FINAL FACILITY-WIDE GROUNDWATER MONITORING PROGRAM RVAAP-66 FACILITY-WIDE GROUNDWATER REPORT ON THE AUGUST 2013 SAMPLING EVENT

RAVENNA ARMY AMMUNITION PLANT RAVENNA, OHIO

March 5, 2014

GSA Contract Number GS-10F-0293K Delivery Order W912QR-11-F-0266

Prepared for

U.S. Army Corps of Engineers 600 Martin Luther King Jr. Place Louisville, Kentucky 40202

Prepared by

Environmental Quality Management, Inc. 1800 Carillon Boulevard Cincinnati, Ohio 45240

REPORT DOCUMENTATION PAGE

Form Approved OMB No. 0704-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing the burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.

penalty for failing to comply with a collection of in PLEASE DO NOT RETURN YOUR FOI	formation if it does not display a currently val	lid OMB control numb	oer.	
1. REPORT DATE (DD-MM-YYYY)	2. REPORT TYPE			3. DATES COVERED (From - To)
4. TITLE AND SUBTITLE	<u> </u>		5a. CON	ITRACT NUMBER
			5b. GR/	NT NUMBER
			5c. PRO	GRAM ELEMENT NUMBER
6. AUTHOR(S)			5d. PRO	JECT NUMBER
			5e. TAS	K NUMBER
			5f. WOF	RK UNIT NUMBER
7. PERFORMING ORGANIZATION NA	AME(S) AND ADDRESS(ES)			8. PERFORMING ORGANIZATION REPORT NUMBER
9. SPONSORING/MONITORING AGEI	NCY NAME(S) AND ADDRESS(ES)			10. SPONSOR/MONITOR'S ACRONYM(S)
				11. SPONSOR/MONITOR'S REPORT NUMBER(S)
12. DISTRIBUTION/AVAILABILITY ST	ATEMENT			
13. SUPPLEMENTARY NOTES				
14. ABSTRACT				
15. SUBJECT TERMS				
16. SECURITY CLASSIFICATION OF:	17. LIMITATION OF ABSTRACT	18. NUMBER 1	I9a. NAN	//E OF RESPONSIBLE PERSON
a. REPORT b. ABSTRACT c. TH	IIS PAGE ABSTRACT	PAGES	19b. TEL	EPHONE NUMBER (Include area code)

PLACEHOLDER FOR FINAL APPROVAL LETTER

CONTRACTOR'S STATEMENT OF INDEPENDENT TECHNICAL REVIEW

Environmental Quality Management, Inc. (EQM) has completed the Final Facility-Wide Groundwater Monitoring Program Report on the August 2013 Sampling Event. Notice is hereby given that an independent technical review has been conducted that is appropriate to the level of risk and complexity inherent in this project. During the independent technical review, compliance with established policy principles and procedures, utilizing justified and valid assumptions, was verified. This included review of data quality objectives; technical assumptions, methods, procedures, and materials used; the appropriateness of data used and level of data obtained; and reasonableness of the results, including whether the product meets the customer's needs consistent with law and existing United States Corps of Engineers policy.

Jackie Doan, CQM, CQA, CHMM, CEAC

Director of Quality

John M. Miller, CHMM

Senior Project Manager

FINAL FACILITY-WIDE GROUNDWATER MONITORING PROGRAM RVAAP-66 FACILITY-WIDE GROUNDWATER REPORT ON THE AUGUST 2013 SAMPLING EVENT

RAVENNA ARMY AMMUNITION PLANT RAVENNA, OHIO

March 5, 2014

GSA Contract Number GS-10F-0293K Delivery Order W912QR-11-F-0266

Prepared for

U.S. Army Corps of Engineers 600 Martin Luther King Jr. Place Louisville, Kentucky 40202

Prepared by

Environmental Quality Management, Inc. 1800 Carillon Boulevard Cincinnati, Ohio 45240

Document Distribution for the Final

FWGWMP August 2013 Sampling Event Report Ravenna Army Ammunition Plant

Name/Organization	Number of <u>Printed Copies</u>	Number of <u>Electronic Copies</u>
ARNG Cleanup Program, Brett Merkel	0	1
ARNG Restoration Project Manager, Kevin Sedlak	1	1
OHARNG - CRJMTC-ENV Env. Scientist, Katie Tait	0	1
Ohio EPA - NEDO, Project Coordinator, Kevin Palomb	oo 2	2
RVAAP Facility Archivist, Gail Harris	2	2
USACE Technical Manager, Mark Nichter	2	3
EQM Project Manager, John Miller	1	1

ARNG – Army National Guard

OHARNG – CRJMTC-ENV – Ohio Army National Guard Camp Ravenna Joint Military Training Center – Environmental

Ohio EPA - NEDO - Ohio Environmental Protection Agency - Northeast District Office

RVAAP – Ravenna Army Ammunition Plant

USACE – U.S. Army Corps of Engineers

EQM – Environmental Quality Management, Inc.

TABLE OF CONTENTS

1-1 1-2		VAAP General Location MapVAAP Facility Map	
		LIST OF FIGURES	
5	Refere	rences	81
4	Sumn	nary of Results	76
	3.3	Data Verification/Validation	
		3.2.7 Perchlorates	
		3.2.6 Hexavalent Chromium	
		3.2.5 Pesticides and Polychlorinated Biphenyls (PCBs)	
		3.2.4 Semivolatile Organic Compounds (SVOCs)	
		3.2.3 Volatile Organic Compounds (VOCs)	
		3.2.1 Explosives and Propellants	
	3.2	Summary of Analytical Results	
	3.1	Groundwater Elevations	
3		lts	
	2.5	Investigation-Derived Waste	11
	2.4	Data Verification/Validation	
	2.3	Laboratory Analysis	
	2.2	Groundwater Sampling	
_	2.1	Groundwater Level Monitoring	
2	Projec	ct Activities	7
	1.4	Report Presentation	
	1.3	Scope of Work for the August 2013 Sampling Event	
		1.2.2 Current Monitoring	
	1.4	1.2.1 Historical Monitoring	
	1.1 1.2	Facility Description	
1		duction	
Exe	cutive	Summary	vi
		ea of Concern Acronyms	
		neral Acronyms	
Tab	le of C	Contents	i
Sect	tion		<u>Page</u>

TABLE OF CONTENTS (continued)

Section	<u>1</u>	<u>Page</u>
	LIST OF TABLES	
2-1	Analytical Suite of Chemicals	10
2-2	QA Table for August 2013 Sampling Event	
3-1	August 2013 FWGWMP Monitoring Well Measurements	15
3-2	FWGWMP August 2013 Explosive and Propellant Analytical Results	
3-3	FWGWMP August 2013 Inorganic Analytical Results	34
3-4	FWGWMP August 2013 VOC Analytical Results	42
3-5	FWGWMP August 2013 SVOC Analytical Results	47
3-6	FWGWMP August 2013 Pesticides and PCBs Analytical Results	59
3-7	FWGWMP August 2013 Hexavalent Chromium Analytical Results	66
3-8	FWGWMP August 2013 Perchlorate Analytical Results	67
3-9	Percent of Acceptable Data	
4-1	Inorganic Elements Detected at Levels Exceeding the MCLs or RSLs	78
	APPENDICES	
A	Current Monitoring Well Schedule	
В	Water-Level Measurements/Field Log Book/Calibration Records/Sample and	nd Purge
	Records/Daily Quality Control Reports	Ü
C	Data Verification Reports/Laboratory Data Sheets	
	Sample Delivery Group 240-28110	
	Sample Delivery Group: 240-28145	
	Sample Delivery Group: 240-28186	
	Sample Delivery Group R1306055	
D	Investigation-Derived Waste Characterization and Disposal Plan	
E	Reporting Limits that Currently Do Not Meet the RVAAP QAPP Project A	ction
	Requirements, MCLs, and/or RSLs	
F	Correspondence and Comments/Responses	
	PLATES	
Plate 1	Monitoring Wells at RVAAP	
Plate 2	e	
Plate 3	1 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	
Plate 4	` ` ` ` '	
Plate 5		

LIST OF GENERAL ACRONYMS

ADR Automatic Data Review amsl above mean sea level AOC Area of Concern ARNG Army National Guard

° C degree Celsius

CCV continuing calibration verification

CRJMTC Camp Ravenna Joint Military Training Center

CERCLA Comprehensive Environmental Response, Compensation, and Liability Act

CLP Contract Laboratory Program
DDE dichlorodiphenyldichloroethylene
DFFOs Director's Final Findings and Orders

DoD Department of Defense

EQM Environmental Quality Management, Inc.

EPA Environmental Protection Agency

ft feet

FWGWMP Facility-Wide Groundwater Monitoring Program
FWGWMPP Facility-Wide Groundwater Monitoring Program Plan

FWSAP Facility-Wide Sampling and Analysis Plan

GC Gas chromatograph

GOCO Government-Owned, Contractor-Operated GSA Government Services Administration

GW groundwater HNO₃ nitric acid

HMX Octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine HPLC high-performance liquid chromatography

H₂SO₄ sulfuric acid

IDW Investigation-Derived Waste IRP Installation Restoration Program

LCS laboratory control sample

LS Louisville District Quality Systems Manual Supplement

MCL Maximum Contaminant Level

 $\begin{array}{ll} MDL & \text{method detection limit} \\ mg/L & \text{milligram per liter} \\ \mu g/L & \text{microgram per liter} \end{array}$

MMRP Military Munitions Response Program

MRL method reporting limit MS mass spectrometer

MS/MSD matrix spike/matrix spike duplicate

mw monitoring well
NaOH sodium hydroxide
N/A not analyzed
NM not measured
NS no standard

NTU nephelometric turbidity unit

LIST OF GENERAL ACRONYMS

(continued)

OHARNG Ohio Army National Guard

% percent

PBA Performance Based Acquisition

pCi/L picocuries per liter

PCB polychlorinated biphenyl PETN pentaerythritol tetranitrate

QA quality assurance

QAPP Quality Assurance Project Plan

QC quality control

QSM Quality Services Manual

RCRA Resource Conservation and Recovery Act

RBC Risk-Based Cleanup

RDX hexahydro-1,3,5-trinitro-1,3,5-triazine

RI Remedial Investigation

RL reporting limit

RSL Regional Screening Level

RVAAP Ravenna Army Ammunition Plant

SDG sample delivery group
SRC Site-Related Contaminant
SVOC semivolatile organic compound

s.u. standard units
TAL target analyte list
TOC top of casing
U.S. United States

USACE U.S. Army Corps of Engineers

USEPA United States Environmental Protection Agency

USP&FO United States Property and Fiscal Officer

UV ultraviolet

VOC volatile organic compound

LIST OF AREA OF CONCERN ACRONYMS

ASY Atlas Scrap Yard
B12 Building 1200
BKG Background
CBL C-Block

CBP Central Burn Pits
CP Cobbs Pond

DA2 Demolition Area #2
EBG Erie Burning Grounds
FBQ Fuze and Booster Quarry
FWG Facility-Wide Groundwater
LNW Landfill North of Winklepeck

LL Load Line

MBS Mustard Burial Site

NACA National Advisory Committee for Aeronautics

NTA NACA Test Area

RQL Ramsdell Quarry Landfill

SCF Sharon Conglomerate Formation WBG Winklepeck Burning Grounds

EXECUTIVE SUMMARY

Past Department of Defense (DoD) activities at the Ravenna Army Ammunition Plant (RVAAP) in Ravenna, Ohio, date to 1940 and include the manufacturing, loading, handling, and storage of military explosives and ammunition. Residual contamination from these early activities at RVAAP has been identified in groundwater beneath the facility. Currently, the approximately 21,683-acre facility is primarily used for military training.

The United States (U.S.) Army Corps of Engineers (USACE) is performing Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) closure at the former RVAAP under the Installation Restoration Program (IRP) and the Military Munitions Response Program (MMRP). The overall goal is to remediate the RVAAP installation as all of the property has been transferred to the Army National Guard (ARNG) and is being used by the Ohio Army National Guard (OHARNG) as a military training site. One of the activities conducted under the IRP includes monitoring of an extensive network (now 281 wells) of groundwater monitoring wells at the RVAAP facility. To date, all 281 Facility-Wide Groundwater Monitoring Program (FWGWMP) wells at the facility have been sampled and analyzed a minimum of four quarters.

In 2004, the U.S. Army and the Ohio Environmental Protection Agency (EPA) finalized the FWGWMP Plan, which details the requirements of the program for the 243 existing wells. The FWGWMP was initiated in 2005 with three consecutive quarters of FWGWMP well sampling. In addition, five Resource Conservation and Recovery Act (RCRA) wells located at Ramsdell Quarry Landfill (RQLmw-007, RQLmw-008, and RQLmw-009) and Demolition Area 2 (DETmw-003 and DETmw-004) are sampled on a semiannual basis.

The current wells to be sampled and the analytes to be analyzed from each well were approved in the FWGWMPP Addendum dated August 1, 2013. The current Monitoring Well Schedule is presented in Appendix A. The list in Appendix A presents the list of new wells and the existing semiannual wells to be sampled.

The following activities were conducted by Environmental Quality Management, Inc. (EQM) during the reporting period:

- Performed groundwater sampling at the 53 wells identified in Appendix A.
- Gauged water levels/total depth and performed well inspections for 280 of the 281 groundwater monitoring wells at the facility (well WBGmw-012 could not be located due to heavy vegetation this well will be measured and inspected during the January 2014 sampling event).
- Performed laboratory analysis of the collected samples.
- Verified, validated, and reduced the laboratory analytical data produced for the event (exclusive of the quality assurance samples analyzed by RTI Laboratories).
- Prepared the Investigation-Derived Waste (IDW) Characterization and Disposal Plan for the IDW collected during monitoring activities.

During the August 2013 sampling event, several analytes were detected at levels at/or above their respective Maximum Contaminant Levels (MCLs) and/or United States Environmental Protection Agency (USEPA) Regional Screening Levels (RSLs). The summary of exceedances is as follows.

Explosive and Propellant Compounds

As shown in Table 3-2, the following explosives or propellants were detected at levels above their corresponding MCLs or RSLs during the August 2013 sampling event:

- 2,4-dinitrotoluene in LL1mw-083 (2.9 micrograms per liter [μ g/L] J), LL1mw-084 (1.4 μ g/L J), LL2mw-059 (0.21 μ g/L), LL2mw-267 (0.30 μ g/L) and FBQmw-174 (0.45 μ g/L). There is no MCL for 2,4-dinitrotoluene. The RSL is 0.2 μ g/L.
- 2,4,6-Trinitrotoluene in LL1mw-083 (4.5 μg/L J), LL1mw-084 (12 μg/L J), LL3mw-238 (79 μg/L), LL3mw-241 (3.3 μg/L) and FBQmw-174 (18 μg/L). There is no MCL for 2,4,6-trinitrotoluene. The RSL is 2.2 μg/L.
- 2,6-Dinitrotoluene in LL1mw-083 (1.5 μg/L J), LL1mw-084 (0.95 μg/L J), LL3mw-238 (0.52 μg/L J), LL3mw-241 (0.083 μg/L J), and RQLmw-008 (0.14 μg/L J). There is no MCL for 2,6-dinitrotoluene. The RSL is 0.042 μg/L.
- 4-Amino-2,6-Dinitrotoluene in LL1mw-084 (36 μg/L), and LL3mw-238 (37 μg/L). There is no MCL for 4-amino-2,6-dinitrotoluene. The RSL is 30 μg/L.
- Nitrate-Nitrite in LL12mw-185 (130 μg/L), LL12mw-187 (1200 milligrams per liter [mg/L] J). The MCL for nitrate-nitrite is 1 mg/L. The RSL is 1.6 mg/L.
- Nitrobenzene in LL3mw-238 (0.17 $\mu g/L$ J). There is no MCL for nitrobenzene. The RSL is 0.12 $\mu g/L$
- RDX in DETmw-004 (2.3 μg/L), LL1mw-084 (2.1 μg/L J), LL2mw-267 (1.5 μg/L), LL3mw-238 (7.2 μg/L), LL3mw-241 (0.98 μg/L J), and WBGmw-006 (15 μg/L), WBGmw-009 (3.5 μg/L). There is no MCL for RDX. The RSL is 0.61 μg/L.

Inorganic Elements

Several inorganic compounds were detected at levels exceeding the MCLs and/or RSLs. These included aluminum, arsenic, cobalt, cyanide, iron, manganese, and thallium in wells from all areas sampled. Table 4-1 in Section 4 presents a summary of all inorganic compounds and the associated wells that had detections exceeding MCLs and/or the RSLs.

Volatile Organic Compounds

As shown in Table 3-4, the only volatile organic compounds (VOCs) detected at levels exceeding their corresponding MCLs or RSLs during the August 2013 sampling event were:

- Carbon tetrachloride in LL10mw-003 (4.2 μ g/L). The MCL for carbon tetrachloride is 5.0 μ g/L. The RSL is 0.39 μ g/L.
- Chloroform in LL10mw-003 (0.56 μ g/L). There is no MCL for chloroform. The RSL is 0.19 μ g/L.

Semivolatile Organic Compounds

As shown in Table 3-5, the following semivolatile organic compounds (SVOCs) were detected at levels exceeding either their corresponding MCLs or RSLs:

- Benzo(a)anthracene in DETmw-003 (0.15 μg/L). There is no MCL for benzo (a)anthracene. The RSL is 0.029 μg/L.
- Benzo(a)pyrene in DETmw-003 (0.12 μ g/L). The MCL for benzo(a)pyrene is 0.2 μ g/L. The RSL is 0.0029 μ g/L.
- Benzo(b)fluoranthene in DETmw-003 (0.12 μ g/L). There is no MCL for Benzo(b)fluoranthene. The RSL is 0.029 μ g/L.

Pesticides and Polychlorinated Biphenyls (PCBs)

As shown in Table 3-6, the following pesticide was detected at levels exceeding either their MCLs or RSLs.

beta-BHC in LL1mw-084 (0.069 μg/L, LL3mw-244 (0.025 μg/L J), and LL12mw-247 (0.18 μg/L J). There is no MCL for beta-BHC. The RSL is 0.022 μg/L.

Hexavalent Chromium

The analytical results for hexavalent chromium are summarized in Table 3-7. Well LL3mw-244 had a detected concentration for hexavalent chromium of 0.361 µg/L which is elevated above the RSL of 0.031 µg/L (there is no MCL for hexavalent chromium).

Perchlorates

During the August 2013 sampling event perchlorates were analyzed for at nine wells. Table 3-8 summarizes the results. As shown in Table 3-8 there were no detections elevated above the RSL (11 μ g/L) or the MCL [EPA established an Interim Drinking Water Health Advisory of 15 μ g/L in water (EPA 2009b)].

SECTION 1 INTRODUCTION

1.1 Facility Description

Past Department of Defense (DoD) activities at the Ravenna Army Ammunition Plant (RVAAP) date to 1940 and include the manufacturing, loading, handling, and storage of military explosives and ammunition. Until 1999, the RVAAP was identified as a 21,419-acre installation. The property boundary was resurveyed by the Ohio Army National Guard (OHARNG) over a 2-year period from 2002 and 2003, and the actual total acreage of the property was found to be 21,683.289 acres. All of the former 21,683 acre RVAAP has been transferred to the United States Property and Fiscal Officer (USP&FO) for Ohio for use by the OHARNG. Administrative accountability for all property has been transferred to the Army National Guard (ARNG) with licensure to OHARNG for use as a military training site. The current RVAAP consists of 1,280 acres in several distinct parcels scattered throughout the confines of the OHARNG Camp Ravenna Joint Military Training Center (CRJMTC). The RVAAP and CRJMTC are collocated on contiguous parcels of property and the CRJMTC perimeter fence completely encloses the remaining parcels of the RVAAP. The CRJMTC is in northeastern Ohio within Portage and Trumbull Counties, approximately 4.8 kilometers (3 miles) east-northeast of the city of Ravenna and approximately 1.6 kilometers (1 mile) northwest of the city of Newton Falls (Figure 1-1). The RVAAP portions of the property are solely located within Portage County. The CRJMTC (inclusive of the RVAAP) is a parcel of property approximately 17.7 kilometers (11 miles) long and 5.6 kilometers (3.5 miles) wide bounded by State Route 5, the Michael J. Kirwan Reservoir, and the CSX System Railroad on the south; Garret, McCormick, and Berry roads on the west; the Norfolk Southern Railroad on the north; and State Route 534 on the east. Figures 1-1 and 1-2 present the RVAAP Site Location Map and RVAAP Facility Map. The CRJMTC is surrounded by several communities: Windham on the north; Garrettsville 9.6 kilometers (6 miles) to the northwest; Newton Falls 1.6 kilometers (1 mile) to the southeast; Charlestown to the southwest; and Wayland 4.8 kilometers (3 miles) to the south. When the RVAAP was operational CRJMTC did not exist and the entire 21,683-acre parcel was a government-owned, contractor-operated (GOCO) industrial facility. The RVAAP Installation Restoration Program (IRP) encompasses investigation and cleanup of past activities over the entire 21,683 acres of the former RVAAP, and, therefore, references to the RVAAP in this document are considered to be inclusive of the historical extent of the RVAAP, which is inclusive of the combined acreages of the current CRJMTC and RVAAP, unless otherwise specifically stated.

1.2 Project Description

1.2.1 Historical Monitoring

In 2004, the United States (U.S.) Army and the Ohio Environmental Protection Agency (EPA) finalized the Facility-Wide Groundwater Monitoring Program (FWGWMP) Plan, which details the requirements of the program. The FWGWMP was initiated in 2005 with three consecutive quarters of FWGWMP well sampling. Quarterly sampling has continued through the current

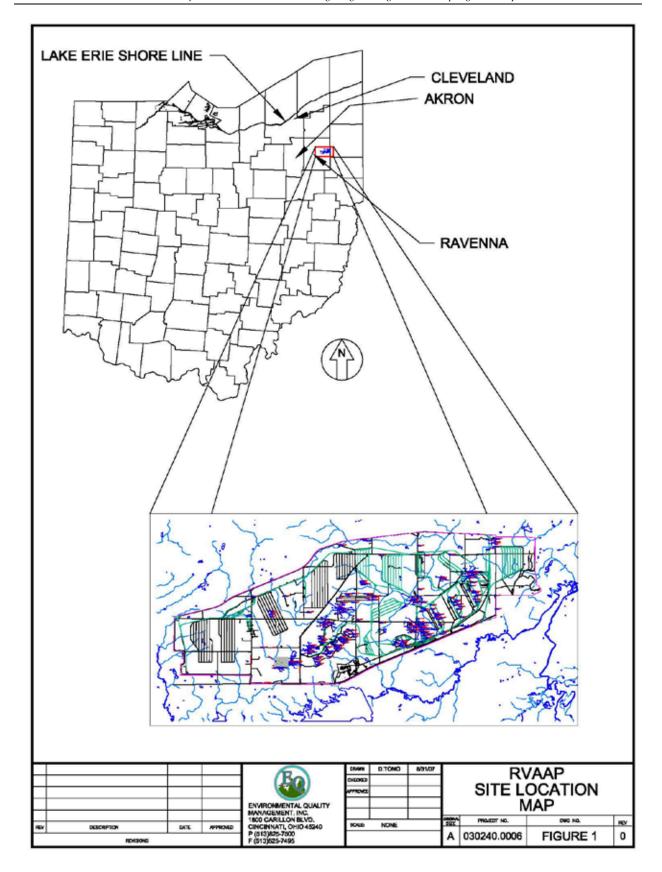


Figure 1-1. RVAAP General Location Map

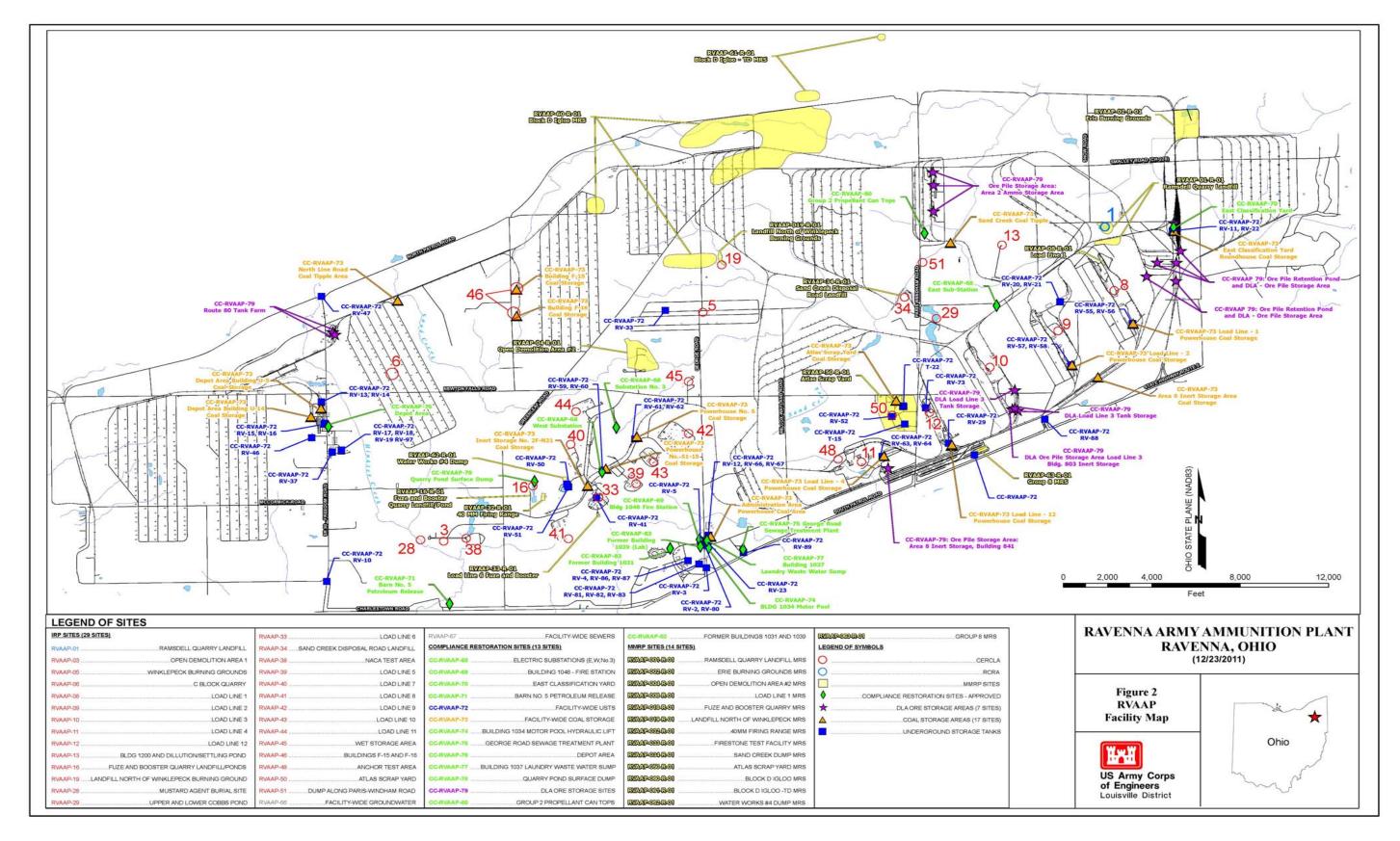


Figure 1-2. RVAAP Facility Map

monitoring event. The initial FWGWMP wells identified for monitoring were sampled once every quarter, with the exception of the five Resource Conservation and Recovery Act (RCRA) wells that include three Ramsdell Quarry Landfill (RQL) wells (RQLmw-007, -008, and -009) and two Demolition Area 2 (DA2) wells (DETmw-003 and DETmw-004). The RQL and DA2 wells are sampled semiannually.

As detailed in the original FWGWMP Plan (FWGWMPP; September 2004), the initial monitoring program consisted of the sampling of 36 wells specified in Table 4-1 of the FWGWMPP. Fourteen of these wells are "Background Wells," and the remaining wells are situated at various Areas of Concern (AOCs) at RVAAP. The first sampling event for this project was conducted in April 2005. The results of the previous FWGWMP sampling events are presented in Section 5 of this report. The final assessment monitoring event for the initial well sampling and analysis was completed in October 2007.

On October 22, 2007, the U.S. Army Corps of Engineers (USACE) submitted to the Ohio EPA the *Preliminary Draft Proposal to Update the Facility-Wide Ground Water Monitoring Program* (USACE, October 2007) at the Ravenna Army Ammunition Plant. This proposal presented recommendations for modifications to the FWGWMP, the Director's Final Findings and Orders (DFFOs), and the Conceptual Plan in Appendix E of the Findings and Orders as presented below.

Section 3.1.2.2 of the original FWGWMPP (September 2004) establishes a protocol for adding and removing wells from the FWGWMP: "Future wells installed as part of individual AOC investigations conducted under the ongoing Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) process at RVAAP will be evaluated for incorporation into the FWGWMP upon completion of at least four quarterly groundwater sampling events to be conducted as part of the Remedial Investigation (RI) phase at each AOC. The frequency of the initial sampling events may be other than quarterly if agreed upon by the Army and Ohio EPA." Based on this protocol the USACE notified the Ohio EPA on December 12, 2007 that the wells to be sampled would be changed effective with the January 2008 monitoring event. The Ohio EPA provided concurrence with this change in an email dated January 8, 2008. The Ohio EPA was notified of an additional change on February 27, 2008, increasing the number of wells to be sampled for the April 2008 event. The Ohio EPA was notified on March 21, 2008, that the number of FWGWMP wells to be sampled in April 2008 (and the July 2008, October 2008, and January 2009 events) would be increased to 132 plus the five RCRA wells sampled semiannually (in order to complete four quarters of sampling for each of the 132 wells).

Beginning with the April 2009 sampling event the remaining wells on the list contained in the *Draft Proposal to Update the Facility-Wide Ground Water Monitoring Program* (USACE, October 2007) were sampled.

A revised list of wells to be sampled during 2010-2011 was submitted to the Ohio EPA in early 2010. The list of wells to be sampled, as well as scheduling issues, were discussed with the Ohio EPA in a telephone conference and verified in a subsequent email on May 26, 2010.

Revisions to the list of wells to be sampled and the analytes to be analyzed from each well were discussed with the Ohio EPA in email correspondences in July 2011. For the groundwater monitoring event it was agreed to monitor the wells and analytes presented in Table 4-2 of the *Draft 2010 Addendum to the Facility-Wide Groundwater Monitoring Program Plan RVAAP-66 Facility-Wide Groundwater* (USACE, 2010).

1.2.2 Current Monitoring

One of the activities conducted under the IRP includes monitoring of an extensive network (now 281 wells) of groundwater monitoring wells at the RVAAP facility. To date, 281 current FWGWMP wells at the facility have been sampled and analyzed a minimum of four quarters.

Details of the current program design and requirements are contained in the *Final Facility-Wide Groundwater Monitoring Program Plan RVAAP-66 Facility-Wide Groundwater Semiannual Monitoring Addendum* dated August 1, 2013. Additionally, this document supplements the *Final Facility-Wide Groundwater Monitoring Program Plan RVAAP-66 Facility-Wide Groundwater Addendum* (FWGWMPP Addendum; EQM, January 2012), which includes three parts that pertain to the proposed work: Part I- Environmental Investigation Services Addendum, Part II-Quality Assurance Project Plan (QAPP) Addendum, and Part III- Site Safety and Health Plan (SSHP) Addendum. Additional details pertaining to performance of field and laboratory activities are contained in the *Final Facility-Wide Sampling and Analysis Plan for Environmental Investigations at the Ravenna Army Ammunition Plant, Ravenna, Ohio* (FWSAP; SAIC, 2011).

The current wells to be sampled and the analytes to be analyzed from each well were approved in the FWGWMPP Addendum dated August 1, 2013. The current Monitoring Well Schedule is presented in Appendix A. This list presents the list of new wells and the existing semiannual wells to be sampled.

1.3 Scope of Work for the August 2013 Sampling Event

The USACE, under a Government Services Administration (GSA) Performance Based Acquisition (PBA) contract, retained Environmental Quality Management, Inc. (EQM) (Contract No. GS-10F-0293K – Delivery Order W912QR-11-F-0266) to obtain a signed Record of Decision (ROD) for the facility-wide groundwater (RVAAP-66) at the former RVAAP. One objective of this project is to continue monitoring under the RVAAP Facility-Wide Groundwater Monitoring Program. The following tasks were performed during the August 2013 sampling event in accordance with specifications contained in the Semiannual Addendum, FWGWMPP Addendum, the FWSAP, and the Scope of Work written by the USACE:

- Performed groundwater sampling at the 53 wells identified in Appendix A.
- Gauged water levels/total depth and performed well inspections for 280 of the 281 groundwater monitoring wells at the facility (well WBGmw-012 could not be located due to heavy vegetation this well will be measured and inspected during the January 2014 sampling event).

- Performed laboratory analysis of the collected samples.
- Verified, validated, and reduced the laboratory analytical data produced for the event (exclusive of the quality assurance samples analyzed by RTI Laboratories).
- Prepared the Investigation-Derived Waste (IDW) Characterization and Disposal Plan for the IDW collected during monitoring activities.
- Prepared and submitted the monitoring report for the sampling event.

1.4 Report Presentation

This report presents the results of the August 2013 sampling event. The report is structured in the following way:

- Section 1.0 Introduction.
- Section 2.0 Description of Project Activities. This section describes project-specific details not contained in the FWSAP, FWGWMPP Addendum, and Semiannual Addendum. Additionally, details are provided on how the tasks described above were performed.
- Section 3.0 Results of Investigation. The results of the sampling event are summarized, including groundwater elevation measurements, analytical results, and data verification/validation information.
- Section 4.0 Summary of Results.
- Section 5.0 References.
- Appendix A Current Monitoring Well Schedule
- Appendix B Water-Level Measurements/Field Log Book/Calibration Records/Sample and Purge Records/Daily Quality Control Reports
- Appendix C Data Verification Reports/Laboratory Data Sheets
- Appendix D Investigation-Derived Waste Characterization and Disposal Plan
- Appendix E Reporting Limits that Currently Do Not Meet the RVAAP QAPP Project Action Requirements, MCLs, and/or USEPA RSLs
- Appendix F Correspondence and Comments/Responses
- Plates

SECTION 2 PROJECT ACTIVITIES

2.1 Groundwater Level Monitoring

Depth to water from the top of the inner casing was measured in 280 of the 281 FWGWMP and wells during August 13-21, 2013 facility (well WBGmw-012 could not be located due to heavy vegetation – this well will be measured and inspected during the January 2014 sampling event). Water-level measurements were taken with a Herron Dipper-T or Enviro Inspector electronic water-level indicator. The depth to the bottom of the well from the top of the inner casing was also measured with the electronic water-level indicator. The annual inspection of all the wells was also conducted at that time (the results of the inspections will be discussed in the 2013 Annual Report).

Results of the groundwater level monitoring for all the RVAAP wells sampled during this monitoring event are presented in Section 3.1 and Appendix B. The monitoring well location map, identified as Plate 1, is included with this report. Potentiometric maps created from groundwater measurements from the RVAAP monitoring wells in August 2013 are presented on Plates 2, 3, 4, and 5. The potentiometric maps were generated from the August 2013 water-level measurements taken from 274 new and existing facility wells and the six deep Sharon Conglomerate wells. These maps are updated on a yearly basis. The water levels from the individual events are not included in these plates. Additionally, the groundwater elevations from the Sharon Conglomerate wells were evaluated and determined not to be representative of either the Homewood aquifer or the upper portion of the Sharon aquifer. These wells were installed with their screened intervals positioned at the basal portion of the Sharon Conglomerate. Therefore, the groundwater elevations collected from the basal Sharon Conglomerate wells were used to determine the potentiometric contours for these deep wells as presented in Plate 5.

To determine if groundwater elevations of basal Sharon Conglomerate wells (as determined in August 2013) are representative of the Sharon or Homewood Aquifers, the groundwater elevation data were compared. The groundwater elevation of water in the Homewood Aquifer (well LL10mw-003) is more than 78 feet higher than the nearest basal Sharon Conglomerate well (well SCFmw-001). This demonstrates that the Homewood aquifer and Sharon Conglomerate are not representative of the same hydraulic unit. If they were in the same hydraulic unit, the water levels would be expected to be much the same.

The groundwater elevations of the five wells from the upper portion of the Sharon Aquifer are 1.19 to 18.51 feet higher than the five basal Sharon Conglomerate groundwater elevations at the same locations. The average elevation difference is nearly 9 feet. Again, this groundwater elevation difference indicates that the basal Sharon Conglomerate and the upper portion of the Sharon are separate hydraulic units.

2.2 Groundwater Sampling

All identified monitoring wells were sampled from August 19-21, 2013. Wells were sampled using micropurge techniques or a bailer in accordance with the specifications contained in the approved addendum. The wells were micropurged until certain groundwater parameters (i.e., temperature, specific conductivity, pH, and dissolved oxygen) had stabilized with the exception of the one well noted below, which was sampled with a bailer. The groundwater parameters were measured using a Horiba U-22/U-52 with flow cell or equivalent. Groundwater parameter measurements obtained during micropurging are presented in Appendix B. Note the following issues encountered during the January 2103 sampling event:

A groundwater pH value of more than 9 standard units (s.u.) has been noted at LL1mw-086. Based on a comparison of the 2012 pH values, this well was redeveloped prior to the October 2012 event. As a result, the pH readings dropped from 10.06 to 7.31 s.u. The well's pH reading has increased since redevelopment to sampling [6.91 s.u. (October 2012), 7.59 s.u. (January 2013), 9.40 s.u. (August 2013)]. EQM will monitor the pH at this well in the future.

Additionally, during the January 2013 event, a groundwater pH value of greater than 9 s.u. was noted at FWGmw-002. During the August 2013 event the pH was 8.95 s.u. EQM has reviewed the historical purge records for this well. The higher pH in the well could be indicative of groundwater contamination; however, the historical trend of 7.62 to 8.95 s.u. indicates that this reading is potentially an anomaly. EQM will monitor the pH at this well in the future, if it is sampled as part of the FWGWMP network.

During the August 2013 event, a groundwater pH value of less than 4 s.u. was noted at RQLmw-011 and LL1mw-083. EQM has reviewed the historical purge records for these wells. The low pH in the wells could be indicative of groundwater contamination. The historical trend of LL1mw-083 (4.51 to 3.87 s.u.) indicates that this reading is not an anomaly or equipment error, the low pH levels are consistent with historical levels. This well is part of the current semiannual sampling set. The pH trends in this well will be evaluated as part of the ongoing RI. Historical pH levels in RQLmw-011 (3.3 to 6 s.u.) indicate that this reading appears to be an anomaly. This well is not part of the current semiannual well sampling set. EQM will monitor the pH at this well in the future, if it is sampled as part of the FWGWMP network.

High turbidity values [i.e., >700 nephelometric turbidity units (NTU)] were noted at two of the wells (FWGmw-011 (999 NTU), and LL1mw-087 (742 NTU) in August 2013. Neither of these wells exhibited significant elevated sediment levels (>0.5 ft.) during this sampling event.

It should be noted that high turbidity readings are not necessarily an indicator of nonrepresentative (i.e., formation) groundwater as stated in the Ohio EPA Technical Guidance Manual for groundwater: "Turbidity, which is the visible presence of suspended mineral and organic particles in a ground water sample, also is not an indicator of ground water chemical stabilization and does not distinguish between stagnant casing water and formation water." EQM continued purging after the normal stabilization parameters had stabilized (turbidity is not a stabilization parameter) in an attempt to reach turbidity values that were within 10 percent (%)

of each other. Additionally, the groundwater samples for metals analysis were filtered as part of the FWGWMP sampling, thereby reducing the effect of suspended particles in the groundwater.

Groundwater samples were collected using bladder pump micropurge equipment with the exception of well DETmw-004. This well historically exhibits poor yield. Therefore, EQM used the bailer method for purging and sampling per the Semiannual Addendum. Equipment and sampling details are contained in Appendix B. Groundwater samples were collected in laboratory-supplied containers and stored in iced coolers for shipment in accordance with the specifications presented in the FWSAP, Semiannual Addendum, and FWGWMPP. During the August 2013 sampling, all coolers were received by the laboratory at temperatures within the prescribed tolerance limits.

Filtered metals samples were collected through the bladder pump using an inline 0.45-micron filter emptying directly into pre-preserved sample bottles containing nitric acid. Perchlorate samples were also filtered. All sampling procedures for the filtered metals were conducted in accordance with the FWSAP.

2.3 Laboratory Analysis

Laboratory analyses on all primary samples and associated quality control (QC) samples were performed by Test America Laboratories, with the exception of hexavalent chromium, which was generated by ALS. Table 2-1 presents the analytical methods used to analyze the groundwater samples.

The August 2013 groundwater samples were analyzed for the following parameters depending upon the well as presented in Appendix A: explosives, propellants (nitrocellulose and nitroguanidine), cyanide, volatile organic compounds (VOCs), semivolatile organic compounds (SVOCs), target analyte list (TAL) metals (filtered), pesticides, and polychlorinated biphenyls (PCBs). Depending upon the well location the following were also collected: Nitrate/Nitrites were collected at Load Line 12 wells. Three locations (LL3mw-244, LL12mw-247, and SCFmw-002) were analyzed for hexavalent chromium. Perchlorate (filtered) samples were also collected from several wells.

Quality control samples, including duplicates and matrix spike/matrix spike duplicates (MS/MSD) were collected from the following wells:

DA2mw-115 – Duplicate Sample WBGmw-018 – Duplicate Sample RQLmw-009 – Duplicate Sample FWGmw-002 – Duplicate Sample

LL12mw-247 – Duplicate Sample FWGmw-009 – MS/MSD SCFmw-002 – Duplicate Sample (no hexavalent chromium analysis)

SCFmw-002 0 MS/MSD (hexavalent chromium analysis only)

SCFmw-002 U MS/MSD (hexavalent chromium analysis onl

RQLmw-008 – MS/MSD (no cyanide or PCBs) LL12mw-245 – MS/MSD (no VOCs or pesticides) **Table 2-1.** Analytical Suite of Chemicals

Constituents	Method ¹	Preservation
Polychlorinated biphenyls (PCBs)	Gas Chromatograph (GC) – Semivolatile Organics (SVOCs) (8082)	Cool, 4° C ³
Pesticides	GC Semivolatile Organics (8081A)	Cool, 4° C
Base/Neutrals and Acids (SVOCs)	GC/Mass Spectrograph (MS) Semivolatile Organics (8270C)	Cool, 4° C
Volatile Organic Compounds (VOCs)	GC/MS Volatile Organics (8260B)	HCl, Cool, 4° C
Nitroguanidine (Propellant)	Organic compounds by UV/HPLC (8330 modified)	Cool, 4° C
Nitroaromatics & Nitramines (Explosives)	GC Semivolatile Organics Explosives (8330)	Cool, 4° C
Nitrocellulose as N (Propellant)	General Chemistry (WS-WC-0050)	Cool, 4° C
Nitrate/Nitrites	General Chemistry (353.2) ²	H ₂ SO ₄ , Cool, 4° C
Cyanide (Total)	General Chemistry (9012A)	NaOh to pH > 12, Cool, 4° C
Metals (Magnesium, Manganese, Barium, Nickel, Potassium, Silver, Sodium, Vanadium, Chromium, Calcium, Cobalt, Copper, Arsenic, Lead, Selenium)	Inductively Coupled Plasma (6010B)	0.45μm filter, HNO ₃ , to pH < 2. Cool, 4° C
Metals (Antimony, Iron, Beryllium, Thallium, Zinc, Cadmium, Aluminum)	Inductively Coupled Plasma Mass Spectrometry (6020)	0.45 μ m filter, HNO ₃ , to pH < 2, Cool, 4° C
Mercury	Liquid Waste Cold Vapor Technique (7470A)	0.45µm filter, HNO ₃ , to pH < 2, Cool, 4° C
Hexavalent Chromium	Method 218.6	0.45µm filter, Buffer solution, Cool, 4° C
Perchlorate	Method 6860	0.2µm filter, with prefilter, Cool, 4° C

^{1 =} USEPA SW846

All samples were picked up from the facility and delivered to the laboratory in iced coolers by a TestAmerica courier under proper chain-of-custody procedures (FWSAP). Hexavalent chromium samples were shipped for analysis to ALS Environmental in Rochester, New York. Laboratory analyses on all quality assurance (QA) samples (i.e., split samples) were performed by RTI Laboratories in Livonia, Michigan. Ten QA samples were collected from the same wells where the duplicate samples were collected. All QA samples were shipped in iced coolers via overnight delivery service under proper chain-of-custody procedures. Table 2-2 presents, in tabular form, all analyses and associated QA/QC for the August 2013 monitoring event. The Daily Quality Control Reports are presented in Appendix B.

^{2 =} EPA Methods for Chemical Analysis of Water and Waste

^{3 =} degree Celsius

Laboratory results are summarized in Section 3.2. Laboratory data sheets, including chain-of-custodies and QA/QC information, are contained in Appendix C.

2.4 Data Verification/Validation

Data from TestAmerica and ALS Environmental were verified in accordance with project specifications by EQM chemists Ms. Angye Dragotta and Mr. Eric Corbin using the Automatic Data Review (ADR) program. Data validation/verification is summarized in Section 3.3. The Data Verification/Validation Summary Reports are presented in Appendix C.

2.5 Investigation-Derived Waste

An IDW Report was prepared for the sampling and water-level measurement activities discussed in Section 3. Purge water was collected at each well location in 5-gallon buckets and transferred to 55-gallon drums located inside Building 1036. No more than 4 gallons were purged from any well. Instruments and equipment were decontaminated after purging and sampling each monitoring well. Decontamination fluids were collected in a separate 55-gallon drum stored inside Building 1036. Pending analysis of the monitoring well samples, IDW fluids were stored in the 55-gallon drums until the IDW Report was approved by the Ohio EPA. The IDW was then disposed of in accordance with the FWSAP, FWGWMPP Addendum, and Semiannual Addendum requirements. The IDW Report is presented in Appendix D.

Table 2-2. QA Table for August 2013 Sampling Event

		C	Contractor	Laboratory	Contractor Laboratory									Requested Laboratory Analysis						
Sample Locations	Primary Lab Sample ID	Date	Sample Type	Assoc. QC Dup Number	Assoc. QC Rinsate Number	Assoc. QC Trip Blank Number	MS/ MSD	QA Lab Sample ID	Assoc. QC Trip Blank Number	VOCs	SVOC183	SVOC1&2&3	SVOC4	PCBs	Explosives & Propellants	Cyanide	Nitrite/Nirate Filtered Metals	Filtered Perchlorates	Filtered Cr+6	
B12mw-013	FWGB12mw-013-0310-GW	8/20/2013	GW		EQUIPRinse2-0341	FWGTeam4Trip					/ 0/	0,	0, 1	1 1		Ĭ		+		
BKGmw-010	FWGBKGmw-010C-0311-GF	8/20/2013	GW		EQUIPRinse2-0341	FWGTeam4Trip												1		
DA2mw-114	FWGDA2mw-114-0312-GW/GF	8/20/2013	GW			FWGTeam1Trip				1			1	1 1	1	1	1			
DA2mw-115	FWGDA2mw-115-0313-GW/GF	8/20/2013		DUP1-0336 ^a	EQUIPRinse2-0341	FWGTeam2Trip		FWGDA2mw-115-0332s-GW/GF ^a	TRIPBLANK	1			1	1 1	1	1	1			
DETmw-001	FWGDETmw-001C-0314-GW/GF	8/20/2013	GW		EQUIPRinse2-0341	FWGTeam3Trip				1			1	1 1	1	1	1	1		
DETmw-002	FWGDETmw-002C-0315-GW/GF	8/20/2013	GW		EQUIPRinse2-0341	FWGTeam1Trip				1			1	1 1	1	1	1	1		
DETmw-003	FWGDETmw-003C-0343-GW/GF	8/20/2013	GW		EQUIPRinse2-0341	FWGTeam3Trip				1			1	1 1	1	1	1			
DETmw-004	FWGDETmw-004C-0344-GW/GF	8/20-21/13	GW		EQUIPRinse2-0341	FWGTeam2Trip				1			1	1 1	1	1	1			
EBGmw-131	FWGEBGmw-131-0316-GW/GF	8/19/2013	GW		EQUIPRinse1-0340	FWGTeam4Trip				1			1	1 1	1	1	1			
FBQmw-174	FWGFBQmw-174C-0345-GW/GF	8/20/2013	GW		EQUIPRinse2-0341	FWGTeam2Trip				·	1			1	1		1			
FWGmw-002	FWGFWGmw-002-0317-GF	8/19/2013	GW	DUP2-0337	EQUIPRinse1-0340			FWGFWGmw-002-0333s-GF										1		
FWGmw-004	FWGFWGmw-004-0346-GW/GF	8/19/2013	GW		EQUIPRinse1-0340					·	1			1	1	1	1			
FWGmw-006	FWGFWGmw-006-0318-GW	8/21/2013	GW		EQUIPRinse3-0342	FWGTeam2Trip				1										
FWGmw-007	FWGFWGmw-007-0347-GW/GF	8/21/2013	GW		EQUIPRinse3-0342	FWGTeam4Trip				,	1				1		1			
FWGmw-009	FWGFWGmw-009-0319-GW/GF	8/21/2013	GW		EQUIPRinse3-0342	FWGTeam4Trip	Υ			1			1	1 1	1	1	1	1		
FWGmw-011	FWGFWGmw-011-0348-GW/GF	8/20/2013	GW		EQUIPRinse2-0341	FWGTeam4Trip				•	1				1		1			
FWGmw-012	FWGFWGmw-012-0349-GW/GF	8/20/2013	GW		EQUIPRinse2-0341	FWGTeam4Trip				•	1				1		1			
FWGmw-015	FWGFWGmw-015-0350-GW/GF	8/19/2013	GW							•	1				1		1			
FWGmw-016	FWGFWGmw-016-0351-GW/GF	8/19/2013	GW		EQUIPRinse1-0340	FWGTeam1Trip				•	1				1		1			
LL10mw-003	FWGLL10mw-003C-0361-GW/GF	8/20/2013	GW		EQUIPRinse2-0341	FWGTeam4Trip				1							1			
LL12mw-185	FWGLL12mw-185C-0362-GW/GF	8/20/2013	GW		EQUIPRinse2-0341	FWGTeam3Trip											1 1			
LL12mw-187	FWGLL12mw-187C-0363-GW/GF	8/20/2013	GW		EQUIPRinse2-0341	FWGTeam1Trip				1 1	1			1	1		1 1			
LL12mw-242	FWGLL12mw-242C-0364-GW/GF	8/20/2013	GW		EQUIPRinse2-0341	FWGTeam1Trip				1 '	1			1	1		1 1			
LL12mw-245	FWGLL12mw-245C-0365-GW/GF	8/20/2013	GW		EQUIPRinse2-0341	FWGTeam3Trip	Y ^b			1 '	1			1	1		1 1			
LL12mw-247	FWGLL12mw-247-0366-GW/GF	8/20/2013	GW	DUP3-0338		FWGTeam1Trip		FWGLL12mw-247-0334s-GW/GF	TRIPBLANK	1 '	1			1	1		1 1		1	
LL1mw-064	FWGLL1mw-064C-0352-GW/GF	8/20/2013	GW		EQUIPRinse2-0341	FWGTeam4Trip					1			1	1		1			
LL1mw-065	FWGLL1mw-065C-0353-GW/GF	8/20/2013	GW		EQUIPRinse2-0341	FWGTeam3Trip					1			1	1		1			
	FWGLL1mw-083C-0354-GW/GF	8/20/2013	GW		EQUIPRinse2-0341						1			1	1		1			
LL1mw-084	FWGLL1mw-084C-0355-GW/GF	8/21/2013	GW		EQUIPRinse3-0342						1			1	1		1			
LL1mw-086	FWGLL1mw-086-0320-GW/GF	8/20/2013	GW		EQUIPRinse2-0341						1			1	1		1			
LL1mw-087	FWGLL1mw-087-0356-GW/GF	8/20/2013	GW		EQUIPRinse2-0341						1			1	1		1			
LL2mw-059	FWGLL2mw-059C-0357-GW/GF	8/20/2013	GW		EQUIPRinse2-0341					1 '	1	\perp			1		1	 '		
LL2mw-265	FWGLL2mw-265C-0321-GW/GF	8/21/2013	GW		EQUIPRinse3-0342					1 '	1	\perp			1		1	 '		
LL2mw-267	FWGLL2mw-267C-0358-GW/GF	8/21/2013	GW		EQUIPRinse3-0342					<u> </u>	1	\bot			1	$\downarrow \downarrow \downarrow$	1	 '		
LL3mw-238	FWGLL3mw-238C-0359-GW/GF	8/19/2013	GW		EQUIPRinse1-0340					<u> </u>	1	\bot		1	1	\bot	1	 '	Щ	
LL3mw-239	FWGLL3mw-239C-0322-GF	8/19/2013	GW		EQUIPRinse1-0340							\bot				$\downarrow \downarrow \downarrow$		<u> </u>	Ш	
LL3mw-241	FWGLL3mw-241C-0360-GW/GF	8/19/2013	GW		EQUIPRinse1-0340					'	1	\bot		1	1	$\downarrow \downarrow \downarrow$	1	 '	Ш	
LL3mw-244	FWGLL3mw-244-0323-GW/GF	8/20/2013	GW		EQUIPRinse2-0341					<u> </u>	1	\bot		1	1	\bot	1	 '	1	
NTAmw-119	FWGNTAmw-119-0367-GW/GF	8/21/2013	GW		EQUIPRinse3-0342					1	1	\bot			1	\bot	1	 '	Щ	
	FWGRQLmw-006C-0368-GW/GF	8/19/2013	GW		EQUIPRinse1-0340					1		\bot		1 1	1	1	1	_	Щ	
	FWGRQLmw-007C-0369-GW/GF	8/19/2013	GW		EQUIPRinse1-0340					1		\bot	1	_	1	1	1		Ш	
RQLmw-008	FWGRQLmw-008C-0370-GW/GF	8/19/2013	GW		EQUIPRinse1-0340	FWGTeam1Trip	Yc			1			1	1 1	1	1	1			

Table 2-2. QA Table for August 2013 Sampling Event

		C	Contractor	Laboratory				Government Laboratory	1			Re	eques	sted	Labo	orator	y Ana	alysis		1
Sample Locations	Primary Lab Sample ID	Date	Sample Type	Assoc. QC Dup Number	Assoc. QC Rinsate Number	Assoc. QC Trip Blank Number	MS/ MSD	QA Lab Sample ID	Assoc. QC Trip Blank Number	NOCs	SVOC1	SVOC1&2&3	SVOC4	Pesticides	PCBs	Explosives & Propellants	Cyanide	Nitrite/Nirate Filtered Metals	Filtered Perchlorates Filtered Cr+6	וופופת כי י
RQLmw-009	FWGRQLmw-009C-0371-GW/GF	8/19/2013	GW	DUP5-0377	EQUIPRinse1-0340	FWGTeam3Trip		FWGRQLmw-009C-0375s-GW/GF	TRIPBLANK	1			1	1	1	1	1	1		
RQLmw-010	FWGRQLmw-010C-0325-GW/GF	8/19/2013	GW		EQUIPRinse1-0340	FWGTeam4Trip				1			1	1	1	1	1	1	1	
RQLmw-011	FWGRQLmw-011C-0326-GW/GF	8/19/2013	GW		EQUIPRinse1-0340	FWGTeam1Trip				1			1	1	1	1	1	1	1	
SCFmw-002	FWGSCFmw-002-0327-GW/GF	8/20/2013	GW	DUP6-0378 ^d	EQUIPRinse2-0341	FWGTeam2Trip	Y ^e	FWGSCFmw-002-0376s-GW/GF ^d			1			1		1		1	1	ı
SCFmw-004	FWGSCFmw-004-0372-GW/GF	8/20/2013	GW		EQUIPRinse2-0341	FWGTeam2Trip					1			1		1		1		
WBGmw-006	FWGWBGmw-006C-0373-GW/GF	8/21/2013	GW		EQUIPRinse3-0342						1					1		1		
	FWGWBGmw-009C-0374-GW/GF	8/21/2013	GW		EQUIPRinse3-0342						1					1		1		
	FWGWBGmw-018-0328-GW/GF	8/21/2013	GW		EQUIPRinse3-0342			FWGWBGmw-018-0335s-GW/GF	TRIPBLANK	1			1	1	1	1	1	1		
	FWGWBGmw-019-0329-GW/GF	8/21/2013	GW		EQUIPRinse3-0342					1			1	1	1	1	1	1		
	FWGWBGmw-020-0330-GW/GF	8/21/2013	GW		EQUIPRinse3-0342		Υ			1			1	1	1	1	1	1		
WBGmw-021	FWGWBGmw-021-0331-GW/GF	8/21/2013	GW		EQUIPRinse3-0342	FWGTeam4Trip				1			1	1	1	1	1	1		

SVOCs (1=Phthalates, 2=Phenols, 3=PAHs, and 4=Full RVAAP RCRA suite)

Cr+6 = Hexavalent chromium

a = QC analysis for SVOC Explosive Propellants and Metals only

b = No VOC or Pesticides for QC analysis

s or Cyanide for QC analysis

d = No Cr+6 for Duplicate and Split QC analysis

e = MSMSD QC analysis for Cr+6 only

SECTION 3 RESULTS

3.1 Groundwater Elevations

Groundwater elevations were measured in 280 RVAAP monitoring wells during August 13 - 21, 2013. Note that well WBGmw-012 could not be located due to overgrowth. The locations of monitoring wells at RVAAP are shown on Plate 1. The water-level measurement field sheets are presented in Appendix B. Additionally, groundwater elevation measurements are also obtained each time a groundwater sample is collected as part of the FWGWMP, although the measurements from the quarterly sampling events are not used to produce the potentiometric maps.

Water-level measurements were measured in accordance with procedures in Section 4.3.3.1 of the *Facility-Wide Sampling and Analysis Plan for Environmental Investigations at the Ravenna Army Ammunition Plant, Ravenna, Ohio* (SAIC, February 2011). Water-level measurements were made from the top of the inner casing to the top of the groundwater surface using an electronic measuring tape. The depth to the bottom of the well from the top of the inner casing also was measured with the electronic measuring tape. Depth-to-water and groundwater elevations for the RVAAP wells sampled this quarter are presented in Table 3-1.

The monitoring well location map, identified as Plate 1, is included with this report. Facility-wide groundwater potentiometric maps (Plates 2, 3, 4, and 5) were created based on all RVAAP groundwater measurements taken during the August 2013 event and are also included in this report (Plates are located at the end of the report).

Plate 2 shows the potentiometric surface of unconsolidated soil at the facility from August 2013. Groundwater in the unconsolidated aquifer predominantly flows in an eastward direction; however, the unconsolidated zone shows numerous local flow variations influenced by topography and drainage patterns. The local variations in flow direction suggest: (1) groundwater in the unconsolidated deposits is generally in direct hydraulic communication with surface water; and (2) surface water drainage ways may also act as groundwater discharge locations. In addition, topographic ridges between surface water drainage features act as groundwater divides in the unconsolidated deposits. A groundwater mound is evident in the south-central portion of RVAAP, thereby creating localized radial flow. This feature is the result of a bedrock high associated with the underlying Homewood.

Plate 3 shows the potentiometric surface of the Homewood formation at the facility from August 2013. The Homewood is only found in the western portion of RVAAP and generally occurs as cap rock. It appears from the limited number of wells that have penetrated this formation that the general flow is to the east-southeast. However, a groundwater mound is present in the vicinity of the Fuze and Booster wells, which produces a localized radial flow pattern in this area of RVAAP that is at least partially influenced by a buried valley to the north and west.

