

Louisville Army Corps of Engineers Attn: Mr. Kevin Mieczkowski PE, Technical Manager 600 Dr. Martin Luther King Jr. Place Louisville KY 40202

10 June 2019

Subject: Second Update and Progress Report for Remedial Investigation at CC RVAAP-69 Building 1048 Fire Station, Ravenna Army Ammunition Plant Restoration Program, Camp James A. Garfield, Portage and Trumbull Counties, Ohio

Dear Mr. Mieczkowski:

Sampling was conducted in February and March 2018 to address data gaps at CC RVAAP-69 Building 1048 Fire Station as proposed in the *Final Work Plan, Additional Sampling for CC RVAAP-69 Building 1048 Fire Station, CC RVAAP-70 East Classification Yard, and CC RVAAP-74 Building 1034-Motor Pool Hydraulic Lift, Ravenna Army Ammunition Plant Restoration Program, Camp Ravenna, Portage and Trumbull Counties, Ohio,* November 30, 2017. Two additional soil borings and four additional monitoring wells were installed in December 2018 in accordance the *Update and Progress Report on Remedial Investigation at CC RVAAP-69 Building 1048 Fire Station, Ravenna Army Ammunition Plant Restoration Program, Camp Ravenna, Portage and Trumbull Counties, Ohio,* July 2018. Monitoring wells were sampled in March 2018, June 2018, December 2018 and March 2019.

The purpose of this letter is to update the team with results to date and outline additional sampling to complete the Remedial Investigation. The additional sampling and analyses described in this Second Update and Progress Report letter are consistent with the objectives of the Work Plan and will follow methodologies described the Work Plan.

Objectives of Additional Sampling

The Final Work Plan (Parsons 2017) contained the following objectives for investigations at CC RVAAP-69:

- Define the vertical extent of carbon tetrachloride in soil near SB101;
- Define the lateral extent of carbon tetrachloride contamination is soil below a depth of 1,018 feet above mean sea level (AMSL); and
- Evaluate impacts to groundwater.

Investigation activities to meet those objectives have been conducted since February 2018.

Parsons PLUS envision more

February / March 2018 Investigation Activities

- Drilled 4 soil borings and collected soil samples from: SB110 (28 feet below ground surface [bgs]); SB111 (23 feet bgs); SB112 (14 feet bgs) and SB113 (24 feet bgs).
- Collected groundwater grab (screening) samples using direct push drilling techniques at 17 locations (all samples collected near water table). Note that groundwater grab samples were screening samples and results were used to locate permanent monitoring wells.
- Installed and sampled 5 permanent monitoring wells; four wells (069MW-001, 069MW-002, 069MW-004 and 069MW-005) which are screened at the water table (screens set from 5-15 or 7-17 feet bgs) and one well (069MW-003) which is screened in unconsolidated weathered sandstone (uppermost portion of Upper Sharon Aquifer, 23-28 feet bgs).
- Three additional monitoring wells were also installed and sampled at nearby CC RVAAP-74 Building 1034 Motor Pool Hydraulic Lift, and these provide information useful to CC RVAAP-69.

June 2018 Investigation Activities

• Sampled 5 permanent monitoring wells at CC RVAAP-69 (069MW-001, 069MW-002, 069MW-003, 069MW-004 and 069MW-005) as well as three wells at nearby CC RVAAP-74.

December 2018 Investigation Activities

- Drilled 2 soil borings and collected soil samples from: SB114 (24 feet bgs) and SB115 (28 feet bgs).
- Installed four additional permanent monitoring wells (069MW-006, 069MW-007, 069MW-008 and 069MW-009) which are screened at the water table (screens set from 5-15 or 7-17 feet bgs).
- Sampled all nine monitoring wells at CC RVAAP-69 and the three wells at nearby CC RVAAP-74.

March 2019 Investigation Activities

• Sampled all 9 permanent monitoring wells at CC RVAAP-69. Gauged all 9 wells plus 3 wells at nearby CC RVAAP-74.

Summary of Findings

Historical and 2018 sampling locations are illustrated in Figure 1. Soil sampling results are presented in Table 1. Water table gauging results are presented in Table 2. Groundwater monitoring well results are presented in Table 3.

Soil

Soil sampling results for carbon tetrachloride are illustrated in plan view in Figure 2, in updated cross section view in Figures 3 and 4, and are summarized below.

- Subsurface geology is primarily brown clays with interbedded silts and sands from the surface to as deep as 15 to 19 feet bgs. (1,006 to 1,010 feet AMSL). A layer of gray clay was encountered below the brown clays. The gray clay is consistently 4 to 5 feet thick across the Area of Concern. Weathered bedrock was encountered below the gray clay at about depths ranging from 1,000 to 1,010 feet AMSL. Hollow stem auger refusal was encountered at 28 feet bgs (997 feet AMSL) at SB110. Photographs of soil cores from SB110 are attached.
- Carbon tetrachloride and chloroform were detected in soil samples at depths above 14 feet bgs (in the brown clays, sands and silts), which is consistent with previous investigations. Methylene chloride was detected in only one soil sample. Chloromethane was not detected in any soil sample (Table 1).
- The highest concentrations (> 1 mg/kg) of carbon tetrachloride in soil are primarily within the footprint of the former Building 1048 Fire Station (SB101, SB104, SB110, SB112, SB114 and RV5-SB2 on Figures 2 and 3).
- SB110 and SB114 show no soil impacts in or below the gray clay (below about 1,006 ft AMSL) (Figure 3). Soil contamination is vertically delineated.
- SB111 and SB113 delineate the lateral extent of contamination in soil to the north and south (Figure 4). DU3-SB1 and SB107 delineate soil contamination to the west, and SB102, SB106 and SB115 delineate soil contamination to the east (Figure 3). Soil contamination is laterally delineated and appears to be confined to the footprint of the former fire station.

Groundwater Presence and Gradients

Groundwater elevations were gauged several times between March 2018 and March 2019 (Table 2). The most recent event (March 2019) included the 12 wells and the potentiometric surface from these measurements is illustrated in Figure 5. Observations are summarized below:

- The interpreted water table potentiometric surface indicates an overall gradient to the southeast (Figure 5) with local variations. Potentiometric surface elevations and gradient are consistent with facility wide potentiometric surface maps for the unconsolidated aquifer as presented in Facility-Wide Groundwater Annual Reports.
- The potentiometric surface is mounded in two locations (near well 069MW-001 and near 069MW-009). The ground surface near well 069MW-001 is a slight depression where water ponds during wet times of the year. The water table near wells 069MW-004 and 069MW-005 is lower than surrounding wells, but there are currently not enough control points to the east to determine if this is a depression (sink) in the water table or an area where the potentiometric surface flattens.
- Hydraulic head in Well 069MW-001 (screened 5-15 feet bgs) ranges between 1,013.02 feet AMSL and 1020.28 feet AMSL. Hydraulic head in paired deep well 069MW-003 (screened 23-28 feet bgs) ranges between 1009.89 feet AMSL and 1,013.23 feet AMSL. There is a consistent vertical (downward) gradient from shallow groundwater in the unconsolidated overburden to the weathered bedrock at the top of the Upper Sharon Aquifer. The head difference between the two wells (3.35 feet to 7.16 feet) suggests that

the gray clay layer (located between the two screened intervals) is limiting vertical migration of groundwater.

Groundwater Contamination

Groundwater sampling results are presented in Table 3, and illustrated in Figure 6, and are summarized below.

- Primary contaminants in groundwater are carbon tetrachloride and chloroform. Lower concentrations of methylene chloride were also sporadically detected and are generally coincident with higher concentrations of chloroform. Chloromethane was not detected in any sample.
- Monitoring wells sample results are presented in Table 3 and Figure 6:
 - Carbon tetrachloride and chloroform were detected in five of the eight water table wells. Carbon tetrachloride concentrations were > $100 \mu g/L$ in wells 069MW-001 and 069MW-004.
 - Carbon tetrachloride concentrations exceeded the MCL of 5 µg/L in at least one sample from wells 069MW-001, 069MW-002, 069MW-004 and 069MW-005.
 - Chloroform concentration exceeded the MCL of 80 μ g/L in well 069MW-004.
 - All wells are gauged for DNAPL but none was detected. Carbon tetrachloride DNAPL is unlikely to be present because dissolved concentrations in groundwater are much lower that the solubility limit of 800,000 μg/L.
 - Lateral delineation in the shallow groundwater in the unconsolidated overburden:
 - The VOC plume extent is defined to the northwest (by well 069MW-006) and southeast (by wells 069MW-008 and 069MW-009).
 - Relatively low concentrations of carbon tetrachloride and chloroform in well 069MW-007 in March 2019 suggest the plume is not fully delineated to the southwest. However, given the potentiometric surface, it is unlikely that the plume extends much further in the southwest direction.
 - Detections of carbon tetrachloride and chloroform in well 069MW-005 suggest that the plume is not delineated in the east or northeast direction (downgradient).
 - Samples from deep well 069MW-003 have contained chloroform and methylene chloride but not carbon tetrachloride. Concentrations were highest in the initial sample event (March 2018) but have decreased to less than 1 μ g/L (sometimes non-detect) in subsequent monitoring events. These contaminants were most likely introduced during drilling the well, and migration from the shallow groundwater in the overburden to the unconsolidated weathered bedrock at the top of the Upper Sharon Aquifer is very limited at this location.

Potential Vapor Intrusion

- The only currently occupied building near the site is Range Control (located east of CC RVAAP-69).
- Carbon tetrachloride (up to 8.7 µg/L) and chloroform (up to 1.4 µg/L) were detected in groundwater at 069MW-005 (140 feet west of the Range Control Building).

- The USEPA Vapor Intrusion Screening Level (VISL) calculator indicates that carbon tetrachloride concentrations below 27.7 μ g/L and chloroform concentrations below 53.3 μ g/L in groundwater will not pose a cancer risk above 10⁻⁵.
- Current data suggest no unacceptable risk from vapor intrusion to occupants of the Range Control Building.

Actions to Complete the Remedial Investigation:

The following actions are designed to complete the Remedial Investigation CC RVAAP-69 Building 1048 Fire Station.

- Vertical and lateral delineation of carbon tetrachloride and chloroform in soil is complete. No further soil sampling is needed.
- Complete delineation of carbon tetrachloride and chloroform in shallow (overburden) groundwater by installing and sampling two additional shallow monitoring wells (Figure 7).
 - New wells 069MW-010 and 069MW-011 will be located east of 069MW-005 and west of the Range Control Building. Wells will be screened in the unconsolidated overburden above the gray clay layer.
- Investigate potential vertical migration of carbon tetrachloride reductive dechlorination intermediate products (e.g., chloroform) in groundwater.
 - Continue to monitor deep monitoring well 069MW-003.
 - Although there does not appear to be vertical migration at well 069MW-003 and the gray clay layer appears to be contiguous across the Area of Concern, the "low" in the potentiometric surface near wells 069MW-004 and 069MW-005 could indicate a groundwater pathway between the unconsolidated overburden and the underlying Upper Sharon Aquifer. Therefore, a new deep well 069MW-012 will be installed adjacent to 069MW-004 (Figure 7). The deep well will be screened below the bottom of the gray clay layer (below 1,000 feet AMSL) in weathered bedrock above the competent bedrock of the Upper Sharon Aquifer. The borehole will be screened above the screen to prevent migration of contaminants from the shallow groundwater above the clay layer.
- Depending on future monitoring results, additional step-out wells may be required to complete the Remedial Investigation:
 - Additional shallow monitoring wells may be required to delineate the plume:
 - If carbon tetrachloride and chloroform continue to be detected above the FWCUG in well 069MW-007, a new well may be needed south or southwest of 069MW-007.
 - If the new wells 069MW-010 and 069MW-011 show the groundwater flow in a more northerly direction than anticipated, an additional well may be needed north of 069MW-005.
 - If carbon tetrachloride or chloroform are detected at concentrations above FWCUGs in new wells 069MW-010 and 069MW-011, additional delineation wells will be required.

• If monitoring at 069MW-003 or new well 069MW-012 indicates migration of carbon tetrachloride or chloroform to the unconsolidated weathered bedrock at the top of the Upper Sharon Aquifer, additional deep monitoring wells will be required.

Please contact me at 256.217.2573 or email ed.heyse@parsons.com if you have any questions.

Sincerely

Edward Degre

Edward Heyse, PhD, PE Project Manager

C: Ed D'Amato, Ohio EPA DERR-NEDO (1 electronic copy) Tom Schneider, Ohio EPA, SWDO (transmittal letter only) Mark Johnson, Ohio EPA, DERR-NEDO (transmittal letter only) Bob Princic, Ohio EPA, DERR-NEDO (transmittal letter only) David Connolly, ARNG-ILE-CR (1 electronic copy) Craig Coombs, USACE Louisville (email transmittal letter only) Kevin Sedlak, ARNG (1 electronic copy) Katie Tait, OHARNG (1 electronic copy) Gail Harris, RVAAP Administrative Record (1 electronic copy) Pat Ryan, REIMS (email transmittal letter only) Lauri Roché, Parsons

Attached

7 Figures3 TablesBoring Logs and Well Completion DiagramsPhotographs

^{3.}VES\Remed\Ravenna\Database\GIS\2018\CC-69\CC-69_Fig-2_SampleResults_CT.mxd Ixh 4/15/2019

Leg	gend			
	Installation Boundary			
•	2018 Groundwater Moni	itoring Well L	ocatior	ו ו
	Former UST RV-5 (100-	gallon gasolir	ne tank	()
•	2012 CC RVAAP-72 SI I for VOCs	Direct Push E	Boring I	Not Analyzed
	2012 Direct Push Boring	Location		
0	2015 Field Change Noti	, ce Subsurfac	e Soil	Borina
•	2018 Subsurface Soil Bo	oring		
	Decision Unit	0		
-	Cross-Section Trace			
-	Elevation contour (ft)			
×—	Fence Line			
Ð	Former Structures	Tech Leon		
0.7 J	Concentration Exceeds	Soil	ent	
	(TR=1F-06/THQ=0.1)	of 0 65 ma/kc	1	
	ISM Horizontal Sample	for Decision	Unit	
1. Map 2009	Coordinates: NAD 83, UT 9 Orthoimagery from USG8	M Zone 17N, S.		
2. Con	centrations shown are for a	carbon tetrach	loride a	at each
tetra	chloride in soil; therefore,	carbon tetrach	loride	IOI Calbon
cond	centrations in soil were con	npared to the l	ower o	f the November
2018	3 EPA RSL for Resident Sc Land non-carcinogenic tar	oil at the 10™ ta net bazard que	arget ca	sing the 0.1
risk.	Concentrations which exc	eed the most	stringer	nt RSL are
in R	ED Decidential DCL for earboy	n totro oblarida	10.0.00	E malka
3. CT =	- Carbon Tetrachloride	n tellachionue	15 0.00	o mg/kg.
4. J = e	estimated			
5. ND :	= not detected on contration are in milliara	me nor kilogra	m (ma	(ka)
7. DU :	= Decision Unit	ins per kilogra	un (mg.	(ky)
8. ID =	Identification			
9. RVA	AP = Ravenna Army Amm = Army Environmental Co	unition Plant	ated Cl	eanun Program
11. ISN	A = Incremental Sampling I	Methodology	atou or	ounap i rogram
not -			'J	
1 4		IT SI		122 4
1			(and the state	Nº 13
No.		TU?		State State State
	KAR KO	Ser -	4.11	and the second second
1	128	Source: Esri,	, Digital	Globe,
" Hin	A VERTICAL PARTY	Geoleye, Ean	instar G	eographics,
				N
				A
~	10			\$
0	40 Feet			A
				4
		Former	Rave	nna Army
	ARSUNS	Ammuniti	on Pla	ant, Portage
SIGNED BY:	1	and frum	Juli Co	ouncies, Onio
BT		Figure 2		
ы				
AVVN BY:	Soil Sa	ample Res	ults	
LH	CC RVAAP-69 Bu	ilding 10	48 Fi	re Station
CKED BY:	Carbon Tetra	achloride	Dete	ctions
EH	SCALE: As Shown	P	ROJECT NUM	0.0005 110051
MITTED BY:	DATE: 4/15/2010		IGURE	
EH	4/15/2019 FILE:		UMBER:	2
	Company and the Company of the Compa			

