

RAVENNA ARMY AMMUNITION PLANT RAVENNA, OHIO 44266

Prepared for

OPERATIONS SUPPORT COMMAND AMSIO-ACE-D Procurement Directorate Rock Island, IL 61299-6000

Prepared by

MKM ENGINEERS, INC 4153 BLUEBONNET DRIVE STAFFORD, TEXAS 77477

And

NEAL ENVIRONMENTAL SERVICES, LLC

SEPTEMBER 2001

	M ENGINEEI	UNG, INC.		LET	TER OF '	FRANSMITTAL
	4153 Bluebonne	et Drive				
	Stafford, TX			DATE 9/7/01		JOB NO
TO: Mark F	(281) 277-5 Patterson	100		ATTENTION		
				SAME		
RVAAP Building 1037 RVAAP 8451 State Route 5				RE TRANSMITTAL OF GROUNDWATER ASSESSMENT PLAN FOR THE		
				RAMSDEL	L LANDFILL	QUARRY
				SEPTEMBE		
	a, OH 44266	_				
- aton -						
We are sendin	g you 🛛 Att	ached U	nder separate	e cover via		the following item
[] sh	p Drawings	Prints	Plans	C Sampl	ад Г	Specifications
		_		Sample		
	py of Letter	Change C	Order	⊠_Pla		
COPIES	DATE	NO.			DESCRIPTIO	
1	9-7-01	1				LAN FOR THE
			RAMSDE	LL LANDFILI	QUARRY,	SEPTEMBER 2001
_						
THESE are tran	smitted as check	ed below:				
	smitted as check		Annroved of of	obmitted [Pasuhmit	conies for approval
For	approval		Approved as st		Resubmit_	copies for approval
☐ For ⊠ For	approval your use		Approved as r	noted [Submit	copies for distributio
For For As r	approval your use requested			noted [
For For As r For	approval your use requested review and com		Approved as r	noted [corrections [_ Submit _ Return	copies for distributio
For For As r For	approval your use requested		Approved as r	noted [_ Submit _ Return	copies for distributio
For For As r For	approval your use requested review and com		Approved as r	noted [corrections [_ Submit _ Return	copies for distributio
☐ For ⊠ For ⊠ As r ⊠ For ☐ FOF REMARKS:	approval your use requested review and com		Approved as r	noted [corrections [_ Submit _ Return	copies for distributio
☐ For ➢ For ➢ As r ➢ For ☐ FOF REMARKS: Copies have bo Jarnal Singh, (approval your use equested review and com R BIDS DUE een provided as OEPA) – 1 cop	nent	Approved as r Returned for c	noted [corrections [_ Submit _ Return	copies for distributio
☐ For ➢ For ➢ As r ➢ For ☐ FOF REMARKS: Copies have be Jarnal Singh, (Eileen Mohr/T	approval your use requested review and com BIDS DUE een provided as OEPA) – 1 cop odd Fisher, (O	□A □ 1 ment □ follows: y EPA) – 1 cop	Approved as r Returned for c	noted [corrections [_ Submit _ Return	copies for distributio
☐ For ➢ For ➢ As r ➢ For ☐ FOF REMARKS: Copies have bo Jarnal Singh, (Eileen Mohr/T Diane Kurlich,	approval your use equested review and come BIDS DUE een provided as OEPA) – 1 cop odd Fisher, (O , (QEPA) – 1 (follows: y EPA) – 1 copy	Approved as r Returned for c	noted [corrections [_ Submit _ Return	copies for distributio
☐ For ➢ For ➢ As r ➢ For ☐ FOF REMARKS: Copies have be Jarnal Singh, (Eileen Mohr/T Diane Kurlich, Irwin Dreyfus,	approval your use requested review and com BIDS DUE een provided as OEPA) – 1 cop odd Fisher, (O , (OEPA) – 1 Coj	follows: y EPA) – 1 copy	Approved as r Returned for c	noted [corrections [_ Submit _ Return	copies for distributio
☐ For ➢ For ➢ As r ➢ For ☐ FOF REMARKS: Copies have bo Jarnal Singh, (Eileen Mohr/T Diane Kurlich, Irwin Dreyfus, Bill Ingold, (O	approval your use equested review and come BIDS DUE een provided as OEPA) – 1 cop odd Fisher, (O (OEPA) – 1 Cop SC) – 1 Copy	follows: y EPA) – 1 copy	Approved as r Returned for c	noted [corrections [_ Submit _ Return	copies for distributio
☐ For ➢ For ➢ As r ➢ For ☐ FOF REMARKS: Copies have be Jarnal Singh, (Eileen Mohr/T Diane Kurlich, Irwin Dreyfus, Bill Ingold, (O Ernie Neal, (N	approval your use equested review and come BIDS DUE een provided as OEPA) – 1 cop odd Fisher, (O (OEPA) – 1 Cop SC) – 1 Copy	A ment follows: y EPA) – 1 copy Copy	Approved as r Returned for c	noted [corrections [_ Submit _ Return	copies for distributio

If enclosures are not as noted, kindly notify us at once.

TABLE OF CONTENTS

T.	ABL	E OF CONTENTS i
N	TRO	ODUCTION 1
	1.	Site Background1
	2.	Submission of Plan – O.A.C. 3745-27-10(E)(1)
	3.	Sampling Background and Affected Well O.A.C. 3745-27-10(E)(2)(a)5
	4.	Sampling Wells not Previously Sampled - O.A.C. 3745-27-10 (E) (2) (b)
	5.	Analytical Results from Sampling Background Well and Affected Well - O.A.C. 3745-27-10 (E) (2) (c)
	6.	Hydrogeologic Conditions - O.A.C. 3734-27-10 (E) (3) (a)
	7.	Number, Location, Depth, and Construction of Detection Monitoring Wells -
		O.A.C. 3745-27-10 (E) (3) (b) (i)
	8.	Summary of Detection Monitoring Data – O.A.C. 3745-10 (E) (3) (b) (ii)
	9.	Summary of Statistical Analysis Applied to the Data - O.A.C. 3745-27-10 (E) (3)
		(b) (iii)
	10.	Proposed Number, Location, Depth and Construction of Assessment Monitoring
		Wells - O.A.C. 3745-27-10 (E) (3) (c) (i)
	11.	Proposed Methods for Gathering Additional Hydrogeologic Information- O.A.C.
		3745-27-10 (E) (3) (c) (ii.)
	12	Planned Use of Supporting Methodologies - O.A.C. 3745-27-10 (E) (3) (c) (iii)7
	13.	Measurement of Ground Water Elevation- O.A.C. 3745-27-10 (E) (3) (d) (i)7
	14.	Detection of Immiscible Layers- O.A.C 3745-27-10 (E) (3) (d) (ii)
	15.	Well Evacuation - O.A.C. 3745-27-10 (E) (3) (d) (iii) (a)
	16.	Sample Withdrawal - O.A.C. 3745-27-10 (E) (3) (d) (iii) (b)
	17.	
	18.	Sample Preservation - O.A.C. 3745-27-10 (E) (3) (d) (iii) (d)
	19.	Procedures and Forms for Recording Data - O.A.C. 3745-27-10 (E) (3) (d) (iv)
		(a.)
	20.	Calibration of Field Devices - O.A.C. 3745-27-10 (E) (3) (d) (iv) (b)
	21.	Decontamination of Equipment - O.A.C. 3745-27-10 (E) (3) (d) (v)
	22.	Methods for Sample Analysis – O.A.C. 3745-27-10 (E) (3) (d) (vi)
	23.	Standardization Field Tracking Reporting Forms - O.A.C. 3745-27-10 (E) (3) (d)
		(vii) (a)
	24.	Preparation Sample Labels - O.A.C. 3745-27-10 (E) (3) (d) (vii) (b)
	25.	Collection of Replicate Samples - O.A.C. 3745-27-10 (E) (3) (d) (viii) (a)
	26.	Submission of Field-bias Blanks – O.A.C. 3745-27-10 (E) (3) (d) (viii) (b)
	27.	Potential Interferences – O.A.C. 3745-27-10 (E) (3) (d) (viii) (c)
	28.	Use of Statistical Data Evaluation - O.A.C. 3745-27-10 (E) (3) (d) (viii) (e) (i). 10
	29.	

Table of Contents (Continued)

30.	Use of Previously Gathered Information – O.A.C. 3745-27-10 (E) (3) (d) (viii) (e)
	(iii)
31.	Additional Assessment Criteria - O.A.C. 3745-27-10 (E) (3) (d) (viii) (e) (iv) 10
32.	Schedule of Implementation - O.A.C. 3745-27-10 (E) (3) (d) (viii) (f) 10
	Summary

Appendix I -- Final Report on the Ground Water Investigation of the Ramsdell Quarry Landfill, 1999.

Appendix II - Ramsdell Quarry Landfill Ground Water Data.

Appendix III - Ramsdell Quarry Landfill Ground Water Monitoring Plan.

INTRODUCTION

The Ground Water Assessment Plan for the Ramsdell Quarry Landfill has been prepared to fulfill, in part, the requirements of the 1990 Ohio EPA Ground Water Monitoring regulations applicable for solid waste landfills closing on or before December 1990. During a 2001 semi-annual ground water detection monitoring event, the RVAAP experienced statistically significant change in a few ground water constituents. The results of the preliminary ground water monitoring data was confirmed in August 2001 and in turn reported to the Director of Ohio EPA as stipulated and required by the 1990 ground water regulations.

1. Site Background

Landfill Operation

The Ramsdell Quarry is located in the northeastern portion of the RVAAP and encompasses about 5.7 hectares. The quarry was originally excavated 30 to 40 feet below the existing grade. The excavated material, consisting primarily of sandstone and quartz pebble was used for road and ballast construction. Quarry operations were discontinued about 1941. The western and southern portions of the quarry were subsequently used for landfill operations between 1941 and 1989. Beginning in 1976 the landfill disposed of only non-hazardous solid waste and continued until 1989 when the landfill ceased operation. In addition, from 1946 to sometime in the early 1950s, the bottom of the quarry was used to burn waste explosives. Liquid wastes from annealing operations were also deposited in the quarry during this time period. In 1978, the State of Ohio permitted a portion of the quarry as a sanitary landfill. Interviews with former RVAAP personnel indicated that much of the explosive waste residue and debris were removed in the 1980s. Formal closure of the landfill/quarry was completed in May of 1990 under State of Ohio solid waste regulations effective in March of 1990.

Development of a Ground Water Monitoring Program.

Pursuant to the Ohio EPA March 1990 regulations, the RVAAP developed and implemented a ground water monitoring program. In 1988 the RVAAP completed the drilling and completion of 5 boreholes into groundwater monitoring wells MW-1 through MW-5. These wells constituted the initial groundwater monitoring system. Evaluation of the original placement of these wells determined that only one of the wells proved to be located immediately downgradient of the landfill. This and other related issues lead to the development and implementation of a follow-on ground water investigation of the Ramsdell Quarry initiated in 1998 and completed in 1999. The report titled, Final Report on

the Ground Water Investigation of the Ramsdell Quarry Landfill (Appendix I to this Plan), provides information on the installation of a new ground water monitoring system, consisting of RQL MW-006 through RQL MW-009. Since July 1998, the RVAAP has used the RQL MW-006 through RQL MW-009 groundwater monitoring system to meet the requirements of O.A.C. 3745-27-10 effective March 1990. Monitoring wells RQL MW-010 through RQL MW-011 were also installed as part of the 1998 groundwater investigation to further assess the hydrogeologic conditions of the site. These monitoring wells could be used to compliment the groundwater monitoring program and evaluate the rate and extent of groundwater constituents, as required as part of the assessment process.

2. Submission of Plan – O.A.C. 3745-27-10(E)(1).

Scheduled Semi-annual Sampling Event

On April 30, 2001 the RVAAP conducted its scheduled semi-annual sampling event. On June 5, 2001 the RVAAP received initial data indicating that a statistically significant change (SSC) had occurred at well RQL MW-007 for the indicator parameters specific conductance and total suspended solids when compared with the background well RQL MW-006. On June 15, 2001 the RVAAP notified the Director of the Ohio EPA of the results of the April 30, 2001 sampling event regarding the SSCs at well RQL MW-007 as required by O.A.C. 3745-27-10. On June 26, 2001 the RVAAP re-sampled well RQL MW-007 for the indicator parameters specific conductance and total dissolved solids as required by O.A.C. 3745-27-10.

Notification of the Director Regarding of an SSC

On August 24, 2001 the RVAAP notified the Director of the Ohio EPA that it had confirmed that an SSC was exhibited in well number RQL MW-007 for the indicator parameter total dissolved solids as required by O.A.C. 3745-27-10. The indicator parameter specific conductance did not reconfirm as an SSC during the June 26, 2001 sampling event.

Ground Water Assessment Plan Submission

As required by O.A.C. 3745-27-10, the RVAAP is hereby submitting a ground water assessment plan.

Additional Ground Water Monitoring Sampling

Ground Water Sampling Event #1

The ground water assessment plan requires the RVAAP to re-sample wells RQL MW-006 and RQL MW-007 by September 25, 2001 and perform analyses on the ground water samples for all parameters listed in Appendix II of the March 1, 1990 rules. Additionally, analyses will also be completed for specific explosives materials and propellents. All data collected will satisfy the requirements of the Ramsdell Quarry Landfill Groundwater Monitoring Plan and the Data Quality Objectives in the RVAAP Facility-Wide Sampling and Analysis Plan. Ground water regulatory requirements stipulate that the data must be submitted to the Director of the Ohio EPA not more than 60 days after sampling event and not more than 15 days after receiving the results of the analysis.

Upgradient/Background Monitoring Well - RQL MW-006

The Ohio EPA has previously indicated some concern regarding the effectiveness of RQL MW-006, the upgradient/background well. Pursuant to O.A.C. 3745-27-10, effective March 1990, the basis for submission of an assessment monitoring plan program is statistically significant change or concentration of constituents between the upgradient well and down gradient wells. Considering this fact, we recommend the following steps be taken to address both the effectiveness of MW-006 and the implementation of the assessment plan.

- Conduct the sampling Event #1 (RQL MW-006 and (RQL MW-007)
- Evaluate the ground water data from Event #1.
- Compare analytical data from Event #1, historical RQL ground water data, and previous site ground water studies (i.e. Jan.1999 Report on the Ground water Investigation of the Ramsdell Quarry Landfill).
- Establish agreement with OEPA regarding the status and effectiveness of RQL MW-006 (upgradient background well).

A final determination will then be made regarding the continued use and effectiveness of RQL MW-006 or the development of an alternative upgradient point that complies with the requirements of O.A.C. 3745-27-10.

Options upon Completion of Ground Water Sampling Event #1

If the ground water analyses resulting from Event #1 indicate that no analyzed constituents are reported above background for RQL MW-007, a request would be made to Ohio EPA to return to detection ground water monitoring. However, if

the data reflects constituents in RQL MW-007 above background, the RVAAP would proceed to Event #2.

Ground Water Sampling Event #2

After the completion of the Event #1 sampling, the RVAAP will evaluate the ground water data generated during Event #1 to determine if additional sampling of down gradient wells RQL MW-008 and RQL MW-009 is required. The decision to complete additional sampling and analyses on RQL MW-008 and RQL MW-009 is driven by a positive determination from the Event #1 sampling indicating the presence of Appendix II constituents or explosives / propellents above background levels in RQL MW-007.

Options upon Completion of Ground Water Sampling Event #2

a. If the ground water data reported for down gradient wells RQL MW-008 and RQL MW-009 either indicate or do not indicate concentration of constituents above background, the RVAAP would propose, in either situation, to proceed to additional ground water sampling to determine the rate and extent of groundwater constituents.

Ground Water Sampling Event #3

As noted under the Options in Ground Water Sampling Event #2 above, the presence of ground water constituents above background in RQL MW-007, RQL MW-008 and/or RQL MW-009, the RVAAP would be required to make a further determination of the rate and extent of the presence of analyzed constituents. As stipulated in the applicable 1990 ground water regulations, sampling Event #3 would involve the sampling, as necessary and appropriate, either RQL MW-010 or RQL mw-011 or both wells, for any constituents found in RQL MW-007, RQL MW-008 and/or RQL MW-009 above the approved and agreed-to background well to help define the extent and migration of any constituents.

Options upon Completion of the Ground Water Sampling Event #3

b. If any of the ground water constituents evaluated in sample event #3 appear above or below the background level established in the prior sampling events, the RVAAP would study the collective data generated under the assessment plan to determine what additional actions would be taken.

Following are the additional components required in the ground water assessment plan.

3. Sampling Background and Affected Well O.A.C. 3745-27-10(E)(2)(a).

Not later than September 25, 2001 the RVAAP will resample RQL MW-006 and RQL MW-007 and analyze those samples for the constituents listed in the Appendix II to the O.A.C. 3745-27-10 ground water rule effective March 1, 1990 and the specific explosives and propellents associated with RVAAP.

4. Sampling Wells not Previously Sampled - O.A.C. 3745-27-10 (E) (2) (b).

If it is determined that any Appendix II, explosive or propellent constituents are present in RQL mw-007 above background (as background is ultimately defined and agreed to) the RVAAP will proceed to sample RQL MW-008 and RQL MW-009 and analyze those samples for those constituents.

5. Analytical Results from Sampling Background Well and Affected Well - O.A.C. 3745-27-10 (E) (2) (c).

All analytical results will be submitted to the Director of the Ohio EPA by the RVAAP not later than 60 days after each sampling event and no later than 15 days after receiving the analytical results.

6. Hydrogeologic Conditions - O.A.C. 3734-27-10 (E) (3) (a).

The hydrogeologic conditions at the RVAAP Ramsdell Quarry are described in depth in the Final Report on the Ground Water Investigation of the Ramsdell Quarry Landfill completed in January 1999. A copy of this report is attached to this assessment plan. Although aspects of the hydrogeologic characteristics at the Ramsdell Quarry Landfill are still under discussion, the RVAAP believes that the report does provides the best representation and description of the site hydrogeologic conditions. Please see Section 2.0 for a general description of the site hydrogeologic conditions.

7. Number, Location, Depth, and Construction of Detection Monitoring Wells - O.A.C. 3745-27-10 (E) (3) (b) (i).

The Ramsdell Quarry O.A.C. 3745-27-10 ground water monitoring system consists of an upgradient well, RQL MW-006, and three downgradient wells RQL MW-007, RQL MW-008 and RQL MW-009. The depth, construction and location of these wells is described in Appendix I to this report as:

- a. Table 2-1. Ramsdell Quarry Ground Monitoring Well Construction Data; and
- b. Figure 2-1. Ramsdell Quarry Site Map and Ground Water Sampling Locations within the previously described and attached Ground Water Report.

Summary of Detection Monitoring Data – O.A.C. 3745-10 (E) (3) (b) (ii).

Attached to the assessment plan, as Appendix II, is a summary of the detection monitoring program data for the ground water monitoring system that includes wells RQL MW-006, RDL MW-007, RQL MW-008, and RQL MW-009.

9. Summary of Statistical Analysis Applied to the Data - O.A.C. 3745-27-10 (E) (3) (b) (iii).

A summary of the statistical data for Ramsdell Quarry ground water detection monitoring is included in Appendix II along with the summary of the detection monitoring data.

10. Proposed Number, Location, Depth and Construction of Assessment Monitoring Wells - O.A.C. 3745-27-10 (E) (3) (c) (i).

At this time the RVAAP is not planning to install any additional wells at the Ramsdell Quarry Landfill. The Ramsdell Quarry ground water monitoring network presently includes two wells downgradient of the existing O.A.C. 3745-27-10 ground water monitoring system. These wells, RQL MW-010 and RQL MW-011 will be used as assessment monitoring wells if constituents are found in the affected well/wells above background. The location, depth and construction of these wells are described in Table 2-1, of Appendix I.

11. Proposed Methods for Gathering Additional Hydrogeologic Information- O.A.C. 3745-27-10 (E) (3) (c) (ii.)

Presently, there are no plans to gather additional hydrogeologic information. As previously noted, the RVAAP will conduct Ground Water Sampling #1 and evaluate the applicable data. At that point a determination will be made as to the need for an additional upgradient sampling point and the necessity for any additional hydrogeologic evaluation.

Planned Use of Supporting Methodologies - O.A.C. 3745-27-10 (E) (3) (c) (iii).

At this time there are no additional use of supporting methodologies planned. The affected well (RQL MW-007) and the background well (RQL MW-006) will be sampled and the data analyzed. If appropriate, the remaining ground water wells that constitute the ground water monitoring program will be sampled and that data analyzed. Finally, a determination will be made regarding sampling the in-place wells, RQL MW-010 and RQL MW-011, to determine the rate and extent of any constituents.

Measurement of Ground Water Elevation- O.A.C. 3745-27-10 (E) (3) (d) (i).

Ground water elevations will be taken in accordance with in-place Ramsdell/RVAAP ground water monitoring plans and procedures. A copy of the existing Ramsdell ground water monitoring plan is attached as Appendix III.

14. Detection of Immiscible Layers- O.A.C 3745-27-10 (E) (3) (d) (ii).

Detection and notation of immiscible layers in samples collected will be noted and recorded in accordance with in-place Ramsdell/RVAAP ground water monitoring plans and procedures.

15. Well Evacuation - O.A.C. 3745-27-10 (E) (3) (d) (iii) (a).

Well evacuation will be conducted in accordance with in-place Ramsdell/RVAAP ground water monitoring plans and procedures.

16. Sample Withdrawal - O.A.C. 3745-27-10 (E) (3) (d) (iii) (b).

Sample withdrawal will be conducted in accordance with in-place Ramsdell/RVAAP ground water monitoring plans and procedures.

17. Sample Containers and Handling - O.A.C. 3745-27-10 (E) (3) (d) (iii) (c).

Sample containers and handling procedures will follow in-place Ramsdell/RVAAP ground water monitoring plans and procedures.

18. Sample Preservation - O.A.C. 3745-27-10 (E) (3) (d) (iii) (d).

Sample preservation procedures will follow in-place Ramsdell/RVAAP ground water monitoring plans and procedures.

Procedures and Forms for Recording Data - O.A.C. 3745-27-10 (E) (3) (d) (iv) (a.)

Forms utilized to record sample collection and field measurements will be the procedures and forms currently in-place as part of the Ramsdell/RVAAP ground water monitoring plans and procedures.

20. Calibration of Field Devices - O.A.C. 3745-27-10 (E) (3) (d) (iv) (b).

The calibration of field devices will follow in-place Ramsdell/RVAAP ground water monitoring/calibration of field equipment plans and procedures.

21. Decontamination of Equipment – O.A.C. 3745-27-10 (E) (3) (d) (v).

The decontamination of equipment will follow in-place Ramsdell/RVAAP ground water monitoring plans and procedures.

22. Methods for Sample Analysis - O.A.C. 3745-27-10 (E) (3) (d) (vi).

The methods for sample analysis will be the same as those used for detection ground water sample analyses and in accordance with in-place Ramsdell/RVAAP ground water monitoring plans and procedures.

23. Standardization Field Tracking Reporting Forms – O.A.C. 3745-27-10 (E) (3) (d) (vii) (a).

The field tracking forms used will be the same forms used for the ground water detection sampling events and in accordance with in-place Ramsdell/RVAAP ground water monitoring plans and procedures.

24. Preparation Sample Labels – O.A.C. 3745-27-10 (E) (3) (d) (vii) (b).

Sample labels will be prepared in accordance with in-place Ramsdell/RVAAP ground water monitoring plans and procedures.

25. Collection of Replicate Samples – O.A.C. 3745-27-10 (E) (3) (d) (viii) (a).

Replicate samples will be collected and handled in accordance with in-place Ramsdell/RVAAP ground water monitoring plans and procedures.

26. Submission of Field-bias Blanks – O.A.C. 3745-27-10 (E) (3) (d) (viii) (b).

The submission of field blanks will be handled in accordance with in-place Ramsdell/RVAAP ground water monitoring plans and procedures.

27. Potential Interferences - O.A.C. 3745-27-10 (E) (3) (d) (viii) (c).

At this time, based upon historical groundwater monitoring results, it is not anticipated that chemical interferences will be a problem for sample collection and analysis.

28. Use of Statistical Data Evaluation – O.A.C. 3745-27-10 (E) (3) (d) (viii) (e) (i).

At this time it is only anticipated that statistical data evaluation will be used in the evaluation of RQL MW-006 as an appropriate background well.

29. Use of Computer Models – O.A.C. 3745-27-10 (E) (3) (d) (viii) (e) (ii).

There is no planned use of computer models in the sampling phase of the assessment plan. Based upon the data generated it may be necessary to utilize computer models to help interpret the data generated.

Use of Previously Gathered Information – O.A.C. 3745-27-10 (E) (3) (d) (viii) (e) (iii).

As previously noted, the RVAAP has completed an in-depth hydrogeologic study of the Ramsdell Quarry Landfill that is included as Appendix I with this assessment plan. This report and the historical ground water monitoring data, attached as Appendix II, are also included in this report and will be used to assist in data interpretation.

31. Additional Assessment Criteria – O.A.C. 3745-27-10 (E) (3) (d) (viii) (e) (iv).

There are no additional assessment criteria at this time.

32. Schedule of Implementation – O.A.C. 3745-27-10 (E) (3) (d) (viii) (f).

Date	Action Item
4/30/01	Semi-annual sampling event
6/05/01	Receipt of initial data indicating SSC
6/15/01	Notification to Director of possible SSC
6/26/01	Re-sampling of RQL MW-006 and RQL MW-007
8/24/01	Notification to Director of confirmation of SSC
9/10/01	Submission of Assessment Plan
By 9/25/01	Completion of sampling for Appendix II, explosive and propellent constituents in RQL MW-006 and RQL MW-007
By 11/26/01 (but not later than 15 days after receipt of data)	Submission of data from the required sampling of designated monitoring wells

Additional scheduling will be developed based upon the review of the data of the initial sampling and the review of the adequacy of the existing background well.

33. Summary

In summary, the Ramsdell ground water monitoring assessment plan consists of 1 to 3 rounds of sampling and data analysis, based upon the analytical results received. The first round consists of sampling the background well and the affected downgradient well for the Appendix II, explosive and propellent constituents. All data collected will satisfy the requirements of the Ramsdell Quarry Landfill Groundwater Monitoring Plan and the Data Quality Objectives in the RVAAP Facility-Wide Sampling and Analysis Plan. In addition, an evaluation of the validity and continued use of the upgradient well will be conducted as well as an assessment of any parameters noted above background in the affected well (RQL MW-007). The second round of sampling, if necessary and appropriate, will consist of sampling RQL MW-008 and RQL MW-009 for any constituents that were detected in the affected well above background. The third round of sampling, if necessary and appropriate, will consist of sampling RQL MW-010 and/or RQL MW-011 for any constituents detected in RQL MW-007, RQL MW-008 or RQL MW-009 above background. The information from the third round of sampling will, if necessary and appropriate, be used to determine the rate and extent of any ground water constituents.

FINAL

INITIAL PHASE REPORT GROUNDWATER INVESTIGATION RAMSDELL QUARRY LANDFILL

RAVENNA ARMY AMMUNITION PLANT RAVENNA, OHIO

PREPARED FOR

US Army Corps of Engineers®

LOUISVILLE DISTRICT

CONTRACT No. DACA27-97-D-0025 Delivery Order 003

January 1999

98-162P(PM65-4Si)/011599

INITIAL PHASE REPORT GROUNDWATER INVESTIGATION RAMSDELL QUARRY LANDFILL RAVENNA ARMY AMMUNITION PLANT RAVENNA, OHIO

Prepared for: U.S. Army Corps of Engineers Louisville District Under Contract Number DACA27-97-D-0025 Delivery Order No. 003

Prepared by: SCIENCE APPLICATIONS INTERNATIONAL CORPORATION 800 Oak Ridge Turnpike Oak Ridge, Tennessee 37831

January 1999

98-162P(doc-4si)/011599

CONTENTS

EX	ECUI	IVE SU	MMARY	V
1.0	INT	RODUC	TION	
	1.1		OSE OF STUDY	
	1.2		BACKGROUND	
		1.2.1		
		1.2.2	Previous Investigations	
	1.3		RT ORGANIZATION	
2.0	INV	ESTIGA	TION RESULTS	2-1
	2.1	GROU	NDWATER REGIME AND MONITORING	2-1
		2.1.1	Soil Borings and Subsurface Geology	2-1
		2.1.2	Monitoring Well Installation	
		2.1.3	Slug Test Results	
		2.1.4	Groundwater Sampling	
		2.1.5	Geotechnical Results	
		2.1.6	Survey Results	
	2.2	POND	SURFACE WATER AND SEDIMENT SAMPLING	
		2.2.1	Survey Results	
		2.2.2	Geotechnical Sampling Results	
		2.2.3	Surface Water Sampling Results	
		2.2.4	Sediment Sampling Results	
		2.2.5	Continuous Water Level Data Collection	
3.0	CON	ICLUSI	ONS	
	3.1	GROU	NDWATER CONDITIONS AND QUALITY	
	3.2		ACE WATER/SEDIMENT CONDITIONS AND QUALITY	
	3.3		OW-UP INVESTIGATION	
4.0	REF	ERENC	ES	4-1
Ap	pendix	tes		
A	Monit	toring W	ell Boring Logs	A-1
В	Monit	toring W	ell Construction Diagrams/	
	Well	Develop	ment Records	B-1
С	Slug	Test Data	a	C-1
D	Chem	ical Ana	lytical Data	D-1
E	Geote	chnical I	Data	E-1
F	Surve	y Data		F-1
G			ance Report	
Н			pling Logs	
I			Control Reports	

•

List	of Figures
1-1	RVAAP Installation Map1-3
1-2	Photograph of RQL, Looking Southeast from Ramsdell Road
1-3	RQL Topography and Original Well Locations
2-1	RQL Groundwater Investigation Monitoring Well
	and Pond Sampling Locations
2-2	Lithologic Cross Section A-A'
2-3	Potentiometric Surface Map for Ramsdell Quarry, July 1998 (New Monitoring Wells)2-5
2-4	Potentiometric Surface Map for Ramsdell Quarry, July 1998 (Previously Installed
	Monitoring Wells)
2-5	Summary of Explosives Results in Groundwater
2-6	Photograph of Staff Gauge at Ramsdell Quarry Landfill Pond,
	Looking Southeastward from Northwest Corner of Pond

List of Tables

1-1	List of Analytes for Ramsdell Quarry Landfill Semiannual	
	Groundwater Monitoring	
2-1	Static Water Level Measurements, July 23 to 28, 1998	2-7
2-2	Horizontal Hydraulic Conductivities Measured During the RQL	
	Groundwater Investigation	2-9
2-3	Summary of Filtered TAL Metals Results for Groundwater at RQL	
2-4	Sediment Sampling Data, Ramsdell Quarry Landfill Pond	2-18
2-5	Summary of TAL Metals Results for RQL Pond Sediments	2-21

List of Acronyms

amsl	above mean sea level
AOC	area of concern
BGS	below ground surface
DNB	dinitrobenzene
DNT	dinitrotoluene
MCL	Maximum Contaminant Level
OAC	Ohio Administrative Code
Ohio EPA	Ohio Environmental Protection Agency
OVA	organic vapor analyzer
PAH	polynuclear aromatic hydrocarbon
PID	photoionization detector
PVC	polyvinyl chloride
RQL	Ramsdell Quarry Landfill
RVAAP	Ravenna Army Ammunition Plant
SVOC	semivolatile organic compound
TAL	Target Analyte List
TNT	trinitrotoluene
USACE	U.S. Army Corps of Engineers
USAEHA	U.S. Army Environmental Hygiene Agency
UXO	unexploded ordnance
VOC	volatile organic compound

EXECUTIVE SUMMARY

This report documents the results of the initial phase of the Groundwater Investigation of Ramsdell Quarry Landfill (RQL) at Ravenna Army Ammunition Plant (RVAAP), Ravenna, Ohio. The initial phase of the Groundwater Investigation was conducted for RVAAP by Science Applications International Corporation under contract DACA27-97-D-0025, Delivery Order No. 003, with the U.S. Army Corps of Engineers (USACE), Louisville District. The Groundwater Investigation is conducted in a manner consistent with the Department of Defense Installation Restoration Program guidelines, following work plans reviewed and commented on by the Ohio Environmental Protection Agency, Northeast District Office, Division of Solid and Infectious Waste.

ES.1 OBJECTIVES

This Groundwater Investigation Report summarizes the results of the initial phase of field activities conducted in July 1998 at RQL. The specific objectives of the Groundwater Investigation are as follows:

- to assess the hydrogeologic conditions and groundwater quality of shallow groundwater beneath the site using monitoring wells of known integrity suited to this purpose;
- to evaluate the RQL pond water and sediment for evidence of contamination, either via the groundwater pathway, or by surface runoff of contaminated soils to the pond;
- to establish whether there is a hydraulic connection between shallow groundwater and the pond and to continuously monitor water levels in six monitoring wells and the pond for one year for this purpose; and
- to provide for the quarterly collection of samples of upgradient and downgradient groundwater and surface water for one year, and during two significant hydrogeologic events, to maintain compliance with post-closure monitoring requirements.

ES.2 FIELD INVESTIGATION

The RQL Groundwater Investigation is organized in two distinct phases of data collection and analysis. The initial phase, completed in July 1998, consisted of the following activities:

- installation, development, testing, sampling, and instrumentation of six new monitoring wells;
- testing, sampling, and water level measurements at five monitoring wells constructed in 1988;
- sampling of sediments and surface water at the RQL pond;
- · construction of an instrumented staff gauge at the RQL pond; and
- surveying of all monitoring wells and pond sediment/surface water sampling locations.

The initial field effort was conducted in accordance with the Facility-Wide Sampling and Analysis Plan for Ravenna Army Ammunition Plant (USACE 1996a) and the Sampling and Analysis Plan Addendum for the Groundwater Investigation of the Former Ramsdell Quarry Landfill (USACE 1998). The initial phase of the investigation specifically addresses the first two objectives as stated above, and provides the basis for the remaining objectives to be accomplished. These field activities are the subject of this report.

The follow-up phase consists of the collection of groundwater samples from each of the six newly installed monitoring wells and collection of samples from one surface water location. This work is to be repeated for the next three quarters and in two separate hydrogeologic events (i.e., either a storm or a prolonged dry period), ending in 1999. The purpose of this monitoring is to establish a statistically sound data set to determine whether contaminants are migrating via groundwater from the former landfill. In addition, follow-up work will consist of continuous water-level measurements using data loggers on the six new wells, and monthly manual water level readings on the previously installed monitoring wells, for a period of one year following the installation of the six new wells. The results of sampling in each quarter will be the subject of three individual quarterly reports.

ES.3 GROUNDWATER HYDROGEOLOGY AND FLOW

Six monitoring wells were installed as a part of the initial phase of the Groundwater Investigation. A staff gauge was installed in the pond to provide correlative pond surface elevation data to groundwater elevations. RQL and the adjacent pond are underlain by weathered, fractured fine- to medium-grained, sandstones of the Sharon Member of the Pennsylvanian Pottsville Formation. All of the wells are completed in the most shallow water-bearing zone in this stratigraphic unit. Open, recemented, and highly weathered fractures were observed throughout the drilled intervals. Fracturing occurs both along bedding planes and as joints in massive zones. Groundwater circulates along fractures, as evidenced by limonitic or black oxidized stainings and coatings on the rock or on grains. The pervasive character of fracturing in the sandstone suggests that vertical movement of groundwater through both the primary and secondary porosity takes place at RQL to some degree.

Water level measurements in the six new wells and pond staff gauge indicate a local hydraulic gradient to the northeast. Water level measurements from the original five monitoring wells (which are screened deeper than the new wells) collected during the same week, and historical information for water levels in the summer months, illustrate the same general potentiometric surface geometry. These data indicate a high degree of vertical communication between the zones across permeable primary and secondary flow paths in the highly fractured and weathered sandstones at RQL.

The pond is small and shallow, and much of its former extent is now covered with vegetation. RQL pond is underlain by bedrock, covered to varying degrees by fine-grained sediment. The presence of this sediment may effectively reduce the amount of any hydraulic communication that may exist between the water-bearing zone in the sandstone and the pond, especially at times when the water level (i.e., the hydraulic head) in the pond is low. However, water levels in the pond have appeared to mimic those in the original monitoring wells and in the newly installed wells between the landfill toe and the pond.

ES.4 ANALYTICAL RESULTS

The results of the Groundwater Investigation initial sampling at RQL are summarized in the following sections.

ES.4.1 Groundwater

Groundwater contains low levels of explosives such as RDX, 1,3-dinitrobenzene, and nitrotoluenes. Two explosives were identified in the newly designated upgradient well, RQLmw-006. These explosives also occur in one or more of the downgradient wells. The propellant nitroglycerine was also identified in the upgradient well, and in one downgradient well, in low concentrations. These occurrences suggest a contaminant source upgradient of the former quarry, or reversal of flow in the groundwater system transporting contaminants upgradient. Arsenic, cobalt, and nickel were identified in filtered samples from RQLmw-006 and five or more downgradient wells. Volatile organic compounds (VOCs) and semivolatile organic compounds (SVOCs) were not present above detection levels in groundwater.

ES.4.2 Sediment

Sediment has accumulated to a depth of 1.2 m (4 ft) or greater in some places in the pond. Sediment samples from the 0- to 0.15-m (0- to 0.5-ft) sampling interval appear to harbor the greatest concentrations of contaminants. The explosive HMX was found in five of the eight locations, in two of these at depths of 0.15 to 0.60 m (0.5 to 2 ft) or greater. The propellant nitrocellulose was present in two samples in low concentrations.

Numerous polynuclear aromatic hydrocarbons were present in five of the eight sediment sampling locations in concentrations up to 2000 mg/kg. VOCs were generally not present above detection levels.

ES.4.3 Surface Water

The water depth in July 1998 varied from 0 to 0.97 m (0 to 3.18 ft). An instrumented staff gauge was established at the point where the water is deepest. Explosives, propellants, cyanide, VOCs, and SVOCs were not detected above detection levels in the pond water. Most of the metals in filtered surface water samples were non-detects, with the exception of iron, magnesium, and manganese, which were detected in most samples. Arsenic and barium were present in three or fewer samples at low concentrations.

ES.5 CONCLUSIONS

The results of the initial phase of sampling and measurements at RQL provide an assessment of summer (dry weather) conditions at the site, using new monitoring wells for the collection of chemical and hydraulic data. Follow-up sampling will provide information on the temporal variations in groundwater and surface water chemistry and movement. These data will be provided in quarterly monitoring reports and integrated in an annual summary report at the conclusion of the Groundwater Investigation.

1.0 INTRODUCTION

This report documents the results of the initial phase of the Groundwater Investigation of Ramsdell Quarry Landfill (RQL) at Ravenna Army Ammunition Plant (RVAAP), Ravenna, Ohio. The initial phase of the Groundwater Investigation was conducted for RVAAP by Science Applications International Corporation under contract DACA27-97-D-0025, Delivery Order No. 003, with the U.S. Army Corps of Engineers (USACE), Louisville District. The Groundwater Investigation is conducted in a manner consistent with the Department of Defense Installation Restoration Program guidelines, following work plans reviewed and commented on by the Ohio Environmental Protection Agency (Ohio EPA), Northeast District Office, Division of Solid and Infectious Waste.

The RQL Groundwater Investigation at RVAAP, in Ravenna, Ohio (Figure 1-1), was conducted in July 1998 to provide a supplemental characterization of the shallow groundwater flow regimes and chemical water quality at this closed solid waste disposal facility. With this evaluation, the USACE seeks to close data gaps and to address potential impacts upon the groundwater from the former RQL and pre-landfill disposal activities. Data from this investigation may be used to establish that the new groundwater monitoring system meets the requirements of Ohio Administrative Code (OAC) 3745-27-10(B). Although this groundwater investigation is independent of semiannual post-closure monitoring, groundwater monitoring activities performed in this investigation shall be, to the extent possible, consistent with the requirements of OAC 3745-27-10.

1.1 PURPOSE OF STUDY

The purposes of the RQL Groundwater Investigation are as follows:

- to assess the hydrogeologic conditions and groundwater quality in shallow groundwater beneath the site using monitoring wells of known integrity suited to this purpose;
- to evaluate the RQL pond water and sediment for evidence of contamination, via the groundwater pathway, or as a result of incipient contamination from historical operations on the quarry floor;
- to establish whether there is a hydraulic connection between shallow groundwater and the pond, and to continuously monitor water levels in six monitoring wells and the pond for one year for this purpose; and
- to provide for the quarterly collection of samples of upgradient and downgradient groundwater and surface water for one year, and during two significant hydrogeologic events, to maintain compliance with post-closure monitoring requirements.

The work performed for this investigation included the installation, development, testing, sampling, and instrumentation of six new monitoring wells, as well as the sampling and testing of the five existing monitoring wells, and pond sediment and surface water sampling.

THIS PAGE INTENTIONALLY LEFT BLANK

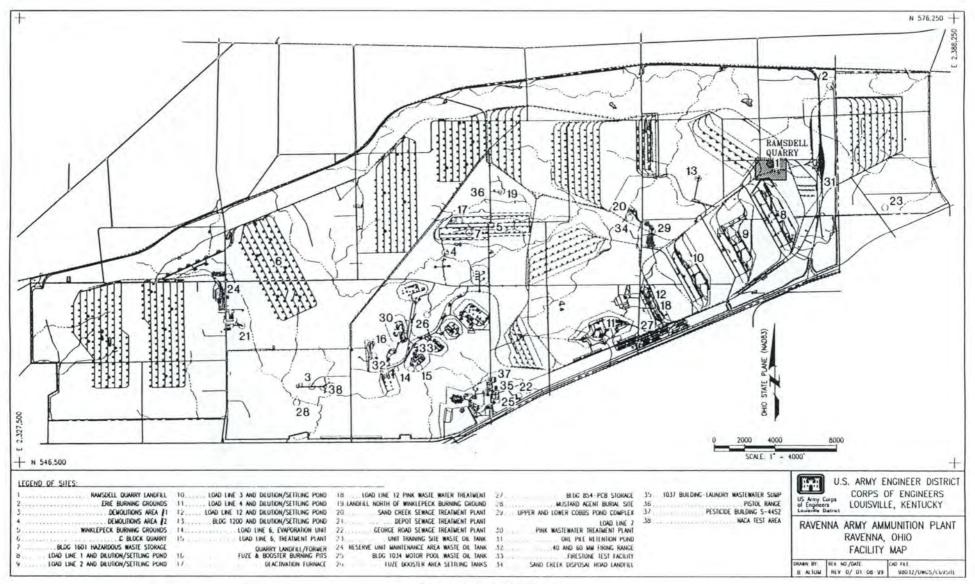


Figure 1-1. RVAAP Installation Map

1.2 SITE BACKGROUND

1.2.1 Site Description

A detailed history of process operations and waste processes for each area of concern (AOC) at RVAAP is presented in the *Preliminary Assessment for the Ravenna Army Ammunition Plant*, *Ravenna, Ohio* (USACE 1996b). The following is a summary of the history and of the related contaminants for RQL.

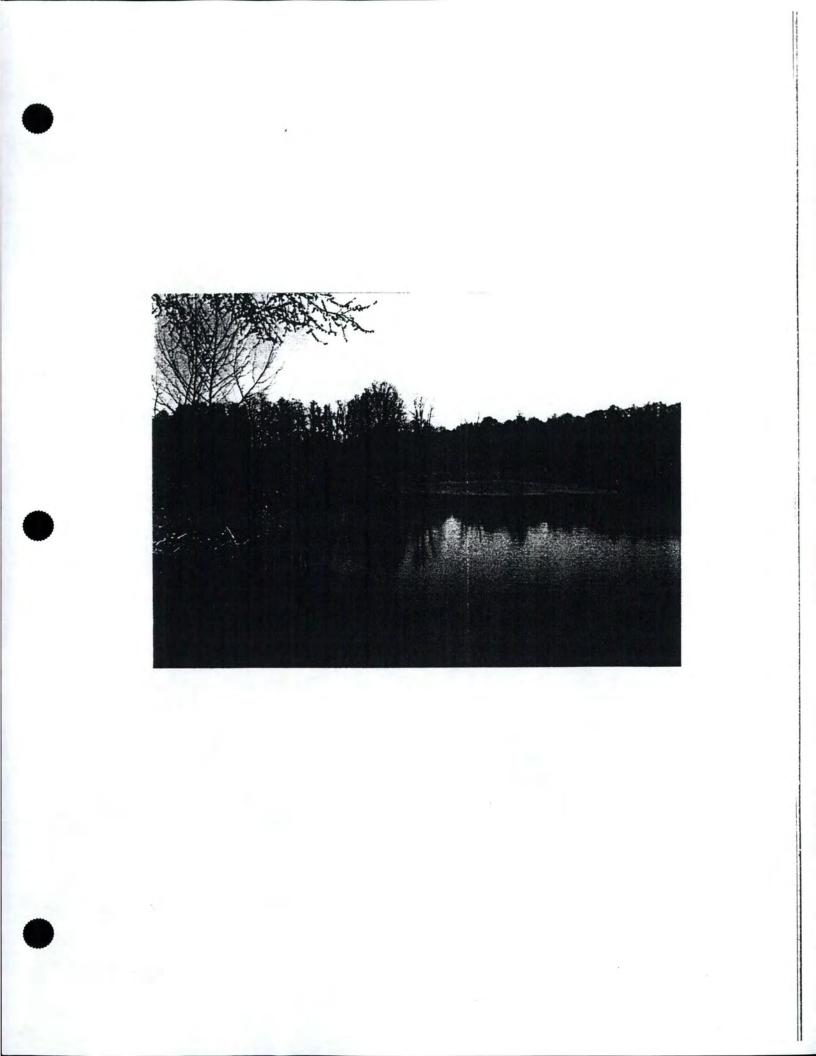
RQL (designated AOC RVAAP-01) is located in the western and southern portion of the abandoned Ramsdell Quarry (Figure 1-1), in the northeast corner of RVAAP. The quarry was excavated about 9 to 12 m (30 to 40 ft) below existing grade into the Sharon Member sandstone and conglomerate bedrock.

The original unconsolidated glacial material overlying the sandstone was only a few feet (<10 ft) thick and appears to have been entirely removed. The quarry was abandoned before 1941 and was used as a landfill from 1941 until 1989. In addition, from 1946 to the 1950s, the bottom of the quarry was used to burn waste explosives from Load Line 1. Approximately 18,000 225-kg (500-lb) incendiary or napalm bombs were reported to have been burned in the abandoned quarry. Liquid residues from annealing operations were also dumped in the quarry. There is currently no historical information on how the quarry was used from the 1950s to 1976.

From 1976 until the landfill was closed in 1989, only nonhazardous solid waste was deposited in the abandoned quarry. In 1978, a portion of the abandoned quarry was permitted as a sanitary landfill by the State of Ohio. The permit required a 30-m (100-ft) buffer be maintained between the landfill and the pond; the extent of the pond prior to this time is not known.

Figures 1-2 and 1-3 depict current conditions at the RQL and adjacent pond. The closed landfill is U-shaped and has a compacted-soil cover that is vegetated and appears to be intact. The pond is generally less than 1.3 m (4 ft) deep and is underlain by thin deposits of sediment over bedrock.

Based upon available information and past uses of the abandoned quarry, wastes may include domestic, commercial, and industrial solid and liquid wastes, including explosives (e.g., TNT, RDX, Composition B), napalm, gasoline, acid dip liquor, annealing residue (e.g., sulfuric acid, shell casings, sodium orthosilicate, chromic acid, and alkali), aluminum chloride, and inert material. Interviews with former RVAAP personnel have indicated that much of the landfilled wastes and debris at the abandoned quarry were removed in the 1980s.


A much smaller quarry (also abandoned) was located directly southeast of RQL (Figure 1-3). Although some aerial photographs have shown a small pond in this location, the pond is evidently of seasonal character, because no standing water was present at this location at the time of the field investigation. No documentation about potential waste disposed in this quarry is available.

Closure of the permitted sanitary landfill was completed in May 1990 under State of Ohio solid waste regulations (OAC 3745-27-10). A requirement of closure was installation and semiannual monitoring of five monitoring wells (see Figure 1-3).

1.2.2 Previous Investigations

Groundwater samples from RQL have been collected since 1987, beginning with semiannual detection monitoring in five open boreholes. Monitoring wells MW-1 through MW-5 (shown in

98-162P(doc-4si)/011599

THIS PAGE INTENTIONALLY LEFT BLANK

.

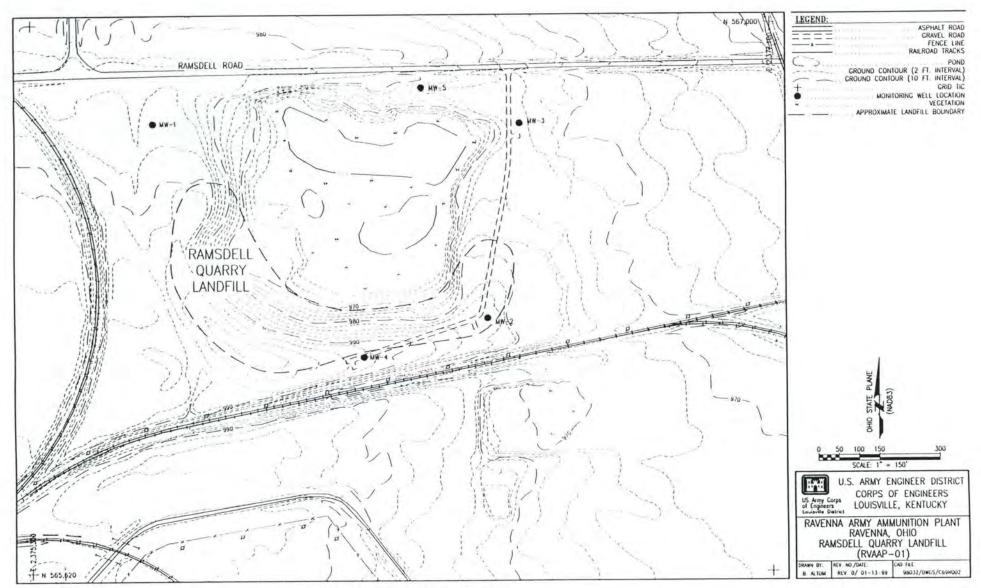


Figure 1-3. RQL Topography and Original Well Locations

Figure 1-3) were completed in these boreholes in January 1988 (USAEHA 1992), and semiannual monitoring continued until November 1991, when quarterly sampling was initiated. Quarterly sampling continued through February 1993. The wells have been sampled semiannually since February 1993.

RVAAP has performed semiannual groundwater monitoring of these constituents according to the requirements of OAC 3745-27-10 (March 1990), specified in a Groundwater Monitoring Plan for the Ramsdell Quarry Landfill (Revised), dated March 1995 (RVAAP 1995). In the semiannual monitoring program, unfiltered samples are analyzed for the volatile organic compounds (VOCs), five explosives, eleven metals, and indicator parameters listed in Table 1-1. In addition, the Portage County Health Department has sampled and analyzed surface water from the RQL pond.

The plan submitted to Ohio EPA for the closure of RQL in 1989 provides additional characterization information about the site. The closure plan contains stratigraphic information as well as lithologic cross-sections showing the elevation of the lower limit of waste placement for the sanitary landfill. According to the design drawings filed as a part of this plan, the lower limit of waste placement was many feet above the water level in the pond, which was presumed to mimic the elevation of the potentiometric surface.

Significant gaps in the monitoring data gathered before this Groundwater Investigation have been identified by Ohio EPA (Ohio EPA 1997) that prevent the determination of whether closure requirements are being met. The most significant deficiencies are as follows:

- Placement of the original monitoring wells (installed in 1988) is such that only one well (MW-5) is downgradient from the RQL. Prior to this effort, there were no monitoring wells located immediately downgradient of the toe of the landfill. Ohio regulations require a minimum of three downgradient wells at all times.
- Discrepancies in relative water level elevations in the five original wells during semiannual measurement events obscure whether a seasonal shift (reversal) in groundwater flow direction is occurring.
- Monitoring wells installed for detection monitoring in 1988 were screened 3 to 9 m (10 to 30 ft) below the water table, resulting in a concern that the present upgradient wells do not monitor the same water-bearing interval as the downgradient well.
- No information exists to determine the relationship between water levels in the uppermost groundwater zone and the surface of the pond.
- Explosives were detected in groundwater from all five monitoring wells in at least three sampling events, thus casting some doubt as to the integrity of the "upgradient" well (MW-4).
- Indicator parameters such as specific conductance and total dissolved solids continue to be analyzed, and upgradient/downgradient differences may result from variations in the sandstone intervals in which wells are screened rather than from the impact of the landfill on groundwater.

Inorganics (total)	Volatile Organic Compounds		
Arsenic	Acetone		
Barium	Acrolein		
Cadmium	Acrylonitrile		
Calcium	Benzene		
Chromium	Bromodichloromethane		
Copper	cis-1,3-Dichloropropene		
Iron	trans-1,3-Dichloropropene		
Lead	Ethylbenzene		
Magnesium	Ethyl Methacrylate		
Mercury	Bromoform		
Potassium	Bromomethane		
Nickel	2-Butanone		
Selenium	Carbon Disulfide		
Silver	Carbon Tetrachloride		
Sodium	Chlorobenzene		
Zinc	Chloroethane		
Explosives	2-Chloroethyl Vinyl Ether		
Trinitrotoluene	Chloroform		
2,4-Dinitrotoluene	Chloromethane		
2,6-Dinitrotoluene	Dichlorodifluoromethane		
HMX	1,1-Dichloroethane		
RDX	1,2-Dichloroethane		
Inorganic/Indicator Parameters	2-Hexanone		
Fotal Alkalinity	Methylene Chloride		
Chloride	4-Methyl 2-Pentanone		
Chemical Oxygen Demand	1,1-Dichloroethene		
Cyanide	trans-1,2-Dichloroethene		
Specific Conductivity	Styrene		
Dissolved Fluoride	1,1, 2.2-Tetrachloroethene		
MBAS, Colorimetric	Toluene		
Nitrate (as N)	1,1.1-Trichloroethane		
Ammonia (as N)	1,1,2-Trichloroethane		
H	Trichloroethene		
Fotal Dissolved Solids	Trichlorofluoromethane		
Sulfate	1.2.3-Trichloropropane		
Total Organic Carbon	Vinyl Acetate		
Temperature	Vinyl Chloride		
Nitrate-nitrite	Xylene		
Phosphorus	Phenols		
Furbidity			

Table 1-1. List of Analytes for Ramsdell Quarry Landfill Semiannual Groundwater Monitoring

Source: USAEHA 1992

In summary, previous evaluations of groundwater at RQL have produced inconclusive results. Statistical analysis of water quality indicator parameters has shown some local impacts on the groundwater (e.g., specific conductance, total organic carbon, and total dissolved solids have been statistical triggers in both upgradient and downgradient wells).

USACE recently completed (February 1998) a topographic survey of RQL, including collection of new elevation data on the existing monitoring wells at the site. Topography of the site is now accurate to within 0.006 m (0.02 ft). A survey of the elevations of the existing wells was performed to correct discrepancies in water level elevations noted in the semiannual data. As a part of this Groundwater Investigation, the existing monitoring wells were re-surveyed, and the elevations shown for the wells in this report are the most recent.

1.3 REPORT ORGANIZATION

This Groundwater Investigation was designed to fill the data gaps described above, and to resolve uncertainties about the chemical quality and the physical groundwater regime beneath RQL. The field sampling efforts performed in this Groundwater Investigation consist of an initial phase and a follow-up phase. The initial field effort consisted of the following:

- installation, development, testing, sampling, and instrumentation of six new monitoring wells;
- sampling and water level measurements at the five existing wells;
- sampling of sediments and surface water at the RQL pond;
- construction of an instrumented staff gauge at the RQL pond; and
- surveying of all new monitoring wells and pond sediment/surface water sampling locations.

The follow-up phase will consist of the collection of groundwater samples from each of the six newly installed monitoring wells and the collection of surface water samples from one location, in each of the next three quarters and in two separate storm events, to compile statistics for the analytical parameters being evaluated at RQL. In addition, follow-up work will consist of continuous water level measurements using data loggers on the six new wells and the pond, and monthly manual water level readings on the previously installed monitoring wells, for a period of one year following the installation of the six new wells. Continuous monitoring of pond and water levels in the new monitoring wells will provide much useful data to analyze the relationship of the pond to the site groundwater regime. The results of sampling in each quarter will be the subject of each of three quarterly reports to USACE.

