00	Degrees F			06/13/23 14:04	1

Job ID: 280-177167-1

Method: 1010A - Ignitability, Pensky-Martens Closed-Cup Method (Continued) Lab Sample ID: MB 280-615923/2 **Client Sample ID: Method Blank** Matrix: Water Prep Type: Total/NA Analysis Batch: 615923 MB MB **Result Qualifier** LOQ DL Unit Analyzed Dil Fac Analyte D Prepared 1.00 06/13/23 14:04 Flashpoint >160.0 1.00 Degrees F 1 Lab Sample ID: LCS 280-615923/1 **Client Sample ID: Lab Control Sample Matrix: Water** Prep Type: Total/NA Analysis Batch: 615923 Spike LCS LCS %Rec Added Result Qualifier D %Rec Limits Analyte Unit 90.0 98 - 114 Flashpoint 93.00 Degrees F 103 10 Lab Sample ID: LCSD 280-615923/12 Client Sample ID: Lab Control Sample Dup **Matrix: Water** Prep Type: Total/NA Analysis Batch: 615923 Spike LCSD LCSD %Rec RPD Added Result Qualifier Limits RPD Analyte Unit D %Rec Limit Flashpoint 90.0 93.00 103 98 - 114 10 Degrees F 0 Method: 1030 - Ignitability, Solids Lab Sample ID: MB 680-783171/1 **Client Sample ID: Method Blank Matrix: Solid** Prep Type: Total/NA Analysis Batch: 783171 MB MB LOQ Analyte **Result Qualifier** DL Unit D Prepared Analyzed Dil Fac Ignitability mm/sec 06/12/23 13:31 NB Lab Sample ID: LCS 680-783171/2 **Client Sample ID: Lab Control Sample** Matrix: Solid Prep Type: Total/NA Analysis Batch: 783171 LCS LCS Spike %Rec Analyte Added **Result Qualifier** Unit Limits D %Rec Ignitability 2.61 2.611 mm/sec 100 75 - 125 Lab Sample ID: LCSD 680-783171/22 **Client Sample ID: Lab Control Sample Dup** Matrix: Solid Prep Type: Total/NA Analysis Batch: 783171 Spike LCSD LCSD RPD %Rec Added Analyte **Result Qualifier** Unit D %Rec Limits RPD Limit 2.543 Ignitability 2.54 100 75 - 125 3 10 mm/sec Method: 9012B - Cyanide, Total and/or Amenable Lab Sample ID: MB 280-615094/20 **Client Sample ID: Method Blank Matrix: Water** Prep Type: Total/NA Analysis Batch: 615094 MB MB LOQ Analyte **Result Qualifier** DL Unit D Prepared Analyzed Dil Fac

Eurofins Denver

06/06/23 09:26

0.010

0.0050 mg/L

0.0090 U

Cyanide, Total

Job ID: 280-177167-1

10

Method: 9012B - Cyanide, Total and/or Amenable (Continued)

Lab Sample ID: HLCS 280-615 Matrix: Water	094/17					Clien	t Sai	inple ID.	Lab Control Sa Prep Type: Tota	
Analysis Batch: 615094										
			Spike	HLCS	HLCS				%Rec	
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits	
Cyanide, Total			0.350	0.358		mg/L		102	90 - 110	
Lab Sample ID: LCS 280-61509 Matrix: Water	94/19					Clien	it Sai	mple ID:	Lab Control Sa Prep Type: Tota	
Analysis Batch: 615094			• •						~-	
• • •			Spike		LCS		_	a/ -	%Rec	
Analyte			Added		Qualifier	Unit	D	%Rec	Limits	
Cyanide, Total			0.100	0.0963		mg/L		96	83 - 116	
Lab Sample ID: LLCS 280-615	094/18					Clien	t Sai	mple ID:	Lab Control Sa	
Matrix: Water									Prep Type: Tota	al/NA
Analysis Batch: 615094										
			Spike		LLCS		_	~~ -	%Rec	
Analyte			Added		Qualifier	Unit	D	%Rec	Limits	
Cyanide, Total			0.100	0.104		mg/L		104	44 - 167	
Lab Sample ID: MB 280-61534	9/4-A						Clie	ent Sam	ple ID: Method E	Blank
Matrix: Solid									Prep Type: Tota	al/NA
									Prep Batch: 61	5349
Analysis Batch: 615426										
Analysis Batch: 615426	м	IB MB								
Analyte Cyanide, Total	Resu 0.4	IB MB Ilt Qualifier 40 U		LOQ 0.50	DL Unit	-	06/0		3 06/08/23 13:35	1
Analyte Cyanide, Total Lab Sample ID: HLCS 280-615 Matrix: Solid	Resu 0.4	It Qualifier				g	06/0	8/23 09:43	3 06/08/23 13:35 Lab Control Sa Prep Type: Tota	1 mple al/NA
Analyte Cyanide, Total Lab Sample ID: HLCS 280-615	Resu 0.4	It Qualifier		0.50		g	06/0	8/23 09:43	3 06/08/23 13:35	1 mple al/NA
Analyte Cyanide, Total Lab Sample ID: HLCS 280-615 Matrix: Solid	Resu 0.4	It Qualifier		0.50 HLCS	0.24 mg/K	g	06/0	8/23 09:43	Lab Control Sa Prep Type: Tota Prep Batch: 61	1 mple al/NA
Analyte Cyanide, Total Lab Sample ID: HLCS 280-615 Matrix: Solid Analysis Batch: 615426	Resu 0.4	It Qualifier	Spike	0.50 HLCS	0.24 mg/K	g Clien	06/0	18/23 09:43	Lab Control Sa Prep Type: Tota Prep Batch: 61 %Rec	1 mple al/NA
Analyte Cyanide, Total Lab Sample ID: HLCS 280-615 Matrix: Solid Analysis Batch: 615426 Analyte	0.2	It Qualifier	Spike Added 17.5	HLCS Result 17.8	0.24 mg/K HLCS Qualifier	Clien Unit mg/Kg	06/0	8/23 09:43 mple ID: 	 3 06/08/23 13:35 2 Lab Control Sa Prep Type: Tota Prep Batch: 61 %Rec Limits 90 - 110 2 Lab Control Sa Prep Type: Tota Prep Batch: 61 	1 mple al/NA 5349 mple al/NA
Analyte Cyanide, Total Lab Sample ID: HLCS 280-615 Matrix: Solid Analysis Batch: 615426 Analyte Cyanide, Total Lab Sample ID: LCS 280-61534 Matrix: Solid Analysis Batch: 615426	0.2	It Qualifier	Spike Added	HLCS Result 17.8	U.24 mg/K HLCS Qualifier	Clien Unit mg/Kg	06/0	8/23 09:43 mple ID: 	 3 06/08/23 13:35 Control Sa Prep Type: Tota Prep Batch: 61 %Rec Limits 90 - 110 Control Sa Prep Type: Tota Prep Type: Tota Prep Batch: 61 %Rec 	1 mple al/NA 5349 mple al/NA
Analyte Cyanide, Total Lab Sample ID: HLCS 280-615 Matrix: Solid Analysis Batch: 615426 Analyte Cyanide, Total Lab Sample ID: LCS 280-61534 Matrix: Solid	0.2	It Qualifier	Spike Added 17.5	HLCS Result 17.8	0.24 mg/K HLCS Qualifier	Clien Unit mg/Kg Clien	06/0	8/23 09:43 mple ID: 	 3 06/08/23 13:35 2 Lab Control Sa Prep Type: Tota Prep Batch: 61 %Rec Limits 90 - 110 2 Lab Control Sa Prep Type: Tota Prep Batch: 61 	1 mple al/NA 5349 mple al/NA
Analyte Cyanide, Total Lab Sample ID: HLCS 280-615 Matrix: Solid Analysis Batch: 615426 Analyte Cyanide, Total Lab Sample ID: LCS 280-61534 Matrix: Solid Analysis Batch: 615426 Analyte	<u>Resu</u> 0.4 349/1-A 49/3-A	It Qualifier	Spike Added 17.5 Spike Added	HLCS Result 17.8 LCS Result	U.24 mg/K HLCS Qualifier	g Clien Unit mg/Kg Clien Unit mg/Kg	<u>06/0</u> It Sai It Sai	8/23 09:43 mple ID: - - 101 - mple ID: -	3 06/08/23 13:35 2 Lab Control Sa Prep Type: Tota Prep Batch: 61 %Rec Limits 90 - 110 2 Lab Control Sa Prep Type: Tota Prep Type: Tota Prep Type: Tota Prep Type: Tota Macc Limits Yange Carbon Limits	1 mple 5349 mple kl/NA 5349
Analyte Cyanide, Total Lab Sample ID: HLCS 280-615 Matrix: Solid Analysis Batch: 615426 Analyte Cyanide, Total Lab Sample ID: LCS 280-61534 Matrix: Solid Analysis Batch: 615426 Analyte Cyanide, Total Lab Sample ID: LLCS 280-61534	<u>Resu</u> 0.4 349/1-A 49/3-A	It Qualifier	Spike Added 17.5 Spike Added 5.00	HLCS Result 17.8 LCS Result 4.85	0.24 mg/K HLCS Qualifier LCS Qualifier	g Clien Unit mg/Kg Clien Unit mg/Kg	<u>06/0</u> It Sai It Sai	8/23 09:43 mple ID: - - 101 - mple ID: -	3 06/08/23 13:35 2 Lab Control Sa Prep Type: Tota Prep Batch: 61 %Rec Limits 90 - 110 2 Lab Control Sa Prep Type: Tota Prep Type: Tota %Rec Limits 90 - 110 2 Lab Control Sa Prep Batch: 61 %Rec Limits 76 - 120 2 Lab Control Sa Prep Type: Tota Prep Type: Tota Prep Type: Tota Prep Type: Tota Prep Batch: 61	1 mple al/NA 5349 mple bl/NA 5349 mple
Analyte Cyanide, Total Lab Sample ID: HLCS 280-615 Matrix: Solid Analysis Batch: 615426 Analyte Cyanide, Total Lab Sample ID: LCS 280-61534 Matrix: Solid Analysis Batch: 615426 Analyte Cyanide, Total Lab Sample ID: LLCS 280-6155 Matrix: Solid Analysis Batch: 615426	<u>Resu</u> 0.4 349/1-A 49/3-A	It Qualifier	Spike Added 17.5 Spike Added 5.00	HLCS Result 17.8 LCS Result 4.85	U.24 mg/K HLCS Qualifier LCS Qualifier	Clien Unit mg/Kg Clien Unit mg/Kg Clien	<u>D</u> <u>D</u> <u>D</u> <u>D</u> <u>D</u> <u>D</u> <u>D</u> <u>D</u> <u>T</u> <u>T</u> <u>T</u> <u>T</u> <u>T</u> <u>T</u> <u>T</u> <u>T</u> <u>T</u> <u>T</u>	8/23 09:43 mple ID: - - 101 - mple ID: -	 3 06/08/23 13:35 2 Lab Control Sa Prep Type: Tota Prep Batch: 61 %Rec Limits 90 - 110 2 Lab Control Sa Prep Type: Tota Prep Batch: 61 %Rec Limits 76 - 120 2 Lab Control Sa Prep Type: Tota Prep Batch: 61 %Rec 	1 mple al/NA 5349 mple al/NA mple al/NA
Analyte Cyanide, Total Lab Sample ID: HLCS 280-615 Matrix: Solid Analysis Batch: 615426 Analyte Cyanide, Total Lab Sample ID: LCS 280-6153 Matrix: Solid Analysis Batch: 615426 Analyte Cyanide, Total Lab Sample ID: LLCS 280-6155 Matrix: Solid Analysis Batch: 615426 Analysis Batch: 615426 Analysis Batch: 615426	<u>Resu</u> 0.4 349/1-A 49/3-A	It Qualifier	Spike Added 17.5 Spike Added 5.00 Spike Added	0.50 HLCS Result 17.8 LCS Result 4.85	0.24 mg/K HLCS Qualifier LCS Qualifier	G Clien Unit mg/Kg Clien Unit Unit	<u>06/0</u> It Sai It Sai	8/23 09:43 mple ID: %Rec 101 - mple ID: %Rec 97 mple ID: %Rec 97	3 06/08/23 13:35 2 Lab Control Sa Prep Type: Tota Prep Batch: 61 %Rec Limits 90 - 110 2 Lab Control Sa Prep Type: Tota Prep Type: Tota Prep Batch: 61 %Rec Limits 76 - 120 2 Lab Control Sa Prep Type: Tota 76 - 120 2 Lab Control Sa Prep Type: Tota Prep Batch: 61 %Rec Limits 76 - 120	1 mple al/NA 5349 mple al/NA mple al/NA
Analyte Cyanide, Total Lab Sample ID: HLCS 280-615 Matrix: Solid Analysis Batch: 615426 Analyte Cyanide, Total Lab Sample ID: LCS 280-6153 Matrix: Solid Analysis Batch: 615426 Analyte Cyanide, Total Lab Sample ID: LLCS 280-6153 Matrix: Solid Analysis Batch: 615426 Analysis Batch: 615426 Analysis Batch: 615426 Analysis Batch: 615426	Resu 0.4 349/1-A 49/3-A 349/2-A	It Qualifier	Spike Added 17.5 Spike Added 5.00	HLCS Result 17.8 LCS Result 4.85	U.24 mg/K HLCS Qualifier LCS Qualifier	G Clien Unit mg/Kg Clien Unit mg/Kg Clien	<u> </u>	8/23 09:43 mple ID: - 101 - mple ID: -	3 06/08/23 13:35 2 Lab Control Sa Prep Type: Tota Prep Batch: 61 %Rec Limits 90 - 110 2 Lab Control Sa Prep Type: Tota Prep Type: Tota Prep Batch: 61 %Rec Limits 76 - 120 2 Lab Control Sa Prep Type: Tota 76 - 120 2 Limits 76 - 120 2 Limits 76 - 120 2 Limits 76 - 120 2 2 Limits 51 - 150	1 mple al/NA 5349 mple al/NA 5349 mple al/NA 5349
Analyte Cyanide, Total Lab Sample ID: HLCS 280-615 Matrix: Solid Analysis Batch: 615426 Analyte Cyanide, Total Lab Sample ID: LCS 280-6153 Matrix: Solid Analysis Batch: 615426 Analyte Cyanide, Total Lab Sample ID: LLCS 280-6153 Matrix: Solid Analysis Batch: 615426 Analysis Batch: 615426 Analyte Cyanide, Total Lab Sample ID: 280-177167-2	Resu 0.4 349/1-A 49/3-A 349/2-A	It Qualifier	Spike Added 17.5 Spike Added 5.00 Spike Added	0.50 HLCS Result 17.8 LCS Result 4.85	U.24 mg/K HLCS Qualifier LCS Qualifier	G Clien Unit mg/Kg Clien Unit mg/Kg Clien	<u> </u>	8/23 09:43 mple ID: - 101 - mple ID: -	3 06/08/23 13:35 2 Lab Control Sa Prep Type: Tota Prep Batch: 61 %Rec Limits 90 - 110 2 Lab Control Sa Prep Type: Tota Prep Type: Tota Prep Type: Tota %Rec Limits 76 - 120 2 Lab Control Sa Prep Type: Tota 76 - 120 2 Limits 76 - 120 2 Lab Control Sa Prep Type: Tota %Rec Limits 51 - 150 FWGIDW-23030*	1 mple al/NA 5349 mple al/NA 5349 mple al/NA 5349
Analyte Cyanide, Total Lab Sample ID: HLCS 280-615 Matrix: Solid Analysis Batch: 615426 Analyte Cyanide, Total Lab Sample ID: LCS 280-6153 Matrix: Solid Analysis Batch: 615426 Analyte Cyanide, Total Lab Sample ID: LLCS 280-6155 Matrix: Solid Analysis Batch: 615426 Analyte Cyanide, Total Lab Sample ID: 280-177167-2 I Matrix: Solid	Resu 0.4 349/1-A 49/3-A 349/2-A	It Qualifier	Spike Added 17.5 Spike Added 5.00 Spike Added	0.50 HLCS Result 17.8 LCS Result 4.85	U.24 mg/K HLCS Qualifier LCS Qualifier	G Clien Unit mg/Kg Clien Unit mg/Kg Clien	<u> </u>	8/23 09:43 mple ID: - 101 - mple ID: -	3 06/08/23 13:35 2 Lab Control Sa Prep Type: Tota Prep Batch: 61 %Rec Limits 90 - 110 2 Lab Control Sa Prep Type: Tota Prep Type: Tota Prep Type: Tota %Rec Limits 76 - 120 2 Lab Control Sa Prep Type: Tota Prep Batch: 61 %Rec Limits 76 - 120 2 Lab Control Sa Prep Type: Tota %Rec Limits 51 - 150 FWGIDW-23030* Prep Type: Tota	1 mple al/NA 5349 mple al/NA 5349 mple al/NA 5349
Analyte Cyanide, Total Lab Sample ID: HLCS 280-615 Matrix: Solid Analysis Batch: 615426 Analyte Cyanide, Total Lab Sample ID: LCS 280-61534 Matrix: Solid Analysis Batch: 615426 Analyte Cyanide, Total Lab Sample ID: LLCS 280-6153 Matrix: Solid Analysis Batch: 615426 Analysis Batch: 615426 Analyte Cyanide, Total Lab Sample ID: 280-177167-2	Resu 0.4 349/1-A 49/3-A 349/2-A MS	Ilt Qualifier 40 U	Spike Added 17.5 Spike Added 5.00 Spike Added 5.00	0.50 HLCS Result 17.8 LCS Result 4.85 LLCS Result 5.05	0.24 mg/K HLCS Qualifier LCS Qualifier	G Clien Unit mg/Kg Clien Unit mg/Kg Clien	<u> </u>	8/23 09:43 mple ID: - 101 - mple ID: -	3 06/08/23 13:35 2 Lab Control Sa Prep Type: Tota Prep Batch: 61 %Rec Limits 90 - 110 2 2 10 3 2 10 3 2 10 3 2 10 3 2 10 3 2 110 3 2 110 3 2 110 3 3 110 3 4 90 - 110 4 110 5 120 4 120 5 120 4 130 14 14 15 15 15 15 <td>1 mple al/NA 5349 mple al/NA 5349 mple al/NA 5349</td>	1 mple al/NA 5349 mple al/NA 5349 mple al/NA 5349
Analyte Cyanide, Total Lab Sample ID: HLCS 280-615 Matrix: Solid Analysis Batch: 615426 Analyte Cyanide, Total Lab Sample ID: LCS 280-61534 Matrix: Solid Analysis Batch: 615426 Analyte Cyanide, Total Lab Sample ID: LLCS 280-6155 Matrix: Solid Analysis Batch: 615426 Analyte Cyanide, Total Lab Sample ID: 280-177167-2 Matrix: Solid Analysis Batch: 615426	Resu 0.4 349/1-A 49/3-A 349/2-A MS Sample S	Ilt Qualifier 40 U	Spike Added 17.5 Spike Added 5.00 Spike Added 5.00	0.50 HLCS Result 17.8 LCS Result 4.85 LLCS Result 5.05	0.24 mg/K HLCS Qualifier LCS Qualifier LLCS Qualifier	g Clien Unit mg/Kg Clien Unit mg/Kg Client	<u> </u>	8/23 09:43 mple ID: - 101 - mple ID: -	3 06/08/23 13:35 2 Lab Control Sa Prep Type: Tota Prep Batch: 61 %Rec Limits 90 - 110 2 Lab Control Sa Prep Type: Tota Prep Type: Tota %Rec Limits 76 - 120 2 Lab Control Sa Prep Type: Tota Prep Type: Tota %Rec Limits 51 - 150 FWGIDW-230300 Prep Type: Tota Prep Batch: 61 %Rec Limits 51 - 150	mple al/NA 5349 mple al/NA 5349 mple al/NA 5349
Analyte Cyanide, Total Lab Sample ID: HLCS 280-615 Matrix: Solid Analysis Batch: 615426 Analyte Cyanide, Total Lab Sample ID: LCS 280-6153 Matrix: Solid Analysis Batch: 615426 Analyte Cyanide, Total Lab Sample ID: LLCS 280-6155 Matrix: Solid Analysis Batch: 615426 Analyte Cyanide, Total Lab Sample ID: 280-177167-2 I Matrix: Solid	Resu 0.4 349/1-A 49/3-A 349/2-A MS	ample tualifier	Spike Added 17.5 Spike Added 5.00 Spike Added 5.00	0.50 HLCS Result 17.8 LCS Result 4.85 LLCS Result 5.05	0.24 mg/K HLCS Qualifier LCS Qualifier	G Clien Unit mg/Kg Clien Unit mg/Kg Clien	<u> </u>	8/23 09:43 mple ID: - 101 - mple ID: -	3 06/08/23 13:35 2 Lab Control Sa Prep Type: Tota Prep Batch: 61 %Rec Limits 90 - 110 2 2 10 3 2 10 3 2 10 3 2 10 3 2 10 3 2 110 3 2 110 3 2 110 3 3 110 3 4 90 - 110 4 110 5 120 4 120 5 120 4 130 14 14 15 15 15 15 <td>1 mple al/NA 5349 mple al/NA 5349 mple al/NA 5349</td>	1 mple al/NA 5349 mple al/NA 5349 mple al/NA 5349

Client: Leidos, Inc.			000								Job ID: 2	280-177	'167-1
Project/Site: RVAAP FWGW FS V Method: 9012B - Cyanide,				enabl	•								
-		and		511001									— I
Lab Sample ID: 280-177167-2 Matrix: Solid	MSD							Client	t Sam	nple ID: F	FWGIDW Prep Ty		
											Prep Ty Prep Ba	-	
Analysis Batch: 615426	Sampla	San	nnla	Spike		MSD	MSD				Prep Ва %Rec	aten. o	RPD
Analyte	Sample Result			Added		-	Qualifier	Unit	D	%Rec	Limits	RPD	
Cyanide, Total	0.45	-		5.71		5.58		mg/Kg	— <u>–</u>		76 - 120	4	
Method: 9034 - Sulfide, Ad			e and li						· · ·				
Lab Sample ID: MB 280-61452							<u></u>		Clic	ent Sam			Blank
Matrix: Solid	2012-1								Cile	An Samp	Prep Ty		
Analysis Batch: 614559											Prep Ba		
-		MB	МВ								-		
Analyte	Re	əsult	Qualifier		LOQ		DL Unit	D) Р	Prepared	Analy	zed	Dil Fac
Sulfide		7.7	U		9.7		4.2 mg/K	.g	_	01/23 11:49			1
Lab Sample ID: LCS 280-6145	526/1-A							Clier	nt Sar	mple ID:			
Matrix: Solid											Prep Ty		
Analysis Batch: 614559											Prep Ba	atch: 6	14526
				Spike		-	LCS		_		%Rec		
Analyte				Added			Qualifier		D		Limits		
Sulfide				90.6		63.9		mg/Kg		71	35 - 119		
Lab Sample ID: 280-177167-2	MQ							Clion	+ San	nple ID: F		1.2303(1 WS
Matrix: Solid	NI S							Chern	Jam	пріе і	Prep Ty		
											Prep Ba		
Analysis Batch: 614559	Sample	۹n	nnla	Spike		MS	MS				Prep Ва %Rec	aten. u	14520
Analyte	Result		•	Added		-	Qualifier	Unit	D	%Rec	Limits		
Sulfide				117		43.5		mg/Kg	— <u>¤</u>	37	35 - 119		
-	0.0	000	,			10.0				с.	00		
Lab Sample ID: 280-177167-2	MSD							Client	t Sarr	nple ID: F	FWGIDW	1-23030)1-WS
Matrix: Solid										•	Prep Ty		
Analysis Batch: 614559											Prep Ba		
-	Sample	San	nple	Spike		MSD	MSD				%Rec		RPD
Analyte	Result	Qua	alifier	Added		Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Sulfide	9.3	U J1	1	114		99.5	J1	mg/Kg	☆	87	35 - 119	78	35
Lab Sample ID: MB 280-61505	57/1-A								Clie	ent Samp	-		
Matrix: Water											Prep Ty		
Analysis Batch: 615058											Prep Ba	atch: 6	15057
			MB										
Analyte	Re		Qualifier		LOQ		DL Unit			Prepared	Analy		Dil Fac
Sulfide		2.0	U		4.0		1.6 mg/L		06/0	06/23 12:06	5 06/06/23	12:08	1
								Olion	-+ 0	in the ID.	t ab Oa	- t	
Lab Sample ID: LCS 280-6150)57/2-A							Clien	it Sar	mple ID:			
Matrix: Water											Prep Ty		
Analysis Batch: 615058											Prep Ba	atch: 6	15057
				Spike			LCS		_		%Rec		
Analyte				Added			Qualifier		D		Limits		
Sulfide				17.1		12.0		mg/L		70	44 - 110		

Client: Leidos, Inc. Project/Site: RVAAP FWGW FS Well Install 2023

Method: 9034 - Sulfide, Acid Soluble and Insoluble (Titrimetric) (Continued)

Analyte SufficeResult QualifierQualifier 17.1Added 12.0Result QualifierUnit mgLD%Rec 70Limits 44.110RPD 7Limit 20Method: 9040C - pHLiab Sample ID: LCS 280-614834/31 Matrix: Water Analysis Batch: 614834Spike AddedClient Sample ID: Lab Control Sample Prep Type: Total/NA Matrix: Water Analysis Batch: 614834Spike AddedClient Sample ID: Lab Control Sample Prep Type: Total/NA Matrix: Water Analysis Batch: 615054Spike AddedLCS LCS Result QualifierUnit Unit Unit Unit DMRec MRec Matrix: SolidMRec Matrix: SolidMRec LimitsLimits MRec LimitsAnalyte pri adi, to 25 deg C7.007.07.0SUD%Rec MRecLimits Lab Control Sample Prep Type: Total/NA Analysis Batch: 615054Analyte pri adi, to 25 deg C7.007.07.0SUD%Rec MRecLimits Lab Control Sample Du Prep Type: Total/NA Analysis Batch: 615054Analyte pri adi, to 25 deg C7.007.0SUD%Rec SULimits D%Rec MRecAnalyte pri adi, to 25 deg C7.007.0SUD%Rec SULimits DMRec MRecAnalyte pri adi, to 25 deg CAdded 7.07.0SUD%Rec SULimits DMRec MRecAnalyte pri adi, to 25 deg C0.00 No Rec 7.0SUDMRec SUMRE MRecMRec MRecMRE MRecAnalyte pri adi	Lab Sample ID: 280-177167-1	I MS							Client	t Sam	ple ID: I	FWGIDW	-23030	1-WW
Sample Spike MS MS MS KRec Analyte Result Qualifier 11:1 Qualifier D %Rec Lints Suficia 2.0 17.1 11:2 Qualifier Unit D %Rec Lints Lab Sample ID: 280-177167-1 MSD Sample Sample Spike MSD MSD Client Sample ID: FWCIDW-230301-4W Matrix: Water Result Qualifier Unit D %Rec Limits Prop. Batch: 615056 Matrix: Water Result Qualifier MSD MSD MSD MSD WRD MSD WRD WRD <t< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>Prep Ty</th><th>pe: To</th><th>tal/NA</th></t<>												Prep Ty	pe: To	tal/NA
Analyte Result Qualifier Added Result Qualifier Unit D %Rec Limits Suifide 2.0 17.1 11.2 mg/L D 66 44.110 Lab Sample ID: 280-177167-1 MSD Cilent Sample ID: 280-177167-1 MSD Cilent Sample ID: WGIDW-230301-WM Prep Type: Total/M Analyte Result Qualifier MSD MSD MSD MSD D %Rec RPL Analyte Result Qualifier Unit D %Rec RPL Imms Prep Type: Total/M Suifide 2.0 17.1 12.0 MSD MSD D %Rec RPL Suifide 2.0 17.1 12.0 MSD MSD D %Rec RPD Limits Suifide 2.0 17.1 12.0 MSD MSD D %Rec Limits Prep Type: Total/M Analyte Added Result Qualifier Unit D %Rec Limits Prep Type: Total/M Analyte Added Result	Analysis Batch: 615058											Prep Ba	atch: 6	15057
Suffice 2.0 17.1 11.2 mgL 66 44.110 Lab Sample ID: 280-177167-1 MSD Matrix: Water Sample Sample Sample Sample Client Sample ID: FWGIDW-230301-WM Prep Type: Total/M/ Prep Batch: 615058 Analysis Batch: 615058 Sample Sample Sample Sample MSD MSD WSD Prep Type: Total/M/ Prep Batch: 61505 Analysis Batch: 615058 Result Qualifier Added Result Qualifier Unit D %Rec Rec Lab Sample ID: LCS 280-614834/31 Added Result Qualifier Unit D %Rec Limits Prep Type: Total/M/ Prep Type: Total/M/ Analysis Batch: 614834 Spike LCS LCS LCS LCS KRec KRec Analysis Batch: 615054 7:0 7:0 SU D %Rec Limits Prep Type: Total/M/ Analysis Batch: 615054 Analysis Batch: 615054 Spike LCS LCS LCS LCS KRec Limits Prep Type: Total/M/ Analysis Batch: 614359 ME ME KRec Limits Prep Type: Total/M/ Analysis Batch: 614359 ME ME LCSD LCSD		Sample	Sam	ple	Spike		MS	MS				%Rec		
Lab Sample ID: 280-177167-1 MSD Matrix: Water Analysis Batch: 615058 <u>Analyte</u> <u>Result Qualifier</u> <u>Result Qualifier</u> <u>Result Qualifier</u> <u>Analysis Batch: 615058</u> <u>Analyte</u> <u>Result Qualifier</u> <u>Result Qualifier</u> <u>Result Qualifier</u> <u>MSD</u> <u>MSD</u> <u>MSD</u> <u>MSD</u> <u>MSD</u> <u>MSD</u> <u>MSD</u> <u>MSD</u> <u>MSD</u> <u>MSD</u> <u>MSD</u> <u>MSD</u> <u>MSD</u> <u>MSD</u> <u>MSD</u> <u>MSD</u> <u>MSD</u> <u>MSD</u> <u>MSD</u> <u>MSD</u> <u>MSD</u> <u>MSD</u> <u>MSD</u> <u>MSD</u> <u>MSD</u> <u>MSD</u> <u>MSD</u> <u>MSD</u> <u>MSD</u> <u>MSD</u> <u>MSD</u> <u>MSD</u> <u>MSD</u> <u>MSD</u> <u>MSD</u> <u>MSD</u> <u>MSD</u> <u>MSD</u> <u>MSD</u> <u>MSD</u> <u>MSD</u> <u>MSD</u> <u>MSD</u> <u>MSD</u> <u>MSD</u> <u>MSD</u> <u>MSD</u> <u>MSD</u> <u>MSD</u> <u>MSD</u> <u>MSD</u> <u>MSD</u> <u>MSD</u> <u>MSD</u> <u>MSD</u> <u>MSD</u> <u>MSD</u> <u>MSD</u> <u>MSD</u> <u>MSD</u> <u>MSD</u> <u>MSD</u> <u>MSD</u> <u>MSD</u> <u>MSD</u> <u>MSD</u> <u>MSD</u> <u>MSD</u> <u>MSD</u> <u>MSD</u> <u>MSD</u> <u>MSD</u> <u>MSD</u> <u>MSD</u> <u>MSD</u> <u>MSD</u> <u>MSD</u> <u>MSD</u> <u>MSD</u> <u>MSD</u> <u>MSD</u> <u>MSD</u> <u>MSD</u> <u>MSD</u> <u>MSD</u> <u>MSD</u> <u>MSD</u> <u>MSD</u> <u>MSD</u> <u>MSD</u> <u>MSD</u> <u>MSD</u> <u>MSD</u> <u>MSD</u> <u>MSD</u> <u>MSD</u> <u>MSD</u> <u>MSD</u> <u>MSD</u> <u>MSD</u> <u>MSD</u> <u>MSD</u> <u>MSD</u> <u>MSD</u> <u>MSD</u> <u>MSD</u> <u>MSD</u> <u>MSD</u> <u>MSD</u> <u>MSD</u> <u>MSD</u> <u>MSD</u> <u>MSD</u> <u>MSD</u> <u>MSD</u> <u>MSD</u> <u>MSD</u> <u>MSD</u> <u>MSD</u> <u>MSD</u> <u>MSD</u> <u>MSD</u> <u>MSD</u> <u>MSD</u> <u>MSD</u> <u>MSD</u> <u>MSD</u> <u>MSD</u> <u>MSD</u> <u>MSD</u> <u>MSD</u> <u>MSD</u> <u>MSD</u> <u>MSD</u> <u>MSD</u> <u>MSD</u> <u>MSD</u> <u>MSD</u> <u>MSD</u> <u>MSD</u> <u>MSD</u> <u>MSD</u> <u>MSD</u> <u>MSD</u> <u>MSD</u> <u>MSD</u> <u>MSD</u> <u>MSD</u> <u>MSD</u> <u>MSD</u> <u>MSD</u> <u>MSD</u> <u>MSD</u> <u>MSD</u> <u>MSD</u> <u>MSD</u> <u>MSD</u> <u>MSD</u> <u>MSD</u> <u>MSD</u> <u>MSD</u> <u>MSD</u> <u>MSD</u> <u>MSD</u> <u>MSD</u> <u>MSD</u> <u>MSD</u> <u>MSD</u> <u>MSD</u> <u>MSD</u> <u>MSD</u> <u>MSD</u> <u>MSD</u> <u>MSD</u> <u>MSD</u> <u>MSD</u> <u>MSD</u> <u>MSD</u> <u>MSD</u> <u>MSD</u> <u>MSD</u> <u>MSD</u> <u>MSD</u> <u>MSD</u> <u>MSD</u> <u>MSD</u> <u>MSD</u> <u>MSD</u> <u>MSD</u> <u>MSD</u> <u>MSD</u> <u>MSD</u> <u>MSD</u> <u>MSD</u> <u>MSD</u> <u>MSD</u> <u>MSD</u> <u>MSD</u> <u>MSD</u> <u>MSD</u> <u>MSD</u> <u>MSD</u> <u>MSD</u> <u>MSD</u> <u>MSD</u> <u>MSD</u> <u>MSD</u> <u>MSD</u> <u>MSD</u> <u>MSD</u> <u>MSD</u> <u>MSD</u> <u>MSD</u> <u>MSD</u> <u>MSD</u> <u>MSD</u> <u>MSD</u> <u>MSD</u> <u>MSD</u> <u>MSD</u> <u>MSD</u> <u>MSD</u> <u>MSD</u> <u>MSD</u> <u>MSD</u> <u>MSD</u> <u>MSD</u> <u>MSD</u> <u>MSD</u> <u>MSD</u> <u>MSD</u> <u>MSD</u> <u>MSD</u> <u>MSD</u> <u>MSD</u> <u>MSD</u> <u>MSD</u> <u>MSD</u> <u>MSD</u> <u>MSD</u> <u>MSD</u> <u>MSD</u> <u>MSD</u> <u>MSD</u> <u>MSD</u> <u>MSD</u> <u>MSD</u> <u>MSD</u> <u>MSD</u> <u>MSD</u> <u>MSD</u> <u>MSD</u> <u>MSD</u> <u>MSD</u> <u>MSD</u> <u>MSD</u> <u>MSD</u> <u>MSD</u>	Analyte	Result	Qual	ifier	Added		Result	Qualifier	Unit	D	%Rec	Limits		
Matrix: Water Analysis Batch: 615058 Prop Type: Total/NX Prop Batch: 615058 Analysis Batch: 615058 Sample Sample Result Qualifier MSD <msd< td=""> MSD<msd< td=""> WRec RPD Linit <</msd<></msd<>	Sulfide	2.0	U		17.1		11.2		mg/L		66	44 - 110		
Matrix: Water Analysis Batch: 615058 Prop Type: Total/NX Prop Batch: 615058 Analysis Batch: 615058 Sample Sample Result Qualifier MSD <msd< td=""> MSD<msd< td=""> WRec RPD Linit <</msd<></msd<>	Lab Sample ID: 280-177167-1								Client	t Sam	ple ID: I	FWGIDW	-23030	1-WW
Analysis Batch: 615058 Sample Sample Spike MSD MSD Prep Batch: 615057 Analyte Result Qualifier Unit D %Rec RPD Limits RPT Total/NA Analyte Added Result Qualifier Unit D %Rec Limits Prep Type: Total/NA Analyte Added Result Qualifier Unit D %Rec Limits Prep Type: Total/NA Analyte Added Result Qualifier Unit D %Rec Limits Prep Type: Total/NA Analyte Added Result Qualifier Unit D														
Sample Sample Spike MSD MSD %Roc RP Suffide 2.0 0 17.1 12.0 mg/L 10 %Roc RP Limits Limits RP Limits RP Limits RP Limits RP Limits Limits RP Limits Limits Limits RP Limits Limits RP Limits	Analysis Batch: 615058													
Analyte SuffideResult QualifierQualifier 17.1Added 12.0Result QualifierUnit mgLD 70%Rec 44.110Limits 7RPD 20Limit 20Wethod:9040C - pHLab Sample ID: LCS 280-614834/31 Matrix: Water Analysis Batch:Spike AddedLCS ResultClient Sample ID: Lab Control Sample Prep Type: Total/MAAnalyte pH adj. to 25 deg C7.007.07.0%Rec SULimits Prep Type: Total/MAMethod:9045D - pHClient Sample ID: Lab Control Sample Prep Type: Total/MAClient Sample ID: Lab Control Sample Prep Type: Total/MALab Sample ID: LCS 280-615054/3 Matrix: Solid Analyte pH adj. to 25 deg CSpike 7.00CLS 7.0Client Sample ID: Lab Control Sample Prep Type: Total/MAAnalyte pH adj. to 25 deg C7.007.0T.0D%Rec SULimits Prep Type: Total/MAAnalyte pH adj. to 25 deg C7.007.0T.0D%Rec SULimits Prep Type: Total/MAAnalyte pH adj. to 25 deg C7.007.0T.0D%Rec SUResult QualifierResult QualifierD%Rec SURep LimitsLab Sample ID: LCSD 280-614359/13 Matrix: Water Analysis Batch: 610 UMAdded 0.00DL Unit 0.00DPrepared 0.0311231801Method Blank Prep Type: Total/MAAnalyte pH adj. to 25 deg C0.10UM0.500.040mgtD%Rec 99 91.11Elient Sample ID: Method Blank Prep Type: Total/MA	· ···· , ··· - ·····	Sample	Sam	ple	Spike		MSD	MSD						RPD
Suifice 2.0 17.1 12.0 mg/L 70 44.110 7 24 Viethod: 9040C - pH Client Sample ID: LCS 280-614834/31 Client Sample ID: LCS 280-614834/31 Client Sample ID: Lab Control Sample Markin: Water Analysis Batch: 614834 Spike LCS LCS Client Sample ID: Lab Control Sample Markin: Solid Mark Prep Type: Total/NA Analysis Batch: 0 25 deg C 7.0 7.0 SU 101 99.101 99.101 Vethod: 9045D - pH LCS LCS Result Qualifier Unit D %Rec Limits Prep Type: Total/NA Analysis Batch: 615054 Spike LCS LCS Result Qualifier Unit D %Rec Limits Prep Type: Total/NA Analysis Batch: 615054 Spike LCS LCS LCS LCS Kee Kee Limits Prep Type: Total/NA Analysis Batch: 615054 Spike LCS LCS LCS LCS Kee Kee Limits Prep Type: Total/NA Analysis Batch: 615054 Spike LCSD LCSD LCSD LCSD	Analvte	•		•	•		Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limi
Lab Sample ID: LCS 280-614834/31 Matrix: Water Analysis Batch: 614834 Client Sample ID: Lab Control Sample Prep Type: Total/MA Analyte PH adj. to 25 deg C 7.00 7.0 SU 101 99-101 Wethod: 9045D - pH Client Sample ID: LCS 280-615054/3 Matrix: Solid Analysis Batch: 615054 Spike Added LCS LCS Result Qualifier Unit D %Rec Limits Analyte Added Spike Added LCS LCS Result Qualifier Vitit D %Rec Limits Analyte Added Client Sample ID: LCS 280-615054/3 Matrix: Solid Spike Added LCS LCS Result Qualifier %Rec Vitit %Rec Vitit Analyte Added Client Sample ID: LCS D280-615054/4 Matrix: Solid Spike Analyte LCS LCS Result Qualifier %Rec Vitit Mai					17.1							44 - 110		20
Matrix: Water Analysis Batch: 614834 Prep Type: Total/MA Analyte PH adj. to 25 deg C 7.00 7.00 Valifier SU Unit D %Rec Limits Limits Matrix: Solid Analysis Batch: 615054/ Matrix: Solid Analysis Batch: 615054 Spike Added LCS LCS LCS Matrix: Solid Analysis Batch: 615054 Spike Added Client Sample ID: Lab Control Sample Prep Type: Total/MA Analyte pH adj. to 25 deg C 7.00 7.0 SU D %Rec Limits Analyte pH adj. to 25 deg C 7.00 7.0 SU D %Rec Limits Analyte pH adj. to 25 deg C 7.00 7.0 SU D %Rec Limits Analyte pH adj. to 25 deg C 7.00 7.0 SU D %Rec Limits Analyte pH adj. to 25 deg C 7.00 7.0 SU D %Rec Limits Analyte pH adj. to 25 deg C 7.00 7.0 SU D %Rec Nitrite as N %Rec Nitrite as N N Analyte pH adj. to 25 deg C 0.00 0.50 0.000 mg/L D %Rec Nitrite as N N Analyte pH adj. to 25 deg C 0.10 0.50 0.000 mg/L D Merce Nitrite as N N 0.10 D Analyte pH adj. to 25 deg C 0.10 0.50<	Method: 9040C - pH													
Matrix: Water Analysis Batch: 614834 Prep Type: Total/MA Analyte PH adj. to 25 deg C 7.00 7.00 Valifier SU Unit D %Rec Limits Limits Matrix: Solid Analysis Batch: 615054/ Matrix: Solid Analysis Batch: 615054 Spike Added LCS LCS LCS Matrix: Solid Analysis Batch: 615054 Spike Added Client Sample ID: Lab Control Sample Prep Type: Total/MA Analyte pH adj. to 25 deg C 7.00 7.0 SU D %Rec Limits Analyte pH adj. to 25 deg C 7.00 7.0 SU D %Rec Limits Analyte pH adj. to 25 deg C 7.00 7.0 SU D %Rec Limits Analyte pH adj. to 25 deg C 7.00 7.0 SU D %Rec Limits Analyte pH adj. to 25 deg C 7.00 7.0 SU D %Rec Limits Analyte pH adj. to 25 deg C 7.00 7.0 SU D %Rec Nitrite as N %Rec Nitrite as N N Analyte pH adj. to 25 deg C 0.00 0.50 0.000 mg/L D %Rec Nitrite as N N Analyte pH adj. to 25 deg C 0.10 0.50 0.000 mg/L D Merce Nitrite as N N 0.10 D Analyte pH adj. to 25 deg C 0.10 0.50<	Lab Sample ID: LCS 280-614	834/31							Clie	nt Sa	mple ID	: Lab Cor	ntrol S	ample
Analysis Batch: 614834 Spike Added LCS														
Spike Analyte PH adj, to 25 deg C Spike Added LCS Result 7.0 LCS 7.0 LCS 7.0 <td></td> <td>i i op i y</td> <td>pc. 10</td> <td></td>												i i op i y	pc. 10	
AnalyteAddedResultQualifierUnitD%RecLimitspit adj. to 25 deg C7.007.0SU10199-10199-101Wethod: 9045D - pHLab Sample ID: LCS 280-615054/3 Matrix: Solid Analysis Batch: 615054SpikeLCSLCSLCSPrep Type: Total/NAAnalyte pH adj. to 25 deg C7.007.07.09990-10190Lab Sample ID: LCSD 280-615054/4 Matrix: Solid Analysis Batch: 615054SpikeLCSLCSMRecLimitsAnalyte pH adj. to 25 deg C7.007.07.0990-10190-101Lab Sample ID: LCSD 280-615054/4 Matrix: Solid Analysis Batch: 615054Spike AddedLCSDLCSDLSDVRecResult Prep Type: Total/NAAnalyte pH adj. to 25 deg C7.007.07.0SU10099-10103Analyte pH adj. to 25 deg C7.007.0SU10099-10103Analyte pH adj. to 25 deg C7.007.0SU10099-10103Analyte pH adj. to 25 deg C7.007.0SU10099-10103Matrix: Water Analysis Batch: 614359MB 0.10MBDNetwork 0.500.090mg/L05/31/23 18:011Analyte Nitrite as N0.200.500.090mg/L05/31/23 18:010111111111111<	Analysis Baton. 014004				Snike		LCS	LCS				%Rec		
pH adj. to 25 deg C 7.00 7.0 SU 101 99.101 Vlethod: 9045D - pH Lab Sample ID: LCS 280-615054/3 Matrix: Solid Analysis Batch: 615054 Client Sample ID: Lab Control Sample Prep Type: Total/NA Analysis Batch: 615054 Analyte pH adj. to 25 deg C 7.00 7.0 SU D %Rec 100 Merc 99.101 Lab Sample ID: LCSD 280-615054/4 Matrix: Solid Analytes Batch: 615054 Spike Added LCS LCS Su D %Rec 100 Limits Prep Type: Total/NA Prep Type: Total/NA Prep Type: Total/NA Analysis Batch: 615054 Analyte pH adj. to 25 deg C 7.00 7.0 SU D %Rec 100 Baple Du Prep Type: Total/NA Prep Type: Total/NA Prep Type: Total/NA Analysis Batch: 615054 Analyte pH adj. to 25 deg C 7.00 7.0 SU D %Rec Limits RPD Limits Prep Type: Total/NA Prep Type: Total/NA Analysis Batch: 614359 Analyte Nitrate as N 0.20 U 0.50 0.090 mg/L D Prepared 05/31/23 18:01 Analyzed Dil Fac Lab Sample ID: LCS 280-614359/11 Matrix: Water Analysis Batch: 614359 MB MB 0.10 U 0.50 0.090 mg/L D 95/31/23 18:01 Lab Sample ID: LCS 280-614359/11 Matrix: Water Analysis Batch: 614359 Spike Analyte LCS LCS Result Qualifier U D %Rec Prep Type: Total/NA 05/31/23 18:01 Lab Sample ID: LCS 280-614359/1	Analyte				•				Unit	п	%Poc			
Wethod: 9045D - pH Lab Sample ID: LCS 280-615054/3 Matrix: Solid Client Sample ID: Lab Control Sample Prep Type: Total/NA Analyte Added Result Qualifier Unit D %Rec Analyte Added Result Qualifier Unit D %Rec Limits Analyte Added Result Qualifier Unit D %Rec Rec Matrix: Solid Client Sample ID: LCSD 280-615054/4 Client Sample ID: Lab Control Sample Dup Matrix: Solid Analyte Added Result Qualifier Unit D %Rec RPD Analyte Added Result Qualifier Unit D %Rec RPD PH adj. to 25 deg C 7.00 7.0 7.0 SU 100 99-101 0 4 Matrix: Water Added Result Qualifier Unit D %Rec RPD Limits RPD Limits Analyte Result Qualifier LOQ DL Unit D %Rec NPD Limits NPD Unit D 65/31/23 18:01 05/31/23 18:01 0 05/31/23 18:01								Quaimer						
Lab Sample ID: LCS 280-615054/3 Matrix: Solid Analysis Batch: 615054 Client Sample ID: Lab Control Sample Prep Type: Total/NA Analysis Batch: 615054 Analyte Added Spike Added LCS Result Client Sample ID: Lab Control Sample Juint 9/														
Matrix: Solid Analysis Batch: 615054 Prep Type: Total/NA Analyte pH adj. to 25 deg C Added 7.00 Kesult 7.00 Unit SU D %Rec 100 Limits 99.101 Limits 99.101 Lab Sample ID: LCSD 280-615054/4 Matrix: Solid Analyte Spike Added LCSD Result LCSD 200 LCSD 7.00 LCSD 7.00 LCSD 7.00 LCSD 7.00 Vinit 200 D %Rec 100 Limits 99.101 Prep Type: Total/NA Analyte pH adj. to 25 deg C 7.00 7.00 7.0 SU D %Rec 100 Prep D 99.101 0 Kec 80 RPD 100 Limits 99.101 RPD 100 Limits 80 RPD 100 Limits 100 RPD 100 Limits 80 RPD 100 Limits 100 Limits 100 Limits 100 RPD 100 Limits 100 Limits 100 Limits 100 Limits 100 Limits 100 Limits	-													
Analysis Batch: 615054 Spike LCS Limits MRec Analyte Added 7:0 7:0 SU 100 99.101 99.101 Lab Sample ID: LCSD 280-615054/4 Matrix: Solid Spike LCSD Client Sample ID: Lab Control Sample Dup Prep Type: Total/MA Analyte Added Spike LCSD LCSD VRec RPC Analyte Added 7:0 7:0 SU 99.101 99.101 Analyte Added Spike LCSD LCSD VRec RPC Analyte Added 7:0 7:0 SU 99.101 0 99.101 0 99.101 0 99.101 0 99.101 0 90.10 0 90.10 0 90.10 0 90.10 0 90.10 0 90.10 0 90.10 0 90.10 0 90.10 0 90.10 0 90.10 0 90.10 0 90.10 0 90.10 0 90.10 <td>-</td> <td>054/3</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>Clie</td> <td>nt Sa</td> <td>mple ID</td> <td></td> <td></td> <td></td>	-	054/3							Clie	nt Sa	mple ID			
Spike AnalyteLCS AddedLCS ResultUnit QualifierD With SU%Rec LimitsAnalyte PH adj. to 25 deg C7.007.007.000099.101Lab Sample ID: LCSD 280-615054/4 Matrix: Solid Analysis Batch: 615054Spike AddedLCSD Result QualifierClient Sample ID: Lab Control Sample Dup Prep Type: Total/NAAnalyte PH adj. to 25 deg C7.007.007.000%Rec WereRPD LimitsAnalyte PH adj. to 25 deg C7.007.007.000000Analyte PH adj. to 25 deg C7.007.007.0SU099.101000Method: 9056 - Anions, Ion ChromatographyLab Sample ID: MB 280-614359/13 Matrix: Water Analysis Batch: 614359MB MB MB Matrix: Water Analysis Batch: 614359Client Sample ID: Method Blank Prep Type: Total/NAAnalyte Nitrate as N Analysis Batch: 614359/11 Matrix: Water Analysis Batch: 614359/11 Nitrite as N0.10U0.500.090mg/L05/31/23 18.01Lab Sample ID: LCS 280-614359/11 Matrix: Water Analysis Batch: 6143590.10U0.500.049mg/L05/31/23 18.01Lab Sample ID: LCS 280-614359/11 Matrix: Water Analysis Batch: 614359Spike AddedLCS LCS Result QualifierUnit QualifierDPrep Type: Total/NAAnalyte Nitrate as N0.10U0.500.049mg/L05/31/23 18.01Lab Sample ID: LCS 280-614359/11 <br< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>i i op i y</td><td>pc. 10</td><td></td></br<>												i i op i y	pc. 10	
AnalyteAddedResultQualifierUnitD%RecLimitspH adj. to 25 deg C7.007.007.07.099.10199.101Lab Sample ID: LCSD 280-615054/4 Matrix: Solid Analysis Batch: 615054SpikeLCSDClient Sample ID: Lab Control Sample Dup Prep Type: Total/NAAnalyte pH adj. to 25 deg C7.007.07.00%RecRPD LimitsAdded pH adj. to 25 deg C7.007.07.00%RecRPD LimitsLimitsAdded pH adj. to 25 deg C7.007.07.00%RecRPD LimitsLimitsAdded pH adj. to 25 deg C7.007.000%RecRPD LimitsLimitsAdded pH adj. to 25 deg C0.000.000099.10104Wethod: 9056 - Anions, Ion ChromatographyClient Sample ID: MB 280-614359/13 Matrix: Water Analysis Batch: 614359Client Sample ID: Method Bland Prep Type: Total/NAAnalyte Nitrate as N0.10UM0.500.090mg/L005/31/23 18:01Lab Sample ID: LCS 280-614359/11 Matrix: Water Analysis Batch: 614359Client Sample ID: Lab Control Sample Prep Type: Total/NALab Sample ID: LCS 280-614359/11 Matrix: Water Analysis Batch: 614359Spike AddedLCS LCS Result Qualifier QualifierD%Rec MecMec MecAnalyte Nitrate as N2.502.4709988.111	Analysis Batch. 010004				Sniko		1.05	1.05				%Rec		
pH adj. to 25 deg C 7.00 7.0 SU 100 99.101 Lab Sample ID: LCSD 280-615054/4 Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA Matrix: Solid Analyte Prep Type: Total/NA Analyte Added Result Qualifier Unit D %Rec RPD Imits Spike LCSD LCSD LSD Matrix: Wethod: 9056 - Anions, Ion Chromatography Lab Sample ID: MB 280-614359/13 Client Sample ID: MB 280-614359/13 Client Sample ID: Method Blank Matrix: Water Result Qualifier LOQ DL Unit D Prep Type: Total/NA Analyte Result Qualifier LOQ DL Unit D %Rec Result/NA Nitrate as N 0.20 U 0.50 0.049 mg/L 05/31/23 DI Fat Lab Sample ID: LCS 280-614359/11 Client Sample ID: Lab Control Sample DI Fat DI Fat Di Fat Nitrite as N 0.10 U 0.50 0.049 mg/L 05/31/23 DI Fat Lab Sample ID: LCS 280-614359/11 Client Sample ID: Lab Control Sample <td>Analyta</td> <td></td> <td></td> <td></td> <td>•</td> <td></td> <td>-</td> <td></td> <td>Unit</td> <td>п</td> <td>% Boo</td> <td></td> <td></td> <td></td>	Analyta				•		-		Unit	п	% Boo			
Lab Sample ID: LCSD 280-615054/4 Matrix: Solid Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA Analysis Batch: 615054 Spike LCSD LCSD Vertex Type: Total/NA Analyte Added Result Qualifier Unit D %Rec RPD Limits PH adj. to 25 deg C 7.00 7.0 SU D %Rec RPD Limits Vethod: 9056 - Anions, Ion Chromatography Lab Sample ID: MB 280-614359/13 Matrix: Water Client Sample ID: Method Blank Prep Type: Total/NA Analyte Result Qualifier LOQ DL Unit D Prepared Analyzed DI Fac Nitrate as N 0.20 0.50 0.090 mg/L 05/31/23 18:01 Of/31/23 18:01 Of/31/2	-							Quaimer						
Matrix: Solid Analysis Batch: 615054 Prep Type: Total/NA Analyte PH adj. to 25 deg C Added 7.00 Result 7.00 Qualifier SU Unit SU D %Rec Limits 99.101 RPD 0 Limit RPD Limit 99.101 RPD 0 Limit 80 RPD 99.101 RPD 0 Limits 80 RPD 99.101 RPD 0 Limits 80 RPD 100 RPD 100 Limits 99.101 RPD 0 Limits 80 RPD 100 RPD 100 Limits 99.101 RPD 0 Limits 100 RPD 10 Limits 99.101 RPD 0 Limits 100 RPD 10														
Analysis Batch: 615054Spike AddedLCSD Result QualifierLCSD QualifierLCSD VoitLCSD PMerce VoitWare Limits PRPD Limits PLimit PRPD Limits PLimit PRPD Limits PLimit PRPD Limits PLimit PRPD Limits PLimit PRPD Limits PLimit PRPD Limits PLimit PRPD Limits PLimit PRPD Limits PLimit PRPD Limits PLimit PRPD Limits PLimit PRPD Limits PLimit PRPD Limits PLimit PRPD Limits PLimit PRPD Limits PLimit PRPD Limits PLimit PRPD Limits PLimit PRPD Limits PLimit PRPD Limits PLimits PRPD Limits PLimit PRPD Limits PLimits PRPD Limits PLimit PRPD Limits PLimits PRPD Limits PLimits PRPD Limits PLimits PRPD Limits PLimits PRPD Limits PLimits PRPD Limits PLimits PRPD Limits PLimits PRPD Limits PLimits PRPD Limits PLimits PRPD Limits PLimit PRPD Limits PLimit PRPD Limits PLimit Limits PRPD Limits PLimit Limits PRPD Limits RRPD Limits RLimit 	Lab Sample ID: LCSD 280-61	5054/4						(Client Sa	mple	ID: Lab	Control	Sampl	e Dup
Analyte pH adj. to 25 deg CAdded AddedLCSD Result QualifierLCSD QualifierUnit SUD %Rec 100%Rec Limits 99-101RPD 0Limit SUMethod: 9056 - Anions, Ion ChromatographyLab Sample ID: MB 280-614359/13 Matrix: Water Analysis Batch: 614359MB Result QualifierClient Sample ID: Method Blank Prep Type: Total/NA 0.20Analyte Nitrate as N Analysis Batch: 614359MB 0.20LOQ UDL 0.50Unit 0.090D mg/LPrepared 05/31/23 18:01Analyzed 05/31/23 18:01Dil Fac D 05/31/23 18:01Lab Sample ID: LCS 280-614359/11 Matrix: Water Analysis Batch: 614359Spike Added 2.50LCS 2.47LCS UUnit Unit mg/LD Prepared Method Prep Type: Total/NA 05/31/23 18:01Dil Fac Dil Fac Dil Fac Dil Fac D.05/31/23 18:01Analyte Nitrate as N0.10U0.500.049mg/LDil Client Sample ID: Lab Control Sample Prep Type: Total/NA Dil Fac Dil Fac	Matrix: Solid											Prep Ty	pe: To	tal/NA
Analyte pH adj. to 25 deg CAdded AddedLCSD Result QualifierLCSD QualifierUnit SUD %Rec 100%Rec Limits 99-101RPD 0Limit SUMethod: 9056 - Anions, Ion ChromatographyLab Sample ID: MB 280-614359/13 Matrix: Water Analysis Batch: 614359MB Result QualifierClient Sample ID: Method Blank Prep Type: Total/NA 0.20Analyte Nitrate as N Analysis Batch: 614359MB 0.20LOQ UDL 0.50Unit 0.090D mg/LPrepared 05/31/23 18:01Analyzed 05/31/23 18:01Dil Fac D 05/31/23 18:01Lab Sample ID: LCS 280-614359/11 Matrix: Water Analysis Batch: 614359Spike Added 2.50LCS 2.47LCS UUnit Unit mg/LD Prepared Method Prep Type: Total/NA 05/31/23 18:01Dil Fac Dil Fac Dil Fac Dil Fac D.05/31/23 18:01Analyte Nitrate as N0.10U0.500.049mg/LDil Client Sample ID: Lab Control Sample Prep Type: Total/NA Dil Fac Dil Fac	Analysis Batch: 615054													
pH adj. to 25 deg C 7.00 7.0 SU 100 99 - 101 0 9 Method: 9056 - Anions, Ion Chromatography Lab Sample ID: MB 280-614359/13 Matrix: Water Analysis Batch: 614359 Client Sample ID: Method Blank Prep Type: Total/NA Analyte Result Qualifier LOQ DL Unit D Prepared Analyzed Dil Fac Nitrate as N 0.20 U 0.50 0.090 mg/L 05/31/23 18:01 0 Lab Sample ID: LCS 280-614359/11 Matrix: Water Analysis Batch: 614359 0.10 U M 0.50 0.049 mg/L 05/31/23 18:01 0 Lab Sample ID: LCS 280-614359/11 Matrix: Water Analysis Batch: 614359 Spike LCS LCS LCS Mit Prep Type: Total/NA Analyte Analyse Spike LCS LCS LCS %Rec Limits Mit	•				Spike		LCSD	LCSD				%Rec		RPD
pH adj. to 25 deg C 7.00 7.0 SU 100 99 - 101 0 5 Method: 9056 - Anions, Ion Chromatography Lab Sample ID: MB 280-614359/13 Client Sample ID: MB 280-614359/13 Matrix: Water Prep Type: Total/NA Analysis Batch: 614359 MB Matrix: Water Result Qualifier Nitrate as N 0.20 U 0.50 0.090 mg/L 05/31/23 18:01 D Lab Sample ID: LCS 280-614359/11 0.10 U 0.50 0.049 mg/L 05/31/23 18:01 D Lab Sample ID: LCS 280-614359/11 Client Sample ID: Lab Control Sample Client Sample ID: Lab Control Sample Prep Type: Total/NA Analyte Spike LCS LCS LCS LCS Prep Type: Total/NA Analysis Batch: 614359 Spike LCS LCS LCS Matrix: Prep Type: Total/NA Analyte Spike Added Result Qualifier Unit D %Rec Analysis Batch: 614359 2.50 2.50 2.47 mg/L D %Rec <td>Analyte</td> <td></td> <td></td> <td></td> <td>Added</td> <td></td> <td>Result</td> <td>Qualifier</td> <td>Unit</td> <td>D</td> <td>%Rec</td> <td>Limits</td> <td>RPD</td> <td>Limi</td>	Analyte				Added		Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limi
Lab Sample ID: MB 280-614359/13 Matrix: Water Client Sample ID: Method Blank Prep Type: Total/NA Analysis Batch: 614359 MB MB MB D Prepared Analyzed Dil Factor Analyte Result Qualifier LOQ DL Unit D Prepared Analyzed Dil Factor Nitrate as N 0.20 U 0.50 0.090 mg/L D O5/31/23 18:01 Dil Factor Nitrite as N 0.10 U M 0.50 0.049 mg/L D O5/31/23 18:01 Dil Factor Lab Sample ID: LCS 280-614359/11 Matrix: Water Spike LCS LCS LCS MB Client Sample ID: Lab Control Sample Analysis Batch: 614359 Spike LCS LCS LCS MR MRec Prep Type: Total/NA Nitrate as N 2.50 2.47 Qualifier Unit D %Rec MRec Matrix as N 2.50 2.50 2.47 Mail for mg/L D %Rec Limits Prepared MRec Matrix as N					7.00		7.0		SU		100	99 - 101	0	Ę
Matrix: Water Prep Type: Total/NA Analysis Batch: 614359 MB MB Analyte Result Qualifier LOQ DL Unit D Prepared Analyzed Dil Fax Nitrate as N 0.20 U 0.50 0.090 mg/L 05/31/23 18:01 Dil Fax Nitrite as N 0.10 U M 0.50 0.049 mg/L 05/31/23 18:01 Dil Fax Lab Sample ID: LCS 280-614359/11 Client Sample ID: LCS 280-614359/11 Client Sample ID: Lab Control Sample Prep Type: Total/NA Analysis Batch: 614359 Spike LCS LCS LCS MR Prep Type: Total/NA Analyte Analysis Batch: 614359 Spike LCS LCS LCS MR Prep Type: Total/NA Nitrate as N 2.50 2.47 Qualifier Unit D %Rec MR Matrix water Analysis Batch: 614359 MR MR MR MR MR MR MR Matrix Water Analysis Batch: 614359 MR MR MR MR MR MR MR MR <	Method: 9056 - Anions, Io	on Chro	mat	tograp	hy									
Matrix: Water Prep Type: Total/NA Analysis Batch: 614359 MB MB Analyte Result Qualifier LOQ DL Unit D Prepared Analyzed Dil Fax Nitrate as N 0.20 U 0.50 0.090 mg/L 05/31/23 18:01 Dil Fax Nitrite as N 0.10 U M 0.50 0.049 mg/L 05/31/23 18:01 Dil Fax Lab Sample ID: LCS 280-614359/11 Client Sample ID: LCS 280-614359/11 Client Sample ID: Lab Control Sample Prep Type: Total/NA Analysis Batch: 614359 Spike LCS LCS LCS MR Prep Type: Total/NA Analyte Analysis Batch: 614359 Spike LCS LCS LCS MR Prep Type: Total/NA Nitrate as N 2.50 2.47 Qualifier Unit D %Rec MR Matrix water Analysis Batch: 614359 MR MR MR MR MR MR MR Matrix Water Analysis Batch: 614359 MR MR MR MR MR MR MR MR <	Lab Sample ID: MB 280-6143	59/13								Clie	ent Sam	ple ID: M	ethod	Blank
Analysis Batch: 614359 MB MB Analyte Result Qualifier LOQ DL Unit D Prepared Analyzed Dil Factoria Nitrate as N 0.20 U 0.50 0.090 mg/L 05/31/23 18:01	Matrix: Water											Prep Ty	pe: To	tal/NA
MBMBAnalyteResultQualifierLOQDLUnitDPreparedAnalyzedDil FacNitrate as N0.20U0.500.090mg/L005/31/23 18:010Nitrite as N0.10U M0.500.049mg/L05/31/23 18:010Lab Sample ID: LCS 280-614359/11 Matrix: Water Analysis Batch: 614359Client Sample ID: Lab Control Sample Prep Type: Total/NAAnalyte Nitrate as NSpike 2.50LCS 2.47LCS mg/LMec yLimits yAnalyte Nitrate as N2.502.47Unit mg/LD y%Rec yLimits y	Analysis Batch: 614359												-	
Nitrate as N 0.20 U 0.50 0.090 mg/L 05/31/23 18:01 Nitrite as N 0.10 U M 0.50 0.049 mg/L 05/31/23 18:01 05/31/23 18:01 Lab Sample ID: LCS 280-614359/11 Client Sample ID: Lab Control Sample Prep Type: Total/NA Matrix: Water Spike LCS LCS %Rec Analysis Batch: 614359 Spike LCS LCS Water Nitrate as N 2.50 2.47 mg/L D %Rec	•		MB	МВ										
Nitrate as N 0.20 U 0.50 0.090 mg/L 05/31/23 18:01 Nitrite as N 0.10 U M 0.50 0.049 mg/L 05/31/23 18:01 05/31/23 18:01 Lab Sample ID: LCS 280-614359/11 Client Sample ID: Lab Control Sample Prep Type: Total/NA Matrix: Water Spike LCS LCS %Rec Analysis Batch: 614359 Spike LCS LCS Water Nitrate as N 2.50 2.47 mg/L D %Rec	Analyte	Re	sult	Qualifier		LOQ		DL Unit		D P	repared	Analy	zed	Dil Fac
Nitrite as N0.10 U M0.500.049 mg/L05/31/23 18:01Lab Sample ID: LCS 280-614359/11 Matrix: Water Analysis Batch: 614359Client Sample ID: Lab Control Sample Prep Type: Total/NAAnalyte Nitrate as NSpike Added 2.50LCS 2.47LCS mg/LD mg/L%Rec 99Limits 88-111						0.50	0							1
Matrix: Water Prep Type: Total/NA Analysis Batch: 614359 Spike LCS LCS %Rec Analyte Added Result Qualifier Unit D %Rec Limits Nitrate as N 2.50 2.47 2.47 mg/L 99 88 - 111	Nitrite as N							-						1
Matrix: Water Prep Type: Total/NA Analysis Batch: 614359 Spike LCS LCS %Rec Analyte Added Result Qualifier Unit D %Rec Limits	Lab Sample ID: LCS 280-614	359/11							Clie	nt Sa	mple ID	: Lab Cor	ntrol Sa	ample
Analysis Batch: 614359 Spike LCS LCS Spike LCS LCS %Rec Analyte Added Result Qualifier Unit D %Rec Limits Nitrate as N 2.50 2.47 mg/L 99 88 - 111														
Spike LCS LCS %Rec Analyte Added Result Qualifier Unit D %Rec Limits Nitrate as N 2.50 2.47 2.47 mg/L 99 88 - 111														
Analyte Added Result Qualifier Unit D %Rec Limits Nitrate as N 2.50 2.47 2.47 mg/L 99 88 - 111	Analysis Batch: 614359				Snike		LCS	LCS				%Rec		
Nitrate as N 2.50 2.47 mg/L 99 88 - 111	Analysis Batch: 614359													
-	-				•				Unit	D	%Rec			
	Analyte				Added		Result			D		Limits		
	Analyte				Added		Result			<u> </u>		Limits		