Table 3-1. August 2013 FWGWMP Monitoring Well Measurements

	Just 2013 1 WOV		<u> </u>							Differential -	
		Top of					Depth to		Measured	Reported	
		Casing	Annual	Quarterly	Semi Annual	Annual	Water	Reported	Depth	Construction	
		(TOC)	Groundwater	Groundwater	Groundwater	Groundwater	below	Construction			Description
	Monitoring	Elevation ^a				Elevation (ft)	TOC (ft)	Depth from	(ft)	Depth (ft)	of Bottom
Well	Zone	(ft)	July/2012	Oct/2012	Jan/2013	Aug/2013	Aug/2013	TOC ^a (ft)	Aug/2013	Aug/2013	Aug/2013
B12mw-013	Sharon	1004.48	985.56	982.74	982.03	986.85	17.63	24.25	24.16	0.09	hard
BKGmw-010	Sharon	1006.18	987.94	NM	NM	990.73	15.45	21.60	21.98	-0.38	hard
DA2mw-114	Sharon Shale	1031.90	1026.11	1026.17	1026.61	1026.20	5.70	21.80	21.75	0.05	medium
DA2mw-115	Sharon	1038.08	1031.34	1030.96	1031.54	1031.98	6.10	46.80	46.79	0.01	medium
DET-001B	Unconsolidated	1065.85	1041.36	NM	NM	1043.35	22.50	40.50	38.88	1.62	medium
DET-002	Unconsolidated	1061.24	1028.38	NM	NM	1028.55	32.69	40.00	41.99	-1.99	medium
DET-003	Unconsolidated	1036.81	1026.99	NM	1027.38	1027.18	9.63	13.00	15.99	-2.99	hard
DET-004	Unconsolidated	1038.68	1027.78	NM	1028.39	1027.80	10.88	12.00	13.80	-1.80	hard
EBGmw-131	Sharon	950.08	938.39	938.58	940.72	940.39	9.69	73.10	73.40	-0.30	hard
FBQmw-174	Homewood	1139.97	1122.33	NM	NM	1124.57	15.40	26.20	23.14	3.06	hard
FWGmw-002	Unconsolidated	973.10	949.10	948.91	949.96	949.81	23.29	70.05	69.80	0.25	hard
FWGmw-004	Unconsolidated	1037.15	1020.74	1020.40	1023.81	1024.06	13.09	22.60	22.45	0.15	hard
FWGmw-006	Unconsolidated	1184.33	1174.08	1172.64	1178.21	1178.02	6.31	19.25	19.24	0.01	hard
FWGmw-007	Unconsolidated	1075.41	1051.22	1050.57	1050.89	1051.69	23.72	32.35	32.16	0.19	hard
FWGmw-009	Unconsolidated	1102.14	1099.05	1099.84	frozen	1099.30	2.84	20.40	20.32	0.08	medium
FWGmw-011	Unconsolidated	941.61	937.13	938.99	940.88	938.77	2.84	17.80	17.69	0.11	hard
FWGmw-012	Sharon Shale	941.39	938.46	938.75	940.55	940.15	1.24	42.45	42.41	0.04	hard
FWGmw-015	Unconsolidated	1014.51	1005.77	1005.50	1009.89	1009.47	5.04	26.35	26.21	0.14	hard
FWGmw-016	Sharon	1014.39	996.09	995.67	997.50	998.12	16.27	67.50	67.45	0.05	hard
	Unconsolidated	935.10	931.78	NM	933.88	933.89	1.21	21.10	21.07	0.03	hard
LL1mw-065	Unconsolidated	944.41	930.39	NM	937.32	933.65	10.76	23.40	22.96	0.44	hard
LL1mw-083	Sharon	995.20	963.14	NM	NM	964.15	31.05	41.70	41.41	0.29	hard
LL1mw-084	Sharon	998.73	968.24	NM	NM	971.62	27.11	39.30	38.93	0.37	hard
LL1mw-086	Unconsolidated	940.63	930.71	930.73	933.28	933.56	7.07	77.38	77.82	-0.44	soft
LL1mw-087	Unconsolidated	944.32	932.95	936.90	939.48	939.09	5.23	18.55	18.09	0.46	medium
LL2mw-059	Sharon	966.67	953.04	NM	952.98	953.84	12.83	21.80	21.84	-0.04	hard
LL2mw-265	Sharon	961.24	950.93	NM	951.18	951.93	9.31	23.80	24.52	-0.72	hard
LL2mw-267	Sharon	1014.81	1002.92	NM	NM	1005.87	8.94	22.00	22.12	-0.12	hard
LL3mw-238	Sharon	1006.91	987.96	NM	NM	991.77	15.14	22.90	23.44	-0.54	hard
LL3mw-239	Sharon	1003.50	977.36	NM	NM	980.68	22.82	36.80	37.00	-0.20	soft
LL3mw-241	Sharon	994.65	978.87	NM	986.00	985.54	9.11	25.10	25.67	-0.57	hard
LL3mw-244	Sharon	988.78	974.24	972.36	979.89	978.55	10.23	47.25	46.94	0.31	hard
LL10mw-003	Homewood	1130.28	1108.66	NM	1109.65	1110.42	19.86	28.90	28.55	0.35	hard
LL12mw-185	Unconsolidated	981.31	972.92	NM	973.18	974.96	6.35	23.20	23.23	-0.03	hard
LL12mw-187	Unconsolidated	979.94	968.89	NM	970.51	971.49	8.45	29.40	29.85	-0.45	hard
LL12mw-242	Unconsolidated	981.20	970.46	NM	972.76	973.37	7.83	28.30	28.64	-0.34	hard
	Unconsolidated	980.04	971.68	NM	971.16	973.03	7.01	30.50	30.00	0.50	soft
LL12mw-247	Unconsolidated	984.25	977.46	978.24	979.79	979.76	4.49	22.60	22.60	0.00	hard

Table 3-1. August 2013 FWGWMP Monitoring Well Measurements

		Top of Casing	Annual	Quarterly	Semi Annual	Annual	Depth to Water	Reported		Differential - Reported Construction	
		(TOC)	Groundwater			Groundwater		Construction		/ Measured	Description
Well	Monitoring Zone	Elevation ^a (ft)	Elevation (ft) July/2012	Elevation (ft) Oct/2012	Elevation (ft) Jan/2013	Elevation (ft) Aug/2013	TOC (ft) Aug/2013	Depth from TOC ^a (ft)	(ft) Aug/2013	Depth (ft) Aug/2013	of Bottom Aug/2013
_						•		` ,	<u> </u>		<u> </u>
NTAmw-119	Unconsolidated	1080.07	1067.17	1066.29	1067.32	1067.77	12.30	104.60	104.65	-0.05	hard
RQLmw-006	Sharon	995.39	961.56	NM	NM	961.91	33.48	41.40	42.03	-0.63	hard
RQLmw-007	Sharon	965.91	959.67	NM	958.95	960.86	5.05	18.20	18.48	-0.28	hard
RQLmw-008	Sharon	966.08	959.70	NM	959.24	960.58	5.50	18.50	18.67	-0.17	hard
RQLmw-009	Sharon	964.58	959.56	NM	958.92	960.18	4.40	18.40	18.80	-0.40	hard
RQLmw-010	Sharon	982.14	956.69	NM	NM	958.08	24.06	35.10	35.34	-0.24	hard
RQLmw-011	Sharon	976.57	954.38	NM	NM	955.97	20.60	34.60	35.36	-0.76	hard
SCFmw-002	Sharon Cong.	984.56	966.28	963.78	965.24	965.94	18.62	149.65	150.10	-0.45	medium
SCFmw-004	Sharon Cong.	944.17	943.72	NM	944.17	944.37	-0.20	112.47	112.50	-0.03	hard
WBGmw-006	Unconsolidated	1014.66	1004.67	NM	1007.22	1007.03	7.63	20.40	20.14	0.26	hard
WBGmw-009	Unconsolidated	1047.53	1032.35	NM	1033.68	1034.45	13.08	24.00	24.27	-0.27	medium
WBGmw-018	Unconsolidated	991.45	969.75	966.65	973.91	974.00	17.45	24.80	24.77	0.03	hard
WBGmw-019	Sharon	990.25	971.87	971.51	973.02	973.38	16.87	50.50	50.48	0.02	medium
WBGmw-020	Sharon	1044.31	1030.29	1029.47	1031.16	1031.69	12.62	43.80	43.59	0.21	medium
WBGmw-021	Sharon	1010.92	1000.27	1000.04	1001.69	1001.50	9.42	43.10	43.08	0.02	hard

a = Elevations are in feet above mean sea level (amsl)

NM = New wells added to the sampling schedule, not measured in all quarters

ft = feet

TOC= top of casing

Plate 4 shows the potentiometric surface of the upper Sharon formation at the facility from August 2013. The bedrock potentiometric map shows a regional eastward flow direction. However, a groundwater mound is evident in the vicinity of Load Line 2 on Plate 4, thereby creating localized radial flow. In addition, the upper portion of the Sharon is in direct communication with surface water at Sand Creek in the vicinity of Demolition Area #2.

Plate 5 shows the potentiometric surface of the basal Sharon formation from August 2013. Groundwater flow in the conglomeratic sandstone facies is to the east beneath RVAAP. The groundwater elevations from the deep Sharon Conglomerate wells were evaluated and determined not to be representative of the water table aquifer. These wells were installed with their screened intervals positioned at the basal portion of the Sharon Conglomerate sandstone.

3.2 Summary of Analytical Results

Summaries of laboratory analytical results are presented in Tables 3-2, 3-3, 3-5, 3-6, 3-7, and 3-8. Appendix C presents the Laboratory Data Sheets. A brief summary of the detected compounds and elements are presented in the following sub-sections. The data presented in the tables are the validated and verified data. Data verification and validation is discussed in Section 3.3 and Appendix C.

As part of the ongoing RI for the facility-wide groundwater, detected and validated analytes from the monitoring wells will be subjected to a risk screening process that will be detailed in the *FWGWMP Remedial Investigation/Feasibility Study Work Plan*. Note that negotiations concerning the risk assessment methodologies including the existing background criteria are ongoing and the results of the negotiations will result in revisions to the risk process. As a result reference to the background criteria and the risk evaluation process have been removed from this document.

Additionally, please note the following:

- As discussed in Section 3.3 under the data validation process, data are qualified by EQM's validator following the guidelines and qualifier requirements set forth by the FWSAP, QAPP, and U.S. DoD Quality Services Manual (QSM) for Environmental Laboratories, Version 4.1, and the USACE, Louisville District, Quality Systems Manual Supplement (LS). As a result, the flags designated by EQM sometimes differ from those in the laboratory data sheets. The flags designated by the validator override any flagging of the data by the laboratory. For a complete explanation of the data qualifiers used for each constituent refer to Section 3.3 and the Data Verification Summary Reports found in Appendix C.
- For purposes of consistency, all detected concentrations that are elevated above both the method detection limit (MDL) and the above-referenced screening levels are called out in the following text. In the tables, the compounds and elements that were detected above the MDL are presented in bold numbers. This includes constituents flagged as estimated.

- Several analytical methods used to analyze a number of explosives, VOCs, SVOCs, metals, PCBs, and pesticides currently do not meet the RVAAP QAPP project action requirements, Maximum Contaminant Levels (MCL)s or USEPA Regional Screening Levels (RSL)s. The laboratory did not meet the requirements due to the following: 1) the detection limit is a statistically derived number that varies based on analytical method and instrumentation. 2) the RSL is independent from analytical method detection limits and is calculated from EPA toxicity values and exposure information. Tables listing the reporting limits that currently do not meet the RVAAP QAPP Project Action Requirements, MCLs, and/or RSLs are presented in Appendix F.
- Note that for this event wells were sampled for specific analytes as identified in the FWGWMPP Addendum.

3.2.1 Explosives and Propellants

Explosive and propellant compound analytical results are summarized in Table 3-2. The following compounds were detected at concentrations above the MDLs:

- 1,3,5-Trinitrobenzene LL1mw-083 (6.5 micrograms per liter [μg/L] J), LL1mw-084 (2.4 μg/L J), LL2mw-059 (0.28 μg/L J), LL3mw-238 (30 μg/L), LL3mw-241 (4.3 μg/L). There is no MCL for 1,3,5-trinitrobenzene. The RSL is 460 μg/L.
- 1,3-Dinitrobenzene LL1mw-083 (0.28 μg/L J), LL1mw-084 (0.35 μg/L J). There is no MCL for 1, 3-dinitrobenzene. The RSL is 1.5 μg/L.
- 2,4,6-Trinitrotoluene –FBQmw-174 (18 μg/L), LL1mw-083 (4.5 μg/L J), LL1mw-084 (12 μg/L J), LL2mw-267 (0.54 μg/L), LL3mw-238 (79 μg/L), and LL3mw-241 (3.3 μg/L). There is no MCL for 2,4,6-trinitrotoluene. The RSL is 2.2 μg/L.
- 2,4-Dinitrotoluene –FBQmw-174 (0.45 μ g/L), LL1mw-083 (2.9 μ g/L J), LL1mw-084 (1.4 μ g/L J), LL2mw-059 (0.21 μ g/L), and LL2mw-267 (0.30 μ g/L). There is no MCL for 2,4-dinitrotoluene. The RSL is 0.2 μ g/L.
- 2,6-Dinitrotoluene LL1mw-083 (1.5 μ g/L J), LL1mw-084 (0.95 μ g/L J), LL3mw-238 (0.52 μ g/L J), and LL3mw-241 (0.083 μ g/L J). There is no MCL for 2,6-dinitrotoluene. The RSL is 0.042 μ g/L.
- 2-Amino-4,6-dinitrotoluene FBQmw-174 (16 μg/L), LL1mw-083 (14 μg/L J), LL1mw-084 (13 μg/L J), LL2mw-059 (0.22 μg/L), LL2mw-267(1.8 μg/L), LL3mw-238 (19 μg/L), LL3mw-241 (2.9 μg/L), LL3mw-244 (0.65 μg/L). There is no MCL for 2-amino-4,6-dinitrotoluene. The RSL is 30 μg/L.
- 4-Amino-2,6-dinitrotoluene LL1mw-083 (28 μg/L), LL1mw-084 (36 μg/L), LL2mw-059 (0.38 μg/L), LL2mw-267 (1.7 μg/L), LL3mw-238 (37 μg/L) LL3mw-241 (2.9 μg/L),

- LL3mw-244 (0.61 μ g/L). There is no MCL for 4-amino-2,6-dinitrotoluene. The RSL is 30 μ g/L.
- 4-Nitrotoluene LL3mw-238 (0.53 μg/L), LL12mw-008 (0.12 μg/L). There is no MCL for 4-nitrotoluene. The RSL is 3.7 μg/L.
- Nitrate-Nitrite LL12mw-185 (130 milligrams per liter [mg/L]), LL12mw-187 (1200 mg/L J), LL12mw-242 (0.024 mg/L J), LL12mw-245 (0.11 mg/L J), LL12mw-247 (0.024 mg/L J), SCFmw-002 (0.009 mg/L). The MCL for nitrate-nitrite is 1 mg/L. The RSL is 1.6 mg/L.
- Nitrobenzene LL3mw-238 (0.17 μ g/L J). There is no MCL for nitrobenzene. The RSL is 0.12 μ g/L.
- Nitrocellulose LL12mw-187 (1.1 μ g/L), NTAmw-119 (1.8 μ g/L). There is no MCL for nitrocellulose. The RSL is 4.7E+04 μ g/L.
- Nitroglycerin RQLmw-008 (0.67 μg/L). There is no MCL for nitroglycerin. The RSL is 1.5 μg/L.
- PETN FBQmw-174 (0.31 μ g/L). There is no MCL for PETN. The RSL is 16 μ g/L.
- HMX DETmw-004 (3.5 μ g/L), LL1mw-084 (0.97 μ g/L J), LL3mw-238 (2.2 μ g/L), LL3mw-241 (0.39 μ g/L J), LL3mw-244 (0.066 μ g/L), WBGmw-006 (5.6 (μ g/L), WBGmw-009 (1.2 μ g/L), and WBGmw-018 (0.14 μ g/L). There is no MCL for HMX. The RSL is 780 μ g/L.
- RDX DETmw-004 (2.3 μg/L), FBQmw-174 (0.31 μg/L), LL1mw-084 (2.1 μg/L J), Ll2mw-267 (1.5 μg/L), LL3mw-238 (7.2 μg/L), LL3mw-241 (0.98 μg/L J), LL3mw-244 (0.34 μg/L J), WBGmw-006 (15 μg/L), WBGmw-009 (3.5 μg/L) and WBGmw-018 (0.35 μg/L). There is no MCL for RDX. The RSL is 0.61 μg/L.

As shown in Table 3-2, the following explosives or propellants were detected at levels above their corresponding MCLs or RSLs during the August 2013 sampling event:

- 2,4-Dinitrotoluene in FBQmw-174 (0.45 μ g/L), LL1mw-083 (2.9 μ g/L J), LL1mw-084 (1.4 μ g/L J), LL2mw-059 (0.21 μ g/L), and LL2mw-267 (0.30 μ g/L).. There is no MCL for 2,4-dinitrotoluene. The RSL is 0.2 μ g/L.
- 2,4,6-Trinitrotoluene in FBQmw-174 (18 μg/L), LL1mw-083 (4.5 μg/L J), LL1mw-084 (12 μg/L J), LL3mw-238 (79 μg/L), and LL3mw-241 (3.3 μg/L). There is no MCL for 2,4,6-trinitrotoluene. The RSL is 2.2 μg/L.

- 2,6-Dinitrotoluene in LL1mw-083 (1.5 μg/L J), LL1mw-084 (0.95 μg/L J), LL3mw-238 (0.52 μg/L J), LL3mw-241 (0.083 μg/L J), and RQLmw-008 (0.14 μg/L J). There is no MCL for 2,6-dinitrotoluene. The RSL is 0.042 μg/L.
- 4-Amino-2,6-dinitrotoluene in LL1mw-084 (36 μ g/L), and LL3mw-238 (37 μ g/L). There is no MCL for 4-amino-2,6-dinitrotoluene. The RSL is 30 μ g/L.
- Nitrate-Nitrite in LL12mw-185 (130 mg/L), LL12mw-187 (1200 mg/L J). The MCL for nitrate-nitrite is 1 mg/L. The RSL is 1.6 mg/L.
- Nitrobenzene in LL3mw-238 (0.17 μ g/L J). There is no MCL for nitrobenzene. The RSL is 0.12 μ g/L.
- RDX in DETmw-004 (2.3 μg/L), LL1mw-084 (2.1 μg/L J), Ll2mw-267 (1.5 μg/L), LL3mw-238 (7.2 μg/L), LL3mw-241 (0.98 μg/L J), and WBGmw-006 (15 μg/L), WBGmw-009 (3.5 μg/L). There is no MCL for RDX. The RSL is 0.61 μg/L.

Table 3-2. FWGWMP August 2013 Explosive and Propellant Analytical Results

Station ID				DA2mw-114	DA2mw-115	DETmw-001	DETmw-002	DETmw-003	DETmw-004	EBGmw-131
			USEPA	FWGDA2mw-114	FWGDA2mw-115	FWGDETmw-	FWGDETmw-	FWGDETmw-	FWGDETmw-	FWGEBGmw-
Sample ID		MCL	RSL	0312-GW	0313-GW	001C-0314-GW	002C-0315-GW	003C-0343-GW	004C-0344-GW	131-0316-GW
Date Collected				8/20/2013	8/20/2013	8/20/2013	8/20/2013	8/20/2013	8/20-21/2013	8/19/2013
Sample Type				Grab	Grab	Grab	Grab	Grab	Grab	Grab
Analyte	Units									
1,3,5-Trinitrobenzene	μg/L	NS	460	0.053 U	0.055 U	0.059 U	0.053 U	0.053 U	0.058 U	0.051 U
1,3-Dinitrobenzene	μg/L	NS	1.5	0.11 U	0.11 U	0.12 U	0.11 U	0.11 U	0.12 U	0.10 U
2,4,6-Trinitrotoluene	μg/L	NS	2.2	0.11 U	0.11 U	0.12 U	0.11 U	0.11 U	0.12 U	0.10 U
2,4-Dinitrotoluene	μg/L	NS	0.20	0.11 U	0.11 U	0.12 U	0.11 U	0.11 U	0.12 U	0.10 U
2,6-Dinitrotoluene	μg/L	NS	0.042	0.11 U	0.11 U	0.12 U	0.11 U	0.11 U	0.12 U	0.10 U
2-Amino-4,6-dinitrotoluene	μg/L	NS	30	0.11 U	0.11 U	0.12 U	0.11 U	0.11 U	0.12 U	0.10 U
2-Nitrotoluene	μg/L	NS	0.27	0.11 U	0.11 U	0.12 U	0.11 U	0.11 U	0.12 U	0.10 U
3-Nitrotoluene	μg/L	NS	1.3	0.11 U	0.11 U	0.12 U	0.11 U	0.11 U	0.12 U	0.10 U
4-Amino-2,6-Dinitrotoluene	μg/L	NS	30	0.11 U	0.11 U	0.12 U	0.11 U	0.11 U	0.12 U	0.10 U
4-Nitrotoluene	μg/L	NS	3.7	0.11 U	0.11 U	0.12 U	0.11 U	0.11 U	0.12 U	0.10 U
HMX	μg/L	NS	780	0.053 U	0.055 U	0.059 U	0.053 U	0.053 U	3.5	0.051 U
Nitrate-Nitrite	mg/L	1.0	1.6	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Nitrobenzene	μg/L	NS	0.12	0.11 U	0.11 U	0.12 U	0.11 U	0.11 U	0.12 U	0.10 U
Nitrocellulose	mg/L	NS	4.7E+07	1.0 UJ	1.0 U	1.0 U				
Nitroglycerin	μg/L	NS	1.5	0.53 U	0.55 U	0.59 U	0.53 U	0.53 U	0.58 U	0.51 U
Nitroguanidine	μg/L	NS	1600	6.0 U	6.0 U					
PETN	μg/L	NS	16	0.53 U	0.55 U	0.59 U	0.53 U	0.53 U	0.58 U	0.51 U
RDX	μg/L	NS	0.61	0.053 U	0.055 U	0.059 U	0.053 U	0.053 U	2.3	0.051 U
Tetryl	μg/L	NS	31	0.11 U	0.11 U	0.12 U	0.11 U	0.11 U	0.12 U	0.10 U

Notes:

 $\begin{array}{ll} \mu g/L = microgram \ per \ liter \\ NS = no \ standard \\ \textbf{Bold} = detected \ compound \ above \ the \ MDL \\ RSL = USEPA \ Regional \ Screening \ Level, \ Nov \ 2013 \end{array}$

MCL = Maximum Contaminant Level

Table 3-2. FWGWMP August 2013 Explosive and Propellant Analytical Results

Station ID				FBQmw-174	FWGmw-004	FWGmw-007	FWGmw-009	FWGmw-011	FWGmw-012	FWGmw-015
			USEPA	FWGFBQmw-	FWGFWGmw-	FWGFWGmw-	FWGFWGmw-	FWGFWGmw-	FWGFWGmw-	FWGFWGmw-
Sample ID		MCL	RSL	174C-0345-GW	004-0346-GW	007-0347-GW	009-0319-GW	011-0348-GW	012-0349-GW	015-0350-GW
Date Collected				8/20/2013	8/19/2013	8/21/2013	8/21/2013	8/20/2013	8/20/2013	8/19/2013
Sample Type				Grab	Grab	Grab	Grab	Grab	Grab	Grab
Analyte	Units									
1,3,5-Trinitrobenzene	μg/L	NS	460	0.051 U	0.050 U	0.051 U	0.050 U	0.053 U	0.053 U	0.051 U
1,3-Dinitrobenzene	μg/L	NS	1.5	0.10 U	0.10 U	0.10 U	0.10 U	0.11 U	0.11 U	0.10 U
2,4,6-Trinitrotoluene	μg/L	NS	2.2	18	0.10 U	0.10 U	0.10 U	0.11 U	0.11 U	0.10 U
2,4-Dinitrotoluene	μg/L	NS	0.20	0.45	0.10 U	0.10 U	0.10 U	0.11 U	0.11 U	0.10 U
2,6-Dinitrotoluene	μg/L	NS	0.042	0.10 U	0.10 U	0.10 U	0.10 U	0.11 U	0.11 U	0.10 U
2-Amino-4,6-dinitrotoluene	μg/L	NS	30	16	0.10 U	0.10 U	0.10 U	0.11 U	0.11 U	0.10 U
2-Nitrotoluene	μg/L	NS	0.27	0.10 U	0.10 U	0.10 U	0.10 U	0.11 U	0.11 U	0.10 U
3-Nitrotoluene	μg/L	NS	1.3	0.10 U	0.10 U	0.10 U	0.10 U	0.11 U	0.11 U	0.10 U
4-Amino-2,6-Dinitrotoluene	μg/L	NS	30	0.10 U	0.10 U	0.10 U	0.10 U	0.11 U	0.11 U	0.10 U
4-Nitrotoluene	μg/L	NS	3.7	0.051 U	0.10 U	0.10 U	0.10 U	0.11 U	0.11 U	0.10 U
HMX	μg/L	NS	780	0.10 U	0.050 U	0.051 U	0.050 U	0.053 U	0.053 U	0.051 U
Nitrate-Nitrite	mg/L	1.0	1.6	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Nitrobenzene	μg/L	NS	0.12	1.0 U	0.10 U	0.10 U	0.10 U	0.11 U	0.11 U	0.10 U
Nitrocellulose	mg/L	NS	4.7E+07	0.51 U	1.0 U	1.0 U	1.0 U	1.0 UJ	1.0 UJ	1.0 U
Nitroglycerin	μg/L	NS	1.5	6.0 U	0.50 U	0.51 U	0.50 U	0.53 U	0.53 U	0.51 U
Nitroguanidine	μg/L	NS	1600	0.51 U	6.0 U					
PETN	μg/L	NS	16	0.31	0.50 U	0.51 U	0.50 U	0.53 U	0.53 U	0.51 U
RDX	μg/L	NS	0.61	0.10 U	0.050 U	0.051 U	0.050 U	0.053 U	0.053 U	0.051 U
Tetryl	μg/L	NS	31	0.10 U	0.10 U	0.10 U	0.10 U	0.11 U	0.11 U	0.10 U

Notes:

 $\begin{array}{ll} \mu g/L = microgram \ per \ liter \\ NS = no \ standard \\ \textbf{Bold} = detected \ compound \ above \ the \ MDL \\ RSL = USEPA \ Regional \ Screening \ Level, \ Nov \ 2013 \end{array}$

MCL = Maximum Contaminant Level

Table 3-2. FWGWMP August 2013 Explosive and Propellant Analytical Results

0				E1110 010						
Station ID				FWGmw-016	LL1mw-064	LL1mw-065	LL1mw-083	LL1mw-084	LL1mw-086	LL1mw-087
			USEPA	FWGFWGmw-	FWGLL1mw-	FWGLL1mw-	FWGLL1mw-	FWGLL1mw-	FWGLL1mw-086-	FWGLL1mw-
Sample ID		MCL	RSL	016-0351-GW	064C-0352-GW	065C-0353-GW	083C-0354-GW	084C-0355-GW	0320-GW	087C-0356-GW
Date Collected				8/19/2013	8/20/2013	8/20/2013	8/20/2013	8/21/2013	8/20/2013	8/20/2013
Sample Type				Grab	Grab	Grab	Grab	Grab	Grab	Grab
Analyte	Units									
1,3,5-Trinitrobenzene	μg/L	NS	460	0.050 U	0.057 U	0.051 U	6.5 J	2.4 J	0.051 U	0.059 U
1,3-Dinitrobenzene	μg/L	NS	1.5	0.10 U	0.11 U	0.10 U	0.28 J	0.35 J	0.10 U	0.12 U
2,4,6-Trinitrotoluene	μg/L	NS	2.2	0.10 U	0.11 U	0.10 U	4.5 J	12 J	0.10 U	0.12 U
2,4-Dinitrotoluene	μg/L	NS	0.20	0.10 U	0.11 U	0.10 U	2.9 J	1.4 J	0.10 U	0.12 U
2,6-Dinitrotoluene	μg/L	NS	0.042	0.10 U	0.11 U	0.10 U	1.5 J	0.95 J	0.10 U	0.12 U
2-Amino-4,6-dinitrotoluene	μg/L	NS	30	0.10 U	0.11 U	0.10 U	14 J	13 J	0.10 U	0.12 U
2-Nitrotoluene	μg/L	NS	0.27	0.10 U	0.11 U	0.10 U	0.10 U	0.10 U	0.10 U	0.12 U
3-Nitrotoluene	μg/L	NS	1.3	0.10 U	0.11 U	0.10 U	0.10 U	0.10 U	0.10 U	0.12 U
4-Amino-2,6-Dinitrotoluene	μg/L	NS	30	0.10 U	0.11 U	0.10 U	28	36	0.10 U	0.12 U
4-Nitrotoluene	μg/L	NS	3.7	0.10 U	0.11 U	0.10 U	0.10 U	0.10 U	0.10 U	0.12 U
HMX	μg/L	NS	780	0.050 U	0.057 U	0.051 U	0.051 U	0.97 J	0.051 U	0.059 U
Nitrate-Nitrite	mg/L	1.0	1.6	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Nitrobenzene	μg/L	NS	0.12	0.10 U	0.11 U	0.10 U	0.10 U	0.10 U	0.10 U	0.12 U
Nitrocellulose	mg/L	NS	4.7E+07	1.0 U	1.0 UJ	1.0 U	1.0 U	1.0 U	1.0 U	1.0 UJ
Nitroglycerin	μg/L	NS	1.5	0.50 U	0.57 U	0.51 U	0.51 U	0.52 U	0.51 U	0.59 U
Nitroguanidine	μg/L	NS	1600	6.0 U	6.0 U	6.0 U	6.0 U	6.0 U	6.0 U	6.0 U
PETN	μg/L	NS	16	0.50 U	0.57 U	0.51 U	0.51 U	0.52 U	0.51 U	0.59 U
RDX	μg/L	NS	0.61	0.050 U	0.057 U	0.051 U	0.051 U	2.1 J	0.051 U	0.059 U
Tetryl	μg/L	NS	31	0.10 U	0.11 U	0.10 U	0.10 U	0.10 U	0.10 U	0.12 U

 μ g/L = microgram per liter mg/L = milligram per liter NS = no standard N/A = Not Analyzed **Bold** = detected compound above the MDL RSL = USEPA Regional Screening Level, Nov 2013

Table 3-2. FWGWMP August 2013 Explosive and Propellant Analytical Results

Station ID				LL2mw-059	LL2mw-265	LL2mw-267	LL3mw-238	LL3mw-241	LL3mw-244	LL12mw-185
			USEPA	FWGLL2mw-	FWGLL2mw-	FWGLL2mw-	FWGLL3mw-	FWGLL3mw-	FWGLL3mw-244-	FWGLL12mw-
Sample ID		MCL	RSL	059C-0357-GW	265C-0321-GW	267C-0358-GW	238C-0359-GW	241C-0360-GW	0323-GW	187C-0363-GW
Date Collected				8/20/2013	8/21/2013	8/21/2013	8/19/2013	8/19/2013	8/20/2013	8/20/2013
Sample Type				Grab	Grab	Grab	Grab	Grab	Grab	Grab
Analyte	Units									
1,3,5-Trinitrobenzene	μg/L	NS	460	0.28 J	0.051 U	0.051 U	30	4.3	0.054 U	N/A
1,3-Dinitrobenzene	μg/L	NS	1.5	0.10 U	0.10 U	0.10 U	0.11 U	0.10 U	0.11 U	N/A
2,4,6-Trinitrotoluene	μg/L	NS	2.2	0.10 U	0.10 U	0.54	79	3.3	0.11 U	N/A
2,4-Dinitrotoluene	μg/L	NS	0.20	0.21	0.10 U	0.30	0.11 U	0.10 U	0.11 U	N/A
2,6-Dinitrotoluene	μg/L	NS	0.042	0.10 U	0.10 U	0.10 U	0.52 J	0.083 J	0.11 U	N/A
2-Amino-4,6-dinitrotoluene	μg/L	NS	30	0.22	0.10 U	1.8	19	2.9	0.65	N/A
2-Nitrotoluene	μg/L	NS	0.27	0.10 U	0.10 U	0.10 U	0.11 U	0.10 U	0.11 U	N/A
3-Nitrotoluene	μg/L	NS	1.3	0.10 U	0.10 U	0.10 U	0.11 U	0.10 U	0.11 U	N/A
4-Amino-2,6-Dinitrotoluene	μg/L	NS	30	0.38	0.10 U	1.7	37	2.9	0.61	N/A
4-Nitrotoluene	μg/L	NS	3.7	0.10 U	0.10 U	0.10 U	0.53	0.10 U	0.11 U	N/A
HMX	μg/L	NS	780	0.050 U	0.051 U	0.051 U	2.2	0.39 J	0.066	N/A
Nitrate-Nitrite	mg/L	1.0	1.6	N/A	N/A	N/A	N/A	N/A	N/A	130
Nitrobenzene	μg/L	NS	0.12	0.10 U	0.10 U	0.10 U	0.17 J	0.10 U	0.11 U	N/A
Nitrocellulose	mg/L	NS	4.7E+07	1.0 U	1.0 UJ	N/A				
Nitroglycerin	μg/L	NS	1.5	0.50 U	0.51 U	0.51 U	0.53 U	0.50 U	0.54 U	N/A
Nitroguanidine	μg/L	NS	1600	6.0 U	N/A					
PETN	μg/L	NS	16	0.50 U	0.51 U	0.51 U	0.53 U	0.50 U	0.54 U	N/A
RDX	μg/L	NS	0.61	0.050 U	0.051 U	1.5	7.2	0.98	0.34	N/A
Tetryl	μg/L	NS	31	0.10 U	0.10 U	0.10 U	0.11 U	0.10 U	0.11 U	N/A

 $\begin{array}{ll} \mu g/L = microgram \ per \ liter \\ NS = no \ standard \\ \textbf{Bold} = detected \ compound \ above \ the \ MDL \\ RSL = USEPA \ Regional \ Screening \ Level, \ Nov \ 2013 \end{array}$

Table 3-2. FWGWMP August 2013 Explosive and Propellant Analytical Results

Station ID				LL12mw-187	L12mw-242	LL12mw-245	LL12mw-247	NTAmw-119	RQLmw-006	RQLmw-007
			USEPA	FWGLL12mw-	FWGLL12mw-	FWGLL12mw-	FWGLL12mw-	FWGNTAmw-	FWGRQLmw-	FWGRQLmw-
Sample ID		MCL	RSL	187C-0363-GW	242C-0364-GW	245C-0365-GW	247-0336-GW	119-0367-GW	006C-0368-GW	007C-0369-GW
Date Collected				8/20/2013	8/20/2013	8/20/2013	8/20/2013	8/21/2013	8/19/2013	8/19/2013
Sample Type				Grab	Grab	Grab	Grab	Grab	Grab	Grab
Analyte	Units									
1,3,5-Trinitrobenzene	μg/L	NS	460	0.053 U	0.053 U	0.054 U	0.054 U	0.051 U	0.051 U	0.051 U
1,3-Dinitrobenzene	μg/L	NS	1.5	0.11 U	0.11 U	0.11 U	0.11 U	0.10 U	0.10 U	0.10 U
2,4,6-Trinitrotoluene	μg/L	NS	2.2	0.11 U	0.11 U	0.11 U	0.11 U	0.10 U	0.10 U	0.10 U
2,4-Dinitrotoluene	μg/L	NS	0.20	0.11 U	0.11 U	0.11 U	0.11 U	0.10 U	0.10 U	0.10 U
2,6-Dinitrotoluene	μg/L	NS	0.042	0.11 U	0.11 U	0.11 U	0.11 U	0.10 U	0.10 U	0.10 U
2-Amino-4,6-dinitrotoluene	μg/L	NS	30	0.11 U	0.11 U	0.11 U	0.11 U	0.10 U	0.10 U	0.10 U
2-Nitrotoluene	μg/L	NS	0.27	0.11 U	0.11 U	0.11 U	0.11 U	0.10 U	0.10 U	0.10 U
3-Nitrotoluene	μg/L	NS	1.3	0.11 U	0.11 U	0.11 U	0.11 U	0.10 U	0.10 U	0.10 U
4-Amino-2,6-Dinitrotoluene	μg/L	NS	30	0.11 U	0.11 U	0.11 U	0.11 U	0.10 U	0.10 U	0.10 U
4-Nitrotoluene	μg/L	NS	3.7	0.11 U	0.11 U	0.11 U	0.11 U	0.10 U	0.10 U	0.10 U
HMX	μg/L	NS	780	0.053 U	0.053 U	0.054 U	0.054 U	0.051 U	0.051 U	0.051 U
Nitrate-Nitrite	mg/L	1.0	1.6	1200	0.024	0.11	0.024	N/A	N/A	N/A
Nitrobenzene	μg/L	NS	0.12	0.11 U	0.11 U	0.11 U	0.11 U	0.10 U	0.10 U	0.10 U
Nitrocellulose	mg/L	NS	4.7E+07	1.1 J	1.0 UJ	1.0 UJ	1.0 UJ	1.8	1.0 U	1.0 U
Nitroglycerin	μg/L	NS	1.5	0.53 U	0.53 U	0.54 U	0.54 U	0.51 U	0.51 U	0.51 U
Nitroguanidine	μg/L	NS	1600	6.0 U	6.0 U	6.0 U	6.0 U	6.0 U	6.0 U	6.0 U
PETN	μg/L	NS	16	0.53 U	0.53 U	0.54 U	0.54 U	0.51 U	0.51 U	0.51 U
RDX	μg/L	NS	0.61	0.053 U	0.053 U	0.054 U	0.054 U	0.051 U	0.051 U	0.051 U
Tetryl	μg/L	NS	31	0.11 U	0.11 U	0.11 U	0.11 U	0.10 U	0.10 U	0.10 U

 $\begin{array}{ll} \mu g/L = microgram \ per \ liter \\ NS = no \ standard \\ \textbf{Bold} = detected \ compound \ above \ the \ MDL \\ RSL = USEPA \ Regional \ Screening \ Level, \ Nov \ 2013 \end{array}$

Table 3-2. FWGWMP August 2013 Explosive and Propellant Analytical Results

Station ID				RQLmw-008	RQLmw-009	RQLmw-010	RQLmw-011	SCFmw-002	SCFmw-004
			USEPA	FWGRQLmw-	FWGRQLmw-	FWGRQLmw-	FWGRQLmw-	FWGSCFmw-	FWGSCFmw-
Sample ID		MCL	RSL	008C-0370-GW	009C-0371-GW	010C-0325-GW	011C-0326-GW	002-0327-GW	004-0372-GW
Date Collected				8/19/2013	8/19/2013	8/19/2013	8/19/2013	8/20/2013	8/20/2013
Sample Type				Grab	Grab	Grab	Grab	Grab	Grab
Analyte	Units								
1,3,5-Trinitrobenzene	μg/L	NS	460	0.051 U	0.051 U	0.051 U	0.050 U	0.057 U	0.053 U
1,3-Dinitrobenzene	μg/L	NS	1.5	0.10 U	0.10 U	0.10 U	0.10 U	0.064 UJ	0.11 U
2,4,6-Trinitrotoluene	μg/L	NS	2.2	0.10 U	0.10 U	0.10 U	0.10 U	0.11 U	0.11 U
2,4-Dinitrotoluene	μg/L	NS	0.20	0.10 U	0.10 U	0.10 U	0.10 U	0.11 U	0.11 U
2,6-Dinitrotoluene	μg/L	NS	0.042	0.10 U	0.10 U	0.10 U	0.10 U	0.11 U	0.11 U
2-Amino-4,6-dinitrotoluene	μg/L	NS	30	0.10 U	0.10 U	0.10 U	0.10 U	0.11 U	0.11 U
2-Nitrotoluene	μg/L	NS	0.27	0.10 UJ	0.10 U	0.10 U	0.10 U	0.11 U	0.11 U
3-Nitrotoluene	μg/L	NS	1.3	0.10 U	0.10 U	0.10 U	0.10 U	0.11 U	0.11 U
4-Amino-2,6-Dinitrotoluene	μg/L	NS	30	0.10 U	0.10 U	0.10 U	0.10 U	0.11 U	0.11 U
4-Nitrotoluene	μg/L	NS	3.7	0.12	0.10 U	0.10 U	0.10 U	0.11 U	0.11 U
HMX	μg/L	NS	780	0.051 U	0.051 U	0.051 U	0.050 U	0.057 U	0.053 U
Nitrate-Nitrite	mg/L	1.0	1.6	N/A	N/A	N/A	N/A	0.0090 J	N/A
Nitrobenzene	μg/L	NS	0.12	0.10 U	0.10 U	0.10 U	0.10 U	2.6 U	0.11 U
Nitrocellulose	mg/L	NS	4.7E+07	1.0 U	1.0 U	1.0 U	1.0 U	1.0 UJ	1.0 UJ
Nitroglycerin	μg/L	NS	1.5	0.67	0.51 U	0.51 U	0.50 U	0.57 U	0.53 U
Nitroguanidine	μg/L	NS	1600	6.0 U	6.0 U	6.0 U	6.0 U	6.0 U	6.0 U
PETN	μg/L	NS	16	0.51 U	0.51 U	0.51 U	0.50 U	0.57 U	0.53 U
RDX	μg/L	NS	0.61	0.051 U	0.051 U	0.051 U	0.050 U	0.057 U	0.053 U
Tetryl	μg/L	NS	31	0.10 U	0.10 U	0.10 U	0.10 U	0.11 U	0.11 U

 μ g/L = microgram per liter mg/L = milligram per liter NS = no standard N/A = Not Analyzed Bold = detected compound above the MDL RSL = USEPA Regional Screening Level, Nov 2013

Table 3-2. FWGWMP August 2013 Explosive and Propellant Analytical Results

Station ID				WBGmw-006	WBGmw-009	WBGmw-018	WBGmw-019	WBGmw-020	WBGmw-021
			USEPA	FWGWBGmw-	FWGWBGmw-	FWGWBGmw-	FWGWBGmw-	FWGWBGmw-	FWGWBGmw-
Sample ID		MCL	RSL	006C-0373-GW	009C-0374-GW	018-0328-GW	019-0329-GW	020-0330-GW	021-0331-GW
Date Collected				8/21/2013	8/21/2013	8/21/2013	8/21/2013	8/21/2013	8/21/2013
Sample Type				Grab	Grab	Grab	Grab	Grab	Grab
Analyte	Units								
1,3,5-Trinitrobenzene	μg/L	NS	460	0.051 U	0.051 U	0.051 U	0.051 U	0.051 U	0.050 U
1,3-Dinitrobenzene	μg/L	NS	1.5	0.10 U	0.10 U	0.10 U	0.10 U	0.10 U	0.10 U
2,4,6-Trinitrotoluene	μg/L	NS	2.2	0.10 U	0.10 U	0.10 U	0.10 U	0.10 U	0.10 U
2,4-Dinitrotoluene	μg/L	NS	0.20	0.10 U	0.10 U	0.10 U	0.10 U	0.10 U	0.10 U
2,6-Dinitrotoluene	μg/L	NS	0.042	0.10 U	0.10 U	0.10 U	0.10 U	0.10 U	0.10 U
2-Amino-4,6-dinitrotoluene	μg/L	NS	30	0.10 U	0.10 U	0.10 U	0.10 U	0.10 U	0.10 U
2-Nitrotoluene	μg/L	NS	0.27	0.10 U	0.10 U	0.10 U	0.10 U	0.10 U	0.10 U
3-Nitrotoluene	μg/L	NS	1.3	0.10 U	0.10 U	0.10 U	0.10 U	0.10 U	0.10 U
4-Amino-2,6-Dinitrotoluene	μg/L	NS	30	0.10 U	0.10 U	0.10 U	0.10 U	0.10 U	0.10 U
4-Nitrotoluene	μg/L	NS	3.7	0.10 U	0.10 U	0.10 U	0.10 U	0.10 U	0.10 U
HMX	μg/L	NS	780	5.6	1.2	0.14	0.051 U	0.051 U	0.050 U
Nitrate-Nitrite	mg/L	1.0	1.6	N/A	N/A	N/A	N/A	N/A	0.10 U
Nitrobenzene	μg/L	NS	0.12	0.10 U	0.10 U	0.10 U	0.10 U	0.10 U	0.10 U
Nitrocellulose	mg/L	NS	4.7E+07	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Nitroglycerin	μg/L	NS	1.5	0.51 U	0.51 U	0.51 U	0.51 U	0.51 U	0.50 U
Nitroguanidine	μg/L	NS	1600	6.0 U	6.0 U	6.0 U	6.0 U	6.0 U	6.0 U
PETN	μg/L	NS	16	0.51 U	0.51 U	0.51 U	0.51 U	0.51 U	0.50 U
RDX	μg/L	NS	0.61	15	3.5	0.35	0.051 U	0.051 U	0.050 U
Tetryl	μg/L	NS	31	0.10 U	0.10 U	0.10 U	0.10 U	0.10 U	0.10 U

 μ g/L = microgram per liter mg/L = milligram per liter NS = no standard N/A = Not Analyzed **Bold** = detected compound above the MDL RSL = USEPA Regional Screening Level, Nov 2013

Table 3-2. FWGWMP August 2013 Explosive and Propellant Analytical Results

Data Qualifiers

Data qualifier flags are used in an effort to describe the quality of each piece of data for each constituent. These flags are letter codes appended to the numerical data. The following data qualifiers are specified in the USACE Louisville Chemistry Guidelines. For a complete explanation of qualifiers used for each constituent please refer to the Data Verification Summaries in Appendix C.

- U The analyte was analyzed for but not detected. The numerical value preceding the U is the associated reporting limit.
- J The identification of the analyte is acceptable, but the quality assurance criteria indicate that the quantitative values may be outside the normal expected range of precision (i.e., the quantitative value is estimated). Examples include:
 - Results detected above the laboratory MDL but less than the laboratory reporting limit.
 - MS/MSD percent recoveries outside the acceptance criteria.
 - Laboratory control sample (LCS) percent recoveries outside acceptance criteria.
- R Data are considered to be rejected and shall not be used. This flag denotes the failure of quality control criteria such that it cannot be determined if the analyte is present or absent from the sample [e.g., the method reporting limit (MRL) verification standard was below quality control guidelines; associated sample results that were non-detect are unusable].
- UJ This flag is a combination of the U and J qualifiers, which indicate that the analyte is not present. The reported value is considered to be an estimated reporting limit (RL).
- B The B flag is used for both organic and inorganic analyses when the analyte is found in the method blank or any of the field blanks. This designation overrides the Contract Laboratory Program (CLP) "B" designation when used by the laboratory as an estimated value for inorganics.

3.2.2 Inorganic Elements

The analytical results for inorganic elements are presented in Table 3-3. The inorganics detected in the samples included: aluminum, antimony, arsenic, barium, cadmium, calcium, chromium, cobalt, copper, iron, lead, magnesium, manganese, nickel, potassium, sodium, thallium, vanadium, and zinc. The inorganic elements that were detected were compared against elements that are considered as essential nutrients to determine if they are to be considered as Site-Related Contaminants (SRCs). Calcium, magnesium, iron, potassium, and sodium were eliminated as potential SRCs because they are considered essential nutrients

Several inorganic compounds were detected at levels exceeding the MCLs and/or RSLs. Table 4-1 in Section 4 presents a summary of all inorganic compounds and the associated wells that had detections exceeding MCLs and/or the RSLs.

Aluminum

• LL1mw-083 (640 μg/L), LL1mw-084 (1300 μg/L), RQLmw-011 (2500 μg/L). The MCL for aluminum is 200 μg/L. The RSL is 16,000 μg/L.

Arsenic

DETmw-001 (26 μg/L), DETmw-003 (12 μg/L), FWGmw-009 (9.8 μg/L J), FWGmw-016 (4.3 μg/L J), LL1mw-086 (3.7 μg/L J), LL2mw-059 (7.3 μg/L J), LL12mw-242 (19 μg/L), LL12mw-247 (6.3 μg/L J), RQLmw-006 (13 μg/L), RQLmw-007 (55 μg/L), RQLmw-008 (38 (μg/L), RQLmw-009 (43 μg/L), SCFmw-002 (15 μg/L), WBGmw-021 (6.5 μg/L J). The MCL for arsenic is 10 μg/L. The RSL is 0.045 μg/L.

Cobalt

• LL1mw-083 (7.1 μ g/L), LL1mw-084 (9.0 μ g/L), LL2mw-059 (14 μ g/L), LL2mw-265 (4.8 μ g/L J), LL12mw-187 (9.9 μ g/L), RQLmw-006 (9.2 μ g/L), RQLmw-007 (7.1 μ g/L), RQLmw-009 (6.0 μ g/L), and RQLmw-011 (25 μ g/L). There is no MCL for cobalt. The RSL is 4.7 μ g/L.

Cyanide

• RQLmw-007 (0.008 μg/L J). The MCL for cyanide is 0.2 mg/L. The RSL is 0.0014 mg/L

Iron

DA2mw-114 (920 μg/L), DA2mw-115 (720 μg/L), DETmw-001 (900 μg/L), DETmw-003 (1400 μg/L), EBGmw-131 (730 μg/L), FWGmw-009 (910 μg/L), FWGmw-011 (1900 μg/L), FWGmw-012 (2100 μg/L), FWGmw-016 (600 μg/L), LL1mw-064 (580 μg/L), LL1mw-086 (600 μg/L), LL2mw-059 (5300 μg/L), LL2mw-265 (2900 μg/L), LL2mw-267 (360 μg/L), LL12mw-242 (660 μg/L), NTAmw-119 (1500 μg/L), RQLmw-006 (54000 μg/L), RQLmw-007 (13000 μg/L), RQLmw-008 (89000 μg/L), RQLmw-009 (13000 μg/L), RQLmw-011 (4700 μg/L), SCFmw-002 (340 μg/L), WBGmw-019 (430 μg/L), WBGmw-020 (4000 μg/L), WBGmw-021 (570 μg/L). The MCL for iron is 300 μg/L. The RSL is 11000 μg/L.

Manganese

• DA2mw-114 (82 μg/L), DA2mw-115 (110 μg/L), DETmw-001 (390 μg/L), DETmw-002 (56 μg/L), DETmw-003 (250 μg/L), EBGmw-131 (150 μg/L), FWGmw-009 (180 μg/L), FWGmw-011 (270 μg/L), FWGmw-012 (110 μg/L), FWGmw-015 (940 μg/L), FWGmw-016 (210 μg/L), LL1mw-064 (130 μg/L), LL1mw-065 (200 μg/L), LL1mw-083 (410 μg/L), LL1mw-084 (67 μg/L), LL1mw-086 (310 μg/L), LL1mw-087 (200 μg/L), LL2mw-059 (970 μg/L), LL2mw-265 (540 μg/L), LL2mw-267 (490 μg/L), LL12mw-185 (1700 μg/L), LL12mw-187 (2200 μg/L), LL12mw-242 (61 μg/L), LL12mw-245 (190 μg/L), LL12mw-247 (280 μg/L), NTAmw-119 (340 μg/L), RQLmw-006 (6800 μg/L), RQLmw-007 (2100 μg/L), RQLmw-008 (660 μg/L), RQLmw-009 1500 μg/L), RQLmw-010 (1300 μg/L), RQLmw-011 (2300 μg/L), SCFmw-002 (70 μg/L), SCFmw-004 (740 μg/L J), WBGmw-006 (65 μg/L), WBGmw-019 (250 μg/L), WBGmw-020 (330 μg/L), WBGmw-021 (240 μg/L). The MCL for manganese is 50 μg/L. The RSL is 320 μg/L.

Thallium

• LL12mw-245 (1.1 μg/L J), RQLmw-008 (1.2 μg/L J), RQLmw-011 (1.7 μg/L), WBGmw-009 (1.0 μg/L J). The MCL for thallium is 2 μg/L. The RSL is 0.16 μg/L

The facility-wide groundwater conditions are currently being evaluated under the remedial investigation/feasibility study. This will include an evaluation of aluminum, manganese, arsenic, cyanide, cobalt, iron, and thallium related to exceedances of MCLs/RSLs. To date there have been no elevated concentrations of the subject parameters found in the groundwater that would pose an immediate threat to human health or the environment.

3.2.3 Volatile Organic Compounds

The analytical results for VOCs are summarized in Table 3-4. The following VOCs were detected above the MDL for this sampling event.

- 1,2-Dichloroethene (total) RQLmw-007 (0.18 μg/L J). There is no MCL for 1,2-dichloroethene. The RSL is 130 μg/L.
- Cis-1,2-dichloroethene RQLmw-007 (0.18 μ g/L J). The MCL for cis-1,2-dichloroethene is 70 μ g/L. The RSL is 28 μ g/L.
- Acetone FWGmw-009 (1.2 μ g/L B), LL12mw-059 (1.4 μ g/L B), RQLmw-006 (3.4 μ g/L J B), RQLmw-007 (1.2 μ g/L J B), RQLmw-008 (2.3 μ g/L J B), RQLmw-009 (3.2 μ g/L J B), RQLmw-010 (2.5 μ g/L J B). There is no MCL for acetone. The RSL is 12,000 μ g/L.
- Carbon disulfide DA2mw-115 (0.14 μg/L B), RQLmw-006 0.16 μg/L B), NTAmw-119 (0.25 μg/L). There is no MCL for carbon disulfide. The RSL is 720 μg/L.

- Carbon tetrachloride LL10mw-003 (4.2 μ g/L). The MCL for carbon tetrachloride is 5.0 μ g/L. The RSL is 0.39 μ g/L.
- Chloroform LL10mw-003 (0.56 $\mu g/L$). There is no MCL for chloroform. The RSL is 0.19 $\mu g/L$.

As shown in Table 3-4, the only VOCs detected at levels exceeding their corresponding MCLs or RSLs during the August 2013 sampling event were:

- Carbon tetrachloride in LL10mw-003 (4.2 $\mu g/L$). The MCL for carbon tetrachloride is 5.0 $\mu g/L$. The RSL is 0.39 $\mu g/L$.
- Chloroform in LL10mw-003 (0.56 μ g/L). There is no MCL for chloroform. The RSL is 0.19 μ g/L.

3.2.4 Semivolatile Organic Compounds

The analytical results for SVOCs are summarized in Table 3-5. The following SVOCs were detected above the MDL for this sampling event.

- Anthracene DETmw-003 (0.097 $\mu g/L$). There is no MCL for anthracene. The RSL is 1300 $\mu g/L$.
- Benzo(a)anthracene DETmw-003 (0.15 μ g/L). There is no MCL for benzo(a)anthracene. The RSL is 0.029 μ g/L.
- Benzo(a)pyrene DETmw-003 (0.12). The MCL for benzo(a)pyrene is 0.2 μg/L, The RSL is 0.0029 μg/L.
- Benzo(b)fluoranthene DETmw-003 (0.12 μg/L). There is no MCL for benzo(b)fluoranthene. The RSL is 0.029 μg/L.
- Benzo(k)fluoranthene DETmw-003 (0.13 μg/L). There is no MCL for benzo(k)fluoranthene. The RSL is 0. 29 μg/L.
- Bis(2-ethylhexyl)phthalate DA2mw-114 (0.35 μg/L B), DA2mw-115 (0.56 μg/L B), DETmw-001 (3.4μg/L B), DETmw-002 (0.35 μg/L B), DETmw-003 (0.78 μg/L B), DETmw-004 (1.4 μg/L B), EBGmw-131 (0.38 μg/L), FBQmw-174 (0.82 μg/L B), FWGmw-009 (0.34 μg/L B), FWGmw-004 (0.25 μg/L B), FWGmw-007 (0.48 μg/L B), FWGmw-011 (13 μg/L), FWGmw-012 (0.74 μg/L B), FWGmw-015 (0.45 μg/L B), FWGmw-016 (0.32 μg/L B), LL1mw-064 (0.61 μg/L B), LL1mw-065 (0.5 μg/L B), LL1mw-083 (1.1 μg/L B), LL1mw-084 (1.8 μg/L B), LL1mw-086 (1.2 μg/L B), LL1mw-087 (0.86 μg/L B), LL2mw-059 (1.4 μg/L B), LL2mw-265 (1.5 μg/L B), LL2mw-267 (0.62 μg/L B), LL3mw-238 (0.39 μg/L B), LL3mw-241 (0.57 μg/L B), LL3mw-244 (0.46 μg/L B), LL12mw-187 (0.65 μg/L B), LL12mw-245 (0.68 μg/L B)

LL12mw-247 (0.55 μ g/L J), NTAmw-119 (0.42 μ g/L B), RQLmw-006 (0.51 μ g/L B), RQLmw-007 (0.46 μ g/L J), RQLmw-009 (0.37 μ g/L B), RQLmw-010 (0.63 μ g/L), RQLmw-011 (0.22 μ g/L B, SCFmw-004 (0.95 μ g/L B), WBGmw-006 (0.74 μ g/L B), WBGmw-009 (0.64 μ g/L B), WBGmw-018 (0.31 μ g/L J B), WBGmw-019 (0.49 μ g/L B), WBGmw-020 (0.54 μ g/L B), and WBGmw-021 (0.65 μ g/L B). The MCL for bis(2-ethylhexyl)phthalate is 6 μ g/L. The RSL is 4.8 μ g/L.

- Butyl benzyl phthalate LL12mw-242 (0.35 μ g/L J). There is no MCL for butyl benzyl phthalate. The RSL is 14 μ g/L.
- Chrysene DETmw-003 (0.11 μ g/L). There is no MCL for chrysene. The RSL is 2.9 μ g/L.
- Di-n-butyl phthalate DA2mw-115 (0.64 μg/L J), DETmw-001 (0.70 μg/L J), DETmw-003 (0.99μg/L), DETmw-004 (0.85 μg/L B), FBQmw-174 (1.1 μg/L B), FWGmw-011 (1.7 μg/L), FWGmw-012 (0.74 μg/L J), LL1mw-064 (0.91 μg/L J), LL1mw-083 (1.6 μg/L B), LL1mw-084 (1.1 μg/L B), LL1mw-086 (0.86 μg/L B), LL1mw-087 (0.84 μg/L J), LL2mw-059 (1.5 μg/L B), LL2mw-265 (1.4 μg/L B), LL2mw-267 (0.81 μg/L B), LL3mw-244 (0.69 μg/L J), LL12mw-187 (0.84 μg/L J), LL12mw-242 (1.4 μg/L), LL12mw-247 (0.67 μg/L J), RQLmw-007 (0.78 μg/L J), RQLmw-010 (1.0 μg/L), SCFmw-004 (0.84 μg/L J), WBGmw-009 (0.75 μg/L B), WBGmw-019 (0.84 μg/L), WBGmw-020 (0.76 μg/L B) WBGmw-021 (0.68 μg/L B), and NTAmw-119 (0.72 μg/L B). There is no MCL for di-n-butyl phthalate. The RSL is 670 μg/L.
- Fluoranthene DETmw-003 (0.13 μ g/L). There is no MCL for fluoranthene. The RSL is 630 μ g/L.
- Fluorene RQLmw-008 (0.19 μ g/L). There is no MCL for fluorene. The RSL is 220 μ g/L.
- Phenanthrene DETmw-003 (0.12 μg/L). There is no MCL or RSL for phenanthrene.
- Pyrene DETmw-003 (0.13 μ g/L). There is no MCL for pyrene. The RSL is 87 μ g/L.
- Naphthalene –NTAmw-119 (0.11 $\mu g/L$). There is no MCL for naphthalene. The RSL is 0.14 $\mu g/L$.

As shown in Table 3-5, the following SVOCs were detected at levels exceeding either their corresponding MCLs or RSLs:

• Benzo(a)anthracene in DETmw-003 (0.15 μg/L). There is no MCL for benzo (a)anthracene. The RSL is 0.029 μg/L.

- Benzo(a)pyrene in DETmw-003 (0.12 μ g/L). The MCL for benzo(a)pyrene is 0.2 μ g/L, The RSL is 0.0029 μ g/L.
- Benzo(b)fluoranthene in DETmw-003 (0.12 μg/L). There is no MCL for benzo(b)fluoranthene. The RSL is 0.029 μg/L.

3.2.5 Pesticides and Polychlorinated Biphenyls

The analytical results for pesticides and PCBs are summarized in Table 3-6. The following pesticides and PCBs were detected above the MDL for this sampling event.

- beta-BHC DA2mw-115 (0.015 μg/L J), DETmw-002 (0.011 μg/L J), DETmw-003 (0.015 μg/L J), LL1mw-084 (0.069 μg/L), LL3mw-244 (0.025 μg/L J), LL12mw-245 (0.011 μg/L J), LL12mw-247 (0.18 μg/L J), RQLmw-006 (0.013 μg/L J B), RQLmw-008 (0.0093 μg/L J B), SCFmw-002 (0.014 μg/L J), SCFmw-004 (0.0087 μg/L J), and WBGmw-019 (0.011 μg/L J). There is no MCL for beta-BHC. The RSL is 0.022 μg/L.
- 4,4'-DDE LL3mw-238 (0.02 μg/L J), RQLmw-008 (0.038 μg/L J). There is no MCL for 4,4'-DDE. The RSL is 0.2 μg/L.
- delta-BHC FBQmw-174 (0.019 µg/L J). There is no MCL or RSL for delta-BHC.
- Endosulfin II LL1mw-083 (0.014 μ g/L J). There is no MCL for endosulfin II. The RSL is 78 μ g/L.
- Endrin LL3mw-241 (0.027 μg/L). The MCL for endrin is 2 μg/L. The RSL is 1.7 μg/L.
- Endrin Aldehyde LL3mw-238 (0.011 μg/L J). There is no MCL or RSL for endrin aldehyde.
- Endrin Ketone DETmw-001 (0.012 μg/L J). There is no MCL or RSL for endrin ketone.
- gamma-Chlordane FBQmw-174 (0.037 μg/L). There is no MCL or RSL for gamma-chlordane.

As shown in Table 3-6, the following pesticide was detected at levels exceeding either their MCLs or RSLs.

• beta-BHC in LL1mw-084 (0.069 μ g/L) and LL3mw-244 (0.025 μ g/L J). There is no MCL for beta-BHC. The RSL is 0.022 μ g/L.

