Final

Sampling and Analysis Plan for Groundwater Sampling at the RVAAP-12 Load Line 12 Addendum No. 1

> Ravenna Army Ammunition Plant, Ravenna, Ohio

> > April 14, 2009

Contract No. W912QR-04-D-0028 Delivery Order No. 0001

Prepared for:

US Army Corps of Engineers.

United States Army Corps of Engineers Louisville District

Prepared by:

SAIC Engineering of Ohio, Inc. 8866 Commons Boulevard, Suite 201 Twinsburg, Ohio 44087

3833.20090414.001

REPORT DOCUMENTATION PAGE					Form Approved OMB No. 0704-0188
gathering and maintaining the data needed, and c	completing an sing the burn ite 1204, Ar a collection of	d reviewing the collection of infi den, to Department of Defens lington, VA 22202-4302. Res f information if it does not displa	e, Washington He bondents should be	adquarters S	ne for reviewing instructions, searching existing data sources, dring this burden estimate or any other aspect of this collection services. Directorate for Information Operations and Reports notwithstanding any other provision of law, no person shall be number.
 REPORT DATE (DD-MM-YYYY) 10-04-2009 	2. REPO	DRT TYPE Technica	1		3. DATES COVERED (From - To) April 2009
4. TITLE AND SUBTITLE				5a. COM	NTRACT NUMBER
Final					W912QR-04-D-0028
Sampling and Analysis Plan	NUA AD	101-11-10		5b. GR4	ANT NUMBER
For Groundwater Sampling at the F Addendum No.1	CVAAP-	12 Load Line 12			NA
Ravenna Army Ammunition Plant				5c. PRO	GRAM ELEMENT NUMBER
Ravenna, Ohio					NA
6. AUTHOR(S)				5d. PRO	DJECT NUMBER
Paul Parrish					Delivery Order No.0001
				Se. TAS	SK NUMBER
					NA
				5f WO	RK UNIT NUMBER
				51. 110	NA
7. PERFORMING ORGANIZATION NA					8. PERFORMING ORGANIZATION
	AME(S) AI	ND ADDRESS(ES)			REPORT NUMBER
SAIC Engineering of Ohio, Inc. 8866 Commons Boulevard, Suite 2	201				3833.20090410.001
Twinsburg, OH 44087					
9. SPONSORING/MONITORING AGE	NCY NAM	E(S) AND ADDRESS(ES)			10. SPONSOR/MONITOR'S ACRONYM(S)
USACE - Louisville District					CELRL-ED-EE
U.S. Army Corps of Engineers					
600 Martin Luther King, Jr. Place					11. SPONSOR/MONITOR'S REPORT NUMBER(S)
PO Box 59 Louisville, Kentucky 40202-0059					NA
12. DISTRIBUTION/AVAILABILITY ST	ATEMEN	т			
Reference distribution page.					
13. SUPPLEMENTARY NOTES					
None.					
14. ABSTRACT					
This Sampling and Analysis Plan o Plant (RVAAP). The groundwater RVAAP.	utlines th results w	e approach to sample g ill be used to support t	groundwater a he completior	t Load L n of the F	ine 12 at the Ravenna Army Ammunition easibility Study for Load Line 12 at
15. SUBJECT TERMS					
Groundwater Sampling, Sampling	and Analy	ysis Plan, Load Line 12	2, Ravenna Ai	rmy Amn	nunition Plant
16. SECURITY CLASSIFICATION OF:		17. LIMITATION OF	18. NUMBER	19a. NA	ME OF RESPONSIBLE PERSON
a. REPORT b. ABSTRACT c. TH		ABSTRACT	OF PAGES		NA
NA NA	NA	NA	FAGES	19b. TEL	EPHONE NUMBER (Include area code)
					NA

Standard Form 298 (Rev. 8/98) Prescribed by ANSI Std. 239.18

CONTRACTOR STATEMENT OF INDEPENDENT TECHNICAL REVIEW

Science Applications International Corporation (SAIC) has completed the Final Sampling and Analysis Plan for Groundwater Sampling at the RVAAP-12 Load Line 12 Addendum No. 1 at the Ravenna Army Ammunition Plant, Ravenna, Ohio. Notice is hereby given that an independent technical review has been conducted that is appropriate to the level of risk and complexity inherent in the project. During the independent technical review, compliance with established policy principles and procedures, utilizing justified and valid assumptions, was verified. This included review of data quality objectives; technical assumptions; methods, procedures, and materials to be used; the appropriateness of data used and level of data obtained; and reasonableness of the results, including whether the product meets the customer's needs consistent with law and existing USACE policy.

Paul Parish Study/Design Team Leader

Yeur 4).

W. Kevin Jago, P.G. Independent Technical Review Team Leader

Significant concerns and the explanation of the resolution are as follows:

Internal SAIC Independent Technical Review comments are recorded on a Document Review Record per SAIC quality assurance procedure QAAP 3.1. This Document Review Record is maintained in the project file. Changes to the report addressing the comments have been verified by the Study/Design Team Leader. As noted above, all concerns resulting from independent technical review of the project have been considered.

Scott Armstrong

Principal w/ A-E firm

Apr./ B 2009

Date

04/08/09 Date

04/08/09

Final

Sampling and Analysis Plan for Groundwater Sampling at the RVAAP-12 Load Line 12 Addendum No. 1

Ravenna Army Ammunition Plant Ravenna, Ohio

Contract No. W912QR-04-D-0028 Delivery Order No. 0001

Prepared For:

U.S. Army Corps of Engineers 600 Martin Luther King, Jr. Place Louisville, Kentucky 40202

Prepared By:

SAIC Engineering of Ohio, Inc. 8866 Commons Boulevard, Suite 201 Twinsburg, Ohio 44087

April 14, 2009

DOCUMENT DISTRIBUTION

for the

Final

Sampling and Analysis Plan

for Groundwater Sampling at the RVAAP-12 Load Line 12 Addendum No. 1

Ravenna Army Ammunition Plant

Ravenna, Ohio

Name/Organization	Number of	Number of
	Printed Copies	Electronic Copies
Vicki Deppisch, Ohio EPA - NEDO	1	1
Eileen Mohr, Ohio EPA-NEDO	1	1
Bonnie Buthker, Ohio EPA-SWDO	1	1
Katie Elgin, OHARNG	1	1
Mark Patterson, RVAAP Facility Manager	2	2
Glen Beckham, USACE – Louisville District	1	1
Mark Nichter, USACE – Louisville District	1	1
Mark Krivansky, USAEC	0	1
REIMS	0	1
Kevin Jago, SAIC	1	1
Paul Parrish, SAIC	1	1

Ohio EPA-NEDO = Ohio Environmental Protection Agency-Northeast District Office

Ohio EPA-SWDO = Ohio Environmental Protection Agency-Southwest District Office

OHARNG = Ohio Army National Guard

RVAAP = Ravenna Army Ammunition Plant

USACE = United States Army Corps of Engineers

USAEC = United States Army Environmental Command

REIMS = Ravenna Environmental Information Management System

SAIC = Science Applications International Corporation

PART I

Final

Field Sampling Plan for the Sampling and Analysis Plan Groundwater Sampling at the RVAAP-12 Load Line 12 Addendum No. 1

> Ravenna Army Ammunition Plant Ravenna, Ohio

> Contract No. W912QR-04-D-0028 Delivery Order No. 0001

Prepared For:

U.S. Army Corps of Engineers 600 Martin Luther King, Jr. Place Louisville, Kentucky 40202

Prepared By:

SAIC Engineering of Ohio, Inc. 8866 Commons Boulevard, Suite 201 Twinsburg, Ohio 44087

April 14, 2009

TABLE OF CONTENTS

8.0 REFERENCES	8-1
7.0 INVESTIGATION-DERIVED WASTE	7-1
6.0 SAMPLE PACKAGING AND SHIPPING REQUIREMENTS	6-1
5.7 MONTHLY REPORTS	
5.6 CORRECTIONS TO DOCUMENTATION	
5.5 DOCUMENTATION PROCEDURES	
5.4 SAMPLE DOCUMENTATION	5-1
5.3 SAMPLE NUMBERING SYSTEM	5-1
5.2 PHOTOGRAPHS	5-1
5.1 FIELD LOGBOOK	5-1
5.0 SAMPLE CHAIN OF CUSTODY/DOCUMENTATION	5-1
4.1.6 Decontamination Procedures	
4.1.5 Field Quality Control Sampling Procedures	
4.1.4 Sample Containers and Preservation Techniques	
4.1.3 Well Purging Methods	
4.1.2 Field Measurement Procedures and Criteria	4-1
4.1.1 Water Level Measurement	
4.1 GROUNDWATER SAMPLING	4-1
4.0 FIELD ACTIVITIES	4-1
3.0 PROJECT SCOPE AND OBJECTIVES	3-1
2.2 PROJECT SCHEDULE	
2.1 PROJECT ORGANIZATION AND RESPONSIBILITIES	
2.0 PROJECT ORGANIZATION AND RESPONSIBILITIES	
1.0 PROJECT DESCRIPTION	1-1
ACRONYMS AND ABBREVIATIONS	
LIST OF APPENDEICES	
LIST OF FIGURES	
LIST OF TABLES	
I IST OF TADIES	

LIST OF TABLES

Table 3-1.	Wells to be Sampled and Rationale for Inclusion	3-1
Table 3-2.	Description of MNA Analytical Suite	3-2

LIST OF FIGURES

Figure 1-1.	General Locations and Orientation of the RVAAP/RTLS	1-2
Figure 1-2.	Location of Load Line 12 at the RVAAP	1-3
Figure 1-3.	Proposed Well Sample Locations at Load Line 12	1-5
Figure 2-1.	Project Personnel Organization Chart	2-1
Figure 2-2.	Project Schedule	2-2
Figure 3-1.	Potentiometric Surface – November 2000	3-4
Figure 3-2.	Potentiometric Surface – January 2005	3-5
Figure 3-3.	Potentiometric Surface – February 2005	3-6
Figure 3-4.	Potentiometric Surface – March 2005	3-7
Figure 3-5.	Potentiometric Surface – April 2005	3-8
Figure 5-1.	Sample ID Example and Planned Sample IDs For The Project	5-2

LIST OF APPENDICES

Appendix A. Previous Groundwater Sampling Data for all Site Wells at Load Line 12

ACRONYMS AND ABBREVIATIONS

COC	Chemical of Concern
EQM	Environmental Quality Management, Inc.
ESTCP	Environmental Security Technology Certification Program
FS	Feasibility Study
FWGWMP	Facility-Wide Groundwater Monitoring Program
HMX	High Melting Explosive
IDW	Investigation-Derived Waste
MNA	Monitored Natural Attenuation
Ohio EPA	Ohio Environmental Protection Agency
OVA	Organic Vapor Analyzer
PBA	Performance-Based Acquisition
PCB	Polychlorinated Biphenyls
PID	Photoionization Detector
PPE	Personal Protective Equipment
QAPP	Quality Assurance Project Plan
QC	Quality Control
RDX	Royal Demolition Explosive
RVAAP	Ravenna Army Ammunition Plant
SAIC	Science Applications International Corporation
SAP	Sampling and Analysis Plan
SVOC	Semivolatile Organic Compounds
TAL	Target Analyte List
TCLP	Toxicity Characteristic Leaching Procedure
TOC	Total Organic Carbon
USACE	U.S. Army Corps of Engineers
VOCs	Volatile Organic Compound

1.0 PROJECT DESCRIPTION

This Sampling and Analysis Plan (SAP) Addendum No. 1 addresses groundwater sampling in Load Line 12 at the Ravenna Army Ammunition Plant (RVAAP), figures 1-1, 1-2 and 1-3. This work is being conducted by Science Applications International Corporation (SAIC) as part of the 2008 Performance-Based Acquisition (PBA) for Environmental Investigation and Remediation at the RVAAP under contract W912QR-04-D-0028, Delivery Order 0001, Task 4 with the U.S. Army Corps of Engineers (USACE) Louisville District.

Groundwater sampling activities will be conducted at selected monitoring wells within and downgradient of former source areas at Load Line 12 to obtain current contemporaneous data for numerical fate and transport modeling and evaluation of remedial alternatives in a Feasibility Study (FS). Samples will be collected and analyzed for groundwater chemistry necessary to evaluate remedial alternatives for monitored natural attenuation (MNA) parameters. These data will be incorporated into a future assessment of degradation rates for nitrate and RDX. Proposed sampling locations are shown in Figure 1-3.

As part of the Facility-Wide Groundwater Monitoring Program (FWGWMP), all the wells at Load Line 12 were sampled for a full suite of analytes required under the FWGWMP and four quarters of data will have been collected by October 2008. The data from those sampling events will be evaluated along with the data generated by SAIC during this investigation. The 2008 FWGWMP data provide the majority of information needed for the future FS for groundwater at Load Line 12. However, additional sampling will be required under this SAP Addendum as some water chemistry parameters needed to evaluate MNA were not sampled as part of the quarterly sampling conducted under the FWGWMP.

This SAP Addendum No. 1 for groundwater sampling at Load Line 12 tiers under and supplements the guidance and methods presented in the *Facility-Wide Sampling and Analysis Plan for the Ravenna Army Ammunition Plant, Ravenna, Ohio* (USACE 2001). The Facility-Wide SAP provides the general technical procedures and protocols for conducting fieldwork at RVAAP. This SAP Addendum No. 1 includes the sampling and analysis objectives, rationales, planned activities, and technical specifications for the work to be conducted for this investigation. Where appropriate, this SAP Addendum No. 1 contains references to the Facility-Wide SAP for standard procedures and protocols.

The groundwater sampling to be conducted will be consistent with the Facility-Wide Groundwater Monitoring Program (USACE 2004). Groundwater sampling will be sampled using low-flow methods as specified in the Facility-Wide SAP.

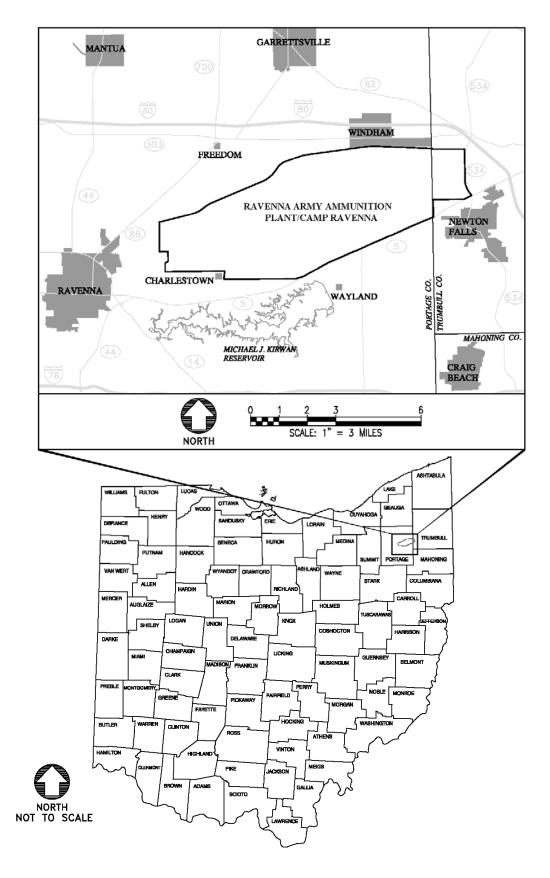
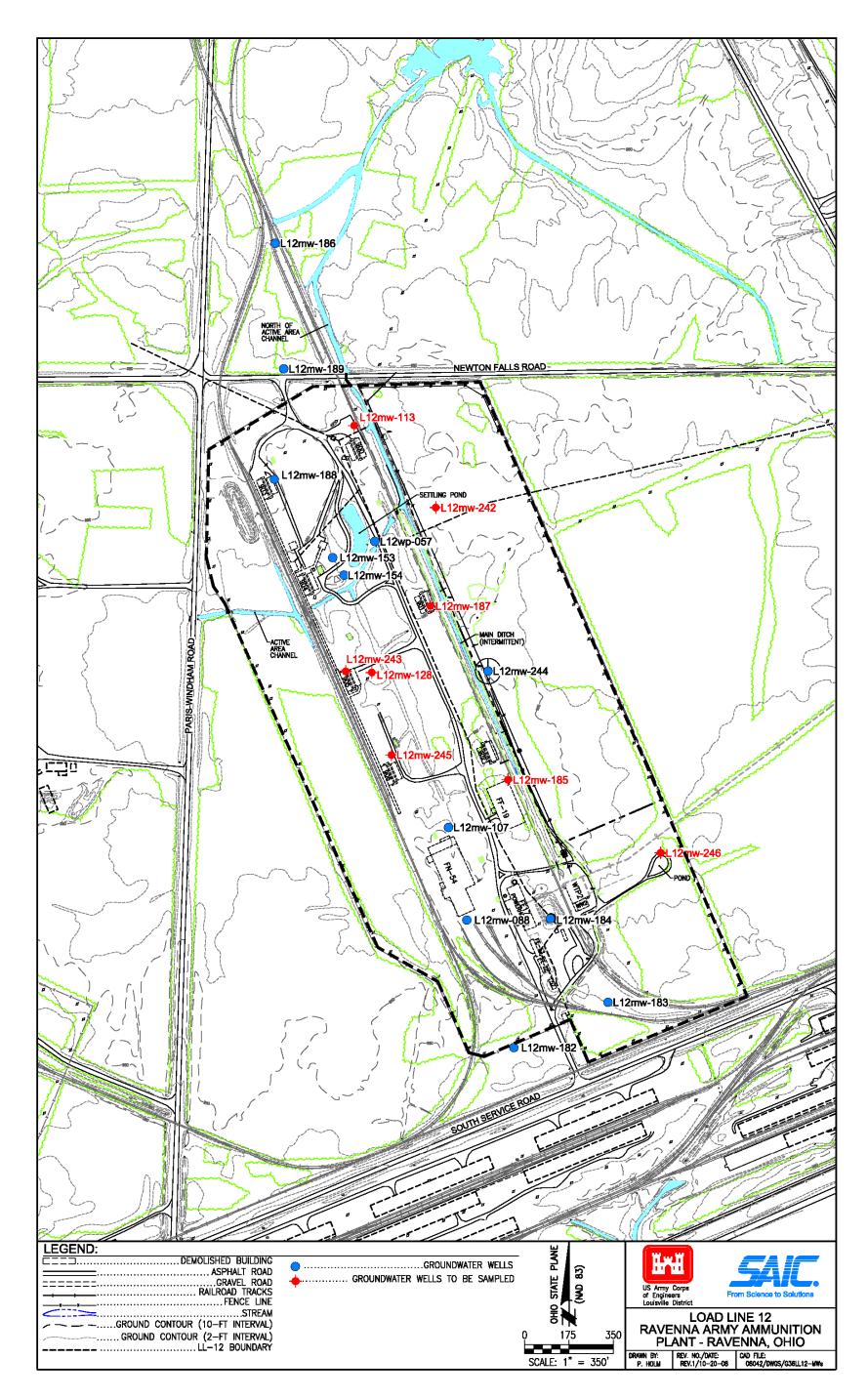
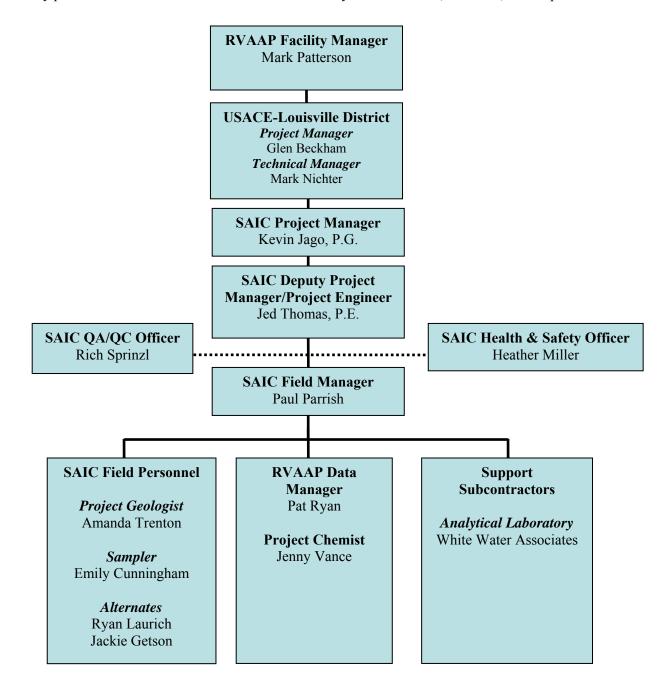


Figure 1-1. General Locations and Orientation of the RVAAP/RTLS

Figure 1-2. Location of Load Line 12 at the RVAAP




Figure 1-3. Proposed Well Sample Locations at Load Line 12

Load Line 12

2.0 PROJECT ORGANIZATION AND RESPONSIBILITIES

2.1 PROJECT ORGANIZATION AND RESPONSIBILITIES

The project organization and responsibilities are presented in Figure 2-1. The functional responsibilities of key personnel are described in Section 2 of the Facility-Wide SAP and, therefore, are not presented here.

2.2 PROJECT SCHEDULE

Groundwater sampling activities are estimated to require 22 days. Sampling activities will include one sampling event for eight monitoring wells located at Load Line 12, data verification and reduction and analysis of the data. Results of the sampling investigation will be presented in a Feasibility Study for Groundwater at Load Line 12.

ID	Task Name	Duration	Start	Finish	Predecessors			150-0-0-00
						Apr	May	Jun
1	LL12 Groundwater Supplemental Sampling and Analysis Plan	45 days	Mon 4/13/09	Wed 5/27/09		4		
2	Prepare and Submit Final to Army and Ohio EPA	0 days	Mon 4/13/09	Mon 4/13/09		4/13		
3	Army and Ohio EPA Review and Approval	45 days	Mon 4/13/09	Wed 5/27/09	2	<u> </u>		
4	Implement LL12 Groundwater Supplemental Sampling Plan	22 days	Thu 5/28/09	Thu 6/18/09			÷	_
5	Conduct Supplemental Sampling	2 days	Thu 5/28/09	Fri 5/29/09	3		2	1
6	Sampling Analysis and Data Verification	20 days	Sat 5/30/09	Thu 6/18/09	5			*

Figure 2-2. Project Schedule

The scope of this investigation is to sample groundwater at selected monitoring wells within, and downgradient of, the nitrate source area at Load Line 12 to obtain current contemporaneous data for modeling and attenuation rate calculation purposes. Table 3-1 below presents the wells to be sampled during this investigation, and their rationale for their inclusion. Figures 3-1 through 3-5 present the available potentiometric surface maps for Load Line 12.

Well	Rationale
L12mw-113	Historic HMX contamination found in this well
L12mw-128	Downgradient of L12mw-187
L12mw-185	Nitrate Source Area
L12mw-187	Nitrate Source Area
L12mw-242	Upgradient of L12mw-187 and Downgradient of L12mw-113
L12mw-243	Downgradient of L12mw-185 and L12mw-187
L12mw-245	Downgradient of L12mw-185
L12mw-246	Downgradient of L12mw-185

Table 3-1.	Wells to be S	Sampled and	Rationale for	Inclusion
------------	---------------	-------------	----------------------	-----------

Wells closest to nitrate source areas were chosen so that degradation calculations can be made with respect to wells at different distances downgradient from those source area wells.

A total of four quarters of sampling was completed in October 2008 for all of the wells located at Load Line 12 (performed under FWGWMP by Environmental Quality Management, Inc. [EQM]). EQM sampled the wells for explosives, propellants, target analyte list (TAL) metals, cyanide, nitrate, semivolatile organic compounds (SVOCs), polychlorinated biphenyls (PCBs), pesticides, and volatile organic compounds (VOCs). A summary of the groundwater data generated from previous quarterly sampling events for all of the site wells located at Load Line 12 is included as Appendix A to this SAP. Nitrate results for some sampling events were qualified "B" during the data verification process, as nitrate was found in either the equipment rinse blank or the method blank. The results that were less than 5 times the blank contamination were flagged "B". The method blank or equipment rinsate blank results are included at the end of the data summary in Appendix A. SAIC proposes not to collect any additional samples for COCs, and to collect one round of sampling for MNA parameters at the eight selected wells. The MNA parameters selected for analysis are based on and consistent with the Environmental Security Technology Certification Program's (ESTCP) Natural Attenuation of Explosives in Groundwater completion report (Pennington, Zakikhani, Harrelson and Allen 1999). Such an approach was utilized at Louisiana Army Ammunition Plant and Joliet Army Ammunition Plant. These parameters were also utilized in an MNA evaluation for explosives as part of the RCRA Facility Investigation for Site-Wide Groundwater at Holston Army Ammunition Plant (USACE 2007). Table 3-2 presents a list of the MNA parameters to be collected, and the justification for inclusion for this investigation.

Table 3-2.	Description	of MNA Analytical Suite
------------	-------------	-------------------------

Analyte	Description and Justification for Inclusion in MNA Suite
DNX, MNX, TNX	The nitroso derivatives of RDX (DNX, MNX, and TNX) are first-stage degradation compounds. DNX and MNX are additionally first stage degradation compounds of HMX. These intermediates are also susceptible to subsequent degradation and are short-lived in the environment.
Dimethylhydrazines (1,1- and 1,2-)	Intermediate degradation products of RDX. Short-lived in the environment.
Hydrazine	End product indicator of RDX. Short-lived in the environment.
Ammonia	End product indicator for explosives degradation
Nitrate	End product indicator. Nitrate is the most efficient electron acceptor in anaerobic biodegradation. Also, nitrate is reduced to nitrite when utilized by microorganisms as an electron acceptor
Methane	Methane is an end product indicator and an anaerobic biodegradation transformation product of explosives degradation. Ethane and ethylene results are also reported under the laboratory's organic gases suite, but these analytes are not considered significant to the evaluation of MNA processes
Methanol	End product indicator and anaerobic biodegradation transformation product
Phosphorous	Limiting nutrient for microbial growth and activity. Low levels indicate decreasing potential for the maintenance of adequate habitats for degradative microorganisms
Organic Nitrogen	End product indicator. Also supports co-metabolic microbial activity
Total Organic Carbon (TOC)	Anaerobic studies suggest degradation of explosives in groundwater can utilize co-metabolic processes that incorporate organic carbon as a co-metabolite
Ferrous Iron	Iron is a common electron acceptor utilized in anaerobic biodegradation
Sulfate and Sulfide	Sulfate can be utilized by microbes as an electron acceptor in anaerobic biodegradation, resulting in the production of sulfide
Alkalinity	Indicator of feasibility and types of degradation processes possible. Alkaline conditions favor degradation of explosives
Carbon Dioxide	Microorganisms utilize carbon dioxide as an electron acceptor once sulfate is exhausted
Oxidation-reduction potential	Indicator of feasibility and types of degradation processes possible. Monitored as a field parameter

Sources: Brannon and Pennington 2002; Strategic Environmental Research and Development Program 2004; and Pennington et. al., 1999.

MNA = Monitored natural attenuation.

RDX = 1,3,5-Trinitroperhydro-1,3,5-triazine.

One round of sampling for the MNA parameters will be sufficient to evaluate the current site conditions because of the use of the recent data collected by EQM for the primary COCs. The MNA parameters will be used to evaluate if natural attenuation is taking place at the site. Based on the results of the sampling natural attenuation will be further evaluated in the FS phase of this investigation.

Groundwater monitoring results from the source area and downgradient areas will be used to assess the degradation rates for nitrate and RDX. Groundwater sampling will be conducted in accordance with the RVAAP Facility-Wide SAP.