Eurofins Denver

LCSD LCSD

MRL MRL

0.250 J

0.261 J

2.46

2.41

Result Qualifier Unit

Result Qualifier Unit

mg/L

mg/L

mg/L

mg/L

Spike

Added

2.50

2.50

Spike

Added

0.250

0.250

Lab Sample ID: LCSD 280-614359/12

Lab Sample ID: MRL 280-614359/10

Matrix: Water

Matrix: Water

Analyte

Analyte

Nitrate as N

Nitrite as N

Nitrate as N

Nitrite as N

Analysis Batch: 614359

Method: 9056 - Anions, Ion Chromatography

Prep Type: Total/NA

RPD

0

0

10

RPD

Limit

10

10

Client Sample ID: FWGIDW-230301-WW Prep Type: Total/NA

Limits 50 - 150

Prep Type: Total/NA

Prep Type: Total/NA

Prep Type: Total/NA

Prep Type: Total/NA

D %Rec 100 104 50 - 150

Client Sample ID: FWGIDW-230301-WW

Client Sample ID: FWGIDW-230301-WW

Client Sample ID: Lab Control Sample

Client Sample ID: Lab Control Sample

Client Sample ID: Lab Control Sample Dup

D %Rec

99

96

%Rec

Limits

88 - 111

87 - 111

%Rec

Lab Sample ID: 280-177167-1 MS **Matrix: Water**

Analysis Batch: 614359

Analysis Batch: 614359

	Sample	Sample	Spike	MS	MS				%Rec	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Nitrate as N	0.52		5.00	5.64	J1	mg/L		102	88 - 111	
Nitrite as N	0.13	J	5.00	5.56	J1	mg/L		109	87 - 111	

Lab Sample ID: 280-177167-1 MSD Matrix: Water

Analysis Batch: 614359

· ····· , ··· · · · · · · · · · · · · · · · · ·	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Nitrate as N	0.52		5.00	5.75	J1	mg/L		105	88 - 111	2	10
Nitrite as N	0.13	J	5.00	5.67	J1	mg/L		111	87 - 111	2	10

Lab Sample ID: 280-177167-1 DU Matrix: Water Analysia Potoby 614250

Analysis Batch: 614359								
	Sample	Sample	DU	DU				RPD
Analyte	Result	Qualifier	Result	Qualifier	Unit	D	RPD	Limit
Nitrate as N	0.52		0.503		mg/L		 3	10
Nitrite as N	0.13	J	0.127	J	mg/L		2	10

Method: 9056A - Anions, Ion Chromatography

Lab Sample ID: MRL 280-615525/3	
Matrix: Solid	
Analysis Batch: 615525	

	Spike	MRL	MRL				%Rec		
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits		
Nitrate as N	0.250	0.219	J	mg/L		87	50 - 150	 	-
Nitrite as N	0.250	0.231	J	mg/L		92	50 - 150		

Job ID: 280-177167-1

Analyzed

06/10/23 05:21

06/10/23 05:21

Dil Fac

1

1

			Prep Ty	ype: So	Juble	
			%Rec			
Unit	D	%Rec	Limits			
mg/Kg		96	87 - 111			
mg/Kg		99	86 - 115			1
lient Sa	mple	ID: Lab	Control S Prep Ty			1
lient Sa	mple	ID: Lab				1
lient Sa	mple D	ID: Lab	Prep Ty		oluble	1
			Prep Ty %Rec	ype: Sc	RPD	1
Unit		%Rec	Prep Ty %Rec Limits	ype: So RPD	RPD Limit	

Client Sample ID: Method Blank Prep Type: Soluble

Client Sample ID: FWGIDW-230301-WS

Client Sample ID: FWGIDW-230301-WS

Prep Type: Soluble

Prep Type: Soluble

Prepared

Matrix: Solid Analysis Batch: 615525 MB MB Analyte **Result Qualifier** LOQ DL Unit D Nitrate as N 5.0 4.6 U 0.84 mg/Kg Nitrite as N 4.6 U 5.0 1.3 mg/Kg

Method: 9056A - Anions, Ion Chromatography (Continued)

Lab Sample ID: LCS 280-615559/1-A Matrix: Solid Analysis Batch: 615525

Lab Sample ID: MB 280-615559/3-A

Analysis Batch. 010020	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Nitrate as N	24.9	24.0		mg/Kg		96	87 - 111	
Nitrite as N	24.9	24.7		mg/Kg		99	86 - 115	

Lab Sample ID: LCSD 280-615559/2-A Matrix: Solid Analysis Batch: 615525

	Spike	LCSD	LCSD				%Rec		RPD	2
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit	
Nitrate as N	24.9	24.0		mg/Kg		96	87 - 111	0	10	
Nitrite as N	24.9	24.7		mg/Kg		99	86 - 115	0	10	

Lab Sample ID: 280-177167-2 MS

Matrix: Solid Analysis Batch: 615525

Allalysis Batch. 015525	Sample	Sample	Spike	MS	MS				%Rec	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Nitrate as N	5.8	U	62.5	63.3	J1	mg/Kg	¢	101	87 - 111	
Nitrite as N	5.8	UH	62.5	58.7		mg/Kg	¢	94	86 - 115	

Lab Sample ID: 280-177167-2 MSD Matrix: Solid Analysis Batch: 615525

	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Nitrate as N	5.8	U	62.5	63.4	J1	mg/Kg	¢	101	87 - 111	0	10
Nitrite as N	5.8	UΗ	62.5	58.9		mg/Kg	¢	94	86 - 115	0	10

Lab Sample ID: 280-177167-2 DU Matrix: Solid

Analysis Batch: 615525

	Sample	Sample	DU	DU				RPD
Analyte	Result	Qualifier	Result	Qualifier	Unit	D	RPD	Limit
Nitrate as N	5.8	U	5.8	U	mg/Kg		NC	10
Nitrite as N	5.8	UH	5.8	U	mg/Kg	¢	NC	10

Client: Leidos, Inc. Project/Site: RVAAP FWGW FS Well Install 2023 Job ID: 280-177167-1

GC/MS VOA Leach Batch: 614442

Lab Sample ID 280-177167-2	Client Sample ID FWGIDW-230301-WS	Prep Type TCLP	Matrix Solid	<u>Method</u> 1311	Prep Batch
LB 280-614442/1-A	Method Blank	TCLP	Solid	1311	
LCSD 280-614442/3-A	Lab Control Sample Dup	TCLP	Solid	1311	

Analysis Batch: 615474

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
280-177167-2	FWGIDW-230301-WS	TCLP	Solid	8260B	614442
LB 280-614442/1-A	Method Blank	TCLP	Solid	8260B	614442
LCS 280-614442/2-A	Lab Control Sample	Total/NA	Solid	8260B	
LCSD 280-614442/3-A	Lab Control Sample Dup	TCLP	Solid	8260B	614442

Leach Batch: 615640

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
280-177167-1 - RA	FWGIDW-230301-WW	TCLP	Water	1311	
280-177167-1	FWGIDW-230301-WW	TCLP	Water	1311	
LB3 280-615640/1-A	Method Blank	TCLP	Water	1311	
LCS 280-615640/2-A	Lab Control Sample	TCLP	Water	1311	
LCSD 280-615640/3-A	Lab Control Sample Dup	TCLP	Water	1311	

Analysis Batch: 615800

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
280-177167-1	FWGIDW-230301-WW	TCLP	Water	8260B	615640
LB3 280-615640/1-A	Method Blank	TCLP	Water	8260B	615640
LCS 280-615640/2-A	Lab Control Sample	TCLP	Water	8260B	615640
LCSD 280-615640/3-A	Lab Control Sample Dup	TCLP	Water	8260B	615640

Analysis Batch: 616166

Lab Sample ID 280-177167-1 - RA	Client Sample ID FWGIDW-230301-WW	Prep Type TCLP	Matrix Water	Method 8260B	Prep Batch 615640
LB3 280-615640/1-A	Method Blank	TCLP	Water	8260B	615640
LCS 280-615640/2-A	Lab Control Sample	TCLP	Water	8260B	615640
LCSD 280-615640/3-A	Lab Control Sample Dup	TCLP	Water	8260B	615640

GC/MS Semi VOA

Leach Batch: 614928

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
280-177167-2	FWGIDW-230301-WS	TCLP	Solid	1311	
LB 280-614928/1-B	Method Blank	TCLP	Solid	1311	
LCS 280-614928/2-B	Lab Control Sample	TCLP	Solid	1311	

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
280-177167-2	FWGIDW-230301-WS	TCLP	Solid	3510C	614928
LB 280-614928/1-B	Method Blank	TCLP	Solid	3510C	614928
LCS 280-614928/2-B	Lab Control Sample	TCLP	Solid	3510C	614928

Analysis Batch: 615329

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
280-177167-2	FWGIDW-230301-WS	TCLP	Solid	8270D	615134
LB 280-614928/1-B	Method Blank	TCLP	Solid	8270D	615134

Client: Leidos, Inc. Project/Site: RVAAP FWGW FS Well Install 2023

GC/MS Semi VOA (Continued)

Analysis Batch: 615329 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
LCS 280-614928/2-B	Lab Control Sample	TCLP	Solid	8270D	615134
each Batch: 615475.					
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
280-177167-1	FWGIDW-230301-WW	TCLP	Water	1311	
LB3 280-615475/1-D	Method Blank	TCLP	Water	1311	
LCS 280-615475/2-D	Lab Control Sample	TCLP	Water	1311	
LCSD 280-615475/3-B	Lab Control Sample Dup	TCLP	Water	1311	
Prep Batch: 615587					
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
280-177167-1	FWGIDW-230301-WW	TCLP	Water	3510C	615475
LB3 280-615475/1-D	Method Blank	TCLP	Water	3510C	615475
LCS 280-615475/2-D	Lab Control Sample	TCLP	Water	3510C	615475
LCSD 280-615475/3-B	Lab Control Sample Dup	TCLP	Water	3510C	615475
Analysis Batch: 6160	31				
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
280-177167-1	FWGIDW-230301-WW	TCLP	Water	8270D	615587
LB3 280-615475/1-D	Method Blank	TCLP	Water	8270D	615587
LCS 280-615475/2-D	Lab Control Sample	TCLP	Water	8270D	615587
LCSD 280-615475/3-B	Lab Control Sample Dup	TCLP	Water	8270D	615587
GC Semi VOA					
Prep Batch: 614674					
-					

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
280-177167-1	FWGIDW-230301-WW	Total/NA	Water	3510C	
MB 280-614674/1-A	Method Blank	Total/NA	Water	3510C	
LCS 280-614674/4-A	Lab Control Sample	Total/NA	Water	3510C	
LCSD 280-614674/5-A	Lab Control Sample Dup	Total/NA	Water	3510C	

Leach Batch: 614928

Lab Sample ID 280-177167-2	Client Sample ID FWGIDW-230301-WS	Prep Type TCLP	Matrix Solid	Method 1311	Prep Batch
LB 280-614928/1-E	Method Blank	TCLP	Solid	1311	
LCS 280-614928/2-E	Lab Control Sample	TCLP	Solid	1311	
LCS 280-614928/2-G	Lab Control Sample	TCLP	Solid	1311	
LCSD 280-614928/3-B	Lab Control Sample Dup	TCLP	Solid	1311	

Analysis Batch: 615208

Lab Sample ID 280-177167-1	Client Sample ID FWGIDW-230301-WW	Prep Type Total/NA	Matrix Water	Method 8082A	Prep Batch 614674
MB 280-614674/1-A	Method Blank	Total/NA	Water	8082A	614674
LCS 280-614674/4-A	Lab Control Sample	Total/NA	Water	8082A	614674
LCSD 280-614674/5-A	Lab Control Sample Dup	Total/NA	Water	8082A	614674

Prep Batch: 615360

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
280-177167-2	FWGIDW-230301-WS	TCLP	Solid	3510C	614928
LB 280-614928/1-E	Method Blank	TCLP	Solid	3510C	614928

Eurofins Denver

Job ID: 280-177167-1

Client: Leidos, Inc. Project/Site: RVAAP FWGW FS Well Install 2023

GC Semi VOA (Continued)

Prep Batch: 615360 (Continued)

Lab Sample ID LCS 280-614928/2-E	Client Sample ID Lab Control Sample	Prep Type TCLP	Matrix Solid	Method 3510C	Prep Batch 614928
LCS 280-614928/2-G	Lab Control Sample	TCLP	Solid	3510C	614928
LCSD 280-614928/3-B	Lab Control Sample Dup	TCLP	Solid	3510C	614928

Leach Batch: 615475

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
280-177167-1	FWGIDW-230301-WW	TCLP	Water	1311	
LB3 280-615475/1-F	Method Blank	TCLP	Water	1311	
LCS 280-615475/2-F	Lab Control Sample	TCLP	Water	1311	
LCS 280-615475/2-G	Lab Control Sample	TCLP	Water	1311	
LCSD 280-615475/3-D	Lab Control Sample Dup	TCLP	Water	1311	
LCSD 280-615475/3-E	Lab Control Sample Dup	TCLP	Water	1311	

Analysis Batch: 615561

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
280-177167-2	FWGIDW-230301-WS	TCLP	Solid	8081B	615360
LB 280-614928/1-E	Method Blank	TCLP	Solid	8081B	615360
LCS 280-614928/2-E	Lab Control Sample	TCLP	Solid	8081B	615360
LCS 280-614928/2-G	Lab Control Sample	TCLP	Solid	8081B	615360
LCSD 280-614928/3-B	Lab Control Sample Dup	TCLP	Solid	8081B	615360

Prep Batch: 615593

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
280-177167-1	FWGIDW-230301-WW	TCLP	Water	3510C	615475
LB3 280-615475/1-F	Method Blank	TCLP	Water	3510C	615475
LCS 280-615475/2-F	Lab Control Sample	TCLP	Water	3510C	615475
LCS 280-615475/2-G	Lab Control Sample	TCLP	Water	3510C	615475
LCSD 280-615475/3-D	Lab Control Sample Dup	TCLP	Water	3510C	615475
LCSD 280-615475/3-E	Lab Control Sample Dup	TCLP	Water	3510C	615475

Prep Batch: 615721

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
280-177167-2	FWGIDW-230301-WS	Total/NA	Solid	3546	
MB 280-615721/1-A	Method Blank	Total/NA	Solid	3546	
LCS 280-615721/2-A	Lab Control Sample	Total/NA	Solid	3546	

Analysis Batch: 616027

Lab Sample ID 280-177167-2	Client Sample ID FWGIDW-230301-WS	Prep Type Total/NA	Matrix Solid	Method 8082A	Prep Batch 615721
MB 280-615721/1-A	Method Blank	Total/NA	Solid	8082A	615721
LCS 280-615721/2-A	Lab Control Sample	Total/NA	Solid	8082A	615721

Analysis Batch: 616066

Lab Sample ID 280-177167-1	Client Sample ID FWGIDW-230301-WW	Prep Type TCLP	Matrix Water	Method 8081B	Prep Batch 615593
LB3 280-615475/1-F	Method Blank	TCLP	Water	8081B	615593
LCS 280-615475/2-F	Lab Control Sample	TCLP	Water	8081B	615593
LCS 280-615475/2-G	Lab Control Sample	TCLP	Water	8081B	615593
LCSD 280-615475/3-D	Lab Control Sample Dup	TCLP	Water	8081B	615593
LCSD 280-615475/3-E	Lab Control Sample Dup	TCLP	Water	8081B	615593

Eurofins Denver

6/29/2023

Client: Leidos, Inc. Project/Site: RVAAP FWGW FS Well Install 2023

Client Sample ID

Method Blank

FWGIDW-230301-WS

Lab Control Sample

FWGIDW-230301-WS

FWGIDW-230301-WS

Job ID: 280-177167-1

Prep Batch

Method

1311

1311

1311

1311

1311

/2-A	Lab Control Sample	TCLP	Water	1311	
3	FWGIDW-230301-WW	TCLP	Water	1311	
SD	FWGIDW-230301-WW	TCLP	Water	1311	
h: 6150	604				
	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
	FWGIDW-230301-WW	TCLP	Water	8321A Herb	615475
1-A	Method Blank	TCLP	Water	8321A Herb	615475
/2-A	Lab Control Sample	TCLP	Water	8321A Herb	615475
\$	FWGIDW-230301-WW	TCLP	Water	8321A Herb	615475
SD	FWGIDW-230301-WW	TCLP	Water	8321A Herb	615475
614928	3				
	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
	FWGIDW-230301-WS	TCLP	Solid	1311	
-C	Method Blank	TCLP	Solid	1311	
-D	Method Blank	TCLP	Solid	1311	
/2-C	Lab Control Sample	TCLP	Solid	1311	
/2-D	Lab Control Sample	TCLP	Solid	1311	
-					

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
280-177167-2	FWGIDW-230301-WS	TCLP	Solid	3010A	614928
LB 280-614928/1-C	Method Blank	TCLP	Solid	3010A	614928
LCS 280-614928/2-C	Lab Control Sample	TCLP	Solid	3010A	614928

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
280-177167-2	FWGIDW-230301-WS	TCLP	Solid	7470A	614928
LB 280-614928/1-D	Method Blank	TCLP	Solid	7470A	614928
LCS 280-614928/2-D	Lab Control Sample	TCLP	Solid	7470A	614928

Prep Type

TCLP

TCLP

TCLP

TCLP

TCLP

Matrix

Solid

Solid

Solid

Solid

Solid

LCMS

Lab Sample ID

LB 280-614928/1-A

280-177167-2 MS

280-177167-2 MSD

LCS 280-614928/2-A

280-177167-2

Leach Batch: 614928

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batcl
280-177167-2	FWGIDW-230301-WS	TCLP	Solid	8321A Herb	61492
LB 280-614928/1-A	Method Blank	TCLP	Solid	8321A Herb	61492
LCS 280-614928/2-A	Lab Control Sample	TCLP	Solid	8321A Herb	61492
280-177167-2 MS	FWGIDW-230301-WS	TCLP	Solid	8321A Herb	61492
280-177167-2 MSD	FWGIDW-230301-WS	TCLP	Solid	8321A Herb	614928
each Batch: 615475	5				
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batcl
280-177167-1	FWGIDW-230301-WW	TCLP	Water	1311	
LB3 280-615475/1-A	Method Blank	TCLP	Water	1311	
LCS 280-615475/2-A	Lab Control Sample	TCLP	Water	1311	
280-177167-1 MS	FWGIDW-230301-WW	TCLP	Water	1311	
280-177167-1 MSD	FWGIDW-230301-WW	TCLP	Water	1311	
nalysis Batch: 6156	604				
Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
280-177167-1	FWGIDW-230301-WW	TCLP	Water	8321A Herb	61547
LB3 280-615475/1-A	Method Blank	TCLP	Water	8321A Herb	61547
LCS 280-615475/2-A	Lab Control Sample	TCLP	Water	8321A Herb	61547
280-177167-1 MS	FWGIDW-230301-WW	TCLP	Water	8321A Herb	61547
280-177167-1 MSD	FWGIDW-230301-WW	TCLP	Water	8321A Herb	615475
/letals					
each Batch: 614928		Dren Tyrne	Matrix	Method	Dron Datak
Lab Sample ID 280-177167-2	Client Sample ID FWGIDW-230301-WS	Prep Type TCLP	Solid	1311	Prep Batch
LB 280-614928/1-C	Method Blank	TCLP	Solid	1311	
LB 280-614928/1-D	Method Blank	TCLP	Solid	1311	
LCS 280-614928/2-C	Lab Control Sample	TCLP	Solid	1311	
LCS 280-614928/2-D	Lab Control Sample	TCLP	Solid	1311	
Prep Batch: 615163					
Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
280-177167-2	FWGIDW-230301-WS	TCLP	Solid	3010A	614928
LB 280-614928/1-C	Method Blank	TCLP	Solid	3010A	614928
LCS 280-614928/2-C	Lab Control Sample	TCLP	Solid	3010A	614928
Prep Batch: 615217					
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batcl
280-177167-2	FWGIDW-230301-WS	TCLP	Solid	7470A	61492
LB 280-614928/1-D	Method Blank	TCLP	Solid	7470A	61492
1 00 000 04 4000/0 D	Lab Control Sample	TCLP	Solid	7470A	61492
LCS 280-614928/2-D	•				
LCS 280-614928/2-D				Eu	irofins Denve
LCS 280-614928/2-D		Page 47 of 61		Ει	rofins Denve 6/29/2023

6/29/2023

Ргер Туре

Matrix

Client: Leidos, Inc. Project/Site: RVAAP FWGW FS Well Install 2023

Client Sample ID

Job ID: 280-177167-1

Prep Batch

Method

	9
rep Batch	
	11
	13
rep Batch 615475	
615475	
615475	
615475	
615475	

Analysis Batch: 615344

Lab Sample ID

Metals

		Ріер Туре			Ріер Баісі
280-177167-2	FWGIDW-230301-WS	TCLP	Solid	7470A	615217
LB 280-614928/1-D	Method Blank	TCLP	Solid	7470A	615217
LCS 280-614928/2-D	Lab Control Sample	TCLP	Solid	7470A	615217
nalysis Batch: 6154	432				
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
280-177167-2	FWGIDW-230301-WS	TCLP	Solid	6010C	615163
LB 280-614928/1-C	Method Blank	TCLP	Solid	6010C	615163
LCS 280-614928/2-C	Lab Control Sample	TCLP	Solid	6010C	615163
each Batch: 615475	5				
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
280-177167-1	FWGIDW-230301-WW	TCLP	Water	1311	
LB3 280-615475/1-B	Method Blank	TCLP	Water	1311	
LB3 280-615475/1-C	Method Blank	TCLP	Water	1311	
LCS 280-615475/2-B	Lab Control Sample	TCLP	Water	1311	
LCS 280-615475/2-C	Lab Control Sample	TCLP	Water	1311	
280-177167-1 MS	FWGIDW-230301-WW	TCLP	Water	1311	
280-177167-1 MSD	FWGIDW-230301-WW	TCLP	Water	1311	
rep Batch: 615545					
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
280-177167-1	FWGIDW-230301-WW	TCLP	Water	3010A	615475
LB3 280-615475/1-B	Method Blank	TCLP	Water	3010A	615475
LCS 280-615475/2-B	Lab Control Sample	TCLP	Water	3010A	615475
280-177167-1 MS	FWGIDW-230301-WW	TCLP	Water	3010A	615475
280-177167-1 MSD	FWGIDW-230301-WW	TCLP	Water	3010A	615475
rep Batch: 615550					
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
280-177167-1	FWGIDW-230301-WW	TCLP	Water	7470A	615475
LB3 280-615475/1-C	Method Blank	TCLP	Water	7470A	615475
LCS 280-615475/2-C	Lab Control Sample	TCLP	Water	7470A	615475
280-177167-1 MS	FWGIDW-230301-WW	TCLP	Water	7470A	615475
280-177167-1 MSD	FWGIDW-230301-WW	TCLP	Water	7470A	615475
nalysis Batch: 615	705				
Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
280-177167-1	FWGIDW-230301-WW	TCLP	Water	7470A	615550
LB3 280-615475/1-C	Method Blank	TCLP	Water	7470A	615550
LCS 280-615475/2-C	Lab Control Sample	TCLP	Water	7470A	615550
280-177167-1 MS	FWGIDW-230301-WW	TCLP	Water	7470A	615550
280-177167-1 MSD	FWGIDW-230301-WW	TCLP	Water	7470A	615550
nalysis Batch: 6158	825				
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
	FWGIDW-230301-WW	TCLP	Water	6010C	615545
280-177167-1			14/	60100	615545
LB3 280-615475/1-B	Method Blank	TCLP	Water	6010C	0.0010
	Method Blank Lab Control Sample	TCLP TCLP	Water Water	6010C	
LB3 280-615475/1-B					615545 615545

Prep Type

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Prep Type

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Prep Type

Total/NA

Matrix

Water

Water

Water

Water

Water

Water

Water

Water

Matrix

Solid

Solid

Solid

Solid

Solid

Matrix

Solid

Client: Leidos, Inc. Project/Site: RVAAP FWGW FS Well Install 2023

Client Sample ID

Lab Control Sample

Lab Control Sample

Method Blank

FWGIDW-230301-WW

Lab Control Sample Dup

FWGIDW-230301-WW

FWGIDW-230301-WW

FWGIDW-230301-WW

Client Sample ID

Method Blank

FWGIDW-230301-WS

Lab Control Sample

FWGIDW-230301-WS

FWGIDW-230301-WS

FWGIDW-230301-WS

Client Sample ID

General Chemistry

Analysis Batch: 614359

Lab Sample ID

MB 280-614359/13

LCS 280-614359/11

LCSD 280-614359/12

MRL 280-614359/10

280-177167-1 MS

280-177167-1 DU

Lab Sample ID

MB 280-614526/2-A

LCS 280-614526/1-A

280-177167-2 MS

Lab Sample ID

280-177167-2

280-177167-2 MSD

280-177167-2

280-177167-1 MSD

Prep Batch: 614526

280-177167-1

Prep Batch

Method

9056

9056

9056

9056

9056

9056

9056

9056

Method

9030B

9030B

9030B

9030B

9030B

Method

Moisture

2

4 5 6 7 8 9

Analysis Batch: 614559

Analysis Batch: 614542

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
280-177167-2	FWGIDW-230301-WS	Total/NA	Solid	9034	614526
MB 280-614526/2-A	Method Blank	Total/NA	Solid	9034	614526
LCS 280-614526/1-A	Lab Control Sample	Total/NA	Solid	9034	614526
280-177167-2 MS	FWGIDW-230301-WS	Total/NA	Solid	9034	614526
280-177167-2 MSD	FWGIDW-230301-WS	Total/NA	Solid	9034	614526

Analysis Batch: 614834

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
280-177167-1	FWGIDW-230301-WW	Total/NA	Water	9040C	
LCS 280-614834/31	Lab Control Sample	Total/NA	Water	9040C	

Leach Batch: 615023

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
280-177167-2	FWGIDW-230301-WS	Soluble	Solid	DI Leach	

Analysis Batch: 615054

	Lab Sample ID 280-177167-2	Client Sample ID FWGIDW-230301-WS	Prep Type Soluble	Matrix Solid	Method	Prep Batch 615023
L	_CS 280-615054/3	Lab Control Sample	Total/NA	Solid	9045D	
L	_CSD 280-615054/4	Lab Control Sample Dup	Total/NA	Solid	9045D	

Prep Batch: 615057

Lab Sample ID 280-177167-1	Client Sample ID FWGIDW-230301-WW	Prep Type Total/NA	Matrix Water	Method 9030B	Prep Batch
MB 280-615057/1-A	Method Blank	Total/NA	Water	9030B	
LCS 280-615057/2-A	Lab Control Sample	Total/NA	Water	9030B	
280-177167-1 MS	FWGIDW-230301-WW	Total/NA	Water	9030B	
280-177167-1 MSD	FWGIDW-230301-WW	Total/NA	Water	9030B	

Client: Leidos, Inc. Project/Site: RVAAP FWGW FS Well Install 2023

General Chemistry

Analysis Batch: 615058

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
280-177167-1	FWGIDW-230301-WW	Total/NA	Water	9034	615057
MB 280-615057/1-A	Method Blank	Total/NA	Water	9034	615057
LCS 280-615057/2-A	Lab Control Sample	Total/NA	Water	9034	615057
280-177167-1 MS	FWGIDW-230301-WW	Total/NA	Water	9034	615057
280-177167-1 MSD	FWGIDW-230301-WW	Total/NA	Water	9034	615057
Analysis Batch: 6150	994				
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
280-177167-1	FWGIDW-230301-WW	Total/NA	Water	9012B	
MB 280-615094/20	Method Blank	Total/NA	Water	9012B	
HLCS 280-615094/17	Lab Control Sample	Total/NA	Water	9012B	
LCS 280-615094/19	Lab Control Sample	Total/NA	Water	9012B	
LLCS 280-615094/18	Lab Control Sample	Total/NA	Water	9012B	
Prep Batch: 615349					
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
280-177167-2	FWGIDW-230301-WS	Total/NA	Solid	9012B	
MB 280-615349/4-A	Method Blank	Total/NA	Solid	9012B	
HLCS 280-615349/1-A	Lab Control Sample	Total/NA	Solid	9012B	
LCS 280-615349/3-A	Lab Control Sample	Total/NA	Solid	9012B	
LLCS 280-615349/2-A	Lab Control Sample	Total/NA	Solid	9012B	
280-177167-2 MS	FWGIDW-230301-WS	Total/NA	Solid	9012B	
280-177167-2 MSD	FWGIDW-230301-WS	Total/NA	Solid	9012B	

Analysis Batch: 615426

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
280-177167-2	FWGIDW-230301-WS	Total/NA	Solid	9012B	615349
MB 280-615349/4-A	Method Blank	Total/NA	Solid	9012B	615349
HLCS 280-615349/1-A	Lab Control Sample	Total/NA	Solid	9012B	615349
LCS 280-615349/3-A	Lab Control Sample	Total/NA	Solid	9012B	615349
LLCS 280-615349/2-A	Lab Control Sample	Total/NA	Solid	9012B	615349
280-177167-2 MS	FWGIDW-230301-WS	Total/NA	Solid	9012B	615349
280-177167-2 MSD	FWGIDW-230301-WS	Total/NA	Solid	9012B	615349

Analysis Batch: 615525

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
280-177167-2	FWGIDW-230301-WS	Soluble	Solid	9056A	615559
MB 280-615559/3-A	Method Blank	Soluble	Solid	9056A	615559
LCS 280-615559/1-A	Lab Control Sample	Soluble	Solid	9056A	615559
LCSD 280-615559/2-A	Lab Control Sample Dup	Soluble	Solid	9056A	615559
MRL 280-615525/3	Lab Control Sample	Total/NA	Solid	9056A	
280-177167-2 MS	FWGIDW-230301-WS	Soluble	Solid	9056A	615559
280-177167-2 MSD	FWGIDW-230301-WS	Soluble	Solid	9056A	615559
280-177167-2 DU	FWGIDW-230301-WS	Soluble	Solid	9056A	615559

Leach Batch: 615559

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
280-177167-2	FWGIDW-230301-WS	Soluble	Solid	DI Leach	
MB 280-615559/3-A	Method Blank	Soluble	Solid	DI Leach	
LCS 280-615559/1-A	Lab Control Sample	Soluble	Solid	DI Leach	
LCSD 280-615559/2-A	Lab Control Sample Dup	Soluble	Solid	DI Leach	

Eurofins Denver

Job ID: 280-177167-1

Client: Leidos, Inc. Project/Site: RVAAP FWGW FS Well Install 2023

General Chemistry (Continued)

Leach Batch: 615559 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
280-177167-2 MS	FWGIDW-230301-WS	Soluble	Solid	DI Leach	
280-177167-2 MSD	FWGIDW-230301-WS	Soluble	Solid	DI Leach	
280-177167-2 DU	FWGIDW-230301-WS	Soluble	Solid	DI Leach	

Analysis Batch: 615923

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
280-177167-1	FWGIDW-230301-WW	Total/NA	Water	1010A	
MB 280-615923/13	Method Blank	Total/NA	Water	1010A	
MB 280-615923/2	Method Blank	Total/NA	Water	1010A	
LCS 280-615923/1	Lab Control Sample	Total/NA	Water	1010A	
LCSD 280-615923/12	Lab Control Sample Dup	Total/NA	Water	1010A	

Analysis Batch: 783171

Lab Sample ID 280-177167-2	Client Sample ID FWGIDW-230301-WS	Prep Type Total/NA	Matrix Solid	Method 1030	Prep Batch
MB 680-783171/1	Method Blank	Total/NA	Solid	1030	
LCS 680-783171/2	Lab Control Sample	Total/NA	Solid	1030	
LCSD 680-783171/22	Lab Control Sample Dup	Total/NA	Solid	1030	

Job ID: 280-177167-1

Lab Chronicle

Client: Leidos, Inc. Project/Site: RVAAP FWGW FS Well Install 2023

Client Sample ID: FWGIDW-230301-WW Date Collected: 05/30/23 12:45 Date Received: 05/31/23 10:40

Lab Sample ID: 280-177167-1 Matrix: Water

	Batch	Batch	_	Dil	Initial	Final	Batch	Prepared			
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab	
TCLP	Leach	1311	RA		1.0 g	1.0 mL	615640 Completed:	06/09/23 20:59 06/09/23 22:47		EET DEN	
TCLP	Analysis	8260B	RA	1	0.5 mL	5 mL	616166	06/14/23 20:57	CCF	EET DEN	
TCLP	Leach	1311			1.0 g	1.0 mL	615640	06/09/23 20:59		EET DEN	
						<u>.</u> <u>.</u>	Completed:	06/09/23 22:47			
TCLP	Analysis	8260B		1	0.5 mL	5 mL	615800	06/12/23 21:45	CCF	EET DEN	8
TCLP	Leach	1311			1.0 g	1.0 mL	615475	06/08/23 15:30	DFB1	EET DEN	
TCLP	Prep	3510C			125 mL	1 mL	615587	06/09/23 14:55	KAS	EET DEN	9
TCLP	Analysis	8270D		1	1 mL	1 mL	616031	06/14/23 14:04	DNM	EET DEN	
TCLP	Leach	1311			1.0 g	1.0 mL	615475	06/08/23 15:30	DFB1	EET DEN	
TCLP	Prep	3510C			100 mL	10 mL	615593	06/09/23 15:02	KAS	EET DEN	
TCLP	Analysis	8081B		1	1 mL	1 mL	616066	06/14/23 17:09	ECM	EET DEN	
Total/NA	Prep	3510C			979.8 mL	10 mL	614674	06/02/23 16:17	MAS	EET DEN	
Total/NA	Analysis	8082A		1	1 mL	1 mL	615208	06/07/23 21:26	SP	EET DEN	1
TCLP	Leach	1311			1.0 g	1.0 mL	615475	06/08/23 15:30	DFB1	EET DEN	
TCLP	Analysis	8321A Herb		1	0.5 mL	1 mL	615604	06/09/23 20:43	JZ	EET DEN	
TCLP	Leach	1311			1.0 g	1.0 mL	615475	06/08/23 15:30	DFB1	EET DEN	
TCLP	Prep	3010A			50 mL	50 mL	615545	06/12/23 07:57	LJS	EET DEN	
TCLP	Analysis	6010C		1			615825	06/12/23 15:57	ADL	EET DEN	
TCLP	Leach	1311			1.0 g	1.0 mL	615475	06/08/23 15:30	DFB1	EET DEN	
TCLP	Prep	7470A			30 mL	50 mL	615550	06/09/23 14:00	PFM	EET DEN	
TCLP	Analysis	7470A		1			615705	06/09/23 17:36	PFM	EET DEN	
Total/NA	Analysis	1010A		1			615923	06/13/23 14:04	MEC	EET DEN	
Total/NA	Analysis	9012B		1	10 mL	10 mL	615094	06/06/23 10:36	MMP	EET DEN	
Total/NA	Prep	9030B			50 mL	50 mL	615057	06/06/23 12:06	SAH	EET DEN	
Total/NA	Analysis	9034		1			615058	06/06/23 12:08	SAH	EET DEN	
Total/NA	Analysis	9040C		1			614834	06/02/23 16:11	KEG	EET DEN	
Total/NA	Analysis	9056		1	10 mL	10 mL	614359	05/31/23 18:16	MEC	EET DEN	

Client Sample ID: FWGIDW-230301-WS Date Collected: 05/30/23 11:30 Date Received: 05/31/23 10:40

_

Lab Sample ID: 280-177167-2

Matrix: Solid

2

	Batch	Batch	_	Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
TCLP	Leach	1311			1.0 g	1.0 mL	614442	05/31/23 19:00	DFB1	EET DEN
							Completed:	06/01/23 21:56	1	
TCLP	Analysis	8260B		1	0.5 mL	5 mL	615474	06/09/23 04:09	CCF	EET DEN
TCLP	Leach	1311			1.0 g	1.0 mL	614928	06/05/23 16:10	DFB1	EET DEN
TCLP	Prep	3510C			125 mL	1 mL	615134	06/06/23 18:16	ANV	EET DEN
TCLP	Analysis	8270D		1	1 mL	1 mL	615329	06/08/23 17:54	DNM	EET DEN
TCLP	Leach	1311			1.0 g	1.0 mL	614928	06/05/23 16:10	DFB1	EET DEN
TCLP	Prep	3510C			100 mL	10 mL	615360	06/08/23 12:12	KAS	EET DEN
TCLP	Analysis	8081B		1	1 mL	1 mL	615561	06/09/23 23:45	SMQ	EET DEN
TCLP	Leach	1311			1.0 g	1.0 mL	614928	06/05/23 16:10	DFB1	EET DEN
TCLP	Analysis	8321A Herb		10	0.5 mL	1 mL	615278	06/07/23 19:05	JZ	EET DEN

Client: Leidos, Inc. Project/Site: RVAAP FWGW FS Well Install 2023

Job ID: 280-177167-1

Matrix: Solid

Lab Sample ID: 280-177167-2

Client Sample ID: FWGIDW-230301-WS Date Collected: 05/30/23 11:30 Date Received: 05/31/23 10:40

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
TCLP	Leach	1311			1.0 g	1.0 mL	614928	06/05/23 16:10	DFB1	EET DEN
TCLP	Prep	3010A			10 mL	50 mL	615163	06/07/23 14:07	LJS	EET DEN
TCLP	Analysis	6010C		1			615432	06/08/23 13:17	LMT	EET DEN
TCLP	Leach	1311			1.0 g	1.0 mL	614928	06/05/23 16:10	DFB1	EET DEN
TCLP	Prep	7470A			30 mL	50 mL	615217	06/07/23 16:11	PFM	EET DEN
TCLP	Analysis	7470A		1			615344	06/07/23 21:19	PFM	EET DEN
Total/NA	Analysis	1030		1			783171	06/12/23 13:31	SM	EET SAV
Soluble	Leach	DI Leach			39.95 g	40 mL	615023	06/06/23 09:35	KEG	EET DEN
Soluble	Analysis	9045D		1			615054	06/06/23 11:58	KEG	EET DEN
Total/NA	Analysis	Moisture		1			614542	06/01/23 12:23	ZPM	EET DEN

Client Sample ID: FWGIDW-230301-WS Date Collected: 05/30/23 11:30 Date Received: 05/31/23 10:40

Lab Sample ID: 280-177167-2 Matrix: Solid Percent Solids: 80.0

	Batch	Batch		Dil	Initial	Final	Batch	Prepared			
Prep Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab	
Total/NA	Prep	3546			15.0 g	10 mL	615721	06/12/23 12:18	EDW	EET DEN	
Total/NA	Analysis	8082A		1	1 mL	1 mL	616027	06/14/23 14:14	SP	EET DEN	
Total/NA	Prep	9012B			1.1005 g	50 mL	615349	06/08/23 09:43	ZPM	EET DEN	
Total/NA	Analysis	9012B		1	50 mL	50 mL	615426	06/08/23 13:37	ZPM	EET DEN	
Total/NA	Prep	9030B			10.72 g	50 mL	614526	06/01/23 11:49	ZPM	EET DEN	
Total/NA	Analysis	9034		1			614559	06/01/23 13:56	ZPM	EET DEN	
Soluble	Leach	DI Leach			10.02 g	100 mL	615559	06/09/23 12:19	MEC	EET DEN	
Soluble	Analysis	9056A		1	10 mL	10 mL	615525	06/10/23 05:36	MEC	EET DEN	

This procedure uses a method stipulated length of time for the process. Both start and end times are displayed.