The initial phase of sampling is the subject of this report. Section 2 describes the field activities conducted, provides a discussion of the geologic and hydrologic conditions at RQL based on the field investigation findings, and discusses the analytical results from the initial field effort. Section 3 presents conclusions of the initial phase effort. Appendixes A through I contain boring logs, well construction diagrams, slug test data, analytical data, geotechnical data, survey data, UXO characterization results, sediment sampling logs, and daily quality control reports, respectively.

2.0 INVESTIGATION RESULTS

All sampling activities, including drilling, sample collection and preservation, decontamination, sample management, and documentation for the Groundwater Investigation at RQL were conducted according to guidance in the Facility-Wide Sampling and Analysis Plan for Ravenna Army Ammunition Plant (USACE 1996a) and the Sampling and Analysis Plan Addendum for the Groundwater Investigation of the Former Ramsdell Quarry Landfill (USACE 1998).

2.1 GROUNDWATER REGIME AND MONITORING

The purposes of the Groundwater Investigation at RQL are to determine the shallow groundwater hydrogeologic conditions, including groundwater flow direction, seasonal changes, and the hydraulic and geochemical relationships between the surface water in the pond and the groundwater. These characteristics must be clearly defined to evaluate whether the closed landfill is in compliance with Ohio solid waste regulations' post-closure requirements. Specifically, analytical results from the upgradient monitoring well (RQLmw-006) are to be compared with those results from the wells downgradient of the landfill (RQLmw-007, -008, and -009) to fulfill regulatory requirements for detection monitoring. Statistical comparisons are necessary to determine whether groundwater contamination is emanating from the landfill and migrating from the site. Additionally, data from the new monitoring wells RQLmw-010 and -011, in conjunction with other data, will provide information about the pond downgradient of the landfill.

2.1.1 Soil Borings and Subsurface Geology

As a former rock quarry, RQL's surroundings are characterized by bedrock exposed on the ground surface, with negligible natural soil cover. Figure 2-1 illustrates that, between the surface of the pond and the top of the closed landfill, there are approximately 13 m (40 ft) of topographic relief representing the former extent of quarrying in this area.

Six monitoring wells were installed to monitor the shallow groundwater at RQL. Drilling was accomplished using coring and air-rotary drilling equipment. The locations of the monitoring well borings are shown in Figure 2-1. These locations were selected based on water level data from the existing wells, which suggest that the groundwater flow direction in the uppermost water-bearing zone is northward, away from the landfill. Three of the borings (RQLmw-007, -008, and -009) are located below the toe (hydraulically downgradient) of RQL, two (RQLmw-010 and -011) are located downgradient of the pond, and one (RQLmw-006) is located upgradient of the landfill. Each of the new wells is located at least 30 m (100 ft) from any of the previously installed wells.

Lithologic logging was performed using cores from each of the six monitoring well borings. Correlations of stratigraphy between the new wells and the five original wells is problematic, because lithologies in the five original wells were logged from cuttings lifted from the borehole by compressed air, and the new wells were logged from undisturbed core samples. The core samples are more representative of subsurface conditions than the cuttings and are the basis of the geological interpretations in this report. Cores from the six new monitoring wells are stored at RVAAP.

The boring logs are presented in Appendix A. Information from the boring logs was used to construct a lithologic cross-section through the site (Figures 2-2 and 2-3). Figure 2-2 shows that the RQL is underlain by weathered, fractured, fine- to medium-grained quartzose sandstones of the

THIS PAGE INTENTIONALLY LEFT BLANK

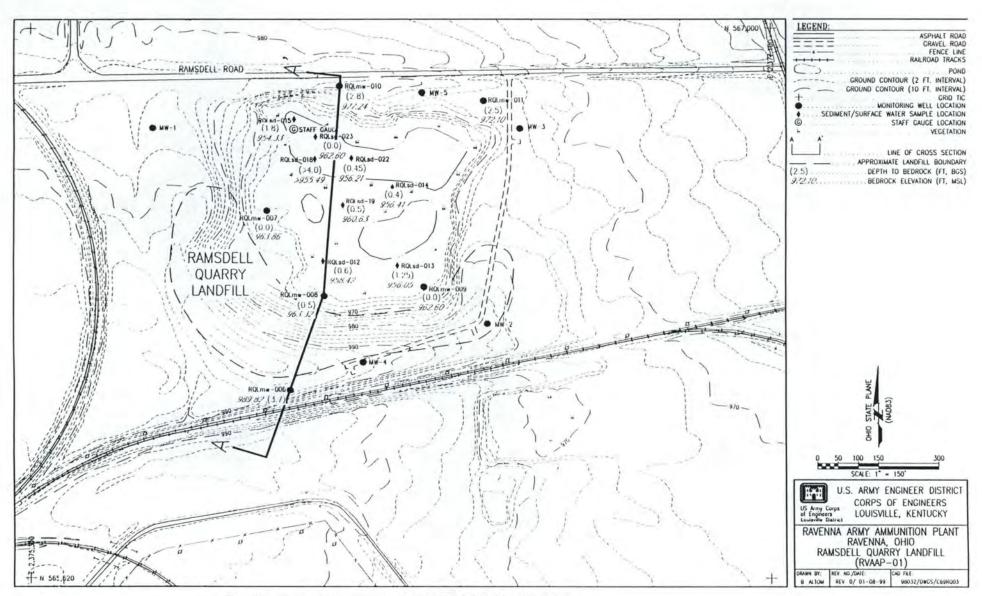
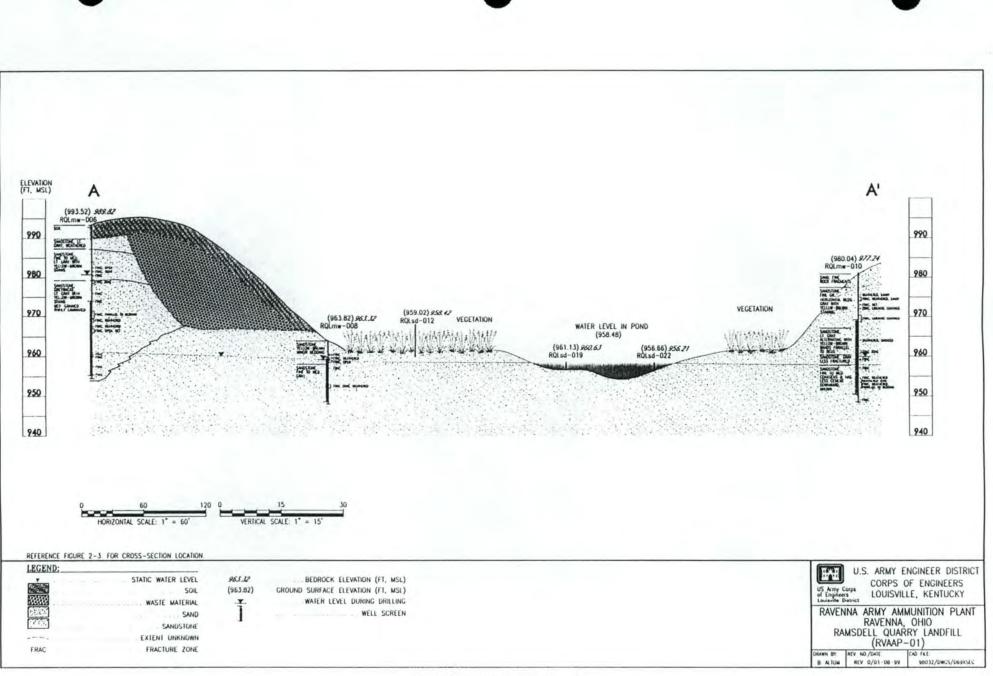



Figure 2-1. RQL Groundwater Investigation Monitoring Well and Poud Sampling Locations.

Pission 9 9 lithelasis Canon Castion + 1

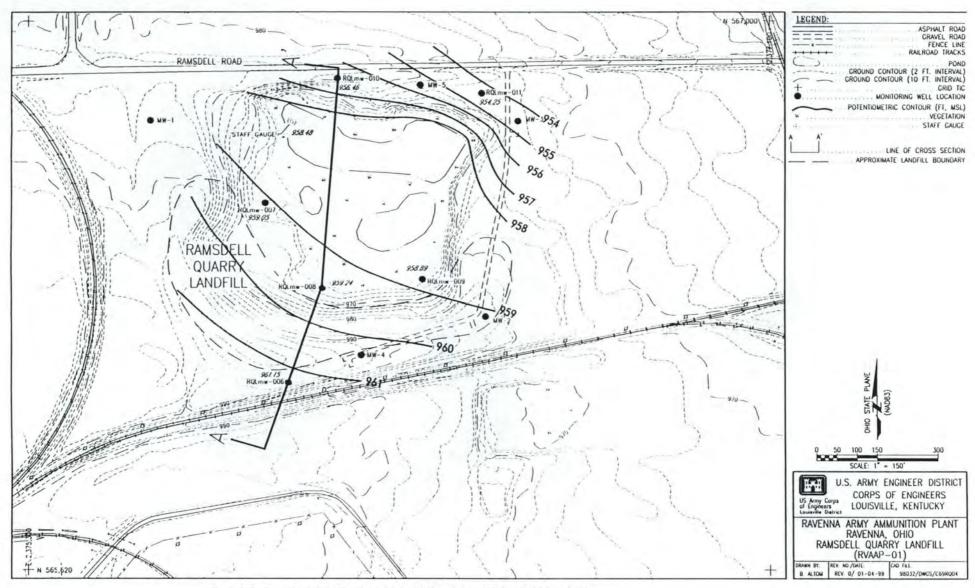


Figure 2-3. Potentiometric Surface Map for Ramsdell Quarry, July 1998 (New Monitoring Wells)

Sharon Member of the Pennsylvanian Pottsville Formation. Lithologies appear to be quite uniform across the site, with the exception of an occurrence of a more competent (unfractured), gray, poorly sorted sandstone with thinly bedded shale at RQLmw-006 and RQLmw-011. This lithology differs significantly from the surrounding quartz sandstones in that it contains a wider range of particle sizes and other non-quartz minerals. Thin bedding-plane laminations, consisting of finer-grained gray or black material, were observed in all cores. The Sharon Member is characterized by widespread cross-bedding. Bedding planes or laminations in cores range in orientation from horizontal to approximately 100 degrees from the core axis.

Open, recemented, and highly weathered fractures were observed in each of the cores. Fracturing occurs both parallel to and at oblique angles to bedding planes, as well as in massive zones. Weathering along fractures has been sufficient to completely break down the cement in some cases. Groundwater circulates along fractures, as evidenced by limonitic or black oxidized stainings and coatings on the rock or on grains. The pervasive character of fracturing in the sandstone suggests that vertical movement of groundwater through permeable primary and secondary flow pathways takes place at RQL to some degree.

2.1.2 Monitoring Well Installation

Following air-rotary overdrilling of the cored boreholes to achieve a 15-cm (6-in.) diameter borehole, monitoring wells were constructed at each of the six locations. All six wells were constructed as aboveground installations. Details of monitoring well construction are provided in Appendix B of this report. Well installation followed procedures described in the Facility-Wide Sampling and Analysis Plan (USACE 1996a) and the Sampling and Analysis Plan Addendum for the Groundwater Investigation of the Former Ramsdell Quarry Landfill (USACE 1998), with the following exceptions noted. Concurrence with Ohio EPA and USACE technical managers was obtained before each modification was made.

- (1) RQLmw-006, RQLmw-010, and RQLmw-011 were completed with 6-m (20-ft) screens instead of 3-m (10-ft) screens, to ensure that the wells would produce a sufficient amount of water for sampling, or to ensure that the potentiometric surface intersected the screen. Because of the presence of water near the tops of the holes during drilling (potentially fracture storage), it was difficult to determine where the most productive water-bearing zones were.
- (2) RQLmw-007, -008, and -009 were constructed with a modified surface casing designed to prevent frost heaving effects, because of these wells' proximity to the pond. The water level in the pond may rise high enough to partially inundate the well pads. A corrugated polyvinyl chloride (PVC) liner was placed outside the protective casing prior to filling the annular space from the frost line to the surface with concrete. The construction change allows the well pads to heave without affecting the protective well casing or well riser/screen string.
- (3) Because the static water levels at RQLmw-007, -008, and -009 were close to the ground surface elevation, the filter pack in each well was reduced to a height of 0.30 to 0.33 m (1 to 1.1 ft) above the top of the screen, rather than the specified 1 m (3 ft), to allow adequate space for a 0.6-m (2-ft) bentonite seal and 0.85 to 1 m (2.8 to 3 ft) of grout. This modification to approved well construction specifications allows for construction of shallow wells with 3-m (10-ft) screens, without compromising the integrity of the filter pack or seal.
- (4) Additional development of well RQLmw-006 was required over 12 days to achieve stable field parameter values (i.e., pH, conductance; see Appendix B).

There are noteworthy differences in the construction details between the previously existing and the newly installed wells. The six newly installed wells are constructed of 5-cm (2-in.) diameter PVC risers and 3-m (10-ft) or 6-m (20-ft) screens, with Global #7 filter packs and bentonite grout seals (as noted above), in accordance with the Facility-Wide Sampling and Analysis Plan (USACE 1996a). The screens were set such that the span of the monitored intervals ranged from 1.79 to 11.97 m (5.9 to 39.4 ft) below ground surface (BGS). Well construction diagrams for the six wells, designated RQLmw-006 through RQLmw-011, are provided in Appendix B of this report. The original wells, designated MW-1 through MW-5, were installed in 1988. They were constructed of 5-cm (2-in.) PVC pipe with 3-m (10-ft) screens; the interval spanned by the well screens ranges from 10.6 to 16.7 m (35 to 55 ft) BGS (Table 2-1). The borings for these wells extended to the top of the Meadville Shale, or roughly 48 m (160 ft) BGS, and were later backfilled with clean sand and gravel to 3 m (10 ft) below the base of the screen when the wells were installed (Ohio Drilling Co. 1988). Bentonite pellets were emplaced from that depth to the bottom of the screen. No well construction diagrams have been provided for these wells. Some differences in chemical quality are to be expected between the water from the new monitoring wells and the water from the original wells. For example, the condition of the grout seals and nonstandard construction may affect groundwater chemistry and sample quality in the original wells. Details of the completion of the monitoring wells are summarized in Table 2-1.

Monitoring Well ID	Water Level (ft below top of casing)	1998 Surveyed Top of Casing Elevation (ft amsl)	1998 Surveyed Ground Surface Elevation (ft amsl)	Water Level Elevation (ft amsl)	Screened Interval Elevation (ft amsl)
MW-1	27.88	986.13	985.53	958.25	930–940 ^a
MW-2	24.28	981.90	982.74	957.62	942-952ª
MW-3	19.90	975.54	973.55	955.64	929–939ª
MW-4	32.04	991.80	990.85	959.76	935–945°
MW-5	21.65	977.38	976.14	955.73	938–948ª
RQLmw-006	34.24	995.39	993.52	961.15	954.12-974.12
RQLmw-007	6.86	965.91	963.86	959.05	947.91-957.91
RQLmw-008	6.84	966.08	963.82	959.24	947.82-957.82
RQLmw-009	5.69	964.58	962.60	958.89	946.7-956.7
RQLmw-010	25.68	982.14	980.04	956.46	947.58-967.58
RQLmw-011	22.32	976.57	974.60	954.25	942.2-962.2
Pond Staff Gauge		961.66		958.48	

Table 2-1. Static Water Level Measurements, July 23 to 28, 1998

*Estimated according to Ohio Drilling Co. (1988)

amsl = above mean sea level

2.1.3 Slug Test Results

Following sampling of the six newly installed and the five previously existing monitoring wells at RQL, slug tests were performed on each well to determine the hydraulic conductivity of the geologic material surrounding each well.

Slug testing followed the provisions of the Sampling and Analysis Plan Addendum for the Groundwater Investigation of the Former Ramsdell Quarry Landfill (USACE 1998). These analyses estimate horizontal hydraulic conductivities in the screened interval of each well. Rising-head tests were completed after each well had fully recovered from groundwater sampling, using automated data collection software and a notebook computer.

The results of the slug tests performed during July 1998 are presented in Appendix C. They reveal moderately high horizontal hydraulic conductivities in the weathered and fractured sandstone units underlying RQL. Typical hydraulic conductivities for sandstones range from 10^{-3} to 10^{-8} cm/s (Freeze and Cherry 1979). The calculated results for the 11 wells at RQL are shown in Table 2-2. The wells generally show conductivities in the sandstone ranging from 10^{-3} to 7×10^{-4} cm/s. However, it should be noted that, because construction details on the original wells (e.g., height of seal above the screen, borehole diameter) were not available, assumptions regarding well dimensions and completion were used to interpret the slug test data for these wells. The five original wells generally have hydraulic conductivities slightly higher than those in the new wells. Hydraulic conductivities in new wells screened below 16 ft BGS (i.e., 20-ft screens) were approximately an order of magnitude less than in the shallow wells screened above 16 ft BGS. Fracturing in the sandstone units undoubtedly contributes to the high observed conductivities in the monitoring wells at RQL.

2.1.4 Groundwater Sampling

2.1.4.1 Water Levels

New monitoring wells were developed following completion, according to criteria defined in the Sampling and Analysis Plan Addendum for the Groundwater Investigation of the Former Ramsdell Quarry Landfill (USACE 1998). Following well development, water levels were measured from the top of casing. Water levels measured during the initial phase of fieldwork have been tied to the surveyed elevation of the top of casing at each well, to present accurately the potentiometric surface and groundwater flow direction at RQL (Table 2-1).

Static water levels above the top of the well screen were observed in each of the original wells, and in RQLmw-007, RQLmw-008, and RQLmw-009, adjacent to the pond. These findings suggest either (1) a confined or semiconfined water-bearing zone, rather than an unconfined, "water table" system; or (2) hydraulic communication along fracture zones. In the wells at the toe of the landfill, this effect may result from the presence of the pond. In the other wells, elevated water levels may be the result of hydraulic communication among the fractures in the sandstone.

Figure 2-3 is a potentiometric surface map for shallow groundwater, as measured on July 23 – 28, 1998, using data from the six new wells. Initial water levels were collected on the day the well was sampled, due to an oversight in the field. Water level measurements in the six new wells indicate a local hydraulic gradient to the northeast. Water level measurements from the original five monitoring wells for the same dates, and historical information for water levels in the summer months, illustrate the same general potentiometric surface trend with respect to the newly surveyed top-of-casing elevations. However, July 1998 water levels in the original wells indicate

Monitoring Well ID	Screened Interval (depth BGS, ft)	Total Depth (ft)	Geologic Material Adjacent to Screen	Hydraulic Conductivity (cm/s)
MW-1	45-55	54.26	gray-white sandstone	1.6×10^{-3}
MW-2	35-45	44.60	white sandstone	4.7×10^{-3}
MW-3	35-45	46.86	brown sandstone	2.3×10^{-3}
MW-4	45-55	56.98	white sandstone	1.8×10^{-3}
MW-5	33-43	40.76	brown sandstone	1.5×10^{-3}
RQLmw-006	19.4 - 39.4	42.08	weathered, fractured sandstone	2.0×10^{-4}
RQLmw-007	5.95 - 15.95	18.66	weathered, fractured sandstone	9.2 × 10 ⁻³
RQLmw-008	6 - 16	18.70	fractured sandstone	5.4×10^{-3}
RQLmw-009	5.9 - 15.9	18.84	fractured sandstone	2.0×10^{-3}
RQLmw-010	12.46 - 32.46 35.36 weathered, fractured sandstone			6.7×10^{-4}
RQLmw-011	12.4 - 32.4	35.36	weathered, fractured sandstone	3.9×10^{-4}

Table 2-2. Horizontal Hydraulic Conductivities Measured During the RQL Groundwater Investigation

Source: MW-1 through MW-5, according to Ohio Drilling Co. (1988).

potentiometric surface elevations from 0.30 to 0.60 m (1 to 2 ft) lower than those observed in the newly installed wells. One possible explanation for the disparities in water levels in wells screened in a deeper stratigraphic interval is that vertical communication is taking place to varying degrees in the highly fractured and weathered sandstones at RQL.

The data in Table 2-1 show that the upgradient well, RQLmw-006, is screened approximately 2.7 m (9 ft) above the screened interval in the previous upgradient well, MW-4. MW-1 is also screened significantly lower than any of the new wells, at 283 to 286 m (930 to 940 ft) amsl. However, RQLmw-007, -008, -009, -010, and -011 are screened at depths that overlap with the screened intervals of MW-2, MW-3, and MW-5. Figure 2-4 is a potentiometric surface map for shallow groundwater, as measured on July 23-28, 1998, using data from the original five wells.

2.1.4.2 Discussion of Analytical Results

All eleven monitoring wells were initially sampled for explosives, propellants (nitroguanidine, nitrocellulose, and nitroglycerine), Target Analyte List (TAL) metals, cyanide, VOCs, and semivolatile organic compounds (SVOCs). Groundwater was submitted for analysis of both total (unfiltered) and dissolved (filtered) TAL metals. The validated analytical data for the groundwater sampling effort are presented in their entirety in Appendix D. Tables in Appendix D present the data both by analyte and by sample station. Standard method reporting limits for some VOC compounds (vinyl chloride, tetrachloroethene, trichloroethene) are higher than promulgated drinking water standards; however, any estimated detected values less than reporting limits are provided.

THIS PAGE INTENTIONALLY LEFT BLANK

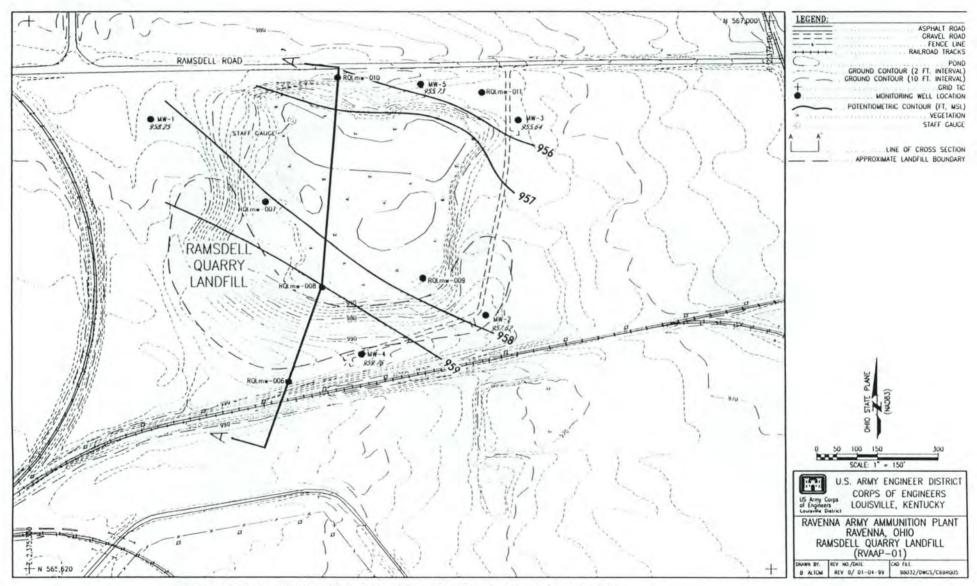


Figure 2-4. Potentiometric Surface Map for Ramsdell Quarry, July 1998 (Previously Installed Monitoring Wells)

The eleven wells were field screened for VOCs using a hand-held photoionization detector (PID) organic vapor analyzer (OVA) during groundwater sample collection. Generally, volatile organics were not detected in the breathing zone; however, 0.2 to 95 ppm of organic vapors were measured above the cores for RQLmw-006, -007, -008, and -009. In addition, field measurements of pH, temperature, specific conductance, and dissolved oxygen were recorded for each sample.

Aside from construction differences, there were differing approaches to the purging and sampling of the two sets of monitoring wells in the initial phase of this Groundwater Investigation. The six new wells were purged using a micro-purge method and dedicated equipment, including sampling pumps and tubing. Very small amounts of water (typically less than 3 gallons) were removed from the wells during micro-purging, and samples were withdrawn from the wells using the dedicated pump. Samples from the newly installed wells will continue to be sampled with this equipment throughout the Groundwater Investigation. In contrast, the previously existing wells were purged using conventional equipment and methods described in the *Facility-Wide Sampling and Analysis Plan* (USACE 1996a). Three well volumes were removed from the wells (from 20 to 28 gallons), and purging was terminated when water quality readings of pH, turbidity, and conductivity stabilized for three consecutive readings. Purging and sampling were performed on the original wells because a one-time use of dedicated equipment for the sampling of these wells was not cost-justified. No re-development of the original wells was attempted as a part of this study. These differences may contribute further to the observed variations in the analytical results between the two sets of wells from the initial phase of sampling.

The following sections discuss the chemical quality of groundwater at RQL.

Explosives

Trace quantities of nine explosives were detected in RQL groundwater. The results of groundwater analyses are as follows:

- No explosives were detected in groundwater from RQLmw-007, -009, or -010.
- Trinitrotoluene (TNT) was found in MW-5 at 0.27 μg/L.
- 2,6-Dinitrotoluene (DNT) was present at 0.085J µg/L in MW-4 (a "J" indicates an estimated quantity).
- 2,4-DNT was present at 0.13 μg/L in RQLmw-008.
- HMX was found in RQLmw-008 at 0.06J µg/L, and at 0.076J µg/L in RQLmw-011.
- RDX was found in MW-2, MW-3, and RQLmw-006, at 0.14J, 0.28J, and 0.12J µg/L, respectively.
- Tetryl was found in MW-1 at 0.0685 µg/L, and at 0.12 µg/L in MW-4.
- 1,3-Dintrobenzene (DNB) was detected at 0.099J µg/L in RQLmw-006.
- 4-Nitrotoluene was detected at 0.082 µg/L in MW-5.
- Nitrobenzene was detected once, at 0.091J µg/L in RQLmw-011.

98-162(DOC-4S1)/011599

Figure 2-5 displays the distributions of these explosives in groundwater samples.

Propellants

Nitroglycerine was detected in two samples of groundwater. RQLmw-008 had $2J \mu g/L$ of nitroglycerine; RQLmw-006 had 2.8J $\mu g/L$. No other propellants were detected in RQL groundwater during the initial phase of sampling.

TAL Metals and Cyanide

Metals were analyzed in both filtered and unfiltered samples from each groundwater sampling location. Both sets of results are discussed below. However, filtered sample results are more representative of the true composition of the groundwater than the unfiltered results. Essential nutrients such as calcium, potassium, and sodium were present above detection levels in all samples, but are not further discussed as they are not considered potential contaminants at RQL.

In the unfiltered groundwater samples, the results of the analyses are as follows:

- Neither antimony nor silver were detected.
- Cadmium, chromium, and vanadium were detected only in MW-2, at 19, 23.3, and 22.4J µg/L, respectively.
- MW-2 was the locus of maximum concentrations for 11 of the 23 TAL metals.
- Arsenic was detected in all wells, except for MW-3, RQLmw-009, and RQLmw-010, at concentrations ranging from 3.3J to 108 µg/L; concentrations exceeded the Maximum Contaminant Level (MCL) in samples from wells MW-2 (108 µg/L), RQLmw-007 (89.4 µg/L), and RQLmw-008 (51.6 µg/L).
- Cobalt was detected in MW-1, MW-2, MW-4, RQLmw-006, RQLmw-008, and RQLmw-011 at concentrations ranging from 29.7 to 196 μg/L.
- Trace amounts of mercury were reported from 0.09J to 0.29 µg/L in 8 of 11 wells.
- Lead was detected only in three wells: at 4.2 μg/L in MW-1, 74.8 μg/L in MW-2, and 2.4 μg/L in MW-4.
- In the upgradient well RQLmw-006, arsenic, barium, and cobalt were present at 15, 30.2J, and 196 μg/L, respectively. Iron, manganese, nickel, and zinc were present at 1760, 5550, 937, and 47.8 μg/L, respectively.

Arsenic was present in the unfiltered groundwater samples at concentrations above the MCL for drinking water (0.05 mg/L) in all three locations where it was detected (MW-2 at 108 μ g/L; RQLmw-007 at 59.4 μ g/L; and RQLmw-008 at 51.6 μ g/L). MCLs for cadmium, nickel, thallium, and lead were exceeded at MW-2.

THIS PAGE INTENTIONALLY LEFT BLANK

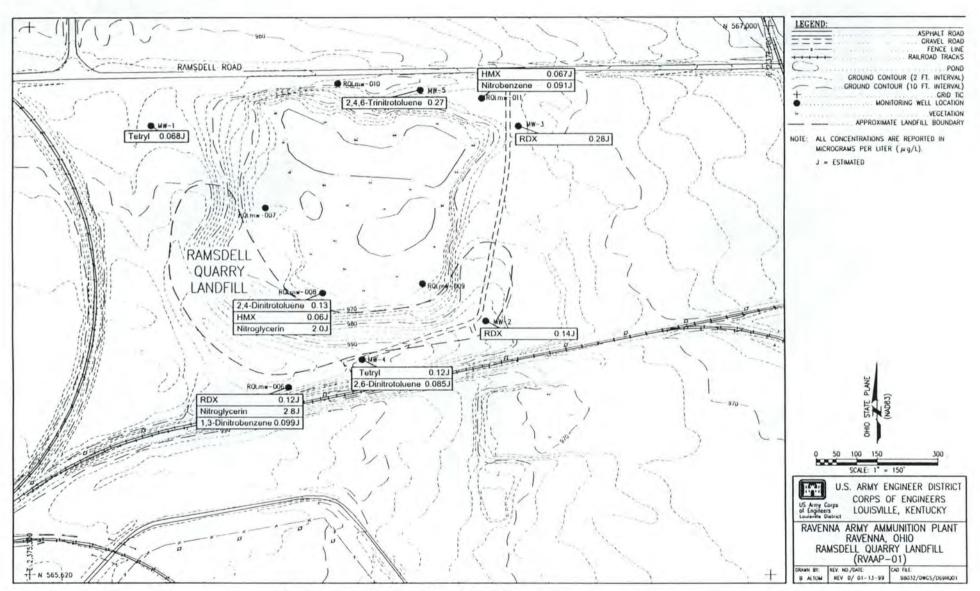


Figure 2-5. Summary of Explosives Results in Groundwater

For the filtered groundwater samples, the results of the analyses are as follows:

- Five of the 23 TAL metals analyzed in filtered groundwater were not detected. These were antimony, chromium, lead, selenium, and silver.
- The upgradient well RQLmw-006 had low estimated concentrations of arsenic (9.9J µg/L) and barium (29.7 µg/L). Cobalt was present at 206 µg/L. The concentration of iron was 1240 µg/L. Manganese was present at 5460 µg/L, and nickel at 945 µg/L. Zinc was measured at 41.7 µg/L.
- Cadmium was detected in well MW-2 (2.4 μg/L) and copper in MW-4 (3.4 μg/L).

In the monitoring wells, filtered TAL metals were detected as shown in Table 2-3. The maximum value for arsenic exceeds the primary MCL for drinking water. The maximum values for iron and manganese exceed secondary MCLs.

Analyte	No. of Detects	Minimum	Maximum	Location of Maximum
Antimony	ND			
Arsenic	6	3.1	62.7	RQLmw-007
Barium	9	16.7	62.6	RQLmw-007
Beryllium	1	0.91J		RQLmw-011
Cadmium	1	2.4		RQLmw-002
Chromium	ND			
Cobalt	6	18.7J	206	RQLmw-006
Copper	1	3.4		RQLmw-004
Iron	9	93.5J	140,000	RQLmw-008
Lead	ND			
Magnesium	11	9190	67,700	RQLmw-007
Manganese	11	12.6J	6960	RQLmw-005
Mercury	9	0.081J	0.1J	RQLmw-011
Nickel	11	15J	945	RQLmw-006
Selenium	ND			
Silver	ND			
Thallium	5	1.1J	1.9J	RQLmw-008
Zinc	10	29.6	1040	RQLmw-002

Table 2-3. Summary of Filtered TAL Metals Results for Groundwater at RQL (concentrations in µg/L)

ND = not detected

NOTE: Number of detects shown in table includes duplicates as well as primary samples.

VOCs

The occurrence of VOCs was limited to 4 of the 11 monitoring wells during the initial phase of sampling. No VOCs were reported at concentrations above detection levels in monitoring wells MW-1 through MW-5, RQLmw-007 or -009. However, VOCs were reported near or below the laboratory detection levels (estimated quantities) in three monitoring wells. RQLmw-006 had acetone, benzene, and carbon disulfide (8.1J, 0.52J, and 2.4J µg/L, respectively). Acetone was detected in well RQLmw-008 at a

concentration of 9 μ g/L. RQLmw-010 and -011 both had toluene in low concentrations, at 0.72J and 0.51J μ g/L, respectively.

SVOCs

No SVOCs were present at concentrations above detection limits in the groundwater at RQL. Two sets of SVOC analyses for groundwater samples are presented in Appendix C. Two analyses were required because matrix spike/matrix spike duplicate recoveries were less than 10%. In addition, surrogate compound recoveries were zero. Analytical method protocol specified re-extraction and re-analysis of the samples. Due to the time delay, the re-extraction occurred outside the official holding time and the subsequent data are qualified as estimated (J flag) or undetected estimated (UJ) with a reason code of A01 (extraction holding times exceeded). Validation concludes that the original data should be rejected while the re-analysis should be used with the estimated qualification.

2.1.5 Geotechnical Results

One geotechnical soil sample was collected from each of two representative soil intervals during drilling of monitoring well boreholes. One geotechnical soil sample each was collected from monitoring well boreholes RQLmw-006 and RQLmw-011. Soil cover was not present at the remaining boreholes. The samples were analyzed for grain size, moisture content, Atterberg limits, and Unified Soil Classification, in accordance with the Sampling and Analysis Plan Addendum for the Groundwater Investigation of the Former Ramsdell Quarry Landfill (USACE 1998). Results of the geotechnical analyses are presented in their entirety in Appendix E.

2.1.6 Survey Results

Appendix F presents the survey (X, Y, and Z) coordinates of all sampling points established during the RQL Groundwater Investigation. Table 2-1 summarizes the elevation data for the six newly installed and five original monitoring wells, all of which were surveyed in July 1998.

2.2 POND SURFACE WATER AND SEDIMENT SAMPLING

The chemical water quality of the pond at RQL was evaluated through sampling of both surface water and sediment in the initial phase of the Groundwater Investigation. Because of the potential for unexploded ordnance (UXO) submerged in the pond, all sampling activities in the RQL pond were overseen by a certified UXO specialist. No evidence of UXO was encountered during the investigation. However, non-UXO debris such as steel-reinforced concrete, pipes, scrap metal, culverts, and an empty metal drum were identified in the pond (see Appendix G).

The RQL pond is shown in Figure 2-1. The pond is small and shallow, and about 50% of its former area is now vegetated with cattails. Although the pond is underlain by bedrock, thin deposits of fine-grained sediment have accumulated on top of the rock, in places to a depth of 1.2 m (4 ft) or greater. Portions of the pond with sufficient water to allow sediment to accumulate are quite limited; however, in the main body of the pond (northernmost body) the distribution is laterally continuous. Water depths and sediment thicknesses were measured at each of the sediment sampling stations during sample collection (Table 2-4). The maximum water depth encountered was 0.9 m (3 ft) in RQLsd-022. The maximum depth to bedrock was encountered at RQLsd-018, where the sediment thickness on top of rock is greater than 1.2 m (4 ft). Appendix H presents the descriptions of all sediments sampled. Sediment depths where cattails and other vegetation have grown are not known. The pond sediment may reduce the amount of any hydraulic communication to some degree between the water-bearing zonc in the sandstone and the pond,

98-162(DOC-4SI)/011599

especially at times when the water level (i.e., hydraulic head) in the pond is low. However, the limited thickness and discontinuous distribution across the quarry limits this effect.

Sediment Sample Location ID	Sediment Thickness (ft)	Description
RQLsd-012 (-017)	0.6	Poorly sorted gravel, traces of silt and sand, dark grey
RQLsd-013 (-020)	1.25	Silty clay with organic debris and traces of fine sand, light grey
RQLsd-014 (-021)	0.4	Silt with organic debris and traces of gravel, black
RQLsd-015 (-024)	1.8	Silt and clay with traces of gravel, black
RQLsd-018	> 4.0	Silt with coarse sand to medium, organic debris
RQLsd-019	0.5	Clay with silt and traces of gravel, roots, light brown
RQLsd-022	0.45	Silt with gravel and sand, black
RQLsd-023	1.2	Silt with some gravel and clay, dark grey

Table 2-4. Sediment Sampling Data, Ram	sdell Quarry Landfill Pond
--	----------------------------

2.2.1 Survey Results

The field sampling team measured the water level in the pond from the surveyed staff gauge. The water level elevation at RQL pond at the time of the initial sampling effort was 958.48 ft amsl.

2.2.2 Geotechnical Sampling Results

One geotechnical sample was collected at each of the sediment sampling locations from representative sediment sampling intervals. The samples were analyzed for grain size, Atterberg limits, and Unified Soil Classification, in accordance with the Sampling and Analysis Plan Addendum for the Groundwater Investigation of the Former Ramsdell Quarry Landfill (USACE 1998). Moisture content was not evaluated because the samples were water saturated. Results of the geotechnical analyses are presented in their entirety in Appendix E.

2.2.3 Surface Water Sampling Results

The objective of surface water sampling at RQL pond was to determine whether pre-existing contamination related to past burning activities has impacted sediment or water quality in the pond. Four locations were selected for surface water sample collection in the initial sampling effort (see Figure 2-1). These locations are also the sites of four of the eight sediment samples collected as part of this investigation (see Section 2.2.4). All surface water samples were analyzed for explosives, propellants, TAL metals, cyanide, VOCs, and SVOCs. Surface water was analyzed for both total (unfiltered) and dissolved (filtered) metals. Water from the pond will also be collected during the follow-up phases of sampling and analyzed for the same parameters as in the initial phase. The same location (RQLsw-015) will be sampled each time for consistency and to establish trends within the main body of the pond over time. Surface water samples were collected before sediment sampling began, to minimize the likelihood of sediment suspension affecting surface water quality. The analytical data for surface water collected during this investigation are presented in Appendix C.

2.2.3.1 Explosives

Explosives were not present at concentrations above detection limits in the surface water at RQL.

98-162(DOC-4SI).011599

2.2.3.2 Propellants

Propellants were not present at concentrations above detection limits in the surface water at RQL.

2.2.3.3 TAL Metals and Cyanide

Metals were analyzed in both filtered and unfiltered samples from each surface water sampling location. Both sets of results are discussed below. However, filtered sample results are more representative of the true composition of the surface water than the unfiltered results. Essential nutrients such as calcium, potassium, and sodium were present above detection levels in all samples, but are not further discussed as they are not considered potential contaminants at RQL.

In the unfiltered surface water samples, antimony, beryllium, and silver were not detected. Barium, iron, magnesium, and manganese were detected in all four samples. The majority of the other metal ions were found in RQLsw-013, with RQLsw-014 and -015 having only barium, iron, magnesium, manganese, lead, and zinc above detection limits. The maximum concentration of every TAL metal detected was found at RQLsw-012. Arsenic concentrations ranged from 23 to 41.7 μ g/L. Iron concentrations varied from 377 to 84,300 ug/L. Lead was present in RQLsw-013 and -012, at 38.2 and 110 μ g/L, respectively. Magnesium was detected at concentrations from 30.800 to 202,000 μ g/L, and manganese varied from 67.2 to 5130 μ g/L.

Comparison of unfiltered surface water sample data to statewide water quality criteria for the protection of human health (OAC 3745-1-07) indicated exceedances for iron and manganese. Iron was present above the criterion for soluble iron (300 μ g/L) in all four samples. Manganese also exceeded its criterion of 50 μ g/L (total recoverable) in all four samples. No exceedances were observed for arsenic or zinc. Nitrate, chloride, dissolved solids, and sulfate also have criteria; however, these constituents were not analyzed as part of the investigation.

Most of the 23 metals and cyanide in filtered surface water samples were non-detects, with the exception of iron, magnesium, and manganese. Iron concentrations ranged from 51.5 to 213 μ g/L. Magnesium concentrations ranged from 28,900 to 168,000 μ g/L, and manganese from 8.8J to 316 μ g/L. The maximum manganese value exceeds the statewide water quality criterion of 50 μ g/L for total recoverable manganese. Aluminum was also present at RQLsw-012 at 92.9J μ g/L, and at 72J μ g/L at RQLsw-013. Arsenic was present at 3.7J μ g/L at RQLsw-013. Barium was detected in RQLsw-012 at 45.8J μ g/L, RQLsw-013 at 15.2J μ g/L, 38.5 μ g/L at RQLsw-014, and 22.9J μ g/L at RQLsw-015; however, barium was also present in laboratory blanks. No other metals were detected in the filtered samples.

2.2.3.4 VOCs

VOCs were not present at concentrations above detection limits in the surface water at RQL.

2.2.3.5 SVOCs

SVOCs were not present at concentrations above detection limits in the surface water at RQL.

2.2.4 Sediment Sampling Results

The objective of sediment sampling was to determine if the former landfill or pre-landfill waste disposal activities have resulted in a release of contaminants to the pond. Eight locations in the pond were targeted for sediment sample collection during the initial field effort. These samples were analyzed for explosives.

98-162(DOC-4SI)/011599

propellants, TAL metals, cyanide, VOCs, and SVOCs. The analytical results for sediments (dry weight basis) are presented in their entirety in Appendix C of this report. Geotechnical analyses of sediments included grain size, Atterberg limits, and Unified Soil Classification (moisture content was omitted because the samples were all water saturated). Sediment sampling locations are shown in Figure 2-1.

Sediments were collected at each location from the sediment-water interface to a depth of 0.5 ft below the interface, or refusal. If there was no refusal, sediment was sampled from 0.5 to 2 ft and, if possible, from 2 to 4 ft. At RQLsd-018, for example, sampling of sediment was performed in all three depth intervals, and there was no refusal at 4 ft. At RQLsd-013, sediments were collected at 1.25 ft, and at RQLsd-023, 1.2 ft. RQLsd-015 was sampled from 0.0 to 0.5 ft and from 0.5 to 2 ft, refusing on unknown material. All other samples were collected from 0 to 0.5 ft or less.

2.2.4.1 Explosives

Explosives were present in very low concentrations in seven of the eight sediment sampling locations. A summary of these results is as follows:

- TNT was detected in three locations: RQLsd-012 at 0.021J mg/kg, and RQLsd-018 and RQLsd-019 at 0.047J mg/kg.
- HMX was detected at five locations. RQLsd-012, -018, -019, -022, and -023 had detections of HMX in the 0.0 to 0.5-ft interval. In addition, the 0.5- to 2.0-ft and the 2- to 4-ft intervals in RQLsd-018 and the 0.5 to 2-ft interval in RQLsd-023 had small quantities of HMX. Concentrations ranged from 0.11J to 0.14mg/kg.
- 2,6-DNT was detected in RQLsd-012, RQLsd-022, and RQLsd-023, in concentrations of 0.076J.
 0.064J, and 0.34J mg/kg, respectively.
- 2,4-DNT was detected in the 0.5- to 2-ft interval at RQLsd-023.
- 2-Nitrotoluene, 3-nitrotoluene, and 4-nitrotoluene were detected in low, estimated quantities in RQLsd-013, RQLsd-014, RQLsd-23, and RQLsd-012.

2.2.4.2 Propellants

Propellants were not present in sediments at concentrations above detection levels, with the exception of three occurrences of nitrocellulose. Nitrocellulose was detected at RQLsd-015 in the 0- to 0.5-ft sample at 4.3 mg/kg, and in the 0.5- to 2-ft sample at 2.3 mg/kg. Nitrocellulose occurred in the field duplicate sample of RQLsd-012 (0 to 0.5 ft) at 1.7J mg/kg.

2.2.4.3 TAL Metals and Cyanide

Of the 23 metals analyzed in pond sediments, antimony and silver were never detected above detection limits. Occurrences of selenium, thallium, and cadmium were limited to five or fewer of the eight sediment sampling locations. The remaining analytes were present above detection limits in nearly every sample. In general, where two or more depth intervals were sampled, concentrations of metals decreased with increasing depth. Sampling location RQLsd-022 had the greatest number (11) of maximum concentrations of the TAL metals. A summary of the metals results for sediments is shown in Table 2-5. Where multiple depth intervals were sampled, the depth interval of the maximum concentration is noted. Cyanide was detected at 2.8 mg/kg in one sediment sample, RQLsd-023, in the 0- to 0.5-ft interval.

Analyte	No. of Detects	Minimum	Maximum	Location of Maximum		
Arsenic	12	7.6	32.5	RQLsd-022		
Barium	12	33J	145	RQLsd-022		
Beryllium	9	0.33	0.65	RQLsd-018, 0.5- to 2 ft		
Cadmium	4	1.4	6.4	RQLsd-018		
Chromium	12	8.7	30.9	RQLsd-022		
Cobalt	12	5J	33.6	RQLsd-022		
Copper	12	19.5	134	RQLsd-022		
Iron	12	13,700	54,500	RQLsd-018, 0.5- to 2 ft		
Lead	12	21.1	87.2	RQLsd-022		
Magnesium	12	1300J	58,000J	RQLsd-022		
Manganese	12	189J	2590J	RQLsd-022		
Mercury	12	0.033J	0.89J	RQLsd-012		
Nickel	12	12.8	86.8	RQLsd-022		
Selenium	5	0.6	2	RQLsd-013, 0- to 0.5 ft		
Thallium	3	1.2	1.9	RQLsd-022		
Vanadium	12	91	40.7	RQLsd-013, 0- to 0.5 ft		
Zinc	12	100	894	RQLsd-022		

Table 2-5. Summary of TAL Metals Results for RQL Pond Sediments (concentrations in mg/kg)

2.2.4.4 VOCs

VOCs were reported at concentrations near the laboratory detection levels in sediment. Acetone was detected in every sampling location except for RQLsd-019. Concentrations of acetone ranged from 3.7J to 26J μ g/kg, with the highest concentration encountered at 0.5 to 2 ft in RQLsd-024. 2-Butanone was detected in RQLsd-013, -015, and -023 at concentrations ranging from 6.5J to 10J μ g/kg. There was one occurrence of methylene chloride above detection levels, in RQLsd-019 at 0.73 μ g/kg.

2.2.4.5 SVOCs

Polynuclear aromatic hydrocarbons (PAHs) were detected in five of the eight sampling locations. At RQLsd-012, -014, -015, -018, and -023, PAHs such as benzo(a) anthracene, fluoranthene, pyrene, and others were detected at concentrations ranging from 65J to 2000 µg/kg. This maximum value (for phenanthrene) was observed in the 0- to 0.5-ft sample at RQLsd-012. Some PAHs were also detected in the 0.5- to 2-ft intervals at RQLsd-015 and -023. PAHs were not detected in samples from RQLsd-013, -019, or -022.

2-Methylnaphthalene and acenaphthene were detected in the 0- to 0.5-ft sample at RQLsd-012, at 110J and 340J μ g/kg, respectively.

2.2.5 Continuous Water Level Data Collection

In order to monitor water levels in RQL pond continuously until the completion of all groundwater and surface water sampling activities performed as a part of this Groundwater Investigation, a staff gauge with automated data collection capability was installed at the pond in July 1998. Figure 2-6 is a photograph of the completed platform and staff gauge.

The data logger collects and records water level data on a daily basis for the duration of sampling activities at RQL. The data will be downloaded to a notebook computer on site, at a minimum, during every groundwater sampling event or manual water level measurement event. Because the electronic pressure transducer used to automatically record data is submerged, it must be removed during the months in which the pond freezes. A visual gauge (scaled to 0.10 ft) installed on the platform can be used during winter months and is visible from the shore.

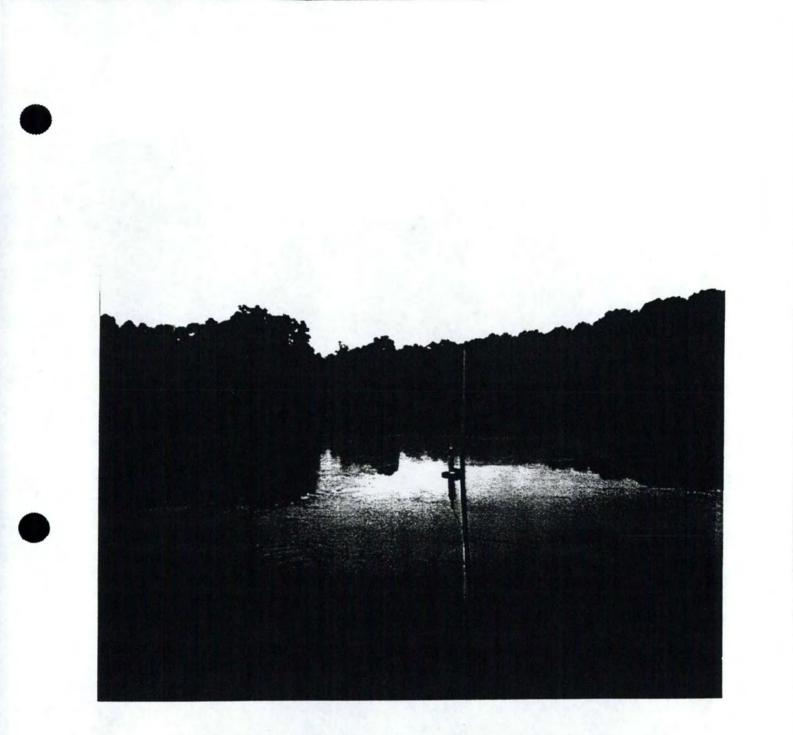


Figure 2-6. Photograph of Staff Gauge at Ramsdell Quarry Landfill Pond, Looking Southeastward from Northwest Corner of Pond

3.0 CONCLUSIONS

The results of the initial phase of sampling and measurements at RQL provide an assessment of summer conditions at the site. Follow-up work will provide information on temporal variations in groundwater and surface water chemistry, groundwater flow directions, and the degree of connectivity between RQL pond and the shallow groundwater system.

3.1 GROUNDWATER CONDITIONS AND QUALITY

- Groundwater flow is to the northeast across the site under a gentle (0.008) gradient.
- Shallow groundwater occurs within both primary and secondary porosity in the highly fractured, highly weathered Sharon sandstones.
- Groundwater in upgradient well RQLmw-006 contains low concentrations of the explosives RDX and 1,3-dinitrobenzene. These compounds also occur in one or more of the downgradient wells. The propellant nitroglycerine was found in the upgradient well, with the only other occurrence in RQLmw-008.
- Cobalt, nickel, and arsenic were identified in filtered samples from RQLmw-006 and five or more downgradient wells.
- SVOCs and VOCs were not present above detection levels in groundwater.
- Cyanide was not detected in groundwater.
- Vertical movement of groundwater and a substantial degree of interconnection may explain the similarities in water levels observed in the original wells, screened in deeper stratigraphic intervals, and the new wells, installed in shallow bedrock.

3.2 SURFACE WATER/SEDIMENT CONDITIONS AND QUALITY

- The elevation of the water surface in the pond during the initial sampling event was 958.48 ft amsl at the staff gauge. The staff gauge was set at the location where the pond is deepest.
- Surface water samples contained no explosives, propellants, VOCs, or SVOCs in concentrations above detection limits. Iron, magnesium, and manganese were the most frequently detected metals. with two or fewer occurrences each of arsenic, barium, and aluminum.
- Sediment samples exhibited the greatest amounts of explosives and other contaminants in the 0- to 0.5-ft interval. HMX was found in five of the eight locations, and at depths of 0.5 to 2 ft or greater in two of these. Nitrocellulose occurs in RQLsd-015, where no explosives were detected, and in RQLsd-012, in concentrations less than 5 mg/kg. PAHs were also present in five of the eight sampling locations and may reflect the former sites of open burning of wastes. These occurrences may result from either runoff or incipient contamination from historical operations on the quarry floor.

- Sediment has accumulated to a depth of 1.2 m (> 4 ft) at some locations in the pond. Water depth varies from 0 to 1m (0 to 3.18 ft). Thick sediment accumulations may diminish the amount of hydraulic communication between the pond and the shallow water-bearing zone.
- The potential connection between the pond and the shallow groundwater system cannot be discerned with only the initial data.

3.3 FOLLOW-UP INVESTIGATION

Five additional groundwater and surface water sampling events will follow the initial phase. These additional events began in September 1998. In addition, water level measurements will continue to be monitored daily in the six newly installed wells, monthly in the previously existing wells at RQL, and daily in RQL pond. As the data are assembled and analyzed, results will be reported to USACE each quarter. Upon completion of a full year of sampling of groundwater at RQL, an annual report will be prepared to integrate the observations made throughout a full year of water quality monitoring.

4.0 REFERENCES

Freeze. R. A., and J. Cherry. 1979. Groundwater. Prentice Hall, Englewood Cliffs, NJ. 604 pp.

Ohio Drilling Co. 1988. Geologic/Hydrogeologic Survey and Monitoring Well Placement Proposal for the Ramsdell Quarry Area in the Army Ammunition Plant.

Ohio EPA (Ohio Environmental Protection Agency). 1997. Interoffice Memorandum from Diane Kurlich to Jarnal Singh, Subject: Ramsdell Landfill, July 30, 1997.

RVAAP. 1995. Ravenna Army Ammunition Plant Ramsdell Quarry Landfill Groundwater Monitoring Plan.

USACE (U.S. Army Corps of Engineers). 1996a. Facility-Wide Sampling and Analysis Plan for Ravenna Army Ammunition Plant, Ravenna, Ohio.

USACE. 1996b. Preliminary Assessment for the Ravenna Army Ammunition Plant, Ravenna, Ohio.

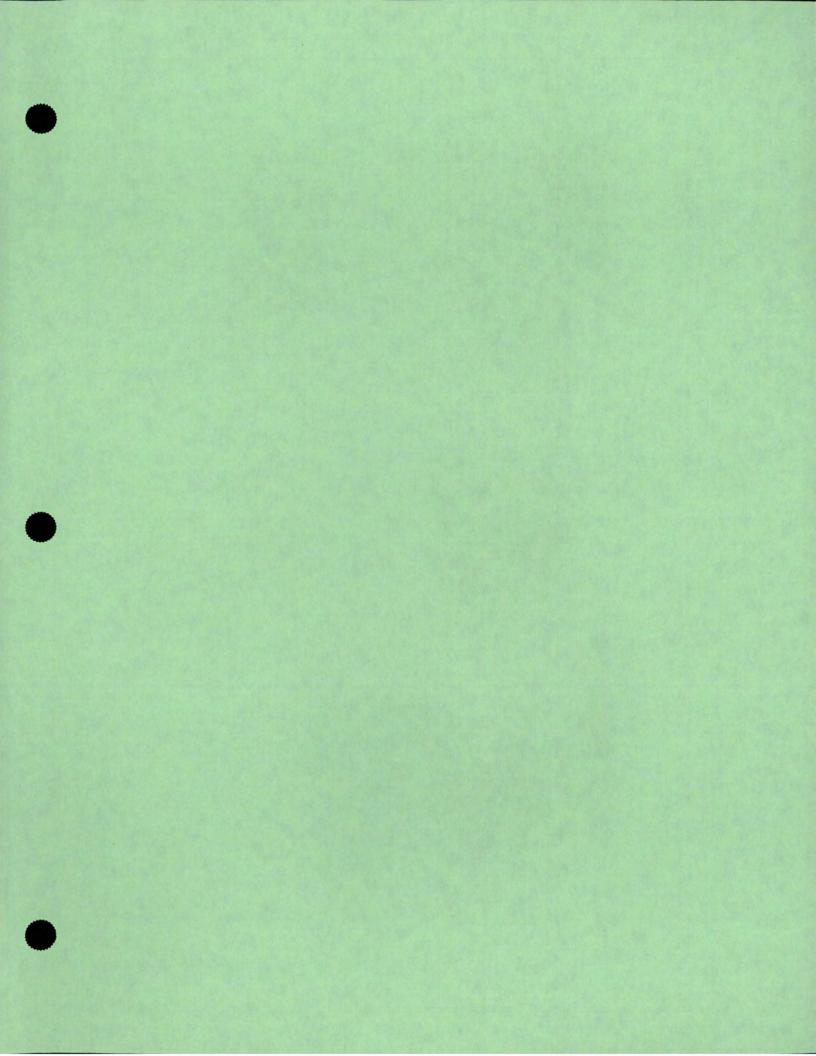
USACE. 1998. Sampling and Analysis Plan Addendum for the Groundwater Investigation of the Former Ramsdell Quarry Landfill, Ravenna Army Ammunition Plant.

USAEHA. 1992. Ground-Water Quality Assessment Plan Outline, Ramsdell Quarry Landfill, Ravenna Army Ammunition Plant, Ravenna, Ohio. Ground-Water Consultation No. 38-26-KF95-92.