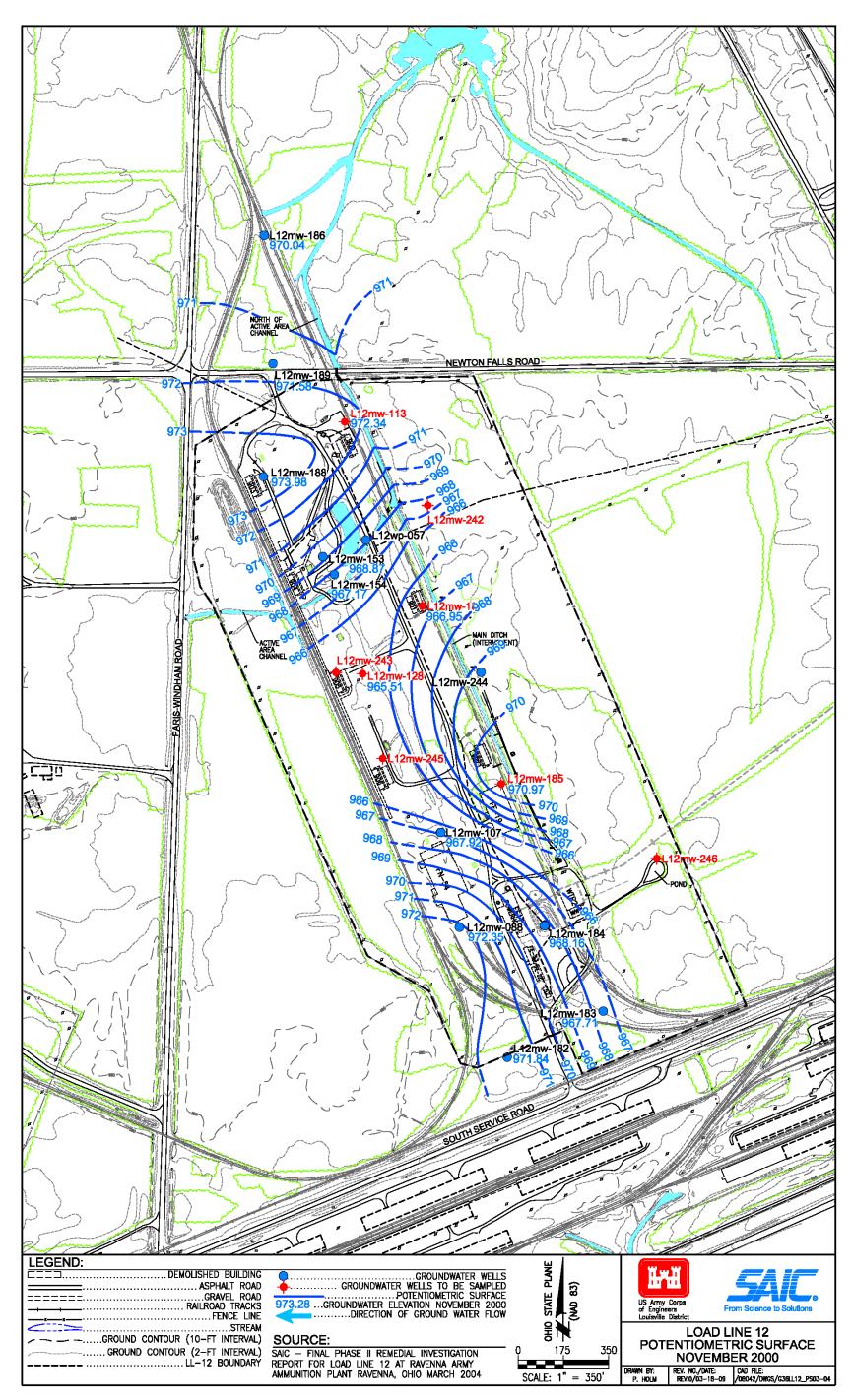


Figure 3-1. Potentiometric Surface – November 2000

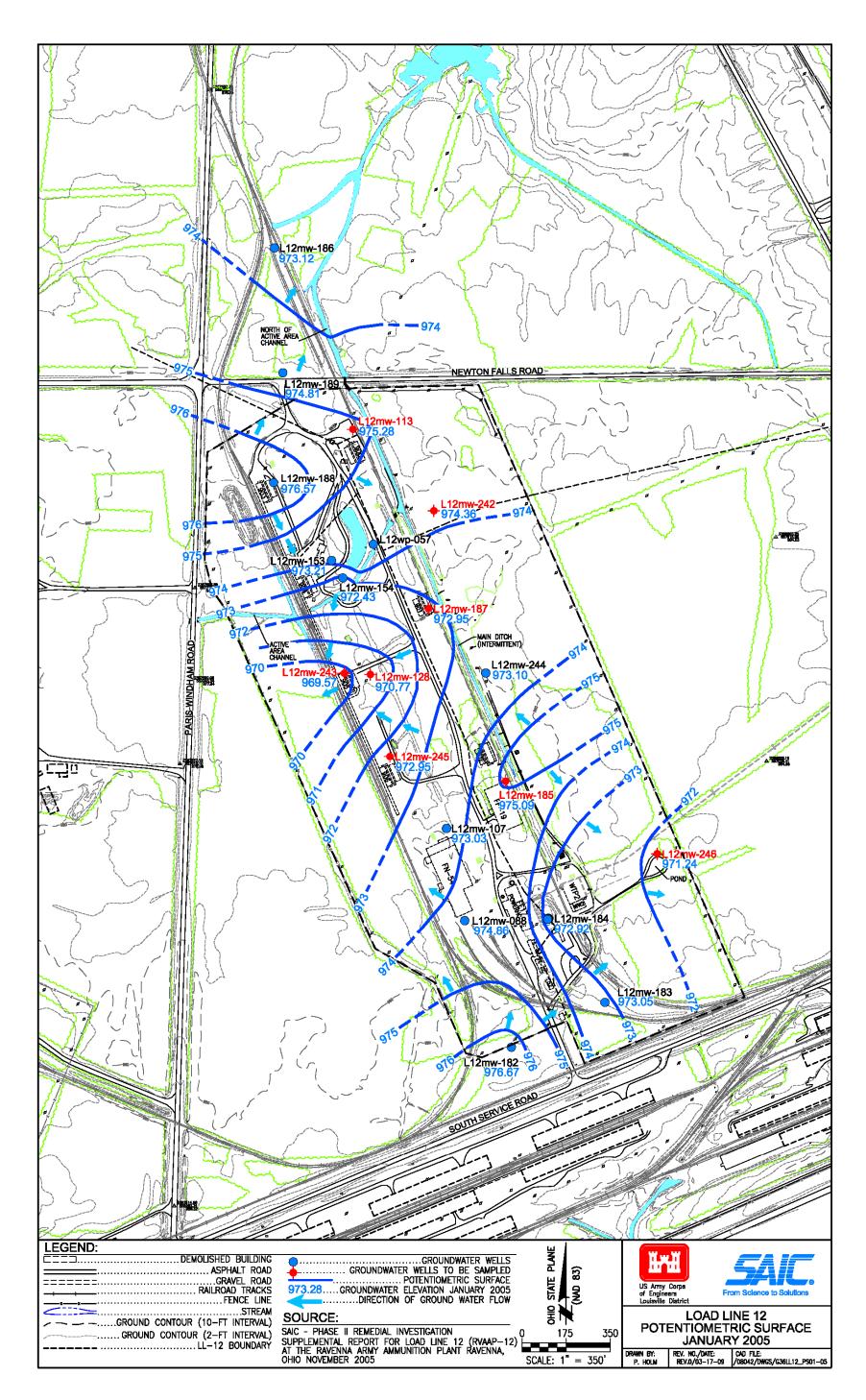


Figure 3-2. Potentiometric Surface – January 2005

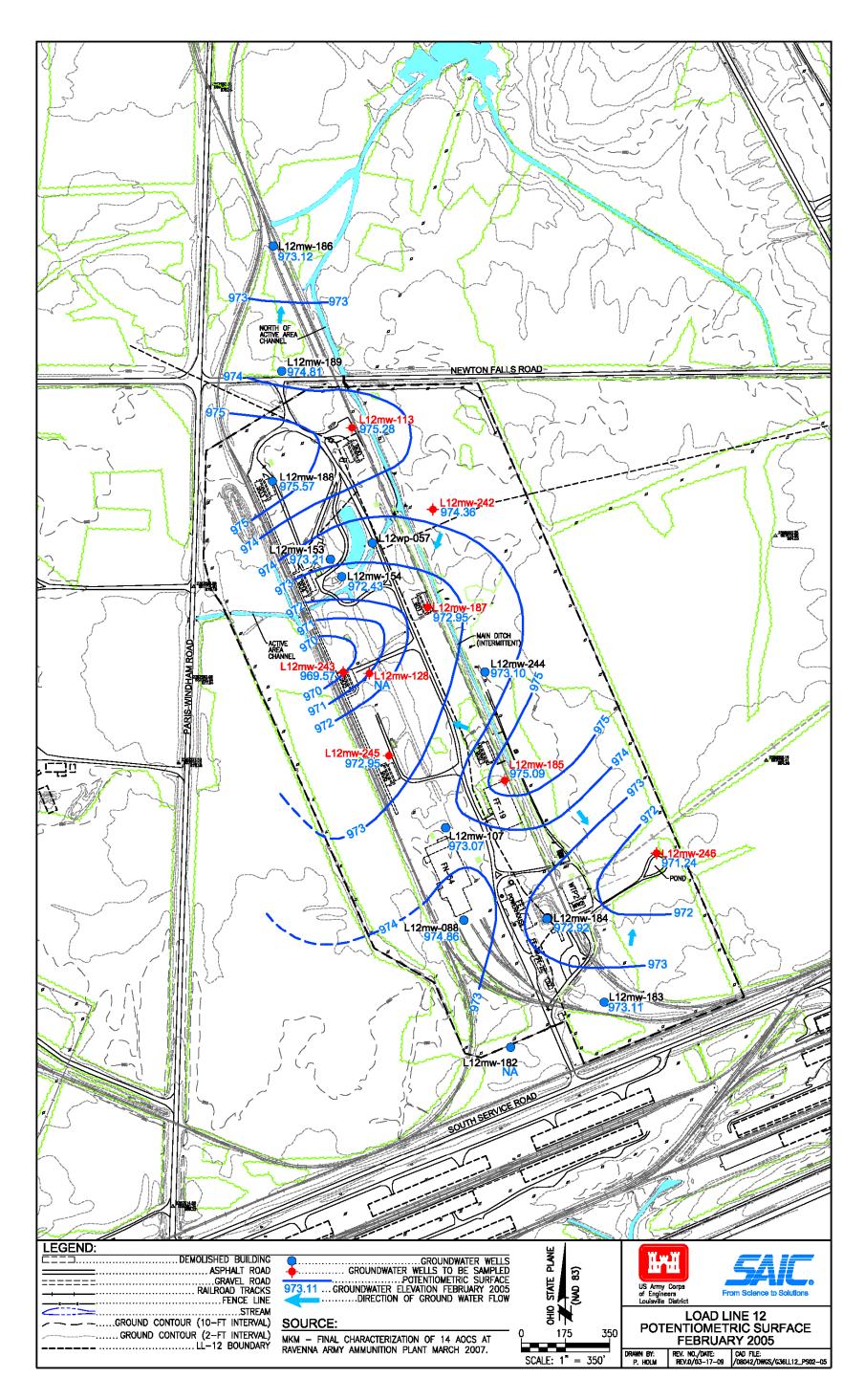


Figure 3-3. Potentiometric Surface – February 2005

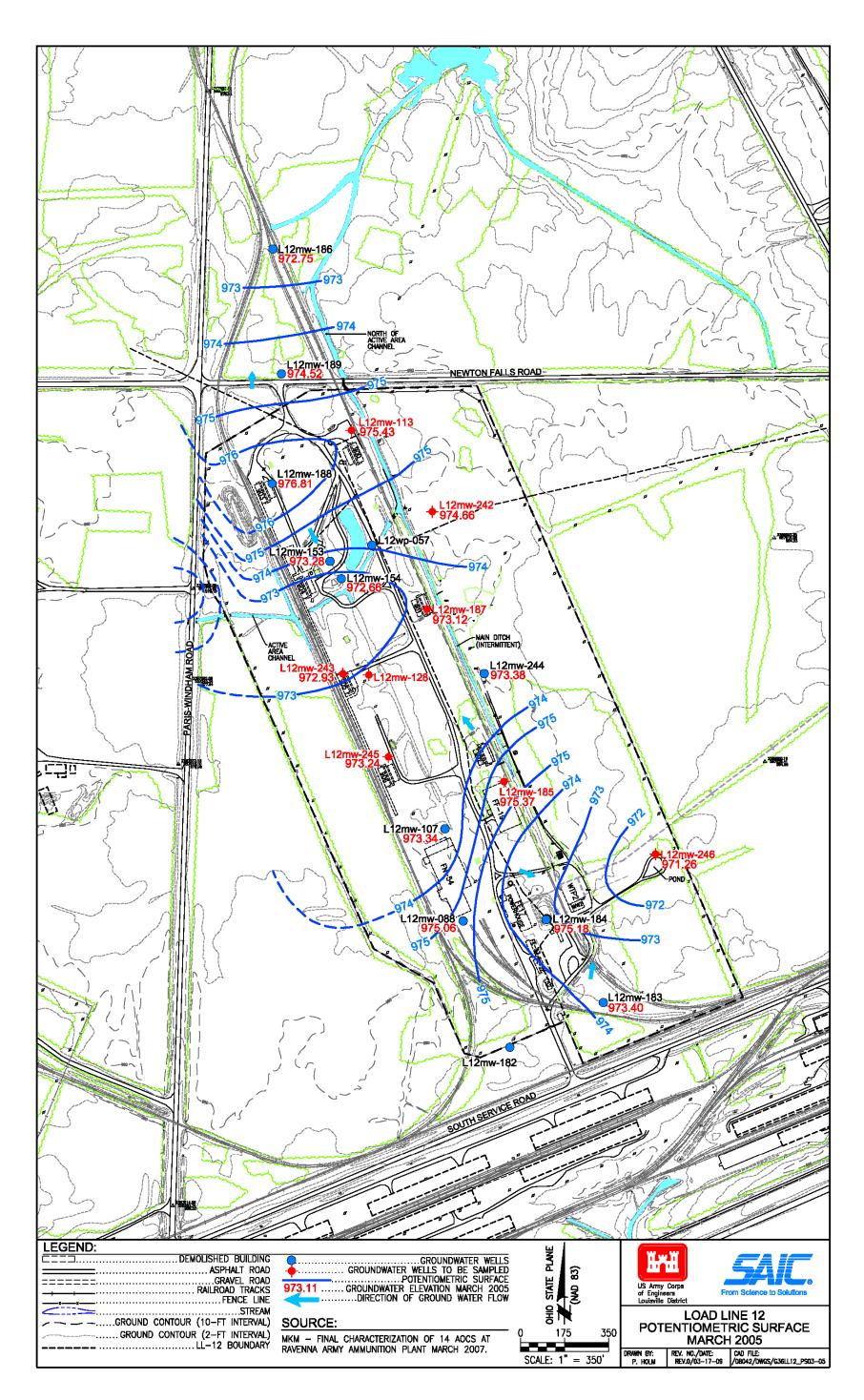


Figure 3-4. Potentiometric Surface – March 2005

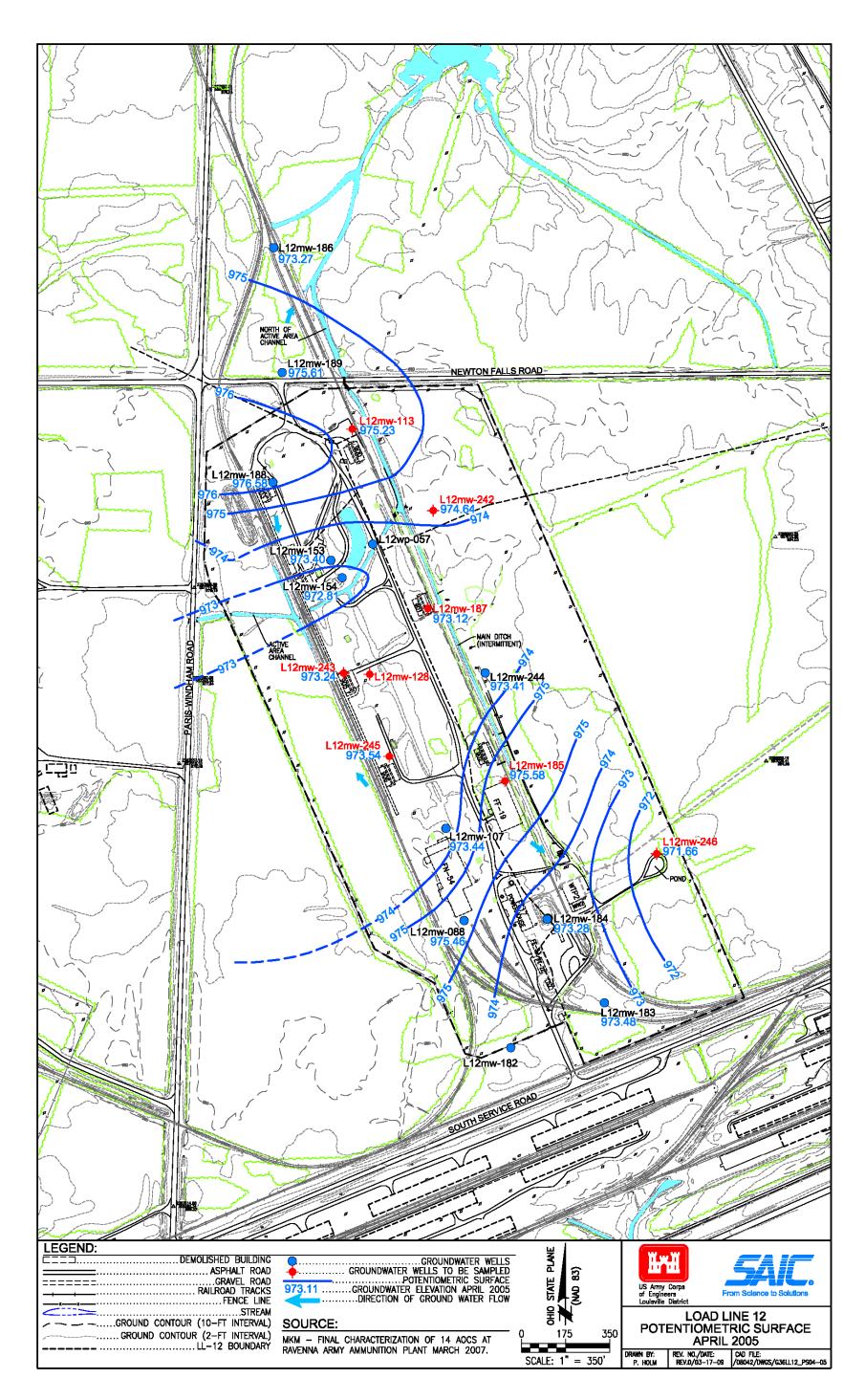


Figure 3-5. Potentiometric Surface – April 2005

4.1 GROUNDWATER SAMPLING

Eight monitoring wells will be sampled for analysis of MNA parameters. These wells include two nitrate source area wells (LL12mw-185 and LL12mw-187) and six downgradient wells of the source area (L12mw-113, L12mw-128, L12mw-242, L12mw-243, L12mw-245, and L12mw-246). The location of these proposed sampling locations are shown in Figure 1-3.

4.1.1 Water Level Measurement

Water level measurements will be collected prior to well purging and sampling following the procedure presented in Section 4.3.2.6 of the Facility-Wide SAP.

4.1.2 Field Measurement Procedures and Criteria

All field measurement procedures and criteria will follow Section 4.3.3 of the Facility-Wide SAP. For health and safety purposes (reference the SSHP Addendum), all monitoring wells will be field screened for VOCs using a photoionization detector (PID) or organic vapor analyzer (OVA) during groundwater sample collection. Screening will be accomplished by monitoring the headspace vapors at the top of the riser pipe.

4.1.3 Well Purging Methods

In order to obtain representative samples and minimize the quantity of liquid investigation-derived waste (IDW) generated as a result of well purging, wells will be purged and sampled using low-flow methods where conditions permit, in accordance with Section 4.3.4.2 of the Facility-Wide SAP and Ohio EPA technical guidance (Ohio EPA 1995), as follows:

- A bladder pump will be used for purging;
- The purge rate should not exceed 100 mL/min unless it can be shown that higher rates will not disturb the stagnant water column above the well screen (i.e., will not result in water level drawdown);
- The volume purged is either two pump and tubing volumes or a volume established through in-line monitoring and stabilization of water quality indicators such as dissolved oxygen and specific conductance; and
- Sample collection should occur immediately after purging.

Where low-flow cannot be accomplished for any reason, then purging of all monitoring wells during the field investigation will be conducted in accordance with procedures discussed in Section 4.3.4 of the Facility-Wide SAP.

4.1.4 Sample Containers and Preservation Techniques

Requirements for sample containers and preservation techniques for groundwater samples are presented in Section 8.2 of the Quality Assurance Project Plan (QAPP) Addendum No.1 for Groundwater Sampling at RVAAP-12 Load Line 12.

4.1.5 Field Quality Control Sampling Procedures

Quality control (QC) samples for monitoring well groundwater sampling activities will include duplicate groundwater samples, split samples and equipment rinsates as described in Section 4.3.7 of the Facility-Wide SAP.

4.1.6 Decontamination Procedures

Decontamination of equipment associated with groundwater sampling will be in accordance with the procedure presented in Section 4.3.8 of the Facility-Wide SAP.

5.1 FIELD LOGBOOK

All field logbook information will follow structures identified in Section 5.1 of the Facility-Wide SAP.

5.2 PHOTOGRAPHS

Information regarding the documentation of photographs for the groundwater sampling activities is presented in Section 4.3.2.4.3 of the Facility-Wide SAP. Representative photographs may be taken during fieldwork activities with particular attention to any special features of interest that are identified during the field effort. Photographs will be suitable for presentation in a public forum, as well as for documenting scientific information.

5.3 SAMPLE NUMBERING SYSTEM

The sample numbering system that will be used to identify samples collected during the groundwater sampling is explained in Section 5.3 of the Facility-Wide SAP. Samples collected will be identified sequentially by following the numbering system. If a sample is not collected or is reassigned to another location, a specific reason and notation will be written in the project field books. The sample number system is presented in Figure 5-1 and presents the sample numbers that will be used during this project.

5.4 SAMPLE DOCUMENTATION

All sample label, logbook, field record, and field form information will follow structures identified in Section 5.0 of the Facility-Wide SAP.

5.5 **DOCUMENTATION PROCEDURES**

Documentation and tracking of samples and field information will follow the series of steps identified in Section 5.5 of the Facility-Wide SAP.

5.6 CORRECTIONS TO DOCUMENTATION

Any corrections to documentation will follow guidance established in Section 5.6 of the Facility-Wide SAP.

5.7 MONTHLY REPORTS

Monthly reports during implementation of the field work investigation are not specified by contract. However, monthly reports for the groundwater sampling at Load Line 12 delivery order in general will be provided as a best management practice. The content of the reports will have content similar to that specified in Section 5.7 of the Facility-Wide SAP.

Sampling Location Identification: XXXmm-NNN	(n)
XXX = Area Designator	Examples
	L12 - Load Line 12
mm = Sample Location Type	Examples
	MW - Groundwater Monitoring Well
NNN(n) = Sequential Sample Location Number	Examples
[must be unique for each designator]	004
	012
	099
(n) can be used as a special identifier and is optional.	For example:
Use a D to identify the well as an adjacent deep zone	•
Use a B to identify the well as a background location	n (012B)
Use an A to identify an abandoned well (099A)	
Sample Identification: XXXmm-NNN(n)-####-tt	
##### = Sequential Sample Number	Examples
[must be unique for entire project site]	0001
	0002
	0003
tt = Sample Type	Examples
	GW - Groundwater Sample (unfiltered)
	ER - Equipment Rinsate
Proposed Sample IDs for Groundwater Sampling	
L12mw-113-0800-GW	
L12mw-128- 0801-GW	
L12mw-185- 0802-GW	
L12mw-185- 0803-ER	
L12mw-187- 0804-GW	
L12mw-242- 0805-GW	
L12mw-243- 0806-GW	
L12mw-245- 0807-GW	
L12mw-246- 0808-GW	

Figure 5-1. Sample ID Example and Planned Sample IDs For The Project

Sample packaging and shipping shall follow procedures in Section 6.0 of the Facility-Wide SAP.

All IDW, including personal protective equipment (PPE), disposable sampling equipment, and decontamination fluids, will be properly handled, labeled, characterized, and managed in accordance with Section 7.0 of the Facility-Wide SAP. At the conclusion of field activities, a letter report will be submitted to the USACE, the RVAAP Facility Manager and Ohio EPA documenting the characterization and classification of the wastes. Upon approval of the IDW classification report, all solid and liquid IDW will be removed from the site and disposed of by a licensed waste disposal contractor. All shipments of IDW off-site will be coordinated through the RVAAP Facility Manager.

Three types of IDW are anticipated, which will be contained separately.

- Development and purge water from monitoring wells;
- Decontamination fluids derived from decontamination of sampling equipment; and
- Expendables/solid wastes, including PPE and disposable sampling equipment.

Characterization and classification of the different types of IDW will be based on the specific protocols described below. Expendable solid waste will be not sampled for characterization purposes.

- **IDW Water:** Purge water and excess water not used for environmental samples will be placed in 55gallon drums. Disposition will be based on process knowledge and analytical results of the environmental samples. If data indicate that IDW water is potentially hazardous, toxicity characteristic leaching procedure (TCLP) samples will be collected.
- **Decontamination Fluids:** Decontamination fluids will be placed in drums or a polytank up to 1,500 gallons in size as needed. Disposition of decontamination liquid will be based on the collection and analysis of TCLP liquid sample(s).
- Solid Waste: Trash, gloves and other expendable solid waste will be placed in sanitary waste containers for removal from the site in coordination with the RVAAP Facility Manager.

IDW water and decontamination fluid will be transported to a location designated by the RVAAP Facility Manager, where it will be placed in separate steel drums and staged on pallets in secondary containment. To avoid potential rupture due to freezing conditions, drums containing liquid IDW will be filled only to 75% capacity.

- Brannon, J.M., and Pennington, J.C., 2002. Environmental Fate and Transport Process Descriptions for Explosives, Final. U.S. Army Engineer Research and Development Center, Vicksburg, Mississippi, Document No. ERD/EL TR-02-10.
- Ohio EPA 1995. Technical Guidance Manual for Hydrogeologic Investigation and Groundwater Monitoring.
- Pennington, J.C., Zakikhani, M., and Harrelson, D.W. 1999. Monitored Natural Attenuation of Explosives in Groundwater – Environmental Security Technology Certification Program (ESTCP) Completion Report for U.S. Army Waterways Experiment Station, Vicksburg, MS. Final Report. 228pp.
- Strategic Environmental Research and Development Program (SERDP). 2004. *Microbial Degradation of RDX and HMX*. SERDP Project CU1213, Final Report, December 2001 December 2003. Performing organizations: Biotechnology Research Institute, National Research Council of Canada; Defense Research and Development Canada; and US Air Force Research Laboratory. 221pp.
- USACE (U.S. Army Corps of Engineers) 1994a. Requirements for the Preparation of Sampling and Analysis Plans, EM 200-1-3.
- USACE 1994b. Monitoring Well Design, Installation, and Documentation at Hazardous and/or Toxic WasteSites, EM-1110-1-4000.
- USACE 2001. Facility-Wide Sampling and Analysis Plan for Environmental Investigations at the Ravenna Army Ammunition Plant, Ravenna, Ohio, DACA 62-00-D-0001, D.O. CY02, Final.
- USACE 2004. Facility-Wide Groundwater Monitoring Program for the Ravenna Army Ammunition Plant, Ravenna, Ohio, GS-10F-0350M, D.O. DACA27-03-F-0047, Final.
- USACE 2007. RCRA Facility Investigation Report for AOC-GW, Site-Wide Groundwater, HSAAP-33, Holston Army Ammunition Plant, Kingsport, TN. Prepared for the U.S. Army Corps of Engineers – Mobile District, Contract W9128F-04-D-0018, Task Order 0001, Final, March 2007.

