FINAL FACILITY-WIDE GROUNDWATER MONITORING PROGRAM RVAAP-66 FACILITY-WIDE GROUNDWATER REPORT ON THE OCTOBER 2014 SAMPLING EVENT

FORMER RAVENNA ARMY AMMUNITION PLANT PORTAGE AND TRUMBULL COUNTIES, OHIO

March 20, 2015

GSA Contract Number GS-10F-0293K Delivery Order W912QR-11-F-0266

Prepared for

U.S. Army Corps of Engineers 600 Martin Luther King Jr. Place Louisville, Kentucky 40202

Prepared by

Environmental Quality Management, Inc. 1800 Carillon Boulevard Cincinnati, Ohio 45240

REPORT	Form Approved OMB No. 0704-0188									
The public reporting burden for this collection gathering and maintaining the data needed, and information, including suggestions for reducing 1215 Jefferson Davis Highway, Suite 1204, Ar penalty for failing to comply with a collection of PLEASE DO NOT RETURN YOUR FO	me for reviewing instructions, searching existing data sources, ding this burden estimate or any other aspect of this collection of irectorate for Information Operations and Reports (0704-0188), ng any other provision of law, no person shall be subject to any									
1. REPORT DATE (DD-MM-YYYY)	2. REPC	DRT TYPE			3. DATES COVERED (From - To)					
4. TITLE AND SUBTITLE	1			5a. COI	NTRACT NUMBER					
				5b. GR/						
				5c. PRC	c. PROGRAM ELEMENT NUMBER					
6. AUTHOR(S)				5d. PRC	DJECT NUMBER					
				5e. TAS	SK NUMBER					
				5f. WO	RK UNIT NUMBER					
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)					8. PERFORMING ORGANIZATION REPORT NUMBER					
9. SPONSORING/MONITORING AG	ENCY NAM	E(S) AND ADDRESS(ES)			10. SPONSOR/MONITOR'S ACRONYM(S)					
				11. SPONSOR/MONITOR'S REPORT NUMBER(S)						
12. DISTRIBUTION/AVAILABILITY S	TATEMEN	r								
13. SUPPLEMENTARY NOTES										
14. ABSTRACT										
15. SUBJECT TERMS										
			18 NIIMRED	100 NA						
a. REPORT b. ABSTRACT c. T	HIS PAGE	ABSTRACT	OF PAGES	19a. NA						
				19b. TEL	LPHUNE NUMBER (Include area code)					

John R. Kasich, Governor Mary Taylor, Lt. Governor Cralg W. Butler, Director

April 2, 2015

Mr. Mark Leeper Army National Guard Directorate ARNGD-ILE Clean Up 111 South George Mason Drive Arlington, VA 22204 Re: US Army Ammunition Plt RVAAP Remediation Response Project Records Remedial Response Portage County 267000859036

Subject: Ravenna Army Ammunition Plant, Portage/Trumbull Counties, Approval of the RVAAP-66 Final Facility-Wide Groundwater Report on the October 2014 Sampling Event, Dated March 20, 2015, Ohio EPA ID # 267-000859-036

Dear Mr. Leeper:

The Ohio Environmental Protection Agency (Ohio EPA) has received the "Final Facility-Wide Groundwater Monitoring Program RVAAP-66 Facility-Wide Groundwater Report on the October 2014 Sampling Event" at the Ravenna Army Ammunition Plant (RVAAP), Ravenna, Ohio. This document was received at Ohio EPA's Northeast District Office (NEDO), Division of Environmental Response and Revitalization (DERR), on March 23, 2015. The report was prepared for the US Army Corps of Engineers (USACE) Louisville District, by Environmental Quality Management, Inc., under Contract Number W912QR-11-F-0266.

This document was reviewed by personnel from Ohio EPA's DERR, pursuant to the Director's Findings and Orders paragraph 39 (b), Ohio EPA considers the document final and approved.

Pursuant to the CERCLA process, the property owner usually can anticipate the expected land uses to assist in ensuring that the investigation addresses all receptors for both current and future land uses. Be advised that due to land use uncertainty, Ohio EPA may require additional work in the future to address data gaps. It is incumbent

MR. MARK LEEPER ARMY NATIONAL GUARD DIRECTORATE APRIL 2, 2015 PAGE 2

upon the Army to finalize land use at camp Ravenna as soon as possible, otherwise additional work and schedule slippage may result.

If you have any questions, please call me at (330) 963-1292.

Sincerely,

Kunk 6

Kevin M. Palombo Environmental Specialist Division of Environmental Response and Revitalization

KP/nrp

- cc: Katie Tait, OHARNG RTLS Kevin Sedlak, ARNG Gregory F. Moore, USACE Rebecca Haney/Gail Harris, VISTA Sciences Corp.
- ec: Rodney Beals, Ohio EPA NEDO DERR Justin Burke, Ohio EPA, CO DERR

CONTRACTOR'S STATEMENT OF INDEPENDENT TECHNICAL REVIEW

Environmental Quality Management, Inc. (EQM) has completed the *Final Facility-Wide Groundwater Monitoring Program Report on the October 2014 Sampling Event*. Notice is hereby given that an independent technical review has been conducted that is appropriate to the level of risk and complexity inherent in this project. During the independent technical review, compliance with established policy principles and procedures, utilizing justified and valid assumptions, was verified. This included review of data quality objectives; technical assumptions, methods, procedures, and materials used; the appropriateness of data used and level of data obtained; and reasonableness of the results, including whether the product meets the customer's needs consistent with law and existing United States Corps of Engineers policy.

Jackie Doan, CQM, CQA, CHMM, CEAC Director of Quality

Jøhn M. Miller Senior Project Manager

Colleen A. Lear CPG, LG Geologist

Narch 18, 2015

Date

18

Date

FINAL FACILITY-WIDE GROUNDWATER MONITORING PROGRAM RVAAP-66 FACILITY-WIDE GROUNDWATER REPORT ON THE OCTOBER 2014 SAMPLING EVENT

FORMER RAVENNA ARMY AMMUNITION PLANT PORTAGE AND TRUMBULL COUNTIES, OHIO

March 20, 2015

GSA Contract Number GS-10F-0293K Delivery Order W912QR-11-F-0266

Prepared for

U.S. Army Corps of Engineers 600 Martin Luther King Jr. Place Louisville, Kentucky 40202

Prepared by

Environmental Quality Management, Inc. 1800 Carillon Boulevard Cincinnati, Ohio 45240

Document Distribution for the Final FWGWMP October 2014 Sampling Event Report Former Ravenna Army Ammunition Plant

Name/Organization	Number of <u>Printed Copies</u>	Number of <u>Electronic Copies</u>
ARNG Cleanup Program, Mark Leeper	0	1
ARNG Restoration Project Manager, Kevin Sedlak	1	0
OHARNG – CRJMTC-ENV Env. Scientist, Katie Tait	0	1
Ohio EPA - NEDO, Project Coordinator, Kevin Palomb	o 1	2
Ohio EPA – CO-DERR, Justin Burke	0	1
RVAAP Facility Archivist, Gail Harris	2	2
USACE Technical Manager, Nathaniel Peters	2	3
EQM Project Manager, John Miller	1	1

ARNG - Army National Guard

OHARNG – CRJMTC-ENV – Ohio Army National Guard Camp Ravenna Joint Military Training Center – Environmental

Ohio EPA - NEDO - Ohio Environmental Protection Agency – Northeast District Office

Ohio EPA – CO-DERR – Ohio Environmental Protection Agency – Columbus – Division of Environmental Response & Revitalization

RVAAP – Ravenna Army Ammunition Plant

USACE – U.S. Army Corps of Engineers

EQM – Environmental Quality Management, Inc.

TABLE OF CONTENTS

Section

Page

List List Exe	of Geno of Area cutive S	eral Acronymsiii a of Concern Acronymsv Summaryvi				
1	Introdu	Iction				
	1.1	Project Description 1				
	1.2	1.2.1 Historical Monitoring				
		1.2.1 Instolical Monitoring				
	13	Scope of Work for the October 2014 Sampling Event				
	1.5	Report Presentation 5				
	1.7					
2	Project	Activities				
	2.1	Groundwater Level Monitoring				
 Project Activities						
 1.4 Report Presentation						
	2.4	Data Verification/Validation				
	2.5	Investigation-Derived Waste				
-						
3	Results	5				
	3.1	Groundwater Elevations				
	3.2	Summary of Analytical Results				
	3.2.1 Explosives and Propellants					
List of General Acronyms List of Area of Concern Acronyms						
		3.2.3 Volatile Organic Compounds (VOCs)				
		3.2.4 Semivolatile Organic Compounds (SVOCs)20				
 List of Area of Concern Acronyms						
	3.3	Data Verification/Validation				
4	Referen	nces				

TABLE OF CONTENTS (continued)

Section Page LIST OF FIGURES

1-1	Former RVAAP/Camp Ravenna Installation Location Map	2
2-1	Wells Monitored in October 2014	7

LIST OF TABLES

9 0
Ω
U
4
8
1
3
6
Δ

APPENDICES

А	Water-Level Measurements/Field Log Book/Calibration Records/Sample and Purge
	Records/Daily Quality Control Reports
В	Data Verification Reports/Laboratory Data Sheets
	Sample Delivery Group: 240-43449
С	Investigation-Derived Waste Characterization and Disposal Plan
D	Reporting Limits that Currently Do Not Meet the RVAAP QAPP Project Action
	Requirements, MCLs, and/or RSLs (November 2014)

E Correspondence and Comments/Responses

LIST OF GENERAL ACRONYMS

ADR	Automated Data Review
amsl	above mean sea level
AOC	Area of Concern
ARNG	Army National Guard
° C	degree Celsius
CCV	continuing calibration verification
CRJMTC	Camp Ravenna Joint Military Training Center
CERCLA	Comprehensive Environmental Response, Compensation, and Liability Act
CLP	Contract Laboratory Program
DDE	dichlorodiphenyldichloroethylene
DFFOs	Director's Final Findings and Orders
DoD	Department of Defense
EQM	Environmental Quality Management, Inc.
EPA	Environmental Protection Agency
ft	feet
FWGWMP	Facility-Wide Groundwater Monitoring Program
FWGWMPP	Facility-Wide Groundwater Monitoring Program Plan
FWSAP	Facility-Wide Sampling and Analysis Plan
GC	gas chromatograph
GOCO	Government-Owned, Contractor-Operated
GSA	Government Services Administration
>	greater than
GW	groundwater
HNO ₃	nitric acid
HMX	Octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine
HPLC	high-performance liquid chromatography
H_2SO_4	sulfuric acid
IDW	Investigation-Derived Waste
IRP	Installation Restoration Program
LCS	laboratory control sample
<	less than
LS	Louisville District Quality Systems Manual Supplement
MCL	Maximum Contaminant Level
MDL	method detection limit
mg/L	milligram per liter
µg/L	microgram per liter
MMRP	Military Munitions Response Program
MRL	method reporting limit
MS	mass spectrometer
MS/MSD	matrix spike/matrix spike duplicate
mw	monitoring well
NaOH	sodium hydroxide
NEDO	Northeast District Office
N/A	not analyzed

LIST OF GENERAL ACRONYMS

(continued)

not measured
nitrite/nitrate
no standard
nephelometric turbidity unit
Ohio Army National Guard
percent
Performance Based Acquisition
polychlorinated biphenyl
pentaerythritol tetranitrate
quality assurance
Quality Assurance Project Plan
quality control
Quality Services Manual
Resource Conservation and Recovery Act
Risk-Based Cleanup
hexahydro-1,3,5-trinitro-1,3,5-triazine
Remedial Investigation
reporting limit
Record of Decision
Regional Screening Level
Ravenna Army Ammunition Plant
sample delivery group
Site-Related Contaminant
Site Safety and Health Plan
semivolatile organic compound
standard units
target analyte list
top of casing
United States
United States Army Corps of Engineers
United States Environmental Protection Agency
United States Property and Fiscal Officer
ultraviolet
volatile organic compound

LIST OF AREA OF CONCERN ACRONYMS

ASY	Atlas Scrap Yard
B12	Building 1200
BKG	Background
CBL	C-Block
CBP	Central Burn Pits
CP	Cobbs Pond
DA2	Demolition Area #2
EBG	Erie Burning Grounds
FBQ	Fuze and Booster Quarry
FWG	Facility-Wide Groundwater
LNW	Landfill North of Winklepeck
LL	Load Line
MBS	Mustard Burial Site
NACA	National Advisory Committee for Aeronautics
NTA	NACA Test Area
RQL	Ramsdell Quarry Landfill
SCF	Sharon Conglomerate Formation
WBG	Winklepeck Burning Grounds

EXECUTIVE SUMMARY

Past Department of Defense (DoD) activities at the former Ravenna Army Ammunition Plant (RVAAP) in Ravenna, Ohio, date to 1940 and include the manufacturing, loading, handling, and storage of military explosives and ammunition. Residual contamination from these early activities at the former RVAAP has been identified in groundwater beneath the facility. Currently, the approximately 21,683-acre facility is primarily used for military training.

The United States (U.S.) Army Corps of Engineers (USACE) is performing Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) closure at the former RVAAP under the Installation Restoration Program (IRP) and the Military Munitions Response Program (MMRP). The overall goal is to remediate the former RVAAP installation as all of the property has been transferred to the Army National Guard (ARNG) and is being used by the Ohio Army National Guard (OHARNG) as a military training site. One of the activities conducted under the IRP includes monitoring of an extensive network (now 284 wells) of groundwater monitoring wells at the former RVAAP facility. To date, 284 Facility-Wide Groundwater Monitoring Program (FWGWMP) wells at the facility have been sampled and analyzed a minimum of four quarters.

In 2004, the U.S. Army and the Ohio Environmental Protection Agency (EPA) finalized the FWGWMP Plan, which detailed the requirements of the program for the 243 existing wells. The FWGWMP was initiated in 2005 with three consecutive quarters of FWGWMP well sampling. In addition, five Resource Conservation and Recovery Act (RCRA) wells located at Ramsdell Quarry Landfill (RQLmw-007, RQLmw-008, and RQLmw-009) and Demolition Area 2 (DETmw-003 and DETmw-004) are sampled on a semiannual basis.

The current wells to be sampled and the analytes to be analyzed from each well were approved in the FWGWMPP Addendum dated August 1, 2013. The monitoring wells sampled during the October 2014 groundwater monitoring event are presented in Table 1-1.

The following activities were conducted by Environmental Quality Management, Inc. (EQM) during the reporting period:

- Performed groundwater sampling at the 3 wells identified in Table 1-1.
- Gauged water levels/total depth at the 3 groundwater monitoring wells scheduled for groundwater sampling at the facility.
- Performed laboratory analysis of all the collected samples.
- Verified, validated, and reduced the laboratory analytical data produced for the event (exclusive of the quality assurance samples analyzed by RTI Laboratories).
- Prepared the Investigation-Derived Waste (IDW) Characterization and Disposal Plan for the IDW collected during monitoring activities.
- Prepared and submitted the monitoring report for the sampling event.

During the October 2014 sampling event, several analytes were detected at levels at/or above their respective Maximum Contaminant Levels (MCLs) and/or United States Environmental

Protection Agency (USEPA) Regional Screening Levels [RSLs (November 2014)]. The summary of exceedances is as follows.

Explosive and Propellant Compounds

As shown in Table 3-1, no explosives or propellants were detected at levels above their corresponding MCLs or RSLs (November 2014) during the October 2014 sampling event.

Inorganic Elements

Several inorganic compounds were detected at levels exceeding the MCLs and/or RSLs (November 2014). These included arsenic, cobalt, iron, and manganese, in wells from all areas sampled.

Volatile Organic Compounds

As shown in Table 3-3, no VOCs were detected at levels exceeding the MDL for this sampling event.

Semivolatile Organic Compounds

As shown in Table 3-4, no SVOCs were detected at levels exceeding the MDL for this sampling event.

Pesticides and Polychlorinated Biphenyls (PCBs)

The analytical results for pesticides and PCBs are summarized in Table 3-5. As shown in Table 3-5, alpha-BHC was detected in one well at a level exceeding the MDL for this sampling event.

alpha-BHC – LL1mw-88 (0.028 μg/L JB). There is no MCL for alpha-BHC. The RSL (November 2014) is 0.0071 μg/L.

Note that method blank associated with the samples were found to contain alpha-BHC contamination less than ½ the method reporting limit (MRL). The low-level detection (i.e., \leq RL, 0.053 µg/L) in this sample is therefore attributed to low-level lab contamination and was flagged with a B qualifier.

SECTION 1 INTRODUCTION

1.1 Facility Description

Past Department of Defense (DoD) activities at the former Ravenna Army Ammunition Plant (RVAAP) date to 1940 and include the manufacturing, loading, handling, and storage of military explosives and ammunition. Until 1999, the former RVAAP was identified as a 21,419-acre installation. The property boundary was resurveyed by the Ohio Army National Guard (OHARNG) over a 2-year period from 2002 and 2003, and the actual total acreage of the property was found to be 21,683.289 acres. All of the former 21,683 acre RVAAP has been transferred to the United States Property and Fiscal Officer (USP&FO) for Ohio for use by the OHARNG. Administrative accountability for all property has been transferred to the Army National Guard (ARNG) with licensure to OHARNG for use as a military training site, Camp Ravenna Joint Military Training Center (CRJMTC). The CRJMTC is in northeastern Ohio within Portage and Trumbull Counties, approximately 4.8 kilometers (3 miles) east-northeast of the city of Ravenna and approximately 1.6 kilometers (1 mile) northwest of the city of Newton Falls (Figure 1-1). The former RVAAP portions of the property are solely located within Portage County. The CRJMTC (inclusive of the former RVAAP) is a parcel of property approximately 17.7 kilometers (11 miles) long and 5.6 kilometers (3.5 miles) wide bounded by State Route 5, the Michael J. Kirwan Reservoir, and the CSX System Railroad on the south; Garret, McCormick, and Berry roads on the west; the Norfolk Southern Railroad on the north; and State Route 534 on the east. Figure 1-1 presents the Former RVAAP/Camp Ravenna Installation Location Map. The CRJMTC is surrounded by several communities: Windham on the north; Garrettsville 9.6 kilometers (6 miles) to the northwest; Newton Falls 1.6 kilometers (1 mile) to the southeast; Charlestown to the southwest; and Wayland 4.8 kilometers (3 miles) to the south. When the former RVAAP was operational CRJMTC did not exist and the entire 21,683-acre parcel was a government-owned, contractor-operated (GOCO) industrial facility. The RVAAP Installation Restoration Program (IRP) encompasses investigation and cleanup of past activities over the entire 21,683 acres of the former RVAAP, and, therefore, references to the former RVAAP in this document are considered to be inclusive of the historical extent of the former RVAAP, which is inclusive of the combined acreages of the current CRJMTC and former RVAAP, unless otherwise specifically stated.

1.2 Project Description

<u>1.2.1</u> Historical Monitoring

In 2004, the United States (U.S.) Army and the Ohio Environmental Protection Agency (EPA) finalized the Facility-Wide Groundwater Monitoring Program (FWGWMP) Plan, which details the requirements of the program. The FWGWMP was initiated in 2005 with three consecutive quarters of FWGWMP well sampling. Quarterly sampling has continued through the current monitoring event. The initial FWGWMP wells identified for monitoring were sampled once every quarter, with the exception of the five Resource Conservation and Recovery Act (RCRA)

FWGWMP October 2014 Sampling Event Report

wells that include three Ramsdell Quarry Landfill (RQL) wells (RQLmw-007, -008, and -009) and two Demolition Area 2 (DA2) wells (DETmw-003 and DETmw-004). The RQL and DA2 wells are sampled semiannually.

As detailed in the original FWGWMP Plan (FWGWMPP; September 2004), the initial monitoring program consisted of the sampling of 36 wells specified in Table 4-1 of the FWGWMPP. Fourteen of these wells are "Background Wells," and the remaining wells are situated at various Areas of Concern (AOCs) at the former RVAAP. The first sampling event for this project was conducted in April 2005. The final assessment monitoring event for the initial well sampling and analysis was completed in October 2007.

On October 22, 2007, the U.S. Army Corps of Engineers (USACE) submitted to the Ohio EPA the *Preliminary Draft Proposal to Update the Facility-Wide Ground Water Monitoring Program* (USACE, October 2007) at the former Ravenna Army Ammunition Plant. This proposal presented recommendations for modifications to the FWGWMP, the Director's Final Findings and Orders (DFFOs), and the Conceptual Plan in Appendix E of the Findings and Orders as presented below.

Section 3.1.2.2 of the original FWGWMPP (September 2004) establishes a protocol for adding and removing wells from the FWGWMP: "Future wells installed as part of individual AOC investigations conducted under the ongoing Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) process at RVAAP will be evaluated for incorporation into the FWGWMP upon completion of at least four quarterly groundwater sampling events to be conducted as part of the Remedial Investigation (RI) phase at each AOC. The frequency of the initial sampling events may be other than quarterly if agreed upon by the Army and Ohio EPA." Based on this protocol the USACE notified the Ohio EPA on December 12, 2007 that the wells to be sampled would be changed effective with the January 2008 monitoring event. The Ohio EPA provided concurrence with this change in an email dated January 8, 2008. The Ohio EPA was notified of an additional change on February 27, 2008, increasing the number of wells to be sampled for the April 2008 event. The Ohio EPA was notified on March 21, 2008, that the number of FWGWMP wells to be sampled in April 2008 (and the July 2008, October 2008, and January 2009 events) would be increased to 132 plus the five RCRA wells sampled semiannually (in order to complete four quarters of sampling for each of the 132 wells).

Beginning with the April 2009 sampling event the remaining wells on the list contained in the *Draft Proposal to Update the Facility-Wide Ground Water Monitoring Program* (USACE, October 2007) were sampled.

A revised list of wells to be sampled during 2010-2011 was submitted to the Ohio EPA in early 2010. The list of wells to be sampled, as well as scheduling issues, were discussed with the Ohio EPA in a telephone conference and verified in a subsequent email on May 26, 2010.

Revisions to the list of wells to be sampled and the analytes to be analyzed from each well were discussed with the Ohio EPA in email correspondences in July 2011. For the groundwater monitoring event it was agreed to monitor the wells and analytes presented in the Draft 2010

Addendum to the Facility-Wide Groundwater Monitoring Program Plan RVAAP-66 Facility-Wide Groundwater (USACE, 2010). (Note that this document was withdrawn as a submittal to the Ohio EPA; however, the information presented in that document is still relevant and useful.)

1.2.2 October 2014 Monitoring Event

One of the activities conducted under the IRP includes monitoring of an extensive network (now 284 wells) of groundwater monitoring wells at the former RVAAP facility. To date, 284 current FWGWMP wells at the facility have been sampled and analyzed a minimum of four quarters.

Details of the current program design and requirements are contained in the *Final Facility-Wide Groundwater Monitoring Program Plan RVAAP-66 Facility-Wide Groundwater Semiannual Monitoring Addendum* dated August 1, 2013. Additionally, this document supplements the *Final Facility-Wide Groundwater Monitoring Program Plan RVAAP-66 Facility-Wide Groundwater Addendum* (FWGWMPP Addendum; EQM, January 2012), which includes three parts that pertain to the proposed work: Part I- Environmental Investigation Services Addendum, Part II-Quality Assurance Project Plan (QAPP) Addendum, and Part III- Site Safety and Health Plan (SSHP) Addendum. Additional details pertaining to performance of field and laboratory activities are contained in the *Final Facility-Wide Sampling and Analysis Plan for Environmental Investigations at the Ravenna Army Ammunition Plant, Ravenna, Ohio* (FWSAP; SAIC, 2011).

In December 2013 three wells were installed under the *Facility-Wide Groundwater Monitoring Program Plan RVAAP-66 Facility-Wide Groundwater Additional Well Installation Addendum* (*September 2013*). The purpose of the new wells was to evaluate potential groundwater impacts outside of the perimeter fence area of the former RVAAP. These wells were monitored for the final fourth quarter during this event. The monitoring wells sampled during the October 2014 groundwater monitoring event are presented in Table 1-1.

Well ID Number	RVAAP Location	Sampling Rationale				
LL1mw-088	Load Line 1	New well, four events needed				
LL2mw-271	Load Line 2	New well, four events needed				
LL3mw-246	Load Line 3	New well, four events needed				

Table 1-1. October Monitoring Wells

1.3 Scope of Work for the October 2014 Sampling Event

The USACE, under a Government Services Administration (GSA) Performance Based Acquisition (PBA) contract, retained Environmental Quality Management, Inc. (EQM) (Contract No. GS-10F-0293K – Delivery Order W912QR-11-F-0266) to obtain a signed Record of Decision (ROD) for the facility-wide groundwater (RVAAP-66) at the former RVAAP. One objective of this project is to continue monitoring under the RVAAP Facility-Wide Groundwater Monitoring Program. The following tasks were performed during the October 2014 sampling event in accordance with specifications contained in the Semiannual Addendum, FWGWMPP Addendum, the FWSAP, and the Scope of Work written by the USACE:

- Performed groundwater sampling at the 3 wells identified in Table 1-1.
- Gauged water levels/total depth at the 3 groundwater monitoring wells scheduled for groundwater sampling at the facility.
- Performed laboratory analysis of all the collected samples.
- Verified, validated, and reduced the laboratory analytical data produced for the event (exclusive of the quality assurance samples analyzed by RTI Laboratories).
- Prepared the Investigation-Derived Waste (IDW) Characterization and Disposal Plan for the IDW collected during monitoring activities.
- Prepared and submitted the monitoring report for the sampling event.

1.4 Report Presentation

This report presents the results of the October 2014 sampling event. The report is structured in the following way:

- Section 1.0 Introduction.
- Section 2.0 Description of Project Activities. This section describes project-specific details not contained in the FWSAP, FWGWMPP Addendum, and Semiannual Addendum. Additionally, details are provided on how the tasks described above were performed.
- Section 3.0 Results of Investigation. The results of the sampling event are summarized, including groundwater elevation measurements, analytical results, and data verification/validation information.
- Section 4.0 –References.
- Appendix A Water-Level Measurements/Field Log Book/Calibration Records/Sample and Purge Records/Daily Quality Control Reports
- Appendix B Data Verification Reports/Laboratory Data Sheets
- Appendix C Investigation-Derived Waste Characterization and Disposal Plan
- Appendix D Reporting Limits that Currently Do Not Meet the RVAAP QAPP Project Action Requirements, MCLs, and/or USEPA RSLs (November 2014)
- Appendix E Correspondence and Comments/Responses

SECTION 2 PROJECT ACTIVITIES

2.1 Groundwater Level Monitoring

Depth to water from the top of the inner casing was measured in 3 wells during the October 2014 sampling event. Water-level measurements were taken with a Herron Dipper-T or Enviro Inspector electronic water-level indicator. The depth to the bottom of the well from the top of the inner casing was also measured with the electronic water-level indicator.

Results of the groundwater level monitoring for the three former RVAAP wells sampled during this monitoring event are presented in Section 3.1 and Appendix A. The monitoring well location map, identified as Figure 2-1 Wells Monitored in October 2014 Map, is included with this report.

2.2 Groundwater Sampling

All identified monitoring wells were sampled from October 21-22, 2014. Wells were sampled using micropurge techniques in accordance with the specifications contained in the approved addendum. The wells were micropurged until certain groundwater parameters (i.e., temperature, specific conductivity, pH, and dissolved oxygen) had stabilized and turbidity readings were less than (<) or equal to 10 nephelometric turbidity units (NTU) or after two hours had three consecutive readings within 10 percent (%), with the exception of one well.

• LL1mw-088, which was sampled after two hours and fifteen minutes of purging without 10 NTU or three consecutive readings within 10 %.

The groundwater parameters were measured using a Horiba U-22/U-52 with flow cell or equivalent. Groundwater parameter measurements obtained during micropurging are presented in Appendix A. During the October 2014 event, a groundwater pH value of more than 9 standard units (s.u.) or less than 4 s.u. was not noted at any of the wells.

Additionally, the groundwater samples for metals analysis were filtered as part of the FWGWMP sampling, thereby reducing the effect of suspended particles in the groundwater. Filtered metals samples were collected through the bladder pump using an inline 0.45-micron filter emptying directly into pre-preserved sample bottles containing nitric acid. All sampling procedures for the filtered metals were conducted in accordance with the FWSAP.

Equipment and sampling details are contained in Appendix A. Groundwater samples were collected in laboratory-supplied containers and stored in iced coolers for shipment in accordance with the specifications presented in the FWSAP, Semiannual Addendum, and FWGWMPP.

During the October 2014 sampling, all coolers were received by the laboratory at temperatures within the prescribed tolerance limits.

2.3 Laboratory Analysis

Laboratory analyses on all primary samples and associated quality control (QC) samples were performed by Test America Laboratories. Table 2-1 presents the analytical methods used to analyze the groundwater samples.

Note that for this event, wells were sampled for specific analytes as identified in the FWGWMPP Addendum. The three new wells were sampled for the full RVAAP analytical suite. The October 2014 groundwater samples were analyzed for the following parameters: explosives, propellants (nitrocellulose and nitroguanidine), cyanide, volatile organic compounds (VOCs), semivolatile organic compounds (SVOCs), target analyte list (TAL) metals (filtered), pesticides, and polychlorinated biphenyls (PCBs).

Quality control samples, including duplicates and matrix spike/matrix spike duplicates (MS/MSD) were collected from the following wells:

LL3mw-246 – Duplicate Sample LL2mw-271 – MS/MSD

All samples were picked up from the facility and delivered to the laboratory in a cooler (with wet ice) by a Test America courier under proper chain-of-custody procedures (FWSAP). Laboratory analyses on all quality assurance (QA) samples (i.e., split samples) were performed by RTI Laboratories in Livonia, Michigan. One QA sample was collected from the same well where the duplicate sample was collected. The QA samples were shipped in coolers (with wet ice) via overnight delivery service under proper chain-of-custody procedures. Table 2-2 presents, in tabular form, all analyses and associated QA/QC for the October 2014 monitoring event. The Daily Quality Control Reports are presented in Appendix A.

Laboratory results are summarized in Section 3.2. Laboratory data sheets, including chain-ofcustodies and QA/QC information, are contained in Appendix B.

Constituents	Method ¹	Preservation					
Polychlorinated biphenyls	Gas Chromatograph (GC) – (8082)	Cool, $4^{\circ} C^{3}$					
(PCBs)							
Pesticides	GC – (8081A)	Cool, 4° C					
Base/Neutrals and Acids	GC/Mass Spectrograph (MS)	Cool, 4° C					
(SVOCs)	SVOCs (8270C)						
Volatile Organic Compounds	GC/MS VOCs (8260B)	HCl, Cool, 4° C, pH < 2					
(VOCs)							
Nitroguanidine	Organic compounds by UV/HPLC	Cool, 4° C					
(Propellant)	(8330 modified)						
Nitroaromatics & Nitramines	GC SVOCs Explosives (8330)	Cool, 4° C					
(Explosives)							
Nitrocellulose as N	General Chemistry (WS-WC-0050)	Cool, 4° C					
(Propellant)							
Nitrate/Nitrites	General Chemistry $(353.2)^2$	H_2SO_4 , Cool, 4° C, pH < 2					
Cyanide (Total)	General Chemistry (9012A)	NaOh to $pH > 12$, Cool, 4° C					
Metals (Magnesium,	Inductively Coupled Plasma (6010B)	$0.45 \mu m$ filter, HNO ₃ , to pH < 2,					
Manganese, Barium, Nickel,		Cool, 4° C					
Potassium, Silver, Sodium,							
Vanadium, Chromium,							
Calcium, Cobalt, Copper,							
Arsenic, Lead, Selenium)							
Metals (Antimony, Iron,	Inductively Coupled Plasma Mass	$0.45 \mu m$ filter, HNO ₃ , to pH < 2,					
Beryllium, Thallium, Zinc,	Spectrometry (6020)	Cool, 4° C					
Cadmium, Aluminum)							
Mercury	Liquid Waste Cold Vapor Technique	$0.45 \mu m$ filter, HNO ₃ , to pH < 2,					
	(7470A)	Cool, 4° C					
Hexavalent Chromium	Method 218.6 ²	0.45µm filter, Buffer solution,					
		Cool, 4° C					

 Table 2-1.
 Analytical Suite of Chemicals

1 = USEPA SW846

2 = EPA Methods for Chemical Analysis of Water and Waste

3 =degree Celsius

Table 2-2. QA Table for October 2014 Sampling Event

								Requested Labo					rato	ory	
	Contractor Laboratory						Government Laboratory Ana				Anal	alysis			
Sample Locations	Primary Lab Sample ID	Date	Sample Type	Assoc. QC Dup Number	Assoc. QC Rinsate Number	Assoc. QC Trip Blank Number	MS/ MSD	QA Lab Sample ID	Assoc. QC Trip Blank Number	VOCs	Pesticides	PCBs	Explosives & Pronellants	Cyanide	Filtered Metals
LL1mw-088	FWGLL1mw-088-0502-GW/GF	10/21/2014	GW		EQUIPRinse1-0507	FWGTEAM2-Trip				1	1 1	1	1	1	1
LL2mw-271	FWGLL2mw-271-0503-GW/GF	10/22/2014	GW		EQUIPRinse2-0508	FWGTEAM2-Trip	Y			1	1 1	1	1	1	1
LL3mw-246	FWGLL3mw-246-0504-GW/GF	10/22/2014	GW	DUP1-0506	EQUIPRinse2-0508	FWGTEAM2-Trip		FWGLL3mw-246-0505s-GW/GF	TRIPBLANK	1	1 1	1	1	1	1

SVOCs (4=Full RVAAP RCRA suite)

2.4 Data Verification/Validation

Data from Test America were verified in accordance with project specifications by EQM chemists Ms. Angye Dragotta and Mr. Eric Corbin using the Automated Data Review (ADR) software. Data validation/verification is summarized in Section 3.3. The Data Verification/Validation Summary Reports are presented in Appendix B.

2.5 Investigation-Derived Waste

An IDW Report was prepared for the sampling and water-level measurement activities discussed in Section 3. Purge water was collected at each well location in 5-gallon buckets and transferred to 55-gallon drums located inside Building 1036. No more than 7 gallons were purged from any well. Instruments and equipment were decontaminated after purging and sampling each monitoring well. Decontamination fluids were collected in a separate 55-gallon drum stored inside Building 1036. Pending analysis of the monitoring well samples, IDW fluids are stored in the 55-gallon drums until the IDW Report pending review by the Ohio EPA. The IDW Report is presented in Appendix C.

SECTION 3 RESULTS

3.1 Groundwater Elevations

Groundwater elevations were measured in 3 former RVAAP monitoring wells during October 21-22, 2014. The locations of the 3 monitoring wells sampled are shown on Figure 2-1. The water-level measurement field sheets are presented in Appendix A. Additionally, groundwater elevation measurements are also obtained each time a groundwater sample is collected as part of the FWGWMP, although the measurements from the quarterly sampling events are not used to produce the potentiometric maps.

Water-level measurements were measured in accordance with procedures in Section 4.3.3.1 of the *Facility-Wide Sampling and Analysis Plan for Environmental Investigations at the Ravenna Army Ammunition Plant, Ravenna, Ohio* (SAIC, February 2011). Water-level measurements were made from the top of the inner casing to the top of the groundwater surface using an electronic measuring tape. The depth to the bottom of the well from the top of the inner casing also was measured with the electronic measuring tape.

3.2 Summary of Analytical Results

Summaries of laboratory analytical results are presented in Tables 3-1, 3-2, 3-3, 3-4, and 3-5. Appendix B presents the Laboratory Data Sheets. A brief summary of the detected compounds and elements are presented in the following sub-sections. The data presented in the tables are the validated and verified data. Data verification and validation is discussed in Section 3.3 and Appendix B.

As part of the ongoing RI for the facility-wide groundwater, detected and validated analytes from the monitoring wells will be subjected to a risk screening process that will be detailed in the *FWGWMP Remedial Investigation/Feasibility Study Work Plan*. As a result reference to the background criteria and the risk evaluation process have been removed from this document.

Additionally, please note the following:

• As discussed in Section 3.3 under the data validation process, data are qualified by EQM's validator following the guidelines and qualifier requirements set forth by the FWSAP, QAPP, and U.S. DoD Quality Services Manual (QSM) for Environmental Laboratories, Version 4.1, and the USACE, Louisville District, Quality Systems Manual Supplement (LS). As a result, the flags designated by EQM sometimes differ from those in the laboratory data sheets. The flags designated by the validator override any flagging of the data by the laboratory. For a complete explanation of the data qualifiers used for each constituent refer to Section 3.3 and the Data Verification Summary Reports found in Appendix B.

- Several analytical methods used to analyze a number of explosives, VOCs, SVOCs, metals, PCBs, and pesticides have reporting limits that currently do not meet the RVAAP QAPP project action requirements, Maximum Contaminant Levels (MCLs) or USEPA Regional Screening Levels (RSLs). The laboratory did not meet the requirements due to the following: 1) the detection limit is a statistically derived number that varies based on analytical method and instrumentation; 2) the RSL (November 2014) is independent from analytical method detection limits and is calculated from EPA toxicity values and exposure information. Tables listing the reporting limits that currently do not meet the RVAAP QAPP Project Action Requirements, MCLs, and/or RSLs (November 2014) are presented in Appendix D.
- Note that the RSLs used in this report are the most recent available (November 2014). The RSL values reported in the data tables represent the tap water values for November 2014 using TR=1E-6, HQ=1.

3.2.1 Explosives and Propellants

Explosive and propellant compound analytical results are summarized in Table 3-1. The following compounds were detected at concentrations above the MDLs:

- 2-Amino-4,6-dinitrotoluene LL3mw-246 (0.38 μg/L). There is no MCL for 2-amino-4,6-dinitrotoluene. The RSL (November 2014) is 39 μg/L.
- 4-Amino-2,6-dinitrotoluene LL3mw-246 (0.34 μg/L). There is no MCL for 4-amino-2,6-dinitrotoluene. The RSL (November 2014) is 39 μg/L.
- RDX LL3mw-246 (0.16 μg/L J). There is no MCL for RDX. The RSL (November 2014) is 0.61 μg/L.

As shown in Table 3-1, no explosives or propellants were detected at levels above their corresponding MCLs or RSLs (November 2014) during the October 2014 sampling event.

Table 3-1. I	FWGWMP	October 2	2014	Explosive	and Proj	pellant	Analytical	Results
--------------	--------	-----------	------	-----------	----------	---------	------------	---------

r	1	-				
Station ID				LL1mw-088	LL2mw-271	LL3mw-246
			USEPA	FWGLL1mw-088-	FWGLL2mw-271-	FWGLL3mw-246-
Sample ID		MCL	RSL	0502-GW	0503-GW	504-GW
Date Collected				10/21/2014	10/22/2014	10/22/2014
Sample Type				Grab	Grab	Grab
Analyte	Units					
1,3,5-Trinitrobenzene	μg/L	NS	590	0.051 U	0.055 U	0.053 U
1,3-Dinitrobenzene	μg/L	NS	2	0.1 U	0.11 U	0.11 U
2,4,6-Trinitrotoluene	μg/L	NS	2.5	0.1 U	0.11 U	0.11 U
2,4-Dinitrotoluene	μg/L	NS	0.24	0.1 U	0.11 U	0.11 U
2,6-Dinitrotoluene	μg/L	NS	0.048	0.1 U	0.11 U	0.11 U
2-Amino-4,6-dinitrotoluene	μg/L	NS	39	0.1 U	0.11 U	0.38
2-Nitrotoluene	μg/L	NS	0.31	0.1 U	0.11 U	0.11 U
3-Nitrotoluene	μg/L	NS	1.7	0.1 U	0.11 U	0.11 U
4-Amino-2,6-Dinitrotoluene	μg/L	NS	39	0.1 U	0.11 U	0.34
4-Nitrotoluene	μg/L	NS	4.2	0.1 U	0.11 U	0.11 U
HMX	μg/L	NS	1000	0.051 U	0.055 U	0.053 U
Nitrobenzene	μg/L	NS	0.14	0.1 U	0.11 U	0.11 U
Nitrocellulose	mg/L	NS	6.0E+07	1 UJ	1 UJ	1 UJ
Nitroglycerin	μg/L	NS	2	0.51 U	0.55 U	0.53 U
Nitroguanidine	μg/L	NS	2000	6 UJ	6 UJ	6 UJ
PETN	μg/L	NS	19	0.51 U	0.55 U	0.53 U
RDX	μg/L	NS	0.7	0.051 U	0.055 U	0.16
Tetryl	μg/L	NS	39	0.1 U	0.11 U	0.11 U

Notes:

 $\mu g/L = microgram per liter mg/L = milligram per liter$

NS = no standard

N/A = Not Analyzed

Bold = detected compound above the MDL

RSL = USEPA Regional Screening Level, Nov. 2014

MCL = Maximum Contaminant Level

Table 3-1. FWGWMP October 2014 Explosive and Propellant Analytical Results

Data Qualifiers

Data qualifier flags are used in an effort to describe the quality of each piece of data for each constituent. These flags are letter codes appended to the numerical data. The following data qualifiers are specified in the USACE Louisville Chemistry Guidelines. For a complete explanation of qualifiers used for each constituent please refer to the Data Verification Summaries in Appendix B.

- U The analyte was analyzed for but not detected. The numerical value preceding the U is the associated reporting limit.
- J The identification of the analyte is acceptable, but the quality assurance criteria indicate that the quantitative values may be outside the normal expected range of precision (i.e., the quantitative value is estimated). Examples include:

- Results detected above the laboratory MDL but less than the laboratory reporting limit.

- MS/MSD percent recoveries outside the acceptance criteria.
- Laboratory control sample (LCS) percent recoveries outside acceptance criteria.
- R Data are considered to be rejected and shall not be used. This flag denotes the failure of quality control criteria such that it cannot be determined if the analyte is present or absent from the sample [e.g., the method reporting limit (MRL) verification standard was below quality control guidelines; associated sample results that were non-detect are unusable].
- UJ This flag is a combination of the U and J qualifiers, which indicate that the analyte is not present. The reported value is considered to be an estimated reporting limit (RL).
- B The B flag is used for when the analyte is found in the method blank or any of the field blanks. This designation overrides the Contract Laboratory Program (CLP) "B" designation when used by the laboratory as an estimated value for inorganics.

3.2.2 Inorganic Elements

The analytical results for inorganic elements are presented in Table 3-2. The inorganics detected in the samples included: aluminum, antimony, arsenic, barium, cadmium, calcium, chromium, cobalt, copper, cyanide, iron, lead, magnesium, manganese, nickel, potassium, and sodium. The inorganic elements that were detected were compared against elements that are considered as essential nutrients to determine if they are to be considered as Site-Related Contaminants (SRCs). Calcium, magnesium, iron, potassium, and sodium were eliminated as potential SRCs because they are considered essential nutrients.

The following compounds were detected at concentrations above the MDLs.

Aluminum

• LL1mw-088 (120 μg/L J). The MCL for aluminum is 200 μg/L. The RSL (November 2014) is 20,000 μg/L.

Antimony

• LL3mw-246 (0.33 μg/L J). The MCL for arsenic is 6 μg /L. The RSL (November 2014) is 7.8 μg/L.

Arsenic

• LL1mw-088 (27 μ g/L) and LL2mw-271 (6 μ g/L J). The MCL for arsenic is 10 μ g /L. The RSL (November 2014) is 0.052 μ g/L.

Barium

• LL1mw-088 (44 μg/L), LL2mw-271 (3.2 μg/L J), and LL3mw-246 (18 μg/L). The MCL for arsenic is 2000 μg /L. The RSL (November 2014) is 3800 μg/L.

Cadmium

• LL2mw-271 (0.58 µg/L B). The MCL for cadmium is 5 µg /L. The RSL (November 2014) is 9.2 µg/L.

Chromium

 LL1mw-088 (1.1 μg/L J), and LL2mw-271 (0.69 μg/L J). The MCL for chromium is 100 μg/L. The RSL (November 2014) is 22000 μg/L.

Cobalt

• LL2mw-271 (6.1 μg/L). There is no MCL for cobalt. The RSL (November 2014) is 6 μg/L.

Iron

 LL1mw-088 (1300 μg/L), and LL2mw-271 (3200 μg/L). The MCL for iron is 300 μg/L. The RSL (November 2014) is 11000 μg/L.

Manganese

• LL1mw-088 (60 μg/L), LL2mw-271 (390 μg/L), and LL3mw-246 (61 μg/L). The MCL for manganese is 50 μg/L. The RSL (November 2014) is 430 μg/L.

Nickel

• L2mw-271 (25 μ g/L). There is no MCL for nickel. The RSL (November 2014) is 390 μ g/L.

As shown above and on Table 3-2, several of the inorganics (arsenic, cobalt, iron, and manganese) were detected at levels above their corresponding MCLs or RSLs (November 2014) during the October 2014 sampling event.

The facility-wide groundwater conditions are currently being evaluated under the remedial investigation/feasibility study. This will include an evaluation of aluminum, manganese, arsenic, cyanide, cobalt, iron, and thallium related to exceedances of MCLs/RSLs. To date there have been no elevated concentrations of the inorganic analytes found in the groundwater that would pose an immediate threat to human health or the environment.

Table 3-2. FWGWMP October 2014 Inorganic Analytical Results

Station ID			LL1mw-088	LL2mw-271	LL3mw-246
			FWGLL1mw-088-	FWGLL2mw-271-	FWGLL3mw-246-
Sample ID	MCL	USEPA RSL	0502-GF	0503-GF	504-GF
Date Collected			10/21/2014	10/22/2014	10/22/2014
Sample Type			Grab	Grab	Grab
Analyte					
Aluminum	200	20000	120 J	60 U	60 U
Antimony	6.0	7.8	1.0 UJ	1 U	0.33 J
Arsenic	10	0.052	27	6 J	10 U
Barium	2000	3800	44	3.2 J	18
Beryllium	4.0	25	1.0 U	1 U	1 U
Cadmium	5.0	9.2	1.0 U	0.58 B	1 U
Calcium	NS	NS	80000	60000	24000
Chromium	100	22000	1.1 J	0.69 J	4 U
Cobalt	NS	6	4.0 U	6.1	0.59 J
Copper	1300	800	10 U	10 U	10 U
Cyanide	0.20	0.0015	0.0050 U	0.005 U	0.005 U
Iron	300	11000	1300	3200	100 U
Lead	15	15	5.0 U	5 U	5 U
Magnesium	NS	NS	36000	17000	7700
Manganese	50	430	60	390	61
Mercury	2.0	0.63	0.20 U	0.2 U	0.2 U
Nickel	NS	390	1.4 U	25	3.9 U
Potassium	NS	NS	3300	1100	1500
Selenium	50	100	10 U	10 U	10 U
Silver	100	94	5.0 U	5 U	5 U
Sodium	NS	NS	25000	4300	4000
Thallium	2.0	0.20	1.5 U	1.5 U	1.5 U
Vanadium	NS	86	4.0 U	4 U	4 U
Zinc	5000	6000	50 U	50 U	50 U

Notes:

 $\mu g/L = microgram per liter$

mg/L = milligram per liter

 $NS = no \ standard$

N/A = Not Analyzed

Bold = detected compound above the MDL

RSL = USEPA Regional Screening Level, Nov. 2014

MCL = Maximum Contaminant Level

Table 3-2. FWGWMP October 2014 Inorganics Analytical Results

Data Qualifiers

Data qualifier flags are used in an effort to describe the quality of each piece of data for each constituent. These flags are letter codes appended to the numerical data. The following data qualifiers are specified in the USACE Louisville Chemistry Guidelines. For a complete explanation of qualifiers used for each constituent please refer to the Data Verification Summaries in Appendix B.

- U The analyte was analyzed for but not detected. The numerical value preceding the U is the associated reporting limit.
- J The identification of the analyte is acceptable, but the quality assurance criteria indicate that the quantitative values may be outside the normal expected range of precision (i.e., the quantitative value is estimated). Examples include:

- Results detected above the laboratory MDL but less than the laboratory reporting limit.

- MS/MSD percent recoveries outside the acceptance criteria.
- LCS percent recoveries outside acceptance criteria.
- R Data are considered to be rejected and shall not be used. This flag denotes the failure of quality control criteria such that it cannot be determined if the analyte is present or absent from the sample [e.g., the MRL verification standard was below quality control guidelines; associated sample results that were non-detect are unusable].
- UJ This flag is a combination of the U and J qualifiers, which indicate that the analyte is not present. The reported value is considered to be an estimated RL.
- B The B flag is used for when the analyte is found in the method blank or any of the field blanks. This designation overrides the CLP "B" designation when used by the laboratory as an estimated value for inorganics.

3.2.3 Volatile Organic Compounds

The analytical results for VOCs are summarized in Table 3-3. As shown in Table 3-3, no VOCs were detected at levels exceeding the MDL for this sampling event.

3.2.4 Semivolatile Organic Compounds

The analytical results for SVOCs are summarized in Table 3-4. As shown in Table 3-4, no SVOCs were detected at levels exceeding the MDL for this sampling event.

3.2.5 Pesticides and Polychlorinated Biphenyls

The analytical results for pesticides and PCBs are summarized in Table 3-5. As shown in Table 3-5, alpha-BHC was detected in one well at a level exceeding the MDL for this sampling event.

alpha-BHC – LL1mw-88 (0.028 μg/L JB). There is no MCL for alpha-BHC. The RSL (November 2014) is 0.0071 μg/L.

Note that method blank associated with the samples was found to contain alpha-BHC at 0.025μ g/L. alpha-BHC method blank contamination was less than ½ the method reporting limit (MRL) of 0.053 µg/L. The alpha-BHC detection of 0.028 µg/L in sample FWGLL1mw-088-0502-GW is therefore attributed to low-level lab contamination and was flagged with a B qualifier.

Table 3-3.	FWGWMP	October	2014 V	OC Ana	alytical	Results
------------	--------	---------	--------	--------	----------	---------

Station ID				LL1mw-088	LL2mw-271	LL3mw-246
				FWGLL1mw-088-	FWGLL2mw-271-	FWGLL3mw-246-
Sample ID		MCL	USEPA RSL	0502-GW	0503-GW	504-GW
Date Collected				10/21/2014	10/22/2014	10/22/2014
Sample Type				Grab	Grab	Grab
Analyte	Units					
1,1,1-Trichloroethane	μg/L	200	8000	0.50 U	0.5 U	0.5 U
1,1,2,2-Tetrachloroethane	μg/L	NS	0.076	0.50 U	0.5 U	0.5 U
1,1,2-Trichloroethane	μg/L	5.0	0.28	0.50 U	0.5 U	0.5 U
1,1-Dichloroethane	μg/L	NS	2.7	0.50 U	0.5 U	0.5 U
1,1-Dichloroethene (total)	μg/L	7.0	280	0.50 U	0.5 U	0.5 U
1,2-Dibromoethane	μg/L	NS	0.0075	0.50 U	0.5 U	0.5 U
1,2-Dichloroethane	μg/L	5.0	0.17	0.50 U	0.5 U	0.5 U
1,2-Dichloroethene (total)	μg/L	NS	NS	1.0 U	1 U	1 U
1,2-Dichloropropane	μg/L	5.0	0.44	0.50 U	0.5 U	0.5 U
2-Butanone	μg/L	NS	5600	1.0 UJ	1 UJ	1 UJ
2-Hexanone	μg/L	NS	38	1.0 U	1 U	1 U
4-Methyl-2-pentanone	μg/L	NS	1200	1.0 U	1 U	1 U
Acetone	μg/L	NS	14000	2.0 UJ	2 UJ	2 UJ
Benzene	μg/L	5.0	0.45	0.25 U	0.25 U	0.25 U
Bromochloromethane	μg/L	NS	83	0.50 U	0.5 U	0.5 U
Bromodichloromethane	μg/L	80	0.13	0.25 U	0.25 U	0.25 U
Bromoform	μg/L	80	9.2	1.0 UJ	1 UJ	1 UJ
Bromomethane	μg/L	NS	7.5	1.0 U	1 U	1 U
Carbon disulfide	μg/L	NS	810	0.25 U	0.25 U	0.25 U
Carbon tetrachloride	μg/L	5.0	0.45	0.25 U	0.25 U	0.25 U
Chlorobenzene	μg/L	100	78	0.50 U	0.5 U	0.5 U
Chloroethane	μg/L	NS	21000	0.50 U	0.5 U	0.5 U
Chloroform	μg/L	80	0.22	0.50 U	0.5 U	0.5 U
Chloromethane	μg/L	NS	190	0.50 U	0.5 U	0.5 U
cis-1,2-dichloroethene	μg/L	70	36	0.50 U	0.5 U	0.5 U
cis-1,3-Dichloropropene	μg/L	NS	0.47	0.25 U	0.25 U	0.25 U
Dibromochloromethane	μg/L	NS	0.17	0.50 U	0.5 U	0.5 U
Ethylbenzene	μg/L	700	1.5	0.50 U	0.5 U	0.5 U
m&p-xylenes	μg/L	NS	190	0.50 U	0.5 U	0.5 U
Methylene chloride	μg/L	5.0	11	0.50 U	0.5 U	0.5 U
o-xylene	μg/L	NS	190	0.25 U	0.25 U	0.25 U
Styrene	μg/L	100	1200	0.25 U	0.25 U	0.25 U
Tetrachloroethene	μg/L	5.0	11	0.50 U	0.5 U	0.5 U
Toluene	μg/L	1000	1100	0.25 U	0.25 U	0.25 U
trans-1,2-dichloroethene	μg/L	100	360	0.50 U	0.5 U	0.5 U
trans-1,3-Dichloropropene	μg/L	NS	0.47	0.50 U	0.5 U	0.5 U
Trichloroethene	μg/L	5.0	0.49	0.50 U	0.5 U	0.5 U
Vinyl chloride	μg/L	2.0	0.019	0.50 U	0.5 U	0.5 U
Total Xylenes	μg/L	10000	190	1.0 U	1 U	1 U

Notes:

 $\mu g/L = microgram per liter$

NS = no standard

N/A = Not Analyzed

Bold = detected compound above the MDL

RSL = USEPA Regional Screening Level, Nov. 2014

MCL = Maximum Contaminant Level

Table 3-3. FWGWMP October 2014 VOC Analytical Results

Data Qualifiers

Data qualifier flags are used in an effort to describe the quality of each piece of data for each constituent. These flags are letter codes appended to the numerical data. The following data qualifiers are specified in the USACE Louisville Chemistry Guidelines. For a complete explanation of qualifiers used for each constituent please refer to the Data Verification Summaries in Appendix B.

- U The analyte was analyzed for but not detected. The numerical value preceding the U is the associated reporting limit.
- J The identification of the analyte is acceptable, but the quality assurance criteria indicate that the quantitative values may be outside the normal expected range of precision (i.e., the quantitative value is estimated). Examples include:

- Results detected above the laboratory MDL but less than the laboratory reporting limit.

- MS/MSD percent recoveries outside the acceptance criteria.
- LCS percent recoveries outside acceptance criteria.
- R Data are considered to be rejected and shall not be used. This flag denotes the failure of quality control criteria such that it cannot be determined if the analyte is present or absent from the sample [e.g., the MRL verification standard was below quality control guidelines; associated sample results that were non-detect are unusable].
- UJ This flag is a combination of the U and J qualifiers, which indicate that the analyte is not present. The reported value is considered to be an estimated RL.
- B The B flag is used for when the analyte is found in the method blank or any of the field blanks. This designation overrides the CLP "B" designation when used by the laboratory as an estimated value for inorganics.
Table 3-4. FWGWMP October 2014 SVOC Analytical Results

Station ID				LL1mw-088	LL2mw-271	LL3mw-246
				FWGLL1mw-088-	FWGLL2mw-271-	FWGLL3mw-246-
Sample ID		MCL	USEPA RSL	0502-GW	0503-GW	504-GW
Date Collected				10/21/2014	10/22/2014	10/22/2014
Sample Type				Grab	Grab	Grab
Analyte	Units					
1,2,4-Trichlorobenzene	μg/L	70	1.1	0.50 UJ	0.5 UJ	0.52 UJ
1,2-Dichlorobenzene	μg/L	600	300	0.50 UJ	0.5 UJ	0.52 UJ
1,3-Dichlorobenzene	μg/L	NS	NS	0.50 UJ	0.5 UJ	0.52 UJ
1,4-Dichlorobenzene	μg/L	75	0.48	0.50 UJ	0.5 UJ	0.52 UJ
2,2-oxybis (1-chloropropane)	μg/L	NS	0.36	0.50 UJ	0.5 UJ	0.52 UJ
2,4,5-Trichlorophenol	μg/L	NS	1200	0.50 UJ	0.5 UJ	0.52 UJ
2,4,6-Trichlorophenol	μg/L	NS	4	0.50 UJ	0.5 UJ	0.52 UJ
2.4-Dichlorophenol	ug/L	NS	46	0.50 UJ	0.5 UJ	0.52 UJ
2,4-Dimethylphenol	μg/L	NS	360	0.50 UJ	0.5 UJ	0.52 UJ
2,4-Dinitrophenol	μg/L	NS	39	0.99 UJ	0.99 UJ	1 UJ
2-Chloronaphthalene	μg/L	NS	750	0.50 UJ	0.5 UJ	0.52 UJ
2-Chlorophenol	μg/L	NS	91	0.50 UJ	0.5 UJ	0.52 UJ
2-Methylnaphthalene	μg/L	NS	36	0.099 UJ	0.099 UJ	0.1 UJ
2-Methylphenol	μg/L	NS	930	0.50 UJ	0.5 UJ	0.52 UJ
2-Nitroaniline	μg/L	NS	190	0.50 UJ	0.5 UJ	0.52 UJ
2-Nitrophenol	µg/L	NS	NS	0.50 UJ	0.5 UJ	0.52 UJ
3,3'-Dichlorobenzidine	µg/L	NS	0.12	0.99 UJ	0.99 UJ	1 UJ
3- and 4-Methylphenol	μg/L	NS	930	0.99 UJ	0.99 UJ	1 UJ
3-Nitroaniline	µg/L	NS	NS	0.50 UJ	0.5 UJ	0.52 UJ
4,6-Dinitro-2-methylphenol	μg/L	NS	1.5	4.0 UJ	4 UJ	4.2 UJ
4-Bromophenyl phenyl ether	μg/L	NS	NS	0.50 UJ	0.5 UJ	0.52 UJ
4-Chloro-3-methylphenol	μg/L	NS	1400	0.50 UJ	0.5 UJ	0.52 UJ
4-Chloroaniline	μg/L	NS	0.36	0.50 UJ	0.5 UJ	0.52 UJ
4-Chlorophenyl phenyl ether	μg/L	NS	NS	0.50 UJ	0.5 UJ	0.52 UJ
4-Nitroanaline	μg/L	NS	38	0.50 UJ	0.5 UJ	0.52 UJ
4-Nitrophenol	μg/L	NS	NS	4.0 UJ	4 UJ	4.2 UJ
Acenaphthene	μg/L	NS	530	0.099 UJ	0.099 UJ	0.1 UJ
Acenaphthylene	μg/L	NS	NS	0.099 UJ	0.099 UJ	0.1 UJ
Anthracene	μg/L	NS	1800	0.099 UJ	0.099 UJ	0.1 UJ
Benzo(a)anthracene	μg/L	NS	0.034	0.099 UJ	0.099 UJ	0.1 UJ
Benzo(a)pyrene	μg/L	0.2	0.0034	0.099 UJ	0.099 UJ	0.1 UJ
Benzo(b)fluoranthene	μg/L	NS	0.034	0.099 UJ	0.099 UJ	0.1 UJ
Benzo(g,h,i)perylene	μg/L	NS	NS	0.099 UJ	0.099 UJ	0.1 UJ
Benzo(k)fluoranthene	μg/L	NS	0.34	0.099 UJ	0.099 UJ	0.1 UJ
Benzoic acid	μg/L	NS	75000	20 UJ	20 UJ	21 UJ
Benzyl alcohol	μg/L	NS	2000	0.50 UJ	0.5 UJ	0.52 UJ
bis(2-Chloroethoxy)methane	μg/L	NS	59	0.50 UJ	0.5 UJ	0.52 UJ
bis(2-Chloroethyl)ether	μg/L	NS	0.014	0.099 UJ	0.099 UJ	0.1 UJ
bis(2-Ethylhexyl)phthalate	μg/L	6.0	5.6	5.0 UJ	5 UJ	5.2 UJ
Butyl benzyl phthalate	μg/L	NS	16	0.50 UJ	0.5 UJ	0.52 UJ

Table 3-4.	FWGWMP	October	2014 SVOC	C Analytical	Results
------------	--------	---------	-----------	--------------	---------

Station ID				LL1mw-088	LL2mw-271	LL3mw-246
				FWGLL1mw-088-	FWGLL2mw-271-	FWGLL3mw-246-
Sample ID		MCL	USEPA RSL	0502-GW	0503-GW	504-GW
Date Collected				10/21/2014	10/22/2014	10/22/2014
Sample Type				Grab	Grab	Grab
Analyte	Units					
Carbazole	μg/L	NS	NS	0.50 UJ	0.5 UJ	0.52 UJ
Chrysene	μg/L	NS	3.4	0.099 UJ	0.099 UJ	0.1 UJ
Dibenzo(a,h)anthracene	μg/L	NS	0.0065	0.099 UJ	0.099 UJ	0.1 UJ
Dibenzofuran	μg/L	NS	7.9	0.099 UJ	0.099 UJ	0.1 UJ
Diethyl phthalate	μg/L	NS	15000	0.99 UJ	0.99 UJ	1 UJ
Dimethyl phthalate	μg/L	NS	NS	0.50 UJ	0.5 UJ	0.52 UJ
Di-n-butyl phthalate	μg/L	NS	900	5.0 UJ	5 UJ	5.2 UJ
Di-n-octyl phthalate	μg/L	NS	200	0.50 UJ	0.5 UJ	0.52 UJ
Fluoranthene	μg/L	NS	800	0.099 UJ	0.099 UJ	0.1 UJ
Fluorene	μg/L	NS	290	0.099 UJ	0.099 UJ	0.1 UJ
Hexachlorobenzene	μg/L	1.0	0.049	0.099 UJ	0.099 UJ	0.1 UJ
Hexachlorobutadiene	μg/L	NS	0.3	0.50 UJ	0.5 UJ	0.52 UJ
Hexachlorocyclopentadiene	μg/L	50	31	0.50 UJ	0.5 UJ	0.52 UJ
Hexachloroethane	μg/L	NS	0.90	0.50 UJ	0.5 UJ	0.52 UJ
Indeno(1,2,3-cd)pyrene	μg/L	NS	0.034	0.099 UJ	0.099 UJ	0.1 UJ
Isophorone	μg/L	NS	78	0.50 UJ	0.5 UJ	0.52 UJ
Naphthalene	μg/L	NS	0.17	0.099 UJ	0.099 UJ	0.1 UJ
N-Nitroso-di-n-propylamine	μg/L	NS	0.011	0.50 UJ	0.5 UJ	0.52 UJ
N-Nitrosodiphenylamine	μg/L	NS	12	0.50 UJ	0.5 UJ	0.52 UJ
Pentachlorophenol	μg/L	1.0	0.04	0.99 UJ	0.99 UJ	1 UJ
Phenanthrene	μg/L	NS	NS	0.099 UJ	0.099 UJ	0.1 UJ
Phenol	μg/L	NS	5800	0.99 UJ	0.99 UJ	1 UJ
Pyrene	μg/L	NS	120	0.099 UJ	0.099 UJ	0.1 UJ

Notes:

 $\mu g/L = microgram per liter$

NS = no standard

N/A = Not Analyzed**Bold** = detected compound above the MDL

RSL = USEPA Regional Screening Level, Nov. 2014

MCL = Maximum Contaminant Level

Table 3-4. FWGWMP October 2014 SVOC Analytical Results

Data Qualifiers

Data qualifier flags are used in an effort to describe the quality of each piece of data for each constituent. These flags are letter codes appended to the numerical data. The following data qualifiers are specified in the USACE Louisville Chemistry Guidelines. For a complete explanation of qualifiers used for each constituent please refer to the Data Verification Summaries in Appendix B.

- U The analyte was analyzed for but not detected. The numerical value preceding the U is the associated reporting limit.
- J The identification of the analyte is acceptable, but the quality assurance criteria indicate that the quantitative values may be outside the normal expected range of precision (i.e., the quantitative value is estimated). Examples include:

- Results detected above the laboratory MDL but less than the laboratory reporting limit.

- MS/MSD percent recoveries outside the acceptance criteria.
- LCS percent recoveries outside acceptance criteria.
- R Data are considered to be rejected and shall not be used. This flag denotes the failure of quality control criteria such that it cannot be determined if the analyte is present or absent from the sample [e.g., the MRL verification standard was below quality control guidelines; associated sample results that were non-detect are unusable].
- UJ This flag is a combination of the U and J qualifiers, which indicate that the analyte is not present. The reported value is considered to be an estimated RL.
- B The B flag is used for when the analyte is found in the method blank or any of the field blanks. This designation overrides the CLP "B" designation when used by the laboratory as an estimated value for inorganics.

Table 3-5. FWGWMP October 2014 Pesticides and PCBs Analytical Results

Station ID				LL1mw-088	LL2mw-271	LL3mw-246
				FWGLL1mw-088-	FWGLL2mw-271-	FWGLL3mw-246-
Sample ID		MCL	USEPA RSL	0502-GW	0503-GW	504-GW
Date Collected				10/21/2014	10/22/2014	10/22/2014
Sample Type				Grab	Grab	Grab
Analyte	Units					
4,4'-DDD	μg/L	NS	0.031	0.053 UJ	0.048 UJ	0.048 UJ
4,4'-DDE	μg/L	NS	0.23	0.053 UJ	0.048 UJ	0.048 UJ
4,4'-DDT	μg/L	NS	0.23	0.053 UJ	0.048 UJ	0.048 UJ
Aldrin	μg/L	NS	0.0046	0.053 UJ	0.048 UJ	0.048 UJ
alpha-BHC	μg/L	NS	0.0071	0.028 JB	0.048 UJ	0.048 UJ
alpha-Chordane	μg/L	NS	NS	0.053 UJ	0.048 UJ	0.048 UJ
beta-BHC	μg/L	NS	0.025	0.053 UJ	0.048 UJ	0.048 UJ
delta-BHC	μg/L	NS	NS	0.053 UJ	0.048 UJ	0.048 UJ
Dieldrin	μg/L	NS	0.0017	0.053 UJ	0.048 UJ	0.048 UJ
Endosulfan I	μg/L	NS	100	0.053 UJ	0.048 UJ	0.048 UJ
Endosulfan II	μg/L	NS	100	0.053 UJ	0.048 UJ	0.048 UJ
Endosulfan sulfate	μg/L	NS	NS	0.053 UJ	0.048 UJ	0.048 UJ
Endrin	μg/L	2.0	2.3	0.053 UJ	0.048 UJ	0.048 UJ
Endrin aldehyde	μg/L	NS	NS	0.053 UJ	0.048 UJ	0.048 UJ
Endrin ketone	μg/L	NS	NS	0.053 UJ	0.048 UJ	0.048 UJ
gamma-BHC	μg/L	0.20	0.041	0.053 UJ	0.048 UJ	0.048 UJ
gamma-Chlordane	μg/L	NS	NS	0.053 UJ	0.048 UJ	0.048 UJ
Heptachlor	μg/L	0.40	0.002	0.053 UJ	0.048 UJ	0.048 UJ
Heptachlor epoxide	μg/L	0.20	0.0038	0.053 UJ	0.048 UJ	0.048 UJ
Methoxychlor	μg/L	40	37	0.053 UJ	0.048 UJ	0.048 UJ
Toxaphene	μg/L	3.0	0.015	1.1 UJ	0.95 UJ	0.96 UJ
PCB- 1016	μg/L	0.50	1.1	0.21 U	0.2 U	0.21 U
PCB- 1221	μg/L	0.50	0.0046	0.21 U	0.2 U	0.21 U
PCB- 1232	μg/L	0.50	0.0046	0.21 U	0.2 U	0.21 U
PCB- 1242	μg/L	0.50	0.039	0.43 U	0.4 U	0.42 U
PCB- 1248	µg/L	0.50	0.039	0.21 U	0.2 U	0.21 U
PCB- 1254	μg/L	0.50	0.039	0.21 U	0.2 U	0.21 U
PCB- 1260	µg/L	0.50	0.039	0.21 U	0.2 U	0.21 U

Notes:

MCL = Maximum Contaminant Level

RSL = USEPA Regional Screening Level, Nov. 2014

N/A = not analyzed

NS = no standard

 $\mathbf{Bold} = \mathbf{detected} \ \mathbf{compound} \ \mathbf{above} \ \mathbf{the} \ \mathbf{MDL}$

 $\mu g/L = microgram per liter$

Table 3-5. FWGWMP October 2014 Pesticides and PCBs Analytical Results

Data Qualifiers

Data qualifier flags are used in an effort to describe the quality of each piece of data for each constituent. These flags are letter codes appended to the numerical data. The following data qualifiers are specified in the USACE Louisville Chemistry Guidelines. For a complete explanation of qualifiers used for each constituent please refer to the Data Verification Summaries in Appendix B.

- U The analyte was analyzed for but not detected. The numerical value preceding the U is the associated reporting limit.
- J The identification of the analyte is acceptable, but the quality assurance criteria indicate that the quantitative values may be outside the normal expected range of precision (i.e., the quantitative value is estimated). Examples include:

- Results detected above the laboratory MDL but less than the laboratory reporting limit.

- MS/MSD percent recoveries outside the acceptance criteria.
- LCS percent recoveries outside acceptance criteria.
- R Data are considered to be rejected and shall not be used. This flag denotes the failure of quality control criteria such that it cannot be determined if the analyte is present or absent from the sample [e.g., the MRL verification standard was below quality control guidelines; associated sample results that were non-detect are unusable].
- UJ This flag is a combination of the U and J qualifiers, which indicate that the analyte is not present. The reported value is considered to be an estimated RL.
- B The B flag is used for when the analyte is found in the method blank or any of the field blanks. This designation overrides the CLP "B" designation when used by the laboratory as an estimated value for inorganics.

3.3 Data Verification/Validation

As discussed in Sections 2.4, all primary chemical data were generated by Test America. RTI conducted the independent QA analysis; however, EQM is not required to verify RTI data. A multi-step process is conducted, which involves the lab, the ADR software, and a data validator performing the data verification and validation of the data. During the first step each lab analyzes the data and assigns a qualifier as necessary in full accordance with DoD QSM and LS guidelines.

Analytical data was then reviewed by qualified EQM personnel, and a report was generated according to Step 2 of the LS and the DoD QSM, with any deviations/outliers noted in the summary report. The USACE-supplied ADR software assigns qualifiers to the data, as necessary, consistent with the programmed criteria of the ADR software. Additionally, the data validator uses professional judgment to check the validity of the qualified data and either accepts, rejects, or re-qualifies the ADR results following strict DoD QSM and LS guidelines.

After this multi-step process has been completed, the resulting final ADR qualifiers may not match the original lab qualifiers that are presented on the laboratory data sheets. As a result of the data validation process, one or more of four possibilities may occur:

- 1. The lab assigns a B, J, or E qualifier to the data, and the ADR software and/or the data validator changes the qualifier to a J, UJ, U, B, or R.
- 2. The lab assigns no qualifier to the data, and the ADR software and/or the data validator assigns a J, UJ, U, B, or R qualifier to the data.
- 3. The lab assigns a B, J, or E qualifier to the data, and the ADR software and/or the data validator assigns no qualifier to the data.
- 4. The lab assigns a J qualifier or uses no qualifier, and the ADR software and/or the data validator accepts the lab designation.

For the October 2014 Sampling Event Report, the laboratory data, with laboratory-derived qualifiers that follow DoD QSM and LS criteria, are presented in Appendix B. The verification reports for the data are also presented in Appendix B, which includes the definitions of the ADR qualifiers. The data presented in Tables 3-1, 3-2, 3-3, 3-4, and 3-5 are the result of the data that has been subjected to the multi-step process of verification and validation. These tables display the final assigned data qualifier in accordance with DoD QSM and LS criteria, which may differ from the Appendix B lab assigned values as indicated above.

Data qualifier flags are used in an effort to describe the quality of each piece of data for each constituent. These flags are letter codes appended to the numerical data. The following data qualifiers are specified in the guidelines. For a complete explanation of qualifiers used for each constituent please refer to the Data Verification Summaries in Appendix B.

- U = the analyte was analyzed for but not detected. The numerical value preceding the U is the associated reporting limit.
- J = the identification of the analyte is acceptable, but the quality assurance criteria indicate that the quantitative values may be outside the normal expected range of precision (i.e., the quantitative value is estimated). Examples include:
 - Results detected above the laboratory MDL but less than the laboratory reporting

limit.

- MS/MSD percent recoveries outside the acceptance criteria.
- LCS percent recoveries outside acceptance criteria.
- R = data are considered to be rejected and shall not be used. This flag denotes the failure of quality control criteria such that it cannot be determined if the analyte is present or absent from the sample (e.g., MRL verification standard was below quality control guidelines; associated sample results that were non-detect are unusable).
- UJ = a combination of the U and J qualifiers, which indicate that the analyte is not present. The reported value is considered to be an estimated reporting limit.
- B = used for organic and inorganic analyses when the analyte is found in the method blank or any of the field blanks. This designation overrides the CLP "B" designation when used by the laboratory as an estimated value for inorganics.

Three wells were sampled during a 2-day sampling event from October 21-22, 2014. During the event, two trip blanks were submitted to Test America for VOCs analysis.

One field duplicate was collected during the sampling event in order to assess the quality and consistency of sample collection. Project requirements of 10% field duplicates were met for this sampling event. In addition, one laboratory split was collected and analyzed in order to assess the quality and consistency of the laboratory analysis. The project requirements of taking 10% laboratory splits were met for this sampling event. One equipment rinsate blank was collected during each day of monitoring well sampling for laboratory analysis; a total of two equipment rinsate blanks were collected. The project requirements of taking 5% MS/MSDs were met for this sampling event.

For the October 2014 sampling event, the following laboratory or field contamination was identified at detections greater than ½ MRL for the field QA/QC samples.

SDG 240-43449

<u>Trip Blanks</u>

Acetone was detected in FWGTEAM2Trip collected 10/21/14 at 4.1 µg/L and FWGTEAM2Trip collected 10/22/14 at 4.0 µg/L. The acetone result for FWGEQUIPRINSE1-0507-GW was qualified, "B".

Method Blanks

alpha-BHC was detected at 0.0207 μ g/L, beta-BHC at 0.0280 μ g/L, delta-BHC at 0.0552 μ g/L and gamma-BHC at 0.0128 μ g/L. No qualification of the data was required for beta-BHC, delta-BHC or gamma-BHC contamination as there were no detected concentrations of beta-BHC, delta-BHC or gamma-BHC reported for the associated field samples. The alpha-BHC result for sample FWGLL1mw-088-0502-GW was qualified, "B", as the detected concentration was less than 5x method blank contamination. Cadmium was detected at 0.423 μ g/L. The cadmium result for sample FWGLL2mw-271-0503-GF was qualified "B" as the reported concentration was less than 5x method blank contamination.

Equipment Rinse

FWGEQUIPRINSE1-0507-GW had acetone detected at 3.5 μ g/L and toluene at 0.24 μ g/L. FWGEQUIPRINSE2-0508-GW had chloroform detected at 0.69 μ g/L and methylene chloride at 1.1 μ g/L. There were no detected concentrations of acetone, toluene, chloroform or methylene chloride reported for the associated field samples, so no qualifications were made for the noted equipment rinse contamination.

For a discussion of method blank contamination please review the Data Verification Reports and the Laboratory Case Narrative in Appendix B. Laboratory analyses were performed in analytical batches of ≤ 20 in order to maximize efficiency and group quality control requirements. Method blanks and laboratory control samples were analyzed at a frequency of 1:20 (5%) samples or per analytical batch, whichever was greater. Sufficient volume was provided to the laboratory in order to assess matrix spike analysis on project samples at a frequency of 1:10 (10%) samples. Matrix spike/matrix spike duplicate analysis was performed by the laboratory as batch quality control at a frequency of 1:20 (5%).

Field quality control and laboratory quality control results were evaluated as part of the verification assessment provided in Appendix B. Project requirements were met for the frequency and quality of these samples.

Table 3-6 presents the percent, by analytical method, of data that were acceptable (based on data not rejected) for use. No data was rejected.

All qualified data are discussed in the Data Verification Reports contained in Appendix B. All other data meet the requirements specified in the DoD QSM, LS criteria, and the QAPP associated with this site.

Analytical Method	Total Number of Analytes	Number of Rejects	Percent Completeness
6010B	84	0	100.0
6020	48	0	100.0
7470A	6	0	100.0
8081A	126	0	100.0
8082	42	0	100.0
8260B	312	0	100.0
8270C-SVOC4	378	0	100.0
8330	96	0	100.0
9012A	6	0	100.0
SW8330 Modified	6	0	100.0
WS-WC-0050	6	0	100.0
TOTAL	1110	0	100.0

Table 3-6. Percent of Acceptable Data

SECTION 4 REFERENCES

Portage Environmental, 2004. RVAAP Facility-Wide Groundwater Monitoring Program Plan.

SAIC. 2001. RVAAP Facility-Wide Sampling and Analysis Plan/Quality Assurance Project Plan.

SAIC. 2001b. Phase II Remedial Investigation Report for the Winklepeck Burning Grounds at Ravenna Army Ammunition Plant, Ravenna, Ohio.

SAIC/REIMS. 2005. Table of Reported Construction Depths from REIMS Information.

SpecPro, Inc. 2005a. Facility-Wide Groundwater Monitoring Program Report on the April 2005 Sampling Event, Ravenna Training and Logistics Site/Ravenna Army Ammunition Plant, Ravenna, Ohio.

SpecPro, Inc. 2005b. Facility-Wide Groundwater Monitoring Program, Report on the July 2005 Sampling Event, Ravenna Training and Logistics Site/Ravenna Army Ammunition Plant, Ravenna, Ohio

SpecPro, Inc. 2006a. Facility-Wide Groundwater Monitoring Program, Annual Report for 2005, Ravenna Training and Logistics Site/Ravenna Army Ammunition Plant, Ravenna, Ohio

SpecPro, Inc. 2006b. Facility-Wide Groundwater Monitoring Program, Report on the March 2006 Sampling Event, Ravenna Army Ammunition Plant, Ravenna, Ohio

SpecPro, Inc. 2006c. Facility-Wide Groundwater Monitoring Program, Report on the May 2006 Sampling Event, Ravenna Army Ammunition Plant, Ravenna, Ohio

SpecPro, Inc. 2006d. (Draft) Facility-Wide Groundwater Monitoring Program, Annual Report for 2006, Ravenna Army Ammunition Plant, Ravenna, Ohio

SpecPro, Inc. 2007a. Facility-Wide Groundwater Monitoring Program, Report on the July 2006 Sampling Event, Ravenna Army Ammunition Plant, Ravenna, Ohio

SpecPro, Inc. 2007b. Facility-Wide Groundwater Monitoring Program, Report on the October 2006 Sampling Event, Ravenna Army Ammunition Plant, Ravenna, Ohio

SpecPro, Inc. 2007c. Facility-Wide Groundwater Monitoring Program, Report on the January 2006 Sampling Event, Ravenna Army Ammunition Plant, Ravenna, Ohio.

Environmental Quality Management, Inc. 2007d. Facility-Wide Groundwater Monitoring Program, Report on the April 2007 Sampling Event, Ravenna Army Ammunition Plant, Ravenna, Ohio. Environmental Quality Management, Inc. 2007e. Facility-Wide Groundwater Monitoring Program, Report on the July 2007 Sampling Event, Ravenna Army Ammunition Plant, Ravenna, Ohio.

Environmental Quality Management, Inc. 2007f. Facility-Wide Groundwater Monitoring Program, Report on the October 2007 Sampling Event, Ravenna Army Ammunition Plant, Ravenna, Ohio.

Environmental Quality Management, Inc. 2008a, Facility-Wide Groundwater Monitoring Program, Report on the January 2008 Sampling Event, Ravenna Army Ammunition Plant, Ravenna, Ohio.

Environmental Quality Management, Inc. 2008b. Facility-Wide Groundwater Monitoring Program, Report on the April 2008 Sampling Event, Ravenna Army Ammunition Plant, Ravenna, Ohio.

Environmental Quality Management, Inc. 2008c. Facility-Wide Groundwater Monitoring Program, Report on the July 2008 Sampling Event, Ravenna Army Ammunition Plant, Ravenna, Ohio.

Environmental Quality Management, Inc. 2008d. Facility-Wide Groundwater Monitoring Program, Report on the October 2008 Sampling Event, Ravenna Army Ammunition Plant, Ravenna, Ohio.

Environmental Quality Management, Inc. 2009a. Facility-Wide Groundwater Monitoring Program, Report on the January 2009 Sampling Event, Ravenna Army Ammunition Plant, Ravenna, Ohio.

Environmental Quality Management, Inc. 2009b. Facility-Wide Groundwater Monitoring Program, Report on the April 2009 Sampling Event, Ravenna Army Ammunition Plant, Ravenna, Ohio.

Environmental Quality Management, Inc. 2009c. Facility-Wide Groundwater Monitoring Program, Report on the July 2009 Sampling Event, Ravenna Army Ammunition Plant, Ravenna, Ohio.

Environmental Quality Management, Inc. 2009c. Facility-Wide Groundwater Monitoring Program, Report on the October 2009 Sampling Event, Ravenna Army Ammunition Plant, Ravenna, Ohio.

Environmental Quality Management, Inc. 2010. Facility-Wide Groundwater Monitoring Program, Report on the January 2010 Sampling Event, Ravenna Army Ammunition Plant, Ravenna, Ohio.

Environmental Quality Management, Inc. 2010. Facility-Wide Groundwater Monitoring Program, Report on the July 2010 Sampling Event, Ravenna Army Ammunition Plant, Ravenna, Ohio.

Environmental Quality Management, Inc. 2010. Facility-Wide Groundwater Monitoring Program, Report on the October 2010 Sampling Event, Ravenna Army Ammunition Plant, Ravenna, Ohio.

Environmental Quality Management, Inc. 2011. Facility-Wide Groundwater Monitoring Program, Report on the January 2011 Sampling Event, Ravenna Army Ammunition Plant, Ravenna, Ohio.

Environmental Quality Management, Inc. 2011. Facility-Wide Groundwater Monitoring Program, Report on the April 2011 Sampling Event, Ravenna Army Ammunition Plant, Ravenna, Ohio.

Environmental Quality Management, Inc. 2011. Facility-Wide Groundwater Monitoring Program, Report on the July 2011 Sampling Event, Ravenna Army Ammunition Plant, Ravenna, Ohio.

Environmental Quality Management, Inc. 2011. Facility-Wide Groundwater Monitoring Program, Report on the October 2011 Sampling Event, Ravenna Army Ammunition Plant, Ravenna, Ohio.

Environmental Quality Management, Inc. 2012. Facility-Wide Groundwater Monitoring Program, Report on the January 2012 Sampling Event, Ravenna Army Ammunition Plant, Ravenna, Ohio.

Environmental Quality Management, Inc. 2012. Facility-Wide Groundwater Monitoring Program, Report on the April 2012 Sampling Event, Ravenna Army Ammunition Plant, Ravenna, Ohio.

Environmental Quality Management, Inc. 2012. *Final Facility-Wide Groundwater Monitoring Program Plan RVAAP-66 Facility-Wide Groundwater Semiannual Monitoring Addendum.*

Environmental Quality Management, Inc. 2013. Facility-Wide Groundwater Monitoring Program, Report on the July 2012 Sampling Event, Ravenna Army Ammunition Plant, Ravenna, Ohio.

Environmental Quality Management, Inc. 2013. Facility-Wide Groundwater Monitoring Program, Report on the October 2012 Sampling Event, Ravenna Army Ammunition Plant, Ravenna, Ohio.

Environmental Quality Management, Inc. 2013. Facility-Wide Groundwater Monitoring Program, Report on the January 2013 Sampling Event, Ravenna Army Ammunition Plant, Ravenna, Ohio.

Environmental Quality Management, Inc. 2013. *Final Facility-Wide Groundwater Monitoring Program Plan RVAAP-66 Facility-Wide Groundwater Semiannual Monitoring Addendum*.

Environmental Quality Management, Inc. 2014. Facility-Wide Groundwater Monitoring Program, Report on the August 2013 Sampling Event, Ravenna Army Ammunition Plant, Ravenna, Ohio.

Environmental Quality Management, Inc. 2014. Facility-Wide Groundwater Monitoring Program, Report on the January 2014 Sampling Event, Former Ravenna Army Ammunition Plant, Portage and Trumbell Counties, Ohio.

Environmental Quality Management, Inc. 2014. Facility-Wide Groundwater Monitoring Program, Report on the May 2014 Sampling Event, Former Ravenna Army Ammunition Plant, Portage and Trumbell Counties, Ohio. Environmental Quality Management, Inc. 2014. Facility-Wide Groundwater Monitoring Program, Report in the July 2014, Former Ravenna Army Ammunition Plant, Portage and Trumbell Counties, Ohio.

SAIC. 2011. Final Facility-Wide Sampling and Analysis Plan for Environmental Investigations at the Ravenna Army Ammunition Plant, Ravenna, Ohio.

USACE. 2010. 2010 Addendum to the Facility-Wide Groundwater Monitoring Program Plan RVAAP-66 Facility-Wide Groundwater.

