

SUSPECTED MUSTARD AGENT BURIAL AREA OF CONCERN (RVAAP-28)

REPORT ON THE ADDITIONAL GROUNDWATER MONITORING WELL INSTALLATION AND GROUNDWATER SAMPLING at the SUSPECTED MUSTARD AGENT BURIAL AREA OF CONCERN

RAVENNA ARMY AMMUNITION PLANT, RAVENNA, OHIO

PREPARED FOR:

US ARMY CORPS OF ENGINEERS LOUISVILLE, KENTUCKY CONTRACT NO. W912QR-04-M-0116

FINAL REPORT

MAY 2006

SUSPECTED MUSTARD AGENT BURIAL AREA OF CONCERN (RVAAP-28)

REPORT ON THE ADDITIONAL GROUNDWATER MONITORING WELL INSTALLATION AND GROUNDWATER SAMPLING AT THE SUSPECTED MUSTARD AGENT BURIAL AREA OF CONCERN

RAVENNA ARMY AMMUNITION PLANT, RAVENNA, OHIO

FINAL REPORT MAY 2006

Prepared for:

U.S. Army Corps of Engineers Louisville, Kentucky Contract No. W912QR-04-M-0116

Prepared by:

Spec Pro, Inc. 8451 State Route 5 Ravenna, OH 44266

TABLE OF CONTENTS

TABLE OF CONTENTS	I
EXECUTIVE SUMMARY	1
1.0 INTRODUCTION	1
1.1 PURPOSE AND SCOPE	1
1.2 GENERAL SITE DESCRIPTION, HISTORY and PREVIOUS INVESTIGATIONS	2
TABLE OF CONTENTS. EXECUTIVE SUMMARY 1.0 INTRODUCTION 1.1 PURPOSE AND SCOPE. 1.2 GENERAL SITE DESCRIPTION, HISTORY and PREVIOUS INVESTIGATIONS 1.3 SITE CHEMICAL BACKGROUND VALUES 1.4 DEMOGRAPHY AND LAND USE 1.5 JATA QUALITY OBJECTIVES 1.5.1 Conceptual Site Model. 1.5.2 Problem Definition 1.5.3 Identify Decisions 1.5.4 Define the Study Boundaries 1.5.5 Identify Inputs to the Decisions 1.5.6 Specify Limits on Decision Error 1.5.7 Sample Design 1.6 REPORT ORGANIZATION 2.0 ENVIRONMENTAL SETTING 2.1 Solits and Glacial Deposits 2.3.2 Bedrock Stratigraphy 2.4 I Regional Hydrogeology 2.4.1 Regional Hydrogeology 2.4.2 Suspected Mustard Agent Burial AOC Hydrologic/Hydrogeologic Setting 2.5 CLIMATE 3.0 STUDY AREA INVESTIGATION 3.1 SURFACE AND SUBSURFACE SOL CHARACTERIZATION 3.2 I Rationale	7
1.4 DEMOGRAPHY AND LAND USE	7
 1.5.1 Conceptual Site Model	
2.1 RVAAP PHYSIOGRAPHIC SETTING	11
2.2 SURFACE FEATURES AND SITE TOPOGRAPHY	
2.3.1 Soils and Glacial Deposits	12
2.4.1 Regional Hydrogeology	17
2.5 CLIMATE	21
3.0 STUDY AREA INVESTIGATION	24
3.1 SURFACE AND SUBSURFACE SOIL CHARACTERIZATION	24
	24

3.2.3 Well Development Methods	26
3.2.4 Groundwater Field Sampling Methods	26
3.2.5 In Situ Permeability Testing	27
3.3 ANALYTICAL PROGRAM OVERVIEW	27
3.3.1 Geotechnical Analyses	27
3.3.2 Laboratory Analyses	
3.3.3 Data Review, Validation, and Quality Assessment	29
3.4 MUNITION AND EXPLOSIVES OF CONCERN (MEC) AVOIDANCE AND FIELD	
RECONNAISSANCE	
4.0 ANALYTICAL RESULTS OF INVESTIGATION	
4.1 GEOTECHNICAL RESULTS	32
4.2 GROUNDWATER LABORATORY ANALYSES RESULTS	32
4.2.1 Mustard Breakdown Products	
4.2.2 Results of Additional Laboratory Analyses on Downgradient Wells	34
4.3 MEC AVOIDANCE SURVEY SUMMARY	41
4.4 SUMMARY OF ANALYTICAL RESULTS	42
5.0 CONCLUSIONS	43
6.0 REFERENCES	

LIST OF FIGURES

1-1	General Location Map	4
1-2	RVAAP Facility Map	
1-3	Suspected Mustard Agent Burial AOC Map with Monitoring Well Locations	6
2-1	Glacial Geology of RVAAP	13
2-2	Bedrock Geology of RVAAP	15
2-3	Bedrock Stratigraphy of RVAAP	16
2-4	Groundwater Contour Map of Suspected Mustard	
	Agent Burial AOC (11/20/2005	22
2-5	Groundwater Contour Map of Suspected Mustard	
	Agent Burial AOC (11/20/2005	23

LIST OF TABLES

2-1 2-2	Groundwater Elevations1 Monitoring Well Summary	
4-1 4-2	Suspected Mustard Agent Burial Site Geotechnical Summary	3
4-3	Explosive and Propellant Analytical Results for MBSmw-005 and MBSmw-006	
4-4	TAL Metals and Cyanide Analytical Results for MBSmw-005 and MBSmw-006	7
4-5	VOCs Analytical Results for MBSmw-005 and MBSmw-006	
4-6 4-7	SVOC Analytical Results for MBSmw-005 and MBSmw-006	

LIST OF APPENDICES

Appendix A	Geotechnical	Laboratory Data
------------	--------------	-----------------

- Appendix B Monitoring Well Logs and Well Development Records
- Appendix C Slug Test Results
- Appendix D Data Verification/Validation Reports
- Appendix E Investigation-Derived Waste Report
- Appendix F Laboratory Analytical Reports

LIST OF ACRONYMS

amsl AOC bgs CERCLA	above mean sea level Area of Concern below ground surface Comprehensive Environmental Response, Compensation, and Liability Act
bgs CERCLA CSM CWA DDD DoD DQO DQSR HMX IDW MEC MS/MSD MDL NPL OE Ohio EPA OHARNG OVA PAH PCB PVC QA QAPP QC RDX RI RVAAP SAP SRC	below ground surface Comprehensive Environmental Response, Compensation, and Liability Act conceptual site model Chemical Warfare Agent dichlorodiphenyldichloroethane Department of Defense data quality objective Data Quality Summary Report high melting explosive (Octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine) investigation-derived waste munitions and explosives of concern matrix spike/matrix spike duplicate method detection limit National Priority List ordnance and explosives Ohio Environmental Protection Agency Ohio Army National Guard organic vapor analyzer polycyclic aromatic hydrocarbon polychlorinated biphenyl polyvinyl chloride quality Assurance Project Plan quality Assurance Project Plan quality Control hexahydro-1,3,5-trinitro-1,3,5-triazine Remedial Investigation Ravenna Army Ammunition Plant Sampling and Analysis Plan site related contaminant
SVOC	semi-volatile organic compound
TAL	target analyte list
USACE	United States Army Corps of Engineers
USCS	Unified Soil Classification System
USDA	United States Department of Agriculture
USEPA	United States Environmental Protection Agency
UXO	unexploded ordnance
VOC	volatile organic compound

EXECUTIVE SUMMARY

PURPOSE

The primary objective of this investigation was to determine if mustard agent breakdown products are present in the uppermost groundwater bearing zone adjacent to the suspected mustard agent burial AOC. A secondary objective of this investigation was to sample the groundwater collected from the newly installed downgradient monitoring wells and analyze the samples for explosives, propellants, TAL metals (filtered), cyanide, VOCs, SVOCs, pesticides, and PCBs. SpecPro, Inc., under contract W912QR-04-M-0116 with the US Army Corps of Engineers (USACE), Louisville District, completed the following tasks to meet this objective:

- Installed 2 new groundwater monitoring wells downgradient from the suspected mustard agent burial AOC.
- Analyzed groundwater samples collected from each of the six monitoring wells for mustard agent breakdown products (thiodiglycol, 1,4-dithiane, and 1,4-oxathiane).
- Analyzed the groundwater samples collected from the two new downgradient monitoring well for explosives, propellants, TAL Metals (filtered), cyanide, VOCs, SVOCs, pesticides, and PCBs.
- Collected Shelby tube samples from the screened intervals of the two additional monitoring well borings and analyzed for moisture content, grain size distribution, Unified Soil Classification System (USCS), Atterberg Limits, specific gravity, bulk density, and porosity.
- Surveyed horizontal coordinates and surface elevations of the newly installed monitoring wells.
- Performed slug tests on the newly installed monitoring wells.
- Properly disposed of Investigation-Derived Waste (IDW).

RESULTS

Groundwater samples were collected from all six monitoring wells at the Suspected Mustard Agent Burial AOC. All of the samples were analyzed for mustard agent breakdown products. The groundwater collected from the downgradient wells MBSmw-005 and –MBSmw-006 were additionally analyzed for explosives and propellants, filtered TAL metals and unfiltered cyanide, VOCs, SVOCs, pesticides and PCBs. The results of the laboratory analysis are as follows:

• Mustard agent breakdown products were not detected in any of the groundwater samples collected.

- Nitrocellulose at MBSmw-006 was the only explosive and propellant detected in the samples collected from MBSmw-005 and MBSmw-006. The result (1.4 ug/L) was qualified with a "B" due to method blank contamination.
- Analytical results of groundwater samples tested for Target Analyte List (TAL) Metals were screened against facility wide background levels. Barium (84.0 ug/L at MBSmw-005 and 86.1 ug/L at MBSmw-006) and nickel (1.7 ug/L at MBSmw-006) exceeded the facility wide background levels for these TAL Metals. The facility wide background level for barium is 82.1 ug/L. The facility wide background level for nickel is 0 ug/l.
- 2-butanone at MBSmw-005 (0.95 ug/L) was the only VOC detected. The Region 9 PRG for 2-butanone is 7000 ug/L.
- Benzoic acid (4.5 ug/L at MBSmw-005) was the only SVOC detected. The Region 9 PRG for benzoic acid is 150000 ug/L.
- PCB-1260 (estimated at 0.088 ug/L at MBSmw-006) was the only PCB detected for this investigation. The MCL for PCB-1260 is 0.5 ug/L and the Region 9 PRG is 0.034 ug/L. Pesticides were not detected in the groundwater sampled for this investigation.

CONCLUSIONS

Mustard breakdown products were not detected in the groundwater sampled from the monitoring wells installed at the Suspected Mustard Agent Burial AOC. There are three possible explanations for this:

- 1. Mustard agent was not buried at the suspected burial AOC and is not present at this location.
- 2. Mustard agent is present at the suspected burial AOC, but is not leaching into the groundwater.
- 3. Mustard agent is present at the suspected burial AOC and is leaching into the groundwater, but none of the wells installed for this investigation were placed to intercept the plume.

It would take a substantial investigation to prove or disprove possibilities #'s 1 and 2 listed above. At this time, we do not recommend further investigation to determine if mustard agent is present at the site for the following reasons:

- 1. An unsubstantiated and undocumented source reported that mustard agent containers may have been buried at the site.
- 2. Thiodiglycol, a mustard agent breakdown product, was not detected at the AOC in a minimal number of surface soil samples obtained by USACHPPM during a previous investigation.
- 3. Mustard agent or mustard agent breakdown products were not detected at the AOC during this investigation.

4. In summary, there has never been any evidence or documented indication that mustard agent was ever buried at the AOC to warrant further investigation.

1.0 INTRODUCTION

A suspected mustard agent burial area of concern (AOC) (RVAAP-28) has been identified at the Ravenna Army Ammunition Plant (RVAAP). It was decided that the best and safest path forward to evaluate if mustard agent is present and leaking within the suspected burial AOC was to determine if mustard agent breakdown products are present in the uppermost groundwater bearing zone a short distance outside of the suspected burial AOC. Four monitoring wells (MBSmw-001 through-004) were installed at the site in Fall 2004. Due to the flat relief of the site, the wells were installed without a clear indication of which wells would be the upgradient or downgradient wells. Once the wells were installed, measurements were taken to determine groundwater flow direction. Groundwater collected from all four monitoring wells was analyzed for mustard agent breakdown products. None were detected. Additionally, groundwater from the downgradient well, MBSmw-001 was analyzed for explosives, propellants, Target Analyte List (TAL) metals (filtered), cyanide, Volatile Organic Compounds (VOCs), Semi-Volatile Organic Compounds (SVOCs), pesticides, and Polychlorinated Biphenyls (PCBs). None were detected. The results of this investigation are presented in Report on the Groundwater Monitoring Well Installation and Groundwater Sampling at the Suspected Mustard Agent Burial Area of Concern, Ravenna Army Ammunition Plant, Ravenna, Ohio (SpecPro, Inc., 2005).

Based on the results of the investigation described above, it was recommended that two additional permanent monitoring wells be installed at the site in optimal . downgradient locations from the suspected burial site, and that all six monitoring wells be sampled for mustard agent breakdown products. This report documents the results of the additional investigation primarily performed in October and November 2005 at the Suspected Mustard Agent Burial AOC at RVAAP, Ravenna, Ohio (Figures 1-1, 1-2, and 1-3). The investigation was conducted in compliance with the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) of 1980 following work plans reviewed and commented on by the U.S. Army Corps of Engineers (USACE) and the Ohio Environmental Protection Agency (Ohio EPA).

1.1 PURPOSE AND SCOPE

The primary objective of this investigation was to determine if mustard agent breakdown products are present in the uppermost groundwater bearing zone adjacent to the suspected mustard agent burial AOC. A secondary objective of this investigation was to sample the groundwater collected from the newly installed downgradient monitoring wells and analyze the samples for explosives, propellants, TAL metals (filtered), cyanide, VOCs, SVOCs, pesticides, and PCBs. SpecPro, Inc., under contract W912QR-04-M-0116 with the US Army Corps of Engineers (USACE), Louisville District, completed the following tasks to meet this objective:

• Installed 2 new groundwater monitoring wells downgradient from the suspected mustard agent burial AOC.

- Analyzed groundwater samples collected from each of the six monitoring wells for mustard agent breakdown products (thiodiglycol, 1,4-dithiane, and 1,4-oxathiane).
- Analyzed the groundwater samples collected from the two new downgradient monitoring well for explosives, propellants, TAL Metals (filtered), cyanide, VOCs, SVOCs, pesticides, and PCBs.
- Collected Shelby tube samples from the screened intervals of the two additional monitoring well borings and analyzed for moisture content, grain size distribution, Unified Soil Classification System (USCS), Atterberg Limits, specific gravity, bulk density, and porosity.
- Surveyed horizontal coordinates and surface elevations of the newly installed monitoring wells.
- Performed slug tests on the newly installed monitoring wells.
- Properly disposed of Investigation-Derived Waste (IDW).

To meet the primary project objectives, investigation-specific data quality objectives (DQOs) were developed using the approach presented in the Facility-wide Sampling and Analysis Plan (SAP) (USACE 2001a).

The investigation approach for this project involved a combination of field and laboratory activities to characterize the AOC. Field investigation techniques included soil boring and sampling, and groundwater sampling. The field program was conducted in accordance with the Facility-wide SAP (USACE 2001a) and the *Final Work Plan and Sampling and Analysis Plan Addenda for the Groundwater Monitoring Well Installation and Groundwater Sampling at the Suspected Mustard Agent Burial Site at the Ravenna Army Ammunition Plant, Ravenna, Ohio (SAP Addendum) (USACE 2004).*

1.2 GENERAL SITE DESCRIPTION, HISTORY and PREVIOUS INVESTIGATIONS

Past Department of Defense (DOD) activities at the Ravenna Army Ammunition Plant (RVAAP) date back to 1940 and include the manufacturing, loading, handling and storage of military explosives and ammunition. Up until 1999, the RVAAP was identified as a 21,419-acre installation. The property boundary was resurveyed by the Ohio Army National Guard (OHARNG) over a two year period 2002 and 2003 and the actual total acreage of the property was found to be 21,683.289 acres. As of February 2006, a total of 20,403 acres of the former 21,683 acre RVAAP have been transferred to the United States Property and Fiscal Officer (USP&FO) for Ohio for use by the OHARNG as a military training site. The current RVAAP consists of 1,280 acres in several distinct parcels scattered throughout the confines of the OHARNG Ravenna Training and Logistics Site (RTLS). The RVAAP and the RTLS are collocated on contiguous parcels of property and the RTLS perimeter fence completely encloses the remaining parcels of the RVAAP. The RTLS is in northeastern Ohio within Portage and Trumbull Counties, approximately 4.8 kilometers (3 miles) east northeast of the city of Ravenna and approximately 1.6 kilometers (1 mile) northwest of the city of Newton Falls (Figure 1-1). The RVAAP portions of the property are solely located within Portage County. The RTLS (inclusive of the RVAAP) is a parcel of property

approximately 17.7 kilometers (11 miles) long and 5.6 kilometers (3.5 miles) wide bounded by State Route 5, the Michael J. Kirwan Reservoir, and the CSX System Railroad on the south; Garret, McCormick, and Berry roads on the west; the Norfolk Southern Railroad on the north; and State Route 534 on the east (see Figures 1-1 and 1-2). The RTLS is surrounded by several communities: Windham on the north; Garrettsville 9.6 kilometers (6 miles) to the northwest; Newton Falls 1.6 kilometers (1 mile) to the southeast; Charlestown to the southwest; and Wayland 4.8 kilometers (3 miles) to the south. When the RVAAP was operational the RTLS did not exist and the entire 21,683-acre parcel was a government-owned, contractor-operated (GOCO) industrial facility. The RVAAP Installation Restoration Program (IRP) encompasses investigation and cleanup of past activities over the entire 21,683 acres of the former RVAAP and therefore references to the RVAAP in this document are considered to be inclusive of the historical extent of the RVAAP, which is inclusive of the combined acreages of the current RTLS and RVAAP, unless otherwise specifically stated.

The U.S. Army excavated a possible mustard agent burial site west of the NACA Test Area in 1969. One 50-gallon drum and seven small rusted cans were discovered. All recovered items were empty and no contamination was discovered according to reports (USACHPPM, 1996). An unidentified and undocumented source reported that the first site excavated was incorrectly identified, and that the mustard agent was buried nearby (USACHPPM, 1996). The second proposed site for the mustard agent burial is located in the wooded area approximately 500 feet south of Hinckley Creek along an abandoned power line right-of-way. The location of the suspected mustard agent burial AOC is shown in Figures 1-2 and 1-3. The suspected site was marked and fenced, however only remnants of the fence still exist. The area is currently marked with Seibert stakes.

Two surface soil samples were collected from this area in 1996 during the Hazardous and Medical Waste Study in 1996 (USACHPPM, 1996). No attempts were made to collect subsurface samples due to the potential hazards associated with it. The surface soil samples were tested for thiodiglycol, a mustard agent decomposition product. Thiodiglycol was not detected at or above the method detection limit (22.5 ppm).

As was discussed in Section 1.0, SpecPro, Inc. conducted an investigation at the site in 2004. The investigation involved installing and sampling four groundwater monitoring wells at the site. The results of this investigation are presented in *Report on the Groundwater Monitoring Well Installation and Groundwater Sampling at the Suspected Mustard Agent Burial Area of Concern, Ravenna Army Ammunition Plant, Ravenna, Ohio (SpecPro, Inc., 2005).* SAIC conducted a geophysical survey of the suspected burial site in 1998. Several metallic anomalies were identified during this investigation, but none could be positively identified as a buried container. The results of this investigation are presented in Appendix A of the above referenced report.

Figure 1-1 General location and Orientation of RTLS/RVAAP. MBS Additonal Drilling Final Report 4

Figure 1-2. RVAAP/RTLS Installation Map

1.3 SITE CHEMICAL BACKGROUND VALUES

Chemicals occur naturally in soil, sediment, surface water, and groundwater. The natural levels of chemicals - called background levels - must be known in order to determine whether the concentrations measured at the Suspected Mustard Agent Burial AOC are higher than would be expected if the site operations had not occurred. Facility-wide background values for inorganic constituents in soil, sediment, surface water, and groundwater were developed as part of a previous Phase II Remedial Investigation (RI) conducted at the Winklepeck Burning Grounds at RVAAP (USACE 2001b). Although some organic compounds also occur under ambient conditions (i.e., some polycyclic aromatic hydrocarbons (PAHs)), the organic compounds of primary concern (e.g., explosives) are man-made, and, therefore, comparison to background is not relevant.

In the facility-wide background study, a background level was calculated for each inorganic constituent detected for each environmental medium of interest. The background level is the 95 percent upper tolerance limit of the 95th percentile of the distribution of background concentrations. This means that if a sample is taken from an area with concentrations of inorganics that are not elevated above background, the measured concentration will be below the background criteria 95 percent of the time. If a measured concentration is above the background criteria, it is likely that it comes from an area with concentrations above background levels.

Background criteria were set to zero for inorganics that were not detected in the facility-wide background samples. For metals that were not detected in the background samples, any detected result from the Suspected Mustard Agent Burial AOC would be considered to be above background. RVAAP facility-wide background criteria for filtered groundwater obtained from monitoring wells screened in the unconsolidated zone is listed in Table 4-4.

1.4 DEMOGRAPHY AND LAND USE

U.S. Census Bureau population estimates for 2001 indicate that the populations of Portage and Trumbull counties are 152,743 and 223,982, respectively. Population centers closest to RVAAP are Ravenna, with a population of 12,100, and Newton Falls, with a population of 4,866.

The RVAAP facility is located in a rural area and is not close to any major industrial or developed areas. Approximately 55 percent of Portage County, in which the majority of RVAAP is located, consists of either woodland or farmland acreage. The closest major recreational area, the Michael J. Kirwan Reservoir (also known as West Branch Reservoir), is located adjacent to the western half of RVAAP south of State Route 5.

Up until 1999, the RVAAP was identified as a 21,419-acre installation. The property boundary was resurveyed by the Ohio Army National Guard (OHARNG) over a two year period (2002 and 2003) and the actual total acreage of the property was found to

be 21,683.289 acres. As of February 2006, a total of 20,403 acres of the former 21,683 acre RVAAP have been transferred to the United States Property and Fiscal Officer (USP&FO) for Ohio for use by the OHARNG as a military training site. The current RVAAP consists of 1,280 acres in several distinct parcels scattered throughout the confines of the OHARNG Ravenna Training and Logistics Site (RTLS). The RVAAP and the RTLS are collocated on contiguous parcels of property and the RTLS perimeter fence completely encloses the remaining parcels of the RVAAP. Training and related activities included field operations and bivouac training, convoy training, equipment maintenance, and storage of heavy equipment.

1.5 DATA QUALITY OBJECTIVES

The project Data Quality Objective (DQO) is to provide sufficient high-quality data to address the primary project objective identified above in Section 1.1.

1.5.1 Conceptual Site Model

The facility-wide hydrogeologic conceptual site model (CSM) for RVAAP, presented in the Facility-wide SAP, is applicable to the suspected mustard agent burial AOC. The CSM for RVAAP and other limited operational information have been used to refine the CSM specific to the project area.

Hydrogeologic and analytical data for groundwater at the Suspected Mustard Agent Burial AOC obtained during the 2004 investigation (SpecPro, Inc, 2005). This data was used to identify the downgradient locations for the additional monitoring wells.

The additional monitoring well locations were placed to be sufficiently outside the suspected burial site so that if mustard agent was present and leaking into the groundwater, only the breakdown products would be encountered in the uppermost groundwater bearing zone outside of the burial site. All monitoring well locations remained outside of a 160-ft by 160-ft square centered on the suspected mustard agent burial AOC.

1.5.2 Problem Definition

An unidentified and unsubstantiated source reported that mustard agent containers may have been buried west of the NACA Test Area. An area to the west of the NACA Test Strip was excavated in 1969 and one 50-gallon drum and several small rusted cans were discovered, with no evidence of contamination. A second area approximately 500 feet south of the excavated area was then proposed as the suspected site. This area was marked and fenced, although the fence has disintegrated over time. This area is currently marked with Seibert stakes. This second, marked area is the suspected mustard agent burial AOC to be investigated for this study. Previous investigations have not detected mustard agent or mustard agent breakdown products within or adjacent to the suspected burial area. The report of the environmental investigation performed in 2004 recommended that additional monitoring wells be installed at the site to complete an optimal downgradient array.

1.5.3 Identify Decisions

The key decisions for all investigations at RVAAP have been identified in the Facilitywide SAP in Section 3.2.4 and in Table 3-1. The purpose of this investigation is to install additional monitoring wells in optimal downgradient locations and determine if mustard agent breakdown products are present outside the suspected burial AOC. If the breakdown products are detected in the groundwater samples outside the suspected burial AOC, it will be assumed that mustard agent is buried within the AOC and additional investigation may be necessary. Breakdown products not detected outside the suspected burial AOC can be explained by one of three different scenarios:

- Mustard agent is present at the burial AOC, but is not leaking into the subsurface.
- Mustard agent is present and leaking at the burial AOC, but the breakdown products were not detected by the sampling.
- Mustard agent is not present at the suspected burial AOC.

Decision rules used to guide remediation decisions are provided in Section 3.2.6 of the Facility-wide SAP.

1.5.4 Define the Study Boundaries

The suspected mustard agent burial AOC and the monitoring well locations are shown in Figure 1-3.

1.5.5 Identify Inputs to the Decisions

Inputs to the decision process are the analytical results and the refined site-specific conceptual model developed from field observations and environmental data.

1.5.6 Specify Limits on Decision Error

Limits on decision errors are addressed in Section 3.2.8 of the Facility-wide SAP.

1.5.7 Sample Design

The purpose of the sampling is to detect if mustard agent breakdown products are present in the uppermost groundwater bearing zone outside the suspected burial AOC. Groundwater flow direction was identified during the 2004 investigation and additional monitoring wells were installed at optimal downgradient locations for this investigation. Due to safety concerns, the wells were installed far enough outside the suspected burial AOC so that if mustard agent was leaking into the groundwater inside the burial AOC, only the breakdown products would be encountered outside the burial AOC. The downgradient well MBSmw-001 was analyzed during the 2004 investigation for the RVAAP-defined full suite of constituents. Groundwater collected from the two new monitoring wells installed for this investigation, MBSmw-005 and MBSmw-006 was analyzed for the RVAAP-defined full suite of constituents.

1.6 REPORT ORGANIZATION

This Monitoring Well Installation and Sampling Report is organized to meet Ohio EPA requirements in accordance with U.S. Environmental Protection Agency (USEPA), CERCLA Superfund process, and USACE guidance. The report consists of an Executive Summary, Chapters 1.0 through 6.0, and supporting appendices. The chapters are organized as follows:

- Chapter 1.0 describes the purpose, objectives, and organization of this report and provides a description and history of the Suspected Mustard Agent Burial AOC.
- Chapter 2.0 describes the environmental setting at RVAAP and the Suspected Mustard Agent Burial AOC, including the geology, hydrogeology, climate, population, and ecological resources.
- Chapter 3.0 describes the specific methods used for field data collection and the approach to analytical data management and laboratory programs.
- Chapter 4.0 presents the data generated during the investigation and discusses the results.
- Chapter 5.0 presents the conclusions.
- Chapter 6.0 provides a list of referenced documents used to support this report.

Appendices (A through H) to this report contain supporting data collected during the investigation and consist of the following:

- Appendix A presents the Geotechnical Laboratory Report.
- Appendix B contains monitoring well logs, and well development records.
- Appendix C contains the Slug Test results
- Appendix D presents the Data Quality Control Summary Report.
- Appendix E contains the Investigation Derived Waste information.
- Appendix F presents the Laboratory Analytical Reports.

2.0 ENVIRONMENTAL SETTING

This chapter describes the physical characteristics of the Suspected Mustard Agent Burial AOC and the surrounding environment. The geology, hydrology, climate, and ecological characteristics of RVAAP were originally presented in Chapter 3.0 of the *Phase I Remedial Investigation Report for High-Priority Areas of Concern at RVAAP* (USACE 1998a).

2.1 RVAAP PHYSIOGRAPHIC SETTING

RVAAP is located within the Southern New York Section of the Appalachian Plateaus physiographic province (USGS 1968). This province is characterized by elevated uplands underlain primarily by Mississippian and Pennsylvanian age bedrock units that are horizontal or gently dipping. The province is characterized by its rolling topography with incised streams having dendritic drainage patterns. The Southern New York Section has been modified by glaciation, which rounded ridges and filled major valleys and blanketed many areas with glacially derived unconsolidated deposits (i.e., sand, gravel, and finer grained outwash deposits). As a result of glacial activity in this section, old stream drainage patterns were disrupted in many locales, and extensive wetland areas developed.

2.2 SURFACE FEATURES AND SITE TOPOGRAPHY

The Suspected Mustard Agent Burial AOC is located in the south-central portion of the RVAAP facility, as shown in Figure 1-2. The AOC is characterized by relatively flatlying topography. Topography of the AOC was mapped by the USACE in 1998 on a 0.6-meter (2-foot) contour interval, with an accuracy of 0.006 meter (0.02 feet), from aerial photographs taken in 1997. This survey is the basis for the topographic features presented in the figures in this report. Elevations across the AOC vary from approximately 329.7 meters on the western portion of the AOC, to 329.2 meters (1,081.7 feet to 1,080 feet) above mean sea level (amsl) on the southeastern portion.

The site is generally flat-lying and wooded. An old electrical power line right-of-way runs through the site, and the remnants of the chain-link fence that enclosed the suspected mustard agent burial site are rolled up on the ground at the south end of the site. Hinckley Creek is located approximately 500 feet northeast of the site. The site is located in a mature hardwood forest. A few small wetland areas have been identified in the AOC.

2.3 SOILS AND GEOLOGY

The geology at RVAAP consists of horizontal to gently dipping bedrock strata of Mississippian and Pennsylvanian age overlain by varying thicknesses of unconsolidated glacial deposits. The bedrock and unconsolidated geology at RVAAP

and geology specific to the Suspected Mustard Agent Burial AOC are presented in the following subsections.

2.3.1 Soils and Glacial Deposits

Bedrock at RVAAP is overlain by deposits of the Wisconsin-aged Lavery Till in the western portion of the facility and the younger Hiram Till and associated outwash deposits in the eastern portion of the facility (Figure 2-1). Unconsolidated glacial deposits vary considerably in their character and thickness across RVAAP, from zero in some of the eastern portions of the facility to an estimated 46 meters (150 feet) in the south-central portion.

The character and distribution of the glacial material indicate that the material throughout much of RVAAP is ground moraine. These tills consist of laterally discontinuous assemblages of yellow-brown, brown, and gray silty clays to clayey silts, with sand and rock fragments. Deposits from bodies of glacial-age standing water may also have been encountered, in the form of >15-meter (50-foot) -thick deposits of uniform light gray silt (USACE 2001c). Also present are glacial outwash deposits, generally consisting of coarse-grained alluvium (sand and gravel) deposited by glacial meltwater.

Soils at the site are generally derived from the Wisconsin-age silty clay glacial till. Distributions of soil types are discussed and mapped in the Soil Survey of Portage County, Ohio (USDA 1978). According to the Portage County soil survey, the soil present at the Suspected Mustard Agent Burial AOC is the Bogart silt loam. This soil is characterized as a deep, moderately well-drained, nearly level soil formed in sandy and gravelly glacial outwash material, with permeabilities ranging from 4.23×10^{-4} to 4.23×10^{-3} centimeters/second (USDA, 1978).

Geotechnical data collected during the investigation are presented Chapter 4.0 and in the geotechnical laboratory report provided in Appendix B of this report; geologic logs for monitoring wells are in Appendix C.

The unconsolidated sediments found in the monitoring well borings is summarized as follows:

<u>MBSmw-005</u>

- 1 to 10 ft below ground surface (bgs) till consisting of brown and gray silty clay, trace to some sand.
- 10 to 23 ft bgs gray plastic clay.
- 23 to 30 ft bgs Brown fine to medium, some coarse sand, with gravel up to 1" diameter, trace to some silt and clay.

<u>MBSmw-006</u>

- 1 to 9 ft bgs generally brown grading to gray silty clay with very fine sand.
- 9 to 17 ft bgs gray plastic clay
- 17 to 28 ft bgs brown and gray fine to medium sand.

2.3.2 Bedrock Stratigraphy

Bedrock occurrence at RVAAP consists of Mississippian and Pennsylvanian Age sedimentary rocks that lie stratigraphically beneath the glacial deposits of the Lavery and Hiram Tills (Figure 2-2). The oldest bedrock that outcrops within the facility is the Cuyahoga Group of Mississippian Age. The Cuyahoga outcrops in the far northeastern corner of the facility, and generally consists of blue-gray silty shale with interbedded sandstone (Figure 2-3). The remainder of the facility is underlain by bedrock associated with the Pottsville Formation of Pennsylvanian Age. The Sharon Member of the Pennsylvanian Pottsville Formation unconformably overlies the eroded Cuyahoga Group throughout the eastern half of RVAAP. The Sharon Member consists of two units: sandstone/conglomerate and shale. The Sharon Conglomerate unit of the Sharon Member is highly porous, permeable, cross-bedded, and frequently fractured and weathered. The Sharon Shale unit is a light to dark-gray fissile shale, which has been eroded in many locations. The Connoquenessing Sandstone Member of the Pottsville Formation unconformably overlies the Sharon Member and is a medium- to coarse-grained gray-white sandstone. The Mercer Member of the Pottsville Formation overlies the Connoquenessing and consists of silty to carbonaceous shale. The Homewood Member of the Pottsville Formation unconformably overlies the Mercer Member and consists of coarse-grained cross-bedded sandstones. The Connoquenessing, Mercer, and Homewood Members are present only in the western half of RVAAP. The regional dip of the Pottsville Formation strata is between 1.5 and 3 meters (5 to 10 feet) per mile to the south.

Bedrock was not encountered in any of the borings drilled at this AOC.

Figure 2-3. Bedrock Stratigraphy of RTLS/RVAAP (complied from USGS, 1966)

2.4 HYDROLOGY

2.4.1 Regional Hydrogeology

Sand and gravel aquifers are present in the buried-valley and outwash deposits in Portage County as described in the *Phase I Remedial Investigation Report for High-Priority Areas of Concern at RVAAP* (USACE 1998). Generally these saturated zones are too thin and localized to provide large quantities of water for industrial or public water supplies; however, yields are sufficient for residential water supplies. Lateral continuity of these aquifers is not known. Recharge of these units comes from surface water infiltration of precipitation and surface streams. Specific groundwater recharge and discharge areas at RVAAP have not been delineated.

2.4.1.1 Unconsolidated Sediment

The thickness of the unconsolidated interval at RVAAP ranges from thin to absent in the eastern and northeastern portion of RVAAP to an estimated 45 meters (150 feet) in the central portion of the installation. The groundwater table occurs within the unconsolidated zone in many areas of the installation. Because of the very heterogeneous nature of the unconsolidated glacial materials, groundwater flow patterns are difficult to determine with a high degree of accuracy. Vertical recharge from precipitation likely occurs via infiltration along root zones and desiccation cracks and partings within the soil column. Laterally, most groundwater flow likely occurs along preferential pathways (e.g., sand seams, channel deposits, or other stratigraphic discontinuities) having higher permeabilities than surrounding clay or silt-rich materials.

2.4.1.2 Bedrock Hydrogeology

The sandstone facies of the Sharon Member, and in particular the Sharon Conglomerate, were the primary sources of groundwater during RVAAP's active phase, although some wells were completed in the Sharon Shale. Past studies of the Sharon Conglomerate indicate that the highest yields come from the quartzite pebble conglomerate facies and from jointed and fractured zones. Where it is present, the overlying Sharon Shale acts as a relatively impermeable confining layer for the sandstone. Monitoring wells completed in the Sharon Sandstone at Load Line 1 in 1999 typically had hydraulic conductivities of 2.35×10^{-5} to 7.3×10^{-4} centimeters/second (USACE 2001c). Hydraulic conductivities in wells completed in the Sharon Shale generally are much lower than those in the sandstone.

2.4.1.3 Surface Water System

The entire RVAAP facility is situated within the Ohio River Basin, with the West Branch of the Mahoning River representing the major surface stream in the area. This stream flows adjacent to the western end of the facility, generally from north to south, before flowing into the M.J. Kirwan Reservoir that is located to the south of State Route 5. The West Branch flows out of the reservoir along the southern facility boundary before joining the Mahoning River east of RVAAP.

The western and northern portions of RVAAP display low hills and dendritic surface drainage. The eastern and southern portions are characterized by an undulating to moderately level surface, with less dissection by surface drainage. The facility is marked with marshy areas and flowing and intermittent streams, with headwaters located in the higher regions of the site. Three primary watercourses drain RVAAP: the South Fork of Eagle Creek, Sand Creek, and Hinkley Creek.

2.4.2 Suspected Mustard Agent Burial AOC Hydrologic/Hydrogeologic Setting

Surface water at the site drains to Hinckley Creek, located approximately 400 feet northeast of the site. Hinkley Creek, with a drainage area of 28.5 square kilometers (11.0 square miles), flows in a east-southeasterly direction by the AOC. Hinckley Creek flows into the West Branch of the Mahoning River south of the RVAAP facility.

Monitoring wells MBSmw-001 through -006 were screened within unconsolidated glacial sediments. Groundwater levels were measured in the monitoring wells on November 7, 2005 and on January 13, 2006. (Table 2-1) and used to construct groundwater contour maps of the AOC (Figures 2-4 and 2-5). Groundwater flow at the site is towards the south-southeast portion of the AOC. The downgradient monitoring wells at the site are MBSmw-001, -005, and -006.

Slug tests were performed at the two new monitoring wells in November 2005. These tests consisted of inserting a slug into the monitoring well (slug in), thus raising the water level in the well and measuring how the water level returned to equilibrium conditions, and by then removing the slug (slug out), thus lowering the water and measuring how the water level in the well returned to equilibrium. Hydraulic conductivities measured during the slug tests for the wells screened in unconsolidated sediments were 3.4×10^{-4} centimeters/second (MBSmw-005 slug in test), 1.1×10^{-3} centimeters/second (MBSmw-005 slug out test), and 3.1×10^{-4} centimeters/second (MBSmw-006 slug out test) (Table 2-2).