Table 3-3. FWGWMP August 2013 Inorganics Analytical Results

Station ID				DA2mw-114	DA2mw-115	DETmw-001	DETmw-002	DETmw-003	DETmw-004	EBGmw-131
			USEPA	FWGDA2mw-114-	FWGDA2mw-115-	FWGDETmw-	FWGDETmw-	FWGDETmw-	FWGDETmw-	FWGEBGmw-131-
Sample ID		MCL	RSL	0312-GF	0313-GF	001C-0314-GF	002C-0315-GF	003C-0343-GF	004C-0344-GF	0316-GF
Date Collected				8/20/2013	8/20/2013	8/20/2013	8/20/2013	8/20/2013	8/20-21/2013	8/19/2013
Sample Type				Grab	Grab	Grab	Grab	Grab	Grab	Grab
Analyte	Units									
Aluminum	μg/L	200	16000	60 U	60 U	60 U	60 U	60 U	60 U	60 U
Antimony	μg/L	6.0	6.0	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	0.38 J	1.0 U
Arsenic	μg/L	10	0.045	10 U	10 U	26	10 U	12	10 U	10 U
Barium	μg/L	2000	2900	30	21	22	37	48	80	110
Beryllium	μg/L	4.0	16	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Cadmium	μg/L	5.0	6.9	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Calcium	μg/L	NS	NS	110000	100000	78000	89000	84000	160000	72000
Chromium	μg/L	100	16000	4.0 U	4.0 U	4.0 U	4.0 U	4.0 U	4.0 U	4.0 U
Cobalt	μg/L	NS	4.7	4.0 U	4.0 U	4.0 U	4.0 U	4.0 U	4.0 U	4.0 U
Copper	μg/L	1300	620	10 U	10 U	10 U	10 U	10 U	10 U	10 U
Cyanide	mg/L	0.20	0.0014	0.010 UJ	0.010 UJ	0.010 U	0.010 UJ	0.010 U	0.010 UJ	0.010 UJ
Iron	μg/L	300	11000	920	720	900	93 J	1400	100 U	730
Lead	μg/L	15	NS	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
Magnesium	μg/L	NS	NS	37000	29000	32000	32000	30000	31000	29000
Manganese	μg/L	50	320	82	110	390	56	250	5.7 B	150
Mercury	μg/L	2.0	0.63	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U
Nickel	μg/L	NS	300	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
Potassium	μg/L	NS	NS	4100	3400	1900	3100	1800	1700	1400
Selenium	μg/L	50	78	10 U	10 U	10 U	10 U	10 U	10 U	10 U
Silver	μg/L	100	71	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
Sodium	μg/L	NS	NS	13000	12000	10000	17000	11000	2900	2900
Thallium	μg/L	2.0	0.16	1.5 U	1.5 U	1.5 U	1.5 U	1.5 U	1.5 U	1.5 U
Vanadium	μg/L	NS	63	4.0 U	4.0 U	4.0 U	4.0 U	4.0 U	4.0 U	4.0 U
Zinc	μg/L	5000	4700	50 U	50 U	50 U	50 U	50 U	50 U	50 U

MCL = Maximum Contaminant Level

Table 3-3. FWGWMP August 2013 Inorganics Analytical Results

Station ID				FBQmw-174	FWGmw-004	FWGmw-007	FWGmw-009	FWGmw-011	FWGmw-012	FWGmw-015
			USEPA	FWGFBQmw-	FWGFWGmw-	FWGFWGmw-	FWGFWGmw-	FWGFWGmw-	FWGFWGmw-	FWGFWGmw-
Sample ID		MCL	RSL	174C-0345-GF	004-0346-GF	007-0347-GF	009-0319-GF	011-0348-GF	012-0349-GF	015-0350-GF
Date Collected				8/20/2013	8/19/2013	8/21/2013	8/21/2013	8/20/2013	8/20/2013	8/19/2013
Sample Type				Grab	Grab	Grab	Grab	Grab	Grab	Grab
Analyte	Units									
Aluminum	μg/L	200	16000	60 U	60 U	60 U	60 B	60 U	60 U	60 U
Antimony	μg/L	6.0	6.0	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Arsenic	μg/L	10	0.045	10 U	10 U	10 U	9.8 J	10 U	10 U	10 U
Barium	μg/L	2000	2900	14	23	18	56	42	25	14
Beryllium	μg/L	4.0	16	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Cadmium	μg/L	5.0	6.9	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Calcium	μg/L	NS	NS	5700	96000	100000	89000	67000	23000	340000
Chromium	μg/L	100	16000	4.0 U	4.0 U	1.4 J	4.0 U	4.0 U	4.0 U	4.0 U
Cobalt	μg/L	NS	4.7	4.0 U	4.0 U	4.0 U	4.0 U	4.0 U	1.8 J	2.9 J
Copper	μg/L	1300	620	10 U	10 U	10 U	10 U	10 U	10 U	10 U
Cyanide	mg/L	0.20	0.0014	N/A	0.010 U	N/A	0.010 UJ	N/A	N/A	N/A
Iron	μg/L	300	11000	100 U	100 U	100 U	910	1900	2100	100 U
Lead	μg/L	15	NS	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
Magnesium	μg/L	NS	NS	2000	47000	52000	24000	14000	5600	260000
Manganese	μg/L	50	320	16	2.4 B	47	180	270	110	940
Mercury	μg/L	2.0	0.63	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U
Nickel	μg/L	NS	300	5.8	5.0 U	2.3 J	5.0 U	5.0 U	2.4 J	2.5 J
Potassium	μg/L	NS	NS	1000	710 J	1800	1200	840 J	830 J	4000
Selenium	μg/L	50	78	10 U	10 U	10 U	10 U	10 U	10 U	10 U
Silver	μg/L	100	71	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
Sodium	μg/L	NS	NS	810	4700	7000	8500	6300	6700	44000
Thallium	μg/L	2.0	0.16	1.5 U	1.5 U	1.5 U	1.5 U	1.5 U	1.5 U	1.5 U
Vanadium	μg/L	NS	63	4.0 U	4.0 U	4.0 U	4.0 U	4.0 U	4.0 U	4.0 U
Zinc	μg/L	5000	4700	50 U	50 U	50 U	50 U	50 U	50 U	50 U

MCL = Maximum Contaminant Level

Table 3-3. FWGWMP August 2013 Inorganics Analytical Results

Station ID				FWGmw-016	LL1mw-064	LL1mw-065	LL1mw-083	LL1mw-084	LL1mw-086	LL1mw-087
			USEPA	FWGFWGmw-016	FWGLL1mw-	FWGLL1mw-	FWGLL1mw-	FWGLL1mw-	FWGLL1mw-086-	FWGLL1mw-
Sample ID		MCL	RSL	0351-GF	064C-0352-GF	065C-0353-GF	083C-0354-GF	084C-0355-GF	0320-GF	087C-0356-GF
Date Collected				8/19/2013	8/20/2013	8/20/2013	8/20/2013	8/21/2013	8/20/2013	8/20/2013
Sample Type				Grab	Grab	Grab	Grab	Grab	Grab	Grab
Analyte	Units									
Aluminum	μg/L	200	16000	27 J	60 U	60 U	640	1300	60 U	60 U
Antimony	μg/L	6.0	6.0	1.0 U	1.0 U					
Arsenic	μg/L	10	0.045	4.3 J	10 U	10 U	10 U	10 U	3.7 J	10 U
Barium	μg/L	2000	2900	55	53	50	17	18	39	28
Beryllium	μg/L	4.0	16	1.0 U	1.0 U					
Cadmium	μg/L	5.0	6.9	1.0 U	1.0 U	1.0 U	0.51 J	1.4	1.0 U	1.0 U
Calcium	μg/L	NS	NS	100000	58000	75000	26000	65000	47000	99000
Chromium	μg/L	100	16000	4.0 U	4.0 U					
Cobalt	μg/L	NS	4.7	4.0 U	4.0 U	4.0 U	7.1	9.0	4.0 U	1.5 J
Copper	μg/L	1300	620	10 U	10 U	10 U	10 U	9.1 J	10 U	10 U
Cyanide	mg/L	0.20	0.0014	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Iron	μg/L	300	11000	600	580	170	100 U	50 U	600	100 U
Lead	μg/L	15	NS	5.0 U	5.0 U					
Magnesium	μg/L	NS	NS	28000	10000	19000	5400	3100	20000	29000
Manganese	μg/L	50	320	210	130	200	410	67	310	200
Mercury	μg/L	2.0	0.63	0.20 U	0.20 U					
Nickel	μg/L	NS	300	5.0 U	5.0 U	5.0 U	27	18	5.0 U	5.0 U
Potassium	μg/L	NS	NS	2100	740 J	1000	2800	3600	19000	610 J
Selenium	μg/L	50	78	10 U	10 U	10 U	10 U	4.9 J	10 U	10 U
Silver	μg/L	100	71	5.0 U	5.0 U					
Sodium	μg/L	NS	NS	11000	5500	12000	7800	5700	16000	8900
Thallium	μg/L	2.0	0.16	1.5 U	1.5 U					
Vanadium	μg/L	NS	63	4.0 U	4.0 U					
Zinc	μg/L	5000	4700	50 U	50 U	50 U	39 J	58	50 U	50 U

MCL = Maximum Contaminant Level

Table 3-3. FWGWMP August 2013 Inorganics Analytical Results

Station ID				LL2mw-059	LL2mw-265	LL2mw-267	LL3mw-238	LL3mw-241	LL3mw-244	LL10mw-003
			USEPA	FWGLL2mw-	FWGLL2mw-	FWGLL2mw-	FWGLL3mw-	FWGLL3mw-	FWGLL3mw-244-	FWGLL10mw-
Sample ID		MCL	RSL	059C-0357-GF	265C-0321-GF	267C-0358-GF	238C-0359-GF	241C-0360-GF	0323-GF	003C-0361-GF
Date Collected				8/20/2013	8/21/2013	8/21/2013	8/19/2013	8/19/2013	8/20/2013	8/20/2013
Sample Type				Grab	Grab	Grab	Grab	Grab	Grab	Grab
Analyte	Units									
Aluminum	μg/L	200	16000	60 U	60 U	60 U	27 J	60 U	60 U	60 U
Antimony	μg/L	6.0	6.0	1.0 U	0.35 J	1.0 U				
Arsenic	μg/L	10	0.045	7.3 J	10 U	10 U				
Barium	μg/L	2000	2900	62	11	11	7.9	5.9	17	5.0 U
Beryllium	μg/L	4.0	16	1.0 U	1.0 U					
Cadmium	μg/L	5.0	6.9	1.0 U	1.0 U					
Calcium	μg/L	NS	NS	29000	81000	32000	51000	19000	24000	56000
Chromium	μg/L	100	16000	4.0 U	4.0 U					
Cobalt	μg/L	NS	4.7	14	4.8	4.0 U	4.0 U	4.0 U	4.0 U	4.0 U
Copper	μg/L	1300	620	10 U	10 U					
Cyanide	mg/L	0.20	0.0014	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Iron	μg/L	300	11000	5300	2900	360	100 U	100 U	100 U	100 U
Lead	μg/L	15	NS	5.0 U	5.0 U					
Magnesium	μg/L	NS	NS	11000	24000	17000	5700	6500	8200	17000
Manganese	μg/L	50	320	970	540	490	2.6 B	3.0 B	5.0 U	5.0 U
Mercury	μg/L	2.0	0.63	0.20 U	0.20 U					
Nickel	μg/L	NS	300	8.1	12	3.7 J	5.0 U	2.2 J	5.0 U	5.0 U
Potassium	μg/L	NS	NS	860 J	710 J	670 J	2800	1000	1300	690 J
Selenium	μg/L	50	78	10 U	10 U					
Silver	μg/L	100	71	5.0 U	5.0 U					
Sodium	μg/L	NS	NS	4400	12000	19000	3300	3400	4000	8600
Thallium	μg/L	2.0	0.16	1.5 U	1.5 U					
Vanadium	μg/L	NS	63	4.0 U	4.0 U					
Zinc	μg/L	5000	4700	50 U	50 U					

MCL = Maximum Contaminant Level

Table 3-3. FWGWMP August 2013 Inorganics Analytical Results

Station ID				LL12mw-185	LL12mw-187	L12mw-242	LL12mw-245	LL12mw-247	NTAmw-119	RQLmw-006
			USEPA	FWGLL12mw-	FWGLL12mw-	FWGLL12mw-	FWGLL12mw-	FWGLL12mw-247-	FWGNTAmw-119-	FWGRQLmw-
Sample ID		MCL	RSL	185C-0362-GF	187C-0363-GF	242C-0364-GF	245C-0365-GF	0336-GF	0367-GF	006C-0368-GF
Date Collected				8/20/2013	8/20/2013	8/20/2013	8/20/2013	8/20/2013	8/21/2013	8/19/2013
Sample Type				Grab	Grab	Grab	Grab	Grab	Grab	Grab
Analyte	Units									
Aluminum	μg/L	200	16000	60 U	60 U	50 J	60 U	160 J	60 U	60 U
Antimony	μg/L	6.0	6.0	1.0 U	1.0 U	1.0 U				
Arsenic	μg/L	10	0.045	10 U	10 U	19	10 U	6.3 J	10 U	13
Barium	μg/L	2000	2900	50	280	26	28	27	86	7.9
Beryllium	μg/L	4.0	16	1.0 U	1.0 U	1.0 U				
Cadmium	μg/L	5.0	6.9	1.0 U	1.0 U	1.0 U				
Calcium	μg/L	NS	NS	710000	990000	71000	160000	100000	83000	62000
Chromium	μg/L	100	16000	4.0 U	4.0 U	4.0 U				
Cobalt	μg/L	NS	4.7	1.9 J	9.9	4.0 U	1.6 J	4.0 U	4.0 U	9.2
Copper	μg/L	1300	620	10 U	10 U	10 U				
Cyanide	mg/L	0.20	0.0014	N/A	N/A	N/A	N/A	N/A	N/A	0.010 UJ
Iron	μg/L	300	11000	100 U	100 U	660	110	170	1500	54000
Lead	μg/L	15	NS	5.0 U	5.0 U	5.0 U				
Magnesium	μg/L	NS	NS	290000	300000	48000	73000	54000	22000	28000
Manganese	μg/L	50	320	1700	2200	61	190	280	340	6800
Mercury	μg/L	2.0	0.63	0.20 U	0.20 U	0.20 U				
Nickel	μg/L	NS	300	6.6	15	5.0 U	7.4	5.0 U	5.0 U	19
Potassium	μg/L	NS	NS	9200	54000	1900	3500	2700	1300	1000
Selenium	μg/L	50	78	10 U	10 U	10 U				
Silver	μg/L	100	71	5.0 U	5.0 U	5.0 U				
Sodium	μg/L	NS	NS	56000	33000	39000	26000	24000	7200	1500 B
Thallium	μg/L	2.0	0.16	1.5 U	1.5 U	1.5 U	1.1 J	1.5 U	1.5 U	1.5 U
Vanadium	μg/L	NS	63	4.0 U	4.0 U	4.0 U				
Zinc	μg/L	5000	4700	50 U	50 U	50 U				

MCL = Maximum Contaminant Level

Table 3-3. FWGWMP August 2013 Inorganics Analytical Results

Station ID				RQLmw-007	RQLmw-008	RQLmw-009	RQLmw-010	RQLmw-011	SCFmw-002	SCFmw-004
			USEPA	FWGRQLmw-	FWGRQLmw-	FWGRQLmw-	FWGRQLmw-	FWGRQLmw-	FWGSCFmw-002	FWGSCFmw-004-
Sample ID		MCL	RSL	007C-0369-GF	008C-0370-GF	009C-0371-GF	010C-0325-GF	011C-0326-GF	0327-GF	0372-GF
Date Collected				8/19/2013	8/19/2013	8/19/2013	8/19/2013	8/19/2013	8/20/2013	8/20/2013
Sample Type				Grab						
Analyte	Units									
Aluminum	μg/L	200	16000	60 U	60 U	60 U	60 U	2500	60 U	60 U
Antimony	μg/L	6.0	6.0	1.0 U						
Arsenic	μg/L	10	0.045	55	38	43	10 U	10 U	15	10 U
Barium	μg/L	2000	2900	53	140	53	5.0 U	21	42	83 J
Beryllium	μg/L	4.0	16	1.0 U						
Cadmium	μg/L	5.0	6.9	1.0 U						
Calcium	μg/L	NS	NS	110000	71000	30000	76000	26000	84000	150000 J
Chromium	μg/L	100	16000	4.0 U						
Cobalt	μg/L	NS	4.7	7.1	1.5 J	6.0	4.0 U	25	4.0 U	4.0 U
Copper	μg/L	1300	620	10 U						
Cyanide	mg/L	0.20	0.0014	0.008 J	0.010 U	0.010 UJ	0.010 UJ	0.010 U	N/A	N/A
Iron	μg/L	300	11000	13000	89000	13000	100 U	4700	340	100 U
Lead	μg/L	15	NS	5.0 U	5.0 U	5.0 U	5.0 U	2.3 J	5.0 U	5.0 U
Magnesium	μg/L	NS	NS	100000	71000	39000	35000	11000	27000	60000 J
Manganese	μg/L	50	320	2100	660	1500	1300	2300	70	740 J
Mercury	μg/L	2.0	0.63	0.20 U						
Nickel	μg/L	NS	300	14	2.9 J	6.8	5.4	61	5.0 U	5.0 U
Potassium	μg/L	NS	NS	7400	4500	4200	2800	4300	2300	2700
Selenium	μg/L	50	78	10 U						
Silver	μg/L	100	71	5.0 U						
Sodium	μg/L	NS	NS	5200	6600 B	1700 B	4000	1800 B	22000	11000 J
Thallium	μg/L	2.0	0.16	1.5 U	1.2 J	1.5 U	1.5 U	1.7	1.5 U	1.5 U
Vanadium	μg/L	NS	63	4.0 U						
Zinc	μg/L	5000	4700	50 U	50 U	50 U	50 U	35 J	50 U	50 U

MCL = Maximum Contaminant Level

Table 3-3. FWGWMP August 2013 Inorganics Analytical Results

Station ID				WBGmw-006	WBGmw-009	WBGmw-018	WBGmw-019	WBGmw-020	WBGmw-021
			USEPA	FWGWBGmw-	FWGWBGmw-	FWGWBGmw-	FWGWBGmw-	FWGWBGmw-	FWGWBGmw-
Sample ID		MCL	RSL	006C-0373-GF	009C-0374-GF	018-0328-GF	019-0329-GF	020-0330-GF	021-0331-GF
Date Collected				8/21/2013	8/21/2013	8/21/2013	8/21/2013	8/21/2013	8/21/2013
Sample Type				Grab	Grab	Grab	Grab	Grab	Grab
Analyte	Units								
Aluminum	μg/L	200	16000	60 U	23 U	60 U	60 U	60 U	60 U
Antimony	μg/L	6.0	6.0	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Arsenic	μg/L	10	0.045	10 U	10 U	10 U	10 U	10 U	6.5 J
Barium	μg/L	2000	2900	23	8.3	20	62	17	62
Beryllium	μg/L	4.0	16	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Cadmium	μg/L	5.0	6.9	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Calcium	μg/L	NS	NS	71000	29000	15000	77000	31000	74000
Chromium	μg/L	100	16000	4.0 U	4.0 U	4.0 U	4.0 U	4.0 U	4.0 U
Cobalt	μg/L	NS	4.7	4.0 U	4.0 U	4.0 U	4.0 U	4.0 U	4.0 U
Copper	μg/L	1300	620	10 U	10 U	10 U	10 U	10 U	10 U
Cyanide	mg/L	0.20	0.0014	N/A	N/A	0.010 UJ	0.010 UJ	0.010 UJ	0.010 UJ
Iron	μg/L	300	11000	100 U	100 U	100 U	430	4000	570
Lead	μg/L	15	NS	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
Magnesium	μg/L	NS	NS	24000	8900	3400	22000	11000	19000
Manganese	μg/L	50	320	65	17	5.0 U	250	330	240
Mercury	μg/L	2.0	0.63	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U
Nickel	μg/L	NS	300	5.0 U	5.0 U	5.0 U	5.0 U	3.6 J	5.0 U
Potassium	μg/L	NS	NS	820 J	370 J	1100	1800	590 J	1200
Selenium	μg/L	50	78	10 U	10 U	10 U	10 U	10 U	10 U
Silver	μg/L	100	71	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
Sodium	μg/L	NS	NS	6300	3500	1800	8300	4000	5100
Thallium	μg/L	2.0	0.16	1.5 U	1.0 J	1.5 U	1.5 U	1.5 U	1.5 U
Vanadium	μg/L	NS	63	4.0 U	4.0 U	4.0 U	4.0 U	4.0 U	4.0 U
Zinc	μg/L	5000	4700	50 U	50 U	50 U	50 U	50 U	50 U

MCL = Maximum Contaminant Level

Table 3-3. FWGWMP August 2013 Inorganics Analytical Results

Data Qualifiers

Data qualifier flags are used in an effort to describe the quality of each piece of data for each constituent. These flags are letter codes appended to the numerical data. The following data qualifiers are specified in the USACE Louisville Chemistry Guidelines. For a complete explanation of qualifiers used for each constituent please refer to the Data Verification Summaries in Appendix C.

- U The analyte was analyzed for but not detected. The numerical value preceding the U is the associated reporting limit.
- J The identification of the analyte is acceptable, but the quality assurance criteria indicate that the quantitative values may be outside the normal expected range of precision (i.e., the quantitative value is estimated). Examples include:
 - Results detected above the laboratory MDL but less than the laboratory reporting limit.
 - MS/MSD percent recoveries outside the acceptance criteria.
 - LCS percent recoveries outside acceptance criteria.
- R Data are considered to be rejected and shall not be used. This flag denotes the failure of quality control criteria such that it cannot be determined if the analyte is present or absent from the sample [e.g., the MRL verification standard was below quality control guidelines; associated sample results that were non-detect are unusable].
- UJ This flag is a combination of the U and J qualifiers, which indicate that the analyte is not present. The reported value is considered to be an estimated RL.
- B The B flag is used for both organic and inorganic analyses when the analyte is found in the method blank or any of the field blanks. This designation overrides the CLP "B" designation when used by the laboratory as an estimated value for inorganics.

Table 3-4. FWGWMP August 2013 VOC Analytical Results

Station ID				DA2mw-114	DA2mw-115	DETmw-001	DETmw-002	DETmw-003	DETmw-004	EBGmw-131
Otation 1D			USEPA	FWGDA2mw-114-	FWGDA2mw-	FWGDETmw-	FWGDETmw-	FWGDETmw-	FWGDETmw-	FWGEBGmw-
Sample ID		MCL	RSL	0312-GW	115-0313-GW	001C-0314-GW	002C-0315-GW	003C-0343-GW	004C-0344-GW	131-0316-GW
Date Collected				8/20/2013	8/20/2013	8/20/2013	8/20/2013	8/20/2013	8/20-21/13	8/19/2013
Sample Type				Grab	Grab	Grab	Grab	Grab	Grab	Grab
Analyte	Units									
1,1,1-Trichloroethane	μg/L	200	7500	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U
1,1,2,2-Tetrachloroethane	μg/L	NS	0.066	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U
1,1,2-Trichloroethane	μg/L	5.0	0.24	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U
1,1-Dichloroethane	μg/L	NS	2.4	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U
1,1-Dichloroethene (total)	μg/L	7.0	260	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U
1,2-Dibromoethane	μg/L	NS	0.0065	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U
1,2-Dichloroethane	μg/L	5.0	0.15	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U
1,2-Dichloroethene (total)	μg/L	NS	130	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U
1,2-Dichloropropane	μg/L	5.0	0.38	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U
2-Butanone	μg/L	NS	4900	0.57 U	0.57 U	0.57 U	0.57 U	0.57 U	0.57 U	0.57 U
2-Hexanone	μg/L	NS	34	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U
4-Methyl-2-pentanone	μg/L	NS	1000	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U
Acetone	μg/L	NS	12000	1.1 U	1.1 U	1.1 U	1.1 U	1.1 U	1.1 U	1.1 U
Benzene	μg/L	5.0	0.39	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U
Bromochloromethane	μg/L	NS	83	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U
Bromodichloromethane	μg/L	NS	0.12	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U
Bromoform	μg/L	NS	7.9	0.64 U	0.64 U	0.64 U	0.64 U	0.64 U	0.64 U	0.64 U
Bromomethane	μg/L	NS	7.0	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U
Carbon disulfide	μg/L	NS	720	0.25 U	0.14 B	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U
Carbon tetrachloride	μg/L	5.0	0.39	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U
Chlorobenzene	μg/L	10	72	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U
Chloroethane	μg/L	NS	21000	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U
Chloroform	μg/L	NS	0.19	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U
Chloromethane	μg/L	NS	190	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U
cis-1,2-dichloroethene	μg/L	70	28	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U
cis-1,3-Dichloropropene	μg/L	NS	0.41	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U
Dibromochloromethane	μg/L	NS	0.15	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U
Ethylbenzene	μg/L	700	1.3	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U
m&p-xylenes	μg/L	NS	190	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U
Methylene chloride	μg/L	5.0	9.9	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U
o-xylene	μg/L	NS	190	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U
Styrene	μg/L	100	1100	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U
Tetrachloroethene	μg/L	5.0	9.7	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U
Toluene	μg/L	1000	860	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U
trans-1,2-dichloroethene	μg/L	100	86	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U
trans-1,3-Dichloropropene	μg/L	NS	0.41	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U
Trichloroethene	μg/L	5.0	0.44	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U
Vinyl chloride	μg/L	2.0	0.015	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U
Total Xylenes	μg/L	10000	190	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U
ug/l = microgram per liter	µg/∟	- milligram ne		0.25 0	0.25 0	0.25 0	0.25 0	0.25 0	0.25 U	0.23 0

hg/L = microgram per liter mg/L = m MCL = Maximum Contaminant Level RSL = USEPA Regional Screening Level, Nov 2013

Table 3-4. FWGWMP August 2013 VOC Analytical Results

0 15				FI.1/0 000	E11/0 000			11.40 000	11.40 40=	1.40 0.40
Station ID				FWGmw-006	FWGmw-009	LL2mw-059	LL2mw-265	LL10mw-003	LL12mw-187	L12mw-242
Sample ID		MCL	USEPA RSL	FWGFWGmw- 006-0318-GW	FWGFWGmw- 009-0319-GW	FWGLL2mw-059C- 0357-GW	FWGLL2mw-265C- 0321-GW	FWGLL10mw- 003C-0361-GW	FWGLL12mw- 187C-0363-GW	FWGLL12mw- 242C-0364-GW
Date Collected		IVICE	NOL	8/21/2013	8/21/2013	8/20/2013	8/21/2013	8/20/2013	8-/20	8/20/2013
Sample Type				Grab	Grab	Grab	Grab	Grab	Grab	Grab
Analyte	Units									
1,1,1-Trichloroethane	μg/L	200	7500	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U
1,1,2,2-Tetrachloroethane	μg/L	NS	0.066	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U
1,1,2-Trichloroethane	μg/L	5.0	0.24	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U
1.1-Dichloroethane	μg/L	NS	2.4	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U
1,1-Dichloroethene (total)	μg/L	7.0	260	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U
1,2-Dibromoethane	μg/L	NS	0.0065	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U
1.2-Dichloroethane	μg/L	5.0	0.15	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U
1,2-Dichloroethene (total)	μg/L	NS	130	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U
1.2-Dichloropropane	μg/L	5.0	0.38	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U
2-Butanone	μg/L	NS	4900	0.57 U	0.57 U	0.57 U	0.57 U	0.57 U	0.57 U	0.57 U
2-Hexanone	μg/L	NS	34	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U
4-Methyl-2-pentanone	μg/L	NS	1000	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U
Acetone	μg/L	NS	12000	1.1 U	1.2 B	1.4 B	1.1 U	1.1 U	1.1 U	1.1 U
Benzene	μg/L	5.0	0.39	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U
Bromochloromethane	μg/L	NS	83	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U
Bromodichloromethane	μg/L	NS	0.12	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U
Bromoform	μg/L	NS	7.9	0.64 U	0.64 U	0.64 U	0.64 U	0.64 U	0.64 U	0.64 U
Bromomethane	μg/L	NS	7.0	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U
Carbon disulfide	μg/L	NS	720	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U
Carbon tetrachloride	μg/L	5.0	0.39	0.25 U	0.25 U	0.25 U	0.25 U	4.2	0.25 U	0.25 U
Chlorobenzene	μg/L	10	72	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U
Chloroethane	μg/L	NS	21000	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U
Chloroform	μg/L	NS	0.19	0.25 U	0.25 U	0.25 U	0.25 U	0.56	0.25 U	0.25 U
Chloromethane	μg/L	NS	190	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U
cis-1,2-dichloroethene	μg/L	70	28	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U
cis-1,3-Dichloropropene	μg/L	NS	0.41	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U
Dibromochloromethane	μg/L	NS	0.15	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U
Ethylbenzene	μg/L	700	1.3	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U
m&p-xylenes	μg/L	NS	190	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U
Methylene chloride	μg/L	5.0	9.9	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U
o-xylene	μg/L	NS	190	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U
Styrene	μg/L	100	1100	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U
Tetrachloroethene	μg/L	5.0	9.7	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U
Toluene	μg/L	1000	860	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U
trans-1,2-dichloroethene	μg/L	100	86	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U
trans-1,3-Dichloropropene	μg/L	NS	0.41	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U
Trichloroethene	μg/L	5.0	0.44	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U
Vinyl chloride	μg/L	2.0	0.015	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U
Total Xvlenes	μg/L	10000	190	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U
ug/L = microgram per liter		= milligram pe		U.25 U	U.25 U	0.25 0	U.25 U	U.25 U	U.25 U	U.25 U

µg/L = microgram per liter mg/L = m MCL = Maximum Contaminant Level RSL = USEPA Regional Screening Level, Nov 2013

Table 3-4. FWGWMP August 2013 VOC Analytical Results

Station ID				LL12mw-245	LL12mw-247	NTAmw-119	RQLmw-006	RQLmw-007	RQlmw-008	RQLmw-009
			USEPA	FWGLL12mw-	FWGLL12mw-247	FWGNTAmw-119-	FWGRQLmw-	FWGRQLmw-	FWGRQLmw-	FWGRQLmw-
Sample ID		MCL	RSL	245C-0365-GW	0336-GW	0367-GW	006C-0368-GW	007C-0369-GW	008C-0370-GW	009C-0371-GW
Date Collected				8/20/2013	8/20/2013	8/21/2013	8/19/2013	8/19/2013	8/19/2013	8/19/2013
Sample Type				Grab	Grab	Grab	Grab	Grab	Grab	Grab
Analyte	Units									
1,1,1-Trichloroethane	μg/L	200	7500	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U
1,1,2,2-Tetrachloroethane	μg/L	NS	0.066	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U
1,1,2-Trichloroethane	μg/L	5.0	0.24	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U
1,1-Dichloroethane	μg/L	NS	2.4	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U
1,1-Dichloroethene (total)	μg/L	7.0	260	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U
1,2-Dibromoethane	μg/L	NS	0.0065	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U
1,2-Dichloroethane	μg/L	5.0	0.15	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U
1,2-Dichloroethene (total)	μg/L	NS	130	0.25 U	0.25 U	0.25 U	0.25 U	0.18 J	0.25 U	0.25 U
1,2-Dichloropropane	μg/L	5.0	0.38	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U
2-Butanone	μg/L	NS	4900	0.57 U	0.57 U	0.57 U	0.57 U	0.57 U	0.57 U	0.57 U
2-Hexanone	μg/L	NS	34	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U
4-Methyl-2-pentanone	μg/L	NS	1000	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U
Acetone	μg/L	NS	12000	1.1 U	1.1 U	1.1 U	3.4 JB	1.2 JB	2.3 JB	3.2 JB
Benzene	μg/L	5.0	0.39	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U
Bromochloromethane	μg/L	NS	83	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U
Bromodichloromethane	μg/L	NS	0.12	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U
Bromoform	μg/L	NS	7.9	0.64 U	0.64 U	0.64 U	0.64 U	0.64 U	0.64 U	0.64 U
Bromomethane	μg/L	NS	7.0	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U
Carbon disulfide	μg/L	NS	720	0.25 U	0.25 U	0.25	0.16 B	0.25 U	0.25 U	0.25 U
Carbon tetrachloride	μg/L	5.0	0.39	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U
Chlorobenzene	μg/L	10	72	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U
Chloroethane	μg/L	NS	21000	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U
Chloroform	μg/L	NS	0.19	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U
Chloromethane	μg/L	NS	190	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U
cis-1.2-dichloroethene	μg/L	70	28	0.25 U	0.25 U	0.25 U	0.25 U	0.18 J	0.25 U	0.25 U
cis-1,3-Dichloropropene	μg/L	NS	0.41	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U
Dibromochloromethane	μg/L	NS	0.15	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U
Ethylbenzene	μg/L	700	1.3	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U
m&p-xylenes	μg/L	NS	190	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U
Methylene chloride	μg/L	5.0	9.9	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U
o-xylene	μg/L	NS	190	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U
Styrene	μg/L	100	1100	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U
Tetrachloroethene	μg/L	5.0	9.7	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U
Toluene	μg/L	1000	860	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U
trans-1,2-dichloroethene	μg/L	100	86	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U
trans-1,3-Dichloropropene		NS	0.41	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U
, , , , , , , , , , , , , , , , , , , ,	μg/L									
Trichloroethene	μg/L	5.0	0.44	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U
Vinyl chloride	μg/L	2.0	0.015	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U
Total Xylenes	μg/L	10000 = milligram pe	190	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U

µg/L = microgram per liter mg/L = m MCL = Maximum Contaminant Level RSL = USEPA Regional Screening Level, Nov 2013

Table 3-4. FWGWMP August 2013 VOC Analytical Results

Station ID				RQlmw-010	RQLmw-011	WBGmw-018	WBGmw-019	WBGmw-020	WBGmw-021
			USEPA	FWGRQLmw-	FWGRQLmw-	FWGWBGmw-018	FWGWBGmw-019-	FWGWBGmw-020-	FWGWBGmw-021
Sample ID		MCL	RSL	010C-0325-GW	011C-0326-GW	0328-GW	0329-GW	0330-GW	0331-GW
Date Collected				8/19/2013	8/19/2013	8/21/2013	8/21/2013	8/21/2013	8/21/2013
Sample Type				Grab	Grab	Grab	Grab	Grab	Grab
Analyte	Units								
1,1,1-Trichloroethane	μg/L	200	7500	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U
1,1,2,2-Tetrachloroethane	μg/L	NS	0.066	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U
1,1,2-Trichloroethane	μg/L	5.0	0.24	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U
1,1-Dichloroethane	μg/L	NS	2.4	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U
1,1-Dichloroethene (total)	μg/L	7.0	260	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U
1,2-Dibromoethane	μg/L	NS	0.0065	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U
1,2-Dichloroethane	μg/L	5.0	0.15	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U
1,2-Dichloroethene (total)	μg/L	NS	130	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U
1,2-Dichloropropane	μg/L	5.0	0.38	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U
2-Butanone	μg/L	NS	4900	0.57 U	0.57 U	0.57 U	0.57 U	0.57 U	0.57 U
2-Hexanone	μg/L	NS	34	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U
4-Methyl-2-pentanone	μg/L	NS	1000	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U
Acetone	μg/L	NS	12000	2.5 JB	1.1 U	1.1 U	1.1 U	1.1 U	1.1 U
Benzene	μg/L	5.0	0.39	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U
Bromochloromethane	μg/L	NS	83	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U
Bromodichloromethane	μg/L	NS	0.12	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U
Bromoform	μg/L	NS	7.9	0.64 U	0.64 U	0.64 U	0.64 U	0.64 U	0.64 U
Bromomethane	μg/L	NS	7.0	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U
Carbon disulfide	μg/L	NS	720	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U
Carbon tetrachloride	μg/L	5.0	0.39	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U
Chlorobenzene	μg/L	10	72	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U
Chloroethane	μg/L	NS	21000	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U
Chloroform	μg/L	NS	0.19	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U
Chloromethane	μg/L	NS	190	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U
cis-1,2-dichloroethene	μg/L	70	28	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U
cis-1,3-Dichloropropene	μg/L	NS	0.41	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U
Dibromochloromethane	μg/L	NS	0.15	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U
Ethylbenzene	μg/L	700	1.3	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U
m&p-xylenes	μg/L	NS	190	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U
Methylene chloride	μg/L	5.0	9.9	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U
o-xylene	μg/L	NS	190	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U
Styrene	μg/L	100	1100	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U
Tetrachloroethene	μg/L	5.0	9.7	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U
Toluene	μg/L	1000	860	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U
trans-1,2-dichloroethene	μg/L	100	86	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U
trans-1,3-Dichloropropene	μg/L	NS	0.41	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U
Trichloroethene	μg/L	5.0	0.44	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U
Vinyl chloride	μg/L	2.0	0.015	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U
Total Xylenes	μg/L	10000	190	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U
µg/L = microgram per liter		= milligram p	er liter						

µg/L = microgram per liter mg/L = m
MCL = Maximum Contaminant Level
RSL = USEPA Regional Screening Level, Nov 2013

Table 3-4. FWGWMP August 2013 VOC Analytical Results

Data Qualifiers

Data qualifier flags are used in an effort to describe the quality of each piece of data for each constituent. These flags are letter codes appended to the numerical data. The following data qualifiers are specified in the USACE Louisville Chemistry Guidelines. For a complete explanation of qualifiers used for each constituent please refer to the Data Verification Summaries in Appendix C.

- U The analyte was analyzed for but not detected. The numerical value preceding the U is the associated reporting limit.
- J The identification of the analyte is acceptable, but the quality assurance criteria indicate that the quantitative values may be outside the normal expected range of precision (i.e., the quantitative value is estimated). Examples include:
 - Results detected above the laboratory MDL but less than the laboratory reporting limit.
 - MS/MSD percent recoveries outside the acceptance criteria.
 - LCS percent recoveries outside acceptance criteria.
- R Data are considered to be rejected and shall not be used. This flag denotes the failure of quality control criteria such that it cannot be determined if the analyte is present or absent from the sample [e.g., the MRL verification standard was below quality control guidelines; associated sample results that were non-detect are unusable].
- UJ This flag is a combination of the U and J qualifiers, which indicate that the analyte is not present. The reported value is considered to be an estimated RL.
- B The B flag is used for both organic and inorganic analyses when the analyte is found in the method blank or any of the field blanks. This designation overrides the CLP "B" designation when used by the laboratory as an estimated value for inorganics.

Table 3-5. FWGWMP August 2013 SVOCs Analytical Results

Station ID				FBQmw-174	FWGmw-004	FWGmw-007	FWGmw-011	FWGmw-012	FWGmw-015	FWGmw-016
			USEPA	FWGFBQmw-	FWGFWGmw-	FWGFWGmw-	FWGFWGmw-	FWGFWGmw-	FWGFWGmw-	FWGFWGmw-
Sample ID		MCL	RSL	174C-0345-GW	004-0346-GW	007-0347-GW	011-0348-GW	012-0349-GW	015-0350-GW	016-0351-GW
Date Collected				8/20/2013	8/19/2013	8/21/2013	8/20/2013	8/20/2013	8/19/2013	8/19/2013
Sample Type				Grab	Grab	Grab	Grab	Grab	Grab	Grab
Analyte	Units									
bis(2-Ethylhexyl)phthalate	μg/L	6.0	4.8	0.82 B	0.25 B	0.48 B	13	0.74 B	0.45 B	0.32 B
Butyl benzyl phthalate	μg/L	NS	14	0.51 U	0.53 U	0.48 U	0.49 U	0.48 U	0.48 U	0.50 U
Diethyl phthalate	μg/L	NS	11000	1.0 U	1.1 U	0.95 U	0.98 U	0.95 U	0.95 U	1.0 U
Dimethyl phthalate	μg/L	NS	NS	0.51 U	0.53 U	0.48 U	0.49 U	0.48 U	0.48 U	0.50 U
Di-n-butyl phthalate	μg/L	NS	670	1.1 B	1.1 U	0.95 U	1.7	0.74 J	0.95 U	1.0 U
Di-n-octyl phthalate	μg/L	NS	160	0.51 U	0.53 U	0.48 U	0.49 U	0.48 U	0.48 U	0.50 U

Notes:

MCL = Maximum Contaminant Level

RSL = USEPA Regional Screening Level, Nov 2013

μg/L = microgram per liter

NS = no standard N/A = Not Analyzed

Table 3-5. FWGWMP August 2013 SVOCs Analytical Results

Station ID				LL1mw-064	LL1mw-065	LL1mw-083	LL1mw-084	LL1mw-086	LL1mw-087	LL2mw-059
			USEPA	FWGLL1mw-	FWGLL1mw-	FWGLL1mw-	FWGLL1mw-	FWGLL1mw-	FWGLL1mw-	FWGLL2mw-
Sample ID		MCL	RSL	064C-0352-GW	065C-0353-GW	083C-0354-GW	084C-0355-GW	086-0320-GW	087C-0356-GW	059C-0357-GW
Date Collected				8/20/2013	8/20/2013	8/20/2013	8/21/2013	8/20/2013	8/20/2013	8/20/2013
Sample Type				Grab	Grab	Grab	Grab	Grab	Grab	Grab
Analyte	Units									
bis(2-Ethylhexyl)phthalate	μg/L	6.0	4.8	0.61 B	0.50 B	1.1 B	1.8 B	1.2 B	0.86 B	1.4 B
Butyl benzyl phthalate	μg/L	NS	14	0.50 U	0.49 U	0.48 U	0.49 U	0.48 U	0.54 U	0.50 U
Diethyl phthalate	μg/L	NS	11000	0.99 U	0.97 U	0.95 U	0.98 U	0.95 U	1.1 U	0.99 U
Dimethyl phthalate	μg/L	NS	NS	0.50 U	0.49 U	0.48 U	0.49 U	0.48 U	0.54 U	0.50 U
Di-n-butyl phthalate	μg/L	NS	670	0.91 J	0.97 U	1.6 B	1.1 B	0.86 B	0.84 J	1.5 B
Di-n-octyl phthalate	μg/L	NS	160	0.50 U	0.49 U	0.48 U	0.49 U	0.48 U	0.54 U	0.50 U

MCL = Maximum Contaminant Level

RSL = USEPA Regional Screening Level, Nov 2013

μg/L = microgram per liter

NS = no standard N/A = Not Analyzed

Table 3-5. FWGWMP August 2013 SVOCs Analytical Results

Station ID				LL2mw-265	LL2mw-267	LL3mw-238	LL3mw-241	LL3mw-244	L12mw-187	LL12mw-242
			USEPA	FWGLL2mw-	FWGLL2mw-	FWGLL3mw-	FWGLL3mw-	FWGLL3mw-	FWGLL12mw-	FWGLL12mw-
Sample ID		MCL	RSL	265C-0321-GW	267C-0358-GW	238C-0359-GW	241C-0360-GW	244-0323-GW	187C-0363-GW	242C-0364-GW
Date Collected				8/21/2013	8/21/2013	8/19/2013	8/19/2013	8/20/2013	8/20/2013	8/20/2013
Sample Type				Grab	Grab	Grab	Grab	Grab	Grab	Grab
Analyte	Units									
bis(2-Ethylhexyl)phthalate	μg/L	6.0	4.8	1.5 B	0.62 B	0.39 B	0.57 B	0.46 B	0.65 B	1.2 U
Butyl benzyl phthalate	μg/L	NS	14	0.49 U	0.48 U	0.53 U	0.52 U	0.48 U	0.48 U	0.35 J
Diethyl phthalate	μg/L	NS	11000	0.97 U	0.95 U	1.1 U	1.0 U	0.95 U	0.95 U	0.95 U
Dimethyl phthalate	μg/L	NS	NS	0.49 U	0.48 U	0.53 U	0.52 U	0.48 U	0.48 U	0.48 U
Di-n-butyl phthalate	μg/L	NS	670	1.4 B	0.81 B	1.1 U	1.0 U	0.69 J	0.84 J	1.4
Di-n-octyl phthalate	μg/L	NS	160	0.49 U	0.48 U	0.53 U	0.52 U	0.48 U	0.48 U	0.48 U

MCL = Maximum Contaminant Level

RSL = USEPA Regional Screening Level, Nov 2013

μg/L = microgram per liter

NS = no standard N/A = Not Analyzed

Table 3-5. FWGWMP August 2013 SVOCs Analytical Results

J. I WOWIN August 2010 0V	<u> </u>	,							
Station ID				LL12mw-245	LL12mw-247	SCFmw-002	SCFmw-004	WBGmw-006	WBGmw-009
			USEPA	FWGLL12mw-	FWGLL12mw-	FWGSCFmw-	FWGSCFmw-004-	FWGWBGmw-	FWGWBGmw-
Sample ID		MCL	RSL	245C-0365-GW	247-0336-GW	002-0327-GW	0372-GW	006C-0373-GW	009C-0374-GW
Date Collected				8/20/2013	8/20/2013	8/1/2000	8/20/2013	8/21/2013	8/21/2013
Sample Type				Grab	Grab	Grab	Grab	Grab	Grab
Analyte	Units								
bis(2-Ethylhexyl)phthalate	μg/L	6.0	4.8	0.68 B	0.55 B	0.50 U	0.95 B	0.74 B	0.64 B
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	r 9′ −			0.00 =	1	0	0.00 2		V.V
Butyl benzyl phthalate	μg/L	NS	14	0.48 U	0.48 U	0.99 U	0.53 U	0.49 U	0.48 U
. , , , , , , , , , , , , , , , , , , ,									
Butyl benzyl phthalate	μg/L	NS	14	0.48 U	0.48 U	0.99 U	0.53 U	0.49 U	0.48 U
Butyl benzyl phthalate Diethyl phthalate	μg/L μg/L	NS NS	14 11000	0.48 U 0.95 U	0.48 U 0.95 U	0.99 U 0.50 U	0.53 U 1.1 U	0.49 U 0.97 U	0.48 U 0.95 U

MCL = Maximum Contaminant Level

RSL = USEPA Regional Screening Level, Nov 2013

μg/L = microgram per liter

NS = no standard N/A = Not Analyzed

Table 3-5. FWGWMP August 2013 SVOCs Analytical Results

Allalytical Nesults				
Station ID				NTAmw-119
			USEPA	FWGNTAmw-
Sample ID		MCL	RSL	119-0367-GW
Date Collected				8/21/2013
Sample Type				Grab
Analyte	Units			
2,4-Dinitrotoluene	μg/L	NS	0.20	0.50 U
2,6-Dinitrotoluene	μg/L	NS	15	0.50 U
Acenaphthene	μg/L	NS	400	0.099 U
Acenaphthylene	μg/L	NS	NS	0.099 U
Anthracene	μg/L	NS	1300	0.099 U
Benzo(a)anthracene	μg/L	NS	0.029	0.099 U
Benzo(a)pyrene	μg/L	0.2	0.0029	0.099 U
Benzo(b)fluoranthene	μg/L	NS	0.029	0.099 U
Benzo(g,h,i)perylene	μg/L	NS	NS	0.099 U
Benzo(k)fluoranthene	μg/L	NS	0.29	0.099 U
bis(2-Ethylhexyl)phthalate	μg/L	6	4.8	0.42 B
Butyl benzyl phthalate	μg/L	NS	14	0.50 U
Chrysene	μg/L	NS	2.9	0.099 U
Dibenzo(a,h)anthracene	μg/L	NS	0.0029	0.099 U
Diethyl phthalate	μg/L	NS	11000	0.99 U
Dimethyl phthalate	μg/L	NS	NS	0.50 U
Di-n-butyl phthalate	μg/L	NS	670	0.72 B
Di-n-octyl phthalate	μg/L	NS	160	0.50 U
Fluoranthene	μg/L	NS	630	0.099 U
Fluorene	μg/L	NS	220	0.099 U
Indeno(1,2,3-cd)pyrene	μg/L	NS	0.029	0.099 U
Naphthalene	μg/L	NS	0.14	0.11
Nitrobenzene	μg/L	NS	0.12	0.099 U
Phenanthrene	μg/L	NS	NS	0.099 U
Pyrene	μg/L	NS	87	0.099 U

MCL = Maximum Contaminant Level

RSL = USEPA Regional Screening Level, Nov 2013

μg/L = microgram per liter

NS = no standard N/A = Not Analyzed

Table 3-5. FWGWMP August 2013 SVOC Analytical Results

Station ID				DA2mw-114	DA2mw-115	DETmw-001	DETmw-002	DETmw-003	DETmw-004
			USEPA	FWGDA2mw-	FWGDA2mw-	FWGDETmw-	FWGDETmw-	FWGDETmw-	FWGDETmw-
Sample ID		MCL	RSL	114-0312-GW	115-0313-GW	001C-0314-GW	002C-0315-GW	003C-0343-GW	004C-0344-GW
Date Collected				8/20/2013	8/20/2013	8/20/2013	8/20/2013	8/20/2013	8/20-21/2013
Sample Type				Grab	Grab	Grab	Grab	Grab	Grab
Analyte	Units								
1,2,4-Trichlorobenzene	μg/L	70	0.99	0.48 U	0.48 U	0.51 U	0.48 U	0.48 U	0.50 U
1,2-Dichlorobenzene	μg/L	600	280	0.48 U	0.48 U	0.51 U	0.48 U	0.48 U	0.50 U
1,3-Dichlorobenzene	μg/L	NS	NS	0.48 U	0.48 U	0.51 U	0.48 U	0.48 U	0.50 U
1,4-Dichlorobenzene	μg/L	75	0.42	0.48 U	0.48 U	0.51 U	0.48 U	0.48 U	0.50 U
2,2-oxybis (1-chloropropane)	μg/L	NS	0.31	0.48 U	0.48 U	0.51 U	0.48 U	0.48 U	0.50 U
2,4,5-Trichlorophenol	μg/L	NS	890	0.48 U	0.48 U	0.51 U	0.48 U	0.48 U	0.50 U
2,4,6-Trichlorophenol	μg/L	NS	3.5	0.48 U	0.48 U	0.51 U	0.48 U	0.48 U	0.50 U
2,4-Dichlorophenol	μg/L	NS	35	0.48 U	0.48 U	0.51 U	0.48 U	0.48 U	0.50 U
2,4-Dimethylphenol	μg/L	NS	270	0.48 U	0.48 U	0.51 U	0.48 U	0.48 U	0.50 U
2,4-Dinitrophenol	μg/L	NS	30	0.95 U	0.95 U	1.0 U	0.95 U	0.95 U	0.99 UJ
2-Chloronaphthalene	μg/L	NS	550	0.48 U	0.48 U	0.51 U	0.48 U	0.48 U	0.50 U
2-Chlorophenol	μg/L	NS	71	0.48 U	0.48 U	0.51 U	0.48 U	0.48 U	0.50 U
2-Methylnaphthalene	μg/L	NS	27	0.095 U	0.095 U	0.10 U	0.095 U	0.095 U	0.099 U
2-Methylphenol	μg/L	NS	720	0.48 U	0.48 U	0.51 U	0.48 U	0.48 U	0.50 U
2-Nitroaniline	μg/L	NS	150	0.48 U	0.48 U	0.51 U	0.48 U	0.48 U	0.50 U
2-Nitrophenol	μg/L	NS	NS	0.48 U	0.48 U	0.51 U	0.48 U	0.48 U	0.50 U
3,3'-Dichlorobenzidine	μg/L	NS	0.11	0.95 U	0.95 U	1.0 U	0.95 U	0.95 U	0.99 U
3- and 4-Methylphenol	μg/L	NS	720	0.95 U	0.95 U	1.0 U	0.95 U	0.95 U	0.99 U
3-Nitroaniline	μg/L	NS	NS	0.48 U	0.48 U	0.51 U	0.48 U	0.48 U	0.50 U
4,6-Dinitro-2-methylphenol	μg/L	NS	1.2	3.8 U	3.8 U	4.1 U	3.8 U	3.8 U	4.0 U
4-Bromophenyl phenyl ether	μg/L	NS	NS	0.48 U	0.48 U	0.51 U	0.48 U	0.48 U	0.50 U
4-Chloro-3-methylphenol	μg/L	NS	1100	0.48 U	0.48 U	0.51 U	0.48 U	0.48 U	0.50 U
4-Chloroaniline	μg/L	NS	0.32	0.48 U	0.48 U	0.51 U	0.48 U	0.48 U	0.50 U
4-Chlorophenyl phenyl ether	μg/L	NS	NS	0.48 U	0.48 U	0.51 U	0.48 U	0.48 U	0.50 U
4-Nitroanaline	μg/L	NS	3.3	0.48 U	0.48 U	0.51 U	0.48 U	0.48 U	0.50 U
4-Nitrophenol	μg/L	NS	NS	3.8 U	3.8 U	4.1 U	3.8 U	3.8 U	4.0 U
Acenaphthene	μg/L	NS	400	0.095 U	0.095 U	0.10 U	0.095 U	0.095 U	0.099 U
Acenaphthylene	μg/L	NS	NS	0.095 U	0.095 U	0.10 U	0.095 U	0.095 U	0.099 U
Anthracene	μg/L	NS	1300	0.095 U	0.095 U	0.10 U	0.095 U	0.097	0.099 U
Benzo(a)anthracene	μg/L	NS	0.029	0.095 U	0.095 U	0.10 U	0.095 U	0.15	0.099 U
Benzo(a)pyrene	μg/L	0.2	0.0029	0.095 U	0.095 U	0.10 U	0.095 U	0.12	0.099 U
Benzo(b)fluoranthene	μg/L	NS	0.029	0.095 U	0.095 U	0.10 U	0.095 U	0.12	0.099 U

Table 3-5. FWGWMP August 2013 SVOC Analytical Results

Station ID				DA2mw-114	DA2mw-115	DETmw-001	DETmw-002	DETmw-003	DETmw-004
			USEPA	FWGDA2mw-	FWGDA2mw-	FWGDETmw-	FWGDETmw-	FWGDETmw-	FWGDETmw-
Sample ID		MCL	RSL	114-0312-GW	115-0313-GW	001C-0314-GW	002C-0315-GW	003C-0343-GW	004C-0344-GW
Date Collected				8/20/2013	8/20/2013	8/20/2013	8/20/2013	8/20/2013	8/20-21/2013
Sample Type				Grab	Grab	Grab	Grab	Grab	Grab
Analyte	Units								
Benzo(g,h,i)perylene	μg/L	NS	NS	0.095 U	0.095 U	0.10 U	0.095 U	0.095 U	0.099 U
Benzo(k)fluoranthene	μg/L	NS	0.29	0.095 U	0.095 U	0.10 U	0.095 U	0.13	0.099 U
Benzoic acid	μg/L	NS	58000	19 U	19 U	20 U	19 U	19 U	20 U
Benzyl alcohol	μg/L	NS	1500	0.48 U	0.48 U	0.51 U	0.48 U	0.48 U	0.50 U
bis(2-Chloroethoxy)methane	μg/L	NS	46	0.48 U	0.48 U	0.51 U	0.48 U	0.48 U	0.50 U
bis(2-Chloroethyl)ether	μg/L	NS	0.012	0.095 U	0.095 U	0.10 U	0.095 U	0.095 U	0.099 U
bis(2-Ethylhexyl)phthalate	μg/L	6.0	4.8	0.35 B	0.56 B	3.4 B	0.35 B	0.78 B	1.4 B
Butyl benzyl phthalate	μg/L	NS	14	0.48 U	0.48 U	0.51 U	0.48 U	0.48 U	0.50 U
Carbazole	μg/L	NS	NS	0.48 U	0.48 U	0.51 U	0.48 U	0.48 U	0.50 U
Chrysene	μg/L	NS	2.9	0.095 U	0.095 U	0.10 U	0.095 U	0.11	0.099 U
Dibenzo(a,h)anthracene	μg/L	NS	0.0029	0.095 U	0.095 U	0.10 U	0.095 U	0.095 U	0.099 U
Dibenzofuran	μg/L	NS	5.8	0.095 U	0.095 U	0.10 U	0.095 U	0.095 U	0.099 U
Diethyl phthalate	μg/L	NS	11000	0.95 U	0.95 U	1.0 U	0.95 U	0.95 U	0.99 U
Dimethyl phthalate	μg/L	NS	NS	0.48 U	0.48 U	0.51 U	0.48 U	0.48 U	0.50 U
Di-n-butyl phthalate	μg/L	NS	670	0.95 U	0.64 J	0.70 J	0.95 U	0.99	0.85 B
Di-n-octyl phthalate	μg/L	NS	160	0.48 U	0.48 U	0.51 U	0.48 U	0.48 U	0.50 U
Fluoranthene	μg/L	NS	630	0.095 U	0.095 U	0.10 U	0.095 U	0.13	0.099 U
Fluorene	μg/L	NS	220	0.095 U	0.095 U	0.10 U	0.095 U	0.095 U	0.099 U
Hexachlorobenzene	μg/L	1.0	0.042	0.095 U	0.095 U	0.10 U	0.095 U	0.095 U	0.099 U
Hexachlorobutadiene	μg/L	NS	0.26	0.48 U	0.48 U	0.51 U	0.48 U	0.48 U	0.50 U
Hexachlorocyclopentadiene	μg/L	50	22	0.48 U	0.48 U	0.51 U	0.48 U	0.48 U	0.50 U
Hexachloroethane	μg/L	NS	0.79	0.48 U	0.48 U	0.51 U	0.48 U	0.48 U	0.50 U
Indeno(1,2,3-cd)pyrene	μg/L	NS	0.029	0.095 U	0.095 U	0.10 U	0.095 U	0.095 U	0.099 U
Isophorone	μg/L	NS	67	0.48 U	0.48 U	0.51 U	0.48 U	0.48 U	0.50 U
Naphthalene	μg/L	NS	0.14	0.095 U	0.095 U	0.10 U	0.095 U	0.095 U	0.099 U
N-Nitroso-di-n-propylamine	μg/L	NS	0.0093	0.48 U	0.48 U	0.51 U	0.48 U	0.48 U	0.50 U
N-Nitrosodiphenylamine	μg/L	NS	10	0.48 U	0.48 U	0.51 U	0.48 U	0.48 U	0.50 U
Pentachlorophenol	μg/L	1.0	0.035	0.95 U	0.95 U	1.0 U	0.95 U	0.95 U	0.99 U
Phenanthrene	μg/L	NS	NS	0.095 U	0.095 U	0.10 U	0.095 U	0.12	0.099 U
Phenol	μg/L	NS	4500	0.95 U	0.95 U	1.0 U	0.95 U	0.95 U	0.99 U
Pyrene	μg/L	NS	87	0.095 U	0.095 U	0.10 U	0.095 U	0.13	0.099 U