APPENDIX A

Previous Groundwater Sampling Data for all Site Wells at Load Line 12

Area	Well Number	Monitored Zone	Compound or Element Detected	Jan-07 Level (µg/L)	Apr-07 Level (μg/L)	Jul-07 Level (μg/L)	Oct-07 Level (μg/L)	Jan-08 Level (µg/L)	Apr-08 Level (μg/L)	Jul-08 Level (μg/L)	Oct-08 Level (µg/L)	MCL (µg/L)	Region 9 PRG (µg/L)	Facility- Wide Background (µg/L)
Load Line 12	LL12mw-088	Unconsolidated	2-Butanone					6.6 J	10 U	10 U	10 U	NS	1900	*
			4-Methyl-2-pentanone					0.36 J	10 U	10 U	10 U	NS	1900	*
			Acetone					58 JB	10 U	10 U	1.6 JB	NS	610	*
			Arsenic					16.8	21.9	14.2 U	13.8	10	0.045	11.7
			Barium					301	379	363	383	2000	2600	82.1
			Benzene					1 U	1 U	1 U	0.32 JB	5	0.35	*
			beta-BHC					0.03 U	0.03 U	0.015 J	0.03 U	NS	0.037	*
			bis(2-Ethylhexyl) phthalate					10 U	10 U	1 J	1.8 JB	NS	4.8	*
			Calcium					114000	149000	150000	163000	NS	NS	115000
			Iron					2860 J	3100	2470	1700	300	11000	279
			Magnesium					41400	52500	52600	57200	NS	NS	43300
			Manganese					304	412	371	392	50	880	1020
			Nickel					6.4 J	10 U	3.7 J	3.8 J	NS	730	0
			Nitrate as N (NO3-N)					100 U	100 U	40 J	60 J	10000	1000	*
			Nitroguanidine					20 U	20 U	20 U	20 U	NS	3650	*
			2,4,6-Trinitrotoluene					0.1 U	0.11 U	0.097 U	0.097 U	NS	2.2	*
			2,4-Dinitrotoluene					0.1 U	0.11 U	0.097 U	0.097 U	NS	73	*
			RDX					0.1 U	0.11 U	0.097 U	0.097 U	NS	0.61	*
			4-Amino-2,6-Dinitrotoluene					0.1 U	0.11 U	0.097 U	0.097 U	NS	NS	*
			НМХ					0.1 U	0.11 U	0.097 U	0.097 U	NS	1825	*
			2-Amino-4,6-Dinitrotoluene					0.1 U	0.11 U	0.097 U	0.097 U	NS	NS	*
			Tetryl					0.1 U	0.11 U	0.097 U	0.097 U	NS	365	*
			Nitroglycerin					0.65 U	0.7 U	0.63 U	0.63 U	NS	4.8	*
			2,6-Dinitrotoluene					0.1 U	0.055 J	0.097 U	0.097 U	NS	36	*
			PETN					0.65 U	0.7 U	0.63 U	0.63 U	NS	NS	*
			2-Nitrotoluene					0.5 U	0.54 U	0.48 U	0.48 U	NS	0.049	*
			Nitrobenzene					0.1 U	0.11 U	0.092 J	0.097 U	NS	3.4	*
			3-Nitrotoluene					0.5 U	0.54 U	0.48 U	0.48 U	NS	122	*
			1,3,5-Trinitrobenzene					0.1 U	0.11 U	0.097 U	0.097 U	NS	1095	*
			1,3-Dinitrobenzene					0.1 U		0.097 U			3.6	*
			4-Nitrotoluene					0.5 U	0.54 U	0.48 U	0.48 U	NS	0.66	*
			Nitrocellulose					500 U	500 U	500 U	500 U	NS	NS	*
			Potassium					5490	2410 J	2370	2890 J	NS	NS	2890
			Selenium					5 U	4.3 J	5 U	5 U	50	180	0
			Sodium					13600	12800	12500	13800	NS	NS	45700
			Thallium					1 U	1 U	0.17 J	1 U	2	2	0
			Zinc					3.3 JB	10 U	7.3 J	5.4 JB	5000	11000	60.9
Load Line 12	LL12mw-107	Unconsolidated	4,4'-DDT					0.03 U	0.03 U	0.019 J	0.03 U	NS	0.2	*
			Acetone					10 U	10 U	10 U	4.4 JB	NS	5500	*
			Arsenic					17.4	5 U	7.3 B	15.1	10	0.045	11.7
			Barium					27	27.7	28.4	30.6	2000	2600	82.1

 Table A.1. Previous Groundwater Sampling Data For All Site Wells At Load Line 12

Area	Well Number	Monitored Zone	Compound or Element Detected	Jan-07 Level (µg/L)	Apr-07 Level (μg/L)	Jul-07 Level (µg/L)	Oct-07 Level (μg/L)	Jan-08 Level (µg/L)	Apr-08 Level (μg/L)	Jul-08 Level (µg/L)	Oct-08 Level (µg/L)	MCL (µg/L)	Region 9 PRG (µg/L)	Facility- Wide Background (µg/L)
			beta-BHC					0.03 U	0.03 U	0.03 U	0.022 J	NS	0.032	*
			bis(2-Ethylhexyl) phthalate					0.91 J	10 U	1.7 J	1.2 JB	NS	4.8	*
			Calcium					157000	162000	172000	186000	NS	NS	115000
			Cobalt					5 U	5 U	2.1 J	2.7 J	NS	730	0
			Cyanide					0.01 U	0.01 R	0.015	0.01 U	NS	730	*
			Iron					2090 J	50.8 J	1690 J	2700	300	11000	279
			Magnesium					67800	68500	71800	77500	NS	NS	43300
			Manganese					225	277	280	311	50	880	1020
			Nitrate as N (NO3-N)					300 J	100 U	30 J	100 U	10000	1000	*
			Nitroguanidine					20 U	20 U	20 U	20 U	NS	3650	*
			2,4,6-Trinitrotoluene					0.1 U	0.098 U	0.098 U	0.1 U	NS	2.2	*
			2,4-Dinitrotoluene					0.1 U	0.098 U	0.098 U	0.1 U	NS	73	*
			RDX					0.1 U	0.098 U	0.098 U	0.1 U	NS	0.61	*
			4-Amino-2,6-Dinitrotoluene					0.1 U	0.098 U	0.098 U	0.1 U	NS	NS	*
			HMX					0.1 U	0.098 U	0.098 U	0.1 U	NS	1825	*
			2-Amino-4,6-Dinitrotoluene					0.1 U	0.098 U	0.098 U	0.1 U	NS	NS	*
			Tetryl					0.1 U	0.098 U	0.098 U	0.1 U	NS	365	*
			Nitroglycerin					0.65 U	0.64 U	0.64 U	0.65 U	NS	4.8	*
			2,6-Dinitrotoluene					0.1 U	0.055 J	0.098 U	0.1 U	NS	36	*
			PETN					0.65 U	0.64 U	0.64 U	0.65 U	NS	NS	*
			2-Nitrotoluene					0.5 U	0.49 U	0.49 U	0.5 U	NS	0.049	*
			Nitrobenzene					0.1 U	0.098 U	0.098 U	0.076 J	NS	3.4	*
			3-Nitrotoluene					0.5 U	0.49 U	0.49 U	0.5 U	NS	122	*
			1,3,5-Trinitrobenzene					0.1 U	0.098 U	0.098 U	0.1 U	NS	1095	*
			1,3-Dinitrobenzene					0.1 U	0.098 U	0.098 U	0.1 U	NS	3.6	*
			4-Nitrotoluene					0.5 U	0.49 U	0.49 U	0.5 U	NS	0.66	*
			Nitrocellulose					500 U	500 U	210 J	500 UJ	NS	NS	*
			Perchlorate					NT	NT	0.013 J	NT	NS	3.6	*
			Potassium					3560	2240	2570	2280 J	NS	NS	2890
			Sodium					17700	16800	17300	18500	NS	NS	45700
			Vanadium					10 U	1 J	10 U	10 U	NS	36	0
			Zinc					3.9 JB		7.2 J	3.2 JB	5000	11000	60.9
Load Line 12	LL12mw-113	Unconsolidated	Acetone					10 U	10 U	10 U	1.7 JB	NS	5500	*
			Aluminum					28500	1350	10400 J	50 U	200	36000	0
			Antimony					0.56 J	0.33 J	0.34 J	0.35 J	6	15	0
			Arsenic					54.3	4.9 J	23.8	7.3	10	0.045	11.7
			Barium					111	28.5	63	25	2000	2600	256
			bis(2-Ethylhexyl) phthalate					10 U	10 U	10 U	0.97 JB	NS	4.8	*
			Benzene					1 U	0.25 J	1 U	0.31 J	5	0.35	*
			Beryllium					1.5	1 U	0.42 J	1 U	4	NS	0
			beta-BHC					0.03 U	0.021 J	0.03 U	0.011 J	NS	0.037	*
			Cadmium					0.45 J	0.19 J	0.05 C	0.28 J	5	NS	0

Table A.1. Previous Groundwater Sampling Data For All Site Wells At Load Line 12 (continued)

Area	Well Number	Monitored Zone	Compound or Element Detected	Jan-07 Level (µg/L)	Apr-07 Level (μg/L)	Jul-07 Level (µg/L)	Oct-07 Level (µg/L)	Jan-08 Level (µg/L)	Apr-08 Level (μg/L)	Jul-08 Level (μg/L)	Oct-08 Level (µg/L)	MCL (µg/L)	Region 9 PRG (µg/L)	Facility- Wide Background (µg/L)
			Calcium					296000	186000	230000	293000	NS	NS	53100
			Chromium					41.3	2.2 J	15.7	5 U	100	NS	7.3
			Cobalt					38.8	4.2 J	15.6	7.1	NS	730	0
			Copper					84.4	5 U	21.2	5 U	1300	1500	0
			Cyanide					0.0087 J	0.01 U	0.01 U	0.01 U	NS	730	*
			Iron					88300	3660	29100	371	300	11000	1430
			Lead					47	2.1 J	10.4	3 U	15	NS	23
			Magnesium					122000	75200	101000	125000	NS	NS	15000
			Manganese					4410	1510	2450	2800	50	880	1340
			Nickel					77.1	5.1 J	36.2	14.1	NS	730	83.4
			Nitrate as N (NO3-N)					600	100 U	1100 J	100 U	10000	1000	*
			Nitroguanidine					20 U	20 U	20 U	20 U	NS	3650	*
			2,4,6-Trinitrotoluene					0.09 U	0.1 U	0.092 U	0.1 U	NS	2.2	*
			2,4-Dinitrotoluene					0.09 U	0.1 U	0.092 U	0.1 U	NS	73	*
			RDX					0.09 U	0.1 U	0.092 U	0.1 U	NS	0.61	*
			4-Amino-2,6-Dinitrotoluene					0.09 U	0.1 U	0.092 U	0.1 U	NS	NS	*
			HMX					0.09 U	0.058 J	0.092 U	0.1 U	NS	1800	*
			2-Amino-4,6-Dinitrotoluene					0.09 U	0.1 U	0.092 U	0.1 U	NS	NS	*
			Tetryl					0.09 U	0.1 U	0.092 U	0.1 U	NS	365	*
			Nitroglycerin					0.58 U	0.67 U	0.6 U	0.68 U	NS	4.8	*
			2,6-Dinitrotoluene					0.09 U	0.055 J	0.092 U	0.1 U	NS	36	*
			PETN					0.58 U	0.67 U	0.6 U	0.68 U	NS	NS	*
			2-Nitrotoluene					0.45 U	0.52 U	0.46 U	0.52 U	NS	0.049	*
			Nitrobenzene					0.09 U	0.11 U	0.092 J	0.1 U	NS	3.4	*
			3-Nitrotoluene					0.45 U	0.52 U	0.46 U	0.52 U	NS	122	*
			1,3,5-Trinitrobenzene					0.09 U	0.1 U	0.092 U	0.1 U	NS	1095	*
			1,3-Dinitrobenzene					0.09 U	0.1 U	0.092 U	0.1 U	NS	3.6	*
			4-Nitrotoluene					0.45 U	0.52 U	0.46 U	0.52 U	NS	0.66	*
			Nitrocellulose					500 U	130 J	140 J	500 UJ	NS	NS	*
			Potassium					11800	4580 J	8160	8330 J		NS	5770
			Sodium					24200	23000	23500	29600	NS	NS	51400
			Thallium					0.42 J	1 U	0.25 J	1 U	2	2.4	0
			Vanadium					46.7 J	0.83 J	16.9	10 U	NS	36	0
			Zinc					178	13.1	66.2	8.1 JB	5000	11000	52.3
Load Line 12	LL12mw-128	Unconsolidated	Aluminum					1340	6570	50 U	546 J	200	36000	0
			Antimony					2 U	0.28 J	0.29 J	2 U	6	15	0
			Arsenic					40.1	52.9	51.5	47.6	10	0.045	11.7
			Barium					68.1	75.5	58.6	52.8	2000	2600	82.1
			Benzene					1 U	1 U	1 U	0.24 JB	5	0.35	*
			Beryllium					1 U	0.29 J	1 U	1 U	4	NS	0
			bis(2-Ethylhexyl) phthalate					10 U	2.2 J	1.3 J	1.1 JB	NS	4.8	*
			Calcium					180000	165000	209000	179000	NS	NS	115000

Table A.1. Previous Groundwater Sampling Data For All Site Wells At Load Line 12 (continued)

Area	Well Number	Monitored Zone	Compound or Element Detected	Jan-07 Level (µg/L)	Apr-07 Level (μg/L)	Jul-07 Level (μg/L)	Oct-07 Level (µg/L)	Jan-08 Level (µg/L)	Apr-08 Level (μg/L)	Jul-08 Level (µg/L)	Oct-08 Level (μg/L)	MCL (µg/L)	Region 9 PRG (µg/L)	Facility- Wide Background (µg/L)
			Chloromethane					1 U	1 U	1 U	1.4	NS	160	*
			Chromium					5 U	8.9	5 U	5 U	100	NS	0
			Cobalt					5 U	6.3	5 U	5 U	NS	730	0
			Copper					5 U	6 J	5 U	5 U	1300	1500	0
			Iron					7310	17400 J	5480 J	5650	300	11000	279
			Lead					3 U	5.2	3 U	3 U	15	NS	0
			Magnesium					108000	101000	126000	106000	NS	NS	43300
			Manganese					199	333	189	192	50	880	1020
			Nickel					10 U	14.4	10 U	10 U	NS	730	0
			Nitrate as N (NO3-N)					90 JB	100 U	100 U	20000 J	10000	1000	*
			Nitroguanidine					20 U	20 U	20 U	20 U	NS	3650	*
			2,4,6-Trinitrotoluene					0.11 U	0.1 U	0.1 U	0.098 U	NS	2.2	*
			2,4-Dinitrotoluene					0.11 U	0.1 U	0.1 U	0.098 U	NS	73	*
			RDX					0.11 U	0.1 U	0.1 U	0.098 U	NS	0.61	*
			4-Amino-2,6-Dinitrotoluene					0.11 U	0.1 U	0.1 U	0.098 U	NS	NS	*
			HMX					0.11 U	0.1 U	0.1 U	0.098 U	NS	1825	*
			2-Amino-4,6-Dinitrotoluene					0.11 U	0.1 U	0.1 U	0.098 U	NS	NS	*
			Tetryl					0.11 U	0.1 U	0.1 U	0.098 U	NS	365	*
			Nitroglycerin					0.7 U	0.68 U	0.68 U	0.64 U	NS	4.8	*
			2,6-Dinitrotoluene					0.11 U	0.055 J	0.1 U	0.098 U	NS	36	*
			PETN					0.7 U	0.68 U	0.68 U	0.64 U	NS	NS	*
			2-Nitrotoluene					0.54 U	0.52 U	0.52 U	0.49 U	NS	0.049	*
			Nitrobenzene					0.11 U	0.1 U	0.1 U	0.067 J	NS	3.4	*
			3-Nitrotoluene					0.098 J	0.52 U	0.52 U	0.49 U	NS	61	*
			1,3,5-Trinitrobenzene					0.11 U	0.1 U	0.1 U	0.098 U	NS	1095	*
			1,3-Dinitrobenzene					0.11 U	0.1 U	0.1 U	0.098 U	NS	3.6	*
			4-Nitrotoluene					0.54 U	0.52 U	0.52 U	0.49 U	NS	0.66	*
			Nitrocellulose					500 U	500 U	500 U	500 U	NS	NS	*
			Potassium					2970	3630 J	2170	2010 J	NS	NS	2890
			Sodium					23700	19000	24700	21600	NS	NS	45700
			Thallium					1 U	0.18 J	1 U	1 U	2	2	0
			Vanadium					10 U	9.6 J	10 U	10 U	NS	36	0
			Zinc					12.4 B	30.5	3.1 J	17.4 B	5000	11000	60.9
Load Line 12	LL12mw-153	Unconsolidated	Aluminum	50 U	13.3 J	50 U	50 U					200	36000	0
			Antimony	2 U	2 U	0.096 J	0.22 J					6	15	0
			Arsenic	12.7	14.6	26.9	24.6					10	0	11.7
			Barium	73.2	74.9	74.4 J	79.4					2000	2600	82.1
			beta-BHC	0.03 U	0.03 U	0.03 U	0.01 J					NS	0.04	*
			Calcium	133000	138000 J	145000 J	147000					NS	NS	115000
			Copper	5 U	3 J	5 U	5 U					1300	1500	0
			Iron	4020	4000	4810	4180					300	11000	279
			Magnesium	72600	75500	79700	80500					NS	NS	43300

Table A.1. Previous Groundwater Sampling Data For All Site Wells At Load Line 12 (continued)

Area	Well Monitored Number Zone	Compound or Element Detected	Jan-07 Level (µg/L)	Apr-07 Level (μg/L)	Jul-07 Level (µg/L)	Oct-07 Level (µg/L)	Jan-08 Level (µg/L)	Apr-08 Level (μg/L)	Jul-08 Level (µg/L)	Oct-08 Level (μg/L)	MCL (µg/L)	Region 9 PRG (µg/L)	Facility- Wide Background (µg/L)
		Manganese	187	198 J	195 J	206					50	880	1020
		Nickel	10 U	1.7 J	10 U	10 U					NS	730	0
		Nitrate-Nitrite	100 U	100 U	100 U	20 J					10000	1000	*
		Nitroguanidine	20 U	20 U	20 U	20 U					NS	3650	*
		2,4,6-Trinitrotoluene	0.097 U	0.097 U	0.098 U	0.11 U					NS	2.2	*
		2,4-Dinitrotoluene	0.097 U	0.097 U	0.098 U	0.11 U					NS	73	*
		RDX	0.097 U	0.097 U	0.098 U	0.11 U					NS	0.61	*
		4-Amino-2,6-Dinitrotoluene	0.097 U	0.097 U	0.098 U	0.11 U					NS	NS	*
		HMX	0.097 U	0.097 U	0.098 U	0.052 J					NS	1800	*
		2-Amino-4,6-Dinitrotoluene	0.097 U	0.097 U	0.098 U	0.11 U					NS	NS	*
		Tetryl	0.097 U	0.097 U	0.098 U	0.11 U					NS	365	*
		Nitroglycerin		0.65 U	0.64 U	0.73 U					NS	4.8	*
		2,6-Dinitrotoluene	0.097 U	0.097 U	0.098 U	0.11 U					NS	36	*
		PETN		0.65 U	0.64 U	0.73 U					NS	NS	*
		2-Nitrotoluene	0.48 U	0.097 J	0.49 U	0.5 U					NS	110	*
		Nitrobenzene	0.097 U	0.097 U	0.098 U	0.11 U					NS	3.4	*
		3-Nitrotoluene	0.48 U	0.48 U	0.49 U	0.56 U					NS	61	*
		1,3,5-Trinitrobenzene	0.097 U	0.097 U	0.098 U	0.11 U					NS	1095	*
		1,3-Dinitrobenzene	0.097 U	0.097 U	0.098 U	0.11 U					NS	3.6	*
		4-Nitrotoluene	0.48 U	0.48 U	0.49 U	0.56 U					NS	0.66	*
		Nitrocellulose	500 U	500 U	500 U	500 U					NS	NS	*
		Potassium	1960 J	1950 J	2120 J	2150					NS	NS	2890
		Sodium	24400	25400	25100	26900					NS	NS	45700
		Zinc	6.9 J	7.9 J	4.6 J	6.2 J					5000	11000	60.9
Load Line 12	LL12mw-154 Unconsolidated	1 Acetone					10 U	1.6 JB	10 U	10 UJ	NS	610	*
		Aluminum					4820	50 U	50 U	50 U	200	36000	0
		Antimony					0.33 J	2 U	2 U	2 U	6	15	0
		Arsenic					651	8	16.3 B	24.7	10	0.045	11.7
		Barium					117	43.3	47.7	51.5	2000	2600	82.1
		Benzene					1 U	1 U	1 U	0.32 JB	5	0.35	*
		Beryllium					0.24 J	1 U	1 U	1 U	4	NS	0
		beta-BHC					0.026 J	0.03 U	0.012 J	0.03 UJ	NS	0.037	*
		bis(2-Ethylhexyl) phthalate					1.3 J	10 U	10 U	1.1 JB	NS	4.8	*
		Calcium					130000	130000	148000	145000	NS	NS	115000
		Chromium					5.9	5 U	5 U	5 U	100	NS	0
		Cobalt					4.7 J	5 U	5 U	5 U	NS	730	0
		Copper					10.7	5 U	5 U	5 U	1300	1500	0
		Cyanide					0.01 U	0.01 R	0.057	0.01 U	NS	730	*
		Iron					53200 J	162 J	2580 J	2440	300	11000	279
		Lead					5.4	3 U	3 U	3 U	15	NS	0
		Magnesium					58300	60500	72400	66800	NS	NS	43300
		Manganese					213	70.5	95.9	80.7	50	880	1020

Table A.1. Previous Groundwater Sampling Data For All Site Wells At Load Line 12 (continued)

Area	Well Number	Monitored Zone	Compound or Element Detected	Jan-07 Level (µg/L)	Apr-07 Level (μg/L)	Jul-07 Level (µg/L)	Oct-07 Level (μg/L)	Jan-08 Level (µg/L)	Apr-08 Level (μg/L)	Jul-08 Level (µg/L)	Oct-08 Level (μg/L)	MCL (µg/L)	Region 9 PRG (µg/L)	Facility- Wide Background (µg/L)
			Nickel					11.3	10 U	10 U	10 U	NS	730	0
			Nitrate-Nitrite					60 JB	100 U	50 J	100 B	10000	1000	*
			Nitroguanidine					20 U	20 U	20 U	20 U	NS	3650	*
			2,4,6-Trinitrotoluene					0.1 U	0.099 U	0.098 U	0.098 U	NS	2.2	*
			2,4-Dinitrotoluene					0.1 U	0.099 U	0.098 U	0.098 U	NS	73	*
			RDX					0.1 U	0.099 U	0.098 U	0.098 U	NS	0.61	*
			4-Amino-2,6-Dinitrotoluene					0.1 U	0.099 U	0.098 U	0.098 U	NS	NS	*
			HMX					0.1 U	0.099 U	0.098 U	0.098 U	NS	1825	*
			2-Amino-4,6-Dinitrotoluene					0.1 U	0.099 U	0.098 U	0.098 U	NS	NS	*
			Tetryl					0.1 U	0.099 U	0.098 U	0.098 U	NS	365	*
			Nitroglycerin					0.65 U	0.64 U	0.64 U	0.64 U	NS	4.8	*
			2,6-Dinitrotoluene					0.1 U	0.055 J	0.098 U	0.098 U	NS	36	*
			PETN					0.65 U	0.64 U	0.64 U	0.64 U	NS	NS	*
			2-Nitrotoluene					0.5 U	0.5 U	0.5 U	0.49 U	NS	0.049	*
			Nitrobenzene					0.1 U	0.099 U	0.092 J	0.098 U	NS	3.4	*
			3-Nitrotoluene					0.5 U	0.5 U	0.5 U	0.49 U	NS	122	*
			1,3,5-Trinitrobenzene					0.1 U	0.099 U	0.098 U	0.098 U	NS	1095	*
			1,3-Dinitrobenzene					0.1 U	0.099 U	0.098 U	0.098 U	NS	3.6	*
			4-Nitrotoluene					0.5 U	0.5 U	0.5 U	0.49 U	NS	0.66	*
			Nitrocellulose					140 J	500 UJ	130 J	500 UJ	NS	NS	*
			Potassium					3430	1950	1920	1820 J	NS	NS	2890
			Sodium					20100	21400	24200	22400	NS	NS	45700
			Vanadium					7.8 J	10 U	10 U	10 U	NS	36	0
			Zinc					39.3 J	10 U	4.1 J	3.6 JB	5000	11000	60.9
Load Line 12	LL12mw-182	Unconsolidated	Aluminum	5.4 J	14.7 J	20.1 J	50 U					200	36000	0
			Antimony	0.34 J	2 U	2 U	2 U					6	15	0
			Arsenic	26.6	35.3	51	40.5					10	0	11.7
			Barium	94.4	85.8	79 J	72.4					2000	2600	82.1
			Benzoic Acid	10 U	8.3 J	10 U	10 R					NS	150000	*
			beta-BHC	0.03 U	0.03 U	0.03 U	0.019 J					NS	0.04	*
			bis(2-Ethylhexyl) phthalate	10 U	1.4 J	3.7 J	3 J					NS	4.8	*
			Calcium	73200	83700 J	83200 J	81500					NS	NS	115000
			Copper	2 J	2.4 J	5 U	5 U					1300	1500	0
			Cyanide	3.5 J	0.01 U	0.01 U	0.01 R					NS	730	*
			Iron	292	1170	1680 J	1100					300	11000	279
			Magnesium	49700	61900	65100	65300					NS	NS	43300
			Manganese	22.3	52.6 J	53.8 J	56.1					50	880	1020
			Methoxychlor	0.1 U	0.1 U	0.1 U	0.01 J					40	180.00	*
			Nickel	1.6 J	10 U	10 U	10 U					NS	730	0
			Nitrate-Nitrite	100 U	100 U	100 U	100 U					10000	1000	*
			Nitroguanidine	20 U	20 U	20 U	20 U					NS	3650	*
				0.097 U	0.098 U	0.098 U							,	*

Table A.1. Previous Groundwater Sampling Data For All Site Wells At Load Line 12 (continued)