Table 2-1 Monitoring Well Groundwater Elevation SummarySuspected Mustard Agent Burial AOC (RVAAP-28)RVAAP

Monitoring Well ID Number	Screened Interval (ft)	Total Depth (ft)	Ground Surface Elevation ft	Top of Casing Elevation ft	Depth to Water (ft) 11/17/2005	Groundwater Elevation (ft) 11/17/2005	Depth to Water (ft) 1/13/2006	Groundwater Elevation (ft) 1/13/2006
MBS-001	19 - 29	30.0	1079.68	1082.20	17.92	1064.28	17.42	1064.78
MBS-002	18 - 28	30.0	1080.50	1083.22	18.42	1064.80	17.79	1065.43
MBS-003	18.5 - 28.5	30.0	1082.45	1084.45	19.56	1064.89	18.57	1065.88
MBS-004	14.7 - 24.7	26.0	1079.55	1081.80	17.53	1064.27	16.55	1065.25
MBS-005	20 - 30	30.0	1080.50	1082.42	18.20	1064.22	17.66	1064.76
MBS-006	18.1 - 28.1	30.0	1080.29	1081.83	17.68	1064.15	17.10	1064.73

Table 2-2 Monitoring Well SummarySuspected Mustard Burial Site (RVAAP-28)RTLS/RVAAP

Monitoring Well ID Number	North	East	Screened Interval (ft)	Total Depth (ft)	Ground Surface Elevation ft	Top of Casing Elevation ft	Depth to Bottom from Top of Inner Casing 11/17/2005 (ft)	Slug Test Slug In	K, (cm/sec) Slug Out
MBS-001	550759.5	2345323.0	19 - 29	30.0	1079.68	1082.20	30.93	8.2x10 ⁻⁴	1.8x10 ⁻³
MBS-002	550886.2	2345322.3	18 - 28	30.0	1080.50	1083.22	30.36	4.9x10 ⁻⁴	5.0x10 ⁻⁴
MBS-003	550922.8	2345172.4	18.5 - 28.5	30.0	1082.45	1084.45	30.67	6.3x10 ⁻⁵	7.5x10 ⁻⁵
MBS-004	550767.9	2345134.2	14.7 - 24.7	26.0	1079.55	1081.80	26.56	2.1x10 ⁻⁴	3.4x10 ⁻⁴
MBS-005	550800.7	2345354.1	20 - 30	30.0	1080.50	1082.42	30.05	3.4x10 ⁻⁴	1.1x10 ⁻³
MBS-006	550726.1	2345282.3	18.1 - 28.1	30.0	1080.29	1081.83	28.10		3.1x10 ⁻⁴

2.5 CLIMATE

RVAAP has a humid continental climate characterized by warm, humid summers and cold winters. Precipitation varies widely through the year. The driest month is, on average, February, and the wettest month is July. Data from the National Weather Service compiled over the past 47 years indicate that the average rainfall for the area is 0.98 meter (38.72 inches) annually. The average snowfall is 1.08 meters (42.4 inches) annually. Severe weather, in the form of thunder and hail in summer and snowstorms in winter, is common.

3.0 STUDY AREA INVESTIGATION

The scope of the field investigation at the Suspected Mustard Agent Burial AOC included sampling of surface and subsurface soils, and groundwater. This chapter presents information on locations of and rationale for samples collected during the field effort and provides a synopsis of the sampling methods employed during the investigation. Specific notation is made where site conditions required a departure from planned activities in the Final Work Plan and SAP Addenda (USACE, 2004). Information regarding standard field decontamination procedures, sample container types, preservation techniques, sample labeling, chain-of-custody, and packaging and shipping requirements implemented during the field investigation may be found in the Facility-wide SAP (USACE 2001a) and the Final Work Plan, SAP Addendum, and Quality Assurance Project Plan (QAPP) Addendum.

3.1 SURFACE AND SUBSURFACE SOIL CHARACTERIZATION

The monitoring well borings were continuously sampled as described in Section 3.2.2 and logged by a qualified geologist. Monitoring well boring logs are presented in Appendix B.

Soil samples for geotechnical analyses were collected in the screened interval from each of the monitoring wells. Shelby tube samples were collected from depths ranging from 6.1 meters (20 feet) to 7.9 meters (26 feet) at the monitoring well locations. Two Shelby tube samples were planned for the screened interval at each of the monitoring well boring locations; however field conditions prevented the collection of one of the samples at each of the following locations:

- MBSmw-005 at 24 to 26 feet bgs due to Shelby Tube refusal.
- MBSmw-006 at 22 to 24 feet bgs due to Shelby Tube refusal.

Shelby tube samples were submitted to a J&L Laboratories of Wadsworth, Ohio for geotechnical analysis as described in Section 3.3.1. The geotechnical lab report is presented in appendix A.

3.2 GROUNDWATER CHARACTERIZATION

3.2.1 Rationale

The 2004 hydrogeologic and environmental investigation identified groundwater flow direction at the site. In the report of the 2004 investigation, it was recommended that two additional monitoring wells be installed downgradient of the suspected burial site. The locations of the two additional monitoring wells were chosen based on groundwater elevations measured in December 2004, March 2005, July 2005, and August 2005 from the four monitoring wells installed in Fall 2004. The additional monitoring well locations were approved in September 2005 by representatives from

the USACE, Ohio EPA, and SpecPro, Inc. The monitoring wells were specifically installed outside of the suspected burial site so that only breakdown products would be encountered if present, and not actual mustard agent. Based on the groundwater elevations measured at the wells in 2004 and 2005, MBSmw-003 was designated as the background (upgradient) well for this site. For this investigation, groundwater from each of the six monitoring wells was analyzed for the mustard breakdown products 1,4-dithiane; 1,4-oxathiane; and thiodiglycol. Additionally, the groundwater sampled from the newly installed wells MBSmw-005 and MBSmw-006 were also analyzed for explosives, propellants, VOCs, SVOCs, pesticides, PCBs, filtered TAL metals and cyanide.

3.2.2 Monitoring Well Installation Methods

All monitoring well installation activities were conducted according to the Facility-wide SAP and the Suspected Mustard Agent Burial Site Work Plan and SAP Addenda. Monitoring wells borings were drilled through unconsolidated soil and were installed under the direct supervision of a qualified geologist. An 11-centimeter (4.25-inch) inside-diameter, hollow-stem auger was used to advance the borehole through unconsolidated materials. Soil samples were collected continuously from the surface to the borehole termination depth using a split-spoon sampler. Shelby tube samples were collected as described in Section 3.1 during well drilling for description of soil stratigraphy and geotechnical analyses.

Organic vapors were monitored from soil cuttings at each borehole using an organic vapor analyzer (OVA); however, samples for headspace readings were not collected. In addition, the breathing zone was continuously monitored for evidence of organic chemicals. The UXO team leader checked each borehole for chemical warfare agents as described in Sections 3.4 and 4.3 of this report. All readings were recorded in the project logbooks.

Following drilling of the boreholes to the appropriate depths, monitoring wells were constructed from pre-cleaned 5-centimeter (2-inch) schedule 40 polyvinyl chloride (PVC) pipes. Well screens were commercially fabricated with slot widths of 0.025 centimeter (0.01 inch). All monitoring wells were constructed using a 3-meter (10-foot) screen. The well casing and screens were assembled and lowered into the open borehole. Following placement of the well casing and screen, a pre-washed filter pack, consisting of Global Supply No. 5 sand, was placed from the bottom of the borehole to approximately 0.6 meter (2 feet) above the top of the well screen in each well. A 0.6-meter (2-foot) or 0.9-meter (3-foot) bentonite pellet annular seal was then poured into the borehole on top of the filter pack.

For monitoring well completion, a grout mixture consisting of Type I Portland cement and 5 percent bentonite was placed from the top of the annular seal to the ground surface, followed by the placement of a protective steel surface casing with locking cover and construction of a mortar collar and cement pad. Four steel posts were installed around each well and painted. Monitoring well installation procedures are provided in Section 4.3.2 of the Facility-wide SAP (USACE 2001a). Well diagrams provided in Appendix C present the construction details for the monitoring wells installed during this investigation including depths, screened intervals, and groundwater elevations. This information is summarized in Table 2-2.

Once the wells were completely installed, the location and elevation of each well was surveyed by a licensed surveyor. These locations and elevations are provided in the well logs in Appendix C.

3.2.3 Well Development Methods

The two new monitoring wells (MBSmw-005 and -006) were developed on November 2, 2005 so that representative groundwater samples could be collected. Well development was accomplished by purging at least five well volumes of groundwater using a bailer until the development water was visually clear (where possible), sediment thickness in the well was less than 3.0 centimeters (0.1 foot), and certain groundwater parameters (temperature, specific conductivity, pH, and dissolved oxygen) had stabilized. Well development records were included in the project logbooks and are provided in Appendix C.

3.2.4 Groundwater Field Sampling Methods

Groundwater samples were collected at MBSmw-002, 003, 004, and 006 on 11/07/05, and at MBSmw-001 and 005 on 11/08/05. Due to a laboratory equipment malfunction, thiodiglycol was not analyzed within the sample's holding time. All six monitoring wells were resampled for thiodiglycol on January 13, 2006 and submitted to the laboratory for analyses.

The procedure for sampling groundwater is described in Sections 4.3.4 and 4.3.5 of the Facility-wide SAP. Before sampling, the monitoring wells were purged until readings of pH, conductivity, dissolved oxygen, and water temperature reached equilibrium. Groundwater samples were collected using a QED Micropurge pump and sampling system. General groundwater quality indicator parameters (pH, specific conductance, dissolved oxygen, temperature, and turbidity) were monitored during the sampling procedure and are presented in Appendix C. All monitoring wells were purged until temperature, pH, dissolved oxygen, and specific conductivity readings had stabilized. The wells installed for this project were installed in till. Wells installed in till at RVAAP have typically had turbidity readings >5NTUs when sampled. All groundwater samples were analyzed for the mustard agent breakdown products 1,4dithiane, 1,4-oxythiane, and thiodiglycol. The groundwater sample collected from the downgradient well MBSmw-001 was analyzed for explosives, propellants, TAL metals (filtered only), cyanide, VOCs, SVOCs, and pesticides/PCBs. Groundwater samples analyzed for dissolved metals were filtered using a disposable filter with 0.45-µm pores. The results of groundwater sampling are discussed in detail in Section 4.2. The groundwater sampling logs are contained in Appendix C.

3.2.5 In Situ Permeability Testing

Slug tests were performed at the two newly installed monitoring wells to determine the hydraulic conductivity of the geologic materials surrounding each well screen. Slug tests followed the provisions of the Final Work Plan and SAP Addenda. These analyses calculate horizontal hydraulic conductivities in the screened interval of each well. Both falling-head and rising-head tests were conducted in order to obtain comparative results and validate the test results. Falling-head tests were performed by inserting a PVC cylinder into the well and monitoring the return (drop) of the potentiometric surface to the pretest static water level over time. Rising-head tests were performed by reversing the process (e.g., the slug was removed, and the rise in water level was monitored). The tests were performed after each well had fully recovered from groundwater sampling, using pressure transducers for water level measurements and automated data collection. The slug was designed to displace approximately 0.3 meter (1 foot) of water. Due to an operator mistake and/or equipment failure, faulty data was recorded for the slug-in test for MBSmw-005, and was not used to calculate permeability information.

Water level measurements were recorded using a pre-programmed logarithmic time interval. Water levels were monitored until the well re-equilibrated to 90 percent of the pretest water level. The data were evaluated using the updated Bouwer and Rice method (Bouwer 1989,). Compensation for water levels within the screened interval is included in this evaluation method. The results of the slug tests performed in December 2004 are presented in Appendix D and are discussed in Section 2.4.2, and are summarized in Table 2-2.

3.3 ANALYTICAL PROGRAM OVERVIEW

3.3.1 Geotechnical Analyses

Shelby tubes were collected from monitoring well borings as described in Section 3.1. Geotechnical analytical parameters for undisturbed samples included moisture content, grain size distribution, Unified Soil Classification System (USCS), Atterberg limits, specific gravity, bulk density, and porosity.

3.3.2 Laboratory Analyses

All analytical procedures were completed in accordance with applicable professional standards, EPA requirements, government regulations and guidelines, USACE Louisville District analytical quality assurance (QA) guidelines, and specific project goals and requirements. The sampling and analysis program conducted during this investigation involved the collection and analysis of groundwater. Field screening for organic vapors was conducted at each sampling location using an OVA.
samples were analyzed by an independent quality control (QC) split analytical laboratory.

Samples collected during the investigation were analyzed by Severn-Trent Laboratories (STL), North Canton, OH, a USACE Center of Excellence certified laboratory. The specified QC split samples collected were analyzed by GPL Laboratories of Frederick, MD.

Laboratories supporting this work have statements of qualifications including organizational structures, QA manuals, and standard operating procedures, which are available upon request.

Samples were collected and analyzed according to the Facility-wide SAP, the Final Sampling and Analysis Plan addendum, and the Quality Assurance Project Plan Addendum. Prepared in accordance with USACE and EPA guidance, the Facility-wide SAP and associated addenda outline the organization, objectives, intended data uses, and QA/QC activities to achieve the desired DQOs and maintain the defensibility of the data. Project DQOs were established in accordance with EPA Region 5 guidance. Requirements for sample collection, handling, analysis criteria, target analytes, laboratory criteria, and data validation criteria for this investigation are consistent with EPA requirements for National Priorities List (NPL) sites. DQOs for this project included analytical precision, accuracy, representativeness, completeness, comparability, and sensitivity for the measurement data. Appendix E (Data Quality Control Summary Report) presents an assessment of those objectives as they apply to the analytical program.

Strict adherence to the requirements set forth in the Facility-wide SAP and project addenda was required of the analytical laboratory so that conditions adverse to quality would not arise. The laboratory was required to perform all analyses in compliance with EPA SW-846 *Test Methods for Evaluating Solid Waste, Physical/Chemical Methods, Analytical Protocols* (USEPA 1990a),. SW-846 chemical analytical procedures were followed for the analyses of metals, VOCs, SVOCs, pesticides, PCBs, explosives, propellants, and cyanide. Laboratories were required to comply with all methods as written; recommendations were considered requirements.

QA/QC samples for this project included trip blanks, QA field duplicates, laboratory method blanks, laboratory control samples, laboratory duplicates, matrix spike/matrix spike duplicate (MS/MSD) samples, and QC field split samples (submitted to the independent USACE-contracted laboratory). Equipment rinsate blanks and trip blanks were submitted for analysis along with field duplicate samples to provide a means to assess the quality of the data resulting from the field sampling program. Equipment rinsate blanks were used to assess the adequacy of the equipment decontamination processes for soil sample collection. Trip blanks were used to assess the potential for contamination of samples caused by contaminant migration during sample shipment and storage. Field duplicate samples were analyzed to determine sample heterogeneity and sampling methodology reproducibility. Laboratory method blanks and laboratory control samples were employed to determine the accuracy and precision of the analytical method as implemented by the laboratory. Matrix spikes

provided information about the effect of the sample matrix on the measurement methodology. Laboratory sample duplicates and MS/MSDs assisted in determining the analytical reproducibility and precision of the analysis for the samples of interest. The QC field split samples provide independent verification of the accuracy and precision of the principal analytical laboratory. Evaluation of these QC measures and of their contribution to documenting the project data quality is provided in Appendix E, Data Quality Summary Report (DQSR). The Laboratory Analytical Reports, including chain-of-custody forms, is presented in Appendix F.

SpecPro, Inc. is the custodian of the project file and will maintain the contents of the file for this investigation, including all relevant records, reports, logs, field notebooks, pictures, subcontractor reports, correspondence, and chain-of-custody forms. These files will remain in a secure area under the custody of the SpecPro, Inc. Program Manager until they are transferred to the USACE Louisville District and RVAAP.

3.3.3 Data Review, Validation, and Quality Assessment

Samples were properly packaged for shipment and dispatched to STL Laboratories for analysis. A separate signed custody record with sample numbers and locations listed was enclosed with each shipment. When transferring the possession of samples, the individuals who relinquished and received the samples signed, dated, and noted the time on the record. All shipments were in compliance with applicable Department of Transportation regulations for environmental samples.

Data were produced, reviewed, and reported by the laboratory in accordance with specifications outlined in the Suspected Mustard Agent Burial Site QAPP Addendum, the USACE Louisville District analytical QA guidelines, and the laboratory's QA manual. Laboratory reports included documentation verifying analytical holding time compliance.

GPL Laboratories performed in-house analytical data reduction under the direction of the laboratory project manager and QA officer. These individuals were responsible for assessing data quality and informing SpecPro of any data that are considered "unacceptable" or that require caution on the part of the data user in terms of its reliability. Data were reduced, reviewed, and reported as described in the laboratory QA manual and standard operating procedures. Data reduction, review, and reporting by the laboratory were conducted as follows:

- Raw data produced by the analyst were turned over to the respective area supervisor.
- The area supervisor reviewed the data for attainment of QC criteria as outlined in the established methods and for overall reasonableness.
- Upon acceptance of the raw data by the area supervisor, a report was generated and sent to the laboratory project manager.

- The laboratory project manager completed a thorough review of all reports.
- The laboratory project manager executed the final reports.

Data were then delivered to SpecPro for data verification. STL prepared and retained full analytical and QC documentation for the project in both paper copy and electronic storage media (e.g., magnetic tape), as directed by the analytical methodologies employed. STL provided the following information to SpecPro in each analytical data package submitted:

- Cover sheets listing the samples included in the report and narrative comments describing problems encountered in analysis;
- Tabulated results of inorganic and organic compounds identified and quantified; and,
- Analytical results for QC sample spikes, sample duplicates, initial and continuing calibration verifications of standards and blanks, method blanks, and laboratory control sample information.

Data was verified by SpecPro to ensure that the precision and accuracy of the analytical data were adequate for their intended use. This verification also attempted to minimize the potential of using false positive or false negative results in the decision-making process (i.e., to ensure accurate identification of detected versus non-detected compounds). This approach was consistent with DQOs for the project and with the analytical methods. Analytical data were verified through the review process outlined in the SAP and are presented in the Data Quality Control Summary Report in Appendix E. All data packages will be forwarded to the USACE independent data validation contractor.

3.4 MUNITION AND EXPLOSIVES OF CONCERN (MEC) AVOIDANCE AND FIELD RECONNAISSANCE

A MEC avoidance subcontractor was present during all field operations. The MEC Team Leader provided an initial safety briefing on MEC to train all field personnel to recognize and stay away from propellants and MEC. Daily tailgate safety briefings included reminders regarding OE avoidance. Site visitors were briefed on MEC avoidance before they were allowed access to the AOC. Prior to beginning sampling activities, access routes into areas from which samples were to be collected were assessed by the MEC Team Leader for potential MEC using visual surveys and handheld magnetometers. The MEC Team Leader remained with the sampling crews as work progressed. For monitoring well borings, the MEC Team Leader screened the borehole with a Schonstadt GA-72CD Magnetometer to a minimum depth of at least 3.6 meters (12 feet). Once groundwater was encountered, the drilling equipment removed from the borehole was screened for Chemical Warfare Agents (CWA) using a M256 Chemical Agent Detector Kit as described in the Final Unexploded Ordnance

(UXO) and Explosive Avoidance Plan (Appendix C of the Final Work Plan). The MEC Team Leader was onsite as drilling was performed to visually examine drill cuttings for any unusual materials indicative of potential MEC and chemical warfare agents.

4.0 ANALYTICAL RESULTS OF INVESTIGATION

This chapter presents results of the geotechnical and groundwater analyses. Section 4.1 of this chapter presents the geotechnical laboratory results. Section 4.2 presents the groundwater laboratory analysis. A summary of the results of the ordnance and explosives avoidance activities is presented in Section 4.3.

4.1 GEOTECHNICAL RESULTS

Two Shelby tubes were collected from the two monitoring well borings and submitted for geotechnical analyses as described in Sections 3.1 and 3.3.1. The soil samples were analyzed for moisture content, grain size distribution, Atterberg limits, USCS classification, specific gravity, bulk density, and porosity. Table 4-1 provides a summary of the geotechnical data for subsurface soil at the Suspected Mustard Agent Burial AOC. Appendix A contains the geotechnical laboratory report.

Sieve analyses and USCS classification identified the samples as ranging from lean clay (CL) at MBSmw-005 to sandy silty Clay with gravel (CL-ML) at MBSmw-006. Moisture content of the samples was 20.7% for MBSmw-005 and 9.8% for MBSmw-006. Porosity values were 0.419 for MBSmw-005 and 0.269 for MBSmw-006. Dry bulk density ranged from 100.4 pound/cubic foot at MBSmw-005 to 122.5 pound/cubic foot at MBSmw-006.

4.2 GROUNDWATER LABORATORY ANALYSES RESULTS

4.2.1 Mustard Breakdown Products

Based on the groundwater elevations measured at the wells in 2004 and 2005, MBSmw-003 was designated as the background (upgradient) well for this site. The groundwater was sampled on November 7, 2005 (MBSmw-002, 003, 004, and 006) and November 8, 2005 (MBSmw-001 and 005). These samples were analyzed for the mustard agent breakdown products 1,4-dithiane; 1,4-oxathine; and thiodiglycol. These compounds were not detected above the method detection limits in any of the groundwater samples. The results are summarized in Table 4-2.

Table 4-1Suspected Mustard Agent Burial Site Geotechnical SummaryRVAAP

				Densi	ty (pcf)			
Sample Number (Sample Date)	Depth (ft)	Moisture Content (%)	Specific Gravity	Wet Dry Po		Porosity	USCS Classification	USCS Description
MBSmw-005-ST (10/27/2005)	20 - 22	20.7	2.766	121.2	100.4	0.419	CL	Lean Clay
MBSmw-006-ST (10/26/2005)	24 - 26	9.8	2.685	134.6	122.5	0.269	CL-ML	Sandy Silty Clay with Gravel

Analyte					
Sample Number (Sample Date)	Units	1,4- dithiane	1,4-oxathiane	Thiodiglycol	
MBSmw-001- 0013-GW (11/8/2005)	ug/L	0.88U	1U	10U	
MBSmw-002- 0014-GW (11/7/2005)	ug/L	0.88U	1U	10U	
MBSmw-003- 0015-GW (11/7/2005)	ug/L	0.88U	1U	10U	
MBSmw-004- 0016-GW (11/7/2005	ug/L	0.88U	1U	10U	
MBSmw-005- 0017 (11/8/2005)	ug/L	0.88U	1U	10U	
MBSmw-006- 0019-GW (11/7/2005)	ug/L	0.88U	1U	10U	

Qualifier Definitions:

U = Not detected above method detection limits

MBSmw-003 is the background (upgradient) well for this site.

4.2.2 Results of Additional Laboratory Analyses on Downgradient Wells

The groundwater sampled from downgradient wells MBSmw-005 and MBSmw-006 was analyzed for explosives, propellants, filtered TAL metals and cyanide, VOCs, SVOCs, pesticides and PCBs. Explosives and propellants, and PCBs were not detected above reporting limits in the groundwater sampled from MBSmw-005 and - 006. The results for explosive and propellant analysis are presented in Table 4-3. The results for filtered TAL Metals and cyanide (Table 4-4), VOCs (Table 4-5), SVOCs (Table 4-6), and Pesticides/PCBs (Table 4-7) are discussed in the following sections.

Table 4-3 Explosive and Propellant Analytical Results for MBSmw-005 and	
MBSmw-006	

Analyte	Region 9 Preliminary Remediation Goal (PRG)	MBSmw-005- 0010-GW (11/8/2005)	MBSmw-006- 0012-GW (11/7/2005)
1,3,5-Trinitrobenzene	1100	0.03U	0.03U
1,3-Dinitrobenzene	3.6	0.05U	0.05U
2,4,6-Trinitrotoluene	2.2	0.05UU	0.05UU
2,4-Dinitrotoluene	73	0.05U	0.05U
2,6-Dinitrotoluene	36	0.05U	0.05U
2-Amino-4,6- Dinitrotoluene	NS	0.1U	0.1U
4-Amino-2,6- Dinitrotoluene	NS	0.05U	0.05U
НМХ	1800	0.036U	0.036U
m-Nitrotoluene	120	0.088U	0.088U
Nitrobenzene	3.4	0.05U	0.05U
Nitroguanidine	3600	20U	20U
o-Nitrotoluene	0.049	0.057U	0.057U
p-Nitrotoluene	0.66	0.088U	0.088U
RDX	0.61	0.036U	0.036U
Tetryl	360	0.05U	0.05U
Nitrocellulose	NS	0.12U	0.14 B,J

All results reported in ug/L

Qualifier Definitions:

B = estimated result, less than reporting limit

J = Method blank contamination.

U = Not detected above method detection limit

NS = no standard

4.2.2.1 TAL Metals and Cyanide

The results of the filtered TAL metals and unfiltered cyanide analyses for groundwater sampled from MBSmw-005 and -006 are presented in Table 4-4. The following TAL metals were detected in the groundwater sample: arsenic, barium, calcium, iron, magnesium, manganese, potassium, nickel and sodium. These compounds were screened against site background levels, and against compounds that are considered as essential nutrients to determine if they are to be considered as Site-Related Contaminants (SRCs). Calcium, magnesium, iron, potassium, and sodium were eliminated as potential SRCs because they are considered as essential nutrients. Arsenic and manganese were eliminated as potential SRCs because they were detected in the groundwater samples at a concentration less than the site background level. Barium and nickel remain as SRCs for the AOC. Barium was detected at a concentration of 84.0 and 86.1 micrograms/liter (ug/L), which is greater than the background concentration of 82.1 ug/L. The MCL for barium is 2000 ug/L, and the Region 9 PRG for barium is 2600 ug/L. Nickel was detected at MBSmw-006 at a concentration of 1.7 ug/L. Since there is no background level set for nickel, any concentration of nickel detected would lead to it being considered as an SRC. The MCL for nickel is 100 ug/L, and the Region 9 PRG for nickel is 730 ug/L.

Analyte	Units	MBSmw- 005-0010- GF (11/8/2005)	MBSmw- 006-0012- GF (11/7/2005)	Background Groundwater Unconsolidated Zone - Filtered	SRC?	MCL	Region 9 PRG
Aluminum	ug/L	47U	47U	0	No	NS	36000
Antimony	ug/L	4.1U	4.1U	0	No	6	15
Arsenic	ug/L	7.3B	4.3U	11.7	No	10	0.045
Barium	ug/L	84.0	86.1	82.1	Yes	2000	2600
Beryllium	ug/L	0.3U	0.3U	0	No	4	NS
Cadmium	ug/L	0.42U	0.42U	0	No	5	NS
Calcium	ug/L	87200	80800	115000	No	NS	NS
Chromium	ug/L	1.6U	1.6U	7.3	No	100	NS
Cobalt	ug/L	1.2U	1.2U	0	No	NS	730
Copper	ug/L	1.8U	1.8U	0	No	1300	1500
Iron	ug/L	359B	32U	279	No	30	10000
Lead	ug/L	1.7U	1.7U	0	No	15	NS
Magnesium	ug/L	25100	26000	43300	No	NS	NS
Manganese	ug/L	350 J	550 J	1020	No	50	880
Mercury	ug/L	0.09U	0.09U	0	No	2	11
Nickel	ug/L	1.4U	1.7 B	0	Yes	100	730
Potassium	ug/L	1710 B	5790	2890	No	NS	NS
Selenium	ug/L	2.4U	2.4U	0	No	50	180
Silver	ug/L	2.1U	2.1U	0	No	100	180
Sodium	ug/L	10000	10800	45700	No	NS	NS
Thallium	ug/L	0.022U	0.022U	0	No	2	2.4
Vanadium	ug/L	1.9U	1.9U	0	No	NS	36
Zinc	ug/L	6.6U	6.6U	60.9	No	5000	11000
Cyanide, Total	ug/L	1.3U	1.3U	0	No	200	730

Table 4-4 TAL Metals and Cyanide Analytical Results for MBSmw-005 and MBSmw-006

Results of detected compounds in BOLD

U = Not detected above method detection limits

J = Method blank contamination

B = Estimated result with result less than reporting limit but greater or equal to the IDL/Method Detection Limit (MDL).

NS = No Standard

SRC = Site-related Contaminant, MCL = Maximum Contaminant Level, PRG = Preliminary remediation Goal

4.2.2.2 VOCs

The results for VOC analysis for groundwater sampled from MBSmw-005 and-006 are presented in Table 4-5. The only compound detected above method detection limits was 2-butanone (MBSmw-005) at 0.95 ug/L however, this concentration was below the Region 9 PRG (7000 ug/L).

	MCL	Region 9 PRG	MBSmw-005- 0010-GW	MBSmw-006- 0012-GW
Analyte		FKG	(1/13/2006)	(1/13/2006)
1,1,1-Trichlorethane	NS	3200	0.21U	0.21U
1,1,2,2-Tetrachloroethane	NS	0.43	0.22U	0.22U
1,1,2-Trichlorethane	NS	0.2	0.22U	0.22U
1,1-Dichloroethane	NS	7	0.18U	0.18U
1,1-Dichloroethene (total)	NS	810	0.21U	0.21U
1,2,-Dibromoethane	NS	0.0056	0.21U	0.21U
1,2-Dichloroethane	NS	0.12	0.35U	0.35U
1,2-Dichloropropane	NS	120	0.15U	0.15U
2-Butanone	NS	7000	0.95J	0.39U
2-Hexanone	NS	NS	0.35U	0.35U
4-Methyl-2-Pentanone	NS	NS	0.32U	0.32U
Acetone	NS	5500	1.1U	0.74U
Benzene	5	0.35	0.22U	0.22U
Bromochloromethane	NS	0.18	0.24U	0.24U
Bromoform	NS	8.5	0.17U	0.17U
Bromodichloromethane	NS	0.18	0.14U	0.14U
Bromomethane	NS	8.7	0.36U	0.36U
Carbon Disulfide	NS	1000	0.28U	0.28U
Carbon Tetrachloride	5	0.17	0.19U	0.19U
Chlorobenzene	NS	110	0.2U	0.2U
Chloroethane	NS	4.6	0.24U	0.24U
Chloroform	NS	0.17	0.16U	0.16U
Chloromethane	NS	160	0.14U	0.14U
cis-1,3-Dichloropropene	NS	0.4	0.12U	0.12U
Dibromochloromethane	NS	0.13	0.19U	0.19U
Ethylbenzene	700	1300	0.19U	0.19U
Methylene Chloride	NS	4.3	0.19U	0.19U
Styrene	11	1600	0.13U	0.13U
Tetrachloroethylene	5	0.1	0.19U	0.19U
Toluene	1000	720	0.17U	0.17U
trans-1,3-dichloropropene	NS	0.4	0.17U	0.17U
Trichloroethene	5	0.028	0.28U	0.28U
Vinyl Chloride	2	0.02	0.21U	0.21U
Xylenes (total)	NS	210	0.44U	0.44U

Table 4-5 VOCs Analytical Results for MBSmw-005 and MBSmw-006

All results in ug/L

Results of detected compounds in BOLD

Qualifier Definitions:

U = Not detected above method detection limits

J = estimated

NS = No Standard

4.2.2.3 SVOCs

Complete results for the SVOC analysis are presented in Table 4-6. All compounds were not detected above the method detection limits, except for benzoic acid at MBSmw-006 at 4.5 ug/L. The Region 9 PRG for benzoic acid is 150000 ug/L.

Table 4-6 SVOC Analytical Results for MBSmw-005 and MBSmw-006

	MCL	Region 9	MBSmw-005-	MBSmw-006-
Analyte		PRG	0010-GW (11/8/2005)	0012-GW (11/7/2005)
1,2-Dichlorobenzene	NS	370	0.16U	0.16U
1,2,4-Trichlorobenzene	NS	7.2	0.12U	0.12U
1,3-Dichlorobenzene	NS	180	0.11U	0.11U
1,4-Dichlorobenzene	NS	0.5	0.13U	0.13U
2,2-Oxybis(1-Chloropropane)	NS	NS	1U	1U
2,4,5-Trichlorophenol	NS	3600	0.13U	0.13U
2,4,6-Trichlorophenol	NS	3.6	0.16U	0.16U
2,4-Dichlorophenol	NS	110	0.24U	0.24U
2,4-Dimethylphenol	NS	730	0.23U	0.23U
2,4-Dinitrophenol	NS	73	1.3U	1.3U
2,4-Dinitrotoluene	NS	73	0.16U	0.16U
2,6-Dinitrotoluene	NS	NS	0.17U	0.17U
2-Chloronapthalene	NS	49.	0.29U	0.29U
2-Chlorophenol	NS	30	0.14U	0.14U
2-Methylnapthalene	NS	NS	0.028U	0.028U
2-methylphenol	NS	1800	0.15U	0.15U
2-Nitroaniline	NS	3.2	0.18U	0.18U
2-Nitrophenol	NS	NS	0.14U	0.14U
3,3-Dichlorobenzene	NS	0.15	0.19U	0.19U
3-Nitroaniline	NS	3.2	0.094U	0.094U
4,6-dinitro-2-methyl phenol	NS	NS	0.29U	0.29U
4-Bromophenyl-phenylether	NS	NS	0.29U	0.29U
4-chloro-3-methylphenol	NS	NS	0.18U	0.18U
4-Chloroaniline	NS	150	0.31U	0.31U
4-Chlorophenyl Phenyl Ether	NS	NS	0.21U	0.21U
4-methylphenol	NS	180	1U	1U
4-Nitroaniline	NS	3.2	0.11U	0.11U
4-Nitrophenol	NS	NS	1U	1U
Acenaphthene	NS	NS	0.028U	0.028U
Acenaphthylene	NS	NS	0.030U	0.030U
Anthracene	NS	1800	0.030U	0.030U
Benzoic acid	NS	150000	4.5J	0.81U
Benzyl alcohol	NS	11000	1.1U	1.1U
Benzo(a)anthracene	NS	0.092	0.028U	0.028U
Benzo(a)pyrene	0.2	0.0092	0.022U	0.022U
Benzo(a)fluoranthene	NS	0.092	0.043U	0.043U
Benzo(k)fluoranthene	NS	0.92	0.071U	0.071U
Benzo(ghi)perylene	NS	NS	0.044U	0.044U
Benzyl Butyl Phthalate	NS	7300	0.14U	0.14U
Bis(2-Chloroethyl) ether	NS	NS	0.19U	0.19U

Analyte	MCL	Region 9 PRG	MBSmw-005- 0010-GW (11/8/2005)	MBSmw-006- 0012-GW (11/7/2005)
bis(2-chloroethoxy) methane	NS	NS	0.24U	0.24U
bis(2-ethylhexyl) phthalate	NS	4.8	2.3U	1.1U
Carbazole	NS	3.4	0.17U	0.17U
Chrysene	NS	9.2	0.035U	0.035U
Dibenz(a,h)Anthracene	NS	0.0093	0.054U	0.054U
Dibenzofuran	NS	12	0.025U	0.025U
Diethyl Phthalate	NS	NS	0.12U	0.12U
Dimethyl Phthalate	NS	360000	0.27U	0.27U
di-n-Butyl Phthalate	NS	NS	0.13U	0.13U
di-n-Octyl Phthalate	NS	1500	0.16U	0.16U
Fluoranthene	NS	NS	0.024U	0.024U
Fluorene	NS	NS	0.035U	0.035U
Hexachlorobenzene	1	0.042	0.075U	0.075U
Hexachlorocyclopentadiene	NS	220	1.5U	1.5U
Hexachlorobutadiene	NS	0.86	0.11U	0.11U
Hexachloroethane	NS	4.8	0.21U	0.21U
Indeno(1,2,3-c,d)Pyrene	NS	0.092	0.081U	0.081U
Isophorone	NS	71	0.16U	0.16U
Napthalene	NS	6.2	0.031U	0.031U
Nitrobenzene	NS	3.4	0.21U	0.21U
n-Nitrosodi-n-Propylamine	NS	9600	0.21U	0.21U
n-Nitrosodiphenylamine	NS	14	0.18U	0.18U
Pentachlorphenol	1	0.56	2U	2U
Phenanthrene	NS	NS	0.044U	0.044U
Phenol	NS	11000	0.14U	0.14U
Pyrene	NS	180	0.051U	0.051U

All results in ug/L

Results of detected compounds in BOLD

Qualifier Definitions:

U = Not detected above method detection limits

J = estimated

NS = No Standard

4.2.3.4 Pesticides and PCBs

Complete results for pesticide and PCB analysis are presented in Table 4-7. PCBs were not detected in the groundwater sampled from MBSmw-005 and -006, except for PCB-1260 which was estimated at MBSmw-006 at a concentration of 0.088 ug/L. The MCL for PCB-1260 is 0.5 ug/L and the Region 9 PRG is 0.034 ug/L. Pesticides were not detected in the groundwater sampled from MBSmw-005 and -006.

Analyte	MCL	Region 9 PRG	MBSmw-005-0010- GW (11/8/2005)	MBSmw-006- 0012-GW (11/7/2005)
PCB-1016	0.5	0.034	0.25U	0.25U
PCB-1221	0.5	0.034	0.49U	0.49U
PCB-1232	0.5	0.034	0.41U	0.41U
PCB-1242	0.5	0.034	0.11U	0.11U
PCB-1248	0.5	0.034	0.049U	0.049U
PCB-1254	0.5	0.034	0.087U	0.087U
PCB-1260	0.5	0.034	0.071U	0.088J
4,4-DDD	NS	0.28	0.0085U	0.0085U
4,4-DDE	NS	0.2	0.0076U	0.0076U
4,4-DDT	NS	0.2	0.0086U	0.0086U
Aldrin	NS	0.003	0.0061U	0.0061U
Alpha-BHC	NS	0.011	0.0062U	0.0062U
Alpha-Chlordane	NS	NS	0.0073U	0.0073U
Beta-BHC	NS	0.032	0.0068U	0.0068U
Delta-BHC	NS	NS	0.0064U	0.0064U
Dieldrin	NS	0.023	0.0067U	0.0067U
Endosulfan I	NS	0.022	0.0072U	0.0072U
Endosulfan II	NS	0.022	0.0072U	0.0072U
Endosulfan Sulfate	NS	NS	0.0083U	0.0083U
Endrin	2	11	0.0074U	0.0074U
Endrin Aldehyde	NS	11	0.0091U	0.0091U
Endrin Ketone	NS	NS	0.013U	0.013U
Gamma-BHC (Lindane)	0.2	0.052	0.0062U	0.0062U
Gamma-Chlordane	NS	NS	0.0065U	0.0065U
Heptachlor	0.4	0.015	0.0062U	0.0062U
Heptachlor Epoxide	0.2	0.0074	0.0065U	0.0065U
Methoxychlor	40	180	0.01U	0.01U
Toxaphene	3	0.061	0.33U	0.33U

Table 4-7 Pesticides and PCBs Analytical Results for MBSmw-005 andMBSmw-006

All results in ug/L

Results of detected compounds in BOLD

Qualifier Definitions:

U = Not detected above method detection limits

J = estimated

NS = No Standard

4.3 MEC AVOIDANCE SURVEY SUMMARY

UXO technicians provided MEC avoidance training and support during all field operations in accordance with the UXO and Explosive Avoidance Plan (Appendix C of the Final Work Plan). The MEC avoidance crew cleared all soil, surface water/sediment, and drilling locations. No unexploded ordnance, propellants, or visible explosives were discovered during field reconnaissance and magnetometer surveys of access routes and sampling or drilling. Mustard agent or any other chemical warfare agent was not detected on any of the drilling equipment used to install the monitoring wells.

4.4 SUMMARY OF ANALYTICAL RESULTS

Groundwater samples were collected from all six monitoring wells at the Suspected Mustard Agent Burial AOC. All of the samples were analyzed for mustard agent breakdown products. The groundwater collected from the downgradient wells MBSmw-005 and -006 was additionally analyzed for explosives and propellants, filtered TAL metals and unfiltered cyanide, VOCs, SVOCs, pesticides and PCBs. The results of the laboratory analysis are as follows:

- Mustard agent breakdown products were not detected in any of the groundwater samples collected.
- Nitrocellulose at MBSmw-006 was the only explosive and propellant detected in the samples collected from MBSmw-005 and MBSmw-006. The result (1.4 ug/L) was qualified with a "B" due to method blank contamination.
- Analytical results of groundwater samples tested for Target Analyte List (TAL) Metals were screened against facility wide background levels. Barium (84.0 ug/L at MBSmw-005 and 86.1 ug/L at MBSmw-006) and nickel (1.7 ug/L at MBSmw-006) exceeded the facility wide background levels for these TAL Metals. The facility wide background level for barium is 82.1 ug/L. The facility wide background level for nickel is 0 ug/l.
- 2-butanone at MBSmw-005 (0.95 ug/L) was the only VOC detected. The Region 9 PRG for 2-butanone is 7000 ug/L.
- Benzoic acid (4.5 ug/L at MBSmw-005) was the only SVOC detected. The Region 9 PRG for benzoic acid is 150000 ug/L.
- PCB-1260 (estimated at 0.088 ug/L at MBSmw-006) was the only PCB detected for this investigation. The MCL for PCB-1260 is 0.5 ug/L and the Region 9 PRG is 0.034 ug/L. Pesticides were not detected in the groundwater sampled for this investigation.