MCL = Maximum Contaminant Level

RSL = USEPA Regional Screening Level, Nov 2013

μg/L = microgram per liter

NS = no standard N/A = Not Analyzed

Table 3-5. FWGWMP August 2013 SVOC Analytical Results

Sample ID	0 15				EDO 404	FIA10 000	DOI 000	DOI 007	DOI 000	DOI 000
Sample D	Station ID				EBGmw-131	FWGmw-009	RQLmw-006	RQLmw-007	RQLmw-008	RQLmw-009
Date Collected	0 1 15		MOL							
Sample Type	·		MCL	KSL						
Analyte										
1,2,4-Trichlorobenzene µg/L 70 0.99 0.48 U 0.49 U 0.48 U <t< td=""><td>. , ,</td><td>Units</td><td></td><td></td><td>Grab</td><td>Grab</td><td>Grab</td><td>Grab</td><td>Grab</td><td>Grab</td></t<>	. , ,	Units			Grab	Grab	Grab	Grab	Grab	Grab
1,2-Dichlorobenzene µg/L 600 280 0.48 U 0.49 U 0.48 U 0.4			70	0.00	0.49.11	0.40.11	0.49.11	0.49.11	0.49.11	0.49.11
1,3-Dichlorobenzene µg/L NS NS 0.48 U 0.49 U 0.48 U 0.4										
1,4-Dichlorobenzene μg/L 75 0.42 0.48 U 0.49 U 0.48 U 0										
2,2-oxybis (1-chloropropane) руд. NS 0.31 0.48 U 0	,									
2,4,5-Trichlorophenol μg/L NS 890 0.48 U 0.49 U 0.48 U	,									
2,4,6-Trichlorophenol μg/L NS 3.5 0.48 U 0.49 U 0.48 U										
2,4-Dichlorophenol µg/L NS 35 0.48 U 0.49 U 0.48 U 0.96 U 0.96 U 0.95 U 0.48										
2,4-Dimethylphenol μg/L NS 270 0.48 U 0.49 U 0.48 U 0.95 U 0.95 U 0.96 U 0.96 U 0.95 U 0.95 U 0.95 U 0.96 U 0.96 U 0.95 U 0.95 U 0.95 U 0.96 U 0.96 U 0.95 U 0.95 U 0.95 U 0.96 U 0.96 U 0.48 U 0.4										
2,4-Dinitrophenol μg/L NS 30 0.95 U 0.97 UJ 0.96 U 0.96 U 0.95 U 0.95 U 2-Chlorophthalene μg/L NS 550 0.48 U 0.49 U 0.48 U 0.095 U 0.048 U 0.48 U										
2-Chloronaphthalene μg/L NS 550 0.48 U 0.49 U 0.48 U 0.48 U 0.48 U 0.48 U 2-Chlorophenol μg/L NS 71 0.48 U 0.49 U 0.48 U <td></td>										
2-Chlorophenol μg/L NS 71 0.48 U 0.49 U 0.48 U 0.48 U 0.48 U 0.48 U 2-Methylnaphthalene μg/L NS 27 0.095 U 0.097 U 0.096 U 0.096 U 0.095 U 0.095 U 2-Methylphenol μg/L NS 720 0.48 U 0.49 U 0.48 U 0.95 U <td>· •</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	· •									
2-Methylnaphthalene μg/L NS 27 0.095 U 0.097 U 0.096 U 0.096 U 0.095 U 0.095 U 2-Methylphenol μg/L NS 720 0.48 U 0.49 U 0.48 U 0.95 U 0.95 U 0.95 U 0.95 U 0.95 U 0.96 U 0.96 U 0.95 U 0.95 U 0.95 U 0.95 U 0.95 U 0.95 U 0.96 U 0.96 U 0.95 U 0.9										
2-Methylphenol µg/L NS 720 0.48 U 0.49 U 0.48 U 0.48 U 0.48 U 0.48 U 2-Nitroaniline µg/L NS 150 0.48 U 0.49 U 0.48 U 0.95 U	•									
2-Nitroaniline μg/L NS 150 0.48 U 0.49 U 0.48 U 0.	, ,					0.097 U		0.096 U	0.095 U	
2-Nitrophenol μg/L NS NS 0.48 U 0.49 U 0.48 U 0.49 U 0.48 U 0.48 U 0.48 U 0.48 U 0.49 U 0.48	, ,			720		0.49 U		0.48 U	0.48 U	
3,3'-Dichlorobenzidine µg/L NS 0.11 0.95 U 0.97 U 0.96 U 0.96 U 0.95 R 0.95 U 3- and 4-Methylphenol µg/L NS 720 0.95 U 0.97 U 0.96 U 0.96 U 0.95 U 0.95 U 3-Nitroaniline µg/L NS NS 0.48 U 0.49 U 0.48										
3- and 4-Methylphenol μg/L NS 720 0.95 U 0.97 U 0.96 U 0.96 U 0.95 U 0.95 U 0.95 U 3-Nitroaniline μg/L NS NS NS 0.48 U 0.49 U 0.48 U 0	· · · · · · · · · · · · · · · · · · ·			NS	0.48 U	0.49 U	0.48 U	0.48 U	0.48 U	0.48 U
3-Nitroaniline μg/L NS NS 0.48 U 0.49 U 0.48 U 0.48 U 0.48 U 0.48 U 4,6-Dinitro-2-methylphenol μg/L NS 1.2 3.8 U 3.9 U 3.8 U 3.8 U 3.8 U 3.8 U 3.8 U 3.8 U 4-Bromophenyl phenyl ether μg/L NS NS 0.48 U 0.49 U 0.48	,	μg/L			0.95 U	0.97 U	0.96 U	0.96 U	0.95 R	0.95 U
4,6-Dinitro-2-methylphenol μg/L NS 1.2 3.8 U 3.9 U 3.8 U<	J 1	μg/L		720	0.95 U	0.97 U	0.96 U	0.96 U	0.95 U	0.95 U
4-Bromophenyl phenyl ether μg/L NS NS 0.48 U 0.49 U 0.48 U 0.48 U 0.48 U 0.48 U 4-Chloro-3-methylphenol μg/L NS 1100 0.48 U 0.49 U 0.48 U 0.48 U 0.48 U 0.48 U 4-Chloroaniline μg/L NS 0.32 0.48 U 0.49 U 0.48 U		μg/L	NS	NS	0.48 U	0.49 U	0.48 U	0.48 U	0.48 U	0.48 U
4-Chloro-3-methylphenol μg/L NS 1100 0.48 U 0.49 U 0.48 U 0.48 U 0.48 U 0.48 U 4-Chloroaniline μg/L NS 0.32 0.48 U 0.49 U 0.48 U 0	4,6-Dinitro-2-methylphenol	μg/L	NS	1.2	3.8 U	3.9 U	3.8 U	3.8 U	3.8 U	3.8 U
4-Chloroaniline μg/L NS 0.32 0.48 U 0.49 U 0.48 U 0.48 U 0.48 U 0.48 U 4-Chlorophenyl phenyl ether μg/L NS NS 0.48 U 0.49 U 0.48 U <td< td=""><td>4-Bromophenyl phenyl ether</td><td>μg/L</td><td>NS</td><td>NS</td><td>0.48 U</td><td>0.49 U</td><td>0.48 U</td><td>0.48 U</td><td>0.48 U</td><td>0.48 U</td></td<>	4-Bromophenyl phenyl ether	μg/L	NS	NS	0.48 U	0.49 U	0.48 U	0.48 U	0.48 U	0.48 U
4-Chlorophenyl phenyl ether μg/L NS NS 0.48 U 0.49 U 0.48 U	4-Chloro-3-methylphenol	μg/L	NS	1100	0.48 U	0.49 U	0.48 U	0.48 U	0.48 U	0.48 U
4-Nitroanaline μg/L NS 3.3 0.48 U 0.49 U 0.48 U 0.48 U 0.48 U 0.48 U 4-Nitrophenol μg/L NS NS 3.8 U 3.9 U 3.8 U 3.9 U 3.9 U 0.096 U 0.096 U 0.095 U 0.095 U 0.095 U 0.096 U 0.096 U 0.095 U 0.095 U 0.095 U 0.096 U 0.096 U <td>4-Chloroaniline</td> <td>μg/L</td> <td>NS</td> <td>0.32</td> <td>0.48 U</td> <td>0.49 U</td> <td>0.48 U</td> <td>0.48 U</td> <td>0.48 U</td> <td>0.48 U</td>	4-Chloroaniline	μg/L	NS	0.32	0.48 U	0.49 U	0.48 U	0.48 U	0.48 U	0.48 U
4-Nitrophenol μg/L NS NS 3.8 U 3.9 U 3.8 U <	4-Chlorophenyl phenyl ether	μg/L	NS	NS	0.48 U	0.49 U	0.48 U	0.48 U	0.48 U	0.48 U
Acenaphthene μg/L NS 400 0.095 U 0.097 U 0.096 U 0.096 U 0.095 U 0.095 U Acenaphthylene μg/L NS NS 0.095 U 0.097 U 0.096 U 0.096 U 0.095 U 0.095 U Anthracene μg/L NS 1300 0.095 U 0.097 U 0.096 U 0.096 U 0.095 U 0.095 U Benzo(a)anthracene μg/L NS 0.029 0.095 U 0.097 U 0.096 U 0.096 U 0.095 U 0.095 U Benzo(a)pyrene μg/L 0.2 0.0029 0.095 U 0.097 UJ 0.096 U 0.096 U 0.095 UJ 0.095 UJ	4-Nitroanaline	μg/L	NS	3.3	0.48 U	0.49 U	0.48 U	0.48 U	0.48 U	0.48 U
Acenaphthylene μg/L NS NS 0.095 U 0.097 U 0.096 U 0.096 U 0.095 U 0.095 U Anthracene μg/L NS 1300 0.095 U 0.097 U 0.096 U 0.096 U 0.095 U 0.095 U Benzo(a)anthracene μg/L NS 0.029 0.095 U 0.097 U 0.096 U 0.096 U 0.095 U 0.095 U Benzo(a)pyrene μg/L 0.2 0.0029 0.095 U 0.097 UJ 0.096 U 0.096 U 0.095 UJ 0.095 UJ	4-Nitrophenol	μg/L	NS	NS	3.8 U	3.9 U	3.8 U	3.8 U	3.8 U	3.8 U
Acenaphthylene μg/L NS NS 0.095 U 0.097 U 0.096 U 0.096 U 0.095 U 0.095 U Anthracene μg/L NS 1300 0.095 U 0.097 U 0.096 U 0.096 U 0.095 U 0.095 U Benzo(a)anthracene μg/L NS 0.029 0.095 U 0.097 U 0.096 U 0.096 U 0.095 U 0.095 U Benzo(a)pyrene μg/L 0.2 0.0029 0.095 U 0.097 UJ 0.096 U 0.096 U 0.095 UJ 0.095 UJ	Acenaphthene		NS	400	0.095 U	0.097 U	0.096 U	0.096 U	0.095 U	0.095 U
Anthracene μg/L NS 1300 0.095 U 0.097 U 0.096 U 0.096 U 0.095 U 0.095 U Benzo(a)anthracene μg/L NS 0.029 0.095 U 0.097 U 0.096 U 0.096 U 0.095 U 0.095 U Benzo(a)pyrene μg/L 0.2 0.0029 0.095 U 0.097 UJ 0.096 U 0.096 U 0.095 UJ 0.095 UJ	Acenaphthylene		NS	NS	0.095 U	0.097 U	0.096 U	0.096 U	0.095 U	0.095 U
Benzo(a)anthracene μg/L NS 0.029 0.095 U 0.097 U 0.096 U 0.096 U 0.095 U 0.095 U Benzo(a)pyrene μg/L 0.2 0.0029 0.095 U 0.097 UJ 0.096 U 0.096 U 0.095 UJ 0.095 UJ	Anthracene		NS	1300	0.095 U	0.097 U	0.096 U	0.096 U	0.095 U	0.095 U
Benzo(a)pyrene μg/L 0.2 0.0029 0.095 U 0.097 UJ 0.096 U 0.096 U 0.095 UJ 0.095 UJ	Benzo(a)anthracene		NS	0.029	0.095 U	0.097 U	0.096 U	0.096 U	0.095 U	0.095 U
	Benzo(a)pyrene		0.2	0.0029	0.095 U	0.097 UJ	0.096 U	0.096 U	0.095 UJ	0.095 U
	Benzo(b)fluoranthene									

Table 3-5. FWGWMP August 2013 SVOC Analytical Results

Station ID				EBGmw-131	FWGmw-009	RQLmw-006	RQLmw-007	RQLmw-008	RQLmw-009
			USEPA	FWGEBGmw-	FWGFWGmw-	FWGRQLmw-	FWGRQLmw-	FWGRQLmw-	FWGRQLmw-
Sample ID		MCL	RSL	131-0316-GW	009-0319-GW	006C-0368-GW	007C-0369-GW	008C-0370-GW	009C-0371-GW
Date Collected				8/19/2013	8/21/2013	8/19/2013	8/19/2013	8/19/2013	8/19/2013
Sample Type				Grab	Grab	Grab	Grab	Grab	Grab
Analyte	Units								
Benzo(g,h,i)perylene	μg/L	NS	NS	0.095 U	0.097 U	0.096 U	0.096 U	0.095 U	0.095 U
Benzo(k)fluoranthene	μg/L	NS	0.29	0.095 U	0.097 U	0.096 U	0.096 U	0.095 U	0.095 U
Benzoic acid	μg/L	NS	58000	19 U	19 U	19 U	19 U	19 U	19 U
Benzyl alcohol	μg/L	NS	1500	0.48 U	0.49 U	0.48 U	0.48 U	0.48 U	0.48 U
bis(2-Chloroethoxy)methane	μg/L	NS	46	0.48 U	0.49 U	0.48 U	0.48 U	0.48 U	0.48 U
bis(2-Chloroethyl)ether	μg/L	NS	0.012	0.095 U	0.097 U	0.096 U	0.096 U	0.095 U	0.095 U
bis(2-Ethylhexyl)phthalate	μg/L	6.0	4.8	0.38 J	0.34 B	0.51 B	0.46 J	0.48 U	0.37 B
Butyl benzyl phthalate	μg/L	NS	14	0.48 U	0.49 U	0.48 U	0.48 U	0.48 U	0.48 U
Carbazole	μg/L	NS	NS	0.48 U	0.49 U	0.48 U	0.48 U	0.48 U	0.48 U
Chrysene	μg/L	NS	2.9	0.095 U	0.097 U	0.096 U	0.096 U	0.095 U	0.095 U
Dibenzo(a,h)anthracene	μg/L	NS	0.0029	0.095 U	0.097 U	0.096 U	0.096 U	0.095 U	0.095 U
Dibenzofuran	μg/L	NS	5.8	0.095 U	0.097 U	0.096 U	0.096 U	0.095 U	0.095 U
Diethyl phthalate	μg/L	NS	11000	0.95 U	0.97 U	0.96 U	0.96 U	0.95 U	0.95 U
Dimethyl phthalate	μg/L	NS	NS	0.48 U	0.49 U	0.48 U	0.48 U	0.48 U	0.48 U
Di-n-butyl phthalate	μg/L	NS	670	0.95 U	0.97 U	0.96 U	0.78 J	0.95 U	0.95 U
Di-n-octyl phthalate	μg/L	NS	160	0.48 U	0.49 U	0.48 U	0.48 U	0.48 U	0.48 U
Fluoranthene	μg/L	NS	630	0.095 U	0.097 U	0.096 U	0.096 U	0.095 U	0.095 U
Fluorene	μg/L	NS	220	0.095 U	0.097 U	0.096 U	0.096 U	0.19	0.095 U
Hexachlorobenzene	μg/L	1.0	0.042	0.095 U	0.097 U	0.096 U	0.096 U	0.095 U	0.095 U
Hexachlorobutadiene	μg/L	NS	0.26	0.48 U	0.49 U	0.48 U	0.48 U	0.48 U	0.48 U
Hexachlorocyclopentadiene	μg/L	50	22	0.48 U	0.49 U	0.48 U	0.48 U	0.48 U	0.48 U
Hexachloroethane	μg/L	NS	0.79	0.48 U	0.49 U	0.48 U	0.48 U	0.48 U	0.48 U
Indeno(1,2,3-cd)pyrene	μg/L	NS	0.029	0.095 U	0.097 U	0.096 U	0.096 U	0.095 U	0.095 U
Isophorone	μg/L	NS	67	0.48 U	0.49 U	0.48 U	0.48 U	0.48 U	0.48 U
Naphthalene	μg/L	NS	0.14	0.095 U	0.097 U	0.096 U	0.096 U	0.095 U	0.095 U
N-Nitroso-di-n-propylamine	μg/L	NS	0.0093	0.48 U	0.49 U	0.48 U	0.48 U	0.48 U	0.48 U
N-Nitrosodiphenylamine	μg/L	NS	10	0.48 U	0.49 U	0.48 U	0.48 U	0.48 U	0.48 U
Pentachlorophenol	μg/L	1.0	0.035	0.95 U	0.97 U	0.96 U	0.96 U	0.95 U	0.95 U
Phenanthrene	μg/L	NS	NS	0.095 U	0.097 U	0.096 U	0.096 U	0.095 U	0.095 U
Phenol	μg/L	NS	4500	0.95 U	0.97 U	0.96 U	0.96 U	0.95 U	0.95 U
Pyrene	μg/L	NS	87	0.095 U	0.097 U	0.096 U	0.096 U	0.095 U	0.095 U
		-		•	•	•			

MCL = Maximum Contaminant Level

RSL = USEPA Regional Screening Level, Nov 2013

μg/L = microgram per liter

NS = no standard N/A = Not Analyzed

Table 3-5. FWGWMP August 2013 SVOC Analytical Results

Sample D	Station ID				RQLmw-010	RQLmw-011	WBGmw-018	WBGmw-019	WBGmw-020	WBGmw-021
Bate Collected Bright Br					FWGRQLmw-		FWGWBGmw-	FWGWBGmw-		FWGWBGmw-
Sample Type	Sample ID		MCL	RSL		011C-0326-GW	018-0328-GW	019-0329-GW	020-0330-GW	021-0331-GW
Analyte										
1,2,4-Trichlorobenzene μg/L 70 0.99 0.48 U 0.48 U <t< td=""><td></td><td></td><td></td><td></td><td>Grab</td><td>Grab</td><td>Grab</td><td>Grab</td><td>Grab</td><td>Grab</td></t<>					Grab	Grab	Grab	Grab	Grab	Grab
1,2-Dichlorobenzene µg/L 600 280 0.48 U 0	-	Units								
1,3-Dichlorobenzene				0.99						0.48 U
1,4-Dichlorobenzene	,	μg/L	600	280	0.48 U	0.48 U	0.48 U	0.48 U	0.49 U	0.48 U
2,2-oxybis (1-chloropropane)		. 0	NS		0.48 U	0.48 U	0.48 U	0.48 U	0.49 U	0.48 U
2,4,5-Trichlorophenol μg/L NS 890 0.48 U 0.48 U 0.48 U 0.48 U 0.48 U 0.49 U 0.48 U 0.49 U 0.48 U 0.49 U 0.48 U 0.49 U 0.48 U	1,4-Dichlorobenzene	μg/L	75	0.42	0.48 U	0.48 U	0.48 U	0.48 U	0.49 U	0.48 U
2,4,6-Trichlorophenol μg/L NS 3.5 0.48 U 0.48 U 0.48 U 0.48 U 0.49 U 0.48 U 2,4-Dintorophenol μg/L NS 35 0.48 U 0.48	2,2-oxybis (1-chloropropane)	μg/L	NS	0.31	0.48 U	0.48 U	0.48 U	0.48 U	0.49 U	0.48 U
2,4-Dichlorophenol μg/L NS 35 0.48 U 0.48	2,4,5-Trichlorophenol	μg/L	NS	890	0.48 U	0.48 U	0.48 U	0.48 U	0.49 U	0.48 U
2,4-Dimethylphenol μg/L NS 270 0.48 U 0.95 UU 0.96 UU 0.48 UU	2,4,6-Trichlorophenol	μg/L	NS	3.5	0.48 U	0.48 U	0.48 U	0.48 U	0.49 U	0.48 U
2,4-Dinitrophenol μg/L NS 30 0.96 U 0.95 U 0.95 UJ 0.95 UJ 0.98 UJ 0.95 UJ 2-Chloropaphthalene μg/L NS 550 0.48 U 0.48 U 0.48 U 0.48 U 0.48 U 0.48 U 0.49 U 0.48 U 2-Chlorophenol μg/L NS 71 0.48 U 0.48 U 0.48 U 0.48 U 0.48 U 0.49 U 0.49 U 0.095 U 2-Methylphenol μg/L NS 720 0.48 U	2,4-Dichlorophenol	μg/L	NS	35	0.48 U	0.48 U	0.48 U	0.48 U	0.49 U	0.48 U
2-Chloronaphthalene μg/L NS 550 0.48 U 0.48 U 0.48 U 0.48 U 0.48 U 0.49 U 0.48 U 0.48 U 0.49	2,4-Dimethylphenol	μg/L	NS	270	0.48 U	0.48 U	0.48 U	0.48 U	0.49 U	0.48 U
2-Chlorophenol μg/L NS 71 0.48 U 0.48 U 0.48 U 0.48 U 0.49 U 0.49 U 0.48 U 0.49 U 0.49 U 0.49 U 0.095	2,4-Dinitrophenol	μg/L	NS	30	0.96 U	0.95 U	0.95 UJ	0.95 UJ	0.98 UJ	0.95 UJ
2-Methylnaphthalene μg/L NS 27 0.096 U 0.095 U 0.095 U 0.095 U 0.098 U 0.095 U 0.095 U 0.098 U 0.095 U 0.095 U 0.095 U 0.095 U 0.098 U 0.095	2-Chloronaphthalene	μg/L	NS	550	0.48 U	0.48 U	0.48 U	0.48 U	0.49 U	0.48 U
2-Methylphenol μg/L NS 720 0.48 U 0.48 U 0.48 U 0.48 U 0.48 U 0.49 U 0.48 U 2-Nitroaniline μg/L NS 150 0.48 U 0.48 U 0.48 U 0.48 U 0.48 U 0.48 U 0.49 U 0.48 U 0.48 U 0.48 U 0.48 U 0.48 U 0.48 U 0.49 U 0.48 U 0.48 U 0.48 U 0.48 U 0.48 U 0.48 U 0.49 U 0.48 U 0.48 U 0.48 U 0.48 U 0.49 U 0.48 U 0.48 U 0.48 U 0.49 U 0.49 U 0.48 U 0.49 U 0.48 U 0.49 U 0.48 U 0.49 U 0.48 U 0.49 U 0.49 U 0.48 U 0.49 U 0.49 U 0.48 U 0.49 U 0.49 U 0.49 U 0.48 U 0.49 U 0.4	2-Chlorophenol	μg/L	NS	71	0.48 U	0.48 U	0.48 U	0.48 U	0.49 U	0.48 U
2-Nitroaniline μg/L NS 150 0.48 U 0.48 U 0.48 U 0.48 U 0.48 U 0.49 U 0.48 U 0.48 U 0.49 U 0.48 U 0.49 U 0.48 U 0.49 U 0.48 U 0.48 U 0.49 U 0.49 U 0.48 U 0.49 U 0.49 U 0.48 U 0.49 U 0.	2-Methylnaphthalene	μg/L	NS	27	0.096 U	0.095 U	0.095 U	0.095 U	0.098 U	0.095 U
2-Nitrophenol μg/L NS NS 0.48 U 0.48 U 0.48 U 0.48 U 0.48 U 0.49 U 0.48 U 0.33,3'-Dichlorobenzidine μg/L NS 0.11 0.96 U 0.95 U 0.95 U 0.95 U 0.95 U 0.98 U 0.95 U 0.95 U 0.98 U 0.95 U 0.95 U 0.95 U 0.98 U 0.95 U 0.95 U 0.98 U 0.95 U 0.95 U 0.95 U 0.98 U 0.95 U 0.95 U 0.98 U 0.95 U 0.95 U 0.98 U 0.95 U 0.95 U 0.96 U 0.95 U 0.95 U 0.98 U 0.98 U 0.95 U 0.98 U 0.99 U 0.98 U 0.99 U	2-Methylphenol	μg/L	NS	720	0.48 U	0.48 U	0.48 U	0.48 U	0.49 U	0.48 U
3,3'-Dichlorobenzidine μg/L NS 0.11 0.96 U 0.95 U 0.95 U 0.95 U 0.98 U 0.95 U 0.98 U 0.95 U 0.95 U 0.98 U 0.99 U 0	2-Nitroaniline	μg/L	NS	150	0.48 U	0.48 U	0.48 U	0.48 U	0.49 U	0.48 U
3- and 4-Methylphenol μg/L NS 720 0.96 U 0.95 U 0.95 U 0.95 U 0.98 U 0.95 U 3-Nitroaniline μg/L NS NS 0.48 U 0.48 U 0.48 U 0.48 U 0.48 U 0.49 U 0.48 U 4.6-Dinitro-2-methylphenol μg/L NS 1.2 3.8 U 3.8 U 3.8 U 3.8 U 3.8 U 3.9 U 3.8 U 4-Bromophenyl phenyl ether μg/L NS NS 0.48 U 0.48 U 0.48 U 0.48 U 0.48 U 0.49 U 0.48 U 0.49 U 0.48 U 0.49 U 0.48 U 0.49 U 0.48 U 0.48 U 0.48 U 0.48 U 0.49 U 0.48 U 0.48 U 0.48 U 0.48 U 0.48 U 0.49 U 0.48 U 0.48 U 0.49 U 0.48 U 0.48 U 0.48 U 0.49 U 0.48 U 0.48 U 0.48 U 0.48 U 0.49 U 0.48 U 0.48 U 0.48 U 0.49 U 0.49 U 0.48 U 0.49 U 0.49 U 0.48 U 0.49	2-Nitrophenol	μg/L	NS	NS	0.48 U	0.48 U	0.48 U	0.48 U	0.49 U	0.48 U
3-Nitroaniline μg/L NS NS 0.48 U 0.48 U 0.48 U 0.48 U 0.49 U 0.48 U 4,6-Dinitro-2-methylphenol μg/L NS 1.2 3.8 U 3.8 U 3.8 U 3.8 U 3.8 U 3.9 U 3.8 U 4-Bromophenyl phenyl ether μg/L NS NS 0.48 U 0.48 U 0.48 U 0.48 U 0.48 U 0.49 U 0.48 U 0.48 U 0.49 U 0.48 U 0.48 U 0.49 U 0.49 U 0.48 U 0.49 U 0.4	3,3'-Dichlorobenzidine	μg/L	NS	0.11	0.96 U	0.95 U	0.95 U	0.95 U	0.98 U	0.95 U
4,6-Dinitro-2-methylphenol μg/L NS 1.2 3.8 U 3.8	3- and 4-Methylphenol	μg/L	NS	720	0.96 U	0.95 U	0.95 U	0.95 U	0.98 U	0.95 U
4-Bromophenyl phenyl ether μg/L NS NS 0.48 U	3-Nitroaniline	μg/L	NS	NS	0.48 U	0.48 U	0.48 U	0.48 U	0.49 U	0.48 U
4-Chloro-3-methylphenol μg/L NS 1100 0.48 U 0.48 U 0.48 U 0.48 U 0.49 U 0.48 U 4-Chloroaniline μg/L NS 0.32 0.48 U 0.48 U 0.48 U 0.48 U 0.48 U 0.49 U 0.49 U 0.48 U 4-Chlorophenyl phenyl ether μg/L NS NS 0.48 U 0.48 U 0.48 U 0.48 U 0.48 U 0.49 U 0.49 U 0.48 U 4-Nitroanaline μg/L NS 3.3 0.48 U 0.48 U 0.48 U 0.48 U 0.49 U 0.49 U 0.48 U 4-Nitrophenol μg/L NS NS 3.8 U 3.8 U 3.8 U 3.8 U 3.8 U 3.9 U 3.8 U Acenaphthene μg/L NS 400 0.096 U 0.095 U 0.095 U 0.095 U 0.095 U 0.098 U 0.098 U 0.095 U Acenaphthylene μg/L NS 1300 0.096 U 0.095 U 0.095 U 0.095 U 0.095 U 0.098 U 0.098 U 0.095 U Anthracene μg/L NS 0.029 0.096 U	4,6-Dinitro-2-methylphenol	μg/L	NS	1.2	3.8 U	3.8 U	3.8 U	3.8 U	3.9 U	3.8 U
4-Chloroaniline μg/L NS 0.32 0.48 U	4-Bromophenyl phenyl ether	μg/L	NS	NS	0.48 U	0.48 U	0.48 U	0.48 U	0.49 U	0.48 U
4-Chlorophenyl phenyl ether μg/L NS NS 0.48 U 0.48 U 0.48 U 0.48 U 0.48 U 0.49 U 0.48 U 4-Nitroanaline μg/L NS 3.3 0.48 U 0.48 U 0.48 U 0.48 U 0.48 U 0.49 U 0.48 U 0.48 U 0.49 U 0.48 U 0.48 U 0.49 U 0.49 U 0.48 U 0.49 U 0.48 U 0.49 U 0.48 U 0.48 U 0.49	4-Chloro-3-methylphenol	μg/L	NS	1100	0.48 U	0.48 U	0.48 U	0.48 U	0.49 U	0.48 U
4-Nitroanaline μg/L NS 3.3 0.48 U 0.48 U 0.48 U 0.48 U 0.48 U 0.49 U 0.49 U 0.48 U 4-Nitrophenol μg/L NS NS 3.8 U 3.8 U 3.8 U 3.8 U 3.8 U 3.9 U 3.8 U 3.9 U <td>4-Chloroaniline</td> <td>μg/L</td> <td>NS</td> <td>0.32</td> <td>0.48 U</td> <td>0.48 U</td> <td>0.48 U</td> <td>0.48 U</td> <td>0.49 U</td> <td>0.48 U</td>	4-Chloroaniline	μg/L	NS	0.32	0.48 U	0.48 U	0.48 U	0.48 U	0.49 U	0.48 U
4-Nitrophenol μg/L NS NS 3.8 U 3.9 U 3.9 U 3.9 U <	4-Chlorophenyl phenyl ether	μg/L	NS	NS	0.48 U	0.48 U	0.48 U	0.48 U	0.49 U	0.48 U
Acenaphthene μg/L NS 400 0.096 U 0.095 U 0.095 U 0.098 U 0.098 U 0.095 U Acenaphthylene μg/L NS NS 0.096 U 0.095 U 0.095 U 0.095 U 0.095 U 0.098 U 0.098 U 0.095 U Anthracene μg/L NS 1300 0.096 U 0.095 U 0.095 U 0.095 U 0.098 U 0.098 U 0.095 U Benzo(a)anthracene μg/L NS 0.029 0.096 U 0.095 U 0.095 U 0.095 U 0.095 U 0.098 U 0.098 U 0.095 U Benzo(a)pyrene μg/L 0.2 0.0029 0.096 U 0.095 U 0.095 U 0.095 U 0.095 U 0.098 U 0.098 U 0.095 U	4-Nitroanaline	μg/L	NS	3.3	0.48 U	0.48 U	0.48 U	0.48 U	0.49 U	0.48 U
Acenaphthylene μg/L NS NS 0.096 U 0.095 U 0.095 U 0.095 U 0.098 U 0.098 U 0.095 U Anthracene μg/L NS 1300 0.096 U 0.095 U 0.095 U 0.095 U 0.098 U 0.098 U 0.095 U Benzo(a)anthracene μg/L NS 0.029 0.096 U 0.095 U 0.095 U 0.095 U 0.095 U 0.098 U 0.098 U 0.095 U Benzo(a)pyrene μg/L 0.2 0.0029 0.096 U 0.095 U 0.095 U 0.095 U 0.095 U 0.098 U 0.098 U 0.095 U	4-Nitrophenol	μg/L	NS	NS	3.8 U	3.8 U	3.8 U	3.8 U	3.9 U	3.8 U
Anthracene μg/L NS 1300 0.096 U 0.095 U 0.095 U 0.095 U 0.098 U 0.095 U Benzo(a)anthracene μg/L NS 0.029 0.096 U 0.095 U 0.095 U 0.095 U 0.095 U 0.098 U 0.095 U Benzo(a)pyrene μg/L 0.2 0.0029 0.096 U 0.095 U 0.095 U 0.095 U 0.095 U 0.098 U 0.098 U 0.095 U	Acenaphthene	μg/L	NS	400	0.096 U	0.095 U	0.095 U	0.095 U	0.098 U	0.095 U
Benzo(a)anthracene μg/L NS 0.029 0.096 U 0.095 U 0.095 U 0.095 U 0.095 U 0.095 U 0.098 U 0.098 U 0.095 U Benzo(a)pyrene μg/L 0.2 0.0029 0.096 U 0.095 U 0.095 U 0.095 U 0.095 U 0.098 U 0.098 U 0.095 U	Acenaphthylene	μg/L	NS	NS	0.096 U	0.095 U	0.095 U	0.095 U	0.098 U	0.095 U
Benzo(a)anthracene μg/L NS 0.029 0.096 U 0.095 U 0.095 U 0.095 U 0.095 U 0.098 U 0.098 U 0.095 U Benzo(a)pyrene μg/L 0.2 0.0029 0.096 U 0.095 U 0.095 U 0.095 U 0.095 U 0.098 U 0.098 U 0.095 U	Anthracene	μg/L	NS	1300	0.096 U	0.095 U	0.095 U	0.095 U	0.098 U	0.095 U
Benzo(a)pyrene µg/L 0.2 0.0029 0.096 U 0.095 U 0.095 U 0.095 U 0.095 U 0.098 U 0.095 U	Benzo(a)anthracene	μg/L	NS	0.029	0.096 U	0.095 U	0.095 U	0.095 U	0.098 U	0.095 U
	Benzo(a)pyrene	μg/L	0.2	0.0029	0.096 U	0.095 U	0.095 U	0.095 U	0.098 U	0.095 U
	Benzo(b)fluoranthene		NS	0.029	0.096 U	0.095 U	0.095 U	0.095 U	0.098 U	0.095 U

Table 3-5. FWGWMP August 2013 SVOC Analytical Results

Station ID				BOI mw 010	BOI mw 011	WBGmw-018	M/PCmy 010	WPC mu 020	WPCmw 021
Station ID			LIOEDA	RQLmw-010	RQLmw-011		WBGmw-019	WBGmw-020	WBGmw-021
Sample ID		MCL	USEPA RSL	FWGRQLmw- 010C-0325-GW	FWGRQLmw-	FWGWBGmw-	FWGWBGmw-	FWGWBGmw- 020-0330-GW	FWGWBGmw-
Sample ID Date Collected		IVICL	KOL	8/19/2013	011C-0326-GW 8/19/2013	018-0328-GW 8/21/2013	019-0329-GW 8/21/2013	8/21/2013	021-0331-GW 8/21/2013
Sample Type				Grab	Grab	Grab	Grab	Grab	Grab
Analyte	Units			0.00	0.00	3 .a.	0.00	0.00	0.02
Benzo(g,h,i)perylene	μg/L	NS	NS	0.096 U	0.095 U	0.095 U	0.095 U	0.098 U	0.095 U
Benzo(k)fluoranthene	μg/L μg/L	NS	0.29	0.096 U	0.095 U	0.095 U	0.095 U	0.098 U	0.095 U
Benzoic acid		NS	58000	19 U	19 U	19 U	19 U	20 U	19 U
Benzyl alcohol	μg/L								
	μg/L	NS	1500	0.48 U	0.48 U	0.48 U	0.48 U	0.49 U	0.48 U
bis(2-Chloroethoxy)methane	μg/L	NS	46	0.48 U	0.48 U	0.48 U	0.48 U	0.49 U	0.48 U
bis(2-Chloroethyl)ether	μg/L	NS	0.012	0.096 U	0.095 U	0.095 U	0.095 U	0.098 U	0.095 U
bis(2-Ethylhexyl)phthalate	μg/L	6.0	4.8	0.63	0.22 B	0.31 JB	0.49 B	0.54 B	0.65 B
Butyl benzyl phthalate	μg/L	NS	14	0.48 U	0.48 U	0.48 U	0.48 U	0.49 U	0.48 U
Carbazole	μg/L	NS	NS	0.48 U	0.48 U	0.48 U	0.48 U	0.49 U	0.48 U
Chrysene	μg/L	NS	2.9	0.096 U	0.095 U	0.095 U	0.095 U	0.098 U	0.095 U
Dibenzo(a,h)anthracene	μg/L	NS	0.0029	0.096 U	0.095 U	0.095 U	0.095 U	0.098 U	0.095 U
Dibenzofuran	μg/L	NS	5.8	0.096 U	0.095 U	0.095 U	0.095 U	0.098 U	0.095 U
Diethyl phthalate	μg/L	NS	11000	0.96 U	0.95 U	0.95 U	0.95 U	0.98 U	0.95 U
Dimethyl phthalate	μg/L	NS	NS	0.48 U	0.48 U	0.48 U	0.48 U	0.49 U	0.48 U
Di-n-butyl phthalate	μg/L	NS	670	1.0	0.95 U	0.95 U	0.84 B	0.76 B	0.68 B
Di-n-octyl phthalate	μg/L	NS	160	0.48 U	0.48 U	0.48 U	0.48 U	0.49 U	0.48 U
Fluoranthene	μg/L	NS	630	0.096 U	0.095 U	0.095 U	0.095 U	0.098 U	0.095 U
Fluorene	μg/L	NS	220	0.096 U	0.095 U	0.095 U	0.095 U	0.098 U	0.095 U
Hexachlorobenzene	μg/L	1.0	0.042	0.096 U	0.095 U	0.095 U	0.095 U	0.098 U	0.095 U
Hexachlorobutadiene	μg/L	NS	0.26	0.48 U	0.48 U	0.48 U	0.48 U	0.49 U	0.48 U
Hexachlorocyclopentadiene	μg/L	50	22	0.48 U	0.48 U	0.48 U	0.48 U	0.49 U	0.48 U
Hexachloroethane	μg/L	NS	0.79	0.48 U	0.48 U	0.48 U	0.48 U	0.49 U	0.48 U
Indeno(1,2,3-cd)pyrene	μg/L	NS	0.029	0.096 U	0.095 U	0.095 U	0.095 U	0.098 U	0.095 U
Isophorone	μg/L	NS	67	0.48 U	0.48 U	0.48 U	0.48 U	0.49 U	0.48 U
Naphthalene	μg/L	NS	0.14	0.096 U	0.095 U	0.095 U	0.095 U	0.098 U	0.095 U
N-Nitroso-di-n-propylamine	μg/L	NS	0.0093	0.48 U	0.48 U	0.48 U	0.48 U	0.49 U	0.48 U
N-Nitrosodiphenylamine	μg/L	NS	10	0.48 U	0.48 U	0.48 U	0.48 U	0.49 U	0.48 U
Pentachlorophenol	μg/L	1.0	0.035	0.96 U	0.95 U	0.95 U	0.95 U	0.98 U	0.95 U
Phenanthrene	μg/L	NS	NS	0.096 U	0.095 U	0.095 U	0.095 U	0.098 U	0.095 U
Phenol	μg/L	NS	4500	0.96 U	0.95 U	0.95 U	0.95 U	0.98 U	0.95 U
Pyrene	μg/L	NS	87	0.096 U	0.095 U	0.095 U	0.095 U	0.098 U	0.095 U
. ,	r∌′-		J	5.000 0	5.000 0	5.000 0	5.000 0	5.000 0	5.000 0

MCL = Maximum Contaminant Level

RSL = USEPA Regional Screening Level, Nov 2013

μg/L = microgram per liter

NS = no standard N/A = Not Analyzed

Table 3-5. FWGWMP August 2013 SVOC Analytical Results

Data Qualifiers

Data qualifier flags are used in an effort to describe the quality of each piece of data for each constituent. These flags are letter codes appended to the numerical data. The following data qualifiers are specified in the USACE Louisville Chemistry Guidelines. For a complete explanation of qualifiers used for each constituent please refer to the Data Verification Summaries in Appendix C.

- U The analyte was analyzed for but not detected. The numerical value preceding the U is the associated reporting limit.
- J The identification of the analyte is acceptable, but the quality assurance criteria indicate that the quantitative values may be outside the normal expected range of precision (i.e., the quantitative value is estimated). Examples include:
 - Results detected above the laboratory MDL but less than the laboratory reporting limit.
 - MS/MSD percent recoveries outside the acceptance criteria.
 - LCS percent recoveries outside acceptance criteria.
- R Data are considered to be rejected and shall not be used. This flag denotes the failure of quality control criteria such that it cannot be determined if the analyte is present or absent from the sample [e.g., the MRL verification standard was below quality control guidelines; associated sample results that were non-detect are unusable].
- UJ This flag is a combination of the U and J qualifiers, which indicate that the analyte is not present. The reported value is considered to be an estimated RL.
- B The B flag is used for both organic and inorganic analyses when the analyte is found in the method blank or any of the field blanks. This designation overrides the CLP "B" designation when used by the laboratory as an estimated value for inorganics.

Table 3-6. FWGWMP August 2013 Pesticides and PCBs Analytical Results

				D40mm 040		DA0 445	DET 004	DET 000	DET 000
Station ID			110557	B12mw-013	DA2mw-114	DA2mw-115	DETmw-001	DETmw-002	DETmw-003
Sample ID		MCL	USEPA RSL		FWGDA2mw-114			FWGDETmw-	FWGDETmw-
Sample ID Date Collected		IVICL	KOL	0313-GW 8/20/2013	0312-GW 8/20/2013	0313-GW 8/20/2013	001C-0314-GW 8/20/2013	002C-0315-GW 8/20/2013	003C-0343-GW 8/20/2013
Sample Type				8/20/2013 Grab	8/20/2013 Grab	8/20/2013 Grab	8/20/2013 Grab	8/20/2013 Grab	8/20/2013 Grab
Analyte	Units			Sias	0.05	Sido	0.00	Cias	Jias
4,4'-DDD	μg/L	NS	0.027	0.019 U	0.019 U	0.020 U	0.019 U	0.019 U	0.019 U
4,4'-DDE	μg/L	NS	0.20	0.019 U	0.019 U	0.020 U	0.019 U	0.019 U	0.019 U
4,4'-DDT	μg/L	NS	0.20	0.019 U	0.019 U	0.020 U	0.019 U	0.019 U	0.019 U
Aldrin	μg/L	NS	0.0040	0.019 U	0.019 U	0.020 U	0.019 U	0.019 U	0.019 U
alpha-BHC	μg/L	NS	0.0062	0.019 U	0.019 U	0.020 U	0.019 U	0.019 U	0.019 U
alpha-Chordane	μg/L	NS	NS	0.019 U	0.019 U	0.020 U	0.019 U	0.019 U	0.019 U
beta-BHC	μg/L	NS	0.022	0.019 U	0.019 U	0.015 J	0.019 U	0.011 J	0.015 J
delta-BHC	μg/L	NS	NS	0.019 U	0.019 U	0.020 U	0.019 U	0.019 U	0.019 U
Dieldrin	μg/L	NS	0.0015	0.019 U	0.019 U	0.020 U	0.019 U	0.019 U	0.019 U
Endosulfan I	μg/L	NS	78	0.019 U	0.019 U	0.020 U	0.019 U	0.019 U	0.019 U
Endosulfan II	μg/L	NS	78	0.019 U	0.019 U	0.020 U	0.019 U	0.019 U	0.019 U
Endosulfan sulfate	μg/L	NS	NS	0.019 U	0.019 U	0.020 U	0.019 U	0.019 U	0.019 U
Endrin	μg/L	2.0	1.7	0.019 U	0.019 U	0.020 U	0.019 U	0.019 U	0.019 U
Endrin aldehyde	μg/L	NS	NS	0.019 U	0.019 U	0.020 U	0.019 U	0.019 U	0.019 U
Endrin ketone	μg/L	NS	NS	0.019 U	0.019 U	0.020 U	0.012 J	0.019 U	0.019 U
gamma-BHC	μg/L	0.20	0.036	0.019 U	0.019 U	0.020 U	0.019 U	0.019 U	0.019 U
gamma-Chlordane	μg/L	NS	NS	0.019 U	0.019 U	0.020 U	0.019 U	0.019 U	0.019 U
Heptachlor	μg/L	0.40	0.0018	0.019 U	0.019 U	0.020 U	0.019 U	0.019 U	0.019 U
Heptachlor epoxide	μg/L	0.20	0.0033	0.019 U	0.019 U	0.020 U	0.019 U	0.019 U	0.019 U
Methoxychlor	μg/L	40	27	0.048 U	0.048 U	0.049 U	0.048 U	0.048 U	0.048 U
Toxaphene	μg/L	3.0	0.013	0.76 U	0.76 U	0.78 U	0.76 U	0.77 U	0.76 U
PCB- 1016	μg/L	0.50	0.96	0.19 UJ	0.19 UJ	0.19 UJ	0.19 UJ	0.19 UJ	0.19 UJ
PCB- 1221	μg/L	0.50	0.0040	0.19 UJ	0.19 UJ	0.19 UJ	0.19 UJ	0.19 UJ	0.19 UJ
PCB- 1232	μg/L	0.50	0.0040	0.19 UJ	0.19 UJ	0.19 UJ	0.19 UJ	0.19 UJ	0.19 UJ
PCB- 1242	μg/L	0.50	0.034	0.38 UJ	0.38 UJ	0.38 UJ	0.38 UJ	0.38 UJ	0.38 UJ
PCB- 1248	μg/L	0.50	0.034	0.19 UJ	0.19 UJ	0.19 UJ	0.19 UJ	0.19 UJ	0.19 UJ
PCB- 1254	μg/L	0.50	0.034	0.19 UJ	0.19 UJ	0.19 UJ	0.19 UJ	0.19 UJ	0.19 UJ
PCB- 1260	μg/L	0.50	0.034	0.19 UJ	0.19 UJ	0.19 UJ	0.19 UJ	0.19 UJ	0.19 UJ
Notos:				-					

MCL = Maximum Contaminant Level

RSL = USEPA Regional Screening Level, Nov 2013

NS = no standard N/A = not analyzed

Bold = detected compound above the MDL

Table 3-6. FWGWMP August 2013 Pesticides and PCBs Analytical Results

T WGWWF August 20	10 1 000	l	AT ODS AIR	1				1	T
Station ID				DETmw-004	EBGmw-131	FBQmw-174	FWGmw-004	FWGmw-009	LL1mw-064
			USEPA	FWGDETmw-	FWGEBGmw-	FWGFBQmw-	FWGFWGmw-	FWGFWGmw-	FWGLL1mw-
Sample ID		MCL	RSL	004C-0344-GW	131-0316-GW	174C-0345-GW	004-0346-GW	009-0319-GW	064C-0352-GW
Date Collected				8/20-21/2013	8/19/2013	8/20/2013	8/19/2013	8/21/2013	8/20/2013
Sample Type				Grab	Grab	Grab	Grab	Grab	Grab
Analyte	Units								
4,4'-DDD	μg/L	NS	0.027	0.020 U	0.019 U	0.020 U	0.021 U	0.020 U	0.020 U
4,4'-DDE	μg/L	NS	0.20	0.020 U	0.019 U	0.020 U	0.021 U	0.020 U	0.020 U
4,4'-DDT	μg/L	NS	0.20	0.020 U	0.019 U	0.020 U	0.021 U	0.020 U	0.020 U
Aldrin	μg/L	NS	0.0040	0.020 U	0.019 U	0.020 U	0.021 U	0.020 U	0.020 U
alpha-BHC	μg/L	NS	0.0062	0.020 U	0.019 U	0.020 U	0.021 U	0.020 U	0.020 U
alpha-Chordane	μg/L	NS	NS	0.020 U	0.019 U	0.020 U	0.021 U	0.020 U	0.020 U
beta-BHC	μg/L	NS	0.022	0.020 U	0.019 U	0.020 U	0.021 U	0.020 U	0.020 U
delta-BHC	μg/L	NS	NS	0.020 U	0.019 U	0.019 J	0.038 R	0.020 U	0.020 U
Dieldrin	μg/L	NS	0.0015	0.020 U	0.019 U	0.020 U	0.021 U	0.020 U	0.020 U
Endosulfan I	μg/L	NS	78	0.020 U	0.019 U	0.020 U	0.021 U	0.020 U	0.020 U
Endosulfan II	μg/L	NS	78	0.020 U	0.019 U	0.020 U	0.021 U	0.020 U	0.020 U
Endosulfan sulfate	μg/L	NS	NS	0.020 U	0.019 U	0.020 U	0.021 U	0.020 U	0.020 U
Endrin	μg/L	2.0	1.7	0.020 U	0.019 U	0.020 U	0.021 U	0.020 U	0.020 U
Endrin aldehyde	μg/L	NS	NS	0.020 U	0.019 U	0.020 U	0.021 U	0.020 U	0.020 U
Endrin ketone	μg/L	NS	NS	0.020 U	0.019 U	0.020 U	0.021 U	0.020 U	0.020 U
gamma-BHC	μg/L	0.20	0.036	0.020 U	0.019 U	0.020 U	0.021 U	0.020 U	0.020 U
gamma-Chlordane	μg/L	NS	NS	0.020 U	0.019 U	0.037	0.021 U	0.020 U	0.020 U
Heptachlor	μg/L	0.40	0.0018	0.020 U	0.019 U	0.020 U	0.021 U	0.020 U	0.020 U
Heptachlor epoxide	μg/L	0.20	0.0033	0.020 U	0.019 U	0.020 U	0.021 U	0.020 U	0.020 U
Methoxychlor	μg/L	40	27	0.051 U	0.048 U	0.051 U	0.053 U	0.049 U	0.050 U
Toxaphene	μg/L	3.0	0.013	0.81 U	0.76 U	0.82 U	0.85 U	0.78 UJ	0.79 U
PCB- 1016	μg/L	0.50	0.96	0.20 U	0.19 UJ	N/A	N/A	0.20 U	N/A
PCB- 1221	μg/L	0.50	0.0040	0.20 U	0.19 UJ	N/A	N/A	0.20 U	N/A
PCB- 1232	μg/L	0.50	0.0040	0.20 U	0.19 UJ	N/A	N/A	0.20 U	N/A
PCB- 1242	μg/L	0.50	0.034	0.40 U	0.38 UJ	N/A	N/A	0.39 U	N/A
PCB- 1248	μg/L	0.50	0.034	0.20 U	0.19 UJ	N/A	N/A	0.20 U	N/A
PCB- 1254	μg/L	0.50	0.034	0.20 U	0.19 UJ	N/A	N/A	0.20 U	N/A
PCB- 1260	μg/L	0.50	0.034	0.20 U	0.19 UJ	N/A	N/A	0.20 U	N/A
				•					

MCL = Maximum Contaminant Level

RSL = USEPA Regional Screening Level, Nov 2013

NS = no standard N/A = not analyzed **Bold** = detected compound above the MDL

Table 3-6. FWGWMP August 2013 Pesticides and PCBs Analytical Results

Station ID				LL1mw-065	LL1mw-083	LL1mw-084	LL1mw-086	LL1mw-087	LL3mw-238
			USEPA	FWGLL1mw-	FWGLL1mw-	FWGLL1mw-	FWGLL1mw-086-	FWGLL1mw-	FWGLL3mw-
Sample ID		MCL	RSL	065C-0353-GW	083C-0354-GW	084C-0355-GW	0320-GW	087C-0356-GW	238C-0359-GW
Date Collected				8/20/2013	8/20/2013	8/21/2013	8/20/2013	8/20/2013	8/19/2013
Sample Type				Grab	Grab	Grab	Grab	Grab	Grab
Analyte	Units								
4,4'-DDD	μg/L	NS	0.027	0.020 U	0.019 U	0.020 U	0.019 U	0.021 U	0.021 U
4,4'-DDE	μg/L	NS	0.20	0.020 U	0.019 U	0.020 U	0.019 U	0.021 U	0.020 J
4,4'-DDT	μg/L	NS	0.20	0.020 U	0.019 U	0.020 U	0.019 U	0.021 U	0.021 U
Aldrin	μg/L	NS	0.0040	0.020 U	0.019 U	0.020 U	0.019 U	0.021 U	0.021 U
alpha-BHC	μg/L	NS	0.0062	0.020 U	0.019 U	0.020 U	0.019 U	0.021 U	0.021 U
alpha-Chordane	μg/L	NS	NS	0.020 U	0.019 U	0.020 U	0.019 U	0.021 U	0.021 U
beta-BHC	μg/L	NS	0.022	0.020 U	0.019 U	0.069	0.019 U	0.021 U	0.021 U
delta-BHC	μg/L	NS	NS	0.020 U	0.019 U	0.020 U	0.019 U	0.021 U	0.021 R
Dieldrin	μg/L	NS	0.0015	0.020 U	0.019 U	0.020 U	0.019 U	0.021 U	0.021 U
Endosulfan I	μg/L	NS	78	0.020 U	0.019 U	0.020 U	0.019 U	0.021 U	0.021 U
Endosulfan II	μg/L	NS	78	0.020 U	0.014 J	0.020 U	0.019 U	0.021 U	0.021 U
Endosulfan sulfate	μg/L	NS	NS	0.020 U	0.019 U	0.020 U	0.019 U	0.021 U	0.021 U
Endrin	μg/L	2.0	1.7	0.020 U	0.019 U	0.020 U	0.019 U	0.021 U	0.021 U
Endrin aldehyde	μg/L	NS	NS	0.020 U	0.019 U	0.020 U	0.019 U	0.021 U	0.011 J
Endrin ketone	μg/L	NS	NS	0.020 U	0.019 U	0.020 U	0.019 U	0.021 U	0.021 U
gamma-BHC	μg/L	0.20	0.036	0.020 U	0.019 U	0.020 U	0.019 U	0.021 U	0.021 U
gamma-Chlordane	μg/L	NS	NS	0.020 U	0.019 U	0.020 U	0.019 U	0.021 U	0.021 U
Heptachlor	μg/L	0.40	0.0018	0.020 U	0.019 U	0.020 U	0.019 U	0.021 U	0.021 U
Heptachlor epoxide	μg/L	0.20	0.0033	0.020 U	0.019 U	0.020 U	0.019 U	0.021 U	1.0 UJ
Methoxychlor	μg/L	40	27	0.049 U	0.048 U	0.049 U	0.048 U	0.052 U	0.052 U
Toxaphene	μg/L	3.0	0.013	0.78 U	0.76 U	0.78 U	0.76 U	0.82 U	0.83 U
PCB- 1016	μg/L	0.50	0.96	N/A	N/A	N/A	N/A	N/A	N/A
PCB- 1221	μg/L	0.50	0.0040	N/A	N/A	N/A	N/A	N/A	N/A
PCB- 1232	μg/L	0.50	0.0040	N/A	N/A	N/A	N/A	N/A	N/A
PCB- 1242	μg/L	0.50	0.034	N/A	N/A	N/A	N/A	N/A	N/A
PCB- 1248	μg/L	0.50	0.034	N/A	N/A	N/A	N/A	N/A	N/A
PCB- 1254	μg/L	0.50	0.034	N/A	N/A	N/A	N/A	N/A	N/A
PCB- 1260	μg/L	0.50	0.034	N/A	N/A	N/A	N/A	N/A	N/A

MCL = Maximum Contaminant Level

RSL = USEPA Regional Screening Level, Nov 2013

NS = no standard N/A = not analyzed

Bold = detected compound above the MDL

Table 3-6. FWGWMP August 2013 Pesticides and PCBs Analytical Results

Station ID				LL3mw-241	LL3mw-244	LL12mw-187	L12mw-242	LL12mw-245	LL12mw-247
			USEPA	FWGLL3mw-	FWGLL3mw-244-	FWGLL12mw-	FWGLL12mw-	FWGLL12mw-	FWGLL12mw-
Sample ID		MCL	RSL	241C-0360-GW	0323-GW	187C-0363-GW	242C-0364-GW	245C-0365-GW	247-0336-GW
Date Collected				8/19/2013	8/20/2013	8/20/2013	8/20/2013	8/20/2013	8/20/2013
Sample Type				Grab	Grab	Grab	Grab	Grab	Grab
Analyte	Units								
4,4'-DDD	μg/L	NS	0.027	0.019 U	0.019 U	0.019 U	0.019 U	0.019 U	0.019 UJ
4,4'-DDE	μg/L	NS	0.20	0.019 U	0.019 U	0.019 U	0.019 U	0.019 U	0.019 UJ
4,4'-DDT	μg/L	NS	0.20	0.019 U	0.019 U	0.019 U	0.019 U	0.019 U	0.019 UJ
Aldrin	μg/L	NS	0.0040	0.019 U	0.019 U	0.019 U	0.019 U	0.019 U	0.019 UJ
alpha-BHC	μg/L	NS	0.0062	0.019 U	0.019 U	0.019 U	0.019 U	0.019 U	0.019 UJ
alpha-Chordane	μg/L	NS	NS	0.019 U	0.019 U	0.019 U	0.019 U	0.019 U	0.019 UJ
beta-BHC	μg/L	NS	0.022	0.019 U	0.025 J	0.019 U	0.019 U	0.011 J	0.18 J
delta-BHC	μg/L	NS	NS	0.038 R	0.019 U	0.019 U	0.019 U	0.019 U	0.019 UJ
Dieldrin	μg/L	NS	0.0015	0.019 U	0.019 U	0.019 U	0.019 U	0.019 U	0.019 UJ
Endosulfan I	μg/L	NS	78	0.019 U	0.019 U	0.019 U	0.019 U	0.019 U	0.019 UJ
Endosulfan II	μg/L	NS	78	0.019 U	0.019 U	0.019 U	0.019 U	0.019 U	0.019 UJ
Endosulfan sulfate	μg/L	NS	NS	0.019 U	0.019 U	0.019 U	0.019 U	0.019 U	0.019 UJ
Endrin	μg/L	2.0	1.7	0.027	0.019 U	0.019 U	0.019 U	0.019 U	0.019 UJ
Endrin aldehyde	μg/L	NS	NS	0.019 U	0.019 U	0.019 U	0.019 U	0.019 U	0.019 UJ
Endrin ketone	μg/L	NS	NS	0.019 U	0.019 U	0.019 U	0.019 U	0.019 U	0.019 UJ
gamma-BHC	μg/L	0.20	0.036	0.019 U	0.019 U	0.019 U	0.019 U	0.019 U	0.019 UJ
gamma-Chlordane	μg/L	NS	NS	0.019 U	0.019 U	0.019 U	0.019 U	0.019 U	0.019 UJ
Heptachlor	μg/L	0.40	0.0018	0.019 U	0.019 U	0.019 U	0.019 U	0.019 U	0.019 UJ
Heptachlor epoxide	μg/L	0.20	0.0033	0.019 U	0.019 U	0.019 U	0.019 U	0.019 U	0.019 UJ
Methoxychlor	μg/L	40	27	0.048 U	0.048 U	0.048 U	0.048 U	0.048 U	0.048 UJ
Toxaphene	μg/L	3.0	0.013	0.77 U	0.76 U	0.76 U	0.76 U	0.76 U	0.76 UJ
PCB- 1016	μg/L	0.50	0.96	N/A	N/A	N/A	N/A	N/A	N/A
PCB- 1221	μg/L	0.50	0.0040	N/A	N/A	N/A	N/A	N/A	N/A
PCB- 1232	μg/L	0.50	0.0040	N/A	N/A	N/A	N/A	N/A	N/A
PCB- 1242	μg/L	0.50	0.034	N/A	N/A	N/A	N/A	N/A	N/A
PCB- 1248	μg/L	0.50	0.034	N/A	N/A	N/A	N/A	N/A	N/A
PCB- 1254	μg/L	0.50	0.034	N/A	N/A	N/A	N/A	N/A	N/A
PCB- 1260	μg/L	0.50	0.034	N/A	N/A	N/A	N/A	N/A	N/A

MCL = Maximum Contaminant Level

RSL = USEPA Regional Screening Level, Nov 2013

NS = no standard N/A = not analyzed

Bold = detected compound above the MDL

Table 3-6. FWGWMP August 2013 Pesticides and PCBs Analytical Results

Station ID				RQLmw-006	RQLmw-007	RQLmw-008	RQLmw-009	RQLmw-010	RQLmw-011
			USEPA	FWGRQLmw-	FWGRQLmw-	FWGRQLmw-	FWGRQLmw-	FWGRQLmw-	FWGRQLmw-
Sample ID		MCL	RSL	006C-0368-GW	007C-0369-GW	008C-0370-GW	009C-0371-GW	010C-0325-GW	011C-0326-GW
Date Collected				8/19/2013	8/19/2013	8/19/2013	8/19/2013	8/19/2013	8/19/2013
Sample Type				Grab	Grab	Grab	Grab	Grab	Grab
Analyte	Units								
4,4'-DDD	μg/L	NS	0.027	0.019 U					
4,4'-DDE	μg/L	NS	0.20	0.019 U	0.019 U	0.038 J	0.019 U	0.019 U	0.019 U
4,4'-DDT	μg/L	NS	0.20	0.019 U					
Aldrin	μg/L	NS	0.0040	0.019 U					
alpha-BHC	μg/L	NS	0.0062	0.019 U					
alpha-Chordane	μg/L	NS	NS	0.019 U					
beta-BHC	μg/L	NS	0.022	0.013 JB	0.019 U	0.0093 JB	0.019 U	0.019 U	0.019 U
delta-BHC	μg/L	NS	NS	0.019 R	0.019 U	0.041 R	0.019 R	0.019 U	0.019 R
Dieldrin	μg/L	NS	0.0015	0.019 U					
Endosulfan I	μg/L	NS	78	0.019 U					
Endosulfan II	μg/L	NS	78	0.019 U					
Endosulfan sulfate	μg/L	NS	NS	0.019 U					
Endrin	μg/L	2.0	1.7	0.019 U					
Endrin aldehyde	μg/L	NS	NS	0.019 U					
Endrin ketone	μg/L	NS	NS	0.019 U					
gamma-BHC	μg/L	0.20	0.036	0.019 U					
gamma-Chlordane	μg/L	NS	NS	0.019 U					
Heptachlor	μg/L	0.40	0.0018	0.019 U					
Heptachlor epoxide	μg/L	0.20	0.0033	0.019 U					
Methoxychlor	μg/L	40	27	0.048 U					
Toxaphene	μg/L	3.0	0.013	0.76 U					
PCB- 1016	μg/L	0.50	0.96	0.19 UJ	0.19 U				
PCB- 1221	μg/L	0.50	0.0040	0.19 UJ	0.19 U				
PCB- 1232	μg/L	0.50	0.0040	0.19 UJ	0.19 U				
PCB- 1242	μg/L	0.50	0.034	0.38 UJ	0.38 U				
PCB- 1248	μg/L	0.50	0.034	0.19 UJ	0.19 U				
PCB- 1254	μg/L	0.50	0.034	0.19 UJ	0.19 U				
PCB- 1260	μg/L	0.50	0.034	0.19 UJ	0.19 U				

MCL = Maximum Contaminant Level

RSL = USEPA Regional Screening Level, Nov 2013

NS = no standard N/A = not analyzed

Bold = detected compound above the MDL

Table 3-6. FWGWMP August 2013 Pesticides and PCBs Analytical Results

3-0. I WGWWIF Augus	. 2010 1	l	I	1					
Station ID				SCFmw-002	SCFmw-004	WBGmw-018	WBGmw-019	WBGmw-020	WBGmw-021
		MOL	USEPA	FWGSCFmw-002-		FWGWBGmw-	FWGWBGmw-	FWGWBGmw-	FWGWBGmw-
Sample ID		MCL	RSL	0327-GW	0372-GW	018-0328-GW	019-0329-GW	020-0330-GW	021-0331-GW
Date Collected Sample Type				8/20/2013 Grab	8/20/2013 Grab	8/21/2013 Grab	8/21/2013 Grab	8/21/2013 Grab	8/21/2013 Grab
Analyte	Units			Grab	Glab	Glab	Grab	Glab	Glab
4,4'-DDD		NC	0.007	0.040.11	0.000.11	0.040.11	0.040.11	0.040.11	0.040.11
4,4'-DDE	μg/L	NS	0.027	0.019 U	0.020 U	0.019 U	0.019 U	0.019 U	0.019 U
,	μg/L	NS	0.20	0.019 U	0.020 U	0.019 U	0.019 U	0.019 U	0.019 U
4,4'-DDT	μg/L	NS	0.20	0.019 U	0.020 U	0.019 U	0.019 U	0.019 U	0.019 U
Aldrin	μg/L	NS	0.0040	0.019 U	0.020 U	0.019 U	0.019 U	0.019 U	0.019 U
alpha-BHC	μg/L	NS	0.0062	0.019 U	0.020 U	0.019 U	0.019 U	0.019 U	0.019 U
alpha-Chordane	μg/L	NS	NS	0.019 U	0.020 U	0.019 U	0.019 U	0.019 U	0.019 U
beta-BHC	μg/L	NS	0.022	0.014 J	0.0087 J	0.019 U	0.011 J	0.019 U	0.019 U
delta-BHC	μg/L	NS	NS	0.019 U	0.020 U	0.019 U	0.019 U	0.019 U	0.019 U
Dieldrin	μg/L	NS	0.0015	0.019 U	0.020 U	0.019 U	0.019 U	0.019 U	0.019 U
Endosulfan I	μg/L	NS	78	0.019 U	0.020 U	0.019 U	0.019 U	0.019 U	0.019 U
Endosulfan II	μg/L	NS	78	0.019 U	0.020 U	0.019 U	0.019 U	0.019 U	0.019 U
Endosulfan sulfate	μg/L	NS	NS	0.019 U	0.020 U	0.019 U	0.019 U	0.019 U	0.019 U
Endrin	μg/L	2.0	1.7	0.019 U	0.020 U	0.019 U	0.019 U	0.019 U	0.019 U
Endrin aldehyde	μg/L	NS	NS	0.019 U	0.020 U	0.019 U	0.019 U	0.019 U	0.019 U
Endrin ketone	μg/L	NS	NS	0.019 U	0.020 U	0.019 U	0.019 U	0.019 U	0.019 U
gamma-BHC	μg/L	0.20	0.036	0.019 U	0.020 U	0.019 U	0.019 U	0.019 U	0.019 U
gamma-Chlordane	μg/L	NS	NS	0.019 U	0.020 U	0.019 U	0.019 U	0.019 U	0.019 U
Heptachlor	μg/L	0.40	0.0018	0.019 U	0.020 U	0.019 U	0.019 U	0.019 U	0.019 U
Heptachlor epoxide	μg/L	0.20	0.0033	0.019 U	0.020 U	0.019 U	0.019 U	0.019 U	0.019 U
Methoxychlor	μg/L	40	27	0.048 U	0.049 U	0.048 U	0.048 U	0.048 U	0.048 U
Toxaphene	μg/L	3.0	0.013	0.76 U	0.78 U	0.76 U	0.76 U	0.76 U	0.76 U
PCB- 1016	μg/L	0.50	0.96	N/A	N/A	0.19 U	0.19 U	0.19 U	0.19 U
PCB- 1221	μg/L	0.50	0.0040	N/A	N/A	0.19 U	0.19 U	0.19 U	0.19 U
PCB- 1232	μg/L	0.50	0.0040	N/A	N/A	0.19 U	0.19 U	0.19 U	0.19 U
PCB- 1242	μg/L	0.50	0.034	N/A	N/A	0.38 U	0.38 U	0.38 U	0.38 U
PCB- 1248	μg/L	0.50	0.034	N/A	N/A	0.19 U	0.19 U	0.19 U	0.19 U
PCB- 1254	μg/L	0.50	0.034	N/A	N/A	0.19 U	0.19 U	0.19 U	0.19 U
PCB- 1260	μg/L	0.50	0.034	N/A	N/A	0.19 U	0.19 U	0.19 U	0.19 U
1									

MCL = Maximum Contaminant Level

RSL = USEPA Regional Screening Level, Nov 2013

NS = no standard N/A = not analyzed

Bold = detected compound above the MDL

Table 3-6. FWGWMP August 2013 Pesticides and PCBs Analytical Results

Data Qualifiers

Data qualifier flags are used in an effort to describe the quality of each piece of data for each constituent. These flags are letter codes appended to the numerical data. The following data qualifiers are specified in the USACE Louisville Chemistry Guidelines. For a complete explanation of qualifiers used for each constituent please refer to the Data Verification Summaries in Appendix C.

