FINAL

SUPPLEMENTAL BASELINE HUMAN HEALTH RISK ASSESSMENT

FOR

LOAD LINE 1 ALTERNATIVE RECEPTORS AT THE RAVENNA ARMY AMMUNITION PLANT, RAVENNA, OHIO

US Army Corps of Engineers®

LOUISVILLE DISTRICT CONTRACT NO. DACA45-03-D-0026 DELIVERY ORDER 0001

July 2004

FINAL

Supplemental Baseline Human Health Risk Assessment for Load Line 1 Alternative Receptors at the Ravenna Army Ammunition Plant, Ravenna, Ohio

July 2004

Prepared for

U.S. Army Corps of Engineers Louisville District Contract No. DACA45-03-D-0026 Delivery Order No. 0001

Prepared by

Science Applications International Corporation 151 Lafayette Drive Oak Ridge, Tennessee 37830 under subcontract with Shaw Environmental, Inc. 100 Technology Center Drive Stoughton, Massachusetts 02072-4705

SHAW ENVIRONMENTAL, INC. and SCIENCE APPLICATIONS INTERNATIONAL CORPORATION

contributed to the preparation of this document and should not be considered eligible contractors for its review.

CONTRACTOR STATEMENT OF INDEPENDENT TECHNICAL REVIEW

Science Applications International Corporation (SAIC) has completed the Final Report for the *Supplemental Baseline Human Health Risk Assessment for Load Line 1 Alternative Receptors at the Ravenna Army Ammunition Plant, Ravenna, Ohio.* Notice is hereby given that an independent technical review has been conducted that is appropriate to the level of risk and complexity inherent in the project. During the independent technical review, compliance with established policy principles and procedures, utilizing justified and valid assumptions, was verified. This included review of data quality objectives; technical assumptions; methods, procedures, and materials to be used; the appropriateness of data used and level of data obtained; and reasonableness of the results, including whether the product meets the customer's needs consistent with law and existing Corps policy.

Shawn K Robers

Sharon Robers, SAIC Study/Design Team Leader

Sam Stinnette, SAIC Technical Reviewer

David Cobb, Shaw E&I Inc. Project Manager

Significant concerns and the explanation of the resolution are as follows:

Internal SAIC Independent Technical Review comments are recorded on a Document Review Record per SAIC quality assurance procedure QAAP 3.1. This Document Review Record is maintained in the project file. Changes to the report addressing the comments have been verified by the Study/Design Team Leader.

As noted above, all concerns resulting from independent technical review of the project have been considered.

niko Fitzgerald

Principal w/ A-E firm

6/29/04 Date

6/25/04 Date

6/25/04

Date

6/25/04 Date

CONTENTS

		5	
		(MS	
EXI	ECUT	IVE SUMMARY	ix
1.0	INTI	RODUCTION	1-1
2.0	DAT	A EVALUATION	
	2.1	CHEMICAL OF POTENTIAL CONCERN SCREENING	2-3
		2.1.1 Risk-based Screening Values	2-9
		2.1.2 Background Screening Values	
		2.1.3 Chemical of Potential Concern Screening Assumptions	2-10
	2.2	CHEMICAL OF POTENTIAL CONCERN SCREENING RESULTS	2-10
3.0	EXP	OSURE ASSESSMENT	3-1
	3.1	LAND USE AND POTENTIAL RECEPTORS	3-1
	3.2	EXPOSURE PATHWAYS	3-1
		3.2.1 National Guard Land Use	3-3
		3.2.2 Recreational Land Use	3-10
		3.2.3 Residential Land Use	3-11
	3.3	QUANTIFICATION OF INTAKE	3-11
		3.3.1 Soil and Sediment Exposure Pathways	3-11
		3.3.2 Groundwater and Surface Water Exposure Pathways	3-13
		3.3.3 Ingestion of Fish and Waterfowl	
	3.4	EXPOSURE POINT CONCENTRATIONS	3-14
		3.4.1 Measured Exposure Point Concentrations	3-14
		3.4.2 Modeled Exposure Point Concentrations	3-15
	3.5	INTAKE RESULTS	3-15
4.0	тох	ICITY ASSESSMENT	4-1
	4.1	TOXICITY INFORMATION AND U.S. ENVIRONMENTAL PROTECTION	
		AGENCY GUIDANCE FOR NON-CARCINOGENS	4-1
	4.2	TOXICITY INFORMATION AND U.S. ENVIRONMENTAL PROTECTION	
		AGENCY GUIDANCE FOR CARCINOGENS	4-1
	4.3	ESTIMATED TOXICITY VALUES FOR DERMAL EXPOSURE	4-2
	4.4	ASSUMPTIONS USED IN THE TOXICITY ASSESSMENT	4-2
	4.5	CHEMICALS WITHOUT U.S. ENVIRONMENTAL PROTECTION AGENCY	
		TOXICITY VALUES	4-3
5.0	RISH	K CHARACTERIZATION	5-1
	5.1	METHODOLOGY	5-1
		5.1.1 Risk Characterization for Carcinogens	
		5.1.2 Risk Characterization for Non-carcinogens	
		5.1.3 Identification of Chemicals of Concern	
	5.2	RISK CHARACTERIZATION RESULTS	5-3
		5.2.1 Groundwater Results	5-3
		5.2.2 Surface Water and Sediment Results	5-5

		5.2.3 Soil Results	
		5.2.4 Summary of Chemicals of Concern for all Media and Receptors	.5-16
	5.3	UNCERTAINTY ANALYSIS	
		5.3.1 Uncertainties Associated with the Exposure Assessment	.5-19
		5.3.2 Uncertainties Associated with Toxicity Information	.5-20
		5.3.3 Uncertainties and Assumptions in the Risk Characterization	.5-22
6.0	REM	EDIAL GOAL OPTIONS	6-1
7.0	SUM	MARY AND CONCLUSIONS	7-1
	7.1	GROUNDWATER	7-1
	7.2	SURFACE WATER AND SEDIMENT	7-1
	7.3	SOIL	7-2
8.0	REFI	ERENCES	8-1
APF	PENDI	X A SUPPORTING TABLES FOR SUPPLEMENTAL BASELINE HUMAN	
	HEA	LTH RISK ASSESSMENT	A-1
APF		X B MODELING FOR LOAD LINE 1: WATERFOWL CONCENTRATIONS FROM MENT AND SURFACE WATER AND FISH CONCENTRATIONS FROM	
		FACE WATER	B-1
APF	PENDI	X C RESULTS OF LEAD MODELING	C-1

FIGURES

2-1	Load Line 1 Surface Water and Sediment Aggregates by Drainage Area	.2-2	2
2-2	Load Line 1 Soil Aggregates	.2-5	5

TABLES

ES-1	Receptor/Medium/Exposure Unit Combinations with COCs at Load Line 1	xi
2-1	Analytical Results for Load Line 1 Railroad Bed Slag Sampling Locations – Explosives	
	and Propellants	2-6
2-2	Analytical Results for Load Line 1 Railroad Bed Slag Sampling Locations - Inorganics	2-7
3-1	Receptors and Exposure Pathways for RVAAP Load Line 1	3-2
3-2	Parameters Used to Quantify Exposures for Each Medium and Receptor at Load Line 1	3-4
5-1	Total Hazards/Risks and Chemicals of Concern in Groundwater	5-4
5-2	Total Hazards/Risks and Chemicals of Concern for Surface Water - Direct Contact	5-5
5-3	Total Hazards/Risks and Chemicals of Concern for Sediment - Direct Contact	5-6
5-4	Total Hazards/Risks and Chemicals of Concern for Surface Water and Sediment – Fish and	
	Waterfowl	5-7
5-5	Total Hazards/Risks and Chemicals of Concern for Surface Soil ^a : Direct Contact	5-9
5-6	Total Hazards/Risks and Chemicals of Concern for Surface Soil: Ingestion of Foodstuffs	5-12
5-7	Total Hazards/Risks and Chemicals of Concern for Direct Contact with Subsurface Soil	5-16
5-8	Receptor/Medium/Exposure Unit Combinations with COCs at Load Line 1	5-17
6-1	Groundwater Remedial Goal Options (µg/L) for Chemicals of Concern	6-3
6-2	Surface Water Remedial Goal Options (µg/L) for Chemicals of Concern	6-4
6-3	Sediment Remedial Goal Options (mg/kg) for Chemicals of Concern	6-5
6-4	Shallow Surface Soil Remedial Goal Options (mg/kg) for Chemicals of Concern	6-7
6-5	Deep Surface Soil Remedial Goal Options (mg/kg) for Chemicals of Concern	6-9
6-6	Subsurface Soil Remedial Goal Options (mg/kg) for Chemicals of Concern	6-9

THIS PAGE INTENTIONALLY LEFT BLANK

ACRONYMS

AOC	area of concern
bgs	below ground surface Baseline Human Health Risk Assessment
BHHRA	
COC	chemical of concern
COPC	chemical of potential concern
cPAH	carcinogenic polycyclic aromatic hydrocarbon
CSF	cancer slope factor
DAD	dermally absorbed dose
DDE	dichlorodiphenyldichloroethylene
DLF	dust-loading factor
DNT	dinitrotoluene
DQA	data quality assessment
EPA	U.S. Environmental Protection Agency
EPC	exposure point concentration
EU	exposure unit
FS	feasibility study
FWHHRAM	Facility-wide Human Health Risk Assessor Manual
GAF	gastrointestinal absorption factor
HEAST	Health Effects Assessment Summary Tables
HI	hazard index
HQ	hazard quotient
IEUBK	Integrated Exposure Uptake Biokinetic (model)
ILCR	incremental lifetime cancer risk
IRIS	Integrated Risk Information System
LOAEL	lowest-observed-adverse-effect level
MDC	maximum detected concentration
MDL	method detection limit
NCP	National Oil and Hazardous Substances Pollution Contingency Plan
NOAEL	no-observed-adverse-effect level
OHARNG	Ohio Army National Guard
OSC	Office of Species Conservation
PAH	polycyclic aromatic hydrocarbon
PCB	polychlorinated biphenyl
PEF	particulate emission factor
PRG	preliminary remediation goal
QA	Quality Assurance
QC .	Quality Control
RAGS	Risk Assessment Guidance for Superfund
RDA	recommended daily allowance
RDI	recommended daily intake
RDX	hexahydro-1,3,5-trinitro-1,3,5-triazine
RfC	reference concentration
RfD	reference dose
RGO	remedial goal option
RI	Remedial Investigation
RME	reasonable maximum exposure
RTLS	Ravenna Training and Logistics Site
RVAAP	Ravenna Army Ammunition Plant
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	

SVOC	semivolatile organic compound
TEF	toxicity equivalency factor
THI	target hazard index
TNT	2,4,6-trinitrotoluene
TR	target risk
UCL ₉₅	95% upper confidence limit
VOC	volatile organic compound
WOE	weight of evidence

EXECUTIVE SUMMARY

This Supplemental Baseline Human Health Risk Assessment (BHHRA) was conducted to evaluate risks and hazards associated with contaminated media at the Ravenna Army Ammunition Plant (RVAAP) Load Line 1 area of concern (AOC) for three potential future use scenarios: National Guard use, recreational use, and residential use. Results are presented for all scenarios and exposure pathways. This Supplemental BHHRA is a supplement to the BHHRA presented in the *Final Phase II Remedial Investigation Report for Load Line I at the Ravenna Army Ammunition Plant, Ravenna, Ohio* (SAIC 2004) and reflects recent land use decisions by the Ohio Army National Guard and release of RVAAP's Facility-wide Human Health Risk Assessor Manual (USACE 2004). The following steps were used to generate conclusions regarding human health risks and hazards associated with contaminated media at Load Line 1:

- identification of chemicals of potential concern (COPCs),
- calculation of risks and hazards,
- identification of chemicals of concern (COCs), and
- calculation of remedial goal options (RGOs).

Risks and hazards are evaluated and RGOs are calculated for National Guard receptors (Trainee, Security Guard/Maintenance Worker, and Fire/Dust Suppression Worker), recreational receptors (Hunter/Trapper/Fisher), and residential receptors (adult and child Resident Subsistence Farmer). Results are summarized below and in Table ES-1.

GROUNDWATER

Arsenic and manganese are identified as COCs for both the National Guard Trainee (arsenic only) and the Resident Subsistence Farmer scenarios. Arsenic and manganese are naturally present in groundwater in the Ravenna area. The background risks and hazards for arsenic and manganese are similar to the estimated site-related risks and hazards.

Groundwater is not currently used at Load Line 1 but is evaluated in this BHHRA for potential future exposure. Five COCs were identified for the National Guard exposure to groundwater: 2,4-dinitrotoluene (DNT); 2,6-DNT; hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX); 4,4'-dichlorodiphenyldichloroethylene; and arsenic. In addition to these five, two additional COCs were identified for the residential exposure to groundwater: 2,4,6-trinitrotoluene (TNT) and manganese.

SURFACE WATER AND SEDIMENT

Arsenic is identified as the only COC for both National Guard receptors at Outlet C and Charlie's Pond. Arsenic is identified as the only COC for the National Guard Trainee and for the Resident Subsistence Farmer at Outlet C and Charlie's Pond and at Outlets D, E, and F, and Criggy's Pond. No surface water COCs are identified for the Hunter/Trapper/Fisher at either of these exposure units (EUs). The National Guard Security Guard/Maintenance Worker is not exposed to surface water. Arsenic was identified as a COC for waterfowl ingestion by the Hunter/Trapper/Fisher at both of these EUs and for fish ingestion at both of these EUs.

Arsenic and manganese are identified as COCs in sediment for National Guard Trainee use of the Outlet C and Charlie's Pond EU. No sediment COCs are identified for the National Guard Fire/Dust

THIS PAGE INTENTIONALLY LEFT BLANK.

	Grour	ndwater		Surfac	e Water ^a			Sedi	ment ^a			Surfa	ce Soil ^b			Subsurface
	National		Natior	nal Guard			Nationa	l Guard			Nat	ional Guard				Soil
	Guard	Resident		Fire/Dust	Hunt/	Resident		Fire/Dust	Hunt/	Resident		Sec. Guard/	Fire/Dust	Hunt/	Resident	Resident
COC	Trainee	Farmer ^c	Trainee	Control	Trap/Fish	Farmer ^c	Trainee	Control	Trap/Fish	Farmer ^c	Trainee	Maint. Worker	Control	Trap/Fish	Farmer ^c	Farmer ^c
								Met	als							
Antimony					E^d					Е					3	13
Arsenic	LL1	LL1	C,E	С	C^{d}, E^{d}	C^{e}, E^{e}	A,C,E			A,C,E	3,4,13,14,CH,P	3,4,13,14,CH,P			3,4,13,14,CH,P	
Cadmium							А									
Manganese		LL1					C,E			Е	3,4,13,14,CH,P					
								Explo	sives							
2,4,6-Trinitrotoluene		LL1									4	4			4,13	4
2,4-Dinitrotoluene	LL1	LL1								А					13	
2,6-Dinitrotoluene	LL1	LL1													4	
RDX	LL1	LL1									4	4,14			4,14	4
								PC	Bs							
PCB-1254					\mathbf{C}^{d}					A,C	3,4,14	3,4,13,14	4	4	3,4,13,14	
			-			-		Pestic	cides							
4,4'-DDE	LL1	LL1														
Dieldrin												4			3,4	
								PA.	Hs							
Benz(a)anthracene										А	3	3			3,4,14	
Benzo(a)pyrene					\mathbf{C}^{d}		А	А	А	A,C	3	3,4,13,14	3	3	3,4,13,14,CH	
Benzo(b)fluoranthene							А			А	3	3			3,4,14	
Dibenz(<i>a</i> , <i>h</i>)anthracene							А			А	3	3,14			3,4,14	
Indeno(1,2,3-cd)pyrene										А		3			3,14	

Table ES-1. Receptor/Medium/Exposure Unit Combinations with COCs at Load Line 1

Groundwater Exposure Unit LL1 = Load Line 1 Bedrock aquifer. Surface Water and Sediment Exposure Units

C = Outlet C and Charlie's Pond. A = Outlets A and B.

E = Outlets D, E, and F, and Criggy's Pond.

Soil Exposure Units 3 = CB-3 and -801.

4 = CB-4/4A and CA-6/6A. 13 = CB-13 and -10. 14 = CB-14, CB-17, and CA-15.

P = Perimeter Area.

^a Chemicals listed are for direct contact with surface water or sediment unless otherwise noted.

^b Surface soil is defined as 0 to 3 ft below ground surface (bgs) for the National Guard Trainee and 0 to 1 ft bgs for all other receptors.

^c Results for both adult and child Resident Subsistence Farmer.

^{*d*} Chemical is a COC for waterfowl/fish ingestion only.

^e Chemical is a COC for both direct contact and waterfowl/fish ingestion.

COC = Chemical of concern.

DDE = Dichlorodiphenyldichloroethylene.

PAH = Polycyclic aromatic hydrocarbon.

PCB = Polychlorinated biphenyl.

RDX = Hexahydro-1,3,5-trinitro-1,3,5-triazine.

CH = Change Houses (CB-12, -23, -8, -22).

Suppression Worker and Hunter/Trapper/Fisher at this EU. Arsenic, polychlorinated biphenyl (PCB) 1254, and benzo(*a*)pyrene are identified as COCs for residential use at this EU. Benzo(*a*)pyrene, PCB-1254, and arsenic are COCs for waterfowl ingestion by the Hunter/Trapper/Fisher at Outlet C and Charlie's Pond.

Various polycyclic aromatic hydrocarbons (PAHs) [benzo(*a*)pyrene, benzo(*b*)fluoranthene, and dibenz(*a*,*h*)anthracene], arsenic, and cadmium are identified as COCs at the Outlets A and B EU for the National Guard receptors. Benzo(*a*)pyrene is the only COC identified at the Outlets A and B EU for Recreational use. Arsenic; 2,4-DNT; PCB-1254; and several PAHs [benz(*a*)anthracene, benzo(*a*)pyrene, benzo(*b*)fluoranthene, dibenz(*a*,*h*)anthracene, and indeno(1,2,3-*cd*)pyrene] are identified as COCs for the Resident Subsistence Farmer at this EU.

Arsenic and manganese are identified as COCs for the National Guard Trainee at the Outlets D, E, and F, and Criggy's Pond EU. No sediment COCs are identified for the National Guard Fire/Dust Suppression Worker and Hunter/Trapper/Fisher at this EU. Antimony, arsenic, and manganese are identified as COCs for residential use at this EU. Arsenic and antimony are COCs for waterfowl ingestion by the Hunter/Trapper/Fisher at this AOC.

SOIL

Potential human health risks/hazards were evaluated for exposure to COPCs in soil at seven EUs. Direct contact (i.e., ingestion, dermal contact, and inhalation) with shallow surface soil [0 to 1 ft below ground surface (bgs)] was evaluated for the National Guard Security Guard/Maintenance Worker and Fire/Dust Suppression Worker, recreational Hunter/Trapper/Fisher, and Resident Subsistence Farmer. Direct contact with deep surface soil (0 to 3 ft bgs) was evaluated for the National Guard Trainee. Direct contact with subsurface soil (1 to 3 ft bgs) and indirect contact (i.e., ingestion of food) were evaluated for the Resident Subsistence Farmer.

Two metals (arsenic and manganese), two explosives (TNT and RDX), five PAHs [benz(*a*)anthracene, benzo(*a*)pyrene, benzo(*b*)fluoranthene, dibenz(*a*,*h*)anthracene, and indeno(1,2,3-*cd*)pyrene], and PCB-1254 were identified as COCs for the National Guard receptors at several EUs. Only the Water Tower EU had no COCs for these receptors. Two COCs [benzo(*a*)pyrene at Buildings CB-3 and -801 and PCB-1254 at Buildings CB-4/4A and CA-6/6A] were identified for the recreational receptors.

Two metals (arsenic and antimony), four explosives (TNT; 2,4-DNT; 2,6-DNT; and RDX), five PAHs [benz(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, dibenz(a,h)anthracene, and indeno(1,2,3-cd)pyrene], dieldrin, and PCB-1254 were identified as COCs for direct exposure by the Resident Subsistence Farmer at several EUs. Only the Water Tower EU had no COCs for these receptors. Additional metals, explosives, PAHs, and pesticides were identified for indirect exposure to surface soil via ingestion of vegetables, beef, and dairy products by the Resident Subsistence Farmer.

Two explosives (2,4,6-TNT and RDX) were identified as COCs in subsurface soil for the Resident Subsistence Farmer at Buildings CB-4/4A and CA-6/6A. Antimony is the only subsurface soil COC identified at Buildings CB-13 and -10.

1.0 INTRODUCTION

This Supplemental Baseline Human Health Risk Assessment (BHHRA) documents the potential health risks to humans resulting from exposure to contamination within the Load Line 1 Area of Concern (AOC) at the Ravenna Army Ammunition Plant (RVAAP) in Ravenna, Ohio. Load Line 1 was in operation from 1941 until 1971. During World War II and the Korean War, Load Line 1 was used to melt and load 2,4,6-trinitrotoluene (2,4,6-TNT) and Composition B explosives into large-caliber shells. The load lines were rehabilitated in 1951 (USATHAMA 1978) to remove and replace soils contaminated with accumulated explosives and to remove and replace contaminated overhead storm drains. More recently, Load Line 1 was the site of munitions rehabilitation activities following the Vietnam War. Load Line 1 buildings were recently demolished and removed. Floor slabs and most below-grade infrastructure remain in place. This risk assessment is prepared as a supplement to the *Final Phase II RI Report for Load Line 1 at the Ravenna Army Ammunition Plant, Ravenna, Ohio* (Final LL1 RIR) (SAIC 2004). This Supplemental BHHRA is a result of recent land use decisions by the Ohio Army National Guard (OHARNG) and release of the RVAAP's Facility-wide Human Health Risk Assessor Manual (FWHHRAM) (USACE 2004).

The objective of this baseline risk assessment is to evaluate and document the potential risks to human health associated with predicted future exposures to contaminants if no remedial action is taken. Thus, this assessment represents the risks for the "no-action" alternative in a feasibility study (FS).

The Load Line 1 BHHRA is conducted per the FWHHRAP (USACE 2004). The methodology presented in the FWHHRAM is based on *Risk Assessment Guidance for Superfund* (RAGS) (EPA 1989, 1991, and 2002a) and additional methodology taken from *Dermal Exposure Assessment: Principles and Applications* (EPA 1992a); *Exposure Factors Handbook* (EPA 1997a); Integrated Risk Information System (IRIS) (EPA 2004, updated approximately monthly); and Health Effects Assessment Summary Tables (HEAST) (EPA 1997b). The inorganic and organic chemicals of potential concern (COPCs) found in the various environmental media are quantitatively analyzed (when possible) to characterize the potential risks to human health from exposure to these contaminants. The results of the BHHRA are used to (1) document and evaluate risks to human health; (2) determine the need, if any, for remedial action; and (3) identify chemicals of concern (COCs) that may require the development of chemical-specific remediation levels. This Load Line 1 BHHRA evaluates potential risks from exposure to the following environmental media: surface soil (shallow and deep), subsurface soil, sediment, surface water, and groundwater.

This risk assessment is organized into six major sections. The screening process used to identify COPCs is discussed in Chapter 2.0. The exposure assessment, which is performed to identify the exposure pathways by which receptors may be exposed to contaminants and calculate potential intakes, is presented in Chapter 3.0. The toxicity assessment for the Load Line 1 COPCs is presented in Chapter 4.0. The results of the risk characterization are presented in Chapter 5.0. Remedial goal options (RGOs) are presented in Chapter 6.0, and the conclusions of the BHHRA are summarized in Chapter 7.0.

THIS PAGE INTENTIONALLY LEFT BLANK

2.0 DATA EVALUATION

This chapter provides a description of the data evaluation process used to identify COPCs for Load Line 1. The purpose of the BHHRA data evaluation screening process is to eliminate chemicals for which no further risk evaluation is needed. Data collected at Load Line 1 are aggregated by environmental medium (i.e., groundwater, surface water, sediment, and soil). Soil data are further aggregated by depth interval—shallow surface soil from 0 to 1 ft below ground surface (bgs), deep surface soil from 0 to 3 ft bgs, and subsurface soil from 1 to 3 ft bgs. Due to the presence of shallow bedrock at Load Line 1, soil samples were taken to a maximum of 3 ft bgs.

Groundwater data are available from sampling events in 1996, 1999, and 2000. Only data from the 1999 and 2000 sampling events are included in the BHHRA since these data better represent current and potential future conditions than data that are greater than 5 years old. Qualitative evaluation of data from these various sampling events indicates that chemical concentrations are similar for all three sampling events. Groundwater data are aggregated as

- 1. Load Line 1 Building Area: all wells completed in sandstone bedrock.
- 2. Wells MW-64 and -65 located north and south of Criggy's Pond: wells completed in unconsolidated glacial sediment.

Surface water and sediment data are aggregated by conveyance. Five conveyances were identified

- 3. Outlets D, E, and F, and Criggy's Pond;
- 4. Outlet C and Charlie's Pond;
- 5. Outlets A and B;
- 6. the North area; and
- 7. Off-AOC.

Surface water and sediment from the Off-AOC aggregate are not included in this BHHRA because these samples represent contaminant migration from AOCs other than Load Line 1 and are more appropriately evaluated in a site-wide surface water evaluation. Surface water and sediment aggregates are shown in Figure 2-1. Samples collected from manholes, sanitary sewers, and storm sewers are not included in the BHHRA.

Soil data are aggregated into exposure units (EUs) based on historical use and geographic proximity as described in Section 4.1.2 of the Final LL1 RIR (SAIC 2004). The purpose of combining areas with similar use and geography is to characterize maximum concentrations of expected contamination. If areas with dissimilar histories are aggregated, there is a potential to screen out contaminants that should be carried through the process. The aggregates selected to divide the Load Line 1 AOC into EUs achieve the intent of being protective of human and environmental health. Soil data are grouped into the following seven EUs:

- 1. Buildings CB-3 and -801;
- 2. Buildings CB-4/4A and CA-6/6A;
- 3. Buildings CB-13 and -10;
- 4. Buildings CB-14, CB-17, and CA-15;
- 5. the Water Tower;
- 6. the Change Houses (CB-12, -23, -8, and -22); and
- 7. the Perimeter Area.

Figure 2-2. Load Line 1 Sediment Aggregates by Drainage Area

Soil aggregates are shown in Figure 2-2. Data from samples collected from railroad bed locations are not evaluated as part of the BHHRA. These samples are more representative of slag than soil. These railroad bed samples were collected at the same time as the Phase II RI but were collected for the purpose of evaluating the potential use of the area for clean, hard fill disposal rather than as part of the Phase II nature and extent characterization. Further, it is likely OHARNG will remove the slag to protect it for re-use prior to conducting any activity at the railroad bed. Further evaluation of the railroad beds is not required because the slag material is (1) highly weathered; (2) applied as a building material or in a similar manner (not disposal); (3) will likely remain intact at the load line (after removal of the slabs); and (4) no exposure pathway to the troops should occur. Although these samples are not included in the BHHRA, summary data are presented in Tables 2-1 and 2-2 for informational purposes; full presentation of the railroad bed sample data is included in the Final Load Line 1 RI Report (SAIC 2004).

Section 2.1 provides a summary of the COPC selection process and the data assumptions used during that process. Section 2.2 presents the results of the COPC screening process.

2.1 CHEMICAL OF POTENTIAL CONCERN SCREENING

This section provides a description of the screening process used to identify COPCs and the data assumptions used in the process.

COPCs are identified for each EU dataset for each medium. This data evaluation consists of five steps: (1) a data quality assessment (DQA), (2) frequency-of-detection/weight-of-evidence (WOE) screening, (3) screening of essential human nutrients, (4) risk-based screening, and (5) background screening.

- 1. **Data Quality Assessment** Analytical results were reported by the laboratory in electronic form and loaded into a Load Line 1 database. Site data were extracted from the database so that only one result is used for each station and depth sampled. Quality control (QC) data, such as sample splits and duplicates, and laboratory re-analyses and dilutions, were not included in the determination of COPCs for this risk assessment. Field-screening data that were considered in the evaluation of nature and extent of contamination at Load Line 1 are not included in the dataset for the risk assessment. Samples rejected in the validation process are also excluded from the risk assessment. The percentage of rejected data is less than 1%. A complete summary of data quality issues is presented in the DQA (Appendix G) of the Final LL1 RIR (SAIC 2004).
- 2. Frequency-of-Detection/Weight-of-Evidence Screen Each chemical for each environmental medium is evaluated to determine its frequency of detection. Chemicals that were never detected are eliminated as COPCs. For sample aggregations with at least 20 samples and a frequency of detection of less than 5%, a WOE approach is used to determine if the chemical is AOC-related. The magnitudes and locations (clustering) of the detections and potential source of the chemical were evaluated. If the detected results showed no clustering, the chemical is not a COPC in another medium at that location, the concentrations are not substantially elevated relative to the detection limit, and the chemical was not used in the area under investigation, then the chemical is considered spurious and is eliminated from further consideration. This screen is applied to all organic and inorganic chemicals with the exception of explosives and propellants. All detected explosives and propellants are included in the list of COPCs regardless of their frequency of detection.
- 3. **Essential Nutrients** Chemicals that are considered essential nutrients (i.e., calcium, chloride, iodine, iron, magnesium, potassium, phosphorus, and sodium) are an integral part of the human food supply and are often added to foods as supplements. The U.S. Environmental Protection Agency

THIS PAGE INTENTIONALLY LEFT BLANK.

Figure 2-1. Soil Aggregates for Load Line 1 Phase II R1

Location		Railroad Bed Locations							
Station		LUCATIONS LL1-238	LL1-240	LL1-241	LU1-241	LL1-242	LUCATIONS LL1-242	LL1-243	Lucations LL1-243
Sample ID		LL1-238 LL11342	LL1-240 LL11340	LL1-241 LL11293	LL1-241 LL11339	LL1-242 LL11294	LL1-242 LL11338	LL1-243 LL11292	LL1-243 LL11337
Customer ID		LL1so-238-	LL11340 LL1so-240-	LL11293 LL1so-241-	LL1so-241-	LL11294 LL1so-242-	LL150-242-	LL11292 LL1so-243-	LL11337 LL1so-243-
		1342-SO	1340-SO	1293-SO	1339-SO	1294-SO	1338-SO	1292-SO	1337-80
Date		10/03/2000	10/03/2000	10/03/2000	10/03/2000	10/03/2000	10/03/2000	10/03/2000	10/03/2000
Depth (ft)		2 - 2	2 - 2	2 - 2	2 - 2	2 - 2	2 - 2	2 - 2	2 - 2
Field Type		Grab	Grab	Field Duplicate	Grab	Field Duplicate	Grab	Field Duplicate	Grab
Analyte	Units			_		_		_	
1,3,5-Trinitrobenzene	mg/kg	0.25 U							
1,3-Dinitrobenzene	mg/kg	0.25 U							
2,4,6-Trinitrotoluene	mg/kg	0.25 U							
2,4-Dinitrotoluene	mg/kg	0.25 U							
2,6-Dinitrotoluene	mg/kg	0.25 U							
2-Amino-4,6-dinitrotoluene	mg/kg	0.25 U							
2-Nitrotoluene	mg/kg	0.25 U							
3-Nitrotoluene	mg/kg	0.25 U	0.25 U	0.25 U	0.17 J	0.25 U	0.25 U	0.25 U	0.25 U
4-Amino-2,6-dinitrotoluene	mg/kg	0.25 U							
4-Nitrotoluene	mg/kg	0.25 U							
HMX	mg/kg	0.5 U							
Nitrobenzene	mg/kg	0.25 U							
Nitrocellulose	mg/kg	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U
Nitroglycerin	mg/kg	2.5 U							
Nitroguanidine	mg/kg	0.25 U							
RDX	mg/kg	0.5 U							
Tetryl	mg/kg	0.65 U							

Table 2-1. Analytical Results for Load Line 1 Railroad Bed Slag Sampling Locations – Explosives and Propellants

HMX = Octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine.

ID = Identifier.

RDX = Hexahydro-1,3,5-trinitro-1,3,5-triazine.

U = Not detected.

Location Station Sample ID Customer ID Date Depth (ft) Field Type Analyte	Units	10/03/2000 2 - 2 Grab	Railroad Bed Locations LL1-238 LL11342 LL1so-238-1342-SO 10/03/2000 2 - 2 Grab	Railroad Bed Locations LL1-239 LL11341 LL1so-239-1341-SO 10/03/2000 2 - 2 Grab	Railroad Bed Locations LL1-240 LL11340 LL1so-240-1340-SO 10/03/2000 2 - 2	Railroad Bed Locations LL1-241 LL11293 LL1so-241-1293-SO 10/03/2000 2 - 2 Field Duplicate	Railroad Bed Locations LL1-241 LL11339 LL1so-241-1339-SO 10/03/2000 2 - 2 Grab
Cyanide	mg/kg	NA	NA	NA	NA	NA	NA
Chromium, hexavalent	mg/kg	NA	NA	NA	NA	NA	NA
Aluminum	mg/kg	6,470 =	3,720 =	5,720 =	3,100 =	3,320 =	4,510 =
Antimony	mg/kg	1 UJ	1.1 UJ	1.1 UJ	1.1 UJ	1.1 UJ	1.1 UJ
Arsenic	mg/kg	10.3 =	4.5 =	4.8 = Grab	4.7 =	4.5 =	3.6 =
Barium	mg/kg	30.7 =	34.6 =	58.5 =	26.2 =	38.3 =	54 =
Beryllium	mg/kg	0.24 U	0.24 J	0.41 J	0.25 U	0.29 U	0.38 J
Cadmium	mg/kg	0.073 J 🔹	0.54 U	0.07 J 🔹	0.54 U	0.051 J 🔹	0.54 U
Calcium	mg/kg	2,970 =	6,060 J	12,200 J	2,980 =	5,680 =	12,400 J
Chromium	mg/kg	9.2 =	5.4 =	7.7 =	6.8 =	5.6 =	5.2 =
Cobalt	mg/kg	5.3 =	4.4 J	3.8 J	3.5 J	3.3 J	2.6 J
Copper	mg/kg	17.6 =	5.1 =	7.4 =	4.6 =	6.1 =	4.6 =
Iron	mg/kg	17,400 =	9,810 =	11,200 =	19,600 =	10,100 =	8,320 =
Lead	mg/kg	13.4 =	4 =	10.9 =	12.8 =	10.3 =	7.2 =
Magnesium	mg/kg	2,110 =	1,310 =	1,890 =	739 =	1,090 =	1,860 =
Manganese	mg/kg	298 =	497 =	660 =	765 =	553 =	758 =
Mercury	mg/kg	0.01 J	0.11 U	0.11 U	0.11 U	0.11 U	0.011 J
Nickel	mg/kg	12.8 =	7.6 =	7.5 =	7.7 =	6.1 =	5 =
Potassium	mg/kg	1,020 =	471 J	745 =	557 =	503 J	548 =
Selenium	mg/kg	0.52 U	0.54 U	0.54 U	0.54 U	0.54 U	0.54 U
Silver	mg/kg	1 U	1.1 U	1.1 U	1.1 U	1.1 U	1.1 U
Sodium	mg/kg	524 U	65.9 U	97.7 U	542 U	53.9 J	116 U
Thallium	mg/kg	0.46 J	0.54 U	0.23 J	0.36 J	0.33 J	0.27 J
Vanadium	mg/kg	11.7 =	6.5 =	8.3 =	7.4 =	6.3 =	6 =
Zinc	mg/kg	63.6 =	16.2 =	38 =	67.2 =	50.3 =	56.5 =

Table 2-2. Analytical Results for Load Line 1 Railroad Bed Slag Sampling Locations – Inorganics

Location Station Sample ID Customer ID Date Depth (ft) Field Type		Railroad Bed Locations LL1-242 LL11294 LL1so-242-1294-SO 10/03/2000 2 - 2 Field Duplicate	Railroad Bed Locations LL1-242 LL11338 LL1so-242-1338-SO 10/03/2000 2 - 2 Grab	Railroad Bed Locations LL1-243 LL11292 LL1so-243-1292-SO 10/03/2000 2 - 2 Field Duplicate	Railroad Bed Locations LL1-243 LL11337 LL1so-243-1337-SO 10/03/2000 2 - 2 Grab	Railroad Bed Locations LL1-244 LL11336 LL1so-244-1336-SO 10/03/2000 2 - 2 Grab
Analyte	Units					
Cyanide	mg/kg	NA	NA	NA	NA	NA
Chromium, hexavalent	mg/kg	NA	NA	NA	NA	NA
Aluminum	mg/kg	3,370 =	7,540 =	3,590 =	3,560 =	2,810 =
Antimony	mg/kg	1.1 UJ	1.1 UJ	1.1 UJ	1.1 UJ	1.1 UJ
Arsenic	mg/kg	4.9 =	4.7 =	6.6 =	5.1 =	4.8 =
Barium	mg/kg	32.7 =	51.1 =	37.2 =	39.9 =	31.6 =
Beryllium	mg/kg	0.3 U	0.77 =	0.31 U	0.29 J	0.24 J
Cadmium	mg/kg	0.055 J 🔹	0.072 J 🔹	0.091 J 🔹	0.079 J 🏻 *	0.1 J 🔹
Calcium	mg/kg	4,940 =	23,100 J	4,880 =	5,370 J	3,220 J
Chromium	mg/kg	6.7 =	6.5 =	7 =	6 =	5.9 =
Cobalt	mg/kg	3.4 J	3.1 J	4.4 J	3.5 J	3.6 J
Copper	mg/kg	7.1 =	7.3 =	9.3 =	8.1 =	5.5 =
Iron	mg/kg	13,000 =	11,000 =	15,800 =	15,600 =	16,600 =
Lead	mg/kg	9.1 =	11.2 =	19 =	11 =	7.7 =
Magnesium	mg/kg	992 =	3,710 =	989 =	1,090 =	747 =
Manganese	mg/kg	569 =	767 =	583 =	619 =	781 =
Mercury	mg/kg	0.11 U	0.11 U	0.017 J	0.0095 J	0.11 U
Nickel	mg/kg	7.3 =	6.9 =	9.1 =	7.8 =	8.3 =
Potassium	mg/kg	657 =	635 =	603 =	544 J	544 =
Selenium	mg/kg	0.35 J	0.54 U	0.55 U	0.56 U	0.35 J
Silver	mg/kg	1.1 U	1.1 U	1.1 U	1.1 U	1.1 U
Sodium	mg/kg	546 U	147 U	555 U	67.4 U	54.7 U
Thallium	mg/kg	0.28 J	0.54 U	0.41 J	0.13 J	0.13 J
Vanadium	mg/kg	7.3 =	6.4 =	7.4 =	6.8 =	7.2 =
Zinc	mg/kg	31.9 =	33.4 =	52.3 =	45.3 =	99.6 = *

 Table 2-2. Analytical Results for Load Line 1 Railroad Bed Slag Sampling Locations – Inorganics (continued)

ID - Identifier.

* - Exceeds site-wide background criteria.

= - Detected.

NA - Not analyzed.

U - Not detected.

J - Estimated value less than reporting limits.

(EPA) recommends that these chemicals not be evaluated as COPCs so long as they are (1) present at low concentrations (i.e., only slightly elevated above naturally occurring levels) and (2) toxic at very high doses (i.e., much higher than those that could be associated with contact at the site). Recommended daily allowance (RDA) and recommended daily intake (RDI) values are available for seven of these metals. Based on these RDA/RDI values, a receptor ingesting 100 mg of soil per day would receive less than the RDA/RDI of calcium, magnesium, phosphorous, potassium, and sodium, even if the soil consisted of the pure mineral (i.e., soil concentrations > 1,000,000 mg/kg). Receptors ingesting 100 mg of soil per day would require soil concentrations of 1,500 mg/kg of iodine and 100,000 to 180,000 mg/kg of iron to meet their RDA/RDI for these metals. Concentrations of essential nutrients do not exceed these levels at Load Line 1; thus, these constituents are not addressed as COPCs.

- 4. **Risk-based Screen** The objective of this evaluation is to identify COPCs that may pose a potentially significant risk to human health. The risk-based screening values are conservative values published by EPA. The maximum detected concentration (MDC) of each chemical in each environmental medium is compared against the appropriate risk-based screening value. Chemicals detected below these concentrations are screened from further consideration. The risk-based screening values for each environmental medium are described in Section 2.1.1. Detected chemicals without risk-based screening values are not eliminated from the COPC list.
- 5. **Background Screen** For each inorganic constituent detected, concentrations in Load Line 1 samples are screened against available, naturally occurring background levels. This screening step, which applies only to the inorganics, is used to determine if detected inorganics are site related or naturally occurring. If the MDC of a constituent exceeds the background value, the constituent is considered AOC-related. All detected organic compounds are considered to be above background. Inorganic chemicals whose MDCs are below background levels are eliminated from the COPC list.

2.1.1 Risk-based Screening Values

The risk-based screening values are conservative values published by EPA.

- For surface soil and sediment, a conservative screen is performed using the most current residential preliminary remediation goals (PRGs) published by EPA Region 9 (EPA 2002a). To account for the potential effects of multiple chemicals, PRGs based on non-cancer endpoints are divided by 10. These screening values are very conservative [based on a 10⁻⁶ risk level and a hazard quotient (HQ) of 0.1]. For information purposes only, data from these same media are also compared against the Region 9 industrial soil PRGs. Region 9 PRGs can be found on the EPA Region 9 World Wide Web site (http://www.epa.gov/region09/waste/sfund/prg/index.html).
- Surface water and groundwater data are screened using the EPA Region 9 tap water PRGs, which are also available at http://www.epa.gov/region09/waste/sfund/prg/index.html.

2.1.2 Background Screening Values

The Load Line 1 Phase II RI does not include determination of Load Line 1-specific background data. Analytical results are screened against the final facility-wide background values for RVAAP, published in the *Final Phase II Remedial Investigation Report for Winklepeck Burning Grounds at Ravenna Army Ammunition Plant, Ravenna, Ohio* (USACE 2001). Background values for soil are available for two soil depths: surface (0 to 1 ft bgs) and subsurface (1 to 12 ft bgs). Soil data at Load Line 1 are aggregated into three depth intervals: shallow surface soil (0 to 1 ft bgs), deep surface soil (0 to 3 ft bgs), and subsurface

soil (1 to 3 ft bgs). The following background depth intervals are used for identifying COPCs in Load Line 1 soil.

- For shallow surface soil (0 to 1 ft bgs) the background screen is performed using background values for surface soil (0 to 1 ft bgs).
- For deep surface soil (0 to 3 ft bgs) the background screen is performed using background values for either surface soil (0 to 1 ft bgs) or subsurface soil (1 to 12 ft bgs), whichever is lower.
- For subsurface soil (1 to 3 ft bgs) the background screen is performed using background values for subsurface soil (1 to 12 ft bgs).

2.1.3 Chemical of Potential Concern Screening Assumptions

The dataset used to determine COPCs includes data collected from Phase II and some data collected from Phase I. Many Phase I soil sampling locations were excavated, graded over, or otherwise disturbed during building demolition activities at Load Line 1. Data from these sampling stations are not included in the dataset used for this BHHRA. Specific assumptions applied to these data can be found in Chapter 4.0, Nature and Extent of Contamination, of the Final LL1 RIR (SAIC 2004). The following assumptions, used in the development of COPCs for the BHHRA, are noted:

- Chemicals not detected in a medium are not considered to be COPCs.
- Physical chemical data (e.g., alkalinity, pH, etc.) are not considered to be COPCs for Load Line 1.
- Total chromium is evaluated conservatively by screening against the EPA Region 9 PRGs for hexavalent chromium. This is a conservative assumption since (1) chromium VI was analyzed for and was detected at lower concentrations than total chromium, (2) hexavalent chromium is more toxic than trivalent chromium, and (3) hexavalent chromium is a less commonly occurring form of the metal.
- Alpha-chlordane and gamma-chlordane are evaluated by screening against the EPA Region 9 PRGs for chlordane.

2.2 CHEMICAL OF POTENTIAL CONCERN SCREENING RESULTS

The COPC screening process and results are summarized in Appendix A for each medium and EU (Tables A-1 through A-6). These tables include

- summary statistics, including frequency of detection, range of detected concentrations, arithmetic average concentration, and upper 95% confidence limit (UCL₉₅) on the mean concentration;
- all screening values (background concentrations and PRGs, as appropriate); and
- final COPC status.

The datasets and COPCs for groundwater, surface water, sediment, shallow surface soil, and subsurface soil are the same for this supplemental BHHRA as those evaluated in the BHHRA included in the Draft Final Phase II RI Report for the Load Line 1 AOC (USACE 2002). The dataset and COPCs for deep surface soil are unique to this supplemental BHHRA.

3.0 EXPOSURE ASSESSMENT

The objectives of the exposure assessment are to estimate the magnitude, frequency, and duration of potential human exposure to COPCs. The four primary steps of the exposure assessment are to

- 1. characterize the proposed land use to identify the potentially exposed human receptors, their activity patterns, and any other characteristics that might increase or decrease their likelihood of exposure;
- 2. identify each exposure pathway by which a receptor may be exposed to the COPCs (e.g., surface water ingestion);
- 3. identify the concentrations of COPCs to which the receptors may be exposed; and
- 4. quantify each receptor's potential intake of each COPC.

The output of the exposure assessment is used in conjunction with the output of the toxicity assessment (Chapter 4.0) to quantify risks and hazards to receptors in the risk characterization (Chapter 5.0).

This chapter is organized in the following manner:

- define potential future land use and human receptors,
- identify exposure pathways associated with each land use/receptor combination,
- identify the exposure models and model parameter values used to quantify the potential exposures to each identified receptor, and
- quantify potential intakes.

3.1 LAND USE AND POTENTIAL RECEPTORS

Land use within the RVAAP is restricted access. OHARNG currently occupies parts of RVAAP and conducts training exercises. Personnel from OHARNG may occasionally travel through AOCs at RVAAP but generally restrict training to areas outside of AOCs. No training exercises are known to be currently conducted within Load Line 1. This BHHRA focuses on the potential future land use at Load Line 1.

Potential human receptors are identified for three future land uses: National Guard, Recreational, and Residential. National Guard use includes three receptor types: National Guard Trainee, National Guard Security Guard/Maintenance Worker, and National Guard Fire/Dust Suppression Worker. Recreational use includes a receptor engaged in hunting, trapping, and fishing. Residential use is included to provide a baseline scenario and evaluates a Resident Subsistence Farmer (adult and child).

3.2 EXPOSURE PATHWAYS

An exposure pathway is made up of the following components:

- source,
- release mechanism (e.g., volatilization),
- transport pathway,
- exposure point,

- exposure route, and
- receptor.

Potential exposure pathways associated with each receptor and land use category are identified in Table 3-1.

Surface GroundwaterSurface SedimentSubsurface SoilNational Guard - TraineeIngestion \checkmark \checkmark \sim \sim \sim \sim Dermal \checkmark \checkmark \checkmark \sim \sim \sim \sim \sim \sim Dermal \checkmark \checkmark \checkmark \sim \sim \checkmark \sim <td< th=""><th></th><th></th><th>I</th><th>Exposure N</th><th>Iedia</th><th></th><th></th></td<>			I	Exposure N	Iedia		
National Guard – TraineeIngestion \checkmark \checkmark $$ \checkmark $$ Dermal \checkmark \checkmark \checkmark $$ \checkmark $$ Inhalation \checkmark \checkmark \checkmark \checkmark $$ $$ Dust $$ $$ \checkmark $$ \checkmark $$ Ingestion of food $$ $$ $$ $$ $$ Ingestion $$ $$ $$ $$ $$ Dermal $$ $$ $$ $$ $$ Ingestion $$ $$ $$ $$ $$ Dermal $$ $$ $$ $$ $$ Ingestion $$ $$ $$ $$ $$ Dust $$ $$ $$ $$ $$ Ingestion of food $$ $$ $$ $$ $$ Dermal $$ $$ $$ $$ $$ Ingestion $$ $$ $$ $$ $$ Dermal $$ $$ $$ $$ $$ Ingestion of food $$ $$ $$ $$ <td< th=""><th></th><th></th><th></th><th></th><th></th><th>e Soil</th><th>Subsurface</th></td<>						e Soil	Subsurface
National Guard – TraineeIngestion \checkmark \checkmark $$ \checkmark $$ Dermal \checkmark \checkmark \checkmark $$ \checkmark $$ Inhalation \checkmark \checkmark \checkmark \checkmark $$ $$ Dust $$ $$ \checkmark $$ \checkmark $$ Ingestion of food $$ $$ $$ $$ $$ Ingestion $$ $$ $$ $$ $$ Dermal $$ $$ $$ $$ $$ Ingestion $$ $$ $$ $$ $$ Dermal $$ $$ $$ $$ $$ Ingestion $$ $$ $$ $$ $$ Dust $$ $$ $$ $$ $$ Ingestion of food $$ $$ $$ $$ $$ Dermal $$ $$ $$ $$ $$ Ingestion $$ $$ $$ $$ $$ Dermal $$ $$ $$ $$ $$ Ingestion of food $$ $$ $$ $$ <td< th=""><th>Exposure Pathways</th><th>Groundwater</th><th>Water</th><th>Sediment</th><th></th><th></th><th>Soil</th></td<>	Exposure Pathways	Groundwater	Water	Sediment			Soil
Ingestion \checkmark \checkmark \checkmark $$ \checkmark $$ \checkmark $$	I					• F	
Dermal \checkmark \checkmark $ \checkmark$ $ -$ <	Ingestion	~	~	~		~	
Vapor \checkmark $-^{d}$ \sim $-^{d}$ <th< td=""><td>Dermal</td><td>~</td><td>></td><td>~</td><td></td><td>~</td><td></td></th<>	Dermal	~	>	~		~	
Dust \checkmark \checkmark $$ Ingestion of food \checkmark $$ National Guard – Security Guard/Maintenance Worker $$ $$ Ingestion $$ \checkmark $$ Dermal $$ \checkmark $$ Inhalation $$ $$ $$ Vapor $$ $$ $$ Dust $$ $$ Ingestion of food $$ $$ Dermal $$ $$ Ingestion of food $$ $$ Dermal $$ $$ $$ Ingestion of food $$ $$ National Guard – Fire/Dust Suppression Worker $$ Ingestion $$ $$ $$ Dermal $$ $$ $$ Ingestion of food $$ Vapor $$ $$ $$ Ingestion of food $$ $$ Dust $$ $$ $$ Inhalation $$ $$ $$ Inhalation $$ $$ $$ Ingestion of food $$ $$ Ingestion of food $$ $$ Ingestion of food $$ $$ </td <td>Inhalation</td> <td></td> <td></td> <td></td> <td></td> <td>1</td> <td></td>	Inhalation					1	
Dust \checkmark \checkmark Ingestion of food	Vapor	~	d	~		~	
National Guard – Security Guard/Maintenance WorkerIngestionDermalDermalInhalationDustIngestion of foodIngestionIngestionInductional Guard – Fire/Dust Suppression WorkerIngestion \checkmark \checkmark Dermal \checkmark \checkmark Indiation \checkmark \checkmark \checkmark National Guard - Fire/Dust Suppression WorkerIngestion \checkmark \checkmark \checkmark Dust \checkmark \checkmark \checkmark Ingestion $$ \checkmark \checkmark \checkmark Inhalation $$ \checkmark \checkmark \checkmark National Guard $$ $$ $$ $$ Ingestion of food $$ $$ $$ Ingestion of food $$ $$ $$ $$ Ingestion of food $$ $$ $$ $$ <td></td> <td></td> <td></td> <td>~</td> <td></td> <td>~</td> <td></td>				~		~	
National Guard – Security Guard/Maintenance WorkerIngestionDermalDermalInhalationDustIngestion of foodIngestionIngestionInductional Guard – Fire/Dust Suppression WorkerIngestion \checkmark \checkmark Dermal \checkmark \checkmark Indiation \checkmark \checkmark \checkmark National Guard - Fire/Dust Suppression WorkerIngestion \checkmark \checkmark \checkmark Dust \checkmark \checkmark \checkmark Ingestion $$ \checkmark \checkmark \checkmark Inhalation $$ \checkmark \checkmark \checkmark National Guard $$ $$ $$ $$ Ingestion of food $$ $$ $$ Ingestion of food $$ $$ $$ $$ Ingestion of food $$ $$ $$ $$ <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
Dermal		Guard – Security Gu	uard/Mainte	enance Wo	rker		•
DefinitionImage and the set of the set o	Ingestion				~		
Vapor	Dermal				~		
Dust \checkmark Ingestion of foodNational Guard – Fire/Dust Suppression WorkerIngestion \cdots \checkmark \checkmark $ -$ Ingestion \checkmark \checkmark \checkmark \checkmark $ -$ Dermal \checkmark \checkmark \checkmark \checkmark $ -$ Inhalation $ \checkmark$ \checkmark $ -$ Dust $ -$ Ingestion of food $ -$ Ingestion $ \checkmark$ \checkmark \checkmark $ -$ <	Inhalation				•		
Dust \checkmark Ingestion of foodNational Guard – Fire/Dust Suppression WorkerIngestion \cdots \checkmark \checkmark $ -$ Ingestion \checkmark \checkmark \checkmark \checkmark $ -$ Dermal \checkmark \checkmark \checkmark \checkmark $ -$ Inhalation $ \checkmark$ \checkmark $ -$ Dust $ -$ Ingestion of food $ -$ Ingestion $ \checkmark$ \checkmark \checkmark $ -$ <	Vapor				~		
National Guard – Fire/Dust Suppression WorkerIngestionDermal \checkmark \checkmark Inhalation \checkmark \checkmark Dust \checkmark \checkmark Ingestion of food \checkmark \checkmark Ingestion of foodHunter/Trapper/FisherIngestion \checkmark \checkmark \checkmark Dermal \checkmark \checkmark \checkmark Inhalation d \checkmark \checkmark National Guard d \checkmark \checkmark Ingestion of food d \checkmark \checkmark Ingestion of food d \checkmark \checkmark Ingestion \checkmark \checkmark \checkmark \checkmark \checkmark \checkmark Inhalation \checkmark \checkmark \checkmark \checkmark \checkmark \checkmark \checkmark Upper \checkmark \checkmark \checkmark \checkmark \checkmark \checkmark \checkmark Inhalation \checkmark \checkmark $$ \checkmark \checkmark \checkmark \checkmark Upper \checkmark d \checkmark \checkmark $$ \checkmark Inhalation $$ $$ $$ \checkmark \checkmark $$ \checkmark Upper $$ $$ $$ $$ \checkmark \checkmark $$ \checkmark <td></td> <td></td> <td></td> <td></td> <td>~</td> <td></td> <td></td>					~		
National Guard – Fire/Dust Suppression WorkerIngestionDermal \checkmark \checkmark Inhalation \checkmark \checkmark Dust \checkmark \checkmark Ingestion of food \checkmark \checkmark Ingestion of foodHunter/Trapper/FisherIngestion \checkmark \checkmark \checkmark Dermal \checkmark \checkmark \checkmark Inhalation d \checkmark \checkmark National Guard d \checkmark \checkmark Ingestion of food d \checkmark \checkmark Ingestion of food d \checkmark \checkmark Ingestion \checkmark \checkmark \checkmark \checkmark \checkmark \checkmark Inhalation \checkmark \checkmark \checkmark \checkmark \checkmark \checkmark \checkmark Upper \checkmark \checkmark \checkmark \checkmark \checkmark \checkmark \checkmark Inhalation \checkmark \checkmark $$ \checkmark \checkmark \checkmark \checkmark Upper \checkmark d \checkmark \checkmark $$ \checkmark Inhalation $$ $$ $$ \checkmark \checkmark $$ \checkmark Upper $$ $$ $$ $$ \checkmark \checkmark $$ \checkmark <td>Ingestion of food</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	Ingestion of food						
Ingestion \checkmark \checkmark $$ $$ Dermal $$ \checkmark \checkmark $$ $$ InhalationVapor d \checkmark \checkmark $$ $$ Dust $$ $$ $$ $$ $$ Ingestion of food $$ $$ $$ $$ Hunter/Trapper/FisherIngestion $$ \checkmark \checkmark $$ $$ Dermal $$ $$ \checkmark \checkmark $$ $$ Inhalation $$ d \checkmark \checkmark $$ $$ Ingestion of food $$ d \checkmark \checkmark $$ $$ Ingestion of food $$ d \checkmark \checkmark $$ $$ Ingestion \checkmark \checkmark \checkmark $$ $$ $$ Ingestion \checkmark \checkmark \checkmark \checkmark $$ \checkmark Dermal \checkmark \checkmark \checkmark \checkmark $$ \checkmark Inhalation \checkmark \checkmark \checkmark $$ \checkmark \checkmark Usit $$ d \checkmark \checkmark $$ \checkmark Dust d \checkmark \checkmark $$ \checkmark \checkmark	Nation	al Guard – Fire/Du	st Suppress	ion Worke	r		
DefinitionImage: constraint of the second seco	Ingestion		`				
Vapor d \checkmark $$ $$ Dust \checkmark \checkmark $$ $$ Ingestion of food $$ $$ $$ Hunter/Trapper/FisherIngestion \checkmark \checkmark $$ $$ Dermal \checkmark \checkmark \checkmark $$ $$ Inhalation d \checkmark \checkmark $$ $$ Dust d \checkmark \checkmark $$ $$ Ingestion of food \checkmark^{ef} \checkmark^e $$ $$ Ingestion \checkmark \checkmark \checkmark \checkmark $$ Ingestion \checkmark \checkmark \checkmark \checkmark $$ Ingestion \checkmark \checkmark \checkmark \checkmark $$ Dust \checkmark \checkmark \checkmark \checkmark $$ Inhalation \checkmark \checkmark \checkmark \checkmark $$ Vapor \checkmark d \checkmark \checkmark $$ Dust $$ d \checkmark \checkmark $$	Dermal		>	~	~		
Dust \checkmark $$ $$ Ingestion of foodHunter/Trapper/FisherIngestion \checkmark \checkmark $$ Dermal \checkmark \checkmark \checkmark Inhalation d \checkmark \checkmark Dust d \checkmark \checkmark Ingestion of food d \checkmark \checkmark Ingestion of food \checkmark^{ef} \checkmark^{ef} $$ $$ \sim Ingestion \checkmark \checkmark \checkmark \checkmark $$ \checkmark Ingestion \checkmark \checkmark \checkmark \checkmark $$ \checkmark Durmal \checkmark \checkmark \checkmark \checkmark $$ \checkmark Inhalation \checkmark $$ \checkmark \checkmark $$ \checkmark Dust $$ d \checkmark \checkmark $$ \checkmark Dust $$ d \checkmark \checkmark $$ \checkmark	Inhalation				•		
DustImage for the second	Vapor		^d	~	~		
Hunter/Trapper/FisherIngestion \checkmark \checkmark Dermal \checkmark \checkmark \checkmark Inhalation d \checkmark \checkmark Dust \checkmark \checkmark Ingestion of food \sim^{ef} \circ^e Resident Subsistence Farmer (adult and child)Ingestion \checkmark \checkmark \checkmark \sim \checkmark Dermal \checkmark \checkmark \checkmark \sim \sim \checkmark Inhalation \checkmark d \checkmark \checkmark $$ \checkmark Dust $$ d \checkmark \checkmark $$ \checkmark Dust $$ $$ $$ \checkmark $$ \checkmark	Dust			~	~		
Ingestion \checkmark \checkmark $$ $$ Dermal \checkmark \checkmark $$ $$ InhalationVapor $$ $$ \checkmark \checkmark $$ Dust $$ $$ \checkmark \checkmark $$ Ingestion of food $$ $$ \checkmark \checkmark $$ Resident Subsistence Farmer (adult and child)Ingestion \checkmark \checkmark \checkmark $$ Dermal \checkmark \checkmark \checkmark $$ \checkmark Inhalation \checkmark $$ \checkmark \checkmark $$ Vapor \checkmark $$ \checkmark \checkmark $$ \checkmark Dust $$ $$ \checkmark \checkmark $$ \checkmark	Ingestion of food						
Ingestion \checkmark \checkmark $$ $$ Dermal \checkmark \checkmark $$ $$ InhalationVapor $$ $$ \checkmark \checkmark $$ Dust $$ $$ \checkmark \checkmark $$ Ingestion of food $$ $$ \checkmark \checkmark $$ Resident Subsistence Farmer (adult and child)Ingestion \checkmark \checkmark \checkmark $$ Dermal \checkmark \checkmark \checkmark $$ \checkmark Inhalation \checkmark $$ \checkmark \checkmark $$ Vapor \checkmark $$ \checkmark \checkmark $$ \checkmark Dust $$ $$ \checkmark \checkmark $$ \checkmark		Hunter/Trapp	oer/Fisher	•	•		
DefinitionImage: constraint of the second seco	Ingestion			~	~		
Vapor d \checkmark $$ $$ Dust \checkmark \checkmark $$ $$ Ingestion of food \checkmark^{ef} \checkmark^e $$ $$ Resident Subsistence Farmer (adult and child)Ingestion \checkmark \checkmark \checkmark $$ Dermal \checkmark \checkmark \checkmark $$ \checkmark Inhalation \lor d \checkmark $$ \checkmark Dust $$ $$ \checkmark $$ \checkmark	Dermal		>	~	~		
Dust · Ingestion of food · · ·- ·- Resident Subsistence Farmer (adult and child) Ingestion · · · · Dermal · · · · · Inhalation · · · · · Dust · ·- · ·	Inhalation				•		
Dust Image: Construction of food Ingestion Image: Construction of food Image: Construction of food Image: Construction of food Image: Construction of food Ingestion Image: Construction of food Image: Construction of food Image: Construction of food Image: Construction of food Ingestion Image: Construction of food Image: Construction of food Image: Construction of food Ingestion Image: Construction of food Image: Construction of food Image: Construction of food Inhalation Image: Construction of food Image: Construction of food Image: Construction of food Vapor Image: Construction of food Image: Construction of food Image: Construction of food Dust Image: Construction of food Image: Construction of food Image: Construction of food	Vapor		^d	~	~		
Ingestion of food Imagestion Imagestion <td>Dust</td> <td></td> <td></td> <td>~</td> <td>~</td> <td></td> <td></td>	Dust			~	~		
Ingestion ·	Ingestion of food		✔ ef	∨ e			
Ingestion ·		lent Subsistence Far	mer (adult	and child)	•	•	-
Dermal V V V V Inhalation Vapor V V V Dust V V V	Ingestion				 		~
Inhalation Vapor ^d · · · · · Dust · · · · ·	Dermal	×	~	~	~		~
Vapor \checkmark $__^d$ \checkmark $__$ \checkmark Dust $__$ $__$ \checkmark \checkmark $__$ \checkmark		l				•	
Dust · · · ·		~	^d	~	 		~
				~	~		~
	Ingestion of food				∨ 8		

Table 3-1. Receptors and Exposure Pathways for RVAAP Load Line 1

✓ = Receptor is exposed to chemicals of potential concern (COPCs) in this exposure medium. -- = Receptor is not exposed to COPCs in this exposure medium.

 -- = Receptor is not exposed to COPCs in this exposure medium.
 ^a Shallow surface soil is defined as 0 to 1 ft below ground surface (bgs).
 ^b Deep surface soil is defined as 0 to 3 ft bgs.
 ^c Subsurface soil is defined as 1 to 3 ft bgs.
 ^d No volatile organic compounds are COPCs in Load Line 1 surface water.
 ^e Hunter/Trapper/Fisher ingests waterfowl that feed on surface water, aquatic plants, sediment, and sediment-dwelling invertebrates and fish exposed to surface water. ^{*f*}Hunter/Trapper/Fisher and Resident Subsistence Farmer ingest fish exposed to surface water.

^g Resident Subsistence Farmer ingests beef, milk, vegetables, and venison exposed to COPCs in soil.

RVAAP = Ravenna Army Ammunition Plant.

A discussion of each land use/receptor/pathway combination is provided below. The exposure parameters for each pathway are provided in Table 3-2.

3.2.1 National Guard Land Use

National Guard receptors are assumed to be exposed to four media: soil, surface water, sediment, and groundwater.

Three receptor categories have been identified under this land use. Each of these receptors is described below. Parameter values used to evaluate the National Guard receptors in this BHHRA are provided in Table 3-2.

National Guard Trainee

National Guard Trainees may be present at the site up to 24 h/d for 24 d/year on inactive duty training and/or 24 h/d for 15 d/year during annual training. As a conservative estimate for this BHHRA, it is assumed that the same individual is present at Load Line 1 for both inactive duty training (24 d/year) and annual training (15 d/year) for a total exposure frequency of 39 d/year. This receptor is assumed to belong to the National Guard for 25 years (default worker exposure duration) and to use Load Line 1 for training every year of his/her enlistment.

Load Line 1 will be used for mounted training. Digging and occupying fighting positions, tank defilade positions, tank ditches, and battle positions that extend below ground surface will be prohibited. Tracked and wheeled operations may result in maneuver damage up to 4 ft bgs. Because of this maneuver damage, the National Guard Trainee is assumed to be exposed to deep surface soil defined as 0 to 3 ft bgs. Due to the presence of shallow bedrock at Load Line 1, soil samples were taken to a maximum depth of 3 ft bgs. This receptor is exposed to soil via incidental ingestion, dermal contact, and inhalation of vapors and fugitive dust.

The National Guard Trainee is also assumed to be exposed to surface water and sediment during training. Exposure to these media is assumed to occur daily (i.e., 39 d/year) via incidental ingestion, dermal contact, and inhalation of vapors and fugitive dust. According to Ravenna Training and Logistics Site (RTLS) staff, all potable water will come from the local municipal water supply. There are currently no plans to obtain water from groundwater wells. However, groundwater is included as a conservative assumption since the municipal water supply is not currently in place.

National Guard Security Guard/Maintenance Worker

Current government activities at Load Line 1 are limited to maintenance activities (including checking on beaver damage) and environmental remediation activities. The buildings at Load Line 1 previously were demolished, and this area is not mowed. Security patrols occur daily across the installation, but not within Load Line 1; patrolmen usually remain within their vehicles during these patrols. Although the security guard is not currently exposed to contaminated media at Load Line 1 on a daily basis, the potential exposure of this receptor is evaluated in this BHHRA. Therefore, as a worst-case assumption, it is assumed that a security guard leaves his or her vehicle on a daily basis and is exposed to surface soil. Parameter values used to assess exposure to this receptor in the BHHRA are provided in Table 3-2.

The Security Guard/Maintenance Worker is the same as that previously evaluated in the RI. However, the approach used to calculate risk to this receptor, specifically for dermal exposure to soil, has changed per the FWHHRAM (USACE 2004), as described in Section 4.3.

				Potential R	eceptor		
		Nationa	l Guard Perso		Recreator		Subsistence mer
Exposure Pathway and Parameter	Units	Security Guard/ Maintenance Worker	Dust/Fire Control	Trainee	Hunter/ Fisher	Adult	Child
		Surfac	e Soil ^a		·		·
		Incidental	Ingestion				
Soil ingestion rate	kg/d	0.0001^{b}	0.0001^{b}	0.0001^{b}	0.0001^{b}	0.0001^{b}	0.0002^{b}
Exposure time	h/d	1 ^c	С	24^c	4.57^{d}	24^b	24^b
Exposure frequency	d/year	250^{b}	15 ^c	39 ^c	7^d	350^{b}	350 ^b
Exposure duration	years	25^{b}	25°	25^c	30 ^c	30^b	Ь
Body weight	kg	70^b	70^b	70^b	70^b	70^b	15 ^b
Carcinogen averaging time	d	$25,550^{b}$	$25,550^{b}$	$25,550^{b}$	$25,550^{b}$	$25,550^{b}$	$25,550^{b}$
Non-carcinogen averaging time	d	9,125¢	9,125 ^b	$9,125^{b}$	$10,950^{b}$	$10,950^{b}$	$2,190^{b}$
Fraction ingested	Unitless	1^c	С	с	с	^b 6	1^b
Conversion factor	d/h	0.042	0.042	0.042	0.042	0.042	0.042
		Dermal	Contact				
Skin area	m ² /event	0.33^{e}	0.33 ^e	0.33 ^e	0.57^{e}	0.57^{e}	0.22^{g}
Adherence factor	mg/cm ²	0.7^{f}	0.3^{f}_{1}	$0.3^{f_{1}}$	0.3^{f}_{1}	0.4^{f}	0.2^{g}
Absorption fraction	Unitless	1		mical Specific	- See Table A-		
Exposure frequency	events/year	250^{a}	15^c	39 ^c	d	350^{b}	350^{b}
Exposure duration	years	25^a	25^c	25^c	30 ^c	30^b	b
Body weight	kg	70^a	70^b	70^b	70^b	70^b	15^{b}
Carcinogen averaging time	d	$25,550^{a}$	$25,550^{b}$	$25,550^{b}$	$25,550^{b}$	$25,550^{b}$	$25,550^{b}$
Non-carcinogen averaging time	d	9,125 ^{<i>a</i>}	9,125 ^b	9,1257	$10,950^{b}$	$10,950^{b}$	$2,190^{b}$
Conversion factor	$(\text{kg-cm}^2)/(\text{mg-m}^2)$	0.01	0.01	0.01	0.01	0.016	0.01
		Inhalation of V				0	
Inhalation rate	m ³ /d	20^a	44.4 ^g	44.4^{g}	20^{b}	20^{b}	10^{h}
Exposure time	h/d	1^b	С	24^c	4.57^{d}	24^b	24^b
Exposure frequency	d/year	250^{a}	15 ^c	39 ^c	d	350^{b}	350^{b}
Exposure duration	years	25^a	25^c	25^c	30 ^c	30^{b}	b
Body weight	kg	70^a	70^{b}	70^b	70^b	70^b	15 ^b
Carcinogen averaging time	d	$25,550^{a}$	$25,550^{b}$	$25,550^{b}$	$25,550^{b}$	$25,550^{b}$	$25,550^{b}$
Non-carcinogen averaging time	d	9,12 5 4	9,125 ^b	9,1257	$10,950^{b}$	$10,950^{b}$	$2,190^{b}$
Conversion factor	d/h	0.042	0.042	0.042	0.042	0.042	0.042

		Potential Receptor						
		National Guard Personnel			Recreator	Resident Subsistence Farmer		
Exposure Pathway and Parameter	Units	Security Guard/ Maintenance Worker	Dust/Fire Control	Trainee	Hunter/ Fisher	Adult	Child	
		Subsurfa	ace Soil					
		Incidental	Ingestion					
Soil ingestion rate	kg/d	NA	NA	NA	NA	0.0001^{b}	0.0002^{b}	
Exposure time	h/d	NA	NA	NA	NA	24	24	
Exposure frequency	d/year	NA	NA	NA	NA	350^{b}	350^{b}	
Exposure duration	years	NA	NA	NA	NA	30^b	Ь	
Body weight	kg	NA	NA	NA	NA	70^b	15^{b}	
Carcinogen averaging time	d	NA	NA	NA	NA	$25,550^{b}$	$25,550^{b}$	
Non-carcinogen averaging time	d	NA	NA	NA	NA	$10,950^{b}$	$2,190^{b}$	
Fraction ingested	Unitless	NA	NA	NA	NA	1^{b} 6	1^b	
Conversion factor	d/h	NA	NA	NA	NA	0.042	0.042	
		Dermal	Contact					
Skin area	m ² /event	NA	NA	NA	NA	0.57^{r}	0.22^{g}	
Adherence factor	mg/cm ²	NA	NA	NA	NA	0.4^g	0.2^{g}	
Absorption fraction	Unitless	NA	NA	NA	NA	Chem. Spec. See Table A-		
Exposure frequency	events/year	NA	NA	NA	NA	350^{b}	350^{b}	
Exposure duration	years	NA	NA	NA	NA	30^b	Ь	
Body weight	kg	NA	NA	NA	NA	70^b	15^{b}	
Carcinogen averaging time	d	NA	NA	NA	NA	$25,550^{b}$	$25,550^{b}$	
Non-carcinogen averaging time	d	NA	NA	NA	NA	$10,950^{b}$	$2,190^{b}$	
Conversion factor	$(\text{kg-cm}^2)/(\text{mg-m}^2)$	NA	NA	NA	NA	0.01	0.01	
		Inhalation of V	OCs and Dust			0		
Inhalation rate	m ³ /d	NA	NA	NA	NA	20^{b}	10^{h}	
Exposure time	h/d	NA	NA	NA	NA	24^b	24^b	
Exposure frequency	d/year	NA	NA	NA	NA	350^{b}	350^{b}	
Exposure duration	years	NA	NA	NA	NA	30^b	b	
Body weight	kg	NA	NA	NA	NA	70^b	15^{b}	
Carcinogen averaging time	d	NA	NA	NA	NA	$25,550^{b}$	$25,550^{b}$	
Non-carcinogen averaging time	d	NA	NA	NA	NA	$10,950^{b}$	$2,190^{b}$	
Conversion factor	d/h	NA	NA	NA	NA	0.042	0.042	

Potential Receptor									
		National Guard Personnel			Recreator	Resident Subsistence Farmer			
Exposure Pathway and Parameter	Units	Security Guard/ Maintenance Worker	Dust/Fire Control	Trainee	Hunter/ Fisher	Adult	Child		
	-	Sediı	nent		·		·		
		Incidental	Ingestion						
Soil ingestion rate	kg/d	NA	0.0001^{b}	0.0001^{b}	0.0001^{b}	0.0001^{b}	0.0002^{b}		
Exposure time	h/d	NA	4^c	24^c	4.57^{d}	24^b	24^{b}		
Exposure frequency	d/year	NA	15^c	39 ^c	d	350^{b}	350^{b}		
Exposure duration	years	NA	25^{c}	25^c	30 ^c	30^b	b		
Body weight	kg	NA	70^b	70^b	70^g	70^b	15^b		
Carcinogen averaging time	d	NA	$25,550^{b}$	$25,550^{b}$	$25,550^{g}$	$25,550^{b}$	$25,550^{b}$		
Non-carcinogen averaging time	d	NA	9,125 ^b	9,1257	10,950 ^g	$10,950^{b}$	$2,190^{b}$		
Fraction ingested	Unitless	NA	1^c	С	С	<i>b</i> 6	b		
Conversion factor	d/h	NA	0.042	0.042	0.042	0.042	0.042		
		Dermal							
Skin area	m ² /event	NA	0.33^{e}	0.33^{e}	0.52^{e}	0.57^{e}	0.22^{g}		
Adherence factor	mg/cm ²	NA	0.3^{e}_{1}	0.3^{f}_{1}	0.3^{f}_{1}	0.4^{f}	0.2^g		
Absorption fraction	Unitless	NA	Chemical Specific – See Table A-7						
Exposure frequency	events/year	NA	15^c	39 ^c	d	350^{b}	350^{b}		
Exposure duration	years	NA	25 ^c	25^c	30 ^c	30^b	b		
Body weight	kg	NA	70^b	70^b	70^b	70^b	15 ^b		
Carcinogen averaging time	d	NA	$25,550^{b}$	$25,550^{b}$	$25,550^{b}$	$25,550^{b}$	$25,550^{b}$		
Non-carcinogen averaging time	d	NA	9,125 ^b	9,1257	$10,950^{b}$	$10,950^{b}$	$2,190^{b}$		
Conversion factor	$(\text{kg-cm}^2)/(\text{mg-m}^2)$	NA	0.01	0.01	0.01	0.016	0.01		
		Inhalation of V				•			
Inhalation rate	m ³ /d	NA	44.4 ^g	44.4 ^g	20^{b}	20^{b}	10^{h}		
Exposure time	h/d	NA	4^c	24^c	4.57^{d}	24^{b}	24^{b}		
Exposure frequency	d/year	NA	15 ^c	39 ^c	d	350^{b}	350 ^b		
Exposure duration	years	NA	25 ^c	25^c	30 ^c	30^{b}	b		
Body weight	kg	NA	70 ^b	70^{b}	70^b	70 ^b	15 ^b		
Carcinogen averaging time	d	NA	$25,550^{b}$	$25,550^{b}$	25,550 ^g	$25,550^{b}$	$25,550^{b}$		
Non-carcinogen averaging time	d	NA	9,125 ^b	9,1257	10,950 ^g	$10,950^{b}$	$2,190^{b}$		
Conversion factor	d/h	NA	0.042	0.042	0.042	0.042	0.042		

		Potential Receptor					
Exposure Pathway and Parameter		National Guard Personnel			Recreator	Resident Subsistence Farmer	
	Units	Security Guard/ Maintenance Worker	Dust/Fire Control	Trainee	Hunter/ Fisher	Adult	Child
		Surface	Water				
		Incidental	Ingestion				
Incidental water ingestion rate	L/d	NA	0.1^i	0.1^{i}	0.05^{i}	0.1^{i}	0.1^{i}
Exposure frequency	d/year	NA	15^{c}	39 ^c	d	350^{b}	350^{b}
Exposure duration	years	NA	25^c	25^c	30 ^e	30^b	Ь
Body weight	kg	NA	70^c	70^b	70^b	70^b	15^b
Carcinogen averaging time	d	NA	$25,550^{b}$	$25,550^{b}$	$25,550^{b}$	$25,550^{b}$	$25,550^{b}$
Non-carcinogen averaging time	d	NA	$9,125^{b}$	9,1257	$10,950^{b}$	$10,950^{b}$	$2,190^{b}$
		Dermal	Contact			6	
Skin area	m ²	NA	0.33^{e}	0.33 ^e	0.52^{e}	0.57^{e^0}	0.22^{g}
Exposure time	h/d	NA	4^c	24^c	4.57^{d}	2.5^{j}	2.5^{g}
Exposure frequency	d/year	NA	15^{c}	39 ^c	d	350^{b}	350^{b}
Exposure duration	years	NA	25^c	25^c	30 ^c	30^b	Ь
Body weight	kg	NA	70^b	70^b	70^b	70^b	15^b
Carcinogen averaging time	d	NA	$25,550^{b}$	$25,550^{b}$	$25,550^{b}$	$25,550^{b}$	$25,550^{b}$
Non-carcinogen averaging time	d	NA	$9,125^{b}$	9,1257	$10,950^{b}$	$10,950^{b}$	$2,190^{b}$
Conversion factor	$(m/cm)(L/m^3)$	NA	10	10	10	10 6	10
		Ground	dwater			0	
		Drinking Wa	ter Ingestion				
Drinking water ingestion rate	L/d	NA	NA	2^b	NA	2^b	1.5^{g}
Exposure frequency	d/year	NA	NA	39 ^c	NA	350^{b}	350^{b}
Exposure duration	years	NA	NA	25^c	NA	30^b	Ь
Body weight	kg	NA	NA	70^b	NA	70^b	15 ^b
Carcinogen averaging time	d	NA	NA	$25,550^{b}$	NA	$25,550^{b}$	$25,550^{b}$
Non-carcinogen averaging time	d	NA	NA	$9,125^{b}$	NA	$10,950^{b}$	$2,190^{b}$
		Dermal Contact	While Showerin			6	
Skin area	m ²	NA	NA	1.94^{k}	NA	$1.94^{k^{O}}$	0.866^{l}
Exposure time	h/d	NA	NA	0.25^{b}	NA	0.25^{b}	0.25^{b}
Exposure frequency	d/year	NA	NA	39 ^c	NA	350^{b}	350^{b}
Exposure duration	years	NA	NA	25^c	NA	30^{b}	b
Body weight	kg	NA	NA	70^b	NA	70^b	15^{b}

6

		Potential Receptor						
		National Guard Personnel			Recreator	Resident Subsistence Farmer		
Exposure Pathway and Parameter	Units	Security Guard/ Maintenance Worker	Dust/Fire Control	Trainee	Hunter/ Fisher	Adult	Child	
Carcinogen averaging time	d	NA	NA	$25,550^{b}$	NA	$25,550^{b}$	$25,550^{b}$	
Non-carcinogen averaging time	d	NA	NA	$9,125^{b}$	NA	$10,950^{b}$	$2,190^{b}$	
Conversion factor	$(m/cm)(L/m^3)$	NA	NA	10	NA	10	10	
		lation of VOCs Duri	ng Household V	Vater Use			•	
Inhalation rate	m ³ /d	NA	NA	20^b	NA	20^{b}	10^{h}	
Exposure frequency	d/year	NA	NA	39 ^c	NA	350^{b}	350^{b}	
Exposure duration	years	NA	NA	25^c	NA	30^{b}	Ь	
Body weight	kg	NA	NA	70^b	NA	70^b	15^b	
Carcinogen averaging time	d	NA	NA	25550^{b}	NA	$25,550^{b}$	$25,550^{b}$	
Non-carcinogen averaging time	d	NA	NA	9125 ^b	NA	$10,950^{b}$	$2,190^{b}$	
Volatilization factor	L/m ³	NA	NA	0.5^b	NA	0.5^{b}_{6}	0.5^{b}	
		Foods	stuffs			0		
		Ingestion	ı of Fish					
Fish ingestion rate	kg/d	NA	NA	NA	0.054^{m}	0.054^{m}	0.054^{m}	
Fraction ingested	Unitless	NA	NA	NA	1^c	1^b	Ь	
Exposure frequency	d/year	NA	NA	NA	365 ^c	365 ^c	365 ^c	
Exposure duration	years	NA	NA	NA	30 ^c	30^b	b	
Body weight	kg	NA	NA	NA	70^b	70^b	15^{b}	
Carcinogen averaging time	d	NA	NA	NA	$25,550^{b}$	$25,550^{b}$	$25,550^{b}$	
Non-carcinogen averaging time	d	NA	NA	NA	$10,950^{b}$	$10,950^{b}$	$2,190^{b}$	
		Ingestion of	f Waterfowl			6		
Waterfowl ingestion rate	kg/d	NA	NA	NA	0.0132°	NA	NA	
Fraction ingested	Unitless	NA	NA	NA	1^c	NA	NA	
Exposure frequency	d/year	NA	NA	NA	365 ^c	NA	NA	
Exposure duration	years	NA	NA	NA	30 ^c	NA	NA	
Body weight	kg	NA	NA	NA	70^b	NA	NA	
Carcinogen averaging time	d	NA	NA	NA	$25,550^{b}$	NA	NA	
Non-carcinogen averaging time	d	NA	NA	NA	$10,950^{b}$	NA	NA	

^{*a*} Deep (0 to 3 ft bgs) surface soil is used for National Guard Trainee; shallow (0 to 1 ft bgs) surface soil is used for all other receptors. ^{*b*} RAGS, Part B (EPA 1991a).

^c Site-specific (value obtained from site personnel). National Guard Trainee is assumed to be on-site 24 h/d for 24 d/year for inactive duty training and 24 h/d for 15 d/year for annual training. National Guard Fire/Dust Suppression receptor is assumed to spend 4 h/d for 5 d/year for fire suppression and 4 h/d for 10 days/year (i.e., 40 h/year) for dust suppression. Both National Guard Receptors are assumed to remain at RVAAP and at Load Line 1 for their entire 25-year enlistment. The Security Guard/Maintenance Worker is assumed to visit each AOC for 1 h/d for a standard worker default of 250 d/year and 25 years.

^d The Hunter/Trapper/Fisher is assumed to hunt wildfowl on-site 6 h/d for 2 d/year, and fish on-site 4 h/d for 5 d/year. The combined exposure for hunting and fishing is

4.57 h/day for 7 d/year. The Hunter/Trapper/Fisher is assumed to hunt/fish as long as he/she resides in the area, so the residential default exposure duration is used.

^e Security Guard/Maintenance Worker, National Guard Trainee, and National Guard Dust/Fire Control = Industrial Default; Hunter/Trapper/Fisher and Resident Farmer = Adult Residential Default. Exposure Factors Handbook (EPA 1997a). (Note: Dermal contact for Hunter/Trapper/Fisher during wading is 0.52 based on head, hands, forearms, and lower legs from Exposure Factors Handbook.)

^{*f*} Security Guard/Maintenance Worker = Adult Groundskeeper (95th percentile); Hunter/Trapper = Residential Default; National Guard Trainee = Construction Worker (95th percentile); Resident Farmer Adult = Adult Farmer (95th percentile) (RAGS, Vol. 1 Part E, Supplemental Guidance for Dermal Risk Assessment, Interim) EPA/540/R/99/005.

^{*g*} Per Ohio EPA comment 2002.

^{*h*} Recommended value for child age 6 to 8 (EPA 1997a).

^{*i*} National Guard Trainee and Resident Farmer are assumed to ingest 0.05 L/h [per RAGS Part A (EPA 1998)] for approximately 2 h/d spent in the surface water. National Guard Fire/Dust Suppression receptors are assumed to ingest 0.1 L/d due to direct exposure while setting pumps/hoses in surface water or from ingesting mist while spraying. Hunter/Trapper/Fisher are assumed to ingest 0.05 L/d due to splashing while setting traps or wading.

^{*j*} Errata to FWHHRAM (USACE 2004).

^k Average total body surface area for an adult (EPA 1992b).

¹ 50th percentile value for male child age 6 to 7 (EPA 1997a).

^m Standard default Exposure Factors for recreational fish ingestion (EPA 1991b).

^{*o*} Hunter/trapper is assumed to catch and eat the 1-day bag limit for ducks and geese each year.

AOC = Area of concern.

EPA = U. S. Environmental Protection Agency.

NA = Not applicable for this scenario.

RVAAP = Ravenna Army Ammunition Plant.

VOC = Volatile organic compound.

National Guard Fire/Dust Suppression Worker

National Guard personnel may use surface water for fire suppression with a frequency of 4 h/d for 5 d/year (for a total of 20 h/year), as well as dust suppression for up to 40 h/year. It is assumed that both of these activities will be conducted by the same individual for a total exposure period of 60 h/year or approximately 4 h/d for 15 d/year.

Use of surface water for fire and dust suppression is assumed to result in exposure to surface water via incidental ingestion and dermal contact while setting pumps and hoses in the surface water body and while spraying water. While no volatile organic compounds (VOCs) were identified as COPCs in surface water, it is possible that some inhalation of airborne surface water may occur as a result of spraying. Inhalation is not included in the surface water exposure model; however, the surface water ingestion rate (100 mL/d) is assumed to include potential incidental inhalation exposure.

This receptor is also assumed to be exposed to shallow surface soil and sediment via incidental ingestion, dermal contact, and inhalation of vapors and fugitive dust.

3.2.2 Recreational Land Use

Permitted recreational activities at Load Line 1 may include waterfowl hunting, trapping, and fishing. These activities are evaluated for a single recreational receptor, as described below. Parameter values used to evaluate the Recreational receptor in this BHHRA are provided in Table 3-2.

Hunting and Trapping

Permitted waterfowl hunting is managed jointly by the facility staff and the State Division of Wildlife. Waterfowl hunters are assumed to be on-site to hunt 4 h/d for 2 d/year and to check and clean wood duck boxes 1 h/d for 1 d/year for a total of approximately 9 h/year. The state of Ohio Department of Natural Resources currently permits the taking of six ducks (not to include more than three mallards, two wood ducks, one black duck, two red heads, one pintail, three mottled ducks or three scaup) and two Canada Geese per day. Separate bag limits exist for coots and mergansers, but these species are not hunted at RTSL. According to Tim Morgan, Office of Species Conservation (OSC) forester, the most likely species hunted at the RSTL are wood ducks, mallards, and Canada Geese, and it is unlikely that hunters would reach the state-mandated bag limits for these species (Morgan 2003).

Trapping takes place 3 months of the year (November through January) primarily to control beaver and raccoon populations. Trappers are assumed to be present at Load Line 1 for 2 h at the start of the season to scout and set traps and 0.5 h/d for 6 d/year to check traps, for a total of approximately 5 h/year. Traps are generally set near ponds (near existing dams) and along roadsides. According to Tim Morgan, OSC forester, the most common catches include beaver, mink, muskrat, weasel, raccoon, possum, rabbit, and squirrel (Morgan 2002).

It is assumed that waterfowl hunting and trapping are conducted by the same individual for a total exposure period of approximately 12 h/year (evaluated as 6 h/d for 2 d/year). This receptor is assumed to be exposed to shallow surface soil, surface water, and sediment via incidental ingestion, dermal contact, and inhalation of vapors and fugitive dust. The receptor is also assumed to ingest waterfowl. It is assumed that a hunter will harvest the 1-day bag limit of ducks and Canada Geese. Using the body weight for mallards, this results in an ingestion rate of 0.0132 kg/d (10.6 lbs/year) calculated as six mallard ducks weighing 1.134 kg (EPA 1993), each with 34% edible tissue and two Canada Geese weighing 3.8671 kg (EPA 1993), each with 32.6% edible tissue. This ingestion rate assumes (1) the hunter consumes his entire 1-day catch each year, (2) the ducks are all represented by the body weight of a mallard rather than
the smaller wood duck, and (3) there is no loss due to preparation and cooking. It is assumed that trapping is primarily for fur and population control of beaver and raccoon, and the trapper does not consume his catch.

Fishing

Catch and release fishing is allowed for personnel permanently assigned to RTLS and their guests (OHARNG 2001). Fishers are assumed to be present up to 4 h/d for 5 d/year. This receptor is assumed to be exposed to shallow surface soil, surface water, and sediment via incidental ingestion, dermal contact, and inhalation of vapors and fugitive dust. It is the goal, when the installation restoration program is done, to have unrestricted fishing and taking of fish from all ponds. Therefore, the Hunter/Trapper/Fisher receptor is also assumed to ingest fish caught on-site.

For this BHHRA it is assumed that hunting, trapping, and fishing are conducted by the same individual for a total exposure period of 4.57 h/d, 7 d/year (i.e., 6 h/d for 2 d/year to hunt and trap plus 4 h/d for 5 d/year to fish).

3.2.3 Residential Land Use

This land use scenario represents a true baseline assessment against which all decisions, including decisions to maintain institutional controls, can be made. It represents the worst-case exposures for all land use/receptor combinations. The adult and child resident farmer are assumed to be exposed chronically to all media, including groundwater and foodstuffs. It is assumed that the farmer lives on Load Line 1 land, raises livestock and vegetables, hunts, and digs into subsurface soils (see Table 3-2). Parameters used to represent activity patterns are listed in Table 3-2 and generally come from standard default values defined by the EPA (1991).

3.3 QUANTIFICATION OF INTAKE

Intake is defined as the amount of contaminant that could be in contact with the body (e.g., lungs, gut) per unit body weight per unit time. Dose is defined as the amount of contaminant that could be absorbed into the bloodstream per unit body weight per unit time. For the Load Line 1 BHHRA, the intakes (for inhalation and ingestion exposures) and doses (for dermal exposures) were quantified using the equations presented below for soil, surface water, sediment, groundwater, and ingestion of fish and waterfowl. The exposure parameters used in these equations are provided in Table 3-2. Parameter values were selected based on EPA guidance with input from the OHARNG and RVAAP facility staff. Intakes from ingestion of food by the Resident Subsistence Farmer (i.e., beef, milk, vegetables, and venison) were previously quantified in the Final LL1 RIR (SAIC 2004) and the methodology has not changed. For the details of exposure to these foods by the Resident Subsistence farmer see Section 6.3 and Table 6.2 of the Final LL1 RIR.

3.3.1 Soil and Sediment Exposure Pathways

Incidental ingestion of soil and sediment is estimated for chemicals using Equation 1:

Chemical Intake
$$(mg/kg - d) = \frac{C_s \times IR_s \times EF \times ED \times FI \times ET \times CF}{BW \times AT}$$
, (1)

where

C _s =	chemical concentration in soil or sediment (mg/kg),
IR _s =	ingestion rate (kg/d),
EF =	exposure frequency (d/year),
ED =	exposure duration (years),
FI =	fraction ingested (value of 1, unitless),
ET =	exposure time (h/d),
CF =	conversion factor for ET (d/h),
BW =	body weight (kg),
AT =	averaging time (days) for carcinogens or non-carcinogens.

The dermally absorbed dose (DAD) from chemicals in soil and sediment is calculated by using Equation 2.

Chemical DAD (mg/kg - d) =
$$\frac{C_s \times CF \times SA \times AF \times ABS \times EF \times ED}{BW \times AT},$$
 (2)

where

Cs	=	chemical concentration in soil or sediment (mg/kg),
CF	=	conversion factor $[(10^{-6} \text{ kg/mg}) \times (10^{4} \text{ cm}^{2}/\text{m}^{2})],$
SA	=	skin surface area exposed to soil (m ² /event),
AF	=	soil to skin adherence factor (1 mg/cm^2) ,
ABS	=	chemical-specific absorption factor [Table A-7; when chemical-specific values are not
		available, the following defaults are used: 0.1% for inorganics, 1.0% for VOCs, and
		10% for semivolatile organic compounds (SVOCs)],
EF	=	exposure frequency (events/year),
ED	=	exposure duration (years),
\mathbf{BW}	=	body weight (kg),
AT	=	averaging time (days) for carcinogens or non-carcinogens.

Inhalation of soil or dry sediment is calculated using Equation 3:

Chemical Intake
$$(mg/kg - day) = \frac{C_s \times IR_a \times EF \times ED \times (VF^{-1} + PEF^{-1}) \times ET \times CF}{BW \times AT}$$
, (3)

where

- C_s = chemical concentration in soil or sediment (mg/kg),
- IR_a = inhalation rate (m³/d),
- EF = exposure frequency (d/year),
- ED = exposure duration (years),
- VF = volatilization factor (chemical-specific m³/kg),
- PEF = particulate emission factor (m^3/kg) ,
- ET = exposure time (h/d),
- CF = conversion factor for ET (d/h),
- BW = body weight (kg),
- AT = averaging time (days) for carcinogens or non-carcinogens.

The general PEF value used for all Load Line 1 receptors, except the National Guard Trainee, is the default value for Cleveland, Ohio, assuming a 0.5-acre source area (9.24E+08 m³/kg). This PEF value was calculated using the EPA Soil Screening Guidance on-line at http://risk.lsd.ornl.gov/epa/ssl1.htm. The EUs ranged in size from approximately .25 acre (Water Tower) to more than 10 acres (Perimeter Area); however, the contamination tends to be limited to small areas around the buildings. Therefore, a 0.5-acre contaminated source area is considered appropriate. A smaller PEF value (1.67×10^6) is used for the National Guard Trainee scenario because the activities of this receptor are assumed to generate more dust. This PEF value was calculated from a dust-loading factor (DLF) of 600 µg/m³ (DOE 1983) as:

 $PEF = 1/(DLF \times Conversion Factor) = 1/(600 \ \mu g/m^3 \times 1E-09 \ kg/\mu g) = 1.67E+06 \ m^3/kg.$

3.3.2 Groundwater and Surface Water Exposure Pathways

Ingestion of water is estimated using Equation 4:

Chemical Intake
$$(mg/kg - d) = \frac{C_w \times IR_w \times EF \times ED}{BW \times AT}$$
, (4)

where

The DAD from dermal contact with chemicals in water is calculated by using Equation 5:

Chemical DAD
$$(mg/kg - d) = \frac{C_w \times CF \times PC \times SA \times ET \times EF \times ED}{BW \times AT}$$
, (5)

where

Inhalation of VOCs from surface water is not quantified because no volatile COPCs have been identified in surface water. Inhalation of VOCs from groundwater during household water use is estimated using Equation 6:

Chemical Intake
$$(mg/kg - day) = \frac{C_w \times IR_w \times K \times EF \times ED \times ET \times CF}{BW \times AT}$$
, (6)

where

C_{w}	=	chemical concentration in water (mg/L),
IR_w	=	inhalation rate (m^3/d) ,
Κ	=	volatilization factor ($0.0005 \times 1,000 \text{ L/m}^3$),
EF	=	exposure frequency (d/year),
ED	=	exposure duration (years),
ET	=	exposure time adjustment (h/d),
CF	=	conversion factor for ET (d/h),
BW	=	body weight (kg),
AT	=	averaging time (days) for carcinogens or non-carcinogens.

3.3.3 Ingestion of Fish and Waterfowl

Ingestion of chemicals from the consumption of waterfowl is estimated by using Equation 7.

Chemical Intake
$$(mg/kg - d) = \frac{C_f \times IR_f \times EF \times ED}{BW \times AT}$$
, (7)

where

 $C_{\rm f}$ = chemical concentration in fish or waterfowl (mg/kg),

 IR_f = ingestion rate of fish or waterfowl (kg/d),

EF = exposure frequency (d/year),

ED = exposure duration (years),

BW = body weight (kg),

AT = averaging time (days) for carcinogens and noncarcinogens.

3.4 EXPOSURE POINT CONCENTRATIONS

The exposure point concentration (EPC) represents the chemical concentration a receptor is likely to come in contact with over the duration of exposure. Exposure concentrations from direct contact with environmental media (i.e., soil, sediment, surface water, and groundwater) are based on the sampling results of the media, as described in Section 3.4.1. Exposure concentrations for contaminants that have migrated into secondary media (i.e., fish and waterfowl) are modeled, as described in Section 3.4.2 and Appendix B.

3.4.1 Measured Exposure Point Concentrations

Exposure from direct contact pathways represents exposure to media at the source, and the EPC is based on data collected at the source. Current measured concentrations of chemicals were used to represent future concentrations in the media of interest.

The EPCs developed for each COPC represent a UCL₉₅ on the mean, or the maximum detected value for all locations within the EU, whichever is smaller. EPCs were calculated using EPA guidance, *Supplemental Guidance to RAGS: Calculating the Concentration Term* (EPA 1992b). The data were tested using the Shapiro-Wilk test to determine distribution, normal or lognormal, of the concentrations. The UCL₉₅ on the mean was calculated using the normal distribution equation (see Equation 8) when the concentrations are normally distributed, when concentrations are not judged to be normally or lognormally

distributed, when the dataset contains fewer than five detections, or when the frequency of detection is less than 50%. For these situations, the UCL₉₅ on the mean is calculated using the following equation:

$$UCL_{95}(normal) = \overline{x_n} + \frac{(t)(s_x)}{\sqrt{n}},$$
(8)

where

 $\overline{\mathbf{x}}_{n}$ = mean of the untransformed data,

t = student-t statistic,

 s_x = standard deviation of the untransformed data,

n = number of sample results available.

For lognormally distributed concentrations, the UCL_{95} on the mean is calculated using the following equation:

$$UCL_{95}(log normal) = e\left[\overline{xl} + 0.5(s_i^2) + \frac{(s_i)(H)}{\sqrt{n-1}}\right],$$
(9)

where

- e = constant (base of the natural log, equal to 2.718),
- \overline{x}_1 = mean of the transformed data [l = log (x)],
- s_i = standard deviation of the transformed data,
- H = H-statistic,
- n = number of sample results available.

3.4.2 Modeled Exposure Point Concentrations

Direct sampling results are not available for the evaluation of ingestion of fish and waterfowl. Exposure concentrations were modeled for fish exposed to COPCs in surface water, as described in Appendix B. Exposure concentrations were modeled for waterfowl assuming these animals ingest surface water, aquatic plants, sediment, and sediment-dwelling invertebrates from the Load Line 1 surface water aggregates, as described in Appendix B. The starting concentration of COPCs in surface water and sediment is equal to the EPC calculated for direct exposure pathways, as described in Section 3.4.1. Other parameter values are provided in Appendix B.

3.5 INTAKE RESULTS

Results of the exposure assessment are presented in tabular format in Chapter 5.0. These results are combined with information presented in Chapter 4.0, Toxicity Assessment, to estimate risks and hazards for each receptor.

THIS PAGE INTENTIONALLY LEFT BLANK

4.0 TOXICITY ASSESSMENT

The purpose of the toxicity assessment is to evaluate the potential for COPCs to cause adverse health effects in exposed individuals. Where possible, it provides an estimate of the relationship between the intake or dose of a COPC and the likelihood or severity of adverse health effects as a result of that exposure. Toxic effects have been evaluated extensively by EPA. This chapter provides the results of the EPA evaluation of the chemicals identified as COPCs at Load Line 1.

4.1 TOXICITY INFORMATION AND U.S. ENVIRONMENTAL PROTECTION AGENCY GUIDANCE FOR NON-CARCINOGENS

Non-carcinogenic effects are evaluated by comparing an exposure or intake/dose with a reference dose (RfD) or reference concentration (RfC). The RfD and RfCs are determined using available dose-response data for individual chemicals. Scientists determine the exposure concentration or intake/dose below which no adverse effects are seen and add a safety factor (from 10 to 1,000) to determine the RfD or RfC. RfDs and RfCs are identified by scientific committees supported by EPA. The RfDs available for the COPCs present in Load Line 1 media are listed in Appendix A, Table A-8 (EPA 1997b, 2004). In this BHHRA, RfCs, measured in milligrams per cubic meter, were converted to RfDs expressed in units of milligrams per kilogram body weight per day by using the default adult inhalation rate and body weight [i.e., (RfC \times 20 m³/d)/70 kg = RfD] (EPA 1989).

Chronic RfDs are developed for protection from long-term exposure to a chemical (from 7 years to a lifetime); subchronic RfDs are used to evaluate short-term exposure (from 2 weeks to 7 years) (EPA 1989). Since the potential receptors at Load Line 1 are not considered to have short-term exposures, a conservative approach has been taken for this BHHRA by using only chronic RfDs [chronic RfDs generally result in HQs that are at least as large as (sometimes larger than) HQs calculated from subchronic RfDs].

Toxic effects are diverse and measured in various target body organs (e.g., they range from eye irritation to kidney or liver damage). EPA is currently reviewing methods for accounting for the difference in severity of effects; however, existing RfDs do not address this issue.

4.2 TOXICITY INFORMATION AND U.S. ENVIRONMENTAL PROTECTION AGENCY GUIDANCE FOR CARCINOGENS

For carcinogens, risks are estimated as the probability that an individual will develop cancer over a lifetime as a result of exposure to the carcinogen. Cancer risk from exposure to contamination is expressed as excess or incremental cancer risk, which is cancer occurrence in addition to normally expected rates of cancer development. Excess cancer risk is estimated using a cancer slope factor (CSF). The CSF is defined as a plausible upper-bound estimate of the probability of a response (i.e., cancer) per unit intake of a chemical over a lifetime (EPA 1989).

EPA expresses inhalation cancer potency as the unit risk based on the chemical concentration in air [i.e., risk per microgram (μ g) of chemical per cubic meter (m³) of ambient air]. These unit risks were converted to CSFs expressed in units of risk per mg of chemical per kg body weight per day by using the default adult inhalation rate and body weight [i.e., (Unit Risk × 70 kg × 1,000 μ g/mg)/20 m³/d].

CSFs used in the evaluation of risk from carcinogenic COPCs are listed in Appendix A, Table A-9 (EPA 1997b, 2004).