Laboratory References:

EET DEN = Eurofins Denver, 4955 Yarrow Street, Arvada, CO 80002, TEL (303)736-0100

EET SAV = Eurofins Savannah, 5102 LaRoche Avenue, Savannah, GA 31404, TEL (912)354-7858

> **12** 13

Accreditation/Certification Summary

Client: Leidos, Inc. Project/Site: RVAAP FWGW FS Well Install 2023

Laboratory: Eurofins Denver

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

Authority		Program	Identification Number	Expiration Date
A2LA		Dept. of Defense ELAP	2907.01	10-31-23
The following analytes the agency does not o		report, but the laboratory is not	certified by the governing authority.	This list may include analytes for whic
Analysis Method	Prep Method	Matrix	Analyte	
7470A	7470A	Solid	Mercury	
8321A Herb		Solid	2,4-D	
8321A Herb		Water	2,4-D	
9040C		Water	Temperature	
9045D		Solid	Temperature	

Percent Solids

Laboratory: Eurofins Savannah

Moisture

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Solid

Authority	Program	Identification Number	Expiration Date		
	AFCEE	SAVLAB			
Alabama	State	41450	06-30-23		
ANAB	Dept. of Defense ELAP	L2463	09-22-24		
Arkansas DEQ	State	19-015-0	02-01-24		
California	State	2939	06-30-23		
Florida	NELAP	E87052	06-30-23		
Georgia	State	E87052	06-30-23		
Georgia (DW)	State	803	06-30-23		
Guam	State	19-007R	04-17-24		
Hawaii	State	<cert no.=""></cert>	06-30-23		
Illinois	NELAP	200022	11-30-23		
Indiana	State	C-GA-02	06-30-23		
lowa	State	353	06-30-23		
Kentucky (UST)	State	NA	06-30-23		
Louisiana	NELAP	30690	06-30-23		
Louisiana (All)	NELAP	30690	06-30-23		
Louisiana (DW)	State	LA009	12-31-23		
Maine	State	GA00006	09-25-24		
Maryland	State	250	12-31-23		
Massachusetts	State	M-GA006	06-30-23		
Michigan	State	9925	06-30-23		
Mississippi	State	<cert no.=""></cert>	06-30-23		
Nebraska	State	NE-OS-7-04	06-30-23		
New Jersey	NELAP	GA769	06-30-23		
New Mexico	State	GA00006	06-30-23		
North Carolina (DW)	State	13701	07-31-23		
North Carolina (WW/SW)	State	269	12-31-23		
Pennsylvania	NELAP	68-00474	06-30-23		
Puerto Rico	State	GA00006	01-01-24		
South Carolina	State	98001	06-30-23		
Tennessee	State	TN02961	06-30-23		
Texas	NELAP	T1047004185-19-14	11-30-23		
Texas	TCEQ Water Supply	T104704185	06-30-23		
USDA	US Federal Programs	P330-18-00313	09-03-24		
Virginia	NELAP	460161	06-14-23		
	Accreditation/Co	ertification Summary			
--	--	---	-----------------	--	--
Client: Leidos, Inc. Project/Site: RVAAP FW	Job I	D: 280-177167-1	2		
•	IS Savannah (Continued) held by this laboratory are listed. Not all acc	reditations/certifications are applicable t	to this report.		
Authority	Expiration Date				
Wyoming	State	8TMS-L	06-30-23		

Eurofins Denver

 Chain of Custody Record

6/29/2023

The information in this document is proprietary to Leidos. It may not be used, reproduced, disclosed, or exported without the written approval of Leidos.

14

1.

***** +'

1 .

<u>,</u> , '

14

Eurofins Denver 4955 Yarrow Street

Chain of Custody Record

💸 eurofins Environment Testing

Arvada, CO 80002 Phone 303-736-0100 Fax 303-431-7171

Client Information (Sub Contract Lab)	Sampler Lab PM McEntee, Pa			Carrier Trackin				cking No(s)				COC No 280-658646 1											
Client Contact:	Phone E-Mail			•						State of Origin					_	Page [.]							
Shipping/Receiving					AcEntee@et eurofinsus com Ohio								_	Page 1 of 1									
Company Eurofins Environment Testing Southeast,						creditations Required (See note) DD - A2LA											Job # 280-177167-1						
Address	Due Date Requested			Analysis Requested												Preservation Cod	05						
5102 LaRoche Avenue,	6/13/2023									An	alys	sis F	ledi	uest	ed						A HCL	M - Hexane	
City [.] Savannah	TAT Requested (da	aya)				- Aller													200		B NaOH C Zn Acetate	N None O AsNaO2	
State Zip:	-				1	a a la factor de					1								-Mercura d		D Nitric Acid	P Na2O4S Q Na2SO3	ł
GA, 31404																			ine Ite	Ø	E NaHSO4 F MeOH	R Na2S2O3	
Phone [.] 912-354-7858(Tel) 912-352-0165(Fax)	PO #																		20 1 0. M		G Amchlor	S H2SO4 T TSP Dodec	ahvdrate
Email	WO #				102	Constitutions													office,		H - Ascorbic Acid I Ice	U Acetone	unjalato
					ğ	2													all and a second	0	J DI Water	V MCAA W pH4-5	
Project Name	Project #				چ[5													too ha trate	8	K EDTA L EDA	Y Trizma	4.0
RVAAP FWGW FS Well Install 2023 Site	28018729 ssow#				ble	Š	Solids												8.45-AN	¥	Other [.]	Z other (speci	iiy)
	00000				١, M	B													X 3 77	8	othu		
				Matrix	8	rtorm MS/MSD (Yes or No)	lgnitability,												and we	2			
			Sample Type	(W=water	litter	2	nita												11,000000				
		Sample	(C=Comp.	S=solid, O=waste/oil,	1 PI	Б	6i /0;												860.97	Ē			
Sample Identification - Client ID (Lab ID)	Sample Date	Time		BT=Tissue, A=Air)	Ĕ	å	1030/													Total	Special In	structions/N	ote:
	X	\geq	Preserve	ation Code:	X	Х	-mashe			<u>م</u>							-			X			<u> </u>
FWGIDW-230301-WS (280-177167-2)	5/30/23	11 30 Eastern		Solid			х													1	Q5 3		
		Luoton																	10.12				
					\vdash			$\left \right $	-	_					-+				10000	-			
																			1000				
																			1.0000				
																			and the second of the				
								┠──┼	-+				\rightarrow										
									\square			_	\square			$ \rightarrow$							
																			807 W822				
Note Since laboratory accreditations are subject to change, Eurofins TestAmeric	a staase the surgershi	n of mothod o	l	ditation complia	1	L]		LL		harata	L	This a					un eel a el				nuntadu. If the labor		
maintain accreditation in the State of Origin listed above for analysis/tests/matrix	being analyzed the sa	amples must be	e shipped bac	k to the Eurofins	Tes	stÅme	erica li	aborato	ry or c														
TestAmerica attention immediately If all requested accreditations are current to	date return the signed	I Chain of Cus	lody atlesting	to said complian	ce t	o Eur	ofins	TestAm	erica														
Possible Hazard Identification						Sar	mple	Disp	osal	(A f	ee n	nay b	e as	sess	ed l	f sar	nples	are			d longer than 1		
Unconfirmed	irmed		Return To Client Disposal By Lab Archive For Months Special Instructions/QC Requirements																				
Deliverable Requested I, II, III, IV, Other (specify)	Primary Delivera	able Rank 4	ŧ			Spe	ecial	Instru	ction	is/QC	Red	quire	ment	S									
Empty Kit Relinquished by		Date			Tir	ne								h	Aetho	d of S	hipme	nt:					
Relinguished by	Date/Time	10	50	ETAD	C	~ /	Rece	ived by	1									ime	2	5	1-23	Company	
Relinquished by	Date/Time	P		Company		~	Rece	ived by	<u>7</u>								Oate/T			20		Company	
	Company				Received by				IN INE.			<u>ک</u>	5										
Relinquished by	Date/Time.			Company			Rece	ived by									Date/T	ima				Company	
Custody Seals Intact Custody Seal No	1			J			Coole	er Temp	peratu	re(s) °	C and	d Othe	r Rem	narks.					-7	17	2	I	
Δ Yes Δ No				-D	_										_{	<u>}</u>	0	-	_>	ታ,	d		
				Page 59	σ	0													-		-	Ver 06/08/20	0/Z9/2

Login Sample Receipt Checklist

Client: Leidos, Inc.

Login Number: 177167 List Number: 1 Creator: Little, Matthew L

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

Job Number: 280-177167-1

List Source: Eurofins Denver

Login Sample Receipt Checklist

Client: Leidos, Inc.

Login Number: 177167 List Number: 2 Creator: Harley, Tynisha

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	N/A	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

Job Number: 280-177167-1

List Source: Eurofins Savannah

List Creation: 06/02/23 12:07 PM

ATTACHMENT C

Container Log

CONTAINER LOG

Container No.⁽¹⁾ LEIDOS-FWGW-074-L (Frac Tank)

Page 1 of 2

Drum Staging Area:	Building 1036	0	Coursel a time	D		
Date ⁽²⁾	Material Name ⁽³⁾	Quantity Added ⁽⁴⁾	Cumulative Quantity ⁽⁵⁾	Person Adding Material ⁽⁶⁾	Label	Notes
3/24/2023	Decon/Drilling/Purge Water	37	37	Rockwater	Pending Analysis	N/A
3/24/2023	Decon/Drilling/Purge Water	35	72	Leidos	Pending Analysis	N/A
	Decon/Drilling/Purge Water	800		Rockwater	Pending Analysis	N/A
3/28/2023	Decon/Drilling/Purge Water	800	1,672	Rockwater	Pending Analysis	N/A
3/29/2023	Decon/Drilling/Purge Water	5	1,677	Leidos	Pending Analysis	N/A
4/4/2023	Decon/Drilling/Purge Water	400	2,077	Rockwater	Pending Analysis	N/A
4/6/2023	Decon/Drilling/Purge Water	400	2,477	Rockwater	Pending Analysis	N/A
4/10/2023	Decon/Drilling/Purge Water	700	3,177	Rockwater	Pending Analysis	N/A
4/12/2023	Decon/Drilling/Purge Water	1,500	3,927	Rockwater	Pending Analysis	N/A
4/13/2023	Decon/Drilling/Purge Water	1,600	5,527	Rockwater	Pending Analysis	N/A
4/14/2023	Decon/Drilling/Purge Water	1,100	6,627	Rockwater	Pending Analysis	N/A
4/20/2023	Decon/Drilling/Purge Water	400	7,027	Rockwater	Pending Analysis	N/A
	Decon/Drilling/Purge Water	800		Rockwater	Pending Analysis	N/A
4/24/2023	Drilling Water	1,600	9,427	Rockwater	Pending Analysis	N/A
4/25/2023	Drilling Water	2,400	11,827	Rockwater	Pending Analysis	N/A
4/27/2023	Drilling Water	500	12,327	Rockwater	Pending Analysis	N/A
4/28/2023	Decon Water	100	12,427	Rockwater	Pending Analysis	N/A
5/1/2023	Development Water	40	12,467	Leidos	Pending Analysis	N/A
5/2/2023	Development Water	70	12,537	Leidos	Pending Analysis	N/A
5/2/2023	Development Water	65	12,602	Leidos	Pending Analysis	N/A
5/3/2023	Development Water	70	12,672	Leidos	Pending Analysis	N/A
5/9/2023	Development Water	200	12,872	Rockwater	Pending Analysis	N/A
	Development Water	160		Rockwater	Pending Analysis	N/A
	-					
	Development Water	100		Rockwater	Pending Analysis	N/A
5/15/2023	Purge Water	20	13,152	Leidos	Pending Analysis	N/A
5/16/2023	Purge Water	30	13,182	Leidos	Pending Analysis	N/A

Drum Staging Area: Building 1036

CONTAINER LOG

Container No. (1) LEIDOS-FWGW-074-L (Frac Tank)

Page 2 of 2

Drum Staging Area: Building 1036

		Quantity	Cumulative	Person Adding		
Date (2)	Material Name ⁽³⁾	Added ⁽⁴⁾	Quantity ⁽⁵⁾	Material ⁽⁶⁾	Label	Notes
5/17/2023	Purge Water	10	13,192	Leidos	Pending Analysis	N/A
5/22/2023	Purge Water	25	13,217	Leidos	Pending Analysis	N/A

(When 55 gals total reached, must move from SAA within 3 calendar days.)

Date Container Transferred to Generator Accumulation Area

Materials shipped offsite date:

- (1) Container ID Number (e.g., FC-FMS#1-2)
 (2) Date when waste was added to container
- (3) Name of waste added (e.g., Diesel Fuel)
- (4) For items such as filters, note the number of items. For liquids, note the number of gallons. (5) The total quantity of items of numbers of gallon currently in the container
- (6) The name of the person adding the waste

ATTACHMENT D

Proposed Land Application Location

May 30, 2023

TRANSMITTED ELECTRONICALLY

Mr. Kevin Sedlak Restoration Project Manager ARNG-ILE Clean up Camp James A. Garfield CJAG 1438 State Route 534 SW Newton Falls, OH 44444 RE: US Army Ammunition Plt RVAAP Remediation Response Remedial Response Project Records RI Portage County 267000859036

Sent via email to: Kevin.m.sedlak.ctr@army.mil

Subject: Approval of the "Final Facility-wide Groundwater Program Plan, RVAAP-66 Facility-wide Groundwater Annual Report for 2022"

Dear Mr. Sedlak:

The Ohio Environmental Protection Agency (Ohio EPA) has received the "Final Facility-wide Groundwater Program Plan, RVAAP-66 Facility-wide Groundwater Annual Report for 2022" at the Former Ravenna Army Ammunition Plant, Portage and Trumbull Counties, Ohio dated May 4, 2023. This document was received via email at Ohio EPA's Northeast District Office (NEDO), Division of Environmental Response and Revitalization (DERR) on May 4, 2023. The document was prepared for the U.S Army Corps of Engineers on behalf of the Army National Guard Directorate by Leidos.

The final document was reviewed by personnel from Ohio EPA's DERR. Pursuant to the Director's Findings and Orders paragraph 39 (b), Ohio EPA considers the document final and approved.

If you have any questions, please contact me at kevin.palombo@epa.ohio.gov or call me at (330) 963-1292.

Sincerely,

Kn Ml. In

Kevin M. Palombo, Environmental Specialist Division of Environmental Response and Revitalization

KP/cm

ec: Angela Cobbs, Chenega Reliable Services Katie Tait, OHARNG RTLS, CJAG Steve Kvaal, USACE Louisville Nathaniel Peters, USACE Louisville Megan Oravec, Ohio EPA, NEDO, DERR Natalie Oryshkewych, Ohio EPA, NEDO, DERR Liam McEvoy, Ohio EPA, NEDO, DERR Thomas Schneider, Ohio EPA, SWDO, DERR Carrie Rasik, Ohio EPA, CO, DERR Al Brillinger Chenega Reliable Services Info Only

Received 31 May 2023

May 30, 2023

TRANSMITTED ELECTRONICALLY

Mr. Kevin Sedlak Restoration Project Manager ARNG-ILE Clean up Camp James A. Garfield CJAG 1438 State Route 534 SW Newton Falls, OH 44444

Sent via email to: Kevin.m.sedlak.ctr@army.mil RE: US Army Ammunition Plt RVAAP Remediation Response Remedial Response Project Records RI Portage County 267000859036

Subject: Approval of the "Ravenna Army Ammunition Plant (RVAAP) Restoration Program, Portage/Trumbull Counties, Final Facility-wide Groundwater 2023 Addendum" dated May 3, 2023

Dear Mr. Sedlak:

The Ohio Environmental Protection Agency (Ohio EPA) has received the "Final Facility-wide Groundwater Monitoring Program Plan 2023 Addendum" for the Former Ravenna Army Ammunition Plant, Portage and Trumbull Counties, Ohio dated May 3, 2023. This document was received via email by Ohio EPA's Northeast District Office (NEDO), Division of Environmental Response and Revitalization (DERR) on May 3, 2023. The document was prepared for the U.S Army Corps of Engineers on behalf of the Army National Guard Directorate by Leidos.

The final document was reviewed by personnel from Ohio EPA's DERR. Pursuant to the Director's Findings and Orders paragraph 39 (b), Ohio EPA considers the document final and approved.

If you have any questions, please contact me at kevin.palombo@epa.ohio.gov or (330) 963-1292.

Sincerely,

Kn Ml h

Kevin M. Palombo, Environmental Specialist Division of Environmental Response and Revitalization

KP/cm

ec: Angela Cobbs, Chenega Reliable Services Katie Tait, OHARNG RTLS, CJAG Steve Kvaal, USACE Louisville Nathaniel Peters, USACE Louisville Megan Oravec, Ohio EPA, NEDO, DERR Natalie Oryshkewych, Ohio EPA, NEDO, DERR Liam McEvoy, Ohio EPA, NEDO, DERR Thomas Schneider, Ohio EPA, SWDO, DERR Carrie Rasik, Ohio EPA, CO, DERR Al Brillinger, Chenega Reliable Services, Info Only

Received 31 May 2023

May 16, 2023

Ohio Environmental Protection Agency DERR-NEDO Attn: Mr. Kevin Palombo, Site Coordinator 2110 East Aurora Road Twinsburg, OH 44087-1924

Subject: Ravenna Army Ammunition Plant (RVAAP) Restoration Program, Portage/Trumbull Counties, Final Facility-wide Groundwater 2022 Semi-Annual Report (Work Activity No. 267000859036)

Dear Mr. Palombo:

An electronic version of the *Final Facility-wide Groundwater Monitoring Program Plan RVAAP-*66 Facility-wide Groundwater Semi-Annual Report for Spring 2022 Sampling Event will be sent using the Ohio EPA LiquidFile system. A hard copy and CD can be sent upon request by Ohio EPA. Due to file size, the main text is a separate file from the appendices. In addition, Appendix E containing the laboratory data packages are not included with the electronic version of this report.

This report was prepared for the Army National Guard in support of the RVAAP Restoration Program. Please contact the undersigned at 614-336-6000, ext 2053 or <u>kevin.m.sedlak.ctr@army.mil</u> if there are issues or concerns with this submission.

Sincerely,

TAIT.KATHRYN.SER ENA.1289508275 Date: 2023.05.16 12:53:10 -04'00'

FOR Kevin M. Sedlak RVAAP Restoration Program Manager Army National Guard Directorate

cc: Natalie Oryshkewych, Ohio EPA, NEDO Liam McEvoy, Ohio EPA, NEDO Tom Schneider, Ohio EPA, SWDO Katie Tait, OHARNG Steve Kvaal, USACE Louisville Jay Trumble, USACE Louisville Jed Thomas, Leidos Ryan Laurich, Leidos Jennifer Tierney, Chenega

May 3, 2023

Ohio Environmental Protection Agency DERR-NEDO Attn: Mr. Kevin Palombo, Site Coordinator 2110 East Aurora Road Twinsburg, OH 44087-1924

Subject: Ravenna Army Ammunition Plant (RVAAP) Restoration Program, Portage/Trumbull Counties, Final Facility-wide Groundwater 2023 Addendum (Work Activity No. 267000859036)

Dear Mr. Palombo:

Attached for your concurrence is an electronic version of the *Final Facility-wide Groundwater Monitoring Program Plan RVAAP-66 Facility-wide Groundwater Addendum for 2023*. Due to small file size, this document will only be sent via email and not through the Ohio EPA LiquidFile system. A hard copy and CD can be sent upon request by Ohio EPA.

This Addendum was prepared for the Army National Guard in support of the RVAAP Restoration Program. Please contact the undersigned at 614-336-6000, ext 2053 or <u>kevin.m.sedlak.ctr@army.mil</u> if there are issues or concerns with this submission.

Sincerely,

TAIT.KATHRYN.SERE Digitally signed by TAIT.KATHRYN.SERENA.1289508275 NA.1289508275 Date: 2023.05.03 12:49:48 -04'00'

FOR Kevin M. Sedlak RVAAP Restoration Program Manager Army National Guard Directorate

cc: Natalie Oryshkewych, Ohio EPA, NEDO Megan Oravec, Ohio EPA, NEDO Liam McEvoy, Ohio EPA, NEDO Tom Schneider, Ohio EPA, SWDO Katie Tait, OHARNG Steve Kvaal, USACE Louisville Jay Trumble, USACE Louisville Jed Thomas, Leidos Ryan Laurich, Leidos Jennifer Tierney, Chenega

April 28, 2023

TRANSMITTED ELECTRONICALLY

Mr. Kevin Sedlak Restoration Program Manager ARNG-ILE Clean Up Camp James A Garfield JTC 1438 State Route 534 SW Newton Falls, OH 44444

Sent via email to: Kevin.m.sedlak.ctr@army.mil

RE: US Army Ammunition Plt RVAAP Remediation Response Project Records Remedial Response Portage County ID#267000859036

Subject: Response to Ohio EPA Comments on the "Draft RVAAP-66 Facility-wide Groundwater Semi-Annual Report for Spring 2022 Sampling Event" dated March 14, 2023

Dear Mr. Sedlak:

The Ohio Environmental Protection Agency (Ohio EPA) has received and reviewed the "Response to Ohio EPA Comments on the "Draft RVAAP-66 Facility-wide Groundwater Semi-Annual Report for Spring 2022 Sampling Event" at the Former Ravenna Army Ammunition Plant, Portage and Trumbull Counties, Ohio (Camp James A. Garfield). This document was received at Ohio EPA's Northeast District Office (NEDO), Division of Environmental Response and Revitalization (DERR) via email on March 14, 2023. The response was prepared for the United States Army Corps of Engineers (USACE) on behalf of the National Guard Bureau by Leidos.

Based on our review of the Army National Guard's Response to Ohio EPA comments provided in your letter dated March 14, 2023, we find the responses generally acceptable, and the document can be finalized. Please be sure that all agreed-upon changes, additions, and clarifications are provided in the final document.

If you have questions, you can reach me at kevin.palombo@epa.ohio.gov or at (330) 963-1292.

Sincerely,

Kn Ml b

Kevin M. Palombo, Environmental Specialist Division of Environmental Response and Revitalization

KP/cm

ec: Jennifer Tierney, Chenega, Katie Tait, OHARNG RTLS Steven Kvaal, USACE Louisville Nat Peters, USACE Louisville Megan Oravec, Ohio EPA, NEDO, DERR Natalie Oryshkewych, Ohio EPA, NEDO, DERR Liam McEvoy, Ohio EPA, NEDO, DERR Thomas Schneider, Ohio EPA, SWDO, DERR Carrie Rasik, Ohio EPA, CO, DERR Allan Brillinger, Chenega (Info Only)

RECEIVED 1 MAY 2023

April 28, 2023

TRANSMITTED ELECTRONICALLY

Mr. Kevin Sedlak Restoration Program Manager ARNG-ILE Clean Up Camp James A Garfield JTC 1438 State Route 534 SW Newton Falls, OH 44444 RE: US Army Ammunition Plt RVAAP Remediation Response Project Records Remedial Response Portage County ID#267000859036

Sent via email to: Kevin.m.sedlak.ctr@army.mil

Subject: Response to Ohio EPA Comments on the "Draft RVAAP-66 Facility-wide Groundwater Addendum for 2023" dated March 14, 2023

Dear Mr. Sedlak:

The Ohio Environmental Protection Agency (Ohio EPA) has received and reviewed the "Response to Ohio EPA Comments on the "Draft RVAAP-66 Facility-wide Groundwater Addendum for 2023" at the Former Ravenna Army Ammunition Plant, Portage and Trumbull Counties, Ohio (Camp James A. Garfield). This document was received at Ohio EPA's Northeast District Office (NEDO), Division of Environmental Response and Revitalization (DERR) via email on March 14, 2023. The response was prepared for the United States Army Corps of Engineers (USACE) on behalf of the National Guard Bureau by Leidos.

Based on our review of the Army National Guard's Response to Ohio EPA comments provided in your letter dated March 14, 2023, we find the responses generally acceptable, and the document can be finalized. Please be sure that all agreed-upon changes, additions, and clarifications are provided in the final document.

If you have questions, you can reach me at kevin.palombo@epa.ohio.gov or at (330) 963-1292.

Sincerely,

Kn Ml la

Kevin M. Palombo Environmental Specialist Division of Environmental Response and Revitalization

KP/cm

ec: Jennifer Tierney, Chenega Katie Tait, OHARNG RTLS Steven Kvaal, USACE Louisville Nat Peters, USACE Louisville Megan Oravec, Ohio EPA, NEDO, DERR Natalie Oryshkewych, Ohio EPA, NEDO, DERR Liam McEvoy, Ohio EPA, NEDO DERR Thomas Schneider, Ohio EPA, SWDO DERR Carrie Rasik, Ohio EPA, CO DERR Allan Brillinger, Chenega (Info Only)

RECEIVED 1 MAY 2023

Northeast District Office • 2110 East Aurora Road • Twinsburg, OH 44087-1924 epa.ohio.gov • (330) 963-1200 • (330) 487-0769 (fax)

April 19, 2023

TRANSMITTED ELECTRONICALLY

Mr. Kevin Sedlak Restoration Program Manager ARNG-ILE Clean Up Camp James A Garfield JTC 1438 State Route 534 SW Newton Falls, OH 44444 RE: US Army Ammunition Plt RVAAP Remediation Response Project Records Remedial Response Portage County ID#267000859036

Sent via email to: Kevin.m.sedlak.ctr@army.mil

Subject: Ohio EPA Comments on the "Draft Facility-wide Groundwater Monitoring Program Plan RVAAP-66 Facility-wide Groundwater Annual Report for 2022" dated February 13, 2023.

Dear Mr. Sedlak:

The Ohio Environmental Protection Agency (Ohio EPA) has received and reviewed the "Draft Facility-wide Ground Water Monitoring Program Plan RVAAP-66 Facility-wide Ground Water Annual Report for 2022" at the Former Ravenna Army Ammunition Plant, Portage and Trumbull Counties, Ohio (Camp James A. Garfield Joint Training Facility). This document was received at Ohio EPA's Northeast District Office (NEDO), Division of Environmental Response and Revitalization (DERR) on February 13, 2023. The report was prepared for the United States Army Corps of Engineers on behalf of the National Guard Bureau by Leidos under Contract Number W912QR-16-D-0003. Comments on the document based on Ohio EPA review are provided below. Please provide responses to the following comments in accordance with the Directors Findings and Orders.

DRAFT FACILITY-WIDE GROUNDWATER MONITORING PROGRAM (FWGWMP) ANNUAL REPORT FOR 2022

Ground water samples were analyzed for: volatile organic compounds (VOCs), semi-volatile organic compounds (SVOCs), organochlorinated pesticides, polychlorinated biphenol (PCBs), explosives/propellants, cyanide, nitrate/nitrite, sulfate/sulfide, and metals (total and field filtered) including hexavalent chromium. Ground water results were screened in part according to the 2012 EQM FWGMP Addendum using background data, facility-wide cleanup goals (FWCUGs), Ohio EPA Drinking Water Maximum Contaminant Levels (MCLs) and U.S. EPA Regional Screening Levels (RSLs) for tap water.

Updated metals background concentrations used for this report were generated from the Background Study for Metals for RVAAP-66 Facility-wide Ground Water (Leidos 2019b) completed in 2019 and approved by Ohio EPA on September 9, 2019. Background calculations for metals concentration in the Unconsolidated, Homewood Sandstone, Upper Sharon, and Basal Sharon Conglomerate aquifers

US Army Ammunition Plt RVAAP April 19, 2023 Page 2 of 3

are presented in Table 4-5 of the Background Study and referenced in Section 6.1 Screening Levels of the Annual Report as part of the sample results discussion.

Total wells sampled from each aquifer are as follows: 23 wells from the Unconsolidated, four wells from the Homewood Sandstone, 19 wells from the Upper Sharon, two wells from the Basal Sharon Conglomerate (including the four off-site property wells) for a total of 48 wells sampled for 2022.

COMMENTS

1. Carbon Tetrachloride detections:

Carbon tetrachloride was detected in LL10mw-003 below the screening level of 5ug/L, with historical results ranging from 1 ug/L to 8 ug/L. While no trend is visibly apparent in the attached graphs, Ohio EPA review of the 2023 Draft Sampling Addendum conducted in February 2023 indicated that there may be a statistically significant increasing trend of carbon tetrachloride in this well. Additional sampling data as well as statistical analysis of the carbon tetrachloride levels in this well may be beneficial in demonstrating actual trend directions of this data.

Based on the March 14, 2023, Army responses to Ohio EPA review of the 2023 Draft Sampling Addendum and request for continued sampling at LL10mw-003, the Army has agreed to analyze for carbon tetrachloride in LL10mw-003 in the Spring 2023 and Fall 2023 sampling events. Ohio EPA understands that The Army will not be analyzing daughter products and assessing degradation of carbon tetrachloride during 2023 but should sample results indicate that carbon tetrachloride is above the MCL in the future, a sampling and analysis of daughter products should be considered.

Ohio EPA recommends statistical evaluation of the carbon tetrachloride data using Sanitas software or other equal statistical software to evaluate possible trend slopes for the 2023 data and prior years' data (overall/historical trend (all data) and current/recent trend (last 8 rounds of data))

2. Statistical data evaluation:

While this Ohio EPA comment was previously noted in the 2021 Annual Report, and an Army response was provided in a July 11, 2022, letter, the comment is being memorialized below for future reference:

"While the visibly recognizable best linear fit evaluations presented in the time series graphs are useful, please explain if further statistical evaluation of these data (in future reports) will be used to more accurately determine decreasing, stable or increasing trend lines in the data (utilizing Sanitas or some other acceptable form of statistical evaluation program). Statistical trend analyses would be recommended to help evaluate the ongoing FWGWMP and/or to help support future proposed well abandonment decisions."

The July 11, 2022, Army response to this comment stated that the linear fit evaluations were useful and indicated that further statistical evaluation of the chemicals of concern (COCs) will be provided in the Feasibility Study to then determine long-term monitoring needs and evaluate the long-term monitoring well network. Ohio EPA concurs with this approach and adds that such further

US Army Ammunition Plt RVAAP April 19, 2023 Page 3 of 3

statistical evaluation would also be appropriate in determining the trends and/or discontinuation of specific well sampling (rather than the visual method).

RISK COMMENTS

Section 7.0 and Appendix I Time-Trend Graphs

- FBQmw-174: Trendline for 2-Amino-4,6-Dinitrotoluene The report states the trendlines show decreasing ground water concentrations. Ohio EPA noted that the concentration of 0.017 mg/L in spring of 2022 has nearly rebounded back to the Spring 2019 concentration of 0.014 mg/L. Observation of the future trends in this well will be important in future decision making.
- 4. LL1mw-083 various explosives: The report states 2-amino-4,6-DNT, TNT, 2,4-DNT, and 2,6-DNT trendlines show decreasing ground water concentrations. Ohio EPA noted that the 2022 detections appear to be back where they were in the Mid-2010s. Observation of the future trends in this well will be important in future decision making.
- 5. LL3mw-237: Report states, "...decreasing trend. However, the sample collected in Spring 2022 was detected at a concentration of 6.9 µg/L, which is the highest concentration since semi-annual monitoring began in 2016." Ohio EPA noted that this well will be one to watch to see if trend in 2023 Annual Report changes to "increasing".

This "Draft Facility-wide Groundwater Monitoring Program Plan RVAAP-66 Facility-wide Groundwater Annual Report for 2022" was reviewed by personnel from Ohio EPA. Additional information is necessary to approve the document. If you have questions or would like to set up a meeting to discuss these comments, you can contact me at kevin.palombo@epa.ohio.gov.

Sincerely, ~ Ml-G

Kevin M. Palombo Environmental Specialist Division of Environmental Response and Revitalization

KP/cm

ec: Jennifer Tierney, Chenega Reliable Services Katie Tait, OHARNG RTLS Steven Kvaal, USACE Louisville Nat Peters, USACE Louisville Megan Oravec, Ohio EPA, NEDO, DERR Natalie Oryshkewych, Ohio EPA, NEDO, DERR Liam McEvoy, Ohio EPA, NEDO, DERR Thomas Schneider, Ohio EPA, SWDO, DERR Carrie Rasik, Ohio EPA, CO, DERR Allan Brillinger, Chenega Reliable Service (Info Only)

Received 20 Apr 2023

April 10, 2023

Ohio Environmental Protection Agency DERR-NEDO Attn: Mr. Kevin Palombo, Project Coordinator 2110 East Aurora Road Twinsburg, OH 44087-1924

Subject: Notification of Field Work, Ravenna Army Ammunition Plant (RVAAP) Restoration Program, Portage/Trumbull Counties, RVAAP-66 Facility-wide Groundwater (Work Activity No. 267-000-859-036)

Dear Mr. Palombo:

In accordance with the Director's Final Findings and Orders, Section XIII, #28, for the RVAAP Restoration Program, the Army National Guard (ARNG) is providing notification of field activities at the former RVAAP (Camp James A. Garfield) 15 days prior to the scheduled start date. These field activities and the tentative schedule are below:

- 04/24/23-04/28/23: Annual well gauging.
- 05/01/23-05/12/23: Groundwater sampling per the 2023 Addendum.

In the event that the schedule above changes, the Army will provide an e-mail notification with revised dates. Please contact the undersigned at 614-336-6000, ext 2053 or <u>kevin.m.sedlak.ctr@army.mil</u> if there are issues or concerns with this submission.

Sincerely,

TAIT.KATHRYN.SE

FOR Kevin M. Sedlak RVAAP Restoration Program Manager Army National Guard Directorate

cc: Natalie Oryshkewych, Ohio EPA Liam McEvoy, Ohio EPA Megan Oravec, Ohio EPA Tom Schneider, Ohio EPA Katie Tait, OHARNG Steve Kvaal, USACE Louisville Jay Trumble, USACE Louisville Jed Thomas, Leidos Ryan Laurich, Leidos Jenifer Tierney, Chenega

NATIONAL GUARD BUREAU 111 SOUTH GEORGE MASON DRIVE ARLINGTON VA 22204-1373

March 14, 2023

Ohio Environmental Protection Agency DERR-NEDO Attn: Mr. Kevin Palombo 2110 East Aurora Road Twinsburg, OH 44087-1924

- Subject: Ravenna Army Ammunition Plant (RVAAP) Restoration Program, Portage/Trumbull Counties, Ohio, Responses to Comments on the Draft RVAAP-66 Facility-wide Groundwater Semi-Annual Report for Spring 2022 Sampling Event (Work Activity No. 267-000-859-036)
- Reference: 1) Ohio EPA Comment Letter, dated 1/25/23 2) Army Responses to Ohio EPA Comments, dated 2/7/23
 - 3) Ohio EPA's Response Letter, dated 3/6/23

Dear Mr. Palombo:

The Army appreciates your comments on the Draft RVAAP-66 Facility-wide Groundwater Monitoring Program Semi-Annual Report for Spring 2022 Sampling Event and feedback provided regarding the Army's comment response letter. Enclosed for your review is a revised response to Ohio EPA Comment 4. Upon final resolution of all comments, the Army will provide a Final version of the report for Ohio EPA concurrence.

These comment responses were prepared for the Army National Guard in support of the RVAAP Restoration Program. Please contact the undersigned at 614-336-6000, ext 2053 or <u>kevin.m.sedlak.ctr@army.mil</u> if there are issues or concerns with this submission.

Sincerely,

TAIT.KATHRYN.SER ENA.1289508275

Digitally signed by TAIT.KATHRYN.SERENA.1289508275 Date: 2023.03.14 10:10:22 -04'00'

FOR Kevin M. Sedlak RVAAP Restoration Program Manager Army National Guard Directorate

ec: Natalie Oryshkewych, Ohio EPA, NEDO, DERR Liam McEvoy, Ohio EPA, NEDO, DERR Thomas Schneider, Ohio EPA, SWDO, DERR Carrie Rasik, Ohio EPA, CO, DERR Megan Oravec, Ohio EPA, NEDO, DERR Katie Tait, OHARNG Steve Kvaal, USACE Louisville Jay Trumble, USACE Louisville Jed Thomas, Leidos Ryan Laurich, Leidos Jennifer Tierney, Chenega Reliable Services Subject: Former Ravenna Army Ammunition Plant (RVAAP) Restoration Program, Portage/Trumbull Counties, RVAAP-66 Facility-wide Groundwater Semi-Annual Report for Spring 2022 Sampling Event (Work Activity No. 267-000-859-036)

COMMENTS

<u>Ohio EPA Comment 1</u>: Appendix B Completeness: A review of Appendix B (Field Forms) included daily log sheets, well purge forms, chain-of-custody sheets, and calibration reports for field equipment.

Appendix B.3 Chains of Custody section still has the first three pages denoted as place holders for "RVAAP-191-TA_06142022", "RVAPP-192-TA_06142022", and "RVAAP193-TA_06152022". Appropriate Chains of Custody documents should be inserted into the final version of the report.

Army Response: Agree. Appendix B has been revised to include Chains of Custody for RVAAP-191-TA 06142022, RVAPP-192-TA 06142022, and RVAAP193-TA 06152022.

Ohio EPA Response (dated 3/6/23): Ohio finds the response generally acceptable.

<u>Ohio EPA Comment 2</u>: Section 3.2 Field Change Requests: Section 3.2 (Page 3-1, line 153) documents four previously approved field change requests (FCR) submitted and applicable to the Spring 2022 sampling event, (LEIDOS_FWGW_001, LEIDOS_FWGW_004, and LEIDOS_FWGW_006 from 2018 and LEIDOS_FWGW 010 from 2019).

These four FCRs are included within Appendix A, along with LEIDOS_FWGW_009, (October 2019 FWGWMP-Additional Sampling Suite) which was submitted September 26, 2019, and LEIDOS_FWGW_0011 (December 2021 FWGWMP-Additional Sampling Suite) was submitted December 15, 2021.

Since LEIDOS_FWGW_009 and LEIDOS_FWGW_0011 are included in Appendix A, they should also be included in the Section 3.2 list.

Army Response: Clarification and agree. As noted in the comment, FCRs LEIDOS_FWGW_009 and LEIDOS_FWGW_0011 are not applicable to the Spring 2022 sampling event. Accordingly, these FCRs have been removed from Appendix A and a description of these FCRs will not be added to Section 3.2.

Ohio EPA Response (dated 3/6/23): Ohio finds the response generally acceptable.

Ohio EPA Comment 3: Table 4-1 Data Summary Completeness: Table 4-1 of the Draft FWGWMP Semi-Annual Report for Spring 2022 indicated that all 48 wells were analyzed for the proper analytical parameters in accordance with the Final FWGWMP Addendum for 2022 (well-specific combinations of volatile organic compounds (VOCs), semi-volatile organic compound (SVOCs), polycyclic aromatic hydrocarbons (PAHs), phenols, polychlorinated biphenyls (PCBs), perchlorate, explosives, expanded explosives, phthalates, pesticides, cyanide, phosphorus, anions, pH, alkalinity, nitrate, ammonia, carbon tetrachloride and metals).

Table 4-1 generally presented summaries of all the available well-specific data results but presented confusing information when compared to Appendix D.1 and Appendix D.3 tables. Table 4.1 sometimes presents any detected data concentrations and sometimes it only presents concentrations that exceed screening or background criteria. Additionally, reporting units ug/L and mg/L are alternately used on the D.1 and D.3 tables, and to a lesser degree within Table 4.1. The Appendix D.3 Table has been modified from the 2021 version to add a "Results Exceeds Screening and Background Criteria (Y/N)" column, which shows a "N" if the concentration

Subject: Former Ravenna Army Ammunition Plant (RVAAP) Restoration Program, Portage/Trumbull Counties, RVAAP-66 Facility-wide Groundwater Semi-Annual Report for Spring 2022 Sampling Event (Work Activity No. 267-000-859-036)

did not exceed both values, but Table 4.1 sometimes presents summaries if either value is exceeded, or if there are no screening criteria. To clarify and avoid the need to consult multiple tables to get the whole picture of the available lab data, it may be beneficial to reconfigure tables throughout the report to have a consistent viewpoint and consistent reporting units. It had previously been suggested (during the Spring 2021 report review) that Appendix D.3 table denote all laboratory detections, and then presents just the exceedances in BOLD font, that way both detections and exceedances are clearly denoted and comparing two or three tables is not necessary.

Army Response: Agree. The following revisions have been made to the report:

- 1) The data table presented as Appendix D.3 has been revised so that results exceeding the applicable screening criteria are highlighted in bold text.
- 2) The data table presented as Appendix D.2 has been revised so that units of concentration are presented consistently across Tables 4.1, D.1, D.2, and D.3. Units of concentration for Explosives, SVOCs, PCBs, Pesticides, VOCs are presented in µg/L, this is consistent with the presentation of historical data results. Units of concentration for Metals and Miscellaneous analytes are presented in mg/L. This is consistent with the presentation of historical data results.

Ohio EPA Response (dated 3/6/23): Ohio finds the response generally acceptable.

Ohio EPA Comment 4: Well Redevelopment – Elevated Turbidity Results: Section 6.0 Well redevelopment of the Draft FWGWMP Semi-Annual Report for Spring 2022 indicated that no permanent monitoring wells were redeveloped for the 2022 spring sampling event. This section also stated that a list of recommended wells to be redeveloped was presented within the 2021 Annual Report (Leidos 2022c). Upon review of the 2021 Annual Report, Section 8.2.1 Well Redevelopment, wells to be considered for redevelopment prior to sampling included LL1mw-086, LL1mw-089, and LL12mw-244. It is not further explained as to why these proposed wells were not redeveloped prior to sampling for this Spring 2022 event.

It should be noted that well LL12mw-244 was found to have a reading of 7,537.2 NTUs during 2021 sampling, and Ohio EPA comment at that time was that further discussion may be warranted to evaluate if additional potential well redevelopment activities using methods other than surging and pumping until dry (such as purging with a Waterra pump or equivalent) could help lower the elevated turbidity numbers in well LL12mw244."

Future well redevelopment activities should be conducted in accordance with Section 3.5.2 of the approved Revised Final Remedial Investigation Work Plan (RIWP) produced by TEC-Weston and dated December 21, 2016, and in accordance with the Ohio EPA's Technical Guidance Manual for Ground Water Investigations – Chapter 8: Monitoring Well Development, Maintenance, and Redevelopment (Ohio EPA 2009).

Please provide further explanation as to why wells LL1mw-086, LL1mw-089, and LL12mw-244 were not redeveloped prior to sampling for this Spring 2022 event and provide a potential schedule or rationale to follow for future redevelopment.

Army Response: Clarification and agree. While Section 8.2.1 of the FWGWMP Annual Report present recommendations for future monitoring well redevelopment, these are only provided as proposed recommendations. LL1mw-086 was redeveloped in April 2020, and LL12mw-244 was recently redeveloped on April 21, 2021. The Army elected not to redevelop the wells in 2022. These wells will continue to be analyzed for COCs identified in the RI Report (explosives, nitrate, and ammonia), and

Subject: Former Ravenna Army Ammunition Plant (RVAAP) Restoration Program, Portage/Trumbull Counties, RVAAP-66 Facility-wide Groundwater Semi-Annual Report for Spring 2022 Sampling Event (Work Activity No. 267-000-859-036)

the results are not influenced by elevated turbidity. The high turbidity associated with these wells do not appear to create issues with the dataset and risk management decisions.

Ohio EPA Response (dated 3/6/23): Previous Ohio EPA comment was that wells to be considered for redevelopment prior to sampling included LL1mw-086, LL1mw-089, and LL12mw-244, but that these proposed wells were not redeveloped prior to sampling for this Spring 2022 event. Well LL12mw-244 was found to have a turbidity reading of 7,537.2 NTUs during 2021 sampling. Ohio EPA requested further information on not redeveloping these wells prior to the 2022 sampling events, or possibly present a schedule for future redevelopment. Army responded that the redevelopment of these wells in their 2021 Annual Report was a proposed recommendation and was decided to not redevelop as they state that the elevated turbidity does not influence the explosives, nitrate or ammonia readings from these wells. The Army also states that the high turbidity associated with these wells does not appear to create issues with the dataset or risk management decisions.

Ohio EPA states that while high turbidity levels might not interfere with the chemicals of concern (COCs) directly, it can present a Data Quality Objectives (DQO) issue if the wells are becoming silted and starts filling the well screen (resulting in not getting a representative sample across the screened zone). Chapter 8 of the Ohio EPA Technical Guidance Manual (TGM) states "At minimum, wells should be redeveloped when 20% of the well screen is occluded by sediments". Monitoring well sampling events should include total depth measurements to help determine if sediment is obscuring the well screen interval. DERR does not necessarily concur with the Army statements, but will review the data from these wells in the future to evaluate if turbidity is affecting the quality of the analytical data from the wells.

Army Response (Revised): Agree. During the upcoming 2023 Spring FWGWMP sampling event, the permanent pumps will be removed from monitoring wells LL1mw-086, LL1mw-089, and LL12mw-244 and total depth of the wells will be measured. If it is concluded that a well screen is in excess of 20% occluded by sediments, that monitoring well will be redeveloped prior to sampling.

March 14, 2023

Ohio Environmental Protection Agency DERR-NEDO Attn: Mr. Kevin Palombo 2110 East Aurora Road Twinsburg, OH 44087-1924

Subject: Ravenna Army Ammunition Plant (RVAAP) Restoration Program, Portage/Trumbull Counties, Ohio, RVAAP-66 Facility-Wide Groundwater, Responses to Comments on the Draft RVAAP-66 Facility-wide Groundwater Addendum for 2023 (Work Activity No. 267-000-859-036)

Dear Mr. Palombo:

The Army appreciates your comments on the Draft Facility-wide Groundwater Monitoring Program Plan, RVAAP-66 Facility-wide Groundwater, Addendum for 2023. Enclosed for your review are responses to your comments. Upon final resolution of the comments, the Army will provide a Final version of the addendum for Ohio EPA concurrence.

These comment responses were prepared for the Army National Guard in support of the RVAAP Restoration Program. Please contact the undersigned at 614-336-6000, ext 2053 or kevin.m.sedlak.ctr@army.mil if there are issues or concerns with this submission.

Sincerely,

TAIT.KATHRYN.SE RENA.1289508275 Date: 2023.03.14 10:04:56 -04'00' FOR Kevin M. Sedlak RVAAP Restoration Program Manager Army National Guard Directorate

ec: Natalie Oryshkewych, Ohio EPA, NEDO, DERR Liam McEvoy, Ohio EPA, NEDO, DERR Thomas Schneider, Ohio EPA, SWDO, DERR Carrie Rasik, Ohio EPA, CO, DERR Megan Oravec, Ohio EPA, NEDO, DERR Katie Tait, OHARNG Steve Kvaal, USACE Louisville Jay Trumble, USACE Louisville Jed Thomas, Leidos Ryan Laurich, Leidos Jennifer Tierney, Chenega Reliable Services Subject: Ravenna Army Ammunition Plant (RVAAP) Restoration Program, Portage/Trumbull Counties, RVAAP-66 Facility-Wide Groundwater, Responses to Comments on the Draft RVAAP-66 Facility-wide Groundwater Addendum for 2023 (Work Activity No. 267-000-859-036)

COMMENTS

<u>Ohio EPA Comment 1</u> Revisions to the 2023 Sampling Scheme:

The Draft Facility-wide Groundwater Monitoring Program (FWGWMP) Addendum for 2023 proposed a total of 47 wells for sampling during 2023, down from 48 wells sampled in 2022) one well, LL10mw-003, was proposed to be deleted from 2023 sampling since the carbon tetrachloride results for this well had been below the maximum contaminant level (MCL) of 5.0 ug/L for the last eight sampling events, and carbon tetrachloride had not been identified as a Chemical of Concern (COC) for Load Line 10 (2022 RI Report, Leidos).

Ohio EPA agrees that the last eight sampling events for LL10mw-003 indicated carbon tetrachloride levels below the MCL of 5.0 ug/L (results ranging from 0.63 ug/L to 4.0 ug/L). Analysis of these nine results (eight sampling events plus one duplicate sample) using Sanitas statistical software indicated that Sen's Slope/Mann-Kendal trend test of these results show a visual upward sloping trend (slope = 0.68 units per year) but no significant trend in the data. However, a linear regression analysis indicated a similar visual upward sloping trend line (slope = 0.66 units per year) which was found to be a significantly increasing trend.

While Ohio EPA concurs that carbon tetrachloride levels are below the MCL, some statistical analyses indicate that levels may be slightly increasing over time. Ohio EPA would suggest that some sampling continues to be conducted at LL10mw-003 for carbon tetrachloride (and other volatile organic compounds (VOCs) to demonstrate daughter products indicating degradation), perhaps at a reduced frequency than the other FWGWMP wells.

Army Response: Agree. Although the carbon tetrachloride concentrations have been below the MCL for 4 years (8 sampling events) and was not identified as a COC in the Facility-wide Groundwater RI Report, the Army agrees to analyze for carbon tetrachloride in LL10mw-003 in spring and fall 2023. The Army will not be analyzing daughter products and assessing degradation of carbon tetrachloride at this time. If results indicate that carbon tetrachloride is above the MCL in the future, a sampling and analysis of daughter products may be considered.

<u>Ohio EPA Comment 2</u> Revisions to the 2023 Sampling Scheme:

Leidos recommends sampling for carbon tetrachloride be discontinued at ground water monitoring well LL10mw-003 at Load Line 10 because eight consecutive sampling events since 2019 have been below the MCL of 5 μ g/l and the remedial investigation (RI) report (Leidos 2022) did not identify carbon tetrachloride as a chemical of concern at Load Line 10. Ohio EPA risk recommends sampling for carbon tetrachloride be continued; while the detections are below the MCL, the detections are on an upward trend and the current sampling in winter and fall is not the season in which the highest concentration was detected, which was summer.

Army Response: Please refer to response to Ohio EPA Comment 1.

March 6, 2023

TRANSMITTED ELECTRONICALLY

Mr. Kevin Sedlak Restoration Program Manager ARNG-ILE Clean Up Camp James A Garfield JTC 1438 State Route 534 SW Newton Falls, OH 44444 RE: US Army Ammunition Plt RVAAP Remediation Response Project Records Remedial Response Portage County ID#267000859036

Sent via email to: Kevin.m.sedlak.ctr@army.mil

Subject: Response to Ohio EPA Comments on the Draft RVAAP-66 Facility-wide Groundwater Semi-Annual Report for Spring 2022 Sampling Event dated February 7, 2023

Dear Mr. Sedlak:

The Ohio Environmental Protection Agency (Ohio EPA) has received and reviewed the Response to Ohio EPA Comments on the Draft RVAAP-66 Facility-wide Groundwater Semi-Annual Report for Spring 2022 Sampling Event at the Former Ravenna Army Ammunition Plant, Portage and Trumbull Counties, Ohio (Camp James A. Garfield). This document was received at Ohio EPA's Northeast District Office (NEDO), Division of Environmental Response and Revitalization (DERR) via email on February 7, 2023. The response was prepared for the United States Army Corps of Engineers (USACE) on behalf of the National Guard Bureau by Leidos under Contract Number W912QR-21-D-0016.

Based on our review of the Army National Guard's Response to Ohio EPA comments provided in in your letter dated February 7, 2023, we find the responses generally acceptable, however, we had an additional comment regarding the response to our comment number 4.

Comment 4 – Previous Ohio EPA comment was that wells to be considered for redevelopment prior to sampling included LL1mw-086, LL1mw-089, and LL12mw-244, but that these proposed wells were not redeveloped prior to sampling for this Spring 2022 event. Well LL12mw-244 was found to have a turbidity reading of 7,537.2 NTUs during 2021 sampling. Ohio EPA requested further information on not redeveloping these wells prior to the 2022 sampling events, or possibly present a schedule for future redevelopment. Army responded that the redevelopment of these wells in their 2021 Annual Report was a proposed recommendation and was decided to not redevelop as they state that the elevated turbidity does not influence the explosives, nitrate or ammonia readings from these wells. The Army

Received 07MAR23

US Army Ammunition Plt RVAAP March 6, 2023 Page 2 of 2

also states that the high turbidity associated with these wells does not appear to create issues with the dataset or risk management decisions.

Ohio EPA states that while high turbidity levels might not interfere with the chemicals of concern (COCs) directly, it can present a Data Quality Objectives (DQO) issue if the wells are becoming silted and starts filling the well screen (resulting in not getting a representative sample across the screened zone). Chapter 8 of the Ohio EPA Technical Guidance Manual (TGM) states "At minimum, wells should be redeveloped when 20% of the well screen is occluded by sediments". Monitoring well sampling events should include total depth measurements to help determine if sediment is obscuring the well screen interval. DERR does not necessarily concur with the Army statements, but will review the data from these wells in the future to evaluate if turbidity is affecting the quality of the analytical data from the wells.

Once this response is clarified, the document can be finalized. Please be sure that all agreedupon changes, additions and clarifications are provided in the final document.

If you have questions, please contact me at (330) 963-1292 or by email at kevin.palombo@epa.ohio.gov.

Sincerely,

Kn Ml b

Kevin M. Palombo Environmental Specialist Division of Environmental Response and Revitalization

KP/cm

ec: Al Brillinger, Chenega Reliable Services Katie Tait, OHARNG RTLS Steven Kvaal, USACE Louisville Nat Peters, USACE Louisville Megan Oravec, Ohio EPA, NEDO, DERR Natalie Oryshkewych, Ohio EPA, NEDO, DERR Liam McEvoy, Ohio EPA, NEDO, DERR Thomas Schneider, Ohio EPA, SWDO, DERR Carrie Rasik, Ohio EPA, CO, DERR

March 6, 2023

TRANSMITTED ELECTRONICALLY

Mr. Kevin Sedlak Restoration Program Manager ARNG-ILE Clean Up Camp James A Garfield JTC 1438 State Route 534 SW Newton Falls, OH 44444

Sent via email to: Kevin.m.sedlak.ctr@army.mil RE: US Army Ammunition Plt RVAAP Remediation Response Approval Remedial Investigation Remedial Response Portage County ID# 267000859036

Subject: Ohio EPA Comments on the Draft Facility-wide Groundwater Monitoring Program Plan RVAAP-66 Facility-wide Groundwater Addendum for 2023, dated January 23, 2023

Dear Mr. Sedlak:

The Ohio Environmental Protection Agency (Ohio EPA) has received and reviewed the Draft Facility-wide Groundwater Monitoring Program Plan RVAAP-66 Facility-wide Groundwater Addendum for 2023 for the Former Ravenna Army Ammunition Plant, Portage and Trumbull Counties, Ohio (Camp James A. Garfield). This document was received via email at Ohio EPA's Northeast District Office (NEDO), Division of Environmental Response and Revitalization (DERR) on January 23, 2023. The report was prepared for the United States Army Corps of Engineers on behalf of the National Guard Bureau by Leidos under Contract Number W912QR-21-D-0016. Comments on the document based on Ohio EPA review are provided below. Please provide responses to the enclosed comments in accordance with the Directors Findings and Orders.