- U The analyte was analyzed for but not detected. The numerical value preceding the U is the associated reporting limit.
- J The identification of the analyte is acceptable, but the quality assurance criteria indicate that the quantitative values may be outside the normal expected range of precision (i.e., the quantitative value is estimated). Examples include:
 - Results detected above the laboratory MDL but less than the laboratory reporting limit.
 - MS/MSD percent recoveries outside the acceptance criteria.
 - LCS percent recoveries outside acceptance criteria.
- R Data are considered to be rejected and shall not be used. This flag denotes the failure of quality control criteria such that it cannot be determined if the analyte is present or absent from the sample [e.g., the MRL verification standard was below quality control guidelines; associated sample results that were non-detect are unusable].
- UJ This flag is a combination of the U and J qualifiers, which indicate that the analyte is not present. The reported value is considered to be an estimated RL.
- B The B flag is used for both organic and inorganic analyses when the analyte is found in the method blank or any of the field blanks. This designation overrides the CLP "B" designation when used by the laboratory as an estimated value for inorganics.

3.2.6 Hexavalent Chromium

The analytical results for hexavalent chromium are summarized in Table 3-7. Well LL3mw-244 had a detected concentration for hexavalent chromium of 0.361 μ g/L, which is elevated above the RSL of 0.031 μ g/L (there is no MCL for hexavalent chromium). Sample delivery group (SDG) R1306055 contains the chain of custody for the hexavalent chromium analyses.

Table 3-7. FWGWMP August 2013 Hexavalent Chromium Analytical Results

Sample ID	Well	Date	Concentration
		Collected	
FWGLL12mw-247-0366-GF	LL12mw-247	8/20/2013	0.020 μg/L U
FWGLL3mw-244-0323-GF	LL3mw-244	8/20/2013	0.361 μg/L J
FWGSCFmw-002-0327-GF	SCFmw-002	8/20/2013	0.020 μg/L U

- U The analyte was analyzed for but not detected. The numerical value preceding the U is the associated reporting limit.
- J The identification of the analyte is acceptable, but the quality assurance criteria indicate that the quantitative values may be outside the normal expected range of precision (i.e., the quantitative value is estimated). Examples include:
 - Results detected above the laboratory MDL but less than the laboratory reporting limit.
 - MS/MSD percent recoveries outside the acceptance criteria.
 - LCS percent recoveries outside acceptance criteria.

3.2.7 Perchlorates

During the August 2013 sampling event perchlorates were analyzed for in the nine wells. Table 3-8 summarizes the results. As shown in Table 3-8 there were no detections elevated above the RSL (11 μ g/L) or the MCL [EPA established an Interim Drinking Water Health Advisory of 15 μ g/L in water (EPA 2009b)].

Table 3-8. FWGWMP August 2013 Perchlorate Analytical Results

	Date	Perchloi	ate
Sample ID	Collected	(ug/L)
FWGBKGmw-010C-0311-GF	8/2/2013	0.018	В
FWGDETmw-001C-0314-GF	8/20/2013	0.020	U
FWGDETmw-002C-0315-GF	8/20/2013	0.012	J
FWGFWGmw-002-0317-GF	8/19/2013	0.020	U
FWGFWGmw-009-0319-GF	8/21/2013	0.020	U
FWGLL3mw-239C-0322-GF	8/19/2013	0.031	U
FWGRQLmw-006C-0368-GF	8/19/2013	0.020	U
FWGRQLmw-010C-0325-GF	8/19/2013	0.018	В
FWGRQLmw-011C-0326-GF	8/19/2013	0.020	U

All samples were collected as a grab sample.

Maximum Contaminat Level for Perchlorate is 15 $\mu g/L$

USEPA Regional Screening Level (Nov 2013) for Perchlorate is 11 μ g/L

μg/L = microgram per liter

Bold = detected compound above the MDL

Table 3-8. FWGWMP August 2013 Perchlorates Analytical Results

Data Qualifiers

Data qualifier flags are used in an effort to describe the quality of each piece of data for each constituent. These flags are letter codes appended to the numerical data. The following data qualifiers are specified in the USACE Louisville Chemistry Guidelines. For a complete explanation of qualifiers used for each constituent please refer to the Data Verification Summaries in Appendix C.

- U The analyte was analyzed for but not detected. The numerical value preceding the U is the associated reporting limit.
- J The identification of the analyte is acceptable, but the quality assurance criteria indicate that the quantitative values may be outside the normal expected range of precision (i.e., the quantitative value is estimated). Examples include:
 - Results detected above the laboratory MDL but less than the laboratory reporting limit.
 - MS/MSD percent recoveries outside the acceptance criteria.
 - LCS percent recoveries outside acceptance criteria.
- R Data are considered to be rejected and shall not be used. This flag denotes the failure of quality control criteria such that it cannot be determined if the analyte is present or absent from the sample [e.g., the MRL verification standard was below quality control guidelines; associated sample results that were non-detect are unusable].
- UJ This flag is a combination of the U and J qualifiers, which indicate that the analyte is not present. The reported value is considered to be an estimated r RL.
- B The B flag is used for both organic and inorganic analyses when the analyte is found in the method blank or any of the field blanks. This designation overrides the CLP "B" designation when used by the laboratory as an estimated value for inorganics.

3.3 Data Verification/Validation

As discussed in Sections 2.4 and 3.3, all primary chemical data were generated by Test America, with the exception of the analysis of hexavalent chromium, which was generated by ALS. RTI conducted the independent QA analysis; however, EQM is not required to verify RTI data. A multi-step process is conducted, which involves the lab, the ADR data program, and a data validator performing the data verification and validation of the data. During the First Step each lab analyzes the data and assigns a qualifier as necessary in full accordance with DoD QSM and LS guidelines.

Analytical data was then reviewed by qualified EQM personnel, and a report was generated according to Step 2 of the LS and the DoD QSM, with any deviations/outliers noted in the summary report. The USACE-supplied ADR program assigns qualifiers to the data, as necessary, consistent with the programmed criteria of the ADR software. Additionally, the data validator uses professional judgment to check the validity of the qualified data and either accepts, rejects, or re-qualifies the ADR results following strict DoD QSM and LS guidelines.

After this multi-step process has been completed, the resulting final ADR qualifiers may not match the original lab qualifiers that are presented on the laboratory data sheets. As a result of the data validation process, one or more of four possibilities may occur:

- 1. The lab assigns a B, J, or E to the data, and ADR and/or the data validator changes the qualifier to a J, UJ, U, B, or R.
- 2. The lab assigns no qualifier to the data, and ADR and/or the data validator assigns a J, UJ, U, B, or R to the data.
- 3. The lab assigns a B, J, or E to the data, and ADR and/or the data validator assigns no qualifier to the data.
- 4. The lab assigns a J qualifier or uses no qualifier, and ADR and/or the data validator accepts the lab designation.

For the August 2013 Sampling Event Report, the laboratory data, with laboratory-derived qualifiers that follow DoD QSM and LS criteria, are presented in Appendix C. The verification reports for the data are also presented in Appendix C, which includes the definitions of the ADR qualifiers. The data presented in Tables 3-2, 3-3, 3-4, 3-5, 3-6, 3-7, and 3-8 are the result of the data that has been subjected to the multi-step process of verification and validation. These tables display the final assigned data qualifier in accordance with DoD QSM and LS criteria.

Data qualifier flags are used in an effort to describe the quality of each piece of data for each constituent. These flags are letter codes appended to the numerical data. The following data qualifiers are specified in the guidelines. For a complete explanation of qualifiers used for each constituent please refer to the Data Verification Summaries in Appendix C.

• U = the analyte was analyzed for but not detected. The numerical value preceding the U is the associated reporting limit.

- J = the identification of the analyte is acceptable, but the quality assurance criteria indicate that the quantitative values may be outside the normal expected range of precision (i.e., the quantitative value is estimated). Examples include:
 - Results detected above the laboratory MDL but less than the laboratory reporting limit.
 - MS/MSD percent recoveries outside the acceptance criteria.
 - LCS percent recoveries outside acceptance criteria.
- R = data are considered to be rejected and shall not be used. This flag denotes the failure of quality control criteria such that it cannot be determined if the analyte is present or absent from the sample (e.g., MRL verification standard was below quality control guidelines; associated sample results that were non-detect are unusable).
- UJ = a combination of the U and J qualifiers, which indicate that the analyte is not present. The reported value is considered to be an estimated reporting limit.
- B = used for organic and inorganic analyses when the analyte is found in the method blank or any of the field blanks. This designation overrides the CLP "B" designation when used by the laboratory as an estimated value for inorganics.

Fifty-three wells, including the five RCRA wells, were sampled during a 3-day sampling event from August 19-21, 2013. During the event, ten trip blanks were submitted to TestAmerica for volatile organic analysis.

Six field duplicates were collected during the sampling event in order to assess the quality and consistency of sample collection. Project requirements of 10% field duplicates were met for this sampling event. In addition, six laboratory splits were collected and analyzed in order to assess the quality and consistency of the laboratory analysis. The project requirements of taking 10% laboratory splits were met for this sampling event. One equipment rinsate blank was collected during each day of monitoring well sampling; a total of three equipment rinsate blanks were collected.

For the August 2013 sampling event, the following laboratory or field contamination was identified at detections greater than ½ MRL for the field QA/QC samples.

SDG 240-28100

Trip Blank Contamination

Acetone was detected in FWGTEAM1-TRIP at 1.2 μ g/L and methylene chloride at 0.55 μ g/L. FWGTeam3-Trip had acetone detected at 1.1 μ g/L and methylene chloride at 0.52 μ g/L. The acetone results for samples FWGRQLmw-008c-0370-GW, FWGRQLmw-006c-0368-GW and FWGRQLmw-009c-0371-GW, FWGRQLmw-DUP5-0377-GW and they were qualified, "B" as the detected concentrations were <5x blank contamination.

Method Blanks

 Methylene chloride was detected in the method blank from batch 240-99810 at 0.893 μg/L. No qualifications were required as there were no detected concentrations of methylene chloride reported for the bracketed field sample, FWGRQLmw-011c-0326-GW.

- bis(2-ethylhexyl)phthalate was detected in the method blank from batch 240-98336 at 0.593 μg/L. The bis(2-ethylhexyl)phthalate results for samples FWGFWGmw-004-0346-GW, FWGFWGmw-015-0350-GW, FWGFWGmw-016-0351-GW, FWGLL3mw-238c-0359-GW and FWGLL3mw-241c-0360-GW were qualified, "B".
- Manganese was detected in the method blank at 2.75 μg/L. The manganese results for samples FWGFWGmw-004-0346-GF, FWGLL3mw-238C-0359-GF, and FWGLL3mw-241C-0360-GF were qualified, "B".

Equipment Rinse- FWGEQUIPRINSE1-0340-GW

- Acetone was detected at 19 μg/L, carbon disulfide at 0.13 μg/L, toluene at 0.14 μg/L and 2-butanone at 1.5 μg/L. The acetone results for samples FWGRQLmw-008c-0370-GW, FWGRQLmw-006c-0368-GW and FWGRQLmw-009c-0371-GW, FWGRQLmw-DUP5-0377-GW and the carbon disulfide result for sample FWGRQLmw-006c-0368-GW were qualified, "B" as the detected concentrations were <5x blank contamination. There were no detected 2-butanone or toluene results reported for the associated field samples, so no qualifications were made for the 2-butanone or toluene contamination.
- Bis(2-ethylhexyl)phthalate was detected at 0.38 μg/L, diethylphthalate at 1.3 μg/L and benzyl alcohol at 0.44 μg/L. The bis(2-ethylhexyl)phthalate results for samples FWGRQLmw-011c-0326-GW, FWGRQLmw-006c-0368-GW, FWGRQLmw-009c-0371-GW and FWGRQLmw-DUP5-0377-GW were qualified, "B". No qualifications were made for the diethylphthalate or benzyl alcohol contamination as there were no detected 2-butanone or benzyl alcohol concentrations reported for these analytes in the associated field samples.
- beta-BHC was detected at 0.018 μg/L. The beta-BHC results for samples FWGRQLmw-006c-0368-GW and FWGRQLmw-008C-0370-GW were qualified, "B".
- Sodium was detected at 410 μg/L. The sodium results for samples FWGRQLmw-006c-0368-GF, FWGRQLmw-009c-0371-GF, FWGRQLmw-011c-0326-GF and FWGRQLmw-DUP5-0377-GF were qualified, "B".

SDG 240-28145

Trip Blank Contamination

Methylene chloride was detected in FWGTEAM1-TRIP at 0.33 μ g/L, in FWGTEAM2-TRIP at 0.59 μ g/L, in FWGTEAM3-TRIP at 0.45 μ g/L, FWGTeam4-Trip (collected 8/19/13) at 0.61 μ g/L and FWGTeam4-Trip (collected 8/20/13) at 0.52 μ g/L. No qualifications were made as there were no detected methylene chloride results reported less than 5x blank contamination.

Method Blanks

- Toluene was detected at 0.164µg/L in the method blank from batch 240-99628. No qualifications were required as there were no detected toluene concentrations reported for the associated field samples.
- Bis(2-ethylhexyl)phthalate was detected in the method blank from batch 240-98943 at 0.376μg/L and at 0.601μg/L in the method blank from batch 240-984497. The bis(2-ethylhexyl)phthalate results for samples FWGFWGmw-012-0349-GW, FWGLL12mw-187-0363-GW, FWGLL12mw-242-0364-GW, FWGLL12mw-245c-0365-GW, FWGLL12mw-247-0336-GW, FWGLL12mw-DUP3-0338-GW, FWGLL1mw-064c-0352-GW, FWGLL1mw-087c-0356-GW, FWGLL3mw-244-0323-GW, FWGSCFmw-002-0327-GW, FWGSCFmw-004-0372-GW and FWGSCFmw-DUP6-0378-GW were qualified, "B".

Equipment Rinse- FWGEQUIPRINSE1-0340-GW & FWGEQUIPRINSE2-0341-GW

- Acetone- FWGEQUIPRINSE1-0340-GW had acetone detected at 19 μg/L, carbon disulfide at 0.13 μg/L, toluene at 0.14 μg/L and 2-butanone at 1.5 μg/L. FWGEQUIPRINSE2-0341-GW had acetone detected at 21 μg/L, carbon disulfide at 1.3 μg/L and 2-butanone at 1.1 μg/L. The carbon disulfide result for sample FWGDA2mw-115-0313-GW and the acetone results for samples FWGRQLmw-007c-0369-GW and FWGRQLmw-010c-0325-GW were qualified, "B" as the detected concentrations were <5x blank contamination. There were no detected 2-butanone or toluene results reported for the associated field samples, so no qualifications were made for the 2-butanone or toluene contamination.
- Bis(2-ethylhexyl)phthalate was detected at 0.38µg/L, diethylphthalate at 1.3µg/L and benzyl alcohol at 0.44 µg/L in FWGEQUIPRINSE1-0340-GW. Bis(2-ethylhexyl)phthalate was detected at 0.53 µg/L, diethylphthalate at 1.4µg/L, phenol at 0.61µg/L and benzyl alcohol at 0.66 µg/L in FWGEQUIPRINSE2-0341-GW. The bis(2-ethylhexyl)phthalate results for samples FWGDA2mw-114-0312-GW, FWGDA2mw-115-0313-GW, FWGDA2mw-DUP1-0336-GW, FWGDETmw-001c-0314-GW, FWGDETmw-002c-0315-GW, FWGDETmw-003c-0343-GW FWGFWGmw-012-0349-GW, FWGLL12mw-187-0363-GW, FWGLL12mw-242-0364-GW, FWGLL12mw-245c-0365-GW, FWGLL12mw-247-0336-GW, FWGLL12mw-DUP3-0338-GW, FWGLL1mw-064c-0352-GW, FWGLL1mw-087c-0356-GW, FWGLL3mw-244-0323-GW, FWGSCFmw-002-0327-GW, FWGSCFmw-004-0372-GW and FWGSCFmw-DUP6-0378-GW were qualified, "B". No qualifications were made for the diethylphthalate, phenol or benzyl alcohol contamination as there were no detected 2-butanone, phenol or benzyl alcohol concentrations reported for the associated field samples.
- FWGEQUIPRINSE1-0340-GW had beta-BHC detected at 0.018 μg/L. No qualifications were required as there were no detected beta-BHC concentrations reported for the samples associated with FWGEQUIPRINSE1-0340-GW.

• FWGEQUIPRINSE1-0340-GW had sodium detected at 410 μg/L. No qualifications were required as the detected sodium results associated FWGEQUIPRINSE1-0340-GW with were greater than 5x blank contamination.

SDG 240-28186

Trip Blank Contamination

Methylene chloride was detected in FWGTEAM1-TRIP at 0.47 μ g/L, in FWGTEAM2-TRIP at 0.69 μ g/L and in FWGTEAM3-TRIP at 0.77 μ g/L. FWGTeam4-Trip had acetone detected at 1.4 μ g/L and methylene chloride at 0.85 μ g/L. The methylene chloride results for samples FWGEQUIPRINSE3-0342-GW and the acetone results for samples FWGFWGmw-009-0319-GW, FWGLL2mw-059C-0357-GW and FWGWBGmw-DUP4-0339-GW were qualified, "B" as the detected concentrations were <5x blank contamination.

Method Blanks

- Toluene was detected at $0.164~\mu g/L$ in the method blank from batch 240-99628 and methylene chloride was detected in the method blank from batch 240-99810 at $0.893~\mu g/L$. The methylene chloride results for samples FWGEQUIPRINSE3-0342-GW and FWGTEAM4-TRIP were qualified, "B". No qualifications were required for the toluene contamination as there were no detected toluene concentrations reported for the associated field samples.
- Bis(2-ethylhexyl)phthalate was detected in the method blank from batch 240-98675 at 0.425μg/L and di-n-butyl phthalate at 0.720μg/L. Bis(2-ethylhexyl)phthalate was detected in the method blank from batch 240-98883 at 0.25 μg/L. The bis(2-ethylhexyl)phthalate and di-n-butyl phthalate results for samples FWGLL1mw-084C-0355-GW, FWGLL1mw-083C-0354-GW, FWGFBQmw-174C-0345-GW, FWGLL1mw-086-0320-GW, FWGLL2mw-267C-0358-GW, FWGDETmw-004C-0344-GW, FWGWBGmw-006C-0373-GW, FWGWBGmw-009C-0374-GW, FWGLL1mw-065C-0353-GW, FWGWBGmw-021-0331-GW, FWGEQUIPRINSE3-0342-GW, FWGWBGmw-DUP4-0328-GW, FWGLL2mw-265c-0321-GW, FWGLL2mw-059c-0357-GW, FWGWBGmw-020-0330-GW, FWGNTAmw-119-0367-GW and FWGWBGmw-019-0329-GW were qualified, "B". The bis(2-ethylhexyl)phthalate results for samples FWGFWGmw-009-0319-GW, FWGWBGmw-018-0328-GW, FWGLL1mw-065C-0353-GW, FWGWBGmw-006C-0373-GW and FWGFWGmw-007-0347-GW were qualified, "B".
- Manganese was detected in the method blank from batch 240-98698 at 2.16 μg/L. The manganese result for sample FWGDETmw-004c-0344-GF was qualified "B", as the detected result was < 5x blank contamination.
- Aluminum was detected in the method blank from batch 240-98698 at 107 μg/L. The aluminum result for sample FWGWBGmw-009c-0374-GF was qualified, "B" as the detected aluminum result was < 5x blank contamination.

Equipment Rinse-FWGEQUIPRINSE3-0342-GW

- Acetone was detected at 9.9 μg/L, chloroform at 0.52 μg/L, 2-butanone at 1.7μg/L, toluene at 0.18 μg/L and methylene chloride at 0.81 μg/L. The acetone results for samples FWGFWGmw-009-0319-GW, FWGLL2mw-059C-0357-GW and FWGWBGmw-DUP4-0339-GW were qualified, "B" as the detected concentrations were <5x blank contamination. There were no detected acetone, 2-butanone, chloroform or toluene results reported for the associated field samples, so no qualifications were made for the acetone, 2-butanone, chloroform or toluene contamination.
- Bis(2-ethylhexyl)phthalate was detected at 0.41 μg/L and di-n-butyl phthalate at 1 μg/L. The bis(2-ethylhexyl)phthalate and di-n-butyl phthalate results for samples FWGLL1mw-084C-0355-GW, FWGLL1mw-083C-0354-GW, FWGFBQmw-174C-0345-GW, FWGLL1mw-086-0320-GW, FWGLL2mw-267C-0358-GW, FWGDETmw-004C-0344-GW, FWGWBGmw-006C-0373-GW, FWGWBGmw-009C-0374-GW, FWGLL1mw-065C-0353-GW, FWGWBGmw-021-0331-GW, FWGWBGmw-DUP4-0328-GW, FWGLL2mw-265c-0321-GW, FWGLL2mw-059c-0357-GW, FWGWBGmw-020-0330-GW, FWGNTAmw-119-0367-GW and FWGWBGmw-019-0329-GW were qualified, "B". The bis(2-ethylhexyl)phthalate results for samples FWGFWGmw-009-0319-GW, FWGWBGmw-018-0328-GW, FWGLL1mw-065C-0353-GW, FWGWBGmw-006C-0373-GW and FWGFWGmw-007-0347-GW were qualified, "B".

SDG 1306055

Equipment Rinse-FWGEQUIPRinse2-0341-GW

• Hexavalent chromium was detected at 0.043 μg/L. No qualification of the data was required as the detected hexavalent chromium concentrations were greater than 5x blank contamination.

For a discussion of method blank contamination please reference the Data Verification Reports and the Laboratory Case Narrative in Appendix C. Laboratory analyses were performed in analytical batches of ≤20 in order to maximize efficiency and group quality control requirements. Method blanks and laboratory control samples were analyzed at a frequency of 1:20 (5%) samples or in each analytical batch, whichever was greater. Sufficient volume was provided to the laboratory in order to assess matrix spike analysis on project samples at a frequency of 1:10 (10%) samples. Matrix spike/matrix spike duplicate analysis was performed by the laboratory as batch quality control at a frequency of 1:20 (5%).

Field quality control and laboratory quality control results were evaluated as part of the verification assessment provided in Appendix C. Project requirements were met for the frequency and quality of these samples.

Table 3-9 presents the percent, by analytical method, of data that were acceptable (based on data not rejected) for use. The rejected data points were due to the following reasons:

• The 3,3'-dichlorobenzidine result for sample FWGRQLmw-008c-0370-GW was qualified as unusable, "R", as the matrix spike and spike duplicate recoveries were below control limits of 20-110% for 3,3'-dichlorobenzidine at 0% in the MS and MSD. Matrix

spike outliers are typically caused by matrix inference, so no corrective actions are required other than qualifying the data as estimated or unusable based on other batch and instrument QC results or professional judgment of the data reviewer.

• The continuing calibration verification (CCV) analyzed 8/23/13 @ 2336 did not recover for delta-BHC. The delta-BHC results for samples FWGRQLmw-008C-0370-GW, FWGRQLmw-011C-0326-GW, FWGLL3mw-238C-0359-GW, FWGLL3mw-241C-0360-GW, FWGFWGmw-004-0346-GW, FWGRQLmw-009C-0371-GW, FWGRQLmw-DUP5-0377-GW, FWGRQLmw-006C-0368-GW and FWGEQUIPRINSE1-0340-GW were qualified as unusable, "R". No additional corrective actions will be taken at this time for the continuing calibration verification (CCV) failure. CCV failures typically are handled at the bench level as directed by the DOD quality systems manual (QSM) Table F-4, "Problem must be corrected. Results may not be reported without a valid CCV." The CCV outlier was missed by the laboratory analyst reviewing data. The EQM data reviewer qualified the data as unusable as a result of the laboratory oversight.

This does not, however, have any negative effect on the usability of other parameters analyzed under the same method. Rejected data do call into question the interpretation of that particular data for a given monitoring event and it is important to correct any problems to prevent a reoccurrence for future sampling events.

Table 3-9. Percent of Acceptable Data

Analytical Method	Total Number of Analytes	Number of Rejects	Percent Completeness
218.6	5	0	100.0
353.2	7	0	100.0
6010B	784	0	100.0
6020	448	0	100.0
6860	13	0	100.0
7470A	56	0	100.0
8081A	903	9	99.0
8082	168	0	100.0
8260B	1716	0	100.0
8270C - SVOC 1&3	25	0	100.0
8270C -SVOC1	174	0	100.0
8270C-SVOC4	1512	1	99.9
8330	864	0	100.0
9012A	24	0	100.0
SW8330 Modified	54	0	100.0
WS-WC-0050	54	0	100.0
TOTAL	6807	10	99.9

All qualified data are discussed in the Data Verification Reports contained in Appendix C. All other data meet the requirements specified in the DoD QSM, LS criteria, and the QAPP associated with this site.

SECTION 4 SUMMARY OF RESULTS

Explosive and Propellant Compounds

As shown in Table 3-2, the following explosives or propellants were detected at levels above their corresponding MCLs or RSLs during the August 2013 sampling event:

- 2,4-Dinitrotoluene in FBQmw-174 (0.45 μg/L), LL1mw-083 (2.9 μg/L J), LL1mw-084 (1.4 μg/L J), LL2mw-059 (0.21 μg/L), and LL2mw-267 (0.30 μg/L).. There is no MCL for 2,4-dinitrotoluene. The RSL is 0.2 μg/L.
- 2,4,6-Trinitrotoluene in FBQmw-174 (18 μg/L), LL1mw-083 (4.5 μg/L J), LL1mw-084 (12 μg/L J), LL3mw-238 (79 μg/L), and LL3mw-241 (3.3 μg/L). There is no MCL for 2,4,6-trinitrotoluene. The RSL is 2.2 μg/L.
- 2,6-Dinitrotoluene in LL1mw-083 (1.5 μg/L J), LL1mw-084 (0.95 μg/L J), LL3mw-238 (0.52 μg/L J), LL3mw-241 (0.083 μg/L J), and RQLmw-008 (0.14 μg/L J). There is no MCL for 2,6-dinitrotoluene. The RSL is 0.042 μg/L.
- 4-Amino-2,6-dinitrotoluene in LL1mw-084 (36 μg/L), and LL3mw-238 (37 μg/L). There is no MCL for 4-amino-2,6-dinitrotoluene. The RSL is 30 μg/L.
- Nitrate-Nitrite in LL12mw-185 (130 mg/L), LL12mw-187 (1200 mg/L J). The MCL for nitrate-nitrite is 1 mg/L. The RSL is 1.6 mg/L.
- Nitrobenzene in LL3mw-238 (0.17 μ g/L J). There is no MCL for nitrobenzene. The RSL is 0.12 μ g/L.
- RDX in DETmw-004 (2.3 μg/L), LL1mw-084 (2.1 μg/L J), Ll2mw-267 (1.5 μg/L), LL3mw-238 (7.2 μg/L), LL3mw-241 (0.98 μg/L J), and WBGmw-006 (15 μg/L), WBGmw-009 (3.5 μg/L). There is no MCL for RDX. The RSL is 0.61 μg/L.

Inorganic Elements

Several inorganic compounds were detected at levels exceeding the MCLs and/or RSLs. These included aluminum, arsenic, cobalt, cyanide, iron, manganese, and thallium in wells from all areas sampled. Table 4-1 in Section 4 presents a summary of all inorganic compounds and the associated wells that had detections exceeding MCLs and/or the RSLs.

Volatile Organic Compounds

As shown in Table 3-4, the only VOCs detected at levels exceeding their corresponding MCLs or RSLs during the August 2013 sampling event were:

- Carbon tetrachloride in LL10mw-003 (4.2 μ g/L). The MCL for carbon tetrachloride is 5.0 μ g/L. The RSL is 0.39 μ g/L.
- Chloroform in LL10mw-003 (0.56 $\mu g/L$). There is no MCL for chloroform. The RSL is 0.19 $\mu g/L$.

Semivolatile Organic Compounds

As shown in Table 3-5, the following SVOCs were detected at levels exceeding either their corresponding MCLs or RSLs:

- Benzo(a)anthracene in DETmw-003 (0.15 μ g/L). There is no MCL for benzo (a)anthracene. The RSL is 0.029 μ g/L.
- Benzo(a)pyrene in DETmw-003 (0.12 $\mu g/L$). The MCL for benzo(a)pyrene is 0.2 $\mu g/L$, The RSL is 0.0029 $\mu g/L$
- Benzo(b)fluoranthene in DETmw-003 (0.12 μ g/L). There is no MCL for benzo(b)fluoranthene. The RSL is 0.029 μ g/L.

Pesticides and Polychlorinated Biphenyls (PCBs)

As shown in Table 3-6, the following pesticide was detected at levels exceeding either their MCLs or RSLs.

• beta-BHC in LL1mw-084 (0.069 μ g/L) and LL3mw-244 (0.025 μ g/L J). There is no MCL for beta-BHC. The RSL is 0.022 μ g/L.

Hexavalent Chromium

The analytical results for hexavalent chromium are summarized in Table 3-7. Well LL3mw-244 had a detected concentration for hexavalent chromium of 0.361 which is elevated above the RSL of 0.031 µg/L (there is no MCL for hexavalent chromium).

Perchlorates

During the August 2013 sampling event perchlorates were analyzed for in the 9 wells. Table 3-8 summarizes the results. As shown in Table 3-8 there were no detections elevated above the RSL (11 μ g/L) or the MCL [EPA established an Interim Drinking Water Health Advisory of 15 μ g/L in water (EPA 2009b)].

Table 4-1. Inorganic Elements Detected at Concentrations Exceeding the MCLs or RSLs

Area	Well Number	Analyte	Aug-13 Level (µg/L)	MCL (µg/L)	USEPA RSLs (µg/L)
	DA0 444	IRON	920	300	11000
	DA2mw-114	MANGANESE	82	50	320
	D A 2 11 F	IRON	720	300	11000
	DA2mw-115	MANGANESE	110	50	320
		ARSENIC	26	10	0.045
	DETmw-001	IRON	900	300	11000
		MANGANESE	390	50	320
Demolition Area #2	DETmw-002	MANGANESE	56	50	320
		ARSENIC	12	10	0.045
		BENZO(A)ANTHRACENE	0.15	NS	0.029
	DETmw-003	BENZO(A)PYRENE	0.12	0.2	0.0029
		BENZO(B)FLUORANTHENE	0.12	NS 200	0.029
		IRON MANGANESE	1400	300	11000 320
	DET 004	RDX	250 2.3	50 NS	0.61
Fuia Dinanina a Cuanna da	DETmw-004	IRON	730	300	11000
Erie Burning Grounds	EBGmw-131	2,4-DINITROTOLUENE	0.45	NS	0.2
Fuze & Booster Quarry	FBQmw-174 FWGmw-009	ARSENIC	9.8 J	10	0.2
		IRON	910	300	11000
	FWGmw-009	MANGANESE	180	50	320
		BIS(2-ETHYLHEXYL)PHTHALATE	13	6	4.8
	FWGmw-011	IRON	1900	300	11000
	I WGIIIW-UTI	MANGANESE	270	50	320
Facility-Wide		IRON	2100	300	11000
	FWGmw-012	MANGANESE	110	50	320
	FWGmw-015	MANGANESE	940	50	320
	1 WOIIW 013	ARSENIC	4.3 J	10	0.045
	FWGmw-016	IRON	600	300	11000
		MANGANESE	210	50	320
	111 0/4	IRON	580	300	11000
	LL1mw-064	MANGANESE	130	50	320
	LL1mw-065	MANGANESE	200	50	320
		2,4,6-TRINITROTOLUENE	4.5 J	NS	2.2
		2,4-DINITROTOLUENE	2.9 J	NS	0.2
	LL1mw-083	2,6-DINITROTOLUENE	1.5 J	NS	0.042
	LL IIIIW-003	ALUMINUM	640	200	16000
		COBALT	7.1	NS	4.7
		MANGANESE	410	50	320
		2,4,6-TRINITROTOLUENE	12 J	NS	2.2
Load Line 1		2,4-DINITROTOLUENE	1.4 J	NS	0.2
2000 2		2,6-DINITROTOLUENE	0.95 J	NS	0.042
	111 004	4-AMINO-2,6-DINITROTOLUENE	36	NS 200	30
	LL1mw-084	ALUMINUM BETA-BHC	1300	200 NS	16000
		COBALT	0.069 9.0	NS NS	0.022 4.7
		MANGANESE	67	50	320
		RDX	2.1 J	NS	0.61
		ARSENIC	3.7 J	10	0.01
	LL1mw-086	IRON	600	300	11000
	LE IIIIW-000	MANGANESE	310	50	320
	LL1mw-087	MANGANESE	200	50	320
	LLIIIW-UU/	2,4-DINITROTOLUENE	0.21	NS NS	0.2
		ARSENIC	7.3 J	10	0.045
Load Line 2	LL2mw-059	COBALT	14	NS	4.7
Load Lillo Z	LLZIIIW 007	IRON	5300	300	11000
	1	MANGANESE	970	50	320

Table 4-1. Inorganic Elements Detected at Concentrations Exceeding the MCLs or RSLs

Area	Well Number	Analyte	Aug-13 Level (µg/L)	MCL (µg/L)	USEPA RSLs (µg/L)
		IRON	920	300	11000
	DA2mw-114	MANGANESE	82	50	320
		COBALT	4.8	NS	4.7
	LL2mw-265	IRON	2900	300	11000
	LLZIIIW 200	MANGANESE	540	50	320
Load Line 2		2,4-DINITROTOLUENE	0.30	NS	0.2
	11007	IRON	360	300	11000
	LL2mw-267	MANGANESE	490	50	320
		RDX	1.5	NS	0.61
		2,4,6-TRINITROTOLUENE	79	NS	2.2
		2,6-DINITROTOLUENE	0.52 J	NS	0.042
	LL3mw-238	4-AMINO-2,6-DINITROTOLUENE	37	NS	30
		NITROBENZENE	0.17 J	NS	0.12
Load Line 3		RDX	7.2	NS	0.61
		2,4,6-TRINITROTOLUENE	3.3	NS	2.2
	LL3mw-241	2,6-DINITROTOLUENE	0.083 J	NS	0.042
		RDX	0.98	NS	0.61
	LL3mw-244	BETA-BHC	0.025 J	NS	0.022
Load Line 10	LL10mw-003	CARBON TETRACHLORIDE	4.2	5	0.39
Edda Emio 10	22101111 000	CHLOROFORM	0.56	NS	0.19
	LL12mw-185	MANGANESE	1700	50	320
		NITRATE-NITRITE'	130	1	1.6
	1110107	COBALT	9.9	NS F0	4.7
	LL12mw-187	MANGANESE	2200	50	320
L L ! 10		NITRATE-NITRITE'	1200 19	10	1.6
Load Line 12	LL12mw-242	ARSENIC IRON	660	300	0.045 11000
	LL12IIIW-242	MANGANESE	61	500	320
		MANGANESE	190	50	320
	LL12mw-245	THALLIUM	170 1.1 J	2	0.16
	LL12mw-247	MANGANESE	280	50	320
	LL I ZIIIW-Z47	IRON	1500	300	11000
NACA Test Area	NTAmw-119	MANGANESE	340	50	320
Witori restrica	INTAIIIVV-117	NAPHTHALENE	0.11	NS	0.14
		ARSENIC	13	10	0.045
	DOI 00/	COBALT	9.2	NS	4.7
	RQLmw-006	IRON	54000	300	11000
		MANGANESE	6800	50	320
		ARSENIC	55	10	0.045
		COBALT	7.1	NS	4.7
	RQLmw-007	CYANIDE'	0.0080 J	0.2	0.0014
		IRON	13000	300	11000
		MANGANESE	2100	50	320
		2,6-DINITROTOLUENE	0.14 J	NS	0.042
		ARSENIC	38	10	0.045
Ramsdell Quarry	RQLmw-008	IRON	89000	300	11000
		MANGANESE	660	50	320
		THALLIUM	1.2 J	2	0.16
		ARSENIC	43	10	0.045
	RQLmw-009	COBALT	6.0	NS	4.7
	RQLIIIW 007	IRON	13000	300	11000
		MANGANESE	1500	50	320
	RQLmw-010	MANGANESE	1300	50	320
		ALUMINUM	2500	200	16000
	RQLmw-011	COBALT	25	NS	4.7
	INGENIW OTT	IRON	4700	300	11000
		MANGANESE	2300	50	320

Table 4-1. Inorganic Elements Detected at Concentrations Exceeding the MCLs or RSLs

Area	Well Number	Analyte	Aug-13 Level (µg/L)	MCL (µg/L)	USEPA RSLs (µg/L)
	DA2mw-114	IRON MANGANESE	920 82	300 50	11000 320
		ARSENIC	15	10	0.045
Charan Canalamarata	SCFmw-002	IRON	340	300	11000
Sharon Conglomerate		MANGANESE	70	50	320
	SCFmw-004	MANGANESE	740 J	50	320
	WBGmw-006	MANGANESE	65	50	320
	WBGIIIW-000	RDX	15	NS	0.61
	WBGmw-009	RDX	3.5	NS	0.61
	WBGmw-019	IRON	430	300	11000
Winklepack Burning	WDGIIIW-U19	MANGANESE	250	50	320
Grounds	WBGmw-020	IRON	4000	300	11000
	WBGIIIW-020	MANGANESE	330	50	320
		ARSENIC	6.5 J	10	0.045
	WBGmw-021	IRON	570	300	11000
		MANGANESE	240	50	320

MCL = Maximum Contaminant Level

RSL = USEPA Regional Screening Level, Nov 2013

1 = mg/L = milligram per liter

μg/L= micrograms per liter NS = no standard

J = estimated result. Results have been qualified "J." For more details refer to Data Verification/Validation Reports. All inorganics are filtered; all organics are not filtered.

SECTION 5 REFERENCES

Portage Environmental, 2004. RVAAP Facility-Wide Groundwater Monitoring Program Plan.

SAIC. 2001. RVAAP Facility-Wide Sampling and Analysis Plan/Quality Assurance Project Plan.

SAIC. 2001b. Phase II Remedial Investigation Report for the Winklepeck Burning Grounds at Ravenna Army Ammunition Plant, Ravenna, Ohio.

SAIC/REIMS. 2005. Table of Reported Construction Depths from REIMS Information.

SpecPro, Inc. 2005a. Facility-Wide Groundwater Monitoring Program Report on the April 2005 Sampling Event, Ravenna Training and Logistics Site/Ravenna Army Ammunition Plant, Ravenna, Ohio.

SpecPro, Inc. 2005b. Facility-Wide Groundwater Monitoring Program, Report on the July 2005 Sampling Event, Ravenna Training and Logistics Site/Ravenna Army Ammunition Plant, Ravenna, Ohio

SpecPro, Inc. 2006a. Facility-Wide Groundwater Monitoring Program, Annual Report for 2005, Ravenna Training and Logistics Site/Ravenna Army Ammunition Plant, Ravenna, Ohio

SpecPro, Inc. 2006b. Facility-Wide Groundwater Monitoring Program, Report on the March 2006 Sampling Event, Ravenna Army Ammunition Plant, Ravenna, Ohio

SpecPro, Inc. 2006c. Facility-Wide Groundwater Monitoring Program, Report on the May 2006 Sampling Event, Ravenna Army Ammunition Plant, Ravenna, Ohio

SpecPro, Inc. 2006d. (Draft) Facility-Wide Groundwater Monitoring Program, Annual Report for 2006, Ravenna Army Ammunition Plant, Ravenna, Ohio

SpecPro, Inc. 2007a. Facility-Wide Groundwater Monitoring Program, Report on the July 2006 Sampling Event, Ravenna Army Ammunition Plant, Ravenna, Ohio

SpecPro, Inc. 2007b. Facility-Wide Groundwater Monitoring Program, Report on the October 2006 Sampling Event, Ravenna Army Ammunition Plant, Ravenna, Ohio

SpecPro, Inc. 2007c. Facility-Wide Groundwater Monitoring Program, Report on the January 2006 Sampling Event, Ravenna Army Ammunition Plant, Ravenna, Ohio.

Environmental Quality Management, Inc. 2007d. Facility-Wide Groundwater Monitoring Program, Report on the April 2007 Sampling Event, Ravenna Army Ammunition Plant, Ravenna, Ohio.

Environmental Quality Management, Inc. 2007e. Facility-Wide Groundwater Monitoring Program, Report on the July 2007 Sampling Event, Ravenna Army Ammunition Plant, Ravenna, Ohio.

Environmental Quality Management, Inc. 2007f. Facility-Wide Groundwater Monitoring Program, Report on the October 2007 Sampling Event, Ravenna Army Ammunition Plant, Ravenna, Ohio.

Environmental Quality Management, Inc. 2008a, Facility-Wide Groundwater Monitoring Program, Report on the January 2008 Sampling Event, Ravenna Army Ammunition Plant, Ravenna, Ohio.

Environmental Quality Management, Inc. 2008b. Facility-Wide Groundwater Monitoring Program, Report on the April 2008 Sampling Event, Ravenna Army Ammunition Plant, Ravenna, Ohio.

Environmental Quality Management, Inc. 2008c. Facility-Wide Groundwater Monitoring Program, Report on the July 2008 Sampling Event, Ravenna Army Ammunition Plant, Ravenna, Ohio.

Environmental Quality Management, Inc. 2008d. Facility-Wide Groundwater Monitoring Program, Report on the October 2008 Sampling Event, Ravenna Army Ammunition Plant, Ravenna, Ohio.

Environmental Quality Management, Inc. 2009a. Facility-Wide Groundwater Monitoring Program, Report on the January 2009 Sampling Event, Ravenna Army Ammunition Plant, Ravenna, Ohio.

Environmental Quality Management, Inc. 2009b. Facility-Wide Groundwater Monitoring Program, Report on the April 2009 Sampling Event, Ravenna Army Ammunition Plant, Ravenna, Ohio.

Environmental Quality Management, Inc. 2009c. Facility-Wide Groundwater Monitoring Program, Report on the July 2009 Sampling Event, Ravenna Army Ammunition Plant, Ravenna, Ohio.

Environmental Quality Management, Inc. 2009c. Facility-Wide Groundwater Monitoring Program, Report on the October 2009 Sampling Event, Ravenna Army Ammunition Plant, Ravenna, Ohio.

Environmental Quality Management, Inc. 2010. Facility-Wide Groundwater Monitoring Program, Report on the January 2010 Sampling Event, Ravenna Army Ammunition Plant, Ravenna, Ohio.

Environmental Quality Management, Inc. 2010. Facility-Wide Groundwater Monitoring Program, Report on the July 2010 Sampling Event, Ravenna Army Ammunition Plant, Ravenna, Ohio.

Environmental Quality Management, Inc. 2010. Facility-Wide Groundwater Monitoring Program, Report on the October 2010 Sampling Event, Ravenna Army Ammunition Plant, Ravenna, Ohio.

Environmental Quality Management, Inc. 2011. Facility-Wide Groundwater Monitoring Program, Report on the January 2011 Sampling Event, Ravenna Army Ammunition Plant, Ravenna, Ohio.

Environmental Quality Management, Inc. 2011. Facility-Wide Groundwater Monitoring Program, Report on the April 2011 Sampling Event, Ravenna Army Ammunition Plant, Ravenna, Ohio.

Environmental Quality Management, Inc. 2011. Facility-Wide Groundwater Monitoring Program, Report on the July 2011 Sampling Event, Ravenna Army Ammunition Plant, Ravenna, Ohio.

Environmental Quality Management, Inc. 2011. Facility-Wide Groundwater Monitoring Program, Report on the October 2011 Sampling Event, Ravenna Army Ammunition Plant, Ravenna, Ohio.

Environmental Quality Management, Inc. 2012. Facility-Wide Groundwater Monitoring Program, Report on the January 2012 Sampling Event, Ravenna Army Ammunition Plant, Ravenna, Ohio.

Environmental Quality Management, Inc. 2012. Facility-Wide Groundwater Monitoring Program, Report on the April 2012 Sampling Event, Ravenna Army Ammunition Plant, Ravenna, Ohio.

Environmental Quality Management, Inc. 2012. Final Facility-Wide Groundwater Monitoring Program Plan RVAAP-66 Facility-Wide Groundwater Semiannual Monitoring Addendum.

Environmental Quality Management, Inc. 2013. Facility-Wide Groundwater Monitoring Program, Report on the July 2012 Sampling Event, Ravenna Army Ammunition Plant, Ravenna, Ohio.

Environmental Quality Management, Inc. 2013. Facility-Wide Groundwater Monitoring Program, Report on the October 2012 Sampling Event, Ravenna Army Ammunition Plant, Ravenna, Ohio.

Environmental Quality Management, Inc. 2013. Facility-Wide Groundwater Monitoring Program, Report on the January 2013 Sampling Event, Ravenna Army Ammunition Plant, Ravenna, Ohio.

Environmental Quality Management, Inc. 2013. Final Facility-Wide Groundwater Monitoring Program Plan RVAAP-66 Facility-Wide Groundwater Semiannual Monitoring Addendum.

SAIC. 2011. Final Facility-Wide Sampling and Analysis Plan for Environmental Investigations at the Ravenna Army Ammunition Plant, Ravenna, Ohio.

USACE. 2010. 2010 Addendum to the Facility-Wide Groundwater Monitoring Program Plan RVAAP-66 Facility-Wide Groundwater.


RVAAP Facility-Wide Groundwater Monitoring Program August 2013 Sampling Event Repo	RVAAP	P Facility-Wide	Groundwater	· Monitoring	Program A	lugust 2013	Sampling	Event i	Renoi
--	-------	-----------------	-------------	--------------	-----------	-------------	----------	---------	-------

APPENDIX A CURRENT MONITORING WELL SCHEDULE

August 2013 Semiannual Well Sampling List

Well ID Number	RVAAP Location	Sampling Rationale
BKGmw-010	Background Well	Needed perchlorate analysis to complete full suite of sampling
B12mw-013	Building 1200	Complete 4 quarters of sampling
DA2mw-114	Demolition Area #2	Semiannual Well
DA2mw-115	Demolition Area #2	Semiannual Well
DETmw-001	Demolition Area #2	Complete 4 quarters of sampling
DETmw-002	Demolition Area #2	Complete 4 quarters of sampling
DETmw-003	Demolition Area #2	Semiannual RCRA Well
DETmw-004	Demolition Area #2	Semiannual RCRA Well
EBGmw-131	Erie Burning Grounds	Complete 4 quarters of sampling
FBQmw-174	Fuze & Booster Quarry	Semiannual Well
FWGmw-002	Facility-Wide wells	Needed perchlorate analysis to complete full suite of sampling
FWGmw-004	Facility-Wide wells	Semiannual Well
FWGmw-006	Facility-Wide wells	VOC sampling due to histroical benzen detections
FWGmw-007	Facility-Wide wells	Semiannual Well
FWGmw-009	Facility-Wide wells	Complete 4 quarters of sampling
FWGmw-011	Facility-Wide wells	Semiannual Well
FWGmw-012	Facility-Wide wells	Semiannual Well
FWGmw-015	Facility-Wide wells	Semiannual Well
FWGmw-016	Facility-Wide wells	Semiannual Well
LL1mw-064	Load Line 1	Semiannual Well
LL1mw-065	Load Line 1	Semiannual Well
LL1mw-083	Load Line 1	Semiannual Well
LL1mw-084	Load Line 1	Semiannual Well
LL1mw-086	Load Line 1	Semiannual Well
LL1mw-087	Load Line 1	Semiannual Well
LL2mw-059	Load Line 2	Semiannual Well
LL2mw-265	Load Line 2	Semiannual Well
LL2mw-267	Load Line 2	Semiannual Well
LL3mw-238	Load Line 3	Semiannual Well
LL3mw-239	Load Line 3	Needed perchlorate analysis to complete full suite of sampling
LL3mw-241	Load Line 3	Semiannual Well
LL3mw-244	Load Line 3	Semiannual Well
LL10mw-003	Load Line 10	Semiannual Well
LL12mw-185	Load Line 12	Semiannual Well
LL12mw-187	Load Line 12	Semiannual Well
LL12mw-242	Load Line 12	Semiannual Well
LL12mw-245	Load Line 12	Semiannual Well
LL12mw-247	Load Line 12	Semiannual Well
NTAmw-119	NACA Testing Area	Semiannual Well
RQLmw-006	Ramsdell Quarry Landfill	Complete 4 quarters of sampling
RQLmw-007	Ramsdell Quarry Landfill	Semiannual RCRA Well
RQLmw-008	Ramsdell Quarry Landfill	Semiannual RCRA Well
RQLmw-009 RQLmw-010	Ramsdell Quarry Landfill Ramsdell Quarry Landfill	Semiannual RCRA Well Complete 4 guarters of sampling
RQLmw-011	Ramsdell Quarry Landfill	Complete 4 quarters of sampling Complete 4 quarters of sampling
SCFmw-002	Sharon Conglomerate Formation	Semiannual Well
SCFmw-004	Sharon Conglomerate Formation	Semiannual Well
WBGmw-006	Winklepeck Burning Grounds	Semiannual Well
WBGmw-009	Winklepeck Burning Grounds	Semiannual Well
WBGmw-018	Winklepeck Burning Grounds	Complete 4 quarters of sampling
WBGmw-019	Winklepeck Burning Grounds	Complete 4 quarters of sampling
WBGmw-020	Winklepeck Burning Grounds	Semiannual Well
WBGmw-021	Winklepeck Burning Grounds	Semiannual Well

RVAAP Facility-Wide Groundwater Monitoring Program August 2013 Sampling Event Report
KVAAP Faculty-wide Groundwater Monttoring Program August 2013 Sampling Event Report
APPENDIX B
WATER-LEVEL MEASUREMENTS/FIELD LOG BOOK/CALIBRATION RECORDS/ SAMPLE AND PURGE RECORDS/DAILY QUALITY CONTROL REPORTS

August 2013 FWGWMP Monitoring Well Event Field Personnel Abbreviations and Signatures Page

Field Personnel

Name	Affiliation	Initials
Bryan Deskins	EQM	BD
Angela S. Dragotta	EQM	AD/ASD
Colleen A. Lear	EQM	CL/CAL
Erik Corbin	EQM	EC
John Miller	EQM	JM
Stephen Stuergon	EQM	SS
Suzanne Rittinger	EQM	SR
Ryan Russell	EQM	RR
Scott A. Spesshardt	EQM	SAS

Project and Field Leads

Name, Title, Affiliation

John Miller, Project Manager / QC Check, EQM

Signature:

Colleen A. Lear, Field Manager / QC Check LEQM

Signature

Erik Corbin, Sample Manager, EQM

Signature: Like Corbin

Comprehensive Water Level Measurements

COMPREHENSIVE WATER LEVEL MEASUREMENTS

RVAAP FACILITY-WIDE GROUNDWATER MONITORING PROGRAM

August 2013

Well Number	Location	Date	Time	Depth to Water*	Depth to Bottom	Description of bottom	Instrument/Serial Number
B12mw-013	Building 1200	8/19/2013	14:35	17.63	24.16	hard	heron
BKGmw-010	Background	8/19/2013	14:55	15.45	21.98	hard	heron
DA2mw-114	Demo.Area 2	8/20/2013	16:30	5.7	21.75	medium	heron
DA2mw-115	Demo.Area 2	8/20/2013	14:45	6.1	46.79	medium	heron
DETmw-001	Demo.Area 2	8/20/2013	15:05	22.5	38.88	medium	heron
DETmw-002	Demo.Area 2	8/20/2013	14:50	32.69	41.99	medium	heron
DETmw-003	Demo.Area 2	8/20/2013	14:40	9.63	15.99	hard	heron
DETmw-004	Demo.Area 2	8/20/2013	14:30	10.88	13.80	hard	heron
EBGmw-131	Erie Burning Grounds	8/19/2013	13:00	9.69	73.40	hard	heron
FBQmw-174	Fuze and Booster Quarry	8/14/2013	10:32	15.4	23.14	hard	OH02911
FWGmw-002	Facilitywide	8/19/2013	14:05	23.29	69.80	hard	heron
FWGmw-004	Facilitywide	8/14/2013	12:30	13.09	22.45	hard	heron
FWGmw-006	Facilitywide	8/19/2013	16:20	6.31	19.24	hard	heron
FWGmw-007	Facilitywide	8/20/2013	10:40	23.72	32.16	hard	heron
FWGmw-009	Facilitywide	8/20/2013	11:00	2.84	20.32	medium	heron
FWGmw-011	Facilitywide	8/19/2013	13:30	2.84	17.69	hard	heron
FWGmw-012	Facilitywide	8/19/2013	13:35	1.24	42.41	hard	heron
FWGmw-015	Facilitywide	8/14/2013	12:15	5.04	26.21	hard	heron
FWGmw-016	Facilitywide	8/14/2013	12:20	16.27	67.45	hard	heron
LL1mw-064	Loadline 1	8/19/2013	13:25	1.21	21.07	hard	heron
LL1mw-065	Loadline 1	8/13/2013	11:48	10.76	22.96	hard	1659
LL1mw-083	Loadline 1	8/13/2013	13:58	31.05	41.41	hard	1659
LL1mw-084	Loadline 1	8/13/2013	13:45	27.11	38.93	hard	1659
LL1mw-086	Loadline 1	8/13/2013	11:56	7.07	77.82	soft	1659
LL1mw-087	Loadline 1	8/13/2013	11:27	5.23	18.09	medium	1659
LL2mw-059	Loadline 2	8/13/2013	11:30	12.83	21.84	hard	OH02911
LL2mw-265	Loadline 2	8/13/2013	11:37	9.31	24.52	hard	OH02911
LL2mw-267	Loadline 2	8/13/2013	12:52	8.94	22.12	hard	OH02911

^{*}All measurements from top of casing NR = Not Recorded

COMPREHENSIVE WATER LEVEL MEASUREMENTS

RVAAP FACILITY-WIDE GROUNDWATER MONITORING PROGRAM

August 2013

Well Number	Location	Date	Time	Depth to Water*	Depth to Bottom	Description of bottom	Instrument/Serial Number
LL3mw-238	Loadline 3	8/13/2013	13:55	15.14	23.44	hard	OH02911
LL3mw-239	Loadline 3	8/13/2013	13:48	22.82	37.00	soft	OH02911
LL3mw-241	Loadline 3	8/13/2013	15:00	9.11	25.67	hard	OH02911
LL3mw-244	Loadline 3	8/13/2013	13:08	10.23	46.94	hard	OH02911
LL10mw-003	Loadline 10	8/14/2013	11:35	19.86	28.55	hard	1659
LL12mw-185	Loadline 12	8/13/2013	12:12	6.35	23.23	hard	Heron
LL12mw-187	Loadline 12	8/13/2013	12:15	8.45	29.85	hard	Heron
LL12mw-242	Loadline 12	8/13/2013	12:08	7.83	28.64	hard	Heron
LL12mw-245	Loadline 12	8/13/2013	12:50	7.01	30.00	soft	Heron
LL12mw-247	Loadline 12	8/13/2013	13:45	4.49	22.60	hard	Heron
NTAmw-119	NACA Test Area	8/20/2013	8:30	12.3	104.65	hard	heron
RQLmw-006	Ramsdell Quarry Landfill	8/13/2013	15:09	33.48	42.03	hard	1659
RQLmw-007	Ramsdell Quarry Landfill	8/13/2013	17:05	5.05	18.48	hard	1659
RQLmw-008	Ramsdell Quarry Landfill	8/13/2013	16:55	5.50	18.67	hard	1659
RQLmw-009	Ramsdell Quarry Landfill	8/13/2013	16:50	4.40	18.80	hard	1659
RQLmw-010	Ramsdell Quarry Landfill	8/13/2013	16:39	24.06	35.34	hard	1659
RQLmw-011	Ramsdell Quarry Landfill	8/13/2013	15:36	20.60	35.36	hard	1659
SCFmw-002	Sharon Conglomerate	8/13/2013	13:56	18.62	150.10	medium	Heron
SCFmw-004	Sharon Conglomerate	8/20/2013	10:30	-0.2	112.5	hard	QED
WBGmw-006	Winklepeck Burning Grounds	8/21/2013	9:18	7.63	20.14	hard	heron
WBGmw-009	Winklepeck Burning Grounds	8/21/2013	9:10	13.08	24.27	medium	heron
WBGmw-018	Winklepeck Burning Grounds	8/21/2013	9:00	17.45	24.77	hard	heron
WBGmw-019	Winklepeck Burning Grounds	8/21/2013	8:55	16.87	50.48	medium	heron
WBGmw-020	Winklepeck Burning Grounds	8/21/2013	9:05	12.62	43.59	medium	heron
WBGmw-021	Winklepeck Burning Grounds	8/21/2013	9:15	9.42	43.08	hard	heron

^{*}All measurements from top of casing NR = Not Recorded

Logbook

ALL-WESSHER Envisonmental Freis Book No. 550

RVARV #2.