4.3 ESTIMATED TOXICITY VALUES FOR DERMAL EXPOSURE

Oral and inhalation RfDs and CSFs are currently available. Dermal RfDs and CSFs were estimated from oral toxicity values using chemical-specific gastrointestinal absorption factors (GAFs) to calculate total absorbed dose. This conversion is necessary because most oral RfDs and CSFs are expressed as the amount of chemical administered per time and body weight; however, dermal exposure is expressed as an absorbed dose. Dermal toxicity factors are calculated from oral toxicity factors as shown below (EPA 1992a):

$$\begin{split} RfD_{dermal} &= RfD_{oral} \times GAF \\ CSF_{dermal} &= CSF_{oral}/GAF \end{split}$$

Per FWHHRAM, dermal CSFs and RfDs are estimated from the oral toxicity values using chemical-specific GAFs to calculate the total absorbed dose only for chemicals with GAF values < 0.5. Chemical-specific GAF values available from EPA (2002b) are used whenever possible. Not all COPCs have specific GAF values. When quantitative data are insufficient, a default GAF is used. A default value of 1.0 for organic and inorganic chemicals is used (EPA 2002b).The GAF and resulting dermal toxicity values used in this BHHRA are listed in Appendix A, Tables A-8 and A-9.

4.4 ASSUMPTIONS USED IN THE TOXICITY ASSESSMENT

Assumptions made in assigning toxicity values for COPCs at Load Line 1 are

- Thallium, as a metal, is evaluated using the toxicity values for thallium carbonate. This is the form of thallium with the most conservative toxicity values.
- Total chromium is evaluated using the toxicity values for Chromium III. This is the form of chromium, other than Chromium VI (which is evaluated as a separate COPC), with the most conservative toxicity values.
- Gamma-chlordane is evaluated with the toxicity of chlordane.
- Endrin aldehyde is evaluated with the toxicity of endrin.
- Toxicity equivalency factors (TEFs) are applied to carcinogenic polycyclic aromatic hydrocarbons (cPAHs). The following TEFs are used to convert the cPAHs identified as COPCs at Load Line 1 to an equivalent concentration of benzo(*a*)pyrene.

TEF
1
0.1
0.1
0.01
0.001
1
0.1

4.5 CHEMICALS WITHOUT U.S. ENVIRONMENTAL PROTECTION AGENCY TOXICITY VALUES

No RfDs or CSFs are available for some detected chemicals at Load Line 1 because the non-carcinogenic and/or carcinogenic effects of these chemicals have not yet been determined. Although these chemicals may contribute to health effects from exposure to contaminated media at Load Line 1, their effects cannot be quantified at the present time.

Previously withdrawn or provisional toxicity values are used for one COPC at Load Line 1: benzo(*a*)pyrene uses a provisional inhalation CSF. Without this provisional value, the inhalation pathway could not be quantitatively evaluated for this chemical.

No RfDs or CSFs are available for lead. EPA (1999) recommends the use of the Interim Adult Lead Methodology to support its goal of limiting risk of elevated fetal blood lead concentrations due to lead exposures to women of child-bearing age. This model is used to estimate the probability that the fetal blood lead level will exceed 10 µg/dL as a result of maternal exposure. This model is not appropriate for exposure frequencies less than 1 d/week because the first order elimination half-life of lead of approximately 30 d requires a constant lead intake over a duration of 90 days to reach quasi-steady state. Shorter exposures are expected to produce oscillations in blood lead concentrations due to absorption and subsequent clearance of lead between each exposure event (EPA 2003). Because of this limitation, lead exposures are evaluated for the Security Guard/Maintenance Worker and Resident Subsistence Farmer only. Complete documentation of the model is available at http://www.epa.gov/superfund/programs/lead/prods.htm. The model-supplied default values were used for all parameters, with the exception of the site-specific media concentration and exposure frequency. Input parameters and results of this model are provided in Appendix C, Tables C-1, C-3, C-4, C-6 through C-11, C-13, and C-14.

The Integrated Exposure Uptake Biokinetic (IEUBK) model for lead in children (available at http://www.epa.gov/superfund/programs/lead/ieubk.htm) was used to evaluate the On-Site Resident Farmer child. The IEUBK model is used to predict the risk of elevated blood lead levels in children (under the age of seven) that are exposed to environmental lead from many sources. The model also predicts the risk (e.g., probability) that a typical child, exposed to specified media lead concentrations, will have a blood lead level greater or equal to the level associated with adverse health effects (10 µg/dL). Results of this model are provided in Appendix C, Tables C-2, C-5, C-12, and C-15.

THIS PAGE INTENTIONALLY LEFT BLANK

5.0 RISK CHARACTERIZATION

The purpose of the risk characterization is to evaluate the information obtained through the exposure and toxicity assessments to estimate potential risks and hazards. Potential carcinogenic effects are characterized by using projected intakes and chemical-specific, dose-response data (i.e., CSFs) to estimate the probability that an individual will develop cancer over a lifetime. Potential non-carcinogenic effects are characterized by comparing projected intakes of contaminants to toxicity values (i.e., RfDs). The numerical risk and hazard estimates presented in this chapter must be interpreted in the context of the uncertainties and assumptions associated with the risk assessment process and with the data upon which the risk estimates are based.

This chapter is divided into three sections: methodology (Section 5.1), results (Section 5.2), and uncertainty (Section 5.3). The estimation of RGOs for COCs is presented in Chapter 6.0.

5.1 METHODOLOGY

Risk characterization integrates the findings of the exposure and toxicity assessments to estimate the potential for receptors to experience adverse effects as a result of exposure to contaminated media at Load Line 1.

5.1.1 Risk Characterization for Carcinogens

For carcinogens, risk is expressed as the probability that an individual will develop cancer over a lifetime as a result of exposure to the carcinogen. Cancer risk from exposure to contamination is expressed as the incremental lifetime cancer risk (ILCR), or the increased chance of cancer above the normal background rate of cancer. In the United States, the background chance of contracting cancer is a little more than 3 in 10, or 3×10^{-1} (American Cancer Society 2003). The calculated ILCRs are compared to the range specified in the National Oil and Hazardous Substances Pollution Contingency Plan of 10^{-6} to 10^{-4} , or 1-in-1 million to 1-in-10,000 exposed persons developing cancer (EPA 1990). ILCRs below 10^{-6} are considered acceptable; ILCRs above 10^{-4} are considered unacceptable. The range between 10^{-6} and 10^{-4} is of concern, and any decisions to address ILCRs further in this range, either through additional study or engineered control measures, should account for the uncertainty in the risk estimates.

The ILCR is calculated using the equation below (EPA 1989):

$$ILCR = I \times CSF$$
(10)

where

- I = chronic daily intake or DAD calculated in the exposure assessment (mg/kg-d),
- $CSF = cancer slope factor (mg/kg-d)^{-1}$.

For a given exposure pathway, the total risk to a receptor exposed to several carcinogenic COPCs is the sum of the ILCRs for each carcinogen, as shown in Equation 11 below:

$$ILCR_{total} = \Sigma ILCR_i$$
 (11)

where

 $ILCR_{total}$ = total probability of cancer incidence associated with all carcinogenic COPCs, $ILCR_i$ = ILCR for the ith COPC.

In addition to summing risks across all carcinogenic COPCs, risks are summed across all exposure pathways for a given environmental medium (e.g., ingestion, inhalation, and dermal contact with surface soil). Per EPA (1989) guidance, "there are two steps required to determine whether risks or hazard indices for two or more pathways should be combined for a single exposed individual or group of individuals. The first is to identify reasonable exposure pathway combinations. The second is to examine whether it is likely that the same individuals would consistently face the "reasonable maximum exposure" (RME) by more than one pathway." It is reasonable to assume the same individual may be exposed at the RME by multiple pathways to a given exposure medium. For example, a National Guard Trainee present at Load Line 1 can reasonably be assumed to both ingest surface soil and inhale contaminated dust from the same area.

Risks are not summed across multiple exposure media because it is not likely that the same individuals would consistently be exposed at the RME. Per EPA (1989) guidance "only if you can explain why the key RME assumptions for more than one pathway apply to the same individual or subpopulation should the RME risks for more than one pathway be combined." Two issues preclude exposure of the same individual to RME conditions for multiple exposure media.

- Exposure media are not always co-located and many EUs were evaluated. The Load Line 1 RI includes the evaluation of seven soil areas and four surface water/sediment areas.
- The RME estimate for each exposure pathway includes many conservative and upper-bound parameter values and assumptions. Combining these upper-bound exposures for various media would result in an overly conservative estimate of risk. For example, an upper-bound soil ingestion rate is used for all soil and sediment exposure media. A resident subsistence farmer child exposed to surface soil (200 mg/d), subsurface soil (200 mg/d), and sediment (200 mg/d) would be ingesting 600 mg of soil and/or sediment per day.

5.1.2 Risk Characterization for Non-carcinogens

In addition to developing cancer from exposure to contaminants, an individual may experience other toxic effects. The term "toxic effects" is used here to describe a wide variety of systemic effects ranging from minor irritations, such as eye irritation and headaches, to more substantial effects, such as kidney or liver disease and neurological damage. The risks associated with toxic (i.e., non-carcinogenic) chemicals are evaluated by comparing an estimated exposure (i.e., intake or dose) from site media to an acceptable exposure expressed as an RfD. The RfD is the threshold level below which no toxic effects are expected to occur in a population, including sensitive subpopulations. The ratio of intake over the RfD is the HQ (EPA 1989) and is calculated as:

$$HQ = I/RfD$$
(12)

where

I = daily intake or DAD of a COPC (mg/kg-d), RfD = reference dose (mg/kg-d). The HQs for each COPC are summed to obtain a hazard index (HI), as shown below:

$$HI = \Sigma HQ_i$$

where

HI = hazard index for all toxic effects,

 HQ_i = hazard quotient for the ith COPC.

An HI greater than 1 has been defined as the level of concern for potential adverse non-carcinogenic health effects (EPA 1989). This approach differs from the probabilistic approach used to evaluate carcinogens. An HQ of 0.01 does not imply a 1-in-100 chance of an adverse effect but indicates only that the estimated intake is 100 times less than the threshold level at which adverse health effects may occur.

In addition to summing hazards across all COPCs, hazards are summed across all exposure pathways for a given environmental medium. As described previously (Section 5.1.1), hazards are not summed across multiple exposure media because it is not likely that the same individuals would be consistently exposed at the RME.

5.1.3 Identification of Chemicals of Concern

COCs are defined for each medium as those contaminants that have an ILCR greater than 1×10^{-6} and/or an HI greater than 1 for a given receptor.

5.2 RISK CHARACTERIZATION RESULTS

Estimated risks for Load Line 1 are evaluated by EU and exposure medium for each land use/receptor combination. Four environmental media were evaluated for this BHHRA at Load Line 1: groundwater, surface water, sediment, and soil. Soil data are further aggregated by depth interval—shallow surface soil from 0 to 1 ft bgs, deep surface soil from 0 to 3 ft bgs, and subsurface soil from 1 to 3 ft bgs.

The EUs are evaluated to provide an estimate of risk from a RME. The RME incorporates a reasonable estimate of the concentration to which a receptor may be exposed (UCL₉₅ on the mean). The use of the UCL₉₅ on the mean as the EPC implies that a receptor may come into contact with contaminants throughout the EU.

Risks are characterized for each EU/exposure medium/land use/receptor combination. COCs are identified if the total ILCR for a chemical exceeds 10^{-6} or if total HIs exceed 1 for a land use/receptor combination.

5.2.1 Groundwater Results

Risks are estimated for the National Guard Trainee and Resident Subsistence Farmer receptors for data collected from monitoring wells within the Load Line 1 building area and completed in the sandstone bedrock. Hazard and risk results are presented in Tables A-10 and A-11, respectively, and are summarized in Table 5-1 below.

	Non-carcinogens			Carcinogens
Receptor	HI	COCs	ILCR	COCs
National Guard Trainee	0.4		2E-05	2,4-DNT
				2,6-DNT
				RDX
				4,4'-DDE
				Arsenic
On-Site Resident Farmer (Adult)	3	Manganese	2E-04	2,4,6-TNT2,4-DNT
		-		2,6-DNT
				RDX
				4,4'-DDE
				Arsenic
On-Site Resident Farmer (Child)	11	Arsenic	2E-04	2,4,6-TNT
		Manganese		2,4-DNT
		2,4,6-TNT		2,6-DNT
				RDX
				4,4'-DDE
				Arsenic

Table 5-1. Total Hazards/Risks and Chemicals of Concern in Groundwater

COC = Chemical of concern.

DDE = Dichlorodiphenyldichloroethylene.

DNT = Dinitrotoluene.

HI = Hazard index.

ILCR = Incremental lifetime cancer risk.

RDX = Hexahydro-1,3,5-trinitro-1,3,5-triazine.

TNT = Trinitrotoluene.

Arsenic is identified as a COC for both the National Guard and the On-Site Resident Farmer (adult and child) scenarios with risks of 1E-05 (National Guard) and 1E-04 (On-Site Resident Farmer Adult and Child) and an HI of 2.5 (On-Site Resident Farmer Child). Arsenic is naturally present in groundwater in the Ravenna area with reported background concentrations as follows:

Aquifer	Background Criteria ^{a, b} (µg/L)
Unconsolidated (filtered)	11.7
Unconsolidated (unfiltered)	215
Bedrock (filtered)	NA
Bedrock (unfiltered)	19.1

^{*a*} Background criterion is the 95% upper tolerance limit (UTL).

^b As reported in the *Phase II Remedial Investigation Report for the Winklepeck Burning* Grounds at the Ravenna Army Ammunition Plant, Ravenna, Ohio (USACE 2001).

The estimated risks from exposure of these receptors to background concentrations of arsenic are 2E-05 (filtered) and 3E-05 to 4E-04 (unfiltered) for the National Guard scenario and 1E-04 to 2E-04 (filtered) and 2E-04 to 4E-03 (unfiltered) for the On-Site Resident Farmer scenario. The estimated HIs from exposure of the On-Site Resident Farmer Child to background concentrations of arsenic are 4 (filtered) and 6 to 69 (unfiltered). The background risk and hazard for arsenic are similar to the estimated site-related risks and hazards.

Manganese is identified as a COC for the Resident Subsistence Farmer scenario with an HQ of 2 for the adult and 6 for the child. Manganese is naturally present in groundwater in the RVAAP area. The estimated HQs for a Resident Farmer Adult exposed to the background concentrations of manganese (1,020 to 2,868 μ g/L for filtered and unfiltered samples) are 0.7 to 2. The estimated HQs for an On-Site Resident Farmer Child exposed to the background concentrations of manganese are 2 to 6. The background hazards for manganese are similar to the estimated site-related hazards for this metal.

Groundwater is not currently used at Load Line 1 but is evaluated in this BHHRA for potential future exposure. For the National Guard's potential future exposure to groundwater, total risk summed across all COPCs and all exposure pathways is estimated to be 2E-05. Five carcinogenic COCs were identified for the National Guard exposure to groundwater: 2,4-dinitrotoluene (DNT), 2,6-DNT, hexahydro-1,3,5trinitro-1,3,5-triazine (RDX), 4,4'-dichlorodiphenyldichloroethylene (DDE), and arsenic. The total HI summed across all COPCs and all exposure pathways is estimated to be <1 for this receptor; therefore, no non-carcinogenic COCs were identified for the National Guard scenario.

Evaluation of the On-Site Resident Farmer scenario results in total risks summed across all COPCs and all exposure pathways of 2E-04 (adult and child). Six carcinogenic COCs were identified for the residential exposure to groundwater at the Load Line 1 building area: 2,4,6-TNT, 2,4-DNT, 2,6-DNT, RDX, 4,4'-DDE, and arsenic. The total HIs summed across all COPCs and all exposure pathways are estimated to be 3 (adult) and 11 (child). The only non-carcinogenic COCs for residential exposure to groundwater are arsenic, manganese, and 2,4,6-TNT.

5.2.2 Surface Water and Sediment Results

Risks are estimated for four receptors [National Guard Trainee and Fire/Dust Suppression Worker, Recreational Hunter/Trapper/Fisher, and Resident Subsistence Farmer (adult and child)] for surface water and sediment at the following four EUs.

- Outlets D, E, and F, and Criggy's Pond;
- Outlet C and Charlie's Pond;
- Outlets A and B; and
- North area.

Surface Water – Direct Contact

Hazard and risk results for direct exposure to surface water via ingestion and dermal contact are presented in Tables A-12 and A-13, respectively, and summarized in Table 5-2 for the Outlet C and Charlie's Pond and Outlets D, E, and F, and Criggy's Pond EUs. Surface water samples were not collected at Outlets A and B or the North Area.

	Non-carcinogens		Carcinogens			
Receptor	HI	\mathbf{COCs}^{a}	ILCR	\mathbf{COCs}^{a}		
Outlet C an	d Charlie's	Pond				
National Guard – Trainee	0.04		6E-06	Arsenic		
National Guard – Fire/Dust Suppression	0.008		1E-06	Arsenic		
Recreator – Hunter/Trapper/Fisher	0.003		5E-07			
Resident Subsistence Farmer – Adult	0.2		4E-05	Arsenic		
Resident Subsistence Farmer – Child	0.7		3E-05	Arsenic		
Outlets D, E, and F and Criggy's Pond						
National Guard – Trainee	0.007		1E-06	Arsenic		
National Guard – Fire/Dust Suppression	0.001		2E-07			
Recreator – Hunter/Trapper/Fisher	0.0005		9E-08			
Resident Subsistence Farmer – Adult	0.03		6E-06	Arsenic		
Resident Subsistence Farmer – Child	0.1		5E-06	Arsenic		

^aChemicals of potential concern are identified as chemicals of concern (COCs) if the total hazard index (HI) across all pathways is >1 or if the total incremental lifetime cancer risk (ILCR) is >1E-06.

-- = No COCs are identified for this receptor at this exposure unit.

Arsenic is identified as the only COC for the National Guard Trainee and for the Resident Subsistence Farmer (child and adult) at both Outlet C and Charlie's Pond and at Outlets D, E, and F, and Criggy's Pond. Arsenic is also a COC for the National Guard Fire/Dust Suppression Worker at Outlet C and Charlie's Pond. No surface water COCs are identified for the Hunter/Trapper/Fisher at either of these EUs. The National Guard Security Guard/Maintenance Worker is not exposed to surface water.

Hazard and risk results for sediment are presented in Tables A-14 and A-15, respectively, and summarized in Table 5-3 for the Outlet C and Charlie's Pond; Outlets A and B; and Outlets D, E, and F, and Criggy's Pond EUs. No sediment COPCs were identified at the North Area.

Non-carcinogens				Carcinogens				
Receptor		COCs ^{<i>a</i>}	ILCR	\mathbf{COCs}^{a}				
Outlet C and Charlie's Pond								
National Guard – Trainee	7	Manganese	8E-06	Arsenic				
National Guard – Fire/Dust Suppression	0.008		4E-07					
Recreator – Hunter/Trapper/Fisher	0.005		4E-07					
Resident Subsistence Farmer – Adult	0.6		4E-05	Arsenic				
				PCB-1254, B(a)P				
Resident Subsistence Farmer – Child	3	Arsenic	5E-05	Arsenic, PCB-1254				
	utlets A ar	nd B						
National Guard – Trainee	0.4		2E-05	Arsenic, Cadmium				
				B(a)P, B(b)F				
				Dibenz(a,h)anthracene				
National Guard – Fire/Dust Suppression	0.006		3E-06	B(a)P				
Recreator – Hunter/Trapper/Fisher	0.004		3E-06	B(a)P				
Resident Subsistence Farmer – Adult	0.4		3E-04	Arsenic, 2,4-DNT				
				PCB-1254, B(a)A,				
				B(a)P, B(b)F				
				Dibenz(<i>a</i> , <i>h</i>)anthracene				
				Indeno(1,2,3-cd)pyrene				
Resident Subsistence Farmer – Child	2		2E-04	Arsenic, 2,4-DNT				
				PCB-1254, B(a)A,				
				B(a)P, B(b)F				
				Dibenz(<i>a</i> , <i>h</i>)anthracene				
				Indeno(1,2,3-cd)pyrene				
		l Criggy's Pon						
National Guard – Trainee	10	Manganese	7E-06	Arsenic				
National Guard – Fire/Dust Suppression	0.03		3E-07					
Recreator – Hunter/Trapper/Fisher	0.01		2E-07					
Resident Subsistence Farmer – Adult	3	Antimony	3E-05	Arsenic				
Resident Subsistence Farmer – Child	22	Antimony,	4E-05	Arsenic				
		Manganese						

 Table 5-3. Total Hazards/Risks and Chemicals of Concern for Sediment – Direct Contact

^{*a*}Chemicals of potential concern are identified as chemicals of concern (COCs) if the total hazard index (HI) across all pathways is >1 or if the total incremental lifetime cancer risk (ILCR) is >1E-06.

B(a)A = Benz(a)anthracene, B(a)P = Benzo(a)pyrene, and B(b)F = Benzo(b)fluoranthene.

PCB = Polychlorinated biphenyl.

-- = No COCs are identified for this receptor at this exposure unit.

DNT = Dinitrotoluene.

Arsenic and manganese are identified as COCs for National Guard Trainee use of the Outlet C and Charlie's Pond EU. No sediment COCs are identified for the National Guard Fire/Dust Suppression

Worker and Hunter/Trapper/Fisher at this EU. Arsenic, polychlorinated biphenyl (PCB) 1254, and benzo(*a*)pyrene are identified as COCs for residential use at this EU.

Various polycyclic aromatic hydrocarbons (PAHs) [benzo(*a*)pyrene, benzo(*b*)fluoranthene, and dibenz(*a*,*h*)anthracene], arsenic, and cadmium are identified as COCs at the Outlets A and B EU for the National Guard receptors. Benzo(*a*)pyrene is the only COC identified at the Outlets A and B EU for Recreational use. Arsenic, 2,4-DNT, PCB-1254, and several PAHs [benz(*a*)anthracene, benzo(*a*)pyrene, benzo(*b*)fluoranthene, dibenz(*a*,*h*)anthracene, and indeno(1,2,3-*cd*)pyrene] are identified as COCs for the Resident Subsistence Farmer at this EU.

Arsenic and manganese are identified as COCs for the National Guard Trainee at the Outlets D, E, and F, and Criggy's Pond EU. No sediment COCs are identified for the National Guard Fire/Dust Suppression Worker and Hunter/Trapper/Fisher at this EU. Antimony, arsenic, and manganese are identified as COCs for residential use at this EU.

Surface Water and Sediment – Indirect Exposure

In addition to the direct contact pathways described above, the Hunter/Trapper/Fisher may be exposed to COPCs in surface water and sediment via ingestion of fish and waterfowl. Fish are assumed to bioaccumulate COPCs from surface water, as described in Appendix B. Waterfowl are assumed to accumulate contaminants via ingestion of surface water, aquatic plants, sediment, and sediment-dwelling invertebrates, as described in Appendix B. Hazard and risk results for ingestion of fish and waterfowl are presented in Tables A-16 and A-17, respectively, and summarized in Table 5-4 below for the Outlet C and Charlie's Pond, and Outlets D, E, and F, and Criggy's Pond EUs. Surface water samples were not collected at the Outlets A and B and North Area EUs. Because of the lack of surface water, these EUs are not considered viable habitat for fish or waterfowl.

	Non-ca	arcinogens		Carcinogens				
Receptor	HI	COCs ^a	ILCR	COCs ^a				
Outlet C and Charlie's Pond								
Recreator – Hunter/Trapper/Fisher								
Fish Ingestion	0.3		5E-05	Arsenic				
Waterfowl Ingestion	189	Arsenic PCB-1254	4E-03	Arsenic B(a)P, PCB-1254				
Resident Subsistence Farmer – Adult								
Fish Ingestion	0.3		5E-05	Arsenic				
Resident Subsistence Farmer – Child	Resident Subsistence Farmer – Child							
Fish Ingestion	1	Arsenic	5E-05	Arsenic				
Outlets	Outlets D, E, and F and Criggy's Pond							
Recreator – Hunter/Trapper/Fisher								
Fish Ingestion	0.04		8E-06	Arsenic				
Waterfowl Ingestion	14	Antimony Arsenic	2E-04	Arsenic				
Resident Subsistence Farmer – Adult								
Fish Ingestion	0.04		8E-06	Arsenic				
Resident Subsistence Farmer – Child								
Fish Ingestion	0.2		8E-06	Arsenic				

Table 5-4. Total Hazards/Risks and Chemicals of Concern for Surface Water and Sediment – Fish and Waterfowl

^{*a*}Chemicals of potential concern are identified as chemicals of concern (COCs) if the total hazard index (HI) across all pathways is >1 or if the total incremental lifetime cancer risk (ILCR) is >1E-06.

B(a)P = Benzo(a)pyrene.

PCB = Polychlorinated biphenyl.

With the exception of arsenic, all of the COCs listed in Table 5-4 are associated with sediment. Arsenic is associated with both sediment and surface water.

Surface Water and Sediment – Evaluation of Lead

Lead was identified as a COPC in surface water at Outlet C and Charlie's Pond. For the Resident Subsistence Farmer Adult exposed to surface water, the estimated probability of fetal blood lead concentrations exceeding acceptable levels was less than 1% at this EU (Table C-1). For the Resident Subsistence Farmer Child receptor, the estimated probability of exceeding the target blood lead level of 10 μ g/dL at this EU is less than 90% (see Table C-2).

Lead was also identified as a COPC in sediment at Outlets A and B and at Outlets D, E, and F, and Criggy's Pond. For the Resident Subsistence Farmer Adult receptor exposed to sediment, the estimated probability of fetal blood lead concentrations exceeding acceptable levels was less than 9% at Outlets A and B (Table C-3) and less than 29% at Outlets D, E, and F, and Criggy's Pond (Table C-4). For the child receptor, the estimated probabilities of exceeding target blood lead levels were 51% at Outlets A and B and 90% at Outlets D, E, and F, and Criggy's Pond (Table C-5).

5.2.3 Soil Results

Risks were evaluated for seven EUs for surface soil (shallow and deep) and subsurface soil. The soil EUs are

- Buildings CB-3 and -801;
- Buildings CB-4/4A and CA-6/6A;
- Buildings CB-13 and -10;
- Buildings CB-14, CB-17, and CA-15;
- the Water Tower;
- the Change Houses (CB-12, -23, -8, and -22); and
- the Perimeter Area.

5.2.3.1 Surface soil – direct contact

Hazard and risk results for direct contact with COPCs in surface soil are presented in Tables A-18 and A-19 (shallow surface soil) and Tables A-20 and A-21 (deep surface soil). The National Guard Trainee is assumed to be exposed to deep surface soil. All other receptors are exposed to shallow surface soil. Results are summarized for all receptors in Table 5-5 below for the seven soil EUs.

Manganese is identified as a COC for the National Guard Trainee scenario at six EUs: Buildings CB-13 and -10; Buildings CB-14, CB-17, and CA-15; Buildings CB-3 and -801; Buildings CB-4/4A and CA-6/6A; the Change Houses; and the Perimeter Area, with HQs of 2 to 4. Manganese is naturally present in soils in the Ravenna area. The estimated HQ for a National Guard Trainee exposed to the background concentration of manganese (1,450 mg/kg) is 4. The HIs related to manganese at the Load Line 1 EPCs do not exceed that estimated for facility-wide background.

Arsenic is identified as a COC for the National Guard Trainee, National Guard Security Guard/Maintenance Worker, and Resident Subsistence Farmer scenarios at six EUs: Buildings CB-13 and -10; Buildings CB-14, CB-17, and CA-15; Buildings CB-3 and -801; Buildings CB-4/4A and CA-6/6A; Change Houses (CB-12, -23, -8, and -22); and the Perimeter Area. Arsenic is also naturally present in soils in the Ravenna area. The estimated risks from exposure of these receptors to the background concentration of arsenic (15.4 mg/kg)

	Non-c	arcinogens		Carcinogens	
Receptor	HI COCs ^b		ILCR	COCs ^b	
▲	CB-13 a				
National Guard – Trainee	4	Manganese	5E-06	Arsenic	
National Guard – Security Guard/Maint.	0.4		1E-05	Arsenic, B(a)P, PCB-1254	
National Guard – Fire/Dust Suppression	0.01		4E-07		
Recreator – Hunter/Trapper/Fisher	0.01		4E-07		
Resident Subsistence Farmer – Adult	1		4E-05	Arsenic, B(a)P, PCB-1254 2,4,6-TNT, 2,4-DNT	
Resident Subsistence Farmer – Child	4	PCB-1254	3E-05	Arsenic, B(a)P, PCB-1254 2,4,6-TNT, 2,4-DNT	
C	B-14. CB-17	, and CA-15		2,1,0 11(1,2,1))(1	
National Guard – Trainee	4	Manganese	1E-05	Arsenic, PCB-1254	
National Guard – Security Guard/Maint.	0.9		3E-05	Arsenic, B(a)P, PCB-1254 Dibenz(<i>a</i> , <i>h</i>)anthracene, RDX	
National Guard – Fire/Dust Suppression	0.03		1E-06		
Recreator – Hunter/Trapper/Fisher	0.02		9E-07		
Resident Subsistence Farmer – Adult	2	PCB-1254	8E-05	Arsenic, B(a)A, B(a)P, B(b)F, PCB-1254, RDX Dibenz(<i>a</i> , <i>h</i>)anthracene, Indeno(1,2,3- <i>cd</i>)pyrene	
Resident Subsistence Farmer – Child	6	PCB-1254	7E-05	Arsenic, B(a)P, B(b)F, Dibenz(<i>a</i> , <i>h</i>)anthracene, PCB-1254, RDX	
	CB-3 an	nd -801		· · ·	
National Guard – Trainee	4	Manganese	2E-05	Arsenic, B(a)A, B(a)P, B(b)F, PCB-1254 Dibenz(<i>a</i> , <i>h</i>)anthracene	
National Guard – Security Guard/Maint.	0.8		2E-04	Arsenic B(a)A, B(a)P, B(b)F Dibenz(<i>a</i> , <i>h</i>)anthracene Indeno(1,2,3- <i>cd</i>)pyrene PCB-1254	
National Guard – Fire/Dust Suppression	0.03		4E-06	B(a)P	
Recreator – Hunter/Trapper/Fisher	0.02		4E-06	B(a)P	
Resident Subsistence Farmer – Adult	2	PCB-1254	3E-04	Arsenic, Dieldrin B(a)A, B(a)P, B(b)F Dibenz(<i>a</i> , <i>h</i>)anthracene Indeno(1,2,3- <i>cd</i>)pyrene PCB-1254	
Resident Subsistence Farmer – Child	9	Antimony, PCB-1254	2E-04	Arsenic, B(a)A, B(a)P, B(b)F Dibenz(<i>a</i> , <i>h</i>)anthracene Indeno(1,2,3- <i>cd</i>)pyrene PCB-1254	
	CB-4/4A an	d CA-6/6A	•	·	
National Guard – Trainee	23	Manganese PCB-1254	3E-04	Arsenic 2,4,6-TNT, RDX PCB-1254	
National Guard – Security Guard/Maint.	178	2,4,6-TNT PCB-1254	3E-03	Arsenic, Dieldrin 2,4,6-TNT, RDX B(a)P, PCB-1254	

Table 5-5. Total Hazards/Risks and Chemicals of Concern for Surface Soil ^a : Dire	ect Contact
--	-------------

	Non-ca	rcinogens		Carcinogens
Receptor	HI	COCs ^b	ILCR	\mathbf{COCs}^b
National Guard – Fire/Dust Suppression	5	PCB-1254	7E-05	PCB-1254
Recreator – Hunter/Trapper/Fisher	4	PCB-1254	7E-05	PCB-1254
Resident Subsistence Farmer – Adult	319	PCB-1254,	5E-03	Arsenic, Dieldrin
		2,4,6-TNT		2,4,6-TNT, 2,6-DNT, RDX
				B(a)A, B(a)P, B(b)F,
				PCB-1254,
				Dibenz(<i>a</i> , <i>h</i>)anthracene
Resident Subsistence Farmer – Child	932	PCB-1254,	3E-03	Arsenic, Dieldrin
		2,4,6-TNT		2,4,6-TNT, RDX
				B(a)P, PCB-1254
	Change I			
National Guard – Trainee	2	Manganese	4E-06	Arsenic
National Guard – Security Guard/Maint.	0.05		5E-06	Arsenic
National Guard – Fire/Dust Suppression	0.002		2E-07	
Recreator – Hunter/Trapper/Fisher	0.001		2E-07	
Resident Subsistence Farmer – Adult	0.2		2E-05	Arsenic, B(a)P
Resident Subsistence Farmer – Child	1		2E-05	Arsenic
	Perimete			
National Guard – Trainee	4	Manganese	4E-06	Arsenic
National Guard – Security Guard/Maint.	0.05		5E-06	Arsenic
National Guard – Fire/Dust Suppression	0.003		2E-07	
Recreator – Hunter/Trapper/Fisher	0.002		2E-07	
Resident Subsistence Farmer – Adult	0.2		2E-05	Arsenic
Resident Subsistence Farmer – Child	1		2E-05	Arsenic
	Water T	ower		
National Guard – Trainee	0.001		NA	
National Guard – Security Guard/Maint.	0.0008		NA	
National Guard – Fire/Dust Suppression	0.00009		NA	
Recreator – Hunter/Trapper/Fisher	0.00005		NA	
Resident Subsistence Farmer – Adult	0.01		NA	
Resident Subsistence Farmer – Child	0.1		NA	

 Table 5-5. Total Hazards/Risks and Chemicals of Concern for Surface Soil^a: Direct Contact (continued)

^{*a*} Deep [0 to 3 ft below ground surface (bgs)] surface soil is used for National Guard Trainee; shallow (0 to 1 ft bgs) surface soil is used for all other receptors.

^b Chemicals of potential concern (COPCs) are identified as chemicals of concern (COCs) if the total hazard index (HI) across all pathways is >1 or if the total incremental lifetime cancer risk (ILCR) is >1E-06.

B(a)A = Benz(a)anthracene, B(a)P = Benzo(a)pyrene, B(b)F = Benzo(b)fluoranthene, and 2,4,6-TNT = 2,4,6-Trinitrotoluene.

NA = Not Applicable; no carcinogenic COPCs were identified at this exposure unit.

PCB = polychlorinated biphenyl.

RDX = Hexahydro-1,3,5-trinitro-1,3,5-triazine.

-- = No COCs are identified for this receptor at this exposure unit.

are 5E-06 for the Trainee, 6E-06 for the Security Guard/Maintenance Worker, and 2E-05 to 3E-05 for the Resident Subsistence Farmer. Estimated risks to these receptors from arsenic at these six EUs range from 4E-06 to 4E-05.

Arsenic is the only COC identified for the National Guard Trainee at Buildings CB-13 and -10. Three COCs are identified for the National Guard Security Guard/Maintenance Worker [arsenic, benzo(*a*)pyrene, and PCB-1254]. Two additional COCs (2,4,6-TNT and 2,4-DNT) are identified for the

Resident Subsistence Farmer scenario. No COCs are identified for the National Guard Fire/Dust Suppression Worker or Recreational receptors at this EU.

Three COCs (arsenic, manganese, and PCB-1254) are identified for the National Guard Trainee at Buildings CB-14, CB-17, and CA-15. Five COCs are identified for the National Guard Security Guard/Maintenance Worker [arsenic, RDX, benzo(a)pyrene, dibenz(a,h)anthracene, and PCB-1254]. These and an additional three COCs [benzo(a)anthracene, benzo(b)fluoranthene, and indeno(1,2,3-cd)pyrene] are identified for the Resident Subsistence Farmer scenario. No COCs are identified for National Guard Fire/Dust Suppression Worker or Recreational receptors at this EU.

Eight COCs are identified for one or more National Guard receptors (Trainee, Security Guard/Maintenance Worker, or Fire/Dust Suppression Worker) at Buildings CB-3 and-801 [arsenic, manganese, benz(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, dibenz(a,h)anthracene, indeno(1,2,3-cd)pyrene, and PCB-1254]. Nine COCs are identified for the Resident Subsistence Farmer [arsenic, antimony, benz(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, dibenz(a,h)anthracene, indeno(1,2,3-cd)pyrene, dieldrin, and PCB-1254]. Benzo(a)pyrene is also identified as a COC for the Hunter/Trapper/Fisher at this EU.

Seven COCs are identified for one or more National Guard receptors at Buildings CB-4/4A and CA-6/6A [arsenic, manganese, 2,4,6-TNT, RDX, benzo(a)pyrene, dieldrin, and PCB-1254]. Ten COCs are identified for the Resident Subsistence Farmer [arsenic, 2,4,6-TNT, 2,6-DNT, RDX benz(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, dibenz(a,h)anthracene, dieldrin, and PCB-1254]. PCB-1254 is also identified as a COC for the Hunter/Trapper/Fisher at this EU.

Arsenic, manganese, and benzo(*a*)pyrene (for the Resident Subsistence Farmer) are the only COCs identified at the Change Houses.

No COCs are identified at the Water Tower or Perimeter Areas (with the exception of arsenic and manganese related to background).

5.2.3.2 Surface soil – indirect contact

Risk and hazard results for indirect contact with COPCs in surface soil are presented in Tables 6-15 (a and b) in the Final LL1 RIR (SAIC 2004) and are summarized in Table 5-6 below for the seven soil EUs. Indirect contact includes ingestion of venison, beef, milk, and vegetables by the Resident Subsistence Farmer (adult and child). One metal, copper, was not quantitatively evaluated in the Final LL1 RIR because no toxicity value was available. An RfD has since become available for oral exposure to copper and hazards from indirect exposure to copper are included in the results shown in Table 5-6.

Arsenic and manganese are identified as COCs at Buildings CB-3 and -801; Buildings CB-4/4A and CA-6/6A; Buildings CB-13 and -10; Buildings CB-14, CB-17, and CA-15; Change Houses (CB-12, -23, -8, -22); and the Perimeter Area. Estimated HQs for ingestion of arsenic in foodstuffs range from 11 to 14 (adult) and 54 to 63 (child) at six of these EUs, with HQs of 23 (adult) and 105 (child) at Buildings CB-14, CB-17, and CA-15. Estimated risks for ingestion of arsenic in foodstuffs range from 2E-03 to 4E-03 for both adult and child. Estimated HQs for ingestion of manganese in foodstuffs range from 2 to 4 (adult) and 9 to 18 (child). These metals are naturally present in soils in the Ravenna area. The estimated hazard and risk from exposure of these receptors to arsenic via ingestion of foodstuffs to the background concentration of arsenic in soil (15.4 mg/kg) are 16 and 76 (adult and child HQs) and 3E-03 (both adult and child ILCR). The estimated HQs for the adult and child On-Site Resident Farmer receptor exposed to the background concentration of manganese (1,450 mg/kg) via ingestion of foodstuffs are 4 and 18.

	No	n-carcinogens		Carcir	nogens			
Receptor	HI	COCs	ILCR	ILCR COCs				
		Buildings Cl	B-3 and -8	01				
Resident Subsistence Farmer (Adult)	215	PCB-1254 Antimony Arsenic Cadmium Manganese Thallium	4E-02	PCB-1254 Arsenic Dieldrin	Benzo(<i>a</i>)anthracene Benzo(<i>a</i>)pyrene Benzo(<i>b</i>)fluoranthene Dibenz(<i>a</i> , <i>h</i>)anthracene Indeno(1,2,3- <i>cd</i>)pyrene			
Resident Subsistence Farmer (Child)	1,086	PCB-1254 Antimony Arsenic Cadmium Manganese Thallium Dieldrin	4E-02	PCB-1254 Arsenic Dieldrin	Benzo(<i>a</i>)anthracene Benzo(<i>a</i>)pyrene Benzo(<i>b</i>)fluoranthene Dibenz(<i>a</i> , <i>h</i>)anthracene Indeno(1,2,3- <i>cd</i>)pyrene			
		Buildings CB-4/4	4A and CA	-6/6A				
Resident Subsistence Farmer (Adult)	27,729	PCB-1254 Arsenic Copper Manganese Thallium Endrin Aldehyde 1,3-Dinitrobenzene 2,4,6-TNT 2,6-DNT RDX	4E-01	PCB-1254 Arsenic 2,4,6-TNT 2,6-DNT RDX 4,4'-DDE Dieldrin	Benzo(<i>a</i>)anthracene Benzo(<i>a</i>)pyrene Benzo(<i>b</i>)fluoranthene Dibenz(<i>a</i> , <i>h</i>)anthracene Heptachlor gamma-Chlordane			
Resident Subsistence Farmer (Child)	150,325	PCB-1254 Arsenic Barium Cadmium Copper Manganese Mercury Thallium Vanadium Dieldrin Endrin Aldehyde gamma-Chlordane 1,3-Dinitrobenzene 2,4,6-TNT 2,6-DNT RDX	4E-01	PCB-1254 Arsenic 2,4,6-TNT 2,6-DNT RDX 4,4'-DDE Dieldrin	Benzo(<i>a</i>)anthracene Benzo(<i>a</i>)pyrene Benzo(<i>b</i>)fluoranthene Dibenz(<i>a</i> , <i>h</i>)anthracene Heptachlor gamma-Chlordane			
Resident Subsistence Farmer (Adult)	104	Buildings CI PCB-1254 Arsenic Cadmium Copper Manganese Thallium 2,4,6-TNT	3-13 and - 3E-03	10 PCB-1254 Arsenic 2,4,6-TNT 2,4-DNT RDX	Benzo(<i>a</i>)pyrene			

Table 5-6. Total Hazards/Risks and Chemicals of Concern for Surface Soil: Ingestion of Foodstuffs

	No	n-carcinogens		Carci	nogens			
Receptor	HI	COCs	ILCR COCs					
Resident	519	PCB-1254	3E-03	PCB-1254	Benzo(a)pyrene			
Subsistence		Antimony		Arsenic				
Farmer (Child)		Arsenic		2,4,6-TNT				
		Cadmium		2,4-DNT				
		Copper		RDX				
		Manganese						
		Thallium						
		2,4-DNT						
		2,4,6-TNT						
		RDX						
		Buildings CB-14						
Resident	162	PCB-1254	1E-02	PCB-1254	Benzo(a)anthracene			
Subsistence		Arsenic		Arsenic	Benzo(<i>a</i>)pyrene			
Farmer (Adult)		Cadmium		2,4,6-TNT	Benzo(b)fluoranthene			
		Manganese		RDX	Dibenz(a,h)anthracen			
		Nickel			Indeno(1,2,3-cd)pyrer			
		Thallium						
		Vanadium						
		2,4,6-TNT						
		RDX						
Resident	847	PCB-1254	1E-02	PCB-1254	Benzo(a)anthracene			
Subsistence		Arsenic		Arsenic	Benzo(<i>a</i>)pyrene			
Farmer (Child)		Barium		2,4,6-TNT	Benzo(b)fluoranthene			
		Cadmium		RDX	Dibenz(<i>a</i> , <i>h</i>)anthracen			
		Manganese			Indeno(1,2,3-cd)pyrer			
		Nickel						
		Thallium						
		Vanadium						
		2,4,6-TNT						
		RDX						
Resident	4	Thallium	er Tower					
Subsistence	4	Thannum	NA					
Farmer (Adult)								
Resident	18	Thallium	NA					
Subsistence	10	Thannun	INA					
Farmer (Child)								
Parifier (Cliffe)		Change Houses (C	B-12 -23 -8	and -22)				
Resident	21	Antimony	3E-03	Arsenic	Benzo(<i>a</i>)pyrene			
Subsistence	<i>2</i> 1	Arsenic	51 05	2 11 50 1110	Denzo(u)pyrene			
Farmer (Adult)		Cadmium						
- uniter (riduit)		Manganese						
		Thallium						
Resident	98	Antimony	2E-03	Arsenic	Benzo(<i>a</i>)pyrene			
Subsistence	20	Arsenic	22.05	2 HJOINE	Denzo(u)pjrene			
Farmer (Child)		Cadmium						
- uniter (Cinita)		Manganese						
		Thallium						

Table 5-6. Total Hazards/Risks and Chemicals of Concern for Ingestion of Foodstuffs (continued)

Table 5-6. Total Hazards/Risks and Chemicals of Concern for Ingestion of Foodstuffs (continued)

	No	on-carcinogens		Carcinogens					
Receptor	HI	COCs	ILCR	COCs					
	Perimeter Area								
Resident	21	Arsenic	3E-03	Arsenic					
Subsistence		Manganese							
Farmer (Adult)		Thallium							
Resident	97	Arsenic	2E-03	Arsenic					
Subsistence		Manganese							
Farmer (Child)		Thallium							

COC = Chemical of concern.

DDE = Dichlorodiphenyldichloroethylene.

DNT = Dinitrotoluene.

HI = Hazard index.

ILCR = Incremental lifetime cancer risk.

NA = Not applicable; no carcinogenic COPCs were identified at this exposure unit.

PCB = Polychlorinated biphenyl.

RDX = Hexahydro-1,3,5-trinitro-1,3,5-triazine.

TNT = Trinitrotoluene.

Vanadium is identified as a COC for the Resident Subsistence Farmer at Buildings CB-4/4A and CA-6/6A (child HQ = 4), and CB-14, CB-17, and CA-15 (adult HQ = 2, child HQ = 7). Vanadium is naturally present in soils in the Ravenna area. The estimated HQs for an Resident Subsistence Farmer receptors exposed to the background concentration of vanadium (31.1 mg/kg) are 1 (adult) and 6 (child).

Nickel is identified as a COC for the Resident Subsistence Farmer scenario at Buildings CB-14, CB-17, and CA-15 with HQs of 1 (adult) and 7 (child). Nickel is also naturally present in soils in the Ravenna area. The estimated HQs for Resident Subsistence Farmer receptors exposed to the background concentration of nickel (21.1 mg/kg) are 1 (adult) and 7 (child).

Antimony is identified as a COC for the Resident Subsistence Farmer scenario at Buildings CB-3 and -801 (adult HQ = 85, child HQ = 396), CB-13 and -10 (child HQ = 5), and Change Houses (adult HQ = 2, child HQ = 8). Antimony is naturally present in soils in the Ravenna area. The estimated HQs for Resident Subsistence Farmer receptors exposed to the background concentration of antimony (0.96 mg/kg) are 1 (adult) and 3 (child).

Barium is identified as a COC for the Resident Subsistence Farmer child scenario at Buildings CB-4/4A and CA-6/6A (HQ=3) and Buildings CB-14, CB-17, and CA-15 (HQ = 3). Barium is naturally present in soils in the Ravenna area. The estimated HQ for the Resident Subsistence Farmer child exposed to the background concentration of barium (88.4 mg/kg) is 2.

Mercury is identified as a COC for the Resident Subsistence Farmer child scenario at Buildings CB-4/4A and CA-6/6A (HQ=2). Mercury is naturally present in soils in the Ravenna area. The estimated HQ for the Resident Subsistence Farmer child exposed to the background concentration of mercury (0.036 mg/kg) is 0.2.

Copper is identified as a COC for the Resident Subsistence Farmer (adult and child) scenario at Buildings CB-4/4A and CA-6/6A (HQs = 2 for adult and 13 for child) and Buildings CB-13 and -10 (HQs = 1 for adult and 7 for child). Copper is naturally present in soils in the Ravenna area. The estimated HQs for the Resident Subsistence Farmer exposed to the background concentration of copper (18 mg/kg) are 0.2 (adult) and 1 (child).

Cadmium and thallium are identified as COCs for the Resident Subsistence Farmer (adult and child) scenarios at Buildings CB-3 and -801; Buildings CB-4/4A and CA-6/6A; Buildings CB-13 and -10; Buildings CB-14, CB-17, and CA-15; and the Change Houses (CB-12, -23, -8, -22). Thallium HQs for these EUs range from 2 to 5 (adult) and 12 to 25 (child). Cadmium HQs range from <1 to 3 (adult) and 4 to 16 (child). Site-specific background concentrations are not available for these two metals.

Thallium is the only COC identified at the Water Tower and Perimeter Areas (with the exception of manganese and arsenic related to background at the Perimeter Area) with HQs for the Resident Subsistence Farmer of 4 (adult) and 17 (child) for both of these EUs.

COCs identified for the Resident Subsistence Farmer at Buildings CB-3 and -801; Buildings CB-4/4A and CA-6/6A; Buildings CB-13 and -10; Buildings CB-14, CB-17, and CA-15; and the Change Houses (CB-12, -23, -8, -22) include explosives (2,4,6-TNT, 2,4-DNT, 2,6-DNT, 1,3-dinitrobenzene, and RDX), PAHs [benzo(*a*)anthracene, benzo(*a*)pyrene, benzo(*b*)fluoranthene, benzo(*k*)fluoranthene, dibenz(*a*,*h*)anthracene, and indeno(1,2,3-*cd*)pyrene], PCB-1254, and pesticides (4,4'-DDE, dieldrin, gamma-chlordane, endrin aldehyde, and heptachlor).

Surface Soil – Evaluation of Lead

Lead was identified as a COPC in shallow surface soil at the following EUs: Buildings CB-3 and -801; Buildings CB-4/4A and CA-6/6A; Buildings CB-13 and -10; Buildings CB-14, CB-17, and CA-15; Change Houses (CB-12, -23, -8, -22); and the Water Tower.

For all adult receptors exposed to shallow surface soil, the estimated probability of fetal blood lead concentrations exceeding acceptable levels was less than 12% at Buildings CB-3 and -801 (Table C-6); less than 4% at Buildings CB-4/4A and CA-6/6A (Table C-7); less than 4% at Buildings CB-13 and -10 (Table C-8); less than 2% at Buildings CB-14, CB-17, and CA-15 (Table C-9); less than 3% at the Change Houses (Table C-10); and less than 65% at the Water Tower (Table C-11).

For the child receptor, the estimated probabilities of exceeding target blood lead levels were as follows: 61% at Buildings CB-3 and -801; 20% at Buildings CB-4/4A and CA-6/6A; 16% at Buildings CB-13 and -10; 2% at Buildings CB-14, CB-17, and CA-15; 8% at Change Houses (CB-12, -23, -8, -22); and 99% at the Water Tower (Table C-12).

5.2.3.3 Subsurface soil

Hazard and risk results for direct contact with COPCs in subsurface soil are presented in Tables A-22 and A-23, respectively, and summarized in Table 5-7 below for two soil EUs (Buildings CB-4/4A and CA-6/6A; and Buildings CB-13 and -10). No COPCs were identified at Buildings CB-14, CB-17, and CA-15 or at the Perimeter Area EU, and no subsurface samples were collected at the remaining soil EUs. Risks are presented for direct contact with subsurface soil by the Resident Subsistence Farmer (adult and child). Direct contact includes incidental ingestion of soil, inhalation of VOCs and particulates (i.e., dust), and dermal contact with soil.

Two explosives (2,4,6-TNT and RDX) are identified as COCs for the Resident Subsistence Farmer at Buildings CB-4/4A and CA-6/6A.

Antimony is the only COC identified at Buildings CB-13 and -10.

	Non-ca	rcinogens	Carcinogens						
Receptor	HI	COCs	ILCR	COCs					
Buildings CB-4/4A and CA-6/6A									
On-Site Resident Farmer (Adult)	9	2,4,6-TNT	7E-05	2,4,6-TNT RDX					
On-Site Resident Farmer (Child)	32	2,4,6-TNT	5E-05	2,4,6-TNT RDX					
Buildings CB-13 and -10									
On-Site Resident Farmer (Adult)	0.3		1E-08						
On-Site Resident Farmer (Child)	2	Antimony	6E-09						

 Table 5-7. Total Hazards/Risks and Chemicals of Concern for Direct Contact with Subsurface Soil

COC = Chemical of concern.

HI = Hazard index.

ILCR = Incremental lifetime cancer risk.

RDX = Hexahydro-1,3,5-trinitro-1,3,5-triazine.

TNT = Trinitrotoluene.

Lead was identified as a COPC in subsurface soil at Buildings CB-13 and -10 and at Buildings CB-14, CB-17 and CA-15. For all adult receptors exposed to subsurface soil, the estimated probability of fetal blood lead concentrations exceeding acceptable levels was less than 10% at both of these EUs (see Tables C-13 and C-14, respectively). For the child receptor, the estimated probabilities of exceeding target blood lead levels are 41% at Buildings CB-13 and -10 and 56% Buildings CB-14, CB-17 and CA-15 (Table C-15).

5.2.4 Summary of Chemicals of Concern for all Media and Receptors

Table 5-8 presents a summary of the receptor/medium combinations that have COCs (i.e., chemicals with risks $> 10^{-6}$ or hazards > 1) in this BHHRA. RGOs are calculated and presented in Chapter 6.0 for the 16 COCs identified from direct exposure pathways in this BHHRA.

	Grour	ndwater		Surfac	e Water ^a			Sedi	ment ^a			Surfa	ce Soil ^b	
1	National		Nation	al Guard			Nationa	l Guard			Na	tional Guard		
	Guard	Resident		Fire/Dust	Hunt/	Resident		Fire/Dust	Hunt/	Resident		Sec. Guard/	Fire/Dust	1
COC	Trainee	Farmer ^c	Trainee	Control	Trap/Fish	Farmer ^c	Trainee	Control	Trap/Fish	Farmer ^c	Trainee	Maint. Worker	Control	Т
								Met	tals					
Antimony					E^d					Е				
Arsenic	LL1	LL1	C,E	С	C^d, E^d	C^{e}, E^{e}	A,C,E			A,C,E	3,4,13,14,CH,P	3,4,13,14,CH,P		T
Cadmium							А							Τ
Manganese		LL1					C,E			Е	3,4,13,14,CH,P			
								Explo	osives					
2,4,6-Trinitrotoluene		LL1									4	4		
2,4-Dinitrotoluene	LL1	LL1								А				Τ
2,6-Dinitrotoluene	LL1	LL1												
RDX	LL1	LL1									4	4,14		
								РС	Bs					
PCB-1254					\mathbf{C}^{d}					A,C	3,4,14	3,4,13,14	4	
					-			Pestie	cides				-	
4,4'-DDE	LL1	LL1												
Dieldrin												4		
								PA.	Hs					
Benz(a)anthracene										А	3	3		
Benzo(a)pyrene					\mathbf{C}^{d}		А	А	А	A,C	3	3,4,13,14	3	
Benzo(b)fluoranthene							А			А	3	3		
Dibenz(<i>a</i> , <i>h</i>)anthracene							А			А	3	3,14		
Indeno(1,2,3-cd)pyrene										А		3		

Table 5-8. Receptor/Medium/Exposure Unit Combinations with COCs at Load Line 1

Groundwater Exposure Unit

LL1 = Load Line 1 Bedrock aquifer.

Surface Water and Sediment Exposure Units C = Outlet C and Charlie's Pond.

A = Outlets A and B.

E = Outlets D, E, and F, and Criggy's Pond.

Soil Exposure Units 3 = CB-3 and -801.

4 = CB-4/4A and CA-6/6A.

13 = CB-13 and -10.

14 = CB-14, CB-17, and CA-15.

CH = Change Houses (CB-12, -23, -8, -22).

P = Perimeter Area.

^a Chemicals listed are for direct contact with surface water or sediment unless otherwise noted.

^b Surface soil is defined as 0 to 3 ft below ground surface (bgs) for the National Guard Trainee and 0 to 1 ft bgs for all other receptors.

^c Results for both adult and child Resident Subsistence Farmer.

^{*d*} Chemical is a COC for waterfowl/fish ingestion only.

^{*e*} Chemical is a COC for both direct contact and waterfowl/fish ingestion.

COC = Chemical of concern.

DDE = Dichlorodiphenyldichloroethylene.

PAH = Polycyclic aromatic hydrocarbon.

PCB = Polychlorinated biphenyl.

RDX = Hexahydro-1,3,5-trinitro-1,3,5-triazine.

		Subsurface
		Soil
Hunt/	Resident	Resident
Trap/Fish	Farmer ^c	Farmer ^c
1140/11011		
	3	13
	3,4,13,14,CH,P	
	4,13	4
	13	
	4	
	4,14	4
4	3,4,13,14	
	3,4	
	3,4,14	
3	3,4,13,14,CH	
	3,4,14	
	3,4,14	
	3,14	
	= ;= :	

5.3 UNCERTAINTY ANALYSIS

This section identifies the uncertainties associated with each step of the risk assessment process, where possible. Uncertainties are not cumulative and are not mutually exclusive. Uncertainties Associated with the Data Evaluation.

Although the data evaluation process used to select COPCs adheres to established procedures and guidance, it also requires making decisions and developing assumptions on the basis of historical information, disposal records, process knowledge, and best professional judgment about the data. Uncertainties are associated with all such assumptions. The background concentrations and PRGs used to screen analytes are also subject to uncertainty.

In addition, the determination of the chemical for certain analytes is subject to various assumptions. For example, it is assumed that all metallic thallium is present as the most toxic form (thallium carbonate).

Another area of uncertainty involves the qualitative evaluation (and elimination from further consideration) of essential nutrients, many of which have no available toxicity values. In addition, the toxicity values used in the derivation of PRGs are subject to change, as additional information becomes available from scientific research. These periodic changes in toxicity values may cause the PRG values to change as well.

Uncertainty can be introduced in the data aggregation process. Any changes to criteria governing how data are grouped affect the summary statistics. For example, if data from a single sample are removed from an aggregate, the MDC could change for that aggregate. This change could effect whether an analyte remains on, or is removed from, the COPC list for that aggregate (since the MDC is used in the PRG screening process). Other summary statistics could be affected as well.

Representative exposure concentrations are calculated in this BHHRA based on the assumption that the samples collected from each EU are truly random samples. In fact, only the samples collected from the perimeter EU were collected randomly. Sample locations for all other EUs were biased to identify areas of highest contaminant concentrations. Seasonal variations in the data may also exist (especially with the surface water and groundwater data), which may not have been captured in the calculation of the EPCs.

In addition, in the evaluation of the various media, environmental concentrations are assumed to be constant (i.e., concentrations are not reduced by loss due to natural removal processes such as volatilization, leaching, and/or biodegradation). Since the source of contamination (i.e., production and demilitarization of munitions) no longer exists at Load Line 1, this assumption is a source of uncertainty.

Some unavoidable uncertainty is associated with the contaminant concentrations detected and reported by the analytical laboratory. The quality of the analytical data used in the risk assessment depends on the adequacy of the set of procedures that specifies how samples are selected and handled and how strictly these procedures are followed. Quality assurance (QA)/QC procedures within the laboratories are used to minimize uncertainties; however, sampling errors, laboratory analysis errors, and data analysis errors can occur.

Some current analytical methods are limited in their ability to achieve detection limits at or below risk-based screening levels (i.e., PRG concentrations). Under these circumstances, it is uncertain whether the true concentration is above or below the PRGs, which are protective of human health. When analytes are on the COPC list and have a mixture of detected and non-detected concentrations, risk calculations may be affected by these detection limits. Risks may be overestimated as a result of some sample concentrations being reported as non-detected at the method detection limit (MDL), which may be greater than the PRG concentration (when the actual concentration may be much smaller than the MDL). Risks

may also be underestimated because some analytes that are not detected in any sample are removed from the COPC list. If the concentrations of these analytes are below the MDL but are above the PRG, the risk from these analytes would not be included in the risk assessment results.

Common laboratory contaminants [e.g., bis(2-ethylhexyl)phthalate] appear on the COPC list. In the data assessment process, elevated levels of these common laboratory contaminants can be evaluated to see if the detected concentrations are likely to be "false positives" (i.e., at high concentrations due to laboratory interference). This process involves a check against the concentrations detected in the associated laboratory method blank.

The selection of COPCs in this BHHRA relied primarily on analyte concentrations obtained as the result of field sampling of primary and secondary media assessed for the RI. The sources of COPCs are addressed in the selection of contaminants in exposure media for current environmental conditions. However, under future land use conditions, other contaminants not currently accounted for, particularly those that are either currently contained or that have slow transport velocities, may appear in secondary media at concentrations that could contribute to the calculated risk.

5.3.1 Uncertainties Associated with the Exposure Assessment

Uncertainty is also introduced through the data aggregation process of estimating representative exposure concentrations in the analyzed exposure media. Analytical results are used to calculate a mean concentration and the UCL₉₅ on the mean concentration. The smaller of the MDC and the UCL₉₅ concentration is used as the EPC for this BHHRA. This method may underestimate the EPC for small datasets from areas with a high degree of variability in contaminant concentrations.

Moderate uncertainty can be introduced in the data aggregation process for estimating a representative exposure concentration in the exposure media. A statistical test (the Shapiro-Wilk test) is performed to determine whether the concentration data are best described by a normal or lognormal distribution. Each COPC's mean and UCL₉₅ on the mean concentrations are calculated using both detected values and one-half of the reported detection limit for samples without a detected concentration. The EPC is the smaller of the MDC or the calculated UCL₉₅. This method may moderately overestimate the exposure concentration, when the resulting individual contaminant risks are summed to provide a total ILCR or HI, the compounding conservatism of this method for estimating EPCs will likely result in an overestimate of the total risk.

As described previously, some uncertainty is associated with the contaminant concentrations detected and reported by the analytical laboratory. The quality of the analytical data used in the risk assessment depends on the adequacy of the set of procedures that specifies how samples are to be selected and handled and how strictly these procedures are followed. QA/QC procedures are used to minimize uncertainties; however, sampling errors, laboratory analysis errors, and data analysis errors can and do occur. Moreover, some current analytical methods are limited in their ability to achieve detection limits appropriate for use in risk assessment. Therefore, risks may be overestimated as a result of analyte concentrations being reported at the MDL, which may be greater than the concentration at which adverse health effects could occur. Additional uncertainties are introduced by detection limits that differ among the various datasets; these uncertainties are especially noticeable in the historical (i.e., Phase I) datasets. In addition, risks may be underestimated if chemical concentrations are above risk criteria but below detection limits and reported as non-detects.

At best, quantification of exposure provides an estimate of the chemical intake for various exposure pathways identified at the site. Several uncertainties associated with the various components of the

exposure assessment include uncertainties about the exposure pathway equations, exposure parameters, land use scenarios, representative exposure concentrations, and sampling and analysis of the media.

For each primary exposure pathway chosen for analysis in this BHHRA, assumptions are made concerning the exposure parameters (e.g., amount of contaminated media a receptor can be exposed to and intake rates for different routes of exposure) and the routes of exposure. In the absence of site-specific data, the assumptions used are consistent with EPA-approved default values, which are assumed to be representative of potentially exposed populations (EPA 1989, 1991). All contaminant exposures are assumed to be from site-related exposure media (i.e., no other sources contribute to the receptor's health risk).

Note that for the dermal contact with soil and sediment pathway, no exposure time is included in the equation. This is based on the assumption that the receptor may not bathe (i.e., remove the soil in contact with the skin surface) for 24 h following the initial exposure; therefore, the receptor is actually exposed to soil contaminants for 24 h/d. This may overestimate the risk associated with dermal contact with soil or sediment. This fact is especially important when the dermal pathway is the major contributor to the risks and/or hazards.

Most exposure parameters have been selected so that errors occur on the side of conservatism. When several of these upper-bound values are combined in estimating exposure for any one pathway, the resulting risks can be in excess of the 99th percentile and, therefore, outside of the range that may be reasonably expected. Therefore, the consistent conservatism employed in the estimation of these parameters generally leads to overestimation of the potential risks.

Uncertainties associated with the ingestion of waterfowl include assumptions made regarding frequency of exposure and quantity consumed, as well as added uncertainties in the bio-uptake factors used in these exposure models.

5.3.2 Uncertainties Associated with Toxicity Information

The methodology used to develop a non-carcinogenic toxicity value (RfD or RfC) involves identifying a threshold level below which adverse health effects are not expected to occur. The RfD and RfC values are generally based on studies of the most sensitive animal species tested (unless adequate human data are available) and the most sensitive endpoint measured. Uncertainties exist in the experimental dataset for such animal studies. These studies are used to derive the experimental exposure representing the highest dose level tested at which no adverse effects are demonstrated [i.e., the no-observed-adverse-effect level (NOAEL)]; in some cases, however, only a lowest-observed-adverse-effect level (LOAEL) is available. The RfD and/or RfC is derived from the NOAEL (or LOAEL) for the critical toxic effect by dividing the NOAEL (or LOAEL) by uncertainty factors. These factors usually are in multipliers of 10, with each factor representing a specific area of uncertainty in the extrapolation of the data. For example, an uncertainty factor of 100 is typically used when extrapolating animal studies to humans. Additional uncertainty factors are sometimes necessary when other experimental data limitations are found. Because of the large uncertainties (10 to 10,000) associated with some RfD or RfC toxicity values, exact safe levels of exposure for humans are not known. For non-carcinogenic effects, the amount of human variability in physical characteristics is important in determining the risks that can be expected at low exposures and in determining the NOAEL (EPA 1989).

The uncertainty associated with the toxicity factors for non-carcinogens is measured by the uncertainty factor, the modifying factor, and the confidence level. The toxicological data (CSFs and RfDs) for dose-response relationships of chemicals are frequently updated and revised, which can lead to overestimation or underestimation of risks. These values are often extrapolations from animals to humans,

and this can also causes uncertainties in toxicity values because differences can exist in chemical absorption, metabolism, excretion, and toxic response between animals and humans.

EPA considers differences in body weight, surface area, and pharmacokinetic relationships between animals and humans to minimize the potential to underestimate the dose-response relationship; as a result, more conservatism is usually incorporated into these steps. In particular, toxicity factors that have high uncertainties may change as new information is evaluated. Therefore, a number of the COCs particularly those with high uncertainties—may be subject to change. Finally, the toxicity of a contaminant may vary significantly with the chemical form present in the exposure medium. For example, risks from metals may be overestimated because they are conservatively assumed to be in their most toxic forms.

The carcinogenic potential of a chemical can be estimated through a two-part evaluation involving (1) a WOE assessment to determine the likelihood that a chemical is a human carcinogen, and (2) a slope factor assessment to determine the quantitative dose-response relationship. Uncertainties occur with both assessments. Chemicals fall into one of five groups on the basis of WOE studies of humans and laboratory animals (EPA 2004): (1) Group A – known human carcinogen; (2) Group B – probable human carcinogen based on limited human data or sufficient evidence in animals, but inadequate or no evidence in humans; (3) Group C – possible human carcinogens; (4) Group D – not classified as to human carcinogenicity; and (5) Group E – evidence of no carcinogenic effects in humans.

The CSF for a chemical is a plausible upper-bound estimate of the probability of a response per unit intake of a chemical over a lifetime. It is used to estimate an upper-bound lifetime probability of an individual developing cancer as a result of exposure to a particular level of a potential carcinogen. The slope factor is derived by applying a mathematical model to extrapolate from a relatively high, administered dose to animals to the lower exposure levels expected for humans. The slope factor represents the UCL₉₅ on the linear component of the slope (generally the low-dose region) of the tumorigenic dose-response curve. A number of low-dose extrapolation models have been developed, and EPA generally uses the linearized multistage model in the absence of adequate information to support other models.

For several analytes, no toxicity information for either the non-carcinogenic or carcinogenic health effects to humans is available in EPA's IRIS (EPA 2004) or HEAST (EPA 1997b). The carcinogenic potential has not been evaluated for some chemicals lacking EPA-approved toxicity values. In addition, some analytes have been assigned a WOE classification for carcinogenicity (EPA 1989) but have not been assigned a slope factor. Therefore, until and unless additional toxicity information allows the derivation of toxicity factors, potential risk from certain analytes cannot be quantified.

Uncertainties are associated with the GAF values used to modify the oral toxicity values to evaluate dermal toxicity. Similar uncertainties are associated with the TEF values used to estimate risks from exposure to PAHs. Many potential uncertainties are associated with the toxicity data used in this BHHRA and can affect the risk, hazard, and COC determinations.

In the absence of EPA-approved toxicity values for arsenic and benzo(*a*)pyrene, withdrawn or provisional values have been used in the risk characterization for these COPCs. The toxicity values for these two chemicals have larger uncertainties than other approved values. Because these COPCs are identified as COCs in this BHHRA, caution should be used, and a closer look at the withdrawn/provisional value(s) is appropriate when making remediation decisions for these COCs.

5.3.3 Uncertainties and Assumptions in the Risk Characterization

Risk assessment, as a scientific activity, is subject to uncertainty. This is true even though the methodology used in this BHHRA follows EPA guidelines. As noted previously, the risk evaluation in this report is subject to uncertainty pertaining to sampling and analysis, selection of COPCs, exposure estimates, and availability and quality of toxicity data.

Uncertainties related to the summation of HQs and ILCRs across chemicals and pathways are a primary uncertainty in the risk characterization. In the absence of information on the toxicity of specific chemical mixtures, it is assumed that ILCRs and HQs are additive (i.e., cumulative) (EPA 1989). The limitations of this approach for non-carcinogens are (1) the effects of a mixture of chemicals are generally unknown; it is possible that the interactions could be synergistic, antagonistic, or additive; (2) the RfDs have different accuracy and precision and are not based on the same severity or effect; and (3) HQ or intake summation is most properly applied to compounds that induce the same effects by the same mechanism. Therefore, the potential for occurrence of non-carcinogenic effects can be overestimated for chemicals that act by different mechanisms and on different target organs.

Limitations of the additive risk approach for multiple carcinogens are (1) the chemical-specific slope factors represent the upper 95th percentile estimate of potency; therefore, summing individual risks can result in an excessively conservative estimate of total lifetime cancer risk; and (2) the target organs of multiple carcinogens may be different, so the risks would not be additive. In the absence of data, additivity for ILCRs and HQs is assumed for this BHHRA. However, because total risks and HIs are usually driven by a few chemicals, segregation of risks and HIs by target organ would most likely not have resulted in significantly different outcomes.

Additional uncertainty can be associated with the method of selection of COCs. For this BHHRA, COCs are selected for a given medium/land use scenario as chemicals with individual ILCRs \geq 1.0E-06 and/or individual HQs \geq 1.0 for any medium/land use scenario.

Potential risks and hazards are not determined for the 8 COPCs [2-amino-4,6-DNT, 4-amino-2,6-DNT, 2methylnaphthalene, benzo(g,h,i) perylene, nitrocellulose, nitroglycerin, phenanthrene, and lead] that could not be evaluated quantitatively due to the lack of toxicity information and/or values. This results in uncertainty that could underestimate the total risk/hazard to human health.

6.0 REMEDIAL GOAL OPTIONS

To support the remedial alternative selection process, RGOs were developed for each chemical identified as a COC in the direct exposure pathways for this Load Line 1 BHHRA. RGOs are calculated using the methodology presented in RAGS Part B (EPA 1991) while incorporating site-specific exposure parameters applicable to Load Line 1. These RGOs are risk-based concentrations that will be used in the FS to define the extent of contamination that must be remediated and will help cost various alternatives. RGOs are media- and chemical-specific concentrations and are calculated for COCs within each land use/receptor scenario for a given medium. The RGOs presented in this document are for protection of human health and may or may not be protective of ecological receptors. The process for calculating RGOs for this BHHRA is a rearrangement of the cancer risk or non-cancer hazard equations, with the goal of obtaining the concentration that will produce a specific risk or hazard level. For example, the RGO for RDX at the cancer risk level of $10^{-\sqrt{5}}$ for the National Guard Trainee is the concentration of RDX that produces a risk of $10^{-\sqrt{5}}$ when using the exposure parameters specific to the National Guard Trainee receptor.

As discussed in Section 5.1, the cancer risk and non-cancer hazard are calculated as

 $Risk = (Intake) \times (CSF)$ and Hazard = (Intake) / (RfD).

The pathway-specific (e.g., soil ingestion) equations for intake are provided in Section 3.3. Note that all of the intake equations shown in Section 3.3 include a concentration term multiplied by several other exposure parameters.

To obtain the RGO for a specific risk level (e.g., 10^{-5}), the risk equation is rearranged so that the equation is solved for C, the concentration term. Similarly, to obtain the RGO for a specific hazard level (e.g., 1.0), the hazard equation is rearranged so that the equation is solved for the concentration term.

To demonstrate the soil ingestion pathway, note that by using the soil ingestion intake equation from Section 3.3 (Equation 1) and the general risk equation from Section 5.1, the risk from ingestion of soil is calculated as

$$Risk_{ing(soil)} = (C_s \times IR_s \times EF \times ED \times FI \times ET \times CF \times CSF) / (BW \times AT).$$

To obtain the RGO at the 10^{-5} risk level for the ingestion of soil, a value of 10^{-5} is substituted in the equation above for Risk_{ing(soil)}, and the equation is rearranged to solve for C_s. Thus, the general RGO equation at the 10^{-5} risk level for the ingestion of soil is calculated as

RGO_{ing(soil)} at $10^{-5} = (10^{-5} \times BW \times AT) / (IR_s \times EF \times ED \times FI \times ET \times CF \times CSF).$

A similar rearrangement of the ingestion of soil hazard equation is made, producing the general RGO equation at the 1.0 hazard level for this pathway/medium:

$$RGO_{ing(soil)}$$
 at $1.0 = (1.0 \times BW \times AT \times RfD) / (IR_s \times EF \times ED \times FI \times ET \times CF).$

Thus, to obtain the ingestion of soil RGO at the 10^{-5} risk level for the National Guard Trainee receptor exposed to arsenic, the parameter values for the National Guard Trainee receptor (from Table 3-2) and the chemical-specific parameter (oral CSF, from Appendix A, Table A-9) for arsenic are used:

$$\text{RGO}_{\text{ing(soil)}}$$
 at 10^{-5} for arsenic = $[(10^{-5})(70)(25550)] / (0.0001)(39)(25)(1)(24)(0.042)(1.5)] = 122 \text{ mg/kg}.$

In this example, the RGO calculated is 122 mg/kg, which will produce a soil ingestion risk of 10^{-5} for the National Guard Trainee receptor exposed to arsenic.

Note that if a calculated RGO is not physically possible (e.g., more than the pure chemical), then the RGO is adjusted accordingly. For example, if the calculated RGO is 5.5E+06 mg/kg, then the RGO is adjusted downward to 1.0E+06 mg/kg.

For this BHHRA, RGOs are calculated for each exposure route (e.g., ingestion), as well as for the total chemical risk or hazard across all appropriate exposure routes. Carcinogenic RGOs are calculated and presented in this BHHRA at a target risk (TR) level of 10^{-5} . To obtain the carcinogenic RGO at another risk level, one should adjust the RGO at 10^{-5} accordingly, taking care to check the resulting concentration against the physical limits discussed above (e.g., 1.0E+06 mg/kg). For example, to obtain the RGO at the 10^{-4} risk level, one should multiply the RGO at the 10^{-5} risk level by 10 (and then check the result to ensure that the concentration is physically possible). Non-carcinogenic RGOs are calculated and presented in this BHHRA for a target hazard index (THI) level of 1.0. To find the non-carcinogenic RGO at another hazard level, one should adjust the RGO at the 1.0 hazard level accordingly, taking care to check the resulting concentration against the physical limits discussed above (e.g., 1.0E+06 mg/kg). For example, to obtain the RGO at the 3.0 hazard level, one should multiply the RGO at the 1.0 hazard level accordingly, taking care to check the resulting concentration against the physical limits discussed above (e.g., 1.0E+06 mg/kg). For example, to obtain the RGO at the 3.0 hazard level, one should multiply the RGO at the 1.0 hazard level by 3 (and then check the result to ensure that the concentration is physically possible).

Exposure to multiple COCs may require downward adjustment of the TR and target hazard used to calculate final remedial levels. The TR and THI are dependent on several factors, including the number of carcinogenic and non-carcinogenic COCs and the target organs and toxic endpoints of these COCs. For example, if numerous (i.e., more than 10) non-carcinogenic COCs with similar toxic endpoints are present, it may be appropriate to use chemical-specific RGOs with a THI of 0.1 to account for exposure to multiple contaminants.

As described previously, COCs were identified for groundwater, surface water, sediment, surface soil (shallow and deep), and subsurface soil. A combined list of COCs (i.e., all chemicals with total risk $>10^{-6}$ or total HI >1) from all receptors was used to determine which RGOs are calculated on a medium-bymedium basis. For completeness, RGOs were calculated for all receptor/medium combinations evaluated in this BHHRA. For example, even though antimony is not a shallow surface soil COC for the National Guard receptors, shallow surface soil RGOs for antimony are calculated for all receptors exposed to shallow surface soil because antimony is a shallow surface soil COC for at least one receptor scenario.

RGOs for COCs in groundwater, surface water, sediment, surface soil (shallow and deep), and subsurface soil are presented in Tables 6-1 through 6-6.

	Ingestion RGO Dermal RGO Inhalation RGO					ion RGO	Total	RGO
	HQ =	Risk =	HQ =	Risk =	HQ =	Risk =	HQ =	Risk =
COC	1.0	10 ⁻⁵	1.0	10 ⁻⁵	1.0	10 ⁻⁵	1.0	10 ⁻⁵
		Natior	al Guard T	Frainee				
Arsenic	9.8E+01	6.1E+00	2.1E+04	1.3E+03			9.8E+01	6.1E+00
Manganese	1.5E+04		1.9E+05				1.4E+04	
2,4,6-Trinitrotoluene	1.6E+02	3.1E+02	6.3E+04	1.2E+05			1.6E+02	3.0E+02
2,4-Dinitrotoluene	6.6E+02	1.3E+01	7.2E+04	1.5E+03			6.5E+02	1.3E+01
2,6-Dinitrotoluene	3.3E+02	1.3E+01	3.0E+04	1.2E+03			3.2E+02	1.3E+01
4,4'-DDE		2.7E+01		1.2E+01				8.4E+00
RDX	9.8E+02	8.3E+01	1.2E+06	9.9E+04			9.8E+02	8.3E+01
		Resid	ent Farmer	• Adult				
Arsenic	1.1E+01	5.7E-01	2.3E+03	1.2E+02			1.1E+01	5.7E-01
Manganese	1.7E+03		2.2E+04				1.6E+03	
2,4,6-Trinitrotoluene	1.8E+01	2.8E+01	7.0E+03	1.1E+04			1.8E+01	2.8E+01
2,4-Dinitrotoluene	7.3E+01	1.3E+00	8.0E+03	1.4E+02			7.2E+01	1.2E+00
2,6-Dinitrotoluene	3.7E+01	1.3E+00	3.3E+03	1.1E+02			3.6E+01	1.2E+00
4,4'-DDE		2.5E+00		1.1E+00				7.8E-01
RDX	1.1E+02	7.7E+00	1.3E+05	9.1E+03			1.1E+02	7.7E+00
		Resid	ent Farmer	· Child				
Arsenic	3.1E+00	8.1E-01	1.1E+03	2.9E+02			3.1E+00	8.1E-01
Manganese	4.8E+02		1.0E+04				4.6E+02	
2,4,6-Trinitrotoluene	5.2E+00	4.1E+01	3.4E+03	2.6E+04			5.2E+00	4.0E+01
2,4-Dinitrotoluene	2.1E+01	1.8E+00	3.8E+03	3.3E+02			2.1E+01	1.8E+00
2,6-Dinitrotoluene	1.0E+01	1.8E+00	1.6E+03	2.7E+02			1.0E+01	1.8E+00
4,4'-DDE		3.6E+00		2.7E+00				1.5E+00
RDX	3.1E+01	1.1E+01	6.2E+04	2.2E+04			3.1E+01	1.1E+01

Table 6-1. Groundwater Remedial Goal Options (µg/L) for Chemicals of Concern	l
--	---

COC = Chemical of concern.

DDE = Dichlorodiphenyldichloroethylene. HQ = Hazard quotient. RDX = Hexahydro-1,3,5-trinitro-1,3,5-triazine.

RGO = Remedial goal option.

-- Not applicable; no toxicity data are available for this exposure pathway or toxic endpoint.

	Ingestion RGO		Derma	l RGO	Inhalati	ion RGO	Total RGO			
	HQ =	Risk =	HQ =	Risk =	HQ =	Risk =	HQ =	Risk =		
COC	1.0	10 ⁻⁵	1.0	10 ⁻⁵	1.0	10 ⁻⁵	1.0	10 ⁻⁵		
Dust/Fire Control Worker										
Arsenic	5.1E+03	3.2E+02	2.0E+04	1.2E+03			4.1E+03	2.5E+02		
		Hunter	/Trapper/l	Fisher						
Arsenic	2.2E+04	1.1E+03	2.4E+04	1.2E+03			1.1E+04	5.9E+02		
		Nationa	ıl Guard T	rainee						
Arsenic	2.0E+03	1.2E+02	1.3E+03	8.0E+01			7.8E+02	4.8E+01		
		Resider	nt Farmer	Adult						
Arsenic	2.2E+02	1.1E+01	8.0E+02	4.1E+01			1.7E+02	8.9E+00		
		Resider	nt Farmer	Child						
Arsenic	4.7E+01	1.2E+01	4.4E+02	1.1E+02			4.2E+01	1.1E+01		

Table 6-2. Surface Water Remedial Goal Options (μ g/L) for Chemicals of Concern

COC = Chemical of concern.

HQ = Hazard quotient.

 \overrightarrow{RGO} = Remedial goal option.

-- Not applicable; no toxicity data are available for this exposure pathway or toxic endpoint.
RGO Risk = 10 ⁻⁵ Dust/I 1.9E+03 	Derma HQ = 1.0 <i>Fire Contro</i> 1.0E+05	Risk = 10 ⁻⁵	Inhalati HQ = 1.0	Risk = 10 ⁻⁵	Total HQ = 1.0	$\frac{\text{Risk}}{10^{-5}} =$
10 ⁻⁵ <i>Dust/I</i> 1.9E+03 	1.0 Fire Contro 1.0E+05	10 ⁻⁵	-		-	
<i>Dust/I</i> 1.9E+03 	F <i>ire Contro</i> 1.0E+05				1.0	10 -
 1.9E+03 	1.0E+05					
					2.9E+04	
	1.7E+04	1.1E+03		4.0E+05	1.1E+04	6.8E+02
	4.3E+04			9.4E+05	3.0E+04	9.4E+05
	1.0E+06		1.0E+06		1.0E+06	
4.2E+03	3.4E+04	7.1E+02			2.9E+04	6.1E+02
				1.0E+06		4.5E+02
						4.5E+01
						4.5E+02
						4.5E+01
						4.5E+02
	2.5E+02				2.2E+02	1.5E+02
	1.4E+05				5.0E+04	
3.0E+03		1.2E+03				8.6E+02
						1.0E+06
			1.0E+06			
5.6E+03		8.0E+02				7.2E+02
				1.0E+06		5.3E+02
						5.3E+01
						5.3E+02
						5.3E+01
						5.3E+02
						1.8E+02
				1.01100	5.111+01	1.01102
					2.5E+03	
1.2E+02		4.1E+02		4.6E+01		3.1E+01
						1.1E+02
			3.5E+02			
2.7E+02		2.7E+02				1.4E+02
				2.2E+03		1.0E+02
						1.0E+01
						1.0E+02
						1.0E+01
						1.0E+02
						3.5E+01
					2.5E+02	
						6.7E+00
						1.2E+04
						7.6E+00
						5.9E+00
						5.9E-01
						5.9E+00
						5.9E-01
						5.9E+00
						2.0E+00
	.9E+03 .9E+02 .9E+03 .9E+03 .9E+03 .9E+03 .4E+03 .4E+03 .4E+03 .1E+03 .1E+03 .1E+03 .1E+03 .1E+03 .1E+03 .2E+03 .2E+03 .2E+03 .2E+02 .5E+01 .5E+02 .5E+02	.9E+03 .9E+02 .9E+03 .9E+03 .9E+03 .9E+03 .9E+03 2.5E+02 Hunter/Trappe 1.4E+05 $3.0E+03$ 2.3E+04 1.4E+05 $3.0E+03$ 2.3E+04 1.0E+06 $5.6E+03$ 4.7E+04 1.0E+06 $5.6E+03$ 4.7E+04 1.0E+06 $5.1E+02$ $5.1E+03$ $5.1E+03$ $5.2E+03$ $3.3E+02$ National Guard $4.0E+04$ $.2E+02$ $6.6E+03$ $1.0E+06$ $2.7E+02$ $.5E+02$ $.5E+01$ $.5E+01$ $.5E+01$ $.5E+01$ $.5E+01$ $.5E+01$.9E+03 $5.1E+02$.9E+02 $5.1E+01$.9E+03 $5.1E+02$.9E+03 $5.1E+02$.9E+03 $5.1E+02$.4E+032.5E+02 $1.7E+02$ Hunter/Trapper/Fisher $1.4E+05$ $0.0E+03$ $2.3E+04$ $1.2E+03$ $5.8E+04$ $1.0E+06$ $6.6E+03$ $4.7E+04$ $8.0E+02$ $5.1E+02$ $5.8E+01$ $5.1E+03$ $5.8E+01$ $5.1E+03$ $5.8E+02$ $5.1E+03$ $5.8E+02$ $5.1E+03$ $5.8E+02$ $5.1E+03$ $5.8E+01$ $5.1E+03$ $5.8E+02$ $5.1E+03$ $5.8E+02$ $5.1E+03$ $5.8E+02$ $5.1E+03$ $5.8E+02$ $5.2E+03$ $3.3E+02$ $1.9E+02$ $2.2E+03$ $3.3E+02$ $1.9E+02$ $2.2E+02$ $6.6E+03$ $4.1E+02$ $$ $1.0E+06$ $2.7E+02$ $1.3E+04$ $2.7E+02$ $5.5E+01$ $2.0E+01$ $5.5E+02$ $2.0E+02$ $5.5E+01$ $2.0E+01$ $5.5E+01$ $2.0E+02$ $5.5E+01$ $2.0E+02$ $5.5E+01$ $2.0E+01$ $5.5E+02$ $2.0E+01$ $5.5E+01$ $2.0E+01$ $5.5E+01$ $2.0E+01$ $5.5E+0$.9E+03 $$ $5.1E+02$ $$ $.9E+03$ $$ $5.1E+01$ $$ $.9E+03$ $$ $5.1E+02$ $$ $.9E+03$ $$ $5.1E+02$ $$ $.4E+03$ $2.5E+02$ $1.7E+02$ $$ $.4E+03$ $2.5E+02$ $1.7E+02$ $$ $.4E+03$ $2.5E+02$ $1.7E+02$ $$ $.0E+03$ $2.3E+04$ $1.2E+03$ $$ $$ $1.0E+06$ $$ $1.0E+06$ $.6E+03$ $4.7E+04$ $8.0E+02$ $$ $.1E+03$ $$ $5.8E+02$ $$ $.2E+03$ $3.3E+02$ $1.9E+02$ $$ $.2E+03$ $3.3E+02$ $1.9E+02$ $$ $.2E+03$ $3.3E+02$ $1.9E+02$ $$ $.2E+02$ $6.6E+03$ $4.1E+02$ $$ $.2E+02$ $6.6E+03$ $4.1E+02$ $$ $.2E+02$ $$ $2.0E+02$ $$ $.2E+02$ $$ $2.0E+02$ $$ $.5E+02$ $$ $2.0E+02$ $$ $.5E+01$ $$ $2.0E+02$ $$ $.5E+02$ $$ $2.0E+02$ $$ $.5E+01$ $$ $2.0E+02$ $$ $.5E+02$ $$ $2.0E+02$ $$ $.2E+01$ $9.5E+01$ $6.6E+01$ $$ $.3E+01$	9E+03 $5.1E+02$ $1.0E+06$ $9E+02$ $5.1E+01$ $1.0E+06$ $9E+03$ $5.1E+02$ $1.0E+06$ $9E+03$ $5.1E+02$ $1.0E+06$ $9E+03$ $5.1E+02$ $1.0E+06$ $4E+03$ $2.5E+02$ $1.7E+02$ $1.0E+06$ $4E+03$ $2.5E+02$ $1.7E+02$ $1.0E+06$ $$ $1.4E+05$ $1.0E+06$ $$ $1.0E+06$ $1.0E+06$ $$ $1.0E+06$ $1.0E+06$ $$ $5.8E+04$ $1.0E+06$ $$ $5.8E+02$ $1.0E+06$ $1.0E+06$ $$ $5.8E+02$ $1.0E+06$ $1.0E+06$ $$ $5.8E+02$ $1.0E+06$ $1.0E+06$ $$ $5.8E+02$ $1.0E+06$ $1.2E+02$ $1.2E+02$ $$ 5	.9E+03 $5.1E+02$ $1.0E+06$ $.9E+02$ $5.1E+01$ $1.0E+06$ $.9E+03$ $5.1E+02$ $1.0E+06$ $.9E+03$ $5.1E+02$ $1.0E+06$ $.9E+03$ $5.1E+02$ $1.0E+06$ $.4E+03$ $2.5E+02$ $1.7E+02$ $1.0E+06$ $2.2E+02$ $Hunter/Trapper/Fisher$ $1.0E+06$ $1.7E+04$ $0.0E+03$ $2.3E+04$ $1.2E+03$ $1.0E+06$ $1.7E+04$ $5.8E+04$ $1.0E+06$ $$ $1.0E+06$ $.10E+06$ $1.0E+06$ $1.0E+06$ $.1E+03$ $5.8E+02$ $1.0E+06$ $.1E+03$ $5.8E+02$ $1.0E+06$ $.1E+03$ $5.8E+02$ $1.0E+06$

	Ingestio	on RGO	Derma	l RGO	Inhalati	on RGO	Total	RGO		
	HQ =	Risk =	HQ =	Risk =	HQ =	Risk =	HQ =	Risk =		
COC	1.0	10 ⁻⁵	1.0	10 ⁻⁵	1.0	10 ⁻⁵	1.0	10 ⁻⁵		
	Resi	dent Farm	er Child							
Antimony 3.1E+01 2.1E+03 3.1E+01										
Arsenic	2.3E+01	6.1E+00	3.6E+02	9.2E+01		1.1E+04	2.2E+01	5.7E+00		
Cadmium	7.8E+01		8.9E+02			2.7E+04	7.2E+01	2.7E+04		
Manganese	3.6E+03		6.5E+04		2.1E+04		2.9E+03			
2,4-Dinitrotoluene	1.6E+02	1.3E+01	7.1E+02	6.1E+01			1.3E+02	1.1E+01		
Benz(<i>a</i>)anthracene		1.3E+01		4.4E+01		5.4E+05		9.7E+00		
Benzo(<i>a</i>)pyrene		1.3E+00		4.4E+00		5.4E+04		9.7E-01		
Benzo(b)fluoranthene		1.3E+01		4.4E+01		5.4E+05		9.7E+00		
Dibenz(<i>a</i> , <i>h</i>)anthracene		1.3E+00		4.4E+00		5.4E+04		9.7E-01		
Indeno(1,2,3-cd)pyrene		1.3E+01		4.4E+01		5.4E+05		9.7E+00		
PCB-1254	1.6E+00	4.6E+00	5.1E+00	1.5E+01		8.4E+04	1.2E+00	3.5E+00		

Table 6-3. Sediment Remedial Goal Options (mg/kg) for Chemicals of Concern (continued)

COC = Chemical of concern.

HQ = Hazard quotient. PCB = Polychlorinated biphenyl. RGO = Remedial goal option.

-- Not applicable; no toxicity data are available for this exposure pathway or toxic endpoint.

	Ingestio	on RGO	Derma	l RGO	Inhala	tion RGO	Total	RGO
	HQ =	Risk =	HQ =	Risk =	HQ =	Risk =	HQ =	Risk =
COC	1.0	10 ⁻⁵	1.0	10 ⁻⁵	1.0	10 ⁻⁵	1.0	10 ⁻⁵
	Sec	urity Gua	rd/Mainte	nance Wo	rker			
Antimony	9.8E+03		2.7E+03				2.1E+03	
Arsenic	7.4E+03	4.6E+02	4.4E+02	2.8E+01		2.1E+05	4.2E+02	2.6E+01
2,4,6-Trinitrotoluene	1.2E+04		2.2E+02				2.2E+02	4.1E+02
2,4-Dinitrotoluene			8.8E+02					1.8E+01
2,6-Dinitrotoluene	2.5E+04		4.4E+02				4.3E+02	
Benz(<i>a</i>)anthracene		9.4E+02		1.3E+01		1.0E+06		1.3E+01
Benzo(<i>a</i>)pyrene		9.4E+01		1.3E+00		1.0E+06		1.3E+00
Benzo(<i>b</i>)fluoranthene		9.4E+02		1.3E+01		1.0E+06		1.3E+01
Dibenz (a,h) anthracene		9.4E+01		1.3E+00		1.0E+06		1.3E+00
Dieldrin	1.2E+03		2.2E+01	7.7E-01		2.0E+05	2.2E+01	7.6E-01
Indeno(1,2,3-cd)pyrene		9.4E+02		1.3E+01		1.0E+06		1.3E+01
PCB-1254	4.9E+02		6.3E+00			1.0E+06		4.4E+00
RDX			1.3E+00					1.1E+02
	7.112101		re Control				1.51105	1.111102
Antimony	4.1E+04		1.0E+05				2.9E+04	
Arsenic			1.7E+04	1 1E±03		4.0E+05		6.8E+02
2,4,6-Trinitrotoluene			8.6E+03				7.4E+03	1.4E+04
2,4-Dinitrotoluene			3.4E+04				2.9E+04	
2,6-Dinitrotoluene	2.0E+05			7.1E+02 7.1E+02			2.9E+04 1.5E+04	6.1E+02
Benz(<i>a</i>)anthracene		4.2E+03 3.9E+03	1.7 <u>L</u> +04	5.1E+02		1.0E+06		0.1E+02 4.5E+02
		3.9E+03 3.9E+02		5.1E+02		1.0E+06		
Benzo(<i>a</i>)pyrene Benzo(<i>b</i>)fluoranthene		3.9E+02 3.9E+03		5.1E+01		1.0E+06		4.5E+01 4.5E+02
Dibenz(<i>a</i> , <i>h</i>)anthracene		3.9E+03 3.9E+02		5.1E+02		1.0E+06		4.5E+02 4.5E+01
Dieldrin	 5.1E+03					1.0E+06 3.7E+05	 7.4E+02	4.3E+01 2.6E+01
			8.6E+02				7.4E+02	
Indeno(1,2,3- <i>cd</i>)pyrene		3.9E+03		5.1E+02		1.0E+06		4.5E+02
PCB-1254	2.0E+03		2.5E+02			1.0E+06	2.2E+02	1.5E+02
RDX	3.1E+05		5.2E+04				4.4E+04	3.7E+03
A	7 75 . 04		r/Trapper				4.00.04	
Antimony	7.7E+04		1.3E+05				4.8E+04	
Arsenic			2.1E+04			1.0E+06		8.1E+02
2,4,6-Trinitrotoluene	9.6E+04		1.1E+04				9.6E+03	
2,4-Dinitrotoluene			4.3E+04					6.6E+02
2,6-Dinitrotoluene			2.1E+04					6.6E+02
Benz(<i>a</i>)anthracene		6.1E+03		5.2E+02		1.0E+06		4.8E+02
Benzo(<i>a</i>)pyrene		6.1E+02		5.2E+01		1.0E+06		4.8E+01
Benzo(b)fluoranthene		6.1E+03		5.2E+02		1.0E+06		4.8E+02
Dibenz(<i>a</i> , <i>h</i>)anthracene		6.1E+02		5.2E+01		1.0E+06		4.8E+01
Dieldrin	9.6E+03	2.8E+02		3.1E+01		1.0E+06	9.6E+02	2.8E+01
Indeno(1,2,3- <i>cd</i>)pyrene		6.1E+03		5.2E+02		1.0E+06		4.8E+02
PCB-1254	3.8E+03		3.0E+02			1.0E+06	2.8E+02	1.6E+02
RDX	5.7E+05		6.4E+04				5.8E+04	4.1E+03
	1	Reside	ent Farme					
Antimony	2.9E+02		1.9E+03				2.5E+02	
Arsenic			3.2E+02			5.2E+03	1.3E+02	
2,4,6-Trinitrotoluene			1.6E+02				1.1E+02	1.7E+02
2,4-Dinitrotoluene			6.4E+02				4.5E+02	
2,6-Dinitrotoluene	7.3E+02	2.5E+01	3.2E+02	1.1E+01			2.2E+02	7.6E+00

Table 6-4. Shallow Surface Soil Remedial Goal Options (mg/kg) for Chemicals of Concern

	Ingestic	on RGO	Derma	l RGO	Inhala	tion RGO	Total	RGO
	HQ =	Risk =	HQ =	Risk =	HQ =	Risk =	HQ =	Risk =
COC	1.0	10 ⁻⁵	1.0	10 ⁻⁵	1.0	10 ⁻⁵	1.0	10 ⁻⁵
Benz(<i>a</i>)anthracene		2.3E+01		7.9E+00		2.5E+05		5.9E+00
Benzo(<i>a</i>)pyrene		2.3E+00		7.9E-01		2.5E+04		5.9E-01
Benzo(b)fluoranthene		2.3E+01		7.9E+00		2.5E+05		5.9E+00
Dibenz(<i>a</i> , <i>h</i>)anthracene		2.3E+00		7.9E-01		2.5E+04		5.9E-01
Dieldrin	3.7E+01	1.1E+00	1.6E+01	4.7E-01		4.9E+03	1.1E+01	3.2E-01
Indeno(1,2,3-cd)pyrene		2.3E+01		7.9E+00		2.5E+05		5.9E+00
PCB-1254	1.5E+01	8.5E+00	4.6E+00	2.7E+00		3.9E+04	3.5E+00	2.0E+00
RDX	2.2E+03	1.5E+02	9.6E+02	6.8E+01			6.7E+02	4.7E+01
		Reside	ent Farme	r Child				
Antimony	3.1E+01		2.1E+03				3.1E+01	
Arsenic	2.3E+01	6.1E+00	3.6E+02	9.2E+01		1.1E+04	2.2E+01	5.7E+00
2,4,6-Trinitrotoluene	3.9E+01	3.0E+02	1.8E+02	1.4E+03			3.2E+01	2.5E+02
2,4-Dinitrotoluene	1.6E+02	1.3E+01	7.1E+02	6.1E+01			1.3E+02	1.1E+01
2,6-Dinitrotoluene	7.8E+01	1.3E+01	3.6E+02	6.1E+01			6.4E+01	1.1E+01
Benz(<i>a</i>)anthracene		1.3E+01		4.4E+01		5.4E+05		9.7E+00
Benzo(<i>a</i>)pyrene		1.3E+00		4.4E+00		5.4E+04		9.7E-01
Benzo(b)fluoranthene		1.3E+01		4.4E+01		5.4E+05		9.7E+00
Dibenz(<i>a</i> , <i>h</i>)anthracene		1.3E+00		4.4E+00		5.4E+04		9.7E-01
Dieldrin	3.9E+00	5.7E-01	1.8E+01	2.6E+00		1.0E+04	3.2E+00	4.7E-01
Indeno(1,2,3-cd)pyrene		1.3E+01		4.4E+01		5.4E+05		9.7E+00
PCB-1254	1.6E+00	4.6E+00	5.1E+00	1.5E+01		8.4E+04	1.2E+00	3.5E+00
RDX	2.3E+02	8.3E+01	1.1E+03	3.8E+02			1.9E+02	6.8E+01

Table 6-4. Shallow Surface Soil Remedial Goal Options (mg/kg) for Chemicals of Concern (continued)

COC = Chemical of concern.

HQ = Hazard quotient. PCB = Polychlorinated biphenyl. RDX = Hexahydro-1,3,5-trinitro-1,3,5-triazine.

RGO = Remedial goal option.

-- Not applicable; no toxicity data are available for this exposure pathway or toxic endpoint.

	Ingestic	on RGO	Derma	l RGO	Inhalati	on RGO	Total	RGO
	HQ =	Risk =	HQ =	Risk =	HQ =	Risk =	HQ =	Risk =
COC	1.0	10 ⁻⁵	1.0	10 ⁻⁵	1.0	10 ⁻⁵	1.0	10 ⁻⁵
		Na	tional Gua	rd Trainee				
Arsenic	2.0E+03	1.2E+02	6.6E+03	4.1E+02		4.6E+01	1.5E+03	3.1E+01
Manganese	3.0E+05		1.0E+06		3.5E+02		3.5E+02	
2,4,6-Trinitrotoluene	3.3E+03	6.1E+03	3.3E+03	6.2E+03			1.6E+03	3.1E+03
Benz(a)anthracene		2.5E+02		2.0E+02		2.2E+03		1.0E+02
Benzo(a)pyrene		2.5E+01		2.0E+01		2.2E+02		1.0E+01
Benzo(b)fluoranthene		2.5E+02		2.0E+02		2.2E+03		1.0E+02
Dibenz(a,h)anthracene		2.5E+01		2.0E+01		2.2E+02		1.0E+01
PCB-1254	1.3E+02	9.2E+01	9.5E+01	6.6E+01		3.4E+02	5.5E+01	3.5E+01
RDX	2.0E+04	1.7E+03	2.0E+04	1.7E+03			9.9E+03	8.4E+02

Table 6-5. Deep Surface Soil Remedial Goal Options (mg/kg) for Chemicals of Concern

COC = Chemical of concern.

HQ = Hazard quotient.

PCB = Polychlorinated biphenyl. RDX = Hexahydro-1,3,5-trinitro-1,3,5-triazine.

RGO = Remedial goal option.

-- Not applicable; no toxicity data are available for this exposure pathway or toxic endpoint.

Table 6-6. Subsurface Soil Remedial Goal Options (mg/kg) for Chemicals of Concern

	Ingestic	on RGO	Derma	l RGO	Inhalat	ion RGO	Total	RGO
	$HQ = Risk = 10^{-5}$		HQ =			HQ = Risk =		Risk =
COC	1.0	10 ⁻⁵	1.0	10 ⁻⁵	1.0	10 ⁻⁵	1.0	10 ⁻⁵
		Res	ident Farn	ier Adult				
Antimony	2.9E+02		1.9E+03				2.5E+02	
2,4,6-Trinitrotoluene	3.7E+02	5.7E+02	1.6E+02	2.5E+02			1.1E+02	1.7E+02
RDX	2.2E+03	1.5E+02	9.6E+02	6.8E+01			6.7E+02	4.7E+01
		Res	ident Farn	ier Child				
Antimony	3.1E+01		2.1E+03				3.1E+01	
2,4,6-Trinitrotoluene	3.9E+01	3.0E+02	1.8E+02	1.4E+03			3.2E+01	2.5E+02
RDX	2.3E+02	8.3E+01	1.1E+03	3.8E+02			1.9E+02	6.8E+01

COC = Chemical of concern.

HQ = Hazard quotient.

RDX = Hexahydro-1,3,5-trinitro-1,3,5-triazine.

RGO = Remedial goal option.

-- Not applicable; no toxicity data are available for this exposure pathway or toxic endpoint.

THIS PAGE INTENTIONALLY LEFT BLANK.

