Final

Remedial Investigation Addendum for CC RVAAP-79 DLA Ore Storage Sites, Ore Storage Pond Sub-Area Ravenna Army Ammunition Plant Restoration Program Portage and Trumbull Counties, Ohio

August 07, 2023

Contract No.: W912QR-12-D-0002 Delivery Order: 0003

Prepared by:

U.S. Army Corps of Engineers, Louisville District 600 Dr. Martin Luther King Jr. Place Louisville, Kentucky 40202-2267

Prepared for:

National Guard Bureau Army National Guard (ARNG- Installations and Environment) 111 South George Mason Drive Arlington, Virginia 22204-1373

REPORT DOCUMENTATION PAGE					Form Approved OMB No. 0704-0188	
gathering and maintaining the data needed, and c	ompleting an ing the burn ite 1204, Ar a collection o	d reviewing the collection of infe den, to Department of Defens lington, VA 22202-4302. Resp f information if it does not displa	prmation. Send cor	nments rega	ne for reviewing instructions, searching existing data sources, rding this burden estimate or any other aspect of this collection services, Directorate for Information Operations and Reports notwithstanding any other provision of law, no person shall be number.	
1. REPORT DATE (DD-MM-YYYY 07-08-2023	2. REPC	ORT TYPE Technica	1		3. DATES COVERED (From - To) Mar 2021-Aug 2023	
4. TITLE AND SUBTITLE		Teeninea	1	5a. CO	NTRACT NUMBER	
Final					W912QR-12-D-0002	
Remedial Investigation Addendum				5b. GRANT NUMBER		
for CC RVAAP-79 DLA Ore Stora Ore Storage Pond Sub-Area	ige Sites,			NA		
Ravenna Army Ammunition Plant Restoration Program				5c. PROGRAM ELEMENT NUMBER		
Portage and Trumbull Counties, Ol	nio				NA	
6. AUTHOR(S)				5d. PRC	DJECT NUMBER	
Draft version:					Delivery Order 0003	
Heyse, Edward Hinger, Jessica				5e. TAS	SK NUMBER	
Fields, Karen					Task 3	
Peterlin, Joe				5f. WO	RK UNIT NUMBER	
Zahrte, Paul					NA	
7. PERFORMING ORGANIZATION NA	AME(S) AN	ND ADDRESS(ES)			8. PERFORMING ORGANIZATION REPORT NUMBER	
Parsons Govement Services, Inc.					NA	
401 Diamond Drive NW Huntsville, Alabama 35806					INA	
Tuntsvine, Anabana 55000						
9. SPONSORING/MONITORING AGE	NCY NAV	IE(S) AND ADDRESS(ES)			10. SPONSOR/MONITOR'S ACRONYM(S)	
USACE - Louisville District					USACE	
U.S. Army Corps of Engineers 600 Martin Luther King Jr., Place					11. SPONSOR/MONITOR'S REPORT	
Louisville, Kentucky 40202-2232				NUMBER(S)		
					NA	
12. DISTRIBUTION/AVAILABILITY STATEMENT						
Reference distribution page.						
13. SUPPLEMENTARY NOTES						
None.						
14. ABSTRACT						
This Remedial Investigation Adder performed on two sediment compo- Sites. The results of this RI Addence	site samp lum indic ns are wa	les collected from the cate that the bioassays of	Ore Storage P lo no show si	ond sub- gnificant	nironomus dilutus 10-day bioassays area of CC RVAAP-79 DLA Ore Storage toxicity to the ecological receptors; Storage Pond sub-area within the CC	
15. SUBJECT TERMS groundwater, monitoring well, sam	pling and	lanalysis				
16. SECURITY CLASSIFICATION OF:		17. LIMITATION OF		19a. NAI	ME OF RESPONSIBLE PERSON	
a. REPORT b. ABSTRACT c. THIS PAGE ABSTRACT OF Nathaniel Peters, II PAGES				-		
U U	U	U	174	190. IEL	EPHONE NUMBER (Include area code) 502.315.2624	
		1		1	Standard Form 298 (Bev. 8/98	

PLACEHOLDER PAGE FOR:

Documentation of Ohio EPA Approval of the Final Document

(Documentation to be provided once approval is issued.)

CONTRACTOR STATEMENT OF INDEPENDENT TECHNICAL REVIEW

Parsons has completed the Draft Remedial Investigation Addendum CC RVAAP-79 DLA Ore Storage Sites, Ore Storage Pond Sub-Area at the Ravenna Army Ammunition Plant, Ravenna, Ohio. Notice is hereby given that an independent technical review has been conducted that is appropriate to the level of risk and complexity inherent in this project. During the independent technical review, compliance with established policy principles and procedures, utilizing justified and valid assumptions was verified. This included review of data quality objectives; technical assumptions, methods, procedures, and materials to be used; the appropriateness of data used and the level of data obtained; and the reasonableness of the results, including whether the product meets the customer's needs consistent with law and existing United States Corps of Engineers policy.

Independent Technical Reviewer:

Dan Griffiths, C.P.G, P.G.

Technical Director

(Signature)

09 June 2021

(Date)

Parsons

Reviewer:

Edward Heyse, Ph.D., P.E.

Project Manager

Parsons

Edward

(Signature)

(Date)

08 July 2021

Final

Remedial Investigation Addendum CC RVAAP-79 DLA Ore Storage Sites, Ore Storage Pond Sub-Area Ravenna Army Ammunition Plant Restoration Program Portage and Trumbull Counties, Ohio

August 07, 2023

Contract No.: W912QR-12-D-0002 Delivery Order: 0003

Prepared by:

U.S. Army Corps of Engineers, Louisville District 600 Dr. Martin Luther King Jr. Place Louisville, Kentucky 40202-2267

Prepared for:

National Guard Bureau Army National Guard (ARNG- Installations and Environment) 111 South George Mason Drive Arlington, Virginia 22204-1373

DOCUMENT DISTRIBUTION

for the

Final Remedial Investigation Addendum CC RVAAP-79 DLA Ore Storage Sites, Ore Storage Pond Sub-Area

Ravenna Army Ammunition Plant Restoration Program Camp James A. Garfield, Ohio

Name/Organization	Number of Printed Copies	Number of Electronic Copies	
Kevin Sedlak, ARNG	Email Transmittal Letter Only		
Katie Tait, OHARNG	Email Transn	nittal Letter Only	
Jennifer Tierney, Administrative Record Manager	2	2	
Pat Ryan, REIMS	Email Transn	nittal Letter Only	
Steven Kvaal, USACE – Louisville District	Email Transmittal Letter Only		
Nathaniel Peters, II, USACE – Louisville District	1	1	
Ed D'Amato, Ohio EPA DERR-NEDO	Submitted via Of	nio EPA Liquid Files	
Tom Schneider, Ohio EPA SWDO	Email transmittal letter only		
Natalie Oryshkewych, Ohio EPA DERR-NEDO	Email transmittal letter only		
Megan Oravec, Ohio EPA DERR-NEDO	Email transmittal letter only		

DERR = Division of Environmental Response and Revitalization

NEDO = Northeast District Office

OHARNG = Ohio Army National Guard

Ohio EPA=Ohio Environmental Protection Agency

RVAAP = Ravenna Army Ammunition Plant

REIMS = Ravenna Environmental Information Management System

SWDO = Southwest District Office

USACE = U.S. Army Corps of Engineers

TABLE OF CONTENTS

				Page	<u>e</u>
LIST (OF TAE	BLES		ii	i
				ABBREVIATIONS	
EXEC	UTIVE	SUMM	IARY		1
1.	INTRO				
	1.1	-			
	1.2 1.3			BJECTIVES	
_					
2.					
	2.1			DE BACKGROUND2-1	
				Description2-	
			-	aphy and Land Use2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2	
	2.2	ENVIE	RONMEN	VTAL SETTING2-1	1
		2.2.1	Topogra	phy2-1	1
		2.2.2		and Soil	
		2.2.3		ology	
		2.2.4		Water2-2	
	2.3	AREA	OF CON	CERN DESCRIPTION2-3	3
		2.3.1	Operatio	nal History2-3	3
		2.3.2	Previous	Investigations	4
			2.3.2.1	Previous Investigations at the Main Storage Area, Area	
				West of the Railroad, East Transportation Yard, Concrete	
				Pad Storage Area, and Ore Storage Pond	
			2.3.2.2	Remedial Investigation Activities at the Ore Storage Pond2-5)
3.	REME	DIAL I	NVESTI	GATION ADDENDUM ACTIVITIES	1
	3.1	SCOPI	E AND O	BJECTIVES	1
	3.2		-	TY OBJECTIVES	
	3.3			ATIONALE	
	3.4 3.5			ATION ACTIVITIES	
	5.5				
		3.5.1		t Sampling	
	0.6	3.5.2	•	78	
	3.6			FROM WORK PLAN	
	3.7 3.8				
	2.0				~

TABLE OF CONTENTS

Page

4.	RESULTS AND DISCUSSION	
	4.1 HYALELLA AZTECA 10-DAY BIOASSAYS	
	4.2 CHIRONOMUS DILUTUS 10-DAY BIOASSAYS	
5.	SUMMARY AND CONCLUSIONS	
6.	RECOMMENDATIONS	6-1
7.	REFERENCES	

LIST OF TABLES

Table 3-1:	Data Quality Objectives	
	Sampling Locations and Bioassays at Ore Storage Pond Sub-area	
	CC RVAAP-79 DLA Ore Storage Sites	
Table 4-1:	Results of Hyalella azteca 10-Day Toxicity Testing	
	Results of Chironomus dilutus 10-Day Toxicity Testing	

LIST OF FIGURES

Figure 1-1:	Location Map	1-5
	Location of CC RVAAP-79 DLA Ore Storage Sites	
-	Sub-Areas and Topography of CC RVAAP-79 DLA Ore Storage Sites	
	near Ore Storage Pond	2-9
Figure 2-2:	2013 Remedial Investigation Sediment Sampling Locations at	
	Ore Storage Pond Sub-Area	2-11
Figure 3-1:	Sediment Sampling Locations at Ore Storage Pond Sub-area	
-	CC RVAAP-79 DLA Ore Storage Sites	3-9

LIST OF APPENDICES

- Appendix A Field Activity Forms
- Appendix B Bioassay Report
- Appendix C Site Photographs
- Appendix D Ohio EPA Notification of Field Work
- Appendix E Regulatory Correspondence Letters and Comments Response Table

LIST OF ACRONYMS AND ABBREVIATIONS

amsl	above mean sea level
AOC	Area of Concern
ARNG	Army National Guard
	below ground surface
bgs	•
CC	Army Environmental Compliance-Related Cleanup Program
CERCLA	Comprehensive Environmental, Response, Compensation, and Liability Act
CJAG	Camp James A. Garfield Joint Military Training Center
COCs	chemicals of concern
COPCs	chemicals of potential concern
COPECs	chemicals of potential ecological concern
DERR	Division of Environmental Response and Revitalization
DFFO	Director's Final Findings and Orders
DLA	Defense Logistics Agency
DoD	Department of Defense
DQOs	Data Quality Objectives
DU	Decision Unit
ECC	Environmental Chemical Corporation
EPCs	exposure point concentrations
ERA	Ecological Risk Assessment
ESV	Ecological Screening Value
FD	field duplicate
FS	Feasibility Study
FWCUG	Facility-Wide Cleanup Goal
FWSAP	Facility-Wide Sampling and Analysis Plan
GPS	Global Positioning System
GSA	General Services Administration
HQ	hazard quotient
MDC	maximum detected concentration
mg/kg	milligrams per kilogram
MS/MSD	matrix spike/matrix spike duplicate
NGT	National Guard Trainee
NPDES	National Pollutant Discharge Elimination System
OAC	Ohio Administrative Code
OHARNG	Ohio Army National Guard
Ohio EPA	Ohio Environmental Protection Agency
QA	Quality Assurance
QC	Quality Control
RCRA	Resource Conservation and Recovery Act
REIMS	Ravenna Environmental Information Management System
RI	Remedial Investigation
RSL	Regional Screening Level
RVAAP	Ravenna Army Ammunition Plant
SAIC	Science Applications International Corporation
SRCs	site-related chemicals

LIST OF ACRONYMS AND ABBREVIATIONS (Continued)

- SRV Sediment Reference Value
- **SVOCs** semivolatile organic compounds
- TAL Target Analyte List
- USACE
- U.S. Army Corps of Engineers U.S. Environmental Protection Agency USEPA
- volatile organic compounds **VOCs**

EXECUTIVE SUMMARY

Field work for this Remedial Investigation (RI) Addendum for CC RVAAP-79 Defense Logistics Agency (DLA) Ore Storage Sites, Ore Storage Pond Sub-Area at the former Ravenna Army Ammunition Plant (RVAAP), in Portage and Trumbull counties, Ohio was conducted by Parsons, contracted by the U.S. Army Corps of Engineers (USACE)–Louisville District. Parsons was contracted by the USACE-Louisville District to complete the RI documentation under Contract No. W912QR-12-D-0002, Delivery Order No. 0003.

This RI Report Addendum was prepared in accordance with Comprehensive Environmental, Response, Compensation, and Liability Act (CERCLA) guidance and regulations, the Ohio Environmental Protection Agency (Ohio EPA) Director's Final Findings and Orders (DFFO, Ohio EPA, 2004), and the National Oil and Hazardous Substances Contingency Plan (U.S. Environmental Protection Agency [USEPA], 1990). This document was prepared in accordance with the *Submission Format Guidelines for the Ravenna Army Ammunition Plant Restoration Program, Version 22* (Vista Sciences Corporation, 2020).

The former RVAAP, now Camp James A. Garfield Joint Military Training Center (CJAG), is located in northeast Ohio. CC RVAAP-79 DLA Ore Storage Sites include the following nine sub-areas:

- Main Storage Area,
- Area West of Railroad,
- East Transportation Yard,
- Concrete Pad Storage Area,
- Ore Storage Pond,
- Route 80 Tank Farm,
- Area 2 Ammunition Storage Area,
- Load Line 3 Building 803 Inert Storage and Tank Storage Area, and
- Area 8 Inert Storage, Building 841.

The RI for eight of the nine areas is complete and documented in the *Final Remedial Investigation Report for CC RVAAP-79 DLA Ore Storage Sites, Former Ravenna Army Ammunition Plant, Portage and Trumbull Counties, Ohio* (Parsons, 2020). This RI Addendum only addresses sediment at the Ore Storage Pond sub-area. No further investigation or removal action was recommended for surface water in the RI Report (Parsons, 2020).

This RI Addendum includes a review of the physical site characteristics and operational history for the Ore Storage Pond and information from previous investigations. Sediment was sampled and analyzed for inorganic chemicals related to the historical storage of strategic materials, minerals, and ores at this Area of Concern (AOC). Two bioassays were performed on composite samples consisting of portions from three of the six sediment samples:

- *Hyalella azteca* 10-day bioassay, and
- *Chironomus dilutus* (formerly *tentans*) 10-day bioassay.

The work described in this RI Addendum was conducted in accordance with the *Final Work Plan Addendum Additional Sampling for CC RVAAP-79 DLA Ore Storage Sites Remedial Investigation, Ore Storage Pond Sub-Area, Ravenna Army Ammunition Plan Restoration Program, Portage and Trumbull Counties, Ohio* (Parsons, 2021) and the Facility-Wide Sampling and Analysis Plan (FWSAP, Science Applications International Corporation [SAIC], 2011a). Bioassays were conducted on sediment samples following the USEPA Methods for Measuring the Toxicity and Bioaccumulation of Sediment-associated Contaminants with Freshwater Invertebrates, Second Edition, EPA 600/R-99/064 (USEPA, 2000).

The results of this RI Addendum indicate that no further action is required to address ecological risk at the Ore Storage Pond sub-area within the CC RVAAP-79 DLA Ore Storage Sites.

Remedial Investigation Objectives

The following are the CC RVAAP-79 DLA Ore Storage Sites, Ore Storage Pond Sub-area RI Addendum objectives:

- Conduct a field investigation to collect site-related data to determine toxicity of the sediment at the AOC.
- Determine if a Feasibility Study is required to evaluate remedial alternatives.

Area of Concern Background

The nine separate ore storage sub-areas comprising CC RVAAP-79 DLA Ore Storage Sites are all located within CJAG. The RI for eight of the nine areas is complete and documented in the *Final Remedial Investigation Report for CC RVAAP-79 DLA Ore Storage Sites, Former Ravenna Army Ammunition Plant, Portage and Trumbull Counties, Ohio* (Parsons, 2020). This RI Addendum only addresses additional sampling for the Ore Storage Pond sub-area.

Five of the sub-areas (Main Storage Area, Area West of the Railroad, East Transportation Yard, Concrete Pad Storage Area, and Ore Storage Pond) are contiguous and are located in the eastern portion of CJAG near the intersection of South Service Road and Irons Road. All five areas comprising these contiguous sub-areas cover approximately 63 acres. The portion of the sub-areas that stored ore is approximately 53 acres, the other 10 acres were added to the sub-areas as delineation decision units (DUs). The DLA stored strategic and critical materials, including chrome ore, ferrochrome ore, and metallurgical manganese ore at these subareas starting in the late 1940's. All ore was removed by 2012. The Ore Storage Pond was reportedly constructed in the mid-1950s to prevent potentially contaminated surface water runoff from nearby manganese and chrome stockpiles from entering surface water. Because the pond has not been maintained, the pond has filled in significantly since it was originally constructed and now functions as a palustrine, emergent, intermittently exposed wetland as mapped by the National Wetland Inventory (U.S. Fish and Wildlife Service, 2018). No buildings or associated infrastructure (e.g., utility lines) are believed to have been located in or near these sub-areas; however, railroad spurs were located in portions of the Main Storage Area and the Concrete Pad Storage Area. The Area West of Railroad, East Transportation Yard, and the Ore Storage Pond are located immediately adjacent to railroad spurs.

Remedial Investigation Activities

Samples used for decision making in this RI Addendum were collected by Parsons in April 2021. Composite and discrete sampling methods were employed to investigate sediment. Bioassays were performed on sediment composite samples. Samples were collected and analyzed according to the FWSAP (SAIC, 2011a) and the Final Ore Storage Pond Sub-area Work Plan Addendum (Parsons, 2021). The bioassays were conducted in accordance with USEPA toxicity and bioaccumulation guidance (USEPA, 2000).

10-Day Bioassays Toxicity Results

The results of the *Hyalella azteca* and *Chironomus dilutus* 10-day bioassays indicate that sediment from composite samples 079SD-416M-0001-SD and 079SD-417M-0001-SD do not show significant toxicity to the ecological receptors.

Recommendations

No further action is required to address ecological risk in surface water or sediment at the Ore Storage Pond sub-area at CC RVAAP-79 DLA Ore Storage Sites.

Because the additional data for the Ore Storage Pond sediments collected for this RI Addendum has concentrations of arsenic that are greater than those used to estimate risks to Human Health Receptors in the CC RVAAP-79 RI, these potential risks need to be reassessed considering the new sediment and pond data. Since the CC RVAAP-79 RI has been finalized, the Army will revise the Draft CC RVAAP-79 Feasibility Study (FS) to include a reassessment of potential human health risks for current and future receptors of the Ore Storage Pond that includes the new data collected for this RI Addendum. The revised HHRA will be incorporated into the Risk Management Portion of the CC RVAAP-79 FS.

1. INTRODUCTION

The majority of field work for the Remedial Investigation (RI) for CC RVAAP-79 Defense Logistics Agency (DLA) Ore Storage Sites (Parsons, 2020) was conducted by Environmental Chemical Corporation (ECC). Parsons was contracted by the U.S. Army Corps of Engineers (USACE)-Louisville District to complete the RI documentation under Contract No. W912QR-12-D-0002, Delivery Order No. 0003. The task order was modified (modification 08) on 29 September 2020 for additional field work required by Ohio Environmental Protection Agency (Ohio EPA) and Army National Guard (ARNG) to complete the RI at CC RVAAP-79, Ore Storage Pond sub-area. Field work for this RI Addendum was completed by Parsons. The field work was conducted in accordance with the *Final Work Plan Addendum Additional Sampling for CC RVAAP-79 DLA Ore Storage Sites Remedial Investigation, Ore Storage Pond Sub-Area, Ravenna Army Ammunition Plan Restoration Program, Portage and Trumbull Counties, Ohio (Parsons, 2021), the Facility-Wide Sampling and Analysis Plan (FWSAP, Science Applications International Corporation [SAIC], 2011a), and the USEPA Methods for Measuring the Toxicity and Bioaccumulation of Sediment-associated Contaminants with Freshwater Invertebrates, Second Edition, EPA 600/R-99/064 (U.S. Environmental Protection Agency [USEPA], 2000).*

This RI Report Addendum was prepared in accordance with Comprehensive Environmental, Response, Compensation, and Liability Act (CERCLA) guidance and regulations, Ohio EPA Director's Final Findings and Orders (DFFO, Ohio EPA, 2004), and the National Oil and Hazardous Substances Contingency Plan. The former Ravenna Army Ammunition Plant (RVAAP) is not on the USEPA National Priorities List, although it is in the USEPA Superfund Enterprise Management System database. The Ohio EPA is the environmental regulator for the RVAAP restoration program. The DFFOs form the basis for the implementation of a CERCLAbased environmental remediation program at the installation. This document was prepared in accordance with the Submission Format Guidelines for the Ravenna Army Ammunition Plant Restoration Program, Version 22 (Vista Sciences Corporation, 2020).

The former RVAAP, now Camp James A. Garfield Joint Military Training Center (CJAG), is located in Portage and Trumbull Counties, Ohio (Figure 1-1). CC RVAAP-79 DLA Ore Storage Sites include the following nine sub-areas (Figure 1-2):

- Main Storage Area
- Area West of Railroad
- East Transportation Yard
- Concrete Pad Storage Area
- Ore Storage Pond
- Route 80 Tank Farm
- Area 2 Ammunition Storage Area
- Load Line 3 Building 803 Inert Storage and Tank Storage Area
- Area 8 Inert Storage, Building 841

The RI for eight of the nine areas is complete and documented in the Final Remedial Investigation Report for CC RVAAP-79 DLA Ore Storage Sites, Former Ravenna Army Ammunition Plant,

Portage and Trumbull Counties, Ohio (Parsons, 2020). This RI Addendum only addresses the Ore Storage Pond sub-area.

1.1 PURPOSE

The objectives of the CC RVAAP-79 DLA Ore Storage Sites, Ore Storage Pond sub-area RI Addendum are to:

- Conduct a field investigation to collect site-related data to determine toxicity of the sediment at the Area of Concern (AOC).
- Determine if a Feasibility Study is required to evaluate remedial alternatives.

1.2 SCOPE AND OBJECTIVES

This section presents objectives to complete the RI for the Ore Storage Pond sub-area. Arsenic concentrations in sediment exceeded the Ohio EPA Sediment Reference Value (SRV, Ohio EPA, 2018). Ohio Administrative Code (OAC) 3745-1 and *Ecological Risk Assessment Guidance Document* (Ohio EPA-Division of Environmental Response and Revitalization [DERR], 2018) require that further evaluation using bioassay or remediation of the sediment be performed if contaminant concentrations in sediment in lentic water bodies exceeds the Ohio EPA SRV. The following objective has been identified to complete the RI for CC RVAAP-79 DLA Ore Storage Sites, Ore Storage Pond sub-area:

- Characterize sediment ecotoxicity using bioassays to determine if remedial alternatives should be evaluated for sediment, or if no further action is required to address ecological risk in sediment. Two bioassays were performed on composite sediment samples:
 - Hyalella azteca 10-day bioassay, and
 - Chironomus dilutus (tentans) 10-day bioassay.

Bioassays followed USEPA Methods for Measuring the Toxicity and Bioaccumulation of Sediment-associated Contaminants with Freshwater Invertebrates, Second Edition, EPA 600/R-99/064 (USEPA, 2000).

As part of the facility-wide approach to environmental investigation activities at the former RVAAP, facility-wide Data Quality Objectives (DQOs) have been developed consistent with the USEPA DQO process. The overall project DQO is to provide representative, repeatable, high quality data in order to complete a RI Report at the Ore Storage Pond sub-area at CC RVAAP-79 DLA Ore Storage Sites. DQOs specific to the Ore Storage Pond sub-area are presented in the Work Plan Addendum (Parsons, 2021) and Section 3.2.

1.3 REPORT ORGANIZATION

The RI Addendum is organized into the following sections:

- Section 1 (Introduction) Provides an overview of the purpose and scope of this RI Addendum.
- Section 2 (Background) Describes CJAG's location, operational history, demography, land use, as well as the AOC site description, operational history, and results and conclusions of previous investigations.

- Section 3 (Remedial Investigation Addendum Activities) Describes the scope of work completed and the procedures followed during this RI Addendum, including a discussion of the sampling rationale for placement of environmental media sampling locations, field activity procedures, laboratory methods, and protocols. Included in this section are the pre-mobilization activities and the field sampling methods for the sediment composite and discrete sampling. Any deviations from the work plan are outlined in this section.
- Section 4 (Results and Discussion) Discusses the results of the 10-day bioassays performed on the composite sediment samples collected from the Ore Storage Pond sub-area.
- Section 5 (Summary and Conclusions) Presents the summary and conclusions for CC RVAAP-79 DLA Ore Storage Sites, Ore Storage Pond sub-area based on the observations and toxicity results collected during the RI Addendum.
- Section 6 (Recommendations) Presents the recommendations for CC RVAAP-79 DLA Ore Storage Sites, Ore Storage Pond sub-area based on the observations and toxicity results collected during the RI Addendum.
- Section 7 (References) Lists references used to prepare this document.

The appendices to this document contain the summarized investigation data, including:

- Appendix A Field Activity Forms,
- Appendix B Bioassay Report,
- Appendix C Site Photographs,
- Appendix D Ohio EPA Notification of Field Work, and
- Appendix E Regulatory Correspondence Letters and Comments Response Table.