GROUNDWATER COMMENTS

1. Revisions to the 2023 Sampling Scheme:

The Draft Facility-wide Groundwater Monitoring Program (FWGWMP) Addendum for 2023 proposed a total of 47 wells for sampling during 2023, down from 48 wells sampled in 2022) one well, LL10mw-003, was proposed to be deleted from 2023 sampling since the carbon tetrachloride results for this well had been below the maximum contaminant level (MCL) of 5.0 ug/L for the last eight sampling events, and carbon tetrachloride had not been identified as a Chemical of Concern (COC) for Load Line 10 (2022 RI Report, Leidos).

Received 07 MAR 23

Ohio EPA agrees that the last eight sampling events for LL10mw-003 indicated carbon tetrachloride levels below the MCL of 5.0 ug/L (results ranging from 0.63 ug/L to 4.0 ug/L). Analysis of these nine results (eight sampling events plus one duplicate sample) using Sanitas statistical software indicated that Sen's Slope/Mann-Kendal trend test of these results show a visual upward sloping trend (slope = 0.68 units per year) but no significant trend in the data. However, a linear regression analysis indicated a similar visual upward sloping trend line (slope = 0.66 units per year) which was found to be a significantly increasing trend.

While Ohio EPA concurs that carbon tetrachloride levels are below the MCL, some statistical analyses indicate that levels may be slightly increasing over time. Ohio EPA would suggest that some sampling continues to be conducted at LL10mw-003 for carbon tetrachloride (and other volatile organic compounds (VOCs) to demonstrate daughter products indicating degradation), perhaps at a reduced frequency than the other FWGWMP wells.

RISK COMMENTS

2. Section 3.1: Revisions to the 2023 Sampling Scheme

Leidos recommends sampling for carbon tetrachloride be discontinued at ground water monitoring well LL10mw-003 at Load Line 10 because eight consecutive sampling events since 2019 have been below the MCL of 5 μ g/l and the remedial investigation (RI) report (Leidos 2022) did not identify carbon tetrachloride as a chemical of concern at Load Line 10. Ohio EPA risk recommends sampling for carbon tetrachloride be continued; while the detections are below the MCL, the detections are on an upward trend and the current sampling in winter and fall is not the season in which the highest concentration was detected, which was summer.

2022	2021	2020	2019	2018
Fall: 2.9 µg/l	Winter: 2021: 3.5 µg/l	Fall: 2.6 µg/l	Fall: below MCL	June: 7.5J µg/l
Spring: 4 µg/l	Spring: 2.4 µg/l	Spring: 1.3J µg/l	Spring: below MCL	October: 6.7J µg/l

This Draft Facility-wide Groundwater Monitoring Program Plan RVAAP-66 Facility-wide Groundwater Addendum for 2023 was reviewed by personnel from Ohio EPA. Additional information is necessary to approve the document.

US Army Ammunition Plt RVAAP February 28, 2023 Page 3 of 3

If you have questions or would like to set up a meeting to discuss these comments, please contact me at kevin.palombo@epa.ohio.gov or at (330) 963-1292.

Sincerely,

Kn Ml b

Kevin M. Palombo Environmental Specialist Division of Environmental Response and Revitalization

KP/cm

ec: Steven Kvaal, USACE, Louisville Nat Peters, USACE, Louisville Al Brillinger, Chenega Reliable Services, LLC Katie Tait, OHARNG RTLS Megan Oravec, Ohio EPA, NEDO, DERR Natalie Oryshkewych, Manager, Ohio EPA, NEDO, DERR Liam McEvoy, Ohio EPA, NEDO, DERR Thomas Schneider, Ohio EPA, SWDO, DERR Carrie Rasik, Ohio EPA, CO, DERR

February 21, 2023

Ohio Environmental Protection Agency DERR-NEDO Attn: Mr. Kevin Palombo, Project Coordinator 2110 East Aurora Road Twinsburg, OH 44087-1924

Subject: Notification of Field Work, Ravenna Army Ammunition Plant (RVAAP) Restoration Program, Portage/Trumbull Counties, RVAAP-66 Facility-wide Groundwater (Work Activity No. 267-000-859-036)

Dear Mr. Palombo:

In accordance with the Director's Final Findings and Orders, Section XIII, #28, for the RVAAP Restoration Program, the Army National Guard (ARNG) is providing notification of field activities at the former RVAAP (Camp James A. Garfield) 15 days prior to the scheduled start date. These field activities and tentative schedule are below:

• 03/08/23-03/31/23: Vegetation clearing, monitoring well installation, and groundwater sampling.

It is anticipated that field mobilization and minor site preparation activities will take place in advance of 3/8/23. In the event that the schedule above needs to change, the Army will provide an e-mail notification with revised dates. Please contact the undersigned at 614-336-6000, ext 2053 or kevin.m.sedlak.ctr@army.mil if there are issues or concerns with this submission.

Sincerely,

TAIT.KATHRYN.SERENA.Digitally signed by
TAIT.KATHRYN.SERENA.12895082751289508275Date: 2023.02.21 14:37:08 -05'00'

FOR Kevin M. Sedlak RVAAP Restoration Program Manager Army National Guard Directorate

cc: Natalie Oryshkewych, Ohio EPA, DERR-NEDO Liam McEvoy, Ohio EPA, DERR-NEDO Katie Tait, OHARNG Steve Kvaal, USACE Louisville Jay Trumble, USACE Louisville Jed Thomas, Leidos Ryan Laurich, Leidos

February 13, 2023

Ohio Environmental Protection Agency DERR-NEDO Attn: Mr. Kevin Palombo, Site Coordinator 2110 East Aurora Road Twinsburg, OH 44087-1924

Subject: Ravenna Army Ammunition Plant (RVAAP) Restoration Program, Portage/Trumbull Counties, Draft Facility-wide Groundwater 2022 Annual Report (Work Activity No. 267000859036)

Dear Mr. Palombo:

An electronic version of the *Draft Facility-wide Groundwater Monitoring Program Plan RVAAP-*66 Facility-wide Groundwater Annual Report for 2022 will be sent using the Ohio EPA LiquidFile system. Due to the file size, the text (including figures and tables) will be included as a separate file from the appendices. A hard copy and CD can be sent upon request by Ohio EPA.

This report was prepared for the Army National Guard in support of the RVAAP Restoration Program. Please contact the undersigned at 614-336-6000, ext 2053 or <u>kevin.m.sedlak.ctr@army.mil</u> if there are issues or concerns with this submission.

Sincerely,

TAIT.KATHRYN.SE Pigitally signed by TAIT.KATHRYN.SERENA.1289508 RENA.1289508275 275 Date: 2023.02.13 08:23:07 -05'00'

FOR Kevin M. Sedlak RVAAP Restoration Program Manager Army National Guard Directorate

cc: Natalie Oryshkewych, Ohio EPA, NEDO Megan Oravec, Ohio EPA, NEDO Liam McEvoy, Ohio EPA, NEDO Tom Schneider, Ohio EPA, SWDO Katie Tait, OHARNG Steve Kvaal, USACE Louisville Jay Trumble, USACE Louisville Jed Thomas, Leidos Ryan Laurich, Leidos Jennifer Tierney, Chenega

February 7, 2023

Ohio Environmental Protection Agency DERR-NEDO Attn: Mr. Kevin Palombo 2110 East Aurora Road Twinsburg, OH 44087-1924

Subject: Ravenna Army Ammunition Plant (RVAAP) Restoration Program, Portage/Trumbull Counties, RVAAP-66 Facility-Wide Groundwater, Responses to Comments on the Draft RVAAP-66 Facilitywide Groundwater Semi-Annual Report for Spring 2022 Sampling Event (Work Activity No. 267-000-859-036)

Dear Mr. Palombo:

The Army appreciates your comments on the Draft Facility-wide Groundwater Monitoring Program RVAAP-66 Facility-wide Groundwater Semi-Annual Report for Spring 2022 Sampling Event. Enclosed for your review are responses to your comments. Upon final resolution of the comments, the Army will provide a Final version of the report for Ohio EPA concurrence.

These comment responses were prepared for the Army National Guard in support of the RVAAP Restoration Program. Please contact the undersigned at 614-336-6000, ext 2053 or <u>kevin.m.sedlak.ctr@army.mil</u> if there are issues or concerns with this submission.

Sincerely,

TAIT.KATHRYN.SER Digitally signed by TAIT.KATHRYN.SERENA.1289508275 Date: 2023.02.07 08:28:31 -05'00'

FOR Kevin M. Sedlak RVAAP Restoration Program Manager Army National Guard Directorate

ec: Natalie Oryshkewych, Ohio EPA, NEDO, DERR Liam McEvoy, Ohio EPA, NEDO, DERR Thomas Schneider, Ohio EPA, SWDO, DERR Carrie Rasik, Ohio EPA, CO, DERR Megan Oravec, Ohio EPA, NEDO, DERR Katie Tait, OHARNG, Camp James A. Garfield Steve Kvaal, USACE Louisville Jay Trumble, USACE Louisville Jed Thomas, Leidos Ryan Laurich, Leidos Jennifer Tierney, Chenega Reliable Services
Subject: Former Ravenna Army Ammunition Plant (RVAAP) Restoration Program, Portage/Trumbull Counties, RVAAP-66 Facility-wide Groundwater Semi-Annual Report for Spring 2022 Sampling Event (Work Activity No. 267-000-859-036)

COMMENTS

Ohio EPA Comment 1: Appendix B Completeness: A review of Appendix B (Field Forms) included daily log sheets, well purge forms, chain-of-custody sheets, and calibration reports for field equipment.

Appendix B.3 Chains of Custody section still has the first three pages denoted as place holders for "RVAAP-191-TA_06142022", "RVAPP-192-TA_06142022", and "RVAAP193-TA_06152022". Appropriate Chains of Custody documents should be inserted into the final version of the report.

Army Response: Agree. Appendix B has been revised to include Chains of Custody for RVAAP-191-TA_06142022, RVAPP-192-TA_06142022, and RVAAP193-TA_06152022.

<u>Ohio EPA Comment 2</u>: Section 3.2 Field Change Requests: Section 3.2 (Page 3-1, line 153) documents four previously approved field change requests (FCR) submitted and applicable to the Spring 2022 sampling event, (LEIDOS_FWGW_001, LEIDOS_FWGW_004, and LEIDOS_FWGW_006 from 2018 and LEIDOS_FWGW_010 from 2019).

These four FCRs are included within Appendix A, along with LEIDOS_FWGW_009, (October 2019 FWGWMP-Additional Sampling Suite) which was submitted September 26, 2019, and LEIDOS_FWGW_0011 (December 2021 FWGWMP-Additional Sampling Suite) was submitted December 15, 2021.

Since LEIDOS_FWGW_009 and LEIDOS_FWGW_0011 are included in Appendix A, they should also be included in the Section 3.2 list.

Army Response: Clarification and agree. As noted in the comment, FCRs LEIDOS_FWGW_009 and LEIDOS_FWGW_0011 are not applicable to the Spring 2022 sampling event. Accordingly, these FCRs have been removed from Appendix A and a description of these FCRs will not be added to Section 3.2.

<u>Ohio EPA Comment 3</u>: Table 4-1 Data Summary Completeness: Table 4-1 of the Draft FWGWMP Semi-Annual Report for Spring 2022 indicated that all 48 wells were analyzed for the proper analytical parameters in accordance with the Final FWGWMP Addendum for 2022 (well-specific combinations of volatile organic compounds (VOCs), semi-volatile organic compound (SVOCs), polycyclic aromatic hydrocarbons (PAHs), phenols, polychlorinated biphenyls (PCBs), perchlorate, explosives, expanded explosives, phthalates, pesticides, cyanide, phosphorus, anions, pH, alkalinity, nitrate, ammonia, carbon tetrachloride and metals).

Table 4-1 generally presented summaries of all the available well-specific data results but presented confusing information when compared to Appendix D.1 and Appendix D.3 tables. Table 4.1 sometimes presents any detected data concentrations and sometimes it only presents concentrations that exceed screening or background criteria. Additionally, reporting units ug/L and mg/L are alternately used on the D.1 and D.3 tables, and to a lesser degree within Table 4.1. The Appendix D.3 Table has been modified from the 2021 version to add a "Results Exceeds Screening and Background Criteria (Y/N)" column, which shows a "N" if the concentration did not exceed both values, but Table 4.1 sometimes presents summaries if either value is exceeded, or if there are no screening criteria. To clarify and avoid the need to consult multiple tables to get the whole picture of the available lab data, it may be beneficial to reconfigure tables throughout the report to have a consistent viewpoint and consistent reporting units. It had previously been suggested (during the Spring 2021 report review) that Appendix D.3 table denote all

Subject: Former Ravenna Army Ammunition Plant (RVAAP) Restoration Program, Portage/Trumbull Counties, RVAAP-66 Facility-wide Groundwater Semi-Annual Report for Spring 2022 Sampling Event (Work Activity No. 267-000-859-036)

laboratory detections, and then presents just the exceedances in BOLD font, that way both detections and exceedances are clearly denoted and comparing two or three tables is not necessary.

Army Response: Agree. The following revisions have been made to the report:

- 1) The data table presented as Appendix D.3 has been revised so that results exceeding the applicable screening criteria are highlighted in bold text.
- 2) The data table presented as Appendix D.2 has been revised so that units of concentration are presented consistently across Tables 4.1, D.1, D.2, and D.3. Units of concentration for Explosives, SVOCs, PCBs, Pesticides, VOCs are presented in µg/L, this is consistent with the presentation of historical data results. Units of concentration for Metals and Miscellaneous analytes are presented in mg/L. This is consistent with the presentation of historical data results.

<u>Ohio EPA Comment 4</u>: Well Redevelopment – Elevated Turbidity Results: Section 6.0 Well redevelopment of the Draft FWGWMP Semi-Annual Report for Spring 2022 indicated that no permanent monitoring wells were redeveloped for the 2022 spring sampling event. This section also stated that a list of recommended wells to be redeveloped was presented within the 2021 Annual Report (Leidos 2022c). Upon review of the 2021 Annual Report, Section 8.2.1 Well Redevelopment, wells to be considered for redevelopment prior to sampling included LL1mw-086, LL1mw-089, and LL12mw-244. It is not further explained as to why these proposed wells were not redeveloped prior to sampling for this Spring 2022 event.

It should be noted that well LL12mw-244 was found to have a reading of 7,537.2 NTUs during 2021 sampling, and Ohio EPA comment at that time was that further discussion may be warranted to evaluate if additional potential well redevelopment activities using methods other than surging and pumping until dry (such as purging with a Waterra pump or equivalent) could help lower the elevated turbidity numbers in well LL12mw244."

Future well redevelopment activities should be conducted in accordance with Section 3.5.2 of the approved Revised Final Remedial Investigation Work Plan (RIWP) produced by TEC-Weston and dated December 21, 2016, and in accordance with the Ohio EPA's Technical Guidance Manual for Ground Water Investigations – Chapter 8: Monitoring Well Development, Maintenance, and Redevelopment (Ohio EPA 2009).

Please provide further explanation as to why wells LL1mw-086, LL1mw-089, and LL12mw-244 were not redeveloped prior to sampling for this Spring 2022 event and provide a potential schedule or rationale to follow for future redevelopment.

Army Response: Clarification and agree. While Section 8.2.1 of the FWGWMP Annual Report present recommendations for future monitoring well redevelopment, these are only provided as proposed recommendations. LL1mw-086 was redeveloped in April 2020, and LL12mw-244 was recently redeveloped on April 21, 2021. The Army elected not to redevelop the wells in 2022. These wells will continue to be analyzed for COCs identified in the RI Report (explosives, nitrate, and ammonia), and the results are not influenced by elevated turbidity. The high turbidity associated with these wells do not appear to create issues with the dataset and risk management decisions.

Mike DeWine, Governor Jon Husted, Lt. Governor Anne M. Vogel, Director

January 25, 2023

TRANSMITTED ELECTRONICALLY

Mr. Kevin Sedlak Restoration Program Manager ARNG-ILE Clean Up Camp James A Garfield JTC 1438 State Route 534 SW Newton Falls, OH 44444 RE: US Army Ammunition Plt RVAAP Remediation Response Project Records Remedial Response Portage County ID#267000859036

Sent via email to: kevin.m.sedlak.ctr@army.mil

Subject: Ohio EPA Comments on the "Draft Facility-wide Groundwater Monitoring Program Plan RVAAP-66 Facility-wide Groundwater Semi-Annual Report for Spring 2022 Sampling Event" dated November 17, 2022.

Dear Mr. Sedlak:

The Ohio Environmental Protection Agency (Ohio EPA) has received and reviewed the "Draft Facility-wide Groundwater Monitoring Program Plan RVAAP-66 Facility-wide Groundwater Semi-Annual Report for Spring 2022 Sampling Event" at the Former Ravenna Army Ammunition Plant, Portage and Trumbull Counties, Ohio (Camp Garfield). This document was received at Ohio EPA's Northeast District Office (NEDO), Division of Environmental Response and Revitalization (DERR) on November 21, 2022. The report was prepared for the United States Army Corps of Engineers on behalf of the National Guard Bureau by Leidos under Contract Number W912QR-16-D-0003, Comments on the document based on Ohio EPA review are provided below. Please provide responses to the enclosed comments in accordance with the Directors Findings and Orders.

DRAFT FWGWMP SEMI-ANNUAL REPORT FOR SPRING 2022

The Draft Facility- Wide Groundwater Monitoring Program (FWGWMP) Semi-Annual Report for Spring 2022 summarizes ground water monitoring activities conducted during the Spring 2022 sampling event, and provides descriptions of field activities performed, presents field and analytical results, and evaluates chemical data collected per the approved ground water sampling scheme specified in the Final FWGWMP Addendum for 2022 dated April 28, 2022.

According to the Final FWGWMP Addendum for 2022, a total of 48 wells (including two of the five formerly identified RCRA wells; RVAAP-04 Open Demolition Area #2 wells DETmw-003 and DETmw-004) were slated for resampling in 2022. The remaining three formerly identified RCRA wells, RVAAP-01 Ramsdell Quarry Landfill wells RQLmw-007, RQLmw-008, RQLmw-

US Army Ammunition Plt RVAAP January 25, 2023 Page 2 of 4

009 were not sampled during the 2022 FWGWMP event and are currently being proposed for No Further Action under the Draft Remedial Investigation (RI) report (Leidos 2020b). Ohio EPA requested in our June 28, 2022, correspondence that the remaining three formerly identified RCRA wells around Ramsdell Quarry not be abandoned prior to final remedy selection.

In 2021, a total of 53 wells (including the two former identified RCRA wells (DETmw-003 and DETmw-004) were sampled under the FWGWMP. Based on those results, seven of these wells were discontinued from sampling, while a new set of two wells (not sampled in 2021) were added to the list to achieve the total of 48 wells to be sampled for 2022.

According to Section 3.1, Table 3-1, and Table 4-1 of the Draft FWGWMP Semi-Annual Report for Spring 2022, all 48 wells specified in the Draft FWGWMP Addendum for 2022 were sampled.

COMMENTS

1. Appendix B Completeness:

A review of Appendix B (Field Forms) included daily log sheets, well purge forms, chain-of-custody sheets, and calibration reports for field equipment.

Appendix B.3 Chains of Custody section still has the first three pages denoted as place holders for "RVAAP-191-TA_06142022", "RVAPP-192-TA_06142022", and "RVAAP-193-TA_06152022". Appropriate Chains of Custody documents should be inserted into the final version of the report.

2. Section 3.2 Field Change Requests:

Section 3.2 (Page 3-1, line 153) documents four previously approved field change requests (FCR) submitted and applicable to the Spring 2022 sampling event, (LEIDOS_FWGW_001, LEIDOS_FWGW_004, and LEIDOS_FWGW_006 from 2018 and LEIDOS_FWGW_010 from 2019).

These four FCRs are included within Appendix A, along with LEIDOS_FWGW_009, (October 2019 FWGWMP-Additional Sampling Suite) which was submitted September 26, 2019, and LEIDOS_FWGW_0011 (December 2021 FWGWMP-Additional Sampling Suite) was submitted December 15, 2021.

Since LEIDOS_FWGW_009 and LEIDOS_FWGW_0011 are included in Appendix A, they should also be included in the Section 3.2 list.

3. Table 4-1 Data Summary Completeness:

Table 4-1 of the Draft FWGWMP Semi-Annual Report for Spring 2022 indicated that all 48 wells were analyzed for the proper analytical parameters in accordance with the Final FWGWMP Addendum for 2022 (well-specific combinations of volatile organic compounds (VOCs), semi-volatile organic compound (SVOCs), polycyclic aromatic hydrocarbons (PAHs), phenols, polychlorinated biphenyls (PCBs), perchlorate, explosives, expanded explosives, phthalates, pesticides, cyanide, phosphorus, anions, pH, alkalinity, nitrate, ammonia, carbon tetrachloride and metals).

Table 4-1 generally presented summaries of all the available well-specific data results but presented confusing information when compared to Appendix D.1 and Appendix D.3 tables. Table 4.1 sometimes presents any detected data concentrations and sometimes it only presents concentrations that exceed screening or background criteria. Additionally, reporting units ug/L and mg/L are alternately used on the D.1 and D.3 tables, and to a lesser degree within Table 4.1. The Appendix D.3 Table has been modified from the 2021 version to add a "Results Exceeds Screening and Background Criteria (Y/N)" column, which shows a "N" if the concentration did not exceed both values, but Table 4.1 sometimes presents summaries if either value is exceeded, or if there are no screening criteria. To clarify and avoid the need to consult multiple tables to get the whole picture of the available lab data, it may be beneficial to reconfigure tables throughout the report to have a consistent viewpoint and consistent reporting units. It had previously been suggested (during the Spring 2021 report review) that Appendix D.3 table denote all laboratory detections, and then presents just the exceedances in BOLD font, that way both detections and exceedances are clearly denoted and comparing two or three tables is not necessary.

4. Well Redevelopment – Elevated Turbidity Results:

Section 6.0 Well Redevelopment of the Draft FWGWMP Semi-Annual Report for Spring 2022 indicated that no permanent monitoring wells were redeveloped for the 2022 spring sampling event. This section also stated that a list of recommended wells to be redeveloped was presented within the 2021 Annual Report (Leidos 2022c). Upon review of the 2021 Annual Report, Section 8.2.1 Well Redevelopment, wells to be considered for redevelopment prior to sampling included LL1mw-086, LL1mw-089, and LL12mw-244. It is not further explained as to why these proposed wells were not redeveloped prior to sampling for this Spring 2022 event.

It should be noted that well LL12mw-244 was found to have a reading of 7,537.2 NTUs during 2021 sampling, and Ohio EPA comment at that time was that further discussion may be warranted to evaluate if additional potential well redevelopment activities using methods other than surging and pumping until dry (such as purging with a Waterra pump or equivalent) could help lower the elevated turbidity numbers in well LL12mw-244."

Future well redevelopment activities should be conducted in accordance with Section 3.5.2 of the approved Revised Final Remedial Investigation Work Plan (RIWP)

US Army Ammunition Plt RVAAP January 25, 2023 Page 4 of 4

produced by TEC-Weston and dated December 21, 2016, and in accordance with the Ohio EPA's Technical Guidance Manual for Ground Water Investigations – Chapter 8: Monitoring Well Development, Maintenance, and Redevelopment (Ohio EPA 2009).

Please provide further explanation as to why wells LL1mw-086, LL1mw-089, and LL12mw-244 were not redeveloped prior to sampling for this Spring 2022 event and provide a potential schedule or rationale to follow for future redevelopment.

This **"Draft Facility-wide Groundwater Monitoring Program Plan RVAAP-66 Facilitywide Groundwater Semi-Annual Report for Spring 2022 Sampling Event**" was reviewed by personnel from Ohio EPA. Additional information is necessary to approve the document. If you have questions or would like to set up a meeting to discuss these comments, you can contact me at <u>kevin.palombo@epa.ohio.gov</u>.

Sincerely,

Kn Ml la

Kevin M. Palombo Environmental Specialist Division of Environmental Response and Revitalization

KP/cm

ec: Rebecca Shreffler, Chenega Reliable Services Katie Tait, OHARNG RTLS Steven Kvaal, USACE Louisville Nat Peters, USACE Louisville Megan Oravec, Ohio EPA, NEDO, DERR Natalie Oryshkewych, Ohio EPA, NEDO, DERR Liam McEvoy, Ohio EPA, NEDO, DERR Thomas Schneider, Ohio EPA, SWDO, DERR Carrie Rasik, Ohio EPA, CO, DERR

January 23, 2023

Ohio Environmental Protection Agency DERR-NEDO Attn: Mr. Kevin Palombo, Site Coordinator 2110 East Aurora Road Twinsburg, OH 44087-1924

Subject: Ravenna Army Ammunition Plant (RVAAP) Restoration Program, Portage/Trumbull Counties, Ohio, Draft Facility-wide Groundwater 2023 Addendum (Work Activity No. 267000859036)

Dear Mr. Palombo:

An electronic version of the *Draft Facility-wide Groundwater Monitoring Program Plan RVAAP-*66 Facility-wide Groundwater Addendum for 2023 has been sent using the Ohio EPA LiquidFile system. A hard copy and CD can be sent upon request by Ohio EPA.

This plan was prepared for the Army National Guard in support of the RVAAP Restoration Program. Please contact the undersigned at 614-336-6000, ext 2053 or <u>kevin.m.sedlak.ctr@army.mil</u> if there are issues or concerns with this submission.

Sincerely,

TAIT.KATHRYN.SE Digitally signed by TAIT.KATHRYN.SERENA.1289508275 RENA.1289508275 Date: 2023.01.23 07:09:47 -05'00'

FOR Kevin M. Sedlak RVAAP Restoration Program Manager Army National Guard Directorate

cc: Natalie Oryshkewych, Ohio EPA, NEDO Megan Oravec, Ohio EPA, NEDO Liam McEvoy, Ohio EPA, NEDO Tom Schneider, Ohio EPA, SWDO Katie Tait, OHARNG Steve Kvaal, USACE Louisville Jay Trumble, USACE Louisville Jed Thomas, Leidos Ryan Laurich, Leidos Jennifer Tierney, Chenega Corporation

Mike DeWine, Governor Jon Husted, Lt. Governor Anne M. Vogel, Director

January 11, 2023

TRANSMITTED ELECTRONICALLY

Mr. Kevin M. Sedlak Army National Guard Installation and Environment Clean-up Branch IPA Designation 1438 State Route 534 SW Newton Falls, OH 44444 RE: US Army Ammunition Plt RVAAP Remediation Response Project Records Remedial Response Portage County 267000859036

Subject: Approval of the "Final Feasibility Study Monitoring Well Installation Plan for RVAAP-66 Facility-wide Groundwater"

Dear Mr. Sedlak:

The Ohio Environmental Protection Agency (Ohio EPA) has received the "Final Feasibility Study Monitoring Well Installation Plan for RVAAP-66 Facility-wide Groundwater" at the Former Ravenna Army Ammunition Plant, Portage and Trumbull Counties, Ohio dated November 17, 2022. This document was received via email at Ohio EPA's Northeast District Office (NEDO), Division of Environmental Response and Revitalization (DERR) on November 23, 2022. The document was prepared for the U.S Army Corps of Engineers on behalf of the Army National Guard Directorate by Leidos.

The final document was reviewed by personnel from Ohio EPA's DERR. Pursuant to the Director's Findings and Orders paragraph 39 (b), Ohio EPA considers the document final and approved.

If you have any questions, please contact me at kevin.palombo@epa.ohio.gov or call me at (330) 963-1292.

Sincerely,

Kn Ml. h

Kevin M. Palombo Environmental Specialist Division of Environmental Response and Revitalization

KP/cm

ec: Rebecca Shreffler, Chenega Katie Tait, OHARNG RTLS, CJAG Steve Kvaal, USACE Louisville Nathaniel Peters, USACE Louisville Natalie Oryshkewych, Ohio EPA, NEDO DERR Megan Oravec, Ohio EPA, NEDO DERR Liam McEvoy, Ohio EPA, NEDO, DERR Thomas Schneider, Ohio EPA, SWDO DERR Carrie Rasik, Ohio EPA, CO DERR

Received 12 JAN 2023

October 19, 2023

Ohio Environmental Protection Agency DERR-NEDO Attn: Mr. Edward D'Amato, Site Coordinator 2110 East Aurora Road Twinsburg, OH 44087-1924

Subject: Ravenna Army Ammunition Plant (RVAAP) Restoration Program, Portage/Trumbull Counties, Draft Uniform Federal Policy-Quality Assurance Project Plan (UFP-QAPP), CC RVAAP-69 Building 1048 Fire Station Vapor Intrusion Study of Building 1037 (Work Activity No. 267000859269)

Dear Mr. D'Amato:

For your review, an electronic version of the *Draft Uniform Federal Policy-Quality Assurance Project Plan for the CC RVAAP-69 Building 1048 Fire Station Vapor Intrusion Study of Building 1037* has been sent using the Ohio EPA LiquidFile system. A hard copy and CD can be sent upon request by Ohio EPA.

This plan was prepared for the Army National Guard in support of the RVAAP Restoration Program. Please contact the undersigned at (330)235-2153 or <u>kevin.m.sedlak.ctr@army.mil</u> if there are issues or concerns with this submission.

Sincerely,

TAIT.KATHRYN.SE Digitally signed by TAIT.KATHRYN.SERENA.1289508275 RENA.1289508275 Date: 2023.10.19 10:56:30 -04'00' FOR Kevin M. Sedlak RVAAP Restoration Program Manager Army National Guard Directorate

cc: Megan Oravec, Ohio EPA, NEDO Tom Schneider, Ohio EPA, SWDO Katie Tait, OHARNG Steve Kvaal, USACE Louisville Nathaniel Peters, II, USACE Louisville Jed Thomas, Leidos Ryan Laurich, Leidos Jennifer Tierney, Chenega

Mike DeWine, Governor Jon Husted, Lt. Governor Anne M. Vogel, Director

February 27, 2023

TRANSMITTED ELECTRONICALLY

Mr. Kevin M. Sedlak Army National Guard Installations & Environment - Cleanup Branch IPA Designation 1438 State Route 534 SW Newton Falls, OH 44444 RE: US Army Ravenna Ammunition Remediation Response Correspondence Remedial Response Portage County 267000859269

Sent via e-mail to: kevin.m.sedlak.ctr@army.mil

Subject: Approval of Final Remedial Investigation for CC RVAAP-69 Building 1048 Fire Station

Dear Mr. Sedlak:

Thank you for submitting the Final Remedial Investigation for CC RVAAP-69 Building 1048 Fire Station. On February 15, 2023, you submitted a copy of the well sealing report that was requested in Ohio EPA's August 5, 2021, comment letter.

Ohio EPA approves the document.

If you have any questions, please feel free to contact me at (330) 963-1170 or by e-mail at: ed.damato@epa.ohio.gov.

Sincerely,

Edward (J D'Amato

Edward J. D'Amato Site Coordinator Division of Environmental Response and Revitalization

Received 28 FEB 23

ED/cm

ec: Nat Peters, USACE Katie Tait, OHARNG RTLS Steven Kvaal, USACE Kvaal Natalie Oryshkewych, Ohio EPA, DERR, NEDO Megan Oravec, Ohio EPA, DERR, NEDO Liam McEvoy, Ohio EPA, DERR, NEDO Tom Schneider, Ohio EPA, DERR, SWDO Brian Tucker, Ohio EPA, DERR, CO

February 14, 2023

Ohio Environmental Protection Agency DERR-NEDO Attn: Mr. Edward D'Amato, Site Coordinator 2110 East Aurora Road Twinsburg, OH 44087-1924

Subject:Ravenna Army Ammunition Plant (RVAAP) Restoration Program, Portage/Trumbull
Counties, Ohio, RVAAP-69 Building 1048 Fire Station, Final Remedial Investigation at
CC RVAAP-69 Building 1048 Fire Station (Work Activity No. 267-000-859-214)

Dear Mr. Palombo:

For your concurrence, an electronic version of the *Final Remedial Investigation for CC RVAAP-*69 Building 1048 Fire Station will be sent using the Ohio EPA LiquidFile system. Due to file size, Appendices B, F, G, and H are provided as different files with the same submittal.

This report was prepared for the Army National Guard in support of the RVAAP Restoration Program. Please contact the undersigned at 614-336-6000, ext 2053 or <u>kevin.m.sedlak.ctr@army.mil</u> if there are issues or concerns with this submission.

Sincerely, MORGAN.TIMOTHY.M Digitally signed by MORGAN.TIMOTHY.MICHAEL.123021635 ICHAEL.1230216351 For Kevin M. Sedlak RVAAP Restoration Program Manager Army National Guard Directorate

cc: Natalie Oryshkewych, Ohio EPA, NEDO Megan Oravec, Ohio EPA, NEDO Tom Schneider, Ohio EPA, SWDO Katie Tait, OHARNG, Camp James A. Garfield Steve Kvaal, USACE Louisville Nathaniel Peters, II, USACE Louisville Jed Thomas, Leidos Al Brillinger, Chenega Tri-Services Jennifer Tierney, Vista Sciences Corporation

Mike DeWine, Governor Jon Husted, Lt. Governor Anne M. Vogel, Director

January 19, 2023

TRANSMITTED ELECTRONICALLY

Mr. Kevin M. Sedlak Army National Guard Installations & Environment - Cleanup Branch IPA Designation 1438 State Route 534 SW Newton Falls, OH 44444 RE: US Army Ravenna Ammunition Remediation Response Correspondence Remedial Response Portage County 267000859214

Sent via e-mail to: Kevin.m.sedlak.ctr@army.mil

Subject: Remedial Investigation for CC RVAAP-69 Building 1048 Fire Station

Dear Mr. Sedlak:

Thank you for your January 6, 2023, response to the Ohio Environmental Protection Agency's (Ohio EPA) August 5, 2021, comment letter.

Ohio EPA concurs with the response provided we receive a copy of the well sealing report for the former groundwater supply well as requested in the comment letter.

If you have any questions, please feel free to contact me at (330) 963-1170 or by e-mail at ed.damato@epa.ohio.gov.

Sincerely,

Edward J D'Amato

Edward J. D'Amato Site Coordinator Division of Environmental Response and Revitalization

ED/cm

ec: Nat Peters, USACE Katie Tait, OHARNG RTLS Steven Kvaal, USACE Kvaal Rebecca Shreffler, Chenega Natalie Oryshkewych, Ohio EPA, NEDO, DERR Megan Oravec, Ohio EPA, NEDO DERR Thomas Schneider, Ohio EPA, SWDO, DERR Brian Tucker, Ohio EPA, CO, DERR

Received 19 JAN 2023

January 6, 2023

Ohio Environmental Protection Agency DERR-NEDO Attn: Mr. Edward D'Amato 2110 East Aurora Road Twinsburg, OH 44087-1924

Subject: Ravenna Army Ammunition Plant (RVAAP) Restoration Program, Portage/Trumbull Counties, Ohio, Responses to Comments on the Draft Remedial Investigation at CC RVAAP-69 Building 1048 Fire Station (Work Activity No. 267-000-859-214)

Dear Mr. D'Amato:

The Army appreciates your time and comments on the Draft Remedial Investigation at CC RVAAP-69 Building 1048 Fire Station. Enclosed for your review are responses to your comments dated August 5, 2021. Upon resolution of these comments, the Army will provide a Final version of the report for Ohio EPA concurrence.

These comment responses were prepared for the Army National Guard in support of the RVAAP restoration program. Please contact the undersigned at 614-336-6000, ext 2053 or <u>kevin.m.sedlak.ctr@army.mil</u> if there are issues or concerns with this submission.

Sincerely,

TAIT.KATHRYN.SE

FOR Kevin M. Sedlak RVAAP Restoration Program Manager Army National Guard Directorate

cc: Natalie Oryshkewych, Ohio EPA, NEDO Megan Oravec, Ohio EPA, NEDO Tom Schneider, Ohio EPA, SWDO Brian Tucker, Ohio EPA, CO Katie Tait, OHARNG Steve Kvaal, USACE Louisville Nathaniel Peters, II, USACE Louisville Jed Thomas, Leidos Rebecca Shreffler, Chenega Subject: Former Ravenna Army Ammunition Plant (RVAAP) Restoration Program, Portage/Trumbull Counties, Ohio, Draft Remedial Investigation at CC RVAAP-69 Building 1048 Fire Station (Work Activity No. 267-000-859-214)

Comments

<u>Ohio EPA Comment 1</u>: Report Documentation Page Entry Question

The Report Documentation Page within the Draft RI for CC RVAAP-69 Building 1048 Fire Station report has an entry within Box #15 Subject Terms as "Building 1034 Motor Pool Hydraulic Lift". While this is downgradient of the Building 1048 Fire Station, it is a different Area of Concern (AOC) than the Building 1048 Fire Station.

Action Item: Please confirm this entry for Box #15 and correct/revise as needed.

Army Response: Agree. The entry for Box #15 will be revised to state "Building 1048 Fire Station."

Ohio EPA Comment 2: Well Abandonments

According to Page 2-6, Lines 880-885: "An inactive groundwater supply well is located approximately 300 feet south-southeast of the AOC. The well was installed to a total depth of 97 feet bgs and cased to 57 feet bgs (water well log number 763132). The well was gauged on 4 June 2018; depth to water was 21.49 feet and depth to soft bottom was 84.75 feet. The well pump was inoperable, and the well is inactive. This drinking water well, along with all others, are scheduled for abandonment by the Ohio National Guard."

Ohio EPA anticipates that well abandonment activities will be conducted in accordance with the Ohio Administrative Code (OAC) rule 3745-9-10, the State of Ohio Regulations and Technical Guidance for Sealing Unused Water Wells and Boreholes - March 2015), and the Ohio EPA Technical Guidance Manual (TGM) for Hydrogeologic Investigations and Ground Water, Chapter 9 (Sealing Boreholes and Decommissioned Monitoring Wells), Section 2.1.2 – Revision 3, September 2016 (or more recent version).

Section 1521.05(C) of the Ohio Revised Code requires completed Water Well Sealing Report Forms (DNR 7810.12e) submitted to the Ohio Department of Natural Resources (ODNR) within 30 days after well sealing, as noted in Chapter 9, Section 2.3 of Ohio EPA's TGM. Also noted in Section 2.3, proper sealing of boreholes should be documented and reported to the Ohio EPA division regulating the site. Report information should include a copy of the ODNR Water Well Sealing Report Forms along with copies of well logs and documentation of steps taken to abandon the wells, and other information as described in Chapter 9, Section 2.3.1 of Ohio EPA's TGM.

Action Item: Please verify that this former drinking water well located near the Building 1034 Motor Pool Hydraulic Lift is scheduled for proper abandonment and provide timeline if known.

Army Response: Comment noted. The groundwater supply well has since been abandoned. As this was a private, potable well, the effort to abandon this well was permitted by the Ohio Department of Health. The well abandonment took place in June 2021 and was inspected by the Portage County Health District on June 30, 2021. The OHARNG will file the Well Sealing Report with ODNR.

EPA.Ohio.gov

Mike DeWine, Governor Jon Husted, Lt. Governor Anne M. Vogel, Director

Received October 13, 2023

October 12, 2023

TRANSMITTED ELECTRONICALLY

Mr. Kevin M. SedlakRE:US Army Ravenna Ammunition Plt RVAAPArmy National GuardRemediation ResponseInstallations & Environment- Cleanup Branch IPAProject recordsDesignationRemedial Response1438 State Route 534 SWPortage CountyNewton Falls, OH 44444267000859243, 267000859137, 267000859098,Sent via email to: Kevin.m.sedlak.ctr@army.mil267000859264 and 267000859127

Subject: Ohio EPA Comments on the "Final Remedial Investigation Addendum for CC RVAAP-79 DLA Ore Storage Sites - Ore Storage Pond Sub-Area" dated August, 2023

Dear Mr. Sedlak:

On August, 9, 2023, the Ohio Environmental Protection Agency (Ohio EPA), Northeast District Office (NEDO), received the Final Remedial Investigation Addendum for CC RVAAP-79 DLA Ore Storage Sites - Ore Storage Pond Sub-Area¹. It was prepared by the U.S. Army Corps of Engineers.

Ohio EPA has the following comment:

1. Section 4 of the results section does not include the sediment concentration results. Note that the action item below will not change the conclusion of the addendum.

Action Item: Please include the sediment concentration data, a brief discussion of the results, and a weight of evidence discussion of all the ecological assessment components.

If you have any questions concerning this letter, please contact me at (330) 963-1170 or ed.damato@epa.ohio.gov.

Sincerely,

Edward & D'Amato

Edward D'Amato, Site Coordinator Division of Environmental Response and Revitalization

ec: Nat Peters, USACE Katie Tait, OHARNG RTLS Steven Kvaal, USACE Angela Cobbs, Chenega Natalie Oryshkewych, Ohio EPA, DERR, NEDO Megan Oravec, Ohio EPA, DERR, NEDO Tom Schneider, Ohio EPA, DERR, SWDO Brian Tucker, Ohio EPA, DERR, CO

 1
 http://edocpub.epa.ohio.gov/publicportal/ViewDocument.aspx?docid=2514547

 Northeast District Office
 330 | 963 1200

 2110 E. Aurora Road
 epa.ohio.gov

 Twinsburg, Ohio 44087 U.S.A.

The State of Ohio is an Equal Opportunity Employer and Provider of ADA Services

August 25, 2021

Ohio Environmental Protection Agency DERR-NEDO Attn: Edward J. D'Amato 2110 East Aurora Road Twinsburg, OH 44087-1924

Subject: Former Ravenna Army Ammunition Plant (RVAAP) Restoration Program Draft RI Addendum/ Draft Feasibility Study, CC RVAAP-79 DLA Ore Storage Sites, Ore Storage Pond Sub-Area Portage/Trumbull Counties, Ohio EPA ID # 267-000859-211

Dear Mr. D'Amato:

The Army appreciates the recent opportunity during the August 20, 2021 Conference Call to discuss the Ohio EPA's concerns regarding the Draft Remedial Investigation (RI) Addendum for the CC RVAAP-79 DLA Ore Storage Sites, Ore Storage Pond Sub-Area. Additionally, Ohio EPA expressed concern that new sediment data from the Ore Storage Pond collected for the bioassays may impact the conclusions of the Human Health Risk Assessment for the Ore Storage Pond in the Final 2020 RI (*approved December 17, 2020*).

The Army proposes the following approach to continue to make progress on this Area of Concern (AOC) while providing a process to address the Ohio EPA's concerns that were provided for discussion on August 20, 2021. The Army plans to address all the concerns provided by the Ohio EPA, in the proposed following approach.

1.) CC RVAAP-79 RI Addendum for Ore Storage Pond

- Ohio EPA should stop review of the Draft CC RVAAP-79 RI Addendum.
- Army will revise the RI Addendum as follows:

1.) The findings will be revised to state that the "No Further Action" determination only applies for ecological receptors and that no further remedial actions are warranted to address ecological risk.

2.) A statement, where appropriate, will be added to state:

"Because the additional data for the Ore Storage Pond sediments collected for this RI Addendum, has concentrations of arsenic that are greater than those used to estimate risks to Human Health Receptors in the CC RVAAP-79 RI, these potential risks need to be reassessed considering the new sediment and pond data. Since the CC RVAAP-79 RI has been finalized, the Army will revise the Draft CC RVAAP-79 Feasibility (FS) to include a reassessment of potential human health risks for current and future receptors of the Ore Storage Pond that includes the new data collected for this RI Addendum. The revised HHRA will be incorporated into the Risk Management Portion of the CC RVAAP-79 FS."

2.) CC RVAAP-79 RI (approved December 17, 2020)

• • No change proposed.

3.) CC RVAAP-79 FS (draft and under review by the Ohio EPA)

- Ohio EPA should stop review of this Draft document.
- Army will revise the FS to include a revised Baseline Human Health Risk Assessment for the Ore Storage Pond using all available data (previously and newly collected for CC RVAAP-79 RI Addendum).
- Army will revise the FS to address the applicable Ohio EPA's comments provided on August 20, 2021.
- Army will redevelop Alternatives.
- Army will resubmit revised Draft FS.

If this approach is acceptable, please provide a notification of agreement and the Army will proceed as proposed. Please contact the undersigned at <u>kevin.m.sedlak.ctr@mail.mil</u> or (614) 336-6000 ext 2053 if there are concerns or if you would like to discuss the proposed approach.

Sincerely, SEDLAK.KEVIN. Digitally signed by SEDLAK.KEVIN.MICHAEL.12 MICHAEL.12544 54440171 Date: 2021.08.25 13:16:29 -04'00' Kevin Sedlak RVAAP Restoration Program Manager Army National Guard Directorate

cc: Tom Schneider, Ohio EPA, SWDO Bob Princic, Ohio EPA, DERR-NEDO Megan Oravec, Ohio EPA, DERR-NEDO Mark Leeper, ARNG Katie Tait, OHARNG, Camp James A. Garfield Steve Kvaal, USACE Louisville Angela Schmidt, USACE Louisville Chenega Tri-Services, LLC Patrick Ryan, Leidos

August 9, 2023

Ohio Environmental Protection Agency DERR-NEDO Attn: Mr. Edward J. D'Amato, Site Coordinator 2110 East Aurora Road Twinsburg, OH 44087-1924

Subject:Ravenna Army Ammunition Plant (RVAAP) Restoration Program, Portage/Trumbull
Counties, Final Remedial Investigation Addendum for CC RVAAP-79 DLA Ore Storage
Sites - Ore Storage Pond Sub-Area (Work Activity No. 267000859211)

Dear Mr. D'Amato:

For your concurrence, an electronic version of the Remedial Investigation Addendum for CC RVAAP-79 DLA Ore Storage Sites, Ore Storage Pond Sub-Area will be sent using the Ohio EPA LiquidFile system. A hard copy and CD can be sent upon request by Ohio EPA. To supplement your review, the Army is also providing 1) a letter submitted to Ohio EPA on August 25, 2021 that specifies the revisions to the Draft Remedial Investigation Addendum and 2) a redline version of the main text.

This addendum was prepared for the Army National Guard in support of the RVAAP Restoration Program. Please contact the undersigned at 614-336-6000, ext 2053 or <u>kevin.m.sedlak.ctr@army.mil</u> if there are issues or concerns with this submission.

Sincerely,

TAIT.KATHRYN.SE Digitally signed by TAIT.KATHRYN.SERENA.12895082 RENA.1289508275 75 Date: 2023.08.09 07:58:59 -04'00'

FOR Kevin M. Sedlak RVAAP Restoration Program Manager Army National Guard Directorate

cc: Tom Schneider, Ohio EPA, SWDO Megan Oravec, Ohio EPA, NEDO Katie Tait, OHARNG Steve Kvaal, USACE Louisville Nathaniel Peters, USACE Louisville Jed Thomas, Leidos Ryan Laurich, Leidos Pat Ryan, Leidos Jennifer Tierney, Chenega

Received 22 November 2023

November 21, 2023

TRANSMITTED ELECTRONICALLY

Mr. Kevin M. Sedlak RVAAP Restoration Program Manager ARNG-Directorate Camp James A. Garfield JTC 1438 State Route 534 Newton Falls, OH 44444 Sent via email to: kevin.m.sedlak.ctr@army.mil RE: US Army Ravenna Ammunition Plt RVAAP Remediation Response Project records RI Federal Facilities Portage County ID # 267000859274

Subject: Open Demolition Area #2 (ODA2) Munitions Response Site (MRS) Remedial Investigation (RI) Post-Blow-In-Place (BIP) Munitions Constituent (MC) Sampling Soil Memo - October 24, 2023 Ohio EPA Comment Letter

Dear Mr. Sedlak:

The Ohio Environmental Protection Agency (Ohio EPA), Northeast District Office (NEDO), Division of Environmental Response and Revitalization (DERR) has received and reviewed the "Open Demolition Area #2 (ODA2) Munitions Response Site (MRS) Remedial Investigation (RI) Post-Blow-In-Place (BIP) Munitions Constituent (MC) Sampling Soil Memo"¹ (the "Memo") dated October 24, 2023. The Memo was prepared by Arcadis on behalf of the U.S. Army Corps of Engineers, Baltimore District, and submitted by the Ohio Army National Guard. Below are the Agency's comments and requests for action.

COMMENTS

1. Laboratory Report

The memo did not include the laboratory report with sample results and narrative.

Action Item: Ohio EPA requests the laboratory report and narrative be provided in a final memo.

¹ http://edocpub.epa.ohio.gov/publicportal/ViewDocument.aspx?docid=2284804

US Army Ravenna Ammunition Plt RVAAP November 17, 2023 Page 2 of 2

2. Incomplete Table

Table 1 of the Memo does not include any explosives for comparison of pre- and postdemolition operations but does include project action limits (PALs) in the upper half of Table 1. Though the explosives are missing from the table, the table does contain 17 rows matching the 17 explosive compounds listed in the Remedial Investigation Quality Assurance Project Plan (QAPP), however, the PALs for explosives in soils provided don't appear to be representative of those in the approved QAPP (unless the appropriate units are also specified).

Action Item: Ohio EPA requests Table 1 be modified to include all the kinetic compounds and munitions constituents (metals) in the Table with their appropriate PALs and/or units.

Please submit the final Memo to Ohio EPA with the necessary information by **December 21, 2023.** If you have any questions regarding this letter, please contact me at (330) 963-1235 or by email at <u>Nicholas.roope@epa.ohio.gov</u>.

Sincerely,

Nicholas Roope Environmental Specialist Division of Environmental Response and Revitalization

NR/cm

ec: Nicole Walworth, USACE Baltimore Katie Tait, OHARNG RTLS, CJAG Steve Kvaal, USACE Louisville Nathaniel Peters, USACE Louisville Jennifer M. Tierney, Chenega Megan Oravec, Ohio EPA, DERR, NEDO Natalie Oryshkewych, Ohio EPA, DERR, NEDO Brian Tucker, Ohio EPA, DERR, CO Thomas Schneider, Ohio EPA, DERR, SWDO

NATIONAL GUARD BUREAU 111 SOUTH GEORGE MASON DRIVE ARLINGTON VA 22204-1373

October 26, 2023

Ohio Environmental Protection Agency DERR-NEDO Attn: Mr. Nicholas Roope 2110 East Aurora Road Twinsburg, OH 44087-1924

Subject: Ravenna Army Ammunition Plant Restoration Program, Post Blow-In-Place Munitions Constituent Soil Sampling Memo, Open Demolition Area #2 (RVAAP-004-R-01), Former Ravenna Army Ammunition Plant, Portage and Trumbull Counties, Ohio (EPA ID# 267000859274)

Dear Mr. Roope:

Attached is the Post Blow-In-Place Munitions Constituent Soil Sampling Memo for Open Demolition Area #2 (RVAAP-004-R-01) at the former Ravenna Army Ammunition Plant. This report was prepared for the Army National Guard in support of the RVAAP Restoration Program. Please contact the undersigned at (330)235-2153 or <u>kevin.m.sedlak.ctr@army.mil</u> if there are issues or concerns with this submission.

Sincerely,

TAIT.KATHRYN.SE RENA.1289508275 Date: 2023.10.26 07:31:48 -04'00'

FOR Kevin M. Sedlak RVAAP Restoration Program Manager Army National Guard Directorate

ec: Tom Schneider, Ohio EPA Megan Oravec, Ohio EPA Katie Tait, OHARNG Nicole Walworth, USACE Jennifer Tierney, Chenega

Memo

SUBJECT

Open Demolition Area #2 (ODA2) Munitions Response Site (MRS) Remedial Investigation (RI) Post-Blow-In-Place (BIP) Munitions Constituent (MC) Sampling Soil

DATE 10/24/2023

DEPARTMENT Environment

COPIES TO Kevin Sedlak, RPM, ARNG Katie Tait, Environmental Specialist III, OHARNG

то

Ms. Nicole Walworth U.S. Army Corps of Engineers, Baltimore District 2 Hopkins Plaza Baltimore, MD 21201

OUR REF

Contract No. W912DR-15-D-0018 Delivery Order No. W912DR20F0452

PROJECT NUMBER 30189080

Arcadis U.S., Inc. (Arcadis) is conducting a remedial investigation (RI) for the Open Demolition Area #2 (ODA2) munitions response site (MRS) at the Former Ravenna Army Ammunition Plant (RVAAP), now known as Camp James A. Garfield (CJAG). RI field work is being performed in accordance with the *Remedial Investigation Quality Assurance Project Plan* (RI QAPP; Arcadis 2023) to assess the nature and extent of munitions and explosives of concern (MEC) and munitions constituents (MC). On 11 August 2023, a blow-in-place (BIP) operation was carried out on a M66 Fuze found within Grid 340 of the Kickout Area portion of the ODA2 MRS. Post-BIP sampling was performed within Grid 340 in the vicinity of the BIP location on 18 August 2023 in accordance with the RI QAPP.

