Final

Sampling and Analysis Plan for the Remedial Investigation of RVAAP-67 Facility-Wide Sewers Addendum No. 1

> Ravenna Army Ammunition Plant Ravenna, Ohio

> > July 31, 2009

Contract No. W912QR-04-D-0028 Delivery Order No. 0001

Prepared for:



US Army Corps of Engineers.

United States Army Corps of Engineers Louisville District

**Prepared by:** 



SAIC Engineering of Ohio, Inc. 8866 Commons Boulevard, Suite 201 Twinsburg, Ohio 44087

3833.20090731.001

| REPORT DOCUM                                                                                                                                                                            |                                                                                                                                               | Form Approved<br>OMB No. 0704-0188 |                          |                                                                                                                                                                                                                                                                                    |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|--------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| nativering and maintaining the data needed, and completion a                                                                                                                            | nd reviewing the collection of inf<br>rden, to Department of Defens<br>triington, VA 22202-4302. Resp<br>of information if it does not displa | comation. Send on                  | mments rena              | The for reviewing instructions, searching existing data sources,<br>rding this burden estimate or any other aspect of this collection<br>services. Directorate for Information Operations and Reports<br>notwithstanding any other provision of law, no person shall be<br>number. |
| 1. REPORT DATE (DD-MM-YYYY) 2. REP<br>31-07-2009                                                                                                                                        | ORT TYPE<br>Technica                                                                                                                          | ıl                                 |                          | 3. DATES COVERED (From - To)<br>July 2009                                                                                                                                                                                                                                          |
| 4. TITLE AND SUBTITLE<br>Final<br>Sampling and Analysis Plan                                                                                                                            |                                                                                                                                               |                                    |                          | W912QR-04-D-0028                                                                                                                                                                                                                                                                   |
| for the Remedial Investigation of RVAAP-<br>Addendum No.1                                                                                                                               | 67 Facility-Wide Sewer                                                                                                                        | rs                                 | 5b. GR/                  | NA NA                                                                                                                                                                                                                                                                              |
| Ravenna Army Ammunition Plant<br>Ravenna, Ohio                                                                                                                                          |                                                                                                                                               |                                    | 5c. PRC                  | DGRAM ELEMENT NUMBER<br>NA                                                                                                                                                                                                                                                         |
| 6. AUTHOR(S)<br>MaryAnn Bogucki                                                                                                                                                         |                                                                                                                                               |                                    | 5d. PRC                  | DJECT NUMBER<br>Delivery Order No. 0001                                                                                                                                                                                                                                            |
|                                                                                                                                                                                         |                                                                                                                                               |                                    | 5e. TAS                  | SK NUMBER<br>NA                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                                         |                                                                                                                                               |                                    | 5f. WO                   | rk unit number<br>NA                                                                                                                                                                                                                                                               |
| 7. PERFORMING ORGANIZATION NAME(S) A<br>SAIC Engineering of Ohio, Inc.<br>8866 Commons Blvd, Suite 201<br>Twinsburg, Ohio 44087                                                         | ND ADDRESS(ES)                                                                                                                                |                                    |                          | 8. PERFORMING ORGANIZATION<br>REPORT NUMBER<br>3833.20090731.001                                                                                                                                                                                                                   |
| 9. SPONSORING/MONITORING AGENCY NAT<br>USACE - Louisville District<br>U.S. Army Corps of Engineers<br>600 Martin Luther King Jr., Place<br>PO Box 59<br>Louisville, Kentucky 40202-0059 | ME(S) AND ADDRESS(ES)                                                                                                                         | )                                  |                          | 10. SPONSOR/MONITOR'S ACRONYM(S)<br>NA<br>11. SPONSOR/MONITOR'S REPORT<br>NUMBER(S)<br>NA                                                                                                                                                                                          |
| 12. DISTRIBUTION/AVAILABILITY STATEMEN<br>Reference distribution page.                                                                                                                  | п                                                                                                                                             |                                    |                          | hA                                                                                                                                                                                                                                                                                 |
| 13. SUPPLEMENTARY NOTES<br>None.                                                                                                                                                        |                                                                                                                                               |                                    |                          |                                                                                                                                                                                                                                                                                    |
| the Facility-wide Sewers at the Ravenna An<br>contaminant evaluation within and adjacent<br>will be incorporated into remedial investiga                                                | my Ammunition Plant<br>to the facility-wide sev                                                                                               | (RVAAP). T<br>ver system. F        | his plan p<br>Results an | btain data in support of the investigation of<br>presents the tiered process that will provide a<br>ad data obtained from the sampling activities<br>y-wide Sewers.                                                                                                                |
| <b>15. SUBJECT TERMS</b><br>sampling and analysis, data quality, quality                                                                                                                | control, quality assurar                                                                                                                      | nce, sediment,                     | , storm w                | ater, sanitary sewers, storm sewers                                                                                                                                                                                                                                                |
| 16. SECURITY CLASSIFICATION OF:           a. REPORT         b. ABSTRACT         c. THIS PAGE           NA         NA         NA                                                         | 17. LIMITATION OF<br>ABSTRACT<br>NA                                                                                                           | 18. NUMBER<br>OF<br>PAGES<br>376   |                          | ME OF RESPONSIBLE PERSON<br>NA<br>EPHONE NUMBER (Include area code)<br>NA                                                                                                                                                                                                          |

Standard Form 298 (Rev. 8/98) Prescribed by ANSI Std. 239.18

#### CONTRACTOR STATEMENT OF INDEPENDENT TECHNICAL REVIEW

Science Applications International Corporation (SAIC) has completed the Final Sampling and Analysis Plan for Remedial Investigation at the RVAAP-67 Facility-Wide Sewers Addendum No. 1 at the Ravenna Army Ammunition Plant, Ravenna, Ohio. Notice is hereby given that an independent technical review has been conducted that is appropriate to the level of risk and complexity inherent in the project. During the independent technical review, compliance with established policy principles and procedures, utilizing justified and valid assumptions, was verified. This included review of data quality objectives; technical assumptions; methods, procedures, and materials to be used; the appropriateness of data used and level of data obtained; and reasonableness of the results, including whether the product meets the customer's needs consistent with law and existing USACE policy.

M.T. Boquele

MaryAnn T. Bogucki Study/Design Team Leader

07-27-09 Date

Date

Jed Thomas, P.E. Independent Technical Review Team Leader

Significant concerns and the explanation of the resolution are as follows:

Internal SAIC Independent Technical Review comments are recorded on a Document Review Record per SAIC quality assurance procedure QAAP 3.1. This Document Review Record is maintained in the project file. Changes to the report addressing the comments have been verified by the Study/Design Team Leader. As noted above, all concerns resulting from independent technical review of the project have been considered.

Scott Armstrong

Principal w/ A-E firm

Vuly Ze Zoog

## Final

# Sampling and Analysis Plan for the Remedial Investigation of RVAAP-67 Facility-Wide Sewers Addendum No. 1

Volume One – Main Report and Attachment Version 1.0

> Ravenna Army Ammunition Plant Ravenna, Ohio

> Contract No. W912QR-04-D-0028 Delivery Order No. 0001

### **Prepared For:**

U.S. Army Corps of Engineers 600 Martin Luther King, Jr. Place Louisville, Kentucky 40202

#### **Prepared By:**

SAIC Engineering of Ohio, Inc. 8866 Commons Boulevard, Suite 201 Twinsburg, Ohio 44087

July 31, 2009

### **DOCUMENT DISTRIBUTION**

## for the

#### Final

#### Sampling and Analysis Plan

# for the Remedial Investigation of RVAAP-67 Facility-Wide Sewers Addendum No. 1

### **Ravenna Army Ammunition Plant**

#### Ravenna, Ohio

| Name/Organization                             | Number of<br>Printed Copies | Number of<br>Electronic Copies |
|-----------------------------------------------|-----------------------------|--------------------------------|
| Mark Krivansky, USAEC                         | 0                           | 1                              |
| Katie Elgin, OHARNG                           | 1                           | 1                              |
| Mark Patterson, RVAAP Facility Manager        | 2                           | 2                              |
| Glen Beckham, USACE – Louisville District     | 1                           | 1                              |
| Nathaniel Peters, USACE – Louisville District | 1                           | 1                              |
| Nick Stolte, USACE – Louisville District      | 1                           | 1                              |
| Andrew Kocher, Ohio EPA-NEDO                  | 1                           | 1                              |
| Eileen Mohr, Ohio EPA-NEDO                    | 1                           | 1                              |
| Bonnie Buthker, Ohio EPA-SWDO                 | 1                           | 1                              |
| REIMS                                         | 0                           | 1                              |
| Kevin Jago, SAIC                              | 1                           | 1                              |
| SAIC Project File W912QR-04-D-0028            | 1                           | 1                              |
| SAIC Central Records Facility                 | 0                           | 1                              |

OHARNG = Ohio Army National Guard

Ohio EPA-NEDO = Ohio Environmental Protection Agency-Northeast District Office

Ohio EPA-SWDO = Ohio Environmental Protection Agency-Southwest District Office

REIMS = Ravenna Environmental Information Management System

RVAAP = Ravenna Army Ammunition Plant

SAIC = Science Applications International Corporation

USACE = United States Army Corps of Engineers

USAEC = Unites States Army Environmental Command

## Part I

# Field Sampling Plan for the Sampling and Analysis Plan for the Remedial Investigation of RVAAP-67 Facility-Wide Sewers Addendum No. 1

Ravenna Army Ammunition Plant Ravenna, Ohio

Contract No. W912QR-04-D-0028 Delivery Order No. 0001

#### **Prepared For:**

U.S. Army Corps of Engineers 600 Martin Luther King, Jr. Place Louisville, Kentucky 40202

#### **Prepared By:**

SAIC Engineering of Ohio, Inc. 8866 Commons Boulevard, Suite 201 Twinsburg, Ohio 44087

July 31, 2009

# TABLE OF CONTENTS

| 1.0 PROJECT DESCRIPTION                                                  | 1-1 |
|--------------------------------------------------------------------------|-----|
| 1.1 INTRODUCTION                                                         | 1-1 |
| 1.2 GENERAL FACILITY DESCRIPTION AND HISTORY                             |     |
| 1.3 AREA OF CONCERN DESCRIPTION AND HISTORY                              | 1-6 |
| 2.0 PROJECT ORGANIZATION AND RESPONSIBILITIES                            |     |
| 2.1 PROJECT ORGANIZATION AND RESPONSIBILITIES                            | 2-1 |
| 2.2 PROJECT SCHEDULE                                                     | 2-2 |
| 3.0 PROJECT SCOPE AND OBJECTIVES                                         |     |
| 3.1 SCOPE AND OBJECTIVES                                                 |     |
| 3.2 DATA QUALITY OBJECTIVES                                              |     |
| 3.2.1 Statement of the Problem and Facility-Wide Sewers Conceptual Model |     |
| 3.2.2 General Decision Points                                            |     |
| 3.2.3 Data Needs and Decision Inputs                                     |     |
| 3.2.4 Spatial Boundaries of the Investigation                            |     |
| 3.2.5 General Investigation Decision Rules and Sample Design             |     |
| 3.2.5.1 Tier 1 Investigation                                             |     |
| 3.2.5.2 Tier 2 Investigation                                             |     |
| 3.2.5.3 Tier 3 Investigation                                             |     |
| 3.3 HUMAN HEALTH RISK ASSESSMENT                                         |     |
| 3.4 SCREENING ECOLOGICAL RISK ASSESSMENT                                 |     |
| 4.0 FIELD ACTIVITIES                                                     | 4-1 |
| 4.1 VISUAL SURVEY PROCEDURES                                             | 4-1 |
| 4.2 SEWER AND OUTFALL SEDIMENT                                           | 4-4 |
| 4.2.1 Sample Collection for Field and Laboratory Analysis                |     |
| 4.2.2 Field Analysis of Explosives                                       |     |
| 4.3 SEWER AND OUTFALL WATER                                              |     |
| 4.4 VIDEO CAMERA SURVEY                                                  |     |
| 4.5 SUBSURFACE SOIL AND BEDDING MATERIAL                                 | 4-7 |
| 4.6 CHROMIUM SPECIATION                                                  |     |
| 4.7 FIELD QC SAMPLING PROCEDURES                                         |     |
| 4.8 DECONTAMINATION PROCEDURES                                           |     |
| 4.9 SITE SURVEY                                                          |     |
| 4.10 MUNITIONS AND EXPLOSIVES OF CONCERN                                 |     |
| 4.11 SESOIL AND ANALYTICAL GROUNDWATER TRANSPORT MODELING                | 4-9 |
| 5.0 SAMPLE CHAIN OF CUSTODY/DOCUMENTATION                                |     |
| 5.1 FIELD LOGBOOK                                                        |     |
| 5.2 PHOTOGRAPHS                                                          |     |
| 5.3 SAMPLE NUMBERING SYSTEM                                              |     |

# TABLE OF CONTENTS (CONTINUED)

| 5.4 SAMPLE DOCUMENTATION                                                          | 5-1 |
|-----------------------------------------------------------------------------------|-----|
| 5.5 DOCUMENTATION PROCEDURES                                                      | 5-1 |
| 5.6 CORRECTIONS TO DOCUMENTATION                                                  |     |
| 5.7 MONTHLY REPORTS                                                               |     |
|                                                                                   |     |
| 6.0 SAMPLE PACKAGING AND SHIPPING REQUIREMENTS                                    | 6-1 |
| 6.0 SAMPLE PACKAGING AND SHIPPING REQUIREMENTS<br>7.0 INVESTIGATION-DERIVED WASTE |     |

# LIST OF TABLES

| Table 1-1. | Summary of Previous Sewer Investigations at RVAAP         | 1-8 |
|------------|-----------------------------------------------------------|-----|
| Table 2-1. | Project Organization for SAP Addendum                     | 2-1 |
| Table 3-1. | Historical Data Screening Levels for Facility-Wide Sewers | -11 |

# LIST OF FIGURES

| Figure 1-1. | General Locations and Orientation of the RVAAP/Camp Ravenna                    | 1-2  |
|-------------|--------------------------------------------------------------------------------|------|
| Figure 1-2. | Location of Facility-Wide Sewers within RVAAP/Camp Ravenna                     | 1-3  |
| Figure 2-1. | Project Schedule                                                               | 2-2  |
| Figure 3-1. | Facility-Wide Sewers Conceptual Model                                          | 3-4  |
| Figure 3-2. | Facility-Wide Sewers RI Tier 1 Manholes and Inlets Sampling Decision Flowchart | 3-8  |
| Figure 3-3. | Facility-Wide Sewers RI Tier 2 Sampling Decision Flowchart                     | 3-23 |
| Figure 4-1. | Sewer Visual Inspection Form                                                   | 4-3  |
| Figure 5-1. | Facility-Wide Sewers Sample Identification System                              | 5-2  |

# LIST OF APPENDICES

- Appendix A George Road and Sand Creek Treatment Plant Sewer Networks
- Appendix B Administration Area
- Appendix C Atlas Scrap Yard
- Appendix D Depot Administration Area
- Appendix E Load Line 1
- Appendix F Load Line 2
- Appendix G Load Line 3
- Appendix H Load Line 4
- Appendix I Load Line 5
- Appendix J Load Line 6
- Appendix K Load Line 7
- Appendix L Load Line 8
- Appendix M Load Line 9
- Appendix N Load Line 10
- Appendix O Load Line 11
- Appendix P Load Line 12
- Appendix Q Transportation Storage Area
- Appendix R Procedure for Field Explosives Screening

# ACRONYMS AND ABBREVIATIONS

| AOC      | Area of Concern                                                       |
|----------|-----------------------------------------------------------------------|
| BRAC-D   | U.S. Army Base Realignment and Closure Division                       |
| BGS      | Below Ground Surface                                                  |
|          | Camp Ravenna Joint Military Training Center                           |
| CERCLA   | Comprehensive Environmental Response, Compensation, and Liability Act |
| CERL     | Construction Engineering Research Laboratory                          |
| COPC     | Chemicals of Potential Concern                                        |
| CUG      | Cleanup Goals                                                         |
| DQO      | Data Quality Objective                                                |
| EU       | Exposure Unit                                                         |
| FS       | Feasibility Study                                                     |
| FSP      | Field Sampling Plan                                                   |
| GIS      | Geographical Information System                                       |
| GPS      | Global Positioning System                                             |
| GSSL     | Generic Soil Screening Level                                          |
| HMX      | Octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine                      |
| IAP      | Installation Action Plan                                              |
| IDW      | Investigation-Derived Waste                                           |
| IRP      | Installation Restoration Program                                      |
| km       | Kilometer                                                             |
| MARC     | Multiple Award Remediation Contract                                   |
| MEC      | Munitions and Explosives of Concern                                   |
| MRS      | Munitions Response Site                                               |
| NCP      | National Contingency Plan                                             |
| NGB      | National Guard Bureau                                                 |
| NGVD     | National Geodetic Vertical Datum                                      |
| Ohio EPA | Ohio Environmental Protection Agency                                  |
| OHARNG   | Ohio Army National Guard                                              |
| PBA      | Performance-Based Acquisition                                         |
| PCB      | Polychlorinated Biphenyl                                              |
| PP       | Proposed Plan                                                         |
| PPE      | Personal Protective Equipment                                         |
| PRG      | Preliminary Remediation Goal                                          |
| QA       | Quality Assurance                                                     |
| QAPP     | Quality Assurance Project Plan                                        |
| QC       | Quality Control                                                       |
| RDX      | Cyclonite                                                             |
| RI       | Remedial Investigation                                                |
| ROD      | Record of Decision                                                    |
| RVAAP    | Ravenna Army Ammunition Plant                                         |
| SAIC     | Science Applications International Corporation                        |

# ACRONYMS AND ABBREVIATIONS (CONTINUED)

| SAP   | Sampling and Analysis Plan                 |
|-------|--------------------------------------------|
| SVOC  | Semivolatile Organic Compound              |
| TAL   | Target Analyte List                        |
| TCLP  | Toxicity Characteristic Leaching Procedure |
| TNT   | 2,4,6-trinitrotoluene                      |
| USACE | U.S. Army Corps of Engineers               |
| USEPA | U.S. Environmental Protection Agency       |
| VOC   | Volatile Organic Compound                  |

THIS PAGE INTENTIONALLY LEFT BLANK.

## **1.1 INTRODUCTION**

This Sampling and Analysis Plan (SAP) Addendum No. 1 addresses the remedial investigation activities for the Facility-Wide Sewers at the Ravenna Army Ammunition Plant (RVAAP-67), (Figures 1-1 and 1-2). This work is being conducted by Science Applications International Corporation (SAIC) as part of the 2008 Performance-Based Acquisition (PBA) for Environmental Investigation and Remediation at the RVAAP under Multiple Award Remediation Contract (MARC) W912QR-04-D-0028, Delivery Order 0001, Task 4 with the U.S. Army Corps of Engineers (USACE), Louisville District. Planning and performance of all elements of this PBA will be in accordance with the requirements of the Ohio Environmental Protection Agency (Ohio EPA) Director's Final Findings and Orders for RVAAP, dated June 10, 2004 (Ohio EPA 2004). The portion of the Ohio EPA Director's Final Findings and Orders pertinent to this PBA is the requirement to develop a Remedial Investigation/Feasibility Study (RI/FS), a Proposed Plan (PP), a Record of Decision (ROD), and a remedy for the facility-wide sewers area of concern (AOC) at the RVAAP in conformance with the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA), the National Contingency Plan (NCP), as well as the Director's Final Findings and Orders.

RVAAP-67, Facility-Wide Sewers, is a new AOC created in 2008 and comprised of Installation Restoration Program (IRP) eligible storm and sanitary sewers located throughout RVAAP. Under IRP policy, eligibility is defined as those sewers within and between AOCs that historically received AOC-related wastewater discharges prior to October 17, 1986. In December 2008, the Army issued an interim policy for Defense Environmental Restoration Program (DERP) eligibility that rescinded the October 17, 1986 cutoff date. The change in IRP policy did not affect the scope and definition of RVAAP-67, as no sewer systems were previously excluded on the basis of the cutoff date. Wastewater treatment plants at RVAAP (e.g., Sand Creek Sewage Treatment Plant, George Road Sewage Treatment Plant, and the Depot Sewage Treatment Plant) were previously closed in the 1990s and are not IRP eligible. Figure 1-2 shows the locations of sewer networks within the facility, based upon available historical documents and engineering drawings.

This SAP Addendum No. 1 for remedial investigation of Facility-Wide Sewers tiers under and supplements the guidance and methods presented in the *Facility-Wide Sampling and Analysis Plan for the Ravenna Army Ammunition Plant, Ravenna, Ohio* (USACE 2001). The Facility-Wide SAP provides the general technical procedures and protocols for conducting fieldwork at RVAAP. This SAP Addendum No. 1 includes the sampling and analysis objectives, rationales, planned activities, and technical specifications for the work to be conducted for this investigation. Where appropriate, this SAP Addendum No. 1 references the Facility-Wide SAP for standard procedures and protocols.

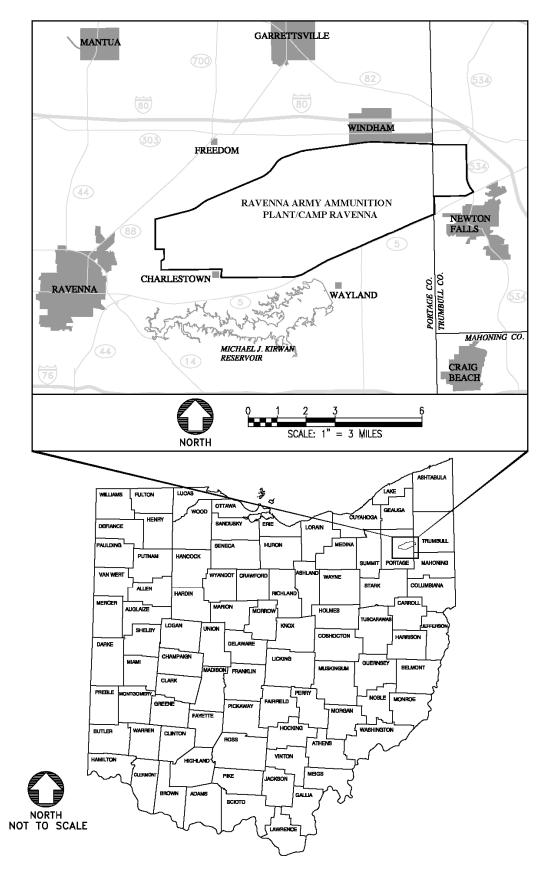



Figure 1-1. General Locations and Orientation of the RVAAP/Camp Ravenna

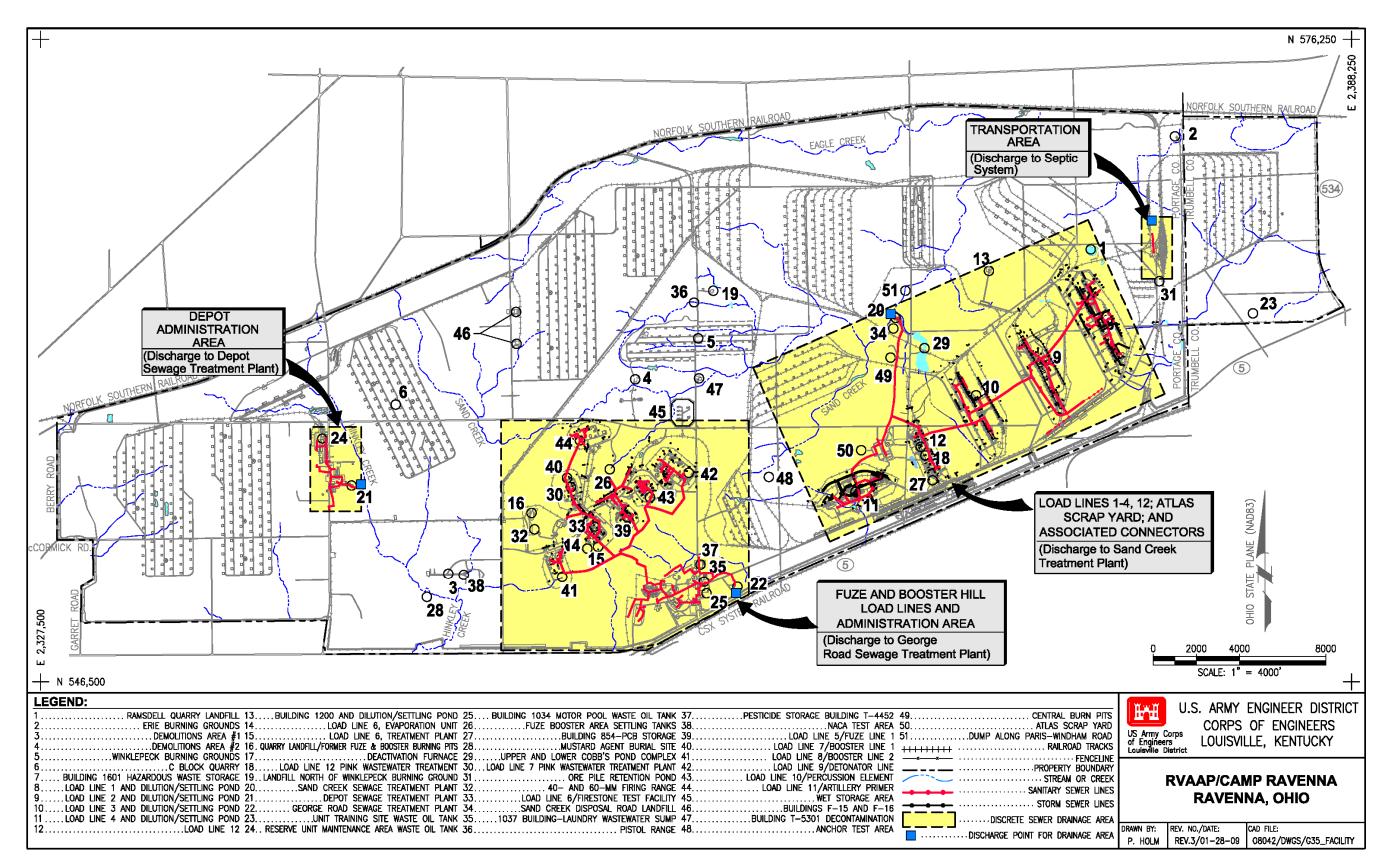



Figure 1-2. Location of Facility-Wide Sewers within RVAAP/Camp Ravenna

THIS PAGE INTENTIONALLY LEFT BLANK.

## 1.2 GENERAL FACILITY DESCRIPTION AND HISTORY

When the RVAAP IRP began in 1989, the RVAAP was identified as a 21,419-acre facility. The property boundary was resurveyed by the Ohio Army National Guard (OHARNG) over a two year period (2002 and 2003), and the actual total acreage of the property was found to be 21,683.289 acres. As of February 2006, a total of 20,403 acres of the former 21,683 acre RVAAP have been transferred to the National Guard Bureau (NGB) and subsequently licensed to the OHARNG for use as a military training site, currently designated as the Camp Ravenna Joint Military Training Center (Camp Ravenna). The current RVAAP consists of 1,280 acres in various parcels throughout Camp Ravenna.

Camp Ravenna is located in northeastern Ohio within Portage County and Trumbull County, approximately 3 miles (4.8 kilometers [km]) east-northeast of the city of Ravenna and approximately 1 mile (1.6 km) northwest of the city of Newton Falls. The RVAAP portions of the property are solely located within Portage County. Camp Ravenna is a parcel of property approximately 11 miles (17.7 km) long and 3.5 miles (5.6 km) wide bounded by State Route 5, the Michael J. Kirwan Reservoir, and the CSX System Railroad on the south; Garret, McCormick, and Berry roads on the west; the Norfolk Southern Railroad on the north; and State Route 534 on the east (Figures 1-1 and 1-2). Camp Ravenna is surrounded by several communities: Windham on the north; Garrettsville 6 miles (9.6 km) to the northwest; Newton Falls 1 mile (1.6 km) to the southeast; Charlestown to the southwest; and Wayland 3 miles (4.8 km) to the south.

The entire 21,683-acre parcel was an industrial facility that was government-owned and contractoroperated when the RVAAP was operational (Camp Ravenna did not exist at that time). The RVAAP IRP encompasses investigation and cleanup of past activities over the entire 21,683 acres of the former RVAAP; therefore, references to the RVAAP in this document indicate the historical extent of the RVAAP, which is inclusive of the combined acreages of the current Camp Ravenna and RVAAP, unless otherwise specifically stated.

Industrial operations at the former RVAAP consisted of 12 munitions-assembly facilities referred to as "load lines." Load Lines 1 through 4 were used to melt and load 2,4,6-trinitrotoluene (TNT) and Composition B into large-caliber shells and bombs. The operations on the load lines produced explosive dust, spills, and vapors that collected on the floors and walls of each building. Periodically, the floors and walls were cleaned with water and steam. Following cleaning, the waste water, containing TNT and Composition B, was known as "pink water" for its characteristic color. Scupper systems at the process buildings were used to collect pink water, which was collected in concrete holding tanks, filtered, and pumped into unlined ditches for transport to earthen settling ponds. However, in some instances, pink water was swept from doorways or scupper systems overflowed onto the ground surface. Load Lines 5 through 11 were used to manufacture fuzes, primers, and boosters. Potential contaminants in these load lines include lead compounds, mercury compounds, and explosives. From 1946 to 1949, Load Line 12 was used to produce ammonium nitrate for explosives and fertilizers prior to use as a weapons demilitarization facility.

In 1950, the facility was placed in standby status and operations were limited to renovation, demilitarization, and normal maintenance of equipment, along with storage of munitions. Production activities were resumed from July 1954 to October 1957 and again from May 1968 to August 1972. In addition to production missions, various demilitarization activities were conducted at facilities constructed at Load Lines 1, 2, 3, and 12. Demilitarization activities included disassembly of munitions and explosives melt-out and recovery operations using hot water and steam processes. Periodic demilitarization of various munitions continued through 1992.

In addition to production and demilitarization activities at the load lines, other facilities at RVAAP include AOCs that were used for the burning, demolition, and testing of munitions. These burning and demolition grounds consist of large parcels of open space or abandoned quarries. Potential contaminants at these AOCs include explosives, propellants, metals, and waste oils. Other types of AOCs present at RVAAP include landfills, an aircraft fuel tank testing facility, and various general industrial support and maintenance facilities.

## **1.3** AREA OF CONCERN DESCRIPTION AND HISTORY

RVAAP-67, Facility-Wide Sewers, is a new AOC created in 2008 and comprised of IRP eligible storm and sanitary sewers located throughout RVAAP, including Load Lines 1-12 and the Administrative Areas. The sewers sometimes received inadvertent discharges of contaminated wastewaters from the manufacturing of munitions, and it is possible that portions of the system may contain accumulated chemical contaminants. Available historical documents do not indicate any incidents or occurrences of intentional dumping or discharging of contaminated wastewaters to the sewers. A 2007 Explosive Evaluation of Sewers showed no accumulations of explosive compounds within the twelve Load Lines or the Administration Area that would present an explosion hazard (Lakeshore Engineering Services, Inc. 2007). However, the Lakeshore sewer effort was conducted without Ohio EPA regulatory oversight or review of the associated work plans and resultant completion report or conclusions.

The primary sewer systems at the facility are divided into two basins: a western basin and an eastern basin. The western basin includes the combined sanitary and storm sewers draining the Administrative Areas and sanitary sewers at Load Lines 5-11 that terminate at the George Road Sewage Treatment Plant. Also, several short runs of separated storm sewer exist throughout Load Lines 5-11 in the western basin, terminating in ditches and other drainage features. The eastern basin includes the sanitary sewers draining Load Lines 1-4, Load Line 12, and RVAAP-50 Atlas Scrap Yard, and the Inert Storage Area #6, and terminates at the Sand Creek Sewage Treatment Plant. Load Lines 1-4 and Load Line 12 also have separate storm sewer systems terminating in drainage features such as ditches and retention ponds. A smaller and self-contained sanitary sewer system is located at the Depot Administration Area, terminating at the Depot Sewage Treatment Plant. A line of sanitary sewers also exists at the Transportation Storage Area, draining to a septic tank and a sludge basin. The locations of these discrete sewer networks are shown in Figure 1-2. Detailed maps and descriptions of these areas are presented in Appendices A through Q.

Based on digitization of available historical engineering utilities schematics and geographic information system (GIS) analysis, the AOC is estimated to be comprised of 18 miles of sanitary and 6.4 miles of storm sewer lines. Of these structures, it is estimated that approximately 2.5 miles of sanitary and 2.5 miles of storm sewers runs are located at depths less than 4 feet (ft) below ground surface (BGS), or approximately 5 miles of shallow lines in total. The maps generated from the past digitization efforts and analysis of available engineering drawings are located in Appendices A through Q.

No investigation specific to RVAAP-67, Facility-Wide Sewers, has been conducted, as this AOC was newly created in 2008. However, investigations of sewers have been conducted at several load lines as part of RIs specific to each of these AOCs:

- Load Line 1 (USACE 2003);
- Load Line 2 (USACE 2004a);
- Load Line 3 (USACE 2004b);
- Load Line 4 (USACE 2004c);
- Load Line 6 (MKM Engineers 2007b);
- Load Line 9 (MKM Engineers 2007c);
- Load Line 11 (MKM Engineers 2005); and
- Load Line 12 (USACE 2004d).

Analytical samples of sewer sediment and water were also collected as an initial characterization effort at Atlas Scrap Yard and Load Lines 5, 7, 8 and 10 under the *Final Characterization for 14 AOCs* study (MKM Engineers 2007a).

Efforts to investigate whether explosives accumulated in the sewer lines were completed in 2007 (Lakeshore Engineering Services, Inc. 2007; USACE-CERL 2007). These 2007 efforts included visual inspection, additional video surveys, and screening-level field explosives testing. However, this work was conducted without Ohio EPA regulatory oversight or review of the associated work plans and resultant reports. Therefore, information from these evaluations will be utilized only in a high-level and qualitative fashion. Locations where explosives field screening methods tested positive for explosives will be noted during the review of historical data, and these locations will be revaluated as potential source areas. However, negative screening results from the Lakeshore Engineering Services, Inc. (2007) report will not be used to eliminate locations from investigation.

An area-specific summary of the investigative history to date for sewers throughout the facility is presented in Table 1-1. Descriptions of the operational and investigative history specific to each of the individual areas of the facility that contain sanitary and/or storm sewers are presented in Appendices A through Q.

|                                                           | Sewer Structur | res Per Area | Analytic                | al Samples             | Video    | Survey   | Field Screening Tests |              |  |  |
|-----------------------------------------------------------|----------------|--------------|-------------------------|------------------------|----------|----------|-----------------------|--------------|--|--|
| Area                                                      | (# manholes/d  | lrop inlets) | (# sa                   | mples)                 | (linea   | ar feet) | (# manholes)          | (# manholes) |  |  |
|                                                           | Sanitary Storm |              | Sanitary Storm          |                        | Sanitary | Storm    | Sanitary              | Storm        |  |  |
| Administration Area                                       | 67             |              |                         |                        |          |          | 26                    |              |  |  |
| Atlas Scrap Yard                                          | 16             |              | 22 (7 SD/15 SW)         |                        |          |          |                       |              |  |  |
| Depot Administrative Area                                 | 35             |              |                         |                        |          |          |                       |              |  |  |
| Inert Storage Area #6                                     | 15             |              |                         |                        |          |          |                       |              |  |  |
| Load Line 1                                               | 34             | 81           | 3 (2 SD/1 SW)           | 4 (3 SD/1 SW)          | 978.7    | 2,372.25 | 23                    | 40           |  |  |
| Load Line 2                                               | 28             | 54           | 3 (1 SD/2 SW)           | 14 (12 SD/2 SW)        | 451.37   | 1,099.67 | 17                    | 43           |  |  |
| Load Line 3                                               | 31             | 96           | 3 (1 SD/2 SW)           | 5 (5 SD/0 SW)          | 457.69   | 1382.84  | 26                    | 35           |  |  |
| Load Line 4                                               | 24             | 119          | 8 (6 SD/2 SW)           | 6 (3 SD/3 SW)          | 567.86   | 1,430.61 | 23                    | 56           |  |  |
| Load Line 5                                               | 13             |              | 5 (1 SD/4 SW)           |                        |          |          | 14                    |              |  |  |
| Load Line 6                                               | 9              |              | 2 (0 SD/2 SW)           |                        |          |          | 20                    |              |  |  |
| Load Line 7                                               | 8              |              | 7 (0 SD/7 SW)           |                        |          |          | 8                     |              |  |  |
| Load Line 8                                               | 9              |              | 15 (6 SD/9 SW)          |                        |          |          | 10                    |              |  |  |
| Load Line 9                                               | 10             |              | 4 (2 SD/2 SW)           |                        |          |          | 9                     |              |  |  |
| Load Line 10                                              | 14             |              | 9 (3 SD/6 SW)           |                        |          |          | 18                    |              |  |  |
| Load Line 11                                              | 12             |              | 11 (5 SD/6 SW)          |                        |          |          | 2                     |              |  |  |
| Load Line 12                                              | 17             |              | 7 (3 SD/4 SW)           |                        | 224      |          | 3                     |              |  |  |
| Transportation Storage Area                               | 5              |              |                         |                        |          |          |                       |              |  |  |
| Trunk/Connectors - George Road<br>Treatment Plant Network | 66             |              |                         |                        |          |          |                       |              |  |  |
| Trunk/Connectors - Sand Creek<br>Treatment Plant Network  | 38             |              |                         |                        |          |          | 5                     |              |  |  |
| Facility Total                                            | 451            | 350          | <b>99</b> (37 SD/62 SW) | <b>29</b> (23 SD/6 SW) | 2,679.62 | 6,285.37 | 204                   | 174          |  |  |

| Table 1-1. | Summary of | Previous Sewer | • Investigations at RVA | AAP |
|------------|------------|----------------|-------------------------|-----|
|            |            |                |                         |     |

Note: The "Other Areas" category includes predominantly trunk/connector lines and Inert Storage Area #6 (area south of LL4 and LL12).

SD = Sewer sediment samples SW = Sewer water samples.

Facility-Wide Sewers

# 2.0 PROJECT ORGANIZATION, RESPONSIBILITIES, AND SCHEDULE

### 2.1 PROJECT ORGANIZATION AND RESPONSIBILITIES

Key personnel and subcontractors implementing this SAP Addendum are listed in Table 2-1. The functional responsibilities of these key personnel are described in Section 2.0 of the Facility-Wide SAP.

| Position                               | Personnel             |
|----------------------------------------|-----------------------|
| SAIC Project Manager                   | Kevin Jago, PG        |
| SAIC Project Engineer                  | Jed Thomas, PE        |
| SAIC Health & Safety Officer           | Steve Davis, CIH, CSP |
| SAIC QA/QC Officer                     | Glen Cowart           |
| SAIC Field Operations Manager          | Rich Sprinzl          |
| Subcontractor Laboratory QA/QC Manager | TBD                   |
| SAIC Laboratory Coordinator            | Jenny Vance           |
| SAIC Field Personnel                   | TBD                   |
| Subcontractor Field Personnel          | TBD                   |
| Analytical Laboratory Services         | TBD                   |
| OE Avoidance Services                  | USA Environmental     |
| Waste Disposal Services                | TBD                   |

### Table 2-1. Project Organization for SAP Addendum

SAIC = Science Applications International Corporation

PG = Professional Geologist

PE = Professional Engineer

CIH = Certified Industrial Hygienist

CSP = Certified Safety Professional

QA/QC = Quality Assurance/Quality Control

TBD = To Be Determined

OE = Ordnance and Explosives

## 2.2 PROJECT SCHEDULE

Figure 2-1 presents the schedule for completion of this SAP Addendum.

| ID | Task Name                                                   | Duration | Start       | Finish F      | Predecessors | -   |      |     |     |     |     | 2   |     |     | 2010 |
|----|-------------------------------------------------------------|----------|-------------|---------------|--------------|-----|------|-----|-----|-----|-----|-----|-----|-----|------|
|    |                                                             |          |             |               |              | Apr | May  | Jun | Jul | Aug | Sep | Oct | Nov | Dec | Jan  |
| 1  | Develop Sampling and Analysis Plan for Facility-wide Sewers | 144 days | Fri 4/24/09 | Mon 9/14/09   |              |     |      |     |     |     | Ψ.  |     |     |     |      |
| 2  | Prepare and Submit Draft to Army and Ohio EPA               | 0 days   | Fri 4/24/09 | Fri 4/24/09   |              |     | 4/24 |     |     |     |     |     |     |     |      |
| 3  | Army and Ohio EPA Review                                    | 45 days  | Fri 4/24/09 | Sun 6/7/09 2  | 2            | 4   | -    | h   |     |     |     |     |     |     |      |
| 4  | Comment Resolution Meeting                                  | 22 days  | Mon 6/8/09  | Mon 6/29/09 3 | 3            |     |      | 4   |     |     |     |     |     |     |      |
| 5  | Prepare and Submit Final to Army and Ohio EPA               | 54 days  | Mon 6/8/09  | Fri 7/31/09 3 | 3            |     |      | -   |     | 1   |     |     |     |     |      |
| 6  | Army and Ohio EPA Review and Approval                       | 45 days  | Sat 8/1/09  | Mon 9/14/09 5 | 5            |     |      |     |     | *   |     |     |     |     |      |
| 7  | Implementation of Sampling and Analysis Plan                | 120 days | Tue 9/15/09 | Tue 1/12/10   |              |     |      |     |     |     | φ-  |     |     | -   |      |
| 8  | Implementation of Sampling and Analysis Plan                | 120 days | Tue 9/15/09 | Tue 1/12/10 6 | 6            |     |      |     | -   |     | *   |     |     | _   | -    |

Figure 2-1. Project Schedule

## 3.1 SCOPE AND OBJECTIVES

The scope of this SAP Addendum is to characterize and define the nature of extent of contamination related to RVAAP-67, which includes IRP eligible sanitary and storm sewers throughout RVAAP. As discussed in Section 1.1, IRP eligibility was initially defined in the Performance Work Statement for the 2008 PBA as those sewers within and between AOCs that historically received AOC-related wastewater discharges prior to October 17, 1986. The Army issued interim policy for DERP eligibility in December 2008 that rescinded the October 17, 1986, cutoff date. The change in IRP policy did not affect the scope and definition of RVAAP-67, as no sewer systems were previously excluded on the basis of the cutoff date. Wastewater treatment plants at RVAAP (e.g., Sand Creek Sewage Treatment Plant, George Road Sewage Treatment Plant, and the Depot Sewage Treatment Plant) were previously closed in the 1990s and are not IRP eligible. Based on the definition of IRP eligibility and available RVAAP infrastructure data, the following comprises RVAAP-67:

- Sanitary and storm sewer lines, where present, within Load Lines 1 through 12 (Appendices E through P);
- Sanitary and storm sewer lines, within the Inert Storage Area #6, south of Load Lines 2 and 3 (Appendix A, Plate A-2);
- Sanitary and storm sewer lines, where present, within the Atlas Scrap Yard (Appendix C);
- Sanitary and storm sewer lines, where present, within the Administration Area (Appendix B);
- Sanitary and storm sewer lines, where present, within the Depot Administration Area (Appendix D);
- Sanitary and storm sewer lines, where present, within the Transportation Storage Area (Appendix Q);
- Sanitary sewer connector lines between AOC source areas (e.g., between Load Lines 1, 2, 3, and 12) (shown in the large scale sewer network plates located in Appendix A); and
- Sanitary sewer trunk lines exiting AOC source areas to the former sewage treatment plants (shown in the large scale sewer network plates located in Appendix A).

The following sanitary and storm sewer drainage infrastructure components are *not* included within the scope of the investigation under this SAP Addendum:

• Former wastewater treatment plants and associated discharge lines from these facilities; and

• Conventional drainage culverts (e.g., typical short lines beneath roads, rail lines, and utility right-ofways) in association with storm water ditches or flowing streams. Within AOC source areas, these conveyances have been or will be addressed through AOC-specific wet or dry sediment scopes.

The primary objectives of this Field Sampling Plan (FSP) Addendum are to:

- Develop a conceptual exposure model for the facility-wide sewers that encompasses all applicable contaminant migration and exposure pathways;
- Assess the condition of the sanitary and storm sewer systems to identify materials of construction, potential contaminant accumulation points, possible groundwater migration pathways, and leakage points;
- Characterize the nature and extent of contamination with respect to accumulated sediment within the lines;
- Characterize the potential for partitioning of contaminants from sediment to water with subsequent migration through the lines to outfall points (e.g., sampling of water at key points within the AOCs, at entry and exit points to each AOC or former functional area, and at outfall points);
- Sample subsurface soil and pipeline trench bedding material (if present), beneath the sewer at potential leakage points from the lines to assess contamination of this media by historical releases; and
- Evaluate existing data from groundwater monitoring wells and subsurface soil borings to determine if groundwater contamination by sewer system releases has occurred and if additional monitoring wells may be required to evaluate nature and extent of contamination.

The data acquired under this FSP Addendum will be evaluated in the RI Report, in conjunction with existing groundwater monitoring data, to determine if groundwater contamination by sewer system releases has occurred. The RI Report will provide recommendations where additional monitoring wells may be required to evaluate nature and extent of groundwater contamination. These project objectives are further detailed in Section 3.2. The scope of this SAP Addendum also includes munitions and explosives of concern (MEC) avoidance within Munitions Response Sites (MRS), and other areas if MEC is suspected, in order to safely conduct investigation activities. MEC avoidance procedures to be followed during the RI are outlined in the MEC Project Work Plan for the RVAAP PBA 2008 (USA Environmental 2009).

## **3.2 DATA QUALITY OBJECTIVES**

The following sections provide the FSP data quality objectives (DQO) for characterization of facilitywide sewers at RVAAP. These objectives include:

- Definition of the problem statement;
- Presentation of a conceptual exposure model;
- Establishment of general decision points;
- Identification of data needs for future decisions;
- Delineation of the spatial boundaries of the investigation; and
- Presentation of the general decision rules and sampling design for the investigation.

The DQOs for the facility-wide sewers presented in this section represent the most current compilation of information and guidance from the RVAAP IRP Team during the 2008 PBA procurement process, as well as discussions during the project kickoff meeting held in August 2008 and a facility-wide sewers DQO planning workshop held in October 2008.

## 3.2.1 Statement of the Problem and Facility-Wide Sewers Conceptual Model

Figure 3-1 illustrates a preliminary conceptual model for facility-wide sewers based on available data and site knowledge. This model will be refined based on the results of the RI and a final version presented in the RI Report. Previous investigations have shown the presence of accumulated sediment within the sanitary and storm sewers that contains process-related contaminants (metals, explosives, organics). Available data indicate, for those sections of sewer lines investigated, that there are not currently accumulated explosives within the sewer lines in sufficient quantity to be an explosion hazard.

As shown on Figure 3-1, sewer line segments containing residual contaminated sediment accumulations are defined as primary sources. Particle-bound contaminants may migrate through the sewer systems by physical transport of sediment during periods of flow; this migration pathway was active during RVAAP operations as well as under current conditions. During facility operational periods, dissolved-phase contaminants migrated through the sewer systems where process-related effluents were directly introduced into the systems. Also, under past and present conditions, partitioning of contaminants from particle-bound phase to dissolved phase occurs where water is in contact with contaminated sediment. Once in dissolved phase, the contaminants migrate with water flow. Leakage of contaminated effluent or storm water from the lines via cracks or line breaks (both in the past and currently) may contribute contamination to receptor media, such as soil beneath or adjacent to the sewer lines, surface water and sediment (wet and dry) media at outfall points to ditches or surface water conveyances, and groundwater. These receptor media may, in turn, function as secondary sources of contamination. Where the sewer line elevations were below the groundwater table, the pipelines were potentially preferential flow pathways (conduits) for groundwater.

A preliminary field reconnaissance of the sewer lines in December 2008 showed many of storm sewer lines above the water table are still functional and convey water during periods of rainfall. Flowing water, likely sourced from infiltrating groundwater, was observed in some sanitary and storm sewer inverts at elevations below the water table associated with the sanitary sewer system. Portions of the sewer lines, particularly within Load Lines 3, 4, 12, and the Atlas Scrap Yard, were completely water-filled. Therefore, where contaminated sediment and water are still present in the sewer lines, they may still represent ongoing sources of contamination to receptor media and conduits for groundwater flow.

As shown on Figure 3-1, potential human health risk exposure pathways for contaminants related to facility-wide sewers include accumulated wet and dry sediment or water within the lines (direct dermal contact, inhalation of dry sediment, ingestion) if they were to be breached. Other exposure pathways potentially include conventional pathways for receptor media or secondary sources, such as sediment at outfall locations, subsurface soil, or groundwater. Some of these receptor media, such as outfall ditch sediments, at selected AOCs have been addressed as separate exposure units during previous RIs or will be addressed during future RIs.

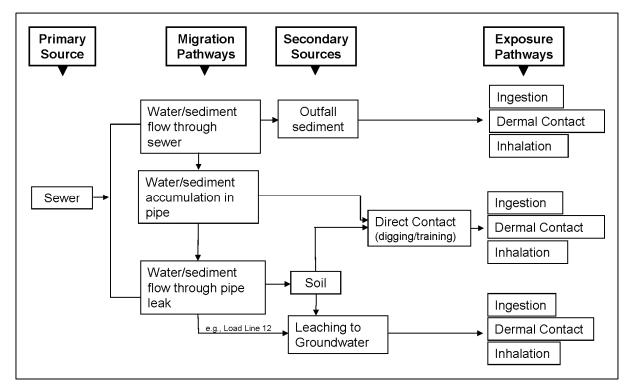



Figure 3-1. Facility-Wide Sewers Conceptual Model

## **3.2.2** General Decision Points

Data collected under this FSP Addendum will support future risk management decisions, development of remedial alternatives, and ultimately, selection of a final remedy. Key decision points that the data will support include:

- Identification of those sewer line segments requiring remediation based on human health and environmental direct exposure risk concerns;
- Identifying where sewer line segments function as preferential contaminant migration pathways for surface water and/or groundwater;
- Identifying where facility-wide sewer system may have contributed to contamination of receptor media and recommending a path forward for those media; and

• Identification of feasible and appropriate remedial technologies.

Future risk-management and remedial decisions for the facility-wide sewers under CERCLA will not be predicated on physical safety hazards, such as missing manhole covers or non-contaminated pipelines with a high potential for collapse. Physical safety hazards will be addressed separately by the Army and OHARNG. However, visual and video survey data obtained during the RI that pertain to physical safety hazards will be communicated to the Army and OHARNG for their information and any necessary actions.

## 3.2.3 Data Needs and Decision Inputs

Limited previous investigations have been performed to characterize the storm and sanitary sewer systems at RVAAP. These investigations have focused on Load Lines 1 through 12 and were designed to provide an initial evaluation of the occurrence of contamination rather than to fully assess nature and extent. A summary of available existing data is presented on Table 1-1. Sampling and characterization of accumulated sediment and water within some sanitary sewers, and storm sewers if present, were conducted as part of the following investigations:

- Load Line 1 Phase II RI (USACE 2003) storm and sanitary sewers, video surveys;
- *Load Lines 2, 3, and 4 Phase II RI* (USACE 2004a, 2004b, and 2004c) storm and sanitary sewers, video surveys;
- Load Line 12 Phase II RI (USACE 2004d) sanitary sewers present only, limited video surveys;
- *Characterization of 14 AOCs at RVAAP* (MKM 2007a) sanitary sewers at Load Lines 5, 7, 8, 10 and Atlas Scrap Yard;
- Load Line 6 Phase I RI (MKM 2007b) sanitary sewers present only;
- Load Line 9 Phase I RI (MKM 2007c) sanitary sewers present only; and
- Load Line 11 Phase I RI (MKM 2005) sanitary sewers present only.

In addition, two studies commissioned by the U.S. Army Base Realignment and Closure Division (BRAC-D) evaluated the potential for explosive hazards within sanitary and storm sewer lines at Load Lines 1 through 12 and the Administration Area (USACE-CERL 2007 and Lakeshore Engineering Services Inc. 2007). These studies included video camera surveys of sewers lines to determine if visible accumulations of explosives were present. Both studies collected wipe samples of sewer line inverts and video cameras for analysis of TNT and/or cyclonite (RDX) using field test kit methods (e.g., Exspray<sup>TM</sup> and DropEx<sup>TM</sup>) samples. These studies did not collect samples of accumulated sediment or water within the lines for fixed-based laboratory analysis.

These previous investigations have not fully assessed the condition of the lines and have not defined the nature and extent of contamination within the lines; therefore, additional sampling will be performed. In addition, prior investigations have not considered all potential contaminant release and exposure pathways. Therefore, evaluation of potential leakage points and contamination of receptor media (e.g., dry and wet sediment within conveyances that received discharges from outfalls, subsurface soil, and groundwater) is planned. Available historical data, as well as newly acquired data from ongoing or planned near-term AOC investigations will be incorporated into the evaluation.

Based on the project DQOs, the following types of data inputs are needed to support the project decision points:

- Visual assessment of the current condition of visible portions of the sewer systems (inverts, catch basins, outfalls, etc.), including determining where portions of the system may have been destroyed/removed during building demolition activities or are present, but filled in with debris;
- Video camera surveys of potentially contaminated sewer line segments, as identified through visual assessment and field screening tools, to assess the current condition of piping systems;
- Sampling of sediment and water within the sewer systems and analysis using both field screening tools and fixed-based methods to assess presence and extent of contamination; and
- Compilation of historical data and sampling, as required to assess presence and extent of contamination both within the sewer lines and in receptor media (e.g., outfall sediment, pipeline bedding material, subsurface soil, and groundwater) that may have received contaminants sourced from the sewer systems.

## 3.2.4 Spatial Boundaries of the Investigation

A formal definition and boundary for AOC number RVAAP-67 has not been established through the RVAAP Installation Action Plan (IAP) process to date. The definition and boundaries of RVAAP-67 presented in Section 3.1 represent the most current compilation of information and guidance from the RVAAP IRP Team during the 2008 PBA procurement process, as well as discussions during the project kickoff meeting and the facility-wide sewers DQO planning workshop. The investigation will address the components of the systems as defined in Section 3.1. Maps depicting sewer lines that fall within the definition and boundaries of RVAAP-67, including trunk lines between AOCs and those leading to former sewage treatment facilities, are included in Appendices A through Q. These appendices also include summaries of available historical data for each component of the AOC.

## 3.2.5 General Investigation Decision Rules and Sample Design

The general decision rules to be applied for the facility-wide sewers RI are presented in the following sections. The general decision rules outline a tiered, optimized characterization approach for the investigation. Three tiers of investigation will be performed:

- Tier 1 Investigation of the sewer lines, accumulated sediment and water within the lines, and sediment and water at key outfall and AOC entry/exit points (investigation tools include visual surveys, video camera surveys, collection of samples for field screening and fixed-based laboratory analyses);
- Tier 2 Collection of pipeline bedding material to characterize direct exposure potential from contaminant releases via pipeline leaks and evaluate if these releases may have impacted the subsurface soil below the pipeline; and
- Tier 3 Collection of subsurface soil data where needed to characterize direct exposure potential from contaminant releases via pipeline leaks, and evaluate if these releases may have impacted groundwater.

Figure 3-2 illustrates the decision rules and sample design for the facility-wide sewers RI. This SAP Addendum outlines the approach for both tiers of investigation. However, potential bedding material and subsurface soil sampling locations addressed under Tiers 2 and 3, respectively, will not be fully identified until receipt and evaluation of data collected under the preceding Tier of investigation. A Technical Memorandum outlining the Tier 2 and Tier 3 rationales and specific proposed areas for investigation will be prepared and issued to the RVAAP Team following evaluation of data from the preceding Tier of investigation and prior to the commencement of the additional activities.

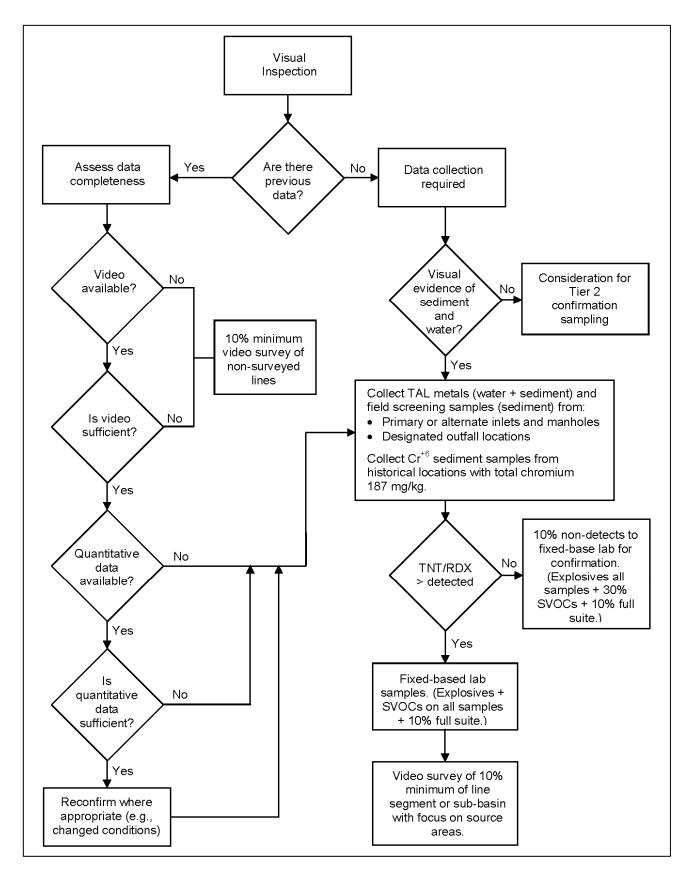



Figure 3-2. Facility-Wide Sewers RI Tier 1 Manholes and Inlets Sampling Decision Flowchart

## 3.2.5.1 Tier 1 Investigation

## Use of Historical Data

Available historical sewer characterization data were used in the development of decision rules and sample design for Tier 1 of the RI as discussed below. Two data sets were evaluated to initially determine where contamination is likely present and where additional characterization of the sewer system is anticipated: 1) field analytical data for wipe samples; and 2) fixed-based analytical laboratory data of accumulated water and sediment (wet and dry) within the sewer lines, as well as sediment (wet and dry) at storm sewer outfall locations.

Previously-collected TNT and RDX field analytical data for wipe samples were used qualitatively to identify where additional sewer line characterization is needed. A "positive" detection for either compound in a specific sewer line segment provided qualitative indication where explosives may be present in any accumulated sediment or water within the lines; therefore, specific focus on these line segments is planned to determine whether these matrices are present and, if so, to characterize them. No sewer line segments were excluded from the investigation on the basis of these historical field analytical data.

Historical fixed-based analytical laboratory data were evaluated to identify segments of the sewers where contaminants in accumulated wet and dry sediment and water were present above risk-based screening levels as defined below. In addition, available data for sediment (wet and dry) at sewer outfall locations were evaluated for indicators where sewers may have previously discharged contaminants. Historical water samples at or near outfall locations represent a transient media and were determined not to be representative of current conditions; therefore, these sample types were not incorporated into the initial data evaluation. Locations of previously-collected fixed-based analytical laboratory samples are depicted on maps in Appendices A through Q.

Accumulated sediment and water within sewer line inverts and pipelines do not have a specific, unique set of risk-based screening levels or background values. In previous RIs, risk-based screening levels for wet sediment and surface water were used for approximation of accumulated sediment and water, respectively, within the sewer lines. This convention was also used for the initial screening of historical analytical data in this SAP Addendum for the facility-wide sewer system. For sediment (dry or wet) at outfall locations, screening levels and background values established for wet sediment were used for initial data screening.

The values and sources for screening levels used in this SAP Addendum to determine exceedances and where additional characterization may be required are presented in Table 3-1. Screening levels used for the initial data evaluation were either RVAAP facility-wide background values or draft facility-wide risk-based cleanup goals (CUGs) established in the Draft Facility-Wide Human Health Cleanup Goals for the RVAAP (USACE 2008), herein referred to as the Draft CUG Report. For those chemicals where CUGs were employed as screening levels, the values for a noncarcinogenic hazard index (HI) of 0.1 and a carcinogenic risk of 1.0E-6 were used. The draft facility-wide CUGs are subject to change as the Draft

CUG Report is reviewed and finalized by the RVAAP Team. Therefore, revised or additional data comparisons for risk management decisions may be required at a later point in the CERCLA process.

The CUG-based screening levels shown in Table 3-1 are a compilation of the lowest values from either the Resident Farmer or National Guard Trainee receptor scenarios outlined in the Draft CUG Report (USACE 2008). This conservatism was incorporated into the initial data screening process to facilitate identification of all sewer line segments having potential contamination that might merit further investigation of nature and extent. During the initial data screening, the presence of inorganic chemicals at concentrations equal to or less than background values were assumed to indicate the absence of contamination. Therefore, if the CUG-based screening level for an inorganic chemical was less than background, then the background value was used to determine exceedances that may require further investigation.

In the Draft CUG Report, CUGs were established only for chemicals determined in previous RI Reports to be facility-wide chemicals of potential concern (COPCs). Designation of COPCs in previous reports was based on the U.S. Environmental Protection Agency (USEPA) Region 9 preliminary remediation goals (PRGs). As detailed in Section 2.0 of the CUG Report, CUGs were not established for chemicals considered to be essential nutrients. Newly acquired data under this investigation will be further evaluated in the RI Report to determine whether any chemicals not currently listed as facility-wide COPCs may require calculation of CUGs for the purposes of sewer line risk management and remedial decision making.

The term "exceedance" within this FSP Addendum refers to an analytical result that is greater than the screening levels presented in Table 3-1 for one or more chemicals. The absence of a screening level for a chemical in Table 3-1 indicates that either a CUG has not been developed or a RVAAP facility-wide background value has not been established. Evaluation using other benchmark criteria (e.g., USAEPA Regional Screening Levels or Safe Drinking Water Act Maximum Contaminant Levels) was not performed for those historically detected chemicals having no CUG-based or facility-wide background screening levels and; therefore, no exceedances are depicted for those chemicals.

Locations where chemicals exceeded their respective screening levels in accumulated sewer line sediment and water, as well as sediment (dry or wet) at outfall locations are shown on maps in Appendices A through Q. If analytical results for a historical sampling location exceeded the screening criteria for one or more chemicals listed in Table 3-1, then further evaluation of the sewer line segment "upstream and downstream" of that location is planned during the facility-wide sewers RI. Table 3-1 also lists draft screening levels for other receptor media to be evaluated under Tier 2 of the RI or within the RI Report. As discussed previously, evaluation of Tier 1 data, along with historical data for subsurface soil and groundwater in the vicinity of the sewer lines, will be performed as part of technical rationale development for Tier 2 of the RI. For these receptor media, the applicable screening levels will be used to identify areas that are potentially impacted by sewer lines releases.

|                                       | Surface |      | Subsurface |      | Groundwater       |      | Groundwater      |      | Surface          |      | Wet              |      |
|---------------------------------------|---------|------|------------|------|-------------------|------|------------------|------|------------------|------|------------------|------|
|                                       | Soil    | CUG  | Soil       | CUG  | Unconsolidated    | CUG  | Bedrock          | CUG  | Water            | CUG  | Sediment         | CUG  |
| Chemical <sup>1</sup> (mg/kg or mg/L) | CUG     | Туре | CUG        | Туре | CUG <sup>2</sup>  | Туре | CUG <sup>2</sup> | Туре | CUG <sup>3</sup> | Туре | CUG <sup>4</sup> | Туре |
| Nitrate                               | 12000   | RFC  | 12000      | RFC  | 1.7               | RFC  | 1.7              | RFC  | 25               | RFC  | None             | N/A  |
| Aluminum                              | 17700   | BKG  | 19500      | BKG  | 1                 | RFC  | 1                | RFC  | 15               | RFC  | 13900            | BKG  |
| Antimony                              | 2.8     | RFC  | 2.8        | RFC  | 0.00039           | RFC  | 0.00039          | RFC  | 0.0049           | RFC  | 2.8              | RFC  |
| Arsenic                               | 15.4    | BKG  | 19.8       | BKG  | 0.0117            | BKG  | 0.000056         | RFA  | 0.0032           | BKG  | 19.5             | BKG  |
| Barium                                | 350     | NGT  | 350        | NGT  | 0.2               | RFC  | 0.256            | BKG  | 2.9              | RFC  | 350              | NGT  |
| Cadmium                               | 6.4     | RFC  | 6.4        | RFC  | 0.00046           | RFC  | 0.00046          | RFC  | 0.0041           | NGT  | 6.4              | RFC  |
| Chromium                              | 17.4    | BKG  | 27.2       | BKG  | 0.0073            | BKG  | 0.0027           | RFC  | 0.025            | NGT  | 18.1             | BKG  |
| Chromium, hexavalent                  | 1.6     | NGT  | 1.6        | NGT  | None <sup>5</sup> | N/A  | None             | N/A  | 0.025            | NGT  | 1.6              | NGT  |
| Cobalt                                | 10.4    | BKG  | 23.2       | BKG  | 0.021             | RFC  | 0.021            | RFC  | None             | N/A  | 9.1              | BKG  |
| Copper                                | 310     | RFC  | 310        | RFC  | None              | N/A  | None             | N/A  | 0.61             | RFC  | 310              | RFC  |
| Lead                                  | 400     | TB   | 400        | TB   | 0.015             | MCL  | 0.015            | MCL  | 0.015            | TB   | 400              | TB   |
| Manganese                             | 1450    | BKG  | 3030       | BKG  | 1.02              | BKG  | 1.34             | BKG  | 0.63             | RFC  | 1950             | BKG  |
| Mercury                               | 2.3     | RFC  | 2.3        | RFC  | None              | N/A  | None             | N/A  | 0.0044           | RFC  | 2.3              | RFC  |
| Nickel                                | 160     | RFC  | 160        | RFC  | 0.021             | RFC  | 0.0834           | BKG  | 0.31             | RFC  | 160              | RFC  |
| Silver                                | 39      | RFC  | 39         | RFC  | None              | N/A  | None             | N/A  | 0.077            | RFC  | 39               | RFC  |
| Thallium                              | 0.61    | RFC  | 0.91       | BKG  | 0.000083          | RFC  | 0.000083         | RFC  | 0.0012           | RFC  | 0.89             | BKG  |
| Vanadium                              | 45      | RFC  | 45         | RFC  | 0.0064            | RFC  | 0.0064           | RFC  | 0.057            | NGT  | 45               | RFC  |
| Zinc                                  | 2300    | RFC  | 2300       | RFC  | 0.31              | RFC  | 0.31             | RFC  | 4.6              | RFC  | 2300             | RFC  |
| 1,3,5-Trinitrobenzene                 | 230     | RFC  | 230        | RFC  | None              | N/A  | None             | N/A  | None             | N/A  | None             | N/A  |
| 1,3-Dinitrobenzene                    | 0.77    | RFC  | 0.77       | RFC  | 0.0001            | RFC  | 0.0001           | RFC  | None             | N/A  | None             | N/A  |
| 2,4,6-Trinitrotoluene                 | 3.7     | RFC  | 3.7        | RFC  | 0.00052           | RFC  | 0.00052          | RFC  | 0.0078           | RFC  | 3.7              | RFC  |
| 2,4-Dinitrotoluene                    | 0.75    | RFA  | 0.75       | RFA  | 0.00012           | RFA  | 0.00012          | RFA  | 0.002            | RFA  | 0.75             | RFA  |
| 2,6-Dinitrotoluene                    | 0.77    | RFA  | 0.77       | RFA  | 0.00012           | RFA  | 0.00012          | RFA  | 0.0021           | RFA  | None             | N/A  |
| 2-Amino-4,6-Dinitrotoluene            | 1.5     | RFC  | 1.5        | RFC  | 0.00021           | RFC  | 0.00021          | RFC  | 0.0031           | RFC  | 1.5              | RFC  |
| 2-Nitrotoluene                        | 3.9     | RFC  | 3.9        | RFC  | 0.00037           | RFA  | 0.00037          | RFA  | 0.0074           | RFA  | None             | N/A  |
| 4-Amino-2,6-Dinitrotoluene            | 1.5     | RFC  | 1.5        | RFC  | 0.00021           | RFC  | 0.00021          | RFC  | 0.0031           | RFC  | 1.5              | RFC  |
| 4-Nitrotoluene                        | 53      | RFC  | 53         | RFC  | 0.005             | RFA  | 0.005            | RFA  | 0.1              | RFA  | None             | N/A  |

Table 3-1. Historical Data Screening Levels for Facility-Wide Sewers

Facility-Wide Sewers

Addendum No. 1

|                                       | Surface |      | Subsurface |      | Groundwater      |      | Groundwater      |      | Surface          |      | Wet              |      |
|---------------------------------------|---------|------|------------|------|------------------|------|------------------|------|------------------|------|------------------|------|
|                                       | Soil    | CUG  | Soil       | CUG  | Unconsolidated   | CUG  | Bedrock          | CUG  | Water            | CUG  | Sediment         | CUG  |
| Chemical <sup>1</sup> (mg/kg or mg/L) | CUG     | Туре | CUG        | Туре | CUG <sup>2</sup> | Туре | CUG <sup>2</sup> | Туре | CUG <sup>3</sup> | Туре | CUG <sup>4</sup> | Туре |
| HMX                                   | 360     | RFC  | 360        | RFC  | None             | N/A  | None             | N/A  | 0.78             | RFC  | 360              | RFC  |
| Nitrobenzene                          | None    | N/A  | None       | N/A  | 0.00052          | RFC  | 0.00052          | RFC  | None             | N/A  | None             | N/A  |
| Nitroglycerin                         | 53      | RFC  | 53         | RFC  | 0.005            | RFA  | 0.005            | RFA  | None             | N/A  | 53               | RFC  |
| RDX                                   | 8       | RFC  | 8          | RFC  | 0.00077          | RFA  | 0.00077          | RFA  | 0.015            | RFA  | 8                | RFC  |
| 4,4'-DDD                              | None    | N/A  | None       | N/A  | 0.000059         | RFA  | 0.000059         | RFA  | None             | N/A  | None             | N/A  |
| 4,4'-DDE                              | 2.6     | RFC  | 2.6        | RFC  | 0.000047         | RFA  | 0.000047         | RFA  | None             | N/A  | None             | N/A  |
| 4,4'-DDT                              | None    | N/A  | None       | N/A  | 0.000027         | RFA  | 0.000027         | RFA  | 0.0001           | RFA  | None             | N/A  |
| Aldrin                                | 0.053   | RFC  | 0.053      | RFC  | 0.0000047        | RFA  | 0.0000047        | RFA  | 0.000073         | RFA  | None             | N/A  |
| Dieldrin                              | 0.056   | RFC  | 0.056      | RFC  | 0.0000036        | RFA  | 0.0000036        | RFA  | None             | N/A  | 0.056            | RFC  |
| Endrin                                | 1.1     | RFC  | 1.1        | RFC  | None             | N/A  | None             | N/A  | None             | N/A  | None             | N/A  |
| Endrin aldehyde                       | None    | N/A  | None       | N/A  | None             | N/A  | None             | N/A  | None             | N/A  | None             | N/A  |
| Heptachlor                            | 0.2     | RFC  | 0.2        | RFC  | 0.000014         | RFA  | 0.000014         | RFA  | None             | N/A  | None             | N/A  |
| Heptachlor epoxide                    | 0.098   | RFC  | 0.098      | RFC  | 0.0000094        | RFA  | 0.0000094        | RFA  | 0.00019          | RFA  | None             | N/A  |
| Lindane                               | None    | N/A  | None       | N/A  | 0.000051         | RFA  | 0.000051         | RFA  | None             | N/A  | None             | N/A  |
| PCB-1016                              | 0.2     | RFA  | 0.2        | RFA  | None             | N/A  | None             | N/A  | None             | N/A  | 0.2              | RFA  |
| PCB-1242                              | None    | N/A  | None       | N/A  | 0.00021          | RFA  | 0.00021          | RFA  | None             | N/A  | None             | N/A  |
| PCB-1248                              | 0.2     | RFA  | 0.2        | RFA  | None             | N/A  | None             | N/A  | None             | N/A  | None             | N/A  |
| PCB-1254                              | 0.12    | RFC  | 0.12       | RFC  | 0.000021         | RFC  | 0.000021         | RFC  | 0.00031          | RFC  | 0.12             | RFC  |
| PCB-1260                              | 0.2     | RFA  | 0.2        | RFA  | 0.00021          | RFA  | 0.00021          | RFA  | None             | N/A  | 0.2              | RFA  |
| Toxaphene                             | None    | N/A  | None       | N/A  | 0.000048         | RFA  | 0.000048         | RFA  | None             | N/A  | None             | N/A  |
| alpha-BHC                             | None    | N/A  | None       | N/A  | 0.000014         | RFA  | 0.000014         | RFA  | None             | N/A  | None             | N/A  |
| alpha-Chlordane                       | None    | N/A  | None       | N/A  | None             | N/A  | None             | N/A  | None             | N/A  | None             | N/A  |
| beta-BHC                              | 0.5     | RFC  | 0.5        | RFC  | 0.000047         | RFA  | 0.000047         | RFA  | 0.00095          | RFA  | None             | N/A  |
| gamma-Chlordane                       | None    | N/A  | None       | N/A  | None             | N/A  | None             | N/A  | None             | N/A  | None             | N/A  |
| 1,4-Dichlorobenzene                   | None    | N/A  | None       | N/A  | None             | N/A  | None             | N/A  | 0.019            | RFA  | None             | N/A  |
| 2,4-Dimethylphenol                    | None    | N/A  | None       | N/A  | None             | N/A  | None             | N/A  | 0.25             | RFC  | None             | N/A  |
| 2-Methylnaphthalene                   | 31      | RFC  | 31         | RFC  | None             | N/A  | None             | N/A  | None             | N/A  | None             | N/A  |

 Table 3-1. Historical Data Screening Levels for Facility-Wide Sewers (continued)

Facility-Wide Sewers

|                                       | Surface |      | Subsurface |      | Groundwater      |      | Groundwater      |      | Surface          |      | Wet              |      |
|---------------------------------------|---------|------|------------|------|------------------|------|------------------|------|------------------|------|------------------|------|
|                                       | Soil    | CUG  | Soil       | CUG  | Unconsolidated   | CUG  | Bedrock          | CUG  | Water            | CUG  | Sediment         | CUG  |
| Chemical <sup>1</sup> (mg/kg or mg/L) | CUG     | Туре | CUG        | Туре | CUG <sup>2</sup> | Туре | CUG <sup>2</sup> | Туре | CUG <sup>3</sup> | Туре | CUG <sup>4</sup> | Туре |
| 4-Chloro-3-methylphenol               | None    | N/A  | None       | N/A  | None             | N/A  | None             | N/A  | None             | N/A  | None             | N/A  |
| 4-Methylphenol                        | None    | N/A  | None       | N/A  | None             | N/A  | None             | N/A  | 0.068            | RFC  | None             | N/A  |
| 4-Nitrobenzenamine                    | None    | N/A  | None       | N/A  | 0.0031           | RFC  | 0.0031           | RFC  | None             | N/A  | None             | N/A  |
| 4-Nitrophenol                         | 61      | RFC  | 61         | RFC  | None             | N/A  | None             | N/A  | None             | N/A  | None             | N/A  |
| Benz(a)anthracene                     | 0.22    | RFA  | 0.22       | RFA  | 0.0000039        | RFA  | 0.0000039        | RFA  | 0.000014         | RFA  | 0.22             | RFA  |
| Benzo(a)pyrene                        | 0.022   | RFA  | 0.022      | RFA  | 0.00000023       | RFA  | 0.00000023       | RFA  | 0.0000008        | RFA  | 0.022            | RFA  |
| Benzo(b)fluoranthene                  | 0.22    | RFA  | 0.22       | RFA  | 0.0000023        | RFA  | 0.0000023        | RFA  | 0.0000079        | RFA  | 0.22             | RFA  |
| Benzo(k)fluoranthene                  | 2.2     | RFA  | 2.2        | RFA  | None             | N/A  | None             | N/A  | 0.023            | RFA  | 2.2              | RFA  |
| Bis(2-chloroethoxy)methane            | 23      | RFC  | 23         | RFC  | None             | N/A  | None             | N/A  | None             | N/A  | None             | N/A  |
| Bis(2-ethylhexyl)phthalate            | None    | N/A  | None       | N/A  | 0.0009           | RFA  | 0.0009           | RFA  | 0.0035           | RFA  | None             | N/A  |
| Carbazole                             | 45      | RFC  | 45         | RFC  | None             | N/A  | None             | N/A  | None             | N/A  | None             | N/A  |
| Chrysene                              | 22      | RFA  | 22         | RFA  | None             | N/A  | None             | N/A  | 0.0014           | RFA  | None             | N/A  |
| Dibenz(a,h)anthracene                 | 0.022   | RFA  | 0.022      | RFA  | 0.00000015       | RFA  | 0.00000015       | RFA  | 0.00000052       | RFA  | 0.022            | RFA  |
| Dibenzofuran                          | 15      | RFC  | 15         | RFC  | None             | N/A  | None             | N/A  | None             | N/A  | None             | N/A  |
| Fluoranthene                          | 160     | RFC  | 160        | RFC  | None             | N/A  | None             | N/A  | None             | N/A  | None             | N/A  |
| Fluorene                              | 240     | RFC  | 240        | RFC  | None             | N/A  | None             | N/A  | None             | N/A  | None             | N/A  |
| Indeno(1,2,3-cd)pyrene                | 0.22    | RFA  | 0.22       | RFA  | 0.0000023        | RFA  | 0.0000023        | RFA  | 0.0000078        | RFA  | 0.22             | RFA  |
| N-Nitroso-di-n-propylamine            | 0.12    | RFC  | 0.12       | RFC  | None             | N/A  | None             | N/A  | None             | N/A  | None             | N/A  |
| Naphthalene                           | 120     | RFC  | 120        | RFC  | None             | N/A  | None             | N/A  | None             | N/A  | None             | N/A  |
| Nitrobenzene                          | None    | N/A  | None       | N/A  | 0.00052          | RFC  | 0.00052          | RFC  | None             | N/A  | None             | N/A  |
| Pentachlorophenol                     | 2.1     | RFA  | 2.1        | RFA  | 0.000074         | RFA  | 0.000074         | RFA  | 0.00028          | RFA  | None             | N/A  |
| Pyrene                                | 120     | RFC  | 120        | RFC  | None             | N/A  | None             | N/A  | 0.47             | RFC  | None             | N/A  |
| bis(2-Chloroethoxy)methane            | 23      | RFC  | 23         | RFC  | None             | N/A  | None             | N/A  | None             | N/A  | None             | N/A  |
| 1,1,2,2-Tetrachloroethane             | None    | N/A  | None       | N/A  | 0.000069         | RFA  | 0.000069         | RFA  | 0.00039          | NGT  | None             | N/A  |
| 1,2-Dichloroethane                    | None    | N/A  | None       | N/A  | 0.00016          | RFA  | 0.00016          | RFA  | None             | N/A  | None             | N/A  |
| 1,2-Dichloroethene                    | None    | N/A  | None       | N/A  | None             | N/A  | None             | N/A  | 0.12             | RFC  | None             | N/A  |
| 1,4-Dichlorobenzene                   | None    | N/A  | None       | N/A  | None             | N/A  | None             | N/A  | 0.019            | RFA  | None             | N/A  |

 Table 3-1. Historical Data Screening Levels for Facility-Wide Sewers (continued)

Facility-Wide Sewers

|                                       | Surface |      | Subsurface |      | Groundwater      |      | Groundwater      |      | Surface          |      | Wet              |      |
|---------------------------------------|---------|------|------------|------|------------------|------|------------------|------|------------------|------|------------------|------|
|                                       | Soil    | CUG  | Soil       | CUG  | Unconsolidated   | CUG  | Bedrock          | CUG  | Water            | CUG  | Sediment         | CUG  |
| Chemical <sup>1</sup> (mg/kg or mg/L) | CUG     | Туре | CUG        | Туре | CUG <sup>2</sup> | Туре | CUG <sup>2</sup> | Туре | CUG <sup>3</sup> | Туре | CUG <sup>4</sup> | Туре |
| Benzene                               | None    | N/A  | None       | N/A  | 0.00043          | RFA  | 0.00043          | RFA  | None             | N/A  | None             | N/A  |
| Carbon tetrachloride                  | None    | N/A  | None       | N/A  | 0.0002           | RFA  | 0.0002           | RFA  | None             | N/A  | None             | N/A  |
| Chloroform                            | None    | N/A  | None       | N/A  | 0.00021          | RFA  | 0.00021          | RFA  | 0.001            | NGT  | None             | N/A  |
| Methylene chloride                    | None    | N/A  | None       | N/A  | 0.0053           | RFA  | 0.0053           | RFA  | 0.046            | NGT  | None             | N/A  |
| Tetrachloroethene                     | None    | N/A  | None       | N/A  | 0.000098         | RFA  | 0.000098         | RFA  | 0.00083          | RFA  | None             | N/A  |
| Trichloroethene                       | None    | N/A  | None       | N/A  | 0.000031         | RFA  | 0.000031         | RFA  | 0.00016          | NGT  | None             | N/A  |
| cis-1,2-Dichloroethene                | None    | N/A  | None       | N/A  | None             | N/A  | None             | N/A  | 0.16             | RFC  | None             | N/A  |

Table 3-1. Historical Data Screening Levels for Facility-Wide Sewers (continued)

Notes: This table lists all chemicals for which CUGs were developed in the Draft CUG Report (USACE 2008b). Screening levels were based on the CUG for Hazard Quotient (HQ)=0.1 and Carcinogenic Risk=1E-6. Values were rounded to two significant figures. When background values were higher than the CUG (HQ=0.1/R=1E-6), the background value became the screening level. Background values were not rounded to two significant figures and were obtained from the April 2001 Phase II Winklepeck Remedial Investigation Report (USACE, 2001b).

Chromium speciation samples will be collected in accordance with Section 4.6 of this SAP to evaluate the concentration ratio of hexavalent chromium to total chromium. These sample results will provide guidance for future remedial decisions and remedial actions at these areas of concern.

<sup>1</sup> Although listed as a COPC in the September 2008 Draft Facility-Wide Human Health Cleanup Goals for RVAAP, iron was not screened against a CUG as this chemical has historically been considered an essential nutrient at RVAAP. The RVAAP Risk Manual identifies iron as one of the essential elements that should not be evaluated as a COPC as long as it is present at low concentrations (e.g., below 100,000 to 180,000 mg/kg). The maximum detection of iron from previous sampling at these subject AOCs is 76,000 mg/kg.

<sup>2</sup> Groundwater CUGs and background values provided are representative of filtered groundwater samples. Unfiltered groundwater samples were not evaluated.

<sup>3</sup> Surface water CUGs and background values are representative of unfiltered water. Filtered surface sample results were not evaluated.

<sup>4</sup> Wet sediment CUG are equal to surface soil CUG with the exception of when background values were greater than CUG screening levels.

"None" indicates the chemical has not been detected or determined as COPC at RVAAP in past investigations. In the event a chemical without a screening value is determined to be a COPC a CUG will be developed (Section 3.2.1).

TB = technology-based screening level

CUG = Cleanup Goal

BKG = Background.

N/A = not applicable

NGT = National Guard Trainee.

RFA = Resident Subsistence Farmer Adult.

RFC = Resident Subsistence Farmer Child.

#### Visual Inspection

As shown on Figure 3-2, Tier 1 of the RI will begin with a systematic visual inspection of the facilitywide storm and sanitary sewer systems. Information on the condition of sanitary and storm sewer manholes, catch basins, drop inlets, and outfall points will be collected. The inspection will include identifying whether accumulated sediment and water are present in the lines. Visual inspection information will be recorded on a checklist as denoted in Section 4.1.

Visual inspections will include those known sewer lines documented through historical engineering data for RVAAP. During preliminary reconnaissance of the facility-wide sewers in December 2008, undocumented storm sewer systems were discovered in the former RVAAP Administration Area, the Depot Administration Area, and Inert Storage Area #6 (south of Load Lines 2 and 3). Historical engineering or construction records for these systems have not been located to date. Mapping of these systems using visual surveys, smoke tracing, dye tracing, and geophysics (e.g., ground penetrating radar or magnetometer survey), as appropriate, will be conducted during this portion of the investigation.

#### Assessment of Data Completeness

Historical analytical data and available sewer line video survey information was compiled as part of preparation of this SAP Addendum. This information was evaluated with respect to general condition of the sewer lines and where contamination has been previously documented to exist within the lines. For sewer line segments where site conditions have not changed (e.g., no disturbances due to demolition) and sufficient historical data exist to adequately assess the condition of the lines and determine the nature and extent of contamination for subsequent FS decision making, minimal additional investigation of that line segment will be conducted. Additional data collection will be performed in those cases where historical data are not available, are insufficient, or site conditions have changed substantially (e.g., building demolition or building slab removals) since the time of historical data collection.

For the purposes of this RI, sufficiency of historical data for a sewer line segment is defined as:

- Historical video surveys survey must have included portions of a sewer line segment or sub-basin adjacent to, or immediately downgradient of, known or suspected sources; along the mid-point reaches of the pipeline; and along portions of the pipeline near the terminus or outfall.
- Historical accumulated sediment and water data at a minimum, samples collected at or immediately "downstream" of each major suspected contaminant source to the sewer line segment (e.g., production buildings), at a minimum of one midpoint location between the source(s) and terminus of the segment, and at or near the termination point of the segment (e.g., outfall or manhole junction). Additional refinement of the distribution of contamination within a particular sewer line segment may be warranted for the purposes of subsequent FS remedial alternative development and remedial design.

#### Tier 1 Data Collection

Where historical data are lacking or insufficient, data collection under Tier 1 of the investigation will proceed as discussed below. Figure 3-2 illustrates the Tier 1 investigation decision rules.

#### Identification of Sewer Lines Segments and Sub-basins

Historical sewer line engineering data were evaluated with respect to potential contaminant inputs (e.g., production buildings), flow directions, and major line junction and outfall points. From this evaluation, individual sewer line segments or groups of lines (sub-basins) were identified in order to optimize Tier 1 sampling. Where possible, the identified sewer line segments or sub-basins isolate a particular known or suspected historical source input and its associated outfall or junction point. Collection of Tier 1 accumulated sediment samples within each line segment or sub-basin are planned at locations near or immediately downstream of the former source, at one or more selected mid-points locations along the segment, and at the outfall or junction point. The approach incorporates flexibility for field decisions to move to adjacent sewer line access points (upstream or downstream) within each line segment in the event a planned location does not contain sufficient sediment for sampling. In some cases, isolation of outfall or junction points with respect to a specific source input was not possible to due to the convergence of multiple lines along the flow routes.

Collection of Tier 1 accumulated water samples is generally planned at: 1) key inlet and exit point locations for the AOCs and functional areas (e.g., Administration Area); or 2) at major potential sources within AOCs and functional areas (e.g., melt-pour building complexes), if isolation of those sources is needed to fill data gaps or determine contaminant nature and extent within a particular portion of the AOC sewer lines. Where historical investigation data possibly no longer represent current conditions due to their age, or site conditions are known to have changed, additional sampling to confirm prior results is also planned.

The Tier 1 data collection approach optimizes the characterization while allowing full nature and extent assessment to be conducted from the source to the endpoint of each line segment. Sewer lines segments or sub-basins, and the rationales for planned sample locations, are illustrated in Appendices A through Q.

Where field inspection shows a sewer line segment is not flooded, video camera surveys to determine the condition of the pipeline will be performed. The video camera surveys will be used to verify whether sediment accumulations exist within the line segment and to identify cracks or separation of pipeline sections where leakage may have occurred. For new video camera data acquisition, the investigation objective is to survey a minimum of 10% of the total length of a sewer line segment of interest where possible. For each sewer line segment, entry points for video surveys will be sufficient to provide a general overall assessment of the pipeline along its reach. Survey entry points for each sewer line segment will, at a minimum, include reaches immediately downstream of source points (e.g., manholes and catch basins at former melt-pour buildings); reaches at the midpoint between the source and terminus, and reaches near the terminus.

Limited access to the lines for video surveys is anticipated in some areas. Available video survey data indicate some sewer line segments are in poor condition with frequent breaks, separation points, root intrusion, and blockages by debris. Building demolition activities, particularly at Load Lines 1 through 4, have resulted in damage to the sewer systems adjacent to former building, in particular storm sewer catch basins. Field reconnaissance conducted in December 2008 at these four load lines showed many catch basins were partially or totally filled in with ballast during grading activities and some basins and lines could not be located and are presumed to have been destroyed. In the event that no surface access via manhole or drop inlet is available at a pipe segment of interest, the use of intrusive methods would be evaluated. Equipment such as a backhoe or excavator would be utilized to expose three points along the pipe segment (i.e., "upstream" end closest to possible contamination sources, midpoint, and "downstream" end) in order to collect a sample of the material within the sewer pipe or conduct video surveys.

### Sewer Line Accumulated Sediment and Water Sampling

Where the visual inspection results indicate the presence of sufficient accumulated sediment or water within manholes, drop inlets or catch basins in each sewer line segment, samples of these matrices will be collected during Tier 1 of the investigation. The rationales for sampling within each sewer line segment are outlined in Appendices A through Q.

For accumulated sediment at planned sewer line sampling locations, samples will be collected for TAL metals analyses by fixed-based laboratory and field analyses of TNT and RDX. Additionally, hexavalent chromium samples will be collected at locations where historical total chromium data exceeds the CUG for the resident farmer of 187 mg/kg; these locations are noted in the Appendices for the applicable functional areas. Sediment samples collected from the sewer lines will be discrete samples because collection of random aliquots for MI samples is not feasible from within the pipe lines. Sewer line sediment field screening samples will be analyzed for TNT and RDX using field analytical kits (Section 4.2.2). These TNT and RDX field screening samples will be used to provide semi-quantitative, rapid assessment of the presence and extent of contamination of sediment within each sewer line segment. Field analytical data for TNT and RDX will be evaluated as it is generated during Tier 1 of the investigation. The field analytical data will be used to determine locations where samples will be collected and submitted for fix-based laboratory analysis for explosives and other analyte groups of interest. Where field analytical methods show positive detections for TNT and RDX in accumulated sediment, the following protocol will be employed for fixed-based laboratory analyses:

- 100% of the samples will be submitted for explosives and semivolatile organic compounds (SVOCs) analyses due to the comparatively high historical frequency of detection of these compounds; and
- A minimum of 10% of the samples will be analyzed for a full suite of target analytes, including propellants, volatile organic compounds (VOCs), pesticides/polychlorinated biphenyls (PCBs), and herbicides.

Sediment samples for fixed-based laboratory analyses will also be submitted for a minimum of 10% of the sample locations where field analytical data do not indicate the presence of TNT or RDX contamination. These samples will be used to confirm the absence of contamination. All samples submitted to confirm the absence of contamination will be analyzed for explosives. Additionally, a minimum of 30% of the samples will also be analyzed for SVOCs and 10% of the samples will be analyzed for the full suite of target analytes.

All samples of accumulated water within the sewer lines will be submitted for fixed-based laboratory analyses of TAL metals and explosives. Additionally, a minimum of 30% of the samples will also be analyzed for SVOCs and 10% of the samples will be analyzed for the full suite of target analytes.

In addition, a full suite of fixed-based laboratory analyses will be conducted where visual surveys indicate the likely occurrence of contamination (e.g., visible reddish or white crystalline explosive deposits or evidence of sheens on accumulated water in the pipeline).

### Sewer Line Outfall Sediment and Water Sampling

Previous remedial investigations and sewer line engineering data were reviewed to predetermine outfall locations where sediment (wet or dry) and water samples will be collected. These sample locations include outfall points for storm sewers and emergency overflow points for the sanitary sewers (e.g., lift station overflow lines). Previous data exist for some of these outfall locations. Repeat sampling of outfall locations was not planned in cases where site conditions have not changed since the time of historical sampling (e.g., building demolition) and the data were comparatively recent so that they still represent current conditions. Outfall sampling locations and rationales for major segments of the sewer systems within each AOC are tabulated and illustrated in Appendices A through Q.

At all planned sewer line outfall sampling locations, sediment samples will be collected for TAL metals analyses by fixed-based laboratory and field analyses of TNT and RDX. Outfall sediment field screening samples will be analyzed for TNT and RDX using field analytical kits (Section 4.2.2). These TNT and RDX field screening samples will be used to provide rapid assessment of the presence of contamination at the outfall location. The field analytical data will be used to determine locations where samples will be collected and submitted for fixed-based laboratory analysis for explosives and other analyte groups of interest. Discrete samples are planned for all outfall sediment sampling locations in order to be consistent and have comparability with historical data. In addition, sediment samples collected during the RVAAP Facility-wide Surface Water Study were discrete samples; therefore, consistency and comparability is potentially needed to evaluate new outfall data with respect to chemical concentrations at locations sampled further downstream.

Where field analytical methods show positive detections for TNT and RDX in outfall sediment samples, the following protocol will be employed for additional fixed-based laboratory analyses:

• 100% of the samples will be submitted for explosives and for SVOCs analyses, due to the comparatively high historical frequency of detection of these compounds; and

• A minimum of 10% of the samples will be analyzed for a full suite of target analytes, including propellants, volatile organic compounds (VOCs), pesticides/polychlorinated biphenyls (PCBs), and herbicides.

Samples for fixed-based laboratory analyses will also be submitted for a minimum of 10% of the sample locations where field analytical data do not indicate the presence of TNT or RDX contamination. These samples will be used to confirm the absence of contamination. All samples submitted to confirm the absence of contamination will be analyzed for explosives. Additionally, a minimum of 30% of the samples will also be analyzed for SVOCs and 10% of the samples will be analyzed for the full suite of target analytes as noted above.

Planned samples of water emanating from outfall locations will be submitted for fixed-based laboratory analyses of TAL metals and explosives. Additionally, a minimum of 30% of the samples will also be analyzed for SVOCs and 10% of the samples will be analyzed for the full suite of target analytes.

In addition, a full suite of fixed-based laboratory analyses will be conducted where visual surveys of the outfall location indicate the likely occurrence of contamination (e.g., staining of sediments, visible reddish or white crystalline explosive deposits or evidence of sheens on any water emanating from the outfall).

### Video Surveys

As real-time visual survey and field sample screening data are compiled during the Tier 1 investigation, video camera surveys of sewer line segments and sub-basins will be identified. Video camera surveys will be conducted where field screening data indicate the potential for contaminated sediment accumulation if those sewer line segments are accessible and not flooded. The video camera surveys will be used to verify whether sediment accumulations exist within the line segment and to identify cracks or separation of pipeline sections where leakage may have occurred. For new video camera data acquisition, the investigation objective is to survey as much of the total length of a sewer line segment of interest as possible, conditions permitting. At a minimum, 10% of the total length will be surveyed and entry points for video surveys will be sufficient to provide an overall assessment of the pipeline segment along its length for risk management and remedial decision-making purposes. Survey entry points for each sewer line segment will focus on reaches adjacent to, or immediately downstream of, source points (e.g., manholes and catch basins near former melt-pour buildings). One or more reaches of sewer line segments at the midpoint between the source and terminus, and reaches near the terminus will also be surveyed. In particular, where contaminated sewer line segments are identified adjacent to former source areas such as production buildings, the goal is to survey as much of these lines as feasible as pipeline breaks in these areas would most likely have resulted in contamination of adjacent subsurface soil.

Limited access to the lines for video surveys is anticipated in some areas. Available video survey data indicate some sewer line segments are in poor condition with frequent breaks, separation points, root intrusion, and blockages by debris. Building demolition activities, particularly at Load Lines 1 through 4, have resulted in damage to the sewer systems adjacent to former buildings, in particular storm sewer

catch basins. Field reconnaissance conducted in December 2008 at these four load lines showed many catch basins were partially or totally filled in with ballast during grading activities and some basins and lines could not be located and are presumed to have been destroyed.

### 3.2.5.2 Tier 2 Investigation

### Tier 2 Data Collection

Following completion of Tier 1 RI activities, field data will be compiled and evaluated along with fixedbased laboratory results. These data will be assessed to identify potential leakage points and areas where contaminants have accumulated in the sewer lines. Existing subsurface soil, outfall sediment, and groundwater sample locations in the vicinity of the sewer line segment of interest will be evaluated. Where visual and video survey data show the presence of line breaks and analytical data indicate corresponding contamination within the sewer line segment of interest, sampling of the 1-2 ft interval of bedding material (e.g., native soil, sand, or gravel) immediately underlying the pipeline is planned, as this is the interval most likely to exhibit contamination. The Tier 1 investigation may also reveal potential data gaps, such as undocumented outfall points, the need for additional video survey of certain pipeline segments where Tier 1 analytical results indicate the presence of contaminated segments with insufficient video data (either historical or Tier 1), or collection of chromium speciation samples if Tier 1 data may indicate hexavalent chromium enrichment in sewer line sediment. Therefore, the Tier 2 investigation effort may also include recommendations for collection of additional data to fill these data gaps. Recommendations for subsurface pipeline bedding material sampling, additional video survey, hexavalent chromium samples, or acquisition of other information needed to fill data gaps, will be made in a Technical Memorandum. The Technical Memorandum will outline technical rationales (e.g., major pipeline break) and specify locations for subsurface soil sampling and collection of other data types that may be required to fill data gaps.

The following decision rules will apply for subsurface bedding material sampling under Tier 2 of the RI (Figure 3-3). Where historical and Tier 1 characterization data indicate the presence of accumulated contamination within a sewer line segment of interest, sampling of the 1-2 ft interval of bedding material immediately underlying the sewer line will include the following:

- A minimum of one subsurface boring will be completed in the vicinity of line breaks at or immediately downstream of major sources (e.g., melt-pour or process building that formerly handled large quantities of explosives);
- A minimum of one subsurface boring will be completed at line breaks identified at the midpoint of the sewer line segment between the source(s) and the terminus; and
- A minimum of one subsurface sample will be collected at the terminus of the sewer line segment (e.g., immediately upstream of a manhole junction point or at an outfall location).

Bedding material samples will be submitted for fixed-based laboratory analysis for the suites of contaminants of interest as defined by the results of the Tier 1 sewer line sediment sampling at each location (e.g., TAL metals, if only metals had been observed above screening levels in Tier 1). Additionally, 10% of the bedding material samples will be submitted for the full analytical suite.

If historical and Tier 1 characterization data for accumulated sediment and water within the pipelines, as well as outfall sediment samples, do not indicate the presence of contamination, then one confirmation sample of bedding material will be completed in the vicinity of any identified line breaks at or immediately downstream of major sources (e.g., melt-pour or process building that formerly handled large quantities of process-related chemicals). All confirmatory bedding material samples will be submitted for fixed-based laboratory analysis of TAL metals. All bedding material samples will also be subject to analysis of TNT and RDX using field analytical kits (Section 4.2.2). These TNT and RDX field screening samples will be used to provide rapid assessment of the presence of contamination in the bedding material soil boring. The field analytical data will be used to determine which samples will be submitted for fixed-based laboratory analysis for explosives and other analyte groups of interest. Samples will be submitted for fixed-based analytical laboratory analyses of explosives and SVOCs where field samples show positive detections for TNT or RDX. Additionally, 10% of the bedding material samples with positive detections for TNT or RDX will be submitted for the full analytical suite. A minimum of 10% of samples with field analytical results for TNT or RDX less than detection limits will also be submitted for fixed-based lab analyses (TAL metals and explosives for all samples, 30% of samples for SVOC analyses, and 10% for the RVAAP full suite of analyses).

Under Tier 2, hexavalent chromium samples will be collected from sewer line sediment and bedding material based upon the analytical results of the Tier 1 sediment sampling as follows:

- If either historical data or Tier 1 sewer line sediment samples collected for TAL metals indicated concentrations of total chromium in excess of the resident farmer CUG of 187 mg/kg, sediment samples would be collected from these locations and analyzed for hexavalent chromium.
- Bedding material subsurface samples collected adjacent to sewer line sediment locations (historical samples or Tier 1 samples) having hexavalent chromium enrichment would also be submitted for hexavalent chromium analysis. Additionally, hexavalent chromium bedding material samples will be collected at a representative set of locations where the total chromium was detected at low, medium and high ranges of concentrations within each functional area (e.g., AOCs or other administrative area) in order to provide speciation data, as described in Section 4.6.

### 3.2.5.3 Tier 3 Investigation

### Tier 3 Data Collection

Following completion of Tier 2 RI activities, the fixed-based laboratory results from the subsurface bedding material samples will be evaluated. These data will be assessed to identify the locations where contaminants have exited the sewer lines and accumulated in the bedding material directly below the

pipe, or have potentially migrated to the underlying soils. Therefore, the Tier 3 investigation effort will include recommendations for collection of subsurface soil data to define the vertical and lateral nature and extent of contamination in the soil surrounding the sewer line. Recommendations for additional subsurface soil sampling locations will be made in a Technical Memorandum based upon the screening of the analytical data acquired from the subsurface sampling of the bedding material conducted under Tier 2.

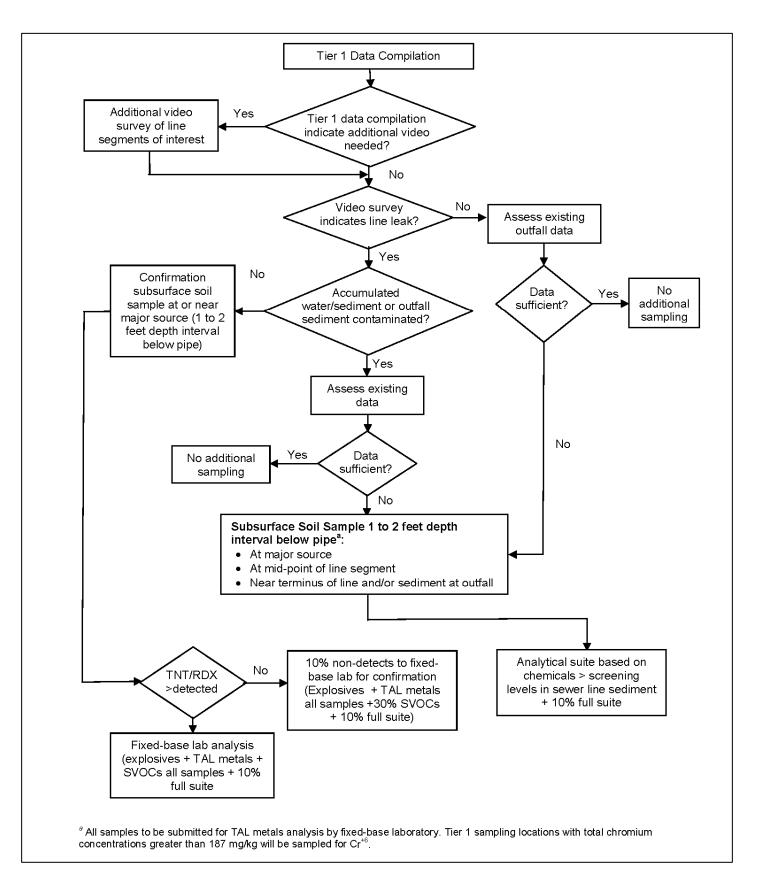



Figure 3-3. Facility-Wide Sewers RI Tier 2 Sampling Decision Flowchart

#### 3.3 HUMAN HEALTH RISK ASSESSMENT

As indicated in the conceptual model (Figure 3-1), there are three contaminant source types associated with the facility-wide sewers:

- Sediments within the sewer that become re-suspended during storms and migrate to the sewer outfall;
- Sediments that are contained within the sewers and may only be accessible if excavation activities results in a release; and
- Contaminated soils associated with leak sites, some which may not be identified unless future digging occurs.

Due to the extent of the storm and sewer systems at the RVAAP, an underlying assumption in the risk assessment and risk management process for this AOC is that the OHARNG will have to maintain some level of institutional controls on excavation and digging in the areas of underground sewers for safety reasons and to manage potential future encounters with contaminants (e.g., excavation/penetration requirements).