4-1

RAMSDELL LANDFILL - MONITORING WELL 006

ANALYTE**, UNITS, METHOD NO.		1998				999	
ample Date	7/25/98	9/20/98	10/19/98	2/13/99	4/10/99	5/27/99	12/21/9
			1				
OCs:ug/1 8260							
cetone	8.1	ND	ND	ND	ND	ND	2.3
crolein	ND	ND	ND	ND	ND	ND	ND
crylonitrile	ND	ND	ND	ND	ND	ND	ND
enzene	0.52	ND	ND	ND	ND	ND	ND
romodichloromethane	ND	ND	ND	ND	ND	ND	ND
romomethane	ND	ND	ND	ND	ND	ND	ND
							ND
romoform	ND	ND	ND	ND	ND	ND	
arbon Disulfide	2.4	ND	ND	ND	ND	ND	ND
arbon tetrachloride	ND	ND	ND	ND	ND	ND	ND
hlorobenzene	ND	ND	ND	ND	ND	ND	ND
hlorodibromomethane	ND	ND	ND	ND	ND	ND	ND
hloroform	ND	ND	ND	ND	ND	ND	ND
hloroethane	ND	ND	ND	ND	ND	ND	ND
Chloroethyl vinyl ether	ND	ND	ND	ND	ND	ND	ND
hloromethane	ND	ND	ND	ND	ND	ND	ND
ichlorodifluoromethane	ND	ND	ND	ND	ND	ND	ND
1 Dichloroethene	ND	ND	ND	ND	ND	ND	ND
2 Dichloroethene	ND	ND	ND	ND	ND	ND	ND
1 Dichloroethane	ND	ND	ND	ND	ND	ND	ND
2 Dichloroethane	ND	ND	ND	ND	ND	ND	ND
2 Dichloropropane	ND	ND	ND	ND	ND	ND	ND
2,3-Trichloropropane	ND	ND	ND	ND	ND	ND	ND
s-1,3-Dichloropropene	ND	ND	ND	ND	ND	ND	ND
ans-1,3-Dichloropropene	ND	ND	ND	ND	ND	ND	ND
thyl methacrylate	ND	ND	ND	ND	ND	ND	ND
htylbenzene	ND	ND	ND	ND	ND	ND	ND
Hexanone	ND	ND	ND	ND	ND	ND	ND
Methyl-2-Pentanone	ND	ND	ND	ND	ND	ND	ND
lethylene chloride	ND	ND	0.63	5	ND	ND	ND
lethylethylketone (MEK)	ND	ND	ND	ND	ND	ND	ND
vrene	ND	ND	ND	ND	ND	ND	ND
1,2,2-Tetrachloroethane	ND	ND	ND	ND	ND	ND	ND
oluene	ND	0.54	ND	0.48	ND	ND	0.1
1,1, Trichloroethane	ND		ND		ND	ND	ND
		ND		ND			
1,2-Trichloroethane	ND	ND	ND	ND	ND	ND	ND
richloroethene	ND	ND	ND	ND	ND	ND	ND
richlorofluoromethane	ND	ND	ND	ND	ND	ND	ND
inyl acetate	ND	ND	ND	ND	ND	ND	ND
inyl chloride	ND	ND	ND	ND	ND	ND	ND
ylenes (total)	ND	ND	ND	ND	ND	ND	ND
xplosives ug/1 &530							
vclotetramethylenetetranitramine (HMX)	ND	ND	I ND	ND	ND	ND	ND
	ND	ND	ND	ND	0.38	ND	ND
yclotrimethylenetrinitramine (RDX)						0.033	
4 Dinitrotoluene	ND	ND	ND	0.22	0.033		ND
6 Dinitrotoluene	ND	ND	ND	ND	ND	ND	ND
4,6-Trinitrotoluene	ND	ND	ND	ND	ND	ND	ND
letais ug/3							
rsenic	9.9	28	21.8	35.5	24.5	25.8	19.4
arium	29.7	34	31.8	25.7	18.9	26	17.9
admium	ND	ND	ND	ND	ND	ND	ND
alcium	94000	97300	10600	105000	101000	135000	99000
	NID	NID	0.4	ND	1100	ND	ND
aromium	ND	ND	9.4	21.4	ND		ND
opper	ND	5400	ND	21.4	ND	ND	ND
on	1240	5520	6520	7480	6150	14100	4180
ead	ND	ND	ND	ND	ND	ND	ND
ercury	ND	ND	ND	ND	ND	ND	ND
agnesium	37200	39000	420000	40800	39400	53900	40700
anganese	5460	5440	5370	4180	4000	7720	3430
ickel	945	823	599	348	334	1470	308
hosphorus							ND
otassium	2910	3240	2810	2220	2220	2830	1460
elenium	ND	ND	ND	ND	ND	ND	ND
lver	ND	ND	ND	ND	ND	ND	ND
odium	1900	2070	2030	1570	1440	1820	1570
inc	41.7	ND	ND	40.2	ND	1910	33.9
m Metals mg/F							
kalinity		T	T	240	280	200	250
mmonia Nitrogen				ND	ND	ND	ND
	-			ND	60	ND	ND
	-		-				
hemical Oxygen Demand			-	2.1	2.4	2.1	2
hemical Oxygen Demand hloride			ND	ND	ND	ND	ND
hemical Oxygen Demand hloride yanide	ND		1	ND	ND	ND	ND
hemical Oxygen Demand hloride yanide itrate/Nitrite	ND						10
hemical Oxygen Demand hloride yanide itrate/Nitrite	ND		-	6.2	6.2	6	6.2
hemical Oxygen Demand hloride yanide firate/Nitrite H (SU)	ND					6 ND	0.2 ND
bemical Oxygen Demand hloride yanide itrate/Nitrite H (SU) henols, Total	ND			6.2 ND	6.2 ND	ND	ND
hemical Oxygen Demand hloride yanide itrate/Nitrite H (SU) henols, Total pecific Conductivity, Lab (umhos/cm)	ND			6.2 ND 760	6.2 ND 670	ND 1000	ND 690
hemical Oxygen Demand hloride yanide itrate/Nitrite H (SU) henols, Total pecific Conductivity, Lab (umhos/cm) ulfate	ND			6.2 ND 760 152	6.2 ND 670 184	ND 1000 380	ND 690 160
hemical Oxygen Demand hloride yanide iitrate/Nitrite H (SU) henols, Total pecific Conductivity, Lab (umhos/cm) ulfate otal Dissolved Solids otal Organic Carbon	ND			6.2 ND 760	6.2 ND 670	ND 1000	ND 690

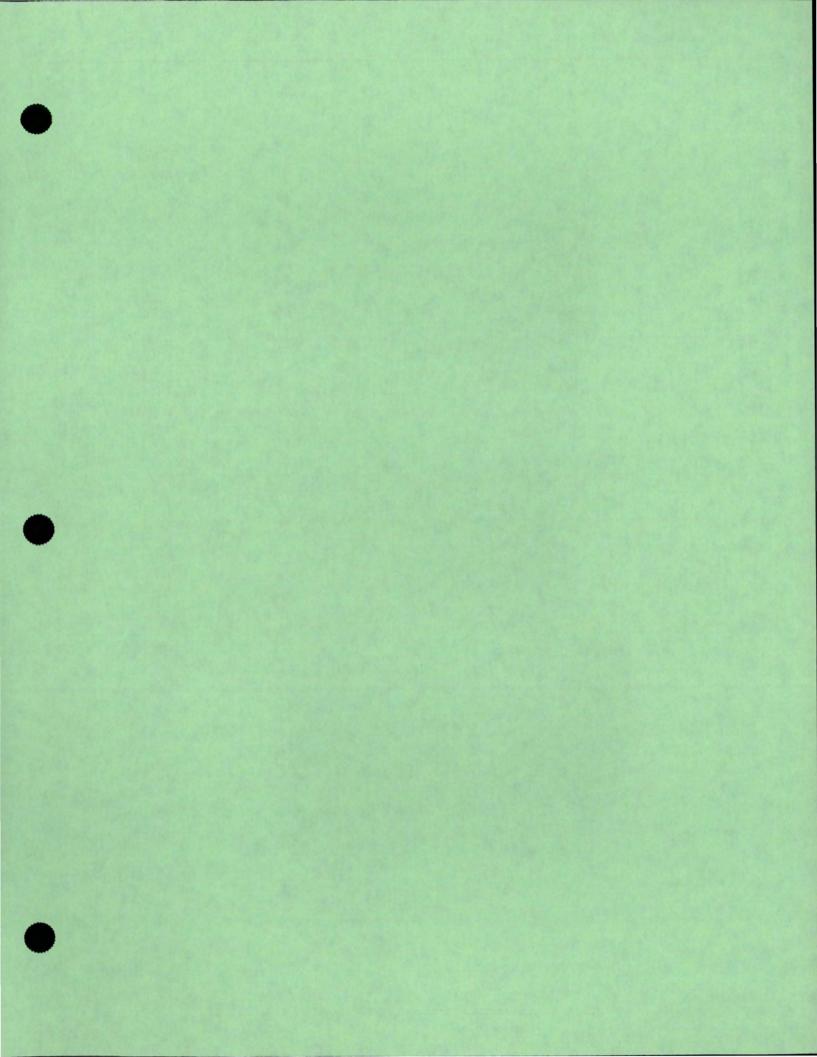

** Preliminary data table to be confirmed. (April 30, 2001 Resample)

RAMSDELL LANDFILL - MONITORING WELL 006

ANALYTE**, UNITS, METHOD NO.		2000			2001	
acaple Date	2/23/00 S	SD 6/21/00 SS	D 12/13/00 SS	D 4/30/01	SSD	6/26/0
						resam
OCs ug/I 8260						
cetone	1.4J	15	2.3J,B	8.5 J		1
crolein	ND	ND	ND	ND	-	
crylonitrile						
	ND	ND	ND	ND	_	-
enzene	ND	0.42 J	ND	ND		
romodichloromethane	ND	ND	ND	ND		
romomethane	ND	ND	ND	ND		
romoform	ND	ND	ND	ND		-
arbon Disulfide						-
	ND	ND	ND	ND		-
arbon tetrachloride	ND	ND	ND	ND		
hlorobenzene	ND	ND	ND	ND		
hlorodibromomethane	ND	ND	ND	ND		
hloroform	ND	ND	ND	ND		-
hloroethane	ND			ND		
		ND	ND			
Chloroethyl vinyl ether	ND	ND	ND	ND		
hloromethane	ND	ND	ND	ND		
ichlorodifluoromethane	ND	ND	ND	ND		
1 Dichloroethene	ND	ND	ND	ND		
2 Dichloroethene	ND	ND		ND		-
			ND			-
1 Dichloroethane	ND	ND	ND	ND		
2 Dichloroethane	ND	ND	ND	ND		-
2 Dichloropropane	ND	ND	ND	ND		
2,3-Trichloropropane	ND	ND	ND	ND		
-1,3-Dichloropropene						-
	ND	ND	ND	ND		-
ans-1,3-Dichloropropene	ND	ND	ND	ND		
hyl methacrylate	ND	ND	ND	ND		
ntylbenzene	ND	ND	ND	ND		
Hexanone	ND	ND	ND	ND		-
Methyl-2-Pentanone	ND	ND	ND	ND		-
						-
lethylene chloride	ND	0.12 J,B	ND	ND		
lethylethylketone (MEK)	1.0 J	55	ND	92		
yrene	ND	ND	ND	ND		
1,2,2-Tetrachloroethane	ND	ND	ND	ND		
bluene	0.049 J,B	0.17 J		ND		
			ND			
1,1, Trichloroethane	ND	ND	ND	ND	_	-
1,2-Trichloroethane	ND	ND	ND	ND		
richloroethene	ND	ND	ND	ND		
richlorofluoromethane	ND	ND	ND	ND		
inyl acetate	ND	ND	ND	ND		-
inyl chloride	ND	ND	ND	ND		
ylenes (total)	ND	ND	ND	ND		
xplosives ug/1 8330						0.000
yclotetramethylenetetranitramine (HMX)	ND	ND	ND	ND		
vclotrimethylenetrinitramine (RDX)	ND	ND	ND	ND		-
4 Dinitrotoluene	ND	ND	ND	ND		
6 Dinitrotoluene	ND	ND	ND	ND		
4,6-Trinitrotoluene	ND	ND	ND	ND		1
etals ug/l						101010000
rsenic	120				1+1+1+1+1+1+1+1+1+1+1+1	-1
	13.9	26.6	32.4	31.7		-
arium	15.3 B	36.1 B	26.2	27.3 B		
admium	ND	ND	ND	ND		
alcium	96100	77500	101000	92300		
aromium	ND	ND	ND	ND		
opper	ND	ND	ND	ND		
						-
Da	3500 MBB	9260	9520	8940		
ad	ND	ND	ND	ND		
ercury	ND	ND	ND	ND		
agnesium	39100	33900	42900	42100		
anganese						-
	3360 MBB	11000	4760	10300		-
ckel	222	217	120	332	-	
osphorus		ND	ND	0.1		
tassium	1880	1600 B	1910 B	1430		
lenium	ND	ND	ND	ND		
ver						-
	ND	ND	ND	ND		
dium	1600 B	2110	1560 B	1900 B		
nc	87.8 L	ND	ND	13.2 B		
n Metals mg/l						111101104
kalinity	280	340	070	110	and the later of t	140404363
		240	270	310		-
nmonia Nitrogen	5.7	ND	ND	ND		
emical Oxygen Demand	19	ND	ND	52.4		
lloride	1	2	2	4		
anide	ND	ND		ND		-
			ND			
trate/Nitrite	ND	ND	ND	ND		
I (SU)	6.3	6.3	6.4	7.6		
enols, Total	ND	ND	0.033	ND		
	670	680				-
ocific Conductivity Lab (much-selent)	0.01	0.00	760	720		
llfate	190	130	140	66		
llfate			140	66 500	-	
ecific Conductivity, Lab (umhos/cm) ilfate otal Dissolved Solids otal Organic Carbon	190	130				

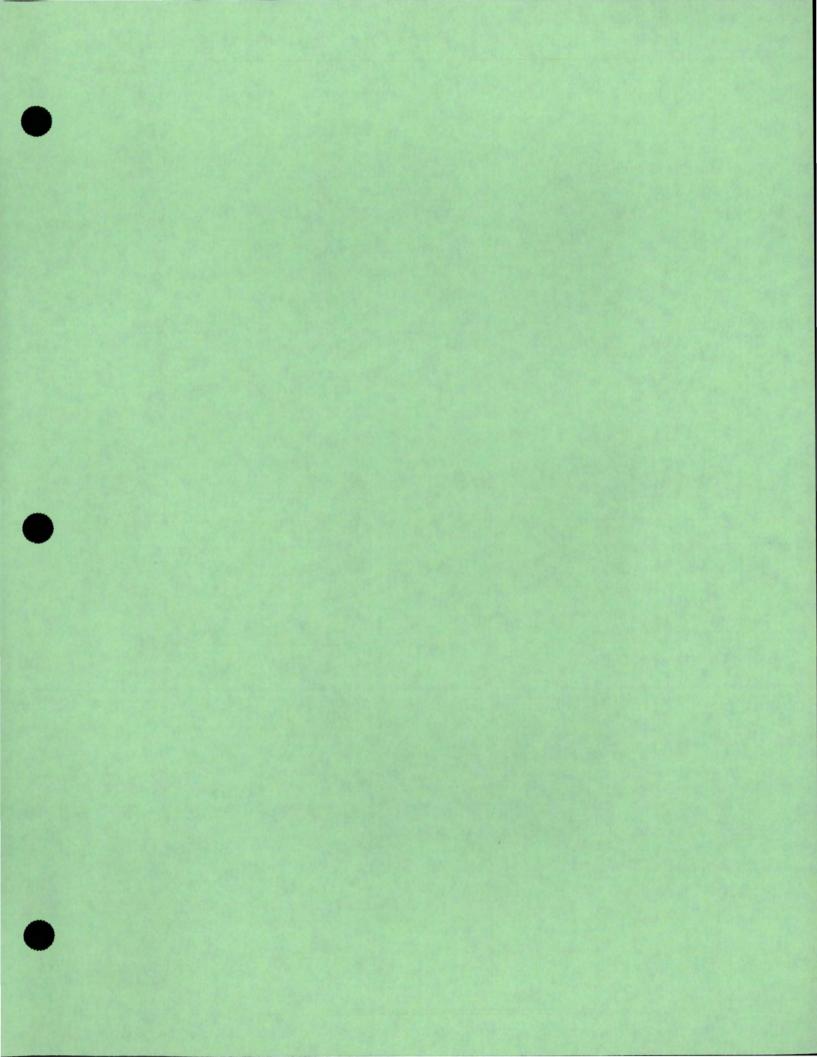
** Preliminary data table to be confirmed. (April 30, 2001 Resample)

Sample Date	7/22/98	9/20/98	10/20/98	2/14/99	4/11/99	5/27/99	12/21/99
VOCs ug/1 8260							
Acetone	ND	ND	ND	ND	ND	ND	3.2
Acrolein	ND	ND	ND	ND	ND	ND	ND
Acrylonitrile	ND	ND	ND	ND	ND	ND	ND
Senzene							0.2
Bromodichloromethane	ND	ND	ND	ND	ND	ND	
Bromomethane	ND	ND	ND	ND	ND	ND	ND
Bromoform	ND	ND	ND	ND	ND	ND	ND
	ND	ND	ND	ND	ND	ND	ND
Carbon Disulfide	ND	ND	ND	ND	ND	ND	ND
Carbon tetrachloride	ND	ND	ND	ND	ND	ND	ND
Chlorobenzene	ND	ND	ND	ND	ND	ND	ND
Chlorodibromomethane	ND	ND	ND	ND	ND	ND	ND
Chloroform	ND	ND	ND	ND	ND	ND	ND
Chloroethane	ND	ND	ND	ND	ND	ND	ND
2-Chloroethyl vinyl ether	ND	ND	ND	ND	ND	ND	ND
Chloromethane	ND	ND	ND	ND	ND	ND	ND
Dichlorodifluoromethane	ND	ND	ND	ND	ND	ND	ND
,1 Dichloroethene	ND	ND	ND	ND	ND	ND	ND
,2 Dichloroethene	ND	ND	ND	ND	ND	ND	ND
,1 Dichloroethane	ND	ND	ND	ND	ND	ND	ND
,2 Dichloroethane	ND	ND	ND	ND	ND	ND	ND
,2 Dichloropropane	ND	ND	ND	ND	ND	ND	ND
,2,3-Trichloropropane	ND	ND	ND	ND	ND	ND	ND
is-1,3-Dichloropropene	ND	ND	ND	ND	ND	ND	ND
rans-1,3-Dichloropropene	ND	ND	ND	ND	ND	ND	ND
Ethyl methacrylate	ND	ND	ND	ND	ND	ND	ND
Ehtylbenzene	ND	ND	ND	ND	ND	ND	ND
2-Hexanone	ND	ND	ND	ND	ND	ND	ND
-Methyl-2-Pentanone	ND	ND	ND	ND	ND	ND	ND
Methylene chloride	ND	ND	3.7	5	ND	ND	0.17
Methylethylketone (MEK)	ND					ND	
		ND	ND	ND	ND		ND
Styrene	ND	ND	ND	ND	ND	ND	ND
1,1,2,2-Tetrachloroethane	ND	ND	ND	ND	ND	ND	ND
Foluene	ND	ND	ND	ND	ND	ND	0.12
1,1,1, Trichloroethane	ND	ND	ND	ND	ND	ND	ND
1,1,2-Trichloroethane	ND	ND	ND	ND	ND	ND	ND
Trichloroethene	ND	ND	ND	ND	ND	ND	ND
Trichlorofluoromethane	ND	ND	ND	ND	ND	ND	ND
Vinyl acetate	ND	ND	ND	ND	ND	ND	ND
Vinyl chloride	ND	ND	ND	ND	ND	ND	ND
Kylenes (total)	ND	ND	ND	ND	ND	ND	ND
Explosives ug/1 8330							
Cyclotetramethylenetetranitramine (HMX)	ND	ND	ND	ND	ND	ND	ND
Cyclotrimethylenetrinitramine (RDX)	ND	ND	ND	ND	0.49	ND	ND
2,4 Dinitrotoluene	ND	ND	ND	0.16	ND	0.11	ND
2,6 Dinitrotoluene	ND	ND	ND	ND	ND	ND	ND
2,4,6-Trinitrotoluene	ND	ND	ND	ND	ND	ND	ND
Metals ug/l		NUMBER OF					
Arsenic	59.4	50.2	54.3	8.9	23.1	38.5	47.6
Barium	58.3	56.5	42.4	23.8	31.8	53.4	32.1
Cadmium				23.8 ND			
Calcium	ND 150000	ND	ND		ND	ND	ND
	159000	151000	129000	81600	88600	135000	116000
Chromium	ND	ND	ND	ND	ND	ND	ND
Copper	ND	ND	ND	3.4	ND	ND	ND
ron	6560	82500	71400	5950	25500	70400	14400
lead	ND	ND	ND	ND	ND	ND	ND
Aercury	0.082	ND	ND	ND	ND	ND	ND
Magnesium	67700	62000	57300	103000	115000	95900	181000
langanese	4100	4570	4530	1330	1180	1420	1050
Vickel	39.4	49.5	56.2	18.9	18.2	18.2	23.5
hosphorus							ND
Potassium	12000	11300	8820	5900	7330	10600	8740
elenium	ND	ND	ND	ND	ND	ND	ND
ülver	ND	ND	ND	ND	0.84	ND	ND
odium	24000	25600	22700	7870	8420	17700	11100
line	84	ND	261	48	55.2	103	70.9
ion Metals mg/l							
lkalinity	- executed and the first of the	*_*24242424242424242424242	*********************	710	170	580	770
mmonia Nitrogen	1			ND	ND	ND	ND
Chemical Oxygen Demand	-			31	29	43	22
Chloride							7
Cyanide	ND		NID	3.4	3.7	5.6	
	ND		ND	ND	ND	ND	ND
Nitrate/Nitrite				ND	ND	ND	ND
H (SU)				6.7	6.6	6.3	6.6
henois, Total		(Income)		ND	ND	ND	ND
pecific Conductivity, Lab (umhos/cm)				1100	1000	1300	1500
ulfate				118	128	168	290
				118 510	128 550	168 770	290 470

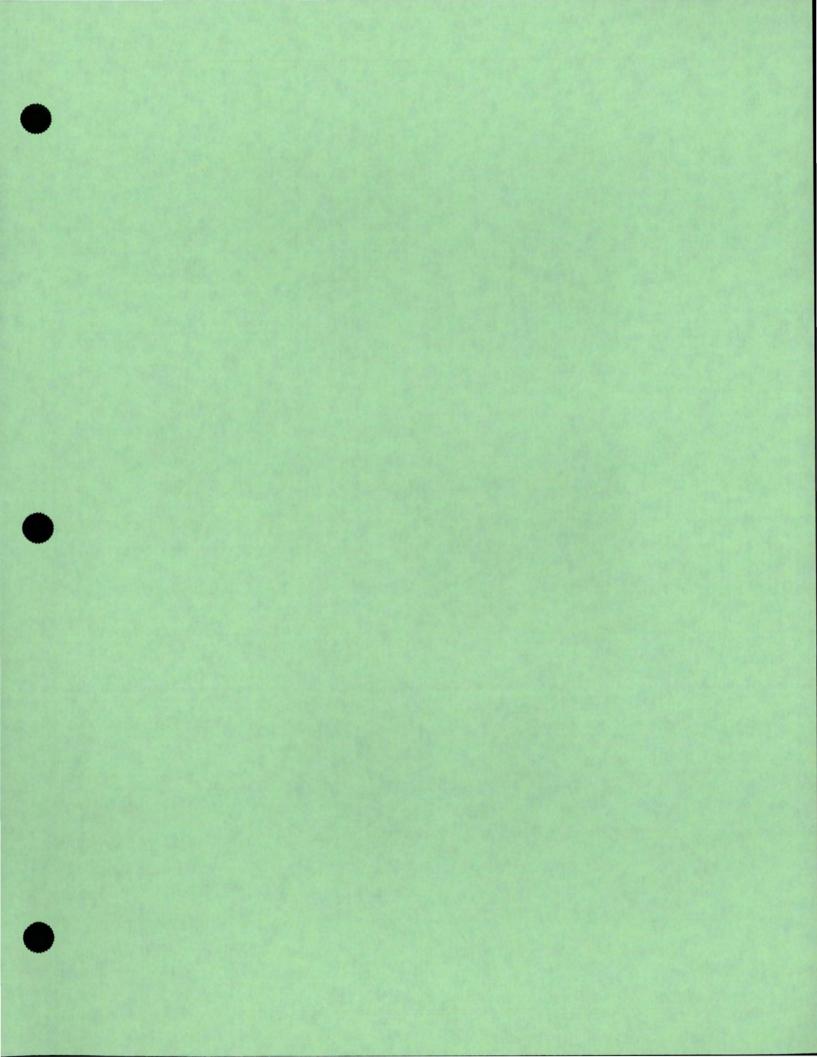


2/23/00	SSD	200 6/21/00	0 SSD	12/13/00	SSD	2/6/01	4/30/01	2001 SSD	6/26/01	Confirm
2/23/00	350	0/21/00	SSD	12/13/00	SSD	re-sample	4/30/01	550	resample	SSD's
						re-sample			resampte	3303
1.6 J	***************	ND	100000000000	1.9 J,B			8.5 J		10.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.	101000000000
		-								
ND		ND		ND			ND			
ND		ND		ND			ND			
ND	h	0.14 J		ND			ND			
ND		ND		ND			ND			
ND		ND		ND			ND			
ND		ND		ND			ND			
ND		ND	S	ND			ND	1		
ND		ND	C	ND			ND			
ND		ND	1	ND			ND			
ND		ND		ND	-		ND			
ND		ND		ND			ND			
ND		ND		ND			ND			-
ND		ND		ND			ND			
ND		ND		ND			ND			
ND		ND		ND			ND			
ND		ND		ND			ND			
ND		ND		ND			ND			
ND		ND		ND	1		ND			
ND		ND		ND			ND			
ND		ND		ND		-	ND			
ND		ND		ND			ND			
ND		ND		ND			ND			
ND		ND		ND		-	ND			1
ND	-	ND		ND			ND			
ND		ND		ND			ND			-
ND	(ND		ND			ND			
ND		ND		ND	_		ND			
ND		0.13 J,B		ND		-	ND			
ND		2.7 J		ND			92			
ND		ND	C	ND			ND			
ND		ND		ND		-	ND			
ND		0.14 J		ND		-	ND			
		ND		ND			ND			
ND										
ND		ND		ND		-	ND			
ND	S	ND		ND			ND			-
ND		ND		ND			ND			
ND		ND	1	ND			ND			
ND	· · · · · · · · · · · · · · · · · · ·	ND		ND	1		ND			
ND		ND	2000	ND	· · · · · · · · · · · · · · · · · · ·	1.000	ND		1	
ND		ND		ND			ND			1
ND		ND		ND			ND			
ND		ND		ND			ND			
ND		ND		ND			ND			
ND		ND		ND			ND			
13.7		16.3		39.9			10.1			
27.0 B		42.9 B		32.9 B		1	30.7 B			
ND		ND		ND			ND			
111000		135000		110000			101000			
ND	-	ND		ND			ND			
ND		ND		ND			ND			
020 MBB		57700	0.000	25300	-		2670			1
										-
ND		ND		ND		-	ND			
ND		ND		ND			ND			-
140000		122000		113000			176000			-
250 MBB		1180		1650			1060			-
30.9 B	1	24.9 B	· · · · · · · · · · · · · · · · · · ·	22.4 B		_	18.4 B			
		ND		ND			0.1			
8520		9730		8830	horse in		8470		1	
ND		ND	1.0	ND		1.1	ND		1	
ND	-	ND		ND	1		ND			
8640		11000		10400			9170			
76.5		182		65.3			37			-
10.0		104		03.3	0.		31		0000000000	100000000
						asaa ahaa ahaa ahaa ahaa ahaa ahaa ahaa				
670		240		600			860		-	-
ND		ND		ND	1		ND			
24		20		ND			21.6			
3	1	5		5			4			
ND		ND		ND			ND			
ND	1	ND		ND			ND			
7	YES	6.71	YES	6.2		-	8			1
	163	0.71 ND	163						-	
ND				ND			ND			1
ND		1356		983			1132	YES	178	NO
82.2	YES									
82.2 200	165	180	1.11.11.11.1	160			180			
82.2 200 780	TES	180 900	2		YES	NO	180 980	YES	1000	YES
82.2 200	1123	180	2	160	YES	NO		YES	1000	YES

ANALYTE**, UNITS, METHOD NO.		1998				1999	
ample Date	7/22/98	9/19/98	10/20/98	2/14/99	4/11/99	5/28/99	12/14/9
			10.00				
/OCs ug/1 8260							(analasa)
cetone	9	ND	ND	ND	ND	ND	3
crolein	ND	ND	ND	ND	ND	ND	ND
crylonitrile	ND	ND	ND	ND	ND	ND	ND
Senzene	ND	ND	ND	ND	ND	ND	0.087
Bromodichloromethane			ND	ND	ND	ND	0.08/
	ND	ND					
Bromomethane	ND	ND	ND	ND	ND	ND	ND
Bromoform	ND	ND	ND	ND	ND	ND	ND
Carbon Disulfide	ND	ND	ND	ND	ND	ND	ND
Carbon tetrachloride	ND	ND	ND	ND	ND	ND	ND
hlorobenzene	ND	ND	ND	ND	ND	ND	ND
hlorodibromomethane	ND	ND	ND	ND	ND	ND	ND
Chloroform	ND	ND	ND	ND	ND	ND	ND
Chloroethane	ND	ND	ND	ND	ND	ND	ND
-Chloroethyl vinyl ether	ND	ND	ND	ND	ND	ND	ND
Chloromethane	ND	ND	ND	ND	ND	ND	ND
Dichlorodifluoromethane	ND	ND	ND	ND	ND	ND	ND
,1 Dichloroethene	ND	ND	ND	ND	ND	ND	ND
,2 Dichloroethene	ND	ND	ND	ND	ND	ND	ND
,1 Dichloroethane	ND	ND	ND	ND	ND	ND	ND
2 Dichloroethane	ND	ND	ND	ND	ND	ND	ND
,2 Dichloropropane	ND	ND	ND	ND	ND	ND	ND
,2,3-Trichloropropane	ND	ND	ND	ND	ND	ND	ND
is-1,3-Dichloropropene	ND	ND	ND	ND	ND	ND	ND
rans-1,3-Dichloropropene	ND	ND	ND	ND	ND	ND	ND
Chyl methacrylate	ND	ND	ND	ND	ND	ND	ND
Chtylbenzene	ND	ND	ND	ND	ND	ND	ND
-Hexanone	ND	ND	ND	ND	ND	ND	ND
-Methyl-2-Pentanone	ND	ND	ND	ND	ND	ND	ND
fethylene chloride	ND	ND	0.58	5	ND	ND	ND
Aethylethylketone (MEK)	ND	ND	ND	ND	ND	ND	ND
tyrene	ND	ND	ND	ND	ND	ND	ND
,1,2,2-Tetrachloroethane	ND	ND	ND	ND	ND	ND	ND
oluene	ND	ND	ND	0.54	ND	ND	0.08
,1,1, Trichloroethane	ND	ND	ND	ND	ND	ND	ND
,1,2-Trichloroethane	ND	ND	ND	ND	ND	ND	ND
richloroethene	ND	ND	ND	ND	ND	ND	ND
richlorofluoromethane	ND	ND	ND	ND	ND	ND	ND
'inyl acetate	ND	ND	ND	ND	ND	ND	ND
inyl chloride	ND	ND	ND	ND	ND	ND	ND
(ylenes (total)	ND	ND	ND	ND	ND	ND	ND
xplosives ug/1 8330	States and states and				and the second		1000000
Cyclotetramethylenetetranitramine (HMX)	ND	ND	ND	ND	ND	ND	ND
yclotrimethylenetrinitramine (RDX)	ND	ND	ND	ND	ND	ND	ND
.4 Dinitrotoluene	ND	ND	ND	0.35	0.076	0.069	ND
.6 Dinitrotoluene	ND	ND	ND	ND	ND	ND	ND
,4,6-Trinitrotoluene	ND	ND	ND	ND	ND	ND	ND
					and the second s	Transferrations	111111111
letais pg/j							
	617	52.2	57 5	50	56	21.1	17 5
rsenic	62.7	53.2	57.5	5.9	5.6	21.1	
rsenic arium	62.6	25.5	30	24.5	33.4	87.8	25.3
rsenic Jarium Cadmium	62.6 ND	25.5 ND	30 ND	24.5 ND	33.4 ND	87.8 ND	25.3 ND
arsenic Jarium Cadmium Calcium	62.6 ND 159000	25.5 ND 137000	30 ND 111000	24.5 ND 34200	33.4 ND 40400	87.8 ND 83200	25.3 ND 54100
ursenic aarium 2admium 2alcium 2hromium	62.6 ND 159000 ND	25.5 ND 137000 ND	30 ND 111000 ND	24.5 ND 34200 ND	33.4 ND 40400 ND	87.8 ND 83200 ND	25.3 ND 54100 ND
letais ug/E rsenic arium admium alcium Chromium Copper	62.6 ND 159000 ND ND	25.5 ND 137000 ND ND	30 ND 111000 ND 6.9	24.5 ND 34200 ND ND	33.4 ND 40400 ND ND	87.8 ND 83200 ND ND	25.3 ND 54100 ND ND
arsenic aarium admium alcium Chromium Copper con	62.6 ND 159000 ND ND 65600	25.5 ND 137000 ND ND 110000	30 ND 111000 ND 6.9 124000	24.5 ND 34200 ND ND 35400	33.4 ND 40400 ND ND 50600	87.8 ND 83200 ND ND 177000	25.3 ND 54100 ND ND 44700
arsenic arium admium alcium Chromium Copper con cead	62.6 ND 159000 ND ND 65600 ND	25.5 ND 137000 ND 110000 ND	30 ND 111000 ND 6.9 124000 ND	24.5 ND 34200 ND ND 35400 ND	33.4 ND 40400 ND ND 50600 ND	87.8 ND 83200 ND ND 177000 ND	25.3 ND 54100 ND ND 44700 ND
ursenic aarium 2admium 2aloium 2hromium 2opper 200 200 200 200 200 200 200 200 200 20	62.6 ND 159000 ND 65600 ND 0.082	25.5 ND 137000 ND 110000 ND ND	30 ND 111000 ND 6.9 124000 ND ND	24.5 ND 34200 ND 35400 ND ND	33.4 ND 40400 ND ND 50600 ND ND	87.8 ND 83200 ND ND 177000 ND ND	25.3 ND 54100 ND 44700 ND ND
arsenic aarium aadmium aalacium horomium Copper con cead fercury fagnesium	62.6 ND 159000 ND 65600 ND 0.082 67700	25.5 ND 137000 ND 110000 ND ND 61800	30 ND 111000 ND 6.9 124000 ND ND 47500	24.5 ND 34200 ND 35400 ND ND 69000	33.4 ND 40400 ND 50600 ND ND 71800	87.8 ND 83200 ND 177000 ND ND 49600	25.3 ND 54100 ND 44700 ND ND ND 11200
arsenic arium admium admium calcium horomium copper ron cead fercury fagnesium fanganese	62.6 ND 159000 ND 65600 ND 0.082 67700 4100	25.5 ND 137000 ND 1100000 ND ND 61800 6760	30 ND 111000 ND 6.9 124000 ND ND 47500 4520	24.5 ND 34200 ND 35400 ND ND 69000 674	33.4 ND 40400 ND 50600 ND ND 71800 660	87.8 ND 83200 ND 177000 ND ND ND 49600 1730	25.3 ND 54100 ND 44700 ND ND 11200 941
arsenic aarium admium 'alcium 'hromium oopper ron ead fercury fagnesium Anganese iickel	62.6 ND 159000 ND 65600 ND 0.082 67700	25.5 ND 137000 ND 110000 ND ND 61800	30 ND 111000 ND 6.9 124000 ND ND 47500	24.5 ND 34200 ND 35400 ND ND 69000	33.4 ND 40400 ND 50600 ND ND 71800	87.8 ND 83200 ND 177000 ND ND 49600	25.3 ND 54100 ND 44700 ND 11200 941 35.3
rsenic arium 'admium 'admium 'alcium 'hromium 'bromium 'bropper con ead fercury fagnesium fanganese fickel bosphorus	62.6 ND 159000 ND 65600 ND 0.082 67700 4100 39.4	25.5 ND 137000 ND 110000 ND ND 61800 6760 220	30 ND 111000 ND 6.9 124000 ND ND 47500 4520 94.1	24.5 ND 34200 ND 35400 ND ND 69000 674 ND	33.4 ND 40400 ND 50600 ND 71800 660 ND	87.8 ND 83200 ND 177000 ND 177000 ND 49600 1730 16.8	25.3 ND 54100 ND 44700 ND 11200 941 35.3 ND
rsenic arium arium admium admium alcium hromium copper con ead fercury fagnesium fanganese ickel bosphorus otassium	62.6 ND 159000 ND 0.082 67700 4100 39.4 12000	25.5 ND 137000 ND ND 110000 ND 61800 6760 220 66600	30 ND 111000 ND 6.9 124000 ND 47500 4520 94.1 7400	24.5 ND 34200 ND 35400 ND 69000 674 ND 4000	33.4 ND 40400 ND 50600 ND 71800 660 ND 4920	87.8 ND 83200 ND ND 177000 ND 49600 1739 16.8 9140	25.3 ND 54100 ND 44700 ND 11200 941 35.3 ND 4920
arsenic arium Cadmium Calcium Calcium Chromium Copper con con cead fercury fagnesium fanganese fickel thosphorus cotassium elenium	62.6 ND 159000 ND 65600 ND 0.082 67700 4100 39.4 12000 ND	25.5 ND 137000 ND ND 110000 ND 61800 6760 220 66600 ND	30 ND 111000 ND 6.9 124000 ND ND 47500 4520 94.1 7400 ND	24.5 ND 34200 ND 35400 ND 69000 674 ND 4000 ND	33.4 ND 40400 ND 50600 ND 71800 660 ND	87.8 ND 83200 ND ND 177000 ND ND 49600 1730 16.8 9140 ND	25.3 ND 54100 ND 44700 ND 11200 941 35.3 ND
rsenic arium admium admium admium biopper con con cead fercury fagnesium fanganese fickel bosphorus cotassium elenium ilver	62.6 ND 159000 ND 0.082 67700 4100 39.4 12000	25.5 ND 137000 ND ND 110000 ND 61800 6760 220 66600	30 ND 111000 ND 6.9 124000 ND 47500 4520 94.1 7400 ND ND	24.5 ND 34200 ND 35400 ND 69000 674 ND 4000	33.4 ND 40400 ND 50600 ND 71800 660 ND 4920	87.8 ND 83200 ND ND 177000 ND 49600 1739 16.8 9140	25.3 ND 54100 ND 44700 ND 11200 941 35.3 ND 4920
rsenic arium arium admium alcium alcium bromium bromium bromium bromium copper con ead fercury fagnesium fanganese fickel hosphorus otassium elenium liver odium bromium bromi	62.6 ND 159000 ND 65600 ND 0.082 67700 4100 39.4 12000 ND	25.5 ND 137000 ND ND 110000 ND 61800 6760 220 66600 ND	30 ND 111000 ND 6.9 124000 ND ND 47500 4520 94.1 7400 ND	24.5 ND 34200 ND 35400 ND 69000 674 ND 4000 ND	33.4 ND 40400 ND 50600 ND 71800 660 ND 4920 ND	87.8 ND 83200 ND ND 177000 ND ND 49600 1730 16.8 9140 ND	ND 54100 ND 44700 ND 11200 941 35.3 ND 4920 ND
rsenic arium arium admium alcium alcium bromium bromium bromium bromium copper con ead fercury fagnesium fanganese fickel hosphorus otassium elenium liver odium bromium bromi	62.6 ND 159000 ND 0.082 67700 4100 39.4 12000 ND ND	25.5 ND 137000 ND 110000 ND 110000 ND 61800 6760 220 66600 ND ND	30 ND 111000 ND 6.9 124000 ND 47500 4520 94.1 7400 ND ND	24.5 ND 34200 ND 35400 ND 69000 674 ND 4000 ND ND	33.4 ND 40400 ND 50600 ND 71800 660 ND 4920 ND 1	87.8 ND 83200 ND 177000 ND 177000 ND 1730 16.8 9140 ND 0.7	25.3 ND 54100 ND 44700 ND 11200 941 35.3 ND 4920 ND ND
rsenic arium arium admium admium alcium hromium copper con ead fercury fagnesium fanganese ickel bosphorus otassium elenium ilver odium inc	62.6 ND 159000 ND 65600 ND 0.082 67700 4100 39.4 12000 ND ND 24000	25.5 ND 137000 ND ND 110000 ND 61800 6760 220 66600 ND ND 20600	30 ND 111000 ND 6.9 124000 ND 47500 4520 94.1 7400 ND ND 16800	24.5 ND 34200 ND 35400 ND 69000 674 ND 4000 ND ND 4680	33.4 ND 40400 ND 50600 ND 71800 660 ND 4920 ND 1 1 4730	87.8 ND 83200 ND ND 177000 ND ND 49600 1739 16.8 9140 ND 0.7 8430	25.3 ND 54100 ND 11200 941 35.3 ND 4920 ND ND 0520
rsenic arium admium admium alcium bromium bropper con con cad fercury fagnesium fanganese fickel brosphorus otassium elenium fiver odium fine on: Mtetads ing/t	62.6 ND 159000 ND 65600 ND 0.082 67700 4100 39.4 12000 ND ND 24000	25.5 ND 137000 ND ND 110000 ND 61800 6760 220 66600 ND ND 20600	30 ND 111000 ND 6.9 124000 ND 47500 4520 94.1 7400 ND ND 16800	24.5 ND 34200 ND 35400 ND 69000 674 ND 4000 ND ND ND ND 19.1	33.4 ND 40400 ND 50600 ND 71800 660 ND 4920 ND 1 4730 19.5	87.8 ND 83200 ND ND 177000 ND ND 49600 1730 16.8 9140 ND 0.7 8430 16.1	25.3 ND 54100 ND ND 44700 941 35.3 ND 941 35.3 ND ND ND ND 0 6520 52.6
rsenic arium arium admium alcium bromium fanganese fickel brosphorus brassium elenium fiver brotassium elenium fiver bromium fine fine bromium fine bromium fine fine f	62.6 ND 159000 ND 65600 ND 0.082 67700 4100 39.4 12000 ND ND 24000	25.5 ND 137000 ND ND 110000 ND 61800 6760 220 66600 ND ND 20600	30 ND 111000 ND 6.9 124000 ND 47500 4520 94.1 7400 ND ND 16800	24.5 ND 34200 ND 35400 ND ND 69000 674 ND 4000 ND ND ND ND 19.1	33.4 ND 40400 ND 50600 ND 71800 660 ND 4920 ND 1 4920 ND 1 1 4730 4730 410	87.8 ND 83200 ND 177000 ND 177000 ND 49600 1730 16.8 9140 ND 0.7 8430 16.1	25.3 ND 54100 ND ND 44700 11200 9411 35.3 ND 4920 ND ND ND S2.6 5590
rsenic arium 'admium 'admium 'admium 'alcium 'hromium 'bromium 'br	62.6 ND 159000 ND 65600 ND 0.082 67700 4100 39.4 12000 ND ND 24000	25.5 ND 137000 ND ND 110000 ND 61800 6760 220 66600 ND ND 20600	30 ND 111000 ND 6.9 124000 ND 47500 4520 94.1 7400 ND ND 16800	24.5 ND 34200 ND 35400 ND 69000 674 ND 4000 ND ND 4680 19.1 19.1 430 ND	33.4 ND 40400 ND 50600 ND 71800 660 ND 4920 ND 1 4730 19.5 19.5	87.8 ND 83200 ND 177000 ND 177000 ND 1730 16.8 9140 ND 0.7 8430 16.1 16.1 16.1 2	25.3 ND 54100 ND 44700 ND 112000 9411 35.3 ND 4920 ND ND 0520 552.6
rsenic arium arium admium admium alcium copper con ead fercury fagnesium fanganese lickel bosphorus otassium elenium liver oolium inc on:Mtetast mg/f likalinity mmonia Nitrogen chemical Oxygen Demand	62.6 ND 159000 ND 65600 ND 0.082 67700 4100 39.4 12000 ND ND 24000	25.5 ND 137000 ND ND 110000 ND 61800 6760 220 66600 ND ND 20600	30 ND 111000 ND 6.9 124000 ND 47500 4520 94.1 7400 ND ND 16800	24.5 ND 34200 ND 35400 ND 69000 674 ND 4000 ND ND ND 19.1 430 ND 26	33.4 ND 40400 ND ND 50600 ND 71800 660 ND 4920 ND 1 4730 19.5	87.8 ND 83200 ND ND 177000 177000 1730 16.8 9140 ND 0.7 8430 16.1 8430 16.1 8430 16.1	25.3 ND 54100 ND ND 44700 941 35.3 ND 4920 ND 4920 ND 52.6 552.6
rrsenic arium arium admium admium alcium bromium copper con cead fercury fagnesium fanganese lickel bosphorus otassium elenium liver odium line ton: MEtals mg/f licalinity mmonia Nitrogen benand chloride	62.6 ND 159000 ND ND 65600 ND 0.082 67700 4100 39.4 12000 ND ND ND 24000 84	25.5 ND 137000 ND ND 110000 ND 61800 6760 220 66600 ND ND ND 20600 941	30 ND 111000 ND 6.9 124000 ND 47500 4520 94.1 7400 ND ND 16800 197	24.5 ND 34200 ND 35400 ND 69000 674 ND 4000 ND ND 4680 19.1 19.1 430 ND 26 2.2	33.4 ND 40400 ND 50600 ND ND 71800 660 ND 4920 ND 1 4730 19.5 410 ND 19 1.8	87.8 ND 83200 ND ND 177000 ND 49600 1730 16.8 9140 ND 0.7 8430 16.1 8430 16.1 8430 16.1 8430 16.1 8430 16.1 8430 8430 8430 8430 8430 8430 8430 8430	25.3 ND 54100 ND ND 44700 ND 11200 941 35.3 ND 11200 941 35.3 ND 052.6 520 5500 ND 422 3
rrsenic arium arium admium admium alcium bromium bromi	62.6 ND 159000 ND 65600 ND 0.082 67700 4100 39.4 12000 ND ND 24000	25.5 ND 137000 ND ND 110000 ND 61800 6760 220 66600 ND ND 20600	30 ND 111000 ND 6.9 124000 ND 47500 4520 94.1 7400 ND ND 16800	24.5 ND 34200 ND ND 35400 ND 69000 674 ND 4000 ND ND 4680 19.1 19.1 430 ND 26 2.2 ND	33.4 ND 40400 ND 50600 ND 71800 660 ND 4920 ND 1 4730 19.5 410 ND 19 1.8 ND	87.8 ND 83200 ND ND 177000 ND ND 49600 1730 16.8 9140 ND 0.7 8430 16.1 16.1 470 2 61 3.4 ND	25.3 ND 54100 ND ND 44700 941 35.3 ND 4920 ND ND 6520 6520 8590 ND 82.6 6 590 ND 3 3 ND
rsenic arium 'admium 'admium 'admium 'alcium Chromium Copper con ead fercury fagnesium fanganese lickel hosphorus otassium elenium liver odium fine con:Mielals.ing/t likalinity mmonia Nitrogen Chemical Oxygen Demand Chloride 'yanide litrate/Nitrite	62.6 ND 159000 ND ND 65600 ND 0.082 67700 4100 39.4 12000 ND ND ND 24000 84	25.5 ND 137000 ND ND 110000 ND 61800 6760 220 66600 ND ND ND 20600 941	30 ND 111000 ND 6.9 124000 ND 47500 4520 94.1 7400 ND ND 16800 197	24.5 ND 34200 ND 35400 ND 35400 69000 674 ND 4000 ND ND 4680 19.1 430 ND 26 2.2 ND ND	33.4 ND 40400 ND 50600 ND 71800 660 ND 4920 ND 1 4730 4920 ND 1 1 4730 19.5 18 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	87.8 ND 83200 ND 177000 ND 177000 ND 16.8 9140 ND 0.7 8430 16.1 8430 16.1 16.1 16.1 16.1 16.1 16.1 16.1 16.	25.3 ND 54100 ND 44700 ND 112000 9411 35.3 ND 4920 ND ND 6520 6520 5900 ND 42 3 3 ND ND ND ND ND ND ND ND ND ND 112000 84100 ND ND ND ND ND ND ND ND ND ND ND ND ND
rrsenic arium cadmium cadmium cadmium calonium copper con ead fercury fagnesium fanganese fickel fanganese fickel chosphorus cotassium elenium filver codium fine filer files fight files fight files	62.6 ND 159000 ND ND 65600 ND 0.082 67700 4100 39.4 12000 ND ND ND 24000 84	25.5 ND 137000 ND ND 110000 ND 61800 6760 220 66600 ND ND ND 20600 941	30 ND 111000 ND 6.9 124000 ND 47500 4520 94.1 7400 ND ND 16800 197	24.5 ND 34200 ND ND 35400 69000 674 ND 4000 ND ND 4000 ND ND 19.1 19.1 26 2.2 ND ND 26 5.5	33.4 ND 40400 ND ND 50600 ND 71800 660 ND 4920 ND 1 4730 19.5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	87.8 ND 83200 ND ND 177000 177000 1730 16.8 16.8 16.8 16.8 16.1 8430 16.1 2 61 3.4 ND 8430 6.4	25.3 ND 54100 ND ND 44700 941 35.3 ND 4920 ND 4920 ND 852.6 52.6 552.6 590 ND 42 3 ND 6515
arsenic arium arium admium admium alcium biromium copper con cead fercury fagnesium fanganese lickel biosphorus botassium elenium liver codium fine con:Mtefast mg/E likalinity armonia Nitrogen bemical Oxygen Demand Chloride yanide litrate/Nitrite H (SU) thenols, Total	62.6 ND 159000 ND ND 65600 ND 0.082 67700 4100 39.4 12000 ND ND ND 24000 84	25.5 ND 137000 ND ND 110000 ND 61800 6760 220 66600 ND ND ND 20600 941	30 ND 111000 ND 6.9 124000 ND 47500 4520 94.1 7400 ND ND 16800 197	24.5 ND 34200 ND ND 35400 69000 674 ND 4000 ND ND 4680 19.1 19.1 26 2.2 ND ND 0.5 ND	33.4 ND 40400 ND ND 50600 ND 71800 660 ND 4920 ND 1 4730 19.5 410 ND 19 1.8 ND 19 1.8 ND ND	87.8 ND 83200 ND ND 177000 ND 49600 1730 16.8 16.8 9140 ND 0.7 8430 16.1 16.1 16.1 16.1 16.1 16.1 16.1 16.	25.3 ND 54100 ND ND 44700 9411 35.3 ND 11200 9411 35.3 ND 4920 ND ND 6520 6520 6520 552.6 5590 ND ND ND ND ND ND ND 1200 ND 1200 ND 1200 ND ND 1200 ND ND ND ND ND ND ND ND ND ND ND ND ND
rsenic arium 'admium 'admium 'admium 'alcium 'hromium 'bromium 'bromium 'bromium 'bromium 'bromium 'bron 'agnesium fanganese fickel 'bosphorus 'tassium elenium ibrer odium inc 'bromial Nitrogen 'bloride 'yanide litrate/Nitrite H (SU) benols, Total pecific Conductivity, Lab (umbos/cm)	62.6 ND 159000 ND ND 65600 ND 0.082 67700 4100 39.4 12000 ND ND ND 24000 84	25.5 ND 137000 ND ND 110000 ND 61800 6760 220 66600 ND ND ND 20600 941	30 ND 111000 ND 6.9 124000 ND 47500 4520 94.1 7400 ND ND 16800 197	24.5 ND 34200 ND ND 35400 69000 674 ND 4000 ND ND 4680 19.1 430 ND 26 2.2 ND ND 26 5.5 ND	33.4 ND 40400 ND 50600 ND 50600 ND 71800 660 ND 4920 ND 1 4730 19.5 410 ND 19 1.8 ND 19 1.8 ND ND	87.8 ND 83200 ND ND 177000 ND 49600 1730 16.8 9140 ND 0.7 8430 16.1 1 470 2 61 3.4 ND ND 6.4 ND ND 860	25.3 ND 54100 ND ND 44700 941 35.3 ND 44700 941 35.3 ND 6520 6520 952.6 6 5500 ND ND 82.6 6 15 90 ND ND ND 82.6 820 820 820 820 820 820 820 820 820 820
rsenic arium arium admium admium alcopper alcopper con ead fercury fagnesium fanganese lickel hosphorus otassium elenium liver odium fine con:Miclasting/t likalinity mmonia Nitrogen bemical Oxygen Demand hioride yanide litrate/Nitrite H (SU) henols, Total pecific Conductivity, Lab (umbos/cm) ulfate	62.6 ND 159000 ND ND 65600 ND 0.082 67700 4100 39.4 12000 ND ND ND 24000 84	25.5 ND 137000 ND ND 110000 ND 61800 6760 220 66600 ND ND ND 20600 941	30 ND 111000 ND 6.9 124000 ND 47500 4520 94.1 7400 ND ND 16800 197	24.5 ND 34200 ND ND 35400 69000 674 ND 4000 ND ND 4680 19.1 19.1 26 2.2 ND ND 0.5 ND	33.4 ND 40400 ND ND 50600 ND 71800 660 ND 4920 ND 1 4730 19.5 410 ND 19 1.8 ND 19 1.8 ND ND	87.8 ND 83200 ND ND 177000 ND 49600 1730 16.8 16.8 9140 ND 0.7 8430 16.1 16.1 16.1 16.1 16.1 16.1 16.1 16.	25.3 ND 54100 ND ND 44700 9411 35.3 ND 11200 9411 35.3 ND 4920 ND ND 6520 6520 6520 552.6 5590 ND ND ND ND ND ND ND 1200 ND 1200 ND 1200 ND ND 1200 ND ND ND ND ND ND ND ND ND ND ND ND ND
rsenic arium 'admium 'admium 'admium 'alcium 'hromium 'bromium 'bromium 'bromium 'bromium 'bromium 'bron 'agnesium fanganese fickel 'bosphorus 'tassium elenium ibrer odium inc 'bromial Nitrogen 'bloride 'yanide litrate/Nitrite H (SU) benols, Total pecific Conductivity, Lab (umbos/cm)	62.6 ND 159000 ND ND 65600 ND 0.082 67700 4100 39.4 12000 ND ND ND 24000 84	25.5 ND 137000 ND ND 110000 ND 61800 6760 220 66600 ND ND ND 20600 941	30 ND 111000 ND 6.9 124000 ND 47500 4520 94.1 7400 ND ND 16800 197	24.5 ND 34200 ND ND 35400 69000 674 ND 4000 ND ND 4680 19.1 430 ND 26 2.2 ND ND 26 5.5 ND	33.4 ND 40400 ND 50600 ND 50600 ND 71800 660 ND 4920 ND 1 4730 19.5 410 ND 19 1.8 ND 19 1.8 ND ND	87.8 ND 83200 ND ND 177000 ND 49600 1730 16.8 9140 ND 0.7 8430 16.1 1 470 2 61 3.4 ND ND 6.4 ND ND 860	25.3 ND 54100 ND ND 44700 941 35.3 ND 44700 941 35.3 ND 6520 6520 952.6 6 5500 ND ND 82.6 6 15 90 ND ND ND 82.6 820 820 820 820 820 820 820 820 820 820