7.0 SUMMARY AND CONCLUSIONS

This BHHRA was conducted to evaluate risks and hazards associated with contaminated media at the RVAAP Load Line 1 AOC for three potential future use scenarios: National Guard use, recreational use, and residential use. Results have been presented for all scenarios and exposure pathways. The following steps were used to generate conclusions regarding human health risks and hazards associated with contaminated media at Load Line 1:

- identification of COPCs,
- calculation of risks and hazards,
- identification of COCs, and
- calculation of RGOs.

Risks and hazards are evaluated and RGOs calculated for National Guard receptors (Trainee, Security Guard/Maintenance Worker, and Fire/Dust Suppression Worker), recreational receptors (Hunter/Trapper/Fisher), and residential receptors (adult and child Resident Subsistence Farmer). Results are summarized below.

7.1 GROUNDWATER

Arsenic and manganese are identified as COCs for both the National Guard Trainee (arsenic only) and the Resident Subsistence Farmer scenarios. Arsenic and manganese are naturally present in groundwater in the Ravenna area. The background risks and hazards for arsenic and manganese are similar to the estimated site-related risks and hazards.

Groundwater is not currently used at Load Line 1 but is evaluated in this BHHRA for potential future exposure. Five COCs were identified for the National Guard exposure to groundwater: 2,4-DNT; 2,6-DNT; RDX; 4,4'-DDE; and arsenic. In addition to these five, two additional COCs were identified for the residential exposure to groundwater: 2,4,6-TNT and manganese.

7.2 SURFACE WATER AND SEDIMENT

Arsenic is identified as the only COC for both National Guard receptors at Outlet C and Charlie's Pond. Arsenic is identified as the only COC for the National Guard Trainee and for the Resident Subsistence Farmer at Outlet C and Charlie's Pond and at Outlets D, E, and F, and Criggy's Pond. No surface water COCs are identified for the Hunter/Trapper/Fisher at either of these EUs. The National Guard Security Guard/Maintenance Worker is not exposed to surface water. Arsenic was identified as a COC for waterfowl ingestion by the Hunter/Trapper/Fisher at both of these EUs and for fish ingestion at both of these EUs.

Arsenic and manganese are identified as COCs in sediment for National Guard Trainee use of the Outlet C and Charlie's Pond EU. No sediment COCs are identified for the National Guard Fire/Dust Suppression Worker and Hunter/Trapper/Fisher at this EU. Arsenic, PCB 1254, and benzo(*a*)pyrene are identified as COCs for residential use at this EU. Benzo(*a*)pyrene, PCB-1254, and arsenic are COCs for waterfowl ingestion by the Hunter/Trapper/Fisher at Outlet C and Charlie's Pond.

Various PAHs [benzo(a)pyrene, benzo(b)fluoranthene, and dibenz(a,h)anthracene], arsenic, and cadmium are identified as COCs at the Outlets A and B EU for the National Guard receptors. Benzo(a)pyrene is the

only COC identified at the Outlets A and B EU for Recreational use. Arsenic; 2,4-DNT; PCB-1254; and several PAHs [benz(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, dibenz(a,h)anthracene, and indeno(1,2,3-cd)pyrene] are identified as COCs for the Resident Subsistence Farmer at this EU.

Arsenic and manganese are identified as COCs for the National Guard Trainee at the Outlets D, E, and F, and Criggy's Pond EU. No sediment COCs are identified for the National Guard Fire/Dust Suppression Worker and Hunter/Trapper/Fisher at this EU. Antimony, arsenic, and manganese are identified as COCs for residential use at this EU. Arsenic and antimony are COCs for waterfowl ingestion by the Hunter/Trapper/Fisher at this AOC.

7.3 SOIL

Potential human health risks/hazards were evaluated for exposure to COPCs in soil at seven EUs. Direct contact (i.e., ingestion, dermal contact, and inhalation) with shallow surface soil was evaluated for the National Guard Security Guard/Maintenance Worker and Fire/Dust Suppression Worker, recreational Hunter/Trapper/Fisher, and Resident Subsistence Farmer. Direct contact with deep surface soil was evaluated for the National Guard Trainee. Direct contact with subsurface soil and indirect contact (i.e., ingestion of food) were evaluated for the Resident Subsistence Farmer.

Two metals (arsenic and manganese), two explosives (TNT and RDX), five PAHs [benz(*a*)anthracene, benzo(*a*)pyrene, benzo(*b*)fluoranthene, dibenz(*a*,*h*)anthracene, and indeno(1,2,3-*cd*)pyrene], and PCB-1254 were identified as COCs for the National Guard receptors at several EUs. Only the Water Tower EU had no COCs for these receptors. Two COCs [benzo(*a*)pyrene at Buildings CB-3 and -801 and PCB-1254 at Buildings CB-4/4A and CA-6/6A] were identified for the recreational receptors.

Two metals (arsenic and antimony), four explosives (TNT; 2,4-DNT; 2,6-DNT; and RDX), five PAHs [benz(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, dibenz(a,h)anthracene, and indeno(1,2,3-cd)pyrene], dieldrin, and PCB-1254 were identified as COCs for direct exposure by the Resident Subsistence Farmer at several EUs. Only the Water Tower EU had no COCs for these receptors. Additional metals, explosives, PAHs, and pesticides were identified for indirect exposure to surface soil via ingestion of vegetables, beef, and dairy products by the Resident Subsistence Farmer.

Two explosives (2,4,6-TNT and RDX) were identified as COCs in subsurface soil for the Resident Subsistence Farmer at Buildings CB-4/4A and CA-6/6A. Antimony is the only subsurface soil COC identified at Buildings CB-13 and -10.

8.0 REFERENCES

American Cancer Society 2003. Cancer Facts & Figures 2003, available at www.cancer.org.

DOE (U.S. Department of Energy) 1983, *Pathway Analysis and Radiation Dose Estimates for Radioactive Residues at Formerly Utilized MED/AEC Sites*, DOE/ORO-832, U.S. Department of Energy, Oak Ridge Operations Office, Oak Ridge, TN.

EPA (U.S. Environmental Protection Agency) 1989. *Risk Assessment Guidance for Superfund, Vol. 1: Human Health Evaluation Manual (Part A)*, EPA/540/1-89/002, Washington, D.C.

EPA (U.S. Environmental Protection Agency) 1999. Screening Level Ecological Risk Assessment Protocol for Hazardous Waste Combustion Facilities, Vol. 1, EPA 530-D-99-001A, Office of Solid Waste and Emergency Response, Washington, D.C., August.

EPA (U.S. Environmental Protection Agency) 1990. *National Oil and Hazardous Substance Pollution Contingency Plan*, Final Rule, RF Vol. 55, No. 46, March 8, 1990, available from U.S. Government Printing Office, Washington, D.C.

EPA (U.S. Environmental Protection Agency) 1991. *Risk Assessment Guidance for Superfund, Vol. 1: Human Health Evaluation Manual (Part B, Development of Risk-Based Preliminary Remediation Goals),* OSWER Directive 9285.7-01B, Office of Emergency and Remedial Response, Washington, D.C.

EPA (U.S. Environmental Protection Agency) 1992a. *Dermal Exposure Assessment: Principles and Applications, Interim Report*, EPA/600/8-91/011B, including Supplemental Guidance dated August 18, 1992, Office of Research and Development, Washington, D.C.

EPA (U.S. Environmental Protection Agency) 1992b. *Supplemental Guidance to RAGS: Calculating the Concentration Term*, OSWER Directive 9285.7-081, Office of Solid Waste and Emergency Response, Washington, D.C.

EPA (U.S. Environmental Protection Agency) 1993. *Wildlife Exposure Factors Handbook, Volume I of II*, EPA/600/R-93/187a, Office of Health and Environmental Assessment, Office of Research and Development, U.S. Environmental Protection Agency, Washington, D.C., December.

EPA (U.S. Environmental Protection Agency) 1997a. *Exposure Factors Handbook*, EPA/600/P-95/002Fa, Office of Research and Development, U.S. Environmental Protection Agency, Washington, D.C.

EPA (U.S. Environmental Protection Agency) 1997b. *Health Effects Assessment Summary Tables* (*HEAST*), Office of Solid Waste and Emergency Response, Washington, D.C.

EPA (U.S. Environmental Protection Agency) 2002a. *Region 9 Preliminary Remediation Goals (PRGs)*, October 2002 update, created by Stanford J. Smucker and found on the World Wide Web at http://www.epa.gov/region09/waste/sfund/prg/index.html.

EPA (U.S. Environmental Protection Agency) 2002b. *Risk Assessment Guidance for Superfund Volume I: Human Health Evaluation Manual (Part E, Supplemental Guidance for Dermal Risk Assessment) Interim,* OSWER 9285.7-02EP, September, 2001. EPA (U.S. Environmental Protection Agency) 2003. *Recommendations of the Technical Review Workgroup for Lead for an Approach to Assessing Risks Associated with Adult Exposures to Lead in Soil*, EPA-540-R-03-001, January.

EPA (U.S. Environmental Protection Agency) 2004. *Integrated Risk Information System (IRIS) Database*, Office of Research and Development, Washington, D.C.

Morgan, T.M. 2002. Personal communication from Tim Morgan, Natural Resource Manager at RVAAP, Ravenna, OH, to Jimmy Groton, Science Applications International Corporation, Oak Ridge, TN, November 13.

Morgan, T.M. 2003. Personal communication from Tim Morgan, Office of Species Conservation at RVAAP, Ravenna, OH, to Sharon Robers, Science Applications International Corporation, Oak Ridge, TN, April 14.

OHARNG (Ohio Army National Guard) 2001. Ravenna Training and Logistics Site Integrated Natural Resources Management Plan, October.

SAIC (Science Applications International Corporation) 2004. Final Phase II Remedial Investigation Report for Load Line I at the Ravenna Army Ammunition Plant, Ravenna, Ohio.

USACE (U. S. Army Corps of Engineers) 2001. Final Phase II Remedial Investigation Report for the Winklepeck Burning Grounds at the Ravenna Army Ammunition Plant, Ravenna, Ohio, DACA62-94-D-0029, D.O. 0060, April.

USACE (U. S. Army Corps of Engineers) 2004. RVAAP's Facility-wide Human Health Risk Assessor Manual, January.

USATHAMA (U.S. Army Toxic and Hazardous Material Agency) 1978. Installation Assessment of Ravenna Army Ammunition Plant, Report No. 132.

APPENDIX A SUPPORTING TABLES FOR SUPPLEMENTAL BASELINE HUMAN HEALTH RISK ASSESSMENT

THIS PAGE INTENTIONALLY LEFT BLANK.

	GAS		Results >					F	Site	Region 9	
Analyte	CAS Number	Units	Detection Limit	Average Result	Minimum Detect	Maximum Detect	95% UCL of Mean	Exposure Concentration	Backgd. Criteria	Tap Water Criteria	COPC?
Analyte	Number	Units				a (Bedrock A		Concentration	Criteria	Criteria	COPC:
			Loa	u Lille I D	<u>unung</u> Area <i>Explosiv</i>		(quiter)				
3,5-Trinitrobenzene 99-35-4 µg/L 6/ 18 2.0E+00 1.1E-01 1.2E+01 3.4E+00 3.4E+00 1.1E+03 No											
1,3-Dinitrobenzene	99-65-0	ug/L	10/ 18	3.0E-01	4.5E-02	1.3E+00	4.6E-01	4.6E-01		3.6E+00	No
2,4,6-Trinitrotoluene	118-96-7	$\mu g/L$	8/18	3.1E+00	8.5E-02	1.6E+01	5.4E+00	5.4E+00		2.2E+00	Yes
2,4-Dinitrotoluene	121-14-2	µg/L	8/18	1.4E+00	6.0E-02	7.9E+00	2.4E+00	2.4E+00		9.9E-02	Yes
2,6-Dinitrotoluene	606-20-2	µg/L	1/ 18	9.1E-01	3.8E+00	3.8E+00	1.5E+00	1.5E+00		9.9E-02	Yes
2-Amino-4,6-dinitrotoluene	35572-78-2	μg/L	5/9	6.9E+00	3.0E-01	2.9E+01	1.4E+01	1.4E+01			Yes
3-Nitrotoluene	99-08-1	μg/L	2/18	2.0E-01	1.4E-01	1.6E-01	2.9E-01	1.6E-01		6.1E+01	No
4-Amino-2,6-dinitrotoluene	19406-51-0		5/9	6.7E+00	3.0E-01	2.5E+01	1.3E+01	1.3E+01			Yes
HMX	2691-41-0	μg/L	2/18	1.4E+00	9.2E-01	1.2E+01	2.5E+00	2.5E+00		1.8E+03	No
Nitroglycerin	55-63-0	μg/L	2/18	5.0E+00	4.2E+00	2.7E+01	8.6E+00	8.6E+00		4.8E+00	Yes
RDX	121-82-4	μg/L	8/18	5.5E+00	1.5E-01	8.8E+01	1.4E+01	1.4E+01		6.1E-01	Yes
Tetryl	479-45-8	μg/L	2/18	1.9E-01	1.2E-01	1.4E-01	2.8E-01	1.4E-01		3.6E+02	No
	•				Metals		•	•		•	
Aluminum	7429-90-5	μg/L	6/16	4.0E+02	9.6E+01	2.5E+03	7.1E+02	7.1E+02		3.6E+04	No
Antimony	7440-36-0	μg/L	1/ 18	2.5E+00	2.2E+00	2.2E+00	2.5E+00	2.2E+00		1.5E+01	No
Arsenic	7440-38-2	μg/L	4/18	5.5E+00	4.4E+00	2.6E+01	7.8E+00	7.8E+00		4.5E-02	Yes
Barium	7440-39-3	μg/L	18/18	2.6E+01	3.8E+00	7.5E+01	4.3E+01	4.3E+01	2.6E+02	2.6E+03	No
Cadmium	7440-43-9	μg/L	2/18	2.5E+00	1.1E+00	3.0E+00	2.6E+00	2.6E+00		1.8E+01	No
Calcium	7440-70-2	μg/L	18/18	6.7E+04	1.9E+04	4.0E+05	1.0E+05	1.0E+05	5.3E+04		No
Cobalt	7440-48-4	μg/L	12/18	3.7E+01	1.6E+00	2.6E+02	1.2E+02	1.2E+02		7.3E+02	No
Copper	7440-50-8	μg/L	1/ 18	1.3E+01	1.8E+01	1.8E+01	1.3E+01	1.3E+01		1.5E+03	No
Cyanide	57-12-5	μg/L	1/ 17	5.0E+00	5.1E+00	5.1E+00	5.1E+00	5.1E+00		7.3E+02	No
Iron	7439-89-6	μg/L	10/ 18	1.2E+03	6.7E+01	9.0E+03	2.1E+03	2.1E+03	1.4E+03	1.1E+04	No
Magnesium	7439-95-4	μg/L	18/18	1.3E+04	2.9E+03	2.6E+04	1.8E+04	1.8E+04	1.5E+04		No
Manganese	7439-96-5	μg/L	18/18	1.1E+03	6.1E+01	4.8E+03	2.9E+03	2.9E+03	1.3E+03	8.8E+02	Yes
Nickel	7440-02-0	μg/L	17/18	4.1E+01	4.9E+00	1.3E+02	8.1E+01	8.1E+01	8.3E+01	7.3E+02	No
Potassium	7440-09-7	μg/L	18/18	3.1E+03	1.2E+03	8.8E+03	4.0E+03	4.0E+03	5.8E+03		No
Selenium	7782-49-2	μg/L	1/ 18	2.6E+00	4.1E+00	4.1E+00	2.7E+00	2.7E+00		1.8E+02	No

Table A-1. Summary of COPC Screening for Load Line 1 Groundwater

			Results >						Site	Region 9	
	CAS		Detection	Average	Minimum	Maximum	95% UCL	Exposure	Backgd.	Tap Water	
Analyte	Number	Units	Limit	Result	Detect	Detect	of Mean	Concentration	Criteria	Criteria	COPC?
Sodium	7440-23-5	µg/L	18/18	7.0E+03	9.8E+02	3.7E+04	1.1E+04	1.1E+04	5.1E+04		No
Thallium	6533-73-9	μg/L	1/ 18	9.8E-01	6.0E-01	6.0E-01	1.0E+00	6.0E-01		2.4E+00	No
Zinc	7440-66-6	μg/L	13/18	1.5E+02	1.3E+01	6.2E+02	6.1E+02	6.1E+02	5.2E+01	1.1E+04	No
					ganics-Pestic	cide/PCB					
4,4'-DDE	72-55-9	μg/L	1/11	1.2E+00	1.3E+01	1.3E+01	3.4E+00	3.4E+00		2.0E-01	Yes
	•				rganics-Sem					•	
Bis(2-ethylhexyl)phthalate	117-81-7	μg/L	1/11	4.9E+00	3.6E+00	3.6E+00	5.1E+00	3.6E+00		4.8E+00	No
	1	1			Organics-Vo		1	1			-
Chloroform	67-66-3	μg/L	1/11	2.4E+00	1.2E+00	1.2E+00	2.6E+00	1.2E+00		6.2E+00	No
Methylene Chloride	75-09-2	μg/L	6/11	2.4E+00	2.1E+00	2.7E+00	2.5E+00	2.5E+00		4.3E+00	No
Toluene	108-88-3	μg/L	1/ 11	2.3E+00	7.7E-01	7.7E-01	2.6E+00	7.7E-01		7.2E+02	No
]	North and S	South of C		d (Unconsoli	dated Aquif	er)			
					Metals					1	.
Arsenic	7440-38-2	µg/L	2/4	3.4E+00	3.8E+00	4.7E+00	4.6E+00	4.6E+00	1.2E+01	4.5E-02	No
Barium	7440-39-3	µg/L	4/4	5.7E+01	4.9E+01	6.2E+01	6.4E+01	6.2E+01	8.2E+01	2.6E+03	No
Calcium	7440-70-2	μg/L	4/4	6.9E+04	5.9E+04	7.8E+04	8.5E+04	7.8E+04	1.2E+05		No
Cobalt	7440-48-4	μg/L	1/4	1.9E+01	1.5E+00	1.5E+00	3.3E+01	1.5E+00		7.3E+02	No
Iron	7439-89-6	μg/L	3/4	4.2E+02	2.5E+02	7.1E+02	8.0E+02	7.1E+02	2.8E+02	1.1E+04	No
Magnesium	7439-95-4	µg/L	4/4	1.3E+04	9.4E+03	1.8E+04	1.9E+04	1.8E+04	4.3E+04		No
Manganese	7439-96-5	μg/L	4/4	2.5E+02	1.4E+02	4.2E+02	4.1E+02	4.1E+02	1.0E+03	8.8E+02	No
Potassium	7440-09-7	µg/L	3/4	8.4E+02	6.9E+02	1.2E+03	1.2E+03	1.2E+03	2.9E+03		No
Sodium	7440-23-5	μg/L	4/4	7.6E+03	4.9E+03	1.0E+04	1.5E+04	1.0E+04	4.6E+04		No
Zinc	7440-66-6	µg/L	1/ 3	7.3E+01	2.0E+02	2.0E+02	2.6E+02	2.0E+02	6.1E+01	1.1E+04	No
	1		,		Organics-Vo			1		I	1
Methylene Chloride	75-09-2	μg/L	1/ 2	2.4E+00	2.3E+00	2.3E+00	3.0E+00	2.3E+00		4.3E+00	No

Table A-1. Summary of COPC Screening for Load Line 1 Groundwater (continued)

CAS = Chemical Abstracts Service.

COPC = Contaminant of potential concern. DDE = Dichlorodiphenyldichloroethylene.

HMX = Octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine.

PCB = Polychlorinated biphenyl. RDX = = Hexahydro-1,3,5-trinitro-1,3,5-triazine. UCL = Upper confidence level.

			Results >						Site	Region 9	
	CAS		Detection	Average	Minimum	Maximum	95% UCL	Exposure	Backgd.	Tap Water	
Analyte	Number	Units	Limit	Result	Detect	Detect	of Mean	Concentration	Criteria	Criteria	COPC?
					Outlet C an	d Charlie's P	Pond				
	•					plosives					
3-Nitrotoluene	99-08-1	µg/L	1/ 1	1.7E-01	1.7E-01	1.7E-01		1.7E-01		6.1E+01	No
	1	1				Ietals	1				-
Aluminum	7429-90-5	µg/L	1/ 1	1.3E+03	1.3E+03	1.3E+03		1.3E+03	3.4E+03	3.6E+04	No
Arsenic	7440-38-2	µg/L	1/ 1	3.1E+01	3.1E+01	3.1E+01		3.1E+01	3.2E+00	4.5E-02	Yes
Barium	7440-39-3	µg/L	1/ 1	4.9E+01	4.9E+01	4.9E+01		4.9E+01	4.8E+01	2.6E+03	No
Calcium	7440-70-2	µg/L	1/ 1	1.4E+04	1.4E+04	1.4E+04		1.4E+04	4.1E+04		No
Chromium	7440-47-3	µg/L	1/ 1	2.4E+00	2.4E+00	2.4E+00		2.4E+00			Yes
Iron	7439-89-6	µg/L	1/ 1	1.0E+04	1.0E+04	1.0E+04		1.0E+04	2.6E+03	1.1E+04	No
Lead	7439-92-1	µg/L	1/ 1	3.1E+00	3.1E+00	3.1E+00		3.1E+00			Yes
Magnesium	7439-95-4	µg/L	1/ 1	3.6E+03	3.6E+03	3.6E+03		3.6E+03	1.1E+04		No
Manganese	7439-96-5	µg/L	1/ 1	5.1E+02	5.1E+02	5.1E+02		5.1E+02	3.9E+02	8.8E+02	No
Nickel	7440-02-0	µg/L	1/ 1	4.2E+00	4.2E+00	4.2E+00		4.2E+00		7.3E+02	No
Potassium	7440-09-7	µg/L	1/ 1	3.7E+03	3.7E+03	3.7E+03		3.7E+03	3.2E+03		No
Sodium	7440-23-5	µg/L	1/ 1	2.6E+03	2.6E+03	2.6E+03		2.6E+03	2.1E+04		No
Vanadium	7440-62-2	µg/L	1/ 1	2.6E+00	2.6E+00	2.6E+00		2.6E+00		2.6E+02	No
Zinc	7440-66-6	µg/L	1/ 1	2.9E+01	2.9E+01	2.9E+01		2.9E+01	4.2E+01	1.1E+04	No
				Out	lets D, E, and	l F and Crigg	gy's Pond				
	•				1	Ietals					
Arsenic	7440-38-2	µg/L	1/ 1	5.1E+00	5.1E+00	5.1E+00		5.1E+00	3.2E+00	4.5E-02	Yes
Barium	7440-39-3	µg/L	1/ 1	2.7E+01	2.7E+01	2.7E+01		2.7E+01	4.8E+01	2.6E+03	No
Calcium	7440-70-2	µg/L	1/ 1	1.7E+04	1.7E+04	1.7E+04		1.7E+04	4.1E+04		No
Iron	7439-89-6	µg/L	1/ 1	3.2E+02	3.2E+02	3.2E+02		3.2E+02	2.6E+03	1.1E+04	No
Magnesium	7439-95-4	µg/L	1/ 1	4.6E+03	4.6E+03	4.6E+03		4.6E+03	1.1E+04		No
Manganese	7439-96-5	µg/L	1/ 1	1.7E+02	1.7E+02	1.7E+02		1.7E+02	3.9E+02	8.8E+02	No
Potassium	7440-09-7	µg/L	1/ 1	2.5E+03	2.5E+03	2.5E+03		2.5E+03	3.2E+03		No
Sodium	7440-23-5	µg/L	1/ 1	2.7E+03	2.7E+03	2.7E+03		2.7E+03	2.1E+04		No

Table A-2. Summary of COPC Screening for Load Line 1 Surface Water

CAS = Chemical Abstracts Service.

COPC = Contaminant of potential concern. UCL = Upper confidence level.

Analyte	Number	Units	Results > Detection Limit	Average Result	Minimum Detect	Maximum Detect		Exposure Concentration		Region 9 Residential PRG ^a	Region 9 Industrial	COPC?
						th Area						
					Λ	I etals				PR	G	
Aluminum	7429-90-5	mg/kg	1/ 1	1.2E+04	1.2E+04	1.2E+04		1.2E+04	1.4E+04	7.6E+03	9.2E+04	No
Arsenic	7440-38-2	mg/kg	1/ 1	8.5E+00	8.5E+00	8.5E+00		8.5E+00	2.0E+01	3.9E-01	1.6E+00	No
Barium CAS	7440-39-3	mg/kg	1/ 1	1.3E+02	1.3E+02	1.3E+02		1.3E+02	1.2E+02	5.4E+02	6.7E+03	No
Beryllium	7440-41-7	mg/kg	1/ 1	8.4E-01	8.4E-01	8.4E-01		8.4E-01	3.8E-01	1.5E+01	1.9E+02	No
Cadmium	7440-43-9	mg/kg	1/ 1	4.4E-01	4.4E-01	4.4E-01		4.4E-01		3.7E+00	4.5E+01	No
Calcium	7440-70-2	mg/kg	1/ 1	2.6E+03	2.6E+03	2.6E+03		2.6E+03	5.5E+03			No
Chromium	7440-47-3	mg/kg	1/ 1	1.6E+01	1.6E+01	1.6E+01		1.6E+01	1.8E+01	2.1E+02	4.5E+02	No
Cobalt	7440-48-4	mg/kg	1/ 1	1.0E+01	1.0E+01	1.0E+01		1.0E+01	9.1E+00	1.4E+02	1.3E+03	No
Copper	7440-50-8	mg/kg	1/ 1	1.8E+01	1.8E+01	1.8E+01		1.8E+01	2.8E+01	3.1E+02	4.1E+03	No
Iron	7439-89-6	mg/kg	1/ 1	2.0E+04	2.0E+04	2.0E+04		2.0E+04	2.8E+04	2.3E+03	3.1E+04	No
Lead	7439-92-1	mg/kg	1/ 1	2.8E+01	2.8E+01	2.8E+01		2.8E+01	2.7E+01	4.0E+02	7.5E+02	No
Magnesium	7439-95-4	mg/kg	1/1	2.1E+03	2.1E+03	2.1E+03		2.1E+03	2.8E+03			No
Manganese	7439-96-5	mg/kg	1/ 1	7.6E+02	7.6E+02	7.6E+02		7.6E+02	2.0E+03	1.8E+02	1.9E+03	No
Mercury	7487-94-6	mg/kg	1/ 1	9.0E-02	9.0E-02	9.0E-02		9.0E-02	5.9E-02	2.3E+00	3.1E+01	No
Nickel	7440-02-0	mg/kg	1/ 1	2.5E+01	2.5E+01	2.5E+01		2.5E+01	1.8E+01	1.6E+02	2.0E+03	No
Potassium	7440-09-7	mg/kg	1/ 1	1.2E+03	1.2E+03	1.2E+03		1.2E+03	2.0E+03			No
Selenium	7782-49-2	mg/kg	1/ 1	1.6E+00	1.6E+00	1.6E+00		1.6E+00	1.7E+00	3.9E+01	5.1E+02	No
Thallium	6533-73-9	mg/kg	1/ 1	7.0E-01	7.0E-01	7.0E-01		7.0E-01	8.9E-01	5.2E-01	6.7E+00	No
Vanadium	7440-62-2	mg/kg	1/ 1	2.2E+01	2.2E+01	2.2E+01		2.2E+01	2.6E+01	5.5E+01	7.2E+02	No
Zinc	7440-66-6	mg/kg	1/ 1	2.2E+02	2.2E+02	2.2E+02		2.2E+02	5.3E+02	2.3E+03	3.1E+04	No
					Outlet C an	d Charlie's	Pond					
					Ex	plosives						
2,4,6-Trinitrotoluene	118-96-7	mg/kg	2/ 5	2.6E-01	3.7E-01	5.4E-01	4.4E-01	4.4E-01		3.1E+00	3.1E+01	No
2,6-Dinitrotoluene	606-20-2	mg/kg	1/ 5	1.3E-01	1.4E-01	1.4E-01	1.3E-01	1.3E-01		7.2E-01	2.5E+00	No
2-Amino-4,6- Dinitrotoluene	35572-78-2	mg/kg	2/ 5	2.0E-01	1.9E-01	4.4E-01	3.3E-01	3.3E-01				Yes
4-Amino-2,6- Dinitrotoluene	19406-51-0	mg/kg	2/ 5	2.4E-01	3.7E-01	4.5E-01	3.9E-01	3.9E-01				Yes

Table A-3 Summary of COPC Screening for Load Line 1 Sediment

			Results >						Site	Region 9	Region 9	
				Average	Minimum	Maximum	95% UCL	Exposure		Residential		
Analyte	Number	Units	Limit	Result	Detect	Detect				PRG ^a	a	COPC?
	1 (4110)01	Chills	2	1000000		1etals	01112000	00110011010101	01100110	1110		00101
Aluminum	7429-90-5	mg/kg	8/8	9.4E+03	5.3E+03	1.4E+04	1.2E+04	1.2E+04	1.4E+04	7.6E+0 ₽ R	G9.2E+04	No
Antimony	7440-36-0	mg/kg	1/ 8	8.2E-01	1.2E+00	1.2E+00	9.5E-01	9.5E-01		3.1E+00	4.1E+01	No
Arsenic	7440-38-2	mg/kg	8/8	1.5E+01	7.6E+00	5.1E+01	2.5E+01	2.5E+01	2.0E+01	3.9E-01	1.6E+00	Yes
Barium CAS	7440-39-3	mg/kg	8/8	8.7E+01	5.8E+01	1.5E+02	1.1E+02	1.1E+02	1.2E+02	5.4E+02	6.7E+03	No
Beryllium	7440-41-7	mg/kg	7/8	6.1E-01	4.9E-01	9.4E-01	7.6E-01	7.6E-01	3.8E-01	1.5E+01	1.9E+02	No
Cadmium	7440-43-9	mg/kg	7/8	7.0E-01	1.4E-01	1.4E+00	1.0E+00	1.0E+00		3.7E+00	4.5E+01	No
Calcium	7440-70-2	mg/kg	8/8	3.9E+03	8.8E+02	8.5E+03	9.9E+03	8.5E+03	5.5E+03			No
Chromium	7440-47-3	mg/kg	8/8	1.3E+01	9.5E+00	2.1E+01	1.6E+01	1.6E+01	1.8E+01	2.1E+02	4.5E+02	No
Cobalt	7440-48-4	mg/kg	8/8	8.2E+00	6.0E+00	1.1E+01	9.8E+00	9.8E+00	9.1E+00	1.4E+02	1.3E+03	No
Copper	7440-50-8	mg/kg	8/8	1.6E+01	1.3E+01	2.0E+01	1.7E+01	1.7E+01	2.8E+01	3.1E+02	4.1E+03	No
Iron	7439-89-6	mg/kg	8/8	1.8E+04	1.2E+04	2.5E+04	2.1E+04	2.1E+04	2.8E+04	2.3E+03	3.1E+04	No
Lead	7439-92-1	mg/kg	8/8	2.9E+01	1.8E+01	5.6E+01	3.9E+01	3.9E+01	2.7E+01	4.0E+02	7.5E+02	No
Magnesium	7439-95-4	mg/kg	7/8	1.5E+03	1.1E+03	2.3E+03	1.9E+03	1.9E+03	2.8E+03			No
Manganese	7439-96-5	mg/kg	7/7	9.3E+02	2.4E+02	2.4E+03	3.1E+03	2.4E+03	2.0E+03	1.8E+02	1.9E+03	Yes
Mercury	7487-94-6	mg/kg	8/8	7.3E-02	3.1E-02	8.8E-02	8.5E-02	8.5E-02	5.9E-02	2.3E+00	3.1E+01	No
Nickel	7440-02-0	mg/kg	8/8	1.9E+01	1.3E+01	2.8E+01	2.3E+01	2.3E+01	1.8E+01	1.6E+02	2.0E+03	No
Potassium	7440-09-7	mg/kg	8/8	9.1E+02	6.8E+02	1.5E+03	1.1E+03	1.1E+03	2.0E+03			No
Selenium	7782-49-2	mg/kg	7/8	1.4E+00	5.5E-01	3.6E+00	2.4E+00	2.4E+00	1.7E+00	3.9E+01	5.1E+02	No
Sodium	7440-23-5	mg/kg	1/ 8	3.4E+02	8.4E+01	8.4E+01	4.2E+02	8.4E+01	1.1E+02			No
Thallium	6533-73-9	mg/kg	7/8	6.2E-01	5.3E-01	8.7E-01	7.4E-01	7.4E-01	8.9E-01	5.2E-01	6.7E+00	No
Vanadium	7440-62-2	mg/kg	8/8	1.9E+01	1.3E+01	2.6E+01	2.3E+01	2.3E+01	2.6E+01	5.5E+01	7.2E+02	No
Zinc	7440-66-6	mg/kg	8/8	1.4E+02	7.1E+01	2.2E+02	1.8E+02	1.8E+02	5.3E+02	2.3E+03	3.1E+04	No
					Organics-	Pesticide/P	CB					
4,4'-DDE	72-55-9	mg/kg	1/2	1.2E-02	2.2E-02	2.2E-02	7.7E-02	2.2E-02		1.7E+00	7.0E+00	No
PCB-1254	11097-69-1	mg/kg	1/2	4.5E-01	8.7E-01	8.7E-01	3.1E+00	8.7E-01		1.1E-01	7.4E-01	Yes
					Organics	s-Semivolati	le					
Benz(a)anthracene	56-55-3	mg/kg	2/2	6.7E-02	5.6E-02	7.7E-02	1.3E-01	7.7E-02		6.2E-01	2.1E+00	No
Benzo(a)pyrene	50-32-8	mg/kg	2/2	7.0E-02	5.6E-02	8.4E-02	1.6E-01	8.4E-02		6.2E-02	2.1E-01	Yes
Benzo(b)fluoranthene	205-99-2	mg/kg	2/2	1.3E-01	7.1E-02	1.8E-01	4.7E-01	1.8E-01		6.2E-01	2.1E+00	No
Benzo(g,h,i)perylene	191-24-2	mg/kg	1/2	1.5E-01	5.8E-02	5.8E-02	7.1E-01	5.8E-02				Yes
Benzo(k)fluoranthene	207-08-9	mg/kg	1/2	1.4E-01	5.4E-02	5.4E-02	7.2E-01	5.4E-02		6.2E+00	2.1E+01	No

 Table A-3 Summary of COPC Screening for Load Line 1 Sediment (continued)

			Results >		N			F	Site	Region 9	Region 9	
Analyte	Number	Units	Detection Limit	Average Result	Minimum Detect	Maximum Detect	of Mean	Exposure Concentration	Backgd. Criteria	Residential PRG ^a		COPC?
Chrysene	218-01-9	mg/kg	1/2	1.8E-01	1.3E-01	1.3E-01	5.1E-01	1.3E-01		6.2E+01	2.1E+02	No
Fluoranthene	206-44-0	mg/kg	2/2	1.1E-01	7.3E-02	1.4E-01	3.2E-01	1.4E-01		2.3E+0PR	G2.2E+03	No
Indeno(1,2,3-cd)pyrene	193-39-5	mg/kg	1/2	1.6E-01	7.6E-02	7.6E-02	6.6E-01	7.6E-02		6.2E-01	2.1E+00	No
Phenanthrene CAS	85-01-8	mg/kg	1/2	1.5E-01	5.9E-02	5.9E-02	7.0E-01	5.9E-02				Yes
Pyrene CAS	129-00-0	mg/kg	1/2	1.9E-01	1.5E-01	1.5E-01	4.6E-01	1.5E-01		2.3E+02	2.9E+03	No
	•				Organ	ics-Volatile		•				
1,2-Dichloroethene	549-59-0	mg/kg	1/2	6.8E-03	1.0E-02	1.0E-02	2.7E-02	1.0E-02		4.3E+00	1.5E+01	No
Acetone	67-64-1	mg/kg	1/2	8.1E-03	9.6E-03	9.6E-03	1.8E-02	9.6E-03		1.6E+02	6.0E+02	No
					Outle	ts A and B						
						plosives		-				
1,3,5-Trinitrobenzene	99-35-4	mg/kg	1/4	1.4E-01	1.8E-01	1.8E-01	1.7E-01	1.7E-01		1.8E+02	1.8E+03	No
2,4,6-Trinitrotoluene	118-96-7	mg/kg	1/4	2.3E-01	5.5E-01	5.5E-01	4.8E-01	4.8E-01		3.1E+00	3.1E+01	No
2,4-Dinitrotoluene	121-14-2	mg/kg	2/4	6.6E-01	3.9E-01	2.0E+00	1.4E+03	2.0E+00		7.2E-01	2.5E+00	Yes
2-Amino-4,6-	35572-78-2	mg/kg	1/4	2.7E-01	7.1E-01	7.1E-01	6.2E-01	6.2E-01				Yes
Dinitrotoluene												
2-Nitrotoluene	88-72-2	mg/kg	1/4	1.4E-01	1.9E-01	1.9E-01	1.8E-01	1.8E-01		3.7E+01	1.8E+02	No
4-Amino-2,6-	19406-51-0	mg/kg	1/4	3.0E-01	8.1E-01	8.1E-01	7.0E-01	7.0E-01				Yes
Dinitrotoluene												
HMX	2691-41-0	mg/kg	1/4	3.3E-01	5.7E-01	5.7E-01	5.2E-01	5.2E-01		3.1E+02	3.1E+03	No
Nitrocellulose	9004-70-0	mg/kg	3/4	1.0E+02	4.2E+00	3.3E+02	4.5E+15	3.3E+02				Yes
	-					Ietals		-	-			
Aluminum	7429-90-5	mg/kg	9/9	1.1E+04	3.9E+03	1.6E+04	1.3E+04	1.3E+04	1.4E+04	7.6E+03	9.2E+04	Yes
Antimony	7440-36-0	mg/kg		2.0E+00	8.2E-01	7.4E+00	4.6E+00	4.6E+00		3.1E+00	4.1E+01	Yes
Arsenic	7440-38-2	mg/kg	9/9	1.4E+01	9.4E+00	2.9E+01	1.8E+01	1.8E+01	2.0E+01	3.9E-01	1.6E+00	Yes
Barium	7440-39-3	mg/kg	9/9	1.0E+02	3.6E+01	1.5E+02	1.2E+02	1.2E+02	1.2E+02	5.4E+02	6.7E+03	No
Beryllium	7440-41-7	mg/kg	5/9	6.4E-01	4.5E-01	1.1E+00	8.5E-01	8.5E-01	3.8E-01	1.5E+01	1.9E+02	No
Cadmium	7440-43-9	mg/kg	8/9	2.8E+00	1.5E-01	1.5E+01	2.3E+01	1.5E+01		3.7E+00	4.5E+01	Yes
Calcium	7440-70-2	mg/kg	9/9	6.1E+03	1.4E+03	1.1E+04	1.6E+04	1.1E+04	5.5E+03			No
Chromium	7440-47-3	mg/kg	9/9	3.3E+01	9.4E+00	1.5E+02	6.2E+01	6.2E+01	1.8E+01	2.1E+02	4.5E+02	No
Chromium, hexavalent	18540-29-9	mg/kg	1/2	3.1E+00	5.4E+00	5.4E+00	1.7E+01	5.4E+00		2.2E+01	6.4E+01	No

Table A-3 Summary of COPC Screening for Load Line 1 Sediment (continued)

			Results >						Site	Region 9	Region 9	
			Detection	Average	Minimum	Maximum	95% UCL	Exposure				
Analyte	Number	Units	Limit	Result	Detect	Detect	of Mean	Concentration		PRG ^a	а	COPC?
Cobalt	7440-48-4	mg/kg	9/9	1.0E+01	5.2E+00	1.8E+01	1.3E+01	1.3E+01	9.1E+00	1.4E+02	1.3E+03	No
Copper	7440-50-8	mg/kg	9/9	7.2E+01	1.5E+01	4.3E+02	1.6E+02	1.6E+02	2.8E+01	3.1E+0 PR	G4.1E+03	Yes
Iron	7439-89-6	mg/kg	9/9	2.4E+04	1.6E+04	4.6E+04	3.1E+04	3.1E+04	2.8E+04	2.3E+03	3.1E+04	No
Lead	7439-92-1	mg/kg	9/9	2.6E+02	3.3E+01	1.1E+03	5.1E+02	5.1E+02	2.7E+01	4.0E+02	7.5E+02	Yes
Magnesium CAS	7439-95-4	mg/kg	9/9	3.3E+03	9.5E+02	1.6E+04	6.3E+03	6.3E+03	2.8E+03			No
Manganese	7439-96-5	mg/kg	9/9	1.1E+03	2.8E+02	1.8E+03	1.4E+03	1.4E+03	2.0E+03	1.8E+02	1.9E+03	No
Mercury	7487-94-6	mg/kg	9/9	1.7E-01	3.3E-02	5.4E-01	4.0E-01	4.0E-01	5.9E-02	2.3E+00	3.1E+01	No
Nickel	7440-02-0	mg/kg	9/9	2.9E+01	1.3E+01	1.0E+02	4.7E+01	4.7E+01	1.8E+01	1.6E+02	2.0E+03	No
Potassium	7440-09-7	mg/kg	9/9	1.1E+03	2.9E+02	2.0E+03	1.4E+03	1.4E+03	2.0E+03			No
Selenium	7782-49-2	mg/kg	7/9	1.8E+00	1.2E+00	3.8E+00	2.5E+00	2.5E+00	1.7E+00	3.9E+01	5.1E+02	No
Sodium	7440-23-5	mg/kg	4/9	2.6E+02	1.1E+02	5.4E+02	3.6E+02	3.6E+02	1.1E+02			No
Thallium	6533-73-9	mg/kg	9/9	7.2E-01	4.1E-01	1.1E+00	8.9E-01	8.9E-01	8.9E-01	5.2E-01	6.7E+00	Yes
Vanadium	7440-62-2	mg/kg	9/9	2.5E+01	1.4E+01	3.4E+01	2.8E+01	2.8E+01	2.6E+01	5.5E+01	7.2E+02	No
Zinc	7440-66-6	mg/kg	9/9	5.1E+02	8.6E+01	2.6E+03	1.0E+03	1.0E+03	5.3E+02	2.3E+03	3.1E+04	Yes
					Organics-	Pesticide/P	CB	•				
Endrin	72-20-8	mg/kg	1/2	3.5E-02	5.4E-02	5.4E-02	1.6E-01	5.4E-02		1.8E+00	1.8E+01	No
PCB-1254	11097-69-1	mg/kg	2/2	3.5E-01	9.2E-02	6.1E-01	2.0E+00	6.1E-01		1.1E-01	7.4E-01	Yes
gamma-Chlordane	5103-74-2	mg/kg	1/ 2	2.3E-02	3.2E-02	3.2E-02	7.9E-02	3.2E-02		1.6E+00	6.5E+00	No
-					Organics	s-Semivolati	le	•				
Acenaphthene	83-32-9	mg/kg	1/2	5.1E-01	7.0E-01	7.0E-01	1.7E+00	7.0E-01		3.7E+02	2.9E+03	No
Anthracene	120-12-7	mg/kg	1/2	1.3E+00	2.2E+00	2.2E+00	7.2E+00	2.2E+00		2.2E+03	2.4E+04	No
Benz(a)anthracene	56-55-3	mg/kg	2/2	4.7E+00	9.9E-02	9.2E+00	3.3E+01	9.2E+00		6.2E-01	2.1E+00	Yes
Benzo(a)pyrene	50-32-8	mg/kg	2/2	4.8E+00	9.8E-02	9.5E+00	3.4E+01	9.5E+00		6.2E-02	2.1E-01	Yes
Benzo(b)fluoranthene	205-99-2	mg/kg	2/2	6.1E+00	1.4E-01	1.2E+01	4.4E+01	1.2E+01		6.2E-01	2.1E+00	Yes
Benzo(g,h,i)perylene	191-24-2	mg/kg	1/ 2	2.9E+00	5.5E+00	5.5E+00	1.9E+01	5.5E+00				Yes
Benzo(k)fluoranthene	207-08-9	mg/kg	1/2	2.9E+00	5.4E+00	5.4E+00	1.9E+01	5.4E+00		6.2E+00	2.1E+01	No
Carbazole	86-74-8	mg/kg	1/2	9.6E-01	1.6E+00	1.6E+00	5.0E+00	1.6E+00		2.4E+01	8.6E+01	No
Chrysene	218-01-9	mg/kg	2/2	4.8E+00	1.4E-01	9.4E+00	3.4E+01	9.4E+00		6.2E+01	2.1E+02	No
Di-n-butyl phthalate	84-74-2	mg/kg	1/ 2	5.1E-01	7.1E-01	7.1E-01	1.8E+00	7.1E-01		6.1E+02	6.2E+03	No
Dibenz(a,h)anthracene	53-70-3	mg/kg	1/ 2	1.0E+00	1.7E+00	1.7E+00	5.4E+00	1.7E+00		6.2E-02	2.1E-01	Yes
Dibenzofuran	132-64-9	mg/kg	1/2	3.6E-01	4.1E-01	4.1E-01	6.8E-01	4.1E-01		2.9E+01	3.1E+02	No

 Table A-3 Summary of COPC Screening for Load Line 1 Sediment (continued)

			Results >						Site	Region 9	Region 9	
Analyte	Number	Units	Detection Limit	Average Result	Minimum Detect	Maximum Detect	95% UCL of Mean	Exposure Concentration	Backgd. Criteria	Residential PRG ^a	Industrial ^a	COPC?
Fluoranthene	206-44-0	mg/kg	2/2	1.3E+01	1.9E-01	2.5E+01	9.1E+01	2.5E+01		2.3E+02	2.2E+03	No
Fluorene	86-73-7	mg/kg	1/2	7.1E-01	1.1E+00	1.1E+00	3.2E+00	1.1E+00		2.7E+0 P R	c.2.6E+03	No
Indeno(1,2,3-cd)pyrene	193-39-5	mg/kg	1/2	3.5E+00	6.7E+00	6.7E+00	2.4E+01	6.7E+00		6.2E-01	2.1E+00	Yes
	91-20-3	mg/kg	1/2	3.5E-01	3.9E-01	3.9E-01	6.0E-01	3.9E-01		5.6E+00	1.9E+01	No
Naphthalene Phenanthrene	85-01-8	mg/kg	1/2	6.2E+00	1.2E+01	1.2E+01	4.3E+01	1.2E+01				Yes
Pyrene	129-00-0	mg/kg	2/2	7.6E+00	1.6E-01	1.5E+01	5.4E+01	1.5E+01		2.3E+02	2.9E+03	No
					Organ	ics-Volatile						
1,2-Dichloroethene	549-59-0	mg/kg	2/2	4.9E-03	2.2E-03	7.6E-03	2.2E-02	7.6E-03		4.3E+00	1.5E+01	No
Toluene	108-88-3	mg/kg	1/2	3.4E-03	2.5E-03	2.5E-03	8.7E-03	2.5E-03		6.6E+01	2.2E+02	No
Trichloroethene	79-01-6	mg/kg	1/2	8.1E-03	1.2E-02	1.2E-02	3.3E-02	1.2E-02		5.3E-02	1.1E-01	No
				Outle	ets D, E, and	l F and Crig	ggy's Pond					
					Ex	plosives						
2,4-Dinitrotoluene	121-14-2	mg/kg	1/2	9.8E-02	7.0E-02	7.0E-02	2.7E-01	7.0E-02		7.2E-01	2.5E+00	No
Nitrobenzene	98-95-3	mg/kg	1/2	1.3E-01	1.4E-01	1.4E-01	1.8E-01	1.4E-01		2.0E+00	1.0E+01	No
						Ietals						
Aluminum	7429-90-5	mg/kg	6/6	8.9E+03	5.3E+03	1.3E+04	1.1E+04	1.1E+04	1.4E+04	7.6E+03	9.2E+04	No
Antimony	7440-36-0	mg/kg	4/6	2.0E+02	2.0E+00	1.2E+03	5.9E+02	5.9E+02		3.1E+00	4.1E+01	Yes
Arsenic	7440-38-2	mg/kg	6/6	1.5E+01	9.5E+00	2.1E+01	2.1E+01	2.1E+01	2.0E+01	3.9E-01	1.6E+00	Yes
Barium	7440-39-3	mg/kg	6/6	1.1E+02	6.4E+01	1.7E+02	1.7E+02	1.7E+02	1.2E+02	5.4E+02	6.7E+03	No
Beryllium	7440-41-7	mg/kg	3/6	5.2E-01	5.5E-01	1.1E+00	1.2E+00	1.1E+00	3.8E-01	1.5E+01	1.9E+02	No
Cadmium	7440-43-9	mg/kg	6/6	1.5E+00	6.9E-01	2.4E+00	2.7E+00	2.4E+00		3.7E+00	4.5E+01	No
Calcium	7440-70-2	mg/kg	6/6	3.9E+03	9.9E+02	6.2E+03	5.4E+03	5.4E+03	5.5E+03			No
Chromium	7440-47-3	mg/kg	6/6	3.9E+01	1.1E+01	1.2E+02	2.1E+02	1.2E+02	1.8E+01	2.1E+02	4.5E+02	No
Chromium, hexavalent	18540-29-9	mg/kg	1/ 1	1.1E+01	1.1E+01	1.1E+01		1.1E+01		2.2E+01	6.4E+01	No
Cobalt	7440-48-4	mg/kg	6/6	1.2E+01	6.1E+00	1.7E+01	1.5E+01	1.5E+01	9.1E+00	1.4E+02	1.3E+03	No
Copper	7440-50-8	mg/kg	6/6	3.1E+02	9.5E+00	1.0E+03	1.1E+05	1.0E+03	2.8E+01	3.1E+02	4.1E+03	Yes
Iron	7439-89-6	mg/kg	6/6	2.6E+04	1.8E+04	3.2E+04	3.1E+04	3.1E+04	2.8E+04	2.3E+03	3.1E+04	No
Lead	7439-92-1	mg/kg	6/6	2.4E+02	2.2E+01	1.2E+03	1.2E+04	1.2E+03	2.7E+01	4.0E+02	7.5E+02	Yes
Magnesium	7439-95-4	mg/kg	6/6	1.5E+03	9.2E+02	2.4E+03	2.2E+03	2.2E+03	2.8E+03			No
Manganese	7439-96-5	mg/kg	6/6	1.7E+03	5.0E+02	3.4E+03	6.0E+03	3.4E+03	2.0E+03	1.8E+02	1.9E+03	Yes
Mercury	7487-94-6	mg/kg	6/6	2.1E-01	4.1E-02	4.0E-01	3.3E-01	3.3E-01	5.9E-02	2.3E+00	3.1E+01	No
Nickel	7440-02-0	mg/kg	6/6	2.8E+01	1.7E+01	4.3E+01	4.3E+01	4.3E+01	1.8E+01	1.6E+02	2.0E+03	No
Potassium	7440-09-7	mg/kg	6/6	7.8E+02	5.9E+02	1.1E+03	9.7E+02	9.7E+02	2.0E+03			No

 Table A-3 Summary of COPC Screening for Load Line 1 Sediment (continued)

			Results >						Site	Region 9	Region 9	
			Detection	Average	Minimum	Maximum	95% UCL	Exposure	Backgd.	Residential	Industrial	
Analyte	Number	Units	Limit	Result	Detect	Detect	of Mean	Concentration	Criteria	PRG ^a	а	COPC?
Selenium	7782-49-2	mg/kg	4/6	1.4E+00	1.5E+00	2.2E+00	2.0E+00	2.0E+00	1.7E+00	3.9E+01	5.1E+02	No
Sodium	7440-23-5	mg/kg	2/6	2.7E+02	7.1E+01	8.5E+01	4.6E+02	8.5E+01	1.1E+02	PR	G	No
Thallium	6533-73-9	mg/kg	6/6	6.4E-01	5.8E-01	6.9E-01	6.8E-01	6.8E-01	8.9E-01	5.2E-01	6.7E+00	No
Vanadium	7440-62-2	mg/kg	6/6	2.1E+01	1.3E+01	3.2E+01	3.0E+01	3.0E+01	2.6E+01	5.5E+01	7.2E+02	No
Zinc CAS	7440-66-6	mg/kg	6/6	4.6E+02	8.1E+01	8.1E+02	6.6E+02	6.6E+02	5.3E+02	2.3E+03	3.1E+04	No

Table A-3 Summary of COPC Screening for Load Line 1 Sediment (continued)

^a Value is Region 9 preliminary remediation goal (PRG) for a cancer risk level of 1E-06 or a non-cancer hazard quotient of 0.1, whichever is lower.

CAS = Chemical Abstracts Service.

COPC = Contaminant of potential concern.

DDE = Dichlorodiphenyldichloroethylene.

HMX = Hexahydro-1,3,5-trinitro-1,3,5-triazine.

PCB = Polychlorinated biphenyl.

UCL = Upper confidence level.

			Results >						Site	Region 9	Region 9	
			Detection	Average	Minimum	Maximum	95% UCL	Exposure	Backgd.	Residential	Industrial	
Analyte	Number	Units	Limit	Result	Detect	Detect	of Mean	Concentration	Criteria	PRG	PRG	COPC?
					CB-	13 and -10						
					E	xplosives						
2,4,6-Trinitrotoluene	118-96-7	mg/kg	17/26	1.0E+01	5.5E-02	2.3E+02	2.5E+01	2.5E+01		3.1E+00	3.1E+01	Yes
2,4-Dinitrotoluene	121-14-2	mg/kg	5/26	7.9E-01	2.1E-01	9.3E+00	1.5E+00	1.5E+00		7.2E-01	2.5E+00	Yes
2,6-Dinitrotolucas	606-20-2	mg/kg	5/26	4.0E-01	1.1E-01	6.0E-01	7.8E-01	6.0E-01		7.2E-01	2.5E+00	No
2-Amino-4,6-dinitrotoluene	35572-78-2	mg/kg	9/26	6.7E-01	9.1E-02	8.7E+00	1.2E+00	1.2E+00				Yes
4-Amino-2,6-dinitrotoluene	19406-51-0	mg/kg	5/26	5.9E-01	2.0E-01	1.9E+00	1.0E+00	1.0E+00				Yes
4-Nitrotoluene	99-99-0	mg/kg	1/ 26	3.9E-01	2.0E-01	2.0E-01	7.7E-01	2.0E-01			1.8E+02	No
HMX	2691-41-0	mg/kg	2/ 26	8.5E-01	7.8E-01	2.2E+00	1.7E+00	1.7E+00		3.1E+02	3.1E+03	No
Nitrocellulose	9004-70-0	mg/kg	8/26	1.1E+01	6.5E+00	1.0E+02	1.8E+01	1.8E+01				Yes
RDX	121-82-4	mg/kg	1/ 26	1.8E+00	2.7E+01	2.7E+01	3.7E+00	3.7E+00	3.7E+	014.4E+00	1.6E+01	Yes
						Metals					-	
Aluminum	7429-90-5	mg/kg	50/ 50	1.1E+04	3.4E+03	2.6E+04	1.3E+04	1.3E+04	1.8E+04	7.6E+03	9.2E+04	Yes
Antimony	7440-36-0	mg/kg	16/50	9.5E-01	5.5E-01	9.1E+00	1.3E+00	1.3E+00	9.6E-01	3.1E+00	4.1E+01	Yes
Arsenic	7440-38-2	mg/kg	50/ 50	1.0E+01	3.1E+00	1.8E+01	1.1E+01	1.1E+01	1.5E+01	3.9E-01	1.6E+00	Yes
Barium	7440-39-3	mg/kg	50/ 50	1.1E+02	2.4E+01	4.1E+02	1.4E+02	1.4E+02	8.8E+01	5.4E+02	6.7E+03	No
Beryllium	7440-41-7	mg/kg	25/ 50	7.4E-01	3.7E-01	3.4E+00	9.7E-01	9.7E-01	8.8E-01	1.5E+01	1.9E+02	No
Cadmium	7440-43-9	mg/kg	39/ 50	3.2E+00	6.2E-02	4.8E+01	6.2E+00	6.2E+00			4.5E+01	Yes
Calcium	7440-70-2	mg/kg	50/ 50	2.8E+04	2.2E+02	1.6E+05	4.0E+04	4.0E+04	1.6E+04			No
Chromium	7440-47-3	mg/kg	50/ 50	2.5E+01	5.2E+00	3.1E+02	3.5E+01	3.5E+01	1.7E+01	2.1E+02	4.5E+02	Yes
Cobalt	7440-48-4	mg/kg	50/ 50	8.7E+00	2.2E+00	3.2E+01	9.9E+00	9.9E+00	1.0E3+ØE+	-001.4E+02	1.3E+03	No
Copper	7440-50-8	mg/kg	50/ 50	1.1E+02	5.3E+00	2.4E+03	1.9E+02	1.9E+02	1.8E+01	3.1E+02	4.1E+03	Yes
Cyanide	57-12-5	mg/kg	4/24	3.8E-01	6.7E-01	1.0E+00	4.6E-01	4.6E-01		1.2E+02	1.2E+03	No
Iron	7439-89-6	mg/kg	50/ 50	2.0E+04	5.2E+03	5.8E+04	2.3E+04	2.3E+04	2.3E+04	2.3E+03	3.1E+04	No
Lead	7439-92-1	mg/kg	50/ 50	1.7E+02	9.4E+00	1.8E+03	2.5E+02	2.5E+02	2.6E+01	4.0E+02	7.5E+02	Yes
Magnesium	7439-95-4	mg/kg	50/ 50	5.1E+03	8.0E+02	2.0E+04	6.5E+03	6.5E+03	3.0E+03			No
Manganese	7439-96-5	mg/kg	50/ 50	1.0E+03	2.3E+02	3.7E+03	1.3E+03	1.3E+03	1.5E+03	1.8E+02	1.9E+03	Yes
Mercury	7487-94-6	mg/kg	46/50	7.1E-02	1.2E-02	4.1E-01	9.0E-02	9.0E-02	3.6E-02	2.3E+00	3.1E+01	No
Nickel	7440-02-0	mg/kg	50/ 50	1.8E+01	3.3E+00	6.2E+01	2.1E+01	2.1E+01	2.1E+01	1.6E+02	2.0E+03	No
Potassium	7440-09-7	mg/kg	50/ 50	1.1E+03	4.0E+02	3.6E+03	1.3E+03	1.3E+03	9.3E+02			No
Selenium	7782-49-2	mg/kg	19/ 50	6.7E-01	3.9E-01	3.6E+00	8.3E-01	8.3E-01	1.4E+00	3.9E+01	5.1E+02	No
Silver	7440-22-4	mg/kg	2/ 50	5.9E-01	2.1E-01	2.3E-01	6.3E-01	2.3E-01		3.9E+01	5.1E+02	No
Sodium	7440-23-5	mg/kg	25/ 50	3.2E+02	6.3E+01	1.4E+03	3.8E+02	3.8E+02	1.2E+02			No
Thallium	6533-73-9	mg/kg	47/50	4.5E-01	2.4E-01	7.8E-01	4.9E-01	4.9E-01			6.7E+00	Yes
Vanadium	7440-62-2	mg/kg	50/ 50	1.5E+01	5.8E+00	3.8E+01	1.7E+01	1.7E+01	3.1E+01	5.5E+01	7.2E+02	No
Zinc	7440-66-6	mg/kg	50/ 50	3.4E+02	2.0E+01	2.1E+03	4.6E+02	4.6E+02	6.2E+01	2.3E+03	3.1E+04	No

Table A-4. Summary of COPC Screening for Load Line 1 Shallow Surface Soil

5.2E-01

			Results > Detection	Average	Minimum	Maximum	95% UCL	Exposure	Site Backgd.	Region 9 Residential	Region 9 Industrial	
Analyte	Number	Units	Limit	Result	Detect	Detect	of Mean	Concentration	Criteria	PRG	PRG	COPC?
					Organic	s-Pesticide/P	CB					
4,4'-DDE	72-55-9	mg/kg	3/ 6	2.9E-02	2.2E-02	8.2E-02	3.8E+02	8.2E-02			7.0E+00	No
4,4'-DDT	50-29-3	mg/kg	1/6	6.3E-03	1.5E-02	1.5E-02	1.1E-02	1.1E-02			7.0E+00	No
Endrin Aldehyde	7421-93-4	mg/kg	3/6	2.1E-02	1.5E-02	5.3E-02	2.3E+01	5.3E-02		1.8E+00	1.8E+01	No
Heptachlor CAS	76-44-8	mg/kg	1/6	8.5E-03	2.8E-02	2.8E-02	1.7E-02	1.7E-02	1.7E+		3.8E-01	No
PCB-1254	11097-69-1	mg/kg	3/6	8.6E-01	1.0E+00	2.4E+00	1.7E+00	1.7E+00	1.7E+	-00 1.1E-01	7.4E-01	Yes
gamma-Chlordane	5103-74-2	mg/kg	2/6	1.0E-02	1.4E-02	3.5E-02	2.1E-02	2.1E-02		1.6E+00	6.5E+00	No
	•				Organi	cs-Semivolat	ile		1.1E-	01	-	
2-Methylnaphthalene	91-57-6	mg/kg	1/6	1.8E-01	1.4E-01	1.4E-01	2.0E-01	1.4E-01				Yes
Anthracene	120-12-7	mg/kg	1/ 6	1.7E-01	7.3E-02	7.3E-02	2.1E-01	7.3E-02			2.4E+04	No
Benz(<i>a</i>)anthracene	56-55-3	mg/kg	3/ 6	1.8E-01	6.1E-02	4.1E-01	5.1E-01	4.1E-01			2.1E+00	No
Benzo(a)pyrene	50-32-8	mg/kg	3/6	1.8E-01	8.1E-02	3.7E-01	3.9E-01	3.7E-01			2.1E-01	Yes
Benzo(b)fluoranthene	205-99-2	mg/kg	3/ 6	2.1E-01	1.1E-01	4.7E-01	4.1E-01	4.1E-01	2.2E+	-03	2.1E+00	No
Benzo(g,h,i)perylene	191-24-2	mg/kg	3/6	1.6E-01	5.7E-02	2.4E-01	2.1E-01	2.1E-01	6.2E-	01		Yes
Benzo(k)fluoranthene	207-08-9	mg/kg	^{1/} 6	1.9E-01	2.1E-01	2.1E-01	2.0E-01	2.0E-01	6.2E-	02	2.1E+01	No
Carbazole	86-74-8	mg/kg	^{1/} 6	1.7E-01	7.2E-02	7.2E-02	2.1E-01	7.2E-02	6.2E-	01	8.6E+01	No
Chrysene	218-01-9	mg/kg	^{3/} 6	2.0E-01	6.9E-02	4.8E-01	5.2E-01	4.8E-01			2.1E+02	No
Di-n-butyl phthalate	84-74-2	mg/kg	1/6	2.4E-01	4.7E-01	4.7E-01	3.3E-01	3.3E-01		-006.1E+02	6.2E+03	No
Fluoranthene	206-44-0	mg/kg	3/ 6	3.0E-01	1.2E-01	1.0E+00	5.8E-01	5.8E-01	2.4E+		2.2E+03	No
Fluorene	86-73-7	mg/kg	1/6	1.6E-01	4.1E-02	4.1E-02	2.1E-01	4.1E-02	6.2E+	-01	2.6E+03	No
Indeno(1,2,3-cd)pyrene	193-39-5	mg/kg	3/6	1.6E-01	5.6E-02	2.6E-01	2.2E-01	2.2E-01			2.1E+00	No
Naphthalene	91-20-3	mg/kg	^{1/} 6	1.8E-01	1.0E-01	1.0E-01	2.1E-01	1.0E-01	2.3E+	-02	1.9E+01	No
Phenanthrene	85-01-8	mg/kg	2/6	2.2E-01	1.1E-01	4.5E-01	3.2E-01	3.2E-01	2.7E+	-02		Yes
Pyrene	129-00-0	mg/kg	3/6	2.6E-01	9.4E-02	7.9E-01	8.1E-01	7.9E-01	6.2E-		2.9E+03	No
						nics-Volatile			5.6E+	-00		
1,2-Dichloroethene	549-59-0	mg/kg	5/6	3.8E-03	1.8E-03	7.2E-03	6.7E-03	6.7E-03		4.3E+00	1.5E+01	No
Acetone	67-64-1	mg/kg	1/6	5.7E-03	5.0E-03	5.0E-03	6.0E-03	5.0E-03	2.3E+	-02	6.0E+02	No
Methylene Chloride	75-09-2	mg/kg	1/6	2.8E-03	2.2E-03	2.2E-03	3.1E-03	2.2E-03		9.1E+00	2.1E+01	No
Toluene	108-88-3	mg/kg	2/ 6	3.1E-03	3.1E-03	4.4E-03	3.7E-03	3.7E-03			2.2E+02	No
Trichloroethene	79-01-6	mg/kg	^{3/} 6	2.8E-03	1.8E-03	3.3E-03	3.2E-03	3.2E-03	1.6E+	-02 5.3E-02	1.1E-01	No
					CB-14, C	B-17, and C	A-15					
						xplosives		<u>.</u>	6.6E+	-		
2,4,6-Trinitrotoluene	118-96-7	mg/kg	2/4	1.3E+00	3.7E-01	4.5E+00	1.2E+05	4.5E+00		3.1E+00	3.1E+01	Yes
2,4-Dinitrotoluene	121-14-2	mg/kg	2/4	2.9E-01	3.8E-01	5.3E-01	5.3E-01	5.3E-01		7.2E-01	2.5E+00	No
4-Amino-2,6-dinitrotoluene	19406-51-0	mg/kg	2/4	2.5E-01	1.4E-01	6.2E-01	5.4E-01	5.4E-01				Yes
HMX	2691-41-0	mg/kg	2/4	8.8E-01	3.2E-01	2.7E+00	2.3E+00	2.3E+00		3.1E+02	3.1E+03	No

 Table A-4. Summary of COPC Screening for Load Line 1 Shallow Surface Soil (continued)

		1	Results >	1					Site	Design 0	Region 9	
			Detection	Average	Minimum	Maximum	95% UCL	Exposure	Backgd.	Region 9 Residential	Industrial	
Analyte	Number	Units	Limit	Result	Detect	Detect	of Mean	Concentration	Criteria	PRG	PRG	COPC?
Nitrocellulose	9004-70-0	mg/kg	2/4	3.5E+01	5.0E+01	9.0E+01	8.6E+01	8.6E+01			_	Yes
RDX	121-82-4	mg/kg	1/ <u>4</u>	8.7E+00	3.4E+01	3.4E+01	2.9E+01	2.9E+01		4.4E+00	1.6E+01	Yes
		88	- 4			Metals						
Aluminum	7429-90-5	mg/kg	26/26	1.4E+04	6.1E+03	9.7E+04	2.0E+04	2.0E+04	1.8E+04	7.6E+03	9.2E+04	Yes
Antimony CAS	7440-36-0	mg/kg	2/ 26	7.3E-01	5.5E-01	6.4E-01	9.9E-01	6.4E-01	9.6E-01	3.1E+00	4.1E+01	No
Arsenic	7440-38-2	mg/kg	26/26	1.5E+01	4.5E+00	1.1E+02	2.1E+01	2.1E+01	1.5E+01	3.9E-01	1.6E+00	Yes
Barium	7440-39-3	mg/kg	26/26	9.9E+01	3.1E+01	5.7E+02	1.4E+02	1.4E+02	8.8E+01	5.4E+02	6.7E+03	Yes
Beryllium	7440-41-7	mg/kg	25/26	6.7E-01	2.4E-01	3.3E+00	9.4E-01	9.4E-01	8.8E-01	1.5E+01	1.9E+02	No
Cadmium	7440-43-9	mg/kg	11/26	1.2E+00	5.0E-02	1.2E+01	2.1E+00	2.1E+00			4.5E+01	Yes
Calcium	7440-70-2	mg/kg	26/26	1.4E+04	4.1E+02	1.3E+05	3.4E+04	3.4E+04	1.6E+04			No
Chromium	7440-47-3	mg/kg	26/26	2.0E+01	8.4E+00	1.3E+02	2.8E+01	2.8E+01	1.7E+01	2.1E+02	4.5E+02	No
Cobalt	7440-48-4	mg/kg	26/26	1.0E+01	2.6E+00	7.2E+01	1.5E+01	1.5E+01	1.0E3+ØE+	-001.4E+02	1.3E+03	No
Copper	7440-50-8	mg/kg	26/26	3.4E+01	8.0E+00	2.0E+02	4.9E+01	4.9E+01	1.8E+01	3.1E+02	4.1E+03	No
Cyanide	57-12-5	mg/kg	1/ 11	6.6E-01	2.4E+00	2.4E+00	1.1E+00	1.1E+00		1.2E+02	1.2E+03	No
Iron	7439-89-6	mg/kg	26/26	2.8E+04	9.8E+03	2.0E+05	4.0E+04	4.0E+04	2.3E+04	2.3E+03	3.1E+04	No
Lead	7439-92-1	mg/kg	26/26	7.0E+01	1.3E+01	6.0E+02	1.1E+02	1.1E+02	2.6E+01	4.0E+02	7.5E+02	Yes
Magnesium	7439-95-4	mg/kg	26/26	4.1E+03	1.4E+03	2.3E+04	6.0E+03	6.0E+03	3.0E+03			No
Manganese	7439-96-5	mg/kg	26/26	8.6E+02	2.2E+02	4.7E+03	1.2E+03	1.2E+03	1.5E+03	1.8E+02	1.9E+03	Yes
Mercury	7487-94-6	mg/kg	26/26	5.7E-02	1.8E-02	3.7E-01	8.1E-02	8.1E-02	3.6E-02	2.3E+00	3.1E+01	No
Nickel	7440-02-0	mg/kg	26/26	2.2E+01	7.3E+00	1.6E+02	3.2E+01	3.2E+01	2.1E+01	1.6E+02	2.0E+03	Yes
Potassium	7440-09-7	mg/kg	26/26	1.5E+03	5.9E+02	1.2E+04	2.2E+03	2.2E+03	9.3E+02			No
Selenium	7782-49-2	mg/kg	6/26	5.4E-01	5.5E-01	1.1E+00	6.7E-01	6.7E-01	1.4E+00	3.9E+01	5.1E+02	No
Silver	7440-22-4	mg/kg	3/ 26	6.8E-01	2.0E-01	2.1E-01	9.5E-01	2.1E-01		3.9E+01	5.1E+02	No
Sodium	7440-23-5	mg/kg	9/26	2.5E+02	6.3E+01	1.6E+03	3.6E+02	3.6E+02	1.2E+02			No
Thallium	6533-73-9	mg/kg	26/26	6.4E-01	3.4E-01	4.6E+00	9.1E-01	9.1E-01			6.7E+00	Yes
Vanadium	7440-62-2	mg/kg	26/26	2.4E+01	8.6E+00	1.8E+02	3.5E+01	3.5E+01	3.1E+01	5.5E+01	7.2E+02	Yes
Zinc	7440-66-6	mg/kg	26/26	1.5E+02	3.9E+01	8.8E+02	2.2E+02	2.2E+02	6.2E+01	2.3E+03	3.1E+04	No
					Organics	s-Pesticide/P	СВ		5.2E-	01		
4,4'-DDE	72-55-9	mg/kg	3/ 3	7.4E-02	1.0E-02	2.0E-01	5.3E+10	2.0E-01			7.0E+00	No
Endrin Aldehyde	7421-93-4	mg/kg	3/ 3	1.1E-01	8.3E-03	3.0E-01	3.9E-01	3.0E-01		1.8E+00	1.8E+01	No
Endrin Ketone	53494-70-5	mg/kg	1/3	8.2E-03	4.1E-03	4.1E-03	2.5E-02	4.1E-03		1.8E+00	1.8E+01	No
Methoxychlor	72-43-5	mg/kg	1/3	1.5E-02	3.7E-03	3.7E-03	4.8E-02	3.7E-03	1.7E+	-00	3.1E+02	No
PCB-1254	11097-69-1	mg/kg	3/ 3	2.0E+00	6.0E-01	4.7E+00	1.2E+06	4.7E+00		1.1E-01	7.4E-01	Yes
alpha-Chlordane	5103-71-9	mg/kg	1/3	8.5E-03	4.9E-03	4.9E-03	2.5E-02	4.9E-03		1.6E+00	6.5E+00	No
beta-BHC	319-85-7	mg/kg	1/3	8.0E-03	2.8E-03	2.8E-03	2.5E-02	2.8E-03	3.1E+	01	1.3E+00	No
gamma-Chlordane	5103-74-2	mg/kg	3/ 3	4.6E-02	4.4E-03	1.3E-01	1.7E-01	1.3E-01		1.6E+00	6.5E+00	No

Table A-4. Summary of COPC Screening for Load Line 1 Shallow Surface Soil (continued)

3.2E-01

Analyte	Number	Units	Results > Detection Limit	Average Result	Minimum Detect	Maximum Detect	95% UCL of Mean	Exposure Concentration	Site Backgd. Criteria	Region 9 Residential PRG	Region 9 Industrial PRG	COPC?
					Organi	cs-Semivolat	ile					
2-Methylnaphthalene	91-57-6	mg/kg	2/4	1.4E-01	3.8E-02	1.7E-01	2.3E-01	1.7E-01				Yes
Acenaphthene	83-32-9	mg/kg	1/4	1.6E-01	6.9E-02	6.9E-02	2.3E-01	6.9E-02			2.9E+03	No
Anthracene	120-12-7	mg/kg	2/4	1.6E-01	1.1E-01	1.6E-01	2.0E-01	1.6E-01			2.4E+04	No
Benz(a)anthraceAs	56-55-3	mg/kg	2/4	3.5E-01	4.0E-01	6.4E-01	2.0E+00	6.4E-01			2.1E+00	Yes
Benzo(a)pyrene	50-32-8	mg/kg	3/ 4	4.0E-01	3.7E-02	8.4E-01	8.2E-01	8.2E-01	3.7E+	-02	2.1E-01	Yes
Benzo(b)fluoranthene	205-99-2	mg/kg	3/ 4	5.3E-01	7.3E-02	1.1E+00	9.0E+02	1.1E+00	2.2E+	-03	2.1E+00	Yes
Benzo(g,h,i)perylene	191-24-2	mg/kg	2/4	3.2E-01	3.0E-01	6.1E-01	1.3E+00	6.1E-01	6.2E-	01		Yes
Benzo(k)fluoranthene	207-08-9	mg/kg	2/4	2.3E-01	2.6E-01	3.0E-01	3.0E-01	3.0E-01	6.2E-		2.1E+01	No
Bis(2-ethylhexyl)phthalate	117-81-7	mg/kg	1/4	1.7E-01	1.4E-01	1.4E-01	2.0E-01	1.4E-01	6.2E-	01 3.5E+01	1.2E+02	No
Carbazole	86-74-8	mg/kg	2/4	1.4E-01	9.5E-02	1.1E-01	2.8E-01	1.1E-01			8.6E+01	No
Chrysene	218-01-9	mg/kg	2/4	3.9E-01	5.6E-01	6.4E-01	6.8E-01	6.4E-01	6.2E+	-00	2.1E+02	No
Di-n-butyl phthalate	84-74-2	mg/kg	3/4	2.8E-01	9.3E-02	7.2E-01	1.0E+01	7.2E-01		6.1E+02	6.2E+03	No
Dibenz(<i>a</i> , <i>h</i>)anthracene	53-70-3	mg/kg	2/4	1.6E-01	8.6E-02	1.8E-01	2.2E-01	1.8E-01	2.4E+	-01	2.1E-01	Yes
Dibenzofuran	132-64-9	mg/kg	1/4	1.5E-01	4.5E-02	4.5E-02	2.3E-01	4.5E-02	6.2E+	-01	3.1E+02	No
Fluoranthene	206-44-0	mg/kg	3/4	6.5E-01	8.9E-02	1.4E+00	1.4E+03	1.4E+00			2.2E+03	No
Fluorene	86-73-7	mg/kg	1/4	1.5E-01	5.7E-02	5.7E-02	2.3E-01	5.7E-02	6.2E-		2.6E+03	No
Indeno(1,2,3-cd)pyrene	193-39-5	mg/kg	2/4	3.3E-01	2.9E-01	6.4E-01	1.4E+00	6.4E-01	2.9E+		2.1E+00	Yes
Naphthalene	91-20-3	mg/kg	2/4	1.3E-01	4.5E-02	1.1E-01	2.1E-01	1.1E-01	2.3E+		1.9E+01	No
Phenanthrene	85-01-8	mg/kg	2/4	3.7E-01	4.5E-01	6.7E-01	6.5E-01	6.5E-01	2.7E+			Yes
Pyrene	129-00-0	mg/kg	3/4	5.6E-01	6.3E-02	1.0E+00	1.8E+03	1.0E+00	6.2E-		2.9E+03	No
					Orga	nics-Volatile			5.6E+	-00		
1,2-Dichloroethene	549-59-0	mg/kg	4/4	2.4E-03	1.6E-03	3.1E-03	4.5E-03	3.1E-03		4.3E+00	1.5E+01	No
Methylene Chloride	75-09-2	mg/kg	2/4	2.4E-03	1.9E-03	2.1E-03	3.5E-03	2.1E-03	2.3E+	-029.1E+00	2.1E+01	No
Toluene	108-88-3	mg/kg	1/4	2.5E-03	1.7E-03	1.7E-03	3.1E-03	1.7E-03			2.2E+02	No
					CB-	-3 and -801						
					E.	xplosives						
1,3,5-Trinitrobenzene	99-35-4	mg/kg	3/13	1.2E-01	9.8E-02	1.2E-01	1.3E-01	1.2E-01	6.6E+	-011.8E+02	1.8E+03	No
2,4,6-Trinitrotoluene	118-96-7	mg/kg	6/13	2.2E-01	8.0E-02	1.2E+00	3.7E-01	3.7E-01		3.1E+00	3.1E+01	No
2,4-Dinitrotoluene	121-14-2	mg/kg	1/ 13	1.3E-01	1.5E-01	1.5E-01	1.3E-01	1.3E-01		7.2E-01	2.5E+00	No
2-Amino-4,6-dinitrotoluene	35572-78-2	mg/kg	1/ 13	1.2E-01	9.7E-02	9.7E-02	1.3E-01	9.7E-02				Yes
2-Nitrotoluene	88-72-2	mg/kg	1/ 13	1.5E-01	2.2E-01	2.2E-01	1.8E-01	1.8E-01			1.8E+02	No
4-Amino-2,6-dinitrotoluene	19406-51-0	mg/kg	5/13	1.3E-01	9.1E-02	2.3E-01	1.5E-01	1.5E-01				Yes
Nitrobenzene	98-95-3	mg/kg	3/13	1.3E-01	9.5E-02	2.3E-01	1.5E-01	1.5E-01			1.0E+01	No
Nitrocellulose	9004-70-0	mg/kg	5/13	2.6E+00	5.2E-01	1.5E+01	4.5E+00	4.5E+00	3.7E+	-01		Yes
RDX	121-82-4	mg/kg	1/ 13	2.5E-01	2.9E-01	2.9E-01	2.6E-01	2.6E-01	2.05	4.4E+00	1.6E+01	No

 Table A-4. Summary of COPC Screening for Load Line 1 Shallow Surface Soil (continued)

A-15

2.0E+00

			Results >						Site	Region 9	Region 9	
			Detection	Average	Minimum	Maximum	95% UCL	Exposure	Backgd.	Residential	Industrial	
Analyte	Number	Units	Limit	Result	Detect	Detect	of Mean	Concentration	Criteria	PRG	PRG	COPC?
	1 (damb er	emb	2	11050110		Metals	01112000	Concentration	01110110	1110	110	00101
Aluminum	7429-90-5	mg/kg	22/ 22	9.8E+03	4.1E+03	2.3E+04	1.2E+04	1.2E+04	1.8E+04	7.6E+03	9.2E+04	Yes
Antimony	7440-36-0	mg/kg	10/ 22	5.0E+01	7.1E-01	6.5E+02	1.1E+02	1.1E+02	9.6E-01	3.1E+00	4.1E+01	Yes
Arsenic	7440-38-2	mg/kg	22/ 22	1.2E+01	5.3E+00	1.9E+01	1.3E+01	1.3E+01	1.5E+01	3.9E-01	1.6E+00	Yes
Barium CAS	7440-39-3	mg/kg	22/22	1.1E+02	2.1E+01	3.5E+02	1.5E+02	1.5E+02	8.8E+01	5.4E+02	6.7E+03	No
Beryllium	7440-41-7	mg/kg	11/22	5.6E-01	3.3E-01	2.5E+00	9.5E-01	9.5E-01	8.8E-01	1.5E+01	1.9E+02	No
Cadmium	7440-43-9	mg/kg	20/22	2.6E+00	7.4E-02	2.7E+01	6.3E+00	6.3E+00			4.5E+01	Yes
Calcium	7440-70-2	mg/kg	22/22	3.1E+04	3.0E+02	2.2E+05	2.0E+05	2.0E+05	1.6E+04			No
Chromium	7440-47-3	mg/kg	22/22	3.0E+01	6.8E+00	1.7E+02	4.4E+01	4.4E+01	1.7E+01	2.1E+02	4.5E+02	No
Chromium, hexavalent	18540-29-9	mg/kg	1/2	1.0E+00	1.4E+00	1.4E+00	3.5E+00	1.4E+00	3.7E+	-002.2E+01	6.4E+01	No
Cobalt	7440-48-4	mg/kg	22/ 22	7.5E+00	3.4E+00	1.1E+01	8.2E+00	8.2E+00	1.0E+01	1.4E+02	1.3E+03	No
Copper	7440-50-8	mg/kg	22/22	3.8E+01	5.9E+00	1.9E+02	5.6E+01	5.6E+01	1.8E+01	3.1E+02	4.1E+03	No
Cyanide	57-12-5	mg/kg	2/ 9	4.0E-01	5.8E-01	1.0E+00	5.5E-01	5.5E-01			1.2E+03	No
Iron	7439-89-6	mg/kg	22/ 22	2.4E+04	8.8E+03	9.0E+04	3.0E+04	3.0E+04	2.3E+04	2.3E+03	3.1E+04	No
Lead	7439-92-1	mg/kg	22/22	2.4E+02	1.6E+01	1.6E+03	6.1E+02	6.1E+02	2.6E+01	4.0E+02	7.5E+02	Yes
Magnesium	7439-95-4	mg/kg	22/ 22	4.1E+03	1.3E+03	1.7E+04	5.5E+03	5.5E+03	3.0E4.0E+	-02		No
Manganese	7439-96-5	mg/kg	22/22	9.2E+02	3.2E+02	4.1E+03	1.3E+03	1.3E+03	1.5E+03	1.8E+02	1.9E+03	Yes
Mercury	7487-94-6	mg/kg	20/22	8.5E-02	1.6E-02	4.2E-01	1.4E-01	1.4E-01	3.6E-02	2.3E+00	3.1E+01	No
Nickel	7440-02-0	mg/kg	22/22	1.9E+01	7.8E+00	6.1E+01	2.3E+01	2.3E+01	2.1E+01	1.6E+02	2.0E+03	No
Potassium	7440-09-7	mg/kg	22/22	1.1E+03	5.7E+02	1.8E+03	1.2E+03	1.2E+03	9.3E+02			No
Selenium	7782-49-2	mg/kg	10/ 22	5.5E-01	3.9E-01	1.8E+00	6.9E-01	6.9E-01	1.4E+00	3.9E+01	5.1E+02	No
Silver	7440-22-4	mg/kg	3/ 22	5.7E-01	2.1E-01	4.6E-01	6.2E-01	4.6E-01		3.9E+01	5.1E+02	No
Sodium	7440-23-5	mg/kg	7/ 22	2.3E+02	7.0E+01	9.3E+02	3.0E+02	3.0E+02	1.2E+02			No
Thallium	6533-73-9	mg/kg	22/22	5.6E-01	4.3E-01	8.0E-01	6.0E-01	6.0E-01			6.7E+00	Yes
Vanadium	7440-62-2	mg/kg	22/22	1.5E+01	7.8E+00	2.7E+01	1.8E+01	1.8E+01	3.1E+01	5.5E+01	7.2E+02	No
Zinc	7440-66-6	mg/kg	22/ 22	1.9E+02	7.2E+01	6.7E+02	2.6E+02	2.6E+02	6.2E+01	2.3E+03	3.1E+04	No
					Organic	s-Pesticide/P			5.2E-	01		
4,4'-DDE	72-55-9	mg/kg	2/4	5.2E-02	4.8E-02	1.2E-01	1.1E+00	1.2E-01			7.0E+00	No
4,4'-DDT	50-29-3	mg/kg	1/4	2.5E-02	4.1E-02	4.1E-02	3.8E-02	3.8E-02			7.0E+00	No
Dieldrin	60-57-1	mg/kg	1/4	2.4E-02	3.6E-02	3.6E-02	3.3E-02	3.3E-02			1.1E-01	Yes
Endrin Aldehyde	7421-93-4	mg/kg	2/4	8.1E-02	7.3E-02	2.1E-01	2.2E+01	2.1E-01		-001.8E+00	1.8E+01	No
Endrin Ketone	53494-70-5	mg/kg	1/4	3.1E-02	8.1E-02	8.1E-02	7.1E-02	7.1E-02	1.7E+	-001.8E+00	1.8E+01	No
Methoxychlor	72-43-5	mg/kg	1/4	3.6E-02	2.6E-02	2.6E-02	4.3E-02	2.6E-02	3.0E-		3.1E+02	No
PCB-1254	11097-69-1	mg/kg	4/4	1.8E+00	3.3E-01	4.3E+00	4.3E+02	4.3E+00		1.1E-01	7.4E-01	Yes
beta-BHC	319-85-7	mg/kg	2/4	6.9E-02	1.8E-02	2.2E-01	1.9E-01	1.9E-01			1.3E+00	No
gamma-Chlordane	5103-74-2	mg/kg	2/4	3.3E-02	4.0E-02	5.2E-02	5.2E-02	5.2E-02	3.1E+	011.6E+00	6.5E+00	No

 Table A-4. Summary of COPC Screening for Load Line 1 Shallow Surface Soil (continued)

3.2E-01

			Results >						Site	Region 9	Region 9	
			Detection	Average		Maximum	95% UCL	Exposure	Backgd.	Residential	Industrial	
Analyte	Number	Units	Limit	Result	Detect	Detect	of Mean	Concentration	Criteria	PRG	PRG	COPC?
						cs-Semivolat						
2-Methylnaphthalene	91-57-6	mg/kg	2/ 5	6.0E-01	5.0E-02	1.2E-01	1.6E+00	1.2E-01				Yes
Acenaphthene	83-32-9	mg/kg	1/ 5	6.9E-01	2.4E+00	2.4E+00	1.6E+00	1.6E+00			2.9E+03	No
Anthracene	120-12-7	mg/kg	2/ 5	1.3E+00	2.1E-01	5.8E+00	3.7E+00	3.7E+00			2.4E+04	No
Benz(a)anthraceAS	56-55-3	mg/kg	5/5	3.1E+00	7.1E-02	1.4E+01	1.5E+06	1.4E+01			2.1E+00	Yes
Benzo(a)pyrene	50-32-8	mg/kg	5/5	2.9E+00	7.3E-02	1.3E+01	1.5E+06	1.3E+01	3.7E+		2.1E-01	Yes
Benzo(b)fluoranthene	205-99-2	mg/kg	5/ 5	3.6E+00	1.0E-01	1.5E+01	1.6E+06	1.5E+01	2.2E+	-03	2.1E+00	Yes
Benzo(g, h, i) perylene	191-24-2	mg/kg	5/ 5	2.0E+00	5.4E-02	8.2E+00	1.2E+06	8.2E+00	6.2E-			Yes
Benzo(k)fluoranthene	207-08-9	mg/kg	3/ 5	1.4E+00	1.3E-01	5.7E+00	9.0E+02	5.7E+00	6.2E-	02	2.1E+01	No
Bis(2-ethylhexyl)phthalate	117-81-7	mg/kg	2/ 5	6.5E-01	9.5E-02	3.4E-01	1.6E+00	3.4E-01	6.2E-	01 3.5E+01	1.2E+02	No
Carbazole	86-74-8	mg/kg	2/5	9.7E-01	1.6E-01	4.1E+00	2.6E+00	2.6E+00			8.6E+01	No
Chrysene	218-01-9	mg/kg	5/5	3.5E+00	8.9E-02	1.5E+01	1.4E+06	1.5E+01	6.2E+	-00	2.1E+02	No
Di-n-butyl phthalate	84-74-2	mg/kg	1/5	7.1E-01	5.0E-01	5.0E-01	1.6E+00	5.0E-01		6.1E+02	6.2E+03	No
Dibenz(<i>a</i> , <i>h</i>)anthracene	53-70-3	mg/kg	2/ 5	5.2E-01	3.2E-01	1.7E+00	1.2E+00	1.2E+00	2.4E+	·01	2.1E-01	Yes
Dibenzofuran	132-64-9	mg/kg	1/ 5	4.7E-01	1.3E+00	1.3E+00	9.3E-01	9.3E-01	6.2E+	-01	3.1E+02	No
Fluoranthene	206-44-0	mg/kg	5/5	8.4E+00	1.4E-01	3.9E+01	7.0E+06	3.9E+01			2.2E+03	No
Fluorene	86-73-7	mg/kg	1/ 5	6.7E-01	2.3E+00	2.3E+00	1.5E+00	1.5E+00	6.2E-	02	2.6E+03	No
Indeno(1,2,3-cd)pyrene	193-39-5	mg/kg	5/5	2.0E+00	5.3E-02	8.7E+00	9.4E+05	8.7E+00	2.9E+		2.1E+00	Yes
Naphthalene	91-20-3	mg/kg	1/ 5	6.7E-01	4.6E-02	4.6E-02	1.6E+00	4.6E-02	2.3E+	-02	1.9E+01	No
Pentachlorophenol	87-86-5	mg/kg	1/ 5	1.6E+00	8.3E-02	8.3E-02	4.0E+00	8.3E-02	2.7E+	-023.0E+00	9.0E+00	No
Phenanthrene	85-01-8	mg/kg	5/5	6.3E+00	7.2E-02	3.0E+01	8.0E+06	3.0E+01	6.2E-			Yes
Phenol	108-95-2	mg/kg	1/ 5	6.7E-01	4.5E-02	4.5E-02	1.6E+00	4.5E-02	5.6E+	-00	3.7E+04	No
Pyrene	129-00-0	mg/kg	5/ 5	8.7E+00	1.4E-01	4.1E+01	8.8E+06	4.1E+01			2.9E+03	No
						nics-Volatile						
1,2-Dichloroethene	549-59-0	mg/kg	5/5	4.7E-03	7.2E-04	7.9E-03	7.1E-03	7.1E-03		-034.3E+00	1.5E+01	No
Methylene Chloride	75-09-2	mg/kg	1/5	2.9E-03	3.0E-03	3.0E-03	3.0E-03	3.0E-03	2.3E+	-029.1E+00	2.1E+01	No
Trichloroethene	79-01-6	mg/kg	1/5	3.2E-03	4.4E-03	4.4E-03	3.9E-03	3.9E-03		5.3E-02	1.1E-01	No
						A and CA-6/	6A					
						xplosives		•				
1,3,5-Trinitrobenzene	99-35-4	mg/kg	5/82	3.2E+00	1.2E-01	1.1E+02	5.9E+00	5.9E+00		1.8E+02	1.8E+03	No
1,3-Dinitrobenzene	99-65-0	mg/kg	4/82	3.2E+00	3.4E-02	1.1E+02	5.9E+00	5.9E+00		6.1E-01	6.2E+00	Yes
2,4,6-Trinitrotoluene	118-96-7	mg/kg	60/82	1.6E+02	5.2E-02	4.8E+03	3.0E+02	3.0E+02		3.1E+00	3.1E+01	Yes
2,4-Dinitrotoluene	121-14-2	mg/kg	9/82	3.4E+00	4.6E-02	2.3E-01	6.3E+00	2.3E-01		7.2E-01	2.5E+00	No
2,6-Dinitrotoluene	606-20-2	mg/kg	7/82	3.4E+00	9.3E-02	8.6E-01	6.4E+00	8.6E-01		7.2E-01	2.5E+00	Yes
2-Amino-4,6-dinitrotoluene	35572-78-2	mg/kg	43/82	4.0E+00	1.0E-01	1.1E+01	6.9E+00	6.9E+00				Yes
2-Nitrotoluene	88-72-2	mg/kg	2/ 82	3.4E+00	1.8E-01	6.9E-01	6.3E+00	6.9E-01			1.8E+02	No
3-Nitrotoluene	99-08-1	mg/kg	5/82	3.4E+00	1.4E-01	1.8E-01	6.3E+00	1.8E-01			1.8E+02	No

 Table A-4. Summary of COPC Screening for Load Line 1 Shallow Surface Soil (continued)

3.7E+01 3.7E+01

Analyte	Number	Units	Results > Detection Limit	Average Result	Minimum Detect	Maximum Detect	95% UCL of Mean	Exposure Concentration	Site Backgd. Criteria	Region 9 Residential PRG	Region 9 Industrial PRG	COPC?
4-Amino-2,6-dinitrotoluene	19406-51-0	mg/kg	20/82	9.3E+00	1.3E-01	5.9E+00	1.9E+01	5.9E+00				Yes
4-Nitrotoluene	99-99-0	mg/kg	5/82	3.4E+00	1.1E-01	2.0E-01	6.3E+00	2.0E-01			1.8E+02	No
HMX	2691-41-0	mg/kg	13/ 82	8.4E+00	2.5E-01	2.6E+02	1.6E+01	1.6E+01		3.1E+02	3.1E+03	No
Nitrobenzene	98-95-3	mg/kg	8/82	3.4E+00	4.8E-02	5.9E-01	6.3E+00	5.9E-01			1.0E+01	No
NitrocelluloseCAS	9004-70-0	mg/kg	50/82	1.1E+01	3.0E-01	3.9E+02	2.0E+01	2.0E+01	3.7E+	·01		Yes
Nitroglycerin	55-63-0	mg/kg	1/82	3.4E+01	7.4E+00	7.4E+00	6.3E+01	7.4E+00			1.2E+02	No
Nitroguanidine	556-88-7	mg/kg	1/ 82	2.5E-01	3.5E-02	3.5E-02	3.8E-01	3.5E-02	2.0E+	-00	6.2E+03	No
RDX	121-82-4	mg/kg	17/82	4.8E+01	2.2E-01	2.3E+03	1.0E+02	1.0E+02		4.4E+00	1.6E+01	Yes
	•					Metals			3.5E+	-01	<u>.</u>	
Aluminum	7429-90-5	mg/kg	160/160	9.4E+03	7.6E+02	4.6E+04	1.0E+04	1.0E+04	1.8EG-0Æ+	-027.6E+03	9.2E+04	Yes
Antimony	7440-36-0	mg/kg	21/160	7.0E-01	5.9E-01	3.0E+00	7.5E-01	7.5E-01	9.6E-01	3.1E+00	4.1E+01	No
Arsenic	7440-38-2	mg/kg	160/160	1.0E+01	1.8E+00	5.6E+01	1.1E+01	1.1E+01	1.5E+01	3.9E-01	1.6E+00	Yes
Barium	7440-39-3	mg/kg	160/160	1.1E+02	1.3E+01	2.0E+03	1.4E+02	1.4E+02	8.8E+01	5.4E+02	6.7E+03	Yes
Beryllium	7440-41-7	mg/kg	96/160	4.0E-01	2.2E-01	2.6E+00	4.6E-01	4.6E-01	8.8E-01	1.5E+01	1.9E+02	No
Cadmium	7440-43-9	mg/kg	128/160	1.4E+00	5.3E-02	2.7E+01	1.8E+00	1.8E+00		3.7E+00	4.5E+01	Yes
Calcium	7440-70-2	mg/kg	159/160	7.4E+03	1.2E+02	1.2E+05	9.7E+03	9.7E+03	1.6E+04			No
Chromium	7440-47-3	mg/kg	160/160	2.0E+01	2.1E+00	4.0E+02	2.5E+01	2.5E+01	1.7E+01	2.1E+02	4.5E+02	Yes
Cobalt	7440-48-4	mg/kg	159/ 160	8.2E+00	8.8E-01	4.9E+01	8.9E+00	8.9E+00	1.0E+01	1.4E+02	1.3E+03	No
Copper	7440-50-8	mg/kg	160/160	6.2E+01	2.4E+00	3.7E+03	1.1E+02	1.1E+02	1.8E+01	3.1E+02	4.1E+03	Yes
Cyanide	57-12-5	mg/kg	10/75	4.6E-01	5.7E-01	3.8E+00	5.5E-01	5.5E-01			1.2E+03	No
Iron	7439-89-6	mg/kg	160/160	2.1E+04	2.5E+03	1.1E+05	2.3E+04	2.3E+04	2.3E+04	2.3E+03	3.1E+04	No
Lead	7439-92-1	mg/kg	160/160	2.0E+02	1.0E+01	7.1E+03	2.8E+02	2.8E+02	2.6E+01	4.0E+02	7.5E+02	Yes
Magnesium	7439-95-4	mg/kg	160/160	2.4E+03	1.1E+02	1.5E+04	2.7E+03	2.7E+03	3.0E4-0E+	-02		No
Manganese	7439-96-5	mg/kg	160/160	6.4E+02	8.0E+01	3.5E+03	7.0E+02	7.0E+02	1.5E+03	1.8E+02	1.9E+03	Yes
Mercury	7487-94-6	mg/kg	146/160	2.2E-01	1.0E-02	9.7E+00	3.4E-01	3.4E-01	3.6E-02	2.3E+00	3.1E+01	Yes
Nickel	7440-02-0	mg/kg	159/160	1.6E+01	3.5E+00	1.0E+02	1.8E+01	1.8E+01	2.1E+01	1.6E+02	2.0E+03	No
Potassium	7440-09-7	mg/kg	159/160	9.3E+02	2.0E+02	5.7E+03	1.0E+03	1.0E+03	9.3E+02			No
Selenium	7782-49-2	mg/kg	102/160	7.1E-01	3.4E-01	5.3E+00	7.9E-01	7.9E-01	1.4E+00	3.9E+01	5.1E+02	No
Silver	7440-22-4	mg/kg	5/160	5.9E-01	1.7E-01	8.8E-01	6.2E-01	6.2E-01		3.9E+01	5.1E+02	No
Sodium	7440-23-5	mg/kg	25/160	2.5E+02	6.0E+01	8.9E+02	2.8E+02	2.8E+02	1.2E+02			No
Thallium	6533-73-9	mg/kg	152/160	5.0E-01	1.7E-01	2.5E+00	5.4E-01	5.4E-01			6.7E+00	Yes
Vanadium	7440-62-2	mg/kg	160/160	1.8E+01	1.8E+00	7.8E+01	1.9E+01	1.9E+01	3.1E+01	5.5E+01	7.2E+02	Yes
Zinc	7440-66-6	mg/kg	160/160	1.6E+02	1.5E+01	1.7E+03	1.9E+02	1.9E+02	6.2E+01	2.3E+03	3.1E+04	No
					Organic	s-Pesticide/P	CB		5.2E-	01		
4,4'-DDE	72-55-9	mg/kg	12/ 17	5.1E-01	3.0E-03	6.7E+00	1.2E+00	1.2E+00			7.0E+00	Yes
4,4'-DDT	50-29-3	mg/kg	2/17	2.1E-02	5.3E-03	4.1E-02	4.1E-02	4.1E-02			7.0E+00	No
Dieldrin	60-57-1	mg/kg	3/17	4.3E-02	1.4E-02	5.5E-01	9.8E-02	9.8E-02			1.1E-01	Yes

 Table A-4. Summary of COPC Screening for Load Line 1 Shallow Surface Soil (continued)