Area	Well Number	Monitored Zone	Compound or Element Detected	Jan-07 Level (µg/L)	Apr-07 Level (μg/L)	Jul-07 Level (µg/L)	Oct-07 Level (µg/L)	Jan-08 Level (µg/L)	Apr-08 Level (μg/L)	Jul-08 Level (µg/L)	Oct-08 Level (µg/L)	MCL (µg/L)	Region 9 PRG (µg/L)	Facility- Wide Background (µg/L)
			2,4-Dinitrotoluene	0.097 U	0.098 U	0.098 U	0.12 U					NS	73	*
			RDX	0.097 U	0.098 U	0.098 U	0.12 U					NS	0.61	*
			4-Amino-2,6-Dinitrotoluene	0.097 U	0.098 U	0.098 U	0.12 U					NS	NS	*
			HMX	0.097 U	0.098 U	0.098 U	0.066 J					NS	1800	*
			2-Amino-4,6-Dinitrotoluene	0.097 U	0.098 U	0.098 U	0.12 U					NS	NS	*
			Tetryl	0.097 U	0.098 U	0.098 U	0.12 U					NS	365	*
			Nitroglycerin		0.65 U	0.64 U	0.75 U					NS	4.8	*
			2,6-Dinitrotoluene	.059 J	0.098 U	0.098 U	0.12 U					NS	36	*
			PETN		0.65 U	0.64 U	0.75 U					NS	NS	*
			2-Nitrotoluene	0.48 U	0.1 J	0.49 U	0.58 U					NS	110.0	*
			Nitrobenzene	0.097 U	0.098 U	0.098 U	0.12 U					NS	3.4	*
			3-Nitrotoluene	0.48 U	0.49 U	0.49 U	0.58 U					NS	61	*
			1,3,5-Trinitrobenzene	0.097 U	0.098 U	0.098 U	0.12 U					NS	1095	*
			1,3-Dinitrobenzene	0.097 U	0.098 U	0.098 U	0.12 U					NS	3.6	*
			4-Nitrotoluene	0.31 J	0.49 U	0.49 U	0.58 U					NS	3.2	*
			Nitrocellulose	500 U	500 U	500 U	500 U					NS	NS	*
			Nitrobenzene	0.097 U	0.097 U	0.064 J	0.12 U					NS	3.4	*
			Nitrocellulose	120 J	150 B	500 U	500 U					NS	NS	*
			Potassium	6140 J	3950 J	4100 J	3230					NS	NS	2890
			Sodium	29200	27300	26300	25500					NS	NS	45700
			Zinc	4.8 J	6.1 J	3.8 J	3.1 J					5000	11000	60.9
Load Line 12	LL12mw-183	Unconsolidated	Aluminum	50 U	5.3 J	50 U	50 U					200	36000	0
			Antimony	.12 J	2 U	2 U	0.2 J					6	15	0
			Arsenic	34.5	20.2	33.3	34.9					10	0	11.7
			Barium	82.3	78.4	71.8 J	78.1					2000	2600	82.1
			bis(2-Ethylhexyl) phthalate	10 U	10 U	2.1 J	10 UJ					NS	4.8	*
			Calcium	110000	116000 J	115000 J	120000					NS	NS	115000
			Carbon disulfide	1 U	1 U	1 U	0.47 J					NS	1000	*
			Chromium	5 U	5 U	5 U	5.6 J					100	NS	0
			Copper	5 U	2.8 J	5 U	5 U					1300	1500	0
			Iron	1220	830	1670 J	1460					300	11000	279
			Magnesium	44700	46200	46100	48400					NS	NS	43300
			Manganese	56.9	53.4 J	74.1 J	74.6					50	880	1020
			Methoxychlor	0.1 U	.012 J	0.1 U	0.1 U					40	180.00	*
			Nickel	10 U	10 U	10 U	5.1 J					NS	730	0
			Nitrate-Nitrite	100 U	100 U	100 U	20 J					10000	1000	*
			Nitroguanidine	20 U	20 U	20 U	20 U					NS	3650	*
			2,4,6-Trinitrotoluene	0.097 U	0.099 U	0.1 U	0.098 U					NS	2.2	*
			2,4-Dinitrotoluene	0.097 U	0.099 U	0.1 U	0.098 U					NS	73	*
			RDX	0.097 U	0.099 U	0.1 U	0.098 U					NS	0.61	*
			4-Amino-2,6-Dinitrotoluene	0.097 U	0.099 U	0.1 U	0.098 U					NS	NS	*
			НМХ	0.097 U	0.099 U	0.1 U	0.098 U					NS	1800	*

Table A.1. Previous Groundwater Sampling Data For All Site Wells At Load Line 12 (continued)

Area	Well Number	Monitored Zone	Compound or Element Detected	Jan-07 Level (µg/L)	Apr-07 Level (μg/L)	Jul-07 Level (µg/L)	Oct-07 Level (μg/L)	Jan-08 Level (µg/L)	Apr-08 Level (μg/L)	Jul-08 Level (µg/L)	Oct-08 Level (µg/L)	MCL (µg/L)	Region 9 PRG (µg/L)	Facility- Wide Background (μg/L)
			2-Amino-4,6-Dinitrotoluene	0.097 U	0.099 U	0.1 U	0.098 U					NS	NS	*
			Tetryl	0.097 U	0.099 U	0.1 U	0.098 U					NS	365	*
			Nitroglycerin		0.65 U	0.68 U	0.64 U					NS	4.8	*
			2,6-Dinitrotoluene	0.097 U	0.099 U	0.1 U	0.098 U					NS	36	*
			PETN		0.65 U	0.68 U	0.64 U					NS	NS	*
			2-Nitrotoluene	0.48 U	0.5 U	0.52 U	0.49 U					NS	110	*
			Nitrobenzene	0.097 U	0.099 U	0.1 U	0.098 U					NS	3.4	*
			3-Nitrotoluene	0.48 U	0.5 U	0.52 U	0.49 U					NS	61	*
			1,3,5-Trinitrobenzene	0.097 U	0.099 U	0.1 U	0.098 U					NS	1095	*
			1,3-Dinitrobenzene	0.097 U	0.099 U	0.1 U	0.098 U					NS	3.6	*
			4-Nitrotoluene	0.48 U	0.5 U	0.52 U	0.49 U					NS	0.66	*
			Nitrocellulose	500 U	500 U	500 U	500 U					NS	NS	*
			Potassium	4920 J	3880 J	3800 J	3470					NS	NS	2890
			Sodium	20600	18700	17600	18100					NS	NS	45700
			Zinc	6.3 J	5 J	5.3 J	3.9 J					5000	11000	60.9
Load Line 12	LL12mw-184	Unconsolidated	Arsenic					13.5	16.7	11.9 B	18.4	10	0.045	11.7
			Barium					10.9	9.9 J	10.2	8.4 J	2000	2600	82.1
			Benzene					1 U	1 U	1 U	0.28 JB	5	0.35	*
			bis(2-Ethylhexyl) phthalate					10 U	2.5 J	10 U	2.6 JB	NS	4.8	*
			Calcium					203000	208000	224000	210000	NS	NS	115000
			Chloromethane					1 U	1 U	1 U	0.33 J	NS	160	*
			Heptachlor epoxide					0.03 U	0.0082 J	0.03 U	0.03 UJ	NS	0.0074	*
			Iron					2410 J	2680 J	3130 J	2940	300	11000	279
			Magnesium					149000						10000
								149000	157000	166000	155000	NS	NS	43300
			Manganese					498	157000 527	166000 551	155000 498	NS 50	NS 880	43300 1020
			Manganese Nitrate as N (NO3-N)											
			ŭ					498	527	551	498	50	880	1020
			Nitrate as N (NO3-N)					498 70 JB	527 100 U	551 30 J	498 100 U	50 10000	880 1000	1020 *
			Nitrate as N (NO3-N) Nitroguanidine					498 70 JB 20 U	527 100 U 20 U	551 30 J 20 U	498 100 U 20 U	50 10000 NS	880 1000 3650	1020 * *
			Nitrate as N (NO3-N) Nitroguanidine 2,4,6-Trinitrotoluene		 		 	498 70 JB 20 U 0.1 U 0.1 U	527 100 U 20 U 0.097 U	551 30 J 20 U 0.097 U	498 100 U 20 U 0.1 U	50 10000 NS NS	880 1000 3650 2.2	1020 * * *
			Nitrate as N (NO3-N) Nitroguanidine 2,4,6-Trinitrotoluene 2,4-Dinitrotoluene		 	 	 	498 70 JB 20 U 0.1 U 0.1 U	527 100 U 20 U 0.097 U 0.097 U	551 30 J 20 U 0.097 U 0.097 U	498 100 U 20 U 0.1 U 0.1 U	50 10000 NS NS NS	880 1000 3650 2.2 73	1020 * * *
			Nitrate as N (NO3-N) Nitroguanidine 2,4,6-Trinitrotoluene 2,4-Dinitrotoluene RDX		 	 	 	498 70 JB 20 U 0.1 U 0.1 U 0.1 U	527 100 U 20 U 0.097 U 0.097 U 0.097 U	551 30 J 20 U 0.097 U 0.097 U 0.097 U 0.097 U	498 100 U 20 U 0.1 U 0.1 U 0.1 U	50 10000 NS NS NS NS	880 1000 3650 2.2 73 0.61	1020 * * * * *
			Nitrate as N (NO3-N) Nitroguanidine 2,4,6-Trinitrotoluene 2,4-Dinitrotoluene RDX 4-Amino-2,6-Dinitrotoluene	 	 	 	 	498 70 JB 20 U 0.1 U 0.1 U 0.1 U 0.1 U 0.1 U 0.1 U	527 100 U 20 U 0.097 U 0.097 U 0.097 U 0.097 U 0.097 U	551 30 J 20 U 0.097 U 0.097 U 0.097 U 0.097 U 0.097 U 0.097 U	498 100 U 20 U 0.1 U 0.1 U 0.1 U 0.1 U 0.1 U	50 10000 NS NS NS NS NS	880 1000 3650 2.2 73 0.61 NS	1020 * * * * *
			Nitrate as N (NO3-N) Nitroguanidine 2,4,6-Trinitrotoluene 2,4-Dinitrotoluene RDX 4-Amino-2,6-Dinitrotoluene HMX	 		 	 	498 70 JB 20 U 0.1 U	527 100 U 20 U 0.097 U	551 30 J 20 U 0.097 U	498 100 U 20 U 0.1 U	50 10000 NS NS NS NS NS NS	880 1000 3650 2.2 73 0.61 NS 1825	1020 * * * * * * * * * *
			Nitrate as N (NO3-N)Nitroguanidine2,4,6-Trinitrotoluene2,4-DinitrotolueneRDX4-Amino-2,6-DinitrotolueneHMX2-Amino-4,6-Dinitrotoluene	 	 	 -	 	498 70 JB 20 U 0.1 U	527 100 U 20 U 0.097 U	551 30 J 20 U 0.097 U	498 100 U 20 U 0.1 U	50 10000 NS NS NS NS NS NS NS	880 1000 3650 2.2 73 0.61 NS 1825 NS	1020 * * * * * * * * * * * *
			Nitrate as N (NO3-N)Nitroguanidine2,4,6-Trinitrotoluene2,4-DinitrotolueneRDX4-Amino-2,6-DinitrotolueneHMX2-Amino-4,6-DinitrotolueneTetryl	 		 -	 -	498 70 JB 20 U 0.1 U	527 100 U 20 U 0.097 U	551 30 J 20 U 0.097 U	498 100 U 20 U 0.1 U	50 10000 NS NS NS NS NS NS NS NS	880 1000 3650 2.2 73 0.61 NS 1825 NS 365	1020 * * * * * * * * * * * * * *
			Nitrate as N (NO3-N)Nitroguanidine2,4,6-Trinitrotoluene2,4-DinitrotolueneRDX4-Amino-2,6-DinitrotolueneHMX2-Amino-4,6-DinitrotolueneTetrylNitroglycerin	 		 -		498 70 JB 20 U 0.1 U	527 100 U 20 U 0.097 U 0.63 U	551 30 J 20 U 0.097 U 0.093 U	498 100 U 20 U 0.1 U	50 10000 NS NS NS NS NS NS NS NS NS	880 1000 3650 2.2 73 0.61 NS 1825 NS 365 4.8	1020 * * * * * * * * * * * * * * *
			Nitrate as N (NO3-N)Nitroguanidine2,4,6-Trinitrotoluene2,4-DinitrotolueneRDX4-Amino-2,6-DinitrotolueneHMX2-Amino-4,6-DinitrotolueneTetrylNitroglycerin2,6-Dinitrotoluene	 				498 70 JB 20 U 0.1 U 0.65 U 0.1 U	527 100 U 20 U 0.097 U 0.63 U 0.097 U	551 30 J 20 U 0.097 U 0.63 U 0.097 U	498 100 U 20 U 0.1 U	50 10000 NS NS NS NS NS NS NS NS NS NS	880 1000 3650 2.2 73 0.61 NS 1825 NS 365 4.8 36	1020 * * * * * * * * * * * * * * * * * *
			Nitrate as N (NO3-N)Nitroguanidine2,4,6-Trinitrotoluene2,4-DinitrotolueneRDX4-Amino-2,6-DinitrotolueneHMX2-Amino-4,6-DinitrotolueneTetrylNitroglycerin2,6-DinitrotoluenePETN		 	 -		498 70 JB 20 U 0.1 U 0.65 U 0.1 U 0.65 U 0.65 U	527 100 U 20 U 0.097 U 0.63 U 0.63 U	551 30 J 20 U 0.097 U 0.63 U 0.097 U 0.63 U	498 100 U 20 U 0.1 U 0.68 U 0.68 U	50 10000 NS NS	880 1000 3650 2.2 73 0.61 NS 1825 NS 365 4.8 36 NS	1020 * * * * * * * * * * * * * * * * * *
			Nitrate as N (NO3-N)Nitroguanidine2,4,6-Trinitrotoluene2,4-DinitrotolueneRDX4-Amino-2,6-DinitrotolueneHMX2-Amino-4,6-DinitrotolueneTetrylNitroglycerin2,6-DinitrotoluenePETN2-Nitrotoluene	 				498 70 JB 20 U 0.1 U 0.65 U 0.65 U 0.65 U 0.55 U	527 100 U 20 U 0.097 U 0.63 U 0.63 U 0.48 U	551 30 J 20 U 0.097 U 0.63 U 0.63 U 0.48 U	498 100 U 20 U 0.1 U 0.68 U 0.68 U 0.68 U 0.52 U	50 10000 NS NS	880 1000 3650 2.2 73 0.61 NS 1825 NS 365 4.8 36 NS 0.049	1020 * * * * * * * * * * * * * * * * * *
			Nitrate as N (NO3-N)Nitroguanidine2,4,6-Trinitrotoluene2,4-DinitrotolueneRDX4-Amino-2,6-DinitrotolueneHMX2-Amino-4,6-DinitrotolueneTetrylNitroglycerin2,6-DinitrotoluenePETN2-NitrotolueneNitrobenzene	 				498 70 JB 20 U 0.1 U 0.65 U 0.65 U 0.65 U 0.5 U 0.11 U	527 100 U 20 U 0.097 U 0.63 U 0.63 U 0.63 U 0.48 U 0.097 U	551 30 J 20 U 0.097 U 0.63 U 0.63 U 0.63 U 0.48 U 0.097 U	498 100 U 20 U 0.1 U 0.68 U 0.68 U 0.52 U 0.1 U	50 10000 NS NS NS NS NS NS NS NS NS NS NS NS NS	880 1000 3650 2.2 73 0.61 NS 1825 NS 365 4.8 36 NS 0.049 3.4	1020 * * * * * * * * * * * * * * * * * *

Table A.1. Previous Groundwater Sampling Data For All Site Wells At Load Line 12 (continued)

Area	Well Number	Monitored Zone	Compound or Element Detected	Jan-07 Level (µg/L)	Apr-07 Level (μg/L)	Jul-07 Level (µg/L)	Oct-07 Level (µg/L)	Jan-08 Level (µg/L)	Apr-08 Level (μg/L)	Jul-08 Level (μg/L)	Oct-08 Level (μg/L)	MCL (µg/L)	Region 9 PRG (µg/L)	Facility- Wide Background (μg/L)
			4-Nitrotoluene					0.5 U	0.48 U	0.48 U	0.52 U	NS	0.66	*
			Nitrocellulose					500 U	500 U	500 U	500 U	NS	NS	*
			Potassium					3130	2670	2660	2390 J	NS	NS	2890
			Sodium					37900	39000	39600	37600	NS	NS	45700
			Zinc					6 JB	7.4 J	6.6 J	6.6 JB	5000	11000	60.9
Load Line 12	LL12mw-185	Unconsolidated	4,4'-DDT					0.03 U	0.03 U	0.019 J	0.03 U	NS	0.2	*
			Aluminum					50 U	50 U	50 U	61.3 JB	200	36000	0
			Barium					57.2	54.6	54.7	53.3	2000	2600	82.1
			Benzene					1 U	1 U	1 U	0.3 JB	5	0.35	*
			bis(2-Ethylhexyl) phthalate					10 U	10 U	2.1 J	3.2 JB	NS	4.8	*
			Cadmium					0.24 J	0.27 J	0.25 J	0.23 JB	5	NS	0
			Calcium					714000 R	695000	677000	1020000	NS	NS	115000
			Carbon disulfide					1 U	1 U	0.36 J	1 U	NS	1000	*
			Chloromethane					1 U	1 U	1 U	1.6	NS	160	*
			Cobalt					2.6 J	2.3 J	2.7 J	3 J	NS	730	0
			delta-BHC					0.03 U	0.03 U	0.021 J	0.03 UJ	NS	0.052	*
			Magnesium					304000	297000	308000	298000	NS	NS	43300
			Manganese					1780	1580	1530	1640	50	880	1020
			Nickel					6.9 J	4.6 J	5.6 J	6.8 J	NS	730	0
			Nitrate-Nitrite					220000	800	240000 J	230000 J	10000	1000	*
			Nitroguanidine					20 U	20 U	20 U	20 U	NS	3650	*
			2,4,6-Trinitrotoluene					0.096 U	0.1 U	0.097 U	0.097 U	NS	2.2	*
			2,4-Dinitrotoluene					0.096 U	0.1 U	0.097 U	0.097 U	NS	73	*
			RDX					0.096 U	0.1 U	0.097 U	0.097 U	NS	0.61	*
			4-Amino-2,6-Dinitrotoluene					0.096 U	0.1 U	0.097 U	0.097 U	NS	NS	*
			HMX					0.096 U	0.067 J	0.097 U	0.097 U	NS	1800	*
			2-Amino-4,6-Dinitrotoluene					0.096 U	0.1 U	0.097 U	0.097 U	NS	NS	*
			Tetryl					0.096 U	0.1 U	0.097 U	0.097 U	NS	365	*
			Nitroglycerin					0.62 U	0.68 U	0.63 U	0.63 U	NS	4.8	*
			2,6-Dinitrotoluene					0.096 U		0.097 U	0.097 U	NS	36	*
			PETN					0.62 U	0.68 U	0.63 U	0.63 U	NS	NS	*
			2-Nitrotoluene					0.48 U	0.52 U	0.48 U	0.48 U	NS	0.049	*
			Nitrobenzene					0.071 J	0.1 U	0.075 J	0.079 J	NS	3.4	*
			3-Nitrotoluene					0.48 U	0.52 U	0.48 U	0.48 U	NS	122	*
			1,3,5-Trinitrobenzene					0.096 U	0.1 U	0.097 U	0.097 U	NS	1095	*
			1,3-Dinitrobenzene					0.096 U	0.1 U	0.097 U	0.097 U	NS	3.6	*
			4-Nitrotoluene					0.48 U	0.52 U	0.48 U	0.48 U	NS	0.66	*
			Nitrocellulose					1400 J	490 J	3500 J	500 UJ	NS	NS	*
			Perchlorate					NT	NT	0.065	NT NT	NS	3.6	*
			Potassium					9220	7680 J	7730	7720 J	NS	NS	2890
			Sodium					58300	55800	56200	54800	NS	NS	45700
			Zinc					5.3 JB		6 JB		5000	11000	60.9
	1		Zint					J.J JD	4 J	U JD	21.2 D	5000	11000	00.7

Table A.1. Previous Groundwater Sampling Data For All Site Wells At Load Line 12 (continued)

Load Line 12	Number	Monitored Zone	Compound or Element Detected	Jan-07 Level (µg/L)	Apr-07 Level (μg/L)	Jul-07 Level (µg/L)	Oct-07 Level (µg/L)	Jan-08 Level (µg/L)	Apr-08 Level (μg/L)	Jul-08 Level (µg/L)	Oct-08 Level (μg/L)	MCL (µg/L)	Region 9 PRG (µg/L)	Facility- Wide Background (µg/L)
	LL12mw-186	Unconsolidated	Barium	47.3	46.9	45 J	45.9					2000	2600	82.1
			beta-BHC	0.03 U	0.03 U	0.03 U	0.014 J					NS	0.04	*
			bis(2-Ethylhexyl) phthalate	10 U	2 J	.97 JB	2.2 JB					NS	4.8	*
			Calcium	141000	139000 J	135000 J	134000					NS	NS	115000
			Iron	699	820	941 J	861					300	11000	279
			Magnesium	65000	64100	61300	59100					NS	NS	43300
			Manganese	295	287 J	398 J	347					50	880	1020
			Nitrate-Nitrite	100 U	100 U	20 B	600					10000	1000	*
			Nitroguanidine	20 U	20 U	20 U	20 U					NS	3650	*
			2,4,6-Trinitrotoluene	0.095 U	0.098 U	0.12 U	0.1 U					NS	2.2	*
			2,4-Dinitrotoluene	0.095 U	0.098 U	0.12 U	0.1 U					NS	73	*
			RDX	.053 J	0.098 U	.12 J	0.1 U					NS	1	*
			4-Amino-2,6-Dinitrotoluene	0.095 U	0.098 U	0.12 U	0.1 U					NS	NS	*
			HMX	0.095 U	0.098 U	0.12 U	0.1 U					NS	1800	*
			2-Amino-4,6-Dinitrotoluene	0.095 U	0.098 U	0.12 U	0.1 U					NS	NS	*
			Tetryl	0.095 U	0.098 U	0.12 U	0.1 U					NS	365	*
			Nitroglycerin		0.65 U	0.78 U	0.68 U					NS	4.8	*
			2,6-Dinitrotoluene	0.095 U	0.098 U	0.12 U	0.1 U					NS	36	*
			PETN		0.65 U	0.78 U	0.68 U					NS	NS	*
			2-Nitrotoluene	0.48 U	0.1 J	0.6 U	0.52 U					NS	110	*
			Nitrobenzene	0.095 U	0.098 U	0.12 U	0.1 U					NS	3.4	*
			3-Nitrotoluene	0.48 U	0.49 U	0.6 U	0.52 U					NS	61	*
			1,3,5-Trinitrobenzene	0.095 U	0.031 J	0.12 U	0.52 U 0.1 U					NS	1095	*
			1,3-Dinitrobenzene	0.095 U	0.091 J	0.12 U	0.1 U					NS	3.6	*
			4-Nitrotoluene	0.48 U	0.49 U	0.12 U	0.52 U					NS	0.66	*
			Nitrocellulose	500 U	500 U	500 U	500 U					NS	NS	*
			Potassium	1520 J	1340 J	1560 J	1450 J					NS	NS	2890
			Sodium	1520 J 16600	16200	15300 J	1430 J 15200					NS	NS	45700
			Zinc	5.2 J	6 J	4.3 J	4.3 J					5000	11000	60.9
Load Line 12	I I 12mm 187	Unconsolidated		J.2 J				26.8 J	50.0 U	20.7 J	50.0 U	200		0
Load Line 12	LL12IIIW-107	Oneonsondated	Antimony					0.17 J	0.13 J	20.7 J 2 U	2 U	6	15	0
			Barium					339	338	301	339	2000	2600	82.1
			Benzene					1 U	1 U	1 U	0.27 JB	5	0.35	*
			bis(2-Ethylhexyl) phthalate					10 U	2.2 J	1.7 J	1.7 JB	NS	4.8	*
			Calcium					969000 R	932000	944000	1020000	NS	NS	115000
			Chloromethane					1 U	1 U	1 U	0.32 J	NS	160	*
			Cobalt					10.1	9.1	10.4	10.9	NS	730	0
			Iron					50 U	50 U	33.5 J	50 U	300	11000	279
			Magnesium					295000	286000	306000	328000	NS	NS	43300
			Manganese					293000	20000	2130	2260	50	880	1020
			Nickel					14.1	12.4	14.5 J	16.9	NS	730	0
			Nitrate-Nitrite					14.1	200000	14.3 J 1600000 J	200000 B	10000	1000	*

Table A.1. Previous Groundwater Sampling Data For All Site Wells At Load Line 12 (continued)

Area	Well Number	Monitored Zone	Compound or Element Detected	Jan-07 Level (µg/L)	Apr-07 Level (μg/L)	Jul-07 Level (µg/L)	Oct-07 Level (µg/L)	Jan-08 Level (μg/L)	Apr-08 Level (μg/L)	Jul-08 Level (µg/L)	Oct-08 Level (µg/L)	MCL (µg/L)	Region 9 PRG (µg/L)	Facility- Wide Background (μg/L)
			Nitroguanidine					20 U	20 U	20 U	20 U	NS	3650	*
			2,4,6-Trinitrotoluene					0.096 U	0.098 U	0.098 U	0.12 U	NS	2.2	*
			2,4-Dinitrotoluene					0.096 U	0.098 U	0.098 U	0.12 U	NS	73	*
			RDX					0.096 U	0.098 U	0.098 U	0.12 U	NS	0.61	*
			4-Amino-2,6-Dinitrotoluene					0.096 U	0.098 U	0.098 U	0.12 U	NS	NS	*
			HMX					0.096 U	0.098 U	0.098 U	0.12 U	NS	1800	*
			2-Amino-4,6-Dinitrotoluene					0.096 U	0.098 U	0.098 U	0.12 U	NS	NS	*
			Tetryl					0.096 U	0.098 U	0.098 U	0.12 U	NS	365	*
			Nitroglycerin					0.62 U	0.64 U	0.64 U	0.76 U	NS	4.8	*
			2,6-Dinitrotoluene					0.096 U	0.098 U	0.098 U	0.12 U	NS	36	*
			PETN					0.62 U	0.64 U	0.64 U	0.76 U	NS	NS	*
			2-Nitrotoluene					0.48 U	0.49 U	0.49 U	0.58 U	NS	0.049	*
			Nitrobenzene					0.096 U	0.098 U	0.098 U	0.12 U	NS	3.4	*
			3-Nitrotoluene					0.48 U	0.49 U	0.49 U	0.58 U	NS	122	*
			1,3,5-Trinitrobenzene					0.096 U	0.098 U	0.098 U	0.12 U	NS	1095	*
			1,3-Dinitrobenzene					0.096 U	0.098 U	0.098 U	0.12 U	NS	3.6	*
			4-Nitrotoluene					0.48 U	0.49 U	0.49 U	0.58 U	NS	0.66	*
			Nitrocellulose					4000 J	6300 J	18800 J	2300 J	NS	NS	*
			Potassium					53500	51100	50700	52700 J	NS	NS	2890
			Sodium					35900	34600	36100	37100	NS	NS	45700
			Thallium					0.52 J	0.59 J	0.6 J	0.55 UJ	2	2	0
T 11' 10	1110 100	TT 1'1 . 1	Zinc					9.7 JB	6 J	5.7 J	7.7 JB	5000	11000	60.9
Load Line 12	LL12mw-188	Unconsolidated	2-Butanone					10 U	0.68 J	10 U	10 U	NS	1900	
			Aluminum					1770	23.8 J	72.3	121 JB	200	36000	0
			Arsenic					5 U	5 U	5 U	4.5 J	10	0.045	11.7
			Barium					44	40.5	38	40.1	2000	2600	82.1
			Benzene					1 U	1 U	1 U	0.4 JB	5	0.35	*
			beta-BHC					0.03 U	0.013 J	0.017 J	0.012 J	NS NS	0.037	*
			delta-BHC bis(2-Ethylhexyl) phthalate					0.03 U 10 U	0.011 J 0.94 J	0.03 U 0.9 J	0.03 UJ 1.3 JB		0.052 4.8	*
			Calcium					116000	140000	151000	1.5 JB 194000	NS	NS	115000
			Chromium					2.4 J	3.3 J	131000 5 U	2.6 J	100	NS	0
			Cobalt					2.4 J	4.7 J	5 U	2.0 J	NS	730	0
			Copper					4.8 J	4.7 J 5 U	5 U	5 U	1300	1500	0
			Iron					4120	227 J	362 J	1640	300	11000	279
			Magnesium					89600	112000	112000	124000	NS	NS	43300
			Manganese					485	664	646	1010 J	50	880	1020
			Nickel					5.3 J	3.6 J	10 U	4.8 J	NS	730	0
			Nitrate-Nitrite					1300	5.0 J	300 J	800 JB	10000	1000	*
			Nitroguanidine					20 U	20 U	20 U	20 U	NS	3650	*
	1		U						0.11 U	0.1 U	0.096 U	NS	2.2	*
			2,4,6-Trinitrotoluene					0.098 U			0.040 11		2.1	

Table A.1. Previous Groundwater Sampling Data For All Site Wells At Load Line 12 (continued)