APPENDIX A

WATER-LEVEL MEASUREMENTS/FIELD LOG BOOK/CALIBRATION RECORDS/ SAMPLE AND PURGE RECORDS/DAILY QUALITY CONTROL REPORTS

Signature Page

October 2014 FWGWMP Monitoring Well Event Field Personnel Abbreviations and Signatures Page

Field Personnel

Name	Affiliation	Initials
Colleen A. Lear	EQM	CL/CAL
John Miller	EQM	JM
Scott A. Spesshardt	EQM	SAS

Project and Field Leads

Name, Title, Affiliation

John Miller, Project Manager / QC Check, EQM

John Miller, Project Manager / QC Check, EQM	11 man
Signature:	A M. Mall
Colleen A. Lear, Field Manager / QC Check, EQI	M
Signature:	(in Aga

Logbook

Date <u>b-22-14</u>107 CLOU RAIN Y #0 523 CYPC N. ON Car N. H. Access C. 2.00 Acres we want Largento bland NXX 10 1030 for cleaners Ser. Javishe Caneled St Pert to the when the the celus by 142 may a USACE OKANA propert wet 2 port trip of for 99 08 0 ONSIU and prevent a _ م blein diegenligente 3 このはいたいたいたちょうちょういってやっこと WZWW ZJI TUNE Par Nor Preloute text the ES B ŧ Selved 42m 27 Juriber 2 station 1360 1036 - Unipark autredicy 104764. Rutil Column Low sug Project / Client RVAAD-66 Linne 1 Pune + Contratic mined Ĩ Saloartig やれっつう JM U41 328 55 2770 Cherk S T T) J S S Location RV447 N20 10262 <u>ି</u> ୪୦୦ 500 18 120 39 Ĩ V 16.3C 5-15 8 36. ママ RULER ଟିକ୍ଷି 84 N 1003 Date 10-21-10 for LL IMW OSS Samplune Prepare for well much langed AND AND Equipalent Russ + alean up prepare for un nurse sanche H+S plus raupranians UNWORS + Raintance CUDY U.S.Y.C.F other wells around partial areas to 10:30 DNSITE. Dick up keys Project / Client LUARY- WW Er the day のような 10000 RVA20 1031, IN CAL SAS QUQ 10,30 <u>L</u> St 11 25 003 1200 Ľ 000

Static Water Level Measurements

EQM MONITOR WELL STATIC WATER LEVEL FORM

PROJECT NAME: **RVAAP** PROJECT NUMBER: 030174.0016.001

FIELD BOOK#: 2

DATE: 10/21/2014

Monitor Well Number	Location	Total Well Depth (ft)	Water Level Indicator	Sampler	Time	Depth to Static Water Level (ft)	Sounding	PID Reading (above bkgrnd)
LL1mw-088	Loadline 1	27.39	1266	CAL	12:43	7.05		0
	Cmt:Good, technica	I difficulties @	1330, dumped flow thru & restarted im	mediately, gray clo	oudy @ start, a	ter 2 hours sta	ble & 10%turbid	ity

EQM MONITOR WELL STATIC WATER LEVEL FORM

PROJECT NAME: RVAAP

PROJECT NUMBER: 030174.0016.001

FIELD BOOK#: 2

DATE: 10/22/2014

Monitor Well Number LL2mw-271	Location Loadline 2	Total Well Depth (ft) 27.75	Water Level Indicator 1266	Sampler	Time 14:20	Depth to Static Water Level (ft) 10.82	Sounding	PID Reading (above bkgrnd) 0
	Cmt:Good, 2 CPM,	tan-orange col	pring to start, Stable and within 10% @	2 1535, continued t	o 2 hours.		<u>.</u>	
LL3mw-246	Loadline 3	45.65	1266	CAL	8:40	22.68		0
	Cmt:Good, tan color	ring to start, 2C	PM, stable & within 10% @ 1016, con	tinue past 2 hours	and falls out o	f stablity.	<u>.</u>	

Calibration Records

CALIBRATION REFERENCE TABLES

Summary of Field Instruments and Calibration/Performance Requirements for RVAAP AOC-Specific Investigations

Instrument and Use	Calibration	Performance
Water level meter used to determine static water level	Calibrated by manufacturer	±0.01 ft
Water quality instrument used to determine groundwater pH	Two points using pH 4.0 and 7.0 standard solutions on a daily basis	±0.1 units
Water quality instrument used to determine groundwater conductivity	One point using 0.01 m KCl or equivalent standard solution on a daily basis. Standard solutions should be close to the range of groundwater sampled	±0.1 µmhos/cm
Water quality instrument used to determine groundwater turbidity	One point using a 0.0 NTU or equivalent standard solution on a daily basis	0.1 NTU
Water quality instrument used to determine dissolved oxygen	One point using standard solution or manufacturer's DO chart	10%
Thermometer used to determine groundwater temperature	Calibration by manufacturer	±1°C
Photoionization detector used to determine organic vapor concentrations emitted from subsurface material	One point using 100-ppm isobutylene calibration gas on a daily basis	±0.1 ppm

AOC = Area of concern KCl = Potassium chloride (solution) ppm = Parts per million RVAAP = Ravenna Army Ammunition Plant

MODEL 3682 ZOBELL SOLUTION INSTRUCTIONS

TEHPERATURE	Ag/AgC1 (4H KC1)	CALONEL
-18 40	A TH WITTIACICS	TH MITTLACTOR
-5	270.0	234.2
Ō	263.5	226.0
5	257.0	217.8
10	250.5	209.6
15	244.0	201.4
20	237.5	193.2
25	231.0	185.0
10	224.5	176.8
15	218.0	168.6
40	211.5	160.4
46	205.0	152.2
50	198.5	144.0

DO CHART

The ISI 3682 Zobell Solution is not for food or drug use and can be harmful if swallowed. It will react with acids to form harmful by-products, including hydro-

Amounts of saturated dissolved oxygen in water at various temperatures (salinity=0.0%)

JIS KO10)1						
Temp. ('C)	DO (mg/L)	Temp. ('C)	DO (mg/L)	Temp. ('C)	DO (mg/L)	Temp. (°C)	DO (mg/L)
0	14.16						
1	13.77	11	10.67	21	8.68	31	7.42
2	13.40	12	10.43	22	8.53	32	7.32
3	13.04	13	10.20	23	8.39	33	7.22
4	12.70	14	9.97	24	8.25	34	7.13
5	12.37	15	9.76	25	8.11	35	7.04
6	12.06	16	9.56	26	7.99	36	6.94
7	11.75	17	9.37	27	7.87	37	6.86
8	11.47	18	9.18	28	7.75	38	6.76
9	11.19	19	9.01	29	7.64	39	6.68
10	10.92	20	8.84	30	7.53	40	6.59

Instrument Model Instrument I	D Date					Std	Meter			
EXAMPLE: Horiba U22 3074008			Calibrato	r CalibrationType	Standard	Concentra	Reading	Units	Comment	
071BA 11-27 5012013	100-000-00	8 11:0		Autocal	pH	4		pH units		254
<u> </u>	10/2017	11450	<u>peak</u>	Autocal	рН	44	3.99	pH units		
	+/-	142	<u> /</u>	Autocal	Cond	4.49	4.51	mS/cm		-
		140	<u>' (</u>	Autocal	Turb	0	6.0	NTU		
	+	11455		Calibration	рН	7	7.0	pH units		-
		1458		Calibration	рН	10	20.9.99	pH units		
		1452		Temp Check	Temp	a,	1340	°C	······································	1
- A		11500		Calibration-Chart	DO	HzO	9.95	mg/L		
2013013	10/2014	11505	<u>Cill</u>	Calibration-Chart	ORP	IKCI	239	mV	<u> </u>	-
141074-14 JUIJOIJ 10211	Wolzot	11:25	Cel	Autocal	рH	4	3.99	pH units	<u> </u>	
		1125	Ļ	Autocal	Cond	4.49	4.52	mS/cm	<u>.</u>	
		lias	\downarrow	Autocal	Turb	0	0.0	NTU	<u></u>	
-{	+/	1127	\bot	Calibration	рн	7	7.04	pH units		
/·	12	1129		Calibration	рн	10	10.08	nH units		much lann
	<u> </u>	1125		Temp Check	Temp	14 81	- 5-8.4	21/14	pool asked da	
——/	<u> (</u>	1140	L of	Calibration-Chart	DO	14-0	10.12	mg/i	Techeckea thisp	- martine
	1 X	1143	Cel	Calibration-Chart	ORP	KCI	231	mV	· · · · · · · · · · · · · · · · · · ·	
11/30/0	10/21/14	1130		Autocal	рН	4	3.98	nH units	398 0.1	
		1130		Autocal	Cond	4.49	452	mS/cm	U.C. KECHACK ISC	94164 Eye 144
_/	(1130		Autocal	Turb	0	00		7.51	
		1140		Calibration	pН	7	702	nH unite	U.U. Y dall	
-(1142		Calibration	pН	10	10.06	nH unite	10.7.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1	
<u></u>		1170		Temp Check	Temp		1201	°C	ICIS Redo MAS	
		1153		Calibration-Chart	DO	420	in rik			[
	\geq	1155		Calibration-Chart	ORP	VCI I	740			
uch kar KAP	10/21/14	1120	Cal	Bunn	150hil	100	<u>aq</u> 1			
uh Rac PID	10/22/14	07355	\bigcirc	BIDIO	kohilde		90	ppn		
				hand	wine		10	ppn		
		ell								

- -

· ·

RVAPP ~ Ravenna Ohio

Ł

TEAM # _____

RVAPP ~ Ravenna Ohio

теам # _____

Instrument Model Instrument ID	Date	Time	Cali	brator	CalibrationType	Standard	Std Concentra	Meter Reading	Units	Comment	
EXAMPLE: Horiba U22 3074008	06-Oct-08	11:00	EC		Autocal	рН	4	<u>4</u> .	pH units		ACCREMENTAL ACCESSION
HORIBAUZZ 5013013	10-22-14	0740	CA	L	Autocal	рН	4	4.00	pH units		
		0140		and the second	Autocal	Cond	4.49	4,50	mS/cm		
		0740			Autocal	Turb	0	Ø	NTU		
		745			Calibration	рН	7	7.06	pH units		
		750			Calibration	рН	10	10.09	pH units		
		740			Temp Check	Temp		929	°C		
		752			Calibration-Chart	DO	40	11.06	mg/L		
5012013		755			Calibration-Chart	ORP	KČI	239	mV		
1113010		742			Autocal	рН	4	3.98	pH units	3.99 Colo75	8
	1	742_			Autocal	Cond	4.49	4.53	mS/cm	4.51	
		742			Autocal	Turb	0	0.0	NTU	0.0	/
		746			Calibration	рН	7	7.08	pH units		
		750			Calibration	рН	10	10.10	pH units	Redo 10.15	
		742	<u> </u>		Temp Check	Temp		14.88	l°C	10,99 75	8
Real Provide American	J J	753	-	<u> </u>	Calibration-Chart	DO	Hro	8,90	mg/L	9.01	
<u> </u>	10-22-14	756	1	\underline{V}	Calibration-Chart	ORP	Kli	255	mV		
					Autocal	рН	4		pH units		
		<u> </u>	-		Autocal	Cond	4.49		mS/cm		
		$ \ge$			Autocal	Turb	0		NTU		
			\square	<u>~</u>	Calibration	рН	7		pH units		-
	1			-hc	Calibration	рН	10		pH units		
				1-	Temp Check	Temp			°C		
/ 					Calibration-Chart	DO			mg/L		
			-		Calibration Chart	ORP			mV		
					K	<u> </u>					
		-4							····		
	1				2						
			*10110473				120				

- -

· ·

Purge/Sample Records

EQM MONITOR WELL PURGING FORM

PROJECT NAME: RVAAP		PROJECT NUMBE	ER: 03017 4	.0016.001
LOCATION: LOADLINE 1	DATE:	10/21/2014 S	TART TIME:	12:43
WELL ID: LL1mw-088				(1) 10.1
WELL DEPTH: 27.39	INITIAL WATER LE	VEL: 7.05 TC	TAL PURGED	(L) <u>13.1</u>
WELL DIAMETER 2 in.	APPROXI	MATE SCREEN IN	TERVAL:	7.5 - 27.5
PUMP/PURGING DEVICE: BP - 1	BLADDER PUMP APPROXI	MATE PUMP INTA	KE DEPTH:	22
PUMP READINGS: Throttle (ft.)	Recharge: 9	Discha	arge: 6	

COMMENTS Color: Clear, Odor:None,technical difficulties @ 1330, dumped flow thru & restarted immediately, gray cloudy @ start, after 2 hours stable & 10%turbidity

TIME	WATER LEVEL (btoc)	PURGE RATE (L/min)	VOLUME PURGED (L)	TEMP. (°C)	SPECIFIC CONDUCT. (mS/cm)	DO (mg/L)	рН	Turb (NTU)	ORP (mV)
12:57	6.75	0.1	0	0	0	0	0	0	0
13:02	7.28	0.1	0.5	8.65	0.93	0.82	6.16	9999	-139
13:07	7.46	0.1	0.5	8.53	0.931	0.31	6.3	9999	-150
13:12	7.54	0.1	0.5	8.16	0.94	0.23	6.44	9999	-157
13:17	7.62	0.1	0.5	8.05	0.942	0.3	6.54	9999	-160
13:34	7.80	0.1	1.7	7.14	0.961	2.7	6.78	840	-142
13:39	7.70	0.14	0.7	7	0.963	1.33	6.8	494	-144
13:44	7.80	0.14	0.7	6.77	0.964	0.92	6.89	637	-142
13:49	7.92	0.14	0.7	6.68	0.966	2.06	6.9	632	-138
13:54	7.99	0.14	0.7	6.63	0.97	1.05	6.95	206	-140
13:59	7.95	0.11	0.55	6.59	0.97	0.63	6.95	137	-143
14:04	7.77	0.1	0.5	6.65	0.97	0.22	6.96	128	-145
14:09	7.73	0.1	0.5	6.59	0.97	0.2	6.97	121	-146
14:13	7.71	0.1	0.4	6.53	0.974	0.2	6.99	135	-145
14:18	7.65	0.13	0.65	6.51	0.972	0.22	7	118	-146
14:23	7.62	0.1	0.5	6.35	0.971	0.22	7.01	124	-146
14:28	7.61	0.1	0.5	6.07	0.986	0.22	7.01	122	-145
14:33	7.60	0.1	0.5	6.7	0.984	0.24	7.02	108	-144
14:38	7.57	0.1	0.5	6.68	0.966	0.29	7.03	113	-143
14:43	7.55	0.1	0.5	6.17	0.971	0.31	7.04	110	-143
14:48	7.55	0.1	0.5	6.46	0.969	0.33	7.04	107	-142
14:53	7.54	0.1	0.5	6.1	0.98	0.38	7.04	104	-142
14:58	7.54	0.1	0.5	6.19	0.986	0.36	7.04	101	-141

 Note: Condition of the well:
 See STATIC WATER LEVEL FORM, Note: All depths in feet BTOC.

 Field Personnel:
 CAL

EQM FIELD SAMPLING REPORT

PROJECT: RVAAP LOCATION: LOADLINE 1 PROJECT NO.: 030174.0016.001										
		SAMPLE INF	FORMATION							
WELL: <u>LL1mw-088</u>	Sampl	eID: <u>FWGLL1mw-088-05</u>	02-GW/GF	Dup ID:						
	Spli	tID:		RinseID: <u>FWC</u>	GEQUIPRinsel	I-0507-GW				
MATRIX: WG - Gro	und Water	SAMPLING METHO	DD: BP - Bladder	Pump		MS/MSD: <u>N</u>				
GRAB: <u>Y</u>	COMPOSITE	: <u>N</u>	DATE: 10/	21/2014	TIME:	15:00				
		FIELD READINGS /	OBSERVATION	IS						
		Turb (NTU):	101	Color:	Cle	ear				
ORP (mV): -141 Odor: None										
pH: 7.05 Temperature (°C): 5.99 DO (mg/L): 0.32 Specific Conductivity (mS/cm): 0.98										
GENERAL INFORMATION										
SUN/OVERCAST Overcast PERCIPITATION: N WIND DIRECTION: W AMBIENT TEMP (°F): 45										
SHIPPED VIA: Lab	Pickup									
SHIPPED TO: Test	america									
SAMPLER: CAL	Cmt: EQUIPR	inse1 @ 1630								
CONTAINER	R	DECEDVATIVE		METHOD						
SIZE/TYPE	NUMBER	PRESERVATIVE	ANALY IICAL	METHOD	ANALYS	18				
1L/Amber	2	4C	8270		SVOC					
1L/Amber	2	4C	353.2/8330		Propellants					
40ml/Vial	3	HCI	8260		VOC					
500ml/Poly	1	HNO3	6010/6020/747	0	Metals, filter	ed				
1L/Amber 1 4C 8330 Explo										
1L/Amber	2	4C	8082		PCB					
250ml/Poly 1 NaOH 9012 Cyanide										
1L/Amber	1L/Amber 2 4C 8081 Pest									

EQM MONITOR WELL PURGING FORM

PROJECT NAME:	RVAAP			PROJECT N	UMBER:	030174	4.0016.001
LOCATION: LOADI	LINE 2		DATE:	10/22/2014	START	TIME:	14:20
WELL ID: LL2mw-2	271			10.00	TOTAL		(I) 02 75
WELL DEPTH:	27.75	INITIAL W	ATER LEV	/EL: 10.82	_ IOIAL F	UKGEL	(L) 23.75
WELL DIAMETER	2 in.		APPROXI	MATE SCRE	EN INTERV.	AL:	17.5 - 27.5
PUMP/PURGING DE	VICE: <u>BP - BLA</u>	DDER PUMP	APPROXI	MATE PUMF	INTAKE D	EPTH:	22.5
PUMP READINGS:	Throttle (ft.)	Rec	harge: 20		Discharge: 1	0	

COMMENTS Color: Clear, Odor:None,2 CPM, tan-orange coloring to start, Stable and within 10% @ 1535, continued to 2

hours.

TIME	WATER LEVEL (btoc)	PURGE RATE (L/min)	VOLUME PURGED (L)	TEMP. (°C)	SPECIFIC CONDUCT. (mS/cm)	DO (mg/L)	рН	Turb (NTU)	ORP (mV)
14:25	11.22	0.15	0	0	0	0	0	0	0
14:30	11.30	0.15	0.75	9.05	0.562	2.09	5.87	155	-38
14:35	11.30	0.15	0.75	8.75	0.577	1.91	6.08	159	-57
14:40	11.29	0.15	0.75	8.24	0.723	1.41	6.32	188	-70
14:45	11.30	0.175	0.875	8.05	0.834	1.27	6.44	250	-74
14:50	11.29	0.175	0.875	7.92	0.924	1.16	6.51	187	-77
14:55	11.27	0.2	1	7.73	0.933	0.99	6.57	141	-79
15:00	11.29	0.2	1	7.55	0.952	0.91	6.58	88.9	-82
15:05	11.30	0.2	1	7.59	0.994	0.75	6.6	55.1	-85
15:10	11.30	0.2	1	7.65	1.05	0.84	6.63	45.6	-85
15:15	11.30	0.2	1	7.5	1.02	0.62	6.69	40.9	-84
15:20	11.30	0.2	1	7.54	1.01	0.69	6.64	36	-84
15:25	11.28	0.2	1	7.62	1	0.79	6.66	29.9	-83
15:30	11.28	0.2	1	7.67	1.02	0.77	6.67	29.7	-82
15:35	11.28	0.2	1	7.45	1.01	0.82	6.67	29.5	-81
15:40	11.28	0.2	1	7.2	1.02	0.78	6.68	29.2	-8
15:45	11.28	0.2	1	7.28	1.04	0.81	6.7	29.8	-80
15:50	11.28	0.2	1	7.43	1.01	0.79	6.68	28.6	-80
15:55	11.27	0.2	1	7.38	1.03	0.8	6.71	28.7	-80
16:00	11.28	0.225	1.125	7.53	1.04	0.78	6.69	28.1	-80
16:05	11.28	0.225	1.125	7.39	1.05	0.76	6.69	28.2	-80
16:10	11.28	0.225	1.125	7.3	1.07	0.78	6.69	28.4	-80
16:15	11.29	0.225	1.125	7.39	1.08	0.81	6.7	29	-80
16:20	11.28	0.225	1.125	7.24	1.1	0.79	6.7	28.8	-80

Note: Condition of the well: <u>See STATIC WATER LEVEL FORM</u>, Note: All depths in feet BTOC.

Field Personnel: CAL

EQM MONITOR WELL PURGING FORM

PROJECT NAME:	RVAAP			PROJECT N	UMBER:	030174.	.0016.001
LOCATION: LOAD	LINE 2		DATE:	10/22/2014	START	TIME:	14:20
WELL ID: <u>LL2mw-</u>	-271	INITIAL V	VATER LE	VEL: 10.82	2 TOTAL P	URGED	(L) 23.75
WELL DEPTH:	27.75						
WELL DIAMETER	2 in.		APPROX	MATE SCRE	EEN INTERVA	AL: 1	7.5 - 27.5
PUMP/PURGING DI	EVICE: <u>BP - BLA</u>	DDER PUMP	APPROX	IMATE PUM	P INTAKE DI	EPTH:	22.5
PUMP READINGS:	Throttle (ft.)	Rec	harge: 20		Discharge: 1	0	
COMMENTS Color: C	lear, Odor:None,2 CP	PM, tan-orange co	ploring to star	rt, Stable and w	vithin 10% @ 15	35, continu	ied to 2
hours.							
1	1		1	1		1	

TIME	WATER LEVEL (btoc)	PURGE RATE (L/min)	VOLUME PURGED (L)	TEMP. (°C)	SPECIFIC CONDUCT. (mS/cm)	DO (mg/L)	рН	Turb (NTU)	ORP (mV)
16:25	11.28	0.225	1.125	7.4	1.11	0.78	6.7	29.1	-80

 Note: Condition of the well:
 See STATIC WATER LEVEL FORM, Note: All depths in feet BTOC.

 Field Personnel:
 CAL

EQM FIELD SAMPLING REPORT

PROJECT: RVAAP LOCATION: LOADLINE 2 PROJECT NO.: 030174.0016.001										
		SAMPLE INI	FORMATION							
WELL: LL2mw-271	Sampl	eID: <u>FWGLL2mw-271-05</u>	03-GW/GF	Dup ID:						
	Spl	itID:		RinseID:						
MATRIX: <u>WG - Gro</u>	ound Water	_ SAMPLING METHO	DD: BP - Bladder	Pump		MS/MSD: <u>N</u>				
GRAB: <u>Y</u>	COMPOSITE	B: <u>N</u>	DATE:10/	/22/2014	TIME:	16:30				
		FIELD READINGS /	OBSERVATION	IS						
		Turb (NTU):	29.3	Color:	Cle	ear				
ORP (mV): -79 Odor: None										
pH: 6.69 Temperature (°C): 7.44 DO (mg/L): 0.79 Specific Conductivity (mS/cm): 1.13										
GENERAL INFORMATION										
SUN/OVERCAST Overcast PERCIPITATION: N WIND DIRECTION: W AMBIENT TEMP (°F): 45										
SHIPPED VIA: Lab	Pickup									
SHIPPED TO: Test	america									
SAMPLER: CAL	Cmt: 2 toxaphe	ene bottles added to MSMS	SD set up							
CONTAINER	Ł			METHOD						
SIZE/TYPE	NUMBER	PRESERVATIVE	ANALYIICAI	L METHOD	ANALYSI	18				
40ml/Vial	9	HCI	8260		VOC					
1L/Amber	3	4C	8330		Explo					
250ml/Poly	3	NaOH	9012		Cyanide					
1L/Amber	4	4C	8082		PCB					
500ml/Poly	3	HNO3	6010/6020/747	70	Metals, filter	red				
1L/Amber	4	4C	8081		Pest					
1L/Amber	4	4C	8270		SVOC					
1L/Amber	1L/Amber 4 4C 353.2/8330 Propellants									

EQM MONITOR WELL PURGING FORM

PROJECT NAME:	RVAAP			PROJECT	NUMBER:	03017	4.0016.001
LOCATION: LOADL	INE 3		DATE:	10/22/2014	START	TIME:	8:40
WELL ID: <u>LL3mw-2</u>	46	INITIAL V	VATER LEV	VEL: 22.6	8 TOTAL F	PURGEL	D(L) 17.555
WELL DEPTH:	45.65						
WELL DIAMETER	2 in.		APPROXI	MATE SCR	EEN INTERV.	AL:	35.5 - 45.5
PUMP/PURGING DE	VICE: <u>BP - BLA</u>	DDER PUMP	APPROXI	MATE PUM	IP INTAKE DI	EPTH:	40.5
PUMP READINGS:	Throttle (ft.)	Rec	charge: 20		Discharge: 1	0	

COMMENTS Color: Clear, Odor:None,tan coloring to start, 2CPM, stable & within 10% @ 1016, continue past 2 hours and falls out of stablity.

TIME	WATER LEVEL (btoc)	PURGE RATE (L/min)	VOLUME PURGED (L)	TEMP. (°C)	SPECIFIC CONDUCT. (mS/cm)	DO (mg/L)	рН	Turb (NTU)	ORP (mV)
8:51	22.68	0.15	0	0	0	0	0	0	0
8:56	22.79	0.125	0.625	5.4	0.306	1.96	5.73	139	124
9:01	22.76	0.125	0.625	6.07	0.303	1.49	5.78	158	96
9:06	22.74	0.125	0.625	5.94	0.315	1.22	5.86	123	109
9:11	22.71	0.125	0.625	5.87	0.316	1.24	5.89	93	124
9:16	22.69	0.125	0.625	5.74	0.303	1.21	5.93	67.9	120
9:21	22.68	0.125	0.625	5.7	0.303	1.18	5.95	35.1	121
9:26	22.68	0.125	0.625	5.64	0.316	1.19	5.97	30.4	127
9:31	22.68	0.13	0.65	5.39	0.322	1.22	5.97	25.7	125
9:36	22.68	0.13	0.65	5.3	0.319	1.21	5.97	23.7	126
9:41	22.68	0.13	0.65	5.23	0.311	1.19	5.98	22	126
9:46	22.68	0.13	0.65	5.28	0.329	1.24	6	17.2	126
9:51	22.67	0.13	0.65	5.05	0.312	1.28	6.01	14.1	127
9:56	22.67	0.13	0.65	5.35	0.308	1.25	6	16.5	127
10:01	22.66	0.13	0.65	5.38	0.319	1.2	6.01	14	125
10:06	22.66	0.13	0.65	5.3	0.344	1.26	6.02	13.1	126
10:11	22.66	0.13	0.65	5.26	0.351	1.19	6.02	13.2	126
10:16	22.65	0.13	0.65	5.21	0.347	1.18	6.03	13.7	126
10:21	22.65	0.13	0.65	5.15	0.355	1.2	6.03	14.1	126
10:26	22.64	0.13	0.65	5.11	0.361	1.2	6.03	15.5	127
10:31	22.64	0.13	0.65	5.07	0.4	1.19	6.04	15.1	127
10:36	22.64	0.13	0.65	5.06	0.437	1.17	6.03	14.5	126
10:41	22.70	0.13	0.65	5.01	0.46	1.24	6.03	14.7	122
10:46	22.73	0.13	0.78	4.93	0.477	1.19	6.04	20.6	123

Note: Condition of the well: <u>See STATIC WATER LEVEL FORM</u>, Note: All depths in feet BTOC.

Field Personnel: CAL

EQM MONITOR WELL PURGING FORM

PROJECT NAME:	_	PROJECT NUMBE			030174.0016.001					
LOCATION: LOADL	INE 3		DATE:	10/22/20	14 STAR	T TIME:	8:40			
WELL ID: LL3mw-246										
WELL DEPTH:	45.65	INITIAL WATER LEVEL: 22.68 IOTAL PURGED (L) 17.55								
WELL DIAMETER	2 in.		APPROXI	MATE SC	REEN INTER	VAL:	35.5 - 45.5			
PUMP/PURGING DEVICE: BP - BLADDER PUMP APPROXIMATE PUMP INTAKE DEPTH: 40.5										
PUMP READINGS:	Throttle (ft.)	Recl	harge: 20		Discharge:	10				
COMMENTS Color: Clear, Odor:None,tan coloring to start, 2CPM, stable & within 10% @ 1016, continue past 2 hours and falls										

out of stablity.

TIME	WATER LEVEL (btoc)	PURGE RATE (L/min)	VOLUME PURGED (L)	TEMP. (°C)	SPECIFIC CONDUCT. (mS/cm)	DO (mg/L)	рН	Turb (NTU)	ORP (mV)
10:51	22.76	0.13	0.65	4.94	0.47	1.16	6.04	56.3	123
10:56	22.74	0.13	0.65	4.92	0.488	1.16	6.05	55.8	121
11:01	22.72	0.135	0.675	4.95	0.49	1.17	6.05	42.5	121
11:06	22.72	0.135	0.675	4.74	0.495	1.04	6.05	46.2	123

 Note: Condition of the well:
 See STATIC WATER LEVEL FORM, Note: All depths in feet BTOC.

 Field Personnel:
 CAL

EQM FIELD SAMPLING REPORT

PROJECT: RVAA	PROJECT: RVAAP LOCATION: LOADLINE 3 PROJECT NO.: 030174.0016.001								
SAMPLE INFORMATION									
WELL: LL3mw-246 SampleID: FWGLL3mw-246-0504-GW/GF Dup ID: FWGLL3mw-246-0506-GW/GF									
	Spli	tID: <u>FWGLL3mw-246-05</u>	05s-GW/GF	RinseID: <u>FW0</u>	GEQUIPRinse2	-0508-GW			
MATRIX: <u>WG - Ground Water</u> SAMPLING METHOD: <u>BP - Bladder Pump</u> MS/MSD: <u>N</u>									
GRAB: Y COMPOSITE: N DATE: 10/22/2014 TIME: 11:10									
		FIELD READINGS /	OBSERVATION	S					
		Turb (NTU):	39.6	Color:	Clear				
		ORP (mV):	123	Odor:	None				
pH: <u>6.04</u> Te	emperature (°C)	: <u>4.91</u> DO (mg	y/L): <u>1.21</u>	Specific Con	nductivity (mS/	cm): 0.499			
GENERAL INFORMATION									
SUN/OVERCAST Overcast PERCIPITATION: N WIND DIRECTION: W AMBIENT TEMP (°F): 40									
SHIPPED VIA: Lab PU/FedEx									
SHIPPED TO: Multiple Labs									
SAMPLER: CAL	Cmt: EQUIPR	inse2 @ 1445							
CONTAINER		PRESERVATIVE	ANALVTICAL METHOD		A NAT VEIC				
SIZE/TYPE	NUMBER	IKESEKVAIIVE	ANALY IICAL METHOD		AINALISIS				
1L/Amber	6	4C	8330		Explo				
1L/Amber	7	4C	353.2/8330		Propellants				
40ml/Vial	9	HCI	8260		VOC				
1L/Amber	5	4C	8081		Pest				
250ml/Poly	3	NaOH	9012		Cyanide				
500ml/Poly	3	HNO3	6010/6020/7470		Metals, filter	ed			
1L/Amber	5	4C	8082		PCB				
1L/Amber	6	4C	8270		SVOC				

Daily QC Records

Date:			21-Oct					
			х					
	S	Μ	Т	W	Т	F	S	

DAILY QUALITY CONTROL REPORT

		Dright		Over			
	Weather	Sun	Clear	Cast	Rain	Snow	
COE Project Manager Greg Moore	weather			x			
	Tama	To 32	32-50	50-70	70-85	85 up	
Project Ravenna Army Ammunition Plant Groundwater Monitoring	Temp		х	х			
	\\/ind	Still	Moder	High	Report No.		
Job No. 030174.0016.001	wind	х					
GSA Contract Number GS-10F-0293K	Humidity	Dry	Moder	Humid			
Contract No. Delivery Order W912QR-11-F-0266	Turniaity			x	102114		
SUB-CONTRACTORS ON SITE:							
Environmental Quality Management, Inc.							
EQUIPMENT ON SITE:							
Water level meters, two water quality meters (Horiba-U22/U52); One multigas	detector	(MSA	<i>،</i>); two	blad	der		
pumps w/ associated controllers and compressors.							
WORK PERFORMED (INCLUDING SAMPLING):							
Arrive at Building 1036, unload/load and organize equipment. Event water level	el collecti	ons s	imulta	ineou	s with	1	
Purge sample work .							
Samples were collected at the following locations:							
LL1mw-088							
A field rinsate was collected by Team # 2							
A new misate was conected by Team # 2.							
							_
---------	-------------	--------------	-------------------	------------	------------	--------	---
Project	Ravenna Arm	y Ammunition	Plant Groundwater	Monitoring	Report No.	102114	

Job No. 030174.0016.001 Date: 10/21/2014

QUALITY CONTROL ACTIVITIES (INCLUDING FIELD CALIBRATIONS):
All field equipment was calibrated prior to mobilizing to the field. Water level meter devices were checked for correct footage. Water quality meters were calibrated with AutoCal Solution, standards, and checks - certified values are: ORP checked okay (Ag/AgCl per chart), DO checked okay (distilled H2O per chart), AutoCal: (Conductivity - 4.49 mS/cm; Turbidity - 0 NTU; pH - 4.0) and pH 4.0, 7.0, 10.0 su. Multigas detector calibrated with Zero Air Standard and 100 ppm Isobutylene. All field equipment was within calibration criteria.
HEALTH AND SAFETY LEVELS AND ACTIVITIES: H&S briefing conducted prior to mobilizing to the field. All personnel to don modified Level 4 PPE (i.e. steel-toed shoes, safety glasses, & nitrile gloves). First Aid kits were included in each vehicle, & personnel were made aware of eyewash station locations.
Each team was equipped with a cellular phone. Personnel were instructed to hydrate frequently and watch for
traffic. Personnel were also instructed to be alert for storms, poisonous plants, stinging insect, and roaming
deer/turkey in addition to signs of bear/coyotes.
SPECIAL NOTES:
Post 1 and watching for traffic disscusions for tailgate.
TOMORROWS EXPECTATIONS:
Expectations for tomorrow are to continue the purge and sample event.

Da	te:	_	22-Oct						
	s	М	Т	X W	Т	F	s		

DAILY QUALITY CONTROL REPORT

						Daiadat		0		
					Weather	Sun	Clear	Cast	Rain	Snow
COE Project Mana	ager	Gre	eg Moore					х		
Project <u>Ravenn</u>	a Army Amm	unition Plant	Groundwate	er Monitoring	Temp	To 32	32-50 x	50-70 x	70-85	85 up
Job No.	(030174.0016	5.001		Wind	Still x	Moder	High	Repo	rt No.
GS	A Contract Nu	umber GS-10)F-0293K		Humidity	Dry	Moder	Humid		
Contract No. De	livery Order V	V912QR-11-	F-0266					x	102	214
SUB-CONTRACTORS	ON SITE:									
Environmental Quality N	/lanagement,	Inc.								
EQUIPMENT ON SITE:										
Water level meters, two	water quality	meters (Hori	iba-U22/U52); One multigas	detector	(MSA	A); two	blad	der	
pumps w/ associated co	ontrollers and	compressors	8.			-	-			
WORK PERFORMED (I	INCLUDING S	SAMPLING):								
Arrive at Building 1036, Samples were collected LL2mw-271 and LL3mw	unload/load a at the followin /-246	and organize ng locations:	equipment.	Continue purge	and sam	ıple w	vork a	t the v	wells.	
Field duplicate and QA s 271 to be designated for was collected by Team	split samples r matrix spike/ # 2.	were collecte /matrix spike	ed from LL3n duplicate ar	nw-246. Extra v alysis at the lab	olume w oratory.	as co Addit	llecte ionall	d from y, a fi	n LL2 eld rir	mw- nsate

Project	Ravenna Army Ammunition Plant Groundwater Monitoring Report No.	10221

14

Job No. 030174.0016.001 Date: 10/22/2014

QUALITY CONTROL ACTIVITIES (INCLUDING FIELD CALIBRATIONS):
All field equipment was calibrated prior to mobilizing to the field. Water level meter devices were checked for correct footage. Water quality meters were calibrated with AutoCal Solution, standards, and checks - certified values are: ORP checked okay (Ag/AgCl per chart), DO checked okay (distilled H2O per chart), AutoCal: (Conductivity - 4.49 mS/cm; Turbidity - 0 NTU; pH - 4.0) and pH 4.0, 7.0, 10.0 su. Multigas detector calibrated with Zero Air Standard and 100 ppm Isobutylene. All field equipment was within calibration criteria.
HEALTH AND SAFETY LEVELS AND ACTIVITIES: H&S briefing conducted prior to mobilizing to the field. All personnel to don modified Level 4 PPE (i.e. steel-toed shoes, safety glasses, & nitrile gloves). First Aid kits were included in each vehicle, & personnel were made aware of eyewash station locations.
Each team was equipped with a cellular phone. Personnel were instructed to hydrate frequently and watch for signs of heat stress. Personnel were also instructed to be alert for storms, poisonous plants, and roaming deer/turkey (and hunters) in addition to signs of bear/coyotes.
PROBLEMS ENCOUNTERED/CORRECTIVE ACTION (S) TAKEN:
LL3mw-246 stablized for stabalization parameters and 10% turbidity but prior to the turbidity reaching 10 NTU. The turbidity started increasing and at two hours of purging all except 10% turbidity was achieved. Purge stopped at 14 minutes later with stablized stability parameters of pH, cond., temp, DO.
SPECIAL NOTES:
Onsite chemicals (preservatives), two cahin safety and vests/vehicle traffic discussions at tailgate briefing.
TOMORROWS EXPECTATIONS:
Expectations for tomorrow are to safely and correctly finalize the event.

Da	te:	_	2	23-	0	ct	
	s	М	Т	w	X T	F	s

DAILY QUALITY CONTROL REPORT

	-					
	Weather	Bright Sun	Clear	Over- Cast	Rain	Snow
COE Project Manager Greg Moore	weather			x		
Project Ravenna Army Ammunition Plant Groundwater Monitoring	Temp	To 32	32-50 x	50-70	70-85	85 up
Job No. 030174.0016.001	Wind	Still x	Moder	High	Repo	rt No.
GSA Contract Number GS-10F-0293K Contract No. Delivery Order W912QR-11-F-0266	Humidity	Dry	Moder x	Humid	102	314
SUB-CONTRACTORS ON SITE:						
EQUIPMENT ON SITE:						
Water level meters, water quality meters (Horiba-U22/U52); One multigas de associated controllers and compressors.	etector (MS	SA); b	ladde	r pum	ps w∕	

WORK PERFORMED (INCLUDING SAMPLING):

Arrive at Building 1036, unload/load and organize equipment. IDW sampling collected. Packed equipment for return back to Cincinnati, and cleaned Building 1036. Demobilization.

Project	Ravenna Army	⁷ Ammunition	Plant Groundwater	Monitoring Report No.	102314
---------	--------------	-------------------------	-------------------	-----------------------	--------

Job No. 030174.0016.001 Date: 10/23/2014

QUALITY CONTROL ACTIVITIES (INCLUDING FIELD CALIBRATIONS):
All field equipment was calibrated prior to mobilizing to the field. Water level meter devices were checked for correct footage. Water quality meters were calibrated with AutoCal Solution, standards, and checks - certified values are: ORP checked okay (Ag/AgCl per chart), DO checked okay (distilled H2O per chart), AutoCal: (Conductivity - 4.49 mS/cm; Turbidity - 0 NTU; pH - 4.0) and pH 4.0, 7.0, 10.0 su. Multigas detector calibrated with Zero Air Standard and 100 ppm Isobutylene. All field equipment was within calibration criteria.
H&S briefing conducted prior to mobilizing to the field. All personnel to don modified Level 4 PPE (i.e. steel-toed shoes, safety glasses, & nitrile gloves). First Aid kits were included in each vehicle, & personnel were made aware of evewash station locations
Each team was equipped with a cellular phone. Personnel were instructed to hydrate frequently and watch for signs of heat stress. Personnel were also instructed to be alert for storms, poisonous plants, stinging insect, ticks, and roaming deer/turkey in addition to signs of bear/covotes.
PROBLEMS ENCOUNTERED/CORRECTIVE ACTION (S) TAKEN
SPECIAL NOTES:
Confirmed wells = finalized event.
TOMORROWS EXPECTATIONS:

NA

APPENDIX B

DATA VERIFICATION REPORTS/ LABORATORY DATA SHEETS

Date: January 27, 2015 Revision: 1

Data Reviewer: Angela Dragotta /Environmental Quality Management, Inc. (EQM, Inc.)

QA/QC Summary

On October 21st and 22nd, 2014 the following samples were collected from groundwater-monitoring wells at Ravenna Army Ammunition Plant and analyzed as part of SDG 240-43499. Sample analysis was performed by Test America. Test America-North Canton performed all analyses with the exception of the analytical for methods 8330, M8330, TALSOPWS-WC-0050 and 6860. Methods 8330, M8330 and TALSOPWS-WC-0050 were performed by Test America, West Sacramento.

		0			81		yc 0					Meta	als ⁴
Sample ID	VOC by SW846 8260	SVOC 4 by SW846 827	SVOC 1 and 2 by SW846 8270	SVOC 1 by SW846 8270	Pesticides by SW846 803	PCBs/ SW846 8082	Explosives/Propellants SW846 8330, Mod. 833 and TALSOP WS-WC-0050	Cyanide SW846 9012	Perchlorate by SW846 6860	NO2/NO3, EPA 353.2	SW846 6010B	SW846 6020	Mercury by SW846 7470A
FWGLL1mw-088-0502-GW	Х	Х			Х	Х	Х	Х			Х	Х	Х
FWGLL3mw-246-504-GW	Х	Х			Х	Х	Х	Х			Х	Х	Х
FWGLL3mw-DUP1-506-GW	Х	Х			Х	Х	Х	Х			Х	Х	Х
FWGLL2mw-271-0503-GW	Х	Χ			Х	Х	Х	Х			Х	Х	X
FWGEQUIPRINSE1-0507-GW	Х	Х			Х	Х	X	Х			Х	Х	X
FWGEQUIPRINSE2-0508-GW	Х	X			Х	Χ	Х	Χ			Х	Х	X

Notes:

1) All metals samples with the exception of FWGEQUIPRINSE1-0507-GW and FWGEQUIPRINSE2-0508-GW were field filtered (GF).

2) SVOC4=Full RVAAP SVOC list

3) EPA 6020 metals include aluminum, antimony, beryllium, cadmium, iron, sodium, thallium and zinc. EPA 6010B metals include arsenic, chromium, cobalt, lead, selenium, silver, vanadium, barium, calcium, copper, magnesium, manganese, nickel and potassium.

4) A trip blank for team 2 was collected on 10/21/14 and 10/22/14 and submitted to the laboratory for VOC analysis by EPA 8260B.

The data presented in this report were evaluated according to the *Final Facility Wide Groundwater Monitoring Program, RVAAP-66 Facility Wide Groundwater Quality Assurance Project Plan (QAPP) Addendum for the Ravenna Army Ammunition Plant, Ravenna, OH, Environmental Quality Management, January, 2012.* The following documents were used as needed to supplement the project documentation: The United States Department of Defense (DoD) Quality Services Manual (QSM) for Environmental Laboratories, Version 4.1, and the United States Army Corps of Engineers (USACE), Louisville District Quality Systems Manual Supplement (LS), EPA *National Functional Guidelines (NFG) for Organic Data Review, EPA-540/R-08-01, June 2008, NFG for Inorganic Data Review, EPA-540/R-04-004, October 2004*, Analytical Methods, and Laboratory Standard Operating Procedures. The QC criteria provided in the reference documents represent accuracy and precision performance goals for each analytical method. QC criteria reviewed for each method are listed below, along with any outliers.

All analytical results have been verified against compliance requirements specified in the project QAPP, QSM, LS, associated analytical methods and/or SOPs, as appropriate, and reported by the laboratory as directed by the DoD QSM.

Per the DoD QSM, the laboratory data is reported as follows: Non detected results were reported at the LOD with a "U" flag. Detected results between the DL and LOQ were reported as estimated, qualified with a "J" flag.

Date: January 27, 2015 Revision: 1

LOD - An estimate of the minimum amount of a substance that an analytical process can reliably detect.

LOQ - The lowest concentration that produces a quantitative result within specified limits of precision and bias.

DL- The smallest analyte concentration that can be demonstrated to be different from zero or a blank concentration at the 99% level of confidence.

Checklists used in the verification process are in Attachment 1 and sample results with outliers requiring qualification are in Attachment 2.

The completeness objective for the project was 90%. The completeness objective was met for this SDG, at 100%. Limitations, if any, on the data are indicated with qualifiers detailed below.

Holding Time Exceedences

SVOC-Samples FWGEQUIPRINSE2-0508-GW, FWGLL3mw-246-504-504-GW and FWGLL3mw-DUP1-506-GW were reextracted outside 7 day hold time at 14 days for SVOC. The SVOC results for samples FWGEQUIPRINSE2-0508-GW, FWGLL3mw-246-504-GW and FWGLL3mw-DUP1-506-GW were qualified as estimated, "UJ", as the re-extraction was completed within 2x hold time.

Pesticides- Samples FWGLL3mw-246-504-GW, FWGLL3mw-DUP1-506-GW, FWGLL2mw-271-0503-GW and FWGEQUIPRINSE2-0508-GW were extracted outside the seven day hold time but within 2x hold time. The pesticide results for samples, FWGLL3mw-246-504-GW, FWGLL3mw-DUP1-506-GW, FWGLL2mw-271-0503-GW and FWGEQUIPRINSE2-0508-GW were qualified as estimated, "UJ" instead of unusable, since the re-extraction was completed within 2x hold time. In addition, sample FWGLL1mw-088-504-502-GW was analyzed outside the analytical hold time of 40 days at 54 days. As the analysis took place within 2x analytical hold, the results for sample FWGLL1mw-088-504-502-GW were qualified as estimated, "J/UJ".

Nitroguanidine-Samples FWGEQUIPRINSE2-0508-GW, FWGEQUIPRINSE1-0507-GW, FWGLL3mw-246-504-504-GW, FWGLL1mw-088-504-502-GW, FWGLL2mw-271-503-GW and FWGLL3mw-DUP1-506-GW were extracted outside 7 day hold time. As the prep was within 2x hold time, the nitroguanidine results for samples FWGEQUIPRINSE2-0508-GW, FWGEQUIPRINSE1-0507-GW, FWGLL3mw-246-504-504-GW, FWGLL1mw-088-504-502-GW, FWGLL2mw-271-503-GW and FWGLL3mw-DUP1-506-GW were qualified as estimated, "UJ".

VOC- 8260

The following QC criteria were reviewed and determined to be acceptable, except as noted below:

- Preservation and sample handling
- Tuning criteria
- Initial Calibration Criteria including SPCC and CCC compounds
- ICV/CCV criteria
- Internal standard area counts and retention times
- LOD and MRL verification criteria
- Method /field blank criteria
- Surrogate recoveries
- Field duplicate RPD criteria
- Laboratory Control Sample criteria
- Matrix spike/spike duplicate recovery criteria and RPD

MRL Recoveries

• The opening MRL analyzed on 10/30/14 @ 1159 recovered below control limits for acetone at 31%, bromoform at 69% and 2-butanone at 68%. Chloromethane recovered above control limits of 70-130% at 131%. An LOD verification check sample was analyzed following the closing MRL with detected results for the outlier analytes.

Date: January 27, 2015 Revision: 1

• The closing MRL analyzed 10/30/14 @ 2127 recovered below control limits of 70-130% for acetone at 50%. A LOD verification check sample was analyzed following the closing MRL with detected results for the outlier analytes.

The acetone, bromoform and 2-butanone results for samples FWGLL1mw-088-0502-GW, FWGTEAM2TRIP, FWGEQUIPRINSE1-0507-GW, FWGEQUIPRINSE2-0508-GW, FWGLL3mw-246-504-GW, FWGLL3mw-DUP1-506-GW, and FWGLL2mw-271-0503-GW were qualified as estimated, "J/ UJ". No qualifications were required for the chloromethane outlier as there were no detected concentrations of chloromethane reported for the bracketed field samples.

Blanks

Acetone was detected in FWGTEAM2Trip collected 10/21/14 at 4.1µg/L and FWGTEAM2Trip collected 10/22/14 at 4.0µg/L. The acetone result for FWGEQUIPRINSE1-0507-GW was qualified, "B".

FWGEQUIPRINSE1-0507-GW had acetone detected at $3.5\mu g/L$ and toluene at $0.24\mu g/L$. FWGEQUIPRINSE2-0508-GW had chloroform detected at $0.69\mu g/L$ and methylene chloride at $1.1\mu g/L$. There were no detected concentrations of acetone, toluene, chloroform or methylene chloride reported for the associated field samples, so no qualifications were made for the noted equipment rinse contamination.

SVOCs- 8270C

The following QC criteria were reviewed and determined to be acceptable, except as noted below:

- Preservation and sample handling
- Tuning criteria
- Initial Calibration Criteria including SPCC and CCC compounds
- ICV/CCV criteria
- Internal standard area counts and retention times
- LOD and MRL verification criteria
- Method /field blank criteria
- Surrogate recoveries
- Field duplicate RPD criteria
- Laboratory Control Sample criteria
- Matrix Spike Recovery Criteria and RPD

MRL Criteria

- The closing MRL analyzed 11/4/14 @ 1609 recovered below control limits of 70-130% for 2,4-dinitrophenol at 69%.
- The closing MRL analyzed 11/12/14 @ 1524 recovered below control limits of 70-130% for 2,4dinitrophenol at 56%. An LOD verification check was analyzed following MRL standard with detected results.

The 2,4-dinitrophenol results for samples FWGLL1mw-088-0502-GW, FWGLL3mw-246-504-GW, FWGLL3mw-DUP1-506-GW, FWGLL2mw-271-0503-GW, FWGEQUIPRINSE1-0507-GW and FWGEQUIPRINSE2-0508-GW were qualified as estimated, "UJ".

CCV Criteria

The CCV analyzed 11/4/14 had 4-nitroaniline recover above the 20% criteria for %D with a %D of 22.2%, carbazole recovered above control limits with a %D of 26.2% and 4,6-dinitro-2-methylphenol with a %D of 21.3%. No qualification of the data was required as there were no detected concentrations of 4-nitroaniline, carbazole or 4,6-dinitro-2-methylphenol reported for the associated field samples.

LCS Recovery Criteria

The LCS analyzed with batch 240-153104 recovered below control limits of 10-115% for hexachlorocyclopentadiene at 3%. The hexachlorocyclopentadiene LCS from batch 240-154942 recovered below limits at 5%. All hexachlorocyclopentadiene results were qualified as estimated, "UJ".

Matrix Spike/Spike Duplicate Recovery and RPD Criteria

A matrix spike and spike duplicate were prepped analyzed on sample FWGLL2mw-271-0503-GW. The hexachlorocyclopentadiene matrix spike and matrix spike recoveries were below control limits of 10-115% at 5% and 4%, respectively. The pentachlorophenol MSD recovered below control limits of 40-115% at 39%. The MS/MSD RPD was above control limits for 2,4-dinitrophenol at 75%, 4,6-dinitro-2-methylphenol at 47% and benzoic acid at 200%. The hexachlorocyclopentadiene and pentachlorophenol results for FWGLL2mw-271-0503-GW were qualified as estimated, "UJ". No qualification was made for the MS/MSD RPD outliers as there were no detected 4-dinitrophenol, 4,6-dinitro-2-methylphenol or benzoic acid results reported for sample FWGLL2mw-271-0503-GW.

Surrogate Recovery

Samples FWGLL1mw-088-0502-GW, FWGLL2mw-271-0503-GW and FWGEQUIPRINSE1-0507-GW were not spiked with surrogate so no evaluation could be made. The results for samples FWGLL1mw-088-0502-GW, FWGLL2mw-271-0503-GW and FWGEQUIPRINSE1-0507-GW were qualified as estimated, "UJ".

Pesticides- 8081A

The following QC criteria were reviewed and determined to be acceptable, except as noted below:

- Preservation and sample handling
- Initial Calibration criteria
- DDT and Endrin breakdown criteria
- Retention time criteria
- ICV criteria
- CCV Criteria
- Method /field blank criteria
- LCS Recoveries
- Field Duplicate Criteria
- LOD and MRL verification criteria
- Matrix Spike Recovery Criteria and RPD
- Surrogate Recoveries
- Second Column confirmation criteria

MRL Recovery Criteria

Analytical Batch 154474

The MRL analyzed 11/3/14 @ 0009 had toxaphene recover above control limits of 70-130% at 142%. No qualification was required as toxaphene was not reported as detected for sample FWGEQUIPRINSE1-507-GW.

Analytical Batch 155567

The MRL analyzed 11/8/14 @ 1721 had toxaphene recover above control limits of 70-130% at 183% and at 2305 toxaphene recovered above limits at 170%. The MRL analyzed 11/8/14 @ 1807 recovered above limits of 70-130% at 142% for 4,4'-DDD. The MRL analyzed 11/8/14 @ 2350 recovered above limits of 70-130% at 173% for 4,4'-DDD, at 131% for endrin and at 149% for methoxychlor. No qualifications were required as there were no detected pesticide concentrations reported for sample FWGEQUIPRINSE2-508-GW.

Analytical Batch 156929

The MRL analyzed 11/17/14 @ 1832 had toxaphene recover above control limits of 70-130% at 133%. The MRL analyzed on 11/17/14 @ 1923 recovered above limits of 70-130% for beta BHC at 139%. No qualifications were required as there were no detected toxaphene or beta-BHC concentrations reported for samples FWGLL3mw-246-504-GW, FWGLL3mw-DUP1-506-GW, FWGLL2mw-271-0503-GW.

Analytical Batch 161502

The opening MRL analyzed 12/17/14 @ 2100 recovered above limits of 70-130% for aldrin at 133%, alpha chlordane at 137%, dieldrin at 139%, endosulfan I at 141%, endosulfan II at 138%, endosulfan sulfate at 133%, endrin at 147%, endrin aldehyde at 132%, gamma chlordane at 137%, heptachlor at 139% and heptachlor epoxide at

Date: January 27, 2015 Revision: 1

139%. The closing MRL analyzed 12/17/14 @ 2241 recovered above limits of 70-130% for 4,4'-DDD at 136%, 4,4'-DDE at 142%, 4,4'-DDT at 136%, aldrin at 140%, alpha chlordane at 144%, beta-BHC at 132%, dieldrin at 144%, endosulfan I at 148%, endosulfan II at 147%, endosulfan sulfate at 141%, endrin at 156%, endrin ketone at 135%, endrin aldehyde at 141%, gamma chlordane at 144%, heptachlor at 145%, heptachlor epoxide at 146% and methoxychlor at 136%. No qualifications were required as there were no detected 4,4'-DDD, 4,4'-DDT, aldrin, alpha chlordane, beta-BHC, dieldrin, endosulfan I, endosulfan II, endosulfan sulfate, endrin, endrin ketone, endrin aldehyde, gamma chlordane, heptachlor, heptachlor epoxide or methoxychlor concentrations reported for sample FWGLL1mw-088-0502.

<u>CCVs</u>

Analytical Batch 154474

The CCV analyzed 11/3/14 at 1435 had %D above 20% for alpha-BHC at 29.1%, gamma-BHC at 30.6%, beta-BHC at 31.6%, delta-BHC at 35.5%, heptachlor at 36.7%, aldrin at 27.1%, heptachlor epoxide at 29.5%, gamma-chlordane at 28.7%, alpha-chlordane at 28.1%, endosulfan I at 32.3%, 4,4'-DDE at 43.4%, dieldrin at 31.9%, endrin at 52.8%, 4,4'-DDD at 68.6%, endosulfan II at 28.8%, 4,4'-DDT at 41.1%, endrin aldehyde at 36.0%, methoxychlor at 52.9%, endosulfan at 30.6%, endrin ketone at 28.3%, TCMX at 23.5% and DCB at 25.2%. The CCV analyzed 11/3/14 at 1817 had %D above 20% for alpha-BHC at 23.7%, gamma-BHC at 24.8%, beta-BHC at 26.6%, delta-BHC at 30.1%, heptachlor at 29.5%, aldrin at 22.8%, heptachlor epoxide at 26.4%, gamma-chlordane at 26.6%, alpha-chlordane at 24.0%, endosulfan I at 27.7%, 4,4'-DDE at 49.1%, dieldrin at 27.5%, endrin at 43.7%, 4,4'-DDD at 62.1%, endosulfan II at 27.5%, 4,4'-DDT at 33.0%, endrin aldehyde at 34.9%, methoxychlor at 43.7%, endosulfan at 29%, endrin ketone at 27.2% and DCB at 27.5%. The CCV analyzed 11/4/14 at 0036 had %D above 20% for 4,4'-DDD at 41.1%. No qualification of the data was required as all CCV outliers were biased high and there were no detected pesticide concentrations reported for sample FWGEQUIPRINSE1-507-GW.

Analytical Batch 155567

The CCV analyzed 11/8/14 at 1612 had %D above 20% for toxaphene at 38.6%. The CCV analyzed 11/8/14 at 1658 had %D above 20% for 4,4'-DDE at 21.6%, 4,4'-DDD at 58.5%, and methoxychlor at 26.5%. The CCV analyzed 11/8/14 at 1658 had %D above 20% for 4,4'-DDE at 24.3%, endrin at 23.3%, 4,4'-DDD at 59.4%, 4,4'-DDT at 29.8% and methoxychlor at 34.9%. The CCV analyzed 11/9/14 at 0059 had %D above 20% 4,4'-DDE at 24.3%, endrin at 22.0%, 4,4'-DDD at 57.0%, 4,4'-DDT at 26.6% and methoxychlor at 32.0%. The CCV analyzed 11/9/14 at 0014 had %D above 20% for toxaphene at 41.98%. No qualification of the data was required as all CCV outliers were biased high and there were no detected pesticide concentrations reported for sample FWGEQUIPRINSE2-508-GW.

Analytical Batch 156929

The CCV analyzed 11/17/14 at 1557 had %D above 20% for endrin at 23.8%. The CCV analyzed 11/17/14 at 1806 had %D above 20% for beta-BHC at 24.0%, heptachlor at 25.5%, 4,4'-DDE at 21.0%, endrin at 30.5%, 4,4'-DDD at 25.8%, endosulfan II at 20.6%, 4,4'-DDT at 26.4%, endrin aldehyde at 22.2% and methoxychlor at 27.1%. The CCV analyzed 11/18/14 at 001 had %D above 20% for alpha-BHC at 20.4%, gamma-BHC at 21.3%, beta-BHC at 25.7%, delta-BHC at 23.1%, heptachlor at 28.5%, endosulfan I at 22.6%, 4,4'-DDE at 28.7%, dieldrin at 21.5%, endrin at 39.6%, 4,4'-DDD at 36.6%, endosulfan II at 21.9%, 4,4'-DDT at 36.8%, endrin aldehyde at 25.4% and methoxychlor at 35.6. The CCV analyzed 11/18/14 at 0522 had %D above 20% for toxaphene at 30.4%. No qualification of the data was required as all CCV outliers were biased high and there were no detected pesticide concentrations reported for samples FWGLL3mw-246-504-GW, FWGLL3mw-DUP1-506-GW, FWGLL2mw-271-0503-GW.

Analytical Batch 161502

For the CCVs analyzed 12/17/14, endrin had a %D above control limits of 20% at 22.5% (1944) and 24.9% (2306). No qualification of the data was required as all CCV outliers were biased high and there were no detected endrin concentrations reported for the associated field sample FWGLL1mw-088-0502.

Date: January 27, 2015 Revision: 1

Blanks

The method blank associated with batch 240-150099 had alpha-BHC detected at 0.0207 μ g/L, beta-BHC at 0.0280 μ g/L, delta-BHC at 0.0552 μ g/L and gamma-BHC at 0.0128 μ g/L. No qualification of the data was required for the beta-BHC, delta-BHC or gamma-BHC contamination as there were no detected concentrations of beta-BHC, delta-BHC or gamma-BHC reported for the associated field samples. The alpha-BHC result for sample FWGLL1mw-088-0502-GW was qualified, "B", as the detected concentration was less than 5x method blank contamination.

LCS Recovery

The LCS associated with samples FWGEQUIPRINSE1-507-GW and FWGLL1mw-088-0502-GW recovered above control limits of 70-130% for toxaphene at 138% and below control limits of 50-110% at 49% for endosulfan I. As there were no detected toxaphene concentrations reported for samples FWGEQUIPRINSE1-507-GW and FWGLL1mw-088-0502-GW, no qualification of the toxaphene data was required. The endosulfan I results for samples FWGEQUIPRINSE1-507-GW and FWGLL1mw-088-0502-GW were qualified as estimated, "UJ".

The LCS associated with sample FWGEQUIPRINSE2-508-GW recovered above control limits of 25-150% for 4,4'-DDT at 157% and above control limits of 45-140% at 150% for 4,4'-DDT. No qualification was required as there were no detected pesticide concentrations reported for FWGEQUIPRINSE2-508-GW. The LCS associated with samples FWGLL2mw-271-0503-GW, FWGLL3mw-246-504-GW and FWGLL3mw-DUP1-0506-GW recovered above control limits of 70-130% for toxaphene at 147%. As there were no detected toxaphene concentrations reported for samples FWGLL2mw-271-0503-GW, FWGLL3mw-246-504-GW or

FWGLL3mw-DUP1-0506-GW, no qualification of the toxaphene data was required.

Surrogate Recovery

The surrogate, TCMX, recovered above control limits of 25-140% in sample FWGLL1mw-088-0502-GW at 174% on column CLP-1. No qualification of the data was required as there were no detected pesticide concentrations reported for sample FWGLL1mw-088-0502-GW from this column.

PCB-8082

The following QC criteria were reviewed and determined to be acceptable, except as noted below:

- Preservation and sample handling
- Initial Calibration criteria
- Retention time criteria
- ICV criteria
- CCV Criteria
- Method /field blank criteria
- LCS Recoveries
- Field Duplicate Criteria
- LOD and MRL verification criteria
- Matrix Spike Recovery Criteria and RPD
- Surrogate Recoveries
- Second Column confirmation criteria

Second Column Confirmation

No detected concentrations were reported for the field samples that required second column confirmation.

No QC outliers were noted.

Date: January 27, 2015 Revision: 1

Metals - 6010B

The following QC criteria were reviewed and determined to be acceptable, except as noted below:

- Preservation and sample handling
- Initial Calibration criteria
- ICV and CCV criteria
- ICB /CCBs criteria
- Method /field blank criteria
- LOD and MRL verification criteria
- LCS percent recovery criteria
- Matrix Spike Recovery
- Lab and Field duplicate RPD criteria
- Post Digestion Spike Criteria

<u>Blanks</u>

The CCBs analyzed 10/29/14 had potassium detected from 75.1 μ g/L to 94.7 μ g/L. The CCB analyzed 10/29/14 at 1227 had nickel detected at 1.83 μ g/L. The nickel results for samples FWGLL1mw-088-0502-GF, FWGLL3mw-246-0504-GF, FWGLL3mw-DUP1-0506-GF and FWGEQUIPRINSE1-0507-GW and the potassium result for sample FWGEQUIPRINSE1-0507-GW were qualified "U" as the reported concentrations were less than 5x blank contamination.

Manganese was detected in FWGEQUIPRINSE1-507-GW at 0.56 μ g/L, nickel at 0.78 μ g/L and potassium at 86 μ g/L. The nickel result for sample FWGLL1mw-088-0502-GF, was qualified "B" as the reported concentration was less than five times the equipment rinse contamination. No qualification was required for the manganese or potassium contamination as the detected results for potassium and manganese in the associated field sample, FWGLL1mw-088-0502-GF, were greater than 5x contamination.

Laboratory Duplicate RPD

The laboratory duplicate analyzed on sample FWGLL2mw-271-0503-GF had an RPD above control limits of 20% for chromium at 27%. No qualification of the data was required as the detected chromium concentration was less than the LOQ.

Metals - 6020

The following QC criteria were reviewed and determined to be acceptable, except as noted below:

- Preservation and sample handling
- Tuning Criteria
- Initial Calibration criteria
- ICV and CCV criteria
- ICB /CCBs criteria
- Method /field blank criteria
- LOD and MRL verification criteria
- LCS percent recovery criteria
- Matrix Spike Recovery
- Lab and Field Duplicate RPD Criteria
- Post Digestion Spike Criteria

Blanks

The ICB analyzed 10/29/14 @ 0741 had thallium detected at 0.127µg/L. No qualification of the data was required as the detected thallium result for sample FWGLL2mw-271-0503 was greater than 5x blank contamination.

The CCBs analyzed 10/29/14 had thallium detected from $0.152 \ \mu g/L$ to $0.446 \ \mu g/L$. The thallium result for sample FWGLL2mw-271-0503-GF was qualified "U" as the reported concentration was less than 5x blank contamination.

Date: January 27, 2015 Revision: 1

Cadmium was detected in the method blank at $0.423 \mu g/L$. The cadmium result for sample FWGLL2mw-271-0503-GF was qualified "B" as the reported concentration was less than 5x method blank contamination.

Post Digestion Spike Criteria

The post digestion spike analysis performed on sample FWGLL2mw-271-0503-GF recovered above control limits for aluminum at 135%, antimony at 141%, iron at 137% and sodium at 143%. No qualifications were required for the iron or sodium outliers as the serial dilution for these analytes was within ± 10% of the original result. The detected antimony and aluminum results for samples FWGLL1MW-088-0502-GF, FWGLL3MW-246-504-GF, FWGEQUIPRINSE2-0508-GW were qualified as estimated, "J". As no qualification is required for the non detected results associated with a high post spike recovery, no qualification was made for the antimony or aluminum FWGLL3MW-DUP1-506-GF, FWGLL2MW-271-0503-GF or FWGEQUIPRINSE1-0507-GW results.

Mercury - 7470A

The following QC criteria were reviewed and determined to be acceptable, except as noted below:

- Preservation and sample handling
- Initial Calibration criteria
- ICV and CCV criteria
- ICB /CCBs criteria
- Method /field blank criteria
- LOD and MRL verification criteria
- LCS percent recovery criteria
- Matrix Spike Recovery
- Lab and Field duplicate RPD criteria

No QC outliers were noted.

Cyanide - 9012A

The following QC criteria were reviewed and determined to be acceptable, except as noted below:

- Preservation and sample handling
- Initial Calibration criteria
- ICV and CCV criteria
- ICB /CCBs criteria
- Method/Field blank criteria
- LOD and MRL verification criteria
- LCS percent recovery criteria
- Matrix Spike Recovery
- Field duplicate RPD criteria

No QC outliers were noted.

Explosives- 8330

The following QC criteria were reviewed and determined to be acceptable, except as noted below:

- Preservation and sample handling
- Initial Calibration Criteria
- ICV and CCV criteria
- Retention time criteria
- LOD and MRL verification criteria
- Surrogate recovery criteria
- Method /field blank criteria
- LCS/LCD Recovery and RPD Criteria
- Matrix spike/spike duplicate recovery criteria and RPD
- Second column confirmation

Date: January 27, 2015 Revision: 1

Second Column RPD

The confirmation column RPD was above control limits of 40% for 1,3,5-trinitrobenzene at 129.6% in sample FWGEQUIPRINSE1-507-GW. The 1,3,5-trinitrobenzene result for sample FWGEQUIPRINSE1-507-GW was qualified as estimated, "J".

Surrogate Recovery

The surrogate, 3,4-dinitrotolune recovered above control limits of 79-111% for samples FWGEQUIPRINSE1-507-GW and FWGEQUIPRINSE2-508-GW on the confirmation column (LC12) at 128% and 121%, respectively. No qualifications were applied as the sample results were reported from the primary column (LC11).

Nitroguanidine- 8330M

The following QC criteria were reviewed and determined to be acceptable, except as noted below:

- Holding times, preservation, sample handling
- Initial Calibration criteria
- Retention time criteria
- LOD and MRL verification criteria
- ICV and CCV criteria
- Method /field blank criteria
- LCS/LCSD percent recoveries and RPD value criteria
- Matrix spike recovery criteria
- Second column confirmation

No QC outliers were noted.

Nitrocellulose – WS-WC-0050

The following QC criteria were reviewed and determined to be acceptable, except as noted below:

- Holding times, preservation, sample handling
- Sample preparation criteria
- Initial Calibration criteria
- ICV and CCV criteria
- Method /field blank criteria
- LOD and MRL verification criteria
- ICB and CCBs were free from contamination
- LCS/LCSD percent recoveries and RPD value criteria
- MS/MSD percent recoveries and RPD

MRL Recovery

No closing MRL information was provided for evaluation. Since an opening MRL check was analyzed with acceptable recovery, the data was qualified as estimated, "UJ".

No additional QC outliers were noted.

Page left blank intentionally.

Client: Environmental Quality Mgt., Inc.

Job Number: 240-43449-1

Lab Sample ID	Client Sample ID	Client Matrix	Date/Time Sampled	Date/Time Received
240-43449-1	EWGTEAM2TRIP	Water	10/21/2014 1000	10/23/2014 1007
240 43449 2	EWGL 11MW 088 0502 GE	Water	10/21/2014 1500	10/23/2014 1007
240-43449-2	FWGLL1WW-088-0502-GF	water	10/21/2014 1500	10/23/2014 1007
240-43449-3	FWGLL1MW-088-0502-GW	Water	10/21/2014 1500	10/23/2014 1007
240-43449-4	FWGEQUIPRINSE1-507-GW	Water	10/21/2014 1630	10/23/2014 1007
240-43449-5	FWGTEAM2TRIP	Water	10/22/2014 0800	10/23/2014 1007
240-43449-6	FWGLL3MW-246-504-GW	Water	10/22/2014 1110	10/23/2014 1007
240-43449-7	FWGLL3MW-246-504-GF	Water	10/22/2014 1110	10/23/2014 1007
240-43449-8	FWGLL3MW-DUP1-506-GW	Water	10/22/2014 1200	10/23/2014 1007
240-43449-9	FWGLL3MW-DUP1-506-GF	Water	10/22/2014 1200	10/23/2014 1007
240-43449-10	FWGEQUIPRINSE2-0508-GW	Water	10/22/2014 1445	10/23/2014 1007
240-43449-11	FWGLL2MW-271-0503-GW	Water	10/22/2014 1630	10/23/2014 1007
240-43449-11MS	FWGLL2MW-271-0503-GW	Water	10/22/2014 1630	10/23/2014 1007
240-43449-11MSD	FWGLL2MW-271-0503-GW	Water	10/22/2014 1630	10/23/2014 1007
240-43449-12	FWGLL2MW-271-0503-GF	Water	10/22/2014 1630	10/23/2014 1007
240-43449-12MS	FWGLL2MW-271-0503-GF	Water	10/22/2014 1630	10/23/2014 1007
240-43449-12DU	FWGLL2MW-271-0503-GF	Water	10/22/2014 1630	10/23/2014 1007

METHOD SUMMARY

Client: Environmental Quality Mgt., Inc.

Job Number: 240-43449-1

Description	Lab Location	Method	Preparation Method		
Matrix: Water					
Volatile Organic Compounds (GC/MS) Purge and Trap	TAL CAN TAL CAN	SW846 8260B	SW846 5030B		
Semivolatile Organic Compounds (GC/MS) Liquid-Liquid Extraction (Continuous)	TAL CAN TAL CAN	SW846 8270C	SW846 3520C		
Organochlorine Pesticides (GC) Liquid-Liquid Extraction (Continuous)	TAL CAN TAL CAN	SW846 8081A	SW846 3520C		
Polychlorinated Biphenyls (PCBs) by Gas Chromatography Liquid-Liquid Extraction (Continuous)	TAL CAN TAL CAN	SW846 8082	SW846 3520C		
Metals (ICP) Preparation, Total Recoverable or Dissolved Metals	TAL CAN TAL CAN	SW846 6010B	SW846 3005A		
Metals (ICP/MS) Preparation, Total Recoverable or Dissolved Metals	TAL CAN TAL CAN	SW846 6020	SW846 3005A		
Mercury (CVAA) Preparation, Mercury	TAL CAN TAL CAN	SW846 7470A	SW846 7470A		
Cyanide, Total and/or Amenable Cyanide, Total and/or Amenable, Distillation	TAL CAN TAL CAN	SW846 9012A	SW846 9012A		
Nitroguanidine (HPLC) Sample Filtration	TAL SAC TAL SAC	SW846 8330 Moo	dified Filtration		
Nitroaromatics and Nitramines Solid-Phase Extraction (Explosives)	TAL SAC TAL SAC	SW846 8330A	SW846 8330-Prep		
Nitrocellulose Nitrocellulose Sample Preparation (Hydrolysis) Nitrocellulose Sample Preparation	TAL SAC TAL SAC TAL SAC	TAL-SAC WS-WO	C-0050 MCAWW 353 (NCell-Hyd) MCAWW 353.2 (NCell)		

Lab References:

TAL CAN = TestAmerica Canton

TAL SAC = TestAmerica Sacramento

Method References:

MCAWW = "Methods For Chemical Analysis Of Water And Wastes", EPA-600/4-79-020, March 1983 And Subsequent Revisions.

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

TAL-SAC = TestAmerica Laboratories, West Sacramento, Facility Standard Operating Procedure.

TestAmerica Laboratories, Inc.

CHAIN OF CUSTODY AND RECEIVING DOCUMENTS

4101 Shuffel Street, N.W. North Canton, OH 44720 tel 330.497.9396 fax 330.497.0772 www.testamericainc.com

TestAmerica Canton 4101 Shuffel Street, N. N.	e C		TestAmerica			
North Canton, OH 44720 Phone: 330.497.9396 Fax: 330.497.0772	Regulatory Program:	NPDES	RCRA Other:			THE LEADER IN ENVIRONMENTAL TESTING TestAmerica Laboratories, Inc. Form No. CA-C-WI-002, Rev. 4.2, dated 04/02/2013
Client Contact	Project Manager: John Mulle	Site	e Contact: E CORB	N Date	e: 10 21 14	COC NO: CALIBEITY
Company Name: Z(PM)	Tel/Fax: 5138257495	Lab	b Contact: M LOE	, Car	rier: ABPICKUP 10	
City/State/Zin: Can 100 CARTLEON DEVED		DAYS		22		For Lab Use Only:
Phone: 513 825 7500	TAT if different from Below		2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	16		Walk-in Client:
Fax: 57.3 825 7495	2 weeks per	Î	X300X	63		Lab Sampling:
Project Name: RVAAP 66) E				
P O #		ble		333		JOD / SDG NO.:
Sample Identification	Sample Sample CC=Comp.	# of # of # of	ertorn MS 2000 SUDC	Y10 pc V Lyanic Metals		Sample Specific Notes: 4
FWBTeam 7 Tria	liabilia 1000 int	2. N				Na (nai
Faville June 1888-0507-65	1500 G G	J I V	N	Ϋ́ Υ		000[1370]
Fulfilliant-088-0607-612	1500 G G	N 13 M	NXXXXX	XX		050113-01
FWGETOHIPPLASE 1-507 -GW	V 11.30 G W	14 N/	NXXXXX	XXX		210501
FWG Fram? Trip	10/22/14 0800 W	2 in	NX			#801
FUS 43MW246-504-6W	1110 6 64	J 13 N	MXXXXX	XXIII		C305
FWG423mw-246-504-GF	G G	2 I Y	N	X		Caus
FWG LL 3mw-DUPI-506-GW	1 1200 G Gu	313 N	NXXXXX	хΧ		#801
FUBUSMU-DUP! - 500 - GF	1 1 Gi Gu	3 <i>i</i> Y	N	X		#@(
FWG EQUIPLINSE 2-0508-6W	10/22/14/1445 G W	14 N	N X X X X X	XXX		C240 (
FWG112mw-271-0503-GW	1 1630 G Gu	JJN	Y x x x x X	λХ		Memoo Paco, Loui, 1990
FWGLLZMW-271-0503-GF	V V G 60	N 3 Y	<u>X</u>	X		partial vol pgo, LOGI, 1200
Preservation Used: 1= Ice, 2= HCI, 3= H2SO4; 4=HNO3	; 5=NaOH; 6= Other		2111111	1154		(treovers)
Possible Hazard Identification: Are any samples from a listed EPA Hazardous Waste? Plea Corpuments Section if the lab is to dispose of the sample.	ase List any EPA Waste Codes for the sa	ample in the	Sample Disposal (A f	ee may be ass	essed if samples are i	retained longer than 1 month)
Non-Hazard Rammable Skin Irritant	Poison B Unknown		Return to Client	X.Disposa	Arch	ive for Months
Metals (Nauf (1)Bes) are held fillered.			· ·		VOAS .	in cooler 10 #801 (10/22/14)
CustodyjŠeals Intact: Yes No	Custody Seal No.:		Cooler Tem	p. (°C): Obs'd:_	Corr'd:	Therm ID No.:
Relinquished by:	Company: Date	*/Time:0900	Received by:		estamer 1	$\frac{1}{16} = \frac{1}{16} $
Retinquished by:	Company Date 10-2-2-62		Received by:	R	Company:	Date/Time:
Relinquished by:	Company: Date	e/Time:	Received in Laboratory	/ by:	Company:	Daté/Time:
L			<u> </u>		<u> </u>	
			1			· ·

Logi	n#: <u>43440</u>
Canton Facinty	Cooler unpacked by:
Client <u>Eq.M</u> Site Name <u>Mavenna</u>	
Cooler Received on $\frac{10/23/14}{23/14}$ Opened on $\frac{10/23/14}{14}$	Alering Comman
FedEx: 1 th Grd Exp UPS FAS Stetson Client Drop Off FestAmerica Courrier	Other
Posicing material words Within Ware Foam Blastic Day News Other	Multiple
COOLANT: Wet Her Blue Ice Dry Ice Water None	
1 Cooler temperature upon receint	
IR GUN# A (CF +2 °C) Observed Cooler Temp °C Corrected Cooler T	emp °C
IR GUN# 4 (CF -2 °C) Observed Cooler Temp. °C Corrected Cooler T	emp. °C
IR_GUIN#_5(CF_0_C)_Observed_Cooler_Temp°CCorrected_Cooler_T	emp°CCooler-Form
IR GUN# 8 (CF 0 °C) Observed Cooler Temp °C Corrected Cooler T	emp°C
2. Were custody seals on the outside of the cooler(s)? If Yes Quantity each Yes	No No
-Were custody seals on the outside of the cooler(s) signed & dated?	No NA
-Were custody seals on the bottle(s)? Ye	
3. Shippers' packing slip attached to the cooler(s)?	s (MO)
4. Did custody papers accompany the sample(s)?	S No
5. Were the custody papers relinquished & signed in the appropriate place?	S NO
6 Did all bottles arrive in good condition (Unbroken)?	The No.
7. Could all bottle labels be reconciled with the COC?	
8. Were correct bottle(s) used for the test(s) indicated?	No.
9. Sufficient quantity received to perform indicated analyses?	No.
10. Were sample(s) at the correct pH upon receipt?	NO NA pH Strip Lot# HC412469
11. Were VOAs on the COC?	No
12. Were air bubbles >6 mm in any VOA vials?	s No NA
13. Was a trip blank present in the cooler(s)?	🦻 No
13. Was a trip blank present in the cooler(s)?	<u>No</u>
13. Was a trip blank present in the cooler(s)?	No Voice Mail Other
13. Was a trip blank present in the cooler(s)? Image: Contacted PM Date by via Verbal Y Concerning	No Voice Mail Other
13. Was a trip blank present in the cooler(s)? Image: Contacted PM Date by via Verbal Y Concerning 14. CHAIN OF CUSTORY & SAMPLE DYSCREPANCIES	No Voice Mail Other Samples processed by:
13. Was a trip blank present in the cooler(s)? Image: Contacted PM Date by via Verbal Y Concerning 14. CHAIN OF CUSTODY & SAMPLE DISCREPANCIES	No Voice Mail Other Samples processed by:
13. Was a trip blank present in the cooler(s)? Image: Contacted PM Date by via Verbal Y Concerning 14. CHAIN OF CUSTODY & SAMPLE DISCREPANCIES	No Voice Mail Other Samples processed by:
13. Was a trip blank present in the cooler(s)?	No Voice Mail Other Samples processed by:
13. Was a trip blank present in the cooler(s)? Image: Contacted PM Date by via Verbal Y Concerning 14. CHAIN OF CUSTODY & SAMPLE DISCREPANCIES	No Voice Mail Other Samples processed by:
13. Was a trip blank present in the cooler(s)?	No Voice Mail Other Samples processed by:
13. Was a trip blank present in the cooler(s)?	> No Voice Mail Other Samples processed by:
13. Was a trip blank present in the cooler(s)?	No Voice Mail Other Samples processed by:
13. Was a trip blank present in the cooler(s)?	> No Voice Mail Other Samples processed by:
13. Was a trip blank present in the cooler(s)?	> No Voice Mail Other Samples processed by:
13. Was a trip blank present in the cooler(s)?	No Voice Mail Other Samples processed by:
13. Was a trip blank present in the cooler(s)?	> No Voice Mail Other Samples processed by:
13. Was a trip blank present in the cooler(s)?	No Voice Mail Other Samples processed by:
13. Was a trip blank present in the cooler(s)? Yes Contacted PM Date by via Verbal Y Concerning 14. CHAIN OF CUSTODY & SAMPLE DISCREPANCIES	No Voice Mail Other Samples processed by:
13. Was a trip blank present in the cooler(s)?	> No Voice Mail Other Samples processed by:
13. Was a trip blank present in the cooler(s)?	No Voice Mail Other Samples processed by:
13. Was a trip blank present in the cooler(s)?	No Voice Mail Other Samples processed by:
13. Was a trip blank present in the cooler(s)?	No Voice Mail Other Samples processed by: Samples processed by: Image: Sample structure Sample structure
13. Was a trip blank present in the cooler(s)?	No Voice Mail Other Samples processed by:
13. Was a trip blank present in the cooler(s)?	No Voice Mail Other Samples processed by:
13. Was a trip blank present in the cooler(s)? Image: Contacted PM Date by via Verbal Year Verbal Year Point of Concerning 14. CHAIN OF CUSTODY & SAMPLE DISCREPANCIES Image: Point of Concerning 14. CHAIN OF CUSTODY & SAMPLE DISCREPANCIES Image: Point of Concerning 15. SAMPLE CONDITION Sample(s) were received after the recommended hold Sample(s) Sample(s) were received with bubble >6 mm 16. SAMPLE PRESERVATION Sample(s) were fit Time preserved:	No Voice Mail Other Samples processed by:

$ \frac{180113-01}{15501} $ $ \frac{15501}{1365} $ $ \frac{1365}{2246} $ $ \frac{1900}{2061} $	8		0,6),2),2],4 3,8 2,2) <
246 -266 -266 -266		$)_{-} (=)_{-$),2),2],4 3,8 2,2	
-801 1365 2246 2960 _061), 2), 4 3, 8),2),4 3,8 2,2	
2365 2246 2960 _061		2,8	3,8	
240 2900 -061		<u>3,8</u> <u>2,2</u> 2,8	3,8	
0960		<u> </u>		
_06(2	2,8		
		10	38	
			· · · · · · · · · · · · · · · · · · ·	•
	••••••••••••••••••••••••••••••••••••••			
				·
			<u></u>	
· · · · · · · · · · · · · · · · · · ·		······		<u></u>
				······································
·····				- <u>C</u> -1-4
				un de la constante de la const
	<u> </u>			
				60.560.000

CASE NARRATIVE REVISED

Client: Environmental Quality Mgt., Inc.

Project: RVAAP (OH)

Report Number: 240-43449-1

With the exceptions noted as flags or footnotes, standard analytical protocols were followed in the analysis of the samples and no problems were encountered or anomalies observed. In addition all laboratory quality control samples were within established control limits, with any exceptions noted below. Each sample was analyzed to achieve the lowest possible reporting limit within the constraints of the method. In some cases, due to interference or analytes present at high concentrations, samples were diluted. For diluted samples, the reporting limits are adjusted relative to the dilution required.

The 353.2 Nitrocellulose, 8330 Nitroguanidine and 8330A Explosives analysis were performed at the TestAmerica Sacramento Laboratory.

Calculations are performed before rounding to avoid round-off errors in calculated results.

All holding times were met and proper preservation noted for the methods performed on these samples, unless otherwise detailed in the individual sections below.

TestAmerica utilizes USEPA approved methods and DOD QSM, where applicable, in all analytical work. The samples presented in this report were analyzed for the parameter(s) listed on the analytical methods summary page in accordance with the method(s) indicated. A summary of QC data for these analyses is included at the back of the report.

TestAmerica Canton attests to the validity of the laboratory data generated by TestAmerica facilities reported herein. All analyses performed by TestAmerica facilities were done using established laboratory SOPs that incorporate QA/QC procedures described in the applicable methods. TestAmerica's operations groups have reviewed the data for compliance with the laboratory QA/QC plan, and data have been found to be compliant with laboratory protocols unless otherwise noted below.

All solid sample results are reported on an "as received" basis unless otherwise indicated by the presence of a % solids value in the method header.

This laboratory report is confidential and is intended for the sole use of TestAmerica and its client.

All parameters for which TestAmerica North Canton has certification were evaluated to the limit of detection (LOD) and include qualified results where applicable. Parameters not certified under QSM, if any, were evaluated to the detection limit (DL) and include qualified results where applicable.

REVSION 1: This report has been revised due to a linking issue with a Pesticide ICV. Supporting QC information was inadvertently omitted from the originally submitted report.

REVISION 2: Sample FWGLL1MW-088-0502-GW (240-43449-3) was reanalyzed at a lesser dilution for pesticides.

REVISION 3: The MRL 240-161502/11 was revised to reflect both columns and ICVs from 12/02/2014 were linked and now included in this report.

The sample(s) that contain constituents flagged with U are undetected. The result associated with this flag is the limit of detection (LOD).

RECEIPT

The samples were received on 10/23/2014 10:07 AM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperatures of the 7 coolers at receipt time were 0.6° C, 1.2° C, 1.4° C, 1.6° C, 2.2° C, 2.8° C and 3.8° C.