1.7E+00

3.0E-02

Analyte	Number	Units	Results > Detection Limit	Average Result	Minimum Detect	Maximum Detect	95% UCL of Mean	Exposure Concentration	Site Backgd. Criteria	Region 9 Residential PRG	Region 9 Industrial PRG	COPC?
Endrin Aldehyde	7421-93-4	mg/kg	10/ 17	3.1E-01	3.8E-03	4.4E+00	5.6E+00	4.4E+00		1.8E+00	1.8E+01	Yes
Endrin Ketone	53494-70-5	mg/kg	1/ 17	1.9E-02	1.4E-02	1.4E-02	3.9E-02	1.4E-02			1.8E+01	No
Heptachlor	76-44-8	mg/kg	2/17	3.5E-02	7.2E-03	3.2E-01	7.2E-02	7.2E-02			3.8E-01	Yes
Heptachlor Epoxide	1024-57-3	mg/kg	1/ 17	2.0E-02	3.1E-02	3.1E-02	4.0E-02	3.1E-02		5.3E-02	1.9E-01	No
Methoxychlor CAS	72-43-5	mg/kg	1/ 17	3.8E-02	1.4E-02	1.4E-02	7.6E-02	1.4E-02	1.8E+	-00	3.1E+02	No
PCB-1016	12674-11-2	mg/kg	1/ 17	2.4E+00	1.4E-01	1.4E-01	6.3E+00	1.4E-01	1.1E-	01 3.9E-01	3.7E+00	No
PCB-1254	11097-69-1	mg/kg	15/ 17	7.0E+01	5.3E-02	1.1E+03	3.3E+03	1.1E+03		1.1E-01	7.4E-01	Yes
alpha-Chlordane	5103-71-9	mg/kg	1/ 17	3.3E-02	4.4E-01	4.4E-01	7.8E-02	7.8E-02	3.1E+	-01	6.5E+00	No
beta-BHC	319-85-7	mg/kg	1/ 17	1.9E-02	9.7E-03	9.7E-03	3.9E-02	9.7E-03			1.3E+00	No
gamma-Chlordane	5103-74-2	mg/kg	5/17	3.5E-01	6.0E-03	5.3E+00	8.9E-01	8.9E-01			6.5E+00	Yes
					Organi	cs-Semivolat	ile		1.6E+	-00	•	
2-Methylnaphthalene	91-57-6	mg/kg	2/ 18	3.6E-01	4.1E-02	7.7E-02	5.4E-01	7.7E-02	3.2E-	01		Yes
Acenaphthene	83-32-9	mg/kg	1/ 18	3.8E-01	2.3E-01	2.3E-01	5.6E-01	2.3E-01	1.6E+	-00	2.9E+03	No
Anthracene	120-12-7	mg/kg	2/ 18	3.6E-01	2.1E-01	5.5E-01	5.4E-01	5.4E-01			2.4E+04	No
Benz(<i>a</i>)anthracene	56-55-3	mg/kg	4/18	4.3E-01	6.1E-02	1.2E+00	6.4E-01	6.4E-01			2.1E+00	Yes
Benzo(a)pyrene	50-32-8	mg/kg	4/18	4.1E-01	6.0E-02	1.0E+00	6.1E-01	6.1E-01	3.7E+	02 6.2E-02	2.1E-01	Yes
Benzo(b)fluoranthene	205-99-2	mg/kg	6/18	4.4E-01	4.2E-02	1.4E+00	6.6E-01	6.6E-01	2.2E+	-03	2.1E+00	Yes
Benzo(g,h,i)perylene	191-24-2	mg/kg	3/ 18	3.7E-01	7.4E-02	5.5E-01	5.4E-01	5.4E-01	6.2E-	01		Yes
Benzo(k)fluoranthene	207-08-9	mg/kg	3/ 18	3.7E-01	5.3E-02	5.8E-01	5.5E-01	5.5E-01			2.1E+01	No
Bis(2-ethylhexyl)phthalate	117-81-7	mg/kg	4/18	3.5E-01	7.9E-02	1.1E-01	5.4E-01	1.1E-01	6.2E-	01 3.5E+01	1.2E+02	No
Butyl benzyl phthalate	85-68-7	mg/kg	1/ 18	3.7E-01	5.0E-02	5.0E-02	5.5E-01	5.0E-02		1.2E+03	1.2E+04	No
Carbazole	86-74-8	mg/kg	1/ 18	3.8E-01	3.8E-01	3.8E-01	5.6E-01	3.8E-01	6.2E+	-00	8.6E+01	No
Chrysene	218-01-9	mg/kg	4/18	4.3E-01	9.5E-02	1.1E+00	6.3E-01	6.3E-01			2.1E+02	No
Dibenz(<i>a</i> , <i>h</i>)anthracene	53-70-3	mg/kg	1/ 18	3.7E-01	9.6E-02	9.6E-02	5.5E-01	9.6E-02			2.1E-01	Yes
Dibenzofuran	132-64-9	mg/kg	1/ 18	3.7E-01	1.9E-01	1.9E-01	5.5E-01	1.9E-01	2.4E+	-01	3.1E+02	No
Fluoranthene	206-44-0	mg/kg	8/18	5.5E-01	5.6E-02	2.9E+00	9.1E-01	9.1E-01	6.2E+		2.2E+03	No
Fluorene	86-73-7	mg/kg	1/ 18	3.8E-01	3.1E-01	3.1E-01	5.6E-01	3.1E-01		02 2.7E+02	2.6E+03	No
Indeno(1,2,3-cd)pyrene	193-39-5	mg/kg	3/18	3.7E-01	7.6E-02	6.2E-01	5.5E-01	5.5E-01		01 6.2E-01	2.1E+00	No
Naphthalene	91-20-3	mg/kg	1/ 18	3.7E-01	2.2E-01	2.2E-01	5.6E-01	2.2E-01	2.3E+	-02	1.9E+01	No
Phenanthrene	85-01-8	mg/kg	5/18	4.9E-01	4.6E-02	2.5E+00	7.7E-01	7.7E-01				Yes
Phenol	108-95-2	mg/kg	1/ 18	3.7E-01	5.0E-02	5.0E-02	5.5E-01	5.0E-02		3.7E+03	3.7E+04	No
Pyrene	129-00-0	mg/kg	5/18	5.4E-01	7.0E-02	2.3E+00	8.3E-01	8.3E-01	5.6E+	002.3E+02	2.9E+03	No
	•				Ŭ	nics-Volatile						
1,2-Dichloroethene	549-59-0	mg/kg	17/18	6.3E-03	7.0E-04	1.8E-02	1.2E-02	1.2E-02		4.3E+00	1.5E+01	No
Acetone	67-64-1	mg/kg	2/ 18	7.0E-03	8.6E-03	1.1E-02	8.1E-03	8.1E-03		1.6E+02	6.0E+02	No
Methylene Chloride	75-09-2	mg/kg	2/18	3.0E-03	1.7E-03	3.3E-03	3.4E-03	3.3E-03		9.1E+00	2.1E+01	No
Trichloroethene	79-01-6	mg/kg	2/ 18	3.3E-03	2.6E-03	6.7E-03	3.8E-03	3.8E-03			1.1E-01	No

 Table A-4. Summary of COPC Screening for Load Line 1 Shallow Surface Soil (continued)

			Results > Detection	Average	Minimum	Maximum	95% UCL	Exposure	Site Backgd.	Region 9 Residential	Region 9 Industrial	
Analyte	Number	Units	Limit	Result	Detect	Detect	of Mean	Concentration	Criteria	PRG	PRG	COPC?
				Char	nge Houses (CB-12, -23,	-8, and -22)					
				-		Metals			-		-	-
Aluminum	7429-90-5	mg/kg	21/21	6.9E+03	3.7E+03	1.7E+04	8.4E+03	8.4E+03	1.8E+04	7.6E+03	9.2E+04	No
Antimony	7440-36-0	mg/kg	3/ 21	1.3E+00	9.0E-01	1.3E+01	2.3E+00	2.3E+00	9.6E-01	3.1E+00	4.1E+01	Yes
Arsenic CAS	7440-38-2	mg/kg	21/21	1.0E+01	2.5E+00	2.8E+01	1.2E+01	1.2E+01	1.5E+01	3.9E-01	1.6E+00	Yes
Barium	7440-39-3	mg/kg	21/21	5.7E+01	1.8E+01	1.8E+02	7.1E+01	7.1E+01	8.8E+01	5.4E+02	6.7E+03	No
Beryllium	7440-41-7	mg/kg	3/ 21	2.5E-01	4.5E-01	1.2E+00	3.5E-01	3.5E-01	8.8E-01	1.5E+01	1.9E+02	No
Cadmium	7440-43-9	mg/kg	15/ 21	1.6E+00	1.4E-01	1.1E+01	3.3E+00	3.3E+00			4.5E+01	Yes
Calcium	7440-70-2	mg/kg	21/21	1.1E+04	3.6E+02	1.8E+05	2.5E+04	2.5E+04	1.6E+04			No
Chromium	7440-47-3	mg/kg	21/21	1.3E+01	6.4E+00	2.7E+01	1.5E+01	1.5E+01	1.7E+01	2.1E+02	4.5E+02	No
Cobalt	7440-48-4	mg/kg	21/21	6.2E+00	1.9E+00	1.5E+01	7.2E+00	7.2E+00	1.0E3+ØE+	-001.4E+02	1.3E+03	No
Copper	7440-50-8	mg/kg	21/21	2.0E+01	5.7E+00	5.1E+01	2.5E+01	2.5E+01	1.8E+01	3.1E+02	4.1E+03	No
Cyanide	57-12-5	mg/kg	1/ 21	4.5E-01	3.0E+00	3.0E+00	6.7E-01	6.7E-01		1.2E+02	1.2E+03	No
Iron	7439-89-6	mg/kg	21/21	1.6E+04	3.2E+03	2.9E+04	1.8E+04	1.8E+04	2.3E+04	2.3E+03	3.1E+04	No
Lead	7439-92-1	mg/kg	21/21	1.1E+02	1.7E+01	5.3E+02	1.9E+02	1.9E+02	2.6E+01	4.0E+02	7.5E+02	Yes
Magnesium	7439-95-4	mg/kg	21/21	1.9E+03	7.7E+02	1.2E+04	2.8E+03	2.8E+03	3.0E+03			No
Manganese	7439-96-5	mg/kg	21/21	6.7E+02	6.8E+01	2.0E+03	8.3E+02	8.3E+02	1.5E+03	1.8E+02	1.9E+03	Yes
Mercury	7487-94-6	mg/kg	8/15	8.4E-02	2.8E-02	2.9E-01	1.2E-01	1.2E-01	3.6E-02	2.3E+00	3.1E+01	No
Nickel	7440-02-0	mg/kg	21/21	1.4E+01	3.5E+00	2.3E+01	1.6E+01	1.6E+01	2.1E+01	1.6E+02	2.0E+03	No
Potassium	7440-09-7	mg/kg	21/21	8.5E+02	5.1E+02	1.5E+03	9.7E+02	9.7E+02	9.3E+02			No
Selenium	7782-49-2	mg/kg	7/ 21	4.8E-01	5.3E-01	1.3E+00	5.8E-01	5.8E-01	1.4E+00	3.9E+01	5.1E+02	No
Silver	7440-22-4	mg/kg	1/ 21	6.3E-01	3.5E-01	3.5E-01	6.6E-01	3.5E-01		3.9E+01	5.1E+02	No
Sodium	7440-23-5	mg/kg	1/ 21	3.0E+02	4.3E+02	4.3E+02	3.4E+02	3.4E+02	1.2E+02			No
Thallium	6533-73-9	mg/kg	5/ 21	3.1E-01	2.9E-01	7.3E-01	4.3E-01	4.3E-01			6.7E+00	Yes
Vanadium	7440-62-2	mg/kg	21/21	1.3E+01	5.1E+00	3.9E+01	1.6E+01	1.6E+01	3.1E+01	5.5E+01	7.2E+02	No
Zinc	7440-66-6	mg/kg	21/21	2.7E+02	3.4E+01	1.6E+03	4.3E+02	4.3E+02	6.2E+01	2.3E+03	3.1E+04	No
					Organics	-Pesticide/P	CB		5.2E-	01		
4,4'-DDE	72-55-9	mg/kg	1/2	1.3E-03	1.6E-03	1.6E-03	3.1E-03	1.6E-03			7.0E+00	No
Endrin Aldehyde	7421-93-4	mg/kg	1/1	1.4E-03	1.4E-03	1.4E-03		1.4E-03			1.8E+01	No
PCB-1254	11097-69-1	mg/kg	2/2	7.7E-02	4.3E-02	1.1E-01	2.9E-01	1.1E-01		1.1E-01	7.4E-01	No
					Organic	cs-Semivolat	ile		1.7E+	-00		
Benz(a)anthracene	56-55-3	mg/kg	2/2	6.1E-02	5.0E-02	7.2E-02	1.3E-01	7.2E-02	1.8E+	00	2.1E+00	No
Benzo(a)pyrene	50-32-8	mg/kg	2/2	7.6E-02	6.0E-02	9.2E-02	1.8E-01	9.2E-02			2.1E-01	Yes
Benzo(b)fluoranthene	205-99-2	mg/kg	2/2	1.2E-01	8.4E-02	1.5E-01	3.3E-01	1.5E-01			2.1E+00	No
Benzo(g,h,i)perylene	191-24-2	mg/kg	1/2	1.5E-01	7.4E-02	7.4E-02	6.4E-01	7.4E-02	6.2E-	01		Yes
Benzo(k)fluoranthene	207-08-9	mg/kg	1/2	1.5E-01	6.5E-02	6.5E-02	6.7E-01	6.5E-02	6.2E-	02	2.1E+01	No
Bis(2-ethylhexyl)phthalate	117-81-7	mg/kg	1/2	1.4E-01	5.7E-02	5.7E-02	6.9E-01	5.7E-02	6.2E-	01 3.5E+01	1.2E+02	No

 Table A-4. Summary of COPC Screening for Load Line 1 Shallow Surface Soil (continued)

6.2E+00

Analyte	Number	Units	Limit	Average Result	Minimum Detect	Maximum Detect	95% UCL of Mean	Exposure Concentration	Site Backgd. Criteria	Region 9 Residential PRG	Region 9 Industrial PRG	COPC?
Chrysene	218-01-9	mg/kg	2/2	8.6E-02	6.2E-02	1.1E-01	2.4E-01	1.1E-01			2.1E+02	No
Fluoranthene	206-44-0	mg/kg	2/2	1.3E-01	9.3E-02	1.7E-01	3.7E-01	1.7E-01			2.2E+03	No
Indeno(1,2,3-cd)pyrene	193-39-5	mg/kg	1/2	1.5E-01	7.5E-02	7.5E-02	6.4E-01	7.5E-02			2.1E+00	No
Phenanthrene	85-01-8	mg/kg	2/2	7.8E-02	4.6E-02	1.1E-01	2.8E-01	1.1E-01	6.2E-			Yes
Pyrene CAS	129-00-0	mg/kg	2/2	9.5E-02	7.0E-02	1.2E-01	2.5E-01	1.2E-01	2.3E-	-02	2.9E+03	No
					Orga	nics-Volatile	2		6.2E-	01		
Methylene Chloride	75-09-2	mg/kg	2/2	1.5E-03	1.0E-03	1.9E-03	4.3E-03	1.9E-03		9.1E+00	2.1E+01	No
Toluene	108-88-3	mg/kg	2/2	2.3E-03	1.5E-03	3.1E-03	7.4E-03	3.1E-03	2.3E-	-02	2.2E+02	No
					Peri	meter Area						
						Metals						
Aluminum	7429-90-5	mg/kg	26/26	1.3E+04	8.8E+03	2.1E+04	1.4E+04	1.4E+04	1.8E6-6Æ-	017.6E+03	9.2E+04	Yes
Antimony	7440-36-0	mg/kg	2/ 26	6.3E-01	7.4E-01	8.1E-01	6.5E-01	6.5E-01	9.6E-01	3.1E+00	4.1E+01	No
Arsenic	7440-38-2	mg/kg	26/26	1.1E+01	7.5E+00	2.5E+01	1.3E+01	1.3E+01	1.5E+01	3.9E-01	1.6E+00	Yes
Barium	7440-39-3	mg/kg	26/26	8.3E+01	5.2E+01	1.4E+02	9.2E+01	9.2E+01	8.8E+01	5.4E+02	6.7E+03	No
Beryllium	7440-41-7	mg/kg	20/26	4.3E-01	2.7E-01	8.2E-01	5.0E-01	5.0E-01	8.8E-01	1.5E+01	1.9E+02	No
Cadmium	7440-43-9	mg/kg	10/26	2.4E-01	5.2E-02	3.2E-01	2.7E-01	2.7E-01			4.5E+01	No
Calcium	7440-70-2	mg/kg	22/26	2.0E+03	1.2E+02	3.4E+04	4.2E+03	4.2E+03	1.6E+04			No
Chromium	7440-47-3	mg/kg	26/26	1.6E+01	1.1E+01	2.5E+01	1.7E+01	1.7E+01	1.7E+01	2.1E+02	4.5E+02	No
Chromium, hexavalent	18540-29-9	mg/kg	1/ 5	8.1E-01	1.5E+00	1.5E+00	1.2E+00	1.2E+00	3.7E-	002.2E+01	6.4E+01	No
Cobalt	7440-48-4	mg/kg	26/26	9.8E+00	4.9E+00	2.1E+01	1.1E+01	1.1E+01	1.0E+01	1.4E+02	1.3E+03	No
Copper	7440-50-8	mg/kg	26/26	1.1E+01	5.1E+00	2.0E+01	1.2E+01	1.2E+01	1.8E+01	3.1E+02	4.1E+03	No
Cyanide	57-12-5	mg/kg	3/ 24	4.3E-01	7.5E-01	1.7E+00	5.6E-01	5.6E-01		1.2E+02	1.2E+03	No
Iron	7439-89-6	mg/kg	26/26	2.2E+04	1.5E+04	3.3E+04	2.4E+04	2.4E+04	2.3E+04	2.3E+03	3.1E+04	No
Lead	7439-92-1	mg/kg	26/26	1.9E+01	1.3E+01	3.5E+01	2.1E+01	2.1E+01	2.6E+01	4.0E+02	7.5E+02	No
Magnesium	7439-95-4	mg/kg	26/26	1.8E+03	9.2E+02	3.2E+03	1.9E+03	1.9E+03	3.0E+03			No
Manganese	7439-96-5	mg/kg	26/26	9.2E+02	9.9E+01	2.3E+03	1.4E+03	1.4E+03	1.5E+03	1.8E+02	1.9E+03	Yes
Mercury	7487-94-6	mg/kg	26/26	5.4E-02	1.9E-02	9.3E-02	6.1E-02	6.1E-02	3.6E-02	2.3E+00	3.1E+01	No
Nickel	7440-02-0	mg/kg	26/26	1.5E+01	8.9E+00	2.3E+01	1.6E+01	1.6E+01	2.1E+01	1.6E+02	2.0E+03	No
Potassium	7440-09-7	mg/kg	26/26	8.9E+02	3.7E+02	1.5E+03	1.0E+03	1.0E+03	9.3E+02			No
Selenium	7782-49-2	mg/kg	13/ 26	6.4E-01	4.6E-01	1.7E+00	7.9E-01	7.9E-01	1.4E+00	3.9E+01	5.1E+02	No
Thallium	6533-73-9	mg/kg	26/26	6.0E-01	4.0E-01	8.6E-01	6.4E-01	6.4E-01			6.7E+00	Yes
Vanadium	7440-62-2	mg/kg	26/26	2.7E+01	2.0E+01	4.6E+01	2.9E+01	2.9E+01	3.1E+01	5.5E+01	7.2E+02	No
Zinc	7440-66-6	mg/kg	26/26	5.8E+01	3.7E+01	7.8E+01	6.2E+01	6.2E+01	6.2E+01	2.3E+03	3.1E+04	No
					Organie	cs-Semivolat	ile		5.2E-	01		
Benzo(b)fluoranthene	205-99-2	mg/kg	1/2	1.2E-01	4.2E-02	4.2E-02	6.4E-01	4.2E-02			2.1E+00	No
Fluoranthene	206-44-0	mg/kg	1/2	1.3E-01	5.7E-02	5.7E-02	6.0E-01	5.7E-02			2.2E+03	No

Table A-4. Summary of COPC Screening for Load Line 1 Shallow Surface Soil (continued)

6.2E-01 2.3E+02

		Results > Detection	0	Minimum	Maximum	95% UCL	Exposure	Site Backgd.	Region 9 Residential	Region 9 Industrial	
Number	Units	Limit	Result	Detect	Detect	of Mean	Concentration	Criteria	PRG	PRG	COPC?
				Orga	nics-Volatile						
549-59-0	mg/kg	2/2	3.5E-03	2.9E-03	4.1E-03	7.3E-03	4.1E-03		4.3E+00	1.5E+01	No
79-01-6	mg/kg	2/2	4.5E-03	2.4E-03	6.6E-03	1.8E-02	6.6E-03		5.3E-02	1.1E-01	No
				Wa	ter Tower						
					Metals						
7429-90-5	mg/kg	5/5	1.1E+04	7.2E+03	1.3E+04	1.4E+04	1.3E+04	1.8E+04	7.6E+03	9.2E+04	No
7440-36-0	mg/kg	1/ 5	8.4E-01	1.9E+00	1.9E+00	1.4E+00	1.4E+00	9.6E-01	3.1E+00	4.1E+01	No
7440-38-2	mg/kg	5/5	1.3E+01	1.2E+01	1.4E+01	1.4E+01	1.4E+01	1.5E+01	3.9E-01	1.6E+00	No
7440-39-3	mg/kg	5/5	7.0E+01	6.5E+01	7.7E+01	7.6E+01	7.6E+01	8.8E+01	5.4E+02	6.7E+03	No
7440-41-7	mg/kg	5/5	6.4E-01	4.2E-01	9.2E-01	9.9E-01	9.2E-01	8.8E-01	1.5E+01	1.9E+02	No
7440-43-9	mg/kg	4/5	2.3E-01	1.1E-01	2.9E-01	3.1E-01	2.9E-01			4.5E+01	No
7440-70-2	mg/kg	5/5	2.5E+03	1.4E+03	3.3E+03	3.2E+03	3.2E+03	1.6E+04			No
7440-47-3	mg/kg	5/5	9.7E+01	1.8E+01	3.9E+02	2.5E+02	2.5E+02	1.7E+01	2.1E+02	4.5E+02	Yes
7440-48-4	mg/kg	5/5	1.2E+01	8.7E+00	1.8E+01	1.7E+01	1.7E+01	1.0E3+ØE+	-001.4E+02	1.3E+03	No
7440-50-8	mg/kg	5/5	2.7E+01	1.2E+01	5.1E+01	6.4E+01	5.1E+01	1.8E+01	3.1E+02	4.1E+03	No
7439-89-6	mg/kg	5/5	3.0E+04	2.2E+04	4.9E+04	4.6E+04	4.6E+04	2.3E+04	2.3E+03	3.1E+04	No
7439-92-1	mg/kg	5/5	6.1E+02	1.8E+01	2.5E+03	6.8E+06	2.5E+03	2.6E+01	4.0E+02	7.5E+02	Yes
7439-95-4	mg/kg	5/5	2.3E+03	1.8E+03	2.9E+03	2.8E+03	2.8E+03	3.0E+03			No
7439-96-5	mg/kg	5/5	5.0E+02	4.1E+02	6.9E+02	6.3E+02	6.3E+02	1.5E+03	1.8E+02	1.9E+03	No
7487-94-6	mg/kg	3/ 5	3.9E-02	3.7E-02	5.7E-02	6.2E-02	5.7E-02	3.6E-02	2.3E+00	3.1E+01	No
7440-02-0	mg/kg	5/5	2.7E+01	1.7E+01	3.2E+01	3.3E+01	3.2E+01	2.1E+01	1.6E+02	2.0E+03	No
7440-09-7	mg/kg	5/5	1.6E+03	1.3E+03	2.3E+03	2.1E+03	2.1E+03	9.3E+02			No
7440-23-5	mg/kg	1/ 5	1.1E+02	1.1E+02	1.1E+02	2.1E+02	1.1E+02	1.2E+02			No
6533-73-9	mg/kg	5/5	5.8E-01	4.9E-01	6.7E-01	6.4E-01	6.4E-01			6.7E+00	Yes
7440-62-2	mg/kg	5/5	2.0E+01	1.4E+01	2.4E+01	2.4E+01	2.4E+01	3.1E+01	5.5E+01	7.2E+02	No
7440-66-6	mg/kg	5/5	2.4E+02	5.4E+01	9.3E+02	6.1E+02	6.1E+02	6.2E+01	2.3E+03	3.1E+04	No
	549-59-0 79-01-6 7440-36-0 7440-38-2 7440-38-2 7440-39-3 7440-43-9 7440-43-9 7440-43-9 7440-43-9 7440-43-9 7440-43-9 7440-43-9 7440-43-9 7440-43-9 7440-43-9 7440-43-8 7440-43-8 7440-43-8 7440-50-8 74439-95-4 74439-95-4 74439-95-5 7447-94-6 7440-02-0 7440-02-7 7440-23-5 6533-73-9 7440-62-2	549-59-0 mg/kg 79-01-6 mg/kg 79-01-6 mg/kg 7440-36-0 mg/kg 7440-38-2 mg/kg 7440-39-3 mg/kg 7440-41-7 mg/kg 7440-43-9 mg/kg 7440-43-9 mg/kg 7440-43-9 mg/kg 7440-47-3 mg/kg 7440-50-8 mg/kg 7439-89-6 mg/kg 7439-92-1 mg/kg 7439-95-4 mg/kg 7440-02-0 mg/kg 7440-02-0	NumberUnitsDetection Limit $549-59-0$ mg/kg $2/_2$ $79-01-6$ mg/kg $2/_2$ $79-01-6$ mg/kg $2/_2$ $79-01-6$ mg/kg $2/_2$ $7440-36-0$ mg/kg $1/_5$ $7440-38-2$ mg/kg $5/_5$ $7440-39-3$ mg/kg $5/_5$ $7440-39-3$ mg/kg $5/_5$ $7440-41-7$ mg/kg $5/_5$ $7440-43-9$ mg/kg $5/_5$ $7440-47-3$ mg/kg $5/_5$ $7440-47-3$ mg/kg $5/_5$ $7440-48-4$ mg/kg $5/_5$ $7439-89-6$ mg/kg $5/_5$ $7439-92-1$ mg/kg $5/_5$ $7439-92-4$ mg/kg $5/_5$ $7440-60-6$ mg/kg $5/_5$ $7440-02-0$ mg/kg $5/_5$ <t< td=""><td>NumberUnitsDetection LimitAverage Result$549-59-0$mg/kg$2/2$$3.5E-03$$79-01-6mg/kg2/2$$4.5E-03$$79-01-6mg/kg2/2$$4.5E-03$$79-01-6mg/kg2/2$$4.5E-03$$7429-90-5mg/kg5/5$$1.1E+04$$7440-36-0mg/kg1/5$$8.4E-01$$7440-38-2mg/kg5/5$$1.3E+01$$7440-39-3mg/kg5/5$$7.0E+01$$7440-41-7mg/kg5/5$$2.3E+01$$7440-43-9mg/kg5/5$$2.5E+03$$7440-70-2mg/kg5/5$$2.5E+03$$7440-70-2mg/kg5/5$$2.7E+01$$7440-70-2mg/kg5/5$$3.0E+04$$7439-89-6mg/kg5/5$$3.0E+04$$7439-92-1mg/kg5/5$$2.3E+03$$7439-95-4mg/kg5/5$$2.3E+03$$7439-96-5mg/kg5/5$$2.7E+01$$7440-02-0mg/kg5/5$$2.7E+01$$7440-02-0mg/kg5/5$$2.7E+01$$7440-02-0mg/kg5/5$$2.7E+01$$7440-02-0mg/kg5/5$$2.7E+01$$7440-02-0mg/kg5/5$$2.7E+01$$7440-02-0mg/kg5/5$$5.8E-01$$7440-02-0mg/kg5/5$$5.8E-01$$7440-23-5mg/kg5/5$$5.8E-01$$7440-62-2mg/kg5/5$$5.0E+02$<</td><td>Number Units Detection Limit Average Result Minimum Detect 549-59-0 mg/kg 2/2 3.5E-03 2.9E-03 79-01-6 mg/kg 2/2 4.5E-03 2.4E-03 79-01-6 mg/kg 2/2 4.5E-03 2.4E-03 7429-90-5 mg/kg 5/5 1.1E+04 7.2E+03 7440-36-0 mg/kg 1/5 8.4E-01 1.9E+00 7440-38-2 mg/kg 5/5 1.3E+01 1.2E+01 7440-39-3 mg/kg 5/5 7.0E+01 6.5E+01 7440-41-7 mg/kg 5/5 2.3E-01 1.1E-01 7440-43-9 mg/kg 5/5 2.3E+01 1.4E+03 7440-70-2 mg/kg 5/5 2.7E+01 1.8E+01 7440-70-3 mg/kg 5/5 2.7E+01 1.8E+01 7440-70-2 mg/kg 5/5 3.0E+04 2.2E+04 7440-70-3 mg/kg 5/5 3.0E+04 2.2E+04 7439-92-1 mg/kg</br></td><td>NumberUnitsDetection LimitAverage ResultMinimum DetectMaximum Detect$549-59-0$mg/kg$2/2$$3.5E-03$$2.9E-03$$4.1E-03$$79-01-6mg/kg2/2$$4.5E-03$$2.4E-03$$6.6E-03$$79-01-6mg/kg2/2$$4.5E-03$$2.4E-03$$6.6E-03$$79-01-6mg/kg2/2$$4.5E-03$$2.4E-03$$6.6E-03$Water TowerMetals7429-90-5mg/kg$5/5$$1.1E+04$$7.2E+03$$1.3E+04$$7440-36-0mg/kg5/5$$1.3E+01$$1.9E+00$$1.9E+00$$7440-38-2mg/kg5/5$$7.0E+01$$6.5E+01$$7.7E+01$$7440-39-3mg/kg5/5$$2.3E-01$$1.1E-01$$2.9E-01$$7440-41-7mg/kg5/5$$2.5E+03$$1.4E+03$$3.3E+03$$7440-47-3mg/kg5/5$$2.2E+01$$1.8E+01$$3.9E+02$$7440-47-3mg/kg5/5$$2.7E+01$$1.8E+01$$3.9E+02$$7440-48-4mg/kg5/5$$3.0E+04$$2.2E+04$$4.9E+04$$7439-89-6mg/kg5/5$$2.3E+03$$1.8E+01$$2.5E+03$$7439-95-4mg/kg5/5$$2.2E+04$$4.9E+04$$7439-96-5mg/kg5/5$$5.0E+02$$4.1E+02$$6.9E+02$$7440-02-0mg/kg5/5$$5.0E+02$$4.1E+02$$6.9E+02$$7440-02-0mg/kg5/5$</td><td>NumberUnitsDetectionAverage ResultMinimum DetectMaximum Detect95% UCL of Mean549-59-0mg/kg2/3.5E-032.9E-034.1E-037.3E-0379-01-6mg/kg2/24.5E-032.4E-036.6E-031.8E-0279-01-6mg/kg2/24.5E-032.4E-036.6E-031.8E-027429-90-5mg/kg5/51.1E+047.2E+031.3E+041.4E+047440-36-0mg/kg1/58.4E-011.9E+001.9E+001.4E+017440-38-2mg/kg5/51.3E+011.2E+011.4E+011.4E+017440-39-3mg/kg5/57.0E+016.5E+017.7E+017.6E+017440-43-9mg/kg5/56.4E+014.2E+019.2E-019.9E-017440-41-7mg/kg5/52.5E+031.4E+033.3E+033.2E+037440-70-2mg/kg5/59.7E+011.8E+011.7E+015.4E+017440-73mg/kg5/59.7E+011.8E+011.7E+015.4E+017440-47-3mg/kg5/59.7E+011.8E+011.7E+016.4E+017440-47-3mg/kg5/53.0E+042.2E+044.6E+047440-47-3mg/kg5/53.0E+042.2E+044.6E+047440-48-4mg/kg5/53.0E+021.8E+013.2E+036.8E+067440-58-8mg/kg</td><td>NumberDetection LimitAverage ResultMinimum DetectMaximum Detect95% UCL of MeanExposure Concentration549-59-0mg/kg2/2$3.5E-03$$2.9E-03$$4.1E-03$$7.3E-03$$4.1E-03$79-01-6mg/kg2/2$3.5E-03$$2.9E-03$$4.1E-03$$7.3E-03$$4.1E-03$79-01-6mg/kg2/2$4.5E-03$$2.4E-03$$6.6E-03$$1.8E-02$$6.6E-03$Verture TowerVerture Tower7429-90-5mg/kg$5/$$5$$1.1E+04$$7.2E+03$$1.3E+04$$1.4E+04$$1.3E+04$7440-36-0mg/kg$5/$$5$$1.3E+01$$1.9E+00$$1.4E+01$$1.4E+01$7440-38-2mg/kg$5/$$5$$7.0E+01$$6.5E+01$$7.7E+01$$7.6E+01$7440-39-3mg/kg$5/$$5$$6.4E-01$$4.2E-01$$9.2E-01$$9.9E-01$$9.2E-01$7440-41-7mg/kg$5/$$5$$2.5E+03$$1.4E+03$$3.3E+03$$3.2E+03$$3.2E+03$7440-47-3mg/kg$5/$$5$$2.5E+03$$1.4E+03$$3.9E+02$$2.5E+02$$2.5E+02$7440-47-3mg/kg$5/$$5$$2.7E+01$$1.2E+01$$3.7E+03$$3.2E+03$$3.2E+03$7440-47-3mg/kg$5/$$5$$2.7E+01$$1.2E+01$$5.1E+01$$5.1E+01$7440-48-4mg/kg$5/$$5$$2.7E+01$$1.2E+01$<</td><td></td><td></td><td></td></t<>	NumberUnitsDetection LimitAverage Result $549-59-0$ mg/kg $2/2$ $3.5E-03$ $79-01-6$ mg/kg $2/2$ $4.5E-03$ $79-01-6$ mg/kg $2/2$ $4.5E-03$ $79-01-6$ mg/kg $2/2$ $4.5E-03$ $7429-90-5$ mg/kg $5/5$ $1.1E+04$ $7440-36-0$ mg/kg $1/5$ $8.4E-01$ $7440-38-2$ mg/kg $5/5$ $1.3E+01$ $7440-39-3$ mg/kg $5/5$ $7.0E+01$ $7440-41-7$ mg/kg $5/5$ $2.3E+01$ $7440-43-9$ mg/kg $5/5$ $2.5E+03$ $7440-70-2$ mg/kg $5/5$ $2.5E+03$ $7440-70-2$ mg/kg $5/5$ $2.7E+01$ $7440-70-2$ mg/kg $5/5$ $3.0E+04$ $7439-89-6$ mg/kg $5/5$ $3.0E+04$ $7439-92-1$ mg/kg $5/5$ $2.3E+03$ $7439-95-4$ mg/kg $5/5$ $2.3E+03$ $7439-96-5$ mg/kg $5/5$ $2.7E+01$ $7440-02-0$ mg/kg $5/5$ $5.8E-01$ $7440-02-0$ mg/kg $5/5$ $5.8E-01$ $7440-23-5$ mg/kg $5/5$ $5.8E-01$ $7440-62-2$ mg/kg $5/5$ $5.0E+02$ <	Number Units Detection Limit Average Result Minimum 	NumberUnitsDetection LimitAverage ResultMinimum DetectMaximum Detect $549-59-0$ mg/kg $2/2$ $3.5E-03$ $2.9E-03$ $4.1E-03$ $79-01-6$ mg/kg $2/2$ $4.5E-03$ $2.4E-03$ $6.6E-03$ $79-01-6$ mg/kg $2/2$ $4.5E-03$ $2.4E-03$ $6.6E-03$ $79-01-6$ mg/kg $2/2$ $4.5E-03$ $2.4E-03$ $6.6E-03$ Water TowerMetals7429-90-5mg/kg $5/5$ $1.1E+04$ $7.2E+03$ $1.3E+04$ $7440-36-0$ mg/kg $5/5$ $1.3E+01$ $1.9E+00$ $1.9E+00$ $7440-38-2$ mg/kg $5/5$ $7.0E+01$ $6.5E+01$ $7.7E+01$ $7440-39-3$ mg/kg $5/5$ $2.3E-01$ $1.1E-01$ $2.9E-01$ $7440-41-7$ mg/kg $5/5$ $2.5E+03$ $1.4E+03$ $3.3E+03$ $7440-47-3$ mg/kg $5/5$ $2.2E+01$ $1.8E+01$ $3.9E+02$ $7440-47-3$ mg/kg $5/5$ $2.7E+01$ $1.8E+01$ $3.9E+02$ $7440-48-4$ mg/kg $5/5$ $3.0E+04$ $2.2E+04$ $4.9E+04$ $7439-89-6$ mg/kg $5/5$ $2.3E+03$ $1.8E+01$ $2.5E+03$ $7439-95-4$ mg/kg $5/5$ $2.2E+04$ $4.9E+04$ $7439-96-5$ mg/kg $5/5$ $5.0E+02$ $4.1E+02$ $6.9E+02$ $7440-02-0$ mg/kg $5/5$ $5.0E+02$ $4.1E+02$ $6.9E+02$ $7440-02-0$ mg/kg $5/5$	NumberUnitsDetectionAverage ResultMinimum DetectMaximum Detect95% UCL of Mean549-59-0mg/kg2/3.5E-032.9E-034.1E-037.3E-0379-01-6mg/kg2/24.5E-032.4E-036.6E-031.8E-0279-01-6mg/kg2/24.5E-032.4E-036.6E-031.8E-027429-90-5mg/kg5/51.1E+047.2E+031.3E+041.4E+047440-36-0mg/kg1/58.4E-011.9E+001.9E+001.4E+017440-38-2mg/kg5/51.3E+011.2E+011.4E+011.4E+017440-39-3mg/kg5/57.0E+016.5E+017.7E+017.6E+017440-43-9mg/kg5/56.4E+014.2E+019.2E-019.9E-017440-41-7mg/kg5/52.5E+031.4E+033.3E+033.2E+037440-70-2mg/kg5/59.7E+011.8E+011.7E+015.4E+017440-73mg/kg5/59.7E+011.8E+011.7E+015.4E+017440-47-3mg/kg5/59.7E+011.8E+011.7E+016.4E+017440-47-3mg/kg5/53.0E+042.2E+044.6E+047440-47-3mg/kg5/53.0E+042.2E+044.6E+047440-48-4mg/kg5/53.0E+021.8E+013.2E+036.8E+067440-58-8mg/kg	NumberDetection LimitAverage ResultMinimum DetectMaximum Detect95% UCL of MeanExposure Concentration549-59-0mg/kg2/2 $3.5E-03$ $2.9E-03$ $4.1E-03$ $7.3E-03$ $4.1E-03$ 79-01-6mg/kg2/2 $3.5E-03$ $2.9E-03$ $4.1E-03$ $7.3E-03$ $4.1E-03$ 79-01-6mg/kg2/2 $4.5E-03$ $2.4E-03$ $6.6E-03$ $1.8E-02$ $6.6E-03$ Verture TowerVerture Tower7429-90-5mg/kg $5/$ 5 $1.1E+04$ $7.2E+03$ $1.3E+04$ $1.4E+04$ $1.3E+04$ 7440-36-0mg/kg $5/$ 5 $1.3E+01$ $1.9E+00$ $1.4E+01$ $1.4E+01$ 7440-38-2mg/kg $5/$ 5 $7.0E+01$ $6.5E+01$ $7.7E+01$ $7.6E+01$ 7440-39-3mg/kg $5/$ 5 $6.4E-01$ $4.2E-01$ $9.2E-01$ $9.9E-01$ $9.2E-01$ 7440-41-7mg/kg $5/$ 5 $2.5E+03$ $1.4E+03$ $3.3E+03$ $3.2E+03$ $3.2E+03$ 7440-47-3mg/kg $5/$ 5 $2.5E+03$ $1.4E+03$ $3.9E+02$ $2.5E+02$ $2.5E+02$ 7440-47-3mg/kg $5/$ 5 $2.7E+01$ $1.2E+01$ $3.7E+03$ $3.2E+03$ $3.2E+03$ 7440-47-3mg/kg $5/$ 5 $2.7E+01$ $1.2E+01$ $5.1E+01$ $5.1E+01$ 7440-48-4mg/kg $5/$ 5 $2.7E+01$ $1.2E+01$ <			

Table A-4. Summary of COPC Screening for Load Line 1 Shallow Surface Soil (continued)

^a Value is Region 9 PRG for a cancer risk level of 1E-06 or a non-cancer hazard quotient of 0.1, whichever is lower.

BHC = Benzene hexachloride.

CAS = Chemical Abstracts Service.

COPC = Contaminant of potential concern.

DDE = Dichlorodiphenyldichloroethylene.

DDT = Dichlorodiphenyltrichloroethane.

HMX = Octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine.

PCB = Polychlorinated biphenyl.

PRG = Preliminary remediation goal.

RDX = = Hexahydro-1,3,5-trinitro-1,3,5-triazine.

UCL = Upper confidence level.

			Results >						Site	Region 9	Region 9	
			Detection	Average	Minimum	Maximum	95% UCL	Exposure	Backgd.	Residential	Industrial	
Analyte	Number	Units	Limit	Result	Detect	Detect	of Mean	Concentration	Criteria ^{<i>a</i>}	PRG ^b	b	COPC?
					CB-	13 and -10						
					E.	xplosives				PR	G	
2,4,6-Trinitrotoluene	118-96-7	mg/kg	17/28	9.4E+00	5.5E-02	2.3E+02	2.3E+01	2.3E+01		3.1E+00	3.1E+01	Yes
2,4-Dinitrotoluene	121-14-2	mg/kg	6/28	7.4E-01	8.6E-02	9.3E+00	1.4E+00	1.4E+00		7.2E-01	2.5E+00	Yes
2,6-Dinitrotolucas	606-20-2	mg/kg	5/28	3.8E-01	1.1E-01	6.0E-01	7.3E-01	6.0E-01		7.2E-01	2.5E+00	No
2-Amino-4,6-dinitrotoluene	35572-78-2	mg/kg	9/28	6.3E-01	9.1E-02	8.7E+00	1.2E+00	1.2E+00				Yes
4-Amino-2,6-dinitrotoluene	19406-51-0	mg/kg	5/28	5.6E-01	2.0E-01	1.9E+00	9.4E-01	9.4E-01				Yes
4-Nitrotoluene	99-99-0	mg/kg	1/ 28	3.7E-01	2.0E-01	2.0E-01	7.3E-01	2.0E-01			1.8E+02	No
HMX	2691-41-0	mg/kg	2/ 28	8.0E-01	7.8E-01	2.2E+00	1.6E+00	1.6E+00		3.1E+02	3.1E+03	No
Nitrocellulose	9004-70-0	mg/kg	9/28	1.1E+01	6.5E+00	1.0E+02	1.8E+01	1.8E+01				Yes
RDX	121-82-4	mg/kg	1/ 28	1.7E+00	2.7E+01	2.7E+01	3.4E+00	3.4E+00	3.7E-	$01_{4.4E+00}$	1.6E+01	Yes
						Metals		•		•		
Aluminum	7429-90-5	mg/kg	55/ 55	1.1E+04	3.4E+03	2.6E+04	1.3E+04	1.3E+04	1.8E+04	7.6E+03	9.2E+04	Yes
Antimony	7440-36-0	mg/kg	17/55	2.7E+00	5.5E-01	9.8E+01	5.7E+00	5.7E+00	9.6E-01	3.1E+00	4.1E+01	Yes
Arsenic	7440-38-2	mg/kg	55/ 55	1.0E+01	3.1E+00	1.8E+01	1.1E+01	1.1E+01	1.5E+01	3.9E-01	1.6E+00	Yes
Barium	7440-39-3	mg/kg	55/ 55	1.1E+02	2.4E+01	4.1E+02	1.3E+02	1.3E+02	8.8E+01	5.4E+02	6.7E+03	No
Beryllium	7440-41-7	mg/kg	29/55	7.0E-01	2.7E-01	3.4E+00	9.2E-01	9.2E-01	8.8E-01	1.5E+01	1.9E+02	No
Cadmium	7440-43-9	mg/kg	44/55	3.4E+00	6.2E-02	4.8E+01	5.2E+00	5.2E+00			4.5E+01	Yes
Calcium	7440-70-2	mg/kg	55/ 55	2.6E+04	2.2E+02	1.6E+05	3.7E+04	3.7E+04	1.6E+04			No
Chromium	7440-47-3	mg/kg	55/55	2.5E+01	5.2E+00	3.1E+02	3.5E+01	3.5E+01	1.7E+01	2.1E+02	4.5E+02	Yes
Cobalt	7440-48-4	mg/kg	55/ 55	8.6E+00	2.2E+00	3.2E+01	9.7E+00	9.7E+00	1.0E40F	$+00_{1.4E+02}$	1.3E+03	No
Copper	7440-50-8	mg/kg	55/ 55	1.0E+02	5.3E+00	2.4E+03	1.8E+02	1.8E+02	1.8E+01	3.1E+02	4.1E+03	Yes
Cyanide	57-12-5	mg/kg	4/25	3.8E-01	6.7E-01	1.0E+00	4.5E-01	4.5E-01		1.2E+02	1.2E+03	No
Iron	7439-89-6	mg/kg	55/ 55	2.0E+04	5.2E+03	5.8E+04	2.2E+04	2.2E+04	2.3E+04	2.3E+03	3.1E+04	No
Lead	7439-92-1	mg/kg	55/ 55	1.7E+02	9.4E+00	1.8E+03	2.5E+02	2.5E+02	1.9E+01	4.0E+02	7.5E+02	Yes
Magnesium	7439-95-4	mg/kg	55/55	5.0E+03	8.0E+02	2.0E+04	6.2E+03	6.2E+03	3.0E+03			No
Manganese	7439-96-5	mg/kg	55/ 55	9.9E+02	2.3E+02	3.7E+03	1.2E+03	1.2E+03	1.5E+03	1.8E+02	1.9E+03	Yes
Mercury	7487-94-6	mg/kg	50/55	6.8E-02	9.3E-03	4.1E-01	8.7E-02	8.7E-02	3.6E-02	2.3E+00	3.1E+01	No
Nickel	7440-02-0	mg/kg	55/ 55	1.8E+01	3.3E+00	6.2E+01	2.1E+01	2.1E+01	2.1E+01	1.6E+02	2.0E+03	No
Potassium	7440-09-7	mg/kg	55/ 55	1.2E+03	4.0E+02	3.6E+03	1.3E+03	1.3E+03	9.3E+02			No
Selenium	7782-49-2	mg/kg	21/55	6.6E-01	3.9E-01	3.6E+00	8.1E-01	8.1E-01	1.4E+00	3.9E+01	5.1E+02	No
Silver	7440-22-4	mg/kg	3/ 55	5.9E-01	2.1E-01	5.2E-01	6.2E-01	5.2E-01		3.9E+01	5.1E+02	No
Sodium	7440-23-5	mg/kg	27/55	3.0E+02	6.3E+01	1.4E+03	3.6E+02	3.6E+02	1.2E+02			No
Thallium	6533-73-9	mg/kg	52/55	4.6E-01	1.9E-01	7.8E-01	4.9E-01	4.9E-01			6.7E+00	Yes
Vanadium	7440-62-2	mg/kg	55/ 55	1.5E+01	5.8E+00	3.8E+01	1.7E+01	1.7E+01	3.1E+01	5.5E+01	7.2E+02	No
Zinc	7440-66-6	mg/kg	55/ 55	3.9E+02	2.0E+01	4.2E+03	5.5E+02	5.5E+02	6.2E+01	2.3E+03	3.1E+04	Yes

Table A-5. Summary of COPC Screening for Load Line 1 Deep Surface Soil

5.2E-01

			Results >	•	N	M	95% UCL	E	Site	Region 9	Region 9	
Analyte	Number	Units	Detection Limit	Average Result	Minimum Detect	Maximum Detect	95% UCL of Mean	Exposure Concentration	Backgd. Criteria ^a	Residential PRG ^b	Industrial	COPC?
Analyte	Tulliber	Units	Linit	Result		s-Pesticide/P		concentration	criteria	IKO		core.
4,4'-DDE	72-55-9	mg/kg	3/ 6	2.9E-02	2.2E-02	8.2E-02	3.8E+02	8.2E-02		PR	G 7.0E+00	No
4.4'-DDT	50-29-3	mg/kg	1/6	6.3E-03	1.5E-02	1.5E-02	1.1E-02	1.1E-02			7.0E+00	No
Endrin Aldehyde	7421-93-4	mg/kg	3/6	2.1E-02	1.5E-02	5.3E-02	2.3E+01	5.3E-02		1.8E+00	1.8E+01	No
Heptachlor CAS	76-44-8	mg/kg	1/6	8.5E-03	2.8E-02	2.8E-02	1.7E-02	1.7E-02	1.7E-	+00	3.8E-01	No
PCB-1254	11097-69-1	mg/kg	3/6	8.6E-01	1.0E+00	2.4E+00	1.7E+00	1.7E+00	1.7E-	⁰⁰ 1.1E-01	7.4E-01	Yes
gamma-Chlordane	5103-74-2	mg/kg	2/6	1.0E-02	1.4E-02	3.5E-02	2.1E-02	2.1E-02		1.6E+00	6.5E+00	No
0			U		Organio	s-Semivolat	ile	•	1.1E-	01		
2-Methylnaphthalene	91-57-6	mg/kg	1/6	1.8E-01	1.4E-01	1.4E-01	2.0E-01	1.4E-01				Yes
Anthracene	120-12-7	mg/kg	1/6	1.7E-01	7.3E-02	7.3E-02	2.1E-01	7.3E-02			2.4E+04	No
Benz(a)anthracene	56-55-3	mg/kg	3/6	1.8E-01	6.1E-02	4.1E-01	5.1E-01	4.1E-01			2.1E+00	No
Benzo(a)pyrene	50-32-8	mg/kg	3/6	1.8E-01	8.1E-02	3.7E-01	3.9E-01	3.7E-01			2.1E-01	Yes
Benzo(b)fluoranthene	205-99-2	mg/kg	3/6	2.1E-01	1.1E-01	4.7E-01	4.1E-01	4.1E-01	2.2E-		2.1E+00	No
Benzo(g,h,i)perylene	191-24-2	mg/kg	3/ 6	1.6E-01	5.7E-02	2.4E-01	2.1E-01	2.1E-01	6.2E-	01		Yes
Benzo(k)fluoranthene	207-08-9	mg/kg	1/6	1.9E-01	2.1E-01	2.1E-01	2.0E-01	2.0E-01	6.2E-	-	2.1E+01	No
Carbazole	86-74-8	mg/kg	1/6	1.7E-01	7.2E-02	7.2E-02	2.1E-01	7.2E-02	6.2E-	01	8.6E+01	No
Chrysene	218-01-9	mg/kg	3/ 6	2.0E-01	6.9E-02	4.8E-01	5.2E-01	4.8E-01			2.1E+02	No
Di-n-butyl phthalate	84-74-2	mg/kg	1/6	2.4E-01	4.7E-01	4.7E-01	3.3E-01	3.3E-01		+00 _{6.1E+02}	6.2E+03	No
Fluoranthene	206-44-0	mg/kg	3/6	3.0E-01	1.2E-01	1.0E+00	5.8E-01	5.8E-01	2.4E-		2.2E+03	No
Fluorene	86-73-7	mg/kg	1/6	1.6E-01	4.1E-02	4.1E-02	2.1E-01	4.1E-02	6.2E-	+01	2.6E+03	No
Indeno(1,2,3-cd)pyrene	193-39-5	mg/kg	3/6	1.6E-01	5.6E-02	2.6E-01	2.2E-01	2.2E-01			2.1E+00	No
Naphthalene	91-20-3	mg/kg	1/6	1.8E-01	1.0E-01	1.0E-01	2.1E-01	1.0E-01	2.3E-		1.9E+01	No
Phenanthrene	85-01-8	mg/kg	2/6	2.2E-01	1.1E-01	4.5E-01	3.2E-01	3.2E-01	2.7E-			Yes
Pyrene	129-00-0	mg/kg	3/ 6	2.6E-01	9.4E-02	7.9E-01	8.1E-01	7.9E-01	6.2E-		2.9E+03	No
			-		Orga	nics-Volatile		-	5.6E-	+00		
1,2-Dichloroethene	549-59-0	mg/kg	5/6	3.8E-03	1.8E-03	7.2E-03	6.7E-03	6.7E-03		4.3E+00	1.5E+01	No
Acetone	67-64-1	mg/kg	1/ 6	5.7E-03	5.0E-03	5.0E-03	6.0E-03	5.0E-03	2.3E-	-	6.0E+02	No
Methylene Chloride	75-09-2	mg/kg	1/ 6	2.8E-03	2.2E-03	2.2E-03	3.1E-03	2.2E-03		9.1E+00	2.1E+01	No
Toluene	108-88-3	mg/kg		3.1E-03	3.1E-03	4.4E-03	3.7E-03	3.7E-03	L	00	2.2E+02	No
Trichloroethene	79-01-6	mg/kg	3/ 6	2.8E-03	1.8E-03	3.3E-03	3.2E-03	3.2E-03	1.6E-	⁻⁰² 5.3E-02	1.1E-01	No
					/	B-17, and C	A-15			01		
	1	1				xplosives	1		6.6E-			
2,4,6-Trinitrotoluene	118-96-7	mg/kg	3/ 5	1.0E+00	8.8E-02	4.5E+00	8.5E+02	4.5E+00		3.1E+00	3.1E+01	Yes
2,4-Dinitrotoluene	121-14-2	mg/kg	3/5	2.6E-01	1.3E-01	5.3E-01	4.4E-01	4.4E-01		7.2E-01	2.5E+00	No
4-Amino-2,6-dinitrotoluene	19406-51-0	mg/kg	2/5	2.3E-01	1.4E-01	6.2E-01	4.4E-01	4.4E-01				Yes
HMX	2691-41-0	mg/kg	2/ 5	7.5E-01	3.2E-01	2.7E+00	1.8E+00	1.8E+00		3.1E+02	3.1E+03	No

Table A-5. Summary of COPC Screening for Load Line 1 Deep Surface Soil (continued)

			Results >						Site	Region 9	Region 9	
			Detection	0			95% UCL	Exposure	Backgd.	Residential	Industrial	1
Analyte	Number	Units	Limit	Result	Detect	Detect	of Mean	Concentration	Criteria ^{<i>a</i>}	PRG ^b	b	COPC?
Nitrocellulose	9004-70-0	mg/kg	3/ 5	3.0E+01	8.8E+00	9.0E+01	1.7E+07	9.0E+01				Yes
RDX	121-82-4	mg/kg	1/ 5	7.0E+00	3.4E+01	3.4E+01	2.1E+01	2.1E+01		4.4E+0 PR	G 1.6E+01	Yes
		-				Metals			-			
Aluminum	7429-90-5	mg/kg		1.4E+04	1.6E+03	9.7E+04	1.9E+04	1.9E+04	1.8E+04	7.6E+03	9.2E+04	Yes
Antimony CAS	7440-36-0	mg/kg	2/ 28	7.2E-01	5.5E-01	6.4E-01	9.6E-01	6.4E-01	9.6E-01	3.1E+00	4.1E+01	No
Arsenic	7440-38-2	mg/kg	28/28	1.4E+01	4.5E+00	1.1E+02	2.1E+01	2.1E+01	1.5E+01	3.9E-01	1.6E+00	Yes
Barium	7440-39-3	mg/kg	28/28	9.6E+01	3.1E+01	5.7E+02	1.3E+02	1.3E+02	8.8E+01	5.4E+02	6.7E+03	Yes
Beryllium	7440-41-7	mg/kg	26/28	6.4E-01	2.4E-01	3.3E+00	8.9E-01	8.9E-01	8.8E-01	1.5E+01	1.9E+02	No
Cadmium	7440-43-9	mg/kg	12/28	1.2E+00	5.0E-02	1.2E+01	2.0E+00	2.0E+00			4.5E+01	Yes
Calcium	7440-70-2	mg/kg	28/28	1.3E+04	4.1E+02	1.3E+05	3.3E+04	3.3E+04	1.6E+04			No
Chromium	7440-47-3	mg/kg	28/28	1.9E+01	8.3E+00	1.3E+02	2.7E+01	2.7E+01	1.7E+01	2.1E+02	4.5E+02	No
Cobalt	7440-48-4	mg/kg	28/28	1.0E+01	2.6E+00	7.2E+01	1.4E+01	1.4E+01	1.0E+0F+	$-00_{1.4E+02}$	1.3E+03	No
Copper	7440-50-8	mg/kg	28/28	3.3E+01	8.0E+00	2.0E+02	4.7E+01	4.7E+01	1.8E+01	3.1E+02	4.1E+03	No
Cyanide	57-12-5	mg/kg	1/13	6.0E-01	2.4E+00	2.4E+00	9.8E-01	9.8E-01		1.2E+02	1.2E+03	No
Iron	7439-89-6	mg/kg	28/28	2.8E+04	9.8E+03	2.0E+05	3.9E+04	3.9E+04	2.3E+04	2.3E+03	3.1E+04	No
Lead	7439-92-1	mg/kg	28/28	8.6E+01	1.3E+01	6.0E+02	1.3E+02	1.3E+02	1.9E+01	4.0E+02	7.5E+02	Yes
Magnesium	7439-95-4	mg/kg	28/28	4.0E+03	4.2E+02	2.3E+04	5.7E+03	5.7E+03	3.0E+03			No
Manganese	7439-96-5	mg/kg	28/28	8.3E+02	2.2E+02	4.7E+03	1.1E+03	1.1E+03	1.5E+03	1.8E+02	1.9E+03	Yes
Mercury	7487-94-6	mg/kg	27/28	5.4E-02	1.8E-02	3.7E-01	7.7E-02	7.7E-02	3.6E-02	2.3E+00	3.1E+01	No
Nickel	7440-02-0	mg/kg	28/28	2.2E+01	7.3E+00	1.6E+02	3.1E+01	3.1E+01	2.1E+01	1.6E+02	2.0E+03	Yes
Potassium	7440-09-7	mg/kg	28/28	1.4E+03	2.9E+02	1.2E+04	2.1E+03	2.1E+03	9.3E+02			No
Selenium	7782-49-2	mg/kg	7/28	5.3E-01	4.4E-01	1.1E+00	6.5E-01	6.5E-01	1.4E+00	3.9E+01	5.1E+02	No
Silver	7440-22-4	mg/kg	3/ 28	6.8E-01	2.0E-01	2.1E-01	9.2E-01	2.1E-01		3.9E+01	5.1E+02	No
Sodium	7440-23-5	mg/kg	9/28	2.4E+02	6.3E+01	1.6E+03	3.4E+02	3.4E+02	1.2E+02			No
Thallium	6533-73-9	mg/kg	28/28	6.3E-01	3.4E-01	4.6E+00	8.8E-01	8.8E-01			6.7E+00	Yes
Vanadium	7440-62-2	mg/kg	28/28	2.4E+01	5.6E+00	1.8E+02	3.4E+01	3.4E+01	3.1E+01	5.5E+01	7.2E+02	Yes
Zinc	7440-66-6	mg/kg	28/28	1.5E+02	3.9E+01	8.8E+02	2.1E+02	2.1E+02	6.2E+01	2.3E+03	3.1E+04	No
						-Pesticide/P			5.2E-			
4,4'-DDE	72-55-9	mg/kg	3/3	7.4E-02	1.0E-02	2.0E-01	5.3E+10	2.0E-01			7.0E+00	No
Endrin Aldehyde	7421-93-4	mg/kg	3/3	1.1E-01	8.3E-03	3.0E-01	3.9E-01	3.0E-01		1.8E+00	1.8E+01	No
Endrin Ketone	53494-70-5	mg/kg	1/3	8.2E-03	4.1E-03	4.1E-03	2.5E-02	4.1E-03		1.8E+00	1.8E+01	No
Methoxychlor	72-43-5	mg/kg	1/3	1.5E-02	3.7E-03	3.7E-03	4.8E-02	3.7E-03	1.7E+		3.1E+02	No
PCB-1254	11097-69-1	mg/kg		2.0E+00	6.0E-01	4.7E+00	1.2E+06	4.7E+00		1.1E-01	7.4E-01	Yes
alpha-Chlordane	5103-71-9	mg/kg	1/3	8.5E-03	4.9E-03	4.9E-03	2.5E-02	4.9E-03		1.6E+00	6.5E+00	No
beta-BHC	319-85-7	mg/kg	1/3	8.0E-03	2.8E-03	2.8E-03	2.5E-02	2.8E-03	3.1E-		1.3E+00	No
gamma-Chlordane	5103-74-2	mg/kg	3/3	4.6E-02	4.4E-03	1.3E-01	1.7E-01	1.3E-01		1.6E+00	6.5E+00	No

Table A-5. Summary of COPC Screening for Load Line 1 Deep Surface Soil (continued)

3.2E-01

			Results > Detection	Average	Minimum	Maximum	95% UCL	Exposure	Site Backgd.	Region 9 Residential	Region 9 Industrial	
Analyte	Number	Units	Limit	Result	Detect	Detect	of Mean	Concentration	Criteria ^{<i>a</i>}	PRG ^b	b	COPC?
	•				Organic	cs-Semivolat	ile					
2-Methylnaphthalene	91-57-6	mg/kg	2/4	1.4E-01	3.8E-02	1.7E-01	2.3E-01	1.7E-01		PR	G	Yes
Acenaphthene	83-32-9	mg/kg	1/4	1.6E-01	6.9E-02	6.9E-02	2.3E-01	6.9E-02			2.9E+03	No
Anthracene	120-12-7	mg/kg	2/4	1.6E-01	1.1E-01	1.6E-01	2.0E-01	1.6E-01			2.4E+04	No
Benz(a)anthraceas	56-55-3	mg/kg	2/4	3.5E-01	4.0E-01	6.4E-01	2.0E+00	6.4E-01			2.1E+00	Yes
Benzo(a)pyrene	50-32-8	mg/kg	3/4	4.0E-01	3.7E-02	8.4E-01	8.2E-01	8.2E-01	3.7E-	-02	2.1E-01	Yes
Benzo(b)fluoranthene	205-99-2	mg/kg	3/4	5.3E-01	7.3E-02	1.1E+00	9.0E+02	1.1E+00	2.2E-		2.1E+00	Yes
Benzo(g,h,i)perylene	191-24-2	mg/kg	2/4	3.2E-01	3.0E-01	6.1E-01	1.3E+00	6.1E-01	6.2E-			Yes
Benzo(k)fluoranthene	207-08-9	mg/kg	2/4	2.3E-01	2.6E-01	3.0E-01	3.0E-01	3.0E-01	6.2E-		2.1E+01	No
Bis(2-ethylhexyl)phthalate	117-81-7	mg/kg	1/4	1.7E-01	1.4E-01	1.4E-01	2.0E-01	1.4E-01	6.2E-	013.5E+01	1.2E+02	No
Carbazole	86-74-8	mg/kg	2/4	1.4E-01	9.5E-02	1.1E-01	2.8E-01	1.1E-01			8.6E+01	No
Chrysene	218-01-9	mg/kg	2/4	3.9E-01	5.6E-01	6.4E-01	6.8E-01	6.4E-01	6.2E-	-00	2.1E+02	No
Di-n-butyl phthalate	84-74-2	mg/kg	3/4	2.8E-01	9.3E-02	7.2E-01	1.0E+01	7.2E-01		6.1E+02	6.2E+03	No
Dibenz(<i>a</i> , <i>h</i>)anthracene	53-70-3	mg/kg	2/4	1.6E-01	8.6E-02	1.8E-01	2.2E-01	1.8E-01	2.4E-	-01	2.1E-01	Yes
Dibenzofuran	132-64-9	mg/kg	1/4	1.5E-01	4.5E-02	4.5E-02	2.3E-01	4.5E-02	6.2E-	-01	3.1E+02	No
Fluoranthene	206-44-0	mg/kg	3/ 4	6.5E-01	8.9E-02	1.4E+00	1.4E+03	1.4E+00			2.2E+03	No
Fluorene	86-73-7	mg/kg	1/4	1.5E-01	5.7E-02	5.7E-02	2.3E-01	5.7E-02	6.2E-	-	2.6E+03	No
Indeno(1,2,3-cd)pyrene	193-39-5	mg/kg	2/4	3.3E-01	2.9E-01	6.4E-01	1.4E+00	6.4E-01	2.9E-		2.1E+00	Yes
Naphthalene	91-20-3	mg/kg	2/4	1.3E-01	4.5E-02	1.1E-01	2.1E-01	1.1E-01	2.3E-		1.9E+01	No
Phenanthrene	85-01-8	mg/kg	2/4	3.7E-01	4.5E-01	6.7E-01	6.5E-01	6.5E-01	2.7E-	-02		Yes
Pyrene	129-00-0	mg/kg	3/4	5.6E-01	6.3E-02	1.0E+00	1.8E+03	1.0E+00	6.2E-		2.9E+03	No
	•				Orga	nics-Volatile		•	5.6E-	-00		
1,2-Dichloroethene	549-59-0	mg/kg		2.4E-03	1.6E-03	3.1E-03	4.5E-03	3.1E-03		4.3E+00	1.5E+01	No
Methylene Chloride	75-09-2	mg/kg	2/4	2.4E-03	1.9E-03	2.1E-03	3.5E-03	2.1E-03	2.3E-	⁻⁰² 9.1E+00	2.1E+01	No
Toluene	108-88-3	mg/kg	1/4	2.5E-03	1.7E-03	1.7E-03	3.1E-03	1.7E-03			2.2E+02	No
					CB-	3 and -801						
					E	xplosives						
1,3,5-Trinitrobenzene	99-35-4	mg/kg	3/13	1.2E-01	9.8E-02	1.2E-01	1.3E-01	1.2E-01	6.6E-	⁻⁰¹ 1.8E+02	1.8E+03	No
2,4,6-Trinitrotoluene	118-96-7	mg/kg	6/13	2.2E-01	8.0E-02	1.2E+00	3.7E-01	3.7E-01		3.1E+00	3.1E+01	No
2,4-Dinitrotoluene	121-14-2	mg/kg	1/13	1.3E-01	1.5E-01	1.5E-01	1.3E-01	1.3E-01		7.2E-01	2.5E+00	No
2-Amino-4,6-dinitrotoluene	35572-78-2	mg/kg	1/13	1.2E-01	9.7E-02	9.7E-02	1.3E-01	9.7E-02				Yes
2-Nitrotoluene	88-72-2	mg/kg	1/13	1.5E-01	2.2E-01	2.2E-01	1.8E-01	1.8E-01			1.8E+02	No
4-Amino-2,6-dinitrotoluene	19406-51-0	mg/kg	5/13	1.3E-01	9.1E-02	2.3E-01	1.5E-01	1.5E-01				Yes
Nitrobenzene	98-95-3	mg/kg	3/13	1.3E-01	9.5E-02	2.3E-01	1.5E-01	1.5E-01	_		1.0E+01	No
Nitrocellulose	9004-70-0	mg/kg	5/13	2.6E+00	5.2E-01	1.5E+01	4.5E+00	4.5E+00	3.7E-	-01		Yes
RDX	121-82-4	mg/kg	1/ 13	2.5E-01	2.9E-01	2.9E-01	2.6E-01	2.6E-01	2.0E-	4.4E+00	1.6E+01	No

Table A-5. Summary of COPC Screening for Load Line 1 Deep Surface Soil (continued)

2.0E+00
			Results >						Site	Region 9	Region 9	
			Detection	Average	Minimum	Maximum	95% UCL	Exposure	Backgd.	Residential	Industrial	
Analyte	Number	Units	Limit	Result	Detect	Detect	of Mean	Concentration	Criteria ^{<i>a</i>}	PRG ^b	Ь	COPC?
						Metals						
Aluminum	7429-90-5	mg/kg	22/22	9.8E+03	4.1E+03	2.3E+04	1.2E+04	1.2E+04	1.8E+04	7.6E+0 ₽ R	G9.2E+04	Yes
Antimony	7440-36-0	mg/kg	10/22	5.0E+01	7.1E-01	6.5E+02	1.1E+02	1.1E+02	9.6E-01	3.1E+00	4.1E+01	Yes
Arsenic	7440-38-2	mg/kg	22/ 22	1.2E+01	5.3E+00	1.9E+01	1.3E+01	1.3E+01	1.5E+01	3.9E-01	1.6E+00	Yes
Barium CAS	7440-39-3	mg/kg	22/22	1.1E+02	2.1E+01	3.5E+02	1.5E+02	1.5E+02	8.8E+01	5.4E+02	6.7E+03	No
Beryllium	7440-41-7	mg/kg	11/22	5.6E-01	3.3E-01	2.5E+00	9.5E-01	9.5E-01	8.8E-01	1.5E+01	1.9E+02	No
Cadmium	7440-43-9	mg/kg	20/22	2.6E+00	7.4E-02	2.7E+01	6.3E+00	6.3E+00			4.5E+01	Yes
Calcium	7440-70-2	mg/kg	22/22	3.1E+04	3.0E+02	2.2E+05	2.0E+05	2.0E+05	1.6E+04			No
Chromium	7440-47-3	mg/kg	22/22	3.0E+01	6.8E+00	1.7E+02	4.4E+01	4.4E+01	1.7E+01	2.1E+02	4.5E+02	No
Chromium, hexavalent	18540-29-9	mg/kg	1/2	1.0E+00	1.4E+00	1.4E+00	3.5E+00	1.4E+00	3.7E-	$+00_{2.2E+01}$	6.4E+01	No
Cobalt	7440-48-4	mg/kg	22/22	7.5E+00	3.4E+00	1.1E+01	8.2E+00	8.2E+00	1.0E+01	1.4E+02	1.3E+03	No
Copper	7440-50-8	mg/kg	22/22	3.8E+01	5.9E+00	1.9E+02	5.6E+01	5.6E+01	1.8E+01	3.1E+02	4.1E+03	No
Cyanide	57-12-5	mg/kg	2/9	4.0E-01	5.8E-01	1.0E+00	5.5E-01	5.5E-01			1.2E+03	No
Iron	7439-89-6	mg/kg	22/22	2.4E+04	8.8E+03	9.0E+04	3.0E+04	3.0E+04	2.3E+04	2.3E+03	3.1E+04	No
Lead	7439-92-1	mg/kg	22/ 22	2.4E+02	1.6E+01	1.6E+03	6.1E+02	6.1E+02	1.9E+01	4.0E+02	7.5E+02	Yes
Magnesium	7439-95-4	mg/kg	22/22	4.1E+03	1.3E+03	1.7E+04	5.5E+03	5.5E+03	3.0E ¹ + 05 +	-02		No
Manganese	7439-96-5	mg/kg	22/22	9.2E+02	3.2E+02	4.1E+03	1.3E+03	1.3E+03	1.5E+03	1.8E+02	1.9E+03	Yes
Mercury	7487-94-6	mg/kg		8.5E-02	1.6E-02	4.2E-01	1.4E-01	1.4E-01	3.6E-02	2.3E+00	3.1E+01	No
Nickel	7440-02-0	mg/kg	22/22	1.9E+01	7.8E+00	6.1E+01	2.3E+01	2.3E+01	2.1E+01	1.6E+02	2.0E+03	No
Potassium	7440-09-7	mg/kg	22/22	1.1E+03	5.7E+02	1.8E+03	1.2E+03	1.2E+03	9.3E+02			No
Selenium	7782-49-2	mg/kg	10/ 22	5.5E-01	3.9E-01	1.8E+00	6.9E-01	6.9E-01	1.4E+00	3.9E+01	5.1E+02	No
Silver	7440-22-4	mg/kg	3/ 22	5.7E-01	2.1E-01	4.6E-01	6.2E-01	4.6E-01		3.9E+01	5.1E+02	No
Sodium	7440-23-5	mg/kg	7/ 22	2.3E+02	7.0E+01	9.3E+02	3.0E+02	3.0E+02	1.2E+02			No
Thallium	6533-73-9	mg/kg	22/22	5.6E-01	4.3E-01	8.0E-01	6.0E-01	6.0E-01			6.7E+00	Yes
Vanadium	7440-62-2	mg/kg		1.5E+01	7.8E+00	2.7E+01	1.8E+01	1.8E+01	3.1E+01	5.5E+01	7.2E+02	No
Zinc	7440-66-6	mg/kg	22/22	1.9E+02	7.2E+01	6.7E+02	2.6E+02	2.6E+02	6.2E+01	2.3E+03	3.1E+04	No
						-Pesticide/P	СВ		5.2E-	01		
4,4'-DDE	72-55-9	mg/kg	2/4	5.2E-02	4.8E-02	1.2E-01	1.1E+00	1.2E-01			7.0E+00	No
4,4'-DDT	50-29-3	mg/kg	1/4	2.5E-02	4.1E-02	4.1E-02	3.8E-02	3.8E-02			7.0E+00	No
Dieldrin	60-57-1	mg/kg	1/4	2.4E-02	3.6E-02	3.6E-02	3.3E-02	3.3E-02			1.1E-01	Yes
Endrin Aldehyde	7421-93-4	mg/kg	2/4	8.1E-02	7.3E-02	2.1E-01	2.2E+01	2.1E-01	1.7E-	$+00_{1.8E+00}$	1.8E+01	No
Endrin Ketone	53494-70-5	mg/kg	1/4	3.1E-02	8.1E-02	8.1E-02	7.1E-02	7.1E-02		$+00_{1.8E+00}$	1.8E+01	No
Methoxychlor	72-43-5	mg/kg	1/4	3.6E-02	2.6E-02	2.6E-02	4.3E-02	2.6E-02	3.0E-	02	3.1E+02	No
PCB-1254	11097-69-1	mg/kg	4/4	1.8E+00	3.3E-01	4.3E+00	4.3E+02	4.3E+00		1.1E-01	7.4E-01	Yes
beta-BHC	319-85-7	mg/kg	2/4	6.9E-02	1.8E-02	2.2E-01	1.9E-01	1.9E-01			1.3E+00	No
gamma-Chlordane	5103-74-2	mg/kg	2/4	3.3E-02	4.0E-02	5.2E-02	5.2E-02	5.2E-02	3.1E-	⁻⁰¹ 1.6E+00	6.5E+00	No

Table A-5. Summary of COPC Screening for Load Line 1 Deep Surface Soil (continued)

3.2E-01

Analyte	Number	Units	Results > Detection Limit	Average Result	Minimum Detect	Maximum Detect	95% UCL of Mean	Exposure Concentration	Site Backgd. Criteria ^a	Region 9 Residential PRG ^b	Region 9 Industrial	COPC?
		-			Organic	s-Semivolat	ile					
2-Methylnaphthalene	91-57-6	mg/kg	2/ 5	6.0E-01	5.0E-02	1.2E-01	1.6E+00	1.2E-01		PR	G	Yes
Acenaphthene	83-32-9	mg/kg	1/ 5	6.9E-01	2.4E+00	2.4E+00	1.6E+00	1.6E+00			2.9E+03	No
Anthracene	120-12-7	mg/kg	2/ 5	1.3E+00	2.1E-01	5.8E+00	3.7E+00	3.7E+00			2.4E+04	No
Benz(a)anthraceas	56-55-3	mg/kg	5/5	3.1E+00	7.1E-02	1.4E+01	1.5E+06	1.4E+01			2.1E+00	Yes
Benzo(<i>a</i>)pyrene	50-32-8	mg/kg	5/5	2.9E+00	7.3E-02	1.3E+01	1.5E+06	1.3E+01	3.7E-	-	2.1E-01	Yes
Benzo(b)fluoranthene	205-99-2	mg/kg	5/5	3.6E+00	1.0E-01	1.5E+01	1.6E+06	1.5E+01	2.2E-		2.1E+00	Yes
Benzo(g,h,i)perylene	191-24-2	mg/kg	5/5	2.0E+00	5.4E-02	8.2E+00	1.2E+06	8.2E+00	6.2E-	-		Yes
Benzo(k)fluoranthene	207-08-9	mg/kg	3/5	1.4E+00	1.3E-01	5.7E+00	9.0E+02	5.7E+00	6.2E-	-	2.1E+01	No
Bis(2-ethylhexyl)phthalate	117-81-7	mg/kg	2/5	6.5E-01	9.5E-02	3.4E-01	1.6E+00	3.4E-01	6.2E-	013.5E+01	1.2E+02	No
Carbazole	86-74-8	mg/kg	2/5	9.7E-01	1.6E-01	4.1E+00	2.6E+00	2.6E+00			8.6E+01	No
Chrysene	218-01-9	mg/kg	5/5	3.5E+00	8.9E-02	1.5E+01	1.4E+06	1.5E+01	6.2E-	-00	2.1E+02	No
Di-n-butyl phthalate	84-74-2	mg/kg	1/5	7.1E-01	5.0E-01	5.0E-01	1.6E+00	5.0E-01		6.1E+02	6.2E+03	No
Dibenz(<i>a</i> , <i>h</i>)anthracene	53-70-3	mg/kg	2/5	5.2E-01	3.2E-01	1.7E+00	1.2E+00	1.2E+00	2.4E-	-	2.1E-01	Yes
Dibenzofuran	132-64-9	mg/kg	1/5	4.7E-01	1.3E+00	1.3E+00	9.3E-01	9.3E-01	6.2E-	-01	3.1E+02	No
Fluoranthene	206-44-0	mg/kg	5/5	8.4E+00	1.4E-01	3.9E+01	7.0E+06	3.9E+01			2.2E+03	No
Fluorene	86-73-7	mg/kg	1/5	6.7E-01	2.3E+00	2.3E+00	1.5E+00	1.5E+00	6.2E-	02	2.6E+03	No
Indeno(1,2,3-cd)pyrene	193-39-5	mg/kg	5/5	2.0E+00	5.3E-02	8.7E+00	9.4E+05	8.7E+00	2.9E-	-01	2.1E+00	Yes
Naphthalene	91-20-3	mg/kg	1/5	6.7E-01	4.6E-02	4.6E-02	1.6E+00	4.6E-02	2.3E-		1.9E+01	No
Pentachlorophenol	87-86-5	mg/kg	1/5	1.6E+00	8.3E-02	8.3E-02	4.0E+00	8.3E-02	2.7E-	$+02_{3.0E+00}$	9.0E+00	No
Phenanthrene	85-01-8	mg/kg	5/5	6.3E+00	7.2E-02	3.0E+01	8.0E+06	3.0E+01	6.2E-			Yes
Phenol	108-95-2	mg/kg	1/5	6.7E-01	4.5E-02	4.5E-02	1.6E+00	4.5E-02	5.6E-	-00	3.7E+04	No
Pyrene	129-00-0	mg/kg	5/5	8.7E+00	1.4E-01	4.1E+01	8.8E+06	4.1E+01			2.9E+03	No
•	•		./		Orgai	nics-Volatile				•	•	
1,2-Dichloroethene	549-59-0	mg/kg	5/5	4.7E-03	7.2E-04	7.9E-03	7.1E-03	7.1E-03	3.7E-	+0.34.3E+00	1.5E+01	No
Methylene Chloride	75-09-2	mg/kg	1/5	2.9E-03	3.0E-03	3.0E-03	3.0E-03	3.0E-03	2.3E-	⁻⁰² 9.1E+00	2.1E+01	No
Trichloroethene	79-01-6	mg/kg	1/ 5	3.2E-03	4.4E-03	4.4E-03	3.9E-03	3.9E-03		5.3E-02	1.1E-01	No
	•				CB-4/4 A	and CA-6/	6A			•	•	
					E	xplosives						
1,3,5-Trinitrobenzene	99-35-4	mg/kg	6/95	3.7E+00	1.2E-01	1.1E+02	6.4E+00	6.4E+00		1.8E+02	1.8E+03	No
1,3-Dinitrobenzene	99-65-0	mg/kg	4/95	3.7E+00	3.4E-02	1.1E+02	6.4E+00	6.4E+00		6.1E-01	6.2E+00	Yes
2,4,6-Trinitrotoluene	118-96-7	mg/kg	72/95	1.9E+02	5.2E-02	4.8E+03	3.3E+02	3.3E+02		3.1E+00	3.1E+01	Yes
2,4-Dinitrotoluene	121-14-2	mg/kg	9/95	3.9E+00	4.6E-02	2.3E-01	6.7E+00	2.3E-01		7.2E-01	2.5E+00	No
2,6-Dinitrotoluene	606-20-2	mg/kg	8/95	3.9E+00	9.3E-02	8.6E-01	6.7E+00	8.6E-01		7.2E-01	2.5E+00	Yes
2-Amino-4,6-dinitrotoluene	35572-78-2	mg/kg	51/95	4.4E+00	1.0E-01	1.1E+01	7.2E+00	7.2E+00				Yes
2-Nitrotoluene	88-72-2	mg/kg	2/ 95	3.9E+00	1.8E-01	6.9E-01	6.7E+00	6.9E-01			1.8E+02	No
3-Nitrotoluene	99-08-1	mg/kg	5/95	3.9E+00	1.4E-01	1.8E-01	6.7E+00	1.8E-01			1.8E+02	No

Table A-5. Summary of COPC Screening for Load Line 1 Deep Surface Soil (continued)

3.7E+01 3.7E+01

Analyte	Number	Units	Results > Detection Limit	Result	Minimum Detect	Maximum Detect	95% UCL of Mean	Exposure Concentration	Site Backgd. Criteria ^a	Region 9 Residential PRG ^b	Region 9 Industrial	COPC?
4-Amino-2,6-dinitrotoluene	19406-51-0	mg/kg	26/95	9.1E+00	1.3E-01	5.9E+00	1.7E+01	5.9E+00				Yes
4-Nitrotoluene	99-99-0	mg/kg	5/95	3.9E+00	1.1E-01	2.0E-01	6.7E+00	2.0E-01			G 1.8E+02	No
HMX	2691-41-0	mg/kg	15/95	9.2E+00	2.5E-01	2.6E+02	1.6E+01	1.6E+01		3.1E+02	3.1E+03	No
Nitrobenzene	98-95-3	mg/kg	8/95	3.9E+00	4.8E-02	5.9E-01	6.7E+00	5.9E-01	2.41	701	1.0E+01	No
NitrocelluloseCAS	9004-70-0	mg/kg	57/94	1.0E+01	3.0E-01	3.9E+02	1.8E+01	1.8E+01	3.7E-	-01		Yes
Nitroglycerin	55-63-0	mg/kg	1/95	3.9E+01	7.4E+00	7.4E+00	6.7E+01	7.4E+00			1.2E+02	No
Nitroguanidine	556-88-7	mg/kg	1/95	2.3E-01	3.5E-02	3.5E-02	3.4E-01	3.5E-02	2.0E+		6.2E+03	No
RDX	121-82-4	mg/kg	21/95	4.4E+01	2.2E-01	2.3E+03	8.9E+01	8.9E+01		4.4E+00	1.6E+01	Yes
						Metals			3.5E-			
Aluminum	7429-90-5	mg/kg	181/181	9.4E+03	4.9E+02	4.6E+04	1.0E+04	1.0E+04	1.8E9-04-	⁺⁰² 7.6E+03	9.2E+04	Yes
Antimony	7440-36-0	mg/kg	22/181	6.8E-01	5.9E-01	3.0E+00	7.3E-01	7.3E-01	9.6E-01	3.1E+00	4.1E+01	No
Arsenic	7440-38-2	mg/kg	181/181	1.0E+01	1.8E+00	5.6E+01	1.1E+01	1.1E+01	1.5E+01	3.9E-01	1.6E+00	Yes
Barium	7440-39-3	mg/kg	181/181	1.1E+02	7.1E+00	2.0E+03	1.3E+02	1.3E+02	8.8E+01	5.4E+02	6.7E+03	Yes
Beryllium	7440-41-7	mg/kg	109/181	4.1E-01	2.2E-01	2.6E+00	4.6E-01	4.6E-01	8.8E-01	1.5E+01	1.9E+02	No
Cadmium	7440-43-9	mg/kg	136/181	1.4E+00	5.3E-02	2.7E+01	1.8E+00	1.8E+00		3.7E+00	4.5E+01	Yes
Calcium	7440-70-2	mg/kg	180/181	7.4E+03	1.2E+02	1.2E+05	9.6E+03	9.6E+03	1.6E+04			No
Chromium	7440-47-3	mg/kg	181/181	2.0E+01	1.5E+00	4.0E+02	2.4E+01	2.4E+01	1.7E+01	2.1E+02	4.5E+02	Yes
Chromium, hexavalent	18540-29-9	mg/kg	1/ 38	1.1E+00	1.4E+01	1.4E+01	1.7E+00	1.7E+00		2.2E+01	6.4E+01	No
Cobalt	7440-48-4	mg/kg	180/181	8.0E+00	5.5E-01	4.9E+01	8.6E+00	8.6E+00	1.0E+01	1.4E+02	1.3E+03	No
Copper	7440-50-8	mg/kg	181/181	6.0E+01	2.4E+00	3.7E+03	9.9E+01	9.9E+01	1.8E+01	3.1E+02	4.1E+03	Yes
Cyanide	57-12-5	mg/kg	12/89	4.5E-01	5.7E-01	3.8E+00	5.3E-01	5.3E-01			1.2E+03	No
Iron	7439-89-6	mg/kg	181/181	2.1E+04	2.5E+03	1.1E+05	2.2E+04	2.2E+04	2.3E+04	2.3E+03	3.1E+04	No
Lead	7439-92-1	mg/kg	181/181	1.8E+02	8.4E+00	7.1E+03	2.6E+02	2.6E+02	1.9E+01	4.0E+02	7.5E+02	Yes
Magnesium	7439-95-4	mg/kg	181/181	2.4E+03	1.1E+02	1.5E+04	2.7E+03	2.7E+03	3.0EHOS	-02		No
Manganese	7439-96-5	mg/kg	181/181	6.2E+02	5.1E+01	3.5E+03	6.8E+02	6.8E+02	1.5E+03	1.8E+02	1.9E+03	Yes
Mercury	7487-94-6	mg/kg	163/181	2.0E-01	1.0E-02	9.7E+00	3.1E-01	3.1E-01	3.6E-02	2.3E+00	3.1E+01	Yes
Nickel	7440-02-0	mg/kg	180/181	1.6E+01	1.4E+00	1.0E+02	1.7E+01	1.7E+01	2.1E+01	1.6E+02	2.0E+03	No
Potassium	7440-09-7	mg/kg	179/181	9.2E+02	2.0E+02	5.7E+03	9.8E+02	9.8E+02	9.3E+02			No
Selenium	7782-49-2	mg/kg	109/181	7.0E-01	3.4E-01	5.3E+00	7.7E-01	7.7E-01	1.4E+00	3.9E+01	5.1E+02	No
Silver	7440-22-4	mg/kg	5/ 181	5.9E-01	1.7E-01	8.8E-01	6.2E-01	6.2E-01		3.9E+01	5.1E+02	No
Sodium	7440-23-5	mg/kg	28/181	2.5E+02	6.0E+01	8.9E+02	2.7E+02	2.7E+02	1.2E+02	5.52.01	2112.02	No
Thallium	6533-73-9	mg/kg	172/181	5.0E-01	1.7E-01	2.5E+00	5.3E-01	5.3E-01			6.7E+00	Yes
Vanadium	7440-62-2	mg/kg	181/181	1.8E+01	1.2E+00	7.8E+01	1.9E+01	1.9E+01	3.1E+01	5.5E+01	7.2E+02	Yes
Zinc		mg/kg	180/180	1.6E+01	1.5E+01	1.7E+03	1.9E+01 1.8E+02	1.8E+02	6.2E+01	2.3E+03	3.1E+04	No
	, 110 00-0	111 <u>6</u> / 11 <u>6</u>	100/ 100	1.01 02		-Pesticide/P		1.01102	5.2E-		5.11.104	110
4.4'-DDE	72-55-9	mg/kg	12/ 17	5.1E-01	3.0E-03	6.7E+00	1.2E+00	1.2E+00			7.0E+00	Yes
4.4'-DDT		mg/kg	2/ 17	2.1E-01	5.3E-03	4.1E-02	4.1E-02	4.1E-02			7.0E+00	No

Table A-5. Summary of COPC Screening for Load Line 1 Deep Surface Soil (continued)

1.7E+00 1.7E+00

Analyte	Number	Units	Results > Detection Limit	Average Result	Minimum Detect	Maximum Detect	95% UCL of Mean	Exposure Concentration	Site Backgd. Criteria ^a	Region 9 Residential PRG ^b	Region 9 Industrial	COPC?
Dieldrin	60-57-1	mg/kg	3/17	4.3E-02	1.4E-02	5.5E-01	9.8E-02	9.8E-02			1.1E-01	Yes
Endrin Aldehyde	7421-93-4	mg/kg	10/ 17	3.1E-01	3.8E-03	4.4E+00	5.6E+00	4.4E+00		1.8E+0 PR	G 1.8E+01	Yes
Endrin Ketone	53494-70-5	mg/kg	1/17	1.9E-02	1.4E-02	1.4E-02	3.9E-02	1.4E-02			1.8E+01	No
Heptachlor	76-44-8	mg/kg	2/17	3.5E-02	7.2E-03	3.2E-01	7.2E-02	7.2E-02	3.0E-	02	3.8E-01	Yes
Heptachlor Epoxise	1024-57-3	mg/kg	1/17	2.0E-02	3.1E-02	3.1E-02	4.0E-02	3.1E-02		5.3E-02	1.9E-01	No
Methoxychlor	72-43-5	mg/kg	1/17	3.8E-02	1.4E-02	1.4E-02	7.6E-02	1.4E-02	1.8E+		3.1E+02	No
PCB-1016	12674-11-2	mg/kg	1/17	2.4E+00	1.4E-01	1.4E-01	6.3E+00	1.4E-01	1.1E-	01 3.9E-01	3.7E+00	No
PCB-1254	11097-69-1	mg/kg	15/17	7.0E+01	5.3E-02	1.1E+03	3.3E+03	1.1E+03		1.1E-01	7.4E-01	Yes
alpha-Chlordane	5103-71-9	mg/kg	1/17	3.3E-02	4.4E-01	4.4E-01	7.8E-02	7.8E-02	3.1E-	-01	6.5E+00	No
beta-BHC	319-85-7	mg/kg	1/17	1.9E-02	9.7E-03	9.7E-03	3.9E-02	9.7E-03			1.3E+00	No
gamma-Chlordane	5103-74-2	mg/kg	5/17	3.5E-01	6.0E-03	5.3E+00	8.9E-01	8.9E-01			6.5E+00	Yes
-	•				Organic	s-Semivolat	ile	•	1.6E-	-00		
2-Methylnaphthalene	91-57-6	mg/kg	2/ 18	3.6E-01	4.1E-02	7.7E-02	5.4E-01	7.7E-02	3.2E-			Yes
Acenaphthene	83-32-9	mg/kg	1/ 18	3.8E-01	2.3E-01	2.3E-01	5.6E-01	2.3E-01	1.6E-	-00	2.9E+03	No
Anthracene	120-12-7	mg/kg	2/18	3.6E-01	2.1E-01	5.5E-01	5.4E-01	5.4E-01			2.4E+04	No
Benz(a)anthracene	56-55-3	mg/kg	4/18	4.3E-01	6.1E-02	1.2E+00	6.4E-01	6.4E-01			2.1E+00	Yes
Benzo(<i>a</i>)pyrene	50-32-8	mg/kg	4/18	4.1E-01	6.0E-02	1.0E+00	6.1E-01	6.1E-01	3.7E+	⁻⁰² 6.2E-02	2.1E-01	Yes
Benzo(b)fluoranthene	205-99-2	mg/kg	6/18	4.4E-01	4.2E-02	1.4E+00	6.6E-01	6.6E-01	2.2E+	-03	2.1E+00	Yes
Benzo(g,h,i)perylene	191-24-2	mg/kg	3/18	3.7E-01	7.4E-02	5.5E-01	5.4E-01	5.4E-01	6.2E-	01		Yes
Benzo(k)fluoranthene	207-08-9	mg/kg	3/18	3.7E-01	5.3E-02	5.8E-01	5.5E-01	5.5E-01			2.1E+01	No
Bis(2-ethylhexyl)phthalate	117-81-7	mg/kg	4/18	3.5E-01	7.9E-02	1.1E-01	5.4E-01	1.1E-01	6.2E-	013.5E+01	1.2E+02	No
Butyl benzyl phthalate	85-68-7	mg/kg	1/ 18	3.7E-01	5.0E-02	5.0E-02	5.5E-01	5.0E-02		1.2E+03	1.2E+04	No
Carbazole	86-74-8	mg/kg	1/ 18	3.8E-01	3.8E-01	3.8E-01	5.6E-01	3.8E-01	6.2E+	-00	8.6E+01	No
Chrysene	218-01-9	mg/kg	4/18	4.3E-01	9.5E-02	1.1E+00	6.3E-01	6.3E-01			2.1E+02	No
Dibenz(a,h)anthracene	53-70-3	mg/kg	1/18	3.7E-01	9.6E-02	9.6E-02	5.5E-01	9.6E-02			2.1E-01	Yes
Dibenzofuran	132-64-9	mg/kg	1/18	3.7E-01	1.9E-01	1.9E-01	5.5E-01	1.9E-01	2.4E+		3.1E+02	No
Fluoranthene	206-44-0	mg/kg	8/18	5.5E-01	5.6E-02	2.9E+00	9.1E-01	9.1E-01	6.2E+		2.2E+03	No
Fluorene	86-73-7	mg/kg	1/18	3.8E-01	3.1E-01	3.1E-01	5.6E-01	3.1E-01	6.2E-	$02_{2.7E+02}$	2.6E+03	No
Indeno(1,2,3-cd)pyrene	193-39-5	mg/kg	3/18	3.7E-01	7.6E-02	6.2E-01	5.5E-01	5.5E-01	2.9E+	⁰¹ 6.2E-01	2.1E+00	No
Naphthalene	91-20-3	mg/kg	1/ 18	3.7E-01	2.2E-01	2.2E-01	5.6E-01	2.2E-01	2.3E+	-02	1.9E+01	No
Phenanthrene	85-01-8	mg/kg	5/18	4.9E-01	4.6E-02	2.5E+00	7.7E-01	7.7E-01				Yes
Phenol	108-95-2	mg/kg	1/ 18	3.7E-01	5.0E-02	5.0E-02	5.5E-01	5.0E-02		3.7E+03	3.7E+04	No
Pyrene	129-00-0	mg/kg	5/18	5.4E-01	7.0E-02	2.3E+00	8.3E-01	8.3E-01	5.6E+	⁰⁰ 2.3E+02	2.9E+03	No
Organics-Volatile												
1,2-Dichloroethene	549-59-0	mg/kg	17/18	6.3E-03	7.0E-04	1.8E-02	1.2E-02	1.2E-02		4.3E+00	1.5E+01	No
Acetone	67-64-1	mg/kg	2/ 18	7.0E-03	8.6E-03	1.1E-02	8.1E-03	8.1E-03		1.6E+02	6.0E+02	No
Methylene Chloride	75-09-2	mg/kg	2/18	3.0E-03	1.7E-03	3.3E-03	3.4E-03	3.3E-03		9.1E+00	2.1E+01	No

Table A-5. Summary of COPC Screening for Load Line 1 Deep Surface Soil (continued)

Analyte	Number	Units	Results > Detection Limit	Average Result	Minimum Detect	Maximum Detect	95% UCL of Mean	Exposure Concentration	Site Backgd. Criteria ^a	Region 9 Residential PRG ^b	b	COPC?
Trichloroethene	79-01-6	mg/kg	2/18	3.3E-03	2.6E-03	6.7E-03	3.8E-03	3.8E-03			1.1E-01	No
				Chan	ge Houses (CB-12, -23,	-8, and -22)			PR	G	
						Metals						-
Aluminum	7429-90-5	mg/kg	21/21	6.9E+03	3.7E+03	1.7E+04	8.4E+03	8.4E+03	1.8E5+ØÆ-	027.6E+03	9.2E+04	No
Antimony CAS	7440-36-0	mg/kg	3/ 21	1.3E+00	9.0E-01	1.3E+01	2.3E+00	2.3E+00	9.6E-01	3.1E+00	4.1E+01	Yes
Arsenic	7440-38-2	mg/kg	21/21	1.0E+01	2.5E+00	2.8E+01	1.2E+01	1.2E+01	1.5E+01	3.9E-01	1.6E+00	Yes
Barium	7440-39-3	mg/kg		5.7E+01	1.8E+01	1.8E+02	7.1E+01	7.1E+01	8.8E+01	5.4E+02	6.7E+03	No
Beryllium	7440-41-7	mg/kg	3/ 21	2.5E-01	4.5E-01	1.2E+00	3.5E-01	3.5E-01	8.8E-01	1.5E+01	1.9E+02	No
Cadmium	7440-43-9	mg/kg	15/21	1.6E+00	1.4E-01	1.1E+01	3.3E+00	3.3E+00			4.5E+01	Yes
Calcium	7440-70-2	mg/kg	21/21	1.1E+04	3.6E+02	1.8E+05	2.5E+04	2.5E+04	1.6E+04			No
Chromium	7440-47-3	mg/kg	21/21	1.3E+01	6.4E+00	2.7E+01	1.5E+01	1.5E+01	1.7E+01	2.1E+02	4.5E+02	No
Cobalt	7440-48-4	mg/kg	21/21	6.2E+00	1.9E+00	1.5E+01	7.2E+00	7.2E+00	1.0E+0F+	001.4E+02	1.3E+03	No
Copper	7440-50-8	mg/kg	21/21	2.0E+01	5.7E+00	5.1E+01	2.5E+01	2.5E+01	1.8E+01	3.1E+02	4.1E+03	No
Cyanide	57-12-5	mg/kg	1/ 21	4.5E-01	3.0E+00	3.0E+00	6.7E-01	6.7E-01		1.2E+02	1.2E+03	No
Iron	7439-89-6	mg/kg	21/21	1.6E+04	3.2E+03	2.9E+04	1.8E+04	1.8E+04	2.3E+04	2.3E+03	3.1E+04	No
Lead	7439-92-1	mg/kg	21/21	1.1E+02	1.7E+01	5.3E+02	1.9E+02	1.9E+02	1.9E+01	4.0E+02	7.5E+02	Yes
Magnesium	7439-95-4	mg/kg	21/21	1.9E+03	7.7E+02	1.2E+04	2.8E+03	2.8E+03	3.0E+03			No
Manganese	7439-96-5	mg/kg	21/21	6.7E+02	6.8E+01	2.0E+03	8.3E+02	8.3E+02	1.5E+03	1.8E+02	1.9E+03	Yes
Mercury	7487-94-6	mg/kg	8/15	8.4E-02	2.8E-02	2.9E-01	1.2E-01	1.2E-01	3.6E-02	2.3E+00	3.1E+01	No
Nickel	7440-02-0	mg/kg	21/21	1.4E+01	3.5E+00	2.3E+01	1.6E+01	1.6E+01	2.1E+01	1.6E+02	2.0E+03	No
Potassium	7440-09-7	mg/kg	21/21	8.5E+02	5.1E+02	1.5E+03	9.7E+02	9.7E+02	9.3E+02			No
Selenium	7782-49-2	mg/kg	7/ 21	4.8E-01	5.3E-01	1.3E+00	5.8E-01	5.8E-01	1.4E+00	3.9E+01	5.1E+02	No
Silver	7440-22-4	mg/kg	1/21	6.3E-01	3.5E-01	3.5E-01	6.6E-01	3.5E-01		3.9E+01	5.1E+02	No
Sodium	7440-23-5	mg/kg	1/21	3.0E+02	4.3E+02	4.3E+02	3.4E+02	3.4E+02	1.2E+02			No
Thallium	6533-73-9	mg/kg	5/21	3.1E-01	2.9E-01	7.3E-01	4.3E-01	4.3E-01			6.7E+00	Yes
Vanadium	7440-62-2	mg/kg	21/21	1.3E+01	5.1E+00	3.9E+01	1.6E+01	1.6E+01	3.1E+01	5.5E+01	7.2E+02	No
Zinc	7440-66-6	mg/kg	21/21	2.7E+02	3.4E+01	1.6E+03	4.3E+02	4.3E+02	6.2E+01	2.3E+03	3.1E+04	No
					Organics	-Pesticide/P	СВ		5.2E-	01		
4,4'-DDE	72-55-9	mg/kg	1/2	1.3E-03	1.6E-03	1.6E-03	3.1E-03	1.6E-03			7.0E+00	No
Endrin Aldehyde	7421-93-4	mg/kg	1/1	1.4E-03	1.4E-03	1.4E-03		1.4E-03			1.8E+01	No
PCB-1254	11097-69-1	mg/kg	2/2	7.7E-02	4.3E-02	1.1E-01	2.9E-01	1.1E-01		1.1E-01	7.4E-01	No
	•				Organic	s-Semivolat	ile	•	1.7E-	-00		
Benz(a)anthracene	56-55-3	mg/kg	2/ 2	6.1E-02	5.0E-02	7.2E-02	1.3E-01	7.2E-02	1.8E+	00	2.1E+00	No
Benzo(a)pyrene	50-32-8	mg/kg	2/2	7.6E-02	6.0E-02	9.2E-02	1.8E-01	9.2E-02			2.1E-01	Yes
Benzo(b)fluoranthene	205-99-2	mg/kg	2/2	1.2E-01	8.4E-02	1.5E-01	3.3E-01	1.5E-01			2.1E+00	No
Benzo(g,h,i) perylene	191-24-2	mg/kg	1/2	1.5E-01	7.4E-02	7.4E-02	6.4E-01	7.4E-02	6.2E-	01		Yes
Benzo(k)fluoranthene	207-08-9	mg/kg	1/2	1.5E-01	6.5E-02	6.5E-02	6.7E-01	6.5E-02	6.2E-	02	2.1E+01	No
(),		00	· 4						6.2E-	01		

Table A-5. Summary of COPC Screening for Load Line 1 Deep Surface Soil (continued)

6.2E+00

Analyte	Number	Units	Limit	Result	Minimum Detect	Maximum Detect	95% UCL of Mean	Exposure Concentration	Site Backgd. Criteria ^a	Region 9 Residential PRG ^b	Region 9 Industrial	COPC?
Bis(2-ethylhexyl)phthalate	117-81-7	mg/kg	1/2	1.4E-01	5.7E-02	5.7E-02	6.9E-01	5.7E-02		3.5E+01	1.2E+02	No
Chrysene	218-01-9	mg/kg	2/2	8.6E-02	6.2E-02	1.1E-01	2.4E-01	1.1E-01		PR	G 2.1E+02	No
Fluoranthene	206-44-0	mg/kg	2/2	1.3E-01	9.3E-02	1.7E-01	3.7E-01	1.7E-01			2.2E+03	No
Indeno(1,2,3-cd)pyrene	193-39-5	mg/kg	1/2	1.5E-01	7.5E-02	7.5E-02	6.4E-01	7.5E-02			2.1E+00	No
Phenanthrene CAS	85-01-8	mg/kg	2/2	7.8E-02	4.6E-02	1.1E-01	2.8E-01	1.1E-01	6.2E-			Yes
Pyrene	129-00-0	mg/kg	2/2	9.5E-02	7.0E-02	1.2E-01	2.5E-01	1.2E-01	2.3E-		2.9E+03	No
					Orga	nics-Volatile			6.2E-	01		
Methylene Chloride	75-09-2	mg/kg	2/2	1.5E-03	1.0E-03	1.9E-03	4.3E-03	1.9E-03		9.1E+00	2.1E+01	No
Toluene	108-88-3	mg/kg	2/2	2.3E-03	1.5E-03	3.1E-03	7.4E-03	3.1E-03	2.3E-	-02	2.2E+02	No
					Peri	meter Area						
						Metals						
Aluminum	7429-90-5	mg/kg	27/27	1.3E+04	8.8E+03	2.1E+04	1.4E+04	1.4E+04	1.8E9-04	⁺⁰¹ 7.6E+03	9.2E+04	Yes
Antimony	7440-36-0	mg/kg	2/ 27	6.3E-01	7.4E-01	8.1E-01	6.5E-01	6.5E-01	9.6E-01	3.1E+00	4.1E+01	No
Arsenic	7440-38-2	mg/kg	27/27	1.1E+01	7.5E+00	2.5E+01	1.3E+01	1.3E+01	1.5E+01	3.9E-01	1.6E+00	Yes
Barium	7440-39-3	mg/kg	27/27	8.3E+01	5.2E+01	1.4E+02	9.1E+01	9.1E+01	8.8E+01	5.4E+02	6.7E+03	No
Beryllium	7440-41-7	mg/kg	21/27	4.4E-01	2.7E-01	8.2E-01	5.0E-01	5.0E-01	8.8E-01	1.5E+01	1.9E+02	No
Cadmium	7440-43-9	mg/kg	10/27	2.4E-01	5.2E-02	3.2E-01	2.7E-01	2.7E-01			4.5E+01	No
Calcium	7440-70-2	mg/kg	23/27	2.0E+03	1.2E+02	3.4E+04	4.1E+03	4.1E+03	1.6E+04			No
Chromium	7440-47-3	mg/kg	27/27	1.6E+01	1.1E+01	2.5E+01	1.7E+01	1.7E+01	1.7E+01	2.1E+02	4.5E+02	No
Chromium, hexavalent	18540-29-9	mg/kg	1/ 5	8.1E-01	1.5E+00	1.5E+00	1.2E+00	1.2E+00	3.7E-	$+00_{2.2E+01}$	6.4E+01	No
Cobalt	7440-48-4	mg/kg	27/27	9.7E+00	4.9E+00	2.1E+01	1.1E+01	1.1E+01	1.0E+01	1.4E+02	1.3E+03	No
Copper	7440-50-8	mg/kg	27/27	1.1E+01	5.1E+00	2.0E+01	1.3E+01	1.3E+01	1.8E+01	3.1E+02	4.1E+03	No
Cyanide	57-12-5	mg/kg	3/ 25	4.2E-01	7.5E-01	1.7E+00	5.5E-01	5.5E-01		1.2E+02	1.2E+03	No
Iron	7439-89-6	mg/kg	27/27	2.2E+04	1.5E+04	3.3E+04	2.4E+04	2.4E+04	2.3E+04	2.3E+03	3.1E+04	No
Lead	7439-92-1	mg/kg	27/27	1.9E+01	1.3E+01	3.5E+01	2.1E+01	2.1E+01	1.9E+01	4.0E+02	7.5E+02	No
Magnesium	7439-95-4	mg/kg	27/27	1.8E+03	9.2E+02	3.2E+03	2.0E+03	2.0E+03	3.0E+03			No
Manganese	7439-96-5	mg/kg	27/27	8.9E+02	9.9E+01	2.3E+03	1.4E+03	1.4E+03	1.5E+03	1.8E+02	1.9E+03	Yes
Mercury	7487-94-6	mg/kg	26/27	5.3E-02	1.9E-02	9.3E-02	6.4E-02	6.4E-02	3.6E-02	2.3E+00	3.1E+01	No
Nickel	7440-02-0	mg/kg	27/27	1.5E+01	8.9E+00	2.3E+01	1.6E+01	1.6E+01	2.1E+01	1.6E+02	2.0E+03	No
Potassium	7440-09-7	mg/kg	27/27	9.4E+02	3.7E+02	2.3E+03	1.1E+03	1.1E+03	9.3E+02			No
Selenium	7782-49-2	mg/kg	13/ 27	6.3E-01	4.6E-01	1.7E+00	7.7E-01	7.7E-01	1.4E+00	3.9E+01	5.1E+02	No
Thallium	6533-73-9	mg/kg	27/27	6.0E-01	4.0E-01	8.6E-01	6.4E-01	6.4E-01			6.7E+00	Yes
Vanadium	7440-62-2	mg/kg	27/27	2.7E+01	2.0E+01	4.6E+01	2.9E+01	2.9E+01	3.1E+01	5.5E+01	7.2E+02	No
Zinc	7440-66-6	mg/kg	27/27	5.8E+01	3.7E+01	7.8E+01	6.1E+01	6.1E+01	6.2E+01	2.3E+03	3.1E+04	No
						s-Semivolat			5.2E-			•
Benzo(b)fluoranthene	205-99-2	mg/kg	1/2	1.2E-01	4.2E-02	4.2E-02	6.4E-01	4.2E-02			2.1E+00	No
Fluoranthene	206-44-0	mg/kg	1/2	1.3E-01	5.7E-02	5.7E-02	6.0E-01	5.7E-02			2.2E+03	No

Table A-5. Summary of COPC Screening for Load Line 1 Deep Surface Soil (continued)

6.2E-01 2.3E+02

			Results > Detection	Average	Minimum	Maximum	95% UCL	Exposure	Site Backgd.	Region 9 Residential	Region 9 Industrial	
Analyte	Number	Units	Limit	Result	Detect	Detect	of Mean	Concentration	Criteria ^{<i>a</i>}	PRG ^b	Ь	COPC?
					Orga	nics-Volatile	2					
1,2-Dichloroethene	549-59-0	mg/kg	2/2	3.5E-03	2.9E-03	4.1E-03	7.3E-03	4.1E-03		4.3E+0 PR	G 1.5E+01	No
Trichloroethene	79-01-6	mg/kg	2/2	4.5E-03	2.4E-03	6.6E-03	1.8E-02	6.6E-03		5.3E-02	1.1E-01	No
					Wa	ter Tower						
CAS						Metals						
Aluminum	7429-90-5	mg/kg	5/ 5	1.1E+04	7.2E+03	1.3E+04	1.4E+04	1.3E+04	1.8E+04	7.6E+03	9.2E+04	No
Antimony	7440-36-0	mg/kg	1/ 5	8.4E-01	1.9E+00	1.9E+00	1.4E+00	1.4E+00	9.6E-01	3.1E+00	4.1E+01	No
Arsenic	7440-38-2	mg/kg	5/ 5	1.3E+01	1.2E+01	1.4E+01	1.4E+01	1.4E+01	1.5E+01	3.9E-01	1.6E+00	No
Barium	7440-39-3	mg/kg	5/5	7.0E+01	6.5E+01	7.7E+01	7.6E+01	7.6E+01	8.8E+01	5.4E+02	6.7E+03	No
Beryllium	7440-41-7	mg/kg	5/5	6.4E-01	4.2E-01	9.2E-01	9.9E-01	9.2E-01	8.8E-01	1.5E+01	1.9E+02	No
Cadmium	7440-43-9	mg/kg	4/5	2.3E-01	1.1E-01	2.9E-01	3.1E-01	2.9E-01			4.5E+01	No
Calcium	7440-70-2	mg/kg	5/5	2.5E+03	1.4E+03	3.3E+03	3.2E+03	3.2E+03	1.6E+04			No
Chromium	7440-47-3	mg/kg	5/5	9.7E+01	1.8E+01	3.9E+02	2.5E+02	2.5E+02	1.7E+01	2.1E+02	4.5E+02	Yes
Cobalt	7440-48-4	mg/kg	5/5	1.2E+01	8.7E+00	1.8E+01	1.7E+01	1.7E+01	1.0E+0F	+001.4E+02	1.3E+03	No
Copper	7440-50-8	mg/kg	5/5	2.7E+01	1.2E+01	5.1E+01	6.4E+01	5.1E+01	1.8E+01	3.1E+02	4.1E+03	No
Iron	7439-89-6	mg/kg	5/5	3.0E+04	2.2E+04	4.9E+04	4.6E+04	4.6E+04	2.3E+04	2.3E+03	3.1E+04	No
Lead	7439-92-1	mg/kg	5/5	6.1E+02	1.8E+01	2.5E+03	6.8E+06	2.5E+03	1.9E+01	4.0E+02	7.5E+02	Yes
Magnesium	7439-95-4	mg/kg	5/5	2.3E+03	1.8E+03	2.9E+03	2.8E+03	2.8E+03	3.0E+03			No
Manganese	7439-96-5	mg/kg	5/5	5.0E+02	4.1E+02	6.9E+02	6.3E+02	6.3E+02	1.5E+03	1.8E+02	1.9E+03	No
Mercury	7487-94-6	mg/kg	3/5	3.9E-02	3.7E-02	5.7E-02	6.2E-02	5.7E-02	3.6E-02	2.3E+00	3.1E+01	No
Nickel	7440-02-0	mg/kg	5/5	2.7E+01	1.7E+01	3.2E+01	3.3E+01	3.2E+01	2.1E+01	1.6E+02	2.0E+03	No
Potassium	7440-09-7	mg/kg	5/5	1.6E+03	1.3E+03	2.3E+03	2.1E+03	2.1E+03	9.3E+02			No
Sodium	7440-23-5	mg/kg	1/5	1.1E+02	1.1E+02	1.1E+02	2.1E+02	1.1E+02	1.2E+02			No
Thallium	6533-73-9	mg/kg	5/5	5.8E-01	4.9E-01	6.7E-01	6.4E-01	6.4E-01			6.7E+00	Yes
Vanadium	7440-62-2	mg/kg	5/5	2.0E+01	1.4E+01	2.4E+01	2.4E+01	2.4E+01	3.1E+01	5.5E+01	7.2E+02	No
Zinc	7440-66-6	mg/kg	5/5	2.4E+02	5.4E+01	9.3E+02	6.1E+02	6.1E+02	6.2E+01	2.3E+03	3.1E+04	No

Table A-5. Summary of COPC Screening for Load Line 1 Deep Surface Soil (continued)

^{*a*} Background value for 0 to 1-ft background soil data or 1- to 13-ft background soil data, whichever is lower.