For each of the three potential sources types we have identified a process for assessing risks:

- Outfall Sediments the risk assessment will evaluate potential exposures and risk at each of the sewer outfalls separately. Available data at a single outfall will be evaluated as a single exposure unit (EU). Receptors to these source materials will include:
  - Security Guard Maintenance Worker;
  - National Guard Engineering School Instructor;
  - Adult and Child Resident Farmer;
  - National Guard Trainee;
  - Fisher/Recreator; and
  - Adult and Juvenile Trespasser.
- Sediments Contained within the Sewers the risk assessment will evaluate potential exposures and risk at known locations in the sewers where contaminated sediments have accumulated and data are available. Where these locations exist, data will be compared to appropriate CUGs to be identified in the RI Report on a location by location basis. Only receptors who may excavate to depth are evaluated for this source type:
  - National Guard Trainee;
  - National Guard Engineering School Instructor (if the sewer lines fall within a designated instructional area); and
  - Adult and Child Resident Farmer.

• Sewer Leak Site Soils - as indicated in Section 3.2.5.3, where potential leak sites are identified, historical soil data will be compiled and additional characterization of subsurface soil will be recommended and implemented. If a leak site is found to have affected subsurface soils, the same receptors as identified for sediments contained the sewers will be evaluated. Each identified sewer leak site will be evaluated separately with two exceptions: 1) where contamination from several leak sites comingle to form a single area of soil contamination; and 2) separate leak sites are close enough together to dictate treating them as a single exposure unit. However, where applicable, future risk management decisions and remedial actions for these receptor media may be integrated with concurrent CERCLA activities being conducted on an AOC-wide basis. Subsurface soil data will be compared to USEPA GSSLs that are based on leaching to groundwater to determine the need for potential groundwater characterization or if soil excavation is warranted to protect groundwater. Characterization and risk assessment related to groundwater would be integrated with and addressed under the facility-wide groundwater AOC.

### 3.4 SCREENING ECOLOGICAL RISK ASSESSMENT

The facility-wide sewer system does not constitute a conventional ecological habitat. Conventional ecological habitat means a place, locality, territory, or natural setting that provides the food and cover or shelter required for an organism to make its home. Habitat also means a unit of nature in which not just one organism can live temporarily, but other organisms of the same species live near each other to assure propagation and interaction with yet other species, such as in food chains. Further, organisms are known to spend most or all of their life cycle in conventional and viable habitat. Ultimately, the habitat needs to contain significant ecological resources to justify much study leading to any remedial action. By contrast, the facility-wide sewer networks consist of about 24 miles or approximately 126,000 ft of underground horizontal drains and pipes.

The majority of the sewer lines in both the storm and sanitary system are 6" or 8" in diameter; and many of these lines typically occur at depths greater than 4 ft BGS (approximately 63%). Larger diameter pipes on the order of 10" or 12" occur predominantly as sanitary connector/trunk lines and at major storm outfalls, and these lines typically occur at depths at or greater than 10 ft BGS. Thus, the pipe diameters could accommodate several species of smaller animals (e.g., mice, ground squirrels, opossums, rabbits, and snakes), but almost all the system is below-ground and has very limited access. The facility-wide sewers are a man-engineered system designed to serve a far different function from providing pseudo-habitat to organisms; neither the underground sewer system, nor the few entrances to it constitute conventional ecological habitat. Both by design and circumstance, there is lack of ecological sources (e.g., lack of light, food sources, and low chance of finding a mate). Therefore, the lack of suitability of the sewers as an ecological habitat is not as much a function of the dimensions of the pipes as the inhospitable internal conditions.

The average depth BGS is about 7 ft. The majority of the deeply-buried sewer lines have only occasional access points from the surface of the soil and have little to no light. Manholes, catch basins, and drop inlets consist of vertical pipes or steep-sided inverts and are not typically viable access points for wildlife. Some wildlife may be able to enter a small portion of the storm sewer system through outfall pipe

locations; such entry would be an occasional event to seek temporary cover from weather conditions or to escape from a predator. Thus, from the viewpoint of viable/significant habitat, including the ability to support the life cycles of organisms, the facility-wide sewer network falls very short of being anything but a fleeting place for occasional organisms in a small part of the network. In summary, there is inadequate and non-significant habitat in terms of place and time, little to no light to see, and no provision of permanent food and cover; therefore, organisms would not live and propagate in this subterranean system of drains and pipes.

Considering that the facility-wide sewers are not a viable habitat, there is no planned ecological risk assessment to address accumulated sediment and water within the pipe lines. With the lack of permanent habitat and receptors, there is no exposure pathway and no ecological risk. The lack of possible risk can be determined by logical deduction and mathematical computation is not needed. Although quantitative ecological risk assessment is not planned for the facility-wide sewers, qualitative scientific weight-of-evidence may be appropriate in the RI Report to further explain that remedial actions would not be necessary to protect ecological receptors.

With respect to potential contamination of subsurface soil and groundwater adjacent to the sewer lines (e.g., through leaks or line breaks), ecological risk assessment is not planned. The majority of biological activity occurs in the upper few inches of soil. Virtually the entire facility-wide sewer lies below the active biological zone and over half of it occurs at depths greater than 7 ft. Under the RVAAP Facility-wide Ecological Risk Assessment Manual, subsurface soil and groundwater are typically not addressed as an exposure medium. Likewise, groundwater is not addressed as a direct exposure medium for ecological risk assessments.

During RVAAP operations, water and effluent flowed through the facility-wide sewers. Infiltrating groundwater and storm water still flow through many portions of the lines. Storm sewer systems discharged to outfalls at ditch lines. The sanitary sewer systems were largely contained, although emergency overflow outlets to ditch lines or small streams were located at several lift stations. The storm water, sanitary water, and even groundwater could emerge into a ditch, stream, or pond, along with any entrained contaminated sediment. If the emerging water and sediment were contaminated, aquatic and other life at these outfalls could be exposed. However, ecological risks for these media have been, or are currently being, evaluated as part of sediment and surface water ecological risk evaluations under specific RI/FS tasks at most of the primary source AOCs (e.g., Load Lines 1 through 12, Atlas Scrap Yard). If contamination of sewer lines is discovered during the RI at facilities not designated as AOCs, some additional ecological weight of evidence for outfall sediment or surface water may be required for outfall sediment and surface water (e.g., Inert Warehouse Storage Area #6, Administration Area, Depot Administration Area, and Transportation Storage Area). If a location(s) is identified with high contaminant exposure potential and the presence of significant ecological resources, including viable habitat and receptors, one or more of the six elements from the weight-of-evidence outlined in the SAP Addendum for the PBA 2008 RI (Section 4.8), would be applied (USACE 2009).

## 4.0 FIELD ACTIVITIES

All field activities and sampling procedures will be conducted in accordance with Section 4.0 of the Facility-Wide SAP. Where changes or unique elements not addressed in the Facility-Wide SAP have been identified, they are provided in the following sections.

The general rationale for sample types, quantities and locations is provided in Section 3.2 of this SAP Addendum, following the methodologies presented in Figures 3-2 (sewer water and sediment) and 3-3 (subsurface soil). A generalized discussion of functional area-specific sampling objectives and rationales are presented in Appendices B through Q, as based upon analysis of available data and operational history, and proposed manhole/drop inlet sample locations and recommended alternates are presented. However, due to the nature of the facility-wide sewers, specific actual sample locations cannot be established in advance due to factors such as: 1) issues locating and accessing structures; 2) condition of structures preventing access to the system (i.e., demolished or deteriorated); 3) the presence or absence of potential sampling media; and 4) locations where pipeline integrity has been compromised are currently unknown until after the video survey.

#### 4.1 VISUAL SURVEY PROCEDURES

Before the inception of sampling activities, a comprehensive visual survey will be conducted of the facility-wide storm and sanitary sewer systems structures (i.e., manholes, drop inlets, catch basins, and potential outfall points). A *Visual Inspection Form* will be completed for each structure surveyed, and the results will be documented on the visual inspection form shown in Figure 4-1.

The objectives of the visual inspection will be to document:

- Assess the overall condition of the system (i.e., determine which structures are intact and which have been destroyed during building demolition or other activities);
- Identify locations where potential sample media is present (i.e., accumulations of sediment and water in the structures);
- Determine potential access points for subsequent sampling/video survey, and note areas where access may be prohibited by deteriorated conditions or infilling by debris;
- Identify locations where physical conditions may pose a safety hazard (e.g., missing or offset lids);
- Document flow conditions within the system and note where flooding/infiltration is occurring;
- Ground-truth the historical maps by documenting the lines entering and exiting each structure and noting where this differs from the available historical engineering drawings for RVAAP (e.g., additional pipe runs not shown on the maps);

- Document areas without existing available historical engineering drawings (i.e., storm sewer systems within the Depot Administration Area, Administration, Inert Storage Area #6, and other small isolated areas); and
- Note any other anomalies and items of interest.

During previous sewer evaluation efforts at RVAAP, difficulty was encountered in locating sewer structures (Lakeshore Engineering Services, Inc. 2007), necessitating the use of smoke tracing. Smoke tracing and dye tracing may be utilized during the visual survey phase of the investigation, if deemed necessary, in order to locate structures that are difficult to find or to identify outfalls from the sewer system.

| Vi                              | isual Inspection Form for Fa          | cility-Wide Sewe                | ers at RV   | VAAP            |       |
|---------------------------------|---------------------------------------|---------------------------------|-------------|-----------------|-------|
| Location:                       | System 7                              | n Type: Storm Sanitary          |             |                 |       |
| <u>MH/CB #:</u>                 |                                       |                                 | Lid Pres    | ent?: Yes       | No    |
|                                 | luct, coal tar, or petroleum? Yes     | No Other                        |             |                 |       |
| Diagram of Sewer St             | ructure: (Sketch location of pipes/fe | eatures of interest ins         | side manho  | ele or box inle | et)   |
|                                 | $\frown$                              |                                 |             |                 |       |
|                                 | $\mathbf{i}$                          |                                 |             |                 |       |
|                                 |                                       |                                 |             |                 |       |
|                                 |                                       |                                 |             | <u>Invert D</u> | epth: |
|                                 |                                       |                                 |             |                 |       |
|                                 | ine 1 Description                     | Lin                             | ie 2 Descri | iption          |       |
| Size/Type                       |                                       | Size/Type                       |             |                 |       |
| Pipe depth                      |                                       | Pipe depth                      |             |                 |       |
| Water Flow?                     | Yes No Flow N/A-<br>Dry               | Water Flow?                     | Yes<br>Dry  | No Flow         | N/A-  |
| Water Entering                  |                                       | Water Entering                  |             |                 |       |
| or Leaving MH                   |                                       | or Leaving MH                   |             |                 |       |
| Sediment/Debris                 |                                       | Sediment/Debris                 |             |                 |       |
| Notes                           |                                       | Notes                           |             |                 |       |
| <u>L</u>                        | ine 3 Description                     | Lir                             | ne 4 Descri | i <u>ption</u>  |       |
| Size/Type                       |                                       | Size/Type                       |             |                 |       |
| Pipe depth                      |                                       | Pipe depth                      |             |                 |       |
| Water Flow?                     | Yes No Flow N/A-<br>Dry               | Water Flow?                     | Yes<br>Dry  | No Flow         | N/A-  |
| Water Entering<br>or Leaving MH |                                       | Water Entering<br>or Leaving MH |             |                 |       |
| Sediment/Debris                 |                                       | Sediment/Debris                 |             |                 |       |
| Notes                           |                                       | Notes                           |             |                 |       |
| Manhole/Inlet Condi             | tion and Observations:                |                                 |             |                 | ]     |
|                                 |                                       |                                 |             |                 |       |
|                                 |                                       |                                 |             |                 |       |
| Other Comments:                 |                                       |                                 |             |                 |       |
| Recorded by:                    |                                       | Date:                           |             |                 |       |

Figure 4-1. Sewer Visual Inspection Form

#### 4.2 SEWER AND OUTFALL SEDIMENT

Where the visual inspection results indicate the presence of accumulated sediment within manholes, drop inlets or catch basins, samples will be collected for real-time in-field analyses. In addition to sediment collected within the sewer systems, samples will also be collected from outfalls where sewer sediments may have been washed out of the system and accumulated at these locations.

At all planned sewer and outfall sediment sampling locations, sediment samples will be collected for TAL metals analyses by fixed-based laboratory and field analyses of TNT and RDX using field analytical kits (Section 4.2.2). These field screening samples will provide semi-quantitative, rapid assessment of the presence and extent of contamination within the sewer lines segment.

### 4.2.1 Sample Collection for Field and Laboratory Analysis

Sewer and outfall sediment samples will be collected in accordance with the Facility-Wide SAP, using either a hand-held stainless steel trowel or scoop for outfalls or shallow sewer structures (Section 4.5.2.2.1 of the Facility-Wide SAP), or a hand core or remote (Eckman) sampler method for deeper sewer structures that are not readily or safely accessible (Section 4.5.2.2.2 of the Facility-Wide SAP). In the event that thin deposits of sewer sediment are encountered in the deeper structures, a stainless steel trowel or scoop on an extendable pole will be used to gently scrape a sufficient sample volume. Within the sewer structures, sampling will be limited to loose sediments; fixed scale or calcified deposits on the pipe/invert surfaces will not be scraped, as this may cause damage to the sewer structures since many are comprised of old vitrified clay and tile material.

Wherever collocated sewer or outfall sediment and water samples are to be collected, the water samples will be collected first. The order of analyte collection at each location will be: 1) explosives; 2) metals; 3) SVOCs; and 4) all remaining analyses as part of the 10% full suite.

In the event that the primary sampling location does not yield sufficient sediment sample volume, media for the subsequent analyses will be collected from the next immediately adjacent alternate location. For example, if the primary location only contains enough sediment for the explosives analysis, the metals sample will then be collected from the first alternate location. The source locations for sample collection will be clearly documented in the logbook. Primary and alternate sample locations for each functional area are prescribed in Appendices B through Q.

In the event that surficial access to a sewer segment of interest via drop inlet or manhole is not possible due to collapse or infilling, the use of intrusive methods will be evaluated. Equipment such as a backhoe/excavator or portable power auger will be utilized to expose three points along the segment ("upstream" end closest to possible contamination sources, midpoint, and "downstream" end) in order to collect samples of the material within the sewer pipe.

### 4.2.2 Field Analysis of Explosives

All sewer sediment samples will be subject to in-field analysis of the explosives TNT and RDX via the EnSys<sup>®</sup> (Strategic Diagnostics, Inc.) field test kits (Appendix R). The EnSys<sup>®</sup> field kits are a commercially available colorimetric immunoassay method (EPA SW-846 Method # 8510 and #8515 for RDX and TNT, respectively) able to provide rapid and quantitative results. The range of the TNT test is between 1 and 30 mg/kg, well below the preliminary draft Facility-Wide CUG of 36.5 mg/kg for TNT. The TNT test is also able to detect trinitrobenzene and dinitrotoluene compounds. The RDX test is also able to achieve a detection range between 1 and 30 mg/kg, well below the preliminary draft, well below the preliminary draft Facility-Wide CUG of 80.3 mg/kg, and also is able to detect octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX). The TNT and RDX EnSys<sup>®</sup> test kits were successfully used as a field screening method at RVAAP during the recent remediation of soil and dry sediments at Load Lines 1 through 4. Information on the use of the TNT and RDX EnSys<sup>®</sup> test kits is presented in Appendix R.

All positive TNT and RDX EnSys<sup>®</sup> test kit detections will be submitted for off-site laboratory analysis of explosives and TAL metals in order to provide confirmation of the field results, as well as SVOCs due to the comparatively high frequency of detection for these compounds. In addition, a minimum of 10% of the sediment samples showing detects for TNT or RDX will be sent to the off-site laboratory for analysis the full suite of target analytes (VOCs, pesticides/PCBs, herbicides, and propellants).

Samples for fixed-based laboratory analyses will also be collected from a minimum of 10% of the sediment sample locations where field analytical data do not indicate the presence of contamination. These samples will be used to confirm the absence of contamination. All samples submitted to confirm the absence of contamination will be analyzed for explosives and TAL metals. Additionally, a minimum of 30% of the samples will be analyzed for SVOCs and 10% of the samples will be analyzed for the full suite of target analytes. In addition, a full suite of fixed-based laboratory analyses will be conducted where visual surveys indicate the likely occurrence of contamination (e.g., visible explosive deposits or evidence of sheens on accumulated water in the pipes).

Hexavalent chromium sediment samples would be collected at locations where either historical or Tier 1 analytical results for TAL metals indicate total chromium concentrations in excess of the resident farmer CUG of 187 mg/kg.

The sample decision methodology summarized above is detailed in Section 3.2.5.1 and depicted by flowchart in Figure 3-2.

### 4.3 SEWER AND OUTFALL WATER

Water samples will be collected from sanitary and storm sewer system manholes and drop inlets and from outfalls from the system. Samples of accumulated water will be co-located with sediment samples at the outfalls and at designated locations within the sewer systems (noted in Appendices B through Q) where possible 1) to assess the potential for contaminant migration in sewer water; 2) to evaluate potential contaminant accumulation areas; 3) to evaluate if residual contamination is partitioning to water and if

these structures are acting as secondary sources; and 4) to determine if contaminants are partitioning from sewer sediment or sludge and potentially contributing to shallow groundwater or surface water contamination. Selection of sampling locations will follow the methodology presented in Figure 3-2.

Sewer and outfall water samples will be collected in accordance with Section 4.6.2.1 of the Facility-Wide SAP, using either a hand-held bottle method for shallow structures (Section 4.6.2.1.1 of the Facility-Wide SAP), or the dipper and pond sample method for deeper structures that are not readily or safely accessible (Section 4.6.2.1.2 of the Facility-Wide SAP). Field measurements will be performed in accordance with Section 4.6.2.3 of the Facility-Wide SAP and will include the determination of pH, conductivity, dissolved oxygen, turbidity, and temperature. All field measurements will be recorded in the sampling logbooks.

Wherever collocated sewer or outfall sediment and water samples are to be collected, the sewer water samples will be collected first. The order of analyte collection at each location will be: 1) explosives; 2) metals; 3) SVOCs; and 4) all remaining analyses as part of the 10% full suite.

In the event that the primary sampling location does not yield sufficient water sample volume, media for the subsequent analyses will be collected from the next immediately adjacent alternate location. For example, if the primary location only contains enough sediment for the explosives analysis, the metals sample will then be collected from the first alternate location. The source locations for sample collection will be clearly documented in the logbook. Primary and alternate sample locations for each functional area are prescribed in Appendices B through Q.

### 4.4 VIDEO CAMERA SURVEY

Video camera surveys will be performed of sections of the existing storm and sanitary sewer lines in order to evaluate the overall condition of the system, to determine the presence of residual explosives compounds, to assess the integrity of the pipe and its potential for releasing contaminants to the environment, and to provide data for the evaluation of remedial alternatives. Selection of video survey locations will follow the methodology presented in Figure 3-2. During the December 2008 field reconnaissance effort, sewer lines were observed which did not correlate with the available historical drawings (e.g., an extra pipe exiting a manhole which was indicated as a segment terminus on the map). As they are identified during the visual survey, such segments may also be selected for video survey to assess these unknown areas.

For new video camera data acquisition, the investigation objective is to survey as much of the total length of a sewer line segment of interest where possible, with a target minimum of 10%. For each sewer line segment, entry points for video surveys will be sufficient to provide a general overall assessment of the pipeline along its reach. The video survey at each manhole or drop inlet selected for assessment will continue to the maximum specified extent or until an obstruction prevents further movement. Conditions in the field may prevent access to some selected entry points; in this event, a determination will be made in the field as to alternate locations (e.g., attempting to reach a segment from an adjacent manhole or inlet).

The camera survey of storm and sanitary sewer lines will follow the standard operating procedures of the subcontracted video surveyor. The survey will be conducted with a television camera and cable that are specifically designed and constructed for pipe inspection. Lighting for the camera will allow a clear picture for the entire periphery of an 8-inch or 10-inch pipe. The following general procedures will apply:

- •
- The camera shall be moved through the line in either direction at a uniformly slow rate. Precautions shall be taken to minimize the chances of the camera becoming stuck in the pipe.
- A suitable means of communication shall be established between the winches and the monitor control.
- Television inspection of the pipe shall be color videotaped or recorded on compact disk. When blockages, ruptures, or other significant features are noted, the camera shall be stopped to observe the condition, record the information, and, if necessary, take photographs.
- Television logs shall be prepared and shall include identification of the section of pipe and pipe size. Records shall also include locations of reference points, points of entry, observed obstructions, ruptures, cracks, and other evidence of potential problems. These will be brought to the attention of the SAIC field manager while the survey is in progress.

The camera survey subcontractor shall prepare and submit a final report that will include, at a minimum, all field logbooks, copies of the video recordings on a suitable archival medium (e.g., files on CD-ROM) and a listing and sketch map of all identified or potential problem areas or anomalies.

### 4.5 SUBSURFACE SOIL AND BEDDING MATERIAL

Subsurface samples will be collected to assess whether compromises to sewer line integrity (e.g., resulting from stress cracking, joint separation, and root intrusion) have resulted in the release of contaminants to bedding material and soils adjacent to or underlying the sewer system pipeline traces. Locations for bedding material and subsurface soil samples along sewer line traces will be designated in Technical Memoranda pending evaluation of the analytical results from the preceding Tier of investigation. For the Tier 2 Technical Memorandum, data would be evaluated for media collected within the sewer system and the video camera survey logs collected during the first tier of the investigation. Selection of sampling locations or additional video camera surveying for Tier 2 will follow the methodology presented in Figure 3-3. The Tier 3 Technical Memorandum would be based upon an evaluation of the analytical results for the investigation.

Where the target soil sample depth does not exceed 4 ft BGS, hand auguring methods will be used for sample collection; a portable power auger may be employed to assist in reaching target depths. For sample collection in excess of 4 ft BGS, hydraulic direct-push methods (i.e., Geoprobe) will be utilized as the primary sample collection method. Procedures for hand auguring and hydraulic direct-push sampling are presented in Sections 4.4.2.1.4 and 4.4.2.1.5 of the Facility-Wide SAP, respectively.

#### 4.6 CHROMIUM SPECIATION

Previous sewer samples have been analyzed for total chromium. In this SAP Addendum, the total chromium screening level was used to determine exceedances in historical data. The use of the total chromium screening level is based on the assumption that chromium exists predominantly in the trivalent state, rather than the more toxic hexavalent state. In order to confirm this assumption and appropriately evaluate risk, chromium speciation samples will be collected to determine the ratio of hexavalent chromium to total chromium as described in Sections 3.2.5.1 (Tier 1) and 3.2.5.2 (Tier 2).

Chromium speciation evaluates the concentration ratio of hexavalent chromium to total chromium. This ratio will be calculated by collecting and analyzing a set of three soil borings at a representative set of locations where total chromium was detected at low, medium and high ranges of concentrations within each functional area (e.g., AOCs or other administrative area) in order to provide speciation data. If analytical data indicate that the ratio of hexavalent chromium to total chromium is 1:6 (i.e., 14%) or less, the CUG for total chromium will be used for subsequent risk calculations. This process has been previously approved and utilized at RVAAP.

### 4.7 FIELD QC SAMPLING PROCEDURES

Sediment Quality Assurance/Quality Control (QA/QC) samples will be collected during the implementation of this SAP Addendum for Facility-Wide Sewers. QC duplicate samples will be collected at a frequency of 10% (1 per 10 environmental samples) for each medium (sewer sediment, sewer water, subsurface soil). Matrix spike/matrix spike duplicate samples will be collected at a rate of 5% (1 per 20 environmental samples) of the total samples per medium. QA split samples will be submitted to the USACE contract laboratory for independent analyses at a frequency specified by USACE. Duplicate and split samples will be derived from the same sampling station, selected on a random basis, and submitted for the sample analyses as the environmental samples. One rinsate blank will be collected for soil/sediment equipment per week. Trip blanks will accompany all shipments containing aqueous VOCs samples.

One source blank will be collected from the potable water source to be used for all potable wash and rinse water for equipment decontamination during the implementation of this SAP Addendum. One source blank will also be collected from the deionized/distilled (American Society of Testing and Materials Type I) water source used. The source blanks will be analyzed for a full suite of analyses.

Section 5.0 and the QAPP addendum (Section 4.0) summarize the QA/QC sampling requirements. However, the quantities of QA/QC samples to be cannot yet be determined since the number of primary environmental samples to be collected is unknown (i.e., availability and accessibility of sampling media within the sewer system). All efforts will be made to collect QA/QC samples at the designated frequency. However, during previous sewer sampling efforts, difficulty was encountered in obtaining sufficient media sample volumes to submit the requisite number of QA/QC samples.

#### 4.8 DECONTAMINATION PROCEDURES

Decontamination procedures for sampling activities will follow the protocols presented in the Facility-Wide SAP for the following media: sediment (Section 4.5.2.8 of the Facility-Wide SAP), surface water (Section 4.6.2.6 of the Facility-Wide SAP) and subsurface soil (Section 4.4.2.8 of the Facility-Wide SAP). A final decontamination inspection of any equipment leaving RVAAP at the end of field activities will be conducted to ensure proper decontamination. Although the Facility-Wide SAP specifies the use of a methanol decontamination rinse, isopropanol will be used instead as per the direction of the USACE.

### 4.9 SITE SURVEY

Following sample collection activities, the horizontal coordinates of all sampling locations will be determined to within 0.3 meters (m) (1 ft). The ground elevations at the sewer structure locations or discrete sediment or soil sample stations (i.e., outfall locations and soil boring) will be determined to within 0.06 m (0.2 ft).

All locations will be conveyed in Ohio State Plane Coordinates (NAD83). The vertical datum for all elevations will be 1929 National Geodetic Vertical Datum (NGVD). All coordinates and elevations will be recorded on the boring logs upon receipt of quality assured survey results. In addition, electronic results will be provided to USACE and RVAAP in ASCII format.

### 4.10 MUNITIONS AND EXPLOSIVES OF CONCERN

The scope of this SAP Addendum also includes MEC avoidance within MRSs, and other areas if MEC is suspected, in order to safely conduct investigation activities. Sewer systems are located within the following MRS locations and will require MEC technician support during investigative activities:

- Load Line 1 (MRS RVAAP-008-R-01);
- Load Line 6/Firestone Test Facility (MRS RVAAP-033-R-01); and
- Atlas Scrap Yard (MRS RVAAP-050-R-01).

MEC avoidance procedures to be followed during the RI are outlined in the MEC Project Work Plan for the RVAAP PBA 2008 (USA Environmental 2009).

### 4.11 SESOIL AND ANALYTICAL GROUNDWATER TRANSPORT MODELING

SESOIL is a 1-D vertical transport model for unsaturated soil which simultaneously evaluates water transport, sediment transport, and pollutant fate. The results will be used as a screening tool to assess contaminant fate and transport for risk analysis.

The SESOIL modeling will utilize data collected during the subsurface soil sampling along sewer traces where a compromise in pipe integrity may have resulted in contamination to receptor media, such as soil

beneath or adjacent to the sewer lines. The SESOIL model will be constructed to evaluate any potential future impacts from chemicals in soil migrating to groundwater.

The SESOIL model will predict the rate of contaminant migration through the unsaturated zone to the water table based on leaching from contaminated soils to groundwater. The results of the SESOIL modeling may be used in groundwater transport to simulate lateral transport of contaminants from source areas (i.e., locations of sewer line breaches) to receptor locations. An analytical groundwater model, such as ATI123D, will be used to predict the migration of contaminants in groundwater and assess contaminant transport under one-dimensional groundwater flow. Fate and transport simulations can include advection, dispersion, diffusion, adsorption and biological decay.

### 5.1 FIELD LOGBOOK

All field logbook information will follow structures identified in Section 5.1 of the Facility-Wide SAP.

### 5.2 PHOTOGRAPHS

Information regarding the documentation of photographs during AOC-specific investigations is presented in Section 4.3.2.4.3 of the Facility-Wide SAP. Representative photographs will be taken of the investigative measures and any significant observations that are made during the field effort. Photographs will be suitable for presentation in a public forum, as well as for documenting scientific information.

#### 5.3 SAMPLE NUMBERING SYSTEM

The sample numbering system that will be used to identify samples collected during the groundwater sampling is explained in Section 5.3 and Figure 5-1 of the Facility-Wide SAP. Specific sample identifying information that will be used to implement the sampling scheme is presented in Figure 5-1 of this FSP. Samples will be identified sequentially using the identification number system consistent with the remedial investigations. If a sample is not collected or is reassigned to another location, a specific reason and notation will be written in the project field books.

#### 5.4 SAMPLE DOCUMENTATION

All sample label, logbook, field record, and field form information will follow structures identified in Chapter 5.0 of the Facility-Wide SAP.

#### 5.5 DOCUMENTATION PROCEDURES

Documentation and tracking of samples and field information will follow the series of steps identified in Section 5.5 of the Facility-wide SAP.

### **5.6 CORRECTIONS TO DOCUMENTATION**

Any corrections to documentation will follow guidance established in Section 5.6 of the Facility-Wide SAP.

### 5.7 MONTHLY REPORTS

Monthly reports are submitted as part of implementation of SAIC's PBA. This monthly report will be submitted on the 10<sup>th</sup> day of each month to both the USACE and Ohio EPA. The content of the reports will have content similar to that specified in Section 5.7 of the Facility-Wide SAP.

#### Sample Station Location Identification: XXXmm-NNN(nn)-####-tt XXX = Area Designator ADM = Administration Area LL6 = Load Line 6ASY = Atlas Scrap Yard LL7 = Load Line 7DEP = Depot Administration Area LL8 = Load Line 8ISA = Inert Storage Area #6 LL9 = Load Line 9LL1 = Load Line 1LL10 = Load Line 10LL2 = Load Line 2LL11 = Load Line 11LL3 = Load Line 3LL12 = Load Line 12LL4 = Load Line 4TRN = Transportation Area LL5 = Load Line 5GRL = Trunk/Connector lines outside of previously listed functional areas that ultimately discharge to George Road Treatment Plant SCL = Trunk/Connector lines outside of previously listed functional areas that ultimately discharge to Sand Creek Treatment Plant mm = Sample Location Type sd = Sediment sw = Sewer Water so = Soilpb = Pipe Bedding Material NNN = Sequential Sample Location Number Unique, sequential number for each sample location beginning with the following number from the last number used from previous investigation stations and extending into any subsequent investigative phases (i.e., 001 -999) nn = Special Identifier st = Storm Sewer sn = Sanitary Sewer #### = Sequential Sample Identification Number Unique, sequential number for each sample beginning with the following number from the last number used from previous investigation stations and extending into any subsequent investigative phases (i.e., 001 - 999) tt = Sample Type er = equipment rinsate sd = sediment samplefb = field blank sw = sewer water sampleso = soil sampletb = trip blank

#### Figure 5-1. Facility-Wide Sewers Sample Identification System

Sample packaging and shipping shall follow procedures in Chapter 6.0 of the Facility-Wide SAP.

THIS PAGE INTENTIONALLY LEFT BLANK.

All investigation-derived waste (IDW), including personal protective equipment (PPE), disposable sampling equipment, and decontamination fluids, will be properly handled, labeled, characterized, and managed in accordance with Section 7.0 of the Facility-Wide SAP. At the conclusion of field activities, a letter report will be submitted to the USACE and RVAAP Facility Manager documenting the characterization and classification of the wastes. Upon approval of the IDW classification report, all solid and liquid IDW will be removed from the site and disposed of by a licensed waste disposal contractor. All shipments of IDW off-site will be coordinated through the RVAAP Facility Manager.

The following types of IDW are anticipated:

- Decontamination fluids, including those derived from decontamination of sampling, video and drilling equipment;
- Excess sediment and water derived from the inlet/manhole and outfall sampling activities;
- Soil from the unconsolidated surficial material derived during soil boring activities;
- Field laboratory wastes, including spent reagents and decontamination water; and
- Expendables/solid wastes, including PPE and disposable sampling equipment.

Characterization and classification of the different types of IDW will be based on the specific protocols described below. The estimated quantities for each type will be included in the Final version of this FSP. Expendable solid waste will be not sampled for characterization purposes.

- **Decontamination Fluids:** Decontamination fluids will be placed in drums or a polytank up to 1,500 gallons in size as needed. Disposition of decontamination liquid will be based on the collection and analysis of toxicity characteristic leaching procedure (TCLP) liquid sample(s).
- **Soils:** Drill cuttings will be placed in 55-gallon drums. Disposition of the drummed soil will be based on analytical results from TCLP samples collected.
- **Field Laboratory Wastes:** Liquid wastes, including spent reagents and decontamination water will be contained in 55-gallon drums. If generated, all known potentially hazardous liquid IDW streams (e.g., acetone wastes from the field laboratory) will be containerized separately in 55-gallon drums.
- Solid Waste: Trash, gloves and other expendable solid waste will be placed in sanitary waste containers for removal from the site in coordination with the RVAAP Facility Manager.

Drummed soil, sediment, and IDW water will be transported to a location designated by the RVAAP Facility Manager, where it will be placed in separate steel drums and staged on wooden pallets. Decontamination fluids and field laboratory wastes will also be staged at the identified location within secondary containment structures. To avoid potential rupture due to freezing conditions, drums containing liquid IDW will be filled only to 75% capacity.

- Lakeshore Engineering Services, Inc., 2007. Final Project Completion Report for Explosive Evaluation of Sewers at Ravenna Army Ammunition Plant, Ravenna, Ohio. November 2007.
- MKM Engineers, Inc. 2005. Final Report for the Remedial Investigation at Load Line 11 (AOC 44), Ravenna Army Ammunition Plant. September 2005.
- MKM Engineers, Inc. 2007a. Final Characterization of 14 AOCs at Ravenna Army Ammunition Plan, Ravenna, Ohio. March 2007.
- MKM Engineers, Inc. 2007b. Final Report for the Phase I Remedial Investigation at Load Line 6 (RVAAP 33), Ravenna Army Ammunition Plant. August 2007.
- MKM Engineers, Inc. 2007c. Final Report for the Phase I Remedial Investigation at Load Line 9 (RVAAP 42), Ravenna Army Ammunition Plant. 2007.
- Ohio Environmental Protection Agency 2004. *Director's Final Findings and Orders for RVAAP*. June 2004.
- USACE (U.S. Army Corps of Engineers) 2001. Facility-Wide Sampling and Analysis Plan for Environmental Investigations at the Ravenna Army Ammunition Plant, Ravenna, Ohio, DACA 62-00-00001, DO CY02. March 2001.
- USACE 2003. Final Phase II Remedial Investigation Report for Load Line 1, Ravenna Army Ammunition Plant, Ravenna, Ohio. Contract No. DACA45-03-D-0026, Task Order 0001. June 2003.
- USACE 2004a. Final Phase II Remedial Investigation Report for Load Line 2 at the Ravenna Army Ammunition Plant, Ravenna, Ohio. Contract No. DACA45-03-D-0026, Task Order 0001. July 2004.
- USACE 2004b. Final Phase II Remedial Investigation Report for Load Line 3 at the Ravenna Army Ammunition Plant, Ravenna, Ohio. Contract No. DACA45-03-D-0026, Task Order 0001. July 2004.
- USACE 2004c. Final Phase II Remedial Investigation Report for Load Line 4 at the Ravenna Army Ammunition Plant, Ravenna, Ohio. Contract No. DACA45-03-D-0026, Task Order 0001. September 2004.
- USACE 2004d. Final Phase II Remedial Investigation Report for Load Line 12 (RVAAP-12), Ravenna Army Ammunition Plant, Ravenna, Ohio. Contract No. DACA45-03-D-0026, Task Order 0001. March 2004.

- USACE 2005. RVAAP Facility Wide Human Health Risk Assessor Manual. Amendment 1. November 2005.
- USACE 2008. Draft Facility-Wide Human Health Cleanup Goals for the Ravenna Army Ammunition Plant, Ravenna, Ohio. Contract No. W912QR-04-D-0019, Delivery Order 008. October 2008.
- USACE 2009. Draft Supplemental Investigation Sampling and Analysis Plan Addendum No. 1 for the 2008 Performance-Based Acquisition, Ravenna Army Ammunition Plant, Ravenna, Ohio. Contract No. W912QR-04-D-0028, Delivery Order No. 0001. February 2009.
- USACE-CERL (U.S. Army Corps of Engineers Construction Engineering Research Laboratory) 2007. Summary of Findings, Ravenna Army Ammunition Plant Sewer System, ERDC-CERL. June 2007.

USA Environmental 2009. MEC Work Plan for the RVAAP 2008 PBA. May 2009.

APPENDIX A George Road and Sand Creek Plant Sewer Networks

# A.0 GEORGE ROAD AND SAND CREEK TREATMENT PLANT SEWER NETWORKS

### A.1 AREA DESCRIPTION

The primary sanitary sewer systems at RVAAP are the George Road and Sand Creek Treatment Plant sewer networks.

The George Road Sewer network drains the Fuze and Booster Hill Load Lines (Load Lines 5 through 11) and the Administration Area before discharging to the former George Road Treatment Plant, located near the southern boundary of the facility. The complete George Road sanitary sewer network, inclusive of all trunk and connector lines, is shown in Plate A-1. An inventory of all known George Road system sanitary sewer structures and their known historical data are presented in Table A-1.

The Sand Creek Treatment Plant sewer network drains Load Lines 1 through 5, Load Line 12, and passes through Atlas Scrap Yard as it drains northward towards the former Sand Creek Sewage Treatment Plant. The complete Sand Creek sanitary sewer network, inclusive of all trunk and connector lines, is shown in Plate A-2. An inventory of all known Sand Creek system sanitary sewer structures and their known historical data are presented in Table A-2.

#### A.2 PREVIOUS INVESTIGATIONS

Descriptions of previous investigations conducted at specific areas within the sanitary networks are presented in Appendices B through Q.

#### A.3 PROPOSED SAP ADDENDUM INVESTIGATION OBJECTIVES

The general approach for investigation activities for Facility-Wide Sewers as a whole is presented in Section 3.2 of the FSP. However, certain areas of the system should be targeted for assessment based on the evaluation of existing historical data, results of previous investigations, anomalies identified during visual survey, or potential to have accumulated contaminants based on their location within the system and proximity to source areas. Although actual sampling locations cannot be established in advance since sufficient volume of media for sample collection may be unavailable and because site conditions may preclude access to portions of the system, primary and alternate sampling recommendations for the trunk line between Atlas Scrap Yard and the Sand Creek Treatment Plant are presented in Table A-1, and shown in Figure A-3.

| Sewer<br>Type | Primary Sample<br>Location | Alternate Sample<br>Locations<br>(In Order of Precedence) | Media Type       | Comments/Rationale                                                       |
|---------------|----------------------------|-----------------------------------------------------------|------------------|--------------------------------------------------------------------------|
| Sanitary      | Overflow Outfall East      | None                                                      | Outfall Water    | Presumed overflow pipe not shown in historical maps was observed to run  |
|               | of MH-29                   |                                                           | Outfall Sediment | east from MH-29 during December 2008 sewer reconnaissance.               |
| Sanitary      | MH-24                      | MH-23, MH-22                                              | Sewer Sediment   | Provides representation of trunk line<br>upstream of Central Burn Pits   |
| Sanitary      | MH-28                      | MH-27, MH-26, MH-25                                       | Sewer Sediment   | Provides representation of trunk line<br>downstream of Central Burn Pits |
| Sanitary      | MH-29                      | MH-30, MH-31, MH-32,<br>MH-33                             | Sewer Sediment   | Provides representation of trunk line<br>entering treatment plant        |

Table A-1. Summary of Proposed Sampling Locations at the Trunk Line to Sand Creek Treatment Plant

During the visual survey phase, inspection forms will be completed for the noted above areas of interest to document their condition and accessibility for subsequent investigative activities (i.e., sample media collection or video survey). Actual locations of sample collection, video surveys will be presented in the RI report.

| Structure<br>Type | Area                | Structure<br>ID | Latitude<br>(Ohio State Plane,<br>ft NAD83) | Longitude<br>(Ohio State<br>Plane, ft NAD83) | Top of Structure<br>Elevation<br>(ft amsl) | Invert<br>Elevation<br>(ft amsl) | Approximate<br>Depth<br>(ft bgs) |
|-------------------|---------------------|-----------------|---------------------------------------------|----------------------------------------------|--------------------------------------------|----------------------------------|----------------------------------|
| Sanitary          | Administration Area | MH-1            | 2355416.098                                 | 550281.263                                   | 1078.71                                    | 1073.60                          | 5.11                             |
| Sanitary          | Administration Area | MH-101          | 2357064.985                                 | 549966.115                                   | 1053.50                                    | 1047.48                          | 6.02                             |
| Sanitary          | Administration Area | MH-11           | 2355598.905                                 | 549985.153                                   | 1081.34                                    | 1077.40                          | 3.94                             |
| Sanitary          | Administration Area | MH-1-1          | 2358529.490                                 | 551596.944                                   | 1019.21                                    | 1009.20                          | 10.01                            |
| Sanitary          | Administration Area | MH-11-1         | 2357814.486                                 | 551649.691                                   | 1025.57                                    | 1019.70                          | 5.87                             |
| Sanitary          | Administration Area | MH-11-1A        | 2357594.372                                 | 551885.350                                   | 1026.49                                    | 1022.49                          | 4.00                             |
| Sanitary          | Administration Area | MH-11-1B        | 2357371.287                                 | 551727.512                                   | 1032.13                                    | 1027.08                          | 5.05                             |
| Sanitary          | Administration Area | MH-11-1C        | 2357200.034                                 | 551966.344                                   | 1037.54                                    | 1033.72                          | 3.82                             |
| Sanitary          | Administration Area | MH-11-1E        | 2356700.129                                 | 551636.459                                   | 1049.51                                    | 1045.24                          | 4.27                             |
| Sanitary          | Administration Area | MH-11-1F        | 2356511.591                                 | 551487.354                                   | 1056.01                                    | 1051.09                          | 4.92                             |
| Sanitary          | Administration Area | MH-12           | 2355712.606                                 | 550286.364                                   | 1074.56                                    | 1069.00                          | 5.56                             |
| Sanitary          | Administration Area | MH-1-2          | 2358372.879                                 | 551594.250                                   | 1020.43                                    | 1010.15                          | 10.28                            |
| Sanitary          | Administration Area | MH-1-3          | 2358089.076                                 | 551663.957                                   | 1022.92                                    | 1011.20                          | 11.72                            |
| Sanitary          | Administration Area | MH-1-4          | 2358034.532                                 | 551731.621                                   | 1022.52                                    | 1011.01                          | 11.51                            |
| Sanitary          | Administration Area | MH-1-5          | 2358014.429                                 | 552057.714                                   | 1019.73                                    | 1015.50                          | 4.23                             |
| Sanitary          | Administration Area | MH-1-6          | 2357967.450                                 | 552228.047                                   | 1022.21                                    | 1015.21                          | 7.00                             |
| Sanitary          | Administration Area | MH-2            | 2355119.706                                 | 550276.164                                   | 1086.10                                    | 1079.29                          | 6.81                             |
| Sanitary          | Administration Area | MH-2-1          | 2358085.326                                 | 550924.131                                   | 1015.79                                    | 1011.55                          | 4.24                             |
| Sanitary          | Administration Area | MH-2-2          | 2358091.213                                 | 550581.873                                   | 1017.35                                    | 1012.86                          | 4.49                             |
| Sanitary          | Administration Area | MH-2-3          | 2357972.334                                 | 550579.827                                   | 1023.00                                    | 1013.40                          | 9.60                             |
| Sanitary          | Administration Area | MH-2-4          | 2357978.021                                 | 550249.225                                   | 1022.65                                    | 1014.69                          | 7.96                             |
| Sanitary          | Administration Area | MH-2-5          | 2357752.263                                 | 550234.299                                   | 1032.20                                    | 1024.43                          | 7.77                             |
| Sanitary          | Administration Area | MH-2-6          | 2357519.037                                 | 550222.221                                   | 1041.33                                    | 1033.60                          | 7.73                             |
| Sanitary          | Administration Area | MH-2-7          | 2357247.831                                 | 550178.488                                   | 1058.01                                    | 1046.30                          | 11.71                            |
| Sanitary          | Administration Area | MH-2-8          | 2357131.179                                 | 550328.901                                   | 1057.96                                    | 1047.18                          | 10.78                            |
| Sanitary          | Administration Area | MH-2-9          | 2357330.555                                 | 550502.117                                   | 1057.95                                    | 1048.20                          | 9.75                             |
| Sanitary          | Administration Area | MH-3            | 2354915.737                                 | 549740.177                                   | 1085.57                                    | 1080.78                          | 4.79                             |
| Sanitary          | Administration Area | MH-3-1          | 2357805.684                                 | 551221.413                                   | 1029.30                                    | 1020.50                          | 8.80                             |
| Sanitary          | Administration Area | MH-4            | 2374311.319                                 | 559324.386                                   | 1085.91                                    | 1081.62                          | 4.29                             |
| Sanitary          | Administration Area | MH-4-1          | 2357000.963                                 | 550747.125                                   | 1061.06                                    | 1055.00                          | 6.06                             |
| Sanitary          | Administration Area | MH-4-2          | 2356824.934                                 | 550884.347                                   | 1063.42                                    | 1058.50                          | 4.92                             |
| Sanitary          | Administration Area | MH-5-1          | 2356049.598                                 | 550723.637                                   | 1063.90                                    | 1054.36                          | 9.54                             |

| Structure<br>Type | Area                | Structure<br>ID | Latitude<br>(Ohio State Plane,<br>ft NAD83) | Longitude<br>(Ohio State Plane, ft<br>NAD83) | Top of Structure<br>Elevation<br>(ft amsl) | Invert<br>Elevation<br>(ft amsl) | Approximate<br>Depth<br>(ft bgs) |
|-------------------|---------------------|-----------------|---------------------------------------------|----------------------------------------------|--------------------------------------------|----------------------------------|----------------------------------|
| Sanitary          | Administration Area | MH-5-2          | 2355761.768                                 | 550633.240                                   | 1067.71                                    | 1058.69                          | 9.02                             |
| Sanitary          | Administration Area | MH-5-3          | 2355560.768                                 | 550766.548                                   | 1071.63                                    | 1060.73                          | 10.90                            |
| Sanitary          | Administration Area | MH-5-4          | 2355558.173                                 | 550917.446                                   | 1072.26                                    | 1062.02                          | 10.24                            |
| Sanitary          | Administration Area | MH-6            | 2355358.205                                 | 549903.982                                   | 1082.38                                    | 1078.51                          | 3.87                             |
| Sanitary          | Administration Area | MH-6-1          | 2356332.201                                 | 551186.854                                   | 1064.47                                    | 1058.29                          | 6.18                             |
| Sanitary          | Administration Area | MH-6-2          | 2356467.634                                 | 551189.184                                   | 1064.48                                    | 1059.00                          | 5.48                             |
| Sanitary          | Administration Area | MH-7            | 2355551.775                                 | 549731.082                                   | 1081.26                                    | 1076.15                          | 5.11                             |
| Sanitary          | Administration Area | MH-7-1          | 2357906.494                                 | 550921.055                                   | 1022.71                                    | 1012.23                          | 10.48                            |
| Sanitary          | Administration Area | MH-8            | 2355463.340                                 | 549454.975                                   | 1083.40                                    | 1077.04                          | 6.36                             |
| Sanitary          | Administration Area | MH-8-1          | 2358154.366                                 | 550252.259                                   | 1019.81                                    | 1015.25                          | 4.56                             |
| Sanitary          | Administration Area | MH-9            | 2355336.712                                 | 549303.021                                   | 1080.92                                    | 1077.70                          | 3.22                             |
| Sanitary          | Administration Area | MH-9-1          | 2357840.305                                 | 550442.205                                   | 1026.60                                    | 1017.50                          | 9.10                             |
| Sanitary          | Administration Area | MH-O1           | 2359666.486                                 | 551385.366                                   | 1010.20                                    | 1004.10                          | 6.10                             |
| Sanitary          | Administration Area | MH-O10          | 2357560.259                                 | 550904.249                                   | 1045.10                                    | 1035.65                          | 9.45                             |
| Sanitary          | Administration Area | MH-O11          | 2357268.048                                 | 550734.448                                   | 1056.11                                    | 1044.43                          | 11.68                            |
| Sanitary          | Administration Area | MH-O12          | 2357003.806                                 | 550581.843                                   | 1059.86                                    | 1046.31                          | 13.55                            |
| Sanitary          | Administration Area | MH-O13          | 2356690.604                                 | 550470.329                                   | 1054.51                                    | 1048.32                          | 6.19                             |
| Sanitary          | Administration Area | MH-<br>O13A     | 2356467.408                                 | 550406.077                                   | 1053.70                                    | 1049.63                          | 4.07                             |
| Sanitary          | Administration Area | MH-<br>O13B     | 2356185.276                                 | 550269.953                                   | 1060.19                                    | 1051.00                          | 9.19                             |
| Sanitary          | Administration Area | MH-<br>O13C     | 2356183.669                                 | 550363.384                                   | 1061.20                                    | 1052.00                          | 9.20                             |
| Sanitary          | Administration Area | MH-<br>O13D     | 2356187.189                                 | 550158.765                                   | 1062.50                                    | 1053.89                          | 8.61                             |
| Sanitary          | Administration Area | MH-O14          | 2356536.380                                 | 550630.749                                   | 1057.94                                    | 1049.78                          | 8.16                             |
| Sanitary          | Administration Area | MH-O15          | 2356338.966                                 | 550793.630                                   | 1060.23                                    | 1051.13                          | 9.10                             |
| Sanitary          | Administration Area | MH-O16          | 2356334.563                                 | 551049.574                                   | 1063.94                                    | 1052.76                          | 11.18                            |
| Sanitary          | Administration Area | MH-017          | 2356033.281                                 | 551000.961                                   | 1065.40                                    | 1054.40                          | 11.00                            |
| Sanitary          | Administration Area | MH-O18          | 2355840.696                                 | 551080.138                                   | 1066.17                                    | 1055.65                          | 10.52                            |
| Sanitary          | Administration Area | MH-O19          | 2355696.577                                 | 551077.659                                   | 1069.85                                    | 1059.22                          | 10.63                            |

 Table A-2. Inventory of Structures within the George Road Treatment Plant Sewer Network (continued)

| Structure<br>Type | Area                | Structure<br>ID | Latitude<br>(Ohio State Plane,<br>ft NAD83) | Longitude<br>(Ohio State Plane, ft<br>NAD83) | Top of Structure<br>Elevation<br>(ft amsl) | Invert<br>Elevation<br>(ft amsl) | Approximate<br>Depth<br>(ft bgs) |
|-------------------|---------------------|-----------------|---------------------------------------------|----------------------------------------------|--------------------------------------------|----------------------------------|----------------------------------|
| Sanitary          | Administration Area | MH-O2           | 2359529.848                                 | 551630.182                                   | 1010.73                                    | 1005.05                          | 5.68                             |
| Sanitary          | Administration Area | MH-O3           | 2359204.067                                 | 551686.796                                   | 1010.77                                    | 1005.93                          | 4.84                             |
| Sanitary          | Administration Area | MH-O4           | 2358953.965                                 | 551622.261                                   | 1015.96                                    | 1006.58                          | 9.38                             |
| Sanitary          | Administration Area | MH-O5           | 2358821.770                                 | 551398.008                                   | 1018.32                                    | 1007.64                          | 10.68                            |
| Sanitary          | Administration Area | MH-O6           | 2358498.075                                 | 551193.365                                   | 1016.75                                    | 1008.40                          | 8.35                             |
| Sanitary          | Administration Area | MH-O7           | 2358228.424                                 | 551188.726                                   | 1016.75                                    | 1008.40                          | 8.35                             |
| Sanitary          | Administration Area | MH-O8           | 2357972.831                                 | 551184.329                                   | 1025.63                                    | 1017.54                          | 8.09                             |
| Sanitary          | Administration Area | MH-O9           | 2357775.118                                 | 551038.591                                   | 1031.60                                    | 1026.52                          | 5.08                             |
| Sanitary          | Load Line 5         | MH-IF1          | 2355071.796                                 | 553652.654                                   | 1114.570                                   | 1100.890                         | 13.68                            |
| Sanitary          | Load Line 5         | MH-IF10         | 2354969.045                                 | 554207.459                                   | 1123.690                                   | 1115.075                         | 8.62                             |
| Sanitary          | Load Line 5         | MH-IF11         | 2354219.002                                 | 554702.406                                   | 1125.550                                   | 1116.900                         | 8.65                             |
| Sanitary          | Load Line 5         | MH-IF12         | 2354091.382                                 | 554837.717                                   | 1122.100                                   | 1110.705                         | 11.40                            |
| Sanitary          | Load Line 5         | MH-IF13         | 2353964.022                                 | 554972.752                                   | 1117.060                                   | 1102.450                         | 14.61                            |
| Sanitary          | Load Line 5         | MH-IF2          | 2354952.027                                 | 553899.423                                   | 1121.060                                   | 1105.670                         | 15.39                            |
| Sanitary          | Load Line 5         | MH-IF3          | 2354806.309                                 | 554050.638                                   | 1124.650                                   | 1109.670                         | 14.98                            |
| Sanitary          | Load Line 5         | MH-IF4          | 2354660.590                                 | 554201.853                                   | 1125.220                                   | 1113.185                         | 12.04                            |
| Sanitary          | Load Line 5         | MH-IF5          | 2354466.371                                 | 554403.544                                   | 1126.480                                   | 1117.545                         | 8.93                             |
| Sanitary          | Load Line 5         | MH-IF6          | 2354498.224                                 | 554577.002                                   | 1126.590                                   | 1064.030                         | 62.56                            |
| Sanitary          | Load Line 5         | MH-IF7          | 2354605.442                                 | 554680.325                                   | 1126.860                                   | 1121.840                         | 5.02                             |
| Sanitary          | Load Line 5         | MH-IF8          | 2354371.955                                 | 554297.584                                   | 1126.810                                   | 1120.745                         | 6.07                             |
| Sanitary          | Load Line 5         | MH-IF9          | 2354533.209                                 | 554079.103                                   | 1127.520                                   | 1118.620                         | 8.90                             |
| Sanitary          | Load Line 6         | MH-1B1          | 2353319.441                                 | 553345.674                                   | 1123.350                                   | 1106.440                         | 16.91                            |
| Sanitary          | Load Line 6         | MH-1B2          | 2353402.950                                 | 553427.564                                   | 1123.340                                   | 1107.100                         | 16.24                            |
| Sanitary          | Load Line 6         | MH-1B3          | 2353399.799                                 | 553677.169                                   | 1125.780                                   | 1107.730                         | 18.05                            |
| Sanitary          | Load Line 6         | MH-2F1          | 2352870.852                                 | 553225.320                                   | 1113.000                                   | 1100.060                         | 12.94                            |
| Sanitary          | Load Line 6         | MH-2F10         | 2352749.668                                 | 553412.710                                   | 1126.020                                   | 1117.760                         | 8.26                             |
| Sanitary          | Load Line 6         | MH-2F2          | 2353719.656                                 | 552665.127                                   | 1117.710                                   | 1101.670                         | 16.04                            |
| Sanitary          | Load Line 6         | MH-2F3          | 2353526.245                                 | 552847.015                                   | 1120.070                                   | 1103.770                         | 16.30                            |
| Sanitary          | Load Line 6         | MH-2F4          | 2353334.015                                 | 553028.904                                   | 1118.600                                   | 1104.760                         | 13.84                            |
| Sanitary          | Load Line 6         | MH-2F5          | 2353163.451                                 | 553191.896                                   | 1118.040                                   | 1105.680                         | 12.36                            |
| Sanitary          | Load Line 7         | MH-1B10         | 2352270.342                                 | 554736.043                                   | 1129.47                                    | 1113.99                          | 15.48                            |
| Sanitary          | Load Line 7         | MH-1B11         | 2352162.685                                 | 555004.355                                   | 1126.700                                   | 1114.490                         | 12.21                            |
| Sanitary          | Load Line 7         | MH-1B12         | 2352054.251                                 | 555271.175                                   | 1126.340                                   | 1115.525                         | 10.81                            |

 Table A-2. Inventory of Structures within the George Road Treatment Plant Sewer Network (continued)

Facility-Wide Sewers

| Structure<br>Type | Area         | Structure<br>ID | Latitude<br>(Ohio State Plane,<br>ft NAD83) | Longitude<br>(Ohio State Plane, ft<br>NAD83) | Top of Structure<br>Elevation<br>(ft amsl) | Invert<br>Elevation<br>(ft amsl) | Approximate<br>Depth<br>(ft bgs) |
|-------------------|--------------|-----------------|---------------------------------------------|----------------------------------------------|--------------------------------------------|----------------------------------|----------------------------------|
| Sanitary          | Load Line 7  | MH-1B13         | 2351976.038                                 | 555462.503                                   | 1127.100                                   | 1116.415                         | 10.68                            |
| Sanitary          | Load Line 7  | MH-1B14         | 2351883.208                                 | 555691.066                                   | 1125.880                                   | 1117.115                         | 8.77                             |
| Sanitary          | Load Line 7  | MH-1B15         | 2351790.335                                 | 555914.046                                   | 1124.990                                   | 1105.580                         | 19.41                            |
| Sanitary          | Load Line 7  | MH-1B16         | 2352168.477                                 | 554774.048                                   | 1130.920                                   | 1124.650                         | 6.27                             |
| Sanitary          | Load Line 7  | MH-1B17         | 2352193.227                                 | 554706.249                                   | 1130.480                                   | 1119.115                         | 11.37                            |
| Sanitary          | Load Line 8  | MH-2B10         | 2351683.948                                 | 551766.316                                   | 1114.930                                   | 1107.625                         | 7.31                             |
| Sanitary          | Load Line 8  | MH-2B11         | 2351596.760                                 | 551986.731                                   | 1114.460                                   | 1108.570                         | 5.89                             |
| Sanitary          | Load Line 8  | MH-2B12         | 2351511.957                                 | 552202.610                                   | 1116.320                                   | 1110.025                         | 6.29                             |
| Sanitary          | Load Line 8  | MH-2B13         | 2351610.365                                 | 552242.113                                   | 1116.560                                   | 1110.025                         | 6.53                             |
| Sanitary          | Load Line 8  | MH-2B14         | 2351546.623                                 | 552400.523                                   | 1116.390                                   | 1110.635                         | 5.76                             |
| Sanitary          | Load Line 8  | MH-2B15         | 2351638.060                                 | 552435.391                                   | 1116.640                                   | 1111.160                         | 5.48                             |
| Sanitary          | Load Line 8  | MH-2B16         | 2351700.238                                 | 552635.881                                   | 1119.170                                   | 1112.350                         | 6.82                             |
| Sanitary          | Load Line 8  | MH-2B17         | 2351357.341                                 | 552060.358                                   | 1114.750                                   | 1109.520                         | 5.23                             |
| Sanitary          | Load Line 8  | MH-2B18         | 2351115.799                                 | 552137.918                                   | 1116.850                                   | 1110.550                         | 6.30                             |
| Sanitary          | Load Line 9  | MH-D1           | 2357190.425                                 | 556004.337                                   | 1130.870                                   | 1121.370                         | 9.50                             |
| Sanitary          | Load Line 9  | MH-D11          | 2356500.873                                 | 555775.470                                   | 1130.600                                   | 1125.730                         | 4.87                             |
| Sanitary          | Load Line 9  | MH-D2           | 2357013.008                                 | 556147.636                                   | 1122.900                                   | 1122.360                         | 0.54                             |
| Sanitary          | Load Line 9  | MH-D3           | 2356833.529                                 | 556290.935                                   | 1133.700                                   | 1123.275                         | 10.43                            |
| Sanitary          | Load Line 9  | MH-D4           | 2356696.857                                 | 556400.213                                   | 1134.800                                   | 1123.970                         | 10.83                            |
| Sanitary          | Load Line 9  | MH-D5           | 2356475.086                                 | 556575.471                                   | 1133.230                                   | 1124.810                         | 8.42                             |
| Sanitary          | Load Line 9  | MH-D6           | 2356258.473                                 | 556749.698                                   | 1133.010                                   | 1125.955                         | 7.06                             |
| Sanitary          | Load Line 9  | MH-D7           | 2356301.796                                 | 556355.883                                   | 1136.870                                   | 1126.730                         | 10.14                            |
| Sanitary          | Load Line 9  | MH-D8           | 2356584.424                                 | 556255.883                                   | 1135.040                                   | 1126.665                         | 8.38                             |
| Sanitary          | Load Line 9  | MH-D9           | 2356659.723                                 | 556071.347                                   | 1132.900                                   | 1124.220                         | 8.68                             |
| Sanitary          | Load Line 10 | MH-P1           | 2355665.906                                 | 554790.588                                   | 1120.320                                   | 1104.645                         | 15.68                            |
| Sanitary          | Load Line 10 | MH-P10          | 2354855.388                                 | 555430.134                                   | 1125.080                                   | 1116.800                         | 8.28                             |
| Sanitary          | Load Line 10 | MH-P11          | 2355620.573                                 | 555788.428                                   | 1130.830                                   | 1120.147                         | 10.68                            |
| Sanitary          | Load Line 10 | MH-P12          | 2355474.247                                 | 555397.042                                   | 1123.090                                   | 1115.760                         | 7.33                             |
| Sanitary          | Load Line 10 | MH-P13          | 2355419.309                                 | 555342.134                                   | 1122.290                                   | 1116.300                         | 5.99                             |
| Sanitary          | Load Line 10 | MH-P2           | 2355779.446                                 | 554999.782                                   | 1122.810                                   | 1108.250                         | 14.56                            |
| Sanitary          | Load Line 10 | MH-P3           | 2355855.777                                 | 555231.820                                   | 1124.550                                   | 1111.015                         | 13.53                            |
| Sanitary          | Load Line 10 | MH-P4           | 2355762.751                                 | 555325.895                                   | 1122.840                                   | 1112.570                         | 10.27                            |
| Sanitary          | Load Line 10 | MH-P5           | 2355611.247                                 | 555476.658                                   | 1124.170                                   | 1114.115                         | 10.06                            |

 Table A-2. Inventory of Structures within the George Road Treatment Plant Sewer Network (continued)

Facility-Wide Sewers

| Structure<br>Type | Area                 | Structure<br>ID | Latitude<br>(Ohio State Plane,<br>ft NAD83) | Longitude<br>(Ohio State Plane, ft<br>NAD83) | Top of Structure<br>Elevation<br>(ft amsl) | Invert<br>Elevation<br>(ft amsl) | Approximate<br>Depth<br>(ft bgs) |
|-------------------|----------------------|-----------------|---------------------------------------------|----------------------------------------------|--------------------------------------------|----------------------------------|----------------------------------|
| Sanitary          | Load Line 10         | MH-P5A          | 2355523.518                                 | 555564.338                                   | 1126.760                                   | 1116.310                         | 10.45                            |
| Sanitary          | Load Line 10         | MH-P6           | 2355460.512                                 | 555627.482                                   | 1128.680                                   | 1118.560                         | 10.12                            |
| Sanitary          | Load Line 10         | MH-P7           | 2355280.411                                 | 555807.418                                   | 1130.090                                   | 1122.350                         | 7.74                             |
| Sanitary          | Load Line 10         | MH-P8           | 2355304.670                                 | 555471.133                                   | 1128.27                                    | 1124.01                          | 4.26                             |
| Sanitary          | Load Line 10         | MH-P9           | 2354676.327                                 | 555478.866                                   | 1124.560                                   | 1106.915                         | 17.65                            |
| Sanitary          | Load Line 11         | MH-1A1          | 2352522.086                                 | 557670.688                                   | 1094.200                                   | 1077.810                         | 16.39                            |
| Sanitary          | Load Line 11         | MH-1A2          | 2352649.681                                 | 557772.253                                   | 1091.200                                   | 1077.865                         | 13.34                            |
| Sanitary          | Load Line 11         | MH-1A3          | 2352773.596                                 | 557871.914                                   | 1091.100                                   | 1078.465                         | 12.64                            |
| Sanitary          | Load Line 11         | MH-1A4          | 2352707.675                                 | 558022.449                                   | 1089.500                                   | 1079.100                         | 10.40                            |
| Sanitary          | Load Line 11         | MH-1A5          | 2352642.588                                 | 558170.899                                   | 1087.59                                    | 1083.01                          | 4.58                             |
| Sanitary          | Load Line 11         | MH-1A6          | 2352606.651                                 | 557573.455                                   | 1095.43                                    | 1089.81                          | 5.62                             |
| Sanitary          | Load Line 11         | MH-1A7          | 2352699.783                                 | 557466.371                                   | 1101.840                                   | 1091.070                         | 10.77                            |
| Sanitary          | Load Line 11         | MH-2A1          | 2352451.021                                 | 557838.082                                   | 1089.090                                   | 1077.895                         | 11.19                            |
| Sanitary          | Load Line 11         | MH-2A2          | 2352378.508                                 | 558004.491                                   | 1089.810                                   | 1078.705                         | 11.11                            |
| Sanitary          | Load Line 11         | MH-2A3          | 2352263.752                                 | 557953.192                                   | 1085.640                                   | 1079.410                         | 6.23                             |
| Sanitary          | Load Line 11         | MH-2A4          | 2352110.396                                 | 557883.125                                   | 1084.930                                   | 1080.100                         | 4.83                             |
| Sanitary          | Load Line 11         | MH-3A1          | 2352789.867                                 | 558143.794                                   | 1085.590                                   | 1079.765                         | 5.82                             |
| Sanitary          | Trunk/Connector Line | MH-1B4          | 2353395.072                                 | 553919.687                                   | 1126.900                                   | 1108.495                         | 18.41                            |
| Sanitary          | Trunk/Connector Line | MH-1B5          | 2353172.905                                 | 554040.159                                   | 1125.030                                   | 1109.400                         | 15.63                            |
| Sanitary          | Trunk/Connector Line | MH-1B6          | 2352946.799                                 | 554161.418                                   | 1125.240                                   | 1110.300                         | 14.94                            |
| Sanitary          | Trunk/Connector Line | MH-1B7          | 2352718.724                                 | 554282.677                                   | 1125.170                                   | 1111.165                         | 14.01                            |
| Sanitary          | Trunk/Connector Line | MH-1B8          | 2352600.549                                 | 554294.488                                   | 1126.720                                   | 1111.850                         | 14.87                            |
| Sanitary          | Trunk/Connector Line | MH-1B9          | 2352437.265                                 | 554530.869                                   | 1126.750                                   | 1112.560                         | 14.19                            |
| Sanitary          | Trunk/Connector Line | MH-2B1          | 2354105.453                                 | 552299.488                                   | 1112.700                                   | 1095.340                         | 17.36                            |
| Sanitary          | Trunk/Connector Line | MH-2B2          | 2353842.217                                 | 552155.547                                   | 1112.110                                   | 1097.400                         | 14.71                            |
| Sanitary          | Trunk/Connector Line | MH-2B3          | 2353579.701                                 | 552012.000                                   | 1107.930                                   | 1098.595                         | 9.34                             |
| Sanitary          | Trunk/Connector Line | MH-2B4          | 2353307.533                                 | 551863.175                                   | 1113.610                                   | 1099.805                         | 13.80                            |
| Sanitary          | Trunk/Connector Line | MH-2B5          | 2353061.573                                 | 551727.211                                   | 1114.320                                   | 1101.075                         | 13.24                            |
| Sanitary          | Trunk/Connector Line | MH-2B6          | 2352774.849                                 | 551640.411                                   | 1114.920                                   | 1102.365                         | 12.56                            |
| Sanitary          | Trunk/Connector Line | MH-2B7          | 2352446.741                                 | 551603.286                                   | 1113.800                                   | 1103.625                         | 10.18                            |
| Sanitary          | Trunk/Connector Line | MH-2B8          | 2352104.294                                 | 551573.102                                   | 1113.310                                   | 1104.960                         | 8.35                             |
| Sanitary          | Trunk/Connector Line | MH-2B9          | 2351774.003                                 | 551537.190                                   | 1113.890                                   | 1106.380                         | 7.51                             |
| Sanitary          | Trunk/Connector Line | MH-2F1          | 2353914.249                                 | 552481.600                                   | 1113.000                                   | 1098.430                         | 14.57                            |

 Table A-2. Inventory of Structures within the George Road Treatment Plant Sewer Network (continued)

Facility-Wide Sewers

| Structure |                      | Structure | Latitude<br>(Ohio State Plane, | Longitude<br>(Ohio State Plane, ft | Top of Structure<br>Elevation | Invert<br>Elevation | Approximate<br>Depth |
|-----------|----------------------|-----------|--------------------------------|------------------------------------|-------------------------------|---------------------|----------------------|
| Туре      | Area                 | ID        | ft NAD83)                      | (Onio State Flanc, it<br>NAD83)    | (ft amsl)                     | (ft amsl)           | (ft bgs)             |
| Sanitary  | Trunk/Connector Line | MH-2F6    | 2353001.943                    | 553357.103                         | 1122.530                      | 1105.575            | 16.95                |
| Sanitary  | Trunk/Connector Line | MH-2F7    | 2352840.365                    | 553520.878                         | 1126.220                      | 1113.535            | 12.68                |
| Sanitary  | Trunk/Connector Line | MH-2F8    | 2352871.614                    | 553701.413                         | 1126.260                      | 1117.980            | 8.28                 |
| Sanitary  | Trunk/Connector Line | MH-2F9    | 2352970.695                    | 553798.155                         | 1125.600                      | 1120.390            | 5.21                 |
| Sanitary  | Trunk/Connector Line | MH-BH1    | 2354173.699                    | 555399.587                         | 1111.100                      | 1097.055            | 14.04                |
| Sanitary  | Trunk/Connector Line | MH-BH2    | 2354434.087                    | 555556.088                         | 1116.080                      | 1098.980            | 17.10                |
| Sanitary  | Trunk/Connector Line | MH-BH3    | 2354534.820                    | 555758.782                         | 1117.040                      | 1099.830            | 17.21                |
| Sanitary  | Trunk/Connector Line | MH-BH4    | 2354632.185                    | 555954.099                         | 1112.770                      | 1100.600            | 12.17                |
| Sanitary  | Trunk/Connector Line | MH-BH5    | 2354729.658                    | 556136.188                         | 1108.510                      | 1101.390            | 7.12                 |
| Sanitary  | Trunk/Connector Line | MH-BH6    | 2354830.355                    | 556343.292                         | 1109.540                      | 1102.335            | 7.20                 |
| Sanitary  | Trunk/Connector Line | MH-CO     | 2352079.576                    | 556706.511                         | 1100.620                      | 1077.810            | 22.81                |
| Sanitary  | Trunk/Connector Line | MH-MP1    | 2354135.199                    | 555140.973                         | 1112.850                      | 1097.275            | 15.57                |
| Sanitary  | Trunk/Connector Line | MH-MP2    | 2354096.824                    | 555205.401                         | 1112.700                      | 1097.510            | 15.19                |
| Sanitary  | Trunk/Connector Line | MH-MP3    | 2353923.388                    | 555102.099                         | 1113.340                      | 1098.655            | 14.68                |
| Sanitary  | Trunk/Connector Line | MH-MP4    | 2353751.043                    | 554999.447                         | 1112.560                      | 1100.560            | 12.00                |
| Sanitary  | Trunk/Connector Line | MH-MP5    | 2353563.798                    | 554922.845                         | 1110.860                      | 1101.950            | 8.91                 |
| Sanitary  | Trunk/Connector Line | MH-MP6    | 2353378.053                    | 554846.856                         | 1115.410                      | 1103.905            | 11.51                |
| Sanitary  | Trunk/Connector Line | MH-O32    | 2354892.192                    | 553022.801                         | 1106.450                      | 1096.310            | 10.14                |
| Sanitary  | Trunk/Connector Line | MH-O33    | 2354992.747                    | 553254.184                         | 1108.020                      | 1097.095            | 10.93                |
| Sanitary  | Trunk/Connector Line | MH-034    | 2355191.185                    | 553406.669                         | 1109.090                      | 1097.840            | 11.25                |
| Sanitary  | Trunk/Connector Line | MH-035    | 2355389.436                    | 553558.973                         | 1111.000                      | 1098.595            | 12.41                |
| Sanitary  | Trunk/Connector Line | MH-O36    | 2355543.087                    | 553768.777                         | 1111.040                      | 1099.300            | 11.74                |
| Sanitary  | Trunk/Connector Line | MH-O37    | 2355696.180                    | 553977.872                         | 1113.300                      | 1100.075            | 13.22                |
| Sanitary  | Trunk/Connector Line | MH-O38    | 2355598.039                    | 554260.127                         | 1112.440                      | 1100.910            | 11.53                |
| Sanitary  | Trunk/Connector Line | MH-O39    | 2355499.145                    | 554544.544                         | 1111.910                      | 1101.780            | 10.13                |
| Sanitary  | Trunk/Connector Line | MH-O40    | 2355559.094                    | 554624.145                         | 1113.680                      | 1102.430            | 11.25                |
| Sanitary  | Trunk/Connector Line | MH-041    | 2355911.233                    | 554555.084                         | 1114.820                      | 1103.380            | 11.44                |
| Sanitary  | Trunk/Connector Line | MH-042    | 2356219.969                    | 554460.359                         | 1120.010                      | 1104.585            | 15.43                |
| Sanitary  | Trunk/Connector Line | MH-O43    | 2356506.161                    | 554361.488                         | 1119.370                      | 1105.780            | 13.59                |
| Sanitary  | Trunk/Connector Line | MH-044    | 2356768.919                    | 554272.546                         | 1117.150                      | 1106.955            | 10.20                |
| Sanitary  | Trunk/Connector Line | MH-045    | 2356963.373                    | 554525.116                         | 1122.640                      | 1108.140            | 14.50                |
| Sanitary  | Trunk/Connector Line | MH-O46    | 2357157.712                    | 554763.584                         | 1120.940                      | 1109.445            | 11.50                |
| Sanitary  | Trunk/Connector Line | MH-047    | 2357324.588                    | 554993.985                         | 1120.910                      | 1110.785            | 10.13                |

 Table A-2. Inventory of Structures within the George Road Treatment Plant Sewer Network (continued)

Facility-Wide Sewers

| Structure |                      | Structure  | Latitude<br>(Ohio State Plane, | Longitude<br>(Ohio State Plane, ft | Top of Structure<br>Elevation | Invert<br>Elevation | Approximate<br>Depth |
|-----------|----------------------|------------|--------------------------------|------------------------------------|-------------------------------|---------------------|----------------------|
| Туре      | Area                 | ID         | ft NAD83)                      | NAD83)                             | (ft amsl)                     | (ft amsl)           | (ft bgs)             |
| Sanitary  | Trunk/Connector Line | MH-048     | 2357270.881                    | 555263.098                         | 1123.600                      | 1112.265            | 11.33                |
| Sanitary  | Trunk/Connector Line | MH-049     | 2357217.243                    | 555535.264                         | 1125.190                      | 1114.135            | 11.06                |
| Sanitary  | Trunk/Connector Line | MH-O50     | 2357294.897                    | 555698.820                         | 1130.570                      | 1116.625            | 13.94                |
| Sanitary  | Trunk/Connector Line | MH-051     | 2357370.936                    | 555858.976                         | 1128.720                      | 1119.505            | 9.21                 |
| Sanitary  | Trunk/Connector Line | MH-<br>WW1 | 2352368.929                    | 554237.008                         | 1130.840                      | 1118.940            | 11.90                |
| Sanitary  | Trunk/Connector Line | MH-<br>WW2 | 2352143.561                    | 554190.387                         | 1137.150                      | 1126.130            | 11.02                |
| Sanitary  | Trunk/Connector Line | MH-<br>WW3 | 2351905.765                    | 554121.844                         | 1139.360                      | 1130.775            | 8.58                 |
| Sanitary  | Trunk/Connector Line | MH-O20     | 2355608.909                    | 551528.785                         | 1073.87                       | 1063.79             | 10.08                |
| Sanitary  | Trunk/Connector Line | MH-O21     | 2355520.175                    | 551829.125                         | 1076.220                      | 1065.960            | 10.26                |
| Sanitary  | Trunk/Connector Line | MH-022     | 2355141.927                    | 551989.656                         | 1081.280                      | 1071.465            | 9.82                 |
| Sanitary  | Trunk/Connector Line | MH-O23     | 2355139.440                    | 552134.232                         | 1089.790                      | 1076.665            | 13.13                |
| Sanitary  | Trunk/Connector Line | MH-O24     | 2354885.189                    | 552285.488                         | 1087.950                      | 1080.205            | 7.75                 |
| Sanitary  | Trunk/Connector Line | MH-027     | 2354625.870                    | 552368.230                         | 1107.530                      | 1090.650            | 16.88                |
| Sanitary  | Trunk/Connector Line | MH-O28     | 2354387.932                    | 552444.150                         | 1107.580                      | 1092.267            | 15.31                |
| Sanitary  | Trunk/Connector Line | MH-O29     | 2354345.911                    | 552539.814                         | 1104.480                      | 1094.100            | 10.38                |
| Sanitary  | Trunk/Connector Line | MH-O30     | 2354560.688                    | 552642.478                         | 1102.970                      | 1094.705            | 8.27                 |
| Sanitary  | Trunk/Connector Line | MH-O31     | 2354780.134                    | 552740.475                         | 1106.150                      | 1095.480            | 10.67                |

Table A-2. Inventory of Structures within the George Road Treatment Plant Sewer Network (continued)

ft amsl = feet above mean sea level ft bgs = feet below ground surface ID = Identification designator. NAD = North American Datum

| Structure<br>Type | Area                  | Structure<br>ID | Latitude<br>(Ohio State Plane,<br>ft NAD83) | Longitude<br>(Ohio State<br>Plane, ft NAD83) | Top of Structure<br>Elevation<br>(ft amsl) | Invert<br>Elevation<br>(ft amsl) | Approximate<br>Depth<br>(ft bgs) |
|-------------------|-----------------------|-----------------|---------------------------------------------|----------------------------------------------|--------------------------------------------|----------------------------------|----------------------------------|
| Sanitary          | Atlas Scrap Yard      | MH-1            | 2366683.078                                 | 556965.737                                   | 1011.67                                    | 975.27                           | 36.40                            |
| Sanitary          | Atlas Scrap Yard      | MH-10           | 2366198.221                                 | 557221.904                                   | Unknown                                    | 975.47                           | Unknown                          |
| Sanitary          | Atlas Scrap Yard      | MH-11           | 2366552.409                                 | 557781.232                                   | Unknown                                    | 973.54                           | Unknown                          |
| Sanitary          | Atlas Scrap Yard      | MH-12           | 2366658.106                                 | 558050.895                                   | Unknown                                    | 972.65                           | Unknown                          |
| Sanitary          | Atlas Scrap Yard      | MH-13           | 2366715.670                                 | 558294.145                                   | 978.39                                     | 972.05                           | 6.34                             |
| Sanitary          | Atlas Scrap Yard      | MH-14           | 2366816.815                                 | 558462.794                                   | 977.10                                     | 971.56                           | 5.54                             |
| Sanitary          | Atlas Scrap Yard      | MH-3            | 2366586.601                                 | 557202.701                                   | Unknown                                    | 974.79                           | Unknown                          |
| Sanitary          | Atlas Scrap Yard      | MH-4            | 2366528.359                                 | 557315.431                                   | Unknown                                    | 974.21                           | Unknown                          |
| Sanitary          | Atlas Scrap Yard      | MH-5            | 2366487.974                                 | 557521.010                                   | 978.27                                     | 974.07                           | 4.20                             |
| Sanitary          | Atlas Scrap Yard      | MH-6            | 2366367.955                                 | 557478.183                                   | Unknown                                    | 974.55                           | Unknown                          |
| Sanitary          | Atlas Scrap Yard      | MH-7            | 2366324.167                                 | 557616.477                                   | Unknown                                    | 975.27                           | Unknown                          |
| Sanitary          | Atlas Scrap Yard      | MH-8            | 2366270.584                                 | 557742.724                                   | Unknown                                    | 975.28                           | Unknown                          |
| Sanitary          | Atlas Scrap Yard      | MH-9            | 2366115.859                                 | 557359.226                                   | Unknown                                    | 975.92                           | Unknown                          |
| Sanitary          | Atlas Scrap Yard      | MH-HD1          | 2366243.384                                 | 557044.945                                   | Unknown                                    | 977.98                           | Unknown                          |
| Sanitary          | Atlas Scrap Yard      | MH-HD2          | 2366005.233                                 | 556971.739                                   | Unknown                                    | 978.15                           | Unknown                          |
| Sanitary          | Atlas Scrap Yard      | MH-HD3          | 2365807.525                                 | 556892.854                                   | Unknown                                    | 979.02                           | Unknown                          |
| Sanitary          | Inert Storage Area #6 | MH-315          | 2376668.660                                 | 560066.374                                   | 991.25                                     | 982.98                           | 8.27                             |
| Sanitary          | Inert Storage Area #6 | MH-316          | 2376515.623                                 | 559945.015                                   | 991.12                                     | 981.90                           | 9.22                             |
| Sanitary          | Inert Storage Area #6 | MH-317          | 2376322.795                                 | 559807.453                                   | 991.23                                     | 980.95                           | 10.28                            |
| Sanitary          | Inert Storage Area #6 | MH-318          | 2376098.140                                 | 559647.188                                   | 992.43                                     | 979.82                           | 12.61                            |
| Sanitary          | Inert Storage Area #6 | MH-319          | 2375848.966                                 | 559504.847                                   | 991.350                                    | 978.930                          | 12.42                            |
| Sanitary          | Inert Storage Area #6 | MH-320          | 2375643.342                                 | 559353.699                                   | 990.770                                    | 977.870                          | 12.90                            |
| Sanitary          | Inert Storage Area #6 | MH-321          | 2375442.714                                 | 559206.222                                   | 991.190                                    | 976.740                          | 14.45                            |
| Sanitary          | Inert Storage Area #6 | MH-322          | 2375288.833                                 | 559093.077                                   | 991.080                                    | 976.060                          | 15.02                            |
| Sanitary          | Inert Storage Area #6 | MH-323          | 2375061.394                                 | 558925.892                                   | 987.520                                    | 975.010                          | 12.51                            |
| Sanitary          | Inert Storage Area #6 | MH-324          | 2374145.467                                 | 558006.004                                   | 990.76                                     | 985.70                           | 5.06                             |
| Sanitary          | Inert Storage Area #6 | MH-325          | 2374303.473                                 | 558126.969                                   | 990.56                                     | 983.11                           | 7.45                             |
| Sanitary          | Inert Storage Area #6 | MH-326          | 2374522.990                                 | 558292.103                                   | 990.70                                     | 980.50                           | 10.20                            |
| Sanitary          | Inert Storage Area #6 | MH-327          | 2374686.504                                 | 558409.848                                   | 990.89                                     | 978.23                           | 12.66                            |
| Sanitary          | Inert Storage Area #6 | MH-328          | 2374905.061                                 | 558574.349                                   | 990.64                                     | 977.20                           | 13.44                            |
| Sanitary          | Inert Storage Area #6 | MH-329          | 2375166.131                                 | 558780.129                                   | 990.45                                     | 975.84                           | 14.61                            |
| Sanitary          | Load Line 1           | MH-1X           | 2376066.317                                 | 562991.378                                   | Unknown                                    | 1006.52                          | Unknown                          |
| Sanitary          | Load Line 1           | MH-201          | 2377443.335                                 | 561631.295                                   | 994.350                                    | 987.950                          | 6.40                             |
| Sanitary          | Load Line 1           | MH-201A         | 2377572.310                                 | 561701.573                                   | 994.370                                    | 988.885                          | 5.48                             |
| Sanitary          | Load Line 1           | MH-202          | 2377336.281                                 | 561827.989                                   | 994.280                                    | 987.150                          | 7.13                             |

Table A-3. Inventory of Structures within the Sand Creek Treatment Plant Sewer Network

| Structure Type | Area        | Structure<br>ID | Latitude<br>(Ohio State Plane, ft<br>NAD83) | Longitude<br>(Ohio State Plane,<br>ft NAD83) | Top of Structure<br>Elevation<br>(ft amsl) | Invert<br>Elevation<br>(ft amsl) | Approximate<br>Depth<br>(ft bgs) |
|----------------|-------------|-----------------|---------------------------------------------|----------------------------------------------|--------------------------------------------|----------------------------------|----------------------------------|
| Sanitary       | Load Line 1 | MH-202A         | 2377286.041                                 | 561920.190                                   | 994.400                                    | 986.550                          | 7.85                             |
| Sanitary       | Load Line 1 | MH-203          | 2377222.175                                 | 562037.593                                   | 994.950                                    | 985.450                          | 9.50                             |
| Sanitary       | Load Line 1 | MH-204          | 2377133.766                                 | 562317.631                                   | 1006.240                                   | 984.200                          | 22.04                            |
| Sanitary       | Load Line 1 | MH-205          | 2377043.562                                 | 562604.797                                   | 1006.970                                   | 982.500                          | 24.47                            |
| Sanitary       | Load Line 1 | MH-206          | 2376944.844                                 | 562919.770                                   | 998.400                                    | 980.700                          | 17.70                            |
| Sanitary       | Load Line 1 | MH-207          | 2376803.513                                 | 563178.711                                   | 1001.240                                   | 979.010                          | 22.23                            |
| Sanitary       | Load Line 1 | MH-208          | 2376661.703                                 | 563438.530                                   | 997.500                                    | 977.370                          | 20.13                            |
| Sanitary       | Load Line 1 | MH-209          | 2376515.991                                 | 563735.541                                   | 993.270                                    | 976.462                          | 16.81                            |
| Sanitary       | Load Line 1 | MH-210          | 2376394.427                                 | 564036.248                                   | 989.710                                    | 975.782                          | 13.93                            |
| Sanitary       | Load Line 1 | MH-210A         | 2376284.995                                 | 564307.250                                   | 986.220                                    | 974.740                          | 11.48                            |
| Sanitary       | Load Line 1 | MH-211          | 2376127.718                                 | 564910.199                                   | 989.840                                    | 976.610                          | 13.23                            |
| Sanitary       | Load Line 1 | MH-212          | 2375994.439                                 | 564837.115                                   | 988.780                                    | 975.770                          | 13.01                            |
| Sanitary       | Load Line 1 | MH-213          | 2376119.042                                 | 564609.886                                   | 988.260                                    | 974.740                          | 13.52                            |
| Sanitary       | Load Line 1 | MH-214          | 2375569.445                                 | 563965.600                                   | 995.700                                    | 990.250                          | 5.45                             |
| Sanitary       | Load Line 1 | MH-214A         | 2375716.013                                 | 564044.741                                   | 994.650                                    | 989.340                          | 5.31                             |
| Sanitary       | Load Line 1 | MH-215          | 2375827.219                                 | 564104.805                                   | 994.000                                    | 988.290                          | 5.71                             |
| Sanitary       | Load Line 1 | MH-216          | 2375970.129                                 | 564181.839                                   | 993.400                                    | 986.865                          | 6.54                             |
| Sanitary       | Load Line 1 | MH-217          | 2375858.549                                 | 564388.659                                   | 994.100                                    | 988.700                          | 5.40                             |
| Sanitary       | Load Line 1 | MH-218          | 2376087.228                                 | 563964.791                                   | 995.000                                    | 981.067                          | 13.93                            |
| Sanitary       | Load Line 1 | MH-219          | 2375987.307                                 | 563301.458                                   | 995.700                                    | 989.750                          | 5.95                             |
| Sanitary       | Load Line 1 | MH-220          | 2376265.032                                 | 563453.042                                   | 993.500                                    | 988.150                          | 5.35                             |
| Sanitary       | Load Line 1 | MH-221          | 2376386.743                                 | 563288.455                                   | 993.500                                    | 982.760                          | 10.74                            |
| Sanitary       | Load Line 1 | MH-222          | 2376492.507                                 | 563094.908                                   | 996.000                                    | 988.300                          | 7.70                             |
| Sanitary       | Load Line 1 | MH-223          | 2376204.035                                 | 562937.527                                   | 993.300                                    | 990.150                          | 3.15                             |
| Sanitary       | Load Line 1 | MH-224          | 2376624.046                                 | 562131.915                                   | 995.820                                    | 991.100                          | 4.72                             |
| Sanitary       | Load Line 1 | MH-225          | 2376876.357                                 | 562269.254                                   | 993.430                                    | 988.350                          | 5.08                             |
| Sanitary       | Load Line 1 | MH-226          | 2376795.176                                 | 562469.593                                   | 993.800                                    | 985.650                          | 8.15                             |
| Sanitary       | Load Line 1 | MH-227          | 2377025.943                                 | 563548.472                                   | 994.600                                    | 988.350                          | 6.25                             |
| Sanitary       | Load Line 1 | MH-228          | 2377130.384                                 | 563357.119                                   | 996.290                                    | 983.900                          | 12.39                            |
| Sanitary       | Load Line 1 | MH-229          | 2377232.861                                 | 563166.060                                   | 999.340                                    | 988.350                          | 10.99                            |
| Storm          | Load Line 1 | A1              | 2376037.220                                 | 564322.610                                   | 987.5                                      | 984.4                            | 3.10                             |
| Storm          | Load Line 1 | A10             | 2375497.750                                 | 564804.780                                   | 992.7                                      | 991.2                            | 1.50                             |
| Storm          | Load Line 1 | A11             | 2376055.030                                 | 564000.550                                   | 994.0                                      | 992.0                            | 2.00                             |
| Storm          | Load Line 1 | A12             | 2376215.260                                 | 563713.940                                   | 993.9                                      | 993.0                            | 0.90                             |
| Storm          | Load Line 1 | A14             | 2375815.440                                 | 564485.780                                   | 992.8                                      | 989.8                            | 3.00                             |

Table A-3. Inventory of Structures within the Sand Creek Treatment Plant Sewer Network (continued)

| Structure Type | Area        | Structure<br>ID | Latitude<br>(Ohio State Plane, ft<br>NAD83) | Longitude<br>(Ohio State Plane,<br>ft NAD83) | Top of Structure<br>Elevation<br>(ft amsl) | Invert<br>Elevation<br>(ft amsl) | Approximate<br>Depth<br>(ft bgs) |
|----------------|-------------|-----------------|---------------------------------------------|----------------------------------------------|--------------------------------------------|----------------------------------|----------------------------------|
| Storm          | Load Line 1 | A17             | 2375806.740                                 | 564689.020                                   | 993.9                                      | 992.4                            | 1.50                             |
| Storm          | Load Line 1 | A18             | 2375858.410                                 | 564589.810                                   | 993.9                                      | 992.4                            | 1.50                             |
| Storm          | Load Line 1 | A2              | 2375892.750                                 | 564083.080                                   | 992.9                                      | 988.8                            | 4.10                             |
| Storm          | Load Line 1 | A3              | 2375969.070                                 | 563931.370                                   | 992.3                                      | 989.3                            | 3.00                             |
| Storm          | Load Line 1 | A4              | 2376040.760                                 | 563806.900                                   | 992.3                                      | 989.8                            | 2.50                             |
| Storm          | Load Line 1 | A5              | 2376117.800                                 | 563665.960                                   | 992.7                                      | 991.0                            | 1.70                             |
| Storm          | Load Line 1 | A6              | 2375782.800                                 | 564286.570                                   | 992.8                                      | 989.5                            | 3.30                             |
| Storm          | Load Line 1 | A7              | 2375689.460                                 | 564456.540                                   | 991.9                                      | 989.8                            | 2.10                             |
| Storm          | Load Line 1 | A8              | 2375623.820                                 | 564575.780                                   | 992.3                                      | 990.6                            | 1.70                             |
| Storm          | Load Line 1 | A9              | 2375560.790                                 | 564690.280                                   | 992.4                                      | 990.9                            | 1.50                             |
| Storm          | Load Line 1 | B1              | 2377113.870                                 | 563390.820                                   | 992.9                                      | 991.1                            | 1.80                             |
| Storm          | Load Line 1 | B10             | 2376881.550                                 | 563003.600                                   | 993.4                                      | 992.2                            | 1.20                             |
| Storm          | Load Line 1 | B11             | 2376936.950                                 | 562898.480                                   | 993.7                                      | 992.3                            | 1.40                             |
| Storm          | Load Line 1 | B12             | 2376647.100                                 | 563318.540                                   | 994.2                                      | 991.9                            | 2.30                             |
| Storm          | Load Line 1 | B13             | 2376299.510                                 | 563576.760                                   | 993.8                                      | 991.0                            | 2.80                             |
| Storm          | Load Line 1 | B2              | 2376320.850                                 | 563437.690                                   | 992.6                                      | 988.9                            | 3.70                             |
| Storm          | Load Line 1 | B3              | 2376480.580                                 | 563227.520                                   | 992.7                                      | 989.5                            | 3.20                             |
| Storm          | Load Line 1 | B4              | 2376527.220                                 | 563139.910                                   | 992.7                                      | 990.1                            | 2.60                             |
| Storm          | Load Line 1 | B5              | 2376593.220                                 | 563018.290                                   | 992.9                                      | 990.6                            | 2.30                             |
| Storm          | Load Line 1 | B5A             | 2376667.590                                 | 562882.820                                   | 992.7                                      | 991.0                            | 1.70                             |
| Storm          | Load Line 1 | B6              | 2376719.730                                 | 562786.120                                   | 992.9                                      | 991.4                            | 1.50                             |
| Storm          | Load Line 1 | B7              | 2376237.520                                 | 563527.590                                   | 992.7                                      | 990.5                            | 2.20                             |
| Storm          | Load Line 1 | B8              | 2376692.110                                 | 563341.500                                   | 994.1                                      | 992.2                            | 1.90                             |
| Storm          | Load Line 1 | B9              | 2376673.410                                 | 563331.160                                   | 994.1                                      | 992.4                            | 1.70                             |
| Storm          | Load Line 1 | C1              | 2377345.430                                 | 562962.160                                   | 992.7                                      | 989.4                            | 3.30                             |
| Storm          | Load Line 1 | C2              | 2377403.710                                 | 562853.200                                   | 992.6                                      | 990.0                            | 2.60                             |
| Storm          | Load Line 1 | C3              | 2377465.600                                 | 562742.570                                   | 992.7                                      | 990.6                            | 2.10                             |
| Storm          | Load Line 1 | C4              | 2377533.030                                 | 562612.040                                   | 992.8                                      | 991.4                            | 1.40                             |
| Storm          | Load Line 1 | C5              | 2377115.380                                 | 563032.240                                   | 996.7                                      | 993.0                            | 3.70                             |
| Storm          | Load Line 1 | C6              | 2377092.480                                 | 563074.460                                   | 996.8                                      | 993.8                            | 3.00                             |
| Storm          | Load Line 1 | C7              | 2377172.900                                 | 563282.030                                   | 992.7                                      | 993.0                            | -0.30                            |
| Storm          | Load Line 1 | CB-4            | 2376673.300                                 | 563440.990                                   | Unknown                                    | Unknown                          | Unknown                          |
| Storm          | Load Line 1 | D1              | 2377132.230                                 | 561985.230                                   | 993.4                                      | 988.2                            | 5.20                             |
| Storm          | Load Line 1 | D10             | 2377183.020                                 | 561761.950                                   | 992.7                                      | 990.2                            | 2.50                             |
| Storm          | Load Line 1 | D11             | 2377256.020                                 | 561623.890                                   | 992.5                                      | 990.7                            | 1.80                             |
| Storm          | Load Line 1 | D12             | 2377265.880                                 | 561893.280                                   | 993.8                                      | 991.4                            | 2.40                             |

 Table A-3. Inventory of Structures within the Sand Creek Treatment Plant Sewer Network (continued)

| Structure Type | Area        | Structure<br>ID | Latitude<br>(Ohio State Plane, ft<br>NAD83) | Longitude<br>(Ohio State Plane,<br>ft NAD83) | Top of Structure<br>Elevation<br>(ft amsl) | Invert<br>Elevation<br>(ft amsl) | Approximate<br>Depth<br>(ft bgs) |
|----------------|-------------|-----------------|---------------------------------------------|----------------------------------------------|--------------------------------------------|----------------------------------|----------------------------------|
| Storm          | Load Line 1 | D13             | 2377302.510                                 | 562078.770                                   | 992.7                                      | 987.4                            | 5.30                             |
| Storm          | Load Line 1 | D13             | 2377397.160                                 | 561904.520                                   | 993.6                                      | 990.4                            | 3.20                             |
| Storm          | Load Line 1 | D1              | 2377200.440                                 | 561858.400                                   | 993.0                                      | 990.0                            | 3.00                             |
| Storm          | Load Line 1 | D3              | 2377369.890                                 | 561705.900                                   | 993.8                                      | 992.1                            | 1.71                             |
| Storm          | Load Line 1 | D3              | 2377021.300                                 | 562051.810                                   | 992.5                                      | 988.9                            | 3.60                             |
| Storm          | Load Line 1 | D5              | 2376939.940                                 | 562197.630                                   | 992.8                                      | 989.8                            | 3.00                             |
| Storm          | Load Line 1 | D5              | 2376889.980                                 | 562294.070                                   | 992.7                                      | 990.3                            | 2.40                             |
| Storm          | Load Line 1 | D7              | 2376834.540                                 | 562403.530                                   | 993.1                                      | 990.9                            | 2.20                             |
| Storm          | Load Line 1 | D8              | 2376979.170                                 | 562338.360                                   | 993.4                                      | 991.0                            | 2.40                             |
| Storm          | Load Line 1 | D9              | 2377072.410                                 | 561953.460                                   | 992.5                                      | 989.4                            | 3.10                             |
| Storm          | Load Line 1 | E1              | 2377484.040                                 | 561500.300                                   | 994.0                                      | 989.7                            | 4.30                             |
| Storm          | Load Line 1 | E2              | 2377383.830                                 | 561395.390                                   | 992.7                                      | 987.5                            | 5.20                             |
| Storm          | Load Line 1 | E3              | 2377465.810                                 | 561350.240                                   | 988.3                                      | 985.1                            | 3.20                             |
| Storm          | Load Line 1 | F1              | 2375668.030                                 | 563382.090                                   | 1010.3                                     | 1007.20                          | 3.10                             |
| Storm          | Load Line 1 | F10             | 2375969.240                                 | 562842.210                                   | 1012.9                                     | 1010.63                          | 2.27                             |
| Storm          | Load Line 1 | F11             | 2375998.030                                 | 562787.290                                   | 1013.69                                    | 1010.76                          | 2.93                             |
| Storm          | Load Line 1 | F12             | 2376026.820                                 | 562732.380                                   | 1012.8                                     | 1010.86                          | 1.94                             |
| Storm          | Load Line 1 | F13             | 2376055.600                                 | 562677.470                                   | 1013.1                                     | 1010.94                          | 2.16                             |
| Storm          | Load Line 1 | F14             | 2376084.830                                 | 562622.810                                   | 1013.1                                     | 1010.7                           | 2.40                             |
| Storm          | Load Line 1 | F2              | 2375707.560                                 | 563312.540                                   | 1010.1                                     | 1007.56                          | 2.54                             |
| Storm          | Load Line 1 | F3              | 2375738.200                                 | 563258.640                                   | 1010.8                                     | 1007.91                          | 2.89                             |
| Storm          | Load Line 1 | F4              | 2375768.840                                 | 563204.740                                   | 1011.0                                     | 1008.28                          | 2.76                             |
| Storm          | Load Line 1 | F5              | 2375799.480                                 | 563150.840                                   | 1011.5                                     | 1008.83                          | 2.67                             |
| Storm          | Load Line 1 | F6              | 2375830.120                                 | 563096.940                                   | 1011.6                                     | 1009.39                          | 2.21                             |
| Storm          | Load Line 1 | F7              | 2375851.560                                 | 563025.970                                   | 1012.7                                     | 1009.97                          | 2.73                             |
| Storm          | Load Line 1 | F8              | 2375873.000                                 | 562955.000                                   | 1013.0                                     | 1010.9                           | 2.10                             |
| Storm          | Load Line 1 | F9              | 2375921.120                                 | 562898.600                                   | 1013.3                                     | 1010.39                          | 2.91                             |
| Storm          | Load Line 1 | MH              | 2376283.180                                 | 564338.980                                   | 987.0                                      | 974.7                            | 12.30                            |
| Storm          | Load Line 1 | MHA1            | 2376219.000                                 | 564624.000                                   | 984.7                                      | 979.4                            | 5.30                             |
| Storm          | Load Line 1 | MHA2            | 2375962.580                                 | 564198.860                                   | 993.2                                      | 987.0                            | 6.20                             |
| Storm          | Load Line 1 | MHA3            | 2375897.750                                 | 565210.790                                   | 992.4                                      | 987.6                            | 4.80                             |
| Storm          | Load Line 1 | MHB1            | 2376960.130                                 | 563670.320                                   | 993.7                                      | 983.4                            | 10.30                            |
| Storm          | Load Line 1 | MHB2            | 2376877.790                                 | 563628.550                                   | 991.4                                      | 986.1                            | 5.30                             |
| Storm          | Load Line 1 | MHB3            | 2376570.360                                 | 563563.700                                   | 996.6                                      | 988.0                            | 8.60                             |
| Storm          | Load Line 1 | MHB4            | 2376394.820                                 | 563474.990                                   | 999.2                                      | 988.8                            | 10.40                            |
| Storm          | Load Line 1 | MHC1            | 2377284.920                                 | 563072.740                                   | 993.2                                      | 989.4                            | 3.80                             |

 Table A-3. Inventory of Structures within the Sand Creek Treatment Plant Sewer Network (continued)

| Structure Type | Area        | Structure<br>ID | Latitude<br>(Ohio State Plane, ft<br>NAD83) | Longitude<br>(Ohio State Plane,<br>ft NAD83) | Top of Structure<br>Elevation<br>(ft amsl) | Invert<br>Elevation<br>(ft amsl) | Approximate<br>Depth<br>(ft bgs) |
|----------------|-------------|-----------------|---------------------------------------------|----------------------------------------------|--------------------------------------------|----------------------------------|----------------------------------|
| Storm          | Load Line 1 | MHD1            | 2377718.910                                 | 562029.490                                   | 991.2                                      | 982.6                            | 8.60                             |
| Storm          | Load Line 1 | MHD2            | 2377451.520                                 | 562160.770                                   | 997.2                                      | 986.8                            | 10.40                            |
| Storm          | Load Line 1 | MHE1            | 2377537.520                                 | 561187.240                                   | 984.4                                      | 977.4                            | 7.00                             |
| Storm          | Load Line 1 | UN-1            | 2376196.140                                 | 563751.260                                   | Unknown                                    | Unknown                          | Unknown                          |
| Sanitary       | Load Line 2 | MH-301          | 2373085.841                                 | 562386.486                                   | 1014.500                                   | 999.400                          | 15.10                            |
| Sanitary       | Load Line 2 | MH-301A         | 2373093.447                                 | 562372.409                                   | 1014.500                                   | 998.870                          | 15.63                            |
| Sanitary       | Load Line 2 | MH-302          | 2373218.922                                 | 562121.185                                   | 1010.700                                   | 1003.030                         | 7.67                             |
| Sanitary       | Load Line 2 | MH-303          | 2373367.061                                 | 561850.010                                   | 1010.700                                   | 1001.120                         | 9.58                             |
| Sanitary       | Load Line 2 | MH-304          | 2373616.865                                 | 561627.702                                   | 1013.700                                   | 999.590                          | 14.11                            |
| Sanitary       | Load Line 2 | MH-305          | 2373901.487                                 | 561428.625                                   | 1011.900                                   | 998.200                          | 13.70                            |
| Sanitary       | Load Line 2 | MH-306          | 2374043.586                                 | 561168.508                                   | 1010.500                                   | 997.005                          | 13.50                            |
| Sanitary       | Load Line 2 | MH-307          | 2374185.109                                 | 560909.444                                   | 1012.400                                   | 995.765                          | 16.64                            |
| Sanitary       | Load Line 2 | MH-308          | 2374259.581                                 | 560566.446                                   | 1014.500                                   | 994.365                          | 20.14                            |
| Sanitary       | Load Line 2 | MH-309          | 2374371.553                                 | 560245.989                                   | 1014.82                                    | 993.71                           | 21.11                            |
| Sanitary       | Load Line 2 | MH-310          | 2374482.452                                 | 559928.605                                   | 1010.400                                   | 992.005                          | 18.40                            |
| Sanitary       | Load Line 2 | MH-310A         | 2374417.164                                 | 559927.373                                   | 1010.870                                   | 993.750                          | 17.12                            |
| Sanitary       | Load Line 2 | MH-311          | 2374566.905                                 | 559774.191                                   | 1010.600                                   | 991.160                          | 19.44                            |
| Sanitary       | Load Line 2 | MH-312          | 2374710.127                                 | 559506.951                                   | 1009.800                                   | 987.630                          | 22.17                            |
| Sanitary       | Load Line 2 | MH-313          | 2374843.997                                 | 559257.162                                   | 994.120                                    | 982.290                          | 11.83                            |
| Sanitary       | Load Line 2 | MH-314          | 2374944.150                                 | 559104.548                                   | 989.760                                    | 977.500                          | 12.26                            |
| Sanitary       | Load Line 2 | MH-331          | 2374219.279                                 | 561264.487                                   | 1009.600                                   | 1000.350                         | 9.25                             |
| Sanitary       | Load Line 2 | MH-332          | 2372844.016                                 | 561916.379                                   | 1011.800                                   | 1006.020                         | 5.78                             |
| Sanitary       | Load Line 2 | MH-333          | 2373095.445                                 | 562053.731                                   | 1010.900                                   | 1004.620                         | 6.28                             |
| Sanitary       | Load Line 2 | MH-334          | 2373326.065                                 | 561155.694                                   | 1014.900                                   | 1006.865                         | 8.03                             |
| Sanitary       | Load Line 2 | MH-335          | 2373425.264                                 | 560917.442                                   | 1011.800                                   | 1006.725                         | 5.07                             |
| Sanitary       | Load Line 2 | MH-336          | 2373375.264                                 | 560890.167                                   | 1013.100                                   | 1005.620                         | 7.48                             |
| Sanitary       | Load Line 2 | MH-337          | 2373426.076                                 | 560615.935                                   | 1013.100                                   | 1004.330                         | 8.77                             |
| Sanitary       | Load Line 2 | MH-338          | 2373839.997                                 | 560130.611                                   | 1011.800                                   | 1008.255                         | 3.55                             |
| Sanitary       | Load Line 2 | MH-339          | 2373776.601                                 | 560090.541                                   | 1019.900                                   | 1001.200                         | 18.70                            |
| Sanitary       | Load Line 2 | MH-340          | 2373607.207                                 | 560355.050                                   | 1016.600                                   | 1005.730                         | 10.87                            |
| Sanitary       | Load Line 2 | MH-341          | 2374252.080                                 | 561528.961                                   | 1010.900                                   | 1002.650                         | 8.25                             |
| Sanitary       | Load Line 2 | MH-342          | 2374458.914                                 | 561148.108                                   | 1010.800                                   | 1002.635                         | 8.17                             |
| Storm          | Load Line 2 | B1A             | 2373449.910                                 | 561664.350                                   | 1009.8                                     | 1005.0                           | 4.80                             |
| Storm          | Load Line 2 | C2              | 2374348.090                                 | 559974.140                                   | 1009.8                                     | 1006.7                           | 3.10                             |
| Storm          | Load Line 2 | C3              | 2374407.790                                 | 559864.320                                   | 1009.6                                     | 1007.0                           | 2.60                             |
| Storm          | Load Line 2 | C4              | 2374462.260                                 | 559893.920                                   | 1009.7                                     | 1007.4                           | 2.30                             |