5.0 CONCLUSIONS

Mustard breakdown products were not detected in the groundwater sampled from the monitoring wells installed at the Suspected Mustard Agent Burial AOC. There are three possible explanations for this:

- 1. Mustard agent was not buried at the suspected burial site and is not present at this location.
- 2. Mustard agent is present at the suspected burial site, but is not leaching into the groundwater.
- 3. Mustard agent is present at the suspected burial site and is leaching into the groundwater, but none of the wells installed for this investigation were placed to intercept the plume.

It would take a substantial investigation to prove or disprove possibilities #'s 1 and 2 listed above. At this time, we do not recommend further investigation to determine if mustard agent is present at the site for the following reasons:

- 1. An unsubstantiated and undocumented source reported that mustard agent containers may have been buried at the site.
- 2. Thiodiglycol, a mustard agent breakdown product, was not detected at the AOC during the previous investigation.
- 3. Mustard agent or mustard agent breakdown products were not detected at the AOC during this investigation.
- 4. In summary, there has never been any evidence or documented indication that mustard agent was ever buried at the AOC to warrant further investigation.

6.0 REFERENCES

Bouwer, H., 1989, *The Bouwer and Rice slug test--an update*. Ground Water, vol. 27, no. 3, pp. 304-309.

SpecPro, Inc., 2005, Report on the Groundwater Monitoring Well Installation and Groundwater Sampling at the Suspected Mustard Agent Burial Area of Concern, Ravenna Army Ammunition Plant, Ravenna, Ohio.

USACE 1998 Phase I Remedial Investigation of High Priority Areas of Concern at the Ravenna Army Ammunition Plant. DACA62-94-D-0029, D.O. 0010 and 0022, Final

USACE 2001a Facility-wide Sampling and Analysis Plan (SAP) for the Ravenna Ammunition Plant, Ravenna, Ohio DACA62-94-D-0029, D.O. 0009, Final.

USACE 2001b. Final Phase II Remedial Investigation Report for the Winklepeck Burning Grounds at the Ravenna Army Ammunition Plant, Ravenna, Ohio, DACA62-94-D-0029, D.O. 0060, April.

USACE 2001c. Phase II Remedial Investigation Report of Load Line 1 at the Ravenna Army Ammunition Plant, Ravenna, Ohio. DACA-27-97-D-0025, D.O. 0003. Draft.

USACE 2004. Final Work Plan and Sampling and Analysis Plan Addenda for the Groundwater Monitoring Well Installation and Groundwater Sampling at the Suspected Mustard Agent Burial Site (AOC-28) at the Ravenna Army Ammunition Plant, Ravenna, Ohio (SAP Addendum).

USACHPPM 1996, Hazardous and Medical Waste Study No. 37-EF-5360-97, Relative Risk Site Evaluation, Ravenna Army Ammunition Plant Ravenna, Ohio, 28 October – 1 November 1996, Volume I

USATHAMA, 1978. Installation Assessment of Ravenna Army Ammunition Plant. Report No. 132.

USDA (United States Department of Agriculture) 1978. Soil Survey of Portage County, Ohio.

USEPA 1990, Test Methods for Evaluating Solid Waste, Physical/Chemical Methods, Analytical Protocols

USGS (United States Geological Survey) 1966. *Geology and Ground-Water Resources of Portage County, Ohio.* USGS Professional Paper No. 511.

USGS 1968. *Mineral Resources of the Appalachian Region*. USGS Professional Paper No. 580.

White, G.W., 1987. *Glacial Geology of Northeastern Ohio.* State of Ohio Department of Natural Resources, Division of Geological Survey, Bulletin 68.

APPENDIX A

GEOTECHNICAL LABORATORY REPORT

THIS PAGE INTENTIONALLY LEFT BLANK

Project: 05575 - Suspected Mustard Agent AOC (MBSMW-005-ST)

Client: SpecPro

Laboratory Test Summary JL04517 1/18/2006

						1/10/2000						
Sample Data	1											ASTM D 22'
Sample		D	epth	Tare	Tare	Wet	Dry	Sample				Moisture
Number		(m)	(ft)	Number	Weight	Weight	Weight	Weight				Content
MBSMW	005-ST		20-22'	149	9.48	667.97	554.89	545.41				20.7%
Bulk Density	,											ASTM D 29;
Total	Tube	Sample	Diameter	Length	Volume						Wet Density	Dry Densit
Weight	Weight	Weight	(in)	(in)	(cm ³)						(pcf)	(pcf)
668.0	9.48	658.5	2.823	3.307	339.228						121.2	100.4
•	vity (-10 Mate	,		O a mar at la m	Dura e Alleter	On a sifi s		Ora e el file	Danaaita			ASTM D 8
Sample Weight (Mo)	Full Pycno (Mb)	Temp (⁰C)	Density Water d(T _b)	Correction K	Pynco/Water (M _a at T _b)	Specific Gravity (T _b)		Specific Gravity (T ₂₀)	Porosity (n)	Vs	V _w	Va
39.16	370.41	20.6	0.99810	0.9999	345.41	2.766		2.766	0.419	58.1%	33.3%	8.5%
Particle Size	Distribution											ASTM D 4
		Perce	nt Passing (by	weight)				Sand				

	Percent Passing (by weight)					Sand						
3/8"	#4	#10	#40	#100	#200	Gravel (%)	Cor. (%)	Med. (%)	Fine (%)	Silt (%)	Clay (%)	Fines (%)
100.0	100.0	100.0	99.9	99.8	99.7	0.0	0.0	0.1	0.2	19.3	80.4	99.7

Limits	A	STM D 4318	Classifica	tion					A	STM D 2487
	Atterberg Limi	ts								
LL	PL	PI	USCS Cla	ssification	Cu	Cc	D10	D30	D50	D60
42.9	20.5	22.4	CL	LEAN CLAY						

Client: SpecPro

Laboratory Test Summary JL04517 1/18/2006

						.,,						
Sample Data												ASTM D 221
Boring	Sample	D	epth	Tare	Tare	Wet	Dry	Sample				Moisture
Number	Number	(m)	(ft)	Number	Weight	Weight	Weight	Weight				Content
MBSMW	006-ST		24-26'	150	9.38	831.10	757.44	748.06				9.8%
Bulk Density												ASTM D 293
Total	Tube	Sample	Diameter	Length	Volume						Wet Density	Dry Densit
Weight	Weight	Weight	(in)	(in)	(cm ³)						(pcf)	(pcf)
821.7	9.38	812.3	2.856	3.591	376.897						134.6	122.5
Specific Grav	vity (-10 Mater Full Pycno	ial) Temp	Density Water	Correction	Pynco/Water	Specific		Specific	Porosity			ASTM D 8
Weight (Mo)	(Mb)	(ºC)	d(T _b)	к	(M _a at T _b)	Gravity (T _b)		Gravity (T ₂₀)	(n)	Vs	Vw	Va
39.76	366.82	20.8	0.99807	0.9998	341.87	2.685		2.685	0.269	73.1%	19.3%	7.6%
Particle Size	Distribution											ASTM D 42
			ent Passing (by			_		Sand				
3/8"	#4	#10	#40	#100	#200	Gravel (%)	Cor. (%)	Med. (%)	Fine (%)	Silt (%)	Clay (%)	Fines (%)
97.1	94.4	90.2	78.0	56.7	50.6	5.6	4.2	12.2	27.4	47.8	29.7	50.6
Limits	Д	STM D 4318	Classificatio	n								ASTM D 248
A ^r LL	tterberg Limit PL	is Pl	USCS Classi	ification			Cu	Cc	D10	D30	D50	D60

Note: One large gravel in sample, removed to prevent sample GSD bias. Sample classification adjusted to include gravel descriptor.

SANDY SILTY CLAY WITH GRAVEL

17.5

11.3

6.2

CL -ML

APPENDIX B

MONITORING WELL LOGS AND WELL DEVELOPMENT RECORDS

THIS PAGE INTENTIONALLY LEFT BLANK

MONITORING WELL LOGS AND WELL DEVELOPMENT RECORDS

Page Number	Site Number
4	MBS-1
7	MBS-2
11	MBS-3
15	MBS-4
20	MBS-5
38	MBS-6
11	Comprehensive Water Level

MBS-001 11-08-05

Al Brillinger

time	gal. removed/	Temp	Spec Cond	pH	TURB.	1 007	DTW
12:53	0.25/0.25	11.1	0.515	7.78	124	10.67	18.01
12:56 12:59	0.25 0.50	10.8 1.01	0.507 0.506	7.68 7.63	118 116	10.42	18.05 18.06
13:02	0.25 11.0	10.7	0,501	7.64	661	10.62	18.06
13:05	0.25 1.25	10.6	0.501	7.62	607	10.61	18.07

13:05 begin sampling 13:20 finish sampling

. 4

TASK TEAM ACTIVITY LOG SHEET

PROJECT NAME: SUSPECTED MUSTRAD AGENT BURIAL SITE

Date (mm/dd/yy): 1-13-06	Su M Tu W Th F Sa	PAGEOF	
Task Team Members:			
Chantelle Carrol			
Frik Pietnzak			

Narrative (include time and location): 9!105 0.5
<u>9:45 anive at well location MB5-01, Set up</u> 10:25 Begin to punge well N.T. Water 17.42, Dist. toBotton 30.92'
W: 25 Dogen to punge well D. lowater 11.92, Dist. toBotton 30.92
Flow rate on meter 190 ml per minute
10:57 Take Sample MBSMW-001-0013-gw for thirdigly col
11:07 Finished Jample - clean up/decon go
to next well location
Daily Weather Conditions: A.M. Sunny P. Clouds, No wind Warn 50° 5(F.)
Recorded By Mondell Chall QA Checked By Al Brillingi
~ D

			<u>1.</u> ¢						Torman	1	 	 	 	
		S	0-7.10.17.4D		17.47		17.47	17.47						90
		COMMENTS	Flow 140											\sim ℓ -14-06 e and Date)
SITE	PAGE OF	TURBIDITY (NTU)	7 999	حمال	(e19	L94	439	Cosh						\mathcal{M} Brillin \mathcal{I}^{-1} (Signature and Date)
VT BURIAL \$	PA	DISSOLVED OXYGEN (mg/L)	0.1	050	0.45	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	10.0	900						
SUSPECTED MUSTARD AGENT BURIAL SITE		SPECIFIC CONDUCTIVITY (µMHOS/CM)	88.0	873	Sle.6	85.7	55.0	84.9						QA CHECK BY:
SPECTED N		TEMP (C)	[01]	10,	1.01	0.01	0.01	10'N						-13-0lg
	- od	pH (Standard Units)	7.19	7.15	7.18	le:L	CC:L	QC.L						2
PROJECT NAME:	WELL NUMBER AND LOCATION: MBS - OD I	TOTAL GALLONS REMOVED	[.13	. 25	Ŗ	54.	1					((Signature and Date)
	AND LOCAT	GALLONS REMOVED	Orthin 2		<u>(</u>),	1 1 1 1	, 2 <u>5</u>	Sc.						3
	UMBER	TIME	10,25	10:34	10 135g	<i>bh</i> 101	(の)、代	(0:So						DED BY
	MELL N	DATE	1-13-05		-									RECORDED BY:

APPENDIX B

WELL PURGE and DEVELOPMENT RECORD

6

11-7-05 MON

Al Brillinger

begin purginy e MBS-002 13:55 sample #: MBS mw-000-0007-gw MBS mw-000-0007-gr 12-1-05 sample for thirdiglycol 1,4-dithianp 1. 4-oxythiano

- 14:15 Degin sampling
- 14:30 finish sampling, decon move to MBS-006

sunny 50-550

Ergn al Bully.

OA Charle

......

Wea:=

Ð.

TASK TEAM ACTIVITY LOG SHEET

PROJECT NAME: SUSPECTED MUSTRAD AGENT BURIAL SITE

Date (mm/dd/yy): <u>1-13-04</u> Su M Tu V Task Team Members:	/ Th F Sa	PAGE	OF
Chantle Carroll			
Erik Pietrzak			

Narrative (include time and location):

anive and setupon MBS-002 17:00 Bozin prizing - Flow rate 220 ml/min. D.T.B 30.36; D.T. Water 17.79 13:10 ingrase flow rate to 208 ml/min - D. T. W. 17.94 13,33 -Sample - thirdiglycol MB5mw-002-0014-GW tinish sample, Cleanup/decon-go to 13:43 Cocation (mBS-04) Daily Weather Conditions: A.M. OURcost to passible ran, warm 55+ °F, wind pickup M._____ le Caral QA Checked By Ql Briller Recorded By

PAGE <u>)</u> OF <u>)</u>	WELL VOLUMES REMOVED	1. lee	2.22	3.33	4,4¢	25.35	Charles and a second	2. 2. 2. 4.	Stic so i. 47	12° n. 1.39 205 hearing	\$0=11.41 DTW = 18.65	DO=11.38 DTW = 18.65	D.0= 11.24 DTW- 18.65	DO= 11.07 DTW-18.65	20 = 11.04 PTW-78.65	~ Do= 10.99 DIW=	(Signature and Date)	and Church 12-1-00
đ	TOTAL GALLONS V REMOVED R	15	20	20	40	4 ?e				17. J.	0.25	0.50	0.75	Q')	1.25	1.50	BY Usen	
	TURBIDITY	> 999	7999	7999	5. 7. 2.	5557	20	<u>(</u> 2)	273	1-8.	7999	> 999	7 999	975	511	350	QA CHECK BY	
RUAAP. 28	pH (Standard Units)	7.5	7.5	5.1	к. Т	かかしょ	1771	501	37.4	102	7.70	7.65	7.57	1.53	7.53	7.55		
	SPECIFIC CONDUCTIVITY (µMHOS/CM)	256.6	254.2	257.1	247.4		Sec.	. 253		344	0.437	0,431	0.429	0.427	0.426	0.425	11-16-04 Ate) 11-29-04	
200: MBS-002	TEMP (C)		10.2	10.2	10.2		с. 10		а.; О		11.5	11.0	10.0	10.7	10.6	9.01	- State	0
WELL NUMBER AND LOCATION:	GALLONS REMOVED	5	202	20 10.148	2 2 2 2 2	· Notes and	 1966 -	j U	gare e		0.25	0.25	0.25	0.25	0.25	0.25	999	
ELL NUMBER	DATE TIME	11 16 04 10:55	1116/04 11:10	Wholes N:40	sloe 12:10	1.24	1.00		1		11-7-05 13:58	10:71	H0:H1	Lo:hi	01:11	14.13	RECORDED BY:	
	L	ender Hellen Hellen Hellen Hellen Hellen			11/16/00	**		9	20			50-2-11	¢,				REC	

Sample 11-7-05

JO.

ELL PURGE RECORD

		1	[]	2					T	<u> </u>	 	<u> </u>	 	 I	
			10	0.7.0	1753	17.94	17.97	L6.71	17.57						Q
		OF	COMMENTS	DECUOL			SCC molt								Signature and Date)
	SITE	PAGE 0	TURBIDITY (NTU)	<i>630</i>	353	237	212	157	147						 Sullen (Signatu
CORD	NT BURIAL	/d	DISSOLVED OXYGEN (mg/L)	1.30	0.47	0.3S	0.28	8/10	0,16						QA CHECK BY: <u>OL Bull</u> (Signature
L PURGE and DEVELOPMENT RECORD	PROJECT NAME: SUSPECTED MUSTARD AGENT BURIAL SITE		SPECIFIC CONDUCTIVITY (µMHOS/CM)	71.9	le 9. 1	(e 8, 2	67.9	67.2	44.5						QA CHECK
GE and DEV	SPECTED N		TEMP (C)	10.8	10.4	<i>ب</i> ٥، ر	, O. ¢	م.0 ¹	g.01						DIP
WELL PURG	NAME: SU	5 - 002	pH (Standard Units)	7.86	7.67	7.60	7.53	7.50	7.50						J 1-13-De
	PROJECT	SOM :NO	TOTAL GALLONS REMOVED		,25	.50	.75	ļ	1.25						Signature and Date)
		WELL NUMBER AND LOCATION:	GALLONS REMOVED	Orthin	.05	.25	ů N	52.	يد. کلا						
		JMBER	TIME	13:00	13:68	13:23	13:24	13:29	13:31						JED BY
		MELL NI	DATE	1-13:04 13:10											 RECORDED BY

17.75

11-07-05 TON.

AI Brillinger

09:30.10:30 move sampling supplies from NACA site to MBS-003 Measure water levels in all wells up Herron dipper-T electronic 10:35 water level meter (SIN 05767) TIME DTW DTB MB5.001 30.93 (Soft) 10:53 17.92 all measure from top of inner cra. 30.36 (soft · silty tip) MB5-002 10:36 18.42 30.67 (hand) MBS-003 10:37 19.56 26.56 (soft) MBS-004 10:40 17.53 30.05 (firm) silty tip MBS-005 18.2.0 10:49 28.10 (firm) 17.68 MBS-006 10:45 11:00 set up sampling C MBS-003 Sample # MBS mo-003-0008-gw 14B5 mo-003-0008-gw sampling for thiodiglycol, 1, 4- dithiane, and 1, 4- 0xythiane 11:19 start purging 11:36 finish purging stat sampling 11:40 finish sampling - decon, more to MBS-004 11:57

Weal's Suring 50-550

al Br Sign

TASK TEAM ACTIVITY LOG SHEET

PROJECT NAME: SUSPECTED MUSTRAD AGENT BURIAL SITE

Date (mm/dd/yy): <u>-13-05</u> Su M Tu W Th(F)sa PAGE OF Task Team Members: handelle Carro H Pietra Narrative (include time and location): Ð 14:20 MB5-003 lC 34 W. 100 rate 189 m1/min D.T.W 18.57 30.65 P.T.B. 15:10 Bes MB5mw-003-0015-qw Sande thiodiglycol toth 15.25 Finish Sample, clean up site

Daily Weather Conditions: A.M. Ourcost more rain ? 2 burst of 3 min. each) 50-60°F Martle and QA Checked By al Bully Recorded By

(C) SPECIFIC CONDUCTIVITY (µMHOS/CM) PH Units) TURBIDITY 1 355 7.5 799 7997 7 7.55 7.57 7997 7.57 9 501.6 7.55 7.57 7597 2 7.57 7.57 7597 9 501.6 7.57 7597 2 7.57 7577 7597 9 501.6 7.57 7597 2 7.57 7577 7577 9 501.6 7.57 7577 2 7.57 7577 7577 2 7.57 7.57 7577 2 7.57 7.57 7577 2 7.57 7.57 7577 2 7.57 7.57 7577 2 7.57 7.57 7577 2 7.57 7.57 7577 2 7.57 7.57 7.57 2 7.57 7.57 7.57 2 7.57 7.57 7.57 2 7.57 7.42 1 2 7.42 7.42 1 2 7.45 7.42 1 2		
11/104 0855 10 10.7 535 7.5 11/8/04 12:16 4 12.1 354/18 7.59 7997 11/8/04 12:25 **X4 11.0 585.0 7.59 7997 12:25 **X4 11.0 585.0 7.55 7799 7997 12:26 Funde 11.1 448.2 7.55 7799 7997 13:05 Funde 11.1 448.2 7.57 7999 10:09 12:05 Funde 11.1 448.2 7.57 7999 11:09 12:05 Funde 11.1 448.2 7.57 7979 11:09 12:05 Funde 11.1 248.2 7.47 11 11:09 12:05 7.57 597 7.42 11 11:09 11:0 591.2 7.42 11 122 11:09 11:0 0.460 137 122 11:09 11:0 0.460 13	TOTAL WELL COMMENTS COMMENTS REMOVED REMOVED	ENTS
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	1.1 01	
III KINU D: K 4 12.1 D: 4 7.59 7997 12:25 c* KU 11.0 585.0 7.50 7.99 7997 12:25 c* KU 11.0 585.0 7.55 7.99 7997 12:25 c* KU 11.0 585.0 7.55 7997 12:26 two I 11.4 448.2 7.55 7997 13:05 two I 11.4 448.2 7.55 7979 13:05 two I 11.4 448.2 7.55 7979 13:05 two I 11.4 448.2 7.55 7979 13:05 two I 11.4 748.2 7.55 7979 12:05 two I 11.4 201.6 7.57 7979 12:05 two I 11.4 201.6 7.57 7979 12:05 two I 22 250 7.37 178 12:05 11.2 321 7.28 1 7.28 12:05 11.5 0.465 7.42 18 11:12 0.165 11.4 122 112 11:12 0.12 11.3 112 112	12 1.33	
12:25 c^{*} \mathcal{K} \mathcal{V} 11.0 585.0 7.50 7.999 12:25 c^{*} \mathcal{K} \mathcal{V} 10.9 \mathcal{V} \mathcal{R} 7.55 7.57 7.57 12:25 \mathcal{K} \mathcal{K} 11.4 \mathcal{V} \mathcal{K} 7.57 7.57 7.57 13:05 \mathcal{K} \mathcal{K} \mathcal{K} \mathcal{K} \mathcal{K} 7.57 7.57 7.57 13:05 \mathcal{K} \mathcal{K} \mathcal{K} \mathcal{K} \mathcal{K} \mathcal{K} 7.57 7.57 7.57 13:05 \mathcal{K} \mathcal{K} \mathcal{K} \mathcal{K} \mathcal{K} \mathcal{K} 7.57 7.57 7.57 10.05 \mathcal{K} \mathcal{K} \mathcal{K} \mathcal{K} \mathcal{K} 7.57 7.57	14 1.77 20.3	245 Dec
0.49 $'1/24$ 10.9 748.7 7.55 779 0.49 $'1/24$ 10.9 748.7 7.57 799 0.808 3 10.9 501.6 7.57 799 13.05 10.8 11.4 448.2 7.57 799 12.05 10.8 11.4 448.2 7.57 799 12.05 10.8 11.4 448.2 7.57 799 12.05 11.4 2.2 2.55 -7.9 7.97 1.976 12.01 11.4 7.2 7.2 7.2 7.2 7.97 1.728 1.9766 11.05 11.6 7.12 7.2 7.2 7.2 1.128 1.12	30 2.22 DO 55500	۶۶۱ ۲5 رو
$D_{100}D$ 3 10.9 501.6 7.54 7557 $13:05$ Final 11.4 448.2 7.57 7956 $13:05$ Final 11.4 448.2 7.57 7956 $13:05$ Final 11.4 448.2 7.57 7956 12.05 11.4 22 2.53 -1.60 1.737 1.756 11.5 57 7.25 7.25 7.26 1.766 1.756 11.105 11.6 7.72 7.87 7.87 1.726 1.726 11.105 0.25 11.6 0.465 7.42 1.72 1.12 11.11 2.25 11.3 0.460 7.31 122 11.11 2.25 11.3 0.460 7.31 122	24 J.66 DA 341	
3:05 Fined 1 $ 1.4 $ 448.2 7.57 7956 $ 1.80 $ $ 2.05 $ Fined 1 $ 1.4 $ 448.2 7.57 7956 $ 1.80 $ $ 2.06 $ $ 1.4 $ 2.2 2.535 -1.60 7576 $ 1.80 $ $ 2.2 $ 2.535 -1.60 7.371 7956 $ 1.10 $ 2.5 -1.536 -1.20 -1.26 -7.57 7956 $ 1.10 $ -2.5 -1.60 7.371 7.26 -7.56 -1.66 -1.62 -1.66 -1.62 -1.66 -1.62 <t< td=""><td>97 3.00 po.5</td><td>5.43 > Daulor only 4- 3 All</td></t<>	97 3.00 po.5	5.43 > Daulor only 4- 3 All
1 1 <td>28 3.11 DO 3224</td> <td></td>	28 3.11 DO 3224	
1.1.3 1.1.3 1.1.3 1.1.3 1.1.3 1.1.3 1.1.3 1.1.3 1.1.5 0.1.5 1.1.6 0.465 11.28 0.25 11.3 0.460 7.37 11.21 0.25 11.3 0.460 7.37	i i X	erzu day
14:37 3 3 3 3 3 3 11:15 0.15 11.6 0.465 7.42 11:28 0.25 11.3 0.460 7.37	UN N	1. S. m.
N-1-05 N-1-05 N-1-05 N-1-05 N-1-05 N-1-05 N-1-05 N-1-05 N-1-05 N-1-05 N-1-2	5	
H-1-05 II:25 0.25 II.6 0.465 7.42 II:28 0.25 II.3 0.460 7.37	23 23	2.46° 2. 4000
11:28 0.25 11.3 0.460 7.37	0.25 D.0= 11.25	25 DTW=19.87
	0.50 DO= 10.95	
11.1 COLO 7.11 C.7.0	0.75 00= 10.91	11 DTW- 20.20
11:34 0.25 11.1 0.461 7.43 17	L8.01=0C V 01	=m14 18
RECORDED BY: JU BULLIN 11/18/04 OA CHECK BY	Clask?	and 11-17-09

GI

* Tevelopment

13

				1925 DT.W	19.15	19.30		19.49	09.6J	19.60					
			COMMENTS	184 Flow 19.	19	148 Flow			13 le Flow						∠/rʒ/o⊘ e and Date)
	SITE	PAGE OF	TURBIDITY (NTU)	7.7.8	64. S	40.1	30.	21.5	206	C.81					Signatur
CORD	IT BURIAL (ΡA	DISSOLVED OXYGEN (mg/L)	(e.0)	3.64	3.73	375	3.73	3.63	Jan 2					QA CHECK BY: OL BULL 2/13/06 (Signature and Date)
PURGE and DEVELOPMENT RECORD	E: SUSPECTED MUSTARD AGENT BURIAL SITE		SPECIFIC CONDUCTIVITY (µMHOS/CM)	74.7	739	738	73.7	735	73.4	73.4	-				QA CHECK I
SE and DEV	SPECTED N		TEMP (C)	ما. 11	0.11	10.9	10.9	لان)	10.5	g.01				-	DIG
WELL PURG	NAME: SU	(003	pH (Standard Units)	1.39	7.17	7.19	81.L	7.19	31.1	7.15					Jl 1-13-04
	PROJECT NAM	well NUMBER AND LOCATION:G5~	TOTAL GALLONS REMOVED	۱	ŝ	, (₆ 5	of.	1,10	(.25	1.50				•	N (Ow re and Date)
		AND LOCATI	GALLONS REMOVED	inthal	5	°15	,2C	0000	<u>v</u>	,25				•	\mathbb{Z}
		NUMBER	TIME	14:36	14:48	14:50	141; SS	14,59	15:03	15,09					RECORDED BY:
		WELL N	DATE	1-13-00 14:38											RECOF

Al Brillinger 11-7-05 MON 12:30 Setting up for sampling @ MBS-004 Sample # MBSMW-004-0009-9W MBSMW-004-0009-9W Sampling for thiodiglycol 174-0xythiane 1,4-dithiane

12:41 begin purging

12:59 begin sampling finish sampling - decun, move to MBS-001 13:13

Wea = sunny so-55°

sign de Bulle

'has
PROJECT NAME: SUSPECTED MUSTRAD AGENT BURIAL SITE

Date (mm/dd/yy): 1-13-06 Su M Tu W Th ESa PAGE____OF Task Team Members: amal COIS letra

Narrative (include time and location):

MB5-004 13:45 IP 05 13:57 22 sin ms D.T.W. 16.55 D.T.B 26.60 268 ml/min MOW rate modiglycol Sen 14:17 MBSmw-00 OOL6-qui ban up I de con, 14:23 So to next Final one today u)o 003 Daily Weather Conditions: A.M. Deer Carst, H. rain - 300 last 3min P.M. and trank Recorded By QA Checked By

		SE)3 Dew 14.3	76 12 11 75		- 20: 01		30	38 00 - 11/10		7 DTW= 1280	2 DTW= 17.82	10 DTW= 12.85		ate)	20-1-2)	
	DF DF	COMMENTS		2			DE. 9.03	De 5.96	0.0.8.00	DD. 9.222	DO 9,19	D.C. 9.30	D.0-11.38	D0 = 11.37	PU= 11.17	70= 11.12	DU: 11.10	11-12 Dr	(Signature and Date)	STO T	
	PAGE	D REMOVED		3.57	4.2	20	· :										<	ad llow	(Sig	Lough	١
ELL PURGE RECORD Suspected Mustard Agent Burial Site		Y GALLONS REMOVED	/2	52	0 M	27 17		- V.		Ľ,		С. С.	0.25	<i>o</i> .50	0.75	0.1	1.2,			3	
RECORD Mustard A		TURBIDITY	> 999	55	6067	1 0	6662	7-9999	(47)	212	268	153	0922	10/7	230	122	20)	QA CHE			
ELL PURGE RECORD Suspected Mustard A		Y (Standard Units)		LP T	C'Èm	1 1	7.39	7.28	7.30	7.25	30.1	7.28	7.65	°1.16	7.62	19.1	7.59		21 ⁰⁰ .		
WE PROJECT NAME: S	<u> 1985 - O.C.4</u>	SPECIFIC CONDUCTIVITY (uMHOS/CM)	5:3	1. 7.4.	284.	7 32 1	23 2 2 2 2 2	,331	,329	.329	, 329	*330	0.436	0.438	0.437	0.437	0.438	なートーン	11-29-04	X 11-7-0 S	2
S		TEMP (C)	10°.8	form the form	5. 3		9.3	9.6	LA 0-	9.9	9.9	66	L.11	11.4	1.5	11.0	1.17	Bullen	(Signature and Date)	Zulle	
	WELL NUMBER AND LOCATION:	GALLONS REMOVED	51		10	16.2	つきで	Ŝ,		W.P.		ري. ا	0.25	0.25	0.25	0.25	0.25	Z	5	Se l	
	ELL NUMBER	DATE TIME	11/17/04 10:25	2.17.64 20:50	11:05 21:05	11110425 1.1.25	11/29/09/14:08	ማነ. ግ(10,22	1c.11	W. 33	16.35	-05 12:45	8h:21	12:51	12:54	12:21	RECORDED BY:			
AP	PENDIX	L	North Contraction		1/17 20-22-11 1/17 20-22-11	111 20 20 11 11 11 11 11 11 11 11 11 11 11 11 11		adama	17				Sample 11-7.05	50-2-11				REC			

? TEVELOPMENT

76

	RECORDED BY: Ward and Date) QA CHECK BY: Ward And Check BY: Ward Check By: Construction of the constructio	S&A PLAN SAMPLING PROCEDURE FOLLOWED: [] YES [] NO IF NO, WHY WAS A DEVIATION NECESSARY:	FIELD OBSERVATIONS: wet but Sumy f. Claudy mid to low 50'S	SITE CONDITIONS DURING PURGING:	SAMPLE METHOD: [] Bailer [] Bladder Pump [] [] Other (specify) Sample Pro-	MINIMUM PURGE VOLUME = Vt x 3 PURGE VOLUME: $\frac{c}{c} \frac{b}{b}$ GAL.	PURGE METHOD; [] Bailer [] Bladder Pump [] Pump Type Sample Pro-	WHERE:Vc = Volume of water in well casing, cu. ft. Vt = Total volume, ga.dH = diameter of borehole, ft. TD = total depth of well casing, ft. $a = 1 + 2 + 2 + 3 + 3$	Vt = (Vc + Vf) (7.48)	Vf = 3.142 x [(dH/2) ² – (do/2) ²] (TD-S or H) (P)	WELL VOLUME CALCULATION Vc = 3.142 X (di/2) ² x (TD-H)		DATE (mm/dd/yy): 1/127104	GROUNDWATER PURGE SHEET PROJECT NAME: Suspected Mustard Agent Burial Site
L.L.	APPEN	DIX B					ver and			N N N N	Ì			

			្រ	16.53											
				1.01.0 1.01.0	16.72	1679	16.85	16.65	16.87	16.87					
		OF	COMMENTS	flow 248				,							ב ב/ופלים ב ביולים ביות ביות ביות ביות ביות ביות ביות ביות
	SITE	PAGEO	TURBIDITY (NTU)	71.S	.59	2.19	53.9	52.6	(e.O.O	(e,0,0					Signatu
CORD	NT BURIAL	ΡA	DISSOLVED OXYGEN (mg/L)	1- <u>1-</u> -/	CL'0	0 5 %	0,53	049	Sho	0,43					QA CHECK BY: OL BULLEN Z/13/06 (Signature and Date)
IRGE and DEVELOPMENT RECORD	PROJECT NAME: SUSPECTED MUSTARD AGENT BURIAL SITE		SPECIFIC CONDUCTIVITY (µMHOS/CM)	Ty.J	74.4	739	73,7	737	735	73.2					QA CHECK
SE and DEV	SPECTED N		TEMP (C)	6.11	10.9	8.01	10.7	L'0]	(0.7	L'o'					3-04
WELL PURG	. NAME: SUS	, 204	pH (Standard Units)	7.34	7.30	7:27	1.27	J.S.L	N.C.	JC.T					
	PROJECT	Well NUMBER AND LOCATION: 20	TOTAL GALLONS REMOVED		, 25	. 50	SL.	1.0	1.25	۲.53					Signature and Date)
		AND LOCAT	GALLONS REMOVED	Inital	, 2 <i>G</i>	. 2C	, 2S	50.	SG,	.30				(B
		IUMBER	TIME	-13-00 B151	101/21	40:41	14:01	01:21	14:13	1416					RECORDED BY:
		MELL N	DATE	1-130											RECOF

APPENDIX B

19

Date (mm/dd/yy): 10/26/05 Su M Tu W Th F Sa PAGE____OF ____ Task Team Members: Al Brillingen Bob Fay (Issi, inc.) Chris White (TTL, Inc.) Guy Jackson (TTL, Inc) Narrative (include time and location): MBS-005 13:40 Frank w/ Falkenberg Exc. on site to move rig from MBS-006 to MBS-005 - using dozen to mob. pipe, augers, sand bentonite cement to drill site 15:45 Begin drilling sampling @ MBS-005 (Paul Zorko on site 14:00-16:00) 17:00 Drill, sample to 14', clean up site, IV for the day Daily Weather Conditions: A.M. ___ P.M. partly cloudy 45% nelling · QA Checked By how **Recorded By**

APPENDIX B

Date (mm/dd/yy): <u>10/27/05</u> Su M Tu W(Th)F Sa PAGE OF Task Team Members: Al Brillinger Jackson (TTL, Inc) Bob Fay (ISSI Inc) Chris White (TIL. Inc.) Narrative (include time and location): His tailgate mtg @ 1:30 8:40 () MBS-005 begin augering sampling 14' bas 8:45 Shelby tube collected (~1.5' reovery) 20-22' bgs 9:20 Attempt shelby tube 24-26' bgs -9:45 sample 26-28 bas, plan to set well 10:10 trouble setting well @ 28' - heaving sands into augers - re-auger 20-28 - tremie set well 15:45 finish installing MBS-005 start to demob from site rig moved out soil drums (4) moved out * Bob Fay checked borehove every 2' from 0-10' w/ gradiometer. Readings indicated no UXO. Borehove equip, was checked CWA paper upon untact w/ formation water. No CWA detected. Bob Fay off site a 11:00 Paul Zorko e site in: off 09:00-16:00 Daily Weather Conditions: A.M. <u>Cloudy</u> 40° cloudy 40' P.M. ____ ____ QA Checked By **Recorded By**

Date (mm/dd/yy): <u>16-28-05</u> Su M Tu W Th (F) Sa PAGEOF Task Team Members:
Al Brillinger
Chris White (TTL, Inc) Kevin Zolgus (Falkenberg Exc.)
Guy Jackson (TTL, Inc.)
Narrative (include time and location):
07:30 His tailgate
08:00 move to site (Kevin on post 8:00)
moving concrete to site wil dozen
guard posts concrete pads
10:00 Kevin Zolgus off site
Drillers set concrete pads, outer protective
casing, guard posts and cleaned site
15:30 TTL IV for weekend. will return Munday
10/31/05 to paint guard posts : outer casingsr
de con rig : equip, finish demobing from
site
Daily Weather Conditions: A.M. <u>partly cloudy 40°</u>
P.M QA Checked By Chartle Carel

di ake ina

Date (mm/dd/yy): 10/31/05 Su @ Tu W Th F Sa PAGEOF Task Team Members:
<u>Al Brillinger</u>
Chris White (TTL, Inc)
Jay Leonard (TTL, Inc)
Narrative (include time and location):
9:20 TTL on site to paint outer casingsiguard
<u>9:20 TTL on site to paint outer casings; guard</u> posts, decon de rig, demob from site
13:40 TTL IV site
Daily Weather Conditions: A.M. <u>Sunny 50°</u>
Daily Weather Conditions: A.M. <u>Sunny 50°</u> P.M. <u>Sunny - partly sunny 55°</u> Recorded By <u>Al Bullin</u> QA Checked By Marsh Carl
Recorded By UK Mullin QA Checked By WWW Carry

PHOJECT NAME: SUSPECTED MUSTHAD AGENT BUHIAL SITE
Date (mm/dd/yy): <u>11205</u> Su M Tu W Th F Sa PAGEOF Task Team Members:
Al Brillinge
Narrative (include time and location):
13:50 Are MB5-005 from MBS-006
14:00 Legin development of MBS-005 by bailer
16:30 finish development of MBS-005. 45 gallons of
water removed (5 well volumes). pH Temp Spec.
Cond D.O stabilized w/in 10% 3x during
development.
16:40 off site
Daily Weather Conditions: A.M.
P.M. Sunny 55°
P.M Sunny 55° Recorded By Al Bulling. QA Checked By Maralland

TASK TEAM ACTIVITY LOG SHEET
PROJECT NAME: SUSPECTED MUSTRAD AGENT BURIAL SITE
Date (mm/dd/yy): <u>いっちょっち</u> Su M
Al Brillinger
Narrative (include time and location):
09:30-10:00 move gear from NACA area to MBS-005
10:00-10:17 set up for sampling MBS-005 MBSmw 005-0000-94 MBSmw 005-0110-94 Sample No: = MBSmw -005-0010-94 MBSmw -005-0110-945 MBSmw 005-0110-945
Sample No: = MBSmw-065-0010-gue MBSmw-as-onice Toppsplit
TAL metals, svocs, vocs, cyanide, Pest., PCBS, Expl., Prop. thiodiglycol
1,4- oxythiane, 1,4- dithiane
10:17 begin purging 10:40 begin sampling finish sampling, docon, move to MBS-001.
10:40 Degin Sampling
finish sampling, docon, more to MISS-001.
Daily Weather Conditions: A.M. <u>Cloudy</u> 55°
ADTS P.M De MOR. Ol
Recorded By Ul Bull many QA Checked By Many Canad

AL BRILLING	
Al Brillinger	
arrative (include time and location):	
MBS-005 Slug	test
1	· : nini-troll & Rugged Keader
12:00 slogin	
	· · · · · · · · · · · · · · · · · · ·
12:15 Slug out	
and an experiment of the second s	
12:35 IV site	
······	
aily Weather Conditions: A.M. <u>Summ</u>	4 50°
P.M	\wedge

PROJECT NAME: SUSPECTED MUSTRAD AGENT BURIAL SITE

Date (mm/dd/yy): <u>1-13-0Le</u> Su M Tu V Taşk Team Members:	/ ThFBa	PAGE	OF
Chavelle Carron			
Gith Pietrzak			

Narrative (include time and location):

11:07 Cervice and set up a MBS-05 Bogin purging well D.T.W. 17.66, Distance & Bottom - 29.9 11:18 Manade in meder -F7.65 160 ml/minute Take sample for thirdigly col and dup. Sample 1153 MB3mw-005-0017-qw MBJmw -005-0018- 9w (dup) Finish Sample, Clean up/decon equipme 1202 So to next well location OU Daily Weather Conditions: A.M. Summy -P. clouds, Quard Dreey, Warm 50°F. Jull QA Checked By QC Bule Recorded B