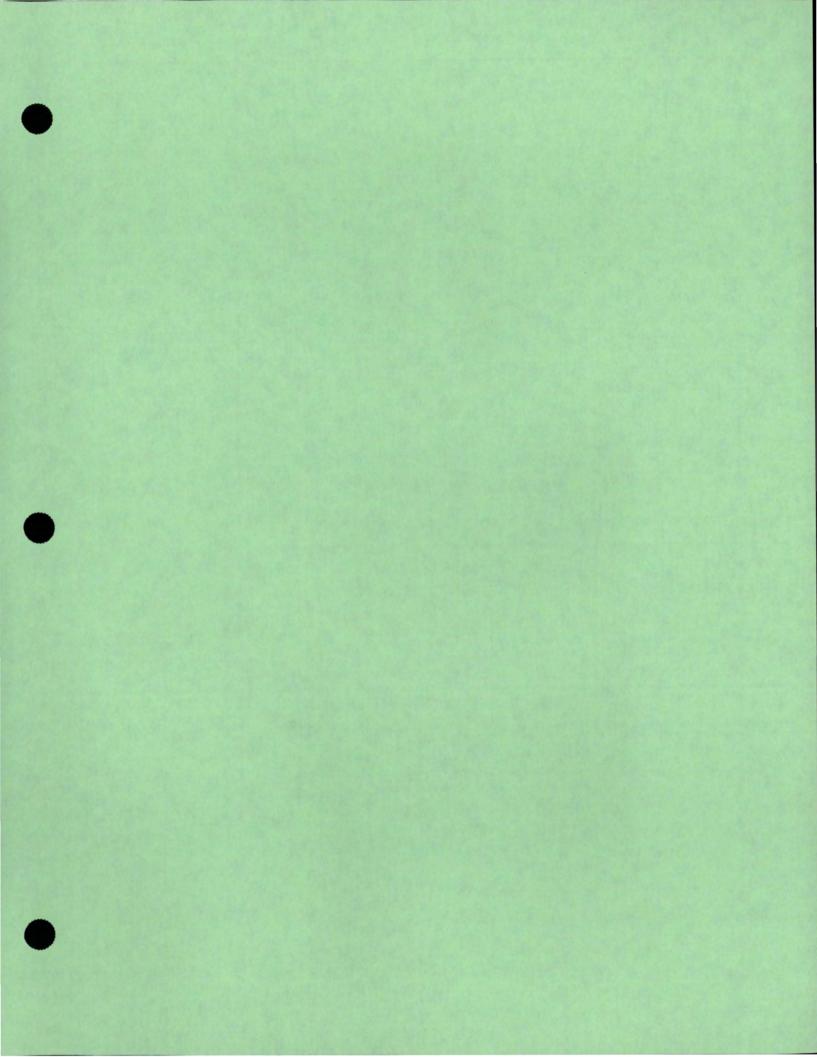


ANALYTE**, UNITS, METHOD NO. Sample Date	2/23/00	20 SSD	6/21/00	SSD	12/14/00	SSD	2001 4/30/01	SSD	1
	<i>a</i> 23100	330	0121100	330	10/14/00	330	4/30/01	350	
(OCs.ug/[8260									and the second
cetone	1.0.1		ND		3 1 7 8		ND		
Acrolein	1.9 J ND	-	ND ND		3.1 J,B ND		ND ND	-	
Acrylonitrile	ND		ND		ND		ND		
Benzene	ND		ND		ND		ND	+ +	
Bromodichloromethane	ND		ND		ND		ND		
Bromomethane	ND		ND	-	ND		ND	+ +	
Bromoform	ND		ND		ND		ND	-	
Carbon Disulfide	ND		ND		ND		ND		
Carbon tetrachloride	ND		ND		ND		ND	+ +	
Chlorobenzene	ND		ND		ND		ND		
Chlorodibromomethane	ND		ND		ND		ND	+ +	
Chloroform	ND		ND		ND		ND	+ +	
Chloroethane	ND		ND		ND		ND		
-Chloroethyl vinyl ether	ND		ND		ND		ND		
Chloromethane	ND		ND		ND		ND	1 1	
Dichlorodifluoromethane	ND	-	ND		ND		ND	+ +	
1 Dichloroethene	ND		ND		ND		ND	<u> </u>	
.2 Dichloroethene	ND		ND		ND		ND	+ +	
,1 Dichloroethane	ND	-	ND		ND		ND	+ +	
,2 Dichloroethane	ND	-	ND		ND		ND	+ +	
,2 Dichloropropane	ND		ND		ND		ND	1 1	
,2,3-Trichloropropane	ND		ND		ND		ND	+ - I	
is-1,3-Dichloropropene	ND	-	ND		ND		ND		
rans-1,3-Dichloropropene	ND		ND		ND	-	ND		
thyl methacrylate	ND		ND		ND		ND	1	
Chtylbenzene	ND		ND		ND		ND		
-Hexanone	ND		ND		ND		ND		
-Methyl-2-Pentanone	ND		ND		ND		ND		
fethylene chloride	ND		0.11 J.B		ND		ND	-	
Aethylethylketone (MEK)	ND		ND		ND		ND		
tyrene	ND		ND		ND		ND	-	
,1,2,2-Tetrachloroethane	ND		ND		ND		ND		
oluene	0.069 J.B		0.14 J		ND		ND		
,1,1, Trichloroethane	ND		ND		ND		ND		
,1,2-Trichloroethane	ND		ND		ND		ND	1 1	
Trichloroethene	ND		ND		ND		ND	+ +	
Trichlorofluoromethane	ND		ND		ND		ND		
/inyl acetate	ND		ND		ND		ND		
/invl chloride	ND		ND		ND		ND		
(ylenes (total)	ND	-	ND		ND		ND		
xplosives ug/1 8330			IND.		No. of Concession, Name				
yclotetramethylenetetranitramine (HMX)	ND		ND	1	ND		ND	T T	
yclotrimethylenetrinitramine (RDX)	ND		ND		ND		ND		
4 Dinitrotoluene	ND		ND		ND		ND	1 1	
.6 Dinitrotoluene	ND		ND		ND		ND		
,4,6-Trinitrotoluene	ND		ND		ND		ND		
letals ug/l		111111111		10100101010					
rsenic	ND		4.7 B	and the second s	43.1	A A A A A A A A A A A A A A A A A A A	8	T	124242424242424242424242
larium	18.6 B		31.5 B		39.1B		29.1 B		
Cadmium	ND		ND		ND		ND		
Calcium	46900		55800		59300		62500		
Chromium	ND		ND		ND		ND		
Copper	ND		ND		ND		ND		
ron	11200MBB		38100		80400		66500		
ead	ND		ND		ND		ND		
fercury	ND		ND		ND		0.12 B		-
fagnesium	61000	-	68400		56000		121000		
langanese	691 MBB		829		1070		879		
lickel	192		8.5 B		25.3 B		6.9 B		
hosphorus	ND		ND		ND		0.2		
otassium	3760		5510		6320		6900		
elenium	ND		ND		ND		ND		
llver	ND		ND		ND		ND		
odium	6740		5580		6470		6000		
inc	139		ND		44.6		13.7 B		
on Metals mg/1		1000		111111111		100000000			
Ikalinity	300		300	1	200	a totatototototo	630		
mmonia Nitrogen	1.3		ND		ND		ND		
bemical Oxygen Demand	1.5		ND		ND		33.3	+ +	
hloride	2		2		2		3		
yanide	ND		ND		ND		ND		
itrate/Nitrite	ND		ND		ND		ND		
H (SU)	7.1	YES	7.22	YES	6.15		6.6		
henols, Total	ND	123	ND	ILS	0.15		ND		
pecific Conductivity, Lab (umhos/cm)	54.5		648		483		899	+ +	
ulfate	180		120		110		68		
otal Dissolved Solids	440		460				670		
otal Organic Carbon	3				340	-		-	
urbidity (Total Suspended Solids) NTU	126		3		5		10	+ +	
a staty (rotal suspended solids) ATU	120	_	45		200	-	1700	L	



ANALYTE**, UNITS, METHOD NO.		1998				1999	
Simple Date	7/17/98	9/19/98	10/20/98	2/14/99	4/11/99	5/28/99	12/21/9
OCs ug/1 8260	de la construction de la constru			-	Televene televenetetetetetetetetetetetetetetetetetet		
cetone	ND	ND	ND	ND	ND	I ND	1.9
Acrolein	ND	ND	ND	ND	ND	ND	ND
Acrylonitrile	ND	ND	ND	ND	ND	ND	ND
Senzene	ND	ND	ND	ND	ND	ND	0.13
Bromodichloromethane	ND	ND	ND	ND	ND	ND	ND
Bromomethane	ND	ND	ND	ND	ND	ND	ND
Bromoform	ND	ND	ND	ND	ND	ND	ND
Carbon Disulfide	ND	ND	ND	ND	ND	ND	ND
Carbon tetrachloride	ND	ND	ND	ND	ND	ND	ND
Chlorobenzene	ND	ND	ND	ND	ND	ND	ND
Chlorodibromomethane	ND	ND	ND	ND	ND	ND	ND
Chloroform	ND	ND	ND	ND	ND	ND	ND
Chloroethane	ND	ND	ND	ND	ND	ND	ND
2-Chloroethyl vinyl ether	ND	ND	ND	ND	ND	ND	ND
Chloromethane	ND	ND	ND	ND	ND	ND	ND
Dichlorodifluoromethane	ND	ND	ND	ND	ND	ND	ND
1,1 Dichloroethene	ND	ND	ND	ND	ND	ND	ND
1.2 Dichloroethene	ND	ND	ND	ND	ND	ND	ND
1,1 Dichloroethane	ND	ND	ND	ND	ND	ND	ND
1,2 Dichloroethane	ND	ND	ND	ND	ND	ND	ND
1,2 Dichloropropane	ND	ND	ND	ND	ND	ND	ND
1,2,3-Trichloropropane	ND	ND	ND	ND	ND	ND	ND
cis-1,3-Dichloropropene	ND	ND	ND	ND	ND	ND	ND
trans-1,3-Dichloropropene	ND	ND	ND	ND	ND	ND	ND
Ethyl methacrylate	ND	ND	ND	ND	ND	ND	ND
Ehtylbenzene	ND	ND	ND	ND	ND	ND	ND
2-Hexanone	ND	ND	ND	ND	ND	ND	ND
4-Methyl-2-Pentanone	ND	ND	ND	ND	ND	ND	ND
Methylene chloride	ND	ND	0.67	5	ND	ND	ND
Methylethylketone (MEK)	ND	ND	ND	ND	ND	ND	ND
Styrene	ND	ND	ND	ND	ND	ND	ND
1.1.2.2-Tetrachloroethane	ND	ND	ND	ND	ND	ND	0.1
l'oluene			ND	ND		ND	0.097
I,1,1, Trichloroethane	ND	ND			ND		0.097 ND
1,1,2-Trichloroethane	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND
Trichloroethene	ND						
	ND	ND	ND	ND	ND	ND	ND
l'richlorofluoromethane	ND	ND	ND	ND	ND	ND	ND
Vinyl acetate	ND	ND	ND	ND	ND	ND	ND
Vinyl chloride	ND	ND	ND	ND	ND	ND	ND
Xylenes (total)	ND	ND	ND	ND	ND	ND	ND
Explosives ug/1 \$330							
Cyclotetramethylenetetranitramine (HMX)	ND	0.09	ND	ND	ND	ND	ND
Cyclotrimethylenetrinitramine (RDX)	ND	ND	ND	ND	ND	ND	ND
2,4 Dinitrotoluene	ND	ND	ND	ND	ND	ND	ND
2,6 Dinitrotoluene	ND	ND	ND	ND	ND	ND	ND
2,4,6-Trinitrotoluene	ND		ND	ND	ND	ND	ND
Metals ug/l							
Arsenic	ND	10.7	3.9	ND	ND	3.2	ND
Barium	31.7	46.3	52.6	20.2	25	29	40.7
Cadmium	ND	ND	ND	ND	ND	ND	ND
Calcium	27800	37100	38200	18200	22100	22200	29000
Chromium	ND	ND	ND	ND	ND	ND	ND
Copper	ND	ND	ND	10.2	6.7	ND	ND
Iron	1630	18500	6670	278	453	1760	193
Lead	ND	ND	ND	ND	ND	ND	ND
Mercury	0.088	ND	ND	ND	ND	ND	ND
Magnesium	26500	45800	48800	9890	21200	28400	44100
Manganese	1130	3250	2040	53.9	409	936	138
Nickel	ND	15.5	ND	ND	ND	ND	ND
Phosphorus							ND
Potassium	3110	4470	3940	2400	3320	3440	3680
Selenium	ND	ND	ND	ND	ND	ND	8.2
Silver	ND	ND	ND	ND	1.2	ND	ND
Sodium	ND	6220	3340	2620	2620	2750	3550
Linc	29.6	ND	ND	33.2	52.7	23.1	29.1
Non Metals mg/l							
Alkalinity	T			75	130	120	70
Ammonia Nitrogen				ND	ND	ND	ND
Chemical Oxygen Demand				11	190	ND	12
Chloride	-			1.3	1.3	2.1	3
Cyanide	ND	ND	ND	ND	ND	ND	ND
Nitrate/Nitrite	nu i	HD I	in D	ND	ND	ND	0.4
bH (SU)	-				6.3	6.3	6.3
	-			6.1 ND			
				ND	ND	ND	ND
Phenols, Total	-				3.50	2/2	100
Phenols, Total Specific Conductivity, Lab (umhos/cm)				210	250	360	480
Phenols, Total Specific Conductivity, Lab (umhos/cm) Sulfate				210 29.9	31.1	63.8	190
Nenols, Total Specific Conductivity, Lab (umhos/cm) Sulfate Fotal Dissolved Solids Total Organic Carbon				210			

ANALYTE**, UNITS, METHOD NO.	2/23/00	SSD	6/21/00	2000 SSD	12/14/00	SSD	2001 4/30/01	SSD	-
	2/25/00	330	0/21/00	330	12/14/00	330	4/30/01	550	
781/1									
VOCs ug/3 8260									
Acetone	1.6 J		ND		1.3 J,B		ND		
Acrolein	ND		ND		ND		ND		
Acrylonitrile	ND		ND		ND		ND		
Senzene	ND		ND		ND		ND		
Bromodichloromethane Bromomethane	ND		ND		ND	-	ND	-	
	ND		ND		ND		ND		
Sromoform	ND		ND		ND		ND		
Carbon Disulfide Carbon tetrachloride	ND		ND		ND		ND		
Chlorobenzene	ND		ND		ND		ND	-	
	ND		ND		ND		ND	-	
Chlorodibromomethane	ND		ND		ND		ND	-	
	ND		ND		ND		ND		
chloroethane	ND		ND		ND	-	ND		
-Chloroethyl vinyl ether	ND		ND		ND	-	ND		
Chloromethane	ND		ND		ND		ND	-	
Dichlorodifluoromethane	ND		ND		ND	-	ND	-	
,1 Dichloroethene	ND		ND		ND		ND		
,2 Dichloroethene	ND		ND		ND		ND		
,1 Dichloroethane	ND		ND		ND		ND		
,2 Dichloroethane	ND		ND	-	ND		ND		
,2 Dichloropropane	ND		ND		ND		ND		
,2,3-Trichloropropane	ND		ND		ND		ND		
is-1,3-Dichloropropene	ND		ND		ND		ND		
rans-1,3-Dichloropropene	ND	-	ND		ND	-	ND		
Cthyl methacrylate	ND		ND		ND		ND		
-Hexanone	ND		ND		ND		ND		-
-Hexanone -Methyl-2-Pentanone	ND		ND		ND		ND		
Aethylene chloride	ND		ND		ND	-	ND		
	ND		ND		ND	-	ND		
Aethylethylketone (MEK)	ND		ND	-	ND		ND		
tyrene	ND		ND		ND	1	ND		
,1,2,2-Tetrachloroethane	ND		ND	-	ND		ND		
oluene	0.059 J,B		0.16 J		ND		ND		
,1,1, Trichloroethane	ND		ND		ND		ND		
,1,2-Trichloroethane	ND		ND	· · · · · ·	ND		ND		1
richloroethene	ND		ND		ND		ND		
richlorofluoromethane	ND		ND		ND		ND		
inyl acetate	ND		ND	-	ND		ND		
/inyl chloride	ND		ND		ND		ND		
(ylenes (total)	ND		ND		ND		ND		
explosives ug/1: 8550									
Cyclotetramethylenetetranitramine (HMX)	ND		ND		ND		ND		
Cyclotrimethylenetrinitramine (RDX)	ND		ND		ND		ND		
,4 Dinitrotoluene	ND		ND		ND		ND		-
,6 Dinitrotoluene	ND		ND		ND	-	ND		-
,4,6-Trinitrotoluene	ND		ND		ND		ND		
letāls ug/E									
rsenic	ND		ND		ND		ND		
Barium	18.9 B		30.2 B		25.2 B		21.6 B		
Cadmium	ND		ND	1	ND		ND		-
Calcium	17100		27400		19000		20300		1
Chromium	ND		ND	-	ND	-	ND	-	
Copper	5.4 B		ND		4.5 B		7.6 B		-
ron	597 MBD		544		185		422		
ead	ND	-	ND		ND		ND		
Aercury	ND	-	ND		ND		0.13 B		
Aagnesium	7880		14800		13800		18300		
langanese	26.7		708	-	10.6 B		580		
lickel	ND	-	2.9 B		ND		3.3 B		
hosphorus	ND		ND		0.1		ND		
otassium	3910 B		4420 B		4370 B		5280		
elenium	ND		ND		ND		ND		
ilver	ND		ND	-	ND		ND		
odium	2580		2340 B		2090 B		2330 B		
inc	44.1		21.1		12.7 B		16.4 B		
on Metals mg/l									
Ikalinity	59		51		62		100		
mmonia Nitrogen	ND		ND		ND		ND		
Chemical Oxygen Demand	12		ND		11.4		23.6		No. of the second
hloride	4		2		4		3		
yanide	ND		ND		ND		ND		
litrate/Nitrite	0.1		ND		2.5		0.3		
H (SU)	7.6		6.11		5.95		6.37		
henols, Total	ND		ND		ND		ND		
pecific Conductivity, Lab (umhos/cm)	16.3		201	1	223		204		
ulfate	24		24		31		24		
	24 110 5		24 150 2		31 130 3		24 180 7		



ANALYTE**, UNITS, METHOD NO.		1998		1999				
ample Date	7/25/98	9/19/98	10/19/98	2/14/99	4/10/99	5/27/99	12/21/9	
1111		1	1	1				
(OCs ag/1 8260								
cetone	ND	I ND	ND	ND	ND	I ND	11111111111	
Acrolein	ND	ND	ND	ND	ND	ND	1.1 ND	
Acrylonitrile	ND	ND	ND	ND	ND	ND	ND	
Senzene	ND	ND	ND	ND	ND	ND	0.14	
Bromodichloromethane	ND	ND	ND	ND	ND	ND	ND	
Bromomethane	ND	ND	ND	ND	ND	ND	ND	
Bromoform	ND	ND	ND	ND	ND	ND	ND	
Carbon Disulfide	ND	ND	ND	ND	ND	ND	ND	
Carbon tetrachloride	ND	ND	ND	ND	ND	ND	ND	
Chlorobenzene	ND	ND	ND	ND	ND	ND	ND	
Chlorodibromomethane	ND	ND	ND	ND	ND	ND	ND	
Chloroform	ND	ND	ND	ND	ND	ND	ND	
Chloroethane	ND	ND	ND	ND	ND	ND	ND	
2-Chloroethyl vinyl ether	ND	ND	ND	ND	ND	ND	ND	
Chloromethane	ND	ND	ND	ND	ND	ND	ND	
Dichlorodifluoromethane	ND	ND	ND	ND	ND	ND	ND	
1,1 Dichloroethene	ND	ND	ND	ND	ND	ND	ND	
1,2 Dichloroethene	ND	ND	ND	ND	ND	ND	ND	
1,1 Dichloroethane	ND	ND	ND	ND	ND	ND	ND	
,2 Dichloroethane	ND	ND	ND	ND	ND	ND	ND	
,2 Dichloropropane	ND	ND	ND	ND	ND	ND	ND	
,2,3-Trichloropropane	ND	ND	ND	ND	ND	ND	ND	
cis-1,3-Dichloropropene	ND	ND	ND	ND	ND	ND	ND	
rans-1,3-Dichloropropene	ND	ND	ND	ND	ND	ND	ND	
Ethyl methacrylate	ND	ND	ND	ND	ND	ND	ND	
Entylbenzene	ND	ND	ND	ND	ND	ND	ND	
2-Hexanone								
	ND	ND	ND	ND	ND	ND	ND	
-Methyl-2-Pentanone	ND	ND	ND	ND	ND	ND	ND	
Methylene chloride	ND	ND	0.67	5	ND	ND	ND	
Methylethylketone (MEK)	ND	ND	ND	ND	ND	ND	ND	
Styrene	ND	ND	ND	ND	ND	ND	ND	
1,1,2,2-Tetrachloroethane	ND	ND	ND	ND	ND	ND	ND	
l'oluene	0.72	ND	ND	ND	ND	ND	0.1	
1,1,1, Trichloroethane	ND	ND	ND	ND	ND	ND	ND	
1,1,2-Trichloroethane	ND	ND	ND	ND	ND	ND	ND	
l'richloroethene	ND	ND	ND	ND	ND	ND	ND	
l'richlorofluoromethane	ND	ND	ND	ND	ND	ND	ND	
Vinyl acetate	ND	ND	ND	ND	ND	ND	ND	
Vinyl chloride						ND		
	ND	ND	ND	ND	ND		ND	
Xylenes (total)	ND	ND	ND	ND	ND	ND	ND	
Explosives ug/3 83.50								
Cyclotetramethylenetetranitramine (HMX)	ND	ND	ND	ND	ND	ND	ND	
Cyclotrimethylenetrinitramine (RDX)	ND	ND	ND	ND	ND	ND	ND	
2,4 Dinitrotoluene	ND	ND	ND	ND	ND	ND	ND	
2,6 Dinitrotoluene	ND	ND	ND	ND	ND	ND	ND	
2,4,6-Trinitrotoluene	ND	ND	ND	ND	ND	ND	ND	
Metals ug/l					10111111111111	100000000000000000000000000000000000000		
Arsenic	ND	ND	ND	ND	ND	ND	ND	
Barium	16.7	6.5	4	3.4	4	7.4	ND	
Cadmium	ND	ND	ND	ND	ND	ND	ND	
Calcium	66600	63500	63100	60400	60600	64300	70000	
Chromium	ND	ND	ND	ND	ND	ND	ND	
Copper	ND	ND	ND	ND	ND	ND	ND	
ron	93.5	86.3	139	ND	66.6	ND	ND	
Lead	ND	ND	ND	ND	ND	ND	ND	
Mercury	ND	ND	ND	ND	ND	ND	ND	
Magnesium	26800	29000	24200	25400	26400	27600	29700	
Manganese	3480	871	481	822	664	577	1220	
Vickel	34.8	ND	17.2	ND	ND	25.2	10	
Phosphorus							ND	
Potassium	3570	3540	2920	2920	2880	3250	2710	
	ND	ND	ND	ND	ND	ND	ND	
seienium		ND	ND	ND	ND	0.75	ND	
Selenium Silver	ND		4520	5050	5640	7890	5260	
Silver	ND 5490	3890	4040		24.3	88.4	47.7	
Silver Sodium	5490	3880 ND	ND	77 0		00.4	4/./	
Silver Sodium Zinc		3880 ND	ND	22.9	24.3	0.00000000000000	at a fact a fact a fact	
Silver Sodium Linc Non Adetais ang/L	5490		ND					
silver sodium Linc Von Adetals ang/I Alkalinity	5490		ND	150	130	100	130	
Silver Sodium Linc Non Metals ang/L Ukalinity Ammonia Nitrogen	5490		ND	150 ND	130 ND	ND	ND	
Silver Sodium Linc Non Metals ang/L Non Metals ang/L Nalinity Anmonia Nitrogen Chemical Oxygen Demand	5490		ND	150 ND 26	130 ND ND	ND ND	ND ND	
Silver Sodium Linc Non Metals 2021 Alkalinity Ammonia Nitrogen Chloride	5490		ND	150 ND	130 ND ND 12.4	ND	ND	
Silver Sodium Cinc Yon Adetals ang/I Alkalinity Ammonia Nitrogen Chemical Oxygen Demand Chioride Syanide	5490		ND	150 ND 26	130 ND ND	ND ND	ND ND	
silver Sodium Line Von Adetals 202/1 Ukalinity Ammonia Nitrogen Chemical Oxygen Demand Shoride Syanide	5490 38.8	ND		150 ND 26 8.8	130 ND ND 12.4	ND ND 18.4	ND ND 10	
Silver Sodium Cinc Yon Adetals ang/E Nikalinity Ammonia Nitrogen Chemical Oxygen Demand Chloride Jyanide Jyanide	5490 38.8	ND		150 ND 26 8.8 ND 0.3	130 ND ND 12.4 ND 0.3	ND ND 18.4 ND 0.1	ND ND 10 ND 0.1	
Silver Sodium Cinc Non Metals mg/L Ukalinity Ammonia Nitrogen Chemical Oxygen Demand Chloride Cyanide Virrate/Nitrite SH (SU)	5490 38.8	ND		150 ND 26 8.8 ND 0.3 6.5	130 ND ND 12.4 ND 0.3 6.5	ND ND 18.4 ND 0.1 6.4	ND ND 10 ND 0.1 6.6	
Silver Sodium Cinc Non Metals mg/L Ukalinity Ammonia Nitrogen Chemical Oxygen Demand Chloride Cyanide Nitrate/Nitrite H (SU) Phenols, Total	5490 38.8	ND		150 ND 26 8.8 ND 0.3 6.5 ND	130 ND ND 12.4 ND 0.3 6.5 ND	ND ND 18.4 ND 0.1 6.4 0.047	ND ND 10 ND 0.1 6.6 0.25	
Silver Sodium Cinc Von Adetals ang/E Alkalinity Ammonia Nitrogen Chemical Oxygen Demand Chemical Oxygen Demand Choride Cyanide Vitrate/Nitrite Spenols, Total Specific Conductivity, Lab (umhos/cm)	5490 38.8	ND		150 ND 26 8.8 ND 0.3 6.5 ND 340	130 ND ND 12.4 ND 0.3 6.5 ND 480	ND ND 18.4 ND 0.1 6.4 0.047 610	ND ND 10 0.1 6.6 0.25 550	
Silver Sodium Cinc Von Adetals ang/E Alkalinity Ammonia Nitrogen Chemical Oxygen Demand Chloride Chloride Chloride Vitrate/Nitrite HI (SU) Phenols, Total Specific Conductivity, Lab (umhos/cm) Sulfate	5490 38.8	ND		150 ND 26 8.8 ND 0.3 6.5 ND 340 151	130 ND ND 12.4 ND 0.3 6.5 ND 480 165	ND ND 18.4 ND 0.1 6.4 0.047 610 184	ND ND 10 0.1 6.6 0.25 550 180	
Silver Sodium Cinc Yon Adetals ang/E Nikalinity Ammonia Nitrogen Chemical Oxygen Demand Chloride Jyanide Jyanide	5490 38.8	ND		150 ND 26 8.8 ND 0.3 6.5 ND 340	130 ND ND 12.4 ND 0.3 6.5 ND 480	ND ND 18.4 ND 0.1 6.4 0.047 610	ND ND 10 0.1 6.6 0.25 550	

100101-00000000000000000000000000000000	and a second		/		10.000			0.05	1	
ample Date	2/23/00	SSD	6/21/00	SSD	12/13/00	SSD	4/30/01	SSD		
								1		1
OCs ag/1 8260										1111111
cetone	0.92 J		ND	1	2.5 J,B		ND	T	T	T
crolein	ND		ND		ND		ND			-
crylonitrile	ND		ND		ND		ND			-
enzene	ND		ND		ND	-	ND	-		+
romodichloromethane	ND		ND		ND		ND		+	
romomethane						-				
	ND		ND	1	ND		ND			
romoform	ND		ND		ND		ND			
arbon Disulfide	ND		ND	1.	ND		ND			-
arbon tetrachloride	ND		ND		ND		ND			
hlorobenzene	ND		ND		ND		ND			
hlorodibromomethane	ND		ND		ND	1	ND			
hloroform	ND		0.12 J		ND		ND		-	-
hloroethane	ND		ND		ND		ND	-		+
							ND			
Chloroethyl vinyl ether	ND		ND		ND					
hloromethane	ND		ND	1 month and	ND		ND			-
chlorodifluoromethane	ND		ND		ND		ND			
1 Dichloroethene	ND		ND		ND		ND			
2 Dichloroethene	ND		ND		ND		ND		-	
1 Dichloroethane	ND		ND		ND		ND			1
Z Dichloroethane	ND		ND		ND		ND	-		-
2 Dichloropropane	ND		ND		ND		ND			+
2,3-Trichloropropane	ND		ND		ND		ND		+	+
										+
s-1,3-Dichloropropene	ND		ND		ND		ND	-		-
ans-1,3-Dichloropropene	ND		ND		ND		ND			
hyl methacrylate	ND		ND		ND		ND			1
ntylbenzene	ND		ND		ND		ND	1		
Hexanone	ND		ND		ND		ND			-
Methyl-2-Pentanone	ND		ND		ND		ND		-	+
ethylene chloride	ND		0.12 J,B	-	ND		ND		+	+
ethylethylketone (MEK)										
	ND		ND		ND		ND			-
yrene	ND		ND		ND		ND			
1,2,2-Tetrachloroethane	ND		ND		ND		ND			
oluene	0.074 J.B		0.16 J		ND		ND			
1,1, Trichloroethane	ND		ND		ND		ND			
1,2-Trichloroethane	ND		ND		ND		ND		-	+
richloroethene	ND		ND		ND		ND		+	+
richlorofluoromethane					ND		ND		+	
	ND		ND							
inyl acetate	ND		ND		ND	-	ND			
inyl chloride	ND		ND		ND		ND			
ylenes (total)	ND		ND		ND		ND	1		
xplosives ug/E 8330				HERE CONTRACT						
yclotetramethylenetetranitramine (HMX)	ND I	Contraction of the second	ND	T	ND		ND	T	T	T
yclotrimethylenetrinitramine (RDX)	ND		ND		ND		ND			+
4 Dinitrotoluene	ND		ND	-	ND		0.36			-
6 Dinitrotoluene										+
	ND		ND		ND		ND			-
4,6-Trinitrotoluene	ND		ND		ND		ND		1	
etals ug/l										
rsenic	ND		ND		ND		ND		1	T
arium	ND		5.8 B		ND		23.1 B			-
admium	ND		ND		ND		ND	-	1	-
alcium			80900		78700	-	15700		+	
	83400									
hromium	ND		ND		ND		ND	-		-
opper	23.5 B		10.1 B		ND		ND		-	-
n	ND		ND	1	ND		4530			
ead	ND		ND		ND		ND			
ercury	ND		ND		ND		0.090 B			
agnesium	38400		32300		51000		10200			1
anganese	1420 MBB		147		3170		1410			+
ckel	ND ND		13.0 B	-	11.8 B		75.3		+	
								-		-
nosphorus	ND		ND		ND		ND		-	-
tassium	3930 B		3450 B		4530 B		3980 B	-	-	
lenium	ND		ND		ND		ND		1	
ver	ND		ND		ND		ND			1
dium	5680		12500		7300		2020 B			
nc	45.9		51.1		22.4		70.8		1	-
in Metals mg/l									and an	
			100	00000000000000000000000000000000000000	140	************		and the second	1000000000	10000000
kalinity	150		100		160		ND			-
nmonia Nitrogen	1.3		ND		ND		ND			
nemical Oxygen Demand	12		ND		ND		ND	1	-	
hloride	10		31		12 J		3			
vanide	ND		ND		ND		ND		1	1
trate/Nitrite	ND		ND		ND		ND	1	+	+
		UPO		1/00				-		
I (SU)	7.1	YES	6.5	YES	6.8		5			
nenols, Total	ND		ND		0.04		ND			-
ecific Conductivity, Lab (umhos/cm)	75.5		655		680		220			
ulfate	160		280		160		110			
otal Dissolved Solids	420		430		460		180			1
								-	-	
otal Organic Carbon	2		ND		2		ND			

SUMMARY OF GROUNDWATER MONITORING RESULTS

RAMSDELL LANDFILL - MONITORING WELL 011

ANALYTE**, UNITS, METHOD NO.		1998				1999	C
Sample Date	7/27/98	9/19/98	10/19/98	2/13/99	4/10/99	5/27/99	12/21/99
OCs og/1 8260			4-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1				
cetone	ND	ND	ND	ND	ND	ND	1.5
Acrolein	ND	ND	ND	ND	ND	ND	ND
Acrylonitrile	ND	ND	ND	ND	ND	ND	ND
Senzene	ND	ND	ND	ND	ND	ND	0.24
Bromodichloromethane		ND	ND	ND	ND	ND	ND
Bromomethane	ND						ND
	ND	ND	ND	ND	ND	ND	
Bromoform	ND	ND	ND	ND	ND	ND	ND
Carbon Disulfide	ND	ND	ND	ND	ND	ND	ND
Carbon tetrachloride	ND	ND	ND	ND	ND	ND	ND
Chlorobenzene	ND	ND	ND	ND	ND	ND	ND
Chlorodibromomethane	ND	ND	ND	ND	ND	ND	ND
Chloroform	ND	ND	ND	ND	ND	ND	ND
Chloroethane	ND	ND	ND	ND	ND	ND	ND
-Chloroethyl vinyl ether	ND	ND	ND	ND	ND	ND	ND
Chloromethane	ND	ND	ND	ND	ND	ND	ND
Dichlorodifluoromethane	ND	ND	ND	ND	ND	ND	ND
.1 Dichloroethene	ND	ND	ND	ND	ND	ND	ND
.2 Dichloroethene	ND	ND	ND	ND	ND	ND	ND
1.1 Dichloroethane	ND	ND	ND	ND	ND	ND	ND
1.2 Dichloroethane	ND	ND	ND	ND	ND	ND	ND
,2 Dichloropropane	ND	ND	ND	ND	ND	ND	ND
1,2,3-Trichloropropane	ND	ND	ND	ND	ND	ND	ND
is-1,3-Dichloropropene	ND	ND	ND	ND	ND	ND	ND
rans-1,3-Dichloropropene	ND	ND	ND	ND	ND	ND	ND
		ND	ND	ND	ND	ND	ND
Ethyl methacrylate	ND						
Ehtylbenzene	ND	ND	ND	ND	ND	ND	ND
2-Hexanone	ND	ND	ND	ND	ND	ND	ND
-Methyl-2-Pentanone	ND	ND	ND	ND	ND	ND	ND
Methylene chloride	ND	ND	0.74	5	ND	ND	ND
Methylethylketone (MEK)	ND	ND	ND	ND	ND	ND	ND
Styrene	ND	ND	ND	ND	ND	ND	ND
1,1,2,2-Tetrachloroethane	ND	ND	ND	ND	ND	ND	ND
Toluene	ND	ND	ND	0.46	ND	ND	0.097
.1.1, Trichloroethane	ND	ND	ND	ND	ND	ND	ND
1.1.2-Trichloroethane	ND	ND	ND	ND	ND	ND	ND
Trichloroethene	ND	ND	ND	ND	ND	ND	ND
Trichlorofluoromethane	ND	ND	ND	ND	ND	ND	ND
Vinyl acetate	ND	ND	ND	ND	ND	ND	ND
Vinyl chloride	ND	ND	ND	ND	ND	ND	ND
Xylenes (total)	ND	ND	ND	ND	ND	ND	ND
Explosives ug/E 8330	NU	ND	ND	ND	ND	ND	ND
Cyclotetramethylenetetranitramine (HMX)	0.067	ND	ND	ND	ND	ND	ND
Cyclotrimethylenetrinitramine (RDX)	ND	ND	ND	ND	ND	ND	ND
2,4 Dinitrotoluene	ND	ND	ND	ND	ND	ND	ND
2,6 Dinitrotoluene	ND	ND	ND	ND	ND	ND	ND
2,4,6-Trinitrotoluene	ND	ND	ND	ND	ND	ND	ND
Stetals ug/l							
Arsenic	11.3	ND	ND	ND	ND	ND	ND
Barium	38.2	32.8	28.4	33.6	29.6	32.1	23.5
Cadmium	ND	ND	ND	ND	ND	ND	ND
Calcium	15200	24100	26600	14800	12600	12000	57900
Chromium	ND	ND	ND	ND	ND	ND	ND
Copper	ND	ND	ND	5.7	ND	ND	6.8
ron	5630	2470	1550	2450	1990	901	ND
lead	ND	ND	ND	ND	ND	ND	ND
Mercury	0.1	ND	ND	ND	ND	ND	ND
Magnesium	9190	13600	14400	9480	8170	8390	26000
Manganese	1720	2620	3020	1750	1200	1270	3680
Nickel	158	150	118	124	105	104	84.9
Phosphorus	-						ND
Potassium	4960	5050	4080	4380	3930	4360	4000
Selenium	ND	ND	ND	ND	ND	ND	ND
Silver	ND	ND	ND	ND	0.8	ND	ND
Sodium	1780	2750	2850	2090	2060	2310	3130
Line	94.4	133	ND	165	ND	114	84.3
ion Metals mg/l							
Alkalinity	T			14	ND	ND	70
Ammonia Nitrogen				ND	ND	ND	ND
Chemical Oxygen Demand				ND	ND	ND	ND
Chloride	-			2.4	3.2	3.1	7
Cyanide	ND	ND	ND	ND	ND	ND	ND
Vitrate/Nitrite	ND	ND	ND				
	-			ND	ND	ND	ND
oH (SU) Phenois, Total	-			4.7	4.6	4.4	6.2
				ND	0.024	ND	ND
	-				100	1 120	350
specific Conductivity, Lab (umhos/cm)				210	180	220	
Specific Conductivity, Lab (umhos/cm) Sulfate				78.3	89	90.1	150
pecific Conductivity, Lab (umhos/cm)							

SUMMARY OF GROUNDWATER MONITORING RESULTS

RAMSDELL LANDFILL - MONITORING WELL 011

ANALYTE**, UNITS, METHOD NO. ample Date:	2/23/00	SSD	6/21/00	000 SSD	12/31/00	SSD	2001 4/30/01			
OCs ug/1 8260									1	1
cetone	ND		ND				ND			
crolein	ND ND		ND ND		1.4 J,B ND		ND ND			
crylonitrile	ND				ND		ND			-
enzene	ND		ND							
romodichloromethane	ND		ND		ND		ND ND			-
romomethane			ND		ND					
	ND		ND		ND	-	ND			
romoform arbon Disulfide	ND		ND		ND		ND			
	ND		ND		ND		ND			
arbon tetrachloride	ND		ND		ND		ND			
hlorobenzene	ND		ND		ND		ND		-	-
hlorodibromomethane	ND		ND		ND		ND			
aloroform	ND		ND		ND		ND	-		
hloroethane	ND		ND		0.38 J		ND			
Chloroethyl vinyl ether	ND		ND		ND		ND			
hloromethane	ND		ND		ND		ND			-
chlorodifluoromethane	ND		ND		ND		ND			
1 Dichloroethene	ND		ND		ND		ND		1	
2 Dichloroethene	ND		ND		ND		ND			
1 Dichloroethane	ND		ND		ND	· · · · · · · · · · · · · · · · · · ·	ND	12000		
2 Dichloroethane	ND		ND		ND	1	ND			
2 Dichloropropane	ND		ND		ND		ND			
2,3-Trichloropropane	ND		ND		ND		ND			
-1,3-Dichloropropene	ND		ND		ND		ND			
ans-1,3-Dichloropropene	ND		ND		ND	0.000	ND			
hyl methacrylate	ND		ND		ND		ND			-
itylbenzene	ND		ND		ND		ND	1		-
Hexanone	ND		ND		ND		ND	-	1	-
Methyl-2-Pentanone	ND		ND		ND		ND	-	-	
ethylene chloride	ND		ND		0.19 J		ND	1		-
ethylethylketone (MEK)	ND		ND		ND		ND	-	-	+
yrene	ND		ND		ND		ND	-	-	
1,2,2-Tetrachloroethane	ND		ND		ND		ND			
bluene	ND		0.15 J		ND		ND	-		
1,1, Trichloroethane	ND		ND	-	ND		ND	-	-	
1,2-Trichloroethane	ND		ND		ND		ND	-		
ichloroethene	ND		ND	· · · · · ·	ND		ND			
richlorofluoromethane	ND		ND		ND		ND			
nyl acetate	ND		ND		ND		ND			
nyl chloride	ND		ND		ND		ND			-
vlenes (total)	ND		ND		ND		ND			
spiosives ug/3 83.50										
clotetramethylenetetranitramine (HMX)	ND		ND		ND		ND			
clotrimethylenetrinitramine (RDX)	ND		ND		ND		ND			
4 Dinitrotoluene	ND		ND		ND		ND			
6 Dinitrotoluene	ND		ND	1	ND		ND	1		
4,6-Trinitrotoluene	ND		ND		ND		ND			
etals ug/l										
rsenic	ND		ND		ND		ND			1
arium	34.5 B		33.4 B		15.8 B		ND			
Idmium	ND		0.30 B	-	ND		ND			
lcium	4470		17400		41100		81400	-		
romium	2.7		ND		ND		ND			-
opper	ND		ND		ND		ND			1
	86.7 B.MBE		797		ND		ND			1
ad	ND		ND		ND	-	ND			
ercury	ND		ND		ND		ND			-
agnesium	18200		10300		20800		40800		-	-
anganese	3030 MBB		10300		3150		213			
ckel	75		90.2		64		6.3 B	-		
osphorus	ND						ND	-		-
tassium			ND		ND 2420 P					-
lenium	4040 B		4400 B		3420 B		3970 B	-		-
	ND		ND		ND		ND			-
ver	ND		ND		ND		ND		-	-
dium	2840 B		2140 B		3050 B	1	10300			-
	106		99.2		36.1		14.2 B	-		-
n Metals ing/l										
kalinity	80		ND		97		120			
nmonia Nitrogen	ND		ND		ND		ND			
emical Oxygen Demand	ND		ND		ND		ND			
lloride	5		3	2	4		21			
anide	ND		ND		ND		ND			
trate/Nitrite	ND		ND		ND		ND			
I (SU)	7.2		4.9		6.2		7.8			
enols, Total	ND		ND		ND		ND			
ecific Conductivity, Lab (umhos/cm)	237		184		440		660			-
	110		89		96		200			-
lfate			07					-		
			150		210		.100			
lfate otal Dissolved Solids otal Organic Carbon	220 ND		150 ND		310 1		490 ND			-

RAMSDELL QUARRY LANDFILL

GROUNDWATER MONITORING PLAN

GENERAL HYDROGEOLOGY INFORMATION

The Ravenna Army Ammunition Plant is located in northeastern Ohio in Portage and Trumbull Counties. It is approximately 25 miles east of Akron and 5 miles east of Ravenna. The installation includes 21,419 acres in a tract 3.5 miles wide and 11 miles long. The Ramsdell Quarry Landfill is located in the northeast section of the installation tract.

Physiography

The RVAAP lies in the glaciated Allegheny Plateau section of the Appalachian Plateau Province. The western and northern portions of the installation display low hills and a dendritic surface drainage pattern. Eastern and southern portions are characterized by an undulating to moderately level land surface, with less stream dissection of the original glacially deposited surface.

Surface Waters

All of RVAAP is situated within the Ohio River Basin. The West Branch of the Mahoning River is the major surface stream in the area. This river flows in a southerly direction past the west end of the installation where it turns to the east and flows into the M.J. Kirwan Reservoir. From the reservoir, the west branch continues to flow in an easterly direction along the installation southern boundary until joining the Mahoning River east of the installation.

Ravenna's gently rolling terrain is marked with marshy areas and flowing and intermittent streams whose headwaters area is located in the installation's hills. Three primary water courses drain the installation: South Fork of Eagle Creek, Sand Creek, and Hinkley Creek. Sand Creek flows in an easterly to northeasterly direction through the central portion of the installation to its confluence with the South Fork of Eagle Creek. Most of Sand Creek's drainage area of 132.9 square mile is included within RVAAP's boundaries. The South Fork of Eagle Creek flows along the inside of the northern boundary of RVAAP. Hinkley Creek originates about 2 miles north of RVAAP and flows through the western portion of the installation in a southerly direction.

Approximately 45 ponds or small reservoirs are scattered throughout the installation. Many were built in natural drainage ways and incorporated into the plant operations as holding and settling ponds. Others were caused by beaver activity or resulted from glacial features. Most of the water bodies support an abundance of aquatic biota and are well stocked with fish.

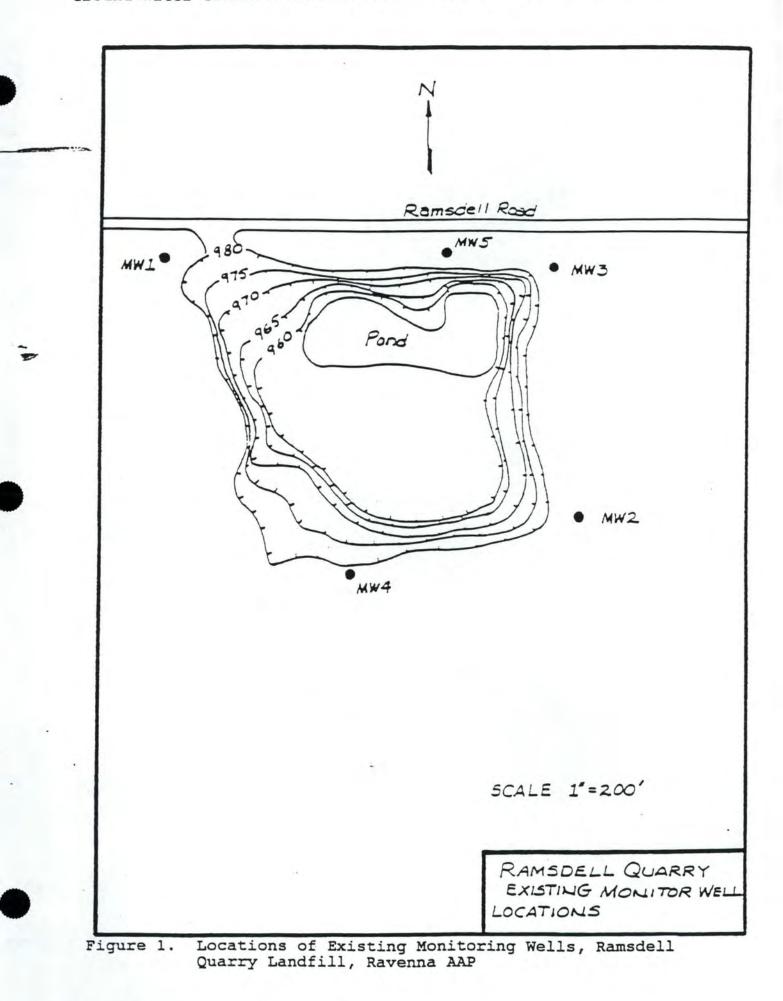
RAMSDELL QUARRY LANDFILL

GROUNDWATER MONITORING PLAN

Geology

The glacially deposited surface material of RVAAP consists of glacial till and sand and gravel. Till thickness in the major part of the central and eastern portion of the installation averages less than 45 feet. Till thickness in the western section of the installation is between 18 and 36 feet. Till thickness can vary to less than 3 feet in some locations.

In the central portion of the installation, and oriented in a southwest-northeast direction, is a buried glacial valley. Depths of unconsolidated sediments in the burial glacial valley range between 100 to 200 feet.


Bedrock formation underlying the glacial deposits consists of consolidated sediments of the Carboniferous age. These sediments dip gently to the southeast. Mississippian-aged shales and sandstones of the Cuyahoga group are the oldest formation to outcrop within the installation boundary. Most of the installation is underlain by Pennsylvanian-aged conglomerates, shales, and sandstones of the Pottsville formation.

HYDROGEOLOGIC CONDITIONS

The Ramsdell Quarry Landfill is located in an abandoned quarry which was excavated approximately 30 to 40 feet below the surrounding ground surface into the Sharon Member sandstone/conglomerate unit. The Sharon Member is the oldest member of the Pennsylvanian-age Pottsville Formation. Ground water occurs in the Sharon Member approximately 20 to 25 feet below the ground surface at the site. In addition to primary porosity, the Sharon Member contains secondary porosity joints and fractures at deeper levels. A small pond of water at the northern end of the quarry probably represents the aquifer potentiometric surface. The soils overlying the Sharon Member are thin, glacial till-derived loams which are not saturated. The Sharon Member is underlain unconformably by an aquiclude, the Meadville Shale member of the Mississippian-age Cuyahoga Group.

GENERAL MONITORING PROGRAM

The groundwater monitoring program for the Ramsdell Quarry Landfill includes five existing ground-water monitoring wells (MW-1, MW-2, MW-3, MW-4, and MW-5). The locations of the wells are shown in Figure 1. Well number MW-4 is the upgradient well for the site, but wells MW-2 and MW-1 may also be considered to be hydrologically upgradient. The first four wells were installed in June 1987 as open holes in the Sharon Member sandstone/conglomerate unit. In January 1988, the open holes were screened in the uppermost saturated zone and cased with 2inch diameter polyvinyl chloride (PVC). Well MW-5 was installed in January 1988 to provide an additional downgradient well at the site. Ground-Water Consultation No. 38-26-KF95-92, RVAAP, Ravenna, OH

RAMSDELL QUARRY LANDFILL

GROUNDWATER MONITORING PLAN

Each well is finished with an 8" diameter by 10 foot long steel locking cap firmly grouted into the bedrock for security. An illustration of the typical monitoring well installation for the Ramsdell Landfill Wells is shown in Figure 2.

THE GROUND WATER MONITORING PROGRAM SAMPLING AND ANALYTICAL PLAN

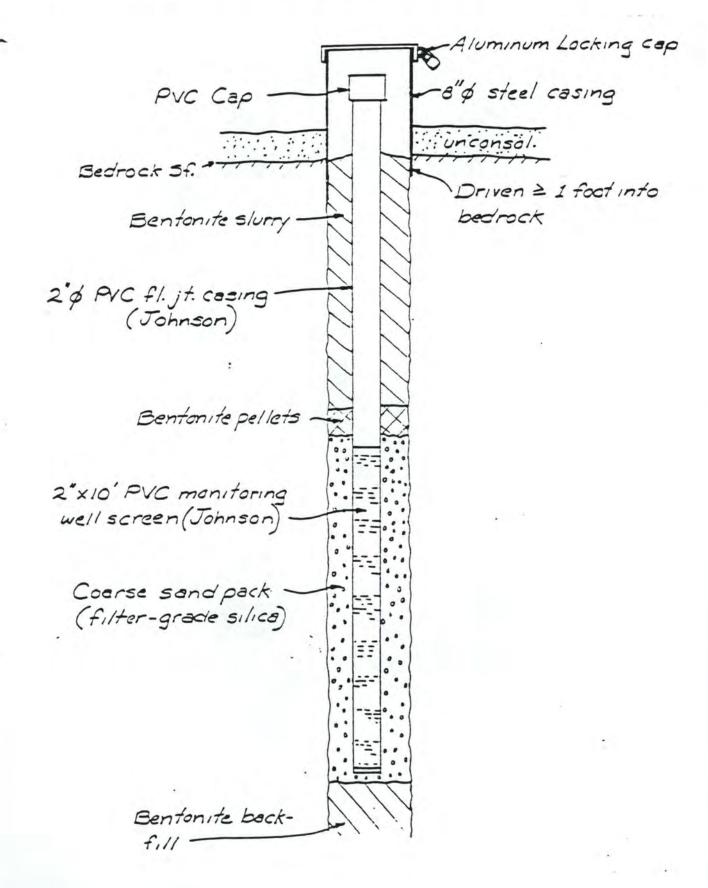
General

Water-quality sampling is conducted within the screened interval of each well. Sample collection is from all 5 wells. The samples are analyzed for total metals, explosive compounds, and the parameters listed in OEPA Solid Waste Disposal regulations. A list of the analytical parameters for RVAAP's Ramsdell Landfill water quality monitoring program is presented in Table 1.

The wells have been sampled semiannually from June 1987 through November 1991 and quarterly from June 1992 through February 1993. The wells will be sampled semiannually thereafter.

SAMPLE COLLECTION

Static Water Level Elevation Measurements


Prior to any well evacuation/purging or actual water sample acquisitions RVAAP personnel will take a static water level reading. Measurements will be taken with an electronic well tape. The level reading will be measured from the top of the monitoring well casing to the static water level within the well. A plumb depth measurement will be taken from the top of the well casing to the bottom of the screen to assure sediment has not impacted well recharging capabilities. Static water level and plumb depth measurement data shall be logged using the reporting format presented in Figure 3.

Well Evacuation

The purpose of well evacuation is to purge the well casing of stagnant/non-representative waters. The well evacuation process will be performed by knowledgeable in-house personnel. The purge method for all wells will be by use of a dedicated Teflon bottom discharge bailer. Three casing volumes will be purged from each well; unless the well is low yielding then it will be evacuated to dryness only one time. All volumes of water evacuated from the wells will be collected and quantities recorded on the Figure 3 form. Disposition status of collected purge waters will not be determined until after receipt of respective well analytical data. If collected waters are nonhazardous they will be deposited into the local sewer system; hazardous purge waters will either be treated by onsite NPDES carbon adsorption units or turned over to the U.S. Army Defense Reutilization Materials Office (DRMO) for proper disposal. Assigned personnel will

Figure 2. Typical Monitoring Well Installation

TTEALS

FIGURE 3

FIELD LOG DATA FOR RAMSDELL LANDFILL WELL PURGE

WELL NO	DATE:
TIME START PURGE:	TIME END PURGE:
PLUMB DEPTH (Top of Casing)	
START:	FINISH:
WATER LEVEL (Top of Casing)	
START:	FINISH:

(start plumb depth minus start water level)

PURGE MINIMUM IS THREE CASING VOLUMES PER WELL.

If well is low yielding and purge minimum cannot be achieved or well will not recharge within two hours; purge minimum will only be to well dryness one time. Plumb depth and water measurement will be recorded to 0.01 feet.

	1ST	2ND	3 RD	TOTAL
GALLONS PURGED			_	
TEMPERATURE				
PH (END OF PURGE ONLY)				

Any decontamination procedure will consist of first washing in alcohol, then by a nonphosphate detergent scrub, then by a two rinse minimum of DI water or until all visible signs of a detergent are absent. All decontamination fluids generated will be disposed into the RVAAP sewage treatment plant.

RAMSDELL OUARRY LANDFILL

GROUNDWATER MONITORING PLAN

assure well evacuation processes do not generate agitated well waters that would result in the loss of volatiles. To avoid volatile loss, attention must be paid to entry and removal of the bladder pump and during period of rapid drawdown that cause encompassing groundwaters to vigorously cascade down the sides of the screen.

Sampling Equipment

Each well will be sampled by a dedicated teflon bottom discharging bailer with dedicated attached retrieval cord. The specific bailer will be the same dedicated bailer mentioned in the WELL EVACUATION section of this part.

Sample Containers, Handling, and Preservation

All sample containers will be provided by a RVAAP contracted laboratory. The sample containers will be new or thoroughly cleaned based upon contracted laboratory's Quality Assurance/Quality Control (QA/QC) protocol policies. The sample containers will be sized, typed, and appropriate for their assigned analyte. Sample container and handling criteria are expressed in Table 2.

Sampling Procedures

Sampling from any monitoring well will not begin until the well has been adequately purged or evacuated.

Sample collection from the landfill groundwater monitoring wells will always begin with the upgradient well upon initiating the sampling, in order to preclude contamination from the downgradient wells.

Samples will be obtained according to their order in magnitude to the targeted analyte's volatile sensitivity. The landfill groundwater samples will be collected in the following preferred order:

TABLE 1

- Volatiles (VOCs)
- Total Organic Carbon (TOC)
- Explosives
- Total Metals
- Total Dissolved Solids (
- Phenols
- Cvanide
- Sulfate and Chlorides
- Turbidity
- Ammonia Nitrogen (NH3/N), Nitrite (NO2), and Nitrate (NO3).

The sampling process will be performed in a manner that minimizes groundwater agitation during the entry and departure of the dedicated bailer. Sample transfer will be done in a way that assures minimal agitation, aeration, and contact with the atmosphere.