 Table A-3. Inventory of Structures within the Sand Creek Treatment Plant Sewer Network (continued)

|                |             | Structure | Latitude<br>(Ohio State Plane, ft | Longitude<br>(Ohio State Plane, | Top of Structure<br>Elevation | Invert<br>Elevation | Approximate<br>Depth |
|----------------|-------------|-----------|-----------------------------------|---------------------------------|-------------------------------|---------------------|----------------------|
| Structure Type | Area        | ID        | NAD83)                            | ft NAD83)                       | (ft amsl)                     | (ft amsl)           | (ft bgs)             |
| Storm          | Load Line 2 | DA1       | 2373366.110                       | 562792.420                      | 1008.8                        | 1005.8              | 3.00                 |
| Storm          | Load Line 2 | DA10      | 2374171.020                       | 561718.570                      | 1008.9                        | 1005.7              | 3.20                 |
| Storm          | Load Line 2 | DA11      | 2374237.060                       | 561596.260                      | 1008.9                        | 1005.6              | 3.30                 |
| Storm          | Load Line 2 | DA12      | 2374327.620                       | 561430.370                      | 1008.8                        | 1005.2              | 3.60                 |
| Storm          | Load Line 2 | DA13      | 2374415.310                       | 561269.750                      | 1008.7                        | 1005.9              | 2.80                 |
| Storm          | Load Line 2 | DA14      | 2374503.010                       | 561109.130                      | 1008.8                        | 1006.6              | 2.20                 |
| Storm          | Load Line 2 | DA15      | 2374573.450                       | 560980.110                      | 1008.8                        | 1007.2              | 1.60                 |
| Storm          | Load Line 2 | DA16      | 2374646.760                       | 560845.820                      | 1008.9                        | 1007.8              | 1.10                 |
| Storm          | Load Line 2 | DA17      | 2374728.240                       | 560696.620                      | 1008.8                        | 1007.7              | 1.10                 |
| Storm          | Load Line 2 | DA18      | 2374800.620                       | 560564.090                      | 1008.9                        | 1007.2              | 1.70                 |
| Storm          | Load Line 2 | DA19      | 2374880.890                       | 560432.660                      | 1008.6                        | 1006.4              | 2.20                 |
| Storm          | Load Line 2 | DA2       | 2373437.010                       | 562657.970                      | 1008.8                        | 1005.8              | 3.00                 |
| Storm          | Load Line 2 | DA20      | 2374938.190                       | 560298.380                      | 1008.8                        | 1005.9              | 2.90                 |
| Storm          | Load Line 2 | DA21      | 2374953.830                       | 560305.050                      | 1008.7                        | 1005.4              | 3.30                 |
| Storm          | Load Line 2 | DA3       | 2373513.250                       | 562545.350                      | 1008.8                        | 1006.4              | 2.40                 |
| Storm          | Load Line 2 | DA4       | 2373630.020                       | 562433.060                      | 1008.8                        | 1007.2              | 1.60                 |
| Storm          | Load Line 2 | DA5       | 2373751.490                       | 562346.770                      | 1008.8                        | 1007.5              | 1.30                 |
| Storm          | Load Line 2 | DA6       | 2373857.590                       | 562249.410                      | 1008.8                        | 1007.8              | 1.00                 |
| Storm          | Load Line 2 | DA7       | 2373944.400                       | 562138.300                      | 1009.0                        | 1007.1              | 1.90                 |
| Storm          | Load Line 2 | DA8       | 2374024.690                       | 561989.590                      | 1008.6                        | 1006.7              | 1.90                 |
| Storm          | Load Line 2 | DA9       | 2374098.800                       | 561852.320                      | 1008.6                        | 1006.2              | 2.40                 |
| Storm          | Load Line 2 | DB1       | 2372844.540                       | 562626.000                      | 1009.0                        | 1005.3              | 3.70                 |
| Storm          | Load Line 2 | DB10      | 2373557.970                       | 561399.590                      | 1008.7                        | 1007.0              | 1.70                 |
| Storm          | Load Line 2 | DB11      | 2373642.100                       | 561277.820                      | 1008.6                        | 1006.1              | 2.50                 |
| Storm          | Load Line 2 | DB12      | 2373710.700                       | 561152.350                      | 1008.8                        | 1004.9              | 3.90                 |
| Storm          | Load Line 2 | DB13      | 2373777.380                       | 561030.390                      | 1008.8                        | 1005.1              | 3.70                 |
| Storm          | Load Line 2 | DB14      | 2373847.930                       | 560899.150                      | 1008.8                        | 1006.0              | 2.80                 |
| Storm          | Load Line 2 | DB15      | 2373917.530                       | 560769.670                      | 1008.8                        | 1006.5              | 2.30                 |
| Storm          | Load Line 2 | DB16      | 2373980.600                       | 560598.950                      | 1008.9                        | 1007.1              | 1.80                 |
| Storm          | Load Line 2 | DB17      | 2374036.460                       | 560434.160                      | 1008.8                        | 1007.4              | 1.40                 |
| Storm          | Load Line 2 | DB18      | 2374120.290                       | 560276.000                      | 1008.8                        | 1007.1              | 1.70                 |
| Storm          | Load Line 2 | DB19      | 2374207.680                       | 560115.220                      | 1008.8                        | 1006.4              | 2.40                 |
| Storm          | Load Line 2 | DB2       | 2372935.810                       | 562457.080                      | 1008.8                        | 1006.3              | 2.50                 |
| Storm          | Load Line 2 | DB20      | 2374298.890                       | 559947.400                      | 1008.8                        | 1006.2              | 2.60                 |
| Storm          | Load Line 2 | DB21      | 2374417.670                       | 559728.870                      | 1008.8                        | 1004.7              | 4.10                 |
| Storm          | Load Line 2 | DB22      | 2374389.550                       | 559713.590                      | 1008.7                        | 1004.4              | 4.30                 |

 Table A-3. Inventory of Structures within the Sand Creek Treatment Plant Sewer Network (continued)

| Structure Type | Area        | Structure<br>ID | Latitude<br>(Ohio State Plane, ft<br>NAD83) | Longitude<br>(Ohio State Plane,<br>ft NAD83) | Top of Structure<br>Elevation<br>(ft amsl) | Invert<br>Elevation<br>(ft amsl) | Approximate<br>Depth<br>(ft bgs) |
|----------------|-------------|-----------------|---------------------------------------------|----------------------------------------------|--------------------------------------------|----------------------------------|----------------------------------|
| Storm          | Load Line 2 | DB3             | 2373019.480                                 | 562302.230                                   | 1008.7                                     | 1006.9                           | 1.80                             |
| Storm          | Load Line 2 | DB4             | 2373077.950                                 | 562194.020                                   | 1008.6                                     | 1007.5                           | 1.10                             |
| Storm          | Load Line 2 | DB5             | 2373145.920                                 | 562068.210                                   | 1008.9                                     | 1007.5                           | 1.40                             |
| Storm          | Load Line 2 | DB6             | 2373214.330                                 | 561944.910                                   | 1008.7                                     | 1006.9                           | 1.80                             |
| Storm          | Load Line 2 | DB7             | 2373299.820                                 | 561787.640                                   | 1008.5                                     | 1006.1                           | 2.40                             |
| Storm          | Load Line 2 | DB8             | 2373385.770                                 | 561629.490                                   | 1009.2                                     | 1005.5                           | 3.70                             |
| Storm          | Load Line 2 | DB9             | 2373462.190                                 | 561508.620                                   | 1009.0                                     | 1007.5                           | 1.50                             |
| Storm          | Load Line 2 | DC1             | 2374548.050                                 | 560018.380                                   | 1008.1                                     | 1006.2                           | 1.90                             |
| Storm          | Load Line 2 | DG1             | 2373021.100                                 | 562489.030                                   | 1010.67                                    | 1007.17                          | 3.50                             |
| Storm          | Load Line 2 | MHB1            | 2373625.630                                 | 561759.860                                   | 1014.7                                     | 1004.5                           | 10.20                            |
| Storm          | Load Line 2 | MHB2            | 2373858.260                                 | 561695.530                                   | 1012.7                                     | 1003.6                           | 9.10                             |
| Storm          | Load Line 2 | MHB3            | 2374055.310                                 | 561347.440                                   | 1010.2                                     | 1001.7                           | 8.45                             |
| Storm          | Load Line 2 | UN-2            | 2374609.180                                 | 559905.910                                   | Unknown                                    | Unknown                          | Unknown                          |
| Storm          | Load Line 2 | UN-3            | 2373098.860                                 | 562345.120                                   | 1008.0                                     | Unknown                          | Unknown                          |
| Sanitary       | Load Line 3 | MH-401          | 2371765.305                                 | 559596.219                                   | 1008.400                                   | 995.975                          | 12.43                            |
| Sanitary       | Load Line 3 | MH-402          | 2371307.750                                 | 559817.774                                   | 1006.040                                   | 996.790                          | 9.25                             |
| Sanitary       | Load Line 3 | MH-403          | 2371408.255                                 | 559633.614                                   | 1006.370                                   | 995.960                          | 10.41                            |
| Sanitary       | Load Line 3 | MH-404          | 2371506.125                                 | 559454.282                                   | 1005.400                                   | 994.980                          | 10.42                            |
| Sanitary       | Load Line 3 | MH-405          | 2371330.041                                 | 559358.185                                   | 1004.90                                    | 994.58                           | 10.32                            |
| Sanitary       | Load Line 3 | MH-406          | 2370958.487                                 | 559621.821                                   | 1005.500                                   | 997.090                          | 8.41                             |
| Sanitary       | Load Line 3 | MH-407          | 2371056.559                                 | 559442.120                                   | 1006.560                                   | 995.940                          | 10.62                            |
| Sanitary       | Load Line 3 | MH-408          | 2371154.616                                 | 559262.446                                   | 1003.800                                   | 993.160                          | 10.64                            |
| Sanitary       | Load Line 3 | MH-409          | 2370882.897                                 | 559114.156                                   | 1001.700                                   | 990.490                          | 11.21                            |
| Sanitary       | Load Line 3 | MH-410          | 2370687.264                                 | 559007.389                                   | 995.010                                    | 986.500                          | 8.51                             |
| Sanitary       | Load Line 3 | MH-411          | 2370179.336                                 | 560586.628                                   | 1007.500                                   | 978.480                          | 29.02                            |
| Sanitary       | Load Line 3 | MH-412          | 2370415.475                                 | 560140.125                                   | 1003.600                                   | 996.960                          | 6.64                             |
| Sanitary       | Load Line 3 | MH-413          | 2370289.389                                 | 560378.424                                   | 1009.390                                   | 996.085                          | 13.30                            |
| Sanitary       | Load Line 3 | MH-414          | 2370186.481                                 | 560324.028                                   | 1002.760                                   | 995.690                          | 7.07                             |
| Sanitary       | Load Line 3 | MH-414A         | 2370178.980                                 | 560338.218                                   | 1002.830                                   | 993.035                          | 9.80                             |
| Sanitary       | Load Line 3 | MH-415          | 2369879.490                                 | 560175.520                                   | 996.850                                    | 989.775                          | 7.08                             |
| Sanitary       | Load Line 3 | Mh-415A         | 2370071.420                                 | 559908.712                                   | 995.100                                    | 988.580                          | 6.52                             |
| Sanitary       | Load Line 3 | MH-416          | 2370173.279                                 | 559658.446                                   | 994.220                                    | 987.470                          | 6.75                             |
| Sanitary       | Load Line 3 | MH-417          | 2370274.779                                 | 559409.060                                   | 994.600                                    | 986.930                          | 7.67                             |
| Sanitary       | Load Line 3 | MH-417A         | 2370314.420                                 | 559331.955                                   | 987.000                                    | 986.390                          | 0.61                             |
| Sanitary       | Load Line 3 | MH-418          | 2370383.697                                 | 559163.180                                   | 995.300                                    | 985.220                          | 10.08                            |
| Sanitary       | Load Line 3 | MH-419          | 2370493.010                                 | 558901.375                                   | 990.540                                    | 983.550                          | 6.99                             |

 Table A-3. Inventory of Structures within the Sand Creek Treatment Plant Sewer Network (continued)

|                |             | Structure | Latitude<br>(Ohio State Plane, ft | Longitude<br>(Ohio State Plane, | Top of Structure<br>Elevation | Invert<br>Elevation | Approximate<br>Depth |
|----------------|-------------|-----------|-----------------------------------|---------------------------------|-------------------------------|---------------------|----------------------|
| Structure Type | Area        | ID        | NAD83)                            | ft NAD83)                       | (ft amsl)                     | (ft amsl)           | (ft bgs)             |
| Sanitary       | Load Line 3 | MH-420    | 2370585.791                       | 558679.167                      | 990.070                       | 981.875             | 8.20                 |
| Sanitary       | Load Line 3 | MH-421    | 2371601.835                       | 558062.657                      | 1007.910                      | 997.080             | 10.83                |
| Sanitary       | Load Line 3 | MH-422    | 2371502.195                       | 558246.205                      | 1005.160                      | 996.160             | 9.00                 |
| Sanitary       | Load Line 3 | MH-423    | 2371385.498                       | 558461.173                      | 1006.240                      | 995.040             | 11.20                |
| Sanitary       | Load Line 3 | MH-424    | 2371237.193                       | 558734.365                      | 1002.360                      | 994.060             | 8.30                 |
| Sanitary       | Load Line 3 | MH-425    | 2371079.817                       | 558648.932                      | 1002.320                      | 991.250             | 11.07                |
| Sanitary       | Load Line 3 | MH-426    | 2370864.329                       | 558532.357                      | 995.560                       | 984.920             | 10.64                |
| Sanitary       | Load Line 3 | MH-427    | 2370678.048                       | 558459.559                      | 987.870                       | 979.090             | 8.78                 |
| Sanitary       | Load Line 3 | MH-428    | 2370476.724                       | 559213.575                      | 995.800                       | 987.900             | 7.90                 |
| Storm          | Load Line 3 | B1        | 2370917.500                       | 559695.620                      | 1004.2                        | 1000.7              | 3.50                 |
| Storm          | Load Line 3 | C1        | 2371264.460                       | 559828.020                      | 1005.7                        | 1004.1              | 1.60                 |
| Storm          | Load Line 3 | C2        | 2371099.440                       | 559737.950                      | 1004.4                        | 1002.9              | 1.50                 |
| Storm          | Load Line 3 | C3        | 2370933.540                       | 559647.410                      | 1003.0                        | 1000.4              | 2.60                 |
| Storm          | Load Line 3 | C4        | 2370948.860                       | 559619.320                      | 1003.0                        | 1000.3              | 2.70                 |
| Storm          | Load Line 3 | C5        | 2370847.030                       | 559563.750                      | 1003.5                        | 999.9               | 3.60                 |
| Storm          | Load Line 3 | D1        | 2371731.080                       | 557784.780                      | 1003.0                        | 1001.5              | 1.50                 |
| Storm          | Load Line 3 | D2        | 2371633.080                       | 557963.700                      | 1003.0                        | 1001.1              | 1.90                 |
| Storm          | Load Line 3 | D3        | 2371537.000                       | 558139.110                      | 1003.2                        | 1000.0              | 3.20                 |
| Storm          | Load Line 3 | D4        | 2371498.160                       | 558118.440                      | 1002.6                        | 999.7               | 2.90                 |
| Storm          | Load Line 3 | E1        | 2369882.130                       | 559561.870                      | 985.8                         | 982.8               | 3.00                 |
| Storm          | Load Line 3 | E2        | 2369911.270                       | 559508.280                      | 985.8                         | 982.7               | 3.10                 |
| Storm          | Load Line 3 | E3        | 2369939.940                       | 559455.570                      | 985.8                         | 982.9               | 2.90                 |
| Storm          | Load Line 3 | E4        | 2369967.650                       | 559404.620                      | 985.8                         | 982.9               | 2.90                 |
| Storm          | Load Line 3 | E5        | 2369996.790                       | 559351.030                      | 985.8                         | 982.4               | 3.40                 |
| Storm          | Load Line 3 | E6        | 2370024.500                       | 559300.080                      | 985.8                         | 982.0               | 3.80                 |
| Storm          | Load Line 3 | E7        | 2370054.030                       | 559246.530                      | 986.3                         | 982.6               | 3.70                 |
| Storm          | Load Line 3 | E8        | 2370066.070                       | 559192.870                      | 985.6                         | 982.1               | 3.50                 |
| Storm          | Load Line 3 | E9        | 2370114.020                       | 559137.040                      | 985.7                         | 982.4               | 3.30                 |
| Storm          | Load Line 3 | EA1       | 2370949.000                       | 560576.890                      | 1001.2                        | 999.9               | 1.30                 |
| Storm          | Load Line 3 | EA10      | 2371570.000                       | 559432.520                      | 1001.1                        | 998.3               | 2.80                 |
| Storm          | Load Line 3 | EA11      | 2371689.860                       | 559213.130                      | 1001.0                        | 998.3               | 2.70                 |
| Storm          | Load Line 3 | EA12      | 2371747.400                       | 559107.830                      | 1001.1                        | 998.7               | 2.40                 |
| Storm          | Load Line 3 | EA13      | 2371803.490                       | 559005.150                      | 1001.1                        | 999.1               | 2.00                 |
| Storm          | Load Line 3 | EA14      | 2371862.470                       | 558897.210                      | 1000.9                        | 999.4               | 1.50                 |
| Storm          | Load Line 3 | EA15      | 2371925.190                       | 558779.930                      | 1002.1                        | 999.9               | 2.20                 |
| Storm          | Load Line 3 | EA2       | 2371018.120                       | 560449.420                      | 1001.1                        | 999.6               | 1.50                 |

 Table A-3. Inventory of Structures within the Sand Creek Treatment Plant Sewer Network (continued)

|                |             | Structure | Latitude<br>(Ohio State Plane, ft | Longitude<br>(Ohio State Plane, | Top of Structure<br>Elevation | Invert<br>Elevation | Approximate       |
|----------------|-------------|-----------|-----------------------------------|---------------------------------|-------------------------------|---------------------|-------------------|
| Structure Type | Area        | ID        | (Onio State Plane, It<br>NAD83)   | (Onio State Plane,<br>ft NAD83) | (ft amsl)                     | (ft amsl)           | Depth<br>(ft bgs) |
| Storm          | Load Line 3 | EA3       | 2371086.750                       | 560322.830                      | 1001.0                        | 999.5               | 1.50              |
| Storm          | Load Line 3 | EA4       | 2371155.390                       | 560196.240                      | 1001.3                        | 999.3               | 2.00              |
| Storm          | Load Line 3 | EA5       | 2371224.500                       | 560068.770                      | 1001.0                        | 999.1               | 1.90              |
| Storm          | Load Line 3 | EA6       | 2371293.610                       | 559941.300                      | 1001.5                        | 998.8               | 2.70              |
| Storm          | Load Line 3 | EA7       | 2371362.250                       | 559814.710                      | 1001.1                        | 998.8               | 2.30              |
| Storm          | Load Line 3 | EA8       | 2371431.840                       | 559686.360                      | 1001.1                        | 998.6               | 2.50              |
| Storm          | Load Line 3 | EA9       | 2371500.470                       | 559559.770                      | 1000.9                        | 998.4               | 2.50              |
| Storm          | Load Line 3 | EB1       | 2369975.250                       | 560685.530                      | 1001.9                        | 999.8               | 2.10              |
| Storm          | Load Line 3 | EB10      | 2370595.700                       | 559638.880                      | 1000.5                        | 999.0               | 1.50              |
| Storm          | Load Line 3 | EB11      | 2370655.920                       | 559552.870                      | 1001.0                        | 997.9               | 3.10              |
| Storm          | Load Line 3 | EB12      | 2370708.110                       | 559457.170                      | 1001.5                        | 999.2               | 2.30              |
| Storm          | Load Line 3 | EB14      | 2370810.940                       | 559266.090                      | 1001.0                        | 999.8               | 1.20              |
| Storm          | Load Line 3 | EB15      | 2371150.890                       | 558554.380                      | 1002.2                        | 999.9               | 2.30              |
| Storm          | Load Line 3 | EB16      | 2371234.050                       | 558398.130                      | 1001.0                        | 999.5               | 1.50              |
| Storm          | Load Line 3 | EB17      | 2371316.750                       | 558242.770                      | 1001.1                        | 999.3               | 1.80              |
| Storm          | Load Line 3 | EB18      | 2371397.090                       | 558091.820                      | 1001.0                        | 998.9               | 2.10              |
| Storm          | Load Line 3 | EB2       | 2370047.210                       | 560552.780                      | 1001.0                        | 999.5               | 1.50              |
| Storm          | Load Line 3 | EB3       | 2370118.210                       | 560421.780                      | 1001.1                        | 999.2               | 1.90              |
| Storm          | Load Line 3 | EB4       | 2370189.690                       | 560289.910                      | 1000.9                        | 998.0               | 2.90              |
| Storm          | Load Line 3 | EB5       | 2370263.030                       | 560159.060                      | 1001.1                        | 999.2               | 1.90              |
| Storm          | Load Line 3 | EB6       | 2370334.880                       | 560025.120                      | 1001.4                        | 999.4               | 2.00              |
| Storm          | Load Line 3 | EB7       | 2370401.200                       | 559901.950                      | 1001.1                        | 999.9               | 1.20              |
| Storm          | Load Line 3 | EB8       | 2370459.830                       | 559802.920                      | 1001.4                        | 999.5               | 1.90              |
| Storm          | Load Line 3 | EB9       | 2370529.600                       | 559719.180                      | 1001.8                        | 999.2               | 2.60              |
| Storm          | Load Line 3 | ED1       | 2370926.550                       | 560565.850                      | 1001.8                        | 999.8               | 2.00              |
| Storm          | Load Line 3 | ED10      | 2371548.900                       | 559419.950                      | 1001.8                        | 998.3               | 3.50              |
| Storm          | Load Line 3 | ED2       | 2370996.140                       | 560437.500                      | 1001.8                        | 999.7               | 2.10              |
| Storm          | Load Line 3 | ED3       | 2371064.300                       | 560311.790                      | 1001.9                        | 999.5               | 2.40              |
| Storm          | Load Line 3 | ED4       | 2371133.410                       | 560184.320                      | 1001.6                        | 999.3               | 2.30              |
| Storm          | Load Line 3 | ED5       | 2371202.520                       | 560056.850                      | 1001.7                        | 999.1               | 2.60              |
| Storm          | Load Line 3 | ED6       | 2371271.640                       | 559929.380                      | 1001.1                        | 998.9               | 2.20              |
| Storm          | Load Line 3 | ED7       | 2371341.220                       | 559801.040                      | 1002.0                        | 998.8               | 3.20              |
| Storm          | Load Line 3 | ED8       | 2371410.810                       | 559672.690                      | 1002.0                        | 998.5               | 3.50              |
| Storm          | Load Line 3 | ED9       | 2371479.380                       | 559547.200                      | 1001.6                        | 998.3               | 3.30              |
| Storm          | Load Line 3 | EF1       | 2371665.410                       | 559206.700                      | 1001.8                        | 998.4               | 3.40              |
| Storm          | Load Line 3 | EF2       | 2371723.900                       | 559099.640                      | 1001.8                        | 998.7               | 3.10              |

 Table A-3. Inventory of Structures within the Sand Creek Treatment Plant Sewer Network (continued)

|                |             | Structure | Latitude<br>(Ohio State Plane, ft | Longitude<br>(Ohio State Plane, | Top of Structure<br>Elevation | Invert<br>Elevation | Approximate<br>Depth |
|----------------|-------------|-----------|-----------------------------------|---------------------------------|-------------------------------|---------------------|----------------------|
| Structure Type | Area        | ID        | NAD83)                            | ft NAD83)                       | (ft amsl)                     | (ft amsl)           | (ft bgs)             |
| Storm          | Load Line 3 | EF3       | 2371779.040                       | 558998.720                      | 1001.7                        | 999.0               | 2.70                 |
| Storm          | Load Line 3 | EF4       | 2371841.370                       | 558884.630                      | 1001.8                        | 999.4               | 2.40                 |
| Storm          | Load Line 3 | EF5       | 2371903.610                       | 558767.100                      | 1001.3                        | 999.8               | 1.50                 |
| Storm          | Load Line 3 | EG2       | 2370180.350                       | 560553.290                      | 1004.1                        | 1000.1              | 4.00                 |
| Storm          | Load Line 3 | EH1       | 2370004.000                       | 560722.730                      | 1001.6                        | 1000.6              | 1.00                 |
| Storm          | Load Line 3 | EH10      | 2370492.500                       | 559831.980                      | 1001.7                        | 1000.2              | 1.50                 |
| Storm          | Load Line 3 | EH11      | 2370565.510                       | 559744.360                      | 1001.9                        | 999.9               | 2.00                 |
| Storm          | Load Line 3 | EH12      | 2370635.450                       | 559659.390                      | 1001.8                        | 999.5               | 2.30                 |
| Storm          | Load Line 3 | EH13      | 2370695.420                       | 559574.420                      | 1001.8                        | 998.0               | 3.80                 |
| Storm          | Load Line 3 | EH14      | 2370747.610                       | 559478.730                      | 1001.9                        | 999.6               | 2.30                 |
| Storm          | Load Line 3 | EH15      | 2370798.790                       | 559383.630                      | 1001.9                        | 1000.0              | 1.90                 |
| Storm          | Load Line 3 | EH16      | 2370851.090                       | 559286.860                      | 1001.9                        | 1000.5              | 1.40                 |
| Storm          | Load Line 3 | EH17      | 2371177.370                       | 558568.470                      | 1002.4                        | 1000.8              | 1.60                 |
| Storm          | Load Line 3 | EH18      | 2371240.800                       | 558449.300                      | 1001.8                        | 1000.3              | 1.50                 |
| Storm          | Load Line 3 | EH19      | 2371304.230                       | 558330.130                      | 1001.9                        | 1000.0              | 1.90                 |
| Storm          | Load Line 3 | EH2       | 2370064.040                       | 560611.950                      | 1001.9                        | 1000.4              | 1.50                 |
| Storm          | Load Line 3 | EH20      | 2371367.190                       | 558211.840                      | 1001.8                        | 999.8               | 2.00                 |
| Storm          | Load Line 3 | EH21      | 2371436.370                       | 558085.550                      | 1002.1                        | 999.2               | 2.90                 |
| Storm          | Load Line 3 | EH22      | 2371592.500                       | 557800.500                      | 1002.9                        | 997.0               | 5.90                 |
| Storm          | Load Line 3 | EH23      | 2371629.970                       | 557732.090                      | 1001.6                        | 1000.0              | 1.60                 |
| Storm          | Load Line 3 | EH3       | 2370115.030                       | 560517.880                      | 1002.1                        | 1000.0              | 2.10                 |
| Storm          | Load Line 3 | EH4       | 2370171.260                       | 560414.140                      | 1001.2                        | 999.7               | 1.50                 |
| Storm          | Load Line 3 | EH5       | 2370227.490                       | 560310.400                      | 1002.0                        | 999.3               | 2.70                 |
| Storm          | Load Line 3 | EH6       | 2370278.160                       | 560220.730                      | 1001.2                        | 999.7               | 1.50                 |
| Storm          | Load Line 3 | EH7       | 2370327.310                       | 560129.070                      | 1002.1                        | 999.9               | 2.20                 |
| Storm          | Load Line 3 | EH8       | 2370380.410                       | 560030.460                      | 1001.8                        | 1000.3              | 1.50                 |
| Storm          | Load Line 3 | EH9       | 2370438.730                       | 559922.170                      | 1002.0                        | 1000.6              | 1.40                 |
| Storm          | Load Line 3 | EHa       | 2370031.700                       | 560826.970                      | 1001.5                        | 999.5               | 2.00                 |
| Storm          | Load Line 3 | EHb       | 2369996.760                       | 560809.260                      | 1001.2                        | 999.2               | 2.00                 |
| Storm          | Load Line 3 | EHc       | 2369955.350                       | 560788.260                      | 1001.5                        | 998.9               | 2.60                 |
| Storm          | Load Line 3 | UN-4      | 2370809.530                       | 559636.700                      | Unknown                       | Unknown             | Unknown              |
| Storm          | Load Line 3 | UN-5      | 2370281.570                       | 559304.850                      | 990.8                         | Unknown             | Unknown              |
| Storm          | Load Line 3 | UN-6      | 2370274.610                       | 559332.920                      | 990.9                         | Unknown             | Unknown              |
| Sanitary       | Load Line 4 | MH-15+00  | 2365220.654                       | 556434.780                      | 983.960                       | 976.083             | 7.88                 |
| Sanitary       | Load Line 4 | MH-7+50   | 2365283.828                       | 555735.230                      | 984.250                       | 973.920             | 10.33                |
| Sanitary       | Load Line 4 | MH-E1     | 2365659.144                       | 555072.189                      | 986.700                       | 971.295             | 15.41                |

 Table A-3. Inventory of Structures within the Sand Creek Treatment Plant Sewer Network (continued)

|                |             | <u> </u>           |                                 |                                 | Top of Structure       | Invert                 | Approximate       |
|----------------|-------------|--------------------|---------------------------------|---------------------------------|------------------------|------------------------|-------------------|
| Structure Type | Area        | Structure<br>ID    | (Ohio State Plane, ft<br>NAD83) | (Ohio State Plane,<br>ft NAD83) | Elevation<br>(ft amsl) | Elevation<br>(ft amsl) | Depth<br>(ft has) |
| Sanitary       | Load Line 4 | MH-E2              | 2365842.652                     | 555147.073                      | 989.700                | 972.940                | (ft bgs)<br>16.76 |
| Sanitary       | Load Line 4 | MH-E2<br>MH-E3     | 2365948.806                     | 555281.122                      | 987.500                | 973.695                | 13.80             |
| Sanitary       | Load Line 4 | MH-E4              | 2366047.833                     | 555408.445                      | 987.100                | 974.280                | 12.82             |
| Sanitary       | Load Line 4 | MH-E4<br>MH-E5     | 2365998.414                     | 555529.551                      | 987.200                | 974.280                | 12.35             |
| Sanitary       | Load Line 4 | MH-E5<br>MH-E6     | 2365896.781                     | 555778.612                      | 986.100                | 975.655                | 12.33             |
|                | Load Line 4 |                    |                                 | 555833.882                      |                        | 975.855                | 11.87             |
| Sanitary       | Load Line 4 | MH-E6-1<br>MH-E6-2 | 2365713.430<br>2365386.595      | 555700.512                      | 988.680<br>984.700     | 978.340                | 6.36              |
| Sanitary       | Load Line 4 | MH-E0-2<br>MH-E7   | 2366114.658                     | 555867.469                      | 984.700                | 976.580                | 8.17              |
| Sanitary       | Load Line 4 | MH-E7<br>MH-E8     | 2366264.483                     | 555928.557                      | 984.750                | 976.380                | 7.63              |
| Sanitary       |             |                    |                                 |                                 |                        |                        |                   |
| Sanitary       | Load Line 4 | MH-E9              | 2366363.038                     | 555957.080                      | 984.900                | 977.945                | 6.95              |
| Sanitary       | Load Line 4 | MH-W1              | 2365474.523                     | 554996.852                      | 981.000                | 967.405                | 13.60             |
| Sanitary       | Load Line 4 | MH-W2              | 2365236.758                     | 554899.828                      | 979.800                | 965.235                | 14.56             |
| Sanitary       | Load Line 4 | MH-W3              | 2364998.436                     | 554802.577                      | 978.100                | 965.235                | 12.87             |
| Sanitary       | Load Line 4 | MH-W3-1            | 2364862.554                     | 554966.605                      | 986.300                | 969.680                | 16.62             |
| Sanitary       | Load Line 4 | MH-W3-2            | 2364734.071                     | 555234.376                      | 983.700                | 974.400                | 9.30              |
| Sanitary       | Load Line 4 | MH-W4              | 2364824.926                     | 554731.774                      | 976.910                | 966.210                | 10.70             |
| Sanitary       | Load Line 4 | MH-W4-1            | 2364607.790                     | 554798.303                      | 976.600                | 967.380                | 9.22              |
| Sanitary       | Load Line 4 | MH-W4-2            | 2364429.016                     | 554933.269                      | 977.110                | 967.380                | 9.73              |
| Sanitary       | Load Line 4 | MH-W4-3            | 2364250.243                     | 555068.236                      | 980.000                | 968.775                | 11.23             |
| Sanitary       | Load Line 4 | MH-W5              | 2364620.492                     | 554648.351                      | 983.500                | 970.860                | 12.64             |
| Sanitary       | Load Line 4 | MH-W6              | 2364422.261                     | 554567.461                      | 989.100                | 983.270                | 5.83              |
| Storm          | Load Line 4 | A-1                | 2364431.150                     | 555744.920                      | 982.21                 | 979.98                 | 2.23              |
| Storm          | Load Line 4 | A-2                | 2364474.650                     | 555638.030                      | 981.13                 | 979.29                 | 1.84              |
| Storm          | Load Line 4 | A-3                | 2364531.180                     | 555499.090                      | 980.42                 | 978.58                 | 1.84              |
| Storm          | Load Line 4 | A-4                | 2364578.600                     | 555357.000                      | 980.35                 | 977.84                 | 2.51              |
| Storm          | Load Line 4 | A-5                | 2364602.280                     | 555299.260                      | 980.33                 | 977.51                 | 2.82              |
| Storm          | Load Line 4 | A-6                | 2364638.250                     | 555252.050                      | 980.31                 | 977.14                 | 3.17              |
| Storm          | Load Line 4 | A-7                | 2364551.750                     | 555216.570                      | 980.43                 | 976.33                 | 4.10              |
| Storm          | Load Line 4 | B-1                | 2364455.070                     | 555789.050                      | 982.35                 | 980.21                 | 2.14              |
| Storm          | Load Line 4 | B-2                | 2364512.660                     | 555652.280                      | 981.31                 | 979.46                 | 1.85              |
| Storm          | Load Line 4 | B-3                | 2364570.530                     | 555514.870                      | 980.46                 | 978.81                 | 1.65              |
| Storm          | Load Line 4 | B-4                | 2364635.880                     | 555381.410                      | 980.37                 | 978.17                 | 2.20              |
| Storm          | Load Line 4 | B-5                | 2364659.330                     | 555324.230                      | 980.39                 | 977.84                 | 2.55              |
| Storm          | Load Line 4 | B-6                | 2364667.910                     | 555264.220                      | 980.59                 | 977.35                 | 3.24              |
| Storm          | Load Line 4 | C-1                | 2364790.130                     | 555507.200                      | 981.99                 | 979.05                 | 2.94              |
| Storm          | Load Line 4 | C-2                | 2364729.460                     | 555389.180                      | 980.82                 | 978.24                 | 2.58              |

 Table A-3. Inventory of Structures within the Sand Creek Treatment Plant Sewer Network (continued)

|                |             | Structure | Latitude<br>(Ohio State Plane, ft | Longitude<br>(Ohio State Plane, | Top of Structure<br>Elevation | Invert<br>Elevation | Approximate<br>Depth |
|----------------|-------------|-----------|-----------------------------------|---------------------------------|-------------------------------|---------------------|----------------------|
| Structure Type | Area        | ID        | NAD83)                            | ft NAD83)                       | (ft amsl)                     | (ft amsl)           | (ft bgs)             |
| Storm          | Load Line 4 | D-1       | 2364836.970                       | 555507.250                      | 981.57                        | 978.70              | 2.87                 |
| Storm          | Load Line 4 | D-2       | 2364769.200                       | 555373.440                      | 981.16                        | 978.04              | 3.12                 |
| Storm          | Load Line 4 | D-3       | 2364701.430                       | 555239.620                      | 979.81                        | 977.20              | 2.61                 |
| Storm          | Load Line 4 | E-1       | 2364998.090                       | 555125.050                      | 981.22                        | 978.35              | 2.87                 |
| Storm          | Load Line 4 | E-2       | 2364857.060                       | 555167.920                      | 981.23                        | 977.65              | 3.58                 |
| Storm          | Load Line 4 | E-3       | 2364713.040                       | 555211.960                      | 979.80                        | 976.93              | 2.87                 |
| Storm          | Load Line 4 | E-3       | 2364724.790                       | 555176.230                      | 980.02                        | 976.37              | 3.65                 |
| Storm          | Load Line 4 | F-1       | 2364968.780                       | 555095.180                      | 981.67                        | 978.31              | 3.36                 |
| Storm          | Load Line 4 | F-2       | 2364847.550                       | 555134.350                      | 980.84                        | 977.66              | 3.18                 |
| Storm          | Load Line 4 | G-1       | 2365203.430                       | 555598.880                      | 983.42                        | 979.39              | 4.03                 |
| Storm          | Load Line 4 | GA-1      | 2366508.050                       | 555990.180                      | 984.05                        | 978.67              | 5.38                 |
| Storm          | Load Line 4 | GA-10     | 2366111.380                       | 556199.900                      | 983.90                        | 981.21              | 2.69                 |
| Storm          | Load Line 4 | GA-12     | 2365819.730                       | 556255.970                      | 983.64                        | 981.14              | 2.50                 |
| Storm          | Load Line 4 | GA-13     | 2365669.950                       | 556258.120                      | 983.56                        | 980.35              | 3.21                 |
| Storm          | Load Line 4 | GA-14     | 2365520.660                       | 556255.970                      | 983.48                        | 979.64              | 3.84                 |
| Storm          | Load Line 4 | GA-15     | 2365375.700                       | 556220.640                      | 983.29                        | 978.96              | 4.33                 |
| Storm          | Load Line 4 | GA-16     | 2365235.800                       | 556163.020                      | 983.41                        | 978.14              | 5.27                 |
| Storm          | Load Line 4 | GA-17     | 2365098.310                       | 556106.390                      | 983.84                        | 977.84              | 6.00                 |
| Storm          | Load Line 4 | GA-18     | 2364991.970                       | 556062.600                      | 983.20                        | 979.79              | 3.41                 |
| Storm          | Load Line 4 | GA-19     | 2365969.820                       | 556210.610                      | 983.75                        | 981.63              | 2.12                 |
| Storm          | Load Line 4 | GA-2      | 2366370.630                       | 556047.770                      | 984.63                        | 979.45              | 5.18                 |
| Storm          | Load Line 4 | GA-20     | 2365832.950                       | 556230.520                      | 983.64                        | 980.95              | 2.69                 |
| Storm          | Load Line 4 | GA-21     | 2365683.340                       | 556238.150                      | 983.59                        | 980.14              | 3.45                 |
| Storm          | Load Line 4 | GA-22     | 2365534.430                       | 556227.340                      | 983.58                        | 979.41              | 4.17                 |
| Storm          | Load Line 4 | GA-23     | 2365388.230                       | 556193.360                      | 983.46                        | 978.63              | 4.83                 |
| Storm          | Load Line 4 | GA-24     | 2365250.000                       | 556136.420                      | 983.49                        | 977.86              | 5.63                 |
| Storm          | Load Line 4 | GA-25     | 2365109.820                       | 556078.690                      | 983.72                        | 977.68              | 6.04                 |
| Storm          | Load Line 4 | GA-26     | 2365004.590                       | 556035.350                      | 983.27                        | 978.66              | 4.61                 |
| Storm          | Load Line 4 | GA-27     | 2364879.470                       | 556016.260                      | 983.33                        | 980.22              | 3.11                 |
| Storm          | Load Line 4 | GA-28     | 2364709.790                       | 555946.380                      | 982.91                        | 979.87              | 3.04                 |
| Storm          | Load Line 4 | GA-29     | 2364598.740                       | 555900.640                      | 982.26                        | 979.33              | 2.93                 |
| Storm          | Load Line 4 | GA-3      | 2366231.180                       | 556106.210                      | 984.60                        | 980.17              | 4.43                 |
| Storm          | Load Line 4 | GA-30     | 2364461.890                       | 555844.280                      | 981.67                        | 978.86              | 2.81                 |
| Storm          | Load Line 4 | GA-31     | 2364322.220                       | 555786.750                      | 981.42                        | 978.33              | 3.09                 |
| Storm          | Load Line 4 | GA-32     | 2364182.350                       | 555730.240                      | 981.31                        | 977.87              | 3.44                 |
| Storm          | Load Line 4 | GA-33     | 2364048.950                       | 555669.710                      | 981.38                        | 977.41              | 3.97                 |

 Table A-3. Inventory of Structures within the Sand Creek Treatment Plant Sewer Network (continued)

| Structure Type | Area        | Structure<br>ID | Latitude<br>(Ohio State Plane, ft<br>NAD83) | Longitude<br>(Ohio State Plane,<br>ft NAD83) | Top of Structure<br>Elevation<br>(ft amsl) | Invert<br>Elevation<br>(ft amsl) | Approximate<br>Depth<br>(ft bgs) |
|----------------|-------------|-----------------|---------------------------------------------|----------------------------------------------|--------------------------------------------|----------------------------------|----------------------------------|
| Storm          | Load Line 4 | GA-34           | 2363928.750                                 | 555586.850                                   | 981.19                                     | 976.92                           | 4.27                             |
| Storm          | Load Line 4 | GA-35           | 2364890.900                                 | 555988.520                                   | 983.27                                     | 979.86                           | 3.41                             |
| Storm          | Load Line 4 | GA-36           | 2364721.220                                 | 555918.640                                   | 982.33                                     | 978.87                           | 3.46                             |
| Storm          | Load Line 4 | GA-37           | 2364614.880                                 | 555874.840                                   | 982.25                                     | 979.33                           | 2.92                             |
| Storm          | Load Line 4 | GA-38           | 2364477.110                                 | 555818.100                                   | 981.74                                     | 978.86                           | 2.88                             |
| Storm          | Load Line 4 | GA-39           | 2364332.900                                 | 555758.710                                   | 981.47                                     | 978.33                           | 3.14                             |
| Storm          | Load Line 4 | GA-4            | 2366093.940                                 | 556163.730                                   | 984.45                                     | 980.66                           | 3.79                             |
| Storm          | Load Line 4 | GA-40           | 2364194.550                                 | 555711.630                                   | 981.33                                     | 977.87                           | 3.46                             |
| Storm          | Load Line 4 | GA-41           | 2364058.440                                 | 555647.450                                   | 981.30                                     | 977.41                           | 3.89                             |
| Storm          | Load Line 4 | GA-42           | 2363938.790                                 | 555563.780                                   | 981.06                                     | 976.92                           | 4.14                             |
| Storm          | Load Line 4 | GA-5            | 2366799.540                                 | 555915.500                                   | 983.73                                     | 980.48                           | 3.25                             |
| Storm          | Load Line 4 | GA-6            | 2366662.940                                 | 555971.950                                   | 984.64                                     | 979.81                           | 4.83                             |
| Storm          | Load Line 4 | GA-7a           | 2366524.400                                 | 556029.210                                   | 984.17                                     | 978.98                           | 5.19                             |
| Storm          | Load Line 4 | GA-7b           | 2366502.290                                 | 556121.030                                   | 985.00                                     | 981.80                           | 3.20                             |
| Storm          | Load Line 4 | GA-8            | 2366389.750                                 | 556084.860                                   | 984.61                                     | 979.67                           | 4.94                             |
| Storm          | Load Line 4 | GA-9            | 2366242.620                                 | 556145.660                                   | 984.65                                     | 980.46                           | 4.19                             |
| Storm          | Load Line 4 | GB-1            | 2365986.780                                 | 555570.840                                   | 983.76                                     | 979.51                           | 4.25                             |
| Storm          | Load Line 4 | GB-2            | 2365977.410                                 | 555593.590                                   | 983.68                                     | 979.92                           | 3.76                             |
| Storm          | Load Line 4 | GC-1            | 2365960.060                                 | 555705.730                                   | 984.59                                     | 979.09                           | 5.50                             |
| Storm          | Load Line 4 | GH-1            | 2364064.180                                 | 554912.770                                   | 979.46                                     | 975.46                           | 4.00                             |
| Storm          | Load Line 4 | GH-2            | 2364201.970                                 | 554969.470                                   | 978.99                                     | 974.81                           | 4.18                             |
| Storm          | Load Line 4 | GH-3            | 2364060.380                                 | 554922.010                                   | 978.77                                     | 975.50                           | 3.27                             |
| Storm          | Load Line 4 | GH-4            | 2364198.160                                 | 554978.720                                   | 978.98                                     | 974.72                           | 4.26                             |
| Storm          | Load Line 4 | GV-1            | 2364029.650                                 | 554994.060                                   | 978.72                                     | 975.12                           | 3.60                             |
| Storm          | Load Line 4 | GV-2            | 2364168.360                                 | 555051.140                                   | 980.11                                     | 974.21                           | 5.90                             |
| Storm          | Load Line 4 | H-1             | 2365041.920                                 | 555639.740                                   | 982.26                                     | 977.91                           | 4.35                             |
| Storm          | Load Line 4 | H-2             | 2364990.240                                 | 555618.190                                   | 982.45                                     | 978.20                           | 4.25                             |
| Storm          | Load Line 4 | H-3             | 2364875.790                                 | 555570.460                                   | 982.46                                     | 979.04                           | 3.42                             |
| Storm          | Load Line 4 | H-4             | 2364904.630                                 | 555498.910                                   | 982.42                                     | 978.74                           | 3.68                             |
| Storm          | Load Line 4 | H-5             | 2365020.180                                 | 555547.100                                   | 982.48                                     | 978.36                           | 4.12                             |
| Storm          | Load Line 4 | J-1             | 2365214.180                                 | 555170.340                                   | 982.57                                     | 978.14                           | 4.43                             |
| Storm          | Load Line 4 | J-2             | 2365181.740                                 | 555157.200                                   | 982.53                                     | 978.21                           | 4.32                             |
| Storm          | Load Line 4 | J-3             | 2365064.980                                 | 555109.700                                   | 982.64                                     | 979.04                           | 3.60                             |
| Storm          | Load Line 4 | J-4             | 2365035.500                                 | 555182.430                                   | 982.48                                     | 979.42                           | 3.06                             |
| Storm          | Load Line 4 | J-5             | 2365151.250                                 | 555229.610                                   | 982.55                                     | 978.83                           | 3.72                             |
| Storm          | Load Line 4 | K-7             | 2365171.000                                 | 556046.640                                   | 983.70                                     | 980.27                           | 3.43                             |

 Table A-3. Inventory of Structures within the Sand Creek Treatment Plant Sewer Network (continued)

| Structure Type | Area         | Structure<br>ID | Latitude<br>(Ohio State Plane, ft<br>NAD83) | Longitude<br>(Ohio State Plane,<br>ft NAD83) | Top of Structure<br>Elevation<br>(ft amsl) | Invert<br>Elevation<br>(ft amsl) | Approximate<br>Depth<br>(ft bgs) |
|----------------|--------------|-----------------|---------------------------------------------|----------------------------------------------|--------------------------------------------|----------------------------------|----------------------------------|
| Storm          | Load Line 4  | K-8             | 2365194.820                                 | 556045.510                                   | 983.97                                     | 980.41                           | 3.56                             |
| Storm          | Load Line 4  | L-1             | 2365678.050                                 | 555578.330                                   | 983.24                                     | 971.98                           | 11.26                            |
| Storm          | Load Line 4  | L-2             | 2365808.530                                 | 555632.290                                   | 983.71                                     | 972.69                           | 11.02                            |
| Storm          | Load Line 4  | M-0             | 2365422.500                                 | 555576.370                                   | 983.47                                     | 979.94                           | 3.53                             |
| Storm          | Load Line 4  | M-1             | 2365514.350                                 | 555614.360                                   | 983.21                                     | 979.38                           | 3.83                             |
| Storm          | Load Line 4  | M-2             | 2365537.050                                 | 555559.460                                   | 983.21                                     | 979.08                           | 4.13                             |
| Storm          | Load Line 4  | M-3             | 2365605.210                                 | 555587.650                                   | 983.28                                     | 979.46                           | 3.82                             |
| Storm          | Load Line 4  | M-4             | 2365719.990                                 | 555635.110                                   | 983.67                                     | 980.12                           | 3.55                             |
| Storm          | Load Line 4  | M-5             | 2365836.330                                 | 555683.220                                   | 983.98                                     | 980.71                           | 3.27                             |
| Storm          | Load Line 4  | M-6             | 2365947.780                                 | 555729.310                                   | 984.39                                     | 981.49                           | 2.90                             |
| Storm          | Load Line 4  | MH1             | 2364149.330                                 | 555097.380                                   | 979.27                                     | 973.97                           | 5.30                             |
| Storm          | Load Line 4  | MH10B2          | 2365127.630                                 | 556035.830                                   | 983.24                                     | 977.12                           | 6.12                             |
| Storm          | Load Line 4  | MH11            | 2365404.970                                 | 555465.410                                   | 984.14                                     | 971.14                           | 13.00                            |
| Storm          | Load Line 4  | MH12            | 2365550.980                                 | 555525.780                                   | 983.80                                     | 971.41                           | 12.39                            |
| Storm          | Load Line 4  | MH13            | 2365939.200                                 | 555686.320                                   | 984.15                                     | 973.40                           | 10.75                            |
| Storm          | Load Line 4  | MH14            | 2366199.790                                 | 555794.090                                   | 984.53                                     | 974.50                           | 10.03                            |
| Storm          | Load Line 4  | MH15            | 2366466.220                                 | 555890.390                                   | 983.95                                     | 976.07                           | 7.88                             |
| Storm          | Load Line 4  | MH2B            | 2364592.090                                 | 555120.500                                   | 980.55                                     | 976.06                           | 4.49                             |
| Storm          | Load Line 4  | MH3             | 2365197.970                                 | 555238.440                                   | 982.90                                     | 975.80                           | 7.10                             |
| Storm          | Load Line 4  | MH4             | 2365222.760                                 | 555281.050                                   | 982.65                                     | 969.71                           | 12.94                            |
| Storm          | Load Line 4  | MH5             | 2365350.640                                 | 555499.120                                   | 984.35                                     | 974.45                           | 9.90                             |
| Storm          | Load Line 4  | MH6             | 2365197.980                                 | 555539.130                                   | 983.40                                     | 975.18                           | 8.22                             |
| Storm          | Load Line 4  | MH7             | 2365055.690                                 | 555579.470                                   | 983.32                                     | 975.67                           | 7.65                             |
| Storm          | Load Line 4  | MH8             | 2365273.900                                 | 555683.810                                   | 983.75                                     | 974.85                           | 8.90                             |
| Storm          | Load Line 4  | MH9             | 2365195.930                                 | 555871.460                                   | 983.61                                     | 975.61                           | 8.00                             |
| Storm          | Load Line 4  | N-2             | 2366332.370                                 | 555946.130                                   | 984.50                                     | 979.62                           | 4.88                             |
| Storm          | Load Line 4  | N-3             | 2366516.820                                 | 555955.680                                   | 983.64                                     | 980.26                           | 3.38                             |
| Storm          | Load Line 4  | UN-10           | 2366274.070                                 | 556001.750                                   | 984.96                                     | 980.88                           | 4.08                             |
| Storm          | Load Line 4  | UN-11           | 2365442.260                                 | 555493.740                                   | 969.00                                     | Unknown                          | Unknown                          |
| Storm          | Load Line 4  | UN-7            | 2363800.980                                 | 554877.530                                   | Unknown                                    | Unknown                          | Unknown                          |
| Storm          | Load Line 4  | UN-8            | 2363835.800                                 | 554926.400                                   | Unknown                                    | Unknown                          | Unknown                          |
| Storm          | Load Line 4  | UN-9            | 2363886.630                                 | 554994.520                                   | Unknown                                    | Unknown                          | Unknown                          |
| Sanitary       | Load Line 12 | MH-501          | 2369104.244                                 | 556427.597                                   | 980.700                                    | 974.245                          | 6.46                             |
| Sanitary       | Load Line 12 | MH-501A         | 2369155.967                                 | 556450.335                                   | 980.340                                    | 974.970                          | 5.37                             |
| Sanitary       | Load Line 12 | MH-502          | 2369013.341                                 | 556387.633                                   | 980.120                                    | 973.675                          | 6.45                             |
| Sanitary       | Load Line 12 | MH-503          | 2368891.959                                 | 556530.396                                   | 980.000                                    | 973.200                          | 6.80                             |

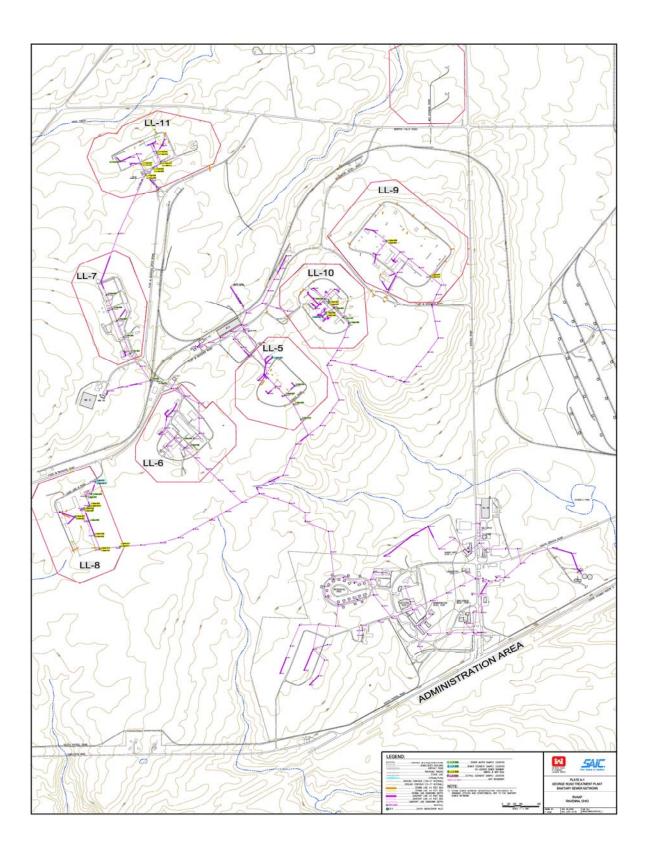
 Table A-3. Inventory of Structures within the Sand Creek Treatment Plant Sewer Network (continued)

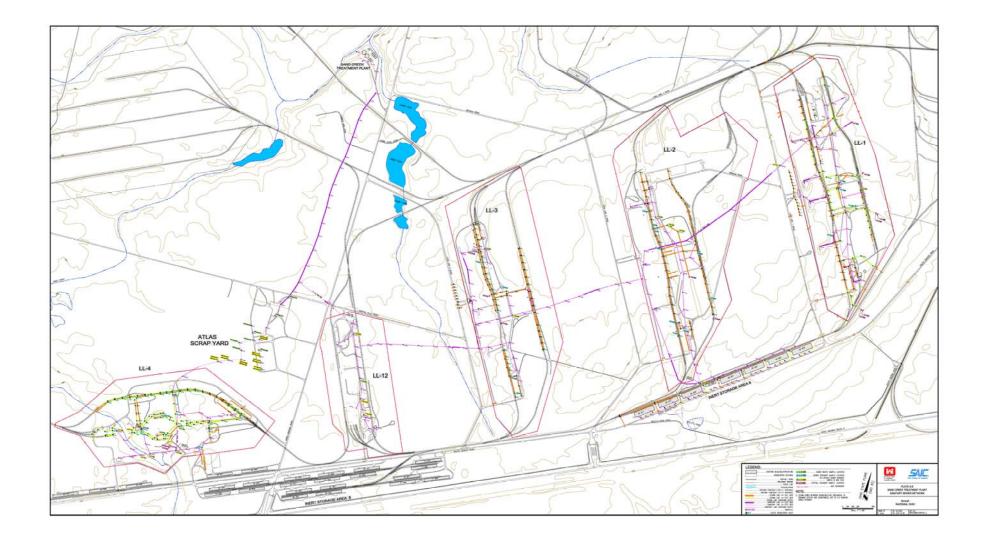
|                |                      | Structure       | Latitude<br>(Ohio State Plane, ft | Longitude<br>(Ohio State Plane, | Top of Structure<br>Elevation | Invert<br>Elevation | Approximate<br>Depth |
|----------------|----------------------|-----------------|-----------------------------------|---------------------------------|-------------------------------|---------------------|----------------------|
| Structure Type | Area                 | ID<br>MIL 502.4 | NAD83)                            | ft NAD83)                       | (ft amsl)                     | (ft amsl)           | (ft bgs)<br>7.01     |
| Sanitary       | Load Line 12         | MH-503A         | 2368897.591                       | 556581.084                      | 979.990<br>979.900            | 972.985<br>971.950  | 7.01                 |
| Sanitary       | Load Line 12         | MH-504          | 2368790.740                       | 556712.422                      |                               |                     |                      |
| Sanitary       | Load Line 12         | MH-504A         | 2368843.866                       | 556615.862                      | 980.070                       | 972.635             | 7.44                 |
| Sanitary       | Load Line 12         | MH-505          | 2368699.381                       | 556917.164                      | 981.260                       | 971.150             | 10.11                |
| Sanitary       | Load Line 12         | MH-505A         | 2368671.160                       | 556707.051                      | 979.460                       | 971.965             | 7.50                 |
| Sanitary       | Load Line 12         | MH-506          | 2368675.357                       | 557099.330                      | 978.780                       | 970.350             | 8.43                 |
| Sanitary       | Load Line 12         | MH-507          | 2368586.212                       | 557300.691                      | 978.520                       | 969.500             | 9.02                 |
| Sanitary       | Load Line 12         | MH-508          | 2368499.664                       | 557501.755                      | 978.560                       | 968.705             | 9.85                 |
| Sanitary       | Load Line 12         | MH-509          | 2368414.246                       | 557698.406                      | 978.320                       | 967.815             | 10.51                |
| Sanitary       | Load Line 12         | MH-510          | 2368340.790                       | 557867.174                      | 978.580                       | 966.935             | 11.65                |
| Sanitary       | Load Line 12         | MH-511          | 2368241.707                       | 558097.725                      | 977.950                       | 966.075             | 11.88                |
| Sanitary       | Load Line 12         | MH-511A         | 2367987.029                       | 557813.543                      | 977.910                       | 968.750             | 9.16                 |
| Sanitary       | Load Line 12         | MH-512          | 2368156.571                       | 558294.099                      | 976.870                       | 965.670             | 11.20                |
| Sanitary       | Trunk/Connector Line | MH-14A          | 2366873.619                       | 558605.325                      | Unknown                       | 970.68              | Unknown              |
| Sanitary       | Trunk/Connector Line | MH-15           | 2366938.826                       | 558815.168                      | 976.510                       | 970.040             | 6.47                 |
| Sanitary       | Trunk/Connector Line | MH-16           | 2366992.070                       | 559158.307                      | 979.050                       | 969.255             | 9.79                 |
| Sanitary       | Trunk/Connector Line | MH-17           | 2367044.093                       | 559490.416                      | 977.310                       | 968.405             | 8.90                 |
| Sanitary       | Trunk/Connector Line | MH-18           | 2367072.498                       | 559787.529                      | 976.780                       | 967.625             | 9.15                 |
| Sanitary       | Trunk/Connector Line | MH-19           | 2367074.245                       | 560051.270                      | 976.040                       | 966.935             | 9.11                 |
| Sanitary       | Trunk/Connector Line | MH-2            | 2366629.634                       | 557090.388                      | 1009.070                      | 975.160             | 33.91                |
| Sanitary       | Trunk/Connector Line | MH-20           | 2367087.173                       | 560371.293                      | 976.550                       | 966.285             | 10.27                |
| Sanitary       | Trunk/Connector Line | MH-21           | 2367079.351                       | 560617.993                      | 975.130                       | 965.615             | 9.51                 |
| Sanitary       | Trunk/Connector Line | MH-22           | 2367092.024                       | 560845.010                      | 972.930                       | 964.810             | 8.12                 |
| Sanitary       | Trunk/Connector Line | MH-23           | 2367136.986                       | 561191.440                      | 971.970                       | 964.055             | 7.92                 |
| Sanitary       | Trunk/Connector Line | MH-24           | 2367184.851                       | 561422.745                      | 971.080                       | 963.175             | 7.91                 |
| Sanitary       | Trunk/Connector Line | MH-25           | 2367225.862                       | 561838.575                      | 969.490                       | 962.235             | 7.26                 |
| Sanitary       | Trunk/Connector Line | MH-26           | 2367243.757                       | 562191.622                      | 967.500                       | 962.235             | 5.26                 |
| Sanitary       | Trunk/Connector Line | MH-27           | 2367292.414                       | 562431.147                      | 969.050                       | 963.900             | 5.15                 |
| Sanitary       | Trunk/Connector Line | MH-28           | 2367368.376                       | 562611.062                      | 966.040                       | 960.360             | 5.68                 |
| Sanitary       | Trunk/Connector Line | MH-29           | 2367437.910                       | 562784.113                      | 969.170                       | 960.360             | 8.81                 |
| Sanitary       | Trunk/Connector Line | MH-30           | 2367316.049                       | 563194.935                      | Unknown                       | 959.31              | Unknown              |
| Sanitary       | Trunk/Connector Line | MH-31           | 2367204.012                       | 563311.408                      | Unknown                       | 958.91              | Unknown              |
| Sanitary       | Trunk/Connector Line | MH-32           | 2367024.122                       | 563326.970                      | Unknown                       | 957.92              | Unknown              |
| Sanitary       | Trunk/Connector Line | MH-33           | 2366860.999                       | 563470.654                      | Unknown                       | 953.42              | Unknown              |
| Sanitary       | Trunk/Connector Line | MH-350          | 2373150.544                       | 560470.327                      | 1011.600                      | 1003.010            | 8.59                 |
| Sanitary       | Trunk/Connector Line | MH-351          | 2372952.600                       | 560384.132                      | 1009.680                      | 1001.690            | 7.99                 |

 Table A-3. Inventory of Structures within the Sand Creek Treatment Plant Sewer Network (continued)

|                |                      | Structure    | Latitude<br>(Ohio State Plane, ft | Longitude<br>(Ohio State Plane, | Top of Structure<br>Elevation | Invert<br>Elevation | Approximate<br>Depth |
|----------------|----------------------|--------------|-----------------------------------|---------------------------------|-------------------------------|---------------------|----------------------|
| Structure Type | Area                 | ID           | NAD83)                            | ft NAD83)                       | (ft amsl)                     | (ft amsl)           | (ft bgs)             |
| Sanitary       | Trunk/Connector Line | MH-352       | 2372610.364                       | 560175.009                      | 1008.200                      | 1000.315            | 7.88                 |
| Sanitary       | Trunk/Connector Line | MH-353       | 2372315.406                       | 559959.371                      | 1006.960                      | 998.830             | 8.13                 |
| Sanitary       | Trunk/Connector Line | MH-354       | 2372089.381                       | 559805.872                      | 1006.400                      | 997.315             | 9.08                 |
| Sanitary       | Trunk/Connector Line | MH-429       | 2370384.593                       | 558396.058                      | 982.920                       | 976.725             | 6.19                 |
| Sanitary       | Trunk/Connector Line | MH-430       | 2370114.793                       | 558337.650                      | 981.690                       | 975.850             | 5.84                 |
| Sanitary       | Trunk/Connector Line | MH-431       | 2369820.556                       | 558274.364                      | 980.400                       | 974.950             | 5.45                 |
| Sanitary       | Trunk/Connector Line | MH-432       | 2369527.983                       | 558211.438                      | 981.800                       | 974.050             | 7.75                 |
| Sanitary       | Trunk/Connector Line | MH-433       | 2369235.444                       | 558148.554                      | 982.000                       | 973.150             | 8.85                 |
| Sanitary       | Trunk/Connector Line | MH-434       | 2368941.983                       | 558085.402                      | 980.100                       | 971.850             | 8.25                 |
| Sanitary       | Trunk/Connector Line | MH-435       | 2368747.722                       | 558041.548                      | 979.300                       | 970.150             | 9.15                 |
| Sanitary       | Trunk/Connector Line | MH-436       | 2368570.424                       | 557965.546                      | 978.700                       | 968.310             | 10.39                |
| Sanitary       | Trunk/Connector Line | MH-CO-<br>#1 | 2375464.255                       | 563463.866                      | 1006.000                      | 997.365             | 8.63                 |
| Sanitary       | Trunk/Connector Line | MH-CO-<br>#2 | 2374749.264                       | 562382.335                      | 1009.070                      | 1006.900            | 2.17                 |
| Sanitary       | Trunk/Connector Line | MH-CO-<br>#3 | 2374068.128                       | 561559.096                      | 1011.300                      | 1009.415            | 1.88                 |
| Sanitary       | Trunk/Connector Line | MH-CO-<br>#5 | 2367544.505                       | 558576.768                      | 978.300                       | 971.305             | 7.00                 |

Table A-3. Inventory of Structures within the Sand Creek Treatment Plant Sewer Network (continued)


ft amsl = feet above mean sea level


ft bgs = feet below ground surface

ID = Identification designator.

NAD = North American Datum

THIS PAGE INTENTIONALLY LEFT BLANK.





# APPENDIX B Administrative Area

## **B.1** AREA DESCRIPTION

The Administration Area is located on the south boundary of the facility and is comprised of a number of buildings and warehouses which were used for various support operations (Figure B-1). The western side of this area at one time contained a hospital, dormitory, a staff circle containing fifteen homes, and amenities to support the workers in residence. The eastern side included a chemical laboratory with facilities for explosives analysis, a laundry for explosives-contaminated clothing, and both general and automotive maintenance and repair shops.

The Administration Area was supported by an extensive sanitary sewer system, which is part of the George Road Treatment Plant network (shown in Plate A-1). A preliminary reconnaissance effort in December 2008 observed the presence of an extensive storm sewer network which was not indicated on the available historical engineering drawings.

## **B.2 PREVIOUS INVESTIGATIONS**

During the *Explosive Evaluation of Sewers* investigation, twenty-six sanitary sewer manholes were evaluated via DropEx<sup>TM</sup> field screening for explosives, none of which indicated the presence of trace explosives residue (Lakeshore Engineering Services, Inc., 2007). The Lakeshore investigation also noted that a number of manholes within the Administration Area were inaccessible due to having been paved over with asphalt or concrete. The Lakeshore sewer effort was conducted without Ohio EPA regulatory oversight or review of the associated work plans and resultant completion report or its conclusions.

## **B.3 PROPOSED SAP ADDENDUM INVESTIGATION OBJECTIVES**

The general approach for investigation activities for Facility-Wide Sewers as a whole is presented in Section 3.2 of the FSP. However, certain areas of the system should be targeted for assessment based on the evaluation of existing historical data, results of previous investigations, anomalies identified during visual survey, or potential to have accumulated contaminants based on their location within the system and proximity to source areas. Although actual sampling locations cannot be established in advance since sufficient volume of media for sample collection may be unavailable and because site conditions may preclude access to portions of the system, primary and alternate sampling recommendations for the Administration Area are presented in Table B-1, and shown in Figure B-2.

| Sewer<br>Type | Primary Sample<br>Location                                                  | Alternate Sample<br>Locations<br>(In Order of<br>Precedence)                | Media Type                                                 | Comments/Rationale                                                                                                               |
|---------------|-----------------------------------------------------------------------------|-----------------------------------------------------------------------------|------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|
| Sanitary      | MH-1-2                                                                      | MH-1-3                                                                      | Sewer Sediment                                             | Isolates segment at northern portion of area                                                                                     |
| Sanitary      | MH-1-4                                                                      | None                                                                        | Sewer Sediment                                             | Key junction downstream of<br>maintenance, equipment repair,<br>powerhouse and firehouse buildings                               |
| Sanitary      | MH-1-5                                                                      | MH-1-6                                                                      | Sewer Sediment                                             | Isolates maintenance building segment                                                                                            |
| Sanitary      | MH-2-1                                                                      | MH-UN (2) around<br>shop building through<br>MH-O7                          | Sewer Sediment                                             | Shop building represents potential source area                                                                                   |
| Sanitary      | MH-2-8                                                                      | MH-2-9                                                                      | Sewer Sediment                                             | Isolates administration/telephone<br>building segment                                                                            |
| Sanitary      | MH-3-1                                                                      | MH-08                                                                       | Sewer Sediment                                             | Isolates laboratory building segment                                                                                             |
| Sanitary      | MH-4-1                                                                      | MH-4-2                                                                      | Sewer Sediment                                             | Isolates Key & Scale Shop and Dorm buildings segment                                                                             |
| Sanitary      | MH-9-1                                                                      | MH-2-4                                                                      | Sewer Sediment                                             | Isolates garage building segment                                                                                                 |
| Sanitary      | MH-11-1A                                                                    | MH-11-1B, MH-11-1C,<br>MH-11-1E, MH-11-1F                                   | Sewer Sediment                                             | Isolates segment at north-central portion of area                                                                                |
| Sanitary      | MH-12                                                                       | MH-1, MH-2, MH-6,<br>MH-11, MH-7, MH-3,<br>MH-4, MH-10, MH-8,<br>MH-9, MH-5 | Sewer Sediment                                             | Isolates segment encompassing former recreation fields                                                                           |
| Sanitary      | MH-101                                                                      | MH-2-7, MH-2-6, MH-<br>2-5                                                  | Sewer Sediment                                             | Isolates parking area segment                                                                                                    |
| Sanitary      | MH-O6                                                                       | MH-O7 through<br>unknown line ("MH-                                         | Sewer Sediment                                             | Isolates segment leading to treatment plant                                                                                      |
| Santary       | MII-00                                                                      | UN") at shop building                                                       | Sewer Water                                                |                                                                                                                                  |
| Sanitary      | MH-O13A                                                                     | MH-O13B, MH-O13C,<br>MH-O13D                                                | Sewer Sediment                                             | Isolates recreation buildings segment                                                                                            |
| Sanitary      | MH-O13                                                                      | None                                                                        | Sewer Water                                                | Characterize sewer water at key junction point within area                                                                       |
| Sanitary      | MH-015                                                                      | MH-5-1, MH-5-2, MH-<br>5-3, MH-5-4                                          | Sewer Sediment                                             | Isolates residential area segment                                                                                                |
| Sanitary      | MH-O16                                                                      | MH-6-1, MH-6-2                                                              | Sewer Sediment                                             | Isolates hospital segment                                                                                                        |
| Gault         |                                                                             | MH-O21, MH-O22,                                                             | Sewer Sediment                                             | Characterizes conditions upstream of                                                                                             |
| Sanitary      | MH-O20                                                                      | MH-O23, MH-O24,<br>MH-O27                                                   | Sewer Water                                                | Administration Area                                                                                                              |
| Sanitary      | MH-P1                                                                       | MH-O1, MH-O2, MH-                                                           | Sewer Sediment                                             | Characterizes conditions downstream<br>of Administration Area and prior to                                                       |
| Juniury       |                                                                             | 03, MH-O4                                                                   | Sewer Water                                                | entering treatment plant                                                                                                         |
| Sanitary      | MH-UN (southwest<br>corner of shop<br>building)                             | MH-UN immediately<br>north of southwest<br>corner of shop building          | Sewer Sediment                                             | Shop building represents potential source area                                                                                   |
| Sanitary      | Outfall south of<br>George Road<br>Treatment Plant, if                      | None                                                                        | Outfall Sediment                                           | May be a potential outfall at terminus<br>of sanitary line following demolition<br>of the treatment plant                        |
|               | present                                                                     |                                                                             | Outfall Water                                              | houring prairie                                                                                                                  |
| Storm         | Selection of<br>representative outfalls<br>and catch basins as<br>necessary | Multiple representative                                                     | Multiple<br>outfall/sewer<br>sediment and<br>water samples | Condition and extent of storm<br>network unknown, and representative<br>sample points will need to be<br>determined in the field |

# Table B-1. Summary of Proposed Sampling Locations at the Administration Area

Additional sewer characterization objectives for the Administration Area include the following:

- Locate and assess the condition of the key sanitary sewer junction points within the system, such as manholes MH-O5, MH-O8, MH-O15, MH-1-4, and MH-2-4. Documenting the location coordinates of these manholes will also assist in the correction of the existing sanitary system map layer, as some discrepancies were noted during the preliminary reconnaissance effort in December 2008.
- Evaluate and document the storm sewer network. The layout of this system is unknown, as historical drawings showing its layout are not available. Visual survey and Global Positioning System (GPS) data collection will be utilized to generate a storm system map layer; smoke tracing will be utilized, if necessary, to locate the unknown storm structures. Accumulated sediment will be collected from representative locations within the storm system.
- Locate and sample representative (1) outfall locations from the storm sewer system and (2) catch basins at potential source areas (e.g.: shop building, laboratory) where accumulation of sediment is evident (refer to Figure B -2).

During the visual survey phase, inspection forms will be completed for structures within the Administration Area to document their condition and accessibility for subsequent investigative activities (i.e., sample media collection or video survey). Actual locations of sample collection, video surveys will be presented in the RI report.

THIS PAGE INTENTIONALLY LEFT BLANK.

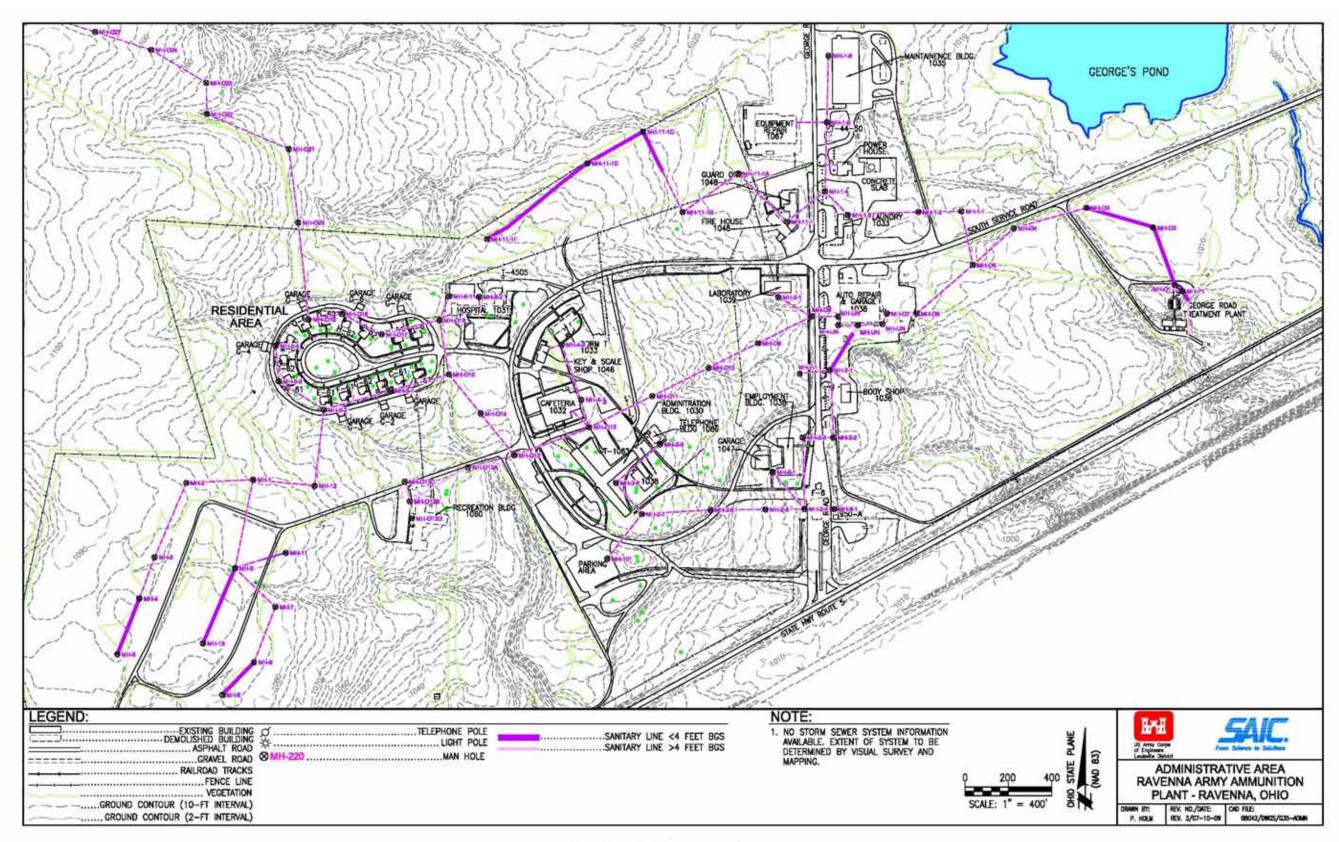



Figure B-1. Administrative Area Sewers

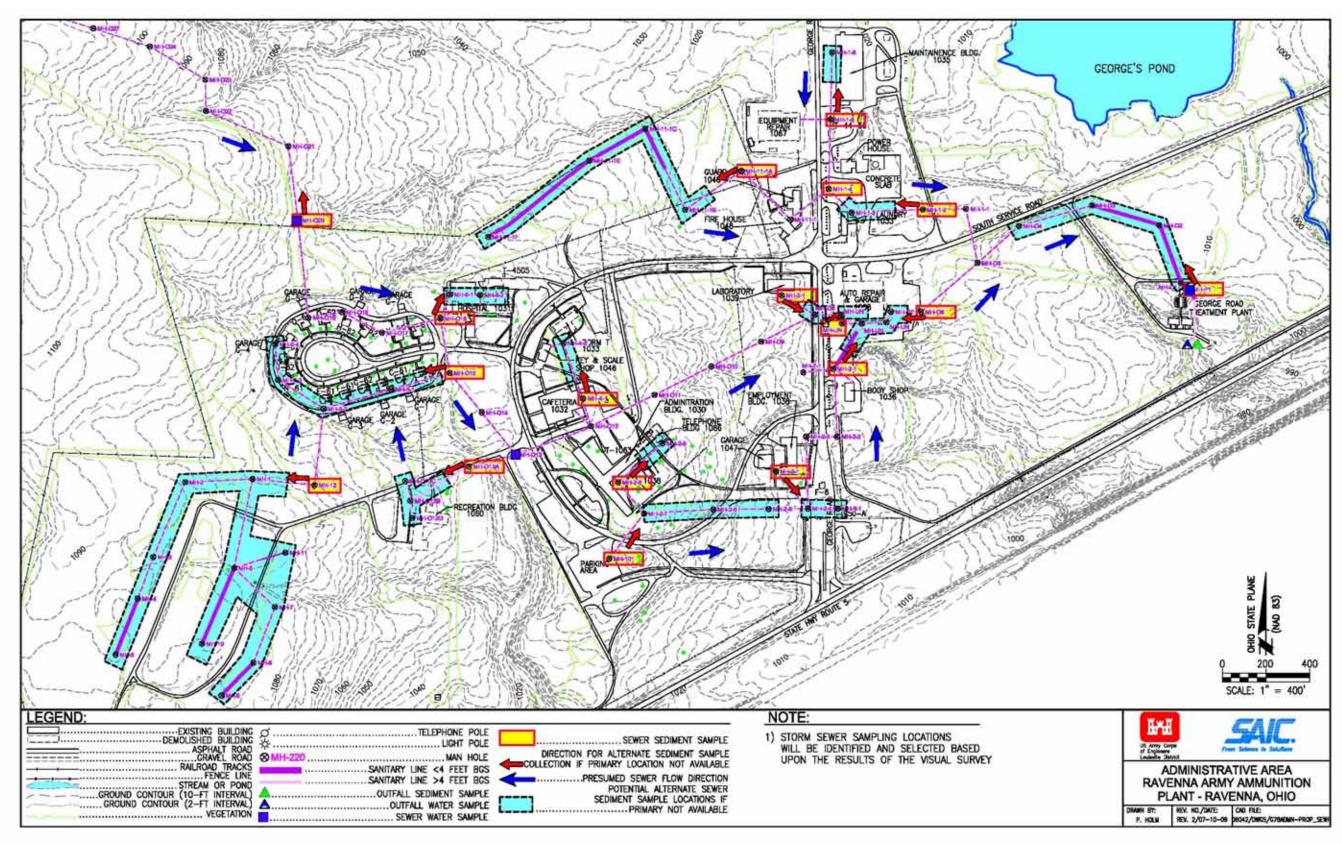



Figure B-2. Proposed Sewer Sampling Locations at the Administrative Area

APPENDIX C Atlas Scrap Yard

## C.1 AREA DESCRIPTION

Atlas Scrap Yard was a former construction camp built to house workers during the construction of RVAAP (Figure C-1). Following demolition of the facilities following World War II, the area was used as a scrap yard for non-explosive scrap materials, MEC scrap, and wooden ammunition boxes, in addition to housing the Roads and Grounds Maintenance Area. The RVAAP-50-R-01 MRS encompasses about 66 acres within the IRP AOC boundary. A MEC removal action was completed in 2003, wherein removal of above-grade MEC and ammunition boxes was completed. Currently, the area is covered by thick grass, and miscellaneous non-explosive scrap material including pipes, railroad ballast, railroad ties, concrete rubble and chipped ammunition boxes are staged at the AOC.

The sanitary sewer system at Atlas Scrap Yard is part of the Sand Creek Treatment Plant network (shown in Plate A-2). In addition to sanitary sewers, an underground storm water drainage system existed in the eastern portion of the Atlas Scrap Yard; however, a preliminary reconnaissance effort in December 2008 did not observe any remnants of this former storm system.

### C.2 PREVIOUS INVESTIGATIONS

Sewer water and sediment samples were collected from the sanitary sewer manholes at the Atlas Scrap Yard in 2004 as part of the *Final Characterization of 14 AOCs* investigation (MKM Engineers, Inc. 2007a). In total, samples were collected from fifteen manhole stations; collocated sediment and water samples were collected at seven locations, and only sewer water could be collected at eight locations (Figure C-1). At the time of sample collection, one of the sewer manholes was not able to be located (MH-11) and another was found to be filled with railroad ties and other debris (MH-13). The investigation indicated that a tarry organic odor and visual coal tar contamination was present at three sewer locations (MH-1, MH-2 and MH-3), and analytical samples indicated elevated levels of diesel range organic compounds. No visual evidence of coal tar contamination was observed during a preliminary reconnaissance effort in December 2008.

The analytical results indicated that multiple metals exceeded screening levels in sewer sediment at Atlas Scrap Yard (Figure C-2). Screening level exceedances of several polyaromatic hydrocarbons were also observed in sewer media. These exceedances are summarized in Table C-1. The explosive 4-amino-2,6-dinitrotoluene and the propellant nitroglycerin were detected once apiece in sewer water, and the explosive 2-amino-4,6-dinitrotoluene was detected in one sediment sample, all at low estimated concentrations well below the screening levels.

| Media    | Analyte                | Units | Detection<br>Frequency | Minimum<br>Detection | Maximum<br>Detection | Average<br>Result | Screening<br>Level <sup>a</sup> |
|----------|------------------------|-------|------------------------|----------------------|----------------------|-------------------|---------------------------------|
|          | Aluminum               | mg/kg | 7/7                    | 5,100                | 15,000               | 10,100            | 13,900                          |
|          | Arsenic                | mg/kg | 7/7                    | 8                    | 29                   | 14.3              | 19.5                            |
|          | Barium                 | mg/kg | 7/7                    | 84                   | 570                  | 191               | 350                             |
| Sewer    | Chromium               | mg/kg | 7/7                    | 17                   | 30                   | 21.6              | 18.1                            |
| Sediment | Cobalt                 | mg/kg | 7/7                    | 6.8                  | 79                   | 19.1              | 9.1                             |
| Seament  | Manganese              | mg/kg | 7/7                    | 170                  | 34,000               | 5,400             | 1,950                           |
|          | Mercury                | mg/kg | 7/7                    | 0.05                 | 5.2                  | 0.96              | 2.3                             |
|          | Vanadium               | mg/kg | 7/7                    | 20                   | 56                   | 31.8              | 45                              |
|          | Benz(a)anthracene      | mg/kg | 1/1                    | _                    | —                    | 10                | 0.22                            |
| Sewer    | Benzo(a)pyrene         | mg/L  | 1/15                   | _                    | _                    | 0.0001            | 0.0000008                       |
| Water    | Indeno(1,2,3-cd)pyrene | mg/L  | 1/15                   | _                    | —                    | 0.0002            | 0.0000078                       |

 Table C-1. Chemicals Exceeding Screening Levels in Sewer Media at Atlas Scrap Yard

<sup>a</sup>Screening levels are based on the Draft Facility-Wide Cleanup Goal for Hazard Quotient (HQ)=0.1 and Carcinogenic Risk=1E-6. Where background values were higher than the cleanup goal (HQ=0.1/R=1E-6), the background value is utilized as the screening level. — Not applicable.

### C.3 PROPOSED SAP ADDENDUM INVESTIGATION OBJECTIVES

The general approach for investigation activities for Facility-Wide Sewers as a whole is presented in Section 3.2 of the FSP. However, certain areas of the system should be targeted for assessment based on the evaluation of existing historical data, results of previous investigations, anomalies identified during visual survey, or potential to have accumulated contaminants based on their location within the system and proximity to source areas. Although actual sampling locations cannot be established in advance since sufficient volume of media for sample collection may be unavailable and because site conditions may preclude access to portions of the system, primary and alternate sampling recommendations for Atlas Scrap Yard are presented in Table C-2, and shown in Figure C-3.

| Sewer<br>Type<br>Sanitary | Primary Sample<br>Location | Alternate Sample<br>Locations<br>(In Order of Precedence)<br>MH-14A, MH-14, MH- | Media Type<br>Sewer Water | Comments/Rationale<br>Representative of conditions at                                                                                                                                                                                                                                                   |
|---------------------------|----------------------------|---------------------------------------------------------------------------------|---------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Sannary                   | WITI-15                    | 13, MH-12, MH-11                                                                | Sewer Sediment            | downstream end of Atlas Scrap Yard.                                                                                                                                                                                                                                                                     |
| Sanitary                  | MH-1                       | Locations south, if present                                                     | Sewer Sediment            | December 2008 sewer<br>reconnaissance observed line exiting<br>MH-1 to the south that was not<br>indicated on historical maps.<br><i>In addition to Tier 1 sampling</i><br><i>procedures, collect SVOC sample</i><br><i>due to historical observation of</i><br><i>visual "coal tar" contamination.</i> |
| Sanitary                  | МН-2                       | None                                                                            | Sewer Sediment            | Confirmatory purposes due to<br>previously high manganese<br>concentrations in sediment.<br>In addition to Tier 1 sampling<br>procedures, collect SVOC sample<br>due to historical observation of<br>visual "coal tar" contamination.                                                                   |
| Sanitary                  | MH-2                       | None                                                                            | Sewer Sediment            | Collect SVOC sample due to<br>historical observation of visual<br>"coal tar" contamination.                                                                                                                                                                                                             |
| Sanitary                  | MH-HD3                     | MH-HD2                                                                          | Sewer Sediment            | Representative of conditions at upstream end of Atlas Scrap Yard.                                                                                                                                                                                                                                       |

Additional characterization objectives for Atlas Scrap Yard include the following:

- Visual evaluation of conditions at sanitary sewer locations MH-1, MH-2 and MH-3. These manholes are where the 2004 characterization effort indicated visual coal tar contamination and elevated total petroleum hydrocarbon concentrations were observed. If sewer sediment is available at these three locations, collect an SVOC sample at each location.
- Assess if additional sanitary sewer system structures are present south of MH-1. The sanitary sewer map layer based upon the historical drawings indicate that MH-1 is the southernmost terminal manhole in the line, but the preliminary reconnaissance effort in December 2008 observed a pipe exiting MH-1 to the south. The building map layer indicates that there were buildings across the road at one time which the sanitary sewer system presumably serviced.
- Evaluate conditions at MH-15, which is the junction point with the force main draining the major load lines and the trunk leading to Sand Creek Treatment Plant.

During the visual survey phase, inspection forms will be completed for the noted above areas of interest to document their condition and accessibility for subsequent investigative activities (i.e., sample media collection or video survey). Actual locations of sample collection, video surveys will be presented in the RI report.

THIS PAGE INTENTIONALLY LEFT BLANK.

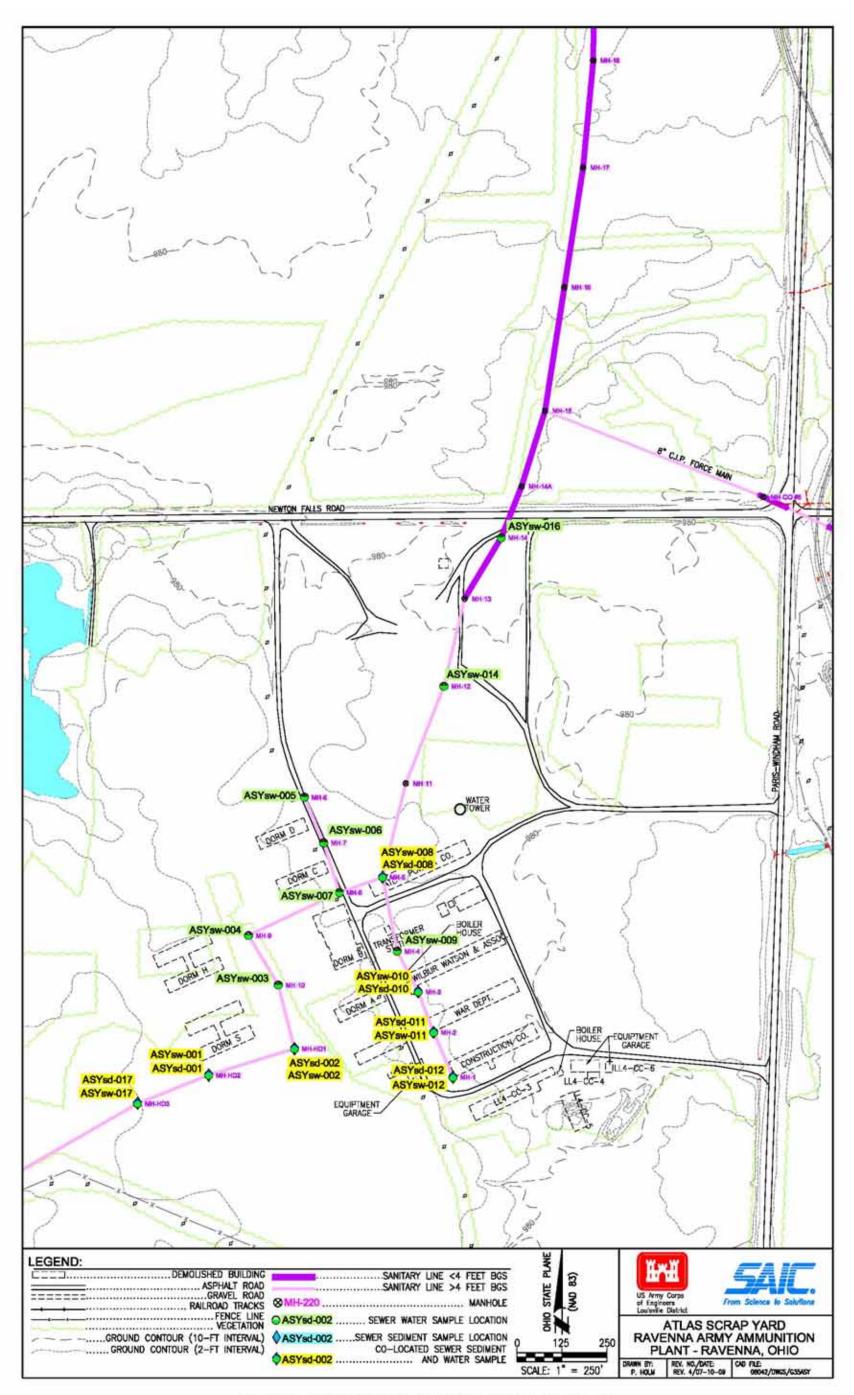



Figure C-1. Historical Sewer Sampling Locations at Atlas Scrap Yard

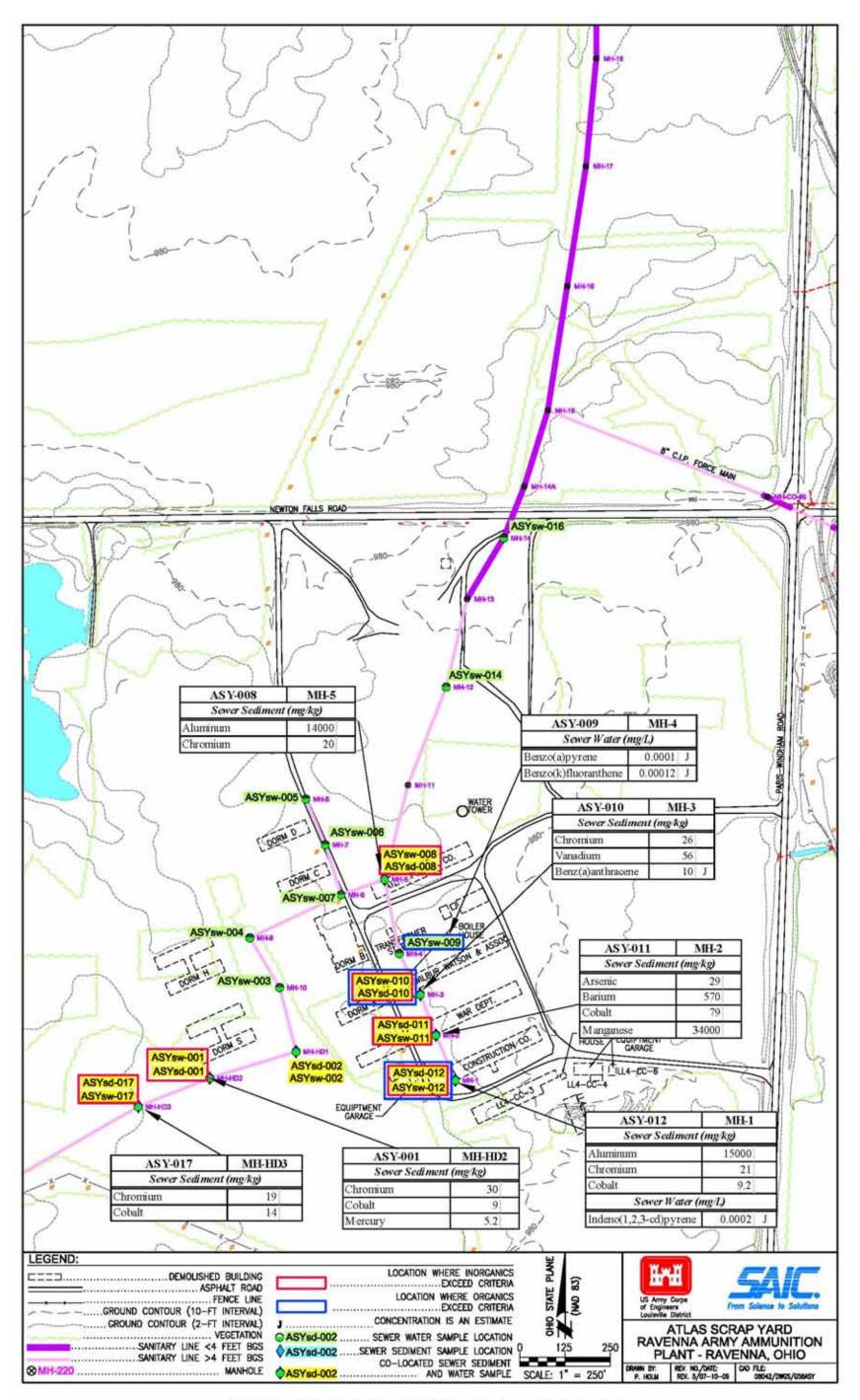



Figure C-2. Historical Exceedances for Sewer Samples at Atlas Scrap Yard

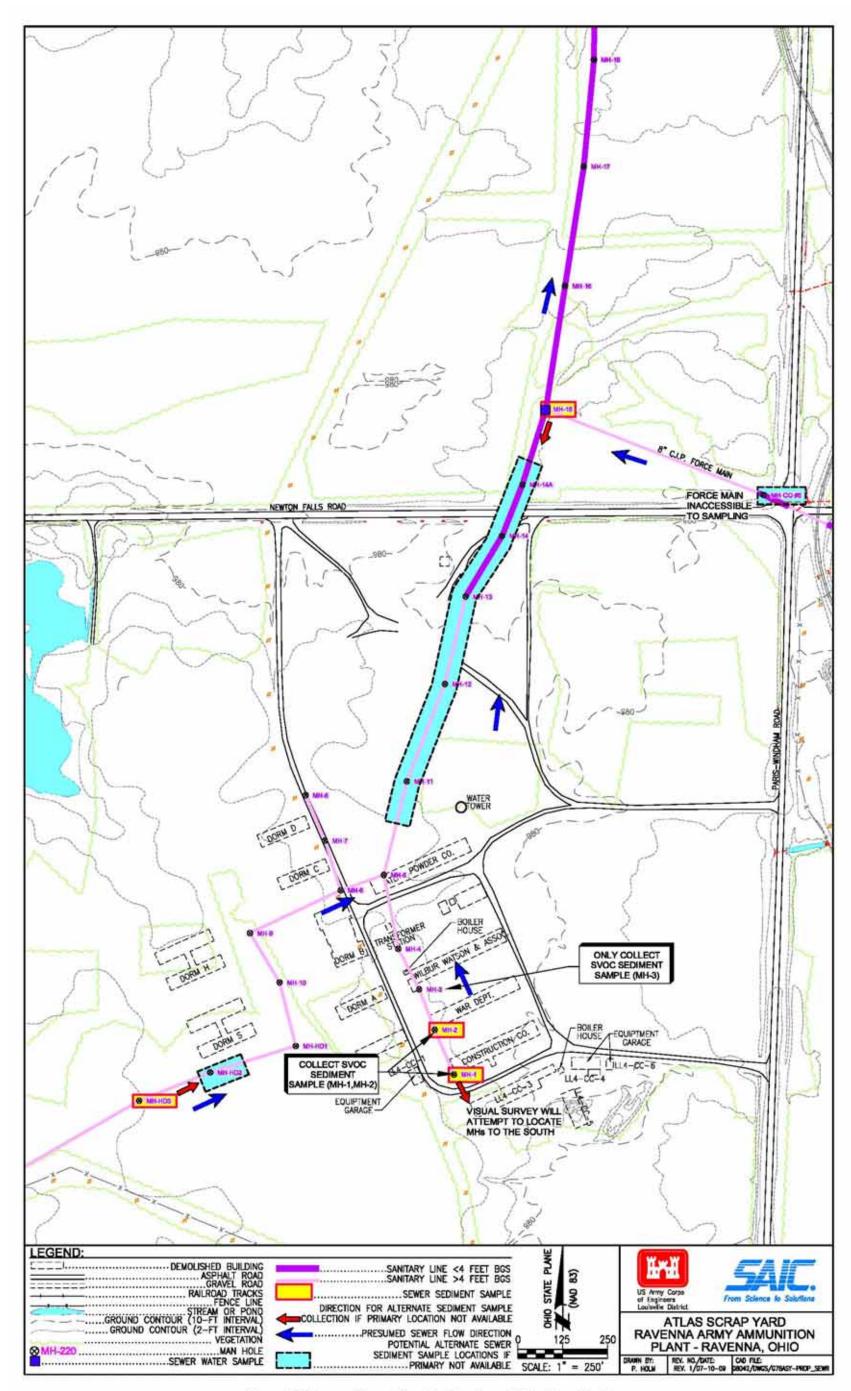



Figure C-3. Proposed Sewer Sampling Locations at Atlas Scrap Yard

# APPENDIX D Depot Administration Area

#### **D.1** AREA DESCRIPTION

The Depot Administration Area is located on the western end of the facility and contained a large number of warehouses and storage buildings. As limited historical information has been located for this area, specific building utilization is unknown. Due to this remote location of this area from the larger sanitary sewer networks, the Depot Administration Area had its own sanitary sewer network, terminating at the Depot Sewage Treatment Plant which was operational until 1983. The preliminary sewer reconnaissance effort in December 2008 noted the existence of an extensive storm sewer network throughout the Depot Administration Area. However, as historical engineering drawings of this area have not been located, the layout and full extent of this storm sewer system is largely unknown. Based on the preliminary reconnaissance survey, it was determined that the likely location of the primary outfall from this storm sewer system is near the former Depot Sewage Treatment Plant, at the southern end of the Depot Administration Area. At the time of the survey, it was noted that many of the warehouse and shed buildings throughout the area are intact and in use. The railroad tracks at the northern portion of the area have since been removed.

#### **D.2 PREVIOUS INVESTIGATIONS**

No former sewers investigations are known to have been conducted at the Depot Administration Area.