^b Value is Region 9 PRG for a cancer risk level of 1E-06 or a non-cancer hazard quotient of 0.1, whichever is lower.

BHC = Benzene hexachloride.

CAS = Chemical Abstracts Service.

COPC = Contaminant of potential concern.

DDE = Dichlorodiphenyldichloroethylene.

DDT = Dichlorodiphenyltrichloroethane.

HMX = Octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine.

PCB = Polychlorinated biphenyl.

PRG = Preliminary remediation goal.

RDX = = Hexahydro-1,3,5-trinitro-1,3,5-triazine.

UCL = Upper confidence level.

			Results >						Site	Region 9	Region 9	
				Average	Minimum	Maximum	95% UCL	Exposure	Backgd.	Residential	Industrial	
Analyte	Number	Units	Limit	Result	Detect	Detect	of Mean	Concentration	Criteria	PRG ^a	а	COPC?
•		•			СВ	-13 and -10		•		•		
					E	xplosives				PR	Ģ	
2,4-Dinitrotoluene	121-14-2	mg/kg	1/2	1.1E-01	8.6E-02	8.6E-02	2.3E-01	8.6E-02		7.2E-01	2.5E+00	No
Nitrocellulose	9004-70-0		1/2	1.5E+01	2.9E+01	2.9E+01	1.0E+02	2.9E+01				Yes
CAS	ł		4			Metals						
Aluminum	7429-90-5	mg/kg	5/ 5	9.3E+03	5.8E+03	1.6E+04	1.4E+04	1.4E+04	2.0E+04	7.6E+03	9.2E+04	No
Antimony	7440-36-0	mg/kg	1/5	2.0E+01	9.8E+01	9.8E+01	6.2E+01	6.2E+01	9.6E-01	3.1E+00	4.1E+01	Yes
Arsenic	7440-38-2	mg/kg	5/5	1.1E+01	9.1E+00	1.4E+01	1.3E+01	1.3E+01	2.0E+01	3.9E-01	1.6E+00	No
Barium	7440-39-3	mg/kg	5/5	7.8E+01	3.3E+01	1.5E+02	2.1E+02	1.5E+02	1.2E+02	5.4E+02	6.7E+03	No
Beryllium	7440-41-7	mg/kg	4/5	4.0E-01	2.7E-01	6.3E-01	5.8E-01	5.8E-01	8.8E-01	1.5E+01	1.9E+02	No
Cadmium	7440-43-9	mg/kg	5/5	5.4E+00	7.8E-02	2.6E+01	1.6E+01	1.6E+01			4.5E+01	Yes
Calcium	7440-70-2	mg/kg	5/5	1.1E+04	6.1E+03	1.5E+04	1.4E+04	1.4E+04	3.6E+04			No
Chromium	7440-47-3	mg/kg	5/5	2.9E+01	7.6E+00	8.6E+01	3.5E+02	8.6E+01	2.7E+01	2.1E+02	4.5E+02	No
Cobalt	7440-48-4	mg/kg	5/5	7.1E+00	5.0E+00	9.9E+00	9.1E+00	9.1E+00	2.3E+0F	+001.4E+02	1.3E+03	No
Copper	7440-50-8	mg/kg	5/ 5	4.8E+01	1.4E+01	1.8E+02	1.2E+02	1.2E+02	3.2E+01	3.1E+02	4.1E+03	No
Iron	7439-89-6	mg/kg	5/5	2.1E+04	1.5E+04	2.5E+04	2.5E+04	2.5E+04	3.5E+04	2.3E+03	3.1E+04	No
Lead	7439-92-1	mg/kg	5/5	1.5E+02	1.1E+01	6.8E+02	4.3E+02	4.3E+02	1.9E+01	4.0E+02	7.5E+02	Yes
Magnesium	7439-95-4	mg/kg	5/ 5	3.4E+03	2.8E+03	3.9E+03	3.7E+03	3.7E+03	8.8E+03			No
Manganese	7439-96-5	mg/kg	5/ 5	5.8E+02	3.1E+02	8.8E+02	7.8E+02	7.8E+02	3.0E+03	1.8E+02	1.9E+03	No
Mercury	7487-94-6	mg/kg	4/ 5	4.3E-02	9.3E-03	1.4E-01	1.0E+00	1.4E-01	4.4E-02	2.3E+00	3.1E+01	No
Nickel	7440-02-0	mg/kg	5/ 5	1.8E+01	1.1E+01	2.6E+01	2.4E+01	2.4E+01	6.1E+01	1.6E+02	2.0E+03	No
Potassium	7440-09-7	mg/kg	5/ 5	1.4E+03	7.6E+02	2.8E+03	3.4E+03	2.8E+03	3.4E+03			No
Selenium	7782-49-2	mg/kg	2/ 5	6.1E-01	4.2E-01	1.8E+00	1.2E+00	1.2E+00	1.5E+00	3.9E+01	5.1E+02	No
Silver	7440-22-4	mg/kg	1/5	5.6E-01	5.2E-01	5.2E-01	6.0E-01	5.2E-01			5.1E+02	No
Sodium	7440-23-5	mg/kg	2/5	9.9E+01	7.2E+01	8.1E+01	1.7E+02	8.1E+01	1.5E+02			No
Thallium	6533-73-9	mg/kg	5/5	4.9E-01	1.9E-01	7.3E-01	6.9E-01	6.9E-01	9.1E-01	5.2E-01	6.7E+00	No
Vanadium	7440-62-2	mg/kg	5/5	1.6E+01	8.2E+00	3.2E+01	4.1E+01	3.2E+01	3.8E40F	⁺⁰¹ 5.5E+01	7.2E+02	No
Zinc	7440-66-6	mg/kg	5/5	8.8E+02	5.5E+01	4.2E+03	2.6E+03	2.6E+03	9.3E+01	2.3E+03	3.1E+04	Yes
					CB-14, C	B-17, and C	A-15					
						xplosives	-					
2,4,6-Trinitrotoluene	118-96-7	mg/kg	1/1	8.8E-02	8.8E-02	8.8E-02		8.8E-02		3.1E+00	3.1E+01	No
2,4-Dinitrotoluene	121-14-2	mg/kg	1/1	1.3E-01	1.3E-01	1.3E-01		1.3E-01			2.5E+00	No
Nitrocellulose	9004-70-0	mg/kg	1/1	8.8E+00	8.8E+00	8.8E+00		8.8E+00				Yes
						Metals						
Aluminum	7429-90-5	mg/kg	2/2	8.4E+03	1.6E+03	1.5E+04	5.1E+04	1.5E+04		017.6E+03	9.2E+04	No
Arsenic	7440-38-2	mg/kg	2/2	1.0E+01	5.9E+00	1.5E+01	3.9E+01	1.5E+01	2.0E+01	3.9E-01	1.6E+00	No

Table A-6. Summary of COPC Screening for Load Line 1 Subsurface Soil

			Denskar						C' 4	Destand	Destand	1
			Results >		7.	M	050/ 1101	D	Site	Region 9	Region 9	
Analyte	Number	Units	Detection Limit	Average Result	Minimum Detect	Maximum Detect	95% UCL of Mean	Exposure Concentration	Backgd. Criteria	Residential PRG ^a	Industrial	COPC?
~												
Barium	7440-39-3		2/2	5.6E+01	3.6E+01	7.7E+01	1.8E+02	7.7E+01	1.2E+02	5.4E+02	6.7E+03	No
Beryllium	7440-41-7		1/2	2.7E-01	4.8E-01	4.8E-01	1.6E+00	4.8E-01	8.8E-01	1.5E+0 PR		No
Cadmium		mg/kg	1/2	1.5E+00	2.8E+00	2.8E+00	9.5E+00	2.8E+00			4.5E+01	No
Calcium		mg/kg	2/2	8.3E+02	5.4E+02	1.1E+03	2.7E+03	1.1E+03	3.6E+04			No
Chromium CAS	7440-47-3		2/2	1.4E+01	8.3E+00	1.9E+01	4.7E+01	1.9E+01	2.7E+01	2.1E+02	4.5E+02	No
Cobalt		mg/kg	2/2	6.7E+00	3.2E+00	1.0E+01	2.8E+01	1.0E+01		+001.4E+02	1.3E+03	No
Copper		mg/kg	2/2	1.7E+01	1.7E+01	1.8E+01	2.0E+01	1.8E+01	3.2E+01	3.1E+02	4.1E+03	No
Iron	7439-89-6	mg/kg	2/2	2.0E+04	1.1E+04	2.8E+04	7.4E+04	2.8E+04	3.5E+04	2.3E+03	3.1E+04	No
Lead	7439-92-1	mg/kg	2/2	2.9E+02	1.5E+01	5.6E+02	2.0E+03	5.6E+02	1.9E+01	4.0E+02	7.5E+02	Yes
Magnesium	7439-95-4	mg/kg	2/2	1.6E+03	4.2E+02	2.7E+03	8.8E+03	2.7E+03	8.8E+03			No
Manganese	7439-96-5	mg/kg	2/2	4.7E+02	4.6E+02	4.7E+02	4.9E+02	4.7E+02	3.0E+03	1.8E+02	1.9E+03	No
Mercury	7487-94-6	mg/kg	1/2	2.6E-02	3.0E-02	3.0E-02	5.3E-02	3.0E-02	4.4E-02	2.3E+00	3.1E+01	No
Nickel	7440-02-0	mg/kg	2/2	1.4E+01	8.2E+00	2.0E+01	5.0E+01	2.0E+01	6.1E+01	1.6E+02	2.0E+03	No
Potassium	7440-09-7	mg/kg	2/2	8.3E+02	2.9E+02	1.4E+03	4.2E+03	1.4E+03	3.4E+03			No
Selenium	7782-49-2	mg/kg	1/2	3.7E-01	4.4E-01	4.4E-01	8.3E-01	4.4E-01	1.5E+00	3.9E+01	5.1E+02	No
Thallium	6533-73-9	mg/kg	2/2	5.3E-01	3.8E-01	6.8E-01	1.5E+00	6.8E-01	9.1E-01	5.2E-01	6.7E+00	No
Vanadium	7440-62-2	mg/kg	2/2	1.7E+01	5.6E+00	2.8E+01	8.8E+01	2.8E+01	3.8E+01	5.5E+01	7.2E+02	No
Zinc	7440-66-6	mg/kg	2/2	1.1E+02	5.8E+01	1.6E+02	4.1E+02	1.6E+02	9.3E+01	2.3E+03	3.1E+04	No
					CB-4/4	A and CA-6	/6A			•		
					E	xplosives						
1,3,5-Trinitrobenzene	99-35-4	mg/kg	1/13	6.9E+00	1.1E+01	1.1E+01	1.7E+01	1.1E+01		1.8E+02	1.8E+03	No
2,4,6-Trinitrotoluene	118-96-7	mg/kg	12/13	3.9E+02	7.1E-02	4.5E+03	1.0E+03	1.0E+03		3.1E+00	3.1E+01	Yes
2,6-Dinitrotoluene	606-20-2	mg/kg	1/13	7.0E+00	1.4E-01	1.4E-01	1.7E+01	1.4E-01		7.2E-01	2.5E+00	No
	35572-78-2	mg/kg	8/13	7.1E+00	1.0E-01	2.0E+00	1.7E+01	2.0E+00				Yes
4-Amino-2,6-dinitrotoluene	19406-51-0	mg/kg	6/13	7.9E+00	1.5E-01	8.4E-01	1.8E+01	8.4E-01				Yes
HMX	2691-41-0		2/13	1.4E+01	6.2E-01	8.1E+00	3.5E+01	8.1E+00		3.1E+02	3.1E+03	No
Nitrocellulose	9004-70-0		7/12	4.5E+00	7.0E-01	2.9E+01	8.7E+00	8.7E+00				Yes
RDX		mg/kg	4/13	1.9E+01	2.7E-01	5.8E+01	4.0E+01	4.0E+01		4.4E+00	1.6E+01	Yes
	-	00				Metals						
Aluminum	7429-90-5	mg/kg	21/21	9.4E+03	4.9E+02	1.7E+04	1.1E+04	1.1E+04	2.0E+04	7.6E+03	9.2E+04	No
Antimony		mg/kg	1/21	6.0E-01	6.6E-01	6.6E-01	6.1E-01	6.1E-01	9.6E-01	3.1E+00	4.1E+01	No
Arsenic	7440-38-2	mg/kg	21/21	1.0E+01	2.4E+00	1.7E+01	1.2E+01	1.2E+01	2.0E+01	3.9E-01	1.6E+00	No
Barium	7440-39-3	mg/kg	21/21	7.2E+01	7.1E+00	2.5E+02	1.1E+02	1.1E+02	1.2E+02	5.4E+02	6.7E+03	No
Beryllium	7440-41-7	mg/kg	13/21	4.2E-01	3.0E-01	1.5E+00	1.1E+00	1.1E+00	8.8E-01	1.5E+01	1.9E+02	No

 Table A-6. Summary of COPC Screening for Load Line 1 Subsurface Soil (continued)

			Results >					-	Site	Region 9	Region 9	
Analyte	Number	Units	Detection Limit	Average Result	Minimum Detect	Maximum Detect	95% UCL of Mean	Exposure Concentration	Backgd. Criteria	Residential PRG ^a	Industrial ^a	COPC?
Cadmium	7440-43-9	mg/kg	8/21	1.3E+00	1.5E-01	9.9E+00	2.4E+00	2.4E+00		3.7E+00	4.5E+01	Yes
Calcium	7440-70-2	mg/kg	21/21	7.8E+03	2.8E+02	5.4E+04	2.9E+04	2.9E+04	3.6E+04	PR	G	No
Chromium	7440-47-3	mg/kg	21/21	1.5E+01	1.5E+00	6.7E+01	2.0E+01	2.0E+01	2.7E+01	2.1E+02	4.5E+02	No
Chromium, hexavalent	18540-29-9	mg/kg	1/ 15	1.5E+00	1.4E+01	1.4E+01	3.0E+00	3.0E+00		2.2E+01	6.4E+01	No
Cobalt CAS	7440-48-4	mg/kg	21/21	6.5E+00	5.5E-01	1.9E+01	8.0E+00	8.0E+00	2.3E+01	1.4E+02	1.3E+03	No
Copper	7440-50-8	mg/kg	21/21	4.3E+01	2.5E+00	4.2E+02	7.9E+01	7.9E+01	3.2E+01	3.1E+02	4.1E+03	Yes
Cyanide	57-12-5	mg/kg	2/14	3.8E-01	6.3E-01	1.2E+00	5.0E-01	5.0E-01		1.2E+02	1.2E+03	No
Iron	7439-89-6	mg/kg	21/21	1.9E+04	2.5E+03	4.2E+04	2.3E+04	2.3E+04	3.5E+04	2.3E+03	3.1E+04	No
Lead	7439-92-1	mg/kg	21/21	6.0E+01	8.4E+00	2.5E+02	1.2E+02	1.2E+02	1.9E+01	4.0E+02	7.5E+02	No
Magnesium	7439-95-4	mg/kg	21/21	2.4E+03	1.1E+02	8.8E+03	5.2E+03	5.2E+03	8.8E+03			No
Manganese	7439-96-5	mg/kg	21/21	4.8E+02	5.1E+01	1.3E+03	8.2E+02	8.2E+02	3.0E+03	1.8E+02	1.9E+03	No
Mercury	7487-94-6	mg/kg	17/21	8.9E-02	1.5E-02	7.8E-01	1.5E-01	1.5E-01	4.4E-02	2.3E+00	3.1E+01	No
Nickel	7440-02-0	mg/kg	21/21	1.5E+01	1.4E+00	5.0E+01	1.9E+01	1.9E+01	6.1E+01	1.6E+02	2.0E+03	No
Potassium	7440-09-7	mg/kg	20/21	8.7E+02	2.0E+02	1.7E+03	1.0E+03	1.0E+03	3.4E+03			No
Selenium	7782-49-2	mg/kg	7/21	6.0E-01	5.3E-01	1.7E+00	8.0E-01	8.0E-01	1.5E+00	3.9E+01	5.1E+02	No
Sodium	7440-23-5	mg/kg	3/ 21	1.9E+02	7.9E+01	3.7E+02	2.4E+02	2.4E+02	1.5E+02			No
Thallium	6533-73-9	mg/kg	20/21	4.8E-01	2.5E-01	7.7E-01	5.7E-01	5.7E-01	9.1E-01	5.2E-01	6.7E+00	No
Vanadium	7440-62-2	mg/kg	21/21	1.6E+01	1.2E+00	3.4E+01	2.0E+01	2.0E+01	3.8E+01	5.5E+01	7.2E+02	No
Zinc	7440-66-6	mg/kg	20/20	1.2E+02	1.9E+01	4.0E+02	2.0E+02	2.0E+02	9.3E+01	2.3E+03	3.1E+04	No
	•				Peri	meter Area				•		
						Metals						
Aluminum	7429-90-5	mg/kg	1/1	1.8E+04	1.8E+04	1.8E+04		1.8E+04	2.0E+04	7.6E+03	9.2E+04	No
Arsenic		mg/kg	1/1	1.3E+01	1.3E+01	1.3E+01		1.3E+01	2.0E+01	3.9E-01	1.6E+00	No
Barium	7440-39-3	mg/kg	1/1	7.4E+01	7.4E+01	7.4E+01		7.4E+01	1.2E+02	5.4E+02	6.7E+03	No
Beryllium	7440-41-7	mg/kg	1/1	5.5E-01	5.5E-01	5.5E-01		5.5E-01	8.8E-01	1.5E+01	1.9E+02	No
Calcium	7440-70-2	mg/kg	1/1	5.0E+02	5.0E+02	5.0E+02		5.0E+02	3.6E+04			No
Chromium	7440-47-3	mg/kg	1/1	2.3E+01	2.3E+01	2.3E+01		2.3E+01	2.7E+01	2.1E+02	4.5E+02	No
Cobalt	7440-48-4	mg/kg	1/1	7.2E+00	7.2E+00	7.2E+00		7.2E+00	2.3E+01	1.4E+02	1.3E+03	No
Copper	7440-50-8	mg/kg	1/1	1.9E+01	1.9E+01	1.9E+01		1.9E+01	3.2E+01	3.1E+02	4.1E+03	No
Iron	7439-89-6	mg/kg	1/1	2.9E+04	2.9E+04	2.9E+04		2.9E+04	3.5E+04	2.3E+03	3.1E+04	No
Lead	7439-92-1	mg/kg	1/1	1.3E+01	1.3E+01	1.3E+01		1.3E+01	1.9E+01	4.0E+02	7.5E+02	No
Magnesium	7439-95-4	mg/kg	1/1	3.1E+03	3.1E+03	3.1E+03		3.1E+03	8.8E+03			No
Manganese	7439-96-5	mg/kg	1/1	1.7E+02	1.7E+02	1.7E+02		1.7E+02	3.0E+03	1.8E+02	1.9E+03	No
Nickel	7440-02-0	mg/kg	1/1	2.1E+01	2.1E+01	2.1E+01		2.1E+01	6.1E+01	1.6E+02	2.0E+03	No

Table A-6. Summary of COPC Screening for Load Line 1 Subsurface Soil (continued)

Table A-6. Summary	of COPC Screenin	g for Load Line 1	Subsurface So	il (continued)
Table A-0. Summary	of COLC Screenin	g IVI LUau Line I	Subsultace Sc	m (conunueu)

			Results > Detection	Average	Minimum	Maximum	95% UCL	Exposure	Site Backgd.	Region 9 Residential	Region 9 Industrial	
Analyte	Number	Units	Limit	Result	Detect	Detect	of Mean	Concentration	Criteria	PRG ^a	а	COPC?
Potassium	7440-09-7	mg/kg	1/1	2.3E+03	2.3E+03	2.3E+03		2.3E+03	3.4E+03			No
Thallium	6533-73-9	mg/kg	1/1	6.4E-01	6.4E-01	6.4E-01		6.4E-01	9.1E-01	5.2E-0 PR	G 6.7E+00	No
Vanadium	7440-62-2	mg/kg	1/1	3.1E+01	3.1E+01	3.1E+01		3.1E+01	3.8E+01	5.5E+01	7.2E+02	No
Zinc	7440-66-6	mg/kg	1/1	5.5E+01	5.5E+01	5.5E+01		5.5E+01	9.3E+01	2.3E+03	3.1E+04	No

CAS ^{*a*} Value is Region 9 PRG for a cancer risk level of 1E-06 or a non-cancer hazard quotient of 0.1, whichever is lower. CAS = Chemical Abstracts Service.

CAS – Chemical Abstracts Service. COPC = Contaminant of potential concern. HMX = Octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine. PRG = Preliminary remediation goal. RDX = = Hexahydro-1,3,5-trinitro-1,3,5-triazine. UCL = Upper confidence level.

	Dermal Absorption	Permeability	Volatilization	Fish Biotransfer
	Factor ^a	Constant ^b	Factor ^c	Factor ^b
Analyte	(unitless)	(cm/h)	$(\mathbf{m}^{3}/\mathbf{kg})$	(L/kg)
Aluminum	0.001	2.14E-03		3.2
Antimony	0.001	1.09E-03		3.2
Arsenic	0.03	1.93E-03		3.2
Barium	0.001	4.03E-04		3.2
Cadmium	0.001	3.50E-04		3.2
Chromium (as Chromium III)	0.001	1.00E-03		200
Copper	0.001	3.07E-04		3.2
Manganese	0.001	1.28E-03		3.2
Mercury	0.001	2.94E-05		100
Nickel	0.001	3.29E-04		3.2
Thallium (as Thallium carbomate)	0.001	1.57E-04		3.2
Vanadium	0.001	1.35E-03		3.2
Zinc	0.001	3.42E-04		3.2
1,3-Dinitrobenzene	0.1	2.05E-03		2.8
2,4,6-Trinitrotoluene	0.1	1.07E-03		3.4
2,4-Dinitrotoluene	0.1	3.76E-03		6.7
2,6-Dinitrotoluene	0.1	4.57E-03		8.3
4,4'-DDE	0.1	9.16E-01		21,000
Benz(<i>a</i>)anthracene	0.13	9.48E-01		5,400
Benzo(<i>a</i>)pyrene	0.13	1.24E+00		11,000
Benzo(b)fluoranthene	0.13	6.99E-01		5,600
Dibenz(a,h)anthracene	0.13	1.68E+00		22,000
Dieldrin	0.1	4.45E-02		2,000
Endrin Aldehyde (as Endrin)	0.1	4.45E-02		2,000
Heptachlor	0.1	2.16E-01		9,900
Indeno(1,2,3-cd)pyrene	0.13	2.23E+00		29,000
PCB-1254	0.14	1.29E+00		140,000
RDX	0.1	3.49E-04		3.2
gamma-Chlordane (as Chlordane)	0.04	1.57E-01		12,000

 Table A-7. Chemical-specific Exposure Parameters

^{*a*}Chemical-specific absorption factor values are from U.S. Environmental Protection Agency (EPA) Region V (EPA 2000). When chemical-specific values are not available, the following default values are used: semivolatile organic compounds = 0.1, volatile organic compounds (VOCs) = 0.01, and inorganics = 0.001 per EPA Region 4 Supplemental Guidance to RAGS. ^{*b*}From Risk Assessment Information System (RAIS) http://risk.lsd.ornl.gov/tox/tox_values.shtml.

^cVolatilization factors (VFs) are calculated using the 1996 EPA Soil Screening Guidance Methodology, using site-specific parameter values for Cleveland, OH, and they are only used for VOCs. However, there are no VOCs that are chemicals of potential concern; therefore, no VF values are shown.

DDE = Dichlorodiphenyldichloroethylene.

PCB = Polychlorinated biphenyl.

RDX = Hexahydro-1,3,5-trinitro-1,3,5-triazine.

	Oral Chronic RfD	Confidence		Dermal Chronic RfD	Inhalation Chronic RfD	RfD Basis		Uncertainty/ Modifying
Analyte	(mg/(kg-d)	Level	Absorption ^a	(mg/(kg-d)	(mg/(kg-d)	(vehicle)	Critical Effect	Factor
Aluminum	1.0E+00	NA	1	1.0E+00	1.4E-03	NA		
Antimony	4.0E-04	Low	0.15	6.0E-05		Oral, oral-water	Gastrointestinal, liver, cardiovascular, and developmental toxicity	(O) UF = 1,000
Arsenic	3.0E-04	Medium (O)	0.95	3.0E-04		Oral, oral-water	Hyperpigmentation and keritosis and possible vascular complication	(O) UF = 3
Barium	7.0E-02	Medium (O)	0.07	4.9E-03	1.4E-04	Oral, oral-water, inhalation	(O) increased blood pressure (human)	(O) UF = 3
							(I) baritosis (human)	(1) UF = 1,000
Cadmium (food)	1.0E-03	High	0.025	2.5E-05			Renal toxicity, osteomalacia, osteoporosis, and significant proteinuria	(O) UF = 1,000
Cadmium (soil)	1.0E-03	High	0.025	2.5E-05		Oral, oral-water	Renal toxicity, osteomalacia, osteoporosis, and significant proteinuria	(O) UF = 1,000
Cadmium (water)	5.0E-04	High	0.05	2.5E-05		Oral, oral-water	Renal toxicity, osteomalacia, osteoporosis, and significant proteinuria	(O) UF = 1,000
Chromium (as CrIII)	1.5E+00	Low (O)	0.013	2.0E-02		Oral (rat)	Reduced liver/spleen weight	(O) UF = 100
Copper	4.0E-02	NA	1	4.0E-02		NA		
Manganese (food)	1.4E-01	NA	0.04	5.6E-03	1.4E-05	Oral: water, inhalation	(O) lethargy, tremors, mental disturbance, muscle tonus, and central nervous system effects	(O) UF = 1 (O) MF = 3 (I) UF = 1,000
Manganese (soil and water)	4.6E-02	NA	0.04	1.8E-03	1.4E-05	Oral: water, inhalation	(O) lethargy, tremors, mental disturbance, muscle tonus, and central nervous system effects	(O) UF = 1 (O) MF = 3 (I) UF = 1,000
Mercury	3.0E-04	Low (O)	0.07	2.1E-05		Oral: diet (mouse)	(O) None	(O) UF = 300
		Medium (I)				Inhalation: (human)	(I) Neurotoxicity (human)	(I) UF = 30
Nickel	2.0E-02	Medium	0.04	8.0E-04		Oral: diet (rat)	Decreased body and major organ weights (rat)	UF = 100
Thallium (as Thallium carbomate)	8.0E-05	Low	1	8.0E-05		Oral (rat)	Increased levels of SGOT and LDH	UF = 3,000
Vanadium	7.0E-03	Low	0.026	1.8E-04		Oral (rat)	Decreased hair cystine	UF = 100
Zinc	3.0E-01	Medium	0.3	9.0E-02		Oral	(O) copper deficiency and hypochromic microcytic anemia (human)	UF = 100
							(I) pulmonary and gastrointestinal effects (human)	

Table A-8. Non-carcinogenic Reference Doses for Load Line 1 Risk Characterization

Table A-8. Noncarcinogenic	Reference Doses for	Load Line 1 Risk (Characterization ((continued)

	Oral Chronic			Dermal Chronic	Inhalation Chronic			Uncertainty/
	RfD	Confidence		RfD	RfD	RfD Basis		Modifying
Analyte	(mg/(kg-d)	Level	Absorption ^a	(mg/(kg-d)	(mg/(kg-d)	(vehicle)	Critical Effect	Factor
1,3-Dinitrobenzene	1.0E-04	Low	1	1.0E-04		Oral (rat)	Increased spleen weight	UF = 3,000
2,4,6-Trinitrotoluene	5.0E-04	Medium	1	5.0E-04		Oral (dog)	Liver effects	UF = 1,000
2,4-Dinitrotoluene	2.0E-03	High	1	2.0E-03		Oral (dog)	Neurotoxicity, biliary tract hyperplasia	UF = 100
2,6-Dinitrotoluene	1.0E-03	High	1	1.0E-03		Oral (dog)	Neurotoxicity, biliary tract hyperplasia	UF = 100
Dieldrin	5.0E-05	Medium	1	5.0E-05		Oral: diet (rat)	Liver lesions (rat)	UF = 100
Endrin Aldehyde (as Endrin)	3.0E-04	Medium	1	3.0E-04		Oral (dog)	Histological liver lesions	UF = 100
Heptachlor	5.0E-04	Low	1	5.0E-04		Oral (rat)	Liver weight increase	UF = 300
PCB-1254	2.0E-05	NA	0.8	2.0E-05		Oral: capsule (monkey)	Immune system toxicity (monkey)	UF = 300
RDX	3.0E-03	High (O)	1	3.0E-03		Oral (rat)	Inflamed prostate	UF = 100
gamma-Chlordane (as Chlordane)	5.0E-04	Medium (O)	0.8	5.0E-04	2.0E-04	Oral (mouse)	Liver hypertrophy	(O) UF = 300

^a% GI (gastrointestinal) absorption values from EPA 2000.
(I) indicates inhalation.
MF = Modifying factor (the default modifying factor is 1).
NA = Not available.

IVA = IVO available.
(O) indicates oral.
PCB = Polychlorinated biphenyl.
RDX = Hexahydro-1,3,5-triazine.
RfD = Reference dose.

UF = Uncertainty factor.

Anolyte	Oral Slope Factor	% GI	Dermal Slope Factor	Slope Factor	EPA	TEF	Tyme of Conser
Analyte	$(mg/kg-d)^a$	Absorption ^a		$(mg/kg-d)^a$	Class	ILF	Type of Cancer
Arsenic	1.5E+00	0.95	1.5E+00	1.5E+01	A		Respiratory system tumors
Cadmium (soil)		0.025		6.3E+00	B1		Respiratory tract and lung tumors
Cadmium (water)		0.05		6.3E+00	B1		Respiratory tract and lung tumors
2,4,6-Trinitrotoluene	3.0E-02	1	3.0E-02		С		Bladder transitional cell papilloma
2,4-Dinitrotoluene	6.8E-01	1	6.8E-01		B2		Liver carcinoma, mammary adenomas, fibromas (mouse)
2,6-Dinitrotoluene	6.8E-01	1	6.8E-01		B2		Liver carcinoma, mammary adenomas, fibromas (mouse)
4,4'-DDE	3.4E-01	1	3.4E-01		B2		Hepatocellular carcinoma (mouse)
Benz(a)anthracene	7.3E-01	0.58	7.3E-01	3.1E-01	B2	0.1	Stomach tunors (mouse)
Benzo(<i>a</i>)pyrene	7.3E+00	0.58	7.3E+00	3.1E+00	B2		Stomach, nasal cavity, larynx, tracheak, and pharynx
Benzo(b)fluoranthene	7.3E-01	0.58	7.3E-01	3.1E-01	B2	0.1	Tumors
Dibenz(<i>a</i> , <i>h</i>)anthracene	7.3E+00	0.58	7.3E+00	3.1E+00	B2	1.0	Immunodepressive effects (mouse)
Dieldrin	1.6E+01	1	1.6E+01	1.6E+01	B2		Liver carcinoma (mouse)
Heptachlor	4.5E+00	1	4.5E+00	4.6E+00	B2		Hepatocellular carcinoma (mouse)
Indeno(1,2,3-cd)pyrene	7.3E-01	0.58	7.3E-01	3.1E-01	B2	0.1	Tumors
PCB-1254	2.0E+00	0.8	2.0E+00	2.0E+00	B2		Liver hepatocellular adenomas, carcinomas, cholangiomas, or cholangiocarcinomas (rat)
RDX	1.1E-01	1	1.1E-01		С		Liver hepatocellular carcinomas/adenomas (mouse)
gamma-Chlordane (as Chlordane)	3.5E-01	0.8	3.5E-01	3.5E-01	B2		Hepatocellular carcinoma (mouse)

Table A-9. Cancer Slope Factors for Load Line 1 Risk Characterization

^a% GI (gastrointestinal) absorption values from EPA 2000.

DDE = Dichlorodiphenyldichloroethylene. EPA = U.S. Environmental Protection Agency. PCB = Polychlorinated biphenyl.

RDX = Hexahydro-1,3,5-trinitro-1,3,5-triazine.

TEF = Toxicity equivalence factor; based on the relative potency of each carcinogenic polycyclic aromatic hydrocarbon (PAH) relative to that of benzo(*a*)pyrene.

		Daily	Intake (m	ng/kg-d)	Ha	zard Quo	tient	Total HI	
	EPC	Dung			114	and Quo		Across all	
COPC	(mg/L)	Ingestion	Dermal	Inhalation	Ingestion	Dermal	Inhalation		COC^{a}
	\ 8 /			l Guard Train				j.	
Arsenic	7.8E-03	2.4E-05	1.1E-07		8.0E-02	3.7E-04		8.0E-02	
Manganese	2.9E+00	9.0E-03	2.8E-05		1.9E-01	1.5E-02		2.1E-01	
Inorganics Pathway Total					2.7E-01	1.5E-02		2.9E-01	
2,4,6-Trinitrotoluene	5.4E-03	1.6E-05	4.3E-08		3.3E-02	8.5E-05		3.3E-02	
2,4-Dinitrotoluene	2.4E-03	7.2E-06	6.6E-08		3.6E-03	3.3E-05		3.6E-03	
2,6-Dinitrotoluene	1.5E-03	4.6E-06	5.1E-08		4.6E-03	5.1E-05		4.7E-03	
4,4'-DDE	3.4E-03	1.0E-05	2.3E-05						
RDX	1.4E-02	4.3E-05	3.6E-08		1.4E-02	1.2E-05		1.4E-02	
Organics Pathway Total					5.5E-02	1.8E-04		5.5E-02	
Pathway Total – Chemicals					3.3E-01	1.6E-02		3.5E-01	
			Residen	t Farmer Ad	ult		•		
Arsenic	7.8E-03	2.1E-04	1.0E-06		7.2E-01	3.4E-03		7.2E-01	
Manganese	2.9E+00	8.0E-02	2.5E-04		1.7E+00	1.4E-01		1.9E+00	Н
Inorganics Pathway Total					2.5E+00	1.4E-01		2.6E+00	
2,4,6-Trinitrotoluene	5.4E-03	1.5E-04	3.8E-07		2.9E-01	7.6E-04		3.0E-01	
2,4-Dinitrotoluene	2.4E-03	6.5E-05	5.9E-07		3.2E-02	2.9E-04		3.3E-02	
2,6-Dinitrotoluene	1.5E-03	4.2E-05	4.6E-07		4.2E-02	4.6E-04		4.2E-02	
4,4'-DDE	3.4E-03	9.2E-05	2.1E-04						
RDX	1.4E-02	3.8E-04	3.2E-07		1.3E-01	1.1E-04		1.3E-01	
Organics Pathway Total					5.0E-01	1.6E-03		5.0E-01	
Pathway Total – Chemicals					3.0E+00	1.4E-01		3.1E+00	
			Residen	t Farmer Ch	ild				
Arsenic	7.8E-03	7.5E-04	2.1E-06		2.5E+00	7.0E-03		2.5E+00	Н
Manganese	2.9E+00	2.8E-01	5.2E-04		6.1E+00	2.8E-01		6.4E+00	Н
Inorganics Pathway Total					8.6E+00	2.9E-01		8.9E+00	
2,4,6-Trinitrotoluene	5.4E-03	5.2E-04	8.0E-07		1.0E+00	1.6E-03		1.0E+00	Н
2,4-Dinitrotoluene	2.4E-03	2.3E-04	1.2E-06		1.1E-01	6.1E-04		1.1E-01	
2,6-Dinitrotoluene	1.5E-03	1.5E-04	9.6E-07		1.5E-01	9.6E-04		1.5E-01	
4,4'-DDE	3.4E-03	3.2E-04	4.3E-04						
RDX	1.4E-02	1.3E-03	6.7E-07		4.5E-01	2.2E-04		4.5E-01	
Organics Pathway Total					1.7E+00	3.4E-03		1.7E+00	
Pathway Total - Chemicals					1.0E+01	2.9E-01		1.1E+01	

Table A-10. Load Line 1 Groundwater Hazards – Direct Contact

^a Chemicals of potential concern (COPCs) are identified as chemicals of concern (COCs) if the total hazard index (HI) across all pathways is > 1 (H).

DDE = Dichlorodiphenyldichloroethylene.

EPC = Exposure point concentration. RDX = Hexahydro-1,3,5-trinitro-1,3,5-triazine.

		Daily	Intake (m	g/kg-d)		Risk		Total Risk	
СОРС	EPC (mg/L)	Ingestion		Inhalation	Ingestion	Dermal	Inhalation	Across all Pathways	COC ^a
				l Guard Train				· · ·	
Arsenic	7.8E-03	8.5E-06	4.0E-08		1.3E-05	6.0E-08		1.3E-05	R
Manganese	2.9E+00	3.2E-03	9.9E-06						
Inorganics Pathway Total					1.3E-05	6.0E-08		1.3E-05	
2,4,6-Trinitrotoluene	5.4E-03	5.9E-06	1.5E-08		1.8E-07	4.6E-10		1.8E-07	
2,4-Dinitrotoluene	2.4E-03	2.6E-06	2.3E-08		1.8E-06	1.6E-08		1.8E-06	R
2,6-Dinitrotoluene	1.5E-03	1.7E-06	1.8E-08		1.1E-06	1.2E-08		1.1E-06	R
4,4'-DDE	3.4E-03	3.7E-06	8.2E-06		1.3E-06	2.8E-06		4.0E-06	R
RDX	1.4E-02	1.5E-05	1.3E-08		1.7E-06	1.4E-09		1.7E-06	R
Organics Pathway Total					6.0E-06	2.8E-06		8.8E-06	
Pathway Total – Chemicals					1.9E-05	2.9E-06		2.2E-05	
			Residen	t Farmer Ad	ult	•			
Arsenic	7.8E-03	9.2E-05	4.3E-07		1.4E-04	6.5E-07		1.4E-04	R
Manganese	2.9E+00	3.4E-02	1.1E-04						
Inorganics Pathway Total					1.4E-04	6.5E-07		1.4E-04	
2,4,6-Trinitrotoluene	5.4E-03	6.3E-05	1.6E-07		1.9E-06	4.9E-09		1.9E-06	R
2,4-Dinitrotoluene	2.4E-03	2.8E-05	2.5E-07		1.9E-05	1.7E-07		1.9E-05	R
2,6-Dinitrotoluene	1.5E-03	1.8E-05	2.0E-07		1.2E-05	1.3E-07		1.2E-05	R
4,4'-DDE	3.4E-03	4.0E-05	8.8E-05		1.3E-05	3.0E-05		4.3E-05	R
RDX	1.4E-02	1.6E-04	1.4E-07		1.8E-05	1.5E-08		1.8E-05	R
Organics Pathway Total					6.4E-05	3.0E-05		9.5E-05	
Pathway Total – Chemicals					2.0E-04	3.1E-05		2.3E-04	
			Residen	t Farmer Ch	ild				
Arsenic	7.8E-03	6.4E-05	1.8E-07		9.7E-05	2.7E-07		9.7E-05	R
Manganese	2.9E+00	2.4E-02	4.5E-05						
Inorganics Pathway Total					9.7E-05	2.7E-07		9.7E-05	
2,4,6-Trinitrotoluene	5.4E-03	4.4E-05	6.8E-08		1.3E-06	2.0E-09		1.3E-06	R
2,4-Dinitrotoluene	2.4E-03	1.9E-05	1.1E-07		1.3E-05	7.2E-08		1.3E-05	R
2,6-Dinitrotoluene	1.5E-03	1.2E-05	8.2E-08		8.5E-06	5.6E-08		8.6E-06	R
4,4'-DDE	3.4E-03	2.8E-05	3.7E-05		9.4E-06	1.2E-05		2.2E-05	R
RDX	1.4E-02	1.1E-04	5.8E-08		1.3E-05	6.3E-09		1.3E-05	R
Organics Pathway Total					4.5E-05	1.3E-05		5.8E-05	
Pathway Total – Chemicals					1.4E-04	1.3E-05		1.5E-04	

Table A-11. Load Line 1 Groundwater Risks – Direct Contact

^a Chemicals of potential concern (COPCs) are identified as chemicals of concern (COCs) if the total incremental lifetime cancer risk across all pathways is > 1E-06 (R).
 DDE = Dichlorodiphenyldichloroethylene.
 EPC = Exposure point concentration.
 RDX = Hexahydro-1,3,5-trinitro-1,3,5-triazine.

		Daily Intake	(mg/kg_d)	Hazard (Juotient	Total HI	
	EPC		(IIIg/Kg-u)		Zuotient	Across all	
СОРС	(mg/L)	Ingestion	Dermal	Ingestion	Dermal	Pathways	COC ^a
	(8,)		rapper/Fish		2001111	1 uu 1 (1 u j)	
		Outlet C and					
Arsenic	3.1E-02	4.2E-07	3.9E-07	1.4E-03	1.3E-03	2.7E-03	
Chromium	2.4E-03	3.3E-08	1.6E-08	2.2E-08	8.0E-07	8.2E-07	
Inorganics Pathway Total	2.12.05	5.52 00	1.02 00	1.4E-03	1.3E-03	2.7E-03	
Pathway Total – Chemicals				1.4E-03	1.3E-03	2.7E-03	
	Out	lets D, E, and	F and Crigg				1
Arsenic	5.1E-03	7.0E-08	6.4E-08	2.3E-04	2.1E-04	4.5E-04	
Inorganics Pathway Total				2.3E-04	2.1E-04	4.5E-04	
Pathway Total – Chemicals				2.3E-04	2.1E-04	4.5E-04	
¥		Dust/Fire	Suppressio	n		1	
		Outlet C and					
Arsenic	3.1E-02	1.8E-06	4.6E-07	6.1E-03	1.5E-03	7.6E-03	
Chromium	2.4E-03	1.4E-07	1.9E-08	9.4E-08	9.5E-07	1.0E-06	
Inorganics Pathway Total				6.1E-03	1.5E-03	7.6E-03	
Pathway Total – Chemicals				6.1E-03	1.5E-03	7.6E-03	
	Out	lets D, E, and	F and Crigg	gy's Pond	•		•
Arsenic	5.1E-03	3.0E-07	7.6E-08	1.0E-03	2.5E-04	1.3E-03	
Inorganics Pathway Total				1.0E-03	2.5E-04	1.3E-03	
Pathway Total – Chemicals				1.0E-03	2.5E-04	1.3E-03	
		National (Juard Train	iee			
		Outlet C and		Pond			
Arsenic	3.1E-02	4.7E-06	7.2E-06	1.6E-02	2.4E-02	4.0E-02	
Chromium	2.4E-03	3.7E-07	2.9E-07	2.4E-07	1.5E-05	1.5E-05	
Inorganics Pathway Total				1.6E-02	2.4E-02	4.0E-02	
Pathway Total – Chemicals				1.6E-02	2.4E-02	4.0E-02	
		Dutlets D,E,F		s Pond			
Arsenic	5.1E-03	7.8E-07	1.2E-06	2.6E-03	4.0E-03	6.6E-03	
Inorganics Pathway Total				2.6E-03	4.0E-03	6.6E-03	
Pathway Total – Chemicals				2.6E-03	4.0E-03	6.6E-03	
			Farmer Adu				
	1	Outlet C and				I	
Arsenic	3.1E-02	4.2E-05	1.2E-05	1.4E-01	3.9E-02	1.8E-01	
Chromium	2.4E-03	3.3E-06	4.7E-07	2.2E-06	2.4E-05	2.6E-05	
Inorganics Pathway Total				1.4E-01	3.9E-02	1.8E-01	
Pathway Total – Chemicals				1.4E-01	3.9E-02	1.8E-01	
·		lets D, E, and			6 (E 05	0.05.05	
Arsenic	5.1E-03	7.0E-06	1.9E-06	2.3E-02	6.4E-03	3.0E-02	
Inorganics Pathway Total				2.3E-02	6.4E-03	3.0E-02	
Pathway Total – Chemicals				2.3E-02	6.4E-03	3.0E-02	
			Farmer Chi				
America	2 1E 02	Outlet C and			7.05.02	7.20.01	
Arsenic	3.1E-02	2.0E-04	2.1E-05	6.6E-01	7.0E-02	7.3E-01	
Chromium	2.4E-03	1.5E-05	8.4E-07	1.0E-05	4.3E-05	5.4E-05	
Inorganics Pathway Total				6.6E-01	7.0E-02	7.3E-01	
Pathway Total – Chemicals				6.6E-01	7.0E-02	7.3E-01	

Table A-12. Load Line 1 Surface Water Hazards – Direct Contact

		Daily Intake	(mg/kg-d)	Hazard (Quotient	Total HI	
СОРС	EPC (mg/L)	Ingestion	Dermal	Ingestion	Dermal	Across all Pathways	COC ^a
	Out	lets D, E, and	F and Crigg	gy's Pond			
Arsenic	5.1E-03	3.3E-05	3.5E-06	1.1E-01	1.2E-02	1.2E-01	
Inorganics Pathway Total				1.1E-01	1.2E-02	1.2E-01	
Pathway Total – Chemicals				1.1E-01	1.2E-02	1.2E-01	

Table A-12. Load Line 1 Surface Water Hazards – Direct Contact (continued)

 a Chemicals of potential concern (COPCs) are identified as chemicals of concern (COCs) if the total hazard index (HI) across all pathways is > 1 (H).

EPC = Exposure point concentration.

		Daily Intake	e (mg/kg-d)	Ris	sk	Total Risk	
	EPC		(8'8 *-/			Across all	
СОРС	(mg/L)	Ingestion	Dermal	Ingestion	Dermal	Pathways	COC ^a
	•	Hunter/T	rapper/Fish	ier	•	· ·	
		Outlet C and					
Arsenic	3.1E-02	1.8E-07	1.7E-07	2.7E-07	2.5E-07	5.2E-07	
Chromium	2.4E-03	1.4E-08	6.7E-09				
Inorganics Pathway Total				2.7E-07	2.5E-07	5.2E-07	
Pathway Total – Chemicals				2.7E-07	2.5E-07	5.2E-07	
	Out	tlets D, E, and	F and Crig	gy's Pond	•	•	
Arsenic	5.1E-03	3.0E-08	2.7E-08	4.5E-08	4.1E-08	8.6E-08	
Inorganics Pathway Total				4.5E-08	4.1E-08	8.6E-08	
Pathway Total – Chemicals				4.5E-08	4.1E-08	8.6E-08	
	•	Dust/Fire	e Suppressio	on	•	•	
		Outlet C and					
Arsenic	3.1E-02	6.5E-07	1.7E-07	9.7E-07	2.5E-07	1.2E-06	R
Chromium	2.4E-03	5.0E-08	6.6E-09				
Inorganics Pathway Total				9.7E-07	2.5E-07	1.2E-06	
Pathway Total – Chemicals				9.7E-07	2.5E-07	1.2E-06	
	Out	tlets D, E, and	F and Crig	gy's Pond	•		
Arsenic	5.1E-03	1.1E-07	2.7E-08	1.6E-07	4.1E-08	2.0E-07	
Inorganics Pathway Total				1.6E-07	4.1E-08	2.0E-07	
Pathway Total – Chemicals				1.6E-07	4.1E-08	2.0E-07	
	•	National (nee		•	
		Outlet C and	d Charlie's I	Pond			
Arsenic	3.1E-02	1.7E-06	2.6E-06	2.5E-06	3.9E-06	6.4E-06	R
Chromium	2.4E-03	1.3E-07	1.0E-07				
Inorganics Pathway Total				2.5E-06	3.9E-06	6.4E-06	
Pathway Total – Chemicals				2.5E-06	3.9E-06	6.4E-06	
, i i i i i i i i i i i i i i i i i i i	Out	tlets D, E, and	F and Crig	gy's Pond	•		
Arsenic	5.1E-03	2.8E-07	4.2E-07	4.2E-07	6.4E-07	1.1E-06	R
Inorganics Pathway Total				4.2E-07	6.4E-07	1.1E-06	
Pathway Total – Chemicals				4.2E-07	6.4E-07	1.1E-06	
		Resident	Farmer Adu	ult			
		Outlet C and	d Charlie's I	Pond			
Arsenic	3.1E-02	1.8E-05	5.0E-06	2.7E-05	7.5E-06	3.5E-05	R
Chromium	2.4E-03	1.4E-06	2.0E-07				
Inorganics Pathway Total				2.7E-05	7.5E-06	3.5E-05	
Pathway Total – Chemicals				2.7E-05	7.5E-06	3.5E-05	
	Out	tlets D, E, and	F and Crig	gy's Pond			
Arsenic	5.1E-03	3.0E-06	8.2E-07	4.5E-06	1.2E-06	5.7E-06	R
Inorganics Pathway Total				4.5E-06	1.2E-06	5.7E-06	
Pathway Total – Chemicals				4.5E-06	1.2E-06	5.7E-06	
			Farmer Chi				
		Outlet C and	d Charlie's I	Pond			
Arsenic	3.1E-02	1.7E-05	1.8E-06	2.5E-05	2.7E-06	2.8E-05	R
Chromium	2.4E-03	1.3E-06	7.2E-08				
Inorganics Pathway Total				2.5E-05	2.7E-06	2.8E-05	
Pathway Total – Chemicals				2.5E-05	2.7E-06	2.8E-05	

Table A-13. Load Line 1 Surface Water Risks – Direct Contact

		Daily Intake (mg/kg-d)		Ris	k	Total Risk	
СОРС	EPC (mg/L)	Ingestion	Dermal	Ingestion	Dermal	Across all Pathways	COC ^a
	Out	lets D, E , and	F and Crig	gy's Pond	•	•	
Arsenic	5.1E-03	2.8E-06	3.0E-07	4.2E-06	4.4E-07	4.6E-06	R
Inorganics Pathway Total				4.2E-06	4.4E-07	4.6E-06	
Pathway Total – Chemicals				4.2E-06	4.4E-07	4.6E-06	

Table A-13. Load Line 1 Surface Water Risks – Direct Contact (continued)

^{*a*} Chemical of potential concern (COPCs) are identified as chemicals of concern (COCs) if the total incremental lifetime cancer risk across all pathways is > 1E-06 (R).

EPC = Exposure point concentration.

COPC EPC (mg/kg) Ingestion Dermal Inhalation Ingestion Dermal Inhalation Pathways CO Uniter/Trapper/Fisher Outlet C and Charlie's Pond Arsenic 2.5E+01 1.3E-07 3.2E-07 2.8E-11 4.3E-04 1.1E-03 1.5E-03 1.5E-03 Manganese 2.4E+03 1.2E-05 1.0E-06 2.7E-04 5.5E-04 1.9E-04 1.0E-03 1.9E-04 1.0E-03 1.9E-04 1.0E-03 1.9E-04 2.5E-03 1.9E-04 2.5E-03 1.9E-04 2.5E-03 1.9E-04 2.5E-03 1.9E-04 2.5E-03 2.8E-03 1.9E-04 2.5E-03 2.8E-03 1.9E-04 5.2E-03 2.8E-03 2.8E-03 1.9E-04 5.2E-03 2.8E-03			Daily	Intake (m	g/kg-d)	На	zard Quo	tient	Total HI	
Hunter/Trapper/Fisher Outlet C and Charlie's Pond Arsenic 2.5E+01 1.3E-07 3.2E+07 3.2E+07 3.2E+07 3.2E+01 4.3E+04 1.1E+03 1.5E+03 Manganese 2.4E+03 1.2E+05 1.0E+06 2.7E+09 2.7E+04 5.5E+04 1.9E+04 2.5E+03 Benzo(n)pyrene 8.4E+02 4.4E+10 4.7E+09 9.5E+14 P PCB-1254 8.7E+01 4.5E+09 5.2E+08 9.8E+13 2.3E+04 2.6E+03 2.8E+03 Organics Pathway Total Outlets A and B Outlets A and B 3.2E+04 1.9E+04 5.3E+05 Atuminum 1.3E+04 6.9E-05 5.6E+06 1.5E+08 6.9E+05 3.6E+06 1.0E+03 3.2E+04 1.1E+03 Arsenic 1.8E+01 9.1E+08 2.2E+07 2.0E+11 3.0E+04 7.5E+04 1.1E+03 Copper 1.6E+02 8.2E+07 6.7E+08 1.8E+10 2.0E+05 1.7E+06 2.2E+05 Arsenic 1.8E+01 7.5E+04									Across all	
Outlet C and Charlie's Pond Arsenic 2.5E+01 1.3E-07 3.2E-07 2.8E-11 4.3E-04 1.1E-03 1.5E-03 Manganese 2.4E+03 1.2E-05 1.0E-06 2.7E-04 5.5E-04 1.9E-04 2.5E-03 Iorganics Pathway Total . . 7.0E-04 1.6E-03 1.9E-04 2.5E-03 PCB-1254 8.7E-01 4.5E-09 5.2E-08 9.8E-13 2.3E-04 2.6E-03 2.8E-03 Organics Pathway Total . <th>СОРС</th> <th>(mg/kg)</th> <th>Ingestion</th> <th></th> <th></th> <th></th> <th>Dermal</th> <th>Inhalation</th> <th>Pathways</th> <th>COC^a</th>	СОРС	(mg/kg)	Ingestion				Dermal	Inhalation	Pathways	COC ^a
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$										
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	L									
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$								1.05.04		
Benzo(a)pyrene 8.4E-02 4.4E-10 4.7E-09 9.5E-14 Image: constraint of the symbolic constraint of the sy		2.4E+03	1.2E-05	1.0E-06	2.7E-09					
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$						7.0E-04	1.6E-03	1.9E-04	2.5E-03	
Organics Pathway Total 2.3E-04 2.6E-03 2.8E-03 Pathway Total – Chemicals 9.3E-04 4.2E-03 1.9E-04 5.3E-03 Aluminum 1.3E+04 6.9E-05 5.6E-06 1.5E-08 6.9E-05 5.6E-05 9.3E-04 4.2E-03 1.9E-04 5.3E-03 Antimony 4.6E+00 2.4E-08 2.0E-09 5.2E-12 6.0E-05 3.3E-05 9.3E-05 Arsenic 1.8E+01 9.1E-08 2.2E-07 2.0E-11 3.0E-04 7.5E-04 1.1E-03 Cadmium 1.5E+01 7.8E-08 6.4E-09 1.7E-11 7.8E-05 2.6E-04 3.3E-04 Copper 1.6E+02 8.2E-07 6.7E-08 1.8E-10 2.2E-05 1.7E-06 6.3E-05 Zinc 1.0E+03 5.2E-06 4.3E-07 1.1E-09 1.7E-05 4.8E-06 2.2E-05 Inorganics Pathway Total 6.1E-04 1.1E-03 1.0E-05 1.7E-03 2.2E+05 Benz(a)antracene 9.2E+00 4.8E-08 5.1E-07 1.0E-11 Benzo(a)pyrene										
Pathway Total – Chemicals Outlets A and B Aluminum 1.3E+04 6.9E-05 5.6E-06 1.5E-08 6.9E-05 5.6E-06 1.0E-05 8.5E-05 Antimony 4.6E+00 2.4E-08 2.0E-09 5.2E-12 6.0E-05 3.3E-05 9.3E-05 Arsenic 1.8E+01 9.1E-08 2.2E-07 2.0E-11 3.0E-04 7.5E-04 1.1E-03 Cadmium 1.5E+01 7.8E-08 6.4E-09 1.7E-11 7.8E-05 2.6E-04 3.3E-05 Thallium 8.9E-01 4.6E-09 3.8E-10 2.0E-05 1.7E-06 2.2E-05 Tinganics Pathway Total 0.10E+03 5.2E-06 4.3E-07 1.1E-09 1.7E-05 4.8E-06 2.2E-05 Inorganics Pathway Total 0.0E+00 1.0E-08 8.5E-07 1.0E-11 5.2E-06 4.3E-05 4.8E-05 Benz(a)anthracene 9.2E+00 5.0E-08 5.3E-07 1.1E-11 0 0 0 Benz(a)pyrene 9.5E+00 5.0E-08 5.3E-07 1.4E-11 0 <		8.7E-01	4.5E-09	5.2E-08	9.8E-13					
Outlets A and B Aluminum 1.3E+04 6.9E-05 5.6E-06 1.5E-08 6.9E-05 5.6E-06 1.0E-05 8.5E-05 Antimony 4.6E+00 2.4E-08 2.0E-09 5.2E-12 6.0E-05 3.3E-05 9.3E-05 Arsenic 1.8E+01 9.1E-08 2.2E-07 2.0E-11 3.0E-04 7.5E-04 1.1E-03 Cadmium 1.5E+01 7.8E-08 6.4E-09 1.7E+11 7.8E-05 2.6E-04 3.3E-04 Copper 1.6E+02 8.2E-07 6.7E-08 1.8E-10 2.0E-05 1.7E-06 2.2E+05 Thallium 8.9E-01 4.6E-09 3.8E-10 1.0E-12 5.8E-05 4.7E-06 6.3E+05 Zinc 1.0E+03 5.2E-06 4.3E-07 1.1E-09 1.7E+03 1.0E-05 1.7E+03 2.4-Dinitrotoluene 2.0E+00 1.0E-08 8.5E-07 1.0E-11 Benz(a)anthracene 9.2E+00 4.8E-08 5.1E-07 1.0E-11 <								1.05.04		
Aluminum $1.3E+04$ $6.9E-05$ $5.6E-06$ $1.5E-08$ $6.9E-05$ $5.6E-06$ $1.0E-05$ $8.5E-05$ Antimony $4.6E+00$ $2.4E-08$ $2.0E-09$ $5.2E-12$ $6.0E-05$ $3.3E-05$ $9.3E-05$ Arsenic $1.8E+01$ $9.1E-08$ $2.2E-07$ $2.0E-11$ $3.0E-04$ $7.5E-04$ $1.1E-03$ Cadmium $1.5E+01$ $7.8E-08$ $6.4E-09$ $1.7E-11$ $7.8E-04$ $3.3E-04$ Copper $1.6E+02$ $8.2E-07$ $6.7E-08$ $1.8E-10$ $2.0E-05$ $1.7E-06$ $2.2E-05$ Thallium $8.9E-01$ $4.6E-09$ $3.8E-10$ $1.0E-12$ $5.8E-05$ $4.7E-06$ $6.3E-05$ Zinc $1.0E+03$ $5.2E-06$ $4.3E-05$ $4.8E-05$ $1.7E-03$ $2.2E-05$ Inorganics Pathway Total $0.0E+03$ $5.2E-08$ $5.3E-07$ $1.1E-03$ $1.0E-05$ $4.8E-05$ Benz(a)anthracene $9.2E+00$ $5.0E-08$ $5.3E-07$ $1.1E-11$ $0.0E-05$ $0.0E-05$	Pathway Total – Chemicals			0.1		9.3E-04	4.2E-03	1.9E-04	5.3E-03	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		1.05.04	< 0E 05			< 0E 05	5 (F 0 (1.05.05	0.55.05	
Arsenic 1.8E+01 9.1E-08 2.2E-07 2.0E-11 3.0E-04 7.5E-04 1.1E-03 Cadmium 1.5E+01 7.8E-08 6.4E-09 1.7E-11 7.8E-05 2.6E-04 3.3E-04 Copper 1.6E+02 8.2E-07 6.7E-08 1.8E-10 2.0E-05 1.7E-06 2.2E-05 Thallium 8.9E-01 4.6E-09 3.8E+10 1.0E-12 5.8E-05 4.7E-06 6.3E-05 Zinc 1.0E+03 5.2E-06 4.3E-07 1.1E-09 1.7E-05 4.8E-06 2.2E-05 Inorganics Pathway Total 6.1E-04 1.1E-03 1.0E-05 1.7E-03 Q.4-Dinitrotoluene 2.0E+00 1.0E-08 8.5E-08 2.3E-12 5.2E-06 4.3E-05 4.8E-05 Benzo(a)pyrene 9.5E+00 5.0E-08 5.3E-07 1.1E-11 Benzo(b)fluoranthene 1.2E+01 6.3E-08 6.7E-07 1.4E-11 PCB-1254 6.1E-01 3.2E-09 3.6E-08								1.0E-05		
Cadmium 1.5E+01 7.8E-08 6.4E-09 1.7E-11 7.8E-05 2.6E-04 3.3E-04 Copper 1.6E+02 8.2E-07 6.7E-08 1.8E-10 2.0E-05 1.7E-06 2.2E-05 Thallium 8.9E-01 4.6E-09 3.8E-10 1.0E-12 5.8E-05 4.7E-06 6.3E-05 Zinc 1.0E+03 5.2E-06 4.3E-07 1.1E-09 1.7E-05 4.8E-06 2.2E-05 Inorganics Pathway Total - - 6.1E-04 1.1E-03 1.0E-05 1.7E-03 2,4-Dinitrotoluene 2.0E+00 1.0E-08 8.5E-08 2.3E-12 5.2E-06 4.3E-05 4.8E-05 Benz(a)anthracene 9.2E+00 4.8E-08 5.1E-07 1.0E-11 - - - Benzo(a)pyrene 9.5E+00 5.0E-08 5.3E-07 1.1E-11 - - - Dibenz(a,h)anthracene 1.7E+00 8.9E-09 9.4E-08 1.9E-12 - - - Indeno(1,2,3-cd)pyrene 6.7E+00 3.5E-08 <										
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$										
Thalium 8.9E-01 4.6E-09 3.8E-10 1.0E-12 5.8E-05 4.7E-06 6.3E-05 Zinc 1.0E+03 5.2E-06 4.3E-07 1.1E-09 1.7E-05 4.8E-06 2.2E-05 Inorganics Pathway Total 6.1E-04 1.1E-03 1.0E-05 1.7E-03 2.2E+05 2,4-Dinitrotoluene 2.0E+00 1.0E-08 8.5E-08 2.3E-12 5.2E-06 4.3E-05 4.8E-05 Benz(a)anthracene 9.2E+00 4.8E-08 5.1E-07 1.0E-11 Benzo(a)pyrene 9.5E+00 5.0E-08 5.3E-07 1.1E-11 Benzo(b)fluoranthene 1.2E+01 6.3E-08 6.7E-07 1.4E-11 Dibenz(a,h)anthracene 1.7E+00 8.9E-09 9.4E-08 1.9E-12 Indeno(1,2,3-cd)pyrene 6.7E+00 3.5E-08 3.7E-07 7.6E-12 PCB-1254 6.1E-01 3.2E-09 3.6E-08 6.9E-13 1.6E-04 1.8E-03 2										
Zinc 1.0E+03 5.2E-06 4.3E-07 1.1E-09 1.7E-05 4.8E-06 2.2E-05 Inorganics Pathway Total 6.1E-04 1.1E-03 1.0E-05 1.7E-03 2.2E-05 2,4-Dinitrotoluene 2.0E+00 1.0E-08 8.5E-08 2.3E-12 5.2E-06 4.3E-05 4.8E-05 Benz(a)anthracene 9.2E+00 4.8E-08 5.1E-07 1.0E-11 Benzo(a)pyrene 9.5E+00 5.0E-08 5.3E-07 1.1E-11 Benzo(a)hunthracene 1.7E+00 8.9E-09 9.4E-08 1.9E-12										
Inorganics Pathway Total 6.1E-04 1.1E-03 1.0E-05 1.7E-03 2,4-Dinitrotoluene 2.0E+00 1.0E-08 8.5E-08 2.3E-12 5.2E-06 4.3E-05 4.8E-05 Benz(a)anthracene 9.2E+00 4.8E-08 5.1E-07 1.0E-11 Benzo(a)pyrene 9.5E+00 5.0E-08 5.3E-07 1.1E-11 Benzo(b)fluoranthene 1.2E+01 6.3E-08 6.7E-07 1.4E-11 <										
2,4-Dinitrotoluene 2.0E+00 1.0E-08 8.5E-08 2.3E-12 5.2E-06 4.3E-05 4.8E-05 Benz(a)anthracene 9.2E+00 4.8E-08 5.1E-07 1.0E-11 Benzo(a)pyrene 9.5E+00 5.0E-08 5.3E-07 1.1E-11 Benzo(b)fluoranthene 1.2E+01 6.3E-08 6.7E-07 1.4E-11 Dibenz(a,h)anthracene 1.7E+00 8.9E-09 9.4E-08 1.9E-12		1.0E+03	5.2E-06	4.3E-07	1.1E-09			1.05.05		
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$		0.05.00	1.05.00	0.55.00	0 0E 10			1.0E-05		
Benzo(a)pyrene 9.5E+00 5.0E-08 5.3E-07 1.1E-11 Image: constraint of the system Benzo(b)fluoranthene 1.2E+01 6.3E-08 6.7E-07 1.4E-11 Image: constraint of the system Image: constrais of the system Image: constraint of	-					5.2E-06	4.3E-05		4.8E-05	
Benzo(b)fluoranthene 1.2E+01 6.3E-08 6.7E-07 1.4E-11 Image: Constraint of the symbol Image: Constraint of th										
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$										
Indeno(1,2,3-cd)pyrene 6.7E+00 3.5E-08 3.7E-07 7.6E-12 Image: Constraint of the symbol Constraint of the symbol <td></td>										
PCB-1254 6.1E-01 3.2E-09 3.6E-08 6.9E-13 1.6E-04 1.8E-03 2.0E-03 Organics Pathway Total 1 1 1 1.6E-04 1.9E-03 2.0E-03 Pathway Total – Chemicals 7.7E-04 2.9E-03 1.0E-05 3.7E-03 Matimony 5.9E+02 3.1E-06 2.5E-07 6.7E-10 7.8E-03 4.2E-03 1.2E-02 Arsenic 2.1E+01 1.1E-07 2.7E-07 2.3E-11 3.6E-04 8.9E-04 1.2E-03 Copper 1.0E+03 5.3E-06 4.4E-07 1.2E-09 1.3E-04 1.1E-05 1.4E-04 Manganese 3.4E+03 1.8E-05 1.4E-06 3.8E-09 3.8E-04 2.7E-04 1.4E-03 Inorganics Pathway Total 8.6E-03 5.9E-03 2.7E-04 1.5E-02 1.4E-02 Pathway Total – Chemicals 9 8.6E-03 5.9E-03 2.7E-04 1.5E-02 Pathway Total – Chemicals 9 8.6E-03 5.9E-03 2.7E-04 1.5E-02										
Organics Pathway Total 1.6E-04 1.9E-03 2.0E-03 Pathway Total – Chemicals 7.7E-04 2.9E-03 1.0E-05 3.7E-03 Outlets D, E, and F and Criggy's Pond 7.7E-04 2.9E-03 1.0E-05 3.7E-03 Antimony 5.9E+02 3.1E-06 2.5E-07 6.7E-10 7.8E-03 4.2E-03 1.2E-02 Arsenic 2.1E+01 1.1E-07 2.7E-07 2.3E-11 3.6E-04 8.9E-04 1.2E-03 Copper 1.0E+03 5.3E-06 4.4E-07 1.2E-09 1.3E-04 1.1E-05 1.4E-04 Manganese 3.4E+03 1.8E-05 1.4E-06 3.8E-09 3.8E-04 2.7E-04 1.4E-03 Inorganics Pathway Total 8.6E-03 5.9E-03 2.7E-04 1.5E-02 2.7E-04 1.5E-02 Pathway Total – Chemicals 8.6E-03 5.9E-03 2.7E-04 1.5E-02 2.7E-04 1.5E-02						1 (E.04	1.00.02		0 OF 02	
Pathway Total – Chemicals 7.7E-04 2.9E-03 1.0E-05 3.7E-03 Outlets D, E, and F and Criggy's Pond Antimony 5.9E+02 3.1E-06 2.5E-07 6.7E-10 7.8E-03 4.2E-03 1.2E-02 Arsenic 2.1E+01 1.1E-07 2.7E-07 2.3E-11 3.6E-04 8.9E-04 1.2E-03 Copper 1.0E+03 5.3E-06 4.4E-07 1.2E-09 1.3E-04 1.1E-05 1.4E-04 Manganese 3.4E+03 1.8E-05 1.4E-06 3.8E-09 3.8E-04 2.7E-04 1.5E-02 Pathway Total E E 8.6E-03 5.9E-03 2.7E-04 1.5E-02 Pathway Total – Chemicals E E E 8.6E-03 5.9E-03 2.7E-04 1.5E-02		6.1E-01	3.2E-09	3.6E-08	6.9E-13					
Outlets D, E, and F and Criggy's Pond Antimony 5.9E+02 3.1E-06 2.5E-07 6.7E-10 7.8E-03 4.2E-03 1.2E-02 Arsenic 2.1E+01 1.1E-07 2.7E-07 2.3E-11 3.6E-04 8.9E-04 1.2E-03 Copper 1.0E+03 5.3E-06 4.4E-07 1.2E-09 1.3E-04 1.1E-05 1.4E-04 Manganese 3.4E+03 1.8E-05 1.4E-06 3.8E-09 3.8E-04 7.9E-04 2.7E-04 1.4E-03 Inorganics Pathway Total 8.6E-03 5.9E-03 2.7E-04 1.5E-02 Pathway Total – Chemicals 8.6E-03 5.9E-03 2.7E-04 1.5E-02								1.05.05		
Antimony 5.9E+02 3.1E-06 2.5E-07 6.7E-10 7.8E-03 4.2E-03 1.2E-02 Arsenic 2.1E+01 1.1E-07 2.7E-07 2.3E-11 3.6E-04 8.9E-04 1.2E-03 Copper 1.0E+03 5.3E-06 4.4E-07 1.2E-09 1.3E-04 1.1E-05 1.4E-04 Manganese 3.4E+03 1.8E-05 1.4E-06 3.8E-09 3.8E-04 7.9E-04 2.7E-04 1.4E-03 Inorganics Pathway Total 8.6E-03 5.9E-03 2.7E-04 1.5E-02 Pathway Total – Chemicals 8.6E-03 5.9E-03 2.7E-04 1.5E-02	Pathway Total – Chemicals		0-41-				2.9E-03	1.0E-05	3./E-03	
Arsenic 2.1E+01 1.1E-07 2.7E-07 2.3E-11 3.6E-04 8.9E-04 1.2E-03 Copper 1.0E+03 5.3E-06 4.4E-07 1.2E-09 1.3E-04 1.1E-05 1.4E-04 Manganese 3.4E+03 1.8E-05 1.4E-06 3.8E-09 3.8E-04 7.9E-04 2.7E-04 1.4E-03 Inorganics Pathway Total 8.6E-03 5.9E-03 2.7E-04 1.5E-02 Pathway Total – Chemicals 8.6E-03 5.9E-03 2.7E-04 1.5E-02	Antimony	5 OE 102					4 2E 02		1.2E.02	
Copper 1.0E+03 5.3E-06 4.4E-07 1.2E-09 1.3E-04 1.1E-05 1.4E-04 Manganese 3.4E+03 1.8E-05 1.4E-06 3.8E-09 3.8E-04 7.9E-04 2.7E-04 1.4E-03 Inorganics Pathway Total 8.6E-03 5.9E-03 2.7E-04 1.5E-02 Pathway Total – Chemicals 8.6E-03 5.9E-03 2.7E-04 1.5E-02										
Manganese 3.4E+03 1.8E-05 1.4E-06 3.8E-09 3.8E-04 7.9E-04 2.7E-04 1.4E-03 Inorganics Pathway Total 8.6E-03 5.9E-03 2.7E-04 1.5E-02 Pathway Total – Chemicals 8.6E-03 5.9E-03 2.7E-04 1.5E-02 Dust/Fire Suppression										
Inorganics Pathway Total 8.6E-03 5.9E-03 2.7E-04 1.5E-02 Pathway Total – Chemicals 8.6E-03 5.9E-03 2.7E-04 1.5E-02 Dust/Fire Suppression								2.7E.04		
Pathway Total – Chemicals 8.6E-03 5.9E-03 2.7E-04 1.5E-02 Dust/Fire Suppression		3.4E+03	1.6E-05	1.4E-00	3.6E-09					
Dust/Fire Suppression										
	Fattiway Total – Chemicals			Duct/E	. Cummunadi		J.9E-03	2.7E-04	1.3E-02	
Arsenic 2.5E+01 2.4E-07 4.4E-07 1.2E-10 8.1E-04 1.5E-03 2.3E-03	Arsenic	2 5E±01					1 5E-03		2 3E-03	
Maganese 2.4E+03 2.3E-05 4.4E-07 1.4E-16 0.1E-04 1.3E-05 2.3E-05 Manganese 2.4E+03 2.3E-05 1.4E-06 1.1E-08 5.0E-04 7.4E-04 7.7E-04 2.0E-03								7 7E-04		
Inorganics 2.4E+05 2.5E+05 1.4E+05 5.6E+04 7.4E+04 7.1E+04 2.6E+05 Inorganics Pathway Total 1.3E+03 2.2E+03 7.7E+04 4.3E+03		2.41103	2.51-05	1.41-00	1.1L-00					
Benzo(a)pyrene 8.4E-02 8.2E-10 6.3E-09 4.0E-13 7.7E-03 7.7E-04 4.5E-05		84E-02	8 2E-10	63E-09	4 0E-13	1.52-05	2.21-05	7.7L-04	4.3L-03	
PCB-1254 8.7E-01 8.5E-09 7.1E-08 4.1E-12 4.3E-04 3.5E-03 4.0E-03						4 3E-04	3 5E-03		4 0E-03	
Organics Pathway Total 6.7E-01 6.5E-05 4.6E-03 4.0E-03		5.7 2-01	0.51-07	7.1L-00	T.112-12					
Pathway Total – Chemicals 1.7E-03 5.7E-03 7.7E-04 8.2E-03								7 7E-04		
Outlets A and B	ramma, rotar chemicals				ets A and B	1.7.2 03	5.72 05	,,, <u>,,</u> ,,,,,	0.22 03	I
Aluminum 1.3E+04 1.3E-04 7.6E-06 6.2E-08 1.3E-04 7.6E-06 4.3E-05 1.8E-04	Aluminum	1.3E+04	1.3E-04			1.3E-04	7.6E-06	4.3E-05	1.8E-04	
Antimony 4.6E+00 4.5E-08 2.7E-09 2.2E-11 1.1E-04 4.5E-05 1.6E-04										
Arsenic 1.8E+01 1.7E-07 3.1E-07 8.2E-11 5.7E-04 1.0E-03 1.6E-03										
Cadmium 1.5E+01 1.5E-07 8.7E-09 7.1E-11 1.5E-04 3.5E-04 5.0E-04										
Copper 1.6E+02 1.5E-06 9.1E-08 7.3E-10 3.8E-05 2.3E-06 4.0E-05										
Thallium 8.9E-01 8.7E-09 5.2E-10 4.2E-12 1.1E-04 6.5E-06 1.2E-04										
Zinc 1.0E+03 9.8E-06 5.8E-07 4.7E-09 3.3E-05 6.5E-06 3.9E-05										

Table A-14. Load Line 1 Sediment Hazards – Direct Contact

COPC IPC Inclusion Inclusion Dermal Inhalation Partona Across all Partona Across all 2.4-Dinitrotohene 2.0E-00 2.0E-008 1.2E-07 9.4E-12 9.8E-06 5.8E-05 6.8E-05 6.8E-05 Benz/a/mitracene 9.2E+00 9.3E-08 7.2E-07 4.3E-11 6.8E-05 6.8E-05 Benz/a/mitracene 9.2E+00 9.3E-08 7.2E-07 4.3E-11 6.8E-05 6.8E-05 6.8E-05 5.6E-11			Daily Intake (mg/kg-d) Hazard Quotient			tient	Total HI			
Inorganics Pathway Total Image in the second s										
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	COPC	(mg/kg)	Ingestion	Dermal	Inhalation	Ingestion	Dermal	Inhalation	Pathways	COC ^a
	Inorganics Pathway Total					1.1E-03	1.4E-03	4.3E-05	2.6E-03	
Betrac(a)pyrene 9.5E+00 9.3E+00 9.3E+07 9.6E+11 Image: Second	2,4-Dinitrotoluene			1.2E-07	9.4E-12	9.8E-06	5.8E-05		6.8E-05	
Benze(i)filtorambene 1.2E+01 1.1E+07 5.6E-11 Image in the interval interva	Benz(<i>a</i>)anthracene	9.2E+00	9.0E-08	7.0E-07	4.3E-11					
Dibenz(a/)anthracene 1.7E+00 1.3E+07 8.0E+12 Image (C)	Benzo(<i>a</i>)pyrene	9.5E+00	9.3E-08	7.2E-07	4.5E-11					
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Benzo(<i>b</i>)fluoranthene	1.2E+01	1.2E-07	9.1E-07	5.6E-11					
PCB-1254 6.1E-01 6.0E-09 5.0E-08 2.9E-12 3.0E-04 2.5E-03 2.8E-03 Organics Pathway Total 3.1E-04 2.5E-03 2.8E-03 Antimory 5.9E+02 5.8E-06 3.5E-07 2.8E-07 9.8E-01 3.5E-05 3.5E-03 Antimory 5.9E+02 3.8E-06 3.5E-07 2.8E-03 2.0E-07 2.8E-03 2.0E-02 Ansenic 2.1E+01 2.0E-07 3.8E-07 9.8E-11 6.8E-04 1.2E-05 2.6E-04 Manganese 3.4E+03 3.20E-06 1.6E-02 8.0E-03 1.1E-03 2.9E+03 Inorganics Pathway Total 1.6E-02 8.0E-03 1.1E-03 2.9E+02 Pathway Total 1.6E-02 8.0E-03 1.6E-02 8.0E-03 1.6E-02 Arsenic 2.5E+01 3.8E-06 1.1E-06 1.8E-07 3.5E-08 0.7E+00 6.7E+00 6.7E+00 6.7E+00 6.7E+00 6.7E+00 <	Dibenz(<i>a</i> , <i>h</i>)anthracene	1.7E+00	1.7E-08	1.3E-07	8.0E-12					
Organics Pathway Total m 3.1E-04 2.5E-03 2.8E.03 Pathway Total – Chemicals - 1.4E-03 4.0E-03 4.0E-03 4.0E-03 5.5E-03 Antimony 5.9E+02 5.8E-00 3.5E-07 2.8E-09 1.5E-02 5.8E-03 2.0E-02 Arsenic 2.1E+01 2.0E-07 3.6E-07 9.8E-11 6.8E-04 1.2E-03 1.9E-03 1.9E-03 Copper 1.0E+03 1.0E+03 5.9E-07 4.8E-00 2.5E-04 1.5E-03 1.6E-03 2.9E-03 Iorganics Pathway Total - - 1.6E-02 8.0E-03 1.1E-03 2.5E-02 Pathway Total – Chemicals - - 1.0E-02 8.0E-03 1.1E-03 2.5E-02 Pathway Total - - 1.0E-02 8.0E-03 1.1E-03 2.5E-02 Manganese 2.4E+03 3.8E-04 5.0E-05 7.8E-03 1.9E-03 6.7E+00 6.7E+00 Manganese 2.4E+03 1.3E-04 1.2E-04 3.8E-01 1.6E-02	Indeno(1,2,3-cd)pyrene	6.7E+00	6.6E-08	5.1E-07	3.2E-11					
Pathway Total – Chemicals Image: Pathway Total Imag	PCB-1254	6.1E-01	6.0E-09	5.0E-08	2.9E-12	3.0E-04	2.5E-03		2.8E-03	
Ontlets D. E. and F and Ciggy's Pand Antimony $5,9E+02$ $5,8E+06$ $3,5E+07$ $2,8E+09$ $1,5E+02$ $5,8E+03$ $2,0E+03$ Arsenic $2,1E+01$ $2,0E+07$ $3,6E+07$ $9,8E+11$ $6,8E+04$ $1,2E+03$ $1,9E+03$ Copper $1,0E+03$ $3,3E+05$ $2,0E+07$ $4,8E+09$ $2,5E+04$ $1,1E+03$ $2,2E+03$ Manganese $3,4E+03$ $3,3E+05$ $2,0E+07$ $4,8E+02$ $8,0E+03$ $1,1E+03$ $2,2E+02$ Pathway Total D $1,6E+02$ $8,0E+03$ $1,1E+03$ $2,2E+02$ Manganese $2,4E+03$ $3,6E+06$ $1,1E+06$ $1,3E+02$ $3,8E+00$ $1,6E+02$ Manganese $2,4E+03$ $3,6E+04$ $3,6E+06$ $1,5E+03$ $1,5E+02$ $6,7E+00$ $6,7E+00$ $6,7E+00$ $6,7E+00$ Manganese $2,4E+03$ $3,6E+04$ $3,5E+06$ $3,2E+06$ $3,2E+07$ $3,8E+01$ Manganese $2,4E+03$ $3,6E+04$ $3,2E+03$ $1,6E+02$ <td>Organics Pathway Total</td> <td></td> <td></td> <td></td> <td></td> <td>3.1E-04</td> <td>2.5E-03</td> <td></td> <td>2.8E-03</td> <td></td>	Organics Pathway Total					3.1E-04	2.5E-03		2.8E-03	
Antimony 5.9E-02 5.8E-06 3.5E-07 2.8E-09 1.5E-02 5.8E-03 2.0E-02 Arsenic 2.1E+01 2.0E-07 3.6E-07 9.8E-11 6.8E-04 1.2E-03 1.9E-03 Copper 1.0E+03 3.3E-05 2.0E-06 1.6E-08 7.2E-04 1.1E-03 2.9E-03 Inorganics Pathway Total 1.6E-02 8.0E-03 1.1E-03 2.5E-02 Pathway Total 1.6E-02 8.0E-03 1.1E-03 2.5E-02 Pathway Total 1.0E-04 8.0E-03 1.1E-03 2.5E-02 Arsenic 2.5E+01 3.8E-06 1.1E-06 1.0E-06 1.3E-02 3.8E-01 6.7E+00	Pathway Total – Chemicals					1.4E-03	4.0E-03	4.3E-05	5.5E-03	
Arsenic 2.1E+01 2.0E+07 3.6E+07 9.8E+11 6.8E+04 1.2E+03 1.9E+03 Copper 1.0E+03 1.0E+05 5.9E+07 4.8E+09 2.5E+04 1.1E+03 2.9E+03 Inorganics Pathway Total 3.2E+02 1.6E+02 8.0E+03 1.1E+03 2.5E+02 Pathway Total . 1.6E+02 8.0E+03 1.1E+03 2.5E+02 Pathway Total . . 1.6E+02 8.0E+03 1.1E+03 2.5E+02 Pathway Total . . . 1.6E+02 8.0E+03 1.1E+06 1.6E+02 Arsenic 2.5E+01 3.8E+04 1.1E+06 1.0E+06 1.3E+03 1.9E+03 6.7E+00 6.7E+00 1.6E+02 Benzo(a)pyrene 8.4E+02 1.3E+08 1.7E+08 3.4E+09 1.2E+03 6.7E+00 6.7E+00 6.7E+00 6.7E+00 1.6E+02 Pathway Total . . 2.0E+03 3.2E+03 1.6E+02 1.2E+04 3.2E+03 1.6E+02 Pathway Total			Outle	ts D, E, an	d F and Crig	gy's Pond				
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Antimony	5.9E+02	5.8E-06	3.5E-07	2.8E-09	1.5E-02	5.8E-03		2.0E-02	
Manganese 3.4E+03 3.3E-05 2.0E-06 1.6E-08 7.2E-04 1.1E-03 1.1E-03 2.9E-03 Inorganics Pathway Total Independent	Arsenic	2.1E+01	2.0E-07	3.6E-07	9.8E-11	6.8E-04	1.2E-03		1.9E-03	
		1.0E+03	1.0E-05	5.9E-07	4.8E-09	2.5E-04	1.5E-05		2.6E-04	
Pathway Total – Chemicals Image of the second		3.4E+03	3.3E-05	2.0E-06	1.6E-08	7.2E-04	1.1E-03	1.1E-03	2.9E-03	
National Guard Trainee Outlet Cand Charlie's Pond Arsenic 2.5E+01 3.8E-06 1.1E-06 1.3E-02 3.8E-03 1.6E-02 Manganese 2.4E+03 3.6E-04 3.6E-06 9.6E-05 7.8E-03 1.9E-03 6.7E+00 6.7E+00 H Inorganics Pathway Total 2.0E-02 5.7E-03 6.7E+00 7.7E+07 8.7E+01<						1.6E-02	8.0E-03	1.1E-03	2.5E-02	
Utelt Cancle System Arsenic 2.5E+01 3.8E-06 1.1E-06 1.0E-06 1.3E-03 1.8E-03 0.8E-03 0.8E-03 0.8E-03 0.8E-03 0.6E-05 7.8E-03 0.9E-03 6.7E+00 7.7E+00 7.7E+07 7.7E+07 7.8E+03 7.7E+03 7.7E+03 7.7E+03 7.7E+03 7.7E+03 7.7E+03 7.7E+03 7.7E+03 7.7E+	Pathway Total – Chemicals					1.6E-02	8.0E-03	1.1E-03	2.5E-02	
Arsenic2.5E+013.8E-061.1E-061.0E-061.3E-023.8E-031.6E-02 $(-6,TE+00)$ $(-6,TE+00)$ $(-6,TE+00)$ $(-7,TE+00)$				National	Guard Train	nee		•		
Manganese 2.4E+03 3.6E-04 3.6E-06 9.6E-05 7.8E-03 1.9E-03 6.7E+00 6.7E+00 H Inorganics Pathway Total 2.0E-02 5.7E+03 6.7E+00 6.7E+			(
Inorganics Pathway Total m 2.0E-02 5.7E-03 6.7E+00 6.7E+00 Benzo(a)pyrene 8.4E-02 1.3E-08 1.7E-08 3.4E-09 -	Arsenic	2.5E+01	3.8E-06	1.1E-06	1.0E-06	1.3E-02	3.8E-03		1.6E-02	
Inorganics Pathway Total m 2.0E-02 5.7E-03 6.7E+00 6.7E+00 Benzo(a)pyrene 8.4E-02 1.3E-08 1.7E-08 3.4E-09 -	Manganese	2.4E+03	3.6E-04	3.6E-06	9.6E-05	7.8E-03	1.9E-03	6.7E+00	6.7E+00	Н
PCB-12548.7E-011.3E-071.8E-073.5E-086.6E-039.2E-031.6E-021.6E-02Organics Pathway Total2.7E-039.2E-036.7E+001.6E+02Pathway Total - Chemicals2.7E-031.5E+021.5E+021.5E+021.7E+02Aluminum1.3E+042.0E-032.0E+055.3E+042.0E+032.0E+033.7E+013.8E+011.2E+03Antimony4.6E+007.1E+077.9E+077.1E+078.9E+032.6E+033.7E+013.8E+011.2E+02Cadmium1.5E+012.7E+067.9E+077.1E+078.9E+032.6E+039.1E+043.2E+031.2E+02Cadmium1.5E+012.3E+052.4E+076.4E+066.0E+045.9E+066.0E+043.2E+031.7E+03Copper1.6E+022.4E+052.4E+076.4E+066.0E+045.9E+066.0E+041.7E+031.7E+03Janc1.0E+031.5E+041.5E+064.1E+055.1E+041.7E+055.3E+041.7E+03Janc1.0E+033.1E+073.0E+078.1E+081.5E+023.7E+014.0E+014.0E+01Inorganics Pathway Total9.2E+001.1E+063.9E+071.E+021.E+021.E+021.E+02Benz(a)nthracene9.2E+001.5E+061.9E+063.9E+071.E+01.E+021.E+021.E+02Benz(a)phynene6.1E+011.2E+063.9E+076.E+036.E+031.E+021.E+021.	Inorganics Pathway Total					2.0E-02		6.7E+00	6.7E+00	
PCB-12548.7E-011.3E-071.8E-073.5E-086.6E-039.2E-031.6E-021.6E-02Organics Pathway Total2.7E-039.2E-036.7E+001.6E+02Pathway Total - Chemicals2.7E-031.5E+021.5E+021.5E+021.7E+02Aluminum1.3E+042.0E-032.0E+055.3E+042.0E+032.0E+033.7E+013.8E+011.2E+03Antimony4.6E+007.1E+077.9E+077.1E+078.9E+032.6E+033.7E+013.8E+011.2E+02Cadmium1.5E+012.7E+067.9E+077.1E+078.9E+032.6E+039.1E+043.2E+031.2E+02Cadmium1.5E+012.3E+052.4E+076.4E+066.0E+045.9E+066.0E+043.2E+031.7E+03Copper1.6E+022.4E+052.4E+076.4E+066.0E+045.9E+066.0E+041.7E+031.7E+03Janc1.0E+031.5E+041.5E+064.1E+055.1E+041.7E+055.3E+041.7E+03Janc1.0E+033.1E+073.0E+078.1E+081.5E+023.7E+014.0E+014.0E+01Inorganics Pathway Total9.2E+001.1E+063.9E+071.E+021.E+021.E+021.E+02Benz(a)nthracene9.2E+001.5E+061.9E+063.9E+071.E+01.E+021.E+021.E+02Benz(a)phynene6.1E+011.2E+063.9E+076.E+036.E+031.E+021.E+021.	Benzo(<i>a</i>)pyrene	8.4E-02	1.3E-08	1.7E-08	3.4E-09					
Organics Pathway Total Image: Constraint of the second seco		8.7E-01	1.3E-07		3.5E-08	6.6E-03	9.2E-03		1.6E-02	
Outlets A and B Aluminum 1.3E+04 2.0E-03 2.0E-05 5.3E+04 2.0E-03 2.0E-05 3.7E-01 3.8E-01 Antimony 4.6E+00 7.1E-07 7.0E-09 1.9E-07 1.8E-03 1.2E-04 1.9E-03 Arsenic 1.8E+01 2.7E-06 7.9E-07 7.1E-07 8.9E-03 2.6E-03 1.2E-02 Cadmium 1.5E+01 2.3E-06 2.3E-08 6.1E-07 2.3E-03 9.1E-04 3.2E-03 Copper 1.6E+02 2.4E-05 2.4E-07 6.4E-06 6.0E-04 5.9E-06 6.0E-04 Thallium 8.9E-01 1.4E-07 1.3E-09 3.6E-08 1.7E-03 1.7E-05 5.3E-04 Inorganics Pathway Total 1.8E-02 3.7E-01 4.0E-01 2.4-Dintrotoluene 9.2E+00 1.4E-06 1.8E-06 3.7E-07 Benz(a)anthracene 9.2E+00 1.4E-06 1.8E-06 3.9E-07	Organics Pathway Total								1.6E-02	
Aluminum 1.3E+04 2.0E-03 2.0E-05 5.3E-04 2.0E-03 2.0E-05 3.7E-01 3.8E-01 Antimony 4.6E+00 7.1E-07 7.0E-09 1.9E-07 1.8E-03 1.2E-04 1.9E-03 Arsenic 1.8E+01 2.7E-06 7.9E-07 7.1E-07 8.9E-03 2.6E-03 1.2E-02 Cadmium 1.5E+01 2.3E-06 2.3E-08 6.1E-07 2.3E-03 9.1E-04 3.2E-03 Copper 1.6E+02 2.4E-05 2.4E-05 6.4E-06 6.0E-04 5.9E-06 6.0E-04 Thallium 8.9E-01 1.4E-07 1.3E-09 3.6E-08 1.7E-03 1.7E-05 5.3E-04 Inorganics Pathway Total . . . 1.8E-06 3.7E-07 .	Pathway Total – Chemicals					2.7E-02	1.5E-02	6.7E+00	6.7E+00	
Antimony $4.6E+00$ $7.1E-07$ $7.0E-09$ $1.9E-07$ $1.8E-03$ $1.2E-04$ $1.9E-03$ Arsenic $1.8E+01$ $2.7E-06$ $7.9E-07$ $7.1E-07$ $8.9E-03$ $2.6E-03$ $1.2E-02$ Cadmium $1.5E+01$ $2.3E-06$ $2.3E-08$ $6.1E-07$ $2.3E-03$ $9.1E-04$ $3.2E-03$ Copper $1.6E+02$ $2.4E-05$ $2.4E-07$ $6.4E-06$ $6.0E-04$ $5.9E-06$ $6.0E-04$ Thallium $8.9E-01$ $1.4E-07$ $1.3E-09$ $3.6E-08$ $1.7E-03$ $1.7E-05$ $5.3E-04$ Inorganics Pathway Total $1.5E-04$ $1.5E-06$ $4.1E-05$ $5.1E-04$ $1.7E-03$ $3.7E-01$ $4.0E-01$ $2.4-Dinitrotoluene2.0E+003.1E-073.0E-078.1E-081.5E-041.5E-043.0E-042.4-Dinitrotoluene2.0E+003.1E-073.0E-078.1E-081.5E-041.5E-043.0E-042.4-Dinitrotoluene9.2E+001.4E-061.8E-063.7E-079.6E-049.6E+01Benz(a)anthracene9.2E+001.5E-061.9E-063.9E-079.6E-049.6E-04Benz(a)apyrene9.5E+001.5E-061.9E-063.9E-079.6E-049.6E-04Benz(a)aphrachene1.2E+011.8E-062.7E-079.6E-039.6E-04Benz(a)aphrachene1.2E+011.8E-062.7E-079.6E-031.1E-02Benz(a)aphway Total0.8E-041.3E-022.3E-031.1E-02$				Outl	ets A and B	•		•		
Arsenic $1.8E+01$ $2.7E+06$ $7.9E+07$ $7.1E+07$ $8.9E+03$ $2.6E+03$ $1.2E+02$ Cadmium $1.5E+01$ $2.3E+06$ $2.3E+08$ $6.1E+07$ $2.3E+03$ $9.1E+04$ $3.2E+03$ Copper $1.6E+02$ $2.4E+05$ $2.4E+07$ $6.4E+06$ $6.0E+04$ $5.9E+06$ $6.0E+04$ Thallium $8.9E+01$ $1.4E+07$ $1.3E+09$ $3.6E+08$ $1.7E+03$ $1.7E+03$ $1.7E+03$ Zinc $1.0E+03$ $1.5E+04$ $1.5E+06$ $4.1E+05$ $5.1E+04$ $1.7E+03$ $5.3E+04$ Inorganics Pathway Total $1.5E+04$ $1.5E+06$ $4.1E+05$ $5.1E+04$ $1.5E+04$ $3.0E+04$ $2,4-Dinitrotoluene$ $2.0E+00$ $3.1E+07$ $3.0E+07$ $8.1E+08$ $1.5E+04$ $1.5E+04$ $3.0E+04$ Benz(a) anthracene $9.2E+00$ $1.4E+06$ $1.8E+06$ $3.7E+07$ $$	Aluminum	1.3E+04	2.0E-03	2.0E-05	5.3E-04	2.0E-03	2.0E-05	3.7E-01	3.8E-01	
Cadmium 1.5E+01 2.3E-06 2.3E-08 6.1E-07 2.3E-03 9.1E-04 3.2E-03 Copper 1.6E+02 2.4E-05 2.4E-07 6.4E-06 6.0E-04 5.9E-06 6.0E-04 Thallium 8.9E-01 1.4E-07 1.3E-09 3.6E-08 1.7E-03 1.7E-05 1.7E-03 Zinc 1.0E+03 1.5E-04 1.5E-06 4.1E-05 5.1E-04 1.7E-05 5.3E-04 Inorganics Pathway Total 1.8E-07 3.0E-07 8.1E-08 1.5E-04 1.5E-04 3.0E-04 2,4-Dinitrotoluene 9.2E+00 1.4E-06 1.8E-06 3.7E-01 4.0E-01 Benz(a)anthracene 9.2E+00 1.5E-06 1.9E-06 3.9E-07 Benzo(b)fluoranthene 1.2E+01 1.8E-06 2.4E-06 4.9E-07 Dibenz(a,h)anthracene 1.7E+00 2.6E-07 3.3E-07 6.9E-08 PCB-1254 6.1E-01 9.3E-08 1.3E-07	Antimony	4.6E+00	7.1E-07	7.0E-09	1.9E-07	1.8E-03	1.2E-04		1.9E-03	
Copper 1.6E+02 2.4E-05 2.4E-07 6.4E-06 6.0E-04 5.9E-06 6.0E-04 Thallium 8.9E-01 1.4E-07 1.3E-09 3.6E-08 1.7E-03 1.7E-05 1.7E-03 Zinc 1.0E+03 1.5E-04 1.5E-06 4.1E-05 5.1E-04 1.7E-05 5.3E-04 Inorganics Pathway Total 1.8E-02 3.7E-03 3.7E-01 4.0E-01 2,4-Dinitrotoluene 2.0E+00 3.1E-07 3.0E-07 8.1E-08 1.5E-04 1.5E-04 3.0E-04 Benz(a)anthracene 9.2E+00 1.4E-06 1.8E-06 3.7E-07 Benzo(a)pyrene 9.5E+00 1.5E-06 1.9E-06 3.9E-07	Arsenic	1.8E+01	2.7E-06	7.9E-07	7.1E-07	8.9E-03	2.6E-03		1.2E-02	
Thallium 8.9E-01 1.4E-07 1.3E-09 3.6E-08 1.7E-03 1.7E-05 1.7E-03 1.7E-03 Zinc 1.0E+03 1.5E-04 1.5E-06 4.1E-05 5.1E-04 1.7E-05 5.3E-04 1 Inorganics Pathway Total 1.8E-02 3.7E-03 3.7E-01 4.0E-01 1 2,4-Dinitrotoluene 2.0E+00 3.1E-07 3.0E-07 8.1E-08 1.5E-04 1.5E-04 3.0E-04 3.0E-04 Benz(a)anthracene 9.2E+00 1.4E-06 1.8E-06 3.7E-07 3.0E-04 1.5E-04 1.5E-02 1.5E-05 1.5E-01 1.5E-02	Cadmium	1.5E+01	2.3E-06	2.3E-08	6.1E-07	2.3E-03	9.1E-04		3.2E-03	
Zinc 1.0E+03 1.5E-04 1.5E-06 4.1E-05 5.1E-04 1.7E-05 5.3E-04 Inorganics Pathway Total	Copper	1.6E+02	2.4E-05	2.4E-07	6.4E-06	6.0E-04	5.9E-06		6.0E-04	
Inorganics Pathway Total Image in the state of the state	Thallium	8.9E-01	1.4E-07	1.3E-09	3.6E-08	1.7E-03	1.7E-05		1.7E-03	
2,4-Dinitrotoluene 2.0E+00 3.1E-07 3.0E-07 8.1E-08 1.5E-04 1.5E-04 3.0E-04 1.8E-04 Benz(a)anthracene 9.2E+00 1.4E-06 1.8E-06 3.7E-07 Image: Constraint of the symbol of the symb	Zinc	1.0E+03	1.5E-04	1.5E-06	4.1E-05	5.1E-04	1.7E-05		5.3E-04	
Benz(a)anthracene 9.2E+00 1.4E-06 1.8E-06 3.7E-07 Image: Constraint of the symbolic constratexpect of the symbolic constraint of the symbolic constraint of	Inorganics Pathway Total					1.8E-02	3.7E-03	3.7E-01	4.0E-01	
Benzo(a)pyrene 9.5E+00 1.5E-06 1.9E-06 3.9E-07 Image: Constraint of the symbolic term of the symbolic term of the symbolic term of	2,4-Dinitrotoluene	2.0E+00	3.1E-07	3.0E-07	8.1E-08	1.5E-04	1.5E-04		3.0E-04	
Benzo(b)fluoranthene 1.2E+01 1.8E-06 2.4E-06 4.9E-07 Image: Constraint of the system of th	Benz(<i>a</i>)anthracene	9.2E+00	1.4E-06	1.8E-06	3.7E-07					
Benzo(b)fluoranthene1.2E+011.8E-062.4E-064.9E-07IIIIIIIDibenz(a,h)anthracene1.7E+002.6E-073.3E-076.9E-08III </td <td>Benzo(<i>a</i>)pyrene</td> <td>9.5E+00</td> <td>1.5E-06</td> <td>1.9E-06</td> <td>3.9E-07</td> <td></td> <td></td> <td></td> <td></td> <td></td>	Benzo(<i>a</i>)pyrene	9.5E+00	1.5E-06	1.9E-06	3.9E-07					
Indeno(1,2,3-cd)pyrene 6.7E+00 1.0E-06 1.3E-06 2.7E-07 Image: Constraint of the state of the		1.2E+01	1.8E-06	2.4E-06	4.9E-07					
Indeno(1,2,3-cd)pyrene 6.7E+00 1.0E-06 1.3E-06 2.7E-07 Image: Constraint of the state of the	Dibenz(<i>a</i> , <i>h</i>)anthracene	1.7E+00	2.6E-07	3.3E-07	6.9E-08					
PCB-1254 6.1E-01 9.3E-08 1.3E-07 2.5E-08 4.7E-03 6.5E-03 1.1E-02 Organics Pathway Total Image: Comparison of the stress of th										
Organics Pathway Total Image: Constraint of the system of th						4.7E-03	6.5E-03		1.1E-02	
Pathway Total – Chemicals Image: Constraint of the system of	Organics Pathway Total					4.8E-03			1.1E-02	
Outlets D, E, and F and Criggy's Pond Antimony 5.9E+02 9.1E-05 9.0E-07 2.4E-05 2.3E-01 1.5E-02 2.4E-01 Arsenic 2.1E+01 3.2E-06 9.4E-07 8.4E-07 1.1E-02 3.1E-03 1.4E-02 Copper 1.0E+03 1.6E-04 1.5E-06 4.1E-05 3.9E-03 3.9E-03 3.9E-03 Manganese 3.4E+03 5.2E-04 5.1E-06 1.4E-04 1.1E-02 2.8E-03 9.6E+00 9.6E+00 H Inorganics Pathway Total 2.5E-01 2.1E-02 9.6E+00 9.9E+00						2.3E-02		3.7E-01		
Antimony 5.9E+02 9.1E-05 9.0E-07 2.4E-05 2.3E-01 1.5E-02 2.4E-01 Arsenic 2.1E+01 3.2E-06 9.4E-07 8.4E-07 1.1E-02 3.1E-03 1.4E-02 Copper 1.0E+03 1.6E-04 1.5E-06 4.1E-05 3.9E-03 3.9E-05 3.9E-03 Manganese 3.4E+03 5.2E-04 5.1E-06 1.4E-04 1.1E-02 2.8E-03 9.6E+00 9.6E+00 H Inorganics Pathway Total 2.5E-01 2.1E-02 9.6E+00 9.9E+00			Outle	ts D, E, an	d F and Crig					
Arsenic 2.1E+01 3.2E-06 9.4E-07 8.4E-07 1.1E-02 3.1E-03 1.4E-02 Copper 1.0E+03 1.6E-04 1.5E-06 4.1E-05 3.9E-03 3.9E-05 3.9E-03 Manganese 3.4E+03 5.2E-04 5.1E-06 1.4E-04 1.1E-02 2.8E-03 9.6E+00 9.6E+00 H Inorganics Pathway Total 2.5E-01 2.1E-02 9.6E+00 9.9E+00	Antimony	5.9E+02					1.5E-02		2.4E-01	
Copper 1.0E+03 1.6E-04 1.5E-06 4.1E-05 3.9E-03 3.9E-05 3.9E-03 3.9E-03 Manganese 3.4E+03 5.2E-04 5.1E-06 1.4E-04 1.1E-02 2.8E-03 9.6E+00 9.6E+00 H Inorganics Pathway Total 2.5E-01 2.1E-02 9.6E+00 9.9E+00										
Manganese 3.4E+03 5.2E-04 5.1E-06 1.4E-04 1.1E-02 2.8E-03 9.6E+00 9.6E+00 H Inorganics Pathway Total 2.5E-01 2.1E-02 9.6E+00 9.9E+00 H										
Inorganics Pathway Total 2.5E-01 2.1E-02 9.6E+00 9.9E+00	* *							9.6E+00		Н
Pathway Iotal – Chemicals $[2.5E-01] (2.1E-02) (9.6E+00) (9.9E+00)$	Pathway Total – Chemicals					2.5E-01	2.1E-02	9.6E+00	9.9E+00	