Area	Well Number	Monitored Zone	Compound or Element Detected	Jan-07 Level (µg/L)	Apr-07 Level (μg/L)	Jul-07 Level (µg/L)	Oct-07 Level (µg/L)	Jan-08 Level (µg/L)	Apr-08 Level (μg/L)	Jul-08 Level (µg/L)	Oct-08 Level (µg/L)	MCL (µg/L)	Region 9 PRG (µg/L)	Facility- Wide Background (µg/L)
			RDX					0.083 J	0.11 U	0.1 U	0.096 U	NS	0.61	*
			4-Amino-2,6-Dinitrotoluene					0.098 U	0.11 U	0.1 U	0.096 U	NS	NS	*
			HMX					0.069 J	0.11 U	0.037 J	0.096 U	NS	1800	*
			2-Amino-4,6-Dinitrotoluene					0.098 U	0.11 U	0.1 U	0.096 U	NS	NS	*
			Tetryl					0.098 U	0.11 U	0.1 U	0.096 U	NS	365	*
			Nitroglycerin					0.64 U	0.72 U	0.65 U	0.62 U	NS	4.8	*
			2,6-Dinitrotoluene					0.098 U	0.11 U	0.1 U	0.096 U	NS	36	*
			PETN					0.64 U	0.72 U	0.65 U	0.62 U	NS	NS	*
			2-Nitrotoluene					0.49 U	0.56 U	0.5 U	0.48 U	NS	0.049	*
			Nitrobenzene					0.098 U	0.11 U	0.1 U	0.078 J	NS	3.4	*
			3-Nitrotoluene					0.49 U	0.56 U	0.5 U	0.48 U	NS	122	*
			1,3,5-Trinitrobenzene					0.098 U	0.11 U	0.1 U	0.096 U	NS	1095	*
			1,3-Dinitrobenzene					0.098 U	0.11 U	0.1 U	0.096 U	NS	3.6	*
			4-Nitrotoluene					0.49 U	0.56 U	0.5 U	0.48 U	NS	0.66	*
			Nitrocellulose					500 U	500 U	500 U	500 U	NS	NS	*
			Potassium					2570	2190	2220	2560 J	NS	NS	2890
			Silver					5 U	3.6 J	5 U	5 U	NS	180	0
			Sodium					27100	31800	30800	33200	NS	NS	45700
			Vanadium					1.8 J	2.2 J	10 U	10 U	NS	36	0
			Zinc					14.4 B	2.6 J	3 J	5.9 JB	5000	11000	60.9
Load Line 12	LL12mw-189	Unconsolidated	2-Butanone					10 UJ	0.7 J	10 U	10 U	NS	1900	*
			4,4'-DDD					0.03 UJ	0.03 U	0.013 J	0.03 U	NS	0.28	*
			Acetone					10 U	10 U	10 U	1.5 JB	NS	610	*
			Aluminum					49.9 J	37.2 J	50 U	50 U	200	36000	0
			Arsenic					5 U	3.9 J	5 U	11.1 J	10	0.045	11.7
			Barium					14.4	18.7	15.1	16.7	2000	2600	256
			bis(2-Ethylhexyl) phthalate					1.1 J	10 U	34	10 U	NS	4.8	*
			Calcium					150000	162000	159000	145000	NS	NS	53100
			Chloromethane					1 U	1 U	1 U	2.5	NS	160	*
			Iron					119	491	430	1960 J	300	11000	1430
			Magnesium					70500	78500	75100	67700	NS	NS	15000
			Manganese					235	327	319	283	50	880	1340
			Mercury					0.2 U	0.2 U	0.2 U	0.2	2	11	0
			Nitrate-Nitrite					100 U	100 U	50 J	100 U	10000	1000	*
			Nitroguanidine					20 U	20 U	20 U	20 U	NS	3650	*
			2,4,6-Trinitrotoluene					0.096 U	0.11 U	0.097 U	0.1 U	NS	2.2	*
			2,4-Dinitrotoluene					0.096 U	0.11 U	0.097 U	0.1 U	NS	73	*
			RDX					0.096 U	0.11 U	0.097 U	0.1 U	NS	0.61	*
			4-Amino-2,6-Dinitrotoluene					0.096 U	0.11 U	0.097 U	0.1 U	NS	NS	*
			НМХ					0.044 J	0.11 U	0.097 U	0.07 J	NS	1800	*
			2-Amino-4,6-Dinitrotoluene					0.096 U	0.11 U	0.097 U	0.1 U	NS	NS	*
			Tetryl		ł		1	0.096 U	0.11 U	0.097 U	0.1 U	NS	365	*

Table A.1. Previous Groundwater Sampling Data For All Site Wells At Load Line 12 (continued)

Area	Well Number	Monitored Zone	Compound or Element Detected	Jan-07 Level (µg/L)	Apr-07 Level (μg/L)	Jul-07 Level (µg/L)	Oct-07 Level (μg/L)	Jan-08 Level (μg/L)	Apr-08 Level (μg/L)	Jul-08 Level (µg/L)	Oct-08 Level (µg/L)	MCL (µg/L)	Region 9 PRG (µg/L)	Facility- Wide Background (µg/L)
			Nitroglycerin					0.62 U	0.7 U	0.63 U	0.66 U	NS	4.8	*
			2,6-Dinitrotoluene					0.096 U	0.11 U	0.097 U	0.1 U	NS	36	*
			PETN					0.62 U	0.7 U	0.63 U	0.66 U	NS	NS	*
			2-Nitrotoluene					0.48 U	0.54 U	0.48 U	0.51 U	NS	0.049	*
			Nitrobenzene					0.096 U	0.11 U	0.097 U	0.08 J	NS	3.4	*
			3-Nitrotoluene					0.48 U	0.54 U	0.48 U	0.51 U	NS	122	*
			1,3,5-Trinitrobenzene					0.096 U	0.11 U	0.097 U	0.1 U	NS	1095	*
			1,3-Dinitrobenzene					0.096 U	0.11 U	0.097 U	0.1 U	NS	3.6	*
			4-Nitrotoluene					0.48 U	0.54 U	0.48 U	0.51 U	NS	0.66	*
			Nitrocellulose					500 U	500 UJ	130 J	500 UJ	NS	NS	*
			Potassium					2230	1940 J	1920	1840 J	NS	NS	5770
			Sodium					49700	51200	48600	48100	NS	NS	51400
			Thallium					1 U	0.17 J	1 U	1 U	2	2	0
			Zinc					6.4 JB	10 U	4.6 JB	10 U	5000	11000	52.3
Load Line 12	LL12mw-242	Unconsolidated	Aluminum					27300	36.5 BJ	1440	922 J	200	36000	0
			Antimony					0.73 J	2 U	2 U	2 U	6	15	0
			Arsenic					53.5	19	24.7	18.3	10	0.045	11.7
			Barium					129	23.3	28.2	31.7	2000	2600	82.1
			Benzene					0.55 J	1 U	1 U	0.49 JB	5	0.35	*
			Beryllium					1.3	1 U	1 U	1 U	4	NS	0
			bis(2-Ethylhexyl) phthalate					10 U	10 U	2 J	2.6 JB	NS	4.8	*
			Cadmium					0.2 J	0.5 U	0.5 U	0.5 U	5	NS	0
			Calcium					95700	69300	63000	69100	NS	NS	115000
			Chloromethane					1 R	1 U	1 U	0.64 J	NS	160	*
			Chromium					41.6	5 U	5 U	5 U	100	NS	0
			Cobalt					27.5	5 U	<u> </u>	5 U	NS	730	0
			Copper					53.3	5 U	5 U	5 U	1300	1500	0
			Iron					65800	565 J	4390 J	<u> </u>	300	11000	279
			Lead					24.3	3 U	3 U	3 U	15	NS	0
			m&p-Xylenes					0.31 J	2.0 U	2 U		10000		*
			Magnesium					59900	46500	41400	45400	NS	NS	43300
			Manganese					1070	67.3	99.8	98.2	50	880	1020
			Nickel					61.6	10 U	10 U	10 U	NS	730	0
			Nitrate-Nitrite					40 JB	10 U	100 U	200 B	10000	1000	*
			Nitroguanidine					20 U	20 U	20 U	200 B 20 U	NS	3650	*
			2,4,6-Trinitrotoluene					0.1 U	0.1 U	0.097 U	0.097 U	NS	2.2	*
			2,4,0-11Introtoluene					0.1 U	0.1 U	0.097 U	0.097 U	NS	73	*
			RDX					0.1 U 0.1 U	0.1 U 0.1 U	0.097 U 0.097 U	0.097 U 0.096 U	NS	0.61	*
			4-Amino-2,6-Dinitrotoluene					0.1 U 0.1 U	0.1 U 0.1 U	0.097 U 0.097 U	0.098 U 0.097 U	NS	0.01 NS	*
			HMX					0.1 U 0.1 U	0.1 U 0.1 U	0.097 U 0.097 U	0.097 U 0.097 U	NS	1800	*
			2-Amino-4,6-Dinitrotoluene					0.1 U 0.1 U	0.1 U 0.1 U	0.097 U 0.097 U	0.097 U 0.097 U	NS NS	1800 NS	*
			,											*
			Tetryl					0.1 U	0.1 U	0.097 U	0.097 U	NS	365	- 17

Table A.1. Previous Groundwater Sampling Data For All Site Wells At Load Line 12 (continued)

Area	Well Number	Monitored Zone	Compound or Element Detected	Jan-07 Level (µg/L)	Apr-07 Level (μg/L)	Jul-07 Level (µg/L)	Oct-07 Level (µg/L)	Jan-08 Level (μg/L)	Apr-08 Level (μg/L)	Jul-08 Level (µg/L)	Oct-08 Level (µg/L)	MCL (µg/L)	Region 9 PRG (µg/L)	Facility- Wide Background (µg/L)
			Nitroglycerin					0.65 U	0.68 U	0.63 U	0.63 U	NS	4.8	*
			2,6-Dinitrotoluene					0.1 U	0.1 U	0.097 U	0.097 U	NS	36	*
			PETN					0.65 U	0.68 U	0.63 U	0.63 U	NS	NS	*
			2-Nitrotoluene					0.5 U	0.52 U	0.48 U	0.48 U	NS	0.049	*
			Nitrobenzene					0.1 U	0.1 U	0.097 U	0.051 J	NS	3.4	*
			3-Nitrotoluene					0.5 U	0.52 U	0.48 U	0.48 U	NS	122	*
			1,3,5-Trinitrobenzene					0.045 J	0.1 U	0.097 U	0.097 U	NS	1100	*
			1,3-Dinitrobenzene					0.1 U	0.1 U	0.097 U	0.097 U	NS	3.6	*
			4-Nitrotoluene					0.5 U	0.52 U	0.48 U	0.48 U	NS	0.66	*
			Nitrocellulose					500 U	500 U	500 U	500 U	NS	NS	*
			o-Xylene					0.17 J	1 U	1 U	0.28 J	10000	210	*
			Perchlorate					NT	NT	0.056	NT	NS	3.6	*
			Potassium					8310	1840 J	2090	1910 J	NS	NS	2890
			Sodium					32400	33400	28200	26000	NS	NS	45700
			Thallium					0.29 J	1 U	1 U	1 U	2	2	0
			Toluene					1 BJ	1 U	1 U	0.29 J	1000	720	*
			Total Xylenes					0.48 J	1.4 J	2 U	0.28 J	10000	210	*
			Vanadium					46.4 J	10 U	2.5 J	10 U	NS	36	0
			Zinc					159	4.2 J	12.3 J	10.2 B	5000	11000	60.9
Load Line 12	LL12mw-243	Unconsolidated	2-Butanone					10 U	0.57 J	10 U	10 U	NS	1900	*
			alpha-BHC					0.03 U	0.03 U	0.0082 J	0.03 U	NS	0.011	*
			Aluminum					67.8	220 B	50 U	50 U	200	36000	0
			Antimony					2 U	2 U	0.21 J	0.15 J	6	15	0
			Arsenic					7.5	16.5	20.1	12	10	0.045	11.7
			Barium					32.4	34.6	37.9	31.7	2000	2600	82.1
			Benzene					1 U	1 U	1 U	0.24 JB	5	0.35	*
			beta-BHC					0.03 U	0.011 J	0.017 J	0.03 U	NS	0.037	*
			bis(2-Ethylhexyl) phthalate					10 U	10 U	10 U	1.2 JB	NS	4.8	
			Calcium					125000	126000	129000	134000	NS	NS	115000
			Cobalt					2.1	5 U	5 U	5 U		730	0
			Iron					2460 J	2180 J	2540 J	1150 2 U	300	11000	279
			m&p-Xylenes					2 U	0.9 J	2 U	2 U	10000 NS	210 NS	
			Magnesium					83000 J	84800	84200	90100			43300
			Manganese					1070	928	862 40 I	813 200 I	50 10000	880 1000	1020
			Nitrate-Nitrite					1100 20 U	100 U 20 U	40 J 20 U	300 J 20 U	10000 NS	3650	*
			Nitroguanidine 2,4,6-Trinitrotoluene						0.12 U			NS NS		*
			2,4,6-1 rinitrotoluene					0.097 U 0.097 U	0.12 U 0.12 U	0.1 U 0.1 U	0.11 U 0.11 U	NS NS	2.2 73	*
			RDX					0.097 U 0.097 U	0.12 U 0.12 U		0.11 U 0.11 U	NS NS	0.61	*
			4-Amino-2,6-Dinitrotoluene					0.097 U 0.097 U	0.12 U 0.12 U	0.1 U 0.1 U	0.11 U 0.11 U	NS	0.61 NS	*
			HMX					0.097 U 0.097 U	0.12 U 0.12 U			NS NS		*
											0.11 U	1	1800 NS	*
			2-Amino-4,6-Dinitrotoluene					0.097 U	0.12 U	0.1 U	0.11 U	NS	NS	_

Table A.1. Previous Groundwater Sampling Data For All Site Wells At Load Line 12 (continued)

Area	Well Number	Monitored Zone	Compound or Element Detected	Jan-07 Level (µg/L)	Apr-07 Level (μg/L)	Jul-07 Level (µg/L)	Oct-07 Level (µg/L)	Jan-08 Level (μg/L)	Apr-08 Level (μg/L)	Jul-08 Level (μg/L)	Oct-08 Level (µg/L)	MCL (µg/L)	Region 9 PRG (µg/L)	Facility- Wide Background (µg/L)
			Tetryl					0.097 U	0.12 U	0.1 U	0.11 U	NS	365	*
			Nitroglycerin					0.63 U	0.75 U	0.66 U	0.72 U	NS	4.8	*
			2,6-Dinitrotoluene					0.097 U	0.12 U	0.059 J	0.11 U	NS	36	*
			PETN					0.63 U	0.75 U	0.66 U	0.72 U	NS	NS	*
			2-Nitrotoluene					0.48 U	0.58 U	0.5 U	0.56 U	NS	0.049	*
			Nitrobenzene					0.051 J	0.12 U	0.1 U	0.11 U	NS	3	*
			3-Nitrotoluene					0.48 U	0.58 U	0.5 U	0.56 U	NS	122	*
			1,3,5-Trinitrobenzene					0.097 U	0.12 U	0.1 U	0.11 U	NS	1100	*
			1,3-Dinitrobenzene					0.097 U	0.12 U	0.1 U	0.11 U	NS	3.6	*
			4-Nitrotoluene					0.48 U	0.58 U	0.5 U	0.56 U	NS	0.66	*
			Nitrocellulose					160 J	150 J	500 U	500 UJ	NS	NS	*
			Potassium					3640 J	3270 J	3090	3080 J	NS	NS	2890
			Sodium					23300	23200	22700	24000	NS	NS	45700
			Total Xylenes					2 U	0.9 J	2 U	2 U	10000	210	*
			Zinc					5.6 JB	3.2 J	5.8 J	6.1 JB	5000	11000	60.9
Load Line 12	LL12mw-244	Unconsolidated	2-Butanone					10 U	0.84 J	10 U	10 U	NS	1900	*
			4-Nitrotoluene					0.11 U	0.1 J	0.11 U	0.48 U	NS	61	*
			Aluminum					83.5	9040	26.8 J	50 U	200	36000	0
			Antimony					0.34 J	0.95 J	1.1 J	0.33 J	6	15	0
			Arsenic					7.5	21.4	5 U	8.2	10	0.045	11.7
			Barium					98.9	145	125	120	2000	2600	82.1
			Benzene					1 U	1 U	1 U	0.46 JB	5	0.35	*
			Beryllium					1 U	0.4 J	1 U	1 U	4	NS	0
			bis(2-Ethylhexyl) phthalate					10 U	10 U	10 U	1.1 JB	NS	4.8	*
			Calcium					79700	73500	83300	88100	NS	NS	115000
			Chloromethane					1 R	1 U	1 U	1.8	NS	160	*
			Chromium					5 U	12.4	5 U	5 U	100	NS	0
			Cobalt					5 U	9.5	5 U	5 U	NS	730	0
			Copper					5 U	14.2 J	5 U	5 U	1300	1500	0
			Iron					332	20700 J	61.8 J	46.3 JB			279
			Lead					3 U	6.9	3 U	3 U	15	NS	0
			m&p-Xylenes					2 U	0.88 J	2 U	2 UJ	10000	210	*
			Magnesium					25100	26300	25500	27400	NS	NS	43300
			Manganese					115	360	108	148	50	880	1020
			Nickel					10 U	22	10 U	10 U	NS	730	0
			Nitrate as N (NO3-N)					40 JB	100 U	30 J	300	10000	1000	*
			Nitroguanidine					20 U	20 U	20 U	20 U	NS	3650	*
			2,4,6-Trinitrotoluene					0.1 U	0.1 U	0.11 U	0.097 U	NS	2.2	*
			2,4,0 minitotoluene					0.1 U	0.1 U	0.11 U	0.097 U	NS	73	*
			RDX					0.1 U	0.1 U	0.11 U	0.097 U	NS	0.61	*
			4-Amino-2,6-Dinitrotoluene					0.1 U	0.1 U	0.11 U	0.097 U	NS	NS	*
			HMX					0.1 U	0.1 U	0.11 U	0.097 U	NS	1800	*
								0.1 U	0.1 U	0.11 U	0.097 U	C I I	1000	

Table A.1. Previous Groundwater Sampling Data For All Site Wells At Load Line 12 (continued)

Area	Well Number	Monitored Zone	Compound or Element Detected	Jan-07 Level (µg/L)	Apr-07 Level (μg/L)	Jul-07 Level (µg/L)	Oct-07 Level (µg/L)	Jan-08 Level (µg/L)	Apr-08 Level (μg/L)	Jul-08 Level (µg/L)	Oct-08 Level (μg/L)	MCL (µg/L)	Region 9 PRG (µg/L)	Facility- Wide Background (µg/L)
			2-Amino-4,6-Dinitrotoluene					0.1 U	0.1 U	0.11 U	0.097 U	NS	NS	*
			Tetryl					0.1 U	0.1 U	0.11 U	0.097 U	NS	365	*
			Nitroglycerin					0.66 U	0.67 U	0.7 U	0.63 U	NS	4.8	*
			2,6-Dinitrotoluene					0.1 U	0.1 U	0.11 U	0.097 U	NS	36	*
			PETN					0.66 U	0.67 U	0.7 U	0.63 U	NS	NS	*
			2-Nitrotoluene					0.51 U	0.52 U	0.54 U	0.48 U	NS	0.049	*
			Nitrobenzene					0.1 U	0.1 U	0.11 U	0.097 U	NS	3	*
			3-Nitrotoluene					0.51 U	0.52 U	0.54 U	0.48 U	NS	122	*
			1,3,5-Trinitrobenzene					0.1 U	0.1 U	0.11 U	0.097 U	NS	1100	*
			1,3-Dinitrobenzene					0.1 U	0.1 U	0.11 U	0.097 U	NS	3.6	*
			4-Nitrotoluene					0.51 U	0.1 J	0.54 U	0.48 U	NS	0.66	*
			Nitrocellulose					200 J	500 UJ	500 U	500 UJ	NS	NS	*
			Perchlorate					NT	NT	0.015 J	NT	NS	3.6	*
			Potassium					2190	4340 J	2320	1800 J	NS	NS	2890
			Sodium					9120	7430	8210	9080	NS	NS	45700
			Total Xylenes					2 U	0.88 J	2 U	2 U	10000	210	*
			Vanadium					10 U	14.1	10 U	10 U	NS	36	0
			Zinc					3 JB	46.4	3.2 J	7.9 JB	5000	11000	60.9
Load Line 12	LL12mw-245	Unconsolidated	Acetone					10 U	1.1 J	10 U	2.7 JB	NS	610	*
			Aluminum					27.6 J	50 U	52.9 J	50 U	200	36000	0
			Arsenic					24.4 J	5 U	7.3 B	20.4	10	0.045	11.7
			Barium					32.6	30.2	29	33.7	2000	2600	82.1
			Benzene					1 U	1 U	1 U	0.25 JB	5	0.35	*
			beta-BHC					0.03 U	0.03 U	0.012 J	0.03 U	NS	0.032	*
			bis(2-Ethylhexyl) phthalate					3.9 J	10 U	0.012 J	3.2 JB	NS	4.8	*
			Calcium					150000	130000	146000	134000	NS	NS	115000
			Cobalt					5 U	5 U	5 U	2 J	NS	730	0
			Iron					1670 J	73.5 J	426 J	994	300	11000	279
			Magnesium					72100	63700	69800	65700	NS	NS	43300
			Manganese					301	56.5	186	163	50	880	1020
			Nitrate as N (NO3-N)					100	80 J	20 J	100 U	10000	1000	*
			Nitroguanidine					20 U	20 U	20 U	20 U	NS	3650	*
			2,4,6-Trinitrotoluene					0.097 U	0.12 U	0.1 U	0.11 U	NS	2.2	*
			2,4-Dinitrotoluene					0.097 U	0.12 U	0.1 U	0.11 U	NS	73	*
			RDX					0.097 U	0.12 U	0.1 U	0.11 U	NS	0.61	*
			4-Amino-2,6-Dinitrotoluene					0.097 U	0.12 U	0.1 U	0.11 U	NS	NS	*
			НМХ					0.097 U	0.12 U	0.1 U	0.11 U	NS	1800	*
			2-Amino-4,6-Dinitrotoluene					0.097 U	0.12 U	0.1 U	0.11 U	NS	NS	*
			Tetryl					0.097 U	0.12 U	0.1 U	0.11 U	NS	365	*
			Nitroglycerin					0.63 U	0.81 U	0.68 U	0.74 U	NS	4.8	*
			2,6-Dinitrotoluene					0.097 U	0.1 J	0.1 U	0.11 U	NS	36	*
	1	1	,							0.68 U	0.74 U	NS		*

Table A.1. Previous Groundwater Sampling Data For All Site Wells At Load Line 12 (continued)

Area	Well Number	Monitored Zone	Compound or Element Detected	Jan-07 Level (µg/L)	Apr-07 Level (μg/L)	Jul-07 Level (µg/L)	Oct-07 Level (μg/L)	Jan-08 Level (μg/L)	Apr-08 Level (μg/L)	Jul-08 Level (µg/L)	Oct-08 Level (μg/L)	MCL (µg/L)	Region 9 PRG (µg/L)	Facility- Wide Background (µg/L)
			2-Nitrotoluene					0.48 U	0.62 U	0.52 U	0.57 U	NS	0.049	*
			Nitrobenzene					0.097 U	0.12 U	0.1 U	0.11 U	NS	3	*
			3-Nitrotoluene					0.48 U	0.62 U	0.52 U	0.57 U	NS	122	*
			1,3,5-Trinitrobenzene					0.097 U	0.12 U	0.1 U	0.11 U	NS	1100	*
			1,3-Dinitrobenzene					0.097 U	0.12 U	0.1 U	0.11 U	NS	3.6	*
			4-Nitrotoluene					0.48 U	0.62 U	0.52 U	0.57 U	NS	0.66	*
			Nitrocellulose					500 U	500 U	500 U	500 U	NS	NS	*
			Potassium					3640	3140 J	3280	2700 J	NS	NS	2890
			Selenium					5 U	5 U	4.7 J	5 U	50	180	0
			Sodium					24000	21300	22600	21600	NS	NS	45700
			Zinc					2.5 UJ	2.9 J	2.8 J	3.9 JB	5000	11000	60.9
Load Line 12	LL12mw-246	Unconsolidated	2-Butanone					10 U	0.86 J	10 U	10 U	NS	1900	*
			Acetone					10 R	10 U	10 U	4.3 JB	NS	610	*
			Aluminum					50 U	19.7 JB	50 U	50 U	200	36000	0
			Arsenic					32.7	29.5	41.6	14.6	10	NS	11.7
			Barium					40.6	42.4	42.2	37.8	2000	2600	82.1
			Benzene					1 U	1 U	1 U	0.58 JB	5	0.35	*
			bis(2-Ethylhexyl) phthalate					10 U	10 U	2.9 J	5 JB	NS	4.8	*
			Calcium					103000	108000	110000	92300	NS	NS	115000
			Iron					1430	1130 J	2120	50 U	300	11000	279
			Magnesium					50900	53900	52900	50900	NS	NS	43300
			Manganese					73.2	78.6	69.3	28	50	880	1020
			Mercury					0.2 U	0.2 U	0.15 BJ	0.2 U	2	11	0
			Nitrate-Nitrite					100 U	100 U	100 U	100 B	1000	1000	*
			Nitroguanidine					20 U	20 U	20 U	20 U	NS	3650	*
			2,4,6-Trinitrotoluene					0.098 U	0.1 U	0.11 U	0.096 U	NS	2.2	*
			2,4,0-11IIIII0ioluene					0.098 U	0.1 U 0.1 U	0.11 U	0.096 U	NS	73	*
			RDX					0.098 U	0.1 U 0.1 U	0.11 U	0.096 U	NS	0.61	*
			4-Amino-2,6-Dinitrotoluene					0.098 U 0.098 U	0.1 U 0.1 U	0.11 U	0.096 U	NS	NS	*
			HMX					0.098 U 0.098 U	0.1 U 0.1 U	0.11 U 0.11 U	0.096 U 0.096 U	NS	1800	*
			2-Amino-4,6-Dinitrotoluene					0.098 U 0.098 U	0.1 U 0.1 U		0.096 U 0.096 U	NS	1800 NS	*
			· · · · · · · · · · · · · · · · · · ·					0.098 U 0.098 U						*
			Tetryl Nitroglycerin					0.098 U 0.64 U	0.1 U 0.68 U	0.11 U 0.69 U	0.096 U 0.62 U	NS NS	365 4.8	*
									0.68 U 0.1 U			NS	<u>4.8</u> 36	*
			2,6-Dinitrotoluene PETN					0.098 U			0.096 U	NS NS	36 NS	*
			2-Nitrotoluene					0.64 U	0.68 U	0.69 U	0.62 U	NS NS	0.049	*
								0.49 U	0.52 U	0.53 U	0.48 U			*
			Nitrobenzene					0.098 U	0.1 U 0.52 U	0.11 U 0.53 U	0.074 J 0.48 U	NS NS	3.4	*
			3-Nitrotoluene					0.49 U					122	*
			1,3,5-Trinitrobenzene					0.098 U	0.1 U	0.11 U	0.096 U	NS	1100	*
			1,3-Dinitrobenzene					0.098 U	0.1 U	0.11 U	0.096 U	NS	3.6	*
			4-Nitrotoluene					0.49 U	0.52 U	0.53 U	0.48 U	NS	0.66	*
			Nitrocellulose					500 U	500 UJ	130 J	500 UJ	NS	NS	ጥ

Table A.1. Previous Groundwater Sampling Data For All Site Wells At Load Line 12 (continued)

 Table A.1. Previous Groundwater Sampling Data For All Site Wells At Load Line 12 (continued)

Area	Well Number	Monitored Zone	Compound or Element Detected	Jan-07 Level (µg/L)	Apr-07 Level (μg/L)	Jul-07 Level (µg/L)	Oct-07 Level (µg/L)	Jan-08 Level (µg/L)	Apr-08 Level (μg/L)	Jul-08 Level (µg/L)	Oct-08 Level (μg/L)	MCL (µg/L)	Region 9 PRG (µg/L)	Facility- Wide Background (µg/L)
			o-Xylene					1 U	1 U	1 U	0.29 J	NS	NS	*
			Potassium					7430	7520 J	5250	6140 J	NS	NS	2890
			Sodium					22400	23300	22400	23300	NS	NS	45700
			Toluene					1 U	1 U	1 U	0.23 J	1000	720	*
			Total Xylenes					2 U	2 U	2 U	0.29 J	10000	210	*
			Zinc					3.7 UJ	5.1 J	4.8 JB	10 U	5000	11000	60.9
Jan 2008 Event	Equip Blank	QA	Nitrate-Nitrite					50						
Oct 2008 Event	Method Blank	QA	Nitrate-Nitrite								50			

Notes:

NS = no standard NT = not tested

All inorganics are filtered, all organics are not filtered

* There are no background levels for organic constituents

- - Not Sampled During That Quarterly Sampling Event

J = estimated result. Results have been qualified "J" For more details refer to Data Verification/Validation Reports in

in the FWGWMP January, April, July and October 2007 and January, April and July 2008 Sampling Reports

B = the analyte is found in the method blank or any of the field blanks

R = Rejected data

U = analyzed but not detected at or above the reporting limit

Bold = inorganic constituent detected above Facility-Wide background levels

Italics = inorganic constituent detected below the Facility-Wide background levels

Shaded boxes indicate any constituent, which does not have a background value, detected above the reporting limit.