#### D.3 PROPOSED SAP ADDENDUM INVESTIGATION OBJECTIVES

The general approach for investigation activities for Facility-Wide Sewers as a whole is presented in Section 3.2 of the FSP. However, certain areas of the system should be targeted for assessment based on the evaluation of existing historical data, results of previous investigations, anomalies identified during visual survey, or potential to have accumulated contaminants based on their location within the system and proximity to source areas. Although actual sampling locations cannot be established in advance since sufficient volume of media for sample collection may be unavailable and because site conditions may preclude access to portions of the system, primary and alternate sampling recommendations for the Depot Administration Area are presented in Table D-1, and shown in Figure D-2.

| Sewer<br>Type | Primary Sample<br>Location                                                  | Alternate Sample<br>Locations<br>(In Order of Precedence) | Media Type                                                 | Comments/Rationale                                                                                                               |
|---------------|-----------------------------------------------------------------------------|-----------------------------------------------------------|------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|
| Sanitary      | MH-D2                                                                       | MH-D1, MH-D3                                              | Sewer Sediment                                             | Isolates segment at northwest reach of warehouse area.                                                                           |
| Sanitary      | MH-D5                                                                       | MH-D4                                                     | Sewer Sediment<br>Sewer Water                              | Isolates northern reach of warehouse area.                                                                                       |
| Sanitary      | MH-D9                                                                       | MH-D7, MH-D6                                              | Sewer Sediment<br>Sewer Water                              | Represents key junction point draining northern half of area                                                                     |
| Sanitary      | MH-D13                                                                      | MH-D14, MH-D15,<br>MH-D16                                 | Sewer Sediment                                             | Isolates reach in vicinity of former waterworks                                                                                  |
| Sanitary      | MH-D11                                                                      | MH-D10, MH-D12,<br>MH-D17, MH-D18                         | Sewer Sediment                                             | Isolates potential source area at central warehouses.                                                                            |
| Sanitary      | MH-D25                                                                      | MH-D26                                                    | Sewer Sediment                                             | Isolates potential source area at central warehouses.                                                                            |
| Sanitary      | MH-D22                                                                      | MH-D21, MH-D20                                            | Sewer Sediment                                             | Isolates reach south of former sub-<br>station.                                                                                  |
| Sanitary      | MH-D19                                                                      | MH-D28, MH-D29                                            | Sewer Sediment<br>Sewer Water                              | Represents key junction and isolates southern portion of area                                                                    |
| Sanitary      | MH-D33                                                                      | MH-D34, MH-D35                                            | Sewer Sediment                                             | Isolates southern terminal segment of area                                                                                       |
| Sanitary      | МН-D32                                                                      | MH-D31, MH-D30,<br>MH-D23                                 | Sewer Sediment                                             | Characterizes influent conditions in reach draining to the former treatment plant.                                               |
|               | Outfall at treatment                                                        |                                                           | Outfall Sediment                                           | May be a potential outfall at terminus                                                                                           |
| Sanitary      | plant terminal end of<br>sanitary line, if present                          | None                                                      | Outfall Water                                              | of sanitary line following demolition<br>of the treatment plant                                                                  |
| Storm         | Selection of<br>representative outfalls<br>and catch basins as<br>necessary | Multiple representative                                   | Multiple<br>outfall/sewer<br>sediment and<br>water samples | Condition and extent of storm network<br>unknown, and representative sample<br>points will need to be determined in<br>the field |

Table D-1. Summary of Proposed Sampling Locations at the Depot Administration Area

Additional sewer characterization objectives for the Depot Administration Area include the following:

- Ground-truth and document the configuration of the sanitary sewer network. During the preliminary reconnaissance effort in December 2008, the location of manhole structures in the field was observed to differ substantially from what was reflected in the maps based upon the digitization of historical facility drawings (Figure D-1 and D-2 have been manually corrected to the degree possible based upon the observations of the preliminary survey. Documenting the location coordinates of key junction point manholes (i.e.; MH-D12, MH-D17, MH-D19 and MH-D23) will assist in the correction of the existing sanitary system map layer.
- Evaluate and document the storm sewer network. The extent of this system is unknown, as historical drawings showing its layout are not available. Visual survey and GPS data collection will be utilized to generate a storm system map layer; smoke tracing will be

utilized, if necessary, to locate the unknown storm structures. Accumulated sediment will be collected from representative locations within the storm system.

• Locate and sample (1) outfall locations from the storm sewer system and (2) catch basins in potential source areas where accumulation of sediment is evident.

During the visual survey phase, inspection forms will be completed for structures at the Depot Administration Area to document their condition and accessibility for subsequent investigative activities (i.e., sample media collection or video survey). Actual locations of sample collection, video surveys will be presented in the RI report. THIS PAGE INTENTIONALLY LEFT BLANK.

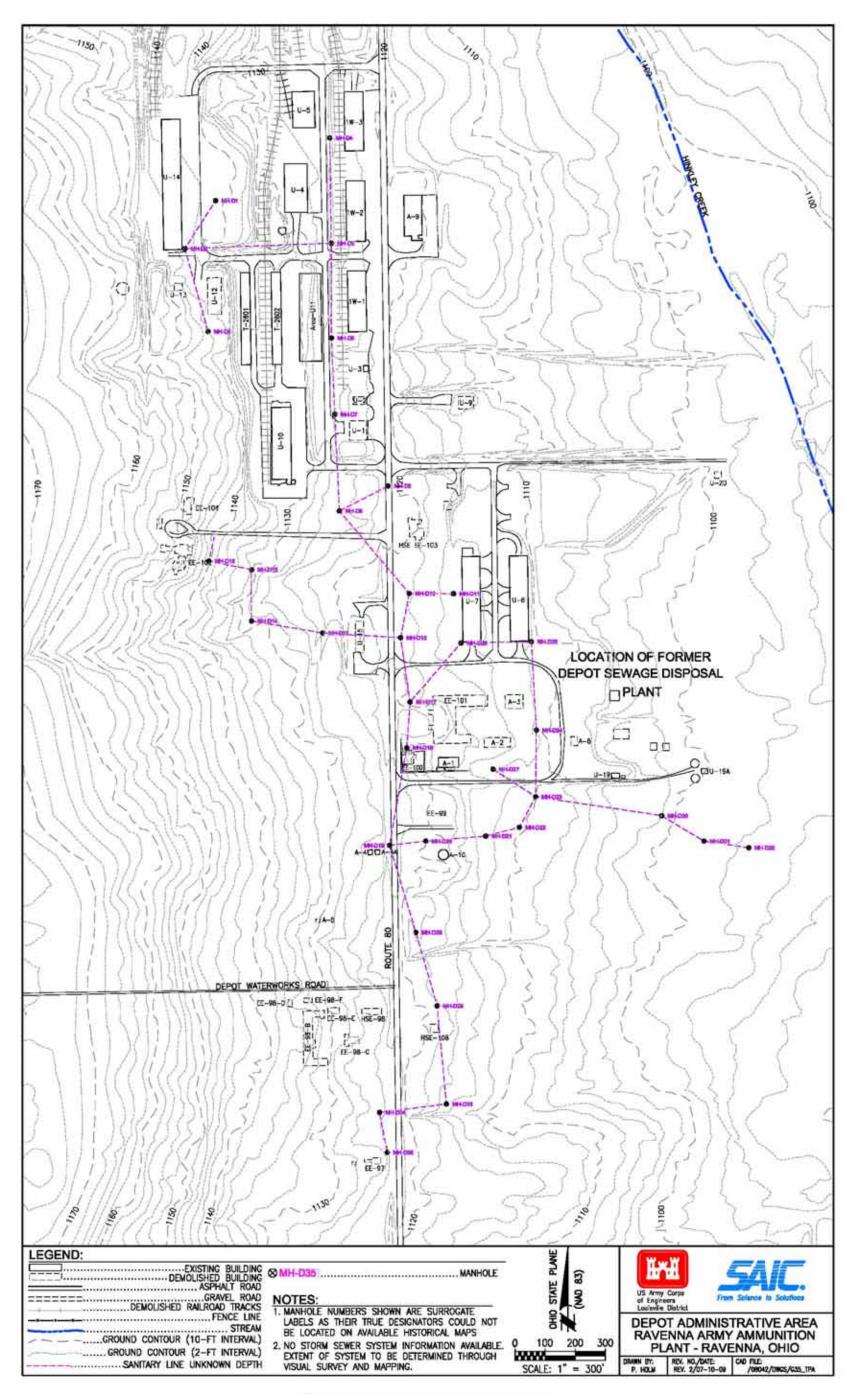



Figure D-1. Depot Administration Area Sewers

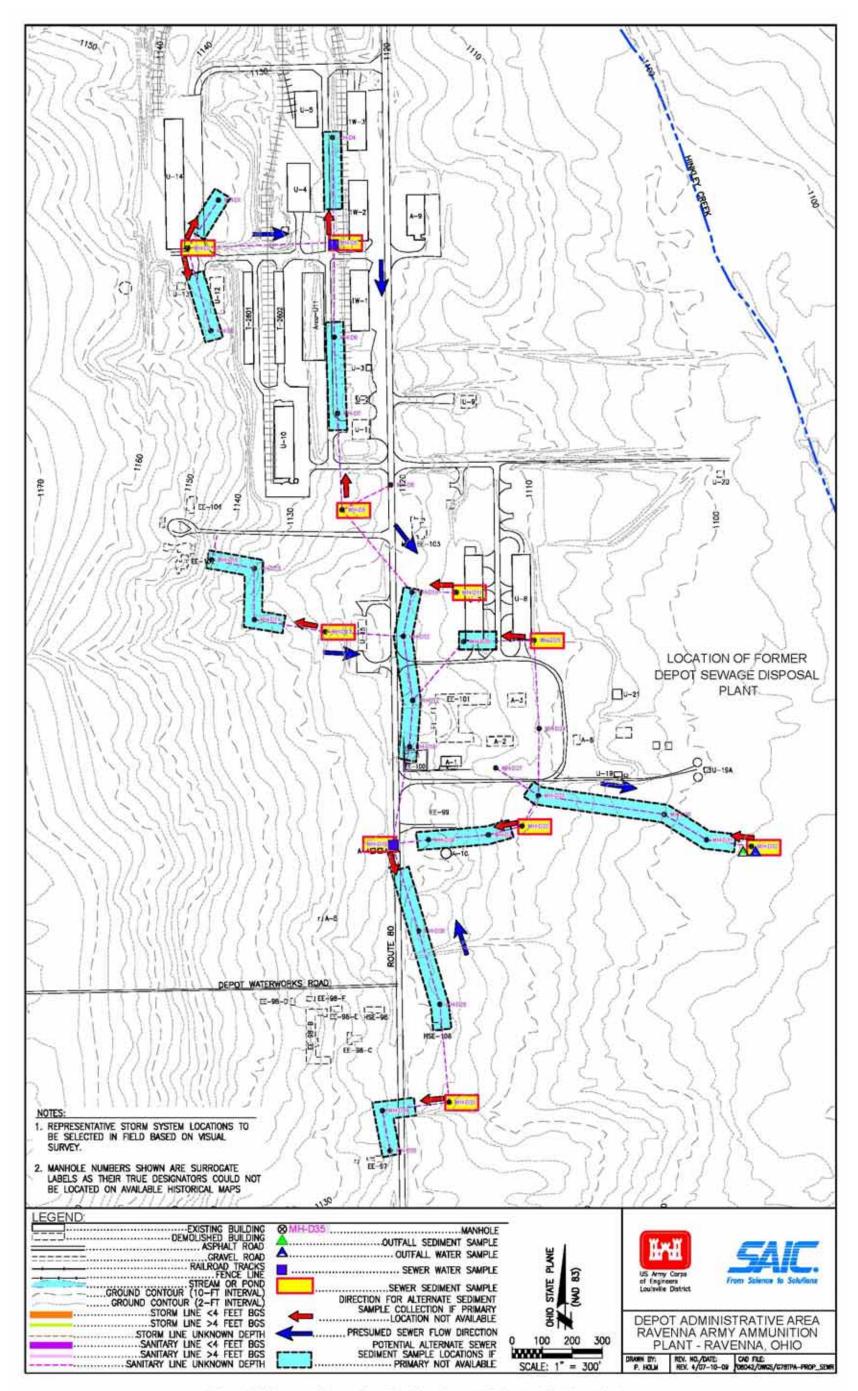



Figure D-2. Proposed Sewer Sampling Locations at the Depot Administration Area

APPENDIX E Load Line 1

### **E.1** AREA DESCRIPTION

Load Line 1 is located in the southeastern portion of the facility and was in operation from 1941 until 1971 (Figure E-1). During World War II (1941 through 1945) and from 1951 through 1957, Load Line 1 was used to melt and load TNT and Composition B explosives into large-caliber shells which took place at the major melt-pour buildings (CB-4 and CB-4A). During 1961 to 1967, Load Line 1 was the site of munitions rehabilitation activities and the demilitarization of primers. During this time, Buildings CB-13 and CB-14 were used for activities such as dismantling, replacing of components, and repainting of mines. Wash-down water and wastewater from the load line operations were collected in concrete sumps, pumped through sawdust filtration units and then discharged to a 1 acre unlined settling pond. Water from the impoundment was discharged to a surface stream that exited the installation. Load Line 1 was rehabilitated in 1951 to remove and replace soils contaminated with accumulated explosives and to remove and replace waste water lines, particularly at Buildings CB-4 and CB-4A. However, many contaminated storm drain lines remained after 1951.

Load Line 1 contains separate storm and sanitary sewer systems. The sanitary sewer system at Load Line 1 is part of the Sand Creek Treatment Plant network (shown in Plate A-2). Sanitary effluent exited Load Line 1 through an ejector station located at the north end of the load line. The storm sewer network is unique to Load Line 1, and discharged to a series of surface drainage conveyances throughout the load line. The storm sewer and sanitary sewer system infrastructures largely remain in place, although portions of the systems have sustained significant damage or have been obstructed with debris during building demolition activities.

## **E.2 PREVIOUS INVESTIGATIONS**

The *Phase II Remedial Investigation for Load Line 1* included sewer water and sediment sampling and a video camera survey of the sewer lines (USACE 2003). During the initial examination of the catch basins and manholes, it was noted that there were locations where sediment had accumulated. Sediment samples were collected from outfalls locations where storm sewer lines discharged to surface drainage conveyances. Also, the majority of the Load Line 1 sewers were above the water table and relatively dry, limiting collection of water samples. Previous sewer and outfall sample locations are shown in Figure E-1.

The analytical results indicated that metals (antimony, arsenic, chromium, cobalt, copper, vanadium and zinc), explosives (2-amino-4,6-dinitrotoluene and 4-amino-2,6-dinitrotoluene), benzo(a)pyrene and PCB-1254 exceeded the screening levels in sewer sediment. In sewer water, manganese and several explosives (2,4,6-trinitrotoluene, 2-amino-4,6-dinitrotoluene and 4-amino-2,6-dinitrotoluene) exceeded the screening levels at Load Line 1. Outfall sediment data indicated screening level exceedances of multiple metals (antimony, arsenic, total and hexavalent chromium, cobalt, copper, and manganese), benzo(a)pyrene and PCB-1254. These screening level exceedances are summarized

in Table E-1 and the sample locations with screening level exceedances are shown in Figure E-2. Explosives and propellants were detected in all of the sewer sediment samples collected, but only exceeded the screening levels at MH-208, located at the corner of melt-pour complex Building CB-4. The sewer water screening level exceedances of explosives compounds were observed in the sample collected from a storm inlet east and downstream of the melt-pour complex. Manganese in sewer water was the only analyte in excess of the screening levels at MH-CO-#1, a major collection point for sanitary effluent from the load line; no exceedances of screening levels for sediment were observed at this location.

A total of 3,350.95 linear feet of Load Line 1 sewers have been video surveyed (978.7 and 2372.25 linear feet of sanitary and storm sewer, respectively) to assess the integrity of the lines and their potential to release contaminants to the environment. Video survey locations and findings for the sanitary and storm sewers at Load Line 1 are presented in Figures E-3 and E-4, respectively (USACE 2003; Lakeshore Engineering Services, Inc. 2007). Several survey runs were conducted in the vicinity of melt-pour building CB-4 and at the main exit points from the two systems. During the survey. multiple sewer inlet or manhole locations were obstructed with debris (ballast, slag, and dirt that had sloughed into the inlets; brush; some inert demolition debris, such as brick or concrete), or could not be accessed because of broken or rusted covers. Obstructions such as soil, ballast/slag basins, brush/leaves, and some minor inert demolition debris (brick, concrete) were common near the inlet and outlet ends of several pipes. The pipes were found to be dry and generally in good to excellent condition, although hairline cracks, calcium deposits, and root filaments were commonly observed. However, multiple sections of broken pipe were observed in the vitrified clay pipe in locations between inlets B3 and B8, A2 and A3, and between A1 and the headwall east of the load line. A deformed section of pipe was observed between manholes B3 and B2, underneath the road immediately north of Building CB-4. Overall, the camera surveys revealed no visual evidence of accumulated explosives residues, ordnance and explosive waste, or other sediment in any of the pipes evaluated.

Inspections and explosives field screening tests were conducted at Load Line 1 during the *Explosive Evaluation of Sewers* investigations (Lakeshore Engineering Services, Inc. 2007; USACE-CERL 2007). However, these sewer efforts were conducted without Ohio EPA regulatory oversight or review of the associated work plans and resultant completion report or its conclusions. During the USACE- Construction Engineering Research Laboratory (CERL) (2007) investigation, RDX was found near melt-pour building CB-4A. A total of 23 DropEx<sup>™</sup> samples from Load Line 1 sanitary sewer manholes, none of which tested positive for explosives residue. Of the 33 screening tests in total conducted at the storm sewer drop inlets, six DropEx<sup>™</sup> samples at inlets associated with the melt-pour Buildings CB-4 and CB-4A tested positive for explosives residue. The video surveys conducted at Load Line 1 during these 2007 investigations also involved subsequent swabbing and Expray<sup>™</sup> testing of the camera for explosives residue; no trace explosives were detected from the eight camera runs.

| Media    | Analyte                    | Units | Detection<br>Frequency | Minimum<br>Detection | Maximum<br>Detection | Average<br>Result | Screening<br>Level <sup>a</sup> |
|----------|----------------------------|-------|------------------------|----------------------|----------------------|-------------------|---------------------------------|
|          | 2-Amino-4,6-Dinitrotoluene | mg/kg | 2/5                    | 0.44                 | 1.5                  | 0.97              | 1.5                             |
|          | 4-Amino-2,6-Dinitrotoluene | mg/kg | 2/5                    | 0.75                 | 1.7                  | 1.3               | 1.5                             |
|          | Antimony                   | mg/kg | 3/5                    | 0.67                 | 185                  | 62.5              | 2.8                             |
|          | Arsenic                    | mg/kg | 5/5                    | 7.9                  | 39                   | 19                | 19.5                            |
| Sewer    | Chromium                   | mg/kg | 5/5                    | 16.6                 | 72.8                 | 42.3              | 18.1                            |
| Sediment | Cobalt                     | mg/kg | 5/5                    | 6.4                  | 11.1                 | 9.12              | 9.1                             |
| Bediment | Copper                     | mg/kg | 5/5                    | 41.6                 | 638                  | 214               | 310                             |
|          | Vanadium                   | mg/kg | 5/5                    | 14.8                 | 49.5                 | 24                | 45                              |
|          | Zinc                       | mg/kg | 5/5                    | 172                  | 2,480                | 994               | 2,300                           |
|          | Benzo(a)pyrene             | mg/kg | 1/1                    | _                    | —                    | 0.12              | 0.022                           |
|          | PCB-1254                   | mg/kg | 1/1                    |                      | —                    | 2.1               | 0.12                            |
|          | 2,4,6-Trinitrotoluene      | mg/L  | 1/2                    |                      | —                    | 0.079             | 0.0078                          |
| Sewer    | 2-Amino-4,6-Dinitrotoluene | mg/L  | 1/2                    |                      | —                    | 0.026             | 0.0031                          |
| Water    | 4-Amino-2,6-Dinitrotoluene | mg/L  | 1/2                    |                      | —                    | 0.046             | 0.0031                          |
|          | Manganese                  | mg/L  | 2/2                    | 0.12                 | 0.79                 | 0.46              | 0.63                            |
|          | Antimony                   | mg/kg | 5/6                    | 1.2                  | 2.6                  | 5.1               | 2.8                             |
|          | Arsenic                    | mg/kg | 6/6                    | 8.4                  | 21                   | 12.6              | 19.5                            |
|          | Chromium                   | mg/kg | 6/6                    | 9.4                  | 40.5                 | 19.6              | 18.1                            |
| Outfall  | Chromium, hexavalent       | mg/kg | 2/2                    | 5.4                  | 11                   | 8.2               | 1.6                             |
| Sediment | Cobalt                     | mg/kg | 6/6                    | 5.2                  | 13.7                 | 7.8               | 9.1                             |
| Seument  | Copper                     | mg/kg | 6/6                    | 16.1                 | 1,020                | 228               | 310                             |
|          | Manganese                  | mg/kg | 6/6                    | 277                  | 2,750                | 1,065             | 1,950                           |
|          | Benzo(a)pyrene             | mg/kg | 2/2                    | 0.084                | 0.098                | 0.091             | 0.022                           |
|          | PCB-1254                   | mg/kg | 2/2                    | 0.61                 | 0.87                 | 0.74              | 0.12                            |

 Table E-1. Chemicals Exceeding Screening Levels in Sewer Media at Load Line 1

<sup>a</sup>Screening levels are based on the Draft Facility-Wide Cleanup Goal for Hazard Quotient (HQ)=0.1 and Carcinogenic Risk=1E-6. Where background values were higher than the cleanup goal (HQ=0.1/R=1E-6), the background value is utilized as the screening level. — Not applicable.

#### E.3 PROPOSED SAP ADDENDUM INVESTIGATION OBJECTIVES

The general approach for investigation activities for Facility-Wide Sewers as a whole is presented in Section 3.2 of the FSP. However, certain areas of the system should be targeted for assessment based on the evaluation of existing historical data, results of previous investigations, anomalies identified during visual survey, or potential to have accumulated contaminants based on their location within the system and proximity to source areas. Although actual sampling locations cannot be established in advance since sufficient volume of media for sample collection may be unavailable and because site conditions may preclude access to portions of the system, primary and alternate sampling recommendations for the Load Line 1 are presented in Table E-2, and shown in Figures E-5 (sanitary) and E-6 (storm).

| Sewer<br>Type | Primary Sample<br>Location | Alternate Sample<br>Locations<br>(In Order of Precedence) | Media Type       | Comments/Rationale                                                                                                                                                                                           |
|---------------|----------------------------|-----------------------------------------------------------|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|               |                            |                                                           | Sewer Water      | Clean-out manhole represents major<br>potential accumulation point. This<br>sanitary manhole is the first location                                                                                           |
| Sanitary      | MH-CO-#1                   | MH-CO-#2                                                  | Sewer Sediment   | downstream of Load Line 1 after<br>exiting the west boundary of the load<br>line and draining towards Load Line 2.<br>This location previously exhibited<br>manganese above its screening level in<br>water. |
| Sanitary      | MH-218                     | MH-210                                                    | Sewer Sediment   | Isolates segment draining northwest quadrant of load line                                                                                                                                                    |
| Sanitary      | MH-210A                    | MH-213, MH-212, MH-<br>211                                | Sewer Sediment   | Isolates segment draining northeast quadrant of load line                                                                                                                                                    |
| Sanitary      | MH-215                     | MH-214, MH-214A                                           | Sewer Sediment   | Isolates segment draining Bldg. CB-12                                                                                                                                                                        |
| Sanitary      | MH-204                     | MH-203, MH-202A,<br>MH-202, MH-201, MH-<br>201A           | Sewer Sediment   | Isolates segment draining southeast portion of load line                                                                                                                                                     |
| Sanitary      | MH-226                     | MH-225, MH-224                                            | Sewer Sediment   | Isolates segment draining Bldg. CB-22                                                                                                                                                                        |
| Sanitary      | MH-221                     | None                                                      | Sewer Sediment   | Immediately adjacent to process building CB-4                                                                                                                                                                |
| Sanitary      | МН-208                     | None                                                      | Sewer Sediment   | Immediately adjacent to process<br>building CB-4. Previous sampling<br>indicated multiple screening level<br>exceedences of organics and<br>inorganics.                                                      |
| Sanitary      | MH-207                     | MH-228, MH-229, MH-<br>228                                | Sewer Sediment   | Isolates segment draining shaker<br>buildings CA-6 and CA-6A                                                                                                                                                 |
| Sanitary      | MH-206                     | None                                                      | Sewer Sediment   | Immediately adjacent to process building CB-4A                                                                                                                                                               |
| Comitore      | Outfall east of MH-        | Nama                                                      | Outfall Sediment | Presumed overflow outfall from                                                                                                                                                                               |
| Sanitary      | 210A                       | None                                                      | Outfall Water    | sanitary system                                                                                                                                                                                              |
| Storm         | A6                         | A7 through A10                                            | Sewer Sediment   | Isolates segment at Buildings CB-13,<br>CB-13A, and CB-13B                                                                                                                                                   |
| Storm         | CB-MHA2                    | None                                                      | Sewer Sediment   | Clean-out manhole represents major<br>potential accumulation point<br>downstream of melt-pour building<br>area                                                                                               |
| Storm         | A3                         | A4                                                        | Sewer Sediment   | Provides characterization at Building<br>CB-10 western segment                                                                                                                                               |
| Storm         | A5                         | A4                                                        | Sewer Sediment   | Provides characterization at Building<br>CB-10 western segment                                                                                                                                               |
| Storm         | A12                        | "UN" on east side of<br>Bldg CB-10                        | Sewer Sediment   | Provides characterization at Building<br>CB-10 eastern segment                                                                                                                                               |
| Storm         | A11                        | "UN" on east side of<br>Bldg CB-10                        | Sewer Sediment   | Provides characterization at Building<br>CB-10 eastern segment                                                                                                                                               |

 Table E-2. Proposed Sewer Sampling Locations at Load Line 1

| Sewer<br>Type | Primary Sample<br>Location | Alternate Sample<br>Locations<br>(In Order of Precedence) | Media Type     | Comments/Rationale                                                                                                                                                                                                                                     |
|---------------|----------------------------|-----------------------------------------------------------|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Storm         | CB-MHB3                    | CB-MHB4                                                   | Sewer Sediment | Clean-out manhole represents major<br>potential accumulation point<br>downstream of melt-pour building<br>area                                                                                                                                         |
| Storm         | CB-MHB2                    | CB-MHB1                                                   | Sewer Sediment | Clean-out manhole represents major<br>potential accumulation point<br>downstream of melt-pour building<br>area                                                                                                                                         |
| Storm         | CB-4                       | None                                                      | Sewer Sediment | Represents major potential<br>accumulation point downstream of<br>melt-pour building area                                                                                                                                                              |
| Storm         | B3                         | B12, B9, B8                                               | Sewer Sediment | Provides characterization at possible<br>major source area (melt-pour building<br>CB-4). Drop inlets at this building<br>tested positive for explosives residue<br>in 2007, and historical results<br>indicated elevated chromium.                     |
| Storm         | B-5A                       | B-5, B-4                                                  | Sewer Sediment | Provides characterization at possible<br>major source area (melt-pour building<br>CB-4A). Drop inlets at this building<br>tested positive for explosives residue<br>in 2007.                                                                           |
| Storm         | B6                         | None                                                      | Sewer Sediment | Provides characterization at possible<br>major source area (melt-pour building<br>CB-4A). Drop inlets at this building<br>tested positive for explosives residue<br>in 2007.                                                                           |
| Storm         | B11                        | C5                                                        | Sewer Sediment | Provides characterization at possible<br>major source area (melt-pour building<br>CB-4A). Drop inlets at this building<br>tested positive for explosives residue<br>in 2007.                                                                           |
| Storm         | B10                        | C6                                                        | Sewer Sediment | Provides characterization at possible<br>major source area (melt-pour building<br>CB-4A). Drop inlets at this building<br>tested positive for explosives residue<br>in 2007, and historical results<br>indicated inorganics above screening<br>levels. |
| Storm         | D9                         | D4, D5                                                    | Sewer Sediment | Isolates Building CB-3 and south end of load line.                                                                                                                                                                                                     |
| Storm         | D1                         | D13, CB-MHD2, CB-<br>MHD1                                 | Sewer Sediment | Isolates Building CB-3 and south end of load line                                                                                                                                                                                                      |
| Storm         | E2                         | D11 or E1, D10 or D3                                      | Sewer Sediment | Isolates Building CB-801 and south end of load line                                                                                                                                                                                                    |

 Table E-2. Proposed Sewer Sampling Locations at Load Line 1 (continued)

| Sewer<br>Type | Primary Sample<br>Location         | Alternate Sample<br>Locations<br>(In Order of Precedence) | Media Type                        | Comments/Rationale                                                                    |
|---------------|------------------------------------|-----------------------------------------------------------|-----------------------------------|---------------------------------------------------------------------------------------|
| Storm         | CB-MHA3                            | Outfall north of CB-<br>MHA3                              | Outfall Sediment Outfall Water    | Represents storm drainage from<br>Building CB-14                                      |
| Storm         | Outfall north of CB-<br>MHA1       | None                                                      | Outfall Sediment<br>Outfall Water | Represents key storm outfall draining<br>northwest quadrant of load line              |
| Storm         | Outfall northeast of<br>CB-MH      | None                                                      | Outfall Sediment<br>Outfall Water | Outfall "A". Historical sampling<br>indicated inorganics above screening<br>levels.   |
| Storm         | Outfall north of F1                | None                                                      | Outfall Sediment<br>Outfall Water | Outfall from culvert line at west end of the load line                                |
| Storm         | Outfall south of F14               | None                                                      | Outfall Sediment<br>Outfall Water | Outfall from culvert line at west end of the load line                                |
| Storm         | Outfall south of C4                | None                                                      | Outfall Sediment<br>Outfall Water | Outfall of drainage to south end of load line                                         |
| Storm         | Outfall northeast of CB-4          | None                                                      | Outfall Sediment<br>Outfall Water | Outfall of drainage from melt-pour<br>Bldg. CB-4                                      |
| Storm         | Outfall east of CB-<br>MHB1        | None                                                      | Outfall Sediment Outfall Water    | Outfall "B". Historical sampling<br>indicated organics above screening<br>levels.     |
| Storm         | Outfall south of B1/B9<br>location | None                                                      | Outfall Sediment<br>Outfall Water | Outfall of drainage from melt-pour<br>Bldg. CB-4                                      |
| Storm         | Outfall east of CB-<br>MHC1        | None                                                      | Outfall Sediment Outfall Water    | Outfall "C". Historical sampling<br>indicated organics above screening<br>levels.     |
| Storm         | Outfall east of CB-<br>MHD1        | None                                                      | Outfall Sediment<br>Outfall Water | Outfall "D".                                                                          |
| Storm         | Outfall east of CB-<br>MHE1        | None                                                      | Outfall Sediment<br>Outfall Water | Outfall "E." Provides confirmation of previous inorganic screening level exceedances. |

 Table E-2. Proposed Sewer Sampling Locations at Load Line 1 (continued)

Additionally, investigation activities will involve ground-truthing and documenting the configuration of the storm sewer network at the former melt pour buildings CB-4 and CB-4A complex. During the preliminary reconnaissance effort in December 2008, the location of inlet structures in the field was observed to differ from what was reflected in the maps based upon the digitization of historical facility drawings, likely due to the rehabilitation of these lines in the 1950s.

During the visual survey phase, inspection forms will be completed for sewer structures at Load Line 1 to document their condition and accessibility for subsequent investigative activities (i.e., sample media collection or video survey). Actual locations of sample collection, video surveys will be presented in the RI report.

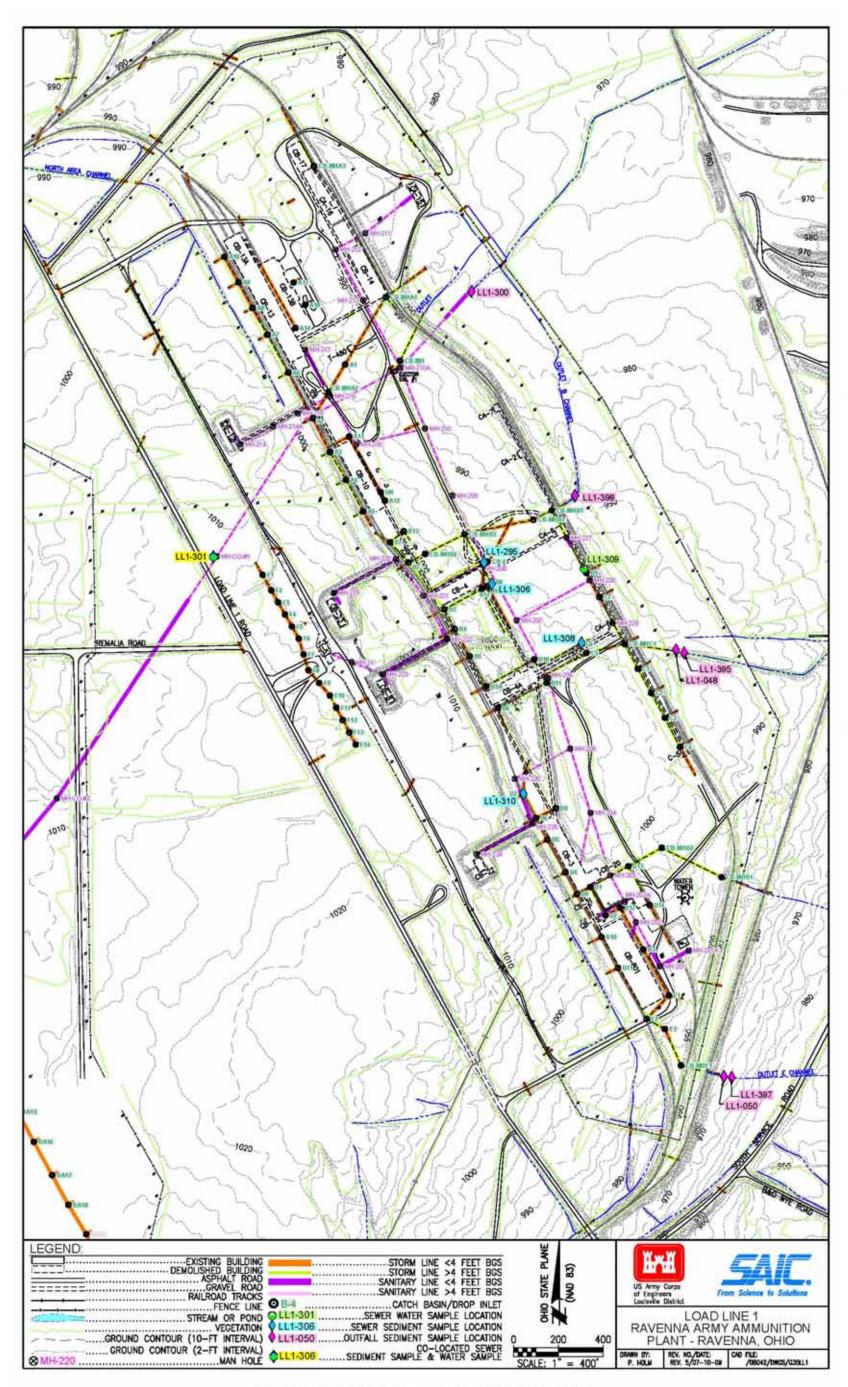



Figure E-1. Historical Sewer Sampling Locations at Load Line 1

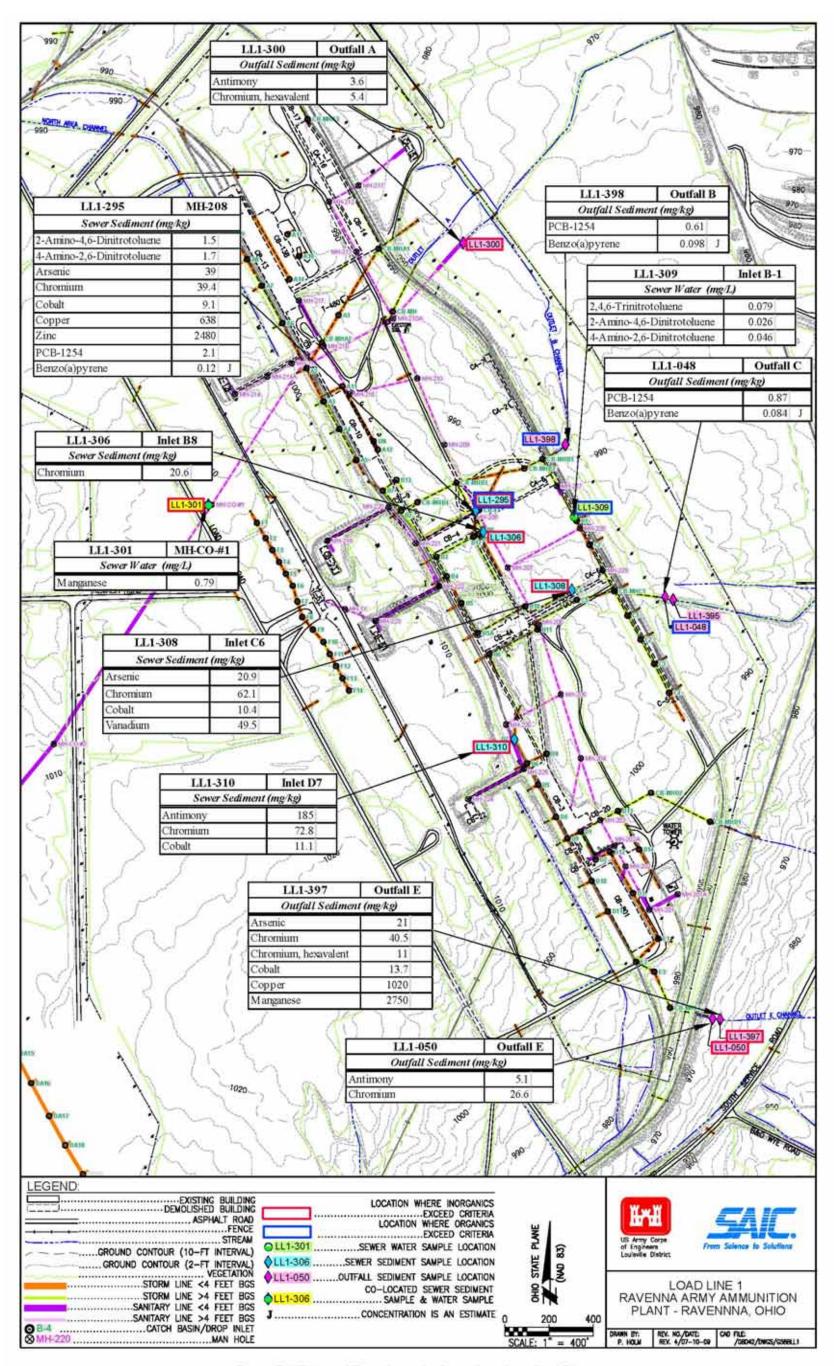



Figure E-2. Historical Exceedances for Sewer Samples at Load Line 1

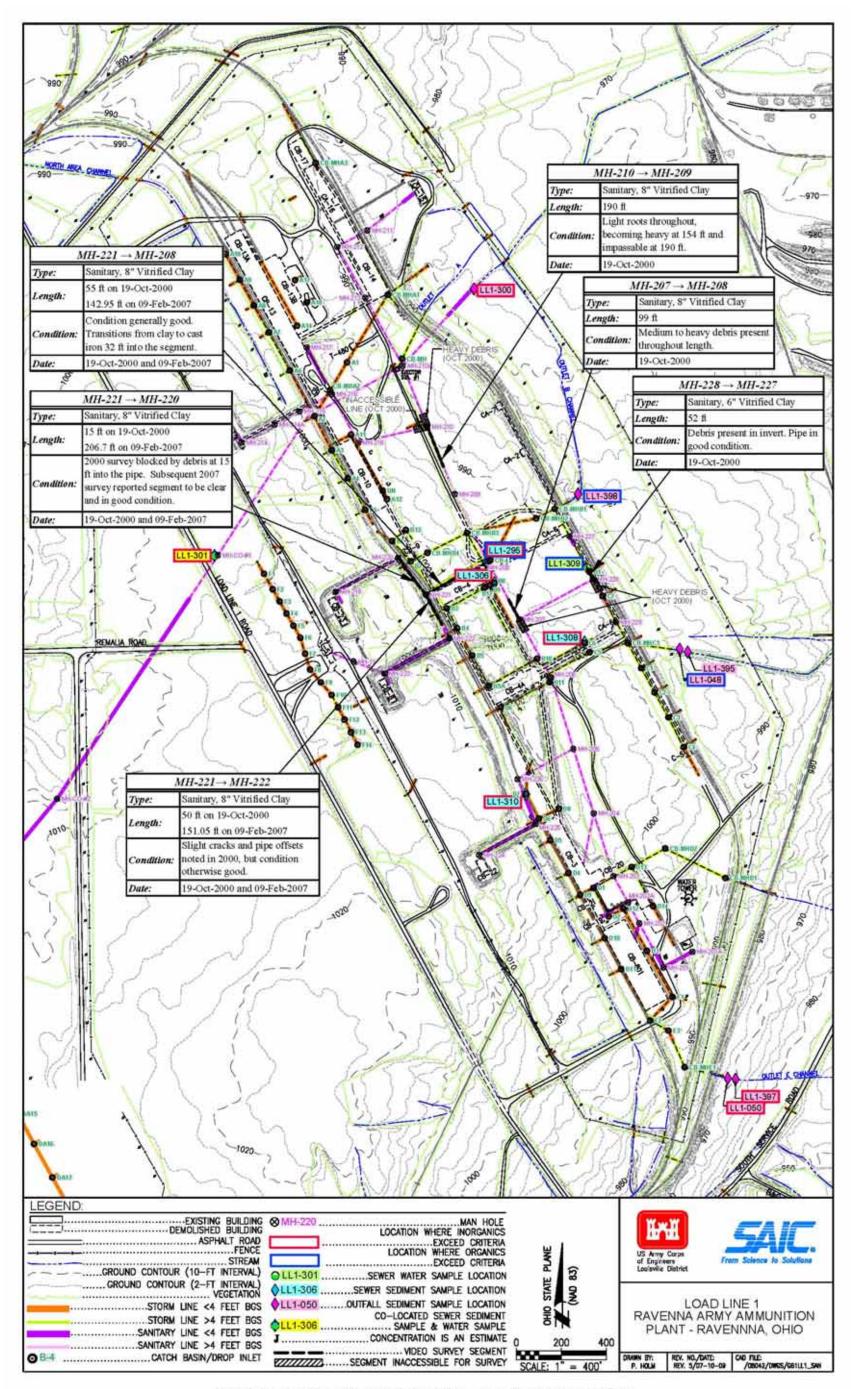



Figure E-3. Locations of Previous Sanitary Sewer Video Surveys at Load Line 1



Figure E-4. Locations of Previous Storm Sewer Video Surveys at Load Line 1

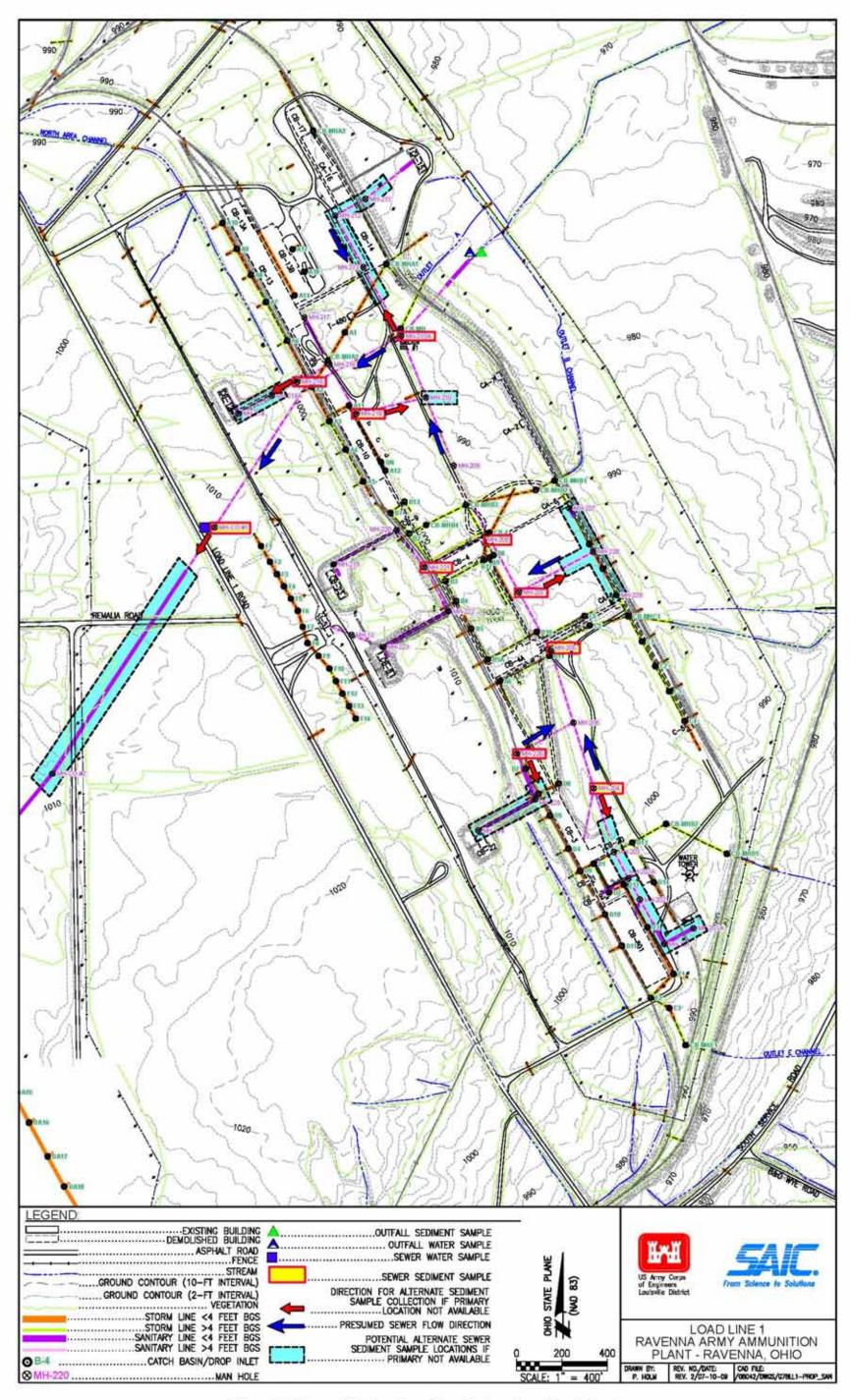



Figure E-5. Proposed Sanitary Sewer Sampling Locations at Load Line 1

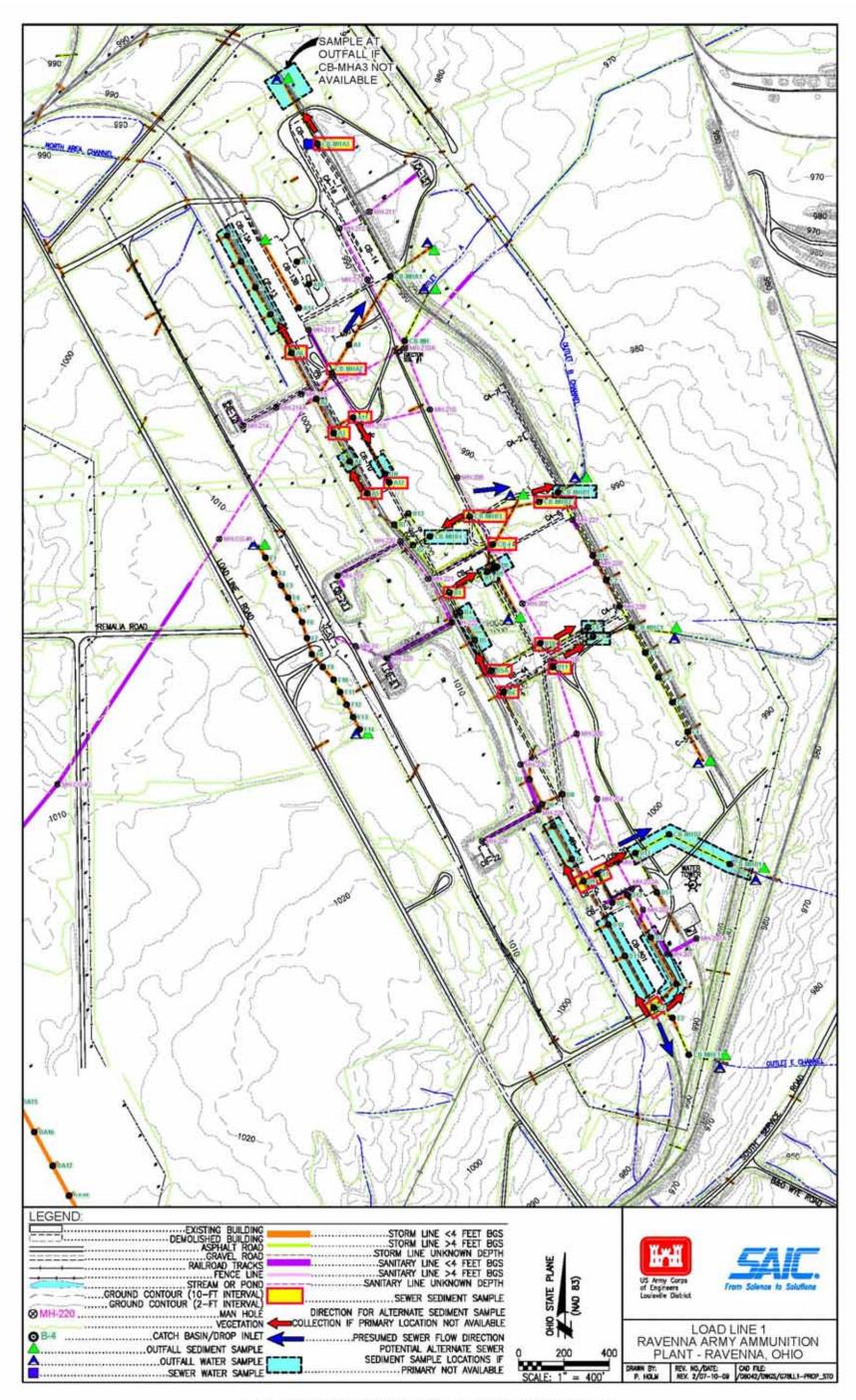



Figure E-6. Proposed Storm Sewer Sampling Locations at Load Line 1

APPENDIX F Load Line 2

### F.1 AREA DESCRIPTION

Load Line 2 was used to melt and load TNT and Composition B into large-caliber shells and bombs (Figure F-1). During its operational history, bulk TNT and HMX were offloaded at Buildings DA-6 and DA-6A for screening and preparation before being transported to the melt-pour buildings (DA-4 and DA-4A) for processing and loading into shells. Upon completion of primary charge loading, shells were transported to Building DB-10 for drilling operations for booster charges or other preparation operations, including cleaning and painting, were conducted in Building DB-26. Shell preparation operations, including cleaning and painting, were contained in Building DB-3. Bulk explosive carrier washout activities were conducted in Building DB-25. Buildings DB-13A, DB-13B, and DB-13C housed packaging and shipping operations. Building DB-802 was used for receiving, inert storage and shell preparation. Chromic acid was used in Building DB-802 in shell-preparation processes and was stored in an above-grade tank on concrete pedestals located along the eastern side of the building. Some effluents containing chromic acid were reportedly discharged from Building DB-802 into the large central drainage ditch that, ultimately, discharges to Kelly's Pond.

The line operated during World War II, from 1951 to 1957 for munitions-demilitarization activities (washout was conducted at Building DB-4A), and again from 1969 to 1971. During the entirety of its operational history, Load Line 2 produced about 10 million munitions, and approximately 1.8 million kg (4 million lbs) of TNT was salvaged during demilitarization activities. When the facility was at full capacity, Load Line 2 generated approximately 3,192,000 liters (842,700 gallons) of pink water per month from wash-down and steam decontamination of equipment. Building wash-down water and wastewater from the load line operations were collected in concrete sumps, pumped through sawdust filtration units, and ultimately discharged to a 2 acre settling pond. Water from the impoundment was discharged to a surface stream that exited the facility. The buildings and structures at Load Line 2 have been demolished.

Load Line 2 contains separate storm and sanitary sewer systems. The sanitary sewer system at Load Line 2 is part of the Sand Creek Treatment Plant network (shown in Plate A-2). The storm sewer network discharged to a series of surface drainage conveyances throughout the load line. The storm sewer and sanitary sewer system infrastructures largely remain in place, although portions of the systems have sustained significant damage or have been obstructed with debris during building demolition activities.

## **F.2 PREVIOUS INVESTIGATIONS**

The *Phase II Remedial Investigation* for Load Line 2 included sewer water and sediment sampling and a video camera survey of the sewer lines (USACE 2004a). During the initial examination of the catch basins and manholes, it was noted that very few structures contained sufficient volumes of sewer water for sample collection. Sediment samples were collected from both sewer structures and

outfalls locations where storm sewer lines discharged to surface drainage conveyances. Previous sewer and outfall sample locations are shown in Figure F-1.

The analytical results indicated that eleven metals, four explosives (2,4,6-trinitrotoluene, 2-amino-4,6-dinitrotoluene, 4-amino-2,6-dinitrotoluene and RDX), two SVOCs (benzo(a)pyrene and benzo(b)fluoranthene) and PCB-1254 exceeded screening levels in sewer sediment and Load Line 2. Four explosives (,4,6-trinitrotoluene, 2-amino-4,6-dinitrotoluene, 4-amino-2,6-dinitrotoluene and RDX), antimony and PCB-1254 exceeded the screening levels in sewer water at Load Line 2. In outfall sediment, nine metals, benzo(a)pyrene and PCB-1254 exceeded screening criteria in the historical data. These screening level exceedances are summarized in Table F-1 and the sample locations with exceedances are shown in Figure F-2. Eight explosives compounds in total were detected in sewer sediment collected from the storm sewer system, with locations near melt-pour building DB-4 containing the highest number and concentrations of explosives, although only four explosive compounds were observed above the screening levels. PCB-1254 was detected in 10 of the 12 storm sewer sediment samples, exceeding its screening level at 9 of these sample locations. PCB-1254 was also observed above its screening level in both sediment outfall samples.

A total of 1,551.04 linear feet of Load Line 2 sewers have been video surveyed (451.37 and 1,099.67 linear ft of sanitary and storm sewer, respectively) to assess the integrity of the lines and their potential to release contaminants to the environment. Video survey locations and findings for the sanitary and storm sewers at Load Line 2 are presented in Figures F-3 and F-4, respectively (USACE 2004a). The video survey locations were biased to portions of the system located near former production areas and at main exit points from the two systems. Initial evaluation and investigations at the AOC to date indicated that most of the storm and sanitary sewer systems at Load Line 2 were above the water table and were dry. At the time of the video survey, several of the planed entry points were obstructed with debris such as leaves, sticks, rocks and sediments. Overall, the sanitary and storm sewer system were found to be largely intact, but exhibiting frequent cracks, mineral deposits indicating infiltrating water, and debris deposits. No evidence of explosives accumulation was observed.

Inspections and explosives field screening tests were conducted at Load Line 2 during the *Explosive Evaluation of Sewers* investigations (Lakeshore Engineering Services, Inc. 2007; USACE-CERL 2007). However, these sewer efforts were conducted without Ohio EPA regulatory oversight or review of the associated work plans and resultant completion report or its conclusions. During the USACE-CERL investigation, traces of TNT were noted near one of the melt-pour buildings (USACE -CERL 2007). A total of 18 DropEx<sup>TM</sup> samples from Load Line 2 sanitary sewer manholes were collected, none of which tested positive for explosives residue. Of the 43 DropEx<sup>TM</sup> screening tests conducted at storm sewer drop inlets, six DropEx<sup>TM</sup> samples at five inlets associated with the melt-pour Buildings DB-4 and DB-4A tested positive for explosives residue (Inlets DB11 through DB15).

| Media    | Analyte                    | Units | Detection<br>Frequency | Minimum<br>Detection | Maximum<br>Detection | Average<br>Result | Screening<br>Level <sup>a</sup> |
|----------|----------------------------|-------|------------------------|----------------------|----------------------|-------------------|---------------------------------|
| miculu   | 2,4,6-Trinitrotoluene      | mg/kg | 4/6                    | 0.74                 | 21                   | 8.1               | 3.7                             |
|          | 2-Amino-4.6-Dinitrotoluene | mg/kg | 5/6                    | 0.1                  | 8.9                  | 3.1               | 1.5                             |
|          | 4-Amino-2,6-Dinitrotoluene | mg/kg | 5/6                    | 0.11                 | 22                   | 6.3               | 1.5                             |
|          | RDX                        | mg/kg | 2/6                    | 0.17                 | 13                   | 6.6               | 8                               |
|          | Antimony                   | mg/kg | 9/12                   | 1.4                  | 7,150                | 890               | 2.8                             |
|          | Arsenic                    | mg/kg | 12/12                  | 5.8                  | 29.4                 | 12.6              | 19.5                            |
|          | Barium                     | mg/kg | 12/12                  | 33.7                 | 2.030                | 289               | 350                             |
|          | Cadmium                    | mg/kg | 12/12                  | 0.33                 | 11.2                 | 3.9               | 6.4                             |
| Sewer    | Chromium                   | mg/kg | 12/12                  | 7.9                  | 2,380                | 294               | 18.1                            |
| Sediment | Cobalt                     | mg/kg | 12/12                  | 4.1                  | 58.5                 | 14.9              | 9.1                             |
|          | Copper                     | mg/kg | 12/12                  | 17.4                 | 2,540                | 387               | 310                             |
|          | Lead                       | mg/kg | 12/12                  | 26.6                 | 14,600               | 2,030             | 400                             |
|          | Manganese                  | mg/kg | 12/12                  | 203                  | 5,840                | 1,278             | 1,950                           |
|          | Mercury                    | mg/kg | 11/12                  | 0.019                | 2.3                  | 0.57              | 2.3                             |
|          | Silver                     | mg/kg | 8/12                   | 0.23                 | 393                  | 49.8              | 39                              |
|          | Benzo(a)pyrene             | mg/kg | 1/1                    | -                    | —                    | 0.26              | 0.022                           |
|          | Benzo(b)fluoranthene       | mg/kg | 1/1                    | -                    | —                    | 0.34              | 0.22                            |
|          | PCB-1254                   | mg/kg | 10/12                  | 0.11                 | 31                   | 6.77              | 0.12                            |
|          | 2,4,6-Trinitrotoluene      | mg/L  | 4/4                    | 0.00027              | 0.37                 | 0.13              | 0.0078                          |
|          | 2-Amino-4,6-Dinitrotoluene | mg/L  | 4/4                    | 0.00074              | 0.19                 | 0.067             | 0.0031                          |
| Sewer    | 4-Amino-2,6-Dinitrotoluene | mg/L  | 4/4                    | 0.00069              | 0.26                 | 0.096             | 0.0031                          |
| Water    | RDX                        | mg/L  | 4/4                    | 0.0011               | 0.69                 | 0.26              | 0.015                           |
|          | Antimony                   | mg/L  | 2/4                    | 0.0048               | 0.0053               | 0.0051            | 0.0049                          |
|          | Trichloroethene            | mg/L  | 1/1                    | —                    | —                    | 0.0021            | 0.00016                         |
|          | Antimony                   | mg/kg | 1/2                    | _                    | _                    | 8,120             | 2.8                             |
|          | Arsenic                    | mg/kg | 2/2                    | 6.9                  | 36.5                 | 22                | 19.5                            |
|          | Barium                     | mg/kg | 2/2                    | 36.5                 | 1,060                | 550               | 350                             |
|          | Chromium                   | mg/kg | 2/2                    | 800                  | 4,000                | 2,004             | 18.1                            |
| Outfall  | Cobalt                     | mg/kg | 2/2                    | 8                    | 115                  | 62                | 9.1                             |
| Sediment | Copper                     | mg/kg | 2/2                    | 16.7                 | 721                  | 370               | 310                             |
| Seament  | Lead                       | mg/kg | 2/2                    | 31.5                 | 24,800               | 12,400            | 400                             |
|          | Mercury                    | mg/kg | 2/2                    | 0.012                | 2.8                  | 1.4               | 2.3                             |
|          | Thallium                   | mg/kg | 2/2                    | 0.3                  | 0.93                 | 0.62              | 0.89                            |
|          | Benzo(a)pyrene             | mg/kg | 1/1                    | —                    | _                    | 0.18              | 0.022                           |
|          | PCB-1254                   | mg/kg | 2/2                    | 0.47                 | 5.7                  | 3.1               | 0.12                            |

 Table F-1. Chemicals Exceeding Screening Levels in Sewer Media at Load Line 2

<sup>a</sup>Screening levels are based on the Draft Facility-Wide Cleanup Goal for Hazard Quotient (HQ)=0.1 and Carcinogenic Risk=1E-6. Where background values were higher than the cleanup goal (HQ=0.1/R=1E-6), the background value is utilized as the screening level. — Not applicable.

#### F.3 PROPOSED SAP ADDENDUM INVESTIGATION OBJECTIVES

The general approach for investigation activities for Facility-Wide Sewers as a whole is presented in Section 3.2 of the FSP. However, certain areas of the system should be targeted for assessment based on the evaluation of existing historical data, results of previous investigations, anomalies identified during visual survey, or potential to have accumulated contaminants based on their location within the system and proximity to source areas. Although actual sampling locations cannot be established in advance since sufficient volume of media for sample collection may be unavailable and because site conditions may preclude access to portions of the system, primary and alternate sampling recommendations for the Load Line 2 are presented in Table F-2, and shown in Figures F-5 (sanitary) and F-6 (storm).

| Sewer<br>Type | Primary Sample<br>Location | Alternate Sample<br>Locations<br>(In Order of Precedence)     | Media Type                    | Comments/Rationale                                                                                                                                                                              |
|---------------|----------------------------|---------------------------------------------------------------|-------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Sanitary      | МН-СО-#3                   | None                                                          | Sewer Sediment                | Clean-out manhole represents major<br>potential accumulation point. This<br>sanitary manhole is the first location<br>downstream of Load Line 1 entering<br>the east boundary of the load line. |
| Sanitary      | MH-4                       | None                                                          | Sewer Sediment                | Represents conditions immediately downstream of ejector station.                                                                                                                                |
| Sanitary      | MH-301                     | MH-301A                                                       | Sewer Sediment                | Isolates segment at Buildings DB-13 and DB-13A.                                                                                                                                                 |
| Sanitary      | MH-304                     | MH-303                                                        | Sewer Sediment                | Isolates segment at Buildings DB-9 and DB-10.                                                                                                                                                   |
| Sanitary      | MH-306                     | MH-305                                                        | Sewer Sediment                | Represents conditions immediately<br>downstream of potential source area at<br>melt-pour building DB-4.                                                                                         |
| Sanitary      | MH-307                     | MH-308                                                        | Sewer Sediment                | Represents conditions immediately<br>downstream of potential source area a<br>melt-pour building DB-4A.                                                                                         |
| Sanitary      | MH-310                     | MH-311                                                        | Sewer Sediment                | Represents conditions immediately<br>downstream of Bldgs. DB-3, and DB-<br>19, DB-20A.                                                                                                          |
| Sanitary      | MH-312                     | None                                                          | Sewer Sediment                | Represents conditions immediately<br>downstream of building complex at<br>south end of the load line.                                                                                           |
| Sanitary      | MH-314                     | MH-313                                                        | Sewer Sediment                | Represents conditions at downstream<br>end of Load Line 2 and immediately<br>prior to entering ejector station.                                                                                 |
| Sanitary      | МН-322                     | MH-321, MH-320, MH-<br>319, MH-318, MH-317,<br>MH-316, MH-315 | Sewer Sediment                | Isolates segment at east end of Inert<br>Storage Area #6.                                                                                                                                       |
| Sanitary      | MH-323                     | None                                                          | Sewer Sediment                | Represents conditions downstream of<br>Inert Storage Area #6 before draining<br>into the south end of Load Line 2.                                                                              |
|               |                            |                                                               | Sewer Water                   | <ul> <li>Historical samples indicated screening<br/>level exceedances of inorganics and<br/>organics in water and sediment.</li> </ul>                                                          |
| Sanitary      | MH-329                     | MH-328, MH-327, MH-<br>326, MH-325, MH-324                    | Sewer Sediment                | Isolates segment at west end of Inert<br>Storage Area #6.                                                                                                                                       |
| Sanitary      | MH-333                     | MH-332                                                        | Sewer Sediment                | Isolates segment at Bldg. DB-8A.                                                                                                                                                                |
| Sanitary      | MH-337                     | MH-350, MH351                                                 | Sewer Sediment<br>Sewer Water | Represents conditions at downstream<br>end of Load Line 2 before draining<br>west towards Load Line 3.                                                                                          |
| Sanitary      | MH-341                     | MH-331                                                        | Sewer Sediment                | Characterizes potential source area at former shaker building.                                                                                                                                  |
| Sanitary      | MH-342                     | MH-331                                                        | Sewer Sediment                | Characterizes potential source area at former shaker building.                                                                                                                                  |

Table F-2. Summary of Proposed Sampling Locations at Load Line 2

| Sewer<br>Type | Primary Sample<br>Location | Alternate Sample<br>Locations<br>(In Order of Precedence) | Media Type                    | Comments/Rationale                                                                                                                                                                                                                                                                                                                                                          |
|---------------|----------------------------|-----------------------------------------------------------|-------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Storm         | C4                         | С3                                                        | Sewer Sediment                | Represents conditions immediately<br>downstream of Bldgs. DB-3, and<br>DB-19, DB-20A. Historical sampling<br>indicated organics and inorganics<br>above screening levels.<br><i>In addition to Tier 1 sampling</i><br><i>procedures, collect hexavalent</i><br><i>chromium sample for speciation</i><br><i>data; historical chromium</i><br><i>concentrations elevated.</i> |
| Storm         | CB-MHB1                    | None                                                      | Sewer Sediment                | Clean-out manhole represents major<br>potential accumulation point<br>downstream of northern portion of<br>load line. Historical sampling<br>indicated multiple organics and<br>inorganics above screening levels in<br>sediment and water.                                                                                                                                 |
| Storm         | CB-MHB2                    | None                                                      | Sewer Sediment                | Clean-out manhole represents major<br>potential accumulation point<br>downstream of northern portion of<br>load line. Historical sampling<br>indicated organics and inorganics<br>above screening levels in sediment<br>and water.                                                                                                                                          |
| Storm         | СВ-МНВ3                    | DA12                                                      | Sewer Sediment                | Storm clean-out manhole represents<br>major potential accumulation point<br>downstream of melt-pour building<br>area.                                                                                                                                                                                                                                                       |
| Storm         | DA7                        | DA6, DA5, DA4, DA3.<br>DA2, DA1                           | Sewer Sediment                | Isolates storm segment at northeast of load line.                                                                                                                                                                                                                                                                                                                           |
| Storm         | DA11                       | DA10, DA9, DA8                                            | Sewer Sediment                | Isolates segment downstream of potential source area at shaker building DA-6.                                                                                                                                                                                                                                                                                               |
| Storm         | DA14                       | DA15, DA16, DA17,<br>DA18, DA19, DA20                     | Sewer Sediment                | Isolates segment downstream of<br>potential source area at shaker<br>building DA-6A. An inlet in this line<br>(DA18) previous exhibited organics<br>above screening levels.                                                                                                                                                                                                 |
| Storm         | DB1                        | Outfall to north                                          | Sewer Sediment<br>Sewer Water | Represents drainage to northwest end of load line                                                                                                                                                                                                                                                                                                                           |
| Storm         | DB7                        | DB6, DB5, DB4, DB3,<br>DB2                                | Sewer Sediment                | Isolates segment at northwest of load<br>line. Historical results at multiple<br>inlets indicated inorganic and organic<br>screening level exceedances.                                                                                                                                                                                                                     |

#### Table F-2. Summary of Proposed Sampling Locations at Load Line 2 (continued)

| Sewer<br>Type | Primary Sample<br>Location                                 | Alternate Sample<br>Locations<br>(In Order of Precedence)      | Media Type     | Comments/Rationale                                                                                                                                                                                                                                                                                                                    |
|---------------|------------------------------------------------------------|----------------------------------------------------------------|----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Storm         | DB11                                                       | Any representative<br>alternate at west side of<br>Bldg. DB-4  | Sewer Sediment | Provides characterization at possible<br>major source area (melt-pour<br>building DB-4) and provides<br>confirmation of historical results of<br>organics and inorganics above<br>screening levels. Drop inlets at this<br>building tested positive for<br>explosives residue in 2007.                                                |
| Storm         | DB12                                                       | Any representative<br>alternate at west side of<br>Bldg. DB-4  | Sewer Sediment | Provides characterization at possible<br>major source area (melt-pour<br>building DB-4). Drop inlets at this<br>building tested positive for<br>explosives residue in 2007.                                                                                                                                                           |
| Storm         | DB15                                                       | Any representative<br>alternate at west side of<br>Bldg. DB-4A | Sewer Sediment | Provides characterization at possible<br>major source area (melt-pour<br>building DB-4A). Drop inlets at this<br>building tested positive for<br>explosives residue in 2007.                                                                                                                                                          |
| Storm         | DB20                                                       | None                                                           | Sewer Sediment | Represents conditions downstream of<br>Bldg. DB-3 and provides<br>confirmation of previous historical<br>results of inorganics and organics<br>above screening levels.<br>In addition to Tier 1 sampling<br>procedures, collect hexavalent<br>chromium sample for speciation<br>data; historical chromium<br>concentrations elevated. |
| Storm         | DB21                                                       | None                                                           | Sewer Sediment | Represents conditions at Bldg. DB-<br>802 and provides confirmation of<br>previous historical results of<br>inorganics and organics above<br>screening levels.<br>In addition to Tier 1 sampling<br>procedures, collect hexavalent<br>chromium sample for speciation<br>data; historical chromium<br>concentrations elevated.         |
| Storm         | Representative inlet<br>at northeast side of<br>Bldg. DB-4 | Any representative alternate at Bldg. DB-4                     | Sewer Sediment | Provides characterization at possible<br>major source area (melt-pour<br>building DB-4). Drop inlets at this<br>building tested positive for<br>explosives residue in 2007.                                                                                                                                                           |
| Storm         | Representative inlet<br>at southeast side of<br>Bldg. DB-4 | Any representative alternate at Bldg. DB-4                     | Sewer Sediment | Provides characterization at possible<br>major source area (melt-pour<br>building DB-4). Drop inlets at this<br>building tested positive for<br>explosives residue in 2007.                                                                                                                                                           |

## Table F-2. Summary of Proposed Sampling Locations at Load Line 2 (continued)

| Sewer<br>Type                             | Primary Sample<br>Location                                  | Alternate Sample<br>Locations<br>(In Order of Precedence) | Media Type                     | Comments/Rationale                                                                                                                                                           |
|-------------------------------------------|-------------------------------------------------------------|-----------------------------------------------------------|--------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Storm                                     | Representative inlet<br>at northeast side of<br>Bldg. DB-4A | Any representative<br>alternate at Bldg. DB-<br>4A        | Sewer Sediment                 | Provides characterization at possible<br>major source area (melt-pour<br>building DB-4A). Drop inlets at this<br>building tested positive for<br>explosives residue in 2007. |
| Storm                                     | Representative inlet<br>at southeast side of<br>Bldg. DB-4A | Any representative<br>alternate at Bldg. DB-<br>4A        | Sewer Sediment                 | Provides characterization at possible<br>major source area (melt-pour<br>building DB-4A). Drop inlets at this<br>building tested positive for<br>explosives residue in 2007. |
| Storm                                     | Outfall east of<br>Building DB-802                          | None                                                      | Outfall Sediment Outfall Water | Represents storm drainage from Bldg. C-1.                                                                                                                                    |
| Storm                                     | Outfall south of Bldg.                                      | None                                                      | Outfall Sediment               | Represents storm drainage from building complex at south end of                                                                                                              |
| Storm                                     | DB-802                                                      |                                                           | Outfall Water                  | load line.                                                                                                                                                                   |
|                                           | Outfall couth of inlate                                     |                                                           | Outfall Sediment               | Represents drainage to southeast end<br>of load line.<br><i>In addition to Tier 1 sampling</i>                                                                               |
| Storm                                     | Storm Outfall south of inlets DA20/DA21                     | None                                                      | Outfall Water                  | procedures, collect hexavalent<br>chromium sample for speciation<br>data; historical chromium<br>concentrations elevated.                                                    |
|                                           |                                                             |                                                           | Outfall Sediment               | Represents major storm outfall at the                                                                                                                                        |
| Storm                                     | Outfall south of CB-<br>MHB3                                | None                                                      | Outfall Water                  | load line immediately downstream of<br>the melt-pour buildings. Historical<br>results indicated organics above<br>screening levels.                                          |
| Storm                                     | Outfall north of inlet                                      | None                                                      | Outfall Sediment               | Represents drainage to northeast end                                                                                                                                         |
| Storm                                     | DA1                                                         |                                                           | Outfall Water                  | of load line.                                                                                                                                                                |
| C. L. | Outfall at east<br>terminus of Inert                        | News                                                      | Outfall Sediment               | Represents major drainage outfall at<br>Inert Storage Area #6 observed in the                                                                                                |
| Storm                                     | Storage Area #6                                             | None                                                      | Outfall Water                  | field in Dec. 2008.                                                                                                                                                          |
| Storm                                     | Outfall at Inert<br>Storage Area #6,                        | None                                                      | Outfall Sediment               | Represents major drainage outfall<br>below Inert Storage Area #6.                                                                                                            |
| 500111                                    | above Kelly's Pond                                          |                                                           | Outfall Water                  | sets w more storage rifea no.                                                                                                                                                |
| Ct                                        | Representative outfall                                      | Any representative at                                     | Outfall Sediment               | Inert Storage Area #6 storm system                                                                                                                                           |
| Storm                                     | (#1) at Inert Storage<br>Area #6                            | Inert Storage Area #6                                     | Outfall Water                  | not previously characterized.                                                                                                                                                |
| C.                                        | Representative outfall                                      | Any representative at                                     | Outfall Sediment               | Inert Storage Area #6 storm system                                                                                                                                           |
| Storm                                     | (#2) at Inert Storage<br>Area #6                            | Inert Storage Area #6                                     | Outfall Water                  | not previously characterized.                                                                                                                                                |

## Table F-2. Summary of Proposed Sampling Locations at Load Line 2 (continued)

Additionally, investigation activities will include ground-truthing and documenting the configuration of the storm sewer network at the former melt pour buildings DB-4 and DB-4A complex. During the preliminary reconnaissance effort in December 2008, the location of inlet structures in the field was observed to differ from what was reflected in the maps based upon the digitization of historical facility drawings, likely due to the rehabilitation of these lines in the 1950s.

During the visual survey phase, inspection forms will be completed for sewer structures at Load Line 2 to document their condition and accessibility for subsequent investigative activities (i.e., sample media collection or video survey). Actual locations of sample collection, video surveys will be presented in the RI report.

Several historical sampling locations were observed to have sewer sediment total chromium concentrations in excess of the cleanup goal for the residential farmer (187 mg/kg). Hexavalent chromium sewer sediment samples will be collected at these locations to provide chromium speciation data. These locations are:

- Inlet C4 (storm);
- Inlet DB20 (storm);
- Inlet DB21 (storm); and
- Outfall south of Inlets DA20 and DA21 (storm).

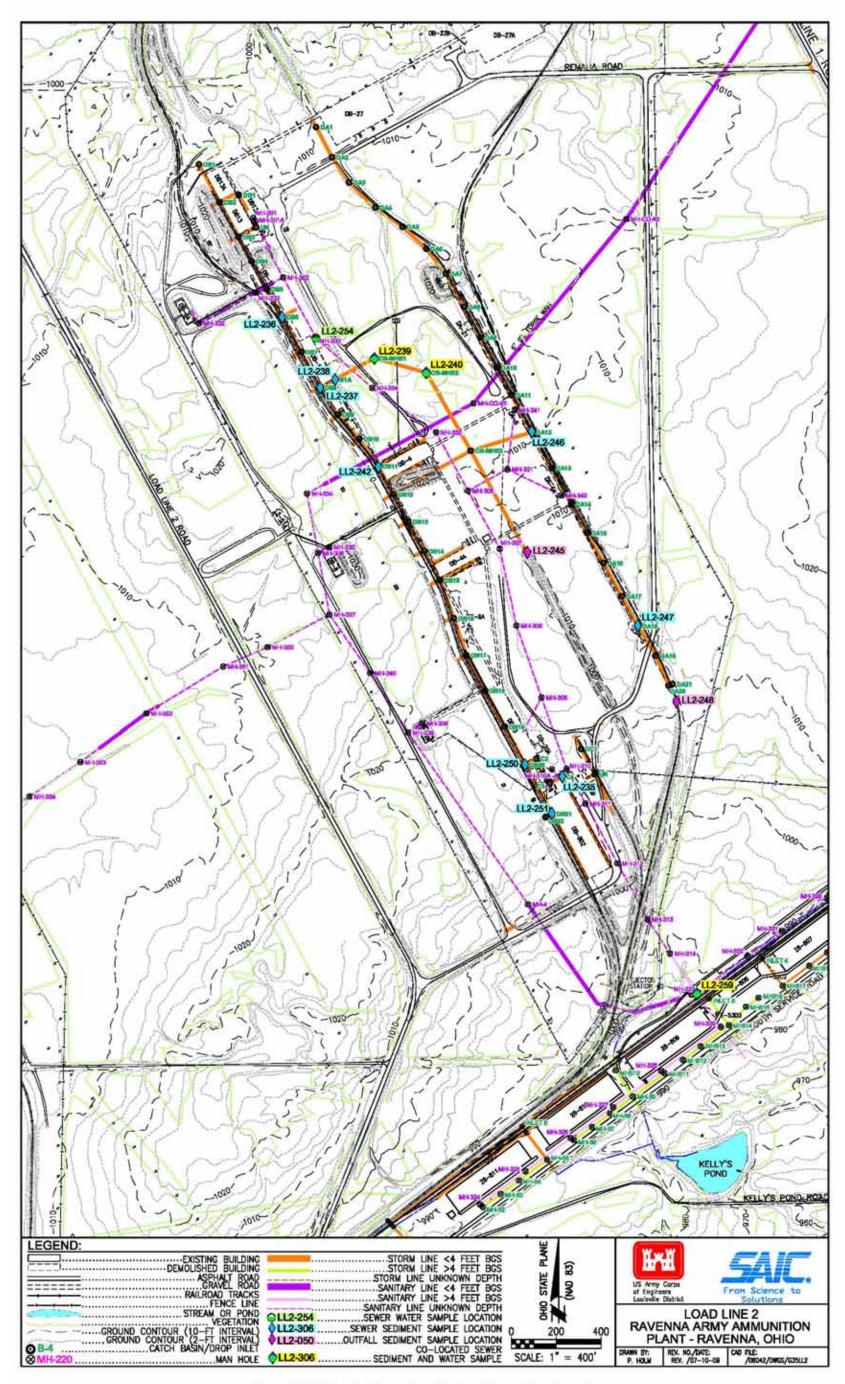



Figure F-1. Historical Sewer Sampling Locations at Load Line 2

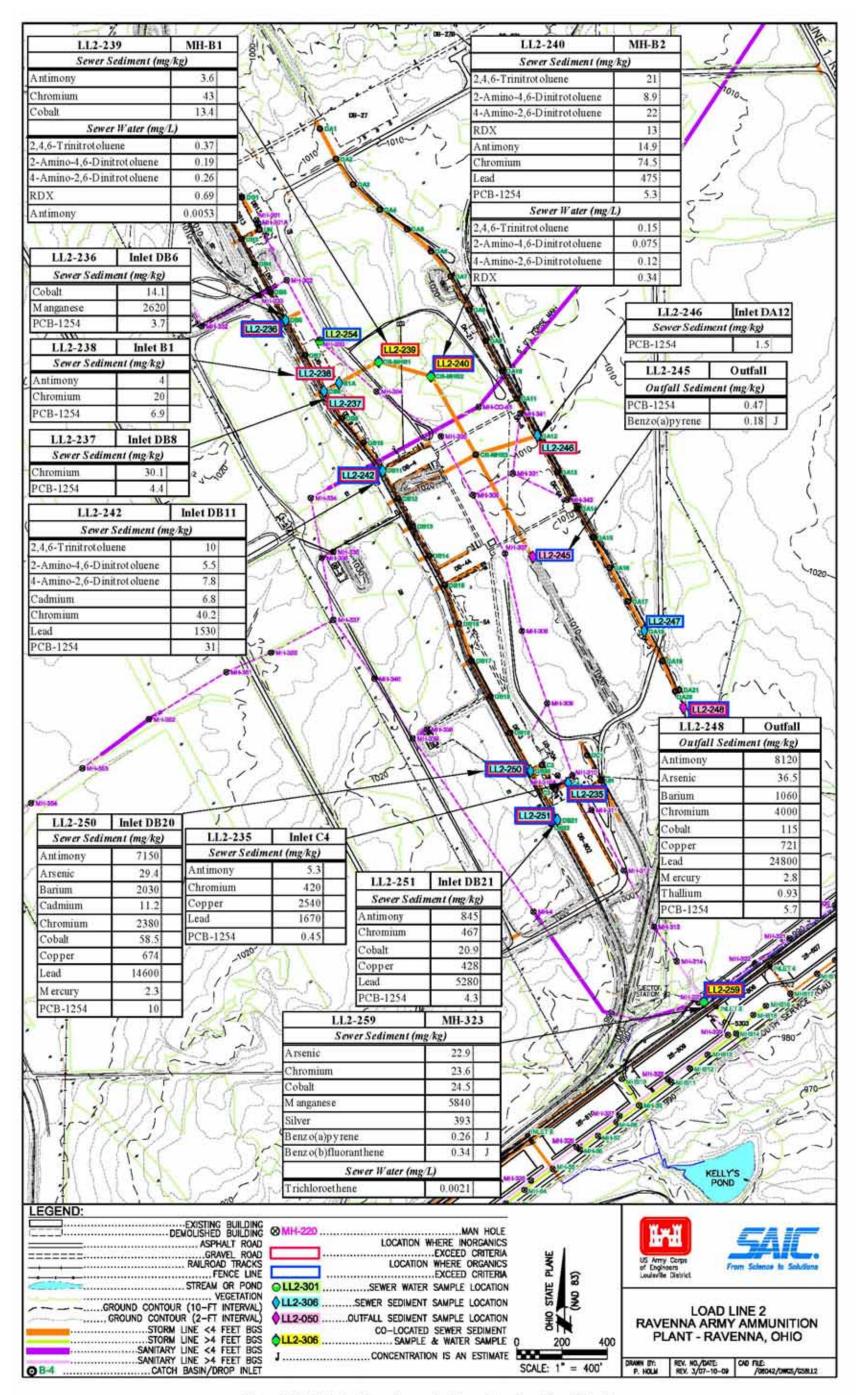



Figure F-2. Historical Exceedances for Sewer Samples at Load Line 2

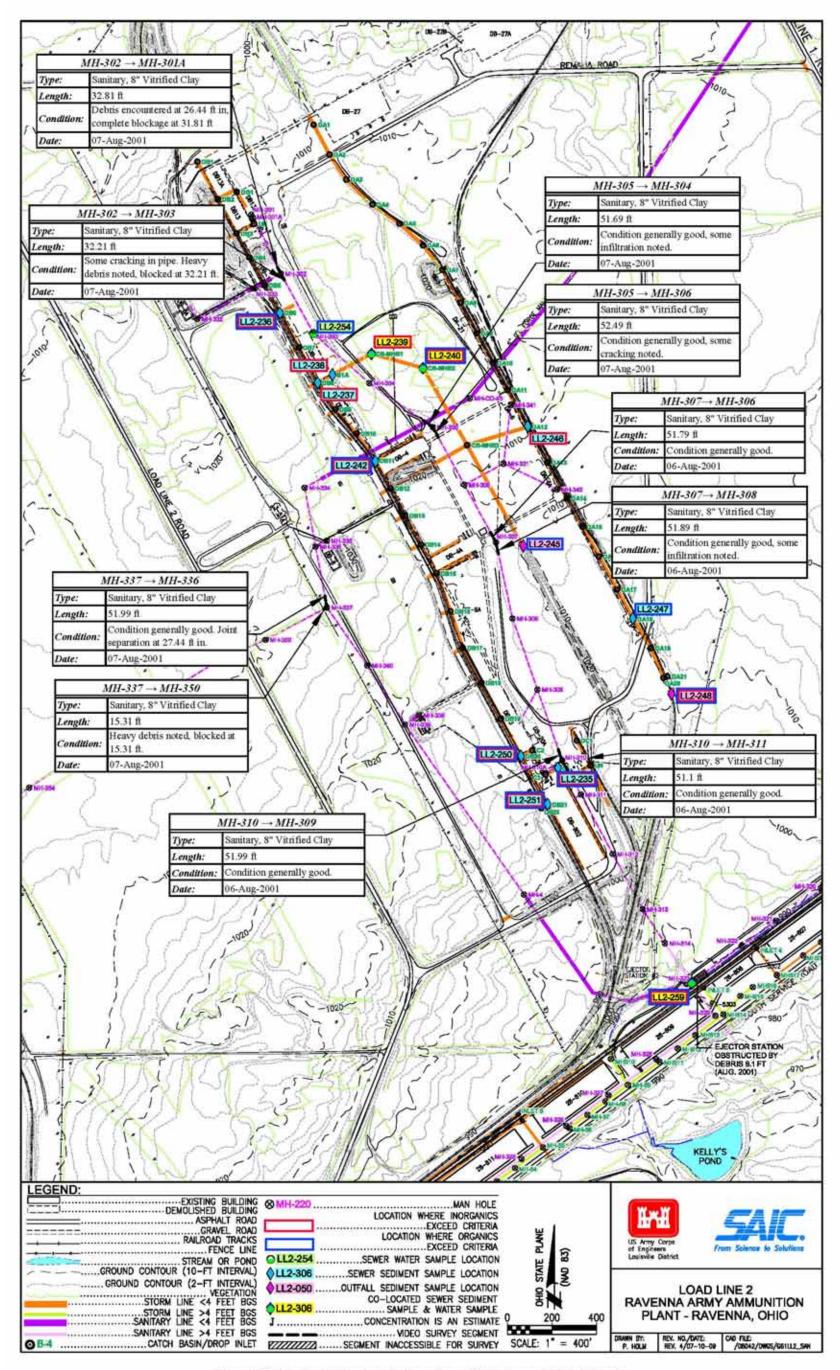



Figure F-3. Location of Previous Sanitary Sewer Video Surveys at Load Line 2

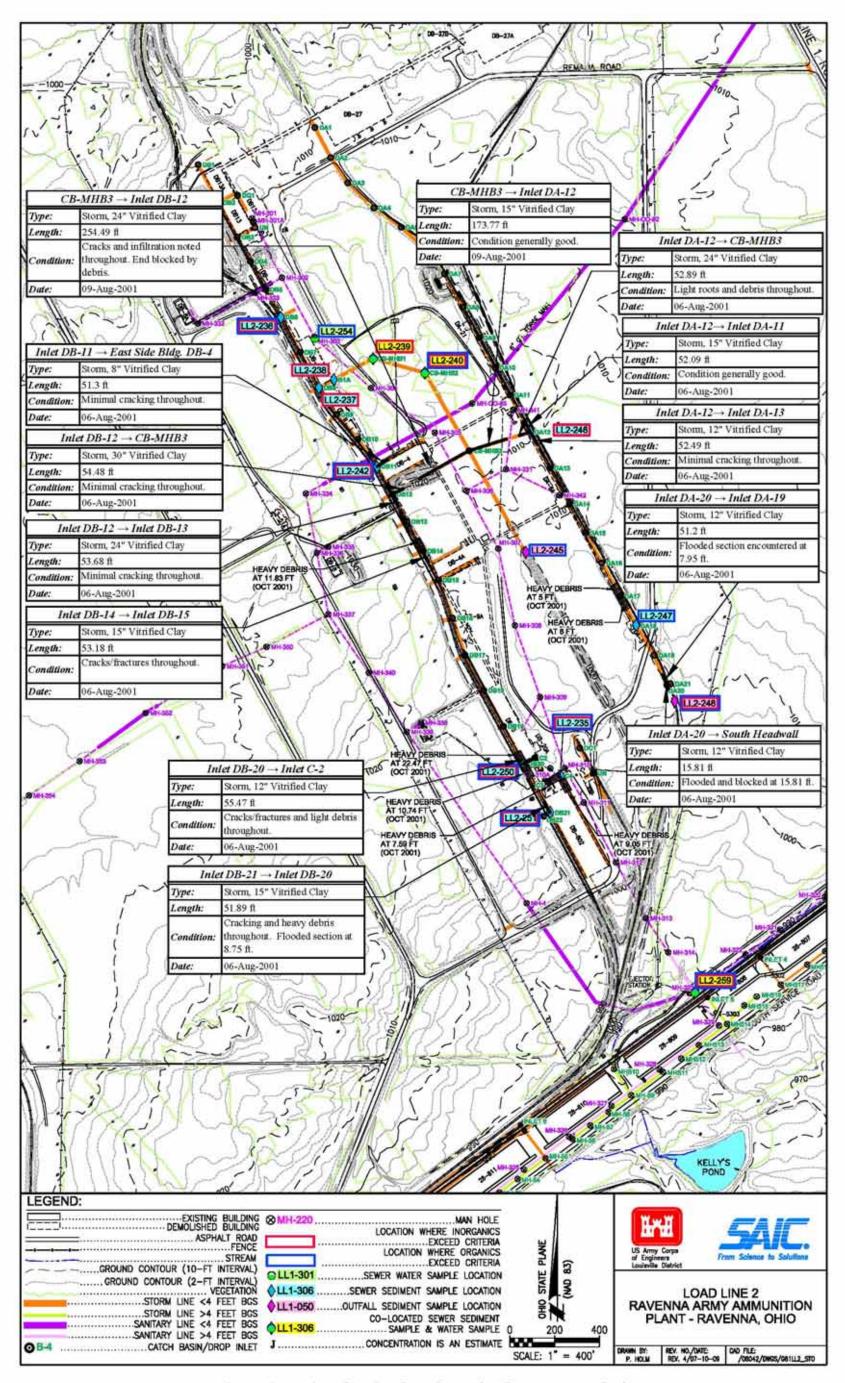



Figure F-4. Locations of Previous Storm Sewer Video Surveys at Load Line 2

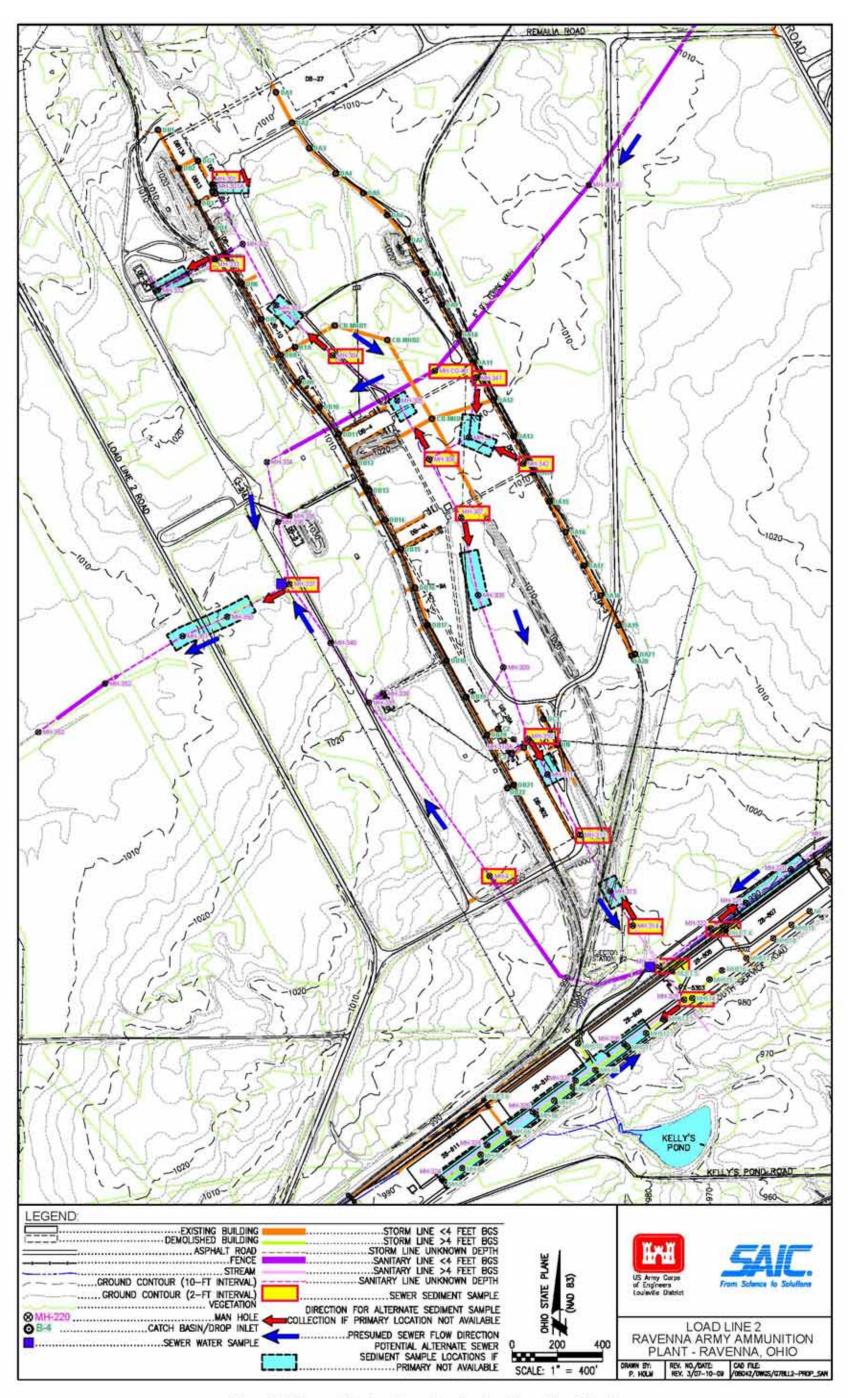



Figure F-5. Proposed Sanitary Sewer Sampling Locations at Load Line 2

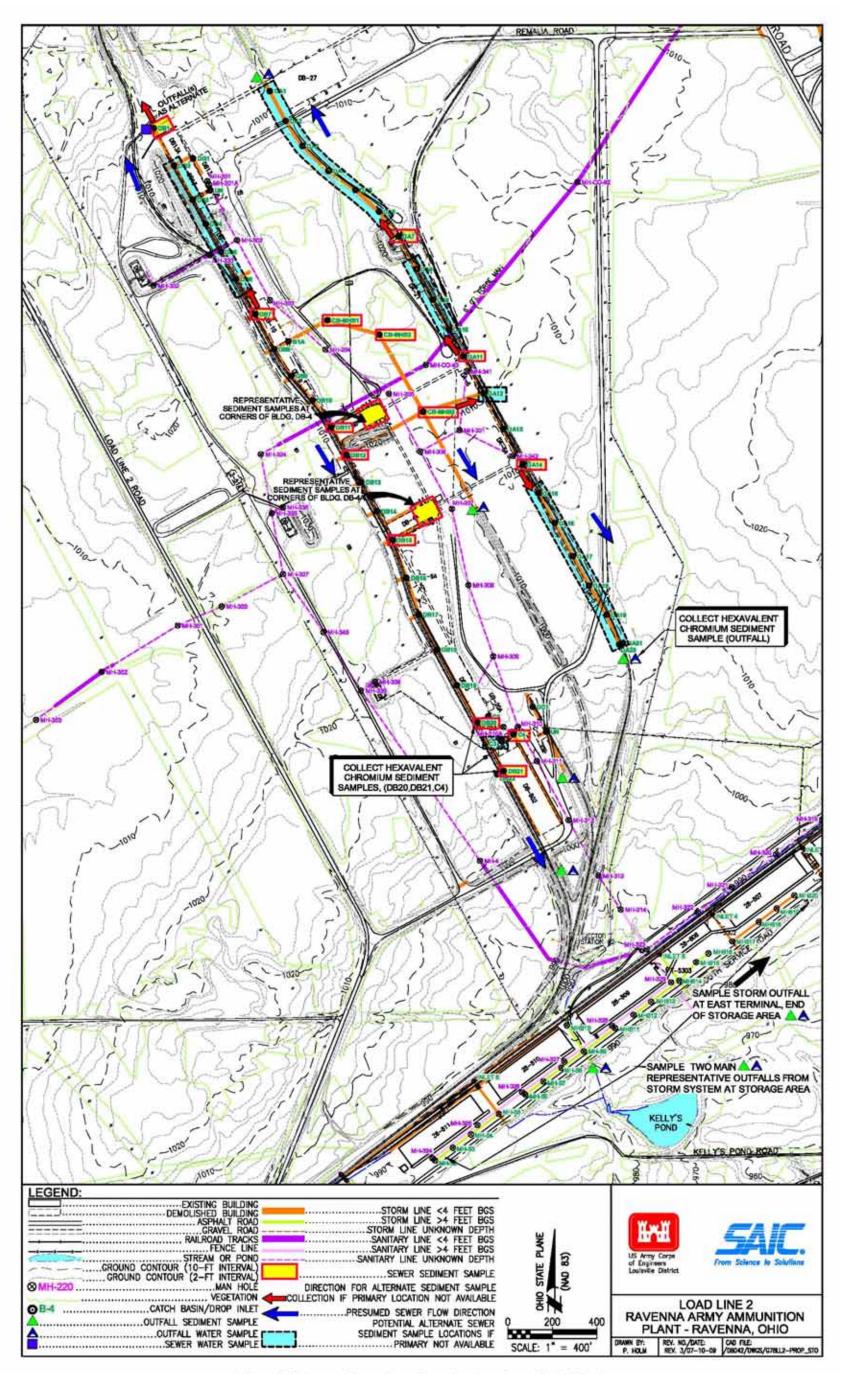



Figure F-6. Proposed Storm Sewer Sampling Locations at Load Line 2

APPENDIX G Load Line 3

### G.1 AREA DESCRIPTION

Load Line 3 was used to melt bulk explosives and load Composition B into large-caliber shells and bombs (Figure G-1). During the operation of Load Line 3, bulk TNT and HMX was offloaded at Buildings EA-6 and EA-6A for screening and preparation before being transported to the melt-pour Building EA-4 and EA-4A for processing and loading into shells. Upon completion of primary charge loading, shells were transported to Building EB-10 for drilling operations or other preparation steps prior to transfer to Building EB-10A for quality assurance inspections. Buildings EB-13A, EB -13B, and EB-13C housed packaging and shipping operations. Shell receiving and preparation operations, including cleaning and painting, were contained in Building EB-3. Bulk explosive carrier washout activities were conducted in Building EB-25. Inert material receiving and storage was conducted at Building EB-803. The line operated during World War II, from 1951 to 1957, and again from 1969 to 1971.

During its operational history, Load Line 3 produced about 6.5 million munitions. Demilitarization activities were conducted between 1951 and 1957 during which time approximately 228,000 munitions were processed at the load line. Building wash-down water and wastewater from the load line operations were collected in concrete sumps, pumped through sawdust filtration units, and ultimately discharged to a drainage ditch leading to a settling pond. The buildings and structures at Load Line 3 have been demolished.

Load Line 3 contains separate storm and sanitary sewer systems. The sanitary sewer system at Load Line 3 is part of the Sand Creek Treatment Plant network (shown in Plate A-2). The storm sewer network discharged to a series of surface drainage conveyances throughout the load line. The storm sewer and sanitary sewer system infrastructures largely remain in place, although portions of the systems have sustained significant damage or have been obstructed with debris during building demolition activities.

### G.2 PREVIOUS INVESTIGATIONS

The *Phase II Remedial Investigation* for Load Line 3 included sewer water and sediment sampling and a video camera survey of the sewer lines (USACE 2004b). At the time of sampling, visual inspection indicated that most of the storm and sanitary sewer systems at Load Line 3 were above the water table and were dry. However, limited portions of the sanitary sewer system were found to be flooded. Only two sewer water samples could be collected, both of which were from sanitary sewer manholes A total of six sewer sediment samples were collected, five of which were obtained from storm sewer inlet locations. Three outfall sediment samples were collected from locations where storm sewer lines discharged to surface drainage conveyances. Previous sewer and outfall sample locations are shown in Figure G-1.

The analytical results indicated that eight metals, two explosives (2,4,6-trinitrotoluene and 2-amino-4,6-dinitrotoluene) and PCB-1254 exceeded screening levels in sewer sediment at Load Line 3. The only analytes to exceed screening levels in sewer water were the metal thallium and the explosive 2-amino-4,6-dinitrotoluene. In outfall sediments, seven metals, two explosives (2-amino-4,6-dinitrotoluene and 4-amino-2,6-dinitrotoluene) and PCB-1254 exceeded their respective screening levels. These screening level exceedances are summarized in Table G-1 and the sample locations with exceedances are shown in Figure G-2. PCB-1254 was identified in all the storm and sanitary sewer sediment samples collected, with the highest concentrations observed at the storm inlets draining the areas in the vicinity of buildings EB-10, EB-4 and EB-803.

A total of 1,840.53 linear feet of Load Line 3 sewers have been video surveyed (457.69 and 1,382.84 linear feet of sanitary and storm sewer, respectively) to assess the integrity of the lines and their potential to release contaminants to the environment. Video survey locations and findings for the sanitary and storm sewers at Load Line 3 are presented in Figures G-3 and G-4, respectively (USACE 2004b; Lakeshore Engineering Services, Inc. 2007). During the surveys, multiple sewer inlet or manhole locations were observed to be obstructed with debris such as leaves, sticks, rocks and sediment. Heavy debris and significant root growth was observed throughout the sanitary and storm sewer system, hindering survey efforts. Some portions of the system were characterized by medium levels of corrosion, holes, cracks and fractures. In one segment of line south of sanitary manhole MH-419, a hole in the pipe and complete collapse was observed.

Inspections and explosives field screening tests were conducted at Load Line 3 during the *Explosive Evaluation of Sewers* investigations (Lakeshore Engineering Services, Inc. 2007; USACE-CERL 2007). However, these sewer efforts were conducted without Ohio EPA regulatory oversight or review of the associated work plans and resultant completion report or its conclusions. During the USACE-CERL (2007) investigation, no visual evidence of trace explosives was observed. A total of 26 DropEx<sup>™</sup> samples were collected at Load Line 3 sanitary sewer manholes, none of which tested positive for explosives residue. Of the 35 screening tests in total conducted at the storm sewer drop inlets, six DropEx<sup>™</sup> samples at inlets associated with the melt-pour Buildings EB-4 and EB-4A tested positive for explosives residue. The video surveys conducted at Load Line 3 during the Lakeshore (2007) investigation also involved subsequent swabbing and Expray<sup>™</sup> testing of the camera for explosives residue. All three storm sewer runs at segments adjacent to building EB-4 tested positive for trace explosives, and the one sanitary sewer camera run yielded negative results.

| Media    | Analyte                    | Units | Detection<br>Frequency | Minimum<br>Detection | Maximum<br>Detection | Average<br>Result | Screening<br>Level <sup>a</sup> |
|----------|----------------------------|-------|------------------------|----------------------|----------------------|-------------------|---------------------------------|
|          | 2,4,6-Trinitrotoluene      | mg/kg | 3/5                    | 0.16                 | 68                   | 22.9              | 3.7                             |
|          | 2-Amino-4,6-Dinitrotoluene | mg/kg | 2/5                    | 0.69                 | 2.2                  | 1.45              | 1.5                             |
|          | Antimony                   | mg/kg | 3/6                    | 1.9                  | 756                  | 320               | 2.8                             |
|          | Arsenic                    | mg/kg | 6/6                    | 8.7                  | 24.4                 | 13.6              | 19.5                            |
| Sewer    | Barium                     | mg/kg | 6/6                    | 37.4                 | 2,010                | 413               | 350                             |
| Sediment | Cadmium                    | mg/kg | 6/6                    | 0.35                 | 9.3                  | 3.76              | 6.4                             |
| Seament  | Chromium                   | mg/kg | 6/6                    | 10.7                 | 464                  | 120               | 18.1                            |
|          | Cobalt                     | mg/kg | 6/6                    | 5.5                  | 21.1                 | 10.2              | 9.1                             |
|          | Copper                     | mg/kg | 6/6                    | 23.5                 | 1,340                | 304               | 310                             |
|          | Lead                       | mg/kg | 6/6                    | 55                   | 3,930                | 875               | 400                             |
|          | PCB-1254                   | mg/kg | 6/6                    | 0.056                | 15                   | 4.2               | 0.12                            |
| Sewer    | 4-Amino-2,6-Dinitrotoluene | mg/L  | 2/2                    | 0.0017               | 0.0034               | 0.0026            | 0.0031                          |
| Water    | Thallium                   | mg/L  | 1/2                    | _                    | _                    | 0.0019            | 0.0012                          |
|          | 2-Amino-4,6-Dinitrotoluene | mg/kg | 3/3                    | 0.12                 | 5                    | 1.8               | 1.5                             |
|          | 4-Amino-2,6-Dinitrotoluene | mg/kg | 3/3                    | 0.23                 | 6.5                  | 2.5               | 1.5                             |
|          | Antimony                   | mg/kg | 1/3                    | _                    | _                    | 177               | 2.8                             |
| Outfall  | Arsenic                    | mg/kg | 3/3                    | 13                   | 20.7                 | 14.7              | 19.5                            |
| Sediment | Chromium                   | mg/kg | 3/3                    | 18.7                 | 114                  | 52                | 18.1                            |
| Seament  | Cobalt                     | mg/kg | 3/3                    | 7                    | 10.9                 | 9.1               | 9.1                             |
|          | Copper                     | mg/kg | 3/3                    | 29.6                 | 1,070                | 391               | 310                             |
|          | Lead                       | mg/kg | 3/3                    | 87.8                 | 873                  | 351               | 400                             |
|          | PCB-1254                   | mg/kg | 3/3                    | 0.86                 | 36                   | 12.6              | 0.12                            |

 Table G-1. Chemicals Exceeding Screening Levels in Sewer Media at Load Line 3

<sup>a</sup>Screening levels are based on the Draft Facility-Wide Cleanup Goal for Hazard Quotient (HQ)=0.1 and Carcinogenic Risk=1E-6. Where background values were higher than the cleanup goal (HQ=0.1/R=1E-6), the background value is utilized as the screening level. — Not applicable.