 Table A-14. Load Line 1 Sediment Hazards – Direct Contact (continued)

		Daily	Intake (m	g/kg-d)	Ha	zard Quo	tient	Total HI	
СОРС	EPC (mg/lvg)	Transform	Dominal	Inhalation	Turantina	Demos	Tubalation	Across all	COC^{a}
	(mg/kg)	Ingestion		Farmer Adu		Dermal	Innalation	Pathways	
				d Farmer Add Id Charlie's I					
Arsenic	2.5E+01	3.4E-05	2.3E-05	7.4E-09	1.1E-01	7.8E-02		1.9E-01	
Manganese	2.4E+03	3.4E 03	7.3E-05	7.0E-07	7.0E-02	4.0E-02	4.9E-02	1.6E-01	
Inorganics Pathway Total	2112100	0.22 00	1102 00		1.8E-01	1.2E-01	4.9E-02	3.5E-01	
Benzo(<i>a</i>)pyrene	8.4E-02	1.2E-07	3.4E-07	2.5E-11					
PCB-1254	8.7E-01	1.2E-06	3.8E-06	2.6E-10	6.0E-02	1.9E-01		2.5E-01	
Organics Pathway Total					6.0E-02	1.9E-01		2.5E-01	
Pathway Total – Chemicals					2.4E-01	3.1E-01	4.9E-02	6.0E-01	
			Outl	ets A and B					
Aluminum	1.3E+04	1.8E-02	4.1E-04	3.9E-06	1.8E-02	4.1E-04	2.7E-03	2.1E-02	
Antimony	4.6E+00	6.3E-06	1.4E-07	1.4E-09	1.6E-02	2.4E-03		1.8E-02	
Arsenic	1.8E+01	2.4E-05	1.6E-05	5.2E-09	8.0E-02	5.5E-02		1.3E-01	
Cadmium	1.5E+01	2.1E-05	4.7E-07	4.4E-09	2.1E-02	1.9E-02		3.9E-02	
Copper	1.6E+02	2.1E-04	4.9E-06	4.6E-08	5.3E-03	1.2E-04		5.5E-03	
Thallium	8.9E-01	1.2E-06	2.8E-08	2.6E-10	1.5E-02	3.5E-04		1.6E-02	
Zinc	1.0E+03	1.4E-03	3.1E-05	3.0E-07	4.6E-03	3.5E-04		4.9E-03	
Inorganics Pathway Total					1.6E-01	7.7E-02	2.7E-03	2.4E-01	
2,4-Dinitrotoluene	2.0E+00	2.7E-06	6.2E-06	5.9E-10	1.4E-03	3.1E-03		4.5E-03	
Benz(<i>a</i>)anthracene	9.2E+00	1.3E-05	3.7E-05	2.7E-09					
Benzo(<i>a</i>)pyrene	9.5E+00	1.3E-05	3.9E-05	2.8E-09					
Benzo(<i>b</i>)fluoranthene	1.2E+01	1.6E-05	4.9E-05	3.6E-09					
Dibenz(<i>a</i> , <i>h</i>)anthracene	1.7E+00	2.3E-06	6.9E-06	5.0E-10					
Indeno(1,2,3- <i>cd</i>)pyrene PCB-1254	6.7E+00	9.2E-06	2.7E-05	2.0E-09	4.0E.00	1.2E 01		1.0E.01	
Organics Pathway Total	6.1E-01	8.4E-07	2.7E-06	1.8E-10	4.2E-02 4.3E-02	1.3E-01 1.4E-01		1.8E-01 1.8E-01	
Pathway Total – Chemicals					4.3E-02 2.0E-01	2.1E-01	2.7E-03	4.2E-01	
Tatiway Total – Chemicals		Outle	ts D F an	d F and Crig		2.1L-01	2.76-03	4.2E-01	
Antimony	5.9E+02	8.1E-04	1.9E-05	1.8E-07	2.0E+00	3.1E-01		2.3E+00	Н
Arsenic	2.1E+01	2.8E-05	1.9E-05	6.2E-09	9.5E-02	6.5E-02		1.6E-01	
Copper	1.0E+03	1.4E-03	3.2E-05	3.0E-07	3.5E-02	8.0E-04		3.6E-02	
Manganese	3.4E+03	4.6E-03	1.1E-04	1.0E-06	1.0E-01	5.7E-02	7.0E-02	2.3E-01	
Inorganics Pathway Total					2.3E+00	4.3E-01	7.0E-02	2.8E+00	
Pathway Total – Chemicals					2.3E+00	4.3E-01	7.0E-02	2.8E+00	
			Resident	t Farmer Chi	ld				
			Outlet C ar	nd Charlie's I	Pond				
Arsenic	2.5E+01	3.2E-04	2.1E-05		1.1E+00	7.0E-02		1.1E+00	Н
Manganese	2.4E+03	3.0E-02	6.6E-05	1.6E-06	6.5E-01	3.6E-02	1.1E-01	8.0E-01	
Inorganics Pathway Total					1.7E+00	1.1E-01	1.1E-01	1.9E+00	
Benzo(<i>a</i>)pyrene	8.4E-02	1.1E-06	3.1E-07	5.8E-11					
PCB-1254	8.7E-01	1.1E-05	3.4E-06	6.0E-10	5.6E-01	1.7E-01		7.3E-01	
Organics Pathway Total					5.6E-01	1.7E-01		7.3E-01	
Pathway Total – Chemicals					2.3E+00	2.8E-01	1.1E-01	2.7E+00	
				ets A and B			< 1 7 00		
Aluminum	1.3E+04	1.7E-01	3.7E-04	9.1E-06	1.7E-01	3.7E-04	6.4E-03	1.7E-01	
Antimony	4.6E+00	5.9E-05	1.3E-07	3.2E-09	1.5E-01	2.2E-03		1.5E-01	
Arsenic	1.8E+01	2.2E-04	1.5E-05	1.2E-08	7.5E-01	4.9E-02		8.0E-01	
Cadmium	1.5E+01	1.9E-04	4.2E-07	1.0E-08	1.9E-01	1.7E-02		2.1E-01	
Copper Thallium	1.6E+02	2.0E-03	4.4E-06	1.1E-07	5.0E-02	1.1E-04		5.0E-02	
Zinc	8.9E-01	1.1E-05 1.3E-02	2.5E-08	6.1E-10	1.4E-01 4.3E-02	3.1E-04		1.4E-01 4.3E-02	
Inorganics Pathway Total	1.0E+03	1.3E-02	2.8E-05	6.9E-07	4.3E-02 1.5E+00	3.1E-04 6.9E-02	6.4E-03	4.3E-02 1.6E+00	
2,4-Dinitrotoluene	2.0E+00	2.6E-05	5.6E-06	1.4E-09	1.3E+00 1.3E-02	0.9E-02 2.8E-03	0.4E-03	1.6E+00 1.6E-02	
Benz(<i>a</i>)anthracene	2.0E+00 9.2E+00	2.6E-03 1.2E-04	3.4E-05	6.4E-09	1.5E-02	2.01-03		1.0E-02	
Denz(a)anunacene	7.26700	1.21-04	5. 4 L-05	0.41-02	l	ļ	I	l	

Table A-14. Load Line 1 Sediment Hazards – Direct Contact (continued)

		Daily	Intake (m	g/kg-d)	Ha	zard Quot	tient	Total HI	
СОРС	EPC (mg/kg)	Ingestion	Dermal	Inhalation	Ingestion	Dermal	Inhalation	Across all Pathways	COC ^a
Benzo(<i>a</i>)pyrene	9.5E+00	1.2E-04	3.5E-05	6.6E-09					
Benzo(b)fluoranthene	1.2E+01	1.5E-04	4.4E-05	8.3E-09					
Dibenz(<i>a</i> , <i>h</i>)anthracene	1.7E+00	2.2E-05	6.2E-06	1.2E-09					
Indeno(1,2,3-cd)pyrene	6.7E+00	8.6E-05	2.4E-05	4.6E-09					
PCB-1254	6.1E-01	7.8E-06	2.4E-06	4.2E-10	3.9E-01	1.2E-01		5.1E-01	
Organics Pathway Total					4.0E-01	1.2E-01		5.3E-01	
Pathway Total – Chemicals					1.9E+00	1.9E-01	6.4E-03	2.1E+00	
		Outle	ts D, E, an	d F and Crig	gy's Pond				
Antimony	5.9E+02	7.6E-03	1.7E-05	4.1E-07	1.9E+01	2.8E-01		1.9E+01	Η
Arsenic	2.1E+01	2.7E-04	1.8E-05	1.4E-08	8.8E-01	5.8E-02		9.4E-01	
Copper	1.0E+03	1.3E-02	2.9E-05	7.1E-07	3.3E-01	7.2E-04		3.3E-01	
Manganese	3.4E+03	4.3E-02	9.5E-05	2.3E-06	9.4E-01	5.2E-02	1.6E-01	1.2E+00	Н
Inorganics Pathway Total					2.1E+01	3.9E-01	1.6E-01	2.2E+01	
Pathway Total – Chemicals					2.1E+01	3.9E-01	1.6E-01	2.2E+01	

Table A-14. Load Line 1 Sediment Hazards – Direct Contact (continued)

^a Chemicals of potential concern (COPCs) are identified as chemicals of concern (COCs) if the total hazard index (HI) across all pathways is > 1 (H).
 EPC = Exposure point concentration.
 PCB = Polychlorinated biphenyl.

		Daily	Intake (m	g/kg-d)		Risk		Total Risk	
	EPC							Across all	
COPC	(mg/kg)	Ingestion	Dermal	Inhalation	Ingestion	Dermal	Inhalation	Pathways	COC ^a
				Trapper/Fis					
				nd Charlie's					
Arsenic	2.5E+01	5.6E-08	1.4E-07		8.4E-08	2.1E-07	1.8E-10	2.9E-07	
Manganese	2.4E+03	5.3E-06	4.3E-07	1.1E-09					
Inorganics Pathway Total					8.4E-08	2.1E-07	1.8E-10	2.9E-07	
Benzo(a)pyrene	8.4E-02	1.9E-10	2.0E-09	4.1E-14	1.4E-09	1.5E-08	1.3E-13	1.6E-08	
PCB-1254	8.7E-01	1.9E-09	2.2E-08	4.2E-13	3.9E-09	4.5E-08	8.4E-13	4.9E-08	
Organics Pathway Total					5.3E-09	5.9E-08	9.7E-13	6.4E-08	
Pathway Total – Chemicals					8.9E-08	2.6E-07	1.8E-10	3.5E-07	
				lets A and B			-		-
Aluminum	1.3E+04	2.9E-05	2.4E-06	6.4E-09					
Antimony	4.6E+00	1.0E-08	8.5E-10	2.2E-12					
Arsenic	1.8E+01	3.9E-08	9.6E-08	8.5E-12	5.9E-08	1.4E-07	1.3E-10	2.0E-07	
Cadmium	1.5E+01	3.4E-08	2.7E-09	7.3E-12			4.6E-11	4.6E-11	
Copper	1.6E+02	3.5E-07	2.9E-08	7.6E-11					
Thallium	8.9E-01	2.0E-09	1.6E-10	4.3E-13					
Zinc	1.0E+03	2.2E-06	1.8E-07	4.8E-10					
Inorganics Pathway Total					5.9E-08	1.4E-07	1.7E-10	2.0E-07	
2,4-Dinitrotoluene	2.0E+00	4.5E-09	3.7E-08	9.7E-13	3.0E-09	2.5E-08		2.8E-08	
Benz(<i>a</i>)anthracene	9.2E+00	2.1E-08	2.2E-07	4.5E-12	1.5E-08	1.6E-07	1.4E-12	1.7E-07	
Benzo(<i>a</i>)pyrene	9.5E+00	2.1E-08	2.3E-07	4.6E-12	1.6E-07	1.7E-06	1.4E-11	1.8E-06	R
Benzo(<i>b</i>)fluoranthene	1.2E+01	2.7E-08	2.9E-07	5.8E-12	2.0E-08	2.1E-07	1.8E-12	2.3E-07	
Dibenz (a, h) anthracene	1.7E+00	3.8E-09	4.0E-08	8.2E-13	2.8E-08	3.0E-07	2.6E-12	3.2E-07	
Indeno(1,2,3-cd)pyrene	6.7E+00	1.5E-08	1.6E-07	3.2E-12	1.1E-08	1.2E-07	1.0E-12	1.3E-07	
PCB-1254	6.1E-01	1.4E-09	1.6E-08	3.0E-13	2.7E-09	3.1E-08	5.9E-13	3.4E-08	
Organics Pathway Total					2.3E-07	2.5E-06	2.2E-11	2.7E-06	
Pathway Total – Chemicals					2.9E-07	2.6E-06	2.0E-10	2.9E-06	
		Outle	ts D. E. ar	nd F and Crig		2102 00	2102 10	202 00	
Antimony	5.9E+02	1.3E-06	1.1E-07	2.9E-10	38, ~ - • • • •				
Arsenic	2.1E+01	4.6E-08	1.1E-07	1.0E-11	7.0E-08	1.7E-07	1.5E-10	2.4E-07	
Copper	1.0E+03	2.3E-06	1.9E-07	4.9E-10	7.01 00	1.7 1 07	1.52 10	2.12.07	
Manganese	3.4E+03	7.6E-06	6.2E-07	1.6E-09					
Inorganics Pathway Total	5.12105	7.01 00	0.22 07	1.01 07	7.0E-08	1.7E-07	1.5E-10	2.4E-07	
Pathway Total – Chemicals					7.0E-08	1.7E-07	1.5E-10	2.4E-07	
Tutiway Iotar Chemicals			Dust/Fi	re Suppress		1.712 07	1.52 10	2.41 07	L
				nd Charlie's					
Arsenic	2.5E+01	8.7E-08	1.6E-07		1.3E-07	2.3E-07	6.3E-10	3.6E-07	
Manganese		8.2E-06			1.51 07	2.511 07	0.51 10	5.01 07	
Inorganics Pathway Total	2.711103	0.21-00	T.7L-07	5.71-07	1.3E-07	2.3E-07	6.3E-10	3.6E-07	
Benzo(<i>a</i>)pyrene	8.4E-02	2.9E-10	2.3E-09	1.4E-13	2.1E-09	1.7E-08	4.4E-13	1.9E-08	
PCB-1254	8.7E-01	2.9E-10 3.0E-09	2.5E-09 2.5E-08	1.4E-13 1.5E-12	6.1E-09	5.1E-08	2.9E-12	1.9E-08 5.7E-08	
Organics Pathway Total	0.712-01	3.06-09	2.515-00	1.515-12	8.2E-09	6.7E-08	3.4E-12	7.5E-08	
Pathway Total – Chemicals					8.2E-09 1.4E-07	0.7E-08 3.0E-07	6.3E-12	4.4E-07	
1 autway 10tal – Chemicals	1		0+	lets A and B	1.412-07	5.01-07	0.515-10	H.HL-07	L
Aluminum	1.3E+04	4.6E-05	2.7E-06	2.2E-08					[]
Antimony	4.6E+00	4.0E-03	2.7E-00 9.6E-10	7.8E-12					
Arsenic	4.0E+00 1.8E+01	6.1E-08	9.0E-10 1.1E-07	2.9E-11	9.2E-08	1.6E-07	4.4E-10	2.6E-07	
Cadmium	1.5E+01	5.2E-08	3.1E-07	2.9E-11 2.5E-11	7.2E-00	1.0E-07	4.4E-10 1.6E-10	2.6E-07 1.6E-10	
							1.0E-10	1.0E-10	
Copper Thallium	1.6E+02	5.5E-07	3.2E-08	2.6E-10					
	8.9E-01	3.1E-09	1.8E-10	1.5E-12					
Zinc	1.0E+03	3.5E-06	2.1E-07	1.7E-09	L			L	1

Table A-15. Load Line 1 Sediment Risks – Direct Contact

		Daily	Intake (m	g/kg-d)		Risk		Total Risk	
	EPC	2011						Across all	
COPC	(mg/kg)	Ingestion	Dermal	Inhalation	Ingestion	Dermal	Inhalation	Pathways	COC ^a
Inorganics Pathway Total					9.2E-08	1.6E-07	6.0E-10	2.6E-07	
2,4-Dinitrotoluene	2.0E+00	7.0E-09	4.2E-08	3.4E-12	4.8E-09	2.8E-08		3.3E-08	
Benz(<i>a</i>)anthracene	9.2E+00	3.2E-08	2.5E-07	1.5E-11	2.3E-08	1.8E-07	4.8E-12	2.0E-07	
Benzo(<i>a</i>)pyrene	9.5E+00	3.3E-08	2.6E-07	1.6E-11	2.4E-07	1.9E-06	4.9E-11	2.1E-06	R
Benzo(b)fluoranthene	1.2E+01	4.2E-08	3.2E-07	2.0E-11	3.1E-08	2.4E-07	6.2E-12	2.7E-07	
Dibenz(<i>a</i> , <i>h</i>)anthracene	1.7E+00	5.9E-09	4.6E-08	2.9E-12	4.3E-08	3.3E-07	8.9E-12	3.8E-07	
Indeno(1,2,3-cd)pyrene	6.7E+00	2.3E-08	1.8E-07	1.1E-11	1.7E-08	1.3E-07	3.5E-12	1.5E-07	
PCB-1254	6.1E-01	2.1E-09	1.8E-08	1.0E-12	4.3E-09	3.5E-08	2.0E-12	4.0E-08	
Organics Pathway Total					3.7E-07	2.8E-06	7.5E-11	3.2E-06	
Pathway Total – Chemicals					4.6E-07	3.0E-06	6.8E-10	3.4E-06	
•	•	Outlets D,	E, and F	and Criggy'	s Pond				
Antimony	5.9E+02	2.1E-06	1.2E-07	1.0E-09					
Arsenic	2.1E+01	7.2E-08	1.3E-07	3.5E-11	1.1E-07	1.9E-07	5.2E-10	3.0E-07	
Copper	1.0E+03	3.6E-06	2.1E-07	1.7E-09					
Manganese	3.4E+03	1.2E-05	7.0E-07	5.7E-09					
Inorganics Pathway Total					1.1E-07	1.9E-07	5.2E-10	3.0E-07	
Pathway Total – Chemicals					1.1E-07	1.9E-07	5.2E-10	3.0E-07	
	•		National	Guard Tra	inee		•		
			Outlet C a	nd Charlie's	Pond				
Arsenic	2.5E+01	1.4E-06	4.0E-07	3.6E-07	2.0E-06	6.1E-07	5.5E-06	8.1E-06	R
Manganese	2.4E+03	1.3E-04	1.3E-06	3.4E-05					
Inorganics Pathway Total					2.0E-06	6.1E-07	5.5E-06	8.1E-06	R
Benzo(<i>a</i>)pyrene	8.4E-02	4.6E-09	5.9E-09	1.2E-09	3.3E-08	4.3E-08	3.8E-09	8.0E-08	
PCB-1254	8.7E-01	4.7E-08	6.6E-08	1.3E-08	9.5E-08	1.3E-07	2.5E-08	2.5E-07	
Organics Pathway Total					1.3E-07	1.7E-07	2.9E-08	3.3E-07	
Pathway Total – Chemicals					2.2E-06	7.8E-07	5.5E-06	8.4E-06	
			Outlets A						
Aluminum	1.3E+04	7.2E-04	7.1E-06	1.9E-04					
Antimony	4.6E+00	2.5E-07	2.5E-09	6.7E-08					
Arsenic	1.8E+01	9.6E-07	2.8E-07	2.5E-07	1.4E-06	4.3E-07	3.8E-06	5.7E-06	R
Cadmium	1.5E+01	8.2E-07	8.1E-09	2.2E-07			1.4E-06	1.4E-06	R
Copper	1.6E+02	8.5E-06	8.4E-08	2.3E-06					
Thallium	8.9E-01	4.8E-08	4.8E-10	1.3E-08					
Zinc	1.0E+03	5.5E-05	5.4E-07	1.5E-05					
Inorganics Pathway Total					1.4E-06	4.3E-07	5.2E-06	7.1E-06	
2,4-Dinitrotoluene	2.0E+00	1.1E-07	1.1E-07	2.9E-08	7.4E-08	7.3E-08		1.5E-07	
Benz(<i>a</i>)anthracene	9.2E+00	5.0E-07	6.5E-07	1.3E-07	3.7E-07	4.7E-07	4.1E-08	8.8E-07	
Benzo(a)pyrene	9.5E+00	5.2E-07	6.7E-07	1.4E-07	3.8E-06	4.9E-06	4.3E-07	9.1E-06	R
Benzo(b)fluoranthene	1.2E+01	6.5E-07	8.4E-07	1.7E-07	4.8E-07	6.1E-07	5.4E-08	1.1E-06	R
Dibenz(a,h)anthracene	1.7E+00	9.3E-08	1.2E-07	2.5E-08	6.8E-07	8.7E-07	7.7E-08	1.6E-06	R
Indeno(1,2,3-cd)pyrene	6.7E+00	3.7E-07	4.7E-07	9.7E-08	2.7E-07	3.4E-07	3.0E-08	6.4E-07	
PCB-1254	6.1E-01	3.3E-08	4.6E-08	8.9E-09	6.7E-08	9.2E-08	1.8E-08	1.8E-07	
Organics Pathway Total					5.7E-06	7.3E-06	6.5E-07	1.4E-05	
Pathway Total – Chemicals					7.1E-06	7.8E-06	5.8E-06	2.1E-05	
				nd F and Cri	ggy's Pond				
Antimony	5.9E+02	3.2E-05	3.2E-07	8.6E-06					
Arsenic	2.1E+01	1.1E-06	3.4E-07	3.0E-07	1.7E-06	5.0E-07	4.5E-06	6.7E-06	R
Copper	1.0E+03	5.6E-05	5.5E-07	1.5E-05					
Manganese	3.4E+03	1.8E-04	1.8E-06	4.9E-05					
Inorganics Pathway Total					1.7E-06	5.0E-07	4.5E-06	6.7E-06	
Pathway Total – Chemicals					1.7E-06	5.0E-07	4.5E-06	6.7E-06	

Table A-15. Load Line 1 Sediment Risks – Direct Contact (continued)

		Daily	Intake (m	g/kg-d)		Risk	_	Total Risk	
СОРС	EPC (mg/kg)	Ingestion	Dominal	Inholotion	Ingestion	Dormol	Inhalation	Across all Pathways	COC ^a
COL	(IIIg/Kg)	ingestion		t Farmer Ac		Dermai	Innalation	Fattiways	
				nd Charlie's					
Arsenic	2.5E+01	1.5E-05	1.0E-05	3.2E-09	2.2E-05	1.5E-05	4.8E-08	3.7E-05	R
Manganese	2.4E+03	1.4E-03	3.1E-05	3.0E-07					
Inorganics Pathway Total					2.2E-05	1.5E-05	4.8E-08	3.7E-05	
Benzo(<i>a</i>)pyrene	8.4E-02	4.9E-08	1.5E-07	1.1E-11	3.6E-07	1.1E-06	3.3E-11	1.4E-06	R
PCB-1254	8.7E-01	5.1E-07	1.6E-06	1.1E-10	1.0E-06	3.3E-06	2.2E-10	4.3E-06	R
Organics Pathway Total					1.4E-06	4.3E-06	2.5E-10	5.7E-06	
Pathway Total – Chemicals					2.3E-05	1.9E-05	4.8E-08	4.3E-05	
	1			lets A and B	1	1	1		
Aluminum	1.3E+04	7.7E-03	1.8E-04	1.7E-06					
Antimony	4.6E+00	2.7E-06	6.2E-08	5.9E-10					
Arsenic	1.8E+01	1.0E-05	7.0E-06	2.2E-09	1.5E-05	1.1E-05	3.4E-08	2.6E-05	R
Cadmium	1.5E+01	8.8E-06	2.0E-07	1.9E-09			1.2E-08	1.2E-08	
Copper	1.6E+02	9.2E-05	2.1E-06	2.0E-08					
Thallium	8.9E-01	5.2E-07	1.2E-08	1.1E-10					
Zinc	1.0E+03	5.9E-04	1.3E-05	1.3E-07	1.55.05	1.15.05	4 CE 00	2 (E 07	
Inorganics Pathway Total	2.05.00	1.00.00	2.75.06	2.5E 10	1.5E-05	1.1E-05	4.6E-08	2.6E-05	D
2,4-Dinitrotoluene Benz(<i>a</i>)anthracene	2.0E+00	1.2E-06	2.7E-06	2.5E-10	8.0E-07	1.8E-06	2 (E 10	2.6E-06 1.6E-05	R
	9.2E+00 9.5E+00	5.4E-06 5.6E-06	1.6E-05 1.7E-05	1.2E-09 1.2E-09	3.9E-06 4.1E-05	1.2E-05 1.2E-04	3.6E-10 3.7E-09		R R
Benzo(<i>a</i>)pyrene Benzo(<i>b</i>)fluoranthene	9.3E+00 1.2E+01	7.0E-06	2.1E-05	1.2E-09 1.5E-09	4.1E-03 5.1E-06	1.2E-04 1.5E-05	4.7E-10	1.6E-04 2.0E-05	R R
Dibenz(<i>a</i> , <i>h</i>)anthracene	1.2E+01 1.7E+00	1.0E-06	2.1E-03 3.0E-06	2.2E-10	7.3E-06	2.2E-05	4.7E-10 6.7E-10	2.0E-03 2.9E-05	R
Indeno(1,2,3- <i>cd</i>)pyrene	6.7E+00	3.9E-06	1.2E-05	8.5E-10	2.9E-06	8.5E-06	2.6E-10	2.9E-05 1.1E-05	R
PCB-1254	6.1E-01	3.9E-00 3.6E-07	1.1E-06	7.8E-11	7.2E-07	2.3E-06	1.6E-10	3.0E-06	R
Organics Pathway Total	0.12-01	5.0L-07	1.112-00	7.0L-11	6.1E-05	1.8E-04	5.7E-09	2.4E-04	K
Pathway Total – Chemicals					7.7E-05	1.9E-04	5.1E-08	2.4E-04	
	l	Outle	ts D. E. ar	nd F and Cri			0112 00	2012 01	L
Antimony	5.9E+02	3.5E-04	8.0E-06	7.6E-08	88, ~				
Arsenic	2.1E+01	1.2E-05	8.3E-06	2.6E-09	1.8E-05	1.2E-05	4.0E-08	3.1E-05	R
Copper	1.0E+03	6.0E-04	1.4E-05	1.3E-07					
Manganese	3.4E+03	2.0E-03	4.5E-05	4.3E-07					
Inorganics Pathway Total					1.8E-05	1.2E-05	4.0E-08	3.1E-05	
Pathway Total – Chemicals					1.8E-05	1.2E-05	4.0E-08	3.1E-05	
	•		Residen	t Farmer Cl	hild				
				nd Charlie's	Pond				
Arsenic	2.5E+01		1.8E-06		4.1E-05	2.7E-06	2.2E-08	4.4E-05	R
Manganese	2.4E+03	2.6E-03	5.7E-06	1.4E-07					
Inorganics Pathway Total					4.1E-05	2.7E-06	2.2E-08	4.4E-05	
Benzo(<i>a</i>)pyrene	8.4E-02	9.2E-08	2.6E-08	5.0E-12	6.7E-07	1.9E-07	1.5E-11	8.6E-07	
PCB-1254	8.7E-01	9.5E-07	2.9E-07	5.2E-11	1.9E-06	5.9E-07	1.0E-10	2.5E-06	R
Organics Pathway Total					2.6E-06	7.8E-07	1.2E-10	3.4E-06	
Pathway Total – Chemicals					4.4E-05	3.5E-06	2.2E-08	4.7E-05	
	1.05.04	1 45 00		lets A and B					1
Aluminum	1.3E+04	1.4E-02	3.2E-05	7.8E-07					
Antimony	4.6E+00	5.1E-06	1.1E-08	2.7E-10	2.05.05	1.05.04	1 CE 00	2 15 05	
Arsenic	1.8E+01	1.9E-05	1.3E-06	1.0E-09	2.9E-05	1.9E-06	1.6E-08	3.1E-05	R
Cadmium	1.5E+01	1.6E-05	3.6E-08	8.9E-10			5.6E-09	5.6E-09	<u> </u>
Copper	1.6E+02	1.7E-04	3.8E-07	9.3E-09					
Thallium Zinc	8.9E-01	9.7E-07	2.1E-09	5.3E-11					
Inorganics Pathway Total	1.0E+03	1.1E-03	2.4E-06	5.9E-08	2.9E-05	1.9E-06	2.1E-08	3.1E-05	
2,4-Dinitrotoluene	2.0E+00	2.2E-06	4.8E-07	1.2E-10	2.9E-05 1.5E-06	1.9E-06 3.3E-07	2.1E-00	3.1E-05 1.8E-06	R
Benz(<i>a</i>)anthracene	2.0E+00 9.2E+00	2.2E-06 1.0E-05	4.8E-07 2.9E-06	5.5E-10	7.4E-06	2.1E-06	1.7E-10	9.5E-06	R
Benz(a)antillacelle	J.2ET00	1.01-03	2.70-00	5.51-10	7.412-00	2.11-00	1.71-10	7.512-00	IX.

Table A-15. Load Line 1 Sediment Risks – Direct Contact (continued)

		Daily	Intake (m	g/kg-d)		Risk		Total Risk	
	EPC							Across all	
COPC	(mg/kg)	Ingestion	Dermal	Inhalation	Ingestion	Dermal	Inhalation	Pathways	COC ^a
Benzo(<i>a</i>)pyrene	9.5E+00	1.0E-05	3.0E-06	5.6E-10	7.6E-05	2.2E-05	1.7E-09	9.8E-05	R
Benzo(b)fluoranthene	1.2E+01	1.3E-05	3.8E-06	7.1E-10	9.6E-06	2.7E-06	2.2E-10	1.2E-05	R
Dibenz(<i>a</i> , <i>h</i>)anthracene	1.7E+00	1.9E-06	5.3E-07	1.0E-10	1.4E-05	3.9E-06	3.1E-10	1.7E-05	R
Indeno(1,2,3- <i>cd</i>)pyrene	6.7E+00	7.3E-06	2.1E-06	4.0E-10	5.4E-06	1.5E-06	1.2E-10	6.9E-06	R
PCB-1254	6.1E-01	6.7E-07	2.1E-07	3.6E-11	1.3E-06	4.1E-07	7.2E-11	1.7E-06	R
Organics Pathway Total					1.1E-04	3.3E-05	2.6E-09	1.5E-04	
Pathway Total – Chemicals					1.4E-04	3.5E-05	2.4E-08	1.8E-04	
		Outle	ts D, E, ar	nd F and Cri	ggy's Pond				
Antimony	5.9E+02	6.5E-04	1.4E-06	3.5E-08					
Arsenic	2.1E+01	2.3E-05	1.5E-06	1.2E-09	3.4E-05	2.3E-06	1.9E-08	3.6E-05	R
Copper	1.0E+03	1.1E-03	2.5E-06	6.1E-08					
Manganese	3.4E+03	3.7E-03	8.1E-06	2.0E-07					
Inorganics Pathway Total					3.4E-05	2.3E-06	1.9E-08	3.6E-05	
Pathway Total - Chemicals					3.4E-05	2.3E-06	1.9E-08	3.6E-05	

Table A-15. Load Line 1 Sediment Risks – Direct Contact (continued)

^a Chemicals of potential concern (COPCs) are identified as chemicals of concern (COCs) if the total incremental lifetime cancer risk across all pathways is > 1E-06 (R).
 EPC = Exposure Point Concentration.
 PCB = Polychlorinated biphenyl.

	Water	Fish Ingestion	Fish	Fish Ingestion	Fish	
	EPC	Non-carcinogen Daily	Ingestion	Carcinogen Daily	Ingestion	
COPC	(mg/L)	Intake (mg/kg-d)	HQ	Intake (mg/kg-d)	Risk	COC ^a
		Hunter/Trappe	r/Fisher			
		Outlet C and Char				
Arsenic	3.1E-02	7.7E-05	2.6E-01	3.3E-05	4.9E-05	R
Chromium	2.4E-03	3.7E-04	2.5E-04	1.6E-04		
Inorganics Pathway Total			2.6E-01		4.9E-05	
Pathway Total			2.6E-01		4.9E-05	
		Outlets D, E, and F and	l Criggy's Po	ond		
Arsenic	5.1E-03	1.3E-05	4.2E-02	5.4E-06	8.1E-06	R
Inorganics Pathway Total			4.2E-02		8.1E-06	
Pathway Total			4.2E-02		8.1E-06	
		Resident Farme	er Adult			
		Outlet C and Char	lie's Pond			
Arsenic	3.1E-02	7.7E-05	2.6E-01	3.3E-05	4.9E-05	R
Chromium	2.4E-03	3.7E-04	2.5E-04	1.6E-04		
Inorganics Pathway Total			2.6E-01		4.9E-05	
Pathway Total			2.6E-01		4.9E-05	
		Outlets D, E, and F and	l Criggy's Po	ond		
Arsenic	5.1E-03	1.3E-05	4.2E-02	5.4E-06	8.1E-06	R
Inorganics Pathway Total			4.2E-02		8.1E-06	
Pathway Total			4.2E-02		8.1E-06	
		Resident Farme	er Child			
		Outlet C and Char	lie's Pond		•	
Arsenic	3.1E-02	3.6E-04	1.2E+00	3.1E-05	4.6E-05	R,H
Chromium	2.4E-03	1.7E-03	1.2E-03	1.5E-04		
Inorganics Pathway Total			1.2E+00		4.6E-05	
Pathway Total			1.2E+00		4.6E-05	
		Outlets D, E, and F and				
Arsenic	5.1E-03	5.9E-05	2.0E-01	5.0E-06	7.6E-06	R
Inorganics Pathway Total			2.0E-01		7.6E-06	
Pathway Total			2.0E-01		7.6E-06	

^{*a*} Chemicals of potential concern (COPCs) are identified as chemicals of concern (COCs) if the total hazard index across all pathways is > 1 (H) or if the total incremental lifetime cancer risk is > 1E-06 (R). EPC = Exposure point concentration. HQ = Hazard quotient.

	Water EPC	Waterfowl Ingestion Non-carcinogen Daily	Waterfowl Ingestion	Waterfowl Ingestion Carcinogen Daily	Waterfowl Ingestion	
СОРС	(mg/kg)	Intake (mg/kg-d)	HQ	Intake (mg/kg-d)	Risk	COC ^a
		Hunter/Trap	per/Fisher			
		Outlet C and Ch	arlie's Pond			-
Arsenic	2.2E+00	4.2E-04	1.4E+00	1.8E-04	2.7E-04	R,H
Chromium	2.0E+00	3.8E-04	2.5E-04	1.6E-04		
Manganese	4.0E+01	7.6E-03	5.5E-02	3.3E-03		
Inorganics Pathway Total			1.5E+00		2.7E-04	
Benzo(<i>a</i>)pyrene	1.9E-01	3.6E-05		1.5E-05	1.1E-04	R
PCB-1254	2.0E+01	3.7E-03	1.9E+02	1.6E-03	3.2E-03	R,H
Organics Pathway Total			1.9E+02		3.3E-03	
Pathway Total			1.9E+02		3.6E-03	
		Outlets D, E, and F a	nd Criggy's I	Pond		
Antimony	2.6E+01	4.9E-03	1.2E+01	2.1E-03		Н
Arsenic	1.9E+00	3.6E-04	1.2E+00	1.5E-04	2.3E-04	R,H
Copper	1.7E+02	3.1E-02	7.8E-01	1.3E-02		
Manganese	5.8E+01	1.1E-02	7.8E-02	4.7E-03		
Inorganics Pathway Total			1.4E+01		2.3E-04	
Pathway Total			1.4E+01		2.3E-04	

Table A-17. Load Line 1 Surface Water and Sediment Hazards and Risks – Waterfowl Ingestion

^a Chemicals of potential concern (COPCs) are identified as chemicals of concern (COCs) if the total hazard index (HIa0 across all pathways is > 1 (H) or if the total incremental lifetime cancer risk is > 1E-06 (R). EPC = Exposure point concentration. HQ = Hazard quotient.

PCB = Polychlorinated biphenyl.

		Daily	Intake (m	g/kg-d)	Ha	zard Quot	tient	Total HI	
СОРС	EPC (mg/kg)	Induction	Dominal	Inholotion	Ingestion	Dominal	Inhalation	Across all	COCa
	(IIIg/Kg)	ingestion		rapper/Fish		Dermai	IIIIaiatioii	1 alliways	coc
				13 and -10					
Aluminum	1.3E+04	6.8E-05	6.1E-06	1.5E-08	6.8E-05	6.1E-06	1.0E-05	8.4E-05	
Antimony	1.3E+00	6.6E-09	5.9E-10	1.4E-12	1.6E-05	9.9E-06	1.02 05	2.6E-05	
Arsenic	1.1E+01	5.8E-08	1.6E-07	1.3E-11	1.9E-04	5.2E-04		7.1E-04	
Cadmium	6.2E+00	3.2E-08	2.9E-09	7.0E-12	3.2E-05	1.2E-04		1.5E-04	
Chromium	3.5E+01	1.8E-07	1.6E-08	4.0E-11	1.2E-07	8.5E-07		9.7E-07	
Copper	1.9E+02	1.0E-06	9.0E-08	2.2E-10	2.5E-05	2.2E-06		2.7E-05	
Manganese	1.3E+03	6.8E-06	6.1E-07	1.5E-09	1.5E-04	3.3E-04	1.0E-04	5.8E-04	
Thallium	4.9E-01	2.5E-09	2.3E-10	5.5E-13	3.2E-05	2.9E-06		3.5E-05	
Inorganics Pathway Total					5.1E-04	9.9E-04	1.1E-04	1.6E-03	
2,4,6-Trinitrotoluene	2.5E+01	1.3E-07	1.2E-06	2.9E-11	2.6E-04	2.4E-03		2.6E-03	
2,4-Dinitrotoluene	1.5E+00	7.8E-09	7.0E-08	1.7E-12	3.9E-06	3.5E-05		3.9E-05	
Benzo(<i>a</i>)pyrene	3.7E-01	1.9E-09	2.3E-08	4.2E-13					
PCB-1254	1.7E+00	8.9E-09	1.1E-07	1.9E-12	4.4E-04	5.6E-03		6.0E-03	
RDX	3.7E+00	1.9E-08	1.7E-07	4.2E-12	6.4E-06	5.8E-05		6.4E-05	
Organics Pathway Total					7.2E-04	8.0E-03		8.7E-03	
Pathway Total – Chemicals					1.2E-03	9.0E-03	1.1E-04	1.0E-02	
			CB-14, CE	3-17, and CA	-15		1		1
Aluminum	2.0E+04	1.0E-04	9.3E-06	2.2E-08	1.0E-04	9.3E-06	1.6E-05	1.3E-04	
Arsenic	2.1E+01	1.1E-07	3.0E-07	2.4E-11	3.7E-04	1.0E-03		1.4E-03	
Barium	1.4E+02	7.1E-07	6.3E-08	1.5E-10	1.0E-05	1.3E-05	1.1E-06	2.4E-05	
Cadmium	2.1E+00	1.1E-08	9.7E-10	2.3E-12	1.1E-05	3.9E-05		5.0E-05	
Manganese	1.2E+03	6.2E-06	5.5E-07	1.3E-09	1.3E-04	3.0E-04	9.3E-05	5.3E-04	
Nickel	3.2E+01	1.7E-07	1.5E-08	3.6E-11	8.3E-06	1.9E-05		2.7E-05	
Thallium	9.1E-01	4.8E-09	4.3E-10	1.0E-12	5.9E-05	5.3E-06		6.5E-05	
Vanadium	3.5E+01	1.8E-07	1.6E-08	4.0E-11	2.6E-05	9.0E-05		1.2E-04	
Inorganics Pathway Total					7.2E-04	1.5E-03	1.1E-04	2.3E-03	
2,4,6-Trinitrotoluene	4.5E+00	2.3E-08	2.1E-07	5.1E-12	4.7E-05	4.2E-04		4.7E-04	
Benz(<i>a</i>)anthracene	6.4E-01	3.3E-09	3.9E-08	7.2E-13					
Benzo(<i>a</i>)pyrene	8.2E-01	4.3E-09	5.0E-08	9.3E-13					
Benzo(<i>b</i>)fluoranthene	1.1E+00	5.7E-09	6.7E-08	1.2E-12					
Dibenz(<i>a</i> , <i>h</i>)anthracene	1.8E-01	9.4E-10	1.1E-08	2.0E-13					
Indeno(1,2,3-cd)pyrene	6.4E-01	3.3E-09	3.9E-08	7.2E-13					
PCB-1254	4.7E+00	2.5E-08	3.1E-07	5.3E-12	1.2E-03	1.5E-02		1.7E-02	
RDX	2.9E+01	1.5E-07	1.3E-06	3.2E-11	5.0E-05	4.5E-04		5.0E-04	
Organics Pathway Total					1.3E-03	1.6E-02		1.8E-02	
Pathway Total – Chemicals					2.0E-03	1.8E-02	1.1E-04	2.0E-02	
			CB-	3 and -801					
Aluminum	1.2E+04	6.3E-05	5.6E-06	1.4E-08	6.3E-05	5.6E-06	9.5E-06	7.8E-05	
Antimony	1.1E+02	5.7E-07	5.1E-08	1.2E-10	1.4E-03	8.6E-04		2.3E-03	
Arsenic	1.3E+01	6.7E-08	1.8E-07	1.5E-11	2.2E-04	6.0E-04		8.3E-04	
Cadmium	6.3E+00	3.3E-08	2.9E-09	7.1E-12	3.3E-05	1.2E-04		1.5E-04	
Manganese	1.3E+03	6.6E-06	5.9E-07	1.4E-09	1.4E-04	3.2E-04	1.0E-04	5.6E-04	
Thallium	6.0E-01	3.1E-09	2.8E-10	6.8E-13	3.9E-05	3.5E-06		4.3E-05	
Inorganics Pathway Total					1.9E-03	1.9E-03	1.1E-04	4.0E-03	
Benz(<i>a</i>)anthracene	1.4E+01	7.3E-08	8.5E-07	1.6E-11					
Benzo(a)pyrene	1.3E+01	6.8E-08	7.9E-07	1.5E-11					
Benzo(b)fluoranthene	1.5E+01	7.8E-08	9.1E-07	1.7E-11					
Dibenz(a,h)anthracene	1.2E+00	6.0E-09	7.0E-08	1.3E-12					
Dieldrin	3.3E-02	1.7E-10	1.6E-09	3.8E-14	3.5E-06	3.1E-05		3.5E-05	
Indeno(1,2,3-cd)pyrene	8.7E+00	4.5E-08	5.3E-07	9.8E-12					
PCB-1254	4.3E+00	2.2E-08	2.8E-07	4.9E-12	1.1E-03	1.4E-02		1.5E-02	

Table A-18. Load Line 1 Shallow Surface Soil Hazards

		Daily	Intake (m	g/kg-d)	На	zard Quot	ient	Total HI	
CODC	EPC	-	ь ,		-	D		Across all	COC
COPC	(mg/kg)	Ingestion	Dermal	Inhalation			Inhalation		COC
Organics Pathway Total					1.1E-03	1.4E-02	1.15.01	1.5E-02	
Pathway Total – Chemicals			675 <i>U</i> U		3.1E-03	1.6E-02	1.1E-04	1.9E-02	
	1.05.04	5 0E 05		and CA-6/6		4.55.04	0.017.07	6.60.05	1
Aluminum	1.0E+04	5.3E-05	4.7E-06	1.1E-08	5.3E-05	4.7E-06	8.0E-06	6.6E-05	
Arsenic	1.1E+01	5.7E-08	1.5E-07	1.2E-11	1.9E-04	5.1E-04	1.15.07	7.0E-04	
Barium	1.4E+02	7.2E-07	6.5E-08	1.6E-10	1.0E-05	1.3E-05	1.1E-06	2.5E-05	
Cadmium	1.8E+00	9.4E-09	8.5E-10	2.0E-12	9.4E-06	3.4E-05		4.3E-05	
Chromium	2.5E+01	1.3E-07	1.2E-08	2.8E-11	8.7E-08	6.0E-07		6.8E-07	
Copper	1.1E+02	5.5E-07	5.0E-08	1.2E-10	1.4E-05	1.2E-06	5.50.05	1.5E-05	
Manganese	7.0E+02	3.7E-06	3.3E-07	7.9E-10	7.9E-05	1.8E-04	5.5E-05	3.1E-04	
Mercury	3.4E-01	1.8E-09	1.6E-10	3.9E-13	5.9E-06	7.6E-06		1.4E-05	
Thallium	5.4E-01	2.8E-09	2.5E-10	6.1E-13	3.5E-05	3.1E-06		3.8E-05	
Vanadium	1.9E+01	9.9E-08	8.9E-09	2.2E-11	1.4E-05	4.9E-05	6 5E 05	6.3E-05	
Inorganics Pathway Total	5 0 F 00	0.15.00	2 0 E 0 Z	6 FE 10	4.1E-04	8.0E-04	6.5E-05	1.3E-03	
1,3-Dinitrobenzene	5.9E+00	3.1E-08	2.8E-07	6.7E-12	3.1E-04	2.8E-03		3.1E-03	
2,4,6-Trinitrotoluene	3.0E+02	1.6E-06	1.4E-05	3.4E-10	3.1E-03	2.8E-02		3.1E-02	
2,6-Dinitrotoluene	8.6E-01	4.5E-09	4.0E-08	9.7E-13	4.5E-06	4.0E-05		4.5E-05	
4,4'-DDE	1.2E+00	6.2E-09	5.6E-08	1.3E-12					
Benz(<i>a</i>)anthracene	6.4E-01	3.3E-09	3.9E-08	7.2E-13					
Benzo(<i>a</i>)pyrene	6.1E-01	3.2E-09	3.7E-08	6.9E-13					
Benzo(<i>b</i>)fluoranthene	6.6E-01	3.5E-09	4.0E-08	7.5E-13					
Dibenz(<i>a</i> , <i>h</i>)anthracene	9.6E-02	5.0E-10	5.8E-09	1.1E-13	4.05.05			1 05 01	
Dieldrin	9.8E-02	5.1E-10	4.6E-09	1.1E-13	1.0E-05	9.2E-05		1.0E-04	
Endrin Aldehyde	4.4E+00	2.3E-08	2.1E-07	5.0E-12	7.7E-05	6.9E-04		7.6E-04	
Heptachlor PCB-1254	7.2E-02 1.1E+03	3.8E-10 5.7E-06	3.4E-09 7.2E-05	8.1E-14	7.5E-07 2.9E-01	6.7E-06 3.6E+00		7.5E-06	Н
RDX	1.0E+02	5.2E-06	4.7E-06	1.2E-09 1.1E-10	2.9E-01 1.7E-04	3.6E+00 1.6E-03		3.9E+00 1.7E-03	н
gamma-Chlordane	1.0E+02 8.9E-01	4.6E-09	4.7E-08	1.0E-12		3.3E-05	5 OF 00	4.3E-05	
Organics Pathway Total	0.9E-01	4.0E-09	1./E-08	1.0E-12	9.3E-06 2.9E-01	3.6E+00	5.0E-09 5.0E-09	4.3E-03 3.9E+00	
Pathway Total – Chemicals					2.9E-01 2.9E-01				
Pathway Total – Chemicals		Channa	H (CD 12 22		3.6E+00	6.5E-05	3.9E+00	
Antimony	2.3E+00	1.2E-08	1.1E-09	C B-12, -23, - 2.6E-12	2.9E-05	1.8E-05		4.7E-05	
Antimony Arsenic	2.3E+00 1.2E+01	6.3E-08	1.1E-09 1.7E-07	1.4E-11	2.9E-03 2.1E-04	5.7E-04		4.7E-03 7.8E-04	
Cadmium	3.3E+00	0.3E-08 1.7E-08	1.7E-07 1.5E-09	3.7E-12	1.7E-04	6.2E-05		7.9E-04	
Manganese	8.3E+00	4.3E-06	3.9E-07	9.4E-10	9.4E-05	2.1E-04	6.6E-05	3.7E-04	
Thallium	4.3E-01	2.3E-09	2.0E-10	4.9E-13	2.8E-05	2.1E-04 2.5E-06	0.01-05	3.1E-04	
Inorganics Pathway Total	4.5E-01	2.5E-09	2.01-10	4.9E-13	3.8E-04	2.5E-00 8.6E-04	6.6E-05	1.3E-03	
Benzo(<i>a</i>)pyrene	9.2E-02	4.8E-10	5.6E-09	1.0E-13	J.0L-04	0.0L-04	0.012-05	1.51-05	
Organics Pathway Total	J.2E-02	4.0L-10	J.0L-07	1.0E-15					
Pathway Total – Chemicals					3.8E-04	8.6E-04	6.6E-05	1.3E-03	
Tatiway Total – Chemieais			Poris	neter Area	3.0L-04	0.01-04	0.0L-05	1.512-05	
Aluminum	1.4E+04	7.3E-05	6.6E-06	1.6E-08	7.3E-05	6.6E-06	1.1E-05	9.1E-05	
Arsenic	1.3E+01	6.5E-08	1.8E-07	1.4E-11	2.2E-04	5.9E-04	1.112 05	8.0E-04	
Manganese	1.4E+03	7.3E-06	6.5E-07	1.6E-09	1.6E-04	3.6E-04	1.1E-04	6.2E-04	
Thallium	6.4E-01	3.4E-09	3.0E-10	7.3E-13	4.2E-05	3.8E-06	1.112 07	4.6E-05	
Inorganics Pathway Total	5.71-01	5.71-07	5.01-10	1.51-15	4.9E-04	9.5E-00	1.2E-04	1.6E-03	
Pathway Total – Chemicals					4.9E-04	9.5E-04	1.2E-04 1.2E-04	1.6E-03	
r uniway rotar – chemicals	L	L	Wa	ter Tower	7.76704	7.56-04	1.213-04	1.01-03	1
Chromium	2.5E+02	1.3E-06	1.2E-07	2.8E-10	8.7E-07	6.0E-06		6.9E-06	
Thallium	6.4E-01	3.4E-09	3.0E-10	7.3E-13	4.2E-05	3.8E-06		4.6E-05	
Thumani	0.71-01	5.71-07	5.01-10	1.56-15	T.2L-03	5.01-00	I	7.01-05	I

Table A-18. Load Line 1 Shallow Surface Soil Hazards (continued)

		Daily	Intake (m	g/kg-d)	Hazard Quotient			Total HI	
СОРС	EPC (mg/kg)	Incastion	Dormal	Inhalation	Incastion	Dermal	Inhalation	Across all	COCa
	(mg/kg)	Ingestion	Dermai	Innalation	0		Innalation		COC
Inorganics Pathway Total					4.3E-05	9.8E-06		5.3E-05	
Pathway Total – Chemicals		а ·			4.3E-05	9.8E-06		5.3E-05	
Security Guard/Maintenance Worker CB-13 and -10									
Aluminum	1.3E+04	5.3E-04	2.9E-04	1.1E-07	5.3E-04	2.9E-04	8.0E-05	9.0E-04	
Antimony	1.3E+00	5.1E-08	2.9E-04	1.1E-11	1.3E-04	4.8E-04	0.01 05	6.0E-04	
Arsenic	1.1E+01	4.5E-07	7.5E-06	9.8E-11	1.5E-04	2.5E-02		2.7E-02	
Cadmium	6.2E+00	2.5E-07	1.4E-07	5.5E-11	2.5E-04	5.6E-03		5.8E-03	
Chromium	0.2E+00 3.5E+01	1.4E-06	8.0E-07	3.1E-10	2.5E-04 9.6E-07	4.1E-05		4.2E-05	
Copper	1.9E+02	7.8E-06	4.3E-06	1.7E-09	2.0E-07	1.1E-04		3.0E-04	
Manganese	1.3E+02	5.3E-05	2.9E-05	1.1E-09	1.2E-03	1.6E-02	8.0E-04	1.8E-02	
Thallium	4.9E-01	2.0E-08	1.1E-08	4.3E-12	1.2E-03 2.5E-04	1.4E-04	0.0L-04	3.9E-02	
Inorganics Pathway Total	4.9E-01	2.0E-06	1.1E-08	4.3E-12	4.0E-03	4.8E-02	8.8E-04	5.3E-04	
2,4,6-Trinitrotoluene	2.5E+01	1 0E 06	5 7E 05	2.2E-10	2.1E-03	4.8E-02 1.1E-01	0.0E-04	1.2E-01	
		1.0E-06	5.7E-05						
2,4-Dinitrotoluene	1.5E+00 3.7E-01	6.1E-08	3.4E-06	1.3E-11 3.3E-12	3.0E-05	1.7E-03		1.7E-03	
Benzo(<i>a</i>)pyrene PCB-1254	3.7E-01 1.7E+00	1.5E-08 6.9E-08	1.1E-06 5.4E-06	3.3E-12 1.5E-11	3.5E-03	2.7E-01		2.7E-01	
RDX	3.7E+00	1.5E-07	8.3E-06	3.3E-11	5.0E-05	2.8E-03		2.8E-03	
Organics Pathway Total					5.6E-03	3.9E-01	0.05.04	3.9E-01	
Pathway Total – Chemicals					9.6E-03	4.4E-01	8.8E-04	4.5E-01	
	A AT A A			8-17, and CA			1.00.01	4 15 00	
Aluminum	2.0E+04	8.1E-04	4.5E-04	1.8E-07	8.1E-04	4.5E-04	1.2E-04	1.4E-03	
Arsenic	2.1E+01	8.7E-07	1.5E-05	1.9E-10	2.9E-03	4.8E-02		5.1E-02	
Barium	1.4E+02	5.5E-06	3.1E-06	1.2E-09	7.9E-05	6.2E-04	8.3E-06	7.1E-04	
Cadmium	2.1E+00	8.5E-08	4.7E-08	1.8E-11	8.5E-05	1.9E-03		2.0E-03	
Manganese	1.2E+03	4.8E-05	2.7E-05	1.0E-08	1.0E-03	1.4E-02	7.3E-04	1.6E-02	
Nickel	3.2E+01	1.3E-06	7.2E-07	2.8E-10	6.5E-05	9.0E-04		9.6E-04	
Thallium	9.1E-01	3.7E-08	2.1E-08	8.0E-12	4.6E-04	2.6E-04		7.2E-04	
Vanadium	3.5E+01	1.4E-06	7.9E-07	3.1E-10	2.0E-04	4.3E-03		4.5E-03	
Inorganics Pathway Total					5.7E-03	7.1E-02	8.6E-04	7.8E-02	
2,4,6-Trinitrotoluene	4.5E+00	1.8E-07	1.0E-05	4.0E-11	3.7E-04	2.0E-02		2.1E-02	
Benz(<i>a</i>)anthracene	6.4E-01	2.6E-08	1.9E-06	5.7E-12					
Benzo(<i>a</i>)pyrene	8.2E-01	3.3E-08	2.4E-06	7.3E-12					
Benzo(b)fluoranthene	1.1E+00	4.5E-08	3.2E-06	9.7E-12					
Dibenz(a, h)anthracene	1.8E-01	7.3E-09	5.3E-07	1.6E-12					
Indeno(1,2,3-cd)pyrene	6.4E-01	2.6E-08	1.9E-06	5.7E-12					
PCB-1254	4.7E+00	1.9E-07	1.5E-05	4.1E-11	9.6E-03	7.4E-01		7.5E-01	
RDX	2.9E+01	1.2E-06	6.5E-05	2.5E-10	3.9E-04	2.2E-02		2.2E-02	
Organics Pathway Total					1.0E-02	7.9E-01		8.0E-01	
Pathway Total – Chemicals					1.6E-02	8.6E-01	8.6E-04	8.7E-01	
			CB-	3/CB-801					
Aluminum	1.2E+04	4.9E-04	2.7E-04	1.1E-07	4.9E-04	2.7E-04	7.4E-05	8.4E-04	
Antimony	1.1E+02	4.5E-06	2.5E-06	9.7E-10	1.1E-02	4.1E-02		5.3E-02	
Arsenic	1.3E+01	5.3E-07	8.7E-06	1.1E-10	1.8E-03	2.9E-02		3.1E-02	
Cadmium	6.3E+00	2.6E-07	1.4E-07	5.5E-11	2.6E-04	5.7E-03		5.9E-03	
Manganese	1.3E+03	5.1E-05	2.9E-05	1.1E-08	1.1E-03	1.5E-02	7.8E-04	1.7E-02	
Thallium	6.0E-01	2.4E-08	1.4E-08	5.3E-12	3.1E-04	1.7E-04		4.8E-04	
Inorganics Pathway Total					1.5E-02	9.2E-02	8.5E-04	1.1E-01	
Benz(<i>a</i>)anthracene	1.4E+01	5.7E-07	4.1E-05	1.2E-10					
Benzo(<i>a</i>)pyrene	1.3E+01	5.3E-07	3.8E-05	1.1E-10					İ
Benzo(<i>b</i>)fluoranthene	1.5E+01	6.1E-07	4.4E-05	1.3E-10					
Dibenz (a,h) anthracene	1.2E+00	4.7E-08	3.4E-06	1.0E-11					
Dieldrin	3.3E-02	1.4E-09	7.5E-08	2.9E-13	2.7E-05	1.5E-03		1.5E-03	
- 10101111	5.56 02	1.12.07	,.51-00	2.71 13	2.7 1 05	1.51.05	1	1.56 05	

Table A-18. Load Line 1 Shallow Surface Soil Hazards (continued)

		Daily Intake (mg/kg-d)			Ha	zard Quot	Total HI		
	EPC							Across all	
COPC	(mg/kg)	Ingestion	Dermal	Inhalation	Ingestion	Dermal	Inhalation	Pathways	COC ^a
Indeno(1,2,3-cd)pyrene	8.7E+00	3.5E-07	2.6E-05	7.7E-11					
PCB-1254	4.3E+00	1.8E-07	1.4E-05	3.8E-11	8.8E-03	6.8E-01		6.9E-01	
Organics Pathway Total					8.8E-03	6.8E-01		6.9E-01	
Pathway Total – Chemicals					2.4E-02	7.7E-01	8.5E-04	8.0E-01	
	CB-4/4A and CA-6/6A								
Aluminum	1.0E+04	4.1E-04	2.3E-04	8.9E-08	4.1E-04	2.3E-04	6.3E-05	7.0E-04	
Arsenic	1.1E+01	4.4E-07	7.4E-06	9.6E-11	1.5E-03	2.5E-02		2.6E-02	
Barium	1.4E+02	5.7E-06	3.1E-06	1.2E-09	8.1E-05	6.4E-04	8.6E-06	7.3E-04	
Cadmium	1.8E+00	7.4E-08	4.1E-08	1.6E-11	7.4E-05	1.6E-03		1.7E-03	
Chromium	2.5E+01	1.0E-06	5.6E-07	2.2E-10	6.8E-07	2.9E-05		3.0E-05	
Copper	1.1E+02	4.3E-06	2.4E-06	9.4E-10	1.1E-04	6.0E-05		1.7E-04	
Manganese	7.0E+02	2.9E-05	1.6E-05	6.2E-09	6.2E-04	8.6E-03	4.3E-04	9.7E-03	
Mercury	3.4E-01	1.4E-08	7.7E-09	3.0E-12	4.6E-05	3.7E-04		4.1E-04	
Thallium	5.4E-01	2.2E-08	1.2E-08	4.7E-12	2.7E-04	1.5E-04		4.2E-04	
Vanadium	1.9E+01	7.8E-07	4.3E-07	1.7E-10	1.1E-04	2.4E-03		2.5E-03	
Inorganics Pathway Total					3.2E-03	3.9E-02	5.0E-04	4.2E-02	
1,3-Dinitrobenzene	5.9E+00	2.4E-07	1.3E-05	5.2E-11	2.4E-03	1.3E-01		1.4E-01	
2,4,6-Trinitrotoluene	3.0E+02	1.2E-05	6.7E-04	2.6E-09	2.4E-02	1.3E+00		1.4E+00	Н
2,6-Dinitrotoluene	8.6E-01	3.5E-08	1.9E-06	7.6E-12	3.5E-05	1.9E-03		2.0E-03	
4,4'-DDE	1.2E+00	4.9E-08	2.7E-06	1.1E-11					
Benz(<i>a</i>)anthracene	6.4E-01	2.6E-08	1.9E-06	5.7E-12					
Benzo(<i>a</i>)pyrene	6.1E-01	2.5E-08	1.8E-06	5.4E-12					
Benzo(<i>b</i>)fluoranthene	6.6E-01	2.7E-08	1.9E-06	5.8E-12					
Dibenz(<i>a</i> , <i>h</i>)anthracene	9.6E-02	3.9E-09	2.8E-07	8.5E-13					
Dieldrin	9.8E-02	4.0E-09	2.2E-07	8.7E-13	8.0E-05	4.5E-03		4.5E-03	
Endrin Aldehyde	4.4E+00	1.8E-07	9.9E-06	3.9E-11	6.0E-04	3.3E-02		3.4E-02	
Heptachlor	7.2E-02	2.9E-09	1.6E-07	6.3E-13	5.9E-06	3.2E-04		3.3E-04	
PCB-1254	1.1E+03	4.5E-05	3.5E-03	9.7E-09	2.2E+00	1.7E+02		1.8E+02	Н
RDX	1.0E+02	4.1E-06	2.3E-04	8.8E-10	1.4E-03	7.5E-02		7.7E-02	
gamma-Chlordane	8.9E-01	3.6E-08	8.0E-07	7.8E-12	7.2E-05	1.6E-03	3.9E-08	1.7E-03	
Organics Pathway Total					2.3E+00	1.8E+02	3.9E-08	1.8E+02	
Pathway Total – Chemicals					2.3E+00	1.8E+02	5.0E-04	1.8E+02	
		Change	Houses (СВ-12, -23, -	8, and -22)		•		
Antimony	2.3E+00	9.2E-08	5.1E-08	2.0E-11	2.3E-04	8.5E-04		1.1E-03	
Arsenic	1.2E+01	5.0E-07	8.2E-06	1.1E-10	1.7E-03	2.7E-02		2.9E-02	
Cadmium	3.3E+00	1.3E-07	7.4E-08	2.9E-11	1.3E-04	3.0E-03		3.1E-03	
Manganese	8.3E+02	3.4E-05	1.9E-05	7.3E-09	7.4E-04	1.0E-02	5.1E-04	1.1E-02	
Thallium	4.3E-01	1.8E-08	9.8E-09	3.8E-12	2.2E-04	1.2E-04		3.4E-04	
Inorganics Pathway Total					3.0E-03	4.2E-02	5.1E-04	4.5E-02	
Benzo(<i>a</i>)pyrene	9.2E-02	3.8E-09	2.7E-07	8.1E-13					
Organics Pathway Total									
Pathway Total – Chemicals					3.0E-03	4.2E-02	5.1E-04	4.5E-02	
			Perin	neter Area					
Aluminum	1.4E+04	5.7E-04	3.2E-04	1.2E-07	5.7E-04	3.2E-04	8.7E-05	9.8E-04	
Arsenic	1.3E+01	5.1E-07	8.5E-06	1.1E-10	1.7E-03	2.8E-02		3.0E-02	
Manganese	1.4E+03	5.7E-05	3.2E-05	1.2E-08	1.2E-03	1.7E-02	8.6E-04	1.9E-02	
Thallium	6.4E-01	2.6E-08	1.5E-08	5.7E-12	3.3E-04	1.8E-04		5.1E-04	
Inorganics Pathway Total					3.8E-03	4.6E-02	9.5E-04	5.1E-02	
Pathway Total – Chemicals					3.8E-03	4.6E-02	9.5E-04	5.1E-02	
Water Tower									<u> </u>
Chromium	2.5E+02	1.0E-05	5.7E-06	2.2E-09	6.8E-06	2.9E-04		3.0E-04	
Thallium	6.4E-01	2.6E-08	1.5E-08	5.7E-12	3.3E-04	1.8E-04		5.1E-04	
							•		

		Daily Intake (mg/kg-d)			Hazard Quotient			Total HI	
CODC	EPC	_						Across all	~~~~~
COPC	(mg/kg)	Ingestion	Dermal	Inhalation		Dermal	Inhalation		COC"
Inorganics Pathway Total					3.4E-04	4.7E-04		8.1E-04	
Pathway Total – Chemicals					3.4E-04	4.7E-04		8.1E-04	
Dust/Fire Suppression CB-13 and -10									
	1.20.04	1.20.04			1.20.04	7.50.00	4.2E.05	1 05 04	
Aluminum	1.3E+04	1.3E-04	7.5E-06	6.1E-08	1.3E-04	7.5E-06	4.3E-05	1.8E-04	
Antimony	1.3E+00	1.2E-08	7.3E-10	5.9E-12	3.1E-05	1.2E-05		4.3E-05	
Arsenic Cadmium	1.1E+01	1.1E-07	1.9E-07	5.2E-11	3.6E-04	6.5E-04		1.0E-03	
	6.2E+00 3.5E+01	6.1E-08	3.6E-09	2.9E-11	6.1E-05	1.4E-04		2.0E-04	
Chromium		3.4E-07	2.0E-08	1.7E-10	2.3E-07	1.0E-06		1.3E-06	
Copper	1.9E+02	1.9E-06	1.1E-07	9.0E-10	4.7E-05	2.8E-06	4.25.04	5.0E-05	
Manganese	1.3E+03	1.3E-05	7.5E-07	6.1E-09	2.8E-04	4.1E-04	4.3E-04	1.1E-03	
Thallium	4.9E-01	4.8E-09	2.8E-10	2.3E-12	6.0E-05	3.5E-06	4.75.04	6.3E-05	
Inorganics Pathway Total	0.75.01	0.55.07	1.55.04	1.05.10	9.6E-04	1.2E-03	4.7E-04	2.7E-03	
2,4,6-Trinitrotoluene	2.5E+01	2.5E-07	1.5E-06	1.2E-10	4.9E-04	2.9E-03		3.4E-03	
2,4-Dinitrotoluene	1.5E+00	1.5E-08	8.6E-08	7.0E-12	7.3E-06	4.3E-05		5.0E-05	
Benzo(<i>a</i>)pyrene	3.7E-01	3.6E-09	2.8E-08	1.7E-12	0.05.04	6 0 E 0 2		5 5 6 2	
PCB-1254	1.7E+00	1.7E-08	1.4E-07	8.0E-12	8.3E-04	6.9E-03		7.7E-03	
RDX	3.7E+00	3.6E-08	2.1E-07	1.7E-11	1.2E-05	7.1E-05		8.4E-05	
Organics Pathway Total					1.3E-03	1.0E-02		1.1E-02	
Pathway Total – Chemicals			~ ~ ~		2.3E-03	1.1E-02	4.7E-04	1.4E-02	
	A 05 04			B-17, and CA					
Aluminum	2.0E+04	1.9E-04	1.2E-05		1.9E-04	1.2E-05	6.6E-05	2.7E-04	
Arsenic	2.1E+01	2.1E-07	3.7E-07	1.0E-10	7.0E-04	1.2E-03		1.9E-03	
Barium	1.4E+02	1.3E-06	7.9E-08	6.4E-10	1.9E-05	1.6E-05	4.4E-06	3.9E-05	
Cadmium	2.1E+00	2.0E-08	1.2E-09	9.8E-12	2.0E-05	4.8E-05		6.8E-05	
Manganese	1.2E+03	1.2E-05	6.9E-07	5.5E-09	2.5E-04	3.7E-04	3.9E-04	1.0E-03	
Nickel	3.2E+01	3.1E-07	1.8E-08	1.5E-10	1.6E-05	2.3E-05		3.9E-05	
Thallium	9.1E-01	8.9E-09	5.3E-10	4.3E-12	1.1E-04	6.6E-06		1.2E-04	
Vanadium	3.5E+01	3.4E-07	2.0E-08	1.6E-10	4.9E-05	1.1E-04		1.6E-04	
Inorganics Pathway Total					1.4E-03	1.8E-03	4.6E-04	3.7E-03	
2,4,6-Trinitrotoluene	4.5E+00	4.4E-08	2.6E-07	2.1E-11	8.8E-05	5.2E-04		6.1E-04	
Benz(<i>a</i>)anthracene	6.4E-01	6.3E-09	4.8E-08	3.0E-12					
Benzo(<i>a</i>)pyrene	8.2E-01	8.0E-09	6.2E-08	3.9E-12					
Benzo(b)fluoranthene	1.1E+00	1.1E-08	8.3E-08	5.2E-12					
Dibenz(a,h)anthracene	1.8E-01	1.8E-09	1.4E-08	8.5E-13					
Indeno(1,2,3-cd)pyrene	6.4E-01	6.3E-09	4.8E-08	3.0E-12					
PCB-1254	4.7E+00	4.6E-08	3.8E-07	2.2E-11	2.3E-03	1.9E-02		2.1E-02	
RDX	2.9E+01	2.8E-07	1.7E-06	1.3E-10	9.3E-05			6.5E-04	
Organics Pathway Total					2.5E-03	2.0E-02		2.3E-02	
Pathway Total – Chemicals					3.8E-03	2.2E-02	4.6E-04	2.6E-02	
				3 and -801					
Aluminum	1.2E+04	1.2E-04	7.0E-06	5.7E-08	1.2E-04	7.0E-06	4.0E-05	1.6E-04	
Antimony	1.1E+02	1.1E-06	6.4E-08	5.2E-10	2.7E-03	1.1E-03		3.7E-03	
Arsenic	1.3E+01	1.3E-07	2.2E-07	6.1E-11	4.2E-04	7.5E-04		1.2E-03	
Cadmium	6.3E+00	6.1E-08	3.6E-09	3.0E-11	6.1E-05	1.5E-04		2.1E-04	
Manganese	1.3E+03	1.2E-05	7.3E-07	5.9E-09	2.7E-04	4.0E-04	4.2E-04	1.1E-03	
Thallium	6.0E-01	5.9E-09	3.5E-10	2.8E-12	7.3E-05	4.4E-06		7.8E-05	
Inorganics Pathway Total					3.6E-03	2.4E-03	4.5E-04	6.4E-03	
Benz(a)anthracene	1.4E+01	1.4E-07	1.1E-06	6.6E-11					
Benzo(a)pyrene	1.3E+01	1.3E-07	9.8E-07	6.1E-11					
Benzo(b)fluoranthene	1.5E+01	1.5E-07	1.1E-06	7.1E-11					
Dibenz(<i>a</i> , <i>h</i>)anthracene	1.2E+00	1.1E-08	8.7E-08	5.4E-12					

Table A-18. Load Line 1 Shallow Surface Soil Hazards (continued)
		Daily	Intake (m	g/kg-d)	На	zard Quot	ient	Total HI	
СОРС	EPC (mg/lvg)	Turantian	Dermol	Tubolotion	T	Damas	Tubalation	Across all	COCa
	(mg/kg)	Ingestion		Inhalation		Dermal 3.9E-05	Inhalation		
Dieldrin	3.3E-02	3.3E-10	1.9E-09	1.6E-13	6.5E-06	3.9E-05		4.5E-05	
Indeno(1,2,3- <i>cd</i>)pyrene	8.7E+00	8.5E-08	6.6E-07	4.1E-11	2 1E 02	1.7E.02		2 OF 02	
PCB-1254 Organics Pathway Total	4.3E+00	4.2E-08	3.5E-07	2.0E-11	2.1E-03 2.1E-03	1.7E-02 1.8E-02		2.0E-02 2.0E-02	
Pathway Total – Chemicals					2.1E-03 5.7E-03	1.8E-02 2.0E-02	4.5E-04	2.6E-02	
Pathway Total – Chemicals			CB-A/AA	and CA-6/6		2.0E-02	4.3E-04	2.0E-02	
Aluminum	1.0E+04	9.9E-05	5.9E-06	4.8E-08	9.9E-05	5.9E-06	3.3E-05	1.4E-04	
Arsenic	1.1E+01	1.1E-07	1.9E-07	5.1E-11	3.6E-04	6.3E-04	5.52 05	9.9E-04	
Barium	1.4E+02	1.4E-06	8.1E-08	6.5E-10	1.9E-05	1.6E-05	4.6E-06	4.0E-05	
Cadmium	1.8E+00	1.8E-08	1.1E-09	8.5E-12	1.8E-05	4.2E-05	1.02 00	6.0E-05	
Chromium	2.5E+01	2.4E-07	1.4E-08	1.2E-10	1.6E-07	7.4E-07		9.0E-07	
Copper	1.1E+02	1.0E-06	6.2E-08	5.0E-10	2.6E-05	1.5E-06		2.7E-05	
Manganese	7.0E+02	6.9E-06	4.1E-07	3.3E-09	1.5E-04	2.2E-04	2.3E-04	6.0E-04	
Mercury	3.4E-01	3.3E-09	2.0E-10	1.6E-12	1.1E-05	9.5E-06		2.1E-05	
Thallium	5.4E-01	5.2E-09	3.1E-10	2.5E-12	6.5E-05	3.9E-06		6.9E-05	
Vanadium	1.9E+01	1.9E-07	1.1E-08	9.0E-11	2.7E-05	6.1E-05		8.7E-05	
Inorganics Pathway Total					7.7E-04	1.0E-03	2.7E-04	2.0E-03	
1,3-Dinitrobenzene	5.9E+00	5.8E-08	3.4E-07	2.8E-11	5.8E-04	3.4E-03		4.0E-03	
2,4,6-Trinitrotoluene	3.0E+02	2.9E-06	1.7E-05	1.4E-09	5.8E-03	3.5E-02		4.0E-02	
2,6-Dinitrotoluene	8.6E-01	8.4E-09	5.0E-08	4.0E-12	8.4E-06	5.0E-05		5.8E-05	
4,4'-DDE	1.2E+00	1.2E-08	6.9E-08	5.6E-12					
Benz(<i>a</i>)anthracene	6.4E-01	6.3E-09	4.8E-08	3.0E-12					
Benzo(<i>a</i>)pyrene	6.1E-01	6.0E-09	4.6E-08	2.9E-12					
Benzo(b)fluoranthene	6.6E-01	6.5E-09	5.0E-08	3.1E-12					
Dibenz(<i>a</i> , <i>h</i>)anthracene	9.6E-02	9.4E-10	7.3E-09	4.5E-13					
Dieldrin	9.8E-02	9.6E-10	5.7E-09	4.6E-13	1.9E-05	1.1E-04		1.3E-04	
Endrin Aldehyde	4.4E+00	4.3E-08	2.6E-07	2.1E-11	1.4E-04	8.5E-04		1.0E-03	
Heptachlor	7.2E-02	7.0E-10	4.2E-09	3.4E-13	1.4E-06	8.4E-06		9.8E-06	
PCB-1254	1.1E+03	1.1E-05	9.0E-05	5.2E-09	5.4E-01	4.5E+00		5.0E+00	Н
RDX	1.0E+02	9.8E-07	5.8E-06	4.7E-10	3.3E-04	1.9E-03		2.3E-03	
gamma-Chlordane	8.9E-01	8.7E-09	2.1E-08	4.2E-12	1.7E-05	4.1E-05	2.1E-08	5.9E-05	
Organics Pathway Total					5.5E-01	4.5E+00	2.1E-08	5.1E+00	
Pathway Total – Chemicals					5.5E-01	4.5E+00	2.7E-04	5.1E+00	
				СВ-12, -23, -			ſ		
Antimony	2.3E+00	2.2E-08	1.3E-09	1.1E-11	5.5E-05	2.2E-05		7.7E-05	
Arsenic	1.2E+01	1.2E-07	2.1E-07	5.7E-11	4.0E-04	7.1E-04		1.1E-03	
Cadmium	3.3E+00	3.2E-08	1.9E-09	1.5E-11	3.2E-05	7.6E-05		1.1E-04	
Manganese	8.3E+02				1.8E-04	2.6E-04	2.7E-04	7.1E-04	
Thallium	4.3E-01	4.2E-09	2.5E-10	2.0E-12	5.3E-05	3.1E-06		5.6E-05	
Inorganics Pathway Total	0.05.00	0.05.10	T OF OC	4.05.10	7.1E-04	1.1E-03	2.7E-04	2.1E-03	
Benzo(<i>a</i>)pyrene	9.2E-02	9.0E-10	7.0E-09	4.3E-13					
Organics Pathway Total					7 15 04	1.10.02	0.75.04	0.10.02	
Pathway Total – Chemicals			<u>ה</u>	motor A.	7.1E-04	1.1E-03	2.7E-04	2.1E-03	L
Aluminum	1 4E 04	1 45 04		<i>neter Area</i>	1 4E 04	8 7E 06	1 6E 05	1 0E 04	
Aluminum	1.4E+04	1.4E-04	8.2E-06	6.6E-08	1.4E-04	8.2E-06 7.3E-04	4.6E-05	1.9E-04	
Arsenic	1.3E+01	1.2E-07	2.2E-07	5.9E-11	4.1E-04		4.6E.04	1.1E-03	├───┤
Manganese Thallium	1.4E+03	1.4E-05 6.3E-09	8.1E-07 3.7E-10	6.6E-09	3.0E-04 7.9E-05	4.4E-04 4.7E-06	4.6E-04	1.2E-03 8.3E-05	
	6.4E-01	0.3E-09	3./E-10	3.0E-12	7.9E-05 9.2E-04		5 1E 04		├───┤
Inorganics Pathway Total Pathway Total – Chemicals					9.2E-04 9.2E-04	1.2E-03 1.2E-03	5.1E-04 5.1E-04	2.6E-03 2.6E-03	
r aniway rotal – Chemicals	I	I	T#7	ter Tower	9.2E-04	1.2E-03	J.1E-04	2.0E-03	L
Chromium	2.5E+02	2.5E-06	1.5E-07	1.2E-09	1.6E-06	7.5E-06		9.1E-06	
Thallium	6.4E-01	2.3E-06 6.3E-09	1.5E-07 3.7E-10	3.0E-12	1.6E-06 7.9E-05	4.7E-06		9.1E-06 8.4E-05	
	0.4E-01	0.3E-09	5.7E-10	5.0E-12	1.7E-03	4./E-00	I	0.4E-UJ	

Table A-18. Load Line 1 Shallow Surface Soil Hazards (continued)

		Daily Intake (mg/kg-d)			Ha	zard Quot	tient	Total HI	
	EPC							Across all	
COPC	(mg/kg)	Ingestion	Dermal	Inhalation		Dermal	Inhalation		COC ^a
Inorganics Pathway Total					8.1E-05	1.2E-05		9.3E-05	
Pathway Total – Chemicals					8.1E-05	1.2E-05		9.3E-05	
				Farmer Ad	ult				
				13 and -10					
Aluminum	1.3E+04	1.8E-02	4.0E-04	3.8E-06	1.8E-02	4.0E-04	2.7E-03	2.1E-02	
Antimony	1.3E+00	1.7E-06	3.9E-08	3.7E-10	4.3E-03	6.6E-04		5.0E-03	
Arsenic	1.1E+01	1.5E-05	1.0E-05	3.3E-09	5.1E-02	3.5E-02		8.5E-02	
Cadmium	6.2E+00	8.5E-06	1.9E-07	1.8E-09	8.5E-03	7.7E-03		1.6E-02	
Chromium	3.5E+01	4.8E-05	1.1E-06	1.0E-08	3.2E-05	5.6E-05		8.9E-05	
Copper	1.9E+02	2.6E-04	6.0E-06	5.7E-08	6.6E-03	1.5E-04		6.7E-03	
Manganese	1.3E+03	1.8E-03	4.1E-05	3.9E-07	3.9E-02	2.2E-02	2.7E-02	8.8E-02	
Thallium	4.9E-01	6.7E-07	1.5E-08	1.4E-10	8.3E-03	1.9E-04		8.5E-03	
Inorganics Pathway Total					1.3E-01	6.6E-02	3.0E-02	2.3E-01	
2,4,6-Trinitrotoluene	2.5E+01	3.5E-05	7.9E-05	7.5E-09	6.9E-02	1.6E-01		2.3E-01	
2,4-Dinitrotoluene	1.5E+00	2.0E-06	4.6E-06	4.4E-10	1.0E-03	2.3E-03		3.3E-03	
Benzo(<i>a</i>)pyrene	3.7E-01	5.1E-07	1.5E-06	1.1E-10					
PCB-1254	1.7E+00	2.3E-06	7.4E-06	5.0E-10	1.2E-01	3.7E-01		4.9E-01	
RDX	3.7E+00	5.1E-06	1.2E-05	1.1E-09	1.7E-03	3.8E-03		5.5E-03	
Organics Pathway Total					1.9E-01	5.4E-01		7.2E-01	
Pathway Total – Chemicals			~ ~ . ~		3.2E-01	6.0E-01	3.0E-02	9.5E-01	ļ
				B-17, and CA					
Aluminum	2.0E+04	2.7E-02	6.2E-04	5.9E-06	2.7E-02	6.2E-04	4.1E-03	3.2E-02	
Arsenic	2.1E+01	2.9E-05	2.0E-05	6.4E-09	9.8E-02	6.7E-02		1.6E-01	
Barium	1.4E+02	1.9E-04	4.2E-06	4.0E-08	2.6E-03	8.6E-04	2.8E-04	3.8E-03	
Cadmium	2.1E+00	2.8E-06	6.5E-08	6.1E-10	2.8E-03	2.6E-03		5.4E-03	
Manganese	1.2E+03	1.6E-03	3.7E-05	3.5E-07	3.5E-02	2.0E-02	2.4E-02	8.0E-02	
Nickel	3.2E+01	4.4E-05	9.9E-07	9.4E-09	2.2E-03	1.2E-03		3.4E-03	
Thallium	9.1E-01	1.2E-06	2.8E-08	2.7E-10	1.6E-02	3.6E-04		1.6E-02	
Vanadium	3.5E+01	4.8E-05	1.1E-06	1.0E-08	6.8E-03	6.0E-03		1.3E-02	
Inorganics Pathway Total					1.9E-01	9.9E-02	2.9E-02	3.2E-01	
2,4,6-Trinitrotoluene	4.5E+00	6.2E-06	1.4E-05	1.3E-09	1.2E-02	2.8E-02		4.0E-02	
Benz(<i>a</i>)anthracene	6.4E-01	8.8E-07	2.6E-06	1.9E-10					
Benzo(<i>a</i>)pyrene	8.2E-01	1.1E-06	3.3E-06	2.4E-10					
Benzo(<i>b</i>)fluoranthene	1.1E+00	1.5E-06	4.5E-06	3.3E-10					
Dibenz(<i>a</i> , <i>h</i>)anthracene	1.8E-01	2.5E-07	7.3E-07	5.3E-11					
Indeno(1,2,3- <i>cd</i>)pyrene	6.4E-01	8.8E-07	2.6E-06	1.9E-10	0.05.04	1 05 00		4.05.00	
PCB-1254	4.7E+00	6.4E-06	2.1E-05	1.4E-09	3.2E-01	1.0E+00		1.3E+00	Н
RDX	2.9E+01	3.9E-05	8.9E-05	8.5E-09	1.3E-02	3.0E-02		4.3E-02	
Organics Pathway Total					3.5E-01	1.1E+00	0.05.00	1.4E+00	
Pathway Total – Chemicals			GD		5.4E-01	1.2E+00	2.9E-02	1.8E+00	
	1.05.04	1 (5 00		3 and -801	1 (5 00	0.01	0.55.00	1 05 03	
Aluminum	1.2E+04	1.6E-02	3.8E-04	3.6E-06	1.6E-02	3.8E-04	2.5E-03	1.9E-02	
Antimony	1.1E+02	1.5E-04	3.4E-06	3.3E-08	3.8E-01	5.7E-02		4.3E-01	
Arsenic	1.3E+01	1.8E-05	1.2E-05	3.8E-09	5.9E-02	4.0E-02		9.9E-02	
Cadmium	6.3E+00	8.6E-06	2.0E-07	1.9E-09	8.6E-03	7.8E-03	265.02	1.6E-02	
Manganese	1.3E+03	1.7E-03	3.9E-05	3.7E-07	3.8E-02	2.1E-02	2.6E-02	8.5E-02	
Thallium	6.0E-01	8.2E-07	1.9E-08	1.8E-10	1.0E-02	2.3E-04	2.05.02	1.1E-02	
Inorganics Pathway Total	1.40.01	1.05.05	5 70 05	4.00.00	5.1E-01	1.3E-01	2.9E-02	6.6E-01	
Benz(<i>a</i>)anthracene	1.4E+01	1.9E-05	5.7E-05	4.2E-09					
Benzo(<i>a</i>)pyrene	1.3E+01	1.8E-05	5.3E-05	3.9E-09					└───┤
Benzo(<i>b</i>)fluoranthene	1.5E+01	2.1E-05	6.1E-05	4.4E-09					<u> </u>
Dibenz(<i>a</i> , <i>h</i>)anthracene	1.2E+00	1.6E-06	4.7E-06	3.4E-10				L	

		Daily Intake (mg/kg-d)			На	zard Quot	tient	Total HI	
CODC	EPC (mg/lvg)	Turantian	Dermol	Tubolotion	T	Damas	Tubalation	Across all	COCa
COPC	(mg/kg)	Ingestion		Inhalation 9.9E-12		Dermal	Inhalation		COC
Dieldrin	3.3E-02	4.6E-08 1.2E-05	1.0E-07 3.5E-05	9.9E-12 2.6E-09	9.1E-04	2.1E-03		3.0E-03	
Indeno(1,2,3- <i>cd</i>)pyrene	8.7E+00				2.0E.01	0.4E.01		1.20.00	п
PCB-1254 Organics Pathway Total	4.3E+00	5.9E-06	1.9E-05	1.3E-09	2.9E-01 3.0E-01	9.4E-01 9.4E-01		1.2E+00 1.2E+00	Н
Pathway Total – Chemicals					3.0E-01 8.0E-01		2.9E-02	1.2E+00 1.9E+00	
Pathway Total – Chemicals			CB-A/AA	and CA-6/6		1.1E+00	2.9E-02	1.9E+00	<u> </u>
Aluminum	1.0E+04	1.4E-02	3.2E-04	3.0E-06	1.4E-02	3.2E-04	2.1E-03	1.6E-02	
Arsenic	1.1E+01	1.5E-05	1.0E-05	3.2E-09	5.0E-02	3.4E-02	2.12 05	8.4E-02	
Barium	1.4E+02	1.9E-04	4.3E-06	4.1E-08	2.7E-03	8.9E-04	2.9E-04	3.9E-03	
Cadmium	1.8E+00	2.5E-06	5.7E-08	5.4E-10	2.5E-03	2.3E-03		4.7E-03	
Chromium	2.5E+01	3.4E-05	7.8E-07	7.4E-09	2.3E-05	4.0E-05		6.3E-05	
Copper	1.1E+02	1.5E-04	3.3E-06	3.1E-08	3.6E-03	8.3E-05		3.7E-03	
Manganese	7.0E+02	9.6E-04	2.2E-05	2.1E-07	2.1E-02	1.2E-02	1.5E-02	4.7E-02	
Mercury	3.4E-01	4.7E-07	1.1E-08	1.0E-10	1.6E-03	5.1E-04		2.1E-03	
Thallium	5.4E-01	7.3E-07	1.7E-08	1.6E-10	9.2E-03	2.1E-04		9.4E-03	
Vanadium	1.9E+01	2.6E-05	5.9E-07	5.7E-09	3.7E-03	3.3E-03		7.0E-03	
Inorganics Pathway Total					1.1E-01	5.3E-02	1.7E-02	1.8E-01	
1,3-Dinitrobenzene	5.9E+00	8.1E-06	1.8E-05	1.7E-09	8.1E-02	1.8E-01		2.6E-01	
2,4,6-Trinitrotoluene	3.0E+02	4.1E-04	9.3E-04	8.8E-08	8.1E-01	1.9E+00		2.7E+00	Н
2,6-Dinitrotoluene	8.6E-01	1.2E-06	2.7E-06	2.6E-10	1.2E-03	2.7E-03		3.9E-03	
4,4'-DDE	1.2E+00	1.6E-06	3.7E-06	3.5E-10					
Benz(<i>a</i>)anthracene	6.4E-01	8.8E-07	2.6E-06	1.9E-10					
Benzo(<i>a</i>)pyrene	6.1E-01	8.3E-07	2.5E-06	1.8E-10					
Benzo(b)fluoranthene	6.6E-01	9.1E-07	2.7E-06	2.0E-10					
Dibenz(<i>a</i> , <i>h</i>)anthracene	9.6E-02	1.3E-07	3.9E-07	2.8E-11					
Dieldrin	9.8E-02	1.3E-07	3.1E-07	2.9E-11	2.7E-03	6.2E-03		8.8E-03	
Endrin Aldehyde	4.4E+00	6.0E-06	1.4E-05	1.3E-09	2.0E-02	4.6E-02		6.6E-02	
Heptachlor	7.2E-02	9.8E-08	2.2E-07	2.1E-11	2.0E-04	4.5E-04		6.5E-04	
PCB-1254	1.1E+03	1.5E-03	4.8E-03	3.3E-07	7.5E+01	2.4E+02		3.2E+02	Н
RDX	1.0E+02	1.4E-04	3.1E-04	3.0E-08	4.6E-02	1.0E-01		1.5E-01	
gamma-Chlordane	8.9E-01	1.2E-06	1.1E-06	2.6E-10	2.4E-03	2.2E-03	1.3E-06	4.7E-03	
Organics Pathway Total					7.6E+01	2.4E+02	1.3E-06	3.2E+02	
Pathway Total – Chemicals					7.6E+01	2.4E+02	1.7E-02	3.2E+02	
				CB-12, -23, -					
Antimony	2.3E+00	3.1E-06	7.0E-08	6.7E-10	7.7E-03	1.2E-03		8.9E-03	
Arsenic	1.2E+01	1.7E-05	1.1E-05	3.6E-09	5.6E-02	3.8E-02		9.4E-02	
Cadmium	3.3E+00	4.5E-06	1.0E-07	9.7E-10	4.5E-03	4.1E-03	1.55.00	8.6E-03	
Manganese	8.3E+02		2.6E-05		2.5E-02	1.4E-02	1.7E-02	5.6E-02	
Thallium	4.3E-01	5.9E-07	1.4E-08	1.3E-10	7.4E-03	1.7E-04	1.55.00	7.6E-03	
Inorganics Pathway Total	0.000.000	1.05.07	0.7E.05	0.75.11	1.0E-01	5.8E-02	1.7E-02	1.7E-01	
Benzo(<i>a</i>)pyrene	9.2E-02	1.3E-07	3.7E-07	2.7E-11					
Organics Pathway Total					1.05.01	5 OF 02	1 75 00	1.70.01	
Pathway Total – Chemicals					1.0E-01	5.8E-02	1.7E-02	1.7E-01	I
Aluminum	1.4E+04	1.0E.02		<i>neter Area</i>	1 OF 02	4 4E 04	2 0E 02	2.2E.02	
Aluminum Arsenic	1.4E+04	1.9E-02	4.4E-04	4.2E-06	1.9E-02	4.4E-04	2.9E-03	2.3E-02 9.6E-02	
	1.3E+01	1.7E-05	1.2E-05	3.7E-09	5.7E-02 4.2E-02	3.9E-02	2.05.02		
Manganese Thallium	1.4E+03	1.9E-03	4.4E-05 2.0E-08	4.1E-07		2.4E-02 2.5E-04	2.9E-02	9.4E-02 1.1E-02	
	6.4E-01	8.8E-07	2.0E-08	1.9E-10	1.1E-02		2 25 02		
Inorganics Pathway Total Pathway Total – Chemicals					1.3E-01 1.3E-01	6.4E-02 6.4E-02	3.2E-02 3.2E-02	2.2E-01 2.2E-01	
r aniway rotal – Chemicals	I	I	T#7	ter Tower	1.5E-01	0.4E-02	3.2E-02	2.2E-01	L
Chromium	2.5E+02	3.4E-04	7.8E-06	7.4E-08	2.3E-04	4.0E-04		6.3E-04	
Thallium	6.4E-01	3.4E-04 8.8E-07	7.8E-06 2.0E-08	1.9E-10	2.3E-04 1.1E-02	4.0E-04 2.5E-04		0.3E-04 1.1E-02	
Thannuni	0.4E-01	0.0E-07	2.0E-08	1.9E-10	1.1E-02	2.JE-04	I	1.1E-02	

Table A-18. Load Line 1 Shallow Surface Soil Hazards (continued)

		Daily Intake (mg/kg-d)			Ha	zard Quot	tient	Total HI	
CODC	EPC					- ·		Across all	a o a a
COPC	(mg/kg)	Ingestion	Dermal	Inhalation			Inhalation	ř	COC"
Inorganics Pathway Total					1.1E-02	6.5E-04		1.2E-02	
Pathway Total – Chemicals					1.1E-02	6.5E-04		1.2E-02	
				Farmer Ch	ild				
	1.20.04	1.70.01		13 and -10	1.70.01	2 (E 04	C 2E 02	1.70.01	
Aluminum	1.3E+04	1.7E-01	3.6E-04	9.0E-06	1.7E-01	3.6E-04	6.3E-03	1.7E-01	
Antimony	1.3E+00	1.6E-05	3.5E-08	8.7E-10	4.0E-02	5.9E-04		4.1E-02	
Arsenic	1.1E+01	1.4E-04	9.4E-06	7.7E-09	4.7E-01	3.1E-02		5.0E-01	
Cadmium	6.2E+00	7.9E-05	1.7E-07	4.3E-09	7.9E-02	7.0E-03		8.6E-02	
Chromium	3.5E+01	4.5E-04	9.9E-07	2.4E-08	3.0E-04	5.1E-05		3.5E-04	
Copper	1.9E+02	2.5E-03	5.4E-06	1.3E-07	6.1E-02	1.4E-04	C 2E 02	6.2E-02	
Manganese	1.3E+03	1.7E-02	3.7E-05	9.0E-07	3.6E-01	2.0E-02	6.3E-02	4.4E-01	
Thallium	4.9E-01	6.2E-06	1.4E-08	3.4E-10	7.8E-02	1.7E-04	C 0E 02	7.8E-02	
Inorganics Pathway Total	2.50.01	2.00.04	7.10.05	1.70.00	1.3E+00	5.9E-02	6.9E-02	1.4E+00	
2,4,6-Trinitrotoluene 2,4-Dinitrotoluene	2.5E+01	3.2E-04 1.9E-05	7.1E-05	1.7E-08	6.5E-01	1.4E-01		7.9E-01	
	1.5E+00 3.7E-01		4.2E-06	1.0E-09	9.5E-03	2.1E-03		1.2E-02	
Benzo(<i>a</i>)pyrene PCB-1254		4.7E-06	1.4E-06	2.6E-10 1.2E-09	1.10.00	2.2E.01		1.4E+00	Н
RDX	1.7E+00	2.2E-05	6.7E-06		1.1E+00 1.6E-02	3.3E-01		1.4E+00	п
	3.7E+00	4.7E-05	1.0E-05	2.6E-09		3.5E-03		1.9E-02	
Organics Pathway Total					1.8E+00	4.8E-01	C 0E 02	2.2E+00	
Pathway Total – Chemicals					3.0E+00	5.4E-01	6.9E-02	3.6E+00	
	0.05.04			B-17, and CA		5 (E 04	0 (E 02	0 (E.01	
Aluminum	2.0E+04	2.5E-01	5.6E-04		2.5E-01	5.6E-04	9.6E-03	2.6E-01	
Arsenic	2.1E+01	2.7E-04	1.8E-05		9.1E-01	6.0E-02	6.55.04	9.7E-01	
Barium	1.4E+02	1.7E-03	3.8E-06	9.4E-08	2.5E-02	7.8E-04	6.5E-04	2.6E-02	
Cadmium	2.1E+00	2.7E-05	5.8E-08	1.4E-09	2.7E-02	2.3E-03	5 5E 03	2.9E-02	
Manganese	1.2E+03	1.5E-02	3.3E-05	8.2E-07	3.3E-01	1.8E-02	5.7E-02	4.0E-01	
Nickel	3.2E+01	4.1E-04	8.9E-07	2.2E-08	2.0E-02	1.1E-03		2.1E-02	
Thallium	9.1E-01	1.2E-05	2.6E-08	6.3E-10	1.5E-01	3.2E-04		1.5E-01	
Vanadium	3.5E+01	4.5E-04	9.8E-07	2.4E-08	6.4E-02	5.4E-03		6.9E-02	
Inorganics Pathway Total					1.8E+00	8.9E-02	6.7E-02	1.9E+00	
2,4,6-Trinitrotoluene	4.5E+00	5.8E-05	1.3E-05	3.1E-09	1.2E-01	2.5E-02		1.4E-01	
Benz(<i>a</i>)anthracene	6.4E-01	8.2E-06	2.3E-06	4.4E-10					
Benzo(<i>a</i>)pyrene	8.2E-01	1.1E-05	3.0E-06	5.7E-10					
Benzo(<i>b</i>)fluoranthene	1.1E+00	1.4E-05	4.0E-06	7.6E-10					
Dibenz(<i>a</i> , <i>h</i>)anthracene	1.8E-01	2.3E-06	6.6E-07	1.2E-10					
Indeno(1,2,3- <i>cd</i>)pyrene	6.4E-01	8.2E-06	2.3E-06	4.4E-10					
PCB-1254	4.7E+00	6.0E-05	1.9E-05	3.3E-09	3.0E+00	9.3E-01		3.9E+00	Н
RDX	2.9E+01	3.6E-04	8.0E-05	2.0E-08	1.2E-01	2.7E-02		1.5E-01	
Organics Pathway Total					3.2E+00	9.8E-01		4.2E+00	
Pathway Total – Chemicals			C.D.	1 1 0 0 1	5.0E+00	1.1E+00	6.7E-02	6.2E+00	
	1.05.04	1 50 01		3 and -801	1 55 01	0.45.04	5 0 5 00	1 (1 01	
Aluminum	1.2E+04	1.5E-01	3.4E-04	8.3E-06	1.5E-01	3.4E-04	5.8E-03	1.6E-01	
Antimony	1.1E+02	1.4E-03	3.1E-06	7.6E-08	3.5E+00	5.1E-02		3.6E+00	Н
Arsenic	1.3E+01	1.6E-04	1.1E-05	8.9E-09	5.5E-01	3.6E-02		5.9E-01	
Cadmium	6.3E+00	8.0E-05	1.8E-07	4.3E-09	8.0E-02	7.1E-03	C 1E 00	8.7E-02	
Manganese	1.3E+03	1.6E-02	3.5E-05	8.7E-07	3.5E-01	1.9E-02	6.1E-02	4.3E-01	
Thallium	6.0E-01	7.7E-06	1.7E-08	4.2E-10	9.6E-02	2.1E-04		9.6E-02	
Inorganics Pathway Total	1.45.01	1.015.04	5 1E 05	0.715.00	4.7E+00	1.1E-01	6.7E-02	4.9E+00	
Benz(<i>a</i>)anthracene	1.4E+01	1.8E-04	5.1E-05	9.7E-09					
Benzo(<i>a</i>)pyrene	1.3E+01	1.7E-04	4.8E-05	9.0E-09					
Benzo(<i>b</i>)fluoranthene	1.5E+01	1.9E-04	5.5E-05	1.0E-08					
Dibenz(<i>a</i> , <i>h</i>)anthracene	1.2E+00	1.5E-05	4.2E-06	8.0E-10			l	l	

Table A-18. Load L	ine 1 Shallow Su	urface Soil Hazards	(continued)
--------------------	------------------	---------------------	-------------

		Daily	Intake (m	g/kg-d)	Ha	zard Quot	ient	Total HI	
CODC	EPC (mg/lvg)	Transform	Damasl	Tubolotion	T	Damas	Tubalation	Across all	COCa
COPC	(mg/kg)			Inhalation		Dermal	Inhalation		COC
Dieldrin	3.3E-02	4.3E-07	9.4E-08 3.2E-05	2.3E-11 6.0E-09	8.5E-03	1.9E-03		1.0E-02	
Indeno(1,2,3- <i>cd</i>)pyrene	8.7E+00	1.1E-04			2.75.00	9 5 E 01		2 (E) 00	п
PCB-1254 Organics Pathway Total	4.3E+00	5.5E-05	1.7E-05	3.0E-09	2.7E+00 2.8E+00	8.5E-01 8.5E-01		3.6E+00 3.6E+00	Н
Pathway Total – Chemicals					2.8E+00 7.5E+00	8.5E-01 9.6E-01	6.7E-02	3.6E+00 8.5E+00	
Pathway Total – Chemicals			CB_A/AA	and CA-6/6		9.0E-01	0./E-02	8.3E+00	<u> </u>
Aluminum	1.0E+04	1.3E-01	2.8E-04	7.0E-06	1.3E-01	2.8E-04	4.9E-03	1.3E-01	
Arsenic	1.1E+01	1.4E-04	9.2E-06	7.5E-09	4.6E-01	3.1E-02	1.52 05	4.9E-01	
Barium	1.4E+02	1.8E-03	3.9E-06	9.6E-08	2.5E-02	8.0E-04	6.7E-04	2.7E-02	
Cadmium	1.8E+00	2.3E-05	5.1E-08	1.3E-09	2.3E-02	2.0E-03	0.72 01	2.5E-02	
Chromium	2.5E+01	3.2E-04	7.0E-07	1.7E-08	2.1E-04	3.6E-05		2.5E-04	
Copper	1.1E+02	1.4E-03	3.0E-06	7.3E-08	3.4E-02	7.5E-05		3.4E-02	
Manganese	7.0E+02	9.0E-03	2.0E-05	4.8E-07	1.9E-01	1.1E-02	3.4E-02	2.4E-01	
Mercury	3.4E-01	4.4E-06	9.6E-09	2.4E-10	1.5E-02	4.6E-04		1.5E-02	
Thallium	5.4E-01	6.8E-06	1.5E-08	3.7E-10	8.6E-02	1.9E-04		8.6E-02	
Vanadium	1.9E+01	2.4E-04	5.4E-07	1.3E-08	3.5E-02	2.9E-03		3.8E-02	
Inorganics Pathway Total					1.0E+00	4.8E-02	4.0E-02	1.1E+00	
1,3-Dinitrobenzene	5.9E+00	7.5E-05	1.7E-05	4.1E-09	7.5E-01	1.7E-01		9.2E-01	
2,4,6-Trinitrotoluene	3.0E+02	3.8E-03	8.4E-04	2.1E-07	7.6E+00	1.7E+00		9.3E+00	Н
2,6-Dinitrotoluene	8.6E-01	1.1E-05	2.4E-06	6.0E-10	1.1E-02	2.4E-03		1.3E-02	
4,4'-DDE	1.2E+00	1.5E-05	3.4E-06	8.3E-10					
Benz(<i>a</i>)anthracene	6.4E-01	8.2E-06	2.3E-06	4.4E-10					
Benzo(<i>a</i>)pyrene	6.1E-01	7.8E-06	2.2E-06	4.2E-10					
Benzo(b)fluoranthene	6.6E-01	8.5E-06	2.4E-06	4.6E-10					
Dibenz(<i>a</i> , <i>h</i>)anthracene	9.6E-02	1.2E-06	3.5E-07	6.6E-11					
Dieldrin	9.8E-02	1.3E-06	2.8E-07	6.8E-11	2.5E-02	5.5E-03		3.1E-02	
Endrin Aldehyde	4.4E+00	5.6E-05	1.2E-05	3.0E-09	1.9E-01	4.1E-02		2.3E-01	
Heptachlor	7.2E-02	9.2E-07	2.0E-07	5.0E-11	1.8E-03	4.0E-04		2.2E-03	
PCB-1254	1.1E+03	1.4E-02	4.3E-03	7.6E-07	7.0E+02	2.2E+02		9.2E+02	Н
RDX	1.0E+02	1.3E-03	2.8E-04	6.9E-08	4.3E-01	9.4E-02		5.2E-01	
gamma-Chlordane	8.9E-01	1.1E-05	1.0E-06	6.1E-10	2.3E-02	2.0E-03	3.1E-06	2.5E-02	
Organics Pathway Total					7.1E+02	2.2E+02	3.1E-06	9.3E+02	
Pathway Total – Chemicals					7.1E+02	2.2E+02	4.0E-02	9.3E+02	
				CB-12, -23, -					
Antimony	2.3E+00	2.9E-05	6.3E-08	1.6E-09	7.2E-02	1.1E-03		7.3E-02	
Arsenic	1.2E+01	1.6E-04	1.0E-05	8.4E-09	5.2E-01	3.4E-02		5.5E-01	
Cadmium	3.3E+00	4.2E-05	9.2E-08	2.3E-09	4.2E-02	3.7E-03	4.07.00	4.6E-02	
Manganese	8.3E+02		2.3E-05		2.3E-01	1.3E-02	4.0E-02	2.8E-01	
Thallium	4.3E-01	5.5E-06	1.2E-08	3.0E-10	6.9E-02	1.5E-04	4.07.00	6.9E-02	
Inorganics Pathway Total	0.000.000	1.05.07	2.45.05	C 4E 11	9.3E-01	5.2E-02	4.0E-02	1.0E+00	
Benzo(<i>a</i>)pyrene	9.2E-02	1.2E-06	3.4E-07	6.4E-11					
Organics Pathway Total					0.20.01	5 OF 02	4.05.02	1.00.00	
Pathway Total – Chemicals			D		9.3E-01	5.2E-02	4.0E-02	1.0E+00	
A 1	1 45 04	1.0E.01		neter Area	1.0E.01	4 OF 04	C 9E 02	1.0E.01	
Aluminum	1.4E+04	1.8E-01	4.0E-04	9.7E-06	1.8E-01	4.0E-04	6.8E-03	1.9E-01	
Arsenic	1.3E+01	1.6E-04	1.1E-05	8.7E-09	5.3E-01	3.5E-02	6 95 02	5.7E-01 4.8E-01	
Manganese	1.4E+03	1.8E-02 8.2E-06	3.9E-05	9.7E-07	3.9E-01	2.1E-02 2.3E-04	6.8E-02	4.8E-01 1.0E-01	
Thallium Inorganics Pathway Total	6.4E-01	0.2E-00	1.8E-08	4.4E-10	1.0E-01		7 /E 02		
Pathway Total – Chemicals					1.2E+00 1.2E+00	5.7E-02 5.7E-02	7.4E-02 7.4E-02	1.3E+00 1.3E+00	
r aniway rotal – Chemicals	I	I	T#7	ter Tower	1.2E+00	J./E-02	7.4E-02	1.5E+00	L
Chromium	2.5E+02	3.2E-03	7.0E-06	1.7E-07	2.1E-03	3.6E-04		2.5E-03	
Thallium	6.4E-01	3.2E-03 8.2E-06	7.0E-06 1.8E-08	4.5E-10	2.1E-03 1.0E-01	3.6E-04 2.3E-04		2.5E-03 1.0E-01	
i lialliulli	0.4E-01	0.2E-00	1.0E-00	4.JE-10	1.0E-01	2.JE-04	I	1.0E-01	

Table A-18. Load Line 1 Shallow Surface Soil Hazards (continued)

		Daily Intake (mg/kg-d)			Hazard Quotient			Total HI	
	EPC							Across all	
COPC	(mg/kg)	Ingestion	Dermal	Inhalation	Ingestion	Dermal	Inhalation	Pathways	\mathbf{COC}^{a}
Inorganics Pathway Total					1.1E-01	5.9E-04		1.1E-01	
Pathway Total – Chemicals					1.1E-01	5.9E-04		1.1E-01	

^a Chemicals of potential concern (COPCs) are identified as chemicals of concern (COCs) if the total hazard index (HI) across all pathways

is > 1 (H).
DDE = Dichlorodiphenyldichloroethylene.
EPC = Exposure point concentration.
PCB = Polychlorinated biphenyl.