Post-Blow-in-Place Sample Discussion

Per Section 17.6.6 of the RI QAPP, a post-BIP soil sample was collected using the incremental sample methodology (ISM). The sample was collected from the 100-foot (ft) by 100-ft Grid 340, which encompassed the BIP location. The post-BIP sample consisted of 30 soil increments collected from 0 to 1 ft below ground surface (ft bgs) using a gasoline-powered coring tool. The sample was analyzed for MC metals, explosives / propellants, and hexavalent chromium. Analytical results are presented in **Table 1** and the laboratory package is provided in **Attachment 1**. **Table 1** also includes the analytical results for the RI sample (collected in triplicate) from Grid 340 at a depth interval of 0 to 1 ft bgs prior to the BIP operation (i.e., pre-BIP) on 13 June 2023. Below is a summary of the results from the post-BIP sample:

- No explosives or propellants were detected in the pre-BIP or post-BIP soil samples.
- MC metals barium, chromium, copper, iron, manganese, mercury, zinc, and hexavalent chromium exceeded surface soil background values.
- Of the MC metals that exceeded background values, iron, manganese, and hexavalent chromium exceeded human health screening levels.
- With the exception of manganese levels increasing to above background values for surface soil in the
 post-BIP sample compared with the pre-BIP sample, based on the comparison with pre-BIP results, there
 was no impact to surface soil resulting from the BIP operation.

If you have any questions, or require additional information, please do not hesitate to contact me at (732) 661-3813.

Arcadis

Ms. Nicole Walworth USACE, Baltimore District October 2023

-

David Heuer Certified Project Manager

Cc: Kevin Sedlak, RPM, ARNG Katie Tait, Environmental Specialist III, OHARNG

Table 1Grid 340 Pre- and Post-BIP Analytical ResultsFormer Ravenna Army Ammunition PlantRavenna, Ohio

Location Coc	le				DA2-340M	DA2-340M	DA2-340M	DA2-340M
					DA2SS-340M-01-BIP-	DA2SS-340M-01-	DA2SS-340M-02-	DA2SS-340M-03-
Sample ID					SO_20230818	SO_20230613	SO_20230613	SO_20230613
Sample Date	•	8/18/2023	6/13/2023	6/13/2023	6/13/2023			
Sample Dept	th Range (feet below ground surface)	0-1	0-1	0-1	0-1			
Sample Type					Normal	Normal	Duplicate	Triplicate
			Project Action Limit (PAL)	Background				
CAS Number	Analytes	Units	Human Health	(surface soil)				
Explosives a	nd Propellants (Method 8330B)							
118-96-7	2,4,6-Trinitrotoluene	ug/kg	3600	NA	74 U	49 U	49 U	44 U
121-14-2	2,4-Dinitrotoluene	ug/kg	1700	NA	74 U	49 U	49 U	44 U
121-82-4	Hexahydro-1,3,5-trinitro-1,3,5-triazine	ug/kg	8300	NA	74 U	49 X	49 X	44 X
19406-51-0	4-Amino-2,6-dinitrotoluene	ug/kg	770	NA	74 U	49 U	49 U	44 U
2691-41-0	Octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine	ug/kg	390000	NA	74 U	49 X	49 X	44 X
35572-78-2	2-Amino-4,6-dinitrotoluene	ug/kg	770	NA	74 U	49 U	49 U	44 U
479-45-8	Tetryl	ug/kg	16000	NA	74 U	49 X	49 X	44 X
55-63-0	Nitroglycerin	ug/kg	630	NA	490 U	390 X	390 X	350 X
606-20-2	2,6-Dinitrotoluene	ug/kg	360	NA	74 U	49 U	49 U	44 U
618-87-1	3,5-Dinitroaniline	ug/kg	2500	NA	74 U	49 X	49 X	44 X
78-11-5	Pentaerythritol Tetranitrate	ug/kg	57000	NA	490 U	390 U	390 U	350 U
88-72-2	2-Nitrotoluene	ug/kg	3200	NA	74 U	49 X	49 X	44 X
98-95-3	Nitrobenzene	ug/kg	5100	NA	74 U	49 X	49 X	44 X
99-08-1	3-Nitrotoluene	ug/kg	630	NA	74 U	49 X	49 X	44 X
99-35-4	1,3,5-Trinitrobenzene	ug/kg	220	NA	74 U	49 U	49 U	44 U
99-65-0	1,3-Dinitrobenzene	ug/kg	655	NA	74 U	49 U	49 U	44 U
99-99-0	4-Nitrotoluene	ug/kg	12000	NA	74 U	49 X	49 X	44 X
Metals (Method 6010D/7471B/3060/7196A)								
7429-90-5	Aluminum	mg/kg	7700	17700	<u>17000</u>	<u>17800 J</u>	<u>15400 J</u>	<u>17500 J</u>
7440-36-0	Antimony	mg/kg	3.1	0.96	4.8 U	1.6 UJ	1.3 UJ	0.72 UJ
7440-39-3	Barium	mg/kg	1500	88.4	118 J	99.4	84.2	94.7
7440-43-9	Cadmium	mg/kg	0.71	ND	0.95 U	0.201 J	0.77 U	0.208 J
7440-70-2	Calcium	mg/kg	NA	15800	1520 J	794	718	724
7440-47-3	Chromium	mg/kg	NA	17.4	20.0	36.1	33.6	38.9
7440-50-8	Copper	mg/kg	310	17.7	27.8	10.7	9.93	10.3
7439-89-6	Iron	mg/kg	5500	23100	<u>24600</u>	<u>25000 J</u>	<u>23000 J</u>	<u>25200 J</u>
7439-92-1	Lead	mg/kg	400	26.1	26.1	19.4	18	17.9
7439-95-4	Magnesium	mg/kg	NA	3030	2770 J	2630	2320	2630
7439-96-5	Manganese	mg/kg	180	1450	<u>1970</u>	<u>1330</u>	<u>1150</u>	<u>1310</u>
7439-97-6	Mercury	mg/kg	2.3	0.036	0.17	0.0561	0.053	0.051
7440-66-6	Zinc	mg/kg	2300	61.8	92.1	67.6	64.1	64.8
18540-29-9	Chromium, Hexavalent	mg/kg	0.3	ND	<u>0.64</u>	NA	NA	NA

Notes:

ug/kg - micrograms per kilogram

mg/kg - milligrams per kilogram

Bold - Detected results

Italics and underline - Results exceeding human health screening levels (i.e., the USEPA RSLs for Residential Soil in the May 2023 USEPA RSL Table [USEPA, 2023]).

Shaded - Results exceeding surface (0-1 foot below ground surface) soil background values as presented in the Final Facility-Wide Human Health Cleanup Goals for the Ravenna Army Ammunition Plant, Ravenna, Ohio (SAIC, 2010).

J =The reported result was an estimated value with an unknown bias.

NA = not applicable

ND = non-detect

U = The analyte was not detected and was reported as less than the LOD. The LOD has been adjusted for any dilution or concentration of the sample.

UJ = The analyte was not detected and was reported as less than the LOD. However, the associated numerical value is approximate.

X = The usability of the sample results (including non-detects) will be discussed with the Project Delivery Team.

Mike DeWine, Governor Jon Husted, Lt. Governor Anne M. Vogel, Director

April 3, 2023

TRANSMITTED ELECTRONICALLY

Mr. Kevin M. Sedlak RVAAP Restoration Program Manager ARNG-Directorate Camp James A. Garfield JTC 1438 State Route 534 Newton Falls, OH 44444

Sent via email to: kevin.m.sedlak.ctr@army.mil

RE: US Army Ravenna Ammunition Plt RVAAP Remediation Response Plans RI Federal Facilities Portage County 267000859274

Subject: Final Remedial Investigation Quality Assurance Project Plan (QAPP), Open Demolition Area #2, Munitions Response Site - dated March 1, 2023 (with supplemental information provided on – March 21, 2023) - Ohio EPA Concurrence

Dear Mr. Sedlak:

The Ohio Environmental Protection Agency (Ohio EPA), Northeast District Office (NEDO), Division of Environmental Response and Revitalization (DERR) has received and reviewed the "Final Remedial Investigation Quality Assurance Project Plan, Open Demolition Area #2" (the "QAPP") dated March 1, 2023. In addition, supplemental information was provided on March 21, 2023. The QAPP and supplemental information was submitted by Chenega Reliable Services on behalf of the U.S. Army Corps of Engineers, Baltimore District.

Ohio EPA has no comments and concurs with the Final Remedial Investigation Quality Assurance Project Plan, Open Demolition Area #2, with the supplemental information included in its final format. If you have any questions concerning this correspondence, please contact me at (330) 963-1235.

Sincerely,

Nicholas Roope Environmental Specialist Division of Environmental Response and Revitalization

NR/cm

Received 03 APR 2023

ec: Allan Brillinger, Chenega Katie Tait, OHARNG RTLS, CJAG Steve Kvaal, USACE Louisville Nathaniel Peters, USACE Louisville Brian Tucker, Ohio EPA, CO, DERR Megan Oravec, Ohio EPA, NEDO, DERR Natalie Oryshkewych, Ohio EPA, NEDO, DERR Thomas Schneider, Ohio EPA, SWDO, DERR

> Northeast District Office • 2110 East Aurora Road • Twinsburg, OH 44087-1924 epa.ohio.gov • (330) 963-1200 • (330) 487-0769 (fax)

NATIONAL GUARD BUREAU 111 SOUTH GEORGE MASON DRIVE ARLINGTON VA 22204-1373

21 March 2023

Ohio Environmental Protection Agency DERR-NEDO Attn: Mr. Nicholas Roope 2110 East Aurora Road Twinsburg, 011 44087-1924

Subject:Ravenna Army Ammunition Plant Restoration Program, Remedial Investigation
Quality Assurance Project Plan, Open Demolition Area #2 (RVAAP-004-R-01),
Former Ravenna Army Ammunition Plant, Portage and Trumbull Counties, Ohio

Dear Mr. Roope:

For your review, revised pages to the Final Remedial Investigation Quality Assurance Project Plan, Open Demolition Area #2 (RVAAP-004-R-01), Former Ravenna Army Ammunition Plant, Portage and Trumbull Counties, Ohio are submitted with this letter. The revised pages and plan were prepared for the Army National Guard in support of the RVAAP Restoration Program.

Per Ohio EPA's correspondence dated 10 March 2023, Ohio EPA received and reviewed the Final Remedial Investigation Quality Assurance Project Plan for ODA2 on 1 March 2023; however, concurrence cannot be provided until the appropriate changes to Table 11 are addressed to incorporate the approach provided by Ohio EPA on ISM precision and data quality in Comment 2 (Ohio EPA, 13 December 2022) which is based on Hawaii guidance (Section 4 - HEER Office). One additional revision was made in Table 5b. enclosed, to reference the 2014 risk assessment memo. The reference was determined to be missing during a QA check of the document. Both page changes have been included.

The revised pages incorporate the language from the 13 December 2022 Ohio EPA letter without deviations.

Please contact the undersigned at (614) 336-6000 ext. 2053 or <u>kevin.m.sedlak.ctr@army.mil</u> if there are issues or concerns with this submission.

Sincerely,

MORGAN.TIMOTHY.M ICHAEL.1230216351 Date: 2023.03.21 09:22:35 -04'00'

For

Kevin M. Sedlak RVAAP Restoration Program Manager Army National Guard Directorate cc: Tom Schneider, Ohio EPA-CO (cover letter via email only)
Natalie Oryshkewych, Ohio EPA-NEDO (cover letter via email only)
Megan Oravec, Ohio EPA-NEDO (cover letter via email only)
Katie Tait, OHARNG-CJAG (cover letter via email only)
Steve Kvaal, USACE-Louisville District (cover letter via email only)
Nicole Walworth, USACE-Baltimore District (cover letter via email only)
Jennifer Tierney, Chenega (one [1] electronic copy)

Page 67

5b. Develop the Project Chemical Data Collection and Analysis Approach

Groundwater samples from MWs installed near the Former OB/OD Unit and disposal • pits to be analyzed for explosives, metals, and OB/OD-related constituents.

General MC Decision Rules:

- If the MC or OB/OD-related constituent concentrations in all the samples from the investigation area are less than the human health and ecological screening levels identified in Worksheet #15 of this QAPP, then no further action will be recommended with respect to MC and/or OB/OD-related chemical constituents. Evaluation of the uncertainties associated with screening levels that may be below method detection limits (MDLs) will be included in the RI Report.
- If chemical constituents that are not essential nutrients (i.e., calcium, chloride, iodine, iron, magnesium, potassium, phosphorous, and sodium) are detected with sufficient frequency (i.e., 5% or more of samples where there are 20 or more samples), and for metals, exceed site-specific background, then it is considered an SRC.
- Where maximum detected concentrations of SRCs exceed the human health or ecological screening levels identified in QAPP Worksheet #15, they will be identified for defining nature and extent in the RI Report and will be considered chemicals of potential concern (COPCs) for the HHRA and/or chemicals of potential ecological concern (COPECs) for the ERA consistent with the Position Paper (USACE, 2012) on the use of FWCUGs and the Final Technical Memorandum: Land Uses and Revised Risk Assessment Process for the RVAAP (National Guard Bureau, 2014).
- COPCs are then carried through the HHRA and ERA.
- EPCs are derived for each decision unit (DU) or exposure unit (EU) and data set (e.g., surface soil or surface and subsurface soil), represented by 95% upper confidence limits (UCL) on the arithmetic mean (i.e., alpha error rate of 0.05). Discrete and ISM data are not combined for these calculations.
- The decision as to which samples to include in an EU will be made based on data analysis conducted in the RI (e.g., evaluation of standard deviation, coefficient of variation, statistical tests such as two-sample hypothesis tests, analysis of variance, etc., prior to aggregating data).
- COPCs in the HHRA are evaluated to determine COCs based on comparison to Final FWCUGs for the Resident Receptor (Adult and Child) and the Industrial Worker by using the current USEPA RSLs. This is consistent with available guidance and eliminates the need to update resident FWCUGs for current toxicity values. COCs are those COPCs which contribute to a "sum of ratios", as described in the FWCUG guidance (SAIC, 2010), greater than 1 (for noncancer constituents effecting the same target organ or system contributing at least 10% to the sum of ratios greater than 1).
- A Level II Screening Weight of Evidence evaluation is conducted for COPECs in ERA to determine which COPECs (e.g., hazard quotients greater than 1 suggests a possible environmental consequence) should be carried forward into a Level III baseline evaluation. This includes a refinement step analogous the USEPA Step 3a, where COPECs are evaluated in terms of items including but not limited to:
 - 0 -Comparison of average (i.e., mean) concentration to ecological screening values,
 - -Comparison of mean concentration to background concentration,

17.7.4.2 Grinding of ISM Samples for Explosives Analysis

Studies on explosives / propellants have shown that representative subsampling prior to grinding is problematic in terms of Fundamental Error when dealing with contaminants that have been deposited as solid particulates (e.g., energetics at firing ranges) (Hewitt et al. 2009). Method 8330B for Nitroaromatics, Nitramines, and Nitrate Esters by High Performance Liquid Chromatography (USEPA 2006) includes grinding of soil samples for explosives/ propellants analysis. The 8330B method calls for either 90 seconds of grinding or for five 60-second cycles. Typically, laboratories include a 60-second cool-down period between each grinding cycle to avoid thermal degradation. Studies have been performed to assess analyte loss of explosives / propellants during the grinding protocol specified in Method 8330B. Specifically, Hewitt et al. (2009) used a performance evaluation material composed of 500 grams of soil treated with Method 8330B analytes and ground it for 90 seconds and then for an additional four, 60-second periods prior to subsampling, extraction, and analysis. The average recoveries for seven performance evaluation samples that followed this grinding protocol showed analyte recoveries after grinding that were greater than, or well within, the standard deviation of values from historical data. For instance, the TNT recovery after 90 seconds was $95.7\pm2.42\%$ and after 90 + four 60 second cycles, the recovery was $93.4 \pm 2.23\%$ (Hewitt et al., 2009).

17.7.5 Data Evaluation for ISM Samples

17.7.5.1 Field Replicates

When field sampling is adequately "representative," repeat measurements within the same SU are expected to estimate the average contaminant concentration similarly. Field replicate results will be used as a QC check to evaluate acceptable performance of the sampling and analysis chain, including having an appropriate number of increments and adequate homogenization in sample preparation. These data will be used to determine the amount of variation from the mean that will be considered when aggregating data and when comparing average contaminant concentrations in each SU to applicable screening levels.

As discussed previously, field replicates will be collected for 10 percent of the total number of ISM samples (as shown on **Figures A-7b** and **A-8b**). Four of the 11 grids with replicates at the Kickout Area and seven of the 21 grids with replicates at the Source Area will be collected at the start of the sampling effort to provide an early indication of the RSDs between replicate results.

17.7.5.2 ISM Data Evaluation

The RSD (also known as the coefficient of variation or CV; RSD = CV * 100%) is a measure of the variation among a group of sample results. The percent RSD is the ratio of the standard deviation to the mean multiplied by 100. The percent RSD will be used to assess the degree of variability between a set of SU field replicate results. The RSD represents the precision (or variability) of the total sampling method, including combined field and laboratory precision.

At SUs without field replicates, if needed, a UCL for analytes of interest will be calculated using an inferred standard deviation (SD) from one or more nearby SUs at which field triplicate replicates were collected. Inferred SDs will be selected from field replicate SUs with similar soil types and similar analyte distributions to the SUs with no field replicates. That is, SDs from multi-replicate SUs in the Kickout Area, Source Area, Soil Cover, and Former OB/OD Unit will be applied to similar SUs without replicate data located within the same areas.

As directed by the Ohio EPA, DQOs for soil samples collected using ISM at RVAAP sites are based on guidance from the Hawaii Department of Health Technical Guidance Manual Subsection 4.2: Use of Multi-Increment Samples to Characterize DUs (Hawaii DOH 2021). This guidance uses the RSD of field replicate samples to assess data quality for the purposes of decision-making. Ohio EPA has directed the Army to use the Hawaii ISM data quality recommendations (with several Ohio EPA-specific modifications) for the ODA2 RI in the context of RI decision making. The primary decision to be made in assessing the ISM data from the Source Area and the Kickout Area is whether the nature and extent of analytes have been adequately characterized so that the data may be used in a quantitative risk assessment. Other evaluation methods (e.g., statistical techniques) will also be used in the evaluation of the nature and extent of analytes of interest. Risk assessment procedures are discussed in Section 17.13.1.

RSD Value	Data Quality Assessment Recommendations to be Applied to Nature and Extent Evaluation
"Good" precision RSD ≤ 35%	 Compare the mean of the field replicate values to the unadjusted cleanup goal. Data for SUs where replicate samples were not collected can be assumed to be representative without adjustment.
"Moderate" precision 35% <rsd≤50%< td=""><td> Review and discuss field sampling methods and laboratory processing and analysis methods and discuss potential sources of error (e.g., improper increment collection methods, inadequate number or mass of increments, unrepresentative laboratory subsampling methods). Compare unadjusted ISM sample data directly to cleanup goals. For SUs with replicate data, use the maximum field replicate value to compare to the cleanup goal. </td></rsd≤50%<>	 Review and discuss field sampling methods and laboratory processing and analysis methods and discuss potential sources of error (e.g., improper increment collection methods, inadequate number or mass of increments, unrepresentative laboratory subsampling methods). Compare unadjusted ISM sample data directly to cleanup goals. For SUs with replicate data, use the maximum field replicate value to compare to the cleanup goal.
"Poor" precision 50% <rsd≤100%< td=""><td> Review and discuss field sampling methods and laboratory processing and analysis methods and discuss potential sources of error (e.g., improper increment collection methods, inadequate number or mass of increments, unrepresentative laboratory subsampling methods). If the large majority of total error is attributable to laboratory subsampling and analysis error, request laboratory to subsample and analyze the batch of SU samples again using correct techniques and include additional sub-sampling replicates. Compare the 95% UCL (Chebyshev method) for replicate data to 150% of the cleanup goal. Estimate a 95% UCL for SUs where replicates were not collected based on the 95% UCL and mean calculated for the replicate data. Compare results to 150% of the cleanup goal. Provide additional, multiple lines of evidence for acceptance (or rejection) of the data for decision making purposes including knowledge of the site history, anticipated potential for contamination above cleanup goals, the adequacy of the methods used to collect, process and analyze samples, and the approximation of the data to cleanup goals. </td></rsd≤100%<>	 Review and discuss field sampling methods and laboratory processing and analysis methods and discuss potential sources of error (e.g., improper increment collection methods, inadequate number or mass of increments, unrepresentative laboratory subsampling methods). If the large majority of total error is attributable to laboratory subsampling and analysis error, request laboratory to subsample and analyze the batch of SU samples again using correct techniques and include additional sub-sampling replicates. Compare the 95% UCL (Chebyshev method) for replicate data to 150% of the cleanup goal. Estimate a 95% UCL for SUs where replicates were not collected based on the 95% UCL and mean calculated for the replicate data. Compare results to 150% of the cleanup goal. Provide additional, multiple lines of evidence for acceptance (or rejection) of the data for decision making purposes including knowledge of the site history, anticipated potential for contamination above cleanup goals, the adequacy of the methods used to collect, process and analyze samples, and the approximation of the data to cleanup goals.

Table 11: Recommendations for Assessment of Data Quality Based on the Relative Standard Deviation of Replicate Samples (based on Hawaii DOH 2021)

Former Ravenna Army Ammunition Plant, Portage and Trumbull Counties, Ohio Page 172

RSD Value							
	Extent Evaluation						
	Consider re-sampling of SU(s) most suspect for contamination using a larger number of increments and/or smaller SUs.						
"Very poor" precision RSD>100%	 Review and discuss field sampling methods and laboratory processing and analysis methods and discuss potential sources of error (e.g., improper increment collection methods, inadequate number or mass of increments, unrepresentative laboratory subsampling methods). If the large majority of total error is attributable to laboratory sub-sampling and analysis error, request laboratory to subsample and analyze the batch of SU samples again using correct techniques and include additional sub-sampling replicates. If one or more of the replicate samples exceeds a cleanup goal, then remediation of the SU should be considered even if the mean concentration is well below the cleanup goal. Remediation of associated SUs where replicate samples were not collected should also be considered. If all replicate sample results are below the cleanup goal, then compare the 95% UCL (Chebyshev method) for replicate data to the unadjusted cleanup goal. If all replicate samples are below the cleanup goal, estimate a 95% UCL for SUs where replicates were not collected based on the 95% UCL and mean calculated for the replicate data and compare results to the unadjusted cleanup goal. Provide additional, multiple lines of evidence for acceptance (or rejection) of the data for decision making purposes including knowledge of the site history, anticipated potential for contamination above cleanup goals, the adequacy of the methods used to collect, process and analyze samples, and the approximation of the data to cleanup goals. Consider re-sampling of SU(s) most suspect for contamination using a larger number of increments and/or smaller SUs. 						

Evaluation of the % RSD data will consider the following concepts:

- High variability (poor precision) might not be important if the sample concentrations are far from a cleanup goal. If the mean concentration for an analyte is low compared to the cleanup goal, the 95% UCL may still fall below the cleanup goal even if the % RSD is high. The %RSD is mostly of interest if the mean and 95% UCL straddle the applicable cleanup goal (i.e., the mean is below the cleanup goal but the 95% UCL exceeds the cleanup goal). This means that there is statistical uncertainty about whether the true mean exceeds the applicable cleanup goal.
- 2. At low detected concentrations (e.g., at or near reporting limits), % RSD will tend to increase even though absolute differences in sample concentrations are small.

The RSD ranges provided in **Table 11** will be used as guidelines for data evaluation and not as prescriptive limits. The data evaluation process to assess the ISM data and evaluate the DQOs described in this UFP-QAPP may use additional techniques, including other statistical methods.

17.8 DFW 7: Sediment and Surface Water Sample Collection from Sand Creek

The Sand Creek sediment and surface water sampling program is designed to evaluate the nature and extent of MC in Sand Creek within the MRS boundary with a focus on the Source Area and to determine a 95% UCL of the mean to support the RI risk assessment. Sand Creek flows from west to east for approximately 5,150 ft within the MRS boundary with approximately 2,300 ft within the Source Area, 1,750 ft in the upstream Kickout Area and 1,100 ft in the downstream Kickout Area. To generate meaningful UCLs, Pro UCL statistical software will be used, which requires a minimum of 8 to 10 samples for each area over which a UCL is computed. Additional samples in the Source Area will also be needed to define the nature and extent of MC in sediments.

17.8.1 Sand Creek Reconnaissance

To evaluate the nature and extent of MC in Sand Creek sediments, Arcadis personnel will conduct a walking reconnaissance of Sand Creek within the Source Area and a portion of the Kickout Area immediately downstream of the Source Area (**Figure A-9b**). This reconnaissance will include the visual identification of eroding bank, outfalls to the creek, significant sediment deposits, and any other unique feature along the stream length. All MC activities in Sand Creek will be performed with the accompaniment of a UXO Technician II (or higher) to provide anomaly avoidance. A systematic sediment probing program will be implemented along 24 regular transects within the Source Area (i.e., a transect approximately every 100 ft) to assess sediment thickness and depth. For the Kickout Area downstream of the Source Area, 8 systematic probing transects will also be established with a transect spacing of approximately 130 ft (**Figure A-9b**). The probing transects will include measurements of creek width, water depth, depth of penetrable sediment and velocity measurements at approximately half of the transects.

The inclusion of the downstream portion of the Kickout Area is important because unlike MEC/MD, MC have likely migrated downstream as part of normal sediment transport processes.

17.8.2 Sediment and Bank Soil Sample Collection

Following the probing and reconnaissance program, sediment core samples will be collected from the creek. Sediment cores will be collected using manually-driven Lexan® tubes that will be advanced to refusal. In the event hand coring is unsuccessful, a grab sampler may be used. One sample per transect (i.e., 32 samples) will be selected based upon the probing results. Transect samples will be biased to areas of thicker sediment accumulations, which are more likely to include finer grained materials and indicate areas where MC may have been deposited. Additionally, up to eight biased sediment cores will be collected from the Source Area from significant deposits identified between transects, or in locations where MEC/MD was identified and removed during the geophysical survey.

A review of existing data indicates that sediment data was not collected at depth and as such depth samples will be included in this program to better define the vertical extent of MC in Sand Creek. Sediment cores will be sectioned into a surface interval and a subsurface interval. The surface interval

NATIONAL GUARD BUREAU 111 SOUTH GEORGE MASON DRIVE ARLINGTON VA 22204-1373

March 1, 2023

Ohio Environmental Protection Agency DERR-NEDO Attn: Mr. Nicholas Roope 2110 East Aurora Road Twinsburg, 44087-1924

Subject: Ravenna Army Ammunition Plant Restoration Program, Remedial Investigation Quality Assurance Project Plan, Open Demolition Area #2 (RVAAP-004-R-01), Former Ravenna Army Ammunition Plant, Portage and Trumbull Counties, Ohio (Ohio EPA ID#267000859274)

Dear Mr. Roope:

For your review, an electronic version of the *Final Remedial Investigation Quality Assurance Project Plan, Open Demolition Area #2 (RVAAP-004-R-01), Former Ravenna Army Ammunition Plant, Portage and Trumbull Counties, Ohio* will be submitted using the Ohio EPA LiquidFile system. This report was prepared for the Army National Guard in support of the RVAAP Restoration Program. Revisions per discussions and comment responses were incorporated into the this Final document and it is being submitted to expedite the schedule.

Per Ohio EPA's correspondence dated January 31, 2023 regarding the Army's response to Ohio EPA's comments dated 14 December 2022, the Army revised the "Poor" precision range to use the 95% Upper Confidence Limit (UCL) of the triplicates and compare that value to 150% of the screening level, as requested. The text suggested by Ohio EPA for the "Very Poor" precision scenario, which refers to "remediation of the DUs" does not align with the goals of the current Remedial Investigation (RI), which are to use the ISM data from the Source Area and the Kickout Area to assess whether the nature and extent of analytes have been adequately characterized so that the data may be used in a quantitative risk assessment. Remediation decisions will not be made during the RI; rather, remediation decisions will be made after completion of the risk assessment (in the RI) and establishment of remedial action objectives (if necessary) and evaluation of remedial alternatives in a Feasibility Study. Therefore, the recommendations for ISM data evaluation, as specified by the Ohio EPA, will be used in the evaluation of nature and extent of analytes in ISM samples. Other evaluation methods (e.g., statistical techniques) will also be used in the evaluation of the nature and extent of analytes of interest.

Please contact the undersigned at (614) 336-6000 ext. 2053 or <u>kevin.m.sedlak.ctr@army.mil</u> if there are issues or concerns with this submission.

Sincerely,

TAIT.KATHRYN.SE RENA.1289508275 Date: 2023.03.01 10:38:27 - 05'00'

FOR Kevin M. Sedlak RVAAP Restoration Program Manager Army National Guard Directorate cc: Tom Schneider, Ohio EPA-CO (cover letter via email only) Natalie Oryshkewych, Ohio EPA-NEDO (cover letter via email only) Megan Oravec, Ohio EPA-NEDO (cover letter via email only) Katie Tait, OHARNG (cover letter via email only) Steve Kvaal, USACE-Louisville District (cover letter via email only) Nicole Walworth, USACE-Baltimore District (cover letter via email only) Jennifer Tierney, Chenega (one hardcopy, one electronic copy)

March 1, 2023

Ohio Environmental Protection Agency DERR-NEDO Attn: Mr. Nicholas Roope 2110 East Aurora Road Twinsburg, Ohio 44087-1924

Subject: Notification of Field Work, Ravenna Army Ammunition Plant Restoration Program, Remedial Investigation, Open Demolition Area #2 (ODA2) (RVAAP-004-R-01), Former Ravenna Army Ammunition Plant, Portage and Trumbull Counties, Ohio (Ohio EPA Work ID 267000859274)

Dear Mr. Roope:

In accordance with the Director's Final Findings and Orders, Section XIII, #28, for the RVAAP Restoration Program, the Army National Guard (ARNG) is providing notification of field activities at the former RVAAP (Camp James A. Garfield) 15 days prior to the scheduled start date. Arcadis will begin mobilization on March 7, 2023 and begin setup of the work site. This will kickoff administrative tasks such as mobilization of initial team members (Unexploded Ordnance Quality Control Specialist/Safety Officer [UXOQCS/SO], UXO technicians, and geophysicists) for site set up and training activities, Instrument Verification Strip (IVS) installation, SLAM base mapping, civil survey oversight, quality control (QC) seeding, and munitions constituents (MC) pilot holes clearance. Data collection activities are not scheduled to start until April 2023.

Please contact the undersigned at 614-336-6000, ext 2053 or kevin.m.sedlak.ctr@army.mil if there are issues or concerns.

Sincerely,

TAIT.KATHRYN.SE Digitally signed by TAIT.KATHRYN.SERENA.1289508275 275 Date: 2023.03.01 14:00:39 -05'00'

FOR Kevin M. Sedlak RVAAP Restoration Program Manager Army National Guard Directorate

cc:

Tom Schneider, Ohio EPA-CO Natalie Oryshkewych, Ohio EPA-NEDO Megan Oravec, Ohio EPA-NEDO Katie Tait, OHARNG Steve Kvaal, USACE-Louisville District Nicole Walworth, USACE-Baltimore District Jennifer Tierney, Chenega Layne Young, Arcadis

NATIONAL GUARD BUREAU 111 SOUTH GEORGE MASON DRIVE ARLINGTON VA 22204-1373

January 24, 2023

Ohio Environmental Protection Agency DERR-NEDO Attn: Mr. Nicholas Roope 2110 East Aurora Road Twinsburg, OH 44087-1924

Subject: Ravenna Army Ammunition Plant Restoration Program, Remedial Investigation Quality Assurance Project Plan, Open Demolition Area #2 (RVAAP-004-R-01), Former Ravenna Army Ammunition Plant, Portage and Trumbull Counties, Ohio (Ohio EPA work ID 267000859274)

Dear Mr. Roope:

For your review, attached are the comment responses to your December 13, 2022 letter on the above referenced report. This includes any clarifications/discussions from the January 6, 2023 meeting between the Ohio EPA, Army, and Arcadis. Due to the small file size, this submittal will only be submitted via email and will not be submitted through the Ohio EPA LiquidFile system.

These responses were prepared for the Army National Guard in support of the RVAAP Restoration Program. Please contact the undersigned at (614) 336-6000 ext. 2053 or <u>kevin.m.sedlak.ctr@army.mil</u> if there are issues or concerns with this submission.

Sincerely,

TAIT.KATHRYN.SERE NA.1289508275 FOR Kevin M. Sedlak RVAAP Restoration Program Manager Army National Guard Directorate

cc: Tom Schneider, Ohio EPA-SWDO Natalie Oryshkewych, Ohio EPA-NEDO Megan Oravec, Ohio EPA-NEDO Katie Tait, OHARNG Steve Kvaal, USACE – Louisville District Nicole Walworth, USACE – Baltimore District
Comments for the DRAFT ODA2 RI QAPP (CJAG) - December 2022 Ravenna Army Ammunition Plant Ravenna Army Ammunition Plant Restoration Program Contract

Comment	Commenter	Page(s)	Section	Line(s) Comment	Response
				Technical Comments	
1	Ohio EPA			Monitoring Wells The Ohin Revised Code (ORC) 1521.01 (F)(2) defines a 'well' as any excevation, regardless of design or method of construction, created for any of the following purposes: (2) Determining the quantity, quely, level, or movement of ground vater in or the stratigraphy of an aquifer, excluding borings for instrumentation in dams, levees, or highway embankments, Monitoring wells installed at Camp James A. Garliely (CJAG) have not been historically submitted to the Ohio Department of Natural Resources (ODNR). ORC 1521.05 states, "The Jog shall be filed with the division of water resources within thirty days after the completion of construction of the vell on forms prescribed and prepared by the division, The Jog shall be kept on file by the division.	The Arry agrees and will have the differ file the novely installed values with the Ohio Department of Natural Resources (CONR), the OHARVE has coordinated records with CONR and have a greed that the bednock wells at the facility are of the most value and instructs to CONR; therefore, past wells logs installed in the bednock and not a leady in the ODNR system for the FVAAP restoration program will also be submitted into the ODNR database by the Army as discussed on the 6 January 2023 OAPP comment resolution call.
				Action Item: Please provide ODNR with the appropriate well logs per ORC 1521.01. Incremental Sampling Methodoboxy Precisions of Results	Please see responses below to Parts 2a and 2b.
2	Ohio EPA			Ohio EPA and Army National Guard have come to an agreement on precision and interpretation of Incremental Sampling Methodology (SM) results, below is the finalized approach from November 3, 2020, Response to Comments on RVAAP-H2 Load Line 9, Sampling and Analysis Plan (GAP) and Quality Assurance Project Plan (QAPP) (Ohio EPA Work Flow Activity #287000859264). These changes were initially made for the Load Line 1-4 and 12 QAPP to ensure remediation goals were metrix in a high level of confidence that field sampling errors and laboratory analysis errors wold be minimized. The text has been modified signify to include information provided in the draft (RVAAP-200-R-201) QAPP. For remedial investigations and excavations, confirmation samples will be collected using the Incremental Sampling Methodology (SM), the current QAPP informs the reader that first ten samples will be collected in triplicate, (which is the preferred approach for the Manhom Response Site (MRS) than viatat used for the confirmation sampling at LL -9, Following review and concurrence by (Notis EPA of the triplicate data, additional ISM field implicates will be collected such that 10% of confirmation samples are collected in triplicate, with of 10 Ohio EPA for review of the following that Quality QCBW). The results of the initial ISM field implicate samples and the results of the associated laboratory subsampler replicates will be collected samples are collected in triplicate, will be collected with a tot the CAP in the right same collected in triplicate events. The results of the initial ISM field implicate samples and the results of the associated laboratory subsampler replicates will be collected subsampler replicates will be collected subsamples and the results of the associated laboratory subsampler replicates will be submitted. One CPA for review of the following (CAC).	
2a	Ohio EPA			For ISM bioratory sub-sample reginate results greater than the Limits of Quantitation (LOQ) (duplicates for Polycycle aromatic hydrocastons (PAHs) and Metals: one per laboratory batch of up to 20 samples for each analytical group), and a replicive percent difference (PPD) of less than or equal to 20% as a goal; if this DOQ is not intel, a 12 Hag will be applied to the associated data.	Table B-23 in the DoD Quality Systems Manual for laboratories requires ISM laboratory replicates to be collected at the subsampling step on one ISM sample per batch. The acceptance criterion is that for results above the LOQ, RSD or RPD must not exceed 20%. The labs will apply a Ling
24				For the field ISM triplecates, a Relative Standard Deviation (RSD) of less than or equal to 35% as a goal (RSD less than or equal to 35%), will be incorporated into sample data evaluations. If this DOO is not met for the ISM triplecates, a Relative Standard Deviation (RSD) of less than or equal to 35% as a goal (RSD less than or equal to 35%), will be incorporated into sample data evaluations. If this DOO is not met for the ISM triplecates, are Relative Standard Deviation (RSD) of less than or equal to 35% as a goal (RSD less than or equal to 35%), will be incorporated into sample data evaluations. If this DOO is not met for the ISM triplecates amples, then Ohio EPA will work with the Army Ohio EPA and Arcadia U.S., line, will vork together to determine the anti forward, following the guidance below excerpted from the Hawaii Department of Health Technical Guidance Manual Section 427.73 "Evaluation of Data Representativeness, Table 42 Recommended Adjustment Multi-Incorement Data for Decision Marking Based on RSD or Representativeness, the the Army Ohio CHA, 2016).	to all samples within a batch for analytes that do not meet the acceptance criteria. The field replicate RSD DQOs proposed by Ohio EPA have been added to Worksheet #17 of the QAPP with the following minor modifications: 1. No changes to the recommendations for 'Good' precision. 2. The first two recommendations for 'Moderate' precision data have been added to Worksheet #17. The third recommendation, regarding
2b	Ohio EPA		QAPP Worksheet #17	Good Precision (R5D <35%) - Compare unadjued EM sample data decity to cleanup goal for decision making for RVAAP, the mean field replicate value will be used to compare to the cleanup goal); - Data can be used for confinancian purposes without the need for additional sampling, if deanup goals are met, Moderate Precision (R5D >35% but <95%) + Review analyset EI Mample data feedby to cleanup goal for decision making (or CJAG, the maximum field replicate value will be used to compare to the cleanup goal); - Compare unadjued EI M samples methods and laboratory processing and analysis methods and discuss potential sources of error (e.g., improper increment collection methods, inadequate number or mass of increments, unrepresentative blocratory subcampileg methods); - Compare unadjued EI M sample data decisity to cleanup goal for decision making (for CJAG, the maximum field replicate value will be used to compare to the cleanup goal); - Additional confirmation samplerg recommended following remediation of decision units (CUs) that exceed disanup goals, including use of smaller DUs and/or a larger number of increments and collection of additional replicate samplerg. Poor Precision (R5D >50% but <100%) + Review and discuss field samples methods and laboratory processing and discuss potential sources of error in report; + If the larger majority of foll error is attributable to laboratory subcampling and analysis error, request laboratory to subsampling and analysis error, request laboratory to subsampling and include additional sub- samplerg replicates; - Compare the 55% Upper Confidence Limit (UCL) (Cheltynehre method) for replicate data to 150% of the deanup goal for decision making; - Samplers and 5% UCL to the share materiation to 6% ULC, and manna sakulated for the registrate data. Compare reaches to 150% of the deanup goal. The advance of an amples as ervience for and analyze samples, and the approximation of the data to cleanup goal. The laboratory processing and analyze samples, and the approxim	additional contimuation sampling, does not seem to apply to an RI scenario and therefore has not been added to Worksheet IT.3 3. For the "Poor" Precision RSD range, the Army roposes to compare the 95% UCL (computed using the Chebyshew method) to the unadjusted determing here are opposed to 150% of the screening level, The 95% UCL (computed using the Chebyshew method) to the unadjusted determing here are opposed to 150% of the screening level, The 95% UCL (computed using the Chebyshew method) to the unadjusted determing here are opposed to 150% of the screening level, The 95% UCL (computed using the Chebyshew method) to the unadjusted the appopriate to compare the 95% UCL to a conservative risk-based screening level at the "poor" precision RSD range. 4. For the "very Poor" precision RSD range, the recommendations from Chito EPA have been adopted for SUs where replicate sample results are below the screening levels. The recommendation for data evaluation for the case where at least one of the replicate samples results are below the screening levels. The recommendation for data evaluation for the case where at least one of the replicate samples results are below the screening levels. The recommendation for data evaluation for the case where at least one of the replicate samples results are below the screening levels. The recommendation for data evaluation for the case where at least one of the replicate samples results are below the screening level. For SUs where replicated were not collected, a 95% UCL (collected be 95% UCL (collected be compared to 150% of the screening level for the replicate data. The results would also be compared to 150% of the screening level for the analytes with "Very Poor" RSDs.
2b (cont.)	Ohio EPA			Very Poor Precision (RSD > 100%). Very Poor Precision (RSD > 100%). Ut the bare provident of the dense providence of the registrate of the baratory stati-sampling and analysis error, request laboratory to subsample and analyze the batch of DU samples again using correct techniques, and include additional sub- ampling registrate	
				Action tem: The text above should be reversed, and changes made in the draft KVAAP-004-K-01 CAPP to be consistent with terminology and approach agreed to in the above. Project/Data Quality Objectives, 5D berefore thereid a Data Collection and Analysis Approach	Noted. The previously negotiated process is supported by the Ohio EPA Guidance on Evaluating Sediment Contaminant Results (January 2010)
3	Ohio EPA		QAPP Worksheet #11	Projectional Quarky Opecitives, so bevelop ine Project Lohenical Data Quection and Analysis Approach The approach for the refinement of ecological densitial invitation of the ecological screening (CPECs) Level 1 and Step 3A ecological assessments was negotiated with the use of mean to compare to ecological ascreening values (SXV) being recommended by Ohio EPA on an April 2011 Ideconference. In addition, the vortsheet states, " the furnitions constituential MC or (goen burnopen dendiated) OB/OD-related constituent concentrations in all the samples from the investigation area are less than the human health and ecological screening levels identified in Worksheet #15 of this QAPP, then no further action will be recommended with respect to NC and/or OB/OD- related chemical constituents," Action term: Please note, the mean sediment concentration can be used in the ecological accel level I when the Threshold Effect Concentrations (TECs) are the ecological screening value being used; maximum or 95%, UCL sediment concentrations need to be used when the Sediment Reference Values or Probable Effect Concentrations are the coological screening value. Keing used; maximum or 95%, UCL sediment concentrations need to be used when the Sediment Reference Values or Probable Effect Concentrations meet to be used when comparing to the Outside Mixing Zone Maximum (OMZM) or when only one round was collected. When developing an exposure point concentration to compare to the human health screening levels, the Ohio EPA Division of Environmental Response and Revital/Batalon Technical Decision Compandium generally recommends a maximum concentration be compared to the human health screening levels, the Ohio EPA Division of Environmental Response and Revital/Batalon Technical Decision Compandium generally recommends a maximum concentration be compared to the human health screening levels, the Ohio EPA Division of Environmental Response and Revital/Batalon Technical Decision Compandium generally recommends a maximum concentration be recomp	In the period of the period of the period of the period of the other sectors and the period of the p

17.7.5 Field Replicates

When field sampling is adequately "representative," repeat measurements within the same SU are expected to estimate the average contaminant concentration similarly. Field triplicate replicate results will be used as a QC check to evaluate acceptable performance of the sampling and analysis chain, including having an appropriate number of increments and adequate homogenization in sample preparation. These data will be used to determine the amount of variation from the mean that will be considered when aggregating data and when comparing average analyte concentrations in each SU to applicable screening levels.

As discussed previously, field triplicate replicates will be collected for 10 percent of the total number of ISM samples. Four of the 11 grids with triplicate replicates at the Kickout Area and seven of the 20 grids with triplicate replicates at the Source Area will be collected at the start of the sampling effort to provide an early indication of the RSDs between replicate results.

17.7.6 ISM Data Evaluation

The RSD (also known as the coefficient of variation or CV; RSD = CV * 100%) is a measure of the variation among a group of sample results. The percent RSD is the ratio of the standard deviation to the mean multiplied by 100. The percent RSD will be used to assess the degree of variability between a set of SU field replicate results. The RSD represents the precision (or variability) of the total sampling method, including combined field and laboratory precision.

At SUs without field replicates, if needed, a UCL for analytes of interest will be calculated using an inferred standard deviation (SD) from one or more nearby SUs at which field triplicate replicates were collected. Inferred SDs will be selected from field replicate SUs with similar soil types and similar analyte distributions to the SUs with no field replicates. That is, SDs from multi-replicate SUs in the Kickout Area, Source Area, Soil Cover, and Former OB/OD Unit will be applied to similar SUs without replicate data located within the same areas.

Previous soil remediation projects at the former RVAAP with ISM used for soil confirmation sampling have adopted Ohio EPA-recommended DQOs for SU replicate RSDs. The Ohio EPA-recommended DQOs are based on guidance from the Hawaii Department of Health Technical Guidance Manual Subsection 4.2: Use of Multi-Increment Samples to Characterize DUs (Hawaii DOH 2021). The previous DQOs have been adapted for the ODA2 RI as detailed in Table **XX** below.

Table XX – Replicate Sample Data Quality Objectives and Data Evaluation (based on Hawaii DOH2021)

"Good" precision RSD ≤ 35%	 Compare the mean of the field replicate values to the unadjusted screening level. Data for SUs where replicate samples were not collected can be assumed to be representative without adjustment.
"Moderate" precision 35% <rsd≤50%< td=""><td> Review and discuss field sampling methods and laboratory processing and analysis methods and discuss potential sources of error (e.g., improper increment collection methods, inadequate number or mass of increments, unrepresentative laboratory subsampling methods). </td></rsd≤50%<>	 Review and discuss field sampling methods and laboratory processing and analysis methods and discuss potential sources of error (e.g., improper increment collection methods, inadequate number or mass of increments, unrepresentative laboratory subsampling methods).

RSD Value	
	• Compare unadjusted ISM sample data directly to screening levels. For SUs with replicate data, use the maximum field replicate value to compare to the screening level.
"Poor" precision 50% <rsd≤100%< td=""><td> Review and discuss field sampling methods and laboratory processing and analysis methods and discuss potential sources of error (e.g., improper increment collection methods, inadequate number or mass of increments, unrepresentative laboratory subsampling methods). If the large majority of total error is attributable to laboratory subsampling and analysis error, request laboratory to subsample and analyze the batch of SU samples again using correct techniques and include additional sub-sampling replicates. Compare the 95% Upper Confidence Limit (UCL) (Chebyshev method) for replicate data to the unadjusted screening level for decision making. Estimate a 95% UCL for nearby SUs where replicates were not collected based on the standard deviation calculated for the replicate data. Compare results to the unadjusted screening levels. Provide additional, multiple lines of evidence for acceptance (or rejection) of the data for decision making purposes including knowledge of the site history and the anticipated potential for contamination above screening levels, the adequacy of the methods used to collect, process and analyze samples, and the approximation of the data to screening levels. Consider re-sampling of SU(s) most suspect for contamination using a larger number of increments and/or smaller SUs. </td></rsd≤100%<>	 Review and discuss field sampling methods and laboratory processing and analysis methods and discuss potential sources of error (e.g., improper increment collection methods, inadequate number or mass of increments, unrepresentative laboratory subsampling methods). If the large majority of total error is attributable to laboratory subsampling and analysis error, request laboratory to subsample and analyze the batch of SU samples again using correct techniques and include additional sub-sampling replicates. Compare the 95% Upper Confidence Limit (UCL) (Chebyshev method) for replicate data to the unadjusted screening level for decision making. Estimate a 95% UCL for nearby SUs where replicates were not collected based on the standard deviation calculated for the replicate data. Compare results to the unadjusted screening levels. Provide additional, multiple lines of evidence for acceptance (or rejection) of the data for decision making purposes including knowledge of the site history and the anticipated potential for contamination above screening levels, the adequacy of the methods used to collect, process and analyze samples, and the approximation of the data to screening levels. Consider re-sampling of SU(s) most suspect for contamination using a larger number of increments and/or smaller SUs.
"Very poor" precision RSD>100%	 Review and discuss field sampling methods and laboratory processing and analysis methods and discuss potential sources of error (e.g., improper increment collection methods, inadequate number or mass of increments, unrepresentative laboratory subsampling methods). If the large majority of total error is attributable to laboratory sub-sampling and analysis error, request laboratory to subsample and analyze the batch of SU samples again using correct techniques and include additional sub-sampling replicates. If all replicate sample results are below the screening level, then compare the 95% UCL (Chebyshev method) for replicate data to the unadjusted screening level. If at least one replicate sample result is greater than the screening level, then compare the 95% UCL (Chebyshev method) for replicates were not collected based on the standard deviation calculated for the replicate data. Compare results to 150% of the screening level. Provide additional, multiple lines of evidence for acceptance (or rejection) of the data for decision making purposes including knowledge of the site history and the anticipated potential for contamination above screening levels, the

RSD Value	
	 adequacy of the methods used to collect, process and analyze samples and the approximation of the data to screening levels. Consider re-sampling of SU(s) most suspect for contamination using a larger number of increments and/or smaller SUs.

The RSD ranges provided in Table **XX** will be used as guidelines for data evaluation and not as prescriptive limits. The data evaluation process to assess the ISM data and evaluate the DQOs described in this UFP QAPP may be modified depending upon the results. Evaluation of the data will consider the following concepts:

- Even high variability (poor precision) might not be important if the sample concentrations are far from a screening level. For instance, if the mean concentration for an analyte is low compared to the screening, the 95% UCL may still fall below the action level even if the % RSD is high. The % RSD is mostly of interest if the mean and 95% UCL straddle the applicable screening level (i.e., the mean is below the screening level but the 95% UCL exceeds the screening level). This means that there is statistical uncertainty about whether the true mean exceeds the applicable screening level.
- 2. At low detected concentrations, % RSD will tend to increase even though absolute differences in sample concentrations are small.

Mike DeWine, Governor Jon Husted, Lt. Governor Anne M. Vogel, Director

January 24, 2023

TRANSMITTED ELECTRONICALLY

Mr. Kevin M. Sedlak RVAAP Restoration Program Manager ARNG-Directorate Camp James A. Garfield JTC 1438 State Route 534 Newton Falls, OH 44444 RE: US Army Ravenna Ammunition Plt RVAAP Remediation Response Plans RI Federal Facilities Portage County 267000859274

Sent via email to: kevin.m.sedlak.ctr@army.mil

Subject: RVAAP - Open Demolition Area #2 Summary of Findings, Magnetometer-Assisted Survey of Sand Creek – December 6, 2022 Ohio EPA Concurrence

Dear Mr. Sedlak:

On December 8, 2022, the Ohio Environmental Protection Agency (Ohio EPA), Northeast District Office (NEDO), Division of Environmental Response and Revitalization (DERR) received and has reviewed the "Summary of Findings, Magnetometer-Assisted Survey of Sand Creek" (the "Report") - conducted November 14-18, 2022. The Report supports the Time Critical Removal Action for Open Demolition Area #2 at Camp James A. Garfield Joint Military Training Center. The document was prepared by U. S. Army Corps of Engineers – Baltimore District, and submitted by Chenega Reliable Services, LLC.

Ohio EPA noted an inconsistency with the weight of munitions debris (MD) reported between waypoints three and four in the Report. The body of the text references 25lbs of MD was recovered, while the conclusion references 20lbs of MD being recovered. This small discrepancy in weight is attributed to estimated weights and does not raise concern on the reliability of the conclusions of the Report. Based on the review, there is no evidence that would support Munitions and Explosives of Concern, Material Potentially Presenting an Explosive Hazard, or MD are migrating beyond the Open Demolition Area #2 Munitions Response Site boundary at this time. Ohio EPA will continue to review future Magnetometer-Assisted Surveys of Sand Creek to verify the conclusions of this Report remain valid.

Received 24 JAN 2023

US Army Ravenna Ammunition Plt RVAAP January 24, 2023 Page 2 of 2

This letter is an official response from Ohio EPA that will be maintained as a public record. If you have any questions concerning this letter, please contact me at (330) 963-1235 or by email at <u>nicholas.roope@epa.ohio.gov</u>.

Sincerely,

Nicholas Roope Environmental Specialist Division of Environmental Response and Revitalization

NR/cm

ec: Katie Tait, OHARNG RTLS, CJAG Steve Kvaal, USACE Louisville Nathaniel Peters, USACE Louisville Rebecca Shreffler, Chenega Megan Oravec, Ohio EPA, NEDO, DERR Natalie Oryshkewych, Ohio EPA, NEDO, DERR Thomas Schneider, Ohio EPA, SWDO, DERR

Mike DeWine, Governor Jon Husted, Lt. Governor Anne M. Vogel, Director

March 22, 2023

TRANSMITTED ELECTRONICALLY

Mr. Kevin M. Sedlak RVAAP Restoration Program Manager ARNG-Directorate Camp James A. Garfield JTC 1438 State Route 534 Newton Falls, OH 44444 RE: US Army Ravenna Ammunition Plt RVAAP Remediation Response Plans RA Federal Facilities Portage County 267000859271

Sent via email to: kevin.m.sedlak.ctr@army.mil

Subject: Final Uniform Federal Policy Quality Assurance Project Plan for Remedial Action at the Former Ravenna Army Ammunition Plant RVAAP-060-R-01 Block D Igloo Munitions Response Site - dated February 9, 2023 – Ohio EPA Concurrence

Dear Mr. Sedlak:

Ohio Environmental Protection Agency (Ohio EPA), Northeast District Office (NEDO), Division of Environmental Response and Revitalization (DERR) has received and reviewed the "Final Uniform Federal Policy Quality Assurance Project Plan for Remedial Action at the Former Ravenna Army Ammunition Plant RVAAP-060-R-01 Block D Igloo Munitions Response Site," (QAPP) dated February 9, 2023. The QAPP was submitted by Chenega Reliable Services on behalf of the U.S. Army Corps of Engineers, Baltimore District.