WACE

69 * Extracting water Project/Client RUDAP-106 USACE CAN SASCAN LAFTA DUXE & Sample Euchat * 医无线 water Date 8-13-13 2013-4 2013-5 2013-6 Location RNAAP **LUM** TOWN Project/Client RNAPPIBL USACE CLOY/105
[Water Level Event IN SKS ON 1030 Prepare and windowd
1100 Ht S
Combining of myly
Coldials Check of abels and both Set to too hexture o inspections and LOCO MODINIZATION haten jenels and cooking "Onthreise" Location RNARP 48

Sandie Aure, IWL Swent RR EDSR 70-80 Project / Client RNAA? - 16 6 JAL SAS CAL EC AD SS ontinucluity actual revels samples and cooler Date 8-19-13 SALCO KOROSO 20 000 SS INSpechens 1000 ORDER 1 1000 OLARY. Trepare for 2225 といる 20, 101 ROSK Location RVAY P 300 00 3 Claysolos IM SAC CAC Date 8-14-13 ovels papernon Warre or roads and areas 1 poort of Darticl Coole/Jaothes/Conerfs Double check mayortenence larginal to do inspection Dollispetions and propert and load 1286 wells at RUMAP. and water leve 1 neck Range Later 16 Project / Client KWAR- Le 6 ONSIT Location RNAAP WIL ENEWA 3 1200

Location WAAP We BAKE IN UR SAS AP SURMY BD SS EC ER SR	OFEC ONSITE Pack, Calibration to the day for the day and Rangellontrol Continued and Author and Author and the well is and organized wanthouse and organized wanthouse for picture 1920 Collan physical Samples for picture 1920 Collan physical S
Project/Client ENDAPLOID (USACE JW. CAL SAS AND SIZ UR SS EU BD	O170 Orsite O145 H75 6850 Calibrations 6850 Calibrations Conhine with water levels Conhine with mater levels San de event: Dune and San de event: Will Rech Event: Age ond get Coad with 2 part of work Coad with 2 part of work Coad with 2 part of work Rauldens 2 20 area of 20 Receptives and 60 Receptives and 60 Receptives ond 60 Receptives San of 60 Rec

Static Water Level Measurements

PROJECT NAME: RVAAP PROJECT NUMBER: 030174.0016.001

FIELD BOOK#: 2 DATE: 8/19/2013

Monitor Well Number	Location	Total Well Depth (ft)	Water Level Indicator	Sampler	Time	Depth to Static Water Level (ft)	Sounding	PID Reading (above bkgrnd)
EBGmw-131	Erie Burning		2804	SAS	16:48	9.69		0
	Cmt:Good,					•		
FWGmw-002	Facility-Wide		qed yellow	CAL	15:22	23.25		0
	Cmt:Good,	•				•		
FWGmw-016	Facility-Wide		1266	EC	16:15	16.59		0
	Cmt:Good,	<u> </u>		·			'	
FWGmw-004	Facility-Wide		qed yellow	CAL	16:54	13.83		0
	Cmt:Good,	<u> </u>		<u>'</u>		•	*	
FWGmw-015	Facility-Wide		1266	EC	16:57	5.17		0
	Cmt:Good,	<u> </u>		<u>'</u>		•	*	
LL3mw-239	Loadline 3		qed	CAL	12:30	23.41		0
	Cmt:Good,	<u> </u>		<u>'</u>		•	*	
LL3mw-238	Loadline 3		qed yellow	CAL	13:14	15.8		0
	Cmt:Good,	<u> </u>		·			*	
LL3mw-241	Loadline 3		qed yellow	CAL	14:13	10.38		0
	Cmt:Good,					•		
RQLmw-008	Ramsdell Qu		1266	EC	12:20	5.39		0
	Cmt:Good,	<u> </u>		·			'	
RQLmw-009	Ramsdell Qu		05767	AD	12:30	4.1		0
	Cmt:Good,	<u> </u>		·			'	
RQLmw-007	Ramsdell Qu		2804	SAS	12:48	5.19		0
	Cmt:Good,	+			l			1
RQLmw-011	Ramsdell Qu		1266	EC	14:15	20.8		0
	Cmt:Good, verified I	ow pH reading w	rith pH test strips and historical re	adings			•	•
RQLmw-010	Ramsdell Qu		2804	SAS	14:26	24.25		0
	Cmt:Good,	 -				+		
RQLmw-006	Ramsdell Qu		05767	AD	15:43	33.33		0
	Cmt:Good,					1	1	1

PROJECT NAME: RVAAP PROJECT NUMBER: 030174.0016.001

FIELD BOOK#: 2 DATE: 8/20/2013

Monitor Well Number	Location	Total Well Depth (ft)	Water Level Indicator	Sampler	Time	Depth to Static Water Level (ft)	Sounding	PID Reading (above bkgrnd)
BKGmw-010	Background		2804	SAS	9:05	15.56		0
	Cmt:Good,	•		•		•	•	
B12mw-013	Building 120		2804	SAS	10:05	17.72		0
	Cmt:Good,	•		<u> </u>		•	•	
DET-004	Demo.Area		QED	CAL	14:30	10.88		0
	Cmt:Good, minimum	n/no purge well,	dry	•		•	•	
DET-002	Demo.Area		1266	EC	14:40	32.69		0
	Cmt:Good,	<u>'</u>		*	*	•	!	
DET-001B	Demo.Area		05767	AD	14:44	22.5		0
	Cmt:Good,	<u>, </u>		*	*	•	,	
DA2mw-115	Demo.Area		qed	CAL	14:45	6.1		0
	Cmt:Good,					-	1	·
DET-003	Demo.Area		05767	AD	15:57	9.59		0
	Cmt:Good,			·			!	!
DA2mw-114	Demo.Area		1266	EC	16:30	5.7		0
	Cmt:Good,						!	!
FWGmw-011	Facility-Wide		2804	SAS	11:12	3.02		0
	Cmt:Good, brown						!	!
FWGmw-012	Facility-Wide		2804	SAS	12:25	1.36		0
	Cmt:Good,						!	!
LL1mw-087	Loadline 1		qed	CAL	9:10	6.44		0
	Cmt:Good,	-		+	+	1	+	-
LL1mw-064	Loadline 1		2804	SAS	15:30	1.36		0
	Cmt:Good,				·	+		<u> </u>
LL10mw-003	Loadline 10		2804	SAS	13:56	20.21		0
	Cmt:Good,	<u> </u>		+	+	1	+	

PROJECT NAME: RVAAP PROJECT NUMBER: 030174.0016.001

FIELD BOOK#: 2 DATE: <u>8/20/2013</u>

Monitor Well Number LL12mw-187	Location Loadline 12	Total Well Depth (ft)	Water Level Indicator 1266	Sampler EC	Time 9:05	Depth to Static Water Level (ft) 8.52	Sounding	PID Reading (above bkgrnd)
	Cmt:Good, verified	spec cond is usu	ally high					
LL12mw-245	Loadline 12		05767	AD	9:09	6.5		0
	Cmt:Good, knocked	over Flowthru a	fter 0914	•	•	•	•	
LL12mw-242	Loadline 12		1266	EC	10:30	8.15		0
	Cmt:Good,	 				1		1
LL12mw-185	Loadline 12		05767	AD	11:20	6.7		0
	Cmt:Good,	*			,	"	,	•
LL12mw-247	Loadline 12		1266	EC	12:20	5.06		0
	Cmt:Good,	+		+	+	+	+	-
LL3mw-244	Loadline 3		05767	AD	12:12	11.11		0
	Cmt:Good,	+		+	+	+	+	-
SCFmw-004	Sharon Con		qed	CAL	10:30	-0.2		0
	Cmt:Good,	· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·		·		·
SCFmw-002	Sharon Con		qed	CAL	11:37	18.83		0
	Cmt:Good,	 			1	1	1	1

PROJECT NAME: RVAAP PROJECT NUMBER: 030174.0016.001

FIELD BOOK#: 2 DATE: <u>8/21/2013</u>

Monitor Well Number	Location	Total Well Depth (ft)	Water Level Indicator	Sampler	Time	Depth to Static Water Level (ft)	Sounding	PID Reading (above bkgrnd)
FWGmw-006	Facility-Wide		qed	CAL	10:25	6.7		0
	Cmt:Good,	*		-	!		!	
FWGmw-009	Facility-Wide		2804	SAS	11:34	2.88		0
	Cmt:Good, extra pui	rge to lower NTU		*		*		
FWGmw-007	Facility-Wide		2804	SAS	14:20	23.68		0
	Cmt:Good,	*			!		!	
FBQmw-174	Fuze and Bo		qed	CAL	11:17	15.72		0
	Cmt:Good,	+		+	 	+	 	
LL1mw-086	Loadline 1		05767	AD	13:11	7.8		0
	Cmt:Good, checked	pH same as his	torical 2012 spring/summer		1	1	1	1
LL1mw-084	Loadline 1		1266	EC	13:45	26.92		0
	Cmt:Good,				1	1	1	1
LL1mw-065	Loadline 1		05767	AD	14:20	11.5		0
	Cmt:Good,							
LL1mw-083	Loadline 1		1266	EC	14:55	30.85		0
	Cmt:Good, verified h	nistorical pH is us	sually low			1		
LL2mw-265	Loadline 2		1266	EC	11:25	9.58		0
	Cmt:Good,	ļ				1		
LL2mw-267	Loadline 2		05767	AD	11:57	10.2		0
	Cmt:Good, ORANG	E WATER			<u> </u>	1		<u> </u>
LL2mw-059	Loadline 2		1266	EC	12:25	12.87		0
	Cmt:Good,	1		+	1	1		1
NTAmw-119	NACA Test		qed	CAL	8:45	12.28		0
	Cmt:Good,				-	+	1	-

PROJECT NAME: RVAAP PROJECT NUMBER: 030174.0016.001

FIELD BOOK#: 3 DATE: 8/21/2013

Monitor Well Number	Location	Total Well Depth (ft)	Water Level Indicator	Sampler	Time	Depth to Static Water Level (ft)	Sounding	PID Reading (above bkgrnd)
WBGmw-019	Winklepeck		05767	AD	8:44	16.87		0
	Cmt:Good,							
WBGmw-021	Winklepeck		2804	SAS	8:44	9.42		0
	Cmt:Good,			•	*	*	*	
WBGmw-009	Winklepeck		1266	EC	9:00	13.08		0
	Cmt:Good,			•		'	'	
WBGmw-018	Winklepeck		05767	AD	9:29	17.33		0
	Cmt:Good,			•	*	*	*	
WBGmw-020	Winklepeck		1266	EC	10:00	12.5		0
	Cmt:Good,				*	*	*	
WBGmw-006	Winklepeck		2804	SAS	10:09	7.7		0
	Cmt:Good,				*	*		,

DATE/T	IME:	INSTRU (Mfg/N		CALIBRATE BY:	TYPE/STANDARD	CONCEN- TRATION	METER READING	UNITS	COMMENT/AMBIENT CONDITION
8/16/2013	11:05	HORIBA	U 22	CAL	AUTOCAL CHECK, Cond	4.49	4.53	mS/cm	
8/16/2013	11:16	HORIBA U5	021371	CAL	AUTOCAL CHECK, Cond	4.49	4.49	mS/cm	
8/21/2013	8:00	HORIBA	U22 U2000	AD	autocal check, PH	4	3.99	pH units	
8/21/2013	8:01	HORIBA	U22 U2000	AD	autocal check, COND	4.49	4.51	mS/cm	
8/21/2013	8:02	HORIBA	U22 U2000	AD	autocal check, TURB	0	0	NTU	
8/16/2013	10:58	HORIBA	U-22	CAL	AUTOCAL CHECK, pH	4	4	pH units	
8/16/2013	10:59	HORIBA	U-22	CAL	AUTOCAL CHECK, Cond	4.49	4.48	mS/cm	
8/16/2013	11:00	HORIBA	U-22	CAL	AUTOCAL CHECK, turb	0	0	NTU	
8/16/2013	11:01	HORIBA	U22	CAL	AUTOCAL CHECK, pH	4	4.01	pH units	
8/16/2013	11:02	HORIBA	U22	CAL	AUTOCAL CHECK, Cond	4.49	4.5	mS/cm	
8/20/2013	8:01	HORIBA	U22 U2000	AD	autocal check, COND	4.49	4.47	mS/cm	
8/16/2013	11:04	HORIBA	U 22	CAL	AUTOCAL CHECK, pH	4	4.01	pH units	
8/20/2013	8:00	HORIBA	U22 U2000	AD	autocal check, PH	4	3.99	pH units	
8/16/2013	11:06	HORIBA	U 22	CAL	AUTOCAL CHECK, turb	0	0	NTU	
8/16/2013	11:07	HORIBA U2	U 22	CAL	AUTOCAL CHECK, pH	4	4	pH units	
8/16/2013	11:08	HORIBA U2	U 22	CAL	AUTOCAL CHECK, Cond	4.49	4.49	mS/cm	
8/16/2013	11:09	HORIBA U2	U 22	CAL	AUTOCAL CHECK, turb	0	0	NTU	
8/16/2013	11:10	HORIBA U2	U 22	CAL	AUTOCAL CHECK, DO	8.84	9.01	mg/L	
8/16/2013	11:11	HORIBA	U 22	CAL	AUTOCAL CHECK, DO	8.84	9.42	mg/L	
8/16/2013	11:12	HORIBA	U-22	CAL	AUTOCAL CHECK, DO	8.84	9.6	mg/L	
8/16/2013	11:13	HORIBA	U22	CAL	AUTOCAL CHECK, DO	8.84	9.5	mg/L	
8/16/2013	11:14	HORIBA U5	021371	CAL	AUTOCAL CHECK, DO	8.84	8.99	mg/L	
8/19/2013	11:03	horiba u52	021371	ec	autocal check, pH	4	4	pH units	

DATE/T	IME:	INSTRU (Mfg/N		CALIBRATE BY:	TYPE/STANDARD	CONCEN- TRATION	METER READING	UNITS	COMMENT/AMBIENT CONDITION
8/16/2013	11:03	HORIBA	U22	CAL	AUTOCAL CHECK, turb	0	0	NTU	
8/19/2013	16:56	HORIBA	U-2280102	EC	autocal check, Cond	4.49	4.49	mS/cm	
8/19/2013	11:04	horiba u52	021371	ec	autocal check, cond	4.49	4.49	mS/cm	
8/19/2013	11:05	horiba u52	021371	ec	autocal check, turb	0	0	NTU	
8/19/2013	11:10	waterlevels	all	cal	check, feet	0	0	OK	
8/20/2013	7:55	horiba u52	021371	asd	autocal check, pH	4	4.01	pH units	
8/20/2013	7:56	horiba u52	021371	asd	autocal check, cond	4.49	4.49	mS/cm	
8/20/2013	7:57	horiba u52	021371	asd	autocal check, turb	0	0	NTU	
8/20/2013	7:58	horiba u52	021371	asd	check, pH	7	7.01	pH units	
8/21/2013	7:55	horiba u52	021371	bd	autocal check, pH	4	4	pH units	
8/21/2013	7:56	horiba u52	021371	bd	autocal check, cond	4.49	4.49	mS/cm	
8/20/2013	8:02	HORIBA	U22 U2000	AD	autocal check, TURB	0	0	NTU	
8/19/2013	16:55	HORIBA	U-2280102	EC	autocal check, pH	4	4	pH units	
8/16/2013	11:17	HORIBA U5	021371	CAL	AUTOCAL CHECK, turb	0	0	NTU	run twice first time 0.1ntu.
8/19/2013	16:57	HORIBA	U-2280102	EC	autocal check, turb	0	0	NTU	
8/20/2013	9:56	HORIBA	U-2280102	EC	autocal check, pH	4	3.99	pH units	
8/20/2013	9:57	HORIBA	U-2280102	EC	autocal check, Cond	4.49	4.5	mS/cm	
8/20/2013	9:58	HORIBA	U-2280102	EC	autocal check, turb	0	0	NTU	
8/21/2013	12:55	HORIBA	U-2280102	EC	autocal check, pH	4	4	pH units	
8/21/2013	12:56	HORIBA	U-2280102	EC	autocal check, Cond	4.49	4.48	mS/cm	
8/21/2013	12:57	HORIBA	U-2280102	EC	autocal check, turb	0	0	NTU	
8/19/2013	11:00	HORIBA	U22 U2000	AD	autocal check, PH	4	4	SU	
8/19/2013	11:01	HORIBA	U22 U2000	AD	autocal check, COND	4.49	4.49	mS/cm	

DATE/T	IME:		UMENT Model):	CALIBRATE BY:	TYPE/STANDARD	CONCEN- TRATION	METER READING	UNITS	COMMENT/AMBIENT CONDITION
8/19/2013	11:02	HORIBA	U22 U2000	AD	autocal check, TURB	0	0	NTU	
8/21/2013	7:57	horiba u52	021371	bd	autocal check, turb	0	0	NTU	
8/21/2013	12:55	HORIBA	U-22	EC	AUTOCAL, pH	4	4	pH units	
8/16/2013	11:15	HORIBA U5	021371	CAL	AUTOCAL CHECK, pH	4	4	pH units	
8/20/2013	7:58	horiba u52	021371	asd	check, pH	7	7.01	pH units	
8/21/2013	7:55	horiba u52	021371	bd	autocal check, pH	4	4	pH units	
8/21/2013	7:56	horiba u52	021371	bd	autocal check, cond	4.49	4.49	mS/cm	
8/21/2013	7:57	horiba u52	021371	bd	autocal check, turb	0	0	NTU	
8/19/2013	16:55	HORIBA	U-22	EC	AUTOCAL, pH	4	4	pH units	
8/19/2013	16:56	HORIBA	U-22	EC	AUTOCAL, Cond	4.49	4.49	mS/cm	
8/19/2013	16:57	HORIBA	U-22	EC	AUTOCAL, turb	0	0	NTU	
8/20/2013	9:56	HORIBA	U-22	EC	AUTOCAL, pH	4	3.99	pH units	
8/20/2013	7:56	horiba u52	021371	asd	autocal check, cond	4.49	4.49	mS/cm	
8/20/2013	9:58	HORIBA	U-22	EC	AUTOCAL, turb	0	0	NTU	
8/20/2013	7:55	horiba u52	021371	asd	autocal check, pH	4	4.01	pH units	
8/21/2013	12:56	HORIBA	U-22	EC	AUTOCAL, Cond	4.49	4.48	mS/cm	
8/21/2013	12:57	HORIBA	U-22	EC	AUTOCAL, turb	0	0	NTU	
8/19/2013	11:00	HORIBA	U22	AD	AUTOCAL, PH	4	4	SU	
8/19/2013	11:01	HORIBA	U22	AD	AUTOCAL, COND	4.49	4.49	mS/cm	
8/19/2013	11:02	HORIBA	U22	AD	AUTOCAL, TURB	0	0	NTU	
8/20/2013	8:00	HORIBA	U22	AD	AUTOCAL, PH	4	3.99	pH units	
8/20/2013	8:01	HORIBA	U22	AD	AUTOCAL, COND	4.49	4.47	mS/cm	
8/20/2013	8:02	HORIBA	U22	AD	AUTOCAL, TURB	0	0	NTU	

DATE/T	IME:		UMENT Model):	CALIBRATE BY:	TYPE/STANDARD	CONCEN- TRATION	METER READING	UNITS	COMMENT/AMBIENT CONDITION
8/21/2013	8:00	HORIBA	U22	AD	AUTOCAL, PH	4	3.99	pH units	
8/21/2013	8:01	HORIBA	U22	AD	AUTOCAL, COND	4.49	4.51	mS/cm	
8/20/2013	9:57	HORIBA	U-22	EC	AUTOCAL, Cond	4.49	4.5	mS/cm	
8/20/2013	7:52	HORIBA	U 22	asd	AUTOCAL CHECK, turb	0	0	NTU	
8/16/2013	11:18	HORIBA U5	021371	CAL	CHECK, pH	7	7	pH units	
8/16/2013	11:19	HORIBA	U22	CAL	CHECK, pH	7	6.99	pH units	
8/16/2013	11:20	HORIBA	U 22	CAL	CHECK, pH	7	7.01	pH units	
8/16/2013	11:21	HORIBA	U-22	CAL	CHECK, pH	7	7	pH units	
8/16/2013	11:22	HORIBA U2	U 22	CAL	CHECK, pH	7	7	pH units	
8/19/2013	11:00	HORIBA	U 22	EC	AUTOCAL CHECK, pH	4	4	pH units	
8/19/2013	11:01	HORIBA	U 22	EC	AUTOCAL CHECK, Cond	4.49	4.49	mS/cm	
8/19/2013	11:02	HORIBA	U 22	EC	AUTOCAL CHECK, turb	0	0	NTU	
8/19/2013	11:05	HORIBA	U 22	EC	CHECK, pH	7	6.99	pH units	
8/20/2013	7:57	horiba u52	021371	asd	autocal check, turb	0	0	NTU	
8/20/2013	7:51	HORIBA	U 22	asd	AUTOCAL CHECK, Cond	4.49	4.49	mS/cm	
8/21/2013	8:02	HORIBA	U22	AD	AUTOCAL, TURB	0	0	NTU	
8/21/2013	7:55	HORIBA	U 22	bd	AUTOCAL CHECK, pH	4	4	pH units	
8/21/2013	7:56	HORIBA	U 22	bd	AUTOCAL CHECK, Cond	4.49	4.48	mS/cm	
8/21/2013	7:57	HORIBA	U 22	bd	AUTOCAL CHECK, turb	0	0	NTU	
8/19/2013	10:50	PID	MSA	CAL	Bump, Isobutylene	100	99.8	ppm	
8/16/2013	11:28	PID	MSA	CAL	Bump, Isobutylene	100	99.4	ppm	change filter
8/16/2013	11:35	PID	MSA	CAL	Bump, Isobutylene	100	100	ppm	
8/19/2013	11:03	horiba u52	021371	ec	autocal check, pH	4	4	pH units	

DATE/	ГІМЕ:	INSTRUMENT (Mfg/Model):		CALIBRATE BY:	TYPE/STANDARD	CONCEN- TRATION	METER READING	UNITS	COMMENT/AMBIENT CONDITION
8/19/2013	11:04	horiba u52	021371	ec	autocal check, cond	4.49	4.49	mS/cm	
8/19/2013	11:05	horiba u52	021371	ec	autocal check, turb	0	0	NTU	
8/19/2013	11:10	waterlevels	all	cal	check, feet	1.1	1.1	ft	
8/20/2013	7:50	HORIBA	U 22	asd	AUTOCAL CHECK, pH	4	4	pH units	

Purge/Sample Records

PROJECT NAME: RVAAP		PROJECT N	NUMBER: 030174.0	016.001
LOCATION: BUILDING 1200	DATE:	8/20/2013	START TIME	10:05
WELL ID: B12mw-013		INITIA	L WATER LEVEL:	17.72
WELL DEPTH:		SCR	EEN INTERVAL:	11.5 - 21.5
WELL DIAMETER 2 in.			NTAKE DEPTH:	19.5
PUMP/PURGING DEVICE: BP - BLADDER PUMP			_	
PUMP READINGS: Throttle: 100 Recharge: 10	Discharg	ge: 5	OTAL PURGE VOI	.(L): <u>2.9</u>
COMMENT Clear Odor:None				

TIME	WATER LEVEL (btoc)	PURGE RATE L/min)	VOLUME PURGED (L)	TEMP.	SPECIFIC CONDUCT. (mS/cm)	DO (mg/L)	рН	Turb (NTU)	ORP (mV)
10:10	17.91	0.1	0.2	12.8	0.334	7.6	5.38	48.8	222
10:13	18.32	0.1	0.3	12.1	0.329	7.25	5.53	46.3	233
10:16	18.81	0.1	0.3	11.9	0.331	7.12	5.57	51.4	248
10:19	19.38	0.1	0.3	11.9	0.338	7.1	5.58	71.2	256

Note: Condition of the well: See STATIC WATER LEVEL FORM

Field Personnel: SAS

PROJECT: RVAA	P LOC	ATION: BU	ILDING 12	00		PROJ	ECT NO.:	030174.0016.001
		SA	MPLE INI	FORMATIO	N			
WELL: B12mw-013	Sampl	eID: FWGB12	2mw-013-03	1 3-GW		DuplID:		
	Spl	itID:			1	RinseID:		
MATRIX: WG - Gro	ound Water	SAMPLI	NG METHO	DD: BP - Blac	dder I	Pump		MS/MSD: N
GRAB: Y COMPOSITE: N DATE: 8/20/2013 TIME:							10:30	
		FIELD RE	ADINGS /	OBSERVAT	ION	S		
	Turb (NTU): 71.2 Color: C							
							None	
pH: <u>5.58</u> Te	emperature (°C): 11.9	DO (mg	/L): 7.1		Specific Cor	nductivity (r	nS/cm): 0.338
		GENE	RAL INFO	RMATION				100 to
SUN/OVERCAST S	Sunny	PERCIPITAT	ION:_N_	WIND DIR	RECT	ION: <u>N</u>	AMBIEN	T TEMP (°F): <u>67</u>
SHIPPED VIA: <u>Lab</u>	Pickup							
SHIPPED TO: Test	america							
SAMPLER: SAS	Cmt:							
CONTAINE	₹							
SIZE/TYPE	NUMBER	PRESERV	ATIVE	ANALYTI	CAL	METHOD	ANAL	YSIS
1L/Amber	2	4C		8081			Pest	
1L/Amber	2	4C		8082			PCB	

PROJECT NAME: RVAAP	PROJECT NUMBER: 030174.0016.001						
LOCATION: BACKGROUND	DATE:	8/20/2013	START TIME	: 9:05			
WELL ID: BKGmw-010		INITIA	AL WATER LEVEL:	15.56			
WELL DEPTH:		SCI	REEN INTERVAL:	8.9 - 18.9			
WELL DIAMETER 2 in.		PUMP	INTAKE DEPTH:	16.9			
PUMP/PURGING DEVICE: <u>BP - BLADDER PUMP</u>			_				
PUMP READINGS: Throttle: 110 Recharge: 10	Discharg	ge: 5	TOTAL PURGE VOL	(L): <u>4</u>			
COMMENTE Clear Odershape							

COMMENT Clear Odor:None

TIME	WATER LEVEL (btoc)	PURGE RATE L/min)	VOLUME PURGED (L)	TEMP.	SPECIFIC CONDUCT. (mS/cm)	DO (mg/L)	рН	Turb (NTU)	ORP (mV)
9:10	15.79	0.1	0.2	12.9	0.272	3.09	5.15	10	156
9:15	15.95	0.1	0.5	12.2	0.225	2.55	4.76	10	231
9:20	16.18	0.1	0.5	12.4	0.218	2.68	4.38	10	296
9:25	16.36	0.1	0.5	12.3	0.217	2.56	4.29	10	324
9:30	16.59	0.1	0.5	12.2	0.218	2.44	4.29	10	340

Note: Condition of the well: See STATIC WATER LEVEL FORM

Field Personnel: SAS

PROJECT: RVA	JECT: RVAAP LOCATION: BACKGROUND PROJECT NO.:			ECT NO.: <u>0</u>	30174.0016.001		
		SAMPLE II	NFORMATIO:	N			
WELL: BKGmw-0	010 Samp	leID: <u>FWGBKGmw-010</u>	C-0311-GF	DuplID:			
	Spl	itID:		RinseID:			
MATRIX: <u>WG - G</u>	round Water	_ SAMPLING METH	IOD <u>: BP - Blac</u>	lder Pump		MS/MSD: <u>N</u>	
GRAB: Y	GRAB: Y COMPOSITE: N DATE: 8/20/2013 TIME:						
		FIELD READINGS	/ OBSERVAT	IONS			
		Turb (NTU):	10	Color:	C	Clear	
		340	Odor:	N	lone		
pH: 4.29	Temperature (°C): <u>12.2</u> DO (n	ng/L): 2.44	Specific Co	nductivity (m	S/cm):_0.218	
		GENERAL INF	ORMATION				
SUN/OVERCAST SHIPPED VIA: <u>La</u> SHIPPED TO: <u>Te</u> SAMPLER: <u>S</u> AS	b Pickup stamerica	PERCIPITATION: N	WIND DIF	RECTION: N	AMBIENT	Г ТЕМР (°F): <u>67</u>	
CONTAINER SIZE/TYPE NUMBER		PRESERVATIVE	ANALYTI	LYTICAL METHOD AN		SIS	
250mi/Poly	1	4C	6860		Perchlorat	е	

PROJECT NAME: RVAAP		016.001			
LOCATION: DEMO.AREA 2	DATE:	8/20/2013	0/2013 START TIME:		
WELL ID: DA2mw-114		INITIAL	WATER LEVEL:	5.7	
WELL DEPTH:		SCRE	EN INTERVAL;		
WELL DIAMETER 2 in.			NTAKE DEPTH:	11.5 - 21.5	
PUMP/PURGING DEVICE: BP - BLADDER PUMP		PUMP II	NIAKE DEPIN:	19.5	
PUMP READINGS: Throttle: 30 Recharge: 10	Discharg	ge: 5	OTAL PURGE VOL	. (L): <u>4.5</u>	
COMMENT Clear Odor:None					

COMMENT Clear Odor:None

TIME	WATER LEVEL (btoc)	PURGE RATE L/min)	VOLUME PURGED (L)	TEMP.	SPECIFIC CONDUCT. (mS/cm)	DO (mg/L)	рН	Turb (NTU)	ORP (mV)
16:41	5.82	0.2	0.5	17.23	0.663	6.12	7.51	999	-123
16:45	5.86	0.2	8.0	16.27	0.663	5.54	7.46	999	-114
16:49	5.86	0.2	0.8	16.02	0.664	5.44	7.44	946	-110
16:52	5.86	0.2	0.6	15.42	0.663	4.14	7.4	863	-114
16:55	5.86	0.2	0.6	14.51	0.661	4.42	7.37	794	-115
16:58	5.86	0.2	0.6	14.49	0.659	4.6	7.35	732	-116
17:01	5.86	0.2	0.6	14.31	0.659	4.67	7.34	468	-117

Field Personnel: EC

PROJECT: RVAA	P LOCATION: D	EMO.AREA 2	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	PROJECT NO.:	030174.0016.001		
		SAMPLE INFORM	IATION				
WELL: DA2mw-11	4 SampleID: FWGD	A2mw-114-0312-G	W/GF Duj	oliD:			
	SplitID:		Rins	eID:			
MATRIX: WG - Gr	ound Water SAMPI	LING METHOD: B	P - Bladder Pum	р	MS/MSD: <u>N</u>		
GRAB: Y COMPOSITE: N DATE: 8/20/2013 TIME:							
	FIELD I	READINGS / OBSI	RVATIONS				
	Turb (NT	U): 379		Color:	Clear		
	ORP (mV): -11	,	Odor:	None		
pH: _7.34 To	emperature (°C): 14.28	DO (mg/L): 4	.71 Sp	ecific Conductivity	(mS/cm): 0.659		
	GEI	NERAL INFORMA	TION				
SUN/OVERCAST S	Sunny PERCIPITA	TION: N WI	ND DIRECTION	V: <u>S</u> AMBIE	NT TEMP (°F): <u>75</u>		
SHIPPED VIA: Lab	Pickup						
SHIPPED TO: Test	tamerica						
SAMPLER: EC C	Cmt:						
CONTAINE		N/ATIVE AN		TITOD			

CONTAIN	ER			İ		
SIZE/TYPE	NUMBER	PRESERVATIVE	ANALYTICAL METHOD	ANALYSIS		
1L/Amber	2	4C	8082	PCB		
40ml/Vial	3	HCI	8260	VOC		
1L/Amber	2	4C	8081	Pest		
1L/Amber	1	4C	8330	Explo		
1L/Amber	2	4C	353.2/8330	Propellants		
250ml/Poly	1	NaOH	9012	Cyanide		
500ml/Poly	1	HNO3	6010/6020/7470	Metals		
1L/Amber	2	4C	8270	SVOC		

PROJECT NAME: RVAAP	PROJECT NUMBER: 030174.00					
LOCATION: DEMO.AREA 2	DATE:	8/20/2013	START TIME	6: 14:45		
WELL ID: DA2mw-115		INITIAL.	WATER LEVEL:	6,1		
WELL DEPTH:			EN INTERVAL:			
WELL DIAMETER 2 in.				36.5 - 46.5		
PUMP/PURGING DEVICE: BP - BLADDER PUMP		PUMP IN	ITAKE DEPTH:	44.5		
PUMP READINGS: Throttle: 50 Recharge: 12	Discharg	ge: 3	OTAL PURGE VOI	L(L): <u>2.2</u>		
CON D. FENTE. Olean Oderskland						

COMMENT Clear Odor:None

TIME	WATER LEVEL (btoc)	PURGE RATE L/min)	VOLUME PURGED (L)	TEMP.	SPECIFIC CONDUCT, (mS/cm)	DO (mg/L)	рН	Turb (NTU)	ORP (mV)
14:45	6.30	0.2	0.2	25.45	0.245	2.05	7.35	23	-145
14:48	6.38	0.2	0.6	24.32	0.561	1.02	7.47	4.4	-151
14:51	6.35	0.2	0.6	23.66	0.568	0.57	7.4	1.8	-150
14:52	6.35	0.2	0.2	23.43	0.589	0.49	7.34	0.6	-149
14:55	6.34	0.2	0.6	23.29	0.593	0.44	7.39	0.8	-147

Field Personnel: CAL

PROJECT: RVAA	P LOC	ATION:	DEMO.AREA	2		PRO.	IECT NO.:	030174.0016.001	
			SAMPLE INF	ORMATIO	N				
WELL: DA2mw-11	5 Sampl	eID: <u>FW</u> C	GDA2mw-115-03	13-GW/GF		DuplID: <u>FW</u>	GDA2mw-I	OUP1-0336-GW/GF	_
	Spl	itID: <u>FWC</u>	GDA2mw-115-03	32s-GW/GF	<u> </u>	RinseID:			_
MATRIX: <u>WG - Gr</u>	ound Water	SAM	PLING METHO	D <u>: BP - Bla</u>	dder I	Pump		MS/MSD: N	
GRAB: Y	COMPOSITE	E: <u>N</u>		DATE: _	8/2	0/2013	TIME:	14:58	
		FIELI	READINGS /	OBSERVAT	CION	S			
		Turb (N	TU):	1.2		Color:		Clear	
		ORP (m	(V):	-146		Odor:		None	
pH: <u>7.27</u> T	emperature (°C)): 23.13	DO (mg	/L): <u>0.4</u>		Specific Co	nductivity (1	mS/cm): 0.599	
		G:	ENERAL INFO	RMATION					
SUN/OVERCAST SHIPPED VIA: Lab SHIPPED TO: Mu	PU/FedEx	PERCIPIT	ration: <u>n</u>	WIND DI	RECT	ION: S	AMBIEN	NT TEMP (°F): <u>85</u>	
SAMPLER: CAL	•	608, QC	for SVOC Expl P	rop and Met	als on	ly			
CONTAINER SIZE/TYPE NUMBER		PRESI	ERVATIVE	ANALYTICAL		METHOD	ANAL	YSIS	
40mlA/ial	2	ПСІ		8260			Voc		

CONTAIN	ER				
SIZE/TYPE	NUMBER	PRESERVATIVE	ANALYTICAL METHOD	ANALYSIS	
40ml/Vial	3	HCI	8260	Voc	
500ml/Poly	3	HNO3	6010/6020/7470	Metals	
1L/Amber	2	4C	8082	PCB	
1L/Amber	6	4C	8270	SVOC	
250ml/Poly	1	NaOH	9012	Cyanide	
1L/Amber	2	4C	8081	Pest	
1L/Amber	5	4C	353.2/8330	Explo	
1L/Amber	6	4C	353.2/8330	Propellants	

PROJECT NAME: RVAAP	PROJECT NUMBER: <u>030174.0016.00</u>				
LOCATION: DEMO.AREA 2	DATE:	8/20/2013	START TIME:	14:44	
WELL ID: <u>DET-001B</u>		INITIAL	. WATER LEVEL:	22.5	
WELL DEPTH:		SCRE	EEN INTERVAL:	34 - 39	
WELL DIAMETER 2 in.		PUMP II	NTAKE DEPTH:	37.0	
PUMP/PURGING DEVICE: <u>BP - BLADDER PUMP</u>		_			
PUMP READINGS: Throttle: 60 Recharge: 10	Discharg	ge: 5	OTAL PURGE VOL	(L): <u>2.1</u>	
COMMENT CLOUDY Odorrelight					

COMMENT CLOUDY Odor:slight

TIME	WATER LEVEL (btoc)	PURGE RATE L/min)	VOLUME PURGED (L)	TEMP.	SPECIFIC CONDUCT. (mS/cm)	DO (mg/L)	рН	Turb (NTU)	ORP (mV)
14:47	23.40	0.2	0.3	14.09	0.748	8.46	7.01	64.7	-122
14:50	23.55	0.2	0.6	13.52	0.74	8.2	7.12	57.4	-121
14:53	24.11	0.2	0.6	13.27	0.734	8.19	7.15	41	-120
14:56	23.99	0.2	0.6	13.17	0.729	8.17	7.17	38.6	-119

Note: Condition of the well: See STATIC WATER LEVEL FORM

Field Personnel: AD

PROJECT: R	VAAP LOC	ATION: DE	MO.AREA 2	*******	PROJ	ECT NO.: <u>0</u>	30174.0016.001
		SA	AMPLE INFORMAT	ION			
WELL: DET-	001B Samp	eID: FWGDE	Tmw-001C-0314-GW	GF	DuplID:		
	Spl	itID:]	RinseID:		
MATRIX: WO	G - Ground Water	SAMPLI	NG METHOD <u>: BP - I</u>	Bladder 1	Pump		MS/MSD: N
GRAB: Y	COMPOSITI	B: N	DATE:	8/2	8/20/2013 TIME:		14:56
		FIELD RI	EADINGS / OBSERV	ATION	S		
		Turb (NTU)): 34.1		Color:	CLO	OUDY
		ORP (mV):	-115		Odor:	O)	DOR
pH: 7.19	Temperature (°C	: 13.17	DO (mg/L): 8.15		Specific Co	nductivity (m	S/cm): 0.729
Second Control of the		GENI	ERAL INFORMATIO	N			
SUN/OVERCA SHIPPED VIA	·	PERCIPITAT	ION: <u>N</u> WIND I	DIRECT	ION: <u>NE</u>	AMBIENT	TEMP (°F): <u>81</u>
	: Testamerica						
SAMPLER:	AD Cmt: WATER O	CONTAINED	BLACK FLECKS				

CONTAIN	ER				
SIZE/TYPE	NUMBER	PRESERVATIVE	ANALYTICAL METHOD	ANALYSIS	
1L/Amber	2	4C	8081	Pest	
250ml/Poly	1	4C	6860	Perchlorate	
500ml/Poly	1	HNO3	6010/6020/7470	Metals	
250ml/Poly	1	NaOH	9012	Cyanide	
1L/Amber	2	4C	353.2/8330	Propellants	
1L/Amber	1	4C	8330	Explo	
1L/Amber	2	4C	8082	PCB	
40mi/Vial	3	HCI	8260	VOC	
1L/Amber	2	4C	8270	svoc	

PROJECT NAME: RVAAP	PROJECT NUMBER: <u>030174.0016</u> .			
LOCATION: <u>DEMO.AREA 2</u>	DATE:	8/20/2013	START TIME:	14:40
WELL ID: DET-002		INITIA	AL WATER LEVEL:	32.69
WELL DEPTH:		SCI	- REEN INTERVAL:	34 - 39
WELL DIAMETER 2 in.		PUMP	INTAKE DEPTH:	37.0
PUMP/PURGING DEVICE: BP - BLADDER PUMP	· · · · · · · · · · · · · · · · · · ·		_	
PUMP READINGS: Throttle: 60 Recharge: 10	Discharge	e: 5	TOTAL PURGE VOL	(L): 2.35

COMMENT Clear Odor:None

TIME	WATER LEVEL (btoc)	PURGE RATE L/min)	VOLUME PURGED (L)	TEMP.	SPECIFIC CONDUCT. (mS/cm)	DO (mg/L)	рН	Turb (NTU)	ORP (mV)
14:51	32.85	0.15	0.25	16.82	0.563	8.89	7.84	347	-23
14:54	32.85	0.15	0.45	17.86	0.555	7.81	7.77	339	-18
14:59	32.85	0.15	0.75	17.84	0.563	7.14	7.79	345	-41
15:02	32.85	0.15	0.45	18.28	0.559	6.96	7.78	352	-41
15:05	32.85	0.15	0.45	18.34	0.56	6.92	7.8	362	-43

Note: Condition of the well: See STATIC WATER LEVEL FORM
Field Personnel: EC

PROJECT: RVA	AP LOC	CATION: <u>DEMO.ARE</u>	A 2	PRO	JECT NO.: _(30174.0016.001
		SAMPLE II	NFORMATIO	N		
WELL: <u>DET-002</u>	Samp	leID: FWGDETmw-0020	C-0315-GW/GI	F DupHD:		
	Spl	itID:		RinseID:		
MATRIX: WG - G	round Water	_ SAMPLING METH	IOD <u>: BP - Bl</u> a	dder Pump		MS/MSD: N
GRAB: <u>Y</u>	COMPOSITI	E: <u>N</u>	DATE: _	8/20/2013	TIME: _	15:11
		FIELD READINGS	/ OBSERVAT	TIONS		
		Turb (NTU):	365	Color:	C	Clear
	,	ORP (mV):	-41	Odor:	Ŋ	Vone
pH: <u>7.82</u>	Temperature (°C): <u>18.3</u> DO (n	ng/L): <u>7.03</u>	Specific Co	nductivity (ın	S/cm): 0.564
		GENERAL INF	ORMATION			
SUN/OVERCAST	Sunny	PERCIPITATION: N	WIND DI	RECTION: <u>S</u>	AMBIEN"	Г ТЕМР (°F): <u>80</u>
SHIPPED VIA: La	ıb Pickup					
SHIPPED TO: Te	estamerica					
SAMPLER: EC	Cmt:					
CONTAIN	ER					
SIZE/TYPE	NUMBER	PRESERVATIVE	ANALYT	ICAL METHOD	ANALY	SIS
1L/Amber	2	4C	8270		svoc	
500ml/Poly	1	HNO3	6010/6020)/7470	Metals	A
250mi/Poly	1	NaOH	9012	recommendation and the second of some Art of charles and the second control of the second	Cyanide	
1L/Amber	2	4C	353.2/833	0	Propellant	s
1L/Amber	2	4C	8081		Pest	
1L/Amber	1	4C	8330		Explo	
1L/Amber	2	4C	8082		PCB	1000 pt 1000

6860

8260

Perchlorate

VOC

4C

HC1

1

3

250ml/Poly

40ml/Vial

PROJECT NAME: RVAAP	PROJECT NUMBER: 030174.0016.001			
LOCATION: <u>DEMO.AREA 2</u>	DATE:	8/20/2013	START TIME:	15:57
WELL ID: DET-003		INITIA	L WATER LEVEL:	9.59
WELL DEPTH:		SCF	EEN INTERVAL:	7 - 12
WELL DIAMETER 2 in.			INTAKE DEPTH:	
PUMP/PURGING DEVICE: BP - BLADDER PUMP				10.0
PUMP READINGS: Throttle: 50 Recharge: 10	Discharg	ge: 5	TOTAL PURGE VOL (L): <u>3.9</u>
COMMENT LIGHT BROWN Odor None				

TIME	WATER LEVEL (btoc)	PURGE RATE L/min)	VOLUME PURGED (L)	TEMP.	SPECIFIC CONDUCT. (mS/cm)	DO (mg/L)	pH	Turb (NTU)	ORP (mV)
16:00	9.60	0.2	0.3	16.03	0.755	3.78	7.18	462.3	-106
16:03	9.60	0.2	0.6	16.96	0.741	0.71	7.1	243	-111
16:06	9.67	0.2	0.6	17.28	0.713	0.34	7.07	252	-111
16:09	9.60	0.2	0.6	17.33	0.814	0.22	7.06	227	-111
16:12	9.66	0.2	0.6	17.34	0.9	0.2	7.04	194	-109
16:15	9.60	0.2	0.6	17.3	0.9	0.232	7.08	187	-112
16:18	9.60	0.2	0.6	17.38	0.9	0.22	7.07	198	-109

Note: Condition of the well: See STATIC WATER LEVEL FORM

Field Personnel: AD

PROJECT: RVAAP LO	CATION: <u>DEMO</u>	AREA 2		PROJ	ECT NO.: 0	30174.0016.001
	SAMI	PLE INFORMATIC	N			
WELL: <u>DET-003</u> Sam	oleID: FWGDETmy	w-003C-0343-GW/G	F Dı	ıplID:		
Sı	olitID:		Rir	nseID:		
MATRIX: WG - Ground Water	SAMPLING	METHOD <u>: BP - Bla</u>	dder Pui	np		MS/MSD: N
GRAB: Y COMPOSIT	E: <u>N</u>	DATE:	8/20/2	2013	TIME: _	16:19
	FIELD READ	INGS / OBSERVA'	TIONS			
	Turb (NTU):	198		Color:	LIGHT	BROWN
	ORP (mV):	-108		Odor;	N	Ione
pH: 7.07 Temperature (°C	C): <u>17.38</u>	DO (mg/L): 0.23		Specific Co	nductivity (m	S/cm):_0.9
	GENERA	L INFORMATION				
SUN/OVERCAST Sunny	PERCIPITATION	: N WIND DI	RECTIO	N: <u>NE</u>	AMBIENT	TEMP (°F): <u>81</u>
SHIPPED VIA: <u>Lab Pickup</u>						
SHIPPED TO: Testamerica						
SAMPLER: AD Cmt:			and the set to be a second of the second			

CONTAIN	ER	DD 00000111 MV110			
SIZE/TYPE	NUMBER	PRESERVATIVE	ANALYTICAL METHOD	ANALYSIS	
1L/Amber	2	4C	8270	svoc	
500ml/Poly	1	HNO3	6010/6020/7470	Metals	
1L/Amber	2	4C	8081	Pest	
40ml/Vial	3	HCI	8260	VOC	
250ml/Poly	1	NaOH	9012	Cyanide	
1L/Amber	2	4C	353.2/8330	Propellants	
1L/Amber	1	4C	8330	Explo	
1L/Amber	2	4C	8082	PCB	

PROJECT NU	JMBER: 030174.00	16.001
DATE: 8/20/2013	START TIME:	14:30
INITIAL	WATER LEVEL:	10.88
SCRE	EN INTERVAL:	6 - 11
PUMP IN	TAKE DEPTH;	9.0
	_	
Discharge: 0	TAL PURGE VOL	(L): <u>1</u>
	DATE: 8/20/2013 INITIAL SCREE PUMP IN Discharge: 0	INITIAL WATER LEVEL: SCREEN INTERVAL: PUMP INTAKE DEPTH: TOTAL PURGE VOL

TIME	WATER LEVEL (btoc)	PURGE RATE L/min)	VOLUME PURGED (L)	ТЕМР. (°C)	SPECIFIC CONDUCT. (mS/cm)	DO (mg/L)	рН	Turb (NTU)	ORP (mV)
14:30	10.88	1	1	12.04	0.711	8.85	6.52	306	170

Note: Condition of the well: See STATIC WATER LEVEL FORM

Field Personnel: CAL

PROJECT: RVAAP	LOCATION: <u>DEMO.A</u>	AREA 2	PROJ	ECT NO.: <u>0</u> :	30174.0016.001
	SAMPL	E INFORMATIO	N		
WELL: <u>DET-004</u>	SampleID: FWGDETmw-	004C-0344-GW/GF	DuplID:		
	SplitID:				
MATRIX: WG - Ground Water	er SAMPLING M	ETHOD: B - Bail			MS/MSD: N
GRAB: Y COMPO				TIME:	17:10
	FIELD READI	NGS / OBSERVAT	IONS		
	Turb (NTU):	306	Color:	C	lear
	ORP (mV):	170	Odor:	N	one
pH: 6.52 Temperatur	e (°C): 12.04 D	O (mg/L): 8.85	_ Specific Co.	nductivity (ms	S/cm): 0.711
	GENERAL	INFORMATION			
SUN/OVERCAST Sunny	PERCIPITATION:_	N WIND DIR	ECTION: S	AMBIENT	TEMP (°F): <u>85</u>
SHIPPED VIA: Lab Pickup					
SHIPPED TO: Testamerica					
SAMPLER: CAL Cmt: No	purge minimum purge we	ll, sample dry and re	turn within 24 hou	rs	
CONTAINER	pproppy, mix				

CONTAIN	ER			1		
SIZE/TYPE	NUMBER	NUMBER PRESERVATIVE ANALYTICA		METHOD ANALYSIS		
40ml/Vial	3	HCI	8260	voc		
1L/Amber	1	4C	8081	Pest		
250ml/Poly	1	NaOH	9012	Cyanide		
1L/Amber	1	4C	8082	PCB		
1L/Amber	1	4C	8330	Explo		
1L/Amber	2	4C	353.2/8330	Propellants		
1L/Poly	1	HNO3	6010/6020/7470	Metals		
1L/Amber	1	4C	8270	svoc		

PROJECT NAME: RVAAP		PROJECT	NUMBER: 030174.00	16.001
LOCATION: ERIE BURNING GROUNDS	DATE:	8/19/2013	START TIME:	16:48
WELL ID: EBGmw-131		INITI	AL WATER LEVEL:	9.69
WELL DEPTH:		SC:	REEN INTER V AL:	63 - 73
WELL DIAMETER 2 in.		PUME	PINTAKE DEPTH:	71.0
PUMP/PURGING DEVICE: BP - BLADDER PUMP			—	
PUMP READINGS: Throttle: 120 Recharge: 10	Discharg	ge: 5	TOTAL PURGE VOL	(L): <u>5.5</u>
COMMENT Clear Odor:None				

TIME	WATER LEVEL (btoc)	PURGE RATE L/min)	VOLUME PURGED (L)	TEMP.	SPECIFIC CONDUCT. (mS/cm)	DO (mg/L)	рН	Turb (NTU)	ORP (ntV)
17:00	9.59	0.1	0.2	14	0.614	1.39	6.61	61.7	-87
17:05	9.70	0.1	0.5	13.8	0.607	4.74	6.46	61.1	-76
17:10	9.71	0.1	0.5	13.6	0.603	5.95	6.38	53.8	-77
17:15	9.73	0.1	0.5	13.3	0.612	5.44	6.34	43.4	-79
17:20	9.73	0.1	0.5	13.5	0.613	5.05	6.41	37.1	-80
17:25	9.73	0.1	0.5	13.5	0.608	4.6	6.41	31.6	-81
17:30	9.71	0.1	0.5	13.5	0.61	4.45	6.43	27.4	-81
17:35	9.72	0.1	0.5	13.3	0.609	4.36	6.49	25.4	-82

Note: Condition of the well: See STATIC WATER LEVEL FORM

Field Personnel: SAS

PROJECT: RV	ZAAP LOG	CATION: ERIE BU	RNING GROUNDS	PRO.	JECT NO.: 0	30174,0016,001
		SAMPL	E INFORMATION			
WELL: EBGm	w-131 Samp	leID: FWGEBGmw-1	131-0316-GW/GF	DuplID:		
	Sp	litID:		RinseID:		
MATRIX: WG	- Ground Water	_ SAMPLING MI	ETHOD: BP - Bladder	Pump		MS/MSD: N
GRAB: <u>Y</u>	COMPOSIT	E: _N _	DATE:8/	19/2013	TIME: _	17:44
		FIELD READIN	GS / OBSERVATION	IS		
		Turb (NTU):	25.4	Color:	С	lear
		ORP (mV):	-82	Odor:	N	one
рН: 6.49	Temperature (°C): 13.3 DO	O (mg/L): 4.36	Specific Co	nductivity (m	S/cm): 0.609
		GENERAL	INFORMATION			
SUN/OVERCAS	T Sunny	PERCIPITATION:	N WIND DIRECT	ΓΙΟΝ: <u>N</u>	AMBIENT	TEMP (°F): 80
SHIPPED VIA:	Lab Pickup					
SHIPPED TO:	Testamerica					
SAMPLER: S	AS Cmt:					
CONTA	INER					
SIZE/TYPE	NUMBER	PRESERVATIVE	ANALYTICAI	METHOD	ANALYS	SIS

CONTAIN	ER			
SIZE/TYPE	NUMBER	PRESERVATIVE	ANALYTICAL METHOD	ANALYSIS
1L/Amber	2	4C	8270	svoc
250ml/Poly	1	NaOH	9012	Cyanide
40ml/Vial	3	HCI	8260	VOC
1L/Amber	2	4C	8082	PCB
1L/Amber	1	4C	8330	Explo
1L/Amber	2	4C	353.2/8330	Propellants
500mi/Poly	1	HNO3	6010/6020/7470	Metais
1L/Amber	2	4C	8081	Pest

PROJECT NAME: RVAAP PROJECT NUMBER: 030174.0016.001 LOCATION: FACILITY-WIDE DATE: 8/19/2013 START TIME: 15:22 WELL ID: FWGmw-002 INITIAL WATER LEVEL: 23.25 WELL DEPTH: SCREEN INTERVAL: 60 - 70 WELL DIAMETER 2 in. PUMP INTAKE DEPTH: 68.0 PUMP/PURGING DEVICE: BP - BLADDER PUMP TOTAL PURGE VOL (L): 2.13 PUMP READINGS: Throttle: 75 Recharge: 12 Discharge: 3

COMMENT purge until 15:38 Clear Odor:None

TIME	WATER LEVEL (btoc)	PURGE RATE L/min)	VOLUME PURGED (L)	TEMP.	SPECIFIC CONDUCT. (mS/cm)	DO (mg/L)	рН	Turb (NTU)	ORP (mV)
15:23	23.76	0.19	0.25	18.04	0.411	1.79	8.32	55.7	-88
15:26	23.82	0.125	0.375	17.64	0.414	1.56	8.76	52.8	-140
15:29	23.84	0.125	0.375	17.45	0.42	1.14	8.85	4.6	-117
15:32	23.85	0.125	0.375	17.3	0.422	1.06	8.89	44.8	-123
15:35	23.85	0.125	0.375	17.25	0.424	1.04	8.93	42.7	-128

Note: Condition of the well: See STATIC WATER LEVEL FORM

Field Personnel: CAL

PROJECT: RVAAI	ROJECT: RVAAP LOCATION: FACILITY-WIDE				PROJECT NO.: 030174.0016.001			
		SAMPLE IN	FORMATIO	N				
WELL: FWGmw-00	2 Sampl	eID: FWGFWGmw-002-	0317-GF	DuplID: FWC	GFEGmw-DU	JP2-0337 - GF		
	Spli	tID: <u>FWGFWGmw-002</u> -	0333s-GF	RinseID:				
MATRIX: WG - Gro	ound Water	SAMPLING METH	OD <u>: BP - Blac</u>	lder Pump		MS/MSD: N		
GRAB: Y	COMPOSITE	: <u>N</u>	DATE: _	8/19/2013	TIME: _	15:38		
		FIELD READINGS	/ OBSERVAT	IONS				
		Turb (NTU):	38.8	Color:	C	Clear		
		ORP (mV):	-136	Odor:	N	Vone		
рН: <u>8.95</u> Те	mperature (°C)	: <u>16.94</u> DO (m	ıg/L): <u>0.79</u>	Specific Cor	nductivity (m	S/cm): 0.43		
		GENERAL INF	ORMATION					
SUN/OVERCAST S	unny	PERCIPITATION: N	WIND DIR	ECTION: S	AMBIENT	Г ТЕМР (°F): <u>80</u>		
SHIPPED VIA: <u>Lab</u>	PU/FedEx							
SHIPPED TO: Mul	tiple Labs							
SAMPLER: CAL	Cmt: dup at 15	58						
CONTAINE		PRESERVATIVE	A BLAN WOOT	CAL METHOD	137177	010		
SIZE/TYPE	NUMBER	FRESERVATIVE	ANALYII	CAL METHOD	ANALY	212		
250ml/Poly	3	4C	6860		Perchlorat	e		

PROJECT NAME: RVAAP PROJECT NUMBER: 030174.0016.001 LOCATION: FACILITY-WIDE

DATE: 8/19/2013 START TIME: 16:54 WELL ID: FWGmw-004

INITIAL WATER LEVEL: WELL DEPTH: SCREEN INTERVAL: 12.5 - 22.5

13.83

WELL DIAMETER 2 in. PUMP INTAKE DEPTH: 20.5

PUMP/PURGING DEVICE: BP - BLADDER PUMP

TOTAL PURGE VOL (L): 2.6 Discharge: 3 PUMP READINGS: Throttle: 50 Recharge: 12

COMMENT Clear Odor:None

							1		
TIME	WATER LEVEL (btoc)	PURGE RATE L/min)	VOLUME PURGED (L)	TEMP.	SPECIFIC CONDUCT. (mS/cm)	DO (mg/L)	pH	Turb (NTU)	ORP (mV)
16:55	13.99	0.2	0.2	16.51	0.652	1.45	7.02	668	33
16:58	14.06	0.2	0.6	16.11	0.654	1.12	6.88	529	37
17:01	14.07	0.2	0.6	15.7	0.66	1.03	6.83	420	40
17:04	14.08	0.2	0.6	15.58	0.663	0.97	6.8	333	44
17:07	14.09	0.2	0.6	15.36	0.666	0.86	6.75	216	46

Note: Condition of the well: See STATIC WATER LEVEL FORM

Field Personnel: CAL

PROJECT: RVA	P LOC	CATION: <u>FACI</u>	LITY-WIDE	PR	OJECT NO.: <u>0</u>	30174.0016.001
			IPLE INFORMAT			
WELL: FWGmw-0	04 Samp	leID: <u>FWGFWG</u> 1	nw-004-0346-GW/	GF DuplID:		
	Spl	litID:		RinseID:		
MATRIX: WG - G	round Water	SAMPLING	METHOD: BP -	Bladder Pump		MS/MSD: N
GRAB: <u>Y</u>	COMPOSIT	E: <u>N</u>	DATE	8/19/2013	TIME: _	17:08
		FIELD REA	DINGS / OBSERV	'ATIONS		
		Turb (NTU):	190	Color:	C	lear
			49	Odor:	N	Ione
рН: 6.73	emperature (°C): <u>15.26</u>	DO (mg/L): <u>0.82</u>	Specific (Conductivity (m	S/cm):_0.67
		GENER	AL INFORMATION	ON		
SUN/OVERCAST SHIPPED VIA: Lat SHIPPED TO: Tes SAMPLER: CAL	o Pickup stamerica	PERCIPITATIO	N: <u>N</u> WIND	DIRECTION: S	_ AMBIEN1	`TEMP (°F): <u>84</u>
CONTAINE	'R					and the first of t
SIZE/TYPE	NUMBER	PRESERVAT	IVE ANAL	YTICAL METHOD	ANALY	SIS
1L/Amber	2	4C	8270		svoc	
250ml/Poly	1	NaOH	9012		Cyanide	
500ml/Poly	1	HNO3	6010/6	020/7470	Metals	
1L/Amber	2	4C	353.2/8	3330	Propellant	S
1L/Amber	2	4C	8081		Pest	
1L/Amber	1	4C	8330		Explo	

PROJECT NAME: RVAAP		PROJECT N	IUMBER: <u>030174.00</u>	0174.0016.001	
LOCATION: FACILITY-WIDE	DATE:	8/21/2013	START TIME:	10:25	
WELL ID: FWGmw-006		INITIAI	L WATER LEVEL:	6.7	
WELL DEPTH:		SCRI	EEN INTERVAL:	9 - 19	
WELL DIAMETER 2 in.			NTAKE DEPTH:		
PUMP/PURGING DEVICE: BP - BLADDER PUMP			_	17.0	
PUMP READINGS: Throttle: 35 Recharge: 12	Discharg	ge: 3	OTAL PURGE VOL	(L): <u>I.96</u>	
COMMENT Clear Odor:None					

TIME	WATER LEVEL (btoc)	PURGE RATE L/min)	VOLUME PURGED (L)	ТЕМР. (°C)	SPECIFIC CONDUCT. (mS/cm)	DO (mg/L)	рН	Turb (NTU)	ORP (niV)
10:30	6.96	0.2	0.2	15.51	0.348	1.8	5.53	154	14
10:33	6.89	0.16	0.48	15.32	0.349	1.28	5.39	126	15
10:36	6.90	0.16	0.48	14.92	0.352	0.96	5.38	103	4
10:39	6.90	0.16	0.48	14.65	0.356	0.74	5.38	91.4	-5
10:41	6.90	0.16	0.32	14.52	0.359	0.68	5.39	84.6	-12

Note: Condition of the well: See STATIC WATER LEVEL FORM

Field Personnel: CAL

PROJECT: RVAAP LOCATION: FACILITY-WIDE			PROJ	ECT NO.: _	030174.0016.001	
		SAMPLI	E INFORMATIO	N		
WELL: FWGmw-0	006 Samp	leID: <u>FWGFWGmw-</u> (006-0318-GW	DuplID:		
	Sp	litID:		RinseID:		
MATRIX: <u>WG - G</u>	round Water	_ SAMPLING ME	THOD: BP - Blac	lder Pump		MS/MSD: N
GRAB: <u>Y</u>	COMPOSIT	E: <u>N</u>	DATE:	8/21/2013	TIME:	10:48
		FIELD READIN	GS / OBSERVAT	IONS		
		Turb (NTU):	88.6	Color:	(Clear
		ORP (mV):	-16	Odor:	1	None
pH: <u>5.41</u>	Геmperature (°С): <u>14.5</u> DC) (mg/L): <u>0.64</u>	Specific Cor	nductivity (n	nS/cm):_0.361
		GENERAL I	INFORMATION			
	-	PERCIPITATION: 1	N WIND DIR	LECTION: S	AMBIEN	Т ТЕМР (°F): <u>78</u>
SHIPPED VIA: <u>La</u>	•	and the second and the second and the second				
SHIPPED TO: <u>Te</u>		1 April 1 Apri				
SAMPLER: CAL	Cmt:					Access on the second of the se
CONTAINI		 PRESERVATIVE	ANALYTI	CAL METHOD	ANALY	/SIS
SIZE/TYPE	NUMBER	•				. ~~~
40ml/Vial	3	HCI	8260	Apple of the second of the sec	VOC	

PROJECT NAME: RVAAP	PROJECT NUMBER: 030174.0016.001			
LOCATION: <u>FACILITY-WIDE</u>	DATE:	8/21/2013	START TIME:	14:20
WELL ID: FWGmw-007		INITIAL	WATER LEVEL:	23.68
WELL DEPTH:		SCRE	EN INTERVAL:	22 - 32
WELL DIAMETER 2 in.		PUMP IN	TAKE DEPTH:	30.0
PUMP/PURGING DEVICE: BP - BLADDER PUMP			_	~\
PUMP READINGS: Throttle: 100 Recharge: 10	Discharg	ge: 5	OTAL PURGE VOL	(L): <u>3.25</u>
COMPATING Olds OdenMene				

COMMENT Cldy Odor:None

TIME	WATER LEVEL (btoc)	PURGE RATE L/min)	VOLUME PURGED (L)	TEMP.	SPECIFIC CONDUCT. (mS/cm)	DO (mg/L)	рН	Turb (NTU)	ORP (mV)
14:25	24.25	0.1	0.25	14.7	0.996	1.91	7.04	607	37
14:30	24.57	0.1	0.5	13.2	0.95	0.89	6.93	812	56
14:35	24.67	0.1	0.5	13	0.95	0.93	6.79	615	73
14:40	24.82	0.1	0.5	12.7	0.94	0.55	6.74	556	77
14:45	24.85	0.1	0.5	12.6	0.91	0.31	6.71	439	74
14:50	24.86	0.1	0.5	12.6	0.93	0.23	6.74	361	67
14:55	24.93	0.1	0.5	12.6	0.93	0.21	6.74	312	58

Note: Condition of the well: See STATIC WATER LEVEL FORM
Field Personnel: SAS

PROJECT: RVAAP LOCATION: FACILITY-WIDE			PRO.	JECT NO.: _0	30174.0016.001
	SAM	IPLE INFORMATIO	N	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
WELL: <u>FWGmw-007</u> Samp	leID: <u>FWGFWG</u>	mw-007-0347-GW/GF	DuplID:		
Sp	itID:		RinseID:		. ,
MATRIX: WG - Ground Water	SAMPLING	G METHOD: BP - Blac	lder Pump	annual de un te	MS/MSD: N
GRAB: Y COMPOSIT	E: <u>N</u>	DATE: _	8/21/2013	TIME: _	15:04
	FIELD REA	DINGS / OBSERVAT	IONS		
	Turb (NTU):	312	Color:	(Cldy
	ORP (mV):	58	Odor:	Ŋ	Vone
pH: 6.74 Temperature (°C): _12.6	DO (mg/L): 0.21	Specific Co	nductivity (m	S/cm): 0.93
1 min	GENER	AL INFORMATION		44.0	
SUN/OVERCAST Sunny SHIPPED VIA: Lab Pickup SHIPPED TO: Testamerica	PERCIPITATIO	N: <u>N</u> WIND DIR	RECTION: N	AMBIEN	Г ТЕМР (°F): <u>85</u>
SAMPLER: SAS Cmt:					and the state of t