HTRW DRILLING LOG	DISTRICT: LOUISVILLE	HOLE NUMBER			
1. COMPANY NAME:	2. DRILL SUBCONTRACTOR:	SHEET LOF			
SpecPro Inc.	TTL, Inc.				
3. PROJECT: Suspected MBS (RVAAP-28)	4. LOCATION: RVAAP-28				
5. NAME OF DRILLER: Chris White	6. MANUFACTURERS DESIGNATION OF DRILL: CME	45 (ATV)			
7. SIZES AND TYPES OF DRILLING AND SAMPLING EQUIPMENT	8. HOLE LOCATION: MBS-005				
Subsurface Instruments Borehole Gradiomet	er (BHG-1) 9. SURFACE ELEVATION:				
used for UXO readings 0 to 12'. Drilling eq.	uigment	(5:45 ETED: 10/27/05			
checked for CWA using M256 chemical deter First groundwater. Readings for CWA pape	CAUSE AND A TESTARIED IN DATE CONFLICT	ered: 10/27/05			
12. OVERBURDEN THICKNESS Positive = + or co	blor change 15. DEPTH GROUNDWATER ENCOUNTERED:				
13. DEPTH DRILLED INTO ROCK	16. DEPTH TO WATER AND ELAPSED TIME AFTER DRILLING	COMPLETED:			
14. TOTAL DEPTH OF HOLE 28 bgs.	17. OTHER WATER LEVEL MEASUREMENTS (SPECIFY):				
18. GEOTECHNICAL SAMPLES DISTURBED	Sheller tube I 19. TOTAL NUMBER OF CORE BOXES N/A	L			
20. SAMPLES FOR CHEMICAL ANALYSIS VOC	METALS OTHER (SPECIFY) OTHER (SPECIFY) OTHER (SPECIFY) 2 gative (See column G of boring log)) 21. TOTAL CORE RECOVERY %			
		The second s			
	NTORING WELL OTHER (SPECIFY) 23. SIGNATURE OF INSPECTOR				
LOCATION SKETCH/COMMENTS	SCALE: N.T.				
COB					
MBS	In Pro-				
	NBS 005				
	MBS-001				
MBS- OOH	MBS-000				
		+-+-+-			
	╅╋╧	+++++			
$\left \begin{array}{c} \\ \\ \end{array} \right \left \left \left \begin{array}{c} \\ \\ \end{array} \right \left \left \left \left \begin{array}{c} \\ \\ \end{array} \right \left \left $	┼┼┼┼┼┼┼┼┼	+-+-+-+-			
$\left \begin{array}{c} \\ \end{array} \right \\ \left \left \begin{array}{c} \\ \end{array} \right \\ \left $	┼┼┼┼┼┼┼┼┼┼				
	╅╋╧				
$\left \begin{array}{c} \\ \\ \end{array} \right \\ \left \begin{array}{c} \\ \\ \\ \end{array} \right \\ \left \begin{array}{c} \\ \\ \end{array} \right \\ \left \begin{array}{c} \\ \\ \end{array} \right \\ \left \begin{array}{c} \\ \\ \end{array} \right \\ \left \left \begin{array}{c} \\ \\ \end{array} \right \\ \left $	╷╷╷╷╷╷╷╷╷╷╷				
	╶┨╶┨╶┨╶┨╶┨╶┨				
	╶┨╶┨╶┨╶┨╶┨╶┨╶┨╶┨╶┨				

		HTRV	<u>N DRILL</u>	ING LOG			and the second se	NUMBER MB	<u>5-00</u>
ROJECT	T: RVAA	P AOC-28	1	SPECTOR A	Brillinge	<u> </u>		T 2. OF 4	-
ELEV. (A)	DEPTH (B)	DESCRIPTION OF MATER (C)	IALS	SCREENING RESULTS	SAMPLE ORTCORE BOX	ANALYTICAL SAMPLE NO. (F)	R	EMARKS (G)	
	_	Top 0.2 - leaves	routs	0.0	2-2-4-6		Gradion	eter =	
		01 3. 00	ehris				0.7 c	G.5	
		ket 1.6- Brand Ja	P. 44				0.7 0	2'	
	コ	1.6 - Brown and gr mottled silty CL	AMWI				_		
		f.m SAND (TI	~ \ ~ \						
			~)						
	—								
	=	,							
	2	REC= 1.8' _ (<u>15:55)</u>		1 ~ ~ .	h	- Ngay - 100au	and the second distance of the second	
				0.0	2-5-6-7		Grad.=	0.7	
		Brown & gray	(mottine ()						
		silty CLAY WI	f-m						
	Ξ	SAND (TILL)	damp	*					
	3								
	_								
			(
	4	REC= 1.6 _ (Barran - 10000 - 1000000- 100000- 10000	
		Brown : gray (m	ottled)	0.0	4-5-8.10		Grad=	0.7	
		Brown : gray (m Silty CLAY wi	f-m						
		SAND (+ill)							
	5								
		·							
		- All							
		251-10	(16:03)						
	6	REC= 1.7	مسه ہیں آھر۔						
		Brown ; or. brou		0.0	4-8.11-12		Grad	= 0.7	
		CLAY, Some SILT			ě.				
		Brown silt layer							
]	7.7 to 7.8' bgs							
			Ž1						
	=								
				S. W. S.			1.00		
	=	REL= 2.0	16:12				2		
	*		Silver	10.0	4-6-8.12		[Gra.	l= 1.3	~ ^
		Brown clayey	2101				BKG=		
		SILLY CLAY S	omp					- -	
		or-br silt'se	ams d				TID (SI	poon) wet	
	' ∃				1		LWA p	no color	
]	9 A.			-			hange	
								0	
	APPE	PREB-2.0 (1	6:25)	29)			, 13 	A. C.
	10	«.v [[w . en . 1			<u> </u>			

		HTRW DRI	LLING LOG			HOLE NUMBER MBS-0
PROJEC	T: RVAAF	? Aoc- 28	INSPECTOR	11 Brillin		SHEET 3 OF 4
ELEV. (A)	DEPTH (B)	DESCRIPTION OF MATERIALS (C)	PI READSPACE SCREENING RESULTS	AB SAMPLE OR-CORE BOX	ANALYTICAL SAMPLE NO. (F)	REMARKS (G)
		(plastic)	0.0	2-3.4-6		Gradioneter = 0.2 milligauss
		REC= 2.0 (16:35)				
		Top 1.5 · Gray CLAY WI SILT	0.0	2-4-5-6		
		Bottom 0.4. Gray wet SILT, some CLAY				
		RECE 1.9 (16:50 Gray CLAYWI Silt, wet) 	2-3-4-5		finish for day 10-26-05 17:00 ARS FIRST SAMPLE 10-27-0 depth to water in borehole = 10.2'
			N.			bgs.
		REC= 2.0 (08:41) Gray, plastic	0.0	2. WOH-		CWA paper =
		CLAY, wet		2-3		neg. read (no color charge)
		REC= 2.0 (08:55))			
		Gray, plastic CLAY		1-2.3.2		
	19				A.	
	 APP E 20	NDIX B REL 220 (9:03)) 30			

NM

		HTRW DRIL	LING LOG			HOLE NUMBER MBS-0
PROJECT	RVAP		INSPECTOR A	Brillinge	- <u>1</u>	SHEET 3 OF
ELEV. (A)	DEPTH (B)	DESCRIPTION OF MATERIALS (C)	HEADSPACE SCREENING RESULTS	GEOTECH SAMPLE OR CORE BOX	ANALYTICAL SAMPLE NO. (F)	REMARKS (G)
	21	Gray plastic CLAY e tip of shelby tube	0.0	shelby tube- 2'e 450psi	,	Shelby-tube a 20-22' matil Heaving sand AD 3' into augers while augering to 20' CWA paper = neg.read (no color change)
		REC=1.5 TUP 1' Gray plastic CLAY, wet Botton 0.2 - Gray - med.cse SAND (wel) REC=1.2' (91:35)	0.0	WO4.7-6-3	P	
	24 25 26	NO RELOVERY (9:45)	6.0	shelby tube 5" push		CWApaper = neg. read (no color change)
	27	TOP!'= Gray f-cse SAND, some SILT Wet Bottom 0.2'= hand gray v. fine SAND/SILT (10:02) REC=1.2' (9:56)AU E.O.B.C 28' E.O.B.C 28'	0.0	5-12-14-12		GWA papar- neg. read (no color change)
		NDIX B	31			

MONITORING WELL INSTALLATION LOG

PROJECT NAME: Suspected Mustard Agent Burial Site

AB ABS AD 5
MONITORING WELL ID: MBS-005
INSTALLATION START: DATE: 10/27/05 TIME: 10:10
INSTALLATION FINISH: DATE: 10 27 65 TIME: 15:45
ANNULAR SPACE MATERIALS INVENTORY:
Global Filter Pack GRANULAR FILTER PACK: TYPE: <u>NSF 50-16 bag</u> QUANTITY: <u>10</u>
BENTONITE SEAL: TYPE: Bestonite chips QUANTITY:
GROUT: TYPE: (Type ! portland) QUANTITY: <u>70 gallers</u>
DESCRIPTION OF WELL SCREEN:
SLOT SIZE (inches): 0.01 SLOT CONFIGURATION: machine slot
OUTSIDE DIAMETER: 2.375" NOMINAL INSIDE DIAMETER: 2.067"
SCHEDULE/THICKNESS: SCH 40 COMPOSITION: PVE
MANUFACTURER: Johnson
TYPE OF MATERIAL BETWEEN BOTTOM OF BORING AND SCREEN:
DESCRIPTION OF WELL CASING:
OUTSIDE DIAMETER: 2.375" NOMINAL INSIDE DIAMETER: 2.067
SCHEDULE/THICKNESS: SCH 40 COMPOSITION: PVC
MANUFACTURER: Johnson
JOINT DESIGN AND COMPOSITION: <u>flush thread</u> w/ 'O" ring
CENTRALIZERS DESIGN AND COMPOSITION:
DESCRIPTION OF PROTECTIVE CASING:
NOMINAL INSIDE DIAMETER: <u>6</u> COMPOSITION: <u>Steel</u>
SPECIAL PROBLEMS ENCOUNTERED DURING WELL CONSTRUCTION AND THEIR RESOLUTION:
Heaving sand inside anger a 28 bgs. Reauger hole from
20-28'.

Was all well screen and casing material used for construction free of foreign matter (e.g. adhesive tape, labels, soil, grease, etc.)? YES [X] NO []

Was all well screen and casing material used for construction free of unsecured couplings, ruptures, and other physical breakage and/or defects? YES [>] NO []

Is deformation or bending of the installed well screen and casing minimized to the point of allowing the insertion and retrieval of a 1.0-inch bailer throughout the entire length of the complete well? YES [] NO []

QUANTITY OF APPROVED WATER USED FOR FILTER PACK	EMPLACEMENT:
RECORDED BY: <u>(Signature and Date</u>)	QA CHECK BY:

Well Volume Calculation Sheet

Date: <u>11/2/05</u> Time: <u>14:00</u>	
Well ID: <u>MBS-005</u>	
Well Location:RVAAP-28	
Total Depth of Well (ft BTOC) <u>30</u> Depth to Water (ft BTOC) <u>16.95</u> Height of water column (ft) (Hc) <u>13.05</u>	
Well Volume Calculation:	
Vc = $3.142(Rc^2)^*Hc$ cu. ft.	
Vf=3.142[(Rf²)-(Ro²)]*(Hc or length of screen)*(0.30) **Note** use length of screen if Hc>length of screen ==	n
Vt = (Vc+Vf)*(7.48 gal/cu. ft.)	
$= 9.06$ gal. $\sqrt{5} = 45.3$	
Where:	
Vc = Volume of casing (ft^3) Vf = Volume of filter pack (ft^3)	
Vt = Total Volume	
Ro = Outside radius of casing (0.10 ft)	
Hc = Height of water column 13.65 (ft)	
Rf = Radius of filter pack (0.33 ft) C_{1}^{2}	

- Radius of filter pack (0.33 ft) 2^{2} o 2^{2} Ħ Rc =

WELL DEVELOPMENT FORM

÷.,

PROJECT NAME: Suspected Mustard Agent Burial Site

Date: <u>// /2 /</u>	05
Well Number and Lo	cation: <u>MBS-005</u> RVAAP-28
Development Crew:	Al Brillingen
Driller (if applicable):	· · · · · · · · · · · · · · · · · · ·
Water Levels/Time:	AB Initial: <u>16.95/14:00</u> Pumping: <u>18.35/16:20</u> Final: <u>18.35/16:20</u>
Total Well Depth:	Initial: <u>26.2</u> Ft BTOC Final: <u>30.00</u> Ft BTOC
Date and Time:	Begin: 11/2/05/14:00 Completed: 11/2/05/16:20
Development Method	d(s): <u>Lailer</u>

Total Quantity of Water Removed: 45 gals

FIELD MEASUREMENT	SERIAL NUMBER	DATE OF LAST CALIBRATION
Temperature	Horiba U-10 605007	10/31/05
Specific Conductivity	11	4
рН	LI	21
Turbidity	17	2

3								SS	.25	S	8.25	1	5	25	 	-	_
								01 18	18.22	DTW= 18.25	1=14	2 3 12 M2 4	DTW= 18.25	DTW= 18.25			2-1-05
	OF	COMMENTS	10.55	10.17	10.17	10.11	10.12	D0=9.70	P.P =00	D0=9.96	00.01 = 0.0	Do = 10.10	Do= 10.11	Do5 10.13		<	Signature and Date)
B	PAGE	WELL VOLUMES REMOVED	5	3.5	4.0	4.5	5.0									<	Signal
	_	TOTAL GALLONS REMOVED	27	31.5	36.0	40.5	45.0	0.25	0.50	5 1 .0	۲. ۵	1.125	1.25	1.375		ζ	KBY (W
		TURBIDITY	136 AG	461	470	516	497	7999	२ववन	7 999	>999	7 999	7959	>999			QA CHECK BY
		pH (Standard Units)	19.2	7.50	34.6	7.51	7.52	7.67	7.52	7:57	7.52	7.55	7.57	7.57			
	MB5-005	SPECIFIC CONDUCTIVITY (µMHOS/CM)	ю. ЧТЧ	0.468	194.0	0.463	0.464	0.615	0,589	6.569	0.552	0.541	0.540	0.539			- 11 B-05
		TEMP (C)	10.2	9,9	9.9	0.01	10.0	ю.ч	10.4	10.4	١٥.٢	10.4	10.4	10.4			Le Bull Signature and Date
	WELL NUMBER AND LOCATION:	GALLONS REMOVED	57	1.N	Ч.5	4.5	4.5	6.2 S	0.25	52.0	0.25	0.125	@.125	0.125			G
	UMBER	TIME	15:20	15:40	15:55	16:05	16:20	02:01	62:0	10:26	10:29	10:31	10:33	10:35			DED BY:
	WELL N	DATE	11/2/05					11-8-05									RECORDED BY:
APF	PENDI	(B	0ª	10/0	,Q				366	101	k			J			

WELL PURGE RECORD

PROJECT NAME: Suspected Mustard Agent Burial Site

			17.45 D.T.W.			1.			10					
			17.6S		5971	17.65			17.65					
	OF	COMMENTS	Flov 160											ຂ∣ເລໄວ e and Date)
SITE	PAGE 0	TURBIDITY (NTU)	7589	7 999	83/	her	Och	320	256					Signatur
NT BURIAL	Ч	DISSOLVED OXYGEN (mg/L)	2.48	ትት ⁻	00-	°~,	CI.	. 08	.07					QA CHECK BY: <u>Of Bullin</u> 211310 (Signature and Date)
PROJECT NAME: SUSPECTED MUSTARD AGENT BURIAL SITE		SPECIFIC CONDUCTIVITY (µMHOS/CM)	0.95	9 9.4	97.0	Re.4	920	93,2	51.9					QA CHECK
SPECTED N		TEMP (C)	ي،10	10.4	10.y	10.4	10.4	60.Y	w'd					216
NAME: SU	M05-05	pH (Standard Units)	7.18	7.+3	7.15	7.15	7.16	7.16	7.16					1-13
PROJECT		TOTAL GALLONS REMOVED		. 25	œ.	56.	1.0	1.25	1.40					(Signature and Date)
	WELL NUMBER AND LOCATION:	GALLONS REMOVED	2. tim	.25	125	.25	.25	:25	.15				00	×
	UMBER	TIME	11:18	11:24	11:29	11:37	11:43	11:48	11:52					DED BY
	WELL N	DATE	1-13-06											RECORDED BY:

APPENDIX B

WELL PURGE and DEVELOPMENT RECORD

Date (mm/dd/yy): <u>10-24-05</u> Su (M)Tu W Task Team Members:	Th F Sa PAGE	OF
Al Brillinger	Guy Jacks	on (TTL, INC)
Bob Fay (ISSI, Inc)		
Chris White (TTL, Inc.)		· · · · · · · · · · · · · · · · · · ·
Narrative (include time and location):		
10:00 Bob Fay on site		
	(
take 1,00 500	gallon tank to	NACA Test Area
12:30 Viets on site to		
13:05 Safety meeting a 1	•	
14:00 Scope out acces		
-drillers service to	-sck broke d	own an
AB Gleo Greenleaf R		
- drillers fix truck		
area	- 	
17:12 Drillers off site		1999 (1997) - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -
Daily Weather Conditioner MD Bain	45°	
Daily Weather Conditions: A.M. Kain	, USO	
P.M. Rain		-t(h)
Recorded By Ul Dully		Jon the and

Date (mm/dd/yy): <u>10-25-05</u> Su M Tu W Th F Sa PAGEOF Task Team Members:
Al Brillinger Guy Jackson (TTL, Inc)
Bob Fay (ISSI, Inc.)
Chris White (TTL, Inc)
Narrative (include time and location):
07:30 Tailgate H! S meeting
- drillers to fix service truck ? load drums on rig
0930 move to site
10:00 Rig stuck in mud on south access trail
- need to call dozen for rig inspection
- Falkenberg Excavating due on site w/ dongen :
operator in pm. Falkenberg 330-626-4215
14:30 Falkenberg on site w/ Terex 8220 dozen
15:30 move rig to site setup on MBS-006
Drill ! sample to 16 @ MBS-006
Bob Fan check downhole ul gradiometer -
acl reading indicate no UXO
17:00 finish, move off site for the day
Daily Weather Conditions: A.M. Rain 40°
P.M. Rain 450 A Ann A
P.M. <u>Rein 450</u> Recorded By <u>Al Bullin</u> QA Checked By <u>Mandel and</u>

PROJECT NAME: SUSPECTED MUSTRAD AGENT BURIAL SITE

Date (mm/dd/yy): 10/26/05 Su M Tu A Th F Sa PAGE____OF Task Team Members: Al Brillinger Guy Jackson (TTL, Inc) Bob Fay (ISSI, Inc.) Chris White (TTL. Inc.) Narrative (include time and location): H: S tailgate mtg 07:30 8:30 @ MBS-006 site, begin augering C 16' - site v. wet : muddy - attempt shelby tube 22'-24' - no recovery - shelby tube 24-26' - 4" recovery 10:30 finish drilling to 28' bgs - will set well to depth a 28' (Paul Zorko on site) 12:00 finish grouting MBS-006 off site for lunch 12:40 Bob Fay of ISSI, Inc checked bore hole every 2' un o to 10 bas w/ gradiometer. Readings e MBS-006 indicated no UXO. He also checked drill pipe upon contact w/ formation water using Chemical Wanfare Agent detector paper. All readings were negative - no CWA present. Daily Weather Conditions: A.M. <u>Cloudy</u> 40° P.M. ling , QA Checked By

Recorded By

PROJECT NAME: SUSPECTED MUSTRAD AGENT BURIAL SITE

Date (mm/dd/yy): <u>11 /02 /05</u> Su M Tu (W) Th F Sa PAGE____ OF ____ Task Team Members:

Al Brillinger____

Narrative (include time and location):

Hauling supplies : equip. from NACA site 10:30 to MBS-006 : MB3-005 for well development, 11:00 begin development of MBS-006 by bailer 13:30 finish development of MBS-006. 45 gallons of water removed. PH Temp. Spec. Cond., D.O. Stabilized 3x during development. 13:50 more to MBS-005 5° ' Daily Weather Conditions: A.M. <u>Sunny</u> 50° P.M. Recorded By <u>Al Bulling</u> QA Checked By har

TASK TEAM ACTIVITY LOG SHEET
PROJECT NAME: SUSPECTED MUSTRAD AGENT BURIAL SITE
Date (mm/dd/yy): 1103/05 Su M Tu W Th F Sa PAGEOF Task Team Members:
<u>Al Brillinger</u> <u>Chantelle Carroll</u>
Narrative (include time and location): 14:50 Set up on MBS-006
Sample # MBSmw-,000-012-gw MS/MSD
MBSmw-0060012 gf Pest PCB, Expl., Prop. SVOC, VOC, CN, TAL metals thiodighycol, 1.4-dithiane, 1.4-oxythiane 14:55 begin purging 15:15 begin sampling 15:20 Finish sampling dewn-move off site for the day
Daily Weather Conditions: A.M P.M 55° Recorded By Al Bulling, QA Checked By Month and

	Al Brillinger
•	nclude time and location):
10:4	10 on site MBS-006 to perform
- <u></u>	slug test.
	DTW = 17.54
/	
AB 4	15 perform slug in test
si .	
AB 12	35 perform slig out test
	plandring with the
a desense an uman	
Daily Weath	ner Conditions: A.M. <u>Sunvu</u> 50°

PROJECT NAME: SUSPECTED MUSTRAD AGENT BURIAL SITE

Date (mm/dd/yy): 1-13-06 Su M Tu W Th Esa PAGE OF Task Team Members: andlo (acro 11 ietrzak

Narrative (include time and location):

12:03 Johns on MBS-004 an ering 12:11 Bo D.T.W - 17. 10; D.T.B. 28.09, Flow rate 228 m/min ms. 12:47 pr thirdigylco/ and MS/MJD PU. 1 MB 5 mw - 006-019 - ms/ms A MBSmw-006aω upldecon Sample, cl an 13:02 10cation well 02) Ner 14 rain, Warm 50:55 'F Daily Weather Conditions: A.M.

P. clouds, threating rain, Warm Recorded By

HTRW DRILLING LOG	DISTRICT:	HOLE NUMBER MBS-006	
1. COMPANY NAME: Spec Pro, Inc.	2. DRILL SUBCONTRACTOR: TTL, Inc.	SHEET 1 OF 4	
3. PROJECT: Suspected Mustand Agent B			
5. NAME OF DRILLER: Chris White	6. MANUFACTURERS DESIGNATION OF DRILL: CME	45 (ATV)	
7. SIZES AND TYPES OF DRILLING 474 HSA 2".	B. HOLE LOCATION: MBS-006		
Subsurface Instruments Borehole Gadiom	ter (BHG.I) a SUBFACE ELEVATION	*****	
Used for UXO readings 0 to 12'. Drilling equi for CWA using M256 chemical detector kille fi	st ground. 10 DATE STARTED 15:30 11 DATE COMPLY	09:44	
water. Readings for CWA paper; neg = OK; po	sitive= 10.25.05	69:44 ETED: 10/26/05	
12. OVERBURDEN THICKNESS tor ac	****		
13. DEPTH DRILLED INTO ROCK	16. DEPTH TO WATER AND ELAPSED TIME AFTER DRILLING	hrs,	
14. TOTAL DEPTH OF HOLE	17. OTHER WATER LEVEL MEASUREMENTS (SPECIFY):		
18. GEOTECHNICAL SAMPLES DISTURBED	UNDISTURBED 19. TOTAL NUMBER OF CORE BOXES \mathcal{N}/A		
20. SAMPLES FOR CHEMICAL ANALYSIS VOC All readings for UXO; CWA were	etals other (specify) other (specify) other (specify) other (specify) negative (see column a of boring log	21. TOTAL CORE RECOVERY %	
	SRING WELL OTHER (SPECIFY) 23. SONATURE OPTINSPECTOR	1.0	
LOCATION SKETCH/COMMENTS	SCALE: N.T.S		
			
$ \begin{tabular}{cccccccccccccccccccccccccccccccccccc$		+ $+$ $+$ $+$ $-$	
	MBS-002		
M35-003	Master		
		↓↓↓	
	MBS 006		
HBS- COH			
	-+-+-+-+-+-+-+-+-+	┼─┼─┼──	
┝╌┼╶╂╶╂╌┨╴╉		+ + + + + + + + + + + + + + + + + + +	
┝╾┼╶╂╌╂╌╂╌╂╶╂╴╉╴╉	╶┼┼┼┼┼╎╎╎		
┝─┼─╂─╂─╂─╂─╂─╂─╂─╂─╂─╂			
┝─┼─╂╶╂╶╂╶╂╶╂╶╂╴╂╴╂╴╂╴			

		HTRW DRILL	NG LOG			НО	LE NUMBER MBS-C	26
PROJEC	T: Susa		SPECTOR A	1 Brillin	ser	SH	EET 2 OF 4	٦
ELEV. (A)	DEPTH (B)	DESCRIPTION OF MATERIALS (C)	SCREENING AB RESULTS	Blow County	OANAL VTICAL		REMARKS (G)	1
		Brown : gray (mottled) Silty fine Sand to Silty sandy CLAY (TILL)	0.0	1-1-2-7		Gradio	meter rdg = (3.2 milliganse	
	2	Rec= 2.0' Brown and gray (mottled) sifty CLAY, with v. fine Sand (Till)	0.0	3.4.59		Grad (3.	= neg 2)	
	4	Brown : gray (mottled silty CLAY with very fine Sand (till) (REC=2.0)	0.0	3.4-6-10		Grad. (no	= 0.6 2g.)	
		Brown & gray (mottle CLAY, with orange. brown silty clay seams REC = 2.0	0.0	4-8-10-15		Grad	= 1.6	
	9 9 APPE	TOP 1.2': Brown & gray (mottled) CLAY, with orange-brown silty clay seams Bottom 0.8': Gray plastic CLAY, some silt NELXB REC= 20' (14:25 hrs)	<u>0.0</u> 46	7-9-11-13		Grad	. = 1.4/1.3	

	/ 11/11/2/5/11/ 2020/2/2/2/2/2/2/2	HTRW DRILL	INGLOG			HOLE NUMBER MBS-C	~d6
PROJECT	T: Suspec		NSPECTOR A	1 Brillinge	4	SHEET 🏞 OF 4	
ELEV. (A)	DEPTH (B)	DESCRIPTION OF MATERIALS (C)	SCREENING RESULTS	AB GEOTECH SAMPLE OR CORE BOX	ANALYTICAL SAMPLE NO. (F)	REMARKS (G)	
	=	Gray CLAY, some Silt, trace V. fine Sand	0.0	SPT Brow counts 2-4-5-6		Grad. = 1.5	
		REC=2.0' Gray CLAY, trace Sitt	0.0	2.3.5.7			
		(REC= 2.0')	0.0				
		Gray CLAY, plastic, trace sift Clay becomes damp C 16.5'				6	
		(Rec = 2.0') (17:00 hrs) TOP 1.7': Gray CLAY, as above Bottom 0.3': Brown, wet	0.0	WOH-WOH. 13-18		nd drilling for the day (10/259) c 17:00 hc check drill pipe ul CWA paper: eg. read, no color change - no indication of	
		fine to coarse angulan to subangulan SAND, with gravel, some sitt (Rec= 2.0') (08:45 hrs)			5	Indication of CWA Segin drilling 10/26/05)
		TOP 0.8: Brown, wet fine to coarse SAND, with gravel Bottom 0.7: Gray clayey Silt, silty CLAY with fine to medium SAND	0.0	8-8-5-8			
	APPE 20	DIX B Rec=1.5') (08:55 hrs)	47				

		HTRW DRILL	INGLOG			HOLE NUMBER MBS-006
PROJECT	T:SUSPE		-	Brilling	er	SHEET 4 OF 4
ELEV. (A)	DEPTH (B)		SCREENING RESULTS		ANALYTICAL SAMPLE NO. (F)	REMARKS (G)
	21	Brown, wet, fine to Medium SAND, fine Sand content increases with depth	0.0	SPT Blow COUNTS 3-4-6-13		CWA paper = neg.read (no color change)
	22	(Rec=2.0') (09:08 hrs)	0.0		Shelby tube	Sheiby Fube push ~ 10" C 900 psi
	23	No Recovery				CWA paper = neg. read (no color change)
	24	REC = NR	0.0	~ ~ ~ -	Shelby tube	Shelby fube push ≈ 18" e 1,000 psi
	25					CWA paper= neg. read (no color change)
	26	Rec = 4" Gran medium to very fine SAND, fine % increases with depth	0.0	8-8-18- 12		
	28	(Rec= 1.6') (09:44 mrs)				End of boring (2 28' bgs
	29					
	APPE	NDIX B	48			

MONITORING WELL INSTALLATION LOG

PROJECT NAME: Suspected Mustard Agent Burial Site

MONITORING WELL ID: MBS-006					
INSTALLATION START: DATE: 10/26/05 TIME: 10:30					
INSTALLATION FINISH: DATE: 10/26/05 TIME: 12:00					
ANNULAR SPACE MATERIALS INVENTORY: Global Filter Pack					
GRANULAR FILTER PACK: TYPE: NSF 30-16 bag QUANTITY: 6					
BENTONITE SEAL: TYPE: <u>94-16 bay</u> QUANTITY: <u>12 bag</u>					
GROUT: TYPE: <u>TYPE I portland</u> QUANTITY: <u>60 gallens</u>					
DESCRIPTION OF WELL SCREEN:					
SLOT SIZE (inches): SLOT CONFIGURATION: Achine slot					
OUTSIDE DIAMETER: 2.315" NOMINAL INSIDE DIAMETER: 2.067"					
SCHEDULE/THICKNESS: 40 COMPOSITION: PVC					
MANUFACTURER: Johnson					
TYPE OF MATERIAL BETWEEN BOTTOM OF BORING AND SCREEN: <u>filter pack sand</u>					
DESCRIPTION OF WELL CASING:					
OUTSIDE DIAMETER: 2.375" NOMINAL INSIDE DIAMETER: 2.067					
SCHEDULE/THICKNESS: SCH 40 COMPOSITION: PVC					
MANUFACTURER: Johnson					
JOINT DESIGN AND COMPOSITION: <u>flush thread w["o" ring</u>					
CENTRALIZERS DESIGN AND COMPOSITION:NIA					
DESCRIPTION OF PROTECTIVE CASING:					
NOMINAL INSIDE DIAMETER: 6" COMPOSITION: Steel					
SPECIAL PROBLEMS ENCOUNTERED DURING WELL CONSTRUCTION AND THEIR RESOLUTION:					
None					
Was all well screen and casing material used for construction free of foreign matter (e.g. adhesive tape, labels, soil, grease, etc.)? YES [X] NO []					
Was all well screen and casing material used for construction free of unsecured couplings, ruptures, and other physical breakage and/or defects? YES [χ] NO []					
Is deformation or bending of the installed well screen and casing minimized to the point of allowing the insertion and retrieval of a 1.0-inch bailer throughout the entire length of the complete well? YES [γ] NO []					
RECORDED BY: (Signature and Date) QA CHECK BY: (Signature and Date) (2-1-05)					

Well Volume Calculation Sheet

Date:	11/02/05	Time: <u>11:00</u>
Well ID:	MBS	-006
Well Loca	ation:	RVAAP-28
Depth to	Water (ft B	(ft BTOC) <u>30.00</u> NTOC) <u>17.65</u> Imn (ft) (Hc) <u>12.35</u>
Well Volu	ime Calcul	ation: (0.006599)
Vo	; =	$3.142(Rc^2)^*Hc$ <u>0.267</u> cu. ft.
Vf	~ =	3.142[(Rf ²)-(Ro ²)]*(Hc or length of screen)*(0.30) **Note** use length of screen if Hc>length of screen
	<u></u>	<u>0.93</u> cu. ft. (3.142)(0.0989)(10)(.3)= 0.93
Vt	=	(Vc+Vf)*(7.48 gal/cu. ft.) = (0.267+0.93)(7.48).~
	=	<u>8.97</u> gal. x 5= 44,85 gallons
Where:		

Vc	=	Volume of casing (ft ³)	
Vf		Volume of filter pack (ft ³)	
Vt	=	Total Volume	
Ro	=	Outside radius of casing (0.10 ft) $R_{o}^{2} = o \cdot o I$	
Hc		Height of water column (ft)	
Rf		Radius of filter pack (0.33 ft) $BS^2 = O.1089$	
Rc	=	Radius of inside casing (0.083 ft)	
Rc ²	11	0.006889	

Ć:

APPENDIX B
WELL DEVELOPMENT FORM

PROJECT NAME: Suspected Mustard Agent Burial Site

Date: // /02 /	05
Well Number and Loc	cation: MBS-006 c RVAAP-28
Development Crew:	Al Brillingen
Driller (if applicable):	
Water Levels/Time:	Initial: <u>17.65/ //:oo</u> Pumping:/ Final: <u>17.70 / /3:30</u>
Total Well Depth:	Initial: <u>27.45</u> Ft BTOC Final: <u>28,1</u> Ft BTOC
Date and Time:	Begin: 11/02/07 11:10 Completed: 11/2/05 / 13:30
Development Method	(s): <u>bailer</u>

Total Quantity of Water Removed: ________gals

FIELD MEASUREMENT	SERIAL NUMBER	DATE OF LAST CALIBRATION
Temperature	Horiba U-10 605007	10/31/05
Specific Conductivity	\$/	٤,
рН	÷,);
Turbidity	/,	47

							භ	۱۸ ا	22	17.75	1.75		7.75					
		S	ms/l	>			DIW= 17.8	DTW= n.75	STIT-WID O	-mid	2 DINE 17.75	د	1-MIC 0				12-1-05	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
	OF	COMMENTS	1148	10.79	10.01	10.67	D.01.10.90	Do = 10.83	70=10.70	00- 10.53	D0= 10.58	D0210.54	Do= 10.50) (
te	PAGE	WELL VOLUMES REMOVED	3.S	4.0	4.5	ы С										<	Acust Di (Signe	
nt Burial Si		TOTAL GALLONS REMOVED	31,5	36	40.5	45	0.25	0.50	21.0	9	1.25	1.375	[]			(
ustard Age		TURBIDITY	366	كووم	7999	2999	109	826	563	396	115	226	901				QA CHECK BY	
spected M		pH (Standard Units)	7.10	7.54	1.60	1.61	7.85	8.19	0.22	8.01	7.84	7.80	7.78					
PROJECT NAME: Suspected Mustard Agent Burial Site	900	SPECIFIC CONDUCTIVITY (µMHOS/CM)	molem ILH.0	0.440	0,450	0,451	0.465	1110.0	914.0	0.429	0.438	0.439	0.440		· · · · · · · · · · · · · · · · · · ·		50-2-11	
PROJ	001: M.BS-006	TEMP (C)	1.1 10.C	10.7	10.4	10.4	11.0	11.0	10.9	<u>ا</u> 0.و	10.8	L.01	10.7				Bull Signature and Pate))
	WELL NUMBER AND LOCATION:	GALLONS REMOVED	31.5	4.5	4.5	Ч.5	0.25	0.2.5	0.25	0.25	0.25	0.125	0.125				B	
	IUMBER	TIME	12:55	3:08	13:20	(3:30	14:58	15:01	15:04	15:07	15:10	15:12	וציוע				RECORDED BY:	
	WELL N	DATE	112105				11-25		a gan na Artin ya Artin ya Kara								RECOR	
APP	PENDIX	ĞΒ		Deve					532						·			

WELL PURGE RECORD & DEVELOPMENT

APPENDIX C

SLUG TEST RESULTS

THIS PAGE INTENTIONALLY LEFT BLANK

WELL ID: MBSmw-005

K= 0.00034 is less than likely minimum of 0.00106 for Fine Sand

Bouwer and Rice analysis of slug test, WRR 1976

REMARKS:

	Reduced Data	
	Time,	Water
Entry	Hr:Min:Sec	Level
1 2	0:00:00.0 0:00:03.0	9.37 9.28
3	0:00:06.0	9.22
4	0:00:09.0 0:00:12.0	9.17
5 6	0:00:12.0	9.14 9.11
7	0:00:18.0	9.09
8	0:00:21.0	9.08
9	0:00:24.0	9.08
10 11	0:00:27.0 0:00:30.0	9.07 9.07
12	0:00:30.0	9.07
13	0:00:36.0	9.06
14	0:00:39.0	9.06
15	0:00:42.0	9.06
16	0:00:45.0	9.06
17	0:00:48.0	9.06
18	0:00:51.0	9.06
19 20	0:00:54.0 0:00:57.0	9.06 9.06
20	0:01:00.0	9.06
22	0:01:03.0	9.06
23	0:01:06.0	9.06
24	0:01:09.0	9.06
25	0:01:12.0	9.06
26	0:01:15.0	9.06
27	0:01:18.0	9.06
28 29	0:01:21.0 0:01:24.0	9.05 9.05
30	0:01:27.0	9.06
31	0:01:30.0	9.06
32	0:01:33.0	9.06
33	0:01:36.0	9.06
34	0:01:39.0	9.06
35	0:01:42.0	9.06
36 37	0:01:45.0 0:01:48.0	9.06 9.05
38	0:01:51.0	9.05 9.05
39	0:01:54.0	9.05
40	0:01:57.0	9.06
41	0:02:00.0	9.06
42 43	0:02:03.0 0:02:06.0	9.05 9.06
43 44	0:02:08.0	9.06 9.06
45	0:02:12.0	9.06

REMARKS:

Bouwer and Rice analysis of slug test, WRR 1976

	Reduced Data	Watar
	Time,	Water
Entry	Hr:Min:Sec	Level
1	0:00:06.0	8.12
2	0:00:09.0	8.35
3	0:00:12.0	8.53
4	0:00:15.0	8.67
5	0:00:18.0	8.77
6	0:00:21.0	8.85
7	0:00:24.0	8.91
8	0:00:27.0	8.95
9	0:00:30.0	8.98
10	0:00:33.0	9.00
11	0:00:36.0	9.02
12	0:00:39.0	9.03
13	0:00:42.0	9.04
14	0:00:45.0	9.04
15	0:00:48.0	9.05
16	0:00:51.0	9.05
17	0:00:54.0	9.05
18	0:00:57.0	9.05
19	0:01:00.0	9.05
20	0:01:03.0	9.05
21	0:01:06.0	9.06
22	0:01:09.0	9.06
23	0:01:12.0	9.06
24	0:01:15.0	9.06
25	0:01:18.0	9.06
26	0:01:21.0	9.06
27	0:01:24.0	9.06
28	0:01:27.0	9.06
29	0:01:30.0	9.06
30	0:01:33.0	9.06
31	0:01:36.0	9.06
32	0:01:39.0	9.06
33	0:01:42.0	9.06
34	0:01:45.0	9.06
35	0:01:48.0	9.06

WELL ID: MBSmw-006

K= 0.00031 is less than likely minimum of 0.00106 for Fine Sand

Bouwer and Rice analysis of slug test, WRR 1976

REMARKS:

	Reduced Data	
	Time,	Water
Entry	Hr:Min:Sec	Level
1	0:00:00.0	7.13
2	0:00:03.0	7.21
3	0:00:06.0	7.25
4	0:00:09.0	7.28
5	0:00:12.0	7.30
6	0:00:15.0	7.31
7	0:00:18.0	7.32
8	0:00:21.0	7.32
9	0:00:24.0	7.33
10 11	0:00:27.0 0:00:30.0	7.33 7.33
12	0:00:33.0	7.33
13	0:00:35.0	7.33
14	0:00:39.0	7.34
15	0:00:42.0	7.34
16	0:00:45.0	7.34
17	0:00:48.0	7.34
18	0:00:51.0	7.34
19	0:00:54.0	7.34
20	0:00:57.0	7.34
21	0:01:00.0	7.34
22	0:01:03.0	7.34
23	0:01:06.0	7.34
24	0:01:09.0	7.34
25	0:01:12.0	7.34
26	0:01:15.0	7.34
27	0:01:18.0	7.34
28	0:01:21.0	7.34
29	0:01:24.0 0:01:27.0	7.34 7.34
30 31		7.34 7.34
•••	0:01:30.0	
32 33	0:01:33.0 0:01:36.0	7.34 7.34
33 34	0:01:30.0	7.34
35	0:01:42.0	7.34
36	0:01:45.0	7.34
37	0:01:48.0	7.35
38	0:01:51.0	7.35
39	0:01:54.0	7.35
40	0:01:57.0	7.35
41	0:02:00.0	7.35
42	0:02:03.0	7.35
43	0:02:06.0	7.35
44 45	0:02:09.0	7.35
45	0:02:12.0	7.35

APPENDIX D

DATA VERIFICATION/ VALIDATION REPORTS

THIS PAGE INTENTIONALLY LEFT BLANK

DATA VERIFICATION /VALIDATION REPORT PROJECT: RVAAP Mustard Burial Site Prepared by Valarie Mariola of Mariola's Data Validation Services

SDG: A5K090129

The following samples were received at STL North Canton on 11/08/2005 by laboratory transit in acceptable condition for the analysis specified below. Analysis of explosives, nitrocellulose, nitroguanidine, and chemical warfare degradates were performed by STL Sacramento.