Ohio EPA has no comments and concurs with the Uniform Federal Policy Quality Assurance Project Plan for the Block D Igloo Munitions Response Site in its final format.

If you have any questions concerning this correspondence, please contact me at (330) 963-1235.

Sincerely,

Nicholas Roope Environmental Specialist Division of Environmental Response and Revitalization

NR/cm

ec: Allan Brillinger, Chenega Katie Tait, OHARNG RTLS, CJAG Steve Kvaal, USACE Louisville Nathaniel Peters, USACE Louisville Brian Tucker, Ohio EPA, CO, DERR Megan Oravec, Ohio EPA, NEDO, DERR Natalie Oryshkewych, Ohio EPA, NEDO, DERR Thomas Schneider, Ohio EPA, SWDO, DERR

> Northeast District Office • 2110 East Aurora Road • Twinsburg, OH 44087-1924 epa.ohio.gov • (330) 963-1200 • (330) 487-0769 (fax)

February 9, 2023

Ohio Environmental Protection Agency DERR-NEDO Attn: Mr. Nicholas Roope 2110 East Aurora Road Twinsburg, OH 44087-1924

Subject: Final Uniform Federal Policy Quality Assurance Project Plan/Remedial Action Work Plan for the RVAAP-060-R-01 Block D Igloo Munitions Response Site, Version 1.0, Portage and Trumbull Counties, Ohio, Contract No. W912DR-21-D-0005, Delivery Order No. W912DR21F0327 (Ohio EPA Work Activity # 267-000859-271)

Dear Mr. Roope:

An electronic version of the Final Uniform Federal Policy Quality Assurance Project Plan/ Remedial Action Work Plan for the RVAAP-060-R-01 Block D Igloo Munitions Response Site, Version 1.0 will be sent using the Ohio EPA LiquidFile system.

This document was prepared in support of the Restoration Program at the Former Ravenna Army Ammunition Plant (RVAAP), currently known as Camp James A. Garfield (CJAG) in Portage and Trumbull counties, Ohio. Please contact the undersigned at 614-336-6000, ext 2053 or by email at <u>kevin.m.sedlak.ctr@army.mil</u> if there are issues or concerns with this submission.

Sincerely,

TAIT.KATHRYN.SE

FOR Kevin M. Sedlak RVAAP Restoration Program Manager Army National Guard Directorate

 cc: Katie Tait, OHARNG (email transmittal only) Travis McCoun, USACE Baltimore District (email transmittal only) Nicole Walworth, USACE Baltimore District (email transmittal only) Jennifer Tierney, Chenega Reliable Services, LLC (two hard copies, two CDs) Steve Kvaal, USACE – Louisville Project Manager (email transmittal only) Tom Schneider, Ohio EPA, DERR, SWDO (email transmittal only) Megan Oravec, Ohio EPA, DERR, NEDO (email transmittal only)

Mike DeWine, Governor Jon Husted, Lt. Governor Anne M. Vogel, Director

January 24, 2023

TRANSMITTED ELECTRONICALLY

Mr. Kevin M. Sedlak RVAAP Restoration Program Manager ARNG-Directorate Camp James A. Garfield JTC 1438 State Route 534 Newton Falls, OH 44444 RE: US Army Ravenna Ammunition Plt RVAAP Remediation Response Plans RA Federal Facilities Portage County 267000859271

Sent to: kevin.m.sedlak.ctr@army.mil

Subject: Response to Comments on Draft Uniform Federal Policy Quality Assurance Project Plan for Remedial Action Former Ravenna Army Ammunition Plant RVAAP-060-R-01 Block D Igloo MRS - dated November 29, 2022 - Request for Final

Dear Mr. Sedlak:

Ohio Environmental Protection Agency (Ohio EPA), Northeast District Office (NEDO), Division of Environmental Response and Revitalization (DERR) has received and reviewed the "Response to Comments on Draft Uniform Federal Policy Quality Assurance Project Plan for Remedial Action Former Ravenna Army Ammunition Plant RVAAP-060-R-01 Block D Igloo Munitions Response Site," dated November 29, 2022.

Ohio EPA has no additional comments, and we request the submittal of the final Uniform Federal Policy Quality Assurance Project Plan for Remedial Action at the Former Ravenna Army Ammunition Plant RVAAP-060-R-01 Block D Igloo Munitions Response Site for review and concurrence.

If you have any questions regarding this letter, please contact me at (330) 963-1235.

Sincerely,

Nicholas Roope Environmental Specialist Division of Environmental Response and Revitalization

NR/cm

ec: Katie Tait, OHARNG RTLS, CJAG Steve Kvaal, USACE Louisville Nathaniel Peters, USACE Louisville Rebecca Shreffler, Chenega Brian Tucker, Ohio EPA, CO, DERR Megan Oravec, Ohio EPA, NEDO, DERR Natalie Oryshkewych, Ohio EPA, NEDO, DERR Thomas Schneider, Ohio EPA, SWDO, DERR

Received 24 JAN 2023

Northeast District Office • 2110 East Aurora Road • Twinsburg, OH 44087-1924 epa.ohio.gov • (330) 963-1200 • (330) 487-0769 (fax) Mike DeWine, Governor Jon Husted, Lt. Governor Anne M. Vogel, Director

August 31, 2023

TRANSMITTED ELECTRONICALLY

Mr. Kevin M. Sedlak Restoration Program Manager ARNG-ILE Cleanup Camp James A. Garfield JTC 1438 State Route 534 Newton Falls, OH 44444 RE: US Army Ravenna Ammunition Plt RVAAP Remediation Response Plans Federal Facilities RA Portage County 267000859272

Sent via email to: kevin.m.sedlak.ctr@army.mil

Subject: Final Uniform Federal Policy Quality Assurance Project Plan/Remedial Action Work Plan for the RVAAP-063-R-01 Group 8 Munitions Response Site, Version 1.0, Portage and Trumbull Counties, Ohio - Dated July 25, 2023 -Ohio EPA Concurrence

Dear Mr. Sedlak:

On July 25, 2023, the Ohio Environmental Protection Agency (Ohio EPA), Northeast District Office (NEDO), Division of Environmental Response and Revitalization (DERR) received the "Final Uniform Federal Policy Quality Assurance Project Plan/Remedial Action Work Plan for the RVAAP-063-R-01 Group 8 Munitions Response Site, Version 1.0, Portage and Trumbull Counties, Ohio"¹ (the "Report") dated July 25, 2023. The Report was submitted by Chenega Reliable Services, on behalf of the U.S. Army Corps of Engineers (USACE), Baltimore District, in response to Ohio EPA's June 20, 2023, letter requesting the final document.

Ohio EPA concurs with the Report.

Received 01 SEP 2023

 1 http://edocpub.epa.ohio.gov/publicportal/ViewDocument.aspx?docid=2480136

 Northeast District Office
 330 | 963 1200

 2110 E. Aurora Road
 epa.ohio.gov

 Twinsburg, Ohio 44087 U.S.A.
 File and the second second

The State of Dirio is an Equal Opportunity Employer and Provider of ADA Services.

US Army Ravenna Ammunition Plt RVAAP August 31, 2023 Page 2 of 2

If you have any questions concerning this letter or report, please contact me at (330) 963-1235 or <u>nicholas.roope@epa.ohio.gov</u>.

Sincerely,

Nicholas Roope Environmental Specialist Division of Environmental Response and Revitalization

NR/cm

ec: Katie Tait, OHARNG RTLS, CJAG Steve Kvaal, USACE Louisville Nathaniel Peters, USACE Louisville Angela Cobbs, Chenega Brian Tucker, Ohio EPA, CO, DERR Megan Oravec, Ohio EPA, NEDO, DERR Natalie Oryshkewych, Ohio EPA, NEDO, DERR Thomas Schneider, Ohio EPA, SWDO, DERR

August 24, 2023

Ohio Environmental Protection Agency DERR-NEDO Attn: Mr. Nicholas Roope 2110 East Aurora Road Twinsburg, OH 44087-1924

Subject: Notification of Field Work for the RVAAP-063-R-01 Group 8 Munitions Response Site, Portage and Trumbull Counties, Ohio, Contract No. W912DR-21-D-0005, Delivery Order No. W912DR21F0327 (Ohio EPA Work Activity # 267-000859-272)

Dear Mr. Roope:

In accordance with the Director's Final Findings and Orders, Section XIII, #28, for the RVAAP Restoration Program, the Army National Guard (ARNG) is providing notification of field activities at the former RVAAP (now known as Camp James A. Garfield) 15 days prior to the scheduled start date of 11 September 2023. HydroGeoLogic, Inc. will begin mobilization to the Group 8 MRS on 5 September 2023 to setup the work site (mobilization of site supervisor). Data collection will follow site setup and include mobilization for soil sampling.

Please contact the undersigned at 614-336-6000, ext 2053 or kevin.m.sedlak.ctr@army.mil if there are issues or concerns.

Very Respectfully, TAIT.KATHRYN.SE RENA.1289508275 TAIT.KATHRYN.SERENA.1289508275 TAIT.KATHRYN.SERENA.1289508275 Tait.Kathryn.Serena.1289508275

FOR Kevin M. Sedlak RVAAP Restoration Program Manager Army National Guard Directorate

cc: Tom Schneider, Ohio EPA-SWDO Megan Oravec, Ohio EPA-NEDO Katie Tait, OHARNG Travis McCoun, USACE Baltimore District Nicole Walworth, USACE Baltimore District Jennifer Tierney, Chenega Reliable Services, LLC Steve Kvaal, USACE – Louisville District

July 25, 2023

Ohio Environmental Protection Agency DERR-NEDO Attn: Mr. Nicholas Roope 2110 East Aurora Road Twinsburg, OH 44087-1924

Subject: Final Uniform Federal Policy Quality Assurance Project Plan/Remedial Action Work Plan for the RVAAP-063-R-01 Group 8 Munitions Response Site, Version 1.0, Portage and Trumbull Counties, Ohio, Ohio EPA Work Activity #267-000859-272

Dear Mr. Roope:

An electronic version of the Final Uniform Federal Policy Quality Assurance Project Plan / Remedial Action Work Plan for RVAAP-063-R-01 Group 8 Munitions Response Site will be sent using the Ohio EPA LiquidFile system. Responses to Ohio EPA comments were submitted on May 8, 2023 and concurrence from the Ohio EPA was received on June 21, 2023. This document was prepared in support of the Restoration Program at the Former Ravenna Army Ammunition Plant (RVAAP), currently known as Camp James A. Garfield (CJAG) in Portage and Trumbull counties, Ohio.

Please contact the undersigned at 614-336-6000, ext 2053 or by email at kevin.m.sedlak.ctr@army.mil if there are issues or concerns with this submission.

Sincerely,

TAIT.KATHRYN.SE Digitally signed by TAIT.KATHRYN.SERENA.12895082 RENA.1289508275 75 Date: 2023.07.25 08:46:29 -04'00'

FOR Kevin M. Sedlak RVAAP Restoration Program Manager Army National Guard Directorate

 cc: Katie Tait, OHARNG (email transmittal only) Travis McCoun, USACE Baltimore District (email transmittal only) Nicole Walworth, USACE Baltimore District (email transmittal only) Jennifer Tierney, Chenega Reliable Services, LLC (email transmittal only) Steve Kvaal, USACE – Louisville Project Manager (email transmittal only) Megan Oravec, Ohio EPA, DERR, NEDO (email transmittal only) Tom Schneider, Ohio EPA, SWDO (email transmittal only)

Mike DeWine, Governor Jon Husted, Lt. Governor Anne M. Vogel, Director

June 20, 2023

TRANSMITTED ELECTRONICALLY

Mr. Kevin M. Sedlak Restoration Program Manager ARNG-ILE Clean up Camp James A. Garfield JTC 1438 State Route 534 Newton Falls, OH 44444

Sent via email to: kevin.m.sedlak.ctr@army.mil RE: US Army Ravenna Ammunition Plt RVAAP Remediation Response Plans Federal Facilities RA Portage County 267000859272

Subject: Response to Ohio EPA Comments on the Draft Uniform Federal Policy Quality Assurance Project Plan for Remedial Action at RVAAP-063-R-01 Group 8 Munitions Response Site, Version 1.0, Portage and Trumbull Counties, Ohio - Dated May 8, 2023 - Ohio EPA Request for Final

Dear Mr. Sedlak:

On May 8, 2023, the Ohio Environmental Protection Agency (Ohio EPA), Northeast District Office (NEDO), Division of Environmental Response and Revitalization (DERR) received the "Response to Ohio EPA Comments on the Draft Uniform Federal Policy Quality Assurance Project Plan for Remedial Action at RVAAP-063-R-01 Group 8 Munitions Response Site, Version 1.0, Portage and Trumbull Counties, Ohio"¹ (the "Report") dated May 8, 2023. The Report was submitted by Chenega Reliable Services, on behalf of the U.S. Army Corps of Engineers (USACE), Baltimore District.

Ohio EPA has reviewed the Report and has no further comments. Please provide the final Uniform Federal Policy Quality Assurance Project Plan for Remedial Action at RVAAP-063-R-01 Group 8 Munitions Response Site for Ohio EPA concurrence.

This letter is an official response from Ohio EPA that will be maintained as a public record.

¹ http://edocpub.epa.ohio.gov/publicportal/ViewDocument.aspx?docid=2320688

US Army Ravenna Ammunition Plt RVAAP June 20, 2023 Page 2 of 2

If you have any questions concerning this letter or report, please contact me at (330) 963-1235 or nicholas.roope@epa.ohio.gov.

Sincerely,

Nicholas Roope Environmental Specialist Division of Environmental Response and Revitalization

NR/cm

ec: Angela Cobbs, Chenega Katie Tait, OHARNG RTLS, CJAG Steve Kvaal, USACE Louisville Nathaniel Peters, USACE Louisville Brian Tucker, Ohio EPA, CO, DERR Megan Oravec, Ohio EPA, NEDO, DERR Natalie Oryshkewych, Ohio EPA, NEDO, DERR Thomas Schneider, Ohio EPA, SWDO, DERR

Received June 21, 2023

May 8, 2023

Ohio Environmental Protection Agency DERR-NEDO Attn: Mr. Nicholas Roope, Project Coordinator 2110 East Aurora Road Twinsburg, OH 44087-1924

Subject: Response to Ohio EPA Comments on "Draft Uniform Federal Policy Quality Assurance Project Plan for Remedial Action at RVAAP-063-R-01 Group 8 Munitions Response Site, Version 1.0, Portage and Trumbull Counties, Ohio" dated February 2023 (Work Activity No. 267-000-859-036)

Dear Mr. Roope:

Enclosed for your review are responses to the Ohio Environmental Protection Agency (Ohio EPA) comments received April 19, 2023. These comments were received following Ohio EPA review of the above-referenced document, submitted in February 2023. A summary of the responses to the comments received is included below.

Comment Received:

Duplicate sampling vs. Split Sampling

Field duplicate samples are independent samples collected as close as possible in space and time to the original investigative sample. Immediately following collection of the original sample, the field duplicate sample is collected using the same collection method. Care should be taken to collect the field duplicate sample as close to the location of the original sample as possible. Field duplicate samples can measure how sampling and field procedures influence the precision of an environmental measurement. They can also provide information on the heterogeneity of a sampling location. Typically, field duplicates are collected at a frequency of one for every 10 investigative samples of the same matrix type.

Field split samples are usually a set of two or more samples taken from a larger homogenized sample (or individual location). The larger sample is usually collected from a single sampling location but can also be a composite sample. Field split samples can be sent to two or more laboratories and are used to provide comparison data between the laboratories.

Action Item: Please include a brief paragraph similar to the above outlining that the duplicate samples will be collected as a separate/independent sample and that a duplicate sample will not be collected from the other side of the split-spoon.

Response to Comment:

The intent is to collect field duplicate samples. Per the guidance above, field duplicate samples will be collected independently and given a dedicated sample time. Duplicate samples will be retrieved with a separate dedicated push of the DPT rig at a location immediately adjacent to the parent sample. A duplicate soil sample will be collected at a frequency of one for every 10 soil samples. Language will be added following the last sentence of Worksheet 20 of the work plan to read:

Subject: RVAAP-063-R-01 Group 8 MRS QAPP, Response to Comments, RVAAP Restoration Program

During pre-excavation soil and backfill soil characterization sampling, field duplicate samples will be collected at a rate of approximately 1 per 10 regular field samples and MS/MSD pairs will be collected at a rate of approximately 1 per 20 regular field samples. Field duplicate samples will be collected from a separate advancement of the split spoon or auger, immediately adjacent to the parent sample to preserve the independence of the duplicate sample. Field duplicates will receive a dedicated sample time. MS/MSD samples can be collected from homogenized increments within the same split spoon as the parent sample. MS/MSD samples will share the sample time with the parent sample.

Comment Received:

Horizontal Extent

It is unclear how the full horizontal extent for confirmation sampling will occur if the lateral extent begins to go under one of the existing buildings surrounding the excavation area.

Action Item: Though it is not anticipated that there would be anything under the buildings, as most of the deposition/release of any hazardous substance would be on the surface and not at depth based on site history – it is important to provide a brief statement/plan for how to collect samples laterally if a potential limitation exists.

Response to Comment:

As suggested, contaminated soil samples are not expected to be present below buildings. However, the possibility remains that delineation may not be completely realized if exceedances are observed in the soil at the edge of buildings. In this scenario, the results will be discussed in the Pre-Excavation Report and subsequent Data Usability Summaries with context provided that the extent of soil contamination has not been delineated below the building(s). It is not within the scope of this project, at this time, to further delineate or remediate the extent of contamination below the buildings.

Section 11.2.7 (page 34, lines 33-35) states: "If the horizontal extent of contamination has not been defined at grid locations along the outer boundaries of the quadrants via sidewall sampling, then HGL will coordinate with USACE to determine if additional soil sampling for lateral delineation is required." The project delivery team and stakeholders, upon review of the Pre-Excavation Report, may revisit and/or expand the scope of the current project or plan for additional future work. In the meantime, a contingency plan has not been formulated in the event the hypothetical situation described is realized. No changes made to the Work Plan.

Comment Received:

Past tense - Grammar

Project Objective 3 states, "Confirmation Soil Sampling. Confirmation sampling following excavation will be performed on the excavation floor of grid-based locations where results continue to exceed PALs [Project Action Limits], thus excavation <u>was</u> [emphasis added] complete to 2.0 ft bgs [below ground surface]".

Action Item: This appears to be a typo, as excavation has not been completed yet. Please edit the text accordingly.

Subject: RVAAP-063-R-01 Group 8 MRS QAPP, Response to Comments, RVAAP Restoration Program

Response to Comment:

The intent of the statement was to infer that confirmation samples will be collected only where excavation was completed down to 2.0 ft bgs. The pre-excavation sampling will include the collection of samples to 2.0 ft bgs. For example, if excavation is only required to 1.5 ft bgs, a confirmation sample result will already exist in the 1.5-2.0-foot depth and no additional confirmation sampling will be necessary. However, if soil samples exceed PALs for all increments to the depth of 2.0 feet, the soil will be excavated to 2.0 feet in that grid area and an additional confirmation sample will be collected. The text has been reworded for clarity:

In the event that all pre-excavation samples including the 1.5–2.0 ft bgs increment exceed PALs (Project Action Limits) for a given grid location, that grid area will be excavated to 2.0 ft bgs. A separate confirmation sampling effort, following excavation will be performed for the excavation floor at those sample locations to collect and analyze for metals of concern at the 2.0-2.5-ft bgs increment. Should confirmation samples result in a PAL exceedance, the next six-inch depth increment will also be collected for analysis.

Summary

These responses to comments were prepared in support of the Munitions Response Services performed at the former Ravenna Army Ammunition Plant, Portage and Trumbull Counties, Ohio. This document was prepared in support of the Restoration Program at the former Ravenna Army Ammunition Plant, currently known as Camp James A. Garfield in Portage and Trumbull counties, Ohio. Please contact the undersigned at 614-336-6000, ext. 2053 or by email at <u>kevin.m.sedlak.ctr@army.mil</u> if there are issues or concerns with this submission.

Sincerely,

TAIT.KATHRYN.SE Digitally signed by TAIT.KATHRYN.SERENA.12895082 RENA.1289508275 75 Date: 2023.05.08 09:06:23 -04'00'

FOR Kevin M. Sedlak RVAAP Restoration Program Manager Army National Guard Directorate

cc: Kathryn Tait, OHARNG Travis McCoun, USACE Baltimore District Nicole Walworth, USACE Baltimore District Steve Kvaal, USACE – Louisville Project Manager Jennifer Tierney, Chenega Reliable Services, LLC Tom Schneider, Ohio EPA, DERR, SWDO

February 9, 2023

Ohio Environmental Protection Agency DERR-NEDO Attn: Mr. Nicholas Roope 2110 East Aurora Road Twinsburg, OH 44087-1924

 Subject: Draft Uniform Federal Policy Quality Assurance Project Plan / Remedial Action Work Plan for the RVAAP-063-R-01 Group 8 Munitions Response Site, Version 1.0, Portage and Trumbull Counties, Ohio, Contract No. W912DR-21-D-0005, Delivery Order No. W912DR21F0327 (Ohio EPA Work Activity # 267-000859-201)

Dear Mr. Roope:

An electronic version of the Draft Uniform Federal Policy Quality Assurance Project Plan/Remedial Action Work Plan for the RVAAP-063-R-01 Group 8 Munitions Response Site, Version 1.0 will be sent using the Ohio EPA LiquidFile system.

This document was prepared in support of the Restoration Program at the Former Ravenna Army Ammunition Plant (RVAAP), currently known as Camp James A. Garfield (CJAG) in Portage and Trumbull counties, Ohio. Please contact the undersigned at 614-336-6000, ext 2053 or by email at <u>kevin.m.sedlak.ctr@army.mil</u> if there are issues or concerns with this submission.

Sincerely,

TAIT.KATHRYN.SE Digitally signed by TAIT.KATHRYN.SEENA.12895082 75 Date: 2023.02.09 13:36:56 -05'00'

FOR Kevin M. Sedlak RVAAP Restoration Program Manager Army National Guard Directorate

 cc: Katie Tait, OHARNG (email transmittal only) Travis McCoun, USACE Baltimore District (email transmittal only) Nicole Walworth, USACE Baltimore District (email transmittal only) Jennifer Tierney, Chenega Reliable Services, LLC (email transmittal only) Steve Kvaal, USACE – Louisville Project Manager (email transmittal only) Tom Schneider, Ohio EPA, DERR, SWDO (email transmittal only) Megan Oravec, Ohio EPA, DERR, NEDO (email transmittal only)

December 8, 2023

Ohio Environmental Protection Agency DERR-NEDO Attn: Ms. Natalie Oryshkewych 2110 East Aurora Road Twinsburg, OH 44087-1924

Subject: Ravenna Army Ammunition Plant (RVAAP) Restoration Program, Portage/Trumbull Counties, Ohio, Monthly Activity Report - November 2023

Dear Ms. Oryshkewych:

Attached for your review is the "RVAAP Restoration Program - DFFO Monthly Summary Report – November 2023". The report summarizes the Restoration Program activities conducted at the former RVAAP for the period from November 1, 2023, through November 30, 2023. This report is being submitted to the Ohio EPA to comply with the Ohio EPA Director's Final Findings and Orders, Section XVI, paragraphs 36 and 37. Due to small file size, this report is only being submitted electronically via email.

Please contact the undersigned at (330)235-2153 or <u>kevin.m.sedlak.ctr@army.mil</u> if there are issues or concerns with this submission.

Sincerely,

TAIT.KATHRYN.SE Digitally signed by TAIT.KATHRYN.SERENA.1289508275 RENA.1289508275 Date: 2023.12.07 14:10:28 -05'00'

FOR Kevin M. Sedlak RVAAP Restoration Program Manager Army National Guard Directorate

Attachment

cc: Megan Oravec, Ohio EPA, DERR Tom Schneider, Ohio EPA, DERR Kevin Palombo, Ohio EPA, DERR Katie Tait, OHARNG Steve Kvaal, USACE – Louisville James Trumble, USACE – Louisville Jennifer Tierney, Chenega, Administrative Record

Status of project activities for reporting period (November 2023)

PROJECT NAME	USACE TECH MGR /Contractor	PROJECT STATUS
2021 RI/FS Completion Contract for IRP AOCs	N. Peters / Leidos	The Army awarded a modification to Leidos' contract on September 19, 2023, to get additional support and Leidos began reviewing and evaluating data in response to Ohio EPA concerns about the Draft RI Report for RVAAP-67 Facility-wide Sewers. The Army is looking to schedule a technical meeting with the Ohio EPA for January 2024.
Block D MRS and Group 8 MRS RD/RAs	Travis McCoun & Nicole Walworth / HGL	Field work (tree cutting) at the Block D MRS started in October 2023 and is ongoing. Results for the pre-excavation samples at the Group 8 MRS were received and HGL is refining the excavation plan based on the results from the sampling. HGL conducted waste characterization sampling at the Group 8 MRS.
RVAAP-004-R-01 ODA #2	Nicole Walworth & Travis McCoun / Arcadis	Ohio EPA approved the Final QAPP on April 3, 2023. Field work is ongoing. The Post-BIP Sampling Memo for ODA2 was submitted to the Ohio EPA on October 26, 2023, and comments were received November 22, 2023. The Army held a field update meeting with the Ohio EPA on November 29, 2023.
Remedial Actions for 3 AOCs – RVAAP-06 C Block Quarry, RVAAP-50 Atlas Scrap Yard, CC RVAAP-70 E Classification Yard	N. Peters / PIKA- Insight JV	The Preliminary Draft Work Plan for CC RVAAP-70 was submitted for Army review on November 1, 2023. Pika-Insight continued revisions to the Draft Remedial Design/Work Plan for RVAAP-50 in response to Army comments on the Preliminary Draft. Pika-Insight continued responding to Army comments on the Draft SSHP/APP for the remedial actions. PIKA-Insight is working on the Draft RD for RVAAP-06.
Investigation at 9 AOCs - RVAAP-34 Sand Creek, CC RVAAP-69 Building 1048 Fire Station, CC RVAAP-78 Quarry Pond Dump, CC RVAAP- 79 DLA Ore Storage Yard, RVAAP-38 NACA Test Area, RVAAP- 45 Wet Storage, RVAAP-42 Load Line 9, CC RVAAP- 76 Depot Area, CC RVAAP-70 E Classification Yard		 On November 8, 2023, the Ohio EPA provided comments on the Draft UFP-QAPP for RVAAP-34 Sand Creek Disposal Road Landfill. On November 15, 2023, the Army provided a response letter to Ohio EPA. On August 31, 2023, the Draft Multi-AOC Delineation Sampling UFP-QAPP for RVAAP-38, RVAAP-42, RVAAP-45, and CC RVAAP-76 was submitted to the Ohio EPA. Ohio EPA comments were received on December 6, 2023. On October 19, 2023, the Draft VI Study Work Plan for CC RVAAP-69 Former Fire Station was submitted to Ohio EPA. Comments are pending. Leidos is working on the Draft QAPP for CC RVAAP-78. On October 13, 2023, the Ohio EPA provided comments on the Final RI Addendum for CC RVAAP-79 DLA Ore Storage Yard. Additional work was requested beyond what is specified in the contractor's scope and previous correspondence. Leidos and the Army are developing a path forward. Leidos continued developing the Accident Prevention Plan and the Site Safety and Health Plan to address all planned field work.
2022 Environmental Program Support Services	-	On November 15, 2023, Chenega submitted the Preliminary Draft 2023 Annual Land Use Control Report for Ramsdell Quarry Landfill, Load Line 1, 2, 3, 4, 12, Dump along Paris-Windham Rd, Open Demolition Area #2, and Winklepeck Burning Grounds for Army review.

PROJECT NAME	USACE TECH MGR /Contractor	PROJECT STATUS
RVAAP-66 Facility Wide Ground Water Monitoring	J. Trumble / Leidos	Leidos continues to work on the 2023 Draft Annual FWGWMP Report and scheduling the installation of the driveways for the monitoring wells located south of State Route 5. Final approval for the driveway permit was issued by ODOT November 3, 2023.

A. Describe difficulties encountered during the reporting period and actions taken to rectify any difficulties

B. Identify changes in key personnel

None.

C. List target and actual completion dates for each element of activity, including project completion

The actual completion dates and target dates where applicable are provided with the status of activities in Section A.

D. Provide an explanation for any deviation from applicable schedules

None.

E. Indicate how much soil and groundwater was generated and/or transported and disposed as part of RVAAP restoration activities

Three 55-gallon drums containing nonhazardous purge water and decontamination water from the Fall 2023 FWGWMP sampling event are staged in Building 1036. The waste is properly staged, labeled, and being inspected at Building 1036 while awaiting proper transport and disposal.

Two 55-gallon drums of nonhazardous IDW was generated during the HGL initial sampling at the Group 8 MRS. The waste is properly staged, labeled, and being inspected at Building 1036 while awaiting proper transport and disposal.

Approximately 2570 tons of trees/wood have been generated so far and taken for recycling as part of the Block D MRS site work.

F. Describe activities planned for the following month (December 2023)

- 1. HGL will continue remedial action field work at the Block D MRS and the Group 8 MRS.
- 2. Arcadis will continue field work operations at the Open Demolition Area 2 MRS.
- 3. Pending resolution of Army comments, PIKA-Insight JV will submit the Draft Remedial Design for RVAAP-06 for Ohio EPA review.
- 4. Pika-Insight JV plans to submit the Draft Remedial Design for RVAAP-50 Atlas Scrap Yard for Ohio EPA review.
- 5. Chenega plans to respond to Army comments on the Preliminary Draft Annual 2023 LUC Report. Once

Army comments are resolved, Chenega will submit the Draft to Ohio EPA for review.

- 6. Leidos will continue preparing for a meeting with the Army and the Ohio EPA regarding the path forward on the RI Report for the Facility-wide Sewers RVAAP-67.
- 7. Leidos plans to continue developing the Draft APP/SSHP for the Investigation of Nine AOCs for Army review.
- 8. Leidos plans to submit the Draft UFP-QAPP for CC RVAAP-78 to Ohio EPA after Army comments on the Preliminary Draft are resolved.
- 9. Leidos plans to respond to Ohio EPA comments on the Draft Work Plan for the Vapor Intrusion Study for CC RVAAP-69 once Ohio EPA comments are received.
- 10. Upon receipt of Ohio EPA comments on the Army's Response Letter for the Draft UFP-QAPP for RVAAP-34 Sand Creek Disposal Road Landfill, Leidos will prepare the Final document.
- 11. Leidos will prepare and submit responses to comment on the Draft Multi-AOC Delineation Sampling UFP-QAPP for RVAAP-38, RVAAP-42, RVAAP-45, and CC RVAAP-76.
- 12. Leidos will continue developing a path forward with the Army regarding Ohio EPA's comments for CC RVAAP-79 DLA Ore Storage Yard RI Addendum.

G. Describe activities currently under Ohio EPA review and/or activities to be submitted for Ohio EPA review in the next 8 weeks.

Site Name/Activity Name	Current Status – In Progress/To Be Submitted	Start Date (Actual or Projected)	End Date (based on 45 day review timeframe)	Ohio EPA Reviewer Name (if known)	
Response to Ohio EPA Comments on the Draft QAPP for RVAAP-38, 42, 45, CC RVAAP-76 (Multi- AOC) - Leidos	To be submitted			Ed D'Amato	
Responses to Ohio EPA Comments on the Draft QAPP for RVAAP-34 - Leidos	To be submitted			Kevin Palombo/Craig Kowalski	
Draft VI Study Work Plan for CC RVAAP-69 - Leidos	In progress	October 19, 2023	January 16, 2024	Ed D'Amato	
Draft Remedial Design Work Plan for RVAAP-50 Atlas Scrap Yard - Insight	To be submitted			Ed D'Amato	
Draft Remedial Design Work Plan for RVAAP-06 C Block Quarry	To be submitted				
Draft Spring 2023 FWGWMP Semiannual Report - Leidos	In Progress	October 13, 2023	November 27, 2023	Kevin Palombo/Liam McEvoy	
Responses to Ohio EPA comments on the Post	To be submitted			Nick Roope	

Site Name/Activity Name	Current Status – In Progress/To Be Submitted	Start Date (Actual or Projected)	End Date (based on 45 day review timeframe)	Ohio EPA Reviewer Name (if known)
BIP Sampling Memo for ODA2 - Arcadis				

H. List of FY24 Milestones

Milestone Activity	Milestone Date	Actual Date Achieved
Block D Igloo MRS Draft Remedial	August 30, 2024	
Action Completion Report - HGL	-	
Group 8 MRS Draft Remedial Action Completion Report – HGL	August 30, 2024	
Draft 2023 LUC Inspection Report - Chenega	March 31, 2024	
FWGWMP Draft Annual Report - Leidos	February 15, 2024	
FWGWMP Draft Groundwater Addendum - Leidos	February 15, 2024	

November 7, 2023

Ohio Environmental Protection Agency DERR-NEDO Attn: Ms. Natalie Oryshkewych 2110 East Aurora Road Twinsburg, OH 44087-1924

Subject: Ravenna Army Ammunition Plant (RVAAP) Restoration Program, Portage/Trumbull Counties, Ohio, Monthly Activity Report - October 2023

Dear Ms. Oryshkewych:

Enclosed for your review is the "RVAAP Restoration Program - DFFO Monthly Summary Report – October 2023". The report summarizes the Restoration Program activities conducted at the former RVAAP for the period from October 1, 2023, through October 31, 2023. This report is being submitted to the Ohio EPA to comply with the Ohio EPA Director's Final Findings and Orders, Section XVI, paragraphs 36 and 37. Due to small file size, this monthly report is being submitted via email only and will not be submitted via the Ohio EPA LiquidFile system.

Please contact the undersigned at (330)235-2153 or <u>kevin.m.sedlak.ctr@army.mil</u> if there are issues or concerns with this submission.

Sincerely,

 TAIT.KATHRYN.SE
 Digitally signed by TAIT.KATHRYN.SERENA.12895082

 RENA.1289508275
 75 Date: 2023.11.07 09:16:37 -05'00'

FOR Kevin M. Sedlak Restoration Project Manager Army National Guard Directorate

Attachment

ec: Megan Oravec, Ohio EPA Thomas Schneider, Ohio EPA Kevin Palombo, Ohio EPA Katie Tait, OHARNG Steve Kvaal, USACE – Louisville James Trumble, USACE – Louisville Jennifer Tierney, Chenega, Admin Record

Status of project activities for reporting period (October 2023)

	USACE TECH			
PROJECT NAME	MGR /Contractor	PROJECT STATUS		
2021 RI/FS Completion Contract for IRP AOCs	N. Peters / Leidos	A meeting on the Draft Facility-wide Sewers RI Report was held, on January 17, 2023, to discuss the path forward with the Ohio EPA. The Army awarded a modification to Leidos' contract on September 19, 2023, to get additional support and Leidos began more in-depth re-evaluation. The Army will schedule a Technical Project Planning meeting with the Ohio EPA after the additional evaluation is completed.		
Block D MRS and Group 8 MRS RD/RAs	Travis McCoun & Nicole Walworth / HGL	Field work (tree cutting) at the Block D MRS started in October 2023 and is ongoing. Results for the pre-excavation samples at the Group 8 MRS were received and HGL is refining the excavation plan based on the results from the sampling. HGL conducted waste characterization sampling at the Group 8 MRS during the week of October 30, 2023.		
RVAAP-004-R-01 ODA #2	Nicole Walworth & Travis McCoun / Arcadis	Ohio EPA approved the Final QAPP on April 3, 2023. Field work is ongoing. The Post-BIP Sampling Memo for ODA2 was submitted to the Ohio EPA on October 26, 2023.		
Remedial Actions for 3 AOCs – RVAAP-06 C Block Quarry, RVAAP-50 Atlas Scrap Yard, CC RVAAP-70 E Classification Yard	N. Peters / PIKA- Insight JV	Pika-Insight submitted responses to comments on the Preliminary Draft Remedial Design for RVAAP-06 C Block Quarry on October 26, 2023. PIKA-Insight issued the responses to Army comments on the Preliminary Draft Remedial Design for RVAAP-50 on October 3, 2023. The Preliminary Draft Work Plan for CC RVAAP-70 was submitted for Army review on November 1, 2023.		
Investigation at 9 AOCs - RVAAP-34 Sand Creek, CC RVAAP-69 Building 1048 Fire Station, CC RVAAP-78 Quarry Pond Dump, CC RVAAP- 79 DLA Ore Storage Yard, RVAAP-38 NACA Test Area, RVAAP- 45 Wet Storage, RVAAP-42 Load	N. Peters / Leidos	On August 31, 2023, the Draft UFP-QAPP for RVAAP-34 Sand Creek Disposal Road Landfill was submitted to the Ohio EPA. An extension was requested until November 9, 2023. On August 31, 2023, the Draft Multi- AOC Delineation Sampling UFP-QAPP for RVAAP-38, RVAAP-42, RVAAP-45, and CC RVAAP-76 was submitted to the Ohio EPA, with an extension requested until November 10, 2023 On October 19, 2023, the Draft VI Study Work Plan for CC RVAAP-69 Former Fire Station was submitted to Ohio EPA. Comments are pending. On October 16, 2023, USACE provided comments to the Pre-Draft UFP- QAPP for CC RVAAP-78 Quarry Pond Surface Dump. Leidos is developing responses to comments. On October 13, 2023, the Ohio EPA provided comments on the Final RI Addendum for CC RVAAP-79 DLA Ore Storage Yard. Additional work was		
Line 9, CC RVAAP- 76 Depot Area, CC RVAAP-70 E Classification Yard		requested beyond what is specified in the RFP and most recent correspondence. Leidos continued developing the Accident Prevention Plan and the Site Safety and Health Plan to address all planned field work.		

PROJECT NAME	USACE TECH MGR /Contractor	PROJECT STATUS
2022 Environmental Program Support Services	N. Peters / Chenega	Chenega conducted annual Land Use Control inspections at Ramsdell Quarry Landfill, Load Line 1, 2, 3, 4, 12, Dump along Paris-Windham Rd, Open Demolition Area #2, and Winklepeck Burning Grounds. The Draft RAB Site Tour meeting minutes were submitted to Army on October 31, 2023.
RVAAP-66 Facility Wide Ground Water Monitoring	J. Trumble / Leidos	Leidos completed the Fall 2023 FWGWMP sampling on October 10, 2023. On October 13, 2023, the Draft 2023 Spring Semi-Annual FWGWMP report was submitted to Ohio EPA for review. The Ohio Department of Transportation granted a permit to install driveways for the monitoring wells located south of State Route 5 on November 3, 2023. Once constructed, these will allow the contractor to access the wells safely.

A. Describe difficulties encountered during the reporting period and actions taken to rectify any difficulties

B. Identify changes in key personnel

Zack Bayne, PMP, CHMM is a new USACE team member and will be assisting current USACE staff and the ARNG/OHARNG on technical reviews and contract management for the RVAAP restoration program. You may see him included on project correspondence.

C. List target and actual completion dates for each element of activity, including project completion

The actual completion dates and target dates where applicable are provided with the status of activities in Section A.

D. Provide an explanation for any deviation from applicable schedules

None.

E. Indicate how much soil and groundwater was generated and/or transported and disposed as part of RVAAP restoration activities

Three 55-gallon drums containing purge water and decontamination water from the Fall 2023 FWGWMP sampling event are staged in Building 1036. The waste is properly staged, labeled, and being inspected at Building 1036 while awaiting sampling results and proper transport and disposal.

Approximately 100 gallons of soil IDW was generated during the HGL initial sampling at the Group 8 MRS. The waste is Nonhazardous and is properly staged, labeled, and being inspected at Building 1036 while awaiting proper transport and disposal.

Approximately 484 tons of trees/wood have been generated so far and taken for recycling (as firewood and mulch) as part of the Block D MRS site work.

F. Describe activities planned for the following month (November 2023)

1. HGL will continue remedial action field work at the Block D MRS and the Group 8 MRS.

- 2. Arcadis will continue field work operations at the Open Demolition Area 2 MRS.
- 3. Pending resolution of Army comments, PIKA-Insight JV will submit the Draft Remedial Designs for RVAAP-06 and RVAAP-50 for Ohio EPA review.
- 4. Pika-Insight JV plans to submit the Preliminary Draft Remedial Action Work Plan for CC RVAAP-70 for Army review (Received November 1, 2023).
- 5. Chenega plans to conduct seasonal field work of Seibert Stake and warning sign maintenance and begin preparing the annual LUC inspection report.
- 6. Leidos will begin preparing for a meeting with the Army and the Ohio EPA regarding the path forward on the RI Report for the Facility-wide Sewers RVAAP-67.
- 7. Leidos plans to continue developing the Draft APP/SSHP for the Investigation of Nine AOCs for Army review.
- 8. Leidos plans to respond to Army comments on the Preliminary Draft RI Work Plan (UFP-QAPP) for CC RVAAP-78 and submit the Draft UFP-QAPP for the Ohio EPA after comments are resolved.
- 9. Leidos plans to respond to Ohio EPA comments for the Draft Work Plan for the Vapor Intrusion Study for CC RVAAP-69 once Ohio EPA comments are received.
- 10. Upon receipt of Ohio EPA comments on the Draft UFP-QAPP for RVAAP-34 Sand Creek Disposal Road Landfill and the Draft Multi-AOC Delineation Sampling UFP-QAPP for RVAAP-38, RVAAP-42, RVAAP-45, and CC RVAAP-76, Leidos will begin preparing responses to those comments.
- 11. Leidos plans to develop a path forward with the Army regarding Ohio EPA's comments for CC RVAAP-79 DLA Ore Storage Yard RI Addendum.

Site Name/Activity Name	Current Status – In Progress/To Be Submitted	Start Date (Actual or Projected)	End Date (based on 45 day review timeframe)	Ohio EPA Reviewer Name (if known)
Draft QAPP for RVAAP- 38, 42, 45, CC RVAAP- 76 (Multi-AOC) - Leidos	In progress	August 31, 2023	November 10, 2023 – extension requested and approved	Ed D'Amato
Draft QAPP for RVAAP- 34 - Leidos	In progress	August 31, 2023	November 9, 2023 – extension requested and approved	Kevin Palombo/Craig Kowalski
Draft VI Study Work Plan for CC RVAAP-69 - Leidos	In progress	October 19, 2023	December 5, 2023	Ed D'Amato
Draft Remedial Design Work Plan for RVAAP-50 Atlas Scrap Yard - Insight	To be submitted			Ed D'Amato
Draft Spring 2023 FWGWMP Semiannual Report - Leidos	In Progress	October 13, 2023	November 27, 2023	Kevin Palombo/Liam McEvoy

G. Describe activities currently under Ohio EPA review and/or activities to be submitted for Ohio EPA review in the next 8 weeks.

Site Name/Activity Name	Current Status – In Progress/To Be Submitted	Start Date (Actual or Projected)	End Date (based on 45 day review timeframe)	Ohio EPA Reviewer Name (if known)
Post BIP Sampling Memo for ODA2 - Arcadis	In Progress	October 26, 2023		Nick Roope

H. List of FY24 Milestones

Milestone Activity	Milestone Date	Actual Date Achieved
Block D Igloo MRS Draft Remedial	August 30, 2024	
Action Completion Report - HGL		
Group 8 MRS Draft Remedial	August 30, 2024	
Action Completion Report – HGL		
Draft 2023 LUC Inspection Report	March 31, 2024	
- Chenega		
FWGWMP Draft Annual Report -	February 15, 2024	
Leidos		
FWGWMP Draft Groundwater	February 15, 2024	
Addendum - Leidos	-	

October 10, 2023

Ohio Environmental Protection Agency DERR-NEDO Attn: Ms. Natalie Oryshkewych 2110 East Aurora Road Twinsburg, OH 44087-1924

Subject: Ravenna Army Ammunition Plant (RVAAP) Restoration Program, Portage/Trumbull Counties, Ohio, Monthly Activity Report - September 2023

Dear Ms. Oryshkewych:

Enclosed for your review is the "RVAAP Restoration Program - DFFO Monthly Summary Report – September 2023". The report summarizes the Restoration Program activities conducted at the former RVAAP for the period from September 1, 2023, through September 30, 2023. This report is being submitted to the Ohio EPA to comply with the Ohio EPA Director's Final Findings and Orders, Section XVI, paragraphs 36 and 37.

Please contact the undersigned at (330)235-2153 or <u>kevin.m.sedlak.ctr@army.mil</u> if there are issues or concerns with this submission.

Sincerely,

TAIT.KATHRYN.SE RENA.1289508275 75 Date: 2023.10.10 07:46:45 - 04'00'

FOR Kevin M. Sedlak RVAAP Restoration Program Manager Army National Guard Directorate

Attachment

cc: Megan Oravec, Ohio EPA, DERR Thomas Schneider, Ohio EPA Kevin Palombo, Ohio EPA, DERR Katie Tait, OHARNG Steve Kvaal, USACE – Louisville James Trumble, USACE – Louisville Jennifer Tierney, Chenega, Administrative Record

Status of project activities for reporting period (September 2023)
--

PROJECT NAME	USACE TECH MGR /Contractor	PROJECT STATUS
2021 RI/FS Completion Contract for IRP AOCs	N. Peters / Leidos	A meeting on the Draft Facility-wide Sewers RI Report was held, on January 17, 2023, to discuss the path forward with the Ohio EPA. The Army awarded a modification to Leidos' contract on September 19, 2023, to get additional support and Leidos began more in-depth re-evaluation. The Army will schedule a Technical Project Planning meeting with the Ohio EPA after the additional evaluation is completed.
Block D MRS and Group 8 MRS RD/RAs	Travis McCoun & Nicole Walworth / HGL	Field work at the Block D MRS started up again during the week of September 25, 2023, and is ongoing. The Final Group 8 MRS QAPP report was submitted to Ohio EPA on July 25, 2023, and Ohio EPA approved the report on September 5, 2023. A Notification of Field Work was submitted to the Ohio EPA on August 24, 2003. Field work at the One of September 11, 2003, with
RVAAP-004-R-01 ODA #2	Nicole Walworth & Travis McCoun / Arcadis	2023. Fieldwork at the Group 8 MRS began on September 11, 2023, with initial borings/soil sampling. HGL is awaiting results. Ohio EPA approved the Final QAPP on April 3, 2023. Arcadis mobilized field staff to the site on March 14, 2023. Field work is ongoing.
Remedial Actions for 3 AOCs – RVAAP-06 C Block Quarry, RVAAP-50 Atlas Scrap Yard, CC RVAAP-70 E Classification Yard		PIKA-Insight submitted the Draft Accident Prevention plan for Army review on September 25, 2023. Pika-Insight continued developing responses to Army comments on the Work Plans/Remedial Designs for RVAAP-06 and RVAAP-50.
Investigation at 9 AOCs - RVAAP-34 Sand Creek, CC RVAAP-69 Building 1048 Fire Station, CC RVAAP-78 Quarry Pond Dump, CC RVAAP- 79 DLA Ore Storage Yard,		On August 31, 2023, the Draft UFP-QAPP for RVAAP-34 Sand Creek Disposal Road Landfill was submitted to Ohio EPA. On August 31, 2023, the Draft Multi-AOC Delineation Sampling UFP-QAPP for RVAAP-38, RVAAP-42, RVAAP-45, and CC RVAAP-76 was submitted to the Ohio EPA. Review comments on both are pending. The Final version of the CC RVAAP-79 DLA Ore Storage Yard RI Addendum was submitted to Ohio EPA on August 9, 2023. Review comments are pending. The Preliminary Draft UFP-QAPP for the CC RVAAP-78 Quarry Pond
RVAAP-38 NACA Test Area, RVAAP- 45 Wet Storage, RVAAP-42 Load Line 9, CC RVAAP- 76 Depot Area, CC RVAAP-70 E Classification Yard		Surface Dump RI is still under review by USACE. Leidos continued preparing responses to Army comments on the Preliminary Draft UFP-QAPP for the VI Study at CC RVAAP-69 Former Fire Station. Leidos continued developing the Accident Prevention Plan and the Site Safety and Health Plan to address all planned field work.
2022 Environmental Program Support Services	N. Peters / Chenega	Chenega administered a RAB tour on September 6, 2023. Chenega continued seasonal field work of Seibert Stake and warning sign maintenance and continued routine maintenance of the correspondence and Administrative Record files.

PROJECT NAME	USACE TECH MGR /Contractor	PROJECT STATUS
RVAAP-66 Facility Wide Ground Water Monitoring		On September 8, 2023, Leidos provided the Ohio EPA with a notification of fieldwork for the Fall 2023 FWGWMP sampling. On September 25, 2023, Leidos mobilized to CJAG to begin the Fall sampling.

A. Describe difficulties encountered during the reporting period and actions taken to rectify any difficulties

B. Identify changes in key personnel

None

C. List target and actual completion dates for each element of activity, including project completion

The actual completion dates and target dates where applicable are provided with the status of activities in Section A.

D. Provide an explanation for any deviation from applicable schedules

None.

E. Indicate how much soil and groundwater was generated and/or transported and disposed as part of RVAAP restoration activities

Two 55-gallon drums containing purge water and decontamination water from the ongoing Fall 2023 FWGWMP sapling event are staged in Building 1036. The waste is properly staged, labeled, and being inspected at Building 1036 while awaiting proper transport and disposal.

Approximately 1,482 gallons of soil cuttings and 5 gallons of decon water were generated as part of the sampling activities at Open Demolition Area #2. The soil and water were sampled and found to be Nonhazardous. The soil was properly transported and disposed on September 26, 2023, and the water was transported and disposed on October 3, 2023.

Approximately 30 gallons of soil and 10 gallons of liquid IDW was generated during the HGL initial sampling at the Group 8 MRS. The waste is properly staged, labeled, and being inspected at Building 1036 while awaiting sample results and proper transport and disposal.

F. Describe activities planned for the following month (October 2023)

- 1. HGL will continue remedial action field work at the Block D MRS and the Group 8 MRS.
- 2. Arcadis will continue field work operations at the Open Demolition Area 2 MRS.
- 3. PIKA-Insight JV plans to submit responses to Army comments on the Work Plans/Remedial Designs for RVAAP-06 and RVAAP-50. Pending resolution of Army comments, PIKA-Insight JV will submit the Draft Remedial Designs for RVAAP-06 and RVAAP-50 for Ohio EPA review.
- 4. Pika-Insight JV plans to submit the Preliminary Draft Remedial Action Work Plan for CC RVAAP-70 for

Army review.

- 5. Chenega plans to conduct Annual Land Use Control Inspections and begin preparing the Preliminary Draft Annual Land Use Control Inspection Report.
- 6. Leidos will begin preparing for a meeting with the Army and the Ohio EPA regarding the path forward on the RI Report for the Facility-wide Sewers RVAAP-67.
- 7. Leidos will continue the Fall 2023 FWGWMP well sampling effort.
- 8. Leidos will complete responses to Army comments on the 2023 Spring Semi-Annual Report and will issue the Draft report to the Ohio EPA.
- 9. Leidos plans to submit the Draft APP/SSHP for the Investigation of Nine AOCs for Army review.
- 10. Leidos plans to respond to Army comments on the Preliminary Draft RI Work Plan for CC RVAAP-78 and begin developing the Draft version.
- 11. Leidos plans to respond to Army comments and submit the Draft Work Plan for the Vapor Intrusion Study for CC RVAAP-69 for Ohio EPA review.
- 12. Upon receipt of Ohio EPA comments on the Draft UFP-QAPP for RVAAP-34 Sand Creek Disposal Road Landfill and the Draft Multi-AOC Delineation Sampling UFP-QAPP for RVAAP-38, RVAAP-42, RVAAP-45, and CC RVAAP-76, Leidos will begin preparing response to those comments.

G. Describe activities currently under Ohio EPA review and/or activities to be submitted for Ohio EPA review in the next 8 weeks.

Site Name/Activity Name	Current Status – In Progress/To Be Submitted	Start Date (Actual or Projected)	End Date (based on 45 day review timeframe)	Ohio EPA Reviewer Name (if known)
Final RI Addendum for CC RVAAP-79 - Leidos	In progress	August 9, 2023	September 23, 2023 – Letter to be issued next week.	Ed D'Amato
Draft QAPP for RVAAP-38, 42, 45, CC RVAAP-76 - Leidos	In progress	August 31, 2023	November 10,2023 – extension requested and approved	Ed D'Amato
Draft QAPP for RVAAP-34 - Leidos	In progress	August 31, 2023	October 16, 2023	Kevin Palombo
Draft VI Study Work Plan for CC RVAAP-69 - Leidos	To be submitted			Ed D'Amato
Draft Remedial Design Work Plan for RVAAP-50 Atlas Scrap Yard - Insight	To be submitted			Ed D'Amato
Draft Spring 2023 FWGWMP Semiannual Report - Leidos	To be submitted			Kevin Palombo

H. List of FY24 Milestones

Milestone Activity	Milestone Date	Actual Date Achieved
Block D Igloo MRS Draft Remedial	August 30, 2024	
Action Completion Report - HGL		
Group 8 MRS Draft Remedial	August 30, 2024	
Action Completion Report – HGL		
Draft 2023 LUC Inspection Report	March 31, 2024	
- Chenega		
FWGWMP Draft Annual Report -	February 15, 2024	
Leidos		
FWGWMP Draft Groundwater	February 15, 2024	
Addendum - Leidos		

September 8, 2023

Ohio Environmental Protection Agency DERR-NEDO Attn: Ms. Natalie Oryshkewych 2110 East Aurora Road Twinsburg, OH 44087-1924

Subject: Ravenna Army Ammunition Plant (RVAAP) Restoration Program, Portage/Trumbull Counties, Ohio, Monthly Activity Report - August 2023

Dear Ms. Oryshkewych:

Enclosed for your review is the "RVAAP Restoration Program - DFFO Monthly Summary Report – August 2023". The report summarizes the Restoration Program activities conducted at the former RVAAP for the period from August 1, 2023, through August 31, 2023. This report is being submitted to the Ohio EPA to comply with the Ohio EPA Director's Final Findings and Orders, Section XVI, paragraphs 36 and 37. Due to the small file size, this report is being submitted electronically via email only and not through the Ohio EPA LiquidFile system.