### G.3 PROPOSED SAP ADDENDUM INVESTIGATION OBJECTIVES

The general approach for investigation activities for Facility-Wide Sewers as a whole is presented in Section 3.2 of the FSP. However, certain areas of the system should be targeted for assessment based on the evaluation of existing historical data, results of previous investigations, anomalies identified during visual survey, or potential to have accumulated contaminants based on their location within the system and proximity to source areas. Although actual sampling locations cannot be established in advance since sufficient volume of media for sample collection may be unavailable and because site conditions may preclude access to portions of the system, primary and alternate sampling recommendations for the Load Line 3 are presented in Table G-2, and shown in Figures G-5 (sanitary) and G-6 (storm).

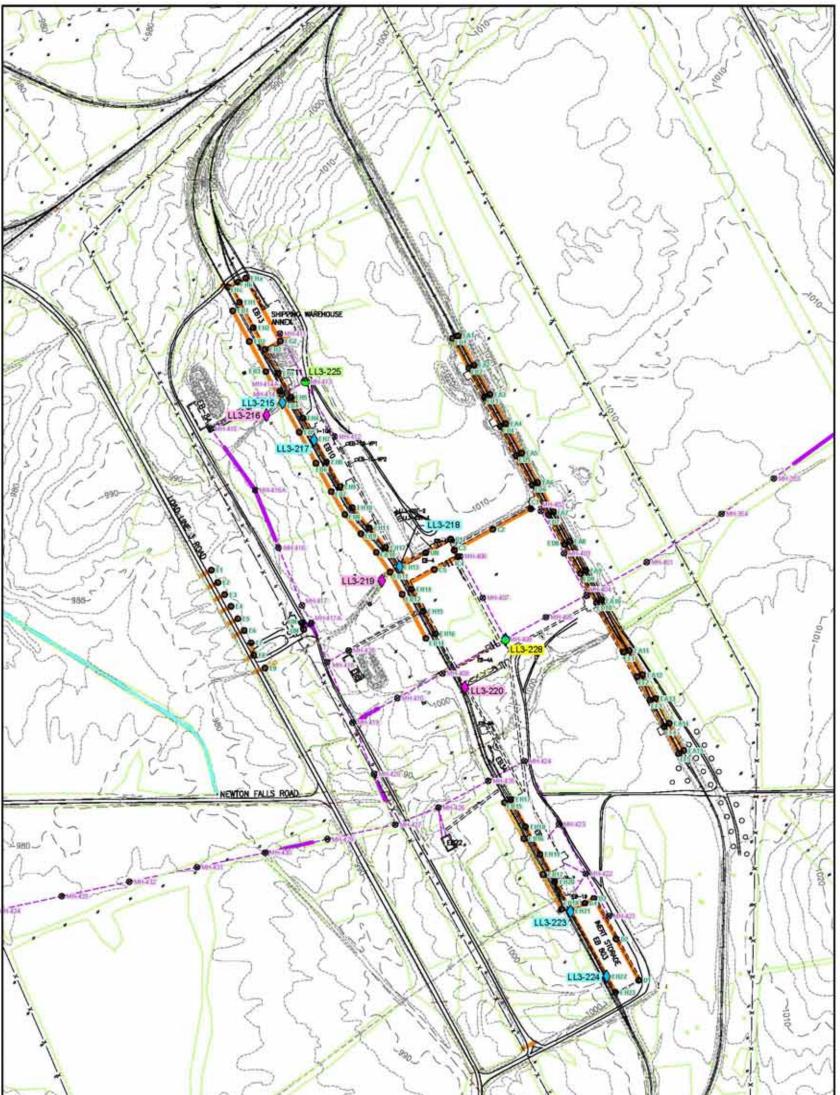
| Sewer<br>Type | Primary Sample<br>Location | Alternate Sample<br>Locations<br>(In Order of Precedence) | Media Type     | Comments/Rationale                                                                                                                                                                                                     |
|---------------|----------------------------|-----------------------------------------------------------|----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Sanitary      | MH-401                     | MH-401 None                                               |                | Represents upstream conditions prior<br>to drainage from Load Lines 1 and 2                                                                                                                                            |
| Santary       | WIII-401                   |                                                           | Sewer Water    | entering the east boundary of Load Line 3.                                                                                                                                                                             |
| Sanitary      | MH-402                     | None                                                      | Sewer Sediment | Represents conditions at potential source area (shaker building EA-6).                                                                                                                                                 |
| Sanitary      | MH-404                     | MH-403                                                    | Sewer Sediment | Represents conditions at potential source area (shaker building EA-6A).                                                                                                                                                |
| Sanitary      | MH-406                     | None                                                      | Sewer Sediment | Represents conditions at melt-pour<br>building EB-4.                                                                                                                                                                   |
| Sanitary      | МН-408                     | MH-405, MH-407                                            | Sewer Sediment | Represents conditions at and<br>downstream of potential major source<br>area (melt pour and shaker buildings<br>complex). Historical sediment data at<br>this location indicated inorganics<br>above screening levels. |
| Sanitary      | МН-413                     | МН-412                                                    | Sewer Sediment | Isolates segment servicing buildings<br>EB-10A, EB-11 and EB-13. This<br>location previously exhibited<br>screening level exceedances of<br>inorganics and organics in water; no<br>sediment was collected.            |
| Sanitary      | MH-418                     | MH-417A, MH-417,<br>MH-416, MH-415A,<br>MH-415            | Sewer Sediment | Isolates segment at northwest portion<br>of the load line servicing Bldg. EB-<br>8A.                                                                                                                                   |
| Sanitary      | MH-419                     | MH-410, MH-409                                            | Sewer Sediment | Represents conditions immediately<br>downstream of melt-pour building<br>EB-4A.                                                                                                                                        |
| Sanitary      | MH-421                     | MH-422                                                    | Sewer Sediment | Isolates segment at the building complex at south end of load line.                                                                                                                                                    |
| Sanitary      | MH-424                     | MH-423                                                    | Sewer Sediment | Isolates segment at the building complex at south end of load line.                                                                                                                                                    |
| Sanitary      | MH-427                     | MH-429, MH-430, MH-<br>431, MH-432, MH-433,               | Sewer Sediment | Represents last major junction point<br>within Load Line 3 before exiting the                                                                                                                                          |
|               |                            | MH-434                                                    | Sewer Water    | boundaries of the load line at the west<br>and draining towards Load Line 12.                                                                                                                                          |
| Storm         | C1                         | None                                                      | Sewer Sediment | Represents conditions immediately<br>downstream of melt-pour complex and<br>at shaker building.                                                                                                                        |
| Storm         | C3                         | C4, B1, C2                                                | Sewer Sediment | Provides characterization at possible<br>major source area (melt-pour building<br>EB-4). Drop inlets at this building<br>tested positive for explosives residue<br>in 2007.                                            |

Table G-2. Summary of Proposed Sampling Locations at Load Line 3

|       |                | Alternate Sample                           |                |                                                                                                                                                                                                                                                                                                                              |
|-------|----------------|--------------------------------------------|----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Sewer | Primary Sample | Locations                                  |                |                                                                                                                                                                                                                                                                                                                              |
| Туре  | Location       | (In Order of Precedence)                   | Media Type     | <b>Comments/Rationale</b>                                                                                                                                                                                                                                                                                                    |
| Storm | D3             | D2, D1                                     | Sewer Sediment | Isolates segment on east side of Bldg.<br>EB-803. Historical data for drop inlets<br>at this building indicated organics and<br>inorganics above screening levels.                                                                                                                                                           |
| Storm | ED1            | Outfall to north of ED1                    | Sewer Sediment | Represents drainage to northeast end of load line.                                                                                                                                                                                                                                                                           |
| Storm | ED6            | ED5, ED4, ED3, ED2                         | Sewer Sediment | Isolates segment at northeast of load line.                                                                                                                                                                                                                                                                                  |
| Storm | ED10           | EF1, EF2, EF3, EF4                         | Sewer Sediment | Represents conditions at or downstream of shaker building.                                                                                                                                                                                                                                                                   |
| Storm | EF5            | Outfall to south of EF5                    | Sewer Sediment | Represents drainage to southeast end of load line.                                                                                                                                                                                                                                                                           |
| Storm | EH3            | EG2                                        | Sewer Sediment | Represents conditions at Bldg. EB-13.                                                                                                                                                                                                                                                                                        |
| Storm | EH13           | EH12, EH11, EH10                           | Sewer Sediment | Provides characterization at possible<br>major source area (melt-pour building<br>EB-4). Drop inlets at this building<br>tested positive for explosives residue<br>in 2007. Historical results indicated<br>screening level exceedances for<br>organics.                                                                     |
| Storm | EH14           | EH15, EH16                                 | Sewer Sediment | Provides characterization at possible<br>major source area (melt-pour building<br>EB-4). Drop inlets at this building<br>tested positive for explosives residue<br>in 2007, and histortical data exceeded<br>screening levels for organics                                                                                   |
| Storm | EH19           | EH18, EH17                                 | Sewer Sediment | Isolates segment at west side of Bldg.<br>EB-3A.                                                                                                                                                                                                                                                                             |
| Storm | EH21           | EH20                                       | Sewer Sediment | Isolates segment downstream of<br>Bldgs. EB-2 and EB-79. Historical<br>data for this location indicated<br>organics and inorganics above<br>screening levels.<br>In addition to Tier 1 sampling<br>procedures, collect hexavalent<br>chromium sample for speciation<br>data; historical chromium<br>concentrations elevated. |
| Storm | EH233          | Outfall at terminus of segment, if present | Sewer Sediment | Represents outfall downstream of<br>building complex at south end of load<br>line. Historical data at an adjacent<br>drop inlet indicated organics and<br>inorganics above screening levels.                                                                                                                                 |

# Table G-2. Summary of Proposed Sampling Locations at Load Line 3 (continued)

| Sewer<br>Type | Primary Sample<br>Location                          | Alternate Sample<br>Locations<br>(In Order of Precedence) | Media Type                        | Comments/Rationale                                                                                                                                                                                                                                                                                       |
|---------------|-----------------------------------------------------|-----------------------------------------------------------|-----------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Storm         | Bldg. EB-4A,                                        | Any representative inlet                                  | Sewer Sediment                    | Provides characterization at possible                                                                                                                                                                                                                                                                    |
| 5000          | northwest corner                                    | at corner                                                 | Sewer Seument                     | major source area (melt-pour building<br>EB-4A). Drop inlets at this building<br>tested positive for explosives residue<br>in 2007, and historical data for a storm<br>outfall at this building indicated<br>inorganics and organics above<br>screening levels.                                          |
| Storm         | Bldg. EB-4A,<br>southwest corner                    | Any representative inlet<br>at corner                     | Sewer Sediment                    | Provides characterization at possible<br>major source area (melt-pour building<br>EB-4A). Drop inlets at this building<br>tested positive for explosives residue<br>in 2007, and historical data for a storm<br>outfall at this building indicated<br>inorganics and organics above<br>screening levels. |
| Storm         | Bldg. EB-4A,<br>northeast corner                    | Any representative inlet<br>at corner                     | Sewer Sediment                    | Provides characterization at possible<br>major source area (melt-pour building<br>EB-4A). Drop inlets at this building<br>tested positive for explosives residue<br>in 2007, and historical data for a storm<br>outfall at this building indicated<br>inorganics and organics above<br>screening levels. |
| Storm         | Bldg. EB-4A,<br>southeast corner                    | Any representative inlet<br>at corner                     | Sewer Sediment                    | Provides characterization at possible<br>major source area (melt-pour building<br>EB-4A). Drop inlets at this building<br>tested positive for explosives residue<br>in 2007, and historical data for a storm<br>outfall at this building indicated<br>inorganics and organics above<br>screening levels. |
| Storm         | Outfall at northwest<br>corner of Bldg. EB13        | None                                                      | Outfall Sediment<br>Outfall Water | Represents potential major outfall at northeast portion of load line.                                                                                                                                                                                                                                    |
| Storm         | Outfall to west of inlet<br>EB11                    | None                                                      | Outfall Sediment Outfall Water    | Represents potential major outfall at<br>melt pour complex. Historical data for<br>this location indicated inorganics and<br>organics above screening levels.                                                                                                                                            |
| Storm         | Outfall to west of inlet<br>EB4                     | None                                                      | Outfall Sediment<br>Outfall Water | Represents potential major outfall at<br>northwest quadrant of load line.<br>Historical data for this location<br>indicated inorganics and organics<br>above screening levels.                                                                                                                           |
| Storm         | Potential outfall<br>between inlets ED10<br>and EF1 | None                                                      | Outfall Sediment Outfall Water    | Represents potential major drainage<br>outfall downstream of shaker<br>buildings.                                                                                                                                                                                                                        |


# Table G-2. Summary of Proposed Sampling Locations at Load Line 3 (continued)

Additionally, investigation activities will involve ground-truthing and documenting the configuration of the storm sewer network at the former melt pour buildings EB-4 and EB-4A complex. During the preliminary reconnaissance effort in December 2008, the location of inlet structures in the field was observed to differ from what was reflected in the maps based upon the digitization of historical facility drawings, likely due to the rehabilitation of these lines in the 1950s.

During the visual survey phase, inspection forms will be completed for sewer structures at Load Line 3 to document their condition and accessibility for subsequent investigative activities (i.e., sample media collection or video survey). Actual locations of sample collection, video surveys will be presented in the RI report.

During historical sampling, the sediment result for storm system Inlet EH21 was observed to have total chromium concentrations in excess of the cleanup goal for the residential farmer (187 mg/kg). A hexavalent chromium sewer sediment sample will be collected at this locations to provide chromium speciation data.

THIS PAGE INTENTIONALLY LEFT BLANK.



|                                                                                                                                                                                                                                                                                                         | 2                                                                                                                                                                                                                                                                                                                                                               |                               |                                                                                                                                               |            |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|------------|
| LEGEND:<br>EXISTING BUILDING<br>DEMOLISHED BUILDING<br>ASPHALT ROAD<br>RAILROAD TRACKS<br>RAILROAD TRACKS<br>STREAM OR POND<br>GROUND CONTOUR (10-FT INTERVAL)<br>GROUND CONTOUR (10-FT INTERVAL)<br>GROUND CONTOUR (2-FT INTERVAL)<br>VEGETATION<br>VEGETATION<br>VEGETATION<br>VEGETATION<br>NAN HOLE | STORM LINE <4 FEET BGS<br>STORM LINE >4 FEET BGS<br>STORM LINE >4 FEET BGS<br>SANITARY LINE UNKNOWN DEPTH<br>SANITARY LINE <4 FEET BGS<br>SANITARY LINE <4 FEET BGS<br>SANITARY LINE UNKNOWN DEPTH<br>OLL3-254<br>SEWER WATER SAMPLE LOCATION<br>LL3-306<br>SEWER SEDIMENT SAMPLE LOCATION<br>CO-LOCATED SEWER<br>CO-LOCATED SEWER<br>SEDIMENT AND WATER SAMPLE | 0 200 400<br>SCALE: 1" = 400' | US Army Corps<br>of Engineers<br>Louisville District<br>LOAD<br>RAVENNA ARM<br>PLANT - RAV<br>DRAW PT: REV. NO/DATE<br>P. NOW REV. 4/07-19-09 | ENNA, OHIO |

Figure G-1. Historical Sewer Sampling Locations at Load Line 3

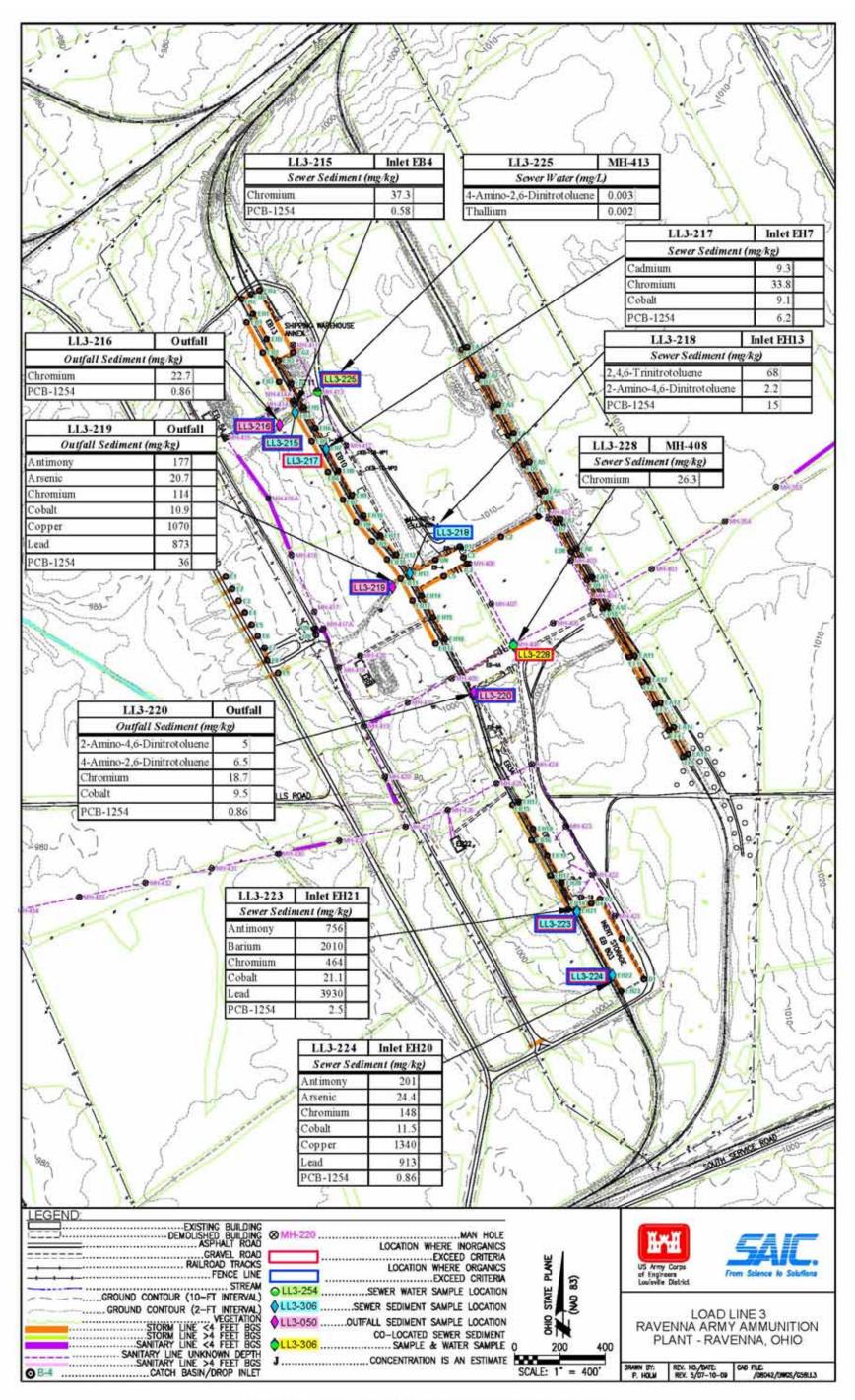



Figure G-2. Historical Exceedances for Sewer Samples at Load Line 3

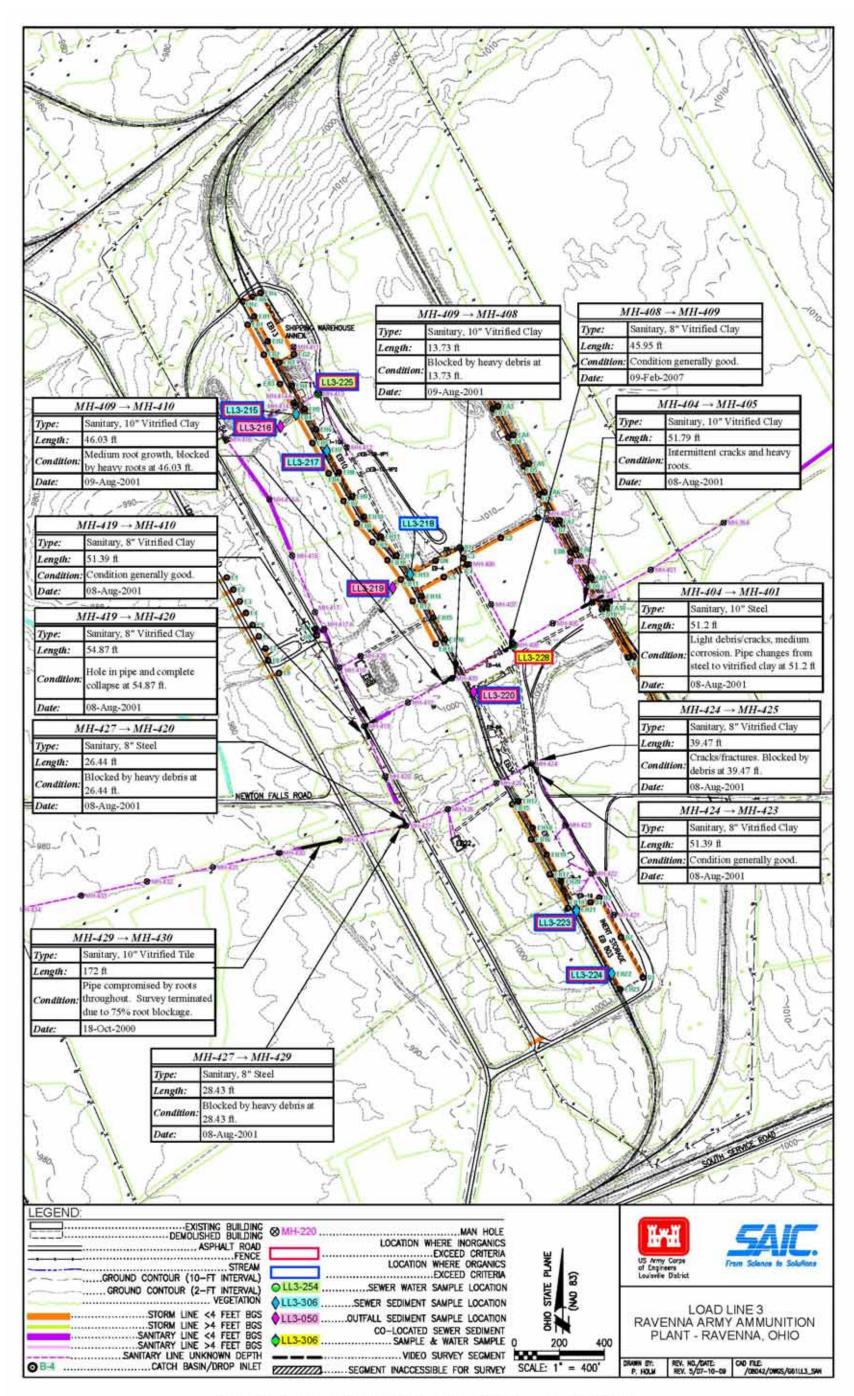



Figure G-3. Locations of Previous Sanitary Sewer Video Surveys at Load Line 3

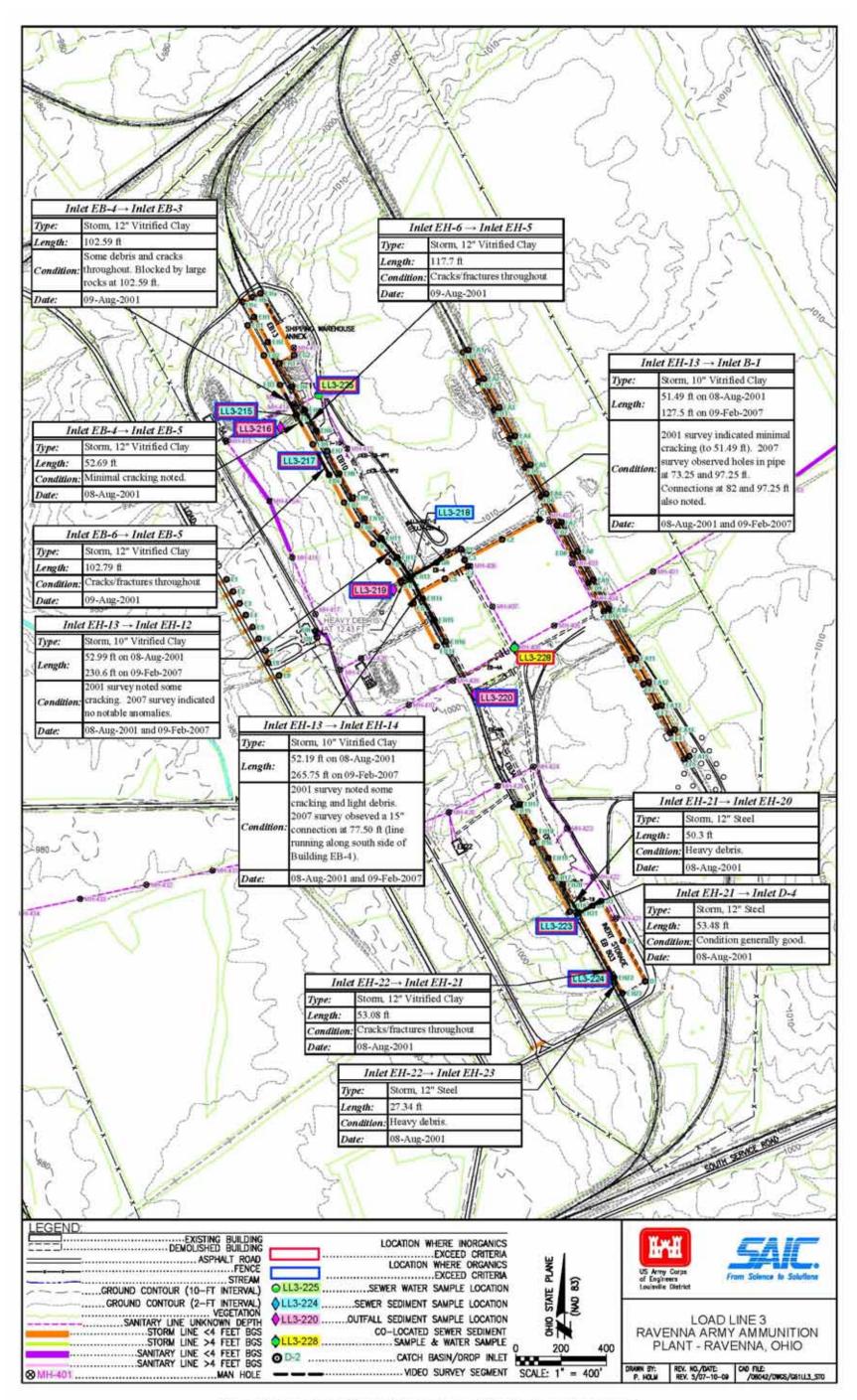



Figure G-4. Locations of Previous Storm Sewer Video Surveys at Load Line 3

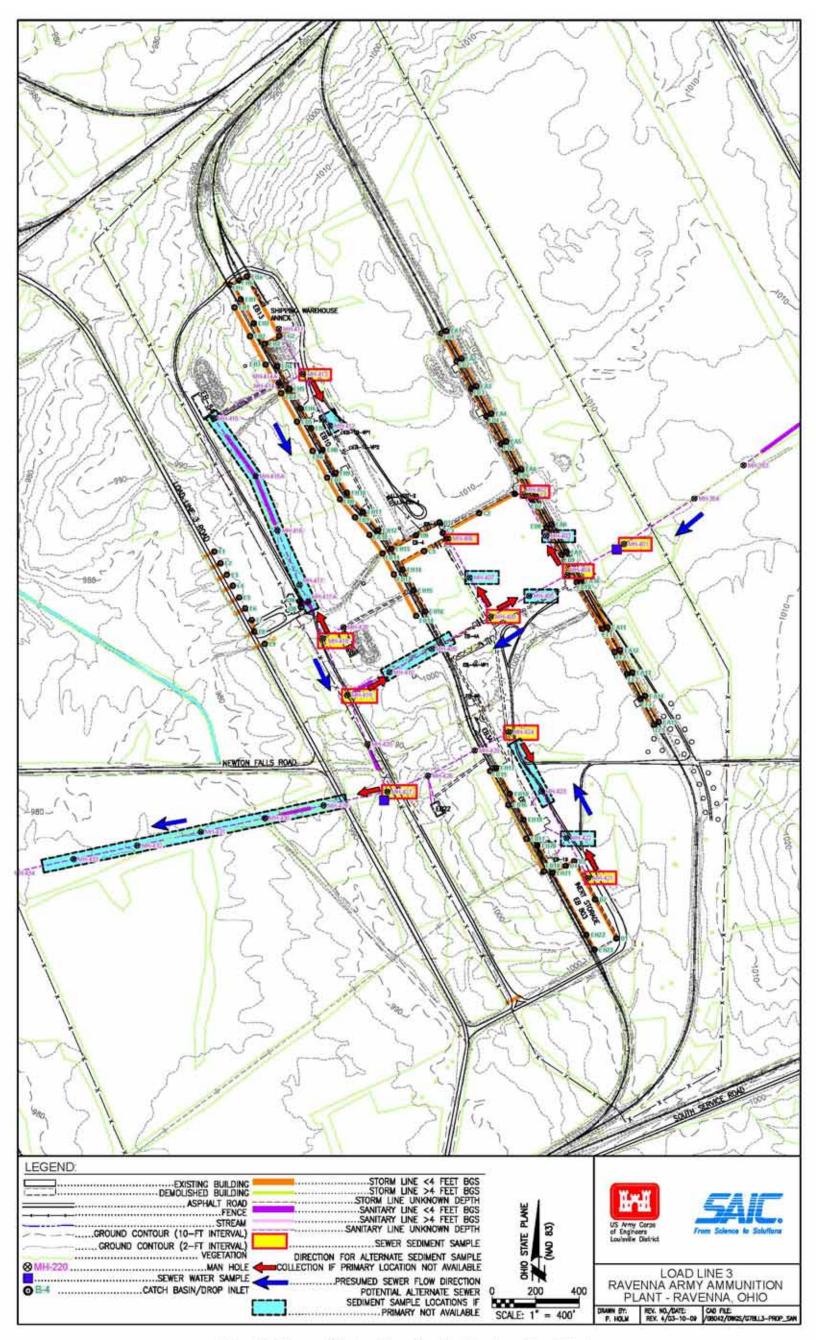



Figure G-5. Proposed Sanitary Sewer Sampling Locations at Load Line 3

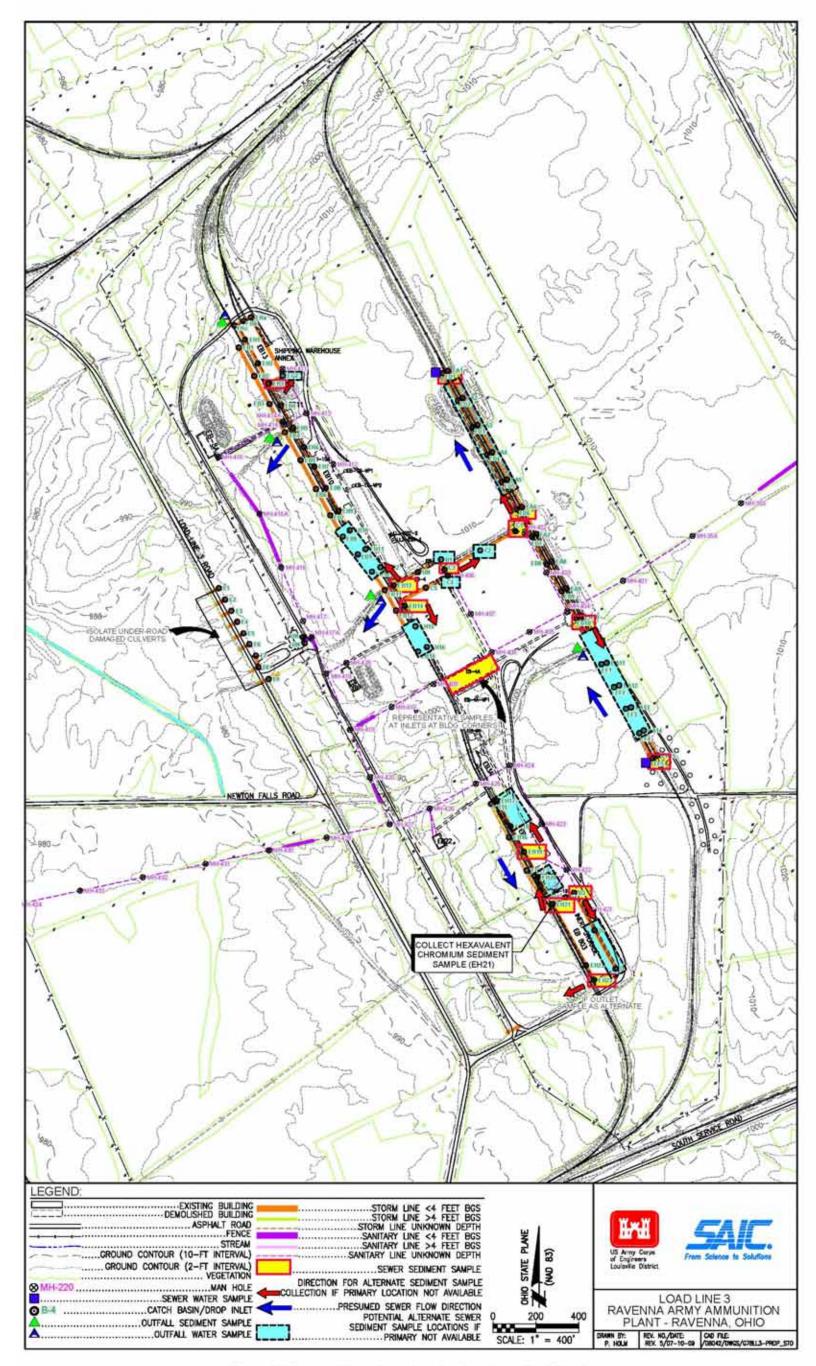



Figure G-6. Proposed Storm Sewer Sampling Locations at Load Line 3

APPENDIX H Load Line 4

### H.1 AREA DESCRIPTION

Load Line 4 was used to melt and load TNT into large-caliber shells, bombs, and antitank mines (Figure H-1). Bulk TNT was offloaded at Building G-16, transported to G-11 for screening, and subsequently to Buildings G-10 or G-15 for additional preparation. Following preparation, bulk explosives were transported to the melt-pour building (G-8) for processing and loading into shells. Once the primary TNT charge was loaded into the shells, they were transported to Buildings G-12 and G-12A for cooling. Funnel removal, face off operations, and drilling operations for booster charges or other preparation steps were conducted in Building G-13, before quality assurance of the primary charge was conducted in Building G-13A. Buildings G-18, G-19, and G-19A housed packing and shipping operations, and Building G-9 was used as a magazine. Inert material was received and warehoused at Buildings G-1, G-1A, G-2, and G-3. The line operated briefly during World War II and again from 1951 to 1957.

During its operational history, Load Line 4 produced about 1.2 million munitions. Pink water generated during operations was collected in concrete sumps and pumped via an overhead 6-in. diameter cast iron flume to a settling basin and sawdust filtration unit located southwest of Building G-8. Effluent from the filtration unit was discharged to an unlined drainage ditch that flows into a 2 acre pond which discharged to a surface stream that exits the facility at a point south of the load line. When the facility was at full capacity, Load Line 4 generated approximately 3,390,000 L (895,000 gal) of pink water per month from washdown and steam decontamination of equipment. The buildings and structures at Load Line 4 have been demolished.

Load Line 4 contains separate storm and sanitary sewer systems. The sanitary sewer system at Load Line 4 is part of the Sand Creek Treatment Plant network (shown in Plate A-2). The storm sewer network discharged to a series of surface drainage conveyances throughout the load line. The storm sewer and sanitary sewer system infrastructures largely remain in place, although portions of the systems have sustained significant damage or have been obstructed with debris during building demolition activities.

### H.2 PREVIOUS INVESTIGATIONS

The *Phase II Remedial Investigation* for Load Line 4 included sewer water and sediment sampling and a video camera survey of the sewer lines (USACE 2004c). At the time of sampling, visual inspection indicated that most of the storm and sanitary sewer systems at Load Line 4 were above the water table and were dry. In total, sewer sediment samples were collected at three storm inlets and six sanitary manholes. Sewer water samples were collected from three storm cleanout manholes and two sanitary manholes. Three outfall sediment samples were collected from locations where storm sewer lines discharged to surface drainage conveyances in the vicinity of the melt-pour buildings. Previous sewer and outfall sample locations are shown in Figure H-1.

The analytical results indicated that five metals (arsenic, barium, cobalt, manganese and thallium), five polyaromatic hydrocarbons (benz(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, dibenz(a,h)anthracene and indeno(1,2,3-cd)pyrene) and PCB-1254 exceeded their respective screening levels in sewer sediment at Load Line 4. No screening level exceedances were observed for sewer water or outfall sediment samples. The screening level exceedances are summarized in Table H-1 and the sample locations with exceedances are shown in Figure H-2. No explosives compounds were detected in either sewer or outfall sediment at Load Line 4. Trace levels of RDX, 2-amino-4,6-DNT, and 4-amino-2,6-DNT were detected in sewer water collected from three of the seven manholes sampled, none of which exceeded their respective screeening levels. Concentrations of polyaromatic hydrocarbons above screening levels were observed in sediment samples at two sanitary sewer manholes on the south side of the load line.

A total of 1,998.47 linear feet of Load Line 4 sewers have been video surveyed (567.86 and 1,430.61 linear feet of sanitary and storm sewer, respectively) to assess the integrity of the lines and their potential to release contaminants to the environment. Video survey locations and findings for the sanitary and storm sewers at Load Line 4 are presented in Figures H-3 and H-4, respectively (USACE 2004c; Lakeshore Engineering Services, Inc. 2007). Initial visual inspection during the spring of 2001 indicated that some of the storm and sanitary sewer systems were dry and above the water table. However, several of the storm sewers contained standing or flowing water indicative of groundwater influx. During the video survey, the sanitary sewer system was found to be largely flooded and several of the planned entry points were obstructed with debris such as leaves, sticks and sediment. The portions of the sanitary and storm sewer system that were accessible for video survey were observed to be cracked and filled with heavy debris, mineral deposits and roots throughout. Some portions of the system were heavily flooded, and breaks in the pipe connections were noted.

Inspections and explosives field screening tests were conducted at Load Line 4 during the *Explosive Evaluation of Sewers* investigations (Lakeshore Engineering Services, Inc. 2007; USACE-CERL 2007). However, these sewer efforts were conducted without Ohio EPA regulatory oversight or review of the associated work plans and resultant completion report or its conclusions. During the USACE-CERL (2007) investigation, RDX was observed in a storm manhole next to the melt-pour Building G-8. A total of 23 DropEx<sup>™</sup> samples were collected at Load Line 4 sanitary sewer manholes, none of which tested positive for explosives residue. Of the 56 screening tests in total conducted at the storm sewer drop inlets, five DropEx<sup>™</sup> samples tested positive for explosives residue. Four of these detections were at storm structures surrounding building G-8 (cleanout manhole CB-MH5, and drop inlets M-1 and M-2), and the fifth was adjacent to building G-9 (drop inlet GA-35). The video surveys conducted at Load Line 4 during the Lakeshore (2007) investigation also involved subsequent swabbing and Expray<sup>™</sup> testing of the camera for explosives residue. Two out of four storm sewer runs tested positive for trace explosives, both of which began at drop inlet GA-35 adjacent to building G-9.

| Media               | Analyte                | Units | Detection<br>Frequency | Minimum<br>Detection | Maximum<br>Detection | Average<br>Result | Screening<br>Level <sup>a</sup> |
|---------------------|------------------------|-------|------------------------|----------------------|----------------------|-------------------|---------------------------------|
|                     | Arsenic                | mg/kg | 9/9                    | 2.4                  | 157                  | 27                | 19.5                            |
|                     | Barium                 | mg/kg | 9/9                    | 14.8                 | 600                  | 132               | 350                             |
|                     | Cobalt                 | mg/kg | 9/9                    | 2.4                  | 45.6                 | 10.4              | 9.1                             |
|                     | Manganese              | mg/kg | 9/9                    | 155                  | 30,500               | 4,120             | 1,950                           |
| Sewer               | Thallium               | mg/kg | 9/9                    | 0.25                 | 3.6                  | 1.17              | 0.89                            |
| Sediment            | Benz(a)anthracene      | mg/kg | 2/3                    | 1.8                  | 3.2                  | 2.5               | 0.22                            |
| Scullicit           | Benzo(a)pyrene         | mg/kg | 2/3                    | 1.3                  | 3.5                  | 2.4               | 0.022                           |
|                     | Benzo(b)fluoranthene   | mg/kg | 2/3                    | 1.7                  | 5.5                  | 3.6               | 0.22                            |
|                     | Dibenz(a,h)anthracene  | mg/kg | 2/3                    | 0.15                 | 0.51                 | 0.33              | 0.022                           |
|                     | Indeno(1,2,3-cd)pyrene | mg/kg | 2/3                    | 0.51                 | 1.8                  | 1.16              | 0.22                            |
|                     | PCB-1254               | mg/kg | 1/9                    | _                    | —                    | 0.67              | 0.12                            |
| Sewer<br>Water      | No exceedances         | mg/L  | —                      | _                    | -                    | _                 | -                               |
| Outfall<br>Sediment | No exceedances         | mg/kg | —                      | _                    | _                    | _                 | _                               |

 Table H-1. Chemicals Exceeding Screening Levels in Sewer Media at Load Line 4

<sup>a</sup>Screening levels are based on the Draft Facility-Wide Cleanup Goal for Hazard Quotient (HQ)=0.1 and Carcinogenic Risk=1E-6. Where background values were higher than the cleanup goal (HQ=0.1/R=1E-6), the background value is utilized as the screening level. — Not applicable.

#### H.3 PROPOSED SAP ADDENDUM INVESTIGATION OBJECTIVES

The general approach for investigation activities for Facility-Wide Sewers as a whole is presented in Section 3.2 of the FSP. However, certain areas of the system should be targeted for assessment based on the evaluation of existing historical data, results of previous investigations, anomalies identified during visual survey, or potential to have accumulated contaminants based on their location within the system and proximity to source areas. Although actual sampling locations cannot be established in advance since sufficient volume of media for sample collection may be unavailable and because site conditions may preclude access to portions of the system, primary and alternate sampling recommendations for the Load Line 4 are presented in Table H-2, and shown in Figures H-5 (sanitary) and H-6 (storm).

| Sewer                   | Primary Sample<br>Location         | Alternate Sample<br>Locations | Media Type                    | Comments/Rationale                                                                                                                                                                                                                                                        |
|-------------------------|------------------------------------|-------------------------------|-------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Type           Sanitary | MH-7+50                            | (In Order of Precedence) None | Sewer Sediment                | Represents conditions and potential<br>accumulation point immediately<br>downstream of ejector station.                                                                                                                                                                   |
| Sanitary                | MH-15+00                           | None                          | Sewer Sediment<br>Sewer Water | Represents conditions immediately<br>downstream of Load Line 4 and<br>before entering Atlas Scrap Yard to<br>the north.                                                                                                                                                   |
| Sanitary                | MH-E2                              | MH-E3, MH-E4, MH-<br>E5       | Sewer Sediment                | Isolates segment draining process<br>buildings G-4 and G-5. Historical data<br>for this manhole indicated inorganics<br>above screening levels.                                                                                                                           |
| Sanitary                | MH-E6-1                            | МН-Е6-2                       | Sewer Sediment                | Isolates segment servicing Bldg. G-10.                                                                                                                                                                                                                                    |
| Sanitary                | MH-E7                              | МН-Е8, МН-Е9                  | Sewer Sediment                | Isolates segment servicing building complex at east side of the load line.                                                                                                                                                                                                |
| Sanitary                | MH-W1                              | None                          | Sewer Sediment                | Represents key junction point draining<br>the entirety of the western half of<br>Load Line 4 and is last manhole prior<br>to the ejector station. Historical<br>samples collected at this manhole<br>indicated screening level exceedances<br>of organics and inorganics. |
| Sanitary                | MH-W3-1                            | MH-W3-2                       | Sewer Sediment                | Isolates segment draining process<br>buildings G-13 and G-13A. Historical<br>data for MH-W3-2 on this segment<br>indicated inorganics above screening<br>levels.                                                                                                          |
| Sanitary                | MH-W4-1                            | MH-W4-2, MH-W4-3              | Sewer Sediment                | Isolates segment servicing building<br>complex at west side of the load line.<br>Historical sampling indicated high<br>concentrations of inorganics above<br>screening levels at upstream portion of<br>this reach.                                                       |
| Sanitary                | MH-W5                              | MH-W6                         | Sewer Sediment                | Isolates segment servicing Bldg. G-6A<br>at southwest portion of load line.<br>Location is immediately upstream of a<br>junction point at which inorganics and<br>organics were detected above<br>screening levels.                                                       |
|                         |                                    |                               | Outfall Sediment              | Presumed overflow outfall from                                                                                                                                                                                                                                            |
| Sanitary                | Overflow outfall south<br>of MH-W1 | None                          | Outfall Water                 | sanitary system. Historical screening<br>level exceedances for both inorganics<br>and organics were observed at MH-<br>W1, immediately upstream of this<br>overflow outfall.                                                                                              |

# Table H-2. Summary of Proposed Sampling Locations at Load Line 4

| Sewer<br>Type | Primary Sample<br>Location | Alternate Sample<br>Locations<br>(In Order of Precedence) | Media Type     | Comments/Rationale                                                                                                                                                                                                                            |
|---------------|----------------------------|-----------------------------------------------------------|----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Storm         | A-5                        | A-4, A-3, A-2, A-1                                        | Sewer Sediment | Provides characterization at possible<br>major source area (process building G-<br>13).                                                                                                                                                       |
| Storm         | A-7                        | None                                                      | Sewer Sediment | Provides characterization at possible<br>major source area (process building G-<br>13).                                                                                                                                                       |
| Storm         | B-5                        | B-4, B-3, B-2, B-1                                        | Sewer Sediment | Provides characterization at possible<br>major source area (process building G-<br>13).                                                                                                                                                       |
| Storm         | B-6                        | None                                                      | Sewer Sediment | Provides characterization at possible<br>major source area (process building G-<br>13).                                                                                                                                                       |
| Storm         | CB-MH1                     | GV-2, GH-4, GH-3                                          | Sewer Sediment | Represents major junction point<br>downstream of Bldg G-319. Storm<br>clean-out manhole is potential<br>accumulation point.                                                                                                                   |
| Storm         | CB-MH12                    | CB-MH11                                                   | Sewer Sediment | Provides characterization at possible<br>major source area (process building G-<br>8). Storm clean-out manhole is<br>potential accumulation point.                                                                                            |
| Storm         | CB-MH13                    | None                                                      | Sewer Sediment | Represents major junction point<br>downstream of Bldg G-3. Storm<br>clean-out manhole is potential<br>accumulation point.                                                                                                                     |
| Storm         | CB-MH15                    | CB-MH14                                                   | Sewer Sediment | Represents major junction point<br>downstream of Bldgs G-1 and G-1A<br>complex. Storm clean-out manhole is<br>potential accumulation point.                                                                                                   |
| Storm         | CB-MH2B                    | None                                                      | Sewer Sediment | Represents major junction point<br>downstream of process building<br>source area. Storm clean-out manhole<br>is potential accumulation point.                                                                                                 |
| Storm         | СВ-МН3                     | CB-MH4                                                    | Sewer Sediment | Represents major junction point<br>downstream of process building<br>source area. Storm clean-out manhole<br>is potential accumulation point.                                                                                                 |
| Storm         | СВ-МН5                     | None                                                      | Sewer Sediment | Provides characterization at possible<br>major source area (process building G-<br>8). CB-MH5 tested positive for<br>explosives residue in 2007.                                                                                              |
| Storm         | CB-MH7                     | СВ-МН6                                                    | Sewer Sediment | Represents major junction point<br>downstream of process building<br>source area. Storm clean-out manhole<br>is potential accumulation point.<br>Historical data for this location<br>indicated screening level exceedances<br>of inorganics. |

 Table H-2. Summary of Proposed Sampling Locations at Load Line 4 (continued)

| Sewer<br>Type | Primary Sample<br>Location  | Alternate Sample<br>Locations<br>(In Order of Precedence) | Media Type     | Comments/Rationale                                                                                                                                                                        |
|---------------|-----------------------------|-----------------------------------------------------------|----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| - , F -       |                             |                                                           |                | Provides characterization at possible                                                                                                                                                     |
| Storm         | D-3                         | D-2, D-1                                                  | Sewer Sediment | major source area (process building G-<br>13).                                                                                                                                            |
| Storm         | E3 (corner of Bldg.<br>G13) | None                                                      | Sewer Sediment | Provides characterization at possible<br>major source area (process building G-<br>13).                                                                                                   |
| Storm         | E3 (south of Bldg.<br>G13)  | None                                                      | Sewer Sediment | Provides characterization at possible<br>major source area (process building G-<br>13).                                                                                                   |
| Storm         | GA12                        | GA13, GA14, GA15                                          | Sewer Sediment | Isolates segment upstream of Bldg. G-<br>1 and G-1A complex.                                                                                                                              |
| Storm         | GA16                        | GA15, GA14, GA13                                          | Sewer Sediment | Isolates segment downstream of Bldg.<br>G-11.                                                                                                                                             |
| Storm         | GA19                        | GA20, GA21, GA22,<br>GA23                                 | Sewer Sediment | Isolates segment upstream of Bldg. G-<br>1 and G-1A complex.                                                                                                                              |
| Storm         | GA24                        | GA23, GA22, GA21,<br>GA20                                 | Sewer Sediment | Isolates segment downstream of Bldg.<br>G-11.                                                                                                                                             |
| Storm         | GA27                        | None                                                      | Sewer Sediment | Provides characterization at possible<br>major source area (process building G-<br>9). Drop inlets and storm lines at this<br>building tested positive for explosives<br>residue in 2007. |
| Storm         | GA30                        | None                                                      | Sewer Sediment | Provides characterization at possible<br>major source area (process building G-<br>16).                                                                                                   |
| Storm         | GA31                        | None                                                      | Sewer Sediment | Provides characterization at possible<br>major source area (process building G-<br>16).                                                                                                   |
| Storm         | GA35                        | None                                                      | Sewer Sediment | Provides characterization at possible<br>major source area (process building G-<br>9). Drop inlets and storm lines at this<br>building tested positive for explosives<br>residue in 2007. |
| Storm         | GA38                        | None                                                      | Sewer Sediment | Provides characterization at possible<br>major source area (process building G-<br>16).                                                                                                   |
| Storm         | GA39                        | None                                                      | Sewer Sediment | Provides characterization at possible<br>major source area (process building G-<br>16).                                                                                                   |
| Storm         | Н-2                         | None                                                      | Sewer Sediment | Provides characterization at possible<br>major source area (process building G-<br>12A).                                                                                                  |
| Storm         | Н-3                         | None                                                      | Sewer Sediment | Provides characterization at possible<br>major source area (process building G-<br>12A).                                                                                                  |
| Storm         | H-4                         | None                                                      | Sewer Sediment | Provides characterization at possible<br>major source area (process building G-<br>12A).                                                                                                  |

# Table H-2. Summary of Proposed Sampling Locations at Load Line 4 (continued)

| Sewer<br>Type | Primary Sample<br>Location                                               | Alternate Sample<br>Locations<br>(In Order of Precedence) | Media Type                        | Comments/Rationale                                                                                                                                                                              |
|---------------|--------------------------------------------------------------------------|-----------------------------------------------------------|-----------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Storm         | H-5                                                                      | None                                                      | Sewer Sediment                    | Provides characterization at possible<br>major source area (process building G-<br>12A).                                                                                                        |
| Storm         | J-2                                                                      | None                                                      | Sewer Sediment                    | Provides characterization at possible<br>major source area (process building G-<br>12).                                                                                                         |
| Storm         | J-3                                                                      | None                                                      | Sewer Sediment                    | Provides characterization at possible<br>major source area (process building G-<br>12).                                                                                                         |
| Storm         | J-4                                                                      | None                                                      | Sewer Sediment                    | Provides characterization at possible<br>major source area (process building G-<br>12).                                                                                                         |
| Storm         | J-5                                                                      | None                                                      | Sewer Sediment                    | Provides characterization at possible<br>major source area (process building G-<br>12).                                                                                                         |
| Storm         | M-0                                                                      | None                                                      | Sewer Sediment                    | Provides characterization at possible<br>major source area (process building G-<br>8). Drop inlets at this building tested<br>positive for explosives residue in<br>2007.                       |
| Storm         | M-1                                                                      | None                                                      | Sewer Sediment                    | Provides characterization at possible<br>major source area (process building G-<br>8). Drop inlet M-1 tested positive for<br>explosives residue in 2007.                                        |
| Storm         | M-2                                                                      | None                                                      | Sewer Sediment                    | Provides characterization at possible<br>major source area (process building G-<br>8). Drop inlet M-2 tested positive for<br>explosives residue in 2007.                                        |
| Storm         | M-3                                                                      | None                                                      | Sewer Sediment                    | Provides characterization immediately<br>downstream of possible major source<br>area (process building G-8). Drop<br>inlets at this building tested positive<br>for explosives residue in 2007. |
| Storm         | Northeast-most "UN"<br>at Bldg G19                                       | Two "UN" to southwest                                     | Sewer Sediment                    | Represents segment to northwest of Bldg. G-19.                                                                                                                                                  |
| Storm         | 1 <sup>st</sup> major outfall south<br>of Bldg. G12                      | None                                                      | Outfall Sediment<br>Outfall Water | Major storm outfall downstream of main process buildings complex.                                                                                                                               |
| Storm         | 2 <sup>nd</sup> major outfall south<br>of Bldg. G12 (south of<br>CB-MH4) | None                                                      | Outfall Sediment Outfall Water    | Major storm outfall downstream of main process buildings complex.                                                                                                                               |
| Storm         | Outfall at bridge,<br>southwest of GA-34                                 | None                                                      | Outfall Sediment<br>Outfall Water | Major storm outfall draining northern portion of the load line.                                                                                                                                 |
| Storm         | Outfall at bridge,<br>southwest of GA-42                                 | None                                                      | Outfall Sediment Outfall Water    | Major storm outfall draining northern<br>portion of the load line.                                                                                                                              |
| Storm         | Outfall east of Bldg<br>G4                                               | None                                                      | Outfall Sediment<br>Outfall Water | Potential storm outfall draining east portion of load line.                                                                                                                                     |
|               | 1                                                                        | 1                                                         |                                   |                                                                                                                                                                                                 |

# Table H-2. Summary of Proposed Sampling Locations at Load Line 4 (continued)

| Sewer<br>Type | Primary Sample<br>Location                      | Alternate Sample<br>Locations<br>(In Order of Precedence) | Media Type                        | Comments/Rationale                                           |
|---------------|-------------------------------------------------|-----------------------------------------------------------|-----------------------------------|--------------------------------------------------------------|
| Storm         | Outfall east of GA-5                            | None                                                      | Outfall Sediment<br>Outfall Water | Major storm outfall draining northeast portion of load line. |
| Storm         | Outfall north of Bldg.<br>G19, inline with "UN" | None                                                      | Outfall Sediment                  | Major storm outfall to the northwest of Bldg. G-19.          |
|               | inlets                                          |                                                           | Outfall Water                     |                                                              |
| Storm         | Outfall north of GA-<br>31                      | None                                                      | Outfall Sediment Outfall Water    | Storm outfall associated with process building-16.           |
| Storm         | Outfall northeast of CB-MH1                     | None                                                      | Outfall Sediment<br>Outfall Water | Major storm outfall draining Bldg. G-<br>19.                 |
| Storm         | Outfall southwest of                            | None                                                      | Outfall Sediment                  | Potential storm outfall draining east                        |
| Storm         | Bldg. G5                                        | None                                                      | Outfall Water                     | portion of load line.                                        |
| Storm         | Outfall southwest of                            | None                                                      | Outfall Sediment                  | Major storm outfall draining the Bldgs                       |
| Storm         | CB-MH2B                                         | 1,010                                                     | Outfall Water                     | G-13 and G-13A complex.                                      |
| Storm         | Outfall west of GA-10                           | None                                                      | Outfall Sediment                  | Potential storm outfall draining Bldgs                       |
| 500111        | Suttain west of OA-10                           | Trone                                                     | Outfall Water                     | G-1 and G-1A.                                                |

 Table H-2. Summary of Proposed Sampling Locations at Load Line 4 (continued)

During the visual survey phase, inspection forms will be completed for sewer structures at Load Line 4 to document their condition and accessibility for subsequent investigative activities (i.e., sample media collection or video survey). Actual locations of sample collection, video surveys will be presented in the RI report.

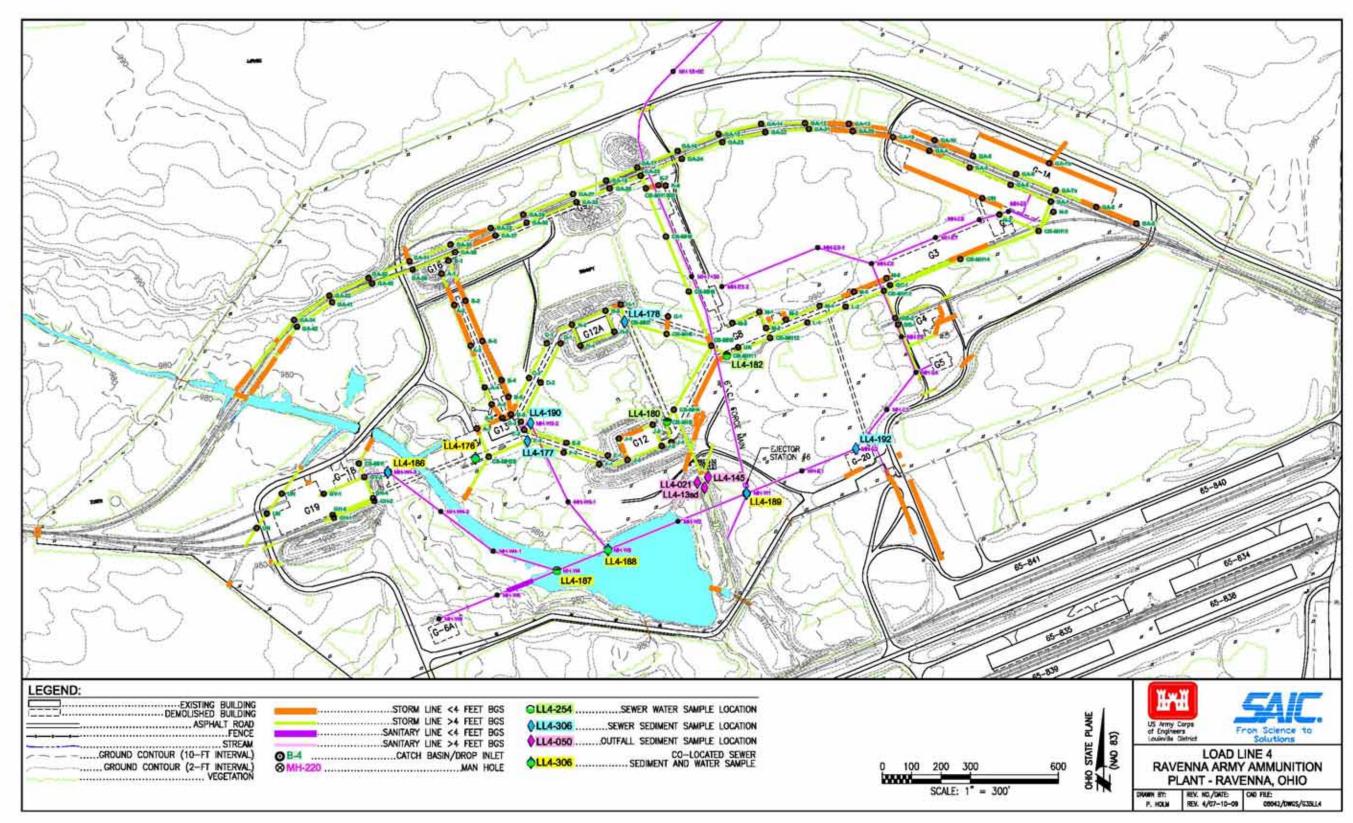



Figure H-1. Historical Sewer Sampling Locations at Load Line 4

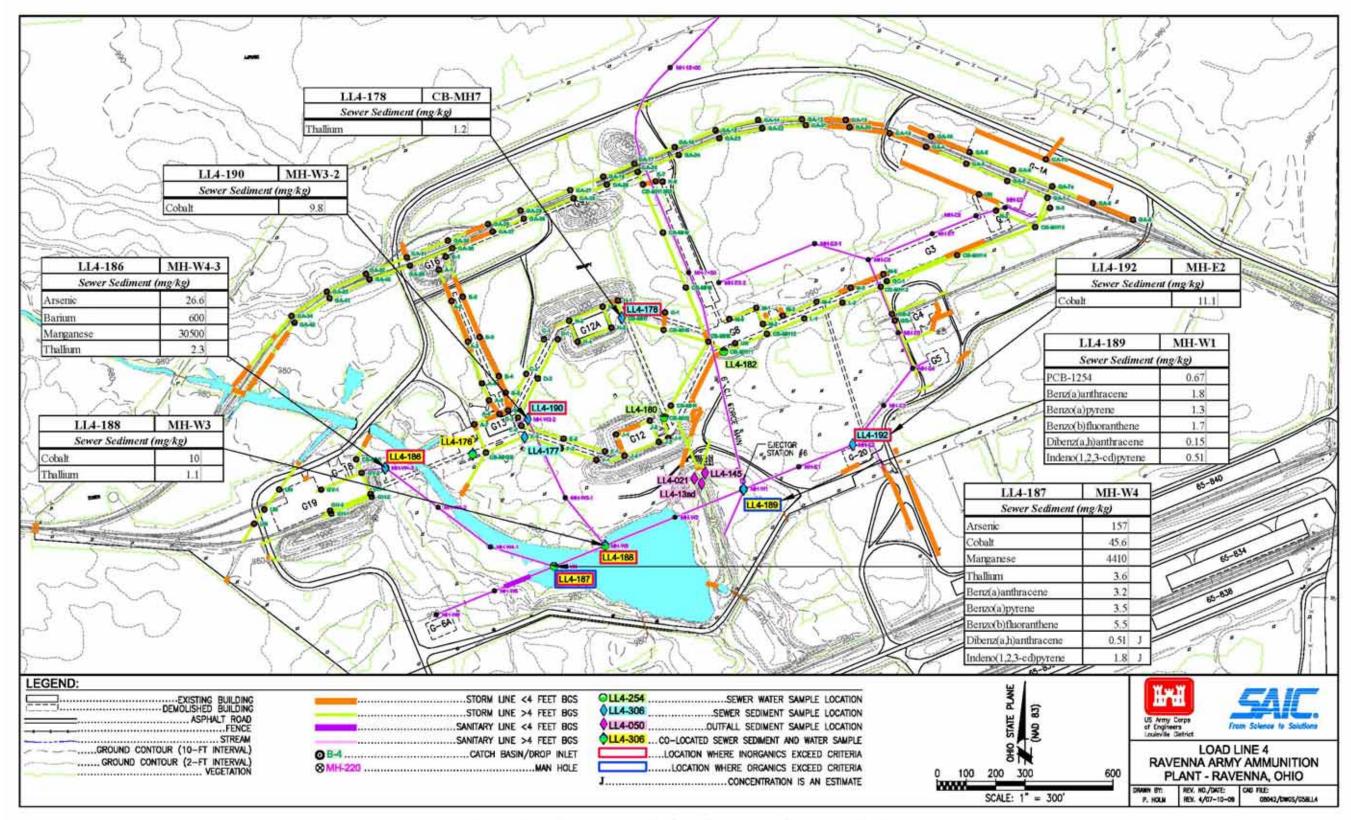



Figure H-2. Historical Exceedances for Sewer Sampling Locations at Load Line 4

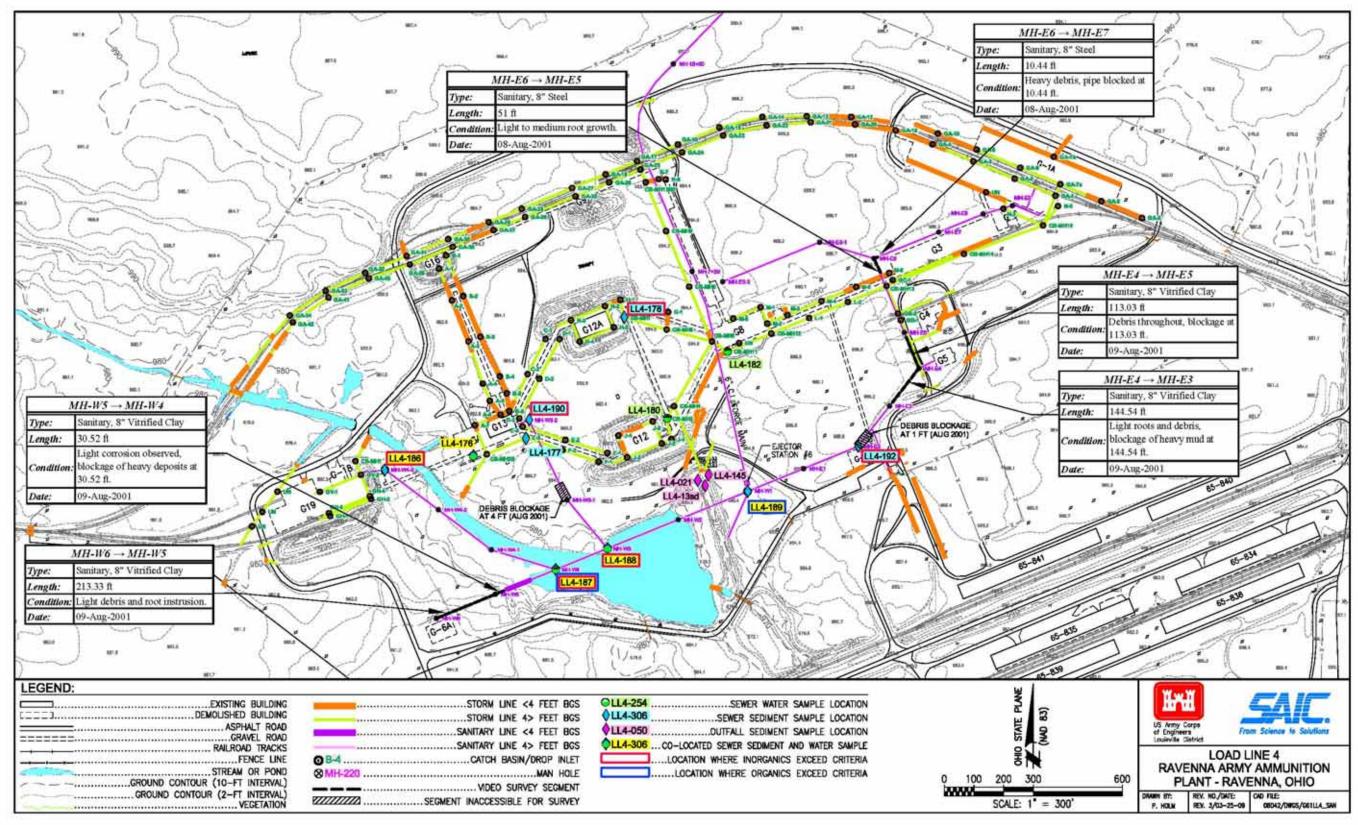



Figure H-3. Locations of Previous Sanitary Sewer Video Surveys at Load Line 4

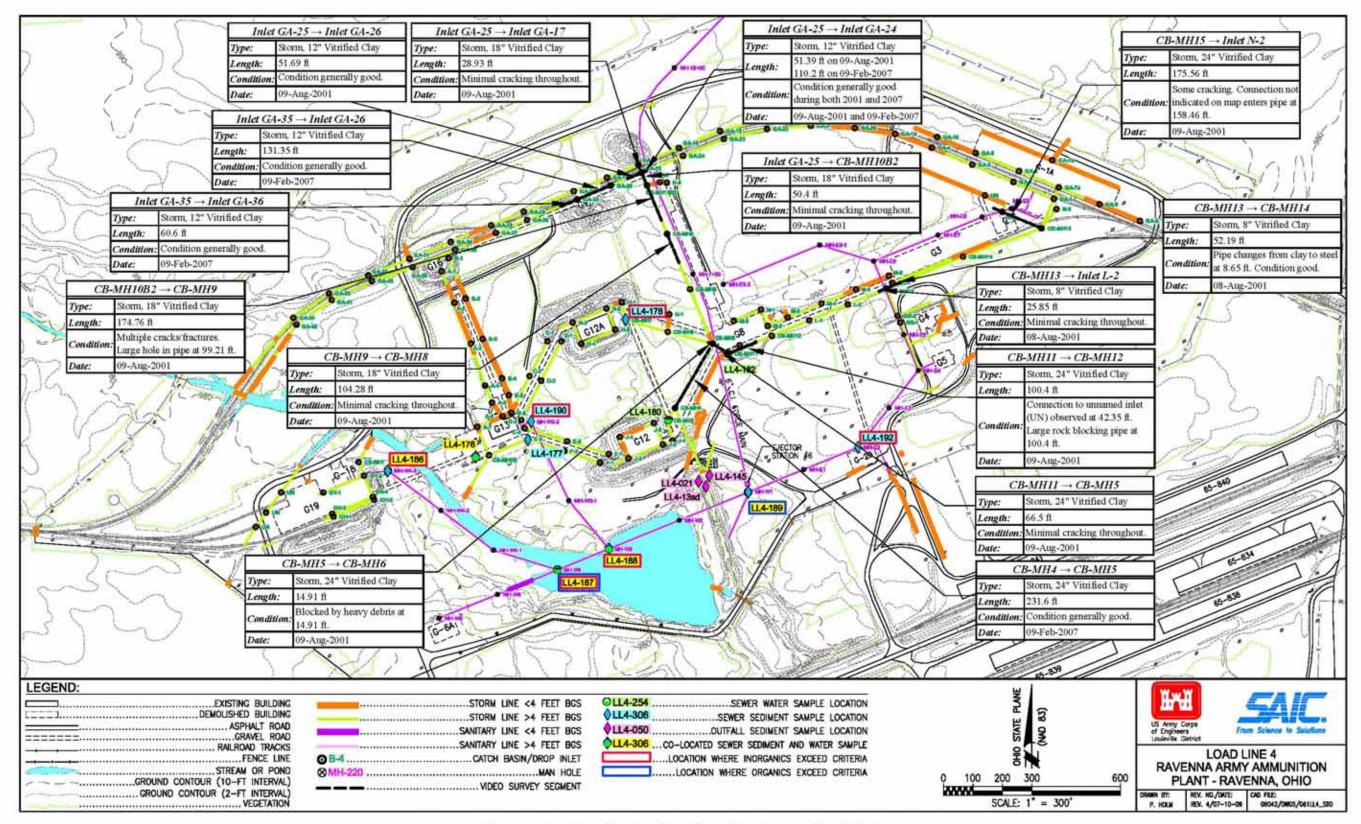



Figure H-4. Locations of Previous Storm Sewer Video Surveys at Load Line 4

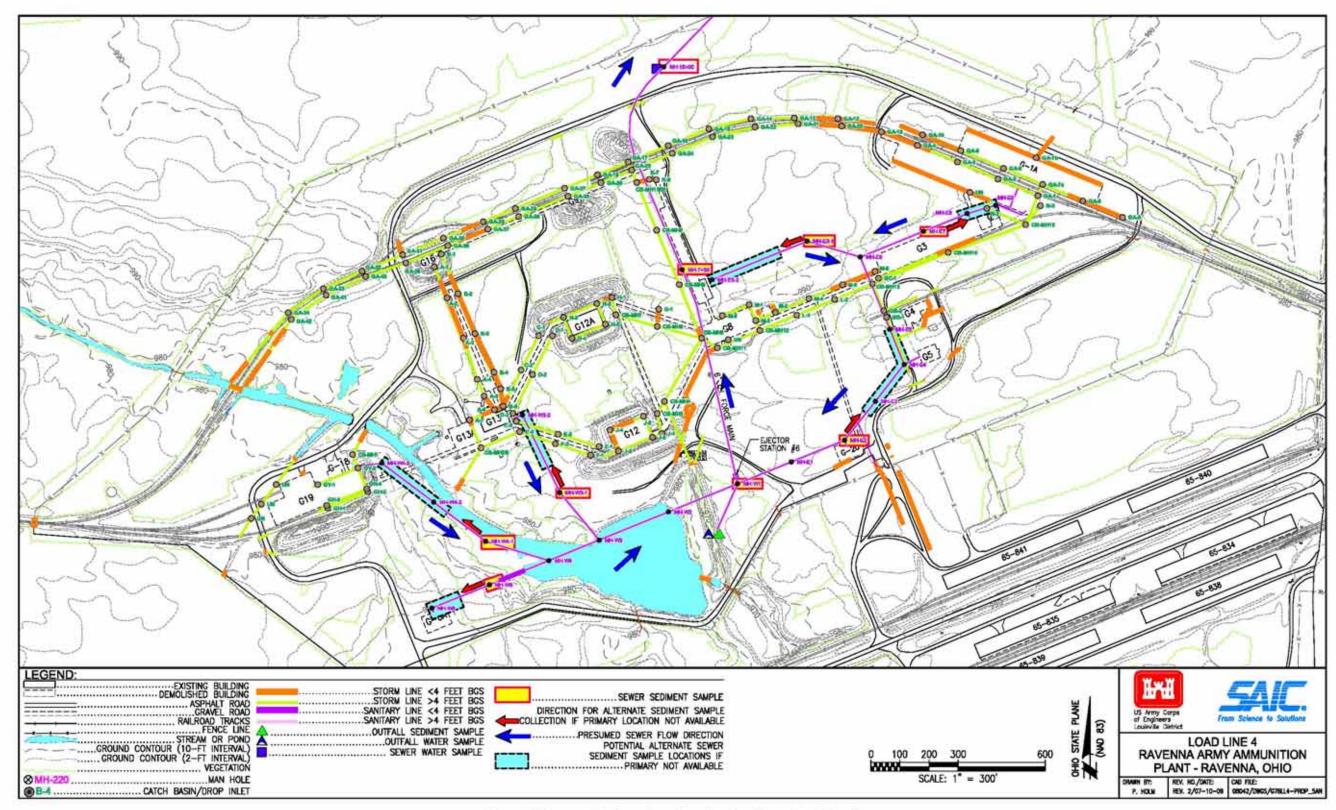



Figure H-5. Proposed Sanitary Sewer Sampling Locations at Load Line 4

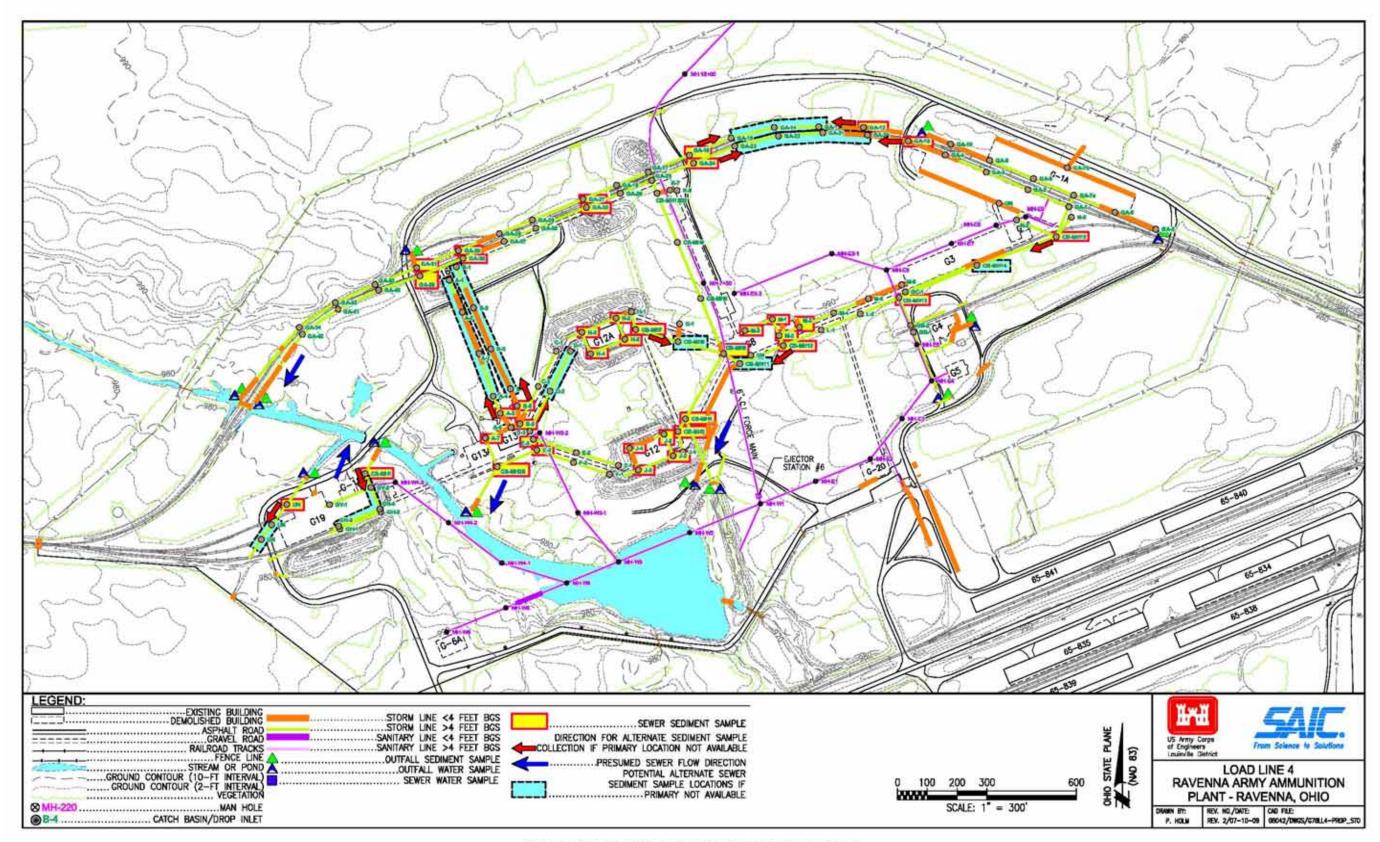



Figure H-6. Proposed Storm Sampling Locations at Load Line 4

APPENDIX I Load Line 5

## I.1 AREA DESCRIPTION

Load Line 5 is a 39-acre AOC that consisted of 18 process buildings (Figure I-1). The AOC operated as a finished product assembly line from 1941 to 1945 to produce fuzes for artillery projectiles. Operations were discontinued at the end of World War II and process equipment was removed in 1945. Load Line 5 has been inactive for more than 50 years and is overgrown with vegetation consisting of young trees and scrub vegetation. The buildings, including slabs and foundations, have since been removed.

During its operational history, buildings at Load Line 5 were utilized for primer manufacturing (1F-1, 1F-3, 1F-4, 1F-9 and 1F-18), delay component manufacturing (1F-6, 1F-7, 1F-8, 1F-19 and 1F-20), assembly and testing (1F-11 and 1F-12), and as a detonator service magazine (1F-10). There is no documented historical evidence that bulk handling of primary explosives occurred within the boundaries of Load Line 5, except the black powder which was used in the manufacture of delay components at this line and the mercury fulminate primer which was loaded and assembled within the line. All other primary explosives were delivered and handled as sealed and finished sub-assemblies.

The sanitary sewer system at Load Line 5 is part of the George Road Treatment Plant network (shown in Plate A-1). Storm system infrastructure at the load line occurs predominantly as under-road culverts.

## I.2 PREVIOUS INVESTIGATIONS

Sewer water and sediment samples were collected from the sanitary sewer manholes at Load Line 5 in 2004 as part of the *Final Characterization of 14 AOCs* investigation (MKM Engineers, Inc. 2007a). At the time of sample collection, only four of the ten sewers surveyed contained sufficient water for sample collection. Only one of the ten sewer locations contained enough sewer sediment for sample collection. The only analytes in the sediment sample to exceed screening levels were the metals chromium and cobalt. Nitrate and three polyaromatic hydrocarbons (benz(a)anthracene, bis(2-ethylhexyl)phthalate and indeno(1,2,3-cd)pyrene) were detected above screening levels in sewer water. These exceedances are summarized in Table I-1 and the sample locations with exceedances are shown in Figure I-2. No explosive compounds or nitrate were detected in the sewer sediment samples, but elevated nitrate concentrations were observed in all four sewer water samples, exceeding the screening level for nitrate at two locations within the load line. Trace concentrations of the propellant nitroglycerine was detected in one sewer water sample well below its screening level.

Inspections and explosives field screening tests were conducted at Load Line 5 during the *Explosive Evaluation of Sewers* investigations (Lakeshore Engineering Services, Inc. 2007; USACE-CERL 2007). However, these sewer efforts were conducted without Ohio EPA regulatory oversight or review of the associated work plans and resultant completion report or its conclusions. These

investigations were limited to the sanitary sewer, as Load Line 5 lacks any significant storm management structures. During the USACE-CERL (2007) investigation, no visual evidence of trace explosives was observed. A total of 14 DropEx<sup>™</sup> samples were collected at Load Line 5 sanitary sewer manholes, none of which tested positive for explosives residue.

| Media    | Analyte                    | Units | Detection<br>Frequency | Minimum<br>Detection | Maximum<br>Detection | Average<br>Result | Screening<br>Level <sup>a</sup> |
|----------|----------------------------|-------|------------------------|----------------------|----------------------|-------------------|---------------------------------|
| Sewer    | Chromium                   | mg/kg | 1/1                    | _                    | _                    | 20                | 18.1                            |
| Sediment | Cobalt                     | mg/kg | 1/1                    | —                    | —                    | 9.1               | 9.4                             |
|          | Benz(a)anthracene          | mg/L  | 1/4                    | —                    | —                    | 0.00012           | 0.000014                        |
| Sewer    | Bis(2-ethylhexyl)phthalate | mg/L  | 1/4                    | —                    | _                    | 0.01              | 0.0035                          |
| Water    | Indeno(1,2,3-cd)pyrene     | mg/L  | 1/4                    | —                    | —                    | 0.0002            | 0.0000078                       |
|          | Nitrate                    | mg/L  | 4/4                    | 0.11                 | 2600                 | 1,275             | 25                              |

Table I-1. Chemicals Exceeding Screening Levels in Sewer Media at Load Line 5

<sup>a</sup>Screening levels are based on the Draft Facility-Wide Cleanup Goal for Hazard Quotient (HQ)=0.1 and Carcinogenic Risk=1E-6. Where background values were higher than the cleanup goal (HQ=0.1/R=1E-6), the background value is utilized as the screening level.

### I.3 PROPOSED SAP ADDENDUM INVESTIGATION OBJECTIVES

The general approach for investigation activities for Facility-Wide Sewers as a whole is presented in Section 3.2 of the FSP. However, certain areas of the system should be targeted for assessment based on the evaluation of existing historical data, results of previous investigations, anomalies identified during visual survey, or potential to have accumulated contaminants based on their location within the system and proximity to source areas. Although actual sampling locations cannot be established in advance since sufficient volume of media for sample collection may be unavailable and because site conditions may preclude access to portions of the system, primary and alternate sampling recommendations for the Load Line 5 are presented in Table I-2, and shown in Figure I-3.

| Sewer<br>Type | Primary Sample<br>Location | Alternate Sample<br>Locations<br>(In Order of Precedence) | Media Type     | Comments/Rationale                                                                                                                                                                               |
|---------------|----------------------------|-----------------------------------------------------------|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Sanitary      | MH-BH3                     | MH-BH4, MH-BH5,<br>MH-BH6                                 | Sewer Sediment | Isolates one of two segments northeast<br>and outside the boundaries of the load<br>line.                                                                                                        |
| Sanitary      | MH-IF2                     | MH-IF1                                                    | Sewer Sediment | Represents conditions immediately downstream of the load line and                                                                                                                                |
|               |                            |                                                           | Sewer Water    | before joining with the main trunk line<br>draining Load Lines 9 and 10. Sewer<br>water at this location previously<br>exhibited organics above screening<br>levels; sediment was not collected. |
| Sanitary      | MH-IF3                     | None                                                      | Sewer Sediment | Represents segment draining Building<br>IF3. Also provides confirmation for                                                                                                                      |
|               |                            |                                                           | Sewer Water    | high nitrate concentrations above<br>screening levels observed in previous<br>sewer water samples.                                                                                               |

 Table I-2. Summary of Proposed Sampling Locations at Load Line 5

| Sewer<br>Type | Primary Sample<br>Location    | Alternate Sample<br>Locations<br>(In Order of Precedence) | Media Type                     | Comments/Rationale                                                                                                                                                                                              |
|---------------|-------------------------------|-----------------------------------------------------------|--------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Sanitary      | MH-IF4                        | MH-IF9                                                    | Sewer Sediment<br>Sewer Water  | Isolates segment draining Buildings<br>IF4, IF6, and IF7.                                                                                                                                                       |
| Sanitary      | MH-IF8                        | None                                                      | Sewer Sediment                 | Characterizes conditions at Building IF13.                                                                                                                                                                      |
| Sanitary      | MH-IF10                       | None                                                      | Sewer Sediment                 | Represents segment draining buildings<br>on east side of the load line. Also<br>provides confirmation for high nitrate<br>concentrations above screening levels<br>observed in previous sewer water<br>samples. |
|               |                               |                                                           | Sewer Water                    |                                                                                                                                                                                                                 |
| Sanitary      | MH-IF13                       | MH-IF12, MH-IF11                                          | Sewer Sediment                 | Isolates one of two segments<br>northwest and outside the boundaries<br>of the load line.                                                                                                                       |
| Sanitary      | MH-MP1                        | None                                                      | Sewer Sediment<br>Sewer Water  | Represents conditions immediately upstream of Load Line 5.                                                                                                                                                      |
| Sanitary      | МН-МРЗ                        | MH-MP4, MH-MP5,<br>MH-MP6                                 | Sewer Sediment                 | Isolates one of two segments<br>northwest and outside the boundaries<br>of the load line (former sub-station).                                                                                                  |
| Sanitary      | MH-MP9                        | MH-MP10                                                   | Sewer Sediment                 | Isolates one of two segments northeast<br>and outside the boundaries of the load<br>line.                                                                                                                       |
| Sanitary      | Outfall to north of<br>MH-BH1 | None                                                      | Outfall Sediment Outfall Water | Represents potential sanitary system overflow outfall.                                                                                                                                                          |

Table I-3. Summary of Proposed Sampling Locations at Load Line 5 (continued)

During the visual survey phase, inspection forms will be completed for sewer structures at Load Line 5 to document their condition and accessibility for subsequent investigative activities (i.e., sample media collection or video survey). Actual locations of sample collection, video surveys will be presented in the RI report.

THIS PAGE INTENTIONALLY LEFT BLANK.

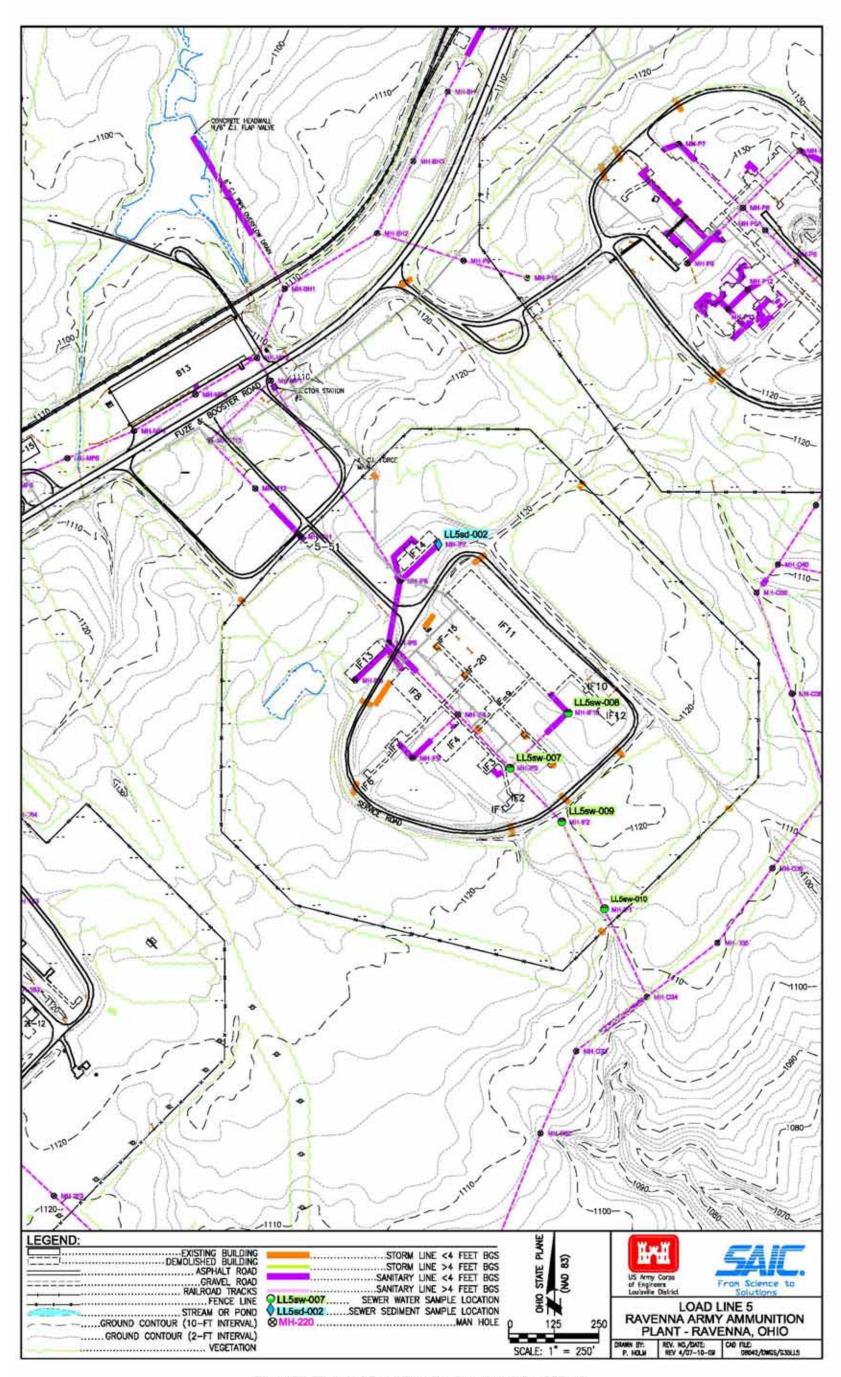
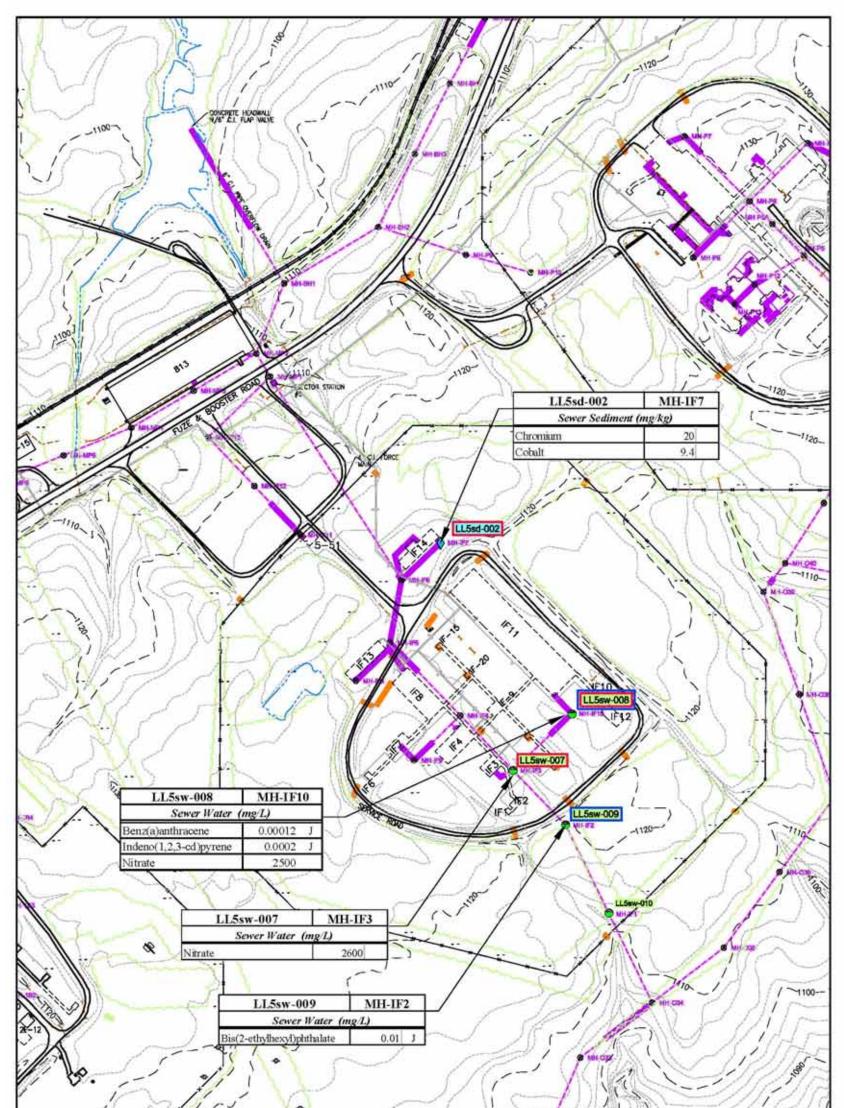




Figure I-1. Historical Sewer Sampling Locations at Load Line 5



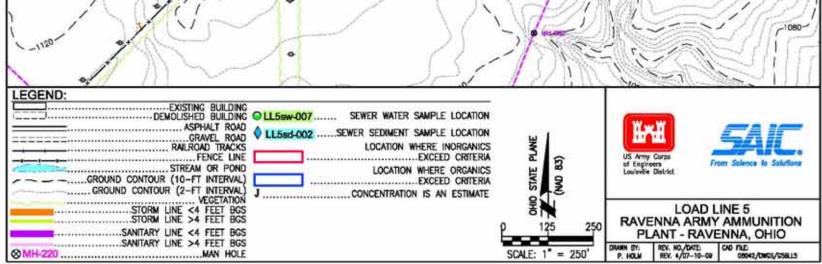



Figure I-2. Historical Exceedances for Sewer Samples at Load Line 5

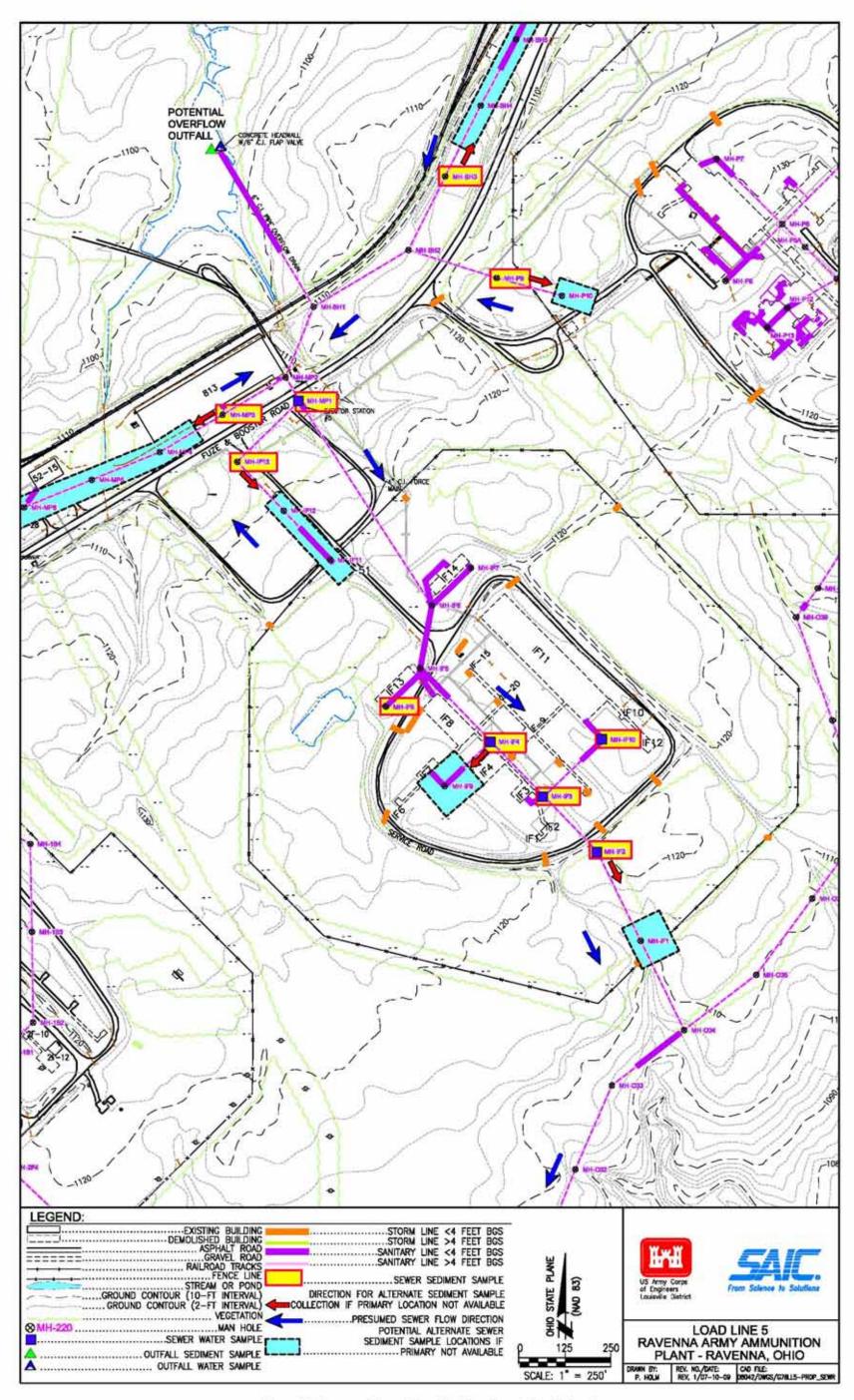



Figure I-3. Proposed Sewer Sampling Locations at Load Line 5

APPENDIX J Load Line 6

## J.1 AREA DESCRIPTION

Load Line 6 is approximately 51 acres in size (Figure J-1). From 1941 to 1945, Load Line 6 operated primarily as a fuze assembly line; however, Buildings 2F-1 and 2F-3 were used as mercury fulminate dry house and mixing building, respectively. During its operational history, buildings at Load Line 6 were used for primer loading and storage (2F-4, 2F-9, 2F-18, 2F-34), powder pelleting and storage (2F-6, 2F-7, 2F-19, 2F-33), delay storage and loading (2F-8, 2F-20, 2F-31), fuze assembly and testing (2F-11, 2F-12, 2F-32) and detonator service (2F–10). In the 1950s, Load Line 6 was utilized by Firestone Defense Research for the research and development of various kinds of charges for armor penetration (e.g., shaped, fragmenting disc). Load Line 6 was again used by Firestone Defense Corporation during the late 1970s for applied research and development of shaped charges for the Department of Defense. All buildings at the AOC have since been demolished, and only the test chamber foundation and concrete blocks around the test pond remain at the AOC. A Munitions Response Site (designated RVAAP-33-R-01) associated with a portion of the former Firestone Test Facility exists within the southernmost portion of Load Line 6.

The sanitary sewer system at Load Line 6 is part of the George Road Treatment Plant network (shown in Plate A-1). Storm system infrastructure at the load line occurs predominantly as under-road culverts.

## J.2 PREVIOUS INVESTIGATIONS

Sewer water samples were collected from the sanitary sewer manholes at Load Line 6 in 2003 as part of the *Final Remedial Investigation for Load Line 6* (MKM Engineers, Inc. 2007b). Only two manholes contained enough water for sample collection, and no sewer sediment samples could be collected due to the absence of recoverable quantities of sediment. The explosive RDX was observed at concentrations above screening levels in both of the sewer water samples collected. These exceedances are summarized in Table J-1 and the sample locations with exceedances are shown in Figure J-2. The explosive HMX was also detected in both of the sewer water samples collected, although at concentrations below its screening level.

Inspections and explosives field screening tests were conducted at Load Line 6 during the *Explosive Evaluation of Sewers* investigations (Lakeshore Engineering Services, Inc. 2007; USACE-CERL 2007). However, these sewer efforts were conducted without Ohio EPA regulatory oversight or review of the associated work plans and resultant completion report or its conclusions. These investigations were limited to the sanitary sewer, as Load Line 6 lacks any significant storm management structures. A total of 20 DropEx<sup>TM</sup> samples were collected at Load Line 6 sanitary sewer manholes, two of which tested positive for RDX residue (manholes MH-2F5 and MH-2F6).

| Media          | Analyte | Units | Detection<br>Frequency | Minimum<br>Detection | Maximum<br>Detection | Average<br>Result | Screening<br>Level <sup>a</sup> |
|----------------|---------|-------|------------------------|----------------------|----------------------|-------------------|---------------------------------|
| Sewer<br>Water | RDX     | mg/L  | 2/2                    | 0.014                | 0.015                | 0.0145            | 0.015                           |

 Table J-1. Chemicals Exceeding Screening Levels in Sewer Media at Load Line 6

<sup>a</sup>Screening levels are based on the Draft Facility-Wide Cleanup Goal for Hazard Quotient (HQ)=0.1 and Carcinogenic Risk=1E-6. Where background values were higher than the cleanup goal (HQ=0.1/R=1E-6), the background value is utilized as the screening level.