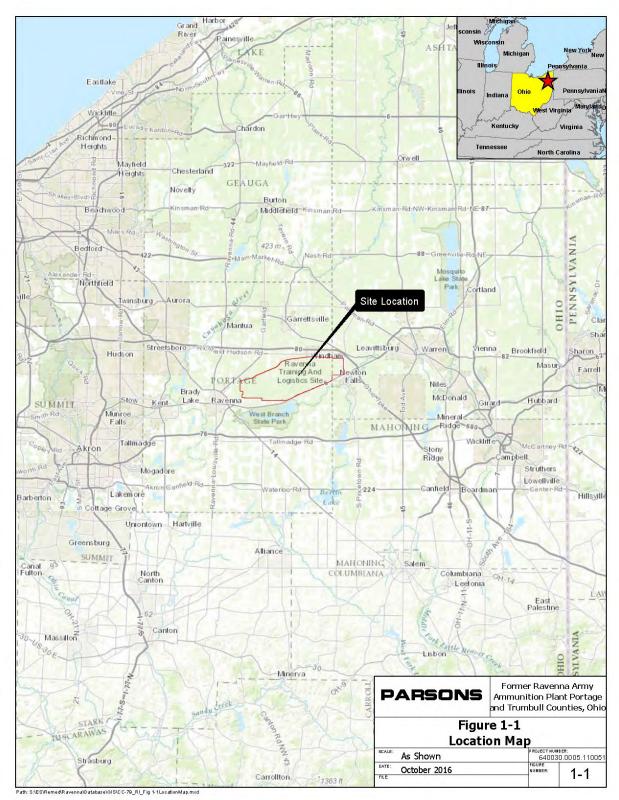


Figure 1-1: Location Map

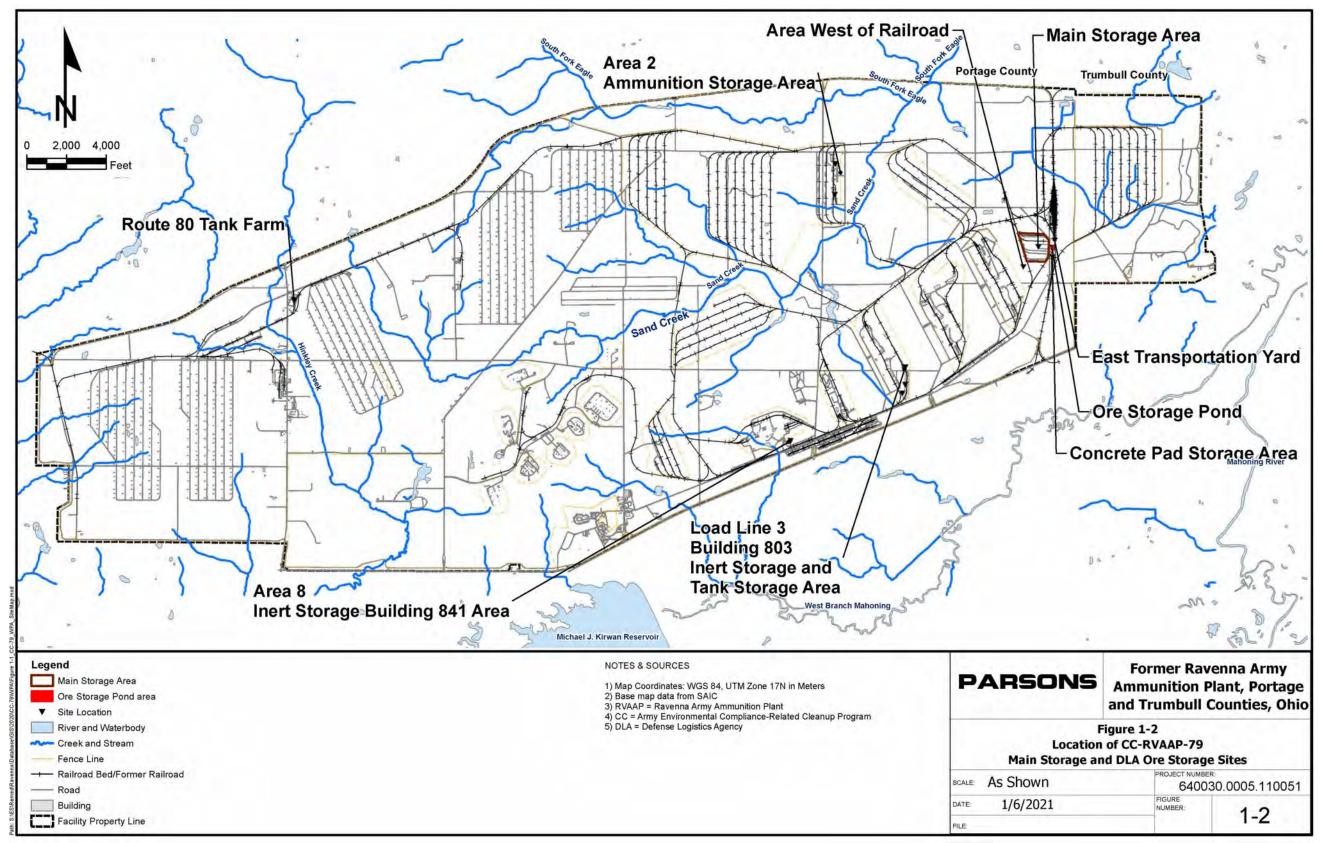


Figure 1-2: Location of CC RVAAP-79 DLA Ore Storage Sites

2. BACKGROUND

2.1 FACILITY-WIDE BACKGROUND

2.1.1 Facility Description

The facility description of the former RVAAP, now known as CJAG, is provided in Section 2.1.1 of the Final RI Report (Parsons, 2020).

2.1.2 Demography and Land Use

The 2020 Census reports that the populations of Portage and Trumbull counties are 162,466 and 197,974, respectively. Population centers closest to CJAG are Ravenna, with a population of 11,187, and Newton Falls, with a population of 4,413.

CJAG is located in a rural area and is not close to any major industrial or developed areas. Approximately 55 percent of Portage County, in which the majority of CJAG is located, consists of either woodland or farmland acreage. The closest major recreational area, the Michael J. Kirwan Reservoir (also known as West Branch Reservoir), is south of CJAG.

As of September 2013, administrative accountability for the entire 21,683-acre facility has been transferred to the United States Property and Fiscal Officer for Ohio and the property was subsequently licensed to the Ohio Army National Guard (OHARNG) for use as a military training site now known as CJAG. The RVAAP restoration program involves cleanup of former production/operational areas throughout CJAG related to former activities conducted as the RVAAP.

2.2 ENVIRONMENTAL SETTING

A general description of the physical features, topography, geology, hydrogeology, and environmental characteristics of CJAG is included in Section 2.2 of the Final RI Report (Parsons, 2020). The environmental setting specific to CC RVAAP-79 DLA Ore Storage Sites, Ore Storage Pond sub-area is included in this Section.

2.2.1 Topography

The surface features present at CC RVAAP-79 DLA Ore Storage Sites are generally similar to the rest of CJAG, with mildly undulating topography. Figure 2-1 shows the site features and topography of the five contiguous sub-areas of the AOC, including the Main Storage Area, Area West of the Railroad, East Transportation Yard, Concrete Pad Storage Area, and Ore Storage Pond. These sub-areas are mostly devoid of large or tall vegetation and are surrounded by wooded areas. Railroad spurs formerly either traversed or were located immediately adjacent to each sub-area.

Topographical elevations of the contiguous sub-areas (including the Ore Storage Pond) are between approximately 980 feet above mean sea level (amsl) on the western side and 940 feet amsl on the eastern side (Figure 2-1). Based on area topography, the ground surface slopes to the east across these contiguous sub-areas.

2.2.2 Geology and Soil

The regional geology at CJAG consists of horizontal to gently dipping bedrock strata of Mississippian and Pennsylvanian age overlain by varying thicknesses of unconsolidated glacial deposits. Soils were observed and logged during the RI conducted at the CC RVAAP-79 DLA Ore Storage Sites (Parsons, 2020).

The soil type present at the contiguous sub-areas (including the Ore Storage Pond) consists of disturbed soils that are lacking any original depositional structures or features called Udorthents. No pertinent information regarding Udorthents is available as these soils have been disturbed to a degree that the original soil type at these locations can no longer be identified. Mahoning silt loam (2 to 6 percent slopes) is present in the area surrounding the Ore Storage Pond. Mahoning silt loam is a somewhat poorly drained soil with variable surface runoff and low permeability. The deeper soils observed and documented during the previous RI sampling events are assumed to be Hiram Till glacial deposits or fill material from site construction.

Bedrock was encountered during drilling at depths ranging from 2 to 9 feet in the contiguous sub-areas (including the Ore Storage Pond). In general, the top of bedrock was within four feet of the surface in the Area West of Railroad sub-area (west side of contiguous sub-areas) and from four to nine feet below ground surface (bgs) in the East Transportation Yard sub-area (east side of the contiguous sub-areas). The bedrock is described on boring logs as sandstone and varies in depth of weathering. This sandstone is likely the Sharon Sandstone (Conglomerate) Member of the Pottsville Formation.

2.2.3 Hydrogeology

The potentiometric surface for CJAG aquifers is mapped annually from groundwater elevation measurements in monitoring wells, most recently in the *Facility-Wide Groundwater Monitoring Program, RVAAP-66 Facility-Wide Groundwater Annual Report for 2019* (Leidos, 2020). One monitoring well, FWGmw-010, is located within the Main Storage Area. This well is completed in unconsolidated deposits and screened from 6 to 16 feet bgs. During the April 2019 groundwater monitoring event, the groundwater in this well was measured at approximately 11.40 feet bgs (Leidos, 2020). The groundwater flow direction within the unconsolidated aquifer beneath the contiguous sub-areas (including the Ore Storage Pond) is to the east.

The nearest bedrock monitoring well is FWGmw-012, located approximately 1,300 feet to the northeast of the contiguous sub-areas (including the Ore Storage Pond), and is screened in the Sharon Shale from 29.5 to 39.5 feet bgs. During the April 2019 groundwater monitoring event, the groundwater in this well was measured at approximately 0.25 feet bgs (Leidos, 2020). The Sharon Shale is not a regional aquifer. It is assumed that the regional bedrock aquifer beneath the vicinity of the contiguous sub-areas (including the Ore Storage Pond) is the Sharon Sandstone. The regional groundwater flow direction in the vicinity of the contiguous sub-areas (including the Ore Storage Pond) within the Sharon Sandstone Aquifer is towards the east- northeast.

2.2.4 Surface Water

Surface water at the contiguous sub-areas occurs intermittently as storm water runoff within ditches or conveyances and toward a wetland area within these contiguous sub-areas (i.e., the Ore Storage Pond). The Ore Storage Pond is approximately 0.36 acres in size and was constructed to control potentially contaminated surface water runoff from the adjacent manganese and chrome stockpiles from leaving the site. During the April 2021 sediment sampling event, the depth of water in the pond at sediment sampling locations ranged between 10 and 16 inches, and the thickness of the sediment ranged between 6 to 11 inches. The pond has not been maintained and therefore has been subject to continuous sedimentation and now is classified as an intermittently exposed, palustrine, emergent wetland versus a small open-water pond. The nearest wetland area downgradient of the Ore Storage Pond is approximately 2,100 to the feet east.

2.3 AREA OF CONCERN DESCRIPTION

CC RVAAP-79 DLA Ore Storage Sites include the following nine sub-areas:

- Main Storage Area
- Area West of Railroad
- East Transportation Yard
- Concrete Pad Storage Area
- Ore Storage Pond
- Route 80 Tank Farm
- Area 2 Ammunition Storage Area
- Load Line 3 Building 803 Inert Storage and Tank Storage Area
- Area 8 Inert Storage, Building 841

The nine separate ore storage sub-areas comprising CC RVAAP-79 DLA Ore Storage Sites are all located within CJAG (Figure 1-1). The RI for eight of the nine areas is complete and documented in the *Final Remedial Investigation Report for CC RVAAP-79 DLA Ore Storage Sites, Former Ravenna Army Ammunition Plant, Portage and Trumbull Counties, Ohio* (Parsons, 2020). This RI Addendum only addresses additional sampling for the Ore Storage Pond sub-area.

Five of the sub-areas are contiguous and are located in the eastern portion of CJAG near the intersection of South Service Road and Irons Road (Figure 2-1). All five areas comprising these contiguous sub-areas cover approximately 63 acres. The portion of the sub-areas that stored ore is approximately 53 acres, the other 10 acres were added to the sub-areas as delineation decision units (DUs). The DLA stored strategic and critical materials, including chrome ore, ferrochrome ore, and metallurgical manganese ore at these subareas starting in the late 1940's. All ore was removed by 2012. The Ore Storage Pond was reportedly constructed in the mid-1950s to prevent potentially contaminated surface water runoff from nearby manganese and chrome stockpiles from entering surface water. Because the pond has not been maintained, the pond has filled in significantly since it was originally constructed and now functions as a palustrine, emergent, intermittently exposed wetland as mapped by the National Wetland Inventory (U.S. Fish and Wildlife Service, 2018). No buildings or associated infrastructure (e.g., utility lines) are believed to have been located in or near these sub-areas; however, railroad spurs were located in portions of the Main Storage Area and the Concrete Pad Storage Area. The Area West of Railroad, East Transportation Yard, and the Ore Storage Pond are located immediately adjacent to railroad spurs.

2.3.1 Operational History

Based on the *Final Report for the Assessment of Potential Contamination at the Defense Logistics Agency Outdoor Storage Areas, Ravenna Army Ammunition Plant, Ravenna, Ohio* (SpecPro, Inc., 2003), historical operations conducted at the facility included handling and storage of strategic and critical materials, including various types of ore, for the General Services Administration (GSA). The DLA Defense National Stockpile Center leased space at the facility for the storage of the ore materials on the ground and in above-ground storage tanks since the late 1940's. The following GSA materials were stockpiled on the ground surface in the sub-areas surrounding the Ore Storage Pond: chrome ore, ferrochrome ore, and metallurgical manganese ore

(SpecPro, Inc., 2003). Ore stockpiles were being removed during the 2003 SpecPro, Inc. investigation and were completely removed from the AOC when RI investigations began in 2012.

The Historical Records Review report (SAIC, 2011b) suggested that coal storage may have occurred within the Concrete Pad Storage Area (DU05). If coal was stored within the Concrete Pad Storage Area, it was likely removed by 1979, which is the approximate date that coal piles were removed from the other coal storage areas (CC RVAAP-73 Facility-Wide Coal Storage). No ore or coal was present at the Concrete Pad Storage Area during RI sampling (Parsons, 2020).

2.3.2 **Previous Investigations**

Timeline for investigations and related documents at CC RVAAP-79 DLA Ore Storage Sites:

- 2003 Final Report for the Assessment of Potential Contamination at the DLA Outdoor Storage Areas (SpecPro, Inc., 2003)
- November 2010 Initial Assessment of CC RVAAP-79 DLA Group 2 Ammunition Storage Area (USACE, 2011)
- October 2012 Site Inspection/RI Work Plan finalized (ECC, 2012)
- October 2012 and March 2013 RI sampling performed at CC RVAAP-79 DLA Ore Storage Sites
- April 2015 Additional RI sampling performed at CC RVAAP-79 DLA Ore Storage Sites (except for the Ore Storage Pond and Area 2 Ammunition Storage Area)
- February 2019 Draft RI Report submitted to Ohio EPA
- April 2019 to February 2020 Series of comments on Draft RI from Ohio EPA requesting additional sediment sampling and bioassays for the Ore Storage Pond.
- October 2020 Final RI Report (Parsons, 2020) recommending additional sediment sampling and bioassays at the Ore Storage Pond sub-area.
- March 2021 Final Work Plan Addendum for Ore Storage Pond (Parsons, 2021)

2.3.2.1 Previous Investigations at the Main Storage Area, Area West of the Railroad, East Transportation Yard, Concrete Pad Storage Area, and Ore Storage Pond

A soil and sediment survey conducted in 1982 by The Mogul Corporation included the collection of 7 soil and 1 pond sediment sample points in the DLA ore pile area (The Mogul Corporation, 1982). The samples were analyzed for 2,4,6-trinitrotoluene, hexahydro-1,3,5-trinitro-1,3,5-triazine, and selected inorganics. Sampling for pollutants in storm water discharges was conducted on a monthly basis upstream (National Pollutant Discharge Elimination System [NPDES] Outfall #800) and downstream (NPDES Outfall #900) from the site in a surface drainage pathway adjacent to the chromium ore piles from November 1992 through February 1997. Available results from this investigation are available in the *Assessment of Potential Contamination at the DLA Outdoor Storage Areas* (SpecPro, Inc., 2003).

SpecPro, Inc. conducted an assessment of DLA outdoor storage areas, including documenting the operational history of ore storage at these contiguous sub-areas, Route 80 Tank Farm, and Load Line 3 DLA Tank Storage Area, summarizing previous investigations, and conducting sampling in 2003 (SpecPro, Inc., 2003). During the 2003 investigation, 86 discrete surface soil samples

(0-1 foot bgs) were collected from the Ore Storage Areas, as well as 14 sediment and 2 surface water samples (SpecPro, Inc., 2003). For soil characterizations purposes, most samples were analyzed for Resource Conservation and Recovery Act (RCRA) 8 metals. A portion of those samples were further characterized using the complete Target Analyte List (TAL) metals list. Detected contaminant concentrations were compared against facility-wide background values developed as part of the Phase II RI for the Winklepeck Burning Grounds (SAIC, 2001).

Three inorganics (arsenic, chromium, and lead) were detected at concentrations greater than background levels in the surface water samples collected from the Ore Storage Pond. Five inorganics were detected at concentrations greater than background levels in the sediment samples. Arsenic and chromium were detected in most sediment samples (71% and 93% of the time, respectively). In general, the occurrence of inorganics in sediment at concentrations greater than background criteria was limited to areas nearest to the chromium piles at the storage area. Inorganics were detected at concentrations greater than the background criterion in 83 out of 86 surface soil samples. Arsenic, barium, and chromium represented most contaminants detected at concentrations greater than background levels in the ore pile storage area; however, the concentrations of inorganics were spatially variable. In general, the occurrence of inorganics at concentrations greater than background criteria in surface soil was limited only to the DLA Ore Pile Storage Area and not the area surrounding the main storage location. Subsurface soil samples were not collected because target analyte Toxicity Characteristic Leaching Procedure maximum contaminant levels were not exceeded in surface soil samples (SpecPro, Inc., 2003). SpecPro, Inc. concluded that surface soil "does not appear to be significantly impacted by storage-related activities". SpecPro, Inc. further concluded that "many of the inorganics found at the DLA Storage Areas may be attributable to sources that have already been removed or are in the process of being removed." Results from this 2003 investigation are available in the Assessment of Potential Contamination at the DLA Outdoor Storage Areas (SpecPro, Inc., 2003).

2.3.2.2 Remedial Investigation Activities at the Ore Storage Pond

The following paragraphs summarize the results for the Ore Storage Pond sub-area documented in the *Final Remedial Investigation Report CC RVAAP-79 DLA Ore Storage Sites, Former Ravenna Army Ammunition Plant, Portage and Trumbull Counties, Ohio* (Parsons, 2020).

RI field work at the Ore Storage Pond was conducted in March and April 2013. Field work was conducted in accordance with *Final Site Inspection and Remedial Investigation Work Plan at Compliance Restoration Sites, Former Ravenna Army Ammunition Plant, Portage and Trumbull Counties, Ohio* (ECC, 2012). DUs were designed to represent the operational areas where storage or staging activities could have caused residual contamination in surrounding media. The Ore Storage Pond was designated DU03.

Five discrete collocated sediment and surface water samples (4 primary samples and 1 field duplicate) were collected from 4 sampling locations at the Ore Storage Pond (Figure 2-2). The sediment samples were collected from 0-1 foot below the bottom of the pond. All the samples were analyzed for TAL metals, including mercury. The sediment sample from 79-OSP-DU3-SD3 and surface water sample from 79-OSP-DU3-SW1 were also analyzed for full-suite (including volatile organic compounds [VOCs], semi-volatile organic compounds [SVOCs], organochlorine pesticides, polychlorinated biphenyls, and explosives/propellants).

Data generated during the CC RVAAP-79 DLA Ore Storage Sites RI for the Ore Storage Pond were screened to identify site-related chemicals (SRCs). A chemical detected at a concentration

greater than the established Background Screening Value, that is not an essential nutrient, and has not been screened out through a frequency of detection evaluation is identified as an SRC. An SRC may, or may not be, related to the former operations at the AOC. Ten inorganics, eleven SVOCs, and three VOCs were identified as SRCs in sediment at the Ore Storage Pond. Five inorganics and one VOC were identified as SRCs in surface water at the Ore Storage Pond.

Receptors and Land Use: The OHARNG-projected future land use for the AOC is Military Training Land Use. The representative receptor for these areas is the National Guard Trainee (NGT) Receptor. Additionally, the Industrial Receptor is representative for the full-time worker at CJAG. Unrestricted (Residential) Land Use is evaluated using the Resident Receptor. The Ore Storage Pond is a small (0.36 acre) former man-made pond and has no permanent inlet. There is an overflow outlet ditch from Ore Storage Pond to the ditch along the railroad to east of the pond. The Ore Storage Pond represents only a small fraction of the total habitat available at CJAG, it does not contain any unique habitats, and it may contain habitat of lower quality than the less developed portions of CJAG property (Parsons, 2020).

Nature and Extent of Contamination: The evaluation of nature and extent of contamination for the Ore Storage Pond sub-area concluded that the extent of detected chemicals in sediment and surface water is confined to the pond itself. Because the Ore Storage Pond was constructed to contain runoff from the Main Storage Area, surface water does not enter or leave the pond, except during periods of heavy precipitation.

Human Health Risk Assessment: Chemicals of potential concern (COPCs) that were carried through the risk assessment were identified by comparing the maximum detected concentration (MDC) of each SRC at each sub-area to the most stringent Resident Receptor Facility-Wide Cleanup Goal (FWCUG) (SAIC, 2010) (or USEPA Residential Receptor Regional Screening Level [RSL] if no FWCUG is established) at a target cancer risk level of 10⁻⁶ and non-carcinogenic target hazard quotient (HQ) of 0.1. Discrete samples were used to identify COPCs in sediment at the Ore Storage Pond. Grab samples were used to identify COPCs in surface water.

The COPCs in sediment (arsenic and cobalt) and surface water (arsenic) were further evaluated to identify chemicals of concern (COCs). COCs were determined by comparing the exposure point concentrations (EPCs) to FWCUGs or, where not developed, RSLs corresponding to a target cancer risk of 10⁻⁵ or target HQ of 1. The Human Health Risk Assessment performed for CC RVAAP-79 DLA Ore Storage Sites evaluated Unrestricted (Residential) Land Use (Resident Receptor), which is protective of all receptors. The RI Report (Parsons 2020) concluded that there are no COCs identified in any media in the Ore Storage Pond sub-area.

Ecological Risk Assessment: The RI Report (Parsons, 2020) included a Phase I and Phase II Ecological Risk Assessment (ERA) for all DUs including sediment and surface water at the Ore Storage Pond sub-area. The process included selection of EPCs for all SRCs, and comparison of EPCs to Ohio EPA SRVs and Ecological Screening Values (ESVs, Los Alamos National Laboratory, 2017) to identify and refine chemicals of potential ecological concern (COPECs).

There were no COPECs identified for surface water in the Level II ERA, therefore the RI Report (Parsons, 2020) concluded that no further investigation (e.g., Level III Baseline ERA) for surface water is considered necessary for the protection of ecological receptors at the Ore Storage Pond.

The MDC of arsenic in sediment (300 mg/kg) exceeded the Ohio EPA SRV (25 mg/kg) and ESV (9.79 mg/kg). The Level II ERA identified arsenic as a COPEC in sediment at the Ore Storage

Pond (Figure 2-2). Although the weight of evidence in the ERA showed arsenic was unlikely to cause any ecological impact, the arsenic concentration in sediment exceeded the Ohio EPA SRV. Therefore, in accordance with OAC 3745-1 and *Ecological Risk Assessment Guidance Document* (Ohio EPA-DERR, 2018), Ohio EPA indicated that only two options were available for Ore Storage Pond sediment: assess ecotoxicity with bioassays or remediate.

Remedial Investigation Report Recommendations: The Final RI report (Parsons, 2020), consistent with OAC 3745-1 and *Ecological Risk Assessment Guidance Document* (Ohio EPA-DERR, 2018), recommended additional assessment for sediment at the Ore Storage Pond. Specifically, the RI report recommended that six sediment samples should be collected across the pond. Two bioassays should be performed on composite samples consisting of portions from three of the six sediment samples:

- *Hyalella azteca* 10-day bioassay, and
- *Chironomus dilutus* (formerly *tentans*) 10-day bioassay.

Bioassays should follow USEPA Methods for Measuring the Toxicity and Bioaccumulation of Sediment-associated Contaminants with Freshwater Invertebrates, Second Edition, EPA 600/R-99/064 (USEPA, 2000). Other appropriate organism(s) may be substituted for Chironomus dilutus (tentans) if needed. The decision of whether sediment should be evaluated for remedial alternatives or if no further action is required to address ecological risk based on the results of the bioassays.

In addition, the six sediment samples would be analyzed for standard sediment parameters (total organic carbon, pH, and grain size analysis) and the TAL metals. The results of these analyses would be used to support the evaluation of remedial alternatives, should evaluation be necessary. The results may also be helpful in interpreting the results of the bioassays. No further investigation or removal action was recommended for surface water.