CONTAIN	ER				
SIZE/TYPE	NUMBER	PRESERVATIVE	ANALYTICAL METHOD	ANALYSIS	
1L/Amber	1	4C	8330	Explo	
1L/Amber	2	4C	353.2/8330	Propellants	
500ml/Poly	1	HNO3	6010/6020/7470	Metals	
1L/Amber	2	4C	8270	svoc	

PROJECT NAME: RVAAP	PROJECT NUMBER: 030174.0016.0				
LOCATION: <u>FACILITY-WIDE</u>	DATE:	8/21/2013	START TIME	: 11:34	
WELL ID: FWGmw-009		INITI	AL WATER LEVEL:	2.88	
WELL DEPTH:		SC	REEN INTERVAL:	10 - 20	
WELL DIAMETER 2 in.			PINTAKE DEPTH:	18.0	
PUMP/PURGING DEVICE: BP - BLADDER PUMP			-		
PUMP READINGS: Throttle: 100 Recharge: 10	Discharg	ge: 5	TOTAL PURGE VOL	, (L): 2.75	
COMMENT: extra purge to lower NTU Cloudy Odor: None					

COMMENT extra purge to lower NTU Cloudy Odor:None

TIME	WATER LEVEL (btoc)	PURGE RATE L/min)	VOLUME PURGED (L)	TEMP.	SPECIFIC CONDUCT. (mS/cm)	DO (nig/L)	рН	Turb (NTU)	ORP (mV)
11:40	3.31	0.1	0.25	15.3	0.734	2.74	7.04	-5	-85
11:45	3.63	0.1	0.5	13.7	0.747	2.65	7.06	-5	-95
11:50	3.69	0.1	0.5	13.4	0.746	2.99	6.92	961	-93
11:55	3.75	0.1	0.5	13.3	0.745	2.99	6.86	767	-92
12:00	3.65	0.1	0.5	13.2	0.746	2.85	6.84	569	-93
12:05	3.71	0.1	0.5	13.1	0.743	2.8	6.85	467	-95

Note: Condition of the well: See STATIC WATER LEVEL FORM

Field Personnel: SAS

PROJECT: RVAAP J	LOCATION: <u>FACILITY</u>	-WIDE	PROJ	ECT NO.: <u>0</u>	30174.0016.001
	SAMPLE	INFORMATIO	N		
WELL: FWGmw-009 Sa	mpleID: <u>FWGFWGmw-</u> 0	09-0319-GW/GF	DuplID:		
	SplitID:		RinseID:		s
MATRIX: WG - Ground Water	SAMPLING ME	THOD: BP - Bla	dder Pump		MS/MSD: Y
GRAB: Y COMPOS	SITE: <u>N</u>	DATE: _	8/21/2013	TIME: _	12:20
	FIELD READING	GS / OBSERVAT	TIONS		
	Turb (NTU):	467	Color:	Cl	oudy
	ORP (mV):	-95	Odor:	N	lone
pH: 6.85 Temperature	(°C): <u>13.1</u> DO	(ing/L): 2.8	Specific Co	nductivity (m	S/cm): 0.743
and a state of the	GENERAL II	NFORMATION		and the state of t	
SUN/OVERCAST Sunny	PERCIPITATION: N	_ WIND DII	RECTION: N	AMBIENT	TEMP (°F): <u>83</u>
SHIPPED VIA: Lab Pickup					
SHIPPED TO: Testamerica					
SAMPLER: SAS Cmt:					
and the second s	and the formation of the sales				

CONTAINER SIZE/TYPE NUMBER		PD DCDDY / MYID		
		PRESERVATIVE ANALYTICAL METHOD		ANALYSIS
1L/Amber	6	4C	353.2/8330	Propellants
1L/Amber	6	4C	8270	SVOC
1L/Amber	8	4C	8081	Pest
1L/Amber	6	4C	8082	PCB
40ml/Vial	9	HCI	8260	VOC
1L/Amber	3	4C	8330	Explo
250ml/Poly	3	NaOH	9012	Cyanide
500ml/Poly	3	HNO3	6010/6020/7470	Metals
250ml/Poly	3	4C	6860	Perchlorate

PROJECT NAME: RVAAP	PROJECT NUMBER: 030174.0016.001						
LOCATION: FACILITY-WIDE	DATE:	8/20/2013	START TIME	: 11:12			
WELL ID: FWGmw-011		INITIA	L WATER LEVEL:	3.02			
WELL DEPTH:		SCR	EEN INTERVAL:	7.5 - 17.5			
WELL DIAMETER 2 in.		PUMP :	NTAKE DEPTH:	15.5			
PUMP/PURGING DEVICE: BP - BLADDER PUMP		_	-	<i></i>			
PUMP READINGS: Throttle: 100 Recharge: 10	Discharg	ge: 5	OTAL PURGE VOL	, (L): <u>4.5</u>			
COMMENT brown Cloudy Odor Mono							

COMMENT brown Cloudy Odor:None

TIME	WATER LEVEL (btoc)	PURGE RATE L/min)	VOLUME PURGED (L)	TEMP.	SPECIFIC CONDUCT. (mS/cm)	DO (mg/L)	pН	Turb (NTU)	ORP (mV)
11:17	3.33	0.1	0.2	14.8	0.498	3.18	6.1	-5	-81
11:22	3.35	0.1	0.5	14.5	0.517	2.56	6.41	-5	-104
11:27	3.37	0.1	0.5	14.91	0.51	5.77	6.58	-5	-90
11:32	3.32	0.1	0.5	15.1	0.505	7.02	6.71	-5	-82
11:37	3.39	0.1	0.5	14.9	0.511	7.1	6.78	-5	-82
11:42	3.35	0.1	0.5	14.9	0.512	7.15	6.8	-5	-84

Note: Condition of the well: See STATIC WATER LEVEL FORM

Field Personnel: SAS

PROJECT: RVAAP	LOCAT	PRO.	PROJECT NO.: <u>030174.0016.001</u>			
		SAMPI	LE INFORMATIO	N		
WELL: FWGmw-011	SampleID	: FWGFWGmw	7-011-0348-GW/GF	DuplID:		g
	SplitID					
MATRIX: WG - Groun	nd Water	SAMPLING M	METHOD <u>: BP - Blac</u>	dder Pump		MS/MSD: N
GRAB: Y C	COMPOSITE: _	<u>N</u>	DATE: _	8/20/2013	TIME:	11:50
]	FIELD READI	NGS / OBSERVAT	IONS		
	T	urb (NTU):	-5	Color:	Cl	oudy
	О	RP (mV):	-84	Odor:	N	lone
pH: 6.8 Tem	perature (°C): 1	4.9 E	OO (mg/L): 7.15	Specific Co	nductivity (m	S/cm): 0.512
		GENERAL	INFORMATION			
SUN/OVERCAST Sun	iny PEF	CIPITATION:	N WIND DIF	RECTION: N	AMBIENT	TEMP (°F): 67
SHIPPED VIA: Lab Pi	-					
SHIPPED TO: Testair	nerica					
SAMPLER; SAS Cu						
CONTAINER	NUMBER	PRESERVATIV	E ANALYTI	CAL METHOD	ANALY	SIS

CONTAIN	ER			
SIZE/TYPE	NUMBER	PRESERVATIVE	ANALYTICAL METHOD	ANALYSIS
500mi/Poly	1	HNO3	6010/6020/7470	Metals
1L/Amber	1	4C	8330	Explo
1L/Amber	2	4C	8270	SVOC
1L/Amber	2	4C	353.2/8330	Propellants

PROJECT NAME: RVAAP	PROJECT NUMBER: 030174.0016.001				
LOCATION: FACILITY-WIDE	DATE:	8/20/2013	0/2013 START TIME		
WELL ID: FWGmw-012		INITIAL	WATER LEVEL:	1.36	
WELL DEPTH:				32.3 - 43.3	
WELL DIAMETER 2 in.			TAKE DEPTH:	41.3	
PUMP/PURGING DEVICE: BP - BLADDER PUMP	. ,		_		
PUMP READINGS: Throttle: 100 Recharge: 10	Discharg	e: 5 TO	TAL PURGE VOL	(L): 4.5	
OOLG COVER OLGO OLGO None					

COMMENT Clear Odor:None

TIME	WATER LEVEL (btoc)	PURGE RATE L/min)	VOLUME PURGED (L)	TEMP.	SPECIFIC CONDUCT. (mS/cm)	DO (mg/L)	pН	Turb (NTU)	ORP (mV)
12:23	1.95	0.1	0.2	14.5	0.252	0.76	6.71	145	28
12:28	2.09	0.1	0.5	13.5	0.253	0.16	6.32	110	52
12:33	2.09	0.1	0.5	13	0.25	0.07	6.01	51.5	63
12:38	2.15	0.1	0.5	13.4	0.248	0.03	5.84	34.9	68
12:43	2.11	0.1	0.5	13.3	0.249	0	5.83	22.9	70
12:48	2.09	0.1	0.5	13.4	0.248	0	5.8	25.4	70

Note: Condition of the well: See STATIC WATER LEVEL FORM

Field Personnel: SAS

PROJECT: RVA	CATION: <u>FACI</u>	PROJ	ECT NO.: 03	0174.0016.001		
		SAM	IPLE INFORMATION	Y		
WELL: FWGmw-0	Samp	eID: <u>FWGFWG</u> 1	mw-012-0349-GW/GF	DuplID:		
MATRIX: WG - G	round Water	SAMPLING	3 METHOD: BP - Blad	lder Pump		MS/MSD: N
GRAB: Y COMPOSITE: N DATE: 8/20/2013 TIME:						12:54
		FIELD REA	DINGS / OBSERVAT	IONS		
		Turb (NTU):	25.4	Color:	Cl	ear
	A destruction of the same of t	ORP (mV):	70	Odor:	No	one
рН: <u>5.8</u> Т	emperature (°C): _13.4	DO (mg/L): 0	Specific Co	nductivity (mS	/cm): 0.248
		GENER	AL INFORMATION		The state of the s	
SUN/OVERCAST SHIPPED VIA: Lal SHIPPED TO: Tes	o Pickup stamerica	PERCIPITATIO	N: <u>N</u> WIND DIR	ECTION: N	AMBIENT	TEMP (°F): <u>75</u>
SAMPLER: SAS	Cmr:					
CONTAINE SIZE/TYPE	R NUMBER	PRESERVAT	CIVE ANALYTI	CAL METHOD	ANALYS	IS
1L/Amber	2	4C	353.2/8330)	Propellants	

CONTAIN	ER			
SIZE/TYPE	NUMBER	PRESERVATIVE	ANALYTICAL METHOD	ANALYSIS
1L/Amber	2	4C	353.2/8330	Propellants
1L/Amber	1	4C	8330	Explo
1L/Amber	2	4C	8270	SVOC
500mi/Poly	1	HNO3	6010/6020/7470	Metals

PROJECT NAME: RVAAP	PROJECT NUMBER: 030174.0016.001						
LOCATION: FACILITY-WIDE	DATE:	8/19/2013	START TIME:	16:57			
WELL ID: FWGmw-015		INITI	AL WATER LEVEL:	5.17			
WELL DEPTH:		SC	REEN INTERVAL:	16 - 26			
WELL DIAMETER 2 in.			P INTAKE DEPTH:				
PUMP/PURGING DEVICE: BP - BLADDER PUMP		1 01411	_	24.0			
PUMP READINGS: Throttle: 30 Recharge: 10	Discharg	ge: 5	TOTAL PURGE VOL	(L): <u>3.5</u>			
COMMENT Clear Odor None							

TIME	WATER LEVEL (btoc)	PURGE RATE L/min)	VOLUME PURGED (L)	TEMP.	SPECIFIC CONDUCT. (mS/cm)	DO (mg/L)	рН	Turb (NTU)	ORP (mV)
17:17	5.85	0.2	0.5	18.79	2.49	11	6.95	409	-114
17:20	6.30	0.2	0.6	18.13	2.49	10.04	6.92	464	-120
17:23	6.57	0.2	0.6	17.89	2.5	9.51	6.91	530	-122
17:29	8.02	0.2	0.6	15	2.46	12.54	6.92	615	-121
17:32	9.12	0.2	0.6	14.91	2.48	12.43	6.9	411	-119
17:35	10.04	0.2	0.6	14.95	2.47	12.47	6.89	314	-115

Note: Condition of the well: See STATIC WATER LEVEL FORM

Field Personnel: EC

PROJECT: RVAAP LOCATION: FACILITY-WIDE					PROJ	ECT NO.: <u>(</u>	30174.0016.001
		SAMPLE IN	FORMATIO	N		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
WELL: FWO	Gmw-015 Sampl	leID: FWGFWGmw-015-	0350-GW/GF		DuplID:		
	Spi	itID:		I	RinseID:		No. 1 (1) (1) (1)
MATRIX: W	G - Ground Water	_ SAMPLING METH	OD <u>: BP - Blac</u>	ider I	Pump		MS/MSD: N
GRAB: Y	COMPOSITE	E: _ N	DATE:	8/1	9/2013	TIME: _	17:41
		FIELD READINGS					
		Turb (NTU):	278		Color:	(Clear
		ORP (mV):	-115		Odor:	1	lone
pH: 6.89 Temperature (°C): 14.95 DO (mg/L): 10.8 Specific Conductivity (mS/cm): 2.47							
		GENERAL INFO	ORMATION				
SUN/OVERC	AST <u>Sunny</u>	PERCIPITATION: N	WIND DIR	ECT	ION: <u>S</u>	AMBIEN'	Г ТЕМР (°F): <u>75</u>
SHIPPED VI	A: <u>Lab Pickup</u>	manananakan da nadam anda na banan da babah da di					
SHIPPED T	O: Testamerica	od unitroduciation stratic and accompanies of the					
SAMPLER	: EC Cmt:						
CON	TAINER					The second section is a second section of the section of the second section of the section of the second section of the section of the second section of the section of	
SIZE/TYPE	NUMBER	PRESERVATIVE	ANALYTI	CAL	METHOD	ANALY	SIS
500ml/Poly	1	HNO3	6010/6020	/7470	0	Metals	
1L/Amber	2	4C	353.2/8330	כ		Propellant	S
1L/Amber	1	4C	8330			Explo	
1L/Amber	2	4C	8270			svoc	

PROJECT NAME: RVAAP	PROJECT NUMBER: 030174.0016.001						
LOCATION: FACILITY-WIDE	DATE:	8/19/2013	START TIME	E: <u>16:15</u>			
WELL ID: FWGmw-016		INITIAL	WATER LEVEL:	16.59			
WELL DEPTH:			EN INTERVAL:	57.2 - 67.2			
WELL DIAMETER 2 in.		PUMP IN	TAKE DEPTH:	65.2			
PUMP/PURGING DEVICE: BP - BLADDER PUMP			•				
PUMP READINGS: Throttle: 100 Recharge: I0	Discharg	ge: 5	OTAL PURGE VOL	L(L): <u>3.5</u>			

COMMENT Clear Odor:None

TIME	WATER LEVEL (btoc)	PURGE RATE L/min)	VOLUME PURGED (L)	TEMP.	SPECIFIC CONDUCT. (mS/cm)	DO (mg/L)	рН	Turb (NTU)	ORP (mV)
16:26	16.59	0.2	0.5	17.89	0.506	12.09	6.49	10	-149
16:29	16.59	0.2	0.6	16.65	0.509	10.54	6.76	10	-135
16:32	16.59	0.2	0.6	16.42	0.507	9.99	6.85	10	-130
16:35	16.59	0.2	0.6	16.25	0.507	9.54	6.94	10	-125
16:38	16.59	0.2	0.6	16,15	0.507	9.4	6.99	10	-122
16:41	16.59	0.2	0.6	16.06	0.508	9.42	7.04	10	-120

Note: Condition of the well: See STATIC WATER LEVEL FORM

Field Personnel: EC

PROJECT: RVA	AP LOC	ATION: <u>FACILIT</u>	Y-WIDE	PRO.	JECT NO.: _	030174.0016.001
		SAMPLI	E INFORMATIO	N		
WELL: FWGmw-	-016 Sampl	eID: FWGFWGmw-(016-0351-GW/GF	DuplID:		
MATRIX: WG - O	Ground Water	SAMPLING ME	ETHOD <u>: BP - Bla</u> c	lder Pump		MS/MSD: N
GRAB; Y	COMPOSITE	: <u>N</u>	DATE: _	8/19/2013	TIME: _	16:51
***************************************		FIELD READIN	GS / OBSERVAT	IONS		
		Turb (NTU):	10	Color:	(Clear
		ORP (mV):	-119	Odor:	1	None
pH: _7.06	Temperature (°C)	: 16.1 DO		Specific Co	nductivity (n	nS/cm): 0.507
		GENERAL I	INFORMATION			
SUN/OVERCAST	Sunny	PERCIPITATION: 1	N WIND DIR	ECTION: S	AMBIEN	T TEMP (°F): <u>80</u>
SHIPPED VIA: La	ab Pickup					
SHIPPED TO: T	estamerica					
SAMPLER: EC	Cmt:					
CONTAIN	IER				7.7	
SIZE/TYPE	NUMBER	PRESERVATIVE	ANALYTI	CAL METHOD	ANALY	YSIS
500ml/Poly	1 1	HNO3	6010/6020	<i>1</i> 7470	Metals	
1L/Amber	1	4C	8330	**************************************	Explo	
1L/Amber	2	4C	8270		svoc	

PROJECT NAME: RVAAP		PROJECT I	NUMBER: 030174.00	16.001
LOCATION: FUZE AND BOOSTER QUARRY	DATE:	8/21/2013	START TIME:	11:17
WELL ID: FBQmw-174		INITIA	L WATER LEVEL:	15.72
WELL DEPTH:		SCR	EEN INTERVAL:	12 - 22
WELL DIAMETER 2 in.		PUMP	- INTAKE DEPTH:	20.0
PUMP/PURGING DEVICE: BP - BLADDER PUMP			_	
PUMP READINGS: Throttle: 50 Recharge: 12	Discharg	e: 3	TOTAL PURGE VOL	(L): <u>2.41</u>
COMMENT Clear Odor:None				

ТІМЕ	WATER LEVEL (btoc)	PURGE RATE L/min)	VOLUME PURGED (L)	TEMP.	SPECIFIC CONDUCT. (mS/cm)	DO (mg/L)	рН	Turb (NTU)	ORP (mV)
11:22	15.80	0.18	0.25	16.49	0.072	5.94	5.5	2.5	114
11:25	15.85	0.18	0.54	15.85	0.071	5.86	4.82	0	159
11:28	15.89	0.18	0.54	15.55	0.065	5.8	4.66	0	183
11:31	15.91	0.18	0.54	15.48	0.064	5.75	4.62	0	193
11:34	15.94	0.18	0.54	15.32	0.064	5.72	4.58	0	205

Note: Condition of the well: See STATIC WATER LEVEL FORM

Field Personnel: CAL

PROJECT: RVAAP LOC	CATION: <u>FUZE AND I</u>	BOOSTER QUA	ARRY PROJI	ECT NO.: <u>03</u> 0	0174.0016.001
	SAMPLE II	NFORMATION	1		
WELL: FBQmw-174 Samp	leID: FWGFBQmw-1740	C-0345-GW/GF	DuplID:		
Spl	RinseID:				
MATRIX: WG - Ground Water	MS/MSD: N				
GRAB: Y COMPOSITI	E: N	DATE:	8/21/2013	TIME:	11:38
	FIELD READINGS	/ OBSERVATI	IONS		
	Turb (NTU):	0	Color:	Cle	ar
and the state of t	ORP (mV):	210	Odor:	No	ne
pH: 4.6 Temperature (°C): <u>15.31</u> DO (r	ng/L): <u>5.7</u>	Specific Con	ductivity (mS/	cm): 0.063
	GENERAL INI	FORMATION			11175-01
SUN/OVERCAST Sunny	PERCIPITATION: N	WIND DIR	ECTION: S	AMBIENT T	ГЕМР (°F): <u>8</u> 0
SHIPPED VIA: Lab Pickup					
SHIPPED TO: Testamerica					
SAMPLER: CAL Cmt:					
		l l		and the second s	

CONTAIN	ER			
SIZE/TYPE	NUMBER	PRESERVATIVE	ANALYTICAL METHOD	ANALYSIS
1L/Amber	2	4C	8081	Pest
500ml/Poly	1	HNO3	6010/6020/7470	Metals
1L/Amber	2	4C	8270	SVOC
1L/Amber	2	4C	353.2/8330	Propellants
1L/Amber	1	4C	8330	Explo

PROJECT NAME: RVAAP		PROJECT	'NUM	BER: <u>030174.00</u>	16.001
LOCATION: LOADLINE 1	DATE:	8/20/2013	i	START TIME:	15:30
WELL ID: LL1mw-064		INITI	AL W	ATER LEVEL:	1.36
WELL DEPTH:		SC	REEN	INTERVAL:	8 - 18
WELL DIAMETER 2 in.		PUMI	P INTA	KE DEPTH:	16.0
PUMP/PURGING DEVICE: BP - BLADDER PUMP		10111			
PUMP READINGS: Throttle: 100 Recharge: 10	Discharg	ge: 5	TOTA	AL PURGE VOL ((L): <u>4.5</u>
COMMENT Clear Odor:None					

TIME	WATER LEVEL (btoc)	PURGE RATE L/min)	VOLUME PURGED (L)	TEMP.	SPECIFIC CONDUCT. (mS/em)	DO (mg/L)	рН	Turb (NTU)	ORP (mV)
15:32	1.64	0.1	0.2	19.8	0.421	2.86	6.83	142	5
15:37	1.82	0.1	0.5	18	0.423	1.16	6.94	116	-96
15:42	1.85	0.1	0.5	16.4	0.425	0.76	6.84	180	-109
15:47	1.85	0.1	0.5	15.3	0.428	0.39	6.81	122	-113
15:52	1.83	0.1	0.5	14.9	0.424	0.29	6.84	67.4	-117
15:57	1.81	0.1	0.5	14.8	0.425	0.19	6.87	22,3	-120

Note: Condition of the well: See STATIC WATER LEVEL FORM

Field Personnel: SAS

PROJECT: RVAAP LOC	ECT NO.: 03	30174.0016.001			
	SAMPLI	E INFORMATION			
WELL: <u>LL1mw-064</u> Sample	eID: FWGLL1mw-06	54C-0352-GW/GF	_ DuplID:		
Spli	RinseID:				
MATRIX: WG - Ground Water	SAMPLING ME	THOD: BP - Bladde	r Pump		MS/MSD: N
GRAB: Y COMPOSITE	: <u>N</u>	DATE:	3/20/2013	TIME:	16:04
	FIELD READIN	GS / OBSERVATIO	NS		
	Turb (NTU):	22.3	Color:	Cl	ear
	ORP (mV):	-120	Odor:	N	one
pH: 6.87 Temperature (°C)	: 14.8 DC) (mg/L): 0.19	Specific Co	nductivity (mS	5/cm): 0.425
A CONTRACTOR OF THE CONTRACTOR	GENERAL I	NFORMATION	The state of the s		
SUN/OVERCAST Sunny	PERCIPITATION: N	WIND DIRE	CTION: N	AMBIENT	TEMP (°F): <u>82</u>
SHIPPED VIA: Lab Pickup					
SHIPPED TO: Testamerica					
SAMPLER: SAS Cmt:					
CONTAINER	DD DODDY LEWY				
SIZE/TVPE NUMBER	PRESERVATIVE	ANALYTICA	AL METHOD	ANALYS	51S

CONTAINER					
SIZE/TYPE	NUMBER	PRESERVATIVE	ANALYTICAL METHOD	ANALYSIS	
1L/Amber	2	4C	8270	svoc	
1L/Amber	2	4C	8081	Pest	
1L/Amber	1	4C	8330	Explo	
1L/Amber	2	4C	353.2/8330	Propellants	
500ml/Poly	1	HNO3	6010/6020/7470	Metals	

PROJECT NAME: RVAAP		PROJECT N	UMBER: 030174.0	016.001
LOCATION: LOADLINE I	DATE:	8/21/2013	START TIME	: 14:20
WELL ID: <u>LL1mw-065</u>		INITIAL	. WATER LEVEL:	11.5
WELL DEPTH:				10.2 - 20.2
WELL DIAMETER 2 in.		PUMP II	TAKE DEPTH:	18.2
PUMP/PURGING DEVICE: BP - BLADDER PUMP PUMP READINGS: Throttle: 50 Recharge: 10	Discharg	e: 5	- OTAL PURGE VOL	

COMMENT CLOUDY Odor:None

TIME	WATER LEVEL (btoc)	PURGE RATE L∕min)	VOLUME PURGED (L)	TEMP.	SPECIFIC CONDUCT. (mS/cm)	DO (mg/L)	pН	Turb (NTU)	ORP (mV)
14:24	11.50	0.2	0.3	14.21	0.667	8.41	7.07	272	2
14:27	11.55	0.2	0.6	13.85	0.666	7.95	6.93	267	-3
14:30	11.57	0.2	0.6	13.55	0.658	7.54	6.8	269	-9
14:33	11.61	0.2	0.6	13.26	0.642	6.77	6.57	247	-12
14:36	11.65	0.2	0.6	13.16	0.64	6.74	6.54	249	-19
14:39	11,69	0.2	0.6	13.11	0.652	6.66	6.52	211	0

Note: Condition of the well: See STATIC WATER LEVEL FORM

Field Personnel: AD

PROJECT: RVA	AAP LOO	CATION: <u>LOADLINE</u>	1	PROJ	ECT NO.: <u>(</u>	30174.0016.001
		SAMPLE I	NFORMATIO	N		
WELL: LL1mw-	065 Samp	leID: FWGLL1mw-0650	C-0353-GW/GF	DuplID:		
	Spl	itID:		RinseID:		X
MATRIX: WG-	Ground Water	_ SAMPLING METI	HOD: BP - Blac	dder Pump		MS/MSD: N
		E: _ N				
		FIELD READINGS	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			
		Turb (NTU):	211	Color:	CL	OUDY
		ORP (mV):	-27	Odor:	N	Vone
рН: 6.52	Temperature (°C): <u>13.11</u> DO (1	mg/L): <u>6.</u> 66	Specific Con	nductivity (m	S/cm): 0.651
		GENERAL IN	FORMATION		The state of the s	
SUN/OVERCAST	Sunny	PERCIPITATION: N	WIND DII	RECTION: NW	AMBIEN	Г ТЕМР (°F): <u>85</u>
SHIPPED VIA: L	ab Pickup					
SHIPPED TO: T	Cestamerica	mmen artististica a antica (a				
SAMPLER: AD	Cmt:	man de colonia de constitución de constitución de constitución de constitución de constitución de constitución				
CONTAI	NER		A 1 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7			
SIZE/TYPE	NUMBER	PRESERVATIVE	ANALYTI	CAL METHOD	ANALY	SIS
1L/Amber	2	4C	8081		Pest	
1L/Amber	1	4C	8330		Explo	7
1L/Amber	2	4C	353.2/833	0	Propellant	S
500ml/Poly	1	HNO3	6010/6020)/7470	Metals	11 to 10 to
1L/Amber	2	4C	8270		SVOC	

8270

4C

2

1L/Amber

PROJECT NAME: _RVAAP	PROJECT NUMBER: 030174.0016.001					
LOCATION: LOADLINE I	DATE:	8/21/2013	START TIME	E: <u>14:55</u>		
WELL ID: LL1mw-083		INITIA	AL WATER LEVEL:	30.85		
WELL DEPTH:		SCI	REEN INTERVAL:	29.1 - 38.6		
WELL DIAMETER 2 in.			INTAKE DEPTH:			
PUMP/PURGING DEVICE: BP - BLADDER PUMP				36.6		
PUMP READINGS: Throttle: 60 Recharge: 10	Discharg	ge: 5	TOTAL PURGE VOI	L(L): 2.05		
COMMENT verified historical pH is usually low Clear Odor:N	lone					

ТІМЕ	WATER LEVEL (btoc)	PURGE RATE L/min)	VOLUME PURGED (L)	TEMP.	SPECIFIC CONDUCT. (mS/cm)	DO (mg/L)	рН	Turb (NTU)	ORP (mV)
14:59	31.21	0.15	0.25	15.4	0.334	9.01	3.99	328	340
15:02	31.21	0.15	0.45	15.23	0.312	8.4	3.85	266	354
15:05	31.21	0.15	0.45	15.2	0.311	7.34	3.81	155	363
15:08	31.21	0.15	0.45	15.25	0.312	7.09	3.79	100	369
15:11	31.21	0.15	0.45	15.23	0.312	7.04	3.79	68.5	373

Note: Condition of the well: See STATIC WATER LEVEL FORM

Field Personnel: EC

PROJECT: RVAAP LOCA	ATION: <u>LOA</u> I	DLINE 1	PRO.	IECT NO.:	030174.0016.001
	SAM	IPLE INFORMATIO	N		
WELL: <u>LL1mw-083</u> Sample	ID: <u>FWGLL1</u> n	nw-083C-0354-GW/GF	DupHD:		
Spli	ID:		RinseID:		
MATRIX: WG - Ground Water	SAMPLING	G METHOD: BP - Blac	lder Pump		MS/MSD: N
GRAB: Y COMPOSITE	: <u>N</u>	DATE:	8/21/2013	TIME:	15:15
	FIELD REA	DINGS / OBSERVAT	IONS		
	Turb (NTU):	48.2	Color:		Clear
	ORP (mV):	375	Odor:		None
pH: 3.8 Temperature (°C)	15.22	DO (mg/L): <u>6.98</u>	Specific Co	nductivity (mS/cin):0.314
	GENER	AL INFORMATION			A Long Maria
SUN/OVERCAST Sunny I SHIPPED VIA: Lab Pickup SHIPPED TO: Testamerica SAMPLER: EC Cmt:	PERCIPITATIO	N: <u>N</u> WIND DIR	ECTION: <u>S</u>	AMBIEÌ	NT TEMP (°F): <u>85</u>

CONTAIN	ER				
SIZE/TYPE	NUMBER	PRESERVATIVE	ANALYTICAL METHOD	ANALYSIS	
500ml/Poly	1	HNO3 6010/6020/7470		Metals	
1L/Amber	2	4 C	8270	svoc	
1L/Amber		4C	8330	Explo	
1L/Amber	2	4C	353.2/8330	Propellants	
1L/Amber	2	4C	8081	Pest	

PROJECT NAME: RVAAP	PROJECT NUMBER: 030174.0016.001				
LOCATION: LOADLINE 1	DATE:	8/21/2013	START TIM	E: <u>13:45</u>	
WELL ID: LL1mw-084		INITI	AL WATER LEVEL:	26.92	
WELL DEPTH:		SC	REEN INTERVAL:	26.7 - 36.3	
WELL DIAMETER 2 in.			INTAKE DEPTH:	34.3	
PUMP/PURGING DEVICE: BP - BLADDER PUMP					
PUMP READINGS: Throttle: 55 Recharge: 10	Discharg	ge: 5	TOTAL PURGE VO	L (L): 2.05	
COMMENT: purge until 14:05 Clear Odor:None					

TIME	WATER LEVEL (btoc)	PURGE RATE L/min)	VOLUME PURGED (L)	TEMP.	SPECIFIC CONDUCT. (mS/cm)	DO (mg/L)	рН	Turb (NTU)	ORP (mV)
13:53	27.62	0.15	0.25	18.21	0.466	6.86	5.08	35.8	237
13:56	27.78	0.15	0.45	18.08	0.47	6.57	5.05	23.2	241
13:59	27.83	0.15	0.45	18.22	0.466	6.7	5.03	10.5	244

Note: Condition of the well: See STATIC WATER LEVEL FORM

Field Personnel: EC

PROJECT: RVAAP LOG	CATION: <u>LOADLINE</u>	1	PRO	JECT NO.: <u>0</u> :	30174.0016.001
	SAMPLE I	NFORMATIO:	N		
WELL: <u>LL1mw-084</u> Samp	leID: FWGLL1mw-084	C-0355-GW/GF	DuplID:		
Sp	litID:		RinseID:		
MATRIX: WG - Ground Water	SAMPLING MET	HOD: BP - Blac	lder Pump		MS/MSD: N
GRAB: Y COMPOSIT	E: N	DATE: _	8/21/2013	TIME:	14:05
	FIELD READINGS	S / OBSERVAT	IONS		
	Turb (NTU):	10.5	Color:	C	lear
	ORP (mV):	247	Odor:	N	one
pH: 5.03 Temperature (°C	C): 18.17 DO (mg/L): 6.59	Specific Co	onductivity (ms	S/cm): 0.471
*** The state of t	GENERAL IN	FORMATION			
SUN/OVERCAST Sunny	PERCIPITATION: N	WIND DIR	ECTION: S	AMBIENT	TEMP (°F): <u>80</u>
SHIPPED VIA: Lab Pickup					
SHIPPED TO: Testamerica					
SAMPLER: EC Cmt:				The second secon	
CONTAINER	DDECEDVATIVE	ANIATA	CAL METHOD		

CONTAINER				
SIZE/TYPE	NUMBER	PRESERVATIVE	ANALYTICAL METHOD	ANALYSIS
1L/Amber	2	4C 353.2/8330	i	Propellants
1L/Amber	2	4C	8270	SVOC
500ml/Poly	1	HNO3	6010/6020/7470	Metals
1L/Amber	2	4C	8081	Pest
1L/Amber	1	4C	8330	Explo

PROJECT NAME: RVAAP	PROJECT NUMBER: 030174.0016.0				
LOCATION: LOADLINE 1	DATE:	8/21/2013	START TIME	: 13:11	
WELL ID: LL1mw-086		INITIAL	WATER LEVEL:	7.8	
WELL DEPTH:		SCRE	EN INTERVAL:	64.5 - 74.5	
WELL DIAMETER 2 in.			TAKE DEPTH:	72.5	
PUMP/PURGING DEVICE: BP - BLADDER PUMP			-		
PUMP READINGS: Throttle: 100 Recharge: 10	Discharg	ge: 5	OTAL PURGE VOL	(L): <u>3.6</u>	
COMMENT, checked pH same as historical 2012 spring/sum	mer burge	until 1330 Clea	r Odor None		

TIME	WATER LEVEL (btoc)	PURGE RATE L/min)	VOLUME PURGED (L)	TEMP.	SPECIFIC CONDUCT. (mS/cm)	DO (mg/L)	pH	Turb (NTU)	ORP (mV)
13:18	7.69	0.2	0.3	18.91	0.633	0.94	9.57	15	-209
13:21	7.90	0.2	0.6	18.03	0.622	0	9.48	15	-222
13:24	7.91	0.2	0.6	17.58	0.621	0	9.43	15	-229
13:27	7.94	0.2	0.6	17.24	0.621	0	9.43	15	-231
13:30	7.97	0.2	0.6	17.17	0.621	0	9.4	15	-235

Note: Condition of the well: See STATIC WATER LEVEL FORM

Field Personnel: AD

PROJECT: RVA	AP LOC	PROJ	ECT NO.: <u>(</u>	30174.0016.001		
	1. N. 11. person	SAMPLE II	NFORMATIO	N		
WELL: LL1mw-08	86 Samp	leID: FWGLL1:nw-086-0)320-GW/GF	DuplID:		
	Spl	itID:		RinseID:		
MATRIX: WG-G	round Water	SAMPLING METH	IOD <u>: BP - Blac</u>	dder Pump		MS/MSD: N
		E: <u>N</u>				
	=	FIELD READINGS				
		Turb (NTU):	15	Color:	(Clear
		ORP (mV):		ł	1	Vone
pH: 9.4	Temperature (°C): <u>17.17</u> DO (n			nductivity (m	S/cm): 0.621
	Annual of the second of the se	GENERAL INF			The second secon	111 1111 1111 1111
SUN/OVERCAST	Sunny	PERCIPITATION: Y	WIND DI	RECTION: NW_	AMBIEN'	Г ТЕМР (°F): <u>81</u>
SHIPPED VIA: La	-					
SHIPPED TO: Te	stamerica					
SAMPLER: AD	Cmt:					
CONTAINI	ER					
SIZE/TYPE	NUMBER	PRESERVATIVE	ANALYTI	ICAL METHOD	ANALY	SIS
1L/Amber	2	4C	353.2/833	0	Propellant	s
1L/Amber	1	4C	8330		Explo	
1L/Amber	2	4C	8081		Pest	110 200
1L/Amber	2	4C	8270		svoc	
500ml/Poly	1	HNO3	6010/6020		Metals	a complete contraction

PROJECT NAME: RVAAP	PROJECT NUMBER: 030174.0016.001				
LOCATION: LOADLINE 1	DATE: 8/20/20	START TIME:	9:10		
WELL ID: LL1mw-087	INI	TIAL WATER LEVEL:	6.44		
WELL DEPTH:	\$	SCREEN INTERVAL:	7 - 17		
WELL DIAMETER 2 in.	PU	MP INTAKE DEPTH:	15.0		
PUMP/PURGING DEVICE: BP - BLADDER PUMP					
PUMP READINGS: Throttle: 40 Recharge: 12	Discharge: 3	TOTAL PURGE VOL	(L): 2.6		
CONTRACTOR davidy OdayMana					

COMMENT cloudy Odor:None

TIME	WATER LEVEL (btoc)	PURGE RATE L/min)	VOLUME PURGED (L)	TEMP.	SPECIFIC CONDUCT. (mS/cm)	DO (mg/L)	рН	Turb (NTU)	ORP (mV)
9:13	6.55	0.225	0.2	17.09	0.639	1.85	6.63	892	59
9:16	6.71	0.2	0.6	16.08	0.648	1.09	6.99	909	50
9:19	6.92	0.2	0.6	15.71	0.65	0.92	7.01	818	35
9:22	7.13	0.2	0.6	15.45	0.653	0.74	7.05	820	28
9:25	7.27	0.2	0.6	15.51	0.654	0.69	7.03	790	25

Note: Condition of the well: See STATIC WATER LEVEL FORM
Field Personnel: CAL

PROJECT: RVA	AP LOC	ATION: LOADLI	NE 1	PROJ	ECT NO.: _0	30174.0016.001		
		SAMPL	E INFORMATION					
WELL: LL1mw-08	37 Sampl	eID: FWGLL1mw-0	87C-0356-GW/GF	DuplID:				
	Spl	itlD:		_ RinseID:				
MATRIX: WG - G		MS/MSD: N						
GRAB: Y	COMPOSITE	E:N	DATE:	8/20/2013	TIME: _	9:28		
Constitution of the second of		FIELD READIN	GS / OBSERVATION	ONS				
		Turb (NTU):	742	Color:	cl	oudy		
		ORP (mV):	23	Odor:	N	Ione		
pH: 7.04 Temperature (°C): 15.42 DO (mg/L): 0.65 Specific Conductivity (mS/cm): 0.656								
	The second of th	GENERAL	INFORMATION	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	10 a 2 d 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			
	•	PERCIPITATION:_	N WIND DIRE	CTION: W	AMBIENT	ТЕМР (°F): <u>80</u>		
SHIPPED VIA: <u>La</u> SHIPPED TO: <u>Te</u>								
SAMPLER: CAL								
CONTAINI SIZE/TYPE	ER NUMBER	PRESERVATIVE	E ANALYTIC	AL METHOD	ANALY	SIS		
1L/Amber	2	4C	353.2/8330		Propellant	s		
500ml/Poly	1	HNO3	6010/6020/7	'470	Metals			

8330

8081

8270

4C

4C

4C

1

2

2

1L/Amber

1L/Amber

1L/Amber

Explo

Pest

SVOC

PROJECT NAME: RVAAP	PROJECT NUMBER: 030174.0016.001					
LOCATION: LOADLINE 2	DATE:	8/21/2013	START TIME:	12:25		
WELL ID: LL2mw-059		INITIAL	. WATER LEVEL:	12.87		
WELL DEPTH:		SCRE	EEN INTERVAL:	9.3 - 19.1		
WELL DIAMETER 2 in.		РИМР П	- NTAKE DEPTH:	17.1		
PUMP/PURGING DEVICE: BP - BLADDER PUMP			-	(T.) 0.0		
PUMP READINGS: Throttle: 25 Recharge: 10	Discharg	ge: 5	OTAL PURGE VOL	(L): <u>2.9</u>		
and the second second						

COMMENT Clear Odor:None

TIME	WATER LEVEL (btoc)	PURGE RATE L/min)	VOLUME PURGED (L)	TEMP.	SPECIFIC CONDUCT. (mS/cm)	DO (mg/L)	рН	Turb (NTU)	ORP (mV)
12:32	13.25	0.2	0.5	16.58	0.308	8.35	5.7	27.3	11
12:35	13.29	0.2	0.6	16.55	0.306	7.75	5.52	29.7	10
12:38	13.33	0.2	0.6	16.55	0.304	7.38	5.5	31.5	8
12:41	13.33	0.2	0.6	16.62	0.301	7.17	5.49	45.2	9
12:44	13.34	0.2	0.6	16.69	0.298	7.09	5.48	45.3	6

Note: Condition of the well: See STATIC WATER LEVEL FORM

Field Personnel: EC

PROJECT: RVAA	P LOC	ATION: LOADLINE	E 2	PROJECT NO.: <u>030174.0016.001</u>							
		SAMPLE	INFORMATION								
WELL: LL2mw-059	Sampl	eID: <u>FWGLL2:nw-05</u> 9	C-0357-GW/GF	DuplID:							
	Spl	itID:		RinseID:							
MATRIX: WG - Gr	ound Water	SAMPLING MET	HOD: BP - Bladd	er Pump		MS/MSD: N					
GRAB: <u>Y</u>	COMPOSITE	B: N	DATE:	8/21/2013	TIME: _	12:51					
FIELD READINGS / OBSERVATIONS											
		Turb (NTU):	47.7	Color:	C	lear					
**************************************		ORP (mV):	6	Odor:	N	lone					
pH: 5.46 To	emperature (°C)): 16.72 DO ((mg/L): 7.04	Specific Co	nductivity (m	S/cm): 0.3					
	****	GENERAL IN	IFORMATION			1					
SUN/OVERCAST S	Sunny	PERCIPITATION: N	WIND DIRE	CTION: S	AMBIENT	Г ТЕМР (°F): <u>80</u>					
SHIPPED VIA: Lab	Pickup										
SHIPPED TO: Test	tamerica										
SAMPLER: EC C	Cint:										
CONTAINE	R	DDECEDA ATIME		AT AMERICA							
SIZE/TYPE	NUMBER	PRESERVATIVE	ANALYTIC	AL METHOD	ANALY	SIS					
500ml/Poly	1	HNO3	6010/6020/7	470	Metals						
1L/Amber	2	4C	353.2/8330		Propellant	S					
1L/Amber	1	4C	8330		Explo						
1L/Amber	2	4C	8270		svoc						
40ml/Vial	3	HCI	8260		VOC	The state of the s					

PROJECT NAME: RVAAP	PROJECT NUMBER: 030174.0016.001				
LOCATION: LOADLINE 2	DATE:	8/21/2013	START TIME	E: 11:25	
WELL ID: LL2mw-265		INITI	AL WATER LEVEL:	9.58	
WELL DEPTH:		SC	REEN INTERVAL:	11.8 - 21.8	
WELL DIAMETER 2 in.		PUMI	P INTAKE DEPTH:	19.8	
PUMP/PURGING DEVICE: BP - BLADDER PUMP			momal Bub of Mol		
PUMP READINGS: Throttle: 35 Recharge: 10	Discharg	ge: 5	TOTAL PURGE VO	L(L): <u>3.3</u>	
COMMENT Clear Odor None					

TIME	WATER LEVEL (btoc)	PURGE RATE L/min)	VOLUME PURGED (L)	TEMP.	SPECIFIC CONDUCT. (mS/cm)	DO (mg/L)	рН	Turb (NTU)	ORP (mV)
11:32	9.96	0.2	0.5	15.71	0.714	6	5.78	134	3
11:35	10.03	0.2	0.6	15.16	0.72	3.04	5.78	72.2	0
11:38	10.03	0.2	0.6	14.76	0.719	2.31	5.77	42.2	-2
11:41	10.03	0.2	0.6	14.55	0.718	1.98	5.77	23	-2
11:44	10.03	0.2	0.6	14.72	0.714	1.82	5.76	14.8	-1
11:47	10.03	0.2	0.6	14.44	0.719	1.79	5.76	16.3	0

Note: Condition of the well: See STATIC WATER LEVEL FORM

Field Personnel: EC

PROJECT: RVAAP LOCATION: LOADLINE 2 PROJECT NO.: 030174.0016.001						30174.0016.001					
		SAMPLE IN	FORMATION								
WELL: LL2mw-2		eID: FWGLL2mw-265C	-0321-GW/GF	DuplID:							
	Spl	itID:		RinseID:							
MATRIX: WG - G	round Water	_ SAMPLING METH	OD <u>: BP - Bladd</u>	er Pump		MS/MSD: N					
GRAB: Y	COMPOSITI	3: <u>N</u>	DATE:	8/21/2013	TIME:	11:55					
FIELD READINGS / OBSERVATIONS											
Turb (NTU): 13.6 Color: Clear						lear					
	7 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 -	ORP (mV):	0	Odor:	N	[one					
pH: 5.75	Temperature (°C)): <u>14.41</u> DO (m	g/L): <u>1.77</u>	Specific Co	nductivity (m	S/cm): 0.714					
GENERAL INFORMATION											
SUN/OVERCAST SHIPPED VIA: <u>La</u> SHIPPED TO: <u>Te</u> SAMPLER: <u>EC</u>	ıb Pickup estamerica	PERCIPITATION: N	WIND DIRE	CTION: <u>S</u>	AMBIENT	TEMP (°F): <u>80</u>					
CONTAIN: SIZE/TYPE	ER NUMBER	PRESERVATIVE	ANALYTIC	AL METHOD	ANALY	SIS					
1L/Amber	2	4C	353.2/8330		Propellant	\$					
40ml∕Vial	3	HCI	8260		VOC						
1L/Amber	1	4C	8330		Explo	and the second s					
500ml/Poly	1	HNO3	6010/6020/7	470	Metals						
1L/Amber	2	4C	8270		svoc						

PROJECT NAME: RVAAP	PROJECT NUMBER: 030174.0016.001					
LOCATION: LOADLINE 2	DATE:	8/21/2013	START TIME	: 11:57		
WELL ID: LL2mw-267		INITI	AL WATER LEVEL:	10.2		
WELL DEPTH:			REEN INTERVAL:	9.8 - 19.8		
WELL DIAMETER 2 in.			INTAKE DEPTH:	17.8		
PUMP/PURGING DEVICE: BP - BLADDER PUMP			- 			
PUMP READINGS: Throttle: 50 Recharge: 10	Discharg	ge: 5	TOTAL PURGE VOL	(L): <u>3.3</u>		
COMMENT ORANGE WATER OLDLIDY ORANGE Odor:No	ne					

TIME	WATER LEVEL (btoc)	PURGE RATE L/min)	VOLUME PURGED (L)	TEMP.	SPECIFIC CONDUCT. (mS/cm)	DO (mg/L)	рН	Turb (NTU)	ORP (mV)
12:00	10.20	0.2	0.3	15.68	0.418	4.48	5.51	999	68
12:03	10.30	0.2	0.6	15.41	0.426	2.44	5.49	780	57
12:06	10.24	0.2	0.6	15.23	0.423	0.95	5.41	643	55
12:09	10.22	0.2	0.6	14.8	0.421	0.08	5.38	446	54
12:12	10.23	0.2	0.6	14.67	0.421	0	5.36	357	55
12:15	10.24	0.2	0.6	14.67	0.42	0	5.37	302	55

Note: Condition of the well: See STATIC WATER LEVEL FORM

Field Personnel: AD

PROJECT: RVAA	P LOC	ATION: LOADLIN	IE 2	PROJ	ECT NO.:	030174.0016.001			
		SAMPLE	INFORMATION	Y					
WELL: LL2mw-267	Sampl	eID: <u>FWGLL2mw-26</u>	7C-0358-GW/GF	DuplID:					
	Spli	itID:		RinseID:					
MATRIX: WG - Gro	ound Water	SAMPLING ME	THOD: BP - Blad	der Pump		MS/MSD: N			
GRAB: <u>Y</u>	COMPOSITE	E:N	DATE:	8/21/2013	TIME: _	12:18			
		FIELD READING	GS / OBSERVAT	IONS		nd a dia any distribution			
		Turb (NTU):	353	Color:	CLOUD	OY ORANGE			
		ORP (mV):	56	Odor:		None			
pH: _5.35 Te	emperature (°C)	: 14.65 DO	(mg/L): 0	Specific Co	nductivity (1	nS/cm):_0.42			
GENERAL INFORMATION									
SUN/OVERCAST _S	Sunny	PERCIPITATION: <u>N</u>	WIND DIR	ECTION: <u>NW</u>	AMBIEN	TT TEMP (°F): <u>79</u>			
SHIPPED VIA: <u>Lab</u>	Pickup	manuscription description and a state of the second							
SHIPPED TO: Test	america	- A.C. A. / / / A. O							
SAMPLER: AD (Cmt:	J							
CONTAINE	₹	- ppecepy//pw/s	4 3 1 4 T 3 // DT	CAL MEMILOD		voro			
SIZE/TYPE	NUMBER	PRESERVATIVE	ANALYTIC	CAL METHOD	ANAL	YSIS			
500ml/Poly	1	HNO3	6010/6020/	7470	Metals				
1L/Amber	2	4C	353.2/8330		Propellar	nts			
1L/Amber	1	4C	8330		Explo				
1L/Amber	2	4C	8270	100 A 100	svoc				

PROJECT NAME: <u>RVAAP</u>	PROJECT NUMBER: 030174.0016.001			
LOCATION: LOADLINE 3	DATE:	8/19/2013	START TIME	E: <u>13:14</u>
WELL ID: LL3mw-238		INITIAI	WATER LEVEL:	15.8
WELL DEPTH:			EEN INTERVAL:	10.5 - 20.5
WELL DIAMETER 2 in.			NTAKE DEPTH:	
PUMP/PURGING DEVICE: BP - BLADDER PUMP			au	18.5
PUMP READINGS: Throttle: 50 Recharge: 12	Discharg	ge: 3	OTAL PURGE VOI	L(L): <u>1.49</u>
COMMENT cloudy Odor:None				

TIME	WATER LEVEL (btoc)	PURGE RATE L/min)	VOLUME PURGED (L)	темр. (°С)	SPECIFIC CONDUCT. (mS/cm)	DO (mg/L)	рН	Turb (NTU)	ORP (mV)
13:21	15.98	0.215	0.2	15.85	0.301	3.36	6.23	909	146
13:24	16.08	0.215	0.645	15.89	0.301	3.27	6.23	604	146
13:27	16.19	0.215	0.645	15.87	0.299	3.29	6.23	466	145

Note: Condition of the well: See STATIC WATER LEVEL FORM

Field Personnel: CAL

PROJECT: RVAAI	P LOC	ATION: LOADLINE	3	PRO.	JECT NO.: 0	30174.0016.001				
	, ,		YFORMATIO							
WELL: <u>LL3mw-238</u>		eID: FWGLL3mw-238C								
	Spl	itID:		RinseID:						
MATRIX: WG - Gro	und Water	_ SAMPLING METH	IOD <u>: BP - Blac</u>	lder Pump		MS/MSD: <u>N</u>				
GRAB: <u>Y</u>	COMPOSITE	3: <u>N</u>	DATE: _	8/19/2013	TIME:	13:32				
FIELD READINGS / OBSERVATIONS										
		Turb (NTU):	445	Color:	cl	oudy				
		ORP (mV);		li e	N	lone				
pH: <u>6.24</u> Te	mperature (°C): <u>15.88</u> DO (n	ng/L): 3.23	Specific Co	nductivity (m	S/cm):_0.299				
	<u> </u>	GENERAL INF	ORMATION							
SUN/OVERCAST S	unny	PERCIPITATION: N	WIND DIR	ECTION: S	AMBIENT	TEMP (°F): <u>80</u>				
SHIPPED VIA: Lab	Pickup									
SHIPPED TO: Test	america									
SAMPLER: CAL	Cmt:									
CONTAINER	<u> </u>	A Company of the Comp	and the second s			A Company of the Comp				
SIZE/TYPE	NUMBER	PRESERVATIVE	ANALYTI	CAL METHOD	ANALY	SIS				
1L/Amber	2	4C	353.2/8330)	Propellant	s				
500ml/Poly	1	HNO3	6010/6020	<i>l</i> 7470	Metals					
1L/Amber	2	4C	8270		svoc					
1L/Amber	2	4C	8081	1	Pest					
1L/Amber	1	4C	8330		Explo					

 PROJECT NAME:
 RVAAP
 PROJECT NUMBER:
 030174.0016.001

 LOCATION:
 LOADLINE 3
 DATE:
 8/19/2013
 START TIME:
 12:30

 WELL ID:
 LL3mw-239
 INITIAL WATER LEVEL:
 23.41

 WELL DEPTH:
 SCREEN INTERVAL:
 24.9 - 34.9

WELL DIAMETER 2 in. PUMP INTAKE DEPTH: 32.9

PUMP/PURGING DEVICE: BP - BLADDER PUMP

PUMP READINGS: Throttle: 50 Recharge: 12 Discharge: 3 TOTAL PURGE VOL (L): 2.65

COMMENT Clear Odor:None

TIME	WATER LEVEL (btoc)	PURGE RATE L/min)	VOLUME PURGED (L)	TEMP.	SPECIFIC CONDUCT. (mS/cm)	DO (mg/L)	рН	Turb (NTU)	ORP (mV)
12:38	23.66	0.2	0.25	14.86	0.188	1.82	5.55	0	155
12:41	24.11	0.2	0.6	14.81	0.185	1.47	5.69	0	173
12:44	24.29	0.2	0.6	14.44	0.182	1.22	5.7	0	138
12:47	24.38	0.2	0.6	14.34	0.182	1.22	5.7	0	131
12:50	24.40	0.2	0.6	14.01	0.18	0.95	5.69	0	126

Note: Condition of the well: See STATIC WATER LEVEL FORM

Field Personnel: CAL

PROJECT: RVA	AP LOC	ATION: LOAI	OLINE 3	PROJECT NO.: <u>030174.0016.001</u>			
		SAM	IPLE INFORMATIO)N			
WELL: LL3mw-23	Sampl	eID: FWGLL3m	w-239C-0322-GF	DuplID:			
	Spi	tID:		RinseID:			
MATRIX: WG - G	round Water	SAMPLING	METHOD <u>: BP - Bl</u>	idder Pump		MS/MSD: N	
GRAB: <u>Y</u>	COMPOSITE	: <u>N</u>	DATE: _	8/19/2013	TIME: _	12:52	
		FIELD REA	DINGS / OBSERVA	TIONS			
Turb (NTU): 0				Color:	(Clear	
ORP (mV): 122 Odor: 1						Vone	
рН: <u>5.69</u> Т	Cemperature (°C)	: 14.01	DO (mg/L): 0.91	Specific C	Conductivity (m	S/cm): 0.18	
	ora otto	GENER	AL INFORMATION	Ī			
SUN/OVERCAST	Sunny	PERCIPITATIO	N: <u>N</u> WIND DI	RECTION: S	AMBIEN'	Г ТЕМР (°F): <u>75</u>	
SHIPPED VIA: La	b Pickup						
SHIPPED TO: Te	stamerica						
SAMPLER: <u>CAL</u>	Cmt:						
CONTAINE		DDECEDUAT	CINCE AND A NOTATION	TOLL METHOD		vore.	
SIZE/TYPE	NUMBER	PRESERVAT	ANALYI	TICAL METHOD	ANALY	919	
250ml/Poly	1	4C	6860		Perchiora	te	

PROJECT NAME: RVAAP	PROJECT NUMBER: 030174.0016.001					
LOCATION: LOADLINE 3	DATE:	8/19/2013	START TIME	E: <u>14:13</u>		
WELL ID: LL3mw-241		INITI	AL WATER LEVEL:	10.38		
WELL DEPTH:			REEN INTERVAL:	12.7 - 22.7		
WELL DIAMETER 2 in.			P INTAKE DEPTH:			
PUMP/PURGING DEVICE: BP - BLADDER PUMP		I OWI	-	20.7		
PUMP READINGS: Throttle: 45 Recharge: 13	Discharg	ge: 2	TOTAL PURGE VOI	L(L): 2.82		
COMMENT Clear Odor None						

тіме	WATER LEVEL (btoc)	PURGE RATE L/min)	VOLUME PURGED (L)	TEMP.	SPECIFIC CONDUCT. (mS/cm)	DO (nig/L)	рН	Turb (NTU)	ORP (mV)
14:15	10.60	0.3	0.3	17.49	0.167	4.83	5.95	970	161
14:18	10.71	0.21	0.63	16.71	0.171	4.97	5.89	801	167
14:21	10.64	0.21	0.63	16.48	0.171	5.34	5.86	542	170
14:24	10.63	0.21	0.63	16.12	0.17	5.29	5.85	236	171
14:27	10.63	0.21	0.63	16.1	0.168	5.15	5.83	110	170

Note: Condition of the well: See STATIC WATER LEVEL FORM

Field Personnel: CAL

PROJECT: RVAAP LOCATION: LOADLINE 3 PROJECT NO.: 030174.0016.001							
		SAMPLE IN	FORMATIC	N			
WELL: LL3m	w-241 Sample	eID: FWGLL3mw-241C-	0360-GW/GI	DupllD:			
	Spli	tID:		RinseID:			
MATRIX: WC	3 - Ground Water	SAMPLING METH	OD: BP - Bla	dder Pump		MS/MSD: N	
GRAB: Y	COMPOSITE	: N	DATE: _	8/19/2013	14:28		
		FIELD READINGS	OBSERVA	ΓIONS			
		Turb (NTU):	57.5	Color:	(Clear	
		ORP (mV):	169	Odor:	Ŋ	Vone	
pH: 5.82	Temperature (°C)	: <u>15.99</u> DO (m	g/L): 5.11	Specific Co	nductivity (m	S/cm):_0.167	
The state of the s		GENERAL INFO	ORMATION			10 mm 11 mm 11 mm 12 mm 14 mm	
SUN/OVERCA	ST Sunny	PERCIPITATION: N	WIND DI	RECTION: S	AMBIEN'	Г ТЕМР (°F): <u>80</u>	
SHIPPED VIA	: Lab Pickup						
SHIPPED TO	: Testamerica						
SAMPLER:	CAL Cmt: orange tss	s high at start of purge					
CONT	AINER	BD BODD VA DINJE					
SIZE/TYPE	NUMBER	PRESERVATIVE	ANALYT	ICAL METHOD	ANALY	SIS	
1L/Amber	2	4C	8081		Pest		
1L/Amber	1	4C	8330		Explo		
1L/Amber	2	4C	353.2/833	60	Propellant	S	
500ml/Poly	1	HNO3	6010/602)/7470	Metals	\$10000 H. 99 111 111	

8270

svoc

2

1L/Amber

4C

PROJECT NAME: RVAAP	PROJECT NUMBER: 030174.0016					
LOCATION: LOADLINE 3	DATE:	8/20/2013	START TIME:	12:12		
WELL ID: LL3mw-244		INITIAI	WATER LEVEL:	11.11		
WELL DEPTH:		SCRE	EEN INTERVAL:	37 - 47		
WELL DIAMETER 2 in.		PUMP I	NTAKE DEPTH:	45.0		
PUMP/PURGING DEVICE: BP - BLADDER PUMP	., ., ., ., ., ., ., ., ., ., ., ., ., .	T	TAL DUDGENOL	π. 22		
PUMP READINGS: Throttle: 75 Recharge: 10	Discharge	e: 5	OTAL PURGE VOL (ப). <u>3.3</u>		

COMMENT Clear Odor:None

TIME	WATER LEVEL (btoc)	PURGE RATE L/min)	VOLUME PURGED (L)	TEMP.	SPECIFIC CONDUCT. (mS/cm)	DO (mg/L)	pН	Turb (NTU)	ORP (mV)
12:12	11.29	0.2	0.3	13.87	0.363	11.17	6.79	14.8	134
12:15	11.20	0.2	0.6	13.55	0.365	10.42	6.65	16.5	136
12:18	11.29	0.2	0.6	12.91	0.343	8.87	6.18	8.8	145
12:21	11.29	0.2	0.6	12.8	0.323	8.69	6.12	6.6	146
12:24	11.25	0.2	0.6	12.78	0.319	8.48	6.07	5.2	148
12:27	11.20	0.2	0.6	12.71	0.318	8.41	6.05	2	151