RDX = Hexahydro-1,3,5-trinitro-1,3,5-triazine.

		Daily	Intake (m	g/kg-d)		Risk		Total Risk	
	EPC							Across all	
COPC	(mg/kg)	Ingestion				Dermal	Inhalation	Pathways	COC ^a
				Trapper/Fis	her				
A1 .	1.20.04	2.05.05		13 and -10			1		T
Aluminum	1.3E+04	2.9E-05	2.6E-06	6.3E-09					-
Antimony	1.3E+00	2.8E-09	2.5E-10	6.1E-13	2.75.00	1.00.07	0.1E-11	1 45 07	
Arsenic	1.1E+01	2.5E-08	6.7E-08	5.4E-12	3.7E-08	1.0E-07	8.1E-11	1.4E-07	
Cadmium	6.2E+00 3.5E+01	1.4E-08 7.9E-08	1.2E-09	3.0E-12			1.9E-11	1.9E-11	
Chromium			7.1E-09 3.9E-08	1.7E-11					-
Copper	1.9E+02 1.3E+03	4.3E-07	2.6E-07	9.3E-11					-
Manganese Thallium		2.9E-06	2.6E-07 9.8E-11	6.3E-10					
	4.9E-01	1.1E-09	9.8E-11	2.4E-13	2.7E.09	1.05.07	1.0E 10	1 45 07	
Inorganics Pathway Total	2.50.01	5 (E 09	5 10 07	1 OF 11	3.7E-08	1.0E-07	1.0E-10	1.4E-07	
2,4,6-Trinitrotoluene	2.5E+01	5.6E-08	5.1E-07	1.2E-11 7.2E-13	1.7E-09	1.5E-08		1.7E-08	
2,4-Dinitrotoluene	1.5E+00	3.3E-09	3.0E-08		2.3E-09	2.0E-08	5 (E 12	2.3E-08	
Benzo(<i>a</i>)pyrene	3.7E-01	8.3E-10	9.7E-09	1.8E-13	6.0E-09	7.1E-08	5.6E-13	7.7E-08	
PCB-1254 RDX	1.7E+00 3.7E+00	3.8E-09 8.3E-09	4.8E-08 7.4E-08	8.2E-13 1.8E-12	7.6E-09 9.1E-10	9.6E-08 8.1E-09	1.6E-12	1.0E-07 9.1E-09	
	3.7E+00	8.3E-09	7.4E-08	1.8E-12			2.0E 12		-
Organics Pathway Total					1.9E-08	2.1E-07	2.2E-12	2.3E-07	-
Pathway Total – Chemicals			CD 14 C	D 17 1 C	5.6E-08	3.1E-07	1.0E-10	3.7E-07	
A1	2.05.04	4.50.05		B-17, and C A	4-15				т —
Aluminum	2.0E+04	4.5E-05	4.0E-06	9.6E-09	7.00.00	1.05.07	1 (E 10	2 7E 07	-
Arsenic	2.1E+01	4.8E-08	1.3E-07	1.0E-11	7.2E-08	1.9E-07	1.6E-10	2.7E-07	-
Barium	1.4E+02	3.0E-07	2.7E-08	6.5E-11			6 35 13	6 0E 10	
Cadmium	2.1E+00	4.6E-09	4.2E-10	1.0E-12			6.3E-12	6.3E-12	
Manganese	1.2E+03	2.6E-06	2.4E-07	5.7E-10					-
Nickel	3.2E+01	7.1E-08	6.4E-09	1.5E-11					-
Thallium	9.1E-01	2.0E-09	1.8E-10	4.4E-13					
Vanadium	3.5E+01	7.8E-08	7.0E-09	1.7E-11	5 3 5 00	1.05.05	1 (5 10	0.55.05	-
Inorganics Pathway Total	1.55.00	1 05 00	0.07.00		7.2E-08	1.9E-07	1.6E-10	2.7E-07	
2,4,6-Trinitrotoluene	4.5E+00	1.0E-08	9.0E-08	2.2E-12	3.0E-10	2.7E-09	0.45.44	3.0E-09	
Benz(<i>a</i>)anthracene	6.4E-01	1.4E-09	1.7E-08	3.1E-13	1.0E-09	1.2E-08	9.6E-14	1.3E-08	
Benzo(<i>a</i>)pyrene	8.2E-01	1.8E-09	2.1E-08	4.0E-13	1.3E-08	1.6E-07	1.2E-12	1.7E-07	
Benzo(<i>b</i>)fluoranthene	1.1E+00	2.5E-09	2.9E-08	5.3E-13	1.8E-09	2.1E-08	1.7E-13	2.3E-08	
Dibenz(<i>a</i> , <i>h</i>)anthracene	1.8E-01	4.0E-10	4.7E-09	8.7E-14	2.9E-09	3.4E-08	2.7E-13	3.7E-08	
Indeno(1,2,3- <i>cd</i>)pyrene	6.4E-01	1.4E-09	1.7E-08	3.1E-13	1.0E-09	1.2E-08	9.6E-14	1.3E-08	
PCB-1254	4.7E+00	1.1E-08	1.3E-07	2.3E-12	2.1E-08	2.6E-07	4.6E-12	2.9E-07	
RDX	2.9E+01	6.4E-08	5.7E-07	1.4E-11	7.0E-09	6.3E-08		7.0E-08	
Organics Pathway Total					4.9E-08	5.7E-07	6.4E-12	6.1E-07	
Pathway Total – Chemicals					1.2E-07	7.6E-07	1.7E-10	8.8E-07	<u> </u>
	1.00			3 and -801	1	1			Т
Aluminum	1.2E+04	2.7E-05	2.4E-06	5.8E-09					
Antimony	1.1E+02	2.5E-07	2.2E-08	5.3E-11	4.05.00	1.05.05	0.45.44	1 (5) -	
Arsenic	1.3E+01	2.9E-08	7.8E-08	6.2E-12	4.3E-08	1.2E-07	9.4E-11	1.6E-07	
Cadmium	6.3E+00	1.4E-08	1.3E-09	3.0E-12			1.9E-11	1.9E-11	
Manganese	1.3E+03	2.8E-06	2.5E-07	6.1E-10					
Thallium	6.0E-01	1.3E-09	1.2E-10	2.9E-13	4.20.00	1.00.07	1 10 10	1 (E 07	
Inorganics Pathway Total	1.40.01	0.15.00	2 75 05	C 0E 10	4.3E-08	1.2E-07	1.1E-10	1.6E-07	
Benz(<i>a</i>)anthracene	1.4E+01	3.1E-08	3.7E-07	6.8E-12	2.3E-08	2.7E-07	2.1E-12	2.9E-07	
Benzo(<i>a</i>)pyrene	1.3E+01	2.9E-08	3.4E-07	6.3E-12	2.1E-07	2.5E-06	2.0E-11	2.7E-06	R
Benzo(b)fluoranthene	1.5E+01	3.4E-08	3.9E-07	7.3E-12	2.4E-08	2.9E-07	2.3E-12	3.1E-07	
Dibenz(<i>a</i> , <i>h</i>)anthracene	1.2E+00	2.6E-09	3.0E-08	5.6E-13	1.9E-08	2.2E-07	1.7E-12	2.4E-07	───
Dieldrin	3.3E-02	7.5E-11	6.7E-10	1.6E-14	1.2E-09	1.1E-08	2.6E-13	1.2E-08	ļ!
Indeno(1,2,3-cd)pyrene	8.7E+00	1.9E-08	2.3E-07	4.2E-12	1.4E-08	1.7E-07	1.3E-12	1.8E-07	

Table A-19. Load Line 1 Shallow Surface Soil Risks

PCB-1254 4.3E+ Organics Pathway Total 4.3E+ Pathway Total – Chemicals 4.3E+ Aluminum 1.0E+ Arsenic 1.1E+	g) Ingestion 00 9.6E-09 00 9.6E-09 01 2.3E-05 01 2.4E-08	1.2E-07	Inhalation 2.1E-12	1.9E-08	Dermal 2.4E-07	Inhalation	Across all Pathways	COC ^a
PCB-1254 4.3E+ Organics Pathway Total Pathway Total Pathway Total – Chemicals	0 9.6E-09 4 2.3E-05 11 2.4E-08	1.2E-07		1.9E-08			Pathways	COC^{u}
Organics Pathway Total Pathway Total – Chemicals Aluminum 1.0E+ Arsenic 1.1E+	04 2.3E-05 01 2.4E-08	CB-4/4/	2.1E-12		2 4 E 07			
Pathway Total – Chemicals Aluminum 1.0E+ Arsenic 1.1E+	01 2.4E-08					4.2E-12	2.6E-07	
Aluminum 1.0E+ Arsenic 1.1E+	01 2.4E-08			3.1E-07	3.7E-06	3.1E-11	4.0E-06	
Arsenic 1.1E+	01 2.4E-08			3.6E-07	3.8E-06	1.4E-10	4.1E-06	
Arsenic 1.1E+	01 2.4E-08	A 01 0 4	A and CA-6/	6A	1			
		2.0E-06		0.75.00	0.017.00	5 05 11	1 45 05	
		6.6E-08	5.3E-12	3.7E-08	9.8E-08	7.9E-11	1.4E-07	
Barium 1.4E+		2.8E-08	6.7E-11			5 5E 10	5 5E 10	
Cadmium 1.8E+		3.6E-10	8.8E-13			5.5E-12	5.5E-12	
Chromium 2.5E+		5.0E-09	1.2E-11					
Copper 1.1E+		2.1E-08	5.1E-11					
Manganese 7.0E+		1.4E-07	3.4E-10					
Mercury 3.4E-		6.9E-11	1.7E-13					
Thallium 5.4E-		1.1E-10	2.6E-13					
Vanadium 1.9E+	01 4.3E-08	3.8E-09	9.2E-12	2.75.00	0.05.00	0.55 11	1 45 07	
Inorganics Pathway Total 1,3-Dinitrobenzene 5.9E+	0 1 2E 09	1.00.07	2.9E-12	3.7E-08	9.8E-08	8.5E-11	1.4E-07	
		1.2E-07		2.05.09	1.95.07		2 OF 07	
2,4,6-Trinitrotoluene 3.0E+		6.0E-06	1.4E-10	2.0E-08	1.8E-07		2.0E-07	
2,6-Dinitrotoluene 8.6E-		1.7E-08	4.2E-13	1.3E-09	1.2E-08		1.3E-08	
4,4'-DDE $1.2E+$ Benz(a)anthracene $6.4E-$		2.4E-08	5.8E-13	9.1E-10	8.1E-09 1.2E-08	0 (E 14	9.1E-09	
		1.7E-08	3.1E-13	1.0E-09		9.6E-14	1.3E-08	
Benzo(a)pyrene6.1E-Benzo(b)fluoranthene6.6E-		1.6E-08	3.0E-13	9.9E-09	1.2E-07	9.1E-13 9.9E-14	1.3E-07	
Benzo(b)fluoranthene6.6E-Dibenz(a,h)anthracene9.6E-		1.7E-08 2.5E-09	3.2E-13 4.6E-14	1.1E-09	1.3E-08 1.8E-08	9.9E-14 1.4E-13	1.4E-08 2.0E-08	
		2.3E-09 2.0E-09	4.6E-14 4.8E-14	1.6E-09		7.7E-13		┟────┦
Dieldrin9.8E-Endrin Aldehyde4.4E+		8.8E-08	2.1E-12	3.5E-09	3.2E-08	7.7E-15	3.5E-08	┨────┦
Heptachlor 7.2E-		1.4E-09	3.5E-14	7.2E-10	6.5E-09	1.6E-13	7.2E-09	┨────┦
PCB-1254 1.1E+		3.1E-05	5.3E-14	4.9E-06	6.2E-05	1.0E-13 1.1E-09	6.7E-05	R
RDX 1.0E+		2.0E-06	4.9E-11	2.5E-08	0.2E-03 2.2E-07	1.112-07	2.5E-07	K
gamma-Chlordane 8.9E-		7.1E-09	4.3E-13	7.0E-10	2.2E-07 2.5E-09	1.5E-13	3.2E-07	
Organics Pathway Total	1 2.01-07	7.1L-07	4.5E-15	5.0E-06	6.2E-05	1.3E-13	6.7E-05	├ ──┤
Pathway Total – Chemicals				5.0E-06	6.3E-05	1.1E-09 1.2E-09	6.8E-05	├ ──┤
	Chan	Houses	(CB-12, -23,			1.2L-07	0.0L-05	L
Antimony 2.3E+		4.5E-10	1.1E-12	-0, unu -22,	,			1
Arsenic 1.2E+		7.3E-08	5.9E-12	4.1E-08	1.1E-07	8.9E-11	1.5E-07	
Cadmium 3.3E+		6.6E-10	1.6E-12	4.112 00	1.112 07	1.0E-11	1.0E-11	
Manganese 8.3E+		1.7E-07	4.0E-10			1.02 11	1.02 11	
Thallium 4.3E-		8.7E-11	2.1E-13					
Inorganics Pathway Total	1 9.72 10	0.712 11	2.112 15	4 1E-08	1.1E-07	9.9E-11	1.5E-07	
Benzo(<i>a</i>)pyrene 9.2E-	2 2.1E-10	2.4E-09	4.5E-14	1.5E-09	1.8E-08	1.4E-13	1.9E-08	
Organics Pathway Total	2 2.12 10	2.412 07	4.52 14	1.5E-09	1.8E-08	1.4E-13	1.9E-08	
Pathway Total – Chemicals				4.2E-08	1.3E-07	9.9E-11	1.7E-07	
		Peri	imeter Area		1102 07	<i>702</i> 11	1112 01	<u> </u>
Aluminum 1.4E+	4 3.1E-05	2.8E-06	6.8E-09					<mark>────</mark>
Arsenic 1.3E+		7.5E-08	6.1E-12	4.2E-08	1.1E-07	9.1E-11	1.6E-07	<u>├</u> ──┤
Manganese 1.4E+		2.8E-07	6.8E-10					<u>├</u> ──┤
Thallium 6.4E-		1.3E-10	3.1E-13					
Inorganics Pathway Total				4.2E-08	1.1E-07	9.1E-11	1.6E-07	
Pathway Total – Chemicals		1		4.2E-08	1.1E-07	9.1E-11	1.6E-07	
		Wa	ter Tower					
Chromium 2.5E+	02 5.6E-07	5.0E-08	1.2E-10					
Thallium 6.4E-		1.3E-10	3.1E-13					
Inorganics Pathway Total			-					
Pathway Total – Chemicals		1						

		Daily	Intake (m	g/kg-d)		Risk	•	Total Risk	
CODC	EPC	Transform	Damasl	Tubalation	Transform	Damasl	Tubalation	Across all	COCa
СОРС	(mg/kg)	0		Inhalation	0	Dermal	Inhalation	Pathways	COC ^a
		Secur		Maintenan	ce worker				
Aluminum	1.3E+04	1.9E-04	1.0E-04	4.1E-08					
Antimony	1.3E+00	1.8E-08	1.0E-08	4.0E-12					
Arsenic	1.1E+01	1.6E-07	2.7E-06	3.5E-11	2.4E-07	4.0E-06	5.3E-10	4.3E-06	R
Cadmium	6.2E+00	9.0E-08	5.0E-08	2.0E-11			1.2E-10	1.2E-10	
Chromium	3.5E+01	5.1E-07	2.8E-07	1.1E-10					
Copper	1.9E+02	2.8E-06	1.5E-06	6.1E-10					
Manganese	1.3E+03	1.9E-05	1.0E-05	4.1E-09					
Thallium	4.9E-01	7.1E-09	3.9E-09	1.5E-12					
Inorganics Pathway Total					2.4E-07	4.0E-06	6.5E-10	4.3E-06	
2,4,6-Trinitrotoluene	2.5E+01	3.7E-07	2.0E-05	8.0E-11	1.1E-08	6.1E-07		6.2E-07	
2,4-Dinitrotoluene	1.5E+00	2.2E-08	1.2E-06	4.7E-12	1.5E-08	8.2E-07		8.3E-07	
Benzo(<i>a</i>)pyrene	3.7E-01	5.4E-09	3.9E-07	1.2E-12	3.9E-08	2.8E-06	3.6E-12	2.9E-06	R
PCB-1254	1.7E+00	2.5E-08	1.9E-06	5.4E-12	5.0E-08	3.8E-06	1.1E-11	3.9E-06	R
RDX	3.7E+00	5.4E-08	3.0E-06	1.2E-11	5.9E-09	3.3E-07		3.3E-07	
Organics Pathway Total					1.2E-07	8.4E-06	1.4E-11	8.6E-06	
Pathway Total – Chemicals					3.6E-07	1.2E-05	6.6E-10	1.3E-05	
				B-17, and C A	4-15				
Aluminum	2.0E+04	2.9E-04	1.6E-04	6.3E-08					
Arsenic	2.1E+01	3.1E-07	5.2E-06	6.8E-11	4.7E-07	7.8E-06	1.0E-09	8.2E-06	R
Barium	1.4E+02	2.0E-06	1.1E-06	4.3E-10					
Cadmium	2.1E+00	3.0E-08	1.7E-08	6.5E-12			4.1E-11	4.1E-11	
Manganese	1.2E+03	1.7E-05	9.5E-06	3.7E-09					
Nickel	3.2E+01	4.6E-07	2.6E-07	1.0E-10					
Thallium	9.1E-01	1.3E-08 5.1E-07	7.4E-09	2.9E-12					
Vanadium Inorganics Pathway Total	3.5E+01	5.1E-07	2.8E-07	1.1E-10	47E07	7.8E-06	1.1E-09	8.2E-06	
2,4,6-Trinitrotoluene	4.5E+00	6.6E-08	3.6E-06	1.4E-11	4.7E-07 2.0E-09	1.1E-07	1.1E-09	8.2E-06 1.1E-07	
Benz(<i>a</i>)anthracene	4.3E+00 6.4E-01	9.3E-08	6.7E-07	2.0E-12	6.8E-09	4.9E-07	6.3E-13	5.0E-07	
Benzo(<i>a</i>)pyrene	8.2E-01	1.2E-08	8.6E-07	2.6E-12 2.6E-12	8.7E-09	6.3E-06	8.0E-12	6.4E-06	R
Benzo(<i>b</i>)fluoranthene	1.1E+00	1.6E-08	1.2E-06	3.5E-12	1.2E-08	8.4E-07	1.1E-12	8.5E-07	K
Dibenz(a,h)anthracene	1.8E-01	2.6E-09	1.9E-07	5.7E-12	1.9E-08	1.4E-06	1.8E-12	1.4E-06	R
Indeno(1,2,3-cd)pyrene	6.4E-01	9.3E-09	6.7E-07	2.0E-12	6.8E-09	4.9E-07	6.3E-13	5.0E-07	ĸ
PCB-1254	4.7E+00	6.8E-08	5.3E-06	1.5E-11	1.4E-07	1.1E-05	3.0E-11	1.1E-05	R
RDX	2.9E+01	4.2E-07	2.3E-05	9.0E-11	4.6E-08	2.5E-06	5.01 11	2.6E-06	R
Organics Pathway Total	202.01		2.02.00	2102 11	3.2E-07	2.3E-05	4.2E-11	2.3E-05	
Pathway Total – Chemicals					7.8E-07	3.1E-05		3.1E-05	
			CB	3 and -801					
Aluminum	1.2E+04	1.8E-04	9.7E-05	3.8E-08					
Antimony	1.1E+02	1.6E-06	8.9E-07	3.5E-10					
Arsenic	1.3E+01	1.9E-07	3.1E-06	4.1E-11	2.8E-07	4.7E-06	6.1E-10	5.0E-06	R
Cadmium	6.3E+00	9.1E-08	5.1E-08	2.0E-11			1.2E-10	1.2E-10	
Manganese	1.3E+03	1.8E-05	1.0E-05	4.0E-09					
Thallium	6.0E-01	8.7E-09	4.9E-09	1.9E-12					
Inorganics Pathway Total					2.8E-07	4.7E-06	7.4E-10	5.0E-06	
Benz(<i>a</i>)anthracene	1.4E+01	2.0E-07	1.5E-05	4.4E-11	1.5E-07	1.1E-05	1.4E-11	1.1E-05	R
Benzo(a)pyrene	1.3E+01	1.9E-07	1.4E-05	4.1E-11	1.4E-06	1.0E-04	1.3E-10	1.0E-04	R
Benzo(b)fluoranthene	1.5E+01	2.2E-07	1.6E-05	4.7E-11	1.6E-07	1.1E-05	1.5E-11	1.2E-05	R
Dibenz(<i>a</i> , <i>h</i>)anthracene	1.2E+00	1.7E-08	1.2E-06	3.6E-12	1.2E-07	8.8E-06	1.1E-11	8.9E-06	R
Dieldrin	3.3E-02	4.9E-10	2.7E-08	1.1E-13	7.8E-09	4.3E-07	1.7E-12	4.4E-07	
Indeno(1,2,3-cd)pyrene	8.7E+00	1.3E-07	9.1E-06	2.7E-11	9.2E-08	6.7E-06	8.5E-12	6.8E-06	R
PCB-1254	4.3E+00	6.3E-08	4.9E-06	1.4E-11	1.3E-07	9.7E-06	2.7E-11	9.8E-06	R
Organics Pathway Total				ļ	2.0E-06	1.5E-04	2.0E-10	1.5E-04	

		Daily	Intake (m	g/kg-d)		Risk		Total Risk	
	EPC							Across all	
COPC	(mg/kg)	Ingestion	Dermal	Inhalation		Dermal	Inhalation	Pathways	COC ^a
Pathway Total – Chemicals					2.3E-06	1.5E-04	9.4E-10	1.5E-04	
				A and CA-6/	6A	1			
Aluminum	1.0E+04	1.5E-04	8.2E-05	3.2E-08					
Arsenic	1.1E+01	1.6E-07	2.6E-06	3.4E-11	2.4E-07	4.0E-06	5.2E-10	4.2E-06	R
Barium	1.4E+02	2.0E-06	1.1E-06	4.4E-10					
Cadmium	1.8E+00	2.6E-08	1.5E-08	5.7E-12			3.6E-11	3.6E-11	
Chromium	2.5E+01	3.6E-07	2.0E-07	7.8E-11					
Copper	1.1E+02	1.5E-06	8.6E-07	3.3E-10					
Manganese	7.0E+02	1.0E-05	5.7E-06	2.2E-09					
Mercury	3.4E-01	5.0E-09	2.8E-09	1.1E-12					
Thallium	5.4E-01	7.8E-09	4.3E-09	1.7E-12					
Vanadium	1.9E+01	2.8E-07	1.5E-07	6.0E-11					
Inorganics Pathway Total					2.4E-07	4.0E-06	5.5E-10	4.2E-06	
1,3-Dinitrobenzene	5.9E+00	8.6E-08	4.8E-06	1.9E-11					
2,4,6-Trinitrotoluene	3.0E+02	4.3E-06	2.4E-04	9.4E-10	1.3E-07	7.2E-06		7.3E-06	R
2,6-Dinitrotoluene	8.6E-01	1.3E-08	6.9E-07	2.7E-12	8.5E-09	4.7E-07		4.8E-07	
4,4'-DDE	1.2E+00	1.7E-08	9.6E-07	3.8E-12	5.9E-09	3.3E-07		3.3E-07	
Benz(<i>a</i>)anthracene	6.4E-01	9.3E-09	6.7E-07	2.0E-12	6.8E-09	4.9E-07	6.3E-13	5.0E-07	
Benzo(<i>a</i>)pyrene	6.1E-01	8.9E-09	6.4E-07	1.9E-12	6.5E-08	4.7E-06	6.0E-12	4.7E-06	R
Benzo(<i>b</i>)fluoranthene	6.6E-01	9.6E-09	6.9E-07	2.1E-12	7.0E-09	5.1E-07	6.5E-13	5.1E-07	
Dibenz (a,h) anthracene	9.6E-02	1.4E-09	1.0E-07	3.0E-13	1.0E-08	7.4E-07	9.4E-13	7.5E-07	
Dieldrin	9.8E-02	1.4E-09	7.9E-08	3.1E-13	2.3E-08	1.3E-06	5.0E-12	1.3E-06	R
Endrin Aldehyde	4.4E+00	6.4E-08	3.6E-06	1.4E-11	2.02.00	1102 00	0102 12	1102 00	
Heptachlor	7.2E-02	1.0E-09	5.8E-08	2.3E-13	4.7E-09	2.6E-07	1.0E-12	2.7E-07	
PCB-1254	1.1E+03	1.6E-05	1.2E-03	3.5E-09	3.2E-05	2.5E-03	6.9E-09	2.5E-03	R
RDX	1.0E+02	1.5E-06	8.1E-05	3.2E-10	1.6E-07	8.9E-06	0.71 07	9.1E-06	R
gamma-Chlordane	8.9E-01	1.3E-08	2.9E-07	2.8E-12	4.5E-09	1.0E-07	9.8E-13	1.0E-07	
Organics Pathway Total	0.71 01	1.51 00	2.711 07	2.01 12	3.2E-05	2.5E-03	7.0E-09	2.5E-03	
Pathway Total – Chemicals					3.3E-05	2.5E-03	7.5E-09	2.5E-03	
Tatiway Total Chemicals		Chang	e Houses	(CB-12, -23,			7.51 07	2.51 05	
Antimony	2.3E+00	3.3E-08	1.8E-08	7.1E-12	0, <i>unu 22</i>)	/			
Arsenic	1.2E+01	1.8E-07	2.9E-06	3.8E-11	2.7E-07	4.4E-06	5.8E-10	4.7E-06	R
Cadmium	3.3E+00	4.8E-08	2.7E-08	1.0E-11	2.712 07		6.5E-11	6.5E-11	ĸ
Manganese	8.3E+02	1.2E-05	6.7E-06	2.6E-09			0.51-11	0.51-11	
Thallium	4.3E-01	6.3E-09	3.5E-09	1.4E-12					
Inorganics Pathway Total	4.3L-01	0.512-07	5.5L-07	1.4L-12	2.7E-07	4.4E-06	6.4E-10	4.7E-06	
Benzo(<i>a</i>)pyrene	9.2E-02	1.3E-09	9.7E-08	2.9E-13	9.8E-09	7.0E-07	9.0E-13	4.7E-00 7.1E-07	
Organics Pathway Total	9.2L-02	1.5E-09	9.7L-00	2.9E-13	9.8E-09	7.0E-07		7.1E-07 7.1E-07	
Pathway Total – Chemicals					2.8E-07	5.1E-06	6.4E-10	5.4E-06	
Fattiway Total – Chemicals			Dow	matan Anag	2.6E-07	J.IE-00	0.4E-10	J.4E-00	
A 1,0000000	1.4E + 0.4	2 OF 04		<i>meter Area</i>			[1
Aluminum Arsenic	1.4E+04	2.0E-04	1.1E-04	4.4E-08	2.70.07	160.00	5 OF 10	1 95 07	P
	1.3E+01	1.8E-07	3.0E-06	4.0E-11	2.7E-07	4.6E-06	5.9E-10	4.8E-06	R
Manganese	1.4E+03	2.0E-05	1.1E-05	4.4E-09					├───┤
Thallium	6.4E-01	9.3E-09	5.2E-09	2.0E-12	0.70.07	4 (5.02	5 OF 10		├───┤
Inorganics Pathway Total					2.7E-07	4.6E-06	5.9E-10	4.8E-06	├───┤
Pathway Total – Chemicals			L		2.7E-07	4.6E-06	5.9E-10	4.8E-06	
	0.50.00	2 (E 0)		ter Tower			[
Chromium	2.5E+02	3.6E-06	2.0E-06	7.9E-10					
Thallium	6.4E-01	9.4E-09	5.2E-09	2.0E-12					<u> </u>
Inorganics Pathway Total									
Pathway Total – Chemicals					ļ	<u> </u>			

		Daily	Intake (m	g/kg-d)		Risk	•	Total Risk	
CODC	EPC	T /•	D 1		.	D 1		Across all	COCª
COPC	(mg/kg)	Ingestion				Dermal	Inhalation	Pathways	COC
				re Suppressi	on				
Aluminum	1.3E+04	4.5E-05	2.7E-06	13 and -10 2.2E-08					
Antimony	1.3E+04 1.3E+00	4.3E-03 4.4E-09	2.7E-00 2.6E-10	2.2E-08 2.1E-12					-
Arsenic	1.3E+00 1.1E+01	3.9E-08	6.9E-08	1.9E-11	5.8E-08	1.0E-07	2.8E-10	1.6E-07	
Cadmium	6.2E+00	2.2E-08	1.3E-09	1.0E-11	J.6E-06	1.0L-07	6.6E-11	6.6E-11	
Chromium	3.5E+01	1.2E-07	7.3E-09	5.9E-11			0.01 11	0.01 11	
Copper	1.9E+02	6.7E-07	4.0E-08	3.2E-10					
Manganese	1.3E+02	4.5E-06	2.7E-07	2.2E-09					
Thallium	4.9E-01	1.7E-09	1.0E-10	8.2E-13					
Inorganics Pathway Total					5.8E-08	1.0E-07	3.5E-10	1.6E-07	
2,4,6-Trinitrotoluene	2.5E+01	8.8E-08	5.2E-07	4.2E-11	2.6E-09	1.6E-08		1.8E-08	
2,4-Dinitrotoluene	1.5E+00	5.2E-09	3.1E-08	2.5E-12	3.5E-09	2.1E-08		2.5E-08	
Benzo(<i>a</i>)pyrene	3.7E-01	1.3E-09	1.0E-08	6.2E-13	9.4E-09	7.3E-08	1.9E-12	8.2E-08	
PCB-1254	1.7E+00	5.9E-09	4.9E-08	2.9E-12	1.2E-08	9.9E-08	5.7E-12	1.1E-07	
RDX	3.7E+00	1.3E-08	7.7E-08	6.2E-12	1.4E-09	8.4E-09		9.8E-09	
Organics Pathway Total					2.9E-08	2.2E-07	7.6E-12	2.5E-07	
Pathway Total – Chemicals					8.7E-08	3.2E-07	3.5E-10	4.1E-07	
				B-17, and CA	A-15				
Aluminum	2.0E+04	7.0E-05	4.1E-06	3.3E-08					
Arsenic	2.1E+01	7.5E-08	1.3E-07	3.6E-11	1.1E-07	2.0E-07	5.4E-10	3.1E-07	
Barium	1.4E+02	4.7E-07	2.8E-08	2.3E-10					
Cadmium	2.1E+00	7.2E-09	4.3E-10	3.5E-12			2.2E-11	2.2E-11	
Manganese	1.2E+03	4.1E-06	2.4E-07	2.0E-09					
Nickel	3.2E+01	1.1E-07	6.6E-09	5.3E-11					
Thallium	9.1E-01	3.2E-09	1.9E-10	1.5E-12					
Vanadium	3.5E+01	1.2E-07	7.3E-09	5.9E-11					
Inorganics Pathway Total	4.55.00	1 (15 00	0.05.00	5 (5 10	1.1E-07	2.0E-07	5.6E-10	3.1E-07	
2,4,6-Trinitrotoluene	4.5E+00	1.6E-08	9.3E-08	7.6E-12	4.7E-10	2.8E-09	2 OF 12	3.3E-09	-
Benz(<i>a</i>)anthracene	6.4E-01	2.2E-09	1.7E-08	1.1E-12	1.6E-09	1.3E-08	3.3E-13	1.4E-08	
Benzo(<i>a</i>)pyrene Benzo(<i>b</i>)fluoranthene	8.2E-01 1.1E+00	2.9E-09 3.8E-09	2.2E-08 3.0E-08	1.4E-12 1.8E-12	2.1E-08 2.8E-09	1.6E-07 2.2E-08	4.3E-12 5.7E-13	1.8E-07 2.4E-08	
Dibenz (a,h) anthracene	1.1E+00 1.8E-01	6.3E-10	4.9E-09	3.0E-12		2.2E-08 3.5E-08	9.4E-13	2.4E-08 4.0E-08	
Indeno(1,2,3- <i>cd</i>)pyrene	6.4E-01	0.3E-10 2.2E-09	4.9E-09 1.7E-08	1.1E-12	4.6E-09 1.6E-09	1.3E-08	9.4E-13 3.3E-13	4.0E-08	
PCB-1254	4.7E+00	2.2E-09 1.6E-08	1.7E-08 1.4E-07	7.9E-12	3.3E-08	2.7E-07	1.6E-11	3.1E-07	-
RDX	4.7E+00 2.9E+01	1.0E-08 1.0E-07	1.4E-07 5.9E-07	4.8E-11	1.1E-08	6.5E-08	1.0E-11	7.6E-08	-
Organics Pathway Total	2.76+01	1.0L-07	J.JL-07	4.01-11	7.6E-08	5.9E-07	2.2E-11	6.6E-07	
Pathway Total – Chemicals		-				7.9E-07		9.7E-07	
Tatiway Total – Chemicals			CR.	-3 and -801	1.72-07	7.7L-07	J.JL-10)./L-0/	
Aluminum	1.2E+04	4.2E-05	2.5E-06	2.0E-08					
Antimony	1.1E+02	3.8E-07	2.3E-00	1.8E-10					
Arsenic	1.3E+01	4.5E-08	8.0E-08	2.2E-11	6.8E-08	1.2E-07	3.3E-10	1.9E-07	
Cadmium	6.3E+00	2.2E-08	1.3E-09	1.1E-11			6.6E-11	6.6E-11	
Manganese	1.3E+03	4.4E-06	2.6E-07	2.1E-09					
Thallium	6.0E-01	2.1E-09	1.2E-10	1.0E-12					
Inorganics Pathway Total					6.8E-08	1.2E-07	3.9E-10	1.9E-07	
Benz(<i>a</i>)anthracene	1.4E+01	4.9E-08	3.8E-07	2.4E-11	3.6E-08	2.8E-07	7.3E-12	3.1E-07	
Benzo(<i>a</i>)pyrene	1.3E+01	4.5E-08	3.5E-07	2.2E-11	3.3E-07	2.6E-06	6.8E-11	2.9E-06	R
Benzo(b)fluoranthene	1.5E+01	5.2E-08	4.0E-07	2.5E-11	3.8E-08	3.0E-07	7.8E-12	3.3E-07	
Dibenz(a,h)anthracene	1.2E+00	4.0E-09	3.1E-08	1.9E-12	2.9E-08	2.3E-07	6.0E-12	2.6E-07	
Dieldrin	3.3E-02	1.2E-10	6.9E-10	5.6E-14	1.9E-09	1.1E-08	9.0E-13	1.3E-08	
Indeno(1,2,3-cd)pyrene	8.7E+00	3.0E-08	2.3E-07	1.5E-11	2.2E-08	1.7E-07	4.5E-12	1.9E-07	
PCB-1254	4.3E+00	1.5E-08	1.2E-07	7.2E-12	3.0E-08	2.5E-07	1.4E-11	2.8E-07	
Organics Pathway Total					4.9E-07	3.8E-06	1.1E-10	4.3E-06	

		Daily	Intake (m	g/kg-d)		Risk		Total Risk			
CODC	EPC							Across all			
COPC	(mg/kg)	Ingestion	Dermal	Inhalation			Inhalation	Pathways	COC ^a		
Pathway Total – Chemicals			~~		5.6E-07	3.9E-06	5.0E-10	4.5E-06			
	1.05.04	2 55 05		A and CA-6/	6A						
Aluminum	1.0E+04	3.5E-05	2.1E-06	1.7E-08	5 7E 00	1.05.07	2 0E 10	1 (5 07			
Arsenic	1.1E+01	3.8E-08	6.8E-08	1.8E-11	5.7E-08	1.0E-07	2.8E-10	1.6E-07			
Barium	1.4E+02	4.9E-07	2.9E-08	2.3E-10			1.05.11	1 05 11			
Cadmium	1.8E+00	6.3E-09	3.8E-10	3.0E-12			1.9E-11	1.9E-11			
Chromium	2.5E+01 1.1E+02	8.7E-08 3.7E-07	5.2E-09 2.2E-08	4.2E-11 1.8E-10							
Copper Manganese											
Manganese	7.0E+02 3.4E-01	2.4E-06 1.2E-09	1.5E-07 7.1E-11	1.2E-09 5.7E-13							
Thallium	5.4E-01	1.2E-09 1.9E-09	1.1E-11	9.0E-13							
Vanadium	1.9E+01	6.7E-09	4.0E-09	3.2E-11							
Inorganics Pathway Total	1.96+01	0.7E-08	4.0L-09	3.2L-11	5.7E-08	1.0E-07	2.9E-10	1.6E-07			
1,3-Dinitrobenzene	5.9E+00	2.1E-08	1.2E-07	9.9E-12	J./L-00	1.0L-07	2.712-10	1.02-07			
2,4,6-Trinitrotoluene	3.0E+02	1.0E-06	6.2E-06	5.0E-10	3.1E-08	1.9E-07		2.2E-07			
2,4,0-Timutotoluene	8.6E-01	3.0E-09	1.8E-08	1.4E-12	2.0E-09	1.2E-07		1.4E-08			
4,4'-DDE	1.2E+00	4.2E-09	2.5E-08	2.0E-12	1.4E-09	8.4E-09		9.8E-09	†		
Benz(<i>a</i>)anthracene	6.4E-01	2.2E-09	1.7E-08	1.1E-12	1.6E-09	1.3E-08	3.3E-13	1.4E-08			
Benzo(<i>a</i>)pyrene	6.1E-01	2.1E-09	1.6E-08	1.0E-12	1.6E-08	1.2E-07	3.2E-12	1.4E-07			
Benzo(<i>b</i>)fluoranthene	6.6E-01	2.3E-09	1.8E-08	1.1E-12	1.7E-09	1.3E-08	3.4E-13	1.5E-08			
Dibenz(a,h)anthracene	9.6E-02	3.4E-10	2.6E-09	1.6E-13	2.4E-09	1.9E-08	5.0E-13	2.1E-08			
Dieldrin	9.8E-02	3.4E-10	2.0E-09	1.7E-13	5.5E-09	3.3E-08	2.7E-12	3.8E-08			
Endrin Aldehyde	4.4E+00	1.5E-08	9.1E-08	7.4E-12							
Heptachlor	7.2E-02	2.5E-10	1.5E-09	1.2E-13	1.1E-09	6.7E-09	5.5E-13	7.8E-09			
PCB-1254	1.1E+03	3.8E-06	3.2E-05	1.8E-09	7.7E-06	6.4E-05	3.7E-09	7.2E-05	R		
RDX	1.0E+02	3.5E-07	2.1E-06	1.7E-10	3.9E-08	2.3E-07		2.7E-07			
gamma-Chlordane	8.9E-01	3.1E-09	7.4E-09	1.5E-12	1.1E-09	2.6E-09	5.2E-13	3.7E-09			
Organics Pathway Total					7.8E-06	6.5E-05	3.7E-09	7.2E-05			
Pathway Total – Chemicals					7.8E-06	6.5E-05	4.0E-09	7.3E-05			
		Change	e Houses (<i>(CB-12, -23,</i>	-8, and -22))					
Antimony	2.3E+00	7.9E-09	4.7E-10	3.8E-12							
Arsenic	1.2E+01	4.2E-08	7.6E-08	2.0E-11	6.4E-08	1.1E-07	3.1E-10	1.8E-07			
Cadmium	3.3E+00	1.1E-08	6.8E-10	5.5E-12			3.5E-11	3.5E-11			
Manganese	8.3E+02	2.9E-06	1.7E-07	1.4E-09							
Thallium	4.3E-01	1.5E-09	9.0E-11	7.3E-13							
Inorganics Pathway Total					6.4E-08	1.1E-07	3.4E-10	1.8E-07			
Benzo(<i>a</i>)pyrene	9.2E-02	3.2E-10	2.5E-09	1.5E-13	2.3E-09	1.8E-08	4.8E-13	2.0E-08			
Organics Pathway Total					2.3E-09			2.0E-08			
Pathway Total – Chemicals					6.6E-08	1.3E-07	3.4E-10	2.0E-07			
	1 45 0 1	4.05.05		meter Area		1					
Aluminum	1.4E+04		2.9E-06	2.4E-08	6 (E 00	1.05.05	2.05.10	1.05.05	<u> </u>		
Arsenic	1.3E+01	4.4E-08	7.8E-08	2.1E-11	6.6E-08	1.2E-07	3.2E-10	1.8E-07	┨───┤		
Manganese	1.4E+03	4.9E-06	2.9E-07	2.3E-09					┟───┤		
Thallium Inorganics Pathway Total	6.4E-01	2.2E-09	1.3E-10	1.1E-12	6 6E 00	1.00.07	2 OF 10	1 05 07			
Pathway Total – Chemicals					6.6E-08	1.2E-07	3.2E-10	1.8E-07			
raniway rotal – Unemicals			177.	ter Tower	6.6E-08	1.2E-07	3.2E-10	1.8E-07	L		
Chromium	2.5E+02	8.8E-07	5.2E-08	4.2E-10							
Thallium	2.5E+02 6.4E-01	8.8E-07 2.3E-09	1.3E-10	4.2E-10 1.1E-12							
Inorganics Pathway Total											
Pathway Total – Chemicals											
r aniway rotai – Chemicais	1		Residen	t Farmer Ad	lult				L		
Resident Farmer Adult CB-13 and -10											
Aluminum	1.3E+04	7.6E-03									
Aluminum 1.3E+04 7.6E-03 1.7E-04 1.6E-06											

	Daily Intake (mg/kg-d) Risk								
CODO	EPC	_				_		Across all	~~~~~
COPC		<u> </u>		Inhalation	Ingestion	Dermal	Inhalation	Pathways	COC ^a
Antimony	1.3E+00	7.4E-07	1.7E-08	1.6E-10					
Arsenic	1.1E+01	6.5E-06	4.5E-06	1.4E-09	9.8E-06	6.7E-06	2.1E-08	1.6E-05	R
Cadmium	6.2E+00	3.6E-06	8.3E-08	7.9E-10			5.0E-09	5.0E-09	
Chromium	3.5E+01	2.1E-05	4.7E-07	4.5E-09					
Copper	1.9E+02	1.1E-04	2.6E-06	2.4E-08					-
Manganese	1.3E+03	7.6E-04	1.7E-05	1.7E-07					
Thallium	4.9E-01	2.9E-07	6.5E-09	6.2E-11	0.00 00		2 (E 09	1.75.05	
Inorganics Pathway Total	2.55.01	1.50.05	2 45 05	2.25.00	9.8E-06	6.7E-06	2.6E-08	1.7E-05	D
2,4,6-Trinitrotoluene 2,4-Dinitrotoluene	2.5E+01	1.5E-05	3.4E-05	3.2E-09	4.4E-07	1.0E-06		1.5E-06	R
	1.5E+00	8.7E-07	2.0E-06	1.9E-10	5.9E-07	1.4E-06	1.5E 10	1.9E-06	R
Benzo(<i>a</i>)pyrene PCB-1254	3.7E-01	2.2E-07 1.0E-06	6.4E-07 3.2E-06	4.7E-11 2.2E-10	1.6E-06	4.7E-06 6.4E-06	1.5E-10 4.3E-10	6.3E-06	R R
RDX	1.7E+00 3.7E+00	2.2E-06	3.2E-06	4.7E-10	2.0E-06 2.4E-07	6.4E-06 5.4E-07	4.3E-10	8.4E-06 7.8E-07	ĸ
Organics Pathway Total	5.7E+00	2.2E-00	4.9E-00	4./E-10	2.4E-07 4.9E-06	1.4E-07	5.8E-10	1.9E-07	
Pathway Total – Chemicals					4.9E-00 1.5E-05	2.1E-05	2.7E-08	3.5E-05	-
Fathway Total – Chemicals			CR 14 C	B-17, and C		2.1E-03	2.7E-08	3.3E-03	<u> </u>
Aluminum	2.0E+04	1.2E-02	2.7E-04	2.5E-06	1-15				
Arsenic	2.0E+04 2.1E+01	1.2E-02	8.6E-06	2.7E-00	1.9E-05	1.3E-05	4.1E-08	3.2E-05	R
Barium	1.4E+02	7.9E-05	1.8E-06	1.7E-09	1.72-05	1.51-05	4.1L-00	5.21-05	K
Cadmium	2.1E+00	1.2E-06	2.8E-08	2.6E-10			1.7E-09	1.7E-09	
Manganese	1.2E+03	6.9E-04	1.6E-05	1.5E-07			1.7L-07	1.712-07	
Nickel	3.2E+01	1.9E-05	4.3E-07	4.0E-09					
Thallium	9.1E-01	5.4E-07	1.2E-08	1.2E-10					
Vanadium	3.5E+01	2.1E-05	4.7E-07	4.4E-09					-
Inorganics Pathway Total	5.51+01	2.12 05	1.7 1 07	1.12 05	1.9E-05	1.3E-05	4.3E-08	3.2E-05	
2,4,6-Trinitrotoluene	4.5E+00	2.6E-06	6.0E-06	5.7E-10	7.9E-08	1.8E-07		2.6E-07	
Benz(<i>a</i>)anthracene	6.4E-01	3.8E-07	1.1E-06	8.1E-11	2.7E-07	8.1E-07	2.5E-11	1.1E-06	R
Benzo(<i>a</i>)pyrene	8.2E-01	4.8E-07	1.4E-06	1.0E-10	3.5E-06	1.0E-05	3.2E-10	1.4E-05	R
Benzo(<i>b</i>)fluoranthene	1.1E+00	6.5E-07	1.9E-06	1.4E-10	4.7E-07	1.4E-06	4.3E-11	1.9E-06	R
Dibenz(<i>a</i> , <i>h</i>)anthracene	1.8E-01	1.1E-07	3.1E-07	2.3E-11	7.7E-07	2.3E-06	7.1E-11	3.1E-06	R
Indeno(1,2,3- <i>cd</i>)pyrene	6.4E-01	3.8E-07	1.1E-06	8.1E-11	2.7E-07	8.1E-07	2.5E-11	1.1E-06	R
PCB-1254	4.7E+00	2.8E-06	8.8E-06	6.0E-10	5.5E-06	1.8E-05	1.2E-09	2.3E-05	R
RDX	2.9E+01	1.7E-05	3.8E-05	3.6E-09	1.8E-06	4.2E-06		6.0E-06	R
Organics Pathway Total					1.3E-05	3.8E-05	1.7E-09	5.0E-05	
Pathway Total – Chemicals					3.2E-05	5.1E-05	4.4E-08	8.2E-05	
			СВ-	-3 and -801					
Aluminum	1.2E+04	7.1E-03	1.6E-04						
Antimony		6.4E-05							
Arsenic	1.3E+01	7.6E-06	5.2E-06	1.6E-09	1.1E-05	7.8E-06	2.5E-08	1.9E-05	R
Cadmium	6.3E+00	3.7E-06	8.4E-08	8.0E-10			5.0E-09	5.0E-09	
Manganese	1.3E+03	7.4E-04	1.7E-05	1.6E-07					
Thallium	6.0E-01	3.5E-07	8.0E-09	7.6E-11					
Inorganics Pathway Total					1.1E-05	7.8E-06	3.0E-08	1.9E-05	
Benz(<i>a</i>)anthracene	1.4E+01	8.2E-06	2.4E-05	1.8E-09	6.0E-06	1.8E-05	5.5E-10	2.4E-05	R
Benzo(<i>a</i>)pyrene	1.3E+01	7.6E-06	2.3E-05		5.6E-05	1.7E-04	5.1E-09	2.2E-04	R
Benzo(b)fluoranthene	1.5E+01	8.8E-06	2.6E-05	1.9E-09	6.4E-06	1.9E-05	5.9E-10	2.5E-05	R
Dibenz(<i>a</i> , <i>h</i>)anthracene	1.2E+00	6.8E-07	2.0E-06	1.5E-10	4.9E-06	1.5E-05	4.5E-10	2.0E-05	R
Dieldrin	3.3E-02	2.0E-08	4.5E-08	4.2E-12	3.1E-07	7.2E-07	6.8E-11	1.0E-06	R
Indeno(1,2,3- <i>cd</i>)pyrene	8.7E+00	5.1E-06	1.5E-05	1.1E-09	3.7E-06	1.1E-05	3.4E-10	1.5E-05	R
PCB-1254	4.3E+00	2.5E-06	8.1E-06	5.5E-10	5.0E-06	1.6E-05	1.1E-09	2.1E-05	R
Organics Pathway Total					8.2E-05	2.4E-04	8.2E-09	3.3E-04	
Pathway Total – Chemicals				A and CA (9.4E-05	2.5E-04	3.8E-08	3.5E-04	1
CB-4/4A and CA-6/6A Aluminum 1.0E+04 5.9E-03 1.4E-04 1.3E-06 Image: CB-4/4A and CA-6/6A									
Aluminum	1.0E+04	J.7E-03	1.4E-04	1.3E-06	ļ	ļ	ļ		4

		Daily	Intake (m	g/kg-d)		Risk		Total Risk	
	EPC							Across all	_
COPC	(mg/kg)	Ingestion	Dermal	Inhalation	Ingestion	Dermal	Inhalation	Pathways	COC ^a
Arsenic	1.1E+01		4.4E-06	1.4E-09	9.6E-06	6.6E-06	2.1E-08	1.6E-05	R
Barium	1.4E+02	8.2E-05	1.9E-06	1.8E-08					
Cadmium	1.8E+00		2.4E-08	2.3E-10			1.4E-09	1.4E-09	
Chromium	2.5E+01	1.5E-05	3.3E-07	3.2E-09					
Copper	1.1E+02	6.2E-05	1.4E-06	1.3E-08					
Manganese	7.0E+02	4.1E-04	9.4E-06	8.9E-08					
Mercury	3.4E-01	2.0E-07	4.6E-09	4.3E-11					
Thallium	5.4E-01	3.1E-07	7.2E-09	6.8E-11					
Vanadium	1.9E+01	1.1E-05	2.5E-07	2.4E-09	0.65.06	6.65.06	0.05.00	1 (5 0 5	
Inorganics Pathway Total	5 OF . 00	2.55.06	7.05.04	7.55.10	9.6E-06	6.6E-06	2.2E-08	1.6E-05	
1,3-Dinitrobenzene	5.9E+00	3.5E-06	7.9E-06	7.5E-10	5.00.06	1.00.05		1 75 05	
2,4,6-Trinitrotoluene	3.0E+02	1.7E-04	4.0E-04	3.8E-08	5.2E-06	1.2E-05		1.7E-05	R
2,6-Dinitrotoluene	8.6E-01	5.0E-07	1.2E-06	1.1E-10	3.4E-07	7.8E-07		1.1E-06	R
4,4'-DDE	1.2E+00	7.0E-07	1.6E-06	1.5E-10	2.4E-07	5.4E-07	2.5E 11	7.8E-07	D
Benz(<i>a</i>)anthracene Benzo(<i>a</i>)pyrene	6.4E-01 6.1E-01	3.8E-07 3.6E-07	1.1E-06 1.1E-06	8.1E-11 7.7E-11	2.7E-07 2.6E-06	8.1E-07 7.7E-06	2.5E-11 2.4E-10	1.1E-06 1.0E-05	R R
Benzo(<i>a</i>)pyrene Benzo(<i>b</i>)fluoranthene	6.6E-01	3.6E-07 3.9E-07	1.1E-06 1.2E-06	7.7E-11 8.4E-11	2.6E-06 2.8E-07	7.7E-06 8.4E-07	2.4E-10 2.6E-11	1.0E-05 1.1E-06	R
Dibenz (a,h) anthracene	9.6E-01	3.9E-07 5.6E-08	1.2E-06 1.7E-07	8.4E-11 1.2E-11	2.8E-07 4.1E-07	8.4E-07 1.2E-06	2.6E-11 3.8E-11	1.1E-06 1.6E-06	R
Dieldrin	9.0E-02 9.8E-02	5.8E-08	1.7E-07 1.3E-07	1.2E-11 1.3E-11	9.2E-07	2.1E-06	2.0E-10	3.0E-06	R
Endrin Aldehyde	4.4E+00	2.6E-06	5.9E-06	5.6E-10	9.2E-07	2.1L-00	2.0E-10	5.0E-00	K
Heptachlor	4.4E+00 7.2E-02	4.2E-08	9.6E-08	9.1E-12	1.9E-07	4.3E-07	4.2E-11	6.2E-07	
PCB-1254	1.1E+03	6.5E-04	2.1E-03	1.4E-07	1.3E-03	4.1E-03	4.2E-11 2.8E-07	5.4E-03	R
RDX	1.0E+02	5.9E-05	1.3E-04	1.4E-07	6.5E-06	1.5E-05	2.01-07	2.1E-05	R
gamma-Chlordane	8.9E-01	5.2E-07	4.8E-07	1.1E-10	1.8E-07	1.7E-07	4.0E-11	3.5E-07	K
Organics Pathway Total	0.71 01	5.2E 07	4.01 07	1.12 10	1.3E-03	4.2E-03	2.8E-07	5.5E-03	
Pathway Total – Chemicals					1.3E-03	4.2E-03	3.0E-07	5.5E-03	
		Chang	e Houses	(CB-12, -23,					·
Antimony	2.3E+00	1.3E-06	3.0E-08	2.9E-10					
Arsenic	1.2E+01	7.1E-06	4.9E-06	1.5E-09	1.1E-05	7.3E-06	2.3E-08	1.8E-05	R
Cadmium	3.3E+00	1.9E-06	4.4E-08	4.2E-10			2.6E-09	2.6E-09	
Manganese	8.3E+02	4.9E-04	1.1E-05	1.1E-07					
Thallium	4.3E-01	2.5E-07	5.8E-09	5.5E-11					
Inorganics Pathway Total					1.1E-05	7.3E-06	2.6E-08	1.8E-05	
Benzo(a)pyrene	9.2E-02	5.4E-08	1.6E-07	1.2E-11	3.9E-07	1.2E-06	3.6E-11	1.6E-06	R
Organics Pathway Total					3.9E-07	1.2E-06	3.6E-11	1.6E-06	
Pathway Total – Chemicals					1.1E-05	8.5E-06	2.6E-08	2.0E-05	
				meter Area					
		8.2E-03							
Arsenic	1.3E+01	7.4E-06	5.0E-06	1.6E-09	1.1E-05	7.5E-06	2.4E-08	1.9E-05	R
Manganese	1.4E+03		1.9E-05	1.8E-07					
Thallium	6.4E-01	3.8E-07	8.6E-09	8.2E-11					\mid
Inorganics Pathway Total					1.1E-05	7.5E-06	2.4E-08	1.9E-05	
Pathway Total – Chemicals					1.1E-05	7.5E-06	2.4E-08	1.9E-05	
	0.55.00	1.65.04		ter Tower		1			
Chromium	2.5E+02	1.5E-04	3.4E-06	3.2E-08					
Thallium	6.4E-01	3.8E-07	8.6E-09	8.2E-11					<u> </u>
Inorganics Pathway Total									┨────┤
Pathway Total – Chemicals			Dectal	t Earner C					<u> </u>
				t Farmer Ch 13 and -10	1110				
Aluminum	1.3E+04	1.4E-02	3.1E-05	7.7E-07					
Antimony	1.3E+04 1.3E+00		3.0E-09	7.5E-11					<u> </u>
Arsenic	1.3E+00 1.1E+01	1.4E-00 1.2E-05	8.0E-09	6.6E-10	1.8E-05	1.2E-06	9.9E-09	1.9E-05	R
Cadmium	6.2E+00		8.0E-07 1.5E-08	3.7E-10	1.01-05	1.215-00	9.9E-09 2.3E-09	2.3E-09	ĸ
Caumum	0.21 ± 00	0.01-00	1.5E-00	5.71-10	l	l	2.315-09	2.315-09	

		Daily	Intake (m	g/kg-d)		Risk		Total Risk	
CODC	EPC		_		_	_		Across all	~~~~~
COPC		0		Inhalation	Ingestion	Dermal	Inhalation	Pathways	COC ^a
Chromium	3.5E+01	3.9E-05	8.5E-08	2.1E-09					
Copper	1.9E+02	2.1E-04	4.6E-07	1.1E-08					
Manganese	1.3E+03	1.4E-03	3.1E-06	7.7E-08					
Thallium	4.9E-01	5.3E-07	1.2E-09	2.9E-11	1.00.05	1.00.00	1 25 00	1 05 05	
Inorganics Pathway Total	2.55.01	2 OF 05	C 1E 0C	1.5E.00	1.8E-05	1.2E-06	1.2E-08	1.9E-05	D
2,4,6-Trinitrotoluene 2,4-Dinitrotoluene	2.5E+01	2.8E-05	6.1E-06	1.5E-09	8.3E-07	1.8E-07		1.0E-06	R
-	1.5E+00 3.7E-01	1.6E-06 4.1E-07	3.6E-07 1.2E-07	8.8E-11 2.2E-11	1.1E-06 3.0E-06	2.4E-07 8.5E-07	6.8E-11	1.4E-06 3.8E-06	R R
Benzo(<i>a</i>)pyrene PCB-1254	3.7E-01 1.7E+00	4.1E-07 1.9E-06	1.2E-07 5.7E-07	1.0E-10	3.7E-06	8.3E-07 1.1E-06	2.0E-10	4.9E-06	R
RDX	1.7E+00 3.7E+00	4.0E-06	8.9E-07	2.2E-10	4.4E-07	9.8E-08	2.0E-10	4.9E-00 5.4E-07	ĸ
Organics Pathway Total	5.7E+00	4.0E-00	0.9E-07	2.2E-10	9.1E-06	2.5E-06	2.7E-10	1.2E-07	
Pathway Total – Chemicals					9.1E-00 2.7E-05	2.3E-00 3.7E-06	1.3E-08	3.1E-05	
Tatiway Total – Chemicais			$CB_{-}14$ C	B-17, and C.		5.7E-00	1.5E-08	5.1E-05	<u> </u>
Aluminum	2.0E+04	2.2E-02	4.8E-05	· · · · ·	1-15				
Arsenic	2.0E+04 2.1E+01	2.2E-02 2.3E-05	4.8E-05	1.2E-00 1.3E-09	3.5E-05	2.3E-06	1.9E-08	3.8E-05	R
Barium	1.4E+02	1.5E-04	3.3E-07	8.0E-09	5.51-05	2.51-00	1.76-00	5.01-05	IX.
Cadmium	2.1E+00	2.3E-04	5.0E-09	1.2E-10			7.7E-10	7.7E-10	
Manganese	1.2E+03	1.3E-03	2.8E-06	7.0E-08			1112 10	1112 10	
Nickel	3.2E+01	3.5E-05	7.7E-08	1.9E-09					
Thallium	9.1E-01	1.0E-06	2.2E-09	5.4E-11					
Vanadium	3.5E+01	3.8E-05	8.4E-08	2.1E-09					
Inorganics Pathway Total					3.5E-05	2.3E-06	2.0E-08	3.8E-05	
2,4,6-Trinitrotoluene	4.5E+00	4.9E-06	1.1E-06	2.7E-10	1.5E-07	3.3E-08		1.8E-07	
Benz(<i>a</i>)anthracene	6.4E-01	7.0E-07	2.0E-07	3.8E-11	5.1E-07	1.5E-07	1.2E-11	6.6E-07	
Benzo(<i>a</i>)pyrene	8.2E-01	9.0E-07	2.6E-07	4.9E-11	6.6E-06	1.9E-06	1.5E-10	8.5E-06	R
Benzo(<i>b</i>)fluoranthene	1.1E+00	1.2E-06	3.4E-07	6.5E-11	8.8E-07	2.5E-07	2.0E-11	1.1E-06	R
Dibenz(<i>a</i> , <i>h</i>)anthracene	1.8E-01	2.0E-07	5.6E-08	1.1E-11	1.4E-06	4.1E-07	3.3E-11	1.9E-06	R
Indeno(1,2,3-cd)pyrene	6.4E-01	7.0E-07	2.0E-07	3.8E-11	5.1E-07	1.5E-07	1.2E-11	6.6E-07	
PCB-1254	4.7E+00	5.2E-06	1.6E-06	2.8E-10	1.0E-05	3.2E-06	5.6E-10	1.3E-05	R
RDX	2.9E+01	3.1E-05	6.9E-06	1.7E-09	3.4E-06	7.6E-07		4.2E-06	R
Organics Pathway Total					2.4E-05	6.8E-06	7.9E-10	3.1E-05	
Pathway Total – Chemicals					5.9E-05	9.1E-06	2.1E-08	6.8E-05	
				-3 and -801					
Aluminum	1.2E+04		2.9E-05	7.1E-07					
Antimony	1.1E+02	1.2E-04	2.6E-07	6.5E-09					
Arsenic	1.3E+01	1.4E-05	9.3E-07	7.6E-10	2.1E-05	1.4E-06	1.2E-08	2.3E-05	R
Cadmium	6.3E+00		1.5E-08	3.7E-10			2.3E-09	2.3E-09	
Manganese	1.3E+03		3.0E-06						
Thallium	6.0E-01	6.6E-07	1.4E-09	3.6E-11		4 45 9 4	1 15 00		
Inorganics Pathway Total	4 477 04		4 45 9 4	0.07.10	2.1E-05	1.4E-06	1.4E-08	2.3E-05	
Benz(<i>a</i>)anthracene	1.4E+01	1.5E-05	4.4E-06	8.3E-10	1.1E-05	3.2E-06	2.6E-10	1.4E-05	R
Benzo(<i>a</i>)pyrene	1.3E+01	1.4E-05	4.1E-06	7.7E-10	1.0E-04	3.0E-05	2.4E-09	1.3E-04	R
Benzo(b)fluoranthene	1.5E+01	1.6E-05	4.7E-06		1.2E-05	3.4E-06	2.8E-10	1.5E-05	R
Dibenz(<i>a</i> , <i>h</i>)anthracene	1.2E+00	1.3E-06	3.6E-07	6.8E-11	9.2E-06	2.6E-06	2.1E-10	1.2E-05	R
Dieldrin	3.3E-02	3.7E-08	8.1E-09	2.0E-12	5.9E-07	1.3E-07	3.2E-11	7.1E-07	P
Indeno(1,2,3- <i>cd</i>)pyrene PCB-1254	8.7E+00 4.3E+00	9.5E-06 4.7E-06	2.7E-06 1.5E-06	5.2E-10 2.6E-10	7.0E-06 9.4E-06	2.0E-06 2.9E-06	1.6E-10 5.1E-10	9.0E-06 1.2E-05	R R
Organics Pathway Total	+.JE+00	4./E-00	1.5E-00	2.0E-10	9.4E-06 1.5E-04	2.9E-06 4.4E-05	3.8E-09	2.0E-04	К
Pathway Total – Chemicals					1.5E-04 1.7E-04	4.4E-05 4.5E-05	3.8E-09 1.8E-08	2.0E-04 2.2E-04	<u> </u>
1 aniway 10tal – Chemicals	1	l		A and CA-6/		+.JE-03	1.02-00	2.2E-04	L
Aluminum	1.0E+04	1.1E-02	2.4E-05		<i>//</i> 1				
Arsenic	1.0E+04 1.1E+01	1.1E-02 1.2E-05	7.9E-07	6.5E-10	1.8E-05	1.2E-06	9.7E-09	1.9E-05	R
Barium	1.4E+02	1.2E-03 1.5E-04	3.3E-07	8.2E-09	1.01-05	1.21.400	J.IL-0J	1.71-03	
Cadmium	1.4E+02		4.4E-09				6.8E-10	6.8E-10	
Caulifium	1.01.700	2.012-00	4.415-09	1.112-10		ļ	0.01-10	0.01-10	L

		Doily	Intake (m	a/ka d)		Risk		Total Risk	
	EPC	Dally	Intake (II	ig/kg-u)		NISK		Across all	
СОРС		Ingestion	Dermal	Inhalation	Ingestion	Dermal	Inhalation	Pathways	COC ^a
Chromium	2.5E+01	2.7E-05	6.0E-08	1.5E-09					
Copper	1.1E+02	1.2E-04	2.6E-07	6.3E-09					
Manganese	7.0E+02	7.7E-04	1.7E-06	4.2E-08					
Mercury	3.4E-01	3.7E-07	8.2E-10	2.0E-11					
Thallium	5.4E-01	5.9E-07	1.3E-09	3.2E-11					
Vanadium	1.9E+01	2.1E-05	4.6E-08	1.1E-09					
Inorganics Pathway Total					1.8E-05	1.2E-06	1.0E-08	1.9E-05	
1,3-Dinitrobenzene	5.9E+00	6.5E-06	1.4E-06	3.5E-10					
2,4,6-Trinitrotoluene	3.0E+02	3.3E-04	7.2E-05	1.8E-08	9.8E-06	2.2E-06		1.2E-05	R
2,6-Dinitrotoluene	8.6E-01	9.4E-07	2.1E-07	5.1E-11	6.4E-07	1.4E-07		7.8E-07	
4,4'-DDE	1.2E+00	1.3E-06	2.9E-07	7.1E-11	4.4E-07	9.8E-08		5.4E-07	
Benz(<i>a</i>)anthracene	6.4E-01	7.0E-07	2.0E-07	3.8E-11	5.1E-07	1.5E-07	1.2E-11	6.6E-07	
Benzo(<i>a</i>)pyrene	6.1E-01	6.7E-07	1.9E-07	3.6E-11	4.9E-06	1.4E-06	1.1E-10	6.3E-06	R
Benzo(<i>b</i>)fluoranthene	6.6E-01	7.3E-07	2.1E-07	3.9E-11	5.3E-07	1.5E-07	1.1E 10	6.8E-07	
Dibenz(<i>a</i> , <i>h</i>)anthracene	9.6E-02	1.1E-07	3.0E-08	5.7E-12	7.7E-07	2.2E-07	1.8E-11	9.9E-07	
Dieldrin	9.8E-02	1.1E-07	2.4E-08	5.8E-12	1.7E-06	3.8E-07	9.4E-11	2.1E-06	R
Endrin Aldehyde	4.4E+00		1.1E-06	2.6E-10	1.712-00	5.0L-07). - L-11	2.112-00	K
Heptachlor	7.2E-02	7.9E-08	1.7E-08	4.3E-12	3.5E-07	7.8E-08	1.9E-11	4.3E-07	
PCB-1254	1.1E+03	1.2E-03	3.7E-04	6.5E-08	2.4E-03	7.4E-04	1.3E-07	3.2E-07	R
RDX	1.0E+02	1.1E-04	2.4E-05	5.9E-09	1.2E-05	2.7E-04	1.51-07	1.5E-05	R
gamma-Chlordane	8.9E-01	9.7E-07	8.6E-08	5.3E-11	3.4E-07	3.0E-08	1.8E-11	3.7E-07	К
Organics Pathway Total	0.9L-01	9.7E-07	8.0L-08	J.JL-11	2.4E-07	7.5E-04	1.3E-11 1.3E-07	3.2E-03	
Pathway Total – Chemicals					2.4E-03	7.5E-04 7.5E-04	1.3E-07 1.4E-07	3.2E-03	-
Tattiway Total – Chemicais		Chana	Uouses	(CB-12, -23,			1.4E-07	5.2E-05	
Antimony	2.3E+00		5.4E-09	1.3E-10	-0, unu -22))			
Arsenic	1.2E+01	1.3E-05	8.8E-07	7.2E-10	2.0E-05	1.3E-06	1.1E-08	2.1E-05	R
Cadmium	3.3E+00		7.9E-09	1.9E-10	2.01-05	1.51-00	1.1E-08 1.2E-09	1.2E-09	K
Manganese	8.3E+02	9.1E-04	2.0E-06	4.9E-08			1.2E-09	1.2E-09	
Thallium	4.3E-01	9.1E-04 4.7E-07	1.0E-09	2.6E-11	-				-
	4.3E-01	4./E-0/	1.0E-09	2.0E-11	2.05.05	1.20.00	1.2E.09	2.1E.05	
Inorganics Pathway Total	0.00.00	1.0E.07	2.05.09	5.50 10	2.0E-05	1.3E-06	1.2E-08	2.1E-05	
Benzo(<i>a</i>)pyrene Organics Pathway Total	9.2E-02	1.0E-07	2.9E-08	5.5E-12	7.4E-07	2.1E-07	1.7E-11 1.7E-11	9.5E-07	
Pathway Total – Chemicals					7.4E-07	2.1E-07		9.5E-07	
Pathway Total – Chemicals			D		2.1E-05	1.5E-06	1.2E-08	2.2E-05	
A 1	1 45.04	1 5E 00		imeter Area					1
Aluminum	1.4E+04		3.4E-05		2.1E.05	1.45.04	1.1E.09	2.25.05	D
Arsenic	1.3E+01	1.4E-05	9.1E-07	7.4E-10	2.1E-05	1.4E-06	1.1E-08	2.2E-05	R
Manganese		1.5E-03	3.4E-06	8.3E-08					
Thallium	0.4E-01	7.0E-07	1.5E-09	3.8E-11	2.15.05	1.45.04	1.1E-00	2.05.05	
Inorganics Pathway Total					2.1E-05	1.4E-06	1.1E-08	2.2E-05	
Pathway Total – Chemicals			.		2.1E-05	1.4E-06	1.1E-08	2.2E-05	l
	2.55.02	0.7E.04		<i>iter Tower</i>	[r
Chromium	2.5E+02	2.7E-04	6.0E-07	1.5E-08					
Thallium	6.4E-01	7.1E-07	1.6E-09	3.8E-11					
Inorganics Pathway Total									
Pathway Total - Chemicals									

^a Chemicals of potential concern (COPCs) are identified as chemicals of concern (COCs) if the total incremental lifetime cancer risk across all pathways is > 1E-06 (R). DDE = Dichlorodiphenyldichloroethylene. EPC = Exposure point concentration. PCB = Polychlorinated biphenyl.

RDX = Hexahydro-1,3,5-trinitro-1,3,5-triazine.

		Daily	Intake (m	g/kg-d)	На	zard Quo	tient	Total HI	
СОРС	EPC (mg/kg)	Induction	Dormal	Inholotion	Induction	Dormol	Inhalation	Across all Pathways	COCa
	(ing/kg)			Guard Train		Dermai	IIIIalation	ratiiways	coc
				13 and -10					
Aluminum	1.3E+04	1.9E-03	1.9E-05	5.1E-04	1.9E-03	1.9E-05	3.6E-01	3.6E-01	
Antimony	5.7E+00	8.6E-07	8.5E-09	2.3E-07	2.2E-03	1.4E-04	0.02 01	2.3E-03	
Arsenic	1.1E+01	1.7E-06	5.0E-07	4.5E-07	5.7E-03	1.7E-03		7.3E-03	
Cadmium	5.2E+00	7.9E-07	7.9E-09	2.1E-07	7.9E-04	3.1E-04		1.1E-03	
Chromium	3.5E+01	5.3E-06	5.3E-08	1.4E-06	3.5E-06	2.7E-06		6.2E-06	
Copper	1.8E+02	2.7E-05	2.7E-07	7.3E-06	6.8E-04	6.8E-06		6.9E-04	
Manganese	1.2E+03	1.9E-04	1.8E-06	4.9E-05	4.0E-03	1.0E-03	3.5E+00	3.5E+00	Н
Thallium	4.9E-01	7.5E-08	7.4E-10	2.0E-08	9.4E-04	9.3E-06		9.5E-04	
Zinc	5.5E+02	8.3E-05	8.3E-07	2.2E-05	2.8E-04	9.2E-06		2.9E-04	
Inorganics Pathway Total		0.0 - 00			1.6E-02	3.2E-03	3.8E+00	3.8E+00	
2,4,6-Trinitrotoluene	2.3E+01	3.6E-06	3.5E-06	9.5E-07	7.1E-03	7.1E-03		1.4E-02	
2,4-Dinitrotoluene	1.4E+00	2.1E-07	2.1E-07	5.6E-08	1.1E-04	1.0E-04		2.1E-04	
Benzo(<i>a</i>)pyrene	3.7E-01	5.6E-08	7.3E-08	1.5E-08	1112 01	1102 01		2012 01	
PCB-1254	1.7E+00	2.6E-07	3.6E-07	6.9E-08	1.3E-02	1.8E-02		3.1E-02	
RDX	3.4E+00	5.3E-07	5.2E-07	1.4E-07	1.8E-04	1.7E-04		3.5E-04	
Organics Pathway Total	5.12100	5.51 07	5.2E 07	1.112 07	2.0E-02	2.5E-02		4.6E-02	
Pathway Total – Chemicals					3.7E-02	2.9E-02	3.8E+00	3.9E+00	
r unway rour chemicals			CR-14 CF	B-17, and CA		2.71 02	5.01100	3.7E100	
Aluminum	1.9E+04	2.9E-03	2.9E-05	7.8E-04	2.9E-03	2.9E-05	5.4E-01	5.5E-01	
Arsenic	2.1E+01	3.1E-06	9.3E-07	8.4E-07	1.0E-02	3.1E-03	5.42 01	1.4E-02	
Barium	1.3E+02	2.0E-05	2.0E-07	5.3E-06	2.8E-04	4.0E-05	3.7E-02	3.7E-02	
Cadmium	2.0E+00	3.1E-07	3.1E-09	8.3E-08	3.1E-04	1.2E-04	5.7L-02	4.3E-04	
Manganese	1.1E+03	1.7E-04	1.7E-06	4.6E-05	3.7E-04	9.3E-04	3.2E+00	3.2E+00	Н
Nickel	3.1E+01	4.7E-04	4.6E-08	1.2E-06	2.3E-04	5.8E-05	3.2E100	2.9E-04	11
Thallium	8.8E-01	1.3E-07	1.3E-09	3.6E-08	1.7E-03	1.7E-05		1.7E-03	
Vanadium	3.4E+01	5.1E-06	5.1E-08	1.4E-06	7.4E-04	2.8E-04		1.0E-03	
Inorganics Pathway Total	3.4L+01	J.1L-00	J.1L-00	1.4L-00	2.0E-02	4.6E-03	3.8E+00	3.8E+00	
2,4,6-Trinitrotoluene	4.5E+00	6.9E-07	6.8E-07	1.8E-07	1.4E-03	1.4E-03	3.0E100	2.7E-03	
Benz(<i>a</i>)anthracene	6.4E-01	9.8E-08	1.3E-07	2.6E-08	1.4L-03	1.4L-03		2.712-03	
Benzo(<i>a</i>)pyrene	8.2E-01	1.3E-07	1.6E-07	3.3E-08					
Benzo(<i>b</i>)fluoranthene	1.1E+00	1.3E-07	2.2E-07	4.5E-08					
Dibenz (a,h) anthracene	1.8E-01	2.7E-08	3.5E-08	4.3E-08 7.3E-09					
Indeno(1,2,3- <i>cd</i>)pyrene	6.4E-01	9.8E-08	1.3E-07	2.6E-08					
PCB-1254	4.7E+00	7.2E-07	9.9E-07	2.0E-03 1.9E-07	3.6E-02	5.0E-02		8.6E-02	
RDX	2.1E+01	3.3E-06	3.2E-07	8.7E-07	1.1E-03	1.1E-03		2.2E-03	
Organics Pathway Total	2.111+01	5.5E-00	5.2E-00	8.7E-07	3.8E-02	5.2E-02		9.0E-02	
Pathway Total – Chemicals					5.9E-02	5.7E-02	3.8E+00	9.0E-02 3.9E+00	
Fallway Total – Chemicals			CP	3 and -801	J.9E-02	J./E-02	3.8E+00	3.9E+00	
Aluminum	1.2E+04	1.8E-03			1.9E.02	1.9E.05	2 4E 01	2 4E 01	
	1.2E+04		1.8E-05	4.9E-04	1.8E-03 4.2E-02	1.8E-05	3.4E-01	3.4E-01	
Antimony Arsenic	1.1E+02	1.7E-05 2.0E-06	1.7E-07	4.5E-06 5.2E-07	4.2E-02 6.6E-03	2.8E-03 1.9E-03		4.5E-02 8.5E-03	
	1.3E+01		5.8E-07					8.3E-03 1.3E-03	
Cadmium	6.3E+00	9.6E-07	9.5E-09	2.6E-07	9.6E-04	3.8E-04	2 6E+00	1.3E-03 3.6E+00	LT
Manganese	1.3E+03	1.9E-04	1.9E-06	5.1E-05	4.2E-03	1.0E-03	3.6E+00		Н
Thallium	6.0E-01	9.2E-08	9.1E-10	2.4E-08	1.1E-03	1.1E-05	2 0E+00	1.2E-03	
Inorganics Pathway Total	1.40.01	2.15.06	2.95.02	5 70 07	5.7E-02	6.2E-03	3.9E+00	4.0E+00	
Benz(<i>a</i>)anthracene	1.4E+01	2.1E-06	2.8E-06	5.7E-07					
Benzo(<i>a</i>)pyrene	1.3E+01	2.0E-06	2.6E-06	5.3E-07					
Benzo(b)fluoranthene	1.5E+01	2.3E-06	2.9E-06	6.1E-07					
Dibenz(<i>a</i> , <i>h</i>)anthracene	1.2E+00	1.8E-07	2.3E-07	4.7E-08	1.05.04	1.00.04		2.05.04	
Dieldrin	3.3E-02	5.1E-09	5.0E-09	1.4E-09	1.0E-04	1.0E-04	<u> </u>	2.0E-04	

Table A-20. Load Line 1 Deep Surface Soil Hazards

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			Daily	Intake (m	g/kg-d)	Hazaı	d Quotier	nt (HQ)	Total HI	
	CODC		.	D 1		T (*	D	T 1 1 <i>4</i>		COCª
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$			<u> </u>			Ingestion	Dermal	Inhalation	Pathways	COC
Organics Pathway Total Image: Spathway Total						2.2E.02	4.5E 02		7.95.02	
Pathway Total – Chemicals $CB-4/4A$ and $CA-6/6A$ Aluminum 1.0E+04 1.5E+05 1.5E+05 1.5E+05 2.9E+01 2.9E+01 Aluminum 1.0E+04 1.5E+05 1.5E+05 2.9E+01 2.9E+01 2.9E+01 Arsenic 1.1E+01 1.7E+06 4.9E+07 5.8E+02 2.9E+04 1.6E+03 3.8E+04 Cadmium 1.8E+00 2.0E+04 1.1E+06 2.9E+04 1.1E+06 3.8E+04 Chromium 2.4E+01 3.6E+06 3.6E+07 2.4E+06 3.8E+04 3.8E+04 Commum 2.4E+01 3.6E+06 2.7E+07 2.2E+03 3.2E+05 1.8E+04 Marganese 6.8E+02 1.0E+04 1.8E+07 4.0E+05 3.8E+04 3.7E+00 1.8E+04 Thallium 5.3E+01 8.1E+07 4.0E+07 2.2E+03 3.2E+00 1.8E+04 Marganese 6.8E+01 8.1E+08 8.0E+10 2.2E+08 1.0E+04 1.7E+00 1.8E+07 Vanadium 1.9E+01 8.2E+04 1.0E+03		4.3E+00	0.0E-07	9.1E-07	1./E-0/					
								2.05.00		
Aluminum 1.0E+04 1.5E+05 4.1E+04 1.5E+05 1.5E+05 2.9E+01 2.9E+01 Arsenic 1.1E+01 1.7E+06 4.9E+07 5.5E+03 1.6E+03 7.1E+03 Barium 1.8E+02 2.0E+05 2.0E+07 5.3E+06 2.9E+04 4.0E+05 3.7E+02 3.8E+02 Cadmium 1.8E+00 2.7E+07 7.2E+08 2.7E+04 1.1E+04 3.8E+04 Chromium 2.4E+01 3.6E+02 1.0E+04 1.0E+06 3.8E+04 3.7E+00 3.8E+04 Marganese 6.8E+02 1.0E+04 1.0E+06 2.8E+03 3.7E+00 1.8E+04 1.0E+03 Vanadium 1.9E+01 2.9E+00 2.8E+00 3.7E+02 3.6E+04 1.0E+03 1.2E+00 1.2E+	Pathway Total – Chemicals						5.2E-02	3.9E+00	4.1E+00	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	A 1,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	1.0E+04	1 5E 02				1.5E 05	2.0E.01	2.0E.01	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$								2.9E-01		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$								2.7E.02		
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	4							5.7E-02		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$										
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$										
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$								1.9F+00		н
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$								1.52+00		11
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$										
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$										
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		1.711101	2.71-00	2.01-00	7.01-07			2 3E+00		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		$6.4E \pm 00$	9.7E-07	9.6E-07	2 6E-07			2.511100		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $										
$\begin{array}{c c c c c c c c c c c c c c c c c c c $										
$\begin{array}{c c c c c c c c c c c c c c c c c c c $						1.512-04	1.56-04		2.01-04	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $										
$\begin{array}{c c c c c c c c c c c c c c c c c c c $										
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$										
$\begin{array}{c c c c c c c c c c c c c c c c c c c $										
$\begin{array}{c c c c c c c c c c c c c c c c c c c $						3.0E-04	3.0E-04		6.0E-04	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$										
$\begin{array}{c c c c c c c c c c c c c c c c c c c $										
$\begin{array}{c c c c c c c c c c c c c c c c c c c $										Н
gamma-Chlordane 8.9E-01 1.4E-07 5.4E-08 3.6E-08 2.7E-04 1.1E-04 1.8E-04 5.6E-04 Organics Pathway Total 8.5E+00 1.2E+01 1.8E-04 2.0E+01 Pathway Total 2.3E+00 2.3E+00 2.3E+01 2.3E+00 2.3E+01 2.3E+03 8.0E-03 8.0E-03 2.3E+03 2.3E+03 2.4E+00 4.4E+00 H Manganese 8.3E+02 1.3E-04 1.3E-05 2.8E-03 6.8E-04 2.4E+00 2.4E+00 H Thallium 4.3E-01 6.6E-08 6.5E-10 1.8E-08 3.7E-09 2.4E+00 2.4E+00 2.4E+00 E 2.4E+00										
Organics Pathway Total Image Houses 8.5E+00 1.2E+01 1.8E-04 2.0E+01 Pathway Total – Chemicals 8.5E+00 1.2E+01 2.3E+00 2.3E+01 2.3E+01 Antimony 2.3E+00 3.4E-07 3.4E-09 9.2E-08 8.6E-04 5.7E-05 9.2E-04 Arsenic 1.2E+01 1.9E-06 5.5E-07 4.9E-07 6.2E-03 1.8E-03 8.0E-03 Cadmium 3.3E+00 5.0E-07 5.0E-04 2.0E-04 7.0E-04 Manganese 8.3E+02 1.3E-04 1.3E-06 3.4E-05 2.8E-03 6.8E-04 2.4E+00 2.4E+00 H Thallium 4.3E-01 6.6E-08 6.5E-10 1.8E-08 8.2E-04 8.2E-06 8.3E+02 2.4E+00 H Inorganics Pathway Total 1.1E-02 2.8E-03 2.4E+00 2.4E+00 E H H H H H H H H H H H H H H H H H H H	gamma-Chlordane							1.8E-04		
Pathway Total – Chemicals 8.5E+00 1.2E+01 2.3E+00 2.3E+01 Antimony 2.3E+00 3.4E-07 3.4E-09 9.2E-08 8.6E-04 5.7E-05 9.2E-04 Arsenic 1.2E+01 1.9E-06 5.5E-07 4.9E-07 6.2E-03 1.8E-03 8.0E-03 Cadmium 3.3E+00 5.0E-07 5.0E-09 1.3E-07 5.0E-04 2.0E-04 7.0E-04 Manganese 8.3E+02 1.3E-04 1.3E-06 3.4E-05 2.8E-03 6.8E-04 2.4E+00 2.4E+00 H Thallium 4.3E-01 6.6E-08 6.5E-10 1.8E-08 8.2E-04 8.2E-06 8.3E+04 Inorganics Pathway Total 1.1E-02 2.8E-03 2.4E+00 2.4E+00 2.4E+00 Benzo(a)pyrene 9.2E-02 1.4E-08 1.8E-08 3.7E-09 Organics Pathway Total 1.1E-02 2.8E-03 2.4E+00 2.4E+00 Pathway Total – Chemicals 1.1E-02 2.8E-03 2.4E+00 4.1E-01										
Change Houses (CB-12, -23, -8, and -22) Antimony 2.3E+00 3.4E-07 3.4E-09 9.2E-08 8.6E-04 5.7E-05 9.2E-04 Arsenic 1.2E+01 1.9E-06 5.5E-07 4.9E-07 6.2E-03 1.8E-03 8.0E-03 Cadmium 3.3E+00 5.0E-07 5.0E-09 1.3E-07 5.0E-04 2.0E-04 7.0E-04 Manganese 8.3E+02 1.3E-04 1.3E-06 3.4E-05 2.8E-03 6.8E-04 2.4E+00 2.4E+00 H Thallium 4.3E-01 6.6E-08 6.5E-10 1.8E-08 8.2E-04 8.2E-06 8.3E+04 1.1E-02 2.8E-03 2.4E+00 2.4E+00 1.1E-02 2.8E-03 2.4E+00 2.4E+00 1.1E-02 2.8E-03 2.4E+00 2.4E+00 1.1E-02 2.8E-03 2.4E+00 2.4E+00 1.4E-01 1.4E-01 1.1E-02 2.8E-03 2.4E+00 2.4E+00 <td></td>										
Antimony 2.3E+00 3.4E-07 3.4E-09 9.2E-08 8.6E-04 5.7E-05 9.2E-04 Arsenic 1.2E+01 1.9E-06 5.5E-07 4.9E-07 6.2E-03 1.8E-03 8.0E-03 Cadmium 3.3E+00 5.0E-07 5.0E-09 1.3E-07 5.0E-04 2.0E-04 7.0E-04 Manganese 8.3E+02 1.3E-04 1.3E-06 3.4E-05 2.8E-03 6.8E-04 2.4E+00 2.4E+00 H Thallium 4.3E-01 6.6E-08 6.5E-10 1.8E-08 8.2E-04 8.2E-06 8.3E-04 1 Inorganics Pathway Total 1.1E-02 2.8E-03 2.4E+00 2.4E+00 2.4E+00 Benzo(a)pyrene 9.2E-02 1.4E-08 1.8E-08 3.7E-09 Pathway Total 1.1E-02 2.8E-03 2.4E+00 2.4E+00 Pathway Total – Chemicals 1.1E-02 2.8E-03 2.4E+00 Arsenic 1.3E+01 1.9E-06 5.7E-07 5.1E-07 6.4E-03 1.9E-03 </td <td></td> <td></td> <td>Change</td> <td>Houses (</td> <td>CB-12, -23, -</td> <td>8, and -22)</td> <td></td> <td></td> <td></td> <td></td>			Change	Houses (CB-12, -23, -	8, and -22)				
Arsenic 1.2E+01 1.9E-06 5.5E-07 4.9E-07 6.2E-03 1.8E-03 8.0E-03 Cadmium 3.3E+00 5.0E-07 5.0E-09 1.3E-07 5.0E-04 2.0E-04 7.0E-04 Manganese 8.3E+02 1.3E-04 1.3E-06 3.4E-05 2.8E-03 6.8E-04 2.4E+00 2.4E+00 H Thallium 4.3E-01 6.6E-08 6.5E-10 1.8E-08 8.2E-04 8.2E-06 8.3E-04 Inorganics Pathway Total 1.1E-02 2.8E-03 2.4E+00 2.4E+00 Benzo(a)pyrene 9.2E-02 1.4E-08 1.8E-08 3.7E-09 Organics Pathway Total 1.1E-02 2.8E-03 2.4E+00 2.4E+00 Pathway Total – Chemicals	Antimony	2.3E+00					5.7E-05		9.2E-04	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		1.2E+01	1.9E-06	5.5E-07	4.9E-07	6.2E-03	1.8E-03		8.0E-03	
Thallium 4.3E-01 6.6E-08 6.5E-10 1.8E-08 8.2E-04 8.2E-06 8.3E-04 Inorganics Pathway Total 1.1E-02 2.8E-03 2.4E+00 2.4E+00 Benzo(a)pyrene 9.2E-02 1.4E-08 1.8E-08 3.7E-09 1.1E-02 2.8E-03 2.4E+00 2.4E+00 Organics Pathway Total 1.1E-02 2.8E-03 2.4E+00 2.4E+00 1.1E-02 Pathway Total – Chemicals 1.1E-02 2.8E-03 2.4E+00 2.4E+00 1.1E-02 Mampinum 1.4E+04 2.2E-03 2.2E-05 5.8E-04 2.2E-03 2.2E-05 4.1E-01 Arsenic 1.3E+01 1.9E-06 5.7E-07 5.1E-07 6.4E-03 1.9E-03 8.3E-03 Manganese 1.4E+03 2.1E-04 2.1E-06 5.7E-05 4.6E-03 1.1E-03 4.0E+00 H Thallium 6.4E-01 9.8E-08 9.7E-10 2.6E-08 1.2E-03 1.2E-03 1.2E-03 Inorganics Pathway Total 1 1.4E-02 3.1E-03 4.4E+00 4.4E+00	Cadmium					5.0E-04				
Thallium 4.3E-01 6.6E-08 6.5E-10 1.8E-08 8.2E-04 8.2E-06 8.3E-04 8.3E-04 Inorganics Pathway Total 1.1E-02 2.8E-03 2.4E+00 2.4E+00 Benzo(a)pyrene 9.2E-02 1.4E-08 1.8E-08 3.7E-09 Organics Pathway Total Pathway Total – Chemicals	Manganese	8.3E+02	1.3E-04	1.3E-06	3.4E-05	2.8E-03	6.8E-04	2.4E+00	2.4E+00	Н
Inorganics Pathway Total Image in the stress of the stress o		4.3E-01	6.6E-08	6.5E-10	1.8E-08	8.2E-04	8.2E-06		8.3E-04	
Organics Pathway Total Image: Constraint of the system of th	Inorganics Pathway Total					1.1E-02	2.8E-03	2.4E+00	2.4E+00	
Pathway Total – Chemicals 1.1E-02 2.8E-03 2.4E+00 2.4E+00 Perimeter Area Perimeter Area 1.1E-02 2.8E-03 2.2E+00 2.4E+00 Aluminum 1.4E+04 2.2E-03 2.2E-05 5.8E-04 2.2E-03 2.2E-05 4.1E-01 4.1E-01 Arsenic 1.3E+01 1.9E-06 5.7E-07 5.1E-07 6.4E-03 1.9E-03 8.3E-03 Manganese 1.4E+03 2.1E-04 2.1E-06 5.7E-05 4.6E-03 1.1E-03 4.0E+00 H Thallium 6.4E-01 9.8E-08 9.7E-10 2.6E-08 1.2E-03 1.2E-05 1.2E-03 Inorganics Pathway Total Index 1.4E+00 Index+00 Index+00 Index+00	Benzo(<i>a</i>)pyrene	9.2E-02	1.4E-08	1.8E-08	3.7E-09					
Perimeter Area Aluminum 1.4E+04 2.2E-03 2.2E-05 5.8E-04 2.2E-03 2.2E-05 4.1E-01 4.1E-01 Arsenic 1.3E+01 1.9E-06 5.7E-07 5.1E-07 6.4E-03 1.9E-03 8.3E-03 Manganese 1.4E+03 2.1E-04 2.1E-06 5.7E-05 4.6E-03 1.1E-03 4.0E+00 H Thallium 6.4E-01 9.8E-08 9.7E-10 2.6E-08 1.2E-03 1.2E-03 1.2E-03 Inorganics Pathway Total 1.4E+00 4.4E+00 4.4E+00	Organics Pathway Total									
Aluminum 1.4E+04 2.2E-03 2.2E-05 5.8E-04 2.2E-03 2.2E-05 4.1E-01 4.1E-01 Arsenic 1.3E+01 1.9E-06 5.7E-07 5.1E-07 6.4E-03 1.9E-03 8.3E-03 Manganese 1.4E+03 2.1E-04 2.1E-06 5.7E-05 4.6E-03 1.1E-03 4.0E+00 H Thallium 6.4E-01 9.8E-08 9.7E-10 2.6E-08 1.2E-03 1.2E-03 1.2E-03 Inorganics Pathway Total 1.4E+02 3.1E-03 4.4E+00 4.4E+00						1.1E-02	2.8E-03	2.4E+00	2.4E+00	
Arsenic 1.3E+01 1.9E-06 5.7E-07 5.1E-07 6.4E-03 1.9E-03 8.3E-03 Manganese 1.4E+03 2.1E-04 2.1E-06 5.7E-05 4.6E-03 1.1E-03 4.0E+00 H Thallium 6.4E-01 9.8E-08 9.7E-10 2.6E-08 1.2E-03 1.2E-03 1.2E-03 Inorganics Pathway Total 1.4E+02 3.1E-03 4.4E+00 4.4E+00				Perir	neter Area					
Manganese 1.4E+03 2.1E-04 2.1E-06 5.7E-05 4.6E-03 1.1E-03 4.0E+00 4.0E+00 H Thallium 6.4E-01 9.8E-08 9.7E-10 2.6E-08 1.2E-03 1.2E-05 1.2E-03 Inorganics Pathway Total 1.4E-02 3.1E-03 4.4E+00 4.4E+00	Aluminum	1.4E+04	2.2E-03	2.2E-05	5.8E-04	2.2E-03	2.2E-05	4.1E-01	4.1E-01	
Thallium 6.4E-01 9.8E-08 9.7E-10 2.6E-08 1.2E-03 1.2E-05 1.2E-03 Inorganics Pathway Total 1.4E-02 3.1E-03 4.4E+00 4.4E+00		1.3E+01	1.9E-06	5.7E-07	5.1E-07	6.4E-03	1.9E-03		8.3E-03	
Thallium 6.4E-01 9.8E-08 9.7E-10 2.6E-08 1.2E-03 1.2E-05 1.2E-03 Inorganics Pathway Total 1.4E-02 3.1E-03 4.4E+00 4.4E+00	Manganese	1.4E+03	2.1E-04	2.1E-06	5.7E-05	4.6E-03		4.0E+00	4.0E+00	Н
		6.4E-01				1.2E-03			1.2E-03	
	Inorganics Pathway Total					1.4E-02	3.1E-03	4.4E+00	4.4E+00	
	Pathway Total – Chemicals					1.4E-02	3.1E-03	4.4E+00	4.4E+00	

Table A-20. Load Line 1 Deep Surface Soil Hazards (continued)

		Daily Intake (mg/kg-d)			Hazar	d Quotier	nt (HQ)	Total HI		
	EPC							Across all		
СОРС	(mg/kg)	Ingestion	Dermal	Inhalation	Ingestion	Dermal	Inhalation	Pathways	COC ^{<i>u</i>}	
Water Tower										
Chromium	2.5E+02	3.8E-05	3.8E-07	1.0E-05	2.5E-05	1.9E-05		4.5E-05		
Thallium	6.4E-01	9.8E-08	9.7E-10	2.6E-08	1.2E-03	1.2E-05		1.2E-03		
Inorganics Pathway Total					1.3E-03	3.2E-05		1.3E-03		
Pathway Total – Chemicals					1.3E-03	3.2E-05		1.3E-03		

Table A-20. Load Line 1 Deep Surface Soil Hazards (continued)

a Chemicals of potential concern (OPCs) are identified as chemicals of concern (COCs) if the total hazard index (HI) across all pathways is > 1 (H).