41

TABLE 2

SAMPLE COLLECTION REQUIREMENTS

ANALYSIS	MINIMUM REQUIREMENTS	CONTAINER	SPECIAL PREPARATION	PRESERVATION	HOLDING TIME
ORGANICS					
Volatiles or Trihalomethanes	40 ml. (×3)	G, Teflon-lined Cap	No Head Space	4 ', 1:1 HCL to pH<2	14 Days
Explosives	1,000 ml.	G, Teflon-lined Cap	Protect from Light	4.	>30 Days
METALS	•				
Total Metals	1,000 ml.	Ρ	None	HNO ₃ to pH <2	6 Months
Dissolved Metals	1,000 ml.	Ρ	Filtration 0.45	HNO ₃ to pH <2	6 Months
Total Hg	125 ml.	G, Teflon-lined Cap	None	4°, HNO ₃ to pH <2, 0.05% Potassium Dichromate	15 Days
Dissolved Hg	125 ml.	G, Teflon-lined Cap	Filtration 0.45	4°, HNO ₃ to pH <2, 0.05% Potassium Dichromate	15 Days
NONMETALS					1
Acidity	250 ml.	G, P	None	4.	14 Days
Alkalinity	250 ml.	G, P	None	4.	14 Days 2 Days-NPDWR/USA
Ammon i a	250 ml.	G, P	None	4", H2SO4 to pH <2	28 Days

ANALYSIS	MINIMUM REQUIREMENTS	CONTAINER	SPECIAL PREPARATION	PRESERVATION	'HOLDING TIME
Chemical Oxygen Demand (COD)	125 ml.	G, P	None	4°, H ₂ SO ₄ to pH <2	28 Days
Chloride	250 ml.	G, P	None	Room Temperature	28 Days 7 Days-NSDWR
Cyanide	1,000 ml.	G, P	None	4°, NaOH to pH > 12	14 Days
Grease & Oil	1,000 ml.	G, Teflon-lined Cap	None	4°, H_2SO_4 to pH < 2	28 Days
Kjeldahl Nitrogen, Total	250 ml.	G, P	None	4', H_2SO_4 to pH < 2	28 Days
Nitrate (NO ₃)	125 ml.	G, P	None	4.	2 Days
Nitrate/Nitrite Nitrogen	125 ml.	G, P	None	4°, H_2SO_4 to pH < 2	28 Days
Nitrite (NO ₂)	125 ml.	G, P	None	4.	2 Days
Organic Carbon Total (TOC)	' 125 ml.	G, P	None	4°, H_2SO_4 to pH < 2	28 Days
pH	150 ml.	G, P	None	4.	2 Days
Phenol, Total	1,000 ml.	G, Teflon-lined Cap	None	4°, H_2SO_4 to pH < 2	28 Days
Phosphate, lotal (PO ₄ /P)	150 ml.	G, P	None	4', H_2SO_4 to pH < 2	28 Days
Total Dissolved Solids (TDS)	250 ml.	G, P	None	4-	7 Days
Specific Conductivity	250 ml.	G, P	None	4.	28 Days
Sulfate	250 ml.	G. P	None	4.	28 Days 7 Days - NPDWR
TOC, Soluble	125 ml.	G, P	Filtration	4', H ₂ SO ₄ to pH < 2	28 Days
Turbidity	150 ml.	G, P	None	4.	2 Days
Temperature		G, P		None	Immediately
SOILS	95-				
Total Metals	32 oz	Wide Mouth G	Soils & Sludges	Cool	6 Months

ANALYSIS	MINIMUM REQUIREMENTS	CONTAINER	SPECIAL PREPARATION	PRESERVATION	HOLDING TIME
Explosives	100 g	Wide Mouth G w/Teflon Lid	Protect from Sunlight		>30 Days
Kjeldahl Nitrogen, Total (TKN)	60 g soil	P or G, Wide Mouth		4°C	60 Days
Nitrite/Nitrate Nitrogen (NO ₂ NO ₃)	60 g soil	P or G, Wide Mouth	Soils & Sludges	4°C	60 Days
Phosphorus, Available (PO ₄ /A)	60 g soil	P or G, Wide Mouth	Soils & Sludges	4°C	60 Days

41

NOTE:

P = polyethylene G = glass

RAMSDELL QUARRY LANDFILL

GROUNDWATER MONITORING PLAN

The dedicated sampling equipment should never be placed directly on the ground or come in contact with other contaminated surfaces during the sampling process. In the event contamination occurs RVAAP personnel will discontinue the sampling process until the dedicated baller or sampling equipment is decontaminated. The decontamination procedure will consist of washing in alcohol (isopropyl), followed by a nonphosphate detergent scrub/scouring followed by a minimum of two rinses of distilled water or until all visible signs of detergent are removed. All fluids used in the decontamination process will be collected and disposed of in the RVAAP sewage treatment/collection system.

Field Analyses

RVAAP personnel will perform pH and temperature field measurements.

pH Field measurements will be performed both after well purging and after sampling of the respective monitoring well. To avoid contamination, all well pH measurements will be performed by extracting via the dedicated bailer a representative well sample and transferring to a suitable clean plastic container. The container will be gently rinsed at least twice with the well sample prior to filling the container and placement of the pH probe for measurement. Practical methodology used to transfer sample from bailer to container will be exercised; minimizing agitation and atmospheric contact. The pH probe will be standardized with known 4.0, 7.0, and 10.0 pH standard buffer solution. The probe will be thoroughly cleaned/rinsed with deionized (DI) water and aired to remove DI excess. Temperature compensation between probe and sample will be performed using an ASTM certified thermometer or a thermometer that has been evaluated and recalibrated against a certified thermometer. RVAAP's pH meter by choice will be an Orion 290-A model for field pH measurements.

A temperature reading will be taken of the well and sample congruous with the time the pH measurement is taken. The temperature reading will be taken by a thermometer that's either ASTM certified or one that's been evaluated and calibrated against the certified thermometer.

Due to the relative stability of a substance's specific conductivity (analogous to electrical resistance in micromhos) RVAAP elects that this analysis be performed at the contracted laboratory.

Field and Laboratory Quality Assurance/Quality Control (OA/OC)

Quality control in the field sampling methodology will be managed by trip blanks and duplicate samples.

Trip blank containers will be sourced from the contracted laboratory containing the appropriate quantity of preservative and Type II reagent grade water. The number of trip blanks will be determined by the number of sampling events. A sampling event will be qualified as

RAMSDELL QUARRY LANDFILL

GROUNDWATER MONITORING PLAN

each day that sampling occurs. If the process requires two days to complete all sample acquisitions then two trip blanks will accompany the sampling barrage returning to the contracted laboratory. If sample acquisition is completed within one day then only one trip blank package will be processed for shipment to the laboratory.

Duplicate samples will follow the same scheme as the trip blanks per sampling event. The well site where duplicate samples are to be obtained will be randomly selected prior to entering the well field. Duplicate sample selection is to be identified by random drawing from one of the five wells within site. If it is determined that the sampling event will require two days to complete then another duplicate will be determined in the same manner mentioned. A duplicate sample's site will never be revisited until all five monitoring wells have been selected as a QC duplicate sample site.

Laboratory QC shall be administered via laboratory equipment blanks. These QC blanks shall be used to identify matrix interferences and equipment and reagent performance. The quantity of equipment blanks shall be generated as prescribed by the laboratory's QA/QC protocol.

Field Logbook - Field Data Recordkeeping

Figure 4 delineates the type of field data that is recorded by RVAAP personnel during a sampling period at a particular compliance monitoring point. The field data is kept for each well in a ring binder type notebook.

Chain of Custody

Properly labelled samples will be placed into the contracted laboratory's provided coolers and maintained by RVAAP personnel until completion of that day's sampling round. At the end of the day's sampling, the samples will be transported to a designated secure area. The secure area will be a locked refrigerated unit maintaining temperatures no greater than 4°C. At the point of samples and cooler transfer to the secured refrigeration unit a chain of custody will be documented with a sample tracking form titled as a Chain of Custody Record (CCR); an example of which is provided as Figure 5. All internal and external custody exchanges of the samples and cooler will be documented on the CCR until there is final receipt by the contracted laboratory. The laboratory will administer their own CCR once they assume custody of RVAAP's samples. To finalize the chain of custody process data generated from the appropriate laboratory analyses will be compiled into a formal report. The contracted laboratory's final formal report shall identify test description, results, the analytical processes detection limits, units of expression, date analyzed, and analyst; which also will include the same for all field, lab, and equipment blanks as QA/QC data.

FIGURE 4

FIELD DATA LOGBOOK SHEET

RAMSDELL LANDFILL GROUNDWATER MONITORING

We	ll Identification No.
We	ll Depth: (From top of casing to screen bottom)
Sta	atic Water Level Depth:
	Measurement Technique:
Pre	esence of Immiscible Layers (Y or N):
	Detection Method:
Wel	ll Yield - High or Low:
Wel	ll Purge Procedure/Equipment:
Dat	ce and Time Well Purged: Date:
	Time:
Pur	rge Volume:
	Purge Pumping Rate:
Col	llection Method of Immiscible Layers (If item #4 is "Y"):
_	
San	nple I.D. NOs for Immiscible Layers:
Per	sonnel Performing Purge: (For this well report)
_	
Sam	ple Withdrawal Procedure/Equipment:
Dat	e and Time of Sample Collection: Date:

FIELD	DATA	LOGBOOK	SHEET
PAGE	2		
WELL	NO.		

13. Sample Container Data:

TYPE (P, G)	SAMPLE I.D.	PRESERVATIVE(S)	ANALYTICA PARAMETER

FIELD DATA	LOGBOOK	SHEET	
PAGE 3			
WELL NO.			

Field Analysis Data and	Method:
pH After Purge:	Method:
pH At Sampling:	Method:
Water Sample Temperature	•: <u> </u>
Sample Distribution and	Transporter:
Point of Destinatio	on:
Mode of Transportat	ion:
Agent of Transport:	
Personnel Performing Sam	pling: (For this well report)
Field Observations Durin	g Sampling Event:
Climatic Conditions:	
Air Temperature:	°C
	<u>°C</u> Field (refrigerated) Container:
Internal Temperature of	Field (refrigerated) Container:
	pH At Sampling: Water Sample Temperature Sample Distribution and Point of Destinatio Mode of Transportat Agent of Transport: Personnel Performing Sam Field Observations Durin Climatic Conditions:

FIELD DATA	LOGBOOK	SHEET
PAGE 4		
WELL NO.		

21. Well Sampling Sequence:

MW-1:	Date:	
MW-2:	Date:	
MW-3:	Date:	
MW-4:	Date:	
MW-5:	Date:	

FIGURE 5 - CHAIN OF CUSTODY RECORD

PROJECT			SAMPLERS (Signature)			
CLIENT	SAMPLE NUMBER	DATE	TINE	ANALYSIS REQU	IRED	
			1			
(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)						
-						
						_
Relinquished	by: (Signature)			Received by: (Signature)	Date	т
Relinquished	by: (Signature)			Received by: (Signature)	Date	т
Relinquished	by: (Signature)			Received by: (Signature)	Date	т
Relinquished	by: (Signature)			Received by: (Signature)	Date	т

ENVIRONMENTAL RESEARCH GROUP, INC.

RAMSDELL QUARRY LANDFILL

GROUNDWATER MONITORING PLAN

STATISTICAL METHODOLOGY DETERMINING THE PRESENCE OF SIGNIFICANT IMPACT VIA THE USE OF ANALYTICAL DATASETS

RVAAP will perform statistical investigation utilizing USEPA's Ground Water Information Tracking System/Statistical Analysis System (GRITS/STAT). GRITS/STAT is a comprehensive ground water computerized database system that is designed to store, analyze, and report data generated during the ground water monitoring period. GRITS/STAT 4.12 is the current version available with RVAAP's database system. RVAAP will continue to upgrade this system as newer GRITS/STAT versions become available through USEPA.

The established datasets from previous groundwater sampling at the landfill, and future datasets generated will be applied to GRITS/STAT's in-line statistical method. Based upon a preliminary selection process and USEPA's experience, RVAAP has chosen the parametric Analysis Of Variance (ANOVA). The GRITS/STAT's parametric ANOVA program tests to determine whether differences between background well means and compliance well means are statistically significant. The regulator and reader are being made aware of the potential that parametric ANOVA may not be a suitable choice for the RVAAP data. The GRITS/STAT system has a built-in Methods - Normality (M-N) compatibility program. The M-N makes a program analysis of the dataset to determine if there exists a statistical non-normality applicable to the use of parametric ANOVA. If statistical evidence delineates non-normality then another method must be selected other than parametric ANOVA. The GRITS/STAT system has the availability of several built-in alternate statistical methods. It will be a matter of applying the RVAAP dataset to a method that M-N determines to have statistical evidence of normality. Based upon EPA's historical recommendation of parametric ANOVA, RVAAP has to assume statistical non-normality will not be an issue.

If, at any of the monitoring wells it is determined that there has been a statistically significant change from background values for any of the measured parameters, RVAAP will follow the procedures specified in OAC 3745-27-10 (D)(8). If a significant change is confirmed, the procedures specified in OAC 3745-27-10 E will be followed. **GROUNDWATER QUALITY ASSESSMENT** PROGRAM REPORT FOR THE RAMSDELL QUARRY LANDFILL

RAVENNA ARMY AMMUNITION PLANT RAVENNA, OHIO 44266

Prepared for

OPERATIONS SUPPORT COMMAND Rock Island, IL 61299-6000

Prepared by

MKM ENGINEERS, INC **4153 BLUEBONNET DRIVE** STAFFORD, TEXAS 77477

And

NEAL ENVIRONMENTAL SERVICES, LLC

Received 1/14/01 1/14/01 20AAP at RUAAP Ch Mus EPA

NOVEMBER 2001

GROUNDWATER QUALITY ASSESSMENT PROGRAM REPORT FOR THE RAMSDELL QUARRY LANDFILL

RAVENNA ARMY AMMUNITION PLANT RAVENNA, OHIO 44266

Prepared for

OPERATIONS SUPPORT COMMAND Rock Island, IL 61299-6000

Prepared by

MKM ENGINEERS, INC 4153 BLUEBONNET DRIVE STAFFORD, TEXAS 77477

And

NEAL ENVIRONMENTAL SERVICES, LLC

NOVEMBER 2001

MKM Engineers, Inc.

Geotechnical, Environmental and Remediation Services

November 16, 2001

Christopher Jones, Director Ohio Environmental Protection Agency Lazarus Government Center P.O. Box 1049 Columbus, Ohio 43216-1049

Re: Initial Sampling Event, Ramsdell Quarry Landfill 9/11/01 Groundwater Assessment Plan Ravenna Army Ammunition Plant's (RVAAP)

Dear Director Jones:

On behalf of the US Army's Operation Support Command at the Ravenna Army Ammunition Plant, MKM Engineers, Inc. and Neal Environmental Services is providing this summary report in compliance with the Groundwater Assessment Plan (GAP), dated September 7, 2001, for the closed solid waste landfill known as Ramsdell Quarry Landfill. The GAP was submitted in accordance with O.A.C. 3745-27-10, effective March 1, 1990, (hereafter referred to as O.A.C. 3745-27-10). In accordance with O.A.C. 3745-27-10 the GAP called for the sampling and analysis of wells RQL MW-006 (upgradient) and RQL MW-007 (impacted downgradient) for all parameters listed in Appendix II to O.A.C. 3745-27-10 as well as a list of specific explosive materials and propellants. Further, the GAP and O.A.C. 3745-27-10, required that the sampling be conducted by September 25, 2001 and that the analytical results be submitted to you not more that 60 days after the sampling event and not more than 15 days after receiving the results of the analysis.

On September 20, 2001, the RVAAP sampled RQL MW-006 and RQL MW-007. On September 25, 2001, MKM was notified that due to laboratory handling difficulties, the cyanide analyte would require resampling. The OEPA NEDO was immediately notified of this situation by email. The two monitoring wells were resampled on September 26, 2001 and submitted for analysis. On November 5, 2001, the RVAAP received all of the analytical results from this initial sampling event. Today, via this letter and attachments the RVAAP is submitting these analytical results to you in accordance with O.A.C. 3745-27-10.

Attached to this summary report are copies of the analytical results obtained from the September 20, 2001, sampling of RQL MW-006 and RQL MW-007 including the duplicate and field blank results (Appendix A), the data validation report in Appendix B and the field sampling forms in Appendix C.

The GAP and O.A.C. 3745-27-10 requires the evaluation of the sample results from RQL MW-006 and RQL MW-007, to determine if leachate or leachate derived constituents were identified as being numerically higher in RQL MW-007 (the down gradient well) than in RQL MW-006 (the above gradient well). The analytical results were validated and tabulated for ease of review. Those data which reflected an increase in concentration in the downgradient well, RQL MW-007, are presented in Table 1.

Table 1

Parameter	RQL MW-006 Analytical Result	RQL MW-007 Analytica Result	
Arsenic	0.019 mg/L	0.053 mg/L	
Barium	0.021 mg/L	0.039 mg/L	
Iron	8.3 mg/L	39.0 mg/L	
Potassium	Not Detected	9.1 mg/L	
Magnesium	45.0 mg/L	140.0 mg/L	
Sodium	Not Detected	14.8 mg/L	
Zinc	Not Detected	0.056 mg/L	
Chloromethane	Not Detected	0.030 J ug/L	
Chloride	1.9 mg/L	7.0 mg/L	
Sulfate	224.0 mg/L	267.0 mg/L	

RQL MW-007 Analytical Results that were Numerically Higher than RQL MW-006 Analytical Results

A review of this data was completed in comparison to the data validation report and the RVAAP Facility-wide Background concentrations. Based upon this review the results indicate that some of these parameters do not represent leachate or leachate derived constituents. Chloromethane was reported as a J value of 0.30 ug/L. The laboratory reporting limit for Chloromethane was 1.0 ug/L. The J qualifier indicates that the value is estimated given that it has been reported below the required laboratory reporting limit. Thus, while the laboratory reported detecting Chloromethane in the sample from RQL MW-007 the amount reported must be viewed as suspect. In addition, Chloromethane was also detected in the field blank with a reported J value of 0.15 ug/L. Additionally, Chloromethane is routinely analyzed quarterly as part of the Ramsdell Quarry Landfill detection monitoring program. Over a period of 2 years and 11 sampling events Chloromethane has never been detected in a sample from RQL MW-007. Thus, it

is believed that any Chloromethane reported as detected in the RQL MW-007 sample was due to laboratory contamination. Several of the parameters noted in Table 1 above exhibit numerically higher concentrations in RQL MW-007 yet are actually lower than the established RVAAP Bedrock Ground Water Facility-wide Background Data concentrations, (see Table 2). This background data for RVAAP were developed during the Phase II Remedial Investigation (RI) for the Winklepeck Burning Grounds (USACE 1999b).

Table 2

RQL MW-007 Analytical Results that were Numerically Higher than RQL MW-006 but Lower than RVAAP Bedrock Ground Water Facilitywide Back Ground

Parameter	RQL MW-007 Analytical Result	RVAAP Bedrock Ground Water Facility-wide Background Concentration	
Barium	0.039 mg/L	0.241 mg/L	
Sodium	14.80 mg/L	49.70 mg/L	
Zinc	0.056 mg/L	0.193 mg/L	

Thus, the RVAAP does not believe that these parameters constitute leachate or leachate derived constituents found to be above background for the purposes of O.A.C. 3745-27-10.

Based upon the above data, the assessment plan and O.A.C. 3745-27-10 the RVAAP will, upon the concurrence of the Ohio EPA, develop a schedule for sampling RQL MW-008 and RQL MW-009 for Arsenic, Iron, Potassium, Magnesium, Chloride and Sulfate.

Upon review of the analytical from this and prior sampling events several points come to light that should also be noted. While the RVAAP believes it is appropriate at this time to sample RQL MW-008 and RQL MW-009 for the above listed parameters, at the same time the RVAAP does not believe that the existing data support a theory that these parameters constitute leachate derived constituents that are impacting the groundwater. For example, the turbidity in RQL MW-007 during the recent sampling event was very high when compared to RQL MW-006 (see Appendix C). This can result in the detection of elevated metals. Slight variations in sampling techniques can produce very different turbidity results. In addition, historically it has been the RVAAP's position

that Iron, Potassium and Magnesium more commonly considered essential nutrient compounds and are not leachate-derived constituents related to the Ramsdell Quarry Landfill. Finally, the results for the parameters that were numerically higher in RQL MW-007 than in RQL MW-006 in this sampling event were generally consistent with the numerical historical results obtained in RQL MW-007. A more thorough analysis of these results may well show that they too do not actually represent values that are above background. The RVAAP believes a more appropriate time to address these issues and other issues more fully is following the sampling of RQL MW-008 and RQL MW-009 and the analysis of those samples. Upon concurrence by the OEPA the RVAAP will proceed with the sampling of monitoring wells RQL MW-008 and RQL MW-009 for the parameters designated above.

Sincerely,

to Cille

Richard Callahan Environmental Program Manager MKM Engineers, Inc.

Attachment

cc: Jarnal Singh, (Ohio EPA, NEDO)
Eileen Mohr / Todd Fisher, (Ohio EPA, NEDO)
Diane Kurlich, (Ohio EPA, NEDO)
Irwin Dreyfus, (OSC, Rock Island)
Bill Ingold, (OSC, Rock Island)
Mark Patterson, (OSC, RVAAP)
Jim Mcgee, (Toltest, Oper. Contractor RVAAP)
Ernie Neal, (NES)

MKM Engineers, Inc. Geotechnical, Environmental and Remediation Services

November 16, 2001

Christopher Jones, Director Ohio Environmental Protection Agency Lazarus Government Center P.O. Box 1049 Columbus, Ohio 43216-1049

Re: Initial Sampling Event, Ramsdell Quarry Landfill 9/11/01 Groundwater Assessment Plan Ravenna Army Ammunition Plant's (RVAAP)

Dear Director Jones:

On behalf of the US Army's Operation Support Command at the Ravenna Army Ammunition Plant, MKM Engineers, Inc. and Neal Environmental Services is providing this summary report in compliance with the Groundwater Assessment Plan (GAP), dated September 7, 2001, for the closed solid waste landfill known as Ramsdell Quarry Landfill. The GAP was submitted in accordance with O.A.C. 3745-27-10, effective March 1, 1990, (hereafter referred to as O.A.C. 3745-27-10). In accordance with O.A.C. 3745-27-10 the GAP called for the sampling and analysis of wells RQL MW-006 (upgradient) and RQL MW-007 (impacted downgradient) for all parameters listed in Appendix II to O.A.C. 3745-27-10 as well as a list of specific explosive materials and propellants. Further, the GAP and O.A.C. 3745-27-10, required that the sampling be conducted by September 25, 2001 and that the analytical results be submitted to you not more that 60 days after the sampling event and not more than 15 days after receiving the results of the analysis.

On September 20, 2001, the RVAAP sampled RQL MW-006 and RQL MW-007. On September 25, 2001, MKM was notified that due to laboratory handling difficulties, the cyanide analyte would require resampling. The OEPA NEDO was immediately notified of this situation by email. The two monitoring wells were resampled on September 26, 2001 and submitted for analysis. On November 5, 2001, the RVAAP received all of the analytical results from this initial sampling event. Today, via this letter and attachments the RVAAP is submitting these analytical results to you in accordance with O.A.C. 3745-27-10.

Attached to this summary report are copies of the analytical results obtained from the September 20, 2001, sampling of RQL MW-006 and RQL MW-007 including the duplicate and field blank results (Appendix A), the data validation report in Appendix B and the field sampling forms in Appendix C.

The GAP and O.A.C. 3745-27-10 requires the evaluation of the sample results from RQL MW-006 and RQL MW-007, to determine if leachate or leachate derived constituents were identified as being numerically higher in RQL MW-007 (the down gradient well) than in RQL MW-006 (the above gradient well). The analytical results were validated and tabulated for ease of review. Those data which reflected an increase in concentration in the downgradient well, RQL MW-007, are presented in Table 1.

Table 1

Parameter	RQL MW-006 Analytical Result	RQL MW-007 Analytica Result	
Arsenic	0.019 mg/L	0.053 mg/L	
Barium	0.021 mg/L	0.039 mg/L	
Iron	8.3 mg/L	39.0 mg/L	
Potassium	Not Detected	9.1 mg/L	
Magnesium	45.0 mg/L	140.0 mg/L	
Sodium	Not Detected	14.8 mg/L	
Zinc	Not Detected	0.056 mg/L	
Chloromethane	Not Detected	0.030 J ug/L	
Chloride	1.9 mg/L	7.0 mg/L	
Sulfate	224.0 mg/L	267.0 mg/L	

RQL MW-007 Analytical Results that were Numerically Higher than RQL MW-006 Analytical Results

A review of this data was completed in comparison to the data validation report and the RVAAP Facility-wide Background concentrations. Based upon this review the results indicate that some of these parameters do not represent leachate or leachate derived constituents. Chloromethane was reported as a J value of 0.30 ug/L. The laboratory reporting limit for Chloromethane was 1.0 ug/L. The J qualifier indicates that the value is estimated given that it has been reported below the required laboratory reporting limit. Thus, while the laboratory reported detecting Chloromethane in the sample from RQL MW-007 the amount reported must be viewed as suspect. In addition, Chloromethane was also detected in the field blank with a reported J value of 0.15 ug/L. Additionally, Chloromethane is routinely analyzed quarterly as part of the Ramsdell Quarry Landfill detection monitoring program. Over a period of 2 years and 11 sampling events Chloromethane has never been detected in a sample from RQL MW-007. Thus, it

is believed that any Chloromethane reported as detected in the RQL MW-007 sample was due to laboratory contamination. Several of the parameters noted in Table 1 above exhibit numerically higher concentrations in RQL MW-007 yet are actually lower than the established RVAAP Bedrock Ground Water Facility-wide Background Data concentrations, (see Table 2). This background data for RVAAP were developed during the Phase II Remedial Investigation (RI) for the Winklepeck Burning Grounds (USACE 1999b).

Table 2

RQL MW-007 Analytical Results that were Numerically Higher than RQL MW-006 but Lower than RVAAP Bedrock Ground Water Facilitywide Back Ground

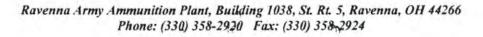
Parameter	RQL MW-007 Analytical Result	RVAAP Bedrock Ground Water Facility-wide Background Concentration	
Barium	0.039 mg/L	0.241 mg/L	
Sodium	14.80 mg/L	49.70 mg/L	
Zinc	0.056 mg/L	0.193 mg/L	

Thus, the RVAAP does not believe that these parameters constitute leachate or leachate derived constituents found to be above background for the purposes of O.A.C. 3745-27-10.

Based upon the above data, the assessment plan and O.A.C. 3745-27-10 the RVAAP will, upon the concurrence of the Ohio EPA, develop a schedule for sampling RQL MW-008 and RQL MW-009 for Arsenic, Iron, Potassium, Magnesium, Chloride and Sulfate.

Upon review of the analytical from this and prior sampling events several points come to light that should also be noted. While the RVAAP believes it is appropriate at this time to sample RQL MW-008 and RQL MW-009 for the above listed parameters, at the same time the RVAAP does not believe that the existing data support a theory that these parameters constitute leachate derived constituents that are impacting the groundwater. For example, the turbidity in RQL MW-007 during the recent sampling event was very high when compared to RQL MW-006 (see Appendix C). This can result in the detection of elevated metals. Slight variations in sampling techniques can produce very different turbidity results. In addition, historically it has been the RVAAP's position

that Iron, Potassium and Magnesium more commonly considered essential nutrient compounds and are not leachate-derived constituents related to the Ramsdell Quarry Landfill. Finally, the results for the parameters that were numerically higher in RQL MW-007 than in RQL MW-006 in this sampling event were generally consistent with the numerical historical results obtained in RQL MW-007. A more thorough analysis of these results may well show that they too do not actually represent values that are above background. The RVAAP believes a more appropriate time to address these issues and other issues more fully is following the sampling of RQL MW-008 and RQL MW-009 and the analysis of those samples. Upon concurrence by the OEPA the RVAAP will proceed with the sampling of monitoring wells RQL MW-008 and RQL MW-009 for the parameters designated above.


Sincerely,

toto Caller

Richard Callahan Environmental Program Manager MKM Engineers, Inc.

Attachment

cc: Jarnal Singh, (Ohio EPA, NEDO)
Eileen Mohr / Todd Fisher, (Ohio EPA, NEDO)
Diane Kurlich, (Ohio EPA, NEDO)
Irwin Dreyfus, (OSC, Rock Island)
Bill Ingold, (OSC, Rock Island)
Mark Patterson, (OSC, RVAAP)
Jim Mcgee, (Toltest, Oper. Contractor RVAAP)
Ernie Neal, (NES)

Client Sample ID: RQLMW-06

GC/MS Volatiles

 Lot-Sample #...: A1I210297-001
 Work Order #...: EKW2Q1AP
 Matrix....: WG

 Date Sampled...: 09/20/01 09:15
 Date Received..: 09/20/01
 Matrix....: WG

 Prep Date....: 10/01/01
 Analysis Date..: 10/01/01
 Matrix....

 Prep Batch #...: 1274204
 Method.....: SW846 8260B

		REPORTING		
PARAMETER	RESULT	LIMIT	UNITS	
Dichlorodifluoromethane	ND	1.0	ug/L	
Acetonitrile	ND	20	ug/L	
Acrolein	ND	20	ug/L	
Allyl chloride	ND	2.0	ug/L	
1,3-Dichloropropane	ND	1.0	ug/L	
2,2-Dichloropropane	ND	1.0	ug/L	
1,1-Dichloropropene	ND	1.0	ug/L	
Ethyl methacrylate	ND	1.0	ug/L	
Isobutyl alcohol	ND	50	ug/L	
Methyl methacrylate	ND	2.0	ug/L	
Propionitrile	ND	4.0	ug/L	
4-Methyl-2-pentanone (MIBK)	ND	10	ug/L	
Acetone	1.9 J	10	ug/L	
Acrylonitrile	ND	20	ug/L	
Benzene	ND	1.0	ug/L	
Bromochloromethane	ND	1.0	ug/L	
Bromodichloromethane	ND	1.0	ug/L	
Bromoform	ND	1.0	ug/L	
Bromomethane	ND	1.0	ug/L	
2-Butanone	ND	10	ug/L	
Carbon disulfide	ND	1.0	ug/L	
Carbon tetrachloride	ND	1.0	ug/L	
Chlorobenzene	ND	1.0	ug/L	
Dibromochloromethane	ND	1.0	ug/L	
1,2-Dibromo-3-chloro- propane	ND	7.0	ug/L	
Chloroethane	ND	1.0	ug/L	
Chloroform	ND	1.0	ug/L	
Chloromethane	ND	1.0	ug/L	
1,2-Dibromoethane	ND	1.0	ug/L	
Dibromomethane	ND	1.0	ug/L	
1,2-Dichlorobenzene	ND	1.0	ug/L	
1,4-Dichlorobenzene	ND	1.0	ug/L	
trans-1,4-Dichloro- 2-butene	ND	1.0	ug/L	
1,1-Dichloroethane	ND	1.0	ug/L	
1,2-Dichloroethane	ND	1.0	ug/L	
1,1-Dichloroethene	ND	1.0	ug/L	

(Continued on next page)

Client Sample ID: RQLMW-06

GC/MS Volatiles

Lot-Sample #...: A1I210297-001 Work Order #...: EKW2Q1AP Matrix..... WG

	DECIT	REPORTING	
PARAMETER cis-1,2-Dichloroethene	RESULT	LIMIT 1.0	UNITS
	0.15		ug/L
trans-1,2-Dichloroethene	ND	1.0	ug/L
1,2-Dichloropropane	ND	1.0	ug/L
cis-1,3-Dichloropropene	ND	1.0	ug/L
trans-1,3-Dichloropropene	ND	1.0	ug/L
Ethylbenzene	ND	1.0	ug/L
Frichlorofluoromethane	ND	1.0	ug/L
2-Hexanone	ND	10	ug/L
Iodomethane	ND	1.0	ug/L
Methylene chloride	1.1 B	1.0	ug/L
Styrene	ND	1.0	ug/L
1,1,1,2-Tetrachloroethane	ND	1.0	ug/L
1,1,2,2-Tetrachloroethane	ND	1.0	ug/L
Tetrachloroethene	ND	1.0	ug/L
Toluene	ND	1.0	ug/L
1,1,1-Trichloroethane	ND	1.0	ug/L
1,1,2-Trichloroethane	ND	1.0	ug/L
Trichloroethene	ND	1.0	ug/L
1,2,3-Trichloropropane	ND	1.0	ug/L
Vinyl acetate	ND	10	ug/L
Vinyl chloride	ND	1.0	ug/L
Kylenes (total)	ND	1.0	ug/L
Chloroprene	ND	2.0	ug/L
1,3-Dichlorobenzene	ND	1.0	ug/L
Methacrylonitrile	ND	2.0	ug/L
	PERCENT	RECOVERY	
SURROGATE	RECOVERY	LIMITS	
Dibromofluoromethane	106	(73 - 122	2)
1,2-Dichloroethane-d4	105	(61 - 128	3)
Toluene-d8	96	(76 - 110	
4-Bromofluorobenzene	88	(74 - 116	

NOTE (S) :

J Estimated result. Result is less than RL.

B Method blank contamination. The associated method blank contains the target analyte at a reportable level.

Client Sample ID: RQLMW-06

TOTAL Metals

Lot-Sample #...: A1I210297-001 Date Sampled...: 09/20/01 09:15 Date Received..: 09/20/01 Matrix..... WG

		REPORTING				PREPARATION-	WORK
PARAMETER	RESULT	LIMIT	UNITS	METHO	D	ANALYSIS DATE	ORDER #
Prep Batch #.	. 1267112						
Zinc	ND	0.050	mg/L	SW846	6010B	09/24-09/25/01	EKW201A
		Dilution Fac					
Silver	ND	0.010	ma /T	CWBAC	6010B	09/24-09/25/01	FKW201A
DIIVEL	ND	Dilution Fac	-	24040	BUIDE	09/24-09/25/01	ERWZQIA.
Arsenic	0.019	0.0050 Dilution Fac		SW846	6010B	09/24-09/25/01	EKW2Q1A
		DITUCION FAC	COI: 1				
Barium	0.021	0.010	mg/L	SW846	6010B	09/24-09/25/01	EKW2Q1A
		Dilution Fac	tor: 1				
Beryllium	ND	0.0040	mg/L	SW846	6010B	09/24-09/25/01	EKW2Q1AV
		Dilution Fac					
alcium	111	5.0	mg/L	SW846	6010B	09/24-09/25/01	EKW201A
		Dilution Fac		120222		10,00,00,00,00,00	
Cadmium	ND	0.0050	mg/L	SW846	6010B	09/24-09/25/01	EKW201A
		Dilution Fac	-				
Cobalt	ND	0.050	mg/L	SW846	6010B	09/24-09/25/01	EKW201A0
		Dilution Fac					
Chromium	ND	0.010	mg/L	SW846	6010B	09/24-09/25/01	EKW201A
GITTOWITCH	112	Dilution Fac		511040	00100	05/24 05/25/01	Dichegrin
Copper	ND	0.010	ma/T.	SMBAE	6010B	09/24-09/25/01	EKW201A1
copper	ND	Dilution Fac		54040	OUTOB	09/24-09/29/01	BRAZQIA
Tron	8.3	0.10	ma /T	CHOAC	6010B	09/24-09/25/01	FEWDOLA
Iron	8.3	Dilution Fac		50040	BOIDB	09/24-09/25/01	BANZQIAS
	100	5.0	/-	0110.4.6	C0100	00/04 00/05/01	EKHOOI CI
Potassium	ND	5.0 Dilution Fac	mg/L	SW846	6010B	09/24-09/25/01	EKW2QICF
		brideron rac					
Magnesium	45.0	5.0	mg/L	SW846	6010B	09/24-09/25/01	EKW2Q1CC
		Dilution Fac	tor: 1				
Manganese	5.1	0.015	mg/L	SW846	6010B	09/24-09/25/01	EKW2Q1CI
		Dilution Fac					

(Continued on next page)

Client Sample ID: RQLMW-06

TOTAL Metals

Lot-Sample #...: A11210297-001

Matrix..... WG

PARAMETER	RESULT	REPORTIN LIMIT	G UNITS	METHO	n	PREPARATION - ANALYSIS DATE	WORK ORDER #
Sodium	ND	5.0	mg/L		6010B	09/24-09/25/01	
		Dilution Fac	-				
Nickel	0.25	0.040	mg/L	SW846	6010B	09/24-09/25/01	EKW2Q1A2
		Dilution Fac	tor: 1				
Lead	ND	0.0030	mg/L	SW846	6010B	09/24-09/25/01	EKW2Q1AR
		Dilution Fac	tor: 1				
Antimony	ND	0.060	mg/L	SW846	6010B	09/24-09/25/01	EKW2Q1AU
		Dilution Fac	tor: 1				
Selenium	ND	0.0050	mg/L	SW846	6010B	09/24-09/25/01	EKW2Q1AT
		Dilution Fac	tor: 1				
Tin	ND	0.10	mg/L	SW846	6010B	09/24-09/25/01	EKW2Q1CE
		Dilution Fac	tor: 1				
hallium	ND Wa	0.0020	mg/L	SW846	7841	09/24-09/25/01	EKW2Q1CF
		Dilution Fac	tor: 1				
Vanadium	ND	0.050	mg/L	SW846	6010B	09/24-09/25/01	EKW2Q1A5
		Dilution Fac	tor: 1				
Mercury	ND	0.00020	mg/L	SW846	7470A	09/24-09/25/01	EKW2Q1CG
		Dilution Fac	-				

NOTE (S) :

Wa Post digestion spike recovery fell between 40-85% due to matrix interference.

Client Sample ID: RQLMW-06

General Chemistry

Lot-Sample #...: A1I210297-001 Work Order #...: EKW2Q Date Sampled...: 09/20/01 09:15 Date Received..: 09/20/01

Matrix....: WG

PARAMETER	RESULT	RL	UNITS	METHO	D	PREPARATION- ANALYSIS DATE	PREP BATCH #
pH (liquid)	8.0		No Units	MCAWW	150.1	09/22/01	1267393
		Dilution Fact	tor: 1				
Chloride	1.9	1.0	mg/L	MCAWW	300.0A	09/25/01	1269389
		Dilution Fact	tor: 1				
Hexavalent Chromium	ND	0.02	mg/L	SW846	7196A	09/21/01	1268450
		Dilution Fact	or: 1				
Nitrate-Nitrite	ND	0.1	mg/L	MCAWW	353.2	09/24/01	1268415
		Dilution Fact	or: 1				
Nitrocellulose	ND	0.50	mg/L	MCAWW	353.2	09/29-10/04/01	1274466
		Dilution Fact	or: 1				
Nitrogen, as Ammonia	0.3	0.2	mg/L	MCAWW	350.3	10/01/01	1275093
		Dilution Fact	or: 1				
Sulfate	224	2.0	mg/L	MCAWW	300.0A	09/25/01	1269392
		Dilution Fact	or: 2				
Total phosphorus	ND	0.1	mg/L	MCAWW	365.2	09/26/01	1269443
		Dilution Fact	or: 1				
Total Alkalinity	260	5.0	mg/L	MCAWW	310.1	09/22/01	1267433
		Dilution Fact	or: 1				
Total Dissolved Solids	540	10	mg/L	MCAWW	160.1	09/25-09/26/01	1268169
		Dilution Fact	or: 1				
Total Organic Carbon	11	1	mg/L	SW846	9060	09/24/01	1268207
		Dilution Fact	or: 1				
Total Phenols	ND	0.040	mg/L	SW846	9065	10/03/01	1276408
		Dilution Fact	or: 1				
Total Sulfide	ND	1.0	mg/L	MCAWW	376.1	09/24/01	1268591
		Dilution Fact	or: 1				

Client Sample ID: RQLMW-06

General Chemistry

Lot-Sample #...: A1I210297-001 Work Order #...: EKW2Q Matrix..... WG

					PREPARATION-	PREP
PARAMETER	RESULT	RL	UNITS	METHOD	ANALYSIS DATE	BATCH #
Turbidity	24	0.5	NTU	MCAWW 180.1	09/21/01	1264521
	Di	lution Fa	ctor: 1			

Client Sample ID: RQLMW-06

General Chemistry

Lot-Sample #:	A1I280133-001	Work Order #:	EK9ET	Matrix: WG
Date Sampled:	09/26/01 13:55	Date Received:	09/27/01	

					PREPARATION-	PREP
PARAMETER	RESULT	RL	UNITS	METHOD	ANALYSIS DATE	BATCH #
Total Cyanide	ND	0.010	mg/L	MCAWW 335.2	10/02/01	1275384
	D	ilution Fact	or: 1			

Client Sample ID: RQLMW-06

GC/MS Semivolatiles

 Lot-Sample #...: All210297-001
 Work Order #...: EKW2Q1AJ
 Matrix....: WG

 Date Sampled...: 09/20/01 09:15
 Date Received..: 09/20/01
 Prep Date....: WG

 Prep Date.....: 09/24/01
 Analysis Date..: 09/30/01
 Prep Batch #...: 1267101

 Dilution Factor: 1
 Method.....: SW846 8270C

		REPORTIN	ſĠ
PARAMETER	RESULT	LIMIT	UNITS
Acenaphthene	ND	10	ug/L
Acenaphthylene	ND	10	ug/L
Acetophenone	ND	10	ug/L
2-Acetylaminofluorene	ND	100	ug/L
4-Aminobiphenyl	ND	50	ug/L
Anthracene	ND	10	ug/L
Benzo(a) anthracene	ND	10	ug/L
Benzo(b)fluoranthene	ND	10	ug/L
Benzo(k)fluoranthene	ND	10	ug/L
Benzo(ghi)perylene	ND	10	ug/L
Benzo(a)pyrene	ND	10	ug/L
Benzyl alcohol	ND	10	ug/L
bis(2-Chloroethoxy) methane	ND	10	ug/L
bis(2-Chloroethyl)- ether	ND	10	ug/L
bis(2-Chloro-1- methylethyl) ether	ND	10	ug/L
bis(2-Ethylhexyl) phthalate	ND	10	ug/L
4-Bromophenyl phenyl ether	ND	10	ug/L
Butyl benzyl phthalate	ND	10	ug/L
p-Chloroaniline	ND	10	ug/L
4-Chloro-3-methylphenol	ND	10	ug/L
2-Chloronaphthalene	ND	10	ug/L
2-Chlorophenol	ND	10	ug/L
4-Chlorophenyl phenyl ether	ND	10	ug/L
Chrysene	ND	10	ug/L
Diallate	ND	20	ug/L
Dibenz(a,h)anthracene	ND	10	ug/L
Dibenzofuran	ND	10	ug/L
Di-n-butyl phthalate	ND	10	ug/L
3,3'-Dichlorobenzidine	ND	50	ug/L
2,4-Dichlorophenol	ND	10	ug/L
2,6-Dichlorophenol	ND	10	ug/L
Diethyl phthalate	ND	10	ug/L
Thionazin	ND	50	ug/L

Client Sample ID: RQLMW-06

GC/MS Semivolatiles

Lot-Sample #...: All210297-001 Work Order #...: EKW2Q1AJ Matrix..... WG

		REPORTING	
PARAMETER	RESULT	LIMIT	UNITS
Dimethoate	ND	20	ug/L
p-Dimethylaminoazobenzene	ND	20	ug/L
7,12-Dimethylbenz(a)- anthracene	ND	20	ug/L
3,3'-Dimethylbenzidine	ND	50	ug/L
2,4-Dimethylphenol	ND	10	ug/L
Dimethyl phthalate	ND	10	ug/L
Di-n-octyl phthalate	ND	10	ug/L
1,3-Dinitrobenzene	ND	10	ug/L
4,6-Dinitro- 2-methylphenol	ND	50	ug/L
2,4-Dinitrophenol	ND	50	ug/L
2,4-Dinitrotoluene	ND	10	ug/L
2,6-Dinitrotoluene	ND	10	ug/L
Diphenylamine	ND	10	ug/L
Disulfoton	ND	50	ug/L
Ethyl methanesulfonate	ND	10	ug/L
Famphur	ND	100	ug/L
Fluoranthene	ND	10	ug/L
Fluorene	ND	10	ug/L
Hexachlorobenzene	ND	10	ug/L
Hexachlorobutadiene	ND	10	ug/L
Hexachlorocyclopenta- diene	ND	50	ug/L
Hexachloroethane	ND	10	ug/L
Hexachloropropene	ND	100	ug/L
Indeno(1,2,3-cd)pyrene	ND	10	ug/L
Isophorone	ND	10	ug/L
Isosafrole	ND	20	ug/L
Methapyrilene	ND	50	ug/L
o-Toluidine	ND	20	ug/L
3-Methylcholanthrene	ND	20	ug/L
Methyl methanesulfonate	ND	10	ug/L
2-Methylnaphthalene	ND	10	ug/L
2-Methylphenol	ND	10	ug/L
3-Methylphenol	ND	10	ug/L
4-Methylphenol	ND	10	ug/L
Naphthalene	ND	10	ug/L
1,4-Naphthoquinone	ND	50	ug/L
1-Naphthylamine	ND	10	ug/L
2-Naphthylamine	ND	10	ug/L
2-Nitroaniline	ND	50	ug/L
3-Nitroaniline	ND	50	ug/L

Client Sample ID: RQLMW-06

GC/MS Semivolatiles

Lot-Sample #...: All210297-001 Work Order #...: EKW2Q1AJ Matrix......... WG

PARAMETER	RESULT	REPORTING LIMIT	UNITS
4-Nitroaniline	ND	50	ug/L
Nitrobenzene	ND	10	ug/L
2-Nitrophenol	ND	10	ug/L
4-Nitrophenol	ND	50	ug/L
N-Nitrosodi-n-butylamine	ND	10	ug/L
N-Nitrosodiethylamine	ND	10	ug/L
I-Nitrosodimethylamine	ND	10	ug/L
N-Nitrosodi-n-propyl- amine	ND	10	ug/L
I-Nitrosodiphenylamine	ND	10	ug/L
I-Nitrosomethylethylamine	ND	10	ug/L
I-Nitrosopiperidine	ND	10	ug/L
I-Nitrosopyrrolidine	ND	10	ug/L
5-Nitro-o-toluidine	ND	20	ug/L
Pentachlorobenzene	ND	10	ug/L
Pentachloronitrobenzene	ND	50	ug/L
Pentachlorophenol	ND	10	ug/L
Phenacetin	ND	20	ug/L
Phenanthrene	ND	10	ug/L
Phenol	ND	10	ug/L
p-Phenylene diamine	ND	100	ug/L
Phorate	ND	50	ug/L
Pronamide	ND	20	ug/L
Pyrene	ND	10	ug/L
Safrole	ND	20	ug/L
L,2,4,5-Tetrachloro- benzene	ND	10	ug/L
2,3,4,6-Tetrachlorophenol	ND	50	ug/L
.,2,4-Trichloro- benzene	ND	10	ug/L
2,4,5-Trichloro- phenol	ND	10	ug/L
2,4,6-Trichloro- phenol	ND	10	ug/L
),0,0-Triethylphosphoro- thioate	ND	50	ug/L
1,3,5-Trinitrobenzene	ND	50	ug/L
Chlorobenzilate	ND	10	ug/L

Client Sample ID: RQLMW-06

GC/MS Semivolatiles

Lot-Sample #...: A11210297-001 Work Order #...: EKW2Q1AJ Matrix..... WG

PERCENT RECOVERY	RECOVERY LIMITS		
70	(32 - 112)		
68	(30 - 110)		
72	(10 - 144)		
12	(10 - 113)		
5.5 *	(13 - 110)		
8.6 *	(21 - 122)		
	RECOVERY 70 68 72 12 5.5 *		

NOTE (S) :

* Surrogate recovery is outside stated control limits.

Client Sample ID: RQLMW-06

GC/MS Semivolatiles

Lot-Sample #...: A11210297-001 Work Order #...: EKW2Q2AJ Date Sampled...: 09/20/01 09:15 Date Received..: 09/20/01 Prep Date....: 10/02/01 Analysis Date..: 10/06/01 Prep Batch #...: 1275109

Dilution Factor: 1

Matrix....: WG

Method....: SW846 8270C

		REPORTIN	IG
PARAMETER	RESULT	LIMIT	UNITS
Acenaphthene	ND	10	ug/L
Acenaphthylene	ND	10	ug/L
Acetophenone	ND	10	ug/L
2-Acetylaminofluorene	ND	100	ug/L
4-Aminobiphenyl	ND	50	ug/L
Anthracene	ND	10	ug/L
Benzo(a) anthracene	ND	10	ug/L
Benzo(b)fluoranthene	ND	10	ug/L
Benzo(k) fluoranthene	ND	10	ug/L
Benzo(ghi)perylene	ND	10	ug/L
Benzo(a)pyrene	ND	10	ug/L
Benzyl alcohol	ND	10	ug/L
bis(2-Chloroethoxy) methane	ND	10	ug/L
bis(2-Chloroethyl)- ether	ND	10	ug/L
bis(2-Chloro-1- methylethyl) ether	ND	10	ug/L
bis(2-Ethylhexyl) phthalate	ND	10	ug/L
4-Bromophenyl phenyl ether	ND	10	ug/L
Butyl benzyl phthalate	ND	10	ug/L
p-Chloroaniline	ND	10	ug/L
4-Chloro-3-methylphenol	ND	10	ug/L
2-Chloronaphthalene	ND	10	ug/L
2-Chlorophenol	ND	10	ug/L
4-Chlorophenyl phenyl ether	ND	10	ug/L
Chrysene	ND	10	ug/L
Diallate	ND	20	ug/L
Dibenz(a,h) anthracene	ND	10	ug/L
Dibenzofuran	ND	10	ug/L
Di-n-butyl phthalate	ND	10	ug/L
3,3'-Dichlorobenzidine	ND	50	ug/L
2,4-Dichlorophenol	ND	10	ug/L
2,6-Dichlorophenol	ND	10	ug/L
Diethyl phthalate	ND	10	ug/L
Thionazin	ND	50	ug/L

Client Sample ID: RQLMW-06

GC/MS Semivolatiles

Lot-Sample #...: All210297-001 Work Order #...: EKW2Q2AJ Matrix..... WG

		REPORTING		
PARAMETER	RESULT	LIMIT	UNITS	
Dimethoate	ND	20	ug/L	
p-Dimethylaminoazobenzene	ND	20	ug/L	
7,12-Dimethylbenz(a) - anthracene	ND	20	ug/L	
3,3'-Dimethylbenzidine	ND	50	ug/L	
2,4-Dimethylphenol	ND	10	ug/L	
Dimethyl phthalate	ND	10	ug/L	
Di-n-octyl phthalate	ND	10	ug/L	
1,3-Dinitrobenzene	ND	10	ug/L	
4,6-Dinitro- 2-methylphenol	ND	50	ug/L	
2,4-Dinitrophenol	ND	50	ug/L	
2,4-Dinitrotoluene	ND	10	ug/L	
2,6-Dinitrotoluene	ND	10	ug/L	
Diphenylamine	ND	10	ug/L	
Disulfoton	ND	50	ug/L	
Ethyl methanesulfonate	ND	10	ug/L	
Famphur	ND	100	ug/L	
Fluoranthene	ND	10	ug/L	
Fluorene	ND	10	ug/L	
Hexachlorobenzene	ND	10	ug/L	
Hexachlorobutadiene	ND	10	ug/L	
Hexachlorocyclopenta- diene	ND	50	ug/L	
Hexachloroethane	ND	10	ug/L	
Hexachloropropene	ND	100	ug/L	
Indeno(1,2,3-cd)pyrene	ND	10	ug/L	
Isophorone	ND	10	ug/L	
Isosafrole	ND	20	ug/L	
Methapyrilene	ND	50	ug/L	
o-Toluidine	ND	20	ug/L	
3-Methylcholanthrene	ND	20	ug/L	
Methyl methanesulfonate	ND	10	ug/L	
2-Methylnaphthalene	ND	10	ug/L	
2-Methylphenol	ND	10	ug/L	
3-Methylphenol	ND	10	ug/L	
4-Methylphenol	ND	10	ug/L	
Naphthalene	ND	10	ug/L	
1,4-Naphthoquinone	ND	50	ug/L	
1-Naphthylamine	ND	10	ug/L	
2-Naphthylamine	ND	10	ug/L	
2-Nitroaniline	ND	50	ug/L	
3-Nitroaniline	ND	50	ug/L	

Client Sample ID: RQLMW-06

GC/MS Semivolatiles

Lot-Sample #...: All210297-001 Work Order #...: EKW2Q2AJ Matrix......... WG

		REPORTIN	G
PARAMETER	RESULT	LIMIT	UNITS
4-Nitroaniline	ND	50	ug/L
Nitrobenzene	ND	10	ug/L
2-Nitrophenol	ND	10	ug/L
4-Nitrophenol	ND	50	ug/L
N-Nitrosodi-n-butylamine	ND	10	ug/L
N-Nitrosodiethylamine	ND	10	ug/L
N-Nitrosodimethylamine	ND	10	ug/L
N-Nitrosodi-n-propyl- amine	ND	10	ug/L
N-Nitrosodiphenylamine	ND	10	ug/L
N-Nitrosomethylethylamine	ND	10	ug/L
N-Nitrosopiperidine	ND	10	ug/L
N-Nitrosopyrrolidine	ND	10	ug/L
5-Nitro-o-toluidine	ND	20	ug/L
Pentachlorobenzene	ND	10	ug/L
Pentachloronitrobenzene	ND	50	ug/L
Pentachlorophenol	ND	10	ug/L
Phenacetin	ND	20	ug/L
Phenanthrene	ND	10	ug/L
Phenol	ND	10	ug/L
p-Phenylene diamine	ND	100	ug/L
Phorate	ND	50	ug/L
Pronamide	ND	20	ug/L
Pyrene	ND	10	ug/L
Safrole	ND	20	ug/L
1,2,4,5-Tetrachloro- benzene	ND	10	ug/L
2,3,4,6-Tetrachlorophenol	ND	50	ug/L
1,2,4-Trichloro-	ND	10	ug/L
benzene			
2,4,5-Trichloro- phenol	ND	10	ug/L
2,4,6-Trichloro- phenol	ND	10	ug/L
0,0,0-Triethylphosphoro- thioate	ND	50	ug/L
1,3,5-Trinitrobenzene	ND	50	ug/L
Chlorobenzilate	ND	10	ug/L

Client Sample ID: RQLMW-06

GC/MS Semivolatiles

Lot-Sample #...: A1I210297-001 Work Order #...: EKW2Q2AJ Matrix...... WG

SURROGATE	PERCENT RECOVERY	RECOVERY LIMITS		
Nitrobenzene-d5	89	(32 - 112)		
2-Fluorobiphenyl	75	(30 - 110)		
Terphenyl-d14	64	(10 - 144)		
Phenol-d5	16	(10 - 113)		
2-Fluorophenol	7.6 *	(13 - 110)		
2,4,6-Tribromophenol	11 *	(21 - 122)		

NOTE (S) :

· Surrogate recovery is outside stated control limits.