### J.3 PROPOSED SAP ADDENDUM INVESTIGATION OBJECTIVES

The general approach for investigation activities for Facility-Wide Sewers as a whole is presented in Section 3.2 of the FSP. However, certain areas of the system should be targeted for assessment based on the evaluation of existing historical data, results of previous investigations, anomalies identified during visual survey, or potential to have accumulated contaminants based on their location within the system and proximity to source areas. Although actual sampling locations cannot be established in advance since sufficient volume of media for sample collection may be unavailable and because site conditions may preclude access to portions of the system, primary and alternate sampling recommendations for the Load Line 6 are presented in Table J-2, and shown in Figure J-3.

|          |                | Alternate Sample          |                |                                                                                                                                                                                       |
|----------|----------------|---------------------------|----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Sewer    | Primary Sample | Locations                 |                |                                                                                                                                                                                       |
| Туре     | Location       | (In Order of Precedence)  | Media Type     | Comments/Rationale                                                                                                                                                                    |
| Sanitary | MH-1B2         | MH-1B3                    | Sewer Sediment | Isolates the segment draining Building<br>2-F-32. Manhole immediately<br>downstream of this location exhibited<br>RDX above screening levels in water;<br>sediment was not collected. |
| Sanitary | MH-1B4         | MH-1B5, MH-1B6            | Sewer Sediment | Isolates the building complex segment<br>upstream of the main body of the load<br>line.                                                                                               |
| Sanitary | MH-2F1         | None                      | Sewer Sediment | Isolates the segment draining<br>Buildings 2-F-7 and 2-F-31. Two<br>structures immediately downstream of<br>these reaches tested positive for trace<br>explosives.                    |
| a .      |                | MH-2F3, MH-2F2, MH-       | Sewer Sediment | Represents conditions downstream of                                                                                                                                                   |
| Sanitary | MH-2F4 2F1     |                           | Sewer Water    | Load Line 6 before connecting with the trunk line draining Load Line 8.                                                                                                               |
| Sanitary | MH-2F5         | None                      | Sewer Sediment | Represents conditions downstream of Building 2-F-3.                                                                                                                                   |
| Sanitary | MH-2F8         | MH-2F9                    | Sewer Sediment | Isolates the segment draining<br>Buildings 2-F-14 and 2-F-36. Two<br>structures immediately downstream of<br>these reaches tested positive for trace<br>explosives.                   |
| Sanitary | MH-2F10        | None                      | Sewer Sediment | Isolates the segment draining Building<br>2-F-13. Two structures immediately<br>downstream of these reaches tested<br>positive for trace explosives.                                  |
|          |                | МН-О27, МН-О24,           | Sewer Sediment | Represents conditions at the<br>confluence of the lines from Load<br>Line 6 and 8 and the remainder of the                                                                            |
| Sanitary | МН-О28         | MH-O23, MH-O22,<br>MH-O21 | Sewer Water    | Fuze and Booster load lines before the<br>combined trunk drains towards the<br>Administration Area.                                                                                   |

 Table J-2.
 Summary of Proposed Sampling Locations at Load Line 6

During the visual survey phase, inspection forms will be completed for sewer structures at Load Line 6 to document their condition and accessibility for subsequent investigative activities (i.e., sample media collection or video survey). Actual locations of sample collection, video surveys will be presented in the RI report.

THIS PAGE INTENTIONALLY LEFT BLANK.

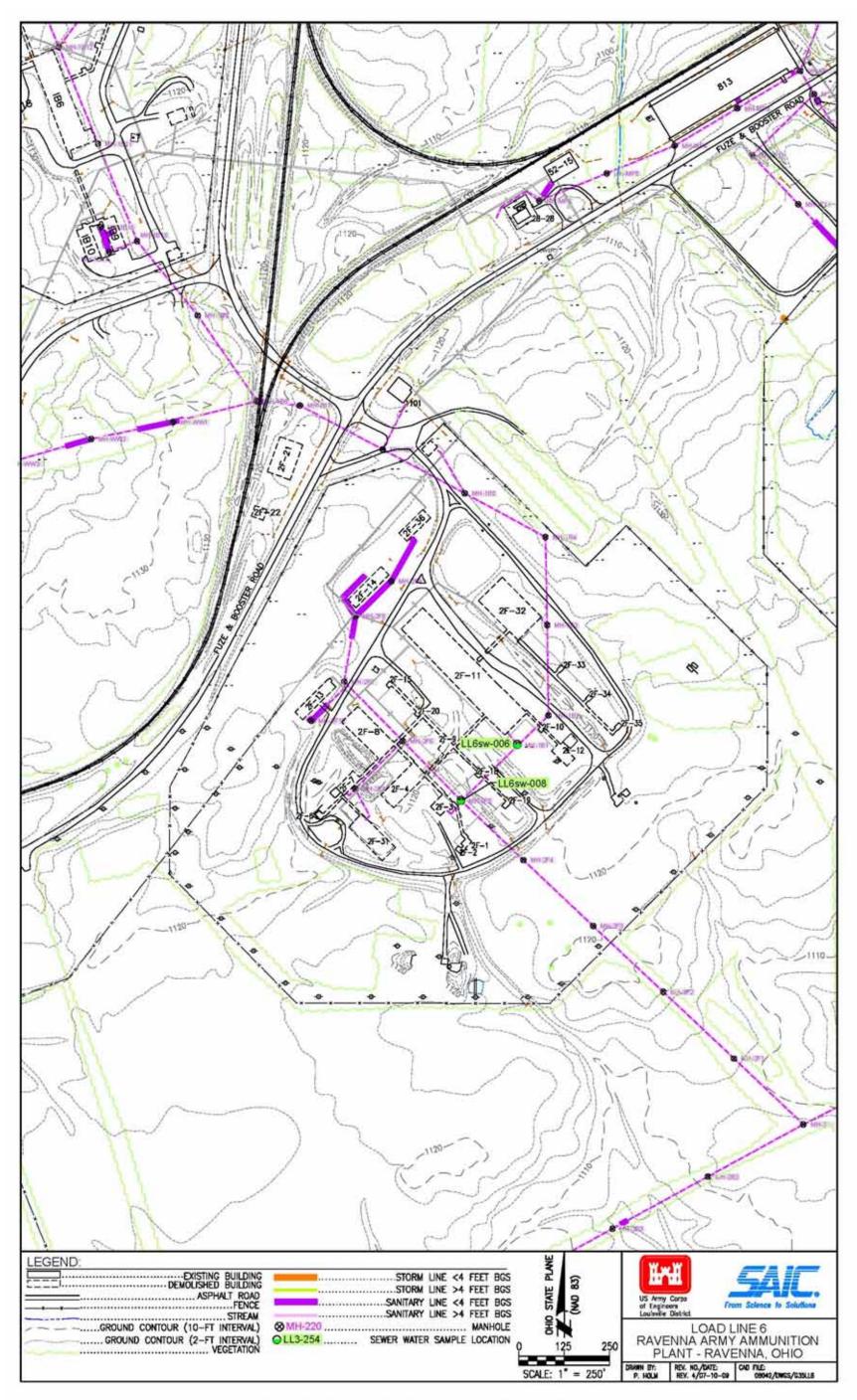



Figure J-1. Historical Sewer Sampling Locations at Load Line 6

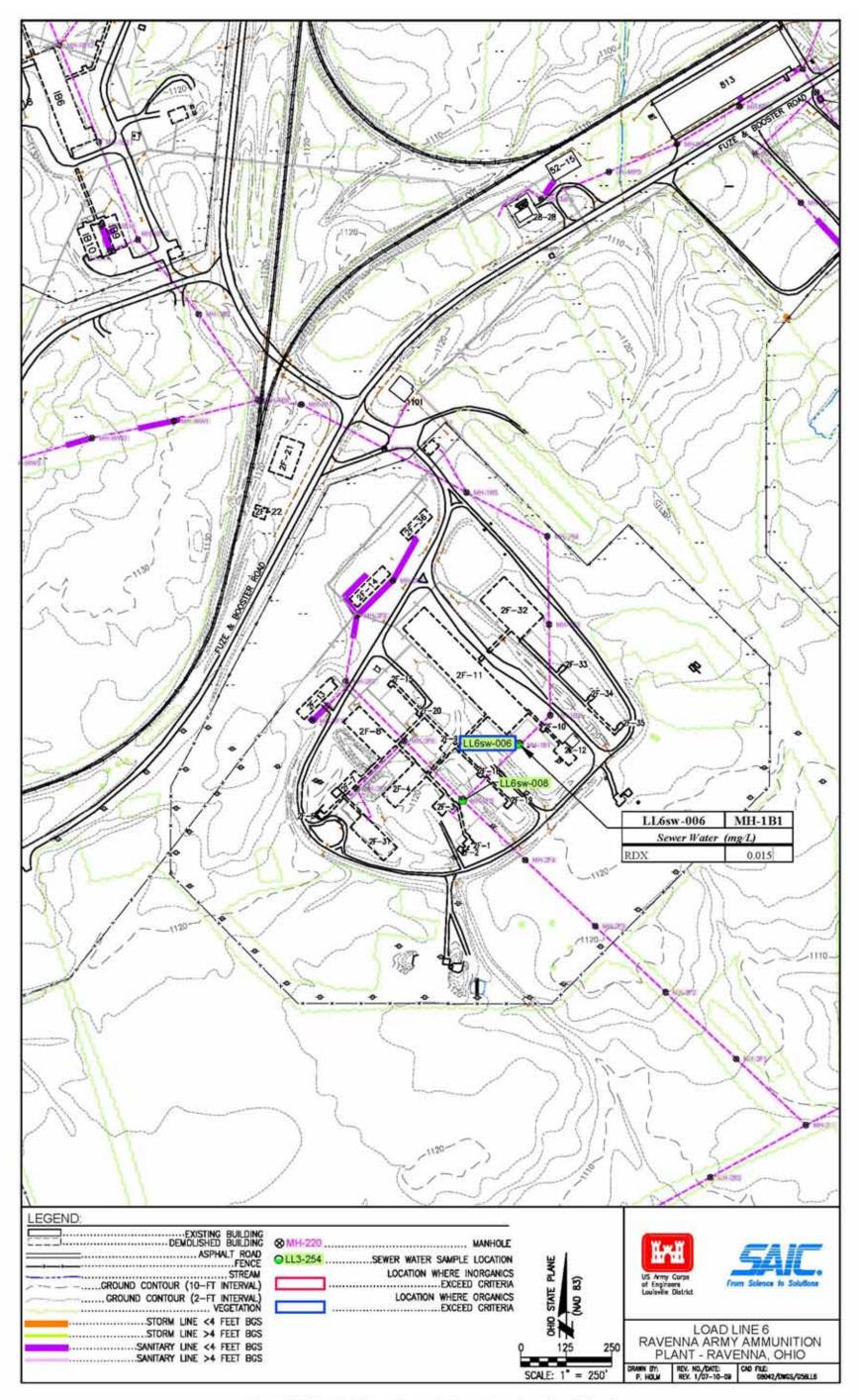



Figure J-2. Historical Exceedances for Sewer Samples at Load Line 6

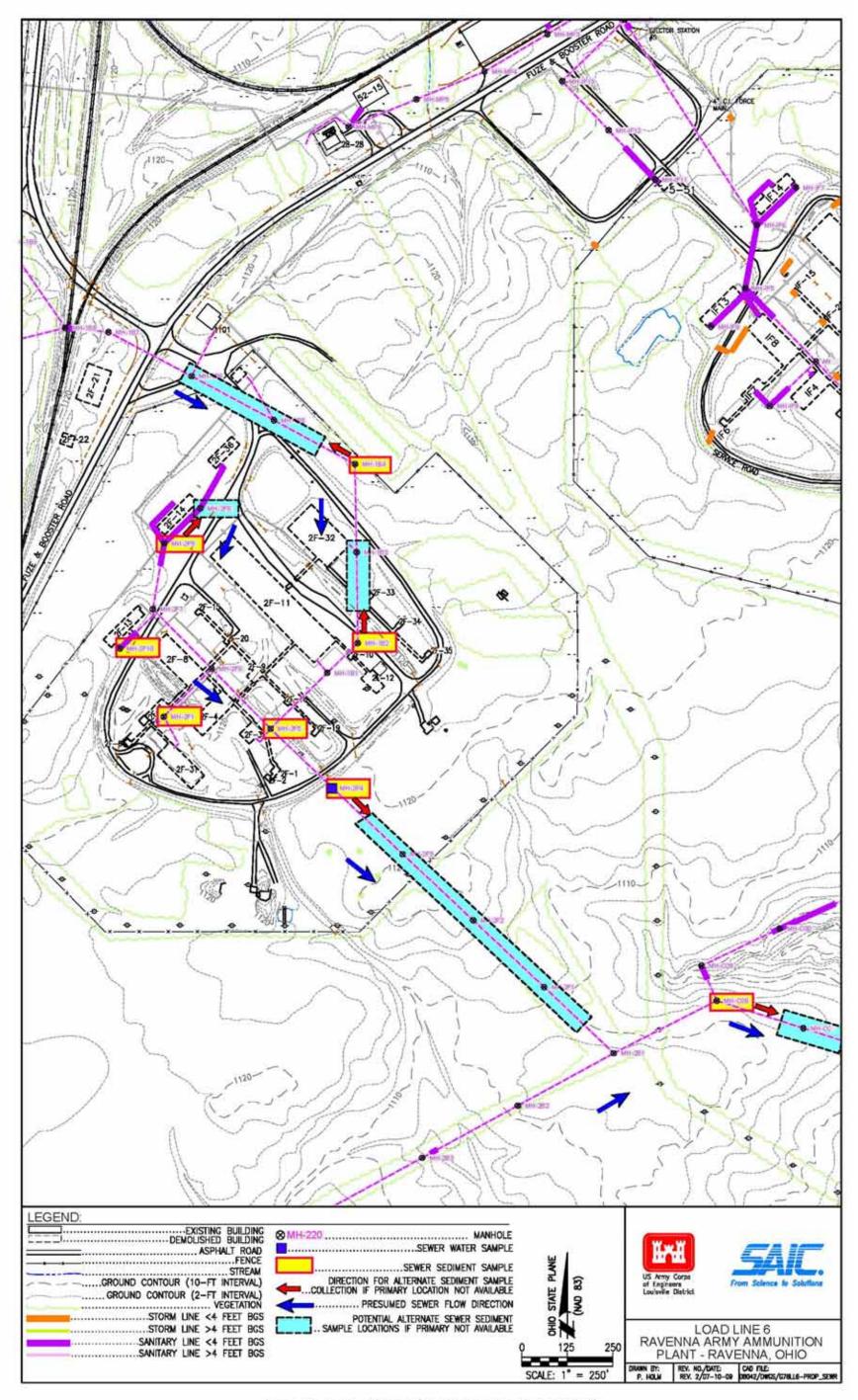



Figure J-3. Proposed Sewer Sampling Locations at Load Line 6

APPENDIX K Load Line 7

# K.1 AREA DESCRIPTION

Load Line 7 is a 37-acre AOC formerly used as a booster loading and assembly line for artillery projectiles (Figure K-1). Operations occurred from 1941 until the end of World War II; the booster process equipment was removed in 1945. During this phase in the operational history of the load line, buildings were utilized for explosive processing (1B-1, 1B-2, 1B-3), pellet manufacturing and processing (1B-4, 1B-17, 1B-12, 1B-13), testing (1B-7 and 1B-18), detonator storage (1B-5), booster storage, propellant storage, and assembly and shipping (1B-6). Detonators used in the assembly of the finished product would have been received at Load Line 7 as a sealed unit and primers as a sealed finished sub-assembly.

In 1968, the line was modified to produce M-406 High Explosive and M-407A1 practice 40 mm rounds. During this operational era, buildings were utilized for booster storage (1B-1), pellet magazine (1B-18), main charge storage (1B-2), melt pour and curing (1B-4 and 1B-6A), primer storage and case assembly (1B-12 and 1B-13), fuze storage (1B-17), propellant storage (1B-22), and assembly and shipping (1B-6). A total of 16,000,000 (40-mm) projectiles were assembled at Load Line 7 from 1969-1970, at which time the line was deactivated and the equipment removed. The line was reactivated for the research and development of high explosive shape charges until 1993. From 1989 through 1993, pink water associated with TNT processing was treated at the Load Line 7 treatment plant operating under an Ohio wastewater discharge permit. Load Line 7 has been inactive since 1993 and is overgrown with young trees and scrub vegetation. The buildings, including slabs and foundations, have since been removed.

The sanitary sewer system at Load Line 7 is part of the George Road Treatment Plant network (shown in Plate A-1). Storm system infrastructure at the load line occurs predominantly as under-road culverts.

## **K.2 PREVIOUS INVESTIGATIONS**

Sewer water and sediment samples were collected from the sanitary sewer manholes at Load Line 7 in 2003 as part of the *Final Characterization of 14 AOCs* investigation (MKM Engineers, Inc. 2007a). Seven of the ten sanitary sewer manholes contained enough water for sample collection; no water was present in two sewer locations, and one sewer could not be located. These sample locations are shown in Figure K-1. Sewer sediment samples could not be collected at any of the ten manhole locations evaluated since none contained sufficient quantities of recoverable sediment. The analytical results indicated that six polyaromatic hydrocarbons, the explosive RDX and lead exceeded their screening levels in the sewer water samples. These screening level exceedances are summarized in Table K-1 and the sample locations with exceedances are shown in Figure K-2. Five out of the seven sewer water samples exhibited RDX concentrations in excess of its screening limit. Lead exceeded its screening level at two locations, and all six of the polyaromatic hydrocarbons were detected at and

exceeded their screening levels at only one location (MH-1B11). The explosives HMX and RDX were detected in all seven of the sewer water samples, and 2-amino-4,6-dinitrotoluene and 4-amino-2,6-dinitrotoluene were detected in five of the seven samples. However, no analytes were detected above their screening levels in sewer sediment.

Inspections and explosives field screening tests were conducted at Load Line 7 during the *Explosive Evaluation of Sewers* investigations (Lakeshore Engineering Services, Inc. 2007). However, these sewer efforts were conducted without Ohio EPA regulatory oversight or review of the associated work plans and resultant completion report or its conclusions. These investigations were limited to the sanitary sewer, as Load Line 7 lacks any significant storm management structures. A total of 8 DropEx<sup>TM</sup> samples were collected at Load Line 7 sanitary sewer manholes, none of which tested positive for trace explosive residue.

| Media             | Analyte                | Units | Detection<br>Frequency | Minimum<br>Detection | Maximum<br>Detection | Average<br>Result | Screening<br>Level <sup>a</sup> |
|-------------------|------------------------|-------|------------------------|----------------------|----------------------|-------------------|---------------------------------|
| Sewer<br>Sediment | No samples collected   | mg/kg | -                      | _                    | _                    | _                 | _                               |
|                   | RDX                    | mg/L  | 7/7                    | 0.0038               | 0.054                | 0.031             | 0.015                           |
|                   | Lead                   | mg/L  | 5/7                    | 0.0074               | 2.2                  | 0.45              | 0.015                           |
|                   | Benz(a)anthracene      | mg/L  | 1/7                    | _                    | —                    | 0.0014            | 0.000014                        |
| Sewer             | Benzo(a)pyrene         | mg/L  | 1/7                    | _                    | —                    | 0.0018            | 0.0000008                       |
| Water             | Benzo(b)fluoranthene   | mg/L  | 1/7                    | _                    | —                    | 0.002             | 0.0000079                       |
|                   | Chrysene               | mg/L  | 1/7                    | _                    | —                    | 0.0016            | 0.0014                          |
|                   | Dibenz(a,h)anthracene  | mg/L  | 1/7                    | _                    | —                    | 0.00042           | 0.00000052                      |
|                   | Indeno(1,2,3-cd)pyrene | mg/L  | 1/7                    | _                    | —                    | 0.001             | 0.0000078                       |

 Table K-1. Chemicals Exceeding Screening Levels in Sewer Media at Load Line 7

<sup>a</sup>Screening levels are based on the Draft Facility-Wide Cleanup Goal for Hazard Quotient (HQ)=0.1 and Carcinogenic Risk=1E-6. Where background values were higher than the cleanup goal (HQ=0.1/R=1E-6), the background value is utilized as the screening level. — Not applicable.

### K.3 PROPOSED SAP ADDENDUM INVESTIGATION OBJECTIVES

The general approach for investigation activities for Facility-Wide Sewers as a whole is presented in Section 3.2 of the FSP. However, certain areas of the system should be targeted for assessment based on the evaluation of existing historical data, results of previous investigations, anomalies identified during visual survey, or potential to have accumulated contaminants based on their location within the system and proximity to source areas. Although actual sampling locations cannot be established in advance since sufficient volume of media for sample collection may be unavailable and because site conditions may preclude access to portions of the system, primary and alternate sampling recommendations for the Load Line 7 are presented in Table K-2, and shown in Figure K-3.

| Sewer<br>Type | Primary Sample<br>Location | Alternate Sample<br>Locations<br>(In Order of Precedence) | Media Type     | Comments/Rationale                                                                                                                                                                                                                   |
|---------------|----------------------------|-----------------------------------------------------------|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|               |                            |                                                           | Sewer Sediment | Represents conditions downstream ofLoad Line 7 and the building complex                                                                                                                                                              |
| Sanitary      | MH-1B7                     | None                                                      | Sewer Water    | south of the load line before the trunk<br>drains towards Load Line 6. This<br>location previously exhibited<br>inorganics above screening levels.                                                                                   |
| Sanitary      | MH-1B9                     | None                                                      | Sewer Sediment | Represents conditions immediately downstream of Load Line 7 itself.                                                                                                                                                                  |
| Sumury        |                            | TIONE                                                     | Sewer Water    | downstream of Load Line / itsen.                                                                                                                                                                                                     |
| Sanitary      | MH-1B10                    | MH-1B11, MH-1B17,<br>MH-1B16                              | Sewer Sediment | Represents conditions at the process<br>buildings on the south segment of the<br>load line. This location previously<br>exhibited RDX above screening levels<br>in water; sediment was not collected.                                |
| Sanitary      | MH-1B12                    | MH-1B13, MH-1B14                                          | Sewer Sediment | Represents conditions at the process<br>buildings on the north segment of the<br>load line. This location previously<br>exhibited RDX and multiple other<br>organics above screening levels in<br>water; sediment was not collected. |
| Sanitary      | Sanitary MH-1B15 None      |                                                           | Sewer Sediment | Represents conditions at the upstream                                                                                                                                                                                                |
| Sannary       |                            |                                                           | Sewer Water    | end of the load line.                                                                                                                                                                                                                |
| Sanitary      | MH-WW1                     | MH-WW2, MH-WW3                                            | Sewer Sediment | Isolates the building complex segment south of the load line.                                                                                                                                                                        |

During the visual survey phase, inspection forms will be completed for sewer structures at Load Line 7 to document their condition and accessibility for subsequent investigative activities (i.e., sample media collection or video survey). Actual locations of sample collection, video surveys will be presented in the RI report.

THIS PAGE INTENTIONALLY LEFT BLANK.

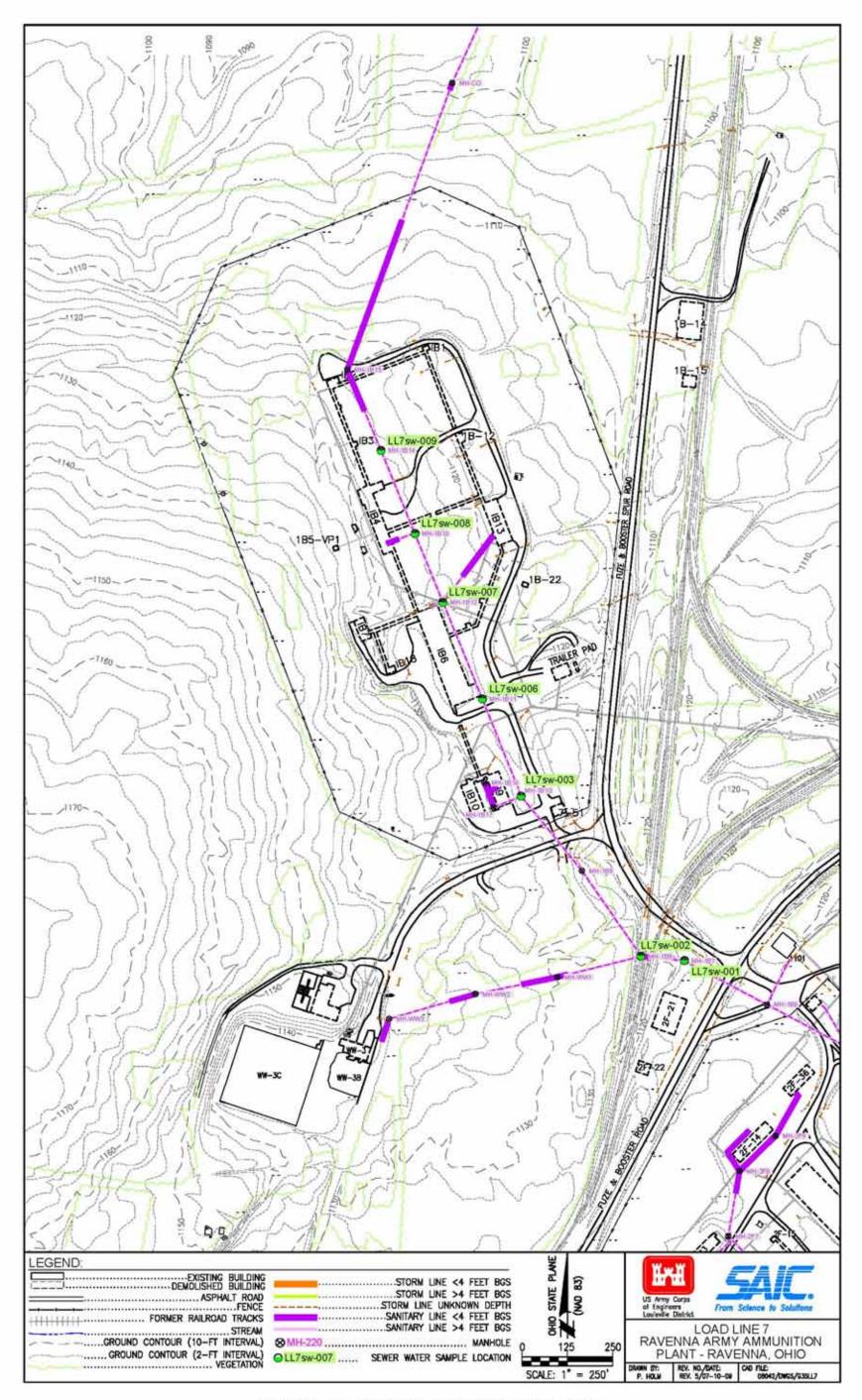



Figure K-1. Historical Sewer Sampling Locations at Load Line 7

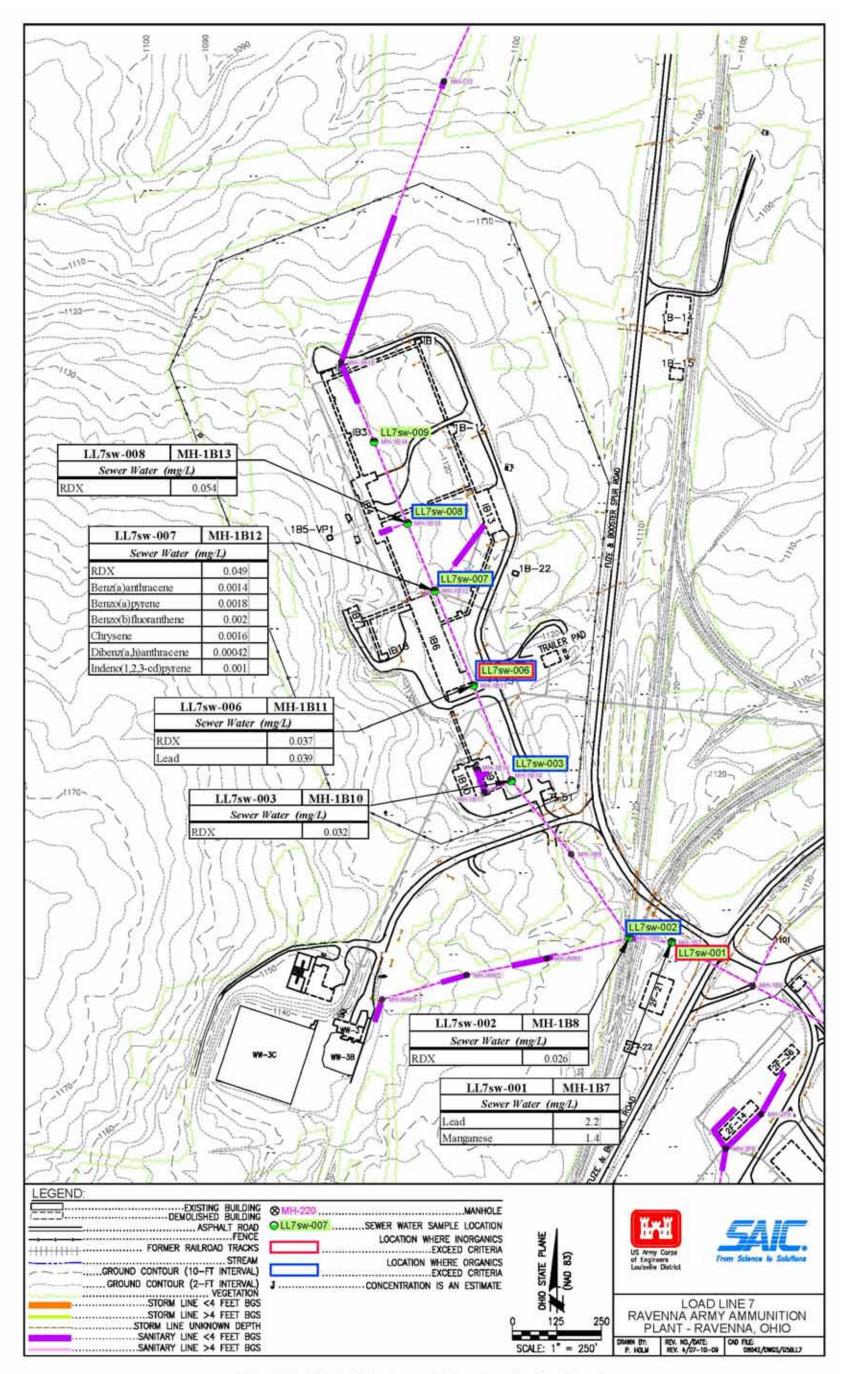



Figure K-2. Historical Exceedances for Sewer Samples at Load Line 7

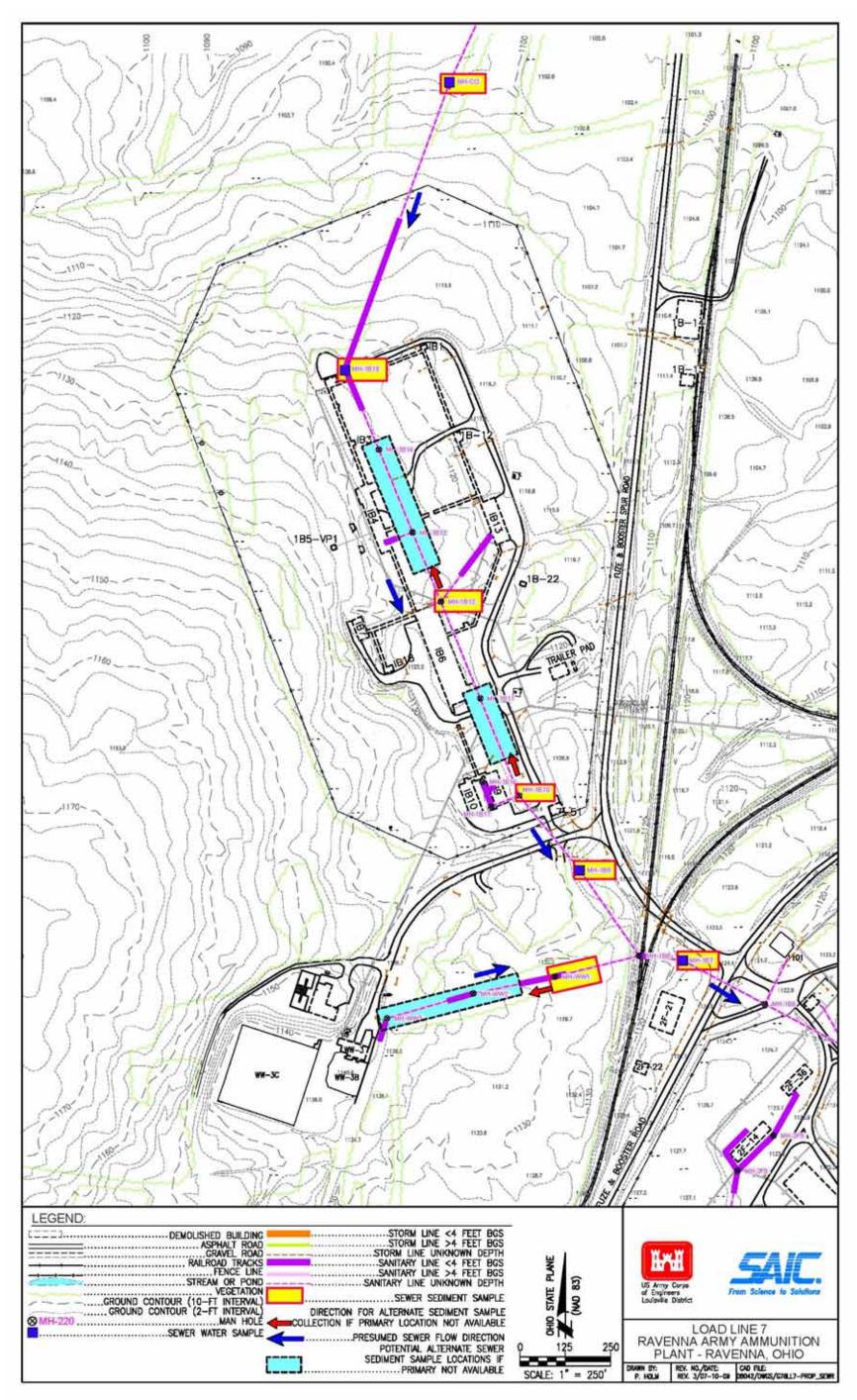



Figure K-3. Proposed Sewer Sampling Locations at Load Line 7

APPENDIX L Load Line 8

## L.1 AREA DESCRIPTION

Load Line 8 is a 44-acre AOC that operated as a booster loading and assembly line from 1941 to 1945 (Figure L-1). During its operational history, buildings at Load Line 8 were utilized for explosive processing (2B-1, 2B-2 and 2B-3), pellet manufacturing and processing (2B-4, 2B-17, 2B-12 and 2B-13), testing (2B-7 and 2B-18), detonator storage (2B-5), and assembly and shipping (2B-6 and 2B-21). Detonator components and all primary explosives arrived containerized at Load Line 8 as sealed finished sub-assemblies, and were stored at the load line until utilized in the assembly process. Operations were discontinued at the end of World War II and the process equipment was removed in 1945. The AOC consisted of 15 process buildings, which have since been removed. Load Line 8 has not been used since 1945 and is overgrown by trees and scrub vegetation.

The sanitary sewer system at Load Line 8 is part of the George Road Treatment Plant network (shown in Plate A-1). Storm system infrastructure at the load line occurs predominantly as under-road culverts.

## L.2 PREVIOUS INVESTIGATIONS

Sewer water and sediment samples were collected from the sanitary sewer manholes at Load Line 8 in 2004 as part of the *Final Characterization of 14 AOCs* investigation (MKM Engineers, Inc. 2007a). Sewer water samples were collected at nine of the eleven manholes evaluated; the other two sewer manhole locations were dry. Six of the ten sewer manholes evaluated contained sufficient sediment volume for sample collection. These sampling locations are shown in Figure L-1. The analytical results indicated that five metals (arsenic, barium, chromium, cobalt and manganese) exceeded their screening levels at multiple sewer sediment locations. These screening level exceedances are summarized in Table L-1 and the sample locations with exceedances are shown in Figure L-2. No analytes were detected above their respective screening levels in sewer water at Load Line 8. No explosives or propellants were detected in any of the sewer water samples; 2-amino-4,6-dinitrotoluene was detected in one sediment sample below its screening level.

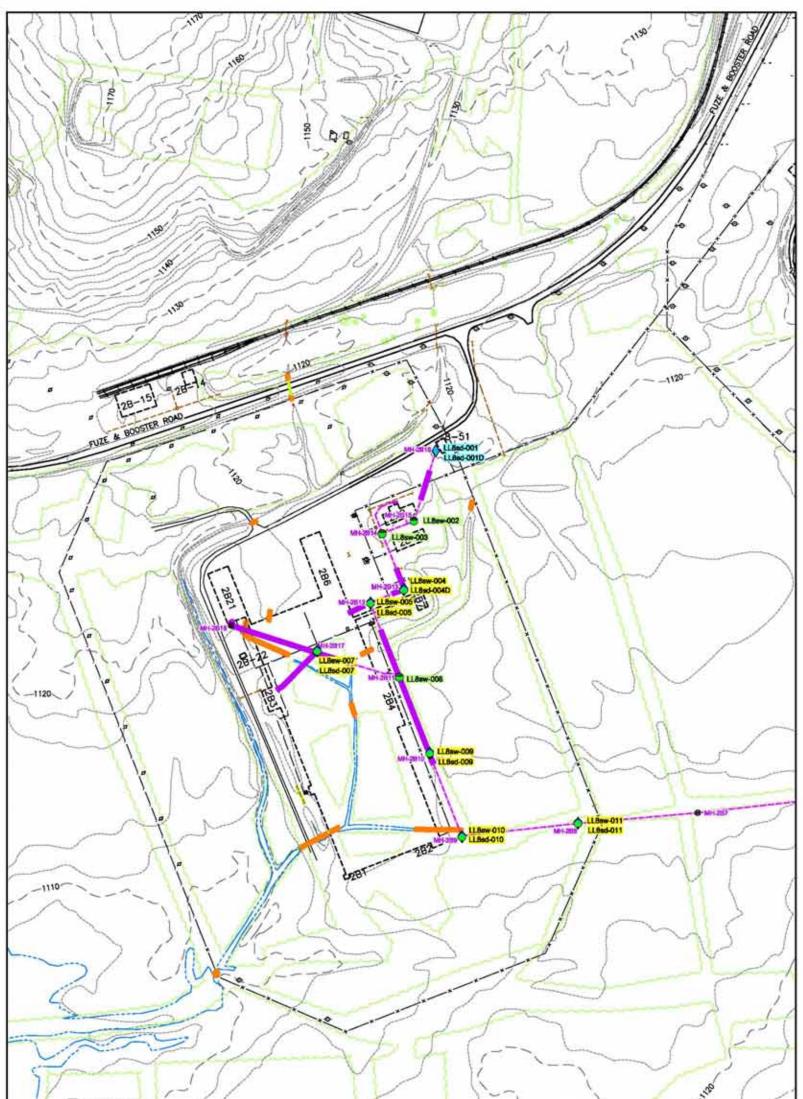
Inspections and explosives field screening tests were conducted at Load Line 8 during the *Explosive Evaluation of Sewers* investigations (Lakeshore Engineering Services, Inc. 2007). However, these sewer efforts were conducted without Ohio EPA regulatory oversight or review of the associated work plans and resultant completion report or its conclusions. These investigations were limited to the sanitary sewer, as Load Line 8 lacks any significant storm management structures. A total of 10 DropEx<sup>TM</sup> samples were collected at Load Line 8 sanitary sewer manholes, none of which tested positive for trace explosive residue.

| Media          | Analyte        | Units | Detection<br>Frequency | Minimum<br>Detection | Maximum<br>Detection | Average<br>Result | Screening<br>Level <sup>a</sup> |
|----------------|----------------|-------|------------------------|----------------------|----------------------|-------------------|---------------------------------|
|                | Arsenic        | mg/kg | 6/6                    | 13                   | 56                   | 23.5              | 19.5                            |
| Sewer          | Barium         | mg/kg | 6/6                    | 54                   | 680                  | 274               | 350                             |
| Sediment       | Chromium       | mg/kg | 6/6                    | 7.9                  | 22                   | 17.2              | 18.1                            |
| Scament        | Cobalt         | mg/kg | 6/6                    | 11                   | 20                   | 16.3              | 9.1                             |
|                | Manganese      | mg/kg | 6/6                    | 800                  | 30,000               | 9,530             | 1,950                           |
| Sewer<br>Water | No exceedances | mg/L  | _                      | _                    | _                    | _                 | _                               |

 Table L-1. Chemicals Exceeding Screening Levels in Sewer Media at Load Line 8

<sup>a</sup>Screening levels are based on the Draft Facility-Wide Cleanup Goal for Hazard Quotient (HQ)=0.1 and Carcinogenic Risk=1E-6. Where background values were higher than the cleanup goal (HQ=0.1/R=1E-6), the background value is utilized as the screening level. — Not applicable.

### L.3 PROPOSED SAP ADDENDUM INVESTIGATION OBJECTIVES


The general approach for investigation activities for Facility-Wide Sewers as a whole is presented in Section 3.2 of the FSP. However, certain areas of the system should be targeted for assessment based on the evaluation of existing historical data, results of previous investigations, anomalies identified during visual survey, or potential to have accumulated contaminants based on their location within the system and proximity to source areas. Although actual sampling locations cannot be established in advance since sufficient volume of media for sample collection may be unavailable and because site conditions may preclude access to portions of the system, primary and alternate sampling recommendations for the Load Line 8 are presented in Table L-2, and shown in Figure L-3.

| Table L-2. Summary     | of Proposed Sampling Locations at Load Line 8  |
|------------------------|------------------------------------------------|
| I dole Li Li D'ammulai | of I Toposed Sumpling Locations at Loud Line o |

| Sewer<br>Type | Primary Sample<br>Location | Alternate Sample<br>Locations<br>(In Order of Precedence) | Media Type     | Comments/Rationale                                                                                                                                                                                 |
|---------------|----------------------------|-----------------------------------------------------------|----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|               | MH-2B7, MH-2B6,            |                                                           | Sewer Sediment | Represents conditions downstream of Load Line 8 before exiting                                                                                                                                     |
| Sanitary      | MH-2B8                     | MH-2B5, MH-2B4,<br>MH-2B3, MH-2B2                         | Sewer Water    | towards Load Line 6. This<br>location also exhibited high<br>concentrations of inorganics above<br>screening levels.                                                                               |
| Sanitary      | MH-2B13                    | MH-2B14, MH-2B15,<br>MH-2B16                              | Sewer Sediment | Represents a major junction point<br>draining the northwest segment of<br>the load line. The manhole<br>immediately downstream had high<br>concentrations of inorganics above<br>screening levels. |
| Sanitary      | MH-2B17                    | MH-2B18                                                   | Sewer Sediment | Represents a major junction point<br>draining Buildings 2B21 and 2B3<br>at the western segment of the load<br>line. This location also exhibited<br>cobalt above screening levels.                 |

During the visual survey phase, inspection forms will be completed for sewer structures at Load Line 8 to document their condition and accessibility for subsequent investigative activities (i.e., sample media collection or video survey). Actual locations of sample collection, video surveys will be presented in the RI report.

THIS PAGE INTENTIONALLY LEFT BLANK.



|                                                                                                                            | -A-                                                                                                                                                                                            | <br>                          |              |       |
|----------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|--------------|-------|
| LEGEND:<br>C===3DEMOLISHED BUILDING<br>ASPHALT ROAD<br>CRAVEL ROAD<br>RAILROAD TRACKS                                      | STORM LINE <4 FEET BGS<br>STORM LINE >4 FEET BGS<br>STORM LINE VINKNOWN DEPTH<br>SANITARY LINE <4 FEET BGS                                                                                     | STATE PLANE<br>(NO 83)        | US Amy Corps | SAIC. |
| FENCE LINE<br>STREAM OR POND<br>VEGETATION<br>GROUND CONTOUR (10-FT INTERVAL)<br>GROUND CONTOUR (2-FT INTERVAL)<br>WANHOLE | SANITARY LINE >4 FEET BGS<br>SANITARY LINE UNKNOWN DEPTH<br>SEWER WATER SAMPLE LOCATION<br>UL3-306SEWER SEDIMENT SAMPLE LOCATION<br>CO-LOCATED SEWER<br>OLL3-308SEDIMENT SAMPLE & WATER SAMPLE | 0 125 250<br>SCALE: 1" = 250' | RAVENNA AR   |       |

Figure L-1. Historical Sewer Sampling Locations at Load Line 8

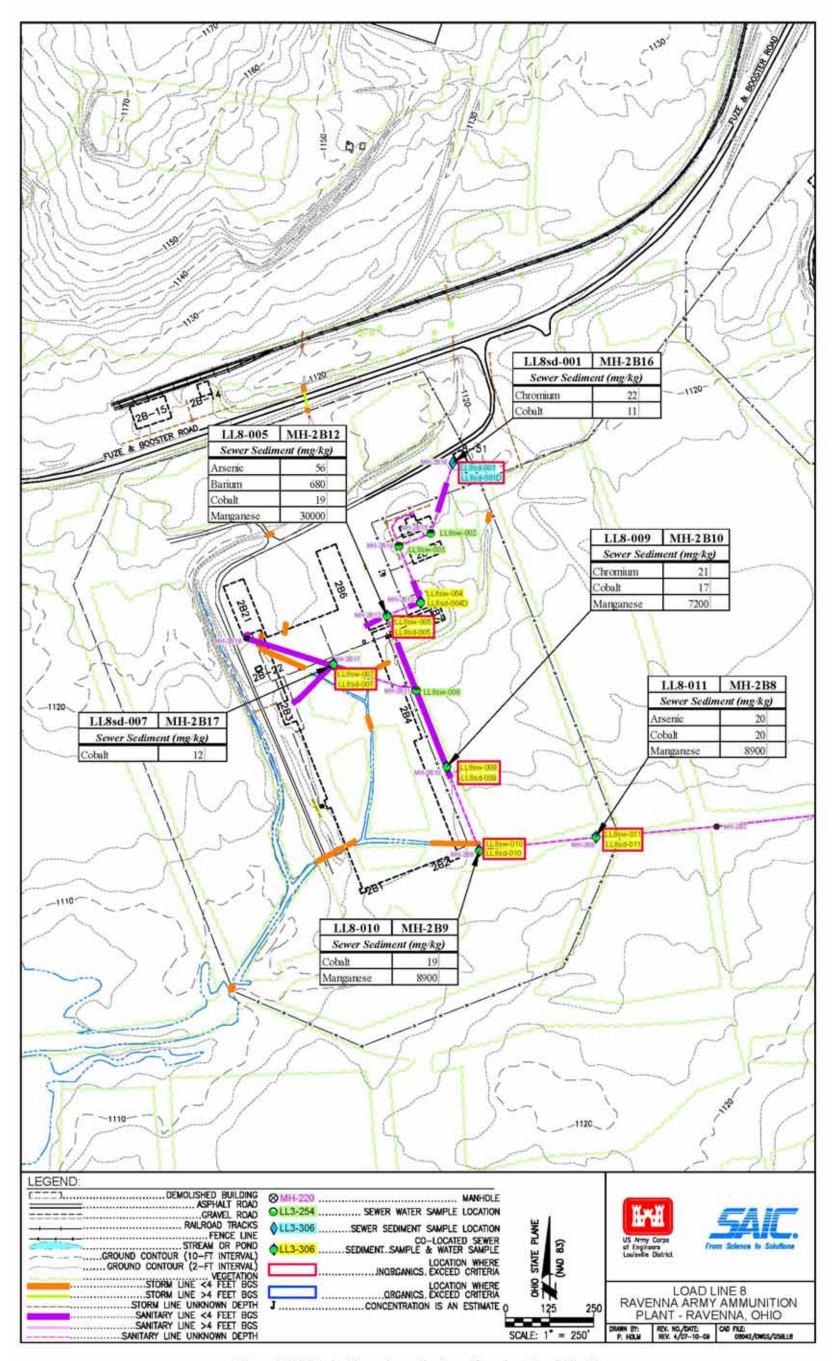



Figure L-2. Historical Exceedances for Sewer Samples at Load Line 8



Figure L-3. Proposed Sewer Sampling Locations at Load Line 8

APPENDIX M Load Line 9

### M.1 AREA DESCRIPTION

Load Line 9 is a 69-acre AOC located in the south-central portion of RVAAP (Figure M-1). From 1941 to 1945, Load Line 9 produced detonators. During the operational history of Load Line 9, buildings were utilized for the following functions: mercury fulminate prep, screening, mixing and drying (DT–1, DT–2, DT–3, DT–25); lead azide prep, screening, mixing, and drying (DT–4, DT–5, DT–6, DT–7, DT–8, DT–9, DT–11, DT–19); tetryl screening, blending, pelleting and storage (DT–23, DT–24, DT–26, DT–27); loading (DT–20, DT–21, DT–22); detonator assembly, testing, storage and destruction (DT–14, DT–15, DT–16, DT–18, DT–18A, DT–34); and final inspection, packing and shipping (DT–13). In 1945, the load line was deactivated, and the equipment removed. There are no documented activities at Load Line 9 since 1945. Infrastructure at Load Line 9 consists mainly of a gravel road following the perimeter of main production area. The buildings at Load Line 9 were thermally decontaminated and demolished to 2 ft below ground surface in 2003, and the removal of all remaining slabs and foundations was completed in 2007. The concrete and brick were crushed to maintain the roads at RVAAP. An unused water tower is the only structure remaining at Load Line 9.

The sanitary sewer system at Load Line 9 is part of the George Road Treatment Plant network (shown in Plate A-1). Storm system infrastructure at the load line occurs predominantly as under-road culverts.

### M.2 PREVIOUS INVESTIGATIONS

Sewer water and sediment samples were collected from sanitary sewer manholes at Load Line 9 in 2003 as part of the *Final Remedial Investigation for Load Line 9* (MKM Engineers, Inc. 2007c). Collocated sewer water and sediment samples were collected at two manhole locations, shown in Figure M-1. Samples could not be collected from other manholes at the load line because they contained insufficient water and sediment. The analytical results indicated that three metals (arsenic, cobalt and mercury) and five polyaromatic hydrocarbons (benz(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, dibenz(a,h)anthracene, indeno(1,2,3-cd)pyrene) exceeded their respective screening levels in sewer sediment. Lead was the only analyte detected above screening levels in sewer water samples. These screening level exceedances are summarized in Table M-1 and the sample locations with exceedances are shown in Figure M-2. The propellants nitrocellulose and nitroguanidine were detected in one of the sewer water samples at concentrations below the screening levels. No explosives or propellants were detected in the sewer sediment samples from Load Line 9.

Inspections and explosives field screening tests were conducted at Load Line 9 during the *Explosive Evaluation of Sewers* investigations (Lakeshore Engineering Services, Inc. 2007). However, these sewer efforts were conducted without Ohio EPA regulatory oversight or review of the associated work plans and resultant completion report or its conclusions. These investigations were limited to the sanitary sewer, as Load Line 9 lacks any significant storm management structures. A total of 9

DropEx<sup>TM</sup> samples were collected at Load Line 9 sanitary sewer manholes, none of which tested positive for trace explosive residue. A historical review of maps conducted for the investigation were observed to indicate an underground line of indeterminate purpose which ran from building DT-2 (Fulminate Mix House) to DT-5 (Azide Mix House), and to the northeast where they converged at a point within the woods outside of the LL9 fenceline (USACE-CERL 2007). A walk-down was conducted during the investigation, and no outlet was found. Although these lines were designated as sanitary lines on the historical maps, their operational purpose was unknown (USACE-CERL 2007). Based upon their configuration, it is likely that these were process lines rather than sewer lines; as such, investigation of these structures will be conducted as part of the remedial investigation for Load Line 9 (RVAAP-42) rather than under the Facility-Wide Sewers AOC.

| Media          | Analyte                | Units | Detection<br>Frequency | Minimum<br>Detection | Maximum<br>Detection | Average<br>Result | Screening<br>Level <sup>a</sup> |
|----------------|------------------------|-------|------------------------|----------------------|----------------------|-------------------|---------------------------------|
|                | Arsenic                | mg/kg | 2/2                    | 15                   | 25                   | 20                | 19.5                            |
|                | Cobalt                 | mg/kg | 2/2                    | 7.6                  | 9.1                  | 8.4               | 9.1                             |
|                | Mercury                | mg/kg | 2/2                    | 6                    | 110                  | 58                | 2.3                             |
| Sewer          | Benz(a)anthracene      | mg/kg | 1/1                    | —                    | —                    | 2.1               | 0.000014                        |
| Sediment       | Benzo(a)pyrene         | mg/kg | 1/1                    | _                    | —                    | 2.2               | 0.000008                        |
|                | Benzo(b)fluoranthene   | mg/kg | 1/1                    | —                    | —                    | 2.5               | 0.0000079                       |
|                | Dibenz(a,h)anthracene  | mg/kg | 1/1                    | —                    | —                    | 0.61              | 0.00000052                      |
|                | Indeno(1,2,3-cd)pyrene | mg/kg | 1/1                    | _                    | _                    | 0.61              | 0.0000078                       |
| Sewer<br>Water | Lead                   | mg/L  | 2/2                    | 0.036                | 0.046                | 0.041             | 0.015                           |

Table M-1. Chemicals Exceeding Screening Levels in Sewer Media at Load Line 9

<sup>a</sup>Screening levels are based on the Draft Facility-Wide Cleanup Goal for Hazard Quotient (HQ)=0.1 and Carcinogenic Risk=1E-6. Where background values were higher than the cleanup goal (HQ=0.1/R=1E-6), the background value is utilized as the screening level. — Not applicable.

### M.3 PROPOSED SAP ADDENDUM INVESTIGATION OBJECTIVES

The general approach for investigation activities for Facility-Wide Sewers as a whole is presented in Section 3.2 of the FSP. However, certain areas of the system should be targeted for assessment based on the evaluation of existing historical data, results of previous investigations, anomalies identified during visual survey, or potential to have accumulated contaminants based on their location within the system and proximity to source areas. Although actual sampling locations cannot be established in advance since sufficient volume of media for sample collection may be unavailable and because site conditions may preclude access to portions of the system, primary and alternate sampling recommendations for the Load Line 9 are presented in Table M-2, and shown in Figure M-3.

| Sewer<br>Type | Primary Sample<br>Location | Alternate Sample<br>Locations<br>(In Order of Precedence)                          | Media Type                 | Comments/Rationale                                                                                                                                                                    |
|---------------|----------------------------|------------------------------------------------------------------------------------|----------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Sanitary      | MH-D1                      | None                                                                               | Sewer Sediment             | Confirmatory sample; previous results<br>at this manhole exhibited high<br>mercury concentrations and other<br>inorganics above screening levels.                                     |
| Sanitary      | MH-D6                      | None                                                                               | Sewer Sediment             | Isolates segment draining Building<br>DT-1; downstream manhole MH-D5<br>exhibited elevated organics and<br>inorganics above screening criteria.                                       |
| Sanitary      | MH-D7                      | None                                                                               | Sewer Sediment             | Isolates potential source area segment<br>draining multiple process buildings;<br>downstream manhole MH-D5<br>exhibited elevated organics and<br>inorganics above screening criteria. |
| Sanitary      | MH-D8                      | MH-D4, MH-D3, MH-<br>D2                                                            | Sewer Sediment             | Isolates potential source area segment<br>draining multiple process buildings;<br>downstream manhole MH-D1<br>exhibited inorganics concentrations<br>above screening levels.          |
| Sanitary      | MH-D9                      | MH-D11                                                                             | Sewer Sediment             | Isolates potential source area segment<br>draining multiple process buildings;<br>downstream manhole MH-D1<br>exhibited inorganics concentrations<br>above screening levels.          |
| Sanitary      | MH-O51                     | MH-O50, MH-O49,<br>MH-O48, MH-O47,<br>MH-O46, MH-O45,<br>MH-O44, MH-O43,<br>MH-O42 | Sewer Sediment Sewer Water | Represents conditions at the<br>downstream end of the load line and<br>before connecting with the trunk line<br>draining Load Line 10.                                                |

#### Table M-2. Summary of Proposed Sampling Locations at Load Line 9

During the visual survey phase, inspection forms will be completed sewer structures at Load Line 9 to document their condition and accessibility for subsequent investigative activities (i.e., sample media collection or video survey). Actual locations of sample collection, video surveys will be presented in the RI report.

THIS PAGE INTENTIONALLY LEFT BLANK.

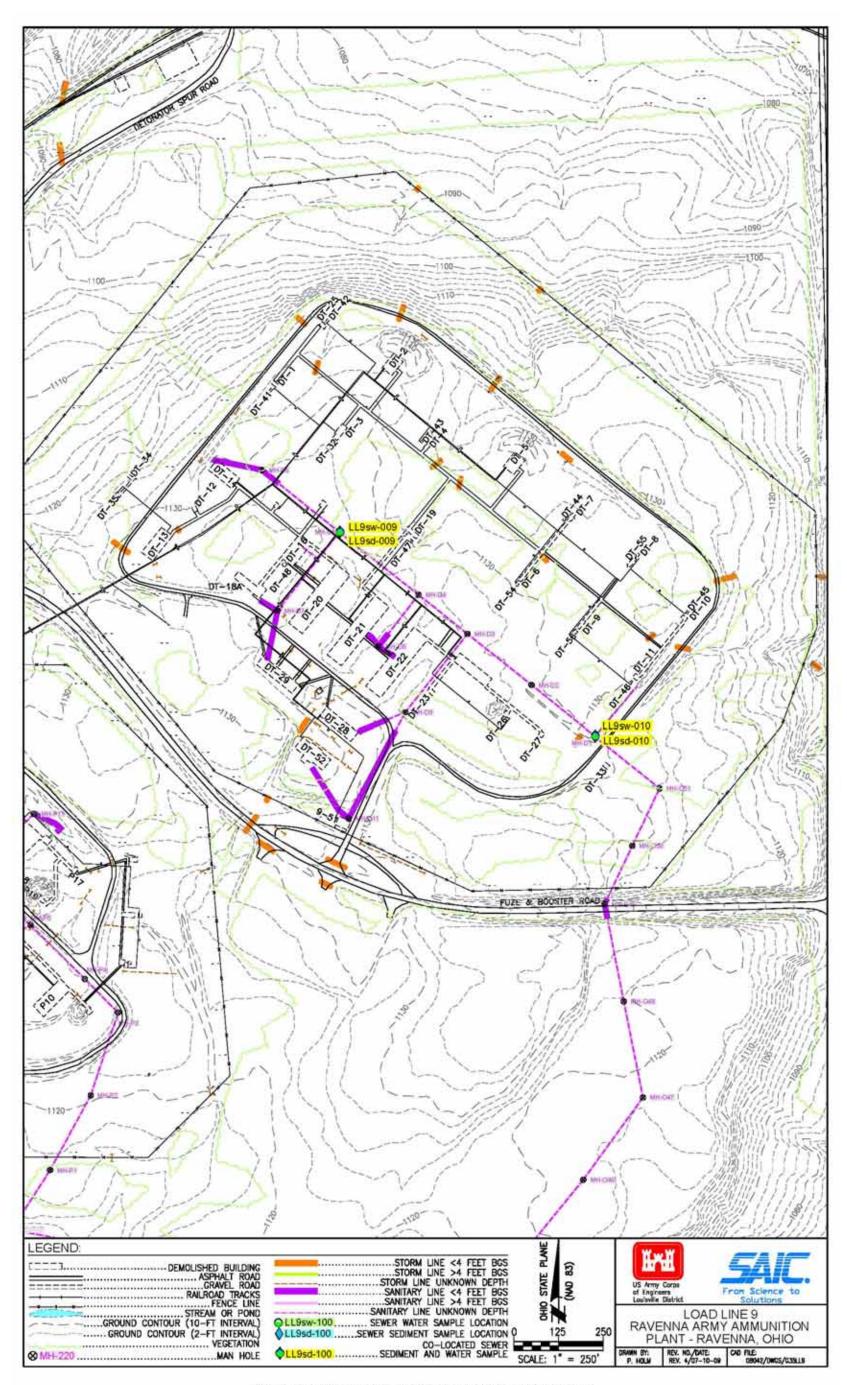



Figure M-1. Historical Sewer Sampling Locations at Load Line 9

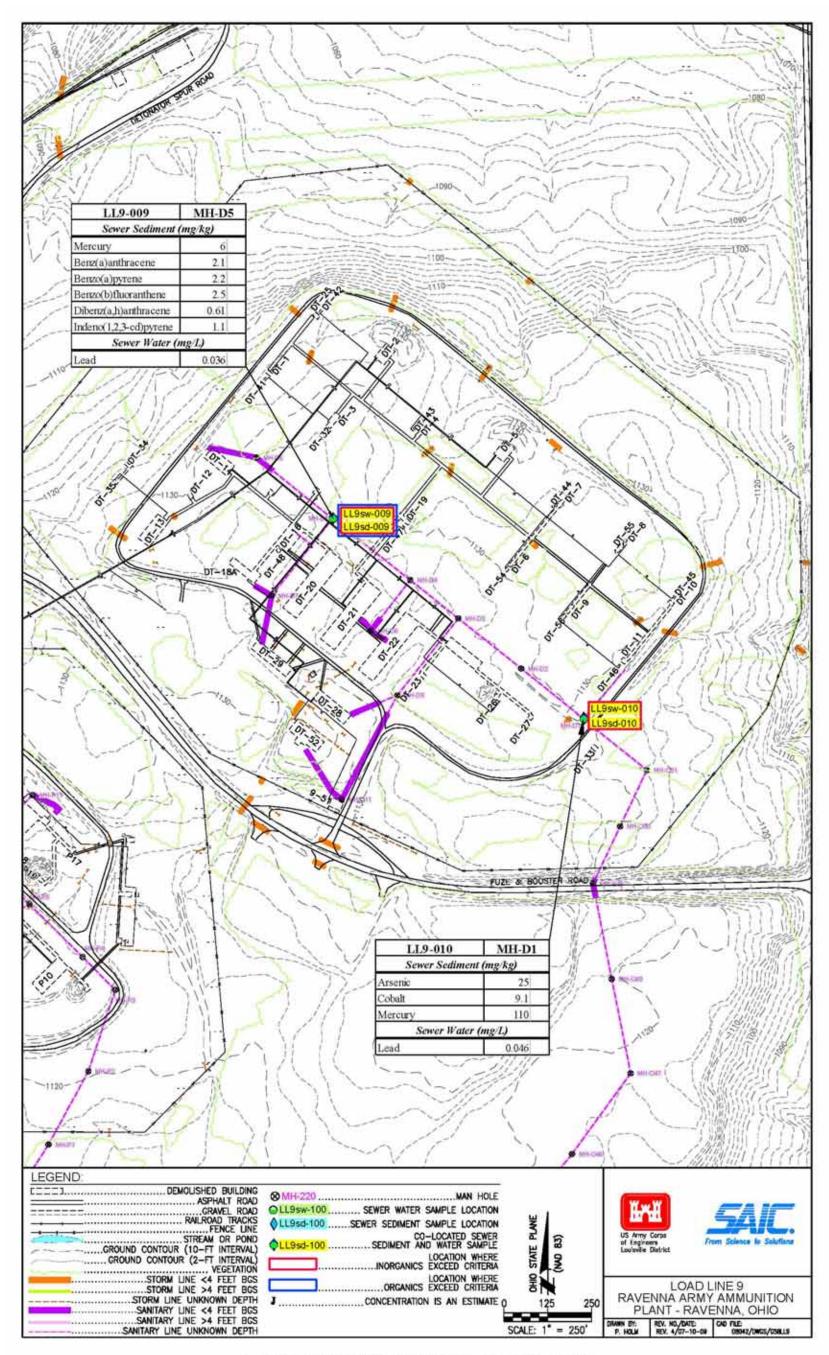



Figure M-2. Historical Exceedances for Sewer Samples at Load Line 9

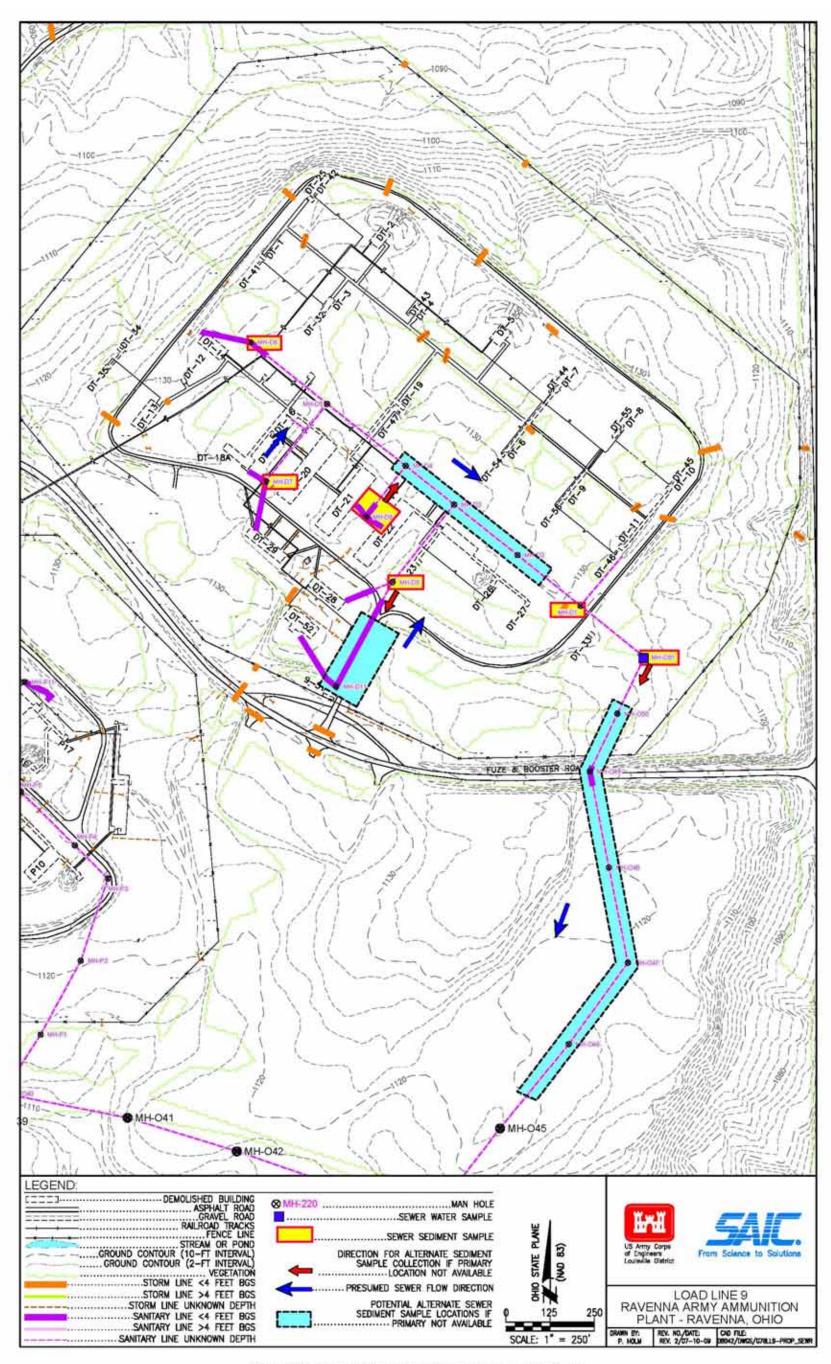



Figure M-3. Proposed Sewer Sampling Locations at Load Line 9

APPENDIX N Load Line 10

#### **N.1** AREA DESCRIPTION

Load Line 10 is a 43-acre AOC, formerly known as the Percussion Element Manufacturing Line, which operated as an initiator blending and loading line from 1941 to 1945 (Figure N-1). During this phase in the operational history of Load Line 10, buildings were utilized for initiator processing (PE-12 and PE-18), primer component processing (PE-17, PE-19 and PE-13), pentaerythritol tetranitrate processing (PE-28 and PE-29), and primer mix processing (PE-1, PE-4, PE-5, PE-6, PE-7, PE-9, PE-14, PE-15, PE-21 and PE-22). At the end of World War II, the process equipment and production line was placed on standby status. The line was reactivated in 1951 and used to produce primers and percussion elements until it was again placed on standby status in 1956.

The line was activated again in 1969 to produce primers. Between 1969 and 1971, buildings at Load Line 10 were utilized for initiator processing (PE-18 and PE-28), fuel compound blending and storage (PE-12, PE-13, PE-19, PE-19, PE-29A and PE-29B), binder blending (PE-16), and mix/percussion element processing and packing (PE-1, PE-14, PE-5, PE-6, PE-4, PE-9 and PE-10). In1971, the line was deactivated permanently and the production equipment removed. The AOC is currently overgrown by trees and scrub vegetation. The buildings, including slabs and foundations, have since been removed.

The sanitary sewer system at Load Line 10 is part of the George Road Treatment Plant network (shown in Plate A-1). Storm system infrastructure at the load line occurs predominantly as underroad culverts.

#### **N.2 PREVIOUS INVESTIGATIONS**

Sewer water and sediment samples were collected from the sanitary sewer manholes at Load Line 10 in 2004 as part of the Final Characterization of 14 AOCs investigation (MKM Engineers, Inc. 2007a). At the time of sampling, water was present in six of the ten sewer locations evaluated. Only three sewer manholes contained enough sediment for sample collection. These sample locations are shown in Figure N-1. The analytical results indicated that four metals (arsenic, chromium, cobalt and lead) and the polyaromatic hydrocarbon benzo(a)pyrene exceeded their screening levels in sewer sediment. Four polvaromatic hydrocarbons (benz(a)anthracene. benzo(a)pvrene. benzo(b)fluoranthene and indeno(1,2,3-cd)pyrene) exceeded their screening levels in one of the seven sewer water samples (MH-P12). These screening level exceedances are summarized in Table N-1 and the sample locations with exceedances are shown in Figure N-2. The explosives 2,6-dinitrotoluene and tetryl were detected in one sewer sediment sample at concentrations below their respective screening levels. No explosive compounds were detected in sewer water.

Inspections and explosives field screening tests were conducted at Load Line 10 during the *Explosive Evaluation of Sewers* investigations (Lakeshore Engineering Services, Inc. 2007; USACE-CERL

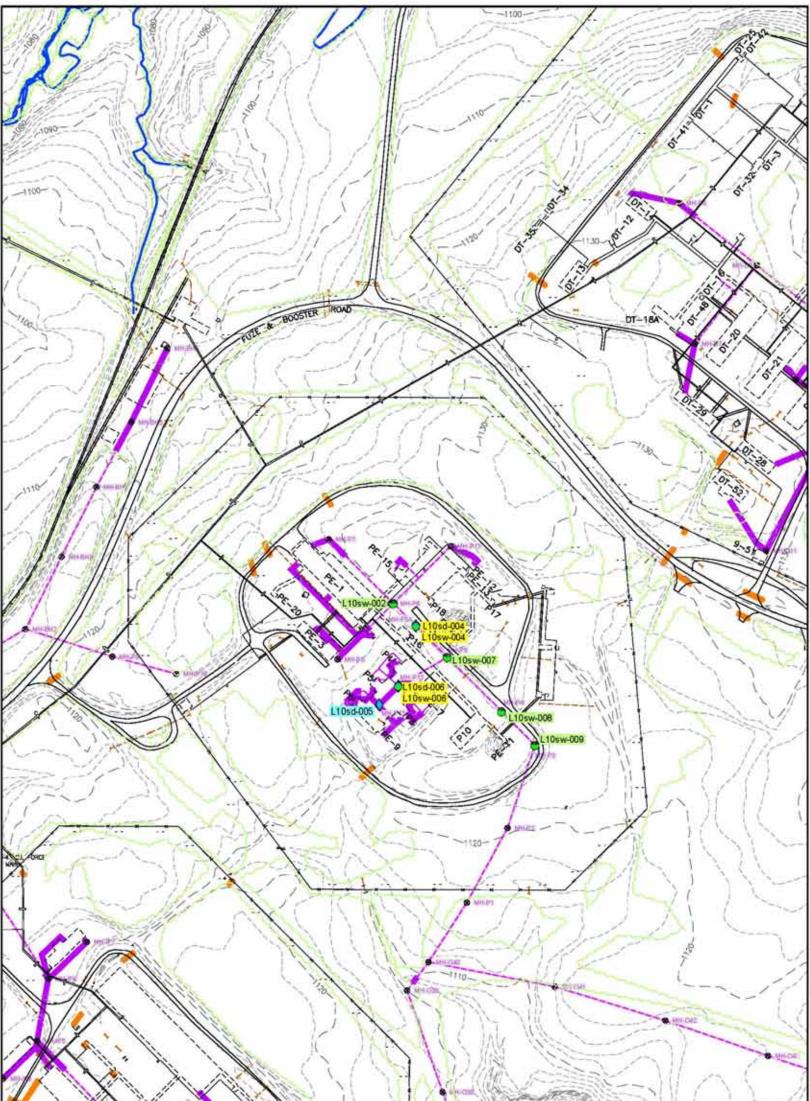
2007). However, these sewer efforts were conducted without Ohio EPA regulatory oversight or review of the associated work plans and resultant completion report or its conclusions. These investigations were limited to the sanitary sewer, as Load Line 10 lacks any significant storm management structures. A total of 18 DropEx<sup>™</sup> samples were collected at Load Line 10 sanitary sewer manholes, none of which tested positive for trace explosive residue.

| Media    | Analyte                | Units | Detection<br>Frequency | Minimum<br>Detection | Maximum<br>Detection | Average<br>Result | Screening<br>Level <sup>a</sup> |
|----------|------------------------|-------|------------------------|----------------------|----------------------|-------------------|---------------------------------|
|          | Arsenic                | mg/kg | 3/3                    | 12                   | 20                   | 16.6              | 19.5                            |
| Sewer    | Chromium               | mg/kg | 3/3                    | 13                   | 54                   | 31.7              | 18.1                            |
| Sediment | Cobalt                 | mg/kg | 3/3                    | 8.3                  | 10                   | 9.0               | 9.1                             |
| Seament  | Lead                   | mg/kg | 3/3                    | 310                  | 640                  | 433               | 400                             |
|          | Benzo(a)pyrene         | mg/kg | 1/1                    | —                    | _                    | 0.048             | 0.022                           |
|          | Benz(a)anthracene      | mg/L  | 1/6                    | —                    | _                    | 0.0004            | 0.000014                        |
| Sewer    | Benzo(a)pyrene         | mg/L  | 1/6                    | —                    | _                    | 0.00045           | 0.0000008                       |
| Water    | Benzo(b)fluoranthene   | mg/L  | 1/6                    | —                    | _                    | 0.00064           | 0.0000079                       |
|          | Indeno(1,2,3-cd)pyrene | mg/L  | 1/6                    | —                    | _                    | 0.00032           | 0.0000078                       |

 Table N-1. Chemicals Exceeding Screening Levels in Sewer Media at Load Line 10

<sup>a</sup>Screening levels are based on the Draft Facility-Wide Cleanup Goal for Hazard Quotient (HQ)=0.1 and Carcinogenic Risk=1E-6. Where background values were higher than the cleanup goal (HQ=0.1/R=1E-6), the background value is utilized as the screening level. — Not applicable.

#### N.3 PROPOSED SAP ADDENDUM INVESTIGATION OBJECTIVES


The general approach for investigation activities for Facility-Wide Sewers as a whole is presented in Section 3.2 of the FSP. However, certain areas of the system should be targeted for assessment based on the evaluation of existing historical data, results of previous investigations, anomalies identified during visual survey, or potential to have accumulated contaminants based on their location within the system and proximity to source areas. Although actual sampling locations cannot be established in advance since sufficient volume of media for sample collection may be unavailable and because site conditions may preclude access to portions of the system, primary and alternate sampling recommendations for the Load Line 10 are presented in Table N-2, and shown in Figure N-3.

| Sewer<br>Type | Primary Sample<br>Location | Alternate Sample<br>Locations<br>(In Order of Precedence) | Media Type     | Comments/Rationale                                                                                                                                                                                                                               |
|---------------|----------------------------|-----------------------------------------------------------|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Sanitary      | MH-O40                     | MH-O39, MH-O38,<br>MH-O37, MH-O36,                        | Sewer Sediment | Represents conditions downstream of<br>the confluence point of the Load Line                                                                                                                                                                     |
| 2             |                            | MH-O35                                                    | Sewer Water    | 9 and 10 trunk lines.                                                                                                                                                                                                                            |
| Sanitary      | MH-041                     | MH-O42, MH-O43,<br>MH-O44, MH-O45,<br>MH-O46, MH-O47,     | Sewer Sediment | Represents conditions upstream of<br>Load Line 10 (i.e: trunk line draining<br>from Load Line 9 towards 10).                                                                                                                                     |
|               |                            | MH-O48, MH-O49,<br>MH-O50                                 | Sewer Water    |                                                                                                                                                                                                                                                  |
| Sanitary      | MH-P4                      | MH-P3, MH-P2, MH-P1                                       | Sewer Sediment | Represents conditions at the<br>downstream end of the load line and<br>prior to the confluence with other<br>trunk lines.                                                                                                                        |
| Sanitary      | MH-P5A                     | None                                                      | Sewer Sediment | Confirmatory sample; previous results<br>indicated high lead concentrations<br>above its screening level.                                                                                                                                        |
| Sanitary      | MH-P7                      | None                                                      | Sewer Sediment | Characterizes potential source area at<br>Building P1; downstream junction<br>manhole MH-P5A exhibited high lead<br>concentrations above its screening<br>level.                                                                                 |
| Sanitary      | MH-P8                      | None                                                      | Sewer Sediment | Characterizes potential source area at<br>Building P3; downstream junction<br>manhole MH-P5A exhibited high lead<br>concentrations above its screening<br>level.                                                                                 |
| Sanitary      | MH-P11                     | None                                                      | Sewer Sediment | Characterizes potential source area at<br>building complex at northeast of load<br>line; downstream junction manhole<br>MH-P5A exhibited high lead<br>concentrations above its screening<br>level.                                               |
| Sanitary      | MH-P12                     | MH-P13                                                    | Sewer Sediment | Isolates and characterizes potential<br>source area segment of sewers at<br>Buildings P4, P5 and P6. Provides<br>confirmation of previously screening<br>level exceedances in sediment<br>(inorganics) and water (organics) at<br>this location. |

Table N-2. Summary of Proposed Sampling Locations at Load Line 10

During the visual survey phase, inspection forms will be completed for sewer structures at Load Line 10 to document their condition and accessibility for subsequent investigative activities (i.e., sample media collection or video survey). Actual locations of sample collection, video surveys will be presented in the RI report.

THIS PAGE INTENTIONALLY LEFT BLANK.



|                                                                                                     |                                                                                                                                        | L'uner L         |                                                      | L C C                                           |
|-----------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|------------------|------------------------------------------------------|-------------------------------------------------|
| LEGEND                                                                                              | STORM LINE <4 FEET BCS                                                                                                                 | PLANE<br>5)      | Ĩ.×.ĬĬ                                               | CAIL                                            |
| ASPHALT ROAD<br>GRAVEL ROAD<br>RAILROAD TRACKS                                                      | STORM LINE <4 FEET BGS<br>STORM LINE >4 FEET BGS<br>STORM LINE UNKNOWN DEPTH<br>SANITARY LINE <4 FEET BGS<br>SANITARY LINE >4 FEET BGS | (NUD 83)         | US Army Corps<br>of Engineers<br>Looisville District | From Solence to Solutions                       |
| GROUND CONTOUR (10-FT INTERVAL)<br>GROUND CONTOUR (2-FT INTERVAL)<br>GROUND CONTOUR (2-FT INTERVAL) | SANITARY LINE UNKNOWN DEPTH                                                                                                            | まれ<br>0 125 250  | RAVENNA.                                             | DAD LINE 10<br>ARMY AMMUNITION<br>RAVENNA, OHIO |
| ······································                                                              | CO-LOCATED SEWER<br>CO-LOCATED SEWER<br>SAMPLE & WATER SAMPLE                                                                          | SCALE: 1" = 250' | DRAWN BY: REV. NO.<br>P. HOLM REV. 5/1               | /DATE: CAO FILE:<br>27-10-09 08042/D#GS/G30LL10 |

Figure N-1. Historical Sewer Sampling Locations at Load Line 10

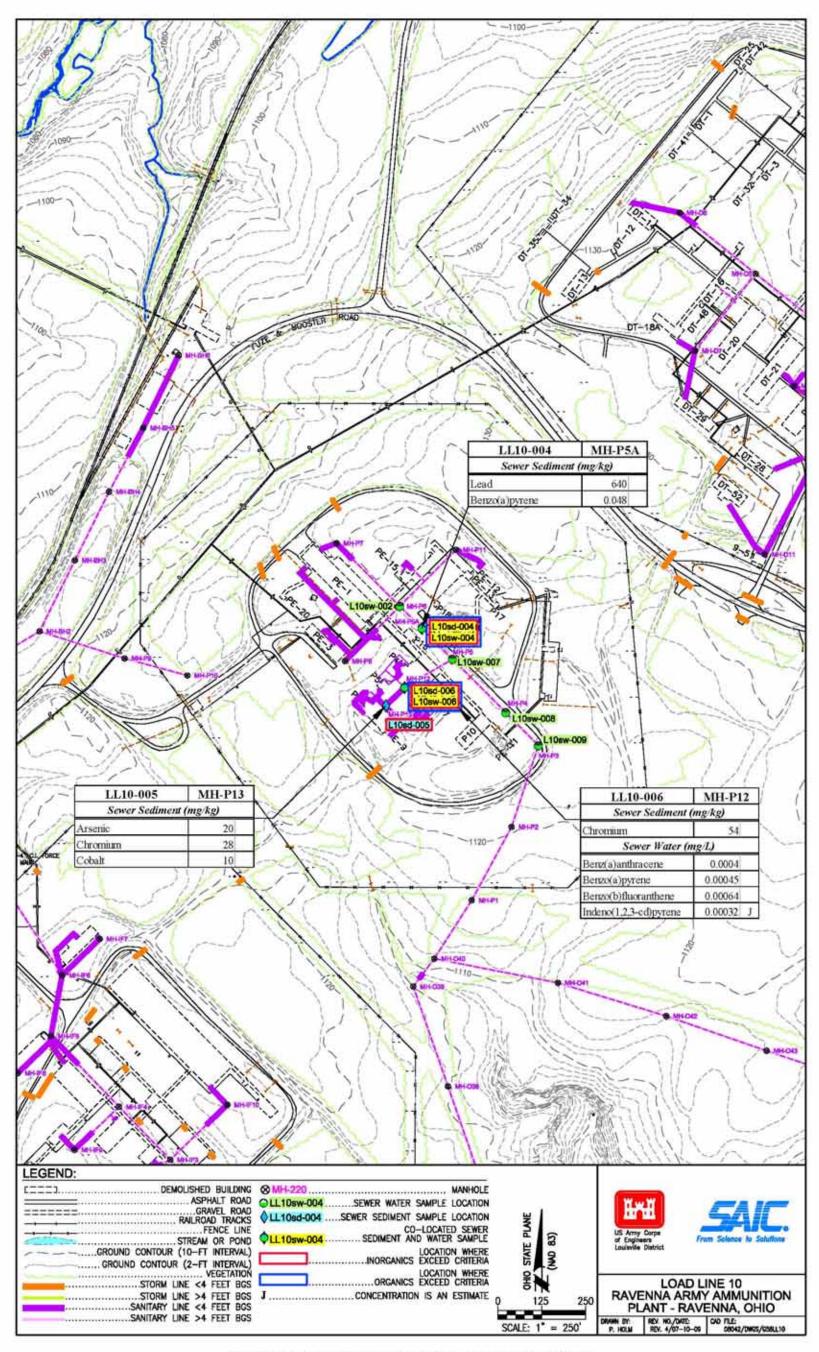



Figure N-2. Historical Exceedances for Sewer Samples at Load Line 10

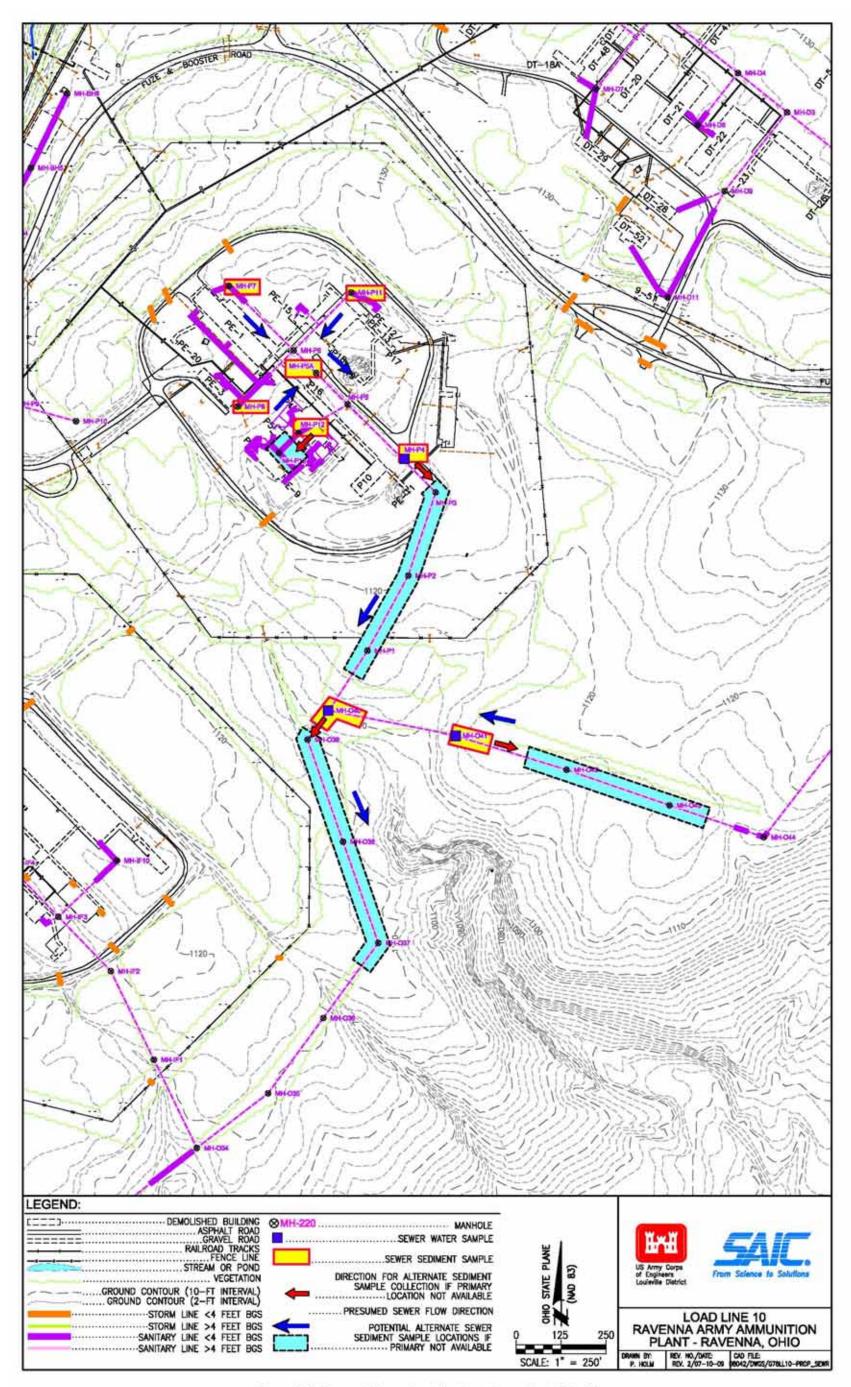



Figure N-3. Proposed Sewer Sampling Locations at Load Line 10

APPENDIX O Load Line 11

#### **O.1** AREA DESCRIPTION

Load Line 11 is approximately 40 acres in size and was utilized primarily for the production of artillery primers and fuzes (Figure O-1). During the period from 1941 to 1945, Load Line 11 operated at full capacity to produce primers for artillery projectiles. After being placed on standby status in 1945, the load line was reactivated twice, once during the 1951 to 1957 time frame to produce primers, and then again from 1969 to 1971 to produce fuzes in support of the Southeast Asia Conflict. During its operational history, buildings at Load Line 11 were used for the following functions: black powder staging areas for primer charging (AP-1, AP-4, AP-7 and AP-10); black powder screening (AP-2 and AP-3); black powder processing (AP-5 and AP-6); primer loading (AP-8); charging operations and primer assembly (AP-11); testing (AP-20); palletizing and shipping finished products (AP-9 and AP-16).

Several buildings at the load line were connected to the sewer mains of the facility through sets of drains and sumps (i.e.: Building AP-3, AP-5, AP-6, and AP-8), many of which were lead-lined and connected via lead piping. An interim remedial action at the AOC was conducted in 2001, consisting of removal of lead/asbestos-lined sumps, lead-contaminated sediment, and solvent-contaminated soil. During these activities, some of the sewer lines and manholes located at the exit and entrance of the sewer system at Load Line 11 were permanently plugged with grout to prevent the potential movement of contaminants in sewer residues from the load line. During these removal actions, it was observed that groundwater infiltration into the sewer and sump system was significant enough to impede activities, as portions of the sewer occurred below the water table. The buildings, including slabs and foundations, have since been demolished.

The sanitary sewer system at Load Line 11 is part of the George Road Treatment Plant network (shown in Plate A-1). Storm system infrastructure at the load line occurs predominantly as underroad culverts.

#### **O.2 PREVIOUS INVESTIGATIONS**

Sewer water and sediment samples were collected from the sanitary sewer manholes at Load Line 11 in 2001 as part of the *Final Remedial Investigation for Load Line 11* (MKM Engineers, Inc. 2005). Six sewer water and five sediment samples were collected from sanitary manholes at Load Line 11. These sample locations are shown in Figure O-1. One set of collocated samples was collected at the manhole at the sewer ejector station located near Building AP-14 and downgradient of the entire Load Line 11 sanitary sewer system (MH-1A1). The analytical results indicated that a total of eight metals exceeded their respective screening levels in sewer sediment at Load Line 11. The only analyte detected above its screening level in sewer water was the metal manganese. These screening level exceedances are summarized in Table O-1 and the sample locations with exceedances are shown in Figure O-2. No explosive compounds were detected in either the sewer or sediment samples.

Inspections and explosives field screening tests were conducted at Load Line 11 during the *Explosive Evaluation of Sewers* investigations (Lakeshore Engineering Services, Inc. 2007; USACE-CERL 2007). However, these sewer efforts were conducted without Ohio EPA regulatory oversight or review of the associated work plans and resultant completion report or its conclusions. These investigations were limited to the sanitary sewer, as Load Line 11 lacks any significant storm management structures. A total of 6 DropEx<sup>™</sup> samples were collected at Load Line 11 sanitary sewer manholes, none of which tested positive for trace explosive residue.

| Media          | Analyte Units |       | Detection | Minimum   | Maximum   | Average | Screening          |
|----------------|---------------|-------|-----------|-----------|-----------|---------|--------------------|
| Wicula         | Anaryte       | Onits | Frequency | Detection | Detection | Result  | Level <sup>a</sup> |
|                | Aluminum      | mg/kg | 5/5       | 3,950     | 16,500    | 8,730   | 13,900             |
|                | Arsenic       | mg/kg | 5/5       | 9.9       | 69.5      | 35.3    | 19.5               |
|                | Chromium      | mg/kg | 5/5       | 5.3       | 30.5      | 13.6    | 18.1               |
| Sewer          | Cobalt        | mg/kg | 5/5       | 4.4       | 18        | 11.0    | 9.1                |
| Sediment       | Copper        | mg/kg | 5/5       | 8.7       | 330       | 79.8    | 310                |
|                | Lead          | mg/kg | 5/5       | 23.6      | 1,770     | 517     | 400                |
|                | Manganese     | mg/kg | 5/5       | 173       | 19,900    | 10,010  | 1,950              |
|                | Vanadium      | mg/kg | 5/5       | 7.3       | 55.7      | 21.8    | 45                 |
| Sewer<br>Water | Manganese     | mg/L  | 5/6       | 0.0076    | 3.17      | 0.71    | 0.63               |

Table O-1. Chemicals Exceeding Screening Levels in Sewer Media at Load Line 11

<sup>a</sup>Screening levels are based on the Draft Facility-Wide Cleanup Goal for Hazard Quotient (HQ)=0.1 and Carcinogenic Risk=1E-6. Where background values were higher than the cleanup goal (HQ=0.1/R=1E-6), the background value is utilized as the screening level. — Not applicable.

#### **O.3 PROPOSED SAP ADDENDUM INVESTIGATION OBJECTIVES**

The general approach for investigation activities for Facility-Wide Sewers as a whole is presented in Section 3.2 of the FSP. However, certain areas of the system should be targeted for assessment based on the evaluation of existing historical data, results of previous investigations, anomalies identified during visual survey, or potential to have accumulated contaminants based on their location within the system and proximity to source areas. Although actual sampling locations cannot be established in advance since sufficient volume of media for sample collection may be unavailable and because site conditions may preclude access to portions of the system, primary and alternate sampling recommendations for the Load Line 11 are presented in Table O-2, and shown in Figure O-3.

| Sewer<br>Type | Primary Sample<br>Location | Alternate Sample<br>Locations<br>(In Order of Precedence) | Media Type     | Comments/Rationale                                                                                                                                                   |
|---------------|----------------------------|-----------------------------------------------------------|----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Sanitary      | MH-CO                      | None                                                      | Sewer Water    | Represents conditions immediately downstream of the load line. Clean-                                                                                                |
| 5             |                            |                                                           | Sewer Sediment | out manhole is a potential accumulation point.                                                                                                                       |
| Sanitary      | MH-1A1                     | None                                                      | Sewer Sediment | Represents major junction and<br>potential accumulation point within<br>the load line, with five lines entering<br>the invert.                                       |
| Sanitary      | MH-1A5                     | None                                                      | Sewer Sediment | Isolates and characterizes potential<br>source area at upstream of MH-1A4<br>and MH-1A3 which exhibited high<br>inorganics concentrations above<br>screening levels. |
| Sanitary      | MH-1A6                     | MH-1A7                                                    | Sewer Sediment | Isolates reach on southern side of load line.                                                                                                                        |
| Sanitary      | MH-2A2                     | MH-2A3, MH-2A4                                            | Sewer Sediment | Isolates and characterizes potential<br>source area upstream of MH-2A1<br>which exhibited high inorganics<br>concentrations above screening levels.                  |
| Sanitary      | MH-3A1                     | None                                                      | Sewer Sediment | Isolates and characterizes potential<br>source area at upstream of MH-1A4<br>and MH-1A3 which exhibited high<br>inorganics concentrations above<br>screening levels. |

Table O-2. Summary of Proposed Sampling Locations at Load Line 11

During the visual survey phase, inspection forms will be completed for the sewer structures at Load Line 11 to document their condition and accessibility for subsequent investigative activities (i.e., sample media collection or video survey). Actual locations of sample collection, video surveys will be presented in the RI report.

THIS PAGE INTENTIONALLY LEFT BLANK.

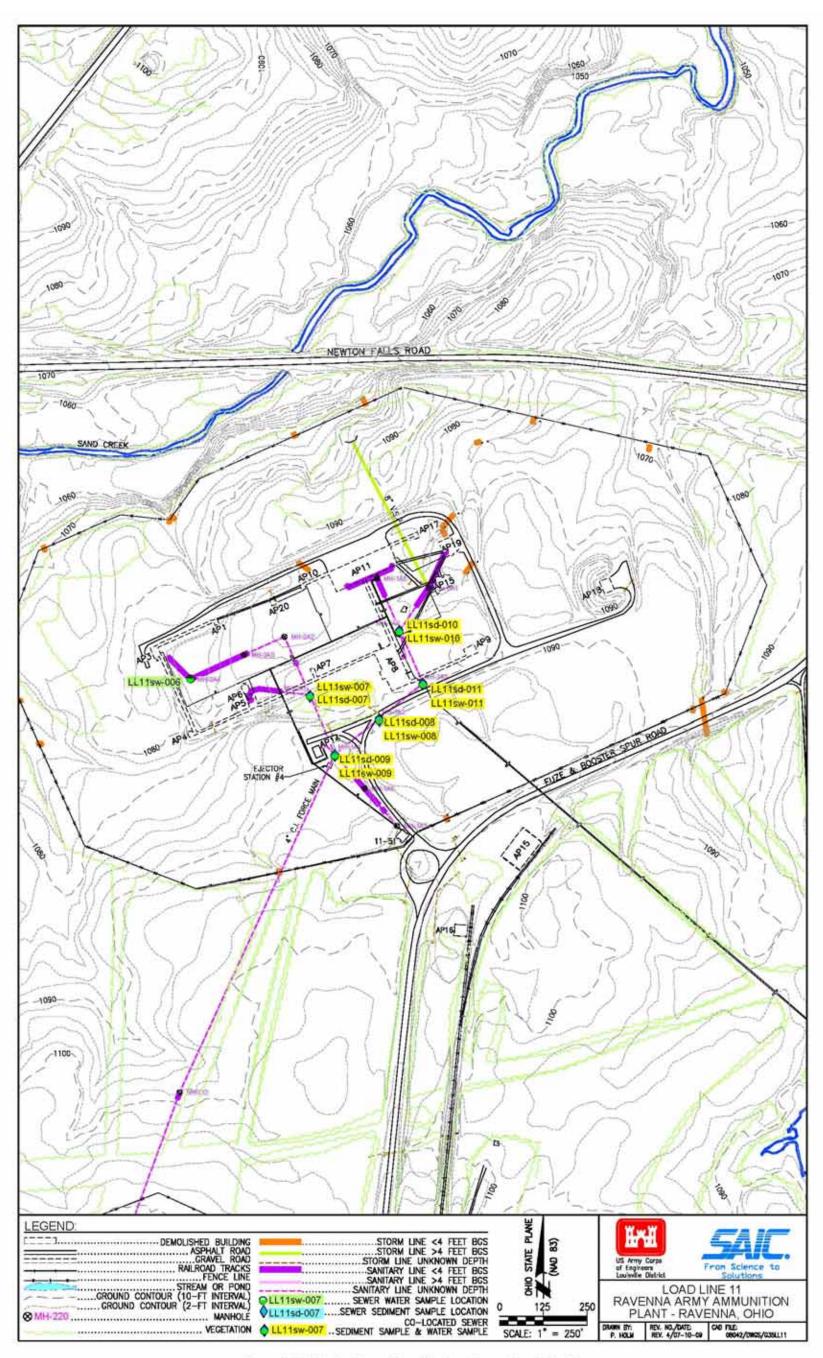



Figure O-1. Historical Sewer Sampling Locations at Load Line 11

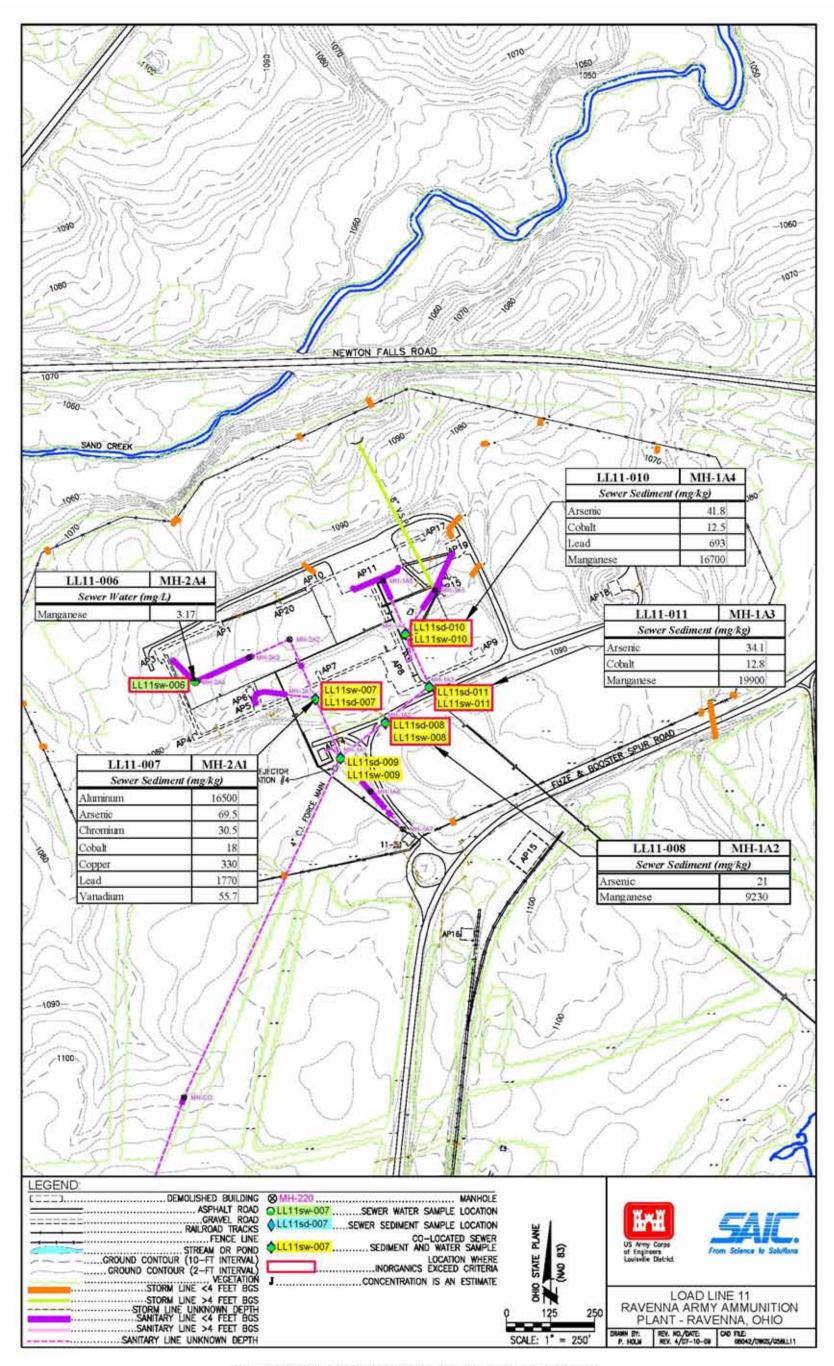



Figure O-2. Historical Exceedances for Sewer Samples at Load Line 11

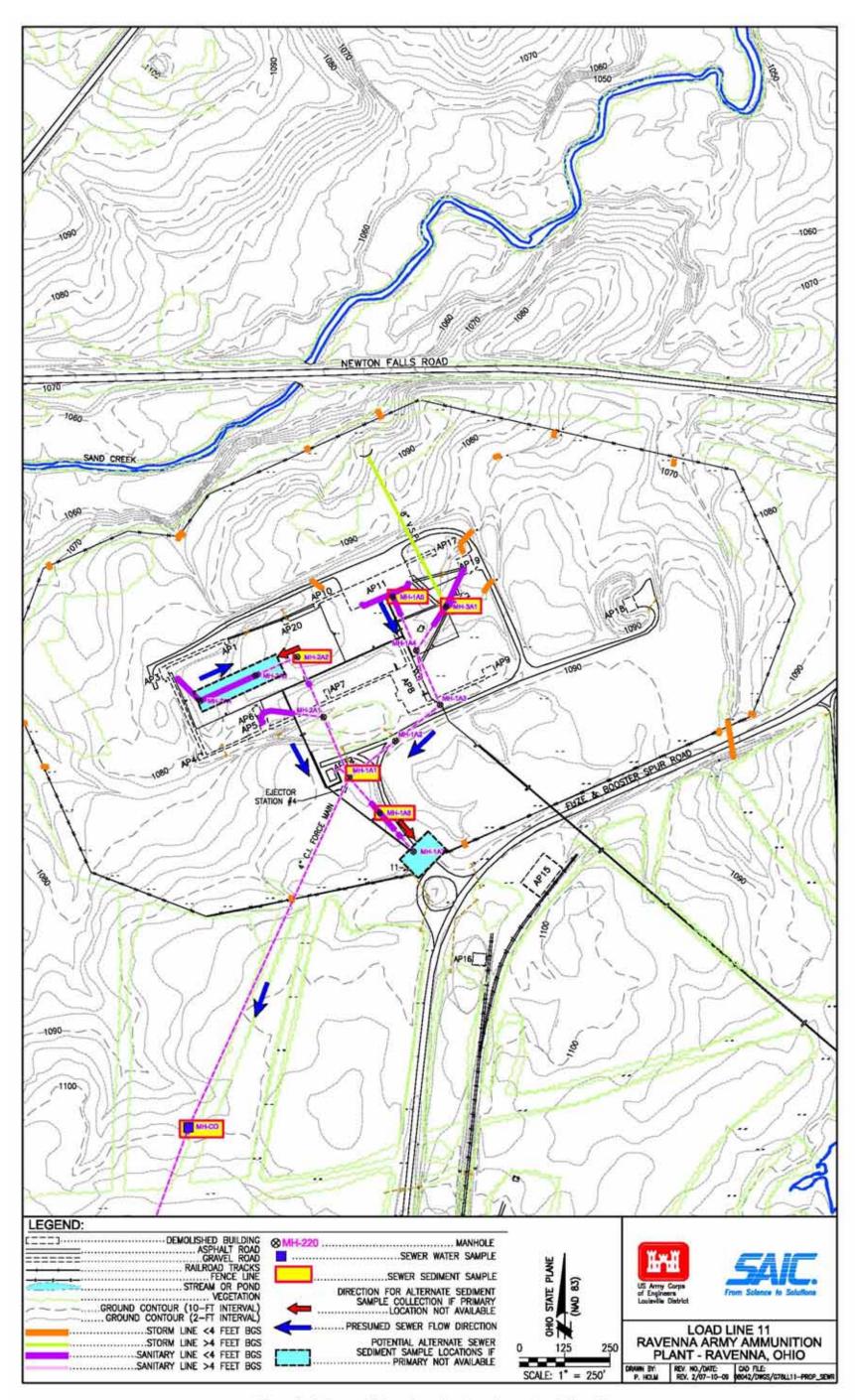



Figure O-3. Proposed Sewer Sampling Locations at Load Line 11

APPENDIX P Load Line 12

#### P.1 AREA DESCRIPTION

Load Line 12 is an 80-acre former ammonium nitrate manufacturing facility operational from 1941 to 1946 (Figure P-1). From 1941 to 1943, explosive grade ammonium nitrate was manufactured at Load Line 12. During its operational history, granular ammonium nitrate was prepared through an evaporation and crystallization procedure of neutral liquor that was brought into the plant in tank cars and off-loaded at the Neutral Liquor Building (FE-19) before being transferred to one of seven evaporation/crystallization units (Buildings 900, 901, 902, 903, 904, 905, and 906).