Sample Date	Sample ID	QC	VOC	SVOC	EXP	Nitro cellulose	Nitro guanidine	Metals	Pest	PCB	CN	CW- degradates
11/7/05	MBSmw-006-0012-gw		Х	Х	Х	Х	Х		Х	Х	Х	Х
11/7/05	MBSmw-006-0012-gf							Х				
11/8/05	MBSmw-005-0011-gw	FD-1	Х	Х	Х	Х	Х		Х	Х	Х	Х
11/8/05	MBSmw-005-0011-gf	FD-2						Х				
11/8/05	MBSmw-005-0010-gw	OR-1	Х	Х	Х	Х	Х		Х	Х	Х	Х
11/8/05	MBSmw-005-00101-gf	OR-2						Х				
11/8/05	Trip Blank	TB	Х									
11/8/05	MBSmw-001-0006-gw											Х
11/7/05	MBSmw-002-0007-gw											Х
11/7/05	MBSmw-003-0008-gw											Х
11/7/05	MBSmw-004-0009-gw											Х

OR - Original Aliquot of sample, FD - Field Duplicate, TB - Trip Blank , CN - Cyanide

CW degradates - 1,4-oxathiane, 1,4-dithiane, and thiodiglycol

VOLATILES (EPA 8260B)

The following was reviewed and found acceptable:

- Holding times, preservation, sample handling
- Tuning criteria
- Initial Calibration Criteria including SPCC and CCC compounds
- ICV 2nd source and MRL criteria
- CCV criteria
- Internal standard area counts and retention times
- RRT and ion abundance criteria for all quantified compounds
- Manual integration consistent with LCG guidance documents
- Surrogate recoveries
- MS/MSD RPD values
- Field Duplicate RPD values

The method blank contained methylene chloride (2.1 ug/L J). Most of the associated samples in this analytical batch had undetectable levels of methylene chloride. Methylene chloride was detected in the trip blank at a concentration of 2.0 ug/L J. This concentration is within 5x the value found in the blank and has been qualified (B) – found in blank. This concentration is most probable due to contamination affecting the method blank, and to be consistent with ADR software has been further qualified U at the standard reporting limit for methylene chloride.

The trip blank contained methylene chloride (2.0 ug/L JB) and acetone (1.5 ug/L J). All samples in this analytical batch had concentrations within 5x the value found in the trip blank and have been qualified (B) –found in blank. This concentration is most probable due to contamination affecting the trip blank, and to be consistent with ADR software, results for acetone have been further qualified U at the standard reporting limit for acetone.

LCS percent recoveries were outside of laboratory established QC limits for methylene chloride (122%), 1,1,-dichloroethane (83%), bromodichloromethane (82%), trans-1,3-dichloropropene (78%), 4-methyl-2-pentanone (70%), 1,1,2,2-tetrachloroethane (78%), ethylbenzne (85%), styrene (80%), and xylene (84%). All LCS percent recoveries fall within LCG percent recovery levels with the exception of methylene chloride. Positive results associated with this elevated percent recovery have already been qualified estimated (J).

MS/MSD analysis was performed on sample MBSmw-006-0012-GW. Percent recoveries outside of laboratory established QC limits were reported for 1,1,-dichloroethane (87% [88-127%]), 1,1,2-trichloroethane (85% [86-129%]), 4-methyl-2-pentanone (69%,72% [82-135%]), 2-hexanone (70%,73%), 1,1,2,2-tetrachloroethane (80%,82%), styrene (82%, 87%),

SEMI-VOLATILES (EPA 8270C, prep method 3520)

The following was reviewed and found acceptable:

- Holding times, preservation, sample handling
- Tuning criteria
- Initial Calibration criteria including SPCC and CCC compounds
- Initial Calibration verification
- Continuing calibration criteria
- Internal standard area counts and retention times
- RRT and ion abundance criteria for all quantified compounds
- Manual integration consistent with LCG guidance documents
- Surrogate recoveries

The method blank contained bis(2-ethylhexyl)phthalate (1.8 ug/L). All associated samples in this analytical batch had levels of this compounds within 5x the value found in the blank and have been qualified (B) – found in blank. This concentration is most probable due to contamination affecting the method blank, and to be consistent with ADR software results have been further qualified U at the concentration found in the samples.

LCS percent recoveries were outside of laboratory established QC limits for 2,4-dimethylphenol (25%, *[28-109%]*), and hexachlorocylclopentadiene (0% *[10-98%]*). LCS percent recoveries less than 30% and outside of lab control limits requires that all associated sample results for these compounds be qualified rejected (R).

MS/MSD analysis was performed on sample MBSmw-006-0012-GW. Percent recoveries outside of laboratory established QC limits were reported for 2,4-dimethylphenol (24% [28-109%]) and hexachlorocyclopentadiene (0%,0% [10-98%]). All results for these compounds have been previously quantified rejected due to LCS percent recoveries.

PESTICIDES (EPA 8081A, prep method 3520)

The following was reviewed and found acceptable:

- Holding times, preservation, sample handling
- Instrument performance, Breakdown criteria
- Initial Calibration Criteria
- ICV 2nd source and MRL criteria
- CCV criteria
- Surrogate recoveries
- LCS percent recoveries
- MS/MSD percent recoveries and RPD values
- The method blank was free from contamination

PCBs (EPA 8082, prep method 3520)

The following was reviewed and found acceptable:

- Holding times, preservation, sample handling
- Initial Calibration Criteria
- ICV 2nd source and MRL criteria
- CCV criteria
- Confirmation of positive values using second column
- Surrogate recoveries
- LCS percent recoveries
- MS/MSD percent recoveries and RPD values
- The method blank was free from contamination

EXPLOSIVES (EPA 8330)

The following was reviewed and found acceptable:

- Holding times, preservation, sample handling
- Initial Calibration Criteria
- ICV 2nd source and MRL criteria
- CCV criteria
- Surrogate recoveries
- LCS percent recoveries
- MS/MSD percent recoveries and RPD values
- The method blank was free from contamination

NITROGUANIDINE (UV/HPLC)

The following was reviewed and found acceptable:

- Preservation, sample handling
- Initial Calibration Criteria
- ICV 2nd source and MRL criteria
- CCV criteria
- LCS percent recoveries
- MS/MSD percent recoveries and RPD values
- The method blank was free from contamination

CHEMICAL WARFARE DEGRADENTS (EPA 8270C CWM)

1,4-oxathiane and 1,4-dithiane

The following was reviewed and found acceptable:

- Preservation, sample handling
- Initial Calibration Criteria
- ICV 2nd source and MRL criteria
- CCV criteria
- LCS percent recoveries
- MS/MSD percent recoveries and RPD values
- The method blank was free from contamination

THIODIGLYCOL (EPA 8321A)

The following was reviewed and found acceptable:

- Preservation, sample handling
- CCV criteria
- LCS percent recoveries
- MS/MSD percent recoveries
- The method blank was free from contamination

Holding time per the method is 47 days. Samples were analyzed 7 days after the holding time expired due to instrument problems. Samples results have been qualified estimated (J) due to holding time exceedence.

Initial calibration criteria for thiodiglycol did not meet method criteria. A correlation coefficient of 0.992 was reported and did not meet method criteria of 0.995. Results for all samples have been qualified rejected (R).

Second source criteria was not met for thiodiglycol. Recovery of a secondary source standard was 34.2% which did not meet the \pm 30% set by the method. Results for all samples have been qualified rejected (R).

Elevated MS/MSD RPD values were reported for thiodiglycol. Although percent recoveries were within acceptable limits, RPD values were 43% for the MS/MSD. Results have been rejected based on initial calibration and second source criteria, no further flagging has been done based on RPD criteria.

METALS (EPA 6010B, 7470A)

The following was reviewed and found acceptable:

- Holding times, preservation, sample handling
- Initial Calibration Criteria
- ICV 2nd source and MRL criteria
- ICSA criteria
- CCV criteria
- LCS percent recoveries
- MS percent recoveries
- Post digestion spike criteria
- Serial Dilution criteria, method of standard addition

Method blank contamination was reported for manganese (0.31 ug/L). The reporting limit for this compound is 100 ug/L. All sample concentrations for manganese were greater than 100 times the value found in the method blank. No data was qualified based on this.

Elevated RPD values were reported for copper and nickel. These elevated values were due to estimated values less than the reporting limit being reported in one aliquot, while undetectable levels of the compounds were found in the second aliquot. The concentrations reported were less than 50 times the reporting limit. No data was qualified based on these RPD values.

GENERAL CHEMISTRY

Cyanide and Nitrocellulose

The following was reviewed and found acceptable:

- Holding times, preservation, sample handling
- Initial Calibration Criteria
- Initial Calibration Blank
- CCV, CCB criteria
- LCS percent recoveries
- MS/MSD percent recoveries and RPD values

Nitrocellulose was detected in the method blank (0.19 mg/L). All samples had undetectable levels of nitrocellulose; therefore no data was qualified based on this.

DATA VERIFICATION /VALIDATION REPORT PROJECT: RVAAP Mustard Burial Site Prepared By Valarie Mariola of Mariola's Data Validation Services

SDG: A6A160120

The following samples were received at STL North Canton on 1/14/2006 by laboratory transit in acceptable condition for the analysis specified below. Analysis of chemical warfare degradates were performed by STL Sacramento.

Sample Date	Sample ID	QC	CW-degradates
1/13/06	MBSmw-001-0013-gw		Х
1/13/06	MBSmw-002-0014-gw		Х
1/13/06	MBSmw-003-0015-gw		Х
1/13/06	MBSmw-004-0016-gw		Х
1/13/06	MBSmw-005-0017-gw	OR-1	Х
1/13/06	MBSmw-005-0018-gw	FD-1	Х
1/13/06	MBSmw-006-0019-gw		Х

OR – Original Aliquot of sample, FD – Field Duplicate, CW degradates - thiodiglycol

THIODIGLYCOL (EPA 8321A)

The following was reviewed and found acceptable:

- Preservation, sample handling
- Initial Calibration Criteria
- ICV 2nd source and MRL criteria
- CCV criteria
- LCS percent recoveries
- MS/MSD percent recoveries and RPD values

APPENDIX E

INVESTIGATION DERIVED WASTE REPORT

THIS PAGE INTENTIONALLY LEFT BLANK

INVESTIGATION-DERIVED WASTE CHARACTERIZATION AND DISPOSAL PLAN

FOR THE

ADDITIONAL GROUNDWATER MONITORING WELL INSTALLATION AND GROUNDWATER SAMPLING AT THE SUSPECTED MUSTARD AGENT BURIAL SITE (RVAAP-28) AT THE RAVENNA ARMY AMMUNITION PLANT, RAVENNA, OHIO

PREPARED FOR

US ARMY JOINT OPERATIONS COMMAND CONTRACT NO. W912QR-04-M-0116

DECEMBER 2005

INVESTIGATION-DERIVED WASTE CHARACTERIZATION AND DISPOSAL PLAN

FOR THE ADDITIONAL GROUNDWATER MONITORING WELL INSTALLATION AND GROUNDWATER SAMPLING AT THE SUSPECTED MUSTARD AGENT BURIAL SITE (RVAAP-28) AT THE RAVENNA ARMY AMMUNITION PLANT RAVENNA, OHIO

DECEMBER 2005

Prepared for

U.S. Army Joint Operations Command Contract No. W912QR-04-M-0116

Prepared by

SpecPro, Inc. 8451 State Route 5 Ravenna, OH 44266

CONTENTS

CONTENTS	iii
TABLES	iii
ACRONYMS	iv
1.0 INTRODUCTION	1
2.0 OPERATIONAL HISTORY AND WASTE GENERATION	1
3.0 MANAGEMENT OF ENVIRONMENTAL MEDIA	2
4.0 DISCUSSION OF ANALYTICAL RESULTS	2
5.0 RECOMMENDATIONS FOR DISPOSAL	2
5.1 Soils	3
5.2 Groundwater	3
5.3 Decontamination Fluids	3
5.4 Summary of Disposal Recommendations	4
6.0 REFERENCES	

TABLES

Table 2-1 IDW Inve	entory	1
	y of Waste Classification and Disposal Recommendations	

ACRONYMS

- DOD Department of Defense
- EPA U.S. Environmental Protection Agency
- IDW investigation-derived wastes
- Ohio EPA Ohio Environmental Protection Agency
- PPE personal protective equipment
- RVAAP Ravenna Army Ammunition Plant
- TCLP Toxicity Characteristic Leaching Procedure
- USACE US Army Corps of Engineers
- UXO unexploded ordnance

1.0 INTRODUCTION

Investigative activities conducted during the Additional Groundwater Monitoring Well Installation and Groundwater Sampling at the Suspected Mustard Agent Burial Site at the Ravenna Army Ammunition Plant (RVAAP), Ravenna, Ohio, resulted in the generation of investigation-derived wastes (IDW) consisting of soil and water wastes. The IDW was generated in the course of drilling, sampling, and decontamination activities. The purpose of this report is to characterize and classify the IDW for disposal. The report includes a summary of the IDW generated and its origin; classification of the IDW and recommendations for disposal; and a review of the analytical results used for waste characterization. This document follows guidance established by the USACE and the Ohio EPA regarding IDW disposition at RVAAP.

2.0 OPERATIONAL HISTORY AND WASTE GENERATION

Information regarding the operational history and suspected contaminants at the Suspected Mustard Agent Burial Site is presented in Section 1 of the *Final Work Plan and Sampling and Analysis Plan Addenda for the Groundwater Monitoring Well Installation and Groundwater Sampling at the Suspected Mustard Agent Burial Site at the Ravenna Army Ammunition Plant, Ravenna, Ohio* (SAP Addendum). Section 7 of the SAP Addendum describes procedures used for sampling and managing IDW at RVAAP.

Soil and water (groundwater and decontamination water) IDW generated during drilling and sampling activities are listed, by container, in Table 2-1 below.

Container Number	Container Type & Size	Contents	Volume	Source of Waste
MBS-005-001	55 Gal. Open Top	Soil Cuttings	Full	Monitoring Well 005
MBS-005-002	55 Gal. Open Top	Soil Cuttings	Full	Monitoring Well 005
MBS-005-003	55 Gal. Closed Top	Development/Purge water	¾ Full	Monitoring Well 005
MBS-006-004	55 Gal. Open Top	Soil Cuttings	Full	Monitoring Well 006
MBS-006-005	55 Gal. Open Top	Soil Cuttings	Full	Monitoring Well 006
MBS-006-006	55 Gal. Closed Top	Development/Purge water	¾ Full	Monitoring Well 006

Table 2-1. IDW Inventory

3.0 MANAGEMENT OF ENVIRONMENTAL MEDIA

All environmental media were managed in a manner that minimized potential risk to human health and the environment. IDW was handled as nonhazardous material pending waste characterization and classification based on analytical results. The Facility-Wide SAP (USACE 2001) and the Final Work Plan/Sampling and Analysis Plan (2004) contain approved procedures used for containerizing and handling IDW.

Indigenous solid IDW (soil cuttings) generated during the investigation from drilling activities were collected and contained in lined 55-gallon drums. The drums were sealed and staged in a lined storage area behind Building 1036.

All liquid indigenous (groundwater) IDW generated from monitoring well installation, development, and purging was segregated by sample station and placed into closed-top 55-gallon drums. The water was then transferred by 5-gallon buckets to closed-top 55-gallon drums located behind building 1036.

4.0 DISCUSSION OF ANALYTICAL RESULTS

Per Section 7.4 of the Facility-Wide SAP (2001), the analytical results from environmental samples collected during the investigation were used to characterize IDW for groundwater. Where correlative environmental samples do not exist, waste characterization samples were collected in accordance with Section 7 of the Work Plan and Sampling and Analysis Plan Addendum. The IDW characterization results are presented in Appendix 1.

5.0 RECOMMENDATIONS FOR DISPOSAL

Table 7-1 of the Facility-Wide SAP (2001) shows the maximum concentration of contaminants for the toxicity characteristic for hazardous wastes per 40 CFR 261.24. Analytical results for the IDW are compared with these criteria to determine whether waste containers are potentially hazardous or non-hazardous.

For the characterization of IDW solid wastes (e.g., soils) as non-hazardous or hazardous, the Resource Conservation and Recovery Act (RCRA) regulatory limit will be compared to the mean contaminant level as presented in Appendix 2. Although the analysis conducted on the materials was a total analysis, the Toxicity Characteristic Leaching Procedure (TCLP) methodology will be used for waste classification by applying a twenty-fold dilution factor to total results for comparison to TCLP. For purposes of hazardous waste determination, if a given analyte is found to exceed 20 times the regulatory limit, it is being considered a RCRA-hazardous waste due to the dilution factor inherent in the TCLP method for solid materials. Analytical results for liquids were directly compared to the regulatory limits to determine hazardous waste applicability.

5.1 Soils

As previously discussed, excess soils were generated from the monitoring well installations. All excess soils generated during the investigation were placed 55-gallon drums and staged behind Building 1036. A composite sample was collected from the four drums containing soil IDW and submitted for TCLP analysis. The results were compared to regulatory TCLP criteria and to sitewide background criteria to properly characterize the soil for disposal. Based on this comparison, it was recommended that these containers be classified as contaminated, non-hazardous and sent off-site for non-hazardous disposal to a licensed solid waste facility.

5.2 Groundwater

Excess groundwater was generated during the well installation, development, and sampling activities associated with this investigation. A comparison of analytical data generated from groundwater sampling activities and TCLP data indicated that no regulatory criteria for RCRA hazardous waste determinations were exceeded. It is recommended that the two drums containing excess groundwater be classified as contaminated, non-hazardous and that they be sent off-site for disposal to a permitted water treatment facility.

5.3 Decontamination Fluids

All of the waste samples were collected in 2 five gallon locking lid containers from decontamination fluids generated from cleaning of daily sampling equipment used during the investigation. These containers were inadvertently placed into the MBS-005 purge-water drum. The total amount of decon water was under 3 gallons. However, the drums were composite sampled and all analytes were below TCLP threshold values and therefore is classified as non-hazardous. It is recommended that these containers be classified as contaminated, non-hazardous, and that it be sent off-site for disposal to a permitted water treatment facility.

5.4 Summary of Disposal Recommendations

Table 5-1 presents a summary of the waste classification and recommended disposal options presented in Section 5.

Container Number	Media	Waste Criteria	Disposal Recommendation
MBS-005-001	Soil	Mustard Agent Breakdown Products, Explosives Detected OR Metals Above Background	Consolidated for Off-Site Non-Hazardous Disposal
MBS-005-002	Soil	Mustard Agent Breakdown Products, Explosives Detected OR Metals Above Background	Consolidated for Off-Site Non-Hazardous Disposal
MBS-005-003	Water	Mustard Agent Breakdown Products, Explosives Detected OR Metals Above Background	Consolidated for Off-Site Non-Hazardous Disposal
MBS-006-004	Soil	Mustard Agent Breakdown Products, Explosives Detected OR Metals Above Background	Consolidated for Off-Site Non-Hazardous Disposal
MBS-006-005	Soil	Mustard Agent Breakdown Products, Explosives Detected OR Metals Above Background	Consolidated for Off-Site Non-Hazardous Disposal
MBS-006-006	Water Mustard Agent Breakdown Products Explosives		Consolidated for Off-Site Non-Hazardous Disposal

Table 5.1 Summary of Waste Classification and Disposal Recommendations

6.0 REFERENCES

USACE 2001. Facility-Wide Sampling and Analysis Plan for Environmental Investigations at the Ravenna Army Ammunition Plant, Ravenna, Ohio.

APPENDIX 1

INVESTIGATION-DERIVED WASTE ANALYTICAL RESULTS SUMMARY

SEVERN TRENT LABORATORIES, INC.

PRELIMINARY DATA SUMMARY

	ed on the	equire addit se results a	re the re	sponsibili	ty of the	data us	ser.
ot #: A5K100401		SpecPro Inc MUSTARD PROJECT			Date Reported:		PAGE 1
PARAMETER		REPORTING		G	ANALYTICAL <u>METHOD</u>		
		RESULT	LIMIT UNITS				
Client Sample ID: MBS-1D	W-SO(11/2	005)					
Sample #: 001 Date Sa	ampled: 1	1/09/05 12:1	0 Date R	eceived: 1	1/10/05	Matrix:	SOLID
Inductively Coupled Pla	asma (ICF) Metals TCI	ιP				Reviewed
Silver	TCLP	ND	0.50	mg/L	SW846	6010B	
Arsenic	TCLP	ND	0.50	mg/L	SW846	6010B	
Barium	TCLP	0.59 B	10.0	mg/L	SW846	6010B	
Cadmium	TCLP	0.0011 B	0.10	mg/L	SW846	6010B	
Chromium	TCLP	0.0018 B	0.50	mg/L	SW846	6010B	
Lead	TCLP	0.0043 B	0.50	mg/L	SW846	6010B	
Selenium	TCLP	ND	0.25	mg/L	SW846	6010B	
Mercury in Liquid Wast	ດ (Manual	Cold-Vapor)	TCLD				Reviewed
Mercury Mercury	TCLP	ND	0.0020	mg/L	SW846	7470A	Reviewed
B Estimated result. Result is less than RL.							
Volatile Organics by G			0 025		CM0 4 C	8.2 <i>6</i> .0.5	Reviewed
Volatile Organics by G Benzene	C/MS TCLF	ND	0.025	mg/L		8260B	Reviewed
Volatile Organics by G Benzene Carbon tetrachloride	C/MS TCLF	ND ND	0.025	mg/L	SW846	8260B	Reviewed
Volatile Organics by G Benzene Carbon tetrachloride Chlorobenzene	C/MS TCLF	ND ND ND	0.025 0.025	mg/L mg/L	SW846 SW846	8260B 8260B	Reviewed
Volatile Organics by G Benzene Carbon tetrachloride Chlorobenzene Chloroform	C/MS TCLF	ND ND ND ND	0.025 0.025 0.025	mg/L mg/L mg/L	SW846 SW846 SW846	8260B 8260B 8260B	Reviewed
Volatile Organics by G Benzene Carbon tetrachloride Chlorobenzene Chloroform 1,2-Dichloroethane	C/MS TCLF	ND ND ND ND ND	0.025 0.025 0.025 0.025	mg/L mg/L mg/L mg/L	SW846 SW846 SW846 SW846	8260B 8260B 8260B 8260B	Reviewed
Volatile Organics by G Benzene Carbon tetrachloride Chlorobenzene Chloroform 1,2-Dichloroethane 1,1-Dichloroethylene	C/MS TCLF	ND ND ND ND ND	0.025 0.025 0.025 0.025 0.025 0.070	mg/L mg/L mg/L mg/L mg/L	SW846 SW846 SW846 SW846 SW846	8260B 8260B 8260B 8260B 8260B	Reviewed
Volatile Organics by G Benzene Carbon tetrachloride Chlorobenzene Chloroform 1,2-Dichloroethane 1,1-Dichloroethylene Methyl ethyl ketone	C/MS TCLF	ND ND ND ND ND ND	0.025 0.025 0.025 0.025 0.070 0.050	mg/L mg/L mg/L mg/L mg/L mg/L	SW846 SW846 SW846 SW846 SW846 SW846	8260B 8260B 8260B 8260B 8260B 8260B	Reviewed
Volatile Organics by G Benzene Carbon tetrachloride Chlorobenzene Chloroform 1,2-Dichloroethane 1,1-Dichloroethylene Methyl ethyl ketone Tetrachloroethylene	C/MS TCLF	ND ND ND ND ND ND ND	0.025 0.025 0.025 0.025 0.070 0.050 0.070	mg/L mg/L mg/L mg/L mg/L mg/L	SW846 SW846 SW846 SW846 SW846 SW846 SW846	8260B 8260B 8260B 8260B 8260B 8260B 8260B	Reviewed
Volatile Organics by G Benzene Carbon tetrachloride Chlorobenzene Chloroform 1,2-Dichloroethane 1,1-Dichloroethylene Methyl ethyl ketone	C/MS TCLF	ND ND ND ND ND ND	0.025 0.025 0.025 0.025 0.070 0.050	mg/L mg/L mg/L mg/L mg/L mg/L	SW846 SW846 SW846 SW846 SW846 SW846 SW846 SW846	8260B 8260B 8260B 8260B 8260B 8260B	Reviewed
Volatile Organics by G Benzene Carbon tetrachloride Chlorobenzene Chloroform 1,2-Dichloroethane 1,1-Dichloroethylene Methyl ethyl ketone Tetrachloroethylene Trichloroethylene	C/MS TCLF	ND ND ND ND ND ND ND ND	0.025 0.025 0.025 0.025 0.070 0.050 0.070 0.050	mg/L mg/L mg/L mg/L mg/L mg/L mg/L	SW846 SW846 SW846 SW846 SW846 SW846 SW846 SW846	8260B 8260B 8260B 8260B 8260B 8260B 8260B 8260B	Reviewed
Volatile Organics by G Benzene Carbon tetrachloride Chlorobenzene Chloroform 1,2-Dichloroethane 1,1-Dichloroethylene Methyl ethyl ketone Tetrachloroethylene Trichloroethylene Vinyl chloride	C/MS TCLE	ND ND ND ND ND ND ND ND ND ND	0.025 0.025 0.025 0.025 0.070 0.050 0.070 0.050 0.050	mg/L mg/L mg/L mg/L mg/L mg/L mg/L	SW846 SW846 SW846 SW846 SW846 SW846 SW846 SW846 SW846	8260B 8260B 8260B 8260B 8260B 8260B 8260B 8260B 8260B	Reviewed
Volatile Organics by G Benzene Carbon tetrachloride Chlorobenzene Chloroform 1,2-Dichloroethane 1,1-Dichloroethylene Methyl ethyl ketone Tetrachloroethylene Trichloroethylene Vinyl chloride Semivolatile Organic Co o-Cresol	C/MS TCLE	ND ND ND ND ND ND ND ND ND ND ND ND	0.025 0.025 0.025 0.025 0.070 0.050 0.070 0.050 0.025	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	SW846 SW846 SW846 SW846 SW846 SW846 SW846 SW846 SW846	8260B 8260B 8260B 8260B 8260B 8260B 8260B 8260B 8260B	
<pre>Volatile Organics by G Benzene Carbon tetrachloride Chlorobenzene Chloroform 1,2-Dichloroethane 1,1-Dichloroethylene Methyl ethyl ketone Tetrachloroethylene Trichloroethylene Vinyl chloride</pre> Semivolatile Organic Co o-Cresol m-Cresol & p-Cresol	C/MS TCLE	ND ND ND ND ND ND ND ND ND Sy GC/MS TCI ND ND	0.025 0.025 0.025 0.070 0.050 0.070 0.050 0.050 0.025	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	SW846 SW846 SW846 SW846 SW846 SW846 SW846 SW846 SW846 SW846	8260B 8260B 8260B 8260B 8260B 8260B 8260B 8260B 8260B 8260B	
<pre>Volatile Organics by Ga Benzene Carbon tetrachloride Chlorobenzene Chloroform 1,2-Dichloroethane 1,1-Dichloroethylene Methyl ethyl ketone Tetrachloroethylene Trichloroethylene Vinyl chloride</pre> Semivolatile Organic Ca o-Cresol m-Cresol & p-Cresol 1,4-Dichlorobenzene	C/MS TCLE	ND ND ND ND ND ND ND ND ND Sy GC/MS TCI ND ND ND	0.025 0.025 0.025 0.070 0.050 0.070 0.050 0.050 0.025	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	SW846 SW846 SW846 SW846 SW846 SW846 SW846 SW846 SW846 SW846 SW846	8260B 8260B 8260B 8260B 8260B 8260B 8260B 8260B 8260B 8260B 8260B	
<pre>Volatile Organics by G Benzene Carbon tetrachloride Chlorobenzene Chloroform 1,2-Dichloroethane 1,1-Dichloroethylene Methyl ethyl ketone Tetrachloroethylene Trichloroethylene Vinyl chloride</pre> Semivolatile Organic Co o-Cresol m-Cresol & p-Cresol 1,4-Dichlorobenzene 2,4-Dinitrotoluene	C/MS TCLE	ND ND ND ND ND ND ND ND ND Sy GC/MS TCI ND ND ND ND ND	0.025 0.025 0.025 0.070 0.050 0.070 0.050 0.025 JP 0.0040 0.040 0.040 0.020	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	SW846 SW846 SW846 SW846 SW846 SW846 SW846 SW846 SW846 SW846 SW846 SW846	8260B 8260B 8260B 8260B 8260B 8260B 8260B 8260B 8260B 8260B 8270C 8270C 8270C 8270C	
<pre>Volatile Organics by G Benzene Carbon tetrachloride Chlorobenzene Chloroform 1,2-Dichloroethane 1,1-Dichloroethylene Methyl ethyl ketone Tetrachloroethylene Trichloroethylene Vinyl chloride</pre> Semivolatile Organic Co o-Cresol m-Cresol & p-Cresol 1,4-Dichlorobenzene 2,4-Dinitrotoluene Hexachlorobenzene	C/MS TCLE	ND ND ND ND ND ND ND ND ND ND ND ND ND N	0.025 0.025 0.025 0.070 0.050 0.070 0.050 0.025 	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	SW846 SW846 SW846 SW846 SW846 SW846 SW846 SW846 SW846 SW846 SW846 SW846 SW846	8260B 8260B 8260B 8260B 8260B 8260B 8260B 8260B 8260B 8260B 8260B 8270C 8270C 8270C 8270C 8270C	
<pre>Volatile Organics by G Benzene Carbon tetrachloride Chlorobenzene Chloroform 1,2-Dichloroethane 1,1-Dichloroethylene Methyl ethyl ketone Tetrachloroethylene Trichloroethylene Vinyl chloride</pre> Semivolatile Organic Co o-Cresol m-Cresol & p-Cresol 1,4-Dichlorobenzene 2,4-Dinitrotoluene Hexachlorobenzene Hexachlorobutadiene	C/MS TCLE	ND ND ND ND ND ND ND ND ND ND ND ND ND N	0.025 0.025 0.025 0.070 0.050 0.070 0.050 0.050 0.025 -P 0.0040 0.040 0.040 0.040 0.020 0.020	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	SW846 SW846 SW846 SW846 SW846 SW846 SW846 SW846 SW846 SW846 SW846 SW846 SW846 SW846	8260B 8260B 8260B 8260B 8260B 8260B 8260B 8260B 8260B 8260B 8260B 8270C 8270C 8270C 8270C 8270C 8270C	
<pre>Volatile Organics by G Benzene Carbon tetrachloride Chlorobenzene Chloroform 1,2-Dichloroethane 1,1-Dichloroethylene Methyl ethyl ketone Tetrachloroethylene Trichloroethylene Vinyl chloride</pre> Semivolatile Organic Co o-Cresol m-Cresol & p-Cresol 1,4-Dichlorobenzene 2,4-Dinitrotoluene Hexachlorobenzene	C/MS TCLE	ND ND ND ND ND ND ND ND ND ND ND ND ND N	0.025 0.025 0.025 0.070 0.050 0.070 0.050 0.025 	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	SW846 SW846 SW846 SW846 SW846 SW846 SW846 SW846 SW846 SW846 SW846 SW846 SW846 SW846	8260B 8260B 8260B 8260B 8260B 8260B 8260B 8260B 8260B 8260B 8260B 8270C 8270C 8270C 8270C 8270C	

(Continued on next page)

SEVERN TRENT LABORATORIES, INC.

PRELIMINARY DATA SUMMARY

Lot #: A5K100401 PARAMETER		SpecPro Inc MUSTARD PROJECT			Date Reported:	PAGE 2
		RESULT	REPORTING LIMIT	UNITS	ANALYTICAL METHOD	
Client Sample ID: MBS- Sample #: 001 Date			10 Data Das	noirrod · 11/	10/05 Motorius	
Sample #. 001 Date	Sampieu.	11/09/05 12.	IU Date Rec	ervea. II/	10/05 Matrix.	SOLID
Semivolatile Organic	Compounds	by GC/MS TC	LP			Reviewed
Pyridine		ND	0.020	mg/L	SW846 8270C	
2,4,5-Trichloro- phenol		ND	0.020	mg/L	SW846 8270C	
2,4,6-Trichloro- phenol		ND	0.020	mg/L	SW846 8270C	
Inorganic Analysis						Reviewed
Reactive Cyanide		ND	200	mg/kg	SW846 7.3.3	
Pensky-Martens Met Determining Igni		>180		deg F	SW846 1010	
Soil and Waste pH	cubilley	7.2		No Units	SW846 9045C	
Reactive Sulfide		/.2		NO UNITED	DW010 90190	
REACTIVE SUILIDE		ND	500	mg/kg	SW846 7.3.4	
Client Sample ID: MBS- Sample #: 002 Date		DECON				WATER
Client Sample ID: MBS - Sample #: 002 Date	Sampled: 1	DECON L1/09/05 10:	30 Date Rec			WATER Reviewed
Client Sample ID: MBS-	Sampled: 1	DECON L1/09/05 10:	30 Date Rec			
Client Sample ID: MBS- Sample #: 002 Date Inductively Coupled	Sampled: 1 Plasma (ICF	DECON 11/09/05 10: ?) Metals TC	30 Date Rec LP	ceived: 11/	10/05 Matrix:	
Client Sample ID: MBS- Sample #: 002 Date Inductively Coupled Silver	Sampled: 1 Plasma (ICF TCLP	DECON L1/09/05 10: ?) Metals TC ND	30 Date Rec LP 0.50	ceived: 11/ mg/L	10/05 Matrix: SW846 6010B	
Client Sample ID: MBS- Sample #: 002 Date Inductively Coupled Silver Arsenic	Sampled: 1 Plasma (ICF TCLP TCLP	DECON L1/09/05 10: ?) Metals TC ND ND	30 Date Rec LP 0.50 0.50	mg/L mg/L	10/05 Matrix: SW846 6010B SW846 6010B	
Client Sample ID: MBS- Sample #: 002 Date Inductively Coupled Silver Arsenic Barium	Sampled: 1 Plasma (ICP TCLP TCLP TCLP	DECON 11/09/05 10: P) Metals TC ND ND 0.061 B	30 Date Rec LP 0.50 0.50 10.0	mg/L mg/L mg/L mg/L	10/05 Matrix: SW846 6010B SW846 6010B SW846 6010B	
Client Sample ID: MBS- Sample #: 002 Date Inductively Coupled Silver Arsenic Barium Cadmium	Sampled: 1 Plasma (ICP TCLP TCLP TCLP TCLP	DECON 11/09/05 10: 2) Metals TC ND ND 0.061 B ND	<pre>30 Date Rec LP 0.50 0.50 10.0 0.10</pre>	mg/L mg/L mg/L mg/L mg/L	10/05 Matrix: SW846 6010B SW846 6010B SW846 6010B SW846 6010B	
Client Sample ID: MBS- Sample #: 002 Date Inductively Coupled Silver Arsenic Barium Cadmium Chromium	Sampled: 1 Plasma (ICF TCLP TCLP TCLP TCLP TCLP	DECON L1/09/05 10: P) Metals TC ND ND 0.061 B ND ND ND	<pre>30 Date Rec LP 0.50 0.50 10.0 0.10 0.50</pre>	mg/L mg/L mg/L mg/L mg/L mg/L	10/05 Matrix: SW846 6010B SW846 6010B SW846 6010B SW846 6010B SW846 6010B	
Client Sample ID: MBS- Sample #: 002 Date Inductively Coupled Silver Arsenic Barium Cadmium Chromium Lead	Sampled: 1 Plasma (ICH TCLP TCLP TCLP TCLP TCLP TCLP TCLP	DECON L1/09/05 10: ND ND 0.061 B ND ND ND ND ND ND ND	<pre>30 Date Rec LP 0.50 0.50 10.0 0.10 0.50 0.50 0.25</pre>	mg/L mg/L mg/L mg/L mg/L mg/L mg/L	10/05 Matrix: SW846 6010B SW846 6010B SW846 6010B SW846 6010B SW846 6010B SW846 6010B	
Client Sample ID: MBS- Sample #: 002 Date Inductively Coupled Silver Arsenic Barium Cadmium Chromium Lead Selenium	Sampled: 1 Plasma (ICH TCLP TCLP TCLP TCLP TCLP TCLP TCLP	DECON L1/09/05 10: ND ND 0.061 B ND ND ND ND ND ND ND	<pre>30 Date Rec LP 0.50 0.50 10.0 0.10 0.50 0.50 0.25</pre>	mg/L mg/L mg/L mg/L mg/L mg/L mg/L	10/05 Matrix: SW846 6010B SW846 6010B SW846 6010B SW846 6010B SW846 6010B SW846 6010B	Reviewed
Client Sample ID: MBS- Sample #: 002 Date Inductively Coupled Silver Arsenic Barium Cadmium Chromium Lead Selenium Mercury in Liquid Wa	Sampled: 1 Plasma (ICH TCLP TCLP TCLP TCLP TCLP TCLP TCLP TCLP	DECON 11/09/05 10: ND ND 0.061 B ND ND ND ND ND ND	<pre>30 Date Rec LP 0.50 0.50 10.0 0.10 0.50 0.50 0.25</pre>	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	10/05 Matrix: SW846 6010B SW846 6010B SW846 6010B SW846 6010B SW846 6010B SW846 6010B SW846 6010B	Reviewed
Client Sample ID: MBS- Sample #: 002 Date Inductively Coupled Silver Arsenic Barium Cadmium Chromium Lead Selenium Mercury in Liquid Wa Mercury	Sampled: 1 Plasma (ICH TCLP TCLP TCLP TCLP TCLP TCLP TCLP TCLP	DECON L1/09/05 10: ND ND 0.061 B ND ND ND ND ND L Cold-Vapor ND	<pre>30 Date Rec LP 0.50 0.50 10.0 0.10 0.50 0.50 0.25</pre>	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	10/05 Matrix: SW846 6010B SW846 6010B SW846 6010B SW846 6010B SW846 6010B SW846 6010B SW846 6010B	Reviewed
Client Sample ID: MBS- Sample #: 002 Date Inductively Coupled Silver Arsenic Barium Cadmium Chromium Lead Selenium Mercury in Liquid Wa Mercury B Estimated result. Result is less than	Sampled: 1 Plasma (ICH TCLP TCLP TCLP TCLP TCLP TCLP TCLP TCLP	DECON L1/09/05 10: ND ND 0.061 B ND ND ND ND ND L Cold-Vapor ND	<pre>30 Date Rec LP 0.50 0.50 10.0 0.10 0.50 0.50 0.25</pre>	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	10/05 Matrix: SW846 6010B SW846 6010B SW846 6010B SW846 6010B SW846 6010B SW846 6010B SW846 6010B	Reviewed Reviewed
Client Sample ID: MBS- Sample #: 002 Date Inductively Coupled Silver Arsenic Barium Cadmium Chromium Lead Selenium Mercury in Liquid Wa Mercury B Estimated result. Result is less than Volatile Organics by	Sampled: 1 Plasma (ICH TCLP TCLP TCLP TCLP TCLP TCLP TCLP TCLP	DECON 11/09/05 10: ND ND 0.061 B ND ND ND ND ND 1 Cold-Vapor ND	<pre>30 Date Rec LP 0.50 0.50 0.10 0.50 0.50 0.25) TCLP 0.0020</pre>	ceived: 11/ mg/L mg/L mg/L mg/L mg/L mg/L mg/L	10/05 Matrix: SW846 6010B SW846 6010B SW846 6010B SW846 6010B SW846 6010B SW846 6010B SW846 6010B SW846 7470A	Reviewed Reviewed

(Continued on next page)

SEVERN TRENT LABORATORIES, INC.