Data for the October 2008 sampling event is draft data and is not in its final form

PART II

Final

Quality Assurance Project Plan for the Sampling and Analysis Plan Groundwater Sampling at the RVAAP-12 Load Line 12 Addendum No. 1

Ravenna Army Ammunition Plant Ravenna, Ohio

Contract No. W912QR-04-D-0028 Delivery Order No. 0001

Prepared for:

U.S. Army Corps of Engineers 600 Martin Luther King, Jr. Place Louisville, Kentucky 40202

Prepared by:

SAIC Engineering of Ohio, Inc. 8866 Commons Boulevard, Suite 201 Twinsburg, Ohio 44087

April 14, 2009

TABLE OF CONTENTS

ACCURACY, AND COMPLETENESS	13-1
13.0 SPECIFIC ROUTINE PROCEDURES TO ASSESS DATA PRECISION,	
12.0 PREVENTIVE MAINTENANCE PROCEDURES	12-1
11.0 PERFORMANCE AND SYSTEM AUDITS	11-1
10.2 DATA REPORTING	
10.1 DATA REDUCTION	
10.0 DATA REDUCTION, VALIDATION, AND REPORTING	
9.2 FIELD MEASUREMENTS	9-1
9.1 FIELD SAMPLE COLLECTION	
9.0 INTERNAL QUALITY CONTROL CHECKS	9-1
8.2 LABORATORY ANALYSIS	8-1
8.1 FIELD SCREENING ANALYTICAL PROTOCOLS	
8.0 ANALYTICAL PROCEDURES	
7.0 CALIBRATION PROCEDURES AND FREQUENCY	7-1
6.2 FINAL EVIDENCE FILES CUSTODY PROCEDURES	6-1
6.1 FIELD CHAIN-OF-CUSTODY PROCEDURES	6-1
6.0 SAMPLE CUSTODY	6-1
5.0 SAMPLING PROCEDURES	5-1
4.4 COMPLETENESS, REPRESENTATIVENESS, AND COMPARABILITY	4-1
4.3 ACCURACY, PRECISION, AND SENSITIVITY OF ANALYSIS	
4.2 LEVEL OF QUALITY CONTROL EFFORT	
4.1 DATA QUALITY OBJECTIVES	
4.0 QUALITY ASSURANCE OBJECTIVES FOR MEASUREMENT	
3.0 PROJECT ORGANIZATION AND RESPONSIBILITY	3-1
2.3 PROJECT SCHEDULE	2-1
2.2 PROJECT OBJECTIVES AND SCOPE	2-1
2.1 PROJECT DESCRIPTION	2-1
2.0 PROJECT DESCRIPTION	2-1
1.0 INTRODUCTION	1-1
ACRONYMS AND ABBREVIATIONS	iii
LIST OF TABLES	

TABLE OF CONTENTS (CONTINUED)

14.0 CORRECTIVE ACTIONS	
15.0 QA REPORTS TO MANAGEMENT	
16.0 REFERENCES	

LIST OF TABLES

Table 8-1.	Parameters, Methods and Number of Samples for Groundwater Sampling at	
	Load Line 12	8-2
Table 8-2.	MNA Analytical Parameters Containers for Groundwater Samples	8-5

ACRONYMS AND ABBREVIATIONS

DNX	Hexahydro-1.3-dinitroso-5-nitro-1,3,5-triazine
FSP	Field Sampling Plan
HMX	Octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine
LCS	laboratory control sample
Ohio EPA	Ohio Environmental Protection Agency
MNA	Monitored Natural Attenuation
MNX	Hexahydro-1-nitroso-3,5-dinitro-1,3,5-triazine
MS	Matrix Spike
MSD	Matrix Spike Duplicate
QA	Quality Assurance
QAPP	Quality Assurance Project Plan
QC	Quality Control
RDX	Hexahydro-1,3,5-trinitro-1,3,5-triazine
RVAAP	Ravenna Army Ammunition Plant
SAP	Sampling and Analysis Plan
SAIC	Science Applications International Corporation
TNX	Hexahydro-1,3,5-trinitroso-1,3,5-triazine
USACE	U.S. Army Corps of Engineers
USEPA	U.S. Environmental Protection Agency

1.0 INTRODUCTION

This Quality Assurance Project Plan (QAPP) Addendum No. 1 for Groundwater Sampling at RVAAP-12 Load Line 12 addresses supplemental project-specific information and tiers under the Facility-Wide QAPP for the Ravenna Army Ammunition Plant (RVAAP) (USACE 2001). Each QAPP section documents adherence to the Facility-Wide QAPP or stipulates project-specific requirements.

2.0 PROJECT DESCRIPTION

2.1 PROJECT DESCRIPTION

This information is contained in Section 1.0 of the Field Sampling Plan Addendum No. 1 for Groundwater Sampling at RVAAP-12 Load Line 12.

2.2 PROJECT OBJECTIVES AND SCOPE

This information is contained in Section 3.0 of the Field Sampling Plan Addendum No. 1 for Groundwater Sampling at RVAAP-12 Load Line 12.

2.3 PROJECT SCHEDULE

The project schedule for completing groundwater sampling at Load Line 12 is discussed in Section 2.2 of the Field Sampling Plan Addendum No. 1 for Groundwater Sampling at RVAAP-12 Load Line 12.

The functional project organization and responsibilities are described in Section 2.0 of the Field Sampling Plan Addendum No. 1 for Groundwater Sampling at RVAAP-12 Load Line 12.

4.1 DATA QUALITY OBJECTIVES

Technical objectives and rationales for this groundwater sampling investigation are outlined in Section 3.0 of the Field Sampling Plan Addendum No. 1 for Groundwater Sampling at RVAAP-12 Load Line 12. Groundwater samples collected under this project will adhere to the requirements of the Facility-Wide QAPP and applicable updated requirements specified in the Facility-Wide Groundwater Monitoring Program. All quality control (QC) parameters stated in the specific U.S. Environmental Protection Agency (USEPA) SW-846 methods and will be adhered to for each chemical to be sampled under this project. The SW-846 method references found in the Facility-Wide QAPP have been revised to the Update III methods (i.e., 8260A is now 8260B, 8270B is now 8270C). Laboratories are required to comply with all methods as written; recommendations are considered requirements. Concurrence with the Department of Defense Quality Systems Manual for Environmental Laboratories, January 2006 (DOD 2006) is expected.

4.2 LEVEL OF QUALITY CONTROL EFFORT

QC efforts will follow Section 3.2 of the Facility-Wide QAPP. Field QC measurements will include field source water blanks, trip blanks, field duplicates, split samples, and equipment rinsate blanks. Laboratory QC measurements will include method blanks, laboratory control samples (LCSs), laboratory duplicates, and matrix spike/matrix spike duplicate (MS/MSD) samples.

4.3 ACCURACY, PRECISION, AND SENSITIVITY OF ANALYSIS

Accuracy, precision, and sensitivity goals identified in Section 3.3 and Tables 3-2 through 3-9 of the Facility-Wide QAPP will be imposed for this groundwater sampling investigation.

4.4 COMPLETENESS, REPRESENTATIVENESS, AND COMPARABILITY

Completeness, representativeness, and comparability goals identified in Section 3.4 and Table 3-2 of the Facility-Wide QAPP will be imposed for this groundwater sampling investigation.

Sampling procedures are described in Section 4.0 of the Facility-Wide Sampling and Analysis Plan (SAP) as referenced in Section 4.0 of the Field Sampling Plan (FSP) Addendum No. 1 for Groundwater Sampling at RVAAP-12 Load Line 12.

6.1 FIELD CHAIN-OF-CUSTODY PROCEDURES

Sample handling, documentation, packaging, and shipment procedures will follow those identified in Section 5.1 of the Facility-Wide QAPP.

6.2 FINAL EVIDENCE FILES CUSTODY PROCEDURES

Custody of evidence files will follow those criteria defined in Section 5.3 of the Facility-Wide QAPP.

Field instruments and equipment calibrations will follow procedures described in Section 6.1 of the Facility-Wide QAPP.

8.0 ANALYTICAL PROCEDURES

8.1 FIELD SCREENING ANALYTICAL PROTOCOLS

Procedures for field measurements are identified in Section 4.3 of the Facility-Wide Sampling and Analysis Plan and in Section 4.0 of the FSP Addendum No. 1 for Groundwater Sampling at RVAAP-12 Load Line 12.

8.2 LABORATORY ANALYSIS

Groundwater sampling will be performed as described in Section 4.0 of the FSP Addendum No. 1 for Groundwater Sampling at RVAAP-12 Load Line 12. Eight monitoring wells will be sampled for analysis of monitored natural attenuation (MNA) parameters. The total number of samples to be collected for each analysis is summarized in Table 8-1.

Sample containers and sample preservation requirements are presented in Section 4.3.6 of the Facility-Wide SAP. Quantitation levels for MNA parameter samples and sample containers are presented in Table 8-2 of this QAPP. The contract laboratory will provide sufficient containers of the proper size and with the proper chemical preservatives for the parameters to be collected. Samples will be collected and preserved as presented in Section 4.0 of the Facility-Wide QAPP.

Parameter	Method	No. of Field Samples	No. of Field Duplicates	No. of Split Samples	No. of Rinsate Samples	Total No. Samples	Justification for Inclusion in MNA Sampling Suite
Groundwater		······			<u>p</u>	F	
							The nitroso derivatives of RDX (DNX,
							MNX, and TNX) are first-stage degradation
							compounds. DNX and MNX are additionally
							first stage degradation compounds of HMX.
							These intermediates are also susceptible to
	SW846						subsequent degradation and are short-lived in
DNX, MNX, TNX	8330	8	1	1	1	11	the environment.
Dimethylhydrazine	Mod.						Intermediate degradation products of RDX.
s (1,1- and 1,2-)	300.0	8	1	1	1	11	Short-lived in the environment.
	Mod.						End product indicator of RDX. Short-lived in
Hydrazine	300.0	8	1	1	1	11	the environment.
	EPA						End product indicator for explosives
Ammonia	350.2	8	1	1	1	11	degradation.
							End product indicator. Nitrate is the most
							efficient electron acceptor in anaerobic
							biodegradation. Also, nitrate is reduced to
							nitrite when utilized by microorganisms as an
Nitrate	EPA 300	8	1	1	1	11	electron acceptor.
							Methane is an end product indicator and an
							anaerobic biodegradation transformation
							product of explosives degradation. Ethane
							and ethylene results are also reported under
							the laboratory's organic gases suite, but these
							analytes are not considered significant to the
Methane	RSK-175	8	1	1	1	11	evaluation of MNA processes.

Table 8-1. Parameters, Methods and Number of Samples for Groundwater Sampling at Load Line 12

					No. of	Total	
		No. of Field	No. of Field	No. of Split	Rinsate	No.	Justification for Inclusion in MNA
Parameter	Method	Samples	Duplicates	Samples	Samples	Samples	Sampling Suite
	SW 846						End product indicator and anaerobic
Methanol	8015B	8	1	1	1	11	biodegradation transformation product.
							Limiting nutrient for microbial growth and
							activity. Low levels indicate decreasing
	EPA						potential for the maintenance of adequate
Phosphorous	365.4	8	1	1	1	11	habitats for degradative microorganisms.
							End product indicator; also supports co-
Organic Nitrogen	EPA 300	8	1	1	1	11	metabolic microbial activity.
Groundwater							
							Anaerobic studies suggest degradation of
							RDX in groundwater can utilize co-metabolic
Total Organic	EPA						processes that incorporate organic carbon as
Carbon (TOC)	415.1	8	1	1	1	11	a co-metabolite.
							Iron is a common electron acceptor utilized
Ferrous Iron	NA	8	0	0	0	8	in anaerobic biodegradation.
							Sulfate can be utilized by microbes as an
	EPA 300						electron acceptor in anaerobic
	EPA						biodegradation, resulting in the production of
Sulfate and Sulfide	376.1	8	1	1	1	11	sulfide.
							Indicator of feasibility and types of
	EPA						degradation processes possible. Alkaline
Alkalinity	310.1	8	1	1	1	11	conditions favor degradation of RDX.
Carbon Dioxide	SM4500-						Microorganisms utilize carbon dioxide as an
(Dissolved)	CO ₂ -C	8	1	1	1	11	electron acceptor, once sulfate is exhausted.

Table 8-1. Parameters, Methods and Number of Samples for Groundwater Sampling at Load Line 12 (continued)

Table 8-1. Parameters, Methods and Number of Samples for Groundwater Sampling at Load Line 12 (continued)

		No. of Field	No. of Field	No. of Split	No. of Rinsate	Total No.	Justification for Inclusion in MNA
Parameter	Method	Samples	Duplicates	Samples	Samples	Samples	Sampling Suite
	ASTM						Indicator of feasibility and types of
Oxidation-	D1498 -						degradation processes possible. Monitored as
Reduction Potential	08	8	1	1	1	11	a field parameter.

Sources for MNA selection include Sources: Brannon and Pennington 2002; SERDP 2004; and Pennington et. al., 1999.

MNA = monitored natural attenuation

RDX = Hexahydro-1,3,5-trinitro-1,3,5-triazine

DNX = Hexahydro-1.3-dinitroso-5-nitro-1,3,5-triazine

MNX = Hexahydro-1-nitroso-3,5-dinitro-1,3,5-triazine

TNX = Hexahydro-1,3,5-trinitroso-1,3,5-triazine

HMX = Octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine

Analyte Group	Container	Minimum Sample Size	Preservative	Project Reporting Levels	Holding Time
Additional Explosive Derivatives (DNX, TNX, MNX, and Hydrazines)	2 - 1L amber glass bottle with Teflon-lined lid	1000 mL	Cool, 4° C	0.5 μg/L	7 d (extraction) 40 d (analysis)
Phosphate-total,	1 II polyhottla	500 mL	$\rm H_2SO_4$ to pH <2	0.2 mg/L	28 days
Ammonia-N, and TKN	1 – 1L polybottle 500 mI		Cool, 4° C	0.1 mg/L	28 days
Dissolve Carbon Dioxide	1 - 250 mL amber glass bottle	500 mL	Cool, 4° C	0.1 mg/L	14 days
Methane	3 – 20 mL vial	60 mL	Cool, 4° C, HCL to pH<2	10 µg/L	14 days
Methanol	3 – 40 mL vial	120 mL	Cool, 4° C	5 mg/L	7 days
Alkalinity (total)	1 – 250 ml plastic	250 mL	Cool, 4° C	2 mg/L	14 days
Ferrous Iron	Field Parameter no container requirements field test kit	NA	NA	NA	NA
Oxidation-Reduction Potential (ORP)	Field Parameter no container requirements collected during low-flow purging	NA	NA	NA	NA

Table 8-2. MNA Analytical Parameters Containers for Groundwater Samples

9.0 INTERNAL QUALITY CONTROL CHECKS

9.1 FIELD SAMPLE COLLECTION

Field QC sample types, numbers, and frequencies are identified in Sections 4.0 and 5.0 of the FSP Addendum No. 1 for Groundwater Sampling at Load Line 12.

9.2 FIELD MEASUREMENTS

Refer to Section 4.0 of the FSP Addendum No. 1 for Groundwater Sampling at Load Line 12 for details regarding field measurements.

10.1 DATA REDUCTION

Data reduction will follow the established protocols defined in Section 9.1 in the Facility-Wide QAPP.

10.2 DATA REPORTING

Data reports will follow the established protocols defined in Section 9.3 in the Facility-Wide QAPP.

A minimum of one field surveillance for the investigation will be performed by the Science Applications International Corporation (SAIC) quality assurance (QA) Officer and/or the SAIC Field Team Leader. This surveillance will encompass the performance of monitoring well sampling activities and completion of field logs. Surveillances will follow SAIC QAPP No. 18.3. The U.S. Army Corps of Engineers (USACE) or Ohio EPA (Ohio Environmental Protection Agency) may conduct surveillances or audits at the discretion of the respective agency.

Maintenance of all field analytical and sampling equipment will follow direction provided in Section 11.1 of the Facility-Wide QAPP.

13.0 Specific Routine Procedures to Assess Data Precision, Accuracy, and Completeness

Field data will be assessed as outlined in Section 12.1 of the Facility-Wide QAPP.

Corrective action protocol will follow directions provided in Section 13.1 of the Facility-Wide QAPP.

Procedures and reports will follow the protocol identified in Section 14.0 of the Facility-Wide QAPP.

- Brannon, J.M., and Pennington, J.C., 2002. Environmental Fate and Transport Process Descriptions for Explosives, Final, U. S. Army Engineer Research and Development Center, Vicksburg, Mississippi, Document No. ERD/EL TR-02-10.
- DoD (U.S. Department of Defense) 2006. Department of Defense Quality Systems Manual for Environmental Laboratories, January 2006.
- MKM 2007. Final Characterization of 14 AOCs at Ravenna Army Ammunition Plant, Characterization of Load Line 12. March 2007.
- Pennington J.C., Zakikhani M., and Harrelson D.W., 1999. Monitored Natural Attenuation of Explosives in Groundwater – Environmental Security Technology Certification Program (ESTCP) Completion Report for U.S. Army Waterways Experiment Station, Vicksburg, Mississippi, Final Report, 228pp.
- SERDP (Strategic Environmental Research and Development Program) 2004. *Microbial Degradation of RDX and HMX*, Project CU1213, Final Report, December 2001 December 2003, Performing organizations: Biotechnology Research Institute, National Research Council of Canada; Defense Research and Development Canada; and U. S. Air Force Research Laboratory, 221pp.
- USACE (U.S. Army Corps of Engineers) 2001. Facility-Wide Quality Assurance Project Plan for Environmental Investigations at the Ravenna Army Ammunition Plant, Ravenna, Ohio, DACA62-00-D-0001, Delivery Order CY02, Final.
- USACE 2002. Louisville Chemistry Guideline (LCG), Environmental Engineering Branch, Louisville District, U.S. Army Corps of Engineers, Version 5, June 2002.

Part III

Final

Site Safety and Health Plan for the Sampling and Analysis Plan Groundwater Sampling at the RVAAP-12 Load Line 12 Addendum No. 1

Ravenna Army Ammunition Plant Ravenna, Ohio

Contract No. W912QR-04-0028 Delivery Order No. 0001

Prepared for:

U.S. Army Corps of Engineers 600 Martin Luther King, Jr. Place Louisville, Kentucky 40202

Prepared by:

SAIC Engineering of Ohio, Inc. 8866 Commons Boulevard Twinsburg, Ohio 44087

April 10, 2009

APPROVALS

Final

Site Safety and Health Plan for Groundwater Sampling at RVAAP-12 Load Line 12

April 2009

W. Hein Jago

Kevin Jago Phone 865-418-4614 SAIC Project Manager

Randy/Hansen, CHP, CSP,Phone 314-770-3027SAIC Health and Safety Officer

04/07/2009

Date

04/07/2009

Date

TABLE OF CONTENTS

LIST OF TABLES	ii
LIST OF FIGURES	ii
ACRONYMS AND ABBREVIATIONS	iii
1.0 INTRODUCTION	1-1
2.0 SITE DESCRIPTION AND CONTAMINANT CHARACTERIZATION	2-1
2.1 SITE DESCRIPTION	2-1
2.2 CONTAMINANTS	2-2
3.0 HAZARD/RISK ANALYSIS	3-1
3.1 TASK-SPECIFIC HAZARD ANALYSIS	3-1
3.2 POTENTIAL EXPOSURES	3-1
4.0 MUNITIONS AND EXPLOSIVES OF CONCERN AVOIDANCE	4-1
5.0 STAFF ORGANIZATION, QUALIFICATIONS, AND RESPONSIBILITIES	5-1
6.0 TRAINING	6-1
7.0 PERSONAL PROTECTIVE EQUIPMENT	7-1
8.0 MEDICAL SURVEILLANCE	8-1
9.0 EXPOSURE MONITORING/AIR SAMPLING PROGRAM	9-1
10.0 HEAT/COLD STRESS MONITORING	10-1
11.0 STANDARD OPERATING SAFETY PROCEDURES	11-1
12.0 SITE CONTROL MEASURES	12-1
13.0 PERSONNEL HYGIENE AND DECONTAMINATION	13-1
14.0 EMERGENCY PROCEDURES AND EQUIPMENT	14-1
15.0 LOGS, REPORTS, AND RECORD KEEPING	15-1
16.0 REFERENCES	16-1
17.0 FACILITY AND HOSPITAL MAPS	17-1

LIST OF TABLES

Table 2-1.	Maximum Concentrations of Constituents of Potential Concern at Load Line 12	2-2
Table 3-1.	Hazards Inventory	3-1
Table 3-2.	Hazards Analysis	3-2
Table 3-3.	Potential Exposures	3-6
Table 5-1.	Staff Organization	5-1
Table 6-1.	Training Requirements	6-1
Table 8-1.	Medical Surveillance Requirements	8-1
Table 9-1.	Monitoring Requirements and Action Limits	9-2

LIST OF FIGURES

Figure 17-1. General Location and Orientation of the RVAAP/Camp Ravenna	17-1
Figure 17-2. RVAAP/Camp Ravenna Site Map and Egress Route	
Figure 17-3. Route Map to Pre-Notified Medical Facility	

ACRONYMS AND ABBREVIATIONS

AOC	Area of Concern
BGS	Below Ground Surface
CPR	Cardiopulmonary Resuscitation
FOM	Field Operations Manager
FWSHP	Facility Wide Safety and Health Plan
HTRW	Hazardous, Toxic, and Radioactive Waste
HAZWOPER	Hazardous Waste Operations
IRP	Installation Restoration Program
NGB	National Guard Bureau
OEW	Ordnance and Explosive Waste
OHARNG	Ohio Army National Guard
OJT	On-the-Job Training
MEC	Munitions and Explosives of Concern
PID	Photoionization Detector
PM	Project Manager
PPE	Personal Protective Equipment
RDX	hexahydro-1,3,5-trinitro-1,3,5-triazine
RVAAP	Ravenna Army Ammunition Plant
SAIC	Science Applications International Corporation
SAP	Sampling and Analysis Plan
SSHO	Site Safety and Health Officer
SSHP	Site Safety and Health Plan
USACE	United States Army Corps of Engineers

Science Applications International Corporation's (SAIC) formal policy, stated in the Environmental Compliance and Health and Safety Program manual, is to take every reasonable precaution to protect the health and safety of our employees, the public, and the environment. To this end, the Ravenna Army Ammunition Plant (RVAAP) *Facility-Wide Safety and Health Plan* (FWSHP) (USACE 2001) and this Site Safety and Health Plan (SSHP) collectively set forth the specific procedures required to protect SAIC and SAIC subcontractor personnel involved in the field activities. These plans are driven by requirements contained in the most current revisions of the Unites States Army Corps of Engineers (USACE) *Safety and Occupational Health Requirements for Hazardous, Toxic, and Radioactive Waste (HTRW)* and *Ordnance and Explosive Waste (OEW) Activities, ER-385-1-92,* and the USACE *Safety and Health Manual, EM-385-1-1-1,* which are available online via the USACE web site. SAIC activities are also subject to the requirements of the SAIC Corporate Environmental Compliance and Health and Safety Program and associated procedures. All field personnel are required to comply with the requirements of these programs and plans.

The FWSHP addresses program issues and hazards and hazard controls common to the entire installation. This SSHP Addendum to the FWSHP serves as the lower tier document addressing the hazards and controls specific to the Sampling and Analysis (SAP) Plan Addendum No. 1 RVAAP-12 Load Line 12 Groundwater. Copies of the FWSHP and this SSHP Addendum will be present at the work site during all fieldwork.

SAIC will perform one round of groundwater sampling at selected groundwater monitoring wells within the Load Line 12 area of concern (AOC). SAP Addendum No. 1 addresses the sampling (using low-flow methods) activities to be performed.

Sampling crews will use protective gloves to handle potentially contaminated materials, and, if necessary, the Site Safety and Health Officer (SSHO) will upgrade the required personal protective equipment (PPE). The SSHO will observe all site tasks during daily safety inspections and will use professional judgment and appropriate monitoring results to determine if upgrading PPE is required. A detailed analysis of these hazards and specific appropriate controls is presented in Table 3-2 (Section 3.0). Details regarding PPE are contained in Section 7.0.

2.1 SITE DESCRIPTION

When the RVAAP Installation Restoration Program (IRP) began in 1989, RVAAP was identified as a 21,419-acre installation. The property boundary was resurveyed by the Ohio Army National Guard (OHARNG) over a 2-year period (2002 and 2003) and the total acreage of the property was found to be 21,683.289 acres. As of February 2006, a total of 20,403 acres of the former 21,683-acre RVAAP has been transferred to the National Guard Bureau (NGB) and subsequently licensed to OHARNG for use as a military training site, the Camp Ravenna Joint Military Training Center (Camp Ravenna).

The current RVAAP consists of 1,280 acres scattered throughout Camp Ravenna. Camp Ravenna is in northeastern Ohio within Portage and Trumbull Counties, approximately 4.8 km (3 miles) eastnortheast of the City of Ravenna and approximately 1.6 km (1 mile) northwest of the City of Newton Falls. The RVAAP portions of the property are solely located within Portage County. RVAAP/Camp Ravenna is a parcel of property approximately 17.7 km (11 miles) long and 5.6 km (3.5 miles) wide bounded by State Route 5, the Michael J. Kirwan Reservoir, and the CSX System Railroad on the south; Garret, McCormick, and Berry roads on the west; the Norfolk Southern Railroad on the north; and State Route 534 on the east (Figures A-1 and A-2). Camp Ravenna is surrounded by several communities: Windham on the north; Garrettsville 9.6 km (6 miles) to the northwest; Newton Falls 1.6 km (1 mile) to the southeast; Charlestown to the southwest; and Wayland 4.8 km (3 miles) to the south.

When RVAAP was operational, Camp Ravenna did not exist and the entire 21,683-acre parcel was a government-owned, contractor-operated industrial facility. The RVAAP IRP encompasses investigation and cleanup of past activities over the entire 21,683 acres of the former RVAAP. References to RVAAP in this document are considered to be inclusive of the historical extent of RVAAP, which is inclusive of the combined acreages of the current Camp Ravenna and RVAAP, unless otherwise specifically stated.

The installation was active from 1941 to 1992. Activities included loading, assembling, storing, and packing military ammunition; demilitarization of munitions; production of ammonium nitrate fertilizer; and disposal of "off-spec" munitions. Various munitions were handled on the installation including artillery rounds of 90 mm or more and bombs up to 2,000 lbs.

In addition to production and demilitarization activities at the load lines, other AOCs at RVAAP were used for the burning, demolition, and testing of munitions. These burning and demolition grounds consist of large parcels of open space or abandoned quarries. Potential contaminants at these AOCs include explosives, propellants, metals, waste oils, and sanitary waste. Other types of AOCs present at RVAAP include landfills, an aircraft fuel tank testing facility, and various general industrial support and maintenance facilities.

2.2 CONTAMINANTS

Table 2-1 lists contaminants known to occur in groundwater at Load Line 12. Inclusion in this table indicates the potential to encounter a contaminant during sampling activities, but it does not necessarily indicate that the contaminant is present in sufficient quantity to pose a health risk to workers.