Various production, renovation, and demilitarization operations were performed at a number of locations at Load Line 12 after the termination of ammonium nitrate production in 1943. Load Line 12 was leased by the Silas Mason Company from 1946 to 1949 to manufacture fertilizer grade ammonium nitrate. Building 904 was used for demilitarization work and bomb melt out from 1949 to 1993. An Ohio EPA-permitted pink water treatment plant located near Building 904 was taken out of service in 2000. From 1965 to 1967, Hercules Alcor, Inc. leased Building FF-19 to produce aluminum chloride. A former steam plant located in the southern portion of the AOC used fuel oil and coal at various times over the years as fuel (Building FE-17). All buildings have been demolished to grade. An explosives composting pilot study in 1999 involved removal of about 1,500 ft<sup>3</sup> of soil from four pits near Building 904 and composting at RVAAP Load Line 4 Building G-4 Warehouse.

The sanitary sewer system at Load Line 12 remains in place (approximately 4,700 linear ft) and may represent an accumulation point for contaminants introduced to the system via building floor and sink drains during the operational history of the load line (shown in Plate A-2). Additionally, a sanitary effluent line from Load Lines 1, 2 and 3 intersected the Load Line 12 system near the center of the load line via a connector line. From this confluence point, sanitary effluent from all four load lines exited Load Line 12 through an ejector station at the north end of the load line and traveled to the Sand Creek Treatment Plant. Storm system infrastructure at the load line occurs predominantly as under-road culverts.

#### P.2 PREVIOUS INVESTIGATIONS

The *Phase II Remedial Investigation* for Load Line 12 included sewer water and sediment sampling and a video camera survey of the sanitary sewer lines (USACE 2004d). During visual examination, portions of the sanitary sewer system within the load line were observed to be flooded either due to infiltrating groundwater or accumulated stormwater. A total of three sewer sediment and four sewer water samples were collected from Load Line 12 manholes located downgradient of Building FF-19. Additional sewer sediment samples could not be obtained because most accessible manholes did not contain sufficient volumes for sample collection. Previous sewer sample locations are shown in Figure P-1.

The analytical results indicated that ten metals, five polyaromatic hydrocarbons and PCB-1254 exceeded their respective screening levels in sewer sediment at Load Line 12. In sewer water, screening level exceedances of three explosives (2,4-dinitrotoluene, 2-amino-4,6-dinitrotoluene and 4-amino-2,6-dinitrotoluene), two metals (lead and manganese) and the pesticide heptachlor epoxide were observed. These screening level exceedances are summarized in Table P-1 and the sample locations with exceedances are shown in Figure P-2. Nitrate was detected in all four sewer water samples, indicating that some degree of potential connection with groundwater may exist at the load line, although none of these detections exceeded the screening level.

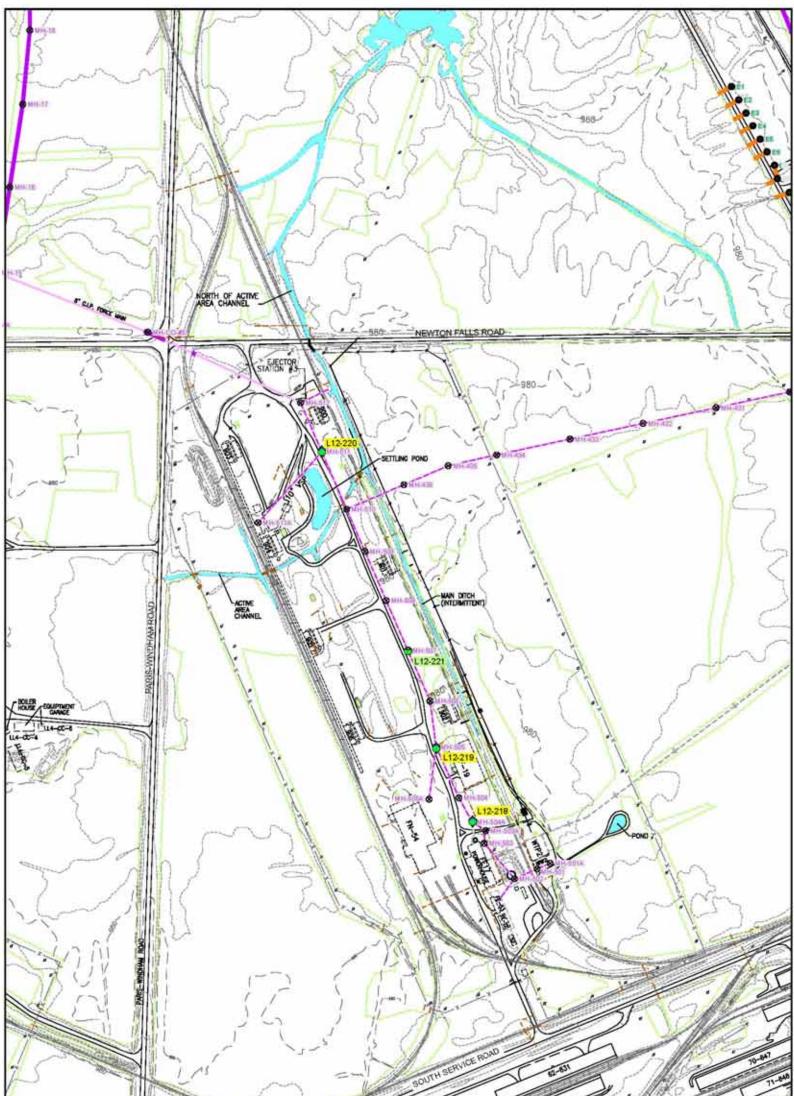
A total of 224 linear feet of Load Line 12 sanitary sewers have been video surveyed to assess the integrity of the lines and their potential to release contaminants to the environment. Video survey locations and findings for the sanitary sewers at Load Line 12 are presented in Figure P-3 (USACE 2004d). Only a small fraction of the Load Line 12 system could be accessed because the system was found to be mostly flooded and several of the planned entry points were obstructed with debris such as leaves, sticks, and sediment. Although attempts were made to survey flooded lines, the depth of water in several entry points exceeded the design depth of the camera, and in other locations placement of the camera in the lines caused sediment to be re-suspended, preventing video observation. As a result of these conditions, only 52 ft of the main 8-inch sanitary sewer line could be accessed for survey within Load Line 12. Several inches of sediment had accumulated within the sewer line between MH-507 and MH-508, and video quality was poor due to sediment disturbance. Since the sewer system could not be readily surveyed within the load line, the large sewer line that drains from Load Line 3 into the Load Line 12 system was examined to identify conditions within the connector line draining the three major melt-pour lines. Entry was made at MH-429 which was observed to be dry, and the camera was tracked toward MH-430 until terminated due obstruction by heavy root growth. The video survey showed light accumulations of vegetation debris and silt/sand material. Although roots were observed to have penetrated the line at many locations, the overall condition of the line was good.

Inspections and explosives field screening tests were conducted at Load Line 12 during the *Explosive Evaluation of Sewers* investigations (Lakeshore Engineering Services, Inc., 2007; USACE-CERL 2007). However, these sewer efforts were conducted without Ohio EPA regulatory oversight or review of the associated work plans and resultant completion report or its conclusions. These investigations were limited to the sanitary sewer, as Load Line 12 lacks any significant storm management structures. Additionally, since the south end of the load line was flooded at the time of inspection, only a limited number of sanitary manholes could be located and sampled. A total of 11 DropEx<sup>™</sup> samples were collected at Load Line 12 sanitary sewer manholes, none of which tested positive for trace explosive residue.

| Media    | Analyte                    | Units | Detection<br>Frequency | Minimum<br>Detection | Maximum<br>Detection | Average<br>Result | Screening<br>Level <sup>a</sup> |
|----------|----------------------------|-------|------------------------|----------------------|----------------------|-------------------|---------------------------------|
|          | Aluminum                   | mg/kg | 3/3                    | 12,700               | 21,600               | 17,600            | 13,900                          |
|          | Antimony                   | mg/kg | 3/3                    | 1.4                  | 12.3                 | 5.4               | 2.8                             |
|          | Arsenic                    | mg/kg | 3/3                    | 13.1                 | 96.1                 | 43.0              | 19.5                            |
|          | Chromium                   | mg/kg | 3/3                    | 19.4                 | 67.5                 | 47.4              | 18.1                            |
|          | Cobalt                     | mg/kg | 3/3                    | 6.1                  | 35.5                 | 25.6              | 9.1                             |
|          | Copper                     | mg/kg | 3/3                    | 31.2                 | 486                  | 275               | 310                             |
|          | Manganese                  | mg/kg | 3/3                    | 1,030                | 4,630                | 2,700             | 1,950                           |
| Sewer    | Mercury                    | mg/kg | 3/3                    | 0.12                 | 16                   | 5.5               | 2.3                             |
| Sediment | Silver                     | mg/kg | 3/3                    | 0.26                 | 50.7                 | 17.2              | 39                              |
|          | Thallium                   | mg/kg | 3/3                    | 0.69                 | 2.2                  | 1.3               | 0.89                            |
|          | Benz(a)anthracene          | mg/kg | 2/3                    | 0.59                 | 0.76                 | 0.68              | 0.22                            |
|          | Benzo(a)pyrene             | mg/kg | 3/3                    | 0.11                 | 0.68                 | 0.43              | 0.022                           |
|          | Benzo(b)fluoranthene       | mg/kg | 3/3                    | 0.17                 | 0.95                 | 0.63              | 0.22                            |
|          | Dibenz(a,h)anthracene      | mg/kg | 1/3                    | —                    | —                    | 0.071             | 0.022                           |
|          | Indeno(1,2,3-cd)pyrene     | mg/kg | 2/3                    | 0.25                 | 0.43                 | 0.34              | 0.22                            |
|          | PCB-1254                   | mg/kg | 2/3                    | 0.07                 | 0.19                 | 0.13              | 0.12                            |
|          | 2,4-Dinitrotoluene         | mg/L  | 3/4                    | 0.000085             | 0.0028               | 0.001             | 0.002                           |
|          | 2-Amino-4,6-Dinitrotoluene | mg/L  | 3/4                    | 0.00061              | 0.0052               | 0.0026            | 0.0031                          |
| Sewer    | 4-Amino-2,6-Dinitrotoluene | mg/L  | 3/4                    | 0.0017               | 0.0089               | 0.0053            | 0.0031                          |
| Water    | Lead                       | mg/L  | 1/4                    | —                    | —                    | 0.039             | 0.015                           |
|          | Manganese                  | mg/L  | 4/4                    | 0.029                | 2                    | 1.3               | 0.63                            |
|          | Heptachlor epoxide         | mg/L  | 3/4                    | 0.00026              | 0.00075              | 0.00055           | 0.00019                         |

 Table P-1. Chemicals Exceeding Screening Levels in Sewer Media at Load Line 12

<sup>a</sup>Screening levels are based on the Draft Facility-Wide Cleanup Goal for Hazard Quotient (HQ)=0.1 and Carcinogenic Risk=1E-6. Where background values were higher than the cleanup goal (HQ=0.1/R=1E-6), the background value is utilized as the screening level. — Not applicable.


#### P.3 PROPOSED SAP ADDENDUM INVESTIGATION OBJECTIVES

The general approach for investigation activities for Facility-Wide Sewers as a whole is presented in Section 3.2 of the FSP. However, certain areas of the system should be targeted for assessment based on the evaluation of existing historical data, results of previous investigations, anomalies identified during visual survey, or potential to have accumulated contaminants based on their location within the system and proximity to source areas. Although actual sampling locations cannot be established in advance since sufficient volume of media for sample collection may be unavailable and because site conditions may preclude access to portions of the system, primary and alternate sampling recommendations for the Load Line 12 are presented in Table P-2, and shown in Figure P-4.

| Sewer<br>Type | Primary Sample<br>Location | Alternate Sample<br>Locations<br>(In Order of Precedence) | Media Type     | Comments/Rationale                                                                                                                                                                                                 |
|---------------|----------------------------|-----------------------------------------------------------|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Sanitary      | MH-436                     | MH-435, MH-434, MH-                                       | Sewer Sediment | Represents conditions entering Load<br>Line 12 from the reach draining Load                                                                                                                                        |
| Summing       |                            | 433, MH-432, MH-431                                       | Sewer Water    | Lines 1, 2 and 3.                                                                                                                                                                                                  |
| Sanitary      | MH-502                     | MH-501, MH-501A                                           | Sewer Sediment | Isolates tail segment at south of load<br>line, in vicinity of water treatment<br>plant.                                                                                                                           |
| Sanitary      | МН-505                     | MH-504, MH-504A,<br>MH-503A, MH-503                       | Sewer Sediment | Provides characterization of MH-505<br>isolates the reach downstream of the<br>former powerhouse. Data collected in<br>2001 indicated screening level<br>exceedances at this manhole<br>(inorganics and organics). |
| Sanitary      | MH-511A                    | None                                                      | Sewer Sediment | Isolates Building 904 complex on west<br>side of load line. Provides<br>confirmation of elevated metals above<br>screening levels at manhole<br>immediately upstream.                                              |
| Sanitary      | MH-512                     | None                                                      | Sewer Sediment | Represents last location within the<br>load line available for sampling before<br>exiting the boundaries of the load line<br>at the north and entering the 8" force<br>main towards Sand Creek Treatment<br>Plant. |

 Table P-2. Summary of Proposed Sampling Locations at Load Line 12

During the visual survey phase, inspection forms will be completed for sewer structures at Load Line 12 to document their condition and accessibility for subsequent investigative activities (i.e., sample media collection or video survey). Actual locations of sample collection, video surveys will be presented in the RI report.



| 2                                                                                                                                                                                                                                                                                                                                                                                          | 5.85 · · · · · · · · · · · · · · · · · · ·                                                                      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|
| LEGEND:<br>EXISTING BUILDING<br>DEMOLISHED BUILDING<br>ASPHALT ROAD<br>GRAVEL ROAD<br>RAILROAD TRACKS                                                                                                                                                                                                                                                                                      | 12<br>US Army Corps<br>of Engineers<br>Louisville District                                                      |
| SANTARY LINE >4 FEET BGS<br>SANTARY LINE >4 FEET BGS<br>SANTARY LINE >4 FEET BGS<br>SANTARY LINE UNKNOWN DEPTH<br>CO-LOCATED SEVER<br>SANTARY LINE VINE UNKNOWN DEPTH<br>CO-LOCATED SEVER<br>SANTARY LINE >4 FEET BGS<br>SANTARY LINE VINE VINE VINE VINE VINE VINE VINE V | LOAD LINE 12<br>RAVENNA ARMY AMMUNITION<br>PLANT - RAVENNA, OHIO<br>DRAWN BT: REV. NO, OWTE: 08042/DWGS/G391112 |

Figure P-1. Historical Sewer Sampling Locations at Load Line 12

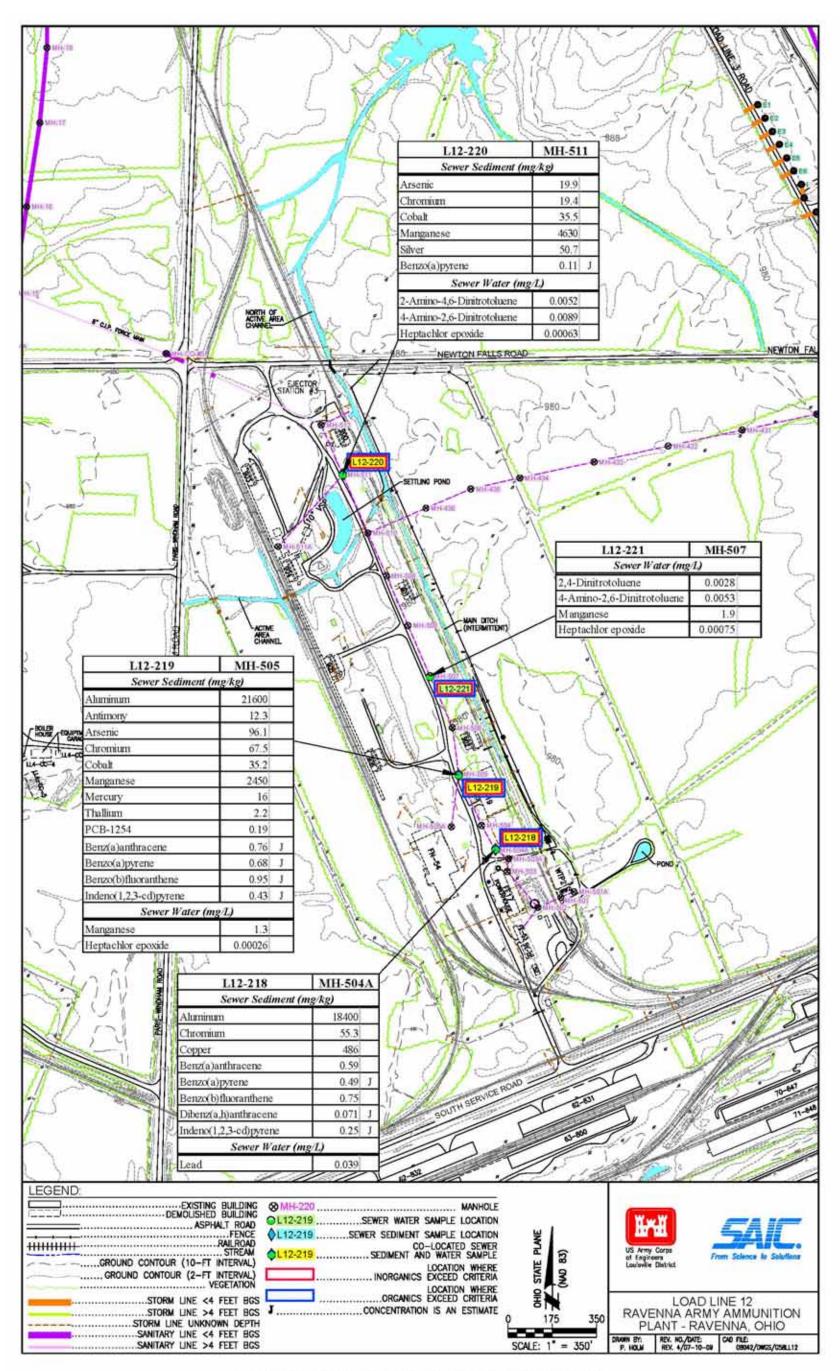



Figure P-2. Historical Exceedances for Sewer Samples at Load Line 12

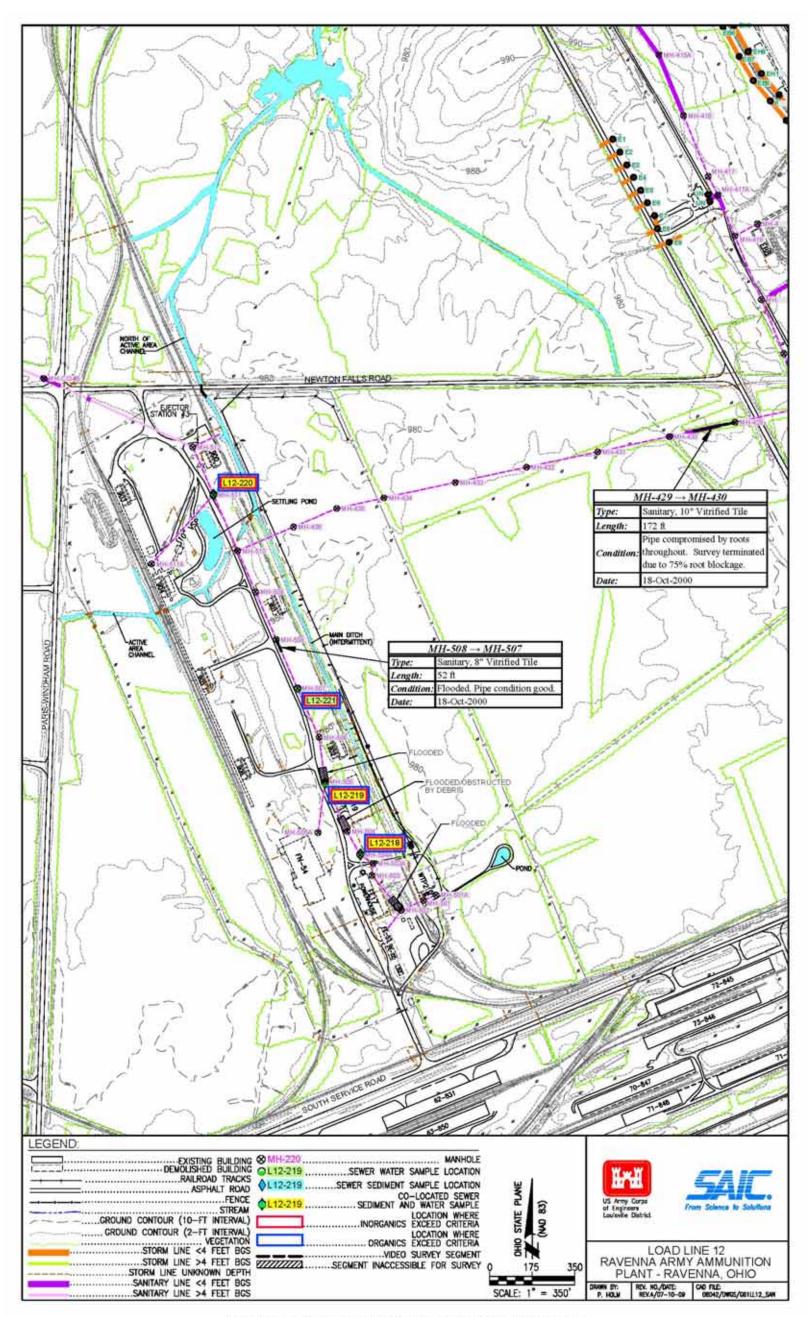



Figure P-3. Locations of Previous Sewer Video Surveys at Load Line 12

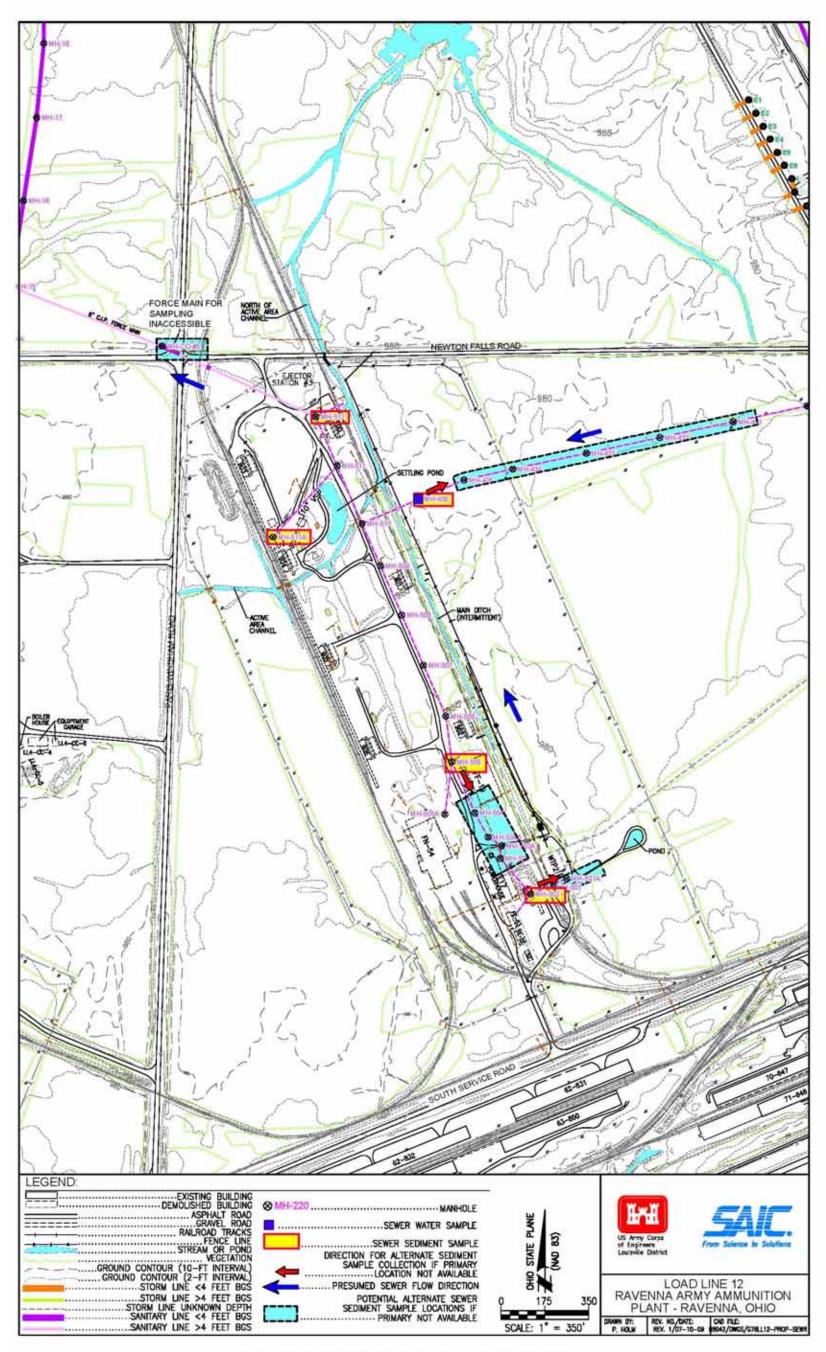



Figure P-4. Proposed Sewer Sampling Locations at Load Line 12

APPENDIX Q Transportation Storage Area

#### Q.1 AREA DESCRIPTION

Located on the eastern side of the facility, the Transportation Storage Area at one time controlled railroad operations for the entirety of RVAAP (Figure Q-1). The Transportation Storage Area contains 21.1 miles of the total 131 miles of railroad track in the facility, with a 21-track yard possessing an 870-car capacity. The area also contains several office and support buildings, including a locomotive repair shop.

As the Transportation Storage Area is remote to the larger sewer networks at the facility, a small sanitary sewer system supported the area, terminating at a sludge basin and septic tank. Historical maps indicate a run of sewer line extending from these structures and ultimately discharging to a surface drainage conveyance. A preliminary sewer reconnaissance effort in December 2008 indicated that the sludge basin was still intact, but that the lid of the adjacent septic tank had apparently collapsed. A limited storm sewer network is also present at the Transportation Storage Area.

#### **Q.2 PREVIOUS INVESTIGATIONS**

No former investigations are known to have been conducted at the Transportation Storage Area.

#### Q.3 PROPOSED SAP ADDENDUM INVESTIGATION OBJECTIVES

The general approach for investigation activities for Facility-Wide Sewers as a whole is presented in Section 3.2 of the FSP. However, certain areas of the system should be targeted for assessment based on the evaluation of existing historical data, results of previous investigations, anomalies identified during visual survey, or potential to have accumulated contaminants based on their location within the system and proximity to source areas. Although actual sampling locations cannot be established in advance since sufficient volume of media for sample collection may be unavailable and because site conditions may preclude access to portions of the system, primary and alternate sampling recommendations for the Transportation Storage Area are presented in Table Q-1, and shown in Figure Q-2.

| Sewer<br>Type | Primary Sample<br>Location                           | Alternate Sample<br>Locations<br>(In Order of Precedence) | Media Type               | Comments/Rationale                                           |
|---------------|------------------------------------------------------|-----------------------------------------------------------|--------------------------|--------------------------------------------------------------|
| Sanitary      | Sanitary Outfall Location From None.                 |                                                           | Outfall Sediment         | Represents terminal discharge end                            |
| System        |                                                      | Outfall Water                                             | from the sanitary system |                                                              |
| Sanitary      | Within Former Sludge<br>Basin For Sanitary<br>System | None                                                      | Sewer Sediment           | Represents location for potential accumulation of sediments. |
| Storm         | Catch basin at<br>Locomotive Service<br>Building     | Representative location at building                       | Sewer Sediment           | Service Building represents a key potential source area      |
| Storm         | Catch basin at Boiler<br>House/Coal bin<br>Building  | Representative location at building                       | Sewer Sediment           | Boilerhouse represents a key potential source area           |

Table Q-1. Summary of Proposed Sampling Locations the Transportation Storage Area

Additionally, during the investigation, the storm sewer network will be inspected and documented. Storm sewer inlets not shown on the maps were observed during the preliminary reconnaissance effort in December 2008, and available historical drawings for this area are limited. Additional samples not described in Table Q-2 may be collected at storm structures or conditions are encountered in the fields that warrant evaluation, such as observation of significant outfalls or sediment accumulation points.

During the visual survey phase, inspection forms will be completed for sewer structures at the Transportation Storage Area to document their condition and accessibility for subsequent investigative activities (i.e., sample media collection or video survey). Actual locations of sample collection, video surveys will be presented in the RI report.

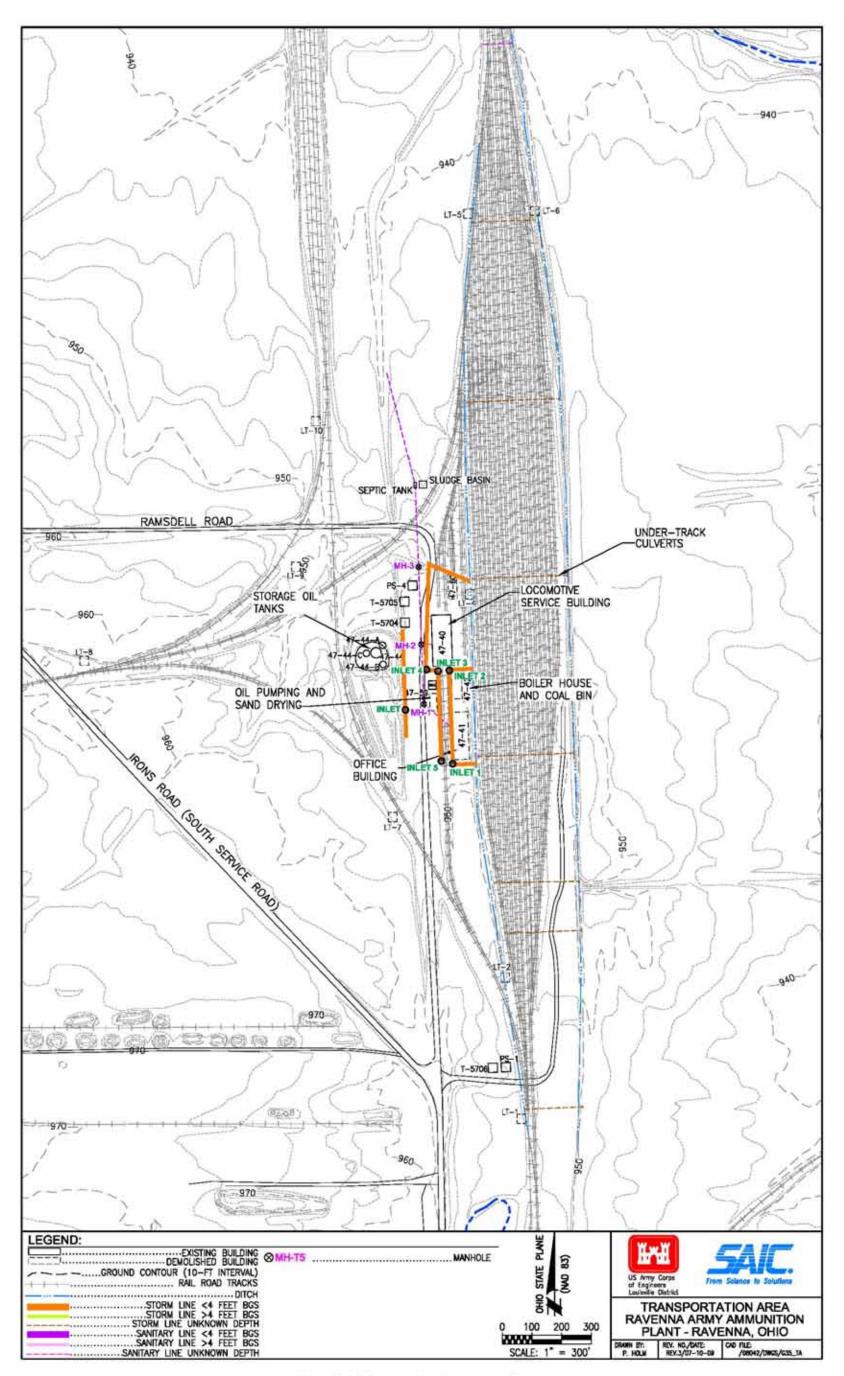



Figure Q-1. Transportation Storage area Sewers

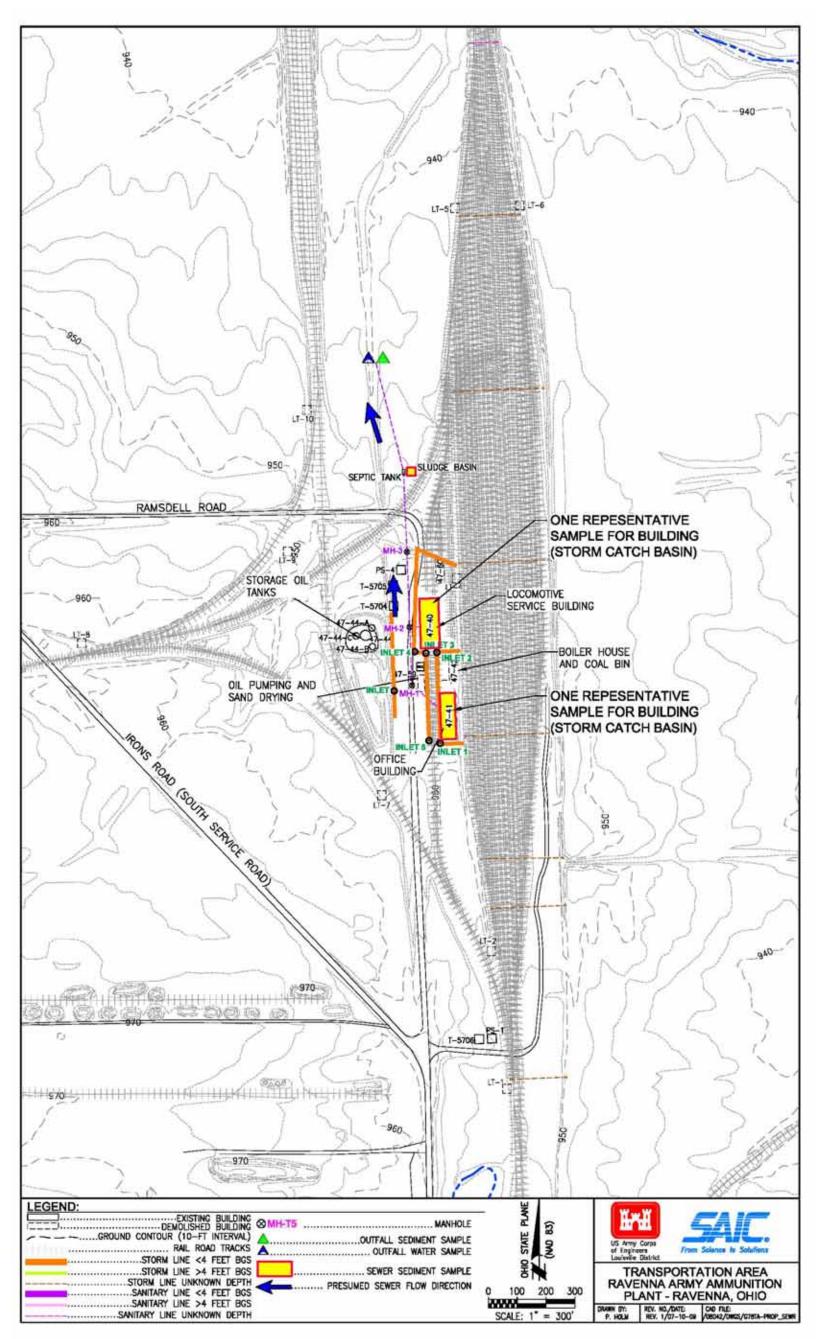



Figure Q-2. Proposed Sewer Sampling Locations at the Transportation storage Area

APPENDIX R Procedure for Field Explosives Screening

#### STRATEGIC DIAGNOSTICS INC.

## TNT EnSys<sup>®</sup> SOIL TEST SYSTEM

## User's Guide

#### **IMPORTANT NOTICE**

The range of this test is between 1 and 30 ppm TNT/TNB/DNT. The relative standard deviation is 8% The least detectable concentration is 0.7 ppm (TNT).

This test system should be used only under the supervision of a technically qualified individual who is capable of understanding any potential health and environmental risks of this product as identified in the product literature. The components must only be used for the analysis of soil samples for the presence of TNT. After use, the kits must be disposed of in accordance with applicable federal and local regulations.

Part # 30985 Rev. 7

## **PHASE 1** TEST PREPARATION

READ ALL INSTRUCTIONS BEFORE PROCEEDING WITH THE TEST

#### ITEMS INCLUDED IN TEST KIT

- 2 Cuvette stopper plugs 1 Ampule cracker 20 Syringe filters 20 Wooden spatulas
  - 20 Extraction jars 1 Bulb pipette 1 Developer solution
- 1 1 TNT control ampule 20 - 30cc syringes 20 Weigh boats 1 - 50mL graduated conical tube
- ITEMS NOT INCLUDED IN TEST KIT

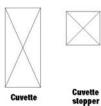
| 2 matched HACH cuvette |
|------------------------|
| Paper towels           |
| Disposable gloves      |

- Acetone □ Hach DR/2000 or DR/2010 Calculator
- U Waste container Balance

#### READ BEFORE PROCEEDING

- For some matrices, air drying the soil samples may result in better TNT recovery or more reproducible data.
- A slightly modified protocol should be used if the primary analyte of concern is DNT. Please refer to the modification outlined on page 6.
- It is recommended that a control be run each day. See page 8 for instructions.
- SDI's EnSvs® TNT Soil Test System is designed for use with either of Hach models DR/2000 or the newer DR/2010 spectrophotometers. Protocols for use of both instruments are provided in this User's Guide. Ensure the instrument protocol followed is appropriate for the instrument being used.
- The Hach DR/2000 is designed to turn off after a few minutes of inactivity. Press the "READ/ENTER" key every few minutes of DR/2000 from turning off. If DR/2000 turns off, use Reference cuvette to rezero. Newer DR/2000 models and the DR/2010 have an overide "constant on" feature that allows the machine to run indefinitely. Refer to the Instrument Operation: Spectrophotometer Setup section of the HACH DR/2000 or DR/2010 User's manuals.

If you are using the TNT test in conjunction with the RDX test it is important to save your sample extracts. They will be used in the RDX test. Remember to cap the extracts tightly after use. An RDX kit without extraction set-ups can be purchased specifically for this purpose.


## PHASE 1 TEST PREPARATION

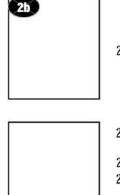
READ ALL INSTRUCTIONS BEFORE PROCEEDING WITH THE TEST

#### **CLEAN CUVETTES**

16

- 1a Fill 2 Hach matched cuvettes with approximately 5 mL water.
- **1b** Cap each with cuvette stopper plug and, holding plug in place, shake vigorously for 3 seconds.
- 1c Empty into waste container.
- 1d Fill cuvettes with approximately 5 mL acetone.
- **1e** Cap each with cuvette stopper plug and, holding plug in place, shake vigorously for 3 seconds.
- 1f Empty into waste container.
- 1g Repeat acetone wash (steps 1d 1f).
- **1h** Wipe outside of cuvette with paper towels. Take care to especially clean the side labeled "25 mL" and the side opposite.




## PHASE 1 TEST PREPARATION

READ ALL INSTRUCTIONS BEFORE PROCEEDING WITH THE TEST

#### READ BEFORE PROCEEDING

· Designate a "Reference" and "Sample" cuvette.

#### SPECTROPHOTOMETER PREPARATION



2d

- 2a1 Turn on Hach DR/2000. The instrument will read "SELF-TEST" followed by "Method?". Select Method "0" and press the "READ/ENTER" key. or
- 2a2 Turn on the Hach DR/2010. The instrument will read "Self-Test V.xx", then "Enter Program #". Press the [Shift] key (do not hold) and then the [ABS/8] key. Note: Select Program # "0" may also be used to select absorbance mode on the DR/2010.
- 2b Rotate the wavelength dial until the small display shows: 540 nm.
- 2c Fill both cuvettes with acetone to the 25 mL line.
- **2e1** Close light shield of the **DR/2000** and press "CLEAR/ZERO" key to establish the reference. The display will read "WAIT" and then "0.000 Abs.".
  - <u>ог</u>
- **2e2** Close the light shield of the **DR/2010** and press the [ZERO] key. The display will read "Zeroing..." then "0.000 Abs.".
- 2f Remove the "Reference" cuvette and place the "Sample" cuvette in the cell holder.
- **2g1** On the **DR/2000**, press the "READ/ENTER" key and record the absorbance on the worksheet as "Absbackground". or
- **2g2** On the **DR/2010**, press the [READ] key and record the absorbance on the worksheet as "Abs<sub>background</sub>".
- **2h** If reading is greater than 0.002 in magnitude (+ or -), clean cuvettes and redo steps 2a 2g.
- 2i Empty acetone from "Sample" cuvette into waste container.

# Curvette

Page 4 of 12

SDI EnSvs® TNT Soil Test User's Guide

### **PHASE 2** SAMPLE EXTRACTION & PREPARATION

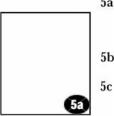
READ ALL INSTRUCTIONS BEFORE PROCEEDING WITH THE TEST

#### READ BEFORE PROCEEDING

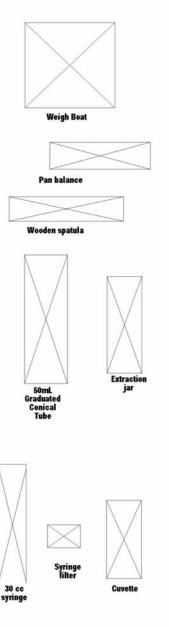

• Sample should be mixed to ensure a homogeneous sample.

#### WEIGH SAMPLE




- **3a** Place an unused weigh boat on pan balance.
- 3b Press ON/MEMORY button on pan balance. Balance will beep and display 0.0.
- 3c Weigh out 10+/- 0.1 grams of soil.
- **3d** If balance turns off prior to completing weighing, use empty weigh boat to retare, then continue.

#### EXTRACT TNT




- 4a Measure 50 mL acetone in the 50mL graduated conical tube.
- 4b Pour acetone into an extraction jar.
  4c Using wooden spatula, transfer 10 grams of soil from weigh boat into
- extraction jar.4d Recap extraction jar tightly and shake vigorously for three minutes.
- 4e Allow to settle for five minutes. Repeat steps 3a - 4e for each sample to be tested.

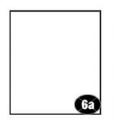
#### FILTER SAMPLE



- 5a Place tip of 30 cc syringe into liquid above the sediment layer in the extraction jar and draw up 25 mL of the sample.
- **5b** Screw the syringe filter onto the end of the syringe.
  - c Press the plunger firmly and dispense the sample into the "Sample" cuvette.



Part # 30985 Rev. 7


Page 5 of 12 SDI EnSvs® TNT Soil Test User's Guide

8/21/97

## PHASE 3 SAMPLE ANALYSIS

READ ALL INSTRUCTIONS BEFORE PROCEEDING WITH THE TEST

#### READ SAMPLE



- 6a Place the "Sample" cuvette in the cell holder.
- **6b** Press the "READ/ENTER" key and record the absorbance on the worksheet as "Abs<sub>initial</sub>".
- 6c Remove the "Sample" cuvette from the cell holder.
- 6d Add 1 drop of Developer Solution.
- 6e Cap the "Sample" cuvette and shake vigorously for 3 seconds.

#### **DNT Analysis Note:**

For analysis of samples containing DNT, and/or where DNT concentration is of concern, samples must be allowed to develop for 10 minutes before reading sample absorbance. This will not effect color development for other nitroaromatics.

- 6f Remove the cuvette stopper and place the "Sample" cuvette in the cell holder.
- **6g** Press the "READ/ENTER" key and record the absorbance on the worksheet as "Abs<sub>sample</sub>".
- 6h Clean cuvette between samples using procedure in steps 1a 1h.



Part # 30985 Rev. 7

Page 6 of 12

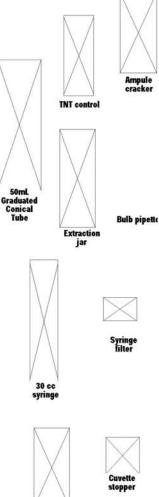
# PHASE 4 INTERPRETATION

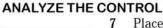
READ ALL INSTRUCTIONS BEFORE PROCEEDING WITH THE TEST

### INTERPRETATION OF RESULTS

- 7a Multiply the "Abs<sub>initial</sub>" value for each sample by 4. Enter these values on the worksheet.
- **7b** Subtract this value from the "Abs<sub>sample</sub>" values for each sample and record on the worksheet.
- **7c** Divide the adjusted sample value by 0.0323 and record on the worksheet. This value is the TNT concentration of the sample in parts per million.

Note: For sample concentrations greater than 30ppm the sample extract should be diluted with acetone and reanalyzed. Remember to multiply the result by the dilution factor in order to determine the correct concentration.  $\frac{\text{TNT}_{\text{(ppm)}} = \text{Abs}_{\text{sample}} - (\text{Abs}_{\text{initial}} \times 4)}{0.0323}$ 


# **CONTROL (QA/QC) CHECK**


READ ALL INSTRUCTIONS BEFORE PROCEEDING WITH THE TEST

 The TNT control is optional, but it is recommended that it be run daily.

### PREPARE CONTROL

- Measure 50 mL acetone in the 50mL graduated conical tube. 1
- 2 Pour into extraction jar.
- Open TNT control ampule by slipping ampule cracker over top, and then breaking tip at scored neck. 3
- Transfer entire contents of TNT control 4 ampule into extraction jar using bulb pipette.
- Cap extraction jar and shake vigorously 5 for 3 seconds.





X

4

- Place tip of 30 cc syringe in extraction jar and draw up 25 mL.
- Attach syringe filter and dispense into "Sample" cuvette. 8
- Add 1 drop of developer solution. 9
- 10 Cap the cuvette and shake vigorously for 3 seconds.
- Remove the cuvette stopper and place in 11 the cell holder.
- Press "READ/ENTER" key and record the absorbance on the worksheet as 12 "Abs<sub>control</sub>".

Absorbance must be between 0.307 -0.373 for the test to be in control.

If test is not in control, clean "Sample" cuvette, and then redo steps 7-12 using the remaining liquid from the extraction jar.

13 If test is in control clean "Sample" cuvette before proceeding with samples.







Page 8 of 12 SDI EnSvs®TNT Soil Test User's Guide

8/21/97

Part # 30985 Rev. 7

# **QUALITY CONTROL**

READ ALL INSTRUCTIONS BEFORE PROCEEDING WITH THE TEST

### System Description

Each SDI EnSys<sup>®</sup> TNT Soil Test System contains enough material to perform twenty complete tests. The TNT Soil Test is divided into four phases. The instructions and notes should be reviewed before proceeding with the test.

### **Hotline Assistance**

If you need assistance or are missing necessary Test System materials, call toll free: 1-800-544-8881.

### Validation Information

Product claims are based on validation studies carried out under controlled conditions. Data has been collected in accordance with valid statistical methods and the product has undergone quality control tests of each manufactured lot.

Strategic Diagnostics Inc. does not guarantee that the results with the TNT Soil Test System will always agree with instrument-based analytical laboratory methods. All analytical methods, both field and laboratory, need to be subject to the appropriate quality control procedures.

### How It Works

**Controls, Samples**, and color-change reagents are added to cuvettes. The concentration of TNT in an unknown **Sample** is determined by evaluating how much color is developed.

### Quality Control

Standard precautions for maintaining quality control:

- Do not use reagents or components from one Test System with reagents or components from another Test System.
- Do not use the Test System after its expiration date.
- The sample must be analyzed immediately after adding the Developer Solution.
- Results may not be valid if DR/2000 reading for Control is outside of the range of 0.307 - 0.373.

### Storage and Handling Precautions

- Wear protective gloves and eye wear.
- Store kit at room temperature and out of direct sunlight (less than 80°F).
- If acetone comes into contact with eyes, wash thoroughly with cold water and seek immediate medical attention.
- Operate test at temperatures greater than 4° C/40° F and less than 39° C/100° F.
- After use, dispose of kit components in accordance with applicable federal and local regulations.

# ON-SITE QUALITY CONTROL/QUALITY ASSURANCE RECOMMENDATIONS SDI EnSys® TEST SYSTEM

#### Please read the following before proceeding with field testing.

#### SAMPLING

The result of your screening test is only as valid as the sample that was analyzed. Samples should be homogenized thoroughly to ensure that the 10 grams you remove for field testing is representative of the sample as a whole. All other applicable sample handling procedures should be followed as well.

#### PRIOR TO TESTING SAMPLES

Carefully follow the instructions in the User's Guide included with every test kit. This is the key element in obtaining accurate results. In addition, store your unused test kits at room temperature and do not use them past their expiration date (see label on each test kit).

#### INTERNAL TEST QC

One control is provided with each Kit to provide internal test system quality control. Test runs resulting in a number that falls outside of the specified range should be repeated to ensure valid conclusions.

#### QA/QC

The validity of field test results can be substantially enhanced by employing a modest, but effective QA/QC plan. SDI recommends that you structure your QA/QC plan with the elements detailed below. These have been developed based on the data quality principles established by the U.S. Environmental Protection Agency.

- A. Sample Documentation
  - 1. Location, depth
  - 2. Time and date of collection and field analysis
- B. Field analysis documentation provide raw data, calibration, any calculations, and final results of field analysis for all samples screened (including QC samples)
- C. Method calibration this is an integral part of SDI tests; a TNT control analysis should be performed daily (see the instructions in the User's Guide)
- D. Method blank field analyze fresh acetone
- E. Site-specific matrix background field analysis collect and field analyze uncontaminated sample from site matrix to document matrix effect
- F. Duplicate sample field analysis field analyze duplicate sample to document method repeatability; at least one of every 20 samples should be analyzed in duplicate
- **G. Confirmation of field analysis -** provide confirmation of the quantitation of the analyte via an EPA-approved method different from the field method on at least 10% of the samples; provide chain of custody and documentation such as gas chromatograms, mass spectra, etc.
- H. Performance evaluation sample field analysis (optional, but strongly recommended) field analyze performance evaluation sample daily to document method/operator performance
- I. Matrix spike field analysis (optional) field analyze matrix spike to document matrix effect on analyte measurement

#### FURTHER QUESTIONS?

SDI's Technical Support personnel are always prepared to discuss your quality needs to help you meet your data quality objectives. Call 1-(800) 544-8881.

Page 10 of 12

Part # 30985 Rev. 7

SDI EnSvs® TNT Soil Test User's Guide

| TN   | IT SOIL TEST - ABBREVIATED PROCEDURE                                                                                                                                                                                             |
|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| STEP | PROCEDURE                                                                                                                                                                                                                        |
| 1    | <ul><li>Clean cuvettes</li><li>Zero the spectrophotometer at 540 nm</li></ul>                                                                                                                                                    |
| 2    | <ul> <li>Add 10 g soil and 50 ml acetone to extraction jar</li> <li>Shake 3 minutes, let settle</li> <li>Draw up 25 mL extract, filter into cuvette</li> </ul>                                                                   |
| 3    | <ul> <li>Read Abs<sub>initial</sub>, record</li> <li>Add 1 drop developer solution, shake</li> <li>Read Abs<sub>sample</sub>, record</li> </ul>                                                                                  |
| 4    | <ul> <li>Multiply Abs<sub>initial</sub> by 4</li> <li>Subtract from Abs<sub>sample</sub></li> <li>Divide by 0.0323</li> <li>TNT<sub>(ppm)</sub> = <u>Abs<sub>sample</sub> - (Abs<sub>initial</sub>x 4)</u><br/>0.0323</li> </ul> |

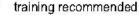
SDI EnSvs® TNT Soil Test User's Guide

| Absbackground | 5                      | Abs <sub>control</sub> |                              |                                       |                                   |  |  |  |  |  |  |
|---------------|------------------------|------------------------|------------------------------|---------------------------------------|-----------------------------------|--|--|--|--|--|--|
| 1             | 2                      | 3                      | 4                            | 5                                     | 6                                 |  |  |  |  |  |  |
| SAMPLE #      | Abs <sub>initial</sub> | Abs sample             | Abs <sub>initial</sub><br>x4 | Abs<br>final<br>(Column 3 - Column 4) | TNT CONC ppm<br>(Column 5/0.0323) |  |  |  |  |  |  |
|               |                        |                        |                              |                                       |                                   |  |  |  |  |  |  |
|               |                        |                        |                              |                                       |                                   |  |  |  |  |  |  |
|               |                        |                        |                              |                                       |                                   |  |  |  |  |  |  |
|               |                        |                        |                              |                                       |                                   |  |  |  |  |  |  |
|               |                        |                        |                              |                                       |                                   |  |  |  |  |  |  |
|               |                        |                        |                              |                                       |                                   |  |  |  |  |  |  |
|               |                        |                        |                              |                                       |                                   |  |  |  |  |  |  |
|               |                        |                        |                              |                                       |                                   |  |  |  |  |  |  |
|               |                        |                        |                              |                                       |                                   |  |  |  |  |  |  |
|               |                        |                        |                              |                                       |                                   |  |  |  |  |  |  |
|               |                        |                        |                              |                                       |                                   |  |  |  |  |  |  |
|               |                        |                        |                              |                                       |                                   |  |  |  |  |  |  |
|               |                        |                        |                              |                                       |                                   |  |  |  |  |  |  |
|               |                        |                        |                              |                                       |                                   |  |  |  |  |  |  |
|               |                        |                        |                              |                                       |                                   |  |  |  |  |  |  |
|               |                        |                        |                              |                                       |                                   |  |  |  |  |  |  |

### INI JUL IEJI KII WUKKJILLI

Part # 30985 Rev. 7

Page 12 of 12 SDI EnSvs® TNT Soil Test User's Guide


# Remediation, Assessment & Industrial Testing



# EnSys RDX Soil Test System

### Features

- detects RDX, HMX and related explosives compounds in soil samples
- \* provides quantitative results
- convenient and rapid testing in the field or lab, with results in about 30 minutes
- \* sample extractions may be performed simultaneously, with analysis in singlicate
- based on method developed by Dr. Thomas Jenkins at USACE - CRREL (non-immunoassay method)
- can test soil sample extracts from SDI's EnSys TNT test



זסעק

EPA SW-846 Method # 8510 (proposed status, Final with 4th Update)

# EnSys

### Test Result Type

Quantitative.

#### Samples per Kit

20 soil samples.

### Assay Range

- 1 ppm to 30 ppm Total RDX in soil.
- Higher sample concentrations can be quantified by sample extract dilution.

#### Sample Preparation

 Soil samples require extraction using the included extraction components and user supplied acetone.



- Soil samples should be dried prior to analysis.
- Soil sample extracts from SDI's TNT Soil Test Kit may be used.

#### Sampling Time

- "Dirt-to-Data" in approximately 30 minutes.
- Typically, about 6 samples can be run in about one hour.
- Soil extraction time is typically 2-10 minutes per sample plus test run time of approximately 20 minutes.

# Remediation, Assessment & Industrial Testing

# EnSys

#### Basic Test Procedures

- · Clean cuvettes and set spectrophotometer.
- Extract soil sample:
- weigh 10 grams of soil sample in weigh boat - measure 50 mL acetone into 50 mL tube - pour acetone into extraction jar
- add acetone and shake for 3 minutes
- allow to settle for 5 minutes
- Draw into a syringe 5.5 mL of liquid from above the sediment layer in extraction jar.
- Attach filter tip to syringe and transfer 5 mL of sample extract into a 13 mL tube.
- (Note: If nitrate/nitrite interferents are present,
- attach an Alumina-A cartridge to the syringe, and dispense through this.)
- Cutopen an Acetic Acid bulb and add
- contents to the 13 mL tube. Cap and shake. Cut open a NitriVer pillow and add it to a 50
- mL reaction vial containing water. Remove plunger from 5cc zinc syringe, pour
- 13 mL tube contents into it, replace & invert. Rapidly filter the solution into the 50 mL
- reaction vial, cap and shake for 30 seconds.
- Incubate for 15 minutes for color development, and transfer contents to 30 mL syringe barrel. Attach syringe filter and
- dispense into spectrophotometer cuvette. Place cuvette in spectophotometer and record
- absorbance. Calculate results.

#### Specificity

The EnSys RDX test is specific for RDX, HMX and related explosives compounds and exhibits the following sensitivities. The RDX test does not measure TNT, TNB, or DNB.

| Compound       | MDL<br>Soil<br>(ppm) |  |
|----------------|----------------------|--|
| RDX            | 0.8                  |  |
| HMX            | 2.4                  |  |
| PETN           | 1.0                  |  |
| nitroglycerine | 8.9                  |  |
| nitroguanadine | 10.1                 |  |
| nitrocellulose | 42.2                 |  |

#### Test Kit Components

- 20 weigh boats & wooden spatulas.
- 20 extraction jars.
- 1 50 mL graduated tube.
- 20 50 mL reaction vials w/ H,0.
- 20 5cc zinc syringes. 20 10cc, 20cc, & 30cc syringes.
- 20 13 ml tubes
- 20 NitriVer pillows.
- 20 Acetic Acid bulb pipets.
- 40 syringe filters.
- 1 bulb pipet 1 RDX control vial & ampule cracker.
- 2 cuvette stopper plugs.
- Test Kit instructions.

#### Storage & Precautions

- Shelf life is typically one year from date of manufacture, with lot specific kit expiration date information provided on product packaging.
- Storage at ambient temperature 64° to 81°F (18° to 27°C) is acceptable.
- Operate kit at greater than 4°C/40°F and less than 39°C/100°F.

| Other Required Materials                                                                                                                      | <u>SDIPart#</u> |
|-----------------------------------------------------------------------------------------------------------------------------------------------|-----------------|
| Ensys TNT Accessory Kit (Rental)<br>(includes HACH DR/2000 or 2010)<br>Acetone: hardware or laboratory grade<br>(minimum of 50 mL per sample) | 69997           |
| Alumina A cartridges<br>(if nitrate/nitrite interferents present)<br>Scissors                                                                 | 60212           |
| Tap or laboratory grade water for<br>cuvette rinsing                                                                                          |                 |
| Marking pen, Calculator                                                                                                                       |                 |
| Absorbent paper                                                                                                                               |                 |
| Liquid waste container                                                                                                                        |                 |
| PPE: Disposable gloves, Eyewear                                                                                                               |                 |
| Ordering Information                                                                                                                          | SDI Part#       |

| 70850          |
|----------------|
| 70851          |
| 70000          |
| 70020<br>69997 |
| 00001          |
|                |

N01511 6/24/98





Strategic Diagnostics Inc.

111 Pencader Drive Newark, DE USA 19702

302.456.6789 tele 800.544.8881 tele 502.456.6782 fax

www.sdix.com

# Part II

# Quality Assurance Project Plan for the Sampling and Analysis Plan for the Remedial Investigation of RVAAP-67 Facility-Wide Sewers Addendum No. 1

Ravenna Army Ammunition Plant Ravenna, Ohio

Contract No. W912QR-04-D-0028 Delivery Order No. 0001

### **Prepared for:**

U.S. Army Corps of Engineers 600 Martin Luther King, Jr. Place Louisville, Kentucky 40202

### **Prepared by:**

SAIC Engineering of Ohio, Inc. 8866 Commons Boulevard, Suite 201 Twinsburg, Ohio 44087

July 31, 2009

# TABLE OF CONTENTS

| LIST OF TABLES                                          | ii  |
|---------------------------------------------------------|-----|
| ACRONYMS AND ABBREVIATIONS                              | iii |
| 1.0 INTRODUCTION                                        | 1-1 |
| 2.0 PROJECT DESCRIPTION                                 | 2-1 |
| 2.1 SITE HISTORY/BACKGROUND INFORMATION                 |     |
| 2.2 PAST DATA COLLECTION ACTIVITY/CURRENT STATUS        | 2-1 |
| 2.3 PROJECT OBJECTIVES AND SCOPE                        | 2-1 |
| 2.4 SAMPLE NETWORK DESIGN AND RATIONALE                 | 2-1 |
| 2.5 PARAMETERS TO BE TESTED AND FREQUENCY               |     |
| 2.6 PROJECT SCHEDULE                                    |     |
| 3.0 PROJECT ORGANIZATION                                |     |
| 4.0 QUALITY ASSURANCE OBJECTIVES FOR MEASUREMENT        | 4-1 |
| 4.1 DATA QUALITY OBJECTIVES                             |     |
| 4.2 LEVEL OF QUALITY CONTROL EFFORT                     |     |
| 4.3 ACCURACY, PRECISION, AND SENSITIVITY OF ANALYSIS    |     |
| 4.4 COMPLETENESS, REPRESENTATIVENESS, AND COMPARABILITY |     |
| 5.0 SAMPLING PROCEDURES                                 | 5-1 |
| 6.0 SAMPLE CUSTODY                                      | 6-1 |
| 7.0 CALIBRATION PROCEDURES AND FREQUENCY                | 7-1 |
| 7.1 FIELD INSTRUMENTS/EQUIPMENT                         |     |
| 7.2 LABORATORY INSTRUMENTS                              |     |
| 8.0 ANALYTICAL PROCEDURES                               | 8-1 |
| 8.1 LABORATORY ANALYSIS                                 |     |
| 8.2 FIELD SCREENING ANALYTICAL PROTOCOLS                |     |
| 9.0 INTERNAL QUALITY CONTROL CHECK                      | 9-1 |
| 9.1 FIELD SAMPLE COLLECTION                             | 9-1 |
| 9.2 FIELD MEASUREMENT                                   |     |
| 9.3 LABORATORY ANALYSIS                                 | 9-1 |
| 10.0 DATA REDUCTION, VALIDATION, AND REPORTING          |     |
| 10.1 DATA REDUCTION                                     |     |
| 10.2 DATA VERIFICATION/VALIDATION                       |     |
| 10.3 DATA REPORTING                                     |     |
| 10.4 DATA QUALITY ASSESSMENT                            |     |

# TABLE OF CONTENTS (CONTINUED)

| 11.0 PERFORMANCE AND SYSTEM AUDITS                       | 11-1         |
|----------------------------------------------------------|--------------|
| 11.1 FIELD AUDITS                                        | 11-1         |
| 11.2 LABORATORY AUDITS                                   |              |
| 12.0 PREVENTIVE MAINTENANCE PROCEDURES                   | 12-1         |
| 13.0 SPECIFIC ROUTINE PROCEDURES TO ASSESS DATA PRECISIO | N, ACCURACY, |
| AND COMPLETENESS                                         | 13-1         |
| 14.0 CORRECTIVE ACTIONS                                  | 14-1         |
| 15.0 QA REPORTS                                          | 15-1         |
| 16.0 REFERENCES                                          | 16-1         |

# **LIST OF TABLES**

| Table 2-1. | Sampling and Analytical Requirements                     | 2-2 |
|------------|----------------------------------------------------------|-----|
| Table 5-1. | Container Requirements for Soil and Wet Sediment Samples | 5-2 |
| Table 5-2. | Container Requirements for Surface Water Samples         | 5-3 |

# ACRONYMS AND ABBREVIATIONS

| ADR      | Automated Data Review                          |
|----------|------------------------------------------------|
| A-E      | Architect-Engineer                             |
| AOC      | Area of Concern                                |
| ASTM     | American Society of Testing and Materials      |
| COC      | Chain of Custody                               |
| CX       | Center of Expertise                            |
| DoD      | United States Department of Defense            |
| DQO      | Data Quality Objective                         |
| EDD      | Electronic Data Deliverable                    |
| EDMS     | Environmental Data Management System           |
| FSP      | Field Sampling Plan                            |
| HTRW     | Hazardous, Toxic, and Radioactive Waste        |
| ICP      | Inductively-Coupled Plasma                     |
| LCS      | Laboratory Control Samples                     |
| MI       | Multi-Increment                                |
| MS/MSD   | Matrix Spike/Matrix Spike Duplicate            |
| MRL      | Method Reporting Level                         |
| Ohio EPA | Ohio Environnemental Protection Agency         |
| РАН      | Polycyclic Aromatic Hydrocarbon                |
| PCB      | Polychlorinated Biphenyl                       |
| PID      | Photoionization Detector                       |
| QA       | Quality Assurance                              |
| QAAP     | Quality Assurance Administrative Procedure     |
| QAPP     | Quality Assurance Project Plan                 |
| QC       | Quality Control                                |
| QSM      | Quality Systems Manual                         |
| RI       | Remedial Investigation                         |
| RVAAP    | Ravenna Army Ammunition Plant                  |
| SAIC     | Science Applications International Corporation |
| SAP      | Sampling and Analysis Plan                     |
| SOP      | Standard Operating Procedure                   |
| SVOC     | Semi-Volatile Organic Compound                 |
| TAL      | Target Analyte List                            |
| TBD      | To Be Determined                               |
| USACE    | United States Army Corps of Engineers          |
| USEPA    | United States Environmental Protection Agency  |
| VOC      | Volatile Organic Compound                      |
|          |                                                |

# **1.0 INTRODUCTION**

This Quality Assurance Project Plan (QAPP) for the Sampling and Analysis Plan (SAP) for the Remedial Investigation (RI) of RVAAP-67 Facility-Wide Sewers Addendum (herein referred to as this SAP Addendum) addresses supplemental project-specific information for the Facility-Wide QAPP for the Ravenna Army Ammunition Plant (RVAAP) (USACE 2001). Each section in this report documents adherence to the Facility-Wide QAPP or stipulating project-specific addendum requirements.

Primary analytical direction for these projects will be obtained from the identified United States Environmental Protection Agency (USEPA) SW-846 Methods, the United States Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories (DoD 2006), and the Louisville QSM Supplement.

# 2.0 **PROJECT DESCRIPTION**

This QAPP addresses supplemental project-specific information and tiers under the Facility-Wide QAPP for RVAAP (USACE 2001). Each QAPP section documents adherence to the Facility-Wide QAPP or stipulates project-specific requirements.

Primary analytical direction for these projects will be obtained from the identified EPA SW-846 Methods, the DoD QSM for Environmental Laboratories (DoD 2006), and the Louisville QSM Supplement.

## 2.1 SITE HISTORY/BACKGROUND INFORMATION

Site history and background information is contained in Sections 1.0 and 2.0 of the Field Sampling Plan (FSP) for this SAP Addendum. Sewer-specific background and history information is included in Appendices B through Q of the FSP.

# 2.2 PAST DATA COLLECTION ACTIVITY/CURRENT STATUS

Past data collection activities and current status information is provided in Appendices B through Q of the FSP (Part I).

## 2.3 PROJECT OBJECTIVES AND SCOPE

Project objectives are listed in Section 3.0 of the FSP.

## 2.4 SAMPLE NETWORK DESIGN AND RATIONALE

General information regarding the sample network design and rationale is provided in Section 3.2.9 of the FSP. The FSP contains information specific to each sewer area presented in Appendices B through Q.

# 2.5 PARAMETERS TO BE TESTED AND FREQUENCY

Sample matrix types, analytical parameters, and analytical methods are discussed in Section 4.5 and in Appendices B through Q (for specific sewer areas) of the FSP. These sampling and analysis requirements are summarized in Table 2-1, in conjunction with anticipated sample frequencies, quality assurance (OA) sample frequencies, and field quality control (OC) sample frequencies. The total number of samples to be collected for fixed-base laboratory analyses will be based on the sampling decision flowchart (Figure 3-2 of the FSP).

## 2.6 PROJECT SCHEDULE

The project schedule is discussed in Section 2.2 of the FSP.

|                           | Field Samples <sup>a</sup>       |          | Field<br>Duplicate | Site<br>Source | Sampler              | Trip               | Total<br>A-E          | USACE<br>QA Split   | USACE<br>Trip |                      |                     |
|---------------------------|----------------------------------|----------|--------------------|----------------|----------------------|--------------------|-----------------------|---------------------|---------------|----------------------|---------------------|
| Parameter                 | Methods                          | Discrete | MI                 | Total          | Samples <sup>b</sup> | Water <sup>c</sup> | Rinsates <sup>d</sup> | Blanks <sup>e</sup> | Samples       | Samples <sup>f</sup> | Blanks <sup>e</sup> |
|                           | ·                                |          |                    | Soil – C       | hemical Analys       | is                 |                       |                     |               |                      |                     |
| Metals (TAL)              | SW-846,<br>6010C/6020A/<br>7471B | TBD      | -                  | TBD            | TBD                  | -                  | TBD                   | TBD                 | TBD           | TBD                  | TBD                 |
| Semivolatile Organics     | SW-846,<br>8270D/3540C           | TBD      | -                  | TBD            | TBD                  | -                  | TBD                   | TBD                 | TBD           | TBD                  | TBD                 |
| Explosives                | SW-846, 8330A                    | TBD      | -                  | TBD            | TBD                  | -                  | TBD                   | TBD                 | TBD           | TBD                  | TBD                 |
| Volatile Organics         | SW-846,<br>8260B/5035B           | TBD      | -                  | TBD            | TBD                  | -                  | TBD                   | TBD                 | TBD           | TBD                  | TBD                 |
| Pesticides                | SW-846,<br>8081B/3540C           | TBD      | -                  | TBD            | TBD                  | -                  | TBD                   | TBD                 | TBD           | TBD                  | TBD                 |
| PCBs                      | SW-846,<br>8082A/3540C           | TBD      | -                  | TBD            | TBD                  | -                  | TBD                   | TBD                 | TBD           | TBD                  | TBD                 |
| Nitroguanidine            | SW-846, 8330A<br>Mod.            | TBD      | -                  | TBD            | TBD                  | -                  | TBD                   | TBD                 | TBD           | TBD                  | TBD                 |
| Nitrocellulose            | SW-846, 9056A<br>Mod.            | TBD      | -                  | TBD            | TBD                  | -                  | TBD                   | TBD                 | TBD           | TBD                  | TBD                 |
| Polyaromatic Hydrocarbons | SW-846, 8310                     | TBD      | -                  | TBD            | TBD                  | -                  | TBD                   | TBD                 | TBD           | TBD                  | TBD                 |
| Cyanide                   | SW-846,<br>9010C/9012B           | TBD      | -                  | TBD            | TBD                  | -                  | TBD                   | TBD                 | TBD           | TBD                  | TBD                 |

### Table 2-1. Sampling and Analytical Requirements

|                           | Field Samples <sup>a</sup>       |          |    | Field | Site                 |                    |                       | Total               | USACE   | USACE                |                     |
|---------------------------|----------------------------------|----------|----|-------|----------------------|--------------------|-----------------------|---------------------|---------|----------------------|---------------------|
|                           |                                  |          |    |       | Duplicate            | Source             | Sampler               | Trip                | A-E     | QA Split             | Trip                |
| Parameter                 | Methods                          | Discrete | MI | Total | Samples <sup>b</sup> | Water <sup>c</sup> | Rinsates <sup>d</sup> | Blanks <sup>e</sup> | Samples | Samples <sup>f</sup> | Blanks <sup>e</sup> |
|                           |                                  |          | _  | Su    | rface Water          |                    | _                     |                     | _       | _                    |                     |
| Metals (TAL)              | SW-846,<br>6010/7470A            | -        | -  | TBD   | TBD                  | 2                  | TBD                   | TBD                 | TBD     | TBD                  | TBD                 |
| Semivolatile Organics     | SW-846,<br>8270D/3520C           | -        | -  | TBD   | TBD                  | 2                  | TBD                   | TBD                 | TBD     | TBD                  | TBD                 |
| Explosives                | SW-846,<br>8330A/3520            | -        | -  | TBD   | TBD                  | 2                  | TBD                   | TBD                 | TBD     | TBD                  | TBD                 |
| Nitrate                   | SW-846, 300.0                    | -        | -  | TBD   | TBD                  | 2                  | TBD                   | TBD                 | TBD     | TBD                  | TBD                 |
| Volatile Organics         | SW-846,<br>8260B/5030B           | -        | -  | TBD   | TBD                  | 2                  | TBD                   | TBD                 | TBD     | TBD                  | TBD                 |
| Pesticides                | SW846,<br>8081B/3520C.           | -        | -  | TBD   | TBD                  | 2                  | TBD                   | TBD                 | TBD     | TBD                  | TBD                 |
| PCBs                      | SW846,<br>8082/3520C             | -        | -  | TBD   | TBD                  | 2                  | TBD                   | TBD                 | TBD     | TBD                  | TBD                 |
| Nitroguanidine            | SW846, 8330A<br>Mod.             | -        | -  | TBD   | TBD                  | 2                  | TBD                   | TBD                 | TBD     | TBD                  | TBD                 |
| Nitrocellulose            | SW-846, 9056A<br>Mod.            | -        | -  | TBD   | TBD                  | 2                  | TBD                   | TBD                 | TBD     | TBD                  | TBD                 |
| Polyaromatic Hydrocarbons | SW-846, 8310                     | -        | -  | TBD   | TBD                  | 2                  | TBD                   | TBD                 | TBD     | TBD                  | TBD                 |
| Cyanide                   | SW-846,<br>9010C/9012B           | -        | -  | TBD   | TBD                  | 2                  | TBD                   | TBD                 | TBD     | TBD                  | TBD                 |
|                           |                                  |          |    | W     | et Sediment          |                    |                       |                     |         |                      |                     |
| Metals (TAL)              | SW-846,<br>6010C/6020A/<br>7471B | -        | -  | TBD   | TBD                  | -                  | TBD                   | TBD                 | TBD     | TBD                  | TBD                 |
| Semivolatile Organics     | SW-846,<br>8270D/3540C           | -        | -  | TBD   | TBD                  | -                  | TBD                   | TBD                 | TBD     | TBD                  | TBD                 |

### Table 2-1. Sampling and Analytical Requirements (continued)

|                           |                        | Field    | Field Samples <sup>a</sup> |       | Field                | Site               |                              |                     | Total   | USACE                | USACE                      |
|---------------------------|------------------------|----------|----------------------------|-------|----------------------|--------------------|------------------------------|---------------------|---------|----------------------|----------------------------|
|                           |                        |          |                            |       | Duplicate            | Source             | Sampler                      | Trip                | A-E     | QA Split             | Trip                       |
| Parameter                 | Methods                | Discrete | MI                         | Total | Samples <sup>b</sup> | Water <sup>c</sup> | <b>Rinsates</b> <sup>d</sup> | Blanks <sup>e</sup> | Samples | Samples <sup>f</sup> | <b>Blanks</b> <sup>e</sup> |
| Explosives                | SW-846, 8330A          | -        | -                          | TBD   | TBD                  | -                  | TBD                          | TBD                 | TBD     | TBD                  | TBD                        |
| Volatile Organics         | SW-846, 8260B          | -        | -                          | TBD   | TBD                  | -                  | TBD                          | TBD                 | TBD     | TBD                  | TBD                        |
| Pesticides                | SW-846,<br>8081B/3540C | -        | -                          | TBD   | TBD                  | -                  | TBD                          | TBD                 | TBD     | TBD                  | TBD                        |
| PCBs                      | SW-846,<br>8082A/3540C | -        | -                          | TBD   | TBD                  | -                  | TBD                          | TBD                 | TBD     | TBD                  | TBD                        |
| Nitroguanidine            | SW-846, 8330A<br>Mod.  | -        | -                          | TBD   | TBD                  | -                  | TBD                          | TBD                 | TBD     | TBD                  | TBD                        |
| Nitrocellulose            | SW-846, 9056A<br>Mod.  | -        | -                          | TBD   | TBD                  | -                  | TBD                          | TBD                 | TBD     | TBD                  | TBD                        |
| Polyaromatic Hydrocarbons | SW-846, 8310           | -        | -                          | TBD   | TBD                  | -                  | TBD                          | TBD                 | TBD     | TBD                  | TBD                        |
| Cyanide                   | SW-846,<br>9010C/9012B | -        | -                          | TBD   | TBD                  | -                  | TBD                          | TBD                 | TBD     | TBD                  | TBD                        |

 Table 2-1. Sampling and Analytical Requirements (continued)

<sup>a</sup>All samples collected for fixed-base laboratory analyses will be analyzed for TAL metals and explosives. Full suite samples will be collected at a frequency of 10% according to the FSP. Matrix spike/matrix spike duplicate samples will be collected at a rate of 5% (1 per 20) of total samples per media.

<sup>b</sup>Duplicate samples are collected at a frequency of 10 % of the total number of samples.

<sup>c</sup>Source waters will be collected from the potable water source and from the ASTM (de-ionized) water supply lot for the project. The source water sample quantities are included under the surface water subheading. <sup>d</sup>Rinsate samples will be collected at a frequency of 10% for water samples (surface water) for which undedicated, decontaminated equipment is used. For soil samples, two rinsate samples will be collected per field cycle. <sup>e</sup>One trip blank will be collected for each shipping container (e.g., cooler) that contains water samples for VOC analysis.

<sup>f</sup>USACE QA Split Samples will be collected at a frequency to be determined by USACE.

A-E = Architect-Engineer ASTM = American Society of Testing and Materials EM = Engineering Manual (USACE) MI = Multi-Increment (sample) N/A = not applicable PCB = polychlorinated biphenyl QA = Quality Assurance

RI = Remedial Investigation TAL = Target Analyte List TBD = To Be Determined USACE = U.S. Army Corps of Engineers VOC = Volatile Organic Compound - = not applicable/not required

# 3.0 PROJECT ORGANIZATION

The project organization and responsibilities are described in Section 2.0 of the Facility-Wide SAP.

Analytical support for this work has been assigned to the following contract laboratory:

White Water Associates, Inc. 429 River Lane, Amasa, Michigan 49903 Phone: (906) 822-7889 Fax Number: (906) 822-7977 Contact: Bette J. Premo, Laboratory Director Email: bette.premo@white-water-associates.com

The contract laboratory's QAPP will be forwarded at the request of the USACE.

# 4.1 DATA QUALITY OBJECTIVES

Data quality objective (DQO) summaries for this investigation will follow Tables 3-1 and 3-2 in the Facility-Wide QAPP. All QC parameters stated in the specific USEPA SW-846 methods will be adhered to for each chemical listed. The SW-846 method references found in the Facility-Wide QAPP have been revised to the Update IV methods. However, either the Update III or IV methods may be used by the analytical laboratory. Laboratories are required to comply with all methods as written; recommendations are considered requirements. Concurrence with the DoD QSM for Environmental Laboratories (DoD 2006) and the Louisville QSM Supplement is also required.

The contract laboratory will deliver an electronic data deliverable (EDD) that is automated data review (ADR) compatible. The contract laboratory must identify variances to the established library prior to any analysis being performed. No variances to the DoD QSM for Environmental Laboratories and the Louisville QSM Supplement are anticipated.

# 4.2 LEVEL OF QUALITY CONTROL EFFORT

QC efforts will follow Section 3.2 of the Facility-Wide QAPP. Field QC measurements will include field source water blanks, trip blanks, field duplicates, and equipment rinsate blanks. Laboratory QC measurements will include method blanks, laboratory control samples (LCS), laboratory duplicates, and matrix spike/matrix spike duplicate (MS/MSD) samples. LCS measurements will include the standard mid-level analyte concentration, plus a QC/method reporting level (MRL) low-level concentration. The QC/MRL will be successfully analyzed at the beginning of the analytical sequence as required by the QSM. Additionally, the lab will analyze the QC/MRL sample at the close of the analytical sequence.

# 4.3 ACCURACY, PRECISION, AND SENSITIVITY OF ANALYSIS

Accuracy, precision, and sensitivity goals identified in Section 3.3 and Tables 3-3 through 3-9 of the Facility-Wide QAPP will be imposed for this investigation. As stated above, some of the analytical methods numbers have been updated (refer to Table 2-1). Quality objectives related to individual method QC protocol will also follow requirements given in the DoD QSM for Environmental Laboratories and the Louisville QSM Supplement.

Laboratories will make all reasonable attempts to meet the program and project reporting levels in Tables 3-1 through 3-9 of the Facility-Wide QAPP for each individual sample analysis. When samples require dilution, both the minimum dilution and quantified dilution must be reported. All samples will be screened to determine optimum dilution ranges. Dilution runs will be performed to quantitate high target analyte concentrations within the upper half of the calibration range, thus reducing the degree of dilution as much as possible. In addition, a five times less diluted run will then be performed to report other target analyte reporting levels as low as possible without destroying

analytical detectors and instrumentation. If there are matrix interferences, non-target analyte, or high target analyte concentrations that preclude analysis of an undiluted sample, the laboratory project manager will contact Science Applications International Corporation (SAIC) and USACE Louisville District, forward analytical and chromatographic information from diluted runs, and obtain direction on how to proceed.

## 4.4 COMPLETENESS, REPRESENTATIVENESS, AND COMPARABILITY

Completeness, representativeness, and comparability goals identified in Section 3.4 and Tables 3-1 and 3-2 of the Facility-Wide QAPP will be imposed for this investigation.

# 5.0 SAMPLING PROCEDURES

Sampling procedures are described in Section 4.0 of the Facility-Wide SAP and referenced in Section 4.0 of the FSP.

Tables 5-1 and 5-2 summarize sample container, preservation, and holding time requirements for the soil, wet sediment, and water matrices for this investigation. The number of containers required will be estimated in this table after the laboratory has been selected.

As noted in the Facility-Wide QAPP, additional sample volumes will be provided, when necessary, for the express purpose of performing associated laboratory QC (MS/MSD). These laboratory QC samples will be designated by the field and identified for the laboratory on respective chain-of-custody (COC) documentation.

| Arrahata Carara                | Contrinue                                                                      | Minimum Sample                           | Description  |                                   |
|--------------------------------|--------------------------------------------------------------------------------|------------------------------------------|--------------|-----------------------------------|
| Analyte Group                  | Container                                                                      | Size                                     | Preservative | Holding Time                      |
|                                |                                                                                | 3 EnCore Samplers <sup><i>a</i></sup> or |              |                                   |
| Volatile Organic Compounds     | EnCore Samplers <sup><i>a</i></sup> or Glass w/ Teflon Lid <sup><i>b</i></sup> | 2-2 oz jars <sup><math>b</math></sup>    | Cool, 4°C    | 14 d                              |
| Semivolatile Organic Compounds | Glass w/ Teflon Lid                                                            | 100 grams                                | Cool, 4°C    | 14 d (extraction) 40 d (analysis) |
| Pesticide Compounds            | Glass w/ Teflon Lid                                                            | 100 grams                                | Cool, 4°C    | 14 d (extraction) 40 d (analysis) |
| PCBs                           | Glass w/ Teflon Lid                                                            | 100 grams                                | Cool, 4°C    | 14 d (extraction) 40 d (analysis) |
| PAH Compounds                  | Glass w/ Teflon Lid                                                            | 100 grams                                | Cool, 4°C    | 14 d (extraction) 40 d (analysis) |
| Explosive Compounds            | Glass w/ Teflon Lid                                                            | 100 grams                                | Cool, 4°C    | 14 d (extraction) 40 d (analysis) |
| Nitroguanidine                 | Glass w/ Teflon Lid                                                            | 100 grams                                | Cool, 4°C    | 14 d (extraction) 40 d (analysis) |
| Nitrocellulose                 | Glass w/ Teflon Lid                                                            | 100 grams                                | Cool, 4°C    | 14 d (extraction) 40 d (analysis) |
| Metals (TAL)                   | Glass w/ Teflon Lid                                                            | 10 grams                                 | Cool, 4°C    | 180 d; Hg @ 28 d                  |
| Cyanide                        | Glass w/ Teflon Lid                                                            | 10 grams                                 | Cool, 4°C    | 14 d                              |

Table 5-1. Container Requirements for Soil and Wet Sediment Samples

<sup>*a*</sup> Sample container for soil samples. <sup>*b*</sup> Sample container for wet sediment samples. PCB = Polychlorinated Biphenyl

PAH = Polycyclic Aromatic Hydrocarbon TAL = target analyte list

TBD = To be Determined

|                                |                                        | Minimum     |                          |                                   |
|--------------------------------|----------------------------------------|-------------|--------------------------|-----------------------------------|
| Analyte Group                  | Container                              | Sample Size | Preservative             | Holding Time                      |
| Volatile Organic Compounds     | Glass Vials w/ Teflon Lined Septum Cap | 3- 40 oz    | HCl to pH <2 Cool, 4°C   | 14 d                              |
|                                |                                        |             |                          | 7 d (extraction)                  |
| Semivolatile Organic Compounds | Amber Glass w/ Teflon Lid              | 1000 mL     | Cool, 4°C                | 40 d (analysis)                   |
|                                |                                        |             |                          | 7 d (extraction)                  |
| Pesticide Compounds            | Amber Glass w/ Teflon Lid              | 1000 mL     | Cool, 4°C                | 40 d (analysis)                   |
|                                |                                        |             |                          | 7 d (extraction)                  |
| PCBs                           | Amber Glass w/ Teflon Lid              | 1000 mL     | Cool, 4°C                | 40 d (analysis)                   |
|                                |                                        |             |                          | 7 d (extraction)                  |
| PAH Compounds                  | Amber Glass w/ Teflon Lid              | 1000 mL     | Cool, 4°C                | 40 d (analysis)                   |
|                                |                                        |             |                          | 7 d (extraction)                  |
| Explosive Compounds            | Amber Glass w/ Teflon Lid              | 1000 mL     | Cool, 4°C                | 40 d (analysis)                   |
| Nitroguanidine                 | Amber Glass w/ Teflon Lid              | 1000 mL     | Cool, 4°C                | 14 d (extraction) 40 d (analysis) |
| Nitrocellulose                 | Amber Glass w/ Teflon Lid              | 1000 mL     | Cool, 4°C                | 14 d (extraction) 40 d (analysis) |
| Nitrate                        | Plastic                                | 100 mL      | Cool, 4°C                | 48 hrs                            |
| Metals (TAL)                   | High Density Polyethylene              | 200 mL      | HNO3 to pH <2 Cool, 4°C  | 180 d; Hg @ 28 d                  |
| Cyanide                        | Plastic                                | 500 mL      | NaOH to pH >12 Cool, 4°C | 14 d                              |

| Table 5-2. | <b>Container Requirem</b> | nents for Surface | Water Samples |
|------------|---------------------------|-------------------|---------------|
|------------|---------------------------|-------------------|---------------|

PCB = Polychlorinated Biphenyl PAH = Polycyclic Aromatic Hydrocarbon TAL = target analyte list

TBD = To be Determined

# 6.0 SAMPLE CUSTODY

Sample custody procedures will follow the procedures identified in Section 5.0 of the Facility-Wide QAPP.

# 7.0 CALIBRATION PROCEDURES AND FREQUENCY

### 7.1 FIELD INSTRUMENTS/EQUIPMENT

Field instruments and equipment calibrations will follow procedures described in Section 6.1 of the Facility-Wide QAPP and Section 4.0 of the FSP.

### 7.2 LABORATORY INSTRUMENTS

Calibration of laboratory equipment will follow procedures identified in Section 6.2 of the Facility-Wide QAPP, the contract laboratory QAPP, laboratory-specific standard operating procedures (SOP), and corporate and facility-specific operating procedures.

## 8.1 LABORATORY ANALYSIS

Analytical methods, parameters, and quantitation or detection limits are listed in Tables 3-3 through 3-9 of the Facility-Wide QAPP. The SW-846 method references found in the Facility-Wide QAPP have been revised to the Update III methods (i.e., 8260A is now 8260B and 8270B is now 8270D). Laboratory analysis procedures are provided in Section 7.1 of the Facility-Wide QAPP. Either the Update III or IV methods may be used by the analytical laboratory.

The contract laboratory facilities will at all times maintain a safe and contaminant free environment for the analysis of samples. The laboratories will demonstrate, through instrument blanks, holding blanks, and analytical method blanks, that the laboratory environment and procedures will not and do not impact analytical results.

The contract laboratory facilities will also implement all reasonable procedures to maintain project reporting levels for all sample analyses. Where contaminant and sample matrix analytical interferences impact the laboratory's ability to obtain project reporting levels, the laboratory will institute sample clean-up processes, minimize dilutions, adjust instrument operational parameters, or propose alternative analytical methods or procedures. Elevated reporting levels will be kept to a minimum throughout the execution of this work. When samples require dilution, both the minimum dilution and quantified dilution must be reported. The contract laboratory will screen all samples to determine optimum dilution ranges. Dilution runs will be performed to quantitate high target analyte concentrations within the upper half of the calibration range, thus reducing the degree of dilution as much as possible. In addition, a five times less diluted run will then be performed to report other target analyte reporting levels as low as possible without destroying analytical detectors and instrumentation. If there are matrix interferences, non-target analyte, or high target analyte concentrations that preclude analysis of an undiluted sample, the laboratory project manager will contact SAIC and USACE Louisville District, forward analytical and chromatographic information from diluted runs, and obtain direction on how to proceed.

# 8.2 FIELD SCREENING ANALYTICAL PROTOCOLS

Procedures for instrument calibration, calibration frequency, and field analysis are identified in Section 6.0 of the Facility-Wide FSP, and in Section 4.0 of the FSP. Field screening for explosives will be conducted to allow real-time decision making for collection of fixed-base laboratory analyses. Organic vapors will be screened using a photoionization detector (PID). Headspace analysis will not be conducted.

## 9.1 FIELD SAMPLE COLLECTION

Field QC sample types and frequencies are identified in Sections 4.0 of the FSP. In general, field duplicates will be collected at a frequency of 10%. Field equipment rinsates will be collected at a frequency of 10% for water samples and one soil equipment rinsate sample will be collected per field cycle. Equipment rinsate samples pertain only to samples collected using reusable, decontaminated equipment. This will constitute a process check for the effectiveness of the decontamination procedure. Two site source water samples (one potable water source and one deionized water source) will be collected for the combined field effort.

## 9.2 FIELD MEASUREMENT

Refer to Section 4.0 of the FSP for details regarding field measurements.

## 9.3 LABORATORY ANALYSIS

Analytical QC procedures will follow those identified in the referenced USEPA methodologies. These will include method blanks, LCS, MS, MSD, laboratory duplicate analysis, calibration standards, internal standards, surrogate standards, and calibration check standards.

The contract laboratory facilities will conform to their QAPP and implement their established SOPs to perform the various analytical methods required by the project. QC frequencies will follow those identified in Section 8.3 of the Facility-Wide QAPP.

Analyses will also be consistent with direction provided by the DoD QSM for Environmental Laboratories and the Louisville QSM Supplement. The following are clarifications to this guidance relative to this project:

- The QC/MDL check will be performed quarterly, until criteria can be established. After performance criteria are determined, the frequency of this QC check may be reduced to biannually or annually per instrument.
- Analytical method blanks will be considered clean as long as analyte concentrations are below one-half the reporting levels for all analytes except common laboratory contaminants which are expected to be below the reporting level. Corrective actions will be performed for any analyte detected above the established method reporting level. Any analytes detected between the method detection limit and the MRL will be flagged appropriately.

- LCSs will contain all project target compounds. The number of marginal exceedances should not exceed the number allowed by the QSM.
- For methods that have multi-responders (i.e., aroclors) within the same analytical process, the laboratory will not include all analytes within the matrix spiking mixture. A representative analyte will be employed for the MS evaluation.
- Inductively coupled plasma initial calibration curves will be confirmed through the analysis of a blank and three standards, and this documentation will be reported as part of the analytical data package.
- Inductively coupled plasma (ICP) serial dilution will be performed on a per batch basis. If the serial dilution falls outside acceptance criteria, a post-digestion spike analyses will be performed.
- Sediment samples having moisture levels that preclude soxlet extraction processes will be extracted by sonication methods.

## **10.1 DATA REDUCTION**

Data reduction will follow the established protocols defined in Section 9.1 in the Facility-Wide QAPP. Sample collection and field measurements will follow the established protocols defined in the Facility-Wide QAPP, Facility-Wide SAP, and this SAP Addendum. Laboratory data reduction will follow the contract laboratory QAPP guidance and will conform to general direction provided by the Facility-Wide QAPP, the DoD QSM for Environmental Laboratories, and the Louisville QSM Supplement.

## **10.2 DATA VERIFICATION/VALIDATION**

Project data verification and validation will follow direction provided in the Facility-Wide QAPP Section 9.2 and diagramed in Figure 9-1. Protocol for analytical data verification and validation has been updated to the following references:

- DoD QSM for Environmental Laboratories, January 2006 (DOD 2006).
- Louisville QSM Supplement.
- USEPA National Functional Guidelines for Organic Data Review, EPA-540/R-99/008, October 1999 (USEPA 1999).
- USEPA National Functional Guidelines for Inorganic Data Review, EPA-540-R-04-004, October 2004 (USEPA 2004).

All data will be reviewed and verified by SAIC according to the Facility-Wide QAPP.

Validation of 10% of the data will follow the direction provided in the Facility-Wide QAPP, the DoD QSM for Environmental Laboratories, and the Louisville QSM Supplement. An independent data validation subcontractor qualified by USACE Louisville District will perform this data validation. The validator shall document the findings of the review using the checklists in Attachment B of the Louisville Chemistry Guideline (LCG), Rev. 5, June 2002. These checklists may be modified to implement QSM criteria.

# **10.3 DATA REPORTING**

Data reports will follow the established protocols defined in Section 9.3 in the Facility-Wide QAPP. The contract laboratory will deliver an EDD that is ADR compatible. All data will be processed by ADR/environmental data management system (EDMS) software using the Ravenna library. All errors in the ADR/EDD found by CHECKER must be corrected by the laboratory prior to transmittal. EDDs with errors will not be accepted.

### 10.4 DATA QUALITY ASSESSMENT

Data quality will be assessed using the procedures provided in Section 9.4 of the Facility-Wide QAPP.

### **11.1 FIELD AUDITS**

One field surveillance for the investigation will be performed by the SAIC QA/QC Officer, the SAIC Field Operations Manager, or another properly trained SAIC auditor. This surveillance will encompass the performance of sampling of any environmental medium. The surveillance will follow SAIC Quality Assurance Administrative Procedure (QAAP) 18.3.

USACE, USEPA Region 5, or Ohio Environmental Protection Agency (Ohio EPA) audits may be conducted at the discretion of the respective agency.

### **11.2 LABORATORY AUDITS**

Routine USACE Hazardous, Toxic, and Radioactive Waste (HTRW) Center of Expertise (CX) onsite laboratory audits may be conducted by USACE, while audits by EPA Region 5 or Ohio EPA may be conducted at the discretion of the respective agency.

Internal performance and systems audits will be conducted by the contract laboratory's QA staff, as defined in their QAPP.

More information regarding laboratory audits can be found in Section 10.2 of the Facility-Wide QAPP.

THIS PAGE INTENTIONALLY LEFT BLANK.

Maintenance of all field and laboratory sampling and analytical equipment will follow direction provided in Section 11.0 of the Facility-Wide QAPP. Routine and preventive maintenance for all laboratory instruments and equipment will follow the direction of the contract laboratory QAPP.

THIS PAGE INTENTIONALLY LEFT BLANK.

# 13.0 SPECIFIC ROUTINE PROCEDURES TO ASSESS DATA PRECISION, ACCURACY, AND COMPLETENESS

Field and laboratory data will be assessed as outlined in Sections 12.1 and 12.2 of the Facility-Wide QAPP.

THIS PAGE INTENTIONALLY LEFT BLANK.

### **14.0 CORRECTIVE ACTIONS**

Field and laboratory activity corrective action protocol will follow directions provided in Sections 13.1 and 13.2 of the Facility-Wide QAPP. Laboratory corrective actions will also follow the procedures in the contract laboratory QAPP.

THIS PAGE INTENTIONALLY LEFT BLANK.

## 15.0 QA REPORTS

Procedures and reports will follow the protocol identified in Section 14.0 of the Facility-Wide QAPP and those directed by the contract laboratory QAPP.

THIS PAGE INTENTIONALLY LEFT BLANK.

- DoD (United States Department of Defense) 2006. *Quality Systems Manual for Environmental Laboratories*, Environmental Data Quality Workgroup, Final Version 3. Final. January 2006.
- USACE (U.S. Army Corps of Engineers) 2002. *Louisville Chemistry Guideline*. Environmental Chemistry Branch, Rev. 5. June 2002.
- USACE 2001. Facility-Wide Sampling and Analysis Plan for Environmental Investigations at the Ravenna Army Ammunition Plant, Ravenna, Ohio, DACA62-00-D-0001, Delivery Order CY02. Final. March 2001.
- USEPA (U.S. Environmental Protection Agency) 1999. Contract Laboratory Program National Functional Guidelines for Organic Data Review, EPA-540/R-99/008. Final. October 1999.
- USEPA 2004. Contract Laboratory Program National Functional Guidelines for Inorganic Data Review, EPA-540-R-04-004. Final. October 2004.

THIS PAGE INTENTIONALLY LEFT BLANK.

### Part III

# Site Safety and Health Plan for the Remedial Investigation of RVAAP-67 Facility-Wide Sewers Addendum No.1

Ravenna Army Ammunition Plant Ravenna, Ohio

Contract No. W912QR-04-D-0028 Delivery Order No. 0001

### **Prepared for:**

U.S. Army Corps of Engineers 600 Martin Luther King, Jr. Place Louisville, Kentucky 40202

#### **Prepared by:**

SAIC Engineering of Ohio, Inc. 8866 Commons Boulevard, Suite 201 Twinsburg, Ohio 44087

July 31, 2009

### APPROVALS

Final

Site Safety and Health Plan Addendum No. 1 for the Remedial Investigation of RVAAP-67 Facility-Wide Sewers

July 2009

W. Hein

Kevin Jago Phone 865-481-4614 SAIC Project Manager

les Phone 865-481-4755

Stepher Davis, CIH (#4213), CSP (#10044), SAIC Health and Safety Officer

07-21-09 Date

July 22, 2009

Date

# TABLE OF CONTENTS

| LIST OF TABLES                                               | ii   |
|--------------------------------------------------------------|------|
| LIST OF FIGURES                                              | ii   |
| ACRONYMS AND ABBREVIATIONS                                   | iii  |
| 1.0 INTRODUCTION                                             | 1-1  |
| 2.0 FACILITY DESCRIPTION AND CONTAMINANT CHARACTERIZATION    | 2-1  |
| 2.1 FACILITY DESCRIPTION                                     | 2-1  |
| 2.2 CONTAMINANTS                                             | 2-2  |
| 3.0 HAZARD/RISK ANALYSIS                                     | 3-1  |
| 3.1 TASK-SPECIFIC HAZARD ANALYSIS                            | 3-1  |
| 3.2 POTENTIAL EXPOSURES                                      | 3-1  |
| 4.0 MUNITIONS AND EXPLOSIVES OF CONCERN AVOIDANCE            | 4-1  |
| 5.0 STAFF ORGANIZATION, QUALIFICATIONS, AND RESPONSIBILITIES | 5-1  |
| 6.0 TRAINING                                                 | 6-1  |
| 7.0 PERSONAL PROTECTIVE EQUIPMENT                            | 7-1  |
| 8.0 MEDICAL SURVEILLANCE                                     | 8-1  |
| 9.0 EXPOSURE MONITORING/AIR SAMPLING PROGRAM                 | 9-1  |
| 10.0 HEAT/COLD STRESS MONITORING                             | 10-1 |
| 11.0 STANDARD OPERATING SAFETY PROCEDURES                    | 11-1 |
| 12.0 SITE CONTROL MEASURES                                   | 12-1 |
| 13.0 PERSONNEL HYGIENE AND DECONTAMINATION                   | 13-1 |
| 14.0 EMERGENCY PROCEDURES AND EQUIPMENT                      | 14-1 |
| 15.0 LOGS, REPORTS, AND RECORD KEEPING                       | 15-1 |
| 16.0 REFERENCES                                              | 16-1 |
| 17.0 FACILITY AND HOSPITAL MAPS                              | 17-1 |

## LIST OF TABLES

| Table 2-1. | Table 2-1. Maximum Concentrations of Constituents of Potential Concern in Sewer Sediment and |      |  |
|------------|----------------------------------------------------------------------------------------------|------|--|
|            | Water                                                                                        | 2-3  |  |
| Table 3-1. | Hazards Inventory                                                                            | 3-1  |  |
| Table 3-2. | Hazards Analysis                                                                             | 3-2  |  |
| Table 3-3. | Potential Exposures                                                                          | 3-10 |  |
| Table 5-1. | Staff Organization                                                                           | 5-1  |  |
| Table 6-1. | Training Requirements                                                                        | 6-1  |  |
| Table 8-1. | Medical Surveillance Requirements                                                            | 8-1  |  |
| Table 9-1. | Monitoring Requirements and Action Limits                                                    | 9-2  |  |
| Table 14-1 | . Emergency Phone Numbers                                                                    | 14-1 |  |

## LIST OF FIGURES

| Figure 17-1. General Location and Orientation of the RVAAP/Camp Ravenna | 17-1 |
|-------------------------------------------------------------------------|------|
| Figure 17-2. RVAAP/Camp Ravenna Site Map and Egress Route               | 17-3 |
| Figure 17-3. Route Map to Pre-Notified Medical Facility                 |      |

## ACRONYMS AND ABBREVIATIONS

| ACGIH<br>AOC        | American Conference of Governmental Industrial Hygienists<br>Area of Concern |
|---------------------|------------------------------------------------------------------------------|
|                     | Below Ground Surface                                                         |
| BGS<br>Comp Boyonno |                                                                              |
| *                   | Camp Ravenna Joint Military Training Center                                  |
| CIH                 | Certified Industrial Hygienist                                               |
| COC                 | Chemical of Concern                                                          |
| CPR                 | Cardiopulmonary Resuscitation                                                |
| CSP                 | Certified Safety Professional                                                |
| DPT                 | Direct-Push Technology                                                       |
| E2I                 | Energy, Environment & Infrastructure                                         |
| EH&S                | Environmental Health and Safety                                              |
| FM                  | Field Manager                                                                |
| FOM                 | Field Operations Manager                                                     |
| FP                  | Flash Point                                                                  |
| FWSHP               | Facility Wide Safety and Health Plan                                         |
| GFCI                | Ground-Fault Circuit Interrupter                                             |
| HAZWOPER            | Hazardous Waste Operations                                                   |
| H&S                 | Health and Safety                                                            |
| HTRW                | Hazardous, Toxic, and Radioactive Waste                                      |
| IDW                 | Investigation-Derived Waste                                                  |
| IDLH                | Immediately Dangerous to Life and Health                                     |
| IP                  | Ionization Potential                                                         |
| IRP                 | Installation Restoration Program                                             |
| MEC                 | Munitions and Explosives of Concern                                          |
| MMRP                | Military Munitions Response Program                                          |
| MSDS                | Material Safety Data Sheet                                                   |
| NGB                 | National Guard Bureau                                                        |
| NIOSH               | National Institute for Occupational Safety and Health                        |
| NRR                 | Noise Reduction Rating                                                       |
| OEW                 | Ordnance and Explosive Waste                                                 |
| OHARNG              | Ohio Army National Guard                                                     |
| Ohio EPA            | Ohio Environmental Protection Agency                                         |
| OJT                 | On-the-Job Training                                                          |
| O&M                 | Operations and Maintenance                                                   |
| РАН                 | Polycyclic Aromatic Hydrocarbon                                              |
| PID                 | Photoionization Detector                                                     |
| PM                  | Project Manager                                                              |
| PPE                 | Personal Protective Equipment                                                |
| ppm                 | Parts Per Pillion                                                            |
| PVC                 | Polyvinyl Chloride                                                           |
|                     |                                                                              |

# ACRONYMS AND ABBREVIATIONS (CONTINUED)

| RVAAP | Ravenna Army Ammunition Plant                  |
|-------|------------------------------------------------|
| SAIC  | Science Applications International Corporation |
| SAP   | Sampling and Analysis Plan                     |
| SSHO  | Site Safety and Health Officer                 |
| SSHP  | Site Safety and Health Plan                    |
| STEL  | Short-Term Exposure Limit                      |
| TBD   | To Be Determined                               |
| TLV   | Threshold Limit Value                          |
| TWA   | Time-Weighted Average                          |
| USACE | United States Army Corps of Engineers          |
| UXO   | Unexploded Ordnance                            |
| VP    | Vapor Pressure                                 |
|       | •                                              |

### **1.0 INTRODUCTION**

Science Applications International Corporation's (SAIC's) formal policy, stated in the Environmental Compliance and Health and Safety Program manual, is to take every reasonable precaution to protect the health and safety of our employees, the public, and the environment. To this end, the Ravenna Army Ammunition Plant (RVAAP) *Facility-Wide Safety and Health Plan* (FWSHP) (USACE 2001) and this Site Safety and Health Plan (SSHP) collectively set forth the specific procedures required to protect SAIC and SAIC subcontractor personnel involved in the field activities. These plans are driven by requirements contained in the most current revisions of the Unites States Army Corps of Engineers (USACE) *Safety and Occupational Health Requirements for Hazardous, Toxic, and Radioactive Waste (HTRW)* and *Ordnance and Explosive Waste (OEW) Activities, ER-385-1-92,* and the USACE *Safety and Health Manual, EM-385-1-1,* which are available online via the USACE web site. SAIC activities are also subject to the requirements of the SAIC Corporate Environmental Compliance and Health and Safety Program and associated procedures. All field personnel are required to comply with the requirements of these programs and plans.