PRELIMINARY DATA SUMMARY

The results shown below may still require additional laboratory review and are subject to change. Actions taken based on these results are the responsibility of the data user.

ot #: A5K100401	SpecPro Inc MUSTARD PROJECT				Date Reported:	
C #• ASK100401	MUSTARD PROJECT			Date Reported.		12/01/05
		REPORTING		ANALYTICAL		
PARAMETER	RESULT	LIMIT	LIMIT UNITS		METHOD	
Client Sample ID: MBS-1DW-PURGE/I	DECON					
Sample #: 002 Date Sampled: 1		30 Date R	eceived: 1	1/10/05	Matrix:	WATER
bampie nº 002 Date Bampiea	1,00,00 100	Duce R		1/10/05	Haci in -	WITTER
Volatile Organics by GC/MS TCLE	2					Reviewed
Chloroform	ND	0.025	mg/L	SW846	5 8260B	
1,2-Dichloroethane	ND	0.025	mg/L	SW846	5 8260B	
1,1-Dichloroethylene	ND	0.070	mg/L	SW846	5 8260B	
Methyl ethyl ketone	ND	0.050	mg/L	SW846	5 8260B	
Tetrachloroethylene	ND	0.070	mg/L	SW846	5 8260B	
Trichloroethylene	ND	0.050	mg/L	SW846	5 8260B	
Vinyl chloride	ND	0.025	mg/L	SW846	5 8260B	
Semivolatile Organic Compounds o-Cresol m-Cresol & p-Cresol	by GC/MS TC ND ND	0.0040 0.040	mg/L mg/L	SW846	5 8270C 5 8270C	Reviewed
1,4-Dichlorobenzene	ND	0.0040	mg/L		5 8270C	
2,4-Dinitrotoluene	ND	0.020	mg/L	SW846	5 8270C	
Hexachlorobenzene	ND	0.020	mg/L	SW846	5 8270C	
Hexachlorobutadiene	ND	0.020	mg/L	SW846	5 8270C	
Hexachloroethane	ND	0.020	mg/L	SW846	5 8270C	
Nitrobenzene	ND	0.0040	mg/L	SW846	5 8270C	
Pentachlorophenol	ND	0.040	mg/L	SW846	5 8270C	
Pyridine	0.0044 J	0.020	mg/L	SW846	5 8270C	
2,4,5-Trichloro-	ND	0.020	mg/L	SW846	5 8270C	
phenol 2,4,6-Trichloro- phenol	ND	0.020	mg/L	SW846	5 8270C	
J Estimated result. Result is less than RL.						
Inorganic Analysis						Reviewed
Reactive Cyanide Pensky-Martens Method for Determining Ignitability	ND >180	200	mg/kg deg F		5 7.3.3 5 1010	
pH Aqueous Reactive Sulfide	7.8 ND	500	No Unit mg/kg		5 9040B 5 7.3.4	

APPENDIX F

LABORATORY ANALYTICAL REPORTS

THIS PAGE INTENTIONALLY LEFT BLANK

ANALYTICAL REPORT

PROJECT NO. 0000341 MUSTARD BURIAL SITE Lot #: A5K090129

Chantelle Carrol

SpecPro Inc 8451 State Route 5 Ravenna, OH 44266

SEVERN TRENT LABORATORIES, INC.

se R! . .

Frank J. Calovini Project Manager

January 11, 2006

3
EXECUTIVE SUMMARY - Detection Highlights

A5K090129

PARAMETER	<u>. . </u>	RESULT	REPORTING LIMIT	UNITS	ANALYTICAL METHOD
MBSmw-006-0012-gw 11/07/05 15:15	001				
Aroclor 1260		0.088 J	1.0	ug/L	SW846 8082
bis(2-Ethylhexyl)		1.1 B	1.0	ug/L	SW846 8270C
phthalate					
Nitrocellulose		0.14 B,J	0.50	mg/L	MCAWW 353.2
MBSmw-006-0012-gf 11/07/05 15:15	002				
Barium		86.1	10.0	ug/L	SW846 6010B
Calcium		80800	1000	ug/L	SW846 6010B
Magnesium		26000	1000	ug/L	SW846 6010B
Manganese		550 J	100	ug/L	SW846 6010B
Nickel		1.7 B	20.0	ug/L	SW846 6010B
Potassium		5790	5000	ug/L	SW846 6010B
Sodium		10800	1000	ug/L	SW846 6010B
MBSmw-005-0011-gw 11/08/05 10:40	003				
Benzoic acid		4.5 J	10	uġ/L	SW846 8270C
bis(2-Ethylhexyl)		2.3 B	1.0	ug/L	SW846 8270C
phthalate					
Acetone		1.1 J	10	ug/L	SW846 8260B
2-Butanone		0.95 J	10	ug/L	SW846 8260B
MBSmw-005-0011-gf 11/08/05 10:40	004				
Arsenic		5.3 B	10.0	ug/L	SW846 6010B
Barium		83.2	10.0	ug/L	SW846 6010B
Calcium		86600	1000	ug/L	ŚW846 6010B
Iron		405 B	1000	ug/L	SW846 6010B
Magnesium		24900	1000	ug/L	SW846 6010B
Manganese		343 J	100	ug/L	SW846 6010B
Potassium		1710 B	5000	ug/L	SW846 6010B
Sodium		9650	1000	ug/L	SW846 6010B
MBSmw-005-0010-gw 11/08/05 10:40	005				
Benzoic acid		4.4 J	10	ug/L	SW846 8270C
bis(2-Ethylhexyl) phthalate		1.6 B	1.0	ug/L	SW846 8270C
Acetone		1.2 J	10	ug/L	SW846 8260B
2-Butanone		1.0 J	1.0	ug/L	SW846 8260B
Nitrocellulose		0.14 B,J	0.50	mg/L	MCAWW 353.2

(Continued on next page)

EXECUTIVE SUMMARY - Detection Highlights

A5K090129

PARAMETER	RESULT	REPORTING	UNITS	ANALYTICAL METHOD			
MBSmw-005-0010-gf 11/08/05 10:40 006							
Arsenic	7.3 B	10.0	ug/L	SW846 6010B			
Barium	84.0	10.0	ug/L	SW846 6010B			
Calcium	87200	1000	ug/L	SW846 6010B			
Iron	359 B	1000	ug/L	SW846 6010B			
Magnesium	25100	1000	ug/L	SW846 6010B			
Manganese	350 J	100	ug/L	SW846 6010B			
Potassium	1710 B	5000	ug/L	SW846 6010B			
Sodium	10000	1000	ug/L	SW846 6010B			
TRIP BLANK 11/08/05 15:00 007							
Methylene chloride	2.0 B	2.0	ug/L	SW846 8260B			
Acetone	1.5 J	10	ug/L	SW846 8260B			

ANALYTICAL METHODS SUMMARY

A5K090129

	ANALYTICAL
PARAMETER	METHOD
Chemical Warfare Degradates by GC/MS	SW846 8270C CWM
Cyanide, Total	SW846 9012A
Inductively Coupled Plasma (ICP) Metals	SW846 6010B
ICP-MS (6020)	SW846 6020
LCMS by SW8321A SW8321A	SW846 SW8321A
Mercury in Liquid Waste (Manual Cold-Vapor)	SW846 7470A
Nitroaromatics and Nitramines by HPLC	SW846 8330
Nitrocellulose as N, 353.2	MCAWW 353.2
Organics by UV/HPLC	SW846 8330 (Modified)
Organochlorine Pesticides	SW846 8081A
PCBs by SW-846 8082	SW846 8082
Semivolatile Organic Compounds by GC/MS	SW846 8270C
Trace Inductively Coupled Plasma (ICP) Metals	SW846 6010B
Volatile Organics by GC/MS	SW846 8260B

References:

- MCAWW "Methods for Chemical Analysis of Water and Wastes", EPA-600/4-79-020, March 1983 and subsequent revisions.
- SW846 "Test Methods for Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 and its updates.

SAMPLE SUMMARY

A5K090129

WO #			SAMPLED	SAMP
<u>WO #</u>	SAMPLET	CLIENT SAMPLE ID	DATE	TIME
HPŃKV	001	MBSmw-006-0012-gw	11/07/05	
HPNK9	002	MBSmw-006-0012-gf	11/07/05	15:15
HPNLA	003	MBSmw-005-0011-gw	11/08/05	10:40
HPNLC	004	MBSmw-005-0011-gf	11/08/05	10:40
HPNLD	005	MBSmw-005-0010-gw	11/08/05	10:40
HPNLG	006	MBSmw-005-0010-gf	11/08/05	10:40
HPNND	007	TRÍP BLANK	11/08/05	15:00
HPNNE	008	MBSmw-001-0006-gw	11/08/05	13:05
HPNNG	009	MBSmw-002-0007-gw	11/07/05	14:15
HPNNH	010	MBSmw-003-0008-gw	11/07/05	11:40
HPNNJ	011	MBSmw-004-0009-gw	11/07/05	12:59

NOTE(S):

- The analytical results of the samples listed above are presented on the following pages.

- All calculations are performed before rounding to avoid round-off errors in calculated results.

- Results noted as "ND" were not detected at or above the stated limit.

- This report must not be reproduced, except in full, without the written approval of the laboratory.

- Results for the following parameters are never reported on a dry weight basis: color, corrosivity, density, flashpoint, ignitability, layers, odor,

paint filter test, pH, porosity pressure, reactivity, redox potential, specific gravity, spot tests, solids, solubility, temperature, viscosity, and weight.

Client Sample ID: MBSmw-006-0012-gw

GC/MS Volatiles

Lot-Sample #:	A5K090129-001	Work Order #:	HPNKV1AA	Matrix WG
Date Sampled:	11/07/05 15:15	Date Received:	11/08/05	
Prep Date:	11/21/05	Analysis Date:	11/21/05	
Prep Batch #:	5325119			
Dilution Factor:	1	Method:	SW846 8260B	

		REPORTING		
PARAMETER	RESULT	LIMIT	UNITS	MDĹ
Bromochloromethane	ND	1.0	ug/L	0.24
1,2-Dibromoethane	ND	1.0	ug/L	0.24
Chloromethane	ND	1.0	ug/L	0.14
Bromomethane	ND	1.0	ug/L	0.36
Vinyl chloride	ND	1.0	ug/L	0.21
Chloroethane	ND	1.0	ug/L	0.24
Methylene chloride	ND	2.0	ug/L	0.19
Acetone	ND	10	ug/L	0.74
Carbon disulfide	ND	1.0	ug/L	0.28
1,1-Dichloroethene	ND	1.0	ug/L	0.18
1,1-Dichloroethane	ND	1.0	ug/L	0.21
1,2-Dichloroethene	ŃD	1.0	ug/L	0.35
(total)				
Chloroform	ND	1.0	ug/L	0.16
1,2-Dichloroethane	ND	1.0	ug/L	0.16
2-Butanone	ND	10	ug/L	0.39
1,1,1-Trichloroethane	ND	1.0	ug/L	0.21
Carbon tetrachloride	ND	1.0	ug/L	0.19
Bromodichloromethane	ND	1.0	ug/L	0.14
1,2-Dichloropropane	ND	1.0	ug/L	0.15
cis-1,3-Dichloropropene	ND	1.0	ug/L	0.12
Trichloroethene	ND	1.0	ug/L	0.28
Dibromochloromethane	ND	1.0	ug/L	0.19
1,1,2-Trichloroethane	ND	1.0	ug/L	0.22
Benzene	ND	1.0	ug/L	0.22
trans-1,3-Dichloropropene	ND	1.0	ug/L	0.17
Bromoform	ND	1.0	ug/L	0.17
4-Methyl-2-pentanone	ND	10	ug/L	0.32
2-Hexanone	ND	10	ug/L	0.35
Tetrachloroethene	ND	1.0	ug/L	0.19
1,1,2,2-Tetrachloroethane	ND	1.0	ug/L	0.22
Toluene	ND	1.0	ug/L	0.17
Chlorobenzene	ND	1.0	ug/L	0.20
Ethylbenzene	ND	1.0	ug/L	0.19
Styrene	ND	1.0	ug/L	0.13
Xylenes (total)	ND	2.0	ug/L	0.44

(Continued on next page)

Client Sample ID: MBSmw-006-0012-gw

GC/MS Volatiles

Lot-Sample #...: A5K090129-001 Work Order #...: HPNKV1AA

Matrix..... WG

	PERCENT	RECOVERY
SURROGATE	RECOVERY	LIMITS
Dibromofluoromethane	98	(73 - 122)
1,2-Dichloroethane-d4	91	(61 - 128)
Toluene-d8	97	(76 - 110)
4-Bromofluorobenzene	86	(74 - 116)

9

MBSmw-006-0012-gw

GC/MS Volatiles

Lot-Sample #: A5K090129-001 Work Order #: HPNKV1AA Matrix: WG

MASS SPECTROMETER/DATA SYSTEM (MSDS) TENTATIVELY IDENTIFIED COMPOUNDS

		ESTIMATED	RETENTION	1
PARAMETER	CAS #	RESULT	TIME	UNITS
None				ug/L

Client Sample ID: MBSmw-006-0012-gw

GC/MS Semivolatiles

Lot-Sample #:	A5K090129-001	Work Order #:	HPNKV1AC	Matrix WG
Date Sampled:	11/07/05 15:15	Date Received:	11/08/05	
Prep Date:	11/14/05	Analysis Date:	11/25/05	
Prep Batch #:	5318057			
Dilution Factor:	1	Method:	SW846 8270C	

		REPORTIN	IG	
PARAMETER	RÉSULT	LIMIT	UNITS	MDL
Benzoic acid	ND	10	ug/L	0.81
Benzyl alcohol	ND	5.0	ug/L	1.1
Phenol	ND	1.0	uģ/L	0.14
bis(2-Chloroethyl)-	ND	1.0	ug/L	0.19
ether			_	
2-Chlorophenol	ŃĎ	1.0	ug/L	0.14
1,3-Dichlorobenzene	ND	1.0	ug/L	0.11
1,4-Dichlorobenzene	ND	1.0	ug/L	0.13
1,2-Dichlorobenzene	ND	1.0	ug/L	0.16
2-Methylphenol	ND	1.0	ug/L	0.15
2,2'-oxybis(1-Chloro-	ND	1.0	ug/L	0.21
propane)	·			
4-Methylphenol	ND	1.0	ug/L	0.20
N-Nitrosodi-n-propyl-	ND	1.0	ug/L	0.21
amine				
Hexachloroethane	ND	1.0	ug/L	0.21
Nitrobenzene	ND	1.0	ug/L	0.21
Isophorone	ND	1.0	ug/L	0.16
2-Nitrophenol	ND	2.0	ug/L	0.14
2,4-Dimethylphenol	ND	2.0	ug/L	0.23
bis(2-Chloroethoxy)	ND	1.0	ug/L	0.24
methane				
2,4-Dichlorophenol	ND	2.0	ug/L	0.24
1,2,4-Trichloro-	ND	1.0	ug/L	0.12
benzene				
Naphthalene	ND	0.20	ug/L	0.031
4-Chloroaniline	ND	2.0	ug/L	0.31
Hexachlorobutadiene	ND	1.0	ug/L	0.11
4-Chloro-3-methylphenol	ND	2.0	ug/L	0.18
2-Methylnaphthalene	ND	0.20	ug/L	0.028
Hexachlorocyclopenta-	ND	10	ug/L	1.5
diene				
2,4,6-Trichloro-	ND	5.0	ug/L	0.16
phenol				
2,4,5-Trichloro-	ND	5.0	ug/L	0.13
phenol				
2-Chloronaphthalene	ND	1.0	ug/L	0.29
2-Nitroaniline	ND	2.0	ug/L	0.18
Dimethyl phthalate	ND	1.0	ug/L	0.27

(Continued on next page)

Client Sample ID: MBSmw-006-0012-gw

GC/MS Semivolatiles

Lot-Sample #...: A5K090129-001 Work Order #...: HPNKV1AC Matrix...... WG

		REPORTING		
PARAMETER	RESULT	LIMIT	UNITS	MDL
Acenaphthylene	ND	0.20	ug/L	0.030
2,6-Dinitrotoluene	ND	5.0	ug/L	0.17
3-Nitroaniline	ND	2.0	ug/L	0.094
Acenaphthene	ND	0.20	ug/L	0.028
2,4-Dinitrophenol	ND	5.0	ug/L	1.3
4-Nitrophenol	ND	5.0	ug/L	1.0
Dibenzofuran	ND	1.0	ug/L	0.025
2,4-Dinitrotoluene	ND	5.0	ug/L	0.16
Diethyl phthalate	ND	1.0	ug/L	0.12
4-Chlorophenyl phenyl	ND	2.0	ug/L	0.21
ether			(
Fluorene	ND	0.20	ug/L	0.035
4-Nitroaniline	ND	2.0	ug/L	0.11
4,6-Dinitro-	ND	5.0	ug/L	1.8
2-methylphenol			<i>i</i> –	
N-Nitrosodiphenylamine	ND	1.0	ug/L	0.18
4-Bromophenyl phenyl	ND	2.0	ug/L	0.29
ether Newschlasscherzen	NTD	0 00	· · · · / T	0.075
Hexachlorobenzene	ND	0.20	ug/L	0.075
Pentachlorophenol Phenanthrene	ND	5.0	ug/L	2.0
Anthracene	ND	0.20	ug/L	0.044
Carbazole	ND	0.20 1.0	ug/L	0.030
Di-n-butyl phthalate	ND	1.0	ug/L	0.17
Fluoranthene	ND		ug/L	0.13
	ND	0.20	ug/L	0.024
Pyrene	ND	0.20	ug/L	0.051
Butyl benzyl phthalate	ND	1.0	ug/L	0.14
3,3'-Dichlorobenzidine	ND	5.0	ug/L	0.19
Benzo(a) anthracene	ND	0.20 0.20	ug/L	0.028
Chrysene	ND		ug/L	0.035
bis(2-Ethylhexyl) phthalate	1.1 B	1.0	ug/L	0.36
Di-n-octyl phthalate	ND	1.0	11 0 /T	0.16
Benzo (b) fluoranthene	ND	0.20	ug/L	0.043
			ug/L	
Benzo(k)fluoranthene	ND	0.20	ug/L	0.071
Benzo(a)pyrene	ND	0.20	ug/L	0.022
Indeno(1,2,3-cd)pyrene	ND	0.20	ug/L ug/I	0.081
Dibenz (a, h) anthracene	ND	0.20	ug/L	0.054
Benzo(ghi)perylene	ND	0.20	ug/L	0.044

(Continued on next page)

Client Sample ID: MBSmw-006-0012-gw

GC/MS Semivolatiles

Lot-Sample #...: A5K090129-001 Work Order #...: HPNKV1AC Matrix...... WG

	PERCENT	RECOVERY
SURROGATE	RECOVERY	LIMITS
Nitrobenzene-d5	59	(32 - 112)
2-Fluorobiphenyl	60	(30 - 110)
Terphenyl-d14	87	(51 - 135)
Phenol-d5	58	(10 - 117)
2-Fluorophenol	42	(19 - 108)
2,4,6-Tribromophenol	64	(42 - 124)

NOTE(S):

B Method blank contamination. The associated method blank contains the target analyte at a reportable level.

MBSmw-006-0012-gw

GC/MS Semivolatiles

Lot-Sample #: A5K090129-001 Work Order #: HPNKV1AC

Matrix: WG

MASS SPECTROMETER/DATA SYSTEM (MSDS) TENTATIVELY IDENTIFIED COMPOUNDS

	ESTIMATED		RETENTION	
CAS #	RESULT		TIME	UNITS
	12 J	М	2.8991	ug/L
	1.8 J	М	3.4814	ug/L
	1.3 J	М	9.4753	ug/L
	1.4 J	М	9.8332	ug/L
	1.6 J	М	10.249	ug/L
	1.1 J	М	10.741	uġ/L
	1.1 J	Μ	11.318	ug/L
	<u>CAS #</u>	CAS # RESULT 12 J 1.8 J 1.3 J 1.4 J 1.6 J 1.1 J	12 J M 1.8 J M 1.3 J M 1.4 J M 1.6 J M 1.1 J M	CAS # RESULT TIME 12 J M 2.8991 1.8 J M 3.4814 1.3 J M 9.4753 1.4 J M 9.8332 1.6 J M 10.249 1.1 J M 10.741

NOTE(S):

M: Result was measured against nearest internal standard assuming a response factor of 1.

Client Sample ID: MBSmw-006-0012-gw

GC/MS Semivolatiles

Lot-Sample #:	A5K090129-001	Work Order	#:	HPNKV1AK	Matrix	:	WG
Date Sampled:	11/07/05 15:15	Date Receiv	ved:	11/08/05			
Prep Date:	11/14/05	Analysis Da	ate:	11/28/05			
Prep Batch #:	5318209						
Dilution Factor:	1	Method	:	SW846 8270	C CWM		
				REPORTING			
PARAMETER	<u></u>	RESULT		LIMIT	UNITS	MDL	
1,4-Oxathiane		ND		5.0	ug/L	0.88	
1,4-Dithiane		ND		5.0	ug/L	1.0	
		PERCENT		RECOVERY			
SURROGATE		RECOVERY		LIMITS			
2-Fluorobiphenyl		75		(16 - 127)			
Nitrobenzene-d5		91		(43 - 121)			

Client Sample ID: MBSmw-006-0012-gw

GC Semivolatiles

Lot-Sample #:	A5K090129-001	Work Order #:	HPNKV1AD	Matrix WG
Date Sampled:	11/07/05 15:15	Date Received:	11/08/05	
Prep Date:	11/14/05	Analysis Date:	11/24/05	
Prep Batch #:	5318048			
Dilution Factor:	1	Method:	SW846 8081A	

		REPORTING		
PARAMETER	RESULT	LIMIT	UNITS	MDL
alpha-BHC	ND	0.030	ug/L	0.0062
beta-BHC	ND	0.030	ug/L	0.0068
delta-BHC	ND	0.030	ug/L	0.0064
gamma-BHC (Lindane)	NĎ	0.030	ug/L	0.0062
Heptachlor	ND	0.030	ug/L	0.0062
Aldrin	ND	0.030	ug/L	0.0061
Heptachlor epoxide	ND	0.030	ug/L	0.0065
Endosulfan I	ND	0.030	ug/L	0.0072
Dieldrin	ND	0.030	ug/L	0.0067
4,4'-DDE	ND	0.030	ug/L	0.0076
Endrin	ND	0.030	ug/L	0.0074
Endosulfan II	ND	0.030	ug/L	0.0072
4,4'-DDD	ND	0.030	ug/L	0.0085
Endosulfan sulfate	ND	0.030	ug/L	0.0083
4,4'-DDT	ND	0.030	ug/L	0.0086
Methoxychlor	ND	0.10	ug/L	0.010
Endrin ketone	ND	0.030	ug/L	0.013
Endrin aldehyde	ND	0.030	ug/L	0.0091
alpha-Chlordane	ND	0.030	ug/L	0.0073
gamma-Chlordane	ND	0.030	ug/L	0.0065
Toxaphene	ND	2.0	ug/L	0.33
	PERCENT	RECOVERY		
SURROGATE	RECOVERY	LIMITS		
Tetrachloro-m-xylene	89	(39 - 130)		
Decachlorobiphenyl	49	(10 - 147)		

Client Sample ID: MBSmw-006-0012-gw

GC Semivolatiles

Lot-Sample #: A5K090129-001 Date Sampled: 11/07/05 15:15 Prep Date: 11/14/05 Prep Batch #: 5318049	Date Received:	11/08/05	Matrix	WG
Dilution Factor: 1	Method	SW846 8082		
		REPORTING		
PARAMETER	RESULT	LIMIT	UNITS	MDL
Aroclor 1016	ND	1.0	ug/L	0.25
Aroclor 1221	ND	1.0	ug/L	0.49
Aroclor 1232	ND	1.0	ug/L	0.41
Aroclor 1242	ND	1.0	ug/L	0.11
Aroclor 1248	ND	1.0	ug/L	0.049
Aroclor 1254	ND	1.0	ug/L	0.087
Aroclor 1260	0.088 J	1.0	ug/L	0.071
SURROGATE	PERCENT RECOVERY	RECOVERY LIMITS		
Tetrachloro-m-xylene	106	(35 - 130)		
Decachlorobiphenyl	38	(10 - 110)		

NOTE(S):

J Estimated result. Result is less than RL.

Client Sample ID: MBSmw-006-0012-gw

Trace Level Organic Compounds

 Lot-Sample #...: A5K090129-001
 Work Order #...: HPNKV1AL
 Matrix...... WG

 Date Sampled...: 11/07/05 15:15
 Date Received..: 11/08/05
 Matrix..... WG

 Prep Date.....: 11/18/05
 Analysis Date..: 01/05/06
 Prep Batch #...: 5322621

 Dilution Factor: 1
 1

PARAMETER	RESULT	DETECTION LIMIT	UNITS	METHOD
Thiodiglycol	ND	10	ug/L	SW846 SW8321A
SURROGATE	PERCENT RECOVERY	RECOVERY LIMITS		
Thiodiglycol-d4	108	(50 - 120)	-	

Client Sample ID: MBSmw-006-0012-gw

Trace Level Organic Compounds

		DETECTION		
PARAMETER	RESULT	LIMIT	UNITS	METHOD
Nitroguanidine	ND	20	ug/L	SW846 8330 (Modif

19

Client Sample ID: MBSmw-006-0012-gw

HPLC

Lot-Sample #: A Date Sampled: 1				Matrix WG
Prep Date 1		Analysis Date:	• •	
Prep Batch #: 5	5318288			
Dilution Factor: 1	1	Method:	SW846 8330	

		REPORTING		
PARAMETER	RESULT	LIMIT	UNITS	MDL
2-Amino-4,6-	ND	0.10	ug/L	0.10
dinitrotoluene				
4-Amino-2,6-	ND	0.10	ug/L	0.050
dinitrotoluene				
1,3-Dinitrobenzene	ND	0.10	ug/L	0.050
2,4-Dinitrotoluene	ND	0.10	ug/L	0.050
2,6-Dinitrotoluene	ND	0.10	ug/L	0.050
HMX	ND	0.10	ug/L	0.036
Nitrobenzene	ND	0.10	ug/L	0.050
2-Nitrotoluene	ND	0.50	ug/L	0.088
3-Nitrotoluene	ND	0.50	ug/L	0.057
4-Nitrotoluene	ND	0.50	ug/L	0.088
RDX	ND	0.10	ug/L	0.036
Tetryl	ND	0.10	ug/L	0.050
1,3,5-Trinitrobenzene	ND	0.10	ug/L	0.030
2,4,6-Trinitrotoluene	ND	0.10	ug/L	0.050
	PERCENT	RECOVERY		
SURROGATE	RECOVERY	LIMITS		
3,4-Dinitrotoluene	109	(84 - 125)		

20

Client Sample ID: MBSmw-006-0012-gw

General Chemistry

PARAMETER Cyanide, Total	RÉSÚLT ND	RL 0.010	UNITS mg/L		PREPARATION- ANALYSIS DATE 11/16/05	PREP <u>BATCH #</u> 5320331
	· Dilu	ution Facto	or: 1	MDL 0.0013		
Nitrocellulose	0.14 B,J Dilu	0.50 ition Facto	mg/L pr: 1	MCAWW 353.2 MDL 0.12	11/29-12/01/05	5333468

NOTE (S) :

RL Reporting Limit

B Estimated result. Result is less than RL.

J Method blank contamination. The associated method blank contains the target analyte at a reportable level.

Client Sample ID: MBSmw-006-0012-gf

TOTAL Metals

Lot-Sample #...: A5K090129-002 Date Sampled...: 11/07/05 15:15 Date Received..: 11/08/05 Matrix..... WG

PARAMETER	RESULT	REPORTIN	IG UNITS	METHOD	PREPARATION- ANALYSIS DATE	WORK ORDER #
Prep Batch # Aluminum	ND	200	uq/L	ŚW846 6010B	11/10-11/17/05	HONKGIAL.
Aruminum		Dilution Fac		MDL 47.0	11/10 11/1//00	
Arsenic	ND	10.0	ug/L	SW846 6010B	11/10-11/17/05	HPNK91AA
		Dilution Fac	ctor: 1	MDL 4.3		
Lead	ND	10.0	uq/L	SW846 6010B	11/10-11/17/05	HPNK91AE
Lead	NB	Dilution Fac	5.	MDL 1.7	11/10 11/1/00	
Antimony	ND	100	ug/L	SW846 6010B	11/10-11/17/05	HPNK91AP
		Dilution Fac	tor: 1	MDL 4.1		
Barium	86.1	10.0	ug/L	SW846 6010B	11/10-11/17/05	HPNK91AT
		Dilution Fac		MDL: 3.2	,,,,	
Selenium	ND		ug/L	SW846 6010B	11/10-11/17/05	HPNK91AH
		Dilution Fac	tor: 1	MDL 2.4		
Beryllium	ND	10.0	uq/L	SW846 6010B	11/10-11/17/05	HPNK91AW
		Dilution Fac	2.	MDL 0.30	,, ,, ,	
Cadmium	ND		ug/L	SW846 6010B	11/10-11/17/05	HPNK91A1
		Dilution Fac	tor: 1	MDL 0.42		
Calcium	80800	1000	uq/L	SW846 6010B	11/10-11/17/05	HPNK91A4
		Dilution Fac	tor: 1	MDL 80.0		
			4			
Chromium	ND	20.0	-	SW846 6010B	11/10-11/17/05	HPNK91A7
		Dilution Fac	ctor: 1	MDL: 1.6		
Cobalt	ND ·	20.0	ug/L	SW846 6010B	11/10-11/17/05	HPNK91CA
		Dilution Fac	tor: 1	MDL 1.2		
G		22.2	· · · / T			
Copper	ND	20.0 Dilution Fac	ug/L	SW846 6010B MDL 1.8	11/10-11/17/05	HPNK9ICE
		Dilución Pac		MDD		
Iron	ND	1000	ug/L	SW846 6010B	11/10-11/17/05	HPNK91CH
		Dilution Fac	tor: 1	MDL 32.0		
Moore	26000	1000			11/10-11/17/05	HDMZ01CT
Magnesium	26000	1000 Dilution Fac	ug/L	SW846 6010B	TT/T0-TT/T//05	TIENVATCH
		22202000 100				

(Continued on next page)

APPENDIX F

.

···· ·

.

Client Sample ID: MBSmw-006-0012-gf

TOTAL Metals

Lot-Sample #...: A5K090129-002

Matrix..... WG

PARAMETER Manganese	RESULT	REPORTING LIMIT 100 Dilution Facto	UNITS ug/L or: 1	METHOD SW846 6010B MDL 0.23	PREPARATION- ANALYSIS DATE 11/10-11/17/05	
Nickel	1.7 B	20.0 Dilution Facto		SW846 6010B MDL 1.4	11/10-11/17/05	HPNK91CT
Potassium	5790	5000 Dilution Facto	ug/L or: 1	SW846 6010B	11/10-11/17/05	HPNK91CW
Silver	ND	20.0 Dilution Facto	0.	SW846 6010B MDL 2.1	11/10-11/17/05	HPNK91C1
Sodium	10800	1000 Dilution Facto	.	SW846 6010B	11/10-11/17/05	HPNK91C4
Vanadium	NĎ	20.0 Dilution Facto	<u> </u>	SW846 6010B MDL 1.9	11/10-11/17/05	HPNK91C7
Zinc	ND	100 Dilution Facto	<u>.</u>	SW846 6010B MDL 6.6	11/10-11/17/05	HPNK91DA
Mercury	ND	0.20 Dilution Facto	2.	SW846 7470A Mdl 0.090	11/10/05	HPNK91DH
Thallium	ND	1.0 Dilution Facto	-	SW846 6020 MDL 0.022	11/10-11/17/05	HPNK91DE

NOTE(S):

J Method blank contamination. The associated method blank contains the target analyte at a reportable level.

B Estimated result. Result is less than RL.

Client Sample ID: MBSmw-005-0011-gw

GC/MS Volatiles

Lot-Sample #: A5K090129-003	Work Order #: HPNLA1AA	Matrix WG
Date Sampled: 11/08/05 10:40	Date Received: 11/08/05	
Prep Date: 11/21/05	Analysis Date: 11/21/05	
Prep Batch #: 5325119		
Dilution Factor: 1	Method SW846 8260B	

		REPORTING		
PARAMETER	RESULT	LIMIT	UNITS	MDL
Bromochloromethane	ND	1.0	ug/L	0.24
1,2-Dibromoethane	ND	1.0	ug/L	0.24
Chloromethane	ND	1.0	ug/L	0.14
Bromomethane	ND	1.0	ug/L	0.36
Vinyl chloride	ND	1.0	ug/L	0.21
Chloroethane	ND	1.0	ug/L	0.24
Methylene chloride	ND	2.0	ug/L	0.19
Acetone	1.1 J	10	ug/L	0.74
Carbon disulfide	ND	1.0	ug/L	0.28
1,1-Dichloroethene	ND	1.0	ug/L	0.18
1,1-Dichloroethane	ND	1.0	ug/L	0.21
1,2-Dichloroethene	ND	1.0	ug/L	0.35
(total)				
Chloroform	ND	1.0	ug/L	0.16
1,2-Dichloroethane	ND	1.0	ug/L	0.16
2-Butanone	0.95 J	10	ug/L	0.39
1,1,1-Trichloroethane	ND	1.0	ug/L	0.21
Carbon tetrachloride	ND	1.0	ug/L	0.19
Bromodichloromethane	ND	1.0	ug/L	0.14
1,2-Dichloropropane	ND	1.0	ug/L	0.15
cis-1,3-Dichloropropene	ND	1.0	ug/L	0.12
Trichloroethene	ND	1.0	ug/L	0.28
Dibromochloromethane	ND	1.0	ug/L	0.19
1,1,2-Trichloroethane	ND	1.0	ug/L	0.22
Benzene	ND	1.0	ug/L	0.22
trans-1,3-Dichloropropene	ND	1.0	ug/L	0.17
Bromoform	ŃD	1.0	ug/L	0.17
4-Methyl-2-pentanone	ND	10	ug/L	0.32
2-Hexanone	ND	10	ug/L	0.35
Tetrachloroethene	ND	1.0	ug/L	0.19
1,1,2,2-Tetrachloroethane	ND	1.0	ug/L	0.22
Toluene	ND	1.0	ug/L	0.17
Chlorobenzene	ND	1.0	ug/L	0.20
Ethylbenzene	ND	1.0	ug/L	0.19
Styrene	ND	1.0	ug/L	0.13
Xylenes (total)	ND	2.0	ug/L	0.44

(Continued on next page)

Client Sample ID: MBSmw-005-0011-gw

GC/MS Volatiles

Lot-Sample #...: A5K090129-003 Work Order #...: HPNLA1AA Matrix..... WG

	PERCENT	RECOVERY
SURROGATE	RECOVERY	LIMITS
Dibromofluoromethane	96	(73 - 122)
1,2-Dichloroethane-d4	91	(61 - 128)
Toluene-d8	97	(76 - 110)
4-Bromofluorobenzene	84	(74 - 116)

NOTE(S):

J Estimated result. Result is less than RL.