VOLATILE ORGANIC COMPOUNDS (GCMS)

Samples FWGTEAM2TRIP (240-43449-1), FWGLL1MW-088-0502-GW (240-43449-3), FWGEQUIPRINSE1-507-GW (240-43449-4), FWGTEAM2TRIP (240-43449-5), FWGLL3MW-246-504-GW (240-43449-6), FWGLL3MW-DUP1-506-GW (240-43449-8), FWGEQUIPRINSE2-0508-GW (240-43449-10) and FWGLL2MW-271-0503-GW (240-43449-11) were analyzed for volatile organic compounds (GCMS) in accordance with EPA SW-846 Method 8260B DoD. The samples were analyzed on 10/30/2014.

Acetone failed the recovery criteria low for MRL 240-154028/29. 2-Butanone (MEK), Acetone and Bromoform failed the recovery criteria low for MRL 240-154028/4. Chloromethane failed the recovery criteria high. Refer to the QC report for details.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

SEMIVOLATILE ORGANIC COMPOUNDS (GCMS)

Samples FWGLL1MW-088-0502-GW (240-43449-3), FWGEQUIPRINSE1-507-GW (240-43449-4), FWGLL3MW-246-504-GW (240-43449-6), FWGLL3MW-DUP1-506-GW (240-43449-8), FWGEQUIPRINSE2-0508-GW (240-43449-10) and FWGLL2MW-271-0503-GW (240-43449-11) were analyzed for semivolatile organic compounds (GCMS) in accordance with EPA SW-846 Method 8270C. The samples were prepared on 10/24/2014 and 11/05/2014 and analyzed on 11/04/2014 and 11/12/2014.

Surrogates are added during the extraction process prior to dilution. When the sample is diluted, surrogate recoveries are diluted out and no corrective action is required.

Analysis Batch 154725; Prep Batch 153104

Due to an inadvertant laboratory error all surrogates for the following samples did not recovery. The samples were not spiked. FWGLL1MW-088-0502-GW (240-43449-3), FWGEQUIPRINSE1-507-GW (240-43449-4) and FWGLL2MW-271-0503-GW (240-43449-11). Samples were reextracted and reanalyzed. Reextraction occured outside the allowable 14 day extended hold time. The client was contacted and requested the laboratory report only the initial results.

The laboratory control sample (LCS) for prep batch 153104, associated with samples FWGLL1MW-088-0502-GW (240-43449-3), FWGEQUIPRINSE1-507-GW (240-43449-4), and FWGLL2MW-271-0503-GW (240-43449-11), recovered outside acceptance limits for hexachlorocyclopentadiene. There was insufficient hold time remaining to perform a re-extraction or re-analysis; therefore, the data have been reported.

Hexachlorocyclopentadiene failed the recovery criteria low for the MS of sample FWGLL2MW-271-0503-GWMS (240-43449-11) in batch 240-154725. While Hexachlorocyclopentadiene and Pentachlorophenol failed the recovery criteria low for the MSD of sample FWGLL2MW-271-0503-GWMSD (240-43449-11) in batch 240-154725. Several analytes exceeded the RPD limit.

Analysis Batch 156166; Prep Batch 154942

Surrogate recoveries for the following samples were outside control limits: FWGEQUIPRINSE2-0508-GW (240-43449-10), FWGLL3MW-246-504-GW (240-43449-6), FWGLL3MW-DUP1-506-GW (240-43449-8). Re-extraction and/or re-analysis was performed outside of holding time, but within an allowable 14 day extended hold time. The results were acceptable. Only the re-extraction set of data only has been reported.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

NITROGUANIDINE (HPLC)

Samples FWGLL1MW-088-0502-GW (240-43449-3), FWGEQUIPRINSE1-507-GW (240-43449-4), FWGLL3MW-246-504-GW (240-43449-6), FWGLL3MW-DUP1-506-GW (240-43449-8), FWGEQUIPRINSE2-0508-GW (240-43449-10) and FWGLL2MW-271-0503-GW (240-43449-11) were analyzed for nitroguanidine (HPLC) in accordance with EPA SW-846 Method 8330_Ngu. The samples were prepared on 10/30/2014 and analyzed on 11/04/2014.

No analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

CHLORINATED PESTICIDES

Samples FWGLL1MW-088-0502-GW (240-43449-3), FWGEQUIPRINSE1-507-GW (240-43449-4), FWGLL3MW-246-504-GW (240-43449-6), FWGLL3MW-DUP1-506-GW (240-43449-8), FWGEQUIPRINSE2-0508-GW (240-43449-10) and FWGLL2MW-271-0503-GW (240-43449-11) were analyzed for chlorinated pesticides in accordance with EPA SW-846 Method 8081A DoD. The samples were prepared on 10/24/2014, 11/02/2014 and 11/05/2014 and analyzed on 11/03/2014, 11/08/2014 and 11/17/2014.

Analysis Batch 154474; Prep Batch 153099

delta-BHC was detected in method blank MB 240-153099/15-A at a level exceeding the reporting limit. If the associated sample reported a result above the MDL and/or RL, the result has been flagged.

alpha-BHC, beta-BHC and gamma-BHC (Lindane) were detected in method blank MB 240-153099/15-A at levels that were above the method detection limit but below the reporting limit. The values should be considered estimates, and have been flagged. If the associated sample reported a result above the MDL and/or RL, the result has been flagged. Refer to the QC report for details.

DCB Decachlorobiphenyl failed the surrogate recovery criteria high for FWGLL1MW-088-0502-GW (240-43449-3).

DCB Decachlorobiphenyl and Tetrachloro-m-xylene failed the surrogate recovery criteria high for MB 240-153099/15-A.

Endosulfan I failed the recovery criteria low for LCS 240-153099/16-A.

Sample FWGLL1MW-088-0502-GW (240-43449-3)[50X] required dilution prior to analysis. The reporting limits have been adjusted accordingly.

The following samples was diluted due to the nature of the sample matrix: FWGLL1MW-088-0502-GW (240-43449-3). Elevated reporting

limits (RLs) are provided.

The continuing calibration verification (CCV) associated with batch 154474 recovered above the upper control limit for Multiple Analytes. The samples associated with this CCV were non-detects for the affected analytes; therefore, the data have been reported. The following samples are impacted: FWGEQUIPRINSE1-507-GW (240-43449-4) and FWGLL1MW-088-0502-GW (240-43449-3).

The method blank associated with prep batch 153099 contained delta-BHC, alpha-BHC, and beta-BHC greater than one-half the reporting limit (RL). Samples did not contain these analytes above the reporting limit; therefore, sample results have been qualified and reported.

Analysis Batch 155567; Prep Batch 154448

4,4'-DDD and 4,4'-DDT failed the recovery criteria high for LCS 240-154448/11-A. These analytes were biased high in the LCS and were not detected in the associated samples; therefore, the data have been reported.

The continuing calibration verification (CCV) associated with batch 155567 recovered above the upper control limit for Multiple Analytes. The samples associated with this CCV were non-detects for the affected analytes; therefore, the data have been reported. The following samples are impacted: FWGEQUIPRINSE2-0508-GW (240-43449-10).

Reanalysis of the following sample was performed outside of the analytical holding time due to re-extraction required due to LCS failing low for Endosulfan I: FWGEQUIPRINSE2-0508-GW (240-43449-10).

Insufficient sample volume was available to perform a matrix spike/matrix spike duplicate/sample duplicate (MS/MSD/DUP) associated with batch 154448, 8081.

Analysis Batch 156929; Prep Batch 154929

Reanalysis of the following samples was performed outside of the analytical holding time due to re-extraction required due to method blank contamination and LCS failure. Both sets of data reported.: FWGLL2MW-271-0503-GW (240-43449-11), FWGLL2MW-271-0503-GW (240-43449-11 MS), FWGLL2MW-271-0503-GW (240-43449-11 MSD), FWGLL3MW-246-504-GW (240-43449-6), FWGLL3MW-DUP1-506-GW (240-43449-8).

The continuing calibration verification (CCV) associated with batch 156929 recovered above the upper control limit for Multiple Analytes. The samples associated with this CCV were non-detects for the affected analytes; therefore, the data have been reported. The following samples are impacted: FWGLL2MW-271-0503-GW (240-43449-11), FWGLL2MW-271-0503-GW (240-43449-11 MS), FWGLL2MW-271-0503-GW (240-43449-11 MSD), FWGLL3MW-246-504-GW (240-43449-6), FWGLL3MW-DUP1-506-GW (240-43449-8).

Analysis Batch 161502; Prep Batch 153099

The continuing calibration verification (CCV) associated with batch 161502 recovered above the upper control limit for Endrin. The samples associated with this CCV were non-detects for the affected analytes; therefore, the data have been reported. The following samples are impacted: FWGLL1MW-088-0502-GW (240-43449-3).

The original extraction and analysis for sample 240-43449-3 was performed within the recommended prep and analytical hold times. The sample extract had been screened prior to analysis and the sample was analyzed at a dilution that was based on an unknown contamination. Per client request, the sample was reevaluated and reanalyzed at a lesser dilution trying to achieve project limits. Results of only the reanalysis are included in this report. The reanalysis was performed beyond the recommended analytical hold time, but within an allowable double hold time. Surrogate recoveries and target compound results were each chosen from the column which gave the most reliable result. FWGLL1MW-088-0502-GW (240-43449-3).

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

POLYCHLORINATED BIPHENYLS (PCBS)

Samples FWGLL1MW-088-0502-GW (240-43449-3), FWGEQUIPRINSE1-507-GW (240-43449-4), FWGLL3MW-246-504-GW (240-43449-6), FWGLL3MW-DUP1-506-GW (240-43449-8), FWGEQUIPRINSE2-0508-GW (240-43449-10) and FWGLL2MW-271-0503-GW (240-43449-11) were analyzed for polychlorinated biphenyls (PCBs) in accordance with EPA SW-846 Method 8082 DoD. The samples were prepared on 10/24/2014 and 10/25/2014 and analyzed on 10/28/2014, 10/29/2014 and 10/30/2014.

Surrogates are added during the extraction process prior to dilution. When the sample dilution is 5X or greater, surrogate recoveries are diluted out and no corrective action is required. All of the samples in this data set analyzed for PCBs were subjected to the sulfuric acid cleanup procedure before instrumental analysis, per EPA Method 3665A.

TCMX surrogate recovery for the following sample(s) was outside control limits on the confirmation column: FWGLL1MW-088-0502-GW (240-43449-3). Evidence of matrix interference is present; therefore, re-extraction and/or re-analysis was not performed.

The following sample(s) required a tetrabutylammonium sulfite (TBA) clean-up to reduce matrix interferences caused by sulfur: FWGLL1MW-088-0502-GW (240-43449-3). Reagents: 1714041,1526413 and 1647110

Insufficient sample volume was available to perform a matrix spike/matrix spike duplicate/sample duplicate (MS/MSD/DUP) associated with batch 153285, 8082.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

EXPLOSIVES

Samples FWGLL1MW-088-0502-GW (240-43449-3), FWGEQUIPRINSE1-507-GW (240-43449-4), FWGLL3MW-246-504-GW (240-43449-6), FWGLL3MW-DUP1-506-GW (240-43449-8), FWGEQUIPRINSE2-0508-GW (240-43449-10) and FWGLL2MW-271-0503-GW (240-43449-11) were analyzed for explosives in accordance with EPA SW-846 Method 8330A. The samples were prepared on 10/27/2014 and analyzed on 11/04/2014 and 11/07/2014.

Surrogate recovery for the following samples was outside control limits on confirmation analysis. As surrogate recovery is controlled from the primary analysis there is no corrective action. FWGEQUIPRINSE1-507-GW (240-43449-4), FWGEQUIPRINSE2-0508-GW (240-43449-10).

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

TOTAL RECOVERABLE METALS (ICP)

Samples FWGLL1MW-088-0502-GF (240-43449-2), FWGEQUIPRINSE1-507-GW (240-43449-4), FWGLL3MW-246-504-GF (240-43449-7), FWGLL3MW-DUP1-506-GF (240-43449-9), FWGEQUIPRINSE2-0508-GW (240-43449-10) and FWGLL2MW-271-0503-GF (240-43449-12) were analyzed for total recoverable metals (ICP) in accordance with EPA SW-846 Method 6010B DoD. The samples were prepared on 10/28/2014 and analyzed on 10/29/2014.

ICB, CCB, and ICSA samples are evaluated using the lowest LOD and DL criteria in LIMS. Using this criteria, an individual element may occasionally be flagged as out of control. If the element has a higher LOD or DL, the data is evaluated to the higher limit and determined to be acceptable.

Arsenic, Barium, Chromium, Cobalt, Nickel and Potassium exceeded the RPD limit for the duplicate of sample FWGLL2MW-271-0503-GFDU (240-43449-12). Refer to the QC report for details.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

TOTAL RECOVERABLE METALS (ICPMS)

Samples FWGLL1MW-088-0502-GF (240-43449-2), FWGEQUIPRINSE1-507-GW (240-43449-4), FWGLL3MW-246-504-GF (240-43449-7), FWGLL3MW-DUP1-506-GF (240-43449-9), FWGEQUIPRINSE2-0508-GW (240-43449-10) and FWGLL2MW-271-0503-GF (240-43449-12) were analyzed for total recoverable metals (ICPMS) in accordance with EPA SW-846 Method 6020 DoD. The samples were prepared on 10/28/2014 and analyzed on 10/29/2014.

ICB, CCB, and ICSA samples are evaluated using the lowest LOD and DL criteria in LIMS. Using this criteria, an individual element may occasionally be flagged as out of control. If the element has a higher LOD or DL, the data is evaluated to the higher limit and determined to be acceptable.

Cadmium was detected in method blank MB 240-153655/1-A at a level that was above the method detection limit but below the reporting limit. The value should be considered an estimate, and has been flagged. If the associated sample reported a result above the MDL and/or RL, the result has been flagged. Refer to the QC report for details.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

TOTAL MERCURY

Samples FWGLL1MW-088-0502-GF (240-43449-2), FWGEQUIPRINSE1-507-GW (240-43449-4), FWGLL3MW-246-504-GF (240-43449-7), FWGLL3MW-DUP1-506-GF (240-43449-9), FWGEQUIPRINSE2-0508-GW (240-43449-10) and FWGLL2MW-271-0503-GF (240-43449-12) were analyzed for total mercury in accordance with EPA SW-846 Method 7470A. The samples were prepared on 10/28/2014 and analyzed on 10/30/2014.

No analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

NITROCELLULOSE

Samples FWGLL1MW-088-0502-GW (240-43449-3), FWGEQUIPRINSE1-507-GW (240-43449-4), FWGLL3MW-246-504-GW (240-43449-6), FWGLL3MW-DUP1-506-GW (240-43449-8), FWGEQUIPRINSE2-0508-GW (240-43449-10) and FWGLL2MW-271-0503-GW (240-43449-11) were analyzed for Nitrocellulose in accordance with EPA Method 353.2. The samples were prepared on 10/28/2014 and analyzed on 10/29/2014.

No analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

TOTAL CYANIDE

Samples FWGLL1MW-088-0502-GW (240-43449-3), FWGEQUIPRINSE1-507-GW (240-43449-4), FWGLL3MW-246-504-GW (240-43449-6), FWGLL3MW-DUP1-506-GW (240-43449-8), FWGEQUIPRINSE2-0508-GW (240-43449-10) and FWGLL2MW-271-0503-GW (240-43449-11) were analyzed for total cyanide in accordance with EPA SW-846 Method 9012A DoD. The samples were prepared and analyzed on 10/31/2014.

3

Qualifiers

\sim	\sim			× 4	\sim	~
	L./	IVI		v	U	H
-	• ,		-		-	

GC/MS VOA		Δ
Qualifier	Qualifier Description	
U	Undetected at the Limit of Detection.	5
J	Estimated: The analyte was positively identified; the quantitation is an estimation	9
^	Instrument related QC exceeds the control limits	
GC/MS Semi V	DA	
Qualifier	Qualifier Description	
н	Sample was prepped or analyzed beyond the specified holding time	
U	Undetected at the Limit of Detection.	8
Q	One or more quality control criteria failed.	
J	Estimated: The quantitation is an estimation due to discrepancies in meeting certain analyte-specific quality control criteria.	9
J	Estimated: The analyte was positively identified; the quantitation is an estimation	
M	Manual integrated compound.	
^	Instrument related QC exceeds the control limits	
GC Semi VOA		
Qualifier	Qualifier Description	
U	Undetected at the Limit of Detection.	
н	Sample was prepped or analyzed beyond the specified holding time	
Q	One or more quality control criteria failed.	13
J	Estimated: The analyte was positively identified; the quantitation is an estimation	10
М	Manual integrated compound.	
٨	Instrument related QC exceeds the control limits	
HPLC/IC		15
Qualifier	Qualifier Description	

Qualifier	Qualifier Description
U	Undetected at the Limit of Detection.
J	Estimated: The analyte was positively identified; the quantitation is an estimation
Μ	Manual integrated compound.
Q	One or more quality control criteria failed.
J	Estimated: The quantitation is an estimation due to discrepancies in meeting certain analyte-specific quality control criteria.

Metals

Qualifier	Qualifier Description
U	Undetected at the Limit of Detection.
J	Estimated: The analyte was positively identified; the quantitation is an estimation
J	Estimated: The quantitation is an estimation due to discrepancies in meeting certain analyte-specific quality control criteria.
D	The reported value is from a dilution.

General Chemistry

Qualifier	Qualifier Description
U	Undetected at the Limit of Detection.
J	Estimated: The analyte was positively identified; the quantitation is an estimation

Glossary

Abbreviation	These commonly used abbreviations may or may not be present in this report.
a	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CNF	Contains no Free Liquid
DER	Duplicate error ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision level concentration

Client Sample ID: FWGTEAM2TRIP

Date Collected: 10/21/14 10:00 Date Received: 10/23/14 10:07

Method: 8260B - Volatile Orga	nic Compounds (GC	C/MS)								
Analyte	Result	Qualifier		LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
1,1,1-Trichloroethane	0.50	U		1.0	0.50	0.22	ug/L		10/30/14 16:10	1
1,1,2,2-Tetrachloroethane	0.50	U		1.0	0.50	0.22	ug/L		10/30/14 16:10	1
1,1,2-Trichloroethane	0.50	U		1.0	0.50	0.17	ug/L		10/30/14 16:10	1
1,1-Dichloroethane	0.50	U		1.0	0.50	0.26	ug/L		10/30/14 16:10	1
1,1-Dichloroethene	0.50	U		1.0	0.50	0.45	ug/L		10/30/14 16:10	1
1,2-Dichloroethane	0.50	U		1.0	0.50	0.20	ug/L		10/30/14 16:10	1
1,2-Dichloroethene, Total	1.0	U		2.0	1.0	0.20	ug/L		10/30/14 16:10	1
1,2-Dichloropropane	0.50	U		1.0	0.50	0.22	ug/L		10/30/14 16:10	1
2-Hexanone	1.0	U		10	1.0	3.9	ug/L		10/30/14 16:10	1
Bromochloromethane	0.50	U		1.0	0.50	0.25	ug/L		10/30/14 16:10	1
Acetone	4.1	J		10	2.0	3.4	ug/L		10/30/14 16:10	1
Benzene	0.25	U		1.0	0.25	0.24	ug/L		10/30/14 16:10	1
Bromoform	1.0	U		1.0	1.0	0.56	ug/L		10/30/14 16:10	1
Bromomethane	1.0	U		1.0	1.0	0.63	ug/L		10/30/14 16:10	1
Carbon disulfide	0.25	U		1.0	0.25	0.28	ug/L		10/30/14 16:10	1
Carbon tetrachloride	0.25	U		1.0	0.25	0.17	ug/L		10/30/14 16:10	1
Chlorobenzene	0.50	U		1.0	0.50	0.19	ug/L		10/30/14 16:10	1
Chloroethane	0.50	U		1.0	0.50	0.33	ug/L		10/30/14 16:10	1
Chloroform	0.50	U		1.0	0.50	0.21	ug/L		10/30/14 16:10	1
Chloromethane	0.50	U		1.0	0.50	0.44	ug/L		10/30/14 16:10	1
cis-1,2-Dichloroethene	0.50	U		1.0	0.50	0.20	ug/L		10/30/14 16:10	1
cis-1,3-Dichloropropene	0.25	U		1.0	0.25	0.46	ug/L		10/30/14 16:10	1
Bromodichloromethane	0.25	U		1.0	0.25	0.15	ug/L		10/30/14 16:10	1
Ethylbenzene	0.50	U		1.0	0.50	0.23	ug/L		10/30/14 16:10	1
1,2-Dibromoethane	0.50	U		1.0	0.50	0.19	ug/L		10/30/14 16:10	1
m-Xylene & p-Xylene	0.50	U		2.0	0.50	0.22	ug/L		10/30/14 16:10	1
2-Butanone (MEK)	1.0	U		10	1.0	4.1	ug/L		10/30/14 16:10	1
4-Methyl-2-pentanone (MIBK)	1.0	U		10	1.0	3.6	ug/L		10/30/14 16:10	1
Methylene Chloride	0.50	U		1.0	0.50	0.28	ug/L		10/30/14 16:10	1
o-Xylene	0.25	U		1.0	0.25	0.21	ug/L		10/30/14 16:10	1
Styrene	0.25	U		1.0	0.25	0.45	ug/L		10/30/14 16:10	1
Tetrachloroethene	0.50	U		1.0	0.50	0.20	ug/L		10/30/14 16:10	1
Toluene	0.25	U		1.0	0.25	0.22	ug/L		10/30/14 16:10	1
trans-1,2-Dichloroethene	0.50	U		1.0	0.50	0.26	ug/L		10/30/14 16:10	1
trans-1,3-Dichloropropene	0.50	U		1.0	0.50	0.56	ug/L		10/30/14 16:10	1
Trichloroethene	0.50	U		1.0	0.50	0.15	ug/L		10/30/14 16:10	1
Vinyl chloride	0.50	U		1.0	0.50	0.29	ug/L		10/30/14 16:10	1
Xylenes, Total	1.0	U		2.0	1.0	0.43	ug/L		10/30/14 16:10	1
Dibromochloromethane	0.50	U		1.0	0.50	0.43	ug/L		10/30/14 16:10	1
Surrogate	%Recovery Qu	ıalifier	Limits				Prep	ared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	90		70 - 120	-					10/30/14 16:10	1
4-Bromofluorobenzene (Surr)	88		75 - 120						10/30/14 16:10	1
Toluene-d8 (Surr)	93		85 - 120						10/30/14 16:10	1
Dibromofluoromethane (Surr)	90		85 - 115						10/30/14 16:10	1

Lab Sample ID: 240-43449-1

Matrix: Water

5

8

TestAmerica Job ID: 240-43449-1

Client Sample ID: FWGLL1MW-088-0502-GF

Date Collected: 10/21/14 15:00 Date Received: 10/23/14 10:07

Lab Sample ID: 240-43449-2 Matrix: Water

5

8 9

 Method: 6010B - Metals (ICP) - Total Re	coverable								
Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
Arsenic	27		10	10	2.9	ug/L		10/29/14 12:47	1
Chromium	1.1	J	7.0	4.0	0.55	ug/L		10/29/14 12:47	1
Cobalt	4.0	U	7.0	4.0	0.56	ug/L		10/29/14 12:47	1
Lead	5.0	U	10	5.0	1.9	ug/L		10/29/14 12:47	1
Selenium	10	U	15	10	4.0	ug/L		10/29/14 12:47	1
Silver	5.0	U	7.0	5.0	0.92	ug/L		10/29/14 12:47	1
Vanadium	4.0	U	7.0	4.0	2.4	ug/L		10/29/14 12:47	1
Barium	44	J	200	5.0	1.0	ug/L		10/29/14 12:47	1
Calcium	80000		5000	1000	260	ug/L		10/29/14 12:47	1
Copper	10	U	25	10	1.9	ug/L		10/29/14 12:47	1
Magnesium	36000		5000	300	55	ug/L		10/29/14 12:47	1
Manganese	60		15	5.0	0.46	ug/L		10/29/14 12:47	1
Nickel	1.4	J	40	5.0	0.76	ug/L		10/29/14 12:47	1
Potassium	3300	J	5000	900	70	ug/L		10/29/14 12:47	1
_ Method: 6020 - Metals (ICP/MS) - Total I	Recoverab	le							
Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
Aluminum	120		60	60	20	ug/L		10/29/14 11:28	1
Antimony	1.0	U	2.0	1.0	0.33	ug/L		10/29/14 11:28	1
Beryllium	1.0	U	1.0	1.0	0.50	ug/L		10/29/14 11:28	1
Cadmium	1.0	U	2.0	1.0	0.40	ug/L		10/29/14 11:28	1
Iron	1300		150	100	44	ug/L		10/29/14 11:28	1
Sodium	25000		1000	400	160	ug/L		10/29/14 11:28	1
Thallium	1.5	U	2.0	1.5	0.79	ug/L		10/29/14 11:28	1
Zinc	50	U	50	50	27	ug/L		10/29/14 11:28	1
Method: 7470A - Mercury (CVAA)									
Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
Hg	0.20	U	0.20	0.20	0.090	ug/L		10/30/14 15:04	1

TestAmerica Job ID: 240-43449-1

Lab Sample ID: 240-43449-3

Matrix: Water

> **8** 9

Client Sample ID: FWGLL1MW-088-0502-GW

Date Collected: 10/21/14 15:00 Date Received: 10/23/14 10:07

Method: 8260B - Volatile Organ	nic Compounds (GC	:/MS)				-				
Analyte	Result	Qualifier	L	oq	LOD	DL	Unit	D	Analyzed	Dil Fac
1,1,1-Trichloroethane	0.50	U		1.0	0.50	0.22	ug/L		10/30/14 16:33	1
1,1,2,2-Tetrachloroethane	0.50	U		1.0	0.50	0.22	ug/L		10/30/14 16:33	1
1,1,2-Trichloroethane	0.50	U		1.0	0.50	0.17	ug/L		10/30/14 16:33	1
1,1-Dichloroethane	0.50	U		1.0	0.50	0.26	ug/L		10/30/14 16:33	1
1,1-Dichloroethene	0.50	U		1.0	0.50	0.45	ug/L		10/30/14 16:33	1
1,2-Dichloroethane	0.50	U		1.0	0.50	0.20	ug/L		10/30/14 16:33	1
1,2-Dichloroethene, Total	1.0	U		2.0	1.0	0.20	ug/L		10/30/14 16:33	1
1,2-Dichloropropane	0.50	U		1.0	0.50	0.22	ug/L		10/30/14 16:33	1
2-Hexanone	1.0	U		10	1.0	3.9	ug/L		10/30/14 16:33	1
Bromochloromethane	0.50	U		1.0	0.50	0.25	ug/L		10/30/14 16:33	1
Acetone	2.0	U		10	2.0	3.4	ug/L		10/30/14 16:33	1
Benzene	0.25	U		1.0	0.25	0.24	ug/L		10/30/14 16:33	1
Bromoform	1.0	U		1.0	1.0	0.56	ug/L		10/30/14 16:33	1
Bromomethane	1.0	U		1.0	1.0	0.63	ug/L		10/30/14 16:33	1
Carbon disulfide	0.25	U		1.0	0.25	0.28	ug/L		10/30/14 16:33	1
Carbon tetrachloride	0.25	U		1.0	0.25	0.17	ua/L		10/30/14 16:33	1
Chlorobenzene	0.50	U		1.0	0.50	0.19	ug/L		10/30/14 16:33	1
Chloroethane	0.50			1.0	0.50	0.33	ug/L		10/30/14 16:33	. 1
Chloroform	0.50			1.0	0.50	0.00	ug/L		10/30/14 16:33	
Chloromothono	0.50			1.0	0.50	0.21	ug/L		10/20/14 16:22	1
	0.50	0		1.0	0.50	0.44	ug/L		10/30/14 16:33	1
cis-1,2-Dichloroethene	0.50			1.0	0.50	0.20	ug/L		10/30/14 16:33	۱ ۸
	0.25	0		1.0	0.25	0.46	ug/L		10/30/14 16:33	1
Bromodicnioromethane	0.25	0		1.0	0.25	0.15	ug/L		10/30/14 16:33	1
Ethylbenzene	0.50	U		1.0	0.50	0.23	ug/L		10/30/14 16:33	1
1,2-Dibromoethane	0.50	U		1.0	0.50	0.19	ug/L		10/30/14 16:33	1
m-Xylene & p-Xylene	0.50	U		2.0	0.50	0.22	ug/L		10/30/14 16:33	1
2-Butanone (MEK)	1.0	U		10	1.0	4.1	ug/L		10/30/14 16:33	1
4-Methyl-2-pentanone (MIBK)	1.0	U		10	1.0	3.6	ug/L		10/30/14 16:33	1
Methylene Chloride	0.50	U		1.0	0.50	0.28	ug/L		10/30/14 16:33	1
o-Xylene	0.25	U		1.0	0.25	0.21	ug/L		10/30/14 16:33	1
Styrene	0.25	U		1.0	0.25	0.45	ug/L		10/30/14 16:33	1
Tetrachloroethene	0.50	U		1.0	0.50	0.20	ug/L		10/30/14 16:33	1
Toluene	0.25	U		1.0	0.25	0.22	ug/L		10/30/14 16:33	1
trans-1,2-Dichloroethene	0.50	U		1.0	0.50	0.26	ug/L		10/30/14 16:33	1
trans-1,3-Dichloropropene	0.50	U		1.0	0.50	0.56	ug/L		10/30/14 16:33	1
Trichloroethene	0.50	U		1.0	0.50	0.15	ug/L		10/30/14 16:33	1
Vinyl chloride	0.50	U		1.0	0.50	0.29	ug/L		10/30/14 16:33	1
Xylenes, Total	1.0	U		2.0	1.0	0.43	ug/L		10/30/14 16:33	1
Dibromochloromethane	0.50	U		1.0	0.50	0.43	ug/L		10/30/14 16:33	1
Surrogate	%Recovery Qu	alifier	Limits				Prepa	ared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	90		70 - 120						10/30/14 16:33	1
4-Bromofluorobenzene (Surr)	89		75 - 120						10/30/14 16:33	1
Toluene-d8 (Surr)	94		85 - 120						10/30/14 16:33	1
Dibromofluoromethane (Surr)	96		85 - 115						10/30/14 16:33	1

Method: 8270C - Semivolatile Organic Compounds (GC/MS)

Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
Acenaphthene	0.099	U	0.20	0.099	0.044	ug/L		11/04/14 12:54	1
Acenaphthylene	0.099	U	0.20	0.099	0.048	ug/L		11/04/14 12:54	1

LOQ

0.20

0.20

0.20

0.20

0.20

LOD

0.099

0.099

0.099

0.099

0.099

Analyte

Anthracene

Benzo[a]anthracene

Benzo[b]fluoranthene

Benzo[g,h,i]perylene

Benzo[a]pyrene

Client Sample ID: FWGLL1MW-088-0502-GW Date Collected: 10/21/14 15:00 Date Received: 10/23/14 10:07

Method: 8270C - Semivolatile Organic Compounds (GC/MS) (Continued)

Result Qualifier

0.099 U

0.099 U

0.099 U

0.099 U

0.099 U

Lab Sample ID: 240-43449-3 Matrix: Water

		_	Analyzea	Dirrac	
0.087	ug/L		11/04/14 12:54	1	
0.029	ug/L		11/04/14 12:54	1	6
0.051	ug/L		11/04/14 12:54	1	
0.039	ug/L		11/04/14 12:54	1	
0.046	ug/L		11/04/14 12:54	1	
9.9	ug/L		11/04/14 12:54	1	8
0.044	ug/L		11/04/14 12:54	1	•
0.38	ug/L		11/04/14 12:54	1	0
0.32	ug/L		11/04/14 12:54	1	9
0.099	ug/L		11/04/14 12:54	1	
1.7	ug/L		11/04/14 12:54	1	
0.22	ug/L		11/04/14 12:54	1	
0.26	ug/L		11/04/14 12:54	1	
0.28	ug/L		11/04/14 12:54	1	
0.21	ug/L		11/04/14 12:54	1	
0.21	ug/L		11/04/14 12:54	1	
0.099	ug/L		11/04/14 12:54	1	13
0.29	ug/L		11/04/14 12:54	1	
0.30	ug/L		11/04/14 12:54	1	14
0.050	ug/L		11/04/14 12:54	1	
0.044	ug/L		11/04/14 12:54	1	15
0.020	ug/L		11/04/14 12:54	1	
0.29	ug/L		11/04/14 12:54	1	
0.23	ug/L		11/04/14 12:54	1	
0.34	ug/L		11/04/14 12:54	1	
0.37	ug/L		11/04/14 12:54	1	
0.19	ug/L		11/04/14 12:54	1	
0.59	ug/L		11/04/14 12:54	1	
0.25	ug/L		11/04/14 12:54	1	
0.29	ug/L		11/04/14 12:54	1	
1.7	ug/L		11/04/14 12:54	1	
2.4	ug/L		11/04/14 12:54	1	

Benzoic acid	20	U	25	20	9.9	ug/L	11/04/14 12:54	1
Benzo[k]fluoranthene	0.099	U	0.20	0.099	0.044	ug/L	11/04/14 12:54	1
Benzyl alcohol	0.50	U	5.0	0.50	0.38	ug/L	11/04/14 12:54	1
Bis(2-chloroethoxy)methane	0.50	U	0.99	0.50	0.32	ug/L	11/04/14 12:54	1
Bis(2-chloroethyl)ether	0.099	U	0.99	0.099	0.099	ug/L	11/04/14 12:54	1
Bis(2-ethylhexyl) phthalate	5.0	U	5.0	5.0	1.7	ug/L	11/04/14 12:54	1
4-Bromophenyl phenyl ether	0.50	U	2.0	0.50	0.22	ug/L	11/04/14 12:54	1
Butyl benzyl phthalate	0.50	U	5.0	0.50	0.26	ug/L	11/04/14 12:54	1
Carbazole	0.50	U	0.99	0.50	0.28	ug/L	11/04/14 12:54	1
4-Chloroaniline	0.50	U	2.0	0.50	0.21	ug/L	11/04/14 12:54	1
4-Chloro-3-methylphenol	0.50	U	2.0	0.50	0.21	ug/L	11/04/14 12:54	1
2-Chloronaphthalene	0.50	U	0.99	0.50	0.099	ug/L	11/04/14 12:54	1
2-Chlorophenol	0.50	U	0.99	0.50	0.29	ug/L	11/04/14 12:54	1
4-Chlorophenyl phenyl ether	0.50	U	2.0	0.50	0.30	ug/L	11/04/14 12:54	1
Chrysene	0.099	U	0.20	0.099	0.050	ug/L	11/04/14 12:54	1
Dibenz(a,h)anthracene	0.099	U	0.20	0.099	0.044	ug/L	11/04/14 12:54	1
Dibenzofuran	0.099	U	0.99	0.099	0.020	ug/L	11/04/14 12:54	1
1,2-Dichlorobenzene	0.50	U	0.99	0.50	0.29	ug/L	11/04/14 12:54	1
1,3-Dichlorobenzene	0.50	U	0.99	0.50	0.23	ug/L	11/04/14 12:54	1
1,4-Dichlorobenzene	0.50	U	0.99	0.50	0.34	ug/L	11/04/14 12:54	1
3,3'-Dichlorobenzidine	0.99	U	5.0	0.99	0.37	ug/L	11/04/14 12:54	1
2,4-Dichlorophenol	0.50	U	2.0	0.50	0.19	ug/L	11/04/14 12:54	1
Diethyl phthalate	0.99	U	2.0	0.99	0.59	ug/L	11/04/14 12:54	1
2,4-Dimethylphenol	0.50	U	2.0	0.50	0.25	ug/L	11/04/14 12:54	1
Dimethyl phthalate	0.50	U	2.0	0.50	0.29	ug/L	11/04/14 12:54	1
Di-n-butyl phthalate	5.0	U	5.0	5.0	1.7	ug/L	11/04/14 12:54	1
4,6-Dinitro-2-methylphenol	4.0	U	5.0	4.0	2.4	ug/L	11/04/14 12:54	1
2,4-Dinitrophenol	0.99	U	5.0	0.99	0.32	ug/L	11/04/14 12:54	1
Di-n-octyl phthalate	0.50	U	2.0	0.50	0.23	ug/L	11/04/14 12:54	1
Fluoranthene	0.099	U	0.20	0.099	0.044	ug/L	11/04/14 12:54	1
Fluorene	0.099	U	0.20	0.099	0.040	ug/L	11/04/14 12:54	1
Hexachlorobenzene	0.099	U	0.20	0.099	0.084	ug/L	11/04/14 12:54	1
Hexachlorobutadiene	0.50	U	0.99	0.50	0.27	ug/L	11/04/14 12:54	1
Hexachlorocyclopentadiene	0.50	UQ	9.9	0.50	0.24	ug/L	11/04/14 12:54	1
Hexachloroethane	0.50	U	0.99	0.50	0.19	ug/L	11/04/14 12:54	1
Indeno[1,2,3-cd]pyrene	0.099	U	0.20	0.099	0.043	ug/L	11/04/14 12:54	1
Isophorone	0.50	U	0.99	0.50	0.27	ug/L	11/04/14 12:54	1
2-Methylnaphthalene	0.099	U	0.20	0.099	0.090	ug/L	11/04/14 12:54	1
2-Methylphenol	0.50	U	0.99	0.50	0.17	ug/L	11/04/14 12:54	1
3 & 4 Methylphenol	0.99	U	2.0	0.99	0.79	ug/L	11/04/14 12:54	1
Naphthalene	0.099	U	0.20	0.099	0.062	ug/L	11/04/14 12:54	1
2-Nitroaniline	0.50	U	2.0	0.50	0.21	ug/L	11/04/14 12:54	1
3-Nitroaniline	0.50	U	2.0	0.50	0.28	ug/L	11/04/14 12:54	1
4-Nitroaniline	0.50	U	2.0	0.50	0.22	ug/L	11/04/14 12:54	1

LOQ

2.0

5.0

0.99

0.99

0.99

5.0

0.20

0.99

0.20

0.99

LOD

0.50

4.0

0.50

0.50

0.50

0.99

0.099

0.99

0.099

0.50

DL Unit

0.28 ug/L

0.29 ug/L

0.24 ug/L

0.31 ug/L

0.40 ug/L

0.27 ug/L

0.061 ug/L

0.59 ug/L

0.042 ug/L

0.28 ug/L

Analyte

2-Nitrophenol

4-Nitrophenol

N-Nitrosodi-n-propylamine

2,2'-oxybis[1-chloropropane]

N-Nitrosodiphenylamine

1,2,4-Trichlorobenzene

Pentachlorophenol

Phenanthrene

Phenol

Pyrene

Client Sample ID: FWGLL1MW-088-0502-GW Date Collected: 10/21/14 15:00 Date Received: 10/23/14 10:07

Method: 8270C - Semivolatile Organic Compounds (GC/MS) (Continued)

Result Qualifier

0.50 U

4.0 U

0.50 U

0.50 U

0.50 U

0.99 U

0.099 U

0.99 U

0.099 U

0.50 U

Lab Sample ID: 240-43449-3 Matrix: Water

Analyzed

11/04/14 12:54

11/04/14 12:54

11/04/14 12:54

11/04/14 12:54

11/04/14 12:54

11/04/14 12:54

11/04/14 12:54

11/04/14 12:54

11/04/14 12:54

11/04/14 12:54

D

2,4,5-Trichlorophenol	0.5	50 U	5.0	0.50	0.30	ug/L	11/04/14 12:54	1
2,4,6-Trichlorophenol	0.5	50 U	5.0	0.50	0.24	ug/L	11/04/14 12:54	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl (Surr)	0	Q	50 - 110			10/24/14 08:57	11/04/14 12:54	1
2-Fluorophenol (Surr)	0	Q	20 - 110			10/24/14 08:57	11/04/14 12:54	1
Nitrobenzene-d5 (Surr)	0	Q	40 - 110			10/24/14 08:57	11/04/14 12:54	1
Phenol-d5 (Surr)	0	Q	10 - 115			10/24/14 08:57	11/04/14 12:54	1
Terphenyl-d14 (Surr)	0	Q	50 - 135			10/24/14 08:57	11/04/14 12:54	1
2,4,6-Tribromophenol (Surr)	0	Q	40 - 125			10/24/14 08:57	11/04/14 12:54	1
Method: 8081A - Organochlorine F	esticides (GC)						
Analyte	Resu	, It Qualifier	LOQ	LOD	DL	Unit D	Analyzed	Dil Fac
4,4'-DDD	0.05	3 UHQ	0.053	0.053	0.019	ug/L	12/17/14 21:25	1
4,4'-DDE	0.05	3 UHQ	0.053	0.053	0.0096	ug/L	12/17/14 21:25	1
4,4'-DDT	0.05	3 UHQ	0.053	0.053	0.015	ug/L	12/17/14 21:25	1
Aldrin	0.05	3 UHQ	0.053	0.053	0.014	ug/L	12/17/14 21:25	1
alpha-BHC	0.02	8 JH	0.053	0.053	0.015	ug/L	12/17/14 21:25	1
alpha-Chlordane	0.05	3 UHQ	0.053	0.053	0.013	ug/L	12/17/14 21:25	1
beta-BHC	0.05	53 U H	0.053	0.053	0.014	ug/L	12/17/14 21:25	1
delta-BHC	0.05	3 UHQ	0.053	0.053	0.031	ug/L	12/17/14 21:25	1
Dieldrin	0.05	3 UHQ	0.053	0.053	0.014	ug/L	12/17/14 21:25	1
Endosulfan I	0.05	3 UHQ	0.053	0.053	0.017	ug/L	12/17/14 21:25	1
Endosulfan II	0.05	3 UHQ	0.053	0.053	0.016	ug/L	12/17/14 21:25	1
Endosulfan sulfate	0.05	3 UHQ	0.053	0.053	0.012	ug/L	12/17/14 21:25	1
Endrin	0.05	3 UHQ	0.053	0.053	0.013	ug/L	12/17/14 21:25	1
Endrin aldehyde	0.05	3 UHQ	0.053	0.053	0.0085	ug/L	12/17/14 21:25	1
Endrin ketone	0.05	3 UHQ	0.053	0.053	0.0096	ug/L	12/17/14 21:25	1
gamma-BHC (Lindane)	0.05	53 U H	0.053	0.053	0.013	ug/L	12/17/14 21:25	1
gamma-Chlordane	0.05	3 UHQ	0.053	0.053	0.011	ug/L	12/17/14 21:25	1
Heptachlor	0.05	3 UHQ	0.053	0.053	0.0053	ug/L	12/17/14 21:25	1
Heptachlor epoxide	0.05	3 UHQ	0.053	0.053	0.015	ug/L	12/17/14 21:25	1
Methoxychlor	0.05	3 UHQ	0.11	0.053	0.013	ug/L	12/17/14 21:25	1
Toxaphene	1.	.1 UHQ	2.1	1.1	0.21	ug/L	12/17/14 21:25	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
DCB Decachlorobiphenyl	70	Μ	30 - 135			10/24/14 08:42	12/17/14 21:25	1
DCB Decachlorobiphenyl	87		30 - 135			10/24/14 08:42	12/17/14 21:25	1
Tetrachloro-m-xylene	174	MQ	25 - 140			10/24/14 08:42	12/17/14 21:25	1
Tetrachloro-m-xylene	112		25 - 140			10/24/14 08:42	12/17/14 21:25	1

Client Sample ID: FWGLL1MW-088-0502-GW Date Collected: 10/21/14 15:00 Date Received: 10/23/14 10:07

Method: 8082 - Polychlorinated Biphenyls (PCBs) by Gas Chromatography

Lab Sample ID: 240-43449-3 Matrix: Water

Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
Aroclor-1016	0.21	U	0.53	0.21	0.18	ug/L		10/30/14 09:03	1
Aroclor-1221	0.21	U	0.53	0.21	0.14	ug/L		10/30/14 09:03	1
Aroclor-1232	0.21	U	0.53	0.21	0.17	ug/L		10/30/14 09:03	1
Aroclor-1242	0.43	U	0.53	0.43	0.23	ug/L		10/30/14 09:03	1
Aroclor-1248	0.21	U	0.53	0.21	0.11	ug/L		10/30/14 09:03	1
Aroclor-1254	0.21	U	0.53	0.21	0.17	ug/L		10/30/14 09:03	1
Aroclor-1260	0.21	U	0.53	0.21	0.18	ug/L		10/30/14 09:03	1
Surrogate	%Recovery Qu	ualifier	Limits			Prepar	ed	Analyzed	Dil Fac
Tetrachloro-m-xylene	6016 Q		40 - 140			10/24/14 (08:40	10/30/14 09:03	1
Tetrachloro-m-xylene	74		40 - 140			10/24/14 (08:40	10/30/14 09:03	1
DCB Decachlorobiphenyl	81		40 _ 135			10/24/14 (08:40	10/30/14 09:03	1
DCB Decachlorobiphenyl	77		40 - 135			10/24/14 (08:40	10/30/14 09:03	1
- Method: 8330 Modified - Nitro	quanidine (HPLC)								
Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
Nitroguanidine	6.0	U	20	6.0	2.4	ug/L		11/04/14 13:03	1
Method: 8330A - Nitroaromati	cs and Nitramines								
Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
1,3,5-Trinitrobenzene	0.051	U	0.15	0.051	0.032	ug/L		11/04/14 18:27	1
1,3-Dinitrobenzene	0.10	U	0.15	0.10	0.051	ug/L		11/04/14 18:27	1
2,4,6-Trinitrotoluene	0.10	U	0.15	0.10	0.051	ug/L		11/04/14 18:27	1
2,4-Dinitrotoluene	0.10	U	0.13	0.10	0.051	ug/L		11/04/14 18:27	1
2,6-Dinitrotoluene	0.10	U	0.13	0.10	0.051	ug/L		11/04/14 18:27	1
2-Amino-4,6-dinitrotoluene	0.10	U	0.15	0.10	0.015	ug/L		11/04/14 18:27	1
2-Nitrotoluene	0.10	U	0.51	0.10	0.089	ug/L		11/04/14 18:27	1
3-Nitrotoluene	0.10	U	0.51	0.10	0.058	ug/L		11/04/14 18:27	1
4-Nitrotoluene	0.10	U	0.51	0.10	0.089	ug/L		11/04/14 18:27	1
4-Amino-2,6-dinitrotoluene	0.10	U	0.15	0.10	0.051	ug/L		11/04/14 18:27	1
HMX	0.051	U	0.15	0.051	0.037	ug/L		11/04/14 18:27	1
RDX	0.051	U	0.15	0.051	0.037	ug/L		11/04/14 18:27	1
Nitrobenzene	0.10	U	0.15	0.10	0.051	ug/L		11/04/14 18:27	1
Tetryl	0.10	U	0.15	0.10	0.051	ug/L		11/04/14 18:27	1
Nitroglycerin	0.51	U	0.66	0.51	0.34	ug/L		11/04/14 18:27	1
PETN	0.51	U	0.66	0.51	0.31	ug/L		11/04/14 18:27	1
Surrogate	%Recovery Qu	ualifier	Limits			Prepar	ed	Analyzed	Dil Fac
3,4-Dinitrotoluene	95		79 _ 111			10/27/14 (08:44	11/04/14 18:27	1
General Chemistry									
Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
Cyanide, Total	0.0050	U	0.010	0.0050	0.0020	mg/L		10/31/14 14:03	1
Nitrocellulose	1.0	U	2.0	1.0	0.48	mg/L		10/29/14 14:23	1

TestAmerica Job ID: 240-43449-1

Lab Sample ID: 240-43449-4

Matrix: Water

Client Sample ID: FWGEQUIPRINSE1-507-GW

Date Collected: 10/21/14 16:30 Date Received: 10/23/14 10:07

Method: 8260B - Volatile Organi	c Compounds (GC	C/MS)								
Analyte	Result	Qualifier	L	.OQ	LOD	DL	Unit	D	Analyzed	Dil Fac
1,1,1-Trichloroethane	0.50	U		1.0	0.50	0.22	ug/L		10/30/14 16:56	1
1,1,2,2-Tetrachloroethane	0.50	U		1.0	0.50	0.22	ug/L		10/30/14 16:56	1
1,1,2-Trichloroethane	0.50	U		1.0	0.50	0.17	ug/L		10/30/14 16:56	1
1,1-Dichloroethane	0.50	U		1.0	0.50	0.26	ug/L		10/30/14 16:56	1
1,1-Dichloroethene	0.50	U		1.0	0.50	0.45	ug/L		10/30/14 16:56	1
1,2-Dichloroethane	0.50	U		1.0	0.50	0.20	ug/L		10/30/14 16:56	1
1,2-Dichloroethene, Total	1.0	U		2.0	1.0	0.20	ug/L		10/30/14 16:56	1
1,2-Dichloropropane	0.50	U		1.0	0.50	0.22	ug/L		10/30/14 16:56	1
2-Hexanone	1.0	U		10	1.0	3.9	ug/L		10/30/14 16:56	1
Bromochloromethane	0.50	U		1.0	0.50	0.25	ug/L		10/30/14 16:56	1
Acetone	3.5	J		10	2.0	3.4	ug/L		10/30/14 16:56	1
Benzene	0.25	U		1.0	0.25	0.24	ug/L		10/30/14 16:56	1
Bromoform	1.0	U		1.0	1.0	0.56	ug/L		10/30/14 16:56	1
Bromomethane	1.0	U		1.0	1.0	0.63	ug/L		10/30/14 16:56	1
Carbon disulfide	0.25	U		1.0	0.25	0.28	ug/L		10/30/14 16:56	1
Carbon tetrachloride	0.25	U		1.0	0.25	0.17	ug/L		10/30/14 16:56	1
Chlorobenzene	0.50	U		1.0	0.50	0.19	ug/L		10/30/14 16:56	1
Chloroethane	0.50	U		1.0	0.50	0.33	ug/L		10/30/14 16:56	1
Chloroform	0.50	U		1.0	0.50	0.21	ug/L		10/30/14 16:56	1
Chloromethane	0.50	U		1.0	0.50	0.44	ug/L		10/30/14 16:56	1
cis-1,2-Dichloroethene	0.50	U		1.0	0.50	0.20	ug/L		10/30/14 16:56	1
cis-1,3-Dichloropropene	0.25	U		1.0	0.25	0.46	ug/L		10/30/14 16:56	1
Bromodichloromethane	0.25	U		1.0	0.25	0.15	ug/L		10/30/14 16:56	1
Ethylbenzene	0.50	U		1.0	0.50	0.23	ug/L		10/30/14 16:56	1
1,2-Dibromoethane	0.50	U		1.0	0.50	0.19	ug/L		10/30/14 16:56	1
m-Xylene & p-Xylene	0.50	U		2.0	0.50	0.22	ug/L		10/30/14 16:56	1
2-Butanone (MEK)	1.0	U		10	1.0	4.1	ug/L		10/30/14 16:56	1
4-Methyl-2-pentanone (MIBK)	1.0	U		10	1.0	3.6	ug/L		10/30/14 16:56	1
Methylene Chloride	0.50	U		1.0	0.50	0.28	ug/L		10/30/14 16:56	1
o-Xylene	0.25	U		1.0	0.25	0.21	ug/L		10/30/14 16:56	1
Styrene	0.25	U		1.0	0.25	0.45	ua/L		10/30/14 16:56	1
Tetrachloroethene	0.50	U		1.0	0.50	0.20	ug/L		10/30/14 16:56	1
Toluene	0.24	J		1.0	0.25	0.22	ua/L		10/30/14 16:56	1
trans-1.2-Dichloroethene	0.50			1.0	0.50	0.26	ua/L		10/30/14 16:56	
trans-1.3-Dichloropropene	0.50	U		1.0	0.50	0.56	ua/L		10/30/14 16:56	1
Trichloroethene	0.50	U		1.0	0.50	0.15	ua/l		10/30/14 16:56	1
Vinyl chloride	0.50	Ш		1.0	0.50	0.29	ug/L		10/30/14 16:56	
Xvlenes Total	1.0	U U		2.0	1.0	0.43	ug/L		10/30/14 16:56	1
Dibromochloromethane	0.50	U		1.0	0.50	0.43	ug/L		10/30/14 16:56	1
	0.00				0.00	0.10	ug/=		10,00,11,10,00	
Surrogate	%Recovery Qu	ualifier	Limits				Pr	epared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	90		/0 - 120						10/30/14 16:56	1
4-Bromofluorobenzene (Surr)	85		75 - 120						10/30/14 16:56	1
Toluene-d8 (Surr)	92		85 - 120						10/30/14 16:56	1
Dibromofluoromethane (Surr)	90		85 - 115						10/30/14 16:56	1

Method: 8270C - Semivolatile Organic Compounds (GC/MS)

Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
Acenaphthene	0.097	U	0.19	0.097	0.043	ug/L		11/04/14 13:18	1
Acenaphthylene	0.097	U	0.19	0.097	0.047	ug/L		11/04/14 13:18	1

LOQ

LOD

Analyte

Anthracene

Benzoic acid

Carbazole

4-Chloroaniline

2-Chlorophenol

Chrysene

Dibenzofuran

Benzyl alcohol

Benzo[a]anthracene Benzo[a]pyrene

Benzo[b]fluoranthene

Benzo[g,h,i]perylene

Benzo[k]fluoranthene

Bis(2-chloroethyl)ether

Bis(2-chloroethoxy)methane

Bis(2-ethylhexyl) phthalate

4-Chloro-3-methylphenol

4-Chlorophenyl phenyl ether

2-Chloronaphthalene

Dibenz(a,h)anthracene

1,2-Dichlorobenzene

1,3-Dichlorobenzene 1,4-Dichlorobenzene

3,3'-Dichlorobenzidine

2,4-Dichlorophenol

2,4-Dimethylphenol

Dimethyl phthalate

Di-n-butyl phthalate

2,4-Dinitrophenol

Fluoranthene

Fluorene

Di-n-octyl phthalate

Hexachlorobenzene

Hexachlorobutadiene

Indeno[1,2,3-cd]pyrene

2-Methylnaphthalene

3 & 4 Methylphenol

2-Methylphenol

Naphthalene

2-Nitroaniline

3-Nitroaniline

4-Nitroaniline

Hexachloroethane

Isophorone

Hexachlorocyclopentadiene

4,6-Dinitro-2-methylphenol

Diethyl phthalate

4-Bromophenyl phenyl ether Butyl benzyl phthalate

Client Sample ID: FWGEQUIPRINSE1-507-GW Date Collected: 10/21/14 16:30 Date Received: 10/23/14 10:07

Method: 8270C - Semivolatile Organic Compounds (GC/MS) (Continued)

Result Qualifier

0.097 0.097

0.49 U

0.97 U

0.097 U

0.49 U

0.49 U

0.49 U

TestAmerica	Job	ID:	240-43449-

Lab Sample ID: 240-43449-4 Matrix: Water

Analyzed

D

Dil Fac

0.097	U	0.19	0.097	0.085	ug/L	11/04/14 13:18	1	
0.097	U	0.19	0.097	0.029	ug/L	11/04/14 13:18	1	6
0.097	U	0.19	0.097	0.050	ug/L	11/04/14 13:18	1	
0.097	U	0.19	0.097	0.038	ug/L	11/04/14 13:18	1	
0.097	U	0.19	0.097	0.045	ug/L	11/04/14 13:18	1	
19	U	24	19	9.7	ug/L	11/04/14 13:18	1	8
0.097	U	0.19	0.097	0.043	ug/L	11/04/14 13:18	1	•
0.40	J	4.9	0.49	0.37	ug/L	11/04/14 13:18	1	0
0.49	U	0.97	0.49	0.31	ug/L	11/04/14 13:18	1	
0.097	U	0.97	0.097	0.097	ug/L	11/04/14 13:18	1	
4.9	U	4.9	4.9	1.7	ug/L	11/04/14 13:18	1	
0.49	U	1.9	0.49	0.21	ug/L	11/04/14 13:18	1	
0.49	U	4.9	0.49	0.25	ug/L	11/04/14 13:18	1	
0.49	U	0.97	0.49	0.27	ug/L	11/04/14 13:18	1	
0.49	U	1.9	0.49	0.20	ug/L	11/04/14 13:18	1	
0.49	U	1.9	0.49	0.20	ug/L	11/04/14 13:18	1	
0.49	U	0.97	0.49	0.097	ug/L	11/04/14 13:18	1	13
0.49	U	0.97	0.49	0.28	ug/L	11/04/14 13:18	1	
0.49	U	1.9	0.49	0.29	ug/L	11/04/14 13:18	1	14
0.097	U	0.19	0.097	0.049	ug/L	11/04/14 13:18	1	
0.097	U	0.19	0.097	0.043	ug/L	11/04/14 13:18	1	15
0.097	U	0.97	0.097	0.019	ug/L	11/04/14 13:18	1	
0.49	U	0.97	0.49	0.28	ug/L	11/04/14 13:18	1	
0.49	U	0.97	0.49	0.22	ug/L	11/04/14 13:18	1	
0.49	U	0.97	0.49	0.33	ug/L	11/04/14 13:18	1	
0.97	U	4.9	0.97	0.36	ug/L	11/04/14 13:18	1	
0.49	U	1.9	0.49	0.18	ug/L	11/04/14 13:18	1	
0.97	U	1.9	0.97	0.58	ug/L	11/04/14 13:18	1	
0.49	U	1.9	0.49	0.24	ug/L	11/04/14 13:18	1	
0.49	U	1.9	0.49	0.28	ug/L	11/04/14 13:18	1	
4.9	U	4.9	4.9	1.7	ug/L	11/04/14 13:18	1	
3.9	U	4.9	3.9	2.3	ug/L	11/04/14 13:18	1	
0.97	U	4.9	0.97	0.31	ug/L	11/04/14 13:18	1	
0.49	U	1.9	0.49	0.22	ug/L	11/04/14 13:18	1	
0.097	U	0.19	0.097	0.043	ug/L	11/04/14 13:18	1	
0.097	U	0.19	0.097	0.039	ug/L	11/04/14 13:18	1	
0.097	U	0.19	0.097	0.083	ug/L	11/04/14 13:18	1	
0.49	U	0.97	0.49	0.26	ug/L	11/04/14 13:18	1	
0.49	UQ	9.7	0.49	0.23	ug/L	11/04/14 13:18	1	
0.49	U	0.97	0.49	0.18	ug/L	11/04/14 13:18	1	
0.097	U	0.19	0.097	0.042	ug/L	11/04/14 13:18	1	
0.49	U	0.97	0.49	0.26	ug/L	11/04/14 13:18	1	
0.097	U	0.19	0.097	0.088	ug/L	11/04/14 13:18	1	

0.17 ug/L

0.78 ug/L

0.061 ug/L

0.20 ug/L

0.27 ug/L

0.21 ug/L

DL Unit

TestAmerica Canton

1

1

1

1

1

1

11/04/14 13:18

11/04/14 13:18

11/04/14 13:18

11/04/14 13:18

11/04/14 13:18

11/04/14 13:18

0.97

0.19

1.9

1.9

1.9

1.9

0.49

0.97

0.097

0.49

0.49

0.49

Client Sample ID: FWGEQUIPRINSE1-507-GW Date Collected: 10/21/14 16:30 Date Received: 10/23/14 10:07

Lab Sample ID: 240-43449-4 Matrix: Water

5

8 9

Method: 8270C - Semivolatile	Organic Compound	s (GC/MS	6) (Continued)					
Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D Analyzed	Dil Fac
2-Nitrophenol	0.49	U	1.9	0.49	0.27	ug/L	11/04/14 13:18	1
4-Nitrophenol	3.9	U	4.9	3.9	0.28	ug/L	11/04/14 13:18	1
N-Nitrosodi-n-propylamine	0.49	U	0.97	0.49	0.23	ug/L	11/04/14 13:18	1
N-Nitrosodiphenylamine	0.49	U	0.97	0.49	0.30	ug/L	11/04/14 13:18	1
2,2'-oxybis[1-chloropropane]	0.49	U	0.97	0.49	0.39	ug/L	11/04/14 13:18	1
Pentachlorophenol	0.97	U	4.9	0.97	0.26	ug/L	11/04/14 13:18	1
Phenanthrene	0.097	U	0.19	0.097	0.060	ug/L	11/04/14 13:18	1
Phenol	0.97	U	0.97	0.97	0.58	ug/L	11/04/14 13:18	1
Pyrene	0.097	U	0.19	0.097	0.041	ug/L	11/04/14 13:18	1
1,2,4-Trichlorobenzene	0.49	U	0.97	0.49	0.27	ug/L	11/04/14 13:18	1
2,4,5-Trichlorophenol	0.49	U	4.9	0.49	0.29	ug/L	11/04/14 13:18	1
2,4,6-Trichlorophenol	0.49	U	4.9	0.49	0.23	ug/L	11/04/14 13:18	1
Surrogate	%Recovery Qu	ıalifier	Limits			Prepared	Analyzed	Dil Fac

rogate	%Recovery	Quaimer	Limits	Prepared	
biphenyl (Surr)	0	Q	50 - 110	10/24/14 08:57	7
luorophenol (Surr)	0	Q	20 - 110	10/24/14 08:57	,
itrobenzene-d5 (Surr)	0	Q	40 - 110	10/24/14 08:57	
henol-d5 (Surr)	0	Q	10 - 115	10/24/14 08:57	
erphenyl-d14 (Surr)	0	Q	50 - 135	10/24/14 08:57	
2,4,6-Tribromophenol (Surr)	0	Q	40 - 125	10/24/14 08:57	

Method: 8081A - Organochlorine Pesticides (GC)

Analyte	Resul	t Qualifier	LOQ	LOD	DL	Unit D	Analyzed	Dil Fac
4,4'-DDD	0.050	U	0.050	0.050	0.018	ug/L	11/03/14 17:02	1
4,4'-DDE	0.050	U C	0.050	0.050	0.0090	ug/L	11/03/14 17:02	1
4,4'-DDT	0.050	U C	0.050	0.050	0.014	ug/L	11/03/14 17:02	1
Aldrin	0.050	D U	0.050	0.050	0.013	ug/L	11/03/14 17:02	1
alpha-BHC	0.050	U C	0.050	0.050	0.014	ug/L	11/03/14 17:02	1
alpha-Chlordane	0.050	U C	0.050	0.050	0.012	ug/L	11/03/14 17:02	1
beta-BHC	0.050	D U	0.050	0.050	0.013	ug/L	11/03/14 17:02	1
delta-BHC	0.050	U C	0.050	0.050	0.029	ug/L	11/03/14 17:02	1
Dieldrin	0.050	U C	0.050	0.050	0.013	ug/L	11/03/14 17:02	1
Endosulfan I	0.050	D U	0.050	0.050	0.016	ug/L	11/03/14 17:02	1
Endosulfan II	0.050	U C	0.050	0.050	0.015	ug/L	11/03/14 17:02	1
Endosulfan sulfate	0.050	U C	0.050	0.050	0.011	ug/L	11/03/14 17:02	1
Endrin	0.050	U C	0.050	0.050	0.012	ug/L	11/03/14 17:02	1
Endrin aldehyde	0.050	U C	0.050	0.050	0.0080	ug/L	11/03/14 17:02	1
Endrin ketone	0.050	U C	0.050	0.050	0.0090	ug/L	11/03/14 17:02	1
gamma-BHC (Lindane)	0.050	U C	0.050	0.050	0.012	ug/L	11/03/14 17:02	1
gamma-Chlordane	0.050	U C	0.050	0.050	0.010	ug/L	11/03/14 17:02	1
Heptachlor	0.050	U C	0.050	0.050	0.0050	ug/L	11/03/14 17:02	1
Heptachlor epoxide	0.050	U U	0.050	0.050	0.014	ug/L	11/03/14 17:02	1
Methoxychlor	0.050	U C	0.10	0.050	0.012	ug/L	11/03/14 17:02	1
Toxaphene	1.0	U	2.0	1.0	0.20	ug/L	11/03/14 17:02	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
DCB Decachlorobiphenyl	128		30 - 135			10/24/14 08:42	11/03/14 17:02	1
DCB Decachlorobiphenyl	125		30 - 135			10/24/14 08:42	11/03/14 17:02	1
Tetrachloro-m-xylene	107		25 - 140			10/24/14 08:42	11/03/14 17:02	1
Tetrachloro-m-xylene	107		25 - 140			10/24/14 08:42	11/03/14 17:02	1
Client Sample ID: FWGEQUIPRINSE1-507-GW Date Collected: 10/21/14 16:30 Date Received: 10/23/14 10:07

Lab Sample ID: 240-43449-4 Matrix: Water

Method: 8082 - Polychlorinated	Biphenyls (PCBs)	by Gas C	hromatography					
Analyte	Result	Qualifier		LOD	DL	Unit	Analyzed	Dil Fac
Aroclor-1016	0.20	U	0.50	0.20	0.17	ug/L	10/29/14 19:37	1
Aroclor-1221	0.20	U	0.50	0.20	0.13	ug/L	10/29/14 19:37	1
Aroclor-1232	0.20	U	0.50	0.20	0.16	ug/L	10/29/14 19:37	1
Aroclor-1242	0.40	U	0.50	0.40	0.22	ug/L	10/29/14 19:37	1
Aroclor-1248	0.20	U	0.50	0.20	0.10	ug/L	10/29/14 19:37	1
Aroclor-1254	0.20	U	0.50	0.20	0.16	ug/L	10/29/14 19:37	1
Aroclor-1260	0.20	U	0.50	0.20	0.17	ug/L	10/29/14 19:37	1
Surrogate	%Recovery Q	ualifier	Limits			Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	84		40 _ 140			10/24/14 08:40	10/29/14 19:37	1
Tetrachloro-m-xylene	81		40 _ 140			10/24/14 08:40	10/29/14 19:37	1
DCB Decachlorobiphenyl	93		40 _ 135			10/24/14 08:40	10/29/14 19:37	1
DCB Decachlorobiphenyl	88		40 - 135			10/24/14 08:40	10/29/14 19:37	1
Method: 8330 Modified - Nitrog	uanidine (HPLC)							
Analyte	Result	Qualifier	CQ				Analyzed	Dil Fac
Nitroguanidine	6.0	U	20	6.0	2.4	ug/L	11/04/14 13:20	1
Method: 8330A - Nitroaromatic	s and Nitramines							
Analyte	Result	Qualifier	LOQ	LOD	DL	Unit D	Analyzed	Dil Fac
1,3,5-Trinitrobenzene	1.1	J	0.16	0.055	0.034	ug/L	11/04/14 19:24	1
1,3-Dinitrobenzene	0.11	U	0.16	0.11	0.055	ug/L	11/04/14 19:24	1
2,4,6-Trinitrotoluene	0.11	U	0.16	0.11	0.055	ug/L	11/04/14 19:24	1
2,4-Dinitrotoluene	0.11	UM	0.14	0.11	0.055	ug/L	11/04/14 19:24	1
2.6-Dinitrotoluene	0.11	UM	0.14	0.11	0.055	ug/L	11/04/14 19:24	1
2-Amino-4.6-dinitrotoluene	0.11	U	0.16	0.11	0.016	ug/L	11/04/14 19:24	1
2-Nitrotoluene	0.11		0.55	0.11	0.096	ug/L	11/04/14 19:24	1
3-Nitrotoluene	0.11	U	0.55	0.11	0.062	ug/l	11/04/14 19:24	1
4-Nitrotoluene	0.11	U U	0.55	0.11	0.096	ug/L	11/04/14 19:24	. 1
4-Amino-2 6-dinitrotoluene	0.11		0.16	0.11	0.055	ug/L	11/04/14 19:24	
HMX	0.055	U U	0.16	0.055	0.000	ug/L	11/04/14 19:24	1
PDY	0.000		0.16	0.055	0.000	ug/L	11/04/14 10:24	1
Nitrohonzono	0.000		0.10	0.000	0.055	ug/L	11/04/14 19:24	
Total	0.11		0.16	0.11	0.055	ug/L	11/04/14 19:24	1
Nitroshusoria	0.11	0	0.10	0.11	0.055	ug/L	11/04/14 19.24	1
	0.55		0.71	0.55	0.30	ug/L	11/04/14 19:24	
PEIN	0.55	0	0.71	0.55	0.33	ug/L	11/04/14 19:24	1
Surrogate	%Recovery Q	ualifier	Limits			Prepared	Analyzed	Dil Fac
3,4-Dinitrotoluene	97		79 _ 111			10/27/14 08:44	11/04/14 19:24	1
3,4-Dinitrotoluene	128 Q		79 _ 111			10/27/14 08:44	11/07/14 01:09	1
Method: 6010B - Metals (ICP) -	Total Recoverable							
Analyte	Result	Qualifier	LOQ	LOD	DL	Unit D	Analyzed	Dil Fac
Arsenic	10	U	10	10	2.9	ug/L	10/29/14 12:51	1
Chromium	4.0	U	7.0	4.0	0.55	ug/L	10/29/14 12:51	1
Cobalt	4.0	U	7.0	4.0	0.56	ug/L	10/29/14 12:51	1
Lead	5.0	U	10	5.0	1.9	ug/L	10/29/14 12:51	1
Selenium	10	U	15	10	4.0	ug/L	10/29/14 12:51	1
Silver	5.0	U	7.0	5.0	0.92	ug/L	10/29/14 12:51	1
Vanadium	4.0	U	7.0	4.0	2.4	ug/L	10/29/14 12:51	1
Barium	5.0	U	200	5.0	1.0	ug/L	10/29/14 12:51	1

		Client Sa	mple Re	sults						1
Client: Environmental Quality M Project/Site: RVAAP (OH)	gt., Inc.					Те	stAmerio	ca Job ID: 240-	43449-1	2
Client Sample ID: FWGEG Date Collected: 10/21/14 16:30 Date Received: 10/23/14 10:07		Lal	b Sam	ole ID: 240-4 Matri	3449-4 x: Water	3				
Method: 6010B - Metals (ICP)	- Total Recoverable	(Continued)	100		DI	Unit	D	Applyzed	Dil Ess	4
	1000		5000	1000	260			10/29/14 12:51	1	
Copper	10		25	10	1 9	ug/L		10/29/14 12:51		0
Magnesium	300	U	5000	300	55	ug/L		10/29/14 12:51	1	
Manganese	0.56		15	5.0	0.46	ug/L		10/29/14 12:51	1	
Nickel	0.00		40	5.0	0.76	ug/l		10/29/14 12:51	· · · · · · · · 1	
Potassium	88		5000	900	70	ug/L		10/29/14 12:51	1	6
Analyte Aluminum Antimony	Result 60 1.0	Qualifier U U	60 2.0	60 1.0	DL 20 0.33	Unit ug/L ug/L	D	Analyzed 10/29/14 11:35 10/29/14 11:35	Dil Fac 1	1
Beryllium	1.0	U	1.0	1.0	0.50	ug/L		10/29/14 11:35	1	
Cadmium	1.0	U	2.0	1.0	0.40	ug/L		10/29/14 11:35	1	
Iron	100	U	150	100	44	ug/L		10/29/14 11:35	1	
Sodium	400	U	1000	400	160	ug/L		10/29/14 11:35	1	
Thallium	1.5	U	2.0	1.5	0.79	ug/L		10/29/14 11:35	1	-
Zinc	50	U	50	50	27	ug/L		10/29/14 11:35	1	1
Method: 7470A - Mercury (CV	/AA)									4
Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac	
Hg	0.20	U	0.20	0.20	0.090	ug/L		10/30/14 14:53	1	1
General Chemistry										
Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac	
Cyanide, Total	0.0050	U	0.010	0.0050	0.0020	mg/L		10/31/14 14:09	1	
Nitrocellulose	1.0	U	2.0	1.0	0.48	mg/L		10/29/14 14:25	1	

Client Sample ID: FWGTEAM2TRIP

Date Collected: 10/22/14 08:00 Date Received: 10/23/14 10:07

Method: 8260B - Volatile Organ	nic Compounds (GC	/MS)								
Analyte	Result	Qualifier		DOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
1,1,1-Trichloroethane	0.50	U		1.0	0.50	0.22	ug/L		10/30/14 17:18	1
1,1,2,2-Tetrachloroethane	0.50	U		1.0	0.50	0.22	ug/L		10/30/14 17:18	1
1,1,2-Trichloroethane	0.50	U		1.0	0.50	0.17	ug/L		10/30/14 17:18	1
1,1-Dichloroethane	0.50	U		1.0	0.50	0.26	ug/L		10/30/14 17:18	1
1,1-Dichloroethene	0.50	U		1.0	0.50	0.45	ug/L		10/30/14 17:18	1
1,2-Dichloroethane	0.50	U		1.0	0.50	0.20	ug/L		10/30/14 17:18	1
1,2-Dichloroethene, Total	1.0	U		2.0	1.0	0.20	ug/L		10/30/14 17:18	1
1,2-Dichloropropane	0.50	U		1.0	0.50	0.22	ug/L		10/30/14 17:18	1
2-Hexanone	1.0	U		10	1.0	3.9	ug/L		10/30/14 17:18	1
Bromochloromethane	0.50	U		1.0	0.50	0.25	ug/L		10/30/14 17:18	1
Acetone	4.0	J		10	2.0	3.4	ug/L		10/30/14 17:18	1
Benzene	0.25	U		1.0	0.25	0.24	ug/L		10/30/14 17:18	1
Bromoform	1.0	U		1.0	1.0	0.56	ug/L		10/30/14 17:18	1
Bromomethane	1.0	U		1.0	1.0	0.63	ug/L		10/30/14 17:18	1
Carbon disulfide	0.25	U		1.0	0.25	0.28	ug/L		10/30/14 17:18	1
Carbon tetrachloride	0.25	U		1.0	0.25	0.17	ug/L		10/30/14 17:18	1
Chlorobenzene	0.50	U		1.0	0.50	0.19	ug/L		10/30/14 17:18	1
Chloroethane	0.50	U		1.0	0.50	0.33	ug/L		10/30/14 17:18	1
Chloroform	0.50	U		1.0	0.50	0.21	ug/L		10/30/14 17:18	1
Chloromethane	0.50	U		1.0	0.50	0.44	ug/L		10/30/14 17:18	1
cis-1,2-Dichloroethene	0.50	U		1.0	0.50	0.20	ug/L		10/30/14 17:18	1
cis-1,3-Dichloropropene	0.25	U		1.0	0.25	0.46	ug/L		10/30/14 17:18	1
Bromodichloromethane	0.25	U		1.0	0.25	0.15	ug/L		10/30/14 17:18	1
Ethylbenzene	0.50	U		1.0	0.50	0.23	ug/L		10/30/14 17:18	1
1,2-Dibromoethane	0.50	U		1.0	0.50	0.19	ug/L		10/30/14 17:18	1
m-Xylene & p-Xylene	0.50	U		2.0	0.50	0.22	ug/L		10/30/14 17:18	1
2-Butanone (MEK)	1.0	U		10	1.0	4.1	ug/L		10/30/14 17:18	1
4-Methyl-2-pentanone (MIBK)	1.0	U		10	1.0	3.6	ug/L		10/30/14 17:18	1
Methylene Chloride	0.50	U		1.0	0.50	0.28	ug/L		10/30/14 17:18	1
o-Xylene	0.25	U		1.0	0.25	0.21	ug/L		10/30/14 17:18	1
Styrene	0.25	U		1.0	0.25	0.45	ug/L		10/30/14 17:18	1
Tetrachloroethene	0.50	U		1.0	0.50	0.20	ug/L		10/30/14 17:18	1
Toluene	0.25	U		1.0	0.25	0.22	ug/L		10/30/14 17:18	1
trans-1,2-Dichloroethene	0.50	U		1.0	0.50	0.26	ug/L		10/30/14 17:18	1
trans-1,3-Dichloropropene	0.50	U		1.0	0.50	0.56	ug/L		10/30/14 17:18	1
Trichloroethene	0.50	U		1.0	0.50	0.15	ug/L		10/30/14 17:18	1
Vinyl chloride	0.50	U		1.0	0.50	0.29	ug/L		10/30/14 17:18	1
Xylenes, Total	1.0	U		2.0	1.0	0.43	ug/L		10/30/14 17:18	1
Dibromochloromethane	0.50	U		1.0	0.50	0.43	ug/L		10/30/14 17:18	1
Surrogate	%Recovery Qua	alifier	Limits				Pi	repared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	92		70 - 120	-					10/30/14 17:18	1
4-Bromofluorobenzene (Surr)	87		75 - 120						10/30/14 17:18	1
Toluene-d8 (Surr)	92		85 - 120						10/30/14 17:18	1
Dibromofluoromethane (Surr)	93		85 - 115						10/30/14 17:18	1

Lab Sample ID: 240-43449-5

Matrix: Water

5

8

Client Sample ID: FWGLL3MW-246-504-GW

Date Collected: 10/22/14 11:10 Date Received: 10/23/14 10:07

Method: 8260B - Volatile Organic	Compounds (GC/MS)						
Analyte	Res	ult Qualifier	LOQ	LOD	DL	Unit	D Analyzed	Dil Fac
1,1,1-Trichloroethane	0.	50 U	1.0	0.50	0.22	ug/L	10/30/14 17:41	1
1,1,2,2-Tetrachloroethane	0.	50 U	1.0	0.50	0.22	ug/L	10/30/14 17:41	1
1,1,2-Trichloroethane	0.	50 U	1.0	0.50	0.17	ug/L	10/30/14 17:41	1
1,1-Dichloroethane	0.	50 U	1.0	0.50	0.26	ug/L	10/30/14 17:41	1
1,1-Dichloroethene	0.	50 U	1.0	0.50	0.45	ug/L	10/30/14 17:41	1
1,2-Dichloroethane	0.	50 U	1.0	0.50	0.20	ug/L	10/30/14 17:41	1
1,2-Dichloroethene, Total	1	.0 U	2.0	1.0	0.20	ug/L	10/30/14 17:41	1
1,2-Dichloropropane	0.	50 U	1.0	0.50	0.22	ug/L	10/30/14 17:41	1
2-Hexanone	1	.0 U	10	1.0	3.9	ug/L	10/30/14 17:41	1
Bromochloromethane	0.	50 U	1.0	0.50	0.25	ug/L	10/30/14 17:41	1
Acetone	2	.0 U	10	2.0	3.4	ug/L	10/30/14 17:41	1
Benzene	0.	25 U	1.0	0.25	0.24	ug/L	10/30/14 17:41	1
Bromoform	1	.0 U	1.0	1.0	0.56	ug/L	10/30/14 17:41	1
Bromomethane	1	.0 U	1.0	1.0	0.63	ug/L	10/30/14 17:41	1
Carbon disulfide	0.	25 U	1.0	0.25	0.28	ug/L	10/30/14 17:41	1
Carbon tetrachloride	0.	25 U	1.0	0.25	0.17	ug/L	10/30/14 17:41	1
Chlorobenzene	0.	50 U	1.0	0.50	0.19	ug/L	10/30/14 17:41	1
Chloroethane	0.	50 U	1.0	0.50	0.33	ua/L	10/30/14 17:41	1
Chloroform	0.	50 U	1.0	0.50	0.21	ua/L	10/30/14 17:41	1
Chloromethane	0	50 U	1.0	0.50	0.44	ug/L	10/30/14 17:41	1
cis-1 2-Dichloroethene	0.	50 U	1.0	0.50	0.20	ug/L	10/30/14 17:41	. 1
cis-1.3-Dichloropropene	0.	25 U	1.0	0.25	0.46	ug/L	10/30/14 17:41	
Bromodichloromethane	0.	25 U	1.0	0.25	0.15	ug/L	10/30/14 17:41	. 1
Ethylbenzene	0.	50 11	1.0	0.50	0.23	ug/L	10/30/14 17:41	1
1 2-Dibromoethane	0.	50 11	1.0	0.50	0.19	ug/L	10/30/14 17:41	
m-Xylene & n-Xylene	0.	50 11	1.0	0.50	0.13	ug/L	10/30/14 17:41	1
2 Butanone (MEK)	0.		2.0	1.0	0.22 A 1	ug/L	10/30/14 17:41	1
4 Mothyd 2 poptopopo (MIRK)		.0 0	10	1.0	2.6	ug/L	10/30/14 17:41	
Methylene Chloride	0	50 11	10	0.50	0.28	ug/L	10/30/14 17:41	1
	0.	25 11	1.0	0.30	0.20	ug/L	10/30/14 17:41	1
Chiropo	0.	25 0	1.0	0.25	0.21	ug/L	10/20/14 17:41	۱ ۲
Styrene	0.	25 0	1.0	0.25	0.45	ug/L	10/30/14 17:41	1
	0.		1.0	0.50	0.20	ug/L	10/30/14 17:41	1
Toluene	0.	25 U	1.0	0.25	0.22	ug/L	10/30/14 17:41	1
trans-1,2-Dichloroethene	0.		1.0	0.50	0.26	ug/L	10/30/14 17:41	1
trans-1,3-Dichloropropene	0.	50 0	1.0	0.50	0.56	ug/L	10/30/14 17:41	1
Irichloroethene	0.	50 U	1.0	0.50	0.15	ug/L	10/30/14 17:41	1
Vinyl chloride	0.	50 U	1.0	0.50	0.29	ug/L	10/30/14 17:41	1
Xylenes, Total	1	.0 U	2.0	1.0	0.43	ug/L	10/30/14 17:41	1
Dibromochloromethane	0.	50 U	1.0	0.50	0.43	ug/L	10/30/14 17:41	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	89		70 - 120				10/30/14 17:41	1
4-Bromofluorobenzene (Surr)	88		75 - 120				10/30/14 17:41	1
Toluene-d8 (Surr)	92		85 - 120				10/30/14 17:41	1
Dibromofluoromethane (Surr)	94		85 - 115				10/30/14 17:41	1

Method: 8270C - Semivolatile Organic Compounds (GC/MS) - RE

Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
Acenaphthene	0.10	UH	0.21	0.10	0.046	ug/L		11/12/14 13:44	1
Acenaphthylene	0.10	UH	0.21	0.10	0.050	ug/L		11/12/14 13:44	1

TestAmerica Canton

TestAmerica Job ID: 240-43449-1

Lab Sample ID: 240-43449-6

Matrix: Water

Client Sample ID: FWGLL3MW-246-504-GW Date Collected: 10/22/14 11:10 Date Received: 10/23/14 10:07

TestAmerica	lah		240 4	2440
restAmerica	JOD	ID.	240-4	3449-

Lab Sample ID: 240-43449-6 Matrix: Water

Method: 8270C - Semivolatile Or	rganic Compound	s (GC/MS) - Qualifier	RE (Continued)		Ы	Unit	р	Analyzed	Dil Eac
Anthracene	0.10		0.21	0.10	0.092			11/12/14 13:44	1
Renzo[a]anthracene	0.10	ин	0.21	0.10	0.032	ug/L		11/12/14 13:44	
Benzo[a]nvrene	0.10	ин	0.21	0.10	0.054	ug/L		11/12/14 13:44	1
Benzo[h]fluoranthene	0.10	ин	0.21	0.10	0.034	ug/L		11/12/14 13:44	1
Benzola hilperviene	0.10		0.21	0.10	0.049	ug/L		11/12/14 13:44	
Benzoig acid	0.10	ин	26	21	10	ug/L		11/12/14 13:44	1
Benzolk/fluoranthana	0.10		0.21	0.10	0.047	ug/L		11/12/14 13:44	1
Benzul alashal	0.10		5.2	0.10	0.047	ug/L		11/12/14 13:44	
Biel2 eblereethew/methene	0.52		5.2	0.52	0.40	ug/L		11/12/14 13:44	1
Bis(2-chloroethoxy)methane	0.52		1.0	0.52	0.33	ug/L		11/12/14 13:44	1
Bis(2-chloroethyl)ether	0.10		1.0	0.10	0.10	ug/L		11/12/14 13:44	1
A Brownen bound about attend	5.2		5.2	5.2	1.0	ug/L		11/12/14 13:44	1
4-Bromophenyi phenyi ether	0.52	UH	2.1	0.52	0.23	ug/L		11/12/14 13:44	1
Butyl benzyl phthalate	0.52	UH	5.2	0.52	0.27	ug/L		11/12/14 13:44	
Carbazole	0.52	U H	1.0	0.52	0.29	ug/L		11/12/14 13:44	1
4-Chloroaniline	0.52	UH	2.1	0.52	0.22	ug/L		11/12/14 13:44	1
4-Chloro-3-methylphenol	0.52	UH	2.1	0.52	0.22	ug/L		11/12/14 13:44	1
2-Chloronaphthalene	0.52	υн	1.0	0.52	0.10	ug/L		11/12/14 13:44	1
2-Chlorophenol	0.52	UH	1.0	0.52	0.30	ug/L		11/12/14 13:44	1
4-Chlorophenyl phenyl ether	0.52	UH	2.1	0.52	0.31	ug/L		11/12/14 13:44	1
Chrysene	0.10	UH	0.21	0.10	0.052	ug/L		11/12/14 13:44	1
Dibenz(a,h)anthracene	0.10	UH	0.21	0.10	0.046	ug/L		11/12/14 13:44	1
Dibenzofuran	0.10	UН	1.0	0.10	0.021	ug/L		11/12/14 13:44	1
1,2-Dichlorobenzene	0.52	UH	1.0	0.52	0.30	ug/L		11/12/14 13:44	1
1,3-Dichlorobenzene	0.52	UH	1.0	0.52	0.24	ug/L		11/12/14 13:44	1
1,4-Dichlorobenzene	0.52	UH	1.0	0.52	0.35	ug/L		11/12/14 13:44	1
3,3'-Dichlorobenzidine	1.0	UH	5.2	1.0	0.39	ug/L		11/12/14 13:44	1
2,4-Dichlorophenol	0.52	UH	2.1	0.52	0.20	ug/L		11/12/14 13:44	1
Diethyl phthalate	1.0	UH	2.1	1.0	0.62	ug/L		11/12/14 13:44	1
2,4-Dimethylphenol	0.52	UH	2.1	0.52	0.26	ug/L		11/12/14 13:44	1
Dimethyl phthalate	0.52	UH	2.1	0.52	0.30	ug/L		11/12/14 13:44	1
Di-n-butyl phthalate	5.2	UH	5.2	5.2	1.8	ug/L		11/12/14 13:44	1
4,6-Dinitro-2-methylphenol	4.2	UH	5.2	4.2	2.5	ug/L		11/12/14 13:44	1
2,4-Dinitrophenol	1.0	UН	5.2	1.0	0.33	ug/L		11/12/14 13:44	1
Di-n-octyl phthalate	0.52	UH	2.1	0.52	0.24	ug/L		11/12/14 13:44	1
Fluoranthene	0.10	UH	0.21	0.10	0.046	ug/L		11/12/14 13:44	1
Fluorene	0.10	UН	0.21	0.10	0.042	ug/L		11/12/14 13:44	1
Hexachlorobenzene	0.10	UH	0.21	0.10	0.089	ug/L		11/12/14 13:44	1
Hexachlorobutadiene	0.52	UH	1.0	0.52	0.28	ug/L		11/12/14 13:44	1
Hexachlorocyclopentadiene	0.52	UН	10	0.52	0.25	ug/L		11/12/14 13:44	1
Hexachloroethane	0.52	UН	1.0	0.52	0.20	ug/L		11/12/14 13:44	1
Indeno[1,2,3-cd]pyrene	0.10	UH	0.21	0.10	0.045	ug/L		11/12/14 13:44	1
Isophorone	0.52	UН	1.0	0.52	0.28	ug/L		11/12/14 13:44	1
2-Methylnaphthalene	0.10	UН	0.21	0.10	0.094	ug/L		11/12/14 13:44	1
2-Methylphenol	0.52	UH	1.0	0.52	0.18	ug/L		11/12/14 13:44	1
3 & 4 Methylphenol	1.0	UН	2.1	1.0	0.83	ug/L		11/12/14 13:44	1
Naphthalene	0.10	UН	0.21	0.10	0.065	ug/L		11/12/14 13:44	1
2-Nitroaniline	0.52	UH	2.1	0.52	0.22	ug/L		11/12/14 13:44	1
3-Nitroaniline	0.52	UН	2.1	0.52	0.29	ug/L		11/12/14 13:44	1
4-Nitroaniline	0.52	UH	2.1	0.52	0.23	ug/L		11/12/14 13:44	1