Please contact the undersigned at (330)235-2153 or <u>kevin.m.sedlak.ctr@army.mil</u> if there are issues or concerns with this submission.

Sincerely,

TAIT.KATHRYN.SER Digitally signed by TAIT.KATHRYN.SERENA.1289508275 Date: 2023.09.08 13:59:51 -04'00'

FOR Kevin M. Sedlak RVAAP Restoration Program Manager Army National Guard Directorate

Attachment

cc: Megan Oravec, Ohio EPA, DERR Thomas Schneider, Ohio EPA Kevin Palombo, Ohio EPA, DERR Katie Tait, OHARNG Steve Kvaal, USACE – Louisville James Trumble, USACE – Louisville Jennifer Tierney, Chenega, Administrative Record

Status of project activities for reporting period (August 2023)

PROJECT NAME	USACE TECH MGR /Contractor	PROJECT STATUS
2021 RI/FS Completion Contract for IRP AOCs	N. Peters / Leidos	A meeting on the Draft Facility-wide Sewers RI Report was held, on January 17, 2023, to discuss the path forward with the Ohio EPA. Leidos has been working on the re-evaluation and provided preliminary results/suggestions to the Army on a teleconference on May 9, 2023. The Army is working on a modification to Leidos' contract to get additional support. The Army will schedule a Technical Project Planning meeting with the Ohio EPA after additional evaluation is completed.
Block D MRS and Group 8 MRS	Travis McCoun & Nicole Walworth /	Field work at the Block D MRS is on hold and will recommence in the Fall 2023. The Final Group 8 MRS QAPP report was submitted to Ohio EPA on July 25, 2023, and Ohio EPA approved the report on September 5, 2023.
RD/RAs		A Notification of Field Work was submitted to the Ohio EPA on August 24, 2023. Fieldwork at the Group 8 MRS will begin September 11, 2023, with preliminary borings/soil sampling.
RVAAP-004-R-01 ODA #2	Nicole Walworth & Travis McCoun / Arcadis	Ohio EPA approved the Final QAPP on April 3, 2023. Arcadis mobilized field staff to the site on March 14, 2023. Field work is ongoing and will continue through September 2023.
Remedial Actions for 3 AOCs – RVAAP-06 C Block Quarry, RVAAP-50 Atlas Scrap Yard, CC RVAAP-70 E Classification Yard	N. Peters / PIKA- Insight JV	PIKA-Insight continued developing responses to Army comments on the Work Plans/Remedial Designs for RVAAP-06 and RVAAP-50.
Investigation at 9 AOCs - RVAAP-34 Sand Creek, CC RVAAP-69 Building 1048 Fire Station,	N. Peters / Leidos	On August 31, 2023, the Draft UFP-QAPP for RVAAP-34 Sand Creek Disposal Road Landfill was submitted to Ohio EPA. On August 31, 2023, the Draft Multi-AOC Delineation Sampling UFP-QAPP for RVAAP-38, RVAAP-42, RVAAP-45, and CC RVAAP-76 was submitted to the Ohio EPA.
CC RVAAP-78 Quarry Pond Dump, CC RVAAP- 79 DLA Ore Storage Yard,	The Final version of the CC RVAAP-79 DLA Ore Storage Yard RI Addendum was submitted to Ohio EPA on August 9, 2023. The Preliminary Draft UFP-QAPP for the CC RVAAP-78 Quarry Pond Surface Dump RI is still under review by USACE.	
RVAAP-38 NACA Test Area, RVAAP- 45 Wet Storage, RVAAP-42 Load		Leidos began preparing responses to Army comments on the Preliminary Draft UFP-QAPP for the VI Study at CC RVAAP-69 Former Fire Station.
Line 9, CC RVAAP- 76 Depot Area, CC RVAAP-70 E Classification Yard		Leidos continued developing the Accident Prevention Plan and the Site Safety and Health Plan to address all planned field work.
PROJECT NAME	USACE TECH MGR /Contractor	PROJECT STATUS
--	----------------------------------	---
2022 Environmental Program Support Services	N. Peters / Chenega	Chenega submitted Draft April 2023, November 2022 and April 2022 RAB meeting minutes and September 2023 RAB site tour agenda to RAB members on August 23, 2023. A RAB tour was held on September 6, 2023. Chenega continued seasonal field work of Seibert Stake and warning sign maintenance and continued routine maintenance of the correspondence and Administrative Record files.
RVAAP-66 Facility Wide Ground Water Monitoring	J. Trumble / Leidos	Leidos continued working on the report for the spring FWGWMP sampling, and standard maintenance activities for the FWGWMP wells.

A. Describe difficulties encountered during the reporting period and actions taken to rectify any difficulties

B. Identify changes in key personnel

None

C. List target and actual completion dates for each element of activity, including project completion

The actual completion dates and target dates where applicable are provided with the status of activities in Section A.

D. Provide an explanation for any deviation from applicable schedules

None.

E. Indicate how much soil and groundwater was generated and/or transported and disposed as part of RVAAP restoration activities

Well installation and development in support of the FWGW FS resulted in thirty-two (32) 55-gallon drums of soil cuttings, and approximately 13,220 gallons of liquid IDW, including decontamination water. This waste is Nonhazardous. The soil was properly transported and disposed on August 8, 2023. The liquid IDW was land applied as coordinated and approved on August 22 and 23, 2023.

Approximately 1,482 gallons of soil cuttings and 5 gallons of decon water have been generated as part of the sampling activities at Open Demolition Area #2. The soil was sampled and found to be Nonhazardous and is being profiled for disposal. The waste is properly staged, labeled, and being inspected at Building 1036 while awaiting proper transport and disposal.

F. Describe activities planned for the following month (September 2023)

- 1. HGL will mobilize and begin field work on the Group 8 MRS remedial action on September 11, 2023.
- 2. Arcadis will continue field work operations at the Open Demolition Area 2 MRS.
- 3. PIKA-Insight JV plans to submit responses to Army comments on the Work Plans/Remedial Designs for RVAAP-06 and RVAAP-50. Pending resolution of Army comments, PIKA-Insight JV will submit the

Draft Remedial Designs for RVAAP-06 and RVAAP-50 for Ohio EPA review.

- 4. Leidos will begin the fall 2023 FWGWMP well sampling at the end of the month, including a 15-day field work notice before the beginning of the field effort.
- 5. Leidos plans to submit the Draft APP/SSHP for the Investigation of Nine AOCs for Army review.
- 6. Leidos plans to respond to Army comments on the Preliminary Draft RI Work Plan for CC RVAAP-78 and begin developing the Draft version.
- 7. Leidos plans to respond to Army comments and submit the Draft Work Plan for the Vapor Intrusion Study for CC RVAAP-69 for Ohio EPA review.
- 8. Leidos plans to submit the Final compiled RI Report for CC RVAAP-69 Former Fire Station to the Admin Record File.

G. Describe activities currently under Ohio EPA review and/or activities to be submitted for Ohio EPA review in the next 8 weeks.

Site Name/Activity Name	Current Status – In Progress/To Be Submitted	Start Date (Actual or Projected)	End Date (based on 45 day review timeframe)	Ohio EPA Reviewer Name (if known)
Final RI Addendum for CC RVAAP-79 - Leidos	In progress	August 9, 2023	September 23, 2023	Ed D'Amato
Draft QAPP for RVAAP-38, 42, 45, CC RVAAP-76 - Leidos	In progress	August 31, 2023	October 16, 2023	Ed D'Amato
Draft QAPP for RVAAP-34 - Leidos	In progress	August 31, 2023	October 16, 2023	Kevin Palombo
Draft VI Study Work Plan for CC RVAAP-69 - Leidos	To be submitted			Ed D'Amato
Draft Remedial Design Work Plan for RVAAP-50 Atlas Scrap Yard - Insight	To be submitted			Kevin Palombo

H. List of FY24 Milestones

Milestone Activity	Milestone Date	Actual Date Achieved
Block D Igloo MRS Draft Remedial	August 30, 2024	
Action Completion Report - HGL		
Group 8 MRS Draft Remedial	August 30, 2024	
Action Completion Report – HGL		
Draft 2023 LUC Inspection Report	March 31, 2024	
- Chenega		
FWGWMP Draft Annual Report -	February 15, 2024	
Leidos		
FWGWMP Draft Groundwater	February 15, 2024	
Addendum - Leidos		

NATIONAL GUARD BUREAU 111 SOUTH GEORGE MASON DRIVE ARLINGTON VA 22204-1373

August 7, 2023

Ohio Environmental Protection Agency DERR-NEDO Attn: Ms. Natalie Oryshkewych 2110 East Aurora Road Twinsburg, OH 44087-1924

Subject: Ravenna Army Ammunition Plant (RVAAP) Restoration Program, Portage/Trumbull Counties, Ohio, Monthly Activity Report - July 2023

Dear Ms. Oryshkewych:

Enclosed for your review is the "RVAAP Restoration Program - DFFO Monthly Summary Report – July 2023". The report summarizes the Restoration Program activities conducted at the former RVAAP for the period from July 1, 2023, through July 31, 2023. This report is being submitted to the Ohio EPA to comply with the Ohio EPA Director's Final Findings and Orders, Section XVI, paragraphs 36 and 37. Due to the small file size, this report is only being sent via email and not through the Ohio EPA LiquidFile system.

Please contact the undersigned at (614) 336-6000 Ext. 2053 or <u>kevin.m.sedlak.ctr@army.mil</u> if there are issues or concerns with this submission.

Sincerely,

TAIT.KATHRYN.SE RENA.1289508275 Date: 2023.08.07 13:33:54 -04'00'

FOR Kevin M. Sedlak RVAAP Restoration Program Manager Army National Guard Directorate

Attachment

cc: Megan Oravec, Ohio EPA Tom Schneider, Ohio EPA Kevin Palombo, Ohio EPA Katie Tait, OHARNG Steve Kvaal, USACE – Louisville James Trumble, USACE – Louisville

Status of project activities for reporting period (July 2023)

PROJECT NAME	USACE TECH MGR /Contractor	PROJECT STATUS
2021 RI/FS Completion Contract for IRP AOCs	N. Peters / Leidos	A meeting on the Draft Facility-wide Sewers RI Report was held, on January 17, 2023, to discuss the path forward with the Ohio EPA. Leidos has been working on the re-evaluation and provided preliminary results/suggestions to the Army on a teleconference on May 9, 2023. The Army is working on a modification to Leidos' contract to get additional support. The Army will schedule a Technical Project Planning meeting with the Ohio EPA after additional evaluation is completed.
Block D MRS and Group 8 MRS RD/RAs	Travis McCoun & Nicole Walworth / HGL	Field work at the Block D MRS is on hold and will recommence in the Fall 2023. The Group 8 MRS Draft QAPP was submitted to Ohio EPA on February 9, 2023, and comments were received on April 19, 2023. Response to comments were submitted to Ohio EPA on May 8, 2023, and acceptance of the Army responses was received on June 20, 2023, from the Ohio EPA. The final report was submitted on July 25, 2023.
RVAAP-004-R-01 ODA #2	Travis McCoun /	Ohio EPA approved the Final QAPP on April 3, 2023. Arcadis mobilized field staff to the site on March 14, 2023. Field work is ongoing and will continue through September 2023.
Remedial Actions for 3 AOCs – RVAAP-06 C Block Quarry, RVAAP-50 Atlas Scrap Yard, CC RVAAP-70 E Classification Yard	N. Peters / PIKA- Insight JV	PIKA-Insight continued developing the Work Plans/Remedial Designs for RVAAP-06, RVAAP-50 and CC RVAAP-70. The Preliminary Draft Remedial Design Work Plan for RVAAP-06 C Block Quarry was submitted to the Army on July 24, 2023, and is still under review. The Preliminary Draft Remedial Design Work Plan for RVAAP-50 Atlas Scrap Yard was submitted to the Army on May 2, 2023. Army review is complete, and Insight is working on comment responses.
Investigation at 9 AOCs - RVAAP-34 Sand Creek, CC RVAAP-69 Building 1048 Fire Station, CC RVAAP-78 Quarry Pond Dump, CC RVAAP- 79 DLA Ore Storage Yard, RVAAP-38 NACA		Leidos began developing responses to Army comments on the Preliminary Draft Delineation Sampling UFP-QAPP for RVAAP-34 Sand Creek Disposal Road Landfill. Leidos also began developing responses to Army comments on the Preliminary Draft Delineation Sampling UFP-QAPP for RVAAP-38, RVAAP-42, RVAAP-45, and CC RVAAP-76. On July 18, 2023, Leidos conducted a Project Planning session for all of the above sites with Ohio EPA, OHARNG, and USACE. Leidos began preparing the Final version of the CC RVAAP-79 DLA Ore Storage Yard RI Addendum for submission to Ohio EPA.
Test Area, RVAAP- 45 Wet Storage, RVAAP-42 Load Line 9, CC RVAAP- 76 Depot Area, CC RVAAP-70 E		Leidos submitted the Predraft UFP-QAPP for the CC RVAAP-78 Quarry Pond Surface Dump RI for Army review. On July 18, 2023, Leidos conducted a Project Planning session with Ohio EPA, OHARNG, and USACE. Leidos continued developing the Accident Prevention Plan and the Site Safety and Health Plan to address all planned field work.
Classification Yard 2022 Environmental Program Support Services	N. Peters / Chenega	Chenega began preparing for the September 6, 2023 RAB Site Tour. Chenega continued seasonal field work of Seibert Stake and warning sign maintenance and continued routine maintenance of the correspondence and Administrative Record files.

PROJECT NAME	USACE TECH MGR /Contractor	PROJECT STATUS
RVAAP-66 Facility Wide Ground Water Monitoring	J. Trumble / Leidos	Leidos continued working on the report for the spring FWGWMP sampling, the chemistry from the FS well installs, and standard maintenance activities for the FWGWMP wells. On July 27, 2023, Leidos submitted the FS well related IDW Characterization and Disposal Plan to Ohio EPA for the liquid IDW recommending land application of the liquid IDW. An email response was received from the Ohio EPA on August 1, 2023.

A. Describe difficulties encountered during the reporting period and actions taken to rectify any difficulties

B. Identify changes in key personnel

None

C. List target and actual completion dates for each element of activity, including project completion

The actual completion dates and target dates where applicable are provided with the status of activities in Section A.

D. Provide an explanation for any deviation from applicable schedules

None.

E. Indicate how much soil and groundwater was generated and/or transported and disposed as part of RVAAP restoration activities

Well installation and development in support of the FWGW FS resulted in thirty-two (32) 55-gallon drums of soil cuttings, and approximately 13,220 gallons of liquid IDW, including decontamination water. This waste is Nonhazardous. The soil and liquid IDW are properly stored and labeled at Building 1036. Inspections are being conducted while awaiting transport and disposal or land application (for liquid).

Approximately 1,482 gallons of soil cuttings and 2.5 gallons of decon water has been generated as part of the sampling activities at Open Demolition Area #2. The waste is properly staged, labeled, and being inspected at Building 1036.

F. Describe activities planned for the following month (August 2023)

- 1. HGL will mobilize and begin field work on the Group 8 MRS remedial action.
- 2. Arcadis will continue field work operations at Open Demolition Area 2 MRS.
- 3. PIKA-Insight JV will continue developing the Preliminary Draft Work Plan/Remedial Design for CC RVAAP-70. Pending resolution of Army comments, PIKA-Insight JV will submit the Draft Remedial Designs for RVAAP-50 and RVAAP-06 for Ohio EPA review.

4. Leidos plans to submit the Draft APP/SSHP for the Investigation of Nine AOCs for Army review. Leidos plans to respond to Army comments on the Preliminary Draft RI Work Plan for CC RVAAP-78 and begin developing the Draft version. Leidos plans to respond to Army comments and submit Draft versions of the Work Plan for additional delineation sampling at RVAAP-34, 38, 42, 45 and CC RVAAP-76 and the Vapor Intrusion Study Work Plan for CC RVAAP-69 for Ohio EPA review. Leidos plans to submit the Final RI Addendum for CC RVAAP-79 to Ohio EPA.

G. Describe activities currently under Ohio EPA review and/or activities to be submitted for Ohio EPA review in the next 8 weeks.

Site Name/Activity Name	Current Status – In Progress/To Be Submitted	Start Date (Actual or Projected)	End Date (based on 45 day review timeframe)	Ohio EPA Reviewer Name (if known)
Final RI Addendum for CC RVAAP-79 - Leidos	To be submitted			Ed D'Amato
Draft Work Plan for RVAAP-38, 42, 45, CC RVAAP-76 - Leidos	To be submitted			Ed D'Amato
Draft Work Plan for RVAAP-34	To be submitted			Kevin Palombo
Draft VI Study Work Plan for CC RVAAP-69 - Leidos	To be submitted			Ed D'Amato
Draft Remedial Design Work Plan for RVAAP-50 Atlas Scrap Yard - Insight	To be submitted			Kevin Palombo
Final Group 8 MRS QAPP – HGL	In Progress	July 25, 2023	September 8, 2023	Nick Roope

H. List of FY24 Milestones

Milestone Activity	Milestone Date	Actual Date Achieved
Block D Igloo MRS Draft Remedial Action Completion Report - HGL	August 30, 2024	
Group 8 MRS Draft Remedial Action Completion Report – HGL	August 30, 2024	
Draft 2023 LUC Inspection Report - Chenega	March 31, 2024	
FWGWMP Draft Annual Report - Leidos	February 15, 2024	
FWGWMP Draft Groundwater Addendum - Leidos	February 15, 2024	

NATIONAL GUARD BUREAU 111 SOUTH GEORGE MASON DRIVE ARLINGTON VA 22204-1373

July 7, 2023

Ohio Environmental Protection Agency DERR-NEDO Attn: Ms. Natalie Oryshkewych 2110 East Aurora Road Twinsburg, OH 44087-1924

Subject: Ravenna Army Ammunition Plant (RVAAP) Restoration Program, Portage/Trumbull Counties, Ohio, Monthly Activity Report - June 2023

Dear Ms. Oryshkewych:

Enclosed for your review is the "RVAAP Restoration Program - DFFO Monthly Summary Report – June 2023". The report summarizes the Restoration Program activities conducted at the former RVAAP for the period from June 1, 2023, through June 30, 2023. This report is being submitted to the Ohio EPA to comply with the Ohio EPA Director's Final Findings and Orders, Section XVI, paragraphs 36 and 37. Due to the small file size, an electronic version is being submitted via email. This activity report will not be submitted via the Ohio EPA LiquidFile system.

Please contact the undersigned at (614) 336-6000 Ext. 2053 or <u>kevin.m.sedlak.ctr@army.mil</u> if there are issues or concerns with this submission.

Sincerely,

TAIT.KATHRYN.SER Digitally signed by TAIT.KATHRYN.SERENA.1289508275 Date: 2023.07.07 07:21:10 -04'00'

FOR Kevin M. Sedlak RVAAP Restoration Program Manager Army National Guard Directorate

Attachment

cc: Megan Oravec, Ohio EPA Thomas Schneider, Ohio EPA Kevin Palombo, Ohio EPA Katie Tait, OHARNG Steve Kvaal, USACE – Louisville Jay Trumble, USACE – Louisville Jennifer Tierney, Chenega, RVAAP Administrative Record

Status of project activities for reporting period (June 2023)

PROJECT NAME	USACE TECH MGR /Contractor	PROJECT STATUS
2021 RI/FS Completion Contract for IRP AOCs	N. Peters / Leidos	A meeting on the Draft Facility-wide Sewers RI Report was held, on January 17, 2023, to discuss the path forward with the Ohio EPA. Leidos has been working on the re-evaluation and provided preliminary results/suggestions to the Army on a teleconference on May 9, 2023. The Army is working on a modification to Leidos' contract to get additional support. The Army will schedule a Technical Project Planning meeting with the Ohio EPA after additional evaluation is completed.
Block D MRS and Group 8 MRS RD/RAs	Travis McCoun & Nicole Walworth / HGL	Field work at the Block D MRS is on hold and will recommence in the Fall 2023. The Group 8 MRS Draft QAPP was submitted to Ohio EPA on February 9, 2023, and comments were received on April 19, 2023. Response to comments were submitted to Ohio EPA on May 8, 2023, and acceptance of the Army responses was received on June 20, 2023, from the Ohio EPA. Final report production is in progress.
RVAAP-004-R-01 ODA #2	Nicole Walworth & Travis McCoun / Arcadis	Ohio EPA approved the Final QAPP on April 3, 2023. Arcadis mobilized field staff to the site on March 14, 2023. Field work is ongoing and will continue through September 2023.
Remedial Actions for 3 AOCs – RVAAP-06 C Block Quarry, RVAAP-50 Atlas Scrap Yard, CC RVAAP-70 E Classification Yard	N. Peters / PIKA- Insight JV	PIKA-Insight continued developing the Work Plans/Remedial Designs for RVAAP-06, RVAAP-50 and CC RVAAP-70. The Preliminary Draft Remedial Design Work Plan for RVAAP-50 Atlas Scrap Yard was submitted to the Army on May 2, 2023. ARNG and OHARNG reviews are completed.
Investigation at 9 AOCs - RVAAP-34 Sand Creek, CC RVAAP-69 Building 1048 Fire Station, CC RVAAP-78 Quarry Pond Dump, CC RVAAP- 79 DLA Ore Storage Yard, RVAAP-38 NACA Test Area, RVAAP- 45 Wet Storage, RVAAP-42 Load Line 9, CC RVAAP- 76 Depot Area, CC RVAAP-70 E Classification Yard	N. Peters / Leidos	 On May 9, 2023, Leidos submitted the Preliminary Draft Delineation Sampling UFP-QAPP for RVAAP-34 Sand Creek Disposal Road Landfill for Army review. ARNG and OHARNG reviews were completed in June. On May 25, 2023, Leidos submitted the Preliminary Draft version of the VI Study UFP-QAPP for CC RVAAP-69 Former Fire Station for Army review. ARNG and OHARNG reviews were completed in June. On May 3, 2023, Leidos submitted the redline Final version of the CC RVAAP-79 DLA Ore Storage Yard RI Addendum for Army review. The Army reviewed and approved the revisions. On May 2, 2023, Leidos submitted the Preliminary Draft version of the Delineation Sampling UFP-QAPP for RVAAP-38, RVAAP-42, RVAAP-45, and CC RVAAP-76 for Army review. ARNG and OHARNG reviews are completed. Leidos continued developing the RI Work Plan for CC RVAAP-78 Quarry Pond Surface Dump and the Accident Prevention Plan and the Site Safety and Health Plan to address all planned field work.

PROJECT NAME	USACE TECH MGR /Contractor	PROJECT STATUS
2022 Environmental Program Support Services	N. Peters / Chenega	Chenega continued seasonal field work of Seibert Stake and warning sign maintenance and continued routine maintenance of the correspondence and Administrative Record files.
RVAAP-66 Facility Wide Ground Water Monitoring	I Trumble / Leidos	Leidos submitted an IDW Plan to the Army which was approved on June 13, 2023.

A. Describe difficulties encountered during the reporting period and actions taken to rectify any difficulties

B. Identify changes in key personnel

None

C. List target and actual completion dates for each element of activity, including project completion

The actual completion dates and target dates where applicable are provided with the status of activities in Section A.

D. Provide an explanation for any deviation from applicable schedules

None.

E. Indicate how much soil and groundwater was generated and/or transported and disposed as part of RVAAP restoration activities

Well installation and development in support of the FWGW FS resulted in thirty-two (32) 55-gallon drums of soil cuttings, and approximately 13,220 gallons of liquid IDW, including decontamination water. This waste is Pending Analysis. The Spring 2023 FWGWMP field work/sampling generated five 55-gallon drums of purge and decontamination water which has been determined to be Nonhazardous. The soil and liquid IDW are properly staged and labeled at Building 1036. Inspections are being conducted while awaiting transport and disposal. The Nonhazardous IDW generated as part of the Spring FWGWMP event is scheduled to be transported and disposed on July 20, 2023.

Approximately 1,015 gallons of soil cuttings and 2.5 gallons of decon water has been generated as part of the sampling activities at Open Demolition Area #2. The waste is properly staged, labeled, and being inspected at Building 1036.

F. Describe activities planned for the following month (July 2023)

- 1. HGL will prepare the Group 8 MRS Final QAPP and transmit it to the Ohio EPA.
- 2. Arcadis will continue field work operations at Open Demolition Area 2.
- 3. PIKA-Insight JV will continue developing the Preliminary Draft Work Plan/Remedial Design for CC

RVAAP-70. PIKA-Insight JV will submit the Preliminary Draft Work Plan/Remedial Design for RVAAP-06 for Army review. Pending resolution of Army comments, PIKA-Insight JV will submit the Draft Remedial Design for RVAAP-50 for Ohio EPA review.

4. Leidos plans to submit the Draft APP/SSHP for the Investigation of Nine AOCs for Army review. Leidos plans to submit the Preliminary Draft RI Work Plan for CC RVAAP-78 for Army review. Leidos plans to respond to Army comments and submit Draft versions of the Work Plan for additional delineation sampling at RVAAP-34, 38, 42, 45 and CC RVAAP-76 and the Vapor Intrusion Study Work Plan for CC RVAAP-69 for Ohio EPA review. Leidos plans to submit the Final RI Addendum for CC RVAAP-79 to Ohio EPA.

G. Describe activities currently under Ohio EPA review and/or activities to be submitted for Ohio EPA review in the next 8 weeks.

Site Name/Activity Name	Current Status – In Progress/To Be Submitted	Start Date (Actual or Projected)	End Date (based on 45 day review timeframe)	Ohio EPA Reviewer Name (if known)
Final RI Addendum for CC RVAAP-79 - Leidos	To be submitted			
Draft Work Plan for RVAAP-34, 38, 42, 45, CC RVAAP-76 - Leidos	To be submitted			
Draft VI Study Work Plan for CC RVAAP-69 - Leidos	To be submitted			
Draft Remedial Design Work Plan for RVAAP-50 Atlas Scrap Yard - Insight	To be submitted			
Final Group 8 MRS QAPP – HGL	To be submitted			

H. List of FY24 Milestones

Milestone Activity	Milestone Date	Actual Date Achieved
Block D Igloo MRS Draft Remedial	August 30, 2024	
Action Completion Report - HGL		
Group 8 MRS Draft Remedial	August 30, 2024	
Action Completion Report – HGL	-	
Draft 2023 LUC Inspection Report	March 31, 2024	
- Chenega		
FWGWMP Draft Annual Report -	February 15, 2024	
Leidos		
FWGWMP Draft Groundwater	February 15, 2024	
Addendum - Leidos		

NATIONAL GUARD BUREAU 111 SOUTH GEORGE MASON DRIVE ARLINGTON VA 22204-1373

June 12, 2023

Ohio Environmental Protection Agency DERR-NEDO Attn: Ms. Natalie Oryshkewych 2110 East Aurora Road Twinsburg, OH 44087-1924

Subject: Ravenna Army Ammunition Plant (RVAAP) Restoration Program, Portage/Trumbull Counties, Ohio, Monthly Activity Report - May 2023

Dear Ms. Oryshkewych:

Attached for your review is the "RVAAP Restoration Program - DFFO Monthly Summary Report – May 2023". The report summarizes the Restoration Program activities conducted at the former RVAAP for the period from May 1, 2023, through May 31, 2023. This report is being submitted to the Ohio EPA to comply with the Ohio EPA Director's Final Findings and Orders, Section XVI, paragraphs 36 and 37. This monthly report will only be submitted via email due to small file size and will not be submitted through the Ohio EPA LiquidFile system.

Please contact the undersigned at (614) 336-6000 Ext. 2053 or <u>kevin.m.sedlak.ctr@army.mil</u> if there are issues or concerns with this submission.

Sincerely,

TAIT.KATHRYN.SE Digitally signed by TAIT.KATHRYN.SERENA.1289508 RENA.1289508275 Date: 2023.06.12 13:02:39 -04'00'

FOR Kevin M. Sedlak RVAAP Restoration Program Manager Army National Guard Directorate

Attachment

cc: Megan Oravec, Ohio EPA Thomas Schneider, Ohio EPA Kevin Palombo, Ohio EPA Katie Tait, OHARNG Steve Kvaal, USACE – Louisville James Trumble, USACE – Louisville Jennifer Tierney, Chenega, RVAAP Administrative Record

Status of project activities for reporting period (May 2023)

PROJECT NAME	USACE TECH MGR /Contractor	PROJECT STATUS
2021 RI/FS Completion Contract for IRP AOCs	N. Peters / Leidos	A meeting on the Draft Facility-wide Sewers RI Report was held, on January 17, 2023, to discuss the path forward with the Ohio EPA. Leidos has been working on the re-evaluation and provided preliminary results/suggestions to the Army on a teleconference on May 9, 2023. The Army is working on a modification to Leidos' contract to get additional support. The Army will schedule a Technical Project Planning meeting with the Ohio EPA after additional evaluation is completed.
Block D MRS and Group 8 MRS RD/RAs	Travis McCoun & Nicole Walworth / HGL	Field work at the Block D MRS is on hold and will recommence in the Fall 2023. The Group 8 MRS Draft QAPP was submitted to Ohio EPA on February 9, 2023, and comments were received on April 19, 2023. Response to comments were submitted to Ohio EPA on May 8, 2023 and is pending response.
RVAAP-004-R-01 ODA #2	Nicole Walworth & Travis McCoun / Arcadis	Ohio EPA approved the Final QAPP on April 3, 2023. Arcadis mobilized field staff to the site on March 14, 2023. Field work is ongoing and will continue through September 2023.
Remedial Actions for 3 AOCs – RVAAP-06 C Block Quarry, RVAAP-50 Atlas Scrap Yard, CC RVAAP-70 E Classification Yard	N. Peters / PIKA- Insight JV	PIKA-Insight continued developing the Work Plans/Remedial Designs for RVAAP-06, RVAAP-50 and CC RVAAP-70. The Preliminary Draft Remedial Design Work Plan for RVAAP-50 Atlas Scrap Yard was submitted to the Army on May 2, 2023. Responses to Army comments are pending.
Investigation at 9 AOCs - RVAAP-34 Sand Creek, CC RVAAP-69 Building 1048 Fire Station, CC RVAAP-78 Quarry Pond Dump, CC RVAAP- 79 DLA Ore Storage Yard, RVAAP-38 NACA Test Area, RVAAP- 45 Wet Storage, RVAAP-42 Load Line 9, CC RVAAP- 76 Depot Area, CC RVAAP-70 E Classification Yard	N. Peters / Leidos	On May 9, 2023, Leidos submitted the Preliminary Draft Delineation Sampling UFP-QAPP for RVAAP-34 Sand Creek Disposal Road Landfill for Army review. On May 25, 2023, Leidos submitted the Preliminary Draft version of the VI Study UFP-QAPP for CC RVAAP-69 Former Fire Station for Army review. On May 3, 2023, Leidos submitted the redline Final version of the CC RVAAP-79 DLA Ore Storage Yard RI Addendum for Army review. On May 2, 2023, Leidos submitted the Preliminary Draft version of the Delineation Sampling UFP-QAPP for RVAAP-38, RVAAP-42, RVAAP-45, and CC RVAAP-76 for Army review.
2022 Environmental Program Support Services	N. Peters / Chenega	Chenega worked on the transcript from the April 19, 2023, RVAAP RAB meeting. Chenega began seasonal field work of Seibert Stake and warning sign maintenance

PROJECT NAME	USACE TECH MGR /Contractor	PROJECT STATUS
RVAAP-66 Facility Wide Ground Water Monitoring	J. Trumble / Leidos	Leidos completed the development and sampling of all the new FWGW FS wells and completed the Spring 2023 FWGWMP sampling. Leidos submitted the Final Spring 2022 Semi-Annual Report on May 16, 2023. Ohio EPA approval was received on May 31, 2023. Leidos submitted the Final 2022 Annual Report on May 4, 2023. Ohio EPA approval was received on May 31, 2023. Leidos submitted the Final 2023 Addendum Report on May 3, 2023. Ohio EPA approval was received on May 31, 2023.

A. Describe difficulties encountered during the reporting period and actions taken to rectify any difficulties

B. Identify changes in key personnel

None

C. List target and actual completion dates for each element of activity, including project completion

The actual completion dates and target dates where applicable are provided with the status of activities in Section A.

D. Provide an explanation for any deviation from applicable schedules

None.

E. Indicate how much soil and groundwater was generated and/or transported and disposed as part of RVAAP restoration activities

Well installation and development in support of the FWGW FS resulted in thirty-two (32) 55-gallon partially drums of soil cuttings, and approximately 13,220 gallons of liquid IDW, including decontamination water. The Spring 2023 FWGWMP field work/sampling created four full, and one partially full 55-gallon drum of purge and decontamination water. The soil and liquid IDW are properly staged and labeled at Building 1036. Inspections are being conducted while awaiting waste sample results and eventual transport and disposal.

Two drums (approximately 95 gallons) of decon water was generated during the tree cutting activities for Atlas Scrap Yard when decontaminating equipment mats. The waste was sampled and found to be Nonhazardous. The waste was properly transported and disposed offsite on June 8, 2023.

Approximately 500 gallons of soil cuttings and 4 gallons of decon water has been generated as part of the sampling activities at Open Demolition Area #2. The waste is properly staged, labeled, and being inspected at Building 1036.

F. Describe activities planned for the following month (June 2023)

- 1. Pending a response from the Ohio EPA, HGL will prepare the Group 8 MRS Final QAPP.
- 2. Arcadis will continue field work operations at Open Demolition Area 2.

- PIKA-Insight JV will continue developing the Preliminary Draft Work Plans/Remedial Designs for RVAAP-06 and CC RVAAP-70. Pending resolution of Army comments, PIKA-Insight JV will submit the Draft Remedial Design for RVAAP-50.
- 4. Leidos plans to submit the Draft APP/SSHP for the Investigation of Nine AOCs for Army review. Leidos plans to continue developing and submit the Preliminary Draft RI Work Plan for CC RVAAP-78 and the Draft Work Plan for additional delineation sampling at RVAAP-34, 38, 42, 45 and CC RVAAP-76 for Ohio EPA review. Leidos plans to submit the Draft Vapor Intrusion Study Work Plan for CC RVAAP-69 for Ohio EPA review. Leidos plans to submit the Final RI Addendum for CC RVAAP-79 to Ohio EPA.

G. Describe activities currently under Ohio EPA review and/or activities to be submitted for Ohio EPA review in the next 8 weeks.

Site Name/Activity Name	Current Status – In Progress/To Be Submitted	Start Date (Actual or Projected)	End Date (based on 45 day review timeframe)	Ohio EPA Reviewer Name (if known)
RTCs for the Draft QAPP/WP for Group 8 MRS (RVAAP-063-R-01) – HGL	In Progress	May 8, 2023	June 22, 2023	Nick Roope
Final RI Addendum for CC RVAAP-79	To be submitted			
Draft Work Plan for RVAAP-34, 38, 42, 45, CC RVAAP-76	To be submitted			
Draft VI Study Work Plan for CC RVAAP-69	To be submitted			
Draft Remedial Design Work Plan for RVAAP-50 Atlas Scrap Yard	To be submitted			

H. List of FY24 Milestones

Milestone Activity	Milestone Date	Actual Date Achieved
Block D Igloo MRS Draft Remedial	August 30, 2024	
Action Completion Report - HGL	-	
Group 8 MRS Draft Remedial	August 30, 2024	
Action Completion Report – HGL		
Draft 2023 LUC Inspection Report	March 31, 2024	
- Chenega		
FWGWMP Draft Annual Report -	February 15, 2024	
Leidos		
FWGWMP Draft Groundwater	February 15, 2024	
Addendum - Leidos		

NATIONAL GUARD BUREAU 111 SOUTH GEORGE MASON DRIVE ARLINGTON VA 22204-1373

May 9, 2023

Ohio Environmental Protection Agency DERR-NEDO Attn: Ms. Natalie Oryshkewych 2110 East Aurora Road Twinsburg, OH 44087-1924

Subject: Ravenna Army Ammunition Plant (RVAAP) Restoration Program, Portage/Trumbull Counties, Ohio, Monthly Activity Report - April 2023

Dear Ms. Oryshkewych:

Attached is the "RVAAP Restoration Program - DFFO Monthly Summary Report – April 2023". The report summarizes the Restoration Program activities conducted at the former RVAAP for the period from April 1, 2023, through April 30, 2023. This report is being submitted to the Ohio EPA to comply with the Ohio EPA Director's Final Findings and Orders, Section XVI, paragraphs 36 and 37. Due to small file size, this activity report will only be submitted via email.

Please contact the undersigned at (614) 336-6000 Ext. 2053 or <u>kevin.m.sedlak.ctr@army.mil</u> if there are issues or concerns with this submission.

Sincerely,

TAIT.KATHRYN.SE RENA.1289508275 Date: 2023.05.05 08:08:13 -04'00'

FOR Kevin M. Sedlak RVAAP Restoration Program Manager Army National Guard Directorate

Attachment

cc: Megan Oravec, Ohio EPA, DERR Thomas Schneider, Ohio EPA Kevin Palombo, Ohio EPA, DERR Katie Tait, OHARNG Steve Kvaal, USACE – Louisville James Trumble, USACE – Louisville Jennifer Tierney, Chenega

Status of project activities for reporting period (April 2023)

PROJECT NAME	USACE TECH MGR /Contractor	PROJECT STATUS
2021 RI/FS Completion Contract for IRP AOCs	N. Peters / Leidos	A meeting on the Draft Facility-wide Sewers RI Report was held, on January 17, 2023, to discuss the path forward with the Ohio EPA. Additional evaluation and investigation are outside the scope of Leidos' current contract. The Army is working on a modification to Leidos' contract to get additional support. The Army will schedule a Technical Project Planning meeting with Ohio EPA after additional evaluation.
Block D MRS and Group 8 MRS RD/RAs	Travis McCoun & Nicole Walworth / HGL	HGL began cutting and clearing vegetation and brush at the MRS in preparation of the field work, however, the vegetation removal will not be completed before the March 31 deadline due to subcontractor issues. Therefore, the field work is on hold and recommence in the fall. The Group 8 MRS Draft QAPP was submitted to Ohio EPA on February 9, 2023, and comments were received on April 19, 2023. HGL submitted the draft response to comments on April 24, 2023, and are under Army review.
RVAAP-004-R-01 ODA #2	Nicole Walworth & Travis McCoun / Arcadis	Arcadis provided revised pages and a Final QAPP on March 21, 2023, and Ohio EPA approved the Final QAPP on April 3, 2023. Arcadis mobilized field staff to the site on March 14, 2023. Field work is ongoing.
Remedial Actions for 3 AOCs – RVAAP-06 C Block Quarry, RVAAP-50 Atlas Scrap Yard, CC RVAAP-70 E Classification Yard	N. Peters / PIKA- Insight JV	PIKA-Insight continued developing the Work Plans/Remedial Designs for RVAAP-06, RVAAP-50 and CC RVAAP-70. The ARNG/OHARNG/USACE had a meeting with the Ohio EPA and USACE Pittsburgh on April 25, 2023 to discuss wetlands impacts and mitigation at Atlas Scrap Yard.
Investigation at 9 AOCs - RVAAP-34 Sand Creek, CC RVAAP-69 Building 1048 Fire Station, CC RVAAP-78 Quarry Pond Dump, CC RVAAP- 79 DLA Ore Storage Yard, RVAAP-38 NACA Test Area, RVAAP- 45 Wet Storage, RVAAP-42 Load Line 9, CC RVAAP- 76 Depot Area, CC RVAAP-70 E Classification Yard	N. Peters / Leidos	Leidos continued preparing the Accident Prevention Plan (APP) and Site Safety and Health Plan (SSHP) for all planned field activities. Leidos continued preparing the Vapor Intrusion (VI) Study Work Plan for CC RVAAP-69. Leidos continued developing the Work Plan for additional delineation sampling at RVAAP-34, 38, 42, 45 and CC RVAAP-76 and continued developing the RI Work Plan for CC RVAAP-78. Leidos continued developing the Final RI Addendum for CC RVAAP-79.

PROJECT NAME	USACE TECH MGR /Contractor	PROJECT STATUS
2022 Environmental Program Support Services	N. Peters / Chenega	On April 4, 2023, Ohio EPA approved the Final 2022 Annual Land Use Control Monitoring Report for RVAAP-01 Ramsdell Quarry Landfill, RVAAP-04 Open Demolition Area #2, RVAAP-05 Winklepeck Burning Grounds, RVAAP-08 through 12 Load Lines 1, 2, 3,4 and 12, and RVAAP- 51 Dump Along Paris-Windham Road. On April 19, 2023, Chenega provided facilitation and administration of the RVAAP RAB meeting.
	J. Trumble / Leidos	On April 10, 2023, the Army provided a 15-day notification letter to Ohio EPA regarding upcoming annual well gauging event and FWGWMP sampling. Leidos mobilized to CJAG on April 24, 2023, and began the Spring sampling by beginning the annual well gauging.
		As of April 27, 2023, all new FWGW FS wells have been installed, and will be developed and sampled throughout May.
RVAAP-66 Facility Wide Ground Water Monitoring		A response to Ohio EPA comments on the Spring 2022 Semi-Annual Report was sent on March 14, 2023. Responses to comments were approved by the Ohio EPA in a letter dated April 28, 2023.
		In a letter dated April 19, 2023 (received on April 20, 2023), Ohio EPA provided general comments on the Draft 2022 Annual Report. The Army and Ohio EPA agreed that the letter did not require revisions to the report.
		In a letter dated April 28, 2023 (received on May 1, 2023), Ohio EPA concurred with the Army responses for the 2023 Addendum Report.

A. Describe difficulties encountered during the reporting period and actions taken to rectify any difficulties

B. Identify changes in key personnel

None

C. List target and actual completion dates for each element of activity, including project completion

The actual completion dates and target dates where applicable are provided with the status of activities in Section A.

D. Provide an explanation for any deviation from applicable schedules

None.

E. Indicate how much soil and groundwater was generated and/or transported and disposed as part of RVAAP restoration activities

Well installation and development in support of the FWGW FS resulted in thirty-two (32) 55-gallon partially drums of soil cuttings, and a little more than 12,500 gallons of liquid IDW, including decontamination water in March and April 2023. The Spring 2023 FWGWMP field work/sampling created one partially full 55-gallon drum of decon water. The soil and liquid IDW are properly staged and labeled at Building 1036. Inspections are being conducted while awaiting waste sample results and eventual transport and disposal.

Two drums (approximately 95 gallons) of decon water was generated during the tree cutting activities for Atlas Scrap Yard when decontaminating equipment mats. The waste was sampled and found to be Nonhazardous. The waste is properly staged, labeled, and being inspected at Building 1036 while awaiting proper transport and disposal.

To date, approximately 405 gallons of soil cuttings and 2.5 gallons of decon water has been generated as part of the sampling activities at Open Demolition Area #2. The waste is properly staged, labeled, and being inspected at Building 1036.

F. Describe activities planned for the following month (May 2023)

- 1. Chenega plans to continue seasonal field work of Seibert Stake and warning sign maintenance.
- 2. HGL will submit responses to the comments on the Group 8 MRS Draft QAPP.
- 3. Arcadis will continue field work operations at Open Demolition Area 2.
- 4. PIKA-Insight JV will continue developing Work Plans/Remedial Designs for RVAAP-06 and CC RVAAP-70. PIKA-Insight JV will submit the Preliminary Draft Remedial Design for RVAAP-50 and the Draft APP/SSHP for Army review.
- 5. Leidos plans to submit the Draft APP/SSHP for the Investigation of Nine AOCs for Army review. Leidos plans to continue developing and submit the Preliminary Draft RI Work Plan for CC RVAAP-78 and the Preliminary Draft Work Plan for additional delineation sampling at RVAAP-34, 38, 42, 45 and CC RVAAP-76 for Army review. Leidos plans to submit the Preliminary Draft Vapor Intrusion Study Work Plan for CC RVAAP-69 for Army review. Leidos plans to submit the Final RI Addendum for CC RVAAP-79 to Ohio EPA.
- 6. Leidos plans on completing the development and sampling of the monitoring wells supporting the FWGW FS. Leidos will also continue the Spring FWGWMP sampling of the monitoring wells.
- 7. Leidos plans on submitting the Final 2022 Spring Semi-Annual FWGWMP Report, the Final 2022 Annual Report, and the 2023 Addendum Report.

G. Describe activities currently under Ohio EPA review and/or activities to be submitted for Ohio EPA review in the next 8 weeks.

Site Name/Activity Name	Current Status – In Progress/To Be Submitted	Start Date (Actual or Projected)	End Date (based on 45 day review timeframe)	Ohio EPA Reviewer Name (if known)
RTCs for the Draft QAPP/WP for Group 8 MRS (RVAAP-063-R-01) – HGL	To be submitted			Nick Roope
Final RI Addendum for CC RVAAP-79	To be submitted	May 12, 2023 (projected)		
Final 2023 Addendum for RVAAP-66 FWGWMP – Leidos	In Progress	May 3, 2023	June 19, 2023	Kevin Palombo
Final Semi-Annual Report – Spring 2022 – FWGWMP -	To be submitted	May12, 2023 (projected)		Kevin Palombo

Site Name/Activity Name	Current Status – In Progress/To Be Submitted	Start Date (Actual or Projected)	End Date (based on 45 day review timeframe)	Ohio EPA Reviewer Name (if known)
Leidos				
Final Annual Report for 2022 FWGWMP - Leidos	In Progress	May 4, 2023	June 20, 2023	Kevin Palombo

H. List of FY24 Milestones

Milestone Activity	Milestone Date	Actual Date Achieved
Block D Igloo MRS Draft Remedial	August 30, 2024	
Action Completion Report - HGL		
Group 8 MRS Draft Remedial	August 30, 2024	
Action Completion Report – HGL		
Draft 2023 LUC Inspection Report	March 31, 2024	
- Chenega		
FWGWMP Draft Annual Report -	February 15, 2024	
Leidos		
FWGWMP Draft Groundwater	February 15, 2024	
Addendum - Leidos		

NATIONAL GUARD BUREAU 111 SOUTH GEORGE MASON DRIVE ARLINGTON VA 22204-1373

April 7, 2023

Ohio Environmental Protection Agency DERR-NEDO Attn: Ms. Natalie Oryshkewych 2110 East Aurora Road Twinsburg, OH 44087-1924

Subject: Ravenna Army Ammunition Plant (RVAAP) Restoration Program, Portage/Trumbull Counties, Ohio, Monthly Activity Report - March 2023

Dear Ms. Oryshkewych:

Enclosed for your review is the "RVAAP Restoration Program - DFFO Monthly Summary Report – March 2023". The report summarizes the Restoration Program activities conducted at the former RVAAP for the period from March 1, 2023, through March 31, 2023. This report is being submitted to the Ohio EPA to comply with the Ohio EPA Director's Final Findings and Orders, Section XVI, paragraphs 36 and 37. Due to the small file size, this report will only be sent via email and will not be sent via the Ohio EPA LiquidFile system.

Please contact the undersigned at (614) 336-6000 Ext. 2053 or <u>kevin.m.sedlak.ctr@army.mil</u> if there are issues or concerns with this submission.

Sincerely,

	Digitally signed by TAIT.KATHRYN.SERENA.128950827
RENA.1289508275	5 Date: 2023.04.07 12:19:55 -04'00'

FOR Kevin M. Sedlak RVAAP Restoration Program Manager Army National Guard Directorate

Attachment

cc: Megan Oravec, Ohio EPA, DERR Thomas Schneider, Ohio EPA, DERR Kevin Palombo, Ohio EPA, DERR Katie Tait, OHARNG Steve Kvaal, USACE – Louisville James Trumble, USACE – Louisville Jennifer Tierney, Chenega

Status of project activities for reporting period (March 2023)

PROJECT NAME	USACE TECH MGR /Contractor	PROJECT STATUS		
2021 RI/FS Completion Contract for IRP AOCs	N. Peters / Leidos	A meeting on the Draft Facility-wide Sewers RI Report was held, on January 17, 2023, to discuss the path forward with the Ohio EPA. Additional evaluation and investigation are outside the scope of Leidos' current contract, so Leidos is on hold while the Army evaluates the next steps needed to move the project forward. The Army is working on a modification to Leidos' contract to get additional support. The Army will schedule a Technical Project Planning meeting with Ohio EPA after additional evaluation.		
Block D MRS and Group 8 MRS RD/RAs	Travis McCoun & Nicole Walworth / HGL	The Block D Igloo MRS Final QAPP was submitted to the Army and Ohio EPA on February 9, 2023 and was approved by the Ohio EPA on March 22, 2023. HGL began cutting and clearing vegetation and brush at the MR in preparation of the field work, however, the vegetation removal will not b completed before the March 31 deadline due to subcontractor issues. Therefore, the field work will pause and recommence in the fall.		
		The Group 8 MRS Draft QAPP was submitted to Ohio EPA on February 9, 2023. Ohio EPA comments are pending.		
RVAAP-004-R-01 ODA #2	Nicole Walworth & Travis McCoun / Arcadis	Arcadis submitted the response to comments to the Ohio EPA on the Draft UFP-QAPP for ODA2 on September 14, 2022; the Ohio EPA requested an extension until December 9, 2022. Ohio EPA review of responses was provided to the Army on December 14, 2022. The Army had a comment clarification meeting with the Ohio EPA on January 6, 2023. Revised Response to Comments were submitted to Ohio EPA on January 24, 2023. Ohio EPA provided a response to the Army on January 31, 2023. Arcadis sent the Final QAPP to the Ohio EPA on March 1, 2023, and Ohio EPA provided additional comments. Arcadis provided revised pages and a Final QAPP on March 21, 2023, and Ohio EPA approved the Final QAPP on April 3, 2023.		
		Arcadis completed vegetation removal on February 7, 2023. A Notification of Field Work was sent to the Ohio EPA on March 1, 2023. Arcadis mobilized field staff to the site on March 14, 2023.		
Remedial Actions for 3 AOCs – RVAAP-06 C Block Quarry, RVAAP-50 Atlas Scrap Yard, CC RVAAP-70 E Classification Yard	N. Peters / PIKA- Insight JV	PIKA-Insight continued developing the Work Plans/Remedial Designs for RVAAP-06, RVAAP-50 and CC RVAAP-70. On March 6, 2023, the contractor conducted a site survey at all 3 AOCs. Tree and brush removal were performed at the Atlas Scrap Yard Former Storage Area (FSA) and CC RVAAP-70 East Classification Yard on March 20-24, 2023.		

PROJECT NAME	USACE TECH MGR /Contractor	PROJECT STATUS
Investigation at 9 AOCs - RVAAP-34 Sand Creek, CC RVAAP-69 Building 1048 Fire Station, CC RVAAP-78 Quarry Pond Dump, CC RVAAP- 79 DLA Ore Storage Yard, RVAAP-38 NACA Test Area, RVAAP- 45 Wet Storage, RVAAP-42 Load Line 9, CC RVAAP- 76 Depot Area, CC RVAAP-70 E Classification Yard	N. Peters / Leidos	Leidos continued preparing the Accident Prevention Plan (APP) and Site Safety and Health Plan (SSHP) for all planned field activities. Leidos continued preparing the Vapor Intrusion (VI) Study Work Plan for CC RVAAP-69. Leidos continued developing the Work Plan for additional delineation sampling at RVAAP-34, 38, 42, 45 and CC RVAAP-76 and continued developing the RI Work Plan for CC RVAAP-78. Leidos began developing the Final RI Addendum for CC RVAAP-79.
2022 Environmental Program Support Services	N. Peters / Chenega	Chenega submitted the Final 2022 Annual Land Use Control Monitoring Report for RVAAP-01 Ramsdell Quarry Landfill, RVAAP-04 Open Demolition Area #2, RVAAP-05 Winklepeck Burning Grounds, RVAAP-08 through 12 Load Lines 1, 2, 3,4 and 12, and RVAAP-51 Dump Along Paris- Windham Road to Ohio EPA on March 27, 2023 which was approved by the Ohio EPA on April 4, 2023
RVAAP-66 Facility Wide Ground Water Monitoring	J. Trumble / Leidos	Leidos mobilized to CJAG on March 13, 2023, and began well installation in support of the FWGW FS. On March 7, 2023, the Army received Ohio EPA comments on the Draft 2022 FWGWMP Spring Semi-Annual Report and on March 14, 2023, the Army provided responses to the comments. On February 13, 2023, the Army submitted the Draft 2022 Annual FWGWMP Report to the Ohio EPA. On March 7, 2023, the Army received Ohio EPA comments on the Draft 2023 FWGWMP Addendum Report. On March 14, 2023, the Army provided responses to the comments. Leidos has submitted plans to install culverts/driveways to access the monitoring wells located on the south side of State Route 5. OHARNG submitted comments to Leidos who is preparing responses and revising the plans.

A. Describe difficulties encountered during the reporting period and actions taken to rectify any difficulties

HGL encountered issues with their tree cutting subcontractor in that they would not be able to perform the cutting in time to meet the 31 March deadline. Therefore, HGL terminated the subcontractor and is looking to contract with another company to perform the cutting in the Fall, after 30 September.