DDE = Dichlorodiphenyldichloroethylene. EPC = Exposure Point Concentration. PCB = Polychlorinated biphenyl. RDX = Hexahydro-1,3,5-trinitro-1,3,5-triazine.

		Daily	Intake (m	g/kg-d)		Risk		Total Risk	
CODC	EPC	T (*	D 1		.	D		Across all	COCª
СОРС	(mg/kg)					Dermal	Inhalation	Pathways	COC
				Guard Train	nee				
Aluminum	1.3E+04	6.9E-04	6.8E-06	13 and -10 1.8E-04					1
Antimony	5.7E+00	0.9E-04 3.1E-07	3.1E-00	8.2E-04					
Arsenic	1.1E+01	6.1E-07	1.8E-07	1.6E-07	9.1E-07	2.7E-07	2.4E-06	3.6E-06	R
Cadmium	5.2E+00	2.8E-07	2.8E-09	7.6E-08	9.1E-07	2.712-07	4.8E-07	4.8E-07	K
Chromium	3.5E+01	1.9E-06	1.9E-09	5.1E-07			4.61-07	4.01-07	
Copper	1.8E+02	9.8E-06	9.7E-08	2.6E-06					
Manganese	1.2E+03	6.6E-05	6.6E-07	1.8E-05					
Thallium	4.9E-01	2.7E-08	2.7E-10	7.2E-09					
Zinc	5.5E+02	3.0E-05	3.0E-07	7.9E-06					
Inorganics Pathway Total	5.51102	5.0E 05	5.01 07	7.51 00	9.1E-07	2.7E-07	2.9E-06	4.1E-06	
2,4,6-Trinitrotoluene	2.3E+01	1.3E-06	1.3E-06	3.4E-07	3.8E-08	3.8E-08	2.91 00	7.6E-08	
2,4-Dinitrotoluene	1.4E+00	7.6E-08	7.5E-08	2.0E-08	5.1E-08	5.1E-08		1.0E-07	
Benzo(<i>a</i>)pyrene	3.7E-01	2.0E-08	2.6E-08	5.4E-09	1.5E-07	1.9E-07	1.7E-08	3.5E-07	
PCB-1254	1.7E+00	9.3E-08	1.3E-07	2.5E-08	1.9E-07	2.6E-07	4.9E-08	4.9E-07	
RDX	3.4E+00	1.9E-07	1.9E-07	5.0E-08	2.1E-08	2.0E-08		4.1E-08	
Organics Pathway Total	0112100	102 07	102 07	0.02.00	4.4E-07	5.6E-07	6.6E-08	1.1E-06	
Pathway Total – Chemicals					1.4E-06	8.3E-07	3.0E-06	5.1E-06	
			CB-14. CF	3-17, and CA		01012 07	0.02.00	0112 00	
Aluminum	1.9E+04	1.0E-03	1.0E-05	2.8E-04	10				
Arsenic	2.1E+01	1.1E-06	3.3E-07	3.0E-07	1.7E-06	5.0E-07	4.5E-06	6.7E-06	R
Barium	1.3E+02	7.1E-06	7.0E-08	1.9E-06	1112 00	0102 07		0112 00	
Cadmium	2.0E+00	1.1E-07	1.1E-09	3.0E-08			1.9E-07	1.9E-07	
Manganese	1.1E+03	6.1E-05	6.1E-07	1.6E-05					
Nickel	3.1E+01	1.7E-06	1.6E-08	4.4E-07					
Thallium	8.8E-01	4.8E-08	4.8E-10	1.3E-08					
Vanadium	3.4E+01	1.8E-06	1.8E-08	4.9E-07					
Inorganics Pathway Total					1.7E-06	5.0E-07	4.7E-06	6.9E-06	
2,4,6-Trinitrotoluene	4.5E+00	2.5E-07	2.4E-07	6.5E-08	7.4E-09	7.3E-09		1.5E-08	
Benz(<i>a</i>)anthracene	6.4E-01	3.5E-08	4.5E-08	9.3E-09	2.5E-08	3.3E-08	2.9E-09	6.1E-08	
Benzo(<i>a</i>)pyrene	8.2E-01	4.5E-08	5.8E-08	1.2E-08	3.3E-07	4.2E-07	3.7E-08	7.8E-07	
Benzo(<i>b</i>)fluoranthene	1.1E+00	6.0E-08	7.7E-08	1.6E-08	4.4E-08	5.6E-08	5.0E-09	1.1E-07	
Dibenz(<i>a</i> , <i>h</i>)anthracene	1.8E-01	9.8E-09	1.3E-08	2.6E-09	7.2E-08	9.2E-08	8.1E-09	1.7E-07	
Indeno(1,2,3-cd)pyrene	6.4E-01	3.5E-08	4.5E-08	9.3E-09	2.5E-08	3.3E-08	2.9E-09	6.1E-08	
PCB-1254	4.7E+00	2.6E-07	3.6E-07	6.8E-08	5.1E-07	7.1E-07	1.4E-07	1.4E-06	R
RDX	2.1E+01	1.2E-06	1.2E-06	3.1E-07	1.3E-07	1.3E-07		2.6E-07	
Organics Pathway Total					1.1E-06	1.5E-06	1.9E-07	2.8E-06	
Pathway Total – Chemicals					2.8E-06	2.0E-06	4.9E-06	9.7E-06	
			CB	3 and -801					
Aluminum	1.2E+04	6.6E-04	6.5E-06	1.7E-04					
Antimony	1.1E+02	6.0E-06	5.9E-08	1.6E-06					
Arsenic	1.3E+01	7.0E-07	2.1E-07	1.9E-07	1.1E-06	3.1E-07	2.8E-06	4.2E-06	R
Cadmium	6.3E+00	3.4E-07	3.4E-09	9.1E-08			5.7E-07	5.7E-07	
Manganese	1.3E+03	6.9E-05	6.8E-07	1.8E-05					
Thallium	6.0E-01	3.3E-08	3.2E-10	8.7E-09					
Inorganics Pathway Total					1.1E-06	3.1E-07	3.4E-06	4.8E-06	
Benz(<i>a</i>)anthracene	1.4E+01	7.6E-07	9.8E-07	2.0E-07	5.6E-07	7.2E-07	6.3E-08	1.3E-06	R
Benzo(a)pyrene	1.3E+01	7.1E-07	9.1E-07	1.9E-07	5.2E-06	6.7E-06	5.9E-07	1.2E-05	R
Benzo(b)fluoranthene	1.5E+01	8.2E-07	1.1E-06	2.2E-07	6.0E-07	7.7E-07	6.8E-08	1.4E-06	R
Dibenz(a,h)anthracene	1.2E+00	6.3E-08	8.1E-08	1.7E-08	4.6E-07	5.9E-07	5.2E-08	1.1E-06	R
Dieldrin	3.3E-02	1.8E-09	1.8E-09	4.8E-10	2.9E-08	2.9E-08	7.8E-09	6.6E-08	

Table A-21. Load Line 1 Deep Surface Soil Risks

		Daily	Intake (m	g/kg-d)		Risk	-	Total Risk	
CODC	EPC	.	ь .		.			Across all	COC
COPC	(mg/kg)	Ingestion		Inhalation			Inhalation	Pathways	COC
Indeno(1,2,3-cd)pyrene	8.7E+00	4.7E-07	6.1E-07	1.3E-07	3.5E-07	4.5E-07	3.9E-08	8.3E-07	
PCB-1254	4.3E+00	2.3E-07	3.2E-07	6.2E-08	4.7E-07	6.5E-07	1.2E-07	1.2E-06	R
Organics Pathway Total					7.6E-06	9.9E-06	9.4E-07	1.8E-05	
Pathway Total – Chemicals					8.7E-06	1.0E-05	4.3E-06	2.3E-05	<u> </u>
	1.05.04	5 5E 04		and CA-6/6	A				
Aluminum	1.0E+04	5.5E-04	5.4E-06	1.5E-04	0.010.07	0 (E 07	2.45.06	2.55.06	
Arsenic	1.1E+01	5.9E-07	1.8E-07	1.6E-07	8.9E-07	2.6E-07	2.4E-06	3.5E-06	R
Barium	1.3E+02	7.2E-06	7.1E-08	1.9E-06			1 (E 07	1 (E 07	<u> </u>
Cadmium	1.8E+00	9.7E-08	9.6E-10	2.6E-08			1.6E-07	1.6E-07	<u> </u>
Chromium	2.4E+01	1.3E-06	1.3E-08	3.5E-07					
Copper	9.9E+01	5.4E-06	5.3E-08	1.4E-06					<u> </u>
Manganese	6.8E+02	3.7E-05	3.7E-07	9.8E-06					<u> </u>
Mercury	3.1E-01	1.7E-08	1.7E-10	4.5E-09					<u> </u>
Thallium	5.3E-01	2.9E-08	2.9E-10	7.7E-09					┝──┤
Vanadium	1.9E+01	1.0E-06	1.0E-08	2.7E-07	0 OF 07	A (E 07	2.55.06	2.75.06	
Inorganics Pathway Total	C 4E - 00	2 55 07	2 45 07	0.000.000	8.9E-07	2.6E-07	2.5E-06	3.7E-06	
1,3-Dinitrobenzene	6.4E+00	3.5E-07	3.4E-07	9.2E-08	5 AE 07	5 AE 07		1.1E.06	D
2,4,6-Trinitrotoluene	3.3E+02	1.8E-05	1.8E-05	4.8E-06	5.4E-07	5.4E-07		1.1E-06	R
2,6-Dinitrotoluene	8.6E-01	4.7E-08	4.6E-08	1.2E-08	3.2E-08	3.2E-08		6.3E-08	<u> </u>
4,4'-DDE	1.2E+00	6.5E-08	6.4E-08	1.7E-08	2.2E-08	2.2E-08	2.05.00	4.4E-08	<u> </u>
Benz(<i>a</i>)anthracene	6.4E-01	3.5E-08	4.5E-08	9.3E-09	2.6E-08	3.3E-08	2.9E-09	6.1E-08	<u> </u>
Benzo(<i>a</i>)pyrene Benzo(<i>b</i>)fluoranthene	6.1E-01	3.3E-08	4.3E-08	8.8E-09	2.4E-07	3.1E-07 3.4E-08	2.7E-08	5.8E-07	<u> </u>
	6.6E-01	3.6E-08	4.6E-08	9.6E-09	2.6E-08		3.0E-09	6.3E-08	<u> </u>
Dibenz(<i>a</i> , <i>h</i>)anthracene	9.6E-02	5.2E-09	6.7E-09	1.4E-09	3.8E-08	4.9E-08	4.3E-09	9.2E-08	
Dieldrin Endrin Aldeberde	9.8E-02	5.4E-09	5.3E-09	1.4E-09	8.6E-08	8.5E-08	2.3E-08	1.9E-07	<u> </u>
Endrin Aldehyde	4.4E+00 7.2E-02	2.4E-07 3.9E-09	2.4E-07 3.9E-09	6.4E-08	1.0E.00	1.7E.09	4.7E.00	4.0E.09	<u> </u>
Heptachlor PCB-1254				1.0E-09 1.6E-05	1.8E-08	1.7E-08 1.7E-04	4.7E-09	4.0E-08	Ъ
RDX	1.1E+03 8.9E+01	6.0E-05	8.3E-05		1.2E-04		3.2E-05	3.2E-04	R
		4.9E-06	4.8E-06	1.3E-06	5.3E-07	5.3E-07	4.5E.00	1.1E-06	R
gamma-Chlordane	8.9E-01	4.8E-08	1.9E-08	1.3E-08	1.7E-08	6.7E-09	4.5E-09	2.8E-08	<u> </u>
Organics Pathway Total					1.2E-04	1.7E-04	3.2E-05	3.2E-04	<u> </u>
Pathway Total – Chemicals		<i>C</i> 1	II.	CD 12 22	1.2E-04	1.7E-04	3.5E-05	3.3E-04	
A	2.25.00		1.2E-09	CB-12, -23, -	8, and -22)				
Antimony	2.3E+00	1.2E-07		3.3E-08	0.0E.07	2.05.07	2.7E.06	2.05.06	D
Arsenic	1.2E+01	6.6E-07	2.0E-07	1.8E-07	9.9E-07	3.0E-07	2.7E-06	3.9E-06	R
Cadmium	3.3E+00	1.8E-07	1.8E-09	4.8E-08			3.0E-07	3.0E-07	<u> </u>
Manganese	8.3E+02	4.5E-05	4.5E-07	1.2E-05					<u> </u>
Thallium	4.3E-01	2.4E-08	2.3E-10	6.3E-09	0.05.07	2.05.07	2.05.06	4.00.00	<u> </u>
Inorganics Pathway Total	0.05.00	5 0E 00	6.50.00	1.25.00	9.9E-07	3.0E-07	3.0E-06	4.2E-06	
Benzo(<i>a</i>)pyrene	9.2E-02	5.0E-09	6.5E-09	1.3E-09	3.7E-08	4.7E-08	4.1E-09	8.8E-08	
Organics Pathway Total					3.7E-08	4.7E-08	4.1E-09	8.8E-08	┣───┨
Pathway Total – Chemicals					1.0E-06	3.4E-07	3.0E-06	4.3E-06	
Aluminum	1 4E+04	7.95.04		<i>neter Area</i>					<u> </u>
Aluminum	1.4E+04	7.8E-04	7.7E-06	2.1E-04	1.05.06	2 15 07	2.7E.06	4 1E 0C	
Arsenic	1.3E+01	6.9E-07	2.0E-07	1.8E-07	1.0E-06	3.1E-07	2.7E-06	4.1E-06	R
Manganese Thallium	1.4E+03	7.6E-05	7.5E-07	2.0E-05					<u> </u>
	6.4E-01	3.5E-08	3.5E-10	9.3E-09	1.05.06	2 15 07	2.75.06	4 1E 0C	<u> </u>
Inorganics Pathway Total					1.0E-06	3.1E-07	2.7E-06	4.1E-06	<u> </u>
Pathway Total - Chemicals				l	1.0E-06	3.1E-07	2.7E-06	4.1E-06	

Table A-21. Load Line 1 Deep Surface Soil Risks (continued)

		Daily Intake (mg/kg-d)				Risk		Total Risk	
	EPC							Across all	
COPC	(mg/kg)	Ingestion	Dermal	Inhalation	Ingestion	Dermal	Inhalation	Pathways	COC ^a
Chromium	2.5E+02	1.4E-05	1.4E-07	3.6E-06					
Thallium	6.4E-01	3.5E-08	3.5E-10	9.4E-09					
Inorganics Pathway Total									
Pathway Total – Chemicals									

Table A-21. Load Line 1 Deep Surface Soil Risks (continued)

^{*a*} Chemicals of potential concern (COPCs) are identified as chemicals of concern (COCs) if the total incremental lifetime cancer risk across all pathways is > 1E-06 (R). DDE = Dichlorodiphenyldichloroethylene. EPC = Exposure point concentration.

PCB = Polychlorinated biphenyl. RDX = Hexahydro-1,3,5-trinitro-1,3,5-triazine.

		Daily	Intake (m	a/ka-d)	Ha	zard Quo	tient	Total HI	
	EPC	Dany	maxe (m	g/Rg-u)	114			Across all	
COPC	(mg/kg)	Ingestion	Dermal	Inhalation	Ingestion	Dermal	Inhalation		COC ^a
		8		Farmer Ad					
				13 and -10					
Antimony	6.2E+01	8.4E-05	1.9E-06	1.8E-08	2.1E-01	3.2E-02		2.4E-01	
Cadmium	1.6E+01	2.3E-05	5.1E-07	4.9E-09	2.3E-02	2.1E-02		4.3E-02	
Zinc	2.6E+03	3.6E-03	8.2E-05	7.8E-07	1.2E-02	9.1E-04		1.3E-02	
Inorganics Pathway Total					2.5E-01	5.4E-02		3.0E-01	
Pathway Total – Chemicals					2.5E-01	5.4E-02		3.0E-01	
			CB-4/4A	and CA-6/6	6A		•	•	
Cadmium	2.4E+00	3.3E-06	7.5E-08	7.1E-10	3.3E-03	3.0E-03		6.3E-03	
Copper	7.9E+01	1.1E-04	2.5E-06	2.3E-08	2.7E-03	6.2E-05		2.8E-03	
Inorganics Pathway Total					6.0E-03	3.1E-03		9.1E-03	
2,4,6-Trinitrotoluene	1.0E+03	1.4E-03	3.1E-03	3.0E-07	2.8E+00	6.3E+00		9.0E+00	Н
RDX	4.0E+01	5.5E-05	1.2E-04	1.2E-08	1.8E-02	4.2E-02		6.0E-02	
Organics Pathway Total					2.8E+00	6.3E+00		9.1E+00	
Pathway Total – Chemicals					2.8E+00	6.3E+00		9.1E+00	
			Resident	Farmer Ch	ild				
			CB-	13 and -10					
Antimony	6.2E+01	7.9E-04	1.7E-06	4.3E-08	2.0E+00	2.9E-02		2.0E+00	Н
Cadmium	1.6E+01	2.1E-04	4.6E-07	1.1E-08	2.1E-01	1.9E-02		2.3E-01	
Zinc	2.6E+03	3.4E-02	7.4E-05	1.8E-06	1.1E-01	8.2E-04		1.1E-01	
Inorganics Pathway Total					2.3E+00	4.8E-02		2.3E+00	
Pathway Total – Chemicals					2.3E+00	4.8E-02		2.3E+00	
			CB-4/4 A	and CA-6/6	6A				
Cadmium	2.4E+00	3.1E-05	6.8E-08	1.7E-09	3.1E-02	2.7E-03		3.3E-02	
Copper	7.9E+01	1.0E-03	2.2E-06	5.5E-08	2.5E-02	5.5E-05		2.5E-02	
Inorganics Pathway Total					5.6E-02	2.8E-03		5.9E-02	
2,4,6-Trinitrotoluene	1.0E+03	1.3E-02	2.8E-03	7.0E-07	2.6E+01	5.7E+00		3.1E+01	Н
RDX	4.0E+01	5.1E-04	1.1E-04	2.8E-08	1.7E-01	3.7E-02		2.1E-01	
Organics Pathway Total					2.6E+01	5.7E+00		3.2E+01	
Pathway Total – Chemicals					2.6E+01	5.7E+00		3.2E+01	

Table A-22. Load Line 1 Subsurface Soil Hazards

^a Chemicals of potential concern (COPCs) are identified as chemicals of concern (COCs) if the total hazard index (HI) across all pathways is > 1 (H).
EPC = Exposure point concentration.
RDX = Hexahydro-1,3,5-trinitro-1,3,5-triazine.

		Daily Intake (mg/kg-d)			Risk			Total Risk	
	EPC	Dung		<u>, </u>				Across all	
COPC	(mg/kg)	Ingestion	Dermal	Inhalation	Ingestion	Dermal	Inhalation	Pathways	COC ^a
	•			Farmer Ad					
CB-13 and -10									
Antimony	6.2E+01	3.6E-05	8.3E-07	7.8E-09					
Cadmium	1.6E+01	9.7E-06	2.2E-07	2.1E-09			1.3E-08	1.3E-08	
Zinc	2.6E+03	1.5E-03	3.5E-05	3.3E-07					
Inorganics Pathway Total							1.3E-08	1.3E-08	
Pathway Total – Chemicals							1.3E-08	1.3E-08	
			CB-4/4	A and CA-6/6	5A				
Cadmium	2.4E+00	1.4E-06	3.2E-08	3.1E-10			1.9E-09	1.9E-09	
Copper	7.9E+01	4.6E-05	1.1E-06	1.0E-08					
Inorganics Pathway Total							1.9E-09	1.9E-09	
2,4,6-Trinitrotoluene	1.0E+03	5.9E-04	1.3E-03	1.3E-07	1.8E-05	4.0E-05		5.8E-05	R
RDX	4.0E+01	2.3E-05	5.3E-05	5.1E-09	2.6E-06	5.9E-06		8.5E-06	R
Organics Pathway Total					2.0E-05	4.6E-05		6.7E-05	
Pathway Total – Chemicals					2.0E-05	4.6E-05	1.9E-09	6.7E-05	
			Resident	t Farmer Ch	ild				
	-	-	СВ-	13 and -10			-		
Antimony	6.2E+01	6.8E-05	1.5E-07	3.7E-09					
Cadmium	1.6E+01	1.8E-05	4.0E-08	9.8E-10			6.2E-09	6.2E-09	
Zinc	2.6E+03	2.9E-03	6.3E-06	1.6E-07					
Inorganics Pathway Total							6.2E-09	6.2E-09	
Pathway Total – Chemicals							6.2E-09	6.2E-09	
	-	-		A and CA-6/6	6A		-		
Cadmium	2.4E+00	2.6E-06	5.8E-09	1.4E-10			9.0E-10	9.0E-10	
Copper	7.9E+01	8.6E-05	1.9E-07	4.7E-09					
Inorganics Pathway Total							9.0E-10	9.0E-10	
2,4,6-Trinitrotoluene	1.0E+03	1.1E-03	2.4E-04	6.0E-08	3.3E-05	7.3E-06		4.0E-05	R
RDX	4.0E+01	4.4E-05	9.6E-06	2.4E-09	4.8E-06	1.1E-06		5.9E-06	R
Organics Pathway Total					3.8E-05	8.3E-06		4.6E-05	
Pathway Total – Chemicals					3.8E-05	8.3E-06	9.0E-10	4.6E-05	

Table A-23. Load Line 1 Subsurface Soil Risks

^a Chemicals of potential concern (COPCs) are identified as chemicals of concern (COCs) if the total incremental lifetime cancer risk across all pathways is > 1E-06 (R) EPC = Exposure point concentration. RDX = Hexahydro-1,3,5-trinitro-1,3,5-triazine.

APPENDIX B MODELING FOR LOAD LINE 1: WATERFOWL CONCENTRATIONS FROM SEDIMENT AND SURFACE WATER AND FISH CONCENTRATIONS FROM SURFACE WATER

THIS PAGE INTENTIONALLY LEFT BLANK.

APPENDIX B

MODELING FOR LOAD LINE 1: WATERFOWL CONCENTRATIONS FROM SEDIMENT AND SURFACE WATER AND FISH CONCENTRATIONS FROM SURFACE WATER

THIS PAGE INTENTIONALLY LEFT BLANK.

CONTENTS

TABI ACR	LES ONYMS	B-v B-vii
B1.0	INTRODUCTION	B-1
B2.0	DETERMINING WATERFOWL CONCENTRATIONS	B-1
	B2.1 ESTIMATING AQUATIC PLANT TISSUE CONCENTRATIONS	B-1
	B2.2 ESTIMATING SEDIMENT INVERTEBRATE TISSUE CONCENTRATIONS	B-2
	B2.3 ESTIMATING SEDIMENT POREWATER CONCENTRATIONS	B-3
	B2.4 ESTIMATING DUCK WHOLE-BODY TISSUE CONCENTRATIONS	B-3
	B2.5 UNCERTAINTIES IN ESTIMATING WATERFOWL CONCENTRATIONS	B-3
	B2.6 WATERFOWL SUMMARY	B-4
B3.0	DETERMINING FISH CONCENTRATIONS	B-4
B4.0	REFERENCES	B-4

THIS PAGE INTENTIONALLY LEFT BLANK

TABLES

B-1	Summary Concentration Data for Human Health COPCs in Sediment at Load Line 1	B-9
B-2	Summary Concentration Data for Human Health COPCs in Surface Water at Load Line 1	B-9
B-3	Bioaccumulation Factors for Estimating Duck Tissue Concentrations for Human Health	
	COPCs in Sediment and Surface Water in Outlet C and Charlie's Pond and Outlets D, E,	
	and F, and Criggy's Pond	B- 10
B-4	Receptor Parameters for Mallard Ducks (Anas platyrhynchos)	B- 11
B-5	Calculation of Dabbling Duck Tissue Concentrations for Human Health COPCs in	
	Sediment and Surface Water in Outlet C and Charlie's Pond, Load Line 1	B-12
B-6	Calculation of Dabbling Duck Tissue Concentrations for Human Health COPCs in	
	Sediment and Surface Water in Outlets D, E, and F and Criggy's Pond, Load Line 1	B-13
B-7	Dabbling Duck Tissue Concentrations for Human Health COPCs in Sediment and Surface	
	Water at Load Line 1	B- 14
B-8	Determination of Fish Concentrations for Surface Water COPCs at Load Line 1	B-15

THIS PAGE INTENTIONALLY LEFT BLANK

ACRONYMS

BCF _{inv}	water-to-tissue bioconcentration factor
BHHRA	baseline human health risk assessment
BSAF	sediment-to-tissue bioaccumulation factor
BTF	biotransfer factor
COPC	chemical of potential concern
EC	exposure concentration
EPA	U.S. Environmental Protection Agency
EPC	exposure point concentration
EU	exposure unit
foc	fraction organic carbon
HAZWRAP	Hazardous Waste Remedial Actions Program
K _{ow}	octanol-water partitioning coefficient
RTLS	Ravenna Training and Logistics Site
RVAAP	Ravenna Army Ammunition Plant

THIS PAGE INTENTIONALLY LEFT BLANK

B1.0 INTRODUCTION

This appendix documents the process for determining exposure point concentrations (EPCs) that are used in the baseline human health risk assessment (BHHRA) for waterfowl and fish. Section B2 discusses the process for waterfowl and Section B3 discussed the process for fish; references are provided in Section B4.

B2.0 DETERMINING WATERFOWL CONCENTRATIONS

Numerous waterfowl are harvested and eaten by humans in northeast Ohio, where the Ravenna Army Ammunition Plant (RVAAP) is located. Ohio is in the Mississippi Flyway, and many species of waterfowl migrate through the RVAAP area in the spring and fall (ODNR 2003). Other species breed in the area and are summer residents. A 1993 census of waterfowl at Ravenna found bufflehead, Canada goose, wood duck, hooded merganser, mallard, blue-winged teal, ring-necked duck, American coot, red-breasted merganser, greater scaup, red-headed duck, common goldeneye, Northern shoveler, and American widgeon (ODNR 1993).

The mallard will be used as a representative species of dabbling-type ducks for the development of EPCs for the Hunter/Trapper scenario. According to Tim Morgan, Office of Species Conservation forester, the most likely species hunted at the Ravenna Training and Logistics Site (RTLS) are mallards, wood ducks, and Canada Geese (Morgan 2003). The goose is primarily herbivorous, while the mallard and wood duck are omnivorous and dabble for seeds, rootlets, tubers of aquatic plants, and aquatic insects, such as snails, small clams, insects, worms, and crustaceans (Ducks Unlimited 2003; EPA 1993a).

To calculate the concentrations of chemicals of potential concern (COPCs) in duck whole body tissue, biouptake and concentration factors are required for each transfer represented in the exposure model for the duck. The duck is exposed directly and indirectly via the food web to the measured concentrations of COPCs in sediment (Table B-1) and surface water (Table B-2) at the RVAAP Load Line 1. For calculating whole body concentrations, ducks are assumed to be exposed by the following routes:

- ingestion of aquatic plants that are exposed to surface water, sediment, and sediment porewater;
- ingestion of sediment invertebrates that are exposed to surface water, sediment, and sediment porewater;
- ingestion of surface water; and
- incidental ingestion of sediment.

The values and sources of all biouptake and concentration factors used in the calculation of duck tissue concentrations are given in Table B-3.

B2.1 ESTIMATING AQUATIC PLANT TISSUE CONCENTRATIONS

The exposure concentrations (ECs) of inorganic COPCs (metals) in aquatic plant tissues eaten by dabbling ducks are assumed to result primarily from uptake from sediment by rooted aquatic plants. The

resulting concentrations are estimated using soil-to-plant uptake factors (soil-to-plant Bv) reported by Hazardous Waste Remedial Actions Program (HAZWRAP) (1994), because it is assumed that the root uptake into plants of inorganics in sediment and soil is similar. That is, for inorganic COPCs in sediment,

Aquatic Plant $EC = soil-to-plant Bv \times Sediment EC$.

For organic COPCs, plant tissue concentrations are estimated from water-to-algae uptake factors (water-to-algae Bv) recommended in U.S. Environmental Protection Agency (EPA) guidance for screening-level risk assessments at hazardous waste combustion facilities (EPA 1999). For organic COPCs, the Bv is multiplied by the larger of the measured surface water EC and estimated sediment porewater ECs, representing floating plants and rooted plants, respectively. That is, for organic COPCs,

Aquatic Plant EC = water-to-algae $Bv \times Surface$ Water EC

or

Aquatic Plant EC = water-to-algae Bv × Sediment Porewater EC.

The method of estimating sediment porewater ECs is described below, following the method for estimating sediment invertebrate tissue ECs.

B2.2 ESTIMATING SEDIMENT INVERTEBRATE TISSUE CONCENTRATIONS

Water-to-tissue bioconcentration factors (BCF_{inv}) and sediment-to-tissue bioaccumulation factors (BSAFs) are required to predict the tissue concentration in sediment invertebrates exposed to COPCs in sediment. The values used are those recommended in EPA (1999). For organic COPCs with log octanol-water partitioning coefficient (K_{ow}) \leq 5, the sediment porewater EC and BCF_{inv} are used to estimate the tissue concentration in sediment invertebrates. For inorganic COPCs and organic COPCs with log K_{ow} > 5, the sediment EC and BSAF are used. That is, for inorganic COPCs and organic COPCs with log K_{ow} > 5,

Sediment Invertebrate $EC = BSAF \times Sediment EC$,

and for organic COPCs with log $K_{ow} \leq 5$,

Sediment Invertebrate $EC = BCF_{inv} \times Sediment Porewater EC$.

This approach, modeled after the method of calculating fish tissue concentrations for human health risk assessment (EPA 1998), assumes that sediment invertebrates primarily take up COPCs either from bulk sediment or sediment porewater as a function of the COPCs' different affinities for sediment. Inorganic COPCs (metals) and organic COPCs with log $K_{ow} > 5$ (polychlorinated biphenyls, most semivolatile organic compounds) are assumed to be strongly associated with sediment. The BSAF is assumed to capture the relationship between sediment invertebrate tissue concentration and bulk sediment concentration of these COPCs resulting primarily from ingestion of sediment. The organic COPCs with log $K_{ow} \leq 5$ (i.e., explosives; phenanthrene; and 1,2-dichloroethene) are assumed to be less strongly associated with sediment and, thus, reach an equilibrium with sediment porewater. The BCF_{inv} for these COPCs is assumed to capture the relationship between the concentration in sediment porewater and sediment invertebrate tissue concentration of sediment porewater and sediment and, thus, reach an equilibrium with sediment porewater. The BCF_{inv} for these COPCs is assumed to capture the relationship between the concentration in sediment porewater and sediment invertebrate tissue concentration resulting from direct contact and ingestion of sediment porewater.
B2.3 ESTIMATING SEDIMENT POREWATER CONCENTRATIONS

Sediment porewater concentrations for organic COPCs are estimated from sediment concentrations using the product of the K_{ow} and fraction organic carbon (foc) assuming equilibrium partitioning (EPA 1993b), that is,

Sediment Porewater $EC = Sediment EC/(K_{ow} \times foc)$.

The foc is equal to the total organic carbon concentration measured in Criggy's Pond sediment (Table B-1), reported as 56,700 mg/kg (5.7%, foc = 0.057). The K_{ow} values for organic COPCs are calculated from the log K_{ow} values reported in HAZWRAP (1994).

B2.4 ESTIMATING DUCK WHOLE-BODY TISSUE CONCENTRATIONS

Bioaccumulation in the duck from the plant and animal food, water, and sediment it ingests is estimated using the bioaccumulation factors (BAF_vs) for small birds reported in HAZWRAP (1994).

A diet of 50% plant matter and 50% animal matter is used in the calculation of dabbling ducks' (as represented by the mallard) whole-body tissue concentrations. According to EPA (1993a), female mallards, during the breeding season, consume large amounts of animals dwelling in or on the sediment of lakes and streams, while the information for males in Louisiana coastal marsh-prairie indicates they are primarily herbivorous during the winter. Thus, the ratio of animal-to-plant food differs by sex and by time of year. The 1:1 ratio is assumed to be representative of the diet of harvested ducks. Mallards and other dabbling ducks drink water and are likely to ingest small amounts of sediment incidentally while feeding; the calculations use a conservative value of 2% of food eaten daily for the amount of sediment ingested (EPA 1993a). The food ingestion rate and water ingestion rates for the mallard are given in Table B-4.

For the purposes of estimating duck tissue concentrations for human health COPCs, it is assumed that ducks spend enough time at the RVAAP Load Line 1 exposure units (EUs) prior to harvesting to achieve the predicted tissue concentration of COPCs via the different pathways.

The calculation of duck tissue concentrations for human health COPCs at the two RVAAP Load Line 1 EUs are shown in Tables B-5 and B-6.

B2.5 UNCERTAINTIES IN ESTIMATING WATERFOWL CONCENTRATIONS

The use of published bioaccumulation and uptake factors, especially the large water-to-tissue bioconcentration factors for sediment invertebrates (BCF_{inv}), introduces uncertainty to the predicted duck tissue concentrations. The bioaccumulation factors for the duck (BAFv) are the values for cattle, and they have not been adjusted for differences in fat content, exposure duration, and amount of COPC ingested per unit tissue. Other sources of uncertainty include the actual average diet of the ducks harvested and consumed by hunters at RVAAP and the amount of food obtained from the RVAAP Loan Line 1 EUs by harvested ducks. Another uncertainty involves the amount of floating plants (e.g., duckweed) eaten by dabbling ducks at RVAAP. When these plants are exposed to inorganic COPCs in surface water rather than in sediment, estimated duck tissue concentrations may be underestimated for some inorganics.

B2.6 WATERFOWL SUMMARY

The estimated concentrations in ducks of human health COPCs in sediment and surface water at RVAAP Load Line 1 EUs are summarized in Table B-7. Note that duck tissue concentrations in Outlet C and Charlie's' Pond are lower than at Outlets D, E, and F, and Criggy's Pond for comparable COPCs (e.g., arsenic, lead, and manganese).

B3.0 DETERMINING FISH CONCENTRATIONS

As discussed in Section 3.2.2 of the Supplemental BHHRA, catch and release fishing is allowed for personnel permanently assigned to the RTLS and their guests (OHARNG 2001). When the installation restoration program is done, the goal is to have unrestricted fishing and taking of fish from all ponds. Therefore, this BHHRA evaluates a receptor that is assumed to ingest fish caught on-site.

EPCs in fish are estimated from the concentrations found in surface water. Human health COPCs for surface water are available for two EUs: (1) Outlet C and Charlie's Pond and (2) Outlets D, E, and F, and Criggy's Pond. Arsenic, chromium, and lead are COPCs for Outlet C and Charlie's Pond, while arsenic is the only COPC for Outlets D, E, and F, and Criggy's Pond (see Table B-2).

The process for determining fish concentrations from surface water concentrations is a relatively simple modeling process, which involves the use of a water-to-fish biotransfer factor (BTF). The equation for determining the fish concentration is

$$C_{fish} = C_{sw} \times BTF$$
,

where

 C_{fish} = concentration in fish for COPC (mg/kg), C_{sw} = EC in surface water for COPC (mg/L), BTF = water-to-fish BTF for COPC (L/kg).

Table B-8 displays the surface water ECs (also shown on Table B-2), the water-to-fish BTFs, and the resulting fish concentrations for all surface water COPCs. The BTF values used in this BHHRA are taken from a database supplied by the Oak Ridge National Laboratory (2004). The resulting fish concentrations are used in the BHHRA to quantify carcinogenic risks and non-carcinogenic hazards for the ingestion of fish pathway. Note that because lead does not have EPA-approved oral toxicity values, risks and hazards cannot be quantified for this surface water COPC (see Chapter 4.0 of the Supplemental BHHRA for a discussion of toxicity values used).

B4.0 REFERENCES

Ducks Unlimited 2003. Ducks Unlimited website, www.ducks.org/waterfowling/gallery/.

EPA (U.S. Environmental Protection Agency) 1993a. *Wildlife Exposure Factors Handbook*, EPA/600/R-93/187a, Office of Research and Development, Washington, D.C.

EPA (U.S. Environmental Protection Agency) 1993b. *Technical Basis for Deriving Sediment Quality Criteria for Nonionic Organic Contaminants for the Protection of Benthic Organisms by Using Equilibrium Partitioning*, EPA-822-R-93-011, Office of Water, Washington, D.C., September.

EPA (U.S. Environmental Protection Agency) 1998. *Human Health Risk Assessment Protocol for Hazardous Waste Combustion Facilities*, Peer Review Draft, EPA/530/D-98/001B, U.S. Environmental Protection Agency, Washington, D.C.

EPA (U.S. Environmental Protection Agency) 1999. Screening Level Ecological Risk Assessment Protocol for Hazardous Waste Combustion Facilities, Vol. 1, EPA 530-D-99-001A, Office of Solid Waste and Emergency Response, Washington, D.C., August.

HAZWRAP (Hazardous Waste Remedial Action Program) 1994. Loring Air Force Base Risk Assessment Methodology, Martin Marietta Energy Systems, Inc., Oak Ridge, TN, Final, August.

Morgan, T.M. 2003. Personal communication from Tim Morgan, Office of Species Conservation at RVAAP, Ravenna, OH, to Sharon Robers, Science Applications International Corporation, Oak Ridge, TN, April 14.

ODNR (Ohio Department of Natural Resources) 1993. Species and Plant Communities Inventory (1993), Ravenna Army Ammunition Plant, Division of Natural Areas and Preserves.

ODNR (Ohio Department of Natural Resources) 2003. ODNR website, www.dnr.state.oh.us/wildlife/.

OHARNG (Ohio Army National Guard) 2001. Ravenna Training and Logistics Site Integrated Natural Resources Management Plan, October.

ORNL (Oak Ridge National Laboratory) 2004. *Risk Assessment Information System*, maintained by the University of Tennessee for the Oak Ridge National Laboratory, Oak Ridge, TN, Available at http://risk.lsd.ornl.gov/rap_hp.shtml.

THIS PAGE INTENTIONALLY LEFT BLANK.

TABLES

THIS PAGE INTENTIONALLY LEFT BLANK

Analyte	CAS Number	Units	Results > Detection Limit	Average Result	Minimum Detect	Maximum Detect	95% UCL of Mean	Exposure Concentration				
		0	Outlet C and	Charlie's P	ond							
Explosives												
2-Amino-4,6-Dinitrotoluene	35572-78-2	mg/kg	2/5	2.01E-01	1.90E-01	4.40E-01	3.31E-01	3.31E-01				
4-Amino-2,6-Dinitrotoluene	19406-51-0	mg/kg	2/5	2.39E-01	3.70E-01	4.50E-01	3.90E-01	3.90E-01				
Metals												
Arsenic	7440-38-2	mg/kg	8/8	1.54E+01	7.60E+00	5.05E+01	2.50E+01	2.50E+01				
Manganese	7439-96-5	mg/kg	7/7	9.31E+02	2.37E+02	2.35E+03	3.06E+03	2.35E+03				
	Organics-Pesticides/PCBs											
PCB-1254	11097-69-1	mg/kg	1/2	4.47E-01	8.70E-01	8.70E-01	3.12E+00	8.70E-01				
			Organics-	Semivolatile	<i>е</i>							
Benzo(<i>a</i>)pyrene	50-32-8	mg/kg	2/2	7.00E-02	5.60E-02	8.40E-02	1.58E-01	8.40E-02				
Benzo(g,h,i)perylene	191-24-2	mg/kg	1/2	1.47E-01	5.80E-02	5.80E-02	7.05E-01	5.80E-02				
Phenanthrene	85-01-8	mg/kg	1/2	1.47E-01	5.90E-02	5.90E-02	7.03E-01	5.90E-02				
		Outlet	s D, E, and I	F, and Crig	gy's Pond							
			Μ	etals								
Antimony	7440-36-0	mg/kg	4/6	1.99E+02	2.00E+00	1.18E+03	5.94E+02	5.94E+02				
Arsenic	7440-38-2	mg/kg	6/6	1.46E+01	9.50E+00	2.10E+01	2.15E+01	2.10E+01				
Copper	7440-50-8	mg/kg	6/6	3.09E+02	9.50E+00	1.02E+03	3.24E+05	1.02E+03				
Lead	7439-92-1	mg/kg	6/6	2.45E+02	2.15E+01	1.21E+03	2.64E+04	1.21E+03				
Manganese	7439-96-5	mg/kg	6/6	1.74E+03	4.96E+02	3.38E+03	7.30E+03	3.38E+03				

CAS = Chemical Abstracts Service.

COPC = Chemical of potential concern. PCB = Polychlorinated biphenyl.

UCL = Upper confidence limit.

Table B-2. Summary Concentration Data for Human Health COPCs in Surface Water at Load Line 1

Analyte	CAS Number	Units	Results > Detection Limit	Average Result	Minimum Detect	Maximum Detect	95% UCL of Mean	Exposure Concentration				
	Outlet C and Charlie's Pond											
Metals												
Arsenic	7440-38-2	μg/L	1/1	3.10E+01	3.10E+01	3.10E+01		3.10E+01				
Chromium	7440-47-3	μg/L	1/1	2.40E+00	2.40E+00	2.40E+00		2.40E+00				
Lead	7439-92-1	μg/L	1/1	3.10E+00	3.10E+00	3.10E+00		3.10E+00				
			Outle	ets D, E, and F	', and Criggy's	Pond						
				Me	etals							
Arsenic	7440-38-2	μg/L	1/1	5.10E+00	5.10E+00	5.10E+00		5.10E+00				

CAS = Chemical Abstracts Service. COPC = Chemical of potential concern.

UCL = Upper confidence limit. -- = Not applicable.

Table B-3. Bioaccumulation Factors for Estimating Duck Tissue Concentrations for Human Health COPCs in Sediment and Surface Water in Outlet C and Charlie's Pond and Outlets D, E, and F, and Criggy's Pond

	d	or K _{ow}		log K _{ow}		BCF _{inv}		Bv		BSAF		BAFv
COPC	Value	Source	Value	Source	Value	Source	Value	Source	Value	Source	Value	Source
						Inorganics						
Antimony	NA			NA	7	EPA (1999) ^a	0.04	Baes et al. $(1984)^b$	0.9	EPA (1999) ^c	0.05	Baes et al. $(1984)^d$
Arsenic]	NA		NA	73	EPA (1999) ^a	0.008	Baes et al. $(1984)^b$	0.9	EPA (1999) ^c	0.1	Baes et al. $(1984)^d$
Chromium (all forms)]	NA		NA	3,000	EPA (1999) ^a	0.0015	Baes et al. $(1984)^b$	0.39	EPA (1999) ^a	0.28	Baes et al. $(1984)^d$
Copper]	NA		NA	3,718	EPA (1999) ^a	0.08	Baes et al. $(1984)^b$	0.3	EPA (1999) ^a	0.5	Baes et al. $(1984)^d$
Lead]	NA		NA	5,059	EPA (1999) ^a	0.009	Baes et al. $(1984)^b$	0.63	EPA (1999) ^a	0.015	Baes et al. $(1984)^d$
Manganese K]	NA		NA	4,066	EPA (1999) ^a	0.05	Baes et al. $(1984)^b$	0.9	EPA (1999) ^c	0.02	Baes et al. $(1984)^d$
						PCBs						
PCB-1254	1,000,000	EPA (1990) ^e	6	EPA (1990) ^e		NA	476,829	EPA (1999) ^a	0.53	EPA (1999) ^a	2.90	EPA (1985) ^f
						Explosives						
2-Amino-4,6-	126	SCDM (1993) ^g	2.1	SCDM (1993) ^g	13	EPA (1999) ^g	2,507	EPA (1999) ^g		NA	0.00019	Travis and Arms $(1988)^{h}$
dinitrotoluene												
4-Amino-2,6-	126	SCDM (1993) ^g	2.1	SCDM (1993) ^g	13	EPA (1999) ^g	2,507	EPA (1999) ^g		NA	0.00019	Travis and Arms $(1988)^h$
dinitrotoluene												
						SVOCs						
Benzo(a)pyrene	1,000,000	SCDM (1993) ^{<i>i</i>}	6	SCDM (1993) ^{<i>i</i>}		NA	5,258	EPA (1999) ^a	1.59	EPA (1999) ^a	1.5	Travis and Arms $(1988)^{h}$
Benzo(g,h,i)perylene	3,981,071.71	SCDM (1993) ^{<i>i</i>}	6.6	SCDM (1993) ^{<i>i</i>}		NA	5,258	EPA (1999) ^a	1.59	EPA (1999) ^a	6	Travis and Arms $(1988)^h$
Phenanthrene	31,623	SCDM (1993) ^{<i>i</i>}	4.5	SCDM (1993) ^{<i>i</i>}	4,697	EPA (1999) ^a	5,258	EPA (1999) ^a		NA	0.05	Travis and Arms $(1988)^h$

^{*a*} Recommended value in EPA (1999).

^b SPv (plant uptake) value from Baes et al. (1984) multiplied by 0.2 to adjust from dry weight to 80% moisture wet weight.

^cArithmetic mean of EPA (1999) recommended values for six inorganics: Cd, Cr, Cu, Pb, Hg, and Zn.

^d Ff (ingestion-to-beef transfer) value form Baes et al. (1984) multiplied by cattle ingestion rate of 50 kg/d.

^e EPA (1990) value reported in HAZWRAP (1994).

^f Whole-body BAF for DDT update by pheasants (EPA 1985), used as surrogate for all pesticides.

⁸ Value for 2,6-Dinitrotoluene used as surrogate by Science Applications International Corporation.

^h Biotransfer factor (BTF) calculated from octanol-water partitioning coefficient (K_{ow}): log (BTF) = log(K_{ow}) – 7.6 (Travis and Arms 1988). BTF multiplied by ingestion rate of

12 kg dry wt/d and divided by 0.2 to adjust from weight to 80% moisture wet weight.

ⁱ SCDM (1993) value reported in HAZWRAP (1994).

BAFv = Ingested material-to-bird bioconcentration factor (kg-ingest/kg-tissue).

 $BCF_{inv} = Water-to-invertebrate bioconcentration factor (L/kg) from EPA (1999).$

BSAF = Sediment-to-invertebrate bioconcentration factor (kg-sediment/kg-tissue).

Bv = Aquatic plant uptake factor (kg-sediment/kg-tissue).

COPC = Chemical of potential concern (for human health).

Kd = Correlation coefficient.

 $K_{ow} = Octanol$ -water partitioning coefficient.

NA = Not applicable.

PCB = Polychlorinated biphenyl.

SCDM = Superfund Chemical Data Matrix.

SVOC = Semivolatile organic compound.

Parameter	Definition	Value	Reference/Notes
BW	Body weight (kg)	1.134	Arithmetic mean adult males and females, throughout North America (EPA 1993a)
HR	Home range (ha)	111	Adult females, spring, laying, North Dakota prairie potholes (EPA 1993a)
TUF	Temporal use factor	1	Will be 1 unless a specific value exists for a receptor
IR _F	Food ingestion rate $(g/g-d = kg/kgBW/d)^a$	0.09	Estimated by dividing free-living metabolic rate (203 kcal/kgBW/d) by the product of the energy composition of seeds (4.26 kcal/g wet wt.) and leaves/stems 0.64 kcal/g wet wt) times their assimilation efficiencies (0.59 and 0.23, respectively) per Table 4 in EPA 1993a
PF	Plant fraction	0.5	Assumed by SAIC to be average for harvested ducks based on interpretation of diets for males and females at different seasons
AF	Animal fraction	0.5	Assumed by SAIC to be average for harvested ducks based on interpretation of diets for males and females at different seasons
SF	Soil fraction	0.02	Less than 2% (EPA 1993a), assume 2%
IR _w	Water ingestion rate $(g/g-d = L/kgBW/d)$	0.057	Adult, arithmetic mean, both sexes (EPA 1993a)

Table B-4. Receptor Parameters for Mallard Ducks (Anas platyrhynchos)

^{*a*}Food ingestion rate (g/g-d) re-expressed as kg/kgBW/d is assumed not to include ingested soil; therefore, PF + AF = 1.0. EPA = U.S. Environmental Protection Agency. SAIC = Science Applications International Corporation.

			Paran	neters			Measur	ements				Model C	alculations			
			Aquatic	Sedir	nent			Surface	Sediment	Aquatic	Sediment			Aquatic	Sediment	Duck
			Plant	Inverte	brate	Bird	Sediment	Water	Pore Water	Plant	Invertebrate	Sediment	Water	Plant	Invertebrate	Tissue
	ow		Bv	BCF _{inv}		BAFv	EC	EC	EC	EC	EC	Intake	Intake	Intake	Intake	Concentration
COPC	(L/kg)	Kow	(kg/kg)	(L/kg)B	s(kkg/kg)	(kg/kg)	(mg/kg)	$(\mu g/L)$	μg/L)	(mg/kg)	(mg/kg)	(mg/kg/d)	(mg/kg/d)	(mg/kg/d)	(mg/kg/d)	(mg/kg)
	log						Outle	et C and (Charlie's Pon	d						
Inorganics																
Arsenic	NA	NA	8.0E-03	7.3E+01	9.0E-01	1.0E-01	2.5E+01	3.1E+01	NA	2.0E-01	2.2E+01	4.5E-02	1.8E-03	9.0E-03	1.0E+00	2.2E+00
Chromium ^K	NA	NA	1.5E-03	3.0E+03	3.9E-01	2.8E-01	1.6E+01	NA	NA	2.4E-02	6.3E+00	2.9E-02	0.0E+00	1.1E-03	2.8E-01	2.0E+00
Lead	NA	NA	9.0E-03	5.1E+03	6.3E-01	1.5E-02	4.0E+01	3.1E+00	NA	3.6E-01	2.5E+01	7.1E-02	1.8E-04	1.6E-02	1.1E+00	3.8E-01
Manganese	NA	NA	5.0E-02	4.1E+03	9.0E-01	2.0E-02	2.4E+03	5.1E+02	NA	1.2E+02	2.1E+03	4.2E+00	2.9E-02	5.3E+00	9.5E+01	4.0E+01
								PC	Bs							
PCB-1254	1.0E+06	6.0E+00	4.8E+05	5.5E+03	5.3E-01	2.9E+00	8.7E-01	NA	1.5E-02	7.3E+00	4.6E-01	1.6E-03	0.0E+00	3.3E-01	2.1E-02	2.0E+01
								Explo	sives							
2-Amino-4,6-																
dinitrotoluene	1.3E+02	2.1E+00	2.5E+03	1.3E+01	3.8E+00	1.9E-04	3.3E-01	NA	4.6E+01	1.2E+02	6.0E-01	6.0E-04	0.0E+00	5.2E+00	2.7E-02	2.2E-02
4-Amino-2,6-																
dinitrotoluene	1.3E+02	2.1E+00	2.5E+03	1.3E+01	3.8E+00	1.9E-04	3.9E-01	NA	5.4E+01	1.4E+02	7.1E-01	7.0E-04	0.0E+00	6.1E+00	3.2E-02	2.6E-02
			-					SVC								
Benzo(a)pyrene	1.0E+06		5.3E+03	4.7E+03		1.5E+00	8.4E-02	NA	1.5E-03	7.7E-03	1.3E-01	1.5E-04	0.0E+00	3.5E-04	6.0E-03	1.9E-01
Benzo(g,h,i)perylene	4.0E+06		5.3E+03	4.7E+03		6.0E+00	5.8E-02	NA	2.6E-04	1.3E-03	9.2E-02	1.0E-04	0.0E+00	6.0E-05	4.1E-03	5.4E-01
Phenanthrene	3.2E+04	4.5E+00	5.3E+03	4.7E+03	1.6E+00	4.8E-02	5.9E-02	NA	3.3E-02	1.7E-01	1.5E-01	1.1E-04	0.0E+00	7.7E-03	6.9E-03	7.8E-03

Table B-5. Calculation of Dabbling Duck Tissue Concentrations for Human Health COPCs in Sediment and Surface Water in Outlet C and Charlie's Pond, Load Line 1

BAFv = Ingested material-to-bird bioconcentration factor (kg-ingest/kg-tissue) from HAZWRAP (1994).

 BCF_{inv} = Water-to-invertebrate bioconcentration factor (L/kg) from EPA (1999).

BSAF = Sediment-to-invertebrate bioconcentration factor (kg-sediment/kg-tissue) from EPA (1999).

Bv = Aquatic plant uptake factor; soil-to-plant uptake factor (kg-sediment/kg-tissue) from HAZWRAP (1994) for metals; water-to-algae uptake factor (L/kg) from EPA (1999) for organic COPCs.

COPC = Chemical of potential concern (for human health).

EC = Exposure concentration. Sediment EC and Surface Water EC measured values; Sediment Pore Water EC = Sediment EC/($K_{ow} \times foc$).

foc = Measured fraction organic carbon in Criggy's Pond sediment = 0.057.

Kow = Octanol-water partitioning coefficient (for organic compounds) (HAZWRAP 1994).

NA = Not applicable.

PCB = Polychlorinated biphenyl.

Aquatic Plant EC = Larger of Surface Water EC \times Bv and Sediment Pore Water EC \times Bv for organic COPCs; = Sediment EC \times Bv for metals.

Sediment Invertebrate EC = Sediment EC x BSAF for metals and organic COPCs with log $K_{ow} > 5$; = Sediment Pore Water EC × BCF_{inv} for organic COPCs with log $K_{ow} \le 5$.

Sediment Intake (mg/kg/d) = Sediment EC \times IR _{S.}	IR_S = Sediment ingestion rate (kg/kg/d) = $IR_F \times SF = 0.0018$.	SF = Incidental ingested sediment as fraction of food diet = 0.02 (EPA 1993a).
Water Intake $(mg/kg/d) = Surface Water EC \times IR_{W}$	$IR_W = Water ingestion rate (L/kg/d) = 0.057.$	
Aquatic Plant Intake (mg/kg/d) = Aquatic Plant EC \times IR _{P.}	$IR_P = Plant$ food ingestion rate $(kg/kg/d) = IR_F \times PF = 0.045$.	$IR_F =$ Food ingestion rate (kg/kg/d) = 0.09. PF = Plant fraction of diet = 0.5.
Sediment Invertebrate Intake (mg/kg/d) = Sediment Invertebrate EC x IRA.	$IR_A = Animal \text{ food ingestion rate } (kg/kg/d) = IR_F \times AF = 0.045.$	AF = Animal fraction of diet = 0.5.

Duck Tissue Concentration (mg/kg) = BAFv × (Sediment EC × FS + Surface Water EC × FW + Aquatic Plant EC × FP + Sediment Invertebrate EC × FA).

 $FS = Sediment EC \times IR_s + Surface Water EC \times IR_w + Aquatic Plant EC \times IR_P + Sediment Invertebrate EC \times IR_A)$.

 $FW = Surface Water EC \times IR_W / (Sediment EC \times IR_S + Surface Water EC \times IR_W + Aquatic Plant EC \times IR_P + Sediment Invertebrate EC \times IR_A).$

 $FP = Aquatic Plant EC \times IR_P/(Sediment EC \times IR_s + Surface Water EC \times IR_w + Aquatic Plant EC \times IR_P + Sediment Invertebrate EC \times IR_A).$

FA = Sediment Invertebrate EC × IRA/(Sediment EC × IRS + Surface Water EC × IRW + Aquatic Plant EC x IRP + Sediment Invertebrate EC × IRA).

Table B-6. Calculation of Dabbling Duck Tissue Concentrations for Human Health COPCs in Sediment and Surface Water in Outlets D, E, and F and
Criggy's Pond, Load Line 1

			Pa	rameters			Measure	Measurements Model Calculations								
			Aquatic	Sediment				Surface	Sediment	Aquatic	Sediment			Aquatic	Sediment	Duck
			Plant	Inverte	ebrate	Duck	Sediment	Water	Pore Water	Plant	Invertebrate	Sediment	Water	Plant	Invertebrate	Tissue
	ow		Bv	BCF _{inv}	BSAF	BAFv	EPC	EPC	EPC	EPC	EPC	Intake	Intake	Intake	Intake	Concentration
COPC	(L/kg)	Kow	(kg/kg)	(L/kg)	(kg/kg)	(kg/kg)	(mg/kg)	$(\mu g/L)$	μg/L)	(mg/kg)	(mg/kg)	(mg/kg/d)	(mg/kg/d)	(mg/kg/d)	(mg/kg/d)	(mg/kg)
	Outlets D, E, and F, and Criggy's Pond															
K								(Inorganics							
Antimony	NA	NA	4.0E-02	7.0E+00	9.0E-01	5.0E-02	5.9E+02	NA	NA	2.4E+01	5.3E+02	1.1E+00	0.0E+00	1.1E+00	2.4E+01	2.6E+01
Arsenic	NA	NA	8.0E-03	7.3E+01	9.0E-01	1.0E-01	2.1E+01	5.1E+00	NA	1.7E-01	1.9E+01	3.8E-02	2.9E-04	7.6E-03	8.5E-01	1.9E+00
Copper	NA	NA	8.0E-02	3.7E+03	3.0E-01	5.0E-01	1.0E+03	NA	NA	8.2E+01	3.1E+02	1.8E+00	0.0E+00	3.7E+00	1.4E+01	1.7E+02
Lead	NA	NA	9.0E-03	5.1E+03	6.3E-01	1.5E-02	1.2E+03	NA	NA	1.1E+01	7.6E+02	2.2E+00	0.0E+00	4.9E-01	3.4E+01	1.2E+01
Manganese	NA	NA	5.0E-02	4.1E+03	9.0E-01	2.0E-02	3.4E+03	NA	NA	1.7E+02	3.0E+03	6.1E+00	0.0E+00	7.6E+00	1.4E+02	5.8E+01

BAFv = Ingested material-to-bird bioconcentration factor (kg-ingest/kg-tissue) from HAZWRAP (1994).

BCF_{inv} = Water-to-invertebrate bioconcentration factor (L/kg) from EPA (1999).

BSAF = Sediment-to-invertebrate bioconcentration factor (kg-sediment/kg-tissue) from EPA (1999).

Bv = Aquatic plant uptake factor; soil-to-plant uptake factor (kg-sediment/kg-tissue) from HAZWRAP (1994) for metals; water-to-algae uptake factor (L/kg) from EPA (1999) for organic COPCs.COPC = Chemical of potential concern (for human health).

EC = Exposure concentration. Sediment EC and Surface Water EC measured values; Sediment Pore Water EC = Sediment EC/($K_{ow} \times foc$).

foc = Measured fraction organic carbon in Criggy's Pond sediment = 0.057.

Kow = Octanol-water partitioning coefficient (for organic compounds) (HAZWRAP 1994).

NA = Not applicable.

Aquatic Plant EC = Larger of Surface Water EC x Bv and Sediment Pore Water EC \times Bv for organic COPCs; = Sediment EC \times Bv for metals.

Sediment Invertebrate EC = Sediment EC × BSAF for metals and organic COPCs with log $K_{ow} > 5$; = Sediment Pore Water EC × BCF_{inv} for organic COPCs with log $K_{ow} \le 5$.

Sediment Intake (mg/kg/d) = Sediment EC × IR_{S} .	IR_S = Sediment ingestion rate (kg/kg/d) = $IR_F \times SF = 0.0018$.	SF = Incidental ingested sediment as fraction of food diet = 0.02 (EPA 1993a).
Water Intake $(mg/kg/d) =$ Surface Water EC × IR _{W.}	$IR_W = Water ingestion rate (L/kg/d) = 0.057.$	
Aquatic Plant Intake $(mg/kg/d) =$ Aquatic Plant EC \times IR _{P.}	$IR_P = Plant$ food ingestion rate (kg/kg/d) = $IR_F \times PF = 0.045$.	$IR_F = Food ingestion rate (kg/kg/d) = 0.09$. PF = Plant fraction of diet = 0.5.
Sediment Invertebrate Intake (mg/kg/d) = Sediment Invertebrate $\text{EC} \times \text{IR}_{A}$.	$IR_A = Animal \text{ food ingestion rate } (kg/kg/d) = IR_F \times AF = 0.045.$	AF = Animal fraction of diet = 0.5.

 $Duck Tissue Concentration (mg/kg) = BAFv \times (Sediment EC \times FS + Surface Water EC \times FW + Aquatic Plant EC \times FP + Sediment Invertebrate EC \times FA).$

 $FS = Sediment EC \times IR_{S} + Surface Water EC \times IR_{W} + Aquatic Plant EC \times IR_{P} + Sediment Invertebrate EC \times IR_{A}).$

 $FW = Surface Water EC \times IR_{W} / (Sediment EC \times IR_{S} + Surface Water EC \times IR_{W} + Aquatic Plant EC \times IR_{P} + Sediment Invertebrate EC \times IR_{A}).$

 $FP = Aquatic Plant EC \times IR_P/(Sediment EC \times IR_S + Surface Water EC \times IR_W + Aquatic Plant EC \times IR_P + Sediment Invertebrate EC \times IR_A).$

 $FA = Sediment Invertebrate EC \times IR_A/(Sediment EC \times IR_S + Surface Water EC \times IR_W + Aquatic Plant EC \times IR_P + Sediment Invertebrate EC \times IR_A).$

СОРС	Duck Tissue Concentration (mg/kg)
Outlet C and Charl	ie's Pond
Metals	
Arsenic	2.2E+00
Chromium	2.0E+00
Lead	3.8E-01
Manganese	4.0E+01
PCBs	
PCB-1254	2.0E+01
Explosives	
2-Amino-4,6-dinitrotoluene	2.2E-02
4-Amino-2,6-dinitrotoluene	2.6E-02
SVOCs	
Benzo(<i>a</i>)pyrene	1.9E-01
Benzo(g,h,i)perylene	5.4E-01
Phenanthrene	7.8E-03
Outlets D, E, and F, and	Criggy's Pond
Metals	
Antimony	2.6E+01
Arsenic	1.9E+00
Copper	1.7E+02
Lead	1.2E+01
Manganese	5.8E+01

Table B-7. Dabbling Duck Tissue Concentrations for Human Health COPCs in Sediment and Surface Water at Load Line 1

COPC = Chemical of potential concern (for human health).

PCB = Polychlorinated biphenyl.

SVOC = Semivolatile organic compound.

СОРС	CAS Number	Exposure Concentration (mg/L)	Water-to-Fish Biotransfer Factor ^a (L/kg)	Fish Concentration ^b (mg/kg)						
Outlet C and Charlie's Pond										
Arsenic	7440-38-2	31	3.2^{c}	99.2						
Chromium	7440-47-3	2.4	200^d	480						
Lead	7439-92-1	3.1	3.2^{c}	9.92						
	Outlets D, E, and F, and Criggy's Pond									
Arsenic	7440-38-2	5.1	3.2^c	16.32						

Table B-8. Determination of Fish Concentrations for Surface Water COPCs at Load Line 1

^{*a*}Water-to-fish biotransfer factors (BTFs) as shown in the Risk Assessment Information System database, maintained by the University of Tennessee for the Oak Ridge National Laboratory (ORNL 2004). Actual references for specific values are shown in footnotes c and d.

^{*b*}Fish concentration (C_{fish}) calculated as follows: $C_{fish} = (EPC)(BTF)$.

^cValue is from http://www.epa.gov/oppt/exposure/docs/episuitedl.htm. The BCFWIN software estimates a log Kow by using the estimation engine from Syracuse Research Corporation's LOGKOW (KOWWIN for Windows) program. BCFWIN also automatically retrieves experimental log Kow values from a database containing more than 11,500 organic compounds with reliably measured values. When a structure matches a database structure (via an exact atom-to-atom connection match), the experimental log Kow value is retrieved and used to predict the biotransfer factor rather than the estimated value.

^dValue is from International Atomic Energy Agency 1994. *Handbook of parameter values for the prediction of radionuclide transfer in temperate environment,* Technical Report Serial No. 364, Vienna, Austria. CAS = Chemical Abstracts Service.

COPC = Chemical of potential concern (for human health).

THIS PAGE INTENTIONALLY LEFT BLANK.

APPENDIX C RESULTS OF LEAD MODELING

THIS PAGE INTENTIONALLY LEFT BLANK.

Table C-1. Ravenna\Load Line 1 Surface Water – Outlet C and Charlie's Pond Adult Receptors Calculations of Blood Lead Concentrations (PbBs) EPA Technical Review Workgroup for Lead, Adult Lead Committee

Exposure	PbB Equation ^a					dent r Adult
Variable	1*	2**	Description of Exposure Variable	Units	GSDi = 1.8	GSDi = 2.1
PbW	Х	Х	Water lead concentration	μg/L	3.1	3.1
R _{fetal/maternal}	Х	Х	Fetal/maternal PbB ratio		0.9	0.9
BKSF	Х	Х	Biokinetic slope factor	µg/dL per µg/d	0.4	0.4
GSD _i	Х	Х	Geometric standard deviation PbB		1.8	2.1
PbB ₀	Х	Х	Baseline PbB	µg/dL	2.2	1.7
IR _W	Х		Water ingestion rate	L/d	0.1	0.1
AFw	Х	Х	Absorption fraction		0.12	0.12
EFw	Х	Х	Exposure frequency	d/year	350	350
AT _W	Х	Х	Averaging time	d/year	365	365
						1.7
						5.2
						10.0
						0.6%

^{*a*}Equation 1 based on Equations 1 and 2 in EPA (1996). **PbB** _{adult} = (PbW*BKSF*IR_W*AF_W*EF_W/AT_W) + PbB₀. **PbB** _{fetal, 0.95} = PbB_{adult} * (GSD_i^{1.645} * R).

Table C-2. Ravenna\Load Line 1 Surface Water Calculations of Blood Lead Concentrations (PbBs)

Exposure Variable	Description of Exposure Variable	Units	Resident Farmer Child Outlet C and Charlie's Pond
PbS	Water lead concentration	µg/L	3.1
GSD _i	Geometric standard deviation PbB		1.6
			18.1
			10.0
			89.6

Child receptor uses the IEUBK win 32 Lead Model, Version 1.0 (Build 252), to calculate the PbB concentration and the probability that PbB > PbBt assuming a soil/dust ingestion weighting factor of 100%.

Table C-3. Ravenna\Load Line 1 Sediment – Outlets A and B Adult Receptors Calculations of Blood Lead Concentrations (PbBs) EPA Technical Review Workgroup for Lead, Adult Lead Committee

PbB		bB			Resi	dent	
Exposure	Equ	ation ^a			Farme	er Adult	
Variable	1*	2**	Description of Exposure Variable	Units	GSDi = 1.8	GSDi = 2.1	
PbS	Х	Х	Soil lead concentration	µg∕g or ppm	508	508	
R _{fetal/maternal}	Х	Х	Fetal/maternal PbB ratio		0.9	0.9	
BKSF	Х	Х	Biokinetic slope factor	μg/dL per μg/d	0.4	0.4	
GSD _i	Х	Х	Geometric standard deviation PbB		1.8	2.1	
PbB ₀	Х	Х	Baseline PbB	µg/dL	2.2	1.7	
IR _s	Х		Soil ingestion rate (including soil-derived indoor dust)	g/d	0.1	0.1	
IR _{S+D}		Х	Total ingestion rate of outdoor soil and indoor dust	g/d	0.1	0.1	
Ws		Х	Weighting factor; fraction of IR _{S+D} ingested as outdoor soil				
K _{SD}		Х	Mass fraction of soil in dust				
AF _{S, D}	Х	Х	Absorption fraction (same for soil and dust)		0.12	0.12	
EF _{S, D}	Х	Х	Exposure frequency (same for soil and dust)	d/year	350	350	
AT _{S, D}	Х	Х	Averaging time (same for soil and dust)	d/year	365	365	
						4.0	
						12.3	
						10.0	
						8.6%	

^{*a*} Equation 1 does not apportion exposure between soil and dust ingestion (excludes W_S , K_{SD}). When IRS = IR_{S+D} and WS = 1.0, the equations yield the same PbB_{fetal.0.95}.

*Equation 1 based on Equations 1 and 2 in EPA (1996). **PbB** _{adult} = (PbS*BKSF*IR_{S+D}*AF_{S,D}*EF_{S,D}/AT_{S,D}) + PbB₀. **PbB** _{fetal, 0.95} = PbB_{adult} * (GSD₁^{1.645} * R).

Table C-4. Ravenna\Load Line 1 Sediment – Outlets D, E, and F and Criggy's Pond Calculations of Blood Lead Concentrations (PbBs) EPA Technical Review Workgroup for Lead, Adult Lead Committee

	P	PbB			Resi	ident
Exposure	Equ	ation ^a			Farme	r Adult
Variable	1*	2**	Description of Exposure Variable	Units	GSDi = 1.8	GSDi = 2.1
PbS	Х	Х	Soil lead concentration	µg/g or ppm	1210	1210
R _{fetal/maternal}	Х	Х	Fetal/maternal PbB ratio		0.9	0.9
BKSF	X	Х	Biokinetic slope factor	μg/dL per μg/d	0.4	0.4
GSD _i	Х	Х	Geometric standard deviation PbB		1.8	2.1
PbB ₀	Х	Х	Baseline PbB	μg/dL	2.2	1.7
IR _s	Х		Soil ingestion rate (including soil-derived indoor dust)	g/d	0.1	0.1
IR _{S+D}		Х	Total ingestion rate of outdoor soil and indoor dust	g/d	0.1	0.1
Ws		Х	Weighting factor; fraction of IR _{S+D} ingested as outdoor soil			
K _{SD}		Х	Mass fraction of soil in dust			
AF _{S, D}	Х	Х	Absorption fraction (same for soil and dust)		0.12	0.12
EF _{S, D}	Х	Х	Exposure frequency (same for soil and dust)	d/year	350	350
AT _{S, D}	Х	Х	Averaging time (same for soil and dust)	d/year	365	365
						7.3
						22.2
						10.0
						28.4%

^{*a*} Equation 1 does not apportion exposure between soil and dust ingestion (excludes W_S , K_{SD}). When IRS = IR_{S+D} and WS = 1.0, the equations yield the same PbB_{fetal.0.95}.

*Equation 1 based on Equations 1 and 2 in EPA (1996). **PbB** _{adult} = (PbS*BKSF*IR_{S+D}*AF_{S,D}*EF_{S,D}/AT_{S,D}) + PbB₀. **PbB** _{fetal, 0.95} = PbB_{adult} * (GSD_i^{1.645} * R).

Table C-5. Ravenna\Load Line 1 Sediment Calculations of Blood Lead Concentrations (PbBs)

			Resident Farmer Child		
Exposure			Outlets	Outlets D, E, and F	
Variable	Description of Exposure Variable	Units	A and B	and Criggy's Pond	
PbS	Sediment lead concentration	mg/kg	508	1210	
GSD _i	Geometric standard deviation PbB		1.6	1.6	
				18.2	
				10.0	
				89.8	

Child receptor uses the IEUBK win 32 Lead Model, Version 1.0 (Build 252), to calculate the PbB concentration and the probability that PbB > PbBt assuming a soil/dust ingestion weighting factor of 100%.

Table C-6. Ravenna\Load Line 1 Shallow Surface Soil – CB-3 and -801 Calculations of Blood Lead Concentrations (PbBs) EPA Technical Review Workgroup for Lead, Adult Lead Committee

	PbB				Resi	dent	Security	Guard/
Exposure	Equa	ation ^a			Farmer	Adult	Maintenance Worker	
Variable	1*	2**	Description of Exposure Variable	Units	GSDi = 1.8	GSDi = 2.1	GSDi = 1.8	GSDi = 2.1
PbS	Х	Х	Soil lead concentration	µg/g or ppm	605.5	605.5	605.5	605.5
R _{fetal/maternal}	Х	Х	Fetal/maternal PbB ratio		0.9	0.9	0.9	0.9
BKSF	Х	Х	Biokinetic slope factor	μg/dL per μg/d	0.4	0.4	0.4	0.4
GSD _i	Х	Х	Geometric standard deviation PbB		1.8	2.1	1.8	2.1
PbB_0	Х	Х	Baseline PbB	µg/dL	2.2	1.7	2.2	1.7
IR _s	Х		Soil ingestion rate (including soil-derived indoor dust)	g/d	0.1	0.1	0.1	0.1
IR _{S+D}		Х	Total ingestion rate of outdoor soil and indoor dust	g/d	0.1	0.1	0.1	0.1
Ws		Х	Weighting factor; fraction of IR_{S+D} ingested as outdoor soil					
K _{SD}		Х	Mass fraction of soil in dust					
AF _{S, D}	Х	Х	Absorption fraction (same for soil and dust)		0.12	0.12	0.12	0.12
EF _{S, D}	Х	Х	Exposure frequency (same for soil and dust)	d/year	350	350	250	250
AT _{S, D}	Χ	Х	Averaging time (same for soil and dust)	d/year	365	365	365	365
								3.7
								11.3
								10.0
								6.9%

^{*a*} Equation 1 does not apportion exposure between soil and dust ingestion (excludes W_S , K_{SD}). When IRS = IR_{S+D} and WS = 1.0, the equations yield the same PbB_{fetal,0.95}. *Equation 1 based on Equations 1 and 2 in EPA (1996).

PbB $_{adult} = (PbS*BKSF*IR_{S+D}*AF_{S,D}*EF_{S,D}/AT_{S,D}) + PbB_0.$ **PbB** $_{fetal, 0.95} = PbB_{adult} * (GSD_i^{1.645} * R).$

Table C-7. Ravenna\Load Line 1 Shallow Surface Soil – CB-4/4A and CA-6/6A
Calculations of Blood Lead Concentrations (PbBs)
EPA Technical Review Workgroup for Lead, Adult Lead Committee

	P	bB			Resident		Security	Guard/
Exposure	Equ	ation ^a			Farmer		Maintenance Worker	
Variable	1*	2**	Description of Exposure Variable	Units	GSDi = 1.8	GSDi = 2.1	GSDi = 1.8	GSDi = 2.1
PbS	Χ	Х	Soil lead concentration	µg/g or ppm	283.5	283.5	283.5	283.5
R _{fetal/maternal}	Х	Х	Fetal/maternal PbB ratio		0.9	0.9	0.9	0.9
BKSF	Χ	Х	Biokinetic slope factor	μg/dL per μg/d	0.4	0.4	0.4	0.4
GSD _i	Х	Х	Geometric standard deviation PbB		1.8	2.1	1.8	2.1
PbB_0	Х	Х	Baseline PbB	µg/dL	2.2	1.7	2.2	1.7
IR _s	Х		Soil ingestion rate (including soil-derived indoor dust)	g/d	0.1	0.1	0.1	0.1
IR _{S+D}		Х	Total ingestion rate of outdoor soil and indoor dust	g/d	0.1	0.1	0.1	0.1
Ws		Х	Weighting factor; fraction of IR _{S+D} ingested as outdoor soil					
K _{SD}		Х	Mass fraction of soil in dust					
AF _{S, D}	Χ	Х	Absorption fraction (same for soil and dust)		0.12	0.12	0.12	0.12
EF _{S, D}	Χ	Х	Exposure frequency (same for soil and dust)	d/year	350	350	250	250
AT _{S, D}	Χ	Х	Averaging time (same for soil and dust)	d/year	365	365	365	365
								2.6
								8.0
								10.0
								2.6%

^{*a*} Equation 1 does not apportion exposure between soil and dust ingestion (excludes W_S , K_{SD}). When IRS = IR_{S+D} and WS = 1.0, the equations yield the same PbB_{fetal,0.95}. *Equation 1 based on Equations 1 and 2 in EPA (1996).

PbB _{adult} = (PbS*BKSF*IR_{S+D}*AF_{S,D}*EF_{S,D}/AT_{S,D}) + PbB₀. **PbB** _{fetal}, 0.95 = PbB_{adult} * (GSD₁^{1.645} * R).

Table C-8. Ravenna\Load Line 1 Shallow Surface Soil – CB-13 and -10
Calculations of Blood Lead Concentrations (PbBs)
EPA Technical Review Workgroup for Lead, Adult Lead Committee

_		bB			Resident		Security	
Exposure	-	ation ^a				r Adult	Maintenance Worker	
Variable	1*	2**	Description of Exposure Variable	Units	GSDi = 1.8	GSDi = 2.1	$\mathbf{GSDi} = 1.8$	GSDi = 2.1
PbS	Х	Х	Soil lead concentration	$\mu g/g$ or ppm	253.3	253.3	253.3	253.3
R _{fetal/maternal}	Х	Х	Fetal/maternal PbB ratio		0.9	0.9	0.9	0.9
BKSF	Х	Х	Biokinetic slope factor	µg/dL per µg/d	0.4	0.4	0.4	0.4
GSD _i	Х	Х	Geometric standard deviation PbB		1.8	2.1	1.8	2.1
PbB_0	Х	Х	Baseline PbB	µg/dL	2.2	1.7	2.2	1.7
IR _s	Х		Soil ingestion rate (including soil-derived indoor dust)	g/d	0.1	0.1	0.1	0.1
IR _{S+D}		Х	Total ingestion rate of outdoor soil and indoor dust	g/d	0.1	0.1	0.1	0.1
Ws		Х	Weighting factor; fraction of IR _{S+D} ingested as outdoor soil					
K _{SD}		Х	Mass fraction of soil in dust					
$AF_{S,D}$	Х	Х	Absorption fraction (same for soil and dust)		0.12	0.12	0.12	0.12
EF _{S, D}	Х	Х	Exposure frequency (same for soil and dust)	d/year	350	350	250	250
AT _{S, D}	Х	Х	Averaging time (same for soil and dust)	d/year	365	365	365	365
								2.5
								7.7
								10.0
								2.3%

^{*a*} Equation 1 does not apportion exposure between soil and dust ingestion (excludes W_S , K_{SD}). When IRS = IR_{S+D} and WS = 1.0, the equations yield the same PbB_{fetal,0.95}. *Equation 1 based on Equations 1 and 2 in EPA (1996).

 $\begin{array}{l} \textbf{PbB}_{adult} = (PbS*BKSF*IR_{S+D}*AF_{S,D}*EF_{S,D}/AT_{S,D}) + PbB_0. \\ \textbf{PbB}_{fetal, 0.95} = PbB_{adult} * (GSD_i^{1.645}*R). \end{array}$

Table C-9. Ravenna\Load Line 1 Shallow Surface Soil - CB-14, CB-17, and CA-15 **Calculations of Blood Lead Concentrations (PbBs)** EPA Technical Review Workgroup for Lead, Adult Lead Committee

	P	bB			Resident			Guard/
Exposure	Equ	ation ^a			Farmer		Maintenance Worker	
Variable	1*	2**	Description of Exposure Variable	Units	GSDi = 1.8	GSDi = 2.1	GSDi = 1.8	GSDi = 2.1
PbS	Χ	Х	Soil lead concentration	µg/g or ppm	110.8	110.8	110.8	110.8
R _{fetal/maternal}	Х	Х	Fetal/maternal PbB ratio		0.9	0.9	0.9	0.9
BKSF	Х	Х	Biokinetic slope factor	µg/dL per µg/d	0.4	0.4	0.4	0.4
GSD _i	Х	Х	Geometric standard deviation PbB		1.8	2.1	1.8	2.1
PbB_0	Х	Х	Baseline PbB	µg/dL	2.2	1.7	2.2	1.7
IR _s	Х		Soil ingestion rate (including soil-derived indoor dust)	g/d	0.1	0.1	0.1	0.1
IR _{S+D}		Х	Total ingestion rate of outdoor soil and indoor dust	g/d	0.1	0.1	0.1	0.1
Ws		Х	Weighting factor; fraction of IR _{S+D} ingested as outdoor soil					
K _{SD}		Х	Mass fraction of soil in dust					
AF _{S, D}	Х	Х	Absorption fraction (same for soil and dust)		0.12	0.12	0.12	0.12
EF _{S, D}	Х	Х	Exposure frequency (same for soil and dust)	d/year	350	350	250	250
AT _{S, D}	Χ	Х	Averaging time (same for soil and dust)	d/year	365	365	365	365
								2.1
								6.3
								10.0
								1.2%

^{*a*} Equation 1 does not apportion exposure between soil and dust ingestion (excludes W_s , K_{sD}). When IRS = IR_{S+D} and WS = 1.0, the equations yield the same PbB_{fetal.0.95}. *Equation 1 based on Equations 1 and 2 in EPA (1996).

PbB _{adult} = (PbS*BKSF*IR_{S+D}*AF_{S,D}*EF_{S,D}/AT_{S,D}) + PbB₀. **PbB** _{fetal}, 0.95 = PbB_{adult} * (GSD₁^{1.645} * R).

Table C-10. Ravenna\Load Line 1 Shallow Surface Soil – Change Houses (CB-12, -23, -8, -22) **Calculations of Blood Lead Concentrations (PbBs)** EPA Technical Review Workgroup for Lead, Adult Lead Committee

	I	bB			Resident		Security	/ Guard/
Exposure	Equ	ation ^a			Farmer		Maintenance Worker	
Variable	1*	2**	Description of Exposure Variable	Units	GSDi = 1.8	GSDi = 2.1	GSDi = 1.8	GSDi = 2.1
PbS	Х	Х	Soil lead concentration	µg/g or ppm	189.6	189.6	189.6	189.6
R _{fetal/maternal}	Х	Х	Fetal/maternal PbB ratio		0.9	0.9	0.9	0.9
BKSF	Х	Х	Biokinetic slope factor	μg/dL per μg/d	0.4	0.4	0.4	0.4
GSD _i	Х	Х	Geometric standard deviation PbB		1.8	2.1	1.8	2.1
PbB_0	Х	Х	Baseline PbB	µg/dL	2.2	1.7	2.2	1.7
IRs	Х		Soil ingestion rate (including soil-derived indoor dust)	g/d	0.1	0.1	0.1	0.1
IR _{S+D}		Х	Total ingestion rate of outdoor soil and indoor dust	g/d	0.1	0.1	0.1	0.1
Ws		Х	Weighting factor; fraction of IR _{S+D} ingested as outdoor soil					
K _{SD}		Х	Mass fraction of soil in dust					
AF _{S, D}	Х	Х	Absorption fraction (same for soil and dust)		0.12	0.12	0.12	0.12
EF _{S, D}	Х	Х	Exposure frequency (same for soil and dust)	d/year	350	350	250	250
AT _{S, D}	Х	Х	Averaging time (same for soil and dust)	d/year	365	365	365	365
								2.3
								7.1
								10.0
								1.7%

^{*a*} Equation 1 does not apportion exposure between soil and dust ingestion (excludes W_S , K_{SD}). When IRS = IR_{S+D} and WS = 1.0, the equations yield the same PbB_{fetal.0.95}. *Equation 1 based on Equations 1 and 2 in EPA (1996).

PbB _{adult} = (PbS*BKSF*IR_{S+D}*AF_{S,D}*EF_{S,D}/AT_{S,D}) + PbB₀. **PbB** _{fetal}, 0.95 = PbB_{adult} * (GSD₁^{1.645} * R).

Table C-11. Ravenna\Load Line 1 Shallow Surface Soil – Water Tower
Calculations of Blood Lead Concentrations (PbBs)
EPA Technical Review Workgroup for Lead, Adult Lead Committee

PbB		bB			Resident		Security	Guard/
Exposure Equation ^a		ation ^a			Farmer Adult		Maintenance Worker	
Variable	1*	2**	Description of Exposure Variable	Units	GSDi = 1.8	GSDi = 2.1	GSDi = 1.8	GSDi = 2.1
PbS	Х	Х	Soil lead concentration	µg/g or ppm	2510	2510	2510	2510
R _{fetal/maternal}	Х	Х	Fetal/maternal PbB ratio		0.9	0.9	0.9	0.9
BKSF	Х	Х	Biokinetic slope factor	μg/dL per μg/d	0.4	0.4	0.4	0.4
GSD _i	Х	Х	Geometric standard deviation PbB		1.8	2.1	1.8	2.1
PbB_0	Х	Х	Baseline PbB	µg/dL	2.2	1.7	2.2	1.7
IR _s	Х		Soil ingestion rate (including soil-derived indoor dust)	g/d	0.1	0.1	0.1	0.1
IR _{S+D}		Х	Total ingestion rate of outdoor soil and indoor dust	g/d	0.1	0.1	0.1	0.1
Ws		Х	Weighting factor; fraction of IR _{S+D} ingested as outdoor soil					
K _{SD}		Х	Mass fraction of soil in dust					
AF _{S, D}	Х	Х	Absorption fraction (same for soil and dust)		0.12	0.12	0.12	0.12
EF _{S, D}	Х	Х	Exposure frequency (same for soil and dust)	d/year	350	350	250	250
AT _{S, D}	Х	Х	Averaging time (same for soil and dust)	d/year	365	365	365	365
								10.0
								30.4
								10.0
								44.1%

^{*a*} Equation 1 does not apportion exposure between soil and dust ingestion (excludes W_S , K_{SD}). When IRS = IR_{S+D} and WS = 1.0, the equations yield the same PbB_{fetal,0.95}. *Equation 1 based on Equations 1 and 2 in EPA (1996).

*Equation 1 based on Equation exposure between son and at *Equation 1 based on Equations 1 and 2 in EPA (1996). **PbB** adult = (PbS*BKSF*IR_{S+D}*AF_{S,D}*EF_{S,D}/AT_{S,D}) + PbB₀. **PbB** fetal, 0.95 = PbB_{adult} * (GSD₁^{1.645} * R).

Table C-12. Ravenna\Load Line 1 Shallow Surface Soil Calculations of Blood Lead Concentrations (PbBs)

			Resident Farmer Child						
			CB-13	CB-14,	CB-3	CB-4/4A			
Exposure			and	CB-17,	and	and	Change Houses	Water	
Variable	Description of Exposure Variable	Units	-10	and CA-15	-801	CA-6/6A	(CB-12, -23, -8, -22)	Tower	
PbS	Soil lead concentration	mg/kg	253.3	110.8	605.5	283.5	189.6	2510	
GSD _i	Geometric standard deviation PbB		1.6	1.6	1.6	1.6	1.6	1.6	
								28.5	
								10.0	
								98.7	

Child receptor uses the IEUBK win 32 Lead Model, Version 1.0 (Build 252), to calculate the PbB concentration and the probability that PbB > PbBt assuming a soil/dust ingestion weighting factor of 100%.

Table C-13. Ravenna\Load Line 1 Subsurface Soil – CB-13 and -10 Calculations of Blood Lead Concentrations (PbBs) EPA Technical Review Workgroup for Lead, Adult Lead Committee

	P	bB			Resi	dent
Exposure Equation ^{<i>a</i>}		ation ^a			Farmer Adult	
Variable	1*	2**	Description of Exposure Variable	Units	GSDi = 1.8	GSDi = 2.1
PbS	Х	Х	Soil lead concentration	µg/g or ppm	430.9	430.9
R _{fetal/maternal}	X	Х	Fetal/maternal PbB ratio		0.9	0.9
BKSF	Х	Х	Biokinetic slope factor	µg/dL per µg/d	0.4	0.4
GSD _i	X	Х	Geometric standard deviation PbB		1.8	2.1
PbB_0	Х	Х	Baseline PbB	µg/dL	2.2	1.7
IR _s	X		Soil ingestion rate (including soil-derived indoor dust)	g/d	0.1	0.1
IR _{S+D}		Х	Total ingestion rate of outdoor soil and indoor dust	g/d	0.1	0.1
Ws		Х	Weighting factor; fraction of IR _{S+D} ingested as outdoor soil			
K _{SD}		Х	Mass fraction of soil in dust			
AF _{S, D}	X	Х	Absorption fraction (same for soil and dust)		0.12	0.12
EF _{S, D}	X	Х	Exposure frequency (same for soil and dust)	d/year	350	350
AT _{S, D}	Х	Х	Averaging time (same for soil and dust)	d/year	365	365
						3.7
						11.2
						10.0
						6.8%

^{*a*} Equation 1 does not apportion exposure between soil and dust ingestion (excludes W_S , K_{SD}). When IRS = IR_{S+D} and WS = 1.0, the equations yield the same PbB_{fetal,0.95}.

*Equation 1 based on Equations 1 and 2 in EPA (1996). **PbB** _{adult} = (PbS*BKSF*IR_{S+D}*AF_{S,D}*EF_{S,D}/AT_{S,D}) + PbB₀. **PbB** _{fetal, 0.95} = PbB_{adult} * (GSD₁^{1.645} * R).

Table C-14. Ravenna\Load Line 1 Subsurface Soil – CB-14, CB-17, and CA-15 Calculations of Blood Lead Concentrations (PbBs) EPA Technical Review Workgroup for Lead, Adult Lead Committee

	F	bB			Resi	dent
Exposure Equation ^a		ation ^a			Farmer Adult	
Variable	1*	2**	Description of Exposure Variable	Units	GSDi = 1.8	GSDi = 2.1
PbS	Х	Х	Soil lead concentration	µg/g or ppm	558	558
R _{fetal/maternal}	Х	Х	Fetal/maternal PbB ratio		0.9	0.9
BKSF	Х	Х	Biokinetic slope factor	µg/dL per µg/d	0.4	0.4
GSD _i	Х	Х	Geometric standard deviation PbB		1.8	2.1
PbB_0	Х	Х	Baseline PbB	μg/dL	2.2	1.7
IR _s	Х		Soil ingestion rate (including soil-derived indoor dust)	g/d	0.1	0.1
IR _{S+D}		Х	Total ingestion rate of outdoor soil and indoor dust	g/d	0.1	0.1
Ws		Х	Weighting factor; fraction of IR _{S+D} ingested as outdoor soil			
K _{SD}		Х	Mass fraction of soil in dust			
AF _{S, D}	Х	Х	Absorption fraction (same for soil and dust)		0.12	0.12
EF _{S, D}	Х	Х	Exposure frequency (same for soil and dust)	d/year	350	350
AT _{S, D}	Х	Х	Averaging time (same for soil and dust)	d/year	365	365
						4.3
						13.0
						10.0
						9.9%

^{*a*} Equation 1 does not apportion exposure between soil and dust ingestion (excludes W_S , K_{SD}). When IRS = IR_{S+D} and WS = 1.0, the equations yield the same PbB_{fetal.0.95}.

*Equation 1 based on Equations 1 and 2 in EPA (1996). **PbB** _{adult} = (PbS*BKSF*IR_{S+D}*AF_{S,D}*EF_{S,D}/AT_{S,D}) + PbB₀. **PbB** _{fetal, 0.95} = PbB_{adult} * (GSD_i^{1.645} * R).

Table C-15. Ravenna\Load Line 1 Subsurface Soil Calculations of Blood Lead Concentrations (PbBs)

Exposure			Resident Farmer Child		
Variable	Description of Exposure Variable	Units	CB-13 and -10	CB-14, CB-17, and CA-15	
PbS	Soil lead concentration	mg/kg	430.9	558	
GSD _i	Geometric standard deviation PbB		1.6	1.6	
				10.8	
				10.0	
				56.3	

Child receptor uses the IEUBK win 32 Lead Model, Version 1.0 (Build 252), to calculate the PbB concentration and the probability that PbB > PbBt assuming a soil/dust ingestion weighting factor of 100%.

THIS PAGE INTENTIONALLY LEFT BLANK.

	Page No.			
No.	Line No.	Comment	Recommendation	Response
		Ohio EPA DERR NEDO a	nd OFFO – Laurie Moore	
1	General	The methods used in the document closely followed the Facility -wide Human Health Risk Assessors Manual (USACE 2004) and therefore, minimal comments are needed for this report. The report is well written and clear. Below are a few specific comments that should be addressed in the Final baseline risk assessment report.		Comment noted. Thank you.
2	Table ES-1	Table ES-1 should be revised to bold locations that exceed an excess lifetime cancer risk level of 1E-5. The table presently identifies areas that exceed a 1E-6 and 1E-4 (in bold) risk level. In fact, it would be helpful to only identify areas and compounds that exceed a 1E-5 risk and hazard quotient or hazard index of 1.		Clarification. Chemicals of concern (COCs) are identified as anything with a risk $> 10^{-6}$ or HQ > 1 . Therefore, the table of COCs has been revised to remove the bolding that indicates risks $> 10^{-4}$ or HQ > 1 .
3	Load Line 1 Soil Aggregates, Figure 2-2	Figure 2-2 identifies the aggregates used in the baseline risk assessment of LL1. Ohio EPA agrees with the use and locations of the aggregates. It should be pointed out in the report that the field- screening results were used in the determination of the boundaries of the aggregates. Section 2.1 identifies that field screening information was not included in the quantitative risk evaluation process. However, it may be helpful to note that the field- screening information was used to help delineate the extent of contamination.		Clarification. Field screening results were not used in determining aggregate boundaries. Aggregates were based on process knowledge and historical usage. Depth intervals were based on receptors (e.g., 0 to 1 ft for resident and 0 to 3 ft for National Guard trainee). The depths sampled at each sampling location were determined by field sampling (i.e., if field sampling showed explosives in a sample, the next deeper interval was sampled, if possible). Some locations were randomly sampled below 1 ft and some locations could not be sampled below 1 or 3 ft due to shallow bedrock. The application of field screening results is discussed in Chapter 3.0 of the remedial investigation report.

Rev. June 21 200)4
through 6 of page 2-3 identify that samples om the railroad beds were not included in assessment. Additional information should a regarding these data. Line 2 states that the are more representative of slag rather than his based on physical properties or l characteristics? In addition, the sampling hould be presented in the document. ess of remedial/management issues ding slag, the soil or area around the beds or under the slag should be rized and evaluated analytically to ne if contamination is present from a past c. This should be evaluated in the risk ent to provide information to risk managers sion making. The railroad beds may make nificant area and may be considered as n exposure unit as needed. Figure 2-2 es the railroad tracks as its own area of 2.2 d no information is presented on the te in table ES-1 or other areas of the report. imations of the soils beneath the slag or the self would be useful for future decision for LL1. In addition, if the slag is acting as	Comment rescinded by Ohio EPA on June 14, 2004. However, as requested in the notification by Ohio EPA rescinding Comment 4, data related to the collection of samples from the railroad bed has been included in the report for informational purposes. Additional text has also been added to say that, "Further evaluation of the railroad beds is not required because the slag material is (1) highly weathered, (2) applied as a building material or in a similar manner (not disposal), (3) will likely remain intact at the load line (after removal of the slabs), and (4) no exposure pathway to the troops should occur."
	Agree. Bolding has been removed.
verte	ently placed in the table. Please remove

		Kev.	June 21 2004
6	Section 5.2.1, Groundwater Results	Section 5.2.1, page 5-4 discusses potential risks associated with background concentrations of arsenic in ground water. Please note that the footnote of the table on page 5-4 is incorrect. The background values for groundwater were calculated using a 95% UTL, not UCL as given in the text. In addition, please provide a reference to the source for background information/data on groundwater. Please tell the reader where to find the details on how background in groundwater was established at Ravenna - this could be done by including another footnote under the table on page 5-4.	Agree. Footnote 'a' has been corrected to note the background criteria are UTLs. A new footnote 'b' "Background values are reported in USACE (U.S. Army Corps of Engineers) 2001. <i>Phase II</i> <i>Remedial Investigation Report for the Winklepeck</i> <i>Burning Grounds at the Ravenna Army Ammunition</i> <i>Plant, Ravenna, Ohio</i> , DACA62-94-D-0029, D.O. 0060, Final, April" has been added.
7	Section 5.2.4, Summary of Chemicals of Concern for all Media and Receptors	Section 5.2.4 discusses risk management concepts related to acceptable risks and hazards. Section 5.2.4 uses the 1E-4 risk level to define COCs with large risks. Generally, the risk assessment report does not interject risk management concepts into the presentation of the risk assessment results. In addition, and given that the risk goal has been identified as a cumulative 1E-5, it would be better to identify compounds with an excess lifetime cancer that exceeds 1E-5 as being of concern rather than those reaching a 1E-4 risk level. Please revise the table 5-8 and any others that use the 1E-4 excess lifetime cancer risk level and revise accordingly.	Clarification. COCs are identified as anything with a risk > 10^{-6} or HQ > 1. Therefore, the table of COCs has been revised to remove the bolding that indicates risks > 10^{-4} or HQ > 1. Table 5-9 has been removed and text has been changed to remove the discussion of risks > 10^{-4} .

8	Section 6.0,	The end of this section should discuss how to	Agree. The following text has been added, "Exposure
	Remedial Goal	account for multiple chemical exposures (for	to multiple COCs may require downward adjustment
	Options, page	example, in cases where there are more than 10	of the TR and target hazard used to calculate final
	6-2	COC=s for a specific receptor) in order to ensure	remedial levels. The TR and THI are dependent on
		that the 1E-5 risk goal is applied cumulatively.	several factors, including the number of carcinogenic
			and non-carcinogenic COCs and the target organs and
			toxic endpoints of these COCs. For example, if
			numerous (i.e., more than 10) non-carcinogenic COCs
			with similar toxic endpoints are present, it may be
			appropriate to use chemical-specific RGOs with a THI
			of 0.1 to account for exposure to multiple
			contaminants."