Client Sample ID: RQLMW-06

GC Semivolatiles

 Lot-Sample #...: All210297-001
 Work Order #...: EKW2Q1AL

 Date Sampled...: 09/20/01 09:15
 Date Received..: 09/20/01

 Prep Date....: 09/24/01
 Analysis Date..: 09/30/01

 Prep Batch #...: 1267178
 Prep Date...: 09/30/01

Dilution Factor: 1

Matrix..... WG

Method....: SW846 8081A

PARAMETER	RESULT	REPORTING LIMIT	UNITS
Endosulfan sulfate	ND	0.050	ug/L
Endrin	ND	0.050	ug/L
Endrin aldehyde	ND	0.050	ug/L
Heptachlor	ND	0.050	ug/L
Heptachlor epoxide	ND	0.050	ug/L
Isodrin	ND	0.10	ug/L
Kepone	ND	1.0	ug/L
Methoxychlor	ND	0.10	ug/L
Toxaphene	ND	2.0	ug/L
Aldrin	ND	0.050	ug/L
alpha-BHC	ND	0.050	ug/L
beta-BHC	ND	0.050	ug/L
delta-BHC	ND	0.050	ug/L
gamma-BHC (Lindane)	ND	0.050	ug/L
Chlordane (technical)	ND	0.50	ug/L
4,4'-DDD	ND	0.050	ug/L
4,4'-DDE	ND	0.050	ug/L
4,4'-DDT	ND	0.050	ug/L
Dieldrin	ND	0.050	ug/L
Endosulfan I	ND	0.050	ug/L
Endosulfan II	ND	0.050	ug/L
	PERCENT	RECOVERY	
SURROGATE	RECOVERY	LIMITS	
Tetrachloro-m-xylene	56	(39 - 130)	
Decachlorobiphenyl	26	(10 - 147)	

Client Sample ID: RQLMW-06

GC Semivolatiles

Lot-Sample #: A1I210297-001	Work Order #:	EKW2Q1AM	Matrix: WG
Date Sampled: 09/20/01 09:15	Date Received:	09/20/01	
Prep Date: 09/24/01	Analysis Date:	09/30/01	
Prep Batch #: 1267179			
Dilution Factor: 1	Method:	SW846 8082	
		REPORTING	
PARAMETER	RESULT	LIMIT	UNITS
Aroclor 1016	ND	1.0	ug/L
Aroclor 1221	ND	1.0	ug/L
Aroclor 1232	ND	1.0	ug/L
Aroclor 1242	ND	1.0	ug/L
Aroclor 1248	ND	1.0	ug/L
Aroclor 1254	ND	1.0	ug/L
Aroclor 1260	ND	1.0	ug/L
	PERCENT	RECOVERY	
SURROGATE	RECOVERY	LIMITS	
Tetrachloro-m-xylene	69	(45 - 120)	
Decachlorobiphenyl	28	(24 - 128)	

Client Sample ID: RQLMW-06

GC Semivolatiles

Lot-Sample #: A					Matrix WG
Date Sampled: 0	09/20/01 09:15	Date Re	ceived:	09/20/01	
Prep Date: 0	9/26/01	Analysi	s Date:	10/14/01	
Prep Batch #: 1	269103				
Dilution Factor: 1		Method.		SW846 8141	A
				REPORTING	
PARAMETER		RESULT		LIMIT	UNITS
Methyl parathion		ND		1.0	ug/L
Parathion		ND		1.0	ug/L
		PERCENT		RECOVERY	
SURROGATE		RECOVER	Y	LIMITS	
Triphenyl phosphat	e	93		(41 - 155)	

Client Sample ID: RQLMW-06

Dissolved Trace Level Organic Compounds

Lot-Sample #:	A1I210297-001	Work Order #:	EKW2Q1CT	Matrix:	WG
Date Sampled:	09/20/01 09:15	Date Received:	09/20/01		
Prep Date:	09/27/01	Analysis Date:	10/04/01		
Prep Batch #:	1270314				
Dilution Factor:	1	Method:	NONE UV/HPLC F	per	
			REPORTING		

PARAMETER	RESULT	LIMIT	UNITS
Nitroguanidine	ND	20	ug/L

Client Sample ID: RQLMW-06

GC Semivolatiles

Lot-Sample #...: All210297-001 Work Order #...: EKW2Q1AK Matrix....: WG Date Sampled...: 09/20/01 09:15 Date Received..: 09/20/01 Prep Date....: 09/24/01 Analysis Date ..: 10/05/01 Prep Batch #...: 1267107 Method....: SW846 8151A Dilution Factor: 1 REPORTING PARAMETER RESULT LIMIT UNITS 2,4-D ND 4.0 ug/L Dinoseb ND 0.70 ug/L 1.0 2,4,5-TP (Silvex) ND ug/L 2,4,5-T ND 1.0 ug/L PERCENT RECOVERY SURROGATE RECOVERY LIMITS 2,4-Dichlorophenylacetic acid (43 - 111)83

Client Sample ID: RQLMW-06

HPLC

 Lot-Sample #...: A11210297-001
 Work Order #...: EKW2Q1CQ
 Matrix....: WG

 Date Sampled...: 09/20/01 09:15
 Date Received..: 09/20/01
 Prep Date....: WG

 Prep Date.....: 09/25/01
 Analysis Date..: 09/20/01
 Prep Batch #...: 1268126

 Dilution Factor: 1
 Method.....: SW846 8330

PARAMETER	RESULT	REPORTING LIMIT	UNITS
1,3-Dinitrobenzene	ND	0.20	ug/L
2,4-Dinitrotoluene	ND	0.13	ug/L
2,6-Dinitrotoluene	ND	0.13	ug/L
Nitrobenzene	ND	0.20	ug/L
Nitroglycerin	ND	2.5	ug/L
1,3,5-Trinitrobenzene	ND	0.20	ug/L
2,4,6-Trinitrotoluene	ND	0.20	ug/L
HMX	ND	0.50	ug/L
RDX	ND	0.50	ug/L
Tetryl	ND	0.20	ug/L
2-Nitrotoluene	ND	0.20	ug/L
3-Nitrotoluene	ND	0.20	ug/L
4-Nitrotoluene	ND	0.20	ug/L
4-Amino-2,6- dinitrotoluene	ND	0.20	ug/L
2-Amino-4,6- dinitrotoluene	ND	0.20	ug/L
	PERCENT	RECOVERY	
SURROGATE	RECOVERY	LIMITS	_
1-Chloro-3-nitrobenzene	53	(53 - 133)

Client Sample ID: RQLMW-07

GC/MS Volatiles

Lot-Sample #...: All210297-002 Work Order #...: EKW3G1DH

Matrix....: WG

	DECIM	REPORTIN	
PARAMETER cis-1,2-Dichloroethene	RESULT	<u>LIMIT</u> 1.0	_ UNITS ug/L
crans-1,2-Dichloroethene	ND	1.0	ug/L ug/L
L, 2-Dichloropropane	ND	1.0	
cis-1,3-Dichloropropene	ND		ug/L
crans-1,3-Dichloropropene		1.0	ug/L
	ND ND	1.0	ug/L
Ethylbenzene	12120	1.0	ug/L
Trichlorofluoromethane	ND	1.0	ug/L
2-Hexanone	ND	10	ug/L
Iodomethane	ND	1.0	ug/L
Methylene chloride	0.49 J,B	1.0	ug/L
Styrene	ND	1.0	ug/L
L,1,1,2-Tetrachloroethane	ND	1.0	ug/L
L, 1, 2, 2-Tetrachloroethane	ND	1.0	ug/L
Tetrachloroethene	ND	1.0	ug/L
Coluene	ND	1.0	ug/L
,1,1-Trichloroethane	ND	1.0	ug/L
,1,2-Trichloroethane	ND	1.0	ug/L
richloroethene	ND	1.0	ug/L
.,2,3-Trichloropropane	ND	1.0	ug/L
inyl acetate	ND	10	ug/L
Vinyl chloride	ND	1.0	ug/L
ylenes (total)	ND	1.0	ug/L
Chloroprene	ND	2.0	ug/L
,3-Dichlorobenzene	ND	1.0	ug/L
ethacrylonitrile	ND	2.0	ug/L
	PERCENT	RECOVERY	
SURROGATE	RECOVERY	LIMITS	_
Dibromofluoromethane	103	(73 - 122	2)
,2-Dichloroethane-d4	102	(61 - 128	3)
Toluene-d8	96	(76 - 110))
-Bromofluorobenzene	88	(74 - 116	5)

NOTE (S) :

J Estimated result. Result is less than RL.

B Method blank contamination. The associated method blank contains the target analyte at a reportable level.

Client Sample ID: RQLMW-07

GC/MS Semivolatiles

		REPORTING	
PARAMETER	RESULT	LIMIT	UNITS
Acenaphthene	ND	10	ug/L
Acenaphthylene	ND	10	ug/L
Acetophenone	ND	10	ug/L
2-Acetylaminofluorene	ND	100	ug/L
4-Aminobiphenyl	ND	50	ug/L
Anthracene	ND	10	ug/L
Benzo(a) anthracene	ND	10	ug/L
Benzo(b)fluoranthene	ND	10	ug/L
Benzo(k)fluoranthene	ND	10	ug/L
Benzo(ghi)perylene	ND	10	ug/L
Benzo(a)pyrene	ND	10	ug/L
Benzyl alcohol	ND	10	ug/L
bis(2-Chloroethoxy) methane	ND	10	ug/L
bis(2-Chloroethyl) - ether	ND	10	ug/L
bis(2-Chloro-1- methylethyl) ether	ND	10	ug/L
bis(2-Ethylhexyl) phthalate	ND	10	ug/L
4-Bromophenyl phenyl ether	ND	10	ug/L
Butyl benzyl phthalate	ND	10	ug/L
p-Chloroaniline	ND	10	ug/L
4-Chloro-3-methylphenol	ND	10	ug/L
2-Chloronaphthalene	ND	10	ug/L
2-Chlorophenol	ND	10	ug/L
4-Chlorophenyl phenyl ether	ND	10	ug/L
Chrysene	ND	10	ug/L
Diallate	ND	20	ug/L
Dibenz(a,h)anthracene	ND	10	ug/L
Dibenzofuran	ND	10	ug/L
Di-n-butyl phthalate	ND	10	ug/L
3,3'-Dichlorobenzidine	ND	50	ug/L
2,4-Dichlorophenol	ND	10	ug/L
2,6-Dichlorophenol	ND	10	ug/L
Diethyl phthalate	ND	10	ug/L
Thionazin	ND	50	ug/L

Client Sample ID: RQLMW-07

GC/MS Volatiles

 Lot-Sample #...: AlI210297-002
 Work Order #...: EKW3G1DH
 Matrix....: WG

 Date Sampled...: 09/20/01 10:10
 Date Received..: 09/20/01
 Matrix....: WG

 Prep Date....: 10/01/01
 Analysis Date..: 10/01/01
 Matrix.....

 Prep Batch #...: 1274204
 Method.....: SW846 8260B

		REPORTING	
PARAMETER	RESULT	LIMIT	UNITS
Dichlorodifluoromethane	ND	1.0	ug/L
Acetonitrile	ND	20	ug/L
Acrolein	ND	20	ug/L
Allyl chloride	ND	2.0	ug/L
1,3-Dichloropropane	ND	1.0	ug/L
2,2-Dichloropropane	ND	1.0	ug/L
1,1-Dichloropropene	ND	1.0	ug/L
Ethyl methacrylate	ND	1.0	ug/L
Isobutyl alcohol	ND	50	ug/L
Methyl methacrylate	ND	2.0	ug/L
Propionitrile	ND	4.0	ug/L
4-Methyl-2-pentanone (MIBK)	ND	10	ug/L
Acetone	1.8 J	10	ug/L
Acrylonitrile	ND	20	ug/L
Benzene	ND	1.0	ug/L
Bromochloromethane	ND	1.0	ug/L
Bromodichloromethane	ND	1.0	ug/L
Bromoform	ND	1.0	ug/L
Bromomethane	ND	1.0	ug/L
2-Butanone	ND	10	ug/L
Carbon disulfide	ND	1.0	ug/L
Carbon tetrachloride	ND	1.0	ug/L
Chlorobenzene	ND	1.0	ug/L
Dibromochloromethane	ND	1.0	ug/L
1,2-Dibromo-3-chloro- propane	ND	7.0	ug/L
Chloroethane	ND	1.0	ug/L
Chloroform	ND	1.0	ug/L
Chloromethane	0.30 J	1.0	ug/L
1,2-Dibromoethane	ND	1.0	ug/L
Dibromomethane	ND	1.0	ug/L
1,2-Dichlorobenzene	ND	1.0	ug/L
1,4-Dichlorobenzene	ND	1.0	ug/L
trans-1,4-Dichloro- 2-butene	ND	1.0	ug/L
1,1-Dichloroethane	ND	1.0	ug/L
1,2-Dichloroethane	ND	1.0	ug/L
1,1-Dichloroethene	ND	1.0	ug/L

Client Sample ID: RQLMW-07

GC/MS Semivolatiles

Lot-Sample #...: All210297-002 Work Order #...: EKW3G1C1 Matrix..... WG

		REPORTING	
PARAMETER	RESULT	LIMIT	UNITS
Dimethoate	ND	20	ug/L
p-Dimethylaminoazobenzene	ND	20	ug/L
7,12-Dimethylbenz(a)- anthracene	ND	20	ug/L
3,3'-Dimethylbenzidine	ND	50	ug/L
2,4-Dimethylphenol	ND	10	ug/L
Dimethyl phthalate	ND	10	ug/L
Di-n-octyl phthalate	ND	10	ug/L
1,3-Dinitrobenzene	ND	10	ug/L
4,6-Dinitro- 2-methylphenol	ND	50	ug/L
2,4-Dinitrophenol	ND	50	ug/L
2,4-Dinitrotoluene	ND	10	ug/L
2,6-Dinitrotoluene	ND	10	ug/L
Diphenylamine	ND	10	ug/L
Disulfoton	ND	50	ug/L
Ethyl methanesulfonate	ND	10	ug/L
Famphur	ND	100	ug/L
Fluoranthene	ND	10	ug/L
luorene	ND	10	ug/L
Hexachlorobenzene	ND	10	ug/L
Hexachlorobutadiene	ND	10	ug/L
Hexachlorocyclopenta- diene	ND	50	ug/L
Hexachloroethane	ND	10	ug/L
Hexachloropropene	ND	100	ug/L
Indeno(1,2,3-cd)pyrene	ND	10	ug/L
Isophorone	ND	10	ug/L
Isosafrole	ND	20	ug/L
Methapyrilene	ND	50	ug/L
o-Toluidine	ND	20	ug/L
3-Methylcholanthrene	ND	20	ug/L
Methyl methanesulfonate	ND	10	ug/L
2-Methylnaphthalene	ND	10	ug/L
2-Methylphenol	ND	10	ug/L
3-Methylphenol	ND	10	ug/L
4-Methylphenol	ND	10	ug/L
Naphthalene	ND	10	ug/L
1,4-Naphthoquinone	ND	50	ug/L
1-Naphthylamine	ND	10	ug/L
2-Naphthylamine	ND	10	ug/L
2-Nitroaniline	ND	50	ug/L
3-Nitroaniline	ND	50	ug/L

Client Sample ID: RQLMW-07

GC/MS Semivolatiles

Lot-Sample #...: A1I210297-002 Work Order #...: EKW3G1C1 Matrix..... WG

			IG
PARAMETER	RESULT	LIMIT	UNITS
4-Nitroaniline	ND	50	ug/L
Nitrobenzene	ND	10	ug/L
2-Nitrophenol	ND	10	ug/L
4-Nitrophenol	ND	50	ug/L
N-Nitrosodi-n-butylamine	ND	10	ug/L
N-Nitrosodiethylamine	ND	10	ug/L
N-Nitrosodimethylamine	ND	10	ug/L
N-Nitrosodi-n-propyl- amine	ND	10	ug/L
N-Nitrosodiphenylamine	ND	10	ug/L
N-Nitrosomethylethylamine	ND	10	ug/L
N-Nitrosopiperidine	ND	10	ug/L
N-Nitrosopyrrolidine	ND	10	ug/L
5-Nitro-o-toluidine	ND	20	ug/L
Pentachlorobenzene	ND	10	ug/L
Pentachloronitrobenzene	ND	50	ug/L
Pentachlorophenol	ND	10	ug/L
Phenacetin	ND	20	ug/L
Phenanthrene	ND	10	ug/L
Phenol	ND	10	ug/L
p-Phenylene diamine	ND	100	ug/L
Phorate	ND	50	ug/L
Pronamide	ND	20	ug/L
Pyrene	ND	10	ug/L
Safrole	ND	20	ug/L
1,2,4,5-Tetrachloro- benzene	ND	10	ug/L
2,3,4,6-Tetrachlorophenol	ND	50	ug/L
1,2,4-Trichloro- benzene	ND	10	ug/L
2,4,5-Trichloro- phenol	ND	10	ug/L
2,4,6-Trichloro- phenol	ND	10	ug/L
0,0,0-Triethylphosphoro- thioate	ND	50	ug/L
1,3,5-Trinitrobenzene	ND	50	ug/L
Chlorobenzilate	ND	10	ug/L

Client Sample ID: RQLMW-07

GC/MS Semivolatiles

Lot-Sample #...: A1I210297-002 Work Order #...: EKW3G1C1 Matrix...... WG

SURROGATE	PERCENT RECOVERY	RECOVERY LIMITS		
Nitrobenzene-d5	73	(32 - 112)		
2-Fluorobiphenyl	69	(30 - 110)		
Terphenyl-d14	76	(10 - 144)		
Phenol-d5	53	(10 - 113)		
2-Fluorophenol	40	(13 - 110)		
2,4,6-Tribromophenol	47	(21 - 122)		

Client Sample ID: RQLMW-07

GC Semivolatiles

Matrix....: WG

 Lot-Sample #...: All210297-002
 Work Order #...: EKW3G1C7

 Date Sampled...: 09/20/01 10:10
 Date Received..: 09/20/01

 Prep Date....: 09/24/01
 Analysis Date..: 09/30/01

 Prep Batch #...: 1267178
 Method.....: SW846 8081A

PARAMETER	RESULT	REPORTING LIMIT	UNITS
Aldrin	ND	0.050	ug/L
alpha-BHC	ND	0.050	ug/L
beta-BHC	ND	0.050	ug/L
delta-BHC	ND	0.050	ug/L
gamma-BHC (Lindane)	ND	0.050	ug/L
Chlordane (technical)	ND	0.50	ug/L
4,4'-DDD	ND	0.050	ug/L
4,4'-DDE	ND	0.050	ug/L
4,4'-DDT	ND	0.050	ug/L
Dieldrin	ND	0.050	ug/L
Endosulfan I	ND	0.050	ug/L
Endosulfan II	ND	0.050	ug/L
Endosulfan sulfate	ND	0.050	ug/L
Endrin	ND	0.050	ug/L
Endrin aldehyde	ND	0.050	ug/L
Heptachlor	ND	0.050	ug/L
Heptachlor epoxide	ND	0.050	ug/L
Isodrin	ND	0.10	ug/L
Kepone	ND	1.0	ug/L
Methoxychlor	ND	0.10	ug/L
Toxaphene	ND	2.0	ug/L
	PERCENT	RECOVERY	
SURROGATE	RECOVERY	LIMITS	
Tetrachloro-m-xylene	74	(39 - 130)	
Decachlorobiphenyl	56	(10 - 147)	

Client Sample ID: RQLMW-07

GC Semivolatiles

 Lot-Sample #...: All210297-002
 Work Order #...: EKW3G1DA
 Matrix....: WG

 Date Sampled...: 09/20/01 10:10
 Date Received..: 09/20/01
 Matrix....: WG

 Prep Date....: 09/24/01
 Analysis Date..: 10/01/01
 Matrix.....

 Prep Batch #...: 1267179
 Method.....: SW846 8082

PARAMETER	RESULT	REPORTING LIMIT	UNITS
Aroclor 1016	ND	1.0	ug/L
Aroclor 1221	ND	1.0	ug/L
Aroclor 1232	ND	1.0	ug/L
Aroclor 1242	ND	1.0	ug/L
Aroclor 1248	ND	1.0	ug/L
Aroclor 1254	ND	1.0	ug/L
Aroclor 1260	ND	1.0	ug/L
	PERCENT	RECOVERY	
SURROGATE	RECOVERY	LIMITS	
Tetrachloro-m-xylene	98	(45 - 120)	
Decachlorobiphenyl	59	(24 - 128)	

Client Sample ID: RQLMW-07

GC Semivolatiles

Lot-Sample #: A1I210297-002 Date Sampled: 09/20/01 10:10			Matrix WG
Prep Date: 09/24/01	Analysis Date:		
Prep Batch #: 1267188 Dilution Factor: 1	Wathed	CH946 9141	
Dilucion Factor: 1	Method:	50846 8141	A
		REPORTING	
PARAMETER	RESULT	LIMIT	UNITS
Methyl parathion	ND	1.0	ug/L
Parathion	ND	1.0	ug/L
	PERCENT	RECOVERY	
SURROGATE	RECOVERY	LIMITS	
Triphenyl phosphate	129	(41 - 155)	

Client Sample ID: RQLMW-07

GC Semivolatiles

Lot-Sample #: A11210297-002			Matrix WG
Date Sampled: 09/20/01 10:10			
Prep Date: 09/24/01	Analysis Date:	10/05/01	
Prep Batch #: 1267107			
Dilution Factor: 1	Method:	SW846 8151	A
		REPORTING	
PARAMETER	RESULT	LIMIT	UNITS
2,4-D	ND	4.0	ug/L
Dinoseb	ND	0.70	ug/L
2,4,5-TP (Silvex)	ND	1.0	ug/L
2,4,5-T	ND	1.0	ug/L
	PERCENT	RECOVERY	
SURROGATE	RECOVERY	LIMITS	
2,4-Dichlorophenylacetic acid	67	(43 - 111)	

Client Sample ID: RQLMW-07

Dissolved Trace Level Organic Compounds

Lot-Sample #:	A1I210297-002	Work Order #:	EKW3G1FT	Matrix: WG	
Date Sampled:	09/20/01 10:10	Date Received:	09/20/01		
Prep Date:	09/27/01	Analysis Date:	10/05/01		
Prep Batch #:	1270314				
Dilution Factor:	1	Method:	NONE UV/HPLC H	ber	
			REPORTING		

		TUL OILL TI		
PARAMETER	RESULT	LIMIT	UNITS	_
Nitroguanidine	ND	20	ug/L	

Client Sample ID: RQLMW-07

HPLC

Lot-Sample #...: A1I210297-002 Work Order #...: EKW3G1FL Date Sampled...: 09/20/01 10:10 Date Received..: 09/20/01 Prep Date....: 09/25/01 Analysis Date ..: 09/27/01 Prep Batch #...: 1268126 Dilution Factor: 1

Matrix....: WG

Method....: SW846 8330

PARAMETER	RESULT	REPORTING LIMIT	UNITS
1,3-Dinitrobenzene	ND	0.20	ug/L
2,4-Dinitrotoluene	ND	0.13	ug/L
2,6-Dinitrotoluene	ND	0.13	ug/L
Nitrobenzene	ND	0.20	ug/L
Nitroglycerin	ND	2.5	ug/L
1,3,5-Trinitrobenzene	ND	0.20	ug/L
2,4,6-Trinitrotoluene	ND	0.20	ug/L
HMX	ND	0.50	ug/L
RDX	ND	0.50	ug/L
Tetryl	ND	0.20	ug/L
2-Nitrotoluene	ND	0.20	ug/L
3-Nitrotoluene	ND	0.20	ug/L
4-Nitrotoluene	ND	0.20	ug/L
4-Amino-2,6- dinitrotoluene	ND	0.20	ug/L
2-Amino-4,6- dinitrotoluene	ND	0.20	ug/L
	PERCENT	RECOVERY	
SURROGATE	RECOVERY	LIMITS	
1-Chloro-3-nitrobenzene	57	(53 - 133)	0

Client Sample ID: RQLMW-07

TOTAL Metals

Lot-Sample #...: A1I210297-002 Date Sampled...: 09/20/01 10:10 Date Received..: 09/20/01 Matrix....: WG

PARAMETER	RESULT	REPORTI	NG UNITS	METHO	D	PREPARATION- ANALYSIS DATE	WORK ORDER #
Prep Batch #.	1267112						
Silver	ND	0.010	mg/L	SW846	6010B	09/24-09/25/01	EKW3G1AL
		Dilution Fac	ctor: 1				
Arsenic	0.053	0.0050	mg/L	SW846	6010B	09/24-09/25/01	EKW3G1DL
		Dilution Fac	ctor: 1				
Barium	0.039		mg/L	SW846	6010B	09/24-09/25/01	EKW3G1D1
		Dilution Fac	ctor: 1				
Beryllium	ND	0.0040	mg/L	SW846	6010B	09/24-09/25/01	EKW3G1D4
		Dilution Fac	ctor: 1				
Calcium	109	5.0	mg/L	SW846	6010B	09/24-09/25/01	EKW3G1A4
		Dilution Fac	tor: 1				
Cadmium	ND	0.0050	mg/L	SW846	6010B	09/24-09/25/01	EKW3G1D7
		Dilution Fac	ctor: 1				
Cobalt	ND	0.050	mg/L	SW846	6010B	09/24-09/25/01	EKW3G1AA
		Dilution Fac	ctor: 1				
Chromium	ND	0.010	mg/L	SW846	6010B	09/24-09/25/01	EKW3G1A1
		Dilution Fac	ctor: 1				
Copper	ND	0.010	mg/L	SW846	6010B	09/24-09/25/01	EKW3G1AE
		Dilution Fac	ctor: 1				
Iron	39.0	0.10	mg/L	SW846	6010B	09/24-09/25/01	EKW3G1A7
		Dilution Fac	tor: 1				
Potassium	9.1	5.0	mg/L	SW846	6010B	09/24-09/25/01	EKW3G1EA
		Dilution Fac	tor: 1				
Magnesium	140	5.0	mg/L	SW846	6010B	09/24-09/25/01	EKW3G1EE
		Dilution Fac	tor: 1				
Manganese	1.3	0.015	mg/L	SW846	6010B	09/24-09/25/01	EKW3G1EH
		Dilution Fac	tor: 1				
Sodium	14.8	5.0	mg/L	SW846	6010B	09/24-09/25/01	EKW3G1AP
		Dilution Fac					

Client Sample ID: RQLMW-07

TOTAL Metals

Lot-Sample #...: A11210297-002

Matrix..... WG

PARAMETER	RESULT	REPORTIN LIMIT	G UNITS	METHO	-	PREPARATION- ANALYSIS DATE	WORK ORDER #
Nickel	ND	0.040	mg/L		6010B	09/24-09/25/01	
		Dilution Fac			0.000		
Lead	ND	0.0030	mg/L	SW846	6010B	09/24-09/25/01	EKW3G1DP
		Dilution Fac	tor: 1				
Antimony	ND	0.060	mg/L	SW846	6010B	09/24-09/25/01	EKW3G1DW
		Dilution Fac	tor: 1				
Selenium	ND	0.0050	mg/L	SW846	6010B	09/24-09/25/01	EKW3G1DT
		Dilution Fac	tor: 1				
Tin	ND	0.10	mg/L	SW846	6010B	09/24-09/25/01	EKW3G1EL
		Dilution Fac	tor: 1				
Thallium	ND Wa	0.0020	mg/L	SW846	7841	09/24-09/25/01	EKW3G1EP
		Dilution Fac	tor: 1				
anadium	ND	0.050	mg/L	SW846	6010B	09/24-09/25/01	EKW3G1AT
		Dilution Fact	tor: 1				
Zinc	0.056	0.050	mg/L	SW846	6010B	09/24-09/25/01	EKW3G1AW
		Dilution Fact	cor: 1				
Mercury	ND	0.00020	mg/L	SW846	7470A	09/24-09/25/01	EKW3G1ET
		Dilution Fact	tor: 1				

NOTE (S) :

Wa Post digestion spike recovery fell between 40-85% due to matrix interference.

Client Sample ID: RQLMW-07

General Chemistry

PARAMETER	RESULT	RL	UNITS	METHO	D	PREPARATION- ANALYSIS DATE	PREP BATCH #
pH (liquid)	8.1	Dilution Fac	No Units	MCAWW	150.1	09/22/01	1267393
Chloride	7.0	1.0 Dilution Fact	mg/L tor: 1	MCAWW	300.0A	09/25/01	1269389
Hexavalent Chromium	ND	0.02	mg/L	SW846	7196A	09/21/01	1268450
		Dilution Fact	tor: 1				
Nitrate-Nitrite	ND	0.1 Dilution Fact		MCAWW	353.2	09/24/01	1268415
Nitrocellulose	ND	0.50 Dilution Fact		MCAWW	353.2	09/29-10/04/01	1274466
Nitrogen, as Ammonia	0.9	0.2 Dilution Fact		MCAWW	350.3	10/01/01	1275093
Sulfate	267	5.0 Dilution Fact		MCAWW	300.0A	09/25/01	1269392
Total phosphorus	ND	0.1 Dilution Fact	-	MCAWW	365.2	09/26/01	1269443
Total Alkalinity	730	5.0 Dilution Fact		MCAWW	310.1	09/22/01	1267433
Total Cyanide	ND	0.010 Dilution Fact	-	MCAWW	335.2	10/02/01	1275384
Total Dissolved Solids	1000	10	mg/L	MCAWW	160.1	09/25-09/26/01	1268169
		Dilution Fact	tor: 1				
Total Organic Carbon	10	1 Dilution Fact		SW846	9060	09/24/01	1268207
Total Phenols	ND	0.040 Dilution Fact	-	SW846	9065	10/03/01	1276408
				-0.0143	0.022	77, 77, 67 7	

Client Sample ID: RQLMW-07

General Chemistry

Lot-Sample #...: A1I210297-002 Work Order #...: EKW3G Matrix..... WG

PARAMETER	RESULT	RL	UNITS	METHOD	PREPARATION- ANALYSIS DATE	PREP BATCH #
Total Sulfide	ND	1.0	mg/L	MCAWW 376.1	09/24/01	1268591
	Di	lution Fa	ctor: 1			
Turbidity	690	10	NTU	MCAWW 180.1	09/21/01	1264521
	Di	lution Fa	ctor: 20			

Client Sample ID: DUPLICATE

GC/MS Volatiles

Lot-Sample #...: A1I210297-003 Work Order #...: EKW3P1A2 Date Sampled...: 09/20/01 10:20 Date Received..: 09/20/01 Prep Date....: 10/01/01 Prep Batch #...: 1274204 Dilution Factor: 1

Analysis Date ..: 10/01/01

Matrix....: WG

Method....: SW846 8260B

DEDODETING

		REPORTING	UNITS	
PARAMETER	RESULT	LIMIT		
Dichlorodifluoromethane	ND	1.0	ug/L	
Acetonitrile	ND	20	ug/L	
Acrolein	ND	20	ug/L	
Allyl chloride	ND	2.0	ug/L	
1,3-Dichloropropane	ND	1.0	ug/L	
2,2-Dichloropropane	ND	1.0	ug/L	
1,1-Dichloropropene	ND	1.0	ug/L	
Ethyl methacrylate	ND	1.0	ug/L	
Isobutyl alcohol	ND	50	ug/L	
Methyl methacrylate	ND	2.0	ug/L	
Propionitrile	ND	4.0	ug/L	
4-Methyl-2-pentanone (MIBK)	ND	10	ug/L	
Acetone	ND	10	ug/L	
Acrylonitrile	ND	20	ug/L	
Benzene	ND	1.0	ug/L	
Bromochloromethane	ND	1.0	ug/L	
Bromodichloromethane	ND	1.0	ug/L	
Bromoform	ND	1.0	ug/L	
Bromomethane	ND	1.0	ug/L	
2-Butanone	ND	10	ug/L	
Carbon disulfide	ND	1.0	ug/L	
Carbon tetrachloride	ND	1.0	ug/L	
Chlorobenzene	ND	1.0	ug/L	
Dibromochloromethane	ND	1.0	ug/L	
1,2-Dibromo-3-chloro- propane	ND	7.0	ug/L	
Chloroethane	ND	1.0	ug/L	
Chloroform	0.19 J	1.0	ug/L	
Chloromethane	0.14 J	1.0	ug/L	
1,2-Dibromoethane	ND	1.0	ug/L	
Dibromomethane	ND	1.0	ug/L	
1,2-Dichlorobenzene	ND	1.0	ug/L	
1,4-Dichlorobenzene	ND	1.0	ug/L	
trans-1,4-Dichloro- 2-butene	ND	1.0	ug/L	
1,1-Dichloroethane	ND	1.0	ug/L	
1,2-Dichloroethane	ND	1.0	ug/L	
1,1-Dichloroethene	ND	1.0	ug/L	

Client Sample ID: DUPLICATE

GC/MS Volatiles

Lot-Sample #...: A1I210297-003 Work Order #...: EKW3P1A2 Matrix..... WG

PARAMETER	RESULT	REPORTING LIMIT	UNITS
cis-1,2-Dichloroethene	ND	1.0	ug/L
trans-1,2-Dichloroethene	ND	1.0	ug/L
1,2-Dichloropropane	ND	1.0	ug/L
cis-1,3-Dichloropropene	ND	1.0	ug/L
trans-1, 3-Dichloropropene	ND	1.0	ug/L
Ethylbenzene	ND	1.0	ug/L ug/L
Trichlorofluoromethane	ND		-
2-Hexanone	ND	1.0 10	ug/L
Iodomethane	ND	1.0	ug/L
		E 2 2	ug/L
Methylene chloride	0.43 J,B ND	1.0	ug/L
Styrene 1,1,1,2-Tetrachloroethane	ND	1.0	ug/L
		1.0	ug/L
1,1,2,2-Tetrachloroethane Tetrachloroethene	ND	1.0	ug/L
	ND	1.0	ug/L
Toluene	ND	1.0	ug/L
1,1,1-Trichloroethane	ND	1.0	ug/L
1,1,2-Trichloroethane	ND	1.0	ug/L
Trichloroethene	ND	1.0	ug/L
1,2,3-Trichloropropane	ND	1.0	ug/L
Vinyl acetate	ND	10	ug/L
Vinyl chloride	ND	1.0	ug/L
Xylenes (total)	ND	1.0	ug/L
Chloroprene	ND	2.0	ug/L
1,3-Dichlorobenzene	ND	1.0	ug/L
Methacrylonitrile	ND	2.0	ug/L
	PERCENT	RECOVERY	
SURROGATE	RECOVERY	LIMITS	
Dibromofluoromethane	108	(73 - 122)	
1,2-Dichloroethane-d4	103	(61 - 128)	
Toluene-d8	91	(76 - 110)	
4-Bromofluorobenzene	89	(74 - 116)	

NOTE (S) :

J Estimated result. Result is less than RL.

B Method blank contamination. The associated method blank contains the target analyte at a reportable level.

Client Sample ID: DUPLICATE

GC/MS Semivolatiles

 Lot-Sample #...: All210297-003
 Work Order #...: EKW3P1AV
 Matrix...... WG

 Date Sampled...: 09/20/01 10:20
 Date Received..: 09/20/01
 Matrix..... WG

 Prep Date.....: 09/24/01
 Analysis Date..: 09/30/01
 Matrix......

 Prep Batch #...: 1267101
 Method.......
 SW846 8270C

PARAMETER	RESULT	REPORTING LIMIT	UNITS
Nitrobenzene	ND	10	ug/L
2-Nitrophenol	ND	10	ug/L
4-Nitrophenol	ND	50	ug/L
N-Nitrosodi-n-butylamine	ND	10	ug/L
N-Nitrosodiethylamine	ND	10	ug/L
N-Nitrosodimethylamine	ND	10	ug/L
N-Nitrosodi-n-propyl- amine	ND	10	ug/L
N-Nitrosodiphenylamine	ND	10	ug/L
N-Nitrosomethylethylamine	ND	10	ug/L
N-Nitrosopiperidine	ND	10	ug/L
N-Nitrosopyrrolidine	ND	10	ug/L
5-Nitro-o-toluidine	ND	20	ug/L
Pentachlorobenzene	ND	10	ug/L
Pentachloronitrobenzene	ND	50	ug/L
Pentachlorophenol	ND	10	ug/L
Phenacetin	ND	20	ug/L
Phenanthrene	ND	10	ug/L
Phenol	ND	10	ug/L
p-Phenylene diamine	ND	100	ug/L
Phorate	ND	50	ug/L
Pronamide	ND	20	ug/L
Pyrene	ND	10	ug/L
Safrole	ND	20	ug/L
1,2,4,5-Tetrachloro- benzene	ND	10	ug/L
2,3,4,6-Tetrachlorophenol	ND	50	ug/L
1,2,4-Trichloro- benzene	ND	10	ug/L
2,4,5-Trichloro- phenol	ND	10	ug/L
2,4,6-Trichloro- phenol	ND	10	ug/L
0,0,0-Triethylphosphoro- thioate	ND	50	ug/L
1,3,5-Trinitrobenzene	ND	50	ug/L
Chlorobenzilate	ND	10	ug/L
Acenaphthene	ND	10	ug/L

Client Sample ID: DUPLICATE

GC/MS Semivolatiles

Lot-Sample #...: All210297-003 Work Order #...: EKW3P1AV Matrix...... WG

	1000	REPORTING	ALC: NO
PARAMETER	RESULT	LIMIT	UNITS
Acenaphthylene	ND	10	ug/L
Acetophenone	ND	10	ug/L
2-Acetylaminofluorene	ND	100	ug/L
4-Aminobiphenyl	ND	50	ug/L
Anthracene	ND	10	ug/L
Benzo(a) anthracene	ND	10	ug/L
Benzo(b)fluoranthene	ND	10	ug/L
Benzo(k)fluoranthene	ND	10	ug/L
Benzo(ghi)perylene	ND	10	ug/L
Benzo(a)pyrene	ND	10	ug/L
Benzyl alcohol	ND	10	ug/L
bis(2-Chloroethoxy) methane	ND	10	ug/L
bis(2-Chloroethyl) - ether	ND	10	ug/L
bis(2-Chloro-1-	ND	10	ug/L
methylethyl) ether			
bis(2-Ethylhexyl)	ND	10	ug/L
phthalate			
4-Bromophenyl phenyl ether	ND	10	ug/L
Butyl benzyl phthalate	ND	10	ug/L
p-Chloroaniline	ND	10	ug/L
4-Chloro-3-methylphenol	ND	10	ug/L
2-Chloronaphthalene	ND	10	ug/L
2-Chlorophenol	ND	10	ug/L
4-Chlorophenyl phenyl ether	ND	10	ug/L
Chrysene	ND	10	ug/L
Diallate	ND	20	ug/L
Dibenz(a, h) anthracene	ND	10	ug/L
Dibenzofuran	ND	10	ug/L
Di-n-butyl phthalate	ND	10	ug/L
3,3'-Dichlorobenzidine	ND	50	ug/L
2,4-Dichlorophenol	ND	10	ug/L
2,6-Dichlorophenol	ND	10	ug/L
Diethyl phthalate	ND	10	ug/L
Thionazin	ND	50	ug/L
Dimethoate	ND	20	ug/L
p-Dimethylaminoazobenzene	ND	20	ug/L
7,12-Dimethylbenz(a) - anthracene	ND	20	ug/L
3,3'-Dimethylbenzidine	ND	50	ug/L

Client Sample ID: DUPLICATE

GC/MS Semivolatiles

Lot-Sample #...: A1I210297-003 Work Order #...: EKW3P1AV Matrix...... WG

		REPORTIN	G
PARAMETER	RESULT	LIMIT	UNITS
2,4-Dimethylphenol	ND	10	ug/L
Dimethyl phthalate	ND	10	ug/L
Di-n-octyl phthalate	ND	10	ug/L
1,3-Dinitrobenzene	ND	10	ug/L
4,6-Dinitro-	ND	50	ug/L
2-methylphenol			
2,4-Dinitrophenol	ND	50	ug/L
2,4-Dinitrotoluene	ND	10	ug/L
2,6-Dinitrotoluene	ND	10	ug/L
Diphenylamine	ND	10	ug/L
Disulfoton	ND	50	ug/L
Ethyl methanesulfonate	ND	10	ug/L
Famphur	ND	100	ug/L
Fluoranthene	ND	10	ug/L
Fluorene	ND	10	ug/L
Hexachlorobenzene	ND	10	ug/L
Hexachlorobutadiene	ND	10	ug/L
Hexachlorocyclopenta-	ND	50	ug/L
diene			
Hexachloroethane	ND	10	ug/L
Hexachloropropene	ND	100	ug/L
Indeno(1,2,3-cd)pyrene	ND	10	ug/L
Isophorone	ND	10	ug/L
Isosafrole	ND	20	ug/L
Methapyrilene	ND	50	ug/L
o-Toluidine	ND	20	ug/L
3-Methylcholanthrene	ND	20	ug/L
Methyl methanesulfonate	ND	10	ug/L
2-Methylnaphthalene	ND	10	ug/L
2-Methylphenol	ND	10	ug/L
3-Methylphenol	ND	10	ug/L
4-Methylphenol	ND	10	ug/L
Naphthalene	ND	10	ug/L
1,4-Naphthoquinone	ND	50	ug/L
1-Naphthylamine	ND	10	ug/L
2-Naphthylamine	ND	10	ug/L
2-Nitroaniline	ND	50	ug/L
3-Nitroaniline	ND	50	ug/L

Client Sample ID: DUPLICATE

GC/MS Semivolatiles

Lot-Sample #...: All210297-003 Work Order #...: EKW3P1AV Matrix..... WG

SURROGATE	PERCENT RECOVERY	RECOVERY LIMITS
Nitrobenzene-d5	75	(32 - 112)
2-Fluorobiphenyl	72	(30 - 110)
Terphenyl-d14	82	(10 - 144)
Phenol-d5	52	(10 - 113)
2-Fluorophenol	33	(13 - 110)
2,4,6-Tribromophenol	40	(21 - 122)

Client Sample ID: DUPLICATE

GC Semivolatiles

DEDODETING

 Lot-Sample #...: All210297-003
 Work Order #...: EKW3P1AX
 Matrix.....: WG

 Date Sampled...: 09/20/01 10:20
 Date Received..: 09/20/01
 Matrix....: WG

 Prep Date....: 09/24/01
 Analysis Date..: 09/30/01
 Matrix.....

 Prep Batch #...: 1267178
 Method.....: SW846 8081A

		REPORTING	3
PARAMETER	RESULT	LIMIT	UNITS
Aldrin	ND	0.050	ug/L
alpha-BHC	ND	0.050	ug/L
beta-BHC	ND	0.050	ug/L
delta-BHC	ND	0.050	ug/L
gamma-BHC (Lindane)	ND	0.050	ug/L
Chlordane (technical)	ND	0.50	ug/L
4,4'-DDD	ND	0.050	ug/L
4,4'-DDE	ND	0.050	ug/L
4,4'-DDT	ND	0.050	ug/L
Dieldrin	ND	0.050	ug/L
Endosulfan I	ND	0.050	ug/L
Endosulfan II	ND	0.050	ug/L
Endosulfan sulfate	ND	0.050	ug/L
Endrin	ND	0.050	ug/L
Endrin aldehyde	ND	0.050	ug/L
Heptachlor	ND	0.050	ug/L
Heptachlor epoxide	ND	0.050	ug/L
Isodrin	ND	0.10	ug/L
Kepone	ND	1.0	ug/L
Methoxychlor	ND	0.10	ug/L
Toxaphene	ND	2.0	ug/L
	PERCENT	RECOVERY	
SURROGATE	RECOVERY	LIMITS	
Tetrachloro-m-xylene	76	(39 - 130))
Decachlorobiphenyl	47	(10 - 147	7)

Client Sample ID: DUPLICATE

Lot-Sample #: A1I210297-003 Date Sampled: 09/20/01 10:20 Prep Date: 09/24/01 Prep Batch #: 1267179		09/20/01	Matrix WG
Dilution Factor: 1	Method:	SW846 8082	
		REPORTING	
PARAMETER	RESULT	LIMIT	UNITS
Aroclor 1016	ND	1.0	ug/L
Aroclor 1221	ND	1.0	ug/L
Aroclor 1232	ND	1.0	ug/L
Aroclor 1242	ND	1.0	ug/L
Aroclor 1248	ND	1.0	ug/L
Aroclor 1254	ND	1.0	ug/L
Aroclor 1260	ND	1.0	ug/L
	PERCENT	RECOVERY	
SURROGATE	RECOVERY	LIMITS	
Tetrachloro-m-xylene	95	(45 - 120)	
Decachlorobiphenyl	51	(24 - 128)	

Client Sample ID: DUPLICATE

Lot-Sample #: A1I210297-003 Date Sampled: 09/20/01 10:20			Matrix WG
Prep Date: 09/24/01 Prep Batch #: 1267188	Analysis Date:	09/25/01	
Dilution Factor: 1	Method:	SW846 8141	A
		REPORTING	
PARAMETER	RESULT	LIMIT	UNITS
Methyl parathion	ND	1.0	ug/L
Parathion	ND	1.0	ug/L
	PERCENT	RECOVERY	
SURROGATE	RECOVERY	LIMITS	
Triphenyl phosphate	129	(41 - 155)	

Client Sample ID: DUPLICATE

Lot-Sample #: A1I210297-003	Work Order #:	EKW3P1AW	Matrix: WG
Date Sampled: 09/20/01 10:20	Date Received:	09/20/01	
Prep Date: 09/24/01	Analysis Date:	10/05/01	
Prep Batch #: 1267107			
Dilution Factor: 1	Method:	SW846 8151	A
		REPORTING	
PARAMETER	RESULT	LIMIT	UNITS
2,4-D	ND	4.0	ug/L
Dinoseb	ND	0.70	ug/L
2,4,5-TP (Silvex)	ND	1.0	ug/L
2,4,5-T	ND	1.0	ug/L
	PERCENT	RECOVERY	
SURROGATE	RECOVERY	LIMITS	
2,4-Dichlorophenylacetic acid	71	(43 - 111)	

Client Sample ID: DUPLICATE

Dissolved Trace Level Organic Compounds

Lot-Sample #:	A1I210297-003	Work Order #:	EKW3P1CT	Matrix	WG
Date Sampled:	09/20/01 10:20	Date Received:	09/20/01		
Prep Date:	09/27/01	Analysis Date:	10/05/01		
Prep Batch #:	1270314				
Dilution Factor:	1	Method:	NONE UV/HPLC	per	

		REPORTIN	ſĠ
PARAMETER	RESULT	LIMIT	UNITS
Nitroguanidine	ND	20	ug/L

Client Sample ID: DUPLICATE

HPLC

Lot-Sample #:				Matrix WG
Date Sampled:				
Prep Date:	09/27/01	Analysis Date:	10/02/01	
Prep Batch #:	1270302			
Dilution Factor:	5	Method:	SW846 8330	

		REPORTIN	The standard states in
PARAMETER	RESULT	LIMIT	UNITS
1,3-Dinitrobenzene	ND	1.0	ug/L
2,4-Dinitrotoluene	ND	1.0	ug/L
2,6-Dinitrotoluene	ND	1.0	ug/L
Nitrobenzene	ND	1.0	ug/L
Nitroglycerin	ND	12	ug/L
1,3,5-Trinitrobenzene	ND	1.0	ug/L
2,4,6-Trinitrotoluene	ND	1.0	ug/L
HMX	ND	2.5	ug/L
RDX	ND	2.5	ug/L
Tetryl	ND	1.0	ug/L
2-Nitrotoluene	ND	1.0	ug/L
3-Nitrotoluene	ND	1.0	ug/L
4-Nitrotoluene	ND	1.0	ug/L
4-Amino-2,6-	ND	1.0	ug/L
dinitrotoluene			
2-Amino-4,6-	ND	1.0	ug/L
dinitrotoluene			
	PERCENT	RECOVERY	e la
SURROGATE	RECOVERY	LIMITS	
1-Chloro-3-nitrobenzene	90	(53 - 13	3)

Client Sample ID: DUPLICATE

TOTAL Metals

Lot-Sample #...: A1I210297-003 Date Sampled...: 09/20/01 10:20 Date Received..: 09/20/01 Matrix....: WG

PARAMETER	RESULT	REPORTII LIMIT	NG UNITS	METHO	D	PREPARATION- ANALYSIS DATE	WORK ORDER #
D	1000110						
Prep Batch # Zinc	0.061	0.050	mg/L	SW846	6010B	09/24-09/25/01	RKW3P1 AH
bine	0.001	Dilution Fac		54040	OUTUB	03/24 03/23/01	SIGIST LAI
Silver	ND	0.010	mg/L	SW846	6010B	09/24-09/25/01	EKW3P1AE
		Dilution Fac	ctor: 1				
Arsenic	0.057	0.0050	mg/L	SW846	6010B	09/24-09/25/01	EKW3P1A3
		Dilution Fac	ctor: 1				
Barium	0.045	0.010	mg/L	SW846	6010B	09/24-09/25/01	EKW3P1A7
		Dilution Fac	tor: 1				
Beryllium	ND	0.0040	mg/L	SW846	6010B	09/24-09/25/01	EKW3P1A8
		Dilution Fac	tor: 1				
alcium	127	5.0	mg/L	SW846	6010B	09/24-09/25/01	EKW3P1AK
		Dilution Fac	tor: 1				
Cadmium	ND	0.0050	mg/L	SW846	6010B	09/24-09/25/01	EKW3P1A9
		Dilution Fac	tor: 1				
Cobalt	ND	0.050	mg/L	SW846	6010B	09/24-09/25/01	EKW3P1AA
		Dilution Fac	tor: 1				
Chromium	ND	0.010	mg/L	SW846	6010B	09/24-09/25/01	EKW3P1AJ
		Dilution Fac	tor: 1				
Copper	ND	0.010	mg/L	SW846	6010B	09/24-09/25/01	EKW3P1AC
		Dilution Fac	tor: 1				
Iron	44.2	0.10	mg/L	SW846	6010B	09/24-09/25/01	EKW3P1AL
		Dilution Fac	tor: 1				
Potassium	10.6	5.0	mg/L	SW846	6010B	09/24-09/25/01	EKW3P1CA
		Dilution Fac	tor: 1				
Magnesium	163	5.0	mg/L	SW846	6010B	09/24-09/25/01	EKW3P1CC
		Dilution Fac					
Manganese	1.5	0.015	mg/L	SW846	6010B	09/24-09/25/01	EKW3P1CD
		Dilution Fac					

Client Sample ID: DUPLICATE

TOTAL Metals

Lot-Sample #...: A1I210297-003

Matrix....: WG

		REPORTIN	and the second second			PREPARATION-	WORK
PARAMETER	RESULT	LIMIT	UNITS	METHO	-	ANALYSIS DATE	
Sodium	16.8	5.0	mg/L	SW846	6010B	09/24-09/25/01	EKW3P1AF
		Dilution Fac	cor: 1				
Nickel	ND	0.040	mg/L	SW846	6010B	09/24-09/25/01	EKW3P1AD
		Dilution Fac	cor: 1				
Lead	ND	0.0030	mg/L	SW846	6010B	09/24-09/25/01	EKW3P1A4
		Dilution Fact	cor: 1				
Antimony	ND	0.060	mg/L	SW846	6010B	09/24-09/25/01	EKW3P1A6
		Dilution Fact	cor: 1				
Selenium	ND	0.0050	mg/L	SW846	6010B	09/24-09/25/01	EKW3P1A5
		Dilution Fact	cor: 1				
Tin	ND	0.10	mg/L	SW846	6010B	09/24-09/25/01	EKW3P1CE
3-1		Dilution Fact	tor: 1				
hallium	ND Wa	0.0020	mg/L	SW846	7841	09/24-09/25/01	EKW3P1CF
		Dilution Fact	tor: 1				
Vanadium	ND	0.050	mg/L	SW846	6010B	09/24-09/25/01	EKW3P1AG
		Dilution Fact	cor: 1				
Mercury	ND	0.00020	mg/L	SW846	7470A	09/24-09/25/01	EKW3P1CG
		Dilution Fact	tor: 1				

NOTE (S) :

Wa Post digestion spike recovery fell between 40-85% due to matrix interference.

Client Sample ID: DUPLICATE

General Chemistry

 Lot-Sample #...: All210297-003
 Work Order #...: EKW3P
 Matrix...... WG

 Date Sampled...: 09/20/01 10:20
 Date Received..: 09/20/01

PARAMETER	RESULT	RL	UNITS	METHO	0	PREPARATION- ANALYSIS DATE	PREP BATCH #
pH (liquid)	8.0		No Units	MCAWW	150.1	09/22/01	1267393
		Dilution Fact	tor: 1				
Chloride	6.9	1.0 Dilution Fact		MCAWW	300.0A	09/25/01	1269389
		bilderon raci					
Hexavalent Chromium	ND	0.02	mg/L	SW846	7196A	09/21/01	1268450
		Dilution Fact	cor: 1				
Nitrate-Nitrite	ND	0.1	mg/L	MCAWW	353.2	09/24/01	1268415
		Dilution Fact				1040-4 20	
Nitrocellulose	ND	0.50	mg/L	MCAWW	353.2	09/29-10/04/01	1274466
		Dilution Fact			20000		
itrogen, as Ammonia	1.2	0.2	mcr/T.	MCAWW	350.3	10/01/01	1275093
		Dilution Fact				10/01/01	
Sulfate	269	5.0	mg/L	MCAWW	300.0A	09/25/01	1269392
		Dilution Fact	tor: 5				
Total phosphorus	0.1	0.1	mg/L	MCAWW	365.2	09/26/01	1269445
		Dilution Fact	cor: 1				
Total Alkalinity	730	5.0	mg/L	MCAWW	310.1	09/22/01	1267433
		Dilution Fact	or: 1				
Total Dissolved Solids	1000	10	mg/L	MCAWW	160.1	09/25-09/26/01	1268169
		Dilution Fact	cor: 1				
Total Organic Carbon	10	1	mg/L	SW846	9060	09/24/01	1268207
		Dilution Fact					
Total Phenols	0.067	0.040	mg/L	SW846	9065	10/03/01	1276408
		Dilution Fact	or: 1				
Total Sulfide	1.7	1.0	mg/L	MCAWW	376.1	09/24/01	1268591
		Dilution Fact					

Client Sample ID: DUPLICATE

General Chemistry

Lot-Sample #...: A11210297-003 Work Order #...: EKW3P Matrix..... WG

PARAMETER	RESULT	RL	UNITS	METHOD	PREPARATION- ANALYSIS DATE	PREP BATCH #
Turbidity	500	10	NTU	MCAWW 180.1	09/21/01	1264521
	Di	ilution Fa	ctor: 20			

Client Sample ID: DUPLICATE

General Chemistry

Lot-Sample #:	A1I280133-002	Work Order #: EK9E1	Matrix: WG
Date Sampled:	09/26/01 13:27	Date Received: 09/27/01	

					PREPARATION-	PREP
PARAMETER	RESULT	RL	UNITS	METHOD	ANALYSIS DATE	BATCH #
Total Cyanide	ND	0.010	mg/L	MCAWW 335.2	10/02/01	1275384
	D	ilution Fact	cor: 1			

Client Sample ID: FIELD BLANK

GC/MS Volatiles

Lot-Sample #...: All210297-004 Work Order #...: EKW3T1A2 Date Sampled...: 09/20/01 08:05 Date Received..: 09/20/01 Prep Date....: 10/01/01 Analysis Date ..: 10/01/01 Prep Batch #...: 1274204 Dilution Factor: 1

Matrix....: WQ

Method....: SW846 8260B

		REPORTING	3
PARAMETER	RESULT	LIMIT	UNITS
1,2-Dibromo-3-chloro-	ND	7.0	ug/L
propane			
Chloroethane	ND	1.0	ug/L
Chloroform	ND	1.0	ug/L
Dichlorodifluoromethane	ND	1.0	ug/L
Acetonitrile	ND	20	ug/L
Acrolein	ND	20	ug/L
Allyl chloride	ND	2.0	ug/L
1,3-Dichloropropane	ND	1.0	ug/L
2,2-Dichloropropane	ND	1.0	ug/L
Chloromethane	0.15 J	1.0	ug/L
1,2-Dibromoethane	ND	1.0	ug/L
1,1-Dichloropropene	ND	1.0	ug/L
Ethyl methacrylate	ND	1.0	ug/L
Isobutyl alcohol	ND	50	ug/L
Dibromomethane	ND	1.0	ug/L
1,2-Dichlorobenzene	ND	1.0	ug/L
1,4-Dichlorobenzene	ND	1.0	ug/L
Methyl methacrylate	ND	2.0	ug/L
Propionitrile	ND	4.0	ug/L
4-Methyl-2-pentanone (MIBK)	ND	10	ug/L
Acetone	2.3 J	10	ug/L
Acrylonitrile	ND	20	ug/L
Benzene	ND	1.0	ug/L
Bromochloromethane	ND	1.0	ug/L
Bromodichloromethane	ND	1.0	ug/L
Bromoform	ND	1.0	ug/L
Bromomethane	ND	1.0	ug/L
2-Butanone	0.43 J	10	ug/L
Carbon disulfide	ND	1.0	ug/L
Carbon tetrachloride	ND	1.0	ug/L
Chlorobenzene	ND	1.0	ug/L
Dibromochloromethane	ND	1.0	ug/L
trans-1,4-Dichloro- 2-butene	ND	1.0	ug/L
1,1-Dichloroethane	ND	1.0	ug/L
1,2-Dichloroethane	ND	1.0	ug/L
1,1-Dichloroethene	ND	1.0	ug/L

Client Sample ID: FIELD BLANK

GC/MS Volatiles

Lot-Sample #...: AlI210297-004 Work Order #...: EKW3T1A2

Matrix....: WQ

PARAMETER	RESULT	REPORTIN LIMIT	G UNITS
cis-1,2-Dichloroethene	ND	1.0	ug/L
trans-1,2-Dichloroethene	ND	1.0	ug/L
1,2-Dichloropropane	ND	1.0	ug/L
cis-1,3-Dichloropropene	ND	1.0	ug/L
trans-1,3-Dichloropropene	ND	1.0	ug/L
Ethylbenzene	ND	1.0	ug/L
Trichlorofluoromethane	ND	1.0	ug/L
2-Hexanone	ND	10	ug/L
Iodomethane	ND	1.0	ug/L
Methylene chloride	0.43 J,B	1.0	ug/L
Styrene	ND	1.0	ug/L
1,1,1,2-Tetrachloroethane	ND	1.0	ug/L
1,1,2,2-Tetrachloroethane	ND	1.0	ug/L
Tetrachloroethene	ND	1.0	ug/L
Toluene	ND	1.0	ug/L
1,1,1-Trichloroethane	ND	1.0	ug/L
1,1,2-Trichloroethane	ND	1.0	ug/L
Trichloroethene	ND	1.0	ug/L
1,2,3-Trichloropropane	ND	1.0	ug/L
Vinyl acetate	ND	10	ug/L
Vinyl chloride	ND	1.0	ug/L
Xylenes (total)	ND	1.0	ug/L
Chloroprene	ND	2.0	ug/L
1,3-Dichlorobenzene	ND	1.0	ug/L
Methacrylonitrile	ND	2.0	ug/L
	PERCENT	RECOVERY	
SURROGATE	RECOVERY	LIMITS	1.1
Dibromofluoromethane	106	(73 - 12:	2)
1,2-Dichloroethane-d4	105	(61 - 12)	3)
Toluene-d8	93	(76 - 11)))
4-Bromofluorobenzene	88	(74 - 11)	5)

NOTE (S) :

J Estimated result. Result is less than RL.