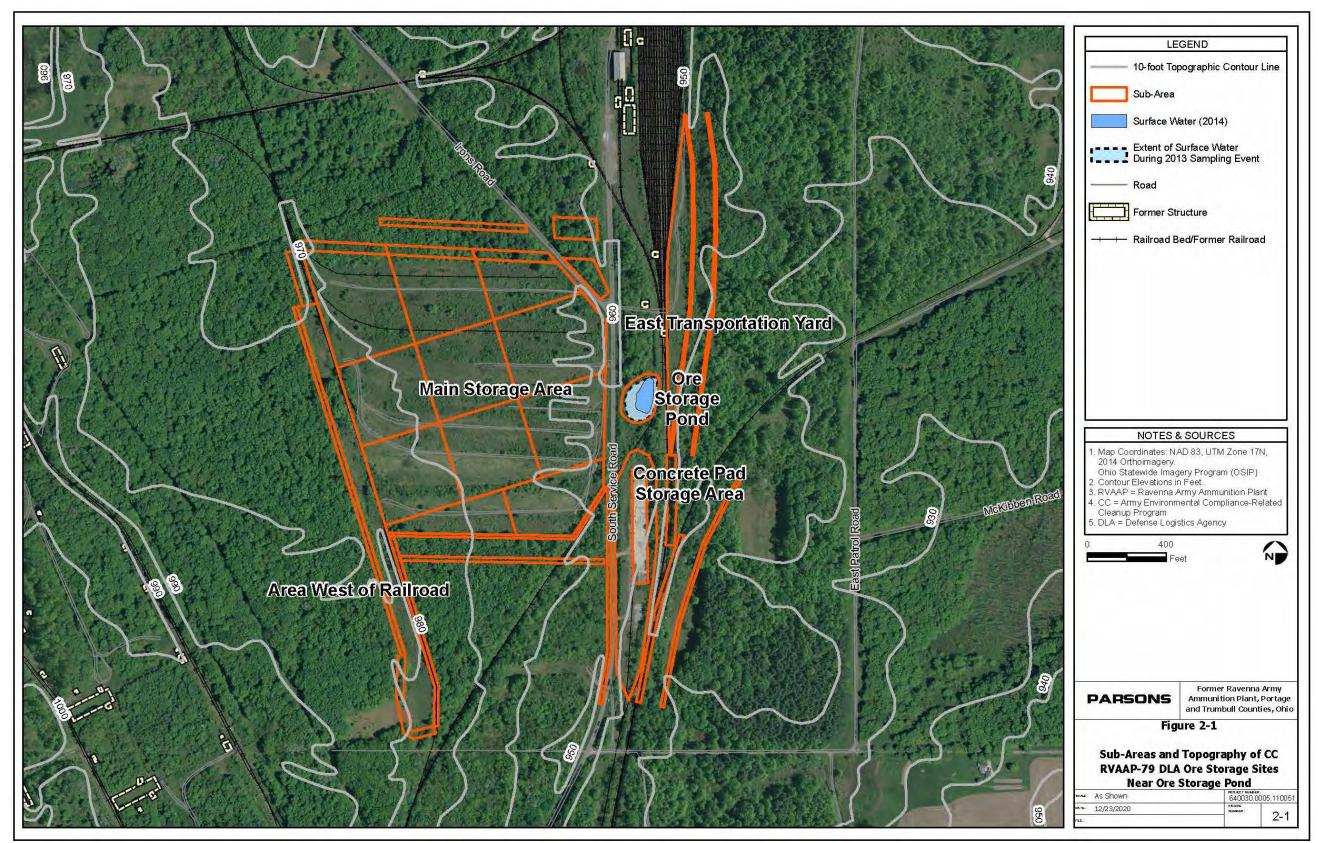
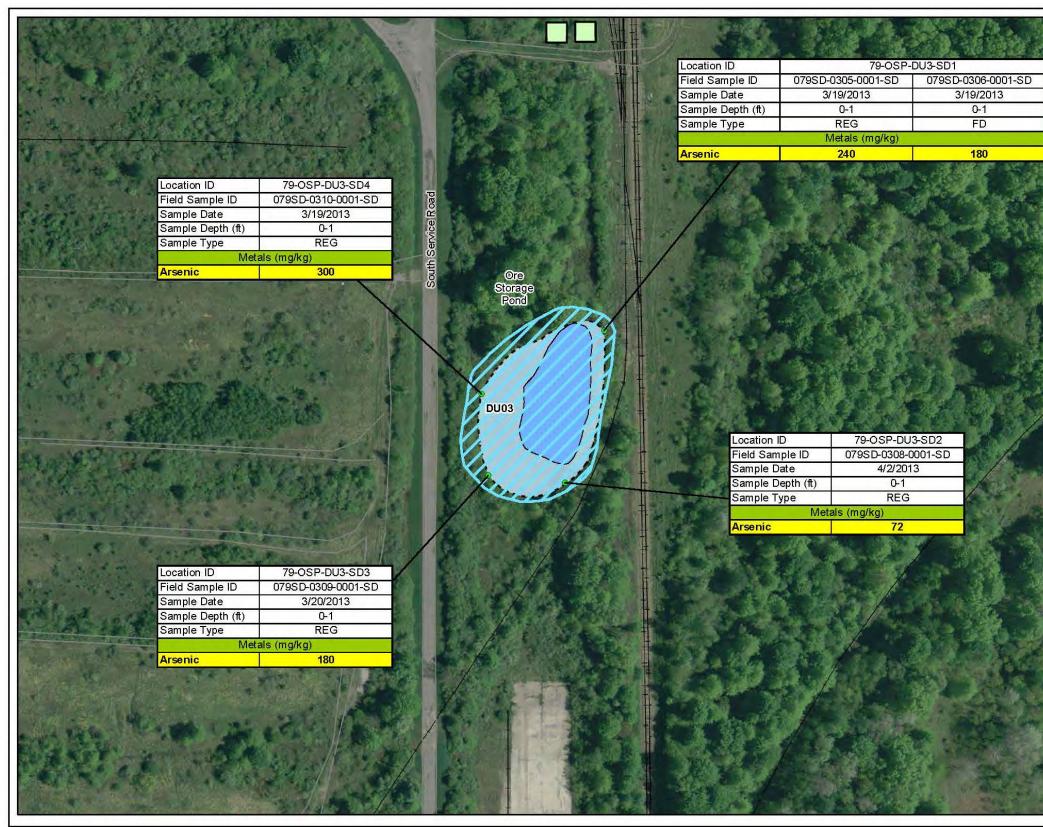
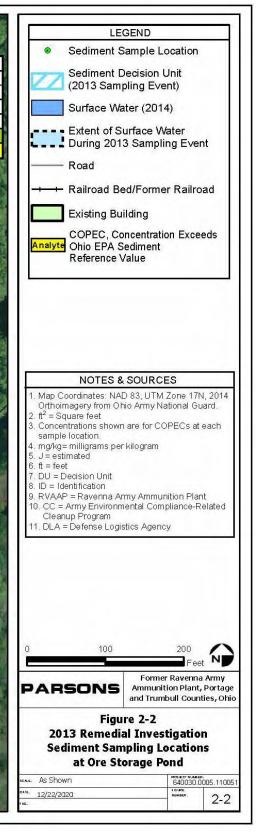




Figure 2-1: Sub-Areas and Topography of CC RVAAP-79 DLA Ore Storage Sites near Ore Storage Pond

Path: S:\ES\Remed\Ravenna\Database\GIS\2020\CC-79\WPA\Figure 2-1_CC-79_WPA_Sediment_Samples_Inorganic.mxd

Figure 2-2: 2013 Remedial Investigation Sediment Sampling Locations at Ore Storage Pond Sub-Area

3. REMEDIAL INVESTIGATION ADDENDUM ACTIVITIES

This RI Addendum was conducted to characterize sediment ecotoxicity using bioassays to determine if remedial alternatives should be evaluated for sediment, or if sediment is appropriate for no further action to address ecological risk. Samples used for decision making in this RI Addendum were collected by Parsons in April 2021. Work conducted by Parsons for this RI Addendum was performed as specified in the FWSAP (SAIC, 2011a) and the Work Plan Addendum (Parsons, 2020) unless specifically noted herein (Section 3.6).

3.1 SCOPE AND OBJECTIVES

The following objective was identified to complete the RI for CC RVAAP-79 DLA Ore Storage Sites, Ore Storage Pond sub-area:

- Characterize sediment ecotoxicity using bioassays to determine if remedial alternatives should be evaluated for sediment, or if no further action is required to address ecological risk in. Perform two bioassays on composite sediment samples:
 - Hyalella azteca 10-day bioassay, and
 - *Chironomus dilutus (tentans)* 10-day bioassay.

Bioassays should follow USEPA Methods for Measuring the Toxicity and Bioaccumulation of Sediment-associated Contaminants with Freshwater Invertebrates, Second Edition, EPA 600/R-99/064 (USEPA, 2000). Other appropriate organism(s) may be substituted for Chironomus dilutus (tentans) if needed.

3.2 DATA QUALITY OBJECTIVES

The overall project DQO is to provide representative, repeatable, high quality data to address the primary project objectives (Parsons, 2020). Samples were collected and analyzed according to the FWSAP and the Work Plan Addendum. The FWSAP and Work Plan Addendum provide the organization, objectives, intended data uses, and Quality Assurance/Quality Control (QA/QC) activities to perform in order to achieve the desired DQOs for maintaining the defensibility of the data. Project DQOs were established in accordance with USEPA Region 5 guidance. Requirements for sample collection, handling, analysis criteria, target analytes, laboratory criteria, and data verification criteria for the RI Addendum are consistent with USEPA and U.S. Department of Defense (DoD) requirements. DQOs for this project include analytical precision, accuracy, representativeness, completeness, comparability, and sensitivity for the measurement data. DQOs specific to the Ore Storage Pond sub-area are presented in the Work Plan Addendum (Parsons, 2021) and Table 3-1.

3.3 SAMPLING RATIONALE

At the CC RVAAP-79 DLA Ore Storage Sites, Ore Storage Pond sub-area, discrete and composite sampling methods were employed to investigate the toxicity of sediment. DUs were established in the RI Report (Parsons, 2020) to represent the operational areas where storage or staging activities could have caused residual contamination in the surrounding media (Figure 3-1). The location and size of the Ore Storage Pond DU (DU03) was based on the extent of the Ore Storage Pond. The Work Plan Addendum (Parsons, 2021) included a detailed approach for sampling at the Ore Storage Pond sub-area. Sampling conducted in April 2021 at DU03 represents the area of potential impact

from historical operations. A description of the sampling activities conducted at the Ore Storage Pond sub-area is provided in the following sections and is summarized in detail in Table 3-2.

3.4 PRE-MOBILIZATION ACTIVITIES

Parsons personnel conducted a site walk on January 9, 2020 to scout access to the pond. Parsons personnel mobilized to the pond on April 20, 2021 to collect sediment samples. This included notification of field work to Ohio EPA (Appendix D).

3.5 FIELD SAMPLING

Sediment samples were collected at CC RVAAP-79 DLA Ore Storage Sites, Ore Storage Pond sub-area. Field sampling forms from April 2021 are provided in Appendix A. The bioassay laboratory report is presented in Appendix B. Photographs of RI Addendum activities from April 2021 are provided in Appendix C. Figure 3-1 depicts the location, size, and sampling locations for the sub-area. Table 3-2 presents a summary of sample identifications, sample collection methods (type), and the rationale for the sampling activities conducted at the Ore Storage Pond sub-area.

3.5.1 Sediment Sampling

Six sediment samples (plus QC including 1 field duplicate and 1 matrix spike/matrix spike duplicate) were collected from 6 sampling locations across two transects that transverse the width of the Ore Storage Pond (from West to East) using discrete sampling methods. A portion of three samples was composited in the field for a total of two composite samples (one composite sample consisting of even-numbered samples, and the other composite sample consisting of odd-numbered samples) for biological analysis (see Section 3.5.2).

Information recorded on the sample forms included station number, depth to bottom, sediment depth (i.e., sampler penetration depth), sediment depth stratum sampled, physical sediment characteristics, and date and time of sample collection (Appendix A). In addition, field measurements for temperature, pH, dissolved oxygen, etc. were collected from the water column within one meter of the sediment prior to sediment sample collection. Photographs were also taken of each sample station (Appendix C). All sediment surface using a Wildco hand-coring device. Multiple deployments of the corer were necessary to obtain adequate sediment quantity for the sample containers.

The sediment was placed in a plastic container. When sufficient sediment for all analyses had been collected, the sediment in the container was thoroughly homogenized. All sample containers were stored in insulated, ice-filled coolers while in the field prior to shipment. The hand corer was decontaminated between sampling stations by scrubbing with a brush and ambient pond water, followed by a thorough *in situ* rinsing. An equipment blank rinsate sample was collected from the hand corer.

3.5.2 Bioassays

Six sediment samples were collected using two transects across the pond and composited into two samples (three samples for each composite). Sediment was homogenized and split into laboratory containers in the field as described above. Headspace in the bioassay test sample containers was minimized. Bioassays were performed by EA Engineering Science and Technology, Inc. PBC in Hunt Valley, Maryland on each composited sample:

• *Hyalella azteca* (amphipod) 10-day bioassay and

• *Chironomus dilutus* (midge, formerly tentans) 10-day bioassay.

Bioassays followed USEPA Methods for Measuring the Toxicity and Bioaccumulation of Sediment-associated Contaminants with Freshwater Invertebrates (USEPA, 2000). The tests were performed with 8 replicates per composite sediment sample. The 10-day bioassay tests evaluated survival and growth as endpoints for each test organism and a laboratory control sample was included with the tests. The bioassay samples were performed with a holding time of 14 days or less. Water overlying the test organisms was also field tested for temperature, pH, dissolved oxygen, and conductivity/salinity. The laboratory provided a final report specifying methods, materials, results, statistical determination of toxic concentrations, and unforeseen protocol deviations with an evaluation of the resulting impact. Toxicity testing operations and performance criteria are presented in Appendix B.

The survival and growth results of the organisms toxicity tests were statistically analyzed according to USEPA guidance (USEPA, 2000) to determine if any of the site sediments were significantly different (p=0.05) from the control sediment. If the data were normally distributed, then a t-Test was performed to detect statistically significant differences between test sediments and the control sediment. If the data distribution was non-normal, then a Wilcoxon Two-Sample Test was used to compare the group means. Shapiro-Wilk's Test was used to determine if the data were normally distributed, and the F-Test was used to test for homogeneity of variance.

3.6 DEVIATIONS FROM WORK PLAN

Work performed in April 2021 at the Ore Storage Pond followed the Work Plan Addendum (Parsons, 2021), except for the following deviations:

- 10-day bioassays for *Hyalella azteca* and *Chironomus dilutus* were performed on both composite sediment samples 079SD-416M-0001-SD and 079SD-417M-0001-SD.
- Sediment sampling locations were not recorded using a Trimble Global Positioning System (GPS) unit. The Trimble GPS unit was not operational at the time of sample collection. Instead, the field team used professional judgement and satellite imagery to locate the sampling stations in the pond. The samples were collected as close as possible to the originally proposed sample locations (within 4 meters as specified in the Work Plan Addendum [Parsons, 2021]).

3.7 SURVEYING

The sediment sampling locations within the pond were not surveyed.

3.8 INVESTIGATION-DERIVED WASTE

Sampling conducted at the Ore Storage Pond did not generate any investigation-derived waste.

State the Problem	Identify Goals of the Study	Identify Information Inputs	Define the Boundaries of the Study	Develop the Analytic Approach	Specify Performance or Acceptance Criteria	Develop the Detailed Plan for Obtaining Data
CC RVAAP-79 DLA Or	e Storage Sites, Ore Storage	Pond Sub-Area	<u> </u>	I	1	1
Concentrations of metals were detected in the sediment samples from the Ore Storage Pond that were greater than Ohio EPA SRVs. Although the Army showed there were unlikely to be unacceptable risks to ecological receptors that use the pond using standard ERA tools; the Ohio EPA per their regulations, stated that there were only two options: test the sediment by completing two bioassays or remediate the sediment.	Is the sediment toxic as measured by <i>Hyalella</i> <i>azteca</i> 10 day bioassay and /or <i>Chironomus</i> <i>dilutus</i> (<i>tentans</i>) 10 day bioassay? If bioassays indicate toxicity, report the results, and close the RI phase, then proceed to evaluation of remedial alternatives. If not toxic, report and close the RI phase with conclusion that no further action is required to address ecological risk.	Sediment toxicity is evaluated by survival and growth of in 10-day bioassays. Survival is measured by counting living (moving) organisms at the end of the 10-day test. Growth is measured by average dry weight (for <i>Hyalella azteca</i>) or ash-free dry weight (for <i>Chironomus dilutus</i>) of surviving organisms. Acceptable tests meet the following criteria in the controls: • <i>Hyalella azteca</i> Test Acceptability Criteria: 80% survival and measurable growth in the control • <i>Chironomus dilutus</i> Test Acceptability Criteria: 70% survival and a mean ash-free dry weight of 0.48 mg/organism in the control The survival and growth results from the Ore Pond sediment will be compared to those of the control or reference sediment to determine toxicity using statistical methods in accordance with <i>USEPA</i> <i>Methods for Measuring the Toxicity and</i> <i>Bioaccumulation of Sediment-associated</i> <i>Contaminants with Freshwater Invertebrates,</i> <i>Second Edition,</i> EPA 617 600/R-99/064, March 2000. If the data are normally distributed, then a t-Test will be performed to detect statistically significant ($p = 0.05$) differences between test sediments and the control sediment. If the data distribution is non-normal, then a Wilcoxon Two-Sample Test will be used to compare the group means. Shapiro-Wilk's Test will be used to determine if the data are normally distributed, and the F-Test will be used to test for homogeneity of variance. Should the test results indicate a high degree of statistical strength due to low variability in the data or if the data is highly variable, an indication of biological significance of >20% difference from the control, is sufficient to indicate that a sample may have a substantial impact.	Sediment from within the submerged portions of Ore Storage Pond. The pond is small (0.36 acres). Because the pond has not been maintained, the pond has filled in significantly since it was originally constructed. The size of the pond changes seasonally and with rain events.	Analytic approach is in accordance with USEPA Methods for Measuring the Toxicity and Bioaccumulation of Sediment-associated Contaminants with Freshwater Invertebrates, Second Edition, EPA 617 600/R-99/064, March 2000.	All sampling and analysis will be performed in accordance with the procedures outlined in the UFP-QAPP and the Work Plan Addendum, Additional Sampling for CC RVAAP-79 DLA Ore Storage Sites Remedial Investigation, Ore Storage Pond Sub-Area, Former Ravenna Army Ammunition Plant, Portage and Trumbull Counties, Ohio.	 Collect six sediment samples across the pond. Prepare field composite samples that each contain portions from three of the six sediment samples) and perform the two bioassays: <i>Hyalella azteca</i> 10 day bioassay and <i>Chironomus dilutus (tentans)</i> 10 day bioassay Bioassays should follow USEPA Methods for Measuring the Toxicity and Bioaccumulation of Sediment-associated Contaminants with Freshwater Invertebrates, Second Edition, EPA 600/R-99/064, March 2000. Other appropriate organism(s) may be substituted for Chironomus dilutus (tentans) if needed. Refer to Section 3.0 for further details.

Table 3-1: Data Quality Objectives

Location ID	Sample ID	Depth	Matrix	Sampl	е Туре	10-Day Bioassay	Notes
	079SD-410-0001-SD	0-6 inches	sediment	Discrete	Ν		
079SD-410	079SD-410-9001-SD	0-6 inches	sediment	Discrete	FD		Western most end of north transect.
	079SD-410-0001-SD-MS/MSD	0-6 inches	sediment	Discrete	MS/MSD		north thunseet.
079SD-411	079SD-411-0001-SD	0-6 inches	sediment	Discrete	Ν		Middle of north transect.
079SD-412	079SD-412-0001-SD	0-6 inches	sediment	Discrete	Ν		Eastern most end of north transect.
079SD-413	079SD-413-0001-SD	0-4 inches	sediment	Discrete	Ν		Western most end of south transect.
079SD-414	079SD-414-0001-SD	0-6 inches	sediment	Discrete	Ν		Middle of south transect.
079SD-415	079SD-415-0001-SD	0-6 inches	sediment	Discrete	Ν		Eastern most end of south transect
079SD-416M	079SD-416M-0001-SD	0-6 inches	sediment	composite	N	Hyalella azteca 10-day bioassay and Chironomus dilutus (tentans) 10-day bioassay	Composite sediment from SD-410, SD-412, and SD-414
079SD-417M	079SD-417M-0001-SD	0-6 inches	sediment	composite	N	Hyalella azteca 10-day bioassay and Chironomus dilutus (tentans) 10-day bioassay	Composite sediment from SD-411, SD-413, and SD-415

Table 3-2: Sampling Locations and Bioassays at Ore Storage Pond Sub-area CC RVAAP-79 DLA Ore Storage Sites

Notes:

FD = field duplicate MS/MSD = matrix spike/matrix spike duplicate N = normal sample SD = sediment

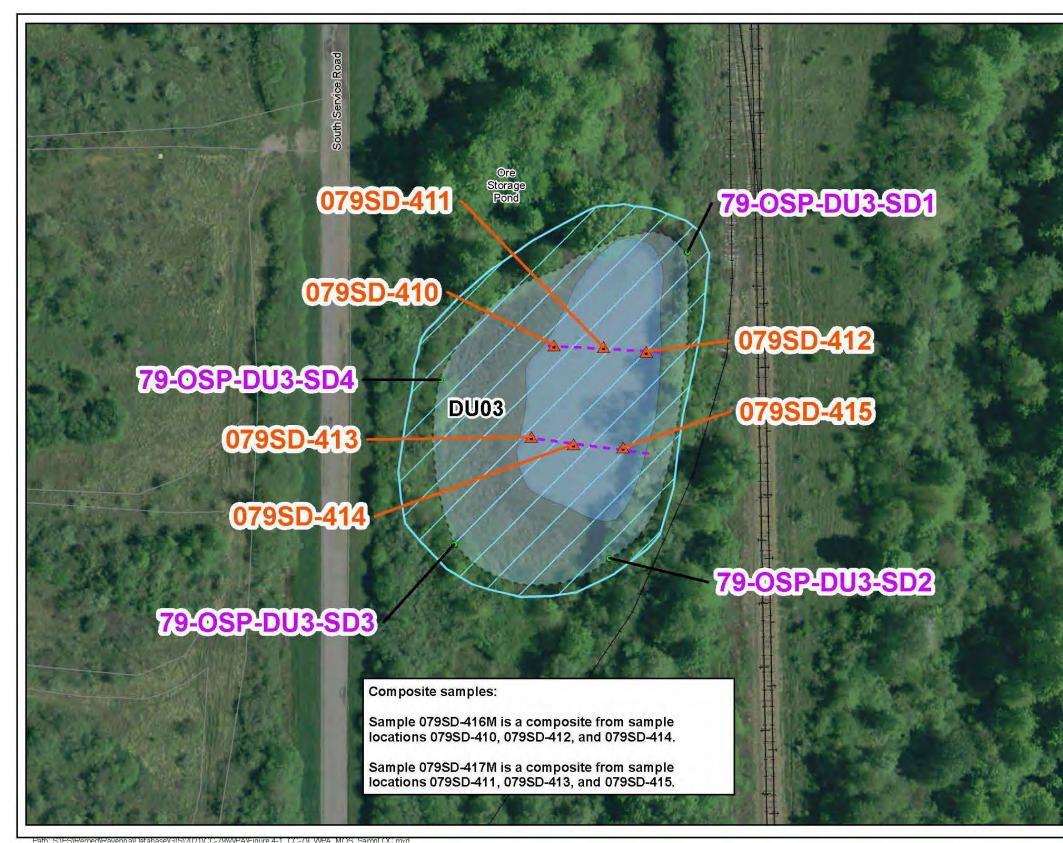
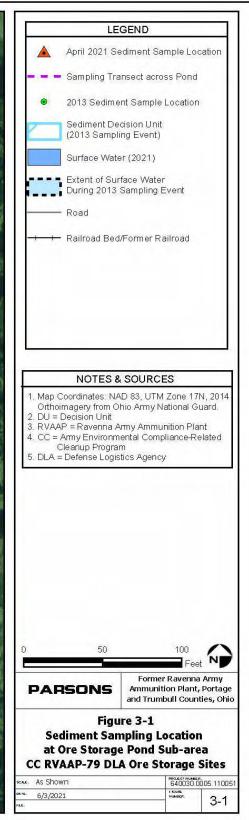



Figure 3-1: Sediment Sampling Locations at Ore Storage Pond Sub-area CC RVAAP-79 DLA Ore Storage Sites

4. RESULTS AND DISCUSSION

The Level II Screening ERA performed for the Ore Storage Pond sub-area in the RI Report (Parsons, 2020) concluded that arsenic was identified as a COPEC in the sediment for the Ore Storage Pond, and additional assessment of the sediment at the Ore Storage Pond was required to complete the characterization and ERA of this sub-area. No COPECs were identified for the surface water of the Ore Storage Pond. Field work was performed for additional sampling and bioassays as described in the Work Plan Addendum (Parsons, 2021). This section evaluates the additional samples and bioassays performed for the Ore Storage Pond sub-area. Six sediment samples were collected across the pond, and two bioassays were performed on composite samples consisting of portions from three of the six sediment samples:

- Hyalella azteca 10 day bioassay, and
- Chironomus tentans 10 day bioassay.

Bioassays followed USEPA Methods for Measuring the Toxicity and Bioaccumulation of Sediment-associated Contaminants with Freshwater Invertebrates, Second Edition, EPA 600/R-99/064, March 2000 (USEPA, 2000).

4.1 HYALELLA AZTECA 10-DAY BIOASSAYS

Table 4-1 summarizes the results of the *Hyalella azteca* 10-day survival and growth test. Water quality measurements taken during the test are presented in Appendix B. The survival and growth of *Hyalella azteca* exposed to the site sediments were statistically compared to organisms exposed to the laboratory control. The results indicate that survival and growth of the organisms exposed to site sediments were not statistically different (p=0.05) from the laboratory control sample. The results of the *Hyalella azteca* 10-day bioassay indicate that sediment from composite samples 079SD-416M-0001-SD and 079SD-417M-0001-SD do not show toxicity.

Sample Identification	10-Day Survival (percent)	Mean Dry Weight as mg/Organism (±SD)	Conclusion
Laboratory Control	80	0.073 (±0.016)	Control meets criteria of 80%
Laboratory Control	80	$0.073(\pm 0.010)$	survival and measurable growth
			Survival and growth are not
079SD-416M-0001-SD	86	0.096 (±0.015)	statistically different (p=0.05)
			from laboratory control
			Survival and growth are not
079SD-417M-0001-SD	86	0.083 (±0.021)	statistically different (p=0.05)
			from laboratory control

 Table 4-1: Results of Hyalella azteca 10-Day Toxicity Testing

4.2 CHIRONOMUS DILUTUS 10-DAY BIOASSAYS

Table 4-2 summarizes the results of the *Chironomus dilutus* 10-day survival and growth test. Water quality measurements taken during the test are presented in Appendix B. The survival and growth of *Chironomus dilutus* exposed to the site sediments were statistically compared to organisms exposed to the laboratory control. The survival results indicated that the organisms exposed to the site sediments were statistically different (p=0.05) from the laboratory control sample for survivability. Although statistically different, the average survivability of *Chironomus dilutus* in

the two samples was 85.5 percent, compared to 100 percent survivability in the control. This is a 14.5% difference in survival rates relative to the control. Ohio EPA guidance (Ohio EPA-DERR, 2018) indicates that historically laboratory bioassays use a significant difference range of 10 - 20% as being of importance. The DQO in the Work Plan Addendum (Parsons, 2021) indicated that a difference between bioassay results in the samples and control of greater than 20 percent indicates a significant impact. Therefore, the survival rates in the samples, though statistically different from the control, were not sufficiently different to be an important or significant impact. Mean ash free dry weight indicated that growth in both of the sediment samples were not significantly different from the control. The results of the *Chironomus dilutus* 10-day bioassay indicate that sediment from composite samples 079SD-416M-0001-SD and 079SD-417M-0001-SD do not show significant toxicity.