Chemical	Units	Maximum Detect					
Groundwater							
Nitrate	mg/L	1800.00					
Aluminum	mg/L	28.50					
Arsenic	mg/L	0.65					
Barium	mg/L	1.10					
Calcium	mg/L	944.00					
Chromium	mg/L	0.04					
Cobalt	mg/L	0.04					
Copper	mg/L	0.08					
Iron	mg/L	88.30					
Lead	mg/L	0.05					
Magnesium	mg/L	308.00					
Manganese	mg/L	4.41					
Nickel	mg/L	0.08					
Potassium	mg/L	60.00					
Selenium	mg/L	0.01					
Sodium	mg/L	58.30					
Vanadium	mg/L	0.05					
Zinc	mg/L	0.18					
Cyanide	mg/L	0.06					
2-Nitrotoluene	mg/L	0.01					
Nitrocellulose	mg/L	18.80					
Benzoic acid	mg/L	0.02					
Bis(2-ethylhexyl)phthalate	mg/L	0.06					
Phenol	mg/L	0.03					
2-Butanone	mg/L	0.05					
4-Methyl-2-pentanone	mg/L	0.01					
Acetone	mg/L	0.07					
Methylene chloride Nitrate	mg/L	0.01					

 Table 2-1. Maximum Concentrations of Constituents of Potential Concern at Load Line 12

The purpose of the task hazard/risk analysis is to identify and assess potential hazards that may be encountered by personnel and to prescribe required controls. Table 3-1, a general checklist of hazards that may be posed by this project, indicates whether a particular major type of hazard is present. If additional tasks or significant hazards are identified during the work, this document will be modified by addendum or field change order to include the additional information.

Yes	No	Hazard
	X	Confined space entry
	X	Excavation entry (excavations will not be entered)
	X	Heavy equipment (drill rigs, backhoe)
	X	Fire and explosion (fuels)
	X	Electrical shock (utilities and tools)
X		Exposure to chemicals (contaminants and chemical tools)
X		Temperature extremes
X		Biological hazards (poison ivy, Lyme disease, West Nile disease)
	X	Radiation or radioactive contamination
	X	Noise (drill rig)
	X	Drowning
X		MEC (potential to encounter unexploded ordnance)

 Table 3-1. Hazards Inventory

MEC = munitions and explosives of concern

Specific tasks are as follows:

- Well re-development and groundwater sampling;
- Equipment decontamination; and
- Investigation-derived waste handling and disposition.

3.1 TASK-SPECIFIC HAZARD ANALYSIS

Table 3-2 presents task-specific hazards, relevant hazard controls, and required monitoring, if appropriate, for all of the planned tasks.

3.2 POTENTIAL EXPOSURES

Table 3-3 contains information on the reagents and chemicals that will be used for the project. Soil and groundwater contaminants are possible, but unlikely. Exposure to chemical tools, such as corrosive sample preservatives, field laboratory reagents, or flammable fuels, is a possibility and will be controlled through standard safe handling practices.

Safety and Health Hazards	Controls	Monitoring Requirements
	Mobilize to Work Site	·
Traffic accident	Compliance with EC&HS Procedure 110, Vehicle Operation (valid drivers license, seat	None
	belt use, routine vehicle inspections, no cell phone use while driving).	
Groundw	ater Well Development, Groundwater Monitoring, Groundwater Sampling, and Sample Pres	servation
Vehicle accidents	Compliance with EC&HS Procedure 110 "Vehicle Operation" to include verification of	Verification of valid drivers
	current drivers licenses, use of seat belts when vehicle is in motion, daily	licenses by FM
	(undocumented) vehicle safety inspection, compliance with applicable laws and	
	regulations, and defensive driving.	
General safety hazards (moving	Level D PPE: long pants, shirts with sleeves, safety glasses, safety boots, hard hats if	Daily site safety inspections
equipment, lifting, slips, falls)	overhead hazards are present (see Section 5.0 of FWSHP). Buddy system. Site-	
	specific training. Proper housekeeping. Lifts of >50 lbs will be performed by two or	
	more personnel or with mechanical assistance, extensive heavy lifting will require	
	additional lifting training. Exclusion zone if there is a potential for unauthorized entry.	
	Compliance with SAIC EC&HS Procedure 150.	
Noise	None, unless SSHO determines that equipment potentially exceeds 85 dBA	Daily safety inspection
Fire (fuels)	Fuel stored in safety cans with flame arresters. Fire extinguisher rated 2A and 5B	Daily site safety inspections
	(serviced annually and inspected monthly) in all fuel use areas. No ignition sources in	
	fuel storage areas. Bonding (metal to metal contact) during pouring. Gasoline-powered	
	equipment must be shut down and allowed to cool for 5 min. prior to fueling.	
Exposure to chemicals	Level D PPE, including nitrile or PVC gloves, to handle potentially contaminated	Daily site safety inspections.
	material. Minimal contact, wash face and hands prior to taking anything by mouth.	
	Hazardous waste site operations training and medical clearance required by site	
	workers. Fifteen-minute eyewash within 100 ft when pouring corrosive sample	
	preservatives; eyewash bottle within 10 ft when adding water to pre-preserved sample	
	containers. Site training must include hazards and controls of exposure to	
	contaminants and chemicals used on-site. MSDSs for chemical tools kept on-site. All chemical containers will have contents and hazards labeled.	
Contact with MEC	Withdrawal of all SAIC and subcontractor personnel from immediate area and field	Visual surveys for ordnance
	marking of suspect area if potential MEC is discovered.	
Electrical shock	GFCI for all electrical hand tools.	Daily safety inspection

Table 3-2. Hazards Analysis

Safety and Health Hazards	Controls	Monitoring Requirements
Temperature stress	If temperature is above 80°F or below 40°F, administrative controls will be	Temperature measurements at
	implemented (cooled or warmed drinks, routine breaks in heated or shaded area,	least twice daily. Pulse rates at
	provisions for emergency heating or cooling). Administrative controls (see Section	the start of each break if wearing
	8.0 of FWSHP). Cooled (shaded) or warmed break area depending on the season.	impermeable clothing
	Routine breaks in established break area (see Section 8.0 of FWSHP). Chilled drinks	
	if temperature exceeds 70°F.	
Severe weather	Locate nearest severe weather shelter/strong structure before beginning fieldwork.	Visual observation for lightning,
	Suspend fieldwork if lighting within 10 miles of site or tornado warning issued. Do	strong winds, or heavy rain.
	not work in areas subject to flash flooding (arroyo, ditch, etc.) if rain is forecast in	Check forecast prior to starting
	immediate area or upstream of site.	work daily.
Biological hazards (bees, ticks,	PPE (boots and work clothes). Insect repellant on boots, pants, and elsewhere, as	Visual survey
Lyme disease, histoplasmosis,	necessary, to repel ticks and mosquitoes. Pant legs tucked into boots or otherwise	
wasps, snakes, West Nile Virus)	closed to minimize tick entry. Inspect for ticks during the day and at the end of each	
	workday (see Section 9.0 of FWSHP). Avoidance of accumulations of bird or bat	
	droppings (see Section 9.0 of FWSHP).	
	Investigation-Derived Waste Handling	
General hazards (lifting equipment,	Level D PPE: long pants, shirts with sleeves, safety glasses, safety shoes or boots, and	Daily safety inspections of
manual lifting, slips)	heavy-duty gloves for materials handling present (see Section 5.0 of FWSHP). Buddy system.	operations. Daily inspection of
	Site-specific training. Proper housekeeping. Unnecessary personnel will stay well clear of	equipment to verify brakes and
	operating equipment. Functional back-up alarm on fork trucks, Bobcats, trucks, etc. Ravenna	operating systems are in proper
	O&M contractor personnel will provide any required fork truck services in the IDW staging	working condition
	area (Building 1036). IDW movement from field sites to Building 1036 will be conducted by	
	the drilling subcontractor using a backhoe equipped with forks and drum dollys. No personnel	
	allowed under lifted loads. Lifts of greater than 50 lbs will be made with two or more	
	personnel or with lifting equipment in compliance with SAIC EC&HS Procedure 150.	
	Hazardous waste safety training. Compliance with EM 385-1-1 Sections 14 and 16.	
Exposure to chemicals	Level D PPE plus nitrile or equivalent gloves for contact with contaminated material.	Daily safety inspections
	Wash face and hands prior to taking anything by mouth. Hazardous waste site operations	
	training and medical clearance. Site training must include hazards and controls for exposure to site contaminants and chemicals used on-site.	
	exposure to she containinants and chemicals used on-she.	

Table 3-2. Hazards Analysis (continued)

Safety and Health Hazards	Controls	Monitoring Requirements
Vehicle accidents	Compliance with EC&HS Procedure 110 "Vehicle Operation" to include verification of	Verification of valid drivers
	current drivers licenses, use of seat belts when vehicle is in motion, daily	licenses by FM
	(undocumented) vehicle safety inspection, compliance with applicable laws and	
	regulations, and defensive driving.	
Lifting injuries	Compliance with EC&HS Procedure 150 "Manual Lifting" to limiting individual lifts by	Verification/observation of lifting
	SAIC personnel to 50 pounds.	by SAIC personnel by FM.
Fire (vehicle fuels and flammable	Fuels stored in safety cans with flame arrestors. Bonding (metal to metal) and grounding	Daily safety inspection
contaminants)	during fuel transfers. Fuel storage areas marked with no smoking or open flames signs.	
	Gasoline-powered equipment will be shut down and allowed to cool for 5 min before	
	fueling. Fire extinguishers in all fuel use areas.	
Noise	Hearing protection within 7.6 m (25 ft) of any noisy drum moving equipment unless	Daily safety inspections
	equipment-specific monitoring indicates exposures less than 85 dBA.	
Biological hazards (bees, ticks, Lyme	PPE (boots, work clothes). Insect repellant on pants, boots, and elsewhere, as necessary,	Visual survey
disease, histoplasmosis, wasps,	to repel ticks and mosquitoes. Pant legs tucked into boots or otherwise closed to	
snakes, West Nile Virus)	minimize tick entry. Snake chaps if working in overgrown areas. Inspect for ticks during	
	the day and at the end of each workday (see Section 9.0 of FWSHP). Avoidance of	
	accumulations of bird or bat droppings (see Section 9.0 of FWSHP).	
Electric shock	GFCI for all electrical hand tools.	Visual survey of all work areas
Temperature extremes	Administrative controls (see Section 8.0 of FWSHP). Cooled (shaded) or warmed break	Temperature measurements at
	area depending on the season. Routine breaks in established break area (see Section 8.0	least twice daily. Pulse rates at the
	of FWSHP). Chilled drinks if temperature exceeds 70°F.	start of each break if wearing
		impermeable clothing
Severe weather	Locate nearest severe weather shelter/strong structure before beginning fieldwork.	Visual observation for lightning,
	Suspend fieldwork if lighting within 10 miles of site or tornado warning issued. Do	strong winds, or heavy rain.
	not work in areas subject to flash flooding (arroyo, ditch, etc.) if rain is forecast in	Check forecast prior to starting
	immediate area or upstream of site.	work daily.
	Equipment Decontamination (Soap and Water Washing, HCl, and Methanol Rinse)	
General equipment decontamination	Level D PPE plus nitrile or PVC gloves (see Section 5.0 of FWSHP). Site-specific	Daily safety inspections
hazards (slips, falls, equipment	training. Proper housekeeping.	
handling)		
Fire (decontamination solvents and	Flammable material stored in original containers or in safety cans with flame	Daily safety inspection
gasoline)	arrestors. Fire extinguisher kept near decontamination area.	

Table 3-2. Hazards Analysis (continued)

Table 3-2. Hazards Analysis (continued)

Safety and Health Hazards	Controls	Monitoring Requirements
Exposure to chemicals	Level D PPE plus nitrile or equivalent gloves for contact with contaminated	None
	material. Wash face and hands prior to taking anything by mouth. Minimal contact.	
	Hazardous waste site operations training and medical clearance. Site training must	
	include hazards and controls for exposure to site contaminants and chemicals used	
	on-site. MSDSs on-site. All chemical containers labeled to indicate contents and	
	hazard.	
Temperature extremes	Administrative controls (see Section 8.0 of FWSHP). Cooled (shaded) or warmed	Temperature measurements at
	break area depending on the season. Routine breaks in established break area (see	least twice a day. Pulse rates at
	Section 8.0 of FWSHP). Chilled drinks if temperature exceeds 70°F.	the start of each break if wearing
		impermeable clothing

EC&HS = Energy, Environment, & Infrastructure Environmental Compliance & Health and Safety PVC = polyvinyl chloride RVAAP = Ravenna Army Ammunition Plant FM = Field Manager MSDS = Material Safety Data Sheet FWSHP = Facility Wide Safety and Health Plan NRR= Noise Reduction Rating SAIC = Science Applications International Corporation GFCI = ground-fault circuit interrupter O&M = operations and maintenance SSHO = Site Saftey and Health Officer IDW = investigation-derived waste PID = photoionization detector UXO = unexploded ordnance MEC = munitions and explosives of concern PPE = personal protective equipment

Chemical	TLV/PEL/STEL/IDLH ^a	Health Effects/ Potential Hazards ^b	Chemical and Physical Properties ^b	Exposure Route(s)
Hydrochloric acid (potentially used to preserve water samples or for equipment decontamination)	TLV: 2 ppm ceiling IDLH: 50 ppm	Irritation of eyes, skin, respiratory system	Liquid; VP: fuming; IP: 12.74 eV; FP: none	Inhalation Ingestion Contact
Nitric Acid (potentially used to preserve water samples)	TLV/TWA: 2 ppm STEL: 4 ppm IDLH: 25 ppm	Irritation of eyes, skin, respiratory system, and dental erosion	Colorless, yellow, or red, fuming liquid with an acrid, suffocating odor VP: 48 mm; IP: 11.95 eV	Inhalation Ingestion Contact
Sulfuric Acid (potentially used to preserve water samples)	TLV/TWA: 1 mg/m ³ . STEL: 3 mg/m ³ IDLH: 15 mg/m ³	Irritation of eyes, skin, respiratory system, and dental erosion	Colorless to dark-brown, oily, odorless liquid. VP: 0.001 mm	Inhalation Ingestion Contact
Sodium Hydroxide (potentially used to preserve water samples)	TLV: 2 mg/m ³ ceiling IDLH: 10 mg/m ³	Irritation of eyes, skin, respiratory system	Colorless to white, odorless solid. VP: 0 mm; VP: NA	Inhalation Ingestion Contact
Isopropyl alcohol (potentially used for equipment decontamination)	TLV/TWA: 200 ppm STEL: 500 ppm IDLH: 2,000 ppm	Irritation of eyes, skin, respiratory system; drowsiness; headache	Colorless liquid with alcohol odor; VP: 33 mm; IP: 10.10 eV; FP: 53°F	Inhalation Ingestion Contact
Methanol (potentially used for equipment decontamination)	TLV/TWA: 200 ppm Skin notation IDLH: 6,000 ppm	Irritation of eyes, skin, respiratory system; headache; optic nerve damage	Liquid; VP: 96 mm; IP: 10.84 eV; FP: 52°F	Inhalation Absorption Ingestion Contact
Gasoline (used for fuel)	TLV/TWA: 300 ppm, A2 IDLH: Ca	Potential carcinogen per NIOSH, dizziness, eye irritation, dermatitis	Liquid with aromatic odor; FP: -45°F; VP: 38-300 mm	Inhalation Ingestion Absorption Contact
Liquinox (used for decontamination)	TLV/TWA: None	Inhalation may cause local irritation to mucus membranes	Yellow odorless liquid (biodegradable cleaner); FP: NA	Inhalation Ingestion

 Table 3-3.
 Potential Exposures

^aFrom 2008 Threshold Limit Values, American Conference of Governmental Industrial Hygienists.

^bFrom NIOSH Guide to Chemical Hazards web site.

A2 = suspected human carcinogen

FP = flash point

IDLH = immediately dangerous to life and health

IP = ionization potential

NIOSH = National Institute for Occupational Safety and Health

PEL = Permissible Exposure Limit

ppm = parts per million STEL = short-term exposure limit TLV = threshold limit value TWA = time-weighted average VP = vapor pressure A visual inspection for MECs around each well will be conducted by SAIC Field Operations Manager (FOM), prior to commencing work. Should any MEC be discovered, it will be avoided and the area will be vacated. No personnel will be tasked with disposal of MEC under this specific well sampling task. The SAIC FOM, will contact the SAIC Project Manager (PM), USACE and RVAAP Environmental Coordinator who will initiate the appropriate response actions.

5.0 STAFF ORGANIZATION, QUALIFICATIONS, AND RESPONSIBILITIES

This Section presents the personnel (and their associated telephone numbers) responsible for site safety and health and emergency response. Table 5-1 identifies the SAIC and subcontractor staff who will fill key roles. See the FWSHP for information on the roles and responsibilities of key positions.

Position	Name	Phone
SAIC Health and Safety Manager	Steve Davis CIH, CSP	865-481-4755
SAIC Project Manager	Kevin Jago	865-481-4614
SAIC Field Operations Manager	Paul Parrish	614-439-1812
SAIC Site Safety and Health Officer	Amanda Trenton	614-330-9857

Subcontractor Site Safety and Health Officer will be SSHO for all remedial activities.

CIH= Certified Industrial Hygienist.

CSP = Certified Safety Professional.

SAIC = Science Applications International Corporation.

Training requirements, from Section 4.0 of the FWSHP, are summarized in Table 6-1 and in Table 3-2.

The later	Washasa	G	Site Visitor (exclusion
Training	Worker	Supervisor	zone)
HAZWOPER (40-hr, 3-day OJT)	\checkmark	\checkmark	\checkmark
HAZWOPER Annual Refresher (8 hr)	\checkmark		\checkmark
HAZWOPER Supervisors Training (8 hr)		\checkmark	
General Hazard Communication Training	\checkmark	\checkmark	
Respiratory Protection Training		\checkmark	
(required only if respirators are worn)			
Hearing Conservation Training (for workers in hearing		\checkmark	\checkmark
conservation program)			
Pre-entry Briefing	\checkmark	\checkmark	\checkmark
Site-Specific Hazard Communication (contained in pre-entry		\checkmark	
briefing)			
Safety Briefing (daily and whenever conditions or tasks change)	\checkmark		\checkmark
CPR and First Aid Training	\checkmark		

 $\sqrt{1}$ = Required.

HAZWOPER = Hazardous Waste Operations.

OJT = On-the-Job Training.

CPR = Cardio Pulmonary Resuscitation.

General guidelines for selection and use of PPE are presented in the FWSHP. Specific PPE requirements for this work are presented in the hazard/risk analysis section (Section 3.0).

Medical surveillance requirements, as presented in Section 6.0 of the FWSHP, are summarized in Table 8-1.

Baseline	Routine	Overexposure	Termination
Prior to work	Every 12 months, unless	Upon developing symptoms	Upon termination or re-
assessment	greater frequency is deemed	or where exposure limits	assignment
	appropriate by attending	have been exceeded or	
	physician. Not to exceed 2-year	suspected to have been	
	interval	exceeded	

 Table 8-1. Medical Surveillance Requirements

All medical exams shall include (see Section 6.2 of the Facility Wide Safety and Health Plan):

- Medical/work history;
- Physical exam by physician;
- Audiometry;
- Blood screening and blood count;
- Chest x-ray, as specified by physician;
- Electrocardiogram, as specified by physician;
- Spirometry; and
- Urinalysis.

Assessment of airborne chemical concentrations will be performed, as appropriate, to ensure that exposures do not exceed acceptable levels. Action levels, with appropriate responses, have been established for this monitoring. In addition to the specified monitoring, the SSHO may perform or require additional monitoring, such as organic vapor monitoring in the equipment decontamination area or personnel exposure monitoring for specific chemicals. The deployment of monitoring equipment will depend on the activities being conducted and the potential exposures. All personal exposure monitoring records will be maintained in accordance with 29 *Code of Federal Regulations* 1910.1020. The minimum monitoring requirements and action levels are presented in Table 9-1.

Most of the field activities are not expected to pose airborne exposure hazards for the following reasons:

- Work will be performed in open areas with natural ventilation;
- Prior site sampling indicated that contaminant concentrations are unlikely to pose an airborne hazard; and
- The most probable contaminants (RDX and nitrate) are materials with relatively low vapor pressures and exposure can be controlled through dust suppression techniques.

It is not anticipated to perform air monitoring of the breathing zone using a photoionization detector (PID) or equivalent during sampling. However, the SSHO will examine site conditions and will contact the Health and Safety Manager and initiate monitoring if there is any indication of potential airborne exposure.

Hazard or Measured					
Parameter	Area	Interval	Limit	Action	Tasks
Airborne organics with	Breathing zone	At the wellhead and if site	<5 ppm	Level D	Groundwater Sampling
PID or equivalent	[14 in.] in front of	conditions, such as discolored soil			
	employee's	or chemical smells, indicate that	>5 ppm	Withdraw and evaluate	
	shoulder	monitoring is necessary		• evaluate need for PPE upgrade	
				• identify contaminants	
				 notify project manager and 	
				H&S manager	
Noise	All areas perceived	Any area where there is some doubt	85 dBA	Require the use of hearing	Hearing protection will
	as noisy	about noise levels	And any area	protection	be worn within the
			perceived as		exclusion zone, around
			noisy		power augers, or other
					motorized equipment
Visible airborne dust	All	Continuously	Visible dust	Stop work; use dust suppression	All
potentially containing			generation	techniques such as wetting	
SRCs				surface	

Table 9-1. Monitoring Requirements and Action Limits

H&S = health and safety

PID = photoionization detector

PPE = personal protective equipment

ppm = parts per million

SRC = site-related contaminant (e.g. PAHs, arsenic)

General requirements for heat/cold stress monitoring are contained in the FWSHP.

Standard operating safety procedures are described in the FWSHP.

Site control measures are described in the FWSHP. No formal site control is expected to be necessary for this work, as the work areas are somewhat remote and bystanders are not anticipated. The RVAAP installation is not open to the public, and only authorized personnel are allowed in the areas of concern (AOCs). If the SSHO determines that a potential exists for unauthorized personnel to approach within 25 ft of a work zone or otherwise be at risk due to proximity, then exclusion zones will be established as described in the FWSHP.

Personal hygiene and decontamination requirements are described in the FWSHP and in Section 2.0 of this addendum.

Emergency contacts, telephone numbers, directions to the nearest medical facility, and general procedures can be found in the FWSHP. All emergencies onsite will be coordinated first through **Guard Post 1** [(330) 358-2017] who will coordinate the response. The SAIC Field Operations Manager will remain in charge of all SAIC and subcontractor personnel during emergency activities. The SAIC field office will serve as the assembly point if it becomes necessary to evacuate one or more remedial locations. During mobilization, the SSHO will verify that the emergency information in the FWSHP is correct.

Each field team shall have a cellular phone and/or a 2-way radio capable of contacting Guard Post 1 for communications purposes.

During field operations all on-site personnel shall have CPR/first aid training.

Position	Phone		
RVAAP Guard Post 1			
(Police, Fire, Emergency Medical)	(330)358-2017		
Hospital (Robinson Memorial, Ravenna)	(330) 297-2449/0811		
RVAAP Facility Manager			
Mark Patterson	(330) 358-7311		
RVAAP Operation and Maintenance Contractor			
Jim McGee, PIKA International, Inc.	(330) 358-3005		
USACE			
Mark W. Nichter	(502) 315-6375		
Ohio EPA, Eileen Mohr	Office: (330) 963-1221 Cell: (216) 401-8382		
SAIC Project Manager,			
Kevin Jago	(865) 481-4614		
Jed Thomas	Office: (330) 405-5802 Cell: (216) 214-2599		
SAIC Health and Safety Personnel,			
Steve Davis CIH, CSP	(865) 481-4755		
Amanda Trenton	Office: (614) 330-9857 Cell: (614) 330-9857		

Emergency Phone Numbers

RVAAP = Ravenna Army Ammunition Plant.

USACE = U.S. Army Corps of Engineers.

Ohio EPA = Ohio Environmental Protection Agency.

SAIC = Science Applications International Corporation, Inc.

CIH= Certified Industrial Hygienist.

CSP = Certified Safety Professional.

Logs, reports, and record keeping requirements are described in the FWSHP.

16.0 REFERENCES

American Conference of Governmental Hygienists (ACGIH) 2008. Threshold Limit Values. 2008

- NIOSH (National Institute for Occupational Safety and Health) 2005. *NIOSH Pocket Guide to Chemical Hazards*. September 2005.
- USACE (U.S. Army Corps of Engineers). Safety and Occupational Health Requirements for Hazardous, Toxic, and Radioactive Waste (HTRW) and Ordnance and Explosive Waste (OEW) Activities, ER-385-1-92.
- USACE. Safety and Health Manual, EM-385-1-1.
- USACE 2001. Facility Wide Safety and Health Plan for Environmental Investigations at the Ravenna Army Ammunition Plant, Ravenna, Ohio, DACA62-00-D-0001, D.O. CY02, March 2001.
- USACE 2004. Facility-Wide Groundwater Monitoring Program for the Ravenna Army Ammunition Plant, Ravenna, Ohio, GS-10F-0350M, D.O. DACA27-03-F-0047, September 2004.

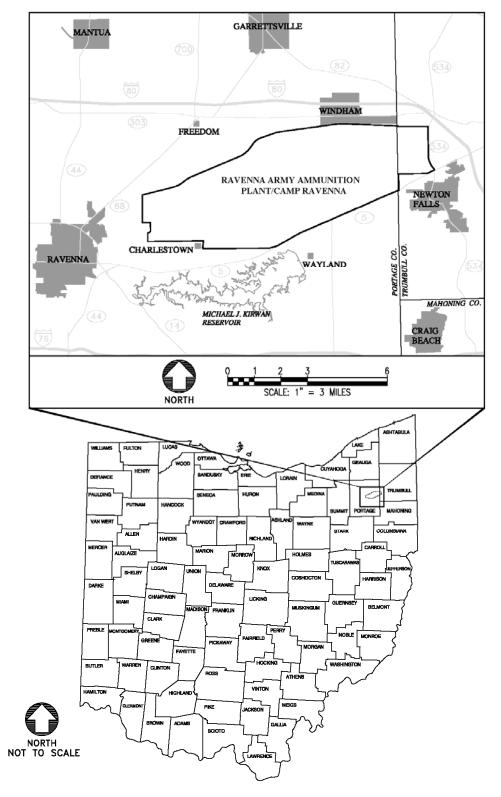


Figure 17-1. General Location and Orientation of the RVAAP/Camp Ravenna

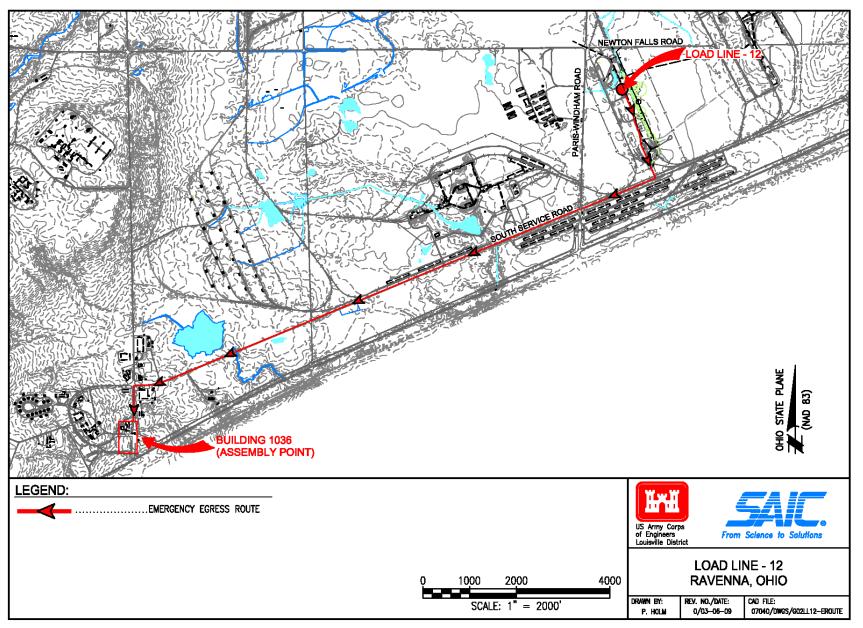


Figure 17-2. RVAAP/Camp Ravenna Site Map and Egress Route

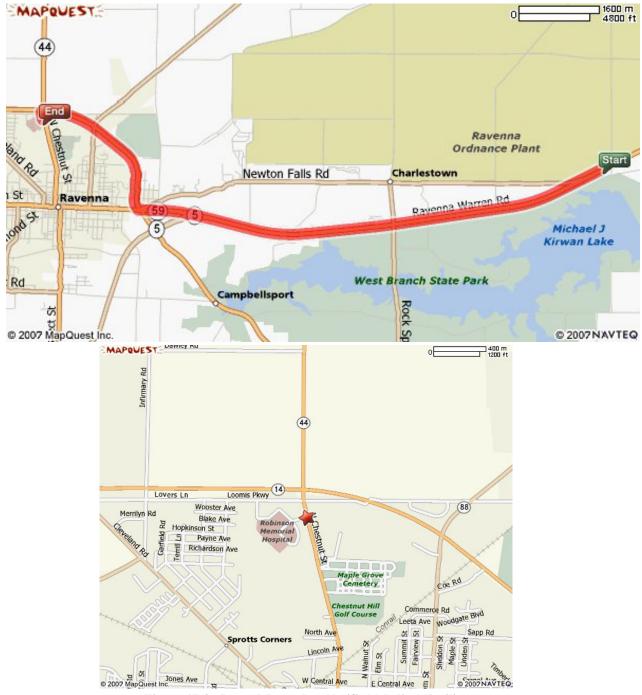


Figure 17-3. Route Map to Pre-Notified Medical Facility

Robinson Memorial Hospital 6847 N. Chestnut Street Ravenna, Ohio (330) 297-0811

Directions: West on State Route 5. Stay straight onto OH-59 West. Turn Right onto OH-14/OH-44. Turn Left onto North Chestnut St.