B Method blank contamination. The associated method blank contains the target analyte at a reportable level.

Client Sample ID: FIELD BLANK

GC/MS Semivolatiles

 Lot-Sample #...: All210297-004
 Work Order #...: EKW3TIAV
 Matrix..... WQ

 Date Sampled...: 09/20/01 08:05
 Date Received..: 09/20/01
 Prep Date..... WQ

 Prep Date.....: 09/24/01
 Analysis Date..: 09/30/01
 Prep Batch #...: 1267101

 Dilution Factor: 1
 Method......: SW846 8270C

	1000000	REPORTING	
PARAMETER	RESULT	LIMIT	UNITS
Acenaphthene	ND	10	ug/L
Acenaphthylene	ND	10	ug/L
Acetophenone	ND	10	ug/L
2-Acetylaminofluorene	ND	100	ug/L
4-Aminobiphenyl	ND	50	ug/L
Anthracene	ND	10	ug/L
Benzo(a) anthracene	ND	10	ug/L
Benzo(b)fluoranthene	ND	10	ug/L
Benzo(k)fluoranthene	ND	10	ug/L
Benzo(ghi)perylene	ND	10	ug/L
Benzo(a)pyrene	ND	10	ug/L
Benzyl alcohol	ND	10	ug/L
bis(2-Chloroethoxy) methane	ND	10	ug/L
bis(2-Chloroethyl)- ether	ND	10	ug/L
bis(2-Chloro-1- methylethyl) ether	ND	10	ug/L
bis(2-Ethylhexyl) phthalate	ND	10	ug/L
4-Bromophenyl phenyl ether	ND	10	ug/L
Butyl benzyl phthalate	ND	10	ug/L
p-Chloroaniline	ND	10	ug/L
4-Chloro-3-methylphenol	ND	10	ug/L
2-Chloronaphthalene	ND	10	ug/L
2-Chlorophenol	ND	10	ug/L
4-Chlorophenyl phenyl ether	ND	10	ug/L
Chrysene	ND	10	ug/L
Diallate	ND	20	ug/L
Dibenz(a,h)anthracene	ND	10	ug/L
Dibenzofuran	ND	. 10	ug/L
Di-n-butyl phthalate	ND	10	ug/L
3,3'-Dichlorobenzidine	ND	50	ug/L
2,4-Dichlorophenol	ND	10	ug/L
2;6-Dichlorophenol	ND	10	ug/L
Diethyl phthalate	ND	10	ug/L
Thionazin	ND	50	ug/L

Client Sample ID: FIELD BLANK

GC/MS Semivolatiles

Lot-Sample #...: A1I210297-004 Work Order #...: EKW3T1AV Matrix..... WQ

		REPORTING	
PARAMETER	RESULT	LIMIT	UNITS
Dimethoate	ND	20	ug/L
p-Dimethylaminoazobenzene	ND	20	ug/L
7,12-Dimethylbenz(a) -	ND	20	ug/L
anthracene			
3,3'-Dimethylbenzidine	ND	50	ug/L
2,4-Dimethylphenol	ND	10	ug/L
Dimethyl phthalate	ND	10	ug/L
Di-n-octyl phthalate	ND	10	ug/L
1,3-Dinitrobenzene	ND	10	ug/L
4,6-Dinitro-	ND	50	ug/L
2-methylphenol			
2,4-Dinitrophenol	ND	50	ug/L
2,4-Dinitrotoluene	ND	10	ug/L
2,6-Dinitrotoluene	ND	10	ug/L
Diphenylamine	ND	10	ug/L
Disulfoton	ND	50	ug/L
Ethyl methanesulfonate	ND	10	ug/L
Famphur	ND	100	ug/L
Fluoranthene	ND	10	ug/L
Fluorene	ND	10	ug/L
Hexachlorobenzene	ND	10	ug/L
Hexachlorobutadiene	ND	10	ug/L
Hexachlorocyclopenta- diene	ND	50	ug/L
Hexachloroethane	ND	10	ug/L
Hexachloropropene	ND	100	ug/L
Indeno(1,2,3-cd)pyrene	ND	10	ug/L
Isophorone	ND	10	ug/L
Isosafrole	ND	20	ug/L
Methapyrilene	ND	50	ug/L
o-Toluidine	ND	20	ug/L
3-Methylcholanthrene	ND	20	ug/L
Methyl methanesulfonate	ND	10	ug/L
2-Methylnaphthalene	ND	10	ug/L
2-Methylphenol	ND	10	ug/L
3-Methylphenol	ND	10	ug/L
4-Methylphenol	ND	10	ug/L
Naphthalene	ND	10	ug/L
1,4-Naphthoquinone	ND	50	ug/L
1-Naphthylamine	ND	10	ug/L
2-Naphthylamine	ND	10	ug/L
2-Nitroaniline	ND	50	ug/L
3-Nitroaniline	ND	50	ug/L

Client Sample ID: FIELD BLANK

GC/MS Semivolatiles

Lot-Sample #...: All210297-004 Work Order #...: EKW3T1AV

Matrix....: WQ

		REPORTIN	G
PARAMETER	RESULT	LIMIT	UNITS
4-Nitroaniline	ND	50	ug/L
Nitrobenzene	ND	10	ug/L
2-Nitrophenol	ND	10	ug/L
4-Nitrophenol	ND	50	ug/L
N-Nitrosodi-n-butylamine	ND	10	ug/L
N-Nitrosodiethylamine	ND	10	ug/L
N-Nitrosodimethylamine	ND	10	ug/L
N-Nitrosodi-n-propyl- amine	ND	10	ug/L
N-Nitrosodiphenylamine	ND	10	ug/L
N-Nitrosomethylethylamine	ND	10	ug/L
N-Nitrosopiperidine	ND	10	ug/L
N-Nitrosopyrrolidine	ND	10	ug/L
5-Nitro-o-toluidine	ND	20	ug/L
Pentachlorobenzene	ND	10	ug/L
Pentachloronitrobenzene	ND	50	ug/L
Pentachlorophenol	ND	10	ug/L
Phenacetin	ND	20	ug/L
Phenanthrene	ND	10	ug/L
Phenol	ND	10	ug/L
p-Phenylene diamine	ND	100	ug/L
Phorate	ND	50	ug/L
Pronamide	ND	20	ug/L
Pyrene	ND	10	ug/L
Safrole	ND	20	ug/L
1,2,4,5-Tetrachloro- benzene	ND	10	ug/L
2,3,4,6-Tetrachlorophenol	ND	50	ug/L
1,2,4-Trichloro- benzene	ND	10	ug/L
2,4,5-Trichloro- phenol	ND	10	ug/L
phenol phenol	ND	10	ug/L
0,0,0-Triethylphosphoro- thioate	ND	50	ug/L
1,3,5-Trinitrobenzene	ND	50	ug/L
	Concernance of the second s		ug/L

Client Sample ID: FIELD BLANK

GC/MS Semivolatiles

Lot-Sample #...: A11210297-004 Work Order #...: EKW3T1AV Matrix..... WQ

SURROGATE	PERCENT RECOVERY	RECOVERY LIMITS		
Nitrobenzene-d5	72	(32 - 112)		
2-Fluorobiphenyl	69	(30 - 110)		
Terphenyl-d14	88	(10 - 144)		
Phenol-d5	68	(10 - 113)		
2-Fluorophenol	69	(13 - 110)		
2,4,6-Tribromophenol	59	(21 - 122)		

Client Sample ID: FIELD BLANK

GC Semivolatiles

		REPORTING	
PARAMETER	RESULT	LIMIT	UNITS
Aldrin	ND	0.050	ug/L
alpha-BHC	ND	0.050	ug/L
beta-BHC	ND	0.050	ug/L
delta-BHC	ND	0.050	ug/L
gamma-BHC (Lindane)	ND	0.050	ug/L
Chlordane (technical)	ND	0.50	ug/L
4,4'-DDD	ND	0.050	ug/L
4,4'-DDE	ND	0.050	ug/L
4,4'-DDT	ND	0.050	ug/L
Dieldrin	ND	0.050	ug/L
Endosulfan I	ND	0.050	ug/L
Endosulfan II	ND	0.050	ug/L
Endosulfan sulfate	ND	0.050	ug/L
Endrin	ND	0.050	ug/L
Endrin aldehyde	ND	0.050	ug/L
Heptachlor	ND	0.050	ug/L
Heptachlor epoxide	ND	0.050	ug/L
Isodrin	ND	0.10	ug/L
Kepone	ND	1.0	ug/L
Methoxychlor	ND	0.10	ug/L
Toxaphene	ND	2.0	ug/L
	PERCENT	RECOVERY	
SURROGATE	RECOVERY	LIMITS	<u></u>
Tetrachloro-m-xylene	43	(39 - 130))
Decachlorobiphenyl	78	(10 - 147))

Client Sample ID: FIELD BLANK

Lot-Sample #: A1I210297-004	Work Order #:	EKW3T1A0	Matrix: WQ
Date Sampled: 09/20/01 08:05	Date Received:	09/20/01	
Prep Date: 09/24/01	Analysis Date:	09/30/01	
Prep Batch #: 1267179			
Dilution Factor: 1	Method:	SW846 8082	
		REPORTING	
PARAMETER	RESULT	LIMIT	UNITS
Aroclor 1016	ND	1.0	ug/L
Aroclor 1221	ND	1.0	ug/L
Aroclor 1232	ND	1.0	ug/L
Aroclor 1242	ND	1.0	ug/L
Aroclor 1248	ND	1.0	ug/L
Aroclor 1254	ND	1.0	ug/L
Aroclor 1260	ND	1.0	ug/L
	PERCENT	RECOVERY	
SURROGATE	RECOVERY	LIMITS	
Tetrachloro-m-xylene	48	(45 - 120)	
Decachlorobiphenyl	80	(24 - 128)	

Client Sample ID: FIELD BLANK

Lot-Sample #: A1 Date Sampled: 09 Prep Date: 09 Prep Batch #: 12	9/20/01 08:05 9/24/01		09/20/01	Matrix WQ
Dilution Factor: 1	20/100	Method	SW846 8141	A
			REPORTING	
PARAMETER		RESULT	LIMIT	UNITS
Methyl parathion		ND	1.0	ug/L
Parathion		ND	1.0	ug/L
		PERCENT	RECOVERY	
SURROGATE		RECOVERY	LIMITS	
Triphenyl phosphate	2	148	(41 - 155)	

Client Sample ID: FIELD BLANK

Lot-Sample #: A11210297-004	Work Order #:	EKW3T1AW	Matrix: WQ
Date Sampled: 09/20/01 08:05	Date Received:	09/20/01	
Prep Date: 09/24/01	Analysis Date:	10/05/01	
Prep Batch #: 1267107			
Dilution Factor: 1	Method:	SW846 8151	A
		REPORTING	
PARAMETER	RESULT	LIMIT	UNITS
2,4-D	ND	4.0	ug/L
Dinoseb	ND	0.70	ug/L
2,4,5-TP (Silvex)	ND	1.0	ug/L
2,4,5-T	ND	1.0	ug/L
	PERCENT	RECOVERY	
SURROGATE	RECOVERY	LIMITS	
2,4-Dichlorophenylacetic acid	73	(43 - 111)	

Client Sample ID: FIELD BLANK

Dissolved Trace Level Organic Compounds

Lot-Sample #:	A1I210297-004	Work Order #:	EKW3T1CT Matrix WQ
Date Sampled:	09/20/01 08:05	Date Received:	09/20/01
Prep Date:	09/27/01	Analysis Date:	10/05/01
Prep Batch #:	1270314		
Dilution Factor:	1	Method:	NONE UV/HPLC per

		REPORTIN	IG	
PARAMETER	RESULT	LIMIT	UNITS	
Nitroguanidine	ND	20	ug/L	

Client Sample ID: FIELD BLANK

HPLC

PARAMETER	RESULT	REPORTING LIMIT	UNITS
1,3-Dinitrobenzene	ND	0.20	ug/L
2,4-Dinitrotoluene	ND	0.13	ug/L
2,6-Dinitrotoluene	ND	0.13	ug/L
Nitrobenzene	ND	0.20	ug/L
Nitroglycerin	ND	2.5	ug/L
1,3,5-Trinitrobenzene	ND	0.20	ug/L
2,4,6-Trinitrotoluene	ND	0.20	ug/L
HMX	ND	0.50	ug/L
RDX	ND	0.50	ug/L
Tetryl	ND	0.20	ug/L
2-Nitrotoluene	ND	0.20	ug/L
3-Nitrotoluene	ND	0.20	ug/L
4-Nitrotoluene	ND	0.20	ug/L
4-Amino-2,6- dinitrotoluene	ND	0.20	ug/L
2-Amino-4,6- dinitrotoluene	ND	0.20	ug/L
	PERCENT	RECOVERY	
SURROGATE	RECOVERY	LIMITS	
1-Chloro-3-nitrobenzene	59	(53 - 133)	

Client Sample ID: FIELD BLANK

TOTAL Metals

Lot-Sample #...: A1I210297-004 Date Sampled...: 09/20/01 08:05 Date Received..: 09/20/01 Matrix....: WQ

		REPORTIN	IG			PREPARATION-	WORK
PARAMETER	RESULT	LIMIT	UNITS	METHO	D	ANALYSIS DATE	ORDER #
Prep Batch #.	. 1267112						
Silver	ND	0.010	mcr/T.	SW846	6010B	09/24-09/25/01	EKW3T1AE
		Dilution Fac					
			1-				
Arsenic	ND	0.0050		SW846	6010B	09/24-09/25/01	EKW3T1A3
		Dilution Fac	ctor: 1				
Barium	ND	0.010	mg/L	SW846	6010B	09/24-09/25/01	EKW3T1A7
		Dilution Fac	tor: 1				
Beryllium	ND	0.0040	ma/T.	SW846	6010B	09/24-09/25/01	EKW3T1A8
		Dilution Fac	-				
					11111		
Calcium	ND	5.0 Dilution Fac		SW846	6010B	09/24-09/25/01	EKW3TIAK
		Dilution Fac	cor: 1				
admium	ND	0.0050	mg/L	SW846	6010B	09/24-09/25/01	EKW3T1A9
		Dilution Fac	tor: 1				
Cobalt	ND	0.050	mg/L	SW846	6010B	09/24-09/25/01	EKW3T1AA
110020		Dilution Fac				201 20 20 A 201 A 2	
Chromium	ND	0.010	ma/T.	SW846	6010B	09/24-09/25/01	EKW3T1AJ
CHIOMITAM	ND	Dilution Fac	-	54040	00100	05/24 05/25/01	510051110
Copper	ND	0.010		SW846	6010B	09/24-09/25/01	EKW3T1AC
		Dilution Fac	tor: 1				
Iron	ND	0.10	mg/L	SW846	6010B	09/24-09/25/01	EKW3T1AL
		Dilution Fac					
Potassium	ND	5.0	mer/T.	SW846	6010B	09/24-09/25/01	EKWITICA
rocassium	ND	Dilution Fac		54040	GOTOD	05/24 05/25/01	DI(10 11011
Magnesium	ND	5.0	mg/L	SW846	6010B	09/24-09/25/01	EKW3T1CC
		Dilution Fac	tor: 1				
Manganese	ND	0.015	mg/L	SW846	6010B	09/24-09/25/01	EKW3T1CD
	220	Dilution Fac					
0-1	170		1-		601.05	00/04 00/05/05	דא נשכעזענו
Sodium	138	5.0		SW846	6010B	09/24-09/25/01	BAWSTLAP
1		Dilution Fac	LOF: 1				

Client Sample ID: FIELD BLANK

TOTAL Metals

Lot-Sample #...: A11210297-004

Matrix....: WQ

PARAMETER	RESULT	REPORTIN LIMIT	G UNITS	METHO	D	PREPARATION- ANALYSIS DATE	WORK ORDER #
Nickel	ND	0.040	mg/L		6010B	09/24-09/25/01	and the second sec
		Dilution Fac					
Lead	ND	0.0030	mg/L	SW846	6010B	09/24-09/25/01	EKW3T1A4
		Dilution Fac	tor: 1				
Antimony	ND	0.060	mg/L	SW846	6010B	09/24-09/25/01	EKW3T1A6
		Dilution Fac	tor: 1				
Selenium	ND	0.0050	mg/L	SW846	6010B	09/24-09/25/01	EKW3T1A5
		Dilution Fac	tor: 1				
Tin	ND	0.10	mg/L	SW846	6010B	09/24-09/25/01	EKW3T1CE
		Dilution Fac	tor: 1				
Thallium	ND	0.0020	mg/L	SW846	7841	09/24-09/25/01	EKW3T1CF
		Dilution Fac	tor: 1				
anadium	ND	0.050	mg/L	SW846	6010B	09/24-09/25/01	EKW3T1AG
		Dilution Fact	tor: 1				
Zinc	ND	0.050	mg/L	SW846	6010B	09/24-09/25/01	EKW3T1AH
		Dilution Fact	cor: 1				
Mercury	ND	0.00020	mg/L	SW846	7470A	09/24-09/25/01	EKW3T1CG
		Dilution Fact	-				

•

Client Sample ID: FIELD BLANK

General Chemistry

Lot-Sample #...: All210297-004 Work Order #...: EKW3T Matrix....: WQ Date Sampled...: 09/20/01 08:05 Date Received..: 09/20/01

PARAMETER	RESULT	RL	UNITS	METHO	D	PREPARATION- ANALYSIS DATE	PREP BATCH #
pH (liquid)	8.3		No Units	MCAWW	150.1	09/22/01	1267393
		Dilution Fact	tor: 1				
Chloride	25.6	1.0	mg/L	MCAWW	300.0A	09/25/01	1269389
		Dilution Fact	-				
Hexavalent Chromium	ND	0.02	mg/L	SW846	7196A	09/21/01	1268450
		Dilution Fact	tor: 1				
Nitrate-Nitrite	ND	0.1	mg/L	MCAWW	353.2	09/24/01	1268415
		Dilution Fact	tor: 1				
Nitrocellulose	ND	0.50	mg/L	MCAWW	353.2	09/29-10/04/01	1274466
		Dilution Fact	tor: 1				
Aitrogen, as Ammonia	0.3	0.2	mg/L	MCAWW	350.3	10/01/01	1275093
		Dilution Fact					
Sulfate	73.1	1.0	mg/L	MCAWW	300.0A	09/25/01	1269392
		Dilution Fact	tor: 1				
Total phosphorus	ND	0.1	mg/L	MCAWW	365.2	09/26/01	1269445
		Dilution Fact	tor: 1				
Total Alkalinity	190	5.0	mg/L	MCAWW	310.1	09/22/01	1267433
		Dilution Fact	tor: 1				
Total Dissolved Solids	330	10	mg/L	MCAWW	160.1	09/25-09/26/01	1268169
		Dilution Fact	cor: 1				
Total Organic Carbon	ND	1	mg/L	SW846	9060	09/24/01	1268207
		Dilution Fact					
Total Phenols	ND	0.040	mg/L	SW846	9065	10/03/01	1276408
		Dilution Fact	-				
Total Sulfide	1.4	1.0	mg/L	MCAWW	376.1	09/24/01	1268591
		Dilution Fact	-				

Client Sample ID: FIELD BLANK

General Chemistry

Lot-Sample #: A1I21	0297-004 Work Order	#: EKW3T	Matrix: WQ	
---------------------	---------------------	----------	------------	--

PARAMETER	RESULT	RL	UNITS	METHOD	PREPARATION- ANALYSIS DATE	PREP BATCH #
Turbidity	ND	0.5	NTU	MCAWW 180.1	09/21/01	1264521
	Di	lution Fa	ctor: 1			

Client Sample ID: FIELD BLANK

General Chemistry

Lot-Sample #: A1I280133-003	Work Order #: EK9E5	Matrix: WG
Date Sampled: 09/26/01 10:38	Date Received: 09/27/01	

					PREPARATION-	PREP
PARAMETER	RESULT	RL	UNITS	METHOD	ANALYSIS DATE	BATCH #
Total Cyanide	ND	0.010	mg/L	MCAWW 335.2	10/02/01	1275384
	Di	lution Fact	tor: 1			

Client Sample ID: TRIP BLANK

GC/MS Volatiles

	10000	REPORTING	and the second second second
PARAMETER Dichlorodifluoromethane	RESULT	LIMIT	UNITS
Acetonitrile	ND	1.0	ug/L
	ND	20	ug/L
Acrolein	ND	20	ug/L
Allyl chloride	ND	2.0	ug/L
1,3-Dichloropropane	ND	1.0	ug/L
2,2-Dichloropropane	ND	1.0	ug/L
1,1-Dichloropropene	ND	1.0	ug/L
Ethyl methacrylate	ND	1.0	ug/L
Isobutyl alcohol	ND	50	ug/L
Methyl methacrylate	ND	2.0	ug/L
Propionitrile	ND	4.0	ug/L
4-Methyl-2-pentanone (MIBK)	ND	10	ug/L
Acetone	ND	10	ug/L
Acrylonitrile	ND	20	ug/L
Benzene	ND	1.0	ug/L
Bromochloromethane	ND	1.0	ug/L
Bromodichloromethane	ND	1.0	ug/L
Bromoform	ND	1.0	ug/L
Bromomethane	ND	1.0	ug/L
2-Butanone	ND	10	ug/L
Carbon disulfide	ND	1.0	ug/L
Carbon tetrachloride	ND	1.0	ug/L
Chlorobenzene	ND	1.0	ug/L
Dibromochloromethane	ND	1.0	ug/L
1,2-Dibromo-3-chloro- propane	ND	7.0	ug/L
Chloroethane	ND	1.0	ug/L
Chloroform	ND	1.0	ug/L
Chloromethane	ND	1.0	ug/L
1,2-Dibromoethane	ND	1.0	ug/L
Dibromomethane	ND	1.0	ug/L
1,2-Dichlorobenzene	ND	1.0	ug/L
1,4-Dichlorobenzene	ND	1.0	ug/L
trans-1,4-Dichloro- 2-butene	ND	1.0	ug/L
1,1-Dichloroethane	ND	1.0	ug/L
1,2-Dichloroethane	ND	1.0	ug/L
1,1-Dichloroethene	ND	1.0	ug/L

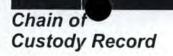
Client Sample ID: TRIP BLANK

GC/MS Volatiles

Lot-Sample #...: All210297-005 Work Order #...: EKW3W1AA Matrix..... WQ

Toluene-d8

4-Bromofluorobenzene


(76 - 110)

(74 - 116)

		REPORTING	
PARAMETER	RESULT	LIMIT	UNITS
cis-1,2-Dichloroethene	ND	1.0	ug/L
trans-1,2-Dichloroethene	ND	1.0	ug/L
1,2-Dichloropropane	ND	1.0	ug/L
cis-1,3-Dichloropropene	ND	1.0	ug/L
trans-1,3-Dichloropropene	ND	1.0	ug/L
Ethylbenzene	ND	1.0	ug/L
Trichlorofluoromethane	ND	1.0	ug/L
2-Hexanone	ND	10	ug/L
Iodomethane	ND	1.0	ug/L
Methylene chloride	ND	1.0	ug/L
Styrene	ND	1.0	ug/L
1,1,1,2-Tetrachloroethane	ND	1.0	ug/L
1,1,2,2-Tetrachloroethane	ND	1.0	ug/L
Tetrachloroethene	ND	1.0	ug/L
Toluene	ND	1.0	ug/L
1,1,1-Trichloroethane	ND	1.0	ug/L
1,1,2-Trichloroethane	ND	1.0	ug/L
Trichloroethene	ND	1.0	ug/L
.,2,3-Trichloropropane	ND	1.0	ug/L
Vinyl acetate	ND	10	ug/L
Vinyl chloride	ND	1.0	ug/L
Xylenes (total)	ND	1.0	ug/L
Chloroprene	ND	2.0	ug/L
1,3-Dichlorobenzene	ND	1.0	ug/L
Methacrylonitrile	ND	2.0	ug/L
	PERCENT	RECOVERY	
SURROGATE	RECOVERY	LIMITS	
Dibromofluoromethane	107	(73 - 122)	
1,2-Dichloroethane-d4	106	(61 - 128)	
	0.0		

95

90

SEVERN T R E N T SERVICES Severn Trent Laboratories, Inc.

STL-4124 (1200)									_	_																			
Client	-1	Project N				,				6							ate	1.1	1	10	,	0	Chain	1 of C	ustod	Q C)4	n	
Address	uc	Telephor	ne Num	ber (Ar	A L	de)/Fa	X Nu	mber	ex	_	-						9/		4	C	(-		U	<u>) </u>	00	14	5	
Address Address 8451 State Route State City State Zip	5	3.3C Site Con					4				8-	29	24	/				moen					Pag	e	1	-	of	2	_
City Raveuma OH	Code											T	-				is (A				3		8						_
Project Name and Location (State)	44266	CarrierN	· Si	Vumbe	lak	11)eL	bi	: 1	Buc	ld.	-	1	13	-	1	A		5	1	117	(1.08	-						
Ramsdell Quarry Landfill, AVIA	P Rovenna	OH	57				ric	r				H.	2	14/000	ci 8	120	8.53	1	212/3	-	Che		1	S	peci	ial Ir	istru	ctions/	,
Contract/Purchase Order/QuoteNo. PO # LA 902 - 63000				Matrix			(Cont	aine	ers &		14	30	137	cidus	des 31	Explosi ves (8.330)	entse	وكناء	2(37	21472	Cile of	where					Receip	
Sample I.D. No. and Description (Containers for each sample may be combined on one line)	Date	Time	Aqueous	Sed.	Soil	Unpres	H2S04	SONH	HCI	NaOH	ZnAci NaOH	1/X	ALL A	Hetal	Herb	Restiu	Explos	Propel	Cyru	Sulfd	Anne	Terb	Hereit						
RQLMW-06	9/20/01	04.15	×				×	×	×		X	×	X	X	X	X	X	×	X	×	X	XX	1						
ROLMW-07	9/20/01	10.10	X				X	×	X	X	×	×	X	X	X	X	X	X	×	×	×,	()	(N	15/1	MSL	门路	Hle	Sets	, schel
Duplicate	9/20/01	10 20	X				X	X	×	X	X	X	X	X	X	X	X	X	X	X	X	XX	*	50	e.	A	Hac	hed	
Field Blank	9/20/01	08 05	X				X	X	×	X	X	X	X	X	X	X	×	X	X	X	X	$\langle \rangle$					for		
Trip Blank	LAZ	3	X		-			-	X	-	-	X	-		_	_	_	-	_	-	-	-	-	Adi	lib	ion	0	Anali	psides, y
					_					_	_					_	-						+			_			_
			+		+			-	_	-	+		-				-	+	-	-	-	+	+	_	_	_	_		_
Possible Hazard Identification			1 Samo	le Disp																	1			_	_	_			
		S Unknown		eturn T		nt			_	y Lab		Arc	hive	For _		_ /	Month					asses		f sam	ples a	are re	etained	1	_
1. Relinquished By 2. Relinquished By 3. Relinquished By 3. Relinquished By	ys ba 21 Day	Date	0-0	Time	20		2 R		red E	34	2	an A	id	it	2	æ				_			Dat	12		>j	Time Time Time	60 705	
Comments MS/MSD Bottle Sett I walked DISTRIBUTION: WHITE - Stays with the Sample. CANAR	Val for Returned to Cl	GL ML)0'	7, Field	2 Copy	let	al:	S'	F	<i>ilt</i>	er	ed	i.	H	le	F	Tiel	d		5	0,	250	ruk	at,	ve	A	ldi	di.	- Firli

					PAG	E 2 (PAGE 2 OF 2	
		c set		Sulfate/Chloride (300.0)	(1.021) Hq	(2.26) surofiperation (2.2)	TOC (9060)	Phenolics (9065)
sample I.U.	Date	Ime	Matrix	5		L		
RQLMW-06	10/08/6	0915	water	×	×	×	×	×
RQLMW-07	9/20/01	01:01	water	×	×	×	×	×
Duplicate	10/02/6	10:20	water	×	×	×	×	×
Field Blank	9/20/01	20:80	water	×	×	×	×	×

Chain of Custody Record

SEVERN

TRENT

STL-4124 (1200)																					
Client <u>MIXMEngineers</u> , I Address <u>8451</u> State Route 3 City State Zip	uc.	Project			au	L	eve	ug	er	-						9/0	26/0	21	Chair	078	041
Address State of the state of t	~	Teleph	one A	lumb	er (Al	rea Co	ode)/F	ax Ng	mber	-	1					b Num	ber		1	1	1
City State Kould	Code	J.)(1-	33	8	2	22	0/	3	30	:3	58	-2	924					Pag	e	_ of _l
Ravenna OH .	44266	Mik	12 -	Sa	mel	ak	D	eb	bic	2	ud	d	-	11	Analys				_		
Project Name and Location (State) Ramsdell Quarry Landfill,	Rovenna, O	H Fed																		Special	Instructions/
Contract/Purchase Order/Quote No:				N	latrix						rs & tives		Cyanide							Conditio	ns of Receipt
Sample I.D. No. and Description (Containers for each sample may be combined on one line)	Date	Time	Air	Aqueous	Sed	Soil	Unpres.	H2SO4	SONH	HCI	NaOH	NaOH	cto								
RQL MW-06	9/26/01	13:53	-	X							×		X							Resin	ple of
Duplicate	9/26/01	13:27		X						-	X		X							yani	le to
Field Blank	9/26/01	10:38		X							X		X							Replan	ce
																				misan	aluced
																				0	from
						-	1						++							9/20	
				-	-	+	-				-	+	++				++	++		1/20	101
				-	+	-	-	-	-	-	-	-	++	+			++	++			
		-		_							_	_				_					
				-	+	+	+				+	+	++					++			
· · · · · · · · · · · · · · · · · · ·				-	-+	+	+		-		-	-	++	+				++			
	-											_									
Possible Hazard Identification	Poison B	Unknown		_	e Disp	oosal To Clie		5kc	Vienau			Г	Archiv	e For		lonthe	(A fee	may be a	assessed	f samples are	retained
Turn Around Time Required	L Poison B	Unknown					liver							e ror	/	nomins	longer	man 5 m	ionin's)		
24 Hours 48 Hours 7 Days 14 D	ays 🗌 21 Da	ys Moin	er_1	ns	any	e ti	ust	Tau	we	as	dri	nu	10 54	uple	11/~	Qt.	12)				
1 Relinquished By Bl		Date 9/2	24	151	1 rum	5.		1. R	ecen		y	F-		9			2		Da	le	Time
2. Relinquished By		Date	-70	1	Time			2. R	leceiv	ved E	lh	L.	4	21		4			Da 9	/27/0)	Time 9:20
3 Relinquished By		Date			Tim	e		3. R	ecei	ved E	ly		C	/					Da		Time
Comments			-		1	_	-	1					_								1

DISTRIBUTION: WHITE - Stays with the Sample: CANARY - Returned to Client with Report. PINK - Field Copy

Data Validation Specialists

Data Validation Report for

Keceived 11-5-01

MKM Engineers

Date: 10/24/01

Location: Ravenna Arsenal, Ravenna, Ohio Project #: RVAAP Ramsdell Landfill Laboratory Project #: A11280133 & A11210297 Laboratory: Severn Trent

Data Validator:

William W. Purves

Data Validation Specialists

Table of Contents	
Introduction	3
Table of Analytical Methods (1)	3
Sample Identification Table (2)	4
Data Qualifications	4
Sample Documentation	4
Technical Holding Times	4
Organic Analysis	4
Inorganic Analysis	7
General Chemistry	8
Compound Identification	11
System Performance	11
Summary	11
Appendix A Forms	
Completeness Tables	

2

Data Validation Specialists

Data Validation Report

Project: Ravenna Arsenal, Ravenna Ohio Project #: RVAAP Ramsdell Landfill Laboratory Project #: A11280133 & A11210297 Laboratory: Severn Trent Reviewer: Purves Environmental for MKM Engineers Inc. (Ravenna, OH) Analysis: Method:8270C, 8260B, 8330, 8151A, 8141A, 8082, 8081A, 6010B, 7470A, 7841, 7196A, 9060, 410.4, 350.3, 310.1, 353.2, 365.2, 376.1, 335.2, 300.0A 150.1, 180.1, 160.1, HPLC Matrix: Water Date:October 24, 2001

I Introduction

Five samples (5 water samples) for the analysis of 8270C, 8260B, 8330, 8151A, 8141A, 8082, 8081A, 6010B, 7470A, 7841, 7196A, 9060, 410.4, 350.3, 310.1, 353.2, 365.2, 376.1, 335.2, 300.0A 150.1, 120.1, 180.1, 160.1, HPLC were shipped on September 20, 2001 from MKM Engineers, Inc. Ravenna, Ohio to Severn Trent Laboratories (STL) North Canton, Ohio. The samples were collected and relinquished by MKM field personnel at the Ravenna Arsenal, Ravenna, Ohio to STL on September 20, 2001. STL North Canton Sent the samples for method 8330 to STL Knoxville, TN. Analytical data for all samples were validated and included in this report. The samples were analyzed utilizing SW-846 Methods as published in the third addition of Test Methods for Evaluating Solid Waste Physical/Chemical Methods (See Table 1 below for Rev numbers) and US EPA Methods for Chemical analysis of Water and Wastes EPA 600/4-79-020 March1983 edition. The quality control and flagging convention is consistent with the National Functional Guidelines. The review process was a level three validation effort. One hundred percent of the package was reviewed.

Table 1 Analytical Methods

Method 8270C	Rev 3, December 1996
Method 8260B	Rev 2, December 1996
Method 8330	Rev 0, September 1994
Method 8151A	Rev 1, September 1994
Method 8141A	Rev 1, September 1994
Method 8082	Rev 0, September 1994
Method 8081A	Rev 1, September 1994
Method 6010B	Rev 2, December 1996
Method 7470A	Rev 1, September 1994
Method 7841	Rev 0, September 1986
Method 7196A	Rev 1, September 1994
Method 9060	Rev 0, September 1986
Method 9065	Rev 0, September 1994
Method 150.1	Rev 0, March 1983
Method 160.1	Rev 0, March 1983

Data Validation Specialists

Method 180.1	Rev 0, March 1983	
Method 300.0A	Rev 1, March 1983	
Method 310.1	Rev 0, March 1983	
Method 335.2	Rev 0, March 1983	
Method 350.3	Rev 0, March 1983	
Method 353.2	Rev 0, March 1983	
Method 365.2	Rev 0, March 1983	
Method 376.1	Rev 0, March 1983	
Method 410.4	Rev 0, March 1983	

The field sample numbers and the laboratory sample numbers correlated with the field chain of custody and the analytical reports. One MS/MSD water was provided. Table 2 is a list of the field sample numbers, corresponding laboratory identification, and matrix type.

Field Sample Number	Laboratory Sample Number	Matrix	
RQLMW-06	EKW2Q-001	Water	
RQLMW-07	EKW3G-002	Water	
DUPLICATE	EKW3P-003	Water	
FIELD BLANK	EKW3T-004	Water	
TRIP BLANK	EKW3W-005	Water	

Table 2 Sample Identification Table

II Data Qualifications

1.0 Sampling Documentation

The chain of custody (COC) documentation met QAPP and National Functional Guidelines requirements. Cooler temperature was slightly above the upper limit because the cooler was packed received at the laboratory in less than two hours. This does not provide enough time for the cooler and some of the contents to drop to the 4C temperature. The temperature does not affect any data.

1.1 Report Documentation

Correctable Errors

All correctable errors are errors that do not affect data quality and are verified by e-mail with the laboratory and corrected by the data validator.

Non-correctable Errors

All non-correctable errors are errors that affect data quality and require professional judgement and qualification by the data validator. No verification with the laboratory is required. Non-correctable errors (if found) were examined to determine the usability of the data and

Data Validation Specialists

documented in this report ..

2.0 Technical Holding Times

All holding times met QAPP and National Functional Guidelines requirements for all.

3.0 Organic Analysis

3.1 Method 8260B Volatiles (Waters)

3.1.1 The Method Blanks The Method or Prep Blank, met method requirements. Analytes detected between the Reporting Limit (RL) and Method detection Limit are noted but do not affect data.

3.1.2 Laboratory Control (LCS) The LCS met method requirements.

3.1.3 Matrix Spike and Matrix Spike Duplicate (MS/MSD) and or Sample Duplicate The MS/MSD met method requirements.

3.1.4 Surrogate Spikes The Surrogate Spikes met method requirements

3.2 Method 8330 Explosives & Propellents HPLC(Waters)

3.2.1 The Method Blanks The Method or Prep Blank met method requirements.

3.2.2 Laboratory Control (LCS) The LCS met method requirements.

3.2.3 Matrix Spike and Matrix Spike Duplicate (MS/MSD) and or Sample Duplicate The MS/MSD met method requirements.

3.2.4 Surrogate Spikes The Surrogate Spikes met method requirements

3.3 Method 8270C Semi-Volatiles (Waters)

3.3.1 The Method Blanks The Method or Prep Blank, met method requirements.

3.3.2 Laboratory Control (LCS) The LCS met method requirements.

3.3.3 Matrix Spike and Matrix Spike Duplicate (MS/MSD) and or Sample Duplicate

Data Validation Specialists

The MS/MSD met method requirements.

3.3.4 Surrogate Spikes

The Surrogate Spikes met method requirements except for two acid fraction surrogates in sample 1. Both surrogates recovered low. Though two out of four surrogates recovered low, the data reflects historical data and it is the professional judgment of the data validator that the is valid.

3.4 Method 8151A Chlorinated Herbicides (Waters)

3.4.1 The Method Blanks The Method or Prep Blank, met method requirements.

3.4.2 Laboratory Control (LCS) The LCS met method requirements.

3.4.3 Matrix Spike and Matrix Spike Duplicate (MS/MSD) and or Sample Duplicate The MS/MSD met method requirements.

3.4.4 Surrogate Spikes The Surrogate Spikes met method requirements

3.5 Method 8141A Organophosphorous Compounds (Waters)

3.5.1 The Method Blanks The Method or Prep Blank, met method requirements.

3.5.2 Laboratory Control (LCS) The LCS met method requirements.

3.5.3 Matrix Spike and Matrix Spike Duplicate (MS/MSD) and or Sample Duplicate The MS/MSD met method requirements.

3.5.4 Surrogate Spikes The Surrogate Spikes met method requirements

3.6 Method 8082 PCBs (Waters)

3.6.1 The Method Blanks The Method or Prep Blank, met method requirements.

3.6.2 Laboratory Control (LCS) The LCS met method requirements.

3.6.3 Matrix Spike and Matrix Spike Duplicate (MS/MSD) and or Sample Duplicate

Data Validation Specialists

The MS/MSD met method requirements.

3.6.4 Surrogate Spikes The Surrogate Spikes met method requirements

3.7 Method 8081A Pesticides (Waters)

3.7.1 The Method Blanks The Method or Prep Blank, met method requirements.

3.7.2 Laboratory Control (LCS) The LCS met method requirements.

3.7.3 Matrix Spike and Matrix Spike Duplicate (MS/MSD) and or Sample Duplicate The MS/MSD met method requirements. The MS/MSD recoveries for one sample and MSD for another had all analytes no meet spike recovery requirements. This is a very unusual event and strongly indicates a preparation error. In the professional judgment of the data validator the MS/MSD data is not valid. However, the sample data is not affected.

3.7.4 Surrogate Spikes The Surrogate Spikes met method requirements

4.0 Inorganics (Waters)

4.1 Method 6010B Metals (Waters)

4.1.1 Laboratory Method/Preparation Blanks All blanks met method requirements.

4.1.2 Laboratory Control Sample (LCS) The LCS met method requirements.

4.1.3 Matrix Spike and Matrix Spike Duplicate The MS/MSD met method requirements.

4.2 Method 7470A Mercury (Waters)

4.2.1 Laboratory Method/Preparation Blanks All blanks met method requirements.

4.2.2 Laboratory Control Sample (LCS) The LCS met method requirements.

Data Validation Specialists

4.2.3 Matrix Spike and Matrix Spike Duplicate The MS/MSD met method requirements.

4.3 Method 7841 Thallium (Waters)

4.3.1 Laboratory Method/Preparation Blanks All blanks met method requirements.

4.3.2 Laboratory Control Sample (LCS) The LCS met method requirements.

4.3.3 Matrix Spike and Matrix Spike Duplicate The MS/MSD met method requirements.

5.0 General Chemistry

5.1 Method 150.1 pH (Waters)

5.1.2 Sample Duplicate The Sample Duplicate met method requirements.

5.2 Method 160.1 Total Dissolved Solids (Waters)

5.2.1 Laboratory Method/Preparation, Initial, and Continuing Calibration Blanks All blanks met method requirements.

5.2.2 Laboratory Control Sample (LCS) The LCS met method requirements.

5.2.3 Sample Duplicate The Sample Duplicate met method requirements.

5.3 Method 180.1 Turbidity (Waters)

5.3.1 Laboratory Method/Preparation, Initial, and Continuing Calibration Blanks All blanks met method requirements.

5.3.2 Laboratory Control Sample (LCS) The LCS met method requirements.

5.3.3 Sample Duplicate The Sample Duplicate met method requirements.

Data Validation Specialists

5.4 Method 300.0A Chloride and Sulfate (Waters)

5.4.1 Laboratory Method/Preparation, Initial, and Continuing Calibration Blanks All blanks met method requirements.

5.4.2 Laboratory Control Sample (LCS) The LCS met method requirements.

5.4.3 Matrix Spike Matrix Spike Duplicate MS/MSD The MS/MSD met method requirements.

5.5 Method 310.1 Total Alkalinity (Waters)

5.5.1 Laboratory Method/Preparation, Initial, and Continuing Calibration Blanks All blanks met method requirements.

5.5.2 Laboratory Control Sample (LCS) The LCS met method requirements.

5.5.3 Matrix Spike Matrix Spike Duplicate MS/MSD The MS/MSD met method requirements.

5.6 Method 335.2 Total Cyanide (Waters)

5.6.1 Laboratory Method/Preparation, Initial, and Continuing Calibration Blanks All blanks met method requirements.

5.6.2 Laboratory Control Sample (LCS) The LCS met method requirements.

5.6.3 Matrix Spike Matrix Spike Duplicate MS/MSD The MS/MSD met method requirements.

5.7 Method 350.3 Nitrogen as Ammonia (Waters)

5.7.1 Laboratory Method/Preparation, Initial, and Continuing Calibration Blanks All blanks met method requirements.

5.7.2 Laboratory Control Sample (LCS) The LCS met method requirements.

5.7.3 Matrix Spike Matrix Spike Duplicate MS/MSD The MS/MSD met method requirements.

Data Validation Specialists

5.8 Method 353.2 Nitrate-Nitrite and Nitrocellulose (Waters)

5.8.1 Laboratory Method/Preparation, Initial, and Continuing Calibration Blanks All blanks met method requirements.

10

5.8.2 Laboratory Control Sample (LCS) The LCS met method requirements.

5.8.3 Matrix Spike Matrix Spike Duplicate MS/MSD The MS/MSD met method requirements.

5.9 Method 365.2 Total Phosphorus (Waters)

5.9.1 Laboratory Method/Preparation, Initial, and Continuing Calibration Blanks All blanks met method requirements.

5.9.2 Laboratory Control Sample (LCS) The LCS met method requirements.

5.9.3 Matrix Spike and Matrix Spike Duplicate MS/MSD The MS/MSD met method requirements.

5.10 Method 376.1 Total Sulfide (Waters)

5.10.1 Laboratory Method/Preparation, Initial, and Continuing Calibration Blanks All blanks met method requirements.

5.10.2 Laboratory Control Sample (LCS) The LCS met method requirements.

5.10.3 Matrix Spike Matrix Spike Duplicate MS/MSD The MS/MSD met method requirements.

5.11 Method 7196A Hexavalent Chromium (Waters)

5.11.1 Laboratory Method/Preparation, Initial, and Continuing Calibration Blanks All blanks met method requirements.

5.11.2 Laboratory Control Sample (LCS) The LCS met method requirements.

5.11.3 Matrix Spike Matrix Spike Duplicate MS/MSD

The MS/MSD met method requirements. Another set of MS/MSDs had no recovery. This is very unusual unless the matrix converts the hex chrom or the analyst did npot spike the sample. Because no raw data is available, the data validator must consider the

Data Validation Specialists

MS/MSD data of the second set of no value.

5.12 Method 9060 Total Organic Carbon TOC (Waters)

5.12.1 Laboratory Method/Preparation, Initial, and Continuing Calibration Blanks All blanks met method requirements.

5.12.2 Laboratory Control Sample (LCS) The LCS met method requirements.

5.12.3 Matrix Spike Matrix Spike Duplicate MS/MSD The MS/MSD met method requirements.

5.13 Method 9065 Total Phenols (Waters)

5.13.1 Laboratory Method/Preparation, Initial, and Continuing Calibration Blanks All blanks met method requirements.

5.13.2 Laboratory Control Sample (LCS) The LCS met method requirements.

5.13.3 Matrix Spike Matrix Spike Duplicate MS/MSD The MS/MSD met method requirements.

6.0 Compound Identification and Quantitation

All samples were properly analyzed, diluted as needed, and quantitated. No changes in data values were required.

7.0 System Performance

No problems were encountered with the system performance of any of the instruments.

8.0 Data Summary

No quantified data has been changed. All data is valid. The data user should use historical data to determine the usefulness of the data when evaluating the Pesticide data. It is the professional judgment of the data validator that all pesticide data is valid.

This Level III data is validated based upon criteria developed by the data user, method requirements, National Functional Guidelines and experience of the data validator.

7484 Woodspring Ln. Hudson, OH 44236, Phone & Fax: 330-650-2918

Specialist in Data Validation

Completeness Table MKM Project #: Ramsdell Landfill STL Project #: A1I210297 & A1I280133 Date: 10/24/01 Matrix: Water

Method: 7196A	Number		~ ~
Analyte Hexavalent Chromium	of Tests 4	R Qualifiers	<u>% Completeness</u> 100%
Hexavalent Chromium	4	0	100%
Method: 9060	Number		
Analyte	of Tests	R Qualifiers	% Completeness
Total Organic Carbon	4	0	100%
Method: 9065	Number		
Analyte	of Tests	R Qualifiers	% Completeness
Phenolics	4	0	100%
Method: 7841	Number		
Analyte	of Tests	R Qualifiers	% Completeness
Thallium	4	0	100%
Method: 300.0A	Number		
Analyte	of Tests	R Qualifiers	% Completeness
Chloride	4	0	100%
Method: 150.1	Number		
Analyte	of Tests	R Qualifiers	% Completeness
pH	4	0	100%
Method: 160.1	Number		
Analyte	of Tests	R Qualifiers	% Completeness
Total Dissolved Solids	4	0	100%
Method: 180.1	Number		
Analyte	of Tests	R Qualifiers	% Completeness
Turbidity	4	0	100%
Method: 365.2	Number		
Analyte	of Tests	R Qualifiers	% Completeness
Total Phosphorus	4	0	100%
Method: 350.3	Number		
Analyte	of Tests	R Qualifiers	% Completeness
Ammonia Nitrogen	4	0	100%
Method: 310.1	Number		
Analyte	of Tests	R Qualifiers	% Completeness
Alkalinity	4	0	100%

7484 Woodspring Ln, Hudson, Ohio 44236 DPhone & Fax: 330-650-2918

Ë

Purves Environmental oodspring Ln, Hudson, Ohio 44236

Specialist in Data Validation Completeness Table MKM Project #: Ramsdell STL Project #: A11210297			Date: 10/24/01 Matrix: Water
Method: 8082	Number		
Analyte	of Tests	R Qualifiers	% Completeness
Arochlor 1016	4	0	100%
Arochlor 1221	4	0	100%
Arochlor 1232	4	0	100%
Arochlor 1242	4	0	100%
Arochlor 1248	4	0	100%
Arochlor 1254	4	0	100%
Arochlor 1260	4	0	100%
Method: 8081A	Number		
Analyte	of Tests	R Qualifiers	% Completeness
alpha-BHC	4	0	100%
beta-BHC	4	0	100%
delta-BHC	4	0	100%
gamma-BHC	4	0	100%
Heptachlor	4	0	100%
Aldrin	4	0	100%
Heptachlor epoxide	4	0	100%
Endosulfan I	4	0	100%
Dieldrin	4	0	100%
4,4'-DDE	4	0	100%
Endrin	4	0	100%
Endosulfan II	4	0	100%
Endosulfan sulfate	4	0	100%
4,4'-DDT	4	0	100%
Endrin ketone	4	0	100%
Isodrin	4	0	100%
Kepone	4	0	100%
Methoxychlor	4	0	100%
Endrin aldehyde	4	0	100%
Chlordane	4	0	100%
4,4'-DDD	4	0	100%
Toxaphene	4	0	100%
Method: HPLC	Number		
Analyte	of Tests	R Qualifiers	% Completeness
Nitroguanidine	4	0	100%
Method: 8141	Number		
		P. Qualifiant	% Completeness
Analyte Mothul accethica	of Tests	R Qualifiers	% Completeness
Methyl parathion	4	0	100%
Parathion	4	0	100%

7484 Woodspring Ln, Hudson, Ohio 44236 Phone & Fax: 330-650-2918

:18:57 PM

Specialist in Data Validation Completeness Table MKM Project #: Ramsdell Landfill STL Project #: A11210297 & A11280133

Date: 10/24/01 Matrix: Water

Method: 6010	Number		
Analyte	of Tests	R Qualifiers	% Completeness
Aluminum	4	0	100%
Antimony	4	0	100%
Arsenic	4	0	100%
Beryllium	4	0	100%
Barium	4	0	100%
Cadmium	4	0	100%
Calcium	4	0	100%
Chromium	4	0	100%
Cobalt	4	0	100%
Copper	4	0	100%
Iron	4	0	100%
Lead	4	0	100%
Magnesium	4	0	100%
Manganese	4	0	100%
Nickel	4	0	100%
Potassium	4	0	100%
Selenium	4	0	100%
Silver	4	0	100%
Sodium	4	0	100%
Thallium	4	0	100%
Vanadium	4	0	100%
Zinc	4	0	100%
Method: 7470	Number		
Analyte	of Tests	R Qualifiers	% Completeness
Mercury	4	0	100%
Method: 335.2	Number		
Analyte	of Tests	R Qualifiers	% Completeness
Cyanide	4	0	100%
Method: 376.1	Number		
Analyte	of Tests	R Qualifiers	% Completeness
Sulfide	4	0	100%
Method: 353.2	Number		
Analyte	of Tests	R Qualifiers	% Completeness
Nitrate Nitrite	4	0	100%
Method: 300.0A	Number		
Analyte	of Tests	R Qualifiers	% Completeness
Sulfate	4	0	100%

7484 Woodspring Ln, Hudson, Ohic 44236 Phone & Fax: 330-650-2918

Specialist in Data Validation

Completeness Table MKM Project #: Ramsdell Landfill STL Project #: A1I210297 & A1I280133 Date: 10/24/01 Matrix: Water

Method: 8330 Analyte	Number of Tests	R Qualifiers	% Completeness
HMX	4	0	100%
RDX	4	0	100%
1,3,5-Trinitrobenzene	4	0	100%
1,3-Dinitrobenzene	4	0	100%
Tetryl	4	0	100%
Nitrobenzene	4	0	100%
2,4,6-Trinitrotoluene	4	0	100%
2,4-Dinitrotoluene	4	0	100%
2,6-Dinitrotoluene	4	0	100%
2-Nitrotoluene	4	0	100%
3-Nitrotoluene	4	0	100%
4-Nitrotoluene	4	0	100%
Nitroglycerin	4	0	100%
4-Amino-2,6-dinitrotoluene	4	0	100%
2-Amino-4,6-dinitrotoluene	4	0	100%

Method: 8151	Number		
Analyte	of Tests	R Qualifiers	% Completeness
2,4-D	4	0	100%
Dinoseb	4	0	100%
2,4,5-TP (Silvex)	4	0	100%
2,4,5-T	4	0	100%

7484 Woodspring Ln, Hudson, Ohio 44236 Phone & Fax: 330-650-2918

È

Specialist in Data Validation

Completeness Table MKM Project #: Ramsdell Landfill STL Project #: A1I210297 Date: 10/24/01 Method: 8260 Water

water	Number	R	
Analyte	of Tests	Qualifier	% Completeness
1,1,1,2-Tetrachloroethane	5	0	100%
1,1,1-Trichloroethane	5	0	100%
1,1,2,2-Tetrachloroethane	5	0	100%
1,1,2-Trichloroethane	5	0	100%
1,1-Dichloroethane	5	0	100%
1,1-Dichloroethene	5	0	100%
1,1-Dichloropropene	5	0	100%
1,2,3-Trichloropropane	5	0	100%
1,2-Dibromo-3-Chloropropane	5	0	100%
1,2-Dibromoethane	5	0	100%
1,2-Dichloroethane	5	0	100%
1,2-Dichlorobenzene	5	0	100%
1,2-Dichloropropane	5	0	100%
1,3-Dichlorobenzene	5	0	100%
1,3-Dichloropropane	5	0	100%
1,4-Dichlorobenzene	5	0	100%
2,2-Dichloropropane	5	0	100%
2-Butanone	5	0	100%
2-Hexanone	5	0	100%
4-Methyl-2-pentanone	5	0	100%
Acetonitrile	5	0	100%
Acrolein	5	0	100%
Allyl Chloride	5	0	100%
Acetone	5	0	100%
Acrylonitrile	5	0	100%
Benzene	5	0	100%
Bromochloromethane	5	0	100%
Bromodichloromethane	5	0	100%
Bromoform	5	0	100%
Bromomethane	5	0	100%
Carbon Disulfide	5	0	100%
Carbon Tetrachloride	5	0	100%
Chlorobenzene	5	0	100%
Chloroethane	5	0	100%
Chloroform	5	0	100%
Chloromethane	5	0	100%
cis-1,2-Dichloroethene	5	0	100%
cis-1,3-Dichlorpropene	5	0	100%
Chloroprene	5	0	100%
Dibromochloromethane	5	0	100%

7484 Woodspring Ln., Hudson, Ohio 44236 Phone & Fax: 330-650-2918

Specialist in Data Validation

Completeness Table MKM Project #: Ramsdell Landfill STL Project #: A1I210297 Date: 10/24/01 Method: 8260 Water

Analyte	Number of Tests	R Qualifier	%Completeness
Dibromomethane	5	<u>Qualmer</u> 0	%Completeness 100%
Dichlorodifluoromethane	5	0	100%
Dibromochloromethane	5	0	
Ethylbenzene	5	0	100% 100%
Ethyl Methacrylate	5		
lodomethane	5	0	100%
		0	100%
Isobutyl alcohol	5	0	100%
Methyl Methacrylate	5	0	100%
Methylene Chloride	5	0	100%
Methylacrylonitrile	5	0	100%
Propionnitrile	5	0	100%
Total Xylene	5	0	100%
Trans-1,4-Dichloro-2-butene	5	0	100%
Styrene	5	0	100%
Tetrachloroethene	5	0	100%
Toluene	5	0	100%
trans-1,2-Dichloroethene	5	0	100%
trans-1,3-Dichloropropene	5	0	100%
Trichloroethene	5	0	100%
Trichlorofluoromethane	5	0	100%
Vinyl Chloride	5	0	100%
Vinyl Acetate	5	0	100%

7484 Woodspring Ln., Hudson, Ohio 44236 Phone & Fax: 330-650-2918

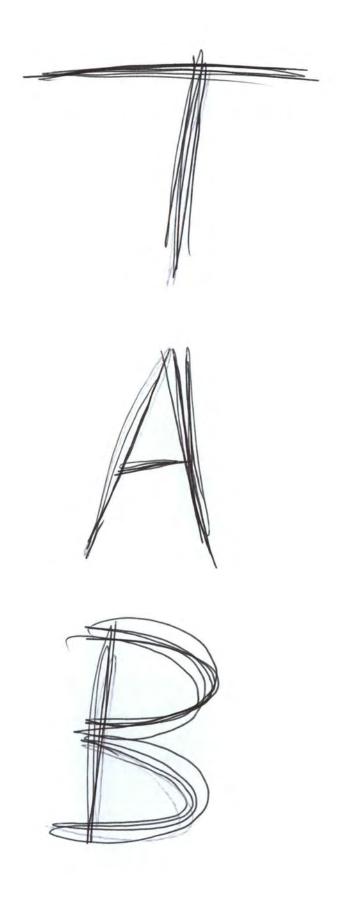
Specialist in Data Validation

Completeness Table MKM Project #: Ramsdell Landfill STL Project #: A1I210297 Date: 10/24/01 Method: 8270 Water