Sample Identification	10-Day Survival (percent)	Mean Ash Free Dry Weight as mg/Organism (±SD)	Conclusion
Laboratory Control	100	0.697 (±0.152)	Control meets criteria of greater than 70% survival and a mean ash-free dry weight of at least 0.48 mg/organism
079SD-416M-0001-SD	93(a)	1.074 (±0.209)	Survival rate is statistically different (p=0.05) from laboratory control. Growth is not statistically different from the control.
079SD-417M-0001-SD	78(a)	1.221 (±0.267)	Survival rate is statistically different (p=0.05) from laboratory control. Growth is not statistically different from the control.

Table 4-2: Results of Chironomus dilutus 10-Day Toxicity Testing

Notes:

(a) Significantly different (p=0.05) from laboratory control.

5. SUMMARY AND CONCLUSIONS

This RI addendum was conducted to determine the toxicity of the Ore Storage Pond sub-area and evaluate whether additional remedial actions are warranted. Samples used for decision making in this RI Addendum were collected by Parsons in April 2021. Samples were collected and analyzed according to the FWSAP (SAIC, 2011a) and the Final Ore Storage Pond Sub-area Work Plan Addendum (Parsons, 2021). The bioassays were conducted in accordance with USEPA toxicity and bioaccumulation guidance (USEPA, 2000).

At the Ore Storage Pond sub-area, composite and discrete sampling methods were employed to investigate sediment. Six sediment samples were collected across the pond, and two bioassays were performed on composite samples consisting of portions from three of the six sediment samples:

- *Hyalella azteca* 10 day bioassay, and
- *Chironomus tentans* 10 day bioassay.

Bioassays followed USEPA Methods for Measuring the Toxicity and Bioaccumulation of Sediment-associated Contaminants with Freshwater Invertebrates, Second Edition, EPA 600/R-99/064, March 2000.

The results of the *Hyalella azteca* and *Chironomus dilutus* 10-day bioassays indicate that sediment from composite samples 079SD-416M-0001-SD and 079SD-417M-0001-SD do not show significant toxicity to the ecological receptors.

6. **RECOMMENDATIONS**

Based on the summary and conclusions of this RI Addendum, No Further Action is recommended to address ecological risk in sediment in the Ore Storage Pond sub-area at CC RVAAP-79 DLA Ore Storage Sites.

Because the additional data for the Ore Storage Pond sediments collected for this RI Addendum has concentrations of arsenic that are greater than those used to estimate risks to Human Health Receptors in the CC RVAAP-79 RI, these potential risks need to be reassessed considering the new sediment and pond data. Since the CC RVAAP-79 RI has been finalized, the Army will revise the Draft CC RVAAP-79 FS to include a reassessment of potential human health risks for current and future receptors of the Ore Storage Pond that includes the new data collected for this RI Addendum. The revised HHRA will be incorporated into the Risk Management Portion of the CC RVAAP-79 FS.

7. REFERENCES

- Environmental Chemical Corporation (ECC), 2012. Final Site Inspection and Remedial Investigation Work Plan at Compliance Restorations Sites (Revision 0), Ravenna Army Ammunition Plant, Ravenna, Ohio.
- Leidos, 2020. Final Facility-Wide Groundwater Monitoring Program, RVAAP-66 Facility-Wide Groundwater Annual Report for 2019, Former Ravenna Army Ammunition Plant, Portage and Trumbull Counties, Ohio. June 12.
- Los Alamos National Laboratory, 2017. *Ecological Screening Values*, ECORISK Database Release V4.1, September 2017.
- Ohio Environmental Protection Agency (Ohio EPA), 2004. Director's Final Findings and Orders for the Ravenna Army Ammunition Plant. June 2004.
- Ohio EPA Division of Environmental Response and Revitalization (DERR), 2018. *Ecological Risk Assessment Guidance Document*. July 2018.
- Parsons, 2020. Final Remedial Investigation Report for CC RVAAP-79 DLA Ore Storage Sites, Former Ravenna Army Ammunition Plant, Portage and Trumbull Counties, Ohio.
- Parsons, 2021. Final Work Plan Addendum Additional Sampling for CC RVAAP-79 DLA Ore Storage Sites Remedial Investigation, Ore Storage Pond Sub-Area, Ravenna Army Ammunition Plan Restoration Program, Portage and Trumbull Counties, Ohio.
- Science Applications International Corporation (SAIC), 2001. Phase II Remedial Investigation Report for the Winklepeck Burning Grounds at the Ravenna Army Ammunition Plant, Ravenna, Ohio. April.
- SAIC, 2010. Facility-wide Human Health Cleanup Goals for the Ravenna Army Ammunition Plant, Ravenna Ohio. 23 March.
- SAIC, 2011a. Facility-Wide Sampling and Analysis Plan (FWSAP) for Environmental Investigation. 24 February
- SAIC, 2011b. Historical Records Review Report for the 2010 Phase I Remedial Investigation Services at Compliance Restoration Sites (9 Areas of Concern), Ravenna Army Ammunition Plant, Ravenna, Ohio. 22 December.
- SpecPro, Inc., 2003. *Final Report for Assessment of Potential Contamination at the DLA Outdoor Storage Areas, Ravenna Army Ammunition Plant, Ravenna, Ohio.* Prepared for U.S. Army Joint Munitions Command. August.
- The Mogul Corporation, 1982. Soil and Sediment Analyses Performed for Ravenna Arsenal, Ravenna, Ohio, 1982.
- U.S. Army Corps of Engineers (USACE), 2011. Letter to Base Realignment and Closure Division; Ravenna Army Ammunition Plant, regarding *Results for Initial Assessment of CC-RVAAP-79 DLA Group 2 Ammunition Storage Area*, 22 November.
- U.S. Environmental Protection Agency (USEPA), 1990. *National Oil and Hazardous Substances Pollution Contingency Plan, Final Rule,* FR Vol. 55, No. 46, available from U.S. Government Printing Office, Washington, D.C. March.

- USEPA, 2000. USEPA Methods for Measuring the Toxicity and Bioaccumulation of Sediment-associated Contaminants with Freshwater Invertebrates, Second Edition, EPA 600/R-99/064, March.
- U.S. Fish and Wildlife Service, 2018. Wetlands Mapper, accessed 12/21/2018. www.fws.gov/wetlands/data/mapper.html
- Vista Sciences Corporation, 2020. Ravenna Army Ammunition Plant Deliverable Document Format Guidelines, Version 22. November.

APPENDICES

Appendix A Field Activity Forms

APPENDIX A.1

SEDIMENT SAMPLING FORMS

		ames A. Gar		Site Locati	on: CC RVA	AP-79, Ore St	torage Pond
<i>.</i>	er: W9120R-12-	D-0002 DO: 0003	A	Sampled By:_	P. Zahr 4	L, J, Pel	c'm Kiteld
Sample Loca	fion Description	on:	·				
_	Water Body N	ame: Ore St	prace	Pord .	atitude/Longitu	da.	
		escription (color			t show	ue	atir, edge stor:
Amblent Wat	er Conditions:	0.0	, ouor, appea	rance).	A O'MIL	- Opin W	aur, eage of on
Water		Electrical	Dissolved	Redox	Turbidity/	Water	
Temp.	pН	Conductivity	Oxygen	Potential	Appearance	Depth Above	Sediment Sample
(°C)	(SU)	(µS/cm)	(mg/L)	(mV)	(NTU)	Sample (feet)	Depth (feet)
12.3	7.83	0.40	11.82	-			0.5
Sediment Sam	Sediment Samp Collection Meth Sample Type (c ple Informatio PO 0792 7950 - 4 fe ID 0795D funsell Soll Cok MINE PU 0705	bove Sample (fe ple Depth: 0, $\frac{1}{2}$ nod (circle one): circle one): $\frac{1}{2}$ \frac	Scoop E Scoop E Scoop E Comp Com	4/20/2 (+5min):(+5min):	Hand Corer	. ,	10:45 Mar Yes No DD OGOr DM, of Sod, Mon
Comments: _	~ ID CA		Util . Sre	om ! sp			·····
Laboratory Ana							
		W6010C/SW74	71B				
	Walkley Black !	Method					
pH by SW							
	by ASTM D 42						
	iyalella azteca	•					
	Chironomous di	utus (tentans) 1	0 day				
							rials (not cohesiva) that
olt - Nei fin	gers. Non-plastic	mm in diameter, and not cohesive	generally fine n	naterial possessia	ng a greasy or sm	ooth, talc-like feel	when rubbed between
Clay - Par Cla	ticles less than 0 sy is both plastic :	.004 mm in diame and cohesive.	ter, which form			difficult to penetrat	e with tools (hardpan),
Detritus - Dea	id, unconsolidate	usually greyish-wi d organic materia d plant materials	i including stick	s, wood, leaves.	and other partial	y decayed coarse	plant materia).

Peat - Partially decomposed plant materials characterized by an acidic pH; parts of plants such as Sphagnum moss sometimes visible. Muck - Black, extremely fine, floccutant material composed of completely decomposed organic material (excluding sewage). Sludge - Organic matter that is decidedly of human or animal origin.

415

\wedge	Project Name: Camp James A. Garfield, OH Site Location: CC RVAAP-79, Ore Storage Pond
(41)	Contract Number: W912QR-12-D-0002 DO: 0003 Sampled By: 9.20 nptz, J. Peter Inn, V. Fielder
	Weather: Cloudy, 45° Calm
	Sample Location Description:
	Water Body Name: Ore Storage Pont Latitude/Longitude:
	Sample Site Description (color, order, superstance):
	Sample Site Description (color, odor, appearance): Center at same horth core
	Amblent Water Conditions:
	Water Electrical Dissolved Redox Turbidity/ Water Sediment Temp. pH Conductivity Oxygen Potential Approximate Deside the sediment
	(°C) (SU) (uS/cm) (mo/i) (mo/i) (mo/i)
	12 7,86 0139 12 21 22 3 - the
	0.5
	Sediment Collection Information:
	Water Depth Above Sample (feet): 16 inches
	Sediment Sample Depth: 0.5 Sediment Depth to Refusal: 6 In chas
	Sample Type (circle one): Grab Composite
	Sediment Sample Information:
	Station ID: 0795 D - 4///
	Sample ID: 07950-411-00 Bate Sampled: 4/20/21 Time Sampled: 10:30
	Dualizate Sample ID
	Observations (Munsell Soll Color Chart, Texture, Odor, Appearance):MS/MSD collected? Yes No
	hudrocia culleni and
	Photos: Mutas Takon of Sample location and depths of self ment
	comments: About 10 corrs per buchut
	Laboratory Analytical Methods:
	TAL Metals/Mercury by SW6010C/SW7471B
	% TOC by Walkley Black Method
	PH by SW9045D
	Grain Size by ASTM D 422-63
	Bioassay Hyalella azteca 10 day
	Bioassay Chironomous dilutus (tentans) 10 day
	Notes:
	Sand - Particles 0.06-2:0 mm in diameter, possessing a gritty texture when rubbed between fingers. Loose materials (not cohesive) that often cannot be molded into shapes (non-plastic).
	Silt - Particles 0.004-0.06 mm in diameter, generally fine material possessing a gradety or gradety of the title to the
	fingers. Non-plastic and not coheatry. Clay - Particles less than 0.004 mm in diameter which forms a doorse summary of the rest of the rest when rubbed between
	Clay - Particles less than 0.004 mm in diameter, which forms a dense, gummy surface that is difficult to penetrate with tools (hardpan). Clay is both plastic and cohesive.
	Mari - Calcium carbonate, usually greyish-white, often containing fragments of moliusc shells. Detritus - Dead, unconsolidated organic material inclusion sticke used have and attention in the
	Detritus - Dead, unconsolidated organic material including sticks, wood, leaves, and other partially decayed coarse plant material. Peat - Partially decomposed plant materials characterized by an acidic pH; parts of plants such as Sphagnum moss sometimes visible. Muck - Black, extremely fine, forculart material composed of campical decayed decayed coarse plant material.
	Muck - Black, extremely fine, flocculant material composed of completely decomposed organic material (excluding sewage). Sludge - Organic matter that is decidedly of human or colored and the second organic material (excluding sewage).

Sludge - Organic matter that is decidedly of human or animal origin.

6	Contract Number: W912QR-12-D-0002 DO: 0003 Sampled Big P Zoh L 2 D Patron V								
(4)-	Weather: Clowdy, 45°F, Calm Sampled By: P. Zahtte, J. Peterina K. F.								
	Sample Location Description: Water Body Name: 00 5 360 Pane Latitude/Longitude: Sample Site Description (color, odor, appearance):								
	Amblent Water Conditions:								
	Water								
	Temp. pH Dissolved Conductivity Redox Oxygen Turbidity/ Potential Water Sediment (°C) (SU) (µS/cm) (mg/L) (mV) (NTU) Sample Depth Above Sample L O/2 (f) O (mg/L) (mV) (NTU) Sample (feet) Depth (fe								
	11.17 1.82 0.139 11.3 3.5 $ 0.15$								
	Sediment Collection Information:								
18	Water Depth Above Sample (feet):								
	Sediment Sample Depth: 0.5, Sediment Depth to Refusal: 11								
	Collection Method (circle one): Scoop Eckman Dredge (Hand Corer Other,								
	Sample Type (circle one): Grab Composite								
	Sediment Sample Information:								
	Station (D: 412 0795) - 4/12								
	Date Sampled:T 20141T Sampled:10:0/0								
	Duplicate Sample IDDuplicate Time (+5min):/MSD collected? TSI No								
	Observations (Munsell Soil Color Chart, Texture, Odor, Appearance):								
	wary orsaric math Blickt buildow								
	Brite St 2001								
	Sample Preservation: Ice.								
	comments: ~ 10 corts per bucket								
	Laboratory Analytical Methoda:								

TAL Metals/Mercury by SW6010C/SW7471B

% TOC by Walkley Black Method

pH by SW9045D

Grain Size by ASTM D 422-63

__ Bicassay Hyalella azteca 10 day

Bioassay Chironomous dilutus (tentans) 10 day

Notes:

- Sand Particles 0.06-2.0 mm in diameter, possessing a gritty texture when rubbed between fingers. Loose materials (not cohesive) that
- Silt Particles 0.004-0.06 mm in diameter, generally fine material possessing a greasy or smooth, taic-like feel when rubbed between
- Clay Particles less than 0.004 mm in diameter, which forms a dense, gummy surface that is difficult to penetrate with tools (hardpan).
- Marl Celcium carbonate, usually greyish-white, often containing fragments of moliusc shells.
- Detritus Dead, unconsolidated organic material including sticks, wood, leaves, and other partially decayed coarse plant material.

Peat - Partially decomposed plant materials characterized by an acidic pH; parts of plants such as Sphagnum moss sometimes visible. Muck - Black, extremely fine, flocculant material composed of completely decomposed organic material (excluding sewage).

Sludge - Organic matter that is decidedly of human or animal origin.

(413)

Sediment Sampling Form

Contract Number	me: Camp Ja ar: W912QR-12-1 COA LL COA LL tion Descriptio	-0002 DO: 0003		Sampled By:	P. Zahr	AP-79, Ore Sta 	orage Pond Cr (, y	
	Water Body Na	ame: Ure D	torace	ford L	atitude/Longitud	ie:		
	Sample Site De	escription (color,	, odor, appear	rance): We:	st side	OF Dot -	next to co	x the s
	er Conditions:							
Water Temp. (°C)	рН (SU)	Electrical Conductivity (µS/cm)	Dissolved Oxygen (mg/L)	Redox Potential (mV)	Turbidity/ Appearance (NTU)	Water Depth Above Sample (feet)	Sediment Sample Depth (feet)	
12.67	7.7	0,137	13.29	-		1011	4 inchis	
	lection Informa Water Depth At Sediment Samp Collection Meth Sample Type (c	bove Sample (fe ble Depth:		<u>n chus</u> Sediment Depti ckman Dredge posite		Other:		
Sediment Sam Station ID: Sample ID:	13079	SD-413		4/20/2	<u>./</u> 1	ime Sampled:	1140	
Duplicate Samp	ie ID	D	plicate Time	(+5min):		AS/MSD collecte	d? Yes (No)	
	photos	or Chart, Texture lock Si Sultici Tokon	, Odor, Appe	arance):		clay,	sicht	ipont

Laboratory Analytical Methods:

TAL Metals/Mercury by SW6010C/SW7471B

____% TOC by Walkley Black Method

_____pH by SW9045D

Grain Size by ASTM D 422-63

Bloassay Hyalella azteca 10 day

____ Bioassay Chironomous dilutus (tentans) 10 day

Notes:

- Sand Particles 0.06-2.0 mm In diameter, possessing a gritty texture when rubbed between fingers. Loose materials (not cohesive) that often cannot be molded into shapes (non-plastic).
- Silt Particles 0.004-0.06 mm in diameter, generally fine material possessing a greasy or smooth, taic-like feel when rubbed between fingers. Non-plastic and not cohesive.
- Clay Particles less than 0.004 mm in diameter, which forms a dense, gummy surface that is difficult to penetrate with tools (hardpan). Clay is both plastic and cohesive.
- Marl Calcium carbonate, usually greyish-white, often containing fragments of mollusc shells.
- Detritus Dead, unconsolidated organic material including sticks, wood, leaves, and other partially decayed coarse plant material.

Peat - Partially decomposed plant materials characterized by an acidic pH; parts of plants such as Sphagnum moss sometimes visible.

- Muck Black, extremely fine, flocculant material composed of completely decomposed organic material (excluding sewage).
- Sludge Organic matter that is decidedly of human or animal origin,

Contract Numbe	Project Name: Camp James A. Garfield, OH			Site Location: CC RVAAP-79, Ore Storage Pond				
Contract Number: W912QR-12-D-0002 DO: 0003 Weather: Claudan US Calino			Sampled By: Przahrty J. Potorin K. Fri					
	ا ی 🔨 tion Descriptio							
Salible roca		ame: <u>Dre Ste</u>	teres 1	ond	ويتقدمه المامينانية	1		
	Sample Site D	escription (color,	odor, appear	ance):/V \.	d Pond			
Ambient Wat	er Conditions:							
Water		Electrical	Dissolved	Redox	Turbidity/	Water	Sediment	
Temp. (°C)	pH (SU)	Conductivity (µS/cm)	Oxygen (mg/L)	Potential (mV)	Appearance (NTU)	Depth Above Sample (feet)	Sample	
12.48			, , ,		(NTO)	Sample (reat)	Depth (feet)	
12,48		0,140	3.39			1	0.5	
Sediment Col	ection Informa	tion:						
	144-4 D	B 1- //	. t ¹					
	-	bove Sample (fee				, vi		
	Sediment Sam	ple Depth: <u>().C</u>	2	Sediment Dept	h toRefusal:	0		
	Collection Meth	nod (circle ane):	Scoop E	ckman Dredge	Hand Corer	Other		
	Sample Type (c	circle one): G	rab) Com	posite	\bigcirc			
		\subseteq						
Sediment San	pie informatio	n:	1					
Station ID:	P 079	-SD-419						
	70.50	414-0000	-SD	u pala	1		11:25	
Sample ID: <u>0</u>	10000	<u> </u>	të Sampled:	12014		Time Sampled:	1	
Duplicate Samp	ple ID	Du	plicate Time	(+5min):		MS/MSD collecte	d? Yes INO	
Observations (Munsell Soil Col	or Chart, Texture	Odor Appe	stance).			0	
		my silt			hedaus	en12	es a will	
				U lau	<u> </u>	<u>en se n</u>	de smill	
810		4						
<u> </u>		takaila	Le	De las	at 0.10	1 di di	ale da	
	Photos		FSam	de loc	sticule.	ed depts	of Sodima	
Sample Preserv	Photos	tcken c	FSam	de lac	stian e.	ed depts	of Sodimo.	
	Photos		FSam	de loc	sticula.	ed depts	of Sodimo.	
Sample Presen Comments:	Photos vation:		+ Sam	de loc	stical e	nd depts	of Sodimo	
Sample Presen Comments:	vation:	de:		de loc	ctical e	ad depts	of Sodimo	
Sample Presen Comments: _aboratory An	vation:	de: 39:0010C/SW747		de loc	stial a	ad depts	of Sodimo	
Sample Presen Comments: Aboratory An TAL Metz % TOC by	Ation:	de: 39:0010C/SW747		de loc	stical e	ad depts	of Sodimo	
Sample Present Comments: 	vation:	ce. ds: sw6010C/SW747 Method		de loc	ntial e	ad depts	of Sodimo	
Sample Present Comments: 	Ation:	ce. ds: sw6010C/SW747 Method		de loc	ntial e	nd depts	of Sodimo	
Sample Present Comments: 	vation:	de: de: 3W6010C/SW747 Method 22-63		de loc	tial e	ad_depts	of Sodimo	
Sample Presen Comments: TAL Metz % TOC by PH by SV Grain Siz Bloassay	Altion: alytical Method als/Mercury by S y Walkiey Black V9045D e by ASTM D 44 Hyalelia azteca	de: de: 3W6010C/SW747 Method 22-63	21B	NE Loc	stial e	ad_depts	of Sodimo	
Sample Presen Comments: TAL Metz % TOC by PH by SV Grain Siz Bloassay	Altion: alytical Method als/Mercury by S y Walkiey Black V9045D e by ASTM D 44 Hyalelia azteca	de: 3906010C/SW747 Method 22-63 10 day	21B	de loc	ntial e	ad depts	of Sodimo	
Comments: Laboratory An TAL Metz % TOC by PH by SV Bioassay Bioassay Bioassay lotes: Sand-P	Altion: alytical Method als/Mercury by S y Walkiey Black V9045D e by ASTM D 4: Hyalelia azteca Chironomous d chironomous d articles 0.06-2.0 m	de: ds: SW6010C/SW747 Method 22-63 10 day iluturs (tentans) 1 mm in diameter, po olded Into shapes	'1B C day ssessing a gri (non-plastic).	ity texture when i	rubbed between	fingers. Loose mat	erials (not cohesive) th	
Sample Present Comments: 	Altical Method als/Mercury by 5 y Walkiey Black V9045D e by ASTM D 4 Hyalelia azteca Chironomous d articles 0.06-2.0 m filten cannot be m articles 0.004-0.0 ingers. Non-plasti	de: 3W6010C/SW747 Method 22-63 10 day Juturs (tentans) 1 mm in diameter, po olded into shapes 6 mm in diameter, ic and not cohesive	1 B 0 day (non-plastic). generally fine	ity texture when a	rubbed between Ing a greasy or s	fingers. Loose mat	erials (not cohesive) th	
Sample Present Comments:	Altical Method als/Mercury by 5 y Walkiey Black V9045D e by ASTM D 4 Hyalelia azteca Chironomous d articles 0.06-2.0 m filten cannot be m articles 0.004-0.0 ingers. Non-plasti	de: 3W6010C/SW747 Method 22-63 10 day Juturs (tentans) 1 mm in diameter, po olded into shapes 6 mm in diameter, ic and not cohesive 0.004 mm in diam	1 B 0 day (non-plastic). generally fine	ity texture when a	rubbed between Ing a greasy or s	fingers. Loose mat	erials (not cohesive) th	
Sample Present Comments: 	Alticles 0.06-2.0 r articles 0.004-0.0 articles 0.004-0.0 articles 0.004-0.0 articles 0.004-0.0 articles 0.004-0.0 articles 0.004-0.0 articles 0.004-0.0	de: de: SW6010C/SW747 Method 22-63 10 day llutus (tentans) 1 mm in diameter, po olded Into shapes 6 mm in diameter, c and not cohesive 0,004 mm in diameter, c and cohesive. , usually greyish-w	C day seessing a gri (non-plastic). generally fine). ater, which for hite, often con	lity texture when i material possess ms a dense, gum taining fragments	rubbed between Ing a greasy or s my surface that i	fingers. Loose mat mooth, talo-like fee s difficult to penetr s.	erials (not cohesive) th al when rubbed betwee ste with tools (hardpan)	
Sample Present Comments: 	Alter a state of the second se	ce. de: 3W6010C/SW747 Method 22-63 10 day llutus (tentans) 1 mm in diameter, po olded Into shapes 6 mm in diameter, ic and not cohesive 0,004 mm in diameter, c and cohesive. 0,004 mm in diameter, usually greyish-w ted organic meteria	C day seessing a gri (non-plastic). generally fine). ater, which for hite, often con al including stil	itty texture when i material possess ms a dense, gum taining fragments cks, wood, leaves	rubbed between Ing a greasy or s my surface that i s of mollusc shell	fingers. Loose mat mooth, talc-like fee s difficult to penetr s. ally decayed coars	erials (not cohesive) the erials (not cohesive) the eliven rubbed betwee ete with tools (hardpan) e plant material. moss sometimes visible	

Sludge - Organic matter that is decidedly of human or animal origin.

们

	ame: Camp James A. Garfield, OH Site Location: CC RVAAP-79, Ore Storage Pond
	nber: W9120R-12-D-0002DO: 0003 Sampled By: P. Zahrie, J. Peterlin, K. Fields
Weather:l	Cloudy US Calm
Sample Loc	cation Description:
•	Water Body Name: <u>Ore Storage Kond</u> Latitude/Longitude:
	Sample Site Description (color, odor, appearance): Free 5:00 of cord 102. Stand
	Sample one peer phon (color, duot, appearance). <u>A press (C) de ast (C) has (1975)</u>
Amblent Wa	ater Conditions:
Water	Electrical Dissolved Redox Turbidity/ Water Sediment
Temp.	pH Conductivity Oxygan Potential Appearance Depth Above Sample
(°C)	(SU) (μS/cm) (mg/L) (mV) (NTU) Sample (feet) Depth (feet)
12.3	7.6 0.139 13.0 22.5 - 1' 0.5
Sediment Co	ollection information:
	Water Depth Above Sample (feet):
	Sediment Sample Depth: 0.5 Sediment Depth to Refusal:
	Collection Method (circle one): Scoop Eckman Dredge (Hand Core) Other
	Sample Type (circle one): Grab Composite
	$\frac{1}{45} \sim 295 D - \frac{1}{5}$
Station ID:	
Sample ID: <u>(</u>	579 5D - 415-0001 55D Date Sampled: 4 20 21 Time Sampled: 1115
Duplicate San	
Observations	(Munseil Soll Color Chart, Texture, Odor, Appearance):
Mo	sty sill slight out in prior. Drive manis motioned
Ei	The same in year in
hotos:	Samples Photos Taken of Sample location and solution dep
ample Prese	evation: los,
comments:	
aboratory A	nalytical Methods:
TAL Me	talsMercury by SW6010C/SW7471B
	by Walkley Black Method
	W9045D
Grain SI	Ize by ASTM D 422-63
Bioassa	y Hyalelia azteca 10 day
Bloassa	y Chironomous dilutus (tentans) 10 day
otes:	Particles 0.06.2.0 mm in diameter, accessoring a additionation when a the distance France I are a state of the state
Sand -	Particles 0.06-2.0 mm in diameter, possessing a gritty texture when rubbed between fingers, Loose materiale (not cohesive) that
Sand - Sílt -	oftan cannot be molded into shapes (non-plastic). Particles 0.004-0.06 mm in diameter, generally fine material possessing a greasy or smooth, talc-like feel when rubbed between
Sand - Silt - Clay -	oftan cannot be molded into shapes (non-plastic). Particles 0.004-0.06 mm in diameter, generally fine material possessing a greasy or smooth, talc-like feel when rubbed between fingers. Non-plastic and not cohesive. Particles less than 0.004 mm in diameter, which forme a dense, gummy surface that is difficult to penetrate with tools (hardpan)
Sand - Sílt - Clay -	oftan cannot be molded into shapes (non-plastic). Particles 0.004-0.06mm in diameter, generally fine material possessing a greasy or smooth, talc-like feel when rubbed between fingers. Non-plastic and not cohesive. Particles less than 0.004mm in diameter, which forms a dense, gummy surface that is difficult to penetrate with tools (hardpan). Clay is both plastic and cohesive.
Sand - Silt - Clay - } Mari - (Detritus -	often cannot be molded into shapes (non-plastic). Particles 0.004-0.06 mm in diameter, generally fine material possessing a greasy or smooth, talc-like feel when rubbed between fingers. Non-plastic and not cohesive. Particles less than 0.004 mm in diameter, which forme a dense, gummy surface that is difficult to penetrate with tools (hardpan). Clay is both plastic and cohesive. Calcium carbonate, usually greytsh-white, often containing fragments of moliuse shells. Dead, unconsolidated organic material including sticks, wood, leaves, and other partially decayed coarse plant material
Sand - Silt - Clay - } Marl - (Debritus - I Peat - F	often cannot be molded into shapes (non-plastic). Particles 0.004-0.06 mm in diameter, generally fine material possessing a greasy or smooth, talc-like feel when rubbed between fingers. Non-plastic and not cohesive. Particles less than 0.004 mm in diameter, which forme a dense, gummy surface that is difficult to penetrate with tools (hardpan). Clay is both plastic and cohesive. Calcium carbonate, usually greytsh-white, often containing fragments of moliusc shells.