TestAmerica Canton

LOQ

2.1

5.2

1.0

1.0

1.0

5.2

0.21

1.0

0.21

1.0

5.2

5.2

Limits

50 - 110

20 - 110

40 - 110

10 - 115

50 - 135

40 - 125

LOD

0.52

4.2

0.52

0.52

0.52

1.0

0.10

1.0

0.10

0.52

0.52

0.52

DL Unit

0.29 ug/L

0.30 ug/L

0.25 ug/L

0.32 ug/L

0.42 ug/L

0.28 ug/L

0.62 ug/L

0.044 ug/L

0.29 ug/L

0.31 ug/L

0.25 ug/L

Prepared

11/05/14 07:46

11/05/14 07:46

11/05/14 07:46

11/05/14 07:46

11/05/14 07:46

11/05/14 07:46

0.064 ug/L

Analyte

2-Nitrophenol

4-Nitrophenol

N-Nitrosodi-n-propylamine

2,2'-oxybis[1-chloropropane]

N-Nitrosodiphenylamine

1,2,4-Trichlorobenzene

2,4,5-Trichlorophenol

2,4,6-Trichlorophenol

2-Fluorobiphenyl (Surr)

2-Fluorophenol (Surr)

Terphenyl-d14 (Surr)

2,4,6-Tribromophenol (Surr)

Phenol-d5 (Surr)

Nitrobenzene-d5 (Surr)

Pentachlorophenol

Phenanthrene

Phenol

Pyrene

Surrogate

Client Sample ID: FWGLL3MW-246-504-GW Date Collected: 10/22/14 11:10 Date Received: 10/23/14 10:07

Method: 8270C - Semivolatile Organic Compounds (GC/MS) - RE (Continued)

Result Qualifier

0.52 U H

4.2 UH

0.52 U H

0.52 UH

0.52 U H

1.0 UH

0.10 UH

1.0 UH

0.10 UH

0.52 UH

0.52 U H

0.52 U H

%Recovery Qualifier

74

71

76

73

81

81

TestAmerica Job ID: 240-43449-1

Lab Sample ID: 240-43449-6 Matrix: Water

Analyzed

11/12/14 13:44

11/12/14 13:44

11/12/14 13:44

11/12/14 13:44

11/12/14 13:44

11/12/14 13:44

11/12/14 13:44

11/12/14 13:44

11/12/14 13:44

11/12/14 13:44

11/12/14 13:44

11/12/14 13:44

Analyzed

11/12/14 13:44

11/12/14 13:44

11/12/14 13:44

11/12/14 13:44

11/12/14 13:44

11/12/14 13:44

D

Method: 8081A	 Organochlorine 	Pesticides (GC) - RE	

method, ovorra - organoonik) - I K						
Analyte	Resu	lt Qualifier	LOQ	LOD	DL	Unit D	Analyzed	Dil Fac
4,4'-DDD	0.04	8 U H	0.048	0.048	0.017	ug/L	11/17/14 21:05	1
4,4'-DDE	0.04	8 U H	0.048	0.048	0.0087	ug/L	11/17/14 21:05	1
4,4'-DDT	0.04	8 U H	0.048	0.048	0.013	ug/L	11/17/14 21:05	1
Aldrin	0.04	8 U H	0.048	0.048	0.013	ug/L	11/17/14 21:05	1
alpha-BHC	0.04	8 U H	0.048	0.048	0.013	ug/L	11/17/14 21:05	1
alpha-Chlordane	0.04	8 U H	0.048	0.048	0.012	ug/L	11/17/14 21:05	1
beta-BHC	0.04	8 U H	0.048	0.048	0.013	ug/L	11/17/14 21:05	1
delta-BHC	0.04	8 U H	0.048	0.048	0.028	ug/L	11/17/14 21:05	1
Dieldrin	0.04	8 U H	0.048	0.048	0.013	ug/L	11/17/14 21:05	1
Endosulfan I	0.04	8 U H	0.048	0.048	0.015	ug/L	11/17/14 21:05	1
Endosulfan II	0.04	8 U H	0.048	0.048	0.014	ug/L	11/17/14 21:05	1
Endosulfan sulfate	0.04	8 U H	0.048	0.048	0.011	ug/L	11/17/14 21:05	1
Endrin	0.04	8 U H	0.048	0.048	0.012	ug/L	11/17/14 21:05	1
Endrin aldehyde	0.04	8 U H	0.048	0.048	0.0077	ug/L	11/17/14 21:05	1
Endrin ketone	0.04	8 U H	0.048	0.048	0.0087	ug/L	11/17/14 21:05	1
gamma-BHC (Lindane)	0.04	8 U H	0.048	0.048	0.012	ug/L	11/17/14 21:05	1
gamma-Chlordane	0.04	8 U H	0.048	0.048	0.0096	ug/L	11/17/14 21:05	1
Heptachlor	0.04	8 U H	0.048	0.048	0.0048	ug/L	11/17/14 21:05	1
Heptachlor epoxide	0.04	8 U H	0.048	0.048	0.013	ug/L	11/17/14 21:05	1
Methoxychlor	0.04	8 U H	0.096	0.048	0.012	ug/L	11/17/14 21:05	1
Toxaphene	0.9	6 U H	1.9	0.96	0.19	ug/L	11/17/14 21:05	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
DCB Decachlorobiphenyl	77		30 - 135			11/05/14 07:38	11/17/14 21:05	1
DCB Decachlorobiphenyl	76		30 - 135			11/05/14 07:38	11/17/14 21:05	1
Tetrachloro-m-xylene	98		25 - 140			11/05/14 07:38	11/17/14 21:05	1
Tetrachloro-m-xylene	102		25 - 140			11/05/14 07:38	11/17/14 21:05	1

LOQ

0.52

0.52

0.52

0.52

0.52

0.52

0.52

LOQ

20

Limits

40 _ 140

40 _ 140

40 _ 135

40 - 135

LOD

0.21

0.21

0.21

0.42

0.21

0.21

0.21

LOD

6.0

DL Unit

0.18 ug/L

0.14 ug/L

0.17 ug/L

0.23 ug/L

0.10 ug/L

0.17 ug/L

0.18 ug/L

DL Unit

2.4 ug/L

Prepared

10/24/14 08:40

10/24/14 08:40

10/24/14 08:40

10/24/14 08:40

D

Analyte

Aroclor-1016

Aroclor-1221

Aroclor-1232

Aroclor-1242

Aroclor-1248

Aroclor-1254

Aroclor-1260

Surrogate

Analyte

Nitroguanidine

Tetrachloro-m-xylene

Tetrachloro-m-xylene

DCB Decachlorobiphenyl

DCB Decachlorobiphenyl

Client Sample ID: FWGLL3MW-246-504-GW Date Collected: 10/22/14 11:10 Date Received: 10/23/14 10:07

Method: 8330 Modified - Nitroguanidine (HPLC)

Method: 8082 - Polychlorinated Biphenyls (PCBs) by Gas Chromatography

Result Qualifier

0.21 U

0.21 U

0.21 U

0.42 U

0.21 U

0.21 U

0.21 U

Result Qualifier

6.0 U

%Recovery Qualifier

81

78

84

80

Lab Sample ID: 240-43449-6 Matrix: Water

Analyzed

10/29/14 19:54

10/29/14 19:54

10/29/14 19:54

10/29/14 19:54

10/29/14 19:54

10/29/14 19:54

10/29/14 19:54

Analyzed

10/29/14 19:54

10/29/14 19:54

10/29/14 19:54

10/29/14 19:54

Analyzed

11/04/14 13:38

D

449-6 Water	3
	4
Dil Fac	5
1	
1	6
1	
1	
1	
1	8
1	
Dil Fac	9
1	
1	
1	
1	
	12
Dil Fac	
1	13
	1/

Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
1,3,5-Trinitrobenzene	0.053	U	0.16	0.053	0.033	ug/L	_	11/04/14 20:21	1
1,3-Dinitrobenzene	0.11	U	0.16	0.11	0.053	ug/L		11/04/14 20:21	1
2,4,6-Trinitrotoluene	0.11	U	0.16	0.11	0.053	ug/L		11/04/14 20:21	1
2,4-Dinitrotoluene	0.11	U	0.14	0.11	0.053	ug/L		11/04/14 20:21	1
2,6-Dinitrotoluene	0.11	U	0.14	0.11	0.053	ug/L		11/04/14 20:21	1
2-Amino-4,6-dinitrotoluene	0.38	М	0.16	0.11	0.016	ug/L		11/04/14 20:21	1
2-Nitrotoluene	0.11	U	0.53	0.11	0.093	ug/L		11/04/14 20:21	1
3-Nitrotoluene	0.11	U	0.53	0.11	0.060	ug/L		11/04/14 20:21	1
4-Nitrotoluene	0.11	U	0.53	0.11	0.093	ug/L		11/04/14 20:21	1
4-Amino-2,6-dinitrotoluene	0.34		0.16	0.11	0.053	ug/L		11/04/14 20:21	1
HMX	0.053	U	0.16	0.053	0.038	ug/L		11/04/14 20:21	1
RDX	0.16		0.16	0.053	0.038	ug/L		11/04/14 20:21	1
Nitrobenzene	0.11	U	0.16	0.11	0.053	ug/L		11/04/14 20:21	1
Tetryl	0.11	U	0.16	0.11	0.053	ug/L		11/04/14 20:21	1
Nitroglycerin	0.53	U	0.69	0.53	0.35	ug/L		11/04/14 20:21	1
PETN	0.53	U	0.69	0.53	0.32	ug/L		11/04/14 20:21	1
Surrogate	%Recovery Qu	ualifier	Limits			Prepared		Analyzed	Dil Fac
3,4-Dinitrotoluene	94 M		79 _ 111			10/27/14 08:4	14	11/04/14 20:21	1
3,4-Dinitrotoluene	104		79 _ 111			10/27/14 08:4	14	11/07/14 02:15	1
General Chemistry									
Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
Cyanide, Total	0.0050	U	0.010	0.0050	0.0020	mg/L	_	10/31/14 14:09	1
Nitrocellulose	1.0	U	2.0	1.0	0.48	mg/L		10/29/14 14:27	1

TestAmerica Canton

0.48 mg/L

TestAmerica Job ID: 240-43449-1

Client Sample ID: FWGLL3MW-246-504-GF

Date Collected: 10/22/14 11:10 Date Received: 10/23/14 10:07

Lab Sample ID: 240-43449-7 Matrix: Water

5

8 9

Method: 6010B - Metals (ICP) - Total R	ecoverable								
Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
Arsenic	10	U	10	10	2.9	ug/L		10/29/14 12:55	1
Chromium	4.0	U	7.0	4.0	0.55	ug/L		10/29/14 12:55	1
Cobalt	0.59	J	7.0	4.0	0.56	ug/L		10/29/14 12:55	1
Lead	5.0	U	10	5.0	1.9	ug/L		10/29/14 12:55	1
Selenium	10	U	15	10	4.0	ug/L		10/29/14 12:55	1
Silver	5.0	U	7.0	5.0	0.92	ug/L		10/29/14 12:55	1
Vanadium	4.0	U	7.0	4.0	2.4	ug/L		10/29/14 12:55	1
Barium	18	J	200	5.0	1.0	ug/L		10/29/14 12:55	1
Calcium	24000		5000	1000	260	ug/L		10/29/14 12:55	1
Copper	10	U	25	10	1.9	ug/L		10/29/14 12:55	1
Magnesium	7700		5000	300	55	ug/L		10/29/14 12:55	1
Manganese	61		15	5.0	0.46	ug/L		10/29/14 12:55	1
Nickel	3.9	J	40	5.0	0.76	ug/L		10/29/14 12:55	1
Potassium	1500	J	5000	900	70	ug/L		10/29/14 12:55	1
– Method: 6020 - Metals (ICP/MS) - Total	Recoverab	le							
Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
Aluminum	60	U	60	60	20	ug/L		10/29/14 11:43	1
Antimony	0.33	J	2.0	1.0	0.33	ug/L		10/29/14 11:43	1
Beryllium	1.0	U	1.0	1.0	0.50	ug/L		10/29/14 11:43	1
Cadmium	1.0	U	2.0	1.0	0.40	ug/L		10/29/14 11:43	1
Iron	100	U	150	100	44	ug/L		10/29/14 11:43	1
Sodium	4000		1000	400	160	ug/L		10/29/14 11:43	1
Thallium	1.5	U	2.0	1.5	0.79	ug/L		10/29/14 11:43	1
Zinc	50	U	50	50	27	ug/L		10/29/14 11:43	1
 Method: 7470A - Mercury (CVAA)									
Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
Hg	0.20	U	0.20	0.20	0.090	ug/L		10/30/14 15:10	1

TestAmerica Job ID: 240-43449-1

Lab Sample ID: 240-43449-8

Matrix: Water

Client Sample ID: FWGLL3MW-DUP1-506-GW

Date Collected: 10/22/14 12:00 Date Received: 10/23/14 10:07

Method: 8260B - Volatile Organ	nic Compounds (GC	:/MS)								
Analyte	Result	Qualifier	L	_OQ	LOD	DL	Unit	D	Analyzed	Dil Fac
1,1,1-Trichloroethane	0.50	U		1.0	0.50	0.22	ug/L		10/30/14 18:04	1
1,1,2,2-Tetrachloroethane	0.50	U		1.0	0.50	0.22	ug/L		10/30/14 18:04	1
1,1,2-Trichloroethane	0.50	U		1.0	0.50	0.17	ug/L		10/30/14 18:04	1
1,1-Dichloroethane	0.50	U		1.0	0.50	0.26	ug/L		10/30/14 18:04	1
1,1-Dichloroethene	0.50	U		1.0	0.50	0.45	ug/L		10/30/14 18:04	1
1,2-Dichloroethane	0.50	U		1.0	0.50	0.20	ug/L		10/30/14 18:04	1
1,2-Dichloroethene, Total	1.0	U		2.0	1.0	0.20	ug/L		10/30/14 18:04	1
1,2-Dichloropropane	0.50	U		1.0	0.50	0.22	ug/L		10/30/14 18:04	1
2-Hexanone	1.0	U		10	1.0	3.9	ug/L		10/30/14 18:04	1
Bromochloromethane	0.50	U		1.0	0.50	0.25	ug/L		10/30/14 18:04	1
Acetone	2.0	U		10	2.0	3.4	ug/L		10/30/14 18:04	1
Benzene	0.25	U		1.0	0.25	0.24	ug/L		10/30/14 18:04	1
Bromoform	1.0	U		1.0	1.0	0.56	ug/L		10/30/14 18:04	1
Bromomethane	1.0	U		1.0	1.0	0.63	ug/L		10/30/14 18:04	1
Carbon disulfide	0.25	U		1.0	0.25	0.28	ug/L		10/30/14 18:04	1
Carbon tetrachloride	0.25	U		1.0	0.25	0.17	ug/L		10/30/14 18:04	1
Chlorobenzene	0.50	U		1.0	0.50	0.19	ug/L		10/30/14 18:04	1
Chloroethane	0.50	U		1.0	0.50	0.33	ug/L		10/30/14 18:04	1
Chloroform	0.50	U		1.0	0.50	0.21	ug/L		10/30/14 18:04	1
Chloromethane	0.50	U		1.0	0.50	0.44	ug/L		10/30/14 18:04	1
cis-1,2-Dichloroethene	0.50	U		1.0	0.50	0.20	ug/L		10/30/14 18:04	1
cis-1,3-Dichloropropene	0.25	U		1.0	0.25	0.46	ug/L		10/30/14 18:04	1
Bromodichloromethane	0.25	U		1.0	0.25	0.15	ug/L		10/30/14 18:04	1
Ethylbenzene	0.50	U		1.0	0.50	0.23	ug/L		10/30/14 18:04	1
1,2-Dibromoethane	0.50	U		1.0	0.50	0.19	ug/L		10/30/14 18:04	1
m-Xylene & p-Xylene	0.50	U		2.0	0.50	0.22	ug/L		10/30/14 18:04	1
2-Butanone (MEK)	1.0	U		10	1.0	4.1	ug/L		10/30/14 18:04	1
4-Methyl-2-pentanone (MIBK)	1.0	U		10	1.0	3.6	ug/L		10/30/14 18:04	1
Methylene Chloride	0.50	U		1.0	0.50	0.28	ug/L		10/30/14 18:04	1
o-Xylene	0.25	U		1.0	0.25	0.21	ug/L		10/30/14 18:04	1
Styrene	0.25	U		1.0	0.25	0.45	ug/L		10/30/14 18:04	1
Tetrachloroethene	0.50	U		1.0	0.50	0.20	ug/L		10/30/14 18:04	1
Toluene	0.25	U		1.0	0.25	0.22	ug/L		10/30/14 18:04	1
trans-1,2-Dichloroethene	0.50	U		1.0	0.50	0.26	ug/L		10/30/14 18:04	1
trans-1,3-Dichloropropene	0.50	U		1.0	0.50	0.56	ug/L		10/30/14 18:04	1
Trichloroethene	0.50	U		1.0	0.50	0.15	ug/L		10/30/14 18:04	1
Vinyl chloride	0.50	U		1.0	0.50	0.29	ug/L		10/30/14 18:04	1
Xylenes, Total	1.0	U		2.0	1.0	0.43	ug/L		10/30/14 18:04	1
Dibromochloromethane	0.50	U		1.0	0.50	0.43	ug/L		10/30/14 18:04	1
Surrogate	%Recovery Qu	alifier	Limits	_			Pre	epared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	88		70 - 120						10/30/14 18:04	1
4-Bromofluorobenzene (Surr)	88		75 - 120						10/30/14 18:04	1
Toluene-d8 (Surr)	93		85 - 120						10/30/14 18:04	1
Dibromofluoromethane (Surr)	93		85 - 115						10/30/14 18:04	1

Method: 8270C - Semivolatile Organic Compounds (GC/MS) - RE

Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
Acenaphthene	0.10	UH	0.21	0.10	0.046	ug/L		11/12/14 14:09	1
Acenaphthylene	0.10	UH	0.21	0.10	0.050	ug/L		11/12/14 14:09	1

LOQ

LOD

DL Unit

Analyte

4-Nitroaniline

Client Sample ID: FWGLL3MW-DUP1-506-GW Date Collected: 10/22/14 12:00 Date Received: 10/23/14 10:07

Method: 8270C - Semivolatile Organic Compounds (GC/MS) - RE (Continued)

Result Qualifier

Lab Sample ID: 240-43449-8 Matrix: Water

Analyzed

D

•								
Anthracene	0.10	UΗ	0.21	0.10	0.092	ug/L	11/12/14 14:09	1
Benzo[a]anthracene	0.10	UΗ	0.21	0.10	0.031	ug/L	11/12/14 14:09	1
Benzo[a]pyrene	0.10	UН	0.21	0.10	0.054	ug/L	11/12/14 14:09	1
Benzo[b]fluoranthene	0.10	UН	0.21	0.10	0.041	ug/L	11/12/14 14:09	1
Benzo[g,h,i]perylene	0.10	UН	0.21	0.10	0.048	ug/L	11/12/14 14:09	1
Benzoic acid	21	UН	26	21	10	ug/L	11/12/14 14:09	1
Benzo[k]fluoranthene	0.10	UН	0.21	0.10	0.047	ug/L	11/12/14 14:09	1
Benzyl alcohol	0.52	UΗ	5.2	0.52	0.40	ug/L	11/12/14 14:09	1
Bis(2-chloroethoxy)methane	0.52	υн	1.0	0.52	0.33	ua/L	11/12/14 14:09	1
Bis(2-chloroethyl)ether	0.10	UH	1.0	0.10	0.10	ua/L	11/12/14 14:09	1
Bis(2-ethylbexyl) phthalate	5.2	UН	5.2	5.2	1.8	ua/L	11/12/14 14:09	1
4-Bromophenyl phenyl ether	0.52	υн	2.1	0.52	0.23	ug/L	11/12/14 14:09	1
Butyl benzyl obthalate	0.52	υн	5.2	0.52	0.27	ug/L	11/12/14 14:09	
Carbazole	0.52	ин	1.0	0.52	0.29	ug/L	11/12/14 14:09	1
4-Chloroaniline	0.52	ин	2.1	0.52	0.22	ug/L	11/12/14 14:09	1
4 Chloro 3 mothylphonol	0.52		2.1	0.52	0.22	ug/L	11/12/14 14:09	1
2 Chloropaphthalana	0.52		2.1	0.52	0.22	ug/L	11/12/14 14:09	
2 Chloronaphiliaene	0.52		1.0	0.52	0.10	ug/L	11/12/14 14:09	1
	0.52		1.0	0.52	0.30	ug/L	11/12/14 14:09	1
	0.52	UH	2.1	0.52	0.31	ug/L	11/12/14 14:09	1
Chrysene	0.10	UH	0.21	0.10	0.052	ug/L	11/12/14 14:09	1
Dibenz(a,h)anthracene	0.10	υн	0.21	0.10	0.046	ug/L	11/12/14 14:09	1
Dibenzofuran	0.10	UH	1.0	0.10	0.021	ug/L	11/12/14 14:09	1
1,2-Dichlorobenzene	0.52	UН	1.0	0.52	0.30	ug/L	11/12/14 14:09	1
1,3-Dichlorobenzene	0.52	UН	1.0	0.52	0.24	ug/L	11/12/14 14:09	1
1,4-Dichlorobenzene	0.52	UН	1.0	0.52	0.35	ug/L	11/12/14 14:09	1
3,3'-Dichlorobenzidine	1.0	UΗ	5.2	1.0	0.39	ug/L	11/12/14 14:09	1
2,4-Dichlorophenol	0.52	UΗ	2.1	0.52	0.20	ug/L	11/12/14 14:09	1
Diethyl phthalate	1.0	UΗ	2.1	1.0	0.62	ug/L	11/12/14 14:09	1
2,4-Dimethylphenol	0.52	UΗ	2.1	0.52	0.26	ug/L	11/12/14 14:09	1
Dimethyl phthalate	0.52	UΗ	2.1	0.52	0.30	ug/L	11/12/14 14:09	1
Di-n-butyl phthalate	5.2	UΗ	5.2	5.2	1.8	ug/L	11/12/14 14:09	1
4,6-Dinitro-2-methylphenol	4.2	UΗ	5.2	4.2	2.5	ug/L	11/12/14 14:09	1
2,4-Dinitrophenol	1.0	UΗ	5.2	1.0	0.33	ug/L	11/12/14 14:09	1
Di-n-octyl phthalate	0.52	UΗ	2.1	0.52	0.24	ug/L	11/12/14 14:09	1
Fluoranthene	0.10	UΗ	0.21	0.10	0.046	ug/L	11/12/14 14:09	1
Fluorene	0.10	UН	0.21	0.10	0.042	ug/L	11/12/14 14:09	1
Hexachlorobenzene	0.10	UН	0.21	0.10	0.089	ug/L	11/12/14 14:09	1
Hexachlorobutadiene	0.52	UΗ	1.0	0.52	0.28	ug/L	11/12/14 14:09	1
Hexachlorocyclopentadiene	0.52	UН	10	0.52	0.25	ug/L	11/12/14 14:09	1
Hexachloroethane	0.52	UН	1.0	0.52	0.20	ug/L	11/12/14 14:09	1
Indeno[1,2,3-cd]pyrene	0.10	UΗ	0.21	0.10	0.045	ug/L	11/12/14 14:09	1
Isophorone	0.52	UН	1.0	0.52	0.28	ua/L	11/12/14 14:09	1
2-Methylnaphthalene	0.10	UН	0.21	0.10	0.094	ua/L	11/12/14 14:09	1
2-Methylphenol	0.52	UH	1.0	0.52	0.18	ua/l	11/12/14 14:09	1
3 & 4 Methylphenol	1.0	UH	2.1	1.0	0.83	ua/l	11/12/14 14:09	1
Naphthalene	0.10	UH	0.21	0.10	0.065	ua/l	11/12/14 14:09	1
2-Nitroaniline	0.52	UH	21	0.52	0.22	ug/l	11/12/14 14:09	1
3-Nitroaniline	0.52	ЦΗ	2.1	0.52	0.20	ug/l	11/12/14 14:09	1
	0.02	011	2.1	0.02	0.25	ug/L	1/12/14 14.00	

TestAmerica Canton

1

11/12/14 14:09

2.1

0.52

0.23 ug/L

0.52 U H

Client Sample ID: FWGLL3MW-DUP1-506-GW Date Collected: 10/22/14 12:00 Date Received: 10/23/14 10:07

Lab Sample ID: 240-43449-8 Matrix: Water

5

8 9

Method: 8270C - Semivolatile	Organic Compound	s (GC/MS) - RE (Continue	ed)				
Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D Analyzed	Dil Fac
2-Nitrophenol	0.52	UH	2.1	0.52	0.29	ug/L	11/12/14 14:09	1
4-Nitrophenol	4.2	UH	5.2	4.2	0.30	ug/L	11/12/14 14:09	1
N-Nitrosodi-n-propylamine	0.52	UH	1.0	0.52	0.25	ug/L	11/12/14 14:09	1
N-Nitrosodiphenylamine	0.52	UH	1.0	0.52	0.32	ug/L	11/12/14 14:09	1
2,2'-oxybis[1-chloropropane]	0.52	UН	1.0	0.52	0.42	ug/L	11/12/14 14:09	1
Pentachlorophenol	1.0	UH	5.2	1.0	0.28	ug/L	11/12/14 14:09	1
Phenanthrene	0.10	UH	0.21	0.10	0.064	ug/L	11/12/14 14:09	1
Phenol	1.0	UH	1.0	1.0	0.62	ug/L	11/12/14 14:09	1
Pyrene	0.10	UН	0.21	0.10	0.044	ug/L	11/12/14 14:09	1
1,2,4-Trichlorobenzene	0.52	UH	1.0	0.52	0.29	ug/L	11/12/14 14:09	1
2,4,5-Trichlorophenol	0.52	UH	5.2	0.52	0.31	ug/L	11/12/14 14:09	1
2,4,6-Trichlorophenol	0.52	UH	5.2	0.52	0.25	ug/L	11/12/14 14:09	1
Surrogate	%Recovery Qu	ıalifier	Limits			Prepared	Analyzed	Dil Fac

ale	70Recovery	Quanner	LIIIIIII		Fiepaieu	Analyzeu	
luorobiphenyl (Surr)	73		50 - 110		11/05/14 07:46	11/12/14 14:09	
Fluorophenol (Surr)	80		20 - 110		11/05/14 07:46	11/12/14 14:09	
litrobenzene-d5 (Surr)	79		40 - 110		11/05/14 07:46	11/12/14 14:09	
Phenol-d5 (Surr)	82		10 - 115		11/05/14 07:46	11/12/14 14:09	
Terphenyl-d14 (Surr)	83		50 - 135		11/05/14 07:46	11/12/14 14:09	
2,4,6-Tribromophenol (Surr)	77		40 - 125		11/05/14 07:46	11/12/14 14:09	

Method: 8081A - Organochlorine Pesticides (GC) - RE

Analyte	Res	ult Qualifier	LOQ	LOD	DL	Unit D	Analyzed	Dil Fac
4,4'-DDD	0.0	52 U H	0.052	0.052	0.019	ug/L	11/17/14 21:31	1
4,4'-DDE	0.0	52 U H	0.052	0.052	0.0093	ug/L	11/17/14 21:31	1
4,4'-DDT	0.0	52 U H	0.052	0.052	0.014	ug/L	11/17/14 21:31	1
Aldrin	0.0	52 U H	0.052	0.052	0.013	ug/L	11/17/14 21:31	1
alpha-BHC	0.0	52 U H	0.052	0.052	0.014	ug/L	11/17/14 21:31	1
alpha-Chlordane	0.0	52 U H	0.052	0.052	0.012	ug/L	11/17/14 21:31	1
beta-BHC	0.0	52 U H	0.052	0.052	0.013	ug/L	11/17/14 21:31	1
delta-BHC	0.0	52 U H	0.052	0.052	0.030	ug/L	11/17/14 21:31	1
Dieldrin	0.0	52 U H	0.052	0.052	0.013	ug/L	11/17/14 21:31	1
Endosulfan I	0.0	52 U H	0.052	0.052	0.016	ug/L	11/17/14 21:31	1
Endosulfan II	0.0	52 U H	0.052	0.052	0.015	ug/L	11/17/14 21:31	1
Endosulfan sulfate	0.0	52 U H	0.052	0.052	0.011	ug/L	11/17/14 21:31	1
Endrin	0.0	52 U H	0.052	0.052	0.012	ug/L	11/17/14 21:31	1
Endrin aldehyde	0.0	52 U H	0.052	0.052	0.0082	ug/L	11/17/14 21:31	1
Endrin ketone	0.0	52 U H	0.052	0.052	0.0093	ug/L	11/17/14 21:31	1
gamma-BHC (Lindane)	0.0	52 U H	0.052	0.052	0.012	ug/L	11/17/14 21:31	1
gamma-Chlordane	0.0	52 U H	0.052	0.052	0.010	ug/L	11/17/14 21:31	1
Heptachlor	0.0	52 U H	0.052	0.052	0.0052	ug/L	11/17/14 21:31	1
Heptachlor epoxide	0.0	52 U H	0.052	0.052	0.014	ug/L	11/17/14 21:31	1
Methoxychlor	0.0	52 U H	0.10	0.052	0.012	ug/L	11/17/14 21:31	1
Toxaphene		1.0 U H	2.1	1.0	0.20	ug/L	11/17/14 21:31	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
DCB Decachlorobiphenyl	87		30 - 135			11/05/14 07:38	11/17/14 21:31	1
DCB Decachlorobiphenyl	88		30 - 135			11/05/14 07:38	11/17/14 21:31	1
Tetrachloro-m-xylene	101		25 - 140			11/05/14 07:38	11/17/14 21:31	1
Tetrachloro-m-xylene	102		25 - 140			11/05/14 07:38	11/17/14 21:31	1

LOQ

0.50

0.50

LOD

0.20

0.20

DL Unit

0.17 ug/L

0.13 ug/L

Analyte

Aroclor-1016

Aroclor-1221

Nitrocellulose

Client Sample ID: FWGLL3MW-DUP1-506-GW Date Collected: 10/22/14 12:00 Date Received: 10/23/14 10:07

Method: 8082 - Polychlorinated Biphenyls (PCBs) by Gas Chromatography

Result Qualifier

0.20 U

0.20 U

Lab Sample ID: 240-43449-8 Matrix: Water

D

Matri	k. water	
		4
Analyzed	Dil Fac	5
10/29/14 20:11	1	
10/29/14 20:11	1	6
10/29/14 20:11	1	
10/29/14 20:11	1	
10/29/14 20:11	1	-
10/29/14 20:11	1	Q
10/29/14 20:11	1	0
Analyzed	Dil Fac	9
10/29/14 20:11	1	
10/29/14 20:11	1	
10/29/14 20:11	1	
10/29/14 20:11	1	
Analyzed	Dil Fac	_
11/04/14 13:56	1	13
Analyzed	Dil Fac	14
11/04/14 21:17	1	
11/04/14 21:17	1	15
11/04/14 21:17	1	
11/04/14 21:17	1	
11/04/14 21:17	1	
11/04/14 21:17	1	
11/04/14 21:17	1	
11/04/14 21:17	1	
11/04/14 21:17	1	
11/04/14 21:17	1	

Aroclor-1232	0.	20 U	0.50	0.20	0.16	ug/L		10/29/14 20:11	
Aroclor-1242	0.	40 U	0.50	0.40	0.22	ug/L		10/29/14 20:11	
Aroclor-1248	0.	20 U	0.50	0.20	0.10	ug/L		10/29/14 20:11	
Aroclor-1254	0.	20 U	0.50	0.20	0.16	ug/L		10/29/14 20:11	
Aroclor-1260	0.	20 U	0.50	0.20	0.17	ug/L		10/29/14 20:11	
Surrogate	%Recovery	Qualifier	Limits			Prep	oared	Analyzed	Dil Fa
Tetrachloro-m-xylene	71		40 _ 140			10/24/1	14 08:40	10/29/14 20:11	
Tetrachloro-m-xylene	68		40 _ 140			10/24/1	14 08:40	10/29/14 20:11	
DCB Decachlorobiphenyl	73		40 _ 135			10/24/1	14 08:40	10/29/14 20:11	1
DCB Decachlorobiphenyl	69		40 - 135			10/24/1	14 08:40	10/29/14 20:11	
Method: 8330 Modified - Nitro	guanidine (HPLC)								
Analyte	Res	ult Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fa
Nitroguanidine	e	5.0 U	20	6.0	2.4	ug/L		11/04/14 13:56	
Method: 8330A - Nitroaromatio	cs and Nitramines	i							
Analyte	Res	ult Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fa
1,3,5-Trinitrobenzene	0.0	54 U	0.16	0.054	0.034	ug/L		11/04/14 21:17	1
1,3-Dinitrobenzene	0.	11 U	0.16	0.11	0.054	ug/L		11/04/14 21:17	1
2,4,6-Trinitrotoluene	0.	11 U	0.16	0.11	0.054	ug/L		11/04/14 21:17	1
2,4-Dinitrotoluene	0.	11 U	0.14	0.11	0.054	ug/L		11/04/14 21:17	-
2,6-Dinitrotoluene	0.	11 U	0.14	0.11	0.054	ug/L		11/04/14 21:17	-
2-Amino-4,6-dinitrotoluene	0.	38 M	0.16	0.11	0.016	ug/L		11/04/14 21:17	
2-Nitrotoluene	0.	11 U	0.54	0.11	0.096	ug/L		11/04/14 21:17	
3-Nitrotoluene	0.	11 U	0.54	0.11	0.062	ug/L		11/04/14 21:17	1
4-Nitrotoluene	0.	11 U	0.54	0.11	0.096	ug/L		11/04/14 21:17	
4-Amino-2,6-dinitrotoluene	0.	35	0.16	0.11	0.054	ug/L		11/04/14 21:17	
HMX	0.0	54 U	0.16	0.054	0.039	ug/L		11/04/14 21:17	
RDX	0.	15 J	0.16	0.054	0.039	ug/L		11/04/14 21:17	
Nitrobenzene	0.	11 U	0.16	0.11	0.054	ug/L		11/04/14 21:17	•
Tetryl	0.	11 U	0.16	0.11	0.054	ug/L		11/04/14 21:17	
Nitroglycerin	0.	54 U	0.71	0.54	0.36	ug/L		11/04/14 21:17	1
PETN	0.	54 U	0.71	0.54	0.33	ug/L		11/04/14 21:17	
Surrogate	%Recovery	Qualifier	Limits			Prep	oared	Analyzed	Dil Fa
3,4-Dinitrotoluene	95	М	79 _ 111			10/27/1	14 08:44	11/04/14 21:17	
3,4-Dinitrotoluene	103		79 _ 111			10/27/1	14 08:44	11/07/14 03:20	
General Chemistry									
Analyte	Res	ult Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fa
Cyanide, Total	0.00	50 U	0.010	0.0050	0.0020	mg/L		10/31/14 14:09	

10/29/14 14:29

2.0

1.0

0.48 mg/L

1.0 U

TestAmerica Job ID: 240-43449-1

Client Sample ID: FWGLL3MW-DUP1-506-GF

Date Collected: 10/22/14 12:00 Date Received: 10/23/14 10:07

Lab Sample ID: 240-43449-9 Matrix: Water

Analyte	Result	Qualifier	LOO	LOD	DL	Unit	D	Analyzed	Dil Fac
Arsenic	10	<u>U</u>	10	10	2.9	ug/L		10/29/14 12:59	
Chromium	0.66	J	7.0	4.0	0.55	ua/L		10/29/14 12:59	1
Cobalt	0.68	J	7.0	4.0	0.56	ua/L		10/29/14 12:59	1
Lead	5.0		10	5.0	1.9	ua/L		10/29/14 12:59	
Selenium	10	U	15	10	4.0	ug/L		10/29/14 12:59	1
Silver	5.0	U	7.0	5.0	0.92	ug/L		10/29/14 12:59	1
Vanadium	4.0	U	7.0	4.0	2.4	ug/L		10/29/14 12:59	1
Barium	17	J	200	5.0	1.0	ug/L		10/29/14 12:59	1
Calcium	24000		5000	1000	260	ug/L		10/29/14 12:59	1
Copper	10	U	25	10	1.9	ug/L		10/29/14 12:59	1
gnesium 76			5000	300	55	ug/L		10/29/14 12:59	1
Manganese	59		15	5.0	0.46	ug/L		10/29/14 12:59	1
Nickel	3.6	J	40	5.0	0.76	ug/L		10/29/14 12:59	1
Potassium	1400	J	5000	900	70	ug/L		10/29/14 12:59	1
_ Method: 6020 - Metals (ICP/MS) - Total	Recoverab	le							
Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
Aluminum	60	U	60	60	20	ug/L		10/29/14 11:50	1
Antimony	1.0	U	2.0	1.0	0.33	ug/L		10/29/14 11:50	1
Beryllium	1.0	U	1.0	1.0	0.50	ug/L		10/29/14 11:50	1
Cadmium	1.0	U	2.0	1.0	0.40	ug/L		10/29/14 11:50	1
Iron	100	U	150	100	44	ug/L		10/29/14 11:50	1
Sodium	4000		1000	400	160	ug/L		10/29/14 11:50	1
Thallium	1.5	U	2.0	1.5	0.79	ug/L		10/29/14 11:50	1
Zinc	50	U	50	50	27	ug/L		10/29/14 11:50	1
Method: 7470A - Mercury (CVAA)									
Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
Hg	0.20	U	0.20	0.20	0.090	ug/L		10/30/14 15:08	-

TestAmerica Job ID: 240-43449-1

Client Sample ID: FWGEQUIPRINSE2-0508-GW

Date Collected: 10/22/14 14:45 Date Received: 10/23/14 10:07

Lab	Sample	ID:	240-43449-	10
			Matrix: Wat	er

Analyte	Result	Qualifier	L	.oq	LOD	DL	Unit	D	Analyzed	Dil Fac
1,1,1-Trichloroethane	0.50	U		1.0	0.50	0.22	ug/L	-	10/30/14 18:27	1
1,1,2,2-Tetrachloroethane	0.50	U		1.0	0.50	0.22	ug/L		10/30/14 18:27	1
1,1,2-Trichloroethane	0.50	U		1.0	0.50	0.17	ug/L		10/30/14 18:27	1
1,1-Dichloroethane	0.50	U		1.0	0.50	0.26	ug/L		10/30/14 18:27	1
1,1-Dichloroethene	0.50	U		1.0	0.50	0.45	ug/L		10/30/14 18:27	1
1,2-Dichloroethane	0.50	U		1.0	0.50	0.20	ug/L		10/30/14 18:27	1
1,2-Dichloroethene, Total	1.0	U		2.0	1.0	0.20	ug/L		10/30/14 18:27	1
1,2-Dichloropropane	0.50	U		1.0	0.50	0.22	ug/L		10/30/14 18:27	1
2-Hexanone	1.0	U		10	1.0	3.9	ug/L		10/30/14 18:27	1
Bromochloromethane	0.50	U		1.0	0.50	0.25	ug/L		10/30/14 18:27	1
Acetone	2.0	U		10	2.0	3.4	ug/L		10/30/14 18:27	1
Benzene	0.25	U		1.0	0.25	0.24	ug/L		10/30/14 18:27	1
Bromoform	1.0	U		1.0	1.0	0.56	ug/L		10/30/14 18:27	1
Bromomethane	1.0	U		1.0	1.0	0.63	ug/L		10/30/14 18:27	1
Carbon disulfide	0.25	U		1.0	0.25	0.28	ug/L		10/30/14 18:27	1
Carbon tetrachloride	0.25	U		1.0	0.25	0.17	ug/L		10/30/14 18:27	1
Chlorobenzene	0.50	U		1.0	0.50	0.19	ug/L		10/30/14 18:27	1
Chloroethane	0.50	U		1.0	0.50	0.33	ug/L		10/30/14 18:27	1
Chloroform	0.69	J		1.0	0.50	0.21	ug/L		10/30/14 18:27	1
Chloromethane	0.50	U		1.0	0.50	0.44	ug/L		10/30/14 18:27	1
cis-1,2-Dichloroethene	0.50	U		1.0	0.50	0.20	ug/L		10/30/14 18:27	1
cis-1,3-Dichloropropene	0.25	U		1.0	0.25	0.46	ug/L		10/30/14 18:27	1
Bromodichloromethane	0.25	U		1.0	0.25	0.15	ug/L		10/30/14 18:27	1
Ethylbenzene	0.50	U		1.0	0.50	0.23	ug/L		10/30/14 18:27	1
1,2-Dibromoethane	0.50	U		1.0	0.50	0.19	ug/L		10/30/14 18:27	1
m-Xylene & p-Xylene	0.50	U		2.0	0.50	0.22	ug/L		10/30/14 18:27	1
2-Butanone (MEK)	1.0	U		10	1.0	4.1	ug/L		10/30/14 18:27	1
4-Methyl-2-pentanone (MIBK)	1.0	U		10	1.0	3.6	ug/L		10/30/14 18:27	1
Methylene Chloride	1.1			1.0	0.50	0.28	ug/L		10/30/14 18:27	1
o-Xylene	0.25	U		1.0	0.25	0.21	ug/L		10/30/14 18:27	1
Styrene	0.25	U		1.0	0.25	0.45	ug/L		10/30/14 18:27	1
Tetrachloroethene	0.50	U		1.0	0.50	0.20	ug/L		10/30/14 18:27	1
Toluene	0.25	U		1.0	0.25	0.22	ug/L		10/30/14 18:27	1
trans-1,2-Dichloroethene	0.50	U		1.0	0.50	0.26	ug/L		10/30/14 18:27	1
trans-1,3-Dichloropropene	0.50	U		1.0	0.50	0.56	ug/L		10/30/14 18:27	1
Trichloroethene	0.50	U		1.0	0.50	0.15	ug/L		10/30/14 18:27	1
Vinyl chloride	0.50	U		1.0	0.50	0.29	ug/L		10/30/14 18:27	1
Xylenes, Total	1.0	U		2.0	1.0	0.43	ug/L		10/30/14 18:27	1
Dibromochloromethane	0.50	U		1.0	0.50	0.43	ug/L		10/30/14 18:27	1
Surrogate	%Recovery Qu	ualifier	Limits				Prepared		Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	90		70 - 120						10/30/14 18:27	1
4-Bromofluorobenzene (Surr)	86		75 - 120						10/30/14 18:27	1
Toluene-d8 (Surr)	94		85 - 120						10/30/14 18:27	1
Dibromofluoromethane (Surr)	95		85 - 115						10/30/14 18:27	1

Dil Fac LOQ LOD DL Unit Analyzed Analyte Result Qualifier D Acenaphthene 0.11 U H 0.21 0.11 0.047 ug/L 11/12/14 14:34 1 0.11 UH 0.21 0.11 0.051 ug/L 11/12/14 14:34 Acenaphthylene 1

TestAmerica Canton

LOQ

LOD

DL Unit

Analyte

4-Nitroaniline

Client Sample ID: FWGEQUIPRINSE2-0508-GW Date Collected: 10/22/14 14:45 Date Received: 10/23/14 10:07

Method: 8270C - Semivolatile Organic Compounds (GC/MS) - RE (Continued)

Result Qualifier

Lab Sample ID: 240-43449-10 Matrix: Water

Analyzed

D

Dil Fac

							•
Anthracene	0.11	UΗ	0.21	0.11	0.093	ug/L	11/12/14 14:34 1
Benzo[a]anthracene	0.11	UΗ	0.21	0.11	0.031	ug/L	11/12/14 14:34 1
Benzo[a]pyrene	0.11	UН	0.21	0.11	0.054	ug/L	11/12/14 14:34 1
Benzo[b]fluoranthene	0.11	UН	0.21	0.11	0.041	ug/L	11/12/14 14:34 1
Benzo[g,h,i]perylene	0.11	UН	0.21	0.11	0.049	ug/L	11/12/14 14:34 1
Benzoic acid	21	UН	26	21	11	ug/L	11/12/14 14:34 1
Benzo[k]fluoranthene	0.11	UН	0.21	0.11	0.047	ug/L	11/12/14 14:34 1
Benzyl alcohol	0.53	UН	5.3	0.53	0.40	ug/L	11/12/14 14:34 1
Bis(2-chloroethoxy)methane	0.53	υн	1.1	0.53	0.34	ua/L	11/12/14 14:34 1
Bis(2-chloroethyl)ether	0.11	UН	1.1	0.11	0.11	ua/L	11/12/14 14:34 1
Bis(2-ethylbexyl) phthalate	5.3	υн	5.3	5.3	1.8	ua/L	11/12/14 14:34 1
4-Bromophenyl phenyl ether	0.53	ин	2.1	0.53	0.23	ug/L	11/12/14 14:34 1
Butyl benzyl phthalate	0.53	ин	5.3	0.53	0.27	ug/L	11/12/14 14:34 1
Carbazole	0.53	ин	11	0.53	0.29	ug/L	11/12/14 14:34 1
4-Chloroaniline	0.53	ин	2.1	0.53	0.22	ug/L	11/12/14 14:34 1
4-Chloro-3-methylphenol	0.53	ин	2.1	0.53	0.22	ug/L	11/12/14 14:34 1
2 Chloropophtholopo	0.53		2.1	0.53	0.22	ug/L	11/12/14 14:34 1
2 Chlorophonol	0.53	пп	1.1	0.53	0.11	ug/L	
4 Chlorophonyl phonyl other	0.53	пп	1.1	0.53	0.31	ug/L	
4-Chiorophenyi phenyi ether	0.53		2.1	0.53	0.32	ug/L	
Chrysene	0.11	UH	0.21	0.11	0.053	ug/L	11/12/14 14:34 1
Dibenz(a,h)anthracene	0.11	0 н	0.21	0.11	0.047	ug/L	11/12/14 14:34 1
Dibenzoturan	0.11	UH	1.1	0.11	0.021	ug/L	11/12/14 14:34 1
1,2-Dichlorobenzene	0.53	UН	1.1	0.53	0.31	ug/L	11/12/14 14:34 1
1,3-Dichlorobenzene	0.53	UН	1.1	0.53	0.24	ug/L	11/12/14 14:34 1
1,4-Dichlorobenzene	0.53	UΗ	1.1	0.53	0.36	ug/L	11/12/14 14:34 1
3,3'-Dichlorobenzidine	1.1	UΗ	5.3	1.1	0.39	ug/L	11/12/14 14:34 1
2,4-Dichlorophenol	0.53	UΗ	2.1	0.53	0.20	ug/L	11/12/14 14:34 1
Diethyl phthalate	1.1	UΗ	2.1	1.1	0.63	ug/L	11/12/14 14:34 1
2,4-Dimethylphenol	0.53	UΗ	2.1	0.53	0.26	ug/L	11/12/14 14:34 1
Dimethyl phthalate	0.53	UΗ	2.1	0.53	0.31	ug/L	11/12/14 14:34 1
Di-n-butyl phthalate	5.3	UΗ	5.3	5.3	1.8	ug/L	11/12/14 14:34 1
4,6-Dinitro-2-methylphenol	4.2	UΗ	5.3	4.2	2.5	ug/L	11/12/14 14:34 1
2,4-Dinitrophenol	1.1	UΗ	5.3	1.1	0.34	ug/L	11/12/14 14:34 1
Di-n-octyl phthalate	0.53	UΗ	2.1	0.53	0.24	ug/L	11/12/14 14:34 1
Fluoranthene	0.11	UΗ	0.21	0.11	0.047	ug/L	11/12/14 14:34 1
Fluorene	0.11	UН	0.21	0.11	0.043	ug/L	11/12/14 14:34 1
Hexachlorobenzene	0.11	UН	0.21	0.11	0.090	ug/L	11/12/14 14:34 1
Hexachlorobutadiene	0.53	UΗ	1.1	0.53	0.28	ug/L	11/12/14 14:34 1
Hexachlorocyclopentadiene	0.53	UН	11	0.53	0.25	ug/L	11/12/14 14:34 1
Hexachloroethane	0.53	UН	1.1	0.53	0.20	ug/L	11/12/14 14:34 1
Indeno[1,2,3-cd]pyrene	0.11	UН	0.21	0.11	0.046	ug/L	11/12/14 14:34 1
Isophorone	0.53	UН	1.1	0.53	0.28	ug/L	11/12/14 14:34 1
2-Methylnaphthalene	0.11	UН	0.21	0.11	0.095	ug/L	11/12/14 14:34 1
2-Methylphenol	0.53	UН	1.1	0.53	0.18	ua/L	11/12/14 14:34 1
3 & 4 Methylphenol	1.1	UН	2.1	1.1	0.84	ua/L	11/12/14 14:34 1
Naphthalene	0.11	UН	0.21	0.11	0.066	ua/l	11/12/14 14:34 1
2-Nitroaniline	0.53	UH	21	0.53	0.22	ug/l	11/12/14 14:34 1
3-Nitroaniline	0.53	υн	2.1	0.53	0.29	ug/l	11/12/14 14:34 1
	0.00		de . I	0.00	0.20	-9	the second se

TestAmerica Canton

1

11/12/14 14:34

2.1

0.53

0.23 ug/L

0.53 U H

Client Sample ID: FWGEQUIPRINSE2-0508-GW Date Collected: 10/22/14 14:45 Date Received: 10/23/14 10:07

Lab Sample ID: 240-43449-10

Matrix: Water

5

8 9

Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
2-Nitrophenol	0.53	UH	2.1	0.53	0.29	ug/L		11/12/14 14:34	1
4-Nitrophenol	4.2	UH	5.3	4.2	0.31	ug/L		11/12/14 14:34	1
N-Nitrosodi-n-propylamine	0.53	UH	1.1	0.53	0.25	ug/L		11/12/14 14:34	1
N-Nitrosodiphenylamine	0.53	UH	1.1	0.53	0.33	ug/L		11/12/14 14:34	1
2,2'-oxybis[1-chloropropane]	0.53	UН	1.1	0.53	0.42	ug/L		11/12/14 14:34	1
Pentachlorophenol	1.1	UН	5.3	1.1	0.28	ug/L		11/12/14 14:34	1
Phenanthrene	0.11	UH	0.21	0.11	0.065	ug/L		11/12/14 14:34	1
Phenol	1.1	UH	1.1	1.1	0.63	ug/L		11/12/14 14:34	1
Pyrene	0.11	UН	0.21	0.11	0.044	ug/L		11/12/14 14:34	1
1,2,4-Trichlorobenzene	0.53	UH	1.1	0.53	0.29	ug/L		11/12/14 14:34	1
2,4,5-Trichlorophenol	0.53	UH	5.3	0.53	0.32	ug/L		11/12/14 14:34	1
2.4.6-Trichlorophenol	0.53	UH	5.3	0.53	0.25	ug/L		11/12/14 14:34	1

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl (Surr)	71		50 - 110	11/05/14 07:46	11/12/14 14:34	1
2-Fluorophenol (Surr)	73		20 - 110	11/05/14 07:46	11/12/14 14:34	1
Nitrobenzene-d5 (Surr)	74		40 - 110	11/05/14 07:46	11/12/14 14:34	1
Phenol-d5 (Surr)	74		10 - 115	11/05/14 07:46	11/12/14 14:34	1
Terphenyl-d14 (Surr)	82		50 - 135	11/05/14 07:46	11/12/14 14:34	1
2,4,6-Tribromophenol (Surr)	75		40 - 125	11/05/14 07:46	11/12/14 14:34	1

Method: 8081A - Organochlorine Pesticides (GC) - RE

		.,						
Analyte	Res	ult Qualifier	LOQ	LOD	DL	Unit D	Analyzed	Dil Fac
4,4'-DDD	0.0	53 UHQ	0.053	0.053	0.019	ug/L	11/08/14 21:33	1
4,4'-DDE	0.0	53 UHQ	0.053	0.053	0.0096	ug/L	11/08/14 21:33	1
4,4'-DDT	0.0	53 UHQ	0.053	0.053	0.015	ug/L	11/08/14 21:33	1
Aldrin	0.0	53 U H	0.053	0.053	0.014	ug/L	11/08/14 21:33	1
alpha-BHC	0.0	53 U H	0.053	0.053	0.015	ug/L	11/08/14 21:33	1
alpha-Chlordane	0.0	53 U H	0.053	0.053	0.013	ug/L	11/08/14 21:33	1
beta-BHC	0.0	53 U H	0.053	0.053	0.014	ug/L	11/08/14 21:33	1
delta-BHC	0.0	53 U H	0.053	0.053	0.031	ug/L	11/08/14 21:33	1
Dieldrin	0.0	53 U H	0.053	0.053	0.014	ug/L	11/08/14 21:33	1
Endosulfan I	0.0	53 U H	0.053	0.053	0.017	ug/L	11/08/14 21:33	1
Endosulfan II	0.0	53 U H	0.053	0.053	0.016	ug/L	11/08/14 21:33	1
Endosulfan sulfate	0.0	53 U H	0.053	0.053	0.012	ug/L	11/08/14 21:33	1
Endrin	0.0	53 UHQ	0.053	0.053	0.013	ug/L	11/08/14 21:33	1
Endrin aldehyde	0.0	53 U H	0.053	0.053	0.0085	ug/L	11/08/14 21:33	1
Endrin ketone	0.0	53 U H	0.053	0.053	0.0096	ug/L	11/08/14 21:33	1
gamma-BHC (Lindane)	0.0	53 U H	0.053	0.053	0.013	ug/L	11/08/14 21:33	1
gamma-Chlordane	0.0	53 U H	0.053	0.053	0.011	ug/L	11/08/14 21:33	1
Heptachlor	0.0	53 U H	0.053	0.053	0.0053	ug/L	11/08/14 21:33	1
Heptachlor epoxide	0.0	53 U H	0.053	0.053	0.015	ug/L	11/08/14 21:33	1
Methoxychlor	0.0	53 UHQ	0.11	0.053	0.013	ug/L	11/08/14 21:33	1
Toxaphene		1.1 UH	2.1	1.1	0.21	ug/L	11/08/14 21:33	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
DCB Decachlorobiphenyl	73		30 - 135			11/02/14 09:39	11/08/14 21:33	1
DCB Decachlorobiphenyl	69		30 - 135			11/02/14 09:39	11/08/14 21:33	1
Tetrachloro-m-xylene	83		25 - 140			11/02/14 09:39	11/08/14 21:33	1
Tetrachloro-m-xylene	83		25 - 140			11/02/14 09:39	11/08/14 21:33	1

Client Sample ID: FWGEQUIPRINSE2-0508-GW Date Collected: 10/22/14 14:45 Date Received: 10/23/14 10:07

Lab Sample ID: 240-43449-10 Matrix: Water

Method: 8082 - Polychlorinated	d Biphenyls (PCBs)	by Gas C	hromatography						
Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
Aroclor-1016	0.21	U	0.53	0.21	0.18	ug/L		10/28/14 22:14	1
Aroclor-1221	0.21	U	0.53	0.21	0.14	ug/L		10/28/14 22:14	1
Aroclor-1232	0.21	U	0.53	0.21	0.17	ug/L		10/28/14 22:14	1
Aroclor-1242	0.43	U	0.53	0.43	0.23	ug/L		10/28/14 22:14	1
Aroclor-1248	0.21	U	0.53	0.21	0.11	ug/L		10/28/14 22:14	1
Aroclor-1254	0.21	U	0.53	0.21	0.17	ug/L		10/28/14 22:14	1
Aroclor-1260	0.21	U	0.53	0.21	0.18	ug/L		10/28/14 22:14	1
Surrogate	%Recovery Q	ualifier	Limits			Prepared		Analyzed	Dil Fac
Tetrachloro-m-xylene	80		40 _ 140			10/25/14 10:0)1	10/28/14 22:14	1
Tetrachloro-m-xylene	77		40 _ 140			10/25/14 10:0)1	10/28/14 22:14	1
DCB Decachlorobiphenyl	64		40 _ 135			10/25/14 10:0	01	10/28/14 22:14	1
DCB Decachlorobiphenyl	60		40 - 135			10/25/14 10:0	01	10/28/14 22:14	1
Method: 8330 Modified - Nitrog	juanidine (HPLC)								
Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
Nitroguanidine	6.0	U	20	6.0	2.4	ug/L		11/04/14 14:14	1
Method: 8330A - Nitroaromatic	s and Nitramines								
Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
1,3,5-Trinitrobenzene	0.089	J	0.15	0.051	0.032	ug/L		11/04/14 22:14	1
1,3-Dinitrobenzene	0.10	U	0.15	0.10	0.051	ug/L		11/04/14 22:14	1
2,4,6-Trinitrotoluene	0.10	U	0.15	0.10	0.051	ug/L		11/04/14 22:14	1
2,4-Dinitrotoluene	0.10	UM	0.13	0.10	0.051	ug/L		11/04/14 22:14	1
2,6-Dinitrotoluene	0.074	Ј М	0.13	0.10	0.051	ug/L		11/04/14 22:14	1
2-Amino-4,6-dinitrotoluene	0.10	U	0.15	0.10	0.015	ug/L		11/04/14 22:14	1
2-Nitrotoluene	0.10	U	0.51	0.10	0.090	ug/L		11/04/14 22:14	1
3-Nitrotoluene	0.10	U	0.51	0.10	0.059	ug/L		11/04/14 22:14	1
4-Nitrotoluene	0.10	U	0.51	0.10	0.090	ug/L		11/04/14 22:14	1
4-Amino-2.6-dinitrotoluene	0.10	U	0.15	0.10	0.051	ug/L		11/04/14 22:14	1
НМХ	0.051	U	0.15	0.051	0.037	ug/L		11/04/14 22:14	1
RDX	0.051	U	0.15	0.051	0.037	ug/L		11/04/14 22:14	1
Nitrobenzene	0.10	UM	0.15	0.10	0.051	-g		11/04/14 22.14	
Tetry	0.10	UM	0.15	0.10	0.051	ug/L		11/04/14 22:14	. 1
Nitroglycerin	0.51	11	0.67	0.51	0.001	ug/L		11/04/14 22:14	1
PETN	0.51	U	0.67	0.51	0.31	ug/L		11/04/14 22:14	· · · · · · 1
Surrogate	%Recovery O	ualifier	l imits			Propared		Analyzod	Dil Fac
3.4-Dinitrotoluene			79 111			10/27/14 08:4	14	11/04/14 22:14	1
3,4-Dinitrotoluene	121 Q		79 - 111			10/27/14 08:4	14	11/07/14 04:26	1
- - Mathada (ICD)	Total Decomposition								
Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
Arsenic	10	U	10	10	2.9	ug/L	_	10/29/14 13:03	1
Chromium	4.0	U	7.0	4.0	0.55	ug/L		10/29/14 13:03	1
Cobalt	4.0	U	7.0	4.0	0.56	ug/L		10/29/14 13:03	1
Lead	5.0	U	10	5.0	1.9	ug/L		10/29/14 13:03	1
Selenium	10	U	15	10	4.0	ug/L		10/29/14 13:03	1
Silver	5.0	U	7.0	5.0	0.92	ug/L		10/29/14 13:03	1
Vanadium	4.0	U	7.0	4.0	2.4	ug/L		10/29/14 13:03	1
Barium	5.0	U	200	5.0	1.0	ug/L		10/29/14 13:03	1

TestAmerica Job ID: 240-43449-1

Client Sample ID: FWGEQUIPRIN Date Collected: 10/22/14 14:45	nt Sample ID: FWGEQUIPRINSE2-0508-GW Collected: 10/22/14 14:45 Received: 10/23/14 10:07								Lab Sample ID: 240-43449-10 Matrix: Water					
Method: 6010B - Metals (ICP) - Total F	Recoverable	(Continued)	100	LOD	DI	Unit	D	Analyzed	Dil Eac					
	1000		5000	1000	260			10/29/14 13:03	1					
Copper	10	U	25	10	1.9	ug/L		10/29/14 13:03	· · · · · · · 1					
Magnesium	300	U U	5000	300	55	ug/l		10/29/14 13:03	. 1					
Magnese	5.0	U	15	5.0	0.46	ug/L		10/29/14 13:03	. 1					
Nickel	5.0	U	40	5.0	0.76	ug/L		10/29/14 13:03	· · · · · · · 1					
Potassium	900	U	5000	900	70	ug/L		10/29/14 13:03	1					
Method: 6020 - Metals (ICP/MS) - Tota	I Recoverab	le												
Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac					
Aluminum	750		60	60	20	ug/L		10/29/14 11:57	1					
Antimony	1.0	U	2.0	1.0	0.33	ug/L		10/29/14 11:57	1					
Beryllium	1.0	U	1.0	1.0	0.50	ug/L		10/29/14 11:57	1					
Cadmium	1.0	U	2.0	1.0	0.40	ug/L		10/29/14 11:57	1					
Iron	100	U	150	100	44	ug/L		10/29/14 11:57	1					
Sodium	400	U	1000	400	160	ug/L		10/29/14 11:57	1					
Thallium	1.5	U	2.0	1.5	0.79	ug/L		10/29/14 11:57	1					
Zinc	27	J	50	50	27	ug/L		10/29/14 11:57	1					
Method: 7470A - Mercury (CVAA) Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac					
Hg	0.20	U	0.20	0.20	0.090	ug/L		10/30/14 15:06	1					
General Chemistry														
Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac					
Cyanide, Total	0.0050	U	0.010	0.0050	0.0020	mg/L		10/31/14 14:13	1					
Nitrocellulose	1.0	U	2.0	1.0	0.48	mg/L		10/29/14 14:31	1					

Client Sample ID: FWGLL2MW-271-0503-GW

TestAmerica Job ID: 240-43449-1

P-1 2 11 3 ter 4 Fac 5

8 9

Lab Sample ID: 240-43449-11 Matrix: Water

Date Collected: 10/22/14 16:30 Date Received: 10/23/14 10:07

Analyte	nic Compounds (GC Result	Qualifier	1	00	LOD	Ы	Unit	D	Analyzed	Dil Fac
1.1.1-Trichloroethane	0.50	U		1.0	0.50	0.22	ug/L		10/30/14 18:50	1
1 1 2 2-Tetrachloroethane	0.50	U		1.0	0.50	0.22	ug/L		10/30/14 18:50	1
1.1.2-Trichloroethane	0.50	U		1.0	0.50	0.17	ua/L		10/30/14 18:50	1
1.1-Dichloroethane	0.50	U		1.0	0.50	0.26	ug/L		10/30/14 18:50	····· 1
1.1-Dichloroethene	0.50	U		1.0	0.50	0.45	ua/L		10/30/14 18:50	1
1.2-Dichloroethane	0.50	U		1.0	0.50	0.20	ua/L		10/30/14 18:50	1
1.2-Dichloroethene. Total	1.0	U		2.0	1.0	0.20	ua/L		10/30/14 18:50	1
1.2-Dichloropropane	0.50	U		1.0	0.50	0.22	ua/L		10/30/14 18:50	1
2-Hexanone	1.0	U		10	1.0	3.9	ua/L		10/30/14 18:50	1
Bromochloromethane	0.50	U		1.0	0.50	0.25	ua/L		10/30/14 18:50	1
Acetone	2.0	U		10	2.0	3.4	ua/L		10/30/14 18:50	1
Benzene	0.25	U		1.0	0.25	0.24	ua/L		10/30/14 18:50	1
Bromoform	1.0	U		1.0	1.0	0.56	ug/L		10/30/14 18:50	1
Bromomethane	1.0	U		1.0	1.0	0.63	ua/L		10/30/14 18:50	1
Carbon disulfide	0.25	U		1.0	0.25	0.28	ug/L		10/30/14 18:50	1
Carbon tetrachloride	0.25	U		1.0	0.25	0.17	ug/L		10/30/14 18:50	
Chlorobenzene	0.50	U		1.0	0.50	0.19	ug/L		10/30/14 18:50	1
Chloroethane	0.50	U		1.0	0.50	0.33	ug/L		10/30/14 18:50	1
Chloroform	0.50	U		1.0	0.50	0.21	ua/L		10/30/14 18:50	1
Chloromethane	0.50	U		1.0	0.50	0.44	ug/L		10/30/14 18:50	1
cis-1,2-Dichloroethene	0.50	U		1.0	0.50	0.20	ug/L		10/30/14 18:50	1
cis-1,3-Dichloropropene	0.25	U		1.0	0.25	0.46	ug/L		10/30/14 18:50	1
Bromodichloromethane	0.25	U		1.0	0.25	0.15	ug/L		10/30/14 18:50	1
Ethylbenzene	0.50	U		1.0	0.50	0.23	ug/L		10/30/14 18:50	1
1,2-Dibromoethane	0.50	U		1.0	0.50	0.19	ug/L		10/30/14 18:50	1
m-Xylene & p-Xylene	0.50	U		2.0	0.50	0.22	ug/L		10/30/14 18:50	1
2-Butanone (MEK)	1.0	U		10	1.0	4.1	ug/L		10/30/14 18:50	1
4-Methyl-2-pentanone (MIBK)	1.0	U		10	1.0	3.6	ug/L		10/30/14 18:50	1
Methylene Chloride	0.50	U		1.0	0.50	0.28	ug/L		10/30/14 18:50	1
o-Xylene	0.25	U		1.0	0.25	0.21	ug/L		10/30/14 18:50	1
Styrene	0.25	U		1.0	0.25	0.45	ug/L		10/30/14 18:50	1
Tetrachloroethene	0.50	U		1.0	0.50	0.20	ug/L		10/30/14 18:50	1
Toluene	0.25	U		1.0	0.25	0.22	ug/L		10/30/14 18:50	1
trans-1,2-Dichloroethene	0.50	U		1.0	0.50	0.26	ug/L		10/30/14 18:50	1
trans-1,3-Dichloropropene	0.50	U		1.0	0.50	0.56	ug/L		10/30/14 18:50	1
Trichloroethene	0.50	U		1.0	0.50	0.15	ug/L		10/30/14 18:50	1
Vinyl chloride	0.50	U		1.0	0.50	0.29	ug/L		10/30/14 18:50	1
Xylenes, Total	1.0	U		2.0	1.0	0.43	ug/L		10/30/14 18:50	1
Dibromochloromethane	0.50	U		1.0	0.50	0.43	ug/L		10/30/14 18:50	1
Surrogate	%Recovery Qu	ıalifier	Limits				Pre	pared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	93		70 - 120						10/30/14 18:50	1
4-Bromofluorobenzene (Surr)	89		75 - 120						10/30/14 18:50	1
Toluene-d8 (Surr)	93		85 - 120						10/30/14 18:50	1
Dibromofluoromethane (Surr)	92		85 - 115						10/30/14 18:50	1
Method: 8270C - Semivolatile	Organic Compound	s (GC/MS)						_		

Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
Acenaphthene	0.099	UQ	0.20	0.099	0.044	ug/L		11/04/14 14:56	1
Acenaphthylene	0.099	UQ	0.20	0.099	0.048	ug/L		11/04/14 14:56	1

Analyte Anthracene Benzo[a]anthracene Benzo[a]pyrene Benzo[b]fluoranthene Benzo[g,h,i]perylene Benzoic acid Benzo[k]fluoranthene Benzyl alcohol

Carbazole 4-Chloroaniline 4-Chloro-3-methylphenol 2-Chloronaphthalene 2-Chlorophenol

Chrysene

Bis(2-chloroethoxy)methane Bis(2-chloroethyl)ether Bis(2-ethylhexyl) phthalate 4-Bromophenyl phenyl ether Butyl benzyl phthalate

4-Chlorophenyl phenyl ether

Dibenz(a,h)anthracene Dibenzofuran 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 3,3'-Dichlorobenzidine 2,4-Dichlorophenol Diethyl phthalate 2,4-Dimethylphenol Dimethyl phthalate Di-n-butyl phthalate 4,6-Dinitro-2-methylphenol 2,4-Dinitrophenol Di-n-octyl phthalate Fluoranthene Fluorene

Hexachlorobenzene Hexachlorobutadiene Hexachlorocyclopentadiene Hexachloroethane Indeno[1,2,3-cd]pyrene

Isophorone 2-Methylnaphthalene

2-Methylphenol

Naphthalene

2-Nitroaniline

3-Nitroaniline

4-Nitroaniline

3 & 4 Methylphenol

Client Sample ID: FWGLL2MW-271-0503-GW Date Collected: 10/22/14 16:30 Date Received: 10/23/14 10:07

Method: 8270C - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: 240-43449-11 Matrix: Water

Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac	5
0.099	UQ	0.20	0.099	0.087	ug/L		11/04/14 14:56	1	_
0.099	UQ	0.20	0.099	0.029	ug/L		11/04/14 14:56	1	6
0.099	UQ	0.20	0.099	0.051	ug/L		11/04/14 14:56	1	
0.099	UQ	0.20	0.099	0.039	ug/L		11/04/14 14:56	1	
0.099	UQ	0.20	0.099	0.046	ug/L		11/04/14 14:56	1	
20	UQJ	25	20	9.9	ug/L		11/04/14 14:56	1	8
0.099	UQ	0.20	0.099	0.044	ug/L		11/04/14 14:56	1	0
0.50	UQ	5.0	0.50	0.38	ug/L		11/04/14 14:56	1	0
0.50	UQ	0.99	0.50	0.32	ug/L		11/04/14 14:56	1	9
0.099	UQ	0.99	0.099	0.099	ug/L		11/04/14 14:56	1	
5.0	U	5.0	5.0	1.7	ug/L		11/04/14 14:56	1	
0.50	U	2.0	0.50	0.22	ug/L		11/04/14 14:56	1	
0.50	U	5.0	0.50	0.26	ug/L		11/04/14 14:56	1	
0.50	U	0.99	0.50	0.28	ug/L		11/04/14 14:56	1	
0.50	UQ	2.0	0.50	0.21	ug/L		11/04/14 14:56	1	
0.50	UQ	2.0	0.50	0.21	ug/L		11/04/14 14:56	1	
0.50	U	0.99	0.50	0.099	ug/L		11/04/14 14:56	1	13
0.50	UQ	0.99	0.50	0.29	ug/L		11/04/14 14:56	1	
0.50	U	2.0	0.50	0.30	ug/L		11/04/14 14:56	1	14
0.099	UQ	0.20	0.099	0.050	ug/L		11/04/14 14:56	1	
0.099	U	0.20	0.099	0.044	ug/L		11/04/14 14:56	1	15
0.099	U	0.99	0.099	0.020	ug/L		11/04/14 14:56	1	
0.50	UQ	0.99	0.50	0.29	ug/L		11/04/14 14:56	1	
0.50	UQ	0.99	0.50	0.23	ug/L		11/04/14 14:56	1	
0.50	UQ	0.99	0.50	0.34	ug/L		11/04/14 14:56	1	
0.99	U	5.0	0.99	0.37	ug/L		11/04/14 14:56	1	
0.50	UQ	2.0	0.50	0.19	ug/L		11/04/14 14:56	1	
0.99	U	2.0	0.99	0.59	ug/L		11/04/14 14:56	1	
0.50	UQ	2.0	0.50	0.25	ug/L		11/04/14 14:56	1	
0.50	U	2.0	0.50	0.29	ug/L		11/04/14 14:56	1	
5.0	U	5.0	5.0	1.7	ug/L		11/04/14 14:56	1	
4.0	UQJ	5.0	4.0	2.4	ug/L		11/04/14 14:56	1	
0.99	UQJ	5.0	0.99	0.32	ug/L		11/04/14 14:56	1	
0.50	U	2.0	0.50	0.23	ug/L		11/04/14 14:56	1	
0.099	UQ	0.20	0.099	0.044	ug/L		11/04/14 14:56	1	
0.099	UQ	0.20	0.099	0.040	ug/L		11/04/14 14:56	1	
0.099	U	0.20	0.099	0.084	ug/L		11/04/14 14:56	1	
0.50	UQ	0.99	0.50	0.27	ug/L		11/04/14 14:56	1	
0.50	UQJ	9.9	0.50	0.24	ug/L		11/04/14 14:56	1	
0.50	UQ	0.99	0.50	0.19	ug/L		11/04/14 14:56	1	
0.099	UQ	0.20	0.099	0.043	ug/L		11/04/14 14:56	1	
0.50	UQ	0.99	0.50	0.27	ug/L		11/04/14 14:56	1	

TestAmerica Canton

1

1

1

1

1

1

1

11/04/14 14:56

11/04/14 14:56

11/04/14 14:56

11/04/14 14:56

11/04/14 14:56

11/04/14 14:56

11/04/14 14:56

0.20

0.99

2.0

0.20

2.0

2.0

2.0

0.099

0.50

0.99

0.099

0.50

0.50

0.50

0.090 ug/L

0.17 ug/L

0.79 ug/L

0.062 ug/L

0.21 ug/L

0.28 ug/L

0.22 ug/L

0.099 U

0.50 UQ

0.99 U Q

0.099 U Q

0.50 U

0.50 U

0.50 U

LOQ

2.0

5.0

0.99

0.99

0.99

5.0

0.20

0.99

0.20

0.99

5.0

5.0

Limits

50 - 110

20 - 110

40 - 110

10 - 115

50 - 135

40 - 125

LOD

0.50

4.0

0.50

0.50

0.50

0.99

0.099

0.99

0.099

0.50

0.50

0.50

DL Unit

0.28 ug/L

0.29 ug/L

0.24 ug/L

0.31 ug/L

ug/L

ug/L

Prepared

10/24/14 08:57

10/24/14 08:57

10/24/14 08:57

10/24/14 08:57

10/24/14 08:57

10/24/14 08:57

0.40

0.27 ug/L

0.061 ug/L

0.59

0.042 ug/L

0.28 ug/L

0.30 ug/L

0.24 ug/L

Analyte

2-Nitrophenol

4-Nitrophenol

N-Nitrosodi-n-propylamine

2,2'-oxybis[1-chloropropane]

N-Nitrosodiphenylamine

1,2,4-Trichlorobenzene

2,4,5-Trichlorophenol

2,4,6-Trichlorophenol

2-Fluorobiphenyl (Surr)

2-Fluorophenol (Surr)

Terphenyl-d14 (Surr)

2,4,6-Tribromophenol (Surr)

Phenol-d5 (Surr)

Nitrobenzene-d5 (Surr)

Pentachlorophenol

Phenanthrene

Phenol

Pyrene

Surrogate

Client Sample ID: FWGLL2MW-271-0503-GW Date Collected: 10/22/14 16:30 Date Received: 10/23/14 10:07

Method: 8270C - Semivolatile Organic Compounds (GC/MS) (Continued)

Result Qualifier

0.50 U Q

4.0 UQ

0.50 U Q

0.50 UQ

0.099 UQ

0.99 U Q

0.099 U Q

0.50 UQ

0.50 UQ

0.50 UQ

%Recovery Qualifier

0 Q

0 Q

0 Q

0 Q

0 Q

0 Q

0.99 UQJ

0.50 U

Lab Sample ID: 240-43449-11 Matrix: Water

Analyzed

11/04/14 14:56

11/04/14 14:56

11/04/14 14:56

11/04/14 14:56

11/04/14 14:56

11/04/14 14:56

11/04/14 14:56

11/04/14 14:56

11/04/14 14:56

11/04/14 14:56

11/04/14 14:56

11/04/14 14:56

Analyzed

11/04/14 14:56

11/04/14 14:56

11/04/14 14:56

11/04/14 14:56

11/04/14 14:56

11/04/14 14:56

D

Method:	8081A -	Organochlorine	Pesticides	(GC) =	RF

Analyte	Res	ult Qualifier	LOQ	LOD	DL	Unit D	Analyzed	Dil Fac
4,4'-DDD	0.0	48 U H	0.048	0.048	0.017	ug/L	11/17/14 21:56	1
4,4'-DDE	0.0	48 U H	0.048	0.048	0.0086	ug/L	11/17/14 21:56	1
4,4'-DDT	0.0	48 U H	0.048	0.048	0.013	ug/L	11/17/14 21:56	1
Aldrin	0.0	48 U H	0.048	0.048	0.012	ug/L	11/17/14 21:56	1
alpha-BHC	0.0	48 U H	0.048	0.048	0.013	ug/L	11/17/14 21:56	1
alpha-Chlordane	0.0	48 U H	0.048	0.048	0.011	ug/L	11/17/14 21:56	1
beta-BHC	0.0	48 U H	0.048	0.048	0.012	ug/L	11/17/14 21:56	1
delta-BHC	0.0	48 U H	0.048	0.048	0.028	ug/L	11/17/14 21:56	1
Dieldrin	0.0	48 U H	0.048	0.048	0.012	ug/L	11/17/14 21:56	1
Endosulfan I	0.0	48 U H	0.048	0.048	0.015	ug/L	11/17/14 21:56	1
Endosulfan II	0.0	48 U H	0.048	0.048	0.014	ug/L	11/17/14 21:56	1
Endosulfan sulfate	0.0	48 U H	0.048	0.048	0.010	ug/L	11/17/14 21:56	1
Endrin	0.0	48 U H	0.048	0.048	0.011	ug/L	11/17/14 21:56	1
Endrin aldehyde	0.0	48 U H	0.048	0.048	0.0076	ug/L	11/17/14 21:56	1
Endrin ketone	0.0	48 U H	0.048	0.048	0.0086	ug/L	11/17/14 21:56	1
gamma-BHC (Lindane)	0.0	48 U H	0.048	0.048	0.011	ug/L	11/17/14 21:56	1
gamma-Chlordane	0.0	48 U H	0.048	0.048	0.0095	ug/L	11/17/14 21:56	1
Heptachlor	0.0	48 U H	0.048	0.048	0.0048	ug/L	11/17/14 21:56	1
Heptachlor epoxide	0.0	48 U H	0.048	0.048	0.013	ug/L	11/17/14 21:56	1
Methoxychlor	0.0	48 U H	0.095	0.048	0.011	ug/L	11/17/14 21:56	1
Toxaphene	0.	95 U H	1.9	0.95	0.19	ug/L	11/17/14 21:56	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
DCB Decachlorobiphenyl	82		30 - 135			11/05/14 07:38	11/17/14 21:56	1
DCB Decachlorobiphenyl	77		30 - 135			11/05/14 07:38	11/17/14 21:56	1
Tetrachloro-m-xylene	82		25 - 140			11/05/14 07:38	11/17/14 21:56	1
Tetrachloro-m-xvlene	91		25 - 140			11/05/14 07:38	11/17/14 21:56	1

LOQ

LOD

DL Unit

Analyte

Client Sample ID: FWGLL2MW-271-0503-GW Date Collected: 10/22/14 16:30 Date Received: 10/23/14 10:07

Method: 8082 - Polychlorinated Biphenyls (PCBs) by Gas Chromatography

Result Qualifier

Lab Sample ID: 240-43449-11 Matrix: Water

Analyzed

D

Dil Fac

Aroclor-1016	0.20	U	0.50	0.20	0.17	ug/L		10/29/14 21:01	1
Aroclor-1221	0.20	U	0.50	0.20	0.13	ug/L		10/29/14 21:01	1
Aroclor-1232	0.20	U	0.50	0.20	0.16	ug/L		10/29/14 21:01	1
Aroclor-1242	0.40	U	0.50	0.40	0.22	ug/L		10/29/14 21:01	1
Aroclor-1248	0.20	U	0.50	0.20	0.099	ug/L		10/29/14 21:01	1
Aroclor-1254	0.20	U	0.50	0.20	0.16	ug/L		10/29/14 21:01	1
Aroclor-1260	0.20	U	0.50	0.20	0.17	ug/L		10/29/14 21:01	1
Surrogate	%Recovery Qu	alifier	Limits			Prepa	red	Analyzed	Dil Fac
Tetrachloro-m-xylene	83		40 _ 140			10/24/14	08:40	10/29/14 21:01	1
Tetrachloro-m-xylene	80		40 _ 140			10/24/14	08:40	10/29/14 21:01	1
DCB Decachlorobiphenyl	79		40 _ 135			10/24/14	08:40	10/29/14 21:01	1
DCB Decachlorobiphenyl	75		40 - 135			10/24/14	08:40	10/29/14 21:01	1
Method: 8330 Modified - Nitro	guanidine (HPLC)								
Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
Nitroguanidine	6.0	U	20	6.0	2.4	ug/L		11/04/14 14:31	1
Method: 8330A - Nitroaromatio	cs and Nitramines								
Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
1,3,5-Trinitrobenzene	0.055	U	0.16	0.055	0.034	ug/L		11/04/14 23:11	1
1,3-Dinitrobenzene	0.11	U	0.16	0.11	0.055	ug/L		11/04/14 23:11	1
2,4,6-Trinitrotoluene	0.11	U	0.16	0.11	0.055	ug/L		11/04/14 23:11	1
2,4-Dinitrotoluene	0.11	U	0.14	0.11	0.055	ug/L		11/04/14 23:11	1
2,6-Dinitrotoluene	0.11	U	0.14	0.11	0.055	ug/L		11/04/14 23:11	1
2-Amino-4,6-dinitrotoluene	0.11	U	0.16	0.11	0.016	ug/L		11/04/14 23:11	1
2-Nitrotoluene	0.11	U	0.55	0.11	0.097	ug/L		11/04/14 23:11	1
3-Nitrotoluene	0.11	U	0.55	0.11	0.063	ug/L		11/04/14 23:11	1
4-Nitrotoluene	0.11	U	0.55	0.11	0.097	ug/L		11/04/14 23:11	1
4-Amino-2,6-dinitrotoluene	0.11	U	0.16	0.11	0.055	ug/L		11/04/14 23:11	1
HMX	0.055	U	0.16	0.055	0.040	ug/L		11/04/14 23:11	1
RDX	0.055	U	0.16	0.055	0.040	ug/L		11/04/14 23:11	1
Nitrobenzene	0.11	U	0.16	0.11	0.055	ug/L		11/04/14 23:11	1
Tetryl	0.11	U	0.16	0.11	0.055	ug/L		11/04/14 23:11	1
Nitroglycerin	0.55	U	0.71	0.55	0.36	ug/L		11/04/14 23:11	1
PETN	0.55	U	0.71	0.55	0.33	ug/L		11/04/14 23:11	1
Surrogate	%Recovery Qu	alifier	Limits			Prepa	red	Analyzed	Dil Fac
3,4-Dinitrotoluene	97		79 _ 111			10/27/14	08:44	11/04/14 23:11	1
3,4-Dinitrotoluene	107		79 _ 111			10/27/14	08:44	11/07/14 05:31	1
General Chemistry									
Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
Cyanide, Total	0.0050	U	0.010	0.0050	0.0020	mg/L		10/31/14 14:03	1
Nitrocellulose	1.0	U	2.0	1.0	0.48	mg/L		10/29/14 14:33	1

TestAmerica Job ID: 240-43449-1

Client Sample ID: FWGLL2MW-271-0503-GF

Date Collected: 10/22/14 16:30 Date Received: 10/23/14 10:07

Lab Sample ID: 240-43449-12 Matrix: Water

5

8 9

Analyte	Result	Qualifier	LOO	LOD	DL	Unit	D	Analyzed	Dil Fac
Arsenic	6.0		10	10	2.9	ug/L		10/29/14 12:19	1
Chromium	0.69		7.0	4.0	0.55	ug/L		10/29/14 12:19	1
Cobalt	6.1		7.0	4.0	0.56	ug/L		10/29/14 12:19	. 1
Lead	5.0		10	5.0	1.00	ug/L		10/29/14 12:19	· · · · · · · · ·
Selenium	10	U	15	10	4.0	ug/L		10/29/14 12:19	1
Silver	5.0	U	7.0	5.0	0.92	ug/L		10/29/14 12:19	1
Vanadium	4.0	U	7.0	4.0	2.4	ug/L		10/29/14 12:19	
Barium	3.2		200	5.0	1.0	ug/L		10/29/14 12:19	1
Calcium	60000	0	5000	1000	260	ug/L		10/29/14 12:19	1
Copper	10		25	10	1 9	ug/L		10/29/14 12:19	
Magnasium	17000	0	5000	300	1.5	ug/L		10/29/14 12:19	1
Manganasa	290		15	5.0	0.46	ug/L		10/29/14 12:19	1
Manganese	390	· · · · · · · · · · · · · · · · · · ·	40	5.0	0.40	ug/L		10/29/14 12:19	
Nickei	25	J	40	000	0.70	ug/∟		10/29/14 12:19	1
	1100	U C				dg, 2		10,20,11,12,10	
Method: 6020 - Metals (ICP/MS) - Total	Recoverab	le							
Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
Aluminum	60	UJ	60	60	20	ug/L		10/29/14 10:25	1
Antimony	1.0	UJ	2.0	1.0	0.33	ug/L		10/29/14 10:25	1
Beryllium	1.0	UJ	1.0	1.0	0.50	ug/L		10/29/14 10:25	1
Cadmium	0.58	J	2.0	1.0	0.40	ug/L		10/29/14 10:25	1
Iron	3200	J	150	100	44	ug/L		10/29/14 10:25	1
Sodium	4300	J	1000	400	160	ug/L		10/29/14 10:25	1
Thallium	1.5	J	2.0	1.5	0.79	ug/L		10/29/14 10:25	1
Zinc	50	U	50	50	27	ug/L		10/29/14 10:25	1
Method: 7470A - Mercury (CVAA)									
Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
Hg	0.20	U	0.20	0.20	0.090	ug/L		10/30/14 14:55	1

Attachment 1

Project Number: 030174.0016 Sample Event: October 2014 Data Reviewer/Date: Angela Dragotta/ December 10, 2014

SDG: 240-43449 **Analysis**: SW846 6010/6020/7470A

Review Questions:	Yes	No	N/A	Comments	Qual/Criteria
1. Did Chain-of-Custody information agree with	x				
laboratory report?	Λ				
2. Were samples preserved properly and received in	x				QAPP Table 5-1, NELAC
good condition?	<u>^</u>				
3. Were holding times met?	X				QAPP Table 5-1 J/UJ/R
4. Were sample storage requirements met?	X				QAPP Table 5-1
5. Were all QAPP-specified target analytes reported?	X				QAPP Table 4-1
6. Was a LOD Verification performed once per	v				DoD QSM Table F-8
quarter with all target analytes detected?	<u>^</u>				
7. Tuning (ICP MS Only)					
7a. Was a tune performed daily prior to calibration	X				DoD QSM
7b. Mass Calibration <0.1 amu from true value	X				Table F-8
7c. Resolution <0.9 amu full width at 10 % peak	X				R
height					
7d. RSD <%5 for a minimum of four replicate	X				
analyses					
8.Calibration	X				
8a. Was the ICAL performed daily with at least	X			ICPMS & ICP-10/29/14, and Hg 10/30/14	DoD QSM
1 high standard and a blank for ICP & ICPMS	X				Tables F-8 and F-7
5 standards and a blank for Hg	X				
8b. Was the correlation coefficient r≥0.995 for Hg?	v				DoD QSM
	Δ				Tables F-8 and F-7 r<0.995=J/R
8c. Was the ICV (second source verification)					DoD QSM
analyzed after the ICAL with results 90-110% of the	X				Tables F-8 and F-7
true value?					
8d. Was the ICB analyzed after the ICV with detected				ICPMS-The ICB analyzed 10/29/14 @ 0741 had thallium	DoD QSM, Tables F-8 and F-7
results $\leq 1/2$ the MRL?				detected at $0.127 \mu g/L$. No qualification of the data was	< 5x = U
		X		required as the detected thallium result for sample	
				FWGLL2mw-271-0503 was greater than 5x blank	
				contamination.	
Sample Analysis					
9. Was a MRL Level Verification performed at the					LS, DoD QSM
beginning of the daily sequence and end of the					Table G-18, >130%=J;
analytical sequence bracketing samples? Were results	X				70-80%=J/UJ; <70%=J/UJ
70-130%?					<65%=R, unless DL check with
					detected results

Project Number: 030174.0016 Sample Event: October 2014 Data Reviewer/Date: Angela Dragotta/ December 10, 2014

SDG: 240-43449 **Analysis**: SW846 6010/6020/7470A

10. Were CCVs analyzed every 10 samples and at the end of the analytical sequence with results 90-110% of the true value?DoD QSM, Tables F-8 and F-7 >110%=J, <85%=J/R 90-85%=J/UJ;11. Were the CCBs run every 10 samples and at the end of the analytical sequence?ICP The CCBs analyzed 10/29/14 had potassium detected from 75 1 ug/L to 94.7 ug/L. The CCB analyzed 10/29/14 at Tables F-8 and F-7	Keview Questions:
end of the analytical sequence with results 90-110%X>110%=J, <85%=J/Rof the true value?90-85%=J/UJ;11. Were the CCBs run every 10 samples and at the end of the analytical sequence?ICP The CCBs analyzed 10/29/14 had potassium detected from 75 1 ug/L to 94.7 ug/L. The CCB analyzed 10/29/14 at Tables F-8 and F-7	10. Were CCVs analyzed every 10 samples and at the
of the true value? $90-85\%=J/UJ;$ 11. Were the CCBs run every 10 samples and at the end of the analytical sequence? Were results <1/2 the	end of the analytical sequence with results 90-110%
11. Were the CCBs run every 10 samples and at the ICP The CCBs analyzed 10/29/14 had potassium detected ICP The CCBs analyzed 10/29/14 at ICP Tables E_{-8} and E_{-7}	of the true value?
and of the analytical sequence? Were results $<1/2$ the from 75.1 µg/L to 94.7 µg/L. The CCB analyzed $10/20/14$ at Tables E-8 and E-7	11. Were the CCBs run every 10 samples and at the
I four of the analytical sequence: were results <1/2 the provide the providet the provide the provide the provide the provide the providet	end of the analytical sequence? Were results $<1/2$ the
MRL? 1227 had nickel detected at 1.83 μ g/L. The nickel results for $<5x = U$	MRL?
samples FWGLL1mw-088-0502-GF, FWGLL3mw-246-	
0504-GF, FWGLL3mw-DUP1-0506-GF and	
FWGEQUIPRINSE1-0507-GW and the potassium result for	
X sample FWGEQUIPRINSE1-0507-GW were qualified "U" as	
the reported concentrations were less than 5x blank	
contamination.	
<u>ICPMS</u> The CCBs analyzed 10/29/14 had thallium detected	
from 0.152 μ g/L to 0.446 μ g/L. The thallium result for	
sample FWGLL2mw-271-0503-GF was qualified "U" as the	
reported concentration was less than 5x blank contamination.	
12. Was an Interelement Check Standard run at the DoD QSM	12. Was an Interelement Check Standard run at the
Tables F-8 and F-7	beginning of the analytical sequence and every 12
hours with the ICS recovery within 80 to 120% of true X	hours with the ICS recovery within 80 to 120% of true
value for each element of interest (ICP and ICPMS 50-79%=J/UJ; <50%=Pj/R	value for each element of interest (ICP and ICPMS
	only)?
13. Was a method blank prepared and analyzed with DoD QSM	13. Was a method blank prepared and analyzed with
each batch?	each baich?
14. Were target analytes detected >1/2 the MRL in the DoD QSM	14. Were target analytes detected $>1/2$ the MRL in the
method blank? $X = \begin{bmatrix} method blank at 0.423 \ \mu g/L. The cadmium result for sample \\ EWGL I 2mm 271.0502 \ GE method blank at 0.423 \ \mu g/L. The cadmium result for sample \\ fix = D \\ (5m = D)$	method blank?
F wGLL2mw-2/1-0503-GF was qualified B as the reported $<5x = B$	
Concentration was less than 5X method blank contamination.	15 Was a field black callested and analyzed?
15. was a field blank collected and analyzed? X FWGEQUIPRINSE1-0507-GW and FWGEQUIPRINSE2-	15. was a field blank collected and analyzed?
16 Ware target analytes reported in the field blank DeD OSM	16. Were target analytes reported in the field blenk
To, were target analytes reported in the field dialik $DOD QSM$ analytes $\sum 1/2$ the MPL 2 Tables E 8 and E 7	10. were target analytes reported in the field blank analytes $>1/2$ the MPI 2
analyses $\sim 1/2$ the wrk L: Γ work QUIPKINSE1-30/-G w at 0.30 µg/L, maket at 0.78 Tables F-8 and F-7 $\mu \sigma/L$ and potagoing at 86 µg/L. The picket at 0.78 Tables F-8 and F-7	analyses ~1/2 the MIRL?
$\mu g/L$ and potassium at 80 $\mu g/L$. The nicket result for sample EWGL L 1mm 088-0502 GE was qualified "B" as the	
X reported concentration was less than five times the equipment	
ripse contamination. No qualification was required for the	
manganese or potessium contamination as the detected results	
for notassium and manganese in the associated field sample	

Project Number: 030174.0016 Sample Event: October 2014 Data Reviewer/Date: Angela Dragotta/ December 10, 2014

SDG: 240-43449 **Analysis**: SW846 6010/6020/7470A

Review Questions:	Yes	No	N/A	Comments	Qual/Criteria
				FWGLL1mw-088-0502-GF, were greater than 5x contamination	
17. Was a LCS prepared and analyzed with each batch?	X				DoD QSM Tables F-8 and F-7
18. Were the LCS recoveries within limits specified in LCG Appendix C?	x			Checked by ADR.	DoD QSM Tables G-18, F-8 and F- 7>120%=J; 70-79%=J/UJ; <70%=J/R
19. Was a matrix spike (MS) and lab duplicate sample prepared with each batch?	X				DoD QSM Tables F-8 and F-7
20. Was the MS and Lab Duplicate parent a Ravenna sample?	x			A matrix spike analysis and laboratory duplicate analysis was performed on sample FWGLL2mw-271-0503-GF.	
21. Were the MS recoveries within 80-120%?	x				DoD QSM Tables G-18, F-8 and F-7, >120%=J; 70-79%=J/UJ; <70%=J/R All samples in batch
22. Was the lab sample duplicate RPD \leq 20%, for sample results detected above the LOQ?		x		ICP-The laboratory duplicate analyzed on sample FWGLL2mw-271-0503-GF had an RPD above control limits of 20% for chromium at 27%. No qualification of the data was required as the detected chromium concentration were less than the LOQ.	DoD QSM Tables F-8 and F-7 >20% = J, All samples in batch
23. Was a serial dilution performed, with the fivefold dilution within \pm 10% of the original result?	X			FWGLL2mw-271-0503-GF	DoD QSM, Tables F-8 and F-7 >20% = J. Only evaluate results above the LOQ. Qualify all samples in batch
24. Was a Post Digestion Spike analyzed as needed? Were results within 75-125%?		x		ICPMS-The post digestion spike analysis performed on sample FWGLL2mw-271-0503-GF recovered above control limits for aluminum at 135%, antimony at 141%, iron at 137% and sodium at 143%. No qualifications were required for the iron or sodium outliers as the serial dilution for these analytes was within \pm 10% of the original result. The detected antimony and aluminum results for samples FWGLL1MW-088-0502-GF, FWGLL3MW-246-504-GF, FWGEQUIPRINSE2-0508-GW were qualified as estimated, "J". As no qualification is required for the non detected	LCG Table 7, >125%=J; 30-75%=J/UJ; <30%=R

Project Number: 030174.0016 Sample Event: October 2014 Data Reviewer/Date: Angela Dragotta/ December 10, 2014 **SDG**: 240-43449 **Analysis**: SW846 6010/6020/7470A

Review Questions:	Yes	No	N/A	Comments	Qual/Criteria
				results associated with a high post spike recovery, no qualification was made for the antimony or aluminum FWGLL3MW-DUP1-506-GF, FWGLL2MW-271-0503-GF	
				or FWGEQUIPRINSE1-0507-GW results.	
25. Was a field duplicate analyzed? Were the RPDs \pm				Checked by ADR. A field duplicate was analyzed on sample	>30% = J. Qualify parent sample
50% for sample results detected above the LOQ?	X			FWGLL3mw-246-504-GW. All detected results above the	only and only evaluate results
				LOQ had RPD within acceptable limits.	above the LOQ
26. Were internal standards added to all ICPMS					DoD QSM Table F-8.
samples with intensity within 30-120% of the	X				>120%=J/R, <20%=J
intensity of the ICAL internal standard?					

References:

- DoD Quality Systems Manual (QSM), version 4.1, October 2010
- Louisville DoD Quality Systems Manual Supplement (LS), Version 1 March 2007
- Final Facility Wide Groundwater Monitoring Program, RVAAP-66 Facility Wide Groundwater Quality Assurance Project Plan (QAPP) Addendum for the Ravenna Army Ammunition Plant, Ravenna, OH, Environmental Quality Management, January 2012
- Final Facility Wide Quality Assurance Project Plan for Environmental Investigations Groundwater for the Ravenna Army Ammunition Plant, Ravenna, OH, SAIC, February 2011

Project Number: 030174.0016 Sample Event: October 2014 Data Reviewer/Date: Angela Dragotta/December 10, 2014

SDG: 240-43449 Analysis: SW846 8330M Nitroguanidine

Review Questions:	Yes	No	N/A	Comments	QUAL/Criteria
1. Did Chain-of-Custody information agree with laboratory report?	X				
2. Were samples preserved properly and received in good condition?	X				QAPP Table 5-1
3. Were holding times met?	X			The holding time for samples FWGEQUIPRINSE2-0508-GW, FWGEQUIPRINSE1-0507-GW, FWGLL3mw-246-504-504-GW, FWGLL1mw-088-504-502-GW, FWGLL2mw-271-503-GW and FWGLL3mw-DUP1-506-GW were extracted outside 7 day hold time but within 2x hold. The nitroguanidine results for samples FWGEQUIPRINSE2-0508-GW, FWGEQUIPRINSE1-0507-GW, FWGLL3mw-246-504-504-GW, FWGLL1mw-088-504-502-GW, FWGLL2mw-271-503-GW and FWGLL3mw-DUP1-506-GW were qualified as estimated, "UJ".	QAPP Table 5-1 J/UJ/R
4. Were sample storage requirements met?	Χ				QAPP Table 5-1
5. Were all QAPP-specified target analytes reported?	X				QAPP Table 4-3
6. Was a LOD Verification analyzed once per quarter with all target analytes detected?	X				DoD QSM Table F-3 R
7.Calibration					
7a. Does the initial calibration curve consist of 5 concentration levels? (6 stds for quadratic curves)	x			PDA-1 7/10/14	
7b. Did all target analytes using avg response have an $RSD \le 15\%$?	X				DoD OSM Table F-3
7c. If a linear regression curve was used, was the correlation coefficient r≥0.995? (0.990 for Quadratic curve).			x		R
7d. Did reanalysis of the low level standard after calibration, recover within 15%?	X				
8. Was a second source verification (ICV) analyzed after the ICAL and all analytes 80-120%?	x			7/10/14 @ 1719	DoD QSM Table F-3 >120%=J; <80%= J/UJ;
Sample Analysis					
9. Was a CCV run at the beginning of the analytical sequence, every 10 samples and at the end of the analytical run with targets and surrogates recovering	x				DoD QSM Table F-3 J/UJ

Project Number: 030174.0016 Sample Event: October 2014 Data Reviewer/Date: Angela Dragotta/December 10, 2014

SDG: 240-43449 Analysis: SW846 8330M Nitroguanidine

Review Questions:	Yes	No	N/A	Comments	QUAL/Criteria
80-120% of the true value?					
10. Was a MRL Level verification run at the					LCG Table 5
beginning and end of every daily sequence or every	X				>30%=J
12 hours? Was the $\%$ D < 30%?					
11. Was a method blank prepared and analyzed with each batch?	X				DoD QSM Table F-3
12. Were target analytes detected in the method blank				Checked by ADR.	DoD QSM Table F-3
<1/2 the MRL?					<5x = B
13. Was a field blank collected and analyzed?	X				
14. Were target analytes detected in the field blank				Checked by ADR.	DoD QSM Table F-3
analyses $< \frac{1}{2}$ the MRL?					<5x=B
15. Was a field duplicate analyzed? Were the RPDs <a> <30%?	XX				RPD >30=J
16. Were all positive results confirmed with a second				No detected concentrations were reported.	DoD QSM Table F-3
column confirmation? Were the RPDs $\leq 40\%$?			X		RPD>40%=J
17. Was an LCS prepared and analyzed with each	v				DoD QSM Table F-3
batch?	Λ				
18. Were the LCS recoveries within laboratory limits				Checked by ADR.	DoD QSM Table F-3
of 79%-119%?	x				<ul=j;< td=""></ul=j;<>
					30-LL=J/UJ;
					<30%=J/R
19. Was a MS/MSD or MS and sample duplicate	x				DoD QSM Table F-3
prepared with each batch?					
20. Were MS/MSD recoveries within laboratory	x				DoD QSM Table F-3
limits of 40%-150% with an RPD $\leq 20\%$?	1				Pj

References:

DoD Quality Systems Manual (QSM), version 4.1, October 2010

Louisville DoD Quality Systems Manual Supplement (LS), Version 1 March 2007

Final Facility Wide Groundwater Monitoring Program, RVAAP-66 Facility Wide Groundwater Quality Assurance Project Plan (QAPP) Addendum for the Ravenna Army Ammunition Plant, Ravenna, OH, Environmental Quality Management, January 2012

Final Facility Wide Quality Assurance Project Plan for Environmental Investigations Groundwater for the Ravenna Army Ammunition Plant, Ravenna, OH, SAIC, February 2011

Additional Comments:

Project Number: 030174.0016 Sample Event: October 2014 Data Reviewer/Date: Angela Dragotta/ December 10, 2014

SDG: 240-43449 **Analysis:** TAL SOP WS-WC-0050

Review Questions:	Yes	No	N/A	Comments	Qualifier
1. Did Chain-of-Custody information agree	x				
with laboratory report?					
2. Were samples preserved properly and	x				QAPP Table 5-1
received in good condition?					
3. Were holding times met?	X				QAPP Table 5-1 J/UJ/R
4. Were sample storage requirements met?	X				QAPP Table 5-1
5. Were all QAPP-specified target analytes	x				QAPP Table 4-1
reported?					
6. Does the initial calibration curve consist of					SOP Section 10.2
5 concentration levels with the low standard					R
near but > MDL?					
7. Was the correlation coefficient >0.995?	X				SOP Section 10.2
8. Was a MRL Level Verification run at the				No closing MRL information was provided for evaluation. Since an	>30%=J
beginning and end of every daily sequence or		X		opening MRL check was analyzed with acceptable recovery, the data was	
every 12 hours? Was the %D <30%?				qualified as estimated "UJ" instead of unusable.	
9. Was a second source verification (ICV)					>110%=J;
analyzed after the ICAL? Were all analytes	X				90-85%=J/UJ;
90-110%?					<85%=J/R
10. Was the ICB analyzed after the ICV with	v				STL SOP Section 9.8,
results $<1/2$ the MRL?					LCG = U
11. Was a CCV run every 10 samples and at	v				STL SOP Section 10.4
the end of the analytical run?					
12. Was the ICV and CCV a mid-level					STL SOP Section
standard from the initial calibration curve?					10.3.1
13. Were all CCV calibration analytes within					>110%=J;
90-110%?					85-90%=J/UJ;
					<85%=J/R
14. Was the ICB analyzed after the ICV with	v				QSM, < 5x = U
results $<1/2$ the MRL?	A				
15. Was a method blank prepared and	v				
analyzed with each batch?	Λ				
16. Were target analytes detected in the		v		ADR checked section.	LCG, $<5x=B$
method blank $<1/2$ the MRL?		Λ			
17. Was a field blank collected and analyzed?	X				

Project Number: 030174.0016 Sample Event: October 2014 Data Reviewer/Date: Angela Dragotta/ December 10, 2014 **SDG:** 240-43449 **Analysis:** TAL SOP WS-WC-0050

Review Questions:	Yes	No	N/A	Comments	Qualifier
18. Were target analytes detected in the field		v			<5x=B
blank analyses $<1/2$ the MRL?		А			
19. Was a field duplicate analyzed? Were the	v			ADR checked section	QAPP Table 3-2
RPDs ≤30%?	Λ				RPD > 30% = J
20. Was an LCS prepared and analyzed with					>UL%=J;
each batch? Was the LCS recovery within	X				50-LL%=J/UJ;
lab's in-house limits% (26-144%)?					<50%=J/R
21. Was a MS/MSD pair prepared with each	v				
batch?	^				
22. Was the MS/MSD parent a Ravenna	v			Sample FWGLL2mw-271-0503-GW was the parent for the matrix spike	
sample?	Λ			analysis.	
23. Were MS/MSD recoveries 26-144% and					Method EPA 353.2
RPD ≤20?	v				Section 9.4.2
					>UL%=J; <ll%=j td="" uj;<=""></ll%=j>
					RPD>20%=J/UJ

References:

SOP SAC-WC-0050 "Preparation and Analysis of Nitrocellulose in Aqueous and Soil/Sediment Samples by Colorimetric Autoanalyzer", Jan 2007, rev. 2.0

DoD Quality Systems Manual (QSM)

Louisville DoD Quality Systems Manual Supplement (LS), Version 1 March 2007

Final Facility Wide Groundwater Monitoring Program, RVAAP-66 Facility Wide Groundwater Quality Assurance Project Plan (QAPP) Addendum for the Ravenna Army Ammunition Plant, Ravenna, OH, Environmental Quality Management, January 2012

Final Facility Wide Quality Assurance Project Plan for Environmental Investigations Groundwater for the Ravenna Army Ammunition Plant, Ravenna, OH, SAIC, February 2011

Additional Comments:

Project Number: 030174.0016 Sample Event: October 2014 Data Reviewer/Date: Angela Dragotta/December 12, 2014 **SDG**: 240-43449 **Analysis**: SW846 8330 Explosives

Review Questions:	Yes	No	N/A	Comments	QUAL/Criteria
1. Did Chain-of-Custody information agree with laboratory report?	X				
2. Were samples preserved properly and received in good condition?	X				QAPP Table 5-1
3. Were holding times met?	Χ				QAPP Table 5-1 J/UJ/R
4. Were sample storage requirements met?	Χ				QAPP Table 5-1
5. Were all QAPP-specified target analytes reported?	Χ				QAPP Table 4-3
6. Was a LOD Verification analyzed once per quarter with all target analytes detected?	X				DoD QSM Table F-3 R
7.Calibration					
7a. Does the initial calibration curve consist of 5 concentration levels? (6 stds for quadratic curves)	X			LC11 10/31/14 LC12 11/4/14	
7b. Did all target analytes using avg response have an RSD $\leq 15\%$?	X				DoD QSM Table F-3
7c. If a linear regression curve was used, was the correlation coefficient $r \ge 0.995$? (0.990 for non-linear).	x			LC11-RDX, 1,3,5-trinitrobenzene and 3,5-dinitroaniline used a linear fit LC12-Nitrobenzene, 2-amino-4,6-dinitrotoluene, HMX and 3,4-ditrotoluene used a linear fit	K
8. Was a second source verification (ICV) analyzed after the ICAL and all analytes 80-120%?	X			LC11 11/1/14@1016 LC12 11/3/14 @1647	DoD QSM Table F-3 >120%=J; <80%= J/UJ;
Sample Analysis					
9. Was a CCV run at the beginning of the analytical sequence, every 10 samples and at the end of the analytical run with targets and surrogates recovering 80-120% of the true value?	X			LC11- 11/4/2014 @1538, 11/5/14 @ 0007 and 0257 LC12-11/6/2014@2152, 11/7/14 @ 0637	DoD QSM Table F-3 J/UJ
10.Was a MRL Level verification run at the beginning and end of every daily? Was the %D< 30%?	X			LC11- 11/4/2014 @1441, 11/5/14 @ 0354 LC12-11/6/2014@2047, 11/7/14 @ 0743	LCG Table 5 >30%=J
11. Was a method blank prepared and analyzed with each batch?	X				DoD QSM Table F-3
12. Were target analytes detected in the method blank <1/2 the MRL?	X			Checked by ADR.	DoD QSM Table F-3 <5x = B
13. Was a field blank collected and analyzed?	X				
14. Were target analytes detected in the field blank analyses $> \frac{1}{2}$ the MRL?		X		Checked by ADR.	DoD QSM Table F-3 <5x=B

Project Number: 030174.0016 Sample Event: October 2014 Data Reviewer/Date: Angela Dragotta/December 12, 2014

SDG: 240-43449 Analysis: SW846 8330 Explosives

Review Questions:	Yes	No	N/A	Comments	QUAL/Criteria
15. Was a field duplicate analyzed? Were the RPDs $\leq 30\%$?	x			Checked by ADR.	RPD >30=J
16. Were all positive results confirmed with a second column confirmation? Were the RPDs $\leq 40\%$?		X		The confirmation column RPD was above control limits of 40% for 1,3,5- trinitrobenzene at 129.6% in sample FWGEQUIPRINSE1-507-GW. The 1,3,5-trinitrobenzene results for sample FWGEQUIPRINSE1-507-GW was qualified as estimated, "J".	DoD QSM Table F-3 RPD>40%=J Only detected results above the LOQ were evaluated
17. Was an LCS prepared and analyzed with each batch?	x				DoD QSM Table F-3
18. Were the LCS recoveries within limits specified in table G-12 of the DoD QSM?	x			Checked by ADR.	DoD QSM Table F-3 <ul=j;30-ll=j uj;<br=""><30%=J/R</ul=j;30-ll=j>
19.Was a MS/MSD or MS and sample duplicate prepared with each batch?	x				DoD QSM Table F-3
20. Were MS/MSD recoveries within limits specified in table G-12 of the DoD QSM with an RPD $\leq 30\%$?	x				DoD QSM Table F-3 Pj
21. Were surrogate recoveries within laboratory limits (79-111%)?	x			The surrogate, 3,4-dinitrotolune recovered above control limits of 79-111% for samples FWGEQUIPRINSE1-507-GW and FWGEQUIPRINSE2-508-GW on the confirmation column (LC12) at 128% and 121%, respectively. No qualifications were applied as the sample results were reported from the primary column (LC11).	QSM Tables F-2 >UL=J; <ll =j="" td="" uj<=""></ll>

References: DoD Quality Systems Manual (QSM), version 4.1, October 2010

Louisville DoD Quality Systems Manual Supplement (LS), Version 1 March 2007

Final Facility Wide Groundwater Monitoring Program, RVAAP-66 Facility Wide Groundwater Quality Assurance Project Plan (QAPP) Addendum for the Ravenna Army Ammunition Plant, Ravenna, OH, Environmental Quality Management, January 2012

Final Facility Wide Quality Assurance Project Plan for Environmental Investigations Groundwater for the Ravenna Army Ammunition Plant, Ravenna, OH, SAIC, February 2011

Project Number: 030174.0016 Sample Event: October 2014 Data Reviewer/Date: Angela Dragotta/ December 10, 2014 **SDG**: 240-43449 **Analysis**: SW846 9012A

Review Questions:	Yes	No	N/A	Comments	QUAL/Criteria
 Did Chain-of-Custody information agree with laboratory report? 	X				
2. Were samples preserved properly and received in good condition?	X				QAPP Table 5-1
3. Were holding times met?	X				QAPP Table 5-1 J/UJ/R
4. Were sample storage requirements met?	X				QAPP Table 5-1
5. Were all QAPP-specified target analytes reported?	X				QAPP Table 4-1
6. Does the initial calibration curve consist of at least 6 standards and one blank, with the correlation coefficient $R \ge 0.995$?	X				DoD QSM Table F-10 R
7. Were a high and low standard distilled and analyzed with results within $\pm 15\%$?	X				DoD QSM Table F-10 R
8. Was an LOD Verification performed at least once per quarter with all target analytes detected?	X				LCG Table 10 R
9. Was a MRL Level Verification performed at the beginning and end of the daily sequence? Were results within 70-130%?	X				LCG Table 10, LS >130%=J; 65-70%=J/UJ; <65%=J/R
10. Was a second source verification (ICV) analyzed after the ICAL and all analytes 85-115%?	X			10/31/14 @ 1328	DoD QSM Table F-10 >115%=J; 80-85%=J/UJ; <80%=J/R
11. Was a method blank prepared and analyzed with each batch?	X				DoD QSM Table F-10
12. Were target analytes detected in the method blank $>1/2$ the MRL?		X		Checked by ADR.	DoD QSM Table F-10 <5x=B
13. Was a field blank collected and analyzed?	X				
14. Were target analytes in the field blank analyses <1/2 the MRL?	X				DoD QSM Table F-10 <5x=B
15. Was a field duplicate analyzed? Were the RPDs $\leq 20\%$?	X			Checked by ADR.	>30% = J
16. Was an LCS prepared and analyzed with each batch?	X				DoD QSM Table F-10

Project Number: 030174.0016 Sample Event: October 2014 Data Reviewer/Date: Angela Dragotta/ December 10, 2014 **SDG**: 240-43449 **Analysis**: SW846 9012A

Review Questions:	Yes	No	N/A	Comments	QUAL/Criteria
17. Were the LCS recoveries 80-118%?				Checked by ADR.	DoD QSM Table F-10
					Lab Limits
	Χ				>118%=J;
					50-79%=J/UJ;
					<50%=R
18. Was a MS and duplicate (sample or matrix)	v				DoD QSM Table F-10
prepared once per every 10 samples?	Л				
19. Was the MS parent a Ravenna sample?	v				
	А				
20. Were matrix spike recoveries 42-140%?					DoD QSM Table F-10
-	Х				>140%=J;
					<42%=J/UJ/R

References:

DoD Quality Systems Manual (QSM), version 4.1, October 2010

Louisville DoD Quality Systems Manual Supplement (LS), Version 1 March 2007

Final Facility Wide Groundwater Monitoring Program, RVAAP-66 Facility Wide Groundwater Quality Assurance Project Plan (QAPP) Addendum for the Ravenna Army Ammunition Plant, Ravenna, OH, Environmental Quality Management, January 2012

Final Facility Wide Quality Assurance Project Plan for Environmental Investigations Groundwater for the Ravenna Army Ammunition Plant, Ravenna, OH, SAIC, February 2011 Additional Comments:
Project Number: 030174.0016 Sample Event: October 2014 Data Reviewer/Date: Angela Dragotta/ December 8, 2014

Review Questions:	Yes	No	N/A	Comments	Qual/Criteria
1. Did Chain-of-Custody information agree with laboratory report?	X				
2. Were samples preserved properly and received in good condition?	X				QAPP Table 5-1,
3.Were holding times met?		x		The holding time for samples FWGEQUIPRINSE2-0508-GW, FWGLL3mw-246-504-504-GW and FWGLL3mw-DUP1-506-GW were reextracted outside 7 day hold time at 14 days. The SVOC results for samples FWGEQUIPRINSE2-0508-GW, FWGLL3mw-246-504- 504-GW and FWGLL3mw-DUP1-506-GW were qualified as estimated, "UJ", since the re-extraction was completed within 2x hold time.	QAPP Table 5-1, J/UJ/R
4. Were sample storage requirements met?	X				QAPP Table 5-1,
5. Were all QAPP-specified target analytes reported?	X				QAPP Table 4-6
6. Was the GC/MS system tuned each 12 hour shift (prior to ICAL and Cal Ver.)?	X				QSM Table F-4
7. Initial Calibration					
7a. Did the initial calibration curve consist of 5 concentration levels?	X			Instrument A4HP9–10/23/14, 11/5/14	QSM Table F-4 R
7b. Did the Calibration Check Compounds (CCCs) (see Table 1 below) relative standard deviations (%RSD) $\leq 30\%$?	x				QSM Table F-4 R
7c. Were the minimum response factors (RFs) for the System Performance Check Compounds (SPCCs) (see Table 2 below) ≤0.050?	X				QSM Table F-4
7d. Were all other target analytes reported with an avg response have an RSD $\leq 15\%$?	X				QSM Table F-4 15% <rsd< 20%="J/UJ</td"></rsd<>
7e. IF the RSD was >15% was a different calibration option used?	X				
7f. If a linear regression curve was used, was the correlation coefficient r>0.995?	X				QSM Table F-4 R<0.99=-J/R
7g. If a non-linear regression was used, was the COD r \geq 0.99, with a minimum of 6 points for second order and 7 points for third order?	x			10/23/14-Benzoic acid and 2,4-Dinitrophenol used a linear fit. 11/5/14-Benzoic acid used a linear fit	QSM Table F-4 R<0.99=-J/R

Project Number: 030174.0016 Sample Event: October 2014 Data Reviewer/Date: Angela Dragotta/ December 8, 2014

Review Questions:	Yes	No	N/A	Comments	Qual/Criteria
8. Was a LOD Level Verification performed	v				QSM Table F-4 and
quarterly for each reported analyte?	Λ				section D.1.2.1
9 Was a breakdown check run at the beginning of					QSM Table F-4
every 12 hours with DDT degradation <20% and	v				R
tailing factors of benzidine and pentachlorophenol	Δ				
<i>≤</i> 2?					
10. Was a MRL Level Verification run at the				11/4/14 @0937 and 1609, 11/12/14 @0912 and 1524.	Louisville Supplement to
beginning and end of every daily sequence or every				The closing MRL analyzed 11/4/14 @ 1609 recovered below control	the DOD QSM
12 hours with recoveries within 70-130%?				limits of 70-130% for 2,4-dinitrophenol at 69%.	
				The closing MRL analyzed 11/12/14 @ 1524 recovered below control	
		x		limits of 70-130% for 2,4-dinitrophenol at 56%. An LOD verification	
				check was analyzed following MRL standard with detected results.	
				The 2,4-dinitrophenol results for samples FWGLL1mw-088-0502-GW	
				FWGLL3mw-246-504-GW, FWGLL3mw-DUP1-506-GW,	
				FWGLL2mw-271-0503-GW, FWGEQUIPRINSE1-0507-GW and	
				FWGEQUIPRINSE2-0508-GW were qualified as estimated, "UJ".	001 (7 11 5 (
11. Was a second source verification (ICV)	X			10/23/14 @1337, 11/5/14 @1455	QSM Table F-4
analyzed? Were results 80-120%?					J = <80% and $> 120%$
12. Was a CCV run daily prior to analysis and	Χ			11/4/14 @0912, 11/12/14 @847	QSM Table F-4
every 12 nours of analysis time?					
12a. Were the average response factors (RFs) for	v				QSM Table F-4
$(SPCC_s) > 0.0502$	Л				
12b Were all target analytes $< 20\%$ D?				The CCV analyzed $11/4/14$ had 4-nitroaniline recover above the 20%	OSM Table F-4
120. Were an target analytes $\leq 2070D$:				criteria for %D with a %D of 22.2% carbazole recovered above control	%D < 20% = I/UI
				limits with a %D of 26.2% and 4 6-dinitro-2-methylphenol with a %D	760 2070 3703
	X			of 21.3% No qualification of the data was required as there were no	
				detected concentrations of 4-nitroaniline, carbazole or 4.6-dinitro-2-	
				methylphenol reported for the associated field samples.	
13. Were the internal standards added to every					OSM Table F-4
sample?	X				
13a. Was the EICP area between -50% and +100%	v				QSM Table F-4
of the ICAL mid-point standard?	Λ				R
13b. Were the retention times for all IS compounds	v				QSM Table F-4
within ± 30 seconds from the RT of the mid-point	А				J/UJ

Project Number: 030174.0016 Sample Event: October 2014 Data Reviewer/Date: Angela Dragotta/ December 8, 2014

Review Questions:	Yes	No	N/A	Comments	Qual/Criteria
standard in the ICAL?					
14. Were the retention times for target analytes					QSM Table F-4
within ± 0.06 RRT units from the RT of the mid-	v				J
point standard in the ICAL or the most recently					
updated RRT for all samples?					
15. Was a method blank prepared and analyzed	v				QSM Table F-4
with each batch?	Λ				
15a. Were target analytes detected in the method				Checked by ADR.	QSM Table F-4
blank $>1/2$ the MRL, $>$ RL for common		X			<5/10X =B
contaminants?					
16. Was a field blank (equipment and/or trip)	v			FWGEQUIPRINSE1-0507-GW and FWGEQUIPRINSE2-0508-GW	
collected and analyzed?	Λ				
16a. Were target analytes detected in the field		v			QSM Table F-4
blank?		Λ			<5/10X =B
17. Was a LCS prepared and analyzed with each	v				QSM Table F-4
batch?	~				
17a. Were the LCS recoveries within limits				ADR checked section; The LCS analyzed with batch 240-153104	QSM Table F-4,
specified in Table G-6 of the DoD QSM?				recovered below control limits of 10-115% for	Table G-6
		X		hexachlorocyclopentadiene at 3%. The hexachlorocyclopentadiene	J/UJ
				LCS from batch 240-154942 recovered below limits at 5%. All	
				hexachlorocyclopentadiene results were qualified as estimated, "UJ"	
18. Was a MS/MSD prepared with each batch?	x			A matrix spike and spike duplicate were prepped analyzed on sample	
				FWGLL2mw-271-0503-GW.	
18a. Were the MS/MSD recoveries within limits				Checked by ADR. The hexachlorocyclopentadiene matrix spike and	QSM Table F-4, Table G-
specified in Table G-6 of the DoD QSM with an				matrix spike recoveries were below control limits of 10-115% at 5%	6
RPD <30%?				and 4%, respectively. The pentachlorophenol MSD recovered below	J/UJ Parent sample only
				control limits of 40-115% at 39%. The MS/MSD RPD was above	
				control limits for 2,4-dinitrophenol at 75%, 4,6-dinitro-2-methylphenol	
				at 47% and benzoic acid at 200%. The hexachlorocyclopentadiene and	
				pentachlorophenol results for FWGLL2mw-271-0503-GW were	
				qualified as estimated, "UJ". No qualification was made for the	
				MS/MSD RPD outliers as there were no detected 4-dinitrophenol, 4,6-	
				dinitro-2-methylphenol or benzoic acid results reported for sample	
				FWGLL2mw-271-0503-GW.	
19. Was a field duplicate analyzed?	X			A field duplicate was collected for FWGLL3mw-246-504-GW.	

Project Number: 030174.0016 Sample Event: October 2014 Data Reviewer/Date: Angela Dragotta/ December 8, 2014 **SDG**: 240-43449 **Analysis**: SW846 8270

Review Questions:	Yes	No	N/A	Comments	Qual/Criteria
19a. Were the field duplicates RPDs within ±50%?				No detected sample results were reported.	QSM Table F-4,
			X		RPD >50=J
					Parent sample only
20. Were surrogate recoveries within control limits				Samples FWGLL1mw-088-0502-GW, FWGLL2mw-271-0503-GW	QSM Tables F-4 & G-3
specified in the DOD QSM?				and FWGEQUIPRINSE1-0507-GW were not spiked with surrogate so	>150%=J; 10% -
	X			no evaluation could be made. The results for samples FWGLL1mw-	50%=J/UJ; <10%=J/R
				088-0502-GW, FWGLL2mw-271-0503-GW and FWGEQUIPRINSE1-	
				0507-GW were qualified as estimated, "UJ".	
21. Were reported sample concentrations within	v				
calibration range?	л				

References:

- DoD Quality Systems Manual (QSM), version 4.1, October 2010
- Louisville DoD Quality Systems Manual Supplement (LS), Version 1 March 2007
- Final Facility Wide Groundwater Monitoring Program, RVAAP-66 Facility Wide Groundwater Quality Assurance Project Plan (QAPP) Addendum for the Ravenna Army Ammunition Plant, Ravenna, OH, Environmental Quality Management, January 2012
- Final Facility Wide Quality Assurance Project Plan for Environmental Investigations Groundwater for the Ravenna Army Ammunition Plant, Ravenna, OH, SAIC, February 2011

Additional Comments:

Table 1: CCCs (All analytes if CCCs not included in standard)

Base / Neutral Compounds	Acid Compounds
Acenaphthalene	4-Chloro-3-methylphenol
1,4-Dichlorobenzene	2,4-Dichlorophenol
Hexachlorobutadiene	2-Nitrophenol
N-Nitrosodiphehylamine	Phenol
Di-n-octylphthalate	Pentachlorophenol
Fluoroanthene	2,4,6-Trichlorophenol
Benzo(a)pyrene	

Table 2: SPCCs -

N-Nitroso-di-n-propylamine	0.050
Hexachlorocyclopentadiene	0.050
2,4-Dinitrophenol	0.050
4-Nitrophenol	0.050

Project Number: 030174.0016 Sample Event: October 2014 Data Reviewer/Date: Angye Dragotta/December 7, 2014

Review Questions:	Yes	No	N/A	Comments	Qual/Criteria
1. Did Chain-of-Custody information agree with laboratory report?	X				
2. Were samples preserved properly and	v				QAPP Table 5-1,
received in good condition?	Λ				
3. Were holding times met?	x				QAPP Table 5-1,
	Δ				J/UJ/R
4. Were sample storage requirements met?	X				QAPP Table 5-1,
5. Were all QAPP addendum-specified target	x				QAPP Table 4-5
analytes reported?					
6. Was the GC/MS system tuned with					QSM Table F-4
bromofluorobenzene (BFB) during each 12	X				
hour shift (prior to ICAL and Cal Ver.)?					
7. Calibration					
7a. Did the initial calibration curve consist of 5	X			Instrument A3UX16–10/27/14	QSM Table F-4
concentration levels?					R CONCERNING
/b. Did the Calibration Check Compounds					QSM Table F-4
(CCCs) (see Table 1 below) relative standard	X				ĸ
deviations (%RSD) \leq 30%?					
/c. Were the minimum response factors (RFs)					QSM Table F-4
for the System Performance Check	Χ				
Compounds (SPCCs) (see Table 2 below)					
7d Did target englytes with an evenese					OSM Table E 4
7d. Did target analytes with an average colibration type have an $PSD < 15\%$?	v				QSM TABLE F-4
canoration type have all $KSD \leq 15\%$?	Л				15% < KSD < 20% =
To IF the PSD was >15% was a different					J/ UJ
calibration option used?	Х				
7f If a linear regression curve was used was				Acetone and methylene chloride used a linear fit	OSM Table F-4
the correlation coefficient $r > 0.995$?	Х				R < 0.995 = -I/R
7g If a non-linear regression was used was					OSM Table F-4
the COD r>0.99 with a minimum of 6 points	x				R < 0.99 = -I/R
for second order and 7 points for third order?					
8. Was a LOD Level Verification performed					OSM Table F-4 and
quarterly for each reported analyte with	x				section D.1.2.1
detected results?					

Project Number: 030174.0016 Sample Event: October 2014 Data Reviewer/Date: Angye Dragotta/December 7, 2014

Review Questions:	Yes	No	N/A	Comments	Qual/Criteria
9. Was a MRL Level Verification run at the				10/30/14 @ 1159 and 2127	
beginning and end of every daily sequence or	Х				
every 12 hours?					
10. Were the QC/MRL recoveries 70-130%				• The opening MRL analyzed on 10/30/14 @ 1159 recovered below	Louisville
				control limits for acetone at 31%, bromoform at 69% and 2-butanone at	Supplement to the
				68%. Chloromethane recovered above control limits of 70-130% at 131.	DOD QSM
				A LOD verification check sample was analyzed following the closing	
				MIRL with detected results for the outlier analytes.	
				• The closing MRL analyzed 10/30/14 @ 212/ recovered below control limits of 70, 120% for sectors at 50%. A varification sheek semple was	
				analyzed following the closing MPL with detected results for the outlier	
				analyzed following the closing with detected results for the outlier	
				The acetone, bromoform and 2-butanone results for samples FWGLL1MW-088-	
	X			0502-GW, FWGTEAM2TRIP, FWGEQUIPRINSE1-0507-GW,	
				FWGEQUIPRINSE2-0508-GW, FWGLL3MW-246-504-GW, FWGLL3MW-	
				DUP1-506-GW, and FWGLL2MW-271-0503-GW were qualified as estimated,	
				"J/ UJ". No qualifications were required for the chloromethane outlier as there	
				were no detected concentrations of chloromethane reported for the bracketed field	
				samples.	
11. Was a second source verification (ICV)	X			10/28/14 @0053	QSM Table F-4
analyzed? were results 80-120%?				10/20/14 01102	J=<80% and >120%
12. Was a CCV run daily prior to analysis and	Χ			10/30/14 @1102	QSM Table F-4
every 12 hours of analysis time?					OSM Table E 4
for the (SPCCs) (see Table 2 below) met?	Χ				QSIVI TABLE F-4
12h Were all target analytes < 20%D?					OSM Table F-4
	X				%D < 20% = J/UJ
13. Were the internal standards added to every	v				QSM Table F-4
sample?	Λ				
13a. Was the EICP area between -50% and					QSM Table F-4
+100% of the ICAL mid-point standard?	X				R
13b. Were the retention times for all IS					OSM Table F-4
compounds within ± 30 seconds from the RT of	X				J/UJ
the mid-point standard in the ICAL?					

Project Number: 030174.0016 Sample Event: October 2014 Data Reviewer/Date: Angye Dragotta/December 7, 2014

Review Questions:	Yes	No	N/A	Comments	Qual/Criteria
14. Were the retention times for target analytes	5				QSM Table F-4
within ± 0.06 RRT units from the RT of the	v				J
mid-point standard in the ICAL or the most	Λ				
recently updated RRT for all samples?					
15. Was a method blank prepared and analyzed	1				QSM Table F-4
with each batch?	Х				
15a. Were target analytes detected in the				Checked by ADR.	QSM Table F-4
method blank $>1/2$ the MRL and $>RL$ for		Χ			<5/10X =B
common contaminants?					
16. Was a field blank (equipment and/or trip)	N 7				
collected and analyzed?	Х				
16a. Were target analytes detected in the field				Checked by ADR.	QSM Table F-4
blanks?				Acetone was detected in FWGTEAM2Trip collected 10/21/14 at 4.1µg/L and	<5/10X =B
				FWGTEAM2Trip collected 10/22/14 at 4.0µg/L. The acetone result for	
				FWGEOUIPRINSE1-0507-GW was qualified, "B".	
	Χ			FWGEQUIPRINSE1-0507-GW had acetone detected at 3.5µg/L and toluene at	
				0.24µg/L. FWGEQUIPRINSE2-0508-GW had chloroform detected at 0.69µg/L	
				and methylene chloride at $1.1 \mu g/L$. There were no detected concentrations of	
				acetone, toluene, chloroform or methylene chloride reported for the associated	
				field samples, so no qualifications were made for the noted equipment rinse	
				contamination.	
17. Was a LCS prepared and analyzed with					QSM Table F-4
each batch?	Χ				
17a. Were the LCS recoveries within limits				ADR checked section;	QSM Table F-4,
specified in Table G-5 of the DoD QSM?	X				Table G-5, J/UJ
18. Was a MS/MSD prepared with each batch	X			A matrix spike and spike duplicate were analyzed on sample FWGLL2MW-2/1- 0503-GW	QSM Table F-4
18a Were the MS/MSD recoveries within			1		OSM Table F-4
limits specified in Table G-4 of the DoD OSM					Table G-5
with an RPD $<30\%$?	X				I/III Parent sample
with an $\mathbf{X} \mathbf{D} \setminus \mathbf{J} \mathbf{U} 0$:					only

Project Number: 030174.0016 Sample Event: October 2014 Data Reviewer/Date: Angye Dragotta/December 7, 2014 **SDG**: 240-43449 **Analysis**: SW846 8260B

Review Questions:	Yes	No	N/A	Comments	Qual/Criteria
19a. Were the field duplicates RPDs within				There were no detected concentrations reported for the parent and field duplicate	QSM Table F-4,
<u>+</u> 30%?			Χ	analysis.	RPD >30=J
					Parent sample only
20. Were surrogate recoveries within control					QSM Tables F-4 &
limits specified in the DOD QSM?	v				G-3>150%=J; 10%
	Λ				-50%=J/UJ;
					<10%=J/R
21. Were reported sample concentrations	v				
within calibration range?	Λ				

References:

DoD Quality Systems Manual (QSM), version 4.1, October 2010

Louisville DoD Quality Systems Manual Supplement (LS), Version 1 March 2007

Final Facility Wide Groundwater Monitoring Program, RVAAP-66 Facility Wide Groundwater Quality Assurance Project Plan (QAPP) Addendum for the Ravenna Army Ammunition Plant, Ravenna, OH, Environmental Quality Management, January 2012

Final Facility Wide Quality Assurance Project Plan for Environmental Investigations Groundwater for the Ravenna Army Ammunition Plant, Ravenna, OH, SAIC, February 2011

Additional Comments: Table1- CCCs

Table 2- SPCCs

Analyte	Analyte	Minimum RF				
1,1-Dichloroethene	Chloromethane	0.10				
Chloroform	1,1-Dichlorethane	0.10				
1,2-Dichloropropane	Bromoform	0.10				
Toluene	Chlorobenzene	0.30				
Ethylbenzene	1,1,2,2-Tetrachloroethane	0.30				
Vinyl chloride						

Project Number: 030174.0016 Sample Event: October 2014 Data Reviewer/Date: Angela Dragotta / December 19, 2014

Review Questions:	Yes	No	N/A	Comments	Qual/Criteria
1. Did Chain-of-Custody information agree with	v				
laboratory report?	Λ				
2. Were samples preserved properly and received in	v				QAPP Table 5-1,
good condition?	Λ				NELAC
3. Were holding times met?				Checked by ADR. Samples FWGLL3mw-246-504-GW, FWGLL3mw-DUP1-	QAPP Table 5-1 J/UJ/R
				506-GW, FWGLL2mw-271-0503-GW and FWGEQUIPRINSE2-0508-GW	-
				were extracted outside the seven day hold time but within 2x hold time. The	
				pesticide results for samples, FWGLL3mw-246-504-GW, FWGLL3mw-DUP1-	
		v		506-GW, FWGLL2mw-271-0503-GW and FWGEQUIPRINSE2-0508-GW	
		Λ		were qualified as estimated, "UJ" instead of unusable, since the re-extraction	
				was completed within 2x hold time. In addition, sample FWGLL1mw-088-	
				504-502-GW was analyzed outside the analytical hold time of 40 days at 54	
				days. As the analysis took place within 2x analytical hold, the results for	
				sample FWGLL1mw-088-504-502-GW were qualified as estimated, "J/UJ".	
4. Were sample storage requirements met?	Х				QAPP Table 5-1
5. Were all QAPP-specified target analytes	v				QAPP Table 4-3
reported?	Λ				
6. Was a DDT standard analyzed every 12 hours?	v				QSM Table F-2
Was the DDT %breakdown <15%?	Λ				>15%=J/R
7. Was an endrin standard analyzed every 12 hours?	v				QSM Table F-2
Was the endrin %breakdown <15%?	Λ				>15%=J/R
8. Initial Calibration					
8a. Does the initial calibration curve consist of 5	v			A2HP3 on 10/21/14 (tox), 10/29/14, 12/2/14 (all)	QSM Table F-2
concentration levels?	л				R
8a. Were the %RSDs for each analyte $\leq 20\%$? OR					QSM Table F-2
was the average %RSD $\geq 20\%$ with the r ² >0.990?	Х				RSD>20% or
					r<0.99=J/R
9. Was a LOD Level Verification performed once	v				QSM Table F-2
per quarter with all target analytes detected?	Λ				R
10. Was a MRL Verification performed at the				Analytical Batch 154474	QSM Table F-2, G-14
beginning and end of the sequence or every 12 hours				The MRL analyzed 11/3/14 @ 0009 had toxaphene recover above control limits	>UL=J;
with results within limits of 70-130%?				of 70-130% at 142%. No qualification was required as toxaphene was not	<ll=j r<="" td="" uj=""></ll=j>
	x			reported as detected for sample FWGEQUIPRINSE1-507-GW.	
	~~			Analytical Batch 155567	
				The MRL analyzed 11/8/14 @ 1721 had toxaphene recover above control limits	
				of 70-130% at 183% and at 2305 toxaphene recovered above limits at 170%.	
				The MRL analyzed 11/8/14 @ 1807 recovered above limits of 70-130% at	1

Project Number: 030174.0016 Sample Event: October 2014 Data Reviewer/Date: Angela Dragotta / December 19, 2014

Review Questions:	Yes	No	N/A	Comments	Qual/Criteria
				142% for 4,4'-DDD. The MRL analyzed 11/8/14 @ 2350 recovered above	
				limits of 70-130% at 173% for 4,4'-DDD, at 131% for endrin and at 149% for	
				methoxychlor. No qualifications were required as there were no detected	
				pesticide concentrations reported for sample FWGEQUIPRINSE2-508-GW.	
				Analytical Batch 156929	
				The MRL analyzed 11/17/14 @ 1832 had toxaphene recover above control	
				limits of 70-130% at 133%. The MRL analyzed on 11/17/14 @ 1923 recovered	
				above limits of 70-130% for beta BHC at 139%. No qualifications were	
				required as there were no detected toxaphene or beta-BHC concentrations	
				reported for samples FWGLL3mw-246-504-GW, FWGLL3mw-DUP1-506-	
				GW. FWGLL2mw-271-0503-GW.	
				Analytical Batch 161502	
				The opening MRL analyzed $12/17/14 @ 2100$ recovered above limits of 70-	
				130% for aldrin at 133% alpha chlordane at 137% dieldrin at 139%	
				endosulfan I at 141% endosulfan II at 138% endosulfan sulfate at 133%	
				endrin at 147% endrin aldehyde at 132% gamma chlordane at 137%	
				heptachlor at 139% and heptachlor epoxide at 139%. The closing MRL	
				analyzed $12/17/14 @ 2241$ recovered above limits of 70-130% for 4 4'-DDD at	
				136% 4 4'-DDE at 142% 4 4'-DDT at 136% aldrin at 140% alpha chlordane	
				at 144% beta-BHC at 132% dieldrin at 144% endosulfan Lat 148%	
				endosulfan II at 147% endosulfan sulfate at 141% endrin at 156% endrin	
				ketone at 135% endrin aldebyde at 141% gamma chlordane at 144%	
				hentachlor at 145% hentachlor enovide at 146% and methovychlor at 136%	
				No qualifications were required as there were no detected 4 4'_DDD 4 4'_DDF	
				A A'_DDT aldrin alpha chlordane beta BHC dieldrin endosulfan I endosulfan	
				I endosulfan sulfate endrin endrin ketone endrin aldehyde gamma	
				chlordane, hentachlor, hentachlor enovide or methovychlor concentrations	
				reported for sample FWGL 1 mm 088 0502	
11 Was a second source (ICV) verification				10/21/14@ 12222(tox) and on $10/20/14@0445 = 12/2/14@ 1650(tox) and 2223$	OSM Table E 2
analyzed after the ICAL? Were results 80 120%?	Х			10/21/14 ($12322(10x)$ and $01110/29/14$ ($10/0443$, $12/2/14$ ($1030(10x)$ and 2223	120% - 1.20% - 1.111
12 Was a CCV run every 12 hours or at the				Analytical Batch 154474	OSM Table F_7
beginning and end of the analytical run with the $0/D$				The CCV analyzed 11/3/14 at 1/35 had %D above 20% for almba BHC at	>120%=1
for all target analytes $< 20\%$?				20.1% gamma BHC at $20.6%$ hata BHC at $21.6%$ dalta BHC at $25.5%$	<80%=I/UI
ior an target analytes 2070?				22.170, gamma-DHC at 50.070, octa-DHC at 51.070, ucita-DHC at 55.570,	~0U /0-J/ U J
				ablardana at 28.7%, aluma ablardana at 28.1%, and cultar Let 22.2% 4.4%	
	v			DDE at 42.4% , diplication of 21.0%, and rin at 52.8%, 4.4 , DDD at 68.6%	
	Λ			endosulfan II at 28.8% AA'_{2} DDT at $A1.1\%$ endrin aldehude at 26.0%	

Project Number: 030174.0016 Sample Event: October 2014 Data Reviewer/Date: Angela Dragotta / December 19, 2014

Review Questions:	Yes	No	N/A	Comments	Qual/Criteria
				methoxychlor at 52.9%, endosulfan at 30.6%, endrin ketone at 28.3%, TCMX at	
				23.5% and DCB at 25.2%. The CCV analyzed 11/3/14 at 1817 had %D above	
				20% for alpha-BHC at 23.7%, gamma-BHC at 24.8%, beta-BHC at 26.6%,	
				delta-BHC at 30.1%, heptachlor at 29.5%, aldrin at 22.8%, heptachlor epoxide	
				at 26.4%, gamma-chlordane at 26.6%, alpha-chlordane at 24.0%, endosulfan I	
				at 27.7%, 4,4'-DDE at 49.1%, dieldrin at 27.5%, endrin at 43.7%, 4,4'-DDD at	
				62.1%, endosulfan II at 27.5%, 4,4'-DDT at 33.0%, endrin aldehyde at 34.9%,	
				methoxychlor at 43.7%, endosulfan at 29%, endrin ketone at 27.2% and DCB at	
				27.5%. The CCV analyzed 11/4/14 at 0036 had %D above 20% for 4,4'-DDE	
				at 27.5%, endrin at 26.6%, 4,4'-DDD at 41.1%. No qualification of the data	
				was required as all CCV outliers were biased high and there were no detected	
				pesticide concentrations reported for sample FWGEQUIPRINSE1-507-GW.	
				Analytical Batch 155567	
				The CCV analyzed 11/8/14 at 1612 had %D above 20% for toxaphene at	
				38.6%. The CCV analyzed 11/8/14 at 1658 had %D above 20% for 4,4'-DDE at	
				21.6%, 4,4'-DDD at 58.5%, and methoxychlor at 26.5%. The CCV analyzed	
				11/8/14 at 1658 had %D above 20% for 4,4'-DDE at 24.3%, endrin at 23.3%,	
				4,4'-DDD at 59.4%, 4,4'-DDT at 29.8% and methoxychlor at 34.9%. The CCV	
				analyzed 11/9/14 at 0059 had %D above 20% 4,4'-DDE at 24.3%, endrin at	
				22.0%, 4,4'-DDD at 57.0%, 4,4'-DDT at 26.6% and methoxychlor at 32.0%.	
				The CCV analyzed 11/9/14 at 0014 had %D above 20% for toxaphene at	
				41.98%. No qualification of the data was required as all CCV outliers were	
				biased high and there were no detected pesticide concentrations reported for	
				sample FWGEQUIPRINSE2-508-GW.	
				Analytical Batch 156929	
				The CCV analyzed 11/17/14 at 1557 had %D above 20% for endrin at 23.8%.	
				The CCV analyzed 11/17/14 at 1806 had %D above 20% for beta-BHC at	
				24.0%, heptachlor at 25.5%, 4,4'-DDE at 21.0%, endrin at 30.5%, 4,4'-DDD at	
				25.8%, endosulfan II at 20.6%, 4,4'-DDT at 26.4%, endrin aldehyde at 22.2%	
				and methoxychlor at 27.1%. The CCV analyzed 11/18/14 at 001 had %D above	
				20% for alpha-BHC at 20.4%, gamma-BHC at 21.3%, beta-BHC at 25.7%,	
				delta-BHC at 23.1%, heptachlor at 28.5%, endosulfan I at 22.6%, 4,4'-DDE at	
				28.7%, dieldrin at 21.5%, endrin at 39.6%, 4,4'-DDD at 36.6%, endosulfan II at	
				21.9%, 4,4'-DDT at 36.8%, endrin aldehyde at 25.4% and methoxychlor at	
				35.6. The CCV analyzed 11/18/14 at 0522 had %D above 20% for toxaphene at	
				30.4%. No qualification of the data was required as all CCV outliers were	
				biased high and there were no detected pesticide concentrations reported for	

Project Number: 030174.0016 Sample Event: October 2014 Data Reviewer/Date: Angela Dragotta / December 19, 2014

Review Questions:	Yes	No	N/A	Comments	Qual/Criteria
				samples FWGLL3mw-246-504-GW, FWGLL3mw-DUP1-506-GW or FWGLL2mw-271-0503-GW. <i>Analytical Batch 161502</i> For the CCVs analyzed 12/17/14, endrin had a %D above control limits of 20% at 22.5% (1944) and 24.9% (2306). No qualification of the data was required as	
				all CCV outliers were biased high and there were no detected endrin concentrations reported for the associated field sample FWGLL1mw-088-0502.	
13. Was a method blank prepared and analyzed with each batch?	Х				QSM Table F-2
14. Were target analytes detected> 1/2 the RL?		Х		Checked by ADR. The method blank associated with prep batch 240-150099 had alpha-BHC detected at 0.0207 μ g/L, beta-BHC at 0.0280 μ g/L, delta-BHC at 0.0552 μ g/L and gamma-BHC at 0.0128 μ g/L. No qualification of the data was required for beta-BHC, delta-BHC or gamma-BHC contamination as there were no detected concentrations of beta-BHC, delta-BHC or gamma-BHC reported for the associated field samples. The alpha-BHC result for sample FWGLL1mw-088-0502-GW was qualified, "B", as the detected concentration was less than 5x method blank contamination.	QSM Table F-2 <5x=B
15. Was a field blank collected and analyzed?	Х				
16. Were target analytes detected in the field blank analyses >1/2 the MRL?		Х			QSM Table F-2 <5x=B
17. Was an LCS prepared and analyzed with each batch?	Х				QSM Table F-2
18. Were the LCS recoveries within limits specified in QSM Table G-14?		Х		Checked by ADR. The LCS associated with samples FWGEQUIPRINSE1- 507-GW and FWGLL1mw-088-0502-GW recovered above control limits of 70- 130% for toxaphene at 138% and below control limits of 50-110% at 49% for endosulfan I. As there were no detected toxaphene concentrations reported for samples FWGEQUIPRINSE1-507-GW and FWGLL1mw-088-0502-GW, no qualification of the toxaphene data was required. The endosulfan I results for samples FWGEQUIPRINSE1-507-GW and FWGLL1mw-088-0502-GW were qualified as estimated, "UJ". The LCS associated with sample FWGEQUIPRINSE2-508-GW recovered above control limits of 25-150% for 4,4'-DDT at 157% and above control limits of 45-140% at 150% for 4,4'-DDT. No qualification was required as there were no detected pesticide concentrations reported for FWGEQUIPRINSE2-508- GW. The LCS associated with samples FWGLL2mw-271-0503-GW, FWGLL3mw- 246-504-GW and FWGLL3mw-DUP1-0506-GW recovered above control	QSM Table G-14 >UL=J; <ll=j r<="" td="" uj=""></ll=j>

Project Number: 030174.0016 Sample Event: October 2014 Data Reviewer/Date: Angela Dragotta / December 19, 2014 **SDG**: 240-43449 **Analysis**: SW846 8081A

Review Questions:	Yes	No	N/A	Comments	Qual/Criteria
				limits of 70-130% for toxaphene at 147%. As there were no detected toxaphene concentrations reported for samples FWGLL2mw-271-0503-GW,	
				of the toxaphene data was required.	
19. Was a MS/MSD pair prepared with each batch?	Х				QSM Table F-2
20. Was the MS/MSD parent a Ravenna sample?	Х			The parent sample for matrix spike and spike duplicate analysis was sample FWGLL2mw-271-0503-GW.	
21. Were MS/MSD recoveries and RPD within					QSM Table F-2
limits specified in QSM Table G-14?	Х				Pj with >UL=J;
					<ll=j r<="" td="" uj=""></ll=j>
22. Were surrogate recoveries as specified in QSM				Checked by ADR. The surrogate, TCMX, recovered above control limits of 25-	QSM Table F-2
table G-3?				140% in sample FWGLL1mw-088-0502-GW at 174% on column CLP-1. No	>LL=J; <ll=uj j="" r<="" td=""></ll=uj>
		Х		qualification of the data was required as there were no detected pesticide	
				concentrations reported for sample FWGLL1mw-088-0502-GW from this column.	
23. Was a field duplicate analyzed? Were the RPDs $\leq 50\%$?			Х	Checked by ADR. No detected pesticide concentrations were reported.	RPD >50=J parent sample only
24. Were all positive results greater than the LOQ					QSM Table F-2
verified by a second column confirmation? Were	Х				>40 RPD=J
the RPD's ≤ 40 ?					

References:

DoD Quality Systems Manual (QSM), version 4.1, October 2010

Louisville DoD Quality Systems Manual Supplement (LS), Version 1 March 2007

Final Facility Wide Groundwater Monitoring Program, RVAAP-66 Facility Wide Groundwater Quality Assurance Project Plan (QAPP) Addendum for the Ravenna Army Ammunition Plant, Ravenna, OH, Environmental Quality Management, January 2012

Final Facility Wide Quality Assurance Project Plan for Environmental Investigations Groundwater for the Ravenna Army Ammunition Plant, Ravenna, OH, SAIC, February 2011

Additional Comments:

Project Number: 030174.0016 Sample Event: October 2014 Data Reviewer/Date: Angela Dragotta//December 10, 2014 **SDG**: 240-343449 **Analysis**: SW846 8082

Review Questions:	Yes	No	N/A	Comments	Qual/Criteria
1. Did Chain-of-Custody information agree with laboratory report?	Х				
2. Were samples preserved properly and received in good condition?	X				QAPP Table 5-1
3. Were holding times met?	X				QAPP Table 5-1 J/UJ/R
4. Were sample storage requirements met?	X				QAPP Table 5-1
5. Were all QAPP-specified target analytes reported?	X				QAPP Table 4-3
6. Calibration					
6a. Does the initial calibration curve consist of 5 concentration levels of Aroclors 1016 and 1260?	x			Instrument A2HP12 10/22/14 Stds = 0.05, 0.1, 0.2, 0.5, 1.0, 2.0	QSM Table F-2 R
6b. Was the % RSD \leq 20%? or Were the r ² s $>$ 0.990?	x				QSM Table F-2 RSD>20% or r<0.99= J/R
7. Was a LOD Verification performed once per quarter? Were all target analytes detected?	X				QSM Table F-2 R
8. Was an MRL Level Verification performed at the beginning and end of the sequence or every 12 hours? Were recoveries 70-130%?	x			10/28/14@2001, 2321 & 10/29/14@1757 and 2224 10/30/14 @0846, 1010	LCG Table 3 >UCL=J; <lcl=j r;<="" td="" uj=""></lcl=j>
9. Was a second source (ICV) verification performed after the ICAL? Were the avg of all peaks for each aroclor 80-120%?	X			10/23/14	QSM Table F-2 >120%=J; <80%=J/ UJ/R
10. Were single standards of the other five Aroclors run to aid in pattern recognition and to determine a single point calibration factor?		x		All aroclors had a multi-point calibration.	Method 8082 Section 5.6.2
11. Was a CCV run every 12 hours?	X			10/28/14@1944, 2304 & 10/29/14@1740, 2044 and 2207 10/30/14 @0456, 0953	QSM Table F-2
12. Was the % D \leq 20 % for each analyte?	x				QSM Table F-2 D>20%(neg)=J/R D>20% (pos) =J

Project Number: 030174.0016 Sample Event: October 2014 Data Reviewer/Date: Angela Dragotta//December 10, 2014 **SDG**: 240-343449 **Analysis**: SW846 8082

Review Questions:	Yes	No	N/A	Comments	Qual/Criteria
13. Was a method blank prepared and analyzed with each batch?	X			Section checked by ADR.	QSM Table F-2
14. Were target analytes $<1/2$ the MRL?	X				QSM Table F-2 <5x = B
15. Was an equipment blank collected and analyzed?	X				
16. Were target analytes in the field blank analyses (equipment) <1/2 the MRL?	X			Section checked by ADR.	QSM Table F-2 <5x = B
17. Was an LCS prepared and analyzed with each batch?	X				QSM Table F-2
18. Were the LCS recoveries within limits specified in LCG Appendix C?	x			Section checked by ADR.	QSM Table F-2, Table G-16, >UL=J; <lcl%=j r="" td="" uj;<=""></lcl%=j>
19. Was a MS/MSD pair prepared with each batch?	X			A matrix spike and spike duplicate was analyzed on sample FWGLL2mw-271-0503-GW.	LCG Table 3
20. Was the MS/MSD parent a Ravenna sample?	X				
21. Were MS/MSD recoveries and RPD within limits specified in the DOD QSM Table G-16?	x				QSM Table F-2, Table G-16, >UL=J; <lcl%=j r="" td="" uj;<=""></lcl%=j>
22. Was the surrogate spiked into all samples?	X				
23. Were surrogate recoveries As specified in table G-3 of the DoD QSM?	x			Checked by ADR.	QSM Table F-2, Table G-3 >UCL=J; <lcl=j r<="" td="" uj=""></lcl=j>
24. Was a field duplicate analyzed? Were the RPDs <50%?	X			Checked by ADR. A field duplicate was submitted for sample FWGLL3mw-246-504-GW.	QSM Table F-2, RPD >50=J
25. Were all positive results verified by a second dissimilar column confirmation? Was the $RPD \le 40$?			X	No detected concentrations were reported that required confirmation.	QSM Table F-2, RPD>40=J

References:

DoD Quality Systems Manual (QSM), version 4.1, October 2010

Louisville DoD Quality Systems Manual Supplement (LS), Version 1 March 2007

Final Facility Wide Groundwater Monitoring Program, RVAAP-66 Facility Wide Groundwater Quality Assurance Project Plan (QAPP) Addendum for the Ravenna Army Ammunition Plant, Ravenna, OH, Environmental Quality Management, January 2012

Final Facility Wide Quality Assurance Project Plan for Environmental Investigations Groundwater for the Ravenna Army Ammunition Plant, Ravenna, OH, SAIC, February 2011

Attachment 2

Analytical Method	Field Sample ID	Matrix	Sample Type	Analyte	RL	Lab Result	Unc / Error	Overall Qualifier	Units	Reason Code
SDG: 240-4344	19-1									
6010B	FWGEQUIPRINSE1-507- GW	AQ	EB							
				CHROMIUM	4.0	4.0U		UJ	ug/L	Ld
				MANGANESE	5.0	0.56J		J	ug/L	RI
				NICKEL	5.0	0.78J		U	ug/L	Cb
				POTASSIUM	900	86J		U	ug/L	Cb
6010B	FWGEQUIPRINSE2-0508- GW	AQ	EB							
				CHROMIUM	4.0	4.0U		UJ	ug/L	Ld
6010B	FWGLL1MW-088-0502- GF	AQ	N							
				CHROMIUM	4.0	1.1J		J	ug/L	Ld, RI
				NICKEL	5.0	1.4J		U	ug/L	Eb, Cb
6010B	FWGLL2MW-271-0503- GF	AQ	N							
				ARSENIC	10	6.0J		J	ug/L	RI
				BARIUM	5.0	3.2J		J	ug/L	RI
				CHROMIUM	4.0	0.69J		J	ug/L	Ld, RI
6010B	FWGLL3MW-246-504-GF	AQ	N							
				CHROMIUM	4.0	4.0U		UJ	ug/L	Ld
				COBALT	4.0	0.59J		J	ug/L	RI
				NICKEL	5.0	3.9J		U	ug/L	Cb
6010B	FWGLL3MW-DUP1-506- GF	AQ	FD							
				CHROMIUM	4.0	0.66J		J	ug/L	Ld, RI
				COBALT	4.0	0.68J		J	ug/L	RI
				NICKEL	5.0	3.6J		U	ug/L	Cb
6020	FWGEQUIPRINSE1-507- GW	AQ	EB							
				ANTIMONY	1.0	1.0U		J	ug/L	ProfJudg

Analytical Method	Field Sample ID	Matrix	Sample Type	Analyte	RL	Lab Result	Unc / Error	Overall Qualifier	Units	Reason Code
SDG: 240-434	49-1									
6020	FWGEQUIPRINSE2-0508- GW	AQ	EB							
				ALUMINUM	60	750		J	ug/L	ProfJudg
				ANTIMONY	1.0	1.0U		J	ug/L	ProfJudg
				ZINC	50	27J		J	ug/L	RI
6020	FWGLL1MW-088-0502- GF	AQ	N							
				ALUMINUM	60	120		J	ug/L	ProfJudg
				ANTIMONY	1.0	1.0U		J	ug/L	ProfJudg
6020	FWGLL2MW-271-0503- GF	AQ	Ν							
				ANTIMONY	1.0	1.0U J		J	ug/L	ProfJudg
				CADMIUM	1.0	0.58J		В	ug/L	Mb
				THALLIUM	1.5	1.5J		U	ug/L	Cb
6020	FWGLL3MW-246-504-GF	AQ	N							
				ANTIMONY	1.0	0.33J		J	ug/L	RI
6020	FWGLL3MW-DUP1-506- GF	AQ	FD							
				ANTIMONY	1.0	1.0U		J	ug/L	ProfJudg
8081A	FWGEQUIPRINSE1-507- GW	AQ	EB							
				ENDOSULFAN I	0.050	0.050U		UJ	ug/L	Lcs

Analytical Method	Field Sample ID	Matrix	Sample Type	Analyte	RL	Lab Result	Unc / Error	Overall Qualifier	Units	Reason Code
SDG: 240-4344	19-1									
8081A	FWGEQUIPRINSE2-0508- GWRE	AQ	EB							
				4,4'-DDD	0.053	0.053U H Q		UJ	ug/L	StoE
				4,4'-DDE	0.053	0.053U H Q		UJ	ug/L	StoE
				4,4'-DDT	0.053	0.053U H Q		UJ	ug/L	StoE
				ALDRIN	0.053	0.053U H		UJ	ug/L	StoE
				ALPHA-BHC	0.053	0.053U H		UJ	ug/L	StoE
				ALPHA-CHLORDANE	0.053	0.053U H		UJ	ug/L	StoE
				BETA-BHC	0.053	0.053U H		UJ	ug/L	StoE
				DELTA-BHC	0.053	0.053U H		UJ	ug/L	StoE
				DIELDRIN	0.053	0.053U H		UJ	ug/L	StoE
				ENDOSULFAN I	0.053	0.053U H		UJ	ug/L	StoE
				ENDOSULFAN II	0.053	0.053U H		UJ	ug/L	StoE
				ENDOSULFAN SULFATE	0.053	0.053U H		UJ	ug/L	StoE
				ENDRIN	0.053	0.053U H Q		UJ	ug/L	StoE
				ENDRIN ALDEHYDE	0.053	0.053U H		UJ	ug/L	StoE
				ENDRIN KETONE	0.053	0.053U H		UJ	ug/L	StoE
				gamma-BHC (Lindane)	0.053	0.053U H		UJ	ug/L	StoE
				GAMMA-CHLORDANE	0.053	0.053U H		UJ	ug/L	StoE
				HEPTACHLOR	0.053	0.053U H		UJ	ug/L	StoE
				HEPTACHLOR EPOXIDE	0.053	0.053U H		UJ	ug/L	StoE
				METHOXYCHLOR	0.053	0.053U H Q		UJ	ug/L	StoE
				TOXAPHENE	1.1	1.1U H		UJ	ug/L	StoE

Analytic	al Method	Field Sample ID	Matrix	Sample Type	Analyte	RL	Lab Result	Unc / Error	Overall Qualifier	Units	Reason Code
SDG:	240-4344	9-1									
8081A		FWGLL1MW-088-0502- GW	AQ	N							
					4,4'-DDD	0.053	0.053U H Q		UJ	ug/L	EtoA
					4,4'-DDE	0.053	0.053U H Q		UJ	ug/L	EtoA
					4,4'-DDT	0.053	0.053U H Q		UJ	ug/L	EtoA
					ALDRIN	0.053	0.053U H Q		UJ	ug/L	EtoA
					ALPHA-BHC	0.053	0.028J H		JB	ug/L	EtoA, Mb,
					ALPHA-CHLORDANE	0.053	0.053U H Q		UJ	ug/L	EtoA
					BETA-BHC	0.053	0.053U H		UJ	ug/L	EtoA
					DELTA-BHC	0.053	0.053U H Q		UJ	ug/L	EtoA
					DIELDRIN	0.053	0.053U H Q		UJ	ug/L	EtoA
					ENDOSULFAN I	0.053	0.053U H Q		UJ	ug/L	EtoA, Lcs
					ENDOSULFAN II	0.053	0.053U H Q		UJ	ug/L	EtoA
					ENDOSULFAN SULFATE	0.053	0.053U H Q		UJ	ug/L	EtoA
					ENDRIN	0.053	0.053U H Q		UJ	ug/L	EtoA
					ENDRIN ALDEHYDE	0.053	0.053U H Q		UJ	ug/L	EtoA
					ENDRIN KETONE	0.053	0.053U H Q		UJ	ug/L	EtoA
					gamma-BHC (Lindane)	0.053	0.053U H		UJ	ug/L	EtoA
					GAMMA-CHLORDANE	0.053	0.053U H Q		UJ	ug/L	EtoA
					HEPTACHLOR	0.053	0.053U H Q		UJ	ug/L	EtoA
					HEPTACHLOR EPOXIDE	0.053	0.053U H Q		UJ	ug/L	EtoA

Analytic	al Method	Field Sample ID	Matrix	Sample Type	Analyte	RL	Lab Result	Unc / Error	Overall Qualifier	Units	Reason Code
SDG:	240-4344	19-1									
					METHOXYCHLOR	0.053	0.053U H Q		UJ	ug/L	EtoA
					TOXAPHENE	1.1	1.1U H Q		UJ	ug/L	EtoA
8081A		FWGLL2MW-271-0503- GWRE	AQ	N							
					4,4'-DDD	0.048	0.048U H		UJ	ug/L	StoE
					4,4'-DDE	0.048	0.048U H		UJ	ug/L	StoE
					4,4'-DDT	0.048	0.048U H		UJ	ug/L	StoE
					ALDRIN	0.048	0.048U H		UJ	ug/L	StoE
					ALPHA-BHC	0.048	0.048U H		UJ	ug/L	StoE
					ALPHA-CHLORDANE	0.048	0.048U H		UJ	ug/L	StoE
					BETA-BHC	0.048	0.048U H		UJ	ug/L	StoE
					DELTA-BHC	0.048	0.048U H		UJ	ug/L	StoE
					DIELDRIN	0.048	0.048U H		UJ	ug/L	StoE
					ENDOSULFAN I	0.048	0.048U H		UJ	ug/L	StoE
					ENDOSULFAN II	0.048	0.048U H		UJ	ug/L	StoE
					ENDOSULFAN SULFATE	0.048	0.048U H		UJ	ug/L	StoE
					ENDRIN	0.048	0.048U H		UJ	ug/L	StoE
					ENDRIN ALDEHYDE	0.048	0.048U H		UJ	ug/L	StoE
					ENDRIN KETONE	0.048	0.048U H		UJ	ug/L	StoE
					gamma-BHC (Lindane)	0.048	0.048U H		UJ	ug/L	StoE
					GAMMA-CHLORDANE	0.048	0.048U H		UJ	ug/L	StoE
					HEPTACHLOR	0.048	0.048U H		UJ	ug/L	StoE
					HEPTACHLOR EPOXIDE	0.048	0.048U H		UJ	ug/L	StoE
					METHOXYCHLOR	0.048	0.048U H		UJ	ug/L	StoE
					TOXAPHENE	0.95	0.95U H		UJ	ug/L	StoE

Analytica	al Method	Field Sample ID	Matrix	Sample Type	Analyte	RL	Lab Result	Unc / Error	Overall Qualifier	Units	Reason Code
SDG:	240-4344	9-1									
8081A		FWGLL3MW-246-504- GWRE	AQ	N							
					4,4'-DDD	0.048	0.048U H		UJ	ug/L	StoE
					4,4'-DDE	0.048	0.048U H		UJ	ug/L	StoE
					4,4'-DDT	0.048	0.048U H		UJ	ug/L	StoE
					ALDRIN	0.048	0.048U H		UJ	ug/L	StoE
					ALPHA-BHC	0.048	0.048U H		UJ	ug/L	StoE
					ALPHA-CHLORDANE	0.048	0.048U H		UJ	ug/L	StoE
					BETA-BHC	0.048	0.048U H		UJ	ug/L	StoE
					DELTA-BHC	0.048	0.048U H		UJ	ug/L	StoE
					DIELDRIN	0.048	0.048U H		UJ	ug/L	StoE
					ENDOSULFAN I	0.048	0.048U H		UJ	ug/L	StoE
					ENDOSULFAN II	0.048	0.048U H		UJ	ug/L	StoE
					ENDOSULFAN SULFATE	0.048	0.048U H		UJ	ug/L	StoE
					ENDRIN	0.048	0.048U H		UJ	ug/L	StoE
					ENDRIN ALDEHYDE	0.048	0.048U H		UJ	ug/L	StoE
					ENDRIN KETONE	0.048	0.048U H		UJ	ug/L	StoE
					gamma-BHC (Lindane)	0.048	0.048U H		UJ	ug/L	StoE
					GAMMA-CHLORDANE	0.048	0.048U H		UJ	ug/L	StoE
					HEPTACHLOR	0.048	0.048U H		UJ	ug/L	StoE
					HEPTACHLOR EPOXIDE	0.048	0.048U H		UJ	ug/L	StoE
					METHOXYCHLOR	0.048	0.048U H		UJ	ug/L	StoE
					TOXAPHENE	0.96	0.96U H		UJ	ug/L	StoE

Analytica	al Method	Field Sample ID	Matrix	Sample Type	Analyte	RL	Lab Result	Unc / Error	Overall Qualifier	Units	Reason Code
SDG:	240-4344	9-1									
8081A		FWGLL3MW-DUP1-506- GWRE	AQ	FD							
					4,4'-DDD	0.052	0.052U H		UJ	ug/L	StoE
					4,4'-DDE	0.052	0.052U H		UJ	ug/L	StoE
					4,4'-DDT	0.052	0.052U H		UJ	ug/L	StoE
					ALDRIN	0.052	0.052U H		UJ	ug/L	StoE
					ALPHA-BHC	0.052	0.052U H		UJ	ug/L	StoE
					ALPHA-CHLORDANE	0.052	0.052U H		UJ	ug/L	StoE
					BETA-BHC	0.052	0.052U H		UJ	ug/L	StoE
					DELTA-BHC	0.052	0.052U H		UJ	ug/L	StoE
					DIELDRIN	0.052	0.052U H		UJ	ug/L	StoE
					ENDOSULFAN I	0.052	0.052U H		UJ	ug/L	StoE
					ENDOSULFAN II	0.052	0.052U H		UJ	ug/L	StoE
					ENDOSULFAN SULFATE	0.052	0.052U H		UJ	ug/L	StoE
					ENDRIN	0.052	0.052U H		UJ	ug/L	StoE
					ENDRIN ALDEHYDE	0.052	0.052U H		UJ	ug/L	StoE
					ENDRIN KETONE	0.052	0.052U H		UJ	ug/L	StoE
					gamma-BHC (Lindane)	0.052	0.052U H		UJ	ug/L	StoE
					GAMMA-CHLORDANE	0.052	0.052U H		UJ	ug/L	StoE
					HEPTACHLOR	0.052	0.052U H		UJ	ug/L	StoE
					HEPTACHLOR EPOXIDE	0.052	0.052U H		UJ	ug/L	StoE
					METHOXYCHLOR	0.052	0.052U H		UJ	ug/L	StoE
					TOXAPHENE	1.0	1.0U H		UJ	ug/L	StoE
8260B		FWGEQUIPRINSE1-507- GW	AQ	EB							
					2-BUTANONE	1.0	1.0U		UJ	ug/L	ProfJudg
					ACETONE	2.0	3.5J		JB	ug/L	Tb, ProfJu
					BROMOFORM	1.0	1.0U		UJ	ug/L	ProfJudg
					TOLUENE	0.25	0.24J		J	ug/L	RI

Analytical Method	Field Sample ID	Matrix	Sample Type	Analyte	RL	Lab Result	Unc / Error	Overall Qualifier	Units	Reason Code
SDG: 240-4344	19-1									
8260B	FWGEQUIPRINSE2-0508- GW	AQ	EB							
				2-BUTANONE	1.0	1.0U		UJ	ug/L	ProfJudg
				ACETONE	2.0	2.0U		UJ	ug/L	ProfJudg
				BROMOFORM	1.0	1.0U		UJ	ug/L	ProfJudg
8260B	FWGLL1MW-088-0502- GW	AQ	N							
				2-BUTANONE	1.0	1.0U		UJ	ug/L	ProfJudg
				ACETONE	2.0	2.0U		UJ	ug/L	ProfJudg
				BROMOFORM	1.0	1.0U		UJ	ug/L	ProfJudg
8260B	FWGLL2MW-271-0503- GW	AQ	N							
				2-BUTANONE	1.0	1.0U		UJ	ug/L	ProfJudg
				ACETONE	2.0	2.0U		UJ	ug/L	ProfJudg
				BROMOFORM	1.0	1.0U		UJ	ug/L	ProfJudg
8260B	FWGLL3MW-246-504-GW	AQ	N							
				2-BUTANONE	1.0	1.0U		UJ	ug/L	ProfJudg
				ACETONE	2.0	2.0U		UJ	ug/L	ProfJudg
				BROMOFORM	1.0	1.0U		UJ	ug/L	ProfJudg
8260B	FWGLL3MW-DUP1-506- GW	AQ	FD							
				2-BUTANONE	1.0	1.0U		UJ	ug/L	ProfJudg
				ACETONE	2.0	2.0U		UJ	ug/L	ProfJudg
				BROMOFORM	1.0	1.0U		UJ	ug/L	ProfJudg
8260B	FWGTEAM2TRIP	AQ	ТВ							
				2-BUTANONE	1.0	1.0U		UJ	ug/L	ProfJudg
				ACETONE	2.0	4.0J		J	ug/L	ProfJudg
				ACETONE	2.0	4.1J		J	ug/L	ProfJudg
				BROMOFORM	1.0	1.0U		UJ	ug/L	ProfJudg

Analytical Method	Field Sample ID	Matrix	Sample Type	Analyte	RL	Lab Result	Unc / Error	Overall Qualifier	Units	Reason Code
SDG: 240-4344	9-1									
8270C-SVOC4	FWGEQUIPRINSE1-507- GW	AQ	EB							
				1,2,4-TRICHLOROBENZENE	0.49	0.49U		UJ	ug/L	Surr
				1,2-DICHLOROBENZENE	0.49	0.49U		UJ	ug/L	Surr
				1,3-DICHLOROBENZENE	0.49	0.49U		UJ	ug/L	Surr
				1,4-DICHLOROBENZENE	0.49	0.49U		UJ	ug/L	Surr
				2,2'-OXYBIS (1-CHLOROPROPANE)	0.49	0.49U		UJ	ug/L	Surr
				2,4,5-TRICHLOROPHENOL	0.49	0.49U		UJ	ug/L	Surr
				2,4,6-TRICHLOROPHENOL	0.49	0.49U		UJ	ug/L	Surr
				2,4-DICHLOROPHENOL	0.49	0.49U		UJ	ug/L	Surr
				2,4-DIMETHYLPHENOL	0.49	0.49U		UJ	ug/L	Surr
				2,4-DINITROPHENOL	0.97	0.97U		UJ	ug/L	Surr, ProfJ
				2-CHLORONAPHTHALENE	0.49	0.49U		UJ	ug/L	Surr
				2-CHLOROPHENOL	0.49	0.49U		UJ	ug/L	Surr
				2-METHYLNAPHTHALENE	0.097	0.097U		UJ	ug/L	Surr
				2-METHYLPHENOL	0.49	0.49U		UJ	ug/L	Surr
				2-NITROANILINE	0.49	0.49U		UJ	ug/L	Surr
				2-NITROPHENOL	0.49	0.49U		UJ	ug/L	Surr
				3,3'-DICHLOROBENZIDINE	0.97	0.97U		UJ	ug/L	Surr
				3-methylphenol/4-methylphenol	0.97	0.97U		UJ	ug/L	Surr
				3-NITROANILINE	0.49	0.49U		UJ	ug/L	Surr
				4,6-DINITRO-2-METHYLPHENOL	3.9	3.9U		UJ	ug/L	Surr
				4-BROMOPHENYL-PHENYLETHER	0.49	0.49U		UJ	ug/L	Surr
				4-CHLORO-3-METHYLPHENOL	0.49	0.49U		UJ	ug/L	Surr
				4-CHLOROANILINE	0.49	0.49U		UJ	ug/L	Surr
				4-CHLOROPHENYL-PHENYLETHER	0.49	0.49U		UJ	ug/L	Surr
				4-NITROANILINE	0.49	0.49U		UJ	ug/L	Surr
				4-NITROPHENOL	3.9	3.9U		UJ	ug/L	Surr
				ACENAPHTHENE	0.097	0.097U		UJ	ug/L	Surr
				ACENAPHTHYLENE	0.097	0.097U		UJ	ug/L	Surr
				ANTHRACENE	0.097	0.097U		UJ	ug/L	Surr
				BENZO(A)ANTHRACENE	0.097	0.097U		UJ	ug/L	Surr
				BENZO(A)PYRENE	0.097	0.097U		UJ	ug/L	Surr

Analytical Method	Field Sample ID	Matrix	Sample Type	Analyte	RL	Lab Result	Unc / Error	Overall Qualifier	Units	Reason Code
SDG: 240-4344	19-1									
				BENZO(B)FLUORANTHENE	0.097	0.097U		UJ	ug/L	Surr
				BENZO(G,H,I)PERYLENE	0.097	0.097U		UJ	ug/L	Surr
				BENZO(K)FLUORANTHENE	0.097	0.097U		UJ	ug/L	Surr
				BENZOIC ACID	19	19U		UJ	ug/L	Surr
				BENZYL ALCOHOL	0.49	0.40J		J	ug/L	Surr, RI
				BIS(2-CHLOROETHOXY)METHANE	0.49	0.49U		UJ	ug/L	Surr
				Bis(2-chloroethyl)ether	0.097	0.097U		UJ	ug/L	Surr
				BIS(2-ETHYLHEXYL)PHTHALATE	4.9	4.9U		UJ	ug/L	Surr
				Butylbenzylphthalate	0.49	0.49U		UJ	ug/L	Surr
				CARBAZOLE	0.49	0.49U		UJ	ug/L	Surr
				CHRYSENE	0.097	0.097U		UJ	ug/L	Surr
				DIBENZ(A,H)ANTHRACENE	0.097	0.097U		UJ	ug/L	Surr
				DIBENZOFURAN	0.097	0.097U		UJ	ug/L	Surr
				Diethylphthalate	0.97	0.97U		UJ	ug/L	Surr
				Dimethylphthalate	0.49	0.49U		UJ	ug/L	Surr
				DI-N-BUTYL PHTHALATE	4.9	4.9U		UJ	ug/L	Surr
				DI-N-OCTYL PHTHALATE	0.49	0.49U		UJ	ug/L	Surr
				FLUORANTHENE	0.097	0.097U		UJ	ug/L	Surr
				FLUORENE	0.097	0.097U		UJ	ug/L	Surr
				HEXACHLOROBENZENE	0.097	0.097U		UJ	ug/L	Surr
				HEXACHLOROBUTADIENE	0.49	0.49U		UJ	ug/L	Surr
				HEXACHLOROCYCLOPENTADIENE	0.49	0.49U Q		UJ	ug/L	Surr, Lcs
				HEXACHLOROETHANE	0.49	0.49U		UJ	ug/L	Surr
				INDENO(1,2,3-CD)PYRENE	0.097	0.097U		UJ	ug/L	Surr
				ISOPHORONE	0.49	0.49U		UJ	ug/L	Surr
				NAPHTHALENE	0.097	0.097U		UJ	ug/L	Surr
				N-NITROSO-DI-N-PROPYLAMINE	0.49	0.49U		UJ	ug/L	Surr
				N-NITROSODIPHENYLAMINE	0.49	0.49U		UJ	ug/L	Surr
				PENTACHLOROPHENOL	0.97	0.97U		UJ	ug/L	Surr
				PHENANTHRENE	0.097	0.097U		UJ	ug/L	Surr
				PHENOL	0.97	0.97U		UJ	ug/L	Surr
				PYRENE	0.097	0.097U		UJ	ug/L	Surr

Analytical Method	Field Sample ID	Matrix	Sample Type	Analyte	RL	Lab Result	Unc / Error	Overall Qualifier	Units	Reason Code
SDG: 240-4344	9-1									
8270C-SVOC4	FWGEQUIPRINSE2-0508- GWRE	AQ	EB							
				1,2,4-TRICHLOROBENZENE	0.53	0.53U H		UJ	ug/L	StoE
				1,2-DICHLOROBENZENE	0.53	0.53U H		UJ	ug/L	StoE
				1,3-DICHLOROBENZENE	0.53	0.53U H		UJ	ug/L	StoE
				1,4-DICHLOROBENZENE	0.53	0.53U H		UJ	ug/L	StoE
				2,2'-OXYBIS (1-CHLOROPROPANE)	0.53	0.53U H		UJ	ug/L	StoE
				2,4,5-TRICHLOROPHENOL	0.53	0.53U H		UJ	ug/L	StoE
				2,4,6-TRICHLOROPHENOL	0.53	0.53U H		UJ	ug/L	StoE
				2,4-DICHLOROPHENOL	0.53	0.53U H		UJ	ug/L	StoE
				2,4-DIMETHYLPHENOL	0.53	0.53U H		UJ	ug/L	StoE
				2,4-DINITROPHENOL	1.1	1.1U H		UJ	ug/L	StoE
				2-CHLORONAPHTHALENE	0.53	0.53U H		UJ	ug/L	StoE
				2-CHLOROPHENOL	0.53	0.53U H		UJ	ug/L	StoE
				2-METHYLNAPHTHALENE	0.11	0.11U H		UJ	ug/L	StoE
				2-METHYLPHENOL	0.53	0.53U H		UJ	ug/L	StoE
				2-NITROANILINE	0.53	0.53U H		UJ	ug/L	StoE
				2-NITROPHENOL	0.53	0.53U H		UJ	ug/L	StoE
				3,3'-DICHLOROBENZIDINE	1.1	1.1U H		UJ	ug/L	StoE
				3-methylphenol/4-methylphenol	1.1	1.1U H		UJ	ug/L	StoE
				3-NITROANILINE	0.53	0.53U H		UJ	ug/L	StoE
				4,6-DINITRO-2-METHYLPHENOL	4.2	4.2U H		UJ	ug/L	StoE
				4-BROMOPHENYL-PHENYLETHER	0.53	0.53U H		UJ	ug/L	StoE
				4-CHLORO-3-METHYLPHENOL	0.53	0.53U H		UJ	ug/L	StoE
				4-CHLOROANILINE	0.53	0.53U H		UJ	ug/L	StoE
				4-CHLOROPHENYL-PHENYLETHER	0.53	0.53U H		UJ	ug/L	StoE
				4-NITROANILINE	0.53	0.53U H		UJ	ug/L	StoE
				4-NITROPHENOL	4.2	4.2U H		UJ	ug/L	StoE
				ACENAPHTHENE	0.11	0.11U H		UJ	ug/L	StoE
				ACENAPHTHYLENE	0.11	0.11U H		UJ	ug/L	StoE
				ANTHRACENE	0.11	0.11U H		UJ	ug/L	StoE
				BENZO(A)ANTHRACENE	0.11	0.11U H		UJ	ug/L	StoE
				BENZO(A)PYRENE	0.11	0.11U H		UJ	ug/L	StoE

Analytical Method	Field Sample ID	Matrix	Sample Type	Analyte	RL	Lab Result	Unc / Error	Overall Qualifier	Units	Reason Code
SDG: 240-4344	19-1									
				BENZO(B)FLUORANTHENE	0.11	0.11U H		UJ	ug/L	StoE
				BENZO(G,H,I)PERYLENE	0.11	0.11U H		UJ	ug/L	StoE
				BENZO(K)FLUORANTHENE	0.11	0.11U H		UJ	ug/L	StoE
				BENZOIC ACID	21	21U H		UJ	ug/L	StoE
				BENZYL ALCOHOL	0.53	0.53U H		UJ	ug/L	StoE
				BIS(2-CHLOROETHOXY)METHANE	0.53	0.53U H		UJ	ug/L	StoE
				Bis(2-chloroethyl)ether	0.11	0.11U H		UJ	ug/L	StoE
				BIS(2-ETHYLHEXYL)PHTHALATE	5.3	5.3U H		UJ	ug/L	StoE
				Butylbenzylphthalate	0.53	0.53U H		UJ	ug/L	StoE
				CARBAZOLE	0.53	0.53U H		UJ	ug/L	StoE
				CHRYSENE	0.11	0.11U H		UJ	ug/L	StoE
				DIBENZ(A,H)ANTHRACENE	0.11	0.11U H		UJ	ug/L	StoE
				DIBENZOFURAN	0.11	0.11U H		UJ	ug/L	StoE
				Diethylphthalate	1.1	1.1U H		UJ	ug/L	StoE
				Dimethylphthalate	0.53	0.53U H		UJ	ug/L	StoE
				DI-N-BUTYL PHTHALATE	5.3	5.3U H		UJ	ug/L	StoE
				DI-N-OCTYL PHTHALATE	0.53	0.53U H		UJ	ug/L	StoE
				FLUORANTHENE	0.11	0.11U H		UJ	ug/L	StoE
				FLUORENE	0.11	0.11U H		UJ	ug/L	StoE
				HEXACHLOROBENZENE	0.11	0.11U H		UJ	ug/L	StoE
				HEXACHLOROBUTADIENE	0.53	0.53U H		UJ	ug/L	StoE
				HEXACHLOROCYCLOPENTADIENE	0.53	0.53U H		UJ	ug/L	StoE, Lcs
				HEXACHLOROETHANE	0.53	0.53U H		UJ	ug/L	StoE
				INDENO(1,2,3-CD)PYRENE	0.11	0.11U H		UJ	ug/L	StoE
				ISOPHORONE	0.53	0.53U H		UJ	ug/L	StoE
				NAPHTHALENE	0.11	0.11U H		UJ	ug/L	StoE
				N-NITROSO-DI-N-PROPYLAMINE	0.53	0.53U H		UJ	ug/L	StoE
				N-NITROSODIPHENYLAMINE	0.53	0.53U H		UJ	ug/L	StoE
				PENTACHLOROPHENOL	1.1	1.1U H		UJ	ug/L	StoE
				PHENANTHRENE	0.11	0.11U H		UJ	ug/L	StoE
				PHENOL	1.1	1.1U H		UJ	ug/L	StoE
				PYRENE	0.11	0.11U H		UJ	ug/L	StoE

Analytical Method	Field Sample ID	Matrix	Sample Type	Analyte	RL	Lab Result	Unc / Error	Overall Qualifier	Units	Reason Code
SDG: 240-4344	9-1									
8270C-SVOC4	FWGLL1MW-088-0502- GW	AQ	N							
				1,2,4-TRICHLOROBENZENE	0.50	0.50U		UJ	ug/L	Surr
				1,2-DICHLOROBENZENE	0.50	0.50U		UJ	ug/L	Surr
				1,3-DICHLOROBENZENE	0.50	0.50U		UJ	ug/L	Surr
				1,4-DICHLOROBENZENE	0.50	0.50U		UJ	ug/L	Surr
				2,2'-OXYBIS (1-CHLOROPROPANE)	0.50	0.50U		UJ	ug/L	Surr
				2,4,5-TRICHLOROPHENOL	0.50	0.50U		UJ	ug/L	Surr
				2,4,6-TRICHLOROPHENOL	0.50	0.50U		UJ	ug/L	Surr
				2,4-DICHLOROPHENOL	0.50	0.50U		UJ	ug/L	Surr
				2,4-DIMETHYLPHENOL	0.50	0.50U		UJ	ug/L	Surr
				2,4-DINITROPHENOL	0.99	0.99U		UJ	ug/L	Surr, ProfJ
				2-CHLORONAPHTHALENE	0.50	0.50U		UJ	ug/L	Surr
				2-CHLOROPHENOL	0.50	0.50U		UJ	ug/L	Surr
				2-METHYLNAPHTHALENE	0.099	0.099U		UJ	ug/L	Surr
				2-METHYLPHENOL	0.50	0.50U		UJ	ug/L	Surr
				2-NITROANILINE	0.50	0.50U		UJ	ug/L	Surr
				2-NITROPHENOL	0.50	0.50U		UJ	ug/L	Surr
				3,3'-DICHLOROBENZIDINE	0.99	0.99U		UJ	ug/L	Surr
				3-methylphenol/4-methylphenol	0.99	0.99U		UJ	ug/L	Surr
				3-NITROANILINE	0.50	0.50U		UJ	ug/L	Surr
				4,6-DINITRO-2-METHYLPHENOL	4.0	4.0U		UJ	ug/L	Surr
				4-BROMOPHENYL-PHENYLETHER	0.50	0.50U		UJ	ug/L	Surr
				4-CHLORO-3-METHYLPHENOL	0.50	0.50U		UJ	ug/L	Surr
				4-CHLOROANILINE	0.50	0.50U		UJ	ug/L	Surr
				4-CHLOROPHENYL-PHENYLETHER	0.50	0.50U		UJ	ug/L	Surr
				4-NITROANILINE	0.50	0.50U		UJ	ug/L	Surr
				4-NITROPHENOL	4.0	4.0U		UJ	ug/L	Surr
				ACENAPHTHENE	0.099	0.099U		UJ	ug/L	Surr
				ACENAPHTHYLENE	0.099	0.099U		UJ	ug/L	Surr
				ANTHRACENE	0.099	0.099U		UJ	ug/L	Surr
				BENZO(A)ANTHRACENE	0.099	0.099U		UJ	ug/L	Surr
				BENZO(A)PYRENE	0.099	0.099U		UJ	ug/L	Surr

Analytical Method	Field Sample ID	Matrix	Sample Type	Analyte	RL	Lab Result	Unc / Error	Overall Qualifier	Units	Reason Code
SDG: 240-4344	19-1									
				BENZO(B)FLUORANTHENE	0.099	0.099U		UJ	ug/L	Surr
				BENZO(G,H,I)PERYLENE	0.099	0.099U		UJ	ug/L	Surr
				BENZO(K)FLUORANTHENE	0.099	0.099U		UJ	ug/L	Surr
				BENZOIC ACID	20	20U		UJ	ug/L	Surr
				BENZYL ALCOHOL	0.50	0.50U		UJ	ug/L	Surr
				BIS(2-CHLOROETHOXY)METHANE	0.50	0.50U		UJ	ug/L	Surr
				Bis(2-chloroethyl)ether	0.099	0.099U		UJ	ug/L	Surr
				BIS(2-ETHYLHEXYL)PHTHALATE	5.0	5.0U		UJ	ug/L	Surr
				Butylbenzylphthalate	0.50	0.50U		UJ	ug/L	Surr
				CARBAZOLE	0.50	0.50U		UJ	ug/L	Surr
				CHRYSENE	0.099	0.099U		UJ	ug/L	Surr
				DIBENZ(A,H)ANTHRACENE	0.099	0.099U		UJ	ug/L	Surr
				DIBENZOFURAN	0.099	0.099U		UJ	ug/L	Surr
				Diethylphthalate	0.99	0.99U		UJ	ug/L	Surr
				Dimethylphthalate	0.50	0.50U		UJ	ug/L	Surr
				DI-N-BUTYL PHTHALATE	5.0	5.0U		UJ	ug/L	Surr
				DI-N-OCTYL PHTHALATE	0.50	0.50U		UJ	ug/L	Surr
				FLUORANTHENE	0.099	0.099U		UJ	ug/L	Surr
				FLUORENE	0.099	0.099U		UJ	ug/L	Surr
				HEXACHLOROBENZENE	0.099	0.099U		UJ	ug/L	Surr
				HEXACHLOROBUTADIENE	0.50	0.50U		UJ	ug/L	Surr
				HEXACHLOROCYCLOPENTADIENE	0.50	0.50U Q		UJ	ug/L	Surr, Lcs
				HEXACHLOROETHANE	0.50	0.50U		UJ	ug/L	Surr
				INDENO(1,2,3-CD)PYRENE	0.099	0.099U		UJ	ug/L	Surr
				ISOPHORONE	0.50	0.50U		UJ	ug/L	Surr
				NAPHTHALENE	0.099	0.099U		UJ	ug/L	Surr
				N-NITROSO-DI-N-PROPYLAMINE	0.50	0.50U		UJ	ug/L	Surr
				N-NITROSODIPHENYLAMINE	0.50	0.50U		UJ	ug/L	Surr
				PENTACHLOROPHENOL	0.99	0.99U		UJ	ug/L	Surr
				PHENANTHRENE	0.099	0.099U		UJ	ug/L	Surr
				PHENOL	0.99	0.99U		UJ	ug/L	Surr
				PYRENE	0.099	0.099U		UJ	ug/L	Surr

Analytical Method	Field Sample ID	Matrix	Sample Type	Analyte	RL	Lab Result	Unc / Error	Overall Qualifier	Units	Reason Code
SDG: 240-4344	9-1									
8270C-SVOC4	FWGLL2MW-271-0503- GW	AQ	N							
				1,2,4-TRICHLOROBENZENE	0.50	0.50U Q		UJ	ug/L	Surr
				1,2-DICHLOROBENZENE	0.50	0.50U Q		UJ	ug/L	Surr
				1,3-DICHLOROBENZENE	0.50	0.50U Q		UJ	ug/L	Surr
				1,4-DICHLOROBENZENE	0.50	0.50U Q		UJ	ug/L	Surr
				2,2'-OXYBIS (1-CHLOROPROPANE)	0.50	0.50U Q		UJ	ug/L	Surr
				2,4,5-TRICHLOROPHENOL	0.50	0.50U Q		UJ	ug/L	Surr
				2,4,6-TRICHLOROPHENOL	0.50	0.50U Q		UJ	ug/L	Surr
				2,4-DICHLOROPHENOL	0.50	0.50U Q		UJ	ug/L	Surr
				2,4-DIMETHYLPHENOL	0.50	0.50U Q		UJ	ug/L	Surr
				2,4-DINITROPHENOL	0.99	0.99U Q J		UJ	ug/L	Surr, ProfJ
				2-CHLORONAPHTHALENE	0.50	0.50U		UJ	ug/L	Surr
				2-CHLOROPHENOL	0.50	0.50U Q		UJ	ug/L	Surr
				2-METHYLNAPHTHALENE	0.099	0.099U		UJ	ug/L	Surr
				2-METHYLPHENOL	0.50	0.50U Q		UJ	ug/L	Surr
				2-NITROANILINE	0.50	0.50U		UJ	ug/L	Surr
				2-NITROPHENOL	0.50	0.50U Q		UJ	ug/L	Surr
				3,3'-DICHLOROBENZIDINE	0.99	0.99U		UJ	ug/L	Surr
				3-methylphenol/4-methylphenol	0.99	0.99U Q		UJ	ug/L	Surr
				3-NITROANILINE	0.50	0.50U		UJ	ug/L	Surr
				4,6-DINITRO-2-METHYLPHENOL	4.0	4.0U Q J		UJ	ug/L	Surr
				4-BROMOPHENYL-PHENYLETHER	0.50	0.50U		UJ	ug/L	Surr
				4-CHLORO-3-METHYLPHENOL	0.50	0.50U Q		UJ	ug/L	Surr
				4-CHLOROANILINE	0.50	0.50U Q		UJ	ug/L	Surr
				4-CHLOROPHENYL-PHENYLETHER	0.50	0.50U		UJ	ug/L	Surr
				4-NITROANILINE	0.50	0.50U		UJ	ug/L	Surr
				4-NITROPHENOL	4.0	4.0U Q		UJ	ug/L	Surr
				ACENAPHTHENE	0.099	0.099U Q		UJ	ug/L	Surr
				ACENAPHTHYLENE	0.099	0.099U Q		UJ	ug/L	Surr

Analytical Method	Field Sample ID	Matrix	Sample Type	Analyte	RL	Lab Result	Unc / Error	Overall Qualifier	Units	Reason Code
SDG: 240-4344	!9-1									
				ANTHRACENE	0.099	0.099U Q		UJ	ug/L	Surr
				BENZO(A)ANTHRACENE	0.099	0.099U Q		UJ	ug/L	Surr
				BENZO(A)PYRENE	0.099	0.099U Q		UJ	ug/L	Surr
				BENZO(B)FLUORANTHENE	0.099	0.099U Q		UJ	ug/L	Surr
				BENZO(G,H,I)PERYLENE	0.099	0.099U Q		UJ	ug/L	Surr
				BENZO(K)FLUORANTHENE	0.099	0.099U Q		UJ	ug/L	Surr
				BENZOIC ACID	20	20U Q J		UJ	ug/L	Surr
				BENZYL ALCOHOL	0.50	0.50U Q		UJ	ug/L	Surr
				BIS(2-CHLOROETHOXY)METHANE	0.50	0.50U Q		UJ	ug/L	Surr
				Bis(2-chloroethyl)ether	0.099	0.099U Q		UJ	ug/L	Surr
				BIS(2-ETHYLHEXYL)PHTHALATE	5.0	5.0U		UJ	ug/L	Surr
				Butylbenzylphthalate	0.50	0.50U		UJ	ug/L	Surr
				CARBAZOLE	0.50	0.50U		UJ	ug/L	Surr
				CHRYSENE	0.099	0.099U Q		UJ	ug/L	Surr
				DIBENZ(A,H)ANTHRACENE	0.099	0.099U		UJ	ug/L	Surr
				DIBENZOFURAN	0.099	0.099U		UJ	ug/L	Surr
				Diethylphthalate	0.99	0.99U		UJ	ug/L	Surr
				Dimethylphthalate	0.50	0.50U		UJ	ug/L	Surr
				DI-N-BUTYL PHTHALATE	5.0	5.0U		UJ	ug/L	Surr
				DI-N-OCTYL PHTHALATE	0.50	0.50U		UJ	ug/L	Surr
				FLUORANTHENE	0.099	0.099U Q		UJ	ug/L	Surr
				FLUORENE	0.099	0.099U Q		UJ	ug/L	Surr
				HEXACHLOROBENZENE	0.099	0.099U		UJ	ug/L	Surr
				HEXACHLOROBUTADIENE	0.50	0.50U Q		UJ	ug/L	Surr
				HEXACHLOROCYCLOPENTADIENE	0.50	0.50U Q		UJ	ug/L	Surr, Ms, L

Analytical Method	Field Sample ID	Matrix	Sample Type	Analyte	RL	Lab Result	Unc / Error	Overall Qualifier	Units	Reason Code
SDG: 240-4344	!9-1									
				HEXACHLOROETHANE	0.50	0.50U Q		UJ	ug/L	Surr
				INDENO(1,2,3-CD)PYRENE	0.099	0.099U Q		UJ	ug/L	Surr
				ISOPHORONE	0.50	0.50U Q		UJ	ug/L	Surr
				NAPHTHALENE	0.099	0.099U Q		UJ	ug/L	Surr
				N-NITROSO-DI-N-PROPYLAMINE	0.50	0.50U Q		UJ	ug/L	Surr
				N-NITROSODIPHENYLAMINE	0.50	0.50U		UJ	ug/L	Surr
				PENTACHLOROPHENOL	0.99	0.99U Q J		UJ	ug/L	Surr, Ms
				PHENANTHRENE	0.099	0.099U Q		UJ	ug/L	Surr
				PHENOL	0.99	0.99U Q		UJ	ug/L	Surr
				PYRENE	0.099	0.099U Q		UJ	ug/L	Surr

Analytical Method	Field Sample ID	Matrix	Sample Type	Analyte	RL	Lab Result	Unc / Error	Overall Qualifier	Units	Reason Code
SDG: 240-4344	9-1									
8270C-SVOC4	FWGLL3MW-246-504- GWRE	AQ	N							
				1,2,4-TRICHLOROBENZENE	0.52	0.52U H		UJ	ug/L	StoE
				1,2-DICHLOROBENZENE	0.52	0.52U H		UJ	ug/L	StoE
				1,3-DICHLOROBENZENE	0.52	0.52U H		UJ	ug/L	StoE
				1,4-DICHLOROBENZENE	0.52	0.52U H		UJ	ug/L	StoE
				2,2'-OXYBIS (1-CHLOROPROPANE)	0.52	0.52U H		UJ	ug/L	StoE
				2,4,5-TRICHLOROPHENOL	0.52	0.52U H		UJ	ug/L	StoE
				2,4,6-TRICHLOROPHENOL	0.52	0.52U H		UJ	ug/L	StoE
				2,4-DICHLOROPHENOL	0.52	0.52U H		UJ	ug/L	StoE
				2,4-DIMETHYLPHENOL	0.52	0.52U H		UJ	ug/L	StoE
				2,4-DINITROPHENOL	1.0	1.0U H		UJ	ug/L	StoE
				2-CHLORONAPHTHALENE	0.52	0.52U H		UJ	ug/L	StoE
				2-CHLOROPHENOL	0.52	0.52U H		UJ	ug/L	StoE
				2-METHYLNAPHTHALENE	0.10	0.10U H		UJ	ug/L	StoE
				2-METHYLPHENOL	0.52	0.52U H		UJ	ug/L	StoE
				2-NITROANILINE	0.52	0.52U H		UJ	ug/L	StoE
				2-NITROPHENOL	0.52	0.52U H		UJ	ug/L	StoE
				3,3'-DICHLOROBENZIDINE	1.0	1.0U H		UJ	ug/L	StoE
				3-methylphenol/4-methylphenol	1.0	1.0U H		UJ	ug/L	StoE
				3-NITROANILINE	0.52	0.52U H		UJ	ug/L	StoE
				4,6-DINITRO-2-METHYLPHENOL	4.2	4.2U H		UJ	ug/L	StoE
				4-BROMOPHENYL-PHENYLETHER	0.52	0.52U H		UJ	ug/L	StoE
				4-CHLORO-3-METHYLPHENOL	0.52	0.52U H		UJ	ug/L	StoE
				4-CHLOROANILINE	0.52	0.52U H		UJ	ug/L	StoE
				4-CHLOROPHENYL-PHENYLETHER	0.52	0.52U H		UJ	ug/L	StoE
				4-NITROANILINE	0.52	0.52U H		UJ	ug/L	StoE
				4-NITROPHENOL	4.2	4.2U H		UJ	ug/L	StoE
				ACENAPHTHENE	0.10	0.10U H		UJ	ug/L	StoE
				ACENAPHTHYLENE	0.10	0.10U H		UJ	ug/L	StoE
				ANTHRACENE	0.10	0.10U H		UJ	ug/L	StoE
				BENZO(A)ANTHRACENE	0.10	0.10U H		UJ	ug/L	StoE
				BENZO(A)PYRENE	0.10	0.10U H		UJ	ug/L	StoE

Analytical Method	Field Sample ID	Matrix	Sample Type	Analyte	RL	Lab Result	Unc / Error	Overall Qualifier	Units	Reason Code	
SDG: 240-43449-1											
				BENZO(B)FLUORANTHENE	0.10	0.10U H		UJ	ug/L	StoE	
				BENZO(G,H,I)PERYLENE	0.10	0.10U H		UJ	ug/L	StoE	
				BENZO(K)FLUORANTHENE	0.10	0.10U H		UJ	ug/L	StoE	
				BENZOIC ACID	21	21U H		UJ	ug/L	StoE	
				BENZYL ALCOHOL	0.52	0.52U H		UJ	ug/L	StoE	
				BIS(2-CHLOROETHOXY)METHANE	0.52	0.52U H		UJ	ug/L	StoE	
				Bis(2-chloroethyl)ether	0.10	0.10U H		UJ	ug/L	StoE	
				BIS(2-ETHYLHEXYL)PHTHALATE	5.2	5.2U H		UJ	ug/L	StoE	
				Butylbenzylphthalate	0.52	0.52U H		UJ	ug/L	StoE	
				CARBAZOLE	0.52	0.52U H		UJ	ug/L	StoE	
				CHRYSENE	0.10	0.10U H		UJ	ug/L	StoE	
				DIBENZ(A,H)ANTHRACENE	0.10	0.10U H		UJ	ug/L	StoE	
				DIBENZOFURAN	0.10	0.10U H		UJ	ug/L	StoE	
				Diethylphthalate	1.0	1.0U H		UJ	ug/L	StoE	
				Dimethylphthalate	0.52	0.52U H		UJ	ug/L	StoE	
				DI-N-BUTYL PHTHALATE	5.2	5.2U H		UJ	ug/L	StoE	
				DI-N-OCTYL PHTHALATE	0.52	0.52U H		UJ	ug/L	StoE	
				FLUORANTHENE	0.10	0.10U H		UJ	ug/L	StoE	
				FLUORENE	0.10	0.10U H		UJ	ug/L	StoE	
				HEXACHLOROBENZENE	0.10	0.10U H		UJ	ug/L	StoE	
				HEXACHLOROBUTADIENE	0.52	0.52U H		UJ	ug/L	StoE	
				HEXACHLOROCYCLOPENTADIENE	0.52	0.52U H		UJ	ug/L	StoE, Lcs	
				HEXACHLOROETHANE	0.52	0.52U H		UJ	ug/L	StoE	
				INDENO(1,2,3-CD)PYRENE	0.10	0.10U H		UJ	ug/L	StoE	
				ISOPHORONE	0.52	0.52U H		UJ	ug/L	StoE	
				NAPHTHALENE	0.10	0.10U H		UJ	ug/L	StoE	
				N-NITROSO-DI-N-PROPYLAMINE	0.52	0.52U H		UJ	ug/L	StoE	
				N-NITROSODIPHENYLAMINE	0.52	0.52U H		UJ	ug/L	StoE	
				PENTACHLOROPHENOL	1.0	1.0U H		UJ	ug/L	StoE	
				PHENANTHRENE	0.10	0.10U H		UJ	ug/L	StoE	
				PHENOL	1.0	1.0U H		UJ	ug/L	StoE	
				PYRENE	0.10	0.10U H		UJ	ug/L	StoE	

Analytical Method	Field Sample ID	Matrix	Sample Type	Analyte	RL	Lab Result	Unc / Error	Overall Qualifier	Units	Reason Code
SDG: 240-43449-1										
8270C-SVOC4	FWGLL3MW-DUP1-506- GWRE	AQ	FD							
				1,2,4-TRICHLOROBENZENE	0.52	0.52U H		UJ	ug/L	StoE
				1,2-DICHLOROBENZENE	0.52	0.52U H		UJ	ug/L	StoE
				1,3-DICHLOROBENZENE	0.52	0.52U H		UJ	ug/L	StoE
				1,4-DICHLOROBENZENE	0.52	0.52U H		UJ	ug/L	StoE
				2,2'-OXYBIS (1-CHLOROPROPANE)	0.52	0.52U H		UJ	ug/L	StoE
				2,4,5-TRICHLOROPHENOL	0.52	0.52U H		UJ	ug/L	StoE
				2,4,6-TRICHLOROPHENOL	0.52	0.52U H		UJ	ug/L	StoE
				2,4-DICHLOROPHENOL	0.52	0.52U H		UJ	ug/L	StoE
				2,4-DIMETHYLPHENOL	0.52	0.52U H		UJ	ug/L	StoE
				2,4-DINITROPHENOL	1.0	1.0U H		UJ	ug/L	StoE
				2-CHLORONAPHTHALENE	0.52	0.52U H		UJ	ug/L	StoE
				2-CHLOROPHENOL	0.52	0.52U H		UJ	ug/L	StoE
				2-METHYLNAPHTHALENE	0.10	0.10U H		UJ	ug/L	StoE
				2-METHYLPHENOL	0.52	0.52U H		UJ	ug/L	StoE
				2-NITROANILINE	0.52	0.52U H		UJ	ug/L	StoE
				2-NITROPHENOL	0.52	0.52U H		UJ	ug/L	StoE
				3,3'-DICHLOROBENZIDINE	1.0	1.0U H		UJ	ug/L	StoE
				3-methylphenol/4-methylphenol	1.0	1.0U H		UJ	ug/L	StoE
				3-NITROANILINE	0.52	0.52U H		UJ	ug/L	StoE
				4,6-DINITRO-2-METHYLPHENOL	4.2	4.2U H		UJ	ug/L	StoE
				4-BROMOPHENYL-PHENYLETHER	0.52	0.52U H		UJ	ug/L	StoE
				4-CHLORO-3-METHYLPHENOL	0.52	0.52U H		UJ	ug/L	StoE
				4-CHLOROANILINE	0.52	0.52U H		UJ	ug/L	StoE
				4-CHLOROPHENYL-PHENYLETHER	0.52	0.52U H		UJ	ug/L	StoE
				4-NITROANILINE	0.52	0.52U H		UJ	ug/L	StoE
				4-NITROPHENOL	4.2	4.2U H		UJ	ug/L	StoE
				ACENAPHTHENE	0.10	0.10U H		UJ	ug/L	StoE
				ACENAPHTHYLENE	0.10	0.10U H		UJ	ug/L	StoE
				ANTHRACENE	0.10	0.10U H		UJ	ug/L	StoE
				BENZO(A)ANTHRACENE	0.10	0.10U H		UJ	ug/L	StoE
				BENZO(A)PYRENE	0.10	0.10U H		UJ	ug/L	StoE
Overall Qualified Results

Analytical Method	Field Sample ID	Matrix	Sample Type	Analyte	RL	Lab Result	Unc / Error	Overall Qualifier	Units	Reason Code
SDG: 240-4344	!9-1									
				BENZO(B)FLUORANTHENE	0.10	0.10U H		UJ	ug/L	StoE
				BENZO(G,H,I)PERYLENE	0.10	0.10U H		UJ	ug/L	StoE
				BENZO(K)FLUORANTHENE	0.10	0.10U H		UJ	ug/L	StoE
				BENZOIC ACID	21	21U H		UJ	ug/L	StoE
				BENZYL ALCOHOL	0.52	0.52U H		UJ	ug/L	StoE
				BIS(2-CHLOROETHOXY)METHANE	0.52	0.52U H		UJ	ug/L	StoE
				Bis(2-chloroethyl)ether	0.10	0.10U H		UJ	ug/L	StoE
				BIS(2-ETHYLHEXYL)PHTHALATE	5.2	5.2U H		UJ	ug/L	StoE
				Butylbenzylphthalate	0.52	0.52U H		UJ	ug/L	StoE
				CARBAZOLE	0.52	0.52U H		UJ	ug/L	StoE
				CHRYSENE	0.10	0.10U H		UJ	ug/L	StoE
				DIBENZ(A,H)ANTHRACENE	0.10	0.10U H		UJ	ug/L	StoE
				DIBENZOFURAN	0.10	0.10U H		UJ	ug/L	StoE
				Diethylphthalate	1.0	1.0U H		UJ	ug/L	StoE
				Dimethylphthalate	0.52	0.52U H		UJ	ug/L	StoE
				DI-N-BUTYL PHTHALATE	5.2	5.2U H		UJ	ug/L	StoE
				DI-N-OCTYL PHTHALATE	0.52	0.52U H		UJ	ug/L	StoE
				FLUORANTHENE	0.10	0.10U H		UJ	ug/L	StoE
				FLUORENE	0.10	0.10U H		UJ	ug/L	StoE
				HEXACHLOROBENZENE	0.10	0.10U H		UJ	ug/L	StoE
				HEXACHLOROBUTADIENE	0.52	0.52U H		UJ	ug/L	StoE
				HEXACHLOROCYCLOPENTADIENE	0.52	0.52U H		UJ	ug/L	StoE, Lcs
				HEXACHLOROETHANE	0.52	0.52U H		UJ	ug/L	StoE
				INDENO(1,2,3-CD)PYRENE	0.10	0.10U H		UJ	ug/L	StoE
				ISOPHORONE	0.52	0.52U H		UJ	ug/L	StoE
				NAPHTHALENE	0.10	0.10U H		UJ	ug/L	StoE
				N-NITROSO-DI-N-PROPYLAMINE	0.52	0.52U H		UJ	ug/L	StoE
				N-NITROSODIPHENYLAMINE	0.52	0.52U H		UJ	ug/L	StoE
				PENTACHLOROPHENOL	1.0	1.0U H		UJ	ug/L	StoE
				PHENANTHRENE	0.10	0.10U H		UJ	ug/L	StoE
				PHENOL	1.0	1.0U H		UJ	ug/L	StoE
				PYRENE	0.10	0.10U H		UJ	ug/L	StoE

Overall Qualified Results

Analytical Method	Field Sample ID	Matrix	Sample Type	Analyte	RL	Lab Result	Unc / Error	Overall Qualifier	Units	Reason Code
SDG: 240-4344	19-1									
8330	FWGEQUIPRINSE1-507- GW	AQ	EB	1,3,5-TRINITROBENZENE	0.055	1.1J		J	ug/L	ProfJudg
8330	FWGEQUIPRINSE2-0508- GW	AQ	EB	2,6-DINITROTOLUENE	0.10	0.074J M		J	ug/L	RI
WS-WC-0050	FWGEQUIPRINSE1-507- GW	AQ	EB	Nitrocellulose	1.0	1.0U		UJ	mg/L	ProfJudg
WS-WC-0050	FWGEQUIPRINSE2-0508- GW	AQ	EB	Nitrocellulose	1.0	1.0U		UJ	mg/L	ProfJudg
WS-WC-0050	FWGLL1MW-088-0502- GW	AQ	N	Nitrocellulose	1.0	1.0U		UJ	mg/L	ProfJudg
WS-WC-0050	FWGLL2MW-271-0503- GW	AQ	N	Nitrocellulose	1.0	1.0U		UJ	mg/L	ProfJudg
WS-WC-0050	FWGLL3MW-246-504-GW	AQ	N	Nitrocellulose	1.0	1.0U		UJ	mg/L	ProfJudg
WS-WC-0050	FWGLL3MW-DUP1-506- GW	AQ	FD	Nitrocellulose	1.0	1.0U		UJ	mg/L	ProfJudg

Lab Reporting Batch ID: 240-43449-1

EDD Filename: 240-43449-1 12_19_14A3

Laboratory: TA CAN

eQAPP Name: RVAAP 66-rev August 2014

Method Category: GENCHEM

wethod: vvS-vvC-0050			IVIč		AQ				
Sample ID: FWGEQUIPRINSE1-507-GW	Collec	ted: 10/21/	2014 4:3	0:00 A	nalysis T	ype: RES	/тот		Dilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
Nitrocellulose	1.0	U	0.48	MDL	1.0	LOD	mg/L	UJ	ProfJudg
Sample ID: FWGEQUIPRINSE2-0508-GW	Collec	ted: 10/22/	2014 2:4	5:00 A	nalysis T	ype: RES	TOT		Dilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
Nitrocellulose	1.0	U	0.48	MDL	1.0	LOD	mg/L	UJ	ProfJudg
Sample ID:FWGLL1MW-088-0502-GW	Collec	ted: 10/21/	2014 3:0	0:00 A	nalysis 1	ype: RES	/тот		Dilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
Nitrocellulose	1.0	U	0.48	MDL	1.0	LOD	mg/L	UJ	ProfJudg
Sample ID:FWGLL2MW-271-0503-GW	Collec	ted: 10/22	2014 4:3	0:00 A	nalysis 1	ype: RES	тот		Dilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
Nitrocellulose	1.0	U	0.48	MDL	1.0	LOD	mg/L	UJ	ProfJudg
Sample ID:FWGLL3MW-246-504-GW	Collec	ted: 10/22	2014 11:	10:00 A	nalysis 1	ype: RES	TOT		Dilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
Nitrocellulose	1.0	U	0.48	MDL	1.0	LOD	mg/L	UJ	ProfJudg
Sample ID:FWGLL3MW-DUP1-506-GW	Collec	ted: 10/22	2014 12:	00:00 A	nalysis 1	ype: RES	TOT		Dilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
Nitrocellulose	1.0	U	0.48	MDL	1.0	LOD	mg/L	UJ	ProfJudg

* denotes a non-reportable result

Project Name and Number: 30174.0016.001.10.1 - RVAAP 66

12/19/2014 1:02:23 PM

Lab Reporting Batch ID: 240-43449-1

Laboratory: TA CAN

EDD Filename: 240-43449-1 12_19_14A3

eQAPP Name: RVAAP 66-rev August 2014

Method Category: METALS

Method: 6010B			Ма	atrix:	AQ				
Sample ID: FWGEQUIPRINSE1-507-GW	Collec	ted: 10/21	2014 4:3	0:00 A	nalysis T	ype: RES	лот/		Dilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
CHROMIUM	4.0	U	0.55	MDL	4.0	LOD	ug/L	UJ	Ld
MANGANESE	0.56	J	0.46	MDL	5.0	LOD	ug/L	J	RI
NICKEL	0.78	J	0.76	MDL	5.0	LOD	ug/L	U	Cb
POTASSIUM	86	J	70	MDL	900	LOD	ug/L	U	Cb
Sample ID: FWGEQUIPRINSE2-0508-GW	Collec	ted: 10/22	2014 2:4	5:00 A	nalysis T	ype: RES	TOT		Dilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
CHROMIUM	4.0	U	0.55	MDL	4.0	LOD	ug/L	UJ	Ld
Sample ID: FWGLL1MW-088-0502-GF Collected: 10/21/2014 3:00:00 Analysis Type: RES/TOT Dilution: 1							Dilution: 1		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
CHROMIUM	1.1	J	0.55	MDL	4.0	LOD	ug/L	J	RI, Ld
NICKEL	1.4	J	0.76	MDL	5.0	LOD	ug/L	U	Eb, Cb
Sample ID: FWGLL2MW-271-0503-GF	Collec	: ted: 10/22/	2014 4:3	0:00 A	nalysis T	ype: RES	TOT		Dilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
ARSENIC	6.0	J	2.9	MDL	10	LOD	ug/L	J	RI
BARIUM	3.2	J	1.0	MDL	5.0	LOD	ug/L	J	RI
CHROMIUM	0.69	J	0.55	MDL	4.0	LOD	ug/L	J	RI, Ld
Sample ID:FWGLL3MW-246-504-GF	Collec	ted: 10/22	2014 11:	10:00 A	nalysis T	ype: RES	TOT		Dilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
CHROMIUM	4.0	U	0.55	MDL	4.0	LOD	ug/L	UJ	Ld
COBALT	0.59	J	0.56	MDL	4.0	LOD	ug/L	J	RI
NICKEL	3.9	J	0.76	MDL	5.0	LOD	ug/L	U	Cb

* denotes a non-reportable result

Project Name and Number: 30174.0016.001.10.1 - RVAAP 66

12/19/2014 1:02:23 PM

Lab Reporting Batch ID: 240-43449-1

Laboratory: TA CAN

EDD Filename: 240-43449-1 12_19_14A3

eQAPP Name: RVAAP 66-rev August 2014

Method Category: METALS

Method: 6010B			Ма	atrix:	AQ				
Sample ID: FWGLL3MW-DUP1-506-GF	Collec	ted: 10/22/	2014 12:	00:00 A	nalysis 1	ype: RES	S/TOT		Dilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
CHROMIUM	0.66	J	0.55	MDL	4.0	LOD	ug/L	J	RI, Ld
COBALT	0.68	J	0.56	MDL	4.0	LOD	ug/L	J	RI
NICKEL	3.6	J	0.76	MDL	5.0	LOD	ug/L	U	Cb
Method Category: METALS									
Method: 6020			Ма	atrix:	AQ				
Sample ID: FWGEQUIPRINSE1-507-GW	Collec	ted: 10/21/	2014 4:3	0:00 A	nalysis 1	<i>ype:</i> RES	S/TOT		Dilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
ANTIMONY	1.0	U	0.33	MDL	1.0	LOD	ug/L	J	ProfJudg

Sample ID: FWGEQUIPRINSE2-0508-GW	Collec	ted: 10/22	2014 2:4	5:00 A	nalysis 1	ype: RES	JTOT		Dilution: 1				
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code				
ALUMINUM	750		20	MDL	60	LOD	ug/L	J	ProfJudg				
ANTIMONY	1.0	U	0.33	MDL	1.0	LOD	ug/L	J	ProfJudg				
ZINC	27	J	27	MDL	50	LOD	ug/L	J	RI				

Sample ID: FWGLL1MW-088-0502-GF	Collec	ted: 10/21/	2014 3:0	0:00	Analysis 1	<i>ype:</i> RES	JOT/	L	Dilution: 1	
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
ALUMINUM	120		20	MDL	60	LOD	ug/L	J	ProfJudg	
ANTIMONY	1.0	U	0.33	MDL	1.0	LOD	ug/L	J	ProfJudg	

Sample ID: FWGLL2MW-271-0503-GF	Collec	ted: 10/22	2014 4:3	0:00 A	Analysis 1	ype: RES	TOT/	Dilution: 1				
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code			
ANTIMONY	1.0	UJ	0.33	MDL	1.0	LOD	ug/L	J	ProfJudg			
CADMIUM	0.58	J	0.40	MDL	1.0	LOD	ug/L	VB	Mb			
THALLIUM	1.5	J	0.79	MDL	1.5	LOD	ug/L	Ú	Cb			

* denotes a non-reportable result

Project Name and Number: 30174.0016.001.10.1 - RVAAP 66

12/19/2014 1:02:23 PM

Lab Reporting Batch ID: 240-43449-1

EDD Filename: 240-43449-1 12_19_14A3

Laboratory: TA CAN

eQAPP Name: RVAAP 66-rev August 2014

Method Category: METALS

Method: 6020			Ма	atrix: I	AQ				
Sample ID:FWGLL3MW-246-504-GF	Collec	ted: 10/22/	2014 11:	10:00 A	nalysis 1	<i>ype:</i> RES	/тот	I	Dilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
ANTIMONY	0.33	J	0.33	MDL	1.0	LOD	ug/L	J	RI
Sample ID:FWGLL3MW-DUP1-506-GF	Collec	ted: 10/22/	2014 12:	00:00 A	nalysis 1	<i>ype:</i> RES	лот/	I	Dilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
ANTIMONY	1.0	U	0.33	MDL	1.0	LOD	ug/L	J	ProfJudg

Method Ca	tegory:	SVO/	4
Method:		8081	A

Sample ID: FWGEQUIPRINSE1-507-GW

Matrix: AQ

Analysis Type: RES

Dilution:	1	

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
ENDOSULFAN I	0.050	U	0.016	MDL	0.050	LOD	ug/L	UJ	Lcs

Collected: 10/21/2014 4:30:00

Sample ID: FWGEQUIPRINSE2-0508-GWRE	Collec	ted: 10/22/	Dilution: 1						
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
4,4'-DDD	0.053	UHQ	0.019	MDL	0.053	LOD	ug/L	UJ	StoE
4,4'-DDE	0.053	UHQ	0.0096	MDL	0.053	LOD	ug/L	UJ	StoE
4,4'-DDT	0.053	UHQ	0.015	MDL	0.053	LOD	ug/L	UJ	StoE
ALDRIN	0.053	υн	0.014	MDL	0.053	LOD	ug/L	UJ	StoE
ALPHA-BHC	0.053	υн	0.015	MDL	0.053	LOD	ug/L	UJ	StoE
ALPHA-CHLORDANE	0.053	UH	0.013	MDL	0.053	LOD	ug/L	UJ	StoE
BETA-BHC	0.053	UH	0.014	MDL	0.053	LOD	ug/L	UJ	StoE
DELTA-BHC	0.053	UH	0.031	MDL	0.053	LOD	ug/L	UJ	StoE
DIELDRIN	0.053	UH	0.014	MDL	0.053	LOD	ug/L	UJ	StoE
ENDOSULFAN I	0.053	υн	0.017	MDL	0.053	LOD	ug/L	UJ	StoE
ENDOSULFAN II	0.053	UН	0.016	MDL	0.053	LOD	ug/L	UJ	StoE
ENDOSULFAN SULFATE	0.053	UH	0.012	MDL	0.053	LOD	ug/L	UJ	StoE
ENDRIN	0.053	UHQ	0.013	MDL	0.053	LOD	ug/L	UJ	StoE
ENDRIN ALDEHYDE	0.053	UH	0.0085	MDL	0.053	LOD	ug/L	UJ	StoE

* denotes a non-reportable result

Project Name and Number: 30174.0016.001.10.1 - RVAAP 66

12/19/2014 1:02:23 PM

Method:

.

Data Qualifier Summary

Matrix: AQ

Lab Reporting Batch ID: 240-43449-1

EDD Filename: 240-43449-1 12_19_14A3

8081A

Laboratory: TA CAN

eQAPP Name: RVAAP 66-rev August 2014

Method Category: SVOA

Sample ID: FWGEQUIPRINSE2-0508-GWRE	Collec	ted: 10/22	2014 2:4	5:00 A	nalysis T	ype: RE		Dilution: 1		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
ENDRIN KETONE	0.053	υн	0.0096	MDL	0.053	LOD	ug/L	UJ	StoE	
gamma-BHC (Lindane)	0.053	υн	0.013	MDL	0.053	LOD	ug/L	UJ	StoE	
GAMMA-CHLORDANE	0.053	υн	0.011	MDL	0.053	LOD	ug/L	UJ	StoE	
HEPTACHLOR	0.053	υн	0.0053	MDL	0.053	LOD	ug/L	UJ	StoE	
HEPTACHLOR EPOXIDE	0.053	υн	0.015	MDL	0.053	LOD	ug/L	UJ	StoE	
METHOXYCHLOR	0.053	UHQ	0.013	MDL	0.053	LOD	ug/L	UJ	StoE	
TOXAPHENE	1.1	UH	0.21	MDL	1.1	LOD	ug/L	UJ	StoE	

Sample ID: FWGLL1MW-088-0502-GW	Collec	ted: 10/21/	2014 3:00):00 A	nalysis T	ype: RES			Dilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
4,4'-DDD	0.053	UHQ	0.019	MDL	0.053	LOD	ug/L	UJ	EtoA
4,4'-DDE	0.053	UHQ	0.0096	MDL	0.053	LOD	ug/L	UJ	EtoA
4,4'-DDT	0.053	UHQ	0.015	MDL	0.053	LOD	ug/L	UJ	EtoA
ALDRIN	0.053	UHQ	0.014	MDL	0.053	LOD	ug/L	UJ	EtoA
ALPHA-BHC	0.028	JН	0.015	MDL	0.053	LOD	ug/L	W JE	3Mb, Surr, EtoA
ALPHA-CHLORDANE	0.053	UHQ	0.013	MDL	0.053	LOD	ug/L	ŰIJ	EtoA
BETA-BHC	0.053	UH	0.014	MDL	0.053	LOD	ug/L	UJ	EtoA
DELTA-BHC	0.053	UHQ	0.031	MDL	0.053	LOD	ug/L	UJ	EtoA
DIELDRIN	0.053	UHQ	0.014	MDL	0.053	LOD	ug/L	UJ	EtoA
ENDOSULFAN I	0.053	UHQ	0.017	MDL	0.053	LOD	ug/L	UJ	Lcs, EtoA
ENDOSULFAN II	0.053	UHQ	0.016	MDL	0.053	LOD	ug/L	UJ	EtoA
ENDOSULFAN SULFATE	0.053	UHQ	0.012	MDL	0.053	LOD	ug/L	UJ	EtoA
ENDRIN	0.053	UHQ	0.013	MDL	0.053	LOD	ug/L	UJ	EtoA
ENDRIN ALDEHYDE	0.053	UHQ	0.0085	MDL	0.053	LOD	ug/L	UJ	EtoA
ENDRIN KETONE	0.053	UHQ	0.0096	MDL	0.053	LOD	ug/L	UJ	EtoA
gamma-BHC (Lindane)	0.053	UH	0.013	MDL	0.053	LOD	ug/L	UJ	EtoA
GAMMA-CHLORDANE	0.053	UHQ	0.011	MDL	0.053	LOD	ug/L	UJ	EtoA
HEPTACHLOR	0.053	UHQ	0.0053	MDL	0.053	LOD	ug/L	UJ	EtoA
HEPTACHLOR EPOXIDE	0.053	UHQ	0.015	MDL	0.053	LOD	ug/L	UJ	EtoA
METHOXYCHLOR	0.053	UHQ	0.013	MDL	0.053	LOD	ug/L	UJ	EtoA
TOXAPHENE	1.1	UHQ	0.21	MDL	1.1	LOD	ug/L	UJ	EtoA

* denotes a non-reportable result

Project Name and Number: 30174.0016.001.10.1 - RVAAP 66

12/19/2014 1:02:23 PM

Matrix: AQ

Lab Reporting Batch ID: 240-43449-1

EDD Filename: 240-43449-1 12_19_14A3

8081A

Laboratory: TA CAN

eQAPP Name: RVAAP 66-rev August 2014

Method Category: SVOA

Method:

Sample ID: FWGLL2MW-271-0503-GWRE	Collec	ted: 10/22/	2014 4:30):00 A	nalysis T	ype: RE			Dilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
4,4'-DDD	0.048	UH	0.017	MDL	0.048	LOD	ug/L	UJ	StoE
4,4'-DDE	0.048	υн	0.0086	MDL	0.048	LOD	ug/L	UJ	StoE
4,4'-DDT	0.048	UH	0.013	MDL	0.048	LOD	ug/L	UJ	StoE
ALDRIN	0.048	UH	0.012	MDL	0.048	LOD	ug/L	UJ	StoE
ALPHA-BHC	0.048	UН	0.013	MDL	0.048	LOD	ug/L	UJ	StoE
ALPHA-CHLORDANE	0.048	UH	0.011	MDL	0.048	LOD	ug/L	UJ	StoE
BETA-BHC	0.048	υн	0.012	MDL	0.048	LOD	ug/L	UJ	StoE
DELTA-BHC	0.048	UН	0.028	MDL	0.048	LOD	ug/L	UJ	StoE
DIELDRIN	0.048	UH	0.012	MDL	0.048	LOD	ug/L	UJ	StoE
ENDOSULFAN I	0.048	UH	0.015	MDL	0.048	LOD	ug/L	UJ	StoE
ENDOSULFAN II	0.048	UH	0.014	MDL	0.048	LOD	ug/L	UJ	StoE
ENDOSULFAN SULFATE	0.048	UH	0.010	MDL	0.048	LOD	ug/L	UJ	StoE
ENDRIN	0.048	UH	0.011	MDL	0.048	LOD	ug/L	UJ	StoE
ENDRIN ALDEHYDE	0.048	υн	0.0076	MDL	0.048	LOD	ug/L	UJ	StoE
ENDRIN KETONE	0.048	υн	0.0086	MDL	0.048	LOD	ug/L	UJ	StoE
gamma-BHC (Lindane)	0.048	υн	0.011	MDL	0.048	LOD	ug/L	UJ	StoE
GAMMA-CHLORDANE	0.048	υн	0.0095	MDL	0.048	LOD	ug/L	UJ	StoE
HEPTACHLOR	0.048	υн	0.0048	MDL	0.048	LOD	ug/L	UJ	StoE
HEPTACHLOR EPOXIDE	0.048	υн	0.013	MDL	0.048	LOD	ug/L	UJ	StoE
METHOXYCHLOR	0.048	υн	0.011	MDL	0.048	LOD	ug/L	UJ	StoE
TOXAPHENE	0.95	UH	0.19	MDL	0.95	LOD	ug/L	UJ	StoE

Sample ID: FWGLL3MW-246-504-GWRE Collected: 10/2

Collected: 10/22/2014 11:10:00 Analysis Type: RE

Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
4,4'-DDD	0.048	UH	0.017	MDL	0.048	LOD	ug/L	UJ	StoE
4,4'-DDE	0.048	UН	0.0087	MDL	0.048	LOD	ug/L	UJ	StoE
4,4'-DDT	0.048	UH	0.013	MDL	0.048	LOD	ug/L	UJ	StoE
ALDRIN	0.048	UН	0.013	MDL	0.048	LOD	ug/L	UJ	StoE
ALPHA-BHC	0.048	UH	0.013	MDL	0.048	LOD	ug/L	UJ	StoE
ALPHA-CHLORDANE	0.048	UН	0.012	MDL	0.048	LOD	ug/L	UJ	StoE
BETA-BHC	0.048	UН	0.013	MDL	0.048	LOD	ug/L	UJ	StoE

* denotes a non-reportable result

Project Name and Number: 30174.0016.001.10.1 - RVAAP 66

12/19/2014 1:02:23 PM

Lab Reporting Batch ID: 240-43449-1

EDD Filename: 240-43449-1 12_19_14A3

Laboratory: TA CAN

eQAPP Name: RVAAP 66-rev August 2014

Method Category: SVOA

Sample ID:FWGLL3MW-246-504-GWRE	Collec	ted: 10/22/	2014 11:1	0:00 A	nalysis T	ype: RE		I	Dilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
DELTA-BHC	0.048	υн	0.028	MDL	0.048	LOD	ug/L	UJ	StoE
DIELDRIN	0.048	υн	0.013	MDL	0.048	LOD	ug/L	UJ	StoE
ENDOSULFAN I	0.048	υн	0.015	MDL	0.048	LOD	ug/L	UJ	StoE
ENDOSULFAN II	0.048	UH	0.014	MDL	0.048	LOD	ug/L	UJ	StoE
ENDOSULFAN SULFATE	0.048	υн	0.011	MDL	0.048	LOD	ug/L	UJ	StoE
ENDRIN	0.048	UH	0.012	MDL	0.048	LOD	ug/L	UJ	StoE
ENDRIN ALDEHYDE	0.048	UH	0.0077	MDL	0.048	LOD	ug/L	UJ	StoE
ENDRIN KETONE	0.048	UH	0.0087	MDL	0.048	LOD	ug/L	UJ	StoE
gamma-BHC (Lindane)	0.048	UH	0.012	MDL	0.048	LOD	ug/L	UJ	StoE
GAMMA-CHLORDANE	0.048	UH	0.0096	MDL	0.048	LOD	ug/L	UJ	StoE
HEPTACHLOR	0.048	UH	0.0048	MDL	0.048	LOD	ug/L	UJ	StoE
HEPTACHLOR EPOXIDE	0.048	UH	0.013	MDL	0.048	LOD	ug/L	UJ	StoE
METHOXYCHLOR	0.048	UH	0.012	MDL	0.048	LOD	ug/L	UJ	StoE
TOXAPHENE	0.96	UH	0.19	MDL	0.96	LOD	ug/L	UJ	StoE

Collected: 10/22/2014 12:00:00 Analysis Type: RE Dilution: 1 Sample ID: FWGLL3MW-DUP1-506-GWRE Data Review Reason DL RL Lab Lab Units Qual Code DL RL Result Qual Туре Туре Analyte StoE υн MDL 0.052 LOD ug/L UJ 0.019 4.4'-DDD 0.052 0.052 UΗ 0.0093 MDL 0.052 LOD ug/L UJ StoE 4,4'-DDE StoE UJ 0.052 UΗ 0.014 MDL 0.052 LOD ug/L 4,4'-DDT UJ 0.013 MDL 0.052 LOD ug/L StoE UΗ ALDRIN 0.052 UΗ 0.014 MDL 0.052 LOD ug/L UJ StoE 0.052 ALPHA-BHC υн 0.012 MDL 0.052 LOD ug/L UJ StoE ALPHA-CHLORDANE 0.052 LOD UJ StoE 0.052 υн 0.013 MDL 0.052 ug/L BETA-BHC UН 0.030 MDL 0.052 LOD ug/L UJ StoE 0.052 DELTA-BHC StoE 0.052 υн 0.013 MDL 0.052 LOD ug/L UJ DIELDRIN 0.016 0.052 LOD ug/L UJ StoE 0.052 υн MDL ENDOSULFAN I UН 0.052 LOD ug/L UJ StoE 0.015 MDL ENDOSULFAN II 0.052 UΗ 0.011 MDL 0.052 LOD ug/L UJ StoE 0.052 ENDOSULFAN SULFATE 0.052 LOD ug/L UJ StoE 0.052 UΗ 0.012 MDL ENDRIN LOD UJ StoE UΗ 0.0082 MDL 0.052 ug/L ENDRIN ALDEHYDE 0.052

* denotes a non-reportable result

Project Name and Number: 30174.0016.001.10.1 - RVAAP 66

12/19/2014 1:02:23 PM

Lab Reporting Batch ID: 240-43449-1

EDD Filename: 240-43449-1 12_19_14A3

Laboratory: TA CAN

eQAPP Name: RVAAP 66-rev August 2014

Mathad Category CVOA

method Catego	bry: SVOA											
Method:	8081A			Ма	trix:	AQ						
Sample ID:FWGLL	3MW-DUP1-506-GWRE	Collec	:ted: 10/22	2014 12:0	00:00 A	nalysis T	ype: RE			Dilution: 1		
Analyte		Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code		
ENDRIN KETONE		0.052	υн	0.0093	MDL	0.052	LOD	ug/L	UJ	StoE		
gamma-BHC (Lind	ane)	0.052	UН	0.012	MDL	0.052	LOD	ug/L	UJ	StoE		
GAMMA-CHLORD	ANE	0.052	UH	0.010	MDL	0.052	LOD	ug/L	UJ	StoE		
HEPTACHLOR		0.052	UH	0.0052	MDL	0.052	LOD	ug/L	UJ	StoE		
HEPTACHLOR EP	OXIDE	0.052	UH	0.014	MDL	0.052	LOD	ug/L	UJ	StoE		
METHOXYCHLOR	1	0.052	UH	0.012	MDL	0.052	LOD	ug/L	UJ	StoE		
TOXAPHENE		1.0	UH	0.20	MDL	1.0	LOD	ug/L	UJ	StoE		

Method Category: SVOA Method:

8270C-SVOC4

Matrix: AQ

Sample ID: FWGEQUIPRINSE1-507-GW	Collec	ted: 10/21/	2014 4:30	0:00 A	ype: RES	-ACID	Dilution: 1		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
2,4,5-TRICHLOROPHENOL	0.49	U	0.29	MDL	0.49	LOD	ug/L	UJ	Surr
2,4,6-TRICHLOROPHENOL	0.49	U	0.23	MDL	0.49	LOD	ug/L	UJ	Surr
2,4-DICHLOROPHENOL	0.49	U	0.18	MDL	0.49	LOD	ug/L	UJ	Surr
2,4-DIMETHYLPHENOL	0.49	U	0.24	MDL	0.49	LOD	ug/L	UJ	Surr
2,4-DINITROPHENOL	0.97	U	0.31	MDL	0.97	LOD	ug/L	UJ	ProfJudg, Surr
2-CHLOROPHENOL	0.49	U	0.28	MDL	0.49	LOD	ug/L	UJ	Surr
2-METHYLPHENOL	0.49	U	0.17	MDL	0.49	LOD	ug/L	UJ	Surr
2-NITROPHENOL	0.49	U	0.27	MDL	0.49	LOD	ug/L	UJ	Surr
3-methylphenol/4-methylphenol	0.97	U	0.78	MDL	0.97	LOD	ug/L	UJ	Surr
4,6-DINITRO-2-METHYLPHENOL	3.9	U	2.3	MDL	3.9	LOD	ug/L	UJ	Surr
4-CHLORO-3-METHYLPHENOL	0.49	U	0.20	MDL	0.49	LOD	ug/L	UJ	Surr
4-NITROPHENOL	3.9	U	0.28	MDL	3.9	LOD	ug/L	UJ	Surr
BENZOIC ACID	19	U	9.7	MDL	19	LOD	ug/L	UJ	Surr
PENTACHLOROPHENOL	0.97	U	0.26	MDL	0.97	LOD	ug/L	UJ	Surr
PHENOL	0.97	U	0.58	MDL	0.97	LOD	ug/L	UJ	Surr

* denotes a non-reportable result

Project Name and Number: 30174.0016.001.10.1 - RVAAP 66

12/19/2014 1:02:23 PM

Method:

Data Qualifier Summary

Matrix: AQ

Lab Reporting Batch ID: 240-43449-1

EDD Filename: 240-43449-1 12_19_14A3

Laboratory: TA CAN

eQAPP Name: RVAAP 66-rev August 2014

Method Category: SVOA

8270C-SVOC4

Sample ID: FWGEQUIPRINSE1-507-GW	7-GW Collected: 10/21/2014 4:30:00 Analysis Type: RES-BASE/NEUTRAL Dilution:								
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,4-TRICHLOROBENZENE	0.49	U	0.27	MDL	0.49	LOD	ug/L	UJ	Surr
1,2-DICHLOROBENZENE	0.49	U	0.28	MDL	0.49	LOD	ug/L	UJ	Surr
1,3-DICHLOROBENZENE	0.49	U	0.22	MDL	0.49	LOD	ug/L	UJ	Surr
1,4-DICHLOROBENZENE	0.49	U	0.33	MDL	0.49	LOD	ug/L	UJ	Surr
2,2'-OXYBIS (1-CHLOROPROPANE)	0.49	U	0.39	MDL	0.49	LOD	ug/L	UJ	Surr
2-CHLORONAPHTHALENE	0.49	U	0.097	MDL	0.49	LOD	ug/L	UJ	Surr
2-METHYLNAPHTHALENE	0.097	U	0.088	MDL	0.097	LOD	ug/L	UJ	Surr
2-NITROANILINE	0.49	U	0.20	MDL	0.49	LOD	ug/L	UJ	Surr
3,3'-DICHLOROBENZIDINE	0.97	U	0.36	MDL	0.97	LOD	ug/L	UJ	Surr
3-NITROANILINE	0.49	U	0.27	MDL	0.49	LOD	ug/L	UJ	Surr
4-BROMOPHENYL-PHENYLETHER	0.49	U	0.21	MDL	0.49	LOD	ug/L	UJ	Surr
4-CHLOROANILINE	0.49	U	0.20	MDL	0.49	LOD	ug/L	UJ	Surr
4-CHLOROPHENYL-PHENYLETHER	0.49	U	0.29	MDL	0.49	LOD	ug/L	UJ	Surr
4-NITROANILINE	0.49	U	0.21	MDL	0.49	LOD	ug/L	UJ	Surr
ACENAPHTHENE	0.097	U	0.043	MDL	0.097	LOD	ug/L	UJ	Surr
ACENAPHTHYLENE	0.097	U	0.047	MDL	0.097	LOD	ug/L	UJ	Surr
ANTHRACENE	0.097	U	0.085	MDL	0.097	LOD	ug/L	UJ	Surr
BENZO(A)ANTHRACENE	0.097	U	0.029	MDL	0.097	LOD	ug/L	UJ	Surr
BENZO(A)PYRENE	0.097	U	0.050	MDL	0.097	LOD	ug/L	UJ	Surr
BENZO(B)FLUORANTHENE	0.097	U	0.038	MDL	0.097	LOD	ug/L	UJ	Surr
BENZO(G,H,I)PERYLENE	0.097	U	0.045	MDL	0.097	LOD	ug/L	UJ	Surr
BENZO(K)FLUORANTHENE	0.097	U	0.043	MDL	0.097	LOD	ug/L	UJ	Surr
BENZYL ALCOHOL	0.40	J	0.37	MDL	0.49	LOD	ug/L	J	RI, Surr
BIS(2-CHLOROETHOXY)METHANE	0.49	U	0.31	MDL	0.49	LOD	ug/L	UJ	Surr
Bis(2-chloroethyl)ether	0.097	U	0.097	MDL	0.097	LOD	ug/L	UJ	Surr
BIS(2-ETHYLHEXYL)PHTHALATE	4.9	U	1.7	MDL	4.9	LOD	ug/L	UJ	Surr
Butylbenzylphthalate	0.49	U	0.25	MDL	0.49	LOD	ug/L	UJ	Surr
CARBAZOLE	0.49	U	0.27	MDL	0.49	LOD	ug/L	UJ	Surr
CHRYSENE	0.097	U	0.049	MDL	0.097	LOD	ug/L	UJ	Surr
DIBENZ(A,H)ANTHRACENE	0.097	U	0.043	MDL	0.097	LOD	ug/L	UJ	Surr
DIBENZOFURAN	0.097	U	0.019	MDL	0.097	LOD	ug/L	UJ	Surr
Diethylphthalate	0.97	U	0.58	MDL	0.97	LOD	ug/L	UJ	Surr

* denotes a non-reportable result

Project Name and Number: 30174.0016.001.10.1 - RVAAP 66

12/19/2014 1:02:23 PM

Method:

Data Qualifier Summary

Matrix: AQ

Lab Reporting Batch ID: 240-43449-1

EDD Filename: 240-43449-1 12_19_14A3

Laboratory: TA CAN

eQAPP Name: RVAAP 66-rev August 2014

Method Category: SVOA

8270C-SVOC4

Sample ID: FWGEQUIPRINSE1-507-GW	V Collected: 10/21/2014 4:30:00 Analysis Type: RES-BASE/NEUTRAL Dilution: 1									
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
Dimethylphthalate	0.49	U	0.28	MDL	0.49	LOD	ug/L	UJ	Surr	
DI-N-BUTYL PHTHALATE	4.9	U	1.7	MDL	4.9	LOD	ug/L	UJ	Surr	
DI-N-OCTYL PHTHALATE	0.49	U	0.22	MDL	0.49	LOD	ug/L	UJ	Surr	
FLUORANTHENE	0.097	U	0.043	MDL	0.097	LOD	ug/L	UJ	Surr	
FLUORENE	0.097	U	0.039	MDL	0.097	LOD	ug/L	UJ	Surr	
HEXACHLOROBENZENE	0.097	U	0.083	MDL	0.097	LOD	ug/L	UJ	Surr	
HEXACHLOROBUTADIENE	0.49	U	0.26	MDL	0.49	LOD	ug/L	UJ	Surr	
HEXACHLOROCYCLOPENTADIENE	0.49	UQ	0.23	MDL	0.49	LOD	ug/L	UJ	Lcs, Surr	
HEXACHLOROETHANE	0.49	U	0.18	MDL	0.49	LOD	ug/L	UJ	Surr	
INDENO(1,2,3-CD)PYRENE	0.097	U	0.042	MDL	0.097	LOD	ug/L	UJ	Surr	
ISOPHORONE	0.49	U	0.26	MDL	0.49	LOD	ug/L	UJ	Surr	
NAPHTHALENE	0.097	U	0.061	MDL	0.097	LOD	ug/L	UJ	Surr	
N-NITROSO-DI-N-PROPYLAMINE	0.49	U	0.23	MDL	0.49	LOD	ug/L	UJ	Surr	
N-NITROSODIPHENYLAMINE	0.49	U	0.30	MDL	0.49	LOD	ug/L	UJ	Surr	
PHENANTHRENE	0.097	U	0.060	MDL	0.097	LOD	ug/L	UJ	Surr	
PYRENE	0.097	U	0.041	MDL	0.097	LOD	ug/L	UJ	Surr	

Sample ID: FWGEQUIPRINSE2-0508-GWRE	Collec	ted: 10/22/	2014 2:4	5:00 A	nalysis T	ype: RE-/	ACID	Dilution: 1		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
2,4,5-TRICHLOROPHENOL	0.53	υн	0.32	MDL	0.53	LOD	ug/L	UJ	StoE	
2,4,6-TRICHLOROPHENOL	0.53	UH	0.25	MDL	0.53	LOD	ug/L	UJ	StoE	
2,4-DICHLOROPHENOL	0.53	UH	0.20	MDL	0.53	LOD	ug/L	UJ	StoE	
2,4-DIMETHYLPHENOL	0.53	UH	0.26	MDL	0.53	LOD	ug/L	UJ	StoE	
2,4-DINITROPHENOL	1.1	UH	0.34	MDL	1.1	LOD	ug/L	UJ	StoE	
2-CHLOROPHENOL	0.53	υн	0.31	MDL	0.53	LOD	ug/L	UJ	StoE	
2-METHYLPHENOL	0.53	UH	0.18	MDL	0.53	LOD	ug/L	UJ	StoE	
2-NITROPHENOL	0.53	UH	0.29	MDL	0.53	LOD	ug/L	UJ	StoE	
3-methylphenol/4-methylphenol	1.1	UH	0.84	MDL	1.1	LOD	ug/L	UJ	StoE	
4,6-DINITRO-2-METHYLPHENOL	4.2	UH	2.5	MDL	4.2	LOD	ug/L	UJ	StoE	
4-CHLORO-3-METHYLPHENOL	0.53	UH	0.22	MDL	0.53	LOD	ug/L	UJ	StoE	
4-NITROPHENOL	4.2	UH	0.31	MDL	4.2	LOD	ug/L	UJ	StoE	

* denotes a non-reportable result

Project Name and Number: 30174.0016.001.10.1 - RVAAP 66

12/19/2014 1:02:23 PM

Lab Reporting Batch ID: 240-43449-1

EDD Filename: 240-43449-1 12_19_14A3

Laboratory: TA CAN

eQAPP Name: RVAAP 66-rev August 2014

Method Category: SVOA

Method: 8270C-SVOC4			Ма	trix:	AQ						
Sample ID: FWGEQUIPRINSE2-0508-GWRE	Collec	ted: 10/22/	2014 2:4	5:00 A	nalysis T	ype: RE-/	ACID		Dilution: 1		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code		
BENZOIC ACID	21	υн	11	MDL	21	LOD	ug/L	UJ	StoE		
PENTACHLOROPHENOL	1.1	UH	0.28	MDL	1.1	LOD	ug/L	UJ	StoE		
PHENOL	1.1	UH	0.63	MDL	1.1	LOD	ug/L	UJ	StoE		
Sample ID: FWGEQUIPRINSE2-0508-GWRE	Collec	ted: 10/22	2014 2:4	5:00 A	nalysis T	ype: RE-I	BASE/NE	UTRAL	Dilution: 1		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code		
1,2,4-TRICHLOROBENZENE	0.53	UH	0.29	MDL	0.53	LOD	ug/L	UJ	StoE		
1,2-DICHLOROBENZENE	0.53	UH	0.31	MDL	0.53	LOD	ug/L	UJ	StoE		
1,3-DICHLOROBENZENE	0.53	UH	0.24	MDL	0.53	LOD	ug/L	UJ	StoE		
1,4-DICHLOROBENZENE	0.53	UH	0.36	MDL	0.53	LOD	ug/L	UJ	StoE		
2,2'-OXYBIS (1-CHLOROPROPANE)	0.53	υн	0.42	MDL	0.53	LOD	ug/L	UJ	StoE		
2-CHLORONAPHTHALENE	0.53	UH	0.11	MDL	0.53	LOD	ug/L	UJ	StoE		
2-METHYLNAPHTHALENE	0.11	υн	0.095	MDL	0.11	LOD	ug/L	UJ	StoE		
2-NITROANILINE	0.53	υн	0.22	MDL	0.53	LOD	ug/L	UJ	StoE		
3,3'-DICHLOROBENZIDINE	1.1	UH	0.39	MDL	1.1	LOD	ug/L	UJ	StoE		
3-NITROANILINE	0.53	UH	0.29	MDL	0.53	LOD	ug/L	UJ	StoE		
4-BROMOPHENYL-PHENYLETHER	0.53	UH	0.23	MDL	0.53	LOD	ug/L	UJ	StoE		
4-CHLOROANILINE	0.53	UH	0.22	MDL	0.53	LOD	ug/L	UJ	StoE		
4-CHLOROPHENYL-PHENYLETHER	0.53	υн	0.32	MDL	0.53	LOD	ug/L	UJ	StoE		
4-NITROANILINE	0.53	υн	0.23	MDL	0.53	LOD	ug/L	UJ	StoE		
ACENAPHTHENE	0.11	UH	0.047	MDL	0.11	LOD	ug/L	UJ	StoE		
ACENAPHTHYLENE	0.11	UH	0.051	MDL	0.11	LOD	ug/L	UJ	StoE		
ANTHRACENE	0.11	UH	0.093	MDL	0.11	LOD	ug/L	UJ	StoE		
BENZO(A)ANTHRACENE	0.11	UH	0.031	MDL	0.11	LOD	ug/L	UJ	StoE		
BENZO(A)PYRENE	0.11	UH	0.054	MDL	0.11	LOD	ug/L	UJ	StoE		
BENZO(B)FLUORANTHENE	0.11	UH	0.041	MDL	0.11	LOD	ug/L	UJ	StoE		
BENZO(G,H,I)PERYLENE	0.11	UH	0.049	MDL	0.11	LOD	ug/L	UJ	StoE		
BENZO(K)FLUORANTHENE	0.11	UH	0.047	MDL	0.11	LOD	ug/L	UJ	StoE		
BENZYL ALCOHOL	0.53	UH	0.40	MDL	0.53	LOD	ug/L	UJ	StoE		
BIS(2-CHLOROETHOXY)METHANE	0.53	UH	0.34	MDL	0.53	LOD	ug/L	UJ	StoE		
Bis(2-chloroethyl)ether	0.11	UH	0.11	MDL	0.11	LOD	ua/L	UJ	StoE		

* denotes a non-reportable result

Project Name and Number: 30174.0016.001.10.1 - RVAAP 66

12/19/2014 1:02:23 PM

ADR version 1.8.0.248 (Licensed For Use On USACE Projects Only)

Page 11 of 24

Lab Reporting Batch ID: 240-43449-1

EDD Filename: 240-43449-1 12_19_14A3

Laboratory: TA CAN

eQAPP Name: RVAAP 66-rev August 2014

Method Category: SVOA

lethod:	8270C-SVOC4	Matrix: AQ
---------	-------------	------------

Sample ID: FWGEQUIPRINSE2-0508-GWRE	E Collected: 10/22/2014 2:45:00 Analysis Type: RE-BASE/NEUTRAL Dilution: 1								Dilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
BIS(2-ETHYLHEXYL)PHTHALATE	5.3	υн	1.8	MDL	5.3	LOD	ug/L	UJ	StoE
Butylbenzylphthalate	0.53	UH	0.27	MDL	0.53	LOD	ug/L	UJ	StoE
CARBAZOLE	0.53	UH	0.29	MDL	0.53	LOD	ug/L	UJ	StoE
CHRYSENE	0.11	UH	0.053	MDL	0.11	LOD	ug/L	UJ	StoE
DIBENZ(A,H)ANTHRACENE	0.11	UH	0.047	MDL	0.11	LOD	ug/L	UJ	StoE
DIBENZOFURAN	0.11	UH	0.021	MDL	0.11	LOD	ug/L	UJ	StoE
Diethylphthalate	1.1	UH	0.63	MDL	1.1	LOD	ug/L	UJ	StoE
Dimethylphthalate	0.53	UH	0.31	MDL	0.53	LOD	ug/L	UJ	StoE
DI-N-BUTYL PHTHALATE	5.3	UH	1.8	MDL	5.3	LOD	ug/L	UJ	StoE
DI-N-OCTYL PHTHALATE	0.53	UH	0.24	MDL	0.53	LOD	ug/L	UJ	StoE
FLUORANTHENE	0.11	UH	0.047	MDL	0.11	LOD	ug/L	UJ	StoE
FLUORENE	0.11	UH	0.043	MDL	0.11	LOD	ug/L	UJ	StoE
HEXACHLOROBENZENE	0.11	UH	0.090	MDL	0.11	LOD	ug/L	UJ	StoE
HEXACHLOROBUTADIENE	0.53	UH	0.28	MDL	0.53	LOD	ug/L	UJ	StoE
HEXACHLOROCYCLOPENTADIENE	0.53	UΗ	0.25	MDL	0.53	LOD	ug/L	UJ	Lcs, StoE
HEXACHLOROETHANE	0.53	UН	0.20	MDL	0.53	LOD	ug/L	UJ	StoE
INDENO(1,2,3-CD)PYRENE	0.11	UH	0.046	MDL	0.11	LOD	ug/L	UJ	StoE
ISOPHORONE	0.53	UH	0.28	MDL	0.53	LOD	ug/L	UJ	StoE
NAPHTHALENE	0.11	UH	0.066	MDL	0.11	LOD	ug/L	UJ	StoE
N-NITROSO-DI-N-PROPYLAMINE	0.53	UH	0.25	MDL	0.53	LOD	ug/L	UJ	StoE
N-NITROSODIPHENYLAMINE	0.53	UН	0.33	MDL	0.53	LOD	ug/L	UJ	StoE
PHENANTHRENE	0.11	UH	0.065	MDL	0.11	LOD	ug/L	UJ	StoE
PYRENE	0.11	UН	0.044	MDL	0.11	LOD	ug/L	UJ	StoE

Sample ID: FWGLL1MW-088-0502-GW	Collec	ted: 10/21/	Dilution: 1						
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
2,4,5-TRICHLOROPHENOL	0.50	U	0.30	MDL	0.50	LOD	ug/L	UJ	Surr
2,4,6-TRICHLOROPHENOL	0.50	U	0.24	MDL	0.50	LOD	ug/L	UJ	Surr
2,4-DICHLOROPHENOL	0.50	U	0.19	MDL	0.50	LOD	ug/L	UJ	Surr
2,4-DIMETHYLPHENOL	0.50	U	0.25	MDL	0.50	LOD	ug/L	UJ	Surr
2,4-DINITROPHENOL	0.99	U	0.32	MDL	0.99	LOD	ug/L	UJ	ProfJudg, Surr

* denotes a non-reportable result

Project Name and Number: 30174.0016.001.10.1 - RVAAP 66

12/19/2014 1:02:23 PM

Method:

Data Qualifier Summary

Matrix: AQ

Lab Reporting Batch ID: 240-43449-1

EDD Filename: 240-43449-1 12_19_14A3

Laboratory: TA CAN

eQAPP Name: RVAAP 66-rev August 2014

Method Category: SVOA

1992 S 1992 S	street at the	12.02.012.0	12022302	20010.003	
		0270	10 61	Inc	1
		027.0			- 100 Billion

Sample ID:FWGLL1MW-088-0502-GW	Collec	ted: 10/21/	2014 3:00):00 A	nalysis T	ype: RES	-ACID	Dilution: 1		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
2-CHLOROPHENOL	0.50	U	0.29	MDL	0.50	LOD	ug/L	UJ	Surr	
2-METHYLPHENOL	0.50	U	0.17	MDL	0.50	LOD	ug/L	UJ	Surr	
2-NITROPHENOL	0.50	U	0.28	MDL	0.50	LOD	ug/L	UJ	Surr	
3-methylphenol/4-methylphenol	0.99	U	0.79	MDL	0.99	LOD	ug/L	UJ	Surr	
4,6-DINITRO-2-METHYLPHENOL	4.0	U	2.4	MDL	4.0	LOD	ug/L	UJ	Surr	
4-CHLORO-3-METHYLPHENOL	0.50	U	0.21	MDL	0.50	LOD	ug/L	UJ	Surr	
4-NITROPHENOL	4.0	U	0.29	MDL	4.0	LOD	ug/L	UJ	Surr	
BENZOIC ACID	20	U	9.9	MDL	20	LOD	ug/L	UJ	Surr	
PENTACHLOROPHENOL	0.99	U	0.27	MDL	0.99	LOD	ug/L	UJ	Surr	
PHENOL	0.99	U	0.59	MDL	0.99	LOD	ug/L	UJ	Surr	

Sample ID: FWGLL1MW-088-0502-GW	Collected: 10/21/2014 3:00:00 Analysis Type: RES-BASE/NEUTRAL Dilution: 1								
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,4-TRICHLOROBENZENE	0.50	U	0.28	MDL	0.50	LOD	ug/L	UJ	Surr
1,2-DICHLOROBENZENE	0.50	U	0.29	MDL	0.50	LOD	ug/L	UJ	Surr
1,3-DICHLOROBENZENE	0.50	U	0.23	MDL	0.50	LOD	ug/L	UJ	Surr
1,4-DICHLOROBENZENE	0.50	U	0.34	MDL	0.50	LOD	ug/L	UJ	Surr
2,2'-OXYBIS (1-CHLOROPROPANE)	0.50	U	0.40	MDL	0.50	LOD	ug/L	UJ	Surr
2-CHLORONAPHTHALENE	0.50	U	0.099	MDL	0.50	LOD	ug/L	UJ	Surr
2-METHYLNAPHTHALENE	0.099	U	0.090	MDL	0.099	LOD	ug/L	UJ	Surr
2-NITROANILINE	0.50	U	0.21	MDL	0.50	LOD	ug/L	UJ	Surr
3,3'-DICHLOROBENZIDINE	0.99	U	0.37	MDL	0.99	LOD	ug/L	UJ	Surr
3-NITROANILINE	0.50	U	0.28	MDL	0.50	LOD	ug/L	UJ	Surr
4-BROMOPHENYL-PHENYLETHER	0.50	U	0.22	MDL	0.50	LOD	ug/L	UJ	Surr
4-CHLOROANILINE	0.50	U	0.21	MDL	0.50	LOD	ug/L	UJ	Surr
4-CHLOROPHENYL-PHENYLETHER	0.50	U	0.30	MDL	0.50	LOD	ug/L	UJ	Surr
4-NITROANILINE	0.50	U	0.22	MDL	0.50	LOD	ug/L	UJ	Surr
ACENAPHTHENE	0.099	υ	0.044	MDL	0.099	LOD	ug/L	UJ	Surr
ACENAPHTHYLENE	0.099	U	0.048	MDL	0.099	LOD	ug/L	UJ	Surr
ANTHRACENE	0.099	U	0.087	MDL	0.099	LOD	ug/L	UJ	Surr
BENZO(A)ANTHRACENE	0.099	U	0.029	MDL	0.099	LOD	ug/L	UJ	Surr

* denotes a non-reportable result

Project Name and Number: 30174.0016.001.10.1 - RVAAP 66

12/19/2014 1:02:23 PM

Method:

Data Qualifier Summary

Matrix: AQ

Lab Reporting Batch ID: 240-43449-1

EDD Filename: 240-43449-1 12_19_14A3

Laboratory: TA CAN

eQAPP Name: RVAAP 66-rev August 2014

Method Category: SVOA

 Contraction of the second second	and the second se	Contraction of the second
	0070	
	82/1	11.4.50

Sample ID: FWGLL1MW-088-0502-GW	Collected: 10/21/2014 3:00:00 Analysis Type: RES-BASE/NEUTRAL Dilution: 1							Dilution: 1	
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
BENZO(A)PYRENE	0.099	υ	0.051	MDL	0.099	LOD	ug/L	UJ	Surr
BENZO(B)FLUORANTHENE	0.099	υ	0.039	MDL	0.099	LOD	ug/L	UJ	Surr
BENZO(G,H,I)PERYLENE	0.099	υ	0.046	MDL	0.099	LOD	ug/L	UJ	Surr
BENZO(K)FLUORANTHENE	0.099	U	0.044	MDL	0.099	LOD	ug/L	UJ	Surr
BENZYL ALCOHOL	0.50	U	0.38	MDL	0.50	LOD	ug/L	UJ	Surr
BIS(2-CHLOROETHOXY)METHANE	0.50	U	0.32	MDL	0.50	LOD	ug/L	UJ	Surr
Bis(2-chloroethyl)ether	0.099	U	0.099	MDL	0.099	LOD	ug/L	UJ	Surr
BIS(2-ETHYLHEXYL)PHTHALATE	5.0	U	1.7	MDL	5.0	LOD	ug/L	UJ	Surr
Butylbenzylphthalate	0.50	U	0.26	MDL	0.50	LOD	ug/L	UJ	Surr
CARBAZOLE	0.50	U	0.28	MDL	0.50	LOD	ug/L	UJ	Surr
CHRYSENE	0.099	U	0.050	MDL	0.099	LOD	ug/L	UJ	Surr
DIBENZ(A,H)ANTHRACENE	0.099	U	0.044	MDL	0.099	LOD	ug/L	UJ	Surr
DIBENZOFURAN	0.099	U	0.020	MDL	0.099	LOD	ug/L	UJ	Surr
Diethylphthalate	0.99	U	0.59	MDL	0.99	LOD	ug/L	UJ	Surr
Dimethylphthalate	0.50	U	0.29	MDL	0.50	LOD	ug/L	UJ	Surr
DI-N-BUTYL PHTHALATE	5.0	U	1.7	MDL	5.0	LOD	ug/L	UJ	Surr
DI-N-OCTYL PHTHALATE	0.50	U	0.23	MDL	0.50	LOD	ug/L	UJ	Surr
FLUORANTHENE	0.099	U	0.044	MDL	0.099	LOD	ug/L	UJ	Surr
FLUORENE	0.099	U	0.040	MDL	0.099	LOD	ug/L	UJ	Surr
HEXACHLOROBENZENE	0.099	U	0.084	MDL	0.099	LOD	ug/L	UJ	Surr
HEXACHLOROBUTADIENE	0.50	U	0.27	MDL	0.50	LOD	ug/L	UJ	Surr
HEXACHLOROCYCLOPENTADIENE	0.50	UQ	0.24	MDL	0.50	LOD	ug/L	UJ	Lcs, Surr
HEXACHLOROETHANE	0.50	U	0.19	MDL	0.50	LOD	ug/L	UJ	Surr
INDENO(1,2,3-CD)PYRENE	0.099	U	0.043	MDL	0.099	LOD	ug/L	UJ	Surr
ISOPHORONE	0.50	U	0.27	MDL	0.50	LOD	ug/L	UJ	Surr
NAPHTHALENE	0.099	U	0.062	MDL	0.099	LOD	ug/L	UJ	Surr
N-NITROSO-DI-N-PROPYLAMINE	0.50	U	0.24	MDL	0.50	LOD	ug/L	UJ	Surr
N-NITROSODIPHENYLAMINE	0.50	U	0.31	MDL	0.50	LOD	ug/L	UJ	Surr
PHENANTHRENE	0.099	U	0.061	MDL	0.099	LOD	ug/L	UJ	Surr
PYRENE	0.099	U	0.042	MDL	0.099	LOD	ug/L	UJ	Surr

* denotes a non-reportable result

Project Name and Number: 30174.0016.001.10.1 - RVAAP 66

12/19/2014 1:02:23 PM

Lab Reporting Batch ID: 240-43449-1

EDD Filename: 240-43449-1 12_19_14A3

Laboratory: TA CAN

eQAPP Name: RVAAP 66-rev August 2014

Method Category: SVOA

Nethod:	8270C-SVOC4	Matrix: AQ
---------	-------------	------------

Sample ID: FWGLL2MW-271-0503-GW	Collec	Collected: 10/22/2014 4:30:00 Analysis 7					-ACID	Dilution: 1	
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
2,4,5-TRICHLOROPHENOL	0.50	UQ	0.30	MDL	0.50	LOD	ug/L	UJ	Surr
2,4,6-TRICHLOROPHENOL	0.50	UQ	0.24	MDL	0.50	LOD	ug/L	UJ	Surr
2,4-DICHLOROPHENOL	0.50	UQ	0.19	MDL	0.50	LOD	ug/L	UJ	Surr
2,4-DIMETHYLPHENOL	0.50	UQ	0.25	MDL	0.50	LOD	ug/L	UJ	Surr
2,4-DINITROPHENOL	0.99	UQJ	0.32	MDL	0.99	LOD	ug/L	UJ	ProfJudg, Surr
2-CHLOROPHENOL	0.50	UQ	0.29	MDL	0.50	LOD	ug/L	UJ	Surr
2-METHYLPHENOL	0.50	UQ	0.17	MDL	0.50	LOD	ug/L	UJ	Surr
2-NITROPHENOL	0.50	UQ	0.28	MDL	0.50	LOD	ug/L	UJ	Surr
3-methylphenol/4-methylphenol	0.99	UQ	0.79	MDL	0.99	LOD	ug/L	UJ	Surr
4,6-DINITRO-2-METHYLPHENOL	4.0	UQJ	2.4	MDL	4.0	LOD	ug/L	UJ	Surr
4-CHLORO-3-METHYLPHENOL	0.50	UQ	0.21	MDL	0.50	LOD	ug/L	UJ	Surr
4-NITROPHENOL	4.0	UQ	0.29	MDL	4.0	LOD	ug/L	UJ	Surr
BENZOIC ACID	20	UQJ	9.9	MDL	20	LOD	ug/L	UJ	Surr
PENTACHLOROPHENOL	0.99	NØJ	0.27	MDL	0.99	LOD	ug/L	UJ	Ms, Surr
PHENOL	0.99	UQ	0.59	MDL	0.99	LOD	ug/L	UJ	Surr

 Sample ID:FWGLL2MW-271-0503-GW
 Collected: 10/22/2014 4:30:00
 Analysis Type: RES-BASE/NEUTRAL Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,4-TRICHLOROBENZENE	0.50	UQ	0.28	MDL	0.50	LOD	ug/L	UJ	Surr
1,2-DICHLOROBENZENE	0.50	UQ	0.29	MDL	0.50	LOD	ug/L	UJ	Surr
1,3-DICHLOROBENZENE	0.50	UQ	0.23	MDL	0.50	LOD	ug/L	UJ	Surr
1,4-DICHLOROBENZENE	0.50	UQ	0.34	MDL	0.50	LOD	ug/L	UJ	Surr
2,2'-OXYBIS (1-CHLOROPROPANE)	0.50	UQ	0.40	MDL	0.50	LOD	ug/L	UJ	Surr
2-CHLORONAPHTHALENE	0.50	U	0.099	MDL	0.50	LOD	ug/L	UJ	Surr
2-METHYLNAPHTHALENE	0.099	U	0.090	MDL	0.099	LOD	ug/L	UJ	Surr
2-NITROANILINE	0.50	U	0.21	MDL	0.50	LOD	ug/L	UJ	Surr
3,3'-DICHLOROBENZIDINE	0.99	U	0.37	MDL	0.99	LOD	ug/L	UJ	Surr
3-NITROANILINE	0.50	U	0.28	MDL	0.50	LOD	ug/L	UJ	Surr
4-BROMOPHENYL-PHENYLETHER	0.50	U	0.22	MDL	0.50	LOD	ug/L	UJ	Surr
4-CHLOROANILINE	0.50	UQ	0.21	MDL	0.50	LOD	ug/L	UJ	Surr
4-CHLOROPHENYL-PHENYLETHER	0.50	U	0.30	MDL	0.50	LOD	ug/L	UJ	Surr

* denotes a non-reportable result

Project Name and Number: 30174.0016.001.10.1 - RVAAP 66

12/19/2014 1:02:23 PM

ADR version 1.8.0.248 (Licensed For Use On USACE Projects Only)

٦

Method:

Data Qualifier Summary

Matrix: AQ

Lab Reporting Batch ID: 240-43449-1

EDD Filename: 240-43449-1 12_19_14A3

Laboratory: TA CAN

eQAPP Name: RVAAP 66-rev August 2014

Method Category: SVOA

8270C-SVOC4

Sample ID:FWGLL2MW-271-0503-GW	Collec	ted: 10/22/	2014 4:30	0:00 A	nalysis T	ype: RES	-BASE/N	EUTRAL	Dilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
4-NITROANILINE	0.50	U	0.22	MDL	0.50	LOD	ug/L	UJ	Surr
ACENAPHTHENE	0.099	UQ	0.044	MDL	0.099	LOD	ug/L	UJ	Surr
ACENAPHTHYLENE	0.099	UQ	0.048	MDL	0.099	LOD	ug/L	UJ	Surr
ANTHRACENE	0.099	UQ	0.087	MDL	0.099	LOD	ug/L	UJ	Surr
BENZO(A)ANTHRACENE	0.099	UQ	0.029	MDL	0.099	LOD	ug/L	UJ	Surr
BENZO(A)PYRENE	0.099	UQ	0.051	MDL	0.099	LOD	ug/L	UJ	Surr
BENZO(B)FLUORANTHENE	0.099	UQ	0.039	MDL	0.099	LOD	ug/L	UJ	Surr
BENZO(G,H,I)PERYLENE	0.099	UQ	0.046	MDL	0.099	LOD	ug/L	UJ	Surr
BENZO(K)FLUORANTHENE	0.099	UQ	0.044	MDL	0.099	LOD	ug/L	UJ	Surr
BENZYL ALCOHOL	0.50	UQ	0.38	MDL	0.50	LOD	ug/L	UJ	Surr
BIS(2-CHLOROETHOXY)METHANE	0.50	UQ	0.32	MDL	0.50	LOD	ug/L	UJ	Surr
Bis(2-chloroethyl)ether	0.099	UQ	0.099	MDL	0.099	LOD	ug/L	UJ	Surr
BIS(2-ETHYLHEXYL)PHTHALATE	5.0	U	1.7	MDL	5.0	LOD	ug/L	UJ	Surr
Butylbenzylphthalate	0.50	U	0.26	MDL	0.50	LOD	ug/L	UJ	Surr
CARBAZOLE	0.50	U	0.28	MDL	0.50	LOD	ug/L	UJ	Surr
CHRYSENE	0.099	UQ	0.050	MDL	0.099	LOD	ug/L	UJ	Surr
DIBENZ(A,H)ANTHRACENE	0.099	U	0.044	MDL	0.099	LOD	ug/L	UJ	Surr
DIBENZOFURAN	0.099	U	0.020	MDL	0.099	LOD	ug/L	UJ	Surr
Diethylphthalate	0.99	U	0.59	MDL	0.99	LOD	ug/L	UJ	Surr
Dimethylphthalate	0.50	U	0.29	MDL	0.50	LOD	ug/L	UJ	Surr
DI-N-BUTYL PHTHALATE	5.0	U	1.7	MDL	5.0	LOD	ug/L	UJ	Surr
DI-N-OCTYL PHTHALATE	0.50	U	0.23	MDL	0.50	LOD	ug/L	UJ	Surr
FLUORANTHENE	0.099	UQ	0.044	MDL	0.099	LOD	ug/L	UJ	Surr
FLUORENE	0.099	UQ	0.040	MDL	0.099	LOD	ug/L	UJ	Surr
HEXACHLOROBENZENE	0.099	U	0.084	MDL	0.099	LOD	ug/L	UJ	Surr
HEXACHLOROBUTADIENE	0.50	UQ	0.27	MDL	0.50	LOD	ug/L	UJ	Surr
HEXACHLOROCYCLOPENTADIENE	0.50	UQJ	0.24	MDL	0.50	LOD	ug/L	UJ	Ms, Lcs, Surr
HEXACHLOROETHANE	0.50	UQ	0.19	MDL	0.50	LOD	ug/L	UJ	Surr
INDENO(1,2,3-CD)PYRENE	0.099	UQ	0.043	MDL	0.099	LOD	ug/L	UJ	Surr
ISOPHORONE	0.50	UQ	0.27	MDL	0.50	LOD	ug/L	UJ	Surr
NAPHTHALENE	0.099	UQ	0.062	MDL	0.099	LOD	ug/L	UJ	Surr
N-NITROSO-DI-N-PROPYLAMINE	0.50	UQ	0.24	MDL	0.50	LOD	ug/L	UJ	Surr

* denotes a non-reportable result

Project Name and Number: 30174.0016.001.10.1 - RVAAP 66

12/19/2014 1:02:23 PM

Lab Reporting Batch ID: 240-43449-1

EDD Filename: 240-43449-1 12_19_14A3

Laboratory: TA CAN

eQAPP Name: RVAAP 66-rev August 2014

Method Category: SVOA

Method: 8270C-SVOC4			Ма	trix:	AQ				
Sample ID:FWGLL2MW-271-0503-GW	Collec	ted: 10/22/	2014 4:30):00 A	nalysis T	ype: RES	-BASE/N	EUTRAL	Dilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
N-NITROSODIPHENYLAMINE	0.50	U	0.31	MDL	0.50	LOD	ug/L	UJ	Surr
PHENANTHRENE	0.099	UQ	0.061	MDL	0.099	LOD	ug/L	UJ	Surr
PYRENE	0.099	UQ	0.042	MDL	0.099	LOD	ug/L	UJ	Surr
Sample ID:FWGLL3MW-246-504-GWRE Collected: 10/22/2014 11:10:00 Analysis Type: RE-ACID Dilution: 1									
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
2,4,5-TRICHLOROPHENOL	0.52	UH	0.31	MDL	0.52	LOD	ug/L	UJ	StoE
2,4,6-TRICHLOROPHENOL	0.52	UH	0.25	MDL	0.52	LOD	ug/L	UJ	StoE
2,4-DICHLOROPHENOL	0.52	UH	0.20	MDL	0.52	LOD	ug/L	UJ	StoE
2,4-DIMETHYLPHENOL	0.52	UH	0.26	MDL	0.52	LOD	ug/L	UJ	StoE
2,4-DINITROPHENOL	1.0	υн	0.33	MDL	1.0	LOD	ug/L	UJ	StoE
2-CHLOROPHENOL	0.52	UH	0.30	MDL	0.52	LOD	ug/L	UJ	StoE
2-METHYLPHENOL	0.52	UН	0.18	MDL	0.52	LOD	ug/L	UJ	StoE
2-NITROPHENOL	0.52	UH	0.29	MDL	0.52	LOD	ug/L	UJ	StoE
3-methylphenol/4-methylphenol	1.0	UH	0.83	MDL	1.0	LOD	ug/L	UJ	StoE
4,6-DINITRO-2-METHYLPHENOL	4.2	UH	2.5	MDL	4.2	LOD	ug/L	UJ	StoE
4-CHLORO-3-METHYLPHENOL	0.52	UH	0.22	MDL	0.52	LOD	ug/L	UJ	StoE
4-NITROPHENOL	4.2	UH	0.30	MDL	4.2	LOD	ug/L	UJ	StoE
BENZOIC ACID	21	UH	10	MDL	21	LOD	ug/L	UJ	StoE
PENTACHLOROPHENOL	1.0	UН	0.28	MDL	1.0	LOD	ug/L	UJ	StoE
PHENOL	1.0	UH	0.62	MDL	1.0	LOD	ug/L	UJ	StoE

Sample ID:FWGLL3MW-246-504-GWRE	ype: RE-I	BASE/NE	UTRAL	Dilution: 1					
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,4-TRICHLOROBENZENE	0.52	UН	0.29	MDL	0.52	LOD	ug/L	UJ	StoE
1,2-DICHLOROBENZENE	0.52	UH	0.30	MDL	0.52	LOD	ug/L	UJ	StoE
1,3-DICHLOROBENZENE	0.52	UH	0.24	MDL	0.52	LOD	ug/L	UJ	StoE
1,4-DICHLOROBENZENE	0.52	UН	0.35	MDL	0.52	LOD	ug/L	UJ	StoE
2,2'-OXYBIS (1-CHLOROPROPANE)	0.52	UH	0.42	MDL	0.52	LOD	ug/L	UJ	StoE
2-CHLORONAPHTHALENE	0.52	UH	0.10	MDL	0.52	LOD	ug/L	UJ	StoE

* denotes a non-reportable result

Project Name and Number: 30174.0016.001.10.1 - RVAAP 66

12/19/2014 1:02:23 PM

Method:

Data Qualifier Summary

Matrix: AQ

Lab Reporting Batch ID: 240-43449-1

EDD Filename: 240-43449-1 12_19_14A3

Laboratory: TA CAN

eQAPP Name: RVAAP 66-rev August 2014

Method Category: SVOA

8270C-SVOC4

Sample ID: FWGLL3MW-246-504-GWRE	Collec	ted: 10/22/	2014 11:1	10:00 A	nalysis T	ype: RE-E	BASE/NE	UTRAL	Dilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
2-METHYLNAPHTHALENE	0.10	UН	0.094	MDL	0.10	LOD	ug/L	UJ	StoE
2-NITROANILINE	0.52	UН	0.22	MDL	0.52	LOD	ug/L	UJ	StoE
3,3'-DICHLOROBENZIDINE	1.0	UH	0.39	MDL	1.0	LOD	ug/L	UJ	StoE
3-NITROANILINE	0.52	UH	0.29	MDL	0.52	LOD	ug/L	UJ	StoE
4-BROMOPHENYL-PHENYLETHER	0.52	UН	0.23	MDL	0.52	LOD	ug/L	UJ	StoE
4-CHLOROANILINE	0.52	UH	0.22	MDL	0.52	LOD	ug/L	UJ	StoE
4-CHLOROPHENYL-PHENYLETHER	0.52	UН	0.31	MDL	0.52	LOD	ug/L	UJ	StoE
4-NITROANILINE	0.52	UН	0.23	MDL	0.52	LOD	ug/L	UJ	StoE
ACENAPHTHENE	0.10	UH	0.046	MDL	0.10	LOD	ug/L	UJ	StoE
ACENAPHTHYLENE	0.10	UН	0.050	MDL	0.10	LOD	ug/L	UJ	StoE
ANTHRACENE	0.10	UН	0.092	MDL	0.10	LOD	ug/L	UJ	StoE
BENZO(A)ANTHRACENE	0.10	UН	0.031	MDL	0.10	LOD	ug/L	UJ	StoE
BENZO(A)PYRENE	0.10	UН	0.054	MDL	0.10	LOD	ug/L	UJ	StoE
BENZO(B)FLUORANTHENE	0.10	UН	0.041	MDL	0.10	LOD	ug/L	UJ	StoE
BENZO(G,H,I)PERYLENE	0.10	UH	0.048	MDL	0.10	LOD	ug/L	UJ	StoE
BENZO(K)FLUORANTHENE	0.10	UH	0.047	MDL	0.10	LOD	ug/L	UJ	StoE
BENZYL ALCOHOL	0.52	UH	0.40	MDL	0.52	LOD	ug/L	UJ	StoE
BIS(2-CHLOROETHOXY)METHANE	0.52	UН	0.33	MDL	0.52	LOD	ug/L	UJ	StoE
Bis(2-chloroethyl)ether	0.10	UH	0.10	MDL	0.10	LOD	ug/L	UJ	StoE
BIS(2-ETHYLHEXYL)PHTHALATE	5.2	UH	1.8	MDL	5.2	LOD	ug/L	UJ	StoE
Butylbenzylphthalate	0.52	UH	0.27	MDL	0.52	LOD	ug/L	UJ	StoE
CARBAZOLE	0.52	UН	0.29	MDL	0.52	LOD	ug/L	UJ	StoE
CHRYSENE	0.10	UH	0.052	MDL	0.10	LOD	ug/L	UJ	StoE
DIBENZ(A,H)ANTHRACENE	0.10	UН	0.046	MDL	0.10	LOD	ug/L	UJ	StoE
DIBENZOFURAN	0.10	UН	0.021	MDL	0.10	LOD	ug/L	UJ	StoE
Diethylphthalate	1.0	UH	0.62	MDL	1.0	LOD	ug/L	UJ	StoE
Dimethylphthalate	0.52	UH	0.30	MDL	0.52	LOD	ug/L	UJ	StoE
DI-N-BUTYL PHTHALATE	5.2	UH	1.8	MDL	5.2	LOD	ug/L	UJ	StoE
DI-N-OCTYL PHTHALATE	0.52	UH	0.24	MDL	0.52	LOD	ug/L	UJ	StoE
FLUORANTHENE	0.10	UH	0.046	MDL	0.10	LOD	ug/L	UJ	StoE
FLUORENE	0.10	UH	0.042	MDL	0.10	LOD	ug/L	UJ	StoE
HEXACHLOROBENZENE	0.10	UH	0.089	MDL	0.10	LOD	ug/L	UJ	StoE

* denotes a non-reportable result

Project Name and Number: 30174.0016.001.10.1 - RVAAP 66

12/19/2014 1:02:23 PM

Lab Reporting Batch ID: 240-43449-1

Laboratory: TA CAN

EDD Filename: 240-43449-1 12_19_14A3

eQAPP Name: RVAAP 66-rev August 2014

Method Category: SVOA

Sample ID:FWGLL3M	W-246-504-GWRE	Collected: 10/22/2014 11:10:00	Analysis Type: RE-BASE/NEUTRAL	Dilution: 1
Method:	8270C-SVOC4	Matrix:	AQ	
3. 1				

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
HEXACHLOROBUTADIENE	0.52	υн	0.28	MDL	0.52	LOD	ug/L	UJ	StoE
HEXACHLOROCYCLOPENTADIENE	0.52	υн	0.25	MDL	0.52	LOD	ug/L	UJ	Lcs, StoE
HEXACHLOROETHANE	0.52	υн	0.20	MDL	0.52	LOD	ug/L	UJ	StoE
INDENO(1,2,3-CD)PYRENE	0.10	υн	0.045	MDL	0.10	LOD	ug/L	UJ	StoE
ISOPHORONE	0.52	υн	0.28	MDL	0.52	LOD	ug/L	IJ	StoE
NAPHTHALENE	0.10	UH	0.065	MDL	0.10	LOD	ug/L	UJ	StoE
N-NITROSO-DI-N-PROPYLAMINE	0.52	UH	0.25	MDL	0.52	LOD	ug/L	UJ	StoE
N-NITROSODIPHENYLAMINE	0.52	υн	0.32	MDL	0.52	LOD	ug/L	UJ	StoE
PHENANTHRENE	0.10	UH	0.064	MDL	0.10	LOD	ug/L	UJ	StoE
PYRENE	0.10	UH	0.044	MDL	0.10	LOD	ug/L	UJ	StoE

Sample ID: FWGLL3MW-DUP1-506-GWRE	Collec	ted: 10/22/	2014 12:0	00:00 A	nalysis T	ype: RE-/	ACID	Dilution: 1	
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
2,4,5-TRICHLOROPHENOL	0.52	UН	0.31	MDL	0.52	LOD	ug/L	UJ	StoE
2,4,6-TRICHLOROPHENOL	0.52	UH	0.25	MDL	0.52	LOD	ug/L	UJ	StoE
2,4-DICHLOROPHENOL	0.52	υн	0.20	MDL	0.52	LOD	ug/L	UJ	StoE
2,4-DIMETHYLPHENOL	0.52	υн	0.26	MDL	0.52	LOD	ug/L	UJ	StoE
2,4-DINITROPHENOL	1.0	UН	0.33	MDL	1.0	LOD	ug/L	UJ	StoE
2-CHLOROPHENOL	0.52	UН	0.30	MDL	0.52	LOD	ug/L	UJ	StoE
2-METHYLPHENOL	0.52	UH	0.18	MDL	0.52	LOD	ug/L	UJ	StoE
2-NITROPHENOL	0.52	UH	0.29	MDL	0.52	LOD	ug/L	UJ	StoE
3-methylphenol/4-methylphenol	1.0	UH	0.83	MDL	1.0	LOD	ug/L	UJ	StoE
4,6-DINITRO-2-METHYLPHENOL	4.2	υн	2.5	MDL	4.2	LOD	ug/L	UJ	StoE
4-CHLORO-3-METHYLPHENOL	0.52	UH	0.22	MDL	0.52	LOD	ug/L	UJ	StoE
4-NITROPHENOL	4.2	UH	0.30	MDL	4.2	LOD	ug/L	UJ	StoE
BENZOIC ACID	21	UH	10	MDL	21	LOD	ug/L	UJ	StoE
PENTACHLOROPHENOL	1.0	UH	0.28	MDL	1.0	LOD	ug/L	UJ	StoE
PHENOL	1.0	UH	0.62	MDL	1.0	LOD	ug/L	UJ	StoE

* denotes a non-reportable result

Project Name and Number: 30174.0016.001.10.1 - RVAAP 66

12/19/2014 1:02:23 PM

Matrix: AQ

Lab Reporting Batch ID: 240-43449-1

EDD Filename: 240-43449-1 12_19_14A3

Laboratory: TA CAN

eQAPP Name: RVAAP 66-rev August 2014

Method Category: SVOA

PARTICIPATION AND IN THE PARTY AND	 A start program in the start and sta Start and start an
	00700 01/004
Wethod.	82/00-5V064
method.	

Sample ID: FWGLL3MW-DUP1-506-GWRE	D:FWGLL3MW-DUP1-506-GWRE Collected: 10/22/2014 12:00:00 Analysis Type: RE-BASE/NEUTRAL Dilution: 1							Dilution: 1	
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,4-TRICHLOROBENZENE	0.52	UH	0.29	MDL	0.52	LOD	ug/L	UJ	StoE
1,2-DICHLOROBENZENE	0.52	UΗ	0.30	MDL	0.52	LOD	ug/L	UJ	StoE
1,3-DICHLOROBENZENE	0.52	UH	0.24	MDL	0.52	LOD	ug/L	UJ	StoE
1,4-DICHLOROBENZENE	0.52	UΗ	0.35	MDL	0.52	LOD	ug/L	UJ	StoE
2,2'-OXYBIS (1-CHLOROPROPANE)	0.52	UH	0.42	MDL	0.52	LOD	ug/L	UJ	StoE
2-CHLORONAPHTHALENE	0.52	UH	0.10	MDL	0.52	LOD	ug/L	UJ	StoE
2-METHYLNAPHTHALENE	0.10	UΗ	0.094	MDL	0.10	LOD	ug/L	UJ	StoE
2-NITROANILINE	0.52	UH	0.22	MDL	0.52	LOD	ug/L	UJ	StoE
3,3'-DICHLOROBENZIDINE	1.0	UН	0.39	MDL	1.0	LOD	ug/L	UJ	StoE
3-NITROANILINE	0.52	UН	0.29	MDL	0.52	LOD	ug/L	UJ	StoE
4-BROMOPHENYL-PHENYLETHER	0.52	UH	0.23	MDL	0.52	LOD	ug/L	UJ	StoE
4-CHLOROANILINE	0.52	UH	0.22	MDL	0.52	LOD	ug/L	UJ	StoE
4-CHLOROPHENYL-PHENYLETHER	0.52	UH	0.31	MDL	0.52	LOD	ug/L	UJ	StoE
4-NITROANILINE	0.52	UΗ	0.23	MDL	0.52	LOD	ug/L	UJ	StoE
ACENAPHTHENE	0.10	UΗ	0.046	MDL	0.10	LOD	ug/L	UJ	StoE
ACENAPHTHYLENE	0.10	υн	0.050	MDL	0.10	LOD	ug/L	UJ	StoE
ANTHRACENE	0.10	UН	0.092	MDL	0.10	LOD	ug/L	UJ	StoE
BENZO(A)ANTHRACENE	0.10	UH	0.031	MDL	0.10	LOD	ug/L	UJ	StoE
BENZO(A)PYRENE	0.10	UH	0.054	MDL	0.10	LOD	ug/L	UJ	StoE
BENZO(B)FLUORANTHENE	0.10	UH	0.041	MDL	0.10	LOD	ug/L	UJ	StoE
BENZO(G,H,I)PERYLENE	0.10	UH	0.048	MDL	0.10	LOD	ug/L	UJ	StoE
BENZO(K)FLUORANTHENE	0.10	UН	0.047	MDL	0.10	LOD	ug/L	UJ	StoE
BENZYL ALCOHOL	0.52	UН	0.40	MDL	0.52	LOD	ug/L	UJ	StoE
BIS(2-CHLOROETHOXY)METHANE	0.52	UН	0.33	MDL	0.52	LOD	ug/L	UJ	StoE
Bis(2-chloroethyl)ether	0.10	UH	0.10	MDL	0.10	LOD	ug/L	UJ	StoE
BIS(2-ETHYLHEXYL)PHTHALATE	5.2	UН	1.8	MDL	5.2	LOD	ug/L	UJ	StoE
Butylbenzylphthalate	0.52	UH	0.27	MDL	0.52	LOD	ug/L	UJ	StoE
CARBAZOLE	0.52	UH	0.29	MDL	0.52	LOD	ug/L	UJ	StoE
CHRYSENE	0.10	UH	0.052	MDL	0.10	LOD	ug/L	UJ	StoE
DIBENZ(A,H)ANTHRACENE	0.10	UH	0.046	MDL	0.10	LOD	ug/L	UJ	StoE
DIBENZOFURAN	0.10	UH	0.021	MDL	0.10	LOD	ug/L	UJ	StoE
Diethylphthalate	1.0	UH	0.62	MDL	1.0	LOD	ug/L	UJ	StoE

* denotes a non-reportable result

Project Name and Number: 30174.0016.001.10.1 - RVAAP 66

12/19/2014 1:02:24 PM

Matrix: AQ

Lab Reporting Batch ID: 240-43449-1

EDD Filename: 240-43449-1 12_19_14A3

Laboratory: TA CAN

eQAPP Name: RVAAP 66-rev August 2014

Method Category: SVOA

Method: 8270C-SVOC4

Sample ID: FWGLL3MW-DUP1-506-GWRE	Collected: 10/22/2014 12:00:00 Analysis Type: RE-BASE/NEUTRAL Dilution: 1								
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
Dimethylphthalate	0.52	UH	0.30	MDL	0.52	LOD	ug/L	UJ	StoE
DI-N-BUTYL PHTHALATE	5.2	UH	1.8	MDL	5.2	LOD	ug/L	UJ	StoE
DI-N-OCTYL PHTHALATE	0.52	UH	0.24	MDL	0.52	LOD	ug/L	UJ	StoE
FLUORANTHENE	0.10	UН	0.046	MDL	0.10	LOD	ug/L	UJ	StoE
FLUORENE	0.10	UH	0.042	MDL	0.10	LOD	ug/L	UJ	StoE
HEXACHLOROBENZENE	0.10	UH	0.089	MDL	0.10	LOD	ug/L	UJ	StoE
HEXACHLOROBUTADIENE	0.52	UH	0.28	MDL	0.52	LOD	ug/L	UJ	StoE
HEXACHLOROCYCLOPENTADIENE	0.52	UH	0.25	MDL	0.52	LOD	ug/L	UJ	Lcs, StoE
HEXACHLOROETHANE	0.52	UH	0.20	MDL	0.52	LOD	ug/L	UJ	StoE
INDENO(1,2,3-CD)PYRENE	0.10	UН	0.045	MDL	0.10	LOD	ug/L	UJ	StoE
ISOPHORONE	0.52	UН	0.28	MDL	0.52	LOD	ug/L	UJ	StoE
NAPHTHALENE	0.10	UH	0.065	MDL	0.10	LOD	ug/L	UJ	StoE
N-NITROSO-DI-N-PROPYLAMINE	0.52	UH	0.25	MDL	0.52	LOD	ug/L	UJ	StoE
N-NITROSODIPHENYLAMINE	0.52	UH	0.32	MDL	0.52	LOD	ug/L	UJ	StoE
PHENANTHRENE	0.10	UH	0.064	MDL	0.10	LOD	ug/L	UJ	StoE
PYRENE	0.10	UH	0.044	MDL	0.10	LOD	ug/L	UJ	StoE

Method Category: SVOA Method: 8330

Matrix: AQ

Sample ID: FWGEQUIPRINSE1-507-GW	Collec	ted: 10/21/	2014 4:30	0:00 A	nalysis T	ype: RES	i	Dilution: 1	
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,3,5-TRINITROBENZENE	1.1	J	0.034	MDL	0.055	LOD	ug/L	J	ProfJudg
Sample ID: FWGEQUIPRINSE2-0508-GW	Collec	ted: 10/22	2014 2:4	5:00 A	nalysis T	ype: RES	5	I	Dilution: 1
Sample ID:FWGEQUIPRINSE2-0508-GW	Collec Lab Result	ted: 10/22 Lab Qual	/2014 2:4	5:00 A DL Type	nalysis T RL	ype: RES RL Type	Units	Data Review Qual	Dilution: 1 Reason Code

* denotes a non-reportable result

Project Name and Number: 30174.0016.001.10.1 - RVAAP 66

12/19/2014 1:02:24 PM

Matrix: AQ

Lab Reporting Batch ID: 240-43449-1

EDD Filename: 240-43449-1 12_19_14A3

Laboratory: TA CAN

eQAPP Name: RVAAP 66-rev August 2014

Method Category: VOA <u>Method:</u> 8260B

Sample ID: FWGEQUIPRINSE1-507-GW	nple ID:FWGEQUIPRINSE1-507-GW Collected: 10/21/2014 4:30:00 Analysis Type: RES				Dilution: 1				
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
2-BUTANONE	1.0	υ	4.1	MDL	1.0	LOD	ug/L	UJ	ProfJudg
ACETONE	3.5	J	3.4	MDL	2.0	LOD	ug/L	15-31	3 Tb, ProfJudg
BROMOFORM	1.0	U	0.56	MDL	1.0	LOD	ug/L	UJ	ProfJudg
TOLUENE	0.24	J	0.22	MDL	0.25	LOD	ug/L	J	RI
Sample ID: FWGEQUIPRINSE 2-0508-GW	Collec	ted: 10/22/	2014 2:4	5:00 A	nalysis T	ype: RES			Dilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
2-BUTANONE	1.0	U	4.1	MDL	1.0	LOD	ug/L	UJ	ProfJudg
ACETONE	2.0	U	3.4	MDL	2.0	LOD	ug/L	UJ	ProfJudg
BROMOFORM	1.0	U	0.56	MDL	1.0	LOD	ug/L	UJ	ProfJudg
Sample ID:FWGLL1MW-088-0502-GW	D:FWGLL1MW-088-0502-GW Collected: 10/21/2014 3:00:00 Analysis Type: RES Dilution:								
Analvte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
2-BUTANONE	1.0	υ	4.1	MDL	1.0	LOD	ug/L	UJ	ProfJudg
ACETONE	2.0	υ	3.4	MDL	2.0	LOD	ug/L	UJ	ProfJudg
BROMOFORM	1.0	U	0.56	MDL	1.0	LOD	ug/L	UJ	ProfJudg
Sample ID:FWGLL2MW-271-0503-GW	Collec	ted: 10/22	/2014 4:3	0:00 A	nalysis T	ype: RES	;		Dilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
2-BUTANONE	1.0	υ	4.1	MDL	1.0	LOD	ug/L	UJ	ProfJudg
ACETONE	2.0	U	3.4	MDL	2.0	LOD	ug/L	UJ	ProfJudg
BROMOFORM	1.0	U	0.56	MDL	1.0	LOD	ug/L	UJ	ProfJudg
Sample ID:FWGLL3MW-246-504-GW	Collec	:ted: 10/22	/2014 11:	10:00 A	nalysis T	ype: RES	;		Dilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
2-BUTANONE	1.0	U	4.1	MDL	1.0	LOD	ug/L	UJ	ProfJudg
ACETONE	2.0	U	3.4	MDL	2.0	LOD	ug/L	UJ	ProfJudg
BROMOFORM	1.0	U	0.56	MDL	1.0	LOD	ug/L	UJ	ProfJudg

* denotes a non-reportable result

Project Name and Number: 30174.0016.001.10.1 - RVAAP 66

12/19/2014 1:02:24 PM

Lab Reporting Batch ID: 240-43449-1

Laboratory: TA CAN

EDD Filename: 240-43449-1 12_19_14A3

eQAPP Name: RVAAP 66-rev August 2014

Method Category: VOA									-
			10	Antiper	10				
Method: 8260B			Ma	arnx: I	AQ	ALL STREET			
Sample ID: FWGLL3MW-DUP1-506-GW	Collec	ted: 10/22/	2014 12:0	00:00 A	nalysis T	ype: RES	ì		Dilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
2-BUTANONE	1.0	U	4.1	MDL	1.0	LOD	ug/L	UJ	ProfJudg
ACETONE	2.0	U	3.4	MDL	2.0	LOD	ug/L	UJ	ProfJudg
BROMOFORM	1.0	U	0.56	MDL	1.0	LOD	ug/L	UJ	ProfJudg
Sample ID: FWGTEAM2TRIP	Collected: 10/21/2014 10:00:00 Analysis Type: RES Dilution: 1							Dilution: 1	
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
2-BUTANONE	1.0	U	4.1	MDL	1.0	LOD	ug/L	UJ	ProfJudg
ACETONE	4.1	J	3.4	MDL	2.0	LOD	ug/L	J	ProfJudg
BROMOFORM	1.0	U	0.56	MDL	1.0	LOD	ug/L	UJ	ProfJudg
Sample ID: FWGTEAM2TRIP	Collec	ted: 10/22/	2014 8:00	D:00 A	nalysis T	ype: RES			Dilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
2-BUTANONE	1.0	U	4.1	MDL	1.0	LOD	ug/L	UJ	ProfJudg
ACETONE	4.0	J	3.4	MDL	2.0	LOD	ug/L	J	ProfJudg
BROMOFORM	1.0	U	0.56	MDL	1.0	LOD	ug/L	UJ	ProfJudg

* denotes a non-reportable result

Project Name and Number: 30174.0016.001.10.1 - RVAAP 66

12/19/2014 1:02:24 PM

Lab Reporting Batch ID: 240-43449-1

EDD Filename: 240-43449-1 12_19_14A3

Laboratory: TA CAN

eQAPP Name: RVAAP 66-rev August 2014

Reason Code Legend

Reason Code	Description
Сь	Calibration Blank Contamination
Eb	Equipment Blank Contamination
EtoA	Extraction to Analysis Estimation
Lcs	Laboratory Control Spike Lower Estimation
Lcs	Laboratory Control Spike Upper Estimation
Ld	Laboratory Duplicate Precision
Mb	Method Blank Contamination
Ms	Matrix Spike Lower Estimation
Ms	Matrix Spike Precision
ProfJudg	Professional Judgment
RI	Reporting Limit Trace Value
StoE	Sampling to Extraction Estimation
Surr	Surrogate/Tracer Recovery Lower Estimation
Surr	Surrogate/Tracer Recovery Lower Rejection
Surr	Surrogate/Tracer Recovery Upper Estimation
Tb	Trip Blank Contamination

* denotes a non-reportable result Project Name and Number: 30174.0016.001.10.1 - RVAAP 66

12/19/2014 1:02:24 PM

Equipment Rinsate Blank Outlier Report

Lab Reporting Batch ID: 240-43449-1

Laboratory: TA CAN

EDD Filename: 240-43449-1

eQAPP Name: RVAAP 66-rev August 2014

Method: Matrix:	6010B AQ				
Equipment E Sample ID	Blank	Collected Date	Analyte	Result	Associated Samples
FWGEQUIPRINS (RES/TOT)	E1-507-GW	10/21/2014 4:30:00 PM	MANGANESE NICKEL POTASSIUM	0.56 ug/L 0.78 ug/L 86 ug/L	FWGLL1MW-088-0502-GF FWGLL1MW-088-0502-GW

The following samples and their listed target analytes were qualified due to contamination reported in this blank

Sample ID	Analyte	Reported Result	Modified Final Result
FWGLL1MW-088-0502-GF(RES/TOT)	NICKEL	1.4 ug/L	1.4U ug/L

QC Outlier Report: HoldingTimes

Lab Reporting Batch ID: 240-43449-1 EDD Filename: 240-43449-1

Laboratory: TA CAN eQAPP Name: RVAAP 66-rev August 2014

Method: 8081A					Preparation Method: 3520C
Matrix: AQ					
Sample ID	Туре	Actual	Criteria	Units	Flag
FWGEQUIPRINSE2-0508-GWRE (F FWGLL2MW-271-0503-GWRE (RE) FWGLL2MW-271-0503-GWREMS (FWGLL2MW-271-0503-GWREMSD FWGLL2MW-271-0503-GWREMSD FWGLL2MW-271-0503-GWREMSD FWGLL3MW-246-504-GWRE (RE) FWGLL3MW-DUP1-506-GWRE (RE FWGLL1MW-088-0502-GW (RES)	Sampling To Extraction Extraction To Analysis	11.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 54.00	7.00 7.00 7.00 7.00 7.00 7.00 7.00 7.00	DAYS DAYS DAYS DAYS DAYS DAYS DAYS DAYS	J (all detects) UJ (all non-detects) J(all detects)
Method: 8270C-SVOC4 Matrix: AQ					Preparation Method: 3520C
Sample ID	Туре	Actual	Criteria	Units	Flag
FWGEQUIPRINSE2-0508-GWRE (F FWGLL3MW-246-504-GWRE (RE) FWGLL3MW-DUP1-506-GWRE (RE	Sampling To Extraction	14.00 14.00 14.00	7.00 7.00 7.00	DAYS DAYS DAYS	J(all detects) UJ(all non-detects)

Lab Control Spike/Lab Control Spike Duplicate Outlier Report

Lab Reporting Batch ID: 240-43449-1

EDD Filename: 240-43449-1

Laboratory: TA CAN

<i>Method:</i> 8081A <i>Matrix:</i> AQ							
QC Sample ID (Associated Samples)	Compound	LCS %R	LCSD %R	%R Limits	RPD (Limits)	Affected Compounds	Flag
LCS 240-153099/17-A (FWGEQUIPRINSE1-507-GW FWGLL1MW-088-0502-GW)	TOXAPHENE	138	-	70.00-130.00	-	TOXAPHENE	J (all detects)
LCS 240-153099/16-A (FWGEQUIPRINSE1-507-GW FWGLL1MW-088-0502-GW)	ENDOSULFAN I	49	-	50.00-110.00	-	ENDOSULFAN I	J(all detects) UJ(all non-detects)
Method: 8270C-SVOC	4						
Matrix: AQ							
QC Sample ID (Associated Samples)	Compound	LCS %R	LCSD %R	%R Limits	RPD (Limits)	Affected Compounds	Flag
LCS 240-153104/20-A (FWGEQUIPRINSE1-507-GW FWGLL1MW-088-0502-GW FWGLL2MW-271-0503-GW)	HEXACHLOROCYCLOPENTADIEN	3	-	10.00-115.00	-	HEXACHLOROCYCLOPENTADIE	J(all detects) UJ(all non-detects)
<i>Method:</i> 8081A <i>Matrix:</i> AQ							
QC Sample ID (Associated Samples)	Compound	LCS %R	LCSD %R	%R Limits	RPD (Limits)	Affected Compounds	Flag
LCS 240-154448/11-A (FWGEQUIPRINSE2-0508- GWRE)	4,4'-DDD 4,4'-DDT	157 150	-	25.00-150.00 45.00-140.00	-	4,4'-DDD 4,4'-DDT	J(all detects)
LCS 240-154929/17-A (FWGLL2MW-271-0503-GWRE FWGLL3MW-246-504-GWRE FWGLL3MW-DUP1-506- GWRE)	TOXAPHENE	147	-	70.00-130.00	-	TOXAPHENE	J(all detects)
Method: 8270C-SVOC	4						
Matrix: AQ							
QC Sample ID (Associated Samples)	Compound	LCS %R	LCSD %R	%R Limits	RPD (Limits)	Affected Compounds	Flag
LCS 240-154942/8-A (FWGEQUIPRINSE2-0508- GWRE FWGLL3MW-246-504-GWRE FWGLL3MW-DUP1-506- GWRE)	HEXACHLOROCYCLOPENTADIEN	5	-	10.00-115.00	-	HEXACHLOROCYCLOPENTADIE	J(all detects) UJ(all non-detects)

Lab Duplicate Outlier Report

Lab Reporting Batch ID: 240-43449-1

EDD Filename: 240-43449-1

Laboratory: TA CAN

e: 240-43449-1

Method: 6010B Matrix: AQ				
QC Sample ID (Associated Sample ID)	Analyte	Sample RPD	eQAPP RPD	Flag
FWGLL2MW-271-0503-GFDUP (TOT) (FWGEQUIPRINSE1-507-GW FWGEQUIPRINSE2-0508-GW FWGLL1MW-088-0502-GF FWGLL2MW-271-0503-GF FWGLL2MW-246-504-GF FWGLL3MW-246-504-GF	CHROMIUM	27	20.00	J (all detects) UJ (all non-detects)

Matrix Spike/Matrix Spike Duplicate Outlier Report

Lab Reporting Batch ID: 240-43449-1

EDD Filename: 240-43449-1

Laboratory: TA CAN

Method: 8270C-SVOC4 Matrix: AQ							
QC Sample ID (Associated Samples)	Compound	MS %R	MSD %R	%R Limits	RPD (Limits)	Affected Compounds	Flag
FWGLL2MW-271-0503- GWMSD (FWGLL2MW-271-0503-GW)	2,4-DINITROPHENOL 4,6-DINITRO-2-METHYLPHENOL BENZOIC ACID	- - -	- -	15.00-140.00 40.00-130.00 0.00-125.00	75 (30.00) 47 (30.00) 200 (30.00)	2,4-DINITROPHENOL 4,6-DINITRO-2-METHYLPHENOL BENZOIC ACID	J (all detects)
FWGLL2MW-271-0503-GWMS FWGLL2MW-271-0503- GWMSD (FWGLL2MW-271-0503-GW)	HEXACHLOROCYCLOPENTADIEN PENTACHLOROPHENOL	5	4 39	10.00-115.00 40.00-115.00	32 (30.00) 43 (30.00)	HEXACHLOROCYCLOPENTADIE PENTACHLOROPHENOL	J(all detects) UJ(all non-detects)

Method Blank Outlier Report

Lab Reporting Batch ID: 240-43449-1

Laboratory: TA CAN

EDD Filename: 240-43449-1

eQAPP Name: RVAAP 66-rev August 2014

Method: Matrix:	6020 AQ				
Method Blan Sample ID	nk	Analysis Date	Analyte	Result	Associated Samples
MB 240-153655/	1-A	10/29/2014 10:11:00 AM	CADMIUM	0.423 ug/L	FWGEQUIPRINSE1-507-GW FWGEQUIPRINSE2-0508-GW FWGLL1MW-088-0502-GF FWGLL2MW-271-0503-GF FWGLL3MW-246-504-GF FWGLL3MW-DUP1-506-GF

The following samples and their listed target analytes were qualified due to contamination reported in this blank

Sample ID	A	nalyte	Reported Result	Modified Final Result			
FWGLL2MW-271-0503-GF(RI	ES/TOT) CA	ADMIUM	UM		0.58U ug/L		
<i>Method:</i> 8081A <i>Matrix:</i> AQ	Method: 8081A Matrix: AQ						
Method Blank Sample ID	Analysis Date	Analyte		Result	Associated Samples		
MB 240-153099/15-A	11/3/2014 8:47:00 PM	1 ALPHA-BHC BETA-BHC DELTA-BHC gamma-BHC (Lindane)		0.0207 ug/L 0.0280 ug/L 0.0552 ug/L 0.0128 ug/L	FWGEQUIPRINSE1-507-GW FWGLL1MW-088-0502-GW		

The following samples and their listed target analytes were qualified due to contamination reported in this blank

Sample ID	Analyte	Reported Result	Modified Final Result
FWGLL1MW-088-0502-GW(RES)	ALPHA-BHC	0.028 ug/L	0.028U ug/L

Surrogate Outlier Report

Lab Reporting Batch ID: 240-43449-1

Laboratory: TA CAN

EDD Filename: 240-43449-1

<i>Method:</i> 8081 <i>A</i> <i>Matrix:</i> AQ					
Sample ID (Analysis Type)	Surrogate	Sample % Recovery	% Recovery Limits	Affected Compounds	Flag
FWGLL1MW-088-0 502-GW	TETRACHLORO-M-XYLENE	174	25.00-140.00	All Target Analytes	J(all detects)
<i>Method:</i> 82700 <i>Matrix:</i> AQ	C-SVOC4				
Sample ID (Analysis Type)	Surrogate	Sample % Recovery	% Recovery Limits	Affected Compounds	Flag
FWGEQUIPRINSE 1-507-GW	2,4,6-TRIBROMOPHENOL 2-FLUOROBIPHENYL 2-FLUOROPHENOL Nitrobenzene-d5 PHENOL-D5 Terphenyl-d14	0 0 0 0 0 0	40.00-125.00 50.00-110.00 20.00-110.00 40.00-110.00 10.00-115.00 50.00-135.00	All Target Analytes	J (all detects) R (all non-detects)
FWGLL1MW-088-0 502-GW	2,4,6-TRIBROMOPHENOL 2-FLUOROBIPHENYL 2-FLUOROPHENOL Nitrobenzene-d5 PHENOL-D5 Terphenyl-d14	0 0 0 0 0 0	40.00-125.00 50.00-110.00 20.00-110.00 40.00-110.00 10.00-115.00 50.00-135.00	All Target Analytes	J(all detects) R(all non-detects)
FWGLL2MW-271-0 503-GW	2,4,6-TRIBROMOPHENOL 2-FLUOROBIPHENYL 2-FLUOROPHENOL Nitrobenzene-d5 PHENOL-D5 Terphenyl-d14	0 0 0 0 0 0	40.00-125.00 50.00-110.00 20.00-110.00 40.00-110.00 10.00-115.00 50.00-135.00	All Target Analytes	J(all detects) R(all non-detects)

Trip Blank Outlier Report

Lab Reporting Batch ID: 240-43449-1

Laboratory: TA CAN

EDD Filename: 240-43449-1

eQAPP Name: RVAAP 66-rev August 2014

Method: Matrix:	8260B AQ				
Trip Blank Sample ID		Collected Date	Analyte	Result	Associated Samples
FWGTEAM2TRIP((RES)	10/21/2014 10:00:00 AM	ACETONE	4.1 ug/L	FWGEQUIPRINSE1-507-GW FWGLL1MW-088-0502-GW

The following samples and their listed target analytes were qualified due to contamination reported in this blank

Sample ID	Analyte	Reported Result	Modified Final Result
FWGEQUIPRINSE1-507-GW(RES)	ACETONE	3.5 ug/L	3.5U ug/L

APPENDIX C

INVESTIGATION-DERIVED WASTE CHARACTERIZATION AND DISPOSAL PLAN

John R. Kasich, Governor Mary Taylor, Lt. Governor Craig W. Butler, Director

December 3, 2014

Mr. Brett Merkel Re: Army National Guard Directorate ARNGD-ILE Clean Up 111 South George Mason Drive Arlington, VA 22203

US Army Ravenna Ammunition Plt RVAAP Assessment Remedial Response Portage 267000859

Subject: Ravenna Army Ammunition Plant Portage/Trumbull Counties, Approval Letter, Re. FWGWMP Draft Facility-Wide Groundwater Investigation Derived Waste Characterization and Disposal Plan, October 2014 Groundwater Sampling Event, Dated November 24, 2014, Ohio EPA ID # 267-000859-036

Dear Mr. Merkel:

The Ohio Environmental Protection Agency (Ohio EPA) has received and reviewed the, "Draft Investigation Derived Waste (IDW) Characterization and Disposal Plan, October 2014 Groundwater Sampling Event Report" in support of the Facility-Wide Groundwater Monitoring Program at the Ravenna Army Ammunition Plant, Ravenna, OH. This document was received at Ohio EPA, Northeast District Office (NEDO), Division of Environmental Response and Revitalization (DERR), on November 25, 2014, and is dated November 24, 2014. The document was prepared for the U.S. Army Corps of Engineers (USACE) – Louisville District, by Environmental Quality Management, Inc. (EQM), under contract no. W912QR-11-F-0266.

The IDW consists of purge water from the ground water sampling event and decontamination wastewater, which were placed in separate drums. Three wells were purged and sampled during this event, which generated a total volume of water estimated at 35 gallons stored in one drum. A second drum contained less than 1 gallon of decontamination water, of which the entire volume was used for laboratory analysis. Based on the analytical results, the remaining single drum of purge water can be classified as nonhazardous and be sent offsite for disposal at a permitted water treatment facility.

The Plan is hereby approved and Ohio EPA concurs the wastewater can be disposed of as nonhazardous waste and sent off-site for disposal at a permitted water treatment facility.

Northeast District Office • 2110 East Aurora Road • Twinsburg, OH 44087-1924 www.epa.ohio.gov • (330) 963-1200 • (330) 487-0769 (fax)

MR. BRETT MERKEL ARMY NATIONAL GUARD DIRECTORATE DECEMBER 3, 2014 PAGE 2

Pursuant to the CERCLA process, the property owner usually can provide the expected land uses to assist in ensuring that the investigation addresses all receptors for both current and future land uses. Be advised that due to land use uncertainty, Ohio EPA may require additional work in the future, to address data gaps. It is incumbent upon the Army to finalize land use at Camp Ravenna as soon as possible, otherwise additional work and schedule slippage may result.

If you have any questions, please call me at (330) 963-1292.

Sincerely,

Kunlab

Kevin M. Palombo Environmental Specialist Division of Environmental Response and Revitalization

KP/nvr

- cc: Katie Tait, OHARNG RTLS Kevin Sedlak, ARNG Gregory F. Moore, USACE Mark Nichter, USACE Rebecca Haney/Gail Harris, Vista Sciences Corp.
- ec: Nancy Zikmanis, Ohio EPA, NEDO DERR Justin Burke, Ohio EPA, CO, DERR Rod Beals, Ohio EPA, NEDO DERR

FINAL

FACILITY-WIDE GROUNDWATER MONITORING PROGRAM RVAAP-66 FACILITY-WIDE GROUNDWATER

INVESTIGATION-DERIVED WASTE CHARACTERIZATION AND DISPOSAL PLAN OCTOBER 2014 GROUNDWATER SAMPLING EVENT REPORT

FORMER RAVENNA ARMY AMMUNITION PLANT, PORTAGE AND TRUMBULL COUNTIES, OHIO

November 24, 2014

GSA Contract Number GS-10F-0293K Delivery Order W912QR-11-F-0266

Prepared for:

U.S. Army Corps of Engineers 600 Martin Luther King Jr. Place Louisville, Kentucky 40202

Prepared by:

Environmental Quality Management, Inc. 1800 Carillon Boulevard Cincinnati, Ohio 45240

TABLE OF CONTENTS

e of Contents	. i
nyms	ii
Introduction	.1
Operational History and Waste Generation	.2
Management of Environmental Media	.3
Discussion of Analytical Results	.4
Recommendations for Disposal	.5
5.1 Purge Water	.5
5.2 Decontamination Fluids	.5
5.3 Summary of Disposal Recommendations	.5
References	.7
	e of Contents

TABLES

• • • • • • • • • • • • •
6
6

APPENDICES

А	Investigation-Derived	Waste Analytical	Report
---	-----------------------	------------------	--------

i

ACRONYMS

AOC	area of concern
ARNG	Army National Guard
CFR	Code of Federal Regulations
EPA	Environmental Protection Agency
EQM	Environmental Quality Management, Inc.
°F	degrees Fahrenheit
FWG	Facility-Wide Groundwater
FWGWMP	Facility-Wide Groundwater Monitoring Program
FWGWMPP	Facility-Wide Groundwater Monitoring Program Plan
FWSAP	Facility-Wide Sampling and Analysis Plan
gal	gallon
IDW	investigation-derived waste
mg/L	milligram per liter
OHARNG	Ohio Army National Guard
RCRA	Resource Conservation and Recovery Act
RVAAP	Ravenna Army Ammunition Plant
SAIC	Science Applications International Corporation
SAP	Sampling and Analysis Plan
S.U.	standard unit
SVOC	semivolatile organic compound
TCLP	Toxicity Characteristic Leaching Procedure
USACE	United States Army Corps of Engineers
VOC	volatile organic compound

1.0 INTRODUCTION

Investigative activities were conducted during the Facility-Wide Groundwater Monitoring Program (FWGWMP) sampling event in October 2014 at the former Ravenna Army Ammunition Plant (RVAAP), Portage and Trumbull Counties, Ohio, resulting in the generation of investigation-derived wastes (IDW). The IDW consists of purge water and equipment decontamination wastewater. The IDW purge water was generated in the course of field activities during sampling of three wells. The IDW decontamination waters were generated from the cleaning and decontamination of nondedicated equipment used to sample the wells. The purpose of this report is to characterize and classify the IDW for proper disposal. The report includes:

- A summary of the IDW generated and its origin.
- A review of the analytical results used for waste characterization.
- Classification of the IDW per the *Facility Wide Sampling and Analysis Plan* (FWSAP).
- Recommendations for disposal.

This document follows guidance established by the United States Army Corps of Engineers (USACE), the Army National Guard (ARNG)/Ohio Army National Guard (OHARNG), and the Ohio Environmental Protection Agency (EPA) regarding IDW disposition at RVAAP.

2.0 OPERATIONAL HISTORY AND WASTE GENERATION

Information regarding the operational history and suspected contaminants for the Facility-Wide Groundwater Monitoring Program Plan (FWGWMPP) is presented in Section 1.2 of the *Final Part 1 - Sampling and Analysis Plan Addendum for the Facility-Wide Groundwater Monitoring Program Plan at the Ravenna Army Ammunition Plant, Ravenna, Ohio* (SAP Addendum; Portage, 2004). Section 4.6 of the FWGWMP SAP Addendum describes procedures used for sampling and managing IDW at the former RVAAP.

Water (purged groundwater and decontamination water) IDW was generated during the October 2014 sampling event (three wells). The purge water collected from the sampled areas of concern (AOCs) was stored in drums labeled for purge water disposal. Purge water was generated in accordance with the FWSAP, Section 5.4.4.2 (SAIC, 2011) under the micropurging criteria. Decontamination water was generated from the washing, rinsing, and decontamination procedures used for all non-dedicated sampling equipment. Initially, the decontamination water was stored in a drum separate from the purge water. During waste characterization sampling, all of the decontamination fluids in the drum were removed to fill sample bottles; consequently, no decontamination fluids remain on site. The decontamination procedures are described in Section 5.4.8 of the FWSAP.

The drum container label, type and size of the drum container used, estimated volume per drum, and the source of purge wastewater or decontamination fluid is presented in Table 2-1. Note that there were no residual decontamination fluids remaining after filling sample containers for laboratory analysis of the waste characterization parameters. This waste stream was ultimately disposed of by the laboratory.

Drum	Drum Type		Estimated	Location/
Label	& Size	Contents	Volume	Source
EQM 2014-9	55-gal Steel	Purge Water	~35 gallons	Three wells located outside the perimeter fence of the facility and downgradient of Load
				Lines 1, 2, and 3.

Table 2-1. IDW Inventory of Drums

3.0 MANAGEMENT OF ENVIRONMENTAL MEDIA

All environmental media were managed in a manner that minimized potential risk to human health and the environment. Based on past sampling and IDW reports for similar groundwater monitoring activities, investigation-derived waste was handled as nonhazardous material pending waste characterization and classification based on analytical results. The FWSAP and the FWGWMPP SAP Addendum describe approved procedures used for containerizing and handling IDW.

All purged groundwater IDW generated from each micropurging event was placed into a 55-gal drum as previously agreed upon by the Army, USACE, and Ohio EPA. The purge water was transferred daily from each well location after sampling via closed-top 5-gal buckets to the appropriately labeled 55-gal drum located and staged on secondary containment inside Building 1036.

4.0 DISCUSSION OF ANALYTICAL RESULTS

As described in Section 8.4 of the FWSAP (IDW Characterization and Classification for Disposal), all IDW were characterized for disposal by taking composite samples collected from each of the segregated waste streams. There were only two segregated waste streams during this sampling event that required characterization: one for the generated purge water and one for the decontamination wastewater. A composite sample was taken of each waste stream using a disposable bailer until a total of approximately 4 liters was withdrawn in equal amounts from all drums of that particular waste stream. Each waste stream composite sample was submitted to TestAmerica Laboratories in North Canton, Ohio, for full Toxicity Characteristic Leaching Procedure (TCLP) analysis in accordance with the FWSAP using the following methods:

- TCLP mercury by EPA Method SW-846 1311/7470A.
- TCLP metals (silver, arsenic, barium, cadmium, chromium, lead, and selenium) by EPA Method SW-846 1311/6010B.
- TCLP semivolatile organic compounds (SVOCs) by EPA Method SW-846 1311/8270C.
- TCLP volatile organic compounds (VOCs) by EPA Method SW-846 1311/8260B.
- TCLP pesticides by EPA Method SW-846 1311/8081A
- TCLP herbicides by EPA Method SW-846 1311/8151A
- Total cyanide by EPA Method SW-846 9012A
- Total sulfide by EPA Method SW-846 9034
- Flashpoint by EPA Method SW-846 1010
- pH by EPA Method SW-846 9040B

A trip blank was submitted with the samples and analyzed for VOCs. The IDW analytical results are presented in Appendix A.

5.0 RECOMMENDATIONS FOR DISPOSAL

Table 8-1 in the FWSAP presents the maximum concentrations of contaminants for the toxicity characteristic for hazardous wastes as per 40 CFR 261.24. Analytical results for the IDW generated during the October 2014 groundwater sampling event were compared against these criteria to determine whether the waste streams generated were potentially hazardous or non-hazardous. No volatile organic compounds were identified in the trip blank.

5.1 Purge Water

During micro-purging of the monitoring wells, liquid IDW was generated and sampled. The analytical results for the purged groundwater were compared to the regulatory levels from Table 8-1 in the FWSAP. The regulatory criteria (TCLP) for Resource Conservation and Recovery Act (RCRA) hazardous waste determinations were not exceeded. Table 5-1 presents the detected results compared to the regulatory characteristics for hazardous wastes as per 40 CFR 261.24.

The drum containing purged groundwater will be classified as non-hazardous and will be sent offsite for disposal to a permitted water treatment facility in accordance with Section 8.0 of the FWSAP.

5.2 Decontamination Fluids

A composite sample was collected of the decontamination fluids generated during cleaning of non-dedicated sampling equipment. The regulatory criteria (TCLP) for RCRA hazardous waste determinations were not exceeded. Table 5-1 presents the detected results compared to the regulatory characteristics for hazardous wastes as per 40 CFR 261.24.

As mentioned in Section 2.0, there were no residual decontamination fluids remaining after filling sample containers for laboratory analysis of the waste characterization parameters. This waste stream was ultimately disposed of as non-hazardous waste by the laboratory.

5.3 Summary of Disposal Recommendations

The drum will be classified as non-hazardous. The purge water drum will be sent offsite to a permitted water treatment facility for disposal. No decontamination fluids remain on site; this waste stream was disposed of by the laboratory as part of the analytical process. The results for both composite samples were below regulatory limits and therefore classified as non-hazardous waste. Table 5-2 presents a summary of the waste and the recommended disposal options. Upon review and acceptance of the IDW report,

Environmental Quality Management, Inc. (EQM) will proceed with the appropriate waste disposal.

Sample ID	Detected Contaminant	Detected Result, mg/L	Characteristic Levels for Determining Hazardous Waste ¹ , mg/L	Above Regulatory Yes/No
	Barium	0.020 JB	100	No
EWC IDW	Cadmium	0.00018 J	1.0	No
FWG-IDW- MWPURGEOCT2014	Chromium	0.0016 JB	5.0	No
WWI UNGEOC 12014	Flashpoint	>200°F	<140°F	No
	pH ²	7.23	<2 or >12.5	No
	Barium	0.0047 JB	100	No
	Cadmium	0.00018 J	1.0	No
EWC IDW	Chromium	0.0016 JB	5.0	No
MWDECONOCT2014	Mercury	0.11	0.20	No
	Flashpoint	>200°F	<140°F	No
	Cyanide, Total	0.0076 JB	See Notes	No
	pH^2	7.08	<2 or >12.5	No

Table 5-1. Detected Analytical Results When Compared to USEPA Regulatory
Characteristic Levels (40 CFR 261.20 - 24)

1 = USEPA Regulatory Characteristic Levels (40 CFR 261.20 through 24).

2 = pH measured in Standard Units (S.U.).

J = estimated result. Result is less than reporting limit.

B = blank contamination.

Г

Reactive Cyanide Note: Despite the presence of a low concentration of cyanide, the waste streams are deemed nonhazardous as they do not meet the hazardous waste criteria set forth in OAC 3725-51-23 (i.e., reacts violently with water or produces toxic gases, fumes, or vapors between the pH of 2 and 12.5).

Table 5-2	2. Summa	ry of Waste*, TCLl	P/Characteristic	Waste Criteria,
		and Disposal Recor	nmendations	
D				

Drum Container Label	Media	TCLP Criteria	Disposal Recommendation
EQM 2014-9 Purge Water	Water	Regulatory limits not exceeded.	Offsite disposal as non- hazardous waste.

* Note that there were no residual decontamination fluids remaining after filling sample containers for laboratory analysis of the waste characterization parameters.

6.0 **REFERENCES**

Science Applications International Corporation (SAIC). February 24, 2011. *Final Facility-Wide Sampling and Analysis Plan for Environmental Investigations, Ravenna Army Ammunition Plant, Ravenna, Ohio.*

Portage Environmental. 2004. RVAAP Facility Wide Groundwater Monitoring Program Plan.

APPENDIX A

INVESTIGATION-DERIVED WASTE ANALYTICAL REPORT

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc. TestAmerica Canton 4101 Shuffel Street NW North Canton, OH 44720 Tel: (330)497-9396

TestAmerica Job ID: 240-43456-1 Client Project/Site: RVAAP (OH) - IDW

For: Environmental Quality Mgt., Inc. 1800 Carillon Blvd Cincinnati, Ohio 45240

Attn: Mr. Erik Corbin

1 In

Authorized for release by: 11/4/2014 5:21:57 PM

Mark Loeb, Project Manager II (330)966-9387 mark.loeb@testamericainc.com

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

LINKS **Review your project** results through Total Access Have a Question? Ask-The Expert Visit us at: www.testamericainc.com

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Method Summary	7
Sample Summary	8
Detection Summary	9
Client Sample Results	10
Surrogate Summary	16
QC Sample Results	19
QC Association Summary	27
Lab Chronicle	31
Certification Summary	33
Chain of Custody	34

1

Qualifiers

Qualifiers	S	3
GC/MS VO	A	Δ
Qualifier	Qualifier Description	
U	Indicates the analyte was analyzed for but not detected.	5
GC/MS Ser	mi VOA	Ŭ
Qualifier	Qualifier Description	6
U	Indicates the analyte was analyzed for but not detected.	
GC Semi V	ΟΑ	
Qualifier	Qualifier Description	
U	Indicates the analyte was analyzed for but not detected.	8
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.	0
Х	Surrogate is outside control limits	9
Metals		
Qualifier	Qualifier Description	
U	Indicates the analyte was analyzed for but not detected.	
В	Compound was found in the blank and sample.	
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.	
General Ch	hemistry	
Qualifier	Qualifier Description	13
U	Indicates the analyte was analyzed for but not detected.	
В	Compound was found in the blank and sample.	
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.	

Glossary

Abbreviation	These commonly used abbreviations may or may not be present in this report.
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CNF	Contains no Free Liquid
DER	Duplicate error ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision level concentration
MDA	Minimum detectable activity
EDL	Estimated Detection Limit
MDC	Minimum detectable concentration
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
NC	Not Calculated
ND	Not detected at the reporting limit (or MDL or EDL if shown)
PQL	Practical Quantitation Limit
QC	Quality Control
RER	Relative error ratio
RL	Reporting Limit or Requested Limit (Radiochemistry)
RPD	Relative Percent Difference, a measure of the relative difference between two points
TEF	Toxicity Equivalent Factor (Dioxin)
TEQ	Toxicity Equivalent Quotient (Dioxin)

Job ID: 240-43456-1

Laboratory: TestAmerica Canton

Narrative

CASE NARRATIVE

Client: Environmental Quality Mgt., Inc.

Project: RVAAP (OH) - IDW

Report Number: 240-43456-1

With the exceptions noted as flags or footnotes, standard analytical protocols were followed in the analysis of the samples and no problems were encountered or anomalies observed. In addition all laboratory quality control samples were within established control limits, with any exceptions noted below. Each sample was analyzed to achieve the lowest possible reporting limit within the constraints of the method. In some cases, due to interference or analytes present at high concentrations, samples were diluted. For diluted samples, the reporting limits are adjusted relative to the dilution required.

TestAmerica Canton attests to the validity of the laboratory data generated by TestAmerica facilities reported herein. All analyses performed by TestAmerica facilities were done using established laboratory SOPs that incorporate QA/QC procedures described in the application methods. TestAmerica's operations groups have reviewed the data for compliance with the laboratory QA/QC plan, and data have been found to be compliant with laboratory protocols unless otherwise noted below.

The test results in this report meet all NELAP requirements for parameters for which accreditation is required or available. Any exceptions to NELAP requirements are noted in this report. Pursuant to NELAP, this report may not be reproduced, except in full, without the written approval of the laboratory.

Calculations are performed before rounding to avoid round-off errors in calculated results.

All holding times were met and proper preservation noted for the methods performed on these samples, unless otherwise detailed in the individual sections below.

All solid sample results are reported on an "as received" basis unless otherwise indicated by the presence of a % solids value in the method header.

This laboratory report is confidential and is intended for the sole use of TestAmerica and its client.

RECEIPT

The samples were received on 10/23/2014 10:07 AM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperatures of the 2 coolers at receipt time were 0.8° C and 1.2° C.

TCLP VOLATILE ORGANIC COMPOUNDS (GCMS)

Samples FWG-IDW-MWPURGEOCT2014 (240-43456-2) and FWG-IDW-MWDECONOCT2014 (240-43456-4) were analyzed for TCLP volatile organic compounds (GCMS) in accordance with EPA SW-846 Methods 1311/8260B. The samples were leached on 10/27/2014 and analyzed on 10/28/2014.

Sample FWG-IDW-MWDECONOCT2014 (240-43456-4)[2X] required dilution prior to analysis due to foaming at the time of purging during the original sample analysis: FWG-IDW-MWDECONOCT2014. Elevated reporting limits (RLs) are provided.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

VOLATILE ORGANIC COMPOUNDS (GCMS)

Samples FWG-IDW-MWTBOCT2014PURGE (240-43456-1) and FWG-IDW-MWTBOCT2014 (240-43456-3) were analyzed for volatile organic compounds (GCMS) in accordance with EPA SW-846 Method 8260B. The samples were analyzed on 10/30/2014.

No analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

2 3 4 5 6 7 8 9 10 11

Job ID: 240-43456-1 (Continued)

Laboratory: TestAmerica Canton (Continued)

TCLP SEMIVOLATILE ORGANIC COMPOUNDS (GCMS)

Samples FWG-IDW-MWPURGEOCT2014 (240-43456-2) and FWG-IDW-MWDECONOCT2014 (240-43456-4) were analyzed for TCLP semivolatile organic compounds (GCMS) in accordance with EPA SW-846 Methods 1311/8270C. The samples were leached on 10/27/2014, prepared on 10/28/2014 and analyzed on 10/30/2014 and 11/02/2014.

Surrogates are added during the extraction process prior to dilution. When the sample is diluted, surrogate recoveries are diluted out and no corrective action is required.

No analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

TCLP CHLORINATED PESTICIDES

Samples FWG-IDW-MWPURGEOCT2014 (240-43456-2) and FWG-IDW-MWDECONOCT2014 (240-43456-4) were analyzed for TCLP chlorinated pesticides in accordance with EPA SW-846 Methods 1311/8081A. The samples were leached on 10/27/2014, prepared on 10/28/2014 and analyzed on 11/02/2014.

DCB Decachlorobiphenyl failed the surrogate recovery criteria low for FWG-IDW-MWDECONOCT2014 (240-43456-4). Refer to the QC report for details.

2 surrogates are used for this analysis. The laboratory's SOP allows 1 of these surrogates to be outside acceptance criteria without performing re-extraction/re-analysis. The following sample contained an allowable number of surrogate compounds outside limits: FWG-IDW-MWDECONOCT2014. These results have been reported and qualified.

Due to a time change, the system reported an incorrect date for samples selected: FWG-IDW-MWDECONOCT2014.

The continuing calibration verification (CCV) associated with batch 154295 recovered above the upper control limit for Methoxychlor, and Heptachlor. The samples associated with this CCV were non-detects for the affected analytes; therefore, the data have been reported. The following samples are impacted: FWG-IDW-MWDECONOCT2014, and FWG-IDW-MWPURGEOCT2014.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

TCLP CHLORINATED HERBICIDES

Samples FWG-IDW-MWPURGEOCT2014 (240-43456-2) and FWG-IDW-MWDECONOCT2014 (240-43456-4) were analyzed for TCLP chlorinated herbicides in accordance with EPA SW-846 Methods 1311/8151A. The samples were leached on 10/27/2014, prepared on 10/28/2014 and analyzed on 10/29/2014.

Surrogates are added during the extraction process prior to dilution. When the sample dilution is 5X or greater, surrogate recoveries are diluted out and no corrective action is required.

No analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

TCLP METALS (ICP)

Samples FWG-IDW-MWPURGEOCT2014 (240-43456-2) and FWG-IDW-MWDECONOCT2014 (240-43456-4) were analyzed for TCLP metals (ICP) in accordance with EPA SW-846 Methods 1311/6010B. The samples were leached on 10/27/2014, prepared on 10/28/2014 and analyzed on 10/29/2014.

Arsenic, Chromium and Selenium were detected in method blank LB 240-153529/1-B at levels that were above the method detection limit but below the reporting limit. The values should be considered estimates, and have been flagged. If the associated sample reported a result above the MDL and/or RL, the result has been flagged. Refer to the QC report for details.

Barium was detected in method blanks MB 240-153672/2-A, and LB 240-153529/1-B at a level that was above the method detection limit but below the reporting limit. The value should be considered an estimate, and has been flagged. If the associated sample reported a result above the MDL and/or RL, the result has been flagged. Refer to the QC report for details.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

1 2 3 4 5 6 7 8 9 10 11 12

Job ID: 240-43456-1 (Continued)

Laboratory: TestAmerica Canton (Continued)

TCLP MERCURY

Samples FWG-IDW-MWPURGEOCT2014 (240-43456-2) and FWG-IDW-MWDECONOCT2014 (240-43456-4) were analyzed for TCLP mercury in accordance with EPA SW-846 Methods 1311/7470A. The samples were leached on 10/27/2014, prepared on 10/28/2014 and analyzed on 10/29/2014 and 10/30/2014.

Sample FWG-IDW-MWDECONOCT2014 (240-43456-4)[20X] required dilution prior to analysis. The reporting limits have been adjusted accordingly.

No analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

FLASHPOINT

Samples FWG-IDW-MWPURGEOCT2014 (240-43456-2) and FWG-IDW-MWDECONOCT2014 (240-43456-4) were analyzed for flashpoint in accordance with EPA SW-846 Method 1010. The samples were analyzed on 10/24/2014.

No analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

TOTAL CYANIDE

Samples FWG-IDW-MWPURGEOCT2014 (240-43456-2) and FWG-IDW-MWDECONOCT2014 (240-43456-4) were analyzed for total cyanide in accordance with EPA SW-846 Method 9012A. The samples were prepared and analyzed on 10/30/2014.

Cyanide, Total was detected in method blank MB 240-154071/1-A at a level that was above the method detection limit but below the reporting limit. The value should be considered an estimate, and has been flagged. If the associated sample reported a result above the MDL and/or RL, the result has been flagged. Refer to the QC report for details.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

SULFIDE

Samples FWG-IDW-MWPURGEOCT2014 (240-43456-2) and FWG-IDW-MWDECONOCT2014 (240-43456-4) were analyzed for sulfide in accordance with EPA SW-846 Method 9034. The samples were prepared and analyzed on 10/28/2014.

No analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

<u>PH</u>

Samples FWG-IDW-MWPURGEOCT2014 (240-43456-2) and FWG-IDW-MWDECONOCT2014 (240-43456-4) were analyzed for pH in accordance with EPA SW-846 Method 9040B. The samples were analyzed on 10/23/2014.

No analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Method Summary

Client: Environmental Quality Mgt., Inc. Project/Site: RVAAP (OH) - IDW

Method	Method Description	Protocol	Laboratory
8260B	Volatile Organic Compounds (GC/MS)	SW846	TAL CAN
8270C	Semivolatile Organic Compounds (GC/MS)	SW846	TAL CAN
8081A	Organochlorine Pesticides (GC)	SW846	TAL CAN
8151A	Herbicides (GC)	SW846	TAL CAN
6010B	Metals (ICP)	SW846	TAL CAN
7470A	Mercury (CVAA)	SW846	TAL CAN
1010	Ignitability, Pensky-Martens Closed-Cup Method	SW846	TAL CAN
9012A	Cyanide, Total and/or Amenable	SW846	TAL CAN
9034	Sulfide, Acid soluble and Insoluble (Titrimetric)	SW846	TAL CAN
9040B	рН	SW846	TAL CAN

Protocol References:

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL CAN = TestAmerica Canton, 4101 Shuffel Street NW, North Canton, OH 44720, TEL (330)497-9396

1

TestAmerica Canton

Sample Summary

Matrix

Water

Water

Water

Water

Client: Environmental Quality Mgt., Inc. Project/Site: RVAAP (OH) - IDW

Client Sample ID

FWG-IDW-MWTBOCT2014PURGE

FWG-IDW-MWPURGEOCT2014

FWG-IDW-MWDECONOCT2014

FWG-IDW-MWTBOCT2014

Lab Sample ID

240-43456-1

240-43456-2

240-43456-3

240-43456-4

TestAmerica Job ID: 240-43456-1

10/23/14 07:30 10/23/14 10:07

Received

10/23/14 10:07

10/23/14 10:07

10/23/14 10:07

Collected

10/23/14 08:00

10/23/14 07:30

10/23/14 08:15

2
3
4
5
6
8
9
13

TestAmerica Canton

Client Sample ID: FWG-IDW-MWTBOCT2014PURGE

No Detections.

Client Sample ID: FWG	B-IDW-MWPURGE	DCT2014				La	ab	Sample II): 240-43456-2
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Barium	0.020	JB	10	0.0010	mg/L	1	_	6010B	TCLP
Cadmium	0.00018	J	0.10	0.00014	mg/L	1		6010B	TCLP
Chromium	0.0016	JB	0.50	0.00055	mg/L	1		6010B	TCLP
Flashpoint	>200		1.00	1.00	Degrees F	1		1010	Total/NA
рН	7.23		0.100	0.100	SU	1		9040B	Total/NA

Client Sample ID: FWG-IDW-MWTBOCT2014

This Detection Summary does not include radiochemical test results.

No Detections.

Client Sample ID: FWG-IDW-MWDECONOCT2014

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D Method	Prep Type
Barium	0.0047	JB	10	0.0010	mg/L	1	6010B	TCLP
Cadmium	0.00018	J	0.10	0.00014	mg/L	1	6010B	TCLP
Chromium	0.0016	JB	0.50	0.00055	mg/L	1	6010B	TCLP
Mercury	0.11		0.040	0.0018	mg/L	20	7470A	TCLP
Flashpoint	>200		1.00	1.00	Degrees F	1	1010	Total/NA
Cyanide, Total	0.0076	JB	0.010	0.0020	mg/L	1	9012A	Total/NA
pН	7.08		0.100	0.100	SU	1	9040B	Total/NA

Lab Sample ID: 240-43456-1

Lab Sample ID: 240-43456-3

Lab Sample ID: 240-43456-4

TestAmerica Job ID: 240-43456-1

Client Sample ID: FWG-IDW-MWTBOCT2014PURGE

Date Collected: 10/23/14 07:30 Date Received: 10/23/14 10:07

Lab Sample ID: 240-43456-1 Matrix: Water

5

8 9

Method: 8260B - Volatile Orga	anic Compounds	(GC/MS)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethene	1.0	U	1.0	0.45	ug/L			10/30/14 22:26	1
1,2-Dichloroethane	1.0	U	1.0	0.20	ug/L			10/30/14 22:26	1
Benzene	1.0	U	1.0	0.24	ug/L			10/30/14 22:26	1
Carbon tetrachloride	1.0	U	1.0	0.17	ug/L			10/30/14 22:26	1
Chlorobenzene	1.0	U	1.0	0.19	ug/L			10/30/14 22:26	1
Chloroform	1.0	U	1.0	0.21	ug/L			10/30/14 22:26	1
2-Butanone (MEK)	10	U	10	4.1	ug/L			10/30/14 22:26	1
Tetrachloroethene	1.0	U	1.0	0.20	ug/L			10/30/14 22:26	1
Trichloroethene	1.0	U	1.0	0.15	ug/L			10/30/14 22:26	1
Vinyl chloride	1.0	U	1.0	0.29	ug/L			10/30/14 22:26	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	98		63 - 129					10/30/14 22:26	1
4-Bromofluorobenzene (Surr)	87		66 - 120					10/30/14 22:26	1
Toluene-d8 (Surr)	92		74 - 120					10/30/14 22:26	1
Dibromofluoromethane (Surr)	101		75 - 121					10/30/14 22:26	1

TestAmerica Job ID: 240-43456-1

Lab Sample ID: 240-43456-2 Matrix: Water

Dil Fac

Dil Fac

Dil Fac

Dil Fac

Dil Fac

Client Sample ID: FWG-IDV	V-MWPURGE	OCT2014	1				Lab Sam	ple ID: 240-
Date Collected: 10/23/14 08:00								Mati
Date Received: 10/23/14 10:07								
Method: 8260B - Volatile Orga	nic Compounds	(GC/MS) -	TCLP					
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed
1,1-Dichloroethene	0.025	U	0.025	0.0095	mg/L		· · · ·	10/28/14 20:21
1,2-Dichloroethane	0.025	U	0.025	0.011	mg/L			10/28/14 20:21
2-Butanone (MEK)	0.25	U	0.25	0.029	mg/L			10/28/14 20:21
Benzene	0.025	U	0.025	0.0065	mg/L			10/28/14 20:21
Carbon tetrachloride	0.025	U	0.025	0.0065	mg/L			10/28/14 20:21
Chlorobenzene	0.025	U	0.025	0.0075	mg/L			10/28/14 20:21
Chloroform	0.025	U	0.025	0.0080	mg/L			10/28/14 20:21
Tetrachloroethene	0.025	U	0.025	0.015	mg/L			10/28/14 20:21
Trichloroethene	0.025	U	0.025	0.0085	mg/L			10/28/14 20:21
Vinyl chloride	0.025	U	0.025	0.011	mg/L			10/28/14 20:21
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed
1,2-Dichloroethane-d4 (Surr)	97		80 - 121					10/28/14 20:21
4-Bromofluorobenzene (Surr)	80		70 - 124					10/28/14 20:21
Toluene-d8 (Surr)	92		80 - 120					10/28/14 20:21
Dibromofluoromethane (Surr)	89		80 - 128					10/28/14 20:21
Method: 8270C - Semivolatile (Organic Compou	nds (GC/I	(IS) - TCLP					
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed
1,4-Dichlorobenzene	0.0040	U	0.0040	0.00034	mg/L		10/28/14 07:53	10/30/14 21:38
2,4,5-Trichlorophenol	0.020	U	0.020	0.00030	mg/L		10/28/14 07:53	10/30/14 21:38
2,4,6-Trichlorophenol	0.020	U	0.020	0.00024	mg/L		10/28/14 07:53	10/30/14 21:38
2,4-Dinitrotoluene	0.020	U	0.020	0.00025	mg/L		10/28/14 07:53	10/30/14 21:38
Hexachlorobenzene	0.020	U	0.020	0.000085	mg/L		10/28/14 07:53	10/30/14 21:38
Hexachlorobutadiene	0.020	U	0.020	0.00027	mg/L		10/28/14 07:53	10/30/14 21:38
Hexachloroethane	0.020	U	0.020	0.00019	mg/L		10/28/14 07:53	10/30/14 21:38
3 & 4 Methylphenol	0.040	U	0.040	0.00080	mg/L		10/28/14 07:53	10/30/14 21:38
2-Methylphenol	0.0040	U	0.0040	0.00017	mg/L		10/28/14 07:53	10/30/14 21:38
Nitrobenzene	0.0040	U	0.0040	0.000040	mg/L		10/28/14 07:53	10/30/14 21:38
Pentachlorophenol	0.040	U	0.040	0.00027	mg/L		10/28/14 07:53	10/30/14 21:38
Pyridine	0.020	U	0.020	0.00035	mg/L		10/28/14 07:53	10/30/14 21:38
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed
2-Fluorobiphenyl (Surr)	64		30 _ 110				10/28/14 07:53	10/30/14 21:38
2-Fluorophenol (Surr)	49		20 _ 110				10/28/14 07:53	10/30/14 21:38
2,4,6-Tribromophenol (Surr)	66		23 _ 110				10/28/14 07:53	10/30/14 21:38
Nitrobenzene-d5 (Surr)	60		28 _ 110				10/28/14 07:53	10/30/14 21:38
Phenol-d5 (Surr)	47		21 _ 110				10/28/14 07:53	10/30/14 21:38
Terphenyl-d14 (Surr)	89		48 _ 110				10/28/14 07:53	10/30/14 21:38
Method: 8081A - Organochlori	ne Pesticides (G	C) - TCLP						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed
Chlordane (technical)	0.0050	U	0.0050	0.000033	mg/L		10/28/14 07:49	11/02/14 23:56
Endrin	0.00050	U	0.00050	0.000012	mg/L		10/28/14 07:49	11/02/14 23:56
Heptachlor	0.00050	U	0.00050	0.0000050	mg/L		10/28/14 07:49	11/02/14 23:56
Heptachlor epoxide	0.00050	U	0.00050	0.000014	mg/L		10/28/14 07:49	11/02/14 23:56
gamma-BHC (Lindane)	0.00050	U	0.00050	0.000012	mg/L		10/28/14 07:49	11/02/14 23:56
Methoxychlor	0.0010	U	0.0010	0.000012	mg/L		10/28/14 07:49	11/02/14 23:56
Toxaphene	0.020	U	0.020	0.00020	mg/L		10/28/14 07:49	11/02/14 23:56
								TestAmeric

America Canton

Client Sample ID: FWG-IDW-MWPURGEOCT2014 Date Collected: 10/23/14 08:00 Date Received: 10/23/14 10:07

Lab Sample ID: 240-43456-2 Matrix: Water

5

8 9

Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	82		40 _ 129				10/28/14 07:49	11/02/14 23:56	1
Tetrachloro-m-xylene	87		40 _ 129				10/28/14 07:49	11/02/14 23:56	1
DCB Decachlorobiphenyl	81		40 _ 152				10/28/14 07:49	11/02/14 23:56	1
DCB Decachlorobiphenyl	82		40 - 152				10/28/14 07:49	11/02/14 23:56	1
_ Method: 8151A - Herbicides (GC) - TCLP								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
2,4-D	0.0040	U	0.0040	0.00041	mg/L		10/28/14 07:50	10/29/14 18:31	1
2,4-D	0.0040	U	0.0040	0.00041	mg/L		10/28/14 07:50	10/29/14 18:31	1
Silvex (2,4,5-TP)	0.0010	U	0.0010	0.00020	mg/L		10/28/14 07:50	10/29/14 18:31	1
Silvex (2,4,5-TP)	0.0010	U	0.0010	0.00020	mg/L		10/28/14 07:50	10/29/14 18:31	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2,4-Dichlorophenylacetic acid	98		56 - 120				10/28/14 07:50	10/29/14 18:31	1
2,4-Dichlorophenylacetic acid	100		56 - 120				10/28/14 07:50	10/29/14 18:31	1
Method: 6010B - Metals (ICP) - T	CLP								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	0.50	U	0.50	0.0029	mg/L		10/28/14 11:00	10/29/14 15:00	1
Barium	0.020	JB	10	0.0010	mg/L		10/28/14 11:00	10/29/14 15:00	1
Cadmium	0.00018	J	0.10	0.00014	mg/L		10/28/14 11:00	10/29/14 15:00	1
Chromium	0.0016	JB	0.50	0.00055	mg/L		10/28/14 11:00	10/29/14 15:00	1
Lead	0.50	U	0.50	0.0019	mg/L		10/28/14 11:00	10/29/14 15:00	1
Selenium	0.25	U	0.25	0.0040	mg/L		10/28/14 11:00	10/29/14 15:00	1
Silver	0.50	U	0.50	0.00092	mg/L		10/28/14 11:00	10/29/14 15:00	1
_ Method: 7470A - Mercury (CVAA) - TCLP								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	0.0020	U	0.0020	0.000090	mg/L		10/28/14 15:55	10/29/14 15:32	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Flashpoint	>200		1.00	1.00	Degrees F			10/24/14 09:09	1
Cyanide, Total	0.010	U	0.010	0.0020	mg/L		10/30/14 09:58	10/30/14 12:13	1
Sulfide	3.0	U	3.0	0.94	mg/L		10/28/14 08:10	10/28/14 08:10	1

Client Sample ID: FWG-IDW-MWTBOCT2014

Date Collected: 10/23/14 07:30 Date Received: 10/23/14 10:07

Lab Sample ID: 240-43456-3 Matrix: Water

Method: 8260B - Volatile Orga	nic Compounds	(GC/MS)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethene	1.0	U	1.0	0.45	ug/L			10/30/14 22:49	1
1,2-Dichloroethane	1.0	U	1.0	0.20	ug/L			10/30/14 22:49	
Benzene	1.0	U	1.0	0.24	ug/L			10/30/14 22:49	1
Carbon tetrachloride	1.0	U	1.0	0.17	ug/L			10/30/14 22:49	
Chlorobenzene	1.0	U	1.0	0.19	ug/L			10/30/14 22:49	
Chloroform	1.0	U	1.0	0.21	ug/L			10/30/14 22:49	1
2-Butanone (MEK)	10	U	10	4.1	ug/L			10/30/14 22:49	1
Tetrachloroethene	1.0	U	1.0	0.20	ug/L			10/30/14 22:49	1
Trichloroethene	1.0	U	1.0	0.15	ug/L			10/30/14 22:49	1
Vinyl chloride	1.0	U	1.0	0.29	ug/L			10/30/14 22:49	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
1,2-Dichloroethane-d4 (Surr)	96		63 - 129					10/30/14 22:49	
4-Bromofluorobenzene (Surr)	88		66 - 120					10/30/14 22:49	1
Toluene-d8 (Surr)	92		74 - 120					10/30/14 22:49	
Dibromofluoromethane (Surr)	98		75 - 121					10/30/14 22:49	

13

TestAmerica Job ID: 240-43456-1

Lab Sample ID: 240-43456-4 Matrix: Water

Client Sample ID: FWG-IDW	-MWDECON	OCT2014					Lab Sam	ple ID: 240-
Date Collected: 10/23/14 08:15								Mat
Date Received: 10/23/14 10:07								
Mathad: 8260R Valatila Organi	Compounds							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed
1 1-Dichloroethene	0.050		0.050	0.019	ma/l			10/28/14 20:44
1 2-Dichloroethane	0.050	U	0.050	0.022	mg/L			10/28/14 20:44
2-Butanone (MEK)	0.50	U	0.50	0.057	mg/L			10/28/14 20:44
Benzene	0.050		0.050	0.007	mg/L			10/28/14 20:44
Carbon tetrachloride	0.050		0.050	0.013	mg/L			10/28/14 20:44
Chlorobenzene	0.050	U	0.050	0.015	mg/L			10/28/14 20:44
Chloroform	0.050	U U	0.050	0.016	mg/L			10/28/14 20:44
Tetrachloroethene	0.050	U U	0.050	0.029	mg/l			10/28/14 20:44
Trichloroethene	0.050		0.050	0.020	mg/L			10/28/14 20:44
Vinyl chloride	0.050		0.050	0.022	mg/L			10/28/14 20:44
	0.000	0	0.000	0.0LL				10/20/11/20:11
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed
1,2-Dichloroethane-d4 (Surr)	100		80 - 121					10/28/14 20:44
4-Bromofluorobenzene (Surr)	80		70 - 124					10/28/14 20:44
Toluene-d8 (Surr)	88		80 - 120					10/28/14 20:44
Dibromofluoromethane (Surr)	94		80 - 128					10/28/14 20:44
Method: 8270C - Semivolatile Or	ganic Compou	nds (GC/M	S) - TCLP		120100	20		
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed
1,4-Dichlorobenzene	0.0040	U	0.0040	0.00034	mg/L		10/28/14 07:53	11/02/14 01:10
2,4,5-Trichlorophenol	0.020	U	0.020	0.00030	mg/L		10/28/14 07:53	11/02/14 01:10
2,4,6-Trichlorophenol	0.020	U	0.020	0.00024	mg/L		10/28/14 07:53	11/02/14 01:10
2,4-Dinitrotoluene	0.020	U	0.020	0.00025	mg/L		10/28/14 07:53	11/02/14 01:10
Hexachlorobenzene	0.020	U	0.020	0.000085	mg/L		10/28/14 07:53	11/02/14 01:10
Hexachlorobutadiene	0.020	U	0.020	0.00027	mg/L		10/28/14 07:53	11/02/14 01:10
Hexachloroethane	0.020	U	0.020	0.00019	mg/L		10/28/14 07:53	11/02/14 01:10
3 & 4 Methylphenol	0.040	U	0.040	0.00080	mg/L		10/28/14 07:53	11/02/14 01:10
2-Methylphenol	0.0040	U	0.0040	0.00017	mg/L		10/28/14 07:53	11/02/14 01:10
Nitrobenzene	0.0040	U	0.0040	0.000040	mg/L		10/28/14 07:53	11/02/14 01:10
Pentachlorophenol	0.040	U	0.040	0.00027	mg/L		10/28/14 07:53	11/02/14 01:10
Pyridine	0.020	U	0.020	0.00035	mg/L		10/28/14 07:53	11/02/14 01:10
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed
2-Fluorobiphenvl (Surr)	60		30 - 110				10/28/14 07:53	11/02/14 01:10
2-Fluorophenol (Surr)	55		20 - 110				10/28/14 07:53	11/02/14 01:10
2.4.6-Tribromophenol (Surr)	86		23 - 110				10/28/14 07:53	11/02/14 01:10
Nitrobenzene-d5 (Surr)	54		28 - 110				10/28/14 07:53	11/02/14 01:10
Phenol-d5 (Surr)	52		21 - 110				10/28/14 07:53	11/02/14 01:10
Terphenvl-d14 (Surr)	85		48 _ 110				10/28/14 07:53	11/02/14 01:10
Method: 8081A - Organochlorine	Pesticides (G	C) - TCLP						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed
Chlordane (technical)	0.0050	U	0.0050	0.000033	mg/L		10/28/14 07:49	11/02/14 00:40
Endrin	0.00050	U	0.00050	0.000012	mg/L		10/28/14 07:49	11/02/14 00:40
Heptachlor	0.00050	U	0.00050	0.0000050	mg/L		10/28/14 07:49	11/02/14 00:40
Heptachlor epoxide	0.00050	U	0.00050	0.000014	mg/L		10/28/14 07:49	11/02/14 00:40
gamma-BHC (Lindane)	0.00050	U	0.00050	0.000012	mg/L		10/28/14 07:49	11/02/14 00:40
Methoxychlor	0.0010	U	0.0010	0.000012	mg/L		10/28/14 07:49	11/02/14 00:40
Tayanhana	0.020		0.020	0.00020	ma/l		10/28/14 07:49	11/02/14 00.40

TestAmerica Canton

Dil Fac

Dil Fac

Dil Fac

Dil Fac

Dil Fac

Client Sample ID: FWG-IDW-MWDECONOCT2014 Date Collected: 10/23/14 08:15 Date Received: 10/23/14 10:07

Lab	Sample	ID:	240-43456-4
			Matrix: Water

5

8 9

Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	73		40 _ 129				10/28/14 07:49	11/02/14 00:40	1
Tetrachloro-m-xylene	72		40 _ 129				10/28/14 07:49	11/02/14 00:40	1
DCB Decachlorobiphenyl	10	Х	40 _ 152				10/28/14 07:49	11/02/14 00:40	1
DCB Decachlorobiphenyl	10	X	40 - 152				10/28/14 07:49	11/02/14 00:40	1
Method: 8151A - Herbicides (GC) - TO	CLP								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
2,4-D	0.0040	U	0.0040	0.00041	mg/L		10/28/14 07:50	10/29/14 18:54	1
2,4-D	0.0040	U	0.0040	0.00041	mg/L		10/28/14 07:50	10/29/14 18:54	1
Silvex (2,4,5-TP)	0.0010	U	0.0010	0.00020	mg/L		10/28/14 07:50	10/29/14 18:54	1
Silvex (2,4,5-TP)	0.0010	U	0.0010	0.00020	mg/L		10/28/14 07:50	10/29/14 18:54	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2,4-Dichlorophenylacetic acid	82		56 - 120				10/28/14 07:50	10/29/14 18:54	1
2,4-Dichlorophenylacetic acid	219	X	56 - 120				10/28/14 07:50	10/29/14 18:54	1
Method: 6010B - Metals (ICP) - TCLP									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	0.50	U	0.50	0.0029	mg/L		10/28/14 11:00	10/29/14 15:04	1
Barium	0.0047	JB	10	0.0010	mg/L		10/28/14 11:00	10/29/14 15:04	1
Cadmium	0.00018	J	0.10	0.00014	mg/L		10/28/14 11:00	10/29/14 15:04	1
Chromium	0.0016	JB	0.50	0.00055	mg/L		10/28/14 11:00	10/29/14 15:04	1
Lead	0.50	U	0.50	0.0019	mg/L		10/28/14 11:00	10/29/14 15:04	1
Selenium	0.25	U	0.25	0.0040	mg/L		10/28/14 11:00	10/29/14 15:04	1
Silver	0.50	U	0.50	0.00092	mg/L		10/28/14 11:00	10/29/14 15:04	1
Method: 7470A - Mercury (CVAA) - To	CLP								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	0.11		0.040	0.0018	mg/L		10/28/14 15:55	10/30/14 13:09	20
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Flashpoint	>200		1.00	1.00	Degrees F			10/24/14 08:43	1
Cyanide, Total	0.0076	JB	0.010	0.0020	mg/L		10/30/14 09:58	10/30/14 12:13	1
Sulfide	3.0	U	3.0	0.94	mg/L		10/28/14 08:10	10/28/14 08:10	1
pН	7.08		0.100	0.100	SU			10/23/14 15:41	1

BFB

(66-120)

87

88

95

89

TOL

(74-120)

92

92

87

93

12DCE

(63-129)

98

96

89

98

12DCE = 1,2-Dichloroethane-d4 (Surr)

DBFM = Dibromofluoromethane (Surr)

BFB = 4-Bromofluorobenzene (Surr)

Matrix: Water

Lab Sample ID

240-43456-1

240-43456-3

LCS 240-154123/4

MB 240-154123/5

Surrogate Legend

TOL = Toluene-d8 (Surr)

Percent Surrogate Recovery (Acceptance Limits)

DBFM

(75-121)

101

98

90

98

Prep Type: Total/NA

2 3 4 5 6 7 8 9

Method: 8260B - Volatile Organic Compounds (GC/MS)

Method: 8260B - Volatile Organic Compounds (GC/MS)

Client Sample ID

Lab Control Sample

Method Blank

FWG-IDW-MWTBOCT2014PURGE

FWG-IDW-MWTBOCT2014

Matrix: Water						Prep Type: Total/NA
-				Percent Su	rogate Recovery	(Acceptance Limits)
		12DCE	BFB	TOL	DBFM	
Lab Sample ID	Client Sample ID	(80-121)	(70-124)	(80-120)	(80-128)	
LCS 240-153741/8	Lab Control Sample	99	87	95	91	
Surrogate Legend						
12DCE = 1,2-Dichloro	ethane-d4 (Surr)					
BFB = 4-Bromofluorob	penzene (Surr)					
TOL = Toluene-d8 (Su	ווג)					
DBFM = Dibromofluor	omethane (Surr)					

Method: 8260B - Volatile Organic Compounds (GC/MS) Matrix: Water

				Percent Su	rrogate Rec
		12DCE	BFB	TOL	DBFM
Lab Sample ID	Client Sample ID	(80-121)	(70-124)	(80-120)	(80-128)
240-43456-2	FWG-IDW-MWPURGEOCT2014	97	80	92	89
240-43456-4	FWG-IDW-MWDECONOCT2014	100	80	88	94
LB 240-153635/1-A MB	Method Blank	95	80	87	93
Surrogate Legend					
12DCE = 1,2-Dichloroeth	ane-d4 (Surr)				
BFB = 4-Bromofluoroben	zene (Surr)				
TOL = Toluene-d8 (Surr)					
DBFM = Dibromofluorom	ethane (Surr)				

Method: 8270C - Semivolatile Organic Compounds (GC/MS)

Matrix: Water								Prep Type: Total/NA
			Percent Surrogate Recovery (Acceptance Limits)					
		FBP	2FP	TBP	NBZ	PHL	TPH	
Lab Sample ID	Client Sample ID	(30-110)	(20-110)	(23-110)	(28-110)	(21-110)	(48-110)	
LCS 240-153590/17-A	Lab Control Sample	74	68	84	73	62	84	
MB 240-153590/16-A	Method Blank	54	54	57	51	51	72	
Surrogate Legend								

Prep Type: TCLP

1

5

9

11 12 13

Client: Environmental Quality Mgt., Inc. Project/Site: RVAAP (OH) - IDW

FBP = 2-Fluorobiphenyl (Surr) 2FP = 2-Fluorophenol (Surr) TBP = 2,4,6-Tribromophenol (Surr) NBZ = Nitrobenzene-d5 (Surr) PHL = Phenol-d5 (Surr) TPH = Terphenyl-d14 (Surr)

Method: 8270C - Semivolatile Organic Compounds (GC/MS) Matrix: Water

			Percent Surrogate Recovery (Acceptance Lin					
		FBP	2FP	TBP	NBZ	PHL	TPH	
Lab Sample ID	Client Sample ID	(30-110)	(20-110)	(23-110)	(28-110)	(21-110)	(48-110)	
240-43456-2	FWG-IDW-MWPURGEOCT2014	64	49	66	60	47	89	
240-43456-4	FWG-IDW-MWDECONOCT2014	60	55	86	54	52	85	
Surrogate Legend								
FBP = 2-Fluorobiphe	nyl (Surr)							
2FP = 2-Fluoropheno	ol (Surr)							
TBP = 2,4,6-Tribrom	ophenol (Surr)							
NBZ = Nitrobenzene	d5 (Surr)							
PHL = Phenol-d5 (Su	ırr)							
TPH = Terphenyl-d14	4 (Surr)							

Method: 8081A - Organochlorine Pesticides (GC)

Matrix: Water

		Percent Surrogate Recovery (Acceptance Limits)					
		TCX1	TCX2	DCB1	DCB2		
Lab Sample ID	Client Sample ID	(40-129)	(40-129)	(40-152)	(40-152)		
LCS 240-153587/5-A	Lab Control Sample	83	78	90	93		
MB 240-153587/4-A	Method Blank	76	79	76	75		
Surrogate Legend							
TCX = Tetrachloro-m-xy	lene						
DCB = DCB Decachloro	biphenyl						

Method: 8081A - Organochlorine Pesticides (GC)

Matrix: Water

				Percent Sur	rogate Rec
		TCX1	TCX2	DCB1	DCB2
Lab Sample ID	Client Sample ID	(40-129)	(40-129)	(40-152)	(40-152)
240-43456-2	FWG-IDW-MWPURGEOCT2014	82	87	81	82
240-43456-2 MS	FWG-IDW-MWPURGEOCT2014	72	71	47	45
240-43456-4	FWG-IDW-MWDECONOCT2014	73	72	10 X	10 X

Surrogate Legend

TCX = Tetrachloro-m-xylene

DCB = DCB Decachlorobiphenyl

Prep Type: TCLP

Prep Type: Total/NA

Prep Type: TCLP

DCPA2

(56-120)

89

99

DCPA1

(56-120)

93

108

Method: 8151A - Herbicides (GC)

DCPA = 2,4-Dichlorophenylacetic acid

Method: 8151A - Herbicides (GC)

Client Sample ID

Method Blank

Lab Control Sample

Matrix: Water

Lab Sample ID

Matrix: Water

LCS 240-153588/5-A

MB 240-153588/4-A

Surrogate Legend

Percent Surrogate Recovery (Acceptance Limits)

Prep Type: Total/NA 5

9

Pre	р Т	yp	e:	Т	CLI	P

				Percent Surrogate Recovery (Acceptance Limits)	40
		DCPA1	DCPA2		
Lab Sample ID	Client Sample ID	(56-120)	(56-120)		
240-43456-2	FWG-IDW-MWPURGEOCT2014	98	100		
240-43456-4	FWG-IDW-MWDECONOCT2014	82	219 X		
240-43456-4 MS	FWG-IDW-MWDECONOCT2014	84	204 X		
Surrogata Lagand					
	honulogotic gold				13

DCPA = 2,4-Dichlorophenylacetic acid

TestAmerica Canton

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Method: 8260B - Volatile Organic Compounds (GC/MS)

Lab Sample ID: LCS 240-153741/8 Matrix: Water Applycic Potob: 152741

Spike	LCS	LCS				%Rec.	
Added	Result	Qualifier	Unit	D	%Rec	Limits	
1.00	0.827	(a)	mg/L		83	71 - 133	
1.00	0.938		mg/L		94	80 - 120	
1.00	0.991		mg/L		99	80 - 120	
2.00	2.09		mg/L		105	49 - 120	
1.00	0.668		mg/L		67	54 - 122	
1.00	0.925		mg/L		92	80 - 120	
1.00	0.969		mg/L		97	80 - 123	
1.00	0.814		mg/L		81	79 ₋ 134	
1.00	0.938		mg/L		94	78 ₋ 130	
1.00	0.947		mg/L		95	56 ₋ 120	
	Spike Added 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	Spike LCS Added Result 1.00 0.827 1.00 0.938 1.00 0.991 2.00 2.09 1.00 0.668 1.00 0.925 1.00 0.969 1.00 0.814 1.00 0.938	Spike LCS LCS Added Result Qualifier 1.00 0.827 100 1.00 0.938 100 2.00 2.09 100 1.00 0.668 100 1.00 0.925 100 1.00 0.969 1.00 1.00 0.938 1.00 1.00 0.938 1.00	Spike LCS LCS Added Result Qualifier Unit 1.00 0.827 mg/L 1.00 0.938 mg/L 1.00 0.991 mg/L 1.00 0.991 mg/L 1.00 0.991 mg/L 1.00 0.991 mg/L 1.00 0.668 mg/L 1.00 0.925 mg/L 1.00 0.969 mg/L 1.00 0.814 mg/L 1.00 0.938 mg/L 1.00 0.938 mg/L	Spike LCS LCS Added Result Qualifier Unit D 1.00 0.827 mg/L mg/L 1.00 0.938 mg/L D 1.00 0.991 mg/L D 2.00 2.09 mg/L D 1.00 0.668 mg/L D 1.00 0.925 mg/L D 1.00 0.969 mg/L D 1.00 0.938 mg/L D 1.00 0.938 mg/L D 1.00 0.938 mg/L D 1.00 0.938 mg/L D 1.00 0.947 mg/L D	Spike LCS LCS Added Result Qualifier Unit D %Rec 1.00 0.827 mg/L 83 1.00 0.938 mg/L 94 1.00 0.991 mg/L 99 2.00 2.09 mg/L 105 1.00 0.668 mg/L 67 1.00 0.925 mg/L 92 1.00 0.969 mg/L 97 1.00 0.814 mg/L 81 1.00 0.938 mg/L 94	Spike LCS LCS %Rec. Added Result Qualifier Unit D %Rec Limits 1.00 0.827 mg/L B %Rec Limits 1.00 0.827 mg/L 94 80 - 120 1.00 0.991 mg/L 99 80 - 120 1.00 0.991 mg/L 105 49 - 120 1.00 0.668 mg/L 67 54 - 122 1.00 0.925 mg/L 97 80 - 120 1.00 0.969 mg/L 97 80 - 123 1.00 0.969 mg/L 97 80 - 123 1.00 0.938 mg/L 94 78 - 130 1.00 0.938 mg/L 94 78 - 130 1.00 0.947 mg/L 95 56 - 120

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	99		80 - 121
4-Bromofluorobenzene (Surr)	87		70 - 124
Toluene-d8 (Surr)	95		80 - 120
Dibromofluoromethane (Surr)	91		80 - 128

Lab Sample ID: MB 240-154123/5 Matrix: Water Analysis Batch: 154123

MB MB Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac 1,1-Dichloroethene 1.0 U 1.0 0.45 ug/L 10/30/14 22:03 1 1,2-Dichloroethane 1.0 U 1.0 0.20 ug/L 10/30/14 22:03 1 1.0 U 1.0 10/30/14 22:03 Benzene 0.24 ug/L 1 10 U 2-Butanone (MEK) 10 4.1 ug/L 10/30/14 22:03 1 Carbon tetrachloride 1.0 U 1.0 0.17 ug/L 10/30/14 22:03 1 Chlorobenzene 1.0 U 1.0 10/30/14 22:03 0.19 ug/L 1 Chloroform 1.0 U 1.0 0.21 ug/L 10/30/14 22:03 1 Tetrachloroethene 1.0 U 1.0 0.20 ug/L 10/30/14 22:03 1 Trichloroethene 1.0 U 1.0 0.15 ug/L 10/30/14 22:03 1 1.0 10/30/14 22:03 Vinyl chloride 1.0 U 0.29 ug/L 1

	MD	MD					
Surrogate	%Recovery	Qualifier	Limits	Pi	repared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	98		63 _ 129			10/30/14 22:03	1
4-Bromofluorobenzene (Surr)	89		66 _ 120			10/30/14 22:03	1
Toluene-d8 (Surr)	93		74 _ 120			10/30/14 22:03	1
Dibromofluoromethane (Surr)	98		75 - 121			10/30/14 22:03	1

Lab Sample ID: LCS 240-154123/4 Matrix: Water

Analysis Batch: 154123 LCS LCS Spike %Rec. Analyte Added **Result Qualifier** Unit D %Rec Limits 1,1-Dichloroethene 10.0 9.68 ug/L 97 78 - 131 1,2-Dichloroethane 10.0 11.6 ug/L 116 71 - 127 10.0 10.7 80 - 120 Benzene 107

TestAmerica Canton

Prep Type: Total/NA

Client Sample ID: Lab Control Sample

ug/L	

Client Sample ID: Method Blank Prep Type: Total/NA

Prep Type: Total/NA

Client Sample ID: Lab Control Sample

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 240-154123/4 Matrix: Water

Analysis Batch: 154123

Analysis Daton. 104120								
	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
2-Butanone (MEK)	20.0	24.1		ug/L		121	60 - 126	
Carbon tetrachloride	10.0	9.60		ug/L		96	66 _ 128	
Chlorobenzene	10.0	10.5		ug/L		105	80 _ 120	
Chloroform	10.0	10.7		ug/L		107	79 ₋ 120	
Tetrachloroethene	10.0	8.84		ug/L		88	79 ₋ 120	
Trichloroethene	10.0	10.1		ug/L		101	76 _ 120	
Vinyl chloride	10.0	8.83		ug/L		88	53 - 127	

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	89		63 _ 129
4-Bromofluorobenzene (Surr)	95		66 _ 120
Toluene-d8 (Surr)	87		74 _ 120
Dibromofluoromethane (Surr)	90		75 - 121

Lab Sample ID: LB 240-153635/1-A MB Matrix: Water Analysis Batch: 153741

MB MB Analyte Result Qualifier RL MDL Unit D Prepared Dil Fac Analyzed 0.025 U 1,1-Dichloroethene 0.025 0.0095 mg/L 10/28/14 17:01 1 1,2-Dichloroethane 0.025 U 0.025 10/28/14 17:01 0.011 mg/L 1 Benzene 0.025 U 0.025 0.0065 mg/L 10/28/14 17:01 1 2-Butanone (MEK) 0.25 U 0.25 0.029 mg/L 10/28/14 17:01 1 Carbon tetrachloride 0.025 U 0.025 0.0065 mg/L 10/28/14 17:01 1 Chlorobenzene 0.025 U 0.025 0.0075 mg/L 10/28/14 17:01 1 0.0080 mg/L Chloroform 0.025 U 0.025 10/28/14 17:01 1 Tetrachloroethene 0.025 U 0.025 0.015 mg/L 10/28/14 17:01 1 Trichloroethene 0.025 U 0.025 0.0085 mg/L 10/28/14 17:01 1 0.025 Vinyl chloride 0.025 U 0.011 mg/L 10/28/14 17:01 1

	MB	MB					
Surrogate	%Recovery	Qualifier	Limits	Pr	repared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	95		80 - 121			10/28/14 17:01	1
4-Bromofluorobenzene (Surr)	80		70 - 124			10/28/14 17:01	1
Toluene-d8 (Surr)	87		80 - 120			10/28/14 17:01	1
Dibromofluoromethane (Surr)	93		80 - 128			10/28/14 17:01	1

Method: 8270C - Semivolatile Organic Compounds (GC/MS)

Lab Sample ID: MB 240-153590/16-A Matrix: Water Analysis Batch: 154049							Client Sa	mple ID: Metho Prep Type: T Prep Batch:	d Blank otal/NA 153590
	MB	МВ							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,4-Dichlorobenzene	0.0040	U	0.0040	0.00034	mg/L		10/28/14 07:53	10/30/14 10:57	1
2,4,5-Trichlorophenol	0.020	U	0.020	0.00030	mg/L		10/28/14 07:53	10/30/14 10:57	1
2,4,6-Trichlorophenol	0.020	U	0.020	0.00024	mg/L		10/28/14 07:53	10/30/14 10:57	1
2,4-Dinitrotoluene	0.020	U	0.020	0.00025	mg/L		10/28/14 07:53	10/30/14 10:57	1

Client Sample ID: Method Blank Prep Type: TCLP

1/

13

TestAmerica Canton

RL

0.020

0.020

0.020

0.040

0.0040

0.0040

0.040

0.020

Limits

30 - 110

20 - 110

23 - 110

28 - 110

21 - 110

48 _ 110

MDL Unit

0.000085 mg/L

0.00027 mg/L

0.00019 mg/L

0.00080 mg/L

0.00017 mg/L

0.000040 mg/L

0.00027 mg/L

0.00035 mg/L

D

Prepared

10/28/14 07:53

10/28/14 07:53

10/28/14 07:53

10/28/14 07:53

10/28/14 07:53

10/28/14 07:53

10/28/14 07:53

10/28/14 07:53

Prepared

10/28/14 07:53

10/28/14 07:53

10/28/14 07:53

10/28/14 07:53

10/28/14 07:53

10/28/14 07:53

Lab Sample ID: MB 240-153590/16-A

Matrix: Water

Hexachlorobenzene

Hexachlorobutadiene

Hexachloroethane

3 & 4 Methylphenol

Pentachlorophenol

2-Fluorobiphenyl (Surr)

2-Fluorophenol (Surr)

Nitrobenzene-d5 (Surr)

Terphenyl-d14 (Surr)

Phenol-d5 (Surr)

2,4,6-Tribromophenol (Surr)

2-Methylphenol

Nitrobenzene

Pyridine

Surrogate

Analyte

Analysis Batch: 154049

Method: 8270C - Semivolatile Organic Compounds (GC/MS) (Continued)

MB MB Result Qualifier

0.020 U

0.020 U

0.020 U

0.040 U

0.0040 U

0.0040 U

0.040 U

0.020 U

54

54

57

51

51

72

%Recovery

MB MB

Qualifier

Analyzed

10/30/14 10:57

10/30/14 10:57

10/30/14 10:57

10/30/14 10:57

10/30/14 10:57

10/30/14 10:57

10/30/14 10:57

10/30/14 10:57

Client Sample ID: Lab Control Sample

Client Sample ID: Method Blank Prep Type: Total/NA Prep Batch: 153590 Dil Fac 1 1 1

10

1

1

1

1

10/30/14 10:57	1
Analyzed	Dil Fac
10/30/14 10:57	1
10/30/14 10:57	1
10/30/14 10:57	1
10/30/14 10:57	1
10/30/14 10:57	1

Prep Type: Total/NA

13

Lab Sample ID: LCS 240-153590/17-A Matrix: Water

Analysis Batch: 154049					Ргер Ва	tcn: 153590
	Spike	LCS LCS			%Rec.	
Analyte	Added	Result Qualifier	Unit	D %Re	c Limits	
1,4-Dichlorobenzene	0.0800	0.0532	mg/L	6	7 52 - 110	
2,4,5-Trichlorophenol	0.0800	0.0607	mg/L	7	6 51 ₋ 110	
2,4,6-Trichlorophenol	0.0800	0.0609	mg/L	7	6 46 - 110	
2,4-Dinitrotoluene	0.0800	0.0663	mg/L	8	3 54 - 110	
Hexachlorobenzene	0.0800	0.0610	mg/L	7	6 50 ₋ 110	
Hexachlorobutadiene	0.0800	0.0530	mg/L	6	6 34 - 110	
Hexachloroethane	0.0800	0.0523	mg/L	6	5 41_110	
3 & 4 Methylphenol	0.0800	0.0588	mg/L	7	4 48 ₋ 110	
2-Methylphenol	0.0800	0.0590	mg/L	7	4 44 - 111	
Nitrobenzene	0.0800	0.0587	mg/L	7	3 40 - 110	
Pentachlorophenol	0.160	0.113	mg/L	7	1 12 - 110	
Pyridine	0.0800	0.0509	mg/L	6	4 30 - 110	

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
2-Fluorobiphenyl (Surr)	74		30 - 110
2-Fluorophenol (Surr)	68		20 - 110
2,4,6-Tribromophenol (Surr)	84		23 - 110
Nitrobenzene-d5 (Surr)	73		28 - 110
Phenol-d5 (Surr)	62		21 - 110
Terphenyl-d14 (Surr)	84		48 - 110

RL

0.0050

0.00050

0.00050

0.00050

0.00050

0.0010

0.020

Limits

40 - 129

40 - 129

40 - 152

40 - 152

MDL Unit

0.000033 mg/L

0.000012 mg/L

0.0000050 mg/L

0.000014 mg/L

0.000012 mg/L

0.000012 mg/L

0.00020 mg/L

D

Prepared

10/28/14 07:49

10/28/14 07:49

10/28/14 07:49

10/28/14 07:49

10/28/14 07:49

10/28/14 07:49

10/28/14 07:49

Prepared

10/28/14 07:49

10/28/14 07:49

10/28/14 07:49

10/28/14 07:49

Lab Sample ID: MB 240-153587/4-A

Matrix: Water

Chlordane (technical)

Heptachlor epoxide

gamma-BHC (Lindane)

Tetrachloro-m-xylene

Tetrachloro-m-xylene

DCB Decachlorobiphenyl

DCB Decachlorobiphenyl

Analyte

Endrin

Heptachlor

Methoxychlor

Toxaphene

Surrogate

Analysis Batch: 154295

Method: 8081A - Organochlorine Pesticides (GC)

MB MB Result Qualifier

0.0050 U

0.00050 U

0.00050 U

0.00050 U

0.00050 U

0.0010 U

0.020 U

MB MB

%Recovery Qualifier

76

79

76

75

Client Sample ID: Method Blank

Analyzed

11/03/14 01:01

11/03/14 01:01

11/03/14 01:01

11/03/14 01:01

11/03/14 01:01

11/03/14 01:01

Prep Type: Total/NA

Prep Batch: 153587

5

11/03/14 01:01	1	9
Analyzed	Dil Fac	10
11/03/14 01:01	1	
11/03/14 01:01	1	
11/03/14 01:01	1	
11/03/14 01:01	1	

Dil Fac

1

1

Lab Sample ID: LCS 240-153587/5-A Matrix: Water Analysis Batch: 154295

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Endrin	0.00200	0.00189	J	mg/L		94	73 _ 146	
Heptachlor	0.00200	0.00172	J	mg/L		86	60 _ 140	
Heptachlor epoxide	0.00200	0.00174	J	mg/L		87	73 _ 158	
gamma-BHC (Lindane)	0.00200	0.00155	J	mg/L		78	63 _ 157	
Methoxychlor	0.00400	0.00366	J	mg/L		92	49 _ 160	

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
Tetrachloro-m-xylene	83		40 - 129
Tetrachloro-m-xylene	78		40 - 129
DCB Decachlorobiphenyl	90		40 - 152
DCB Decachlorobiphenyl	93		40 - 152

Lab Sample ID: 240-43456-2 MS Matrix: Water Analysis Batch: 1

Matrix: Water									Prep	Type: TCLP
Analysis Batch: 154295									Prep Ba	atch: 153587
	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Endrin	0.00050	U	0.00200	0.00174	J	mg/L		87	47 _ 140	
Heptachlor	0.00050	U	0.00200	0.00148	J	mg/L		74	44 - 129	
Heptachlor epoxide	0.00050	U	0.00200	0.00158	J	mg/L		79	48 _ 146	
gamma-BHC (Lindane)	0.00050	U	0.00200	0.00139	J	mg/L		70	36 _ 146	
Methoxychlor	0.0010	U	0.00400	0.00333	J	mg/L		83	35 _ 152	

	MS	MS	
Surrogate	%Recovery	Qualifier	Limits
Tetrachloro-m-xylene	72		40 - 129
Tetrachloro-m-xylene	71		40 - 129
DCB Decachlorobiphenyl	47		40 - 152
DCB Decachlorobiphenyl	45		40 - 152

Prep Type: Total/NA Prep Batch: 153587

Client Sample ID: FWG-IDW-MWPURGEOCT2014

Client	Sampl	e ID:	Lab	Contro	I Sample
			Pren	Type:	Total/NA

TestAmerica Canton

Method: 8151A - Herbicides (GC)

Lab Sample ID: MB 240-153588/4- Matrix: Water Analysis Batch: 153942	A										Client Sa	ample ID: Metho Prep Type: Prep Batch	od Blank Total/NA : 153588
	_	мв	MB	_					_	_			
Analyte	R	esult	Qualifier	F		MDL	Unit		D	Pr	repared	Analyzed	Dil Fac
2,4-D	0.	0040	U	0.004	40 0.0	00041	mg/L		10)/28	8/14 07:50	10/29/14 19:42	1
2,4-D	0.	0040	U	0.004	40 0.0	00041	mg/L		10)/28	8/14 07:50	10/29/14 19:42	1
Silvex (2,4,5-TP)	0.	0010	U	0.00	10 0.0	00020	mg/L		10)/28	8/14 07:50	10/29/14 19:42	1
Silvex (2,4,5-TP)	0.	0010	U	0.00	10 0.0	00020	mg/L		10)/28	8/14 07:50	10/29/14 19:42	1
		MB	MB										
Surrogate	%Reco	overy	Qualifier	Limits						PI	repared	Analyzed	Dil Fac
2,4-Dichlorophenylacetic acid		108		56 _ 120)				10	0/2	8/14 07:50	10/29/14 19:42	1
2,4-Dichlorophenylacetic acid		99		56 _ 120)				10	0/28	8/14 07:50	10/29/14 19:42	1
Lab Sample ID: LCS 240-153588/5 Matrix: Water	-A								Clie	nt	Sample	ID: Lab Control	Sample
Analysis Batch: 154175												Pren Batch	153588
Analysis Baton: 104110				Spike	LCS	LCS	;					%Rec.	. 100000
Analyte				Added	Result	Qua	lifier	Unit		D	%Rec	Limits	
				0.0200	0.0170			mg/L			85	50 - 120	
Silvex (2,4,5-TP)				0.00500	0.00399			mg/L			80	45 ₋ 129	
	LCS	LCS											
Surrogate	%Recovery	Qua	lifier	Limits									
2,4-Dichlorophenylacetic acid	93			56 - 120									
2,4-Dichlorophenylacetic acid	89			56 - 120									
Lab Sample ID: 240-43456-4 MS							C	lient Sa	ample I	ID:	FWG-ID	W-MWDECON	DCT2014
Matrix: Water												Prep Typ	e: TCLP
Analysis Batch: 153942												Prep Batch	: 153588
	Sample	Sam	ple	Spike	MS	MS						%Rec.	
Analyte	Result	Qua	lifier	Added	Result	Qua	lifier	Unit		C	%Rec	Limits	
2,4-D	0.0040	U		0.0200	0.0153			mg/L			77	44 - 124	
2,4-D	0.0040	U		0.0200	0.0138			mg/L			69	44 _ 124	
Silvex (2,4,5-TP)	0.0010	U		0.00500	0.00387			mg/L			77	35 _ 135	
Silvex (2,4,5-TP)	0.0010	U		0.00500	0.00423			mg/L			85	35 _ 135	
	MS	MS											
Surrogate	%Recovery	Qua	lifier	Limits									
2,4-Dichlorophenylacetic acid	84			56 - 120									
2,4-Dichlorophenylacetic acid	204	X		56 - 120									

Method: 6010B - Metals (ICP)

Lab Sample ID: MB 240-153672/2-A Matrix: Water Analysis Batch: 153854	МВ МВ						Client Sa	Client Sample ID: Method Blank Prep Type: Total/NA Prep Batch: 153672		
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	
Arsenic	0.50	U	0.50	0.0029	mg/L		10/28/14 11:00	10/29/14 09:28	1	
Barium	0.00202	J	10	0.0010	mg/L		10/28/14 11:00	10/29/14 09:28	1	
Cadmium	0.10	U	0.10	0.00014	mg/L		10/28/14 11:00	10/29/14 09:28	1	
Chromium	0.50	U	0.50	0.00055	mg/L		10/28/14 11:00	10/29/14 09:28	1	
Lead	0.50	U	0.50	0.0019	mg/L		10/28/14 11:00	10/29/14 09:28	1	

TestAmerica Canton

5 6 7

RL

0.25

0.50

Spike

Added

2.00

2.00

0.0500

0.200

0.500

2.00

0.0500

MDL Unit

0.0040 mg/L

0.00092 mg/L

LCS LCS

2.16

0.0541 J

0.204 J

0.487 J

2.25

0.0566 J

2.03 J

Result Qualifier

D

Unit

mg/L

mg/L

mg/L

mg/L

mg/L

mg/L

mg/L

Prepared

10/28/14 11:00

10/28/14 11:00

D

MB MB Result Qualifier

0.25 U

0.50 U

Lab Sample ID: MB 240-153672/2-A

Lab Sample ID: LCS 240-153672/3-A

Matrix: Water

Matrix: Water

Analyte

Silver

Analyte

Arsenic

Barium

Lead

Silver

Cadmium

Chromium

Selenium

Selenium

Analysis Batch: 153854

Analysis Batch: 153854

Method: 6010B - Metals (ICP) (Continued)

Client Sample ID: Method Blank

Analyzed

10/29/14 09:28

10/29/14 09:28

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 153672

Prep Type: Total/NA

Prep Batch: 153672

Dil Fac

1

1

10

%Rec. %Rec Limits 50 _ 150 108 102 50 _ 150 108 50 - 150 102 50 _ 150 97 50 _ 150 113 50 _ 150 50 _ 150 113

Client Sample ID: Method Blank

Prep Type: TCLP

Prep Batch: 153672

Lab Sample ID: LB 240-153529/1-B Matrix: Water Analysis Batch: 153854

	LB	LB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	0.00372	J	0.50	0.0029	mg/L		10/28/14 11:00	10/29/14 09:24	1
Barium	0.00230	J	10	0.0010	mg/L		10/28/14 11:00	10/29/14 09:24	1
Cadmium	0.10	U	0.10	0.00014	mg/L		10/28/14 11:00	10/29/14 09:24	1
Chromium	0.00119	J	0.50	0.00055	mg/L		10/28/14 11:00	10/29/14 09:24	1
Lead	0.50	U	0.50	0.0019	mg/L		10/28/14 11:00	10/29/14 09:24	1
Selenium	0.00861	J	0.25	0.0040	mg/L		10/28/14 11:00	10/29/14 09:24	1
Silver	0.50	U	0.50	0.00092	mg/L		10/28/14 11:00	10/29/14 09:24	1

Method: 7470A - Mercury (CVAA)

Lab Sample ID: MB 240-153674/2-A Matrix: Water Analysis Batch: 154085	мв	MB							Client S	ample ID: Method Blank Prep Type: Total/NA Prep Batch: 153674	
Analyte	Result	Qualifier	R	L	MDL	Unit		D	Prepared	Analyzed	Dil Fac
Mercury	0.0020	U	0.002	0.00	0090	mg/L		10	/28/14 15:55	10/29/14 15:21	1
Lab Sample ID: LCS 240-153674/3-A								Clier	nt Sample	ID: Lab Control	Sample
Matrix: Water										Prep Type:	Total/NA
Analysis Batch: 154085										Prep Batch	: 153674
			Spike	LCS	LCS					%Rec.	
Analyte			Added	Result	Quali	fier	Unit	D	%Rec	Limits	
Mercury			0.00500	0.00430			mg/L		86	50 _ 150	

TestAmerica Canton
5

10

Method: 7470A - Mercury (CVAA) (Continued)

Method: 9012A - Cyanide, Total and/or Amenable

Cyanide, Total

Lab Sample ID: LB 240-153529/1-C Matrix: Water							Client Sa	mple ID: Metho Prep Type	d Blank e: TCLP
Analysis Batch: 154085								Prep Batch:	153674
	LB	LB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	0.0020	U	0.0020	0.000090	mg/L		10/28/14 15:55	10/29/14 15:19	1

Method: 1010 - Ignitability, Pensky-Martens Closed-Cup Method

Lab Sample ID: LCS 240-153202 Matrix: Water	2/1					C	lient	Sample	ID: Lab C Prep 1	ontrol Sa Type: Tot	ample tal/NA
Analysis Batch. 135202			Spike	LCS	LCS				%Rec.		
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits		
Flashpoint			81.0	83.00		Degrees F		102	97 _ 103		
Lab Sample ID: 240-43456-4 DU Matrix: Water Analysis Batch: 153202					(Client Samp	le ID	: FWG-II	DW-MWDE Prep 1	CONOC	T2014 tal/NA
	Sample	Sample		DU	DU						RPD
Analyte Flashpoint	Result >200	Qualifier		Result >200	Qualifier	Unit Degrees F	D			RPD NC	Limit 20

Lab Sample ID: MB 240-154071/1-A **Client Sample ID: Method Blank** Matrix: Water Prep Type: Total/NA Analysis Batch: 154152 Prep Batch: 154071 MB MB RL Dil Fac Analyte Result Qualifier MDL Unit D Prepared Analyzed Cyanide, Total 0.00416 J 0.010 0.0020 mg/L 10/30/14 09:58 10/30/14 12:02 1 Lab Sample ID: LCS 240-154071/2-A **Client Sample ID: Lab Control Sample** Matrix: Water Prep Type: Total/NA Analysis Batch: 154152 Prep Batch: 154071 Spike LCS LCS %Rec. Added Analyte Result Qualifier Limits Unit D %Rec Cyanide, Total 0.0921 0.0865 mg/L 94 69 - 118 Lab Sample ID: MRL 240-154152/6 **Client Sample ID: Lab Control Sample** Matrix: Water Prep Type: Total/NA Analysis Batch: 154152 Spike MRL MRL %Rec. Analyte Added **Result Qualifier** Unit D %Rec Limits

0.0100

0.0103

mg/L

103

70 - 130

5 6 7

Method: 9034 - Sulfide, Acid soluble and Insoluble (Titrimetric)

Lab Sample ID: MB 240-153599/1-A											Client Sa	ample ID: Met	hod Blank
Matrix: Water												Prep Type	: Total/NA
Analysis Batch: 153685												Prep Bato	h: 153599
	MB	MB											
Analyte	Result	Qualifier		RL		MDL	Unit		D	Pr	repared	Analyzed	Dil Fac
Sulfide	3.0	U		3.0		0.94	mg/L			10/28	8/14 08:10	10/28/14 08:10	0 1
Lab Sample ID: LCS 240-153599/2-4	4								Cli	ent	Sample	ID: Lab Contr	ol Sample
Matrix: Water												Prep Type	: Total/NA
Analysis Batch: 153685												Prep Bato	h: 153599
-			Spike		LCS	LCS						%Rec.	
Analyte			Added		Result	Qual	ifier	Unit		D	%Rec	Limits	
Sulfide			8.23		7.19			mg/L		_	87	70 _ 130	
Method: 9040B - pH													
Lab Sample ID: LCS 240-153024/2									Cli	ent	Sample	ID: Lab Contr	ol Sample
Matrix: Water												Prep Type	: Total/NA
Analysis Batch: 153024													
-			Spike		LCS	LCS						%Rec.	
Analyte			Added		Result	Qual	ifier	Unit		D	%Rec	Limits	
рН			6.47		6.530			SU		_	101	97 _ 103	
Lab Sample ID: 240 42456 2 DU								Client C	male				0072044
Lab Sample ID. 240-43456-2 DO								silent Se	ampie	: יטו	. FWG-ID		
Matrix: Water												гер туре	: Total/NA
Analysis Batch: 153024	Sample Sam				DU	DU							PPD
	Sample Sam	ihig			00	00							RPD

	Sample	Sample	DU	DU				RPD
Analyte	Result	Qualifier	Result	Qualifier	Unit	D	RPD	Limit
рН	7.23		7.220		SU		0.1	20

GC/MS VOA

Leach	Batch:	153635
Louon	Duton.	100000

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
240-43456-2	FWG-IDW-MWPURGEOCT2014	TCLP	Water	1311	
240-43456-4	FWG-IDW-MWDECONOCT2014	TCLP	Water	1311	
LB 240-153635/1-A MB	Method Blank	TCLP	Water	1311	
Analysis Batch: 15374	1				
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
240-43456-2	FWG-IDW-MWPURGEOCT2014	TCLP	Water	8260B	153635
240-43456-4	FWG-IDW-MWDECONOCT2014	TCLP	Water	8260B	153635
LB 240-153635/1-A MB	Method Blank	TCLP	Water	8260B	153635
LCS 240-153741/8	Lab Control Sample	Total/NA	Water	8260B	
Analysis Batch: 15412	3				
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
240-43456-1	FWG-IDW-MWTBOCT2014PURGE	Total/NA	Water	8260B	
240-43456-3	FWG-IDW-MWTBOCT2014	Total/NA	Water	8260B	
LCS 240-154123/4	Lab Control Sample	Total/NA	Water	8260B	
MB 240-154123/5	Method Blank	Total/NA	Water	8260B	
GC/MS Semi VOA					
Leach Batch: 153529					
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
240-43456-2	FWG-IDW-MWPURGEOCT2014	TCLP	Water	1311	
240-43456-4	FWG-IDW-MWDECONOCT2014	TCLP	Water	1311	
Prep Batch: 153590					
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
240-43456-2	FWG-IDW-MWPURGEOCT2014	TCLP	Water	3510C	153529
240-43456-4	FWG-IDW-MWDECONOCT2014	TCLP	Water	3510C	153529
LCS 240-153590/17-A	Lab Control Sample	Total/NA	Water	3510C	
MB 240-153590/16-A	Method Blank	Total/NA	Water	3510C	
Analysis Batch: 15404	9				
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
240-43456-2	FWG-IDW-MWPURGEOCT2014	TCLP	Water	8270C	153590
LCS 240-153590/17-A	Lab Control Sample	Total/NA	Water	8270C	153590
MB 240-153590/16-A	Method Blank	Total/NA	Water	8270C	153590
Analysis Batch: 15443	5				
					D D D d d
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch

Leach Batch: 153529

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
240-43456-2	FWG-IDW-MWPURGEOCT2014	TCLP	Water	1311	
240-43456-2 MS	FWG-IDW-MWPURGEOCT2014	TCLP	Water	1311	
240-43456-4	FWG-IDW-MWDECONOCT2014	TCLP	Water	1311	
240-43456-4 MS	FWG-IDW-MWDECONOCT2014	TCLP	Water	1311	

TestAmerica Canton

Client Sample ID

Lab Control Sample

Method Blank

Client Sample ID

Lab Control Sample

Method Blank

FWG-IDW-MWPURGEOCT2014

FWG-IDW-MWPURGEOCT2014

FWG-IDW-MWDECONOCT2014

FWG-IDW-MWPURGEOCT2014

FWG-IDW-MWDECONOCT2014

FWG-IDW-MWDECONOCT2014

GC Semi VOA (Continued)

Prep Batch: 153587

Lab Sample ID

240-43456-2 MS

LCS 240-153587/5-A

MB 240-153587/4-A

Prep Batch: 153588

240-43456-2

240-43456-4

240-43456-2

240-43456-4

240-43456-4 MS

LCS 240-153588/5-A

MB 240-153588/4-A

Analysis Batch: 153942

QC Association Summary

Prep Type

TCLP

TCLP

TCLP

Total/NA

Total/NA

Prep Type

TCLP

TCLP

TCLP

Total/NA

Total/NA

Matrix

TestAmerica Job ID: 240-43456-1

11

12 13

Prep Batch

3520C Water 153529 Water 3520C 153529 Water 3520C 153529 Water 3520C Water 3520C Matrix Method Prep Batch Water 8151A 153529 Water 153529 8151A Water 8151A 153529 Water 8151A Water 8151A

Method

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
240-43456-2	FWG-IDW-MWPURGEOCT2014	TCLP	Water	8151A	153588
240-43456-4	FWG-IDW-MWDECONOCT2014	TCLP	Water	8151A	153588
240-43456-4 MS	FWG-IDW-MWDECONOCT2014	TCLP	Water	8151A	153588
MB 240-153588/4-A	Method Blank	Total/NA	Water	8151A	153588

Analysis Batch: 154175

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
LCS 240-153588/5-A	Lab Control Sample	Total/NA	Water	8151A	153588

Analysis Batch: 154295

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
240-43456-2	FWG-IDW-MWPURGEOCT2014	TCLP	Water	8081A	153587
240-43456-2 MS	FWG-IDW-MWPURGEOCT2014	TCLP	Water	8081A	153587
240-43456-4	FWG-IDW-MWDECONOCT2014	TCLP	Water	8081A	153587
LCS 240-153587/5-A	Lab Control Sample	Total/NA	Water	8081A	153587
MB 240-153587/4-A	Method Blank	Total/NA	Water	8081A	153587

Metals

Leach Batch: 153529

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
240-43456-2	FWG-IDW-MWPURGEOCT2014	TCLP	Water	1311	
240-43456-4	FWG-IDW-MWDECONOCT2014	TCLP	Water	1311	
LB 240-153529/1-B	Method Blank	TCLP	Water	1311	
LB 240-153529/1-C	Method Blank	TCLP	Water	1311	

Prep Batch: 153672

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
240-43456-2	FWG-IDW-MWPURGEOCT2014	TCLP	Water	3010A	153529
240-43456-4	FWG-IDW-MWDECONOCT2014	TCLP	Water	3010A	153529
LB 240-153529/1-B	Method Blank	TCLP	Water	3010A	153529
LCS 240-153672/3-A	Lab Control Sample	Total/NA	Water	3010A	
MB 240-153672/2-A	Method Blank	Total/NA	Water	3010A	

Prep Type

TCLP

TCLP

TCLP

Total/NA

Total/NA

Prep Type

TCLP

TCLP

TCLP

Total/NA

Total/NA

Matrix

Water

Water

Water

Water

Water

Matrix

Water

Water

Water

Water

Water

Client Sample ID

Method Blank

Method Blank

Client Sample ID

Method Blank

Method Blank

Lab Control Sample

Lab Control Sample

FWG-IDW-MWPURGEOCT2014

FWG-IDW-MWDECONOCT2014

FWG-IDW-MWPURGEOCT2014

FWG-IDW-MWDECONOCT2014

Metals (Continued) Prep Batch: 153674

Lab Sample ID

240-43456-2

240-43456-4

LB 240-153529/1-C

LCS 240-153674/3-A

MB 240-153674/2-A

Lab Sample ID

240-43456-2

240-43456-4

LB 240-153529/1-B

LCS 240-153672/3-A

MB 240-153672/2-A

Analysis Batch: 154085

Analysis Batch: 153854

Method 7470A

7470A

7470A

7470A

7470A

Method

6010B

6010B

6010B

6010B

6010B

Prep Batch

153529

153529

153529

Prep Batch

153672

153672

153672

153672

153672

9 10 11

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
240-43456-2	FWG-IDW-MWPURGEOCT2014	TCLP	Water	7470A	153674
LB 240-153529/1-C	Method Blank	TCLP	Water	7470A	153674
LCS 240-153674/3-A	Lab Control Sample	Total/NA	Water	7470A	153674
MB 240-153674/2-A	Method Blank	Total/NA	Water	7470A	153674
Analysis Batch: 15425	5				

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
240-43456-4	FWG-IDW-MWDECONOCT2014	TCLP	Water	7470A	153674

General Chemistry

Analysis Batch: 153024

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
240-43456-2	FWG-IDW-MWPURGEOCT2014	Total/NA	Water	9040B	
240-43456-2 DU	FWG-IDW-MWPURGEOCT2014	Total/NA	Water	9040B	
240-43456-4	FWG-IDW-MWDECONOCT2014	Total/NA	Water	9040B	
LCS 240-153024/2	Lab Control Sample	Total/NA	Water	9040B	

Analysis Batch: 153202

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
240-43456-2	FWG-IDW-MWPURGEOCT2014	Total/NA	Water	1010	
240-43456-4	FWG-IDW-MWDECONOCT2014	Total/NA	Water	1010	
240-43456-4 DU	FWG-IDW-MWDECONOCT2014	Total/NA	Water	1010	
LCS 240-153202/1	Lab Control Sample	Total/NA	Water	1010	

Prep Batch: 153599

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
240-43456-2	FWG-IDW-MWPURGEOCT2014	Total/NA	Water	9030B	
240-43456-4	FWG-IDW-MWDECONOCT2014	Total/NA	Water	9030B	
LCS 240-153599/2-A	Lab Control Sample	Total/NA	Water	9030B	
MB 240-153599/1-A	Method Blank	Total/NA	Water	9030B	

QC Association Summary

TestAmerica Job ID: 240-43456-1

General Chemistry (Continued)

Analysis Batch: 153685

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
240-43456-2	FWG-IDW-MWPURGEOCT2014	Total/NA	Water	9034	153599
240-43456-4	FWG-IDW-MWDECONOCT2014	Total/NA	Water	9034	153599
LCS 240-153599/2-A	Lab Control Sample	Total/NA	Water	9034	153599
MB 240-153599/1-A	Method Blank	Total/NA	Water	9034	153599
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
		D	Madella	Mathead	Drug Datab
240-43456-2	FWG-IDW-MWPURGEOCT2014	Total/NA	Water	9012A	
240-43456-4	FWG-IDW-MWDECONOCT2014	Total/NA	Water	9012A	
LCS 240-154071/2-A	Lab Control Sample	Total/NA	Water	9012A	
MB 240-154071/1-A	Method Blank	Total/NA	Water	9012A	
—					

Analysis Batch: 154152

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
240-43456-2	FWG-IDW-MWPURGEOCT2014	Total/NA	Water	9012A	154071
240-43456-4	FWG-IDW-MWDECONOCT2014	Total/NA	Water	9012A	154071
LCS 240-154071/2-A	Lab Control Sample	Total/NA	Water	9012A	154071
MB 240-154071/1-A	Method Blank	Total/NA	Water	9012A	154071
MRL 240-154152/6	Lab Control Sample	Total/NA	Water	9012A	

Lab Sample ID: 240-43456-1

Lab Sample ID: 240-43456-2

Matrix: Water

Matrix: Water

2 3 4 5 6 7 8 9 10 11 12 13

Client Sample ID: FWG-IDW-MWTBOCT2014PURGE	
Date Collected: 10/23/14 07:30	
Date Received: 10/23/14 10:07	

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		1	154123	10/30/14 22:26	LEE	TAL CAN

Client Sample ID: FWG-IDW-MWPURGEOCT2014 Date Collected: 10/23/14 08:00 Date Received: 10/23/14 10:07

_	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
TCLP	Leach	1311			153635	10/27/14 18:45	SMH	TAL CAN
TCLP	Analysis	8260B		1	153741	10/28/14 20:21	TJL1	TAL CAN
TCLP	Leach	1311			153529	10/27/14 17:30	DRJ	TAL CAN
TCLP	Prep	3510C			153590	10/28/14 07:53	CSC	TAL CAN
TCLP	Analysis	8270C		1	154049	10/30/14 21:38	JMG	TAL CAN
TCLP	Leach	1311			153529	10/27/14 17:30	DRJ	TAL CAN
TCLP	Prep	3520C			153587	10/28/14 07:49	CSC	TAL CAN
TCLP	Analysis	8081A		1	154295	11/02/14 23:56	BPM	TAL CAN
TCLP	Leach	1311			153529	10/27/14 17:30	DRJ	TAL CAN
TCLP	Prep	8151A			153588	10/28/14 07:50	CSC	TAL CAN
TCLP	Analysis	8151A		1	153942	10/29/14 18:31	DEB	TAL CAN
TCLP	Leach	1311			153529	10/27/14 17:30	DRJ	TAL CAN
TCLP	Prep	3010A			153672	10/28/14 11:00	WAL	TAL CAN
TCLP	Analysis	6010B		1	153854	10/29/14 15:00	KLC	TAL CAN
TCLP	Leach	1311			153529	10/27/14 17:30	DRJ	TAL CAN
TCLP	Prep	7470A			153674	10/28/14 15:55	WAL	TAL CAN
TCLP	Analysis	7470A		1	154085	10/29/14 15:32	AMM2	TAL CAN
Total/NA	Analysis	1010		1	153202	10/24/14 09:09	ТРН	TAL CAN
Total/NA	Prep	9012A			154071	10/30/14 09:58	SEM	TAL CAN
Total/NA	Analysis	9012A		1	154152	10/30/14 12:13	SEM	TAL CAN
Total/NA	Analysis	9034		1	153685	10/28/14 08:10	BLW	TAL CAN
Total/NA	Prep	9030B			153599	10/28/14 08:10	BLW	TAL CAN
Total/NA	Analysis	9040B		1	153024	10/23/14 15:32	SEM	TAL CAN

Client Sample ID: FWG-IDW-MWTBOCT2014 Date Collected: 10/23/14 07:30 Date Received: 10/23/14 10:07

_	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		1	154123	10/30/14 22:49	LEE	TAL CAN

Lab Sample ID: 240-43456-3

Matrix: Water

Client Sample ID: FWG-IDW-MWDECONOCT2014

Lab Sample ID: 240-43456-4 Matrix: Water

Date Collected: 10/23/14 08:15 Date Received: 10/23/14 10:07

_	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
TCLP	Leach	1311			153635	10/27/14 18:45	SMH	TAL CAN
TCLP	Analysis	8260B		2	153741	10/28/14 20:44	TJL1	TAL CAN
TCLP	Leach	1311			153529	10/27/14 17:30	DRJ	TAL CAN
TCLP	Prep	3510C			153590	10/28/14 07:53	CSC	TAL CAN
TCLP	Analysis	8270C		1	154435	11/02/14 01:10	JMG	TAL CAN
TCLP	Leach	1311			153529	10/27/14 17:30	DRJ	TAL CAN
TCLP	Prep	3520C			153587	10/28/14 07:49	CSC	TAL CAN
TCLP	Analysis	8081A		1	154295	11/02/14 00:40	BPM	TAL CAN
TCLP	Leach	1311			153529	10/27/14 17:30	DRJ	TAL CAN
TCLP	Prep	8151A			153588	10/28/14 07:50	CSC	TAL CAN
TCLP	Analysis	8151A		1	153942	10/29/14 18:54	DEB	TAL CAN
TCLP	Leach	1311			153529	10/27/14 17:30	DRJ	TAL CAN
TCLP	Prep	3010A			153672	10/28/14 11:00	WAL	TAL CAN
TCLP	Analysis	6010B		1	153854	10/29/14 15:04	KLC	TAL CAN
TCLP	Leach	1311			153529	10/27/14 17:30	DRJ	TAL CAN
TCLP	Prep	7470A			153674	10/28/14 15:55	WAL	TAL CAN
TCLP	Analysis	7470A		20	154255	10/30/14 13:09	AMM2	TAL CAN
Total/NA	Analysis	1010		1	153202	10/24/14 08:43	ТРН	TAL CAN
Total/NA	Prep	9012A			154071	10/30/14 09:58	SEM	TAL CAN
Total/NA	Analysis	9012A		1	154152	10/30/14 12:13	SEM	TAL CAN
Total/NA	Analysis	9034		1	153685	10/28/14 08:10	BLW	TAL CAN
Total/NA	Prep	9030B			153599	10/28/14 08:10	BLW	TAL CAN
Total/NA	Analysis	9040B		1	153024	10/23/14 15:41	SEM	TAL CAN

Laboratory References:

TAL CAN = TestAmerica Canton, 4101 Shuffel Street NW, North Canton, OH 44720, TEL (330)497-9396

TestAmerica Canton

Client: Environmental Quality Mgt., Inc. Project/Site: RVAAP (OH) - IDW TestAmerica Job ID: 240-43456-1

Laboratory: TestAmerica Canton

All certifications held by this laboratory are listed. Not all certifications are applicable to this report.

Authority	Program	EPA Region	Certification ID	Expiration Date	4
California	NELAP	9	01144CA	06-30-14 *	
California	State Program	9	2927	04-30-15	5
Connecticut	State Program	1	PH-0590	12-31-14	_
Florida	NELAP	4	E87225	06-30-15	6
Georgia	State Program	4	N/A	06-30-15	
Illinois	NELAP	5	200004	07-31-15	
Kansas	NELAP	7	E-10336	01-31-15	
Kentucky (UST)	State Program	4	58	06-30-15	8
L-A-B	DoD ELAP		L2315	07-18-16	0
Minnesota	NELAP	5	039-999-348	12-31-14	0
Nevada	State Program	9	OH-000482008A	07-31-15	3
New Jersey	NELAP	2	OH001	06-30-15	
New York	NELAP	2	10975	03-31-15	
Ohio VAP	State Program	5	CL0024	10-31-15	
Pennsylvania	NELAP	3	68-00340	08-31-15	
Texas	NELAP	6		08-31-15	
USDA	Federal		P330-13-00319	11-26-16	
Virginia	NELAP	3	460175	09-14-15	
Washington	State Program	10	C971	01-12-15	1:
West Virginia DEP	State Program	3	210	12-31-14	
Wisconsin	State Program	5	999518190	08-31-15	

TestAmerica Laboratories, Inc.

CHAIN OF CUSTODY AND RECEIVING DOCUMENTS

240-43456 Chain of Custody

	TestAmerica Canton 4181 Shuffel Street, N. H.	Chain of Custody Record											TestAm	nerica								
	Horth Canton, OH 44720 Phone: 330.497.9396 Fax: 330.497.0772	Regul	atory Pro	gram:	DW [NPDES	5	RC	RA	À	Other:									For	THE LEADER IN ENVIRO TestAmerica Lab m No. CA-C-WI-002, Rev. 4	onmental testing oratories, Inc. .2, dated 04/02/2013
- [Client Contact	Project Ma	anager: 、	JOHHNA	ILLER		Site	Cor	taci	ŧΈ	coe	Bin)	Da	ate:	inia	311	ч			COC NO: 10W 10	2314
	Company Name: FOM	Tel/Fax:					Lab	Cor	tact	: M	.10	YAB		Ca	arrier	12	AB	Picl	in	7	of	COCs
	Address: 1800 Tanuon Blud		Analysis T	urnaround	Time		E I							T	T	TT	11,		Sampler:			
	City/State/Zip: Cun currati Oh 45240	CALENI	DAR DAYS		RKING DAY	S													For Lab Use Only:			
	Phone: 513 8257500	TA	l' if different fr	om Below			Í			à	-g-	3	4	_				1		1	Walk-in Client:	
	Fax: 513 825 7495		2	weeks P	er,		E)>	-1	1	N	-1	1	1								Lab Sampling:	
	Project Name: RVAAP 66		1	week	50~		2		1	5	E	닭.	3									
	Site: RVAAP		2	days	-) el)	13	派	0 10) á]						Job / SDG No.:	
	PO#		1	dəy			l a l		32	5	2-	-17	14	-							L	
	Sample Identification	Sample	Sample	Sample Type (C=Comp,	Motrix	# of	iltered St	Tri-D-C	1012	Teup	Teup	2101	1931								Sampla Space	ifia Natao
-	Sample Identification	Date	Time	G-Grab)	Watrix	Conc.	l ^u l ^e		+	;		-			2 22450-			+-+	-++-	+	Sample Spec	inc notes.
	FWG -112W-MWTBOCT 2014 Durge	16/23/14	0730			2	NY	2	X						1							IDW Ange
	FWG-IDW-MWRURGENTEDIM	10/23/14	0800	C	GN	9	Hr.	٩X		N.	XX		X		{						1	1,1
	FWG-IDW-MNTBOCT2D14	10/23/14	0130			2	NI	MI	X				ÍÌ									IDW DECON
Ч	FWIG-IDW-MAWDQCONOCT2014	10/23/14	10815	C	GW	9	M	٩X	(ly	X	X	dX	X						[]			
age	\						fΤ	Tĩ	T			ť			\top		1		il	Ť		
е С					+		┝┼╴	+	+	$\left - \right $		+	+-+	-	+		-+-	+-+	++	ł		
50		<u> </u>					\mathbb{H}		+	+			$\left - \right $	-	+			++				
Ť 3							Ш															
٩								1i						ł								
							ΤT		+	\top	1	+	$\uparrow \uparrow$	+	+	\vdash	+	++	tt	1	1	
		<u> </u>			++		++	╉	+	+		+	┼─╂	+	+			+	+	┼─	1	
				·			\square	+	+	\vdash		+-			+-		_	+				
	Ust																					
	Preservation Used: 1= Ice, 2= HCI; 3= H2SO4; 4=HNO3;	5≑NaOH;	6= Other											20				01223	決強			
	Possible Hazard Identification:			O de las fac	41		S	Samı	ple D	Dispo	sal (A fee	may	be as	sess	ed if	samp	oles a	re ret	aine	d longer than 1 mont	h)
	Comments Section if the lab is to dispose of the sample.	se List any t	EPA Waste	Codes for	the same	pie in tr	le															
	Non-Hazard Flammable Skin Irritant	Poison	В	Unkn	own				Retu	ırn to (lient		Ď	Dispo	sal by	Lab			Archive	for	Months	
	Special Instructions/QC Requirements & Comments:							1											1			
																			1			
	Custody Seals Intact: Ves No	Custody S	eal No.:							Coc	oler Te	emp.	(°C): (Obs'd	:		Cor	r'd:	1		Therm ID No.:	
A	Relinquisited by:	Company:	> A		Date/Ti	meroq		Rece	ived	by:	-1	1				Com	pany:	V		T	Date/Time:	
dis.	in the second se	EL	\underline{M}		10-2	514		1	10		10	50	~		_	10		7 m	210	e	10.23-1K1-	0903
11	Relinquished by:	Company:	16.23	2-1/1	Date/Ti	me:	. F	Rece	ived	by:		1	2			Com	pany:	_	-		Date/Time:	1000
141		Stelm	10-22		Data	07			<u>U</u>	<u>m</u>	hori		<u></u>	<u> </u>			1-1	- <	a	-	10 23/14	1004
201	Reinquisned by.	Company.			Datern	me.	ľ	l	iveu	111 Le		OI Y D	у.				parry.				Date/Time.	
4		<u> </u>			4											<u> </u>				1		
			T MARK TO AND A STOR							_		und in	task share			-			1/81 ALAN		The case of the second second	
										14	5	5					ဖ	c	Ø	4	654	

Chai

TestAmerica Canton Sample Receipt Form/NarrativeLoginCanton Facility	#:43454
Client FORM Site Name Concernage	Cooler unpacked by:
Cooler Received on 10/23/14 Opened on 10/23/14	Dens Bund
FedEx: 1 st Grd Exp UPS FAS Stetson Client Drop Off TestAmerica Courier	Other
TestAmerica Cooler # Foam Box Client Cooler Box Other A	Los Hiples
Packing material used: (Bubble Wrap) Foam Plastic Bag None Other	
COOLANT: Wet Ice Blue Ice Dry Ice Water None	
1. Cooler temperature upon receipt	
IR GUN# A (CF +2 °C) Observed Cooler Temp °C Corrected Cooler Tem	ıp°C
IR GUN# 4 (CF -2 °C) Observed Cooler Temp °C Corrected Cooler Tem	np°C
IR GUN# 5 (CF 0 °C) Observed Cooler Temp. °C Corrected Cooler Tem	npC Cooler Form
2 Ware custody seels on the outside of the cooler Temp C Corrected Cooler Tem	
-Were custody seals on the outside of the cooler(s) signed & dated?	No NA
-Were custody seals on the bottle(s)? Yes	
3. Shippers' packing slip attached to the cooler(s)?	
4. Did custody papers accompany the sample(s)?	No
5. Were the custody papers relinquished & signed in the appropriate place?	No
6. Did all bottles arrive in good condition (Unbroken)?	No
7. Could all bottle labels be reconciled with the COC?	No
8. Were correct bottle(s) used for the test(s) indicated?	No
9. Sufficient quantity received to perform indicated analyses?	No NA nu Strin Lott HC412460
10. Were VOAs on the COC?	No NA pH Ship Lot# <u>HC412409</u>
12. Were air bubbles >6 mm in any VOA vials?	NONA
13. Was a trip blank present in the cooler(s)?	No
Contacted PM Date by via Verbal V	bice Mail Other
Concerning	
14 OTHER OF OURTODY & CLANDER DISCOURD ANGUES	Samples processed by:
14. CHAIN OF CUSTODY & SAMPLE DISCREPANCIES	the
	-
15. SAMPLE CONDITION	
Sample(s) were received after the recommended holdi	ng time had expired.
Sample(s) were received	in a broken container.
Sample(s) were received with bubble >6 mm in	n diameter. (Notify PM)
16. SAMPLE PRESERVATION	
Sample(s)	4
	ther preserved in the laboratory
Time preserved: Preservative(s) added/Lot number(s):	ther preserved in the laboratory.

4

10

14

Cooler #	IR Gun #	Observed Temp °C	Corrected Temp ℃	Coolant
(Dw) P.	R	12	1.2	ICE
IDW Decon	1	0.8	018	
				an an an ann an an an an an an an an an
				9. (19.) (19
				in the second

		· · · · · · · · · · · · · · · · · · ·		
	19 ¹			
	9.99.99.99.adamaa = 9.9.4 aanaa aha jaraan ahaa ay yayay tahan ah			
				، بر این از از از این
				······································
مربع بر المربع الم	·····			۵۰۰ ^و در این از این از این از این و در این

C:\Users\livengoodc\AppData\Local\Microsoft\Windows\Temporary Internet Files\OLKD16\WI-NC-099-031813 Cooler Receipt Form_page 2 - Multiple Coolers.doc Revision 3, 3/18/13 rls

14

Login Container Summary Report

240-43456

1

2

34

5

6

1

14 CE 14

14

Temperature readings: _____

Client Sample ID	Lab ID	Container Type	<u>Container</u> <u>pH</u>	<u>Preservative</u> Added (mls)	<u>Lot #</u>
FWG-IDW-MWPURGEOCT2014	240-43456-B-2	Plastic 250ml - with Sodium Hydrox	>12		
FWG-IDW-MWPURGEOCT2014	240-43456-C-2	Plastic 500ml - with Zn Acetate and	>9		·······
FWG-IDW-MWDECONOCT2014	240-43456-B-4	Plastic 250ml - with Sodium Hydrox	>12		
FWG-IDW-MWDECONOCT2014	240-43456-C-4	Plastic 500ml - with Zn Acetate and	>9		

T D

Page 39 of 39

11/4/2014

APPENDIX D

REPORTING LIMITS THAT CURRENTLY DO NOT MEET THE RVAAP QAPP PROJECT ACTION REQUIRMENTS, MCLS, AND/OR RSL (November 2014)

VOCs								
CAS No.	Analyte Name	Units	DL	LOD ¹	LOQ	PAR ²	MCL	RSL
79-34-5	1,1,2,2-Tetrachloroethane	µg/L	0.18	0.25	1	1	NS	0.076
106-93-4	1,2-Dibromoethane	μg/L	0.19	0.5	1	1	NS	0.0075
107-06-2	1,2-Dichloroethane	μg/L	0.2	0.5	1	1	5	0.17
75-27-4	Bromodichloromethane	μg/L	0.15	0.25	1	1	80	0.13
124-48-1	Dibromochloromethane	μg/L	0.43	0.5	1	1	NS	0.17
75-01-4	Vinyl chloride	μg/L	0.29	0.5	1	1	2	0.019
SVOCS								
CAS No.	Analyte Name	Units	DL	LOD ¹	LOQ	PAR^{2}	MCL	RSL
91-94-1	3,3'-Dichlorobenzidine	μg/L	0.37	1	5	5	NS	0.12
534-52-1	4,6-Dinitro-2-methylphenol	μg/L	2.4	4	5	25	NS	1.5
50-32-8	Benzo(a)pyrene	μg/L	0.051	0.1	0.2	0.2	0.2	0.0034
205-99-2	Benzo(b)fluoranthene	μg/L	0.045	0.1	0.2	0.2	NS	0.034
111-44-4	bis(2-Chloroethyl)ether	μg/L	0.1	0.1	1	1	NS	0.014
53-70-3	Dibenzo(a,h)anthracene	μg/L	0.45	0.1	0.2	50	NS	0.0065
118-74-1	Hexachlorobenzene	μg/L	0.085	0.1	0.2	10	1	0.049
87-68-3	Hexachlorobutadiene	µg/L	0.27	0.5	1	10	NS	0.3
193-39-5	Indeno(1,2,3-cd)pyrene	μg/L	0.043	0.1	0.2	0.2	NS	0.034
180-60-1	2,2'-Oxybis (1-Chloropropane)	µg/L	0.4	0.5	1	10	NS	0.36
621-64-7	N-Nitroso-di-n-propylamine	µg/L	0.24	0.5	1	10	NS 1	0.011
8/-80-3	Pentachiorophenoi	µg/L	0.27	1	5	3	1	0.04
resticiues		** •	DI		100	$\mathbf{D}\mathbf{A}\mathbf{D}^2$	NO	DOT
CAS No.	Analyte Name	Units	DL	LOD	LOQ	PAR	MCL	RSL
309-00-2	Aldrin	μg/L	0.013	0.05	0.05	0.03	NS	0.00046
319-84-6	alpha-BHC	µg/L	0.014	0.05	0.05	0.03	NS	0.0071
60-57-1	Dieldrin	µg/L	0.013	0.05	0.05	0.03	NS 0.4	0.0017
/0-44-8	Heptachlor	µg/L	0.005	0.05	0.05	0.03	0.4	0.002
1024-57-5		µg/L	0.014	0.05	0.05	0.03	0.2	0.0038
8001-33-2 PCB	Toxaphene	µg/L	0.02	1	L	L	5	0.015
	A 1 / XT	TT 1/	DI		LOO	$\mathbf{D}\mathbf{A}\mathbf{D}^2$	MOL	DCI
CAS No.	Analyte Name	Units	DL	LOD	LUQ	PAK	MCL	RSL
11104-28-2	PCB- 1221	µg/L	0.13	0.2	0.5	0.2	0.5	0.0046
11141-16-5	PCB-1232	µg/L	0.16	0.2	0.5	0.2	0.5	0.0046
12672 20 6	PCB-1242	µg/L	0.22	0.4	0.5	0.4	0.5	0.039
12072-29-0	PCB-1240	μg/L μg/L	0.1	0.2	0.5	0.2	0.5	0.039
11097-09-1	PCB 1254	μg/L μg/I	0.10	0.2	0.5	0.2	0.5	0.039
Explosives	I CB- 1200	μg/L	0.17	0.2	0.5	0.2	0.5	0.039
CASNo	Analyta Nama	Unite	DI		LOO	$\mathbf{D}\mathbf{A}\mathbf{D}^2$	MCI	DCI
CAS NO.		Units	DL		LUQ		MCL	KSL 0.049
606-20-2	2,6-Dinitrotoluene	µg/L	0.2	0.4	0.52	0.1	NS	0.048
morganics	· · · · ·	·	~ ~	LOD		DAD ²	1.67	D 07
CAS No.	Analyte Name	Units	DL	LOD	LOQ	PAK⁻	MCL	RSL
7440-38-2	Arsenic	μg/L	2.9	10	10	5	10	0.052
7440-70-2	Calcium	μg/L ~	260	1000	5000	100	NS	NS
7440-09-7	Potassium	μg/L	70	900	5000	200	NS	NS
7439-95-4	Magnesium	μg/L	55	300	5000	100	NS	NS
/440-66-6		µg/L	27	50	50	10	NS	6000
/440-28-0		µg/L	0.79	1.5	2	l 0.01	2	0.2
J/-12-J		ion of a sub	0.002 stance that mu	0.003 ist he present ii	U.1	0.01	0.2	0.0013

1- LOD= The smallest amount or concentration of a substance that must be present in a sample

in order to be detected at a high level of confidence (99%). At the LOD, the false negative rate is 1%.

2- Project Action Requirements from table 4 of the Facility Wide QAPP

NS= No Standard

APPENDIX E

CORRESPONDENCE AND COMMENTS/RESPONSES

John R. Kasich, Governor Mary Taylor, Lt. Governor Craig W. Butler, Director

March 5, 2015

Mr. Mark Leeper Army National Guard Directorate ARNGD-ILE Clean Up 111 South George Mason Drive Arlington, VA 22204 Re: US Army Ammunition Plt RVAAP Assessment Remedial Response Portage 267000859

Subject: Ravenna Army Ammunition Plant, Portage/Trumbull Counties. Approval of the RVAAP-66 Draft Facility-Wide Groundwater Report on the October 2014 Sampling Event, Dated January, 2015. Ohio EPA ID # 267-000859-036

Dear Mr. Leeper:

The Ohio Environmental Protection Agency (Ohio EPA) has received the "Draft Facility-Wide Groundwater Monitoring Program RVAAP-66 Facility-Wide Groundwater Report on the October 2014 Sampling Event" at the Ravenna Army Ammunition Plant (RVAAP), Ravenna, Ohio. This document was received at Ohio EPA's Northeast District Office (NEDO), Division of Environmental Response and Revitalization (DERR), on January 30, 2015. The report was prepared for the US Army Corps of Engineers (USACE) Louisville District by Environmental Quality Management, Inc. under Contract Number W912QR-11-F-0266.

The Draft Report provided the results of the sampling of the three newest monitoring wells; one unconsolidated glacial aquifer well LL1mw-088 and two Sharon Sandstone wells, LL2mw-271 and LL3mw-246. All three wells are located near the eastern boundary of the facility, just beyond the perimeter fence. This sampling event is the fourth quarterly sampling event for these three wells. The sampling occurred October 21 through October 22, 2014.

Ground water samples were analyzed for: volatile organic compounds (VOCs), semi-volatile organic compounds (SVOCs), PCBs, organochlorinated pesticides,

Northeast District Office • 2110 East Aurora Road • Twinsburg, OH 44087-1924 www.epa.ohio.gov • (330) 963-1200 • (330) 487-0769 (fax)

MR. MARK LEEPER ARMY NATIONAL GUARD DIRECTORATE MARCH 5, 2015 PAGE 2

ge loost to g

a ta i Tangan sa sa ke

explosives/propellants, cyanide, nitrate/nitrite, and metals (field filtered). Samples were analyzed by Test America. Ground water results were compared to Ohio EPA Drinking Water MCLs and U.S. EPA November 2014 Regional Screening Levels (RSLs) for tap water. Note: the practical quantification limit (PQL) exceeded RSLs for a number of compounds (refer to Appendix D of the report). Ground Water Results are summarized in Table 3-3 of the report.

Concentrations of the explosive/propellant compounds 2-amino-4,6-dinitrotoluene, 4-amino-2,6-dinitrotoluene and Research Department Formula (RDX) were detected in one of the three sampled wells LL3mw-246 at concentrations below their respective RSLs. There are no MCLs for the three aforementioned explosive/propellant compounds.

Concentrations of arsenic (LL1mw-088 and LL2mw-271), iron (LL1mw-088 and LL2-271), and manganese (LL1mw-088, LL2mw-271, and LL3mw-246) were detected at concentrations exceeding their respective MSLs and/or RSLs in the sampled wells.

No VOCs, SVOCs, or PCBs were detected at levels exceeding the PQL in the three sampled wells.

Analytical results indicate an estimated concentration of one pesticide 3-5, alpha-BHC in one of the three sampled wells (LL1MW-88) above its respective RSL (0.0071 µg/L). However, the method blank associated with the aforementioned sample was found to contain alpha-BHC contamination; therefore, the alpha-BHC detected in the sample from LL1MW-88 is attributed to low-level lab contamination and is so designated with a "B" qualifier.

This document was reviewed by personnel from Ohio EPA's DERR, pursuant to the Director's Findings and Orders paragraph 39 (b), Ohio EPA has no comments on this document and it may be finalized.

Pursuant to the CERCLA process, the property owner usually can provide the expected land uses to assist in ensuring that the investigation addresses all receptors for both current and future land uses. Be advised that due to land use uncertainty, Ohio EPA may require additional work in the future to address data gaps. It is incumbent upon the Army to finalize land use at camp Ravenna as soon as possible, otherwise additional work and schedule slippage may result. MR. MARK LEEPER ARMY NATIONAL GUARD DIRECTORATE MARCH 5, 2015 PAGE 3

If you have any questions, please call me at (330) 963-1292.

Sincerely,

Kevin M. Palombo Environmental Specialist Division of Environmental Response and Revitalization

KP/nvr

- cc: Katie Tait/Kevin Sedlak, OHARNG RTLS Gregory F. Moore, USACE Rebecca Haney/Gail Harris, VISTA Sciences Corp.
- ec: Rodney Beals, Ohio EPA NEDO DERR Justin Burke, Ohio EPA, CO DERR Al Muller, Ohio EPA, NEDO DDAGW