MBSmw-005-0011-gw

GC/MS Volatiles

Lot-Sample #: A5K090129-003 Work Order #: HPNLA1AA Matrix: WG

MASS SPECTROMETER/DATA SYSTEM (MSDS) TENTATIVELY IDENTIFIED COMPOUNDS

		ESTIMATED	RETENTI	ION
PARAMETER	CAS #	RESULT	TIME	UNITS
None				ug/L

Client Sample ID: MBSmw-005-0011-gw

GC/MS Semivolatiles

		REPORTIN	IG		
PARAMETER	RESULT	LIMIT	UNITS	MDL	
Benzoic acid	4.5 J	10	ug/L	0.81	<u> </u>
Benzyl alcohol	ND	5.0	ug/L	1.1	
Phenol	ND	1.0	ug/L	0.14	
bis(2-Chloroethyl)-	ND	1.0	ug/L	0.19	
ether			5,		
2-Chlorophenol	ND	1.0	ug/L	0.14	
1,3-Dichlorobenzene	ND	1.0	ug/L	0.11	
1,4-Dichlorobenzene	ND	1.0	ug/L	0.13	
1,2-Dichlorobenzene	ND	1.0	ug/L	0.16	
2-Methylphenol	ND	1.0	ug/L	0.15	
2,2'-oxybis(1-Chloro-	ND	1.0	ug/L	0.21	
propane)					
4-Methylphenol	ND	1.0	ug/L	0.20	
N-Nitrosodi-n-propyl-	ND	1.0	ug/L	0.21	
amine					
Hexachloroethane	ND	1.0	ug/L	0.21	
Nitrobenzene	ND	1.0	ug/L	0.21	
Isophorone	ND	1.0	ug/L	0.16	
2-Nitrophenol	ND	2.0	uğ/L	0.14	
2,4-Dimethylphenol	ND	2.0	ug/L	0.23	
bis(2-Chloroethoxy)	ND	1.0	ug/L	0.24	
methane					
2,4-Dichlorophenol	ND	2.0	ug/L	0.24	
1,2,4-Trichloro-	ND	1.0	ug/L	0.12	
benzene					
Naphthalene	ND	0.20	ug/L	0.031	
4-Chloroaniline	ND	2.0	ug/L	0.31	
Hexachlorobutadiene	ND	1.0	ug/L	0.11	
4-Chloro-3-methylphenol	ND	2.0	ug/L	0.18	
2-Methylnaphthalene	ND	0.20	ug/L	0.028	
Hexachlorocyclopenta-	ND	10	ug/L	1.5	
diene					
2,4,6-Trichloro-	ND	5.0	ug/L	0.16	
phenol					
2,4,5-Trichloro-	ND	5.0	ug/L	0.13	
phenol					
2-Chloronaphthalene	ND	1.0	ug/L	0.29	
2-Nitroaniline	ND	2.0	ug/L	0.18	
Dimethyl phthalate	ND	1.0	ug/L	0.27	

(Continued on next page)

Client Sample ID: MBSmw-005-0011-gw

GC/MS Semivolatiles

Lot-Sample #...: A5K090129-003 Work Order #...: HPNLA1AC Matrix..... WG

		REPORTING		
PARAMETER	RESULT	LIMIT	UNITS	MDL
Acenaphthylene	ND	0.20	ug/L	0.030
2,6-Dinitrotoluene	ND	5.0	ug/L	0.17
3-Nitroaniline	ND	2.0	ug/L	0.094
Acenaphthene	ND	0.20	ug/L	0.028
2,4-Dinitrophenol	ND	5.0	ug/L	1.3
4-Nitrophenol	ND	5.0	ug/L	1.0
Dibenzofuran	ND	1.0	ug/L	0.025
2,4-Dinitrotoluene	ND	5.0	ug/L	0.16
Diethyl phthalate	ND	1.0	ug/L	0.12
4-Chlorophenyl phenyl	ND	2.0	ug/L	0.21
ether				
Fluorene	ND	0.20	ug/L	0.035
4-Nitroaniline	ND	2.0	ug/L	0.11
4,6-Dinitro-	ND	5.0	ug/L	1.8
2-methylphenol				
N-Nitrosodiphenylamine	ND	1.0	ug/L	0.18
4-Bromophenyl phenyl	ND	2.0	ug/L	0.29
ether				
Hexachlorobenzene	ND	0.20	ug/L	0.075
Pentachlorophenol	ND	5.0	ug/L	2.0
Phenanthrene	ND	0.20	ug/L	0.044
Anthracene	ND	0.20	ug/L	0.030
Carbazole	ND	1.0	ug/L	0.17
Di-n-butyl phthalate	ND	1.0	ug/L	0.13
Fluoranthene	ND	0.20	ug/L	0.024
Pyrene	ND	0.20	ug/L	0.051
Butyl benzyl phthalate	ND	1.0	ug/L	0.14
3,3'-Dichlorobenzidine	ND	5.0	ug/L	0.19
Benzo(a) anthracene	ND	0.20	ug/L	0.028
Chrysene	ND	0.20	ug/L	0.035
bis(2-Ethylhexyl)	2.3 B	1.0	ug/L	0.36
phthalate				
Di-n-octyl phthalate	ND	1.0	ug/L	0.16
Benzo(b)fluoranthene	ND	0.20	ug/L	0.043
Benzo(k)fluoranthene	ND	0.20	ug/L	0.071
Benzo(a)pyrene	ND	0.20	ug/L	0.022
Indeno (1,2,3-cd) pyrene	ND	0.20	ug/L	0.081
Dibenz(a,h)anthracene	ND	0.20	ug/L	0.054
Benzo(ghi)perylene	ND	0.20	ug/L	0.044

(Continued on next page)

Client Sample ID: MBSmw-005-0011-gw

GC/MS Semivolatiles

Lot-Sample #...: A5K090129-003 Work Order #...: HPNLA1AC Matrix...... WG

	PERCENT	RECOVERY
SURROGATE	RECOVERY	LIMITS
Nitrobenzene-d5	58	(32 - 112)
2-Fluorobiphenyl	55	(30 - 110)
Terphenyl-d14	69	(51 - 135)
Phenol-d5	56	(10 - 117)
2-Fluorophenol	44	(19 - 108)
2,4,6-Tribromophenol	68	(42 - 124)

NOTE(S):

J Estimated result. Result is less than RL.

B Method blank contamination. The associated method blank contains the target analyte at a reportable level.

MBSmw-005-0011-gw

GC/MS Semivolatiles

Lot-Sample #: A5K090129-003 Work Order #: HPNLA1AC Matrix: WG

MASS SPECTROMETER/DATA SYSTEM (MSDS) TENTATIVELY IDENTIFIED COMPOUNDS

		ESTIMATED	RE	TENTIC	N
PARAMETER	CAS #	RESULT	TI	ME	UNITS
Unknown		3.3 J	M 2.	8989	ug/L
Unknown		0.84 J	мз.	1927	ug/L
Unknown Organic Acid		1.5 J	M 4.	6137	ug/L
Unknown Organic Acid		0.85 J	M 4.	977	ug/L
Unknown		1.4 J	Μб.	6544	ug/L
Unknown		0.80 J	м б.	6865	ug/L
Unknown		1.1 J	M 8.	1342	ug/L

NOTE(S):

M: Result was measured against nearest internal standard assuming a response factor of 1.

Client Sample ID: MBSmw-005-0011-gw

GC/MS Semivolatiles

Lot-Sample #: Date Sampled: Prep Date: Prep Batch #:	11/08/05 10:40 11/14/05		11/08/05	Matrix		WG
Dilution Factor:	1	Method:	SW846 8270	C CWM		
			REPORTING			
				IDITEC	N (D) T	
PARAMETER		RESULT	LIMIT	UNITS	MDL	
1,4-Oxathiane		ND	5.0	ug/L	0.88	
1,4-Dithiane		ND	5.0	ug/L	1.0	
		PERCENT	RECOVERY			
SURROGATE		RECOVERY	LIMITS			
2-Fluorobiphenyl		81	(16 - 127)			
Nitrobenzene-d5		93	(43 - 121)			

Client Sample ID: MBSmw-005-0011-gw

GC Semivolatiles

Lot-Sample #:	A5K090129-003	Work Order #:	HPNLA1AD	Matrix WG
Date Sampled:	11/08/05 10:40	Date Received:	11/08/05	
Prep Date:	11/14/05	Analysis Date:	11/24/05	
Prep Batch #:	5318048			
Dilution Factor:	1	Method	SW846 8081A	

		REPORTING		
PARAMETER	RESULT	LIMIT	UNITS	MDL
alpha-BHC	ND	0.030	ug/L	0.0062
beta-BHC	ND	0.030	ug/L	0.0068
delta-BHC	ND	0.030	ug/L	0.0064
gamma-BHC (Lindane)	ND	0.030	ug/L	0.0062
Heptachlor	ND	0.030	ug/L	0.0062
Aldrin	ND	0.030	ug/L	0.0061
Heptachlor epoxide	ND	0.030	ug/L	0.0065
Endosulfan I	ND	0.030	ug/L	0.0072
Dieldrin	ND	0.030	ug/L	0.0067
4,4'-DDE	ND	0.030	ug/L	0.0076
Endrin	ND	0.030	ug/L	0.0074
Endosulfan II	ND	0.030	ug/L	0.0072
4,4'-DDD	ND	0.030	ug/L	0.0085
Endosulfan sulfate	ND	0.030	ug/L	0.0083
4,4'-DDT	ND	0.030	ug/L	0.0086
Methoxychlor	ND	0.10	ug/L	0.010
Endrin ketone	ND	0.030	ug/L	0.013
Endrin aldehyde	ND	0.030	ug/L	0.0091
alpha-Chlordane	ND	0.030	ug/L	0.0073
gamma-Chlordane	ND	0.030	ug/L	0.0065
Toxaphene	ND	2.0	ug/L	0.33
	PERCENT	RECOVERY		
SURROGATE	RECOVERY	LIMITS		
Tetrachloro-m-xylene	90	(39 - 130)		
Decachlorobiphenyl	48	(10 - 147)		

Client Sample ID: MBSmw-005-0011-gw

GC Semivolatiles

Lot-Sample #: A5K090129-003 Date Sampled: 11/08/05 10:40 Prep Date: 11/14/05 Prep Batch #: 5318049	Date Received:	11/08/05	Matrix	c WG
Dilution Factor: 1	Method:	SW846 8082		
		REPORTING		
PARAMETER	RESULT	LIMIT	UNITS	MDL
Aroclor 1016	ND	1.0	ug/L	0.25
Aroclor 1221	ŇD	1.0	ug/L	0.49
Aroclor 1232	ND	1.0	ug/L	0.41
Aroclor 1242	ND	1.0	ug/L	0.11
Aroclor 1248	ND	1.0	ug/L	0.049
Aroclor 1254	ND	1.0	ug/L	0.087
Aroclor 1260	ND	1.0	ug/L	0.071
	PERCENT	RECOVERY		
SURROGATE	RECOVERY	LIMITS		
Tetrachloro-m-xylene	89	(35 - 130)		
Decachlorobiphenyl	39	(10 - 110)		

Client Sample ID: MBSmw-005-0011-gw

Trace Level Organic Compounds

 Lot-Sample #...: A5K090129-003
 Work Order #...: HPNLA1AL
 Matrix..... WG

 Date Sampled...: 11/08/05 10:40
 Date Received..: 11/08/05
 Matrix..... WG

 Prep Date....: 11/18/05
 Analysis Date..: 01/05/06
 Matrix.....

 Prep Batch #...: 5322621
 Dilution Factor: 1

		DETECTION		
PARAMETER	RESULT	LIMIT	UNITS	METHOD
Thiodiglycol	ND	10	ug/L	SW846 SW8321A
	PERCENT	RECOVERY		
SURROGATE	RECOVERY	LIMITS	_	
Thiodiglycol-d4	97	(50 - 120)		

Client Sample ID: MBSmw-005-0011-gw

Trace Level Organic Compounds

Lot-Sample #: A5K0901	29-003 Work Order #	: HPNLA1AJ	Matrix WG
Date Sampled: 11/08/0.	5 10:40 Date Received	: 11/08/05	
Prep Date: 11/18/01	5 Analysis Date	: 11/19/05	
Prep Batch #: 5322405			
Dilution Factor: 1			

		DETECTION		
PARAMETER	RESULT	LIMIT	UNITS	METHOD
Nitroguanidine	ND	20	ug/L	SW846 8330 (Modif

Client Sample ID: MBSmw-005-0011-gw

HPLC

Lot-Sample #: A5K090129-003	Work Order #: HPNLA1AG	Matrix WG
Date Sampled: 11/08/05 10:40	Date Received: 11/08/05	
Prep Date: 11/14/05	Analysis Date: 11/17/05	
Prep Batch #: 5318288		
Dilution Factor: 1	Method SW846 83	30

		REPORTING		
PARAMETER	RESULT	LIMIT	UNITS	MDL
2-Amino-4,6-	ND	0.10	ug/L	0.10
dinitrotoluene				
4-Amino-2,6-	ND	0.10	ug/L	0.050
dinitrotoluene				
1,3-Dinitrobenzene	ND	0.10	ug/L	0.050
2,4-Dinitrotoluene	ND	0.10	ug/L	0.050
2,6-Dinitrotoluene	ND	0.10	ug/L	0.050
HMX	ND	0.10	ug/L	0.036
Nitrobenzene	ND .	0.10	ug/L	0.050
2-Nitrotoluene	ND	0.50	ug/L	0.088
3-Nitrotoluene	ND	0.50	ug/L	0.057
4-Nitrotoluene	ND	0.50	ug/L	0.088
RDX	ND	0.10	ug/L	0.036
Tetryl	ND	0.10	ug/L	0.050
1,3,5-Trinitrobenzene	ND	0.10	ug/L	0.030
2,4,6-Trinitrotoluene	ND	0.10	ug/L	0.050
	PERCENT	RECOVERY		
SURROGATE	RECOVERY	LIMITS		
3,4-Dinitrotoluene	108	(84 - 125)		

Client Sample ID: MBSmw-005-0011-gw

General Chemistry

PARAMETER	RESULT	RL	UNITS	METHOD	PREPARATION- ANALYSIS DATE	PREP <u>BATCH #</u>
Čyanide, Total	ND Dilu	0.010 ution Facto	mg/L pr: 1	SW846 9012A MDL 0.0013	11/16/05	5320331
Nitrocellulose	ND	0.50 ition Facto	mg/L pr: 1	MCAWW 353.2 MDL 0.12	11/29-12/01/05	5333468

37

Client Sample ID: MBSmw-005-0011-gf

TOTAL Metals

Lot-Sample #...: A5K090129-004 Date Sampled...: 11/08/05 10:40 Date Received..: 11/08/05 Matrix....: WG

PARAMETER	RESULT	REPORTII LIMIT	NG UNITS	METHOD	PREPARATION- ANALYSIS DATE	WORK ORDER #
Prep Batch #	.: 5314034					
Aluminum	ND	200	ug/L	SW846 6010B	11/10-11/17/05	HPNLC1AH
		Dilution Fac	ctor: 1	MDL 47.0		
		70.0	. /-	ото 4 с. сод ёр		
Arsenic	5.3 B	10.0 Dilution Do.	-	SW846 6010B	11/10-11/17/05	HPNLCIAE
		Dilution Fac	COI: 1	MDL 4.3		
Lead	NĎ	10.0	ug/L	SW846 6010B	11/10-11/17/05	HPNLC1AF
		Dilution Fac	ctor: 1	MDL 1.7		
Antimony	ND	100	ug/L	SW846 6010B	11/10-11/17/05	HPNLC1AJ
		Dilution Fac	ctor: 1	MDL 4.1		
Barium	83.2	10.0	ng/T	SW846 6010B	11/10-11/17/05	
Bartum	03.4	Dilution Fac	5.	MDL 3.2	11/10-11/1//05	RENDCIAK
		Diración Pac	2001.1			
Selenium	ND	10.0	ug/L	SW846 6010B	11/10-11/17/05	HPNLC1AG
		Dilution Fac	ctor: 1	MDL 2.4		
Beryllium	ND	10.0	-	SW846 6010B	11/10-11/17/05	HPNLC1AL
		Dilution Fac	ctor: 1	MDL 0.30		
Cadmium	ND	10.0	110/L	SW846 6010B	11/10-11/17/05	HONICIAA
Cadilitulii		Dilution Fac	.	MDL 0.42	11/10 11/1/05	III NDCIAA
		princion rad				
Calcium	86600	1000	ug/L	SW846 6010B	11/10-11/17/05	HPNLC1AC
		Dilution Fac	tor: 1	MDL 80.0		
Chromium	ND	20.0	2.	SW846 6010B	11/10-11/17/05	HPNLC1AD
		Dilution Fac	ctor: 1	MDL 1.6		
Cobalt	ND	20.0	uq/L	SW846 6010B	11/10-11/17/05	HPNLCIAO
CODATE	ND	Dilution Fac	Q.	MDL 1.2	11/10 11/1//05	III NDCINQ
Copper	ND	20.0	ug/L	SW846 6010B	11/10-11/17/05	HPNLC1AR
		Dilution Fac	ctor: 1	MDL 1.8		
			4		(((
Iron	405 B	1000	ug/L	SW846 6010B	11/10-11/17/05	HPNLCIAT
		Dilution Fac	ctor: 1	MDL 32.0		
Magnesium	24900	1000	ug/L	SW846 6010B	11/10-11/17/05	HPNLCIAU
		Dilution Fac	-	MDL 86.0	,,,	

(Continued on next page)

:

Client Sample ID: MBSmw-005-0011-gf

TOTAL Metals

Lot-Sample #...: A5K090129-004

Matrix..... WG

		REPORTING		PREPARATION-	WORK
PARAMETER	RESULT	LIMIT UN	ITS METHOD	ANALYSIS DATE	ORDER #
Manganese		<u>100 ug</u>	/L SW846 6010B	11/10-11/17/05	HPNLCLAV
		Dilution Factor: 1	MDL: 0.	23	
Nickel	ND	20.0 ug,	/L SW846 6010B	11/10-11/17/05	HPNLC1AW
		Dilution Factor: 1	MDL 1.	4	
Potassium	1710 B	5000 ug,	/L SW846 6010B	11/10-11/17/05	HPNLC1AX
		Dilution Factor: 1	MDL 54	.0	
Silver	ND	20.0 ug,	/L SW846 6010B	11/10-11/17/05	HPNLCIAM
		Dilution Factor: 1	MDL 2.	1	
Sodium	9650	1000 ug,	/L SW846 6010B	11/10-11/17/05	HPNLCLAN
		Dilution Factor: 1	MDL 41	0	
Vanadium	ND	20.0 ug,	/L SW846 6010B	11/10-11/17/05	HPNLC1AP
	•	Dilution Factor: 1	MDL 1.	9	
Zinc	ND	100 ug,	/L SW846 6010B	11/10-11/17/05	HPNLC1A0
		Dilution Factor: 1	MDL 6.	6	
Mercury	ND	0.20 ug,	/L SW846 7470A	11/10/05	HPNLC1A2
-		Dilution Factor: 1	MDL 0.	090	
Thallium	ND	1.0 ug,	/L SW846 6020	11/10-11/17/05	HPNLC1A1
		Dilution Factor: 1	MDL 0.	022	

NOTE(S):

B Estimated result. Result is less than RL.

J Method blank contamination. The associated method blank contains the target analyte at a reportable level.
Client Sample ID: MBSmw-005-0010-gw

GC/MS Volatiles

Lot-Sample #:	A5K090129-005	Work Order #:	HPNLD1AA	Matrix WG
Date Sampled:	11/08/05 10:40	Date Received:	11/08/05	
Prep Date:	11/21/05	Analysis Date:	11/21/05	,
Prep Batch #:	5325119			
Dilution Factor:	1	Method:	SW846 8260B	

		REPORTIN	ſĠ	
PARAMETER	RESULT	LIMIT	UNITS	MDL
Bromochloromethane	ND	1.0	ug/L	0.24
1,2-Dibromoethane	ND	1.0	ug/L	0.24
Chloromethane	ND	1.0	ug/L	0.14
Bromomethane	ND	1.0	ug/L	0.36
Vinyl chloride	ND	1.0	ug/L	0.21
Chloroethane	ND	1.0	ug/L	0.24
Methylene chloride	ND	2.0	ug/L	0.19
Acetone	1.2 J	10	ug/L	0.74
Carbon disulfide	ND	1.0	ug/L	0.28
1,1-Dichloroethene	ND	1.0	ug/L	0.18
1,1-Dichloroethane	ND	1.0	ug/L	0.21
1,2-Dichloroethene	ND	1.0	ug/L	0.35
(total)				
Chloroform	ND	1.0	ug/L	0.16
1,2-Dichloroethane	ND	1.0	ug/L	0.16
2-Butanone	1.0 J	10	ug/L	0.39
1,1,1-Trichloroethane	ND	1.0	ug/L	0.21
Carbon tetrachloride	ND	1.0	üğ/L	0.19
Bromodichloromethane	ND	1.0	ug/L	0.14
1,2-Dichloropropane	ND	1.0	ug/L	0.15
cis-1,3-Dichloropropène	ND	1.0	ug/L	0.12
Trichloroethene	ND	1.0	ug/L	0.28
Dibromochloromethane	ND	1.0	ug/L	0.19
1,1,2-Trichloroethane	ND	1.0	ug/L	0.22
Benzene	ND	1.0	ug/L	0.22
trans-1,3-Dichloropropene	ND	1.0	ug/L	0.17
Bromoform	ND	1.0	ug/L	0.17
4-Methyl-2-pentanone	ND	10	ug/L	0.32
2-Hexanone	ND	10	ug/L	0.35
Tetrachloroethene	ND	1.0	ug/L	0.19
1,1,2,2-Tetrachloroethane	ND	1.0	ug/L	0.22
Toluene	ND	1.0	ug/L	0.17
Chlorobenzene	ND	1.0	ug/L	0.20
Ethylbenzene	ND	1.0	ug/L	0.19
Styrene	ND	1.0	ug/L	0.13
Xylenes (total)	ND	2.0	ug/L	0.44

(Continued on next page)

Client Sample ID: MBSmw-005-0010-gw

GC/MS Volatiles

Lot-Sample #...: A5K090129-005 Work Order #...: HPNLD1AA Matrix..... WG

	PERCENT	RECOVERY
SURROGATE	RECOVERY	LIMITS
Dibromofluoromethane	97	(73 - 122)
1,2-Dichloroethane-d4	90	(61 - 128)
Toluene-d8	98	(76 - 110)
4-Bromofluorobenzene	86	(74 - 116)

NOTE(S):

J Estimated result. Result is less than RL.

MBSmw-005-0010-gw

GC/MS Volatiles

Lot-Sample #: A5K090129-005 Work Order #: HPNLD1AA Matrix: WG

MASS SPECTROMETER/DATA SYSTEM (MSDS) TENTATIVELY IDENTIFIED COMPOUNDS

		ESTIMATED	RETENTION	1
PARAMETER	CAS #	RESULT	TIME	UNITS
None				ug/L

Client Sample ID: MBSmw-005-0010-gw

GC/MS Semivolatiles

Lot-Sample #:	A5K090129-005	Work Order #:	HPNLD1AC	Matrix WG	
Date Sampled:	11/08/05 10:40	Date Received:	11/08/05		
Prep Date:	11/14/05	Analysis Date:	11/25/05		
Prep Batch #:	5318057				
Dilution Factor:	1	Method	SW846 8270C		

		REPORTIN	ſG	
PARAMETER	RESULT	LIMIT	UNITS	MDL
Benzoic acid	4.4 J	10	ug/L	0.81
Benzyl alcohol	ND	5.0	ug/L	1.1
Phenol	ND	1.0	ug/L	0.14
bis(2-Chloroethyl)-	ND	1.0	ug/L	0.19
ether			-	
2-Chlorophenol	ND	1.0	ug/L	0.14
1,3-Dichlorobenzene	ND	1.0	ug/L	0.11
1,4-Dichlorobenzene	ND	1.0	ug/L	0.13
1,2-Dichlorobenzene	ND	1.0	ug/L	0.16
2-Methylphenol	ND	1.0	ug/L	0.15
2,2'-oxybis(1-Chloro-	ND	1.0	ug/L	0.21
propane)				
4-Methylphenol	ND	1.0	ug/L	0.20
N-Nitrosodi-n-propyl-	ND	1.0	ug/L	0.21
amine				
Hexachloroethane	ND	1.0	ug/L	0.21
Nitrobenzene	ND	1.0	ug/L	0.21
İsophorone	ND	1.0	ug/L	0.16
2-Nitrophenol	NĎ	2.0	ug/L	0.14
2,4-Dimethylphenol	ND	2.0	ug/L	0.23
bis(2-Chloroethoxy)	ND	1.0	ug/L	0.24
methane				
2,4-Dichlorophenol	ND	2.0	ug/L	0.24
1,2,4-Trichloro-	ND	1.0	ug/L	0.12
benzene				
Naphthalene	ND	0.20	ug/L	0.031
4-Chloroaniline	ND	2.0	ug/L	0.31
Hexachlorobutadiene	ND	1.0	ug/L	0.11
4-Chloro-3-methylphenol	ND	2.0	ug/L	0.18
2-Methylnaphthalene	ND	0.20	ug/L	0.028
Hexachlorocyclopenta- diene	ND	10	ug/L	1.5
2,4,6-Trichloro-	ND	5.0	ug/L	0.16
phenol			2.	
2,4,5-Trichloro-	ND	5.0	ug/L	0.13
phenol			<u> </u>	
2-Chloronaphthalene	ND	1.0	ug/L	0.29
2-Nitroaniline	ND	2.0	ug/L	0.18
Dimethyl phthalate	ND	1.0	ug/L	0.27
4 - ·			_ /	

(Continued on next page)

Client Sample ID: MBSmw-005-0010-gw

GC/MS Semivolatiles

Lot-Sample #...: A5K090129-005 Work Order #...: HPNLD1AC Matrix...... WG

		REPORTING		
PARAMETER	RESULT	LIMIT	UNITS	MDL
Acenaphthylene	ND	0.20	ug/L	0.030
2,6-Dinitrotoluené	ND	5.0	ug/L	0.17
3-Nitroaniline	ND	2.0	ug/L	0.094
Acenaphthene	ND	0.20	ug/L	0.028
2,4-Dinitrophenol	ND	5.0	ug/L	1.3
4-Nitrophenol	ND	5.0	uġ/L	1.0
Dibenzofuran	ND	1.0	ug/L	0.025
2,4-Dinitrotoluene	ND	5.0	ug/L	0.16
Diethyl phthalate	ND	1.0	ug/L	0.12
4-Chlorophenyl phenyl	ND	2.0	ug/L	0.21
ether				
Fluorene	ND	0.20	uġ/L	0.035
4-Nitroaniline	ND	2.0	ug/L	0.11
4,6-Dinitro-	ND	5.0	ug/L	1.8
2-methylphenol				
N-Nitrosodiphenylamine	ND	1.0	ug/L	0.18
4-Bromophenyl phenyl	ND	2.0	ug/L	0.29
ether				
Hexachlorobenzene	ND	0.20	ug/L	0.075
Pentachlorophenol	ND	5.0	ug/L	2.0
Phenanthrene	ND	0.20	ug/L	0.044
Anthracene	ND	0.20	ug/L	0.030
Carbazole	ND	1.0	ug/L	0.17
Di-n-butyl phthalate	ND	1.0	ug/L	0.13
Fluoranthene	ND	0.20	ug/L	0.024
Pyrene	ND	0.20	ug/L	0.051
Butyl benzyl phthalate	ND	1.0	ug/L	0.14
3,3'-Dichlorobenzidine	ND	5.0	ug/L	0.19
Benzo(a) anthracene	ND	0.20	ug/L	0.028
Chrysene	ND	0.20	ug/L	0.035
bis(2-Ethylhexyl)	1.6 B	1.0	ug/L	0.36
phthalate				
Di-n-octyl phthalate	ND	1.0	ug/L	0.16
Benzo(b)fluoranthene	ND	0.20	ug/L	0.043
Benzo(k)fluoranthene	ND	0.20	ug/L	0.071
Benzo(a)pyrene	ND	0.20	ug/L	0.022
Indeno(1,2,3-cd)pyrene	ND	0.20	ug/L	0.081
Dibenz(a,h)anthracene	ND	0.20	ug/L	0.054
Benzo(ghi)perylene	ND	0.20	ug/L	0.044

(Continued on next page)

Client Sample ID: MBSmw-005-0010-gw

GC/MS Semivolatiles

Lot-Sample #...: A5K090129-005 Work Order #...: HPNLD1AC

Matrix....: WG

	PERCENT	RECOVERY
SURROGATE	RECOVERY	LIMITS
Nitrobenzene-d5	60	(32 - 112)
2-Fluorobiphenyl	56	(30 - 110)
Terphenyl-d14	68	(51 - 135)
Phenol-d5	58	(10 - 117)
2-Fluorophenol	45	(19 - 108)
2,4,6-Tribromophenol	70	(42 - 124)

NOTE(S):

J Estimated result. Result is less than RL.

B Method blank contamination. The associated method blank contains the target analyte at a reportable level.

MBSmw-005-0010-gw

GC/MS Semivolatiles

Lot-Sample #: A5K090129-005

Work Order #: HPNLD1AC

Matrix: WG

MASS SPECTROMETER/DATA SYSTEM (MSDS) TENTATIVELY IDENTIFIED COMPOUNDS

		ESTIMATED		RETENTION	
PARAMETER	CAS #	RESULT		TIME	UNITS
Unknown		1.4 J	М	2.8993	ug/L
Unknown		1.1 J	М	3.1878	ug/L
Unknown	,	0.91 J	М	4.6088	ug/L
Unknown		1.1 J	М	5.9924	ug/L
Unknown		1.1 J	М	6.6548	ug/L
Unknown		0.91 J	М	8.1292	ug/L

NOTE(S):

M: Result was measured against nearest internal standard assuming a response factor of 1.

Client Sample ID: MBSmw-005-0010-gw

GC/MS Semivolatiles

Lot-Sample #: A5K090129- Date Sampled: 11/08/05 1 Prep Date: 11/14/05		: 11/08/05	Matr	ix WG
Prep Batch #: 5318209				
Dilution Factor: 1	Method	: SW846 82	70C CWM	
		REPORTIN	47	
PARAMETER	RESULT	LIMIT	UNITS	MDL
1,4-Oxathiane	ND	5.0	ug/L	0.88
1,4-Dithiane	ND	5.0	ug/L	1.0
	PERCENT	RECOVERY		
SURROGATE	RECOVERY	LIMITS		
2-Fluorobiphenyl	69	(16 - 12)	7)	
Nitrobenzene-d5	91	(43 - 12)	L)	

Client Sample ID: MBSmw-005-0010-gw

GC Semivolatiles

Lot-Sample #:	A5K090129-005	Work Order #:	HPNLD1AD	Matrix WG
Date Sampled:	11/08/05 10:40	Date Received:	11/08/05	
Prep Date:	11/14/05	Analysis Date:	11/24/05	
Prep Batch #:	5318048			
Dilution Factor:	1	Method	SW846 8081A	

		REPORTING		
PARAMETER	RESULT	LIMIT	UNITS	MDL
alpha-BHC	ND	0.030	ug/L	0.0062
beta-BHC	ND	0.030	ug/L	0.0068
delta-BHC	ND	0.030	ug/L	0.0064
gamma-BHC (Lindane)	ND	0.030	ug/L	0.0062
Heptachlor	ND	0.030	ug/L	0.0062
Aldrin	ND	0.030	ug/L	0.0061
Heptachlor epoxide	ND	0.030	ug/L	0.0065
Endosulfan I	ND	0.030	ug/L	0.0072
Dieldrin	ND	0.030	ug/L	0.0067
4,4'-DDE	ND	0.030	ug/L	0.0076
Endrin	ND	0.030	ug/L	0.0074
Endosulfan II	ND	0.030	ug/L	0.0072
4,4'-DDD	ND	0.030	ug/L	0.0085
Endosulfan sulfate	ND	0.030	ug/L	0.0083
4,4'-DDT	ND	0.030	ug/L	0.0086
Methoxychlor	ND	0.10	ug/L	0.010
Endrin ketone	ND	0.030	ug/L	0.013
Endrin aldehyde	ND	0.030	ug/L	0.0091
alpha-Chlordane	ND	0.030	ug/L	0.0073
gamma-Chlordane	ND	0.030	ug/L	0.0065
Toxaphene	ND	2.0	ug/L	0.33
	PERCENT	RECOVERY		
SURROGATE	RECOVERY	LIMITS		
Tetrachloro-m-xylene	78	(39 - 130)		
Decachlorobiphenyl	21	(10 - 147)		

Client Sample ID: MBSmw-005-0010-gw

GC Semivolatiles

Lot-Sample #: A5K090129-005 Date Sampled: 11/08/05 10:40 Prep Date: 11/14/05 Prep Batch #: 5318049		11/08/05	Matri	ĸ WG
Dilution Factor: 1	Method:	SW846 8082		
		REPORTING		
PARAMETER	RESULT	LIMIT	UNITS	MDL
Aroclor 1016	ND	1.0	ug/L	0.25
Aroclor 1221	ND	1.0	ug/L	0.49
Aroclor 1232	ND	1.0	ug/L	0.41
Aroclor 1242	ND	1.0	ug/L	0.11
Aroclor 1248	ND	1.0	ug/L	0.049
Aroclor 1254	ND	1.0	ug/L	0.087
Aroclor 1260	ND	1.0	ug/L	0.071
	PERCENT	RECOVERY		
SURROGATE	RECOVERY	LIMITS		
Tetrachloro-m-xylene	106	(35 - 130)		
Decachlorobiphenyl	31	(10 - 110)		

Client Sample ID: MBSmw-005-0010-gw

Trace Level Organic Compounds

 Lot-Sample #...: A5K090129-005
 Work Order #...: HPNLD1AL
 Matrix.....: WG

 Date Sampled...: 11/08/05 10:40
 Date Received..: 11/08/05
 Matrix.....: WG

 Prep Date.....: 11/18/05
 Analysis Date..: 01/05/06
 Matrix......

 Prep Batch #...: 5322621
 Dilution Factor: 1

		DETECTION		
PARAMETER	RESULT	LIMIT	UNITS	METHOD
Thiodiglycol	ND	10	ug/L	SW846 SW8321A
	PERCENT	RECOVERY		
SURROGATE	RECOVERY	LIMITS	_	
Thiodiglycol-d4	87	(50 - 120)	1	

Client Sample ID: MBSmw-005-0010-gw

Trace Level Organic Compounds

		DETECTION		
PARAMETER	RESULT	LIMIT	UNITS	METHOD
Nitroguanidine	ND	20	ug/L	SW846 8330 (Modif

Client Sample ID: MBSmw-005-0010-gw

HPLC

Lot-Sample #:	A5K090129-005	Work Order #:	HPNLD1AG	Matrix WG
Date Sampled:	11/08/05 10:40	Date Received:	11/08/05	
Prep Date:	11/14/05	Analysis Date:	11/17/05	
Prep Batch #:	5318288			
Dilution Factor:	1	Method:	SW846 8330	

		REPORTING		
PARAMETER	RESULT	LIMIT	UNITS	MDL
2-Amino-4,6-	ND	0.10	ug/L	0.10
dinitrotoluene				
4-Amino-2,6-	ND	0.10	ug/L	0.050
dinitrotoluene				
1,3-Dinitrobenzene	ND	0.10	ug/L	0.050
2,4-Dinitrotoluene	ND	0.10	ug/L	0.050
2,6-Dinitrotoluene	ND	0.10	ug/L	0.050
НМХ	ND	0.10	ug/L	0.036
Nitrobenzene	ND	0.10	ug/L	0.050
2-Nitrotoluene	ND	0.50	ug/L	0.088
3-Nitrotoluene	ND	0.50	ug/L	0.057
4-Nitrotoluene	ND	0.50	ug/L	0.088
RDX	ND	0.10	ug/Ĺ	0.036
Tetryl	ND	0.10	ug/L	0.050
1,3,5-Trinitrobenzene	ND	0.10	ug/L	0.030
2,4,6-Trinitrotoluene	ND	0.10	ug/L	0.050
	PERCENT	RECOVERY		
SURROGATE	RECOVERY	LIMITS		
3,4-Dinitrotoluene	106	(84 - 125))	

Client Sample ID: MBSmw-005-0010-gw

General Chemistry

Lot-Sample #: A51 Date Sampled: 11,			order #: eceived:		trix: W	G
PARAMETER	RESULT	RL	UNITS	METHOD	PREPARATION- ANALYSIS DATE	PREP BATCH #
Cyanide, Total	ND	0.010 ution Facto	mg/L or: 1	SW846 9012A MDL 0.00	11/16/05 13	5320331
Nitrocellulose	•	0.50 ution Facto	mg/L or: 1	MCAWW 353.2 MDL 0.12	11/29-12/01/05	5333468

NOTE(S):

RL Reporting Limit

B Estimated result. Result is less than RL.

J Method blank contamination. The associated method blank contains the target analyte at a reportable level.

Client Sample ID: MBSmw-005-0010-gf

TOTAL Metals

Lot-Sample #...: A5K090129-006 Date Sampled...: 11/08/05 10:40 Date Received..: 11/08/05

Matrix....: WG

· --- ·

PARAMETER	RESULT	REPORTI LIMIT	NG UNITS	METHOD	PREPARATION- ANALYSIS DATE	WORK ORDER #
			· · · · · · · · · · · · · · · · · · ·	· · · · ·	· · · · · · · · · · · · · · · · · · ·	
Prep Batch #	.: 5314034					
Aluminum	ND		ug/L	SW846 6010B	11/10-11/17/05	HPNLG1AH
		Dilution Fa	ctor: 1	MDL 47.0		
Arsenic	7.3 B	10.0	ug/L	SW846 6010B	11/10-11/17/05	HPNLGLAE
		Dilution Fa	ctor: 1	MDL 4.3		
Lead	ND	10.0	ug/L	SW846 6010B	11/10-11/17/05	HPNLG1AF
		Dilution Fa	ctor: 1	MDL 1.7		
Antimony	ND	100	uq/L	SW846 6010B	11/10-11/17/05	HPNLG1AJ
2		Dilution Fa		MDL 4.1		
Barium	84.0	10.0	11g/T.	SW846 6010B	11/10-11/17/05	HPNLGIAK
Barrum	04.0	Dilution Fa	-	MDL 3.2	<u>.</u>	madding
		Diración ra				
Selenium	ND	10.0	ug/L	SW846 6010B	11/10-11/17/05	HPNLG1AG
		Dilution Fa	ctor: 1	MDL 2.4		
Beryllium	ND	10.0	uq/L	SW846 6010B	11/10-11/17/05	HPNLG1AL
-		Dilution Fa	ctor: 1	MDL 0.30		
			1_			
Cadmium	ND	10.0	-	SW846 6010B	11/10-11/17/05	HPNLGIAA
		Dilution Fa	ctor: 1	MDL 0.42		
Calcium	87200	1000	ug/L	SW846 6010B	11/10-11/17/05	HPNLGLAC
		Dilution Fa	ctor: 1	MDL 80.0		
Chromium	ND	20.0	ug/L	SW846 6010B	11/10-11/17/05	HPNLG1AD
		Dilution Fa	ctor: 1	MDL 1.6		
Cobalt	ND	20.0	ug/L	SW846 6010B	11/10-11/17/05	HPNLG1AO
cobarc	112	Dilution Fa	-	MDL 1.2	,, , , _ =	~
Copper	ND	20.0	ug/L	SW846 6010B	11/10-11/17/05	HPNLG1AR
		Dilution Fa	ctor: 1	MDL 1.8		
Iron	359 B	1000	ug/L	SW846 6010B	11/10-11/17/05	HPNLG1AT
		Dilution Fa	ctor: 1	MDL 32.0		1
	25100	1000	11 m / T	SW846 6010B	11/10-11/17/05	HDNT CI ATT
Magnesium	25100	1000 Dilution Fa	ug/L	MDL 86.0	TT/ TO-TT/ T// 05	TEMPOLAO
		DILUCION PA				

(Continued on next page)

Client Sample ID: MBSmw-005-0010-gf

TOTAL Metals

Lot-Sample #...: A5K090129-006

Matrix....: WG

PARAMETER Manganese	RESULT 350 J	REPORTING LIMIT 100 Dilution Fact	UNITS ug/L	METHOD SW846 6010B MDL	PREPARATION- ANALYSIS DATE 11/10-11/17/05	
Nickel	ND	20.0 Dilution Fact		SW846 6010B Mdl 1.4	11/10-11/17/05	HPNLG1AW
Potassium	1710 B	5000		SW846 6010B	11/10-11/17/05	HPNLG1AX
Silver	ND	Dilution Fact 20.0 Dilution Fact	ug/L	MDL 54.0 SW846 6010B MDL 2.1	11/10-11/17/05	HPNLGIAM
Sodium	10000	1000	_	SW846 6010B	11/10-11/17/05	HPNLGIAN
Vanadium	ND	Dilution Fact 20.0 Dilution Fact	ug/L	MDL 410 SW846 6010B MDL 1.9	11/10-11/17/05	HPNLG1AP
Zinc	ND	100	ug/L	SW846 6010B	11/10-11/17/05	HPNLG1A0
		Dilution Fact	or: 1	MDL 6.6		
Mercury	ND	0.20	3,	SW846 7470A	11/10/05	HPNLG1A2
		Dilution Fact	or: 1	MDL 0.090		
Thallium	ND		ug/L	SW846 6020	11/10-11/17/05	HPNLG1A1
		Dilution Fact	or: 1	MDL 0.022		

NOTE(S):

B Estimated result. Result is less than RL.

J Method blank contamination. The associated method blank contains the target analyte at a reportable level.