The FWSHP addresses program issues and hazards and hazard controls common to the entire installation. This SSHP Addendum to the FWSHP serves as the lower tier document addressing the hazards and controls specific to the *Sampling and Analysis (SAP) Plan Addendum No. 1 RVAAP- 67 Facility-Wide Sewers Area of Concern (AOC)*. Copies of the FWSHP and this SSHP Addendum will be present at the work site during all fieldwork.

SAIC will perform an investigation at RVAAP of the sanitary and storm water sewers area of concern, designated RVAAP-67 Facility-Wide Sewers. The objective of this investigation is to:

- Conduct visual survey of accessible sanitary and storm sewer structures (e.g., manholes, drop inlets) to document physical conditions and identify potential sampling locations;
- Collect sewer sediment samples by using a remote sampling device (Eckman sampler or sediment core sampler) for analysis of explosives via (1) screening-level field analysis using explosives test kits and (2) fixed-base laboratory analysis;
- Collect sewer water samples by using a dipper or pond sampler for analysis of explosives and metals via fixed-base laboratory analysis;
- Conduct video surveys of sewer lines; and
- Advance soil borings via hand-augering and/or direct-push technology (DPT) methods and collect samples for fixed-base laboratory analysis of explosives and metals.

A photoionization detector (PID) will be used to continuously monitor the breathing zone during all sampling activities. All work will be conducted from ground surface. Entry into a manhole or catch basin may be required for the video survey. If a video survey is necessary, it will be performed by an

SAIC subcontractor, and all work performed shall be supervised by SAIC personnel. If confined space entry is required, the subcontractor will perform the confined space entry in accordance with 29 CFR 1910.146 and EM 385-1-1 Section O6I, and an additional addendum to the FWSHP will be submitted. No SAIC personnel shall enter or participate in confined spaces entry during any phase of this project.

Sampling crews will use protective gloves to handle potentially contaminated materials, and if necessary, the Site Safety and Health Officer (SSHO) will upgrade the required personal protective equipment (PPE). The SSHO will observe all site tasks during daily safety inspections and will use professional judgment and appropriate monitoring results to determine if upgrading PPE is required. A detailed analysis of these hazards and specific appropriate controls is presented in Table 3-2 (Section 3.0). Details regarding PPE are contained in Section 7.0.

# 2.0 FACILITY DESCRIPTION AND CONTAMINANT CHARACTERIZATION

### 2.1 FACILITY DESCRIPTION

The current RVAAP consists of 1,280 acres scattered throughout the Ohio Army National Guard (OHARNG) Camp Ravenna Joint Military Training Center (Camp Ravenna). Camp Ravenna is in northeastern Ohio within Portage and Trumbull Counties, approximately 4.8 km (3 miles) east-northeast of the City of Ravenna and approximately 1.6 km (1 mile) northwest of the City of Newton Falls. The RVAAP portions of the property are solely located within Portage County. Camp Ravenna/RVAAP is a parcel of property approximately 17.7 km (11 miles) long and 5.6 km (3.5 miles) wide bounded by State Route 5, the Michael J. Kirwan Reservoir, and the CSX System Railroad on the south; Garret, McCormick, and Berry roads on the west; the Norfolk Southern Railroad on the north; and State Route 534 on the east (Figures A-1 and A-2). Camp Ravenna is surrounded by several communities: Windham on the north; Garrettsville 9.6 km (6 miles) to the northwest; Newton Falls 1.6 km (1 mile) to the southeast; Charlestown to the southwest; and Wayland 4.8 km (3 miles) to the south.

Facility-Wide Sewers (RVAAP-67) is an AOC created in 2008 and comprised of Installation Restoration Program (IRP) eligible storm and sanitary sewers located throughout RVAAP, including Load Lines 1-12 and the Administrative Areas. The sewer system in the plant is divided into two sewage basins: a western basin and an eastern basin. The western basin includes the combined sanitary and storm sewers draining the Administrative Areas and sanitary sewers at Load Lines 5-11 that terminate at the George Road Sewage Treatment Plant. Also, several short runs of separated storm sewer exist throughout Load Lines 5-11 in the western basin, terminating in ditches and other drainage features. The eastern basin includes the sanitary sewers draining Load Lines 1-4, Load Line 12, and Atlas Scrap Yard, and terminates at the Sand Creek Sewage Treatment Plant. Load Lines 1-4 and Load Line 12 also have separate storm sewer systems terminating in drainage features such as ditches and retention ponds.

The sewers sometimes received inadvertent discharges of contaminated wastewaters from the manufacturing of munitions. In the course of normal facility operations at RVAAP, explosive compounds were routinely washed off of the floors and walls for operational safety. Wash water potentially containing explosives were washed onto the surrounding ground and may have found their way into sewers. Based on operational history and the layout of the sewer network, potential contamination would be expected to occur: (1) in the sewers underlying the source buildings to the first manhole outside the building; (2) in sewers from a group of source buildings which join at common manholes; and (3) in main sewer lines that connect to the centralized treatment plant (Lakeshore Engineering 2007).

Two investigations specific to sewers at RVAAP have been conducted to identify and evaluate any potential threats to human health due to the disposal or release of explosive compounds or their derivatives by way of the sanitary and storm sewers (Lakeshore Engineering 2007; USACE CERL

2007). These investigations utilized visual inspections of manholes, video surveys of lines, DropEx field screenings, and an evaluation of historical data to identify locations of residual contamination from ammunition production activities. In the large load lines (1-4), trace explosives were found at a few locations peripheral to the melt-pour buildings. Although these occurrences were observed predominantly in the storm water lines, screening data indicate detections in adjacent sanitary lines. Trace explosives were observed in only a few of the smaller load lines (5-11). During the investigation, some sewer manholes were observed to be inaccessible due to being paved over with asphalt/concrete, having caved in, or containing debris such as dirt and concrete. In the load line areas where the buildings to provide context, necessitating the use of a GPS system. Overall, both the sanitary and storm sewers were observed to be largely free of explosive contamination, and no accumulations of explosives sediment that may pose an explosion hazard were observed.

### 2.2 CONTAMINANTS

Table 2-1 lists contaminants known to occur in sewer and outfall sediment and sewer water. Inclusion in this table indicates the potential to encounter a contaminant during sampling activities, but it does not necessarily indicate that the contaminant is present in sufficient quantity to pose a health risk to workers.

| Chemical                              | Units        | Maximum Detect <sup>a</sup> |  |  |
|---------------------------------------|--------------|-----------------------------|--|--|
|                                       | Sewer Sedim  | ent                         |  |  |
| Metals                                |              |                             |  |  |
| Aluminum                              | mg/kg        | 21,600                      |  |  |
| Antimony                              | mg/kg        | 7,150                       |  |  |
| Arsenic                               | mg/kg        | 157                         |  |  |
| Barium                                | mg/kg        | 2,030                       |  |  |
| Cadmium                               | mg/kg        | 11.2                        |  |  |
| Chromium                              | mg/kg        | 2,380                       |  |  |
| Cobalt                                | mg/kg        | 79                          |  |  |
| Copper                                | mg/kg        | 2,540                       |  |  |
| Lead                                  | mg/kg        | 14,600                      |  |  |
| Manganese                             | mg/kg        | 34,000                      |  |  |
| Mercury                               | mg/kg        | 110                         |  |  |
| Silver                                | mg/kg        | 393                         |  |  |
| Thallium                              | mg/kg        | 3.6                         |  |  |
| Vanadium                              | mg/kg        | 56                          |  |  |
| Zinc                                  | mg/kg        | 2,480                       |  |  |
| <b>Organics - Explosives</b>          |              |                             |  |  |
| 2,4,6-Trinitrotoluene                 | mg/kg        | 68                          |  |  |
| 2-Amino-4,6-Dinitrotoluene            | mg/kg        | 8.9                         |  |  |
| 4-Amino-2,6-Dinitrotoluene            | mg/kg        | 22                          |  |  |
| RDX                                   | mg/kg        | 13                          |  |  |
| <b>Organics - Pesticides/Polychlo</b> | rinated Biph | enyls (PCBs)                |  |  |
| PCB-1254                              | mg/kg        | 31                          |  |  |
| Organics - Semivolatile Organ         | ic Compoun   | ds (SVOCs)                  |  |  |
| Benz(a)anthracene                     | mg/kg        | 10                          |  |  |
| Benzo(a)pyrene                        | mg/kg        | 3.5                         |  |  |
| Benzo(b)fluoranthene                  | mg/kg        | 5.5                         |  |  |
| Dibenz(a,h)anthracene                 | mg/kg        | 0.61                        |  |  |
| Indeno(1,2,3-cd)pyrene                | mg/kg        | 1.8                         |  |  |
|                                       | Sewer Wate   | er                          |  |  |
| Anions                                |              |                             |  |  |
| Nitrate                               | mg/L         | 2,600                       |  |  |
| Metals                                | - <b>I</b>   |                             |  |  |
| Antimony                              | mg/L         | 0.0053                      |  |  |
| Lead                                  | mg/L         | 2.2                         |  |  |
| Manganese                             | mg/L         | 3.17                        |  |  |
| Thallium                              | mg/L         | 0.0019                      |  |  |
| Organics - Explosives                 | <u> </u>     |                             |  |  |
| 2,4,6-Trinitrotoluene                 | mg/L         | 0.37                        |  |  |
| 2,4-Dinitrotoluene                    | mg/L         | 0.0028                      |  |  |
| 2-Amino-4,6-Dinitrotoluene            | mg/L         | 0.19                        |  |  |
| 4-Amino-2,6-Dinitrotoluene            | mg/L         | 0.26                        |  |  |
| RDX                                   | mg/L         | 0.69                        |  |  |

Table 2-1. Maximum Concentrations of Constituents of Potential Concern in Sewer Sediment and Water

| Chemical                                               | Units         | Maximum Detect <sup>a</sup> |  |  |
|--------------------------------------------------------|---------------|-----------------------------|--|--|
| Organics - Pesticides/Polychlorinated Biphenyls (PCBs) |               |                             |  |  |
| Heptachlor epoxide mg/L 0.00075                        |               |                             |  |  |
| Organics - Semivolatile Organ                          | ic Compoun    | eds (SVOCs)                 |  |  |
| Benz(a)anthracene                                      | mg/L          | 0.0014                      |  |  |
| Benzo(a)pyrene                                         | mg/L          | 0.0018                      |  |  |
| Benzo(b)fluoranthene                                   | mg/L          | 0.002                       |  |  |
| Benzo(k)fluoranthene                                   | mg/L          | 0.00012                     |  |  |
| Bis(2-ethylhexyl)phthalate                             | mg/L          | 0.01                        |  |  |
| Chrysene                                               | mg/L          | 0.0016                      |  |  |
| Dibenz(a,h)anthracene                                  | mg/L          | 0.00042                     |  |  |
| Indeno(1,2,3-cd)pyrene                                 | mg/L          | 0.001                       |  |  |
| Organics - Volatile Organic Co                         | ompounds (    | VOCs)                       |  |  |
| Trichloroethene                                        | mg/L          | 0.0021                      |  |  |
| 6                                                      | Dutfall Sedin | nent                        |  |  |
| Metals                                                 |               |                             |  |  |
| Antimony                                               | mg/kg         | 8,120                       |  |  |
| Arsenic                                                | mg/kg         | 36.5                        |  |  |
| Barium                                                 | mg/kg         | 1,060                       |  |  |
| Chromium                                               | mg/kg         | 4,000                       |  |  |
| Chromium, hexavalent                                   | mg/kg         | 11                          |  |  |
| Cobalt                                                 | mg/kg         | 115                         |  |  |
| Copper                                                 | mg/kg         | 1,070                       |  |  |
| Lead                                                   | mg/kg         | 24,800                      |  |  |
| Manganese                                              | mg/kg         | 2,750                       |  |  |
| Mercury                                                | mg/kg         | 2.8                         |  |  |
| Thallium                                               | mg/kg         | 0.93                        |  |  |
| Organics - Explosives                                  |               |                             |  |  |
| 2-Amino-4,6-dinitrotoluene                             | mg/kg         | 5                           |  |  |
| 4-Amino-2,6-Dinitrotoluene                             | mg/kg 6.5     |                             |  |  |
| Organics - Pesticides/Polychlo                         | rinated Biph  | nenyls (PCBs)               |  |  |
| PCB-1254                                               | mg/kg         | 36                          |  |  |
| Organics - Semivolatile Organic Compounds (SVOCs)      |               |                             |  |  |
| Benzo(a)pyrene                                         | mg/kg         | 0.18                        |  |  |

 Table 2-1. Maximum Concentrations of Constituents of Potential Concern in Sewer Sediment and Water (continued)

<sup>a</sup>Chemicals listed are historical data which exceed the screening levels. <sup>a</sup>Screening levels are based on the Draft Facility-Wide Cleanup Goal for Hazard Quotient (HQ)=0.1 and Carcinogenic Risk=1E-6. Where background values were higher than the cleanup goal (HQ=0.1/R=1E-6), the background value is utilized as the screening level.

### 3.0 HAZARD/RISK ANALYSIS

The purpose of the task hazard/risk analysis is to identify and assess potential hazards that may be encountered by personnel, and to prescribe required controls. Table 3-1, a general checklist of hazards that may be posed by this project, indicates whether a particular major type of hazard is present. If additional tasks or significant hazards are identified during the work, this document will be modified by addendum or field change order to include the additional information. Confined space entry is not anticipated for this project. However if it is required, an additional addendum to the FWSHP will be submitted in conformance with the requirements of 29 *CFR* 1910.146 and EM 385-1-1 Section O6I.

| Yes | No | Hazard                                                           |
|-----|----|------------------------------------------------------------------|
|     | Х  | Confined space entry                                             |
| Х   |    | Heavy equipment (drill rigs, backhoe)                            |
| X   |    | Fire and explosion (fuels)                                       |
| Х   |    | Electrical shock (utilities and tools)                           |
| Х   |    | Exposure to chemicals (contaminants and chemical tools)          |
| X   |    | Temperature extremes                                             |
| X   |    | Biological hazards (poison ivy, Lyme disease, West Nile disease) |
| X   |    | Noise (drill rig)                                                |
| Х   |    | MEC (potential to encounter unexploded ordnance)                 |

MEC = munitions and explosives of concern

Specific tasks are as follows:

- Visual inspection of sewer structures;
- Sewer water and sediment sampling collection;
- Video survey of inactive storm and sanitary sewer lines, and
- Soil boring installation and sampling.

#### 3.1 TASK-SPECIFIC HAZARD ANALYSIS

Table 3-2 presents task-specific hazards, relevant hazard controls, and required monitoring, if appropriate, for all of the planned tasks.

### **3.2 POTENTIAL EXPOSURES**

Table 3-3 contains information on the reagents and chemicals that will be used for this project. Sewer water, sewer sediment, soil and groundwater contaminants are possible, but unlikely. Exposure to chemical tools, such as corrosive sample preservatives, field laboratory reagents, or flammable fuels, is a possibility and will be controlled through standard safe handling practices.

#### Table 3-2. Hazards Analysis

| Safety and Health Hazards           | Controls                                                                                  | Monitoring Requirements       |  |
|-------------------------------------|-------------------------------------------------------------------------------------------|-------------------------------|--|
| Mobilize to Work Site               |                                                                                           |                               |  |
| Traffic accident                    | Compliance with SAIC E2I EH&S Procedure 110, Vehicle Operation (valid driver's            | None                          |  |
|                                     | license, seat belt use, routine vehicle inspections, no cell phone use while driving).    |                               |  |
| Vi                                  | sual Inspection, Sampling of Sanitary and Storm Sewer Structures and Video Survey         |                               |  |
| Vehicle accidents                   | Compliance with SAIC E2I EH&S Procedure 110 "Vehicle Operation" to include                | Verification of valid drivers |  |
|                                     | verification of current drivers licenses, use of seat belts when vehicle is in motion,    | licenses by FM                |  |
|                                     | daily (undocumented) vehicle safety inspection, compliance with applicable laws           |                               |  |
|                                     | and regulations, and defensive driving.                                                   |                               |  |
| Lifting (musculoskeletal injuries)  | Level D PPE: long pants, shirts with sleeves, safety glasses, and safety boots. If        | Daily site safety inspections |  |
| hazards                             | equipment is to be moved, an evaluation of potential pinch points and/or weight           |                               |  |
|                                     | strain will be conducted. Additional help will be obtained by workers or mechanical       |                               |  |
|                                     | assistance used on-site if equipment to be moved is unwieldy, has a weight >50 lbs,       |                               |  |
|                                     | or has to be moved by maneuvering through awkward positioning. Manhole hooks              |                               |  |
|                                     | will be used to slide all lids open. Compliance with SAIC E2I EH&S Procedures 150         |                               |  |
|                                     | and 230.                                                                                  |                               |  |
| Unauthorized personnel in work area | Level D PPE: long pants, shirts with sleeves, safety glasses, and safety boots.           | Daily site safety inspections |  |
|                                     | Establish an exclusion zone boundary that unauthorized personnel can not cross.           |                               |  |
| Falls into Uncovered Manholes       | The buddy system will be used while locating manholes. Watch footing and stop             | Daily site safety inspections |  |
|                                     | walking while looking around or at field maps. Mark all uncovered manholes with           |                               |  |
|                                     | caution tape and record locations on field notes and maps.                                |                               |  |
| Slips/Trips                         | Clear area of all unnecessary equipment and slip/trip hazards. Proper housekeeping.       | Daily site safety inspections |  |
| Noise                               | None, unless SSHO determines that equipment potentially exceeds 85 dBA.                   | Daily site safety inspection  |  |
| Fire (fuels)                        | Fuel stored in safety cans with flame arresters, no ignition sources within 50 ft of open | Daily site safety inspections |  |
| -                                   | manholes, and fire extinguishers kept in immediate work area. Compliance with SAIC        |                               |  |
|                                     | E2I EH&S Procedure 260.                                                                   |                               |  |

| Safety and Health Hazards        | Controls                                                                                                                                                           | Monitoring Requirements            |
|----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|
| Exposure to chemicals            | Level D PPE, including nitrile or PVC gloves, to handle potentially contaminated material. Minimal contact, wash face and hands prior to taking anything by mouth. | Daily site safety inspections      |
|                                  | Hazardous waste site operations training and medical clearance required by site                                                                                    | PID monitoring if prior            |
|                                  | workers. Fifteen-minute eyewash within 100 ft when pouring corrosive sample                                                                                        | monitoring during soil boring      |
|                                  | preservatives; eyewash bottle within 10 ft when adding water to pre-preserved sample                                                                               | indicated a potential for exposure |
|                                  | containers. Site training must include hazards and controls of exposure to                                                                                         |                                    |
|                                  | contaminants and chemicals used on-site. MSDSs for chemical tools kept on-site. All                                                                                |                                    |
|                                  | chemical containers will have contents and hazards labeled.                                                                                                        |                                    |
| Contact with MEC                 | Pre-entry screening survey by MEC Avoidance Subcontractor. On-site training in                                                                                     | Visual and instrument surveys by   |
|                                  | ordnance recognition for all field personnel. Continuous escort by MEC Avoidance                                                                                   | MEC Avoidance Subcontractor        |
|                                  | Subcontractor in areas with a potential to encounter MEC. Withdrawal of all SAIC                                                                                   |                                    |
|                                  | and subcontractor personnel from immediate area and field marking of suspect area if                                                                               |                                    |
|                                  | MEC is discovered. Compliance with SAIC E2I EH&S Procedure 120.                                                                                                    |                                    |
| Electrical shock                 | GFCI for all electrical hand tools. Compliance with SAIC E2I EH&S Procedure 190.                                                                                   | Daily safety inspection            |
| Temperature stress               | If temperature is above 70°F or below 40°F, administrative controls will be                                                                                        | Temperature measurements at        |
|                                  | implemented (cooled or warmed drinks, routine breaks in heated or shaded area, and                                                                                 | least twice daily                  |
|                                  | provisions for emergency heating or cooling). Administrative controls (see Section                                                                                 |                                    |
|                                  | 8.0 of FWSHP). Cooled (shaded) or warmed break area depending on the season.                                                                                       | Pulse rates at the start of each   |
|                                  | Routine breaks in established break area (see Section 8.0 of FWSHP). Chilled drinks                                                                                | break if wearing impermeable       |
|                                  | if temperature exceeds 70°F.                                                                                                                                       | clothing                           |
| Severe weather                   | Locate nearest severe weather shelter/strong structure before beginning fieldwork.                                                                                 | Visual observation for lightning,  |
|                                  | Suspend fieldwork if lighting within 10 miles of site or tornado warning issued. Do                                                                                | strong winds, or heavy rain        |
|                                  | not work in areas subject to flash flooding (arroyo, ditch, etc.) if rain is forecast in                                                                           |                                    |
|                                  | immediate area or upstream of site.                                                                                                                                | Check forecast prior to starting   |
|                                  |                                                                                                                                                                    | work daily.                        |
| Biological hazards (bees, ticks, | PPE (boots and work clothes). Insect repellant on boots, pants, and elsewhere, as                                                                                  | Visual survey                      |
| Lyme disease, histoplasmosis,    | necessary, to repel ticks and mosquitoes. Pant legs tucked into boots or otherwise                                                                                 |                                    |
| wasps, snakes, West Nile Virus)  | closed to minimize tick entry. Inspect for ticks during the day and at the end of each                                                                             |                                    |
|                                  | workday (see Section 9.0 of FWSHP). Avoidance of accumulations of bird or bat                                                                                      |                                    |
|                                  | droppings (see Section 9.0 of FWSHP).                                                                                                                              |                                    |

| Safety and Health Hazards           | Controls                                                                                  | Monitoring Requirements           |
|-------------------------------------|-------------------------------------------------------------------------------------------|-----------------------------------|
| Fall protection                     | Sites with grated lids that do not need to be opened will not require fall protection.    | Daily site safety inspections and |
|                                     | Sites with lids that need to be removed that are $\geq 6$ ft will require compliance with | depth measurements                |
|                                     | SAIC E2I EH&S 170, Fall Protection. Lids will either be opened no more than               |                                   |
|                                     | necessary to perform sampling but not far enough to enter, or the lids will be opened     |                                   |
|                                     | and immediately covered with a grate that will prevent falls but allow personnel to       |                                   |
|                                     | perform sampling. Safety lines will be tied to equipment that is lowered into             |                                   |
|                                     | manholes for easy retrieval if dropped.                                                   |                                   |
|                                     | Soil Boring and Soil Sampling using hand auger or DPT                                     |                                   |
| Lifting (musculoskeletal injuries)  | Level D PPE: long pants, shirts with sleeves, safety glasses, safety boots, work          | Daily site safety inspections     |
| hazards                             | gloves for material handling plus hard hat (see Section 5.0 of FWSHP). If                 |                                   |
|                                     | equipment is to be moved, an evaluation of potential pinch points and/or weight           |                                   |
|                                     | strain will be conducted. Additional help will be obtained by workers or mechanical       |                                   |
|                                     | assistance used on-site if equipment to be moved is unwieldy, has a weight >50 lbs        |                                   |
|                                     | or has to be moved by maneuvering through awkward positioning. Compliance with            |                                   |
|                                     | SAIC E2I EH&S Procedures 150 and 230.                                                     |                                   |
| Slips/Trips                         | Clear area of all unnecessary equipment and slip/trip hazards. Proper housekeeping.       | Daily site safety inspections     |
| Unauthorized personnel in work area | Exclusion zone at least equal to mast height if there is any potential for unauthorized   | Daily site safety inspections     |
|                                     | entry.                                                                                    |                                   |
| Rotating and/or moving equipment.   | Level D PPE: long pants, shirts with sleeves, safety glasses, safety boots, work          | Daily site safety inspections     |
|                                     | gloves for material handling plus hard hat (see Section 5.0 of FWSHP). Buddy              |                                   |
|                                     | system. Site-specific training. Proper housekeeping. No employees under lifted            | Weekly drill rig inspections      |
|                                     | loads. At least two functional kill switches. Functional backup alarm. Drill rig          |                                   |
|                                     | manual on-site. Only experienced operators. Rigs will be operated per                     |                                   |
|                                     | subcontractor's standard procedures or per manufacturer's directions; all hoses and       |                                   |
|                                     | cables will be inspected daily. At no time should anyone work in close proximity to       |                                   |
|                                     | the rotating augers. Exclusion zone at least equal to mast height if there is any         |                                   |
|                                     | potential for unauthorized entry. Compliance with SAIC E2I EH&S Procedures 150            |                                   |
|                                     | and 230.                                                                                  |                                   |

| Safety and Health Hazards                                        | Controls                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Monitoring Requirements                                         |  |
|------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|--|
| Cuts/contusions                                                  | Use dedicated tube cutter or hooked safety blades when opening polymer sample<br>tubes. Wear heavy cut resistant gloves when opening polymer sample tubes. Keep<br>fingers from between split spoon halves. Compliance with SAIC E2I EH&S<br>Procedure 230.                                                                                                                                                                                                                                                                                                               | Daily site safety inspections                                   |  |
| Noise                                                            | Hearing protection $\geq$ NRR 25 within 7.6 m (25 ft) of rig unless rig-specific monitoring indicates noise exposure of less than 85 dBA                                                                                                                                                                                                                                                                                                                                                                                                                                  | Daily site safety inspections                                   |  |
| Fire (vehicle fuels or subsurface contaminants)                  | Fuels stored in safety cans with flame arrestors. Bonding (metal to metal) and grounding during fuel transfers. Fuel storage areas marked with no smoking or open flames signs. Fire extinguishers in all fuel use areas. Compliance with SAIC E2I EH&S Procedure 260.                                                                                                                                                                                                                                                                                                    | Daily site safety inspections                                   |  |
| Contact with MEC                                                 | Pre-entry screening survey by MEC Avoidance Subcontractor. On-site training in ordnance recognition for all field personnel. Continuous escort by MEC Avoidance Subcontractor in areas with a potential to encounter MEC. Clearance of sites by UXO technicians for intrusive work. Downhole monitoring every 2 to 3 ft until cleared for continuous drilling by MEC Avoidance Subcontractor. Withdrawal of all SAIC and subcontractor personnel from immediate area and field marking of suspect area if MEC is discovered. Compliance with SAIC E2I EH&S Procedure 120. | Visual and instrument surveys by<br>MEC Avoidance Subcontractor |  |
| Subsurface utilities (electric shock, fire, damage to utilities) | FM will ensure that each boring location has been cleared to preclude contact with buried utilities through compliance with SAIC E2I EH&S Procedure 130.                                                                                                                                                                                                                                                                                                                                                                                                                  | Daily site safety inspections and completion of digging permit  |  |
| Exposure to chemicals                                            | Level D PPE plus nitrile or equivalent gloves for contact with contaminated material. Wash face and hands prior to taking anything by mouth. Stay upwind of any dust-generating activities. Hazardous waste site operations training and medical clearance. Site training must include hazards and controls for site contaminants and all chemicals used on-site. MSDSs for chemical tools on-site. Chemical containers labeled to indicate contents and hazard.                                                                                                          | PID or other sampling, as appropriate                           |  |

| Safety and Health Hazards                                                                            | and Health Hazards Controls                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                              |  |
|------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|--|
| Temperature extremes                                                                                 | Administrative controls (see Section 8.0 of FWSHP). Cooled (shaded) or warmed<br>break area depending on the season. Routine breaks in established break area (see<br>Section 8.0 of FWSHP). Chilled drinks if temperature exceeds 70°F                                                                                                                                                                                                                                                                                                    | Temperature measurements at least twice per day                              |  |
|                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Pulse rates at the start of each<br>break if wearing impermeable<br>clothing |  |
| Biological hazards (bees, ticks,<br>Lyme disease, histoplasmosis,<br>wasps, snakes, West Nile Virus) | PPE (boots and work clothes). Insect repellant on boots, pants, and elsewhere, as<br>necessary, to repel ticks and mosquitoes. Pant legs tucked into boots or otherwise closed<br>to minimize potential for tick entry. Snake chaps if working in overgrown areas. Inspect<br>for ticks during the day and at the end of each workday (see Section 9.0 of FWSHP).<br>Avoidance of accumulations of bird or bat droppings (see Section 9.0 of FWSHP)                                                                                        | Visual survey                                                                |  |
| Electric shock                                                                                       | Identification and clearance of overhead and underground utilities. GFCI required for electric hand tools. Note – one live overhead electrical line is present at Load Line 2. Compliance with SAIC E2I EH&S Procedure 190.                                                                                                                                                                                                                                                                                                                | Visual of all work areas                                                     |  |
|                                                                                                      | Investigation-Derived Waste Handling                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                              |  |
| Lifting (musculoskeletal injuries)<br>hazards                                                        | Level D PPE: long pants, shirts with sleeves, safety glasses, safety boots, work<br>gloves for material handling (see Section 5.0 of FWSHP). If equipment is to be<br>moved, an evaluation of potential pinch points and/or weight strain will be<br>conducted. Additional help will be obtained by workers or mechanical assistance<br>used on-site if equipment to be moved is unwieldy, has a weight >50 lbs or has to be<br>moved by maneuvering through awkward positioning. Compliance with SAIC E2I<br>EH&S Procedures 150 and 230. | Daily site safety inspections                                                |  |
| Slips/Trips                                                                                          | Clear area of all unnecessary equipment and slip/trip hazards. Proper housekeeping.                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Daily site safety inspections                                                |  |
| Exposure to chemicals                                                                                | Level D PPE plus nitrile or equivalent gloves for contact with contaminated<br>material. Wash face and hands prior to taking anything by mouth. Hazardous waste<br>site operations training and medical clearance. Site training must include hazards<br>and controls for exposure to site contaminants and chemicals used on-site                                                                                                                                                                                                         | Daily safety inspections                                                     |  |

| Safety and Health Hazards         | Controls                                                                                | Monitoring Requirements          |  |
|-----------------------------------|-----------------------------------------------------------------------------------------|----------------------------------|--|
| Vehicle accidents                 | Compliance with SAIC E2I EH&S Procedure 110 "Vehicle Operation" to include              | Verification of valid drivers    |  |
|                                   | verification of current drivers licenses, use of seat belts when vehicle is in motion,  | licenses by FM                   |  |
|                                   | daily (undocumented) vehicle safety inspection, compliance with applicable laws         |                                  |  |
|                                   | and regulations, and defensive driving.                                                 |                                  |  |
| Drum monitoring and sampling      | Level D PPE: long pants, shirts with sleeves, safety glasses, safety shoes or boots,    | Daily safety inspections of      |  |
|                                   | heavy-duty gloves for materials handling (see Section 5.0 of FWSHP). Buddy system.      | operations                       |  |
|                                   | Site-specific training. Proper housekeeping. Unnecessary personnel will stay well clear |                                  |  |
|                                   | of operating equipment. Functional back-up alarm on fork trucks, Bobcats, trucks, etc.  | Daily inspection of equipment to |  |
|                                   | Ravenna O&M contractor personnel will provide any required fork truck services in the   | verify brakes and operating      |  |
|                                   | IDW staging area (Building 1036). IDW movement from field sites to Building 1036        | systems are in proper working    |  |
|                                   | will be conducted by the drilling subcontractor using a backhoe equipped with forks and | condition                        |  |
|                                   | drum dollies. No personnel allowed under lifted loads. Hazardous waste safety training. |                                  |  |
|                                   | Compliance with EM 385-1-1 Sections 14 and 16.                                          |                                  |  |
| Fire (vehicle fuels and flammable | Fuels stored in safety cans with flame arrestors. Bonding (metal to metal) and          | Daily safety inspection          |  |
| contaminants)                     | grounding during fuel transfers. Fuel storage areas marked with no smoking or open      |                                  |  |
|                                   | flames signs. Gasoline-powered equipment will be shut down and allowed to cool          |                                  |  |
|                                   | for 5 min before fueling. Fire extinguishers in all fuel use areas. Compliance with     |                                  |  |
|                                   | SAIC E2I EH&S Procedure 260.                                                            |                                  |  |
| Noise                             | Hearing protection within 7.6 m (25 ft) of any noisy drum moving equipment unless       | Daily safety inspections         |  |
|                                   | equipment-specific monitoring indicates exposures less than 85 dBA                      |                                  |  |
| Biological hazards (bees, ticks,  | PPE (boots, work clothes). Insect repellant on pants, boots, and elsewhere, as          | Visual survey                    |  |
| Lyme disease, histoplasmosis,     | necessary, to repel ticks and mosquitoes. Pant legs tucked into boots or otherwise      |                                  |  |
| wasps, snakes, West Nile Virus)   | closed to minimize tick entry. Snake chaps if working in overgrown areas. Inspect       |                                  |  |
|                                   | for ticks during the day and at the end of each workday (see Section 9.0 of FWSHP).     |                                  |  |
|                                   | Avoidance of accumulations of bird or bat droppings (see Section 9.0 of FWSHP)          |                                  |  |
| Electric shock                    | Identification and clearance of overhead utilities. GFCI for all electrical hand tools. | Visual survey of all work areas  |  |
|                                   | Compliance with SAIC E2I EH&S Procedure 190.                                            |                                  |  |

| Safety and Health Hazards          | fety and Health Hazards Controls                                                         |                                   |
|------------------------------------|------------------------------------------------------------------------------------------|-----------------------------------|
| Temperature extremes               | Administrative controls (see Section 8.0 of FWSHP). Cooled (shaded) or warmed            | Temperature measurements at       |
|                                    | break area depending on the season. Routine breaks in established break area (see        | least twice daily                 |
|                                    | Section 8.0 of FWSHP). Chilled drinks if temperature exceeds 70°F.                       |                                   |
|                                    |                                                                                          | Pulse rates at the start of each  |
|                                    |                                                                                          | break if wearing impermeable      |
|                                    |                                                                                          | clothing                          |
| Severe weather                     | Locate nearest severe weather shelter/strong structure before beginning fieldwork.       | Visual observation for lightning, |
|                                    | Suspend fieldwork if lighting within 10 miles of site or tornado warning issued. Do      | strong winds, or heavy rain       |
|                                    | not work in areas subject to flash flooding (arroyo, ditch, etc.) if rain is forecast in |                                   |
|                                    | immediate area or upstream of site.                                                      | Check forecast prior to starting  |
|                                    |                                                                                          | work daily.                       |
| l                                  | Equipment Decontamination (Soap and Water Washing, HCl, and Methanol Rinse)              |                                   |
| General equipment decontamination  | Level D PPE plus nitrile or PVC gloves (see Section 5.0 of FWSHP). Face shield           | Daily safety inspections          |
| hazards (hot water, slips, falls,  | and Saranax or rain suit when operating steam washer. Site-specific training. Proper     |                                   |
| equipment handling)                | housekeeping                                                                             |                                   |
| Fire (decontamination solvents and | Flammable material stored in original containers or in safety cans with flame            | Daily safety inspection           |
| gasoline)                          | arrestors. Fire extinguisher kept near decontamination area. Compliance with SAIC        |                                   |
|                                    | E2I EH&S Procedure 260.                                                                  |                                   |
| Exposure to chemicals              | Level D PPE plus nitrile or equivalent gloves for contact with contaminated material     | None                              |
|                                    | and Decontamination fluids (HCL and Methanol). Wash face and hands prior to              |                                   |
|                                    | taking anything by mouth. Minimal contact. Hazardous waste site operations               |                                   |
|                                    | training and medical clearance. Site training must include hazards and controls for      |                                   |
|                                    | exposure to site contaminants and chemicals used on-site. MSDSs on-site. All             |                                   |
|                                    | chemical containers labeled to indicate contents and hazard. 15-minute eyewash           |                                   |
|                                    | must be within 20 feet if pouring corrosives.                                            |                                   |

| Safety and Health Hazards               | Controls                                                                          | Monitoring Requirements          |  |
|-----------------------------------------|-----------------------------------------------------------------------------------|----------------------------------|--|
| Temperature extremes                    | Administrative controls (see Section 8.0 of FWSHP). Cooled (shaded) or warmed     | Temperature measurements at      |  |
|                                         | break area depending on the season. Routine breaks in established break area (see | least twice a day                |  |
|                                         | Section 8.0 of FWSHP). Chilled drinks if temperature exceeds 70°F.                |                                  |  |
|                                         |                                                                                   | Pulse rates at the start of each |  |
|                                         |                                                                                   | break if wearing impermeable     |  |
|                                         |                                                                                   | clothing                         |  |
| EH&S = Environmental, Health and Safety | y PVC = polyvinyl chloride                                                        |                                  |  |
| FM = Field Manager                      | MSDS = Material Safety Data Sheet RVAAP = Ravenna Arm                             | y Ammunition Plant               |  |

FWSHP = Facility Wide Safety and Health Plan

GFCI = ground-fault circuit interrupter

IDW = investigation-derived waste

MEC = munitions and explosives of concern

PVC = polyvinyl chloride MSDS = Material Safety Data Sheet NRR= Noise Reduction Rating O&M = operations and maintenance PID = photoionization detector PPE = personal protective equipment

RVAAP = Ravenna Army Ammunition Plant SAIC = Science Applications International Corporation UXO = unexploded ordnance

#### Table 3-3. Potential Exposures

|                               |                                | Health Effects/                       | Chemical and Physical               | Exposure   |
|-------------------------------|--------------------------------|---------------------------------------|-------------------------------------|------------|
| Chemical                      | TLV/PEL/STEL/IDLH <sup>a</sup> | Potential Hazards <sup>b</sup>        | <b>Properties</b> <sup>b</sup>      | Route(s)   |
| Hydrochloric acid             | TLV: 2 ppm ceiling             | Irritation of eyes, skin, respiratory | Liquid; VP: fuming;                 | Inhalation |
| (potentially used to preserve | IDLH: 50 ppm                   | system                                | IP: 12.74 eV; FP: none              | Ingestion  |
| water samples or for          |                                |                                       |                                     | Contact    |
| equipment                     |                                |                                       |                                     |            |
| decontamination)              |                                |                                       |                                     |            |
| Isopropyl alcohol             | TLV/TWA: 200 ppm               | Irritation of eyes, skin, respiratory | Colorless liquid with alcohol odor; | Inhalation |
| (potentially used for         | STEL: 500 ppm                  | system; drowsiness; headache          | VP: 33 mm; IP: 10.10 eV;            | Ingestion  |
| equipment                     | IDLH: 2,000 ppm                |                                       | FP: 53°F                            | Contact    |
| decontamination)              |                                |                                       |                                     |            |
| Methanol (potentially used    | TLV/TWA: 200 ppm               | Irritation of eyes, skin, respiratory | Liquid; VP: 96 mm;                  | Inhalation |
| for equipment                 | Skin notation                  | system; headache; optic nerve         | IP: 10.84 eV; FP: 52°F              | Absorption |
| decontamination)              | IDLH: 6,000 ppm                | damage                                |                                     | Ingestion  |
|                               |                                |                                       |                                     | Contact    |
| Gasoline (used for fuel)      | TLV/TWA: 300 ppm, A2           | Potential carcinogen per NIOSH,       | Liquid with aromatic odor;          | Inhalation |
|                               | IDLH: Ca                       | dizziness, eye irritation, dermatitis | FP: -45°F; VP: 38-300 mm            | Ingestion  |
|                               |                                |                                       |                                     | Absorption |
|                               |                                |                                       |                                     | Contact    |
| Liquinox (used for            | TLV/TWA: None                  | Inhalation may cause local irritation | Yellow odorless liquid              | Inhalation |
| decontamination)              |                                | to mucus membranes                    | (biodegradable cleaner);            | Ingestion  |
|                               |                                |                                       | FP: NA                              |            |

<sup>a</sup>From 2008 Threshold Limit Values, American Conference of Governmental Industrial Hygienists.

<sup>b</sup>From NIOSH Guide to Chemical Hazards web site.

A2 = suspected human carcinogen

FP = flash point

IDLH = immediately dangerous to life and health

IP = ionization potential

NIOSH = National Institute for Occupational Safety and Health

ppm = parts per million STEL = short-term exposure limit TLV = threshold limit value TWA = time-weighted average VP = vapor pressure A qualified unexploded ordnance (UXO) subcontractor, approved by the USACE Louisville District, will provide munitions and explosives of concern (MEC) avoidance support for this project. The subcontractor's UXO technician will employ a Schonstedt Model GA 52 and/or GA-72 (or equivalent) magnetic locator for surface anomaly surveys, and a Schonstedt Model MG-220 (or equivalent) magnetic gradiometer for any downhole surveys. All field activities will be conducted in accordance with SAIC E2I EH&S 120 and the MEC Avoidance Work Plan.

Previous investigations of the sewers focused on explosives hazards and indicate that there has been no evidence of accumulations that could pose an explosives hazard. UXO support will only be required during activities at areas where sewers occur within boundaries of Military Munitions Response Program (MMRP) Munitions Response Sites:

- Load Line 1 (MRS RVAAP-008-R-01);
- Load Line 6/Firestone Test Facility (MRS RVAAP-033-R-01); and
- Atlas Scrap Yard (MRS RVAAP-050-R-01).

The UXO Team Leader will train all field personnel to recognize and stay away from propellants and MEC. Safety briefings for MEC avoidance will also be provided to all site personnel and site visitors. At all off-road access routes to the sampling locations, ground surface surveys will be conducted prior to entry using visual inspection and hand-held magnetometers. Surveys of ingress and egress routes will be at least twice as wide as the widest vehicle that will use the route (normally a minimum of 20 ft). A work area having a radius of approximately 100 ft will be surveyed around each sewer location. The UXO technician will clearly mark the boundaries of the cleared work area and access routes. If MEC is encountered at the ground surface, the approach path will be diverted away from the MEC, the area clearly marked with red flagging, and the area will be avoided. Any identified magnetic anomaly will also be clearly marked, and the anomaly will be avoided. The cleared approach paths will be the only ingress/egress routes to a particular sampling location.

At each staked sewer location, the UXO technician will use a magnetic gradiometer to clear the locations prior to commencing activities. The UXO technician will remain on-site and provide support to the project team until all access surveys are completed and the work areas are cleared as described above.

Should any MEC be discovered, it will be avoided. The UXO subcontractor will not be tasked with disposal of MEC under this specific task. The UXO technician will notify the SAIC Field Operations Manager (FOM), who will, in turn, contact the SAIC Project Manager (PM), USACE and RVAAP Environmental Coordinator, who will initiate the appropriate response actions.

# 5.0 STAFF ORGANIZATION, QUALIFICATIONS, AND RESPONSIBILITIES

This Section presents the personnel (and their associated telephone numbers) responsible for site safety and health and emergency response. Table 5-1 identifies the SAIC and subcontractor staff who will fill key roles. See the FWSHP for information on the roles and responsibilities of key positions.

| Position                            | Name                 | Phone        |
|-------------------------------------|----------------------|--------------|
| SAIC Health and Safety Manager      | Steve Davis CIH, CSP | 865-481-4755 |
| SAIC Project Manager                | Kevin Jago           | 865-481-4614 |
| SAIC Task Lead                      | MaryAnn Bogucki      | 865-481-4719 |
| SAIC Field Operations Manager       | TBD                  |              |
| SAIC Site Safety and Health Officer | TBD                  |              |

Subcontractor Site Safety and Health Officer will be SSHO for all remedial activities.

CIH= Certified Industrial Hygienist

CSP = Certified Safety Professional

MEC = munitions and explosives of concern

SAIC = Science Applications International Corporation

TBD = To be determined

# 6.0 TRAINING

Training requirements, from Section 4.0 of the FWSHP, are summarized in Table 6-1 and in Table 3-2.

|                                                            |              |              | Site Visitor     |
|------------------------------------------------------------|--------------|--------------|------------------|
| Training                                                   | Worker       | Supervisor   | (exclusion zone) |
| HAZWOPER (40-hr, 3-day OJT)                                | $\checkmark$ | $\checkmark$ | $\checkmark$     |
| HAZWOPER Annual Refresher (8 hr)                           |              | $\checkmark$ |                  |
| HAZWOPER Supervisors Training (8 hr)                       |              |              |                  |
| General Hazard Communication Training                      |              | $\checkmark$ |                  |
| Respiratory Protection Training                            | $\checkmark$ |              |                  |
| (required only if respirators are worn)                    |              |              |                  |
| Hearing Conservation Training (for workers in hearing      | $\checkmark$ |              | $\checkmark$     |
| conservation program)                                      |              |              |                  |
| Pre-entry Briefing                                         | $\checkmark$ | $\checkmark$ | $\checkmark$     |
| Site-Specific Hazard Communication (contained in pre-entry | $\checkmark$ |              |                  |
| briefing)                                                  |              |              |                  |
| Safety Briefing (daily and whenever conditions or tasks    | $\checkmark$ |              |                  |
| change)                                                    |              |              |                  |
| CPR and First Aid Training                                 | $\checkmark$ |              |                  |

 $\sqrt{1}$  = required.

HAZWOPER = Hazardous Waste Site Operations

OJT = on-the-job training

CPR = Cardio Pulmonary Resuscitation

General guidelines for selection and use of PPE are presented in the FWSHP. Specific PPE requirements for this work are presented in the hazard/risk analysis section (Section 3.0).

## 8.0 MEDICAL SURVEILLANCE

Medical surveillance requirements, as presented in Section 6.0 of the FWSHP, are summarized in Table 8-1.

| Baseline   | Routine                     | Overexposure             | Termination             |
|------------|-----------------------------|--------------------------|-------------------------|
| Prior to   | Every 12 months, unless     | Upon developing symptoms | Upon termination or re- |
| work       | greater frequency is deemed | or where exposure limits | assignment              |
| assessment | appropriate by attending    | have been exceeded or    |                         |
|            | physician. Not to exceed 2- | suspected to have been   |                         |
|            | year interval               | exceeded                 |                         |

 Table 8-1. Medical Surveillance Requirements

All medical exams shall include (see Section 6.2 of the Facility Wide Safety and Health Plan):

- Medical/work history;
- Physical exam by physician;
- Audiometry;
- Blood screening and blood count;
- Chest x-ray, as specified by physician;
- Electrocardiogram, as specified by physician;
- Spirometry; and
- Urinalysis.

Assessment of airborne chemical concentrations will be performed, as appropriate, to ensure that exposures do not exceed acceptable levels. Action levels, with appropriate responses, have been established for this monitoring. In addition to the specified monitoring, the SSHO may perform or require additional monitoring, such as organic vapor monitoring in the equipment decontamination area or personnel exposure monitoring for specific chemicals. The deployment of monitoring equipment will depend on the activities being conducted and the potential exposures. All personal exposure monitoring records will be maintained in accordance with 29 *Code of Federal Regulations* 1910.1020. The minimum monitoring requirements and action levels are presented in Table 9-1.

During sampling, it is anticipated a PID or equivalent will be used to perform air monitoring of the breathing zone when the COCs being evaluated pose a potential hazard, or where COCs have not been previously identified in an AOC. However, the SSHO will examine site conditions and will contact the Health and Safety Manager and initiate additional monitoring if there is any indication of a potential airborne exposure.

| Hazard or Measured     |                      |                                        |               |                                 |                         |
|------------------------|----------------------|----------------------------------------|---------------|---------------------------------|-------------------------|
| Parameter              | Area                 | Interval                               | Limit         | Action                          | Tasks                   |
| Airborne organics with | Breathing zone       | From 1 to 3 ft BGS and if site         | <5 ppm        | Level D                         | Drilling, hand          |
| PID or equivalent      | [14 in.] in front of | conditions, such as discolored soil or |               |                                 | auguring, and other     |
|                        | employee's           | chemical smells, indicate that         | >5 ppm        | Withdraw and evaluate           | intrusive work          |
|                        | shoulder             | monitoring is necessary                |               | • evaluate need for PPE         |                         |
|                        |                      |                                        |               | upgrade                         |                         |
|                        |                      |                                        |               | • identify contaminants         |                         |
|                        |                      |                                        |               | • notify project manager and    |                         |
|                        |                      |                                        |               | H&S manager                     |                         |
| Visible contamination  | All                  | Continuously                           | Visible       | Upgrade PPE to preclude         | All                     |
|                        |                      |                                        | contamination | contact; may include disposable |                         |
|                        |                      |                                        | of skin or    | coveralls boot covers, etc.     |                         |
|                        |                      |                                        | personal      |                                 |                         |
|                        |                      |                                        | clothing      |                                 |                         |
| Noise                  | All areas            | Any area where there is some doubt     | 85 dBA        | Require the use of hearing      | Hearing protection will |
|                        | perceived as         | about noise levels                     | And any area  | protection                      | be worn within the      |
|                        | noisy                |                                        | perceived as  |                                 | exclusion zone, around  |
|                        |                      |                                        | noisy         |                                 | power augers, or other  |
|                        |                      |                                        |               |                                 | motorized equipment     |

### Table 9-1. Monitoring Requirements and Action Limits

H&S = health and safety

PAH = polycyclic aromatic hydrocarbon

PID = photoionization detector

PPE = personal protective equipment

ppm = parts per million)

General requirements for heat/cold stress monitoring are contained in the FWSHP.

Standard operating safety procedures are described in the FWSHP.

Site control measures are described in the FWSHP. No formal site control is expected to be necessary for this work, as the work areas are somewhat remote and bystanders are not anticipated. The RVAAP installation is not open to the public, and only authorized personnel are allowed in the AOCs. If the SSHO determines that a potential exists for unauthorized personnel to approach within 25 ft of a work zone or otherwise be at risk due to proximity, then exclusion zones will be established as described in the FWSHP.

Personal hygiene and decontamination requirements are described in the FWSHP and in Section 2.0 of this addendum.

## **14.0 EMERGENCY PROCEDURES AND EQUIPMENT**

Emergency contacts, telephone numbers, directions to the nearest medical facility, and general procedures can be found in the FWSHP. All emergencies on-site will be coordinated first through **Guard Post 1** [(330) 358-2017] who will coordinate the response. The SAIC Field Operations Manager will remain in charge of all SAIC and subcontractor personnel during emergency activities. The SAIC field office will serve as the assembly point if it becomes necessary to evacuate one or more remedial locations. During mobilization, the SSHO will verify that the emergency information in the FWSHP is correct.

Each field team shall have a cellular phone and/or a 2-way radio capable of contacting Guard Post 1 for communications purposes.

During field operations all on-site personnel shall have CPR/first aid training.

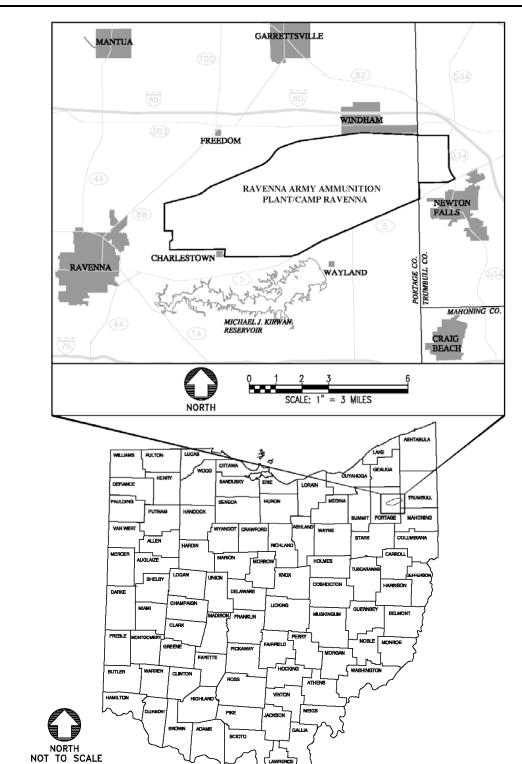
| Position                                   | Phone                                       |
|--------------------------------------------|---------------------------------------------|
| RVAAP Guard Post 1                         | (330) 358-2017                              |
| (Police, Fire, Emergency Medical)          |                                             |
| Hospital (Robinson Memorial, Ravenna)      | (330) 297-2449/0811                         |
| RVAAP Facility Manager                     |                                             |
| Mark Patterson                             | (330) 358-7311                              |
| RVAAP Operation and Maintenance Contractor |                                             |
| Jim McGee, PIKA International, Inc.        | (330) 358-3005                              |
| USACE                                      |                                             |
| Mark W. Nichter                            | (502) 315-6375                              |
| Camp Ravenna Garrison Commander            |                                             |
| LTC Ed Meade                               | (614) 336-6560                              |
| Ohio EPA, Eileen Mohr                      | Office: (330) 963-1221 Cell: (216) 401-8382 |
| SAIC Project Manager,                      |                                             |
| Kevin Jago                                 | (865) 481-4614                              |
| Jed Thomas                                 | Office: (330) 405-5802 Cell: (216) 214-2599 |
| SAIC Health and Safety Personnel,          |                                             |
| Steve Davis CIH, CSP                       | (865) 481-4755                              |
| Heather Miller                             | Office: (330) 405-5814 Cell: (330) 573-8571 |

### Table 14-1. Emergency Phone Numbers

RVAAP = Ravenna Army Ammunition Plant

USACE = U.S. Army Corps of Engineers

Ohio EPA = Ohio Environmental Protection Agency


SAIC = Science Applications International Corporation, Inc.

CIH= Certified Industrial Hygienist

CSP = Certified Safety Professional

Logs, reports, and record keeping requirements are described in the FWSHP.

- ACGIH (American Conference of Governmental Hygienists) 2008. Threshold Limit Values. 2008.
- Lakeshore Engineering Services, Inc., 2007. Final Project Completion Report for Explosive Evaluation of Sewers at Ravenna Army Ammunition Plant. November 2007.
- NIOSH (National Institute for Occupational Safety and Health) 2005. *NIOSH Pocket Guide to Chemical Hazards*. September 2005.
- USACE (U.S. Army Corps of Engineers). Safety and Occupational Health Requirements for Hazardous, Toxic, and Radioactive Waste (HTRW) and Ordnance and Explosive Waste (OEW) Activitie., ER-385-1-92.
- USACE Safety and Health Manua., EM-385-1-1-13.
- USACE 2001. Facility Wide Safety and Health Plan for Environmental Investigations at the Ravenna Army Ammunition Plant, Ravenna, Ohio, DACA62-00-D-0001, D.O. CY02. March 2001.
- USACE 2004. Facility-Wide Groundwater Monitoring Program for the Ravenna Army Ammunition Plant, Ravenna, Ohio, GS-10F-0350M, D.O. DACA27-03-F-0047. September 2004.
- USACE-CERL (U.S. Army Corps of Engineers Construction Engineering Research Laboratory) 2007. Summary of Findings, Ravenna Army Ammunition Plant Sewer System, ERDC-CERL. June 2007.



# **17.0 FACILITY AND HOSPITAL MAPS**

Figure 17-1. General Location and Orientation of the RVAAP/Camp Ravenna

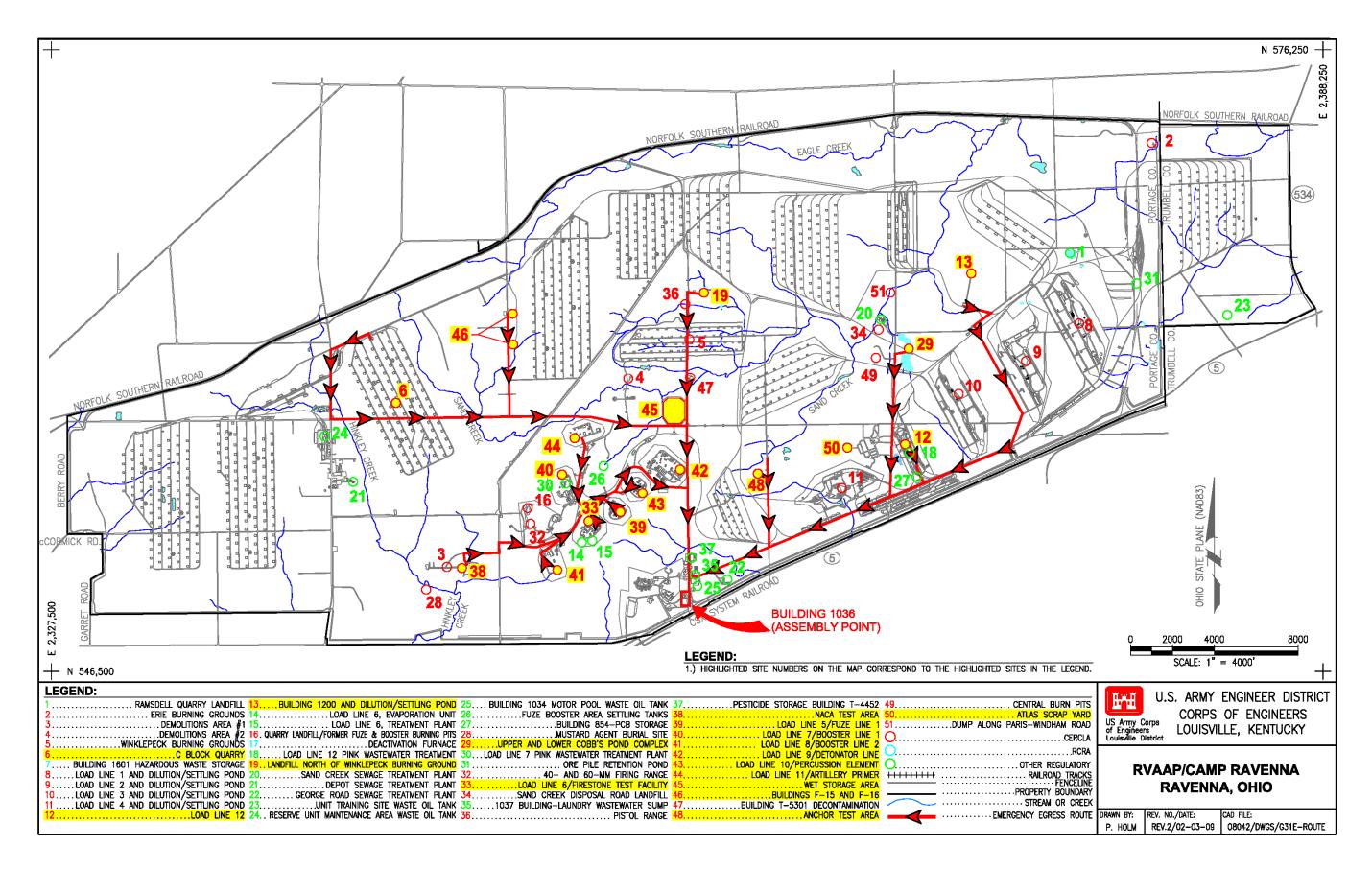



Figure 17-2. RVAAP/Camp Ravenna Site Map and Egress Route

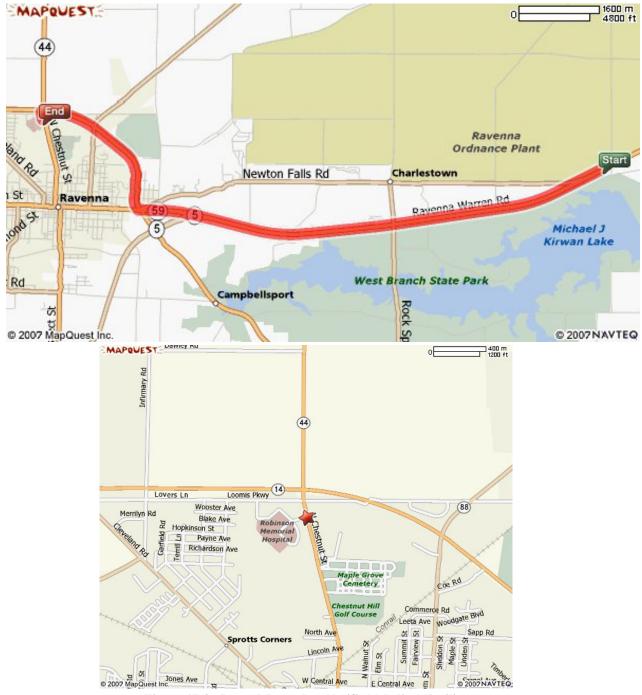



Figure 17-3. Route Map to Pre-Notified Medical Facility

Robinson Memorial Hospital 6847 N. Chestnut Street Ravenna, Ohio (330) 297-0811

Directions: West on State Route 5. Stay straight onto OH-59 West. Turn Right onto OH-14/OH-44. Turn Left onto North Chestnut St.

**Rev. 1 - Comment Response Meeting Resolution Minutes** 

Page 1 of 21

| Comment<br>Number | Page or<br>Sheet                                      | New Page<br>or Sheet | Comment                                                                                                                                                                     | Recommendation                                             | Response                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |
|-------------------|-------------------------------------------------------|----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
|                   | Ohio EPA, NEDO, DERR (Andrew Kocher and Bruce Miller) |                      |                                                                                                                                                                             |                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |
| O-1.              | Page 2-1,<br>Lines 12-18                              | Page 2-1             | The key to Table 2-1 has duplicate items (QA/QC, OE, CSP, and TBD).                                                                                                         | Please remove the duplicate items.                         | Agree. The duplicate entries which occur on lines 16 through 19 will be deleted as requested.                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |
| O-2.              | Page 3-4,<br>Figure 3-1                               | Page 3-4             | In the figure, below Secondary<br>Sources, the Outfall sediment has<br>an asterisk next to it.                                                                              | Please include a key with the figure explain the asterisk. | Clarification. The asterisk is a relic that was<br>inadvertently left in from earlier version of<br>the figure. The asterisk will be deleted from<br>the "Outfall sediment" box of Figure 3-1.                                                                                                                                                                                                                                                                                                                                                  |  |  |  |
| O-3.              | Page 3-5,<br>Lines 21-22                              | Page 3-5             | This sentence incorrectly states<br>that the 14AOCs included Load<br>Lines 5 through 11. The 14 AOCs<br>only included the following Load<br>Lines: LL5, LL7, LL8, and LL10. | Please revise this sentence.                               | Agree.<br>The fourth bullet will be revised as follows:<br>"• <i>Characterization of 14 AOCs at RVAAP</i><br>(MKM 2007a) – sanitary sewers at Load<br>Lines 5, 7, 8, 10 through 11 and Atlas Scrap<br>Yard; and"<br>The period at the end of the current fifth<br>bullet will be replaced with a semicolon, and<br>the following two bullets will be added as the<br>sixth and seventh:<br>"• Load Line 9 Phase I RI (MKM 2007c) –<br>sanitary sewers present only;<br>• Load Line 11 Phase I RI (MKM 2005) –<br>sanitary sewers present only." |  |  |  |
| O-4.              | Page 3-9,<br>Line 35                                  | Page 3-10            | There appears to be a<br>typographical error in this line –<br>"during the" is listed twice                                                                                 | Please revise this sentence.                               | Agree. One of the duplicated instances of "during the" in the referenced sentence will be deleted.                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |

**Rev. 1 - Comment Response Meeting Resolution Minutes** 

|                   |                       |                                                                                                           |                                                                                                                                                                                                         |                                                                              | Fage 2 01 21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|-------------------|-----------------------|-----------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Comment<br>Number | Page or<br>Sheet      | New Page<br>or Sheet                                                                                      | Comment                                                                                                                                                                                                 | Recommendation                                                               | Response                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| O-5.              | Page 3-13,<br>Line 15 | Page 3-14,<br>and<br>Sections 3<br>and 4<br>Pages F-4,<br>F-6, F-7<br>Table F-2<br>Page G-5,<br>Table G-2 | This sentence states "Chromium<br>speciation samples will be<br>collected in accordance with<br>Section 4.1.3 of this SAP" This<br>section in the SAP seems to be<br>missing or located somewhere else. | Please locate Section 4.1.3 or add a section describing chromium speciation. | Clarification. The footnote at the bottom of<br>Table 3-1 was inadvertently left in this<br>version of the table, and refers to sections in a<br>different and unrelated document, as<br>collection of hexavalent chromium sewer<br>samples was not originally planned. However,<br>in consideration of the historical data, a FSP<br>revision to include sample collection for<br>hexavalent chromium is proposed at this time.<br>In Tier 1 of the investigation, sediment<br>sampling for hexavalent chromium will be<br>conducted at sewer locations where the<br>historical total chromium data exceeds the<br>CUG for the resident farmer of 187 mg/kg.<br>An assessment of the historical data indicates<br>that this will result in the collection of<br>hexavalent chromium samples at five<br>locations, all of which are currently<br>designated as primary sample locations: Inlet<br>C4 (LL2, storm), Inlet DB20 (LL2, storm),<br>Inlet DB21 (LL2, storm), storm outfall south<br>of Inlets DA20/DA21 (LL2), and Inlet EH21<br>(storm, LL3).<br>Under Tier 2 of the investigation, hexavalent<br>chromium samples would be collected based<br>upon the results of the Tier 1 sampling. If<br>sediment samples collected for TAL metals<br>under Tier 1 of the investigation indicated<br>concentration of chromium above the resident<br>farmer CUG of 187 mg/kg, sediment samples<br>would be collected from these locations and |

Page 2 of 21

**Rev. 1 - Comment Response Meeting Resolution Minutes** 

Page 3 of 21

| Comment<br>Number | Page or<br>Sheet | New Page<br>or Sheet | Comment | Recommendation | Response                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|-------------------|------------------|----------------------|---------|----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                   |                  |                      |         |                | analyzed for hexavalent chromium. Soil<br>boring samples will be submitted for<br>hexavalent chromium analysis at locations<br>where the historical results indicated<br>hexavalent chromium enrichment in the<br>sediment of the adjacent sewer line or where<br>the results of the Tier 1 sediment sampling<br>indicated concentrations above 187 mg/kg.<br>Additionally, hexavalent chromium soil<br>boring samples will be collected at a<br>representative set of locations where total<br>chromium was detected at low, medium and<br>high ranges of concentrations within each<br>functional area (e.g.: AOCs or other<br>administrative area) in order to provide<br>speciation data. The locations for the<br>subsurface borings and the follow-up sewer<br>sediment hexavalent chromium sampling will<br>be submitted for approval in a Technical<br>Memorandum prior to the inception of Tier 2<br>field activities. |
|                   |                  |                      |         |                | Text additions will be incorporated where<br>appropriate to the sampling approach<br>discussions in Sections 3 and 4 of the FSP to<br>address the proposed hexavalent chromium<br>sampling. The correct section references will<br>be added to the referenced footnote of Table<br>3-1, and corresponding revisions will be<br>implemented in the sampling approach<br>discussions in Sections 3 and 4 of the FSP.<br>Additionally, the Tier 1 hexavalent chromium<br>sediment sampling locations will be noted in<br>the Appendices for Load Lines 2 and 3.                                                                                                                                                                                                                                                                                                                                                                    |

**Rev. 1 - Comment Response Meeting Resolution Minutes** 

Page 4 of 21

| Comment<br>Number | Page or<br>Sheet          | New Page<br>or Sheet | Comment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Recommendation                                                                                                                                                                                        | Response                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|-------------------|---------------------------|----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                   |                           |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                       | 29 June 2009 Comment Response Resolution<br>Teleconference:<br>As per request, the proposed revisions to the<br>FSP as a result of the addition of the<br>chromium speciation sampling are provided<br>as an attachment to this comment response<br>table for review.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| O-6.              | Page 3-15,<br>Lines 36-38 | Page 3-16,<br>3-19   | This sentence states that only 10%<br>of the sewer lines will be filmed<br>"where possible". Ohio EPA<br>would like to discuss this issue at<br>the comment resolution meeting.<br>Some rules need to be developed<br>for this and 10% "where possible"<br>will not adequately portray the<br>condition of the sewer lines. It is<br>highly possible, if only 10% were<br>filmed, that many large breaks in<br>the lines were overlooked and<br>subsequently many large<br>groundwater plumes not detected. | Although Ohio EPA would like to discuss at<br>the comment resolution meeting, please<br>prepare a response to this question: Why<br>only conduct video camera surveys on 10%<br>or less of the lines? | Original Response Dated June 23, 2009:<br>The video survey will not occur until the end<br>of Tier 1 after the visual inspection and<br>sample collection/field screening have been<br>completed. Locations will be selected based<br>upon assessment of the historical data (both<br>analytical and previous video survey) and the<br>Tier 1 field screening data.<br>The FSP states that the objective is to "survey<br>a minimum of 10% of the total length of a<br>sewer line segment of interest where<br>possible" to provide representative data on the<br>condition of that segment. The FSP also<br>states that "where contaminated sewer line<br>segments are identified the goal is to<br>survey as much of these lines as feasible."<br>The "where possible" language in the<br>referenced text is intended to convey that<br>access issues may prohibit the video survey<br>activities at some locations. For instance,<br>many of the lines are flooded, and the video<br>cameras cannot be operated in fully |

**Rev. 1 - Comment Response Meeting Resolution Minutes** 

| Comment<br>Number | Page or<br>Sheet | New Page<br>or Sheet | Comment | Recommendation | Response                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|-------------------|------------------|----------------------|---------|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                   |                  |                      |         |                | submerged conditions. Also, as past video<br>surveys have indicated, debris in the lines has<br>prevented access for the camera. If screening<br>or historical data indicates contamination in a<br>sewer line reach, even in the absence of video<br>survey data, confirmatory borings will still be<br>collected along the pipeline at these locations.<br>With respect to the potential existence of<br>large groundwater plumes, all available data<br>will be utilized in the evaluation of the<br>facility-wide groundwater data has not<br>indicated evidence of large groundwater<br>plumes.                                                                                                                                                               |
|                   |                  |                      |         |                | 29 June 2009 Comment Response Resolution<br><u>Teleconference:</u><br>As per discussion, the text will be revised to<br>provide clarification that the intent of the<br>video survey is obtain as much information as<br>possible about the condition of potentially<br>contaminated sewer segments of interest, as<br>defined by historical and field screening data.<br>Additionally, video survey will be added to<br>the Tier 2 of the investigation, if the<br>analytical results from Tier 1 indicate<br>additional contaminated segments that do not<br>have sufficient video data (i.e.: either<br>historical or Tier 1).<br>The appropriate text revisions will be<br>incorporated into Chapters 3 and 4 of the<br>FSP. Proposed revisions to the FSP are |

Page 5 of 21

**Rev. 1 - Comment Response Meeting Resolution Minutes** 

New Page Comment Page or Comment Recommendation Response Sheet or Sheet Number attached to this comment response table for review. This paragraph describes how Please explain how these inaccessible sewer Original Response Dated June 23, 2009: access to the sewers may be lines will be evaluated to show the presence During the December 2008 preliminary limited. Buried or blocked sewers of COCs or lack thereof. reconnaissance survey, it was noted that the still have to be evaluated. This may sanitary sewer lines overall were generally involve intrusive techniques, such as digging, to access these sewer intact and in good condition. The accessibility concerns are limited almost lines. exclusively to the storm structures at the meltpour lines (Load Lines 1 through 4) where demolition activities have resulted in extensive damage to the storm sewer drop inlets and manholes that immediately abutted the buildings and walkways. In some extreme cases at some of the former Page 3-16, **O-7** melt-pour line building locations, segments of Page 3-17 Lines 1-7 storm pipeline appeared to be missing in their entirety, and broken fragments of vitrified clay pipe were noted on the ground surface in the vicinity. Even storm structures that were likely still intact could not be accessed in some cases, as they had been covered over with ballast when the railbeds had been removed. In one particular case during the survey, a 10-ft tall pile ballast and broken chunks of concrete and rebar was observed to be sitting directly over a storm drop inlet (i.e.: the exact location was known because its partner drop inlet was noted to be directly across the road from this pile). In other cases, even when the drop inlet was found to be

Page 6 of 21

**Rev. 1 - Comment Response Meeting Resolution Minutes** 

| Comment<br>Number | Page or<br>Sheet | New Page<br>or Sheet | Comment | Recommendation | Response                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|-------------------|------------------|----------------------|---------|----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                   |                  |                      |         |                | intact and the opening accessible, the inlet<br>itself was observed to be completely filled<br>with 6+ ft of ballast, concrete rubble and<br>rebar, railroad ties and other large debris<br>items.                                                                                                                                                                                                                                                                              |
|                   |                  |                      |         |                | Additionally, the demolition and removal of<br>the remaining walkways at Load Lines 1, 2, 3<br>and 4 is planned for Summer 2009. As the<br>majority of storm structures underlie the edge<br>of these raised walkways, it is likely that<br>additional damage and even complete<br>destruction of the storm sewer structures at<br>some locations will occur as a result of these<br>activities.                                                                                |
|                   |                  |                      |         |                | 29 June 2009 Comment Response Resolution<br><u>Teleconference:</u><br>As per discussion, in order to address pipe<br>segments with no access for sampling via<br>manhole or drop inlet, the use of intrusive<br>methods would be evaluated. Equipment<br>such as a backhoe/excavator would be utilized<br>to expose three points along the segment<br>("upstream" end, midpoint and "downstream"<br>end) in order to collect a sample of the<br>material within the sewer pipe. |
|                   |                  |                      |         |                | The appropriate text revisions will be<br>incorporated into Chapters 3 and 4 of the<br>FSP. Proposed revisions to the FSP are<br>attached to this comment response table for<br>review.                                                                                                                                                                                                                                                                                         |

Page 7 of 21

JULY 10, 2009

**Rev. 1 - Comment Response Meeting Resolution Minutes** 

| Comment<br>Number | Page or<br>Sheet         | New Page<br>or Sheet    | Comment                                                                                                                                                                                                                                                                                                                                                                                                                                | Recommendation                                                                                                                                                                                                                                                                                            | Response                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|-------------------|--------------------------|-------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| O-8.              | Page 3-16,<br>Lines 9-43 | Figure 4-1,<br>Page 4-3 | This section describes the sewer<br>line sediment and water sampling,<br>but does not include a paragraph<br>describing petroleum or free<br>product. In the Characterization of<br>the 14 AOCs Report, 2007, three<br>sewer surface water locations at<br>Atlas Scrap Yard contained a tarry,<br>organic odor and visual<br>contamination (likely petroleum or<br>free product). The consultant added<br>TPH to the analytical suite. | Please add a paragraph describing the additional analytical if petroleum substances or free product are found. If significant amounts are found it may constitute the collection of two separate phases. In addition, a description should been added on how the source of contamination will be located. | Clarification. The <i>Characterization of 14</i><br><i>AOCs Report</i> (MKM 2007) indicated that<br>samplers had observed "visual<br>contamination" that was inferred to be coal<br>tar at three manholes (MH-1, MH-2 and MH-<br>3). Historical operations data indicate that<br>these manholes were located adjacent to a<br>former boilerhouse. During the December<br>2008 preliminary reconnaissance survey,<br>these three manholes were visually inspected<br>and no evidence of coal tar was noted. MH-2<br>and MH-3 are currently designated as primary<br>sample locations. Appendix C will be revised<br>to indicate that sediment samples will be<br>collected at all three manholes and analyzed<br>for SVOCs due to the coal tar observations in<br>2004.<br>No free product has been observed at any of<br>the sewer locations during investigations<br>conducted to date. However, any evidence of<br>free product or petroleum contamination will<br>be noted and documented during the<br>comprehensive visual inspection. The<br>following entry will be added to the Visual<br>Inspection Form (Figure 4-1, page 4-3):<br><b>"Evidence of free product, coal tar, or</b><br><b>petroleum?</b> Yes No". Therefore, if<br>suspected petroleum-related contamination is<br>encountered in the Visual Inspection, its<br>distribution within the sewer lines will be<br>documented in the Tier 1 investigation and an<br>SVOC sample will be collected. Analysis for<br>TPH will not be conducted, as there is no |

Page 8 of 21

**Rev. 1 - Comment Response Meeting Resolution Minutes** 

| Comment<br>Number | Page or<br>Sheet | New Page<br>or Sheet | Comment | Recommendation | Response                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|-------------------|------------------|----------------------|---------|----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                   |                  |                      |         |                | toxicity data and therefore no CUG for TPH.<br>Soil boring locations under Tier 2 to assess if<br>the sewers were a source of contamination to<br>the adjacent subsurface media would be<br>presented in the Technical Memorandum.<br>However, if the investigation indicates that<br>petroleum contamination is entering the                                                                                                                                                                        |
|                   |                  |                      |         |                | sewers system from a source outside and<br>unrelated to the sewer lines, that source of<br>contamination would be investigated and<br>addressed under that area of concern (e.g.:<br>the Atlas Scrap Yard RVAAP-50, rather than<br>Facility-Wide Sewers RVAAP-67).                                                                                                                                                                                                                                   |
|                   |                  |                      |         |                | 29 June 2009 Comment Response Resolution<br><u>Teleconference:</u><br>As per discussion, if the visual survey<br>indicates that there is evidence of free<br>product, coal tar or petroleum, contingency<br>sampling will be collected.                                                                                                                                                                                                                                                              |
|                   |                  |                      |         |                | No additional text changes are proposed, as<br>contingency sampling in the event of visual<br>contamination is already included in the FSP.<br>The current text on lines 5-7 of page 3-17 and<br>lines 12-15 of page 3-18 states that: "In<br>addition, a full suite of fixed-based laboratory<br>analyses will be conducted where visual<br>surveys indicate the likely occurrence of<br>contamination (e.g.: visible reddish or white<br>crystalline explosive deposits or evidence of<br>sheens)" |

Page 9 of 21

JULY 10, 2009

**Rev. 1 - Comment Response Meeting Resolution Minutes** 

Page 10 of 21

| Comment<br>Number | Page or<br>Sheet          | New Page<br>or Sheet | Comment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Recommendation                                                                                                                                                                                                                                                                   | Response                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|-------------------|---------------------------|----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| O-9.              | Page 3-16,<br>Lines 31-36 | Page 3-17,<br>3-18   | These two bulleted items describe<br>that 30% of the samples with be<br>analyzed for SVOCs and 10% with<br>be analyzed for full suite. In<br>general, Ohio EPA believes that<br>these percentages are too low to<br>represent the contents of the<br>sewers; however, if additional<br>screening techniques were used to<br>better bias the sampling, Ohio EPA<br>would be more amenable to<br>keeping the 30% and 10%. Some<br>suggestions may include: PID or<br>FID headspace, portable GC,<br>Chlor-n-Soil tests, etc. | Please justify the current analytical<br>percentage. Also, include field<br>techniques/tests that may give more biased<br>sampling for SVOCs and full suite analyses.<br>Describe how the screening techniques are<br>proposed for use and how the results will be<br>confirmed. | <ul> <li>Original Response Dated June 23, 2009:</li> <li>Field screening techniques for SVOCs would likely be functionally ineffectual for the purposes of this investigation. PID or FID headspace techniques would be of limited utility because these methods are better suited for VOCs, rather than the range of PAH compounds typically observed in the sewer system. Field test kits for PAHs would not be effective for screening purposes because the positive detection limits are excessively high relative to the screening levels that would be utilized as comparative criteria (Table 3-1 of the FSP). For example, the screening level for the commonly detected benzo(a)pyrene is 0.022 mg/kg, as compared to a positive detection limit of 8.2 mg/kg for the Ensys™ PAH Soil Test Kit (EPA Method 4035).</li> <li>It is proposed that wherever the explosives field screening indicates a positive detection, all of these samples would be sent to the fixed-base laboratory for analysis of explosives and SVOCs (instead of the original 30%), plus 10% for full suite. No change is proposed to the percentages for explosives in all samples, 30% SVOCs, 10% full suite).</li> <li>29 June 2009 Comment Response Resolution Teleconference: As per discussion, the proposed addition of SVOCs to the analytical suite for locations</li> </ul> |

**Rev. 1 - Comment Response Meeting Resolution Minutes** 

Page 11 of 21

| Comment<br>Number | Page or<br>Sheet         | New Page<br>or Sheet             | Comment                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Recommendation                                                                                                                                                                                                                                                                               | Response                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|-------------------|--------------------------|----------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                   |                          |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                              | where explosives field screening indicates a<br>positive detection will be implemented.<br>The appropriate text revisions will be<br>incorporated into Chapters 3 and 4 of the<br>FSP. Proposed revisions to the FSP are<br>attached to this comment response table for<br>review.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| O-10.             | Page 3-20,<br>Lines 1-10 | Page 3-21,<br>Section<br>3.2.5.3 | These bullets indicate that<br>subsurface soil or bedding will be<br>sampled from 4-7 ft BGS and 7-13<br>ft BGS, respectively. This means<br>that a possible 3-foot interval and a<br>6-foot interval may be collected.<br>Ohio EPA does not agree with this<br>approach, because the sample (near<br>the sewer) may be diluted by<br>collecting soil greater than a 2-ft<br>interval. Ohio EPA recommends<br>that this approach be changed<br>similar to Lines 13-14 on this page. | Please change this sampling approach for<br>consistency. Regardless of the depth of the<br>sewer a 2 ft interval of soil will be collected<br>immediately below the pipeline. The<br>remaining soil (below the first sample) will<br>be collected and composited to a depth of 13<br>ft BGS. | Original Response Dated June 23, 2009:<br>This approach was previously discussed with<br>Ohio EPA at the DQO meeting for facility-<br>wide sewers on October 28, 2008. The<br>sample intervals for the subsurface soil<br>borings presented in the FSP correspond to<br>the vertical exposure units for established<br>land uses: 0-4 ft for National Guard Trainee<br>(mounted), 0-7 ft for National Guard Trainee<br>(dismounted), and 0-13 ft for Resident<br>Farmer. There is no technical basis for<br>arbitrary utilization of a 2-ft interval, neither<br>does use of the proposed intervals result in<br>"dilution," but rather provides<br>characterization of the interval of interest.<br><u>29 June 2009 Comment Response Resolution<br/>Teleconference:</u><br>As per discussion, characterization targeting<br>the bedding layer immediately underlying the<br>pipeline was suggested, as this is the interval<br>most likely to exhibit contamination.<br>In an email dated 1 July 2009, Ohio EPA |

**Rev. 1 - Comment Response Meeting Resolution Minutes** 

Page 12 of 21

| Comment<br>Number | Page or<br>Sheet | New Page<br>or Sheet | Comment | Recommendation | Response                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|-------------------|------------------|----------------------|---------|----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                   |                  |                      |         |                | recommended that the soil borings under Tier<br>2 of the investigation be collected as a single<br>sample from 1-2 feet from the bottom of the<br>sewer pipe to determine if the sewer pack has<br>become contaminated and may represent a<br>potential source. If no contamination is found<br>in the sample immediately below the pipe,<br>then no additional subsurface samples will be<br>collected from this location. However, if the<br>media directly underlying the pipe is<br>contaminated from a sewer leak, then Tier 3<br>sampling will be conducted, consisting of<br>additional subsurface borings (at depth<br>intervals [i.e.: exposure units] in current Tier<br>2) to determine the nature and extent of<br>subsurface soil contamination. The sampling<br>locations for Tier 3 will be proposed in a<br>technical memorandum for Ohio EPA review<br>and approval prior to the inception of<br>fieldwork. |
|                   |                  |                      |         |                | The current Tier 2 discussion presented in<br>Chapter 3 of the FSP will be revised to<br>incorporate the revisions to the subsurface<br>soil sampling approach. A new Section<br>3.2.5.3 has been added to describe the Tier 3<br>investigation. Additionally, since bedding<br>material sampling has been added to the FSP,<br>Chapter 4 text on subsurface sampling will be<br>revised to indicate that "a portable power<br>auger may be employed to assist in reaching<br>target depths." The proposed FSP revisions<br>are appended to this comment response table<br>for review.                                                                                                                                                                                                                                                                                                                                       |

**Rev. 1 - Comment Response Meeting Resolution Minutes** 

| Comment<br>Number | Page or<br>Sheet          | New Page<br>or Sheet      | Comment                                                                                                 | Recommendation                                                                                                                                                                     | Response                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|-------------------|---------------------------|---------------------------|---------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| O-11.             | Page 3-24,<br>Lines 12-43 | Page 3-25,<br>Section 3.4 | This paragraph describes the lack<br>of a need to evaluate ecological<br>risk screening for the sewers. | What are the maximum, minimum and<br>average diameter dimensions? Has the<br>ecological assessment taken into account the<br>ability of fauna to habitat large diameter<br>sewers? | Clarification. Sewer lines are of large enough<br>diameter to accommodate some small<br>mammals, and this has been considered in the<br>approach to the ecological risk assessment, or<br>lack of it in this case; however, the sewer pipe<br>dimensions do not justify or constitute viable<br>habitat. The following information will be<br>added to the text for clarification purposes<br>(page 3-24 and line 22 after the phrase, "<br>horizontal drains and pipes.") as follows:<br>"The majority of the sewer lines in both the<br>storm and sanitary system are 6" or 8" in<br>diameter; and many of these lines typically<br>occur at depths greater than 4 ft below ground<br>surface (approximately 63%). Larger<br>diameter pipes on the order of 10" or<br>12" occur predominantly as sanitary<br>connector/trunk lines and at major storm<br>outfalls, and these lines typically occur at<br>depths at or greater than 10 ft below ground<br>surface. Thus, the pipe diameters could<br>accommodate several species of smaller<br>mammals (e.g., mice, ground squirrels,<br>opossums, rabbits, and snakes) but almost all<br>the system is below-ground and has very<br>limited access. The facility-wide sewers are a<br>man-engineered system designed to serve a<br>far different function from providing pseudo-<br>habitat to organisms; neither the underground<br>sewer system, nor the few entrances to it<br>constitute conventional ecological<br>habitat. Both by design and circumstance,<br>there is lack of ecological sources (e.g.: lack |

Page 13 of 21

**Rev. 1 - Comment Response Meeting Resolution Minutes** 

| Comment<br>Number | Page or<br>Sheet        | New Page<br>or Sheet     | Comment                                                                                                                                         | Recommendation                                              | Response                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|-------------------|-------------------------|--------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                   |                         |                          |                                                                                                                                                 |                                                             | of light, food sources, and low chance of<br>finding a mate). Therefore, the lack of<br>suitability of the sewers as an ecological<br>habitat is not as much a function of the<br>dimensions of the pipes as the inhospitable<br>internal conditions."                                                                                                                                                                                                                                                                                                                                                                                         |
| O-12.             | Page 4-7,<br>Lines13-14 | Page 4-7,<br>Section 4.4 | This sentence describes the items<br>the camera survey subcontractor<br>will submit, at a minimum. It does<br>not include the video recordings. | Please have the subcontractor include the video recordings. | Agree. The referenced text will be revised as<br>follows:<br>"The camera survey subcontractor shall<br>prepare and submit a final report that will<br>include, at a minimum, all field logbooks,<br>copies of the video recordings on a suitable<br>archival medium (e.g., files on CD-ROM),<br>and a listing and sketch map of all identified<br>or potential problem areas or anomalies."                                                                                                                                                                                                                                                    |
| O-13.             | Page 4-7,<br>Line 41    | Page 4-8,<br>Section 4.7 | Please clarify "per field cycle".                                                                                                               | Please clarify.                                             | Clarification. Typically, fieldwork is<br>conducted in cycles of ten workdays followed<br>by four days off. However, the sampling<br>portion of both phases for facility-wide<br>sewers will run approximately two to three<br>weeks apiece. In consideration that the<br>structure of the sewers sampling work will<br>not follow a standard field cycle pattern,<br>equipment rinsate samples will be instead<br>collected at a frequency of once per week.<br>The referenced text will be revised as follows:<br>" <del>Two</del> One rinsate blank <del>s</del> will be collected for<br>soil/sediment equipment per week field<br>eycle." |

Page 14 of 21

**Rev. 1 - Comment Response Meeting Resolution Minutes** 

Page 15 of 21

| Comment | Page or                          | New Page                |                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1 450 15 01 21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|---------|----------------------------------|-------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Number  | Sheet                            | or Sheet                | Comment                                                                                                                                                                                                                                                                                         | Recommendation                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Response                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| O-14.   | Page 5-2,<br>Figure 5-1          | Page 5-2,<br>Figure 5-1 | In the table, it states "mmm =<br>Sample Location Type". There are<br>too many m's.                                                                                                                                                                                                             | Please revise.                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Agree. The referenced text will be revised as<br>requested: "mm <del>m</del> = Sample Location Type"                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| O-15.   | Page A-1,<br>Lines 33-34         | NA                      | This sentence states that "sample collection may be unavailable and because site conditions may preclude access"                                                                                                                                                                                | Please clarify. Give examples as to why the sewer may be unavailable and what site conditions may preclude access.                                                                                                                                                                                                                                                                                                                                             | Clarification. Please refer to the response to<br>comment O-7 for some examples of<br>conditions that may preclude access to the<br>sewer structures.<br>No text change proposed.                                                                                                                                                                                                                                                                                                                                                              |
| O-16.   | Site Maps /<br>Appendices<br>A-Q | Appendices<br>A-Q       | The site maps have missing information.                                                                                                                                                                                                                                                         | Please include the following on the maps:<br>road names, names of bodies of water, all<br>former and current site buildings, contour<br>line labels, and associated areas in<br>conjunction with the sewers (e.g., parking<br>lots, storage areas). In addition, please add<br>(in each appendix) a brief summary of the<br>operation and/or use of the building/s. This<br>information will be useful while reviewing<br>the next draft's sampling locations. | Agree. Information such as road names,<br>bodies of water, former/current buildings, and<br>contour line labels will be added where such<br>data is available. Sewer specific details, such<br>as ejector stations and force mains, are<br>already labeled where they occur, as well as<br>the former treatment plants.<br>Additionally, a brief description will be added<br>to the Area Description section of each<br>appendix to provide a high level summary of<br>the functional groups of activities that<br>occurred within that area. |
| O-17.   | General<br>Note                  | NA                      | On June 9, Ohio EPA attempted to<br>verify the accuracy of the sewer<br>line map at the Depot<br>Administration Area. We noted<br>many more manholes than located<br>on the map, sewer lines in the<br>wrong location, outfall in the<br>wrong location, and manholes in<br>the wrong location. | This is just a note to reiterate the fact that the<br>sewer maps will need to be updated along<br>with their associated GPS location.                                                                                                                                                                                                                                                                                                                          | Agree. Although an exhaustive search of all<br>available historical documents and maps was<br>performed, no detailed information was<br>available for the Depot Administration Area.<br>During the preliminary reconnaissance survey<br>conducted in December 2008, locations where<br>the maps were incorrect were noted, such as<br>at the Depot Administration Area, were noted.<br>Correspondingly, the Appendices of the SAP                                                                                                              |

**Rev. 1 - Comment Response Meeting Resolution Minutes** 

| Comment<br>Number | Page or<br>Sheet | New Page<br>or Sheet | Comment                                                                                               | Recommendation                                                                                                   | Response                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|-------------------|------------------|----------------------|-------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                   |                  |                      |                                                                                                       |                                                                                                                  | for these locations indicates that additional<br>survey work and investigation using dye or<br>smoke tracing will be necessary to develop<br>accurate maps of these areas.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                   |                  |                      |                                                                                                       |                                                                                                                  | No text changes proposed.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                   |                  |                      |                                                                                                       |                                                                                                                  | 29 June 2009 Comment Response Resolution<br><u>Teleconference:</u><br>SAIC requested concurrence from the<br>RVAAP Team to be able to proceed with the<br>Visual Survey and mapping (as needed) or<br>sewer lines in advance of an approved SAP.<br>No intrusive work or sampling would be<br>conducted. The Team provided concurrence;<br>the expected start would be early August.                                                                                                                                                                                                                                                                                 |
| O-18.             | General          | NA                   | During the site visit, Ohio EPA<br>noted a missing manhole cover at<br>the Depot Administration Area. | During this investigation, please note and<br>flag the locations where manhole covers are<br>damaged or missing. | Agree. During the preliminary sewer<br>reconnaissance survey in December 2008,<br>missing manholes and other potentially<br>hazardous conditions were documented in the<br>field, and flagged with orange tape at that<br>time. A list of these locations identified to<br>have structural issues was subsequently<br>provided to the Army on January 9, 2009.<br>The condition of the sewer structures and any<br>conditions that may pose a safety concern will<br>be documented during the Visual Survey<br>phase of the investigation, and will be flagged<br>in the field as well to indicate the presence of<br>potential hazards.<br>No text change proposed. |

Page 16 of 21

JULY 10, 2009

**Rev. 1 - Comment Response Meeting Resolution Minutes** 

|                   |                  |                      |                                                                                                                |                                                 | Page 17 01 21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|-------------------|------------------|----------------------|----------------------------------------------------------------------------------------------------------------|-------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Comment<br>Number | Page or<br>Sheet | New Page<br>or Sheet | Comment                                                                                                        | Recommendation                                  | Response                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                   |                  |                      | OHARN                                                                                                          | VG RTLS-ENV (Katie Elgin)                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| R-1.              | General          | NA                   | We will need to discuss the<br>investigation boundary and if and<br>how this affects the OHARNG<br>activities. | Discussion Required.<br>No text change required | Original Response Dated June 23, 2009:While many portions of the facility-wide<br>sewers occur within AOCs that already have<br>defined land uses (e.g.: RVAAP-50 Atlas<br>Scrap Yard, Mounted Training – No<br>Digging), many parts of the system are<br>located outside of the boundaries of existing<br>AOCs. This situation is predominantly<br>confined to sanitary sewer trunk/connector<br>lines and areas such as the Depot<br>Administration Area. Discussion is required<br>to determine the appropriate land use and<br>applicable risk assessment/management<br>process for these areas.29 June 2009 Comment Response Resolution<br>Teleconference:<br>As the FWS AOC crosses areas which are<br>considered "multipurpose" or do not yet have<br>specific training use designations, it is<br>acknowledged that further discussion is<br>required to resolve the land use issues, as<br>ultimately this will affect future remedial<br>alternative and risk management decisions.<br>OHARNG noted that use restrictions relative<br> |

Page 17 of 21

**Rev. 1 - Comment Response Meeting Resolution Minutes** 

| Comment<br>Number | Page or<br>Sheet        | New Page<br>or Sheet    | Comment                                                                                                                                                                                                                                                                                                        | Recommendation                                     | Response                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|-------------------|-------------------------|-------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                   |                         |                         |                                                                                                                                                                                                                                                                                                                |                                                    | subsequently and in context of the RI/FS report, rather than this SAP.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                   |                         |                         |                                                                                                                                                                                                                                                                                                                |                                                    | No text changes recommended.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| R-2.              | Pg 3-23,<br>Lines 22-28 | Pg 3-24,<br>Section 3.3 | Outfall Sediments – "Receptors to<br>these source materials will include:<br>Security Guard Maintenance<br>Worker, Adult and Child Resident<br>Farmer, National Guard Trainee,<br>Fisher/Recreator, Adult and<br>Juvenile Trespasser." Does the<br>engineering school instructor need<br>to be included here?  | Include engineering school receptor if applicable. | Agree. Engineering School Instructor will be<br>added to the bulleted list under Outfall<br>Sediments, as requested.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| R-3.              | Pg 3-23,<br>Lines 33-37 | Pg 3-24,<br>Section 3.3 | "Only receptors who may excavate<br>to depth are evaluated for this<br>source type: National Guard<br>Trainee (if the site is in a<br>designated training area)." What<br>does 'if the site is in a designated<br>training area' mean? The whole<br>facility is a designated training<br>area. Please explain. |                                                    | Original Response Dated June 23, 2009:<br>The wording of the referenced text was<br>intended to convey that portions of the system<br>do not occur in areas with known designated<br>land uses. Please refer to the response to<br>comment R-1.The parenthetical text in the referenced bullet<br>for the National Guard Trainee will be<br>removed.29 June 2009 Comment Response Resolution<br>Teleconference:<br>Additional discussion to resolve land use<br>issues with respect to the AOC will be<br>conducted subsequently and in context of the<br>RI/FS report, rather than the SAP.The recommended text change indicated |

Page 18 of 21

**Rev. 1 - Comment Response Meeting Resolution Minutes** 

| Comment<br>Number | Page or<br>Sheet                   | New Page<br>or Sheet               | Comment                                                                                                                                                                                                                                                                                                             | Recommendation                                                   | Response                                                                                                                                                                                                                                                                                                                                                               |
|-------------------|------------------------------------|------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                   |                                    |                                    |                                                                                                                                                                                                                                                                                                                     |                                                                  | above will be implemented as written.                                                                                                                                                                                                                                                                                                                                  |
| R-4.              | General-<br>Figures and<br>Mapping | General-<br>Figures and<br>Mapping | Figures and Mapping indicate the<br>following:<br>Sanitary Line <4 feet BGS<br>Sanitary Line 4> feet BGS<br>Both of these mean that the<br>sanitary sewers are less than 4 feet<br>bgs. Should be written as:<br>Sanitary Line <4 feet BGS and<br>Sanitary Line >4 feet BGS.<br>Needs revised on all Figures.       | Revise greater than and less than symbols throughout the report. | Agree. All instances of "4> FEET BGS" in<br>the figure legends will be revised as follows:<br>">4→ FEET BGS"                                                                                                                                                                                                                                                           |
| R-5.              | Figure D-1                         | Figure D-1                         | Change 'Railroad Tracks' to<br>'Former Railroad Tracks'.<br>All buildings on this figure are<br>indicated as being demolished. Not<br>all of the buildings in the Depot<br>Area have been demolished. Please<br>check which ones have been<br>demolished and which remain and<br>mark appropriately on the Figures. |                                                                  | Agree. The legend on all Appendix D figures<br>will be revised to indicate that the railroad<br>tracks in the Depot Administration Area have<br>since been demolished.<br>A review of the aerial photograph data will be<br>conducted and the status of the buildings in<br>the Depot Administration Area will be revised<br>on the Appendix D figures as appropriate. |
| R-6.              | Figure F-4                         | Figure F-4                         | Indicates buildings along South<br>Service Road (outside of Load<br>Line 2) are demolished. This is<br>incorrect as the buildings remain.<br>Please revise accordingly.                                                                                                                                             |                                                                  | Agree. The figures in Appendix F will be<br>revised to indicate that the buildings in this<br>area have not been demolished.                                                                                                                                                                                                                                           |

Page 19 of 21

**Rev. 1 - Comment Response Meeting Resolution Minutes** 

| Comment<br>Number | Page or<br>Sheet | New Page<br>or Sheet | Comment                                                                                                                                                                                                                                                                                                                                 | Recommendation | Response                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|-------------------|------------------|----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| R-7.              | Figure I-1       | Figure I-1           | Identify Vegetation symbol in the Legend.                                                                                                                                                                                                                                                                                               |                | Agree. The vegetation symbol will be added<br>to the legend of I-1, and any other affected<br>figures as well.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| R-8.              | Figure I-3       | Figure I-3           | <ul> <li>Building 813 is identified as<br/>being demolished. This building<br/>still remains. Please revise<br/>accordingly.</li> <li>Identify the road names on the<br/>maps/figures where applicable.</li> <li>What is the orange dashed line on<br/>the map?</li> </ul>                                                              |                | Agree. The figures in Appendix I will be<br>revised to indicate that Building 813 has not<br>been demolished. Also, road names will be<br>added where appropriate.<br>The dashed orange line is for storm sewer<br>infrastructure of unknown depth. This<br>symbol will be added to the legend of the<br>Appendix I figures. The storm structures in<br>the Fuze and Booster Hill area occur as<br>under-road structures, as indicated by the<br>small segments shown on the map.                                                                                                                                            |
| R-9.              | Figure J-1       | Figure J-1           | <ul> <li>-All buildings are marked as being demolished. This is incorrect.</li> <li>Buildings remaining on this figure are Building 813, Power House, Gas Chamber, and the building on the corner near the intersection.</li> <li>-What does tower location mean?</li> <li>-What is the red/brown dashed line on the figure?</li> </ul> |                | Agree. The figures in Appendix J will be<br>revised to correctly show the buildings that<br>have not been demolished, as requested.<br>The "tower" location shown is presumably a<br>former guard tower or similar structure that<br>was digitized into the structures layer based<br>on historical drawings.<br>The dashed orange line is for storm sewer<br>infrastructure of unknown depth. This<br>symbol will be added to the legend of the<br>Appendix I figures. The storm structures in<br>the Fuze and Booster Hill area occur as<br>under-road structures, as indicated by the<br>small segments shown on the map. |

Page 20 of 21

**Rev. 1 - Comment Response Meeting Resolution Minutes** 

| Comment<br>Number | Page or<br>Sheet  | New Page<br>or Sheet | Comment                                                                                                                                                                                                                                                                                                                     | Recommendation | Response                                                                                                                                                                                                                                                                                                                                                                          |
|-------------------|-------------------|----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| R-10.             | Figure K-2        | Figure K-2           | Change 'railroad tracks' to 'former railroad tracks' in the Legend.                                                                                                                                                                                                                                                         |                | Agree. The legend on all Appendix K figures<br>will be revised to indicate that the railroad<br>tracks in this area have since been<br>demolished.                                                                                                                                                                                                                                |
| R-11.             | Pg M-1,<br>Line 8 | Pg M-1               | "The buildings at LL9 were<br>thermally decontaminated and<br>demolished to 2 feet below ground<br>surface in 2003 and the<br>foundations and footers were<br>removed." Sounds like the<br>structures below 2 feet bgs remain?<br>I think all foundations and footers<br>have been removed. Please indicate<br>in the text. |                | Agree. The referenced text will be revised as<br>follows, as based on the description from the<br>FY08 Installation Action Plan:<br>"The buildings at LL9 were thermally<br>decontaminated and demolished to 2 feet<br>below ground surface in 2003, and the<br>foundations and footers were removed<br>removal of all remaining slabs and<br>foundations was completed in 2007." |
| R-12.             | Figure O-1        | Figure O-1           | Label the creek on the figure. Also identify the vegetation line in the Legend.                                                                                                                                                                                                                                             |                | Agree. The creek name will be added as requested, and the vegetation line added to the figure legend.                                                                                                                                                                                                                                                                             |
| R-13.             | Figure Q-1        | Figure Q-1           | Mark and distinguish between<br>which buildings have been<br>demolished and which ones<br>remain.<br>Also, include road names.                                                                                                                                                                                              |                | Agree. The aerial photography data will be<br>reviewed and the buildings' statuses in the<br>Appendix Q figures will be revised as<br>appropriate. Road names will also be added<br>as requested.                                                                                                                                                                                 |
| R-14.             | Pg 14-1           | SSHP<br>Pg 14-1      | Emergency Phone Numbers –<br>Please also include LTC Ed<br>Meade, Garrison Commander,<br>(614)336-6560.                                                                                                                                                                                                                     |                | Agree. An entry for the Garrison Commander<br>will be added to Table 14-1 of the SSHP, as<br>requested.                                                                                                                                                                                                                                                                           |

Page 21 of 21