415

Sediment Sampling Form

Project Na	me: Camp Ja	ames A. Garf	ield, OH	Site Locatio	on: CC.RVA/	AP-79, Ore Sto	rage Pond	
		D-0002 DO: 0003		Sampled By	Zohte.	I. Petarli	K.F.Eld	5
Weather: <u>//C</u>	stly S	unry,	<u>18° Ca</u>	elm -			 (***	-
Sample Loca	tion Descriptio							
	Water Body Na	ame: <u>010</u>	Stores	e fonde	atitude/Longitud	de:		
	Sample Site D	escription (color	, odor, appear	ance):	osite of	0795	D-110-0001-:	57
Amblent Wate	er Conditions:	0195)-4120	007-SD, 0	no 07951)-414-000	'-SD	,
Water	24	Electrical	Dissolved	Redox	Turbidity/	Water	Sediment	1
(°C)	PH (SU)	Conductivity (µS/cm)	Oxygen (mg/L)	Potential (mV)	Appearance (NTU)	Depth Above Sample (feet)	Sample	1
-	-			-			Depth (feet)	4
Sediment Col	lection Informa	etion:			<u> </u>	L		7
ocument obj				-				
		bove Sample (fe ple Depth:			h to Refusal:	5 To Il ind	ſ	
		nod (circle one):		ckman Dredge			*)	
	Sample Type (d			posite	Hand Coler) Other:		
Sediment Sam	ple Informatio	n.	\subseteq					
	95D-41							
			- ate Sampled:	4/20	10-01 -		<u>2:00 AM to 1</u>	à 1-
Duplicate Sam								15 pm
. ,						MS/MSD collected		
	viunsell Soll Col	or Chart, Textur	e, Odor, Appe	arance): <u>>>> e</u>	<u>: Descr</u>	iptions	401	
01120	110 00	$\mathcal{O}(-\mathcal{O})$	1307	12-0001	SD, CAG	0790-9	14-0001-50	
Photos:	Photos	TCKON OF	Some	le lacci	tions a	d desth	of salim	ont
Sample Preserv	/ation:	Ice.						
Comments:	Lompo	site so	mple					
Laboratory An	alytical Method	ds:						
TAL Meta	als/Mercury by S	SW6010C/SW74	71B					
% TOC by	Walkley Black	Method						
pH by SV	V9045D							
Grain Siz	e by ASTM D 4	22-63						
	Hyalella azteca	•						
Bioassay	Chironomous d	ilutus (tentans)	10 day					
Notes: Sand - R								
Sanu - Pi C	anicles 0.06-2.0 r often cannot be m	nm in diameter, p olded into shapes	ossessing a gri (non-plastic).	tty texture when r	ubbed between f	ingers. Loose mater	rials (not cohesive) that	
Silt - Pa	articles 0.004-0.0		, generally fine	material possess	ing a greasy or si	mooth, talc-like feel	when rubbed between	
Clay - Pa C	articles less than Clay is both plastic	0.004 mm in diarr c and cohesive.	neter, which form				e with tools (hardpan).	
Marí - Ca Detritue	alcium carbonate,	, usually greyish-v	vhite, often cont	taining fragments	of mollusc shells	5. 		
Peat - Pa	artially decompos	ed plant materials	characterized	by an acidic pH; (parts of plants su	Ily decayed coarse ch as Sphagnum m	nes cometimos vielblo	
IVIUCK - DI	ack, extremely fin	ne, flocculant mate	erial composed	of completely dec	composed organi	c material (excludin	g sewage).	

Sediment Sampling Form

Project Na	me: Camp Ja	ames A. Garf	ield, OH	Site Locati	on: CC RVA	AP-79, Ore Sto	prage Pond	
17	A 1	D-0002 DO: 0003	- 0 c	Sampled By:	1. Zasht	e, J. Pete	PLIN K.F	ields
Weather: <u>//C</u>	My Su	NAY 4	18° Cal	n			<i>,-,.</i> ,	
Sample Loca	tion Descriptio			. .				
	Water Body Na	ame: <u>0^@</u>	Stores	<u>e Ind</u> i	atitude/Longitu	de:		
	Sample Site D	escription (color,	odor, appear	ance):	nos ti	of 079	SD-411-120	
Ambient Wat	er Conditions:	0795	D-413-	2001, 51	, and 07	9-415-0	SD-4/1-00 001-SD	y. c.,
Water		Electrical	Dissolved	Redox	Turbidity/	Water	Sediment	_
(°C)	pH	Conductivity	Oxygen	Potential	Appearance	Depth Above	Sample	
	(<u>SU)</u>	(μS/cm)	(mg/L)	(mV)	(NTU)	Sample (feet)	Depth (feet)	_
L								
Sediment Col	lection Informa	ation						
Gedinient Col				1				
	Water Depth A	bove Sample (fe	et): <u> </u>	. 1				
	Sediment Sam	ple Depth: <u> </u>	6	Sediment Dep	th to Refusal:	4" To 9	Ee	
		nod (circle one):				Other:		
	Sample Type (Grab Com					
	Cample Type (unde one). d		Joshe				
Sediment San	nple Informatio	en:						
Station ID:	795D ~ 4	YIT M	_					
Sample ID:07	95D-417	<u>M-000-5</u>	ate Sampled:	4-20-20	2/	Time Sampled:	10:30 To 11:	15Am
						MS/MSD collecte		-
Observations (Munsell Soil Col	or Chart Textur	• Odor Anne		desar	VATIONAS (<u>or 07950-</u>	411
0795D	- 413KOC	01-SD, C	379(1)~	unance). <u>sec</u> UIC-an	$\frac{1}{2}$		0 0/950-4	gerrout-sp
-0								
Photos:	Phate	S Taken	1 of a	omno	location	als and a	lepth of s	allent
Sample Preser	vation:	Ice,					epi- di si	D. WCA)
Comments:	(011)0	site Se	mpp					_
Laboratory Arrit	elutional Bilatha	-						_
Laboratory An								
		SW6010C/SW74	71B					
	y Walkley Black	Method						
pH by S\								
-	e by ASTM D 4							
	Hyalella azteca	•						
	Chironomous d	lilutus (tentans) '	10 day					
Notes: Sand - F	articles 0.06-2.0	mm in diameter, p	ossessing a gri	tty texture when	rubbed between	fingers. Loose mate	rials (not cohesive) th	iat
Silt - P	articles 0.004-0.0	ioided into snapes	(non-plastic).				when rubbed betwee	
Clay - P		0.004 mm in diam		ms a dense, gun	imy surface that i	is difficult to penetra	te with tools (hardpan	1).
Marl - C	alcium carbonate	, usually greyish-v	vhite, often con	taining fragment	s of mollusc shell	s.		
Detritus - D	ead, unconsolida	ted organic mater	al including stic	ks, wood, leave	s, and other partia	ally decayed coarse	plant material.	
Peat - P Muck - B	anially decompos lack, extremely fir	eo piant materials ne, flocculant mate	cnaracterized	by an acidic pH; of completely de	parts of plants su composed organ	uch as Sphagnum m nic material (excludir	noss sometimes visible	9.
Sludge - O	rganic matter that	t is decidedly of h	uman or animal	origin.		ine material (excidul	iy sewaye).	

APPENDIX A.2

FIELD NOTES

This Page Intentionally Left Blank.

DAILY ACTIVITY REPORT

Project No:	640030.0005.110051	Day: Tuesday	Date:	4-20-2021
W912QR-12	-D-0002, TO 0003		Report No:	
Project Title:	Camp James A Garfield OH – See	diment Sampling at CC RVA	AP-79 Ore Por	nd

Work Area	Shift	Hours	Worked:	Weather:	Coudy
		From:	To:	Temp 45	degrees
	DAY	08:00	3:30pm	Rain/Snow	y; none

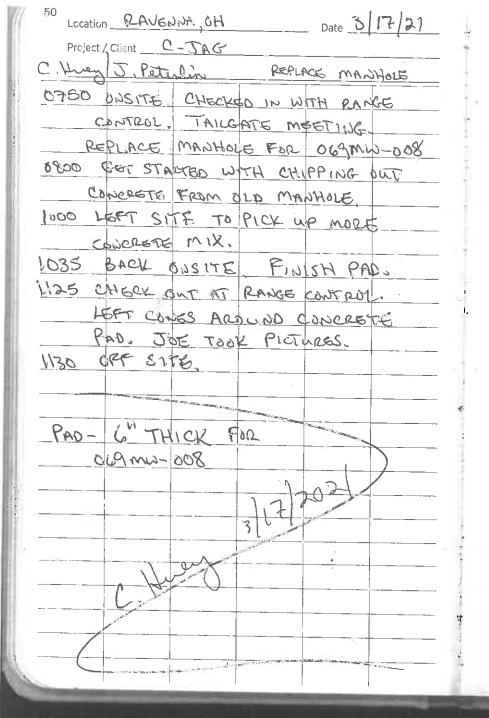
Contractor Manpower	Number of Workers	Total Onsite Hours	Major Equipment	Number on Site	Total Hours
PARSONS	3				
Joe Peterlin		7.5	Hand tools		
Paul Zahrte		7.5	Canoe		
Karen Fields		7.5			
Contractors					
None					
Visitors	1				
Kevin Sedlak (8:00-9:00 AM)		1			
	1				

HEALTH AND SAFETY TASKS PERFORMED/PPE: Level D

EQUIPMENT ON SITE: Canoe, sediment sampler, water meter, Trimble GPS

QUALITY CONTROL ACTIVITIES (Including Field Calibrations, may include attachment): None

SITE WORK COMPETED Collected Ore Storage Pond Sediment samples Completed wetland delineation of Ore Storage Pond Completed Waste Inspection


PROBLEMS ENCOUNTERED/CORRECTIVE ACTION TAKEN: none

NOTES/INSTRUCTIONS GIVEN BY GOVERNMENT PERSONNEL: none

PROPOSED SCOPE OF WORK FOR TOMORROW: no work tomorrow. Waste inspection in May 2021.

Date: 4-20-2021

Joe Peterlin

Location Review 617 Date The Cont Project / Client

7. 56 Fran: A Aller on STE 3) An LARCKICIA at Raue Bei a seil/uck consites 10 la ctor Triks te Sofety accorne With Kenin Sedlarky Pici Zahl Keren Fields, Jec Peterline. D945 Start Setting ap roper det hope for word the seed Ast 10.00 Collect Bit supples at 07950-412. Pica in buchit for later putting in sample pro 10 30 collect sample at 078 50- 411. Di45 refer sangule at 07950-410 Rite in the Rain

52 Location <u>Raise Na</u> Date <u>4-20-2021</u> Project / Client <u>C-TAG</u>	Project / ClientTAC
1100 Sut up south rope Transat. 1117 Callet sangel at 07950 - 415 1125 Allert sumple at 07950 - 414	1331 - Stert wetlands deline ton. 14:30 Finish marking wetland Annoi around frond Strimble. not picture up Stullite so Gagged 107 is indury printe around frond. 15:00 " Conclusted Wester Jaspecker
12:00 Cellect Sumple wit 07950 - 413. 12:00 Break for hunch. 12:15 Start Dachaging ap Samplis 12:15 Colurs	CAOC 69 Groundesete drum.
13:00 Composite sample 67950-411M	
13.15 Comjestie Sample U7790 - 417M	Rto in tis Riton
	Kit? in the Kain.

DAILY ACTIVITY REPORT

Project No: 6	40030.0005.110051	Day:	Tuesday	Date:	4-27-2021
W912QR-12-D	0-0002, TO 0003			Report No:	
Project Title:	Camp Garfield(Ravenna) OH – repla	ace man	hole and pad for 0	69MW-008	

Work Area	Shift	Hours	Worked:	Weather:	Clear
		From:	To:	Temp 75	degrees
	DAY	08:30	3:00pm	Rain/Snow	v; none

Contractor Manpower	Number of Workers	Total Onsite Hours	Major Equipment	Number on Site	Total Hours
PARSONS	1				
Joe Peterlin		6.5			
Contractors					
None					
Visitors					
HEALTH AND SAFETY T	ASKS PERFOR	MED/PPE: Le	vel D		
EQUIPMENT ON SITE: T	rimble GPS				
QUALITY CONTROL AC	FIVITIES (Inclu	ding Field Cal	ibrations, may include at	tachment): Nor	ne
SITE WORK COMPETED	1				

Recorded wetland delineation GPS coordinates.

PROBLEMS ENCOUNTERED/CORRECTIVE ACTION TAKEN: none

NOTES/INSTRUCTIONS GIVEN BY GOVERNMENT PERSONNEL: none

PROPOSED SCOPE OF WORK FOR TOMORROW: Waste inspection in May 2021.

Date: 4-27-2021

Joe Peterlin

Location <u>6- JAG</u> Date <u>427292</u> Location <u>C-JAG</u> Date <u>427292</u> 55 Project / Client Project / Client -Arrived \$:30 Am to Collect GPS Googe Farth GPS Phone Copidinetes from Wetlends Areq. OPE 81.007232 072 81.00 7001 41,20778 4 - Tremble GPS is Equipmont 81,006993 11 207775 OP onsite. 81.006802 OP 81.006607 - I am unable to see data PA 81,006463 0 that appears to be collected in the Training to Emailed data files to Koren Frebs. P7 208006 81.006468 OP8 11 208 00 9 81.006467 OPS 41 207811 81.006539 01/0 41.207578 81.006523 OPIL 41,207460 81.006712 OP12 4, 207798 81,006739 OPIS 81.006716 OPIS 41207209 81.006943 81,007098 611.207752 41 207413 41 207429 41.207652 81.007139 OPIZ 81.007138 0P18 81.007152 Pietted Cooldinctos on Google Earth Rite in the Rain.

56Location C-JAG Pate 427-2021 Project / Client Below are Gordinates that Don't flot To the correct Possifiens OP-1 41.207707_ 81,0069.83 672 41.207666 81.00 6216 OP 3 41. 207 823 81.006735 41.207853 81.006585 077 028 41.207650 81.006579 OP9 41.207827 81.006628 OPIO 41.207609 81.006706 OPIZ 11. 207219 81.006898 OP15 41.207404 81.007074 41.207446 81.007113 OP16 OP17 8/7446 41207541 81,007146 Plotted Coordinates on Google Earth, Englied To Karen Fields Not all points are Rotting Correctly

Location ______ Date ______ Date ________

Project / Client

left site of Brog put to 20 To P. me ENSironmonta to see Po Pine Techi Con download data from Tremble 4:00 pm; NO one at Pile Carl grenote the Tremble. 4-27-2021 Rete in the Rain

APPENDIX A.3

SAFETY FORMS

This Page Intentionally Left Blank.

	Sensitive
	PROJECT: C JAC DAILY SAFETY INSPECTION
	Page 1 of 2
	- Daily safety briefing conducted
	Emergency numbers and route to hospital posted
	wsrtp and project-specific Addenda on-site quality and the
	conducted and documented
	Additional instruments (PID, OVA, CGI) calibrated daily assisted
	- mopected weekiv
	Personnel wearing PPE required by SSHP for fieldwork (at least safety shoes or boots, safety glasses with side shields, and nitrile or similar gloves to handle potentially contentiated
	with side shields, and nitrile or similar gloves to handle potentially contaminated material) Personnel using buddy system (maintain visual or verbal contact and able to render aid) If temperature > 70% being
	wearing Tyvek® are being monitored, work/rest cycle in SSHP being followed
	Competitive storp could stress training conducted, controls in SSHP implemented
	Control using appropriate biological hazard controls (See SSHP)
	Drill rig operating manual on-site
	Drill rigs inspected weekly and documented
	Personnel near drill rig or other overhead hazards wearing hardhats
	Each of two drill rig emergency shutdown devices tested daily
	Employees excluded from under lifted loads
	Unnecessary personnel excluded from hazardous areas, specifically near heavy equipment
	Radius of exclusion zone around drill rig at least equal to mast bainty
	Personnel wearing hearing protection when within 25 ft of drill rigs, generators, or other noisy
	Containers of flammable liquids closed and labeled properly
-	Fully charged fire extinguisher available 25 to 50 ft from flammables storage area and inspected
	Personnel exiting potentially contaminated areas washing hands before eating
	Personnel using steam washer wearing faceshield, hearing protection, heavy duty waterproof gloves,
	Parsons Site Safety and Health Plan

N	VI	NA	Provide State Stat
	-		Item
		-	Portable electrical equipment plugged to a GFC1
		-	Electrical wiring covered by insulation or enclosure
		~	Three wire, UL approved, extension cords used
	-	-	Housekeeping adequate (walkways clear of loose, sharp or dangerous objects and trip hazards, wo areas clear of objects that might fall on employees)
	-		Walking/working surfaces safe (not slippery, no unguarded holes, no trip hazards)
		1	Excavations deeper than 5 ft shored or sloped (if personnel will enter) and in compliance with SSH
	-	-	Moving (rotating) machinery guarded to prevent employee contact
		-	Fall protection provided for work at elevations greater than 4 ft
		-	All containers of hazardous material labeled to indicate contents and hazards
			MSDSs for hazardous materials on-site
		-	All vehicles equipped with two-way radios and cellular phones
		-	
		-	15-min eyewash (accessible and full) within 100 ft of areas where corrosive sample preservatives poured
-	-		Potable and non-potable water labeled
		-	Chainsaws have anti kick-back protection, personnel wearing cut resistant gloves, protective chap
	-		Visitor access controlled
		-	Site hazards and controls consistent with SSHP
	-		Site hazard controls appropriate and sufficient
	-		n to correct or control any "N" responses
-	-	Pr	Te: IN 10 4 20 2021
Nar	ne		Signature Date

	TAILGATE SAFETY MEETING LOG
DATE:	PROJECT NAME: PROJECT NO:
WEATHER	MCUW Th F Sa Su TIME: 0830
WORKING	10°5 elordy ONDITIONS:
	ONDITIONS:
PPE:	
PPE: Lev	ne s
ITEMS DISCU	ISSED.
Ba	at sally, wather environd
Cold	exposure, Ating bad
	NDIVIDUALS ATTENDED THE DAILY TAILGATE SAFETY MEETING (SIGNATURES)
HE FOLLOWING I	
HE FOLLOWING IN	Solut
HE FOLLOWING IN Carlos	And and
HE FOLLOWING IT	Julio
HE FOLLOWING P AUDE Vignan (Salut Anders

SITE SAFETY AND HEALTH OFFICER

PROJECT: C-JAG- 4-27-2021 Page 1 of 2											
N	Y	7	Item								
	-		Daily safety briefing conducted								
	-		Emergency numbers and route to hospital posted								
	-		FWSHP and project-specific Addenda on-site, available to employees, and complete								
	Required exposure monitoring conducted and documented										
	Monitoring instruments (PID, OVA, CGI) calibrated daily against known standard and documen										
	1	-	First aid kit available and inspected weekly								
			Personnel wearing PPE required by SSHP for fieldwork (at least safety shoes or boots, safety glasse with side shields, and nitrile or similar gloves to handle potentially contaminated material)								
		\	Personnel using buddy system (maintain visual or verbal contact and able to render aid)								
		J	If temperature >70°F: heat stress training conducted, cool fluids available, pulse rates of personne wearing Tyvek® are being monitored, work/rest cycle in SSHP being followed								
1		~	If temperature <40°F: cold stress training conducted, controls in SSHP implemented								
	7	-	Personnel using appropriate biological hazard controls (See SSHP)								
1		L	Drill rig operating manual on-site								
			Drill rigs inspected weekly and documented								
1		-	Personnel near drill rig or other overhead hazards wearing hardhats								
		-	Each of two drill rig emergency shutdown devices tested daily								
1		-	Employees excluded from under lifted loads								
1			Unnecessary personnel excluded from hazardous areas, specifically near heavy equipment								
	_†	-	Radius of exclusion zone around drill rig at least equal to mast height								
T	Personnel wearing hearing protection when within 25 ft of drill rigs, generators, or other nois equipment										
1		-	Containers of flammable liquids closed and labeled properly								
			Fully charged fire extinguisher available 25 to 50 ft from flammables storage area and inspected monthly								
1	\uparrow		Personnel exiting potentially contaminated areas washing hands before eating								
Ť			Personnel using steam washer wearing faceshield, hearing protection, heavy duty waterproof gloves, Saranax or rainsuit								

			DAILY SAFETY INSPECTION
PF	<u>son</u>	ECT:	Page 2 of 2
N	Y	NA	Item
			Portable electrical equipment plugged to a GFCI
		-	Electrical wiring covered by insulation or enclosure
			Three wire, UL approved, extension cords used
			Housekeeping adequate (walkways clear of loose, sharp or dangerous objects and trip hazards, work areas clear of objects that might fall on employees)
	-	~	Walking/working surfaces safe (not slippery, no unguarded holes, no trip hazards)
			Excavations deeper than 5 ft shored or sloped (if personnel will enter) and in compliance with SSHP
			Moving (rotating) machinery guarded to prevent employee contact
			Fall protection provided for work at elevations greater than 4 ft
		-	All containers of hazardous material labeled to indicate contents and hazards
		_	MSDSs for hazardous materials on-site
		_	All vehicles equipped with two-way radios and cellular phones
		~	15-min eyewash (accessible and full) within 100 ft of areas where corrosive sample preservatives are poured
		_	Potable and non-potable water labeled
1		-	Chainsaws have anti kick-back protection, personnel wearing cut resistant gloves, protective chaps
			Visitor access controlled
1	1	-	Site hazards and controls consistent with SSHP
1	╡	-	Site hazard controls appropriate and sufficient
cti	ons	taken	to correct or control any "N" responses
			6 D Peter IN 4-27-2021 Signature

C-JAG 4-27-2021
TAILGATE SAFETY MEETING LOG
DATE: M TUW ThF Sa Su TIME: 8: 70 Am
WEATHER: Cleer 70°S
PROJECT NAME: PROJECT NO: DATE: MEW TH F Sa Su TIME: 8:30 A WEATHER: Cleer 70°S WORKING CONDITIONS: Cleci and Ory
PPE: 1 1 2
The Level D.
ITEMS DISCUSSED: Tok Cling Tring Tri
ITEMS DISCUSSED: Tick, Slips, Trips, Falls
THE FOLLOWING INDIVIDUALS ATTENDED THE DAILY TAILGATE SAFETY MEETING (SIGNATURES)
4-27-2021

SITE SAFETY AND HEALTH OFFICER

Appendix B Bioassay Report

This Page Intentionally Left Blank

RESULTS OF TOXICITY TESTING WITH *Hyalella azteca* and *Chironomus dilutus* ON SEDIMENT SAMPLES FROM PARSONS PROJECT NUMBER 640030.110051 RAVENNA, OHIO

Prepared for:

Parsons 3606 Park 42 Drive, Box 13 Sharonville, Ohio 45241

Prepared by:

EA Engineering, Science, and Technology, Inc., PBC 231 Schilling Circle Hunt Valley, Maryland 21031 For questions, please contact Michael Chanov ph: 410-584-7000

Results relate only to the items tested or to the samples as received by the laboratory.

This report shall not be reproduced, except in full, without written approval of EA Engineering, Science, and Technology, Inc., PBC

This report contains 18 pages plus 4 attachments.

Michael K. Chanov II Laboratory Director

EA Project Number 70019.TOX

24 May 2021

Date

EA Report Number 8561

1. INTRODUCTION

EA Engineering, Science, and Technology performed toxicity testing on sediment samples for Parsons Project Number 640030.110051, Ravenna, Ohio. The objective of the testing was to evaluate the toxicity of two site sediment samples as compared to control sediment. The testing program consisted of: 1) a 10-day survival and growth toxicity test using the freshwater midge *Chironomus dilutus* (formerly *tentans*); 2) a 10-day survival and growth toxicity test using the freshwater midge freshwater amphipod *Hyalella azteca*.

2. METHODS AND MATERIALS

2.1 SAMPLE DESCRIPTIONS

Two sediment samples were collected for the project by Parsons personnel. The samples were packed on wet ice and transported to EA's Ecotoxicology Laboratory in Hunt Valley, Maryland. Upon receipt at EA, the samples were visually inspected, compared against the chain-of-custody record, and assigned EA laboratory accession numbers. Copies of the chain-of-custody records are included in Attachment I. Table 1 summarizes the collection and receipt data for the site sediments. When not being processed for testing, the samples were stored in the dark at 4°C.

2.2 CONTROL SEDIMENT

The control sediment used in the toxicity tests was a natural sediment from Pretty Boy Reservoir, Maryland which has been routinely utilized in freshwater sediment toxicity testing.

2.3 LABORATORY WATER

Dechlorinated tap water was used as the overlying water for the sediment exposures. The source of the water was the City of Baltimore municipal water system. Upon entering the laboratory, the water passed through a high-capacity, activated-carbon filtration system to remove any possible contaminants such as chlorine and trace organic compounds. This water source has proven safe for aquatic organism toxicity testing at EA as evidenced by maintenance of the multigeneration *Hyalella azteca*, *Lumbriculus variegatus* and fathead minnow cultures with no evident loss of fecundity. Additionally, this water has been routinely utilized in freshwater sediment toxicity testing, which have met test acceptability criteria.

2.4 TEST ORGANISMS

The midges (*Chironomus dilutus*) lot were obtained from Aquatic Research Organisms (Hampton, New Hampshire). Upon receipt at EA, the organisms were gradually acclimated to laboratory water at 23°C. Second instar larvae were used in the toxicity testing.

The amphipods (*Hyalella azteca*) were obtained from Aquatic Research Organisms (Hampton, New Hampshire). Organisms were 8 days old for testing and were gradually acclimated to the testing temperature of 23°C during the holding period.

2.5 TOXICITY TEST OPERATIONS AND PERFORMANCE

Toxicity test methodologies utilized in this study followed EA's standard toxicity testing protocols (EA 2018), and comply with current NELAC standards where applicable.

2.5.1 Chironomus dilutus 10-Day Toxicity Tests

Toxicity testing was conducted in accordance with US EPA guidance (US EPA 2000), and test methodologies followed EA's standard toxicity testing protocol CT-AC-06 (EA 2018).

The test chambers used in the *C. dilutus* 10-day survival and growth toxicity test were 300-ml lipless glass beakers, each containing 100 ml of sediment and 175 ml of overlying water. The tests were performed with eight replicates per sediment. The sediments and overlying water were added to the chambers approximately 24 hours prior to introduction of the test organisms. The beakers were left undisturbed overnight to allow any suspended sediment particles in the water column to settle. The introduction of the test organisms to the test chambers marked the initiation of the toxicity tests. Ten organisms were randomly introduced into each replicate beaker for a total of 80 organisms per sediment. The test chambers were placed in a water bath to maintain temperatures at a target range of $23\pm1^{\circ}$ C, with a 16-hour light/8-hour dark photoperiod. The *C. dilutus* were fed 1.5 ml per replicate of a 4 g/L slurry of Tetramin flake food daily.

The overlying water in the exposure chambers was renewed a minimum of twice daily using a water delivery system (Zumwalt et al. 1994). Fresh overlying water was slowly added to each replicate, displacing the water already in the beaker to flow out through a notch cut into the top of the beaker. The notch was sealed with fine mesh screen to prevent loss of organisms during the renewal process.

For the midge toxicity testing, water quality parameters of temperature, pH, dissolved oxygen, and conductivity were recorded daily on the overlying water in one replicate of each sediment. Composite samples of the overlying water of each sediment were also analyzed for alkalinity, hardness, conductivity and ammonia at test initiation and termination.

At the end of the 10-day exposure period, the surviving organisms from each replicate were retrieved from the sediment. The number of surviving organisms from each replicate was recorded. The surviving *C. dilutus* from each replicate were then placed in a dried, pre-weighed ceramic crucible and placed in a drying oven at 100°C for a minimum of 24 hours. The crucibles were then removed from the oven, placed in a desiccator to cool, and weighed. The dry weight of the surviving organisms in each replicate was determined by subtracting the weight of the crucible from the weight of the crucible plus dried organisms. The mean dry weight per organism was obtained by dividing the total organism dry weight per replicate by the number of surviving organisms per replicate.

The ash-free dry weight was determined for the *C. dilutus* by placing the crucibles with ovendried organisms in a muffle furnace at 550°C for two hours, then weighing the crucibles with organisms following an appropriate cooling period. For each replicate, the weight of the crucible with furnace-dried organisms was subtracted from the weight of the crucible with oven-dried organisms, yielding a total organism ash-free dry weight. A mean ash-free dry weight per organism was obtained by dividing the total organism ash-free dry weight per replicate by the number of surviving organisms per replicate.

The survival and growth results of the *C. dilutus* toxicity tests were statistically analyzed according to US EPA guidance (US EPA 2000) to determine if any of the site sediments were significantly different (p=0.05) from the control sediment. If the data were normally distributed, then a t-Test was performed to detect statistically significant differences between test sediments and the control sediment. If the data distribution was non-normal, then a Wilcoxon Two-Sample Test was used to compare the group means. Shapiro-Wilk's Test was used to determine if the data were normally distributed, and the F-Test was used to test for homogeneity of variance.

Tables, 2 and 3 present the test results and water quality, respectively, for the *C. dilutus* toxicity testing. Copies of the original data sheets and statistical analyses from the sediment toxicity testing are included in Attachment II for *C. dilutus*.

2.5.2 Hyalella azteca 10-Day Toxicity Tests

Toxicity testing was conducted in accordance with US EPA guidance (US EPA 2000), and test methodologies followed EA's standard toxicity testing protocol HA-AC-06 (EA 2018).

The test chambers used in the *H. azteca* 10-day survival and growth toxicity test were 300-ml lipless glass beakers, each containing 100 ml of sediment and 175 ml of overlying water (lab water). The tests were performed with eight replicates per sediment. The sediments and overlying water were added to the chambers approximately 24 hours prior to introduction of the test organisms. The beakers were left undisturbed overnight to allow any suspended sediment particles in the water column to settle. The introduction of the test organisms to the test chambers marked the initiation of the toxicity tests. Ten organisms were randomly introduced into each replicate beaker for a total of 80 organisms per sediment. The test chambers were placed in a water bath to maintain temperatures at a target range of $23\pm1^{\circ}$ C, with a 16-hour light/8-hour dark photoperiod.

The *H. azteca* were fed 1.0 ml per replicate of YCT (a suspension of yeast, ground cereal leaves, and trout chow) daily. The overlying water in the exposure chambers was renewed a minimum of twice daily using a water delivery system (Zumwalt et al. 1994). Fresh overlying water was slowly added to each replicate, displacing the water already in the beaker to flow out through a notch cut into the top of the beaker. The notch was sealed with fine mesh screen to prevent loss of organisms during the renewal process.

For the amphipod toxicity testing, water quality parameters of temperature, pH, dissolved oxygen, and conductivity were recorded daily on the overlying water in one replicate of each sediment. Composite samples of the overlying water of each sediment were also analyzed for alkalinity, hardness, conductivity and ammonia at test initiation and termination.

At the end of the 10-day (*H. azteca*) exposure period, the surviving organisms from each replicate were retrieved from the sediment. The number of surviving organisms from each replicate was recorded. The surviving *H. azteca* from each replicate were then placed in a dried, pre-weighed aluminum pan, and placed in a drying oven at 100°C for 24 hours. The pans were then removed from the oven, placed in a desiccator to cool, and weighed. The dry weight of the surviving organisms in each replicate was determined by subtracting the weight of the empty pan from the weight of the pan plus dried organisms. The mean dry weight per organism was obtained by dividing the total organism dry weight per replicate by the number of surviving organisms per replicate.

The survival and growth results of the *H. azteca* toxicity tests were statistically analyzed according to US EPA guidance (2000) to determine if any of the site sediments were significantly different (p=0.05) from the control sediment. If the data were normally distributed, then a t-Test was performed to detect statistically significant differences between test sediments and the control sediment. If the data distribution was non-normal, then a Wilcoxon Two-Sample Test was used to compare the group means. Shapiro-Wilk's Test was used to determine if the data were normally distributed, and the F-Test was used to test for homogeneity of variance.

Table 4 summarizes the results of the *H. azteca* test and Table 5 provides a summary of the water quality measurements recorded during the *H. azteca* toxicity testing. Copies of the original data sheets and statistical analyses from the sediment toxicity testing are included in Attachment III for *H. azteca*.

2.6 REFERENCE TOXICANT TESTS

In conformance with EA's quality assurance/quality control program, reference toxicant tests were performed on *C. dilutus* and *H. azteca*. The *C. dilutus* were exposed to sodium dodecyl sulfate (SDS) to determine the 48-hour LC50. The *H. azteca* were exposed to the reference toxicant copper sulfate (CuSO₄) in a graded concentration series to determine the 96-hour median lethal concentration (LC50). The results of the reference toxicant tests were compared to EA's established control chart limits according to US EPA methodology (US EPA 2002). Reference toxicant test data are presented in Table 6.

2.7 ARCHIVES

Original data sheets, records, memoranda, notes, and computer printouts are archived at EA's Office in Hunt Valley, Maryland. These data will be retained for a period of 5 years unless a longer period of time is requested.

3. RESULTS AND DISCUSSION

3.1 Chironomus dilutus SEDIMENT TOXICITY TEST

Table 2 summarizes the results of the *C. dilutus* 10-day survival and growth test. Water quality measurements taken during the test are presented in Table 3. The survival and growth of *C. dilutus* exposed to the site sediments were statistically compared to organisms exposed to the laboratory control. The survival results indicated that the organisms exposed to the site sediments were statistically different (p=0.05) from the laboratory control sample. Mean ash free dry weight indicated that neither of the sediment samples were significantly different from the control.

3.2 Hyalella azteca SEDIMENT TOXICITY TEST

Table 4 summarizes the results of the *H. azteca* 10-day survival and growth test. Water quality measurements taken during the test are presented in Table 5. The survival and growth of *H. azteca* exposed to the site sediments were statistically compared to organisms exposed to the laboratory control. The results indicated that for survival and growth the organisms exposed to site sediments were not statistically different (p=0.05) from the laboratory control sample.

3.3 REFERENCE TOXICANT TESTS

The results of the reference toxicant tests are summarized in Table 6. All of the reference toxicant test results fell within the established laboratory control chart limits.

4. REFERENCES

- EA. 2018. EA Ecotoxicology Laboratory Quality Assurance and Standard Operating Procedures Manual. EA Manual ATS-102. Internal document prepared by EA's Ecotoxicology Laboratory, EA Engineering, Science, and Technology, Inc., PBC, Hunt Valley, Maryland.
- US EPA. 2000. Methods for Measuring the Toxicity and Bioaccumulation of Sediment-Associated Contaminants with Freshwater Invertebrates. Second Edition. EPA/600/R-99/064. U.S. Environmental Protection Agency, Office of Research and Development, Duluth, Minnesota.
- US EPA. 2002. Methods for Measuring the Acute Toxicity of Effluents and Receiving Waters to Freshwater and Marine Organisms. Fifth Edition. EPA-821-R-02-012. U.S. Environmental Protection Agency, Office of Water, Washington, DC.
- Zumwalt, D.C., F.J. Dwyer, I.E. Greer, and C.G. Ingersoll. 1994. A water-renewal system that accurately delivers small volumes of water to exposure chamber. Environmental Toxicology and Chemistry. 13:1311-1314.

TABLE 1SUMMARY OF COLLECTION AND RECEIPT INFORMATION FOR
SEDIMENT SAMPLES - PARSONS PROJECT NUMBER 640030.110051

<u>Sample</u> Identification	<u>EA Accession</u> <u>Number</u>	<u>Sample</u> <u>Date</u>	<u>Receipt</u> <u>Time and Date</u>	<u>Receipt</u> <u>Temperature</u> <u>(°C)</u>
079SD-417M-0001-SD	AT1-223	1315, 4/20/2021	1200, 4/21/2021	2.3
079SD-416M-0001-SD	AT1-224	1300, 4/20/2021	1200, 4/21/2021	1.4

EA Test Number:	TN-21-239
Test Initiation:	23 April 2021
Test Termination:	3 May 2021

Sample Identification	EA Accession Number	10-Day Survival (percent)	Mean Ash Free Dry Weight as mg/Organism (±SD)
Laboratory Control	AT0-593	100	0.697 (±0.152)
079SD-417M-0001-SD	AT1-223	78 ^(a)	1.221 (±0.267)
079SD-416M-0001-SD	AT1-224	93 ^(a)	1.074 (±0.209)

(a) Significantly different (p=0.05) from laboratory control.

TABLE 3 WATER QUALITY PARAMETERS MEASURED DURING Chironomus dilutus 10-DAY TOXICITY TESTING

EA Test Number:	TN-21-239
Test Initiation:	23 April 2021
Test Termination:	3 May 2021

Sample Identification	EA Accession Number	Temperature (°C)		pH (su)		Dissolved Oxygen (mg/L)		Conductivity (µs/cm)	
		MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX
Laboratory Control	AT0-593	22.0	24.0	7.4	8.2	5.3	8.6	361	404
079SD-417M-0001-SD	AT1-223	22.0	23.9	7.3	8.1	5.0	8.0	365	389
079SD-416M-0001-SD	AT1-224	22.0	23.8	7.3	8.1	4.5	7.8	365	391

EA Test Number:	TN-21-239
Test Initiation:	23 April 2021
Test Termination:	3 May 2021

Sample Identification	EA Accession Number	v		Hardness (mg/L)		Conductivity (µs/cm)		Ammonia (mg/L)	
		Day 0	Day 10	Day 0	Day 10	Day 0	Day 10	Day 0	Day 10
Laboratory Control	AT0-593	44	46	96	92	387	377	< 0.1	1.6
079SD-417M-0001-SD	AT1-223	34	50	76	84	348	376	1.6	1.4
079SD-416M-0001-SD	AT1-224	42	52	84	84	372	372	1.7	1.5

EA Test Number:	TN-21-240
Test Initiation:	23 April 2021
Test Termination:	3 May 2021

Sample Identification	EA Accession Number	10-Day Survival (percent)	Mean Dry Weight as mg/Organism (±SD)
Laboratory Control	AT0-593	80	0.073 (±0.016)
079SD-417M-0001-SD	AT1-223	86	0.083 (±0.021)
079SD-416M-0001-SD	AT1-224	86	0.096 (±0.015)

TABLE 5 WATER QUALITY PARAMETERS MEASURED DURING Hyalella azteca 10-DAY TOXICITY TESTING

EA Test Number:	TN-21-240
Test Initiation:	23 April 2021
Test Termination:	3 May 2021

Sample Identification	EA Accession Number	Temperature (°C)		pH (su)		Dissolved Oxygen (mg/L)		Conductivity (µs/cm)	
		MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX
Laboratory Control	AT0-593	22.0	23.5	7.4	8.2	6.3	8.6	361	401
079SD-417M-0001-SD	AT1-223	22.0	23.7	7.4	8.1	6.3	7.9	357	399
079SD-416M-0001-SD	AT1-224	22.0	23.8	7.4	8.1	6.5	7.6	361	391

EA Test Number:	TN-21-240
Test Initiation:	23 April 2021
Test Termination:	3 May 2021

Sample Identification	EA Accession Number	Alkalinity (mg/L)		Hardness (mg/L)			uctivity /cm)	Ammonia (mg/L)		
		Day 0	Day 10	Day 0	Day 10	Day 0	Day 10	Day 0	Day 10	
Laboratory Control	AT0-593	44	40	96	92	387	372	< 0.1	< 0.1	
079SD-417M-0001-SD	AT1-223	34	46	76	84	348	379	1.6	0.4	
079SD-416M-0001-SD	AT1-224	42	48	84	84	372	366	1.7	0.6	

Test Species	Reference Toxicant	EA Test Number	Test Result	Acceptable Control Chart Limits
Chironomus dilutus (midge)	Sodium dodecyl sulfate (SDS)	RT-21-062	48-Hour LC50: 59 mg/L SDS	16 – 80 mg/L SDS
Hyalella azteca (amphipod)	Copper sulfate (CuSO4)	RT-21-061	96-Hour LC50: 143 μg/L Cu	0.3 – 310 µg/L Cu

TABLE 6RESULTS OF REFERENCE TOXICANT TESTING

ATTACHMENT I

Chain-of-Custody Record (3 pages)

	Chain-of-Custody Record
EA Engineering, Science, and Technology	Persons Project #640030,11005
EA Ecotoxicology Laboratory 231 Schilling Circle Hunt Valley, Maryland 21031 Telephone: 410-584-7000 Fax: 410-584-1057	Sample Shipped By: (circle) Fed. Ex. UPS Other:
Client: Project No.: NPDES Number: Client Purchase Order Number: City/State Collected: O H	
PLEASE READ CAMPLING INCTOLOT	

PLEASE READ SAMPLING INSTRUCTIONS ON BACK OF FORM

Accession			Colle	ection	Sample Description	
Number (office use only)			(including Site, Station Number, and Outfall Number)	Number/Volume of Container		
AT1-223		X	04/20/21	1315	079 SD - 417M -0001-SD	2 (2,32)
A Deve and	14-12-1					
						A CONTRACTOR OF A CONTRACTOR O

Sampled By:	Date/Time	1. Ale and the second se	Received By:	Date/Time
JoePeterlin	4-20-2021	5:300-	Fedf-X	
Sampler's Printed Name:	Title:		Relinquished By:	Date/Time
		N	- AL	
Relinquished By:	Date/Time		Received By Laboratory	Date/Time
			This Mufe	- 4/21/21 1200
Wee Comple Obilled During Oal			90	<i>i</i> . J

Was Sample Chilled During Collection? Yes / No

Sample Collection Parameters Visual Description: Temperature (°C): pH: TRC (mg/L): Other: Comments:

Hyalella azteca 10 day Bibassa, Chironomus dilutus (Tentens) 10 Doy Broassey

Chain-of-Custody Record

EA Engineering, Science, and Technology	Persons Project # 646030.11005
EA Ecotoxicology Laboratory 231 Schilling Circle Hunt Valley, Maryland 21031 Telephone: 410-584-7000 Fax: 410-584-1057	Sample Shipped By: (circle) Fed. Ex. UPS Other:
Client: Project No.: NPDES Number: Client Purchase Order Number: City/State Collected: Research, OH	Fedex Accant 1674-0246-1

PLEASE READ SAMPLING INSTRUCTIONS ON BACK OF FORM

Accession			Colle	ection	Sample Description			
Number (office use only)	Grab			(including Site, Station Number, and Outfall Number)	Number/Volume of Container			
AT1-224		X	04/20/21	13:00	07904116A-0001-50 TD	2		
					- 6795D-416M-0001-5D	(1.4°C)		
		4	1	3				

Sampled By:	Date/Time	Received By:	Date/Time
Joe Peterlul	4-20-2021 5:30pm	Feder	
Sampler's Printed Name:	Title:	Relinquished By:	Date/Time
Relinquished By:	Date/Time	Received By Laboratory	Date/Time 4/21/21 1200
Was Sample Chilled During Col	lection? Yes / No	Comments:	

Was Sample Chilled During Collection? Yes / No

Sample Collection Parameters Visual Description: Temperature (°C): pH: TRC (mg/L): Other:

Comments:

Hyalella azteca 10 day Bioassey Chironomus dillitus (Tentons) 10 day Bibassey

ATTACHMENT II

Data Sheets and Statistical Analyses from *Chironomus dilutus* Toxicity Tests (18 pages)

· · · · · · · · · · · · · · · · ·

SEDIMENT TOXICITY TEST SET-UP BENCH SHEET

Project Number:	70019.TOX	
5		

Client: Parsons

QC Test Number: _____TN-21-239

		TEST ORGAN		ATION				1
Common Name:	Midge		Adults Isolate	d (Time, Dat	æ):			
Scientific Name:			Neonates Pull	ed (Time, Da	ite):			
Lot Number:	CH - 097		Acclimation:	6244-)		Age: _	2nd 1-	sh
Source: <u>EA</u>	ARO GM Y/1	5/21				-		
		f						
· ·		TEST I	NITIATION			f shirt a s	an a	
Date	Time	<u>Initials</u>		<u>Activity</u>				
4/22/21	1535 1540	81		Sediment A	dded to	o Cham	ibers	
L.	1540	N.		Overlying V	Water A	Added t	o Chamb	ers
4 2>11	lolu	m		Organisms '				
-								
		TDÖ		the second second	1.2 44	ا مورد و ۱		
		11.5	T SET-UP		Sector Sec.	and stands		
Sample Number(s):	umber:			-				
Overyling Water Nu overlying (b) <u>Treatment</u>	umber: S& 5/24/24	Dechlor Volume Test Se			ume Oʻ	verlyin	g Water	
Overyling Water Nu overlying ()	umber: S& 5/24/24	Dechlor			ume Oʻ	verlyin; 175	_	
Overyling Water Nu Over Lyng (b) <u>Treatment</u> Pretty Boy Control	umber: S& 5/24/24	Dechlor Volume Test Se			ume Oʻ	•	_	
Overyling Water Nu Overlying Water Nu Treatment Pretty Boy Control AT1-223	umber: S& 5/24/24	Dechlor Volume Test Se			ume Oʻ	•	_	
Overyling Water Nu Over Lyng (b) <u>Treatment</u> Pretty Boy Control	umber: S& 5/24/24	Dechlor Volume Test Se			ume Oʻ	•	_	
Overyling Water Nu Overlying Water Nu Treatment Pretty Boy Control AT1-223	umber: S& 5/24/24	Dechlor Volume Test Se			ume O	•	_	
Pretty Boy Control	umber: S& 5/24/24	Dechlor Volume Test Se			ume Oʻ	•	_	
Pretty Boy Control	umber: S& 5/24/24	Dechlor Volume Test Se			ume O	•	_	
Pretty Boy Control	umber: S& 5/24/24	Dechlor Volume Test Se			ume Oʻ	•	_	
Overyling Water Nu Overlying Water Nu Treatment Pretty Boy Control AT1-223	umber: S& 5/24/24	Dechlor Volume Test Se			ume Oʻ	•	_	
Overyling Water Nu Overlying Water Nu Treatment Pretty Boy Control AT1-223	umber: S& 5/24/24	Dechlor Volume Test Se			ume O	•	_	
Overyling Water Nu Overlying Water Nu Treatment Pretty Boy Control AT1-223	umber: S& 5/24/24	Dechlor Volume Test Se			ume Oʻ	•	_	
Pretty Boy Control	umber: S& 5/24/24	Dechlor Volume Test Se			ume Oʻ	•	_	

.....

i. ~~~~

SEDIMENT TOXICITY TEST OBSERVATION DATA SHEET

 $\left(\right)$

Project Number:	700	7001 9.TOX						В	eginning Date: _	4/23/21	Time:	1016	
Client: Pars	ons			Commo	on Name:	Midge		E	nding Date:	5/3(2)	Time:	122-4	
QC Test Number: _	QC Test Number: TN-21-239			Scientific Name: <u>C. dilutus</u>									
Test Material(s):	Sec	liment											
Accession Number(s):AT0-593, AT1-223, AT1-224		<u>, AT1-224</u>	TEST	гуре: 🧲 :	Static / Flo	owthrough	Т	Test Container: 300ml lipless beakers					
Overlying Water: _	Γ	Dechlor			Renewa	l Non-re	newal	Т	Test Volume: <u>100ml sediment</u>				
Accession Number:		N/A		Photop	eriod: 161, 8d	Light Inten	sity: <u>50 - 100 f</u>	δc Τ	est Duration:	10 days			
				·····		Number	of Surviving (Organisms	}			<u></u>	
Treatment	Rep	Day O Date 1/15	Day Date	Day 10 Date 5/3	Day Date	Day Date	Day Date	Day Date	Day Date	Day Date	Day Date	Day Date	
Pretty Boy Control	A	10		10									
(AT0-593)	В	lo		10									
	C	10		10									
	D	10		10					· · · · · · · · · · · · · · · · · · ·				
	Е	10		10									
	F	10		10									
	G	lo		10									
	Н	10		10									
AT1-223	A	10		8									
	В	10		8									
	C	10		8									
	D	10		Ģ									
	Е	10											
	F	(0		9									
	G	10		9									
	Н	10		8									
Time /	Initials	10102		1004101									

EPA Test Method: (FW) EPA 600-R-99-064/SW EPA-600-R-94-025 (CHECK ONE)

Ì

SEDIMENT TOXICITY TEST OBSERVATION DATA SHEET

Project Number:	7001	9.TOX		TEST ORG	ANISM			I	Beginning Date:	7/23/24	Time:	101.6
Client: Parso	ons			Commo	on Name:	Midge]	Ending Date:	5(3/2)	Time:	1824
QC Test Number: _	,	<u>[N-21-239</u>		Scientif	fic Name:	C. dilutus		<u>-</u>				
Test Material(s):	Sed	iment										
Accession Number(s	s): <u>AT0-:</u>	59 <u>3, AT1-223</u>	, <u>AT1-224</u>	TEST 1	lade: 🖉	Static / Flo	wthrough	r	Fest Container: _	300ml liples	ss beakers	
Overlying Water:	Ľ	Dechlor			Renewa	I Non-re	newal	r	Fest Volume:	100ml sedim	ent	
Accession Number:		N/A		Photop	eriod: 161, 8d	Light Intens	sity: <u>50 - 100 f</u>	fc î	Fest Duration:	10 days		
			MOGI	3/21		Number	of Surviving (Organism	18			
The function (D	Day 🖕	Day	م Day ام	Day	Day	Day	Day	Day	Day	Day	Day
Treatment	Rep	Date 4/23	Date	Date 5/3	Date	Date	Date	Date	Date	Date	Date	Date
AT1-224	A	10	F	8								
	B	10		9								-
	С	(0		10			· ·····					
	D	10		9								
	Е	(0		9								
	F	10		9								
	G	10		(0								
	н	10		10								
						1						
	ļ											
			4				-					
Time /	Initials	1016~		1224 27								

EPA Test Method: (FW) EPA 600-R-99-064/SW EPA-600-R-94-025 (CHECK ONE)

ASH-FREE DRY WEIGHT DATA (Test Species: _____C. dilutus

 $\left(\begin{array}{c} \\ \end{array} \right)$

(

Project Number:		70019.7	OX	Client:	Parsons		QC Test Num	ber: <u> </u>	N-21-239
			Date <u>T</u>	ime	<u>Initials</u>		Date	Tim	<u>e Initials</u>
Loaded pans in o	ven:	51	3/21 18	25	A	Loaded pans in furnace:	5/10/21	100	~ GC
Loaded pans out	oven:	51	4/21 13	42	RSB	Loaded pans out furnace:	5/10/21	150	Go
Loaded pans wei	-	~ 1		4.52	NI	Loaded pans weighed:		130	
_	-		() = (149			1.56	
Oven Temp (°C):	: <u> </u>	22				Furnace Temp (°C):	512		
Test Concentration	Rep	Pan #	A Weight of Pan (mg)	Weight o Oven-Drie	B of Pan and d Organisms ng)	C Weight of Pan and Furnace-Dried Organisms (mg)	B-C Total Ash-Free Dry Weight (mg)	D Number of Organisms Weighed	(B-C)/D Mean Ash-Free Dry Organism Weight (mg)
Control	A	15	4786.50	4793	.74	4789.06	4.68	10	0.468
	В	42	4644.08	4654	.20	4647.27	6.93	10	0.693
	C	49	4281.35	4289	· 52	4284.52	5.00	10	0.500
	D	87	5159.07	5173	_13	5164.87	8.26	10	0,826
	E	88	5246.70	5260		5252.29	8.64	10	0.864
	F	603	5146.29	5160	21.57	5152.20	8.59	10	0,859
	G	107	4605.14	4615	88	4609.09	6.79	0	0.679
	H	109	5407.99		.76	5412.89	6.87	10	0.687
AT1-223	A	114	4721.12	4736		4726.27	10.24	8	1.280
	B	122	5764.74	5781		5770.25	10.75	8	1.344
	C	147	4783.12	4797		4788.64	9.11	8	1.139
	D	178	5046.90	5061	,60	5051.52	10.08	(a	1.680
	E	188	5267,95	5281.		5273.21	8.71	6	1.452
	F	191	5227.05	5241		52.32.15	8.89	9	0.988
	G	192	5348.17	5360	.55	5352.19	8.36	9	0.929
	H	213	5213.13	5224	0/0	5216.50	7. lele	8	0.958

Dry wt. calculations checked (date, initials): 5/23/2021, \mathcal{R} Ash-Free calculations checked (date, initials): 5/23/2021, \mathcal{R}

ASH-FREE DRY WEIGHT DATA (Test Species: <u>C. dilutus</u>

 \hat{i} :

Project Number:		<u>70019.1</u>	ľOX	Client: _	Parsons		QC Test Num	ber:T	N-21-239
Loaded pans in ov	ven: _	-		ime dd 5	<u>Initials</u> A1	Loaded pans in furnace:	<u>Date</u> 5/1./2	<u>Tim</u>	e Initials
Loaded pans out o	oven:_	5	4/21 13	242	_ K5B	Loaded pans out furnace:	5/10/	M 15	00 /
Loaded pans weig	ghed:	5	<i>'</i>	402	ASB	Loaded pans weighed:			AL OC
Oven Temp (°C):	P	105	····		6 H39/4/21	Furnace Temp (°C):			
Test Concentration	Rep	Pan #	A Weight of Pan (mg)	Weight Oven-Drie	B of Pan and ed Organisms mg)	C Weight of Pan and Furnace-Dried Organisms (mg)	B-C Total Ash-Free Dry Weight (mg)	D Number of Organisms Weighed	(B-C)/D Mean Ash-Free Dry Organism Weight (mg)
AT1-224	A B	215	4761.98	4780		4769.04	11.18	8	1. 398
	C	282	4800,19 4618.43	4817	98 7.79	4807.23 4624.79	10.75 13.00	9 10	1,194
	D	290	5134.73	514-	7.90	5139.06	8.84	9	0.982
	E F	302	4712.38 5245.83	4720		4716.69	7.48	9	0.831
	G		4981.97	5250		5249.87 4986.36	9.44	9	1.049
	Н	328	5510,21			5516.21	8.110.21	10 10	0.8149
									· · · · · · · · · · · · · · · · · · ·
									,

Dry wt. calculations checked (date, initials): 5/23/2021, JR Ash-Free calculations checked (date, initials): 5/23/2021, JR

ORSE 512114

TOXICITY TEST WATER QUALITY DATA SHEET - NEW SOLUTIONS

Project Number:	70019.TOX	TEST ORGANISM		Beginning Date: 4/23	121 Time: 10/6
Client: <u>Parsons</u>		Common Name:	Midge	Ending Date: 3/3/21	Time: 1>>7
QC Test Number:	TN-21-239	Scientific Name:	C. dilutus		

TARGET VALUES: Temp: <u>23±1</u> °C pH: <u>6.0-9.0</u> DO: <u>>4.0</u> mg/L Salinity: <u>0</u> ppt Photoperiod: <u>16 l, 8 d</u> Light Intensity: <u>50 - 100</u> fc

				Temp	peratur	e (°C)						pН					Dis	ssolved	l Oxyg	gen (m	g/L)			6	Conduc	tivity inity ((µS/cn ppt)	D	
Test Conc	Rep	0	1	2	3	4	5	6	0	1	2	3	4	5	6	0	1	2	3	4	5	6	0	1	2	3	4	5	6
Control (AT0-593)		23.0	2.51		1.1				8.2							8.6	1					1	401						
		23.0			(811		(T I					7.9			1	1			389			-	-		1
AT1-223		+							4				- 1			t						-	4		-				-
	(a)		2.1																				*	-					-
AT1-224	in s	23.0					-		8,1							7.6		-					391						-
																	1.51						- 11		-			-	-
																											-		-
																				-						-			-
				_								-					5.0												-
																	11												
																													-
																											-		
					_																								
												-	-		10-4-4		1.47			-1					-				<u>,</u>
Meter N	umber	651							621							601							601						-
	Time	\$907							0907							0907					1-1		0902						
I	nitials	m							F	-						M			-		-		M			-	-		

TOXICITY TEST WATER QUALITY DATA SHEET - OLD SOLUTIONS

Project Number:	70019.TOX	TEST ORGANISM		Beginning Date: <u>4 23 21</u>	Time: _/016
Client: Parsons		Common Name:	Midge	Ending Date: 5/3/31	Time: 17 74
QC Test Number:	TN-21-239	Scientific Name:	C. dilutus		

TARGET VALUES Temp: <u>23±1</u> °C pH: <u>6.0-9.0</u> DO: <u>>4.0</u> mg/L Salinity: <u>0</u> ppt Photoperiod: <u>16 l, 8 d</u> Light Intensity: <u>50-100</u> fc

				Temp	oeratur	e (°C)						pН					Dis	solved	Oxyg	gen (m	g/L)			8	onduc Sal	tivity inity ((µS/cn ppt)		
Test Conc	Rep	1	2	3	4	5	6	7	1	2	3	4	5	6	7	1	2	3	4	5	6	7	1	2	3	4	5	6	7
Control (AT0-593)	-	22.3	22.5	39.5	33,0	33.3	23.3	24.0	7.5	8.0	7.3	8.0	8.0	27.2	, 7.8	6.0	8.4	7.5	5.3	6.0	5.0	6.5	388	393	389	404	386	379	36
AT1-223		32.5	227	23.6	23.0	23.5	33.4	239	7.5	7.9	7.2	7,8	7.8	7.5	7.6	6.3	8.0	6.7	5.0	5.0	5.0	الورلة	370	384	382	389	360	367	365
AT1-224		32.4	32.S	33.2	33,0	33.Y	33.	23.8	7.4	7.9	7,4	ر: د	7,7	7.3	1,3	6.3	7,8	6.5	5.2	5.0	4,3	14.7	383	359	388	391	367	365	367
			-																										
Meter	Number	060	1051	601	1,551	450	680	1861	070	687	687	681	670	650	68)	VTV	687	687	687	VIV	650	691	620	687	687	687	600	680	681
																			1057	1,50							1150		
	Initials	R		M			M							5					M	M	1.2011-0111	UAD		A		M			LAC

TOXICITY TEST WATER QUALITY DATA SHEET - OLD SOLUTIONS

Project Number:	70019.TOX	TEST ORGANISM		Beginning Date:	4/23/4	Time: 1016
Client: Parsons		Common Name:	Midge	Ending Date:	513/21	$\underline{\qquad} Time: \underline{1} \mathcal{F} \mathcal{F} \underline{1}$
QC Test Number:	TN-21-239	Scientific Name:	C. dilutus			

TARGET VALUES Temp: <u>23±1</u> °C pH: <u>6.0-9.0</u> DO: <u>>4.0</u> mg/L Salinity: <u>0</u> ppt Photoperiod: <u>16 l, 8 d</u> Light Intensity: <u>50 - 100</u> fc

				Temp	eratur	e (°C)						pН					Dis	ssolved	l Oxyg	gen (m	g/L)			(Conduc Sali	tivity ((µS/cn	D	
Test Conc	Rep	8	9	10	11	12	13	14	8	9	10	11	12	13	14	8	9	10	11	12	13	14	8	9	10	11	12	13	14
Control (AT0-593)	-	-	23.D	22.0					7.5	7.4	1.5					5.9	7.0	59					362	364	377				
AT1-223		13.3)3°C	22.0					7.6	7.3	1.5					6. 4	7.0	5.6					36.8	365	345				
AT1-224		73.4	93. ⁰	22.0					7.6	7.3	7.4					6.1	6.9	5.5					36.6	365	368				
		4																											
									1												, 								
Meter N	lumber	650	681	450					140	1081	680					60	(08)	680					650	687	680				
				0908						1444	0908							0908		100			0735	1446	680				
	Initials					1	Ē	11	~	QIR	JA				ET	~	1 1 1 1 1 1 1						~	N	JA				

TOXICOLOGY LABORATORY BENCH SHEET -RENEWAL RECORD

Project Number: <u>70019.TOX</u>

Client: Parsons

QC Test Number: <u>TN-21-239</u>

Day	Date		Time	Initials
0	4/23/21 4/24/21 4/25/21	AM	0 600	p-
	4/23/21	PM	1430	RSB
1		AM	0900	AT
	7/24/81	PM	1315	M
2	** (2 1 (2))	AM	0905	AI
	4785181	PM	1335 0855	A
3	4/20/21 4/27/21 4/28/21 4/29/21 4/29/21 4/20/21	AM	0855	A
	4/86/21	PM	1455	A
4	8/2010	AM	0858	A
	4/8/18	PM	1446	JA A1
5	1/15/11	AM	0845	A1
	4120101	PM	1605	(AD
6	11/20/21	AM	0830	<u> </u>
	7/01/01	PM	1421	JA
7	(l_{1})	AM	0951	UAD
	7130121	PM	1522	Ϋ́ρ
8	5/1/2	AM	0705	m
	>1171	PM	1220	4
9	512121	AM	0630	JR
		PM	1429	OK
10		AM		
		PM		

TOXICOLOGY LABORATORY BENCH SHEET -TESTING LOCATION

Client: Parsons

QC Test Number: <u>TN-21-239</u>

Day	Testing Location	Date	Time	Initials
0	52A 57A 57A	1/22/21	1016	m
1	37A	4/24/21	100 5	A
2	S2A-	4125/21	0932	An
3	524	4/26/27	1040	AI
4	574 574	4127121	1057	M
5	32A 52A 52A	4/29/21	1152	A A
6	57A	4/29/21	0830	<u>4</u>
7	52A	4130121	1523	TP
8	524	5/1/4	0705	m
9	52A 52A	Slala	0630	JR
10	SDA	513/21	1003	AI
11			-	
12				
13				
14				
15				
16				
17				
18				
19				
20				
21				
22				
23				
24				
25				
26			· · · · · · · · · · · · · · · · · · ·	
27				
28				
29				
30				

ATS-T80 07/24/18

TOXICOLOGY LABORATORY BENCH SHEET -FEEDING RECORD

Client: Parsons

QC Test Number: <u>TN-21-239</u>

....

Food: <u>1.5 ml Tetramin Slurry</u>

Day	Date	Time	Initials
0	4/2)/21	1500	rsa.
1	4/24/21	1335	M
2	4125124	1357	NT OF
3	4126121	1675	ÚP
4	4127/27	1500	A
5	4 28 21	lleit	(AD
6	4129121	1500	-p
7	4130/21	1545	~p
8	5/1121	1048	P
9	512-12-1	1589	NA
10			
11			
12			
13			
14			
15			
16			
17			
18			
19	· · · · · · · · · · · · · · · · · · ·		
20			
21			
22			
23	···		
24			
25			
26	·		
27			
28			

TOXICOLOGY LABORATORY BENCH SHEET

Project Number: 70019.TOX

Client: Parsons

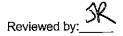
Date/Time/Initials

Comments/Activity

Project Number: <u>70019.TOX</u>

Client: Parsons

QC Test Number: <u>TN-21-239</u>

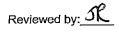

Correction Explanations

- (a) Technician Error-Mathematical
- (b) Technician Error-Manual Data Recording
- (c) Technician Error-Head Count Observation
- (d) Technician Error-Overwrite
- (e) Technician Error-Missing Data
- (f) Technician Error-Lost Organism
- (g) Technician Error-Transcription Error
- (h) Technician Error-Other:
- (i) Meter Malfunction

			M	idge Grov	vth and S	urvival T	est-10 Da	y Surviva	al	
Start Date:	4/23/2021	-	Test ID:	TN-21-239	1	Sample ID:			Parsons	
End Date:	5/3/2021	Lab ID:				Sample Type: S			Sediment	
Sample Date:		l	Protocol:				Test Spec	ies:	CT-C. dilutus	
Comments:										
Conc-	1	2	3	4	5	6	7	8		
Control	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000		
AT1-223	0.8000	0.8000	0.8000	0.6000	0.6000	0.9000	0.9000	0.8000		
AT1-224	0.8000	0.9000	1.0000	0.9000	0.9000	0.9000	1.0000	1.0000		

		Tra	ansform:	Arcsin Sc	uare Roof	Rank	1-Tailed			
Conc-	Mean	N-Mean	Mean	Min	Max	CV%	N	Sum	Critical	
Control	1.0000	1.0000	1.4120	1.4120	1.4120	0.000	8			
*AT1-223	0.7750	0.7750	1.087 4	0.8861	1.2490	12.766	8	36.00	51.00	
AT1-224	0.9250	0.9250	1.2924	1.1071	1.4120	8.514	8			

·	
-0.699	2.0213
•	



÷

			M	lidge Grov	vth and S	urvival Te	est-10 Day	y Surviva	al	
Start Date:	4/23/2021	-	Test ID:	TN-21-239					Parsons	
End Date:	5/3/2021		_ab ID:				Sample Ty	-	Sediment	
Sample Date:]	Protocol:			-	Test Spec	ies:	CT-C. dilutus	
Comments:										
Conc-	1	2	3	4	5	6	7	8		
Control	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000		
AT1-223	0.8000	0.8000	0.8000	0.6000	0.6000	0.9000	0.9000	0.8000		
AT1-224	0.8000	0.9000	1.0000	0.9000	0.9000	0.9000	1.0000	1.0000		

			Tra	ansform:	Arcsin Sc	uare Root	t	Rank	1-Tailed	
Conc-	Mean	N-Mean	Mean	Min	Max	CV%	Ν	Sum	Critical	
Control	1.0000	1.0000	1.4120	1.4120	1.4120	0.000	8			
AT1-223	0.7750	0.7750	1.0874	0.8861	1.2490	12.766	8			
*AT1-224	0.9250	0.9250	1.2924	1.1071	1.4120	8.514	8	48.00	51.00	

Auxiliary Tests	Statistic	Critical	Skew	Kurt
Shapiro-Wilk's Test indicates non-normal distribution (p <= 0.01)	0.81935	0.844	-0.2789	1.92704
Equality of variance cannot be confirmed				
Hypothesis Test (1-tail, 0.05)				
Wilcoxon Two-Sample Test indicates significant differences				

	Midge Growth and Survival Test-10 Day Growth													
Start Date:	4/23/2021	Test ID: TN-21-23			Sample ID:				Parsons					
End Date:	5/3/2021	Lab ID:				Sample Type: S			Sediment					
Sample Date:		ŀ	Protocol:				Test Spec	ies:	CT-C. dilutus					
Comments:														
Conc-	1	2	3	4	5	6	7	8	s.d.					
Control	0.4680	0.6930	0.5000	0.8260	0.8640	0.8590	0.6790	0.6870	0.15235					
AT1-223	1.2800	1.3438	1.1387	1.6800	1.4517	0.9878	0.9289	0.9575	0.26682					
A⊤1-224	1.3975	1.1944	1.3000	0.9822	0.8311	1.0489	0.8190	1.0210	0.20912					

<u> </u>				Transform	n: Untran					
Сопс-	Меап	N-Mean	Mean	Min	Max	CV%	N	t-Stat	Critical	MSD
Control	0.6970	1.0000	0.6970	0.4680	0.8640	21.857	8			
AT1-223	1.2210	1.7519	1.2210	0.9289	1.6800	21.852	8	-4.824	1.761	0.1913
AT1-224	1.0743	1.5413	1.0743	0.8190	1.3975	19.466	8			

Auxiliary Tests	Statistic		Critical		Skew	Kurt
Shapiro-Wilk's Test indicates normal distribution (p > 0.01)	0.94807		0.844		0.3782	-0.1895
F-Test indicates equal variances (p = 0.16)	3.06748		8.88539			
Hypothesis Test (1-tail, 0.05)	MSDu	MSDp	MSB	MSE	F-Prob	df
Homoscedastic t Test indicates no significant differences	0.19133	0.27451	1.09848	0.0472	2.7E-04	1, 14

<u></u>			N	lidge Gro	wth and S	Survival T	est-10 Da	y Growt	n	
Start Date: 4/23/2021 End Date: 5/3/2021 Sample Date: Comments:		1	Test ID: Lab ID: Protocol:	TN-21-239)		Sample ID Sample Ty Test Spec	/pe:	Parsons Sediment CT-C. dilutus	
Conc-	1	2	3	4	5	6	7	8	s.d.	
Control AT1-223		0.6930 1.3438 1.1944	0.5000 1.1387 1.3000	0.8260 1.6800 0.9822	0.8640 1.4517 0.8311	0.8590 0.9878 1.0489	0.6790 0.9289 0.8190	0.6870 0.9575 1.0210	0.26682	

			•	Transform	n: Untran:	sformed			1-Tailed	
Conc-	Mean	N-Mean	Mean	Min	Max	CV%	N	t-Stat	Critical	MSD
Control	0.6970	1.0000	0.6970	0.4680	0.8640	21.857	8			
AT1-223	1.2210	1.7519	1.2210	0.9289	1.6800	21.852	8			
AT1-224	1.0743	1.5413	1.0743	0.8190	1.3975	19.466	8	-4.124	1.761	0.1611

Auxiliary Tests	Statistic		Critical		Skew	Kurt
Shapiro-Wilk's Test indicates normal distribution (p > 0.01)	0.94954		0.844		0.08891	-0.8967
F-Test indicates equal variances (p = 0.42)	1.88422		8.88539			
Hypothesis Test (1-tail, 0.05)	MSDu	MSDp	MSB	MSE	F-Prob	df
Homoscedastic t Test indicates no significant differences	0.16111	0.23115	0.56933	0.03347	0.00103	1, 14

Reviewed by: <u>JR</u>

ATTACHMENT III

Data Sheets and Statistical Analyses from *Hyalella azteca* Toxicity Tests (18 pages)

®

ĺ

SEDIMENT TOXICITY TEST SET-UP BENCH SHEET

Project Number:	70019.TOX	
-----------------	-----------	--

Client: Parsons

QC Test Number: <u>TN-21-240</u>

الالتابات والانتاج ومستستستان التعويات ووالي المناسسات

	<u> </u>	TEST ORGANISM IN	FORMATION
Common Name:	Amphipod	Adults	Isolated (Time, Date):
Scientific Name:	H. azt <u>ec</u> a		tes Pulled (Time, Date):
Lot Number:	1A-04P	Acclin	nation: <u>424hs</u> Age: <u>8 days</u>
Source: EA		Mu Cultur	e Water (T/S): <u>23, 2 °C</u> <u>b</u> ppt
		TEST INITIA	TION
Date	Time	<u>Initials</u>	Activity
4122121	1535	AT .	Sediment Added to Chambers
L	1340	₩.	Overlying Water Added to Chambers
4/23/21	1016	rso	Organisms Transferred
~			
		TEST SET	-UP
Sample Number(s):	<u>AT0-593, AT1-</u>	<u>223, AT1-224</u>	
Overyling Water Nur	nber:	Dechlor	
Overlying GASS Treatment	5/24/21	Volume Test Sedimen	t <u>Volume Overlying Water</u>
Pretty Boy Control (A	AT0-593)	100 ml	175 ml
AT1-223			
ATT-225			
AT1-224			
		¥	
			•
L _,			
ſ			

the second s

Ì

Project Number:		70019.TO		IMENT T TEST ORG	OXICITY ANISM	TEST	OBSERVA	ATION I Begi	DATA SH nning Date: _	<u>ΕΕΤ</u> <u> 11 2 </u>	Time	1016
Client:Pars	ons			Commo	on Name:	Amphipo	d	End	ling Date:	513121_	Time	a: 1345
QC Test Number: _		<u>FN-21-240</u>		Scientif	ic Name:	H. azteca	·					
Test Material(s):	Sed	liment										
Accession Number(s): <u>AT0-</u>	•593, AT1-223	, AT1-224	TEST 1	TYPE: (static 1	Flowthrough	Tes	t Container: _	300ml lip	less beakers	
Overlying Water:	E	Dechlor			Renewa	l / Non-	renewal	Tes	t Volume:	100ml sed	iment	
Accession Number:		N/A		Photope	eriod: 161, 8d	Light Inte	ensity: <u>50 - 100</u>	fc Tes	t Duration:	10 days		
<u>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</u>						Numb	er of Surviving	Organisms				
Treatment	Rep	Day 4 2.1 2 Date	Day Date	Day ט Date קיי	Day Date	Day Date	Day Date	Day Date	Day Date	Day Date	Day Date	Day Date
Pretty Boy Control	A	10		8								
(AT0-593)	В	10		8								
	С	10		8								
	D) =.		8								
· · · · · · · · · · · · · · · · · · ·	Е	1.31		8								
	F	10		8								
	G	10		8								
	Η	10		8								
AT1-223	A	10		10								
	В	0		8								
	С	10		9								
	D	10		8								
	E	0		8								
	F	10		9								
	G	10		9								
	H	(0		8								
Time /	Initials	-412- 1-1- NO		1345M								
<u>EPA Test Method:</u> (FW) Hyalella: (100.1)		OKS 470 -R-99-064/SW EF Chironomus	(100.2)		nbriculus (100.3))	Leptochein	us, Eohaustorius	s & Ampelisca (1	00.4)		ATS-T12 06/15/10

. ..

			SED	IMENT T	OXICITY	Y TEST (DBSERV	ΆΤΙ	ON DATA SE	IEET		
Project Number:		<u>70019.TO</u>		TEST ORC	JANISM				Beginning Date:	9/23/21	Time:	1016
Client: Pars	sons			Commo	on Name:	Amphipod			Ending Date:	513101	Time	<u>:: 1345</u>
QC Test Number:	,	<u>TN-21-240</u>			fic Name:							
Test Material(s): _	Sec	liment										
Accession Number	(s): <u>AT0</u>	-593, <u>AT1-22</u>	<u>3, AT1-224</u>	TEST	ГҮРЕ:	static Fl	owthrough		Test Container:	300ml lip	less beakers	
Overlying Water:	I	Dechlor			Renewa	al /Non-re	enewal		Test Volume:	100ml sedi	ment	
Accession Number	·	N/A		Photop	eriod: <u>161, 8d</u>	Light Inter	sity: <u>50 - 100</u>)_fc	Test Duration: _	10 days		<u> </u>
<u></u>						Number	of Surviving	, Organi	sms			
Treatment	Rep	Day 1/23 Date O	Day Date	Day 10 Date 513	Day Date	Day Date	Day Date	Day Date		Day Date	Day Date	Day Date
AT1-224	A	10		8								
	В	50		8								
	С	50		9								
	D	10		9								
	Е	(9								
· · · · · · · · · · · · · · · · · · ·	F	10		8								
	G	(10	1							
	H			8								
											<u> </u>	
Time	/ Initials	1016 RSB		1345AJ								

í.

EPA Test Method: (FW) EPA 600-R-99-064/SW EPA-600-R-94-025 (CHECK ONE)

Hyaleila: (100.1) X

-

.....