Client Sample ID: TRIP BLANK

GC/MS Volatiles

Lot-Sample #:	A5K090129-007	Work Order #:	HPNND1AA	Matrix WQ
Date Sampled:	11/08/05 15:00	Date Received:	11/08/05	
Prep Date:	11/21/05	Analysis Date:	11/21/05	
Prep Batch #:	5325119			
Dilution Factor:	1	Method:	SW846 8260B	

		REPORTING		
PARAMETER	RESULT	LIMIT	UNITS	MDL
Bromochloromethane	ND	1.0	ug/L	0.24
1,2-Dibromoethane	ND	1.0	ug/L	0.24
Chloromethane	ND	1.0	ug/L	0.14
Bromomethane	ND	1.0	ug/L	0.36
Vinyl chloride	ND	1.0	ug/L	0.21
Chloroethane	ND	1.0	ug/L	0.24
Methylene chloride	2.0 B	2.0	ug/L	0.19
Acetone	1.5 J	10	ug/L	0.74
Carbon disulfide	ND	1.0	ug/L	0.28
1,1-Dichloroethene	ND	1.0	ug/L	0.18
1,1-Dichloroethane	ND	1.0	ug/L	0.21
1,2-Dichloroethene	ND	1.0	ug/L	0.35
(total)				
Chloroform	ND	1.0	ug/L	0.16
1,2-Dichloroethane	ND	1.0	ug/L	0.16
2-Butanone	ND	10	ug/L	0.39
1,1,1-Trichloroethane	ND	1.0	ug/L	0.21
Carbon tetrachloride	ND	1.0	ug/L	0.19
Bromodichloromethane	ND	1.0	ug/L	0.14
1,2-Dichloropropane	ND	1.0	ug/L	0.15
cis-1,3-Dichloropropene	ND	1.0	ug/L	0.12
Trichloroethene	ND	1.0	ug/L	0.28
Dibromochloromethane	ND	1.0	ug/L	0.19
1,1,2-Trichloroethane	ND	1.0	ug/L	0.22
Benzene	ND	1.0	ug/L	0.22
trans-1,3-Dichloropropene	ND	1.0	ug/L	0.17
Bromoform	ND	1.0	ug/L	0.17
4-Methyl-2-pentanone	ND	10	ug/L	0.32
2-Hexanone	ND	10	ug/L	0.35
Tetrachloroethene	ND	1.0	ug/L	0.19
1,1,2,2-Tetrachloroethane	ND	1.0	ug/L	0.22
Toluene	ND	1.0	ug/L	0.17
Chlorobenzene	ND	1.0	ug/L	0.20
Ethylbenzene	ND	1.0	ug/L	0.19
Styrene	ND	1.0	ug/L	0.13
Xylenes (total)	ND	2.0	ug/L	0.44

(Continued on next page)

Client Sample ID: TRIP BLANK

GC/MS Volatiles

Lot-Sample #...: A5K090129-007 Work Order #...: HPNND1AA Matrix..... WQ

	PERCENT	RECOVERY		
SURROGATE	RECOVERY	LIMITS		
Dibromofluoromethane	99	(73 - 122)		
1,2-Dichloroethane-d4	93	(61 - 128)		
Toluene-d8	98	(76 - 110)		
4-Bromofluorobenzene	84	(74 - 116)		

NOTE(S):

B Method blank contamination. The associated method blank contains the target analyte at a reportable level.

J Estimated result. Result is less than RL.

TRIP BLANK

GC/MS Volatiles

Lot-Sample #: A5K090129-007 Work Order #: HPNND1AA Matrix: WQ

MASS SPECTROMETER/DATA SYSTEM (MSDS) TENTATIVELY IDENTIFIED COMPOUNDS

		ESTIMATED	RETENTION	
PARAMETER	CAS #	RESULT	TIME	UNITS
None				ug/L

Client Sample ID: MBSmw-001-0006-gw

GC/MS Semivolatiles

Lot-Sample #: A5K09012 Date Sampled: 11/08/05 Prep Date: 11/14/05 Prep Batch #: 5318209	13:05 Date Received.	.: 11/08/05	Matr	rix WG
Dilution Factor: 1	Method	.: SW846 827	OC CWM	
		REPORTING	t T	
PARAMETER	RESULT	LIMIT	UNITS	MDL
1,4-Oxathiane	ND	5.0	ug/L	0.88
1,4-Dithiane	ND	5.0	ug/L	1.0
	PERCENT	RECOVERY		
SURROGATE	RECOVERY	LIMITS		
2-Fluorobiphenyl	84	(16 - 127)	
Nitrobenzene-d5	93	(43 - 121	.)	

Client Sample ID: MBSmw-001-0006-gw

Trace Level Organic Compounds

		DETECTION		
PARAMETER	RESULT	LIMIT	UNITS	METHOD
Thiodiglycol	ND	10	ug/L	SW846 SW8321A
	PERCENT	RECOVERY		
SURROGATE	RECOVERY	LIMITS	_	
Thiodiglycol-d4	88	(50 - 120))	

Client Sample ID: MBSmw-002-0007-gw

GC/MS Semivolatiles

	11/07/05 14:15 11/14/05	Work Order #: Date Received: Analysis Date:	11/08/05	Matrix	:	WG
Dilution Factor:	1	Method:	SW846 8270	C CWM		
			REPORTING			
PARAMETER		RESULT	LIMIT	UNITS	MDL	
1,4-Oxathiane		ND	5.0	ug/L	0.88	
1,4-Dithiane		ND	5.0	ug/L	1.0	
		PERCENT	RECOVERY			
SURROGATE		RECOVERY	LIMITS			
2-Fluorobiphenyl	· · · · · · · · · · · · · · · · · · ·	75	(16 - 127)			
Nitrobenzene-d5		93	(43 - 121)			

Client Sample ID: MBSmw-002-0007-gw

Trace Level Organic Compounds

PARAMETER	RESULT	DETECTION	UNITS	METHOD
Thiodiglycol	ND	10	ug/L	SW846 SW8321A
SURROGATE	PERCENT RECOVERY	RECOVERY LIMITS	_	
Thiodiglycol-d4	89	(50 - 120)		

Client Sample ID: MBSmw-003-0008-gw

GC/MS Semivolatiles

Lot-Sample #: A5K090129-03 Date Sampled: 11/07/05 11 Prep Date: 11/14/05 Prep Batch #: 5318209		: 11/08/05	Matr	cix WG
Dilution Factor: 1	Method	: SW846 8270	DC CWM	
		REPORTING		
PARAMETER	RESULT	LIMIT	UNITS	MDL
1,4-Oxathiane	ND	5.0	ug/L	0.88
1,4-Dithiane	ND	5.0	ug/L	1.0
	PERCENT	RECOVERY		
SURROGATE	RECOVERY	LIMITS	_	
2-Fluorobiphenyl	78	(16 - 127)		
Nitrobenzene-d5	90	(43 - 121)		

Client Sample ID: MBSmw-003-0008-gw

Trace Level Organic Compounds

Lot-Sample #...: A5K090129-010 Work Order #...: HPNNH1AC Matrix..... WG Date Sampled...: 11/07/05 11:40 Date Received..: 11/08/05 Prep Date....: 11/18/05 Analysis Date..: 01/05/06 Prep Batch #...: 5322621 Dilution Factor: 1

PARAMETER	RESULT	LIMIT	UNITS	METHOD
Thiodiglycol	ND	10	ug/L ·	SW846 SW8321A
	PERCENT	RECOVERY		
SURROGATE	RECOVERY	LIMITS	_	
Thiodiglycol-d4	75	(50 - 120)		

APPENDIX F

Client Sample ID: MBSmw-004-0009-gw

GC/MS Semivolatiles

	11/07/05 12:59 11/14/05	Work Order #: Date Received: Analysis Date:	11/08/05	Matrix	WG
Dilution Factor:	1	Method:	SW846 8270	C CWM	
			REPORTING		
PARAMETER		RESULT	LIMIT	UNITS	MDL
1,4-Oxathiane		ND	5.0	ug/L	0.88
1,4-Dithiane		ND	5.0	ug/L	1.0
		PERCENT	RECOVERY		
SURROGATE		RECOVERY	LIMITS		
2-Fluorobiphenyl		70	(16 - 127)		
Nitrobenzene-d5		92	(43 - 121)		

Client Sample ID: MBSmw-004-0009-gw

Trace Level Organic Compounds

PARAMETER	RESULT	DETECTION LIMIT	UNITS	METHOD
Thiodiglycol	ND	10	ug/L	SW846 SW8321A
SURROGATE	PERCENT RECOVERY	RECOVERY LIMITS		
Thiodiglycol-d4	83	(50 - 120)	-	

Chain of Custody Record	SEVERN TRENT	RN STL Irent Laboratories. Inc.
CIDENT (0901) CIDENT OC VIN	Project Wanager Mound Citure Il	Date 11-5-05 Chain of Custody Number 248983
City V) State Zip Code		Analysis (Attach list if Page of
Project Name and Location (State)		·····
Contract/Purchase Order/Quole No.	Matrix Containers &	Conditions of Receipt
Sample I.D. No. and Description (Containers for each sample may be combined on one line)	Prop	Lydi H HAU VAU
MB5-w-005-0011-QW 11-5-55		
		67
Possible Hazard Identification	Unknown	(A fee may be assessed if samples are relained Months longer than 1 month)
e Required	OC Requirements (Spe	
b.	Date Tigne DD 1. Received By	Date Time Time
2. Relinquished By 3. Relinquished By	Date Time The Standingd By	APPEN
Comments		
DISTRIBUTION: WHITE - Returned to Client with Report: CANARY - Stays with the Sample: PINK - Field Copy	with the Sample: PINK - Field Copy	

24 Hours 48 Hours 2 Days 14 Days 21 Days 1. Approdushed By 2. Relinquished By 3. Relinquished By Comments	rd Identification rd Flammable Skin Initant Poison B Time Required		Sample I.D. No. and Description Containers for each sample may be combined on one line) Date MBS MW-006-0012-g4 11-7-05 MBS MW-006-0012-g4 11-7-155	City Ray Evroc. State Zip Code Project Name and Location (State) Must Pard Bur Mc State Contract/Purchase Order/Quote No.	Address	Chain of Custody Record
Pate Time 1. Received By Date Time 2. Received By Date Time 2. Received By Date Time 3. Received By Date Date Time 3. Received By Date By Date Date Date Date Date Date Date Date	Sample Disposal Sample Disposal Unknown Return To Client OC Requirements (Spe		15 5 15 5 15 5 15 5 15 5 15 5 15 5 15 5 15 5 15 5 15 5 15 5 15 5 15 5 15 5 15 5 15 5 15 5 16 10 17 10 16 10 17 10 17 10 17 10 17 10 17 10 18 10 19 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 <td>Number Number</td> <td>Polen Manager Mouse Decus Do Telephone Number (Area Coděl/Fax Number</td> <td>Severn</td>	Number Number	Polen Manager Mouse Decus Do Telephone Number (Area Coděl/Fax Number	Severn
Audut U-3-ost 15-15 And U-3-ost 15-15 And I B post 1-438	Archive For Months longer than 1 month Archive For Months longer than 1 month	Image: set of the set of		Analysis (Attach list if more space is needed)	Data / - T T T T T T T T T T T T T T T T T T	INT STL In Trent Laboratories, Inc.

DISTRIBUTION: WHITE - Returned to Client with Report: CANARY - Stays with the Sample: PINK - Field Copy

.

Chain of Custody Record	Severn Trent Labo	rent laboratories Inc
Client Dor Pro	Project, Manager	Date Chain of Custody Number
Address 4	Têtephone Number (Àrea Code)/Fax Number	Page _
City Rovenna State Zip Code Project Name and Location (State) Muschard Richard Site	Sile Contact Ane Camer/Waybill Number	Analysis (Attach list if more place is needed)
Contract/Purchase Order/Ouole No. Sample I.D. No. and Description	rix Contu	Conditions of Receipt
mesmu-202-0010-9w 11-9		
mbsmu-005-0010-gf /1-8	1 1 1 1 1	
)
		69
Possible Hazard Identification		
mable Skin Initant Poison B	Unknown	(A fee may be assessed if samples are retained Months longer than 1 month)
🗆 Z.Days 🔲 14 Days 🔲 21 Daj	Other	=
	10af /-8 17mg 500/1	Date Time 15 15 5
2. Relinquished By	Date Time S. Beckived By) $ _{pate}^{Daty} O \leq _{Trace}^{Trace} APPEN$
Comments		

DISTRIBUTION: WHITE - Returned to Client with Report: CANARY - Stays with the Sample: PINK - Field Copy

Comments	In Anound time nequired 24 Hours 1 AB Hours 1 Tays 21 Days Other Other Other 1. Relinquished By 48 Hours 1 Tays 1 1 Days Other Ime 1. Received By N August 2. Relinquished By 49 Hours 1 40 Days 21 Days Other Ime 1. Received By N August N August 2. Relinquished By 41 14 Days Date Time 1. Received By N August N August 3. Relinquished By 41 1 Date Time N August N August N August 3. Relinquished By 1 1 Date Time N August N August 3. Relinquished By 1 1 Date Time N August N August	n Sample Disposal Sample Disposal Poison B Unknown Return To Client Disposal By Lab Archive ForMonths		$\frac{11 - 7 \times 1515}{11 - 7 \times 1010} \times \frac{2}{3} \times $	ct Lab Contact ybill Number Quad Qr gg gi gg gg gg gg	STL-4124 (0901) Project Manage Output Date Date Client Client Project Manage Output Output Address Project Manage Output Output Output Address Telephone Number (Area Code)/Fax Number Lab Number	Chain of Custody Record Severn Trent Laboratories
	MUUT 11/28/05 1/38/51/5 IX Date 11/28/05 1/17/38 APPENDIX				Analysis (Attach list if more space is needed) PCB/HL/1900 Hard your of TAL Mold TAL Mold TAL Mold	Chain of Custody Number Lab Number Lab Number Page	1

.

---- --

DISTRIBUTION: WHITE - Returned to Client with Report: CANARY - Stays with the Sample: PINK - Field Copy

.

2 A Hours I in the Frequency Palinaphed By 2 Relinquished By 3 Pelinquished By Comments	Possible Hazard Identification	Sample I.D. No. and Description (Containers for each sample may be combined on one line) MBSmu - 001-0006GW MBSmu - 003-0007-GW MBSmu - 004-0007-GW	City Raweyn State Zip Project Name and Location (State) Mudraud Buri al State Contract/Purchase Order/Duole No.	Chain of Custody Record
ays 🗌 21 Days	Poison B	Date 11-8-65 11-7-05 11-7-05	Zip Code	
Date Time $1-7$ Time 530 Date $1-7$ Time 1530 Date Time 128	Unknown	Image: Spin state Image: Spin state Image: Spin state	Carrier/Waybill Number Malrix Preservatives	0
Miter)	Archive For Months		Analysis (Attach list if The space is needed)	SEVERN STL Severn Trent Laboratories, Inc.
UL Date UL Srost 1515 F	(A fee may be assessed if samples are relained longer than 1 month)	71	Special Instructions/ Conditions of Receipt	Chain of Custody Number 248980 Page

-

DISTRIBUTION: WHITE - Returned to Client with Report: CANARY - Stays with the Sample: PINK - Field Copy

.,

STL Cooler Receipt Form/Narrative	Lot Number: ASK090129
North Canton Facility	
Client: PPO Project/////Standard Cooler Received on: ///S/DS Opened on: ///9 Fedx Client Drop Off UPS DHL FAS Stetson US Cargo Other: STL Cooler No# Sel Add Foam Box 1. Were custody seals on the outside of the cooler? Yes I If YES, Quantity Were the custody seals signed and dated? 2. Shipper's packing slip attached to this form? 3. Did custody papers accompany the samples?Yes KINO	STL Courier by: (Signature) STL Courier Mittue Client Cooler Other No Intact? Yes Yes No NA Yes No NA Relinquished by client? Yes No
 4. Did you sign the custody papers in the appropriate place? 5. Packing material used: Bubble Wrap Foam 6. 6. Cooler temperature upon receipt °C (see back of f METHOD: Temp Vial Coolant & Sample Agai COOLANT: Wet Ice 2. Blue Ice Dry Ice 7. Did all bottles arrive in good condition (Unbroken)? 8. Could all bottle labels and/or tags be reconciled with the CO 9. Were samples at the correct pH? (record below/on back) 10. Were correct bottles used for the tests indicated? 11. Were air bubbles >6 mm in any VOA vials? 12. Sufficient quantity received to perform indicated analyses? 13. Was a Trip Blank present in the cooler? Yes No 1. 14. Does the trip blank number match the cooler number in whe Contacted PM Date: by: 	nst Bottles IR ICE/H ₂ 0 Slurry I Water None Ves No O Ves No NA O Yes No NA O Yes No NA O Yes No NA O Yes No MA O Were VOAs on the COC? Yes No O Were VOAs on the COC? Yes No O NA O
√	
1. CHAIN OF CUSTODY	
The following discrepancies occurred:	
· · · · · · · · · · · · · · · · · · ·	·····
2. SAMPLE CONDITION	
	ceived after the recommended holding time had expired.
Sample(s)were rec	ceived after the recommended holding time had expired. received in a broken container.
Sample(s) were rec Sample(s) were	ceived after the recommended holding time had expired. received in a broken container.
Sample(s) were rec Sample(s) were 3. SAMPLE PRESERVATION Sample(s) recommended pH level(s). Nitric Acid Lot # 091305-HNO3; Sulfur Hydrochloric Acid Lot # 100504-HCl; Sodium Hydroxide and Zinc Acetate L	received in a broken container. _ were further preserved in sample receiving to meet ric Acid Lot # 041305-H2SO4; Sodium Hydroxide Lot # -041305 -NaOH: Lot # 071604-CH3COO2ZN/NaOH
Sample(s) were rec Sample(s) were 3. SAMPLE PRESERVATION Sample(s) recommended pH level(s). Nutric Acid Lot # 091305-HNO3; Sulfur Hydrochloric Acid Lot # 100504-HCl; Sodium Hydroxide and Zinc Acetate L Sample(s) were receiv	received in a broken container. _ were further preserved in sample receiving to meet ric Acid Lot # 041305-H2SO4; Sodium Hydroxide Lot # -041305 -NaOH;
Sample(s) were rec Sample(s) were 3. SAMPLE PRESERVATION Sample(s) recommended pH level(s). Nuric Acid Lot # 091305-HNO3; Sulfur Hydrochloric Acid Lot # 100504-HCl; Sodium Hydroxide and Zinc Acetate L Sample(s) were receiv	received in a broken container. _ were further preserved in sample receiving to meet ric Acid Lot # 041305-H2SO4; Sodium Hydroxide Lot # -041305 -NaOH: Lot # 071604-CH3COO2ZN/NaOH
Sample(s) were rec Sample(s) were 3. SAMPLE PRESERVATION Sample(s) recommended pH level(s). Nuric Acid Lot # 091305-HNO3; Sulfur Hydrochloric Acid Lot # 100504-HCl; Sodium Hydroxide and Zinc Acetate L Sample(s) were receiv	received in a broken container. _ were further preserved in sample receiving to meet ric Acid Lot # 041305-H2SO4; Sodium Hydroxide Lot # -041305 -NaOH: Lot # 071604-CH3COO2ZN/NaOH
Sample(s) were rec Sample(s) were 3. SAMPLE PRESERVATION Sample(s) recommended pH level(s). Nitric Acid Lot # 091305-HNO3; Sulfur Hydrochloric Acid Lot # 100504-HCl; Sodium Hydroxide and Zinc Acetate L	received in a broken container. _ were further preserved in sample receiving to meet ric Acid Lot # 041305-H2SO4; Sodium Hydroxide Lot # -041305 -NaOH: Lot # 071604-CH3COO2ZN/NaOH
Sample(s) were 3. SAMPLE PRESERVATION Sample(s) recommended pH level(s). Nitric Acid Lot # 091305-HNO3; Sulfur Hydrochloric Acid Lot # 100504-HCl; Sodium Hydroxide and Zinc Acetate I Sample(s) were receiv 4. Other (see below or back)	received in a broken container. _were further preserved in sample receiving to meet ric Acid Lot # 041305-H2SO4; Sodium Hydroxide Lot # -041305 -NaOH; Lot # 071604-CH3COO2ZN/NaOH ved with bubble > 6 mm in diameter (cc: PM)
Sample(s) were rec Sample(s) were 3. SAMPLE PRESERVATION Sample(s) recommended pH level(s). Nitric Acid Lot # 091305-HNO3; Sulfur Hydrochloric Acid Lot # 100504-HCl; Sodium Hydroxide and Zinc Acetate I Sample(s) were receiv	received in a broken container. _ were further preserved in sample receiving to meet ric Acid Lot # 041305-H2SO4; Sodium Hydroxide Lot # -041305 -NaOH; Lot # 071604-CH3CO02ZN/NaOH ved with bubble > 6 mm in diameter (cc: PM) Date Initials
Sample(s) were rec Sample(s) were 3. SAMPLE PRESERVATION Sample(s) recommended pH level(s). Nuric Acid Lot # 091305-HNO3; Sulfur Hydrochloric Acid Lot # 100504-HCl; Sodium Hydroxide and Zinc Acetate I Sample(s) were receiv 4. Other (see below or back) PH Client ID pH COVE L-Q	received in a broken container. _were further preserved in sample receiving to meet ric Acid Lot # 041305-H2SO4; Sodium Hydroxide Lot # -041305 -NaOH; Lot # 071604-CH3COO2ZN/NaOH ved with bubble > 6 mm in diameter (cc: PM)
Sample(s) were rec Sample(s) were 3. SAMPLE PRESERVATION Sample(s) recommended pH level(s). Nitric Acid Lot # 091305-HNO3; Sulfur Hydrochloric Acid Lot # 100504-HCl; Sodium Hydroxide and Zinc Acetate I Sample(s) were receiv 4. Other (see below or back)	received in a broken container. _ were further preserved in sample receiving to meet ric Acid Lot # 041305-H2SO4; Sodium Hydroxide Lot # -041305 -NaOH; Lot # 071604-CH3CO02ZN/NaOH ved with bubble > 6 mm in diameter (cc: PM) Date Initials
Sample(s) were rec Sample(s) were 3. SAMPLE PRESERVATION Sample(s) recommended pH level(s). Nitric Acid Lot # 091305-HNO3; Sulfur Hydrochloric Acid Lot # 100504-HCl; Sodium Hydroxide and Zinc Acetate I Sample(s) were receiv 4. Other (see below or back) Client ID pH COL	received in a broken container. _ were further preserved in sample receiving to meet ric Acid Lot # 041305-H2SO4; Sodium Hydroxide Lot # -041305 -NaOH; Lot # 071604-CH3CO02ZN/NaOH ved with bubble > 6 mm in diameter (cc: PM) Date Initials

APPENDIX F

. . .

SOP: NC-SC-0005. Sample Receiving N:\QAQC\NARRATIV\STL\Cooler Receipt STL\COOLER_STL_Rev 51 092005.doc

· · ·	North Canton Facilit		
Client ID	<u>р</u> Н	Date	Initials
· · · · · · · · · · · · · · · · · · ·			
<u> </u>	· · · · · · · · · · · · · · · · · · ·		
	· · · · · · · · · · · · · · · · · · ·		
· · · · · · · · · · · · · · · · · · ·			
· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		
Cooler	Temp	Method	Coolant
LZB	1.000	IZ	TCE
L99	3.2°C		
K 962	2.6°C		
	<i>a</i> -5-C		
screpancies Cont.			
		,	
			· ·/ · ·
			• • • • • •
		·····	
			· · · · · · · · · · · · · · · · · · ·
			!
·			

N:\QAQC\WARRATIV\STL\Cooler Receipt STL\COOLER_STL_Rev 51 092005.doc

Ē

APPENDIX F

ANALYTICAL REPORT

PROJECT NO. 0000341

MUSTARD BURIAL SITE

Lot #: A6A160120

Chantelle Carrol

SpecPro Inc 8451 State Route 5 Ravenna, OH 44266

SEVERN TRENT LABORATORIES, INC.

- `

Frank J. Calovini Project Manager

February 2, 2006

EXECUTIVE SUMMARY - Detection Highlights

A6A160120

PARAMETER	RESULT	REPORTING LIMIT	UNITS	ANALYTICAL METHOD
NO DETECTABLE PARAME				
· · ·				

ANALYTICAL METHODS SUMMARY

A6A160120

PARAMETER

ANALYTICAL METHOD

SW846 SW8321A

LCMS by SW8321A SW8321A

References:

SW846 "Test Methods for Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 and its updates.

SAMPLE SUMMARY

A6A160120

			SAMPLED	SAMP
WO #	SAMPLE#	CLIENT SAMPLE ID	DATE	TIME
HVN85	001	MBSMW-001-0013-GW	01/13/06	10:57
HVN9E	002	MBSMW-002-0014-GW	01/13/06	12:33
HVN9H	003	MBSMW-003-0015-GW	01/13/06	15:10
HVN94	004	MBSMW-004-0016-GW	01/13/06	14:17
HVN96	005	MBSMW-005-0017-GW	01/13/06	11:53
HVN97	006	MBSMW-005-0018-GW	01/13/06	11:53
HVN98	007	MBSMW-006-0019-GW	01/13/06	12:47

NOTE(S):

- The analytical results of the samples listed above are presented on the following pages.

- All calculations are performed before rounding to avoid round-off errors in calculated results.

- Results noted as "ND" were not detected at or above the stated limit.

- This report must not be reproduced, except in full, without the written approval of the laboratory.

- Results for the following parameters are never reported on a dry weight basis: color, corrosivity, density, flashpoint, ignitability, layers, odor,

paint filter test, pH, porosity pressure, reactivity, redox potential, specific gravity, spot tests, solids, solubility, temperature, viscosity, and weight.

Client Sample ID: MBSMW-001-0013-GW

Trace Level Organic Compounds

PARAMETER	RESULT	DETECTION LIMIT	UNITS	METHOD
Thiodiglycol	ND	10	ug/L	SW846 SW8321A
SURROGATE	PERCENT RECOVERY	RECOVERY LIMITS		
Thiodiglycol-d8	85	(50 - 120)	_	

Client Sample ID: MBSMW-002-0014-GW

Trace Level Organic Compounds

 Lot-Sample #...: A6A160120-002
 Work Order #...: HVN9E1AA
 Matrix...... WG

 Date Sampled...: 01/13/06 12:33
 Date Received..: 01/14/06
 Matrix..... WG

 Prep Date.....: 01/26/06
 Analysis Date..: 01/27/06
 Matrix.....

 Prep Batch #...: 6026357
 Dilution Factor: 1
 Matrix

PARAMETER	RESULT	DETECTION LIMIT	UNITS	METHOD
Thiodiglycol	ND	10	ug/L	SW846 SW8321A
SURROGATE Thiodiglycol-d8	PERCENT RECOVERY 89	RECOVERY LIMITS (50 - 120)	-	

Client Sample ID: MBSMW-003-0015-GW

Trace Level Organic Compounds

		DETECTION		
PARAMETER	RESULT	LIMIT	UNITS	METHOD
Thiodiglycol	ND	10	ug/L	SW846 SW8321A
	PERCENT	RECOVERY		
SURROGATE	RECOVERY	LIMITS	_	
Thiodiglycol-d8	88	(50 - 120)		

Client Sample ID: MBSMW-004-0016-GW

Trace Level Organic Compounds

 Lot-Sample #...: A6A160120-004
 Work Order #...: HVN941AA
 Matrix....: WG

 Date Sampled...: 01/13/06 14:17
 Date Received..: 01/14/06
 Matrix....: WG

 Prep Date....: 01/26/06
 Analysis Date..: 01/27/06
 Matrix....

 Prep Batch #...: 6026357
 Dilution Factor: 1
 Matrix....

PARAMETER	RESULT	DETECTION LIMIT	UNITS	METHOD
Thiodiglycol	ND	10	ug/L	SW846 SW8321A
SURROGATE	PERCENT RECOVERY	RECOVERY LIMITS	_	
Thiodiglycol-d8	88	(50 - 120)		

Client Sample ID: MBSMW-005-0017-GW

Trace Level Organic Compounds

 Lot-Sample #...: A6A160120-005
 Work Order #...: HVN961AA
 Matrix....: WG

 Date Sampled...: 01/13/06 11:53
 Date Received..: 01/14/06
 Matrix....: WG

 Prep Date....: 01/26/06
 Analysis Date..: 01/27/06
 Matrix....

 Prep Batch #...: 6026357
 Dilution Factor: 1
 Matrix...

PARAMETER	RESULT	DETECTION LIMIT	UNITS	METHOD
Thiodiglycol	ND	10	ug/L	SW846 SW8321A
	PERCENT	RECOVERY		
SURROGATE	RECOVERY	LIMITS	_	
Thiodiglycol-d8	88	(50 - 120)		

Client Sample ID: MBSMW-005-0018-GW

Trace Level Organic Compounds

 Lot-Sample #...: A6A160120-006
 Work Order #...: HVN971AA
 Matrix..... WG

 Date Sampled...: 01/13/06 11:53
 Date Received..: 01/14/06
 Matrix.... WG

 Prep Date....: 01/26/06
 Analysis Date..: 01/27/06
 Matrix....

 Prep Batch #...: 6026357
 Dilution Factor: 1
 Matrix

PARAMETER	RESULT	DETECTION LIMIT	UNITS	METHOD
Thiodiglycol	ND	10	ug/L	SW846 SW8321A
SURROGATE	PERCENT RECOVERY	RECOVERY LIMITS	-	
Thiodiglycol-d8	94	(50 - 120)		

Client Sample ID: MBSMW-006-0019-GW

Trace Level Organic Compounds

PARAMETER	RESULT	DETECTION LIMIT	UNITS	METHOD
				SW846 SW8321A
Thiodiglycol	ND	10	ug/L	5W046 5W032IA
	PERCENT	RECOVERY		
SURROGATE	RECOVERY	LIMITS	_	
Thiodiglycol-d8	87	(50 - 120)		

Chain of Custody Record	Severn Trent La	Irent Laboratories; Inc.
STL-4124 (0901)		
client Spec. Pro	Projectionanager Martille Carro II	Date I-13-00 I
P+5(k)	Telephone Number (Area Code)/Fax Number 330 -358 -1753	Lab Number Page of
cingavenna State Zip code		Analysis (Attach list if more space is needed)
on (State) MUSIar	Carrier/Waybill Number	Special Instructions/
ContractiPurchase Order Ougle No. * Check w/Frank Calovini-for any divestions	Matrix Containers & Preservatives	Conditions of Receipt
Sample I.D. No. and Description (Containers for each sample may be combined on one line) Date	Air Aquuous Sed. Soil Unpres. H2SO4 HNO3 HCI NaOH ZnAc/ NaOH	· ·
1-13		
1-13	X X X	
1-13	5:10 2	
5tr		
MBSMW-005-0017-90 1-13		.85
m85mw-065-008 Ju 1-13		
1-B		
mosnu-000-0014-15/1050 1-13		
C1-	1700 X X 0071	
(3-ine gallon containers)		
Possible Hazard Identification	Sample Disposal	
ımable 🔲 Skin Irritant 🔲 Poison B	ient de	(A life may be assessed it satisfies are retained Months longer than 1 month)
1 Um Around Iume Hequired	Other	
1. (Perpaduished BM) (1. ()	1-13 1715 1. Received by 1-13 1715 Out Pictoral	Date Time L 1-13-06 1715 ×
2. Relinguisped By CALL PLETRAL	2 Aeceived By	1-13-06 1855 P
3. Relinquished By	Time 3. Received By	$\begin{vmatrix} Date \\ 1 - H - Oc \end{vmatrix} \stackrel{Time}{\mathcal{B}}$
Comments		
DISTRIBUTION: WHITE - Returned to Client with Report, CANARY - Stays with the Sample, PINK - Field Copy	th the Sample; PINK - Field Copy	

	pt Form/Narra	itive	Lot Numbe	:: <u>AloA160120</u>	0
North Canton Fac	ility - supplied and a	ner, 2. And Friday () and Friday	vone 		
Client: Spec Pin		Project: Raven		Quote#:	
Cooler Received on: 1-		Opened on: 1-1L			من (Signature)
Fedx Client Drop O		DHL 🗌 FAS [🗌 STL Courier 🔀	3	
Stetson US Cargo		Other:			
STL Cooler No#		Foam Box	Client Cooler		
1. Were custody seals c	n the outside of the	cooler? Yes	No 🛛 In	tact? Yes 🗌 No	🗌 NA 🔀
If YES, Quantity Were the custody sea	la signed and dated	0	V		KZ
2. Shipper's packing sli			Ye	es 🗌 No 🗍 NA es 🗍 No 🦳 NA	
3. Did custody papers a	-			elinquished by client?	
4. Did you sign the cust				\sim No \sim	
5. Packing material use				her:	
6. Cooler temperature u				······	
METHOD: Temp Vial			inst Bottles		1 ₂ 0 Slurry 🗍
COOLANT: Wet Ice] Dry Ice	Water	None	
7. Did all bottles arrive	Ruby lunu	البضا "		Yes X No	
8. Could all bottle label	s and/or tags be rec	onciled with the (COC?	Yes 🕅 No 🗍	
9. Were samples at the	correct pH? (record	below/on back)		Yes 🗍 No 🗍 N	AX
10. Were correct bottles				Yes 🛛 No 🗌	
11. Were air bubbles >6	•				A 🔀
12. Sufficient quantity r				Yes 🛛 No 🗌	
13. Was a Trip Blank pr					No
14. Does the trip blank r					
Contacted PM	Date:	by:		ce Mail 🗌 Verbal 🗌] Other 🔄
Concerning:					
■ AF 1 a Factor of S00 301 G (1)			LEORADOR SOOT AND		
N CHAINOF CUSTOR			a ta gana ang ang ang ang ang ang ang ang a		and same the same a subject to the same same same same same same same sam
1. CHAIN OF CUSTOR					na najvi je br>19 dalj je najvi je na 19 dalj je najvi je na
The following discr	epancies occurred:		Amal	nor clic +	Schult
	epancies occurred:		disposal	per client	Foguest.
The following discr	epancies occurred:		disposed	per client	roguest.
The following discr	epancies occurred:		disposal	por client	Foguest.
The following discr	epancies occurred: <u>rinse uzt</u>		disposed	for client	Fequest.
The following discr	epancies occurred: <u>rinse uzt</u>	tor was		per client	
The following discr Image: Discr <t< td=""><th>epancies occurred: <u>rinse uzt</u></th><td>ter Was were re</td><td></td><td>commended holding</td><td></td></t<>	epancies occurred: <u>rinse uzt</u>	ter Was were re		commended holding	
The following discr Image: Discrete D	epancies occurred: <u> <u> </u> <u> </u> <u> </u> <u> </u> <u> </u> <u> </u> <u> </u> <u> </u> </u>	ter Was were re	ceived after the re	commended holding	
The following discr Image: Discrete the following	epancies occurred: רואש נעצר DN ATION	ta Was were re were	ceived after the re received in a brol _ were further pre	commended holding ken container. served in sample rece	time had expired. eiving to meet
The following discr Image: Discrete D	epancies occurred: <u>() NSC</u> UZ1 DN ATION evel(s). Nitric Acid Lot	<u>far</u> Wais 	ceived after the re received in a brol were further pre uric Acid Loi # 100405	commended holding ken container. served in sample rece -H2SO4; Sodium Hydroxide l	time had expired. eiving to meet
The following discr Image: Discrete condition 2. SAMPLE CONDITION Sample(s) 3. SAMPLE PRESERV Sample(s) recommended pH log Hydrochloric Acid Lot # 1	epancies occurred: <u>() NSC</u> UZ1 DN ATION evel(s). Nitric Acid Lot	Were re Were re Were re Were Were Were	ceived after the re received in a brol were further pre <i>ric Acid Loi #</i> 100405 <i>Lot #</i> 071604- <i>CH3CO</i>	commended holding ken container. served in sample rece -H2SO4; Sodium Hydroxide I O2ZN/NaOH	time had expired. eiving to meet Lot # -100405 -NaOH;
The following discr Image: Discrete D	epancies occurred: ریکی نکر نیک ارک ON ATION evel(s). Nitric Acid Lot i 00504-HCl; Sodium Hyd	Were re Were re Were re Were Were Were	ceived after the re received in a brol were further pre <i>ric Acid Loi #</i> 100405 <i>Lot #</i> 071604- <i>CH3CO</i>	commended holding ken container. served in sample rece -H2SO4; Sodium Hydroxide l	time had expired. eiving to meet Lot # -100405 -NaOH;
The following discr Image: Discrete condition 2. SAMPLE CONDITION Sample(s) 3. SAMPLE PRESERV Sample(s) recommended pH loghydrochloric Acid Lot # 1	epancies occurred: ریکی نکر نیک ارک ON ATION evel(s). Nitric Acid Lot i 00504-HCl; Sodium Hyd	Were re Were re Were re Were Were Were	ceived after the re received in a brol were further pre <i>ric Acid Loi #</i> 100405 <i>Lot #</i> 071604- <i>CH3CO</i>	commended holding ken container. served in sample rece -H2SO4; Sodium Hydroxide I O2ZN/NaOH	time had expired. Eiving to meet Lot # -100405 -NaOH;
The following discr Image: Discrete D	epancies occurred: ریکی نکر نیک ارک ON ATION evel(s). Nitric Acid Lot i 00504-HCl; Sodium Hyd	Were re Were re Were re Were Were Were	ceived after the re received in a brol were further pre <i>ric Acid Loi #</i> 100405 <i>Lot #</i> 071604- <i>CH3CO</i>	commended holding ken container. served in sample rece -H2SO4; Sodium Hydroxide I O2ZN/NaOH	time had expired. eiving to meet Lot # -100405 -NaOH;
The following discr Image: Discrete D	epancies occurred: ریکی نکر نیک ارک ON ATION evel(s). Nitric Acid Lot i 00504-HCl; Sodium Hyd	Were re Were re Were re Were Were Were	ceived after the re received in a brol were further pre <i>ric Acid Loi #</i> 100405 <i>Lot #</i> 071604- <i>CH3CO</i>	commended holding ken container. served in sample rece -H2SO4; Sodium Hydroxide I O2ZN/NaOH	time had expired. eiving to meet Lot # -100405 -NaOH;
The following discr Image: Discrete D	epancies occurred: ریکی نکر نیک ارک ON ATION evel(s). Nitric Acid Lot i 00504-HCl; Sodium Hyd	ter Was were re were # 100405-HNO3; Sulfi froxide and Zinc Acetate were recei	ceived after the re received in a brol were further pre <i>ric Acid Loi #</i> 100405 <i>Lot #</i> 071604- <i>CH3CO</i>	commended holding t ken container. served in sample rece -H2SO4; Sodium Hydroxide I O2ZN/NaOH 6 mm in diameter (co	time had expired. eiving to meet Lot #-100405 -NaOH; c: PM)
The following discr Image: Discrete D	epancies occurred: ریکی نکر نیک ارک ON ATION evel(s). Nitric Acid Lot i 00504-HCl; Sodium Hyd	Were re Were re Were re Were Were Were	ceived after the re received in a brol were further pre <i>ric Acid Loi #</i> 100405 <i>Lot #</i> 071604- <i>CH3CO</i>	commended holding ken container. served in sample rece -H2SO4; Sodium Hydroxide I O2ZN/NaOH	time had expired. eiving to meet Lot # -100405 -NaOH;
The following discr Image: Discrete D	epancies occurred: ریکی نکر نیک ارک ON ATION evel(s). Nitric Acid Lot i 00504-HCl; Sodium Hyd	ter Was were re were # 100405-HNO3; Sulfi froxide and Zinc Acetate were recei	ceived after the re received in a brol were further pre <i>ric Acid Loi #</i> 100405 <i>Lot #</i> 071604- <i>CH3CO</i>	commended holding t ken container. served in sample rece -H2SO4; Sodium Hydroxide I O2ZN/NaOH 6 mm in diameter (co	time had expired. eiving to meet Lot #-100405 -NaOH; c: PM)
The following discr Image: Discrete D	epancies occurred: ریکی نکر نیک ارک ON ATION evel(s). Nitric Acid Lot i 00504-HCl; Sodium Hyd	ter Was were re were # 100405-HNO3; Sulfi froxide and Zinc Acetate were recei	ceived after the re received in a brol were further pre <i>ric Acid Loi #</i> 100405 <i>Lot #</i> 071604- <i>CH3CO</i>	commended holding t ken container. served in sample rece -H2SO4; Sodium Hydroxide I O2ZN/NaOH 6 mm in diameter (co	time had expired. eiving to meet Lot #-100405 -NaOH; c: PM)