B. Identify changes in key personnel

None

C. List target and actual completion dates for each element of activity, including project completion

The actual completion dates and target dates where applicable are provided with the status of activities in Section A.

D. Provide an explanation for any deviation from applicable schedules

None.

E. Indicate how much soil and groundwater was generated and/or transported and disposed as part of RVAAP restoration activities

Well installation and development in support of the FWGW FS resulted in eleven (11) 55-gallon drums of soil cuttings, and a little more than 1,700 gallons of liquid IDW, including decontamination water in March 2023. The soil and liquid IDW are properly staged and labeled at Building 1036. Inspections are being conducted while awaiting proper transport and disposal.

Two drums (approximately 95 gallons) of decon water was generated during the tree cutting activities for Atlas Scrap Yard when decontaminating equipment mats. The waste is properly staged, labeled, and being inspected while awaiting proper transport and disposal.

F. Describe activities planned for the following month (April 2023)

- 1. Chenega plans to begin seasonal field work of Seibert Stake and warning sign maintenance. Chenega will also ensure access to all monitoring wells has been achieved for the groundwater level sweep in April.
- 2. HGL will respond to comments on the Group 8 MRS Draft QAPP (if comments are received from Ohio EPA).
- 3. Arcadis will continue field work operations and begin soil sampling.
- 4. PIKA-Insight JV will continue developing Work Plans/Remedial Designs for RVAAP-06, RVAAP-50 and CC RVAAP-70 and will submit Draft APP/SSHP for Army review.
- 5. Leidos plans to submit the Draft APP/SSHP for the Investigation of Nine AOCs for Army review. Leidos plans to continue developing the RI Work Plan for CC RVAAP-78 and the Work Plan for additional delineation sampling at RVAAP-34, 38, 42, 45 and CC RVAAP-76. Leidos plans to submit the Pre-Draft Vapor Intrusion Study Work Plan for CC RVAAP-69 for Army review. Leidos plans to prepare the Final RI Addendum for CC RVAAP-79 for submittal to Ohio EPA in early May 2023.
- 6. Leidos plans on completing the installation and sampling of the monitoring wells supporting the FWGW FS.
- 7. Leidos plans on beginning the Spring FWGWMP sampling in April beginning with the facility wide water level sweep. This will be followed up with sampling of the monitoring wells.

G. Describe activities currently under Ohio EPA review and/or activities to be submitted for Ohio EPA review in the next 8 weeks.

Site Name/Activity Name	Current Status – In Progress/To Be Submitted	Start Date (Actual or Projected)	End Date (based on 45 day review timeframe)	Ohio EPA Reviewer Name (if known)
Draft QAPP/WP for Group 8 MRS (RVAAP-063-R-01) – HGL	In Progress	February 9, 2023	March 26, 2023	Nick Roope
RTC for Draft 2023 Addendum for RVAAP-66 FWGWMP – Leidos	In Progress	March 14, 2023	May 1, 2023	Kevin Palombo
Final Semi-Annual Report – Spring 2022 – FWGWMP - Leidos	In Progress	March 14, 2023	May 1, 2023	Kevin Palombo
Draft Annual Report for 2022 FWGWMP - Leidos	In Progress	February 13, 2023	March 30, 2023	Kevin Palombo
Final RI Addendum for CC RVAAP-79	To be submitted	May 4, 2023 (projected)		

H. List of FY23 Milestones

Milestone Activity	Milestone Date	Actual Date Achieved
FWGWMP Draft Annual Report	February 15, 2023	February 13, 2023
FWGWMP Draft Groundwater Addendum	February 15, 2023	January 23, 2023

NATIONAL GUARD BUREAU 111 SOUTH GEORGE MASON DRIVE ARLINGTON VA 22204-1373

March 8, 2023

Ohio Environmental Protection Agency DERR-NEDO Attn: Ms. Natalie Oryshkewych 2110 East Aurora Road Twinsburg, OH 44087-1924

Subject: Ravenna Army Ammunition Plant (RVAAP) Restoration Program, Portage/Trumbull Counties, Ohio, Monthly Activity Report - February 2023

Dear Ms. Oryshkewych:

Enclosed for your review is the "RVAAP Restoration Program - DFFO Monthly Summary Report – February 2023". The report summarizes the Restoration Program activities conducted at the former RVAAP for the period from February 1, 2023, through February 28, 2023. This report is being submitted to the Ohio EPA to comply with the Ohio EPA Director's Final Findings and Orders, Section XVI, paragraphs 36 and 37.

Please contact the undersigned at (614) 336-6000 Ext. 2053 or <u>kevin.m.sedlak.ctr@army.mil</u> if there are issues or concerns with this submission.

Sincerely,

FOR Kevin M. Sedlak RVAAP Restoration Program Manager Army National Guard Directorate

Attachment

cc: Megan Oravec, Ohio EPA, DERR Thomas Schneider, Ohio EPA, DERR Kevin Palombo, Ohio EPA, DERR Katie Tait, OHARNG Steve Kvaal, USACE – Louisville James Trumble, USACE - Louisville Jennifer Tierney, Chenega

Status of project activities for reporting period (February 2023)

PROJECT NAME	USACE TECH MGR /Contractor	PROJECT STATUS
2021 RI/FS Completion Contract for IRP AOCs	N. Peters / Leidos	A meeting on the Draft Facility-wide Sewers RI Report was held, on January 17, 2023, to discuss the path forward with the Ohio EPA. Additional evaluation and investigation are outside the scope of Leidos' current contract, so Leidos is on hold while the Army evaluates the next steps needed to move the project forward. The Army is working on a modification to Leidos' contract to get additional support. The Army will schedule a Technical Project Planning meeting with Ohio EPA after additional evaluation.
Block D MRS and Group 8 MRS RD/RAs	Travis McCoun & Nicole Walworth / HGL	The Block D Igloo MRS Final QAPP was submitted to the Army and Ohio EPA on February 9, 2023. HGL began cutting and clearing vegetation and brush at the MRS in preparation of the field work. The Group 8 MRS Draft QAPP was submitted to Ohio EPA on February 9, 2023.
RVAAP-004-R-01 ODA #2	Nicole Walworth & Travis McCoun / Arcadis	Arcadis submitted the response to comments to the Ohio EPA on the Draft UFP-QAPP for ODA2 on September 14, 2022; the Ohio EPA requested an extension until December 9, 2022. Ohio EPA review of responses was provided to the Army on December 14, 2022. The Army had a comment clarification meeting with the Ohio EPA on January 6, 2023. Revised Response to Comments were submitted to Ohio EPA on January 24, 2023. Ohio EPA provided a response to the Army on January 31, 2023. Arcadis sent the Final QAPP to the Ohio EPA on March 1, 2023. Arcadis completed vegetation removal on February 7, 2023. QC Plan was submitted to the USACE on February 14, 2023.
Remedial Actions for 3 AOCs – RVAAP-06 C Block Quarry, RVAAP-50 Atlas Scrap Yard, CC RVAAP-70 E Classification Yard	N. Peters / PIKA- Insight JV	The contractor finalized and submitted the Project Management Plan and Quality Control Plan to the Army. The contractor submitted a Tree Removal Plan to the Army in preparation for tree clearing to be conducted in March, which was finalized on February 28, 2023. The contractor continued developing the Work Plans/Remedial Designs for RVAAP-06, RVAAP-50 and CC RVAAP-70.
Investigation at 9 AOCs - RVAAP-34 Sand Creek, CC RVAAP-69 Building 1048 Fire Station, CC RVAAP-78 Quarry Pond Dump, CC RVAAP- 79 DLA Ore Storage Yard, RVAAP-38 NACA Test Area, RVAAP- 45 Wet Storage, RVAAP-42 Load Line 9, CC RVAAP- 76 Depot Area, CC RVAAP-70 E Classification Yard	N. Peters / Leidos	On February 14, 2023, Leidos issued the Final Draft RI Report for CC RVAAP-69 to Ohio EPA. Ohio EPA approved the Final RI in a letter dated February 27, 2023. Leidos continued preparing the Vapor Intrusion (VI) Study Work Plan for CC RVAAP-69. Leidos continued developing the Work Plan for additional delineation sampling at RVAAP-34, 38, 42, 45 and CC RVAAP-76 and continued developing the RI Work Plan for CC RVAAP-78.

PROJECT NAME	USACE TECH MGR /Contractor	PROJECT STATUS
2022 Environmental Program Support Services	N. Peters / Chenega	Chenega submitted the Final Property Management Plan Appendices (2022 Update) to Ohio EPA on February 1, 2023. The document was approved by Ohio EPA in a letter dated February 13, 2023. Chenega submitted the Draft 2022 Annual Land Use Control Monitoring Report for RVAAP-01 Ramsdell Quarry Landfill, RVAAP-14 Open Demolition Area #2, RVAAP-05 Winklepeck Burning Grounds, RVAAP-08 through 12 Load Lines 1, 2, 3,4 and 12, and RVAAP-51 Dump Along Paris-Windham Road to Ohio EPA on January 19, 2023. That document is still in Ohio EPA review.
RVAAP-66 Facility Wide Ground Water Monitoring	J. Trumble / Leidos	Leidos issued a 15-day notification field notification to the Ohio EPA regarding the new well installation, on February 21, 2023. On February 7, 2023, the Army issued responses to Ohio EPA's comments on the Draft 2022 FWGWMP Spring Semi-Annual Report. On February 13, 2023, the Army submitted the Draft 2022 Annual FWGWMP Report to the Ohio EPA.

A. Describe difficulties encountered during the reporting period and actions taken to rectify any difficulties

None.

B. Identify changes in key personnel

None

C. List target and actual completion dates for each element of activity, including project completion

The actual completion dates and target dates where applicable are provided with the status of activities in Section A.

D. Provide an explanation for any deviation from applicable schedules

None.

E. Indicate how much soil and groundwater was generated and/or transported and disposed as part of RVAAP restoration activities

None.

F. Describe activities planned for the following month (March 2023)

- 1. Chenega plans to address comments from the Ohio EPA review of the Draft 2022 Annual LUC Monitoring Report upon receipt.
- 2. HGL will continue clearing brush and trees at the Block D Igloo MRS in support of upcoming field activities in 2023.
- 3. HGL will respond to comments on the Group 8 MRS Draft QAPP (if comments are received from Ohio EPA).

- 4. Arcadis will mobilize for QC seeding and geophysical survey field work in March 2023.
- PIKA-Insight JV (PI-JV) plans to have the AOCs surveyed, and removal areas staked. PI-JV will also cut trees and brush in March ahead of the March 31 deadline. PI-JV will continue developing Work Plans/Remedial Designs for RVAAP-06, RVAAP-50 and CC RVAAP-70.
- 6. Leidos plans to continue developing the RI Work Plan for CC RVAAP-78 and the Work Plan for additional delineation sampling at RVAAP-34, 38, 42, 45 and CC RVAAP-76. Leidos plans to submit the compiled Final RI Report for CC RVAAP-69 to the Administrative Record and continue developing the Vapor Intrusion Study Work Plan for CC RVAAP-69. Leidos plans to begin developing the RI Addendum for CC RVAAP-79.
- 7. HGL will begin clearing brush and trees at the Block D MRS in support of upcoming field activities.
- 8. Leidos plans on initiating monitoring well installation to support the FWGW FS on March 13, 2023.

G. Describe activities currently under Ohio EPA review and/or activities to be submitted for Ohio EPA review in the next 8 weeks.

Site Name/Activity Name	Current Status – In Progress/To Be Submitted	Start Date (Actual or Projected)	End Date	Ohio EPA Reviewer Name (if known)
Final Block D Igloo QAPP/WP (RVAPP-060-R-01) – HGL	In Progress	February 9, 2023	March 26, 2023	Nick Roope
Draft QAPP/WP for Group 8 MRS (RVAAP-063-R-01) – HGL	In Progress	February 9, 2023	March 26, 2023	Nick Roope
Final QAPP/WP for Open Demolition Area 2 RI Addendum (RVAAP-004-R-01) – Arcadis	In Progress	March 1, 2023	April 1, 2023	Nick Roope
Draft Annual LUC Report for 2022 - Chenega	In Progress	January 19, 2023	March 6, 2023	Nick Roope
RTC for Draft 2023 Addendum for RVAAP-66 FWGWMP – Leidos	To be submitted			Kevin Palombo
Final Semi-Annual Report – Spring 2022 – FWGWMP - Leidos	To be submitted			Kevin Palombo
Draft Annual Report for 2022 FWGWMP - Leidos	In Progress	February 13, 2023	March 30, 2023	Kevin Palombo

H. List of FY23 Milestones

Milestone Activity	Milestone Date	Actual Date Achieved
FWGWMP Draft Annual Report	February 15, 2023	February 13, 2023
FWGWMP Draft Groundwater	February 15, 2023	January 23, 2023
Addendum		

111 SOUTH GEORGE MASON DRIVE

ARLINGTON VA 22204-1373

February 9, 2023

Ohio Environmental Protection Agency DERR-NEDO Attn: Ms. Natalie Oryshkewych 2110 East Aurora Road Twinsburg, OH 44087-1924

Subject: Ravenna Army Ammunition Plant (RVAAP) Restoration Program, Portage/Trumbull Counties, Ohio, Monthly Activity Report - January 2023

Dear Ms. Oryshkewych:

Enclosed for your review is the "RVAAP Restoration Program - DFFO Monthly Summary Report – January 2023". The report summarizes the Restoration Program activities conducted at the former RVAAP for the period from January 1, 2023, through January 31, 2023. This report is being submitted to the Ohio EPA to comply with the Ohio EPA Director's Final Findings and Orders, Section XVI, paragraphs 36 and 37.

This letter and attachment are being submitted electronically via email only and due to small file size will not be submitted via the Ohio EPA LiquidFile site. Please contact the undersigned at (614) 336-6000 Ext. 2053 or <u>kevin.m.sedlak.ctr@army.mil</u> if there are issues or concerns with this submission.

Sincerely,

TAIT.KATHRYN.SE Pigitally signed by TAIT.KATHRYN.SERENA.12895082 RENA.1289508275 ⁷⁵ Date: 2023.02.08 14:28:17 -05'00' <u>FOR</u> Kevin M. Sedlak RVAAP Restoration Program Manager Army National Guard Directorate

cc: Megan Oravec, Ohio EPA Thomas Schneider, Ohio EPA Kevin Palombo, Ohio EPA Katie Tait, OHARNG Steve Kvaal, USACE – Louisville James Trumble, USACE – Louisville

Attachment - DFFO Report - January 2023

Status of project activities for reporting period (January 2023)

PROJECT NAME	USACE TECH MGR /Contractor	PROJECT STATUS
2021 RI/FS Completion Contract for IRP AOCs	N. Peters / Leidos	A meeting on the Draft Facility-wide Sewers RI Report was held, on January 17, 2023, to discuss the path forward with the Ohio EPA. Additional evaluation and investigation are outside the scope of Leidos' current contract, so Leidos is on hold while the Army evaluates the next steps needed to move the project forward. The Army will schedule a Technical Project Planning meeting with Ohio EPA after additional evaluation.
Block D MRS and Group 8 MRS RD/RAs	Travis McCoun & Nicole Walworth / HGL	The Block D MRS Draft QAPP was submitted to the Ohio EPA in August 2022; comments were received on November 2, 2022, and responses were sent to the Ohio EPA on November 29, 2022. Ohio EPA sent a letter of concurrence on January 25, 2023. The Final QAPP is being assembled for submission in February 2023. The Group 8 MRS Preliminary Draft QAPP was submitted to the Army on October 17, 2022. All reviewer comments were received on November 14, 2022. Responses to comments on the Preliminary Draft QAPP were submitted on December 29, 2022. Concurrence from the Army was received on all comments by January 26, 2023. The Draft QAPP is being prepared for Ohio EPA submission.
RVAAP-004-R-01 ODA #2	Nicole Walworth & Travis McCoun / Arcadis	Arcadis submitted the response to comments to the Ohio EPA on the Draft UFP-QAPP for ODA2 on September 14, 2022; the Ohio EPA requested an extension until December 9, 2022. Ohio EPA review of responses was provided to the Army on December 14, 2022. The Army had a comment clarification meeting with the Ohio EPA on January 6, 2023. Revised Response to Comments were submitted to Ohio EPA on January 24, 2023. Ohio EPA provided a response to the Army on January 31, 2023. Arcadis began cutting and clearing vegetation and brush at ODA#2 in preparation for upcoming field work.
Remedial Actions for 3 AOCs – RVAAP-06 C Block Quarry, RVAAP-50 Atlas Scrap Yard, CC RVAAP-70 E Classification Yard	N. Peters / PIKA- Insight JV	The contractor finalized and submitted the Project Management Plan and Quality Control Plan to the Army. The contractor continued developing Work Plans/Remedial Designs for RVAAP-06, RVAAP-50 and CC RVAAP-70.

PROJECT NAME	USACE TECH MGR /Contractor	PROJECT STATUS
Investigation at 9 AOCs - RVAAP-34 Sand Creek, CC RVAAP-69 Building 1048 Fire Station, CC RVAAP-78 Quarry Pond Dump, CC RVAAP- 79 DLA Ore Storage Yard, RVAAP-38 NACA Test Area, RVAAP- 45 Wet Storage, RVAAP-42 Load Line 9, CC RVAAP- 76 Depot Area, CC RVAAP-70 E Classification Yard	N. Peters / Leidos	On January 4, 2023, Leidos submitted the Draft Project Management Plan and Quality Control Plan for USACE review. Leidos continued preparing the Site Safety and Health Plan. On January 6, 2023, Leidos provided a letter responding to Ohio EPA's comments on the Draft RI Report for CC RVAAP-69. In a letter dated January 19, 2023, the Ohio EPA concurred with those responses and Leidos began to update the report accordingly. Leidos also began preparing the Vapor Intrusion (VI) Study Work Plan for CC RVAAP-69. On January 19, 2023, Leidos conducted a site visit and site walk over for all AOCs on this contract. Leidos continued developing the Work Plan for additional delineation sampling at RVAAP-34, 38, 42, 45 and CC RVAAP- 76 and continued developing the RI Work Plan for CC RVAAP-78.
2022 Environmental Program Support Services	N. Peters / Chenega	Chenega submitted the Draft 2022 Annual Land Use Control Monitoring Report for RVAAP-01 Ramsdell Quarry Landfill, RVAAP-04 Open Demolition Area #2, RVAAP-05 Winklepeck Burning Grounds, RVAAP-08 -12 Load Lines 1, 2, 3,4 and 12, and RVAAP-51 Dump Along Paris- Windham Road to Ohio EPA on January 19, 2023.
RVAAP-66 Facility Wide Ground Water Monitoring	J. Trumble / Leidos	The Ohio EPA concurred with the Final Monitoring Well Installation Plan in a letter dated January 11, 2023. On January 23, 2023, Leidos submitted the Draft 2023 FWGWMP Addendum to the Ohio EPA. On January 25, 2023, the Ohio EPA provided comments on the Draft Spring 2022 FWGWMP report.

A. Describe difficulties encountered during the reporting period and actions taken to rectify any difficulties

None.

B. Identify changes in key personnel

Rebecca Shreffler with Chenega has taken a new position with another company. Her last day is February 9, 2023. Chenega has requested that all correspondence be sent to Al Brillinger in the interim while a replacement is hired and onboarded.

C. List target and actual completion dates for each element of activity, including project completion

The actual completion dates and target dates where applicable are provided with the status of activities in Section A.

D. Provide an explanation for any deviation from applicable schedules

None.

E. Indicate how much soil and groundwater was generated and/or transported and disposed as part of RVAAP restoration activities

None.

F. Describe activities planned for the following month (February 2023)

- Chenega plans to address comments from Ohio EPA review of the Draft 2022 Annual LUC Monitoring Report upon receipt.
- 2. HGL will finalize the Block D Igloo UFP-QAPP and submit it to the Army and Ohio EPA.
- 3. HGL will submit the Draft Remedial Action QAPP/Work Plan for the Group 8 MRS to Ohio EPA.
- Arcadis will submit the Final QAPP/Work Plan with revised response incorporated to the Ohio EPA for the Open Demolition Area 2 MRS.
- PIKA-Insight will continue developing Work Plans/Remedial Designs for RVAAP-06, RVAAP-50 and CC RVAAP-70.
- 6. Leidos plans to receive and respond to USACE comments on the Draft PMP and Draft QCP for the Nine AOCs project. Leidos plans to submit the Draft Site Safety and Health Plan for Army review. Leidos plans to continue developing the RI Work Plan for CC RVAAP-78 and the Work Plan for additional delineation sampling at RVAAP-34, 38, 42, 45 and CC RVAAP-76. Leidos plans to submit the Final RI Report for CC RVAAP-69 and continue developing the Vapor Intrusion Study Work Plan for CC RVAAP-69. Leidos plans to begin developing the RI Addendum for CC RVAAP-79.
- 7. Arcadis will finish the brush and tree clearing at ODA#2.
- 8. HGL will begin clearing brush and trees at the Block D MRS in support of upcoming field activities.
- Leidos will begin clearing brush and trees in support of the upcoming well installation in support of the FS.

Site Name/Activity Name	Current Status – In Progress/To Be Submitted	Start Date (Actual or Projected)	End Date	Ohio EPA Reviewer Name (if known)
Final Block D Igloo QAPP/WP (RVAPP-060-R-01) – HGL	To be submitted	Mid-February 2023		Nick Roope
Draft QAPP/WP for Group 8 MRS (RVAAP-063-R-01) – HGL	To be submitted	Mid-February 2023		Nick Roope
Final QAPP/WP for Open Demolition Area 2 RI Addendum (RVAAP-004-R-01) – Arcadis	To be submitted	February 14, 2023		Nick Roope
Final RI Report for CC RVAAP- 69 Building 1048 Fire Station – Leidos	To be submitted	February 13, 2023		Ed D'Amato
Draft Annual LUC Report for 2022 - Chenega	In Progress	January 19, 2023	March 6, 2023	Nick Roope

G. Describe activities currently under Ohio EPA review and/or activities to be submitted for Ohio EPA review in the next 8 weeks.

Site Name/Activity Name	Current Status – In Progress/To Be Submitted	Start Date (Actual or Projected)	End Date	Ohio EPA Reviewer Name (if known)
Final Property Management Plan – Chenega	In Progress	January 27, 2023	March 13, 2023	Kevin Palombo
Draft 2023 Addendum for RVAAP-66 FWGWMP – Leidos	In Progress	January 23, 2023	March 9, 2023	Kevin Palombo
RTC on the Draft Semi-Annual Report – Spring 2022 – FWGWMP - Leidos	In Progress	February 7, 2023	March 23, 2023	Kevin Palombo
Draft Annual Report for 2022 FWGWMP - Leidos	In Progress	October 2022	February 15, 2023	Kevin Palombo

H. List of FY23 Milestones

Milestone Activity	Milestone Date	Actual Date Achieved
FWGWMP Draft Annual Report	February 15, 2023	
FWGWMP Draft Groundwater Addendum	February 15, 2023	January 23, 2023

NATIONAL GUARD BUREAU 111 SOUTH GEORGE MASON DRIVE ARLINGTON VA 22204-1373

January 9, 2023

Ohio Environmental Protection Agency DERR-NEDO Attn: Ms. Natalie Oryshkewych 2110 East Aurora Road Twinsburg, OH 44087-1924

Subject: Ravenna Army Ammunition Plant (RVAAP) Restoration Program, Portage/Trumbull Counties, Ohio, Monthly Activity Report - December 2022

Dear Ms. Oryshkewych:

Enclosed for your review is the "RVAAP Restoration Program - DFFO Monthly Summary Report - December 2022". The report summarizes the Restoration Program activities conducted at the former RVAAP for the period from December 1, 2022, through December 31, 2022. This report is being submitted to the Ohio EPA to comply with the Ohio EPA Director's Final Findings and Orders, Section XVI, paragraphs 36 and 37. Due to small file, this submittal will only be submitted via email and not through the Ohio EPA LiquidFile system.

Please contact the undersigned at (614)336-6000 Ext. 2053 or <u>kevin.m.sedlak.ctr@army.mil</u> if there are issues or concerns with this submission.

Sincerely,

TAIT.KATHRYN.SE RENA.1289508275 Date: 2023.01.09 10:48:06 -05'00'

FOR Kevin M. Sedlak RVAAP Restoration Program Manager Army National Guard Directorate

Attachment

cc: Megan Oravec, Ohio EPA, DERR Thomas Schneider, Ohio EPA, DERR Kevin Palombo, Ohio EPA, DERR Katie Tait, OHARNG Steve Kvaal, USACE – Louisville James Trumble, USACE – Louisville Rebecca Shreffler, Chenega, Administrative Record

Status of project activities for reporting period (December 2022)

PROJECT NAME	USACE TECH MGR /Contractor	PROJECT STATUS
2021 RI/FS Completion Contract for IRP AOCs	N. Peters / Leidos	On November 17, 2022, Ohio EPA provided feedback on the responses provided by the Army on August 24, 2022 on the Draft Facility-wide Sewers RI Report. While considering Ohio EPA's feedback, the Army determined that a written response would not be effective, and a meeting is needed with the Ohio EPA to discuss the path forward. The meeting has been scheduled for January 17, 2023.
Block D MRS and Group 8 MRS RD/RAs	Travis McCoun & Nicole Walworth / HGL	The Block D MRS Draft QAPP was submitted to the Ohio EPA in August 2022; comments were received on November 2, 2022, and responses were sent to the Ohio EPA on November 29, 2022. The Army provided comments on the Preliminary Draft Group 8 UFP-QAPP/WP to HGL on November 14, 2022. Responses to Army comments were issued on December 29, 2022.
RVAAP-004-R-01 ODA #2	Nicole Walworth & Travis McCoun / Arcadis	Arcadis submitted the response to comments to the Ohio EPA on the Draft UFP-QAPP for ODA2 on September 14, 2022; The Ohio EPA requested an extension until December 9, 2022. Ohio EPA review of responses was provided to the Army on December 14, 2022. The Army scheduled a comment clarification meeting with the Ohio EPA for January 6, 2023
Remedial Actions for 3 AOCs – RVAAP-06 C Block Quarry, RVAAP-50 Atlas Scrap Yard, CC RVAAP-70 E Classification Yard	N. Peters / PIKA- Insight JV	On December 19, 2022, the contractor submitted the Draft Project Management Plan and Quality Control Plan for Army review.
Investigation at 9 AOCs - RVAAP-34 Sand Creek, CC RVAAP-69 Building 1048 Fire Station, CC RVAAP-78 Quarry Pond Dump, CC RVAAP- 79 DLA Ore Storage Yard, RVAAP-38 NACA Test Area, RVAAP- 45 Wet Storage, RVAAP-42 Load Line 9, CC RVAAP- 76 Depot Area, CC RVAAP-70 E Classification Yard	N. Peters / Leidos	A new contract was awarded to Leidos to continue the work at 9 AOCs. The contract was awarded on November 4, 2022. The contract kickoff meeting was held on December 19, 2022. The contractor continued working on the Project Management Plan and the schedule. The contractor began preparing the Site Safety and Health Plan and Work Plan for additional delineation sampling at RVAAP-34, 38, 42, 45 and CC RVAAP- 76. The contractor also began preparing the RI Work Plan for CC RVAAP- 78.
2022 Environmental Program Support Services	N. Peters / Chenega	Chenega finalized and submitted the Contractor Quality Control Plan and the Site Safety and Health Plan to the Army on December 20, 2022. Chenega prepared the Preliminary Draft Annual Land Use Control (LUC) Monitoring Report for Ramsdell Quarry Landfill, Winklepeck Burning Grounds, ODA2, Load Lines 1-4 and 12, and Dump Along Paris-Windham Road. The report was submitted for Army review on December 30, 2022.

PROJECT NAME	USACE TECH MGR /Contractor	PROJECT STATUS
RVAAP-66 Facility Wide Ground Water Monitoring	J. Trumble / Leidos	Leidos submitted the Final Monitoring Well Installation Plan for Ohio EPA approval on November 23, 2022. On November 21, 2022, Leidos submitted the Draft Spring 2022 FWGWMP report to the Ohio EPA. The Annual Well Inspection Report noting condition of the wells was issued on December 22, 2022.

A. Describe difficulties encountered during the reporting period and actions taken to rectify any difficulties

None.

B. Identify changes in key personnel

None.

C. List target and actual completion dates for each element of activity, including project completion

The actual completion dates and target dates where applicable are provided with the status of activities in Section A.

D. Provide an explanation for any deviation from applicable schedules

None.

E. Indicate how much soil and groundwater was generated and/or transported and disposed as part of RVAAP restoration activities

Five (5) 55-gallon drums of liquid IDW were staged at Building 1036 on secondary containment from the Spring 2022 FWGWMP sampling event (three drums) and the Fall FWGWMP sampling event (two drums). The waste was Nonhazardous and was properly transported and disposed on December 15, 2022.

F. Describe activities planned for the following month (January 2023)

- 1. The Property Management Plan Appendices (PMP) will be finalized and issued pending approval of responses to Ohio EPA comments.
- 2. Chenega plans to address comments from Army review of the Preliminary Draft 2022 Annual LUC Monitoring Report.
- 3. HGL will finalize the Block D Igloo UFP-QAPP pending Ohio EPA approval of the responses to comments.
- 4. HGL will submit the Draft Remedial Action QAPP/Work Plan for the Group 8 MRS
- 5. Arcadis will submit the responses to Ohio EPA comments for the Open Demolition Area 2 MRS.
RVAAP RESTORATION PROGRAM - DFFO MONTHLY SUMMARY REPORT December 2022

- PIKA-Insight plans to respond to Army comments on the Project Management Plan and Quality Control Plan and begin developing Work Plans/Remedial Designs for RVAAP-06, RVAAP-50 and CC RVAAP-70.
- 7. A meeting will be held with Ohio EPA on January 17, 2023, to discuss the path forward on the Facilitywide Sewers RI. Leidos will provide technical support to the Army for that meeting.
- 8. Leidos plans to submit the Draft Project Management Plan and schedule for the Nine AOCs project and the Draft Site Safety and Health Plan for Army review. Leidos plans to continue developing the RI Work Plan for CC RVAAP-78 and the Work Plan for additional delineation sampling at RVAAP-34, 38, 42, 45. And CC RVAAP-76.

December 5, 2023

TRANSMITTED ELECTRONICALLY

Mr. Kevin M. Sedlak Army National Guard Installations & Environment- Cleanup Branch IPA Designation 1438 State Route 534 SW Newton Falls, OH 44444

Sent via email to: Kevin.m.sedlak.ctr@army.mil

RE: US Army Ravenna Ammunition Plt RVAAP Remediation Response Project records Remedial Response Portage County 267000859243, 267000859137, 267000859098, 267000859264 and 267000859127

Subject: Uniform Federal Policy-Quality Assurance Project Plan for Additional Remedial Design Sampling at Multiple Areas of Concern

Dear Mr. Sedlak:

On November 23, 2023, the Ohio Environmental Protection Agency (Ohio EPA), Northeast District Office (NEDO), Division of Environmental Response and Revitalization (DERR) received the Uniform Federal Policy-Quality Assurance Project Plan for Additional Remedial Design Sampling at Multiple Areas of Concern¹. It was prepared by Leidos.

Ohio EPA has the following comment:

1. Please add clarifying language stating that the results of the sampling will not change the selected remedy for the Areas of Concern or the required additional soil removal on side walls and/or floors of previous excavations that did not meet remedial clean up goals.

If you have any questions concerning this letter, please contact me at (330) 963-1170 or by email at <u>ed.damato@epa.ohio.gov</u>.

Sincerely,

Edward J D'Amato

Edward D'Amato, Site Coordinator Division of Environmental Response and Revitalization

ec: Nicole Walworth, USACE Baltimore Katie Tait, OHARNG RTLS, CJAG Steve Kvaal, USACE Louisville Nathaniel Peters, USACE Louisville Jennifer M. Tierney, Chenega Angela Cobbs, Chenega Megan Oravec, Ohio EPA, DERR, NEDO Natalie Oryshkewych, Ohio EPA, DERR, NEDO Brian Tucker, Ohio EPA, DERR, CO Thomas Schneider, Ohio EPA, DERR, SWDO

¹<u>https://edocpub.epa.ohio.gov/publicportal/ViewDocument.aspx?docid=2641597</u> Northeast District Office 330 | 963 1200

Northeast District Office 2110 E. Aurora Road Twinsburg, Ohio 44087 U.S.A. 330 | 963 1200 epa.ohio.gov

August 31, 2023

Ohio Environmental Protection Agency DERR-NEDO Attn: Mr. Edward D'Amato, Site Coordinator 2110 East Aurora Road Twinsburg, OH 44087-1924

Subject: Ravenna Army Ammunition Plant (RVAAP) Restoration Program, Portage/Trumbull Counties, Draft Uniform Federal Policy-Quality Assurance Project Plan (UFP-QAPP), Multiple Areas of Concern (Work Activity No. 267000859243, 267000859098, 267000859264, and 267000859127)

Dear Mr. D'Amato:

For your review, an electronic version of the *Draft Uniform Federal Policy-Quality Assurance Project Plan for Additional Remedial Design Sampling at Multiple Areas of Concern* has been sent using the Ohio EPA LiquidFile system. The areas of concern addressed in this plan include RVAAP-38 National Advisory Committee on Aeronautics (NACA) Test Area, RVAAP-42 Load Line 9, RVAAP-45 Wet Storage Area, and CC RVAAP-76 Depot Area. A hard copy and CD can be sent upon request by Ohio EPA.

This plan was prepared for the Army National Guard in support of the RVAAP Restoration Program. Please contact the undersigned at 614-336-6000, ext 2053 or <u>kevin.m.sedlak.ctr@army.mil</u> if there are issues or concerns with this submission.

Sincerely,

TAIT.KATHRYN.SER Digitally signed by TAIT.KATHRYN.SERENA.1289508275 Date: 2023.08.31 11:52:07 -04'00'

FOR Kevin M. Sedlak RVAAP Restoration Program Manager Army National Guard Directorate

cc: Megan Oravec, Ohio EPA, NEDO Tom Schneider, Ohio EPA, SWDO Katie Tait, OHARNG Steve Kvaal, USACE Louisville Nathaniel Peters, II, USACE Louisville Jed Thomas, Leidos Ryan Laurich, Leidos Jennifer Tierney, Chenega

December 13, 2023

Ohio Environmental Protection Agency Attn: Mr. Nicholas Roope 2110 East Aurora Road Twinsburg, OH 44087-1924

Subject: Draft 2023 Annual Land Use Control Monitoring Report, Ravenna Army Ammunition Plant (RVAAP) Restoration Program, Camp James A. Garfield, Portage/Trumbull Counties, Ohio, (Ohio EPA ID 267000859029)

Dear Mr. Roope:

Attached for your review is an electronic version of the Draft 2023 Annual Land Use Control Monitoring Report, RVAAP-01 Ramsdell Quarry Landfill, RVAAP-04 Open Demolition Area #2, RVAAP-05 Winklepeck Burning Grounds, RVAAP-08-12 Load Lines 1 through 4 and 12, and RVAAP-51 Dump Along Paris Windham Road. Due to small file size, this report is being submitted via email only and not through the Ohio EPA LiquidFile system.

This report was prepared for the Army National Guard in support of the RVAAP Restoration Program. Please contact the undersigned at (330)235-2153 or <u>kevin.m.sedlak.ctr@army.mil</u> if there are issues or concerns with this submission.

Sincerely,

TAIT.KATHRYN.SE RENA.1289508275

FOR Kevin M. Sedlak RVAAP Restoration Project Manager Army National Guard Directorate

 cc: Tom Schneider, Ohio EPA (cover letter via email only) Megan Oravec, Ohio EPA (cover letter via email only) Katie Tait, OHARNG (one [1] electronic copy) Nathaniel Peters, USACE – Louisville (one [1] electronic copy) Steve Kvaal, USACE – Louisville (cover letter via email only) Jennifer Tierney, AR Records Manager (one [1] electronic copy)

November 15, 2023

U.S. Army Corps of Engineers (USACE) Attn: Dr. Nathaniel Peters II 600 Martin Luther King Jr. PL Louisville, KY 40202

Subject: Camp James A. Garfield/former RVAAP Preliminary Draft 2023 Annual Land Use Control Monitoring Report, RVAAP-01 Ramsdell Quarry Landfill, RVAAP-14 Open Demolition Area #2, RVAAP-05 Winklepeck Burning Grounds, RVAAP-08 through 12 Load Lines 1, 2, 3,4 and 12, and RVAAP-51 Dump Along Paris-Windham Road Contract No. W912QR-22-C-0031

Dear Dr. Peters,

The Preliminary Draft 2023 Annual Land Use Control (LUC) Monitoring Report, RVAAP-01 Ramsdell Quarry Landfill, RVAAP_04 Open Demolition Area #2, RVAAP-05 Winklepeck Burning Grounds, RVAAP-08 through 12 Load Lines 1, 2, 3, 4 and 12, and RVAAP-51 Dump Along Paris-Windham Road at Camp James A. Garfield/former Ravenna Army Ammunition Plant (RVAAP) is being sent to you electronically. This report was prepared by Chenega Reliable Services, LLC and is submitted for the Camp Ravenna Environmental Program Support Services Contract # W912QR-22-C-0031 in support of the former RVAAP Restoration Program located at Camp James A. Garfield Joint Military Training Center in Portage/Trumbull Counties, Ohio.

Only electronic copies of the preliminary draft inspection form will be submitted to you and the Camp James A. Garfield Environmental office for review.

Please feel free to contact me at 330-980-1289 or at <u>Allan.Brillinger@chenegars.com</u> via e-mail if there are issues or concerns with this report.

Sincerely,

llan B Brilling

Allan B. Brillinger Program Manager, Chenega Reliable Services, LLC

Cc: Katie Tait, OHARNG (1 electronic copy) Kevin Sedlak, NGB (1 electronic copy) Steve Kvaal, USACE (transmittal letter only) Jennifer Tierney, Chenega AR Manager (1 electronic copy)

April 4, 2023

TRANSMITTED ELECTRONICALLY

Mr. Kevin M. Sedlak RVAAP Restoration Program Manager ARNG-Directorate Camp James A. Garfield JTC 1438 State Route 534 Newton Falls, OH 44444 RE: US Army Ravenna Ammunition Plt RVAAP Remediation Response Project records O&M Federal Facilities Portage County 267000859029

Sent via email to: kevin.m.sedlak.ctr@army.mil

Subject: Final - 2022 Annual Land Use Control Monitoring Report, RVAAP-01 Ramsdell Quarry Landfill, RVAAP-04 Open Demolition Area #2, RVAAP-05 Winklepeck Burning Grounds, RVAAP-08 - 12 Load Lines 1 through 4 and 12, RVAAP-51 Dump Along Paris Windham Road, Camp James A. Garfield, Portage/Trumbull Counties, Ohio -Dated March 27, 2023 – Ohio EPA Concurrence

Dear Mr. Sedlak:

The Ohio Environmental Protection Agency (Ohio EPA), Northeast District Office (NEDO), Division of Environmental Response and Revitalization (DERR) received and has reviewed the "Final 2022 Annual Land Use Control Monitoring Report, RVAAP-01 Ramsdell Quarry Landfill, RVAAP-04 Open Demolition Area #2, RVAAP-05 Winklepeck Burning Grounds, RVAAP-08 - 12 Load Lines 1 through 4 and 12, RVAAP-51 Dump Along Paris Windham Road, Camp James A. Garfield, Portage/Trumbull Counties, Ohio", March 27, 2023.

Ohio EPA has reviewed this documentation and has found no significant deficiencies. As a result, Ohio EPA concurs with the final findings of the report.

If you have any questions or concerns, please do not hesitate to contact me at (330) 963-1235 or by via email at <u>Nicholas.roope@epa.ohio.gov</u>.

Sincerely,

Nicholas Roope Environmental Specialist Division of Environmental Response and Revitalization

NCR/cm

ec: Allan Brillinger, Chenega Katie Tait, OHARNG RTLS, CJAG Steve Kvaal, USACE Louisville Nathaniel Peters, USACE Louisville Megan Oravec, Ohio EPA, NEDO, DERR Natalie Oryshkewych, Ohio EPA, NEDO, DERR Thomas Schneider, Ohio EPA, SWDO, DERR Received 04 APR 2023

March 27, 2023

Ohio Environmental Protection Agency Attn: Mr. Nicholas Roope 2110 East Aurora Road Twinsburg, OH 44087-1924

Subject: Ravenna Army Ammunition Plant (RVAAP) Restoration Program, FINAL 2022 Annual Land Use Control (LUC) Monitoring Report for RVAAP-01 Ramsdell Quarry Landfill, RVAAP-04 Open Demolition Area #2, RVAAP-05 Winklepeck Burning Grounds, RVAAP-08 - 12 Load Lines 1 through 4 and 12, RVAAP-51 Dump Along Paris Windham Road, Camp James A. Garfield, Portage/Trumbull Counties, Ohio, (Ohio EPA ID No. 267000859029)

Dear Mr. Roope:

Attached is an electronic version of the Final 2022 Annual Land Use Control Monitoring Report, RVAAP-01 Ramsdell Quarry Landfill, RVAAP-04 Open Demolition Area #2, RVAAP-05 Winklepeck Burning Grounds, RVAAP-08 through 12 Load Lines 1 through 4 and 12, and RVAAP-51 Dump Along Paris Windham Road for your review and approval. Due to the small file size, this document will only be submitted via email and not through the Ohio EPA LiquidFile system.

This report was prepared for the Army National Guard in support of the RVAAP Restoration Program. Please contact the undersigned at (614) 336-2053 or <u>kevin.m.sedlak.ctr@army.mil</u> if there are issues or concerns with this submission.

Sincerely,

TAIT.KATHRYN.SE Digitally signed by TAIT.KATHRYN.SERENA.1289508 RENA.1289508275 275 Date: 2023.03.27 09:05:26 -04'00' FOR Kevin M. Sedlak RVAAP Restoration Program Manager Army National Guard Directorate

 cc: Tom Schneider, Ohio EPA (cover letter via email only) Natalie Oryshkewych, Ohio EPA (cover letter via email only) Megan Oravec, Ohio EPA (cover letter via email only) Katie Tait, OHARNG (one [1] electronic copy) Nathaniel Peters, USACE – Louisville (one [1] electronic copy) Steve Kvaal, USACE – Louisville (cover letter via email only) Jennifer Tierney, Administrative Records Manager (one [1] electronic copy)

March 8, 2023

TRANSMITTED ELECTRONICALLY

Mr. Kevin M. Sedlak RVAAP Restoration Program Manager ARNG-Directorate Camp James A. Garfield JTC 1438 State Route 534 Newton Falls, OH 44444 RE: US Army Ravenna Ammunition Plt RVAAP Remediation Response Project records O&M Federal Facilities Portage County 267000859029

Sent via email to: kevin.m.sedlak.ctr@army.mil

Subject: DRAFT - 2022 Annual Land Use Control Monitoring Report, RVAAP-01 Ramsdell Quarry Landfill, RVAAP-04 Open Demolition Area #2, RVAAP-05 Winklepeck Burning Grounds, RVAAP-08 - 12 Load Lines 1 through 4 and 12, RVAAP-51 Dump Along Paris Windham Road, Camp James A. Garfield, Portage/Trumbull Counties, Ohio -Dated January 19, 2023 – Ohio EPA Request for Final

Dear Mr. Sedlak:

The Ohio Environmental Protection Agency (Ohio EPA), Northeast District Office (NEDO), Division of Environmental Response and Revitalization (DERR) has received and reviewed the document entitled "Draft 2022 Annual Land Use Control Monitoring Report, RVAAP-01 Ramsdell Quarry Landfill, RVAAP-04 Open Demolition Area #2, RVAAP-05 Winklepeck Burning Grounds, RVAAP-08 - 12 Load Lines 1 through 4 and 12, RVAAP-51 Dump Along Paris Windham Road, Camp James A. Garfield, Portage/Trumbull Counties, Ohio", dated January 31, 2022.

Ohio EPA has reviewed this documentation and noted Appendix A (the 2022 RVAAP-01 RQL Access Logs) was missing from the report. Ohio EPA is requesting the submittal of the final document, with the missing Appendix A, for concurrence.

If you have any questions or concerns, please do not hesitate to contact me at (330) 963-1235 or via email: Nicholas.roope@epa.ohio.gov.

Sincerely,

Nicholas Roope, Environmental Specialist Division of Environmental Response and Revitalization

Received 08 MAR 2023

NCR/cm

ec: Al Brillinger, Chenega Reliable Services, LLC Katie Tait, OHARNG RTLS, CJAG Steve Kvaal, USACE Louisville Nathaniel Peters, USACE Louisville Megan Oravec, Ohio EPA, DERR, NEDO Natalie Oryshkewych, Ohio EPA, DERR, NEDO Thomas Schneider, Ohio EPA, DERR, SWDO

January 18, 2023

Ohio Environmental Protection Agency DERR-NEDO Attn: Mr. Nicholas Roope 2110 East Aurora Road Twinsburg, OH 44087-1924

Subject: DRAFT 2022 Annual Land Use Control Monitoring Report, RVAAP Restoration Program, Camp James A. Garfield/Former RVAAP, Portage and Trumbull Counties, Ohio (Ohio EPA ID No. 267-000859-029)

Dear Mr. Roope:

Attached for your review is the Draft 2022 Annual Land Use Control Monitoring Report for RVAAP-01 Ramsdell Quarry Landfill, RVAAP-04 Open Demolition Area #2, RVAAP-05 Winklepeck Burning Grounds, RVAAP-08 - 12 Load Lines 1 through 4 and 12, and RVAAP-51 Dump Along Paris Windham Road. Due to small file size this report will only be submitted via email and not through the Ohio EPA LiquidFile system.

This report was prepared for the Army National Guard in support of the RVAAP Restoration Program. Please contact the undersigned at (614) 336-2053 or <u>kevin.m.sedlak.ctr@army.mil</u> if there are issues or concerns with this submission.

Sincerely,

TAIT.KATHRYN.SEDigitally signed by
TAIT.KATHRYN.SERENA.1289508RENA.1289508275275
Date: 2023.01.18 14:24:33 -05'00'FOR
Kevin M. Sedlak
RVAAP Restoration Program Manager
Army National Guard Directorate

 cc: Tom Schneider, Ohio EPA (cover letter via email only) Natalie Oryshkewych, Ohio EPA (cover letter via email only) Megan Oravec, Ohio EPA (cover letter via email only) Katie Tait, OHARNG (one [1] electronic copy) Nathaniel Peters, USACE – Louisville (one [1] electronic copy) Steve Kvaal, USACE – Louisville (cover letter via email only) Jennifer Tierney, AR Records Manager (one [1] electronic copy)

February 13, 2023

TRANSMITTED ELECTRONICALLY

Mr. Kevin M. Sedlak Restoration Program Manager ARNG-ILE Clean-up Camp James A. Garfield JTC 1438 State Route 534 Newton Falls, OH 44444 RE: US Army Ammunition Plt RVAAP Remediation Response Project Records Remedial Response Portage County ID#267000859029

Sent via email to: Kevin.m.sedlak.civ@mail.mil

Subject: Approval of the "Final Revised Property Management Plan for the Designated Areas of Concern and Munitions Response Sites, Version 4.0," Former Ravenna Army Ammunition Plant, Camp James A. Garfield Joint Military Training Center, Portage and Trumbull Counties, Ohio, dated January 27,2023

Dear Mr. Sedlak:

The Ohio Environmental Protection Agency (Ohio EPA) has received and reviewed the "Final Revised Property Management Plan for the Designated Areas of Concern and Munitions Response Sites, Version 4.1," Former Ravenna Army Ammunition Plant, Camp James A. Garfield Joint Military Training Center, Portage and Trumbull Counties, Ohio, dated January 27, 2023. This document was received at Ohio EPA's Northeast District Office (NEDO), Division of Environmental Response and Revitalization (DERR) via email February 1, 2023. The document was prepared for the United States Army Corps of Engineers on behalf of the National Guard Bureau by Chenega Reliable Services, LLC under Contract Number W912QR-22-C-00313.

The final document was reviewed by personnel from Ohio EPA, DERR. Pursuant to the Director's Findings and Orders paragraph 39 (b), Ohio EPA considers the document final and approved.

If you have any questions, please contact me at kevin.palombo@epa.ohio.gov or call me at (330) 963-1292.

Sincerely,

Kn Ml. h

Kevin M. Palombo, Environmental Specialist Division of Environmental Response and Revitalization

ec: Kevin Sedlak, ARNG Rebecca Shreffler, Chenega Katie Tait, OHARNG RTLS, CJAG Steve Kvaal, USACE Louisville Nathaniel Peters, USACE Louisville Megan Oravec, Ohio EPA, NEDO, DERR Natalie Oryshkewych, Ohio EPA, NEDO, DERR Nicholas Roope, Ohio EPA, NEDO, DERR Thomas Schneider, Ohio EPA, SWDO, DERR Received 14 FEB 23

KP/cm

January 27, 2023

Ohio Environmental Protection Agency DERR-NEDO Attn: Mr. Kevin Palombo 2110 East Aurora Road Twinsburg, OH 44087-1924

Subject: Ravenna Army Ammunition Plant (RVAAP) Restoration Program, Final Property Management Plan, Version 4.1, Former RVAAP, Portage/Trumbull unties, Ohio (Ohio EPA ID No. 267-000859-029)

Dear Mr. Palombo:

The Final Revised Property Management Plan for the Designated Areas of Concern and Munitions Response Sites, Version 4.1, Former Ravenna Army Ammunition Plant, Camp James A. Garfield Joint Military Training Center, Portage and Trumbull Counties, Ohio (PMP) is being submitted to you electronically via the Ohio EPA LiquidFile site. Version 4.1 differs from Version 4.0 as follows:

- Cover Page the date has been changed from "June 2021" to "February 2023". The version number has been changed from "4.0" to "4.1". Version 4.1 includes no main text changes and only updates to appendices.
- Footers The date has been removed from the footers throughout the document.
- Appendix A1 Sites with LUCs:
 - Table A1 has been updated and revised.
 - A section on RVAAP-04 Open Demolition Area #2 has been added.
 - The sections on RVAAP-08, 09, 10 and 11 (Load Lines 1 through 4), and RVAAP-12 (Load Line 12) have been revised and combined.
- Appendix A2 AOCs with NFAs:
 - Table A2 has been updated and revised.
 - Sections on RVAAP-03 Open Demolition Area #1, RVAAP-74 Building 1034 Motor Pool Hydraulic Lift, and RVAAP-75 George Road Sewer Treatment Plant have been added to Appendix A2.

This PMP was prepared for the Army National Guard in support of the RVAAP Restoration Program. Please contact the undersigned at (614) 336-6000 ext 2053 or <u>Kevin.m.sedlak.ctr@army.mil</u> if there are issues or concerns with this submission.

Sincerely,

TAIT.KATHRYN.SE Digitally signed by TAIT.KATHRYN.SERENA.1289508275 Bate: 2023.01.27 14:36:06 -05'00'

FOR Kevin M. Sedlak RVAAP Restoration Program Manager Army National Guard Directorate cc: Tom Schneider, Ohio EPA (cover letter via email only) Natalie Oryshkewych, Ohio EPA (cover letter via email only) Megan Oravec, Ohio EPA (cover letter via email only) Katie Tait, OHARNG (one [1] electronic copy) Nathaniel Peters, USACE – Louisville (one [1] electronic copy) Steve Kvaal, USACE – Louisville (cover letter via email only) Jennifer Tierney, Chenega Reliable Services (one [1] electronic copy, one [1] hard copy)

January 19, 2023

TRANSMITTED ELECTRONICALLY

Mr. Kevin Sedlak Restoration Program Manager ARNG-ILE Clean Up Camp James A Garfield JTC 1438 State Route 534 SW Newton Falls, OH 44444 RE: US Army Ammunition Plt RVAAP Remediation Response Remedial Investigation Plans Remedial Response Portage County 267000859029

Sent via email: kevin.m.sedlak.ctr@army.mil

Subject: Response to Ohio EPA Comments on the "Draft 2022 Property Management Plan Appendices" dated November 17, 2022

Dear Mr. Sedlak:

The Ohio Environmental Protection Agency (Ohio EPA) has received and reviewed the Response to Ohio EPA Comments on the "Draft 2022 Property Management Plan Appendices" at the Former Ravenna Army Ammunition Plant, Portage and Trumbull Counties, Ohio (Camp James A. Garfield). This document was received at Ohio EPA's Northeast District Office (NEDO), Division of Environmental Response and Revitalization (DERR) via email on November 17, 2022. The response was prepared for the United States Army Corps of Engineers (USACE) on behalf of the National Guard Bureau by Chenega Reliable Services, LLC.

Based on our review of the Army National Guard's Response to Ohio EPA comments provided in your letter dated November 17, 2022, we find the responses generally acceptable, and the document can be finalized. Please be sure that all agreed-upon changes, additions, and clarifications are provided in the final document.

If you have questions, you can reach me at kevin.palombo@epa.ohio.gov or at (330) 963-1292.

Sincerely,

Kn Ml b

Kevin M. Palombo Environmental Specialist Division of Environmental Response and Revitalization

KP/cm

ec: Rebecca Shreffler, Chenega Reliable Services Katie Tait, OHARNG RTLS Steven Kvaal, USACE Louisville Nat Peters, USACE Louisville Megan Oravec, Ohio EPA, NEDO, DERR Natalie Oryshkewych, Ohio EPA, NEDO, DERR Liam McEvoy, Ohio EPA, NEDO, DERR Thomas Schneider, Ohio EPA, SWDO, DERR Carrie Rasik, Ohio EPA, CO, DERR

Received 19 JAN 2023