Lumbriculus (100.3)

 $\left(\begin{array}{c} \\ \end{array} \right)$

	1				()			
				WEIGHT DATA	(Test Species:	H. azteca		
Project Number: _	7	<u>0019.TO</u>	X				<u>Date Tir</u>	
Client: Pars	ens				Loaded tins placed in o		,,	SJ AT
QC Test Number:					Loaded tins removed f	rom oven:		50 158
Tin Lot: <u>N</u>	17 2	-53			Loaded tins weighed:		314/21 1	400 RJB
Oven Temp (°C):	Start:_	107	_End:(ා	0	Oven Number: <u>BLM-01</u>	G4-009646	Balance Number: TS-L-	225.C / P0115825
· · · · · · · · · · · · · · · · · · ·			A	B Weight of Tin	B-A Total Dry	C Number	(B-A)/C Mean Dry	(if applicable)
Test Concentration	Rep	Tin #	Weight of Tin (mg)	and Dried Organisms (mg)	Organism Weight (mg)	of Organisms Weighed	Organism Weight (mg)	(mappicatic) Mean Biomass (mg/exposed org.)
Pretty Boy Res.	A	158	28.93	29.60	0.67\$	8	0.084	0,667
(AT0-593)	В	346	29.56	30,12	0,56	8	0,070	0,056
	C	290	29.37	29.79	0.42	8	0,053	0,042
	D	141	28,60	29.42	0.82	8	0,03	0,082
	Е	109	28.47	29,14	0,67	8	0,084	0,067
	F	189	27.79	28.34	0,55	8	0,069	0,055
	G	115	29.32	29.87	0.55	8	0,069	0,055
	H	ИЪ	29.12	29.56	0.44	8	0,055	0.044
AT1-223	A	341	29.01	29.85	0.84	10	0,084	0.084
	В	380	30.23	31.29	1.06	8	0.133	0.106
	C	5	29.08	29.65	0,57	9	0,663	0.057
	D	43	30,40	30,31,04	0,64	8	0,080	0,064
	Е	69	30,00	30.63	0.63	8	0.079	0,063
	F	294	29,00	29.65	0,65	9	0,072	0,065
	G	324	30.68	31.34	0,66	<u>م</u>	0.073	0,066
	H	145	27.59	28.24	0.65	8	0.081	0,065
Dry wt. calculation	s checke	ed (date, in	itials): <u>5 24 30</u> 34	(b)	Biomass calculations	checked (date, initia	uls): <u>5/24/2021 j</u>	ATS-T46 09/29/08

						(
	Project Number:	7	0019.TO	x	WEIGHT DATA	(Test Species:	H. azteca	_) Date Ti	me Initials
	Client: Pars					Loaded tins placed in o	oven:	5/3/21 1	355 47 64
	QC Test Number:	TN	<u>-21-240</u>			Loaded tins removed f	rom oven:		320 KLB 2000
	Tin Lot: Nov	4 22	53			Loaded tins weighed:		514/21 1	\$ 1400 NJO
	Oven Temp (°C):	Start:_	107	End:(0	0	Oven Number: BLM-01	G4-009646	Balance Number: TS-L	225.C P0115825
6	Test Concentration	Rep	Tin #	A Weight of Tin (mg)	B Weight of Tin and Dried Organisms (mg)	B-A Total Dry Organism Weight (mg)	C Number of Organisms Weighed	(B-A)/C Mean Dry Organism Weight (mg)	(if applicable) Mean Biomass (mg/exposed org.)
1A 513121	AT1-224	А	335	28.77	29.78	1.01	8	0,126	0,101
		В	304	29.37	30.10	0,73	8	0,091	0,073
		С	210	29.84	30.81	0,97	9	0.108	0.097
		D	76	29.36	30.11	0,75	9	0,083	0,075
		Е	354	29.06	29.81	0,75	9	0,083	0.075
		F	239	29.66	30.39	0,73	8	0.091	0.073
		G	376	29.24	30.07	0,83	10	0.083	6.083
		H	259	29.74	30.54	0,80	8	0,100	0,080
		ļ							
				<u> </u>			· · · ·		
						1			

Dry wt. calculations checked (date, initials): 5/24/2021 OR

Biomass calculations checked (date, initials): 5124/2021, TR

TOXICITY TEST WATER QUALITY DATA SHEET - NEW SOLUTIONS

Project Number:	70019.TOX	TEST ORGANISM		Beginning Date: <u>4/23/21</u>	Time: _1 = 1 6
Client: Parsons		Common Name:	Amphipod	Ending Date: <u>5/3/2-1</u>	
QC Test Number:	TN-21-240	Scientific Name:	H. azteca		

TARGET VALUES: Temp: <u>23±1</u> °C pH: <u>6.0-9.0</u> DO: <u>>4.0</u> mg/L Salinity: <u>0</u> ppt Photoperiod: <u>161, 8 d</u> Light Intensity: <u>50-100</u> fc

Test Conc Rep		Temperature (°C)							pH								Dissolved Oxygen (mg/L)							Conductivity (µS/cm) Salinity (ppt)						
Test Conc	Rep	0	1	2	3	4	5	6	0	1	2	3	4	5	6	0	1	2	3	4	5	6	0	1	2	3	4	5	6	
Control (AT0-593)		23.0							8.2	¥ 1/13				(in the	11.00	8.6	-						401							
	171									100				1	i në r	100							1							
AT1-223		23.0							8.1							7.9		_					388							
AT1-224		73.0							8.1		_					7.6	-		-				391							
		12.0							0.1		1					7.10				1	in 1					3				
								-																						
ù																														
	-	-	_	-	-	-					-					-	-	-				-	-	-			-		-	
			-					-	-						-	-							-							
											1																			
																									-					
Meter 1	Number	180							601							691							601							
	Time	60907				1.			0907							0907							0907							
	Initials	m							r							F							m							

TOXICITY TEST WATER QUALITY DATA SHEET - OLD SOLUTIONS

	70019.TOX	TEST ORGANISM		Beginning Date:	4/23/21	
Client: Parsons		Common Name:	Amphipod	Ending Date:	5/3/27	
QC Test Number:	TN-21-240	Scientific Name:	H. azteca			

TARGET VALUES	Temp:	23±1	_°C pH:	6.0 - 9.0	DO:	<u>≥4.0</u>	_mg/L	Salinity:	0	ppt	Photoperiod: 16 l, 8 d	Light Intensity: 50 - 100 fc
---------------	-------	------	---------	-----------	-----	-------------	-------	-----------	---	-----	------------------------	------------------------------

				Temp	oeratur	e (°C)			pH								Dis	solvec	l Oxyg	en (m	g/L)			Conductivity (µS/cm) Salinity (ppt)						
Test Conc	Rep	1	2	3	4	5	6	7	1	2	3	4	5	6	7	1	2	3	4	5	6	7	1	2	3	4	5	6	7	
Control (AT0-593)	-	333	32.	33.8	23.0	23.4	33.5	23.4	7.5	5.8	7.5	7.8	7.8	7.7	7,5	8.0	8.0	8.0	6.3	7.4	6.7	6.4	398	398	39-	395	37)-	366	367	
AT1-223		38 ?	23.8	22 S	, re	33.2	33.5	23.7	7.5	7.8	7.0	57.7	7.7	٦,-	17,4	7,5	7.8	6.0	16.4	٦.3	6.5	6.6	379	388	389	399	364	362	364	
AT1-224		32.3	23-E	37.2	23.0	33.	123,8	237	7.4	۶ ۲	٦.٣	6.1	7.4	7.7	17,4	7.0	7.4	6.	56.5	7.2	6.7	6.6	375	387	350	371	363	367	364	
Meter	Number	680	181	651	130	620	600	681	NO	681	687	1087	030	650	681	650	60	681	681	680	650	681	670		681		680			
		10000	0930	10MM	1058	1151	180	icol	See!	0937	-104V	1058	1151	1800	1006	000	0930	IONN	1058	1157	1800	1006	(00 8	6570	1044		1151	1800	1026	
	Initials	IR/	151	W	M	B	B	lpo	W.	8	BI	R	M	5	UAD	K	100	M	87	A	R	UAD	M	37	107	AT	A	M	AD	

TOXICITY TEST WATER QUALITY DATA SHEET - OLD SOLUTIONS

Project Number:	70019.TOX	TEST ORGANISM		Beginning Date:	4/23/21	Time: 1018
Client: Parsons		Common Name:	Amphipod	Ending Date:	5/3/27	Time: <u>13 45</u>
QC Test Number:	TN-21-240	Scientific Name:	H. azteca			

TARGET VALUES Temp: <u> 23 ± 1 </u> °C pH: <u>6.0-9.0</u> DO: <u> ≥4.0 </u> mg/L Salinity: <u>0</u> ppt Photoperiod: <u>16l, 8d</u> Light Intensity: <u>50-100</u> fc

Test Conc		Temperature (°C)					pH						Dissolved Oxygen (mg/L)							Conductivity (µS/cm) *Salinity (ppt)									
	Rep	8	9	10	11	12	13	14	8	9	10	11	12	13	14	8	9	10	11	12	13	14	8	9	10	11	12	13	14
Control (AT0-593)			23:0	22.0					7.6	7.4	7.7					6.6	1.1	6.9					36 (367	384				
AT1-223		22.q	\$D.0	22.°					7.6	7.4	7.6					6.5	1.1	6.3					360	366	357				
AT1-224		23.0	23.0	, 77'0					えら	7.4	1.5					6.5	1.2	6.6					366	364	361				
Meter N	lumber	680	Len	৬৯০					690	250	680					695	681	680					680	487	687				
	Time Initials	0712	ntuin.	0905 NB	-				0732 m	1447	0905 JA					0732	141 141	10905					0732	144	10909 JA	>		_	_

7.

TOXICOLOGY LABORATORY BENCH SHEET -RENEWAL RECORD

Project Number: <u>70019.TOX</u>

Client: ____ Parsons ____

QC Test Number: <u>TN-21-240</u>

encoder and the second second second

Day	Date	Time	Initials
0		AM 0500	pre
	4 23/21	PM 1433	NO
1	4/24/21 4/24/21 4/25/21 4/26/21 4/27/21 4/27/21 4/28/21 4/29/21 4/20/21	AM 0900	A
	7/84/21	PM 1315	\$7
2	11271.	AM 0905	A
	9185121	PM 1335	DA An
3	4 (20 6 2	AM 0855	A1
	-1/00/2	PM 1455	JA- A7
4	11/2-7/22	AM 0828	
	4/2/181	PM 1446	JA
5	MARIN	AM 0843	57
	100121	PM 1605	UTO A1
6	4/29/21	AM 0830	1
		PM 1421	JA
7	4/20/21	AM 6951	(AD
	1/20191	PM 1522	P
8	5/1/21 5/2/21	AM Dios	TR JR
	<u>> // 1/ // // // // // // // // // // // </u>	PM 12205	
9	5/2/21	AM 0630	JR
10		PM 1429	jA
10		AM	
		PM	

TOXICOLOGY LABORATORY BENCH SHEET -TESTING LOCATION

Project Number: 70019.TOX

Client: Parsons

QC Test Number: ______TN-21-240

Day	Testing Location	Date	Time	Initials
0	52A	4/23/21	1017	RSG
1	52-4	4124121	1008	A
2	52A	4/25/21	0932	A
3	52A	4/26/27	1044	A
4	EDA	4127121	1058	87
5	52A 52A 52A 52A	4/28/21	1157 0830 1523	A
6	SZA	4/29/21	0830	A
7	52A	4130121	1523	P
8	SLA	5/1/21	0705	m
9	52A	5/2/21	0630	JR
10	SAA	513/01	1003	AT
11				
12				
13				
14				
15				
16				
17				
18				
19				
20				
21				
22				
23				
24			1	·
25				
26				
27				
28				
29				
30	1			

TOXICOLOGY LABORATORY BENCH SHEET -FEEDING RECORD

 Project Number:
 70019.TOX

 Client:
 Parsons

 QC Test Number:
 TN-21-240

Food: <u>1 ml YCT per beaker daily</u>

Day	Date	Time	Initials
0	4/23/21 M/24/21 4/25/21	1500	NSA
1	4124121	1335	A
2	4125121	1357	Nt
3	4/26/21 4/27/21 4/28/21	1625	UAD
4	4/87/81	1500	81
5	4/28/21	1610 1500 1545	\mathcal{U}
6	4/29/21	500	- PP
7	4130/21	1545	P P P
8	511121	1048	TP
9	512121	1509	UA
10			
11			
12			
13			
14			
15			
16			
17			
18			
19			
20			
21			
22			
23			
24			
25			
26			
27			
28			

TOXICOLOGY LABORATORY BENCH SHEET

Project Number: 70019.TOX

Client: Parsons

QC Test Number: _____ TN-21-240

Date/Time/Initials

and the second second

Comments/Activity

l L

TOXICOLOGY LABORATORY CORRECTION BENCH SHEET

Project Number: <u>70019.TOX</u>

Client: Parsons

QC Test Number: TN-21-240


Correction Explanations

- (a) Technician Error-Mathematical
- (b) Technician Error-Manual Data Recording
- (c) Technician Error-Head Count Observation
- (d) Technician Error-Overwrite
- (e) Technician Error-Missing Data
- (f) Technician Error-Lost Organism
- (g) Technician Error-Transcription Error
- (h) Technician Error-Other:
- (i) Meter Malfunction

			Am	phipod Gr	owth and	l Surviva	Test-10 [Day Surv	ival	
Start Date: End Date:	4/23/2021 5/3/2021		Test ID: _ab ID:	TN-21-240	I		Sample ID Sample Ty	/pe:	Parsons Sediment	
Sample Date: Comments:]	Protocol:				Test Spec	ies:	HA-H. azteca	
Conc-	1	2	3	4	5	6	7	8		
Control	0.8000	0.8000	0.8000	0.8000	0.8000	0.8000	0.8000	0.8000		
AT1-223	1.0000	0.8000	0.9000	0.8000	0.8000	0.9000	0.9000	0.8000		
AT1-224	0.8000	0.8000	0.9000	0.9000	0.9000	0.8000	1.0000	0.8000		

			Тга	ansform:	Arcsin Sc	uare Root		Rank	1-Tailed
Conc-	Mean	N-Mean	Mean	Min	Max	CV%	Ν	Sum	Critical
Control	0.8000	1.0000	1.1071	1.1071	1.1071	0.000	8		
AT1-223	0.8625	1.0781	1.1985	1.10 71	1.4120	9.283	8	84.00	51.00
AT1-224	0.8625	1.0781	1.1985	1.10 71	1.4120	9.283	8		

1.22901 3.3921
-

	Amphipod Growth and Survival Test-10 Day Survival													
Start Date:	4/23/2021 Test ID: TN-21-240						Sample ID):	Parsons					
End Date:	5/3/2021	Lab ID:				Sample Type: S			Sediment					
Sample Date:		I	Protocol:				Test Speci	ies:	HA-H. azteca					
Comments:														
Conc-	1	2	3	4	5	6	7	8						
Control	0.8000	0.8000	0.8000	0.8000	0.8000	0.8000	0.8000	0.8000						
AT1-223	1.0000	0.8000	0.9000	0.8000	0.8000	0.9000	0.9000	0.8000						
AT1-224	0.8000	0.8000	0.9000	0.9000	0.9000	0.8000	1.0000	0.8000						

			Tra	ansform:	Arcsin Sc	uare Root	:	Rank	1-Tailed
Conc-	Mean	N-Mean	Mean	Min	Max	CV%	N	Sum	Critical
Control	0.8000	1.0000	1.1071	1.1071	1.1071	0.000	8		
AT1-223	0.8625	1.0781	1.1985	1.1071	1.4120	9.283	8		
AT1-224	0.8625	1.0781	1.1985	1.1071	1.4120	9.283	8	84.00	51.00

Auxiliary Tests	Statistic	Critical	Skew	Kurt
Shapiro-Wilk's Test indicates non-normal distribution (p <= 0.01)	0.80517	0.844	1.22901	3.39213
Equality of variance cannot be confirmed				
Hypothesis Test (1-tail, 0.05)				
Wilcoxon Two-Sample Test indicates no significant differences				

				Amphipo	d Growth	and Surv	vival Test	Growth		
Start Date:							Sample ID		Parsons	
End Date:	5/3/2021		_ab ID:			Sample Type:			Sediment	
Sample Date:			Protocol:			•	Test Spec	ies:	HA-H. azteca	
Comments:										
Сопс-	1	2	3	4	5	6	7	8	s.d.	
Control	0.0838	0.0700	0.0525	0.1025	0.0838	0.0688	0.0688	0.0550	0.01643	
AT1-223	0.0840	0.1325	0.0633	0.0800	0.0787	0.0722	0.0733	0.0812	0.02097	
AT1-224	0.1263	0.0913	0.1078	0.0833	0.0833	0.0913	0.0830	0.1000	0.01514	

				Transform	n: Untran:	sformed			1-Tailed	
Conc-	Mean	N-Mean	Mean	Min	Max	CV%	Ν	t-Stat	Critical	MSD
Control	0.0731	1.0000	0.0731	0.0525	0.1025	22.474	8			
AT1-223	0.0832	1.137 4	0.0832	0.0633	0.1325	25.210	8	-1.067	1.761	0.0166
AT1-224	0.0958	1.3097	0.0958	0.0830	0.1263	15.807	8			

Auxiliary Tests	Statistic		Critical		Skew	Kurt
Shapiro-Wilk's Test indicates normal distribution (p > 0.01)	0.84736		0.844		1.5501	2.79323
F-Test indicates equal variances (p = 0.54)	1.62778		8.88539			
Hypothesis Test (1-tail, 0.05)	MSDu	MSDp	MSB	MSE	F-Prob	df
Homoscedastic t Test indicates no significant differences	0.01659	0.22687	0.0004	0.00035	0.30409	1, 1 4

Reviewed by: <u>SR</u>

				Amphipo	d Growth	and Surv	vival Test-	Growth		
Start Date:	4/23/2021	-	Test ID:	TN-21-240		ę	Sample ID):	Parsons	
End Date:	5/3/2021	Lab ID:				Sample Type: Se			Sediment	
Sample Date:		F	Protocol:			-	Test Spec	ies:	HA-H. azteca	
Comments:										
Conc-	1	2	3	4	5	6	7	8	s.d.	
Control	0.0838	0.0700	0.0525	0.1025	0.0838	0.0688	0.0688	0.0550	0.01643	
AT1-223	0.0840	0.1325	0.0633	0.0800	0.0787	0.0722	0.0733	0.0812	0.02097	
AT1-224	0.1263	0.0913	0.1078	0.0833	0.0833	0.0913	0.0830	0.1000	0.01514	

				Transform	n: Untran	sformed		1-Tailed		
Сопс-	Mean	N-Mean	Mean	Min	Max	CV%	N	t-Stat	Critical	MSD
Control	0.0731	1.0000	0.0731	0.0525	0.1025	22.474	8			
AT1-223	0.0832	1.1374	0.0832	0.0633	0.1325	25.210	8			
AT1-224	0.0958	1.3097	0.0958	0.0830	0.1263	15.807	8	-2.86 7	1. 76 1	0.0139

Auxiliary Tests	Statistic		Critical		Skew	Kurt
Shapiro-Wilk's Test indicates normal distribution (p > 0.01)	0.91282		0.844		0.78854	-0.0037
F-Test indicates equal variances (p = 0.83)	1.17841		8.88539			
Hypothesis Test (1-tail, 0.05)	MSDu	MSDp	MSB	MSE	F-Prob	df
Homoscedastic t Test indicates no significant differences	0.01391	0.19028	0.00205	0.00025	0.01243	1, 14

Reviewed by:______

ATTACHMENT IV

Report Quality Assurance Record (2 pages)

REPORT QUALITY ASSURANCE RECORD			
Cli	ent: Parsons	Project Number: 7	0019. Tox
Au	thor: Michael Chanor	EA Report Number:	8561
REPORT CHECKLIST			
	QA/QC ITEM	REVIEWER	DATE
1.	Samples collected, transported, and received according to study plan requirements.	puflick	5/21/4
2.	Samples prepared and processed according to study plan requirements.	- Jufkell	s/ri/y
3.	Data collected using calibrated instruments and equipment.	Jul KCK	5/21/21
4.	Calculations checked: - Hand calculations checked	Julk CK	5/21/21
	 Documented and verified statistical procedure used. 	MKK	5/21/21
5.	Data input/statistical analyses complete and correct.	Jos M Reinfos	5/24/2021
6.	Reported results and facts checked against original sources.	Jusis MRedel	5/24/2021
7.	Data presented in figures and tables correct and in agreement with text.	Jessi MRahlis	5/24/2021
8.	Results reviewed for compliance with study plan requirements.	MKCK	5/21/21
		AUTHOR	DATE
9.	Commentary reviewed and resolved.	ju/lex_	5/24/21
10. All study plan and quality assurance/control requirements have been met and the report is			
	approved:	- la fill	5/24/4
	· · · · ·	PROJECT MANAGER	DATE

QUALITY CONTROL OFFICER

DATE 5/24/2221 DATE

5/24/2021

N LA SENIOR TECHNICAL REVIEWER

ATS-Q8 01/25/02

This Page Intentionally Left Blank.

Appendix C Site Photographs

(April 20, 2021)

This Page Intentionally Left Blank

1. Photograph of Ore Storage Pond, facing east, setting up northern transect.

2. Photograph of Ore Storage Pond, facing north from southern end of pond.

3. Photograph of Ore Storage Pond, facing east, sampling at location 079SD-410.

 Photograph of depth of sediment at sampling location 079SD-410 located on the West end of the North Transect Page 3 of 13

5. Photograph of Ore Storage Pond, facing east, sampling at location 079SD-411.

 Photograph of depth of sediment at sampling location 079SD-411 located from the middle of the North Transect Page 4 of 13

7. Photograph of Ore Storage Pond, facing northwest, view of the northern portion of the pond from shore near sediment sampling location 079SD-412

8. Photograph of Ore Storage Pond, facing southwest, view of the southern portion of the pond from shore near sediment sampling location 079SD-412.

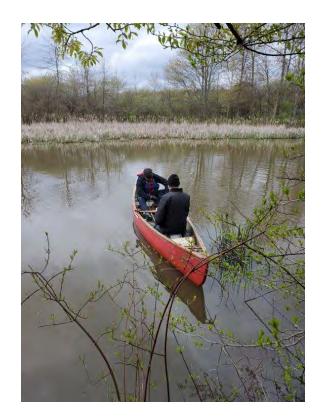
9. Photograph of Ore Storage Pond, facing east, sampling at location 079SD-412.

10. Photograph of Depth of sediment at sampling location 079SD-412 located on the East end of the North Transect

11. Photograph of hand corer used to collect sediment sample from sampling location 079SD-112.

12. Photograph of sediment sample from sampling location 079SD-412 located on the East end of the North Transect

13. Photograph of Ore Storage Pond, facing east, sampling at location 079SD-413.


14. Photograph of Depth of sediment at sampling location 079SD-413 located on the West end of the South Transect

15. Photograph of Ore Storage Pond, facing east, sampling at location 079SD-414.

16. Photograph of Depth of sediment at sampling location 079SD-414 located in the middle of the South Transect

17. Photograph of Ore Storage Pond, facing east, sampling at location 079SD-415.

18. Photograph of Depth of sediment at sampling location 079SD-415 located on the East end of the South Transect

19. Photograph of filling sample jars with collected sediment.

20. Photograph of wetland delineation Page **11** of **13**

21. Photograph of Ore Storage Pond, soil test pit TP-1.

22. Photograph of Ore Storage Pond, soil test pit TP-2.

23. Photograph of Ore Storage Pond, soil test pit TP-3.

Appendix D Ohio EPA Notification of Field Work

This Page Intentionally Left Blank

March 26, 2021

Ohio Environmental Protection Agency DERR-NEDO Attn: Mr. Ed D'Amato 2110 East Aurora Road Twinsburg, OH 44087-1924

Subject: Notification of Field Work, Ravenna Army Ammunition Plant (RVAAP) Restoration Program, Portage/Trumbull Counties, Additional Sampling for CC RVAAP-79 Defense Logistics Agency (DLA) Ore Storage Sites Remedial Investigation, Ore Storage Pond Sub-Area, Ohio EPA ID # 267-000859-258

Dear Mr. D'Amato:

In accordance with the Director's Final Findings and Orders, Section XIII, #28, for the RVAAP Restoration Program, the Army National Guard (ARNG) is providing notification of field activities at Camp James A. Garfield / former RVAAP 15 days prior to the scheduled start date. Parsons will be conducting sediment sampling at Ore Storage Pond sub-area within CC RVAAP-79 DLA Ore Storage Sites during the week of 19 April 2021 (anticipate two days of sampling, 20 through 21 April 2021).

For additional information on the field activities, please refer to the *Final Work Plan Addendum* Additional Sampling for CC RVAAP-79 DLA Ore Storage Sites Remedial Investigation, Ore Storage Pond Sub-Area, RVAAP Restoration Program, Portage and Trumbull Counties, Ohio submitted to Ohio EPA on 23 March 2021.

Please contact the undersigned at (614) 336-6000 Ex 2053 or <u>kevin.m.sedlak.ctr@mail.mil</u> if there are issues or concerns with this submission.

Sincerely, SEDLAK.KEVIN.MICH Digitally signed by SEDLAK.KEVIN.MICH Digitally signed by SEDLAK.KEVIN.MICHAEL1254440171 Date: 2021.03.26 09:05:16 -04'00' Kevin Sedlak RVAAP Restoration Program Manager

cc: Bob Princic, Ohio EPA, DERR-NEDO Tom Schneider, Ohio EPA, SWDO Natalie Oryshkewych, Ohio EPA, DERR-NEDO Megan Oravec, Ohio EPA, DERR-NEDO Mark Leeper, ARNG Katie Tait, OHARNG, CJAG Steven Kvaal, USACE Louisville Kevin Mieczkowski, USACE Louisville Jennifer Tierney, Vista Sciences Edward Heyse, Parsons This Page Intentionally Left Blank.

Appendix E Regulatory Correspondence Letters and Comments Response Table This Page Intentionally Left Blank

August 25, 2021

Ohio Environmental Protection Agency DERR-NEDO Attn: Edward J. D'Amato 2110 East Aurora Road Twinsburg, OH 44087-1924

Subject: Former Ravenna Army Ammunition Plant (RVAAP) Restoration Program Draft RI Addendum/ Draft Feasibility Study, CC RVAAP-79 DLA Ore Storage Sites, Ore Storage Pond Sub-Area Portage/Trumbull Counties, Ohio EPA ID # 267-000859-211

Dear Mr. D'Amato:

The Army appreciates the recent opportunity during the August 20, 2021 Conference Call to discuss the Ohio EPA's concerns regarding the Draft Remedial Investigation (RI) Addendum for the CC RVAAP-79 DLA Ore Storage Sites, Ore Storage Pond Sub-Area. Additionally, Ohio EPA expressed concern that new sediment data from the Ore Storage Pond collected for the bioassays may impact the conclusions of the Human Health Risk Assessment for the Ore Storage Pond in the Final 2020 RI (*approved December 17, 2020*).

The Army proposes the following approach to continue to make progress on this Area of Concern (AOC) while providing a process to address the Ohio EPA's concerns that were provided for discussion on August 20, 2021. The Army plans to address all the concerns provided by the Ohio EPA, in the proposed following approach.

1.) CC RVAAP-79 RI Addendum for Ore Storage Pond

- Ohio EPA should stop review of the Draft CC RVAAP-79 RI Addendum.
- Army will revise the RI Addendum as follows:

1.) The findings will be revised to state that the "No Further Action" determination only applies for ecological receptors and that no further remedial actions are warranted to address ecological risk.

2.) A statement, where appropriate, will be added to state:

"Because the additional data for the Ore Storage Pond sediments collected for this RI Addendum, has concentrations of arsenic that are greater than those used to estimate risks to Human Health Receptors in the CC RVAAP-79 RI, these potential risks need to be reassessed considering the new sediment and pond data. Since the CC RVAAP-79 RI has been finalized, the Army will revise the Draft CC RVAAP-79 Feasibility (FS) to include a reassessment of potential human health risks for current and future receptors of the Ore Storage Pond that includes the new data collected for this RI Addendum. The revised HHRA will be incorporated into the Risk Management Portion of the CC RVAAP-79 FS."

2.) CC RVAAP-79 RI (approved December 17, 2020)

• • No change proposed.

3.) CC RVAAP-79 FS (draft and under review by the Ohio EPA)

- Ohio EPA should stop review of this Draft document.
- Army will revise the FS to include a revised Baseline Human Health Risk Assessment for the Ore Storage Pond using all available data (previously and newly collected for CC RVAAP-79 RI Addendum).
- Army will revise the FS to address the applicable Ohio EPA's comments provided on August 20, 2021.
- Army will redevelop Alternatives.
- Army will resubmit revised Draft FS.

If this approach is acceptable, please provide a notification of agreement and the Army will proceed as proposed. Please contact the undersigned at <u>kevin.m.sedlak.ctr@mail.mil</u> or (614) 336-6000 ext 2053 if there are concerns or if you would like to discuss the proposed approach.

Sincerely, SEDLAK.KEVIN. Digitally signed by SEDLAK.KEVIN.MICHAEL.12 MICHAEL.12544 54440171 40171 Date: 2021.08.25 13:16:29 -04'00' Kevin Sedlak RVAAP Restoration Program Manager Army National Guard Directorate

cc: Tom Schneider, Ohio EPA, SWDO Bob Princic, Ohio EPA, DERR-NEDO Megan Oravec, Ohio EPA, DERR-NEDO Mark Leeper, ARNG Katie Tait, OHARNG, Camp James A. Garfield Steve Kvaal, USACE Louisville Angela Schmidt, USACE Louisville Chenega Tri-Services, LLC Patrick Ryan, Leidos