DRAFT SAMPLING AND ANALYSIS PLAN FOR GROUNDWATER SAMPLING AT RVAAP-12 LOAD LINE 12 RAVENNA ARMY AMMUNITION PLANT, RAVENNA OHIO COMMENT RESPONSE TABLE April 13, 2009

Page 1 of 18

Comment Number	Page or Sheet	New Page or Sheet	Comment	Recommendation	Response			
	USACE - Louisville (Mark Nichter)							
A-1.	QAPP Section 4.2 and Table 8-1	FSP p. 4-2 QAPP p.4-1	Section 4.2 specifies that field duplicates will be collected for quality control (QC) purposes. However, Table 8-1 does not list duplicate samples. Please clarify whether field duplicates will be collected for QC purposes.	Include field duplicate (and QA Split Samples) samples on Table 8-1 if appropriate.	Concur. Field duplicate samples will be collected for MNA Parameters. Table 8-1 will be revised to reflect the collection of duplicate and split samples. QAPP Section 4.2 text revised as follows: trip blanks, field duplicates, split samples and equipment FSP Section 4.1.5 text revised as follows: will include duplicate groundwater samples , split samples and equipment rinsates as			
A-2.	QAPP Table 8-1	QAPP p.8-3	Correct the methanol method to EPA 8015B. Method 8015 may be confused with 8015A, which is not a correct analytical method for methanol.	Make recommended change accordingly.	Concur. Table 8-1 will be revised as follows: SW 846 8015B Revised Table 8-1 is included at the end of this CRT			
A-3.	FSP Figure 2-1 and Part II QAPP	FSP Fig. 2-1 p.2-1	The QAPP can not be considered "final" by the USACE until a laboratory has been selected for the project, and the appropriate laboratory QA/QC information has been submitted for review/approval.	Please identify the select laboratory and provide pertinent QA/QC information.	Concur. Figure 2-1 will be revised as follows: <i>Analytical Laboratory</i> To Be Determined White Water Associates, Inc.			
			Ohio EPA (Conni McCambridge, DDA	AGW/NEDO; Vicki Deppisch, DERR/NE	2DO)			
O -1.	General	FSP Fig.3-1	No flow maps were included.	Please provide all available flow maps for LL-12 (which may show seasonal	Concur. Potentiometric Surface Maps are available for November 2000, January 2005,			

DRAFT SAMPLING AND ANALYSIS PLAN FOR GROUNDWATER SAMPLING AT RVAAP-12 LOAD LINE 12 **RAVENNA ARMY AMMUNITION PLANT, RAVENNA OHIO** COMMENT RESPONSE TABLE April 13, 2009

Comment Number	Page or Sheet	New Page or Sheet	Comment	Recommendation	Response
		through 3-5 p.3-4 through 3-8		flow variations).	 February 2005, March 2005, and April 2005 and will be included in the final document and are attached to this CRT. FSP Section 3.0 Text revised as follows: calculation purposes. Below is a The table below presents the list of the wells to be sampled during this investigation: and the rationale for their inclusion. Figures 3-1 through 3-5 present the available potentiometric surface maps from previous investigations conducted at Load Line 12.
O-2.	Sections 3.1 and 3.3, Table 3-2	FSP p.3-1 Table 3-2 p.3-2	Section 1.0 (Project Description) and Section 3. (Project Scope and Description): The text indicates that "samples will be collected and analyzed for groundwater chemistry necessary to evaluate remedial alternatives for monitored natural attenuation (MNA) parameters" (Section 1.0, pg. 1-1). The text also indicates that one round of ground water samples for MNA parameters "will be sufficient to evaluate the current site conditions" because of previous data (Section 3.0, pg. 3-1). The MNA parameters are listed on page 3-1 of Section 3.0.	The project scope in Section 3.0 did not present a summary of the known hydrogeochemical conditions found at the facility to indicate that natural attenuation is favorable at Load Line 12. A discussion is needed to detail the criteria used in the selection of the MNA parameters that will be analyzed to evaluate whether natural attenuation is currently occurring at the site. This discussion should include how these parameters will be used to demonstrate the natural attenuation of explosives and organic compounds and address whether one round of sampling is adequate for this	 i) Clarification. Samples to date collected at LL12 have been analyzed for only RVAAP standard analyte suites (e.g., metals, explosives, nitrate, etc.). The objective of sample collection for natural attenuation parameters is to provide data on the site-specific hydrogeochemical conditions to determine the suitability of MNA as a potential remedial alternative and to demonstrate if active MNA processes are already occurring at Load Line 12. The results of these geochemical and natural attenuation parameter analyses will be evaluated in the FS phase to determine the suitability of MNA as a remedial alternative at Load Line 12. Text in Section 3.0 will be revised as follows: The MNA parameters selected for analysis are

Page 2 of 18

April 13, 2009

Page	3	of	18
1 4 20	2	O1	10

Comment Number	Page or Sheet	New Page or Sheet	Comment	Recommendation	Response
				 demonstration. DDAGW recommends that the facility include the following information if natural attenuation is to be cited as a remedial alternative at Load Line 12: i) A discussion addressing the suitability of site-specific hydrogeochemical conditions for natural attenuation processes beneath the Load Line 12 area. ii) Appropriate documentation and discussion of the evidences and processes supporting natural attenuation beneath the Load Line 12 area. iii) Provide literature references on MNA of explosive compounds. 	 based on and consistent with the Environmental Security Technology Certification Program's (ESTCP) Natural Attenuation of Explosives in Groundwater completion report (Pennington, Zakikhani, Harrelson and Allen 1999) where such an approach was utilized at Louisiana Army Ammunition Plant and Joliet Army Ammunition Plant. These parameters were also utilized in an MNA evaluation for explosives as part of the RCRA Facility Investigation for Site-Wide Groundwater at Holston Army Ammunition Plant (USACE 2007). The bulleted list of MNA parameters on page 3-1, lines 23-37, of the FSP will be replaced with a table (Table 3-2) listing the proposed analytes and the justification for their inclusion in and significance to the MNA suite. Proposed Table 3-2 is shown at the end of this CRT. Text of Sect. 3, second paragraph, last sentence has been revised as follows: "Table 3-2 Bbelow presents is-a list of the MNA parameters to be collected and the justification for this investigation. ii) See response to part i of this comment.

Comment Number	Page or Sheet	New Page or Sheet	Comment	Recommendation	Response
					iii) Clarification. A comprehensive reference list of explosives MNA literature resources were transmitted to Ohio EPA on September 30, 2008 and the corresponding full-text pdf documents uploaded to an FTP site for access, as per request from the DQO meeting on September 23-24, 2008. These references and documents will be transmitted to Ohio EPA. No text change proposed.
O-3.	Section 3.0	FSP Table 3-1 p.3-1	No details/rationale was provided for inclusion and exclusion for each specific well for MNA.	Please provide rationale for inclusion and exclusion for each well at LL-12.	Concur. Table 3-1 will be included to provide the list of wells to be sampled and the rationale for their inclusion. The proposed Table 3-1 is shown at the end of this CRT
O-4.	Page 3-2, lines 4&5	FSP p.3-3	Document states "areas will be used to assess the degradation rates for nitrate and other primary COCs."	Please specify what COCs.	Concur. Text revised as follows: rates for nitrate and RDX-other-primary COCs. Groundwater
O-5.	Section 7.0	FSP p.7-1	IDW waste characterization.	Re: Wastes for disposal: Please provide the results of the IDW wastes to Ohio EPA for approval prior to disposal.	Concur. Text revised as follows: a letter report will be submitted to the USACE,-and RVAAP Facility Manager, and Ohio EPA documenting
O-6.	Table A-1, pg. A-4	NA	RE: LL12mw-182 No nitrate sampling is included in the table. Was this sampled for nitrate?	Please verify and correct table if nitrate sampling was conducted for this well.	Clarification. Nitrate samples were collected during the four quarterly sampling events in 2007 at well L12mw-182. All four quarterly events showed non-detect for nitrate.

Page 4 of 18

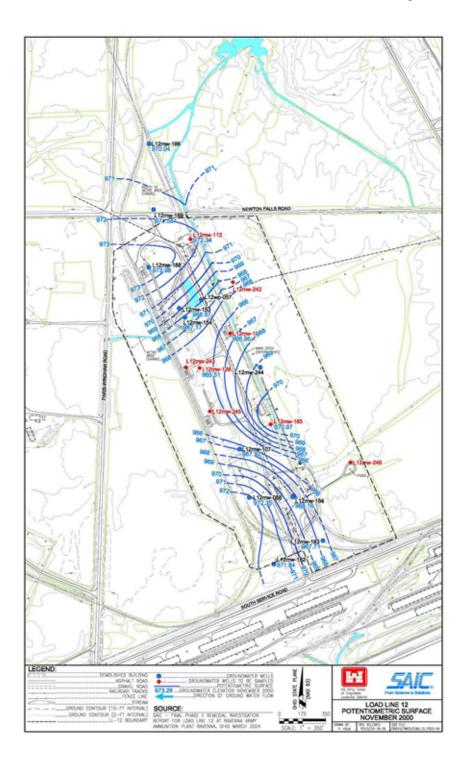
Comment Number	Page or Sheet	New Page or Sheet	Comment	Recommendation	Response
					Table A-1 will be revised to include all nitrate and explosives data even non-detects.
O-7.	Table A-1, various wells	FSP p.3-1	Many wells have B qualifiers for nitrate analysis: LL12-154 Oct 08 100 B ug/L LL12-186 July 07 at 20B ug/L LL12-187 Oct 08 at 200,000B ug/L LL12-188 Oct 08 at 800JB ug/L LL12-242 Oct 08 at 200B ug/L LL12-244 Jan 08 40JB ug/l LL12-245 Jan 08 100B ug/l LL12-246 Oct 08 100B ug/L	Please provide a concentration table for nitrate method blanks for all sampling events. Please discuss in the text of the document. Please verify all B values in Table A-1 and correct if necessary.	Concur. Text revised in Section 3.0 as follows: as Appendix A to this SAP. Nitrate results for some sampling events were qualified "B" during the data verification process as nitrate was found in either the equipment rinse blank or the method blank. The results that were less than 5 times the blank contamination were flagged "B". The method blank or equipment rinse blank results are included at the end of the data summary in Appendix A. SAIC proposes not to collect B values were verified against the previously reported data and with the EQM who supplied the data.
O-8.	Table 8-1	FSP p.8-1	Degradation of explosives and nitrate.	Please provide complete degradation pathway diagram for explosives and nitrate and attenuation mechanism. Please provide the articles or publications, etc., used for MNA selection that is listed as references at the end of Table 8-1. Ohio EPA was able to locate only a limited amount of information	Clarification. Please refer to response to part iii) of Comment O-2. A comprehensive discussion and pathway diagrams for the transformation processes for several explosive compounds are presented in several of the documents previously provided. A full discussion of these processes will be provided in the FS during the evaluation of MNA as a potential remedial alternative. As described in part i) of Comment O-2, the bulleted list of

Page 5 of 18

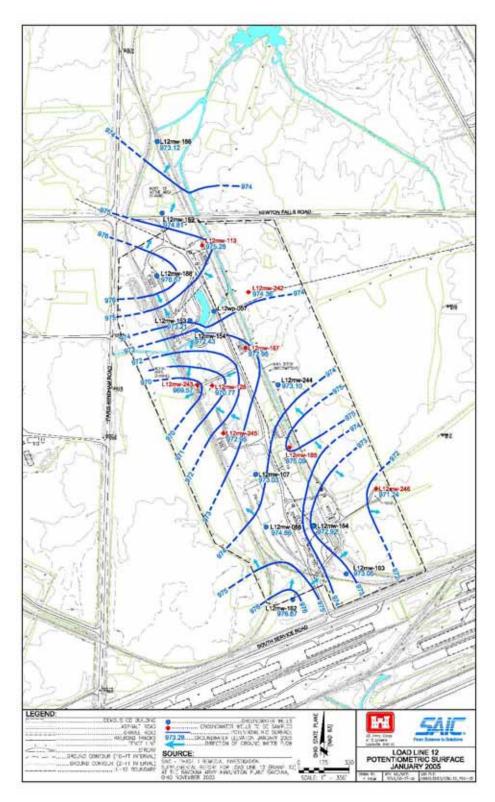
Comment Number	Page or Sheet	New Page or Sheet	Comment	Recommendation	Response
				regarding explosives degradation. Please provide any and all reference material that is used to evaluate MNA, degradation, etc., for explosives.	MNA parameters on page 3-1 of the FSP will be replaced with a table that provides a technical basis for the selection of the MNA analytical suite and their significance to explosives degradation processes.
					The following references have been added to the FSP Section 8.0 text as follows:
					Brannon, J.M., and Pennington, J.C., 2002. Environmental Fate and Transport Process Descriptions for Explosives, Final. U.S. Army Engineer Research and Development Center, Vicksburg, Mississippi, Document No. ERD/EL TR-02-10.
					Pennington, J.C., Zakikhani, M., and Harrelson, D.W. 1999. Monitored Natural Attenuation of Explosives in Groundwater – Environmental Security Technology Certification Program (ESTCP) Completion Report for U.S. Army Waterways Experiment Station, Vicksburg, MS. Final Report. 228pp.
					Strategic Environmental Research and Development Program (SERDP). 2004. <i>Microbial Degradation of RDX</i> <i>and HMX</i> . SERDP Project CU1213, Final Report, December 2001 - December 2003. Performing organizations: Biotechnology

Page 6 of 18

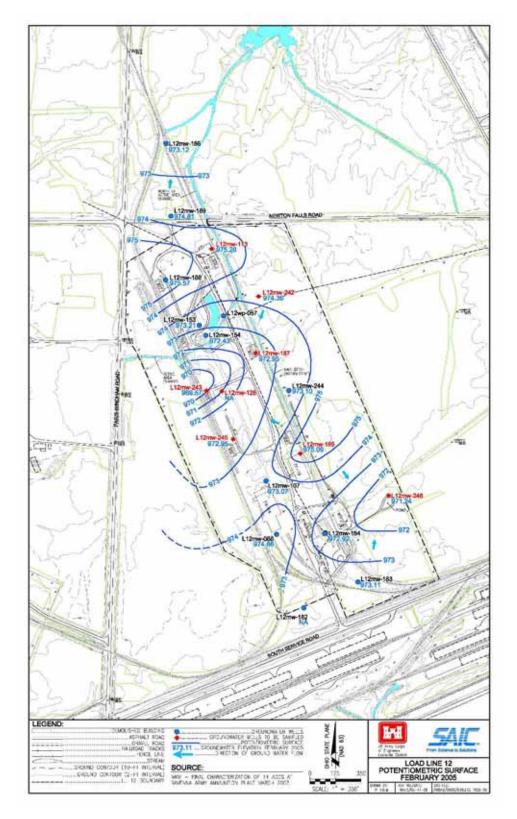
Comment Number	Page or Sheet	New Page or Sheet	Comment	Recommendation	Response
					Research Institute, National Research Council of Canada; Defense Research and Development Canada; and US Air Force Research Laboratory. 221pp.
O-9.	Health and Safety Plan	NA	Please note that Ohio EPA does not approve Health and Safety Plans but does provide comments.	Ohio EPA suggests that all personnel do not work alone. In addition, please provide communication devices in the event of an emergency.	Clarification. Per Table 3-2 Hazards Analysis of the SSHP the buddy system will be used so that personnel do not work alone onsite unless it is for very short duration work such as a site check or site visit. If a person is onsite alone they are required to call in prior to starting work and to call once they complete their onsite work and leave the site. As noted in Section 14.0 of the SSHP, each field team shall have a mobile phone or 2-way radio to be able to contact Guard Post 1. No additional text changes proposed.
O-10.	General	NA	Please note that if selected, MNA will incur additional costs and work. This is not a "no-action" alternative. Some of the costs/work include the following: GW modeling (including future migration and attenuation), scheduled long term GW sampling, demonstration that MNA parameters are continuing (sampling), performance standards (long-term predictions of contaminant fate) and timetable, alternative remedial action if standards and timetable are not met, etc.	No response required.	Clarification. Agree that MNA is not a "no- action" alternative. It is noted that MNA will be evaluated in the FS along with other feasible alternatives. Evaluation of a potential MNA remedy will include presentation of degradation rates and contaminant fate and transport modeling. These will be evaluated as part of the FS. Relevant components of a MNA alternative would include performance monitoring and periodic remedy reviews. No text changes proposed.
		•	OHARN	G (Katie Elgin)	

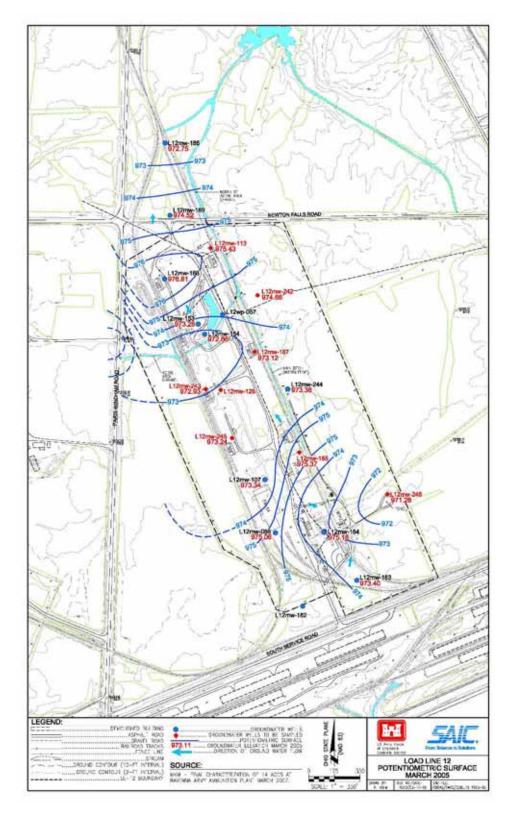

Page 7 of 18

Page 8 of 18


Comment Number	Page or Sheet	New Page or Sheet	Comment	Recommendation	Response
R-1.	Figure 1-3	•	Figure 1-3 - Where did this AOC boundary come from? I think the AOC boundary is the fence line. Please verify.		Concur. Figures 1-2 and 1-3 will be revised to show the AOC boundary as the fence line.

Figures 3-1 through 3-5


Potentiometric Surfaces Nov 2000, Jan 2005, Feb 2005, Mar 2005 and Apr 2005.


Page 10 of 18

Page 11 of 18

Page 12 of 18

Page 13 of 18

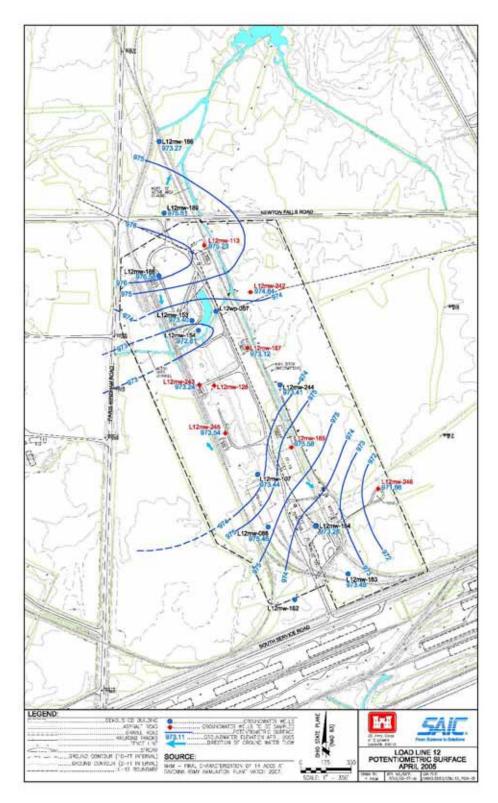


Table 3-1 For Ohio EPA Comment O-3

Page 14 of 18

Table 3-1 Wells to be Sampled and Rationale for Inclusion				
Well	Rationale			
L12mw-113	Historic HMX contamination found in this well			
L12mw-128	Downgradient of L12mw-187			
L12mw-185	Nitrate Source Area			
L12mw-187	Nitrate Source Area			
L12mw-242	Upgradient of L12mw-187 and Downgradient of L12mw-113			
L12mw-243	Downgradient of L12mw-185 and L12mw-187			
L12mw-245	Downgradient of L12mw-185			
L12mw-246	Downgradient of L12mw-185			

Wells closest to nitrate source areas were chosen so that degradation calculations can be made with respect to wells at different distances downgradient from those source area wells.

Table 3-2 For Ohio EPA Comment O-2

Page 15 of 18

Analyte	Table 3-2 Description of MNA Analytical Suite Description and Justification for Inclusion in MNA Suite
DNX, MNX, TNX	The nitroso derivatives of RDX (DNX, MNX, and TNX) are first-stage degradation compounds. DNX and MNX are additionally first stage degradation compounds of HMX. These intermediates are also susceptible to subsequent degradation and are short-lived in the environment.
Dimethylhydrazines (1,1- and 1,2-)	Intermediate degradation products of RDX. Short-lived in the environment.
Hydrazine	End product indicator of RDX. Short-lived in the environment.
Ammonia	End product indicator for explosives degradation
Nitrate	End product indicator. Nitrate is the most efficient electron acceptor in anaerobic biodegradation. Also, nitrate is reduced to nitrite when utilized by microorganisms as an electron acceptor
Methane	Methane is an end product indicator and an anaerobic biodegradation transformation product of explosives degradation. Ethane and ethylene results are also reported under the laboratory's organic gases suite, but thes analytes are not considered significant to the evaluation of MNA processes
Methanol	End product indicator and anaerobic biodegradation transformation product
Phosphorous	Limiting nutrient for microbial growth and activity. Low levels indicate decreasing potential for the maintenance of adequate habitats for degradative microorganisms
Organic Nitrogen	End product indicator. Also supports co-metabolic microbial activity
Total Organic Carbon (TOC)	Anaerobic studies suggest degradation of explosives in groundwater can utilize co-metabolic processes that incorporate organic carbon as a co- metabolite
Ferrous Iron	Iron is a common electron acceptor utilized in anaerobic biodegradation
Sulfate and Sulfide	Sulfate can be utilized by microbes as an electron acceptor in anaerobic biodegradation, resulting in the production of sulfide
Alkalinity	Indicator of feasibility and types of degradation processes possible. Alkaline conditions favor degradation of explosives
Carbon Dioxide	Microorganisms utilize carbon dioxide as an electron acceptor once sulfate is exhausted
Oxidation-reduction potential	Indicator of feasibility and types of degradation processes possible. Monitored as a field parameter

Pennington et. al., 1999.

MNA = Monitored natural attenuation.

RDX = 1,3,5-Trinitroperhydro-1,3,5-triazine.

Page 16 of 18

Table 8-1. Paramet	ers, Methods and Numbe	r of Samples for Gr	oundwater Samplii	ng at Load Line 12

Parameter	Method	No. of Field Samples	No. of Field Duplicates	No. of Split Samples	No. of Rinsate Samples	Total No. Samples	Justification for Inclusion in MNA Sampling Suite
Groundwater							
	SW846						The nitroso derivatives of RDX (DNX, MNX, and TNX) are first-stage degradation compounds. DNX and MNX are additionally first stage degradation compounds of HMX. These intermediates are also susceptible to subsequent degradation and are short-lived in
DNX, MNX, TNX	8330	8	1	1	1	11	the environment.
Dimethylhydrazines (1,1- and 1,2-)	Mod. 300.0	8	1	1	1	11	Intermediate degradation products of RDX. Short-lived in the environment.
Hydrazine	Mod. 300.0	8	1	1	1	11	End product indicator of RDX. Short-lived in the environment.
Ammonia	EPA 350.2	8	1	1	1	11	End product indicator for explosives degradation.
Nitrate	EPA 300	8	1	1	1	11	End product indicator. Nitrate is the most efficient electron acceptor in anaerobic biodegradation. Also, nitrate is reduced to nitrite when utilized by microorganisms as an electron acceptor.
Methane	RSK-175	8	1	1	1	11	Methane is an end product indicator and an anaerobic biodegradation transformation product of explosives degradation. Ethane and ethylene results are also reported under the laboratory's organic gases suite, but these analytes are not considered significant to the evaluation of MNA processes.
	SW 846						End product indicator and anaerobic
Methanol	8015B	8	1	1	1	11	biodegradation transformation product.
Phosphorous	EPA 365.4	8	1	1	1	11	Limiting nutrient for microbial growth and activity. Low levels indicate decreasing potential for the maintenance of adequate habitats for degradative microorganisms.
Organic Nitrogen	EPA 300	8	1	1	1	11	End product indicator; also supports co- metabolic microbial activity.

Page 17 of 18

Table 8-1. Parameters, Methods and Number of Samples	for Groundwater Sampling at Load Line 12 (continued)

Parameter	Method	No. of Field Samples	No. of Field Duplicates	No. of Split Samples	No. of Rinsate Samples	Total No. Samples	Justification for Inclusion in MNA Sampling Suite
Groundwater	withou	Bampies			Samples	Bampies	With Sampling Suite
Total Organic Carbon (TOC)	EPA 415.1	8	1	1	1	11	Anaerobic studies suggest degradation of RDX in groundwater can utilize co- metabolic processes that incorporate organic carbon as a co-metabolite.
(100)		0	1	1	1		Iron is a common electron
Ferrous Iron	NA	8	0	0	0	8	acceptor utilized in anaerobic biodegradation.
Sulfate and Sulfide	EPA 300 EPA 376.1	8	1	1	1	11	Sulfate can be utilized by microbes as an electron acceptor in anaerobic biodegradation, resulting in the production of sulfide.
Alkalinity	EPA 310.1	8	1	1	1	11	Indicator of feasibility and types of degradation processes possible. Alkaline conditions favor degradation of RDX.
Carbon Dioxide (Dissolved)	SM4500-CO2-C	8	1	1	1	11	Microorganisms utilize carbon dioxide as an electron acceptor, once sulfate is exhausted.
Oxidation-Reduction Potential	ASTM D1498 - 08	8	1	1	1	11	Indicator of feasibility and types of degradation processes possible. Monitored as a field parameter.

Sources for MNA selection include Sources: Brannon and Pennington 2002; SERDP 2004; and Pennington et. al., 1999.

MNA = monitored natural attenuation

RDX = Hexahydro-1,3,5-trinitro-1,3,5-triazine

Page 18 of 18

DNX = Hexahydro-1.3-dinitroso-5-nitro-1,3,5-triazine

MNX = Hexahydro-1-nitroso-3,5-dinitro-1,3,5-triazine

TNX = Hexahydro-1,3,5-trinitroso-1,3,5-triazine HMX = Octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine