REPORT DOCUMENTATION PAGE						Form Approved OMB No. 0704-0188	
The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing the burden, to the Department of Defense, Executive Service Directorate (0704-0188). Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.							
	ATE (<i>DD-MM-YY</i> /10/2009	YY) 2. REPC	DRT TYPE Final			3. DATES COVERED (From - To) October 2009	
4. TITLE AND					5a. CON	NTRACT NUMBER	
Data Quality O	biectives Report	for the RVAAP-	-03 Open Demolition Are	ea #1		W912QR-08-D-0013	
Dum Quanty o	ojeed te report				5b. GRANT NUMBER N/A		
					5c. PROGRAM ELEMENT NUMBER		
						N/A	
6. AUTHOR(S)	I				5d. PRC	DJECT NUMBER 133616	
Dave Cobb, Da	wid Crispo, P.E.,	Andrea Steele			5e. TAS	KNUMBER	
						03000001	
					5f. WORK UNIT NUMBER		
						N/A	
	NG ORGANIZAT nental & Infrastr		ND ADDRESS(ES)		•	8. PERFORMING ORGANIZATION REPORT NUMBER	
100 Technology Center Drive Stoughton, MA 02072						N/A	
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)						10. SPONSOR/MONITOR'S ACRONYM(S)	
U.S. Army Corps of Engineers - Louisville District 600 Martin Luther King, Jr. Place						CELRL-ED-EE	
Louisville, KY 40202					11. SPONSOR/MONITOR'S REPORT NUMBER(S)		
	N/A 12. DISTRIBUTION/AVAILABILITY STATEMENT						
Available for regulator review (see Distribution sheet).							
	NTARY NOTES						
The views, opinions and/or findings contained in this report are those of the author(s) and should not be construed as an official Department of the Army position, policy or decision, unless designated by other documentation.							
Army position, poncy of decision, unless designated by other documentation. 14. ABSTRACT							
The purpose of this DQO Report is to determine if there are any data gaps from the past removal action at RVAAP-03 where the extent of							
contamination was not adequately characterized or if there are any other efforts required for environmental closure of the AOC. The evaluation processes presented in this document and performed under this delivery order were conducted in accordance with the Facility-Wide Data Quality							
Objectives des	Objectives described in the Facility-Wide Sampling and Analysis Plan and the revised Performance Work Statement. Data results from the Phase I						
					-	d to the current RVAAP background values and	
the current most restrictive risk based Draft RGOs for contaminants detected at the site. Based on the available information, additional sampling of surface and subsurface soil is necessary to support an environmental remedy selection for the AOC as currently delineated. The extent of MEC							
scrap and debris at ODA 1 has not been adequately defined based on visual observations at the site. A geophysical investigation will be performed							
over the current AOC and areas just beyond the perimeter to identify any "push out areas".							
15. SUBJECT TERMS RVAAP-03, Open Demolition Area 1, Data Quality Objectives Report							
	CLASSIFICATIC		17. LIMITATION OF	18. NUMBER	19a NAM	NE OF RESPONSIBLE PERSON	
a. REPORT	b. ABSTRACT	c. THIS PAGE	ABSTRACT	OF PAGES	Dave		
Unclassified	Unclassified	Unclassified	UL	158	19b. TEL	EPHONE NUMBER (Include area code) 617.589.5561	
						Reset Standard Form 298 (Rev. 8/98) Prescribed by ANSI Std. Z39.18 Adobe Professional 7.0	

INSTRUCTIONS FOR COMPLETING SF 298

1. REPORT DATE. Full publication date, including day, month, if available. Must cite at least the year and be Year 2000 compliant, e.g. 30-06-1998; xx-06-1998; xx-xx-1998.

2. REPORT TYPE. State the type of report, such as final, technical, interim, memorandum, master's thesis, progress, quarterly, research, special, group study, etc.

3. DATES COVERED. Indicate the time during which the work was performed and the report was written, e.g., Jun 1997 - Jun 1998; 1-10 Jun 1996; May - Nov 1998; Nov 1998.

4. TITLE. Enter title and subtitle with volume number and part number, if applicable. On classified documents, enter the title classification in parentheses.

5a. CONTRACT NUMBER. Enter all contract numbers as they appear in the report, e.g. F33615-86-C-5169.

5b. GRANT NUMBER. Enter all grant numbers as they appear in the report, e.g. AFOSR-82-1234.

5c. PROGRAM ELEMENT NUMBER. Enter all program element numbers as they appear in the report, e.g. 61101A.

5d. PROJECT NUMBER. Enter all project numbers as they appear in the report, e.g. 1F665702D1257; ILIR.

5e. TASK NUMBER. Enter all task numbers as they appear in the report, e.g. 05; RF0330201; T4112.

5f. WORK UNIT NUMBER. Enter all work unit numbers as they appear in the report, e.g. 001; AFAPL30480105.

6. AUTHOR(S). Enter name(s) of person(s) responsible for writing the report, performing the research, or credited with the content of the report. The form of entry is the last name, first name, middle initial, and additional qualifiers separated by commas, e.g. Smith, Richard, J, Jr.

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES). Self-explanatory.

8. PERFORMING ORGANIZATION REPORT NUMBER. Enter all unique alphanumeric report numbers assigned by the performing organization, e.g. BRL-1234; AFWL-TR-85-4017-Vol-21-PT-2.

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES). Enter the name and address of the organization(s) financially responsible for and monitoring the work.

10. SPONSOR/MONITOR'S ACRONYM(S). Enter, if available, e.g. BRL, ARDEC, NADC.

11. SPONSOR/MONITOR'S REPORT NUMBER(S). Enter report number as assigned by the sponsoring/ monitoring agency, if available, e.g. BRL-TR-829; -215.

12. DISTRIBUTION/AVAILABILITY STATEMENT. Use agency-mandated availability statements to indicate the public availability or distribution limitations of the report. If additional limitations/ restrictions or special markings are indicated, follow agency authorization procedures, e.g. RD/FRD, PROPIN, ITAR, etc. Include copyright information.

13. SUPPLEMENTARY NOTES. Enter information not included elsewhere such as: prepared in cooperation with; translation of; report supersedes; old edition number, etc.

14. ABSTRACT. A brief (approximately 200 words) factual summary of the most significant information.

15. SUBJECT TERMS. Key words or phrases identifying major concepts in the report.

16. SECURITY CLASSIFICATION. Enter security classification in accordance with security classification regulations, e.g. U, C, S, etc. If this form contains classified information, stamp classification level on the top and bottom of this page.

17. LIMITATION OF ABSTRACT. This block must be completed to assign a distribution limitation to the abstract. Enter UU (Unclassified Unlimited) or SAR (Same as Report). An entry in this block is necessary if the abstract is to be limited.

Final Data Quality Objectives for the RVAAP-03 Open Demolition Area #1 Version 1.0

Ravenna Army Ammunition Plant 8451 St. Route 5 Ravenna, Ohio 44266-9297

Contract No. W912QR-08-D-0013 Delivery Order 0002

Prepared for:

US Army Corps of Engineers ® Louisville District 600 Martin Luther King, Jr. Place Louisville, Kentucky 40202

Prepared by:

Shaw Environmental & Infrastructure, Inc. 100 Technology Center Drive Stoughton, MA 02072

October 9, 2009

Name/Organization	Number of Printed Copies	Number of Electronic Copies
Ohio EPA Facility Manager	2	2
Ohio EPA Federal Facilities Manager	1	1
OHARNG-Camp Ravenna Environmental Manager	1	1
RVAAP Facility Manager	2	4
USAEC Program Manager	0	1
USACE – Huntsville District	1	1
USACE – Louisville District	3	3
Shaw Project Manager	3	3

DOCUMENT DISTRIBUTION

Ohio EPA - Ohio Environmental Protection Agency

OHARNG – Ohio Army National Guard

RVAAP – Ravenna Army Ammunition Plant USAEC – U.S. Army Environmental Command

USACE – U.S. Army Corps of Engineers – Louisville District

CONTRACTOR STATEMENT OF INDEPENDENT TECHNICAL REVIEW

Shaw Environmental & Infrastructure, Inc. has completed the *Final Data Quality Objectives Report for RVAAP-03 Open Demolition Area #1* for the Ravenna Army Ammunition Plant, Ravenna, Ohio. Notice is hereby given that an independent technical review has been conducted that is appropriate to the level of risk and complexity inherent in the project. During the independent technical review, compliance with established policy, principles and procedures, utilizing justified and valid assumptions, was verified. This included review of data quality objectives; technical assumptions; methods, procedures and materials to be used; the appropriateness of data used and level of data obtained; and reasonableness of the results, including whether the product meets customer's needs consistent with law and existing Corps policy.

Reviewed / Approved by:	Janie Cell	Date:	October 9, 2009
	David Cobb Project/Program Manager		
Reviewed by:	David Crispo, P.E. Technical/Regulatory Lead	Date: _	October 9, 2009
Prepared by:	Andrea E. Steele Environmental Scientist	Date: _	October 9, 2009

Table of Contents

	0	res	
		es	
		endices	
Acron	yms a	and Abbreviations	iv
1.0	Intro	oduction	
	1.1	Purpose and Scope	1-1
	1.2	RVAAP Description and Background	1-1
	1.3	Open Demolition Area #1	
		1.3.1 Summary of Investigation Activities at Open Demolition Area	#11-8
		1.3.1.1 1996 USACHPPM Evaluation	
		1.3.1.2 Water Quality Surveillance Program	
		1.3.1.3 Phase I Remedial Investigation	
		1.3.1.4 Confirmatory Sampling for IRA	
		1.3.2 Summary of Removal Actions at Open Demolition Area #1	
2.0	Data	a Quality Objectives	
	2.1	Conceptual Site Model	
	2.2	State the Problem	
	2.3	Identify Decisions to be Made	
	2.4	Define Study Boundaries	
	2.5	Identify Decision Rules	
	2.6	Identify Inputs to the Decision	
	2.7	Specify Limits on Decision Error	
	2.8	Optimize the Sample Design	
3.0		a Evaluation	
0.0	3.1	Data Reduction and Screening	
	0.11	3.1.1 Frequency of Detection	
		3.1.2 Facility-Wide Background Screen	
		3.1.3 Essential Nutrient Screen	
		3.1.4 Cleanup Goal Screening Criteria	
		3.1.5 Data Presentation	
	3.2	Surface Soils	
	0.2	3.2.1 Inorganics	•
		3.2.2 Explosives and Propellants	
		3.2.3 Semivolatile Organic Compounds	
		3.2.4 Volatile Organic Compounds	
		3.2.5 PCBs	
		3.2.6 Summary of Surface Soil Samples	
	3.3	Post-IRA Phase I RI Subsurface Soil	
	0.0	3.3.1 Inorganics	
		3.3.2 Explosives and Propellants	
		3.3.3 Semivolatile Organic Compounds	
		3.3.4 Volatile Organic Compounds	
			J-II

		3.3.5	PCBs		
		3.3.6	Summar	y of Phase I RI Subsurface Soil Samples	
	3.4	IRA Su		Soil Samples	
		3.4.1		CS	
		3.4.2		es and Propellants	
		3.4.3		atile Organic Compounds	
		3.4.4		Organic Compounds	
		3.4.5		· ·	
		3.4.6		y of IRA Subsurface Soil Samples	
	3.5	Summa		ults	
4.0	Samp	ole Desig	, n		4-1
	4.1	Geoph	, ysical Inve	estigation	4-1
		4.1.1	Rational	e	4-1
		4.1.2	Geophys	sical Investigation Location	4-1
		4.1.3		sical Investigation Method	
		4.1.4	General	Geophysical Survey Procedures	
	4.2	Enviror		vestigation	
		4.2.1		ace Soils	
			4.2.1.1	Rationale	4-4
			4.2.1.2	Subsurface Soil Sampling Locations	4-4
			4.2.1.3	Sample Analysis	
		4.2.2	Surface	Soils	
			4.2.2.1	Rationale	
			4.2.2.2	Surface Soil Sampling Locations	
			4.2.2.3	Sample Analysis.	
5.0	Sumr	nary of C	Conclusior	۱۶	5-1
6.0	Refer	ences			6-1

List of Figures _____

Figure 1-1	Location Map	. 1-2
Figure 1-2	RVAAP Facility Map	. 1-3
Figure 1-3	Open Demolition Area #1 Site Map	. 1-6
Figure 1-4	Open Demolition Area #1 Site Area Plan	. 1-7
Figure 1-5	Open Demolition Area #1 Phase I RI Soil Sample Locations	1-10
Figure 1-6	Open Demolition Area #1 Phase I RI Surface Water, Sediment, and Groundwater Samp Locations	
Figure 1-7	Open Demolition Area #1 IRA Grid Locations and Sampling Location Plan	1-15
Figure 3-1	Open Demolition Area #1 IRA Grid and Phase I RI Soil Sample Locations Overlay	. 3-5
Figure 4-1	Proposed Geophysical Survey Area	. 4-2

List of Tables _____

Detected Analytes in Post-IRA Surface Soil Samples at RVAAP-03 Open Demolition Area #1	3-17
Identification of COPCs in Post-IRA Surface Soil at RVAAP-03 Open Demolition Area #1	3-21
Detected Analytes in Phase I RI Post-IRA Subsurface Soil Samples at RVAAP-03 Open Demolition Area #1	3-24
Identification of COPCs in Phase I RI Post-IRA Subsurface Soil at RVAAP-03 Open Demolition Area #1	3-29
Detected Analytes in IRA Subsurface Soil Samples at RVAAP-03 Open Demolition Area #1	3-30
Identification of COPCs in IRA Subsurface Soil at RVAAP-03 Open Demolition	3-34
Identification of Carcinogenic COCs in IRA Subsurface Soil at RVAAP-03 Open	
Identification of Non-Carcinogenic COCs in IRA Subsurface Soil at RVAAP-03 Open Demolition Area #1	3-38
	Area #1 Identification of COPCs in Post-IRA Surface Soil at RVAAP-03 Open Demolition Area #1 Detected Analytes in Phase I RI Post-IRA Subsurface Soil Samples at RVAAP-03 Open Demolition Area #1 Identification of COPCs in Phase I RI Post-IRA Subsurface Soil at RVAAP-03 Open Demolition Area #1 Detected Analytes in IRA Subsurface Soil Samples at RVAAP-03 Open Demolition Area #1 Identification of COPCs in IRA Subsurface Soil at RVAAP-03 Open Demolition Area #1 Identification of CArcinogenic COCs in IRA Subsurface Soil at RVAAP-03 Open Demolition Area #1 Identification of Carcinogenic COCs in IRA Subsurface Soil at RVAAP-03 Open Demolition Area #1 Identification of Non-Carcinogenic COCs in IRA Subsurface Soil at RVAAP-03 Open

List of Appendices_____

Appendix A	ProUCL Software Program Output
Appendix B	Comment Response Table

Acronyms and Abbreviations_

AOC	Area of Concern
bgs	below ground surface
BEHP	bis(2-ethylhexyl)phthalate
CERCLA	Comprehensive Environmental Response, Compensation and
	Liability Act
COC	chemical of concern
COPC	contaminant of potential concern
CSM	conceptual site model
CUG	Cleanup Goal
DNT	dinitrotoluene
DoD	Department of Defense
DQO	Data Quality Objective
EPC	Exposure Point Concentration
FSAP	Facility-Wide Sampling and Analysis Plan
GPO	geophysical prove out
GPS	global positioning system
HHRA	human health risk assessment
HMX	octhydro-1,3,5,5-tetranitro-1,3,5,7-tetrazocine
HQ	Hazard Quotient
IRA	Interim Removal Action
IRP	Installation Restoration Program
MD	munitions debris
MEC	munitions and explosives of concern
mg/kg	milligrams per kilogram
MI	multi-increment
MKM	MKM Engineers, Inc.
NTA	National Advisory Committee for Aeronautics Test Area
	(RVAAP-38)
OB/OD	open burning and open detonation
ODA1	Open Demolition Area #1
OHARNG	Ohio Army National Guard
Ohio EPA	Ohio Environmental Protection Agency
PCB	polychlorinated biphenyl
PRG	Preliminary Remediation Goal
RI	Remedial Investigation
RTK	Real-Time Kinematic
RTS	Robotic Total Station
RVAAP	Ravenna Army Ammunition Plant
RDX	1,3,5-trinitro-1,3,5-triazacyclohexane
RRSE	Relative Risk Site Evaluation
SAIC	Science Applications International Corporation
Shaw	Shaw Environmental & Infrastructure, Inc.
SOW	scope of work

Acronyms and Abbreviations (continued)

SVOC	semivolatile organic compound
TAL	Target Analyte List
TNT	trinitrotoluene
UCL	Upper Confidence Limit
USACHPPM	United States Army Center for Health Promotion and Preventive
	Medicine
USACE	United States Army Corps of Engineers
USATHAMA	United States Army Toxic and Hazardous Materials Agency
USEPA	United States Environmental Protection Agency
VOC	volatile organic compound

This page intentionally left blank.

1.0 Introduction

1.1 Purpose and Scope

This *Data Quality Objectives (DQO) Report* provides a systematic approach for evaluating data requirements to support the decision making process associated with possible future actions for Ravenna Army Ammunition Plant (RVAAP)-03 - Open Demolition Area #1 (ODA1) located at RVAAP in Ravenna, Ohio (Figure 1-1). This *DQO Report* is being prepared by Shaw Environmental & Infrastructure, Inc. (Shaw) under Delivery Order (DO) 0002 for Architectural/Engineering Environmental Services at RVAAP under the Indefinite Delivery/Indefinite Quantity Contract No. W912QR-08-D-0013. The task order was issued by the United States Army Corps of Engineers, Louisville District (USACE) on September 22, 2008.

The purpose of this *DQO Report* is to determine if there are any data gaps from past investigation and remedial activities at RVAAP-03 where the extent of contamination was not adequately characterized or delineated or if there are any other efforts required to assess environmental closure of the Area of Concern (AOC). The evaluation processes presented in this document and performed under this DO were conducted in accordance with the Facility-Wide DQOs described in the *Facility-Wide Sampling and Analysis Plan (FSAP)* (Science Applications International Corporation [SAIC], 2001a) and the revised Scope of Work (SOW), dated August 26, 2008, included as an attachment to the DO contract. Since the proposed activities in this DQO report are occurring after the final Phase I Remedial Investigation (RI) Report, data collected during activities identified in the DQO report will be incorporated into the Feasibility Study and used as part of the remedy selection process. This approach has been discussed with the Ohio Environmental Protection Agency (Ohio EPA) and they have concurred on the approach. At present, a geophysical survey of areas within ODA1 is being proposed. Additional environmental media sampling may be required based on the results of the geophysical survey.

1.2 RVAAP Description and Background

The RVAAP is located in northeastern Ohio within Portage and Trumbull Counties, approximately 1.6 km (1 mile) northwest of the city of Newton Falls and 4.8 km (3 miles) eastnortheast of the city of Ravenna (Figure 1-1). The facility is a parcel of property approximately 17.7 kilometers (11 miles) long and 5.6 kilometers (3.5 miles) wide bounded by State Route 5, the Michael J. Kirwan Reservoir, and the CSX System Railroad on the south; Garret, McCormick, and Berry roads on the west; the Norfolk Southern Railroad on the north; and State Route 534 on the east (Figure 1-2).

File: Z:\Figures\Environmental Services Contract\Fig 1-2_MABS site_plan.dwg Layout: L1-L4_site_plan User | This page intentionally left blank

As of February 2006, a total of 20,403 acres of the former 21,683-acre RVAAP have been transferred to the United States Property and Fiscal Officer for Ohio and subsequently licensed to the Ohio Army National Guard (OHARNG) for use as a training site. Currently, RVAAP consists of 1,280 acres in several distinct parcels scattered throughout the confines of the Camp Ravenna Joint Military Training Center (Camp Ravenna). RVAAP's remaining parcels of land are located completely within Camp Ravenna. Camp Ravenna did not exist when RVAAP was operational, and the entire 21,683-acre parcel was a government-owned, contractor-operated industrial facility.

The RVAAP Installation Restoration Program (IRP) encompasses investigation and cleanup of past activities over the entire 21,683 acres of the former RVAAP, and therefore references to the RVAAP in this document are considered to be inclusive of the historical extent of the RVAAP, which is inclusive of the combined acreages of the current Camp Ravenna and RVAAP, unless otherwise specifically stated. The Ohio EPA is the lead regulatory agency for the investigation and remediation conducted by USACE under the United States Department of Defense (DoD) IRP.

1.3 Open Demolition Area #1

The ODA1 AOC is approximately 6 acres and was formerly used primarily for the open burning and open detonation (OB/OD) of munitions, explosives and associated materials (Figures 1-3 and 1-4). ODA1 is located within the National Advisory Committee for Aeronautics (NACA) Test Area (NTA) (RVAAP-38). It is believed that ODA1 was used primarily during the 1940's. The OB/OD area within ODA1 was surrounded by an oval shaped earthen berm and is located adjacent to areas where aircraft used at the NTA were staged. Burning areas at ODA1 may have been cleared by pushing debris and scrap to the periphery of ODA1 using heavy equipment. Historical information and visual inspections conducted in 2008 indicate that the boundaries of ODA1 may not have been fully defined. Munitions and explosives of concern (MEC)/munitions debris (MD) has been observed in areas outside of the previously remediated areas and north of the former NACA crash strip. ODA1 is currently covered with grass and the berms around the OB/OD area essentially removed. ODA1 has been unused since the cessation of OB/OD activities although dismounted troop training by the OHARNG has been ongoing at the surrounding NTA site since 1969. Seibert stakes have been installed to define the current boundary of the ODA1 site.

Topography across the ODA1 AOC is relatively flat with little change in elevation. The AOC is slightly elevated as compared to its immediate surroundings and surface drainage is to the east, west, and south. Drainage from within the bermed OB/OD area is south via a culvert towards a shallow ditch which ultimately discharges at ground surface within the Hinkley Creek drainage

Figure 1-3 Open Demolition Area #1 Site Map

Figure 1-4 Open Demolition Area #1 Site Area Plan

area. Depth to groundwater at the site and the adjacent NTA site has been observed to be 15 to 16 feet below ground surface (bgs).

A Phase I RI focusing on the OB/OD area was conducted in 1999 (SAIC, 2001b) to further evaluate the occurrence and distribution of contamination in five media within the AOC: surface soils (from 0 to 1 foot bgs), subsurface soils (1 to 3 feet bgs, 3 to 5 feet bgs, and 6 to 8 feet bgs), sediment, surface water, and groundwater. The one groundwater sample collected under the Phase I RI was obtained using direct-push boring techniques. Groundwater obtained from well points at RVAAP is solely used for screening purposes. Specifically, any detects are considered minimal values and non-detects do not definitively indicate lack of contamination. Groundwater data that is used at RVAAP for the purpose of evaluation, risk assessment, etc., must be obtained from properly installed, developed, and sampled monitoring wells. The RI results indicated the primary media of concern were the surface and subsurface soil. Contaminants detected in the surface soil greater than background included metals, low levels of explosives and propellants (i.e., 8 of 17 detections are estimated values less than the reporting limits), and isolated low level detections of volatile organic compounds (VOCs) and semivolatile organic compounds (SVOCs) (i.e., detections are estimated values less than the reporting limits). Subsurface soils were primarily found to contain metals greater than background criteria with isolated, low level detections of VOCs and SVOCs (i.e., 8 of 9 VOCs detections and each of the SVOCs detections are estimated values less than the reporting limits). The detected contaminants are consistent with the historical activities performed at the site.

An interim removal action (IRA) (Section 1.2.3) was performed in 2000-2001 (MKM Engineers, Inc. [MKM], 2004) to address impacted soils identified in the Phase I RI and remove residual MEC debris. The removal activities consisted of the collection and disposal of residual MEC related scrap in the surface and subsurface soils and the assessment, excavation, and off-site disposal of soils from areas within ODA1 that had previously indicated explosives contamination. Soil excavation and screening activities were based on data from the Phase I RI. Confirmatory sampling was also performed as part of the IRA to assess contaminant concentrations in soils left in place at the base of the grid excavations. As a result, a large portion of the surface and subsurface characterization data presented in the Phase I RI may not be applicable since the soil has been subsequently removed and the areas resampled.

1.3.1 Summary of Investigation Activities at Open Demolition Area #1

Previous investigation activities at ODA1 consisted of the following:

1.3.1.1 1996 USACHPPM Evaluation

Three surface soil samples were collected and analyzed as part of a Relative Risk Site Evaluation (RRSE) in 1996 by United States Army Center for Health Promotion and Preventive Medicine (USACHPPM, 1996). Although the data indicated the presence of seven metals and one explosive (2,4,6-trinitrotoluene [TNT]) in the soil samples collected, the limited amount of data

and associated quality assurance documents did not allow for a comprehensive assessment of the extent of contaminant impact to soil media from ODA1 (SAIC, 2001b).

1.3.1.2 Water Quality Surveillance Program

Surface water samples were collected and analyzed at HC-2 (see Figure 1-3) as part of the installation Water Quality Surveillance Program by United States Army Toxic and Hazardous Materials Agency (USATHAMA, 1980-1992). Low concentrations (i.e., detections are estimated values less than the reporting limits) of copper, zinc, and 1,3,5-trinitro-1,3,5-triazacyclohexane (RDX) were observed on one occasion at HC-2 (Figure 1-3). However, the limited amount of data, associated quality assurance documents, and the distance and location of HC-2 from ODA1 did not allow for a comprehensive assessment of the extent of contaminant impact to surface water media from ODA1 (SAIC, 2001b).

1.3.1.3 Phase I Remedial Investigation

A Phase I RI was performed in 1999 (SAIC, 2001b) to assess the occurrence, distribution, and potential risks from contamination in soil to a depth of 2.4 meters (8 feet) bgs, sediment, groundwater, and surface water. The RI activities were focused on the OB/OD area of ODA1 and surrounding areas to also identify whether releases of contamination beyond the AOC boundary had occurred. The one groundwater sample collected under the Phase I RI was obtained using direct-push boring techniques. Groundwater obtained from well points at RVAAP is solely used for screening purposes. Specifically, any detects are considered minimal values and non-detects do not definitively indicate lack of contamination. Groundwater data that is used at RVAAP for the purpose of evaluation, risk assessment, etc., must be obtained from properly installed, developed, and sampled monitoring wells. Surface water and sediment were assessed by collecting samples from existing upgradient and downgradient surface water and sediment drainage channels. The results of the Phase I RI at ODA1 indicated the presence of site-related contamination in soil. Sediment and surface water in Hinkley Creek do not appear to have received significant contamination related to AOC operations. Contaminant migration off of the AOC also appears to be negligible based on the Phase I RI data. Screening of chemical data against risk-based criteria (Section 5.4 of the Phase I RI [SAIC, 2001]) showed the presence of human health and ecological contaminants of potential concern (COPCs) in each environmental medium. The Phase I RI identified human health as the primary factor for facilitating further remedial activities at ODA1 based on the present and continued use of the site for OHARNG training. A baseline human health risk assessment (HHRA) and a Screening Ecological Risk Assessment were also recommended by the Phase I RI. The data collected during the Phase I investigation included: 42 surface soil samples, 77 subsurface soil samples, 4 sediment samples, 3 surface water samples, and 1 groundwater sample. Soil sample locations are presented on Figure 1-5. Surface water, sediment and groundwater sample locations are shown on Figure 1-6. The findings of the Phase I RI indicated the following for each media:

Final

Figure 1-5 Open Demolition Area #1 Phase I RI Soil Sample Locations

Figure 1-6 Open Demolition A

Open Demolition Area #1 Phase I RI Surface Water, Sediment, and Groundwater Sample Locations

Surface Soil

- The south ditch and "hot spots" in the western and southern portions of the plane storage area (see Figure 1-4) represent the principal locations having contamination greater than background levels. The highest concentrations of explosives and propellants are clustered along the south drainage ditch, indicating potential contaminant migration via surface water runoff across the AOC and deposition along the ditch.
- Surface soils contained explosives (2,4,6-TNT and 2,4-dinitrotoluene [DNT]) and nitrocellulose with 2,4,6-TNT exceeding the residential risk-based screening criterion used at the time of the sampling at four locations (DA1-001, DA1-010, DA1-030, and DA1-040) and 2,4-DNT exceeding the residential criterion at three locations (DA1-010, DA1-014, and DA1-022).
- Ten (10) metals were identified as COPCs. Of these metals, aluminum, arsenic, cadmium, chromium, lead, and manganese exceeded both background values and risk-based screening criteria used in the Phase 1. The greatest exceedances of human health risk-based screening criteria were observed in the western and southern portions of the plane storage area.
- 4-Methylnapthlene was the only SVOC identified as a COPC due to lack of a riskbased screening criterion for comparison.
- VOCs are not COPCs in surface soil.
- Screening of data against migration to groundwater criteria shows that 2,4-DNT, antimony, arsenic, barium, cadmium, chromium, and zinc exceeded their respective criteria.

Subsurface Soil

- Explosives, SVOCs, and VOCs were not identified as COPCs in subsurface soil.
- Aluminum, arsenic, cadmium, chromium, copper, lead, and zinc were identified as COPCs in subsurface soil. All but copper and zinc exceeded both risk-based screening criteria and background concentrations available at the time of the RI investigation. Almost all exceedances of background and risk-based screening levels occured in the western half of the AOC. In general, the concentrations of metals are lower in subsurface soil samples than in surface soil samples.
- Screening of data against migration to groundwater criteria shows that arsenic, cadmium, and chromium exceeded their respective criteria (Section 5.4 of the Phase I RI [SAIC, 2001b]).

Sediment and Surface Water

Aluminum and chromium were the only constituents identified as human health COPCs in sediment. The maximum detected value of 14,400 milligrams per kilogram (mg/kg) in dry sediment at station DA1-044 only slightly exceeds the background criteria (13,900 mg/kg) for

aluminum. The only chromium result greater than background (18.1 mg/kg) occurred at station DA1-046 at HC-2 (18.8 mg/kg). Sediment ecological COPCs include polychlorinated biphenyl (PCB)-1260, lead, nickel, aluminum, and magnesium.

Zinc concentrations greater than background concentrations were observed in surface water samples collected at station DA1-045 in Hinkley Creek. DA1-45 is the closest point in Hinkley Creek to ODA1 and is located to the south of the AOC. RDX was also detected once at the facility exit point (DA1-046, HC-2) at an estimated concentration (0.24 μ g/L) less than the detection limit. Two additional compounds bis(2-ethylhexyl)phthalate (BEHP) and chloroform, were also detected in surface water samples collected from DA1-043 that exceeded their risk-based screening criteria at the time of the RI. However, DA1-043 is located upgradient of ODA1 indicating the contaminants are not related to ODA1. Surface water ecological COPCs include BEHP, RDX, zinc, and calcium.

The data collected during the Phase I RI indicated that sediment and surface water in Hinkley Creek has not been significantly contaminated as a result of former operations at ODA1.

1.3.1.4 Confirmatory Sampling for IRA

Following the excavation and removal of soil as part of the IRA performed in 2000-2001 at ODA1, confirmatory samples, consisting of soils from four locations from the base of each grid excavated, were collected to assess residual contaminant impact to soil. A total of 29 soil samples were collected from depths ranging between 2 and 4 feet depending upon the type of excavation being performed. Given the depth of the sample locations, these samples equate to a subsurface soil sample by RVAAP definition. All soil samples were submitted for Target Analyte List (TAL) metals and explosives analysis. Ten (10) percent of the samples (3 total) were also analyzed for the RVAAP full suite of parameters (pesticides, PCBs, propellants, VOCs, SVOCs, and cyanide). Field duplicates of samples designated for the full suite of analysis were also analyzed for the full suite (3 additional samples). In addition, excavated soils were also screened in the field for explosives to determine if soils could be reused as backfill. Representative soil samples were screened using the Jenkins analysis for RDX and TNT. A further description of the removal activities is presented below in Section 1.3.2.

1.3.2 Summary of Removal Actions at Open Demolition Area #1

MEC Debris Removal & Interim Removal Action

The MEC debris removal and IRA at ODA1 were initiated based on the findings of the Phase I RI conducted in 1999 at ODA1. The objective of the removal action at ODA1 was to remove the MEC debris, and the hazards associated with it, to a depth of 4 feet bgs and to eliminate the human health exposure to environmental chemicals of concern (COCs) that may have originated from activities at ODA1. Sixteen (16) 50 by 50-foot grids (Grids #1 through 16) were

established for excavation based on residual chemical contamination observed in the RI. Grid locations were based on Phase I samples indicating metals concentrations greater than RVAAP background values (as developed in the Winklepeck Burning Grounds Phase II RI [USACE, 2001]) and/or detections of explosive compounds in soil. Based upon the Phase I sample results, the 0 to 1 foot lift from all 16 grids exceeded these criteria. Grid #7 exceeded these criteria to a depth of 3 feet bgs. In addition, four other areas (Grids # 17- 20) were identified as having a high concentration of MEC related debris on the surface outside of the designated environmental grids. These four grids were excavated and MEC debris removed through sifting at the site. The soil from these four grids did not exceed the established chemical criteria at the time based upon the Phase I sampling results and the soils could be used immediately for backfill.

Figure 1-7 shows the approximate grid locations overlain on the ODA1 site. Eleven (11) grids exhibited explosives contamination with MEC contamination in soil (Grids # 1, 2, 3, 4, 5, 6, 11, 13, 14, 15, 16); 1 grid exhibited high lead contamination with MEC contamination in soil (Grid # 7); 4 grids exhibited explosive and metals contamination with MEC contamination in soil (Grids # 8, 9, 10, 12); and 4 grids exhibited the presence of high surficial MEC contamination with no environmental concerns (Grids # 17, 18, 19, 20). The grids were excavated to between 2 and 8 feet bgs with the majority to 4 feet bgs. Grid 5 includes a 10-feet x 5-feet area excavated to between 6 and 8 feet bgs. Grid 11A was excavated to 5 feet bgs. Grids 17, 18, 19, and 20 were excavated to 2 feet bgs. Grid 21 was excavated to between 2 and 4 feet bgs. The road base bisecting Grids 3, 4, 8, and 14 was not removed.

The 16 grids with environmental contamination were excavated to a total depth of 4 feet bgs. The top lift (0 to 1 foot for all grids except for Grid #7 which was 0 to 3 feet) was excavated, sifted and staged for waste characterization. The remaining soil was excavated and staged in 100 cubic yard stockpiles after sifting and screened for explosives using the Jenkins Field Test Kit. Soils with no detections for explosives and less than background concentrations for metals were used as backfill. The four grids with MEC only concerns were excavated to approximately 2 feet bgs, sifted and returned to the AOC for backfill. A total of 81,800 pounds of MEC scrap was removed from the site. Segregated soils for the grid excavations were sampled for waste characterization. After review and approval of the data, Ohio EPA determined the soils did not pose a risk to human health and gave the approval to reuse the material as backfill (Grids # 1, 2 and 20) and regrading material in ODA1. A total of approximately 1,455 cubic yards of soil was segregated from the IRA at ODA1 before being reused at the site. Also, at the time of MKM's report, approximately 8 cubic yards of VOC impacted soils remained at the site pending removal from the site. The 8 cubic yards was transported offsite for disposal by URS in 2008.

Figure 1-7 Open Demolition Area #1 IRA Grid Locations and Sampling Location Plan

This page intentionally left blank.

2.0 Data Quality Objectives

As part of the facility-wide approach to environmental investigation activities at RVAAP, facility-wide DQOs have been developed per the requirements outlined in the *FSAP* (SAIC, 2001a). As stated in the *FSAP*, the DQO process is a tool to guide investigations at Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) sites and will be incorporated to identify data gaps at ODA1. The DQOs serve two major purposes: (1) to present the facility-wide approach to sampling at the installation, and (2) to present the process that will be used to develop AOC-specific sampling and analysis plans. The DQO process culminates in the reduction of uncertainty associated with decisions related to remedial design and response actions. The following steps will be used by Shaw to implement the DQO process:

- 1. Develop the Conceptual Site Model (CSM)
- 2. State the problem
- 3. Identify decisions to be made
- 4. Define the study boundaries
- 5. Develop the decision rule (if/then)
- 6. Identify inputs to the decision (data uses and data needs)
- 7. Specify limits on uncertainty
- 8. Optimize the sample design

2.1 Conceptual Site Model

A conceptual site model (CSM) is the cornerstone for planning a field sampling effort. It reflects an understanding of the known or expected site conditions and serves as the basis for making decisions about sample locations, frequencies, and required analytes. A good CSM is inclusive of all available information, incorporating the hydrogeologic features and other characteristics of the site that combine to define the problem to be addressed (e.g., location of buried waste, primary contaminants and their properties, contaminant transport pathways, and potential human exposure scenarios).

The CSM presented in the *FSAP* is applicable for use at ODA1 for this DQO Report. Site information that adds to the CSM for ODA1 is discussed in Section 1.3 of this *DQO Report*. Operational information and analytical data collected during historical environmental investigations at the site are further discussed in Section 3.0 of this *DQO Report*. This information has been used to refine the CSM that was presented in the Phase I report. Refinements to the CSM are as follows:

Surface Soils: Previous surface soil samples collected at the site focused primarily on identified potential source areas within the AOC boundaries – the OB/OD area, plane storage areas, and

low lying drainage areas. Sample results indicated that surface soils had been impacted by primarily metals and low level explosives (i.e., detections are primarily estimated values less than the reporting limits) and the bulk of the contamination was concentrated around the south ditch and other isolated hot spot areas. Following the removal of soils from the grids established during the 2000 IRA, surface soils remain impacted by metals.

Subsurface Soils: Following the removal of soils from the grids established during the 2000 IRA, confirmatory composite samples from the base of these excavations indicated that subsurface soils had been impacted by metals (aluminum, arsenic, beryllium, chromium, copper, and lead).

Sediment: Sediment samples collected under the Phase I RI did not indicate impact from ODA1 activities. Discussions with stakeholders (30 December 2008 Data Gaps conference call) indicate that if additional sediment investigations were determined necessary, they would be performed under activities associated with the NTA site because ODA1 is not considered a possible source for impact to sediment.

Surface Water: Surface water samples collected under the Phase I RI did not indicate impact from ODA1 activities. Discussions with stakeholders (30 December 2008 Data Gaps conference call) indicate that if additional surface water investigations were determined necessary, they would be performed under activities associated with the NTA site because ODA1 is not considered a possible source for impact to surface water.

Groundwater: The one groundwater sample collected under the Phase I RI was obtained using direct-push boring techniques. Groundwater obtained from well points at RVAAP is solely used for screening purposes. Specifically, any detects are considered minimal values and non-detects do not definitively indicate lack of contamination. Groundwater data that is used at RVAAP for the purpose of evaluation, risk assessment, etc., must be obtained from properly installed, developed, and sampled monitoring wells. The groundwater sample did not indicate any impact from ODA1 activities. Future sampling of groundwater would be performed under a facility-wide program for groundwater.

2.2 State the Problem

The surface and subsurface soils are impacted primarily by metals even after the removal action. The extent of environmental impacts need to be determined through additional sampling. In addition, the actual boundary of ODA1 needs to be verified. Visual observations at the site and historical operational data indicate MEC debris may extend beyond the current boundaries. Consequently, additional environmental sampling for surface and subsurface soils will be required if the MEC debris is found to extend beyond the current boundaries. Additional surface water, sediment, and groundwater sampling related to the ODA1 area will be conducted as part of the NTA and facility-wide sampling programs.

2.3 Identify Decisions to be Made

The key decisions for all investigations at RVAAP have been identified in Section 3.2.4 and in Table 3-1 of the *FSAP*. Additional investigation data (both environmental sampling and a geophysical survey) is necessary to finalize the decision process and determine whether additional response action is needed. Data collected during the additional investigation would satisfy the following data needs:

- The geophysical survey data would be of sufficient quality to determine if the boundaries of ODA1 (RVAAP-03) need to be expanded beyond its current designation.
- The data for additional environmental soil samples (both planned and those resulting from the geophysical survey) are of sufficient quality to support a determination as to the need for a remedial response;
- The data are to be of sufficient quality to determine if contaminants detected during any additional investigation are associated with ODA1 (RVAAP-03) or related to operations at the surrounding sites (RVAAP-38).
- The data are to be of sufficient quality to be legally defensible.
- The data are to be of sufficient quality and quantity to support screening assessments for human health and the environment.

If the geophysical survey results indicate the need for additional sampling is necessary, this report will be amended to account for any new proposed activities.

2.4 Define Study Boundaries

Previous site investigations and IRAs at ODA1 indicate that the nature and extent of contamination has not been adequately defined for the purposes of supporting the development of a path to closure for the site. In addition, the extent of the MEC debris area may not be fully defined based on historical information and visual observations made at the site. As a result, a geophysical survey will be performed to reevaluate the current boundaries of the site.

2.5 Identify Decision Rules

Decision rules used to guide remediation decisions are provided in Section 3.2.6 of the *FSAP*. Application of the decision rules will result in the determination of the extent of releases at ODA1. The decision rules also provide information necessary to allow Ohio EPA to make a determination on the regulatory status of the site. As stated in the *FSAP*, the purposes of the sampling assessment data are to determine the type of contamination, to compare these data to

the risk-based facility-wide Cleanup Goals (CUGs) for unrestricted land use or OHARNG use and to determine if further investigation is needed. The Phase I RI report characterized the nature of environmental impact at ODA1. A subsequent IRA addressed the more contaminated surface and subsurface soils based on the Phase I results, collected and removed MEC debris, and sampled subsurface soils to 4 feet. Consequently, ODA1, outside of any further delineation of the boundaries of the current ODA1, appears to be adequately characterized to support the selection of an approach to environmental closure in accordance with the decision rules presented in the *FSAP*. However, the comparison data used in the Phase I RI and IRA (i.e., 1999 United States Environmental Protection Agency [USEPA] Region 9 Preliminary Remediation Goals [PRGs] among other general risk-based criteria) have been updated since the time those activities were performed. The Phase I RI and IRA data are now to be compared to more current CUGs as identified in Section 3.0 to determine if the site has been adequately characterized.

During the Feasibility Study (FS) stage, Shaw will complete a screening level ecological risk assessment (SLERA) following procedures in the *Final Ravenna Army Ammunition Plant Facility Wide Ecological Risk Work Plan* (USACE, 2003) and USEPA's *Ecological Risk Assessment Guidance for Superfund Sites* (USEPA, 1997). Ecological screening values or benchmarks used in the SLERA must be pre-approved by USACE and Ohio EPA.

2.6 Identify Inputs to the Decision

Inputs to the decision process are the analytical and geophysical results and the revised CSM developed from these field observations.

2.7 Specify Limits on Decision Error

Limits on decision errors for geophysical investigations are specified in *Section G, Contractor Minimum Control Requirements*, of the SOW provided to Shaw.

2.8 Optimize the Sample Design

The sample design and rationale for additional investigation at ODA1 is described in detail in Section 4.0 of this *DQO Report*. The intent of additional sampling and analysis at the site is to focus on the criteria identified in Section 3.2.9.1 of the *FSAP*.

A geophysical investigation will be performed over the site prior to additional environmental investigation activities to identify potential source areas and materials that may require removal. Identified potential source areas of debris and contaminant accumulation points represent specific focus areas for additional surface and subsurface sampling. Additional environmental sampling may be required based on the results of the proposed geophysical survey. If additional environmental sampling is required, any changes to the proposed sampling design program for ODA1 will be documented in future CERCLA documents.

3.0 Data Evaluation

This section presents the data evaluation methods and screening criteria used to identify COPCs and COCs for soils sampled during the Phase I RI and IRA activities. In general, the evaluation and screening methodology will initially compare constituents present at ambient concentrations (i.e., RVAAP-wide background) from those present at concentrations that indicate potential impacts related to historical operations at ODA1. The identified constituents will then be compared to the facility-wide CUGs for unrestricted land use scenarios for the Residential Farmer (adult and child) and the desired use of the land by OHARNG. Summary analytical results are presented in this section that addresses each data aggregate collected during the Phase I RI and IRA activities. A table summary of the analytical results for detected constituents included in the *Phase I RI Report* (SAIC, 2001b) and the *OE/UXO Removal & Interim Removal Action Report for the Open Demolition Area #1* (MKM, 2004) for surface and subsurface soil samples are presented in Tables 3-1, 3-3, and 3-5 (at the end of this section).

Surface water and sediments were not included in the evaluation because ODA1 does not appear to be a source to either media based on information presented in the Phase I RI Report. Future sampling of sediment and surface water, if required, and the means to manage any detected contaminants will be addressed under the NTA site characterization effort. Groundwater is not considered since any wells in this area will ultimately be addressed on a facility-wide basis.

3.1 Data Reduction and Screening

The data reduction process employed to identify COPCs involved identifying frequency of detection summary statistics, comparison to RVAAP facility-wide background values (inorganics only) and evaluation of essential nutrients. This analysis was presented for the Phase I RI data in the *Phase I RI Report* (SAIC, 2001b). The IRA data has not previously undergone this process, thus, historical site data was used from the *OE/UXO Removal & Interim Removal Action Report for the Open Demolition Area #1* (MKM, 2004). Quality control (QC) samples and field duplicates were excluded from the screening data sets. All analytes having at least one detected value were included in the data reduction process. Following the data reduction process outlined in the following sections, the data was then screened to identify COPCs and COCs.

3.1.1 Frequency of Detection

The frequency of detection screening methodology is appropriate for discrete sample data sets as is the case for the environmental samples collected during the Phase I RI activities. The IRA samples were composites and are not subject to frequency of detection screening. Chemicals that are detected infrequently in discrete samples, except explosives and propellants, may be artifacts in the data due to sampling, analytical, or other problems, and therefore may not be related to the site activities. For sample aggregations, except for explosives and propellants, with at least 20 samples and frequency of detection of less than 5 percent, a weight of evidence approach is used to determine if the chemical is AOC related. The magnitudes and clustering of the detections and the potential source of the chemical will be evaluated. If detected results are not clustered, and the chemical is not found in other media at the study area, and the concentrations are not substantially elevated relative to the detection limit, and the chemical was not used in the area being investigated, then the chemical will be considered spurious and be eliminated from further consideration. Therefore, chemicals that are detected only at low concentrations in less than 5 percent of the samples from a given medium are dropped from further consideration, unless their presence is expected on historical information about the site, or it is unlikely to identify the existence of a 'hot spot' (USACE, 2005).

3.1.2 Facility-Wide Background Screen

For each inorganic constituent, concentrations were compared against established RVAAP facility-wide background values. For inorganic constituents, if the value was greater than its respective background criterion, it was considered to be a COPC. It should be noted that not all inorganic compounds, analyzed as part of the Phase I RI and IRA sampling events, have established screening levels or background values; therefore, in the event an inorganic constituent does not have an established background value, any detected result for that constituent was considered to be greater than background. This conservative process ensured that detected constituents were not eliminated as COPCs simply because they were not detected in the background data set. All detected organic compounds were considered to be greater than background because these classes of compounds do not occur naturally.

3.1.3 Essential Nutrient Screen

Chemicals that are considered to be essential nutrients (calcium, chloride, iodine, iron, magnesium, potassium, phosphorus, and sodium) are an integral part of the food supply and are often added to foods as supplements. The USEPA recommends that these chemicals not be evaluated as COPCs as long as they are 1) present at low concentrations (i.e., only slightly greater than naturally occurring levels) and 2) toxic at very high doses (i.e., much higher than those that could be associated with contact at the site) (USACE, 2005). For the Phase I RI and IRA sampling events, analyses were conducted for calcium, iron, magnesium, potassium and sodium. These five constituents were eliminated as COPCs in all environmental media based on comparison to background values.

3.1.4 Cleanup Goal Screening Criteria

Historical data collected at ODA1 and retained for further screening as COPCs as identified in the previous sections, was compared to the unrestricted land use criteria developed for the
Residential Farmer (adult and child) Land Use Scenario for RVAAP. At a minimum, each AOC must be remediated to the extent that OHARNG can fully utilize the site for their desired land use. The OHARNG receptors included the National Guard Dust/Fire Control Worker, National Guard Range Maintenance Soldier, and the National Guard Trainee. The most current version of these criteria or facility-wide CUGs is presented in the September 2008 *Draft Facility-Wide Human Health Remediation Goals at the RVAAP* (SAIC, 2008). This document was developed to support the environmental remediation of the remaining AOCs to complete final transfer of the land to OHARNG. The document contains calculated remediation goals that can accelerate the decision-making process for the remaining AOCs, taking advantage of the fact that many of the risk assessment inputs and decisions for the facility have already been agreed to by stakeholders through the application of the CERCLA process as documented in the *HHRAM* (USACE, 2005). Guidance on the application of these CUGs is provided in the June 2009 *Position Paper for the Application and Use of Facility-Wide Human Health Cleanup Goals* (USACE, 2009).

As part of this *DQO report*, Shaw will evaluate concentrations of the screened COPCs identified in surface soil (0 to 1 foot) and subsurface soil as part of the previous investigation activities presented in the *Phase I RI* report (Figure 1-5) to provide a current comparison to the agreed upon CUGs. The sampling assessment data collected during the Phase I RI will be screened to the 10^{-6} cancer risk level or hazard quotient (HQ) equal to 0.1 (1/10) the non-cancer risk) as in the *HHRAM* (USACE, 2005) because it is investigation data. Shaw will identify COCs in subsurface soil for the areas subject to remedial action during the IRA through comparison to CUGs and the Sum of Ratios method. The confirmation sampling data collected during the IRA will be screened to the 10^{-5} cancer risk level or HQ equal to 1 as in the *HHRAM* (USACE, 2005).

In accordance with the June 2009 *Position Paper for the Application and Use of Facility-Wide Human Health Cleanup Goals* (USACE, 2009), an Exposure Point Concentration (EPC) is compared to the CUGs to determine COPCs. The EPC is the lower of the maximum detected concentration of a constituent or the 95% Upper Confidence Limit (UCL) of the mean for each constituent. The 95% UCL was calculated using the most recent version of the software program ProUCL (version 4.00.04) released May 2009. The raw output from this program is included in Appendix A. In addition, the Sum of Ratios method was applied to COPCs to identify COCs. The Sum of Ratios method is used to evaluate risk by grouping the COPCs that may affect the same target organ.

3.1.5 Data Presentation

Data summary statistics and screening results for the COPCs and COCs in surface and subsurface soils at ODA1 are presented in the following sections. Screened constituents and identified COPCs and COCs are addressed in the text of this section. For each media, screening

results are presented in data summary tables at the end of this section. Output from the software program used to calculate the 95% UCLs used in the tables are presented in Appendix A.

3.2 Surface Soils

Available surface soil data was primarily generated during the Phase I investigation in 1999. A total of 42 discrete surface soil samples, excluding QC samples and field duplicates, were collected during the Phase I investigation. The samples were collected from areas that were considered potential source areas at ODA1 – the OB/OD area and its surrounding berm, plane storage areas, and the drainage ditch exiting the OB/OD area. Sample locations were selected based on a visual survey of the area conditions, such as areas with debris and/or staining, topographical depressions, areas with distressed or limited vegetation, etc. to ensure appropriate positioning of each sample point. The shallow soil samples were collected from the surface to a depth of 1 foot bgs.

Select areas at ODA1 were subject to removal action under the IRA conducted in 2000 to 2001. Since the IRA activities were focused on removing surface soil from areas where concentrations in samples were greater than earlier versions of human health criteria, select data from the Phase I RI are no longer applicable and a reduced post-IRA surface soil data set better represents current conditions at the site. No surface soil samples were collected during the 2000-2001 IRA.

Therefore, the post-IRA surface soil data set consists of 23 surface soil samples collected during the Phase I RI that are representative of existing conditions at ODA1. The approximate overlay of the IRA removal areas and Phase 1 RI soil sample locations are shown in Figure 3-1. Note that the overlay is only an approximation based on visual alignment of site features as no control points were presented in the IRA report for more accurate alignment.

These 23 samples were analyzed for TAL metals, cyanide, explosives, and propellants. While, 10 percent of the complete data set of Phase 1 RI samples (5 samples) were submitted for VOCs, SVOCs, and PCBs analysis, none of the surface soil samples in the reduced post-IRA data set were analyzed for these parameters. Antimony results in 6 of the 23 surface soil samples were rejected based on data validation criteria from the Phase I RI. Other reported sample results were considered of useable quality.

Three additional samples were collected during the 1996 USACHPPM RRSE investigation. However, the Phase I RI data is more representative of the site conditions so the RRSE investigation data have not been included in the discussion below.

Data summary statistics and screening results to identify COPCs in the reduced post-IRA surface

Figure 3-1

Open Demolition Area #1 IRA Grid and Phase I RI Soil Sample Locations Overlay

soil data set are presented in Table 3-1. A comparison of the COPCs retained to the unrestricted land use facility-wide cancer and non-cancer risk CUGs for the Residential Farmer (adult and child) and OHANRG receptors is also presented in Table 3-2. These tables are provided at the end of this section. Output from the software program used to calculate the 95% UCLs used in Table 3-2 are presented in Appendix A.

3.2.1 Inorganics

There were 16 inorganic analytes detected in surface soil samples, 4 of which were identified as COPCs (Table 3-2). None of the detected constituents were considered to be essential nutrients. The maximum concentrations detected for aluminum, antimony, lead, manganese, and selenium were less than the respective RVAAP background values; therefore, these constituents were not retained for comparison to CUGs. Background values have not been developed for cadmium or thallium; therefore, these constituents were retained as COPCs for comparison to CUGs. As the most infrequently detected constituent (antimony) was detected in 2 of 17 samples (11%), the frequency of detection screening does not result in data reduction.

The retained inorganic COPCs with developed CUGs in surface soils were screened against the CUGs for the Residential Farmer (adult and child) and OHARNG Land Use Scenarios. The inorganic constituent was retained as a COPC for further evaluation at the site if the EPC was greater than the CUGs. No CUGs have been developed for beryllium, lead, or selenium; however, beryllium was automatically retained as a COPC for further evaluation since the maximum detected concentration was greater than the background value. The maximum detected concentrations of lead and selenium were not greater than their respective background values.

The discussion below contains a brief summary of the nature and extent for each of the inorganic COPCs where the EPCs were greater than the CUGs for the Residential Farmer or OHARNG receptors. A summary of the accumulated COPCs per sample location that were retained following comparison to the facility-wide CUGs is presented in Table 3-2 at the end of this section.

Residential Farmer (Adult)

For the unrestricted land use scenario, inorganic COPCs identified for the Residential Farmer (adult) consist of arsenic and beryllium. Arsenic was detected at a concentration greater than the background value and the CUGs in 1 surface soil sample (15.6 mg/kg at DA1-034) collected from a sample location in the southeast portion of the site. Beryllium was detected at a concentration greater than the background value (no CUGs for beryllium) in 1 surface soil sample (0.94 mg/kg at DA1-008) collected from a sample location in the west/central portion of the site.

Residential Farmer (Child)

No additional inorganic COPCs were identified for the Residential Farmer (child) beyond the arsenic and beryllium identified for the Residential Farmer (adult). A review of the dispersion of arsenic and beryllium for this receptor indicates that the contaminant distribution is consistent with that reported for the Residential Farmer (adult).

National Guard Dust/Fire Control Worker

Beryllium was the only COPC in surface soil identified for the National Guard Dust/Fire Control Worker. The distribution of beryllium in surface soil is consistent with that reported for the Residential Farmer (adult).

National Guard Range Maintenance Soldier

In addition to the inorganic COPC (beryllium) identified for the National Guard Dust/Fire Control Worker, arsenic was identified as a COPC for the National Guard Range Maintenance Soldier. The distribution of arsenic and beryllium in surface soil is consistent with that reported for the Residential Farmer (adult).

National Guard Trainee

Four inorganics were identified as COPCs for the National Guard Trainee receptor scenario including arsenic, beryllium, chromium (total), and cobalt. The distribution of arsenic and beryllium in surface soil is consistent with that reported for the Residential Farmer (adult and child). Chromium was detected at concentrations greater than the background value and the CUGs in 5 surface soil samples collected from sample locations in the central portion (DA1-018 and DA1-019), southwest perimeter (DA1-026), southern perimeter (DA1-030), and southwest portion (DA1-034) of the site. Cobalt was detected at concentrations greater than the background value and the central portion (DA1-018), southern perimeter (DA1-030), and southwest portion (DA1-034) of the site.

3.2.2 Explosives and Propellants

Two explosives (1,3,5-trinitrobenzene and octhydro-1,3,5,5-tetranitro-1,3,5,7-tetrazocine [HMX]) were detected concurrently in ODA1 surface soils in the post-IRA data set at sampling location DA1-030 located along the southern perimeter of the site. HMX was also detected at surface soil sampling location DA1-003 located along the road bed in the east/central portion of the site. No other explosives or propellants were detected. There are no RVAAP background values for explosives; as such, background is set at zero. The results of the explosives are less than the CUGs for the Residential Farmer (adult and child) and the OHARNG receptors and were not retained as COPCs requiring further evaluation.

3.2.3 Semivolatile Organic Compounds

None of the surface soil samples in the post-IRA data set were analyzed for SVOCs, therefore, no COPC evaluation can be performed. Areas of surface soil where SVOCs were detected in the Phase I RI data set were removed during the IRA. There are no RVAAP background values for SVOCs; as such, background is set at zero.

3.2.4 Volatile Organic Compounds

None of the surface soil samples in the post-IRA data set were analyzed for VOCs, therefore, no COPC evaluation can be performed. Areas of surface soil where VOCs were detected in the Phase I RI data set were removed during the IRA. There are no RVAAP background values or CUGs for VOCs; as such, background is set at zero.

3.2.5 PCBs

None of the surface soil samples in the post-IRA data set were analyzed for PCBs, therefore, no COPC evaluation can be performed. No PCBs were detected in the Phase I RI surface soil data set.

3.2.6 Summary of Surface Soil Samples

For the unrestricted land use scenario, 2 inorganics (arsenic and beryllium) were detected in the surface soil samples of the post-IRA data set and were identified as COPCs requiring further evaluation at the site for both the Residential Farmer (adult and child) receptors. Arsenic and beryllium were each detected as the sole COPCs and only once at concentrations only slightly greater than the background values (arsenic maximum detection of 15.6 mg/kg at DA1-034 with background of 15.4 mg/kg and beryllium maximum detection of 0.94 mg/kg at DA1-008 with background of 0.88 mg/kg).

For the use of the site by the OHARNG, 4 inorganics (arsenic, beryllium, chromium [total], and cobalt) were detected in the surface soil samples and were identified as COPCs requiring further evaluation at the site for the National Guard receptors. However, as noted for the Residential Farmer scenario, arsenic and beryllium were each detected only once at concentrations only slightly greater than the background values. The remaining COPCs (chromium [total] and cobalt) occurred in surface soil samples collected from the southeast portion (DA1-034), southern perimeter (DA1-030), and central portion (DA1-018) of the site. Chromium [total] occurred in as the sole COPC in surface soil samples collected from the southwest perimeter (DA1-026) and central portion (DA1-019) of the site.

It should be noted that surface soil samples collected during the Phase I RI activities were analyzed for total chromium only; whereas, the facility-wide risk-based CUGs developed for the Residential Farmer and OHARNG receptors also provide for comparison to hexavalent chromium. Hexavalent chromium was calculated to have the same CUG criteria as total chromium for each of the receptors. Therefore, going forward, where chromium is identified as a COPC in surface soil requiring further evaluation, evaluation for hexavalent chromium as a COPC will also be performed.

3.3 Post-IRA Phase I RI Subsurface Soil

Available subsurface soil data was primarily generated during the Phase I investigation in 1999 and the IRA activities in 2000-2001 (discussed separately in Section 3.4). A total of 70 discrete subsurface soil samples, excluding QC samples and field duplicates, were collected during the Phase I investigation. The samples were collected from areas that were considered potential source areas at ODA1 – the OB/OD area and its surrounding berm, plane storage areas, and the drainage ditch exiting the OB/OD area. Sample locations were selected based on a visual survey of the area conditions, such as areas with debris and/or staining, topographical depressions, areas with distressed or limited vegetation, etc. to ensure appropriate positioning of each sample point. Subsurface soil samples were collected from three intervals – 1 to 3 feet bgs, 3 to 5 feet bgs, and 6 to 8 feet bgs.

Select areas at ODA1 were subject to removal action under the IRA conducted in 2000 to 2001. Since the IRA activities were focused on removing subsurface soil (to a depth of 4 feet bgs) from areas where concentrations in samples were greater than earlier versions of human health criteria, select data from the Phase I RI are no longer applicable and a reduced post-IRA subsurface soil data set better represents current conditions at the site. Therefore, the post-IRA subsurface soil data set consists of 42 subsurface soil samples collected during the Phase I RI that are representative of existing conditions at ODA1. The approximate overlay of the IRA removal areas and Phase 1 RI soil sample locations are shown in Figure 3-1. Note that the overlay is only an approximation based on visual alignment of site features as no control points were presented in the IRA report for more accurate alignment.

These 42 samples were analyzed for TAL metals, cyanide, explosives, and propellants. While, 10 percent of the complete data set of Phase 1 RI samples (6 samples) were submitted for VOCs, SVOCs, and PCBs analysis, none of the subsurface soil samples in the reduced post-IRA data set were analyzed for these parameters. Antimony results in 12 and arsenic results in 1 of the 42 subsurface soil samples were rejected based on data validation criteria from the Phase I RI. Other reported sample results were considered of useable quality.

Data summary statistics and screening results to identify COPCs in the reduced post-IRA subsurface soil data set are presented in Table 3-3. A comparison of the COPCs retained to the unrestricted land use facility-wide cancer and non-cancer risk CUGs for the Residential Farmer (adult and child) and National Guard Trainee receptors is presented in Table 3-4. These tables are provided at the end of this section. Output from the software program used to calculate the 95% UCLs used in Table 3-4 are presented in Appendix A.

3.3.1 Inorganics

Twenty-three (23) inorganics were detected in the Phase I RI subsurface soil samples at least once in at least one sample. However, 12 of the 23 detected were screened out during the Phase I RI because they were either considered essential nutrients (calcium, iron, magnesium, potassium, and sodium), the frequency of detection was less than 5% (silver), or there were no detections greater than background values (beryllium, cobalt, manganese, nickel, selenium, and thallium). Background values have not been developed for cadmium; therefore, cadmium was retained for further evaluation. The 11 inorganics remaining after the Phase 1 screening were evaluated as COPCs in the post-IRA data set (Table 3-3). However, after also removing the data for soil samples collected from IRA excavation areas to form the reduced post-IRA data set and repeating the data reduction and screening process, cadmium drops out with a frequency of detection less than 5% (Table 3-4).

The retained inorganic COPCs of the post-IRA data set with developed CUGs in subsurface soils were screened against the CUGs for the Residential Farmer (adult and child) and OHARNG Land Use Scenarios. The inorganic constituent was retained as a COPC for further evaluation at the site if the EPC was greater than the CUGs. No CUGs have been developed for lead; however, lead was automatically retained as a COPC for further evaluation since the maximum detected concentration was greater than the background value.

The discussion below contains a brief summary of the nature and extent for each of the inorganic COPCs where the EPCs were greater than the CUGs for the Residential Farmer or OHARNG receptors. A summary of the accumulated COPCs per sample location that were retained following comparison to the facility-wide CUGs is presented in Table 3-4 at the end of this section.

Residential Farmer (Adult)

For the unrestricted land use scenario, inorganic COPCs identified for the Residential Farmer (adult) consist of arsenic and lead. Arsenic was detected at a concentration greater than the background value and the CUGs in 2 subsurface soil samples (21.1 mg/kg at DA1-019 [1 to 3 feet bgs] and 20.9 mg/kg at DA1-027 [3 to 5 feet bgs]). However, the arsenic concentrations in subsurface soil samples collected in the two deeper intervals (3 to 5 and 6 to 8 feet bgs) at DA1-019 located in the central portion of the site were less than the background value. There were no deeper interval samples collected at DA1-027 located in the southwest portion of the site. Lead was detected only once in DA1-027 (3 to 5 feet bgs) at a concentration only slightly greater than the background (maximum detection of 19.4 mg/kg with background of 19.1 mg/kg).

Residential Farmer (Child)

In addition to the inorganic COPCs identified for the Residential Farmer (adult), aluminum was identified as a COPC for the Residential Farmer (child). The distribution of arsenic and lead in

subsurface soil is consistent with that reported for the Residential Farmer (adult). Aluminum was detected at a concentration greater than the background values and CUGs in one subsurface soil sample collected at DA1-027 (3 to 5 feet bgs) located in the southwest portion of the site.

National Guard Trainee

Four inorganic COPCs were identified for the National Guard Trainee receptor scenario including aluminum, arsenic, lead, and chromium. The distributions of aluminum, arsenic, and lead are consistent with those identified for the Residential Farmer (child) scenario. Chromium was detected at a concentration greater than the background value and CUGs concurrently with aluminum in one subsurface sample collected at DA1-027 (3 to 5 feet bgs) located in the southwest portion of the site

3.3.2 Explosives and Propellants

No explosives or propellants were detected in subsurface soil samples in the post-IRA data set.

3.3.3 Semivolatile Organic Compounds

None of the subsurface soil samples in the post-IRA data set were analyzed for SVOCs, therefore, no COPC evaluation can be performed. Areas of subsurface soil where SVOCs were detected in the Phase I RI data set were removed during the IRA. There are no RVAAP background values for SVOCs; as such, background is set at zero.

3.3.4 Volatile Organic Compounds

None of the subsurface soil samples in the post-IRA data set were analyzed for VOCs, therefore, no COPC evaluation can be performed. Areas of subsurface soil where VOCs were detected in the Phase I RI data set were removed during the IRA. There are no RVAAP background values or CUGs for VOCs; as such, background is set at zero.

3.3.5 PCBs

None of the subsurface soil samples in the post-IRA data set were analyzed for PCBs, therefore, no COPC evaluation can be performed. No PCBs were detected in the 6 subsurface soil samples analyzed in the Phase I RI data set.

3.3.6 Summary of Phase I RI Subsurface Soil Samples

For the unrestricted and OHARNG land use scenarios, aluminum, arsenic, chromium, and lead were identified as the inorganic COPCs in subsurface soil in the post-IRA data set. The extent of arsenic is defined horizontally and vertically with depth at DA1-019 located in the central portion of the site. Aluminum, arsenic, chromium, and lead are not defined with depth below 5 feet bgs at DA1-027 located in the southwest portion of the site or to the west and south.

It should be noted that subsurface soil samples collected during the Phase I RI activities were analyzed for total chromium only; whereas, the facility-wide risk-based CUGs developed for the Residential Farmer and OHARNG receptors also provide for comparison to hexavalent chromium. Hexavalent chromium was calculated to have the same CUG criteria as total chromium for each of the receptors. Therefore, going forward, where chromium is identified as a COPC in subsurface soil requiring further evaluation, evaluation for hexavalent chromium as a COPC will also be performed.

3.4 IRA Subsurface Soil Samples

Following completion of the excavation and removal of soil and MEC debris during the 2000-2001 IRA performed by MKM, composite confirmatory samples were collected from the base of each excavated area and analyzed for TAL metals and explosives. A total of 24 composite subsurface soil samples, excluding QC samples and field duplicates, were collected during the IRA. In addition, 10% of the samples (3) were also analyzed for the RVAAP full suite that included VOCs, SVOCs, cyanide, pesticides, PCBs, and propellants. The majority of composite samples were collected from a depth of 4 feet bgs. Grid 5 includes a 10-feet x 5-feet area excavated to between 6 and 8 feet bgs. Grid 21 was excavated to 5 feet bgs. Grids 17, 18, 19, and 20 were excavated to 2 feet bgs. Grid 21 was excavated to between 2 and 4 feet bgs. A summary of the detections in the samples is presented below and in Table 3-5 at the end of this section. As previously described, this data supercedes a large portion of the subsurface and surface soil data from the Phase I RI because it represents current conditions after soil removal activities. Figure 3-1 presents an overlay of the sampled grids on the ODA1 site.

Data summary statistics and screening results to identify COPCs are presented in Table 3-6. A comparison of the COPCs to the unrestricted land use facility-wide cancer and non-cancer risk CUGs for the Residential Farmer (adult and child) and National Guard Trainee receptors and identification of COCs is presented in Tables 3-7 and 3-8, respectively. These tables are provided at the end of this section. Output from the software program used to calculate the 95% UCLs used in Tables 3-7 and 3-8 are presented in Appendix A.

3.4.1 Inorganics

Each of the 23 inorganics in the analyte list were detected at least once in at least 1 composite subsurface soil sample. Eleven (11) of the detected inorganics were eliminated from further evaluation after the initial data reduction and screening process and the remaining 12 of the detected inorganics were identified as COPCs (Table 3-6). Calcium, iron, magnesium, potassium, and sodium are considered to be essential nutrients and these inorganics were not retained as COPCs requiring further evaluation. The maximum concentrations detected for barium, cobalt, manganese, selenium, thallium, and vanadium were less than background values; therefore, these inorganics were not retained as COPCs requiring further evaluation.

Background values have not been developed for cadmium or silver; therefore, cadmium and silver were retained as COPCs for comparison to CUGs.

The retained inorganic COPCs with developed CUGs in subsurface soils were screened against the CUGs for the Residential Farmer (adult and child) and OHARNG Land Use Scenarios. The inorganic constituent was retained as a COC if the EPC was greater than the CUGs and based on the Sum of Ratios analysis. No CUGs have been developed for beryllium or lead; therefore, beryllium and lead were automatically retained as COCs since the maximum detected concentration of beryllium and lead were greater than the respective background values.

The discussion below contains a brief summary of the inorganic COCs that were identified for the Residential Farmer or OHARNG receptors. A summary of the COC identification process is presented in Tables 3-7 and 3-8 at the end of this section.

Residential Farmer (Adult)

For the unrestricted land use scenario, inorganic COCs identified for the Residential Farmer (adult) consist of aluminum, arsenic, beryllium, copper, and lead. Aluminum was detected at a concentration greater than the background value in 1 subsurface soil sample (Grid 11A) but not greater than the hazard-index CUG. However, aluminum was identified as a COC for the target organs of skin and respiratory system due to the contribution of 10% or greater of the Sum of Ratios. Arsenic was detected at concentrations greater than the background value and the cancer-risk CUG but not greater than the hazard-index CUG in 6 subsurface soil samples collected from excavation grids located southwest/central portion (Grids 3, 5 [2 samples], 9, and 19) and northeast/central portion (Grid 15) of the site. In addition, arsenic contributes greater than 10% to the Sum of Ratios for skin and the respiratory system as a non-cancer risk COC and as a cancer-risk COC. Beryllium was detected at concentrations greater than the background value (no CUGs for beryllium) in 4 subsurface soil samples collected from excavation grids located south/central portion (Grid 3), southwest portion (Grid 17), and northeast/central portion (Grids 14 and 15) of the site. Copper was detected at a concentration greater than the background value and the hazard-index CUG in 1 subsurface soil sample collected from an excavation grid located along the western perimeter (Grid 11A) of the site. In addition, copper contributes greater than 10% to the Sum of Ratios for skin and the respiratory system as a noncancer risk COC. Lead was detected at concentrations greater than the background value (no CUGs for lead) in 2 subsurface soil samples collected from excavation grids located south/central portion (Grid 3) and western perimeter (Grid 11A) of the site.

Residential Farmer (Child)

No additional inorganic COCs were identified for the Residential Farmer (child) to those identified for the Residential Farmer (adult). Aluminum was detected at a concentration greater than the background value and the hazard-index CUG in 1 subsurface soil sample collected from

Final

an excavation grid located along the western perimeter (Grid 11A) of the site. Arsenic was detected at concentrations greater than the background value and the hazard-index CUG in the same 6 subsurface soil samples identified for the Residential Farmer (adult) receptor. In addition to the COC risks identified for the Residential Farmer (adult) receptor, aluminum contributes greater than 10% to the Sum of Ratios for eyes as a non-cancer risk COC; arsenic for liver and kidneys; and copper for eyes, liver, and kidneys.

National Guard Trainee

Inorganic COCs identified for the National Guard Trainee receptor scenario include aluminum, arsenic, beryllium, chromium, and lead. Aluminum and chromium were detected at concentrations greater than the background values and the hazard-index CUGs in 1 subsurface soil sample collected from an excavation grid located along the western perimeter (Grid 11A) of the site. Aluminum and chromium were both identified as COCs for the target organs of eyes, skin, and respiratory system due to the contribution of 10% or greater of the Sum of Ratios. Similarly, arsenic and chromium were detected at concentrations greater than the background values and the cancer-risk CUGs in 1 subsurface soil sample each and both contribute greater than 10% to the Sum of Ratios as cancer-risk COCs. The maximum concentration of arsenic was detected in the subsurface soil sample collected from Grid 19 located in the southwest/central portion of the site. The distribution of beryllium and lead is as reported for the Residential Farmer (adult) receptor.

3.4.2 Explosives and Propellants

One explosive (2,4,6-trinitrotoluene) and 1 propellant (nitrocellulose) were detected in 1 of 23 and 3 of 3 subsurface soil samples, respectively, during the IRA activities. No other explosives or propellants were detected. There are no RVAAP background values for explosives or propellants. 2,4,6-Trinitrotoluene was detected in the subsurface soil sample collected from Grid 21 located in the southwest portion of the site at a concentration less than the CUGs; therefore this constituent is not retained as a COC. Nitrocellulose was detected in subsurface soil samples collected from Grids 5 (2 samples) and 10 located in the southern and western portions of the site, respectively. No CUGs have been developed for nitrocellulose; therefore, this constituent is automatically retained as a COC.

3.4.3 Semivolatile Organic Compounds

Naphthalene was the only SVOC detected in the 4 subsurface soil samples analyzed. Naphthalene was detected at an estimated concentration below the laboratory reporting limit and below the CUGs; therefore, naphthalene is not retained as a COC.

3.4.4 Volatile Organic Compounds

Four VOCs were detected in the subsurface soil samples in 1 (benzene, ethylbenzene, and xylenes) and 2 (toluene) of the 4 samples analyzed. Benzene, ethylbenzene, toluene, and xylenes were detected in the subsurface soil sample collected from the bottom of the limited 8-feet bgs excavation within Grid 5. Toluene was detected in the subsurface soil sample collected from the bottom of the 4 feet bgs excavation from Grid 5 located in the southern portion of the site. There are no RVAAP background values or CUGs for VOCs; therefore, these constituents are automatically retained as COCs.

3.4.5 PCBs

No PCBs were detected in the 4 subsurface soil samples analyzed.

3.4.6 Summary of IRA Subsurface Soil Samples

For the unrestricted land use scenario, 5 inorganics (aluminum, arsenic, beryllium, copper, and lead), 1 propellant (nitrocellulose), and 4 VOCs (benzene, ethylbenzene, toluene, and xylenes) were detected in the subsurface soil samples and were identified as COCs for the Residential Farmer (adult and child) receptors. The inorganic COCs occurred in subsurface soil samples collected from excavation grids located in the southwest/central portion (Grids 3, 5, 9, and 19), southwest portion (Grid 17), northeast/central portion (Grids 14 and 15), and western perimeter (Grid 11A) of the site. The majority of inorganic COCs were detected concurrently in surface soil samples collected from the south/central portion (Grid 3) and western perimeter (Grid 11A) of the site. Organic COCs occurred in Grid 5 located in the southern portion of the site and Grid 10 located in the western portion of the site.

For the use of the site by the OHARNG, 5 inorganics (aluminum, arsenic, beryllium, chromium (total), and lead), 1 propellant (nitrocellulose), and 4 VOCs (benzene, ethylbenzene, toluene, and xylenes) were detected in the subsurface soil samples and were identified as COCs at the site for the National Guard Trainee receptor. The inorganic COCs occurred in subsurface soil samples collected from excavation grids located in the western perimeter (Grid 11A), southwest portion (Grid 17), southwest/central portion (Grid 19), south/central portion (Grid 3), and northeast/central portion (Grids 14 and 15) of the site. In addition, arsenic was detected as the sole COC and only once (29.3 mg/kg at Grid 19) at a concentration only slightly greater than the background value (19.8 mg/kg) and the cancer-risk CUG (27.8 mg/kg) for the National Guard Trainee. Organic COCs occurred in Grid 5 located in the southern portion of the site and Grid 10 located in the western portion of the site.

It should be noted that subsurface soil samples collected during the IRA activities were analyzed for total chromium only; whereas, the facility-wide risk-based CUGs developed for the Residential Farmer and OHARNG receptors also provide for comparison to hexavalent

chromium. Hexavalent chromium was calculated to have the same CUG criteria as total chromium for each of the receptors. Therefore, going forward, where chromium is identified as a COPC or COC in subsurface soil requiring further evaluation, evaluation for hexavalent chromium as a COPC and COC will also be performed.

3.5 Summary of Results

A review of the sampling program (i.e., Phase I RI and IRA) to date indicates the previous activities have not adequately evaluated the primary media of concern (surface and subsurface soils) at ODA1 and additional information is needed to support selection of an environmental closure remedy for the site. The environmental impact at the site is not defined with depth or to the west, southwest, south, and southeast, particularly in the area of IRA excavation Grid 11A on the western perimeter of the site. In addition, any new areas discovered during a geophysical survey would require additional investigation to support selection of a remedy for soils at the site.

Data gaps exist for 4 inorganic COPCs based on the most conservative risk-based CUGs for surface soil including arsenic, beryllium, chromium (total), and cobalt. While 3 of the 4 COPCs were detected concurrently in the surface soil sample collected from DA1-034 in the southwest portion of the site where the horizontal extent is not defined, the horizontal extent of inorganic COPCs in surface soil is also not defined by current data to the southwest and south of ODA1. The vertical extent of surface soil COPCs is defined with depth in current subsurface soils data. The extent of COPCs in surface soil within the central portion of the site is defined by previous sampling results. Additional surface soil samples will need to be analyzed for VOCs, SVOCs, and PCBs to further evaluate these parameters as COPCs.

Data gaps exist vertically with depth below 5 feet bgs at DA1-027 located in the southwest portion of the site and to the west and south of DA1-027 for 4 inorganic COPCs based on the most conservative risk-based CUGs for subsurface soil including aluminum, arsenic, chromium (total), and lead. The COCs in subsurface soil include aluminum, arsenic, beryllium, chromium (total), copper, lead, nitrocellulose, benzene, ethylbenzene, toluene, and xylenes. The COCs occur across the site with the highest concentrations of multiple inorganics detected in the subsurface soil sample collected from Grid 11A located along the western perimeter of the site. The area of Grid 11A identified as the "Blue Ash" sample requires further evaluation to determine the extent of contamination. Data gaps for the inorganic COCs outside of Grid 11A, namely arsenic, beryllium, and lead, exist vertically with depth in the southwest portion (Grids 17 and 19 [below 2 feet bgs] and Grid 9 [below 4 feet bgs]), southwest/central portion (Grid 3 [below 4 feet bgs]), and northeast/central portion (Grids 14 and 15 [below 4 feet bgs]) of the site. Data gaps for inorganic COCs exist horizontally to the north, west, and south of Grid 11A and north and west of Grid 14. Data gaps for the extent

of organic COCs exist horizontally and vertically with depth below 8 feet bgs in the southwest/central portion (Grid 5) and 4 feet bgs in the western perimeter (Grid 10) of the site. Data gaps for VOCs exist in each direction around Grid 5. Data gaps for nitrocellulose exist to the north and south of Grid 10 and to the east and west of Grid 5.

This page intentionally left blank.

Table 3-1 Detected Analytes in Post-IRA Surface Soil Samples at RVAAP-03 Open Demolition Area 1

			Dra	ft Facility	-Wide Cl	eanup Go	als for Su	face Soil	(0-1 feet k	oqs)				
	Surface Soil		Residenti	al Farmer				Nationa	al Guard	<u> </u>			D.4	D.4
	Background Criteria (0-1	Ad	ult	Ch	ild		e Control rker		nge enance	Tra	inee	DA1ss-002- 0003-SO	DA1ss-003- 0005-SO	DA1ss-004- 0007-SO
Detected Analyte	feet bgs)	CR=10 ⁻⁶	HI=0.1	CR=10 ⁻⁶	HI=0.1	CR=10 ⁻⁶	HI=0.1	CR=10 ⁻⁶	HI=0.1	CR=10 ⁻⁶	HI=0.1			
Location												DA1-002	DA1-003	DA1-004
Sample Date												10/19/1999	10/19/1999	10/19/1999
Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
Inorganics								-		-				
Aluminum	17,700		52,923		7,380		1.0E+06		778,938		3,496	1940	3000	3610
Antimony	0.96		13.6		2.82		1,030		161		175	1.1 U	1.1 U	1.1 U
Arsenic	15.4	0.425	8.21	0.524	2.02	35.7	573	5.76	93	2.78	114	6.2	5.3	11
Barium	88.4		8,966		1,413		8.1E+05		129,225		351	58.6	177	96.5
Beryllium	0.88	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	0.22 U	0.35 U	0.39 U
Cadmium	NA	1,249	22.3	2,677	6.41	94,527	1,473	25,321	242	10.9	329	0.54 U	0.54 U	0.27
Chromium (total)	17.4	187	90.4	401.5	19.9	14,179	6,666	3,798	1,108	1.64	5.61	4.3	4.4	7.2
Cobalt	10.4	803	820	1,721	131	60,768	74,531	16,278	13,519	7.03	14.0	3.6	2.7	3.1
Copper	17.7		2,714		311		3.4E+05		42,486		25,368	7.1	8.9	13.6
Lead	26.1	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	10.5	11.2	13.9
Manganese	1,450		1,482		293		116,634		20,723		35.1	376	531	523
Mercury	0.036		16.5		2.3		1,659		230		172	0.0078	0.02	0.024
Nickel	21.1		1,346		155		167,541		20,971		12,639	11.5	9.9	12.5
Selenium	1.4	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	0.54 U	0.54 U	0.54 U
Thallium	NA		4.76		0.612		513		68.9		47.7	0.21	0.15	0.14
Zinc	61.8		19,659		2,321		1.0E+06		301,090		187,269	31.9	31.9	43.3
Explosives	·													
1,3,5-Trinitrobenzene	NA		1,528		225		144,038		20,584		16,542	0.25 U	0.25 U	0.25 U
HMX	NA		1,909		359		151,363		23,265		23,464	0.5 U	0.2	0.5 U

Table 3-1 Detected Analytes in Post-IRA Surface Soil Samples at RVAAP-03 Open Demolition Area 1

Detected Analyte	DA1ss-008- 0015-SO	DA1ss-009- 0017-SO	DA1ss-011- 0021-SO	DA1ss-014- 0029-SO	DA1ss-015- 0032-SO	DA1ss-016- 0036-SO	DA1ss-017- 0039-SO	DA1ss-018- 0042-SO	DA1ss-019- 0045-SO
Location	DA1-008	DA1-009	DA1-011	DA1-014	DA1-015	DA1-016	DA1-017	DA1-018	DA1-019
Sample Date	10/20/1999	10/20/1999	10/20/1999	10/20/1999	10/21/1999	10/21/1999	10/21/1999	10/22/1999	10/22/1999
Units	mg/kg								
Inorganics									
Aluminum	7240	1730	2670	9520	14100	11400	11800	16200	15000
Antimony	0.54	1.1 U	1.1 U	1.2 U					
Arsenic	5	5.1	9.2	9.3	10.9	12.4	10.6	15.1	11.3
Barium	252	92.1	43.7	58.1	66.2	91.2	35.8	58.3	53.8
Beryllium	0.94	0.15	0.16	0.24	0.28	0.36	0.23	0.7 U	0.28 U
Cadmium	1.1	0.5	0.56 U	0.61 U	0.6 U	0.6 U	0.61 U	0.61 U	0.61 U
Chromium (total)	4.1	3.4	5.3	12.4	17	14.6	15.3	22.6	18.8
Cobalt	3.8	2.8	3.2	7.6	9.4	9.5	5.9	14	6.4
Copper	55.2	25.2	12.1	10.8	12.1	40.8	11.9	23.5	20.1
Lead	12.4	8.2	12.4	18.3	16.9	18.7	11.6	16.3	15.7
Manganese	947	519	314	820	543	608	176	242	205
Mercury	0.076	0.023	0.012	0.034 U	0.05	0.0072 U	0.028 U	0.03	0.03
Nickel	15.4	11.8	9.2	10	14.7	13.7	14.3	31.9	15
Selenium	0.55 U	0.55 U	0.56 U	0.61 U	0.88	0.61 U	0.61 U	0.61 U	0.61 U
Thallium	0.22	0.2	0.26	0.35	0.48	0.31	0.33	0.31	0.32
Zinc	63.9	33.9	36.2	52.9	57.7	78.8	41.4	74.2	69.2
Explosives	-								
1,3,5-Trinitrobenzene	0.25 U								
НМХ	0.5 U								

Table 3-1 Detected Analytes in Post-IRA Surface Soil Samples at RVAAP-03 Open Demolition Area 1

	DA1ss-026- 0066-SO	DA1ss-028- 073-SO	DA1ss-030- 0079-SO	DA1ss-031- 0082-SO	DA1ss-032- 0085-SO	DA1ss-033- 088-SO	DA1ss-034- 0091-SO	DA1ss-035- 0094-SO	DA1ss-036- 0097-SO	DA1ss-037- 0100-SO	DA1ss-039- 0106-SO
Detected Analyte	D.4.4.000	D 4 4 000	D.4.4.000	D 4 4 604	D 4 4 000	D 4 4 000	D 4 4 60 4	D 4 4 005	D 4 4 666	D 4 4 607	D 4 4 000
Location	DA1-026 10/25/1999	DA1-028 10/26/1999	DA1-030 10/26/1999	DA1-031 10/26/1999	DA1-032 10/27/1999	DA1-033 10/27/1999	DA1-034 10/27/1999	DA1-035 11/1/1999	DA1-036 11/2/1999	DA1-037 11/2/1999	DA1-039 11/2/1999
Sample Date Units											
Units	mg/kg										
Increanico											
Inorganics	44400	40000	40400	10100	00.40	5550	10100	0500	44000	0000	0050
Aluminum	14400	13000	12400	12100	6940	5550	16100	6580	11600	8980	8850
Antimony	1.3 R	1.2 R	1.2 R	0.63	1.2 R	1.3 R	1.2 R	1.1 U	1.2 U	1.2 U	1.2 U
Arsenic	11.4	12.4	13.5	14.4	7.9	7.9	15.6	8.8	9.6	9.9	8
Barium	74.1	72	78.4	55.7	54.9	45.7	114	23.4	70.9	60.6	53.3
Beryllium	0.34 U	0.6 U	0.42 U	0.2 U	0.28 U	0.28 U	0.83 U	0.21 U	0.28 U	0.19 U	0.23 U
Cadmium	0.7	0.6 U	0.61 U	0.62 U	0.6 U	0.63 U	0.61 U	0.57 U	0.62 U	0.62 U	0.61 U
Chromium (total)	17.8	16.8	18.1	15.8	7.9	7.3	22.7	8.6	14.5	12.5	10.8
Cobalt	10	6.1	12.5	5.4	6.9	7.7	15.4	6.9	8.3	9.7	9.4
Copper	70.4	37.7	45.6	69.8	5.8	10.8	22.6	13.2	18.6	11.5	6.9
Lead	19.5	15.6	17.6	19	17	22.2	15.3	8	20.2	16.2	16.1
Manganese	483	138	471	230	667	550	467	227	447	656	644
Mercury	0.048	0.063	0.038	0.023	0.052	0.13 U	0.022	0.025 U	0.051 U	0.043 U	0.05 U
Nickel	16.7	13.4	27.2	13	7.9	8.6	35.9	11.9	15.5	15.5	10.3
Selenium	1.3	1.2	0.61 U	0.62 U	0.6 U	0.63 U	0.61 U	0.73 U	0.8 U	0.88 U	0.97 U
Thallium	0.51 U	0.43 U	0.4	0.41	0.3	0.36	0.47	0.26	0.41	0.31	0.37
Zinc	186	89.9	90.2	317	36.4	38	72.5	33.8	86.8	47.9	41.4
Explosives											•
1,3,5-Trinitrobenzene	0.25 U	0.25 U	6.6	0.25 U							
HMX	0.5 U	0.5 U	2.6	0.5 U							

Notes:

-- = No CUG could be quantified based on lack of approved toxicity value.

CR = Cumulative Risk

feet bgs = feet below ground surface

HI = Hazard Index

mg/kg = milligrams/kilograms

NA = Not applicable

NC = Not calculated

HMX = Octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine

R = Result rejected through laboratory quality control or validation process.

U = Result not detected at indicated laboratory reporting limit.

1. Shaded box indicates exceedance of RVAAP background concentrations.

2. Bold type indicates exceedance of most restrictive risk-based cleanup goal for surface soil from the Draft Facility-Wide Human Health Cleanup Goals for the RVAAP,

3. Table only shows detected compounds.

4. Evaluation (i.e., comparison to background and CUGs) was not applied to rejected or non-detect values.

Table 3-2 Identification of COPCs in Post-IRA Surface Soil at RVAAP-03 Open Demolition Area 1

										Dr	aft Facility-	Wide Clea	nup Goals	for Surfa	ce Soil (0-1 feet bgs	s) ^b	
						Data							Residentia	I Farmer				
						Reduction					Adult					Child		
Detected Analyte	Units	Results > Detection Limit ^a	Maximum Detect	Surface Soil Background Criteria (0-1 feet bgs)	Maximum Detect > Background	and Screening - Retained as COPC?	95% UCL	EPC	CR=10 ⁻⁶	HI=0.1	# Detect > CUG and Bkgd ^c	EPC > CUG?	COPC?	CR=10 ⁻⁶		# Detect > CUG and Bkgd ^c	EPC > CUG?	COPC?
Inorganics																		
Aluminum	mg/kg	23/23	16,200	17,700	No	No	NA	NA		52,923	NA	NA	No		7,380	NA	NA	No
Antimony	mg/kg	2/17	0.6	0.96	No	No	NA	NA		13.6	NA	NA	No		2.82	NA	NA	No
Arsenic	mg/kg	23/23	15.6	15.4	Yes	Yes	11.1	11.1	0.425	8.21	1	Yes	Yes	0.524	2.02	1	Yes	Yes
Barium	mg/kg	23 / 23	252	88.4	Yes	Yes	94.4	94.4		8,966	0	No	No		1,413	0	No	No
Beryllium	mg/kg	7 / 23	0.94	0.88	Yes	Yes	0.29	0.29	NC	NC	1	NA	Yes d	NC	NC	1	NA	Yes d
Cadmium	mg/kg	4 / 23	1.1	NA	NA	Yes	0.8	0.8	1,249	22.3	0	No	No	2,677	6.41	0	No	No
Chromium (total or hexavalent)	mg/kg	23 / 23	22.7	17.4	Yes	Yes	14.4	14.4	187	90.4	0	No	No	401.5	19.9	2	No	No
Cobalt	mg/kg	23 / 23	15.4	10.4	Yes	Yes	8.7	8.7	803	820	0	No	No	1,721	131	0	No	No
Copper	mg/kg	23 / 23	70	17.7	Yes	Yes	34.3	34.3		2,714	0	No	No		311	0	No	No
Lead	mg/kg	23 / 23	22	26.1	No	No	NA	NA	NC	NC	NA	NA	No	NC	NC	NA	NA	No
Manganese	mg/kg	23 / 23	947	1,450	No	No	NA	NA		1,482	NA	NA	No		293	NA	NA	No
Mercury	mg/kg	15 / 23	0.1	0.036	Yes	Yes	0.037	0.037		16.5	0	No	No		2.3	0	No	No
Nickel	mg/kg	23 / 23	35.9	21.1	Yes	Yes	17.7	17.7		1,346	0	No	No		155	0	No	No
Selenium	mg/kg	3 / 23	1.3	1.4	No	No	NA	NA	NC	NC	NA	NA	No	NC	NC	NA	NA	No
Thallium	mg/kg	21 / 23	0.5	NA	NA	Yes	0.3	0.3		4.76	0	No	No		0.612	0	No	No
Zinc	mg/kg	23 / 23	317	61.8	Yes	Yes	129.3	129.3		19,659	0	No	No		2,321	0	No	No
Explosives				-														
1,3,5-Trinitrobenzene	mg/kg	1 / 23	6.6	NA	NA	Yes	NA	6.6		1,528	0	No	No		225	0	No	No
HMX	mg/kg	2 / 23	2.6	NA	NA	Yes	NA	2.6		1,909	0	No	No		359	0	No	No

Page 3-22

Table 3-2 Identification of COPCs in Post-IRA Surface Soil at RVAAP-03 Open Demolition Area 1

													Draft Fa	cility-Wid	e Cleanur	Goals for	Surface S	ioil (0-1 fe	et bas) ^b				
																ational Gua							
						Data Reduction				Dust/F	ire Control	Worker				laintenance					Trainee		
Detected Analyte	Units	Results > Detection Limit ^a	Maximum Detect	Surface Soil Background Criteria (0-1 feet bgs)		and Screening - Retained as COPC?	95% UCL	EPC	CR=10 ⁻⁶		# Detect > CUG and Bkgd ^c	EPC > CUG?	COPC?	CR=10 ⁻⁶		# Detect > CUG and Bkgd ^c	EPC > CUG?	COPC?	CR=10 ⁻⁶	HI=0.1	# Detect > CUG and Bkgd ^c	EPC > CUG?	COPC?
Inorganics																							
Aluminum	mg/kg	23 / 23	16,200	17,700	No	No	NA	NA		1.0E+06	NA	NA	No	-	778,938	NA	NA	No		3,496	NA	NA	No
Antimony	mg/kg	2/17	0.6	0.96	No	No	NA	NA		1,030	NA	NA	No	-	161	NA	NA	No		175	NA	NA	No
Arsenic	mg/kg	23 / 23	15.6	15.4	Yes	Yes	11.1	11.1	35.7	573	0	No	No	5.76	93	1	Yes	Yes	2.78	114	1	Yes	Yes
Barium	mg/kg	23 / 23	252	88.4	Yes	Yes	94.4	94.4		8.1E+05	0	No	No		129,225	0	No	No		351	0	No	No
Beryllium	mg/kg	7/23	0.94	0.88	Yes	Yes	0.29	0.29	NC	NC	1	NA	Yes d	NC	NC	1	NA	Yes d	NC	NC	1	NA	Yes d
Cadmium	mg/kg	4 / 23	1.1	NA	NA	Yes	0.8	0.8	94,527	1,473	0	No	No	25,321	242	0	No	No	10.9	329	0	No	No
Chromium (total or hexavalent)	mg/kg	23 / 23	22.7	17.4	Yes	Yes	14.4	14.4	14,179	6,666	0	No	No	3,798	1,108	0	No	No	1.64	5.61	5	Yes	Yes
Cobalt	mg/kg	23 / 23	15.4	10.4	Yes	Yes	8.7	8.7	60,768	74,531	0	No	No	16,278	13,519	0	No	No	7.03	14.0	3	Yes	Yes
Copper	mg/kg	23 / 23	70	17.7	Yes	Yes	34.3	34.3		3.4E+05	0	No	No		42,486	0	No	No		25,368	0	No	No
Lead	mg/kg	23 / 23	22	26.1	No	No	NA	NA	NC	NC	NA	NA	No	NC	NC	NA	NA	No	NC	NC	NA	NA	No
Manganese	mg/kg	23 / 23	947	1,450	No	No	NA	NA		116,634	NA	NA	No		20,723	NA	NA	No		35.1	NA	NA	No
Mercury	mg/kg	15 / 23	0.1	0.036	Yes	Yes	0.037	0.037		1,659	0	No	No		230	0	No	No		172	0	No	No
Nickel	mg/kg	23 / 23	35.9	21.1	Yes	Yes	17.7	17.7		167,541	0	No	No		20,971	0	No	No		12,639	0	No	No
Selenium	mg/kg	3/23	1.3	1.4	No	No	NA	NA	NC	NC	NA	NA	No	NC	NC	NA	NA	No	NC	NC	NA	NA	No
Thallium	mg/kg	21/23	0.5	NA	NA	Yes	0.3	0.3		513	0	No	No		68.9	0	No	No		47.7	0	No	No
Zinc	mg/kg	23 / 23	317	61.8	Yes	Yes	129.3	129.3		1.0E+06	0	No	No		301,090	0	No	No		187,269	0	No	No
Explosives				-	-									-									
1,3,5-Trinitrobenzene	mg/kg	1/23	6.6	NA	NA	Yes	NA	6.6		144,038	0	No	No		20,584	0	No	No		16,542	0	No	No
HMX	mg/kg	2/23	2.6	NA	NA	Yes	NA	2.6		151,363	0	No	No		23,265	0	No	No		23,464	0	No	No

Notes:

-- = No CUG could be quantified based on lack of approved toxicity value.

Bkgd = Background

COPC - constituent of potential concern

CR = Cumulative Risk

- EPC = exposure point concentration
- feet bgs = feet below ground surface
- HI = Hazard Index

HMX = Octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine

- mg/kg = milligrams/kilograms
- NA = Not applicable
- NC = Not calculated
- UCL = upper confidence limit

^a Total sample count does not include rejected data values.

^b Cleanup Goals (CUGs) are from the Draft Facility-Wide Human Health Cleanup Goals for the RVAAP prepared by SAIC in September 2008.

^c The RVAAP background value is the default action level for inorganic COPCs with CUGs less than background.

^d Detected organics are automatically retained as COPCs where no CUGs have been developed. Inorganics are automatically retained where no CUGs have been developed if the maximum detection is greater than the RVAAP background value.

Table 3-3 Detected Analytes in Phase I RI Post-IRA Subsurface Soil Samples at RVAAP-03 Open Demolition Area 1

		Dra	aft Facility-\	Wide Cleanu	p Goals for	Subsurface	e Soil						
	Subsurface Soil		Residen	tial Farmer		Nationa	al Guard	DA1ss-002-	DA1ss-003-	DA1ss-014-	DA1ss-014-	DA1ss-015-	DA1ss-015-
	Background	A	dult	Ch	ild	Tra	inee	0004-SO	0006-SO	0030-SO	0031-SO	0033-SO	0034-SO
Detected Analyte	Criteria	CR=10 ⁻⁶	HI=0.1	CR=10 ⁻⁶	HI=0.1	CR=10 ⁻⁶	HI=0.1						
Location								DA1-002	DA1-003	DA1-014	DA1-014	DA1-015	DA1-015
Depth (feet bgs)								1 to 3	1 to 3	1 to 3	3 to 5	1 to 3	3 to 5
Sample Date								10/19/1999	10/19/1999	10/20/1999	10/20/1999	10/21/1999	10/21/1999
Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
Inorganics								-					· · · · · ·
Aluminum	19,500		52,923		7,380		3,496	8520	7150	14600	15300	14000	17000
Antimony	0.96		13.6		2.82		175	1.2 U	1.1 U	0.78	0.96	0.79	1.2 U
Arsenic	19.8	0.425	8.21	0.524	2.02	2.78	114	8.3	10.6	15.9	15.3	17	18
Barium	124		8,966		1,413		351	43.9	26.1	85.8	90.9	42.3	78.3
Cadmium	NA	1,249	22.3	2,677	6.41	10.9	329	0.58 U	0.56 U	0.59 U	0.6 U	0.58 U	0.59 U
Chromium (total)	27.2	187	90.4	401.5	19.9	1.64	5.61	11.7	10.1	19.5	22	19.1	22.2
Copper	32.3		2,714		311		25,368	9.2	13.3	23.5	22.8	24	26.3
Lead	19.1	NC	NC	NC	NC	NC	NC	10.6	10.5	15.2	13.9	14.5	15.1
Mercury	0.044		16.5		2.27		172	0.037	0.024	0.035	0.015	0.034	0.021
Vanadium	37.6		156		44.9		2,304	15.6	13.9	23.6	24	21	25.9
Zinc	93.3		19,659		2,321		187,269	36.3	35.6	58.9	70.5	59.4	70.4

Table 3-3 Detected Analytes in Phase I RI Post-IRA Subsurface Soil Samples at RVAAP-03 Open Demolition Area 1

	DA1ss-016- 0037-SO	DA1ss-016- 0038-SO	DA1ss-017- 0040-SO	DA1ss-017- 0041-SO	DA1ss-018- 0043-SO	DA1ss-018- 0044-SO	DA1ss-018- 0160-SO	DA1ss-019- 0046-SO	DA1ss-019- 0047-SO	DA1ss-019- 0161-SO	DA1ss-020- 0162-SO	DA1ss-021- 0163-SO
Detected Analyte												
Location	DA1-016	DA1-016	DA1-017	DA1-017	DA1-018	DA1-018	DA1-018	DA1-019	DA1-019	DA1-019	DA1-020	DA1-021
Depth (feet bgs)	1 to 3	3 to 5	1 to 3	3 to 5	1 to 3	3 to 5	6 to 8	1 to 3	3 to 5	6 to 8	6 to 8	6 to 8
Sample Date	10/21/1999	10/21/1999	10/21/1999	10/21/1999	10/22/1999	10/22/1999	10/22/1999	10/22/1999	10/22/1999	10/22/1999	10/22/1999	10/24/1999
Units	mg/kg											
Inorganics					•							
Aluminum	12700	8430	10700	11300	12600	10700	7850	16300	9130	13800	16900	13500
Antimony	1.2 U	1.2 U	1.2 U	1.3 U	1.2 U	1.3 U						
Arsenic	17	14.3	15.1	15.1	17.5	16.3	16.6	21.1	16	17.8	13.1	18.8
Barium	74.4	64.5	43.5	69.7	77.5	52.9	55.9	59.7	52.2	65.2	104	79.7
Cadmium	0.59 U	0.6 U	0.6 U	0.63 U	0.61 U	0.62 U	0.62 U	0.62 U	0.62 U	0.61 U	0.61 U	0.63 U
Chromium (total)	19.4	13.2	15.7	17.2	18.8	17	13.4	22.4	14.1	20.7	25.2	18.8
Copper	20.9	20.1	20.3	20.6	22.1	21.2	22	28	19.6	18.7	22.7	20.4
Lead	13.4	11.9	13.6	11.8	15.4	13.9	14.1	17.5	13.4	13.1	13.9	14.1
Mercury	0.021 U	0.0078 U	0.054	0.018 U	0.014	0.0066	0.12 U	0.038	0.12 U	0.025	0.014	0.13 U
Vanadium	21.1	13.9	16.5	18.7	19.1	17.7	13.6	23.9	15.3	21.7	25.8	20.5
Zinc	65.4	56.8	53.8	60.8	66.2	63.7	66.4	72.3	56.6	66.1	80.1	71.1

Table 3-3 Detected Analytes in Phase I RI Post-IRA Subsurface Soil Samples at RVAAP-03 Open Demolition Area 1

	DA1ss-026- 0067-SO	DA1ss-026- 0068-SO	DA1ss-027- 0071-SO	DA1ss-028- 0074-SO	DA1ss-028- 0075-SO	DA1ss-030- 0080-SO	DA1ss-031- 0083-SO	DA1ss-031- 0084-SO	DA1ss-032- 0086-SO	DA1ss-032- 0087-SO	DA1ss-033- 0089-SO	DA1ss-033- 0090-SO
Detected Analyte												
Location	DA1-026	DA1-026	DA1-027	DA1-028	DA1-028	DA1-030	DA1-031	DA1-031	DA1-032	DA1-032	DA1-033	DA1-033
Depth (feet bgs)	1 to 3	3 to 5	3 to 5	1 to 3	3 to 5	1 to 3	1 to 3	3 to 5	1 to 3	3 to 5	1 to 3	3 to 5
Sample Date	10/25/1999	10/25/1999	10/20/1999	10/26/1999	10/26/1999	10/26/1999	10/26/1999	10/26/1999	10/27/1999	10/27/1999	10/27/1999	10/27/1999
Units	mg/kg											
Inorganics						•						
Aluminum	13900	15000	28600	14100	12500	14400	13300	11600	10400	14200	10500	9530
Antimony	1.2 R	1.2 R	1.3	1.2 R	1.1 U	1.2 R	1.2 R	1.3 R				
Arsenic	15.8	16.7	20.9	16.6	17.3	14.7	15.8	13.5	11.6	15.2 R	12.7	12.2
Barium	67.4	89.4	107	99.5	79	78	71.8	90.4	35.8	107	68.9	56.9
Cadmium	0.61 U	0.62 U	0.59 U	0.6 U	0.61 U	0.6 U	0.59 U	0.61 U	0.56 U	0.59 U	0.59 U	0.64 U
Chromium (total)	20	22.6	34.7	20	19.9	22.2	18.7	19.5	13.2	21.6	15.3	14.9
Copper	23.9	24.1	35.3	23	24.2	21.3	47.3	25	17.3	22.5	18.9	18.7
Lead	15	14.5	19.4	12.5	13.8	13.1	16.1	12.8	11.5	13.5	11.6	11.4
Mercury	0.0076	0.022	0.0096	0.024	0.018	0.016	0.032	0.015	0.11 U	0.12 U	0.028	0.014
Vanadium	22.8	24.4	39.9	23.5	20.7	24.3	22.1	19.6	18.8	22.7	17.7	17.1
Zinc	68.8	74	97	67.2	74.8	67.7	125	82.9	48.5	74.6	58.1	57.7

Table 3-3 Detected Analytes in Phase I RI Post-IRA Subsurface Soil Samples at RVAAP-03 Open Demolition Area 1

	DA1ss-034- 0092-SO	DA1ss-034- 0093-SO	DA1ss-035- 0095-SO	DA1ss-035- 0096-SO	DA1ss-036- 0098-SO	DA1ss-036- 0099-SO	DA1ss-037- 0101-SO	DA1ss-037- 0102-SO	DA1ss-039- 0107-SO	DA1ss-039- 0108-SO	DA1ss-041- 0164-SO	DA1ss-042- 0165-SO
Detected Analyte												
Location	DA1-034	DA1-034	DA1-035	DA1-035	DA1-036	DA1-036	DA1-037	DA1-037	DA1-039	DA1-039	DA1-041	DA1-042
Depth (feet bgs)	1 to 3	3 to 5	6 to 8	6 to 8								
Sample Date	10/27/1999	10/27/1999	11/1/1999	11/1/1999	11/2/1999	11/2/1999	11/2/1999	11/2/1999	11/2/1999	11/2/1999	11/3/1999	11/3/1999
Units	mg/kg											
Inorganics												
Aluminum	9730	6370	7140	12400	14000	8720	8740	8070	12300	10300	10500	14800
Antimony	1.2 R	1.2 R	1.2 U	1.2 U	1.2 U	1.2 U	1.1 U	1.1 U	1.2 U	1.2 U	1.3 U	1.2 U
Arsenic	17.9	13.7	12.2	12.5	15.1	9.1	9.5	12.7	11.7	11.3	14.1	14.5
Barium	62.1	35.1	38.7	74.9	103	54.2	43.3	172	59.3	65	61.2	73.7
Cadmium	0.6 U	0.62 U	0.58 U	0.62 U	0.61 U	0.59 U	0.55 U	0.27	0.59 U	0.58 U	0.64 U	0.62 U
Chromium (total)	15.6	10.8	10.2	19.2	20.8	14	10.2	11	16.8	15.8	16.6	21.7
Copper	22.8	18.9	16.7	19.4	22.5	14.7	11	22	14.4	18.6	20.6	22.4
Lead	13.4	11.2	9.5	12.8	13.9	8.7	11.6	14	11.5	10.8	12.1	13.5
Mercury	0.037	0.12 U	0.024 U	0.026 U	0.033 U	0.023 U	0.028 U	0.02 U	0.02 U	0.019 U	0.037 U	0.043 U
Vanadium	17.2	11.6	13.4	19.3	22.5	14.3	16.5	17.1	22.1	17.8	17.5	24.5
Zinc	59.4	51.2	45.8	69.6	74.9	47.1	41.9	56.1	47.1	57.9	64.4	74.3

Notes:

-- = No CUG could be quantified based on lack of approved toxicity value.

CR = Cumulative Risk

feet bgs = feet below ground surface

HI = Hazard Index

mg/kg = milligrams/kilograms

NA = Not applicable

NC = Not calculated

R = Result rejected through laboratory quality control or validation process.

U = Result not detected at indicated laboratory reporting limit.

1. Shaded box indicates exceedance of RVAAP background concentrations.

2. Bold type indicates exceedance of most restrictive risk-based cleanup goal for surface soil from the Draft Facility-Wide Human Health Cleanup Goals for the RVAAP, SAIC, Septemb

3. Table only shows detected compounds.

4. Evaluation (i.e., comparison to background and CUGs) was not applied to rejected or non-detect values.

Table 3-4 Identification of COPCs in Phase I RI Post-IRA Subsurface Soil at RVAAP-03 Open Demolition Area 1

													D	raft Facilit	y-Wide Cl	eanup Goa	Is for Sul	osurface S	Soil ^b				
						Data							Residen	tial Farme	r					Nat	tional Guar	d	
						Reduction					Adult					Child					Trainee		
Detected Analyte	Units	Results > Detection Limit ^a	Maximum Detect	Subsurface Soil Background Criteria	Maximum Detect > Background	and Screening - Retained as COPC?	95% UCL	EPC	CR=10 ⁻⁶	HI=0.1	# Detect > CUG and Bkgd ^c		COPC?	CR=10 ⁻⁶		# Detect > CUG and Bkgd ^c		COPC?	CR=10 ⁻⁶	HI=0.1	# Detect > CUG and Bkgd ^c	EPC > CUG?	COPC?
Inorganics																							
Aluminum	mg/kg	42 / 42	28,600	19,500	Yes	Yes	13,166	13,166		52,923	0	No	No		7,380	1	Yes	Yes		3,496	1	Yes	Yes
Antimony	mg/kg	4 / 30	1.3	0.96	Yes	Yes	0.98	1.0	1	13.6	0	No	No		2.82	0	No	No		175	0	No	No
Arsenic	mg/kg	41 / 41	21.1	19.8	Yes	Yes	15.6	15.6	0.425	8.21	2	Yes	Yes	0.524	2.02	2	Yes	Yes	2.78	114	2	Yes	Yes
Barium	mg/kg	42 / 42	172	124	Yes	Yes	78	78	-	8,966	0	No	No		1,413	0	No	No	-	351	0	No	No
Cadmium	mg/kg	1 / 42	0.27	NA	NA	No	NA	0.27	1,249	22.3	NA	NA	No	2,677	6.41	NA	NA	No	10.9	329	NA	NA	No
Chromium (total or hexavalent)	mg/kg	42 / 42	34.7	27.2	Yes	Yes	19.1	19.1	187	90.4	0	No	No	401.5	19.9	1	No	No	1.64	5.61	1	Yes	Yes
Copper	mg/kg	42 / 42	47	32.3	Yes	Yes	23.1	23.1	:	2,714	0	No	No	-	311	0	No	No		25,368	0	No	No
Lead	mg/kg	42 / 42	19.4	19.1	Yes	Yes	13.7	13.7	NC	NC	1	NA	Yes d	NC	NC	1	NA	Yes d	NC	NC	1	NA	Yes d
Mercury	mg/kg	23 / 42	0.054	0.044	Yes	Yes	0.023	0.023	-	16.5	0	No	No		2.27	0	No	No	-	172	0	No	No
Vanadium	mg/kg	42 / 42	39.9	37.6	Yes	Yes	21.3	21.3	1	156	0	No	No		44.9	0	No	No		2,304	0	No	No
Zinc	mg/kg	42 / 42	125	93.3	Yes	Yes	68.3	68.3		19,659	0	No	No		2,321	0	No	No		187,269	0	No	No

Notes:

-- = No CUG could be quantified based on lack of approved toxicity value. Bkgd = Background COPC - constituent of potential concern CR = Cumulative Risk CUG = Cleanup Goal EPC = exposure point concentration HI = Hazard Index mg/kg = milligrams/kilograms NA = Not applicable NC = Not calculated UCL = upper confidence limit ^a Total sample count does not include rejected data values.

^b Cleanup Goals (CUGs) are from the Draft Facility-Wide Human Health Cleanup Goals for the RVAAP prepared by SAIC in September 2008.

^c The RVAAP background value is the default action level for inorganic COPCs with CUGs less than background. ^d Detected inorganics are automatically retained as COPCs where no CUGs have been developed if the maximum detection is greater than the RVAAP background value.

Table 3-5 Detected Analytes in IRA Subsurface Soil Samples at RVAAP-03 Open Demolition Area 1

	Subsurface	Dra	ft Facility-V	Vide Cleanu	p Goals for	Subsurface	Soil					
	Soil		Resident	ial Farmer		Nationa	al Guard	OD1gd-001-	OD1gd-002-	OD1gd-003-	OD1gd-004-	OD1gd-005-
Detected Analyte	Background	Ac	lult	-	nild		inee	0001-SO	0001-SO	0001-SO	0001-SO	0001-SO
	Criteria	CR=10 ⁻⁵	HI=1	CR=10 ⁻⁵	HI=1	CR=10 ⁻⁵	HI=1	1				
Location								Grid 1	Grid 2	Grid 3	Grid 4	Grid 5
Depth (feet bgs)								4	4	4	4	4 ^a
Sample Date								10/25/2000	10/27/2000	10/30/2000	10/30/2000	11/16/2000
Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
Inorganics	5											
Aluminum	19,500		529,229		73,798		34,960	13800	11500	17000	15500	9790
Antimony	0.96		136		28.2		1,753	0.24 U	0.25	0.26 U	0.47	0.32
Arsenic	19.8	4.25	82.1	5.24	20.2	27.8	1,140	13.3	14.2	23.1	17.0	20.8
Barium	124		89,656		14,129		3,506	68.4	56.4	65.4	94.8	67.9
Beryllium	0.88	NC	NC	NC	NC	NC	NC	0.66	0.65	1.0	0.54	0.62
Cadmium	NA	12,491	223	26,767	64.1	109	3,292	0.15	0.16 U	0.14 U	0.13 U	0.17 U
Calcium	35,500	NC	NC	NC	NC	NC	NC	7680	1010	1230	1740	1400
Chromium	27.2	1,874	904	4,015	199	16.4	56	18.4	16.1	20.1	19.0	14.7
Cobalt	23.2	8,030	8,198	17,207	1,313	70.3	140	7.7	8.6	12.7	10.4	7.4
Copper	32.3		27,138		3,106		253,680	18.8	17.0	30.6	17.0	19.2
Iron	35,200		190,104		23,125		1.0E+06	24000	23000	35900	24600	22800
Lead	19.1	NC	NC	NC	NC	NC	NC	11.1	12	21.2	15.5	11.4
Magnesium	2,790	NC	NC	NC	NC	NC	NC	3940	3120	3560	3710	2790
Manganese	3,030		14,817		2,927		351	228	284	282	374	261
Mercury	0.044		165		22.7		1,722	0.04 U				
Nickel	60.7		13,463		1,552		126,391	21	22.3	26.6	25.3	21.9
Potassium	3,350	NC	NC	NC	NC	NC	NC	2550	1670	2240	2090	1220
Selenium	1.5	NC	NC	NC	NC	NC	NC	0.16 U	0.37 U	0.43 U	0.43 U	0.42 U
Silver	NA		3,240		386		31,049	0.36 U	0.40 U	0.34 U	0.33 U	0.42 U
Sodium	145	NC	NC	NC	NC	NC	NC	111	79.1 U	1010	944	801
Thallium	0.91		47.6		6.12		477	0.2	0.15 U	0.17 U	0.17 U	0.16 U
Vanadium	37.6		1,558		449		23,045	23.9	18.2	27.3	25	16.8
Zinc	93.3		196,589		23,209		1.0E+06	55.9	50.7	64.4	55.3	53.6
Explosives/Propellants	S											
2,4,6-Trinitrotoluene	NA	328	211	284	36.5	4,643	2,488	0.1 U	0.1 U	0.1 U	0.098 U	0.099 U
Nitrocellulose	NA	NC	NC	NC	NC	NC	NC	NT	NT	NT	NT	1.0
VOC	5											
Benzene	NA	NC	NC	NC	NC	NC	NC	NT	NT	NT	NT	0.006 U
Ethylbenzene	NA	NC	NC	NC	NC	NC	NC	NT	NT	NT	NT	0.006 U
Toluene	NA	NC	NC	NC	NC	NC	NC	NT	NT	NT	NT	0.002
Xylene (total)	NA	NC	NC	NC	NC	NC	NC	NT	NT	NT	NT	0.006 U
SVOC	<u> </u>											
Naphthalene	NA		3,678		1,215		15,407	NT	NT	NT	NT	0.400 U

 Table 3-5

 Detected Analytes in IRA Subsurface Soil Samples at RVAAP-03 Open Demolition Area 1

Detected Analyte	OD1gd-005- 0002-SO	OD1gd-006- 0001-SO	OD1gd-007- 0001-SO	OD1gd-008- 0001-SO	OD1gd-009- 0001-SO	OD1gd-010- 0001-SO	OD1gd-011- 0001-SO	OD1gd-011a- Blue Ash	OD1gd-012- 0001-SO	OD1gd-013- 0001-SO	OD1gd-014- 0001-SO
Location	Grid 5	Grid 6	Grid 7	Grid 8	Grid 9	Grid 10	Grid 11	Grid 11a	Grid 12	Grid 13	Grid 14
Depth (feet bgs)	8 ^a	4	4	4	4	4	4	5	4	4	4
Sample Date	11/16/2000	10/27/2000	7/18/2001	7/10/2001	6/21/2001	6/28/2001	6/13/2001	7/6/2001	6/20/2001	11/20/2000	11/13/2000
Units	mg/kg	mg/kg	mg/kg ^b	mg/kg							
Inorganics		14600	10000	9950	12300	14700	4 4000	252000	12500	40500	14500
Aluminum	13100		13800				14000			13500	
Antimony	0.55	0.61	0.29 U	0.24 U	0.28 U	0.28 U	0.27 U	9.2	0.29 U	0.29 U	0.29 U
Arsenic	24.6	15.8	11.9	17.1	26.4	17.4	11.1	4.7 U	9.3	1.2	18.2
Barium	71.7	68.1	93.7	60.1	59.1	81.0	74.7	93.5	66.6	80.8	110
Beryllium	0.72	0.76	0.73	0.53	0.62	0.72	0.78	0.47 U	0.61	0.83	0.97
Cadmium	0.17 U	0.18 U	0.22 U	0.14 U	0.19 U	0.23 U	0.20 U	25.9	0.18 U	0.20 U	0.15 U
Calcium	6360	17100	5240	1090	1060	1700	11500	213	952	2110	2070
Chromium	19.6	20.3	20.5	14.7	16.9	19.5	20.1	249	16.5	19.7	20.8
Cobalt	12.9	10.5	12.7	10	9.2	13.6	11.8	1.4	9.9	11.4	10.7
Copper	22.2	22.5	20.9	18.8	22.5	22.0	23.7	74200	19.4	22.0	20.7
Iron	29900	28800	31200	25100	26700	28400	29700	2100	24600	29300	29400
Lead	16.9	13.4	13.2	13.6	14.5	15.1	15.2	2370	18.5	13	15.1
Magnesium	5430	5360	4990	2940	3220	3930	4950	486	3020	4410	4330
Manganese	381	285	369	322	277	432	396	204	293	364	291
Mercury	0.04 U	0.04 U	0.024	0.0083	0.04 U	0.018	0.012	0.011	0.04 U	0.04 U	0.04 U
Nickel	31.1	28.1	30.1	20.7	22.5	28.6	28.6	156	22.7	31.7	30.7
Potassium	2290	2720	2100	1160	1700	2100	2390	41.3	1810	2010	2030
Selenium	0.43 U	0.45 U	0.96	0.44	0.48 U	0.57 U	0.50 U	0.59 U	0.46 U	0.48	0.37 U
Silver	0.43 U	0.45 U	0.55 U	0.36 U	0.48 U	0.57 U	0.50 U	4.6	0.46 U	0.50 U	0.37 U
Sodium	902	965	130	93.9	117	80.6	127	118 U	135	895	889
Thallium	0.16 U	0.18 U	0.19 U	0.16 U	0.22	0.19 U	0.22	0.24 U	0.19 U	0.19 U	0.19 U
Vanadium	21.9	22.6	22.5	16.8	20.8	22.8	22.8	7.5	21.3	22.7	23.3
Zinc	66.1	63.5	68.7	53.5	56.9	63.4	64.7	32100	53.2	62.8	60.3
Explosives/Propellants	-	•	-	-			-				
2,4,6-Trinitrotoluene	0.1 U	0.099 U	0.1 U	0.099 U	0.098 U	0.098 U	0.098 U	0.1 U	0.1 U	0.1 U	0.1 U
Nitrocellulose	0.98	NT	NT	NT	NT	0.49	NT	NT	NT	NT	NT
VOCs	-	-	-				-	-			
Benzene	0.066	0.006 U	NT	NT	NT	0.006 U	NT	NT	NT	NT	NT
Ethylbenzene	0.130	0.006 U	NT	NT	NT	0.006 U	NT	NT	NT	NT	NT
Toluene	0.180	0.006 U	NT	NT	NT	0.006 U	NT	NT	NT	NT	NT
Xylene (total)	0.610	0.006 U	NT	NT	NT	0.006 U	NT	NT	NT	NT	NT
SVOCs	•	•	•				•				
Naphthalene	0.120	0.410 U	NT	NT	NT	0.400 U	NT	NT	NT	NT	NT

 Table 3-5

 Detected Analytes in IRA Subsurface Soil Samples at RVAAP-03 Open Demolition Area 1

Detected Analyte	OD1gd-015- 0001-SO	OD1gd-016- 0001-SO	OD1gd-017- 0001-SO	OD1gd-018- 0001-SO	OD1gd-019- 0001-SO	OD1gd-020- 0001-SO	OD1gd-021- 0001-SO	
							0001.00	
Location	Grid 15	Grid 16	Grid 17	Grid 18	Grid 19	Grid 20	Grid 21	
Depth (feet bgs)	4	4	2	2	2	2	2 to 4 ^c	
Sample Date	11/30/2000	7/6/2001	12/11/2000	7/12/2001	12/11/2000	6/5/2001	7/23/2001	
Units	mg/kg							
Inorganics								
Aluminum	13900	13800	16000	12300	13300	14300	16100	
Antimony	0.27	0.26 U	0.37	0.33 U	0.28	0.29 U	0.33 U	
Arsenic	27.4	15.0	10.7	16.4	29.3	10.1	8.2	
Barium	98.9	81.8	84.5	90.1	78.9	67.9	73.3	
Beryllium	0.90	0.75	0.93	0.73	0.85	0.73	0.58	
Cadmium	0.16 U	0.17 U	0.14 U	0.56	0.13 U	0.20 U	0.24	
Calcium	1760	2270	2100	1410	1680	1510	579	
Chromium	20.1	19.3	22.6	18.2	19.4	18.6	17.8	
Cobalt	13.2	12.5	11.1	16.2	12.0	8.7	8.6	
Copper	25.3	20.8	22.9	32.0	21.6	18.4	94.8	
Iron	30800	27900	30600	30000	29400	24200	23100	
Lead	13.3	11.8	16.8	19.0	13.8	11.2	14.3	
Magnesium	4470	4070	5230	3830	4360	3440	3630	
Manganese	416	361	282	386	344	350	303	
Mercury	0.04 U	0.018	0.04 U	0.017	0.04 U	0.014	0.055	
Nickel	34.5	29.1	33.8	27.0	29.6	20.8	19.4	
Potassium	1700	1910	2170	2040	2270	2060	1530	
Selenium	0.40 U	0.41 U	0.34 U	0.40	0.32 U	0.50 U	0.97	
Silver	0.40 U	0.41 U	0.34 U	0.42 U	0.32 U	0.50 U	0.18	
Sodium	79.7 U	83.0	1030	70.7	911	97.9	53.3	
Thallium	0.16 U	0.17	0.18	0.22 U	0.16 U	0.19 U	0.22 U	
Vanadium	22.3	21.8	25.4	19.6	21.0	24.3	25.0	
Zinc	68.3	59.6	64.0	89.8	62.9	55.2	103	
Explosives/Propellants								
2,4,6-Trinitrotoluene	0.099 U	0.098 U	0.1 U	0.099 U	0.1 U	0.1 U	0.180	
Nitrocellulose	NT							
VOCs								
Benzene	NT							
Ethylbenzene	NT							
Toluene	NT							
Xylene (total)	NT							
SVOCs								
Naphthalene	NT							

Table 3-5 Detected Analytes in IRA Subsurface Soil Samples at RVAAP-03 Open Demolition Area 1

Notes:

-- = No CUG could be quantified based on lack of approved toxicity value. CR = Cumulative Risk feet bgs = feet below ground surface HI = Hazard Index mg/kg = milligrams/kilograms NA = Not applicable NC = Not calculated NT = Not tested SVOCs = Semivolatile Organic Compounds U = Result not detected at indicated laboratory reporting limit. VOCs = Volatile Organic Compounds

1. Shaded box indicates exceedance of RVAAP background concentrations.

2. Bold type indicates exceedance of most restrictive risk-based cleanup goal for surface soil from the Draft Facility-Wide Human Health Cleanup Goals for the RVAAP, SAIC, September 2008.

3. Table only shows detected compounds.

4. Evaluation (i.e., comparison to background and CUGs) was not applied to non-detect values.

^a A 10-ft x 5-ft section of Grid 5 was excavated to between 6 and 8 ft bgs while the remainder of the 50-ft x 50-ft grid was excavated to 4 ft bgs.

^b Reporting limits for non-detects in the Grid 13 sample are approximated as the analytical data for Grid 13 was not included in the IRA report.

^c Grid 21 was excavated to between 2 and 4 ft bgs.

Table 3-6

Shaw Environmental and Infrastructure, Inc.

Identification of COPCs in IRA Subsurface Soil at RVAAP-03 Open Demolition Area 1

					-	
Detected Analyte	Units	Results > Detection Limit	Maximum Detect	Subsurface Soil Background Criteria	Maximum Detect > Background	Data Reduction and Screening - Retained as COPC?
Inorganics						
Aluminum	mg/kg	23 / 23	252,000	19,500	Yes	Yes
Antimony	mg/kg	9 / 23	9.2	0.96	Yes	Yes
Arsenic	mg/kg	22 / 23	29.3	19.8	Yes	Yes
Barium	mg/kg	23 / 23	110	124	No	No
Beryllium	mg/kg	22 / 23	1.0	0.88	Yes	Yes
Cadmium	mg/kg	4 / 23	25.9	NA	NA	Yes
Calcium	mg/kg	23 / 23	17,100	35,500	No	No ^a
Chromium	mg/kg	23 / 23	249	27.2	Yes	Yes
Cobalt	mg/kg	23 / 23	16.2	23.2	No	No
Copper	mg/kg	23 / 23	74,200	32.3	Yes	Yes
Iron	mg/kg	23 / 23	35,900	35,200	Yes	No ^a
Lead	mg/kg	23 / 23	2,370	19.1	Yes	Yes
Magnesium	mg/kg	23 / 23	5,430	2,790	Yes	No ^a
Manganese	mg/kg	23 / 23	432	3,030	No	No
Mercury	mg/kg	9 / 23	0.06	0.044	Yes	Yes
Nickel	mg/kg	23 / 23	156	60.7	Yes	Yes
Potassium	mg/kg	23 / 23	2,720	3,350	No	No ^a
Selenium	mg/kg	5 / 23	1.0	1.5	No	No
Silver	mg/kg	2 / 23	4.60	NA	NA	Yes
Sodium	mg/kg	20 / 23	1,030	145	Yes	No ^a
Thallium	mg/kg	5 / 23	0.22	0.91	No	No
Vanadium	mg/kg	23 / 23	27.3	37.6	No	No
Zinc	mg/kg	23 / 23	32,100	93.3	Yes	Yes
Explosives/Propellants	S					
2,4,6-Trinitrotoluene	mg/kg	1 / 23	0.180	NA	NA	Yes
Nitrocellulose	mg/kg	3/3	1.0	NA	NA	Yes
VOCs						
Benzene	mg/kg	1 / 4	0.066	NA	NA	Yes
Ethylbenzene	mg/kg	1 / 4	0.130	NA	NA	Yes
Toluene	mg/kg	2/4	0.180	NA	NA	Yes
Xylene (total)	mg/kg	1 / 4	0.610	NA	NA	Yes
SVOCs		-	-			
Naphthalene	mg/kg	1 / 4	0.120	NA	NA	Yes

Notes:

COPC - constituent of potential concern

mg/kg = milligrams/kilograms

NA = Not applicable

SVOCs = Semivolatile Organic Compounds

VOCs = Volatile Organic Compounds

^a Eliminated as a COPC based on the essential nutrient screen.

Table 3-7 Identification of Carcinogenic COCs in IRA Subsurface Soil at RVAAP-03 Open Demolition Area 1

									Draft Facility-Wide Cleanup Goals for Subsurface Soil ^a										
					Residential Farmer							Residential Farmer							
					Adult Child														
COPCs	Units	Maximum Detect	95% UCL	EPC	CR=10 ⁻⁵	# Detect > CR and Bkgd ^b	Ratio of EPC to CR	COC?	% of Sum	COC?	CR=10 ⁻⁵	# Detect > CR and Bkgd ^b	Ratio of EPC to CR	COC?	% of Sum	COC?			
Inorganics																			
Aluminum	mg/kg	252,000	69,211	69,211		NA	NA	NA	NA	No		NA	NA	NA	NA	No			
Antimony	mg/kg	9.2	5.64	5.64		NA	NA	NA	NA	No		NA	NA	NA	NA	No			
Arsenic	mg/kg	29.3	18.84	18.84	4.25	6	4.43	Yes	99	Yes	5.24	6	3.60	Yes	99	Yes			
Beryllium	mg/kg	1	0.786	0.786	NC	NA	NA	Yes ^c	NA	NA	NC	NA	NA	Yes ^c	NA	NA			
Cadmium	mg/kg	25.9	NA	25.9	12,491	0	0.002	No	0.05	No	26,767	0	0.001	No	0.03	No			
Chromium	mg/kg	249	72.45	72.45	1,874	0	0.04	No	0.86	No	4,015	0	0.02	No	0.5	No			
Copper	mg/kg	74,200	17,308	17,308		NA	NA	NA	NA	No		NA	NA	NA	NA	No			
Lead	mg/kg	2,370	563.4	563.4	NC	NA	NA	Yes ^c	NA	NA	NC	NA	NA	Yes ^c	NA	NA			
Mercury	mg/kg	0.055	0.0364	0.0364		NA	NA	NA	NA	No		NA	NA	NA	NA	No			
Nickel	mg/kg	156	42.06	42.06		NA	NA	NA	NA	No		NA	NA	NA	NA	No			
Silver	mg/kg	4.60	NA	4.60		NA	NA	NA	NA	No		NA	NA	NA	NA	No			
Zinc	mg/kg	32,100	7,528	7,528		NA	NA	NA	NA	No		NA	NA	NA	NA	No			
Explosives/Propellar	ts																		
2,4,6-Trinitrotoluene	mg/kg	0.180	NA	0.180	328	0	0.001	No	0.01	No	284	0	0.001	No	0.02	No			
Nitrocellulose	mg/kg	1.0	NA	1.0	NC	NA	NA	Yes ^c	NA	NA	NC	NA	NA	Yes ^c	NA	NA			
VOCs																			
Benzene	mg/kg	0.066	NA	0.066	NC	NA	NA	Yes ^c	NA	NA	NC	NA	NA	Yes ^c	NA	NA			
Ethylbenzene	mg/kg	0.130	NA	0.130	NC	NA	NA	Yes ^c	NA	NA	NC	NA	NA	Yes ^c	NA	NA			
Toluene	mg/kg	0.180	NA	0.180	NC	NA	NA	Yes ^c	NA	NA	NC	NA	NA	Yes ^c	NA	NA			
Xylene (total)	mg/kg	0.610	NA	0.610	NC	NA	NA	Yes ^c	NA	NA	NC	NA	NA	Yes ^c	NA	NA			
SVOCs																			
Naphthalene	mg/kg	0.120	NA	0.120		NA	NA	Yes ^c	NA	NA		NA	NA	Yes ^c	NA	NA			

Sum of Ratios 4.47

Sum of Ratios 3.62

Data Quality Objectives Report October 2009

Table 3-7 Identification of Carcinogenic COCs in IRA Subsurface Soil at RVAAP-03 Open Demolition Area 1

					Draft	Facility-Wid	le Cleanup G	ioals for	Subsurface	Soil ^a
							National	Guard		
							Train	ee		
COPCs	Units	Maximum Detect	95% UCL	EPC	CR=10 ⁻⁵	# Detect > CR and Bkgd ^b	Ratio of EPC to CR	COC?	% of Sum	COC?
Inorganics	;									
Aluminum	mg/kg	252,000	69,211	69,211		NA	NA	NA	NA	No
Antimony	mg/kg	9.2	5.64	5.64		NA	NA	NA	NA	No
Arsenic	mg/kg	29.3	18.84	18.84	27.8	1	0.68	No	13	Yes
Beryllium	mg/kg	1	0.786	0.786	NC	NA	NA	Yes ^c	NA	NA
Cadmium	mg/kg	25.9	NA	25.9	109	0	0.24	No	4	No
Chromium	mg/kg	249	72.45	72.45	16.4	1	4.42	Yes	83	Yes
Copper	mg/kg	74,200	17,308	17,308		NA	NA	NA	NA	No
Lead	mg/kg	2,370	563.4	563.4	NC	NA	NA	Yes ^c	NA	NA
Mercury	mg/kg	0.055	0.0364	0.0364		NA	NA	NA	NA	No
Nickel	mg/kg	156	42.06	42.06		NA	NA	NA	NA	No
Silver	mg/kg	4.60	NA	4.60		NA	NA	NA	NA	No
Zinc	mg/kg	32,100	7,528	7,528		NA	NA	NA	NA	No
Explosives/Propellar	nts									
2,4,6-Trinitrotoluene	mg/kg	0.180	NA	0.180	4,643	0	0.00004	No	0.001	No
Nitrocellulose	mg/kg	1.0	NA	1.0	NC	NA	NA	Yes ^c	NA	NA
VOCs										
Benzene	mg/kg	0.066	NA	0.066	NC	NA	NA	Yes ^c	NA	NA
Ethylbenzene	mg/kg	0.130	NA	0.130	NC	NA	NA	Yes ^c	NA	NA
Toluene	mg/kg	0.180	NA	0.180	NC	NA	NA	Yes ^c	NA	NA
Xylene (total)	mg/kg	0.610	NA	0.610	NC	NA	NA	Yes ^c	NA	NA
SVOCs										
Naphthalene	mg/kg	0.120	NA	0.120		NA	NA	Yes ^c	NA	NA

Sum of Ratios 5.33

Table 3-7 Identification of Carcinogenic COCs in IRA Subsurface Soil at RVAAP-03 Open Demolition Area 1

Notes:

-- = No CUG could be quantified based on lack of approved toxicity value. Bkgd = Background COC = constituent of concern COPC = constituent of potential concern CR = Cumulative Risk EPC = Exposure Point Concentration mg/kg = milligrams/kilograms NA = Not applicable NC = Not calculated SVOCs = Semivolatile Organic Compounds UCL = Upper Confidence Level VOCs = Volatile Organic Compounds

^a Cleanup Goals (CUGs) are from the Draft Facility-Wide Human Health Cleanup Goals for the RVAAP prepared by SAIC in September 2008.

^b The RVAAP background value is the default action level for inorganic COPCs with CUGs less than background.

^c Detected organics are automatically retained as COCs where no CUGs have been developed. Inorganics are automatically retained where no CUGs have been developed if the maximum detection is greater than the RVAAP background value.

Table 3-8 Identification of Non-Carcinogenic COCs in IRA Subsurface Soil at RVAAP-03 Open Demolition Area 1

								Draft	Facility-Wid	e Clean	up Goals for Su	ubsurface	e Soil ^c		
							Residential Farmer								
							Adult								
	Maximum Detect	95% UCL	EPC	Critical Effect ^a	Target Organ(s) ^b	HI=1	# Detect > HI and Bkgd ^d	Ratio of EPC to HI	COC?	% of Sum Skin	COC?	% of Sum Resp.Sys.	COC?		
Inorganics	;				•	•								-	
Aluminum	mg/kg	252,000	69,211	69,211	minimal neurotoxicity in offspring	eyes, skin, respiratory system	529,229	0	0.13	No	11	Yes	10	Yes	
Antimony	mg/kg	9.2	5.64	5.64	longevity, blood glucose, and cholesterol	eyes, skin, respiratory system, CVS	136	0	0.04	No	4	No	3	No	
Arsenic	mg/kg	29.3	18.84	18.84	hyperpigmentation, keratosis, and possible vascular complications	liver, kidney, skin, lungs, lymphatic system	82.1	0	0.23	No	20	Yes	18	Yes	
Beryllium	mg/kg	1	0.786	0.786	NL	eyes, skin, respiratory system	NC	NA	NA	Yes ^e	NA	NA	NA	NA	
Cadmium	mg/kg	25.9	NA	25.9	significant proteinuria	respiratory system, kidneys, prostate, blood	223	0	0.12	No	NA	NA	9	No	
Chromium	mg/kg	249	72.45	72.45	stomach ulcers, convulsions, kidney and liver damage	eyes, skin, respiratory system	904	0	0.08	No	7	No	6	No	
Copper	ma/ka	74.200	17.308	17,308	GI, hepatic, and renal effects, abdominal pain, vomiting, diarrhea, hemolysis, hepatic necrosis, hematuria, proteinuria, hypotension, tachycardia, convulsions, coma, and death	eyes, skin, respiratory system, liver, kidneys	27,138	1	0.64	No	55	Yes	50	Yes	
	5 5			1		eyes, GI tract, CNS, kidneys, blood,									
Lead	mg/kg	2,370	563.4	563.4	NL	gingival tissue	NC	NA	NA	Yes ^e	NA	NA	NA	NA	
Mercury	mg/kg	0.055	0.0364	0.0364	hand tremor, memory disturbance, objective autonomic dysfunction	eyes, skin, respiratory system, CNS, kidneys	165	0	0.0002	No	0.02	No	0.02	No	
Nickel	mg/kg	156	42.06	42.06	decreased body and major organ weights	nasal cavities, lungs, skin	13,463	0	0.003	No	0.3	No	0.2	No	
Silver	mg/kg	4.60	NA	4.60	GI tract, abdominal pain, diarrhea, vomiting, shock, convulsions, skin, mucous membranes, eyes and death	nasal septum, skin, eyes	3,240	0	0.0014	No	0.1	No	0.1	No	
	тулу	4.00		4.00	copper deficiency and hypochromic microcytic anemia, pulmonary and	nasa septan, san, cycs	3,240		0.0014	NU	0.1	NO	0.1		
Zinc	mg/kg	32,100	7,528	7,528	GI effects	eyes, skin, respiratory system	196,589	0	0.04	No	3	No	3	No	
Explosives/Propellant	s														
2,4,6-Trinitrotoluene	mg/kg	0.180	NA	0.180	liver effects	eyes, skin, respiratory system, blood, liver, CVS, CNS, kidneys	211	0	0.001	No	0.1	No	0.1	No	
Nitrocellulose	mg/kg	1.0	NA	1.0	NL	NL	NC	NA	NA	Yes ^e	NA	NA	NA	NA	

Table 3-8 Identification of Non-Carcinogenic COCs in IRA Subsurface Soil at RVAAP-03 Open Demolition Area 1

								Draft	Facility-Wid		up Goals for Su	Ibsurface	e Soil °						
										Residential Farmer Adult									
COPCs	Units	Maximum Detect	95% UCL	EPC	Critical Effect ^a	Target Organ(s) ^b	HI=1	# Detect > HI and Bkgd ^d	Ratio of EPC to HI	COC?	% of Sum Skin	COC?	% of Sum Resp.Sys.	COC?					
VOC)s																		
Benzene	mg/kg	0.066	NA	0.066	decreased lymphocyte count	eyes, skin, respiratory system, blood, CNS, bone marrow	NC	NA	NA	Yes ^e	NA	NA	NA	NA					
Ethylbenzene	mg/kg	0.130	NA	0.130	NL	eyes, skin, respiratory system, CNS	NC	NA	NA	Yes ^e	NA	NA	NA	NA					
Toluene	mg/kg	0.180	NA	0.180	NL	eyes, skin, respiratory system, CNS, liver, kidneys	NC	NA	NA	Yes ^e	NA	NA	NA	NA					
Xylene (total)	mg/kg	0.610	NA	0.610	NL	eyes, skin, respiratory system, CNS, GI tract, blood, liver, kidneys	NC	NA	NA	Yes ^e	NA	NA	NA	NA					
svoc	:s		1	1	1	I		r				r	1	1					
Naphthalene	mg/kg	0.120	NA	0.120	red blood cells, gastrointestinal distress, neurotoxic, hepatic, renal, and ocular effects, decreased mean terminal body weights in males	eyes, skin, blood, liver, kidneys, CNS	3,678	0	0.00003	No	0.003	No	NA	NA					
							S S S S S S	um of Ratios um of Ratios	1.16 1.28 0.04 0.87 0.98 0.23	CVS liver kidney	., lungs, nasal c system								

Sum of Ratios

Sum of Ratios

0.12

0.001

blood

CNS
									Draft	Facility-W	/ide Cleanup G	oals for S	ubsurface So	il ^c				
										<u> </u>	Residential	Farmer						
											Child	1						
COPCs	Units	Maximum Detect	95% UCL	EPC	HI=1	# Detect > HI and Bkgd ^d	Ratio of EPC to HI	COC?	% of Sum Eyes	COC?	% of Sum Skin	COC?	% of Sum Resp.Sys.	COC?	% of Sum Liver	COC?	% of Sum Kidneys	COC?
Inorganics	5										•							
Aluminum	mg/kg	252,000	69,211	69,211	73,798	1	0.94	No	13	Yes	11	Yes	11	Yes	NA	NA	NA	NA
Antimony	mg/kg	9.2	5.64	5.64	28.2	0	0.20	No	3	No	2	No	2	No	NA	NA	NA	NA
Arsenic	mg/kg	29.3	18.84	18.84	20.2	6	0.93	No	NA	NA	11	Yes	11	Yes	14	Yes	13	Yes
Beryllium	mg/kg	1	0.786	0.786	NC	NA	NA	Yes ^e	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Cadmium	mg/kg	25.9	NA	25.9	64.1	0	0.40	No	NA	NA	NA	NA	5	No	NA	NA	6	No
Chromium	mg/kg	249	72.45	72.45	199	1	0.36	No	5	No	4	No	4	No	NA	NA	NA	NA
Copper	mg/kg	74,200	17,308	17,308	3,106	1	5.57	Yes	75	Yes	67	Yes	63	Yes	86	Yes	81	Yes
Lead	mg/kg	2,370	563.4	563.4	NC	NA	NA	Yes ^e	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Loud	mg/kg	2,010	000.4	000.4	NO	11/1	107	100			107	10/1		107		101	107	
Mercury	mg/kg	0.055	0.0364	0.0364	22.7	0	0.002	No	0.02	No	0.02	No	0.02	No	NA	NA	0.02	No
Nickel	mg/kg	156	42.06	42.06	1,552	0	0.03	No	NA	NA	0.3	No	0.3	No	NA	NA	NA	NA
Silver	mg/kg	4.60	NA	4.60	386	0	0.0119	No	0.2	No	0.1	No	0.1	No	NA	NA	NA	NA
Zinc	mg/kg	32,100	7,528	7,528	23,209	1	0.32	No	4	No	4	No	4	No	NA	NA	NA	NA
Explosives/Propellant	ts																	
2,4,6-Trinitrotoluene	mg/kg	0.180	NA	0.180	36.5	0	0.005	No	0.1	No	0.1	No	0.1	No	0.1	No	0.1	No
Nitrocellulose	mg/kg	1.0	NA	1.0	NC	NA	NA	Yes ^e	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA

									Draft	Facility-W	ide Cleanup Go	bals for S	ubsurface So	oil °				
										-	Residential	Farmer						
											Child	-						
COPCs	Units	Maximum Detect	95% UCL	EPC	HI=1	# Detect > HI and Bkgd ^d	Ratio of EPC to HI	COC?	% of Sum Eyes	COC?	% of Sum Skin	COC?	% of Sum Resp.Sys.	COC?	% of Sum Liver	COC?	% of Sum Kidneys	COC?
VO	Cs																	
Benzene	mg/kg	0.066	NA	0.066	NC	NA	NA	Yes ^e	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Ethylbenzene	mg/kg	0.130	NA	0.130	NC	NA	NA	Yes ^e	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Toluene	mg/kg	0.180	NA	0.180	NC	NA	NA	Yes ^e	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Xylene (total)	mg/kg	0.610	NA	0.610	NC	NA	NA	Yes ^e	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
SVO	Cs																	
Naphthalene	mg/kg	0.120	NA	0.120	1,215	0	0.0001	No	0.001	No	0.001	No	NA	NA	0.002	Yes	0.001	No
					Su Su Su Su Su Su Su	m of Ratios m of Ratios	8.38 8.78 0.20 6.51 6.92 0.93 0.40 0.41	eyes skin resp.sys., I CVS liver kidney lymphatic s prostate blood CNS	ungs, nasal system									

							Dra	ft Facility-W	ide Cleanup Go	oals for Su	bsurface Soil	c		
								ŕ	National G	uard				
									Traine	е				
COPCs	Units	Maximum Detect	95% UCL	EPC	HI=1	# Detect > HI and Bkgd ^d	Ratio of EPC to HI	COC?	% of Sum Eyes	COC?	% of Sum Skin	COC?	% of Sum Resp.Sys.	COC?
Inorganic	s													
Aluminum	mg/kg	252,000	69,211	69,211	34,960	1	1.98	Yes	59	Yes	59	Yes	59	Yes
Antimony	mg/kg	9.2	5.64	5.64	1,753	0	0.003	No	0	No	0	No	0	No
Arsenic	mg/kg	29.3	18.84	18.84	1,140	0	0.02	No	NA	NA	0	No	0	No
Beryllium	mg/kg	1	0.786	0.786	NC	NA	NA	Yes ^e	NA	NA	NA	NA	NA	NA
Cadmium	mg/kg	25.9	NA	25.9	3,292	0	0.01	No	NA	NA	NA	NA	0.2	No
Chromium	mg/kg	249	72.45	72.45	56	1	1.29	Yes	39	Yes	38	Yes	38	Yes
Copper	mg/kg	74,200	17,308	17,308	253,680	0	0.07	No	2	No	2	No	2	No
Lead	mg/kg	2,370	563.4	563.4	NC	NA	NA	Yes ^e	NA	NA	NA	NA	NA	NA
Mercury	mg/kg	0.055	0.0364	0.0364	1,722	0	0.00002	No	0.001	No	0.001	No	0.001	No
Nickel	mg/kg	156	42.06	42.06	126,391	0	0.0003	No	NA	NA	0	No	0.01	No
Silver	mg/kg	4.60	NA	4.60	31,049	0	0.00015	No	0.004	No	0.004	No	0.004	No
Zinc	mg/kg	32,100	7,528	7,528	1.0E+06	0	0.01	No	0.2	No	0.2	No	0.2	No
Explosives/Propellan	its													
2,4,6-Trinitrotoluene	mg/kg	0.180	NA	0.180	2,488	0	0.0001	No	0.002	No	0.002	No	0.002	No
Nitrocellulose	mg/kg	1.0	NA	1.0	NC	NA	NA	Yes ^e	NA	NA	NA	NA	NA	NA

							Dra	ft Facility-W	ide Cleanup Go	als for Su	bsurface Soil			
									National G	uard				
									Traine	e				
COPCs	Units	Maximum Detect	95% UCL	EPC	HI=1	# Detect > HI and Bkgd ^d	Ratio of EPC to HI	COC?	% of Sum Eyes	COC?	% of Sum Skin	COC?	% of Sum Resp.Sys.	COC?
VOCs	;	0			0	1			1		1			
Benzene	mg/kg	0.066	NA	0.066	NC	NA	NA	Yes ^e	NA	NA	NA	NA	NA	NA
Ethylbenzene	mg/kg	0.130	NA	0.130	NC	NA	NA	Yes ^e	NA	NA	NA	NA	NA	NA
Toluene	mg/kg	0.180	NA	0.180	NC	NA	NA	Yes ^e	NA	NA	NA	NA	NA	NA
Xylene (total)	mg/kg	0.610	NA	0.610	NC	NA	NA	Yes ^e	NA	NA	NA	NA	NA	NA
SVOC														
Naphthalene	mg/kg	0.120	NA	0.120	15,407	0	0.00001	No	0.0002	No	0.0002	No	NA	NA
Naphthalene	mg/kg	0.120	NA	0.120	15,407	0	0.00001	No	0.0002	No	0.0002	No	NA	NA

Notes:

Bkgd = Background CNS = Central Nervous System COCc = constituent of concern CVS = Cardiovascular System EPC = Exposure Point Concentration feet bgs = feet below ground surface HI = Hazard Index mg/kg = milligrams/kilograms NA = Not applicable NC = Not calculated NL = Not listed UCL = Upper Confidence Limit VOCs = Volatile Organics

SVOCs = Semivolatile organics

^a Critical Effect data are from Table 4-2 of the Draft Facility-Wide Human Health Cleanup Goals for the RVAAP prepared by SAIC in September 2008.

^b Target organ data are from the Pocket Guide to Chemical Hazards, National Institute for Occupational Safety and Health, June 1997.

^c Cleanup Goals (CUGs) are from the Draft Facility-Wide Human Health Cleanup Goals for the RVAAP prepared by SAIC in September 2008.

^d The RVAAP background value is the default action level for inorganic COPCs with CUGs less than background.

^e Detected organics are automatically retained as COCs where no CUGs have been developed. Inorganics are automatically retained where no CUGs have been developed if the maximum detection is greater than the RVAAP background value.

4.0 Sample Design

This section summarizes the data gaps identified during the data evaluation in Section 3.0 and presents the rationale for additional investigation. Data gaps include confirmation and identification of the final ODA1 site boundaries, COPCs in surface soil, and COCs in subsurface soils across the site. A geophysical survey is proposed to address the boundary issue. Additional sampling is proposed to determine the extent of COPCs in surface soil and COCs in subsurface soils. Surface and subsurface soil sampling may also be necessary in the event the geophysical survey results indicate a need to collect additional soil samples. The selection of the areas for biased or random sampling will based on the revised project DQOs, a revised CSM, discussions with Ohio EPA and direction as provided by USACE.

4.1 Geophysical Investigation

4.1.1 Rationale

The removal effort at ODA1 consisted of the removal and disposal of approximately 41 tons of ordnance and explosive scrap from surface and subsurface soils at ODA1. Subsequent site inspections and historical information indicate additional MEC scrap may be located in limited areas outside the current ODA1 boundaries. As a result, a geophysical investigation will be performed over the site to confirm the delineation of ODA1 boundaries. The primary goal of the geophysical investigation is to identify areas of MEC scrap accumulation. The current estimated coverage area of the proposed geophysical survey is presented as Figure 4-1.

4.1.2 Geophysical Investigation Location

The geophysical survey (Figure 4-1) will cover the entire ODA1 area and areas just beyond the perimeter of the AOC boundaries so that any potential "push out" areas can be identified. The proposed survey area may be altered dependent upon field observations made during the execution of work. All changes would be documented and approved by all stakeholders prior to any changes in the proposed survey procedures. Specific geophysical procedures will be presented in a workplan prior to starting the field work. The total survey area is approximately 8.6 acres with an approximate survey depth of 5 feet bgs.

4.1.3 Geophysical Investigation Method

For ODA1, a Geonics EM61-MK2 metal detector will most likely be deployed based on the results of the geophysical prove out (GPO) that will be used to assess and document the performance of the geophysical instrumentation, navigation system, and field deployment form-factor. The GPO will also be used to assess the most optimal data processing techniques and anomaly selection criteria given the local soil, site conditions, and targets of interest at RVAAP.

Figure 4-1 Proposed Geophysical Survey Area

The EM61-MKII will be deployed along with a Real-Time Kinematic (RTK) global positioning system (GPS) in open areas, which is ideal for the ODA1 given site conditions.

4.1.4 General Geophysical Survey Procedures

Full coverage mode will be utilized at ODA1 and is discussed further in the *Geophysical Investigation Plan for Sand Creek Disposal Road Landfill (RVAAP-34), Open Demolition Area* #1 (*RVAAP-03*) and Suspected Mustard Agent Burial Site (*RVAAP-28*) (Shaw, 2009). Full coverage will be achieved through deployment of the sensor system through the collection of sub-parallel survey lines or swaths with sensor separations of 3.0 feet. The general survey procedures include the following:

- Review the site. The area requiring full coverage will be reviewed through a site walk-over during which the geophysical survey conditions will be reviewed by the site geophysicist;
- Set up the navigational system chosen by the geophysicist at a convenient control point of known location. Confirm location control via checkshots to at least one other control point of known location;
- Place temporary location control QC items in the survey area using the Robotic Total Station (RTS) as needed to document navigation precision. At least one location QC item (either temporary items or semi-permanent grid hubs) will be present in each data set;
- Set up a replicate data line location and collect the pre- and post-survey data line. These data will be compared to insure repeatability of the data collection method;
- The sensors are towed, pulled or pushed at a mean speed less than 3 miles per hour in the GPO (to be verified by analysis of the navigation data for each data set) to minimize sensor bounce and sway;
- Collect and maintain field logs to document the conditions of the data collection. The field logs will include information regarding the data collection area, field conditions, data acquisition parameters, and QC performed;
- Field geophysical data and navigation data will be downloaded to a field personal computer. The electronic files will be organized on an office PC dedicated to geophysical investigation management. Data will be backed-up daily; and
- Review all traverse data and overlay on the survey grid layout or planned traverse lines as QC and to identify any missed areas.

Following the completion of the geophysical investigation and data processing activities for ODA1, the data will be incorporated into a geophysical investigation report.

4.2 Environmental Investigation

Environmental sampling is necessary to determine the extent of COPCs in surface and COCs in subsurface soils that remain after the IRA was completed in 2000. At present, it is uncertain if the geophysical survey will indicate any additional potential source areas outside if the current AOC boundaries at ODA1. The need for additional environmental media sampling will be evaluated after completion of the geophysical survey. In the event the geophysical survey confirms the presence of additional potential source areas, it may be necessary to implement a revised sampling program to assess the environmental media. It is expected that, if encountered, media sampling would be limited to surface and subsurface soils and be consistent with previous investigation programs at ODA1. Any changes to the proposed sample design program for ODA1 will be documented in future CERCLA documents.

4.2.1 Subsurface Soils

4.2.1.1 Rationale

Data gaps exist for 6 inorganic and 5 organic constituents identified as COCs including aluminum, arsenic, beryllium, chromium (total), copper, lead, nitrocellulose, benzene, ethylbenzene, toluene, and xylenes. Additional subsurface soil samples will be necessary to define the vertical extent of these COCs primarily in the west, southwest, and south central portions of the site. The majority of IRA excavation confirmation samples were collected at a depth of 4 feet bgs with the exception of those from a limited area within Grid 5 which were collected from 8 feet bgs, Grid 11A - 5 feet bgs, Grids 17, 18, 19, and 20 - 2 feet bgs, and Grid 21 between 2 and 4 feet bgs.

4.2.1.2 Subsurface Soil Sampling Locations

Subsurface soil samples will be collected from the area of the IRA location of Grid 11A on the western perimeter of the site where data gaps for inorganic COCs exist to the north, west, and south and with depth below 5 feet bgs. Data gaps in subsurface soil also exist vertically with depth at the IRA locations in the southwest portion (Grids 17 and 19 [below 2 feet bgs] and Grid 9 [below 4 feet bgs]), southern portion (Grid 5 [below 8 feet bgs]), southwest/central portion (Grid 3 [below 4 feet bgs]), and northeast/central portion (Grids 14 and 15 [below 4 feet bgs]) of the site. Data gaps for inorganic COCs exist horizontally to the north, west, and south of Grid 11A and north and west of Grid 14.

Propellant and VOC COCs were detected at IRA excavation locations Grids 5 and 10. Data gaps for the extent of organic COCs exist horizontally and vertically with depth below 8 feet bgs in the southwest/central portion (Grid 5) and 4 feet bgs in the western perimeter (Grid 10) of the site. Data gaps for VOCs exist in each direction around Grid 5. Data gaps for nitrocellulose exist to the north and south of Grid 10 and to the east and west of Grid 5.

Subsurface soil samples will be collected continuously from Geoprobe borings to 20 ft bgs. Subsurface soil samples will be collected at 4 foot intervals using the MI sampling approach. In general, 30 increments of soil will be collected from the Geoprobe soil column for each 4-foot interval to generate and MI sample. The intervals and depth of previous subsurface soil sample collection has varied at ODA1. In order to be consistent with the excavation confirmation sampling and potential future use of the data in risk assessments, subsurface soil samples will be collected at intervals that begin/end at 4 ft bgs. Subsurface soil sample collection in areas not previously excavated will begin at 1 ft bgs such that the first interval is 1 to 4 ft bgs and then 4-ft intervals thereafter (1-4, 4-8, 8-12, 12-16, and 16-20 ft bgs). Sample collection in areas previously excavated will begin at the bottom of the excavation (i.e., either 2 or 4 ft bgs) and proceed in 4 ft intervals. The first sample interval for samples beginning at 2 ft bgs will end at 4 ft bgs and continue in 4-ft intervals thereafter (2-4, 4-8, 8-12, 12-16, and 16-20 ft bgs).

4.2.1.3 Sample Analysis

Subsurface soil samples, including QA samples, will be submitted for laboratory analysis for TAL metals and explosives. A minimum of 10 percent of the samples will be analyzed for the RVAAP full suite to include VOCs, SVOCs, pesticides/herbicides, PCBs, and propellants.

4.2.2 Surface Soils

4.2.2.1 Rationale

Data gaps were identified for 4 inorganic COPCs (arsenic, beryllium, chromium [total], and cobalt) in surface soils in the central portion (DA1-008, -018, and -019), southwest perimeter (DA1-026), southern perimeter (DA1-030), southeast portion (DA1-034) of the site. As several of these previous sampling locations in the central portion of the site are bound horizontally by IRA excavation grids or other surface soil samples, data gaps for inorganic COPCs in surface soil exist horizontally along the southwest, south, and southeast perimeter of the site. The COPCs are bound with depth at these Phase I RI sampling locations.

4.2.2.2 Surface Soil Sampling Locations

Surface soil samples will be collected along the southwest, south, and southeast site perimeter or as needed based on the results of the geophysical investigation. Surface soil samples will be collected using the MI approach. Each MI sample will consist of random samples from depths between 0 and 1 foot bgs. In general, 30 random samples will be collected from each identified location.

4.2.2.3 Sample Analysis

Surface soil samples, including QA samples, will be submitted for laboratory analysis for TAL metals and explosives. A minimum of 10 percent of the samples will be analyzed for the RVAAP full suite to include VOCs, SVOCs, pesticides/herbicides, PCBs, and propellants.

This page intentionally left blank.

5.0 Summary of Conclusions

This *DQO Report* has utilized the DQO process provided in the *FSAP* to identify and define data gaps from the previous investigation and IRAs at the site that need to be addressed to support environmental and MEC closure of ODA1. Data results from the *Phase I RI Report* (SAIC, 2001b) and the *Interim Removal Action Report* (MKM, 2004) have been compared to the current RVAAP background values and the current risk-based Draft CUGs for contaminants detected at the site. Based on the available information, additional sampling of media is necessary to support an environmental remedy selection for the AOC as currently delineated. The justification is discussed below.

Given the relatively small size of the site (6 acres), the extent and rationale of media sampling already completed for the site in the Phase I report and the IRA report appears to be insufficient at the site perimeter and with depth. The Phase 1 RI sample locations were selected to assess likely potential source areas based on historical site information, visual site observations, and expected contaminant migration pathways (drainage conveyances, low lying potential ponding areas, etc.). However, a comparison of data to updated CUGs indicates data gaps.

Subsequent removal actions addressed areas exhibiting contaminant concentrations that were considered a concern to human health at that time. Confirmatory sampling taken from subsurface locations and screening results taken from soils that were reused as backfill have also provided additional information to determine areas that require further characterization at depth.

Data gaps were identified for 4 inorganic COPCs in surface soil (arsenic, beryllium, chromium [total], and cobalt) based on the most conservative risk-based CUGs. Additional surface soil samples will need to be analyzed for VOCs, SVOCs, and PCBs to further evaluate these parameters as COPCs. Data gaps were identified for the COCs in subsurface soil including aluminum, arsenic, beryllium, chromium [total], copper, lead, nitrocellulose, benzene, ethylbenzene, toluene, and xylenes.

The results of the Phase I RI indicated that sediment and surface water in Hinkley Creek, the receiving water for stormwater drainages from ODA1, do not appear to have received contamination related to former operations at ODA1. Subsequent discussions with stakeholders (30 December 2008 Data Gaps conference call) indicate that if additional surface water and sediment investigations were determined necessary, they would be performed under activities associated with the NTA site or the facility-wide surface water program.

Only one Geoprobe groundwater sample was collected at ODA1 under the Phase 1 RI. In order to determine whether or not there has been actual impact on the ODA1 groundwater, properly

drilled, installed and sampled monitoring wells would need to be utilized. Groundwater data from a wellpoint is solely used for screening purposes (i.e., any detects are considered minimal values and non-detects do not definitively indicate lack of contamination). Additional groundwater investigation will occur under the NTA site.

The extent of MEC scrap and debris at ODA1 has not been adequately defined based on visual observations at the site. A geophysical investigation will be performed over the current AOC and areas just beyond the perimeter to identify any "push out areas."

6.0 References

MKM Engineers, Inc. (MKM), 2004. Final OE/UXO Removal & Interim Removal Action Report for the Open Demolition Area #1. March 2004.

Science Applications International Corporation (SAIC), 2001a. Final Facility-Wide Sampling and Analysis Plan for Environmental Investigations at the Ravenna Army Ammunition Plant, Ravenna, Ohio. March 2001.

SAIC, 2001b. Final Phase I Remedial Investigation Report for Demolition Area 1 at the Ravenna Army Ammunition Plant, Ravenna, Ohio. December 2001.

SAIC, 2008. Draft Facility-Wide Human Health Cleanup Goals, Ravenna Army Ammunition Plant, Ravenna, Ohio. September 2008.

Shaw Environmental & Infrastructure, Inc. (Shaw), 2008. Data Quality Objective Meeting Minutes for conversation between Shaw, United States Army Corps of Engineers – Louisville District, and Ohio EPA, December 30.

Shaw, 2009. Final Geophysical Investigation Plan for RVAAP-34 Sand Creek Disposal Road Landfill, RVAAP-03 Open Demolition Area #1, and RVAAP-28 Suspected Mustard Agent Burial Site. Final. July 2009.

United States Army Center for Health Promotion and Preventive Medicine (USACHPPM), 1996. Final Preliminary Assessment for Ravenna Army Ammunition Plant, Ravenna, Ohio. February 1996.

United States Army Corps of Engineers (USACE), 2001. Phase II Remedial Investigation for the Winklepeck Burning Grounds at Ravenna Army Ammunition Plant, Ravenna, Ohio. April 2001.

USACE, 2003. Final Ravenna Army Ammunition Plant Facility-Wide Ecological Risk Work Plan. April 21, 2003.

USACE, 2005. RVAAP's Facility-Wide Human Health Risk Assessor Manual, Version 1. 01 December 2005.

USACE, 2009. Position Paper for the Application and Use of Facility-Wide Human Health Cleanup Goals, Ravenna Army Ammunition Plant, Ravenna, Ohio. June 2009.

United States Army Toxic and Hazardous Material Agency (USATHAMA) 1980-1992. Ravenna Army Ammunition Plant Water Quality Surveillance Program (data only).

United States Environmental Protection Agency (USEPA), 1997. Ecological Risk Assessment Guidance for Superfund: Process for Designing and Conducting Ecological Risk Assessments, EPA 540-R-97-006. Interim Final. June 1997.

This page intentionally left blank.

APPENDIX A PROUCL SOFTWARE PROGRAM OUTPUT

	Frequency	Range o	f Detects	Mean of	95%		
	of	Minimum	Maximum	Detects	UCL ^a		
Detected Analyte	Detection	mg/kg	mg/kg	mg/kg	mg/kg	Distribution ^a	Method ^a
Inorganics							
Aluminum	23 / 23	1.73E+03	1.62E+04	9.34E+03	1.10E+04	Normal	Student's-t
Arsenic	23 / 23	5.00E+00	1.56E+01	1.00E+01	1.11E+01	Normal	Student's-t
Barium	23 / 23	2.34E+01	2.52E+02	7.77E+01	9.44E+01	Gamma	Approximate Gamma
Beryllium	7 / 23	1.50E-01	9.40E-01	3.37E-01	2.89E-01	Gamma	KM-t
Cadmium	4 / 23	2.70E-01	1.10E+00	6.43E-01	7.52E-01	Normal	KM (Percentile Bootstrap)
Chromium	23 / 23	3.40E+00	2.27E+01	1.23E+01	1.44E+01	Normal	Student's-t
Cobalt	23 / 23	2.70E+00	1.54E+01	7.40E+00	8.67E+00	Normal	Student's-t
Copper	23 / 23	5.80E+00	7.04E+01	2.41E+01	3.43E+01	Lognormal	H-UCL
Lead	23 / 23	8.00E+00	2.22E+01	1.53E+01	1.67E+01	Normal	Student's-t
Manganese	23 / 23	1.38E+02	9.47E+02	4.69E+02	5.44E+02	Normal	Student's-t
Mercury	15 / 23	7.80E-03	7.60E-02	3.46E-02	3.66E-02	Normal	KM-t
Nickel	23 / 23	7.90E+00	3.59E+01	1.50E+01	1.77E+01	NP	Modified-t
Selenium	3 / 23	8.80E-01	1.30E+00	1.13E+00	9.58E-01	Normal	KM-t
Thallium	21 / 23	1.40E-01	4.80E-01	3.13E-01	3.47E-01	Normal	KM-t
Zinc	23 / 23	3.19E+01	3.17E+02	7.20E+01	1.29E+02	NP	Chebyshev (Mean, Sd)
Insufficient Sample Size fo	or UCL Calculation	n					
Inorganics							
Antimony	2/17	5.40E-01	6.30E-01	5.85E-01			
Explosives/Propellants							
1,3,5-Trinitrobenzene	1 / 23	6.60E+00	6.60E+00	6.60E+00			
HMX	2/23	2.00E-01	2.60E+00	1.40E+00			

 TABLE A-1

 Statistical Summary of Detected Analytes in Surface Soil Samples

 RVAAP-03 Open Demolition Area 1

mg/kg - milligram per kilogram

NP - Nonparametric; distribution is not discernable

UCL - Upper confidence limit

^a Nature of distribution, statistical method, and 95% Upper Confidence Limit (UCL) determined using ProUCL Version 4.0 (EPA, 2007, ProUCL Version 4.0, Office of Research and Development, Technology Support Center Characterization and Monitoring Branch, Las Vegas, Nevada, April.) on line at http://www.epa.gov/esd/tsc/form.htm.) The recommended UCL was used unless the recommendation was the 97.5% or 99% Chebyshev UCL.

Data Quality Objectives Report October 2009 Table A-1 Page 1 of 18

Shaw Environmental and Infrastructure, Inc.

	General UCL Statistics for Data Sets with Non-Detects
User Selected Options	
From File	C:\Documents and Settings\debbi.freer\My Documents\Ravenna\Ravena ss UCL input revb.xls.wst
Full Precision	OFF
Confidence Coefficient	95%
Number of Bootstrap Operations	2000

Г

inum			
Number of Mallel Okana and an	General Stat		0.0
Number of Valid Observations	23	Number of Distinct Observations	23
Raw Statistics		Log-transformed Statistics	
Minimum	1730	Minimum of Log Data	7.45
Maximum	16200	Maximum of Log Data	9.69
Mean	9335	Mean of log Data	8.96
Median	9520	SD of log Data	0.68
SD	4679		
Coefficient of Variation	0.501		
Skewness	-0.24		
	Relevant UCL S	talistics	
Normal Distribution Test	I COLLAR OOL G	Lognormal Distribution Test	
Shapiro Wilk Test Statistic	0.938	Shapiro Wilk Test Statistic	0.86
Shapiro Wilk Critical Value	0.914	Shapiro Wilk Critical Value	0.91
Data appear Normal at 5% Significance Level		Data not Lognormal at 5% Significance Level	
Assuming Normal Distribution		Assuming Lognormal Distribution	
95% Student's-t UCL	11010	95% H-UCL	125
95% UCLs (Adjusted for Skewness)	11010	95% Chebyshev (MVUE) UCL	
95% Adjusted-CLT UCL	10999	97.5% Chebyshev (MVUE) UCL	
95% Modified-t UCL		99% Chebyshev (MVUE) UCL	
7575 Wolanda (562	11002	778 GIEDJSKE (INVE2) 002	247
Gamma Distribution Test		Data Distribution	
k star (bias corrected)		Data appear Normal at 5% Significance Level	
Theta Star	3622		
MLE of Mean	9335		
MLE of Standard Deviation	5815		
nu star	118.6		
Approximate Chi Square Value (.05)	94.42	Nonparametric Statistics	
Adjusted Level of Significance	0.0389	95% CLT UCL	
Adjusted Chi Square Value	92.86	95% Jackknife UCL	
		95% Standard Bootstrap UCL	
Anderson-Darling Test Statistic		95% Bootstrap-I UCL	
Anderson-Darling 5% Critical Value		95% Hall's Bootstrap UCL	
Kolmogorov-Smirnov Test Statistic		95% Percentile Bootstrap UCL	
Kolmogorov-Smirnov 5% Critical Value	0.183	95% BCA Bootstrap UCL	108
Data not Gamma Distributed at 5% Significance Lev	el	95% Chebyshev(Mean, Sd) UCL	135
		97.5% Chebyshev(Mean, Sd) UCL	154
Assuming Gamma Distribution		99% Chebyshev(Mean, Sd) UCL	190
95% Approximate Gamma UCL	11722		
95% Adjusted Gamma UCL	11919		
Potential UCL to Use		Use 95% Student's-LUCL	

Intimony			
alanony			
	General	Statistics	
Number of Valid Data	17	Number of Detected Data	
Number of Distinct Detected Data	2	Number of Non-Detect Data	
Number of Missing Values	6	Percent Non-Detects	88.2
Raw Statistics		Log-transformed Statistics	
Minimum Detected	0.54	Minimum Detected	-0.6
Maximum Detected Mean of Detected	0.63	Maximum Detected Mean of Detected	-0.
SD of Detected	0.0636	SD of Detected	0.1
Minimum Non-Detect	1.1	Minimum Non-Detect	0.0
Maximum Non-Detect	1.2	Maximum Non-Detect	0.
ote: Data have multiple DLs - Use of KM Method is recomme	inded	Number treated as Non-Detect	
or all methods (except KM, DL/2, and ROS Methods),		Number treated as Detected	
bservations < Largest ND are treated as NDs		Single DL Non-Detect Percentage	100.0
Waming: Data s	et has only :	2 Distinct Detected Values.	
		ningful and reliable test statistics and estimates.	
		ues to estimate environmental parameters (e.g., EPC, BTV).	
· ·			
Liniore Data Quality Objectives (DOOs) b	avo boon me	t it is suggested to collect additional observations	
Uniess Data Quality Objectives (DQOs) n	ave been me	et, it is suggested to collect additional observations.	
-			
		h to perform GOF tests, bootstrap, and ROS methods.	
Those methods will		' value on your output display!	
It is necessary to have 4	or more Dis	Inct Values for bootstrap methods.	
		distinct values may not be reliable.	
		s for accurate and meaningful results and estimates.	
		•	
	UCL St	atistics	
Normal Distribution Test with Detected Values Only		Lognormal Distribution Test with Detected Values Only	y
Shapiro Wilk Test Statistic	N/A	Shapiro Wilk Test Statistic	N
5% Shapiro Wilk Critical Value	N/A	5% Shapiro Wilk Critical Value	N
Data not Normal at 5% Significance Level		Data not Lognormal at 5% Significance Level	
Assuming Normal Distribution		Assuming Lognormal Distribution	
DL/2 Substitution Method		DL/2 Substitution Method	
Mean	0.581	Mean	-0
SD	0.0286	SD	0.
95% DL/2 (t) UCL	0.593	95% H-Stat (DL/2) UCL	C
Maximum Likelihood Estimate(MLE) Method	N/A	Log ROS Method	
MLE method falled to converge property	N/A	-	N
MLE method ralled to converge property		Mean in Log Scale	
		SD in Log Scale	
		SD in Log Scale Mean in Original Scale	
		Mean in Original Scale	N
		Mean in Original Scale SD in Original Scale	N
		Mean in Original Scale SD in Original Scale 95% Percentile Bootstrap UCL	N N
		Mean in Original Scale SD in Original Scale	N N
Gamma Distribution Test with Detected Values Only		Mean in Original Scale SD in Original Scale 95% Percentile Bootstrap UCL	N N
Gamma Distribution Test with Delected Values Only k star (bias corrected)	N/A	Mean in Original Scale SD in Original Scale 95% Percentile Bootstrap UCL 95% BCA Bootstrap UCL	N N
		Mean in Original Scale SD in Original Scale 9% PC-confile Bootstrap UCL 9% BCA Bootstrap UCL Data Distribution Test with Detected Values Only	N N
k star (bias corrected)	N/A	Mean in Original Scale SD in Original Scale 9% PC-confile Bootstrap UCL 9% BCA Bootstrap UCL Data Distribution Test with Detected Values Only	N N
k star (bias corrected) Theta Star nu star	N/A N/A N/A	Mean in Original Scale SD in Original Scale 95%, BCA Bootstrap UCL 95% BCA Bootstrap UCL Data Distribution Test with Detected Values Only Data do not follow a Discernable Distribution (0.05)	N N
k star (bias corrected) Theta Star nu star A-D Test Statistic	N/A N/A N/A	Mean in Original Scale SD in Original Scale 95% Percentile Bootstrap UCL 95% DCA Bootstrap UCL Data Distribution Test with Detected Values Only Data do not follow a Discernable Distribution (0.05) Nonparametric Statistics	N N
k star (bias corrected) Theta Star nu star A:D Test Statistic 5% A:D Critical Value	N/A N/A N/A N/A	Maan in Original Scale SD in Original Scale 95% PCARIlle Bootstrap UCL 95% BCA Bootstrap UCL Data Distribution Test with Detected Values Only Data do not follow a Discernable Distribution (0.05) Data do not follow a Discernable Distribution (0.05) Nonparametric Statistics Kaptan-Meier (KM) Method	
k star (bias corrected) Theta Star nu star A-D test Startsic 5% A-D Critical Value K-S Test Statistic	N/A N/A N/A N/A N/A	Mean in Original Scale SD in Original Scale 95%, Percentile Bootshap UCL 95%, PCR Centile Bootshap UCL 95% BCA Bootshap UCL 95% BCA Bootshap UCL 95% BCA Bootshap UCL 95% BCA Bootshap UCL Data do not follow a Discanable Distribution (0.05) Data do not follow a Discanable Distribution (0.05) Nonparametric Statistics Kaplan-Meier (KM) Method Mean	
k star (bias corrected) Theta Star nu star A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value	N/A N/A N/A N/A N/A N/A	Mean in Original Scale SD in Original Scale 95%, Percentile Bootshap UCL 95% BCA Bootshap UCL 95% BCA Bootshap UCL Data Obstibution Test with Detected Values Only Data do not follow a Discrimable Distribution (0.05) Nonperametric Statistics Kapian-Meier (KM) Method Mean SD	
k star (bias corrected) Theta Star nu star A-D test Statistic 5% A-D Critical Value K-S Test Statistic	N/A N/A N/A N/A N/A N/A	Maan in Original Scale SD in Original Scale 9%P. Excentile Bootshap UCL 9% ECA Bootshap UCL Data Distribution Test with Detected Values Only Data do not follow a Discemable Distribution (0.05) Nonparametric Statistics Kapian-Meier (KM) Method Mean SD SE of Mean	
k star (bias corrected) Theta Star nu star A-D test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value Data not Gamma Distributed at 5% Significance Lew	N/A N/A N/A N/A N/A N/A	Mean in Original Scale SD in Original Scale 95%, Percentile Bootshap UCL 95% BCA Bootshap UCL 95% BCA Bootshap UCL Data Distribution Test with Detected Values Only Data do not follow a Discernable Distribution (0.05) Nonperametric Statistics Kaplan-Meier (KM) Method Kaplan-Meier (KM) Method SE of Mean 95% KM (0) UCL	
k star (bias corrected) Theta Star nu star A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value Date not Gemme Distributed at 5% Significance Lew Assuming Gemme Distribution	N/A N/A N/A N/A N/A N/A	Maan in Original Scale SD in Original Scale 9%P. Excentile Bootshap UCL 9% ECA Bootshap UCL Data Distribution Test with Detected Values Only Data do not follow a Discemable Distribution (0.05) Nonparametric Statistics Kapian-Meier (KM) Method Mean SD SE of Mean	
k star (bias corrected) Theta Star nu star A-D test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value Data not Gamma Distributed at 5% Significance Lew	N/A N/A N/A N/A N/A N/A	Man in Original Scale SD in Original Scale 9%P. Parcentile Bootshap UCL 9% BCA Bootshap UCL 9% BCA Bootshap UCL Data Distribution Test with Detected Values Only Data do not follow a Discemable Distribution (0.05) Nonparametric Statistics Kaplan-Meier (KM) Method Mean SE of Mean 9% KM (UCL 9% KM (jackKnie) UCL 9% KM (jackKnie) UCL	
k star (bias corrected) Theta Star nu star A-D test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value Data not Gamma Distributed at 5% Significance Law Assuming Gamma Distribution Gamma ROS Statistics using Extrapolated Data Minimum	N/A N/A N/A N/A N/A N/A SI	Mean in Original Scale SD in Original Scale 9% PC-centile Bootstrap UCL 9% BCA Bootstrap UCL Data Distribution Test with Detected Values Only Data do not follow a Discernable Distribution (0.06) Nonparametric Statistics Kaplan-Meier (KM) Mithod Mean SD SE of Mean 95% KM (0) UCL	
k star (bias corrected) Theta Star nu star A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value 5% K-S Critical Value Data not Gamma Distributed at 5% Significance Law Assuming Gamma Distribution Gamma ROS Statistics using Extrapolated Data	N/A N/A N/A N/A N/A N/A	Mean in Original Scale SD in Original Scale 95%, Percentile Bootshap UCL 95%, BCA Bootshap UCL 95% BCA Bootshap UCL 95% BCA Bootshap UCL Data do not follow a Discanable Distribution (0.05) Data do not follow a Discanable Distribution (0.05) Nonparametric Statistics Kaplan-Meier (KM) Method Kaplan-Meier (KM) Method SE of Mean 95% KM (0uCL 95% KM (bootsham) (0 UCL 95% KM (bootsham) (0 UCL	
k star (bias corrected) Theta Star nu star A-D test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value Data not Gamma Distributed at 5% Significance Law Assuming Gamma Distribution Gamma ROS Statistics using Extrapolated Data Minimum	N/A N/A N/A N/A N/A N/A N/A N/A	Mean in Original Scale SD in Original Scale 9% PSCATIB Bootstrap UCL 9% BCA Bootstrap UCL Data Distribution Test with Detected Values Only Data do not follow a Discernable Distribution (0.08) Nonparametric Statistics Kaplan-Meier (KM) Method Mean SD SE of Mean 95% KM (20 UCL 95% KM (20 UCL 95% KM (20 UCL 95% KM (20 UCL	
k star (bias corrected) Theta Star nu star A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value Data not Gamma Distribution Si K-S Critical Value Data not Gamma Distribution Gamma ROS Statistics using Extrapolated Data Gamma ROS Statistics using Extrapolated Data Minimum Maximum	N/A N/A N/A N/A N/A N/A N/A N/A N/A	Man in Original Scale SD in Original Scale 9%5-Percentile Bootsharp UCL 9%6 BCA Bootsharp UCL 9%6 BCA Bootsharp UCL Data Distribution Test with Detected Values Only Data do not follow a Discemable Distribution (0.06) Nonparametric Statistics Kaplan-Meier (KM) Method Moan 9%6 KM (000 UCL 9%6 KM (000 UCL	
k star (bias corrected) TheIa Star nu star A-D test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value Data not Gamma Distributed at 5% Significance Law Assuming Gamma Distribution Gamma ROS Statistics using Extrapolated Data Minimum Maximum	N/A N/A N/A N/A N/A N/A N/A N/A N/A	Mean in Original Scale SD in Original Scale 95%, Percentile Bootshap UCL 95% BCA Bootshap UCL 95% EXCATIBLE ADD Sharp UCL Data Distribution Test with Detected Values Only Data do not follow a Discernable Distribution (0.05) Nonparametric Statistics Kaplan-Meier (KM) Method Kaplan-Meier (KM) Method Scale Comparation (Scale Scale	
k star (bas corrected) Theta Star nu star 5% AD Critical Value 5% AD Critical Value 5% AS Critical Value 5% AD Cri	N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	Mean in Original Scale SD in Original Scale 9%P-BCACINE Bootstrap UCL 9% BCA Bootstrap UCL Data Distribution Test with Detected Values Only Data do not follow a Discernable Distribution (0.06) Norperametric Statistics Kaplan-Meier (KM) Method Mean SE of Mean 95% KM (objective) UCL 95% KM (bootstrap UUCL 95% KM (bootstrap UUCL 95% KM (Chetyshev) UCL 95% KM (Chetyshev) UCL 97% KM (Chetyshev) UCL	
k star (bias corrected) Theta Star nu star A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value Data not Gamma Distribution Gamma ROS Statistics using Extrapolated Data Minimum Maximum Maximum Mean Median SD k star	N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	Mean in Original Scale SD in Original Scale 9%P-BCACINE Bootstrap UCL 9% BCA Bootstrap UCL Data Distribution Test with Detected Values Only Data do not follow a Discernable Distribution (0.06) Norperametric Statistics Kaplan-Meier (KM) Method Mean SE of Mean 95% KM (objective) UCL 95% KM (bootstrap UUCL 95% KM (bootstrap UUCL 95% KM (Chetyshev) UCL 95% KM (Chetyshev) UCL 97% KM (Chetyshev) UCL	
k star (bias corrected) Theta Star nu star A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value Data not Gamma Distribution Gamma Distribution Gamma ROS Statistics using Extrapolated Data Minimum Maximum Meain Median SD k star Theta star Nu star AppChi2	N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	Maan in Original Scale SD in Original Scale 9%% PSCn lin Original Scale 9%% BCA Bootstrap UCL 9%% BCA Bootstrap UCL Data Distribution Test with Detected Values Only Data do not follow a Discemable Distribution (0.05) Nonperametric Statistics Kaptan-Meier (KM) Method Metan SD SE of Mean 9% KM (0 UCL 9% KM (0 UCL 9% KM (0 UCL 9% KM (0 Clabyshey) UCL 9% KM (Chebyshey) UCL 9% KM (Chebyshey) UCL	
k star (bias corrected) Theta Star nu star A-D test Statistic 5% A-D Critical Value K-S Test Statistic 5% A-D Critical Value Data not Gamma Distribution Gamma ROS Statistics using Extrapolated Data Minimum Maximum Maximum Median SD k star Theta star Nu star AppCh2 9% Gamma Approximate UCL	N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	Maan in Original Scale SD in Original Scale 9%% BCA Bootstrap UCL 9%% BCA Bootstrap UCL Data Distribution Test with Detected Values Only Data do not follow a Discernable Distribution (0.06) Nonparametric Statistics Kapkan-Meier (KM) Method Mean SE of Mean 9% KM (0.000 9% KM (0.0000 9% KM (0.00000000000000000000000000000000000	
k star (bias corrected) Theta Star nu star A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value Data not Gamma Distribution Statistics using Extrapolated Data Minimum Maximum Meain Median SD k star Theta star Nu star AppChi2	N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	Man in Original Scale SD in Original Scale 9%% PCA Bootstrap UCL 9%% BCA Bootstrap UCL 9%% BCA Bootstrap UCL Data Distribution Test with Detected Values Only Data do not follow a Discemable Distribution (0.06) Nonparametric Statistics Kaplan-Meier (KM) Method Mean 9% KM (Only Method 9% KM (DuCL 9% KM (DacKine) UCL 9% KM (DacKine) UCL 9% KM (DacKine) UCL 9% KM (Chebyshev)	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7

enic			
	General Stat	istics	
Number of Valid Observations	23	Number of Distinct Observations 2	21
Raw Statistics		Log-transformed Statistics	
Minimum	5	Minimum of Log Data 1	1.60
Maximum	15.6	Maximum of Log Data 2	2.74
Mean	10.03	Mean of log Data 2	2.25
Median	9.9	SD of log Data 0	0.33
SD	3.07		
Coefficient of Variation	0.306		
Skewness	0.0322		
	Relevant UCL S	Statistics	
Normal Distribution Test		Lognormal Distribution Test	
Shapiro Wilk Test Statistic		Shapiro Wilk Test Statistic 0	
Shapiro Wilk Critical Value	0.914	Shapiro Wilk Critical Value	0.91
Data appear Normal at 5% Significance Level		Data appear Lognormal at 5% Significance Level	
Assuming Normal Distribution		Assuming Lognormal Distribution	
95% Student's-t UCL	11.13	95% H-UCL 1	11.5
95% UCLs (Adjusted for Skewness)		95% Chebyshev (MVUE) UCL 1	13.1
95% Adjusted-CLT UCL	11.09	97.5% Chebyshev (MVUE) UCL 1	14.5
95% Modified-t UCL	11.13	99% Chebyshev (MVUE) UCL 1	17.1
Gamma Distribution Test		Data Distribution	
k star (bias corrected)	8.915	Data appear Normal at 5% Significance Level	
Theta Star	1.126		
MLE of Mean	10.03		
MLE of Standard Deviation	3.361		
nu star	410.1		
Approximate Chi Square Value (.05)	364.1	Nonparametric Statistics	
Adjusted Level of Significance	0.0389	95% CLT UCL 1	11.0
Adjusted Chi Square Value	361	95% Jackknife UCL 1	
		95% Standard Bootstrap UCL 1	
Anderson-Darling Test Statistic		95% Bootstrap-t UCL 1	
Anderson-Darling 5% Critical Value		95% Hall's Bootstrap UCL 1	
Kolmogorov-Smirnov Test Statistic		95% Percentile Bootstrap UCL 1	
Kolmogorov-Smirnov 5% Critical Value		95% BCA Bootstrap UCL 1	
Data appear Gamma Distributed at 5% Significance Lo	avel	95% Chebyshev(Mean, Sd) UCL 1	
		97.5% Chebyshev(Mean, Sd) UCL 1	
Assuming Gamma Distribution		99% Chebyshev(Mean, Sd) UCL 1	16.4
95% Approximate Gamma UCL			
95% Adjusted Gamma UCL	11.4		

lum			
		Statistics	
Number of Valid Observations	23	Number of Distinct Observations	23
Raw Statistics		Log-transformed Statistics	
Minimum	23.4	Minimum of Log Data	3.15
Maximum	252	Maximum of Log Data	5.52
Mean	77.67	Mean of log Data	4.22
Median	60.6	SD of log Data	0.49
SD	49.08		
Coefficient of Variation	0.632		
Skewness	2.507		
	Relevant UC	CL Statistics	
Normal Distribution Test		Lognormal Distribution Test	
Shapiro Wilk Test Statistic	0.722	Shapiro Wilk Test Statistic	0.94
Shapiro Wilk Critical Value	0.914	Shapiro Wilk Critical Value	0.91
Data not Normal at 5% Significance Level	1	Data appear Lognormal at 5% Significance Level	
Assuming Normal Distribution		Assuming Lognormal Distribution	
95% Student's-t UCL	95.24	95% H-UCL	94.8
95% UCLs (Adjusted for Skewness)		95% Chebyshev (MVUE) UCL	112
95% Adjusted-CLT UCL	100.2	97.5% Chebyshev (MVUE) UCL	127.
95% Modified-t UCL	96.13	99% Chebyshev (MVUE) UCL	158
Gamma Distribution Test		Data Distribution	
k star (bias corrected)	3.456	Data Follow Appr. Gamma Distribution at 5% Significance	Lev
Theta Star	22.47		
MLE of Mean			
MLE of Standard Deviation	41.78		
nu star	159		
Approximate Chi Square Value (.05)	130.8	Nonparametric Statistics	
Adjusted Level of Significance	0.0389	95% CLT UCL	94.5
Adjusted Chi Square Value	129	95% Jackknife UCL	95.2
		95% Standard Bootstrap UCL	93.9
Anderson-Darling Test Statistic	0.993	95% Bootstrap-t UCL	109
Anderson-Darling 5% Critical Value	0.749	95% Hall's Bootstrap UCL	186
Kolmogorov-Smirnov Test Statistic	0.165	95% Percentile Bootstrap UCL	94.2
Kolmogorov-Smirnov 5% Critical Value	0.182	95% BCA Bootstrap UCL	101.
Data follow Appr. Gamma Distribution at 5% Significance	Level	95% Chebyshev(Mean, Sd) UCL	122
	1	97.5% Chebyshev(Mean, Sd) UCL	141.
Assuming Gamma Distribution		99% Chebyshev(Mean, Sd) UCL	179
95% Approximate Gamma UCL	94.38		
95% Adjusted Gamma UCL	95.73		
	1		
Potential UCL to Use		Use 95% Approximate Gamma UCL	

	General S	tatistics	
Number of Valid Data	Ceneral S	Number of Detected Data	
Number of Distinct Detected Data		Number of Non-Detect Data	
		Percent Non-Detects	69.
Raw Statistics		Log-transformed Statistics	
Minimum Detected	0.15	Minimum Detected	-1
Maximum Detected	0.94	Maximum Detected	-0.
Mean of Detected	0.337	Mean of Detected	-1
SD of Detected	0.275	SD of Detected	(
Minimum Non-Detect Maximum Non-Detect	0.19	Minimum Non-Detect Maximum Non-Detect	
Maximum Non-Detect	0.83	Maximum Non-Detect	-
ote: Data have multiple DLs - Use of KM Method is recomme	ended	Number treated as Non-Detect	
or all methods (except KM, DL/2, and ROS Methods),		Number treated as Detected	
bservations < Largest ND are treated as NDs		Single DL Non-Detect Percentage	95
-	1		
Warning: There	e are only 7 De	Nected Values in this data	
Note: It should be noted that ev	ven though boo	otstrap may be performed on this data set	
the resulting calculations	may not be re	illable enough to draw conclusions	
It is recommended to have 10-15 or m	ore distinct ob	servations for accurate and meaningful results.	
		-	
	UCL Sta	tistics	
Normal Distribution Test with Detected Values Only	1	Lognormal Distribution Test with Detected Values Only	y
Shapiro Wilk Test Statistic	0.69	Shapiro Wilk Test Statistic	
5% Shapiro Wilk Critical Value	0.803	5% Shapiro Wilk Critical Value	(
Data not Normal at 5% Significance Level		Data appear Lognormal at 5% Significance Level	
Assuming Normal Distribution		Assuming Lognormal Distribution	
DL/2 Substitution Method		DL/2 Substitution Method	
Mean	0.229	Mean	1
SD	0.179	SD	
95% DL/2 (t) UCL	0.293	95% H-Stat (DL/2) UCL	
Maximum Likelihood Estimate(MLE) Method	N/A	Log ROS Method	
MLE method falled to converge property		Mean in Log Scale	-
		SD in Log Scale Mean in Original Scale	
		SD in Original Scale	-
		95% Percentile Bootstran LICI	
		95% Percentile Bootstrap UCL 95% BCA Bootstrap UCL	
		95% Percentile Bootstrap UCL 95% BCA Bootstrap UCL	
Gamma Distribution Test with Detected Values Only	y	95% BCA Bootstrap UCL	
Gamma Distribution Test with Detected Values Ont k star (bias corrected)	y 1.641		
		95% BCA Bootstrap UCL Data Distribution Test with Detected Values Only	
k star (bias corrected)	1.641	95% BCA Bootstrap UCL Data Distribution Test with Detected Values Only	
k star (bias corrected) Theta Star nu star	1.641 0.205 22.98	95% BCA Bootstrap UCL Deta Distribution Test with Detected Values Only Deta appear Gamma Distributed at 5% Significance Lev	
k star (bias corrected) Theta Star nu star A-D Test Statistic	1.641 0.205 22.98 0.631	95% BCA Bootstrap UCL Data Distribution Test with Detected Values Only Data appear Gamma Distributed at 5% Significance Lev Nonparametric Statistics	
k star (bias corrected) Theta Star nu star A-D Test Statistic 5% A-D Critical Value	1.641 0.205 22.98 0.631 0.713	95% BCA Bootstrap UCL Data Distribution Test with Detected Values Only Data appear Gamma Distributed at 5% Significance Lev Data appear Gamma Distributed at 5% Significance Lev Nonperametric Statistics Kaplan-Meier (KM) Method	<i>v</i> el
k star (bias corrected) Theta Star nu star A-D test Statistic 5% A-D Critical Value K-S Test Statistic	1.641 0.205 22.98 0.631 0.713 0.713	95% BCA Bootstrap UCL Deta Distribution Test with Detected Values Only Data appear Gamma Distributed at 5% Significance Lee Nonparametric Statistics Kaptan-Meier (KM) Method Mean	vel
k star (bias corrected) Theta Star nu star A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value	1.641 0.205 22.98 0.631 0.713 0.713 0.314	95% BCA Bootstrap UCL Deta Distribution Test with Detected Values Only Data oppear Gamma Distributed at 5% Significance Lev Nonparametric Statistics Kaptan-Meier (KM) Method SD	vel
k star (bias corrected) Theta Star nu star A-D test Statistic 5% A-D Critical Value K-S Test Statistic	1.641 0.205 22.98 0.631 0.713 0.713 0.314	95% BCA Bootstrap UCL Data Distribution Test with Detected Values Only Data appear Gamma Distributed at 5% Significance Lev Nonparametric Statistics Kaptan-Meier (KM) Meihod Mean SD SE 6/ Mean	
k star (bias corrected) Theta Star nu star A-D rest Statistic 5% A-D critical Value K-S Test Statistic 5% K-S Critical Value Data appear Germa Distributed at 5% Significance L	1.641 0.205 22.98 0.631 0.713 0.713 0.314	95% BCA Bootstrap UCL Deta Distribution Test with Detected Values Only Data appear Gamma Distributed at 5% Significance Lee Nonparametric Statistics Kaptan-Meier (KM) Method Mean Sp E of Mean 95% KK (k) UCL	vel
k star (blas corrected) Theta Star nu star A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value Data appear Gamma Distributed at 5% Significance Lo Assuming Gamma Distribution	1.641 0.205 22.98 0.631 0.713 0.713 0.314 evel	95% BCA Bootstrap UCL Deta Distribution Test with Detected Values Only Data appear Gamma Distributed at 5% Significance Lev Nonparametric Statistics Kaptan-Meier (KM) Method Bo Sc Mean 95% KM (0) UCL 95% KM (2) UCL	
k star (bias corrected) Theta Star nu Star A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value Data appear Germen Distribution Assuming Germen Distribution Gamma ROS Statistics using Extrapolated Data	1.641 0.205 22.98 0.631 0.713 0.713 0.314	95% BCA Bootstrap UCL Data Distribution Test with Detected Values Only Data appear Gamma Distributed at 5% Significance Lev Nonparametric Statistics Kaptan-Meier (KM) Meihod Mean SD SE of Mean 95% KM (J) UCL 95% KM (J) UCL 95% KM (J) UCL	
k star (bias corrected) Theta Star nu star A:D Test Statistic 5% A:D Critical Value K:S Test Statistic 5% K:S Critical Value Data appear Gamma Distributed at 5% Significance Le Assuming Gamma Distribution Gamma ROS Statistics using Extrapolated Data Minimum	1.641 0.205 22.98 0.631 0.713 0.713 0.314 evel	95% BCA Bootstrap UCL Deta Distribution Test with Detected Values Only Data appear Gamma Distributed at 5% Significance Lev Nonparametric Statistics Kaptan-Meier (KM) Method Mean SD SE of Mean 95% KM (2) UCL 95% KM (2) UCL 95% KM (2) UCL 95% KM (2) UCL 95% KM (2) UCL	
k star (bias corrected) Theta Star nu Star A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value Data appear Germen Distribution Assuming Germen Distribution Gamma ROS Statistics using Extrapolated Data	1.641 0.205 22.98 0.631 0.713 0.713 0.314 evel	95% BCA Bootstrap UCL Data Distribution Test with Detected Values Only Data appear Gamma Distributed at 5% Significance Lev Nonparametric Statistics Kapian-Meier (KM) Meithod Mean SE of Mean 95% KM (Oucl 95% KM (Ouclatarp () UCL 95% KM (Doctarp () UCL 95% KM (Doctarp () UCL	
k star (bias corrected) Theta Star nu star A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value Data appear Gemma Distribution Gamma ROS Statistics using Extrapolated Data Minimum Maximum	1.641 0.205 22.98 0.631 0.713 0.713 0.314 evel	95% BCA Bootstrap UCL Data Distribution Test with Detected Values Only Data appear Gamma Distributed at 5% Significance Lev Nonparametric Statistics Kapian-Meier (KM) Method Mean SD SE of Mean 95% KM (potkine) UCL 95% KM (potkine) UCL 95% KM (potkine) UCL 95% KM (BCA) UCL 95% KM (BCA) UCL 95% KM (BCA) UCL	
k star (bias corrected) Thets Star nu star A-D Test Statistic 5% A-D Critical Value 5% A-D Critical Value 5% K-S Critical Value 5% K-S Critical Value Data appear Gamma Distribution Statistics using Extrapolated Data Gamma ROS Statistics using Extrapolated Data Minimum Maximum Kasuning Katagota (Statistics using Extrapolated Data	1.641 0.205 22.98 0.631 0.713 0.713 0.314 avel 0.15 0.94	95% BCA Bootstrap UCL Deta Distribution Test with Detected Values Only Deta appear Gamma Distributed at 5% Significance Lev Nonparametric Statistics Kaptan-Meier (KM) Method Kaptan-Meier (KM) Method Mean SD SE of Mean 95% KM (checksher) UCL 95% KM (Checksher) UCL 95% KM (Checksher) UCL	
k star (bias corrected) Theta Star nu star A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S critical Value Data appear Genrma Distribution at 5% Significance Lo Assuming Genrma Distribution Gamma ROS Statistics using Extrapolated Data Minimum Maximum Maximum Median	1.641 0.205 22.98 0.631 0.713 0.713 0.314 svel 0.15 0.94 0.345 0.339 0.144	95% BCA Bootstrap UCL Data Distribution Test with Detected Values Only Data appear Gamma Distributed at 5% Significance Lev Nonparametric Statistics Kaptan-Meier (KM) Method Mean SD SE of Mean 95% KM (OutCl 95% KM (Detection) UCL 95% KM (Chelyshev) UCL 95% KM (Chelyshev) UCL 975% KM (Chelyshev) UCL	
k star (bias corrected) Theta Star nu star A:D test Statistic 5% A:D critical Value 5% K:S Critical Value Data appear Gamma Distributed at 5% Significance Le Assuming Gamma Distribution Gamma ROS Statistics using Extrapolated Data Minimum Maximum Maximum	1.641 0.205 22.98 0.631 0.713 0.713 0.314 avel 0.314 0.314 0.314 0.314 0.314	95% BCA Bootstrap UCL Deta Distribution Test with Detected Values Only Deta appear Gamma Distributed at 5% Significance Lev Nonparametric Statistics Kaptan-Meier (KM) Method Kaptan-Meier (KM) Method Mean SD SE of Mean 95% KM (checksher) UCL 95% KM (Checksher) UCL 95% KM (Checksher) UCL	
k star (bias corrected) Theti Star nu star A-D test Statistic 5% A-D Critical Value 5% A-D Critical Value 5% K-S Critical Value Data eppeer Germen Distribution Gamma ROS Statistics using Extrapolated Data Minimum Maximum Meaina Median SDD	1.641 0.205 22.98 0.631 0.713 0.713 0.713 0.713 0.314 svel 0.314 0.345 0.345 0.345 0.345 0.345	95% BCA Bootstrap UCL Data Distribution Test with Detected Values Only Data appear Gamma Distributed at 5% Significance Lev Nonparametric Statistics Kaptan-Meier (KM) Method Mean SD SE of Mean 95% KM (OutCl 95% KM (Detection) UCL 95% KM (Chelyshev) UCL 95% KM (Chelyshev) UCL 975% KM (Chelyshev) UCL	
k star (bias corrected) Theta Star nu star A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value Data appear Gamma Distributed at 5% Stagnificance Lo Assuming Gamma Distribution Gamma ROS Statistics using Extrapolated Data Minimum Max	1.641 0.205 22.98 0.631 0.713 0.713 0.314 0.314 0.314 0.345 0.345 0.339 0.144 7.363 0.0469	95% BCA Bootstrap UCL Deta Distribution Test with Detected Values Only Deta appear Gamma Distributed at 5% Significance Lev Nonparametric Statistics Kapian-Meier (KM) Method Kapian-Meier (KM) Method Mean SD SE of Mean 95% KM (chelyshev) UCL 95% KM (Chebyshev) UCL 95% KM (Chebyshev) UCL 95% KM (Chebyshev) UCL	
k star (bias corrected) Theta Star ns star A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S critical Value Data appear Gemma Distribution Gamma ROS Statistics using Extrapolated Data Minimum Maximum Maximum Mean SD k star Theta star Theta star Nu star	1.641 0.205 22.98 0.631 0.713 0.713 0.713 0.314 avel 0.15 0.94 0.345 0.339 0.144 7.363 0.3649 338.7	95% BCA Bootstrap UCL Data Distribution Test with Detected Values Only Data appear Gamma Distributed at 5% Significance Lev Nonparametric Statistics Kaptan-Meier (KM) Method Mean SD SE of Mean 95% KM (Over Statistics Kaptan-Meier (KM) Method Mean 95% KM (Over Statistics) 95% KM (Chebyshev) UCL 95% KM (Chebyshev) UCL 95% KM (Chebyshev) UCL 95% KM (Chebyshev) UCL 95% KM (Chebyshev) UCL	
k star (bias corrected) Thetis Star nu star A-D Test Statistic 5% A-D Critical Value 5% A-S Test Statistic 5% K-S Test Statistic 5% K-S Critical Value Data appear Gamma Distribution Gamma ROS Statistics using Extrapolated Data Minimum Maximum Meaina SoD k star Thetia star AppChi2	1.641 0.205 22.98 0.631 0.713 0.314 90 0.314 90 0.314 90 0.345 0.345 0.345 0.346 0.339 0.144 7.363 0.0469 338.7 297.1	95% BCA Bootstrap UCL Data Distribution Test with Detected Values Only Data appear Gamma Distributed at 5% Significance Lev Nonparametric Statistics Kaptan-Meier (KM) Method Mean SD SE of Mean 95% KM (Over Statistics Kaptan-Meier (KM) Method Mean 95% KM (Over Statistics) 95% KM (Chebyshev) UCL 95% KM (Chebyshev) UCL 95% KM (Chebyshev) UCL 95% KM (Chebyshev) UCL 95% KM (Chebyshev) UCL	

Cadmium			
		N-11-11	
Number of Valid Data	General S	Number of Detected Data	
Number of Valid Data Number of Distinct Detected Data	23	Number of Detected Data Number of Non-Detect Data	
		Percent Non-Detects	82.6
Raw Statistics			
Kaw Stausucs Minimum Detected	0.27	Log-transformed Statistics Minimum Detected	-1
Maximum Detected	1.1	Maximum Detected	0.0
Mean of Detected	0.643	Mean of Detected	-0
SD of Detected	0.352	SD of Detected	C
Minimum Non-Detect	0.54	Minimum Non-Detect	-(
Maximum Non-Detect	0.63	Maximum Non-Detect	-(
		Number to studie New Detail	
ote: Data have multiple DLs - Use of KM Method is recommo or all methods (except KM, DL/2, and ROS Methods),	ended	Number treated as Non-Detect Number treated as Detected	
bservations < Largest ND are treated as NDs		Single DL Non-Detect Percentage	91
-			
		ct Detected Values in this data	
		otstrap may be performed on this data set	
the resulting calculations	may not be r	eliable enough to draw conclusions	
It is recommended to have 10-15 or m	ore distinct of	bservations for accurate and meaningful results.	
	UCL Sta	atistics	
Normal Distribution Test with Detected Values Only		Lognormal Distribution Test with Detected Values Only	,
Shapiro Wilk Test Statistic	0.981	Shapiro Wilk Test Statistic	. (
5% Shapiro Wilk Critical Value	0.748	5% Shapiro Wilk Critical Value	(
Data appear Normal at 5% Significance Level		Data appear Lognormal at 5% Significance Level	
Assuming Normal Distribution		Assuming Lognormal Distribution	
DL/2 Substitution Method Mean	0.359	DL/2 Substitution Method Mean	-1
Mean SD	0.359	SD	-
95% DL/2 (t) UCL	0.426	95% H-Stat (DL/2) UCL	(
Maximum Likelihood Estimate(MLE) Method	N/A	Log ROS Method	
MLE method failed to converge property		Mean in Log Scale	-(
		SD in Log Scale	
		Mean in Original Scale	(
		SD in Original Scale	(
		95% Percentile Bootstrap UCL 95% BCA Bootstrap UCL	(
		95% BCA BOOISITAD UCL	
Gamma Distribution Test with Detected Values Oni	y	Data Distribution Test with Detected Values Only	
Gamma Distribution Test with Detected Values Onl k star (bias corrected)	y 1.218	Data Distribution Test with Detected Values Only Data appear Normal at 5% Significance Level	
k star (bias corrected) Theta Star	1.218 0.527		
k star (bias corrected)	1.218		
k star (bias corrected) Theta Star nu star	1.218 0.527 9.745	Data appear Normal at 5% Significance Level	
k star (blas corrected) Theta Star nu star A-D Test Statistic	1.218 0.527 9.745 0.191	Data appear Normal at 5% Significance Level	
k star (bias corrected) Theta Star nu star	1.218 0.527 9.745	Data appear Normal at 5% Significance Level	
k star (bias corrected) Theis Star nu star A-D Test Statistic 5% A-D Critical Value	1.218 0.527 9.745 0.191 0.659	Deta appear Normal at 5% Significance Level Norparametric Statistics Kaptan-Meter (CM) Method	
k star (bias corrected) Theta Star nu star A-D rest Stallstic 5% A-D Critical Value K-S Test Stallstic	1.218 0.527 9.745 0.191 0.659 0.659 0.396	Deta appear Normal at 5% Significance Level Norparametric Statistics Kapian-Meier (KM) Method Mean SD S of Mean	0.
k star (bias corrected) Theta Star nu star 4. D rest Startis 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value Data appear Gamma Distributed at 5% Significance L	1.218 0.527 9.745 0.191 0.659 0.659 0.396	Data appear Normal at 5% Significance Level Norparametric Statistics Kaptan-Meler (KM) Method Mean SD SE of Mean 95% KM (I) UCL	0.
k star (bias corrected) Theta Star nu star A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value Data appeer Gamma Distributed at 5% Significance Lo Assuming Gamma Distribution	1.218 0.527 9.745 0.191 0.659 0.659 0.396	Data appear Normal at 5% Significance Level Nonparametric Statistics Kaptan-Meier (KM) Method Mean SD SE of Mean 95% KM (0) UCL 95% KM (2) UCL	(0. (
k star (bias corrected) Theta Star nu star A-D Test Statistic 5% A-D Critical Value K-S Trets Statistic 5% K-S Critical Value 5% K-S Critical Value Data appear Gamma Distribution Data appear Gamma Distribution Gamma ROS Statistics using Extrapolated Data Gamma ROS Statistics using Extrapolated Data	1.218 0.527 9.745 0.191 0.659 0.659 0.396	Deta appear Normal at 5% Significance Level Norparametric Statistics Kapian-Meier (KM) Method Mean SD SI of Mean 95% KM (2) UCL 95% KM (ackkinic) UCL	0.
k star (bias corrected) Theta Star nu star A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value Data appeer Gamma Distributed at 5% Significance Lo Assuming Gamma Distribution	1.218 0.527 9.745 0.191 0.659 0.659 0.396	Data appear Normal at 5% Significance Level Norparametric Statistics Kaptan-Meler (KM) Method Kaptan-Meler (KM) Method So SE of Mean 95% KM (UCL 95% KM (UCL 95% KM (ackknife) UCL 95% KM (ackknife) UCL 95% KM (bookstrap U	0.
k star (bias corrected) Theta Star nu star A-D rest Statistic 5% A-D critical Value K-S rest Statistic 5% K-S critical Value Deta appear Gamma Distributed at 5% Staphicance Lo Assuming Gamma Distribution Gamma ROS Statistics using Extrapolated Data Minimum	1.218 0.527 9.745 0.191 0.659 0.396 2006 2006 2006 2006 2006 2006 2006 20	Deta appear Normal at 5% Significance Level Norparametric Statistics Kapian-Meier (KM) Method Mean SD SI of Mean 95% KM (2) UCL 95% KM (ackkinic) UCL	
k star (bias corrected) Theta Star nu star A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value Data appear Gamma Distribution Gamma Distribution Gamma ROS Statistics using Extrapolated Data Minimum	1.218 0.527 9.745 0.191 0.659 0.396 avel 0.262 1.1	Data appear Normal at 5% Significance Level Nonparametric Statistics Kaplan-Meier (KM) Method Mean SD SE of Mean 95% KM (20 UCL 95% KM (20 UCL 95% KM (20 UCL 95% KM (20 UCL 95% KM (20 UCL	
k star (bias corrected) Thetis Star nu star A-D test Statistic 5% A-D critical Value K-S Test Statistic 5% K-S Critical Value Data oppeer Gamma Distribution Statistics using Extrapolated Data Gamma ROS Statistics using Extrapolated Data Minimum Maximum Kasun	1.218 0.527 9.745 0.191 0.659 0.396 avel 0.262 1.1	Data appear Normal at 5% Significance Level Nonparametric Statistics Kapian-Meier (KM) Method Mean SE of Mean 95% KM (Octor) 95% KM (ackknife) Uct 95% KM (ackknife) Uct 95% KM (ackknife) Uct 95% KM (Cotor) 95% KM (Cotor) 95% KM (Cotor) 95% KM (Cotor)	
k star (bias corrected) Theta Star n ustar A-D Test Statistic 5% A-D critical Value K-S Test Statistic 5% K-S critical Value Data appear Gamma Distributed at 5% Stagnificance Lo Assuming Gamma Distribution Gamma ROS Statistics using Extrapolated Pata Minimum Maximum Maximum Median	1.218 0.527 9.745 0.191 0.659 0.396 200 200 200 200 200 200 200 200 200 20	Data appear Normal at 5% Significance Level Norparametric Statistics Kaptan-Meier (KA)) Method Kaptan-Meier (KA)) Method Mean SD SE of Mean 95% KM (Q) UCL 95% KM (Q) UCL 95% KM (CoA) UCL 95% KM (CoA) UCL 95% KM (Chebysher) UCL 95	
k star (bias corrected) Thets Star nu star A-D Test Statistic 5% A-D Critical Value 5% K-S critical Value 5% K-S critical Value Data appear Gamma Distribution at 5% Stgnificance Lo Assuming Gamma Distribution Gamma ROS Statistics using Extrapolated Data Minimum Maximum Maximum Mean Astar	1.218 0.527 9.745 0.191 0.659 0.396 0.396 0.396 0.262 1.11 0.64 0.262 1.11 0.64 0.646 0.225 6.62	Data appear Normal at 5% Significance Level Norparametric Statistics Kaptan-Meier (KA)I Method Kaptan-Meier (KA)I Method Mean SD SE of Mean 95% KM (10 LCL 9	
k star (bias corrected) Thets Star nu star A-D Test Statistic 5% A-D Critical Value 5% K-S Critical Value 5% K-S Critical Value Data appear Gamma Distribution at 5% Significance L Assuming Gamma Distribution Gamma ROS Statistics using Extrapolated Data Minimum Maximum Maximum Mean Median SD k star Theta star Theta star Nu star	1.218 0.527 9.745 0.659 0.659 0.396 avel 0.262 1.1 0.644 0.225 6.62 0.0667 304.5	Data appear Normal at 5% Significance Level Norparametric Statistics Kapitan-Meier (KM) Method Mean SE of Mean 95% KM (Ol UCL 95% KM (ackloratice) UCL 95% KM (ackloratice) UCL 95% KM (ackloratice) UCL 95% KM (Chebyshev) UCL 97% KM (Chebyshev) UCL 97% KM (Chebyshev) UCL 97% KM (Chebyshev) UCL	
k star (blas corrected) Theta Star nu star A-D Test Statistic 5% A-D Critical Value 5% A-D Critical Value 5% A-D Critical Value Data appear Gamma Distribution Gamma Distribution Gamma ROS Statistics using Extrapolated Data Minimum Maximun Meaina Median SDD k star Theta star AppChi2	1.218 0.527 9.745 0.191 0.659 0.396 9.901 0.262 1.11 0.64 0.225 6.62 0.0967 3304.5	Data appear Normal at 5% Significance Level Norparametic Statistics Kapian-Meier (K.0k) Meihod Mean SD SE of Mean 95% KM (potential) 95% KM (potential) 95% KM (potential) 95% KM (potential) UCL 95% KM (potential) UCL 95% KM (chebysher) UCL	
k star (blas corrected) Thets Star nu star A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value Data appeer Garma Distribution at 5% Significance L Assuming Garma Distribution Garma ROS Statistics using Extrapolated Data Minimum Maximum Maximum Mean Median SD k star Theta star Nu star	1.218 0.527 9.745 0.659 0.659 0.396 avel 0.262 1.1 0.644 0.225 6.62 0.0667 304.5	Data appear Normal at 5% Significance Level Norparametric Statistics Kapitan-Meier (KM) Method Mean SE of Mean 95% KM (Ol UCL 95% KM (ackloratice) UCL 95% KM (ackloratice) UCL 95% KM (ackloratice) UCL 95% KM (Chebyshev) UCL 97% KM (Chebyshev) UCL 97% KM (Chebyshev) UCL 97% KM (Chebyshev) UCL	

mlum (total or hexavalent)			_	
	General Stat			
Number of Valid Observations	23	Number of Distinct Observations	23	
Raw Statistics	1	Log-transformed Statistics		
Minimum	3.4	Minimum of Log Data	1.2	
Maximum	22.7	Maximum of Log Data	3.1	
Mean	12.27	Mean of log Data	2.3	
Median	12.5	SD of log Data	0.5	
SD	6.039			
Coefficient of Variation	0.492			
Skewness	0.0482			
	Relevant UCL S	telle llee		
Normal Distribution Test	Relevant UCL S	Lognormal Distribution Test		
Shapiro Wilk Test Statistic	0.939	Shapiro Wilk Test Statistic	0.9	
Shapiro Wilk Critical Value	0.914	Shapiro Wilk Critical Value	0.9	
Data appear Normal at 5% Significance Level		Data not Lognormal at 5% Significance Level	_	
Assuming Normal Distribution		Assuming Lognormal Distribution		
95% Student's-t UCL	14.43	95% H-UCL	16	
95% UCLs (Adjusted for Skewness)		95% Chebyshev (MVUE)		
95% Adjusted-CLT UCL	14.35	97.5% Chebyshev (MVUE) UCL		
95% Modified-t UCL	14.43	99% Chebyshev (MVUE) UCL	28	
Gamma Distribution Test		Data Distribution		
k star (bias corrected)	3 1 3 3	Data appear Normal at 5% Significance Level		
Theta Star				
MLE of Mean				
MLE of Standard Deviation				
nu star				
Approximate Chi Square Value (.05)	117.4	Nonparametric Statistics		
Adjusted Level of Significance		95% CLT UCL	14	
Adjusted Chi Square Value		95% Jackknife UCL	14	
		95% Standard Bootstrap UCL	14	
Anderson-Darling Test Statistic	0.667	95% Bootstrap-t UCL		
Anderson-Darling 5% Critical Value		95% Hall's Bootstrap UCL	14	
Kolmogorov-Smirnov Test Statistic		95% Percentile Bootstrap UCL		
Kolmogorov-Smirnov 5% Critical Value		95% BCA Bootstrap UCL		
Data appear Gamma Distributed at 5% Significance Lo		95% Chebyshev(Mean, Sd) UCL		
		97.5% Chebyshev(Mean, Sd) UCL		
Assuming Gamma Distribution	1	99% Chebyshev(Mean, Sd) UCL		
95% Approximate Gamma UCL	15.06		-	
95% Adjusted Gamma UCL				
75 % Aujusted Gamma OCE				

alt		
	General Sta	
Number of Valid Observations	23	Number of Distinct Observations 21
Raw Statistics		Log-transformed Statistics
Minimum	2.7	Minimum of Log Data 0.
Maximum	15.4	Maximum of Log Data 2.
Mean	7.404	Mean of log Data 1.
Median	6.9	SD of log Data 0.1
SD	3.537	
Coefficient of Variation	0.478	
Skewness	0.578	
	Relevant UCL S	Statistics
Normal Distribution Test		Lognormal Distribution Test
Shapiro Wilk Test Statistic	0.943	Shapiro Wilk Test Statistic 0.
Shapiro Wilk Critical Value	0.914	Shapiro Wilk Critical Value 0.
Data appear Normal at 5% Significance Level		Data appear Lognormal at 5% Significance Level
Assuming Normal Distribution		Assuming Lognormal Distribution
95% Student's-t UCL	8 671	95% H-UCL 9.
95% UCLs (Adjusted for Skewness)		95% Chebyshev (MVUE) UCL 11
95% Adjusted-CLT UCL	8.712	97.5% Chebyshev (MVUE) UCL 12
95% Modified-t UCL		99% Chebyshev (MVUE) UCL 15
Gamma Distribution Test		Data Distribution
k star (bias corrected)	3.827	Data appear Normal at 5% Significance Level
Theta Star	1.935	
MLE of Mean	7.404	
MLE of Standard Deviation	3.785	
nu star	176	
Approximate Chi Square Value (.05)	146.4	Nonparametric Statistics
Adjusted Level of Significance	0.0389	95% CLT UCL 8.
Adjusted Chi Square Value	144.4	95% Jackknife UCL 8.
		95% Standard Bootstrap UCL 8.
Anderson-Darling Test Statistic	0.367	95% Bootstrap-t UCL 8.
Anderson-Darling 5% Critical Value	0.748	95% Hall's Bootstrap UCL 8.
Kolmogorov-Smirnov Test Statistic		95% Percentile Bootstrap UCL 8.
Kolmogorov-Smirnov 5% Critical Value	0.182	95% BCA Bootstrap UCL 8.
Data appear Gamma Distributed at 5% Significance Le	avel	95% Chebyshev(Mean, Sd) UCL 10
		97.5% Chebyshev(Mean, Sd) UCL 12
Assuming Gamma Distribution	·	99% Chebyshev(Mean, Sd) UCL 14
95% Approximate Gamma UCL	8.906	
95% Adjusted Gamma UCL	9.027	

ber		
	General Sta	
Number of Valid Observations		Number of Distinct Observations 2
Number of Valid Observations	23	Number of Distinct Observations 2
Raw Statistics		Log-transformed Statistics
Minimum	5.8	Minimum of Log Data 1.
Maximum	70.4	Maximum of Log Data 4
Mean	24.1	Mean of log Data 2.
Median	13.6	SD of log Data 0.
SD	19.66	
Coefficient of Variation	0.816	
Skewness	1.36	
Normal Distribution Test	Relevant UCL	
		Lognormal Distribution Test
Shapiro Wilk Test Statistic		Shapiro Wilk Test Statistic 0.
Shapiro Wilk Critical Value	0.914	Shapiro Wilk Critical Value 0.
Data not Normal at 5% Significance Level		Data appear Lognormal at 5% Significance Level
Assuming Normal Distribution		Assuming Lognormal Distribution
95% Student's-t UCL	31.14	95% H-UCL 3
95% UCLs (Adjusted for Skewness)		95% Chebyshev (MVUE) UCL 4
95% Adjusted-CLT UCL	32.08	97.5% Chebyshev (MVUE) UCL 4
95% Modified-t UCL	31.33	99% Chebyshev (MVUE) UCL 6
		+
Gamma Distribution Test		Data Distribution
k star (bias corrected)		Data appear Lognormal at 5% Significance Level
Theta Star		
MLE of Mean		
MLE of Standard Deviation		
nu star		
Approximate Chi Square Value (.05)		Nonparametric Statistics
Adjusted Level of Significance		95% CLT UCL 3
Adjusted Chi Square Value	58.46	95% Jackknife UCL 3
		95% Standard Bootstrap UCL 3
Anderson-Darling Test Statistic		95% Bootstrap-t UCL 3
Anderson-Darling 5% Critical Value		95% Hall's Bootstrap UCL 3
Kolmogorov-Smirnov Test Statistic		95% Percentile Bootstrap UCL 3
Kolmogorov-Smirnov 5% Critical Value		95% BCA Bootstrap UCL 3
Data not Gamma Distributed at 5% Significance Leve	el	95% Chebyshev(Mean, Sd) UCL 4
		97.5% Chebyshev(Mean, Sd) UCL 4
Assuming Gamma Distribution		99% Chebyshev(Mean, Sd) UCL 6
95% Approximate Gamma UCL		
95% Adjusted Gamma UCL	32.64	
	1	
Potential UCL to Use		Use 95% H-UCL 3

nd			
	General Sta		
Number of Valid Observations	23	Number of Distinct Observations 2	!2
Raw Statistics		Log-transformed Statistics	
Minimum	8	Minimum of Log Data 2	2.07
Maximum	22.2	Maximum of Log Data 3	3.1
Mean	15.34	Mean of log Data 2	2.69
Median	16.1	SD of log Data 0	0.27
SD	3.772		
Coefficient of Variation	0.246		
Skewness	-0.376		-
	Relevant UCL	Statistics	
Normal Distribution Test		Lognormal Distribution Test	
Shapiro Wilk Test Statistic	0.966	Shapiro Wilk Test Statistic 0).92
Shapiro Wilk Critical Value	0.914	Shapiro Wilk Critical Value 0).91
Data appear Normal at 5% Significance Level		Data appear Lognormal at 5% Significance Level	
Assuming Normal Distribution		Assuming Lognormal Distribution	
95% Student's-t UCL	16.69	95% H-UCL 1	7.1
95% UCLs (Adjusted for Skewness)		95% Chebyshev (MVUE) UCL 1	9.2
95% Adjusted-CLT UCL	16.57	97.5% Chebyshev (MVUE) UCL 2	20.9
95% Modified-t UCL	16.68	99% Chebyshev (MVUE) UCL 2	4.2
Gamma Distribution Test		Data Distribution	
k star (bias corrected)	13.3	Data appear Normal at 5% Significance Level	
Theta Star			
MLE of Mean			
MLE of Standard Deviation			
nu slar			
Approximate Chi Square Value (.05)		Nonparametric Statistics	
Adjusted Level of Significance		95% CLT UCL 1	16.6
Adjusted Chi Square Value		95% Jackknife UCL 1	
		95% Standard Bootstrap UCL 1	
Anderson-Darling Test Statistic	0.564		16.6
Anderson-Darling 5% Critical Value		95% Hall's Bootstrap UCL 1	
Kolmogorov-Smirnov Test Statistic		95% Percentile Bootstrap UCL 1	
Kolmogorov-Smirnov 5% Critical Value			16.5
Data follow Appr. Gamma Distribution at 5% Significance		95% Chebyshev(Mean, Sd) UCL 1	
		97.5% Chebyshev(Mean, Sd) UCL 2	
Assuming Gamma Distribution		-	23.1
95% Approximate Gamma UCL	16.9		
95% Adjusted Gamma UCL			

ganese			
Number of Valid Observations	General S		0.0
Number of Valid Observations	23	Number of Distinct Observations	23
Raw Statistics		Log-transformed Statistics	
Minimum	138	Minimum of Log Data	4.92
Maximum	947	Maximum of Log Data	6.85
Mean	468.9	Mean of log Data	6.03
Median	483	SD of log Data	0.51
SD	209.2		
Coefficient of Variation	0.446		
Skewness	0.287		
	Relevant UCI	- Statistics	
Normal Distribution Test		Lognormal Distribution Test	
Shapiro Wilk Test Statistic	0.959	Shapiro Wilk Test Statistic	0.92
Shapiro Wilk Critical Value	0.914	Shapiro Wilk Critical Value	0.91
Data appear Normal at 5% Significance Level		Data appear Lognormal at 5% Significance Level	
Assuming Normal Distribution		Assuming Lognormal Distribution	
95% Student's-t UCL	543.8	95% H-UCL	594
95% UCLs (Adjusted for Skewness)		95% Chebyshev (MVUE) UCL	706
95% Adjusted-CLT UCL	543.4	97.5% Chebyshev (MVUE) UCL	806
95% Modified-t UCL	544.2	99% Chebyshev (MVUE) UCL	100
Gamma Distribution Test		Data Distribution	
k star (bias corrected)	4.015	Data appear Normal at 5% Significance Level	
Theta Star			
MLE of Mean			
MLE of Standard Deviation			
nu star			
Approximate Chi Square Value (.05)		Nonparametric Statistics	
Adjusted Level of Significance		95% CLT UCL	
Adjusted Chi Square Value	152.3	95% Jackknife UCL	
		95% Standard Bootstrap UCL	
Anderson-Darling Test Statistic		95% Bootstrap-t UCL	
Anderson-Darling 5% Critical Value		95% Hall's Bootstrap UCL	
Kolmogorov-Smirnov Test Statistic		95% Percentile Bootstrap UCL	
Kolmogorov-Smirnov 5% Critical Value		95% BCA Bootstrap UCL	
Data appear Gamma Distributed at 5% Significance Lo	evel	95% Chebyshev(Mean, Sd) UCL	
		97.5% Chebyshev(Mean, Sd) UCL	
Assuming Gamma Distribution		99% Chebyshev(Mean, Sd) UCL	902
95% Approximate Gamma UCL			
95% Adjusted Gamma UCL	568.8		
Potential UCL to Use			

			Aercury
	ular.	General S	
ated Date	Number of Detected Data	General S	Number of Valid Data
	Number of Non-Detect Data	23	Number of Valid Data Number of Distinct Detected Data
	Number of Non-Detect Data Percent Non-Detects	13	Number of Distinct Detected Data
n-Detects 34	Percent Non-Detects		
	Log-transformed Statistics		Raw Statistics
Detected -	Minimum Detected	0.0078	Minimum Detected
	Maximum Detected	0.076	Maximum Detected
	Mean of Detected	0.0346	Mean of Detected
	SD of Detected	0.0194	SD of Detected
on-Detect -	Minimum Non-Detect	0.0072	Minimum Non-Detect
ion-Detect	Maximum Non-Detect	0.13	Maximum Non-Detect
on-Detect	Number treated as Non-Detect	nded	te: Data have multiple DLs - Use of KM Method is recomme
Detected	Number treated as Detected		all methods (except KM, DL/2, and ROS Methods),
ercentage 100	Single DL Non-Detect Percentage		servations < Largest ND are treated as NDs
	· ·		*
-		UCL Sta	
	Lognormal Distribution Test with Detected Values Or		Normal Distribution Test with Detected Values Only
	Shapiro Wilk Test Statistic	0.934	Shapiro Wilk Test Statistic
	5% Shapiro Wilk Critical Value	0.881	5% Shapiro Wilk Critical Value
nce Level	Data appear Lognormal at 5% Significance Level		Data appear Normal at 5% Significance Level
_			Assuming Normal Distribution
	Assuming Lognormal Distribution DL/2 Substitution Method		Assuming Normal Distribution DL/2 Substitution Method
Mean -		0.0306	DD2 Substitution Method Mean
SD		0.0195	SD
	95% H-Stat (DL/2) UCL	0.0375	95% DL/2 (t) UCL
JL/2) UCL 0	95% H-Stat (DE2) OCL	0.0375	45% DE/2 (I) DCE
S Molbod	Log ROS Melhod	N/A	Maximum Likelihood Estimate(MLE) Method
	Mean in Log Scale	19/74	MLE method failed to converge property
	SD in Log Scale		MLE menod ralled to converge property
	Mean in Original Scale		
	SD in Original Scale		
	95% Percentile Bootstrap UCL		
	95% BCA Bootstrap UCL		
strap occ o	7570 BCA BOUSTAP OCE		
lues Only	Data Distribution Test with Detected Values Only	,	Gamma Distribution Test with Detected Values Only
	Data appear Normal at 5% Significance Level	2.64	k star (bias corrected)
		0.0131	Theta Star
		79.21	nu star
	Nonparametric Statistics	0.264	A-D Test Statistic
 Method 	Kaplan-Meier (KM) Method	0.743	5% A-D Critical Value
Mean 0		0.743	K-S Test Statistic
SD	SD	0.223	5% K-S Critical Value
E of Mean 0.0	SE of Mean	vel	Data appear Gamma Distributed at 5% Significance Le
M (t) UCL 0	95% KM (I) UCL		
	95% KM (z) UCL		Assuming Gamma Distribution
	95% KM (jackknife) UCL		Gamma ROS Statistics using Extrapolated Data
	95% KM (bootstrap I) UCL	0.00402	Minimum
	95% KM (BCA) UCL	0.076	Maximum
	95% KM (Percentile Bootstrap) UCL	0.0338	Mean
	95% KM (Chebyshev) UCL	0.031	Median
	97.5% KM (Chebyshev) UCL	0.017	SD
	99% KM (Chebyshev) UCL	2.838	k star
		0.0119	Theta star
		130.6	Nu star
	Potential UCLs to Use		ING Star
shev) UCL 0	Potential UCLs to Use 95% KM (t) UCL	105.2	AnnChi2
shev) UCL 0	95% KM (t) UCL	105.2 0.0419	AppChi2 95% Gamma Approximate UCL
shev) UCL 0		105.2 0.0419 0.0426	AppChi2 95% Gamma Approximate UCL 95% Adjusted Gamma UCL

	General Sta	atictics
Number of Valid Observations		Number of Distinct Observations 2:
	25	
Raw Statistics		Log-transformed Statistics
Minimum	7.9	Minimum of Log Data 2.
Maximum	35.9	Maximum of Log Data 3.
Mean	15.03	Mean of log Data 2.
Median	13.4	SD of log Data 0.
SD	7.135	
Coefficient of Variation	0.475	
Skewness	1.966	
	Relevant UCL	Statistics
Normal Distribution Test		Lognormal Distribution Test
Shapiro Wilk Test Statistic	0.745	Shapiro Wilk Test Statistic 0.
Shapiro Wilk Critical Value	0.914	Shapiro Wilk Critical Value 0.
Data not Normal at 5% Significance Level	1	Data not Lognormal at 5% Significance Level
Assuming Normal Distribution		Assuming Lognormal Distribution
95% Student's-t UCL	17.59	Assuming Lognormal Distribution 95% H-UCL 1
95% UCLs (Adjusted for Skewness)	17.39	95% Chebyshev (MVUE) UCL 2
95% Adjusted-CLT UCL	18.13	95% Chebyshev (MVUE) UCL 2 97.5% Chebyshev (MVUE) UCL 2
95% Modified-t UCL		99% Chebyshev (MVUE) UCL 2
Gamma Distribution Test		Data Distribution
k star (bias corrected)		Data do not follow a Discernable Distribution (0.05)
Theta Star		
MLE of Mean	15.03	
MLE of Standard Deviation	6.365	
nu star		
Approximate Chi Square Value (.05)		Nonparametric Statistics
Adjusted Level of Significance		95% CLT UCL 1
Adjusted Chi Square Value	218.1	95% Jackknife UCL 1
		95% Standard Bootstrap UCL 1
Anderson-Darling Test Statistic		95% Bootstrap-t UCL 1
Anderson-Darling 5% Critical Value		95% Hall's Bootstrap UCL 1
Kolmogorov-Smirnov Test Statistic		95% Percentile Bootstrap UCL 1
Kolmogorov-Smirnov 5% Critical Value		95% BCA Bootstrap UCL 1
Data not Gamma Distributed at 5% Significance Lev	el	95% Chebyshev(Mean, Sd) UCL 2
Assuming Gamma Distribution		97.5% Chebyshev(Mean, Sd) UCL 2 99% Chebyshev(Mean, Sd) UCL 2
95% Approximate Gamma UCL	17.5	99% Chebysnev(Mean, Sd) UCL 2
95% Adjusted Gamma UCL		
Potential UCL to Use		Use 95% Student's-t UCL 1

	General		
Number of Valid Data	23	Number of Detected Data	
Number of Distinct Detected Data	3	Number of Non-Detect Data Percent Non-Detects	86.9
		Percent Non-Detects	86.9
Raw Statistics		Log-transformed Statistics	
Minimum Detected	0.88	Minimum Detected	-0.
Maximum Detected	1.3	Maximum Detected	0.
Mean of Detected	1.127	Mean of Detected	0.
SD of Detected	0.219	SD of Detected	0.
Minimum Non-Detect	0.54	Minimum Non-Detect	-0
Maximum Non-Detect	0.97	Maximum Non-Detect	-0.0
ote: Data have multiple DLs - Use of KM Method is recommen	nded	Number treated as Non-Detect	
or all methods (except KM, DL/2, and ROS Methods),		Number treated as Detected	
Observations < Largest ND are treated as NDs		Single DL Non-Detect Percentage	91.
		Detected Values in this data set	
		h to perform GOF tests, bootstrap, and ROS methods.	
Those methods will a	return a 'N/A	' value on your output display!	
It is necessary to have 4	or more Dis	linct Values for bootstrap methods.	
		distinct values may not be reliable.	
It is recommended to have 10 to 15 or more	observation	s for accurate and meaningful results and estimates.	
		-	
	UCL St	atistics	
Normal Distribution Test with Detected Values Only		Lognormal Distribution Test with Detected Values Only	y
Shapiro Wilk Test Statistic	0.916	Shapiro Wilk Test Statistic	. (
5% Shapiro Wilk Critical Value	0.767	5% Shapiro Wilk Critical Value	(
Data appear Normal at 5% Significance Level		Data appear Lognormal at 5% Significance Level	
Assuming Normal Distribution		Assuming Lognormal Distribution	
DL/2 Substitution Method		DL/2 Substitution Method	
Mean	0.425	Mean	
SD	0.291	SD	
95% DL/2 (t) UCL	0.529	95% H-Stat (DL/2) UCL	(
Maximum Likelihood Estimate(MLE) Method	N/A	Log ROS Method	
MLE method falled to converge properly		Mean in Log Scale	-(
		SD in Log Scale	-
		Mean in Original Scale	(
		SD in Original Scale	(
		95% Percentile Bootstrap UCL	-
		95% BCA Bootstrap UCL	
		95% BCA Bootstrap UCL	
Gemma Distribution Test with Detected Values Only			
Gamma Distribution Test with Detected Values Only k star (bias corrected)	N/A	95% BCA Bootstrap UCL Data Distribution Test with Detected Values Only Data appear Normal at 5% Significance Level	
	N/A N/A	Data Distribution Test with Detected Values Only	
k star (bias corrected)		Data Distribution Test with Detected Values Only	
k star (bias corrected) Theta Star	N/A	Data Distribution Test with Detected Values Only	
k star (bias corrected) Theta Star nu star A-D Test Statistic	N/A N/A N/A	Data Distribution Test with Detected Values Only Data appear Normal at 5% Significance Level	
k star (bias corrected) Theta Star nu star	N/A N/A	Data Distribution Test with Detected Values Only Data appear Normal at 5% Significance Level	
k star (bias corrected) Theta Star nu star A-D Test Statistic	N/A N/A N/A	Data Distribution Test with Detected Values Only Data appear Normal at 5% Significance Level	
k star (bias corrected) Theta Star nu star A-D Tost Statistic 5% A-D Critical Value K-S Tost Statistic 5% K-S Critical Value	N/A N/A N/A N/A N/A	Data Distribution Test with Detected Values Only Data appear Normal at 5% Significance Level Nonperametric Statistics Kaplan-Meier (KM) Method Mean SD	
k star (bias corrected) Theta Star nu star A-D test Statistic 5% A-D Critical Value K-S Test Statistic	N/A N/A N/A N/A N/A	Data Distribution Test with Detected Values Only Data appear Normal at 5% Significance Level Nonparametric Statistics Kaptan-Meier (KM) Method Mean SD SE of Mean	
k star (bias corrected) Theta Star nu star A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value Deta not Gamma Distributed at 5% Significance Leve	N/A N/A N/A N/A N/A	Data Distribution Test with Detected Values Only Data appear Normal at 5% Significance Level Nonparametric Statistics Kaplan-Meder (KMM) Method Mean S0 SE of Mean 95% KM (t) UCL	(((((((((((((((((((((((((((((((((((((((
k star (bias corrected) Theta Star nu star A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value 5% K-S Critical Value Date not Gemme Distributed at 5% Significance Leve Assuming Gemme Distribution	N/A N/A N/A N/A N/A	Data Distribution Test with Detected Values Only Data appear Normal at 5% Significance Lovel Nonparametric Statistics Kaptan-Meier (KM) Method Kaptan-Meier (KM) Method SD SE of Mean 95% KM (20 UCL 95% KM (20 UCL	()
k star (blas corrected) Thela Star nu star A-D Test Statistic 5%, A-D Critical Value K-S Test Statistic 5%, K-S Critical Value Date not Gemme Distribution Assuming Gemme Distribution Gamma ROS Statistics using Extrapolated Data	N/A N/A N/A N/A N/A	Data Distribution Test with Detected Values Only Data appear Normal at 5% Significance Level Nonparametric Statistics Kaplan-Meier (KM) Method Mean SD SE of Mean 95% KM (juckL 95% KM (juckLine) UCL 95% KM (juckLine) UCL	()
k star (bias corrected) Theta Star nu star A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value Deta not Gamma Distributed at 5% Significance Leve Assuming Gamma Distributed Gamma ROS Statistics using Extrapolated Data Gamma ROS Statistics using Extrapolated Data	N/A N/A N/A N/A N/A	Data Distribution Test with Detected Values Only Data appear Normal at 5% Significance Level Nonperametric Statistics Kapitan-Meaire (KM) Method Mean Sp SE of Mean 95% KM (0 UCL 95% KM	()
k star (bias corrected) The la Star nu star A D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value Data not Gamma Distributed at 5% Significance Leve Assuming Gamma Distribution Gamma ROS Statistics using Extrapolated Data Minitum Maximum	N/A N/A N/A N/A N/A N/A N/A	Data Distribution Test with Detected Values Only Data appear Normal at 5% Significance Lovel Nonparametric Statistics Kaptan-Meier (K0M) Method Mean SD SE of Mean 95% KM (AV OUCL 95% KM (20 UCL 95% KM (boatstrap 1) UCL 95% KM (boatstrap 1) UCL	
k star (bias corrected) The a star nu star AD test Statistic 5% AD Critical Value K-S Critical Value K-S Critical Value S% K-S Critical Value S% K-S Critical Value Date not Genma Distribution Gamma Distribution Gamma ROS Statistics using Extrapolated Data Minimum Maximum Maximum	N/A N/A N/A N/A N/A N/A N/A N/A	Data Distribution Test with Detected Values Only Data appear Normal at 5% Significance Level Nonparametric Statistics Kaptan-Mesier (KdM) Method Kaptan-Mesier (KdM) Method SE of Mean 95% KM (ocksine) UCL 95% KM (backine) UCL)
k star (bias corrected) Theta Star nu star A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value Data not Gemma Distributed at 6% Significance Leve Assuming Gamma Distributed at 6% Significance Leve Assuming Gamma Distributed Minimum Gamma ROS Statistics using Extrapolated Data Minimum Maximum Median	N/A N/A N/A N/A N/A N/A N/A N/A N/A	Data Distribution Test with Detected Values Only Data appear Normal at 5% Significance Level Nonperametric Statistics Kapian-Meaire (KM) Method Mean Sto SE of Mean 95% KM (0 UCL 95% KM (0 UCL) 95% KM)
k star (bias corrected) The la Star nu star A D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value Date not Gamma Distributed at 5% Significance Leve Date not Gamma Distributed at 5% Significance Leve Assuming Gamma Distribution Gamma ROS Statistics using Extrapolated Data Minimum Maximum Maximum Median So	N/A N/A N/A N/A N/A N/A N/A N/A N/A	Data Distribution Test with Detected Values Only Data appear Normal at 5% Significance Lovel Nonparametric Statistics Kaptan-Meier (KM) Method Set of Mean SD SEt of Mean 9% KK (ackAnile) UCL 9% KK (backAnile) UCL 9% KM (BCA) UCL 9% KM (BCA) UCL 9% KM (BCA) UCL 9% KM (Chebyshev) UCL 9% KK (Chebyshev) UCL)
k star (bias corrected) The a Star nu star AD Test Statistic 5% AD Critical Value K-S Test Statistic 5% K-S Critical Value K-S Critical Value Date not Gamma Distribution K-S Critical Value Date not Gamma Distribution Gamma ROS Statistics using Extrapolated Data Minimum Maximum Maximum Maximum Maximum Maximum Maximum Median SD k star	N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	Data Distribution Test with Detected Values Only Data appear Normal at 5% Significance Level Nonperametric Statistics Kapian-Meaire (KM) Method Mean Sto SE of Mean 95% KM (0 UCL 95% KM (0 UCL) 95% KM)
k star (bias corrected) Theta Star nu star A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value Data not Gemma Distributied at 5% Significance Leve Assuming Gemma Distributied at 5% Significance Leve Assuming Gemma Distributied Minimum Gamma ROS Statistics using Extrapolated Data Minimum Maximum Mean Median SD k star Theta star	N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	Data Distribution Test with Detected Values Only Data appear Normal at 5% Significance Level Nonparametric Statistics Kapian-Mieler (KM) Method Mean Sp SE of Mean 95% KM (1) UCL 95% KM (1))
k star (bias corrected) The la Star nu star A D test Statistic 5% A D critest Statistic 5% A D critest Statistic 5% K S critest Value 5% K S crites	N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	Data Distribution Test with Detected Values Only Data appear Normal at 5% Significance Level Nonparametric Statistics Kapian-Maier (KM) Method Mean SD SE of Mean 95% KM (OutCl 95% KM (20 CL 95% KM ((((((((((((((((((((
k star (blas corrected) The la Star nu star AD Test Statistic 5% AD Critical Value K-S Test Statistic 5% K-S Critical Value Data not Gamma Distribution K-S Critical Value Data not Gamma Distribution K-S Critical Value Data not Gamma Distribution K-S Critical Value Maximum Maximum Maximum Maximum Maximum Maximum Maximum Maximum Maximum Maximum Maximum Maximum Maximum Nu star Thela star Nu star AppCh2	N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	Data Distribution Test with Detected Values Ory Data appear Normal at 5% Significance Level Nonperametric Statistics Kaptan-Meter (XMM) Muthod Mean SD SE of Mean 95% KM (2014) 95% KM (2014)	(((((((((((((((((((
k star (blas corrected) The la Star n u star A D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value 5% K-S Critical Value 5% K-S Critical Value 5% K-S Critical Value Date not Gamma Distributed at 5% Significance Leve Assuming Gamma Distributed Gamma ROS Statistics using Extrapolated Data Minirum Maximum Mean Median SD k star Theta star Theta star Theta star Nu star	N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	Data Distribution Test with Detected Values Only Data appear Normal at 5% Significance Level Nonparametric Statistics Kapian-Maier (KM) Method Mean SD SE of Mean 95% KM (OutCl 95% KM (20 CL 95% KM ((((((((((((((((((((

			allum
	lettos	General S	
ata	Number of Detected Data	23	Number of Valid Data
	Number of Non-Detect Data	23	Number of Distinct Detected Data
	Percent Non-Detect Data	17	Number of Distinct Detected Data
лs 8.	Percent Non-Detects		
	Log-transformed Statistics		Raw Statistics
ed -1	Log-transformed statistics Minimum Detected	0.14	Raw Stansucs Minimum Detected
	Maximum Detected Mean of Detected	0.48	Maximum Detected Mean of Detected
		0.313	
	SD of Detected		SD of Detected Minimum Non-Detect
	Minimum Non-Detect	0.43	
ect -0	Maximum Non-Detect	0.51	Maximum Non-Detect
	Number treated as Non-Detect		
		nded	te: Data have multiple DLs - Use of KM Method is recomme
	Number treated as Detected		all methods (except KM, DL/2, and ROS Methods),
ige 100.	Single DL Non-Detect Percentage		servations < Largest ND are treated as NDs
		UCL Sta	
	Lognormal Distribution Test with Detected Values Onl		Normal Distribution Test with Detected Values Only
	Shapiro Wilk Test Statistic	0.974	Shapiro Wilk Test Statistic
	5% Shapiro Wilk Critical Value	0.908	5% Shapiro Wilk Critical Value
el	Data appear Lognormal at 5% Significance Level		Data appear Normal at 5% Significance Level
	Assuming Lognormal Distribution		Assuming Normal Distribution
	DL/2 Substitution Method		DL/2 Substitution Method
	Mean	0.306	Mean
SD (SD	0.0935	SD
CL (95% H-Stat (DL/2) UCL	0.34	95% DL/2 (t) UCL
od	Log ROS Method	N/A	Maximum Likelihood Estimate(MLE) Method
ale -1	Mean in Log Scale		MLE method failed to converge property
ale (SD in Log Scale		
ale (Mean in Original Scale		
ale 0.	SD in Original Scale		
CL (95% Percentile Bootstrap UCL		
CL (95% BCA Bootstrap UCL		
	ļ		
ly .	Data Distribution Test with Detected Values Only		Gamma Distribution Test with Detected Values Only
i i	Data appear Normal at 5% Significance Level	8.669	k star (bias corrected)
		0.0361	Theta Star
1		364.1	nu star
-			
	Nonparametric Statistics	0.365	A-D Test Statistic
od	Kaplan-Meier (KM) Method	0.743	5% A-D Critical Value
	Mean	0.743	K-S Test Statistic
	SD	0.189	5% K-S Critical Value
	SE of Mean		Data appear Gamma Distributed at 5% Significance Le
an 0	95% KM (t) UCL		
	3530 Kill (1) 00E		Assuming Gamma Distribution
CL (Q5% VM (-) 11/1		Gamma ROS Statistics using Extrapolated Data
CL (95% KM (z) UCL	1	Gamina KOS Statistics using Extrapolated Data
CL (CL (CL (95% KM (jackknife) UCL	0.14	Minimum
CL (CL (CL (95% KM (jackknife) UCL 95% KM (bootstrap t) UCL	0.14	Minimum Maximum
	95% KM (jackknife) UCL 95% KM (boolstrap I) UCL 95% KM (BCA) UCL	0.48	Maximum
CL () CL () CL () CL () CL () CL ()	95% KM (jackknife) UCL 95% KM (bootstrap t) UCL 95% KM (BCA) UCL 95% KM (Percentile Bootstrap) UCL	0.48 0.314	Maximum Mean
	95% KM (jackknife) UCL 95% KM (bootstrap 1) UCL 95% KM (BCA) UCL 95% KM (Percentile Bootstap) UCL 95% KM (Chebyshev) UCL	0.48 0.314 0.32	Maximum Mean Median
	95% KM (packnile) UCL 95% KM (bootstrap I) UCL 95% KM (BCA) UCL 95% KM (Percentile Bootstrap) UCL 95% KM (Chebyshev) UCL 97.5% KM (Chebyshev) UCL	0.48 0.314 0.32 0.0907	Maximum Mean Median SD
	95% KM (jackknife) UCL 95% KM (bootstrap 1) UCL 95% KM (BCA) UCL 95% KM (Percentile Bootstap) UCL 95% KM (Chebyshev) UCL	0.48 0.314 0.32 0.0907 9.582	Maximum Mean Median SD k star
	95% KM (jackknife) UCL 95% KM (bootstap I) UCL 95% KM (BCA) UCL 95% KM (Percentile Bootstrap) UCL 95% KM (Chebyshev) UCL 97.5% KM (Chebyshev) UCL 99% KM (Chebyshev) UCL	0.48 0.314 0.32 0.0907 9.582 0.0328	Maximum Mean Median SD k star Thela star
CL (CL (CL (CL (CL (CL (CL (CL (CL (CL (95% KM (jackknile) UCL 95% KM (bootstrap i) UCL 95% KM (RCA) UCL 95% KM (Percentile Bootstrap) UCL 95% KM (Chebyshev) UCL 97.5% KM (Chebyshev) UCL 99% KM (Chebyshev) UCL 99% KM (Chebyshev) UCL	0.48 0.314 0.32 0.0907 9.582 0.0328 440.8	Maximum Mean Median SD k star Theta Nu star Nu star
CL (CL (CL (CL (CL (CL (CL (CL (CL (CL (95% KM (jackknite) UCL 95% KM (bootstrap () UCL 95% KM (CRA) UCL 95% KM (CRA) UCL 95% KM (Chebyshev) UCL 97.5% KM (Chebyshev) UCL 99% KM (Chebyshev) UCL 99% KM (Chebyshev) UCL 99% KM (Obebyshev) UCL	0.48 0.314 0.32 0.0907 9.582 0.0328 440.8 393.1	Maximum Mean SD k star Theta star Nu star AppChi2
CL (CL (CL (CL (CL (CL (CL (CL (CL (CL (95% KM (jackknile) UCL 95% KM (bootstrap i) UCL 95% KM (RCA) UCL 95% KM (Percentile Bootstrap) UCL 95% KM (Chebyshev) UCL 97.5% KM (Chebyshev) UCL 99% KM (Chebyshev) UCL 99% KM (Chebyshev) UCL	0.48 0.314 0.32 0.0907 9.582 0.0328 440.8 393.1 0.353	Maximum Mean SD k star Theta star Nu star AppChi2 95% Gamma Approximate UCL
CL (CL (CL (CL (CL (CL (CL (CL (CL (CL (95% KM (jackknite) UCL 95% KM (bootstrap () UCL 95% KM (CRA) UCL 95% KM (CRA) UCL 95% KM (Chebyshev) UCL 97.5% KM (Chebyshev) UCL 99% KM (Chebyshev) UCL 99% KM (Chebyshev) UCL 99% KM (Obebyshev) UCL	0.48 0.314 0.32 0.0907 9.582 0.0328 440.8 393.1	Maximum Mean SD k star Theta star Nu star AppChi2

	General Sta		
Number of Valid Observations	23	Number of Distinct Observations 2	!1
Raw Statistics		Log-transformed Statistics	
Minimum	31.9	Minimum of Log Data 3	3.46
Maximum	317	Maximum of Log Data 5	5.75
Mean	71.97	Mean of log Data 4	
Median	52.9	SD of log Data 0	
SD	63.14		_
Coefficient of Variation	0.877		_
Skewness	3.113		
	Relevant UCL	Statistice	
Normal Distribution Test	Kelevark OCL	Lognormal Distribution Test	
Shapiro Wilk Test Statistic	0.602	Shapiro Wilk Test Statistic 0	0.86
Shapiro Wilk Critical Value	0.914	Shapiro Wilk Critical Value 0	0.91
Data not Normal at 5% Significance Level	1	Data not Lognormal at 5% Significance Level	_
Assuming Normal Distribution		Assuming Lognormal Distribution	
95% Student's-t UCL	94.57	95% H-UCL 8	39.1
95% UCLs (Adjusted for Skewness)		95% Chebyshev (MVUE) UCL 1	106
95% Adjusted-CLT UCL	102.7	97.5% Chebyshev (MVUE) UCL 1	
95% Modified-t UCL	96	99% Chebyshev (MVUE) UCL 1	155
Gamma Distribution Test		Data Distribution	-
k star (bias corrected)	2 21 2	Data Distribution Data do not follow a Discernable Distribution (0.05)	
Theta Star		Data do horiolion a Discontable Distribution (c.co)	
MLE of Mean			
MLE of Mean MLE of Standard Deviation			
nu star			
Approximate Chi Square Value (.05)		Nonparametric Statistics	
Adjusted Level of Significance		95% CLT UCL 9	03.6
Adjusted Chi Square Value		95% Jackknife UCL 9	
Addition of addition of addition		95% Standard Bootstrap UCL 9	
Anderson-Darling Test Statistic	1.441	95% Bootstrap-t UCL 1	
		95% Hall's Bootstrap UCL 1	
Anderson-Darling 5% Critical Value			25.2
Anderson-Darling 5% Critical Value Kolmogoroy-Smirnov Test Statistic	0.193		
Anderson-Darling 5% Critical Value Kolmogorov-Smirnov Test Statistic Kolmogorov-Smirnov 5% Critical Value		95% BCA Bootstrap UCL 1	
Kolmogorov-Smirnov Test Statistic Kolmogorov-Smirnov 5% Critical Value	0.183	95% BCA Bootstrap UCL 1 95% Chebyshev(Mean, Sd) UCL 1	29.
Kolmogorov-Smirnov Test Statistic	0.183		
Kolmogorov-Smirnov Test Statistic Kolmogorov-Smirnov 5% Critical Value	0.183	95% Chebyshev(Mean, Sd) UCL 1 97.5% Chebyshev(Mean, Sd) UCL 1	
Kolmogorov-Smirnov Test Statistic Kolmogorov-Smirnov 5% Critical Value Data not Gemma Distributed at 5% Significance Lev	0.183 el	95% Chebyshev(Mean, Sd) UCL 1 97.5% Chebyshev(Mean, Sd) UCL 1	154
Kolmogorov-Smirnov Test Statistic Kolmogorov-Smirnov 5% Critical Value Data not Gemma Distributed at 5% Significance Lev Assuming Gemma Distribution	0.183 el 91.6	95% Chebyshev(Mean, Sd) UCL 1 97.5% Chebyshev(Mean, Sd) UCL 1	154
Kolmogorov-Smirnov Test Statistic Kolmogorov-Smirnov 5% Critical Value Data not Gamma Distributed at 5% Significance Lev Assuming Gamma Distribution 95% Approximate Gamma UCL	0.183 el 91.6	95% Chebyshev(Mean, Sd) UCL 1 97.5% Chebyshev(Mean, Sd) UCL 1	154

TABLE A-2 Sha Statistical Summary of Detected Analytes in Phase I RI Post-IRA Subsurface Soil Samples RVAAP-03 Open Demolition Area 1

	Frequency	Range o	of Detects	Mean of	95%		
	of	Minimum	Maximum	Detects	UCL ^a		
Detected Analyte	Detection	mg/kg	mg/kg	mg/kg	mg/kg	Distribution ^a	Method ^a
Inorganics							
Aluminum	42 / 42	6.37E+03	2.86E+04	1.22E+04	1.32E+04	Gamma	Approximate Gamma
Antimony	4 / 30	7.80E-01	1.30E+00	9.58E-01	9.83E-01	Normal	KM (Percentile Bootstrap)
Arsenic	41 /41	8.30E+00	2.11E+01	1.48E+01	1.56E+01	Normal	KM - t
Barium	42 / 42	2.61E+01	1.72E+02	7.05E+01	7.75E+01	Gamma	Approximate Gamma
Chromium (total or hexavalent)	42 / 42	1.01E+01	3.47E+01	1.78E+01	1.91E+01	Gamma	Approximate Gamma
Copper	42 / 42	9.20E+00	4.73E+01	2.15E+01	2.31E+01	NP	Modified-t
Lead	42 / 42	8.70E+00	1.94E+01	1.32E+01	1.37E+01	Gamma	Approximate Gamma
Mercury	23 / 42	6.60E-03	5.40E-02	2.35E-02	2.33E-02	Normal	KM - t
Vanadium	42 / 42	1.16E+01	3.99E+01	2.00E+01	2.13E+01	Gamma	Approximate Gamma
Zinc	42 / 42	3.56E+01	1.25E+02	6.42E+01	6.83E+01	Gamma	Approximate Gamma
Insufficient Sample Size for UC	CL Calculation						
Cadmium	1 / 42	2.70E-01	2.70E-01	2.70E-01			

mg/kg - milligram per kilogram

NP - Nonparametric; distribution is not discernable

UCL - Upper confidence limit

^a Nature of distribution, statistical method, and 95% Upper Confidence Limit (UCL) determined using ProUCL Version 4.0 (EPA, 2007, ProUCL Version 4.0, Office of Research and Development, Technology Support Center Characterization and Monitoring Branch, Las Vegas, Nevada, April.) on line at http://www.epa.gov/esd/tsc/form.htm.) The recommended UCL was used unless the recommendation was the 97.5% or 99% Chebyshev UCL.

	General UCL Statistics for Data Sets with Non-Detects		
User Selected Options			
From File	C:\Documents and Settings\debbi.freer\My Documents\Ravenna\Ravena sbs UCL output tbl rev.xls.wst		
Full Precision	OFF		
Confidence Coefficient	95%		
Number of Bootstrap Operations	2000		
num			
---	--------------	--	------------
	General St	atictice	
Number of Valid Observations		Number of Distinct Observations	30
	12		
Raw Statistics		Log-transformed Statistics	
Minimum	6370	Minimum of Log Data	8.759
Maximum	28600	Maximum of Log Data	10.26
Mean	12180	Mean of log Data	9.365
Median	12350	SD of log Data	0.29
SD	3834		
Coefficient of Variation	0.315		
Skewness	1.806		
	Relevant UCL	Statistics	
Normal Distribution Test		Lognormal Distribution Test	
Shapiro Wilk Test Statistic	0.834	Shapiro Wilk Test Statistic	0.922
Shapiro Wilk Critical Value	0.942	Shapiro Wilk Critical Value	0.942
Data not Normal at 5% Significance Level		Data not Lognormal at 5% Significance Level	
Assuming Normal Distribution		Assuming Lognormal Distribution	
95% Student's-t UCL	13176	95% H-UCL	1210
95% UCLs (Adjusted for Skewness)	13170	95% Chebyshev (MVUE) UCL	
95% Adjusted-CLT UCL	12220	97.5% Chebyshev (MVUE) UCL	
95% Modified-t UCL		99% Chebyshev (MVUE) UCL	
Gamma Distribution Test		Data Distribution	
k star (bias corrected)		Data appear Gamma Distributed at 5% Significance Lev	vei
Theta Star			
MLE of Mean			
MLE of Standard Deviation			
nu star			
Approximate Chi Square Value (.05)		Nonparametric Statistics	
Adjusted Level of Significance		95% CLT UCL	
Adjusted Chi Square Value	861.4	95% Jackknife UCL	
	0.454	95% Standard Bootstrap UCL	
Anderson-Darling Test Statistic		95% Bootstrap-t UCL	
Anderson-Darling 5% Critical Value		95% Hall's Bootstrap UCL	
Kolmogorov-Smirnov Test Statistic		95% Percentile Bootstrap UCL	
Kolmogorov-Smirnov 5% Critical Value		95% BCA Bootstrap UCL	
Data appear Gamma Distributed at 5% Significance Le	vel	95% Chebyshev(Mean, Sd) UCL	
		97.5% Chebyshev(Mean, Sd) UCL	
Assuming Gamma Distribution		99% Chebyshev(Mean, Sd) UCL	1806
95% Approximate Gamma UCL			
95% Adjusted Gamma UCL	13203		
Potential UCL to Use		Use 95% Approximate Gamma UCL	1214

nony			
	General Statis	stics	
Number of Valid Data	30	Number of Detected Data	
Number of Distinct Detected Data	4	Number of Non-Detect Data	
Number of Missing Values	12	Percent Non-Detects	86.6
Raw Statistics		Log-transformed Statistics	
Minimum Detected	0.78	Minimum Detected	-0.2
Maximum Detected	1.3	Maximum Detected	0.2
Mean of Detected	0.958	Mean of Detected	-0.06
SD of Detected	0.243	SD of Detected	0.3
Minimum Non-Detect Maximum Non-Detect	1.1	Minimum Non-Detect Maximum Non-Detect	0.0
Maximum Non-Detect	1.3	Maximum Non-Detect	0
: Data have multiple DLs - Use of KM Method is recommende	ed	Number treated as Non-Detect	
all methods (except KM, DL/2, and ROS Methods),		Number treated as Detected	
ervations < Largest ND are treated as NDs		Single DL Non-Detect Percentage	96.6
Warning: There are o	only 4 Distinct D	etected Values in this data	
	-	rap may be performed on this data set	
the resulting calculations r	nay not be reliat	ole enough to draw conclusions	
It is recommended to have 10-15 or mo	re distinct obser	vations for accurate and meaningful results.	
	UCL Statist	~	
Normal Distribution Test with Detected Values Only	UCL Sidusu	Lognormal Distribution Test with Detected Values Only	
Shapiro Wilk Test Statistic	0.842	Shapiro Wilk Test Statistic	0.1
5% Shapiro Wilk Critical Value	0.748	5% Shapiro Wilk Critical Value	0.
Data appear Normal at 5% Significance Level		Data appear Lognormal at 5% Significance Level	
Assuming Normal Distribution		Assuming Lognormal Distribution	
DL/2 Substitution Method Mean	0 (1 (DL/2 Substitution Method Mean	0
SD	0.646	SD	-0.4
95% DL/2 (t) UCL	0.149	95% H-Stat (DL/2) UCL	0.
,0,0 002 () 002	0.072	70% (Fold (BE2) 002	0.
Maximum Likelihood Estimate(MLE) Method	N/A	Log ROS Method	
MLE method failed to converge properly		Mean in Log Scale	-0.
		SD in Log Scale	0.
		Mean in Original Scale	0.1
		SD in Original Scale	0.
		95% Percentile Bootstrap UCL	0.
		95% BCA Bootstrap UCL	
Gamma Distribution Test with Detected Values Only		95% BCA Bootstrap UCL Data Distribution Test with Detected Values Only	
k star (bias corrected)	5.831	95% BCA Bootstrap UCL	
-	0.164	95% BCA Bootstrap UCL Data Distribution Test with Detected Values Only	
k star (bias corrected) Theta Star		95% BCA Bootstrap UCL Data Distribution Test with Detected Values Only	
k star (bias corrected) Theia Star nu star A-D Test Statistic	0.164 46.65 0.439	95% BCA Bootstrap UCL Data Distribution Test with Detected Values Only Data appear Normal at 5% Significance Level Nonparametric Statistics	
k star (bias corrected) Theta Star nu star A-D Test Statistic 5% A-D Critical Value	0.164 46.65 0.439 0.657	95% BCA Bootstrap UCL Data Distribution Test with Detected Values Only Data appear Normal at 5% Significance Level Nonperametric Statistics Kaplan-Meier (KM) Method	0.
k star (bias corrected) Theta Star nu star A-D Test Statistic 5% A-D Critical Value K-S Test Statistic	0.164 46.65 0.439 0.657 0.657	95% BCA Bootstrap UCL Data Distribution Test with Detected Values Only Data appear Normal at 5% Significance Level Nonparametric Statistics Kaplan-Meier (KM) Method Mean	0.
k star (blas corrected) Theta Star nu star A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value	0.164 46.65 0.439 0.657 0.657 0.394	95% BCA Bootstrap UCL Data Distribution Test with Detected Values Only Data appear Normal at 5% Significance Level Nonparametric Statistics Kaplan-Meier (KM) Method Mean SD	0.1
k star (bias corrected) Theta Star nu star A-D Test Statistic 5% A-D Critical Value K-S Test Statistic	0.164 46.65 0.439 0.657 0.657 0.394	95% BCA Bootstrap UCL Data Distribution Test with Detected Values Only Data appear Normal at 5% Significance Level Nonparametric Statistics Kaplan-Meier (KM) Method Mean SD SE of Mean	0.
k star (blas corrected) Theta Star nu star A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value	0.164 46.65 0.439 0.657 0.657 0.394	95% BCA Bootstrap UCL Data Distribution Test with Detected Values Only Data appear Normal at 5% Significance Level Nonparametric Statistics Kaplan-Meier (KM) Method Mean SD	0.1
k star (bias corrected) Theia Star nu star A-D Test Statistic 5% A-D Critical Value K-S.T est Statistic 5% K-S Critical Value Data appear Gamma Distributed at 5% Significance Leve	0.164 46.65 0.439 0.657 0.657 0.394	95% BCA Bootstrap UCL Data Distribution Test with Detected Values Only Data appear Normal at 5% Significance Level Nonperametric Statistics Kaplan-Meier (KM) Method Mean SD SE of Mean 95% KM (t) UCL	0.0 0.1 0.0 0.0 0.0 0.0 0.0
k star (blas corrected) Theta Star nu star A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value 5% K-S Critical Value Data appear Gamma Distributed at 5% Significance Leve Assuming Gamma Distribution Gamma ROS Statistics using Extrapolated Data Minimum	0.164 46.65 0.439 0.657 0.657 0.394 N	95% BCA Bootstrap UCL Data Distribution Test with Detected Values Only Data appear Normal at 5% Significance Level Nonparametric Statistics Kaplan-Meier (KM) Method Mean SD SE of Mean 95% KM (2) UCL 95	0.: 0.: 0.: 0.: 0.: 0.: 0.: 0.: 0.: 0.:
k star (blas corrected) Theta Star nu star A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value Data appear Garma Distributon Gamma ROS Statistics using Extrapolated Data Minimum Maximum	0.164 46.65 0.439 0.657 0.394 0.657 0.394 0.78	95% BCA Bootstrap UCL Data Distribution Test with Detected Values Only Data appear Normal at 5% Significance Level Nonparametric Statistics Kaplan-Meier (KM) Method Mean SD SE of Mean 95% KM (2) UCL 95	0.9
k star (blas corrected) Theta Star nu star A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value Data appear Gamma Distributed at 5% Significance Leve Assuming Gamma Distribution Gamma ROS Statistics using Extrapolated Data Minimum Maximum	0.164 46.65 0.439 0.657 0.657 0.657 0.394 N 0.78 1.3 0.94	95% BCA Bootstrap UCL Data Distribution Test with Detected Values Ony Data appear Normal at 5% Significance Level Nonparametric Statistics Kaplan-Meier (KM) Method Mean SD SE of Mean 95% KM (0) UCL 95%	
k star (blas corrected) Theta Star nu star A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value 5% K-S Critical Value Deta appear Gamma Distribution Gamma ROS Statistics using Extrapolated Data Minimum Maximum Maximum Mean Median	0.164 46.65 0.439 0.657 0.657 0.394 N 0.78 1.3 0.94 0.916	95% BCA Bootstrap UCL Data Distribution Test with Detected Values Only Data appear Normal at 5% Significance Level Nonparametric Statistics Kaplan-Meier (KM) Method Mean SD SE of Mean 95% KM (0) UCL 95% KM (2) UCL 95	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
k star (blas corrected) Theta Star nu star A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value Data appear Gamma Distribution Gamma ROS Statistics using Extrapolated Data Minimum Maximum Maximum Median SD	0.164 46.65 0.439 0.657 0.657 0.394 3 0.394 0.78 1.3 0.94 0.916 0.916	95% BCA Bootstrap UCL Data Distribution Test with Detected Values Only Data appear Normal at 5% Significance Level Nonparametric Statistics Kapian-Meier (KM) Method Kapian-Meier (KM) Method SD SE of Mean 95% KM (Q) UCL 95% KM (Chebyshev) UCL 95% KM (Chebyshev) UCL 97.5% KM (Chebyshev) UCL	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
k star (bias corrected) Theta Star nu star A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value Data appear Gamma Distribution 15% Significance Leve Assuming Gamma Distribution Gamma ROS Statistics using Extrapolated Data Minimum Maximum Maximum Median SD k star	0.164 46.65 0.439 0.657 0.394 31 0.78 1.3 0.94 0.916 0.78 1.3 0.94 0.916 0.126	95% BCA Bootstrap UCL Data Distribution Test with Detected Values Only Data appear Normal at 5% Significance Level Nonparametric Statistics Kaplan-Meier (KM) Method Mean SD SE of Mean 95% KM (0) UCL 95% KM (2) UCL 95	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
k star (blas corrected) Theta Star nu star A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value Data appear Gamma Distribution Gamma ROS Statistics using Extrapolated Data Minimum Maximum Maximum Median SD	0.164 46.65 0.439 0.657 0.657 0.657 0.657 0.78 1.3 0.78 0.78 0.94 0.916 0.126 55.78 0.0168	95% BCA Bootstrap UCL Data Distribution Test with Detected Values Ony Data appear Normal at 5% Significance Level Nonparametric Statistics Kaplan-Meier (KM) Method Mean SD SE of Mean 95% KM (DUCL 95% KM (QUCL 95% KM (Qackknife) UCL 95% KM (Chebyshev) UCL	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
k star (blas corrected) Theta Star nu star A-D Test Statistic 5% A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value Data appear Gamma Distributed at 5% Significance Leve Assuming Gamma Distribution Gamma ROS Statistics using Extrapolated Data Minimum Maximum Maximum Maximum Maximum SD k star Theta star	0.164 46.65 0.439 0.657 0.394 31 0.78 1.3 0.94 0.916 0.126 55.78	95% BCA Bootstrap UCL Data Distribution Test with Detected Values Only Data appear Normal at 5% Significance Level Nonparametric Statistics Kapian-Meier (KM) Method Kapian-Meier (KM) Method SD SE of Mean 95% KM (Q) UCL 95% KM (Chebysher) UCL 95% KM (Chebysher) UCL 97.5% KM (Chebysher) UCL 97.5% KM (Chebysher) UCL 97.5% KM (Chebysher) UCL	
k star (blas corrected) Theta Star nu star A-D Test Statistic 5% A-D Critical Value 5% K-S Critical Value 5% K-S Critical Value 5% K-S Critical Value 5% K-S Critical Value Deta appear Gamma Distribution Gamma ROS Statistics using Extrapolated Data Minimum Maximum Maximum Meain SD k star Theta star Nu star	0.164 46.65 0.439 0.657 0.657 0.394 N 0.78 1.3 0.94 0.78 1.3 0.916 0.916 0.916 0.126 55.78 0.0168	95% BCA Bootstrap UCL Data Distribution Test with Detected Values Only Data appear Normal at 5% Significance Level Nonparametric Statistics Kaplan-Meier (KM) Method Mean SD SE of Mean 95% KM (0) UCL 95% KM (2) UCL 95	0.9 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1

enic			
	General S	Statistics	
Number of Valid Data	41	Number of Detected Data	
Number of Distinct Detected Data	34	Number of Non-Detect Data	
Number of Missing Values	1	Percent Non-Detects	0
Raw Statistics		Log-transformed Statistics	
Kaw Stausucs Minimum Detected	8.3	Log-transformed Statistics Minimum Detected	2
Maximum Detected	21.1	Maximum Detected	
Mean of Detected	14.78	Mean of Detected	
SD of Detected	2.955	SD of Detected	
Minimum Non-Detect	N/A	Minimum Non-Detect	N
Maximum Non-Detect	N/A	Maximum Non-Detect	N
	UCL St	atlation	
Normal Distribution Test with Detected Values Only	UCL 34	Lognormal Distribution Test with Detected Values Only	
Shapiro Wilk Test Statistic	0.981	Shapiro Wilk Test Statistic	(
5% Shapiro Wilk Critical Value	0.941	5% Shapiro Wilk Critical Value	(
Data appear Normal at 5% Significance Level		Data appear Lognormal at 5% Significance Level	
Assuming Normal Distribution		Assuming Lognormal Distribution	
DL/2 Substitution Method		DL/2 Substitution Method	
Mean	14.78	Mean	-
SD	2.955	SD	(
95% DL/2 (t) UCL	15.56	95% H-Stat (DL/2) UCL	
Maximum Likelihood Estimate(MLE) Method	N/A	Log ROS Method	
MLE method failed to converge properly		Mean in Log Scale	Ν
		SD in Log Scale	Ν
		Mean in Original Scale	Ν
		SD in Original Scale	Ν
		95% Percentile Bootstrap UCL	Ν
		95% BCA Bootstrap UCL	Ν
Gamma Distribution Test with Detected Values Only		Data Distribution Test with Detected Values Only	
k star (bias corrected)	22.24	Data appear Normal at 5% Significance Level	
Theta Star	0.665		
nu star	1823		
A-D Test Statistic	0.395	Nonparametric Statistics	
5% A-D Critical Value	0.747	Kaplan-Meier (KM) Method	
K-S Test Statistic	0.747	Mean SD	
5% K-S Critical Value	0.138		-
Data appear Gamma Distributed at 5% Significance Lev	/ei	SE of Mean	(
Accurate Commo Distribution		95% KM (t) UCL 95% KM (z) UCL	
Assuming Gamma Distribution Gamma ROS Statistics using Extrapolated Data		95% KM (z) UCL 95% KM (jackknife) UCL	
Gamma ROS Statistics using Extrapolated Data Minimum	8.3	95% KM (Jackknire) UCL 95% KM (bootstrap t) UCL	
Minimum Maximum	8.3	95% KM (bootstrap t) UCL 95% KM (BCA) UCL	
Mean	14.78	95% KM (Percentile Bootstrap) UCL	
Median	14.78	95% KM (Percentile Boolstrap) UCL 95% KM (Chebyshev) UCL	-
SD	2.955	95% KM (Chebyshev) UCL 97.5% KM (Chebyshev) UCL	
SD k star	2.955	97.5% KM (Cnebysnev) UCL 99% KM (Chebyshev) UCL	
K star Theta star	0.665	99% KM (Chebysnev) UCL	
i neta star Nu star	1823	Potential UCLs to Use	
	1823	Potential UCLS to USE 95% KM (t) UCL	
	1723		
AppChi2 95% Gamma Approximate UCI	15.60	95% KM (Percentile Bootstrap) UCL	
AppChi2 95% Gamma Approximate UCL 95% Adjusted Gamma UCL	15.62 15.65	95% KM (Percentile Boolstrap) UCL	

1				
	General St	atistics		
Number of Valid Observations		Number of Distinct Observations	41	
	I			
Raw Statistics		Log-transformed Statistics		
Minimum	26.1	Minimum of Log Data	3.262	
Maximum	172	Maximum of Log Data	5.147	
Mean	70.48	Mean of log Data	4.192	
Median	68.15	SD of log Data	0.362	
SD	26.13			
Coefficient of Variation	0.371			
Skewness	1.375			
	Relevant UCL	Statistics		
Normal Distribution Test		Lognormal Distribution Test		
Shapiro Wilk Test Statistic	0.886	Shapiro Wilk Test Statistic	0.947	
Shapiro Wilk Critical Value	0.942	Shapiro Wilk Critical Value	0.942	
Data not Normal at 5% Significance Level		Data appear Lognormal at 5% Significance Level		
Assuming Normal Distribution		Assuming Lognormal Distribution		
95% Student's-t UCL	77.26	95% H-UCL	79.20	
95% UCLs (Adjusted for Skewness)	11.20	95% Chebyshev (MVUE) UCL		
95% Adjusted-CLT UCL	79.02	97.5% Chebyshev (MVUE) UCL 95.		
95% Modified-t UCL		99% Chebyshev (MVUE) UCL		
		-		
Gamma Distribution Test		Data Distribution		
k star (bias corrected)		Data appear Gamma Distributed at 5% Significance Lev	/el	
Theta Star				
MLE of Mean				
MLE of Standard Deviation				
nu star				
Approximate Chi Square Value (.05)		Nonparametric Statistics		
Adjusted Level of Significance		95% CLT UCL		
Adjusted Chi Square Value	572.2	95% Jackknife UCL		
		95% Standard Bootstrap UCL		
Anderson-Darling Test Statistic		95% Bootstrap-t UCL		
Anderson-Darling 5% Critical Value		95% Hall's Bootstrap UCL		
Kolmogorov-Smirnov Test Statistic		95% Percentile Bootstrap UCL		
Kolmogorov-Smirnov 5% Critical Value		95% BCA Bootstrap UCL		
Data appear Gamma Distributed at 5% Significance Le	vel	95% Chebyshev(Mean, Sd) UCL		
		97.5% Chebyshev(Mean, Sd) UCL		
Assuming Gamma Distribution		99% Chebyshev(Mean, Sd) UCL	110.6	
95% Approximate Gamma UCL				
95% Adjusted Gamma UCL	. 77.77		_	
Potential UCL to Use			22.5	
		Use 95% Approximate Gamma UCL	11.51	

	General	Statistics	
Number of Valid Observations	42	Number of Distinct Observations	36
Raw Statistics		Log-transformed Statistics	
Minimum	10.1	Minimum of Log Data	2.31
Maximum	34.7	Maximum of Log Data	3.54
Mean	17.76	Mean of log Data	2.84
Median	18.75	SD of log Data	0.27
SD	4.801		
Coefficient of Variation	0.27		
Skewness	0.775		
	Relevant U	CL Statistics	
Normal Distribution Test		Lognormal Distribution Test	
Shapiro Wilk Test Statistic	0.893	Shapiro Wilk Test Statistic	0.90
Shapiro Wilk Critical Value	0.942	Shapiro Wilk Critical Value	0.94
Data not Normal at 5% Significance Level		Data not Lognormal at 5% Significance Level	
Assuming Normal Distribution		Assuming Lognormal Distribution	
95% Student's-t UCL	. 19	95% H-UCL	19.1
95% UCLs (Adjusted for Skewness)		95% Chebyshev (MVUE) UCL	21.0
95% Adjusted-CLT UCL	19.07	97.5% Chebyshev (MVUE) UCL	22.
95% Modified-t UCL	19.02	99% Chebyshev (MVUE) UCL	25.:
Gamma Distribution Test		Data Distribution	
k star (bias corrected)	13.21	Data appear Gamma Distributed at 5% Significance Lev	vel
Theta Star			
MLE of Mean	17.76		
MLE of Standard Deviation			
nu star			
Approximate Chi Square Value (.05)		Nonparametric Statistics	
Adjusted Level of Significance		95% CLT UCL	18.9
Adjusted Chi Square Value		95% Jackknife UCL	
		95% Standard Bootstrap UCL	18.9
Anderson-Darling Test Statistic	0.616	95% Bootstrap-t UCL	
Anderson-Darling 5% Critical Value		95% Hall's Bootstrap UCL	
Kolmogorov-Smirnov Test Statistic		95% Percentile Bootstrap UCL	
Kolmogorov-Smirnov 5% Critical Value		95% BCA Bootstrap UCL	
Data appear Gamma Distributed at 5% Significance Le		95% Chebyshev(Mean, Sd) UCL	
		97.5% Chebyshev(Mean, Sd) UCL	
Assuming Gamma Distribution	1	99% Chebyshev(Mean, Sd) UCL	
95% Approximate Gamma UCL	19.07		-
95% Adjusted Gamma UCL			-
		1	
·····,-····			

	General Sta	letice	
Number of Valid Observations		Number of Distinct Observations	36
Number of Valid Observations	42	Number of Distinct Observations	30
Raw Statistics		Log-transformed Statistics	
Minimum	9.2	Minimum of Log Data	2.21
Maximum	47.3	Maximum of Log Data	3.85
Mean	21.46	Mean of log Data	3.03
Median	21.25	SD of log Data	0.26
SD	6.034		
Coefficient of Variation	0.281		
Skewness	1.86		
	Relevant UCL S	Statistics	
Normal Distribution Test		Lognormal Distribution Test	
Shapiro Wilk Test Statistic	0.814	Shapiro Wilk Test Statistic	0.88
Shapiro Wilk Critical Value	0.942	Shapiro Wilk Critical Value	0.94
Data not Normal at 5% Significance Level		Data not Lognormal at 5% Significance Level	
Assuming Normal Distribution		Assuming Lognormal Distribution	
95% Student's-t UCL	22.02	Assuming Lognormal Distribution 95% H-UCL	22.1
95% UCLs (Adjusted for Skewness)	23.02	95% Chebyshev (MVUE) UCL	
95% OCLS (Adjusted for Skewness) 95% Adjusted-CLT UCL	22.27	95% Chebyshev (MVUE) UCL 97.5% Chebyshev (MVUE) UCL	
95% Modified-t UCL		99% Chebyshev (MVUE) UCL	
		-	
Gamma Distribution Test		Data Distribution	
k star (bias corrected)		Data do not follow a Discernable Distribution (0.05)	
Theta Star			
MLE of Mean			
MLE of Standard Deviation			
nu star			
Approximate Chi Square Value (.05)		Nonparametric Statistics	
Adjusted Level of Significance		95% CLT UCL	
Adjusted Chi Square Value	1045	95% Jackknife UCL	
		95% Standard Bootstrap UCL	
Anderson-Darling Test Statistic		95% Bootstrap-t UCL	
Anderson-Darling 5% Critical Value		95% Hall's Bootstrap UCL	
Kolmogorov-Smirnov Test Statistic		95% Percentile Bootstrap UCL	
Kolmogorov-Smirnov 5% Critical Value		95% BCA Bootstrap UCL	
Data not Gamma Distributed at 5% Significance Leve	1	95% Chebyshev(Mean, Sd) UCL	
		97.5% Chebyshev(Mean, Sd) UCL	
		99% Chebyshev(Mean, Sd) UCL	30.7
Assuming Gamma Distribution			
95% Approximate Gamma UCL			
-			
95% Approximate Gamma UCL		Use 95% Student's-t UCL	23.0

	General Sta	tistics	
Number of Valid Observations	42	Number of Distinct Observations	30
Raw Statistics		Log-transformed Statistics	
Minimum	8.7	Minimum of Log Data	2.16
Maximum	19.4	Maximum of Log Data	2.96
Mean	13.19	Mean of log Data	2.56
Median	13.4	SD of log Data	0.15
SD	2.018		
Coefficient of Variation	0.153		
Skewness	0.479		
	Relevant UCL:	Statistics	
Normal Distribution Test		Lognormal Distribution Test	
Shapiro Wilk Test Statistic	0.935	Shapiro Wilk Test Statistic	0.94
Shapiro Wilk Critical Value	0.942	Shapiro Wilk Critical Value	0.94
Data not Normal at 5% Significance Level		Data appear Lognormal at 5% Significance Level	
Assuming Normal Distribution		Assuming Lognormal Distribution	
95% Student's-t UCL	12.72	95% H-UCL	12
95% UCLs (Adjusted for Skewness)	13.72	95% Chebyshev (MVUE) UCL	
95% Adjusted-CLT UCL	12 72	97.5% Chebyshev (MVUE) UCL	
95% Modified-t UCL		99% Chebyshev (MVUE) UCL	
Gamma Distribution Test		Data Distribution	
k star (bias corrected)		Data appear Gamma Distributed at 5% Significance Lev	vel
Theta Star			
MLE of Mean			
MLE of Standard Deviation			
nu star			
Approximate Chi Square Value (.05)		Nonparametric Statistics	
Adjusted Level of Significance		95% CLT UCL	
Adjusted Chi Square Value	3300	95% Jackknife UCL	
	0.445	95% Standard Bootstrap UCL	
Anderson-Darling Test Statistic		95% Bootstrap-t UCL	
Anderson-Darling 5% Critical Value		95% Hall's Bootstrap UCL	
Kolmogorov-Smirnov Test Statistic		95% Percentile Bootstrap UCL	
Kolmogorov-Smirnov 5% Critical Value		95% BCA Bootstrap UCL	
Data appear Gamma Distributed at 5% Significance Le	vel	95% Chebyshev(Mean, Sd) UCL	
		97.5% Chebyshev(Mean, Sd) UCL	
Assuming Gamma Distribution		99% Chebyshev(Mean, Sd) UCL	16.2
95% Approximate Gamma UCL			
95% Adjusted Gamma UCL	13.75		
Potential UCL to Use		Use 95% Approximate Gamma UCL	

APPENDIX A-2: ProUCL Raw Output Statistical Summary of Detected Analytes in Phase 1 RI Post IRA Subsurface Soil Samples RVAAP-03 Open Demolition Area 1

rcury			
	General Stati	stics	
Number of Valid Data	42	Number of Detected Data	
Number of Distinct Detected Data	18	Number of Non-Detect Data	
		Percent Non-Detects	45.24
Raw Statistics		Log-transformed Statistics	
Minimum Detected	0.0066	Minimum Detected	-5.0
Maximum Detected	0.054	Maximum Detected	-2.9
Mean of Detected	0.0235	Mean of Detected	-3.8
SD of Detected	0.0118	SD of Detected	0.5
Minimum Non-Detect	0.0078	Minimum Non-Detect	-4.1
Maximum Non-Detect	0.13	Maximum Non-Detect	-2
e: Data have multiple DLs - Use of KM Method is recommend	ied	Number treated as Non-Detect	
all methods (except KM, DL/2, and ROS Methods),		Number treated as Detected	
servations < Largest ND are treated as NDs		Single DL Non-Detect Percentage	100.0
	UCL Statis		
Normal Distribution Test with Detected Values Only	0.010	Lognormal Distribution Test with Detected Values Only	
Shapiro Wilk Test Statistic	0.943	Shapiro Wilk Test Statistic	0.
5% Shapiro Wilk Critical Value	0.914	5% Shapiro Wilk Critical Value	0.
Data appear Normal at 5% Significance Level		Data appear Lognormal at 5% Significance Level	
Assuming Normal Distribution		Assuming Lognormal Distribution	
DL/2 Substitution Method		DL/2 Substitution Method	
Mean	0.0253	Mean	-3.
SD	0.0177	SD	0.
95% DL/2 (t) UCL	0.0299	95% H-Stat (DL/2) UCL	0.0
1010 DE1 () 00E	0.0277	7575 TT 5147 (552) 552	0.0
Maximum Likelihood Estimate(MLE) Method	N/A	Log ROS Method	
MLE method failed to converge property		Mean in Log Scale	-4.(
0,		SD in Log Scale	0.4
		Mean in Original Scale	0.0
		SD in Original Scale	0.0
		95% Percentile Bootstrap UCL	0.0
		95% BCA Bootstrap UCL	0.0
Gamma Distribution Test with Detected Values Only		Data Distribution Test with Detected Values Only	
k star (bias corrected)	3.487	Data appear Normal at 5% Significance Level	
Theta Star	0.00674		
nu star	160.4		
A-D Test Statistic	0.28	Nonparametric Statistics	
5% A-D Critical Value	0.749	Kaplan-Meier (KM) Method	
K-S Test Statistic	0.749	Mean	0.0
5% K-S Critical Value	0.182	SD	0.
Data appear Gamma Distributed at 5% Significance Lev	/81	SE of Mean 95% KM (t) UCL	0.00
Assuming Gamma Distribution		95% KM (t) UCL 95% KM (z) UCL	0.0
Assuming Gamma Distribution Gamma ROS Statistics using Extrapolated Data		95% KM (z) UCL 95% KM (jackknife) UCL	0.0
Gamma ROS Statistics using Extrapolated Data Minimum	0.0066	95% KM (Jackknire) UCL 95% KM (bootstrap t) UCL	0.0
Maximum	0.0066	95% KM (BCA) UCL 95% KM (BCA) UCL	0.0
Mean	0.0238	95% KM (Percentile Bootstrap) UCL	0.0
Median	0.0238	95% KM (Percentile Boolstrap) UCL 95% KM (Chebyshev) UCL	0.0
SD	0.00969	95% KM (Chebyshev) UCL 97.5% KM (Chebyshev) UCL	0.0
	5.187	99% KM (Chebyshev) UCL	0.0
		7776 Kivi (Chebyshev) UCE	0.0
k star Theta star	0.0046		
Theta star	0.0046	Potential UCLs to Use	
Theta star Nu star	435.7	Potential UCLs to Use 95% KM (t) UCL	0.03
Theta star		Potential UCLs to Use 95% KM (t) UCL 95% KM (Percentile Bootstrap) UCL	0.02

Data Quality Objectives Report October 2009

llum			
	General S	Statictics	
Number of Valid Observations		Number of Distinct Observations	37
Raw Statistics		Log-transformed Statistics	
Minimum	11.6	- Minimum of Log Data	2.451
Maximum	39.9	Maximum of Log Data	3.686
Mean	19.98	Mean of log Data	2.968
Median	19.45	SD of log Data	0.233
SD	4.923		
Coefficient of Variation	0.246		
Skewness	1.439		
	Relevant UC	1 Statistics	
Normal Distribution Test	Relevant UC	Lognormal Distribution Test	
Shapiro Wilk Test Statistic	0.863	Shapiro Wilk Test Statistic	0.925
Shapiro Wilk Critical Value	0.942	Shapiro Wilk Critical Value	
Data not Normal at 5% Significance Level		Data not Lognormal at 5% Significance Level	
Assuming Normal Distribution		Assuming Lognormal Distribution	
95% Student's-t UCL	21.26	95% H-UCL	21.2
95% UCLs (Adjusted for Skewness)	21.20	95% Chebyshev (MVUE) UCL	
95% Adjusted-CLT UCL	21.41	97.5% Chebyshev (MVUE) UCL	
95% Modified-t UCL		99% Chebyshev (MVUE) UCL	
Gamma Distribution Test		Data Distribution	
k star (bias corrected)	17.29	Data appear Gamma Distributed at 5% Significance Lev	/el
Theta Star	1.156		
MLE of Mean	19.98		
MLE of Standard Deviation	4.805		
nu star	1452		
Approximate Chi Square Value (.05)	1365	Nonparametric Statistics	
Adjusted Level of Significance		95% CLT UCL	
Adjusted Chi Square Value	1362	95% Jackknife UCL	
		95% Standard Bootstrap UCL	
Anderson-Darling Test Statistic		95% Bootstrap-t UCL	
Anderson-Darling 5% Critical Value		95% Hall's Bootstrap UCL	
Kolmogorov-Smirnov Test Statistic		95% Percentile Bootstrap UCL	
Kolmogorov-Smirnov 5% Critical Value		95% BCA Bootstrap UCL	
Data appear Gamma Distributed at 5% Significance Le	vel	95% Chebyshev(Mean, Sd) UCL	
		97.5% Chebyshev(Mean, Sd) UCL	
Assuming Gamma Distribution	_	99% Chebyshev(Mean, Sd) UCL	27.5
95% Approximate Gamma UCL			
95% Adjusted Gamma UCL	21.31		
	1 1		
Potential UCL to Use		Use 95% Approximate Gamma UCL	21 21

	General S	Statistics	
Number of Valid Observations	42	Number of Distinct Observations	40
Raw Statistics		Log-transformed Statistics	
Minimum		Minimum of Log Data	
Maximum		Maximum of Log Data	
Mean		Mean of log Data	
Median		SD of log Data	0.237
SD Coefficient of Variation	15.7		
Coefficient of Variation Skewness			
Skewness	1.294		
	Relevant UC	L Statistics	
Normal Distribution Test		Lognormal Distribution Test	
Shapiro Wilk Test Statistic		Shapiro Wilk Test Statistic	
Shapiro Wilk Critical Value	0.942	Shapiro Wilk Critical Value	0.942
Data not Normal at 5% Significance Level		Data not Lognormal at 5% Significance Level	
Assuming Normal Distribution		Assuming Lognormal Distribution	
95% Student's-t UCL	68.28	95% H-UCL	68.49
95% UCLs (Adjusted for Skewness)		95% Chebyshev (MVUE) UCL	74.52
95% Adjusted-CLT UCL	68.7	97.5% Chebyshev (MVUE) UCL	78.99
95% Modified-t UCL	68.36	99% Chebyshev (MVUE) UCL	87.77
Gamma Distribution Test		Data Distribution	
k star (bias corrected)	17.09	Data appear Gamma Distributed at 5% Significance Lev	vel
Theta Star			
MLE of Mean	64.2		
MLE of Standard Deviation	15.53		
nu star	1436		
Approximate Chi Square Value (.05)	1349	Nonparametric Statistics	
Adjusted Level of Significance	0.0443	95% CLT UCL	68.19
Adjusted Chi Square Value	1346	95% Jackknife UCL	68.28
		95% Standard Bootstrap UCL	68.1
Anderson-Darling Test Statistic	0.593	95% Bootstrap-t UCL	69.06
Anderson-Darling 5% Critical Value	0.747	95% Hall's Bootstrap UCL	70.15
Kolmogorov-Smirnov Test Statistic	0.13	95% Percentile Bootstrap UCL	68.29
Kolmogorov-Smirnov 5% Critical Value	0.136	95% BCA Bootstrap UCL	68.98
Data appear Gamma Distributed at 5% Significance Le	vel	95% Chebyshev(Mean, Sd) UCL	74.76
		97.5% Chebyshev(Mean, Sd) UCL	79.33
Assuming Gamma Distribution	'	99% Chebyshev(Mean, Sd) UCL	88.31
95% Approximate Gamma UCL	68.34		
95% Adjusted Gamma UCL	68.49		
Potential UCL to Use		Use 95% Approximate Gamma UCL	68.34

Inorganics 23/23 9.79E+03 2.52E+05 2.40E+04 6.92E+04 NP Chebyshev (Me Antimony Aluminum 23/23 9.79E+03 2.52E+05 2.40E+04 6.92E+04 NP *Chebyshev (Me Antimony Arsenic 22/23 1.20E+00 2.93E+01 1.63E+01 1.88E+01 Normal Student's Barium 23/23 5.64E+01 1.10E+02 7.77E+01 8.28E+01 Normal Student's Calcium 23/23 2.13E+02 1.71E+04 3.21E+03 5.23E+03 Lognormal H-UCL Chomium 23/23 1.47E+01 2.49E+02 2.88E+01 7.25E+01 NP Chebyshev (Me Cobalt 23/23 1.40E+00 1.62E+01 1.06E+01 1.6E+01 Normal Student's Copper 23/23 1.70E+01 7.42E+04 3.25E+03 1.73E+04 NP Chebyshev (Me Magnesium 23/23 2.10E+03 3.59E+04 2.66E+04 3.23E+04 NP Chebyshev (Me Magne		Frequency	Range o	of Detects	Mean of	95%		
Inorganics 23/23 9.79E+03 2.52E+05 2.40E+04 6.92E+04 NP Chebyshev (Me Antimony Aluminum 9/24 2.50E+01 9.20E+00 1.37E+00 5.64E+00 NP *Chebyshev (Me Ansenic Arsenic 22/23 1.20E+00 2.93E+01 1.63E+01 1.88E+01 Normal Student's Barium 23/23 5.64E+01 1.10E+02 7.77E+01 8.28E+01 Normal Student's Calcium 23/23 1.47E+01 2.49E+02 2.88E+01 7.25E+01 NP Chebyshev (Me Cobalt 23/23 1.47E+01 2.49E+02 2.88E+01 7.25E+01 NP Chebyshev (Me Cobalt 23/23 1.40E+00 1.62E+01 1.06E+01 1.16E+01 Normal Student's Copper 23/23 1.07E+01 7.42E+04 3.25E+04 3.23E+04 NP Chebyshev (Me Magnesium 23/23 2.04E+02 2.88E+03 1.77E+04 NP Chebyshev (Me Magnesium 23/23		of	U		Detects	UCL ^a		
Aluminum 23 / 23 9.79E+03 2.52E+05 2.40E+04 6.92E+04 NP Chebyshev (Me * Chebyshev (Me Antimony Antimony 9 / 24 2.50E-01 9.20E+00 1.37E+00 5.64E+00 NP * Chebyshev (Me * Chebyshev (Me Arsenic Arsenic 22 / 23 5.0E+01 1.0E+00 7.37E+01 8.88E+01 Normal Student's Barjum 23 / 23 5.64E+01 1.10E+02 7.77E+01 8.28E+01 Normal Student's Calcium 23 / 23 1.47E+01 2.49E+02 2.88E+01 7.25E+01 NP Chebyshev (Me Cobalt 23 / 23 1.47E+01 2.49E+02 2.88E+01 7.25E+01 NP Chebyshev (Me Cobalt 23 / 23 1.47E+01 2.49E+02 2.88E+01 1.73E+04 NP Chebyshev (Me Cobalt Copper 23 / 23 1.47E+01 2.49E+02 2.88E+01 1.73E+04 NP Chebyshev (Me Cobalt Magnesium 23 / 23 1.17E+01 2.49E+02 2.88E+01 1.73E+04 NP Chebyshev (Me Cobalt Magnesium 23 / 23 1.11E+01 2.37E+03 3.89E+03 3.42TE+02 <	Detected Analyte	Detection	mg/kg	mg/kg	mg/kg	mg/kg	Distribution ^a	Method ^a
Antimony 9 / 24 2.50E-01 9.20E+00 1.37E+00 5.64E+00 NP * Chebyshev (M Arsenic 22 / 23 1.20E+00 2.93E+01 1.63E+01 1.88E+01 Normal Student's Barium 23 / 23 5.64E+01 1.10E+02 7.77E+01 8.28E+01 Normal Student's Barium 23 / 23 2.13E+02 1.71E+04 3.21E+03 5.23E+03 Lognormal H-UCL Chromium 23 / 23 1.47E+01 2.49E+02 2.88E+01 7.25E+01 NP Chebyshev (M Cobalt 23 / 23 1.47E+01 1.62E+01 1.06E+01 1.16E+01 Normal Student's Cobper 23 / 23 1.40E+00 7.37E+03 3.25E+03 1.73E+04 NP * Chebyshev (M Iron 23 / 23 1.40E+01 1.62E+01 1.06E+01 3.23E+04 NP * Chebyshev (M Iron 23 / 23 1.17E+02 3.25E+03 1.73E+04 NP * Chebyshev (M Magnesium 23 / 23 1.04E+01 3.59E+02 3.47E+02 NP * Chebyshev (M <t< td=""><td>Inorganics</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	Inorganics							
Arsenic 22 / 23 1.20E+00 2.93E+01 1.63E+01 1.88E+01 Normal Student's Barlum 23 / 23 5.64E+01 1.10E+02 7.77E+01 8.28E+01 Normal Student's Beryllium 22 / 23 5.30E-01 1.00E+00 7.37E+01 8.28E+01 Normal Student's Calcium 23 / 23 1.37E+01 2.49E+02 2.88E+01 7.25E+01 NP Chebyshev (Me Cobalt 23 / 23 1.47E+01 2.49E+02 2.88E+01 7.25E+01 NP Chebyshev (Me Cobalt 23 / 23 1.470E+01 7.42E+04 3.25E+03 1.73E+04 NP * Chebyshev (Me Cobalt 23 / 23 1.11E+01 2.37E+03 1.17E+02 5.63E+02 NP * Chebyshev (Me Lead 23 / 23 1.11E+01 2.37E+03 3.17E+02 NP * Chebyshev (Me Magnesium 23 / 23 0.44E+02 4.32E+02 3.23E+01 NP * Chebyshev (Me Magnesium 23 / 23 0.44E+02 4.32E+02 3.47E+02 NP * Chebyshev (Me <	Aluminum	23 / 23	9.79E+03	2.52E+05	2.40E+04	6.92E+04	NP	Chebyshev (Mean, Sd)
Barium 23 / 23 5.64E+01 1.10E+02 7.77E+01 8.28E+01 Normal Student's Beryllium 22 / 23 5.30E-01 1.00E+00 7.37E+01 7.86E-01 Normal Student's Calcium 23 / 23 2.13E+02 1.71E+04 3.21E+03 5.23E+03 Lognormal H-UCL Chromium 23 / 23 1.47E+01 2.49E+02 2.88E+01 7.25E+01 NP Chebyshev (Me Cobalt 23 / 23 1.40E+00 1.62E+01 1.06E+01 1.16E+01 Normal Student's Copper 23 / 23 1.10E+01 7.42E+04 3.25E+03 1.73E+04 NP * Chebyshev (Me Iron 23 / 23 1.11E+01 2.37E+03 1.17E+02 5.63E+02 NP * Chebyshev (Me Magnesium 23 / 23 2.04E+02 5.25E+02 3.47E+03 NP Chebyshev (Me Magnesium 23 / 23 2.04E+02 5.25E+02 3.47E+02 Normal Student's Marecury 8 / 24 1.80E	Antimony	9 / 24	2.50E-01	9.20E+00	1.37E+00	5.64E+00	NP	* Chebyshev (Mean, Sd)
Beryllium 22 / 23 5.30E-01 1.00E+00 7.37E-01 7.86E-01 Normal Student's Calcium 23 / 23 2.13E+02 1.71E+04 3.21E+03 5.23E+03 Lognormal H-UCL Chromium 23 / 23 1.47E+01 2.49E+02 2.88E+01 7.25E+01 NP Chebyshev (Me Cobalt 23 / 23 1.40E+00 1.62E+01 1.06E+01 1.16E+01 Normal Student's Copper 23 / 23 1.70E+01 7.42E+04 3.25E+03 1.73E+04 NP * Chebyshev (Me Lead 23 / 23 1.11E+01 2.37E+03 1.17E+02 5.63E+02 NP * Chebyshev (Me Magnesium 23 / 23 4.86E+02 5.43E+03 3.88E+03 4.27E+03 NP * Chebyshev (Me Magnesium 23 / 23 2.04E+02 4.32E+02 3.25E+02 3.47E+02 NP * Chebyshev (Me Magnesium 23 / 23 2.04E+02 4.32E+02 3.25E+01 3.47E+02 NP * Chebyshev (Me Nickel 23 / 23 1.94E+01 1.56E+02 3.24E+01 NP	Arsenic	22 / 23	1.20E+00	2.93E+01	1.63E+01	1.88E+01	Normal	Student's-t
Calcium 23 / 23 2.13E+02 1.71E+04 3.21E+03 5.23E+03 Lognormal H-UCL Chromium 23 / 23 1.47E+01 2.49E+02 2.88E+01 7.25E+01 NP Chebyshev (Me Cobalt 23 / 23 1.40E+00 1.62E+01 1.06E+01 1.16E+01 Normal Student's Copper 23 / 23 1.70E+01 7.42E+04 3.25E+03 1.73E+04 NP * Chebyshev (Me Lead 23 / 23 2.10E+03 3.59E+04 2.66E+04 3.23E+04 NP * Chebyshev (Me Lead 23 / 23 1.11E+01 2.37E+03 1.17E+02 5.63E+02 NP * Chebyshev (Me Magnesium 23 / 23 2.04E+02 5.43E+03 3.88E+03 4.27E+03 NP * Chebyshev (Me Manganese 23 / 23 1.94E+01 1.56E+02 3.23E+01 4.21E+01 NP Student's Mercury 8 / 24 1.80E-03 5.50E-02 1.91E-02 8.64E-02 Gamma Approximate G Soldi	Barium	23 / 23	5.64E+01	1.10E+02	7.77E+01	8.28E+01	Normal	Student's-t
Chromium 23 / 23 1.47E+01 2.49E+02 2.88E+01 7.25E+01 NP Chebyshev (Me Cobalt 23 / 23 1.40E+00 1.62E+01 1.06E+01 1.16E+01 Normal Student's Copper 23 / 23 1.70E+01 7.42E+04 3.25E+03 1.73E+04 NP * Chebyshev (Me Iron 23 / 23 1.11E+01 2.37E+03 1.52E+02 NP * Chebyshev (Me Lead 23 / 23 1.11E+01 2.37E+03 1.17E+02 5.63E+02 NP * Chebyshev (Me Magnesium 23 / 23 4.86E+02 5.43E+03 3.88E+03 4.27E+03 NP Student's Marganese 23 / 23 4.86E+02 5.43E+02 3.25E+02 3.47E+02 Normal Student's Mercury 8 / 24 1.80E-01 1.56E+02 3.23E+01 4.21E+01 NP Student's Potassium 23 / 23 4.13E+01 2.72E+03 1.90E+03 2.41E+03 NP Chebyshev (Me Solium 20 / 23	Beryllium	22 / 23	5.30E-01	1.00E+00	7.37E-01	7.86E-01	Normal	Student's-t
Cobalt 23 / 23 1.40E+00 1.62E+01 1.06E+01 1.16E+01 Normal Student's Copper 23 / 23 1.70E+01 7.42E+04 3.25E+03 1.73E+04 NP * Chebyshev (M Iron 23 / 23 2.10E+03 3.59E+04 2.66E+04 3.23E+04 NP * Chebyshev (M Lead 23 / 23 1.11E+01 2.37E+03 1.17E+02 5.63E+02 NP * Chebyshev (M Magnesium 23 / 23 2.04E+02 5.43E+03 3.88E+03 4.27E+03 NP * Student's Manganese 23 / 23 2.04E+02 4.32E+02 3.23E+01 4.21E+01 NP Student's Mercury 8 / 24 1.80E-03 5.50E-02 1.91E+02 3.64E+02 Gamma Approximate G Nickel 23 / 23 4.13E+01 2.72E+03 1.90E+03 2.41E+03 NP Chebyshev (M Selenium 5 / 23 4.00E-01 9.70E-01 5.72E-01 7.92E-01 Normal Student's Sodium 20 / 23 5.33E+01 1.03E+03 4.72E+02 8.87E+02 NP	Calcium	23 / 23	2.13E+02	1.71E+04	3.21E+03	5.23E+03	Lognormal	H-UCL
Copper 23 / 23 1.70E+01 7.42E+04 3.25E+03 1.73E+04 NP * Chebyshev (M Iron 23 / 23 2.10E+03 3.59E+04 2.66E+04 3.23E+04 NP Chebyshev (Me Lead 23 / 23 1.11E+01 2.37E+03 1.17E+02 5.63E+02 NP * Chebyshev (Me Magnesium 23 / 23 4.86E+02 5.43E+03 3.88E+03 4.27E+03 NP Student's Manganese 23 / 23 2.04E+02 4.32E+02 3.25E+02 3.47E+02 Normal Student's Mercury 8 / 24 1.80E-03 5.50E-02 1.91E-02 3.64E+02 Gamma Approximate G Nickel 23 / 23 1.94E+01 1.56E+02 3.23E+01 4.21E+01 NP Student's Solaium 20 / 23 5.33E+01 1.03E+03 4.72E+02 8.87E+02 NP * Chebyshev (Me Solaium 20 / 23 5.33E+01 1.03E+03 4.72E+02 8.87E+02 NP * Chebyshev (Me Thallium </td <td>Chromium</td> <td>23 / 23</td> <td>1.47E+01</td> <td>2.49E+02</td> <td>2.88E+01</td> <td>7.25E+01</td> <td>NP</td> <td>Chebyshev (Mean, Sd)</td>	Chromium	23 / 23	1.47E+01	2.49E+02	2.88E+01	7.25E+01	NP	Chebyshev (Mean, Sd)
Iron 23/23 2.10E+03 3.59E+04 2.66E+04 3.23E+04 NP Chebyshev (Me Lead 23/23 1.11E+01 2.37E+03 1.17E+02 5.63E+02 NP * Chebyshev (Me Magnesium 23/23 4.86E+02 5.43E+03 3.88E+03 4.27E+03 NP * Chebyshev (Me Magnesium 23/23 4.86E+02 5.43E+02 3.28E+02 4.27E+03 NP * Student's Marganese 23/23 2.04E+02 4.32E+02 3.25E+02 3.47E+02 Normal Student's Mercury 8/24 1.80E-03 5.50E-02 1.91E-02 3.64E-02 Gamma Approximate G Nickel 23/23 1.94E+01 1.56E+02 3.23E+01 4.21E+01 NP Student's Potassium 23/23 4.13E+01 2.72E+03 1.90E+03 2.41E+03 NP Chebyshev (Me Sodium 20/23 5.33E+01 1.03E+03 4.72E+02 8.87E+02 NP * Chebyshev (Me Sodium 20/23 5.33E+01 1.03E+03 4.72E+02 8.87E+02 NP *	Cobalt	23 / 23	1.40E+00	1.62E+01	1.06E+01	1.16E+01	Normal	Student's-t
Lead 23 / 23 1.11E+01 2.37E+03 1.17E+02 5.63E+02 NP * Chebyshev (M Magnesium 23 / 23 4.86E+02 5.43E+03 3.88E+03 4.27E+03 NP Student's Manganese 23 / 23 2.04E+02 4.32E+02 3.25E+02 3.47E+02 Normal Student's Mercury 8 / 24 1.80E-03 5.50E-02 1.91E-02 3.64E-02 Gamma Approximate G Nickel 23 / 23 1.94E+01 1.56E+02 3.23E+01 4.21E+01 NP Student's Potassium 23 / 23 4.13E+01 2.72E+03 1.90E+03 2.41E+03 NP Chebyshev (Me Solium 20 / 23 5.33E+01 1.03E+03 4.72E+01 Normal Student's Sodium 20 / 23 5.33E+01 1.03E+03 4.72E+02 8.87E+02 NP * Chebyshev (Me Thallium 5 / 23 1.70E-01 2.20E-01 1.98E-01 2.20E-01 Normal Student's Zinc 23 / 23	Copper	23 / 23	1.70E+01	7.42E+04	3.25E+03	1.73E+04	NP	* Chebyshev (Mean, Sd)
Magnesium 23 / 23 4.86E+02 5.43E+03 3.88E+03 4.27E+03 NP Student's Manganese 23 / 23 2.04E+02 4.32E+02 3.25E+02 3.47E+02 Normal Student's Mercury 8 / 24 1.80E-03 5.50E-02 1.91E-02 3.64E-02 Gamma Approximate O Nickel 23 / 23 1.94E+01 1.56E+02 3.23E+01 4.21E+01 NP Student's Potassium 23 / 23 4.13E+01 2.72E+03 1.90E+03 2.41E+03 NP Chebyshev (Me Selenium 5 / 23 4.00E-01 9.70E-01 5.72E-01 7.92E-01 Normal Student's Sodium 20 / 23 5.33E+01 1.03E+03 4.72E+02 8.87E+02 NP * Chebyshev (Me Thallium 5 / 23 1.70E-01 2.20E-01 1.98E-01 2.30E+01 Normal Student's Vanadium 23 / 23 7.50E+00 2.73E+01 2.16E+01 2.30E+01 NP * Chebyshev (Me Insufficient Sample Size for UCL Calculation Imorganics NP * Chebyshev (Me NP <td>Iron</td> <td>23 / 23</td> <td>2.10E+03</td> <td>3.59E+04</td> <td>2.66E+04</td> <td>3.23E+04</td> <td>NP</td> <td>Chebyshev (Mean, Sd)</td>	Iron	23 / 23	2.10E+03	3.59E+04	2.66E+04	3.23E+04	NP	Chebyshev (Mean, Sd)
Manganese 23/23 2.04E+02 4.32E+02 3.25E+02 3.47E+02 Normal Student's Mercury 8/24 1.80E-03 5.50E-02 1.91E-02 3.64E-02 Gamma Approximate G Nickel 23/23 1.94E+01 1.56E+02 3.23E+01 4.21E+01 NP Student's Potassium 23/23 4.13E+01 2.72E+03 1.90E+03 2.41E+03 NP Chebyshev (Me Selenium 5/23 4.00E-01 9.70E-01 5.72E-01 7.92E-01 Normal Student's Sodium 20/23 5.33E+01 1.03E+03 4.72E+02 8.87E+02 NP * Chebyshev (Me Sodium 20/23 5.33E+01 1.03E+03 4.72E+02 8.87E+02 NP * Chebyshev (M Thallium 5/23 1.70E-01 2.20E-01 1.98E-01 2.30E+01 NP * Chebyshev (M Student's 23/23 7.50E+00 2.73E+01 2.16E+01 2.30E+01 NP * Chebyshev (M Insufficient Sample Size for UCL Calculation Inorganics NP * Chebyshev (M Ca	Lead	23 / 23	1.11E+01	2.37E+03	1.17E+02	5.63E+02	NP	* Chebyshev (Mean, Sd
Mercury 8 / 24 1.80E-03 5.50E-02 1.91E-02 3.64E-02 Gamma Approximate G Nickel 23 / 23 1.94E+01 1.56E+02 3.23E+01 4.21E+01 NP Student's Potassium 23 / 23 4.13E+01 2.72E+03 1.90E+03 2.41E+03 NP Chebyshev (Me Selenium 5 / 23 4.00E-01 9.70E-01 5.72E-01 7.92E-01 Normal Student's Sodium 20 / 23 5.33E+01 1.03E+03 4.72E+02 8.87E+02 NP * Chebyshev (M Thallium 5 / 23 1.70E-01 2.20E-01 1.98E-01 2.20E-01 Normal Student's Vanadium 23 / 23 7.50E+00 2.73E+01 2.16E+01 2.30E+01 NP * Chebyshev (M Insufficient Sample Size for UCL Calculation Inorganics 7.53E+03 NP * Chebyshev (M Cadmium 4 / 23 1.50E-01 2.59E+01 6.71E+00 Silver 1.23 1.80E-01 1.80E-01 Explosives/Propellants 2.	Magnesium	23 / 23	4.86E+02	5.43E+03	3.88E+03	4.27E+03	NP	Student's-t
Nickel 23 / 23 1.94E+01 1.56E+02 3.23E+01 4.21E+01 NP Student's Potassium 23 / 23 4.13E+01 2.72E+03 1.90E+03 2.41E+03 NP Chebyshev (Me Selenium 5 / 23 4.00E-01 9.70E-01 5.72E-01 7.92E-01 Normal Student's Sodium 20 / 23 5.33E+01 1.03E+03 4.72E+02 8.87E+02 NP * Chebyshev (M Thallium 5 / 23 1.70E-01 2.20E-01 1.98E-01 2.20E-01 Normal Student's Vanadium 23 / 23 7.50E+00 2.73E+01 2.16E+01 2.30E+01 NP * Chebyshev (M Insufficient Sample Size for UCL Calculation 23 / 23 5.07E+01 3.21E+04 1.46E+03 7.53E+03 NP * Chebyshev (M Insufficient Sample Size for UCL Calculation Inorganics NP * Chebyshev (M NP Student's Cadmium 4 / 23 1.50E-01 2.59E+01 6.71E+00 Silver NP * Chebyshev (M Silver 1 / 23 1.80E-01 1.80E-01 1.80E-01 Expl	Manganese	23 / 23	2.04E+02	4.32E+02	3.25E+02	3.47E+02	Normal	Student's-t
Potassium 23 / 23 4.13E+01 2.72E+03 1.90E+03 2.41E+03 NP Chebyshev (Me Selenium 5 / 23 4.00E-01 9.70E-01 5.72E-01 7.92E-01 Normal Student's Sodium 20 / 23 5.33E+01 1.03E+03 4.72E+02 8.87E+02 NP * Chebyshev (M Thallium 5 / 23 1.70E-01 2.20E-01 1.98E-01 2.20E-01 Normal Student's Vanadium 23 / 23 7.50E+00 2.73E+01 2.16E+01 2.30E+01 NP * Chebyshev (M Insufficient Sample Size for UCL Calculation 23 / 23 5.07E+01 3.21E+04 1.46E+03 7.53E+03 NP * Chebyshev (M Insufficient Sample Size for UCL Calculation Inorganics NP * Chebyshev (M Norganics Cadmium 4 / 23 1.50E-01 2.59E+01 6.71E+00 NP * Chebyshev (M Silver 1 / 23 1.80E-01 1.80E-01 1.80E-01 1.80E-01 1.80E-01 2,4,6-Trinitrotoluene 1 / 23 1.80E-01 1.80E-01 1.80E-01 Nores 1.00E+00 8.23	Mercury	8 / 24	1.80E-03	5.50E-02	1.91E-02	3.64E-02	Gamma	Approximate Gamma
Selenium 5 / 23 4.00E-01 9.70E-01 5.72E-01 7.92E-01 Normal Student's Sodium 20 / 23 5.33E+01 1.03E+03 4.72E+02 8.87E+02 NP * Chebyshev (M Thallium 5 / 23 1.70E-01 2.20E-01 1.98E-01 2.20E-01 Normal Student's Vanadium 23 / 23 7.50E+00 2.73E+01 2.16E+01 2.30E+01 NP * Chebyshev (M Insufficient Sample Size for UCL Calculation 3.21E+04 1.46E+03 7.53E+03 NP * Chebyshev (M Inorganics Cadmium 4 / 23 1.50E-01 2.59E+01 6.71E+00 Silver 1 / 23 1.80E-01 1.80E-01 1.80E-01 Explosives/Propellants 2,4,6-Trinitrotoluene 1 / 23 1.80E-01 1.80E-01 1.80E-01 Normal Sudent's 2,4,6-Trinitrotoluene 1 / 23 1.80E-01 1.80E-01 1.80E-01 No Sudent's 2,4,6-Trinitrotoluene 1 / 23 1.80E-01 1.80E-01 Sudent's No Y	Nickel	23 / 23	1.94E+01	1.56E+02	3.23E+01	4.21E+01	NP	Student's-t
Sodium 20 / 23 5.33E+01 1.03E+03 4.72E+02 8.87E+02 NP * Chebyshev (M Thallium 5 / 23 1.70E-01 2.20E-01 1.98E-01 2.20E-01 Normal Student's Vanadium 23 / 23 7.50E+00 2.73E+01 2.16E+01 2.30E+01 NP Student's Zinc 23 / 23 5.07E+01 3.21E+04 1.46E+03 7.53E+03 NP * Chebyshev (M Insufficient Sample Size for UCL Calculation Inorganics NP * Chebyshev (M Cadmium 4 / 23 1.50E-01 2.59E+01 6.71E+00 Silver 1 / 23 1.80E-01 1.80E-01 1.80E-01 Explosives/Propellants 4.90E-01 1.80E-01 1.80E-01 1.80E-01 Silver 1 / 23 1.80E-01 1.80E-01 1.80E-01 NO Silver 1 / 23 1.80E-01 1.80E-01 NO Silver Silver 1 / 23 1.80E-01 1.80E-01 NO Silver Silver Silver Silver Silver Silver Silver	Potassium	23 / 23	4.13E+01	2.72E+03	1.90E+03	2.41E+03	NP	Chebyshev (Mean, Sd)
Thallium 5 / 23 1.70E-01 2.20E-01 1.98E-01 2.20E-01 Normal Student's Vanadium 23 / 23 7.50E+00 2.73E+01 2.16E+01 2.30E+01 NP Student's Zinc 23 / 23 5.07E+01 3.21E+04 1.46E+03 7.53E+03 NP * Chebyshev (M Insufficient Sample Size for UCL Calculation Image: Cal	Selenium	5 / 23	4.00E-01	9.70E-01	5.72E-01	7.92E-01	Normal	Student's-t
Vanadium 23 / 23 7.50E+00 2.73E+01 2.16E+01 2.30E+01 NP Student's Zinc 23 / 23 5.07E+01 3.21E+04 1.46E+03 7.53E+03 NP * Chebyshev (M Insufficient Sample Size for UCL Calculation Inorganics Cadmium 4 / 23 1.50E-01 2.59E+01 6.71E+00 Silver 1 / 23 1.80E-01 1.80E-01 Explosives/Propellants Zade to the state of the st	Sodium	20 / 23	5.33E+01	1.03E+03	4.72E+02	8.87E+02	NP	* Chebyshev (Mean, Sd)
Zinc 23 / 23 5.07E+01 3.21E+04 1.46E+03 7.53E+03 NP * Chebyshev (M Insufficient Sample Size for UCL Calculation Inorganics East Sample Size for UCL Calculation Sample S	Thallium	5 / 23	1.70E-01	2.20E-01	1.98E-01	2.20E-01	Normal	Student's-t
Insufficient Sample Size for UCL Calculation Inorganics Cadmium 4 / 23 1.50E-01 2.59E+01 6.71E+00 Silver 1 / 23 1.80E-01 1.80E-01 1.80E-01 Explosives/Propellants 2,4,6-Trinitrotoluene 1 / 23 1.80E-01 1.80E-01 Nitrocellulose 3 / 3 4.90E-01 1.00E+00 8.23E-01	Vanadium	23 / 23	7.50E+00	2.73E+01	2.16E+01	2.30E+01	NP	Student's-t
Inorganics Cadmium 4 / 23 1.50E-01 2.59E+01 6.71E+00 Silver 1 / 23 1.80E-01 1.80E-01 1.80E-01 Explosives/Propellants 2,4,6-Trinitrotoluene 1 / 23 1.80E-01 1.80E-01 Nitrocellulose 3 / 3 4.90E-01 1.00E+00 8.23E-01 VOCs V V V V	Zinc	23 / 23	5.07E+01	3.21E+04	1.46E+03	7.53E+03	NP	* Chebyshev (Mean, Sd)
Inorganics Cadmium 4 / 23 1.50E-01 2.59E+01 6.71E+00 Silver 1 / 23 1.80E-01 1.80E-01 1.80E-01 Explosives/Propellants 2,4,6-Trinitrotoluene 1 / 23 1.80E-01 1.80E-01 Nitrocellulose 3 / 3 4.90E-01 1.00E+00 8.23E-01 VOCs V V V V	Insufficient Sample Size fo	r UCL Calculatio	on					
Silver 1 / 23 1.80E-01 1.80E-01 1.80E-01 Explosives/Propellants 2,4,6-Trinitrotoluene 1 / 23 1.80E-01 1.80E-01 Nitrocellulose 3 / 3 4.90E-01 1.00E+00 8.23E-01 VOCs VOCs VOCs VOCs VOCs	•							
Silver 1 / 23 1.80E-01 1.80E-01 1.80E-01 Explosives/Propellants 2,4,6-Trinitrotoluene 1 / 23 1.80E-01 1.80E-01 Nitrocellulose 3 / 3 4.90E-01 1.00E+00 8.23E-01 VOCs VOCs VOCs VOCs VOCs	-	4 / 23	1.50E-01	2.59E+01	6.71E+00			
Explosives/Propellants 2,4,6-Trinitrotoluene 1 / 23 1.80E-01 1.80E-01 Nitrocellulose 3 / 3 4.90E-01 1.00E+00 8.23E-01 VOCs	Silver	1 / 23	1.80E-01	1.80E-01	1.80E-01			
2,4,6-Trinitrotoluene 1 / 23 1.80E-01 1.80E-01 1.80E-01 Nitrocellulose 3 / 3 4.90E-01 1.00E+00 8.23E-01 VOCs	Explosives/Propellants							
Nitrocellulose 3 / 3 4.90E-01 1.00E+00 8.23E-01 VOCs	• •	1 / 23	1.80E-01	1.80E-01	1.80E-01			
VOCs								
loluene 2/4 2.00E-03 1.80E-01 9.10E-02	Toluene	2/4	2.00E-03	1.80E-01	9.10E-02			

 Table A-3

 Statistical Summary of Detected Analytes in IRA Subsurface Soil Samples

 RVAAP-03 Open Demolition Area 1

mg/kg - milligram per kilogram

NP - Nonparametric; distribution is not discernable

UCL - Upper confidence limit

^a Nature of distribution, statistical method, and 95% Upper Confidence Limit (UCL) determined using ProUCL Version 4.0 (EPA, 2007, ProUCL Version 4.0, Office of Research and Development, Technology Support Center Characterization and Monitoring Branch, Las Vegas, Nevada, April.) on line

at http://www.epa.gov/esd/tsc/form.htm.) The recommended UCL was used unless the recommendation was the 97.5% or 99% Chebyshev UCL. In those cases, the 95% Chebyshev UCL was used (*). If more than one UCL was recommended, the more conservative UCL was selected.

Data Quality Objectives Report October 2009

APPENDIX A-3 : ProUCL Raw Output Statistical Summary of Detected Analytes in IRA Subsurface Soil Samples RVAAP-03 Open Demolition Area 1

	General UCL Statistics for Full Data Sets
User Selected Options	
From File	C:\Documents and Settings\debbi.freer\My Documents\Ravenna\Ravena Tbl 3-5 UCL inputt.xls.wst
Full Precision	OFF
Confidence Coefficient	95%
Number of Bootstrap Operations	2000

Final

T

	General St	atistics	
Number of Valid Observations	23	Number of Distinct Observations	20
Raw Statistics		Log-transformed Statistics	
Kaw Statistics Minimum	0700	Minimum of Log Data	0 100
Maximum		Maximum of Log Data	
	232000	Mean of log Data	
Median		SD of log Data	
	49731	50 01 log bala	0.025
Coefficient of Variation			
Skewness	4.786		
Normal Distribution Test	Relevant UCL	Statistics Lognormal Distribution Test	
Shapiro Wilk Test Statistic	0.245	Shapiro Wilk Test Statistic	0.41
Shapiro Wilk Critical Value		Shapiro Wilk Critical Value	
Data not Normal at 5% Significance Level		Data not Lognormal at 5% Significance Level	
Assuming Normal Distribution		Assuming Lognormal Distribution	
95% Student's-t UCL	41817	95% H-UCL	24662
95% UCLs (Adjusted for Skewness)		95% Chebyshev (MVUE) UCL	29607
95% Adjusted-CLT UCL	52124	97.5% Chebyshev (MVUE) UCL	34419
95% Modified-t UCL	43541	99% Chebyshev (MVUE) UCL	43870
Gamma Distribution Test		Data Distribution	
k star (bias corrected)	1 105	Data Distribution Data do not follow a Discernable Distribution (0.05)	
k star (blas corrected) Theta Star		Data do not follow a Discernable Distribution (0.05)	
MLE of Mean			
MLE of Standard Deviation			
NLE of Standard Deviation			
Approximate Chi Square Value (.05)		Nonparametric Statistics	
Adjusted Level of Significance	0.0389	95% CLT UCL	41067
Adjusted Chi Square Value		95% Jackknife UCL	
	00.27	95% Standard Bootstrap UCL	
Anderson-Darling Test Statistic	6.603		38194
Anderson-Darling 5% Critical Value			20130
Kolmogorov-Smirnov Test Statistic		95% Percentile Bootstrap UCL	
Kolmogorov-Smirnov 5% Critical Value		95% BCA Bootstrap UCL	
Data not Gamma Distributed at 5% Significance Leve			69211
			88769
Assuming Gamma Distribution			12718
95% Approximate Gamma UCL	34300		
95% Adjusted Gamma UCL	35215		
95% Adjusted Gamma UCL Potential UCL to Use	35215	Use 95% Chebyshev (Mean, Sd) UCL	

ony			
	General Sta		
Number of Valid Observations		Number of Distinct Observations	9
Number of Missing Values	12		
D 04-14-14-2			
Raw Statistics Minimum	0.25	Log-transformed Statistics Minimum of Log Data	1.0
Maximum		-	2.21
	9.2 1.369	Mean of log Data	
Median		SD of log Data	
	2.939	50 01 log Dala	1.11
Coefficient of Variation			
Skewness			
-	•	Values in this data methods may be performed on this data set,	
		able enough to draw conclusions	
		• ···	
The literature suggests to use bootstra	p methods on da	ata sets having more than 10-15 observations.	
	·		
	Relevant UCL	Statistics	
Normal Distribution Test		Lognormal Distribution Test	
Shapiro Wilk Test Statistic	0.429	Shapiro Wilk Test Statistic	0.65
Shapiro Wilk Critical Value	0.829	Shapiro Wilk Critical Value	0.82
Data not Normal at 5% Significance Level		Data not Lognormal at 5% Significance Level	
Assuming Normal Distribution		Assuming Lognormal Distribution	
95% Student's-t UCL	3.191	95% H-UCL	
95% UCLs (Adjusted for Skewness)		95% Chebyshev (MVUE) UCL	
95% Adjusted-CLT UCL		5	3.06
95% Modified-t UCL	3.354	99% Chebyshev (MVUE) UCL	4.34
		Data Distribution	
		Data do not follow a Discernable Distribution (0.05)	
Gamma Distribution Test	0 5 0 2		
k star (bias corrected)		Data do hor follow a Discernable Distribution (0.05)	
k star (bias corrected) Theta Star	2.722		
k star (bias corrected) Theta Star MLE of Mean	2.722 1.369		
k star (bias corrected) Theta Star MLE of Mean MLE of Standard Deviation	2.722 1.369 1.93		
k star (bias corrected) Theta Star MLE of Mean MLE of Standard Deviation nu star	2.722 1.369 1.93 9.053		
k star (bias corrected) Theta Star MLE of Mean MLE of Standard Deviation nu star Approximate Chi Square Value (.05)	2.722 1.369 1.93 9.053 3.359	Nonparametric Statistics	2.98
k star (bias corrected) Theta Star MLE of Mean MLE of Standard Deviation nu star Approximate Chi Square Value (.05) Adjusted Level of Significance	2.722 1.369 1.93 9.053 3.359 0.0231	Nonparametric Statistics 95% CLT UCL	
k star (bias corrected) Theta Star MLE of Mean MLE of Standard Deviation nu star Approximate Chi Square Value (.05)	2.722 1.369 1.93 9.053 3.359 0.0231	Nonparametric Statistics 95% CLT UCL 95% Jackknife UCL	3.19
k star (bias corrected) Theta Star MLE of Mean MLE of Standard Deviation nu star Approximate Chi Square Value (.05) Adjusted Level of Significance Adjusted Chi Square Value	2.722 1.369 1.93 9.053 3.359 0.0231 2.67	Nonparametric Statistics 95% CLT UCL 95% Jackknife UCL 95% Standard Bootstrap UCL	3.19 2.91
k star (bias corrected) Theta Star MLE of Mean MLE of Standard Deviation nu star Approximate Chi Square Value (.05) Adjusted Level of Significance Adjusted Chi Square Value Anderson-Darling Test Statistic	2.722 1.369 1.93 9.053 3.359 0.0231 2.67 1.977	Nonparametric Statistics 95% CLT UCL 95% Jackknife UCL 95% Standard Bootstrap UCL 95% Bootstrap-t UCL	3.19 2.91 31.5
k star (bias corrected) Theta Star MLE of Mean MLE of Standard Deviation nu star Approximate Chi Square Value (.05) Adjusted Level of Significance Adjusted Chi Square Value Anderson-Darling Test Statistic Anderson-Darling 5% Critical Value	2.722 1.369 1.93 9.053 3.359 0.0231 2.67 1.977 0.76	Nonparametric Statistics 95% CLT UCL 95% Jackknife UCL 95% Standard Boolstrap UCL 95% Boolstrap 1 UCL 95% Hall's Boolstrap UCL	3.19 2.91 31.5 17.5
k star (bias corrected) Theta Star MLE of Mean MLE of Standard Deviation nu star Approximate Chi Square Value (.05) Adjusted Level of Significance Adjusted Chi Square Value Anderson-Darling Test Statistic Anderson-Darling 5% Critical Value Kolmogorov-Smirnov Test Statistic	2.722 1.369 1.93 9.053 3.359 0.0231 2.67 1.977 0.76 0.442	Nonparametric Statistics 95% CLT UCL 95% Jackknife UCL 95% Standard Boolstrap UCL 95% Boolstrap-t UCL 95% Hall's Boolstrap UCL 95% Percentile Boolstrap UCL	3.19 2.91 31.5 17.5 3.30
k star (bias corrected) Theta Star MLE of Mean MLE of Standard Deviation nu star Approximate Chi Square Value (.05) Adjusted Level of Significance Adjusted Chi Square Value Anderson-Darling Test Statistic Anderson-Darling 5% Critical Value Kolmogorov-Smirnov Test Statistic Kolmogorov-Smirnov 5% Critical Value	2.722 1.369 1.93 9.053 3.359 0.0231 2.67 1.977 0.76 0.442 0.291	Nonparametric Statistics 95% CLT UCL 95% Jackknife UCL 95% Standard Bootstrap UCL 95% Bootstrap-t UCL 95% Hall's Bootstrap UCL 95% Percentile Bootstrap UCL 95% BCA Bootstrap UCL	3.19 2.91 31.5 17.5 3.30 4.28
k star (bias corrected) Theta Star MLE of Mean MLE of Standard Deviation nu star Approximate Chi Square Value (.05) Adjusted Level of Significance Adjusted Chi Square Value Anderson-Darling Test Statistic Anderson-Darling 5% Critical Value Kolmogorov-Smirnov Test Statistic	2.722 1.369 1.93 9.053 3.359 0.0231 2.67 1.977 0.76 0.442 0.291	Nonparametric Statistics 95% CLT UCL 95% Jackknife UCL 95% Standard Bootstrap UCL 95% Bootstrap UCL 95% Percentile Bootstrap UCL 95% Percentile Bootstrap UCL 95% BCA Bootstrap UCL 95% Chebyshev(Mean, Sd) UCL	3.19 2.91 31.5 17.5 3.30 4.28 5.64
k star (bias corrected) Theta Star MLE of Mean MLE of Standard Deviation nu star Approximate Chi Square Value (.05) Adjusted Level of Significance Adjusted Chi Square Value Anderson-Darling Test Statistic Anderson-Darling 5% Critical Value Kolmogorov-Smirnov Test Statistic Kolmogorov-Smirnov 5% Critical Value	2.722 1.369 1.93 9.053 3.359 0.0231 2.67 1.977 0.76 0.442 0.291	Nonparametric Statistics 95% CLT UCL 95% Jackknife UCL 95% Standard Bootstrap UCL 95% Bootstrap+UCL 95% Percentile Bootstrap UCL 95% Percentile Bootstrap UCL 95% BCA Bootstrap UCL 95% Chebyshev(Mean, Sd) UCL 97.5% Chebyshev(Mean, Sd) UCL	3.19 2.91 31.5 17.5 3.30 4.28 5.64 7.48
k star (bias corrected) Theta Star MLE of Mean MLE of Standard Deviation nu star Approximate Chi Square Value (.05) Adjusted Level of Significance Adjusted Chi Square Value Anderson-Darling Test Statistic Anderson-Darling 5% Critical Value Kolmogorov-Smirnov Test Statistic Kolmogorov-Smirnov 5% Critical Value Data not Gamma Distributed at 5% Significance Leve Assuming Gamma Distribution	2.722 1.369 1.93 9.053 3.359 0.0231 2.67 1.977 0.76 0.442 0.291 el	Nonparametric Statistics 95% CLT UCL 95% Jackknife UCL 95% Standard Bootstrap UCL 95% Bootstrap UCL 95% Percentile Bootstrap UCL 95% Percentile Bootstrap UCL 95% BCA Bootstrap UCL 95% Chebyshev(Mean, Sd) UCL	3.19 2.91 31.5 17.5 3.30 4.28 5.64 7.48
k star (bias corrected) Theta Star MLE of Mean MLE of Standard Deviation nu star Approximate Chi Square Value (05) Adjusted Level of Significance Adjusted Chi Square Value Anderson-Darling Test Statistic Anderson-Darling 5% Critical Value Kolmogorov-Smirnov Test Statistic Kolmogorov-Smirnov 5% Critical Value Data not Gamma Distributed at 5% Significance Leve Assuming Gamma Distribution 95% Approximate Gamma UCL	2.722 1.369 1.93 9.053 3.359 0.0231 2.67 1.977 0.76 0.442 0.291 b 3.689	Nonparametric Statistics 95% CLT UCL 95% Jackknife UCL 95% Standard Bootstrap UCL 95% Bootstrap+UCL 95% Percentile Bootstrap UCL 95% Percentile Bootstrap UCL 95% BCA Bootstrap UCL 95% Chebyshev(Mean, Sd) UCL 97.5% Chebyshev(Mean, Sd) UCL	3.19 2.91 31.5 17.5 3.30 4.28 5.64 7.48
k star (bias corrected) Theta Star MLE of Mean MLE of Standard Deviation nu star Approximate Chi Square Value (.05) Adjusted Level of Significance Adjusted Chi Square Value Anderson-Darling Test Statistic Anderson-Darling 5% Critical Value Kolmogorov-Smirnov Test Statistic Kolmogorov-Smirnov 5% Critical Value Data not Gamma Distributed at 5% Significance Leve Assuming Gamma Distribution	2.722 1.369 1.93 9.053 3.359 0.0231 2.67 1.977 0.76 0.442 0.291 b 3.689	Nonparametric Statistics 95% CLT UCL 95% Jackknife UCL 95% Standard Bootstrap UCL 95% Bootstrap+UCL 95% Percentile Bootstrap UCL 95% Percentile Bootstrap UCL 95% BCA Bootstrap UCL 95% Chebyshev(Mean, Sd) UCL 97.5% Chebyshev(Mean, Sd) UCL	3.19 2.91 31.5 17.5 3.30 4.28 5.64 7.48
k star (bias corrected) Theta Star MLE of Mean MLE of Standard Deviation nu star Approximate Chi Square Value (05) Adjusted Level of Significance Adjusted Chi Square Value Anderson-Darling Test Statistic Anderson-Darling 5% Critical Value Kolmogorov-Smirnov Test Statistic Kolmogorov-Smirnov 5% Critical Value Data not Gamma Distributed at 5% Significance Leve Assuming Gamma Distribution 95% Approximate Gamma UCL	2.722 1.369 1.93 9.053 3.359 0.0231 2.67 1.977 0.76 0.442 0.291 b 3.689	Nonparametric Statistics 95% CLT UCL 95% Jackknife UCL 95% Standard Bootstrap UCL 95% Bootstrap+UCL 95% Percentile Bootstrap UCL 95% Percentile Bootstrap UCL 95% BCA Bootstrap UCL 95% Chebyshev(Mean, Sd) UCL 97.5% Chebyshev(Mean, Sd) UCL	3.19 2.91 31.5 17.5 3.30 4.28 5.64 7.48 11.1

	General Statis	stics	
Number of Valid Observations	22	Number of Distinct Observations	22
Number of Missing Values	1		
	1 1		
Raw Statistics		Log-transformed Statistics	
Minimum	1.2	Minimum of Log Data	0.182
Maximum	29.3	Maximum of Log Data	3.378
Mean	16.3	Mean of log Data	2.653
Median	16.1	SD of log Data	0.659
SD	6.934		
Coefficient of Variation	0.426		
Skewness	0.0942		
	Relevant UCL SI	latistics	
Normal Distribution Test		Lognormal Distribution Test	
Shapiro Wilk Test Statistic	0.975	Shapiro Wilk Test Statistic	0.754
Shapiro Wilk Critical Value	0.911	Shapiro Wilk Critical Value	0.911
Data appear Normal at 5% Significance Level		Data not Lognormal at 5% Significance Level	
Assuming Normal Distribution		Assuming Lognormal Distribution	
95% Student's-t UCL	18.84	95% H-UCL	24.04
95% UCLs (Adjusted for Skewness)	10.04	95% Chebyshev (MVUE) UCL	
95% Adjusted-CLT UCL	18.76	97.5% Chebyshev (MVUE) UCL	
95% Modified-t UCL	18.84	99% Chebyshev (MVUE) UCL	
555 Woulled COL	10.04		40.02
Gamma Distribution Test		Data Distribution	
k star (bias corrected)	3.291	Data appear Normal at 5% Significance Level	
Theta Star	4.951		
MLE of Mean	16.3		
MLE of Standard Deviation	8.983		
nu star	144.8		
Approximate Chi Square Value (.05)	118	Nonparametric Statistics	
Adjusted Level of Significance	0.0386	95% CLT UCL	18.73
Adjusted Chi Square Value	116.2	95% Jackknife UCL	18.84
		95% Standard Bootstrap UCL	18.69
Anderson-Darling Test Statistic	0.611	95% Bootstrap-t UCL	18.92
Anderson-Darling 5% Critical Value	0.747	95% Hall's Bootstrap UCL	18.65
Kolmogorov-Smirnov Test Statistic	0.116	95% Percentile Bootstrap UCL	18.77
Kolmogorov-Smirnov 5% Critical Value		95% BCA Bootstrap UCL	18.68
Data appear Gamma Distributed at 5% Significance Le	evel	95% Chebyshev(Mean, Sd) UCL	22.74
		97.5% Chebyshev(Mean, Sd) UCL	25.53
Assuming Gamma Distribution		99% Chebyshev(Mean, Sd) UCL	31
95% Approximate Gamma UCL	20		
95% Adjusted Gamma UCL	20.31		
· · · · · · · · · · · · · · · · · · ·			
Potential UCL to Use		Use 95% Student's-t UCL	10.04

	General Sta	tistics	
Number of Valid Observations	23	Number of Distinct Observations	22
Raw Statistics		Log-transformed Statistics	
Minimum		Minimum of Log Data	
	110	Maximum of Log Data	
Mean		Mean of log Data	
Median		SD of log Data	0.178
	14.06		
Coefficient of Variation Skewness			
Skewiess	0.551		
	Relevant UCL		
Normal Distribution Test		Lognormal Distribution Test	
Shapiro Wilk Test Statistic		Shapiro Wilk Test Statistic	
Shapiro Wilk Critical Value	0.914	Shapiro Wilk Critical Value	0.914
Data appear Normal at 5% Significance Level		Data appear Lognormal at 5% Significance Level	
Assuming Normal Distribution		Assuming Lognormal Distribution	
95% Student's-t UCL	82.76	95% H-UCL	83.11
95% UCLs (Adjusted for Skewness)		95% Chebyshev (MVUE) UCL	90.34
95% Adjusted-CLT UCL	82.89	97.5% Chebyshev (MVUE) UCL	95.81
95% Modified-t UCL	82.81	99% Chebyshev (MVUE) UCL	106.5
Gamma Distribution Test	00.44	Data Distribution	
k star (bias corrected)		Data appear Normal at 5% Significance Level	
Theta Star			
MLE of Mean			
MLE of Standard Deviation			
nu star		Name and the Otella is a	
Approximate Chi Square Value (.05)		Nonparametric Statistics	00.54
	0.0389	95% CLT UCL	
Adjusted Chi Square Value	1229	95% Jackknife UCL	
And an an Deallan The Art of the	0.014	95% Standard Bootstrap UCL	
Anderson-Darling Test Statistic		95% Bootstrap-t UCL	
Anderson-Darling 5% Critical Value		95% Hall's Bootstrap UCL	
Kolmogorov-Smirnov Test Statistic		95% Percentile Bootstrap UCL	
Kolmogorov-Smirnov 5% Critical Value		95% BCA Bootstrap UCL	
Data appear Gamma Distributed at 5% Significance Le	vei	95% Chebyshev(Mean, Sd) UCL	
Assume of the Destate of the state		97.5% Chebyshev(Mean, Sd) UCL	
Assuming Gamma Distribution	00.07	99% Chebyshev(Mean, Sd) UCL	106.9
95% Approximate Gamma UCL			
95% Adjusted Gamma UCL	83.36		

	General Sta	tistics	
Number of Valid Observations	22	Number of Distinct Observations	18
Number of Missing Values	1		
Davis OkeMedian			
Raw Statistics Minimum	0.52	Log-transformed Statistics	-0.63
Maximum	1	Minimum of Log Data	-0.63
			-0.32
Mean Median		Mean of log Data	
SD		SD of log Data	0.18
Coefficient of Variation			
Skewness			
Skewness	0.390		
	Relevant UCL S	Statistics	
Normal Distribution Test		Lognormal Distribution Test	
Shapiro Wilk Test Statistic	0.959	Shapiro Wilk Test Statistic	0.971
Shapiro Wilk Critical Value	0.911		0.911
Data appear Normal at 5% Significance Level		Data appear Lognormal at 5% Significance Level	
Assuming Normal Distribution		Assuming Lognormal Distribution	
95% Student's-t UCL	0.786	95% H-UCL	0.79
95% UCLs (Adjusted for Skewness)		95% Chebyshev (MVUE) UCL	
95% Adjusted-CLT UCL	0.786	97.5% Chebyshev (MVUE) UCL	
95% Modified-t UCL		, , ,	
Gamma Distribution Test		Data Distribution	
k star (bias corrected)	27.93	Data appear Normal at 5% Significance Level	
Theta Star	0.0264		
MLE of Mean	0.737		
MLE of Standard Deviation			
nu star			
Approximate Chi Square Value (.05)	1148	Nonparametric Statistics	
Adjusted Level of Significance	0.0386	95% CLT UCL	
Adjusted Chi Square Value	1143	95% Jackknife UCL	
		95% Standard Bootstrap UCL	
Anderson-Darling Test Statistic		95% Bootstrap-t UCL	
Anderson-Darling 5% Critical Value		95% Hall's Bootstrap UCL	
Kolmogorov-Smirnov Test Statistic		95% Percentile Bootstrap UCL	
Kolmogorov-Smirnov 5% Critical Value		95% BCA Bootstrap UCL	
Data appear Gamma Distributed at 5% Significance Le	evel	95% Chebyshev(Mean, Sd) UCL	
		97.5% Chebyshev(Mean, Sd) UCL	
Assuming Gamma Distribution		99% Chebyshev(Mean, Sd) UCL	1.02
95% Approximate Gamma UCL			
95% Adjusted Gamma UCL	0.792		
Potential UCL to Use		Use 95% Student's-t UCL	0 70/

Number of Distinct Observations 4
Number of Distinct Observations 4
Number of Distinct Observations 4
Number of Distinct Observations 4
lonsi
tistics and estimatesi
ocessedi
these statistical methodsl
ample size and analytical results.
t

m			
	General St	allallas	
Number of Valid Observations		Number of Distinct Observations	22
	23		23
Raw Statistics		Log-transformed Statistics	
Minimum	213	Minimum of Log Data	5.361
Maximum		Maximum of Log Data	
Mean		Mean of log Data	
Median	1700	SD of log Data	
SD	4031		
Coefficient of Variation	1.257		
Skewness	2.472		
Normal Distribution Test	Relevant UCL	Lognormal Distribution Test	
Shapiro Wilk Test Statistic	0.638	Shapiro Wilk Test Statistic	0 927
Shapiro Wilk Critical Value		Shapiro Wilk Critical Value	
Data not Normal at 5% Significance Level	0.711	Data appear Lognormal at 5% Significance Level	0.71
Assuming Normal Distribution		Assuming Lognormal Distribution	
95% Student's-t UCL	4650	95% H-UCL	5227
95% UCLs (Adjusted for Skewness)		95% Chebyshev (MVUE) UCL	6046
95% Adjusted-CLT UCL	5053	97.5% Chebyshev (MVUE) UCL	7349
95% Modified-t UCL	4723	99% Chebyshev (MVUE) UCL	9908
Gamma Distribution Test		Data Distribution	
k star (bias corrected)	1 021	Data appear Lognormal at 5% Significance Level	
Theta Star		buta appear Edgnormal at 570 Significance Edver	
MLE of Mean			
MLE of Standard Deviation			
nu star			
Approximate Chi Square Value (.05)		Nonparametric Statistics	
Adjusted Level of Significance		95% CLT UCL	4590
Adjusted Chi Square Value	31.37	95% Jackknife UCL	4650
		95% Standard Bootstrap UCL	4583
Anderson-Darling Test Statistic	1.602	95% Bootstrap-t UCL	6032
Anderson-Darling 5% Critical Value	0.767	95% Hall's Bootstrap UCL	6023
Kolmogorov-Smirnov Test Statistic	0.293	95% Percentile Bootstrap UCL	4717
Kolmogorov-Smirnov 5% Critical Value	0.186	95% BCA Bootstrap UCL	5254
Data not Gamma Distributed at 5% Significance Leve	e	95% Chebyshev(Mean, Sd) UCL	6871
		97.5% Chebyshev(Mean, Sd) UCL	8456
Assuming Gamma Distribution		99% Chebyshev(Mean, Sd) UCL	1157
95% Approximate Gamma UCL	4672		
95% Adjusted Gamma UCL	4804		
Potential UCL to Use		Use 95% H-UCL	5227

nium			
	General St	tatistics	
Number of Valid Observations	23	Number of Distinct Observations	20
Raw Statistics		Log-transformed Statistics	
Minimum	14.7	Minimum of Log Data	2.688
Maximum	249	Maximum of Log Data	
Mean	28.78	Mean of log Data	3.039
Median	19.4	SD of log Data	
SD	48.05		
Coefficient of Variation	1.67		
Skewness	4.783		
	Relevant UCL	_ Statistics	
Normal Distribution Test		Lognormal Distribution Test	
Shapiro Wilk Test Statistic	0.249	Shapiro Wilk Test Statistic	0.387
Shapiro Wilk Critical Value	0.914	Shapiro Wilk Critical Value	0.914
Data not Normal at 5% Significance Level		Data not Lognormal at 5% Significance Level	
Assuming Normal Distribution		Assuming Lognormal Distribution	
95% Student's-t UCL	45.98	95% H-UCL	30.81
95% UCLs (Adjusted for Skewness)		95% Chebyshev (MVUE) UCL	
95% Adjusted-CLT UCL	55.93	97.5% Chebyshev (MVUE) UCL	
95% Modified-t UCL		99% Chebyshev (MVUE) UCL	
Occurre Distribution Test		Date Distribution	
Gamma Distribution Test k star (bias corrected)	4.544	Data Distribution	
K star (blas corrected) Theta Star		Data do not follow a Discernable Distribution (0.05)	
MLE of Mean MLE of Standard Deviation			
nu star Approximate Chi Square Value (.05)		None company and a Obstitution	
Adjusted Level of Significance	0.0389	Nonparametric Statistics 95% CLT UCL	45.27
Adjusted Level of Significance Adjusted Chi Square Value	50.31	95% CET UCL 95% Jackknife UCL	
Adjusted Chi Square value	50.31	95% Standard Bootstrap UCL	
Anderson Derling Test Statistic	(500	95% Standard Bootstrap UCL 95% Bootstrap-t UCL	
Anderson-Darling Test Statistic		95% Bootstrap-t UCL 95% Hall's Bootstrap UCL	
Anderson-Darling 5% Critical Value			
Kolmogorov-Smirnov Test Statistic		95% Percentile Bootstrap UCL	
Kolmogorov-Smirnov 5% Critical Value		95% BCA Bootstrap UCL	
Data not Gamma Distributed at 5% Significance Leve	;	95% Chebyshev(Mean, Sd) UCL	
Assuming Comme Diskik dar-		97.5% Chebyshev(Mean, Sd) UCL	
Assuming Gamma Distribution	20.07	99% Chebyshev(Mean, Sd) UCL	128.5
95% Approximate Gamma UCL			
95% Adjusted Gamma UCL	39.85		
Potential UCL to Use	I	Use 95% Chebyshev (Mean, Sd) UCL	72.45

	General Stat	istics	
Number of Valid Observations	23	Number of Distinct Observations	21
	1 1		
Raw Statistics		Log-transformed Statistics	
Minimum		Minimum of Log Data	
		Maximum of Log Data	
		Mean of log Data	
		SD of log Data	0.468
Coefficient of Variation			
Skewness	-1.175		
	Relevant UCL S	tatistics	
Normal Distribution Test		Lognormal Distribution Test	
Shapiro Wilk Test Statistic	0.917	Shapiro Wilk Test Statistic	0.617
Shapiro Wilk Critical Value	0.914	Shapiro Wilk Critical Value	0.914
Data appear Normal at 5% Significance Level		Data not Lognormal at 5% Significance Level	
Assuming Normal Distribution		Assuming Lognormal Distribution	
95% Student's-t UCL	11.40	95% H-UCL	12.20
95% UCLs (Adjusted for Skewness)	11.02	95% Chebyshev (MVUE) UCL	
95% OCLS (Adjusted for Skewness) 95% Adjusted-CLT UCL	11 41	97.5% Chebyshev (MVUE) UCL	
95% Modified-t UCL		97.5% Chebyshev (MVUE) UCL 99% Chebyshev (MVUE) UCL	
	11.37		21.77
Gamma Distribution Test		Data Distribution	
k star (bias corrected)	6.483	Data appear Normal at 5% Significance Level	
Theta Star	1.631		
MLE of Mean	10.57		
MLE of Standard Deviation	4.153		
nu star	298.2		
Approximate Chi Square Value (.05)	259.2	Nonparametric Statistics	
Adjusted Level of Significance	0.0389	95% CLT UCL	11.57
Adjusted Chi Square Value	256.6	95% Jackknife UCL	11.62
		95% Standard Bootstrap UCL	11.55
Anderson-Darling Test Statistic	1.637	95% Bootstrap-t UCL	11.45
Anderson-Darling 5% Critical Value	0.745	95% Hall's Bootstrap UCL	11.44
Kolmogorov-Smirnov Test Statistic	0.207	95% Percentile Bootstrap UCL	11.51
Kolmogorov-Smirnov 5% Critical Value	0.182	95% BCA Bootstrap UCL	11.4
Data not Gamma Distributed at 5% Significance Leve	el 🛛	95% Chebyshev(Mean, Sd) UCL	13.22
		97.5% Chebyshev(Mean, Sd) UCL	14.37
Assuming Gamma Distribution		99% Chebyshev(Mean, Sd) UCL	16.62
95% Approximate Gamma UCL	12.16		
95% Adjusted Gamma UCL	12.29		
D-4			
Potential UCL to Use		Use 95% Student's-t UCL	11.62

	General St	atistics	
Number of Valid Observations		Number of Distinct Observations	10
	23		17
Raw Statistics		Log-transformed Statistics	
Minimum	17	Minimum of Log Data	2.833
Maximum	74200	Maximum of Log Data	11.21
Mean	3250	Mean of log Data	3.488
Median	22	SD of log Data	1.719
SD	15467		
Coefficient of Variation	4.759		
Skewness	4.796		
	Relevant UCL	Statistics	
Normal Distribution Test		Lognormal Distribution Test	
Shapiro Wilk Test Statistic	0.216	Shapiro Wilk Test Statistic	0.341
Shapiro Wilk Critical Value	0.914	Shapiro Wilk Critical Value	0.914
Data not Normal at 5% Significance Level		Data not Lognormal at 5% Significance Level	
Assuming Normal Distribution 95% Student's-t UCL	0700	Assuming Lognormal Distribution 95% H-UCL	F 2 F /
	8788		
95% UCLs (Adjusted for Skewness)	10001	95% Chebyshev (MVUE) UCL	
95% Adjusted-CLT UCL		97.5% Chebyshev (MVUE) UCL	
95% Modified-t UCL	9325	99% Chebyshev (MVUE) UCL	682.3
Gamma Distribution Test		Data Distribution	
k star (bias corrected)	0.172	Data do not follow a Discernable Distribution (0.05)	
Theta Star	18860		
MLE of Mean	3250		
MLE of Standard Deviation	7829		
nu star	7.927		
Approximate Chi Square Value (.05)	2.693	Nonparametric Statistics	
Adjusted Level of Significance	0.0389	95% CLT UCL	8555
Adjusted Chi Square Value	2.476	95% Jackknife UCL	8788
		95% Standard Bootstrap UCL	8522
Anderson-Darling Test Statistic	8.436	95% Bootstrap-t UCL	137152
Anderson-Darling 5% Critical Value	0.908	95% Hall's Bootstrap UCL	611773
Kolmogorov-Smirnov Test Statistic	0.539	95% Percentile Bootstrap UCL	9700
Kolmogorov-Smirnov 5% Critical Value	0.202	95% BCA Bootstrap UCL	12933
Data not Gamma Distributed at 5% Significance Leve	el l	95% Chebyshev(Mean, Sd) UCL	17308
		97.5% Chebyshev(Mean, Sd) UCL	23390
Assuming Gamma Distribution		99% Chebyshev(Mean, Sd) UCL	35338
95% Approximate Gamma UCL	9567		
95% Adjusted Gamma UCL	10404		
		Use 99% Chebyshev (Mean, Sd) UCL	25220
Potential UCL to Use			

	General Sta	tistics	
Number of Valid Observations	23	Number of Distinct Observations	21
Raw Statistics		Los transformed Statistics	
Raw Statistics	0100	Log-transformed Statistics	7 / 5
Minimum Maximum		Minimum of Log Data Maximum of Log Data	
		Mean of log Data Mean of log Data	
Mean Median		SD of log Data	
SD		SD of log Data	0.55
Coefficient of Variation			
Skewness	-2.736		
Skewness	-2./30		
	Relevant UCL	Statistics	
Normal Distribution Test		Lognormal Distribution Test	
Shapiro Wilk Test Statistic	0.719	Shapiro Wilk Test Statistic	0.409
Shapiro Wilk Critical Value	0.914	Shapiro Wilk Critical Value	0.914
Data not Normal at 5% Significance Level		Data not Lognormal at 5% Significance Level	
Assuming Normal Distribution		Assuming Lognormal Distribution	
95% Student's-t UCL	20027	95% H-UCL	2422
95% UCLs (Adjusted for Skewness)	20037	95% Chebyshev (MVUE) UCL	
95% OCLS (Aujusted for Skewness) 95% Adjusted-CLT UCL	27042	97.5% Chebyshev (MVUE) UCL	
95% Modified-t UCL		97.5% Chebyshev (MVUE) UCL 99% Chebyshev (MVUE) UCL	
95% Modified-LOCE	28712	99% Chebysnev (MVUE) UCL	0227
Gamma Distribution Test		Data Distribution	
k star (bias corrected)	5.746	Data do not follow a Discernable Distribution (0.05)	
Theta Star	4627		
MLE of Mean	26587		
MLE of Standard Deviation	11091		
nu star	264.3		
Approximate Chi Square Value (.05)	227.7	Nonparametric Statistics	
Adjusted Level of Significance	0.0389	95% CLT UCL	28742
Adjusted Chi Square Value	225.2	95% Jackknife UCL	2883
		95% Standard Bootstrap UCL	2871
Anderson-Darling Test Statistic	3.852	95% Bootstrap-t UCL	2821
Anderson-Darling 5% Critical Value	0.746	95% Hall's Bootstrap UCL	2817
Kolmogorov-Smirnov Test Statistic	0.357	95% Percentile Bootstrap UCL	2838
Kolmogorov-Smirnov 5% Critical Value	0.182	95% BCA Bootstrap UCL	2810
Data not Gamma Distributed at 5% Significance Leve	el	95% Chebyshev(Mean, Sd) UCL	3229
		97.5% Chebyshev(Mean, Sd) UCL	
Assuming Gamma Distribution		99% Chebyshev(Mean, Sd) UCL	3962
Assuming Gamma Distribution			
95% Approximate Gamma UCL	30867		
-			
95% Approximate Gamma UCL		Use 95% Chebyshev (Mean, Sd) UCL	

	General St	atistics	
Number of Valid Observations		Number of Distinct Observations	22
Raw Statistics		Log-transformed Statistics	
	11.1	Minimum of Log Data	
	2370	Maximum of Log Data	
	117	Mean of log Data	
	14.3	SD of log Data	1.079
	491.2		
	4.2		
Skewness	4.796		
	Relevant UCL	Statistics	
Normal Distribution Test		Lognormal Distribution Test	
Shapiro Wilk Test Statistic	0.22	Shapiro Wilk Test Statistic	0.353
Shapiro Wilk Critical Value	0.914	Shapiro Wilk Critical Value	0.914
Data not Normal at 5% Significance Level		Data not Lognormal at 5% Significance Level	
		Accumum Lognormal Distribution	
Assuming Normal Distribution 95% Student's-t UCL	202.0	Assuming Lognormal Distribution 95% H-UCL	F0 42
	292.8		
95% UCLs (Adjusted for Skewness)		95% Chebyshev (MVUE) UCL	
95% Adjusted-CLT UCL		97.5% Chebyshev (MVUE) UCL	
95% Modified-t UCL	309.9	99% Chebyshev (MVUE) UCL	109.9
Gamma Distribution Test		Data Distribution	
k star (bias corrected)	0.339	Data do not follow a Discernable Distribution (0.05)	
Theta Star	344.6		
MLE of Mean	117		
MLE of Standard Deviation	200.7		
nu star	15.61		
Approximate Chi Square Value (.05)	7.689	Nonparametric Statistics	
Adjusted Level of Significance	0.0389	95% CLT UCL	285.4
Adjusted Chi Square Value	7.288	95% Jackknife UCL	292.8
		95% Standard Bootstrap UCL	280.7
Anderson-Darling Test Statistic	8.02	95% Bootstrap-t UCL	
-	0.836	95% Hall's Bootstrap UCL	
Kolmogorov-Smirnov Test Statistic		95% Percentile Bootstrap UCL	
Kolmogorov-Smirnov 5% Critical Value		95% BCA Bootstrap UCL	
Data not Gamma Distributed at 5% Significance Leve		95% Chebyshev(Mean, Sd) UCL	
Duta not canna Distributor at one org		97.5% Chebyshev(Mean, Sd) UCL	
Assuming Gamma Distribution	L	99% Chebyshev(Mean, Sd) UCL	
95% Approximate Gamma UCL	227 5	7776 Grobyshov(widen, day dide	1130
95% Adjusted Gamma UCL			
95% Aujusteu Gamma OCE	250.5		

	General Sta	itistics	
Number of Valid Observations	23	Number of Distinct Observations	23
			1
Raw Statistics		Log-transformed Statistics	
Minimum		Minimum of Log Data	
Maximum		Maximum of Log Data	
Mean		Mean of log Data	
Median		SD of log Data	0.479
	1079		
Coefficient of Variation			
Skewness	-1.19		
	Relevant UCL	Statistics	
Normal Distribution Test		Lognormal Distribution Test	
Shapiro Wilk Test Statistic	0.91	Shapiro Wilk Test Statistic	0.608
Shapiro Wilk Critical Value	0.914	Shapiro Wilk Critical Value	0.914
Data not Normal at 5% Significance Level	1	Data not Lognormal at 5% Significance Level	
Assuming Normal Distribution		Assuming Lognormal Distribution	
95% Student's-t UCL	4245	Assuming Lognormal Distribution 95% H-UCL	4047
95% UCLs (Adjusted for Skewness)	4200	95% Chebyshev (MVUE) UCL	
95% OCLS (Aujusted for Skewness) 95% Adjusted-CLT UCL	4190	97.5% Chebyshev (MVUE) UCL	
95% Modified-t UCL		99% Chebyshev (MVUE) UCL	
		···· - ··· · · · · · · · · · · · · · ·	
Gamma Distribution Test		Data Distribution	
k star (bias corrected)	6.27	Data do not follow a Discernable Distribution (0.05)	
Theta Star	618.6		
MLE of Mean	3879		
MLE of Standard Deviation	1549		
	288 /		
nu star	200.4		
nu star Approximate Chi Square Value (.05)		Nonparametric Statistics	
	250.1	Nonparametric Statistics 95% CLT UCL	4249
Approximate Chi Square Value (.05)	250.1 0.0389	•	
Approximate Chi Square Value (.05) Adjusted Level of Significance	250.1 0.0389	95% CLT UCL	4265
Approximate Chi Square Value (.05) Adjusted Level of Significance	250.1 0.0389 247.5	95% CLT UCL 95% Jackknife UCL	4265 4236
Approximate Chi Square Value (.05) Adjusted Level of Significance Adjusted Chi Square Value	250.1 0.0389 247.5 1.563	95% CLT UCL 95% Jackknife UCL 95% Standard Bootstrap UCL	4265 4236 4220
Approximate Chi Square Value (.05) Adjusted Level of Significance Adjusted Chi Square Value Anderson-Darling Test Statistic	250.1 0.0389 247.5 1.563 0.745	95% CLT UCL 95% Jackknife UCL 95% Standard Bootstrap UCL 95% Bootstrap-t UCL	4265 4236 4220 4203
Approximate Chi Square Value (.05) Adjusted Level of Significance Adjusted Chi Square Value Anderson-Darling Test Statistic Anderson-Darling 5% Critical Value	250.1 0.0389 247.5 1.563 0.745 0.196	95% CLT UCL 95% Jackknife UCL 95% Standard Bootstrap UCL 95% Bootstrap-t UCL 95% Hall's Bootstrap UCL	4265 4236 4220 4203 4235
Approximate Chi Square Value (.05) Adjusted Level of Significance Adjusted Chi Square Value Anderson-Darling Test Statistic Anderson-Darling 5% Critical Value Kolmogorov-Smirnov Test Statistic	250.1 0.0389 247.5 1.563 0.745 0.196 0.182	95% CLT UCL 95% Jackknife UCL 95% Standard Bootstrap UCL 95% Bootstrap-t UCL 95% Hall's Bootstrap UCL 95% Percentile Bootstrap UCL	4265 4236 4220 4203 4235 4182
Approximate Chi Square Value (.05) Adjusted Level of Significance Adjusted Chi Square Value Anderson-Darling Test Statistic Anderson-Darling 5% Critical Value Kolmogorov-Smirnov Test Statistic Kolmogorov-Smirnov 5% Critical Value	250.1 0.0389 247.5 1.563 0.745 0.196 0.182	95% CLT UCL 95% Jackknife UCL 95% Standard Bootstrap UCL 95% Bootstrap-t UCL 95% Hall's Bootstrap UCL 95% Percentile Bootstrap UCL 95% BCA Bootstrap UCL	4265 4236 4220 4203 4235 4182 4860
Approximate Chi Square Value (.05) Adjusted Level of Significance Adjusted Chi Square Value Anderson-Darling Test Statistic Anderson-Darling 5% Critical Value Kolmogorov-Smirnov Test Statistic Kolmogorov-Smirnov 5% Critical Value	250.1 0.0389 247.5 1.563 0.745 0.196 0.182	95% CLT UCL 95% Jackknife UCL 95% Standard Bootstrap UCL 95% Bootstrap-t UCL 95% Hall's Bootstrap UCL 95% Percentile Bootstrap UCL 95% BCA Bootstrap UCL 95% Chebyshev(Mean, Sd) UCL	4265 4236 4220 4203 4235 4182 4860 5284
Approximate Chi Square Value (05) Adjusted Level of Significance Adjusted Chi Square Value Anderson-Darling Test Statistic Anderson-Darling 5% Critical Value Kolmogorov-Smirnov Test Statistic Kolmogorov-Smirnov 5% Critical Value Data not Gamma Distributed at 5% Significance Leve	250.1 0.0389 247.5 1.563 0.745 0.196 0.182 9	95% CLT UCL 95% Jackknife UCL 95% Standard Bootstrap UCL 95% Bootstrap-t UCL 95% Hall's Bootstrap UCL 95% Percentile Bootstrap UCL 95% BCA Bootstrap UCL 95% Chebyshev(Mean, Sd) UCL 97.5% Chebyshev(Mean, Sd) UCL	4265 4236 4220 4203 4235 4182 4860 5284
Approximate Chi Square Value (.05) Adjusted Level of Significance Adjusted Chi Square Value Anderson-Darling Test Statistic Anderson-Darling 5% Critical Value Kolmogorov-Smirnov 7set Statistic Kolmogorov-Smirnov 5% Critical Value Data not Gamma Distributed at 5% Significance Leve Assuming Gamma Distribution	250.1 0.0389 247.5 1.563 0.745 0.196 0.182 9 4474	95% CLT UCL 95% Jackknife UCL 95% Standard Bootstrap UCL 95% Bootstrap-t UCL 95% Hall's Bootstrap UCL 95% Percentile Bootstrap UCL 95% BCA Bootstrap UCL 95% Chebyshev(Mean, Sd) UCL 97.5% Chebyshev(Mean, Sd) UCL	4265 4236 4220 4203 4235 4182 4860 5284
Approximate Chi Square Value (05) Adjusted Level of Significance Adjusted Chi Square Value Anderson-Darling Test Statistic Anderson-Darling 5% Critical Value Kolmogorov-Smirnov Test Statistic Kolmogorov-Smirnov 5% Critical Value Data not Gamma Distributed at 5% Significance Leve Assuming Gamma Distribution 95% Approximate Gamma UCL	250.1 0.0389 247.5 1.563 0.745 0.196 0.182 9 4474	95% CLT UCL 95% Jackknife UCL 95% Standard Bootstrap UCL 95% Bootstrap-t UCL 95% Hall's Bootstrap UCL 95% Percentile Bootstrap UCL 95% BCA Bootstrap UCL 95% Chebyshev(Mean, Sd) UCL 97.5% Chebyshev(Mean, Sd) UCL	4265 4236 4220 4203 4235 4182 4860 5284 6118

anese			
	General	Statistics	
Number of Valid Observations	23	Number of Distinct Observations	22
Raw Statistics		Log-transformed Statistics	
	204	Minimum of Log Data	5.318
Maximum	432	Maximum of Log Data	
	325.4	Mean of log Data	
	322	SD of log Data	
			0.170
Coefficient of Variation			
	Relevant UC	1 Statistics	
Normal Distribution Test	Relevant or	Lognormal Distribution Test	
Shapiro Wilk Test Statistic	0.965	Shapiro Wilk Test Statistic	0.952
Shapiro Wilk Critical Value	0.914	Shapiro Wilk Critical Value	0.914
Data appear Normal at 5% Significance Level	I	Data appear Lognormal at 5% Significance Level	
Assuming Normal Distribution		Assuming Lognormal Distribution	
95% Student's-t UCL	347	95% H-UCL	350.3
95% UCLs (Adjusted for Skewness)	547	95% Chebyshev (MVUE) UCL	
95% Adjusted-CLT UCL	345.8	97.5% Chebyshev (MVUE) UCL	
95% Modified-t UCL		99% Chebyshev (MVUE) UCL	
Gamma Distribution Test	05.03	Data Distribution	
	25.37	Data appear Normal at 5% Significance Level	
Theta Star MLE of Mean			
MLE of Standard Deviation			
nu star	1089	Non-secondade Obellation	
	0.0389	Nonparametric Statistics 95% CLT UCL	
Adjusted Level of Significance			
Adjusted Chi Square Value	1083	95% Jackknife UCL	
Anderson Dealing Test Challette	0.441	95% Standard Bootstrap UCL	
Anderson-Darling Test Statistic		95% Bootstrap-t UCL	
Anderson-Darling 5% Critical Value		95% Hall's Bootstrap UCL	
Kolmogorov-Smirnov Test Statistic		95% Percentile Bootstrap UCL	
Kolmogorov-Smirnov 5% Critical Value		95% BCA Bootstrap UCL	
Data appear Gamma Distributed at 5% Significance Le	vel	95% Chebyshev(Mean, Sd) UCL	
Assumilate Osmana DisAdhutt		97.5% Chebyshev(Mean, Sd) UCL	
Assuming Gamma Distribution	240.0	99% Chebyshev(Mean, Sd) UCL	450.4
95% Approximate Gamma UCL			
95% Adjusted Gamma UCL	350.6		
	1		347

rcury			
	General	Statistics	
Number of Valid Observations		Number of Distinct Observations	0
Number of Missing Values		Number of Distinct Observations of	0
	15		
Raw Statistics		Log-transformed Statistics	
Raw Statistics Minimum	0.0019	•	-6.32
Maximum		5	-2.9
Maximum		1	-4.28
Median		SD of log Data	
	0.0159		0.907
Coefficient of Variation			
Skewness			
Skewness	1.72		
Warning	There are onl	y 8 Values in this data	
		ap methods may be performed on this data set,	
	-	reliable enough to draw conclusions	
	may not be i	enable enough to draw conclusions	
The Manual and a second be added			
The literature suggests to use bootstra	p methods or	n data sets having more than 10-15 observations.	
	Relevant UC		
Normal Distribution Test	Relevant UC	Lognormal Distribution Test	
Shapiro Wilk Test Statistic	0.0	Shapiro Wilk Test Statistic	0.070
Shapiro Wilk Critical Value			0.878
Data not Normal at 5% Significance Level	0.010	Data appear Lognormal at 5% Significance Level	0.010
Data not Normal at 5% Significance Level		Data appear Lognormal at 5% Significance Lever	
Assuming Normal Distribution		Assuming Lognormal Distribution	
95% Student's-t UCL	0.0297	95% H-UCL (0.0751
	0.0277	95% Chebyshev (MVUE) UCL (
95% UCLs (Adjusted for Skewness)			
95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL	0.0324	97.5% Chebyshev (MVUE) UCL (0.0652
95% Adjusted-CLT UCL		97.5% Chebyshev (MVUE) UCL (99% Chebyshev (MVUE) UCL (
		97.5% Chebyshev (MVUE) UCL 99% Chebyshev (MVUE) UCL (
95% Adjusted-CLT UCL 95% Modified-t UCL		99% Chebyshev (MVUE) UCL	
95% Adjusted-CLT UCL 95% Modified-t UCL Gamma Distribution Test	0.0304	99% Chebyshev (MVUE) UCL (Data Distribution	0.0917
95% Adjusted-CLT UCL 95% Modified-t UCL Gamma Distribution Test k star (bias corrected)	0.0304	99% Chebyshev (MVUE) UCL	0.091
95% Adjusted-CLT UCL 95% Modified-t UCL Gamma Distribution Test k star (bias corrected) Theta Star	0.0304 1.145 0.0167	99% Chebyshev (MVUE) UCL (Data Distribution	0.091
95% Adjusted-CLT UCL 95% Modified-t UCL Gamma Distribution Test k star (bias corrected) Theta Star MLE of Mean	0.0304 1.145 0.0167 0.0191	99% Chebyshev (MVUE) UCL (Data Distribution	0.091
95% Adjusted-CLT UCL 95% Modified-t UCL Gamma Distribution Test k star (bias corrected) Theta Star	0.0304 1.145 0.0167 0.0191 0.0178	99% Chebyshev (MVUE) UCL (Data Distribution	0.0917
95% Adjusted-CLT UCL 95% Modified-t UCL Gamma Distribution Test k star (bias corrected) Theta Star MLE of Mean MLE of Standard Deviation nu star	0.0304 1.145 0.0167 0.0191 0.0178 18.32	99% Chebyshev (MVUE) UCL o Data Distribution Data appear Gamma Distributed at 5% Significance Lev	0.091
95% Adjusted-CLT UCL 95% Modified-t UCL Gamma Distribution Test k star (bias corrected) Theta Star MLE of Mean MLE of Standard Deviation nu star Approximate Chi Square Value (.05)	0.0304 1.145 0.0167 0.0191 0.0178 18.32 9.622	99% Chebyshev (MVUE) UCL (Data Distribution Data appear Gamma Distributed at 5% Significance Lev Nonparametric Statistics	0.091 [*]
95% Adjusted-CLT UCL 95% Modified-t UCL 95% Modified-t UCL Gamma Distribution Test k star (bias corrected) Theta Star MLE of Standard Deviation NULE of Standard Deviation nu star Approximate Chi Square Value (05) Adjusted Level of Significance	0.0304 1.145 0.0167 0.0191 0.0178 18.32 9.622 0.0195	99% Chebyshev (MVUE) UCL 0 Data Distribution Data appear Gamma Distributed at 5% Significance Lev Nonparametric Statistics 95% CLT UCL 0	0.091 vel
95% Adjusted-CLT UCL 95% Modified-t UCL Gamma Distribution Test k star (bias corrected) Theta Star MLE of Mean MLE of Standard Deviation nu star Approximate Chi Square Value (.05)	0.0304 1.145 0.0167 0.0191 0.0178 18.32 9.622 0.0195	99% Chebyshev (MVUE) UCL (Data Distribution Data appear Gamma Distributed at 5% Significance Lev Nonparametric Statistics 95% CLT UCL (95% Jackknife UCL (0.091 vel 0.028: 0.029
95% Adjusted-CLT UCL 95% Modified-t UCL 95% Modified-t UCL Gamma Distribution Test k star (bias corrected) Theta Star MLE of Standard Deviation nu star Approximate Chi Square Value (05) Adjusted Level of Significance Adjusted Chi Square Value	0.0304 1.145 0.0167 0.0191 0.0178 18.32 9.622 0.0195 8.078	99% Chebyshev (MVUE) UCL (Data Distribution Data appear Gamma Distributed at 5% Significance Lev Nonparametric Statistics 95% CLT UCL (95% Jackknife UCL (95% Standard Bootstrap UCL (0.0917 vel 0.0283 0.0297 0.0276
95% Adjusted-CLT UCL 95% Modified-t UCL 95% Modified-t UCL Gamma Distribution Test k star (bias corrected) Theta Star MLE of Mean MLE of Standard Deviation nu star Approximate Chi Square Value (.05) Adjusted Level of Significance Adjusted Chi Square Value Anderson-Darling Test Statistic	0.0304 1.145 0.0167 0.0191 0.0178 18.32 9.622 0.0195 8.078 0.418	99% Chebyshev (MVUE) UCL (Data Distribution Data appear Gamma Distributed at 5% Significance Lev Nonparametric Statistics 95% CLT UCL 95% Jackknife UCL 95% Standard Bootstrap UCL 95% Bootstrap-t UCL	0.0917 vel 0.0283 0.0297 0.0276 0.0411
95% Adjusted-CLT UCL 95% Modified-t UCL 95% Modified-t UCL Gamma Distribution Test k star (bias corrected) Theta Star MLE of Standard Deviation nu star Approximate Chi Square Value (.05) Adjusted Level of Significance Adjusted Chi Square Value Anderson-Darling Test Statistic Anderson-Darling 5% Critical Value	0.0304 1.145 0.0167 0.0191 0.0178 18.32 9.622 0.0195 8.078 0.418 0.727	99% Chebyshev (MVUE) UCL (Data Distribution Data appear Gamma Distributed at 5% Significance Lev Nonparametric Statistics 95% CLT UCL 95% Jackknife UCL 95% Standard Bootstrap UCL 95% Bootstrap-1 UCL 95% Hall's Bootstrap UCL	0.0917 vel 0.0283 0.0297 0.0276 0.0411
95% Adjusted-CLT UCL 95% Modified-t UCL 95% Modified-t UCL Gamma Distribution Test k star (bias corrected) Theta Star MLE of Mean MLE of Standard Deviation nu star Approximate Chi Square Value (.05) Adjusted Level of Significance Adjusted Level of Significance Adjusted Chi Square Value Anderson-Darling Test Statistic Anderson-Darling 5% Critical Value Kolmogorov-Smirnov Test Statistic	0.0304 1.145 0.0167 0.0191 0.0178 18.32 9.622 0.0195 8.078 0.727 0.223	99% Chebyshev (MVUE) UCL (Data Distribution Data appear Gamma Distributed at 5% Significance Lev Nonparametric Statistics 95% CLT UCL (95% Jackhnife UCL (95% Standard Bootstrap UCL (95% Hall's Bootstrap UCL (95% Percentile Bootstrap UCL (95%	0.0911 vel 0.0283 0.0297 0.0276 0.0411 0.0766 0.0292
95% Adjusted-CLT UCL 95% Modified-t UCL 95% Modified-t UCL Gamma Distribution Test k star (bias corrected) Theta Star MLE of Mean MLE of Standard Deviation nu star Approximate Chi Square Value (.05) Adjusted Level of Significance Adjusted Level of Significance Adjusted Chi Square Value Anderson-Darling Test Statistic Anderson-Darling 5% Critical Value Kolmogorov-Smirnov Test Statistic	0.0304 1.145 0.0167 0.0191 0.0178 18.32 9.622 0.0195 8.078 0.418 0.727 0.223 0.298	99% Chebyshev (MVUE) UCL (Data Distribution Data appear Gamma Distributed at 5% Significance Lew Nonparametric Statistics 95% CLT UCL (95% CLT UCL (95% Standard Bootstrap UCL (95% Hall's Bootstrap UCL (95% Percentile Bootstrap UCL (95% BCA Bootstrap UCL (vel 0.0283 0.0283 0.0276 0.0276 0.0276 0.0276 0.0292
95% Adjusted-CLT UCL 95% Modified-t UCL 95% Modified-t UCL Gamma Distribution Test k star (bias corrected) Theta Star MLE of Mean MLE of Standard Deviation nu star Approximate Chi Square Value (.05) Adjusted Level of Significance Adjusted Level of Significance Adjusted Chi Square Value Anderson-Darling Test Statistic Anderson-Darling 5% Critical Value Kolmogorov-Smirnov Test Statistic	0.0304 1.145 0.0167 0.0191 0.0178 18.32 9.622 0.0195 8.078 0.418 0.727 0.223 0.298	99% Chebyshev (MVUE) UCL (Data Distribution Data appear Gamma Distributed at 5% Significance Lew Nonparametric Statistics 95% CLT UCL (95% Jackknife UCL (95% Standard Bootstrap UCL (95% Bootstrap UCL (95% Bootstrap UCL (95% Bercentile Bootstrap UCL (95% BCA Bootstrap UCL (95% Chebyshev (Mean, Sd) UCL (0.0917 vel 0.0283 0.0297 0.0276 0.0276 0.0276 0.0292 0.0309 0.0309 0.0309 0.0309 0.0309 0.0309 0.0309 0.0309 0.0309 0.0292 0.0292 0.0293 0.0393 0
95% Adjusted-CLT UCL 95% Modified-t UCL 95% Modified-t UCL Gamma Distribution Test k star (bias corrected) Theta Star MLE of Standard Deviation nu star Approximate Chi Square Value (05) Adjusted Level of Significance Adjusted Level of Significance Adjusted Chi Square Value Anderson-Darling Test Statistic Anderson-Darling 5% Critical Value Kolmogorov-Smirnov Test Statistic Kolmogorov-Smirnov 5% Critical Value Data appear Gamma Distributed at 5% Significance Le	0.0304 1.145 0.0167 0.0191 0.0178 18.32 9.622 0.0195 8.078 0.418 0.727 0.223 0.298	99% Chebyshev (MVUE) UCL (Data Distribution Data appear Gamma Distributed at 5% Significance Lew Nonparametric Statistics 95% CLT UCL (95% Jackknife UCL (95% Jackknife UCL (95% Standard Bootstrap UCL (95% Hall's Bootstrap UCL (95% Percentile Bootstrap UCL (95% Red Bootstrap UCL (95% Chebyshev(Mean, Sd) UCL (97.5% Chebyshev(Mean, Sd) UCL (0.0917 vel 0.0283 0.0297 0.0276 0.0276 0.0292 0.0309 0.0292 0.0309 0.0292 0.0309 0.0292 0.0309 0.0293 0.0293 0.0295 0.0395 0
95% Adjusted-CLT UCL 95% Modified-t UCL 95% Modified-t UCL Gamma Distribution Test k star (bias corrected) Theta Star MLE of Standard Deviation nu star Approximate Chi Square Value (05) Adjusted Level of Significance Adjusted Chi Square Value (05) Adjusted Chi Square Value Anderson-Darling Test Statistic Anderson-Darling 5% Critical Value Kolmogorov-Smirnov Test Statistic Kolmogorov-Smirnov 5% Critical Value Data appear Gamma Distributed at 5% Significance Le	0.0304 1.145 0.0167 0.0191 0.0178 18.32 9.622 0.0195 8.078 0.418 0.727 0.223 0.298 vel	99% Chebyshev (MVUE) UCL (Data Distribution Data appear Gamma Distributed at 5% Significance Lew Nonparametric Statistics 95% CLT UCL (95% Jackknife UCL (95% Jackknife UCL (95% Standard Bootstrap UCL (95% Hall's Bootstrap UCL (95% Percentile Bootstrap UCL (95% CA Bootstrap UCL (95% Chebyshev(Mean, Sd) UCL (97.5% Chebyshev(Mean, Sd) UCL (0.0917 vel 0.0283 0.0297 0.0276 0.0411 0.0766 0.0292 0.0309 0.0292 0.0309 0.0293 0.0297 0.0293 0.0293 0.0293 0.0293 0.0293 0.0293 0.0293 0.0293 0.0293 0.0293 0.0293 0.0293 0.0293 0.0293 0.0293 0.0293 0.0293 0.0293 0.0293 0.0297 0.0293 0.0297 0.0297 0.0297 0.0297 0.0297 0.0297 0.0297 0.0297 0.0297 0.0297 0.0297 0.0297 0.0293 0.0297 0.0297 0.0297 0.0293 0.0293 0.0293 0.0293 0.0297 0.0293 0.0293 0.0293 0.0293 0.0293 0.0293 0.0293 0.0293 0.0293 0.0293 0.0297 0.0297 0.0293 0.0293 0.0293 0.0293 0.0297 0.0297 0.0293 0.0293 0.0293 0.0297 0.0297 0.0297 0.0297 0.0297 0.0297 0.0297 0.0297 0.0297 0.0297 0.0297 0.0297 0.0297 0.0397 0
95% Adjusted-CLT UCL 95% Modified-t UCL 95% Modified-t UCL Gamma Distribution Test k star (bias corrected) Theta Star MLE of Standard Deviation nu star Approximate Chi Square Value (05) Adjusted Level of Significance Adjusted Chi Square Value Anderson-Darling Test Statistic Anderson-Darling 5% Critical Value Kolmogorov-Smirnov Test Statistic Kolmogorov-Smirnov 5% Critical Value Data appear Gamma Distributed at 5% Significance Les Assuming Gamma Distribution 95% Approximate Gamma UCL	0.0304 1.145 0.0167 0.0191 0.0178 18.32 0.622 0.0195 8.078 0.418 0.727 0.223 0.298 vel 0.0364	99% Chebyshev (MVUE) UCL (Data Distribution Data appear Gamma Distributed at 5% Significance Lew Nonparametric Statistics 95% CLT UCL (95% Jackknife UCL (95% Jackknife UCL (95% Standard Bootstrap UCL (95% Hall's Bootstrap UCL (95% Percentile Bootstrap UCL (95% CA Bootstrap UCL (95% Chebyshev(Mean, Sd) UCL (97.5% Chebyshev(Mean, Sd) UCL (0.0917 vel 0.0283 0.0297 0.0276 0.04111 0.0766 0.0292 0.0309 0.0435 0.0541
95% Adjusted-CLT UCL 95% Modified-t UCL 95% Modified-t UCL Gamma Distribution Test k star (bias corrected) Theta Star MLE of Standard Deviation nu star Approximate Chi Square Value (05) Adjusted Level of Significance Adjusted Chi Square Value (05) Adjusted Chi Square Value Anderson-Darling Test Statistic Anderson-Darling 5% Critical Value Kolmogorov-Smirnov Test Statistic Kolmogorov-Smirnov 5% Critical Value Data appear Gamma Distributed at 5% Significance Le	0.0304 1.145 0.0167 0.0191 0.0178 18.32 0.622 0.0195 8.078 0.418 0.727 0.223 0.298 vel 0.0364	99% Chebyshev (MVUE) UCL (Data Distribution Data appear Gamma Distributed at 5% Significance Lew Nonparametric Statistics 95% CLT UCL (95% Jackknife UCL (95% Jackknife UCL (95% Standard Bootstrap UCL (95% Hall's Bootstrap UCL (95% Percentile Bootstrap UCL (95% CA Bootstrap UCL (95% Chebyshev(Mean, Sd) UCL (97.5% Chebyshev(Mean, Sd) UCL (0.0917 vel 0.0283 0.0297 0.0276 0.04111 0.0766 0.0292 0.0309 0.0435 0.0541
95% Adjusted-CLT UCL 95% Modified-t UCL 95% Modified-t UCL Gamma Distribution Test k star (bias corrected) Theta Star MLE of Standard Deviation nu star Approximate Chi Square Value (05) Adjusted Level of Significance Adjusted Chi Square Value Anderson-Darling Test Statistic Anderson-Darling 5% Critical Value Kolmogorov-Smirnov Test Statistic Kolmogorov-Smirnov 5% Critical Value Data appear Gamma Distributed at 5% Significance Les Assuming Gamma Distribution 95% Approximate Gamma UCL	0.0304 1.145 0.0167 0.0191 0.0178 18.32 0.622 0.0195 8.078 0.418 0.727 0.223 0.298 vel 0.0364	99% Chebyshev (MVUE) UCL (Data Distribution Data appear Gamma Distributed at 5% Significance Lew Nonparametric Statistics 95% CLT UCL (95% Jackknife UCL (95% Jackknife UCL (95% Standard Bootstrap UCL (95% Hall's Bootstrap UCL (95% Percentile Bootstrap UCL (95% CA Bootstrap UCL (95% Chebyshev(Mean, Sd) UCL (97.5% Chebyshev(Mean, Sd) UCL (0.0917 rel 0.0283 0.0297 0.0276 0.0411 0.0766 0.0292 0.0309 0.0435 0.0541 0.0749

	General Sta		
Number of Valid Observations	23	Number of Distinct Observations	22
Raw Statistics		Log-transformed Statistics	
Minimum	19.4	Minimum of Log Data	2.965
Maximum	156	Maximum of Log Data	5.05
Mean	32.27	Mean of log Data	3.345
Median	28.1	SD of log Data	0.409
SD	27.34		
Coefficient of Variation	0.847		
Skewness	4.586		
	Relevant UCL S	Statistics	
Normal Distribution Test		Lognormal Distribution Test	
Shapiro Wilk Test Statistic	0.359	Shapiro Wilk Test Statistic	0.613
Shapiro Wilk Critical Value	0.914	Shapiro Wilk Critical Value	0.914
Data not Normal at 5% Significance Level	1	Data not Lognormal at 5% Significance Level	
Assuming Normal Distribution		Assuming Lognormal Distribution	
95% Student's-t UCL	42.06	95% H-UCL	26.41
95% UCLs (Adjusted for Skewness)	42.00	95% Chebyshev (MVUE) UCL	
95% Adjusted-CLT UCL	47 47	97.5% Chebyshev (MVUE) UCL	
95% Modified-t UCL		99% Chebyshev (MVUE) UCL	
	1		
Gamma Distribution Test		Data Distribution	
k star (bias corrected)		Data do not follow a Discernable Distribution (0.05)	
Theta Star			
MLE of Mean			
MLE of Standard Deviation			
nu star			
Approximate Chi Square Value (.05)		Nonparametric Statistics	
Adjusted Level of Significance		95% CLT UCL	
	132.8	95% Jackknife UCL	
Adjusted Chi Square Value		95% Standard Bootstrap UCL	
			72 52
Anderson-Darling Test Statistic		95% Bootstrap-t UCL	
Anderson-Darling Test Statistic Anderson-Darling 5% Critical Value	0.749	95% Hall's Bootstrap UCL	82.62
Anderson-Darling Test Statistic Anderson-Darling 5% Critical Value Kolmogorov-Smirnov Test Statistic	0.749	95% Hall's Bootstrap UCL 95% Percentile Bootstrap UCL	82.62 43.6
Anderson-Darling Test Statistic Anderson-Darling 5% Critical Value Kolmogorov-Smirnov Test Statistic Kolmogorov-Smirnov 5% Critical Value	0.749 0.338 0.182	95% Hall's Bootstrap UCL 95% Percentile Bootstrap UCL 95% BCA Bootstrap UCL	82.62 43.6 49.69
Anderson-Darling Test Statistic Anderson-Darling 5% Critical Value Kolmogorov-Smirnov Test Statistic	0.749 0.338 0.182	95% Hall's Bootstrap UCL 95% Percentile Bootstrap UCL 95% BCA Bootstrap UCL 95% Chebyshev(Mean, Sd) UCL	82.62 43.6 49.69 57.12
Anderson-Darling Test Statistic Anderson-Darling 5% Critical Value Kolmogorov-Smirnov Test Statistic Kolmogorov-Smirnov 5% Critical Value Data not Gamma Distributed at 5% Significance Leve	0.749 0.338 0.182	95% Hall's Bootstrap UCL 95% Percentile Bootstrap UCL 95% BCA Bootstrap UCL 95% Chebyshev(Mean, Sd) UCL 97.5% Chebyshev(Mean, Sd) UCL	82.62 43.6 49.69 57.12 67.87
Anderson-Darling Test Statistic Anderson-Darling 5% Critical Value Kolmogorov-Smirnov Test Statistic Kolmogorov-Smirnov 5% Critical Value Data not Gamma Distributed at 5% Significance Leve Assuming Gamma Distribution	0.749 0.338 0.182 el	95% Hall's Bootstrap UCL 95% Percentile Bootstrap UCL 95% BCA Bootstrap UCL 95% Chebyshev(Mean, Sd) UCL	82.62 43.6 49.69 57.12 67.87
Anderson-Darling Test Statistic Anderson-Darling 5% Critical Value Kolmogorov-Smirnov Test Statistic Kolmogorov-Smirnov 5% Critical Value Data not Gamma Distributed at 5% Significance Leve Assuming Gamma Distribution 95% Approximate Gamma UCL	0.749 0.338 0.182 el 39.1	95% Hall's Bootstrap UCL 95% Percentile Bootstrap UCL 95% BCA Bootstrap UCL 95% Chebyshev(Mean, Sd) UCL 97.5% Chebyshev(Mean, Sd) UCL	82.62 43.6 49.69 57.12 67.87
Anderson-Darling Test Statistic Anderson-Darling 5% Critical Value Kolmogorov-Smirnov Test Statistic Kolmogorov-Smirnov 5% Critical Value Data not Gamma Distributed at 5% Significance Leve Assuming Gamma Distribution	0.749 0.338 0.182 el 39.1	95% Hall's Bootstrap UCL 95% Percentile Bootstrap UCL 95% BCA Bootstrap UCL 95% Chebyshev(Mean, Sd) UCL 97.5% Chebyshev(Mean, Sd) UCL	82.62 43.6 49.69 57.12 67.87
Anderson-Darling Test Statistic Anderson-Darling 5% Critical Value Kolmogorov-Smirnov Test Statistic Kolmogorov-Smirnov 5% Critical Value Data not Gamma Distributed at 5% Significance Leve Assuming Gamma Distribution 95% Approximate Gamma UCL	0.749 0.338 0.182 el 39.1	95% Hall's Bootstrap UCL 95% Percentile Bootstrap UCL 95% BCA Bootstrap UCL 95% Chebyshev(Mean, Sd) UCL 97.5% Chebyshev(Mean, Sd) UCL	82.62 43.6 49.69 57.12 67.87 88.99

	General Sta	atistics	
Number of Valid Observations	23	Number of Distinct Observations	21
Raw Statistics		Log-transformed Statistics	
Minimum	41.3	Minimum of Log Data	3.721
Maximum	2720	Maximum of Log Data	7.908
Mean	1904	Mean of log Data	7.408
Median	2040	SD of log Data	0.83
SD	553.7		
Coefficient of Variation	0.291		
Skewness	-1.808		
	Relevant UCL	Statistics	
Normal Distribution Test		Lognormal Distribution Test	
Shapiro Wilk Test Statistic	0.855	Shapiro Wilk Test Statistic	0.431
Shapiro Wilk Critical Value	0.914	Shapiro Wilk Critical Value	0.914
Data not Normal at 5% Significance Level		Data not Lognormal at 5% Significance Level	
Assuming Normal Distribution		Assuming Lognormal Distribution	
95% Student's-t UCL	2103	95% H-UCL	
95% UCLs (Adjusted for Skewness)		95% Chebyshev (MVUE) UCL	
95% Adjusted-CLT UCL		97.5% Chebyshev (MVUE) UCL	
95% Modified-t UCL	2095	99% Chebyshev (MVUE) UCL	6592
Gamma Distribution Test		Data Distribution	
k star (bias corrected)	3.183	Data do not follow a Discernable Distribution (0.05)	
Theta Star			
MLE of Mean			
nu star			
Approximate Chi Square Value (.05)		Nonparametric Statistics	
Adjusted Level of Significance	0.0389	95% CLT UCL	2094
Adjusted Chi Square Value		95% Jackknife UCL	
		95% Standard Bootstrap UCL	
Anderson-Darling Test Statistic	3 343	95% Bootstrap-t UCL	
Anderson-Darling 5% Critical Value		95% Hall's Bootstrap UCL	
Kolmogorov-Smirnov Test Statistic		95% Percentile Bootstrap UCL	
Kolmogorov-Smirnov 5% Critical Value		95% BCA Bootstrap UCL	
Data not Gamma Distributed at 5% Significance Leve		95% Chebyshev(Mean, Sd) UCL	
in canina bioinside at 070 organidation Leve		97.5% Chebyshev(Mean, Sd) UCL	
Assuming Gamma Distribution	I	99% Chebyshev(Mean, Sd) UCL	
95% Approximate Gamma UCL	2334		
95% Adjusted Gamma UCL			

	General	Statistics	
Number of Valid Observations			5
Number of Missing Values			5
	<u> </u>		
Raw Statistics		Log-transformed Statistics	
Minimum	0.4	Minimum of Log Data -	-0.916
Maximum		•	-0.030
Mean			-0.613
Median		SD of log Data	0.351
	0.231		
Coefficient of Variation			
Skewness	1.849		
Warning: A sample size of 'n' = 5 may not adequate	enough to c	ompute meaningful and reliable test statistics and estimates	
		ervations using these statistical methods!	
If possible compute and collect Data Qua	lity Objective	es (DQO) based sample size and analytical results.	
Wamino: '	There are onl	y 5 Values in this data	
		ap methods may be performed on this data set,	
	-	reliable enough to draw conclusions	
	may not be i		
The literature suggests to use bootstra	p methods or	n data sets having more than 10-15 observations.	
	,		
	Relevant UC	CL Statistics	
Normal Distribution Test	1	Lognormal Distribution Test	
Shapiro Wilk Test Statistic	0.787	Shapiro Wilk Test Statistic (0.862
Shapiro Wilk Critical Value	0.762	Shapiro Wilk Critical Value (0.762
Data appear Normal at 5% Significance Level		Data appear Lognormal at 5% Significance Level	
Assuming Normal Distribution		Assuming Lognormal Distribution	
95% Student's-t UCL	0.792	95% H-UCL (
95% UCLs (Adjusted for Skewness)		95% Chebyshev (MVUE) UCL (
95% Adjusted-CLT UCL		97.5% Chebyshev (MVUE) UCL	
95% Modified-t UCL	0.807	99% Chebyshev (MVUE) UCL	1.453
Gamma Distribution Test	0.000	Data Distribution	
k star (bias corrected)		Data appear Normal at 5% Significance Level	
Theta Star MLE of Mean			
MLE of Mean MLE of Standard Deviation			
nu star			
		Nonparametric Statistics	
	-0.00	95% CLT UCL	0.742
Approximate Chi Square Value (.05) Adjusted Level of Significance	0.0086	JUS CET DOEL	
Adjusted Level of Significance		95% Jackknife LICL (/2
		95% Jackknife UCL 95% Standard Bootstrap UCL (0.725
Adjusted Level of Significance Adjusted Chi Square Value	21.04	95% Standard Bootstrap UCL	
Adjusted Level of Significance	21.04 0.509	95% Standard Bootstrap UCL 95% Bootstrap-t UCL	1.429
Adjusted Level of Significance Adjusted Chi Square Value Anderson-Darling Test Statistic Anderson-Darling 5% Critical Value	21.04 0.509 0.679	95% Standard Bootstrap UCL 95% Bootstrap-t UCL 95% Hall's Bootstrap UCL	1.429 1.598
Adjusted Level of Significance Adjusted Chi Square Value Anderson-Darling Test Statistic Anderson-Darling 5% Critical Value Kolmogorov-Smirnov Test Statistic	21.04 0.509 0.679 0.261	95% Standard Bootstrap UCL 95% Bootstrap-t UCL 95% Hall's Bootstrap UCL 95% Hall's Bootstrap UCL 95% Percentile Bootstrap UCL	1.429 1.598 0.75
Adjusted Level of Significance Adjusted Chi Square Value Anderson-Darling Test Statistic Anderson-Darling 5% Critical Value Kolmogorov-Smirnov Test Statistic Kolmogorov-Smirnov 5% Critical Value	21.04 0.509 0.679 0.261 0.358	95% Standard Bootstrap UCL 95% Bootstrap-I UCL 95% Hall's Bootstrap UCL 95% Percentile Bootstrap UCL 95% BCA Bootstrap UCL	1.429 1.598 0.75 0.792
Adjusted Level of Significance Adjusted Chi Square Value Anderson-Darling Test Statistic Anderson-Darling 5% Critical Value Kolmogorov-Smirnov Test Statistic	21.04 0.509 0.679 0.261 0.358	95% Standard Bootstrap UCL 95% Bootstrap-I UCL 95% Hall's Bootstrap UCL 95% Percentile Bootstrap UCL 95% BCA Bootstrap UCL 95% Chebyshev(Mean, Sd) UCL	1.429 1.598 0.75 0.792 1.023
Adjusted Level of Significance Adjusted Chi Square Value Anderson-Darling Test Statistic Anderson-Darling 5% Critical Value Kolmogorov-Smirnov Test Statistic Kolmogorov-Smirnov 5% Critical Value Data appear Gamma Distributed at 5% Significance Le	21.04 0.509 0.679 0.261 0.358	95% Standard Bootstrap UCL 95% Bootstrap-t UCL 95% Hall's Bootstrap UCL 95% Percentile Bootstrap UCL 95% BCA Bootstrap UCL 95% Chebyshev(Mean, Sd) UCL 97.5% Chebyshev(Mean, Sd) UCL	1.429 1.598 0.75 0.792 1.023 1.218
Adjusted Level of Significance Adjusted Chi Square Value Anderson-Darling Test Statistic Anderson-Darling 5% Critical Value Kolmogorov-Smirnov Test Statistic Kolmogorov-Smirnov 5% Critical Value	21.04 0.509 0.679 0.261 0.358 vel	95% Standard Bootstrap UCL 95% Bootstrap-I UCL 95% Hall's Bootstrap UCL 95% Percentile Bootstrap UCL 95% BCA Bootstrap UCL 95% Chebyshev(Mean, Sd) UCL	1.429 1.598 0.75 0.792 1.023 1.218
Adjusted Level of Significance Adjusted Chi Square Value Anderson-Darling Test Statistic Anderson-Darling 5% Critical Value Kolmogorov-Smirnov Test Statistic Kolmogorov-Smirnov 5% Critical Value Data appear Gamma Distributed at 5% Significance Le Assuming Gamma Distribution	21.04 0.509 0.679 0.261 0.358 vel 0.869	95% Standard Bootstrap UCL 95% Bootstrap-t UCL 95% Hall's Bootstrap UCL 95% Percentile Bootstrap UCL 95% BCA Bootstrap UCL 95% Chebyshev(Mean, Sd) UCL 97.5% Chebyshev(Mean, Sd) UCL	1.429 1.598 0.75 0.792 1.023 1.218
Adjusted Level of Significance Adjusted Chi Square Value Anderson-Darling Test Statistic Anderson-Darling 5% Critical Value Kolmogorov-Smirnov 5% Critical Value Data appear Gamma Distributed at 5% Significance Le Assuming Gamma Distribution 95% Approximate Gamma UCL	21.04 0.509 0.679 0.261 0.358 vel 0.869	95% Standard Bootstrap UCL 95% Bootstrap-t UCL 95% Hall's Bootstrap UCL 95% Percentile Bootstrap UCL 95% BCA Bootstrap UCL 95% Chebyshev(Mean, Sd) UCL 97.5% Chebyshev(Mean, Sd) UCL	1.429 1.598 0.75 0.792 1.023 1.218

Silver					
General Statistics					
Number of Valid Observations	1	Number of Distinct Observations	1		
Number of Missing Values	22				
Warning: Ti	his data set o	only has 1 observationsl			
Data set is too small to comp	oute reliable a	and meaningful statistics and estimates			
The data set	for variable \$	Silver was not processed			
It is suggested to collect at least 8	to 10 observ	ations before using these statistical methodsl			
If possible, compute and collect Data Qua	ality Objectiv	es (DQO) based sample size and analytical results.			

	General Sta	atistics	
Number of Valid Observations	20	Number of Distinct Observations	20
Number of Missing Values	3		
Raw Statistics		Log-transformed Statistics	
Minimum	53.3	Minimum of Log Data	3.97
Maximum		Maximum of Log Data	
Mean	472.3	Mean of log Data	
Median	132.5	SD of log Data	1.17
SD	425.2		
Coefficient of Variation	0.9		
Skewness	0.247		
	Relevant UCL	Statistics	
Normal Distribution Test		Lognormal Distribution Test	
Shapiro Wilk Test Statistic	0.725	Shapiro Wilk Test Statistic	0.77
Shapiro Wilk Critical Value	0.905	Shapiro Wilk Critical Value	0.90
Data not Normal at 5% Significance Level		Data not Lognormal at 5% Significance Level	
Assuming Normal Distribution		Assuming Logrammal Distribution	
95% Student's-t UCL	(2) 7	Assuming Lognormal Distribution 95% H-UCL	1150
95% UCLs (Adjusted for Skewness)	030.7	95% H-UCL 95% Chebyshev (MVUE) UCL	
95% OCLS (Adjusted for Skewness) 95% Adjusted-CLT UCL	424.2	97.5% Chebyshev (MVUE) UCL 97.5% Chebyshev (MVUE) UCL	
95% Modified-t UCL		99% Chebyshev (MVUE) UCL	
Gamma Distribution Test		Data Distribution	
k star (bias corrected)		Data do not follow a Discernable Distribution (0.05)	
Theta Star			
MLE of Mean			
MLE of Standard Deviation			
nu star			
Approximate Chi Square Value (.05)		Nonparametric Statistics	
Adjusted Level of Significance		95% CLT UCL	
Adjusted Chi Square Value	22.18	95% Jackknife UCL	
		95% Standard Bootstrap UCL	
Anderson-Darling Test Statistic		95% Bootstrap-t UCL	
Anderson-Darling 5% Critical Value		95% Hall's Bootstrap UCL	
Kolmogorov-Smirnov Test Statistic		95% Percentile Bootstrap UCL	
Kolmogorov-Smirnov 5% Critical Value		95% BCA Bootstrap UCL	
Data not Gamma Distributed at 5% Significance Leve	el 🛛	95% Chebyshev(Mean, Sd) UCL	
			1066
Assuming Gamma Distribution		99% Chebyshev(Mean, Sd) UCL	1418
95% Approximate Gamma UCL			
95% Adjusted Gamma UCL	759		
Potential UCL to Use		Use 99% Chebyshev (Mean, Sd) UCL	

APPENDIX A-3 : ProUCL Raw Output Statistical Summary of Detected Analytes in IRA Subsurface Soil Samples RVAAP-03 Open Demolition Area 1

		Statistics	
Number of Valid Observations Number of Missing Values		Number of Distinct Observations	4
Davi Statistica		Log konstanted Statistics	
Raw Statistics	0.47	Log-transformed Statistics	4 770
Minimum Maximum		5	-1.772 -1.514
	0.22	5	-1.514
Median		Mean of log Data SD of log Data	
	0.0228	30 01 109 Data	0.117
Coefficient of Variation			
Skewness			
There are insufficient Distinct Va	lues to perfo	Distinct Values in this data rm some GOF tests and bootstrap methods. A' value on your output display!	
		· · · · · · ·	
		t Values to compute bootstrap methods.	
	-	9 distinct values may not be reliable.	
It is recommended to have 10-15 or mo	bre observati	ons for accurate and meaningful bootstrap results.	
Mamba, A completing of inter-	a anaugh ta	compute magningful and callable test statistics and estimates	
warning: A sample size or h = 5 may not adequate	e enough to	compute meaningful and reliable test statistics and estimatesi	
It is suggested to called at iss	at 0 to 10 ab	en attane using these statistical mathedal	
		servations using these statistical methods	
If possible compute and collect Data Qua	ality Objectiv	es (DQO) based sample size and analytical results.	
	Relevant U	CL Statistics	
Normal Distribution Test	0.001	Lognormal Distribution Test	
Shapiro Wilk Test Statistic		Shapiro Wilk Test Statistic	
Shapiro Wilk Critical Value	0.762	Shapiro Wilk Critical Value	0.762
Data appear Normal at 5% Significance Level		Data appear Lognormal at 5% Significance Level	
Assuming Name i Distrikution		Accuming Lognamuel Distribution	
Assuming Normal Distribution		Assuming Lognormal Distribution	
	0.00		0.004
95% Student's-t UCL	0.22	95% H-UCL	
95% UCLs (Adjusted for Skewness)		95% Chebyshev (MVUE) UCL	0.243
95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL	0.214	95% Chebyshev (MVUE) UCL 97.5% Chebyshev (MVUE) UCL	0.243 0.263
95% UCLs (Adjusted for Skewness)	0.214	95% Chebyshev (MVUE) UCL	0.243 0.263
95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL 95% Modified-t UCL	0.214	95% Chebyshev (MVUE) UCL 97.5% Chebyshev (MVUE) UCL 99% Chebyshev (MVUE) UCL	0.243 0.263
95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL 95% Modified-t UCL Gamma Distribution Test	0.214	95% Chebyshev (MVUE) UCL 97.5% Chebyshev (MVUE) UCL 99% Chebyshev (MVUE) UCL Data Distribution	0.243 0.263
95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL 95% Modified-t UCL Gamma Distribution Test k star (bias corrected)	0.214 0.22 37.23	95% Chebyshev (MVUE) UCL 97.5% Chebyshev (MVUE) UCL 99% Chebyshev (MVUE) UCL	0.243 0.263
95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL 95% Modified-t UCL Gamma Distribution Test k star (bias corrected) Theta Star	0.214 0.22 37.23 0.00532	95% Chebyshev (MVUE) UCL 97.5% Chebyshev (MVUE) UCL 99% Chebyshev (MVUE) UCL Data Distribution	0.243 0.263
95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL 95% Modified-t UCL Gamma Distribution Test k star (bias corrected) Theta Star MLE of Mean	0.214 0.22 37.23 0.00532 0.198	95% Chebyshev (MVUE) UCL 97.5% Chebyshev (MVUE) UCL 99% Chebyshev (MVUE) UCL Data Distribution	0.243 0.263
95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL 95% Modified-t UCL Gamma Distribution Test k star (bias corrected) Theta Star MLE of Mean MLE of Standard Deviation	0.214 0.22 37.23 0.00532 0.198 0.0325	95% Chebyshev (MVUE) UCL 97.5% Chebyshev (MVUE) UCL 99% Chebyshev (MVUE) UCL Data Distribution	0.243 0.263
95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL 95% Modified-t UCL Gamma Distribution Test k star (bias corrected) Theta Star MLE of Mean MLE of Standard Deviation nu star	0.214 0.22 37.23 0.00532 0.198 0.0325 372.3	95% Chebyshev (MVUE) UCL 97.5% Chebyshev (MVUE) UCL 99% Chebyshev (MVUE) UCL 99% Chebyshev (MVUE) UCL Data Distribution Data appear Normal at 5% Significance Level	0.243 0.263
95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL 95% Modified-t UCL Gamma Distribution Test k star (bias corrected) Theta Star MLE of Mean MLE of Standard Deviation nu star Approximate Chi Square Value (.05)	0.214 0.22 37.23 0.00532 0.198 0.0325 372.3 328.6	95% Chebyshev (MVUE) UCL 97.5% Chebyshev (MVUE) UCL 99% Chebyshev (MVUE) UCL Data Distribution Data appear Normal at 5% Significance Level	0.243 0.263 0.301
95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL 95% Modified-t UCL Gamma Distribution Test k star (bias corrected) Theta Star MLE of Standard Deviation nu star Approximate Chi Square Value (.05) Adjusted Level of Significance	0.214 0.22 37.23 0.00532 0.198 0.0325 372.3 328.6 0.0086	95% Chebyshev (MVUE) UCL 97.5% Chebyshev (MVUE) UCL 99% Chebyshev (MVUE) UCL Data Distribution Data appear Normal at 5% Significance Level Nonparametric Statistics 95% CLT UCL	0.243 0.263 0.301 0.215
95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL 95% Modified-t UCL Gamma Distribution Test k star (bias corrected) Theta Star MLE of Mean MLE of Standard Deviation nu star Approximate Chi Square Value (.05)	0.214 0.22 37.23 0.00532 0.198 0.0325 372.3 328.6 0.0086	95% Chebyshev (MVUE) UCL 97.5% Chebyshev (MVUE) UCL 99% Chebyshev (MVUE) UCL Data Distribution Data appear Normal at 5% Significance Level Nonparametric Statistics 95% CLT UCL 95% Jackknife UCL	0.243 0.263 0.301 0.215 0.22
95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL 95% Modified-t UCL Gamma Distribution Test k star (bias corrected) Theta Star MLE of Maan MLE of Standard Deviation nu star Approximate Chi Square Value (.05) Adjusted Level of Significance Adjusted Chi Square Value	0.214 0.22 37.23 0.00532 0.198 0.0325 372.3 328.6 0.0086 310.4	95% Chebyshev (MVUE) UCL 97.5% Chebyshev (MVUE) UCL 99% Chebyshev (MVUE) UCL 09% Chebyshev (MVUE) UCL Data Distribution Data appear Normal at 5% Significance Level Nonparametric Statistics 95% CLT UCL 95% Standard Bootstrap UCL	0.243 0.263 0.301 0.215 0.22 0.212
95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL 95% Modified-t UCL Gamma Distribution Test k star (bias corrected) Theta Star MLE of Mean MLE of Standard Deviation nu star Approximate Chi Square Value (.05) Adjusted Level of Significance Adjusted Chi Square Value	0.214 0.22 37.23 0.00532 0.198 0.0325 372.3 328.6 0.0086 310.4 0.39	95% Chebyshev (MVUE) UCL 97.5% Chebyshev (MVUE) UCL 99% Chebyshev (MVUE) UCL Data Distribution Data appear Normal at 5% Significance Level Nonparametric Statistics 95% CLT UCL 95% Jackknife UCL	0.243 0.263 0.301 0.201 0.215 0.22 0.212 0.219
95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL 95% Modified-t UCL Gamma Distribution Test k star (bias corrected) Theta Star MLE of Maan MLE of Standard Deviation nu star Approximate Chi Square Value (.05) Adjusted Level of Significance Adjusted Chi Square Value	0.214 0.22 37.23 0.00532 0.198 0.0325 372.3 328.6 0.0086 310.4 0.39 0.678	95% Chebyshev (MVUE) UCL 97.5% Chebyshev (MVUE) UCL 99% Chebyshev (MVUE) UCL 09% Chebyshev (MVUE) UCL Data Distribution Data appear Normal at 5% Significance Level Nonparametric Statistics 95% CLT UCL 95% Standard Bootstrap UCL 95% Bootstrap UCL	0.243 0.263 0.301 0.301 0.215 0.22 0.212 0.212 0.219 0.213
95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL 95% Modified-t UCL Gamma Distribution Test k star (bias corrected) Theta Star MLE of Maan MLE of Standard Deviation nu star Approximate Chi Square Value (05) Adjusted Level of Significance Adjusted Chi Square Value Anderson-Darling Test Statistic Anderson-Darling 5% Critical Value	0.214 0.22 37.23 0.00532 0.198 0.0325 372.3 328.6 0.0086 310.4 0.39 0.678 0.257	95% Chebyshev (MVUE) UCL 97.5% Chebyshev (MVUE) UCL 99% Chebyshev (MVUE) UCL 99% Chebyshev (MVUE) UCL Data Distribution Data appear Normal at 5% Significance Level Nonparametric Statistics 95% CLT UCL 95% Jackknife UCL 95% Standard Bootstrap UCL 95% Bootstrap-t UCL 95% Hall's Bootstrap UCL	0.243 0.263 0.301 0.301 0.215 0.22 0.212 0.212 0.213 0.212
95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL 95% Modified-t UCL 95% Modified-t UCL Gamma Distribution Test k star (bias corrected) k star (bias corrected) Theta Star MLE of Mean MLE of Standard Deviation nu star Approximate Chi Square Value (.05) Adjusted Level of Significance Adjusted Chi Square Value Anderson-Darling Test Statistic Anderson-Darling 5% Critical Value Kolmogorov-Smirnov Test Statistic	0.214 0.22 37.23 0.00532 0.198 0.0325 372.3 328.6 0.0086 310.4 0.39 0.678 0.257 0.357	95% Chebyshev (MVUE) UCL 97.5% Chebyshev (MVUE) UCL 99% Chebyshev (MVUE) UCL 09% Chebyshev (MVUE) UCL Data Distribution Data appear Normal at 5% Significance Level 05% Significance Le	0.243 0.263 0.301 0.301 0.215 0.22 0.215 0.22 0.212 0.212 0.213 0.212
95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL 95% Modified-t UCL Gamma Distribution Test k star (bias corrected) Theta Star MLE of Mean MLE of Standard Deviation nu star Approximate Chi Square Value (05) Adjusted Level of Significance Adjusted Chi Square Value Anderson-Darling Test Statistic Anderson-Darling 5% Critical Value Kolmogorov-Smirnov Test Statistic	0.214 0.22 37.23 0.00532 0.198 0.0325 372.3 328.6 0.0086 310.4 0.39 0.678 0.257 0.357	95% Chebyshev (MVUE) UCL 97.5% Chebyshev (MVUE) UCL 99% Chebyshev (MVUE) UCL 09% Chebyshev (MVUE) UCL Data Distribution Data appear Normal at 5% Significance Level Nonparametric Statistics 95% CLT UCL 95% CLT UCL 95% Standard Bootstrap UCL 95% Bootstrap UCL 95% Percentile Bootstrap UCL 95% BCA Bootstrap UCL	0.243 0.263 0.301 0.301 0.215 0.215 0.212 0.212 0.212 0.212 0.212 0.212 0.212
95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL 95% Modified-t UCL Gamma Distribution Test k star (bias corrected) Theta Star MLE of Mean MLE of Standard Deviation nu star Approximate Chi Square Value (05) Adjusted Level of Significance Adjusted Chi Square Value Anderson-Darling Test Statistic Anderson-Darling 5% Critical Value Kolmogorov-Smirnov Test Statistic	0.214 0.22 37.23 0.00532 0.198 0.0325 372.3 328.6 0.0086 310.4 0.39 0.678 0.257 0.357	95% Chebyshev (MVUE) UCL 97.5% Chebyshev (MVUE) UCL 99% Chebyshev (MVUE) UCL 09% Chebyshev (MVUE) UCL Data Distribution Data appear Normal at 5% Significance Level Nonparametric Statistics 95% CLT UCL 95% Standard Bootstrap UCL 95% Standard Bootstrap UCL 95% Bootstrap UCL 95% Bootstrap UCL 95% BCA Bootstrap UCL 95% BCA Bootstrap UCL	0.243 0.263 0.301 0.301 0.215 0.215 0.212 0.212 0.212 0.212 0.212 0.212 0.212 0.212
95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL 95% Modified-t UCL Gamma Distribution Test k star (bias corrected) Theta Star MLE of Standard Deviation nu star Approximate Chi Square Value (05) Adjusted Level of Significance Adjusted Chi Square Value Anderson-Darling Test Statistic Anderson-Darling 5% Critical Value Kolmogorov-Smirnov Test Statistic Kolmogorov-Smirnov 5% Critical Value	0.214 0.22 37.23 0.00532 0.198 0.0325 372.3 328.6 0.0086 310.4 0.39 0.678 0.257 0.357 294	95% Chebyshev (MVUE) UCL 97.5% Chebyshev (MVUE) UCL 99% Chebyshev (MVUE) UCL 99% Chebyshev (MVUE) UCL Data Distribution Data appear Normal at 5% Significance Level Nonparametric Statistics 95% CLT UCL 95% Standard Bootstrap UCL 95% Standard Bootstrap UCL 95% Bootstrap UCL 95% Bootstrap UCL 95% Bootstrap UCL 95% Bootstrap UCL 95% BCA Bootstrap UCL 95% Chebyshev(Mean, Sd) UCL	0.243 0.263 0.301 0.301 0.215 0.215 0.212 0.212 0.212 0.212 0.212 0.212 0.212 0.212
95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL 95% Modified-t UCL Gamma Distribution Test k star (bias corrected) Theta Star MLE of Standard Deviation nu star Approximate Chi Square Value (.05) Adjusted Level of Significance Adjusted Chi Square Value Anderson-Darling Test Statistic Anderson-Darling Test Statistic Kolmogorov-Smirnov Test Statistic Kolmogorov-Smirnov 5% Critical Value Data appear Gamma Distributed at 5% Significance Le	0.214 0.22 37.23 0.00532 0.198 0.0325 372.3 328.6 0.0086 310.4 0.39 0.678 0.257 0.357 xvel 0.224	95% Chebyshev (MVUE) UCL 97.5% Chebyshev (MVUE) UCL 99% Chebyshev (MVUE) UCL 99% Chebyshev (MVUE) UCL Data Distribution Data appear Normal at 5% Significance Level Nonparametric Statistics 95% CLT UCL 95% Standard Bootstrap UCL 95% Standard Bootstrap UCL 95% Bootstrap UCL 95% Bootstrap UCL 95% Bootstrap UCL 95% Bootstrap UCL 95% BCA Bootstrap UCL 95% Chebyshev(Mean, Sd) UCL	0.243 0.263 0.301 0.301 0.215 0.215 0.212 0.212 0.212 0.212 0.212 0.212 0.212 0.212
95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL 95% Modified-t UCL Gamma Distribution Test k star (bias corrected) Theta Star MLE of Standard Deviation nu star Approximate Chi Square Value (.05) Adjusted Level of Significance Adjusted Chi Square Value Anderson-Darling Test Statistic Anderson-Darling 5% Critical Value Kolmogorov-Smirnov Test Statistic Kolmogorov-Smirnov Ts% Critical Value Data appear Gamma Distributed at 5% Significance Lo Assuming Gamma Distribution 95% Approximate Gamma UCL	0.214 0.22 37.23 0.00532 0.198 0.0325 372.3 328.6 0.0086 310.4 0.39 0.678 0.257 0.357 xvel 0.224	95% Chebyshev (MVUE) UCL 97.5% Chebyshev (MVUE) UCL 99% Chebyshev (MVUE) UCL 99% Chebyshev (MVUE) UCL Data Distribution Data appear Normal at 5% Significance Level Nonparametric Statistics 95% CLT UCL 95% Standard Bootstrap UCL 95% Standard Bootstrap UCL 95% Bootstrap UCL 95% Bootstrap UCL 95% Bootstrap UCL 95% Bootstrap UCL 95% BCA Bootstrap UCL 95% Chebyshev(Mean, Sd) UCL	0.243 0.263 0.301 0.301 0.215 0.215 0.212 0.212 0.212 0.212 0.212 0.212 0.212 0.212
95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL 95% Modified-t UCL Gamma Distribution Test k star (bias corrected) Theta Star MLE of Standard Deviation nu star Approximate Chi Square Value (.05) Adjusted Level of Significance Adjusted Chi Square Value Anderson-Darling Test Statistic Anderson-Darling 5% Critical Value Kolmogorov-Smirnov Test Statistic Kolmogorov-Smirnov Ts% Critical Value Data appear Gamma Distributed at 5% Significance Lo Assuming Gamma Distribution 95% Approximate Gamma UCL	0.214 0.22 37.23 0.00532 0.198 0.0325 372.3 328.6 0.0086 310.4 0.39 0.678 0.257 0.357 xvel 0.224	95% Chebyshev (MVUE) UCL 97.5% Chebyshev (MVUE) UCL 99% Chebyshev (MVUE) UCL 99% Chebyshev (MVUE) UCL Data Distribution Data appear Normal at 5% Significance Level Nonparametric Statistics 95% CLT UCL 95% Standard Bootstrap UCL 95% Standard Bootstrap UCL 95% Bootstrap UCL 95% Bootstrap UCL 95% Bootstrap UCL 95% Bootstrap UCL 95% BCA Bootstrap UCL 95% Chebyshev(Mean, Sd) UCL	0.243 0.263 0.301 0.215 0.22 0.212 0.212 0.212 0.213 0.212 0.212 0.212 0.212 0.212 0.212

	General Sta	tistics	
Number of Valid Observations	23	Number of Distinct Observations	20
Raw Statistics		Log-transformed Statistics	0.045
Minimum		Minimum of Log Data	
Maximum		Maximum of Log Data	
Mean		Mean of log Data	
Median		SD of log Data	0.256
	4.009		
Coefficient of Variation Skewness			
Skewiess	-2.032		
	Relevant UCL	Statistics	
Normal Distribution Test		Lognormal Distribution Test	
Shapiro Wilk Test Statistic	0.824	Shapiro Wilk Test Statistic	0.653
Shapiro Wilk Critical Value	0.914	Shapiro Wilk Critical Value	0.914
Data not Normal at 5% Significance Level		Data not Lognormal at 5% Significance Level	
Assuming Normal Distribution		Assuming Lognormal Distribution	
95% Student's-t UCL	22.09	95% H-UCL	22.05
95% UCLs (Adjusted for Skewness)	22.70	95% Chebyshev (MVUE) UCL	
95% Adjusted-CLT UCL	22.54	97.5% Chebyshev (MVUE) UCL	
95% Modified-t UCL		99% Chebyshev (MVUE) UCL	
Gamma Distribution Test		Data Distribution	
k star (bias corrected)	17.69	Data do not follow a Discernable Distribution (0.05)	
Theta Star	1.218		
MLE of Mean	21.55		
WILE OF Wear			
MLE of Standard Deviation	5.124		
MLE of Standard Deviation	813.5	Nonparametric Statistics	
MLE of Standard Deviation nu star	813.5 748.4	Nonparametric Statistics 95% CLT UCL	22.92
MLE of Standard Deviation nu star Approximate Chi Square Value (.05)	813.5 748.4 0.0389	•	
MLE of Standard Deviation nu star Approximate Chi Square Value (05) Adjusted Level of Significance	813.5 748.4 0.0389	95% CLT UCL	22.98
MLE of Standard Deviation nu star Approximate Chi Square Value (05) Adjusted Level of Significance	813.5 748.4 0.0389 743.8	95% CLT UCL 95% Jackknife UCL	22.98 22.92
MLE of Standard Deviation nu star Approximate Chi Square Value (.05) Adjusted Level of Significance Adjusted Chi Square Value	813.5 748.4 0.0389 743.8 1.919	95% CLT UCL 95% Jackknife UCL 95% Standard Bootstrap UCL	22.98 22.92 22.7
MLE of Standard Deviation nu star Approximate Chi Square Value (.05) Adjusted Level of Significance Adjusted Chi Square Value Anderson-Darling Test Statistic	813.5 748.4 0.0389 743.8 1.919 0.742	95% CLT UCL 95% Jackknife UCL 95% Standard Bootstrap UCL 95% Bootstrap-t UCL	22.98 22.92 22.7 22.65
MLE of Standard Deviation nu star Approximate Chi Square Value (.05) Adjusted Level of Significance Adjusted Chi Square Value Anderson-Darling Test Statistic Anderson-Darling 5% Critical Value	813.5 748.4 0.0389 743.8 1.919 0.742 0.249	95% CLT UCL 95% Jackknife UCL 95% Standard Bootstrap UCL 95% Bootstrap-t UCL 95% Hall's Bootstrap UCL	22.98 22.92 22.7 22.65 22.77
MLE of Standard Deviation nu star Approximate Chi Square Value (.05) Adjusted Level of Significance Adjusted Chi Square Value Anderson-Darling Test Statistic Anderson-Darling 5% Critical Value Kolmogorov-Smirnov Test Statistic	813.5 748.4 0.0389 743.8 1.919 0.742 0.249 0.181	95% CLT UCL 95% Jackknife UCL 95% Standard Bootstrap UCL 95% Bootstrap-t UCL 95% Hall's Bootstrap UCL 95% Percentile Bootstrap UCL	22.98 22.92 22.7 22.65 22.77 22.57
MLE of Standard Deviation nu star Approximate Chi Square Value (.05) Adjusted Level of Significance Adjusted Chi Square Value Anderson-Darling Test Statistic Anderson-Darling 5% Critical Value Kolmogorov-Smirnov Test Statistic Kolmogorov-Smirnov 5% Critical Value	813.5 748.4 0.0389 743.8 1.919 0.742 0.249 0.181	95% CLT UCL 95% Jackknife UCL 95% Standard Bootstrap UCL 95% Bootstrap-t UCL 95% Hall's Bootstrap UCL 95% Percentile Bootstrap UCL 95% BCA Bootstrap UCL	22.98 22.92 22.7 22.65 22.77 22.57 22.57
MLE of Standard Deviation nu star Approximate Chi Square Value (.05) Adjusted Level of Significance Adjusted Chi Square Value Anderson-Darling Test Statistic Anderson-Darling 5% Critical Value Kolmogorov-Smirnov Test Statistic Kolmogorov-Smirnov 5% Critical Value	813.5 748.4 0.0389 743.8 1.919 0.742 0.249 0.181	95% CLT UCL 95% Jackknife UCL 95% Standard Bootstrap UCL 95% Bootstrap-t UCL 95% Hall's Bootstrap UCL 95% Percentile Bootstrap UCL 95% BCA Bootstrap UCL 95% Chebyshev(Mean, Sd) UCL	22.98 22.92 22.7 22.65 22.77 22.57 25.19 26.77
MLE of Standard Deviation nu star Approximate Chi Square Value (.05) Adjusted Level of Significance Adjusted Chi Square Value Anderson-Darling Test Statistic Anderson-Darling 5% Critical Value Kolmogorov-Smirnov Test Statistic Kolmogorov-Smirnov 5% Critical Value Data not Gamma Distributed at 5% Significance Leve	813.5 748.4 0.0389 743.8 1.919 0.742 0.249 0.181 a	95% CLT UCL 95% Jackknife UCL 95% Standard Bootstrap UCL 95% Standard Bootstrap UCL 95% Hall's Bootstrap UCL 95% Percentile Bootstrap UCL 95% BCA Bootstrap UCL 95% Chebyshev(Mean, Sd) UCL 97.5% Chebyshev(Mean, Sd) UCL	22.98 22.92 22.7 22.65 22.77 22.57 25.19 26.77
MLE of Standard Deviation nu star Approximate Chi Square Value (.05) Adjusted Level of Significance Adjusted Chi Square Value Anderson-Darling Test Statistic Anderson-Darling 5% Critical Value Kolmogorov-Smirnov 5% Critical Value Data not Gamma Distributed at 5% Significance Leve Assuming Gamma Distribution	813.5 748.4 0.0389 743.8 1.919 0.742 0.249 0.181 al 23.42	95% CLT UCL 95% Jackknife UCL 95% Standard Bootstrap UCL 95% Standard Bootstrap UCL 95% Hall's Bootstrap UCL 95% Percentile Bootstrap UCL 95% BCA Bootstrap UCL 95% Chebyshev(Mean, Sd) UCL 97.5% Chebyshev(Mean, Sd) UCL	22.98 22.92 22.7 22.65 22.77 22.57 25.19 26.77
MLE of Standard Deviation nu star Approximate Chi Square Value (05) Adjusted Level of Significance Adjusted Chi Square Value Anderson-Darling Test Statistic Anderson-Darling 5% Critical Value Kolmogorov-Smirnov Test Statistic Kolmogorov-Smirnov 5% Critical Value Data not Gamma Distributed at 5% Significance Leve Assuming Gamma Distribution 95% Approximate Gamma UCL	813.5 748.4 0.0389 743.8 1.919 0.742 0.249 0.181 al 23.42	95% CLT UCL 95% Jackknife UCL 95% Standard Bootstrap UCL 95% Standard Bootstrap UCL 95% Hall's Bootstrap UCL 95% Percentile Bootstrap UCL 95% BCA Bootstrap UCL 95% Chebyshev(Mean, Sd) UCL 97.5% Chebyshev(Mean, Sd) UCL	22.98 22.92 22.7 22.65 22.77 22.57 25.19 26.77 29.86

	General St		
Number of Valid Observations		Number of Distinct Observations	22
Number of Valid Observations	23	Number of Distinct Observations	23
Raw Statistics		Log-transformed Statistics	
Minimum	50.7	Minimum of Log Data	3.926
Maximum	32100	Maximum of Log Data	10.38
Mean	1456	Mean of log Data	4.407
Median	62.9	SD of log Data	1.311
SD	6680		
Coefficient of Variation	4.587		
Skewness	4.796		
	Relevant UCL	Statistics	
Normal Distribution Test		Lognormal Distribution Test	
Shapiro Wilk Test Statistic	0.217	Shapiro Wilk Test Statistic	0.31
Shapiro Wilk Critical Value	0.914	Shapiro Wilk Critical Value	0.914
Data not Normal at 5% Significance Level		Data not Lognormal at 5% Significance Level	1
Assuming Normal Distribution		Assuming Lognormal Distribution	
95% Student's-t UCL	20.40	Assuming Lognormal Distribution 95% H-UCL	442.7
95% UCLs (Adjusted for Skewness)	3848	95% H-UCL 95% Chebyshev (MVUE) UCL	
	500/		
95% Adjusted-CLT UCL 95% Modified-t UCL		97.5% Chebyshev (MVUE) UCL	
95% Modified-t UCL	4080	99% Chebyshev (MVUE) UCL	770.4
Gamma Distribution Test		Data Distribution	
k star (bias corrected)	0.244	Data do not follow a Discernable Distribution (0.05)	
Theta Star	5967		
MLE of Mean	1456		
MLE of Standard Deviation	2948		
nu star	11.23		
Approximate Chi Square Value (.05)	4.723	Nonparametric Statistics	
Adjusted Level of Significance	0.0389	95% CLT UCL	3747
Adjusted Chi Square Value	4.42	95% Jackknife UCL	3848
		95% Standard Bootstrap UCL	3689
Anderson-Darling Test Statistic	8.513	95% Bootstrap-t UCL	
Anderson-Darling 5% Critical Value	0.873	95% Hall's Bootstrap UCL	625244
Kolmogorov-Smirnov Test Statistic	0.553	95% Percentile Bootstrap UCL	4241
Kolmogorov-Smirnov 5% Critical Value	0.199	95% BCA Bootstrap UCL	5639
Data not Gamma Distributed at 5% Significance Leve	el l	95% Chebyshev(Mean, Sd) UCL	7528
		97.5% Chebyshev(Mean, Sd) UCL	10155
Assuming Gamma Distribution		99% Chebyshev(Mean, Sd) UCL	15315
95% Approximate Gamma UCL	3462		
95% Adjusted Gamma UCL	3700		
Potential UCL to Use		Use 99% Chebyshev (Mean, Sd) UCL	1521F
		USE 77 % CHEDYSHEY (IVIEAL), SQLUCL	10010

2,4,6-Trinitrotoluene		
		Statistics
Number of Valid Observations		Number of Distinct Observations 1
Number of Missing Values	22	
		only has 1 observationsi
		and meaningful statistics and estimates
The data set for v	ariable Nitro	obenzene was not processed
		ations before using these statistical methods
If possible, compute and collect Data Qua	ality Objectiv	res (DQO) based sample size and analytical results.
Nitrocellulose		
		Statistics
Number of Valid Observations		Number of Distinct Observations 3
Number of Missing Values	8	
		· · · ·
Warning: TI	his data set o	only has 3 observationsi
Data set is too small to comp	ute reliable	and meaningful statistics and estimates!
The data set for v	ariable Nitro	cellulose was not processed!
It is suggested to collect at least 8	to 10 observ	ations before using these statistical methods
If possible, compute and collect Data Qua	ality Objectiv	res (DQO) based sample size and analytical results.
Toluene		
	General	Statistics
Number of Valid Observations	2	Number of Distinct Observations 2
Number of Missing Values	4	1
	1	<u> </u>
Warning: T	his data set o	only has 2 observationsl
-		and meaningful statistics and estimates
•		oluene was not processed
		······································
It is suggested to collect at least 8	to 10 observ	ations before using these statistical methodsi
		ves (DQO) based sample size and analytical results.
· · · · · · · · · · · · · · · · · · ·	····y - ··y-	
APPENDIX **B** Comment Response Table

Cmt. No.	Page or Sheet	Comment	Recommendation	Response
		OHARNG - Kati	e Elgin (August 26, 2009)	
1	Document Distribution	"National Guard Bureau (OHARNG)" We are not National Guard Bureau. Please list as OHARNG-Camp Ravenna on the Document Distribution list.		The distribution list will be revised as requested.
2	Figure 1-2 RVAAP Facility Map	Please highlight the correct AOC area. Delete Load Line text and leader lines to the load lines.		The figure will be revised as requested.
3	Pg 1-5, Lines 6 and 11	Please delete all references to RTLS.		The text will be revised as requested by replacing 'RTLS' with 'Camp Ravenna.'
4	Pg 1-5, Line 15	"The ODA1 AOC is an estimated 6 acre parcel located within the National Advisory Committee for Aeronautics Test Area (NTA) (RVAAP-38) that was used primarily for the open burning and open detonation of munitions, explosives and associated materials." Here it sounds like NACA was used for OB/OD activities. Please revise.	Suggested text: "ODA1 is approximately 6 acres and was formerly used for the open burning and open detonation of munitions, explosives, and associated materials. ODA1 is located within the National Advisory Committee for Aeronautics (NACA) Test Area (NTA) (RVAAP-38)."	The text will be revised as requested.
5	Pg 1-5, Line 20	"Recent visual inspections of the site indicate that OB/OD activities associated with the ODA1 may have also been conducted in small areas within the NTA plane storage area adjacent to ODA1." What recent visual inspections? Conducted by whom?		The recent visual inspections were conducted by Ohio EPA in July 2008 and referenced in an August 18, 2009 letter to the RVAAP Facility Manager. The information was relayed to Shaw during the December 30, 2008 data gaps conference call attended by Ohio EPA, Shaw, and USACE. The text will be revised as follows: "Historical information and visual inspections conducted in 2008 indicate that the boundaries of ODA1 may not have been fully defined. MEC/MD has been observed in areas outside of the previously remediated areas and north of the former NACA crash strip."

D	1
Revision	
	1

Cmt.	Page or Sheet	Comment	Recommendation	Response	
No.	I age of Sheet	Comment	Kecommendation	Kesponse	
6	Pg 1-14, Line 15	"Also, at the time of MKM's report, approximately 8 cubic yards of VOC impacted soils remained at the site pending removal from the site." Does this still remain onsite? Please indicate the disposition.		According to MKM's 2004 IRA Report, the 8 cy was temporarily staged in Building G-3 within Load Line 4 until sufficient additional volume could be collected to make a full truckload for offsite disposal. URS removed staged soils from Load Line 4 for offsite disposal in 2008 and the manifest is on file at RVAAP. The following sentence will be added to the text: "The 8 cubic yards was transported offsite for disposal by URS in 2008."	
7	Pg 5-1, Line 25	"The Phase I RI conclusions indicate that ODA1 is not a source for impact to sediments and surface water based on its location within NTA and the topography over which" How is the location of ODA1 in NTA relate to the impact on sediments and surface water? I think what you meant here is that it is far from a surface water body. Please revise.		The text will be revised as requested by replacing the identified sentence with the following: "The results of the Phase I RI indicated that sediment and surface water in Hinkley Creek, the receiving water for stormwater drainages from ODA1, do not appear to have received contamination related to former operations at ODA1." The definition of 'significant' is presented in prior sections of the DQO Report as summarized from the Phase I RI.	
8	Pg 5-1, Line 6	" have been compared to the current RVAAP background values and the current most restrictive risk based Draft CUGs for contaminants detected at the site." What does 'most restrictive risked based CUGs' mean? Recommend deleting 'most restrictive'.		The most restrictive risk-based CUG refers to the lowest value of the risk-based CUGs for each land use scenario and all of the receptors for each constituent. The text will be revised as requested where the term appears in Sections 2 and 5.	
	Ohio EPA - Eileen T. Mohr (August 31, 2009)				
9	Fig 1-2	LLs 1-4 are highlighted.	Remove highlighting from LL1-4 and highlight ODA1 instead.	The figure will be revised as requested.	

Creat	Daga an Chast	Commont	Revision 1	Degnonge
Cmt.	Page or Sheet	Comment	Recommendation	Response
No.				
10	1-5/36	Clarification requested.	Is there any text in the Phase I that indicates why the particular sampling intervals were chosen?	The Phase I RI does not provide a rationale for the subsurface soil sample intervals. The associated SAP (<i>Final Sampling and</i> <i>Analysis Plan Addendum No. 1 for the</i> <i>Phase I RI of Demolition Area 1 at</i> <i>RVAAP</i> , October 1999, SAIC for USACE) wherein the sampling rationale may be provided, is not available for review
				electronically on REIMS or www.rvaap.org. The Phase I RI does state that the 0 to 1 ft bgs sampling interval for surface soils was selected "for compatibility with DQOs for the risk screening and any future baseline risk assessment." Presumably, the subsurface soil sampling intervals were selected for the same risk assessment compatibility purpose. However, the 5-6 ft bgs interval was likely skipped in favor of the 6-8 ft bgs sampling interval to fulfill the stated Phase I RI objective of assessing soils to a depth of 8 ft bgs.

Cmt.	Page or Sheet	Comment	Recommendation	Response
No.				T T T T
11	1-6/1	Clarification requested.	If I remember correctly, only one well point was installed at ODA1. Groundwater data from a wellpoint is solely used for screening purposes, i.e., any detects are considered minimal values and non- detects do not definitively indicate lack of contamination. Add information to the text that the data referenced in this section is solely from one well point and what wellpoint data represents.	The text will be revised as requested by adding the following after the first sentence in the identified paragraph: "The one groundwater sample collected under the Phase I RI was obtained using direct- push boring techniques. Groundwater obtained from well points at RVAAP is solely used for screening purposes. Specifically, any detects are considered minimal values and non-detects do not definitively indicate lack of contamination. Groundwater data that is used at RVAAP for the purpose of evaluation, risk assessment, etc., must be obtained from properly installed, developed and sampled monitoring wells."
12	1-6/36	The text references a detect of RDX at HC-2 on one occasion.	Please provide the date.	The water quality surveillance program was performed annually from 1980 through 1992. The one-time maximum detect of RDX occurred at HC-2 (4.8 μ g/L). This RDX concentration is less than the CUGs for surface water for each of the receptor scenarios presented in the September 2008 <i>Draft Facility-Wide</i> <i>Human Health Remediation Goals at the</i> <i>RVAAP</i> (SAIC, 2008). The text will be revised to include the USATHAMA report reference which includes the years of data collection.
13	1-6/23	Clarification requested.	If I remember correctly, only one well point was installed at ODA1. Groundwater data from a wellpoint is solely used for screening purposes, i.e., any detects are considered minimal values and non- detects do not definitively indicate lack of contamination. Add information to the text that the data referenced in this section is solely from one well point and what wellpoint data represents.	The identified line is on Page 1-9. The text will be revised as requested by inserting the text from Comment No. 11 after the second sentence in the opening paragraph of Section 1.3.1.3.

Cmt.	Page or Sheet	Comment	Recommendation	Response
No.				
14	1-10/ 21-26	The text references aluminum and chromium. Only aluminum was discussed.	Add a discussion of chromium.	The text will be revised as requested by inserting the following sentence into the identified paragraph: "The only chromium result greater than background (18.1 mg/kg) occurred at station DA1-046 at HC-2 (18.8 mg/kg)."
15	1-10/34	Text change requested.	Change text to read: "indicating the contaminants are not related to ODA1."	The text will be revised as requested.
16	1-14/ 15-17	Update requested.	Please provide an update as to the disposition of the 8 cu yds of VOC-contaminated soil.	The soil was transported offsite for disposal in 2008. Refer to Comment No. 6.
17	Fig 1-7	Update requested.	Can you color code the figure's grids? That is, different colors for: environmental; MEC; and environmental/MEC grids?	The figure will be revised as requested.
18	2-2/19-21	Text revision requested.	Only one well point was installed at ODA1. Groundwater data from a wellpoint is solely used for screening purposes, i.e., any detects are considered minimal values and non-detects do not definitively indicate lack of contamination. Add information to the text that the data referenced in this section is solely from one well point and what wellpoint data represents. Additionally, monitoring wells for the area would be installed as part of the NTA.	The text will be revised as requested by inserting the text from Comment No. 11 in the identified paragraph.
19	2-2/27-29	Text revision requested. Remove the original sentence.	Add the following: "Consequently, additional environmental sampling for surface and subsurface soils will be required if the MEC debris is found to extend beyond the current boundaries."	The text will be revised as requested.
20	2-2/29-31	Text revision requested. Remove the original sentence.	Add the following: "Additional surface water, sediment, and groundwater sampling related to the ODA1 area will be conducted as part of the NTA PBA08."	The text will be revised as requested replacing "PBA08" with "and facility-wide sampling programs." This language was reviewed with Ohio EPA on Friday, September 11, 2009 on a conference call with Ohio EPA, Derek Kinder (USACE), Dave Cobb (Shaw), and Andrea Steele (Shaw).
21	2-3/4	Text revision requested.	Revise text to read: "data would be of sufficient"	The text will be revised as requested.

Cmt.	Page or Sheet	Comment	Recommendation	Response
No.				
22	2-3/30-31	Text revision requested.	The Phase I RI did not determine the extent of the contamination. Remove "and extent" from the text.	The text will be revised as requested.
23	2-4/11-13	Text revision requested.	Revise text to read: "Ecological screening values or benchmarks used in the SLERA must be pre-approved by USACE and Ohio EPA.	The text will be revised as requested.
24	3-1/3-6	Clarification requested.	Clarify that ambient concentrations = sitewide background.	The sentence will be revised to read as follows: "In general, the evaluation and screening methodology will initially compare constituents present at ambient concentrations (<i>i.e.</i> , <i>RVAAP-wide</i> <i>background</i>) from those present at concentrations that indicate potential impacts related to historical operations at ODA1."
25	3-1/7-8	Text change requested.	Revise text to read: "and child) and the desired use of the land by OHARNG."	The text will be revised as requested.
26	3-1/17-19	Text revision requested. Remove the original sentence.	Add the following: "Groundwater is not considered since any wells in this area will be installed as part of the NTA characterization and ultimately addressed on a facility-wide basis."	The text will be revised as follows: "Groundwater is not considered since any wells in this area will ultimately be addressed on a facility-wide basis."
27	3-1/33-34	Text clarification requested.	The text indicates that the IRA samples were composites and not subject to the frequency of detection screen. Add text that indicates how the data were screened.	Phase I RI and IRA data were subject to background and essential nutrients screening before the CUG screening. The frequency of detection screen is the only screen that does not apply to composite samples (i.e., IRA samples) and there is no alternate method for composite samples. The text will not be revised as a result of this comment.
28	Fig 3-1	Update requested.	Ca n you color code the figure's grids? That is, different colors for: environmental; MEC; and environmental/MEC grids?	The figure will be revised as requested.

Cmt.	Page or Sheet	Comment	Recommendation	Response
No.				
29	3-6/21-22	Clarification requested.	What was done with selenium? If the detected concentration was greater than the background, it should have been retained as a COPC (if it passed the frequency of detection screen also). The sentence prior says there is no background established for selenium, which means it was automatically set to zero. So If there was any detect at all it should have been > zero.	The original sentence contained a typo. The sentence will be revised to read as follows: "The maximum detected concentration of selenium was not <i>greater</i> than the background value." Therefore, selenium was not retained as a COPC for further evaluation.
				There is a background value for selenium. The sentence prior states that there are no <i>CUGs</i> for selenium.
30	3-6/36	The text indicates that there are no CUGs for lead.	This needs clarification, as it sounds like we are not cleaning up for lead. At CBP, the cleanup # used was 400 mg/kg.	There are no CUGs for lead in surface soil identified in the September 2008 <i>Draft</i> <i>Facility-Wide Human Health Remediation</i> <i>Goals at the RVAAP</i> (SAIC, 2008) which, at the direction of Ohio EPA (30 December 2008 conference call) is the source for CUGs in this DQO Report. Lead is automatically retained as a COPC for further evaluation at ODA1 because there are no CUGs developed for lead. No text revision will be made as a result of this comment. Shaw can include an evaluation of other accepted CUGs in this DQO Report at the direction of USACE and Ohio EPA.
31	3-7/35	Text addition requested.	Revise text to read: " explosives; as such, background is set at zero."	The text will be revised as requested.
32	3-8/7	Text addition requested.	Revise text to read: "SVOCs; as such, background is set at zero."	The text will be revised as requested.
33	3-8/12	Text addition requested.	Revise text to read: "VOCs; as such, background is set at zero."	The text will be revised as requested.
34	3-9/19-20	Clarification requested.	Is there any text in the Phase I that indicates why the particular sampling intervals were chosen?	Refer to Comment No. 10.
35	3-10/23	Question.	Should this be COC instead of COPC?	The post-IRA subsurface soil data was evaluated to the level of COPC only. No text change will be made as a result of this comment.

Cmt. No.	Page or Sheet	Comment	Recommendation	Response
36	3-10/34	Text addition requested.	Revise text to read: "SVOCs; as such, background is set at zero."	The text will be revised as requested.
37	3-11/5	Text addition requested.	Revise text to read: "VOCs; as such, background is set at zero."	The text will be revised as requested.
38	3-14/28-33	Clarification requested.	It sounds like the inorganic results from Grid 11A were removed from the data set, because it was determined to be an "outlier." Please provide the basis for making the determination that this was an outlier. I am not sure that I agree. Particularly, as the text on the next page indicates that the environmental impact in the area of Grid 11A is not defined with depth to the W and SW. My inclination is to say that this is a valid data point and needs to be utilized in determining COPCs. Should the SE direction also be added based upon the last paragraph on page 3-15?	The data set was evaluated without the data from Grid 11A as an alternative scenario. The purpose of evaluating this alternative scenario was similar to that for performing a frequency of detection screening (which did not apply to these composited samples) in identifying and highlighting those constituents that only appear infrequently in a data set. Because the area of Grid 11A remains a data gap for other COPCs as identified in Section 4, we agree that it can not be eliminated from the analysis as an outlier. The text will be revised as requested to remove this alternative scenario and follow through the COPC and COC evaluation with the data set inclusive of Grid 11A. The last paragraph on page 3-15 describes general data gaps for the entire AOC. The data gaps associated with the <i>local</i> area of Grid 11A are identified in Section 4.2.1.2 (page 4-4, lines 21-23) and they include areas to the north, west and south as well as with depth. The extent to the SE of Grid 11A is bound by subsurface data from Grid 11 and the Phase I RI location DA1-23. No text change will be made as a result of this comment.

Cmt.	Page or Sheet	Comment	Recommendation	Response
No.				
39	3-15/10	Clarification requested.	It sounds like the inorganic results from Grid 11A were removed from the data set, because it was determined to be an "outlier." Please provide the basis for making the determination that this was an outlier. I am not sure that I agree. Particularly, as the text later on this page indicates that the environmental impact in the area of Grid 11A is not defined with depth to the W and SW. My inclination is to say that this is a valid data point and needs to be utilized in determining COPCs.	Refer to Comment No. 38.
40	3-15/ 27-30	This section discusses the fact that the environmental impact is not determined to the W and SW of Grid 11A.	a. this point lends credence to the fact that the data from Grid 11A should not be dropped as an "outlier."b. based upon the text in line 35 below, add SE to the direction in line 28 where the environmental impact has not been defined.	 a. Refer to Comment No. 38. b. The text will be revised as requested by revising the identified sentence to read as follows: "The environmental impact at the site is not defined with depth or to the west, southwest, <i>south, and southeast</i>, particularly in the area of IRA excavation Grid 11A on the western perimeter of the site."
41	Table 3-3	Revision requested.	Add detection limits to the revised table.	Tables 3-1 and 3-3 will be revised as requested by inserting the reporting limits for non-detects only with the 'U' qualifier.
42	Table 3-5	Revision requested.	Add detection limits to the revised table.	The table will be revised as requested by inserting the reporting limits for non- detects only with the 'U' qualifier.
43	4-4/33-35 thru 4- 5/2	Discussion required.	Need to discuss the sampling intervals presented in the DQO report.	This comment was discussed on Friday, September 11, 2009 on a conference call attended by Ohio EPA, Derek Kinder (USACE), Dave Cobb (Shaw), and Andrea Steele (Shaw). The subsurface soil MI sampling approach with 4-ft intervals was discussed during the review of the Sand Creek DQO Report with Dave Crispo and Derek Kinder. The method identified in this ODA1 DQO Report is consistent with that previously

Cmt.	Page or Sheet	Comment	Recommendation	Response
No.				
				agreed to for Sand Creek.
				The actual intervals within the 1 to 20 ft bgs sample column will be established based on previous sample intervals at ODA1 and potential future data use. Previous subsurface soil sample intervals and depths for ODA1 have included 1-3, 2, 3-5, 4, and 6-8 ft bgs. Future land use at ODA1 may be for the National Guard which may include the training scenario and exposure risk evaluation with digging in soil to a depth of 4 ft bgs. Therefore, it is significant to have data at the 4 ft bgs interval for use in future risk assessments.
				The paragraph in question will be replaced with the following: "Subsurface soil samples will be collected continuously from Geoprobe borings to 20 ft bgs. Subsurface soil samples will be collected at 4 foot intervals using the MI sampling approach. In general, 30 increments of soil will be collected from the Geoprobe soil column for each 4-foot interval to generate and MI sample. The intervals and depth of previous subsurface soil sample collection has varied at ODA1. In order to be consistent with the excavation confirmation sampling and potential future use of the data in risk assessments, subsurface soil samples will be collected at intervals that begin/end at 4 ft bgs. Subsurface soil sample collection in areas not previously excavated will begin at 1 ft bgs such that the first interval is 1 to 4 ft bgs and then 4-ft intervals thereafter (1-4, 4-8, 8-12, 12-16, and 16-20 ft bgs).

Cmt.	Page or Sheet	Comment	Recommendation	Response
No.				
				Sample collection in areas previously excavated will begin at the bottom of the excavation (i.e., either 2 or 4 ft bgs) and proceed in 4 ft intervals. The first sample interval for samples beginning at 2 ft bgs will end at 4 ft bgs and continue in 4-ft intervals thereafter (2-4, 4-8, 8-12, 12-16, and 16-20 ft bgs)."
44	4-5/17	Text clarification.	Looking at line 14 above, shouldn't this read S, SW and SE perimeter?	The text will be revised as requested.
45	5-1/30-31	Text revision requested.	Revise text to read: "or the facility-wide surface water program."	The text will be revised as requested.
46	5-1/32	Text revision requested.	Revise text to read: "Groundwater will be addressed under the NTA and RVAAP facility wide program."	The text will be revised as requested.
47	5-1/33 thru 5-2/2	Text revision requested.	Revise text to read: "Only one geoprobe groundwater sample was collected at ODA1 under the Phase 1. In order to determine whether or not there has been actual impact on the ODA1 groundwater, properly drilled, installed and sampled monitoring wells would need to be utilized. Groundwater data from a wellpoint is solely used for screening purposes, i.e., any detects are considered minimal values and non- detects do not definitively indicate lack of contamination. Additional groundwater investigation will occur under the NTA area of concern under the PBA-08 contract."	Related to Comment Nos. 11 and 13, the text will be revised with the exclusion of "under the PBA-08 contract." This language was reviewed with Ohio EPA on Friday, September 11, 2009 on a conference call with Ohio EPA, Derek Kinder (USACE), Dave Cobb (Shaw), and Andrea Steele (Shaw).