-	LEGE	END	
•	Groundwate	er Monitoring Well	
	Potentiome March 7 - 8	tric Surface at , 2019	
	Carbon tetra concentratio (dashed wh	achloride on contour ere inferred)	
•	Inactive Gro	oundwater Supply	Well
	Former Stru	ucture	
	Area of Cor	ncern	
	- Road		
1. Map Co 2014 Or 2. Contour 3. RVAAP 4. CC = Ar Cleanur	orginates: NAD thoimagery. · Elevations in Fe = Ravenna Am my Environmen o Program	əs, u i m zone 17N əet. iy Ammunition Plan tal Compliance-Rel	it lated
0	100 Feet		N
	100 Feet	Former Ravenna Ammunition Plant, ınd Trumbull Counti	Army Porta ies, 0
	100 Feet 5ONS a Figur Potentiomet March : AAP-69 Buildin ‡ Building 1034	Former Ravenna Ammunition Plant, Ind Trumbull Counti e 5 -ic Surface 2019 g 1048 Fire Static Motor Pool Hvdra	Army Porta ies, O
	100 Feet	Former Ravenna Ammunition Plant, Ind Trumbull Counti e 5 fic Surface 2019 g 1048 Fire Static Motor Pool Hydra	Army Porta ies, O
0 PAR CC RV RVAAP-7 As Shown 4/16/2019	100 Feet	Former Ravenna Ammunition Plant, Ind Trumbull Counti e 5 ric Surface 2019 g 1048 Fire Static Motor Pool Hydra 840030.00 reveer.	Armm Porta ies, (on aulic

A A				1
069MW-006 (5-15) Date CT CF	and the second second			· ACTOR
12/17/20180.4 U0.4 U3/8/20191.0 UJ1.0 UJ				
3/8/2019 1.0 U 1.0 U	Date CT CF 3/5/2018 370 32			
	6/4/2018 490 34 12/14/2018 510 39		ad	
	12/14/2018 500 41 3/8/2019 650 D 51		Ro	
\sim \langle \rangle \sim			orge	
			Geo	
Date CT CF 3/5/2018 3.7 0.67 J				
6/4/2018 7.5 1.5 B 12/12/2018 18 2.1	A L			A SEATH
3/8/2019 11 1.1	\odot		069MW-005 (7-17)	
			Date CT 3/6/2018 4.8 0.	CF 56 B
069MW-003 (23-28)			6/5/2018 8.7 1 12/14/2018 6.6 2/7/2010 5	.4 B 1
3/5/2018 0.25 U 34 6/4/2018 0.25 U 0.2 B			3///2019 5 0	Range Control
12/14/2018 0.4 U 0.7 J 3/8/2019 1.0 U 1.0 U				
the state of the second				
~				
069MW 007 (7.17)			1 1 1 2	
Date CT CF 12/17/2018 0.4 U 0.4 U		DESMW-0	04 (8-18)	
3/8/2019 1.4 1.8		Date 3/5/20	CT CF 18 190 96	MERCENCE M
	Winds 1-	6/4/20 12/13/20	470 180 018 710 250	
All the large the second	A BOARD A	3///20*	19 600 D 180 D	
Provide and the second	and the second		The star	
			069MW-008 (7-17) Date CT CF 12/17/2018 0.4.11 0.4.11	
			3/7/2019 1.0 U 1.0 U	South Service Road
The second second			069MW-009 (7-17)	
		a free and	Date CT CF 12/14/2018 0.4 U 0.4 U	Statements of
State State State		States In	3/7/2019 1.0 U 1.0 U	
Chemical CAS Number HI_01_GW Carbon Tetrachloride 56-23-5 2.15	Risk_10-6_GW FWCUG screening level 0.204 0.204	MCL 5		60-51/07-50-07-51/0
Chloroform 67-66-3 27.6	0.207 0.207	80	(2012)	

S:\ES\Remed\Ravenna\Database\GIS\2019\CC-69\CC-69_Fig-6_WG_MW_SampleResults_CT_CF.mxd lxh 4/15/2019

VES\Remed\Ravenna\Database\GIS\2019\CC-69\CC-69_Fig-7_WG_MW_ProposedSampLoc.mxd lxh 4/15/2019

Lege	end			
li	nstallation Boundarv			
• 2	2018 Groundwater Mon	itoring Well L	ocation	
÷ F	Proposed Groundwater	Monitoring W	lells	
	Carbon tetrachloride con dashed where inferred) Decision Unit	ncentration co	ontour	
— E X— E	levation contour (ft)			
<u> </u>	Cross-Section Trace			
E F	Former Structures			
Map C 2014 C Conce chlorof sampli concer and R CT = C J = est ND = r	coordinates: NAD 83, UT Drthoimagery. ntrations shown are for of form in groundwater sam ng location. Concentrati ntration exceeds lowest F risk=10 ⁻⁸ and non-carcin ED if concentration excer Darbon Tetrachloride timated not detected	M Zone 17N, carbon tetrachl ples at each g ons are showr FWCUG scree ogenic hazard eds the MCL.	loride ar rroundw n in BLL ning lev I quotier	nd ater JE if el for nt =0.1,
All con DU = [d D = Id RVAAF 0. CC = 1. Bold 2. CF = 3. MCL 4. FWC	icentration are in microgr Decision Unit Ientification P = Ravenna Amy Ammu Army Environmental Co = detect Chloroform = Safe Drinking Water Ar UG = Facility Wide Clear	ams per liter (unition Plant mpliance-Rela ct Maximum C nup Goal	ug/L) ated Clea contamir	anup Program nant Level
All con DU = I ID = Id RVAAF 0. CC = 1. Bold 2. CF = 3. MCL 4. FWC	Acentration are in microgr Decision Unit lentification P = Ravenna Amy Ammi Army Environmental Co = detect Chloroform = Safe Drinking Water Ar UG = Facility Wide Clear	rams per liter (unition Plant mpliance-Rela ct Maximum C nup Goal	ug/L) ated Clea contamin , DigitalC hstar Ge	anup Program nant Level
All con DU = I ID = Id RVAAF 0. CC = 1. Bold 2. CF = 3. MCL 4. FWC	All for the second seco	rams per liter (unition Plant mpliance-Rela ct Maximum C nup Goal	ug/L) ated Clea contamir , Digital@	anup Program nant Level
All con DU = I ID = Id RVAAF 0. CC = 1. Bold 2. CF = 3. MCL 4. FWC	ARSONS	rams per liter (unition Plant mpliance-Rela ct Maximum C hup Goal Source: Esrit CeoEye, Eart Former Ammuniti and Trumt	ug/L) ated Clea contamir DigitalC thstar Ce Raven con Pla coull Cor	anup Program hant Level
All con DU = I ID = Id RVAAF 0. CC = 1. Bold 2. CF = 3. MCL 4. FWC	ARSONS	rams per liter (unition Plant mpliance-Rela ct Maximum C hup Goal Source; Esri GeoEye, Ear Former Ammuniti and Trumt	ated Clea contamir Digital@ hstar Ge	anup Program hant Level
All con DU = I ID = Id RVAAF 0. CC = 1. Bold 2. CF = 3. MCL 4. FWC 4. FWC BT N BY: LH	ARSONS	rams per liter (unition Plant mpliance-Rela ct Maximum C hup Goal Source: Esri GeoEye, Earl Source: Esri GeoEye, Earl Former Ammuniti and Trumb Figure 7	nted Cler contamir Digital Digital thstar Ge Raven on Pla Dull Con	anup Program hant Level
All con DU = I ID = Id RVAAF D. CC = 1. Bold 2. CF = 3. MCL 4. FWC	ARSONS	rams per liter (unition Plant mpliance-Rela ct Maximum C hup Goal Source: Esri GeoEye, Eari Former Ammuniti and Trumb Figure 7 Iwater Mo ilding 104	ug/L) ated Clea contamir bollicate bistar Ca Raven fon Pla boll Con enitori 18 Fire	anup Program hant Level
All con DU = I ID = Id RVAAF 0. CC = 1. Bold 2. CF = 3. MCL 4. FVVC WED BY: BT N BY: LH I H I EH SC SC SC SC SC SC SC SC SC SC	ARSONS Proposed Ground CC RVAAP-69 Bu	rams per liter (unition Plant mpliance-Rela ct Maximum C hup Goal Source: Esri GeoEye, Earl Former Ammuniti and Trumb Figure 7	ated Clea contamir Digital Digital ball Con Particori tas Firre Roverno Con to particori tas Firre	anup Program hant Level

This Page Intentionally Left Blank.

	Site		CC RVAAP-69				
S	ample Location		69-1048-SB110	69-1048-SB110	69-1048-SB110	69-1048-SB110	69-1048-SB110
			069SB-110-	069SB-110-	069SB-110-	069SB-110-	069SB-111-
Field Sample ID			0088-SO	9088-SO	0089-SO	0090-SO	0096-SO
	Lab Sample ID		160-26664-1	160-26664-2	160-26664-3	160-26664-4	160-26664-5
Sample Date			2/6/2018	2/6/2018	2/6/2018	2/6/2018	2/6/2018
Sample Interval (feet bgs)		Resident	11-12	11-12	19-20	22-23	27-28
	Sample Type	Soil RSL	N	FD	N	N	N
Chemical	CAS Number	(a)					
Volatile Organic Compo	unds (mg/kg)		•				
Carbon tetrachloride	56-23-5	0.65	4.9	7 J	0.0008 U	0.0009 U	0.00084 U
Chloroform	67-66-3	0.32	0.037	0.05 J	0.0008 U	0.0009 U	0.00084 U
Methylene Chloride 75-09-2		35	0.0049 U	0.0043 U	0.004 U	0.0045 U	0.0042 U
Chloromethane	74-87-3	11	0.0049 U	0.0043 U	0.004 U	0.0045 U	0.0042 U

	Site		CC RVAAP-69				
S	ample Location		69-1048-SB111	69-1048-SB111	69-1048-SB111	69-1048-SB112	69-1048-SB112
			069SB-111-	069SB-111-	069SB-111-	069SB-112-	069SB-112-
	Field Sample ID		0096-SO	0097-SO	0098-SO	0099-SO	9099-SO
	Lab Sample ID		160-26664-6	160-26664-7	160-26664-8	160-26664-9	160-26664-10
Sample Date			2/6/2018	2/6/2018	2/6/2018	2/6/2018	2/6/2018
Sample Interval (feet bgs)		Resident	13-14	19-20	22-23	11-12	11-12
	Sample Type	Soil RSL	N	N	N	N	FD
Chemical	CAS Number	(a)					
Volatile Organic Compo	unds (mg/kg)						
Carbon tetrachloride	56-23-5	0.65	0.5	0.00088 U	0.00089 U	7.7 J	9.6
Chloroform	67-66-3	0.32	0.059 J	0.00088 U	0.00089 U	0.1 J	0.098 J
Methylene Chloride	75-09-2	35	0.0033 J	0.0044 U	0.0044 U	0.0046 U	0.0043 U
Chloromethane	74-87-3	11	0.004 U	0.0044 U	0.0044 U	0.0046 U	0.0043 U

	Site		CC RVAAP-69				
S	ample Location		69-1048-SB113	69-1048-SB113	69-1048-SB113	69-1048-SB114	69-1048-SB114
			069SB-113-	069SB-113-	069SB-113-	069SB-114-	069SB-114-
	Field Sample ID		0102-SO	0103-SO	0104-SO	0105-SO	0106-SO
	Lab Sample ID		160-26664-12	160-26664-13	160-26664-14	320-45823-1	320-45823-2
Sample Date			2/6/2018	2/6/2018	2/6/2018	12/4/2018	12/4/2018
Sample Interval (feet bgs)		Resident	10-11	17-18	22-23	4-5	9-10
	Sample Type	Soil RSL	N	N	N	N	N
Chemical	CAS Number	(a)					
Volatile Organic Compo	unds (mg/kg)		•				
Carbon tetrachloride	56-23-5	0.65	0.00086 U	0.00084 U	0.00096 U	0.0021 U	3.7 J
Chloroform	67-66-3	0.32	0.00086 U	0.00084 U	0.00096 U	0.0011 U	0.072 J
Methylene Chloride 75-09-2		35	0.0043 U	0.0042 U	0.0048 U	0.0011 J	0.051 J
Chloromethane	74-87-3	11	0.0043 U	0.0042 U	0.0048 U	0.0011 U	0.013 U

	Site		CC RVAAP-69				
S	ample Location		69-1048-SB114	69-1048-SB114	69-1048-SB114	69-1048-SB115	69-1048-SB115
			069SB-114-	069SB-114-	069SB-114-	069SB-115-	069SB-115-
	Field Sample ID		0107-SO	9107-SO	0108-SO	0109-SO	0110-SO
	Lab Sample ID		320-45823-3	320-45823-4	320-45823-5	320-45823-6	320-45823-7
Sample Date			12/4/2018	12/4/2018	12/4/2018	12/4/2018	12/4/2018
Sample Interval (feet bgs)		Resident	14-15	14-15	19-20	7-8	11-12
	Sample Type	Soil RSL	N	FD	N	N	N
Chemical	CAS Number	(a)					
Volatile Organic Compo	unds (mg/kg)						
Carbon tetrachloride	56-23-5	0.65	3.2	1.9 J	0.0017 U	0.0018 U	0.0018 U
Chloroform	67-66-3	0.32	0.55 J	0.28 J	0.00087 U	0.00088 U	0.00092 U
Methylene Chloride 75-09-2		35	0.027 J	0.005 J	0.0017 J	0.0018 U	0.0012 J
Chloromethane	74-87-3	11	0.014 U	0.0063 U	0.00087 U	0.00088 U	0.00092 U

	Site		CC RVAAP-69	CC RVAAP-69
S	ample Location		69-1048-SB115	69-1048-SB115
			069SB-115-	069SB-115-
	Field Sample ID		0111-SO	0112-SO
	Lab Sample ID		320-45823-8	320-45823-9
	Sample Date		12/4/2018	12/4/2018
Sample Int	terval (feet bgs)	Resident	18-19	22-23
	Sample Type	Soil RSL	N	Ν
Chemical	CAS Number	(a)		
Volatile Organic Compo	unds (mg/kg)			
Carbon tetrachloride	56-23-5	0.65	0.0018 U	0.0017 UJ
Chloroform	67-66-3	0.32	0.00089 U	0.00087 UJ
Methylene Chloride	75-09-2	35	0.0033 J	0.0017 J
Chloromethane	74-87-3	11	0.00089 U	0.00087 UJ

Notes:

BOLD = chemical detected

Concentration exceeds the November 2018 EPA Resident Soil RSL.

^(a) There is not a FWCUG in soil; therefore, concentrations in soil were compared to the lower of the November 2018 EPA RSL for Resident Soil at the 10⁻⁶ target cancer risk level and non-carcinogenic target hazard quotient using the 0.1 risk.

FD = field duplicate

mg/kg = milligrams per kilogram

Groundwater Elevation Data

CC RVAAP-69 Building 1048 Fire Station and CC RVAAP-74 Building 1034 Motor Pool Hydraulic Lift

		March 20)18 Monitor	ing Event	June 20	18 Monitori	ng Event	September 2018 Monitoring Event				
Well Station ID	Top of PVC (ft amsl)	Date	Depth to Water (ft bgs)	Water Elevation (ft amsl)	Date	Depth to Water (ft bgs)	Water Elevation (ft amsl)	Date	Depth to Water (ft bgs)	Water Elevation (ft amsl)		
CC RVAAP-69	· · · · ·	<u> </u>			•		<u> </u>	4		<u> </u>		
069MW-001	1027.25	3/5/2018	6.97	1020.28	6/4/2018	8.42	1018.83	9/5/2018	14.01	1013.24		
069MW-002	1028.28	3/5/2018	8.77	1019.51	6/4/2018	11.05	1017.23	9/5/2018	15.26	1013.02		
069MW-003 (a)	1027.28	3/5/2018	14.16	1013.12	6/4/2018	14.81	1012.47	9/5/2018	17.39	1009.89		
069MW-004	1024.19	3/5/2018	8.77	1015.42	6/4/2018	11.25	1012.94	9/5/2018	12.45	1011.74		
069MW-005	1023.18	3/6/2018	7.91	1015.27	6/5/2018	10.82	1012.36	9/5/2018	11.02	1012.16		
069MW-006	1028.39	-	-	-	-	-	-	-	-	-		
069MW-007	1029.35	-	-	-	-	-	-	-	-	-		
069MW-008 ^(b)	1023.87	-	-	-	-	-	-	-	-	-		
069MW-009	1023.54	-	-	-	-	-	-	-	-	-		
CC RVAAP-74	CC RVAAP-74											
074MW-001	1022.01	3/6/2018	11.99	1010.02	6/5/2018	11.60	1010.41	9/5/2018	12.81	1009.20		
074MW-002	1021.64	3/6/2018	12.42	1009.22	6/5/2018	11.70	1009.94	9/5/2018	13.12	1008.52		
074MW-003	1020.81	3/6/2018	12.98	1007.83	6/5/2018	12.53	1008.28	9/5/2018	14.15	1006.66		

Groundwater Elevation Data

CC RVAAP-69 Building 1048 Fire Station and CC RVAAP-74 Building 1034 Motor Pool Hydraulic Lift

		December 2	018 Pre-Dev	velopment	December 2	018 Monitor	ing Event	March 2019 Monitoring Event				
	Top of PVC		Depth to Water	Water Elevation		Depth to Water	Water Elevation	•	Depth to Water	Water Elevation		
Well Station ID	(ft amsl)	Date	(ft bgs)	(ft amsi)	Date	(ft bgs)	(ft amsi)	Date	(ft bgs)	(ft amsi)		
CC RVAAP-69												
069MW-001	1027.25	-	-	-	12/14/2018	7.58	1019.67	3/8/2018	7.64	1019.61		
069MW-002	1028.28	-	-	-	12/12/2018	9.12	1019.16	3/8/2018	9.29	1018.99		
069MW-003 ^(a)	1027.28	-	-	-	12/14/2018	14.48	1012.8	3/8/2018	14.05	1013.23		
069MW-004	1024.19	-	-	-	12/13/2018	11.32	1012.87	3/7/2018	11.5	1012.69		
069MW-005	1023.18	-	-	-	12/14/2018	10.58	1012.6	3/7/2018	10.84	1012.34		
069MW-006	1028.39	12/10/2018	12.32	1016.07	12/17/2018	12.31	1016.08	3/8/2018	12.29	1016.1		
069MW-007	1029.35	12/10/2018	14.59	1014.76	12/17/2018	15.02	1014.33	3/8/2018	14.88	1014.47		
069MW-008 ^(b)	1023.87	12/10/2018	11.61	1012.26	12/17/2018 ^(b)	13.23	1010.64	3/7/2018	9.30	1014.57		
069MW-009	1023.54	12/10/2018	8.02	1015.52	12/14/2018	8.11	1015.43	3/7/2018	7.08	1016.46		
CC RVAAP-74	CC RVAAP-74											
074MW-001	1022.01	-	-	-	12/13/2018	12.01	1010.00	3/7/2018	11.62	1010.39		
074MW-002	1021.64	-	_	-	12/13/2018	12.29	1009.35	3/7/2018	11.71	1009.93		
074MW-003	1020.81	-	-	-	12/13/2018	13.29	1007.52	3/7/2018	12.06	1008.75		

Notes:

^(a) Well 069MW-003 screened 23-28 ft bgs in weathered sandstone

All other wells screened in overburden material above (sometimes crossing into) gray clay layer

^(b) Well 069MW-008 was slow to recharge during development. 12/17/18 water level may not be representative. ft amsl = feet above mean sea level

ft bgs = feet below ground surface

	Site	EWCUC		CC RVAAP-69	CC RVAAP-69	CC RVAAP-69	CC RVAAP-69	
S	ample Location	FWCUG		069MW-001	069MW-001	069MW-001	069MW-001	
		Resident		069MW-001-	069MW-001-	069MW-001-	069MW-001-	
	Field Sample ID	Receptor		0001-GW	0002-GW	0003-GW	9003-GW	
	Lab Sample ID	(Lowest of		160-27124-2	160-28791-2	320-46191-2	320-46191-3	
Sample Date		Adult or		3/5/2018	6/4/2018	12/14/2018	12/14/2018	
Sample Interval (feet bgs)		Child, Risk =		5-15	5-15	5-15	5-15	
	Sample Type	10 ⁻⁶ and HQ =		N	N	N	FD	
Chemical	CAS Number	0.1)	MCL					
Carbon tetrachloride	56-23-5	0.204	5	370	490	510	500	650
Chloroform	67-66-3	0.207	80	32	34	39	41	51
Methylene Chloride	75-09-2	5.34	5	1.9 J	1.3 U	16 U	16 U	3.5 U
Chloromethane	74-87-3	19 ^(a)	-	0.63 U	0.63 U	16 U	16 U	15 U

	Site	FWCUC		CC RVAAP-69				
S	ample Location	FWCUG		069MW-002	069MW-002	069MW-002	069MW-002	069MW-003
		Resident		069MW-002-	069MW-002-	069MW-002-	069MW-002-	069MW-003-
	Field Sample ID	Receptor		0001-GW	0002-GW	0003-GW	0004-GW	0001-GW
	Lab Sample ID	(Lowest of		160-27124-3	160-28791-3	320-46168-1	320-48218-5	160-27124-4
	Sample Date	Adult or		3/5/2018	6/4/2018	12/12/2018	3/8/2019	3/5/2018
Sample Int	Child, Risk =		5-15	5-15	5-15	5-15	23-28	
	Sample Type	10 ⁻⁶ and HQ =		N	N	N	N	N
Chemical	CAS Number	0.1)	MCL					
Volatile Organic Comp	oounds (μg/L)							
Carbon tetrachloride	56-23-5	0.204	5	3.7	7.5	18	11	0.25 U
Chloroform 67-66-3		0.207	80	0.67 J	1.5 B	2.1	1.1	34
Methylene Chloride 75-09-2		5.34	5	0.5 U	0.5 U	0.8 U	3.5 U	15
Chloromethane	74-87-3	19 ^(a)	-	0.25 U	0.25 U	0.8 U	15 U	0.25 U

	Site	FWCUC		CC RVAAP-69				
S	ample Location	FWCUG		069MW-003	069MW-003	069MW-003	069MW-004	069MW-004
		Resident		069MW-003-	069MW-003-	069MW-003-	069MW-004-	069MW-004-
	Field Sample ID	Receptor		0002-GW	0003-GW	0004-GW	0001-GW	0002-GW
	Lab Sample ID	(Lowest of		160-28791-4	320-46191-4	320-48218-3	160-27124-5	160-28791-5
	Sample Date	Adult or		6/4/2018	12/14/2018	3/8/2019	3/5/2018	6/4/2018
Sample In	Child, Risk =		23-28	23-28	23-28	8-18	8-18	
	Sample Type	10 ⁻⁶ and HQ =		N	N	N	N	N
Chemical	CAS Number	0.1)	MCL					
Volatile Organic Comp	oounds (μg/L)							
Carbon tetrachloride	56-23-5	0.204	5	0.25 U	0.4 U	1 U	190	470
Chloroform 67-66-3		0.207	80	0.2 B	0.7 J	1 U	96	180
Methylene Chloride 75-09-2		5.34	5	0.5 U	0.8 U	3.5 U	0.47 J	1.3 U
Chloromethane 74-87-3		19 ^(a)	-	0.25 U	0.8 U	15 U	0.25 U	0.63 U

	Site	FWCUC		CC RVAAP-69				
S	FWCUG		069MW-004	069MW-004	069MW-005	069MW-005	069MW-005	
		Resident		069MW-004-	069MW-004-	069MW-005-	069MW-005-	069MW-005-
	Field Sample ID	Receptor		0003-GW	0004-GW	0001-GW	0002-GW	0003-GW
	Lab Sample ID	(Lowest of		320-46168-2	320-48202-5	160-27124-6	160-28791-6	320-46191-5
	Sample Date	Adult or		12/13/2018	3/7/2019	3/6/2018	6/5/2018	12/14/2018
Sample Int	Child, Risk =		8-18	8-18	7-17	7-17	7-17	
	Sample Type	10 ⁻⁶ and HQ =		N	N	Ν	N	N
Chemical	CAS Number	0.1)	MCL					
Volatile Organic Comp	oounds (μg/L)							
Carbon tetrachloride	56-23-5	0.204	5	710	600	4.8	8.7	6.6
Chloroform 67-66-3		0.207	80	250	180	0.56 B	1.4 B	1
Methylene Chloride 75-09-2		5.34	5	16 U	3.5 U	0.5 U	0.5 U	0.8 U
Chloromethane 74-87-3		19 ^(a)	-	16 U	15 U	0.25 U	0.25 U	0.8 U

	Site	FWCUC		CC RVAAP-69				
S	ample Location	FWCUG		069MW-005	069MW-006	069MW-006	069MW-006	069MW-007
		Resident		069MW-005-	069MW-006-	069MW-006-	069MW-006-	069MW-007-
	Field Sample ID	Receptor		0004-GW	0001-GW	0002-GW	9002-GW	0001-GW
	Lab Sample ID	(Lowest of		320-48202-4	320-46222-2	320-48218-6	320-48218-7	320-46222-3
	Sample Date	Adult or		3/7/2019	12/17/2018	3/8/2019	3/8/2019	12/17/2018
Sample In	Child, Risk =		7-17	5-15	5-15	5-15	7-17	
	Sample Type	10 ⁻⁶ and HQ =		N	N	N	FD	N
Chemical	CAS Number	0.1)	MCL					
Volatile Organic Comp	oounds (μg/L)							
Carbon tetrachloride	56-23-5	0.204	5	5	0.4 U	1 UJ	1 U	0.4 U
Chloroform	0.207	80	0.57 J	0.4 U	1 UJ	1 U	0.4 U	
Methylene Chloride 75-09-2		5.34	5	3.5 U	0.8 U	3.5 R	3.5 U	0.8 U
Chloromethane	19 ^(a)	-	15 U	0.8 U	15 R	15 U	0.8 U	

Results of 2018 Groundwater Monitoring Well Sampling CC RVAAP-69 Building 1048 Fire Station

	Site	FWCUC		CC RVAAP-69				
S	ample Location	FWCUG		069MW-007	069MW-008	069MW-008	069MW-009	069MW-009
		Resident		069MW-007-	069MW-008-	069MW-008-	069MW-009-	069MW-009-
	Field Sample ID	Receptor		0002-GW	0001-GW	0002-GW	0001-GW	0002-GW
	Lab Sample ID	(Lowest of		320-48218-2	320-46222-4	320-48202-2	320-46191-6	320-48202-3
	Sample Date	Adult or		3/8/2019	12/17/2018	3/7/2019	12/14/2018	3/7/2019
Sample In	Child, Risk =		7-17	7-17	7-17	7-17	7-17	
	Sample Type	10 ⁻⁶ and HQ =		N	N	N	N	Ν
Chemical	CAS Number	0.1)	MCL					
Volatile Organic Comp	oounds (μg/L)							
Carbon tetrachloride	56-23-5	0.204	5	1.4	0.4 U	1 U	0.4 U	1 U
Chloroform 67-66-3		0.207	80	1.8	0.4 U	1 U	0.4 U	1 U
Methylene Chloride 75-09-2		5.34	5	3.5 U	0.8 U	3.5 U	0.8 U	3.5 U
Chloromethane	19 ^(a)	-	15 U	0.8 U	15 U	0.8 U	15 U	

Notes:

BOLD = chemical detected

Concentration exceeds lowest FWCUG screening level. Concentration exceeds MCL

^(a) November 2018 Residential Tap Water RSL, lower of HQ=0.1 and ELCR=1 x

10⁻⁶. Only shown if there is no Groundwater FWCUG.

FWCUG = Facility-Wide Cleanup Goal

MCL = Safe Drinking Water Act Maximum Contaminant Level

 $\mu g/L = micrograms per liter$

FD = field duplicate

feet bgs = feet below ground surface

This Page Intentionally Left Blank.

06-06-2019 P:\Ravenna Arsenal\Boring Logs\069MW-002.bor

CC RVAAP-69 Remedial Investigation Ravenna Army Ammunition Plant 8451 State Route 5 Camp James A. Garfield, Ohio Portage and Trumbull Counties						CC RVAAP-69 69-1048-SB110/069MW-003 Start Date : 6 February 2018 (Boring) End Date : 14 February 2018 (Well) Weather : 10 F/Snow Northing Coord. : 551516.85 Easting Coord. : 2357765.97 Total Depth of Boring : 28.0'	Drilling C Driller Designati Type of E Geologis Oversigh Auger Ins PID Mode Sampling	Envirocore Fony Cramer Geoprobe 7822D Direct Push/Auger loe Peterlin Parsons 5.25" MiniRAE Lite I.5" x 4' long acetate liner 2" x 4' dual tube			
	lepth in feet	Samples	Recovery %	Sample ID	PID (ppm)	DESCRIPTION	nscs	GRAPHIC	w T	/ell: CC	069MW-003 Elev.: 1027.28
	0- - 1-	1			0.0	10YR3/4 Brown, moist, slightly plastic, CLAY, silt, trace gravel.	!				- Concrete
	2- 3- -	2	100		0.0						
	4	3		•	0.0		CL				
	6— 7—	4	100		0.0						
	8 9	5	100		0.0	10YR4/4 Brown, wet, SILTY SAND, with some clay.	SM				
	10- - 11- -	6		069SB-110-0088-SC	0.0		Siv	Alter ing the Signature Si			2" PVC Casing —Hole Plug 3/8" Sodium Bentonite
	12	7	100		0.0	10YR3/1 Brown grading to gray, slightly plastic, CLAY, silt, sand, with thin wet sandy layers.					
	14 – 15 –	8			0.0						
	10 - 17 - 18 -	9	100		0.0	10YR4/1 Gray, wet, CLAY, silt, sand.	CL				
	10 19- 20-	10		069SB-110-0089-SO	0.0	Weathered SANDSTONE					
	20 - 21-	11	100		0.0						
	22	12		069SB-110-0090-SC	0.0		ss				
	24 -	13	100		0.0						Best Brand 10-slot Filter Sand 2" PVC 0.010"
	20 27 27	14		069SB-110-0091-SC	0.0						Screen
0102-00-00	20- 29- 30-					Refusal at 28.0'. Notes: Ground Surface Elevation: 1024.73 Well Riser: Extends 2.55' above surface elevation					

06-06-2019 P:\Ravenna Arsenal\Boring Logs\069MW-004.bor

06-06-2019 P:\Ravenna Arsenal\Boring Logs\069MW-005.bor

P /	Α		sor	N	CC RVAAP-69 069MW-006 Start Date : 3 December 2018	Drilling Driller Designa Type of Geologi	Comp ation of Drill I ist	oany of Dr Rig	ill	: Frontz Drilling : Bryan Phillips : Geoprobe : Direct Push/Auger : Joe Peterlin		
co	C RVA Raver Carr Porta	AP-6 nna A 845 ip Jai age a	9 Remedial Invest Army Ammunition F 1 State Route 5 mes A. Garfield, O nd Trumbull Coun	tigatior Plant hio ties	End Date: 3 December 2018Weather: 42 F/CloudyNorthing Coord.: 551597Easting Coord.: 2357685Total Depth of Boring: 20.0'	Oversight Company Auger Inside Diameter PID Model Sampling Equipment				: Parsons r : 4.25" : MiniRAE Lite : 1.5" x 4' long acetate liner : 2" x 4' dual tube		
Depth in feet	Samples	Recovery %	Sample ID	PID (ppm)	DESCRIPTION	3031	s)su	GRAPHIC	We TO	II: 069MW-006 C Elev.: 1028.39		
0- - 1- 2-	1	100		0.0	Grass and 4" organic layer. 10YR4/4 Brown, moist, slightly plastic, SAND, silt, and clay. Trace gravel.					- Hole Plug 3/8"		
3- 4-	2			0.0						2" PVC Casing		
5	3	100		0.0		s	۶P					
8- 8- 9-	5			0.0						Best Brand 10-slot		
10-	6	100		0.0	10YR3/3 Gray, moist, slightly plastic, CLAY and silt.					Filter Sand 		
12— 	7	100		0.0	10YR4/1 Gray, wet, slightly plastic, CLAY, silt, and sand.	c	Ľ					
	8			0.0	10YR5/2 Brown, moist, slightly plastic, CLAY and silt.							
17 – - 18 – - 19 –	9	100		0.0	10YR5/2 Brown, moist, SAND, silt, and gravel. Gravel contains coal fragments and rounded sandstone	s	iP					
$ \begin{array}{c} 19 \\ 20 \\ 21 \\ 21 \\ 22 \\ 23 \\ 23 \\ 24 \\ 25 \\ 26 \\ 26 \\ 27 \\ 28 \\ 29 \\ 29 \\ 20 \\ 20 \\ 20 \\ 20 \\ 20 \\ 20 \\ 20 \\ 20$				0.0	Fragments. End of boring at 20.0'. Notes: Ground Surface Elevation: 1025.44 Well Riser: Extends 2.95' above surface elevation							

	C RVA Ravel Carr Porta	AP-6 nna A 845 np Jar age a	9 Remedial Invest rmy Ammunition F 1 State Route 5 mes A. Garfield, O nd Trumbull Coun	tigation Plant hio ties	Start Date : 3 December 2018 End Date : 6 December 2018 Weather : 42 F/Cloudy Northing Coord. : 551417 Easting Coord. : 2357745 Total Depth of Boring : 20.0'	Drilling Company Driller Designation of Drill Type of Drill Rig Geologist Oversight Company Auger Inside Diameter PID Model Sampling Equipment				: Frontz Drilling : Bryan Phillips : Geoprobe : Direct Push/Auger : Joe Peterlin : Parsons r : 4.25" : MiniRAE Lite : 1.5" x 4' long acetate liner : 2" x 4' dual tube		
Depth in feet	Samples	Recovery %	Sample ID	PID (ppm)	DESCRIPTION		NSCS	GRAPHIC	W TC	ell: 00 DC El	69MW-007 lev.: 1029.35	
	1	100		0.0	Grass and 4" topsoil layer. 10YR6/4 Brown, moist, plastic, CLAY and silt. Trace sand and gravel.		SP				 Concrete Hole Plug 3/8" Sodium Bentonite 2" PVC Casing 	
5	3 4 5	100		0.0	Wet, SANDY CLAY and silt.		CL					
10- 	6	100		0.0	10YR5/3 Brown, moist, plastic, CLAY and silt. Trace sand and gravel. 10YR5/1 Gray, moist, plastic, CLAY and silt. Trace	(CL		_		—Best Brand 10-slot Filter Sand	
13- 	7 8	100		0.0	sand.	(CL				—2" PVC 0.010 Screen	
10- 17- 18- 19-	9	100		0.0	Hard, brittle, 10YR4/1 gray, CLAY. May be weathered shale or shale fragments.							
20- 21- 22- 23- 24- 25- 26- 27- 28- 29- 30-					End of boring at 20.0'. Notes: Ground Surface Elevation: 1026.32 Well Riser: Extends 3.03' above surface elevation							

06-06-2019 P:\Ravenna Arsenal\Boring Logs\069MW-008.bor
[AP-6	9 Remedial Inves		5	CC RVAAP-69 069MW-009 Start Date : 4 December 2018 End Date : 5 December 2018 Worthan : 4 December 2018	Drilling Company: Frontz DrillingDriller: Bryan PhillipsDesignation of Drill: GeoprobeType of Drill Rig: Direct Push/AugerGeologist: Joe PeterlinOversight Company: Parsons			ontz Drilling yan Phillips oprobe ect Push/Auger e Peterlin rsons		
		Rave Carr Porta	nna A 845 ip Jar age ai	rmy Ammunition 1 State Route 5 nes A. Garfield, 0 nd Trumbull Cour	Plant Dhio nties		Weather. 31 F/CloudyNorthing Coord.: 551267Easting Coord.: 2358007Total Depth of Boring: 32.0'	Auger Inside Diameter : 4.25" PID Model : MiniRAE Lite Sampling Equipment : 1.5" x 4' long acetate lin : 2" x 4' dual tube					niRAE Lite " x 4' long acetate liner x 4' dual tube
	Depth in feet	Samples	Recovery %	Sample ID	PID (ppm)		DESCRIPTION		nscs	GRAPHIC	W T('ell: 0 DC E	69MW-009 lev.: 1023.54
	0 1 2 3	1	100		0.0	∖Gras 10YF with t	s and Topsoil R5/4 Brown, moist, slightly plastic,CLAY, silt, sand, trace gravel.						Concrete Hole Plug 3/8" Sodium Bentonite
	4 - 5 - 6 - 7 -	3	100		0.0			c	CL		_		2" PVC Casing
	8- 9- 10- 11-	5	100		0.0	10YF	R5/3 Brown, wet, fine SAND and silt, trace gravel.						Poet Prend 10 clot
	12 - 13 - 14 - 15 -	7	100		0.0			s	SP				Filter Sand -2" PVC 0.010 Screen
	16 17 18 18	9	100		0.0	7.5Y	R6/1 Gray, moist, slightly plastic, CLAY and silt. R4/4 Brown, wet, SAND, silt, clay.	C S	CL SP				
	19 20 21 22 22	11	100		0.0	7.5Y 10YF and g	R6/1 Gray, moist, slightly plastic, CLAY and silt. R4/1 Gray, moist, plastic, SILT and clay. Trace sand gravel.	C	CL				
s\069MW-009.bor	23 24 25 26	12	100		0.0			N	ΛL				
Arsenal\Boring Log	27 28 29 30	14 15	100		0.0	∖3" gra 10YF and g	avely layer R5/1 Gray, moist, plastic, SILT and clay. Trace sand gravel.	G 	W ۱L				
06-06-2019 P:\Ravenna	31 - 32 - 33 - 34 - 35 -	16			0.0	End C Note Grou	VEL and sand. Rounded sandstone fragments. of boring at 32.0'. s: nd Surface Elevation: 1023.71	G	€P				

	RVA Raver	AP-6 nna / 845	69 Remedial Invest Army Ammunition F 11 State Route 5	igation Plant	Start Date : 6 February 2018 End Date : 6 February 2018 Weather : 10 F/Snow Northing Coord. : 551532.30	Drilling Company: EnvirocoreDriller: Tony CramerDesignation of Drill: Geoprobe 7822DType of Drill Rig: Direct Push/AugerGeologist: Joe PeterlinOversight Company: ParsonsBorehole Diameter: 2"PID Model: MiniRAE Lite		ny : Envirocore : Tony Cramer Drill : Geoprobe 7822D g : Direct Push/Auger : Joe Peterlin npany : Parsons teter : 2" : MinRAE Lite
	Cam Porta	ip Ja age a	mes A. Garfield, O and Trumbull Count	hio ties	Easting Coord. : 235/780.78 Total Depth of Boring : 23.0'	Samplin	g Equi	pment : 1.5" x 4' long acetate liner : 2" x 4' dual tube
Depth in feet	Samples	Recovery %	Sample ID	PID (ppm)	DESCRIPTION	SUSI	GRAPHIC	Boring: 69-1048-SB111 Surf. Elev.: 1025.08
0- 1- 2-	1	100		0.0	Topsoil 10YR4/2 Brown, moist, slightly plastic, CLAY, silt, sand trace gravel.	, c	_	
3-	2			0.0				
4	3			0.2	10YR4/3 Brown, wet, CLAY, silt, sand, trace gravel.	C	-	
6— 7—	4	100		0.2	10YR4/1 Gray, moist, CLAY, silt, and sand.			
0- - 9- 10-	5	100		0.0				
10	6			0.0	10YR5/1 Grav. wet CLAY silt and sand			Hole Plug 3/8"
13- 14-	7	100	069SB-111-0096-SO	0.0		C	-	
15- 16-	8			0.0				
17— 17— 18—	9	100		0.0				
- 19	10		069SB-111-0097-SO	0.0				
20-	11	100		0.0	Weathered SANDSTONE	S	3	
22-	12		069SB-111-0098-SO					
24-					Refusal at 23.0'.			
25-								
26-								
27 -								
28-								
29-								
30-								

CC RVAAP-69 Remedial Investigation Ravenna Army Ammunition Plant 8451 State Route 5 Camp James A. Garfield, Ohio Portage and Trumbull Counties					Start Date : 6 February 2018 End Date : 6 February 2018 Weather : 10 F/Snow Northing Coord. : 551471.53 Easting Coord. : 2357813.93 Total Depth of Boring : 14.0'	Drillir Drille Desiq Type Geole Over Borel PID N Sam	ng Co gnatic of Di ogist sight hole I Mode pling	ompan on of E rill Rig Comp Diame I Equipi	y : Envirocore : Tony Cramer Drill : Geoprobe 7822D : Direct Push/Auger : Joe Peterlin any : Parsons ter : 2" : MiniRAE Lite ment : 1.5" x 4' long acetate liner : 2" x 4' dual tube
Depth in feet	Samples	Recovery %	Sample ID	PID (ppm)	DESCRIPTION		NSCS	GRAPHIC	Boring: 69-1048-SB112 Surf. Elev.: 1024.86
0-	1			0.0	Topsoil 10YR5/4 Brown, moist, CLAY, silt, sand, trace gravel.	/	CL		
2	2	75		0.0	Wet SAND with some gravel, silt, and clay.		SP		
4	3			0.0	10YR3/2 Brown, moist, CLAY, silt, sand, trace gravel.				
6- - 7- - 8-	4	100		0.0	10VR5/4 Brown wet CLAY silt sand trace gravel				Hole Plug 3/8" Sodium Bentonite
9-	5			0.0			CL		
10-	6	100	069SB-112-0099-SO	0.0					
12-	7	100		0.0	10YR4/3 Brown, stiff, CLAY, silt, sand, trace gravel.		CL		
14-					Refusal at 14.0'.			V / / .	
16 - 17 - 18 - 19 - 19 - 20 - 21 - 22 - 23 - 22 - 23 - 22 - 23 - 22 -									

06-06-2019 P:\Ravenna Arsenal\Boring Logs\69-1048-SB112.bor

	C RVA Raver Cam Porta	AP-6 nna A 845 ip Ja	69 Remedial Invest Army Ammunition F 1 State Route 5 mes A. Garfield, O and Trumbull Count	igatior Plant hio ties	Start Date : 6 February 2018 End Date : 6 February 2018 Weather : 10 F/Snow Northing Coord. : 551468.49 Easting Coord. : 2357760.17 Total Depth of Boring : 24.0'	Drilling Company: EnvirocoreDriller: Tony CramerDesignation of Drill: Geoprobe 7822DType of Drill Rig: Direct Push/AugerGeologist: Joe PeterlinOversight Company: ParsonsBorehole Diameter: 2"PID Model: MiniRAE LiteSampling Equipment: 1.5" x 4' long acetate liner: 2" x 4' dual tube							
Depth in feet	Samples	Recovery %	Sample ID	PID (ppm)	DESCRIPTION		USCS	GRAPHIC	Boring Surf.	g: 69-1048-SB113 Elev.: 1025.93			
0	1	75		0.0	Topsoil 10YR3/1 Brown, moist, slightly plastic, CLAY, silt, sand trace gravel.	,							
4	3	100		0.0			CL						
8	5	100	069SB-113-0102-SO	69SB-113-0102-SO	069SB-113-0102-SO)69SB-113-0102-SO	0.0						
11- 12- 13- 13- 14-	6 7	100		0.0	10YR4/2 Brown, wet, SAND, with clay, silt, and gravel. 10YR4/2 Brown, moist, slightly plastic, CLAY, silt, sand trace gravel.	,	SP CL			—Hole Plug 3/8" Sodium Bentonite			
15- 	9	100	069SB-113-0103-SO	0.0	10YR3/1 Gray, moist, CLAY, silt, sand.								
19- 20- 21- 22-	10	100	00000 410 0404 00	0.0			CL						
23- 23- 24- 25- 26-	12		00958-113-0104-50	0.0	10YR4/4 Brown, weathered SANDSTONE End of boring at 24.0'.		SS						
27- 28- 29- 30-													

06-06-2019 P:\Ravenna Arsenal\Boring Logs\69-1048-SB113.bor

	C RVA Raver Cam Porta	AP-6 nna A 845 p Ja	69 Remedial Invest Army Ammunition F 51 State Route 5 mes A. Garfield, O and Trumbull Coun	tigation Plant hio ties	S CC RVAAP-69 69-1048-SB114 Start Date : 4 December 2018 End Date : 4 December 2018 Weather : 31 F/Cloudy Northing Coord. : 551478 Easting Coord. : 2357811 Total Depth of Boring : 24.0'	Drilling Company: Frontz DrillingDriller: Bryan PhillipsDesignation of Drill: GeoprobeType of Drill Rig: Direct Push/AugerGeologist: Joe PeterlinOversight Company: ParsonsBorehole Diameter: 2"PID Model: MiniRAE LiteSampling Equipment: 1.5" x 4' long acetate line: 2" x 4' dual tube			
Depth in feet	Samples	Recovery %	Sample ID	PID (ppm)	DESCRIPTION		USCS	GRAPHIC	Boring: 69-1048-SB114 Surf. Elev.: 1024.76
0	1			0.0	Moist, 10YR3/3 brown, slightly plastic CLAY, silt, sand, with trace gravel.				
3-	2			0.0					
5-	3		069SB-114-0105-SC	0.0		(CL		
7-	4			0.0					
9-	5		069SB-114-0106-SC	0.0	10YR4/4 Brown, wet, CLAY, silt, sand.		CL		
10-	6			0.0	10YR4/4 Brown, moist, CLAY, silt, sand.				
12-	7			0.0		(CL		Hole Plug 3/8" Sodium Bentonite
14 – 15 –	8		069SB-114-0107-SO	0.0	10YR4/1 Gray, moist, plastic, CLAY and silt.				
16- - 17-	9			0.0					
18- 19-	10		06058 114 0108 50	0.0			CL		
20-	11		00000-114-0100-00	0.0					
22-	12			0.0	10YR2/2 Brown, wet, SAND with some silt and clay.		SP		
24-					End of boring at 24.0'.				
26-									
27-									
29- 30-									

	C RVA Raver Cam Porta	AP-6 ina A 845 p Ja age a	69 Remedial Invest Army Ammunition F 11 State Route 5 mes A. Garfield, O and Trumbull Coun	tigation Plant hio ties	Start Date : 4 December 2018 End Date : 4 December 2018 Weather : 31 F/Cloudy Northing Coord. : 551409 Easting Coord. : 2357872 Total Depth of Boring : 20.0'	Drilling Company: Frontz DrillingDriller: Bryan PhillipsDesignation of Drill: GeoprobeType of Drill Rig: Direct Push/AugerGeologist: Joe PeterlinOversight Company: ParsonsBorehole Diameter: 2"PID Model: MiniRAE LiteSampling Equipment: 1.5" x 4' long acetate: 2" x 4' dual tube		ntz Drilling an Phillips oprobe ect Push/Auger Peterlin sons iRAE Lite 4' dual tube			
Depth in feet	Samples	Recovery %	Sample ID	PID (ppm)	DESCRIPTION		USCS	GRAPHIC	Bor Sur	ing: f. E	69-1048-SB115 lev.: 1024.72
0	1			0.0	Asphalt - 3" Gravel base.		AR GP				
2- 3-	2	60		0.0	10YR5/3 Brown, moist, slightly plastic, CLAY, silt, sand trace gravel.	3					
4- 5-	3			0.0			CI				
6	4		069SB-115-0109-SO	0.0			ΟL				
8— 9—	5			0.0							
10-	6		06050 115 0110 50	0.0	10YR3/3 Gray, moist, slightly plastic, CLAY, silt, sand, trace gravel.		CL				
12— 13—	7		00930-113-0110-30	0.0	10YR4/2 Brown, wet, SAND and silt, trace clay and gravel.			elielieli elielieli elielieli			
14 — 15 —	8			0.0			SP	e die die di e die die di e die die di e die die di e die die di			—Hole Plug 3/8" Sodium Bentonite
	9			0.0	Interbedded, wet, 10YR4/3 brown, SAND between 10YR4/1 gray, moist plastic clay and silt. Sand contains	6					
18-	10		069SB-115-0111-SO	0.0	4 inches of weathered sandstone at the bottom.						
20— 21—	11			0.0	into a "u" shape.		SP	alalal alalal alalal alalal alalal			
22-	12		069SB-115-0112-SO	0.0				adadad adadad adadad adadad adadad			
24	13	50		0.0	Top 6": 10YR4/4 Brown, weathered SANDSTONE Bottom 18": 10YR3/1 Gray CLAY, silt, sand, gravel, and rock fragments.						
26-	14			0.0	Small organic fragments in very bottom.		SS				
28-					End of boring at 28.0'.						
29-											
30-											

06-06-2019 P:\Ravenna Arsenal\Boring Logs\69-1048-SB115.bor

From:	Ed.Damato@epa.ohio.gov
То:	Shreffler, Rebecca M
Cc:	KATHRYN.S.TAIT.NFG@MAIL.MIL; craig.a.coombs@usace.army.mil; Kevin M Sedlak - ARNG-ILE Clean Up
	(Kevin.m.sedlak.civ@mail.mil)
Subject:	[EXTERNAL] RE: Correspondence sent 29 August 2019
Date:	Thursday, September 26, 2019 8:43:38 AM

Thank you. Ohio EPA has reviewed the document and has no further comments.

Ed D'Amato

Division of Environmental Response and Revitalization Ohio EPA Northeast District Office 2110 E. Aurora Rd Twinsburg, OH 44087 Direct: (330) 963-1170 Fax: (330) 487-0769 ed.damato@epa.ohio.gov

From: Shreffler, Rebecca M <Rebecca.Shreffler@chenega.com>

Sent: Thursday, August 29, 2019 2:06 PM

To: Damato, Ed <Ed.Damato@epa.ohio.gov>

Cc: Princic, Bob <bob.princic@epa.ohio.gov>; Susan Oliver <soliver@managementsolutionsllc.com>; Tait, Kathryn <KATHRYN.S.TAIT.NFG@MAIL.MIL>; craig.a.coombs@usace.army.mil; Gail Harris <gail.harris@vistasciences.com>; Brillinger, Allan <Allan.Brillinger@chenega.com>; 'Peters, Nathaniel II LRL' <Nathaniel.Peters.II@usace.army.mil>; Tierney, Jennifer M <Jennifer.Tierney@chenega.com>; Schneider, Thomas <Thomas.Schneider@epa.ohio.gov>; Cortney Horne (CHorne@Managementsolutionsllc.com) <CHorne@Managementsolutionsllc.com>; Matt Burghardt <mburghardt@managementsolutionsllc.com>; Kevin M Sedlak - ARNG-ILE Clean Up (Kevin.m.sedlak.civ@mail.mil) <Kevin.m.sedlak.civ@mail.mil>; David Connolly - NG (david.m.connolly8.civ@mail.mil) <david.m.connolly8.civ@mail.mil>; Devlin, Inger D <Inger.Devlin@chenega.com>; Oryshkewych, Natalie <Natalie.Oryshkewych@epa.ohio.gov>; Mcevoy, Liam <Liam.McEvoy@epa.ohio.gov>; 'Mieczkowski, Kevin (USACE)' <Kevin.M.Mieczkowski@usace.army.mil>; Rasik, Carrie <Carrie.Rasik@epa.ohio.gov>; Palombo, Kevin <Kevin.Palombo@epa.ohio.gov>; Heyse, Ed <Ed.Heyse@parsons.com> Subject: Correspondence sent 29 August 2019

Dear Mr. D'Amato,

Please see attached correspondence sent 29 August 2019 regarding the Response to Comments on the Second Update and Progress Report for Remedial Investigation at CC RVAAP-69 Building 1048 Fire Station.

If you have any questions please contact Mr. David Connolly at 703-607-7589 or <u>david.m.connolly8.civ@mail.mil</u>.

Fed Ex Tracking number: 7761 1218 6682

Happy Trails,

Becky Shreffler

Rebecca Shreffler Administrative Assistant Chenega Tri-Services, LLC Camp James A. Garfield Joint Military Training Center 1438 State Route 534 SW Newton Falls, OH 44444 P: (330) 872-4411 F: (330) 872-4412 rmshreffler@chenega.com

Did You Know: Children of parents who talk to their teens about drugs are up to 50% less likely to use. Start the conversation: <u>StartTalking.Ohio.Gov</u>

This email is intended for the sole use of the intended recipient and may contain privileged, sensitive or protected information. If you are not the intended recipient, be advised that the unauthorized use, disclosure, copying, distribution, or action taken in reliance on the contents of this communication is prohibited. If you have received this email in error, please notify the sender via telephone or return email and immediately delete this email.

NATIONAL GUARD BUREAU 111 SOUTH GEORGE MASON DRIVE ARLINGTON VA 22204-1373

August 27, 2019

Ohio Environmental Protection Agency DERR-NEDO Attn: Edward D'Amato 2110 East Aurora Road Twinsburg, OH 44087-1924

Subject: Former Ravenna Army Ammunition Plant (RVAAP) Restoration Program Remedial Investigation Progress Report for CC RVAAP-69 Building 1048 Fire Station Portage/Trumbull Counties, Ohio, Contract Number W912QR-12-D-0002, Delivery Order 0003, Ohio EPA ID # 267-000859-214

Dear Mr. D'Amato:

Thank you for your review of the Second Update and Progress Report for Remedial Investigation at CC RVAAP-69 Building 1048 Fire Station in your letter dated 21 August 2019. Please note that the current US Army Corps of Engineers contract with Parsons only includes options for three additional monitoring wells. Your comment regarding the need for additional wells to complete the Remedial Investigation is noted and will be considered during future contract considerations.

Please contact the undersigned at (703) 607-7589 or <u>david.m.connolly8.civ@mail.mil</u> if you have any concerns or questions.

Sincerely,

David M. Connolly RVAAP Restoration Program Manager Army National Guard Directorate

cc: Tom Schneider, Ohio EPA, SWDO Natalie Oryshkewych, Ohio EPA, NEDO, DERR Bob Princic, Ohio EPA, NEDO, DERR Liam McEvoy, Ohio EPA, NEDO Carrie Rasik, Ohio EPA, CO Kevin Palombo, Ohio EPA, NEDO, DERR Kevin Sedlak, ARNG, CJAG Katie Tait, OHARNG, CJAG Craig Coombs, USACE Louisville Kevin Mieczkowski, USACE Louisville Gail Harris, Vista Sciences Patrick Ryan, Leidos Ed Heyse, Parsons

August 22, 2019

Ohio Environmental Protection Agency DERR-NEDO Attn: Mr. Ed D'Amato 2110 East Aurora Road Twinsburg, OH 44087-1924

Subject: Notification of Field Work, Ravenna Army Ammunition Plant (RVAAP) Restoration Program, Portage/Trumbull Counties, Quarterly Sampling for CC RVAAP-69 Building 1048 Fire Station, Ohio EPA ID #s 267-000859-222

Dear Mr. D'Amato:

In accordance with the Director's Final Findings and Orders, Section XIII, #28, for the RVAAP Restoration Program, the Army National Guard (ARNG) is providing notification of field activities at Camp James A. Garfield / former RVAAP 15 days prior to the scheduled start date. Parsons will be conducting quarterly groundwater sampling at CC RVAAP-69 Building 1048 Fire Station during the week of 9 September 2019 (anticipate two days, 10 and 11 September 2019).

For additional information on the field activities, please refer to the *Final Work Plan Additional Sampling for CC RVAAP-69 Building 1048 Fire Station, CC RVAAP-70 East Classification Yard, and CC RVAAP-74 Building 1034-Motor Pool Hydraulic Lift at the former Ravenna Army Ammunition Plant (RVAAP) submitted to Ohio EPA on 30 November 2017 and approved on 27 December 2017, and the <i>Final Update and Progress Report on Remedial Investigation at CC RVAAP-69 Building 1048 Fire Station, Ravenna Army Ammunition Plan Restoration Program*, dated 24 July 2018.

Please contact the undersigned at (703) 607-7589 or <u>david.m.connolly8.civ@mail.mil</u> if there are issues or concerns with this submission.

Sincerely, SEDLAK.KEVIN.MIC Digitally signed by SEDLAK.KEVIN.MICHAEL125444017 HAEL.1254440171 Date: 2019.08.22 10:23:09-05'00' FOR Mr. David M. Connolly RVAAP Restoration Program Manager Army National Guard Directorate

cc: Mark Johnson, Ohio EPA, DERR-NEDO Bob Princic, Ohio EPA, DERR-NEDO Tom Schneider, Ohio EPA, SWDO Kevin Sedlak, ARNG, CJAG Katie Tait, OHARNG, CJAG Craig Coombs, USACE Louisville Kevin Mieczkowski, USACE Louisville Gail Harris, Vista Sciences Edward Heyse, Parsons

Mike DeWine, Governor Jon Husted, Lt. Governor Laurie A. Stevenson, Director

August 21, 2019

RE: US Army Ravenna Ammunition Remediation Response Correspondence Remedial Response Portage County ID # 267000859214

Mr. David Connolly Army National Guard Directorate Environmental Programs Division ARNG-ILE-CR 111 South George Mason Drive Arlington, VA 22204

Subject: Review of Remedial Investigation Progress Report

Dear Mr. Connolly:

The Ohio Environmental Protection Agency (Ohio EPA), Northeast District Office (NEDO), Division of Environmental Response and Revitalization (DERR) has reviewed the "Second Update and Progress Report for Remedial Investigation at CC RVAAP-69 Building 1048 Fire Station." The document and was received by Ohio EPA on June 12, 2019.

Ohio EPA has the following comments:

- 1. Ohio EPA concurs with the following:
 - The conclusion that soil impact around the Former Building 1048 Fire Station appears adequately delineated laterally and vertically and that no further soil investigation appears warranted at this time.
 - Sampling results of the existing nine monitoring wells in this area determined that further ground water delineation appears warranted around select wells.
 - The proposed installation of additional monitoring wells 069MW-010 and 069MW-011 to the east and southeast respective 069MW-005, in the unconsolidated aquifer. The additional deeper Upper Sharon Weathered Bedrock monitoring well 069MW-012 is proposed to be adjacent to 069MW-004.

RECEIVED AUG 21 2019 MR. CONNOLLY CC RVAAP-69 BUILDING 1048 FIRE STATION REMEDIAL INVESTIGATION PROGRESS REPORT AUGUST 21, 2019 PAGE 2

- · Pending the sampling and gauging of these proposed well installations. future delineation wells may also be warranted (a well south/southwest of 069MW-007, a well north of 069MW-005, a well east of 069MW-010 and 069MW-011, and an additional deep well downgradient of 069MW-003 and 069MW-012).
- Ohio EPA recommends the installation of an additional monitoring well 2. north/northeast of 069MW-001 concurrently with the three proposed delineation wells referred to in Comment 1. This additional delineation well location appears warranted based on ground water concentrations of carbon tetrachloride and chloroform, and mounded potentiometric surface contours in that area which could result in potential migration from the former building footprint to the north/northeast.

If you have any questions, please feel free to contact me at (330) 963-1170, or by email at ed.damato@epa.ohio.gov.

Sincerely

Edward J. D'Amato Site Coordinator Division of Environmental Response and Revitalization

ED/sc

David Connolly, ARNG ec: Kevin Sedlak, ARNG, Camp James A. Garfield Katie Tait, OHARNG, Camp James A. Garfield Craig Coombs, USACE Louisville Nathaniel Peters, USACE Louisville Rebecca Shreffler, Chenega Tri-Services, LLC Mark S. Johnson Jr., Ohio EPA, Director's Office Bob Princic, Ohio EPA, NEDO, DERR Tom Schneider, Ohio EPA, SWDO, DERR Liam McEvoy, Ohio EPA, NEDO, DERR Carrie Rasik, Ohio EPA, CO, DERR Kevin Palombo, Ohio EPA, CO, DERR

Louisville Army Corps of Engineers Attn: Mr. Kevin Mieczkowski PE, Technical Manager 600 Dr. Martin Luther King Jr. Place Louisville KY 40202

24 July 2018

Subject: Update and Progress Report on Remedial Investigation at CC RVAAP-69 Building 1048 Fire Station, Ravenna Army Ammunition Plant Restoration Program, Camp Ravenna, Portage and Trumbull Counties, Ohio

Dear Mr. Mieczkowski:

Sampling was conducted in February and March 2018 to address data gaps at CC RVAAP-69 Building 1048 Fire Station as proposed in the *Final Work Plan, Additional Sampling for CC RVAAP-69 Building 1048 Fire Station, CC RVAAP-70 East Classification Yard, and CC RVAAP-74 Building 1034-Motor Pool Hydraulic Lift, Ravenna Army Ammunition Plant Restoration Program, Camp Ravenna, Portage and Trumbull Counties, Ohio*, November 30, 2017. The purpose of this letter is to summarize the results of those sampling events and outline additional sampling to complete the Remedial Investigation. The additional sampling and analyses described in this Update and Progress Report letter are consistent with the objectives of the Work Plan and will follow methodologies described the Work Plan.

Objectives of Additional Sampling

The Final Work Plan (Parsons 2017) contained the following objectives for investigations at CC RVAAP-69:

- Define the vertical extent of carbon tetrachloride in soil near SB101;
- Define the lateral extent of carbon tetrachloride contamination is soil below a depth of 1,018 feet above mean sea level (AMSL); and
- Evaluate impacts to groundwater.

February / March 2018 Investigation Activities

The following activities were conducted to meet those objectives:

• Drilled 4 soil borings and collected soil samples from: SB110 (28 feet below ground surface [bgs]); SB111 (23 feet bgs); SB112 (14 feet bgs) and SB113 (24 feet bgs).

Parsons PLUS envision more

- Collected groundwater grab (screening) samples using direct push drilling techniques at 17 locations (all samples collected near water table).
- Installed and sampled 5 new permanent monitoring wells; four wells (069MW-001, 069MW-002, 069MW-004 and 069MW-005) screened at the water table (screens set from 5-15 or 7-17 feet bgs) and one well (069MW-003) screened in weathered bedrock (23-28 feet bgs).
- Three additional monitoring wells were also installed and sampled at nearby CC RVAAP-74 Building 1034 Motor Pool Hydraulic Lift, and these provide information useful to CC RVAAP-69.

Summary of Findings

Historical and 2018 sampling locations are illustrated in Figure 1. Soil sampling results are presented in Table 1. Groundwater grab sample results are presented in Table 2. Groundwater monitoring well results are presented in Table 3.

Soil

Soil sampling results for carbon tetrachloride are illustrated in plan view in Figure 2, in cross section view in Figures 3 and 4, and are summarized below.

- Subsurface geology is primarily brown clays with interbedded silts and sands from the surface to as deep as 15 to 19 feet bgs. (1,006 to 1,010 feet AMSL). A layer of gray clay was encountered below the brown clays. Weathered sandstone was encountered below the gray clay at about 1,005 feet AMSL. Hollow stem auger refusal was encountered at 28 feet bgs (997 feet AMSL) at SB110. Photographs of soil cores from SB110 are attached.
- Carbon tetrachloride and chloroform were detected in soil samples at depths above 14 feet bgs (in the brown clays, sands and silts), which is consistent with previous investigations. Methylene chloride was detected in only one soil sample. Chloromethane was not detected in any soil sample (Table 1).
- The highest concentrations (> 1 mg/kg) of carbon tetrachloride in soil are primarily within the footprint of the former Building 1048 Fire Station (SB101, SB104, SB110, SB112 and RV5-SB2 on Figures 2 and 3).
- SB110 shows no soil impacts in the gray clay or weathered sandstone (below about 1,004 ft AMSL) (Figure 3).
- SB111 and SB113 delineate the lateral extent of contamination in soil to the north and south (Figure 4).
- Refusal for SB112 was encountered at only 14 feet bgs. As a result, it is not clear if soil contamination is delineated to the southeast (SB112 and Figure 3).

Groundwater Presence and Gradients

Groundwater elevations were measured on 5 and 6 March 2018, and observations are summarized below:

- The interpreted water table potentiometric surface indicates a gradient to the southeast (Figure 5). Potentiometric surface elevations and gradient are consistent with facility wide potentiometric surface maps for the unconsolidated aquifer as presented in Facility-Wide Groundwater Annual Reports.
- The water table elevation within the former fire station footprint appeared to be slightly higher than outside of the building footprint in March 2018 as shown by the potentiometric surface in wells 069MW-001 and 069MW-002 (Figure 5).
- Hydraulic head in Well 069MW-001 (screened 5-15 feet bgs) is approximately 1,019.7 feet AMSL, and in Well 06MW-003 (screened 23-28 feet bgs) is approximately 1,016.7 feet bgs, indicating a vertical (downward) gradient from the unconsolidated overburden to the weathered bedrock. The three-foot difference in hydraulic head between these wells suggests that the gray clay layer (located between the two screened intervals) is limiting vertical migration of groundwater.

Groundwater Contamination

Groundwater sampling results are presented in Tables 2 and 3, and illustrated in Figures 6, 7, and 8, and are summarized below.

- Primary contaminants in groundwater are carbon tetrachloride and chloroform. Lower concentrations of methylene chloride were also detected and are generally coincident with higher concentrations of chloroform. Chloromethane was not detected in any sample.
- Groundwater grab sample results (Table 2 and Figure 6):
 - Carbon tetrachloride was delineated to maximum contaminant level (MCL) (5 μ g/L) in every direction except north of 069WP-001;
 - The highest concentrations of carbon tetrachloride (> 100 μg/L) detected at 069WP-001, 069WP-004 and 069WP-003 were within the former Building 1048 Fire Station footprint;
 - Lower concentrations of carbon tetrachloride detected ($< 5 \mu g/L$) to east (069WP-006) and southeast (069WP-016) suggested migration in these directions; and
 - Concentrations of all contaminants were below detection limits in sample 069WP-015 near Range Control Building.
- Monitoring wells sample results (Table 3 and Figures 7 and 8 note, carbon tetrachloride concentration contours were estimated using both grab sample and monitoring well results):
 - Carbon tetrachloride and chloroform were detected in all four newly installed water table wells. Carbon tetrachloride concentrations were $> 100 \ \mu g/L$ in wells 069MW-001 and 069MW-004;
 - Carbon tetrachloride concentrations exceeded the MCL of 5 µg/L in wells 069MW-001 and 069MW-004.
 - Chloroform concentration exceeded the MCL of 80 µg/L in well 069MW-001.
 - Methylene chloride concentration exceeded the MCL of 5 µg/L in well 069MW-003.

- Carbon tetrachloride DNAPL is unlikely to be present because dissolved concentrations in groundwater are much lower that the solubility limit of 800,000 μ g/L;
- The VOC plume extent is not defined to the southeast of well 069MW-004 (Figure 7). However, carbon tetrachloride was not detected in CC RVAAP-74 wells (Figure 8) located about 500 feet southeast, indicating that the plume does not migrate as far as CC RVAAP-74;
- VOC concentrations in 069MW-002 (upgradient) and 069MW-005 (to the east) are below MCL but above FWCUG; and
- The sample from deep well 069MW-003 contained chloroform and methylene chloride but not carbon tetrachloride. It is unclear if these contaminants were introduced during drilling the well, or if they indicate vertical migration and reductive dechlorination of dissolved contaminants.

Potential Vapor Intrusion

- The only currently occupied building near the site is Range Control (located east of CC RVAAP-69).
- Carbon tetrachloride (4.8 μ g/L) and chloroform (0.56B μ g/L) were detected in groundwater at 069MW-005 (140 feet west of the Range Control Building). Neither compound was detected the groundwater grab sample at 069WP-015 located 50 feet west of the building.
- The USEPA Vapor Intrusion Screening Level (VISL) calculator indicates that carbon tetrachloride concentrations below 27.7 μ g/L and chloroform concentrations below 53.3 μ g/L in groundwater will not pose a cancer risk above 10⁻⁵.
- Current data suggests no unacceptable risk from vapor intrusion to occupants of the Range Control Building.

Actions to Complete the Remedial Investigation:

The following actions are designed to complete the Remedial Investigation CC RVAAP-69 Building 1048 Fire Station.

- Complete vertical and lateral delineation of carbon tetrachloride and chloroform in soil (Figure 9).
 - Advance two soil borings to the top of the weathered bedrock (approximately 20 feet bgs). Collect soil samples every 5 feet for chlorinated methane analysis (note: use same approach as described for SB110 SB113 in the Work Plan). Bias samples toward vertical intervals with elevated PID reading as well as silt or sand layers (potential migration pathways). Collect at least one sample from the gray clay layer.
 - SB114 will be located within the former Building 1048 footprint (between SB101 and SB112); and
 - SB115 will be located southeast of the former Building 1048 near 069MW-004.
- Delineate carbon tetrachloride and chloroform in shallow groundwater by installing and sampling shallow monitoring wells (Figure 10).

- 069MW-006 will be located northwest of 069MW-002 to provide a sample location upgradient of plume;
- 069MW-007 will be located south of the centerline of the plume to confirm grab sample results and delineate the plume to the southwest;
- 069MW-008 and 069MW-009 will be located southeast of 069MW-004 (west and east of George Road, respectively) to define downgradient plume. Note that these locations may need to be adjusted to avoid utilities along George Road;
- If concentrations of carbon tetrachloride or chloroform increase in well 069MW-005, a new well may be needed closer to the Range Control Building to screen for the potential for vapor intrusion; and
- Additional wells may be needed to define downgradient extent of the plume in shallow groundwater.
- Investigate potential vertical migration of carbon tetrachloride reductive dechlorination intermediate products (e.g., chloroform) in groundwater.
 - Continue to monitor deep monitoring well 069MW-003. If chlorinated methanes are detected at concentrations above FWCUGs in 069MW-003 during the June 2018 sampling event, redevelop well prior to the September sampling event. If chlorinated methanes continue to be detected above FWCUGs in 069MW-003, install additional deep monitoring wells at CC RVAAP-69.

Please contact me at 256.217.2573 or email ed.heyse@parsons.com if you have any questions.

Sincerely

Edward Durn

Edward Heyse, PhD, PE Project Manager

CC: Ed D'Amato, Ohio EPA DERR (3 electronic copies, 1 hard copy) Tom Schneider, Ohio EPA, SWDO (1 electronic copy) Mark Johnson, Ohio EPA, DERR-NEDO (transmittal letter only) Bob Princic, Ohio EPA, DERR-NEDO (transmittal letter only) David Connolly, ARNG (1 electronic copy) Craig Coombs, USACE Louisville (transmittal letter only) Kevin Sedlak, ARNG (1 electronic copy) Katie Tait, OHARNG (1 electronic copy) Gail Harris, Vista Sciences (2 hard copies, 2 electronic copies) Pat Ryan, Leidos (transmittal letter only) Lauri Roche, Parsons Attached

10 Figures3 TablesBoring Logs and Well Completion DiagramsPhotographs

Legend

- 1. Map Coordinates: NAD 83, UTM Zone 17N,
- 2009 Orthoimagery from USGS. 2. DU = Decision Unit
- 3. ID = Identification
- 4. RVAAP = Ravenna Army Ammunition Plant
 5. CC = Army Environmental Compliance-Related Cleanup Program
- 6. ISM = Incremental Sampling Methodology
 7. Initial groundwater grab sample locations are indicated on the figure. Subsequent step-in or step-out groundwater grab locations will be located in the indicated shaded area based on earlier grab sample results.

100 — Feet

-
_

0

ΕH

Former Ravenna Army Ammunition Plant, Portage and Trumbull Counties, Ohio

ΒT Figure 1 Sampling Locations LH CC RVAAP-69 Building 1048 Fire Station ECKED BY ΕH PROJECT NUMBER: 640030.0005.110051 As Shown MITTED B 6/6/2018 FIGURE NUMBER:

\CODEN10FS01\PRJDATA\ES\REMED\748917 GALENA FOL\03000 FIELD WORKIGINT LIBRARY (LOGS)\OFFICIAL GINT FILES\GALENA FENCE\MASTER DATABASE\GINT_GALENA_AMENDED_ALL (2).GPJ;

PARSONS

E u tra	LE	GEND		ן ך
1 Ale	Potentiom March 5 -	etric Surface 6, 2018	e at	
A GUE	🔶 Groundwa	ter Monitorir	ng Well	
1 ST	🔶 Inactive G	roundwater S	Supply We	11
3.	Former St	ructure		
	Area of Co	oncern		
	Road			
1000				
States -				
The Star				
NOR O				
1116	NOTES 8	SOURCES	6	
ydraulic Lift	 Map Coordinates: N/ 2006 Orthoimagery f Ohio Statewide Imag Contour Elevations ir RVAAP = Ravenna / CC = Army Environm Cleanup Program 	AD 83, UTM Z rom ery Program (a Feet. srmy Ammunit sental Complia	one 17N, OSIP) ion Plant ance-Related	t
a di	0 100			
一时間	Fe	et	Ν	
EL T				
5 1				
	PARSONS	Former R Ammunitior	avenna Arm <u>y</u> Plant, Porta	y age
A Spill A		and Trumbu	II Counties, C)hio
E E W	Fig Potentiom	jure 5 etric Surface	o Station	
YY	CC RVAAP-69 Build CC RVAAP-74 Building 10	34 Motor Poo	e Station of Hydraulic	Lift
12分钟和	scale: As Shown	PR 6	OJECT NUMBER: 040030.0002.11	0051
I drugs me	date: 6/5/2018 file:	NU	MBER: 5	5

S:\ES\Remed\Ravenna\Database\GIS\2018\CC-69\CC-69_Fig-6_WG_Grab_SampleResults_CT_CF.mxd lxh 6/6/201

Legend Installation Boundary 2018 Groundwater Well Point Location \bigotimes (Grab Sample) Carbon tetrachloride concentration contour (dashed where inferred) Decision Unit — Elevation contour (ft) ×— Fence Line Cross-Section Trace Former Structures 1. Map Coordinates: NAD 83, UTM Zone 17N, 2009 Orthoimagery from USGS. 2. Concentrations shown are for carbon tetrachloride and chloroform in groundwater grab samples at each well point sampling location. Concentrations are shown in BLUE if concentration exceeds lowest FWCUG screening level for cancer risk=10⁻⁶ and non-carcinogenic hazard quotient =0.1, and RED if concentration exceeds the MCL. 3. CT = Carbon Tetrachloride 4. J = estimated 5. ND = not detected 6. All concentration are in milligrams per kilogram (mg/kg) 7. DU = Decision Unit 8. ID = Identification 9. RVAAP = Ravenna Army Ammunition Plant 10. CC = Army Environmental Compliance-Related Cleanup Program 11. **Bold** = detect 12. CF = Chloroform 13. MCL = Safe Drinking Water Act Maximum Contaminant Level 14. FWCUG = Facility Wide Cleanup Goal 40 ⊐Feet

Former Ravenna Army Ammunition Plant, Portage and Trumbull Counties, Ohio

DESIGNED BY:								
BT	Figure 6							
DRAWN BY:								
LH	Groundwater Grab Samples							
CHECKED BY:	CC RVAAP-69 Building 1048 Fire Station							
EH	scale: As Shown	PROJECT NUMBER: 640030.0005.11005						
SUBMITTED BY:	Date: June 2018	FIGURE NUMBER:	6					
			Ŭ					

S:\ES\Remed\Ravenna\Database\GIS\2018\CC-69\CC-69_Fig-7_WG_MW_SampleResults_CT_CF.mxd lxh 6/6/20

Legend

- Installation Boundary
- Former UST RV-5 (100-gallon gasoline tank)
- \bullet Proposed Soil Borings into Weathered Bedrock
- 2012 Direct Push Boring Location •
- 2015 Field Change Notice Subsurface Soil Boring \bigcirc
- 2018 Soil Sample Direct-Push Boring Location

- 2018 Groundwater Monitoring Well
- Area of Concern
- 2012 Decision Unit
- ×— Fence Line
 - Elevation contour (ft)
- Former Structures
 - Step-in or Step-out Groundwater Grab Samples Locations To Be Determined
- 1. Map Coordinates: NAD 83, UTM Zone 17N,
- 2009 Orthoimagery from USGS. 2. DU = Decision Unit
- 3. ID = Identification
- 4. RVAAP = Ravenna Army Ammunition Plant
- 5. CC = Army Environmental Compliance-Related Cleanup Program
- 6. ISM = Incremental Sampling Methodology
- 7. Initial groundwater grab sample locations are indicated on the figure. Subsequent step-in or step-out groundwater grab locations will be located in the indicated shaded area based on earlier grab sample results.

SNED BY:

ECKED

50

100 — Feet

Former Ravenna Army Ammunition Plant, Portage and Trumbull Counties, Ohio

BT	Figure 9
VN BY:	Proposed Soil Sample Locations
LH	CC RVAAP-69 Building 1048 Fire Station
CKED BY:	

1	ΕH	scale: As Shown	PROJECT NUM	BER:).0005.110051
ilS User		DATE: 6/5/2018	FIGURE NUMBER:	Q
		FILE:		9

Table 1 Results of February 2018 Soil Sampling CC RVAAP-69 Building 1048 Fire Station

	Site													
	Site	CC RVAAP-69	CC RVAAP-09	CC RVAAP-69	CC RVAAP-69	CC RVAAP-69	CC RVAAP-09	CC RVAAP-69	CC RVAAP-09					
Sample Location		69-1048-SB110	69-1048-SB110	69-1048-SB110	69-1048-SB110	69-1048-SB110	69-1048-SB111	69-1048-SB111	69-1048-SB111	69-1048-SB112	69-1048-SB112	69-1048-SB113	69-1048-SB113	69-1048-SB113
		069SB-110-	069SB-110-	069SB-110-	069SB-110-	069SB-111-	069SB-111-	069SB-111-	069SB-111-	069SB-112-	069SB-112-	069SB-113-	069SB-113-	069SB-113-
	Field Sample ID	0088-SO	9088-SO	0089-SO	0090-SO	0096-SO	0096-SO	0097-SO	0098-SO	0099-SO	9099-SO	0102-SO	0103-SO	0104-SO
Lab Sample ID		160-26664-1	160-26664-2	160-26664-3	160-26664-4	160-26664-5	160-26664-6	160-26664-7	160-26664-8	160-26664-9	160-26664-10	160-26664-12	160-26664-13	160-26664-14
Sample Date		2/6/2018	2/6/2018	2/6/2018	2/6/2018	2/6/2018	2/6/2018	2/6/2018	2/6/2018	2/6/2018	2/6/2018	2/6/2018	2/6/2018	2/6/2018
Sample Interval (feet bgs)		11-12	11-12	19-20	22-23	27-28	13-14	19-20	22-23	11-12	11-12	10-11	17-18	22-23
	Sample Type	N	FD	N	N	N	N	N	N	N	FD	N	N	N
Chemical	CAS Number													
Volatile Organic Compounds (mg/kg)														
Carbon tetrachloride	56-23-5	4.9	7 J	0.0008 U	0.0009 U	0.00084 U	0.5	0.00088 U	0.00089 U	7.7 J	9.6	0.00086 U	0.00084 U	0.00096 U
Chloroform	67-66-3	0.037	0.05 J	0.0008 U	0.0009 U	0.00084 U	0.059 J	0.00088 U	0.00089 U	0.1 J	0.098 J	0.00086 U	0.00084 U	0.00096 U
Chloromethane	74-87-3	0.0049 U	0.0043 U	0.004 U	0.0045 U	0.0042 U	0.004 U	0.0044 U	0.0044 U	0.0046 U	0.0043 U	0.0043 U	0.0042 U	0.0048 U
Methylene Chloride	75-09-2	0.0049 U	0.0043 U	0.004 U	0.0045 U	0.0042 U	0.0033 J	0.0044 U	0.0044 U	0.0046 U	0.0043 U	0.0043 U	0.0042 U	0.0048 U

Table 2 Results of February 2018 Groundwater Grab Sampling CC RVAAP-69 Building 1048 Fire Station

	Site	CC RVAAP-69											
95	ample Location	069WP-001	069WP-002	069WP-003	069WP-004	069WP-005	069WP-006	069WP-007	069WP-008	069WP-009	069WP-010	069WP-011	069WP-012
00		069WP-001-	069WP-002-	069WP-003-	069WP-004-	069WP-005-	069WP-006-	069WP-007-	069WP-008-	069WP-009-	069WP-010-	069WP-011-	069WP-012-
Field Sample ID 0001-G		0001-GW	0001-GW	0001-GW	0001-GW	0001-GW	0001-GW	0002-GW	0002-GW	0001-GW	0001-GW	0001-GW	0001-GW
Lab Sample ID		160-26602-1	160-26602-2	160-26602-3	160-26602-4	160-26687-2	160-26687-3	160-26741-2	160-26741-3	160-26687-6	160-26687-7	160-26696-2	160-26717-2
Sample Date		2/1/2018	2/1/2018	2/1/2018	2/1/2018	2/7/2018	2/7/2018	2/12/2018	2/12/2018	2/7/2018	2/7/2018	2/8/2018	2/9/2018
Sample Interval (feet bgs)		7-12	6-16	6-16	10-12	10-20	6-16	6-16	10-20	6-16	2-12	4-24	6-16
	Sample Type	Ν	N	Ν	N	N	N	Ν	Ν	Ν	Ν	Ν	Ν
Chemical	CAS Number												
Volatile Organic Compounds (µg/L)													
Carbon tetrachloride	56-23-5	1,000	7.3	230	320	5 U	3.2 J	0.25 U	0.25 U	2.5 U	0.25 U	0.25 U	1.3 U
Chloroform	67-66-3	110	1.2	150	190	5 U	0.7 J	0.25 U	0.25 U	2.5 U	0.25 U	0.25 U	1.3 U
Chloromethane	74-87-3	5 U	0.25 U	0.63 U	1.3 U	5 U	0.25 U	0.25 UJ	0.25 UJ	2.5 U	0.25 U	0.25 U	1.3 UJ
Methylene Chloride	75-09-2	10 U	0.5 U	1.3 U	2.5 U	10 UJ	0.5 U	0.5 U	0.5 U	5 U	0.5 U	0.5 U	2.5 U

Table 2 Results of February 2018 Groundwater Grab Sampling CC RVAAP-69 Building 1048 Fire Station

	Site	CC RVAAP-69	CC RVAAP-69	CC RVAAP-69	CC RVAAP-69	CC RVAAP-69	
5	Sample Location	069WP-013	069WP-014	069WP-015	069WP-016	069WP-017	
		069WP-013-	069WP-014-	069WP-015-	069WP-016-	069WP-017-	
	Field Sample ID	0001-GW	0001-GW	0001-GW	0001-GW	0001-GW	
	Lab Sample ID	160-26696-3	6-3 160-26741-4 160-26		160-26778-3	160-26806-2	
	Sample Date	2/8/2018	2/12/2018	2/12/2018	2/14/2018	2/15/2018	
Sample In	terval (feet bgs)	1-16	6-16 10-20		6-16	5-20	
	Sample Type	N	N	N	N	N	
Chemical CAS Number							
Volatile Organic Comp	ounds (µg/L)						
Carbon tetrachloride 56-23-5		0.25 U	0.25 U	0.25 U	0.25 U 1		
Chloroform 67-66-3		0.25 U	0.25 U	0.25 U 0.41 J		0.25 U	
Chloromethane 74-87-3		0.25 U	0.25 UJ	0.25 UJ	0.25 U	0.25 U	
Methylene Chloride 75-09-2		0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	

Table 3 Results of March 2018 Groundwater Monitoring Well Sampling CC RVAAP-69 Building 1048 Fire Station and CC RVAAP-74 Building 1034 Motor Pool Hydraulic Lift

	Site	CC RVAAP-69	CC RVAAP-74	CC RVAAP-74	CC RVAAP-74	CC RVAAP-74				
Sample Location		069MW-001	069MW-002	069MW-003	069MW-004	069MW-005	074MW-001	074MW-002	074MW-003	074MW-003
		069MW-001-	069MW-002-	069MW-003-	069MW-004-	069MW-005-	074-MW-001-	074-MW-002-	074-MW-003-	074-MW-003-
Field Sample ID		0001-GW	9001-GW							
	Lab Sample ID	160-27124-2	160-27124-3	160-27124-4	160-27124-5	160-27124-6	160-27167-2	160-27167-3	160-27167-4	160-27167-5
	Sample Date	3/5/2018	3/5/2018	3/5/2018	3/5/2018	3/6/2018	3/6/2018	3/6/2018	3/6/2018	3/6/2018
Sample	e Interval (feet bgs)	5-15	5-15	23-28	8-18	7-17	12-22	10-20	10-20	10-20
	Sample Type	N	N	N	N	N	N	N	N	FD
Chemical	CAS Number									
Volatile Organic Compounds (μg/L)										
Carbon tetrachloride	56-23-5	370	3.7	0.25 U	190	4.8	0.25 U	0.25 U	0.25 U	0.25 U
Chloroform	67-66-3	32	0.67 J	34	96	0.56 B	0.25 U	0.25 U	0.25 U	0.25 U
Chloromethane	74-87-3	0.63 U	0.25 U							
Methylene Chloride	75-09-2	1.9 J	0.5 U	15	0.47 J	0.5 U				

04-18-2018 P:\Ravenna Arsenal\Boring Logs\069MW-003.bor

PARSONS RVAAP PBA 2018 Remedial Investigation Ravenna Army Ammunition Plant 8451 State Route 5 Ravenna, Ohio 44266 Portage County					Start Date : 6 February 2018 on End Date : 6 February 2018 Weather : 10 F/Snow Northing Coord. : 551532.30 Easting Coord. : 2357780.78 Total Depth of Boring : 23.0'	Drilling C Driller Designa Type of Geologis Oversigt Borehole PID Moo Samplin	Drilling Company: EnvirocoreDriller: Tony CramerDesignation of Drill: Geoprobe 7822DType of Drill Rig: Direct Push/AugerGeologist: Joe PeterlinOversight Company: ParsonsBorehole Diameter: 2"PID Model: MiniRAE LiteSampling Equipment: 1.5" x 4' long acetate liner: 2" x 4' dual tube		
Depth in feet	Samples	Recovery %	Sample ID	PID (ppm)	DESCRIPTION	SCS	GRAPHIC	Boring: 69-1048-SB111 Surf. Elev.: 1025.08	
	1	100		0.0	Topsoil Brown, moist, slightly plastic, CLAY, silt, sand, trace gravel.	С	-		
3 - 4 - 5 -	3			0.0	Brown, wet, CLAY, silt, sand, trace gravel.	CI	-		
6- 7- 8-	4	100		0.2	Gray, moist, CLAY, silt, and sand.				
9- 10-	5	100		0.0					
11	6		0695B-111-0096-50	0.0	Gray, wet, CLAY, silt, and sand.			-Hole Plug 3/8" Sodium Bentonite	
10 14 15	8	100		0.0					
16- 17- 18-	9	100		0.0					
19— 20—	10		069SB-111-0097-SO	0.0	Weathered SANDSTONE				
21 – 22 – 23 –	11 12	100	069SB-111-0098-SO	0.0		S	8		
24					Refusal at 23.0'.				
26— 27— 28—									
29— 30—									

P P	A RVAAF Rave	P PB/ nna / 845 Rave P	A Remedial Investi Army Ammunition I 11 State Route 5 enna, Ohio 44266 ortage County	gation Plant	Start Date : 6 February 2018 End Date : 6 February 2018 Weather : 10 F/Snow Northing Coord. : 551471.53 Easting Coord. : 2357813.93 Total Depth of Boring : 14.0'	Drilling Company : Envirocore Driller : Tony Cramer Designation of Drill : Geoprobe 7822D Type of Drill Rig : Direct Push/Auger Geologist : Joe Peterlin Oversight Company : Parsons Borehole Diameter : 2" PID Model : MiniRAE Lite Sampling Equipment : 1.5" x 4' long acetate line : 2" x 4' dual tube		
Depth in feet	Samples	Recovery %	Sample ID	PID (ppm)	DESCRIPTION	nscs	GRAPHIC	Boring: 69-1048-SB112 Surf. Elev.: 1024.86
0-	1	75		0.0	Topsoil Brown, moist, CLAY, silt, sand, trace gravel. Wet SAND with some gravel, silt, and clay.	CL		
3- 4- 5-	2			0.0	Brown, moist, CLAY, silt, sand, trace gravel.	SP		
6- 7- 8-	4	100		0.0	Brown, wet, CLAY, silt, sand, trace gravel.			- Hole Plug 3/8" Sodium Bentonite
9- 10- 11-	5	100	069SB-112-0099-SC	0.0				
12- 13- 14-	7	100		0.0	Brown, stiff, CLAY, silt, sand, trace gravel. Refusal at 14.0'.	CL		
15- 16- 17-	-							
18- 19- 20-	-							
21- 22- 23-	-							
24 – 25 – 26 –								
27 – 28 – 29 –	-							
30-								

04-18-2018 P:\Ravenna Arsenal\Boring Logs\69-1048-SB112.bor

04-18-2018 P:\Ravenna Arsenal\Boring Logs\69-1048-SB113.bor

John R. Kasich, Governor Mary Taylor, Lt. Governor Craig W. Butler, Director

September 25, 2018

Mr. David Connolly Army National Guard Directorate ARNGD-ILE-CR 111 South George Mason Drive Arlington, VA 22204 Re: US Army Ammunition Plt RVAAP Remediation Response Project Records Remedial Response Portage County 267000859214

Subject: Ravenna Army Ammunition Plant, Portage/Trumbull Counties. Response to Ohio EPA Comments on the "Update and Progress Report on the Remedial Investigation at CC RVAAP-69 Building 1048 Fire Station" at the Former Ravenna Army Ammunition Plant, Portage and Trumbull Counties, Ohio, Dated August 28, 2018

Dear Mr. Connolly:

The Ohio Environmental Protection Agency (Ohio EPA) has received and reviewed the response to Ohio EPA comments on the "Update and Progress Report on the Remedial Investigation (RI) at CC RVAAP-69 Building 1048 Fire Station" at the former Ravenna Army Ammunition Plant, Portage and Trumbull Counties, Ohio. This response document was received at Ohio EPA's Northeast District Office (NEDO), Division of Environmental Response and Revitalization (DERR), on September 4, 2018. The response was prepared for the U.S. Army Corps of Engineers on behalf of the National Guard Bureau by PARSONS.

The submitted response is to Ohio EPA's comment letter dated August 16, 2018, regarding the July 24, 2018 "Update and Progress Report on the Remedial Investigation (RI) at CC RVAAP-69 Building 1048 Fire Station." Ohio EPA provided 11 comments.

COMMENTS

The Army has satisfactorily responded, and Ohio EPA concurs with responses to comment numbers 1, 2, 4, 5, 6, 7, 8, 9, 10, and 11. Ohio EPA provides clarification of our requirements on Comment 3 below:

1. Ohio EPA Comment 3. In the report, isoconcentration maps of the combined parameters carbon tetrachloride and chloroform are presented in Figures 6 and 7. In these figures two isoconcentration lines are shown: $5 \mu g/L$ (the MCL for carbon tetrachloride) and one for 100 $\mu g/L$. The highest concentrations of carbon tetrachloride at sample locations on these maps are multiples of $100\mu/L$.

MR. DAVID CONNOLLY ARMY NATIONAL GUARD DIRECTORATE SEPTEMBER 25, 2018 PAGE 2

First, the Army needs to delineate the concentrations of carbon tetrachloride and its degradation products to their respective FWCUG concentration (e.g., 0.24 μ g/L for carbon tetrachloride and 0.27 μ g/L for chloroform).

Additionally, for clarity, the isoconcentraion maps need to reflect the full range of concentrations of a given parameter. Also, Ohio EPA recommends iscocentrations maps be prepared for individual parameters instead of groups of parameters. An isocencentration line equivalent to a parameter's MCL may be included for reference.

Army Response to Comment 3. As indicated in the legend for Figures 6 and 7, the isoconcentration lines are for carbon tetrachloride, not combined carbon tetrachloride and chloroform.

Agree that concentrations of carbon tetrachloride and its degradation products will be delineated to their respective FWCUG concentrations. Additional monitoring wells will be installed as indicated on Figure 10 to complete plume delineation. Grab sample results (Figure 6) also provide information for plume delineation.

The isoconcentration lines of 5 μ g/L and 100 μ g/L are an appropriate level of detail given the data collected to date. Additional contours can be added to plume maps in the RI Report after additional wells are installed and samples are analyzed.

Ohio EPA Clarification. Ohio EPA concurs with the response in the first two paragraphs; however, to clearly represent the full range of concentrations of carbon tetrachloride, which ranges from 7.3 to 1000 ug/l within the contour map presented on Figure 6, which shows the results for "Groundwater Grab Samples," a more appropriate contour interval than one that ends at 100 ug/l should be provided on future maps.

This response to Ohio EPA comments was reviewed by personnel from Ohio EPA, DERR and Ground Water reviewers. Thank you for your response. We provided minor clarification for future submittals. Ohio EPA looks forward to completion of the Remedial Investigation of the RVAAP-69 Building 1048 Fire Station. If you have questions, please call me at (330) 963-1170.

Sincerely

Ed D'Amato Environmental Specialist Division of Environmental Response and Revitalization

ED/nvp

ec: Katie Tait, OHARNG RTLS Kevin Sedlak, ARNG Rebecca Schreffler, Chenega Carrie Rasik, Ohio EPA, CO DERR Thomas Schneider, Ohio EPA SWDO Kevin Palombo, Ohio EPA, NEDO DERR Albert Muller, Ohio EPA, NEDO DDAGW Rodney Beals, Ohio EPA NEDO DERR Bob Princic, Ohio EPA, NEDO DERR Mark Johnson, Ohio EPA, NEDO DERR

NATIONAL GUARD BUREAU 111 SOUTH GEORGE MASON DRIVE ARLINGTON VA 22204-1373

August 28, 2018

Ohio Environmental Protection Agency DERR-NEDO Attn: Edward J. D'Amato, Project Coordinator 2110 East Aurora Road Twinsburg, Ohio 44087-1924

Subject: Responses to Comments (dated August 16, 2018) on the "Update and Progress Report on the Remedial Investigation at CC RVAAP-69 Building 1048 Fire Station" at the Former Ravenna Army Ammunition Plant, Portage and Trumbull Counties, Ohio, Dated July 24, 2017, Ohio EPA ID# 267-000859-214

Dear Mr. D'Amato:

The Army appreciates your time and comments (dated August 16, 2018) on the Update and Progress Report on the Remedial Investigation at CC RVAAP-69 Building 1048 Fire Station" at the Former Ravenna Army Ammunition Plant, Portage and Trumbull Counties, Ohio, dated July 24, 2018. Enclosed are responses to your comments.

This was a Final document that was shared for informational purposes with the Ohio EPA. The Army is not planning on issuing another version of the report. However, the revisions and comments provided by the Ohio EPA will be incorporated into the investigation approach and documented in the Remedial Investigation Report once the investigation is complete.

Please contact the undersigned at (703) 607-7589 or <u>david.m.connolly8.civ@mail.mil</u> if there are issues or concerns with these responses.

Sincerely,

Date: 2018.08.28 16:03:18 -04'00'

David M. Connolly RVAAP Restoration Program Manager Army National Guard Directorate

ec. Bob Princic, Ohio EPA, DERR-NEDO Mark Johnson, Ohio EPA, DERR-NEDO Tom Schneider, Ohio EPA, DERR-SWDO Kevin Sedlak, ARNG Katie Tait, OHARNG Craig Coombs, USACE Louisville Kevin Meiczkowski, USACE Louisville Gail Harris, Vista Sciences Corp. Ed Heyse, Parsons

Responses to Ohio EPA Comments (dated August 16, 2018) Update and Progress Report on the Remedial Investigation at CC RVAAP-69 Building 1048 Fire Station at the Former Ravenna Army Ammunition Plant, Portage and Trumbull Counties, Ohio, Dated July 24, 2017, Ohio EPA ID# 267-000859-214

1. To be consistent with the Facility-Wide Groundwater Remedial Investigation and associated reports, the submitted document needs to identify the hydrostratigraphic units beneath Camp Ravenna by their accepted conventional names.

Based on the elevation of the top of the weathered sandstone (about 1,005 feet AMSL), that hydrostratigraphic unit is the Upper Sharon Aquifer. In the report, the Upper Sharon Aquifer is variously referred to "weathered sandstone", "weathered bedrock", or the "deep zone." There are more than one sandstone hydrostratigraphic units beneath Camp Ravenna. For more information about the elevations of the different bedrock hydrostratigraphic units beneath Camp Ravenna, refer to the cross-sections in: the 2017 Facility-Wide Ground Water Annual Report, and/or RI Work Plan, and/or Geology and Ground Water Resources of Portage County Ohio (Winslow and White, 1966).

Response: Agree that weathered sandstone layer is the Upper Sharon Aquifer. Text and Figures in the RI report will refer to this unit as the Upper Sharon Aquifer.

2. In the report's Summary of Findings (page 2), under the heading "Soil" (second bullet point), the report incorrectly states:

Carbon tetrachloride and chloroform were detected in soil samples above 14 feet bgs (in the brown clays, sands, and silts), which is consistent with previous investigations.

Figure 2 in the report shows that carbon tetrachloride was detected in the 2015 sample from soil boring 69-1048SB-101 at a depth of 14-15 feet bgs ($4.6\mu g/L$) and a depth of 15-16 feet Bgs ($3.2 \mu g/L$ [j]).

Response: Clarification. Please note that soil concentrations displayed in Figure 2 are in units of mg/kg, not μ g/L. Agree that carbon tetrachloride was detected in samples from 69-1048SB-101 at depths of 14-15 and 15-16 feet bgs in 2015. Please note that these samples are within the brown clays, sands and silts and above the gray clay layer, which is consistent with the soil layers where carbon tetrachloride was detected in samples collected from borings installed in 2018. Please see cross-section Figure 3.

3. In the report, isoconcentration maps of the combined parameters carbon tetrachloride and chloroform are presented in Figures 6 and 7. In these figures, two isoconcentration lines are shown: $5 \mu g/L$ (the MCL for carbon tetrachloride) and one for $100 \mu g/L$. The highest concentrations of carbon tetrachloride at sample locations on these maps are multiples of $100\mu/L$.

First, the Army needs to delineate the concentrations of carbon tetrachloride and its degradation products to their respective FWCUG concentration (e.g., 0.24 μ g/L for carbon tetrachloride and 0.27 μ g/L for chloroform).

Additionally, for clarity, the isoconcentraion [sic] maps need to reflect the full range of concentrations of a given parameter. Also, Ohio EPA recommends isoccentrations [sic] maps be prepared for individual parameters instead of groups of parameters. An isocencentration [sic] line equivalent to a parameter's MCL may be included for reference.

Response: As indicated in the legend for Figures 6 and 7, the isoconcentration lines are for carbon tetrachloride, not combined carbon tetrachloride and chloroform.

Agree that concentrations of carbon tetrachloride and its degradation products will be delineated to their respective FWCUG concentrations. Additional monitoring wells will be installed as indicated on Figure 10 to complete plume delineation. Grab sample results (Figure 6) also provide information for plume delineation.

The isoconcentration lines of 5 μ g/L and 100 μ g/L are an appropriate level of detail given the data collected to date. Additional contours can be added to plume maps in the RI Report after additional wells are installed and samples are analyzed.

4. Ohio EPA agrees that the March 2018 water level data suggests a downward ground water gradient between the Unconsolidated and Upper Sharon Aquifers near the location of well pair 069MW-001/069MW-003.

Response: Comment noted.

5. Page 3 of the report claims that the gray clay layer beneath CC RVAAP-69 is limiting the vertical migration of ground water.

Given the presence of the degradation products chloroform $(34 \ \mu/L)$ and methylene chloride $(15 \ \mu/L)$ in "weathered sandstone" (Upper Sharon Aquifer) well 69MW-003 it is premature for the ARMY to make this claim.

It is unclear that the gray clay layer is laterally continuous enough and thick enough to be an effective barrier between the Unconsolidated Aquifer and the Upper Sharon Aquifer to prevent downward migration of contamination.

For more information about evaluating whether a clay or low permeability layer adequately protects underlying ground water when an overlying ground water zone is contaminated, refer to Ohio EPA's 2009 *Technical Guidance Manual* Supplement document entitled: *Assessment of an Aquitard during a Ground Water Contamination Investigation.*

Response: The report states: "*The three-foot difference in hydraulic head between these wells* [069MW-001 and 069MW-003] *suggests that the gray clay layer (located between the two screened intervals) is limiting vertical migration of groundwater.*" This observation is a reasonable interpretation of the data at this well pair.

The Army acknowledges that the extent of the gray clay layer and its role and effectiveness as a barrier between the Unconsolidated Aquifer and the Upper Sharon Aquifer remain to be determined. To that end, the report indicates that additional soil borings (SB114 and SB115) will be completed to the top of the Upper Sharon Aquifer, and the potential for vertical migration of carbon tetrachloride decay products will be investigated by continued monitoring of well 069MW-003 and, if needed, installation of additional deep monitoring wells.

6. The report indicates that chloroform and methylene chloride contamination in well 069mw-003 may have been introduced during drilling.

If the presence of chloroform and methylene chloride in "weathered sandstone" (Upper Sharon Aquifer) is an artifact of cross-contamination originating in the Unconsolidated Aquifer and introduced into the well 069MW-003 during its installation and not removed due to inadequate development, one would expect a detectable quantity of carbon tetrachloride to be present in that well and it is not.

If the Army believes that chloroform and methylene chloride were introduced by drilling, then it is not clear why they proposed in the report (page 5) to wait until after the June 2018 sampling event to redevelop well 069MW-003. This needs to be explained.

Response: The Army decided to wait until after the June 2018 sampling event to determine if the results of the March 2018 sampling event would be confirmed.

7. Page 4 of the report states: "Carbon tetrachloride DNAPL is unlikely to be present because dissolved concentrations in ground water are much lower that (sic) the solubility limit of 800,000 ug/l."

The facility has not adequately demonstrated that DNAPL is not present in the vicinity of Building 1048 Fire Station. According to the Interstate Technology and Regulatory Council's (ITRC's) 2015 guidance document entitled *Integrated DNAPL Site Characterization and Tools Selection:*

Historically, a 1% dissolved-phase concentration of chlorinated solvent DNAPL, based on compound-specific solubility in ground water, was thought to be indicative of potential presence of DNAPL; however, this method is now viewed as unreliable (that is, either falsely positive or falsely negative.)

It is unclear if the Army gauged any of the monitoring wells for DNAPL during sampling. This needs to be clarified. According to Chapter 10 of Ohio EPA's Technical Guidance Document (TGM) [2012]:

If the presence of NAPL is suspected, the sampling program should include devices and protocols to detect them.

If the ARMY has not gauged the CC RVAAP - 69 Building 1048 Fire Station's monitoring wells for DNAPL, it needs to gauge them to demonstrate the presence or absence of DNAPL. Protocols to detect immiscible liquids should also include the visual inspection of purge water and any equipment removed from the well.

Response: All wells are gauged with an interface probe. To date no NAPL has been detected. Wells will be gauged for DNAPL during all subsequent monitoring events. There was no indication of DNAPL in well development or purging notes, and concentrations in waste characterization samples of purge water were well below solubility.

8. The report indicates (page 3 and Figures 6 and 7) that a ground water data gap exists north of well 069MW-001. However, the Army has not proposed any additional Unconsolidated Aquifer monitoring wells in this area. This needs to be explained.

Response: Additional well 069MW-006 will be installed northwest of existing well 069MW-002 and will provide additional delineation to the north of 069MW-001. Results from new well 069MW-006 and grab sample 069WP-017 (Figure 6) are expected to provide adequate delineation on the north side of the plume.

9. Ohio EPA agrees that if chlorinated methanes continue to be detected in well 069MW-003 that the Army will have to install additional wells in the Upper Sharon Aquifer in the

vicinity of CC RVAAP-69 to delineate contamination in that hydrostratigraphic zone.

Response: Comment noted.

10. On Figure 8 and 10, the practical quantification limit (PQL) for carbon tetrachloride in the March 2018 ground water sample from well 069MW-003 is listed as 0.18 µg/L, and in Table 3 of the report the PQL for that sample is listed as 0.25 µg/L. It needs to be clarified what the PQL for carbon tetrachloride in March 2018 sample from 069MW-003 is.

Response: The detection limit was 0.18 μ g/L and level of detection (LOD) was 0.25 μ g/L. In accordance with the QAPP and DoD Quality Systems Manual, we will report the non-detections at the LOD (in this case, 0.25 μ g/L) in all figures and tables in the RI report.

11. The report contains a few typographical errors that should be corrected to improve the clarity of the report.

On page 3 under the third bullet item: "well 06MW-003" should be "well 069MW-003" and "1,016.7 feet bgs" should be "1,016.7 feet AMSL. Also, on Figure 2 soil boring "72-1048RVSB2" should be "69-1048RVSB2".

Response: Comment noted.

John R. Kasich, Governor Mary Taylor, Lt. Governor Craig W. Butler, Director

August 16, 2018

Mr. David Connolly Army National Guard Directorate Environmental Programs Division ARNG-ILE-CR 111 South George Mason Drive Arlington, VA 22204

- Re: US Army Ammunition PLT RVAAP Remediation Response Project Records Remedial Response Portage County 267000859214
- Subject: Ravenna Army Ammunition Plant, Portage/Trumbull Counties. Ohio EPA Comments on the "Update and Progress Report on the Remedial Investigation at CC RVAAP-69 Building 1048 Fire Station" at the Former Ravenna Army Ammunition Plant, Portage and Trumbull Counties, Ohio, Dated July 24, 2018, Ohio EPA ID # 267-000859-214

Dear Mr. Connolly:

The Ohio Environmental Protection Agency (Ohio EPA) has received and reviewed the **"Update and Progress Report on the Remedial Investigation at CC RVAAP-69 Building 1048 Fire Station"** at the Former Ravenna Army Ammunition Plant, Portage and Trumbull Counties, Ohio. This document was received at Ohio EPA's Northeast District Office (NEDO), Division of Environmental Response and Revitalization (DERR), on July 24, 2018. The report was prepared for the US Army Corps of Engineers on behalf of the U.S. Army National Guard Bureau by PARSONS.

The Army has not completed the assessment of the CC RVAAP-69 Building 1048 Fire Station (CC RVAAP-69). This review is based only on the work done by the Army to date, and proposed work to delineate ground water impacts in the area. Because CC RVAAP-69 ground water contamination issues are captured under the Facility-wide Groundwater Remedial Investigation, Ohio EPA requests that we have the opportunity to comment on further efforts to delineate impacts to ground water in this area as the work proceeds.

Comments on the current Update Report based on Ohio EPA review are provided below. Please provide responses to the enclosed comments in accordance with the Directors Findings and Orders.

Mr. DAVID CONNOLLY ARMY NATIONAL GUARD DIRECTORATE AUGUST 16, 2018 PAGE 2

BACKGROUND

The RVAAP-69, is the former location of Building 1048 Fire Station. It is located in the northwest quadrant of the intersection of George Road and South Service Road. No documentation was found regarding the specific years of service for the fire station. A site schematic dated 1941 shows the fire station, which was razed in 2008. The fire station is currently vacant land. Depth to ground water in this area is expected to be between 10 and 20 feet below ground surface (bgs).

Chemicals of potential concern (COPCs) associated with the fire station include carbon tetrachloride and its degradation products. Carbon tetrachloride was used through the 1950's to extinguish fires.

Previous Remedial Investigation (RI) sampling of CC RVAAP-69 Building 1048 Fire Station (CC RVAAP-69) was conducted in 2012 and 2015.

Subsurface geology beneath CC RVAAP 69 typically consists of 15 to 19 feet of interbedded brown clay, silt, and sand (surface elevation [about 1025 feet AMSL] to about 1,010 feet AMSL) overlying 5 to 7 feet of gray clay (1,010 feet AMSL to 1,003 feet AMSL) overlying "weathered brown sandstone" (1,003 to 1,005 feet AMSL).

UPDATE/PROGRESS REPORT ON RI INVESTIGATION AT CC-RVAAP-69 FIRE STATION

According to the report, the objectives of the 2017 Final Work Plan for investigations of CC RVAAP-69 are:

- Define the vertical extent of carbon tetrachloride in soil near boring 069SB-101;
- Define the lateral extent of carbon tetrachloride contamination in soil below a depth of 1,018 feet above mean sea level (AMSL); and
- Evaluate impacts to ground water.

Work Completed in February-March 2018. The report summarizes work done in February and March of 2018 to augment previous soil sampling done in 2012 and 2015 to support the stated goals of the Final Work Plan. The work completed in February and March of 2018 included:

Advanced and sampled soil from four soil borings (69-1048SB-110, 69-1048SB-111,06-1048SB-112, 69-1048SB-113). Soil borings ranged in depth from 14 feet (69-1048SB-112) to 28 feet (69-1048SB-110) bgs. Multiple soil samples were analyzed for VOCs from each of the borings;

Mr. DAVID CONNOLLY ARMY NATIONAL GUARD DIRECTORATE AUGUST 16, 2018 PAGE 3

- Collected grab ground water samples for screening purposes using direct push techniques from 17 temporary well locations (refer to attached Figure 1). The 17 temporary wells were open to various interval lengths ranging from 5 (069WP-001) to 20 feet (069WP-011) in the Unconsolidated Aquifer; and
- Installed and sampled five new permanent monitoring wells. Four wells (069MW-001, 069MW-002, 069MW-004, and 069MW-005) were screened in the Unconsolidated Aquifer and were constructed with ten-foot long screens. One well (069MW-003) was screened in the weathered portion of "weathered sandstone" and was constructed with a five-foot long screen.

COMMENTS

1. To be consistent with the Facility-Wide Groundwater Remedial Investigation and associated reports, the submitted document needs to identify the hydrostratigraphic units beneath Camp Ravenna by their accepted conventional names.

Based on the elevation of the top of the weathered sandstone (about 1,005 feet AMSL), that hydrostratigraphic unit is the Upper Sharon Aquifer. In the report, the Upper Sharon Aquifer is variously referred to "weathered sandstone", "weathered bedrock", or the "deep zone." There are more than one sandstone hydrostratigraphic units beneath Camp Ravenna. For more information about the elevations of the different bedrock hydrostratigraphic units beneath Camp Ravenna, refer to the cross-sections in: the 2017 Facility-Wide Ground Water Annual Report, and/or RI Work Plan, and/or Geology and Ground Water Resources of Portage County Ohio (Winslow and White, 1966).

2. In the report's Summary of Findings (page 2), under the heading "Soil" (second bullet point), the report incorrectly states:

Carbon tetrachloride and chloroform were detected in soil samples above 14 feet bgs (in the brown clays, sands, and silts), which is consistent with previous investigations.

Figure 2 in the report shows that carbon tetrachloride was detected in the 2015 sample from soil boring 69-1048SB-101 at a depth of 14-15 feet bgs ($4.6\mu g/L$) and a depth of 15-16 feet Bgs ($3.2 \mu g/L$ [j]).

3. In the report, isoconcentration maps of the combined parameters carbon tetrachloride and chloroform are presented in Figures 6 and 7. In these figures, two isoconcentration lines are shown: $5 \mu g/L$ (the MCL for carbon tetrachloride)

and one for 100 μ g/L. The highest concentrations of carbon tetrachloride at sample locations on these maps are multiples of 100 μ /L.

First, the Army needs to delineate the concentrations of carbon tetrachloride and its degradation products to their respective FWCUG concentration (e.g., 0.24 μ g/L for carbon tetrachloride and 0.27 μ g/L for chloroform).

Additionally, for clarity, the isoconcentraion maps need to reflect the full range of concentrations of a given parameter. Also, Ohio EPA recommends iscocentrations maps be prepared for individual parameters instead of groups of parameters. An isocencentration line equivalent to a parameter's MCL may be included for reference.

- **4.** Ohio EPA agrees that the March 2018 water level data suggests a downward ground water gradient between the Unconsolidated and Upper Sharon Aquifers near the location of well pair 069MW-001/069MW-003.
- **5.** Page 3 of the report claims that the gray clay layer beneath CC RVAAP-69 is limiting the vertical migration of ground water.

Given the presence of the degradation products chloroform (34 μ /L) and methylene chloride (15 μ /L) in "weathered sandstone" (Upper Sharon Aquifer) well 69MW-003 it is premature for the ARMY to make this claim.

It is unclear that the gray clay layer is laterally continuous enough and thick enough to be an effective barrier between the Unconsolidated Aquifer and the Upper Sharon Aquifer to prevent downward migration of contamination.

For more information about evaluating whether a clay or low permeability layer adequately protects underlying ground water when an overlying ground water zone is contaminated, refer to Ohio EPA's 2009 *Technical Guidance Manual* Supplement document entitled: <u>Assessment of an Aquitard during a Ground</u> <u>Water Contamination Investigation</u>.

6. The report indicates that chloroform and methylene chloride contamination in well 069mw-003 may have been introduced during drilling.

If the presence of chloroform and methylene chloride in "weathered sandstone" (Upper Sharon Aquifer) is an artifact of cross-contamination originating in the Unconsolidated Aquifer and introduced into the well 069mw-003 during its installation and not removed due to inadequate development, one would expect a detectable quantity of carbon tetrachloride to be present in that well and it is not.

If the Army believes that chloroform and methylene chloride were introduced by drilling, then it is not clear why they proposed in the report (page 5) to wait until after the June 2018 sampling event to redevelop well 069MW-003. This needs to be explained.

7. Page 4 of the report states: "Carbon tetrachloride DNAPL is unlikely to be present because dissolved concentrations in ground water are much lower that (sic) the solubility limit of 800,000 ug/l."

The facility has not adequately demonstrated that DNAPL is not present in the vicinity of Building 1048 Fire Station. According to the Interstate Technology and Regulatory Council's (ITRC's) 2015 guidance document entitled *Integrated DNAPL Site Characterization and Tools Selection*:

Historically, a 1% dissolved-phase concentration of chlorinated solvent DNAPL, based on compound-specific solubility in ground water, was thought to be indicative of potential presence of DNAPL; however, this method is now viewed as unreliable (that is, either falsely positive or falsely negative.)

It is unclear if the Army gauged any of the monitoring wells for DNAPL during sampling. This needs to be clarified. According to Chapter 10 of Ohio EPA's Technical Guidance Document (TGM) [2012]:

If the presence of NAPL is suspected, the sampling program should include devices and protocols to detect them.

If the ARMY has not gauged the CC RVAAP – 69 Building 1048 Fire Station's monitoring wells for DNAPL, it needs to gauge them to demonstrate the presence or absence of DNAPL. Protocols to detect immiscible liquids should also include the visual inspection of purge water and any equipment removed from the well.

- 8. The report indicates (page 3 and Figures 6 and 7) that a ground water data gap exists north of well 069MW-001. However, the Army has not proposed any additional Unconsolidated Aquifer monitoring wells in this area. This needs to be explained.
- **9.** Ohio EPA agrees that if chlorinated methanes continue to be detected in well 069MW-003 that the Army will have to install additional wells in the Upper Sharon Aquifer in the vicinity of CC RVAAP-69 to delineate contamination in that hydrostratigraphic zone.

Mr. DAVID CONNOLLY ARMY NATIONAL GUARD DIRECTORATE AUGUST 16, 2018 PAGE 6

- **10.** On Figure 8 and 10, the practical quantification limit (PQL) for carbon tetrachloride in the March 2018 ground water sample from well 069MW-003 is listed as 0.18 μ g/L, and in Table 3 of the report the PQL for that sample is listed as 0.25 μ g/L. It needs to be clarified what the PQL for carbon tetrachloride in March 2018 sample from 069MW-003 is.
- **11.**The report contains a few typographical errors that should be corrected to improve the clarity of the report.

On page 3 under the third bullet item: "well 06MW-003" should be "well 069MW-003" and "1,016.7 feet bgs" should be "1,016.7 feet AMSL. Also, on Figure 2 soil boring "72-1048RVSB2" should be "69-1048RVSB2".

This Update and Progress Report on the Remedial Investigation at CC RVAAP-69 Building 1048 Fire Station was reviewed by personnel from Ohio EPA. Additional information is necessary to concur with approach provided for further investigation. If you have questions or would like to set up a meeting to discuss these comments, please call me at (330) 963-1292.

Sincerely,

Bob Luncie pr

Kevin M. Palombo Environmental Specialist Division of Environmental Response and Revitalization

KP/nvp

ec: Rebecca Schreffler, Chenega Katie Tait, OHARNG RTLS Kevin Sedlak, ARNG Bob Princic, Ohio EPA, NEDO, DERR Mark Johnson, Ohio EPA, NEDO, DERR Rodney Beals, Ohio EPA, NEDO, DERR Thomas Schneider, Ohio EPA, SWDO, DERR Albert Muller, Ohio EPA, NEDO, DDAGW Carrie Rasik, Ohio EPA, CO, DERR Edward D'Amato, Ohio EPA, NEDO, DERR