Analyte	Number of Tests	R Qualifier	% Completeness
1,2,4,5-Tetrachlorobenzene	4	0	100%
2,3,4,6-Trichlorobenzene	4	o	100%
1,2,4-Trichlorobenzene	4	0	100%
2,4,5-Trichlorophenol	4	õ	100%
2,4,6-Trichlorophenol	4	0	100%
1,3,5-Trinitrobenzene	4	0	100%
1,3-Dinitrobenzene	4	0	100%
1,4-Naphthoguinone	4	0	100%
2,4-Dichlorophenol	4	0	100%
2,4-Dimethylphenol	4	0	100%
2,4-Dinitrophenol	4	0	100%
2,4-Dinitrotoluene	4	0	100%
2,6-Dinitrotoluene	4	0	100%
2,6-Dichlorophenol	4	0	100%
3,3'-Dichlorobenzidine	4	0	100%
3,3'-Dimethylbenzidine	4	0	100%
7,12-Dimethylbenz(a)anthracene	4	0	100%
4,6-Dinitro-2-methylphenol	4	0	100%
1-Naphthylamine	4	0	100%
2-Chloronaphthalene	4	0	100%
2-Chlorophenol	4	0	100%
2-Acetylaminofluorene	4	0	100%
2-Methylnaphthalene	4	0	100%
2-Methylphenol	4	0	100%
2-Naphthylamine	4	0	100%
2-Nitroaniline	4	0	100%
2-Nitrophenol	4	0	100%
3-Methylchloroanthrene	4	0	100%
3-Nitroaniline	4	0	100%
3-Methylphenol	4	0	100%
4-Bromophenyl-phenylether	4	0	100%
4-Methylphenol	4	0	100%
4-Nitroaniline	4	0	100%
4-Nitrophenol	4	0	100%
4-Chloro-3-methylphenol	4	0	100%
4-Aminobiphenyl	4	0	100%
4-Chlorophenyl-phenylether	4	0	100%
5-Nitro-o-toluidine	4	0	100%
Acenaphthene	4	0	100%

7484 Woodspring Ln, Hudson, Ohio 44236 Phone & Fax: 330-650-2918

Specialist in Data Validation


Completeness Table MKM Project #: Ramsdell Landfill STL Project #: A1I210297 Date: 10/24/01 Method: 8270 Water

Anabata	Number	R	%Completeness
Analyte	of Tests	Qualifier	%Completeness 100%
Acenaphthylene	4	0	
Anthracene	4	0	100%
Acenaphthene	4	0	100%
Acetophenone	4	0	100%
Benzo(a)anthracene	4	0	100%
Benzo(a)pyrene	4	0	100%
Benzo(b)fluoranthene	4	0	100%
Benzo(g,h,l)perylene	4	0	100%
Benzo(k)fluoranthene	4	0	100%
Benzoic Acid	4	0	100%
Benzyl alcohol	4	0	100%
bis(2-Chloroethyoxy)methane	4	0	100%
bis(2-Chloroethy)ether	4	0	100%
bis(2-Chloro-1-methylethyl)ether	4	0	100%
bis(2-Ethylhexyl)phthalate	4	0	100%
Butylbenzylphthalate	4	0	100%
Chrysene	4	0	100%
Diallate	4	0	100%
Dimethoate	4	0	100%
Diphenylamine	4	0	100%
Disulfoton	4	0	100%
Di-n-butylphthalate	4	0	100%
Di-n-octylphthalate	4	0	100%
Dibenz(a,h)anthracene	4	0	100%
Dibenzofuran	4	0	100%
Diethylphthalate	4	0	100%
Dimethylphthalate	4	0	100%
Ethyl methanesulfonate	4	0	100%
Famphur	4	0	100%
Fluoranthene	4	0	100%
Fluorene	4	0	100%
Hexachlorobenzene	4	0	100%
Hexachlorobutadiene	4	0	100%
Hexachlorocyclopentadiene	4	0	100%
Hexachloroethane	4	õ	100%
Hexachloropropene	4	0	100%
Indeno(1,2,3-cd)pyrene	4	0	100%
Isophorone	4	0	100%
Isosafrole	4	0	100%
1303411012	4	0	100 %

7484 Woodspring Ln, Hudson, Ohio 44236 Phone & Fax: 330-650-2918

Specialist in Data Validation Completeness Table MKM Project #: Ramsdell Landfill STL Project #: A11210297 Date: 10/24/01 Method: 8270 Water

Analyte	Number of Tests	R Qualifier	%Completeness
Methylpyrilene	4	0	100%
Methyl methanesulfonate	4	0	100%
Naphthalene	4	0	100%
Nitrobenzene	4	0	100%
N-Nitrosodi-n-butylamine	4	0	100%
N-Nitrosodiethylamine	4	0	100%
N-Nitrosodimethylamine	4	0	100%
N-Nitroso-di-n-propylamine	4	0	100%
N-Nitrosodiphenylamine	4	0	100%
N-Nitrosopiperdine	4	0	100%
N-Nitrosopyrrolidine	4	0	100%
O,O,O-Triethylphosphoro-thioate	4	0	100%
O-Toluidine	4	0	100%
Pentachlorobenzene	4	0	100%
Pentachloronitorbenzene	4	0	100%
Pentachlorophenol	4	0	100%
Phenacetin	4	0	100%
Phenanthrene	4	0	100%
Phenol	4	0	100%
Pyrene	4	0	100%
p-Phenylene diamine	4	0	100%
Phorate	4	0	100%
Pronamide	4	0	100%
p-Dimethylaminoazobenzene	4	0	100%
p-Chloroaniline	4	0	100%
Safrole	4	0	100%
Thionzin	4	0	100%

Date: 20 Septol	Sample Project:	e ID: RQLI Ramsdell	Quary	co r Landhill				AP, 8451 St. Rt. ma, OH 44266	5
			S	ampling Informa	ation				
Source	Ground	dwater Product		Surface Water	/	Soik	s / Sediment	s / Sludge	/
Method	Bailer	X	Sample	Bottle		Scoop		Trowel	
	Pump		Bacon E	Bomb		Bowl	/	Hand Auger	+
Type/Construction	Teklon		-	/	_	Stainless Steel			
Miscellaneous	Well Purg		1						
Time of Sample Collect Sample Depth: Field Parameters		elow ground surface)	1	e: Discrete - Grab Decor: Dedicated Parameters		1		urveyed	
(at time of sample)			naryucar	1		0	her rara	meters	_
PID / FID Readings: Background:	ppm	Herbicides	×	Sulfide Nitrati Vitrite	X	Corrosivity	/		
C	0.0	Alkalinity Turbidity	X.	TDS	X	Reactivity Sulfide Cya	nide		T
Sample: O	• O ppm	Sulfate/		Total	×	Ignitability			
Water Level 38	9.02 FT	VOC	x	Phendics			QA Sam	ples	/
Temperature 14.	5 °	SVOC	X	Hexavalent Chromium	×	MS/MSD		/	
Sp. Conductance: 1,3	s m5/cm	EXPLOSIVES	X	Pest/PCB	X	Duplicate ID	/		
^{рн} 6.37	units	PROPELLANTS	×	TAL Dissolved. Metals	X	Field Blank ID			
Turbidity 0 66 P	pt with	TOC	X	Cyanide	X	Trip Blank ID			
Clear, L		mple Description b.clify, No	actor,	No sher	Name:	ample ID:	Split Sample		
						C Provided: MS/MSD - Dupli eters: Same as Above -		uks - Field Elanks	
Soil sample description Munsell Color Od Water sample descriptio	lor Staining	Texture Sorting P	lasticity Mo	isture		/			

Date: Weather:	RQLMU 9/19/01 - 70° 0	vercast				I	Ravenna Army Project No.: _	Ammunition Plar Ravenna, Ohio 39551.01
			W	ELL OBS	ERVATIO	NS		
Concrete	Base: Ktac adings : Pl	Damage	d	Locke Inner Backg	ed : (Tes - Casing : (2) ground:	No 24" - 6" - 8" 0.0 Ins	Other: ide Well Casin	ig: _0, 0
LNAPL Y DNAPL Y		Present	Depth	=	* Nonpho * Tap wat	mination Pro sphate deterg ter rinse water rinse		
				CALCUL	ATIONS			
(F) V	olumes to be				1			
Well Evac	UNDER THE TRANSPORTED FOR THE THE TRANSPORTED FOR THE TRANSPORTED FOR THE TANSPORTED FOR THE TA	od : Bailer	E EVACUA EV	ACUATIC	- Other: _	CAUSE	Disposed	Onsite Ofsite
Well Evac Purge Wa Well Yield	OTAL VOL	od : Bailer fon : 1. Dis low Collec	E EVACUA EV Subme charge Ons cted In : Ta	ACUATIC rsible Pump lite 2. C inks Drums	ON METH - Other: _ Collected And No. of C	IOD d: Stored -	Disposed	Onsite Offsite
Well Evac Purge Wa Well Yield	uation Meth ter Dispositi I : High of L s: <u>Hamm</u> Depth to	od : Bailer fon : 1. Dis ow Collect <u>a HI 9</u> Purge	E EVACUA EV Subme charge Ons cted In : Ta	ACUATIC rsible Pump ite 2. C inks Drums Water 0.50	DN METH - Other: _ Collected And No. of C Quality Field Measu	IOD t: Stored - Containers : 21 ctcr	Disposed	
Well Evac Purge Wa Well Yield Comment	uation Meth ter Dispositi I: High of L s: <u>Hamm</u>	od : Bailer fon : 1. Dis ow Coller a HI 9	E EVACUA EV Subme charge Ons cted In : Ta	ACUATIC rsible Pump ite 2. C nks Drums Water	DN METH - Other: _ Collected And No. of C Quality Field Measu Temp.	IOD t: Stored - Containers : 21 ctcr	Disposed	Onsite Offsite Comments
Well Evac Purge Wa Well Yield Comment	uation Meth ter Dispositi I : High of L s: <u>Hamm</u> Depth to	od : Bailer fon : 1. Dis ow Coller <u>a HI 9</u> Purge Volume	E EVACU/ EV Subme charge Ons cted In : Ta	ACUATIC rsible Pump ite 2. C inks Drums Water 0.50 Spec. mS	DN METH - Other: _ Collected And No. of C Quality Field Measu Temp.	IOD d: Stored - Containers : 2 <u>Uctor</u> urements	Disposed	
Well Evac Purge Wa Well Yield Comment	uation Meth ter Dispositi I: High of L s: <u>Hank</u> Depth to Water (ft.)	od : Bailer on : 1. Dis ow Coller <u>a HI 9</u> Purge Volume (gal)	E EVACU/ EV - Subme charge Ons cted In : Ta 91301 PID	ACUATIC rsible Pump ite 2. C nks Drums Water 0.50 Spec. <u>MS</u> Cond.cm	ON METH - Other: _ collected And No. of C Cualify Field Measu Temp. C	IOD d: Stored - Containers : Containers : Contain	Disposed	
Well Evac Purge Wa Well Yield Comment Time	uation Meth ter Dispositi I: High of L s: <u>Hank</u> Depth to Water (ft.) 3 7.99	od: Bailer on: 1. Dis ow Coller <u>a HI 9</u> Purge Volume (gal) Tn: Hal 1 2	E EVACUA EV - Subme charge Ons cted In : Ta 91301 PID 0- 0	ACUATIC rsible Pump ite 2. C nks Drums Water 0.50 Spec. M3 Cond.cm 2.10	ON METH - Other: collected And No. of C Quality Field Measu Temp. C 13.6	Containers : _ 2007 Container	Turb. PP+ 0,90	
Well Evac Purge Wa Well Yield Comment Time	Depth to Water (ft.) 37.99 39.35 40.42 11.13	od: Bailer on: 1. Dis ow Coller a HI 9 Purge Volume (gal) Tn: Hal 1 2 3	E EVACU/ EV Subme charge Ons cted In : Ta 91301 PID 0- 0 0- 0	ACUATIC rsible Pump ite 2. C nks Orums Water 0.50 Spec. <u>MS</u> Cond.cm 2.10 1.36 1.36 1.14	DN METH - Other: _ Collected And No. of C Quality Field Measure Temp. C 13.6 12.2	IOD t: Stored - Containers : _ 20cter urements pH 6,05 5.91	Turb. ppt 0.90 0.76	
Well Evac Purge Wa Well Yield Comment Time 1020 1025 1030	Depth to Water (ft.) 37.99 39.35 40.42 41.13 41.35	od: Bailer on: 1. Dis ow Coller <u>a HI 9</u> Purge Volume (gal) Tn: Hal 1 2	E EVACU/ EV Subme charge Ons cted In : Ta 91301 PID 0-0 0-0 0-0 0-0	ACUATIC rsible Pump ite 2.0 nks Orums Water 0.50 Spec. M3 Cond.cm 2.10 1.36 1.14 1.02	DN METH - Other: collected And No. of C Quality Field Measure Temp. O_C 13.6 12.2 12.9	IOD t: Stored - Containers : _ 24c-ter pH 6,05 5.91 5.91	Disposed [Used Turb. ppt 0.90 0.76 0.67	
Well Evac Purge Wa Well Yield Comment Time 1020 1025 1030 1035 1045 100	Depth to Water (ft.) 37.99 39.35 40.42 11.13	od : Bailer on : 1. Dis ow Coller A HI 9 Purge Volume (gal) Tn; Ha 1 2 3 4 5	E EVACU/ EV Subme charge Ons cted In : Ta 91301 PID 0-0 0-0 0-0 0-0 0-0 0-0 0-0 0-0 0-0	ACUATIC rsible Pump ite 2.0 inks Orums Water 0.50 Spec. MS Cond.cm 2.10 1.36 1.14 1.02 0.99	DN METH - Other: _ collected And No. of C C C Field Measure Temp. C 13.6 12.2 12.4	IOD t: Stored - Containers : 21-ter- pH 6,05 5.91 5.91 5.91 5.91	Disposed 1 Used Turb. pp+ 0,90 0,76 0,67 0.58	

(at time of sample) Herbicides PID / FID Readings: Herbicides Background: 0.0 PPm Haumonick Aikalinity Aikalinity Tarbidity Sample: 0.0 Ppm Water Level 11.2(2 FT VOC Temperature 17.5 SVOC Sp. Conductance: 17.4 STCM EXPLOSIVES pH 6.56 units PROPELLANT Turbidity 0.88 pm/s NTCC Sample Description	Sample Bacon	Py Land All Sampling Informa Surface Water Bonb Bonb	tion	Scoop Bowl Stainless Steel		AP, 8451 St. Rt. 5 nna, OH 44266 ts / Sludge Trowel Hand Auger
Method Bailer A Pump Pump Type/Construction Tetlon Miscellaneous Well Purging Form West Purging Form Yes - No Time of Sample Collection: 10/0 hrs Sample Depth: ~ 14 FT (below ground surface Field Parameters (at time of sample) PID / FID Readings: Background: 0 · 0 Background: 0 · 0 Vater Level 11.2(a FT VOC Temperature 17.5 Sp. Conductance: 1.74 Sp. Conductance: 1.74 Background: 0.00 Ppm Subfact Mater Level 11.2(a FT VOC Temperature 17.5 Sp. Conductance: 1.74 Store PROPELLANT Turbidity 0.88 Sample Description TOC	Sample Bacon	Surface Water Bottle Bornb	tion	Scoop Bowl	ils / Sedimen	Trowel
Method Bailer A Pump Pump Type/Construction Tetlon Miscellaneous Well Purging Form West Purging Form Yes - No Time of Sample Collection: 10/0 hrs Sample Depth: ~ 14 FT (below ground surface Field Parameters (at time of sample) PID / FID Readings: Background: 0 · 0 Background: 0 · 0 Vater Level 11.2(a FT VOC Temperature 17.5 Sp. Conductance: 1.74 Sp. Conductance: 1.74 Background: 0.00 Ppm Subfact Mater Level 11.2(a FT VOC Temperature 17.5 Sp. Conductance: 1.74 Store PROPELLANT Turbidity 0.88 Sample Description TOC	Bacon l	e Bottle Bonb pe: Discrete - Grab	/	Scoop Bowl	ils / Sedimen	Trowel
Pump Type/Construction Tetlon Miscellaneous Well Purging Form Vest Purging Form Vest Purging Form Yes - No Time of Sample Collection: 10/0 hrs Sample Depth: ~ 14 FT (below ground surface Field Parameters Autoritation Gat time of sample Herbicides PID / FID Readings: Herbicides Background: O O ppm Background: O O ppm Water Level 11.26 FT VOC Temperature 77.5 SVOC SVOC Sp. Conductance: 7.44 Stere PROPELLANT PH 6.56 units PROPELLANT Turbidity 0.00 pt units PROPELLANT Sample Description Stample Description Stample Description	Bacon l	Bonb pe: Discrete - Grab		Bowl		/
Type/Construction Tet lon Miscellaneous Well Purging Form Vest Purging Form Vest Purging Form Vest Purging Form Vest Purging Form Sample Oslicetion: 10 / 0 hrs Sample Depth: ~ 14 FT (below ground surface Field Parameters If erbicides at time of sample) Herbicides PID / FID Readings: Herbicides Background: 0 · 0 PPm Background: 0 · 0 PPm Sample: 0 · 0 PPm Sample: 0 · 0 PPm Water Level 11 · 2/a FT VOC Femperature 17 · 5 Sp. Conductance: 17 · 5 SVOC Sp. Conductance: 17 · 5 ExpLosives pH 6 · 56 PROPELLANT Turbidity 0 · 0 · 0 · 0 · 0 · 0 · 0 · 0 · 0 · 0 ·	Sample Typ	pe: Discrete - Grab				Hand Auger
Miscellaneous Well Purging Form Yes - No Fine of Sample Collection: Sample Depth: <u>~ 14</u> FT (below ground surface Field Parameters at time of sample) PID / FID Readings: Background: O - O prom Background: O - O pr	:)			Stainless Steel		
Miscellaneous Well Purging Form Yes - No Time of Sample Collection: Sample Depth: <u>~ 14</u> FT (below ground surface Field Parameters at time of sample) PID / FID Readings: Background: O - O ppm Background: O - O ppm Background: O - O ppm Background: O - O ppm Background: O - O ppm Sample: O ppm Water Level 11.2(2 FT VOC Temperature 17.5 Sp. Conductance: 1.74 SIGNT PROPELLANT Turbidity 0.88 pct write Sample Collor, 1 Sample Description Slightly 0 racege Collor, 1	:)			/		1
Yes - No Time of Sample Collection: 10/0_hrs Sample Depth: ~ 14 FT (below ground surface Field Parameters	:)					
Sample Depth: <u>~14</u> FT (below ground surface Field Parameters (at time of sample) PID / FID Readings: Background: O.O ppm Autorial Autorial Alkaliaity Sample: O.O ppm Sulfat Mater Level 11.26 FT VOC Temperature 17.5 VOC Sp. Conductance: 1.74 State pH 6.56 PROPELLANT Turbidity 0.88 pt Note Sample Description Slightly 0 range CulOF,	:)					
at time of sample) PID / FID Readings: Background: O.O ppm Herbicides Autorial Aikaliaity Turbidity O.O ppm Sulfated Water Level 11.2(2 FT VOC Temperature 17.5 °C SVOC Temperature 17.5 °C SVOC Sp. Conductance: 1.74 Stere pH 6.56 units PROPELLANT Turbidity 0.88 ppt TOC Sample Description Slightly 0 range CulOT,		Decon Dedicated		Location: Plotted on M Estimated - M - Each Location		
Background: O. O ppm Aumonial Aikalinity Turbidity Sample: O. O ppm Sulfaty Water Level 11.26 FT VOC Temperature 17.5 C SVOC Sp. Conductance: 1.74 STCPA pH 6.56 PROPELLANT Turbidity 0.88 pt NTC. Sample Description Slightly 0 range C. 2007,	Inalytical	Parameters		C	other Para	meters
Background: 0.0 Packatoria Alkaliaity Turbidity Sulfatoriality Sample: 0.0 ppm Sulfatoriality Water Level 11.2(2 FT VOC Temperature 17.5 °C SVOC Sp. Conductance: 1.74 States pH 6.56 PROPELLANT Turbidity 0.88 port TOC Sample Description Slightly 0 racege C. 201	×	Sutfide	x	Corrosivity		
Sample: 0.0 ppm Sulfat of Chlor Water Level 11, 2(2 FT VOC Temperature 17.5 °C SVOC Sp. Conductance: 1.74 Store pH 6.56 PROPELLANT Turbidity 0.88 pt TOC Sample Description Slightly 0 ragage Culor,	X	Witrate/Witrite	X			
Sample: 0.0 ppm Sulfat of Chlor Water Level 11, 2(2 FT VOC Temperature 17.5 °C SVOC Sp. Conductance: 1.74 Stato pH 6.56 PROPELLANT Turbidity 0.88 pt TOC Sample Description Slightly 0 ragage Culor,	X	TD5 DH	×	Reactivity Sulfide/C	anide	
Water Level 11.26 FT VOC Temperature 17.5 °C SVOC Sp. Conductance: 1.74 STCRA PROPELLANT Turbidity 0.88 pt TOC Sample Description Slightly 0 racage Culor,	ide X	PH Total Phosponus	X	Ignitability		
17.5 PROPELLANT Sp. Conductance: 17.5 pH 6.56 Turbidity 0.88 pt Turbidity 0.88 pt Turbidity 0.188 pt Turbidity 0.188 pt Turbidity 0.188 pt	×	Phenolics	×			
pH 6.56 units PROPELLANT Turbidity 0.88 ppt NTU TOC Sample Description Slightly 0 ragage Culor,	X	Hexavalent Chromium	×	MS/MSD	Raci	mw-07-ms/n
Turbidity 0,88 ppt - TOC Sample Description Slightly 0 ragage (2007)	×	Pest/PCB	X	Duplicate ID	Du	plicate
Turbidity 0,88 ppt TOC Sample Description Slightly 0 range (2007)	×	TAL Dissolved. Metals	X	Field Blank ID	Fre	Id Blank
Sample Description Slightly orange culor,	X	Cyanide	X	Trip Blank ID	Tri	PBlank
		en Odor	Name:	ample ID: y/Company:	Split Samp	
	4 8 1 f		Q.A/QC Parame	C Provided: MS/MSD - Dup eters: Same as Above		unks - Field Elanks
Soil sample description should include: Munsell Color Odor Staining Texture Sorting Water sample description should include:	Plasticity M	loisture				
Color Odor Sheen Turbidity			/	Reviewed by:		1.1

Date: Weather:	RQLMU 9/19/01 - 70° 0	vercast					Ravenna Arr Project No.	Ra	venna, Ohio
			W	ELL OBSE	RVATIC	ONS			
Concrete	Base: Intact adings : PIC) Damage	t	Locke Inner Backg	d : (es) Casing : 2 round:	No 94" - 6" - 8" 0.0 Ins	Other: side Well Cas	sing:	2.0
LNAPL Y DNAPL Y	/es - 10 /es - 10	Present	Depth	=	* Nonpho * Tap wat	mination Pr sphate deter ter rinse water rinse			
				CALCUL	ATIONS				
(D) V (E) C (F) V	Vepth to Water Vater Column Vell Diameter one Well Volution olumes to be OTAL VOLU	Factor me (C * D) Evacuated	1.15 1.15 E EVACU	(gal/ft) (2" =) _(gal)	0.16, 4" = 0.	.65, 6" = 1.47	7 , 8" = 2.61 G	GAL / FT)	
Purge Wa	ter Disposition	on: 1. Dis	charge Ons	site 2. C	- Other: _	d: Stored	1	Onsi	te) Offsite
Purge Wa Well Yield	ter Dispositi I : High or L	on: 1. Dis	charge Ons cted In : Ta	site Pump site 2. C anks - Prums	- Other: _ ollected And No. of (d: Stored	1	Onsi	te) Offsite
Purge Wa Well Yield Comment	ter Dispositi I : High or L s: <u>Hamm</u> o	on: 1. Dis ow Collec <u>HI9</u> 0	charge Ons cted In : Ta	site Pump site 2. C anks - Prums	- Other: _ ollected And No. of C unlity	d: Stored Containers : Meter	1	Onsi	
Purge Wa Well Yield	ter Dispositi I : High or L	on: 1. Dis	charge Ons cted In : Ta	site Pump site 2. C anks - Prums	- Other: _ ollected And No. of (d: Stored Containers : Meter	l Useal Turb.	Onsi	te) Offsite
Purge Wa Well Yield Comment	ter Dispositi I : High or L s: <u>Hausse</u> Depth to	on : 1. Dis ow Collec <u>L HI 90</u> Purge Volume	charge Ons cted In : Ta (1301)	unks - Prums Water C	- Other: _ ollected And No. of C unality : Field Measu	d: Stored Containers : <u>Weter</u> urements	l	Onsi	
Purge Wa Well Yield Comment Time	ter Dispositi I: High or L s: <u>Hauano</u> Depth to Water (ft.)	on : 1. Dis ow Collec <u>HI 90</u> Purge Volume (gal)	charge Ons cted In : Ta (1301 i PID	unks - Prums Water C	- Other: _ ollected And No. of C undity : Field Measu Temp.	d: Stored Containers : <u>Meter</u> urements pH	Usecl Turb. ppt	Onsi	
Purge Wa Well Yield Comment Time	ter Dispositi I: High or L s: <u>Haund</u> Depth to Water (ft.)	on : 1. Dis ow Collec <u>HI 90</u> Purge Volume (gal)	charge Ons cted In : Ta (1301) PID 0.0	unks - Prums Water C	- Other: _ ollected And No. of C undity : Field Measu Temp.	d: Stored Containers : Meter urements pH 6,09	Turb. ppt 0.88	Onsi	
Purge Wa Well Yield Comment Time	ter Dispositi I: High or L s: <u>Hauno</u> Depth to Water (ft.) //.27 //.27	on: 1. Dis ow Collec <u>Purge</u> Volume (gal) Tnitial	charge Ons cted In : Ta (1301) PID 0.0 0.0 0.0 0.0	unks - Prums Water C	- Other: _ ollected And No. of C undity : Field Measu Temp.	d: Stored Containers : Meter urements pH 6,09 6,13	1 Usecl ррт 0.88 0.86	Onsi	
Purge Wa Well Yield Comment Time 1/15 1/20 1/25	ter Dispositi I: High or L s: <u>Haund</u> Depth to Water (ft.) 11.27 11.40 11.44	on: 1. Dis ow Collec <u>Purge</u> Volume (gal) <u>Tnihal</u> 1 2	charge Ons cted In : Ta (1301 1 PID 0.0 0.0 0.0 0.0	site 2. C inks - prums Water C Spec. S Cond. C 1.77 1.77 1.73	- Other: _ ollected And No. of C uality Field Measu Temp. 2 18.7 18.7 18.0 17.9	d: Stored Containers : Meter urements pH 6,09 6,13 6,13	Тигь. ррт 0.88 0.86 0.86	Onsi	
Purge Wa Well Yield Comment Time 1/15 1/25 1/25 1/30 1/35 1/30	ter Dispositi I: High or L s: <u>Haund</u> Depth to Water (ft.) 11.27 11.40 11.44	on: 1. Dis ow Collec Purge Volume (gal) Tritial 1 2 3 4 5	charge Ons cted In : Ta (1301) PID 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	site 2. C inks - prums <u>Jater C</u> Spec. <u>S</u> Cond. 1.77 1.77 1.74 1.69 1.79 1.72 1.72	- Other: ollected And No. of C <u>u.a.lity</u> Field Measu Temp. [8.7 [8.7 [8.0]]7.9 [8.0]	d: Stored Containers : 2011 2011 2011 2011 2011 2011 2011 201	1 Used 0.88 0.86 0.86 0.86 0.86	Onsi	

Chain of Custody Record

SEVERN TRENT SERVICES

ES Severn Trent Laboratories, Inc.

Project Name and Location (State) Runsdell Quarry Lundfill, AVLAP, 1 Contract/Purchase Order/Quote/No.	266 Ravenna,	Project M Telephor 33C Site Con Mike Carrier/M	tact	sta nber (58	Area C	120	ax Nu	Imbér	,						31.	Date 9 Lab	12		101		C	hain of Custody	040
Project Name and Location (State) Runsdell Quarry Lundfill, AVIAP, 1 Contract/Purchase Order/QuotelNo.	266 Ravenna,	330 Site Con Mike Carrier/	tact	58	-20	120	13		5						_	lahl	lumhe						
Project Name and Location (State) Runsdell Quarry Lundfill, AVIAP, 1 Contract/Purchase Order/QuotelNo.	266 Ravenna,	Site Con Mike Carrier/	· Sc			La	1.5			5 -	9-	79-	24			Lubi	uning	<i>.</i>			P	age /	of 2
Project Name and Location (State) Runsdell Quarry Lundfill, AVAAP, 1 Contract/Purchase Order/QuotelNo.	Ravenna,	Carrier/V	Vaybill		ela	c 1		ntact		Bud				5	Anal	ysis (spac	Attac e is r	h list	t if ed)	(2.23	1.		
Contract/Purchase Order/Quote/No.		()HI		Num	ber	×					-	6	5	474	121			1/335	C.C.	5	So.	Cloth Cloth	
DATI I Can a com			57	L_	C	ore	rie		to la c		_	120	1.28	<u> </u>	202	1927	-	teras)	19.1	Call al	12		Instructions/ ns of Receipt
PO # LAG02 - G00089				Matr	rix					ers &		5	13	-	icid	dup.	ent	uide	le 3	He k	id it		no or noooipt
Sample I.D. No. and Description (Containers for each sample may be combined on one line)	Date	Time	Air Aqueous	Sed.	Soil	Unpres.	H2SO4	SONH	HCI	NaOH	NaOH	NA N	BUI	Metals	Herb	Fuelo	Prosclent	Cyar	Suffic	Alitra	Aurb	Hexte	
RQLMW-06 9	120/01	09:15	×	1			X	×	X	X	X	X	X	×.	XX	X	\times	X	×	$\langle \times$	X		
RQLMW-07 9	120/01	10:10	X	1			×	X	X	X	×	X	X	X	xx	X	X	X	× >	X	X	M5/M5D	Bottle Sets inclu
Duplicate 9	120101	10:20	X			1	X	X	×	X	x	X	X	X	x>	X	X	X	XX	< X	X	*See A	Hacked
Field Blank 91	20/01	08:05	X	-			X	X	X	-	X	X	X	X	XX	X	X	X	XX	X	1.	Sheet	0
Trip Blank		B	X	\langle			10		X			X											nal Analysis
							1																1
							1																
																	,						
	-															1				1			
											1	1						1		1			
Possible Hazard Identification			1000		isposa		-	-		_	_	-		- ţ	-	-		(A fe	e may	be as	ssess	ed if samples are	e retained
Non-Hazard Flammable Skin Irritant F Turn Around Time Required	Poison B	Unknown		Return	To Cl	ient	_			y Lab	Speci	Arch	ive F	or		_ Mor	ths	longe	er than	3 ma	onths)		
24 Hours 48 Hours 7 Days 14 Days	21 Day	s Othe	r	_		_				ionio (opeon												
1. Relinquished By Michael ASL		Date 9-7	00		me 16C	0	1. F	Receiv	Vede	20 -	2	ai	de	t	,							9-20-0	Time 1600
2. Relinquished By		Date			me		2. F	Receiv	ved E	3y											1	Date	Time
3. Relinquished By		Date		Ti	me		3. F	Recei	ved E	Зy										(1	Date	Time
Comments	10 0	0.			-				r	-11		4		11		-			/	1			1111 -
MS/MSD Bottle Sett included DISTRIBUTION: WHITE - Stays with the Sample; CANARY - R	tor R	QL MU)-0	7,	ield Co	<u>9e7</u>	tal.	5	r	ilt	eri	ed	14.	th	e .	Fie	d		0-	re	ser	vative A	aded in Fi

	Phenolics (9065)		×	×	×	×
OF 2	(0906) OOT	Ι	×	×	×	×
PAGE 2 OF 2	(2.265) auronqaond latoT	Ι	×	×	×	×
PAG	(1.021) Hq	Ι	×	×	×	×
	Sulfate/Chloride (300.0)	Ι	×	×	×	×
	Matrix	VIDDIA	water	water	water	water
	amiT		04/5	01:01	10:20	20:80
	Date		lobel 6	10/02/6	10/02/6	9/20/01
	Cample I D		RQLMW-06	RQLMW-07	Duplicate	Field Blank

	Aunc		Mo	onitoring	Well Pu	rging Fo	orm		Second Property
Well ID:	MWOOG								na Army Ammunition Plan sdell Quarry Landfill(1048
Date :	ZG Septol				_				(
				WELL O	DBSERV	ATIONS			
Protectiv	e Casing: In	tact Damage	d	Locked	Yes No			К	ey No: 106012
Concrete	Base: Intac	t · Damaged	Inner Ca	sing (2").	4" . 6" . 8	" Ot	ther:		
		(ft)		-					
Vapor Re		Nu OVA		ind: <u>O c</u>	Iı	nside Well	Casing:	0.0	-
	Pre	sent	Depth		S	ampled	5	Sample ID	
LNAPL	Yes · No		_	Yes No		-			
DNAPL	Yes · No _			Yes No					
				CAL	CULAT	IONS			
(A)	Depth to Well B	ottom 41.90	(ft) TOC · 1	TIC · BGS	Measured	· Previoush	y Measure	d (circle one)	
(B)	Depth to Water		38.17	(ft) TOC · T					
		Height (A-B)	and the second second						
E		Factor 0.16			.65, 6" = 1.4	7, 8" = 2.61	GAL/FT)		
	Volumes to be E		35	(B)					
(G)	TOTAL V	OLUME T	F	VACUA	TION N	летно	D		
(G) Well Eva Purge W	TOTAL V cuation Met ater Disposi	hod Bailer	F) Submersi harged On ollected In	CVACUA ible Pump site 2. Cc : Tanks (• Other:_ ollected Au	METHO nd: (Stored) No. of (D Dispo Containe	Device N osed Ons	~
(G) Well Eva Purge W Commen	TOTAL V cuation Met ater Disposi ts: <u> </u>	OLUME T hod Bailer tion: 1. Disc una HI PURGE	F) Submersi harged On ollected In	SVACUA ible Pump site 2. Co : Tanks ()[]] Jaza	• Other:_ ollected An Drums	METHO nd: (Stored) No. of (D Dispo Containe Dule feet	Device Nosed Ons	~
(G) Well Eva Purge W	TOTAL V cuation Met ater Disposi ts: <u> </u>	hod Bailer tion: 1. Disc une HI PURGE RATE	E Submersi harged On ollected In 99130	SVACUA ible Pump site 2. Co : Tanks ()[]] Jaza	• Other:_ ollected An Drums ter At	METHO nd: Stored No. of C which	D Dispo Containe Dule feet	Device N osed Ons	ite Offsite
(G) Well Eva Purge W Commen	TOTAL V cuation Met ater Disposi ts: <u> </u>	OLUME T hod Bailer tion: 1. Disc una HI PURGE	E Submersi harged On ollected In 99130	SVACUA ible Pump site 2. Co : Tanks ()[]]	TION M • Other:	METHO nd: Stored No. of C which	D Dispo Containe Dule feet	Device N osed Ons	ite Offsite
(G) Well Eva Purge W Commen TIME	TOTAL V cuation Met ater Disposi ts: <u><u></u> DEPTH TO WATER (ft)</u>	hod Bailer tion: 1. Disc une HI PURGE RATE	E Submersi harged On ollected In 99130 Photovac 2020	ble Pump site 2. Co : Tanks (<u>)[[]]ar</u> Fi pH	TION M • Other:	METHO nd: Stored No. of C which	D Dispo Containe Dule feet	Device N osed Ons rs: Used	Comments
(G) Well Eva Purge Wa Commen TIME	TOTAL V cuation Met ater Disposi ts: <u> </u>	hod Bailer tion: 1. Disc une HI PURGE RATE	E Submersi harged On ollected In 99130	ble Pump site 2. Co Tanks (<u>)[[]]</u> Fi pH (G.Z.7	TION M • Other:	AETHO Ad: Stored No. of C al:h/ wrements Turb. ppt C.34	D d)Dispo Containe Dulefer	Device N osed Ons rs: Used Temp oc 11, 3	ite Offsite
(G) Well Eva Purge W Commen TIME	TOTAL V cuation Met ater Disposi ts: <u> </u>	OLUME T hode Bailer tion: 1. Disc C SATE (gpm)	E Submersi harged On ollected In 99130 Photovac 2020 The D.O	ble Pump site 2. Co Tanks (<u>)</u> <u>)</u> Fi pH <u>G.Z.7</u> <u>G.Z.7</u>	TION M • Other:	Turb. Turb. 0.33	D d)Dispo Containe Dulefer	Device Nosed Ons rs: Used II. 3 II. 1	Comments
(G) Well Eva Purge W Commen TIME	ts: Hand the second sec	OLUME T hode Bailer tion: 1. Disc Currer HI PURGE RATE (gpm) I volume	F Submersi harged On ollected In 99130 Photovac 2020 	EVACUA ible Pump site 2. Co : Tanks (>1ar >1ar pH G.Z.7 G.31 (.31)	TION M • Other:	AETHO Action Action A	D d)Dispo Containe Dulefer	Device N osed Ons rs: Used 11, 3 11, 1 11, 0	Comments Enikal
(G) Well Eva Purge W Commen TIME // 1 9 // 2 1 // 2 7 // 3 2	TOTAL V cuation Met ater Disposi ts: <u>Haa</u> DEPTH TO WATER (ft) <u>38.17</u> <u>40.35</u> <u>41.35</u>	OLUME T hode Bailer tion: 1. Disc C MATE (gpm) I volume 3 volumes 3 volumes	F Submersi harged On ollected In 99130 Photovac 2020 	EVACUA ible Pump site 2. Co : Tanks (2) D D $DFipHG, Z 7G, 3iG, 33$	TION M • Other:	Turb. AETHO No. of C ality urements Turb. ppt 0.33 0.33 0.33	D d)Dispo Containe Dulefer	Device N posed Ons rs: Used 11, 3 11, 1 11, 0 11, 2	Comments Enitie Stopped at 2001
(G) Well Eva Purge W: Commen TIME // 1 9 // 2 1 // 2 7 // 2 7 // 3 2	ts: Hand the second sec	OLUME T hode Bailer tion: 1. Disc Currer HI PURGE RATE (gpm) I volume	F Submersi harged On ollected In 99130 Photovac 2020 	CVACUA ible Pump site 2. Co : Tanks (>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>	TION N • Other: ollected An Drums ter ield Meas mS/cm Spec. Cond. 0.70 0.66 0.68 0.61	AETHO Action Acti	D d)Dispo Containe Dulefer	Device N Device	Comments Enikal
(G) Well Eva Purge W Commen TIME <u>119</u> <u>127</u> 132	TOTAL V cuation Met ater Disposi ts: <u>Haa</u> DEPTH TO WATER (ft) <u>38.17</u> <u>40.35</u> <u>41.35</u>	OLUME T hode Bailer tion: 1. Disc C MATE (gpm) I volume 3 volumes 3 volumes	F Submersi harged On ollected In 99130 Photovac 2020 	EVACUA ible Pump site 2. Co : Tanks (2) D D $DFipHG, Z 7G, 3iG, 33$	TION M • Other:	Turb. AETHO No. of C ality urements Turb. ppt 0.33 0.33 0.33	D d)Dispo Containe Dulefer	Device N posed Ons rs: Used 11, 3 11, 1 11, 0 11, 2	Comments Enitia 1 Stopped at 2001

MKM	Sample	e ID: RQ	Lim	Field Sampling F w-occ Warry Landk/1	Report		RVA	1 Engineers, Inc. AP, 8451 St. Rt.	
Date: 26 Septor	Project:	Romsdel	IG	Warry Landkill			Raver	ana, OH 44266	
				Sampling Informa	ation				
Source	Ground	Iwater / Product		Surface Water	/	Soils	ils / Sediments / Sludge		
Method	Bailer		X	Sample Bottle		Scoop		Trowel	
	Pump			Bacon Bo nb		Bowl		Hand Auger	T
	=1.				_	Stainless Steel			
Type/Construction	Teflor			-/	-				_
Miscellaneous	Vel Purgi	ng Form				/			
Time of Sample Collecti Sample Depth: <u>~ 4</u>		_hrs slow ground surf:	ace)	Decon: Dedicated			asured -C	urveyed	
Field Parameters (at time of sample)			An	alytical Parameters		Oth	ner Para	meters	/
PID / FID Readings: Background:	ррт	PP / RCRA Metals Soluble		TCLP VOC		Corrosivity	/		
0.0						Reactivity Sulfide/Cyan	ude		
Sample: 0.C) ppm	Totals				Ignitability			
Water Level 39	92 FT	VOC					QA Sam	ples	>
Temperature 10	.7 °C	SVOC				MS/MSD			
Sp. Conductance: 0.6	3 NSTEM	EXPLOSIVES	;	Pest/PCB		Duplicate ID	/		
^{рн} <i>6.33</i>	צומי	PROPELLAN	TS	TAL Dissolved. Metals		Field Blank ID	T		
Turbidity 0.31 a	ot we	TOC		Cyanide	X	Trip Blank ID			
Clear, Lon	nturb	Sample Descrip		Idor, No Sheen	Name:	smple ID: Company:	Split Sampl		/
Sailannala dana ini si						Provided: MS/MSD - Duplec ers: Same as Above -		uks - Field Elaniss	
Soil sample description				No.		/			
Munsell Color Od Water sample descriptio			Pla	meny Moisture	/				
and sample descriptio	a savala inclui				1/				
Color Odor Shee	Tratile				1				

	Ralmw	-02	IVI	onitoring	Well Pi	irging Fo	orm		na Army Ammunition P
Date : Z	Cseptor							Kam	sdell Quarry Landfill(1
				WELL C	BSERV	ATIONS			
Concrete Stickup H	Base: Intac Height: eadings : M	tact Damage Damaged (ft) Nu-OVA Debtovac 201	Inner C TIC · T Backgro	OC Differe	4" · 6" · 8	" O	ft)		
LNAPL '	Pre	esent	Depth	Yes . No		Sampled	5	Sample ID	R.
DNAPL	Yes -		-	Yes No				-	
(D) (E) (G) (F) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C	Well Diameter I One Well Volum Volumes to be E		(gal/ft) (2" <u>1.14</u> <u>5</u> O BE E	= 0.16, 4" = 0. (gal)	ED (E	* F) <u>5</u>	772		
Purge Wa	ater Disposi ts: <u>Hau</u>	tion: 1. Disc	harged Or ollected Ir	nsite 2. Co n: Tanks ((Drums	No. of C	Dispo Containe	osed Ons	
Purge Wa	ater Disposi ts: <u>Han</u> DEPTH	tion: 1. Disc	harged Or ollected Ir <u>99130</u> <u>PLotova</u>	nsite 2. Co n: Tanks (<u>(</u>	Drums er O eld Meas	No. of C uslity surements	Dispo Containe	ns:	ite). Offsite
Purge Wa Comment TIME	ater Disposi ts: <u>Hau</u> DEPTH TO WATER (ft)	tion: 1. Disc C MO HI PURGE RATE	harged Or ollected Ir <u>99130</u> <u>PLotova</u> 11NU 2020	nsite 2. Co n: Tanks (<u>(Wat</u> Fi	Drums er O eld Meas Spec. Cond.	No. of C Walty surements		osed Ons	ectComments
Purge Wa Comment TIME /313	ts: <u>Han</u> DEPTH TO WATER (ft) /(.32	tion: 1. Disc C MOL HI PURGE RATE (gpm)	harged Or ollected Ir <u>99130</u> <u>PLotova</u>	nsite 2. Co n: Tanks (<u>(Wat</u> Fi	Ilected A Drums er O eld Meas Spec. Cond. 1. 42	No. of C No. of C uslity surements Turb. ppt 6.70		Temp OC IS·G	ite). Offsite
Purge Wa Comment TIME 1313 18 (C	ts: <u>Han</u> DEPTH TO WATER (ft) <u>J(. 32</u> <u>II. (, 0</u>	tion: 1. Disc <u>Mo-HI</u> PURGE RATE (gpm) I volvyme	harged Or ollected Ir <u>AGL30</u> <u>PLotova</u> <u>HNT</u> 2020 <u>O.O</u> <u>O.O</u>	nsite 2. Co n: Tanks (<u>(</u> <u></u>	Ilected A Drums er C eld Meas Spec. Cond. 1. 42 1. 43	No. of C uslity surements Turb. ppt 6.70		rs: ter US Temp OC	edComments
Purge W: Comment TIME /313 /8 (C 13[8	ts: <u>Han</u> DEPTH TO WATER (ft) <u>/(.32</u> <u>/(.32</u> <u>/(.32</u>	tion: 1. Disc <u>no HI</u> <u>PURGE</u> <u>RATE</u> (gpm) <u>I volvmi</u> <u>2 ml volvmi</u>	harged Or ollected Ir 99.130 PLotova HNT 2020 0.0 0.0 0.0	nsite 2. Co n: Tanks (<u><u><u></u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u>	Ilected A Drums er O eld Meas Spec. Cond. 1. 42 1.43 1.45	No. of C we lity Turb. ppt 0. 70 0.72		Temp OC IS.G IS.I IGO	ectComments
Purge Wa Comment TIME /313 / B (C	ater Disposi ts: <u>Ham</u> DEPTH TO WATER (ft) <i>//.32</i> <i>//.60</i> <i>//.8/</i>	tion: 1. Disc <u>Mo-HI</u> PURGE RATE (gpm) <u>I volume</u> <u>Zalvolume</u> <u>3-1 volume</u>	harged Or ollected Ir <u>AG130</u> <u>PLotova</u> <u>HNU</u> 2020 <u>O.O</u> <u>O.O</u> <u>O.O</u> <u>O.O</u> <u>O.O</u>	nsite 2. Co n: Tanks (<u>(Ша</u> Fi G.57 G.57 G.57 G.57 G.59	Ilected A Drums er C eld Meas MS/cm Spec. Cond. 1. 42 1. 43 1. 45	No. of C uslity surements D. To 0. 70 0. 72 0. 72		Temp OC 15.6 15.1 16.0	edComments
Purge W: Comment TIME /3/3 /B (C /3/6 /3 2/	ater Disposi ts: <u>Ham</u> DEPTH TO WATER (ft) <i>//.32</i> <i>//.60</i> <i>//.8/</i>	tion: 1. Disc <u>no HI</u> <u>PURGE</u> <u>RATE</u> (gpm) <u>I volvmi</u> <u>2 ml volvmi</u>	harged Or ollected Ir <u>99130</u> <u>PLotova</u> <u>11NU</u> 2020 <u>0.0</u> <u>0.0</u> <u>0.0</u> <u>0.0</u> <u>0.0</u> <u>0.0</u>	nsite 2. Co n: Tanks (<u><u><u></u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u>	Ilected A Drums er O eld Meas Spec. Cond. 1. 42 1.43 1.45	No. of C we lity Turb. ppt 0. 70 0.72		Temp OC IS.G IS.I IGO	edComments
Purge Wa Comment TIME 1313 18 (C 13[8 132] 1323	ater Disposi ts: <u>Ham</u> DEPTH TO WATER (ft) /(.32 //.60 //.8/ //.8/ //.8/ //.93 //.90	tion: 1. Disc Ma HI PURGE RATE (gpm) I volvme Zalvolvne Zalvolvne Jalvolvne Jalvolvne	harged Or ollected Ir <u>99130</u> <u>PLotova</u> <u>11NU</u> 2020 <u>0.0</u> <u>0.0</u> <u>0.0</u> <u>0.0</u> <u>0.0</u> <u>0.0</u>	nsite 2. Co n: Tanks (<u>шин</u> Fi G.57 G.57 G.57 G.57 G.59 G.59 G.59	Ilected A Drums er O eld Meas Spec. Cond. 1. 42 1. 43 1. 45 1. 45 1. 45 1. 46	Turty. Ppt 0.70 0.72 0.72		Temp OC IS.G IS.I IG.O IG.Z	Comments

MKM	Sample	D: RQLA	Field Sampling NW 07 Quarry Land All	Report		MKM Engineers, Inc. RVAAP, 8451 St. Rt. 5 Ravenna, OH 44266			
Date: ZG Septol	Project:	Kamsdell	Quarry Land 411	_					
			Sampling Inform	nation	1				
Source	Ground	iwater / Product	Surface Water	1	Soils /	Sediments / Sludge			
Method	Bailer	X	Sample Bottle		Scoop	Trowel			
	Pump		Bacon Bornb		Bowl Stainless Steel	Hand Auger			
Type/Construction	Teller				Stainless Steel				
Miscellaneous	Woll Purgi		1		/				
Time of Sample Collect Sample Depth:		low ground surface)		-		sured Surveyed			
Field Parameters (at time of sample)		A	nalytical Parameters		Oth	er Parameters			
PID / FID Readings: Background: ().	Ó ppm	PP / RCRA Metals Soluble	TCLP VOC		Corrosivity				
					Reactivity Sulfide Cyani	de			
Sample: D.() ppm	Totals			Ignitability				
Water Level /1.8	90 FT	VOC				QA Samples			
Temperature /6		SVOC			MS/MSD	/			
Sp. Conductance: 1.46	METCH	EXPLOSIVES	Pest/PCB		Duplicate ID				
^{рн} 6.58	units	PROPELLANTS	TAL Dissolved. Metals		Field Blank ID				
Turbidity 0.73 P	+ 	TOC	Cyanide	X	Trip Blank ID				
	bidity	Sample Description de carbon co	ter No Sheen	- Name:	ample ID:	plit Sample			
Soil sample description Munsell Color Od Water sample descriptic	lor Staining 1	Texture Sorting Pl	lasticity Moisture	Q.4/Q4 Puram	C Provided: MS/MSD - Duplica eters: Same as Above	ne - Trip Blauks - Field Elanks as Listed			

Chain of Custody Record

SEVERN

TRENT

SERVICES Severn Trent Laboratories, Inc.

Client		Project		-		,										Date	1-	1/1		Chai	n of Custody I	
MAMEngineers, 1.		Stan Levenger Telephone Number (Area Code)/Fax Number							_		9/26/01			1	010	041						
Address 8451 State Route 3	330	330-358-2920/330-358-							- 2	2924 Lab Number.			Pag	re_/	of 1							
Ravenna DH -	Mik	Mike Samelak Debb					tact					A	Analysis (Attach list if more space is needed)			-						
Project Name and Location (State)	14/266 Ravenna, 0	Carrier				6															Special	Instructions/
Contract/Purchase Order/Quote No.					Matrix		Containers & Preservatives			de					Conditions of Re	ns of Receip						
Sample I.D. No. and Description (Containers for each sample may be combined on one line)	Date	Time	Air	Aqueous	Sed. Soil		Unpres.	H2SO4	SONH	HCI	NaOH	NaOH	Cyanide	-								
RQL MW-06	9/26/01	13:55	-	X							×		X								Resau	ple of
Duplicate	9/26/01	13:27		X						-	X		X							1 1	cyania	
Field Blank	9/2401	10:38		X							X		X								Replac	e
										-	-										misan	alyzed
																				:	sample	from
							1														9/20	101
1		·)¥															
- 11					4.9																	
- Jas																						
naking second																						
Possible Hazard Identification		,		ampl	e Dispo	sal	-		-	-	-	-		-				A fee m	av be as	hazzazz	if samples are	retained
	Poison B	Unknown			turn To			DE					Archi	ve Fo	r	Mor			nan 3 mo		n oumproor uno	
Turn Around Time Required 24 Hours 48 Hours 7 Days 14 Days	ays 21 Day	vs Mot	her i	n s	ortc	tin	were f	ran	Requ	a <	ar	Speci	+0 -		Alo.	1~0	+1	2)				
1. Relinquished By Bl	, <u> </u>	Date	261	61	Time	5.3	0	1. R	eceiv	red B	y of	Ex	ac si	our	nor (C)	(~0	<u> </u>	-		Da	ite	Time
2. Relinquished By		Date	1		Time			2. R	eceiv									-		Da	nte	Time
3. Relinquished By	Date	Date Time			3. Received By				_				Da	nte	Time							

DISTRIBUTION: WHITE - Stays with the Sample; CANARY - Returned to Client with Report; PINK - Field Copy

Project Name	e: Ramso	tell Que	Field	l Equipment (df;1(Calibration Log	Location: Ravenna, Ohio	
Equipment Typ Model Name: Serial Number: Date of Last Ca	e Number: pe: Hanno O14 libration by Mai rers Instructions	Quality M HI 99 80 nufacturer:	9-17-01	Date Equipment Arrived Onsite: $9 - 18 - 01$ Calibration Frequency: Daily/ Prior to each Reading Calibration Standard(s): (1) $4pH$ (2) $7pH$ (3) $12.88 \text{ mS}/\text{cm}$ Initial Calibration Verified: Yes / No			
Date/Time of Calibration	Calibration Standard 1	Calibration Standard 2	Calibration Standard 3	Calibration Accept / Reject	Calibration By	Comments	
195ept01/0815	4.00	7.00	12,90	Accept DReject	Marti Dunkery		
25001/0745	4.00	7.00	12.88	Accept DReject	Mat Dunlery		
KScpt01/0929	3.90	7.00	12.88	Accept / Reject	Whichard B & &		
				Accept / Reject			
				Accept / Reject			
				Accept / Reject			
				Accept / Reject	2		
				Accept / Reject			
				Accept / Reject			
				Accept / Reject			
				Accept / Reject			
				Accept / Reject			
				Accept / Reject			

.

Project Name	e: Central	Burn Pits		nd, Ramsdell	Calibration Log	Location:
Field Reference	e Number:		-		Date Equipment Arrived Ons	site: NA
Equipment Typ	e: PE Pho	tomas	PID		Calibration Frequency: Da	
	202					100 ppx Fachatylene
	DGF					
						(2)
Date of Last Ca	libration by Man	ufacturer:			La Marcalana	(3)
Did Manufactu	rers Instructions	Accompany Equ	ipment: (res)N	0	Initial Calibration Verified:	Yes / No
Date/Time of Calibration	Calibration Standard 1	Calibration Standard 2	Calibration Standard 3	Calibration Accept / Reject	Calibration By	Comments
5-10-01/2:33	100ppm			Accept / Reject	CRITICAL &	2
2B930	100 ppm		(Accept / Reject		100ppm
1	inoppor			Accept / Reject	Michael St	100 ppin
	100 ppin			Accept/Reject	Michael St	100 ppu
8-28-01	Doppm			Accept Reject	Hickord BAS	100 ppu
8-29-01	100 ppus			Accep) / Reject	Michael HAL	99.8ppm
5-30-01	100ppm			Accept Reject (ARIL SAN	s 100 ppm
8-30-01				Accep / Reject 4	1000	100 ppm
	100ppm			Accept / Reject	110 2 1 1	-99.7 Mm
9-5-01	100 ppm 100 ppm			Recept/ Reject		- 99,7 ppm
				Accept Reject	dai man	100 000
9-7-01	100 pm			Accept) Reject	Antip	99.8 ppm
9-19-01	(r)pan		(Accepty Reject		

Project Name	e: RVAAP – I	Ramsdell Quai		d Equipment (Calibration Log	Location: Ravenna, Ohio		
Equipment Typ Model Name: _ Serial Number: Date of Last Ca	he: \underline{PEP} $\underline{200}$ \underline{DQE} allibration by Man	- 20 10 20 10 208 nufacturer: Accompany Equ	27D > 	Date Equipment Arrived Onsite: NA Calibration Frequency: Daily Prior to each Reading Calibration Standard(s): (1) (2) (3) Initial Calibration Verified: Yes / No				
Date/Time of Calibration	Calibration Standard 1	Calibration Standard 2	Calibration Standard 3	Calibration Accept / Reject	Calibration By	Comments		
7/24/01/1050	100 pour			Accept) Reject	Hickard 482	100ppul		
				Accept / Reject	·			
				Accept / Reject				
				Accept / Reject				
				Accept / Reject				
				Accept / Reject				
				Accept / Reject				
				Accept / Reject				
				Accept / Reject				
				Accept / Reject				
			-	Accept / Reject				
				Accept / Reject	-			
				Accept / Reject				