Note: Condition of the well: See STATIC WATER LEVEL FORM
Field Personnel: AD

PROJECT: RVAA	P LOC	CATION: LOADLINE 3	PROJ	ECT NO.: <u>0</u>	30174.0016.001					
		SAMPLE IN	FORMATIO	ON						
WELL: <u>LL3mw-244</u>	Sampl	leID: FWGLL3mw-244-0	323-GW/GF	DuplID:						
	Spl	itID:		RinseID:						
MATRIX: WG - Gro	ound Water	_ SAMPLING METH	OD: BP - Bla	adder Pump		MS/MSD: N				
GRAB: <u>Y</u>	COMPOSITI	E: <u>N</u>	DATE: _	8/20/2013	TIME: _	12:29				
		FIELD READINGS								
		Turb (NTU):	2	Color:	C	lear				
		ORP (mV):	150	Odor:	N	lone				
pH: 6.03 Temperature (°C): 12.71 DO (mg/L): 8.4 Specific Conductivity (mS/cm): 0.317										
		GENERAL INF	ORMATION	Ţ						
SUN/OVERCAST S SHIPPED VIA: Lab SHIPPED TO: Test SAMPLER: AD C	Pickup america	PERCIPITATION: N	WIND DI	RECTION: <u>NE</u>	AMBIENT	TEMP (°F): <u>79</u>				
CONTAINEI SIZE/TYPE	R NUMBER	PRESERVATIVE	ANALYT	TICAL METHOD	ANALY	SIS				
500ml/Poly	1	HNO3	6010/602	0/7470	Metals					
1L/Amber	2	4C	8270	and the second	SVOC					
1L/Amber	2	4C	8081		Pest					
1L/Amber	2	4C	353.2/83	30	Propellants	S				
250ml/Poly	1	4C	218.6		Hex. Chro	m.				
1l /Amber	2	4C	8330	**************************************	Explo	Annua Annua -				

PROJECT NAME: RVAAP	PROJECT NUMBER: 030174.0016.001						
LOCATION: LOADLINE 10	DATE:	8/20/2013	START TIME:	13:56			
WELL ID: LL10mw-003		INITIA	AL WATER LEVEL:	20.21			
WELL DEPTH:		SCF	- REEN INTERVAL:	16 - 26			
WELL DIAMETER 2 in.			INTAKE DEPTH:	24.0			
PUMP/PURGING DEVICE: BP - BLADDER PUMP			k 1 _{1,2} = ====				
PUMP READINGS: Throttle: 100 Recharge: 10	Discharg	ge: 5	TOTAL PURGE VOL ((L): <u>4</u>			
COMMENT Clear Odor: None							

COMMENT Clear Odor:None

TIME	WATER LEVEL (btoc)	PURGE RATE L/min)	VOLUME PURGED (L)	TEMP.	SPECIFIC CONDUCT. (mS/cm)	DO (mg/L)	pН	Turb (NTU)	ORP (mV)
13:58	20.51	0.1	0.2	14.9	0.545	6.17	6.42	78.9	90
14:03	20.66	0.1	0.5	13.7	0.494	6.67	6.39	60.5	135
14:08	20.60	0.1	0.5	13.4	0.482	7.04	6.26	25.1	165
14:13	20.70	0.1	0.5	13.2	0.477	6.99	6.23	12.3	184
14:18	20.64	0.1	0.5	13.1	0.487	7.04	6.24	21.6	196

Note: Condition of the well: See STATIC WATER LEVEL FORM

Field Personnel: SAS

PROJECT: RVAAP LOCATION: LOADLINE 10 PROJECT NO.: 030174.0016.001								
		SAMPLI	E INFORMATION					
WELL: LL10mw-00	O3 Sampl	eID: FWGLL10mw-0	003C-0361-GW/GF	DuplID:				
	Spl	itID:		RinseID:				
MATRIX: WG - Gr	ound Water	_ SAMPLING ME	ETHOD: BP - Bladde	r Pump		MS/MSD: N		
GRAB: <u>Y</u>	COMPOSITE	E: _N	DATE:8	/20/2013	TIME: _	14:30		
		FIELD READIN	GS / OBSERVATIO	NS				
		Turb (NTU):	21.6	Color:	(Clear		
		ORP (mV):	196	Odor:	N	Vone		
pH: <u>6.24</u> T	emperature (°C)): <u>13.1</u> DC) (mg/L): <u>7.04</u>	Specific Cor	nductivity (m	S/cm): 0.487		
		GENERAL I	NFORMATION			- 07 \$4. 6 199		
SUN/OVERCAST _	Sunny	PERCIPITATION: 1	WIND DIREC	CTION: N	AMBIEN	Г ТЕМР (°F): <u>80</u>		
SHIPPED VIA: <u>Lab</u>	Pickup							
SHIPPED TO: Tes	tamerica							
SAMPLER: <u>SAS</u>	Cmt:							
CONTAINE		PRESERVATIVE	ANALYTICA	L METHOD	ANALY	'SIS		
SIZE/TYPE	NUMBER							
40ml/Vial	3	HCI	8260		VOC			
500ml/Poly	1	HNO3	6010/6020/74	170	Metals	- conficient (

PROJECT NAME: RVAAP	PROJECT NUMBER: 030174.0016.001						
LOCATION: LOADLINE 12	DATE:	8/20/2013	START TIME	8: 11:20			
WELL ID: LL12mw-185		INITIA	L WATER LEVEL:	6.7			
WELL DEPTH:		SCR	EEN INTERVAL:	10.8 - 20.8			
WELL DIAMETER 2 in.		-	NTAKE DEPTH:	18.8			
PUMP/PURGING DEVICE: BP - BLADDER PUMP			-				
PUMP READINGS: Throttle: 50 Recharge: 10	Discharg	ge: 5	OTAL PURGE VOL	. (L): <u>3.2</u>			
OOLALATIAM Class Odershane							

COMMENT Clear Odor:None

TIME	WATER LEVEL (btoc)	PURGE RATE L/min)	VOLUME PURGED (L)	ТЕМР. (°C)	SPECIFIC CONDUCT. (mS/cm)	DO (mg/L)	рН	Turb (NTU)	ORP (mV)
11:21	6.70	0.2	0.2	16.31	5.78	7.74	6.6	65.6	122
11:24	7.11	0.2	0.6	14.96	5.69	6.37	6.59	36,3	120
11:27	7.42	0.2	0.6	14.65	5.73	5.95	6.57	34	119
11:30	8.13	0.2	0.6	14.53	5.71	5.51	6.56	40.6	118
11:33	8.93	0.2	0.6	14.5	5.72	5.45	6.65	34.8	14.49
11:36	9.29	0.2	0.6	14.27	5.73	5.41	6.55	41.1	117

Note: Condition of the well: See STATIC WATER LEVEL FORM
Field Personnel: AD

PROJECT: RVAAP LOCATION: LOADLINE 12 PROJECT NO.: 030174.0016.001							030174.0016.001		
		SAM	IPLE INF	FORMATIO	N				
WELL: <u>LL12mw-18</u>	Sampi	eID: FWGLL121	nw-185C-	-0362-GW/G	F	DuplID:			
	Spli	itID:]	RinseID:			
MATRIX: WG - Ground Water SAMPLING METH				D: <u>BP - Bl</u> a	dder 1	Pump		MS/MSD: N	
GRAB: <u>Y</u>	COMPOSITE	3: <u>N</u>		DATE: <u>8/20/2013</u> TIME: <u>11:39</u>				11:39	
	FIELD READINGS / OBSERVATIONS								
Turb (NTU):			80		Color:		Clear		
ORP (mV):						Odor:	None		
pH: <u>6.56</u> Te									
		GENER	AL INFO	RMATION				and the state of t	
SUN/OVERCAST S	Sunny	PERCIPITATIO	N:_ <u>N</u> _	WIND DI	RECT	TON: NE_	AMBIE	NT TEMP (°F): <u>76</u>	
SHIPPED VIA: <u>Lab</u>	Pickup								
SHIPPED TO: Test	tamerica								
SAMPLER: AD (Cmt:							and Amade and	
CONTAINE	R							marketing by the second	
SIZE/TYPE	NUMBER	PRESERVAT	TVE	ANALYT	ICAL	METHOD	ANAL	YSIS	
250ml/Poly	1	H2SO4		353.2			NO3/NO	2	
500ml/Poly	1	HNO3		6010/6020	0/747	0	Metals		

PROJECT NAME: RVAAP PROJECT NUMBER: 030174.0016.001 LOCATION: LOADLINE 12 START TIME: 9:05 DATE: 8/20/2013 WELL ID: LL12mw-187 8.52 INITIAL WATER LEVEL: WELL DEPTH: SCREEN INTERVAL: 17.2 - 27.2 WELL DIAMETER 2 in. PUMP INTAKE DEPTH: PUMP/PURGING DEVICE: BP - BLADDER PUMP TOTAL PURGE VOL (L): 4.7 PUMP READINGS: Throttle: 40 Discharge: 5 Recharge: 10

COMMENT verified spec cond is usually high Clear Odor:None

TIME	WATER LEVEL (btoc)	PURGE RATE L/min)	VOLUME PURGED (L)	TEMP.	SPECIFIC CONDUCT. (mS/cm)	DO (mg/L)	рН	Turb (NTU)	ORP (mV)
9:10	8.97	0.2	0.5	15.59	11.1	6.71	6.4	41.8	120
9:13	9.03	0.2	0.6	15.23	11.1	7.39	6.47	54.8	106
9:16	9.16	0.2	0.6	14.24	11.2	7.91	6.5	27	92
9:19	9.17	0.2	0.6	14.14	11.3	8.4	6.52	33.8	80
9:22	9.24	0.2	0.6	14.08	11.3	8.51	6.54	38.2	72
9:25	9.31	0.2	0.6	13.96	11.4	9.57	6.55	29.3	63
9:28	9.33	0.2	0.6	13.93	11.5	9.67	6.55	43.2	59
9:31	9.35	0.2	0.6	13.89	11.6	9.72	6.55	43.4	54

Note: Condition of the well: See STATIC WATER LEVEL FORM

Field Personnel: EC

		— « »				
PROJECT: RVAA	P LOC	CATION: LOADLINE	I 12	PRO	DJECT NO.: <u>0</u>	30174.001 <u>6.001</u>
			INFORMATIO		,	
WELL: LL12mw-1	87 Samp	lelD: FWGLL12mw-18	7C-0363-GW/GI	E DuplID:		
	Spl	itID:	RinseID:			
MATRIX: WG - Gr	ound Water	SAMPLING MET	HOD: BP - Blac	lder Pump		MS/MSD: N
GRAB: Y						
		FIELD READING				
		Turb (NTU):	39.7	Color:	C	lear
		ORP (mV):	49	Odor:	N	Ione
pH: <u>6.55</u> T	emperature (°C): <u>13.87</u> DO (Specific C	onductivity (m	S/cm): 11.7
		GENERAL IN	FORMATION			
SUN/OVERCAST	Sunny	PERCIPITATION: N	WIND DIR	ECTION: S	AMBIENT	TEMP (°F): <u>70</u>
SHIPPED VIA: Lab	Pickup					
SHIPPED TO: Tes	tamerica					
SAMPLER: EC	Cmt:			and the state of t		
CONTAINE	R	DDDCDDV/1/MV/				disks -
SIZE/TYPE	NUMBER	PRESERVATIVE	ANALYTI	CAL METHOD	ANALY	SIS
250ml/Poly	1	H2SO4	353.2		NO3/NO2	
1L/Amber	2	4C	353.2/8330	כ	Propellant	S
500ml/Poly	1	HNO3	6010/6020	/7470	Metals	
1L/Amber	1	4C	8330		Explo	

8081

8270

8260

Pest

svoc

VOC

1L/Amber

1L/Amber

40ml/Vial

2

2

3

4C

4C

HCI

PROJECT NAME: RVAAP	PROJECT NUMBER: 030174.0016.001						
LOCATION: LOADLINE 12	DATE:	8/20/2013	START TIME	: 10:30			
WELL ID: LL12mw-242		INITL	AL WATER LEVEL:	8.15			
WELL DEPTH:		SC	REEN INTERVAL:	15.5 - 25.5			
WELL DIAMETER 2 in.		PUMF	PINTAKE DEPTH:	23.5			
PUMP/PURGING DEVICE: BP - BLADDER PUMP PUMP READINGS: Throttle: 40 Recharge: 10	Discharg	e: 5	TOTAL PURGE VOL	,(L): <u>5.3</u>			

COMMENT Clear Odor:None

TIME	WATER LEVEL (btoc)	PURGE RATE L/min)	VOLUME PURGED (L)	TEMP.	SPECIFIC CONDUCT. (mS/cm)	DO (mg/L)	pН	Turb (NTU)	ORP (mV)
10:37	8.53	0.2	0.5	15.61	0.653	9.8	8.1	999	-137
10:40	8.62	0.2	0.6	15.19	0.648	9.6	7.89	999	-124
10:43	8.66	0.2	0.6	15.25	0.631	9.8	7.79	999	-113
10:46	8.77	0.2	0.6	14.08	0.63	9.85	7.76	929	-103
10:49	8.92	0.2	0.6	14.12	0.627	9.91	7.72	730	-101
10:52	9.03	0.2	0.6	13.98	0.62	10.31	7.69	656	-99
10:55	9.06	0.2	0.6	13.95	0.62	10.88	7.67	534	-97
10:58	9.11	0.2	0.6	13.8	0.619	10.84	7.65	468	-96
11:01	9.14	0.2	0.6	13.84	0.618	10.92	7.65	413	-96

Note: Condition of	the well:	See STATIC WATER LEVEL FORM
Field Personnel	EC	

PROJECT: RVAAP LOCATION: LOADLINE 12 PROJECT NO.: 030174.0016.001										
		SAMPLE INI	FORMATION							
WELL: <u>LL12mw-24</u>	2 Sampl	eID: FWGLL12mw-242C	-0364-GW/GF	DuplID:						
	SplitID: RinseID:									
MATRIX: WG - Ground Water SAMPLING METHOD: BP - Bladder Pump MS/MSD: N										
GRAB: <u>Y</u>	TIME: _	11:11								
		FIELD READINGS /			*					
		Turb (NTU):	394	Color:	(Clear				
		ORP (mV):	-95	Odor:	1	None				
рН: 7.65 Те	oH: 7.65 Temperature (°C): 13.82 DO (mg/L): 10.98 Specific Conductivity (mS/cm): 0.62									
		GENERAL INFO	RMATION							
SUN/OVERCAST_S	unny	PERCIPITATION: N	WIND DIRECT	ION: <u>S</u>	AMBIEN'	T TEMP (°F): <u>80</u>				
SHIPPED VIA: <u>Lab</u>	Pickup									
SHIPPED TO: Test	america									
SAMPLER: EC C	ınt:									
CONTAINER	<u> </u>	DDEGEDVAGINE	A NAME OF A STATE OF A	MARILOD						
SIZE/TYPE	NUMBER	PRESERVATIVE	ANALYTICAL	METHOD	ANALY	YSIS				
500ml/Poly	1	HNO3	6010/6020/7470	0	Metals					
40ml/Vial	3	HCI	8260		VOC					
1L/Amber	2	4C	8270	ann an air air air an	SVOC					
250ml/Poly	1	H2SO4	353.2		NO3/NO2					
1L/Amber	2	4C	353.2/8330	111 111 111 111 111 111 11 11 11 11 11	Propellan	ts				

8330

8081

1L/Amber

1L/Amber

1

2

4C

4C

Explo

Pest

PROJECT NAME: RVAAP	PROJECT NUMBER: 030174.0016.001					
LOCATION: LOADLINE 12	DATE: 8/20	0/2013	START TIME:	9:09		
WELL ID: LL12mw-245		INITIAL WA	ATER LEVEL:	6.5		
WELL DEPTH:			INTERVAL:	18 - 28		
WELL DIAMETER 2 in.			KE DEPTH:	26.0		
PUMP/PURGING DEVICE: BP - BLADDER PUMP			_			
PUMP READINGS: Throttle: 60 Recharge: 10	Discharge: 5	TOTA	L PURGE VOL (L): 4.81		

COMMENT knocked over Flowthru after 0914 Clear Odor:None

	1	1	1					T	
TIME	WATER LEVEL (btoc)	PURGE RATE L/min)	VOLUME PURGED (L)	TEMP.	SPECIFIC CONDUCT. (mS/cm)	DO (mg/L)	рН	Turb (NTU)	ORP (mV)
9:11	7.39	0.2	0.3	13.7	1.31	1.94	6.52	252	-7
9:14	7.49	0.2	0.6	13.33	1.29	1.39	6.55	252	-15
9:17	6.58	0.19	0.57	13.17	1.28	8.9	6.57	246	-22
9:20	7.11	0.175	0.525	13.76	1.41	8.04	6.53	132	-11
9:23	7.34	0.175	0.525	13.33	1.4	7.05	6.68	110	-21
9:26	7.54	0.165	0.495	13.3	1.39	5.51	6.68	102	-23
9:29	8.09	0.15	0.45	13.32	1.38	5.06	6.67	111	-27
9:31	8.34	0.15	0.3	13.29	1.38	3.52	6.66	98.6	-30
9:33	8.65	0.133	0.266	13.27	1.37	2.92	6.65	93	-31
9:36	8.96	0.133	0.399	13.27	1.37	2.89	6.64	99	-32
9:39	8.96	0.125	0.375	13.26	1.36	2.87	6.64	100	-32

Note: Condition of the wel	See STATIC WATER LEVEL FORM	
Field Personnel: AD		

		noni i indi		TEL OLL		
PROJECT: RV	AAP LOC	CATION: LOADLINE	12	PROJ	ECT NO.: 0	30174.0016.001
			NFORMATION			
WELL: LL12mw	v-245 Samp	leID: FWGLL12mw-245	C-365-GW/GF	_ DuplID:		
	Sp.	litID:		_ RinseID:		
MATRIX: WG -	Ground Water	_ SAMPLING METI	HOD <u>: BP - Bladde</u>	er Pump		MS/MSD: Y
GRAB: Y_	COMPOSIT	E: <u>N</u>	DATE:	8/20/2013	TIME: _	9:56
		FIELD READINGS	S / OBSERVATIO	ONS		
		Turb (NTU):	119	Color:	C	Clear
		ORP (mV):	-33	Odor:	N	lone
pH: 6.63	Temperature (°C	DO (1	mg/L): <u>1.11</u>	Specific Co	nductivity (m	S/cm): 1.36
Annual service and a service s		GENERAL IN	FORMATION		1,000	
SUN/OVERCAST	Γ Sunny	PERCIPITATION: N	WIND DIRE	CTION: NE_	AMBIEN?	Г ТЕМР (°F): <u>70</u>
SHIPPED VIA: <u>I</u>	_ab Pickup	W = 10.0				
SHIPPED TO: 1	<u> Festamerica</u>	100 100 100 100 100 100 100 100 100 100				
SAMPLER: <u>AE</u>	Cmt:					
CONTAI	NER					
SIZE/TYPE	NUMBER	PRESERVATIVE	ANALYTICA	AL METHOD	ANALY	SIS
250ml/Poly	3	H2SO4	353.2		NO3/NO2	
500ml/Poly	3	HNO3	6010/6020/7	470	Metals	
1L/Amber	6	4C	353.2/8330		Propellant	\$

8330

8081

8260

8270

4C

4C

HCI

4C

3

2

3

6

1L/Amber

1L/Amber

40ml/Vial

1L/Amber

Explo

Pest

VOC

SVOC

PROJECT NAME: RVAAP		PROJECT NU	MBER: <u>030174.0</u>	016.001
LOCATION: LOADLINE 12	DATE:	8/20/2013	START TIME	E: 12:20
WELL ID: LL12mw-247		INITIAL V	VATER LEVEL:	5.06
WELL DEPTH:		SCREE	N INTERVAL:	12.5 - 22.5
WELL DIAMETER 2 in.		PUMP INT	AKE DEPTH:	20.5

PUMP/PURGING DEVICE: BP - BLADDER PUMP

PUMP READINGS: Throttle: 35 Recharge: 10 Discharge: 5 TOTAL PURGE VOL (L): 5.65

COMMENT Clear Odor:None

TIME	WATER LEVEL (btoc)	PURGE RATE L/min)	VOLUME PURGED (L)	TEMP.	SPECIFIC CONDUCT. (mS/cm)	DO (mg/L)	рН	Turb (NTU)	ORP (mV)
12:26	5.12	0.2	0.25	18.79	1.02	7.44	7.73	999	-111
12:29	5.52	0.2	0.6	16.84	0.742	8.18	7.59	999	-97
12:32	6.02	0.2	0.6	15.77	0.748	6.14	7.51	999	-99
12:35	6.29	0.2	0.6	15.89	0.99	6.12	7.48	999	-89
12:38	6.61	0.2	0.6	15.48	0.98	5.85	7.44	999	-86
12:41	6.72	0.2	0.6	15.74	0.97	6.49	7.45	999	-79
12:44	6.89	0.2	0.6	15.92	0.722	6.69	7.47	999	-75
12:47	6.92	0.2	0.6	16.26	0.72	6.32	7.43	999	-76
12:50	6.92	0.2	0.6	16.5	0.72	6.24	7.42	723	-76
12:53	6.95	0.2	0.6	16.42	0.719	6.28	7.42	634	-75

Note: Condition of the well:	See STATIC WATER LEVEL FORM

Field Personnel: EC

PROJECT: RVA	AP LOCA	TION: LOA	DLINE 12			PROJ	ECT NO.:	030174.0016.001	
		SAN	MPLE INFO	RMATIO	V				
WELL: LL12mw-	247 Sample	ID: <u>FWGLL12</u>	2mw-247-0366	5-GW/GF	Dup	lID: <u>FW</u>	GLL12mw-l	DUP3-0338-GW/GF	_
	Split	ID: FWGLL12	2mw-247-0334	IS-GW/GF	Rins	eID:			_
MATRIX: WG - 0	Ground Water	SAMPLIN	G METHOD <u>:</u>	BP - Blad	lder Pum	<u>p</u>		MS/MSD: N	
GRAB: <u>Y</u>	COMPOSITE:	N	I	DATE: _	8/20/20	013	TIME:	13:01	
		FIELD REA	ADINGS / OB	SERVAT	IONS				
		Turb (NTU):	3	78		Color:		Clear	
		ORP (mV):		72		Odor:		None	
pH: 7.41	Temperature (°C):	16.54	DO (mg/L)	: 6.21	Sp	ecific Co	nductivity (mS/cm): 0.717	-
A Committee of the Comm		GENEF	RAL INFORM	MATION					
SUN/OVERCAST	•	ERCIPITATIO	ON:_ <u>N</u>	VIND DIR	ECTION	l: <u>S</u>	AMBIEN	NT TEMP (°F): <u>80</u>	_
SHIPPED VIA: <u>L</u>	ab Pickup								
SHIPPED TO: \underline{M}	<u>fultiple Labs</u>								
SAMPLER: EC	Cmt:								

CONTAIN	ER	PPP0PPV1		
SIZE/TYPE	NUMBER	PRESERVATIVE	ANALYTICAL METHOD	ANALYSIS
1L/Amber	6	4C	8081	Pest
250ml/Poly	3	4C	218.6	Hex. Chrom.
1L/Amber	6	4C	8270	SVOC
250ml/Poly	3	H2SO4	353.2	NO3/NO2
500ml/Poly	3	HNO3	6010/6020/7470	Metais
1L/Amber	5	4C	353.2/8330	Propellants
1L/Amber	5	4C	8330	Explo
40ml/Vial	9	HCI	8260	VOC

PROJECT NAME: RVAAP		PROJEC'	T NUM	BER: 030174.	0016.00	1
LOCATION: NACA TEST AREA	DATE:	8/21/201	3	START TIM	E:8	:45
WELL ID: NTAmw-119		INIT	IAL W	ATER LEVEL:	12.	28
WELL DEPTH:		SC	CREEN	INTERVAL:	94.2 -	104.2
WELL DIAMETER 2 in.		PUM	IP INT <i>A</i>	KE DEPTH:	102	4
PUMP/PURGING DEVICE: BP - BLADDER PUMP			momi	T PUR OF TO		
PUMP READINGS: Throttle: 75 Recharge: 30	Discharg	ge: 30	TOTA	AL PURGE V O	L (L):	4.7
COLAR FENTE Class Oder None						

COMMENT Clear Odor:None

TIME	WATER LEVEL (btoc)	PURGE RATE L/min)	VOLUME PURGED (L)	TEMP.	SPECIFIC CONDUCT. (mS/cm)	DO (mg/L)	pН	Turb (NTU)	ORP (mV)
9:05	12.30	0.4	0.5	12.06	0.606	1.76	6.37	0	-120
9:08	12.30	0.35	1.05	11.94	0.576	I.24	6.46	0	-138
9:11	12.30	0.35	1.05	11.9	0.568	1.05	6.48	0	-141
9:14	12.30	0.35	1.05	11.79	0.566	0.81	6.47	0	-147
9:17	12.30	0.35	1.05	11.89	0.567	0.75	6.48	0	-149

Note: Condition of the well: See STATIC WATER LEVEL FORM

Field Personnel: CAL

PROJECT: <u>R</u> V	AAP LOC	ATION: <u>NACA</u>	TEST AREA	PRO	DJECT NO.: 0	30174.0016.001
		SAM	PLE INFORMATION	٧		
WELL: NTAmy	<u>v-119</u> Sampl	eID: <u>FWGNTA</u> m	w-119-0367-GW/GF	DuplID:		
	Spli	itlD:				
MATRIX: WG-	Ground Water	SAMPLING	METHOD: BP - Blad			MS/MSD: N
GRAB: Y	COMPOSITE	: <u>N</u>	DATE:	8/21/2013	TIME: _	9:22
		FIELD REAL	DINGS / OBSERVAT	IONS		
		Turb (NTU):	0	Color:	C	Clear
		ORP (mV):	-150	Odor:	Ŋ	Vone
pH: _6.5	Temperature (°C)	: 11.8	DO (mg/L): 0.67	Specific C	Conductivity (m	S/cm): 0.566
·	- Company	GENERA	L INFORMATION			
SUN/OVERCAS	T Sunny	PERCIPITATION	N: N WIND DIR	ECTION: S	AMBIENT	Г ТЕМР (°F): <u>75</u>
SHIPPED VIA:	Lab Pickup					
SHIPPED TO:	Testamerica	·				
SAMPLER: CA	AL Cmt:					
CONTA	NER	PRESERVAT	INTE AND TOTAL	CAL METHOD		

CONTAIN	ER			
SIZE/TYPE	NUMBER	PRESERVATIVE	ANALYTICAL METHOD	ANALYSIS
1L/Amber	2	4C	353.2/8330	Propellants
40ml/Vial	3	HCI	8260	VOC
1L/Amber	2	4C	8270	svoc
1L/Amber	2	4C	8081	Pest
1L/Amber	2	4C	8082	PCB
1L/Amber	1	4C	8330	Explo
500ml/Poly	1	HNO3	6010/6020/7470	Metals
250ml/Poly	1	NaOH	9012	Cyanide

Discharge: 5

PROJECT NAME: RVAAP PROJECT NUMBER: 030174.0016.001

LOCATION: RAMSDELL QUARRY LANDFILL DATE: 8/19/2013 START TIME: 15:43

WELL ID: RQLmw-006 WELL DEPTH:

INITIAL WATER LEVEL: 33.33

SCREEN INTERVAL: 19.4 - 39.4 WELL DIAMETER 2 in.

Recharge: 10

PUMP/PURGING DEVICE: BP - BLADDER PUMP

PUMP INTAKE DEPTH: 37.4

TOTAL PURGE VOL (L): 6.3

COMMENT Clear Odor:None

PUMP READINGS: Throttle: 75

TIME	WATER LEVEL (btoc)	PURGE RATE L/min)	VOLUME PURGED (L)	TEMP.	SPECIFIC CONDUCT. (mS/cm)	DO (mg/L)	рН	Turb (NTU)	ORP (mV)
15:46	33.85	0.2	0.3	14.04	0.629	7.87	5.91	0	-120
15:49	33.95	0.2	0.6	12.99	0.612	6.86	5.87	0	-123
15:52	34.15	0.2	0.6	12.63	0.607	6.27	5.85	0	-124
15:55	34.35	0.2	0.6	12.44	0.606	5.8	5.81	0	-124
15:58	34.35	0.2	0.6	12.32	0.605	5.52	5.78	0	-123
16:01	34.45	0.2	0.6	12,31	0.605	5.23	5.77	0	-122
16:04	34.55	0.2	0.6	12.22	0.613	4.92	5.75	0	-121
16:07	34.65	0.2	0.6	12.16	0.614	4.53	5.74	0	-120
16:10	34.75	0.2	0.6	12.14	0.613	4.41	5.73	0	-119
16:13	34.65	0.2	0.6	12.19	0.612	4.2	5.71	0	-119
16:16	34.65	0.2	0.6	12.16	0.612	4.16	5.7	0	-118

Note: Condition of the well: See STATIC WATER LEVEL FORM

Field Personnel: AD

PROJECT:	RVAAP	LOCATION	RAMSDELL	QUARRY LA	NDFILL I	PROJECT NO.:	030174.0016.001
			SAMPLE IN	FORMATIO	N		
WELL: RQ	Lmw-006 S	ampleID: <u>FW</u>	GRQLmw-006C	C-0368-GW/GI	DuplID:		
		SplitID:			RinseID:	FWGEQUIPRin	se1-0340-GW
MATRIX: V	VG - Ground Wate	r SA	MPLING METH	IOD <u>: BP - Bla</u>	dder Pump		MS/MSD: N
GRAB: Y	COMPO	SITE: N	-	DATE:	8/19/2013	TIME:	16:19
		FIEI	D READINGS	/ OBSERVAT	IONS		
		Turb (NTU):	0	Colo	or:	Clear
		ORP (mV):	-118	Odo	r;	None
рН: 5.69	Temperature	e (°C): 12.19	DO (m	ng/L): 4.11	Specifi	c Conductivity (1	nS/cm): <u>0.611</u>
	1,	refrance of the first terms of t	GENERAL INF	ORMATION			10170
SUN/OVER	CAST <u>Sunny</u>	PERCIP	IT AT ION:_N_	WIND DII	RECTION: NI	E AMBIEN	IT TEMP (°F): <u>74</u>
SHIPPED V	IA: Lab Pickup						
SHIPPED T	O: Testamerica						
SAMPLER	R: AD Cmt: rinse	at 1753					
			·				

CONTAIN	ER	DDDCDDIA #HIE				
SIZE/TYPE	NUMBER	PRESERVATIVE	ANALYTICAL METHOD	ANALYSIS		
40ml/Vial	3	HCI	8260	voc		
250ml/Poly	1 4C		6860	Perchlorate Metals		
i00ml/Poly 1 HNO3		HNO3	6010/6020/7470			
250ml/Poly	50ml/Poly 1 NaOH		9012	Cyanide		
1L/Amber	1	4C	353.2/8330	Propellants		
1L/Amber	2	4C	8330	Explo PCB		
1L/Amber	2	4C	8082			
		4C	8270	SVOC Pest		
		4C	8081			

PROJECT NAME: RVAAP	PROJECT NUMBER: 030174.0016.001				
LOCATION: RAMSDELL QUARRY LANDFILL	DATE:	8/19/2013	START TIME:	12:48	
WELL ID: RQLmw-007		INITIA	AL WATER LEVEL:	5.19	
WELL DEPTH:		SCF	REEN INTERVAL:	6 - 16	
WELL DIAMETER 2 in.		PUMP	INTAKE DEPTH:	14.0	
PUMP/PURGING DEVICE: BP - BLADDER PUMP			_		
PUMP READINGS: Throttle: 100 Recharge: 10.5	Discharg	ge: 4.5	TOTAL PURGE VOL	(L): <u>9.5</u>	
COMMENT Clear Odor:None					

TIME	WATER LEVEL (btoc)	PURGE RATE L/min)	VOLUME PURGED (L)	TEMP.	SPECIFIC CONDUCT, (mS/cm)	DO (mg/L)	рН	Turb (NTU)	ORP (mV)
12:55	5.59	0.1	0.22	17.2	1.06	0.36	6.15	10	-94
13:00	5.50	0.1	0.5	17.2	1.07	0.26	6.15	10	-96
13:05	5.59	0.1	6	17.2	1.1	0.2	6.16	10.8	-100
13:10	5.52	0.1	0.5	17,3	1.12	0.16	6.21	10	-102
13:15	5.60	0.1	0.5	17.3	1.13	0.15	6.23	10.1	-105

Note: Condition of the well: See STATIC WATER LEVEL FORM

Field Personnel: SAS

PROJECT	: <u>RV</u> A	AP LOCA	ATION:	RAMSD	ELL QU	ARRY L	ANDF	ILL PRO	JECT NO.:	030174.0016.001
SAMPLE INFORMATION										
WELL: F	RQLmw-	007 Sample	ID: <u>FWC</u>	RQLinw-	-007C-03	69-GW/G	F	DuplID:		
SplitID: RinseID: FWGEQUIPRinse3-0342-GW										
MATRIX: WG - Ground Water SAMPLING METHOD: BP - Bladder Pump MS/MSD: N										
GRAB:	<u>Y</u>	COMPOSITE:	_N			DATE:	8/1	9/2013	TIME:	13:24
FIELD READINGS / OBSERVATIONS										
			Turb (N	TU):		10.1		Color:		Clear
			ORP (m	V):		-105		Odor:		None
pH: _6.23		Temperature (°C):	17.3	D	O (mg/L): <u>0.15</u>		Specific Co	nductivity (mS/cm): 1.13
			G I	ENERAL	INFOR	MATION				
SUN/OVE	RCAST	<u>Sunny</u> P	ERCIPIT	ATION:	N.	WIND DI	RECT	TON: <u>N</u>	AMBIE	NT TEMP (°F): <u>80</u>
SHIPPED	VIA: <u>L</u>	ab Pickup		_						
SHIPPE	D TO: <u>T</u>	estamerica		_						
SAMPL	ER: SAS	6 Cmt:					and annual and an order of			
									1	

CONTAIN	ER	DD TO EDYLL THE			
SIZE/TYPE	NUMBER	PRESERVATIVE	ANALYTICAL METHOD	ANALYSIS	
1L/Amber	2	4C	8082	PCB	
250ml/Poly	Amber 2 4C		9012	Cyanide	
1L/Amber			353.2/8330	Propellants Explo	
1L/Amber			8330		
500ml/Poly	1	HNO3	6010/6020/7470	Metals	
40ml/Vial	3	HCI	8260	VOC	
1L/Amber 2 4C		4C	8081	Pest	
1L/Amber 2		4C	8270	SVOC	

PROJECT NAME: RVAAP	PROJECT NUMBER: 030174.0016.001					
LOCATION: RAMSDELL QUARRY LANDFILL	DATE:	8/19/201	3 START TIME	8: 12:20		
WELL ID: RQLmw-008		INIT	IAL WATER LEVEL:	5.39		
WELL DEPTH:		SC	REEN INTERVAL:	6 - 16		
WELL DIAMETER 2 in.			P INTAKE DEPTH:			
PUMP/PURGING DEVICE: BP - BLADDER PUMP		1 01.1	-	14.0		
PUMP READINGS: Throttle: 30 Recharge: 10	Discharg	ge: 5	TOTAL PURGE VOL	L(L): <u>1.7</u>		
COMMENT Clear Odor:None						

TIME	WATER LEVEL (btoc)	PURGE RATE L/min)	VOLUME PURGED (L)	TEMP.	SPECIFIC CONDUCT. (mS/cm)	DO (mg/L)	рН	Turb (NTU)	ORP (mV)
12:33	5.44	0.2	0.5	17.13	0.692	4.07	6.2	32.3	-113
12:36	5.61	0.2	0.6	17.12	0.69	4	6.24	24.1	-112
12:39	5.61	0.2	0.6	17.08	0.693	4.04	6.28	20.6	-109

Note: Condition of the well: See STATIC WATER LEVEL FORM

Field Personnel: EC

PROJECT: RVAAP LO	CATION: <u>RAMSDELL</u>	QUARRY LAN	DFILL PROJ	JECT NO.: <u>03</u> 0	174.0016.001				
SAMPLE INFORMATION									
WELL: <u>RQLmw-008</u> Samp	oleID: <u>FWGRQLmw008C</u>	C-0370-GW/GF	DuplID:						
Sp	litID:		_ RinseID:						
MATRIX: WG - Ground Water SAMPLING METHOD: BP - Bladder Pump									
GRAB: Y COMPOSIT	E: <u>N</u>	DATE:	8/19/2013	TIME:	12:45				
FIELD READINGS / OBSERVATIONS									
Turb (NTU): 13.1 Color: Clear									
	ORP (mV):	-100	Odor:	Nor	ne				
pH: 6.29 Temperature (°C	C): 17.07 DO (n	ng/L): 3.97	Specific Co	nductivity (mS/c	cm): <u>0.695</u>				
	GENERAL INF	FORMATION		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					
SUN/OVERCAST Sunny	PERCIPITATION: N	WIND DIREC	CTION: S	AMBIENT T	EMP (°F): <u>80</u>				
SHIPPED VIA: Lab Pickup									
SHIPPED TO: Testamerica									
SAMPLER: EC Cmt:			No and a contract of the contr						
				1					

CONTAIN	ER				
SIZE/TYPE	NUMBER	PRESERVATIVE	ANALYTICAL METHOD	ANALYSIS	
1L/Amber	6	4C	353.2/8330 Propellants	Propellants	
250ml/Poly	A A A C TO TO TO THE TO		9012	Cyanide PCB	
1L/Amber			8082		
1L/Amber	3	4C	8330	Explo	
500ml/Poly	3	HNO3	6010/6020/7470	Metals	
1L/Amber	6	4C	8081	Pest	
1L/Amber	L/Amber 6 4C		8270	SVOC	
40ml/Vial 9		HCI	8260	VOC	

PROJECT NAME: <u>RVAAP</u>	PROJECT NUMBER: 030174.0016.001					
LOCATION: RAMSDELL QUARRY LANDFILL	DATE:	8/19/2013	START TIME	: <u>12:30</u>		
WELL ID: RQLmw-009		INITIAI	L WATER LEVEL:	4.1		
WELL DEPTH:		SCRI	EEN INTERVAL:	5.9 - 15.9		
WELL DIAMETER 2 in.		PUMP I	NTAKE DEPTH:	13.9		
PUMP/PURGING DEVICE: BP - BLADDER PUMP			-			
PUMP READINGS: Throttle: 30 Recharge: 10	Discharg	e: 5	OTAL PURGE V OL	· (L): <u>3.3</u>		
COM CENTE Cloor Odorshiona						

COMMENT Clear Odor:None

TIME	WATER LEVEL (btoc)	PURGE RATE L/min)	YOLUME PURGED (I.)	темр. (°С)	SPECIFIC CONDUCT. (mS/cm)	DO (mg/L)	pH	Turb (NTU)	ORP (mV)
12:49	4.50	0.2	0.3	17.36	0.309	5.14	5.93	33.5	-69
12:51	4.51	0.2	0.4	17.23	0.305	1.86	5.89	20.9	-72
12:54	4.60	0.2	0.6	17.18	0.3	0.6	5.86	0	-78
12:57	4.60	0.2	0.6	17.19	0.3	0.42	5.84	0	-79
13:00	4.60	0.2	0.6	17.27	0.3	0.25	5.84	5.5	-82
13:04	4.60	0.2	0.8	17.25	0.305	0.24	5.82	2.7	-84

Note: Condition of the well: See STATIC WATER LEVEL FORM
Field Personnel: AD

PROJECT: RV	AAP LOC	ATION: <u>RAN</u>	ASDELL Q	UARRY LA	NDF	ILL_ PROJ	ECT NO.: <u>0</u> 3	30174.0016.001		
SAMPLE INFORMATION										
WELL: RQLmw	WELL: RQLmw-009 SampleID: FWGRQLmw-009c-0371-GW/GF DuplID: FWGRQLmw-DUP5-377-GW/GF									
	SplitID: FWGmw-009c-0375s-GW/GF RinseID:									
MATRIX: WG - Ground Water SAMPLING METHOD: BP - Bladder Pump MS/MSD: N										
GRAB: <u>Y</u> COMPOSITE: <u>N</u> DATE: <u>8/19/2013</u> TIME: <u>13:23</u>										
FIELD READINGS / OBSERVATIONS										
Turb (NTU): 0 Color: Clear						lear				
		ORP (mV):		-85		Odor:	N	one		
pH: <u>5.82</u>	Temperature (°C): _17.27	DO (mg/	′L): <u>0.22</u>		Specific Cor	nductivity (mS	S/cm):_0.306		
		GENEI	RAL INFO	RMATION						
SUN/OVERCAST	Sunny	PERCIPITATIO	N:_N_	WIND DII	RECT	ION: <u>NE</u>	AMBIENT	TEMP (°F): <u>72</u>		
SHIPPED VIA: I	Lab PU/FedEx									
SHIPPED TO: 1	Multiple Labs									
SAMPLER: AL	SAMPLER: AD Cmt:									
CONTAI	NER	DDECEDYA	(DIVE	4 3 T 1 Y 3 I M	YOLY					
SIZE/TYPE	NUMBER	PRESERVA	LIVE	ANALYT	ICAL	METHOD	ANALYS	51S		

CONTAIN	ER	DDDODDY (CHIE		
SIZE/TYPE	NUMBER	PRESERVATIVE	ANALYTICAL METHOD	ANALYSIS
1L/Amber	2	4C	8270	svoc
40ml/Vial	3	HCI	8260	VOC
1L/Amber	2	4C	8081	Pest
1L/Amber	2	4C	8330	Explo
1L/Amber	1	4C	353.2/8330	Propellants
250ml/Poly	1	NaOH	9012	Cyanide
500ml/Poly	1	HNO3	6010/6020/7470	Metals
1L/Amber	2	4C	8082	PCB

PROJECT NAME: RVAAP	PROJECT NUMBER: 030174.00				
LOCATION: RAMSDELL QUARRY LANDFILL	DATE:	8/19/2013	START TIME	E: <u>14:26</u>	
WELL ID: RQLmw-010		INITIAL	WATER LEVEL:	24.25	
WELL DEPTH:		SCRE	EN INTERVAL:	12.5 - 32.5	
WELL DIAMETER 2 in.		PUMP II	NTAKE DEPTH:	30.5	
PUMP/PURGING DEVICE: BP - BLADDER PUMP		_			
PUMP READINGS: Throttle: 110 Recharge: 10	Discharg	e: 5	OTAL PURGE VOI	L(L): <u>6.5</u>	
COMMENT Clear OdariNana					

COMMENT Clear Odor:None

TIME	WATER LEVEL (btoc)	PURGE RATE L/min)	VOLUME PURGED (L)	TEMP.	SPECIFIC CONDUCT. (mS/cm)	DO (mg/L)	рН	Turb (NTU)	ORP (mV)
14:34	24.87	0.1	0.2	14.5	0.747	5.13	6.49	15.4	128
14:39	25.01	0.1	0.5	14.1	0.739	4.68	6.12	15	177
14:44	25.20	0.1	0.5	13.9	0.721	4.37	6.06	12	186
14:49	25.25	0.1	0.5	13.9	0.715	3.92	6.03	11	189
14:54	25.28	0.1	0.5	13.4	0.716	3.44	6.01	10	202
14:59	25,33	0.1	0.5	13.6	0.712	3.36	6.02	10	201
15:04	25.35	0.1	0.5	13.6	0.713	3.13	6.04	10	198
15:09	25.40	0.1	0.5	13.5	0.709	2.89	6.06	10	203
15:14	25.42	0.1	0.5	13.5	0.711	2.65	6.08	10	200
15:19	25.10	0.1	0.5	14	0.708	2.6	6.11	10	196

Note: Condition of the well: See STATIC WATER LEVEL FORM

Field Personnel: SAS

PROJECT: RVAA	P LOC	CATION: <u>RAMSDEL</u>	L QUARRY LANDE	ILL P	ROJECT NO.: _0	30174.0016.001
		SAMPLE I	INFORMATION			
WELL: RQLmw-01	10 Sampl	leID: FWGRQLmw-010	C-0325-GW/GF	DuplID: _		
	Spl	itID:	I	linseID: _		
MATRIX: <u>WG - Gr</u>	ound Water	_ SAMPLING MET	HOD <u>: BP - Bladder I</u>	ump		MS/MSD: N
GRAB: Y	COMPOSITE	E: <u>N</u>	DATE; <u>8/1</u>	9/2013	TIME:	15:34
		FIELD READING	S / OBSERVATION	3		
		Turb (NTU):	10	Color	т. С	Clear
		ORP (mV):	196	Odor	. 1	lone
рН: <u>6.11</u> Т	emperature (°C): 14 DO (Specific	Conductivity (m	S/cm): 0.708
The second secon						
		GENERAL IN	FORMATION			
SUN/OVERCAST	Sunny	GENERAL IN PERCIPITATION: N		ION: N	AMBIEN	Г ТЕМР (°F): <u>77</u>
	•			ION: N	AMBIEN	Г ТЕМР (°F): <u>77</u>
SHIPPED VIA: <u>Lab</u>	Pickup			ION: N	AMBIEN	Г ТЕМР (°F): <u>77</u>
SHIPPED VIA: <u>Lab</u> SHIPPED TO: <u>Tes</u>	Pickup stamerica			ION: N	AMBIEN	Г ТЕМР (°F): <u>77</u>
SHIPPED VIA: <u>Lab</u> SHIPPED TO: <u>Tes</u> SAMPLER: <u>SAS</u>	Pickup stamerica Cmt:			ION: N	AMBIEN	Г ТЕМР (°F): <u>77</u>
SHIPPED VIA: <u>Lab</u> SHIPPED TO: <u>Tes</u>	Pickup stamerica Cmt:					
SHIPPED VIA: Lab SHIPPED TO: Tes SAMPLER: SAS CONTAINE	Pickup stamerica Cmt:	PERCIPITATION: N	WIND DIRECT			
SHIPPED VIA: Lab SHIPPED TO: Tes SAMPLER: SAS CONTAINE SIZE/TYPE	Pickup stamerica Cmt: R NUMBER	PERCIPITATION: N PRESERVATIVE	WIND DIRECT) ANALY	
SHIPPED VIA: Late SHIPPED TO: Test SAMPLER: SAS CONTAINE SIZE/TYPE 1L/Amber	Pickup stamerica Cmt: R NUMBER	PERCIPITATION: N PRESERVATIVE 4C	WIND DIRECT ANALYTICAL 8330		O ANALY Explo	
SHIPPED VIA: Lab SHIPPED TO: Tes SAMPLER: SAS CONTAINE SIZE/TYPE 1L/Amber 1L/Amber	Pickup stamerica Cmt: R NUMBER 1 2	PERCIPITATION: N PRESERVATIVE 4C 4C	ANALYTICAL 8330 8082		ANALY Explo PCB	SIS
SHIPPED VIA: Lab SHIPPED TO: Tes SAMPLER: SAS CONTAINE SIZE/TYPE 1L/Amber 1L/Amber 40ml/Vial	Pickup stamerica Cmt: R NUMBER 1 2 3	PERCIPITATION: N PRESERVATIVE 4C 4C HCl	ANALYTICAL 8330 8082 8260		ANALY Explo PCB VOC	SIS
SHIPPED VIA: Lab SHIPPED TO: Tes SAMPLER: SAS CONTAINE SIZE/TYPE 1L/Amber 1L/Amber 40ml/Vial 1L/Amber	Pickup stamerica Cmt: R NUMBER 1 2 3 2	PERCIPITATION: N PRESERVATIVE 4C 4C HCl 4C	### WIND DIRECT ### ANALYTICAL ### 8330 ### 8082 ### 8260 ### 353.2/8330	метноі	PCB VOC Propellant	SIS

8270

6860

SVOC

Perchlorate

1L/Amber

250ml/Poly

2

1

4C

4C

PROJECT NAME: RVAAP		PROJECT NU	OJECT NUMBER: 030174.0016.001			
LOCATION: RAMSDELL QUARRY LANDFILL	DATE:	8/19/2013	START TIME	: 14:15		
WELL ID: RQLmw-011		INITIAL	WATER LEVEL:	20.8		
WELL DEPTH:		SCREI	EN INTERVAL:	12.4 - 32.4		
WELL DIAMETER 2 in.			TAKE DEPTH:	30.4		
PUMP/PURGING DEVICE: BP - BLADDER PUMP			_			
PUMP READINGS: Throttle: 50 Recharge: 10	Discharge	e: 5 TO	TAL PURGE VOL	. (L): <u>5.3</u>		
COMMENT verified low nH reading with nH test string and h	istorical rea	dings Clear Odd	nr:None			

COMMENT verified low pH reading with pH test strips and historical readings Clear Odor:None

	I								
TIME	WATER LEVEL (btoc)	PURGE RATE L/min)	VOLUME PURGED (L)	TEMP.	SPECIFIC CONDUCT. (mS/cm)	DO (mg/L)	рН	Turb (NTU)	ORP (mV)
14:27	20.80	0.2	0.5	18.37	0.148	14.56	3.67	28.5	251
14:30	20.82	0.2	0.6	17.85	0.148	13.67	3,47	17.8	269
14:33	20.84	0.2	0.6	16.75	0.15	14	3.34	33.1	290
14:36	20.87	0.2	0.6	16.14	0.154	14.54	3.3	47	304
14:39	20.90	0.2	0.6	15.81	0.157	15.14	3.31	53	309
14:42	20.92	0.2	0.6	15.79	0.159	15.29	3.32	56.8	312
14:45	20.95	0.2	0.6	15.64	0.163	15.38	3.32	52.6	313
14:48	20.97	0.2	0.6	15.35	0.165	15.41	3.34	51.4	313
14:51	20.98	0.2	0.6	15.21	0.166	15.39	3.36	45.3	311

Note: Condition of th	e well:	See STATIC WATER LEVEL FORM
Field Personnel: E	C	

PROJECT: RVAAP LOC	CATION: RAMSDELL	QUARRY LAND	FILL PROJ	ECT NO.: <u>0</u>	30174.0016.001
	SAMPLE II	NFORMATION			
WELL: RQLmw-011 Sampl	leID: FWGRQLmw-0110	C-0326-GW/GF	DuplID:		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
Spl	itID:		RinseID:		
MATRIX: WG - Ground Water	_ SAMPLING METH	HOD <u>: BP - Bladder</u>	Pump		MS/MSD: N
GRAB: Y COMPOSITI	E: <u>N</u>	DATE:8/	19/2013	TIME:	14:55
	FIELD READINGS	/ OBSERVATION	NS		
	Turb (NTU):	49.6	Color:	C	lear
	ORP (mV):	309	Odor:	N	one
pH: 3.38 Temperature (°C): 15.31 DO (n	ng/L): <u>15.21</u>	Specific Co	nductivity (m	S/cm): 0.168
Control to the second s	GENERAL INI	FORMATION			
SUN/OVERCAST Sunny SHIPPED VIA: Lab Pickup SHIPPED TO: Testamerica SAMPLER: EC Cmt:	PERCIPITATION: <u>N</u>	WIND DIREC	TION: <u>S</u>	AMBIENT	TEMP (°F): <u>80</u>
CONTAINER					

CONTAINER		DD 0000011 00110			
SIZE/TYPE	NUMBER	PRESERVATIVE	ANALYTICAL METHOD	ANALYSIS	
500ml/Poly	1 1	HNO3	6010/6020/7470	Metals	
1L/Amber	2	4C	353.2/8330	Propellants	
1L∕Amber	2	4C	8270	SVOC	
1L/Amber	2	4C	8081	Pest	
1L/Amber	2	4C	8082	PCB	
1L/Amber	1	4C	8330	Explo	
250ml/Poly	1	NaOH	9012	Cyanide	
250ml/Poly	1 .	4C	6860	Perchlorate	
40ml/Vial	3	HCI	8260	voc	

PROJECT NAME: <u>RVAAP</u>	PROJECT NUMBER: 030174.0016.0				
LOCATION: SHARON CONGLOMERATE	DATE:	8/20/2013	START TIME	: 11:37	
WELL ID: SCFmw-002		INITI	AL WATER LEVEL:	18.83	
WELL DEPTH:		SC	REEN INTERVAL:	137 - 147	
WELL DIAMETER 2 in.			PINTAKE DEPTH:		
PUMP/PURGING DEVICE: BP - BLADDER PUMP		1 01411	Vit s	145.0	
PUMP READINGS: Throttle: 80 Recharge: 30	Discharg	ge: 30	TOTAL PURGE VOL	(L): <u>4.4</u>	
COMMENT: purge until 1208 Clear Odor:None					

		1				1	T		
TIME	WATER LEVEL (btoc)	PURGE RATE L/min)	VOLUME PURGED (L)	TEMP.	SPECIFIC CONDUCT. (mS/cm)	DO (mg/L)	pН	Twb (NTU)	ORP (mV)
11:55	18.98	0.3	0.5	21	0.588	2.8	7.77	9.5	-97
11:58	19.02	0.3	0.9	20.07	0.607	1.01	7.7	0	-129
12:01	19.05	0.3	0.9	19.87	0.604	0.86	7.68	0	-140
12:04	19.09	0.3	0.9	19.85	0.613	0.71	7.66	0	-146

Note: Condition of the well: See STATIC WATER LEVEL FORM

Field Personnel: CAL

PROJECT: RVAAP LOC	CATION: SHARO	N CONGLOMERATI	E PROJI	ECT NO.: <u>03017</u> 4	1.0016.001					
	SAMP	LE INFORMATION								
WELL: SCFmw-002 Samp	leID: FWGSCFmw-	-002-0327-GW/GF	DuplID: FWG	SCFmw-DUP6-03	378-GW/GF					
Spl	itlD: <u>FWGSCFmw</u> -	-002-0376s-GW/GF	RinseID:							
MATRIX: WG - Ground Water	MATRIX: WG - Ground Water SAMPLING METHOD: BP - Bladder Pump MS/MSD: Y									
GRAB: Y COMPOSITI	3: <u>N</u>	DATE:8	/20/2013	TIME: 12	:08					
	FIELD READI	NGS / OBSERVATIO	NS							
	Turb (NTU): 0 Color: Clear									
	ORP (mV):	-157	Odor:	None						
pH: 7.65 Temperature (°C): <u>20.43</u> I	OO (mg/L): <u>0.65</u>	Specific Con	ductivity (mS/cm)	:_0.608					
	GENERAI	INFORMATION								
SUN/OVERCAST <u>Sunny</u> SHIPPED VIA: Lab PU/FedEx	PERCIPITATION:	N WIND DIREC	CTION: <u>S</u>	AMBIENT TEM	1P (°F): <u>85</u>					
SHIPPED TO: Multiple Labs										
SAMPLER: CAL Cmt: MSMSD	run on Cr+6, DUP	@ 1302		and and a second	and the second second					

CONTAINER						
SIZE/TYPE	NUMBER	PRESERVATIVE	ANALYTICAL METHOD	ANALYSIS		
500ml/Poly	1	HNO3	6010/6020/7470	Metals		
1L/Amber	2	4C	353.2/8330	Propellants		
1L/Amber	1	4C	8330	Explo		
250ml/Poly	1	4C	218.6	Hex. Chrom.		
1L/Amber 2		4C	8270	SVOC		
1L/Amber	2	4C	8081	Pest		

PROJECT NAME: RVAAP	PROJECT NUMBER: 030174.0016.001				
LOCATION: SHARON CONGLOMERATE	DATE:	8/20/2013	START TIME:	10:30	
WELL ID: SCFmw-004		INITL	AL WATER LEVEL:	-0.2	
WELL DEPTH:		SC	- REEN INTERVAL:	100 - 110	
WELL DIAMETER 2 in.			INTAKE DEPTH:		
PUMP/PURGING DEVICE: BP - BLADDER PUMP			_	108.0	
PUMP READINGS: Throttle: 80 Recharge: 35	Discharg	ge: 25	TOTAL PURGE VOL	(L): <u>4.1</u>	
COMMENT Clear Odor:None					

TIME	WATER LEVEL (btoc)	PURGE RATE L/min)	VOLUME PURGED (L)	TEMP.	SPECIFIC CONDUCT. (mS/cm)	DO (mg/L)	рН	Turb (NTU)	ORP (niV)
10:38	-0.20	0.4	0.5	15.34	1.05	1.02	7.05	0	-83
10:41	-0.20	0.4	1.2	15.2	1.05	0.87	7.04	0	-86
10:44	-0.20	0.4	1.2	15.38	1.07	0.8	7.03	0	-88
10:47	-0.20	0.4	1.2	14.99	1.06	0.77	7.03	0	-92

Note: Condition of the well: See STATIC WATER LEVEL FORM

Field Personnel: CAL

PROJECT: RVAAP LOG	CATION: SHARON C	ONGLOMERA	ATE PROJ	ECT NO.: <u>0</u>	30174.0016.001
	SAMPLE I	NFORMATIO	N		
WELL: SCFmw-004 Samp	leID: FWGSCFmw-004-	0372-GW/GF	DuplID:		502
Sp	litID:		RinseID:		
MATRIX: WG - Ground Water	SAMPLING METI	HOD: BP - Blac	dder Pump		MS/MSD: N
GRAB: Y COMPOSIT	E:	DATE:	8/20/2013	TIME: _	10:48
and the state of t	FIELD READINGS	S / OBSERVAT	TIONS		
	Turb (NTU):	0	Color:	C	Clear
and the second s	ORP (mV):	-93	Odor:	N	Ione
pH: 7.02 Temperature (°C	C): 14.78 DO (1	mg/L): <u>0.78</u>	Specific Cor	nductivity (m	S/cm): 1.07
To a contract of Africa	GENERAL IN	FORMATION			
SUN/OVERCAST Sunny	PERCIPITATION: N	WIND DII	RECTION: S	AMBIENT	Г ТЕМР (°F): <u>80</u>
SHIPPED VIA: Lab Pickup					
SHIPPED TO: Testamerica	and the state of t				
SAMPLER: CAL Cmt:					
And the second s					

CONTAIN	ER			
SIZE/TYPE	NUMBER	PRESERVATIVE	ANALYTICAL METHOD	ANALYSIS
1L/Amber	2	4C	8081	Pest
500ml/Poly	1	HNO3	6010/6020/7470	Metals
1L/Amber	2	4C	8270	SVOC
1L/Amber	2	4C	353.2/8330	Propellants
1L/Amber	1	4C	8330	Explo

EQM MONITOR WELL PURGING FORM

PROJECT NAME: RVAAP		PROJECT NU	JMBER: 030174.00	016.001
LOCATION: WINKLEPECK BURNING GROUN	DATE:	8/21/2013	START TIME	: 10:09
WELL ID: WBGmw-006		INITIAL	WATER LEVEL:	7.7
WELL DEPTH:		SCREI	EN INTERVAL:	7.6 - 17.6
WELL DIAMETER 2 in.		PUMP IN	TAKE DEPTH:	15.6
PUMP/PURGING DEVICE: BP - BLADDER PUMP			_	
PUMP READINGS: Throttle: 100 Recharge: 100	Discharg	ge: 5 TO	TAL PURGE VOL	(L): <u>3.5</u>
COMMENT Clear Odor:None				

TIME	WATER LEVEL (btoc)	PURGE RATE L/min)	VOLUME PURGED (L)	TEMP.	SPECIFIC CONDUCT. (mS/cm)	DO (nig/L)	рН	Turb (NTU)	ORP (mV)
10:15	8.02	0.1	0.2	15.2	0.636	1.06	6.9	73.9	109
10:20	8.15	0.1	0.5	13.5	0.637	0.18	7	58.3	107
10:25	8.20	0.1	0.5	13.5	0.636	0.07	6.99	48.2	111
10:30	8.18	0.1	0.5	13.3	0.629	0.02	6.97	56.3	111

Note: Condition of the well: See STATIC WATER LEVEL FORM

Field Personnel: SAS

PROJECT: RVAAP LOC	ATION: WINK	LEPECK BURNING	GROUN PRO	ECT NO.: _(030174.0016.001
	SAM	PLE INFORMATION			
WELL: WBGmw-006 Sample	eID: FWGWBGn	nw-006C-0373-GW/GF	DuplID:		
Spli	tID:		RinseID:		
MATRIX: WG - Ground Water	SAMPLING	METHOD: BP - Blade	der Pump		MS/MSD: N
GRAB: Y COMPOSITE	: <u>N</u>	DATE:	8/21/2013	TIME:	10:40
		DINGS / OBSERVATI			
	Turb (NTU):	56.3	Color:	(Clear
	ORP (mV):	111	Odor:]	None
pH: 6.97 Temperature (°C)	: 13.3	DO (mg/L): 0.02	Specific Co	nductivity (n	nS/cm):_0.629
112001/2010	GENERA	L INFORMATION			
SUN/OVERCAST Sunny	PERCIPITATION	N: N WIND DIR	ECTION: N	AMBIEN	T TEMP (°F): <u>75</u>
SHIPPED VIA: Lab Pickup					
SHIPPED TO: Testamerica					
SAMPLER: SAS Cmt:			and Mr =		
CONTAINER SIZE/TYPE NUMBER	PRESERVAT	IVE ANALYTIC	CAL METHOD	ANALY	YSIS

CONTAIN	ER	DENOMBLI LERIUS	AND ASSESSED ASSESSED.	L T T T T T T T T T T T T T T T T T T T
SIZE/TYPE	NUMBER	PRESERVATIVE	ANALYTICAL METHOD	ANALYSIS
500ml/Poly	1	HNO3	6010/6020/7470	Metals
1L/Amber	2	4C	8270	SVOC
1L/Amber	1	4C	8330	Explo
1L/Amber	2	4C	353.2/8330	Propellants

EQM MONITOR WELL PURGING FORM

PROJECT NAME: RVAAP		PROJECT 1	NUMBER: 030174.0	016.001
LOCATION: WINKLEPECK BURNING GROUN	DATE:	8/21/2013	START TIME	: 9:00
WELL ID: WBGmw-009		INITIA	L WATER LEVEL:	13.08
WELL DEPTH:				11.4 - 21.4
WELL DIAMETER 2 in.		PUMP	INTAKE DEPTH:	19.4
PUMP/PURGING DEVICE: BP - BLADDER PUMP				
PUMP READINGS: Throttle: 35 Recharge: 10	Discharg	ge: 5	TOTAL PURGE VOL	.(L): <u>4.1</u>
COMMENT. Clear Oder:None				

COMMENT Clear Odor:None

TIME	WATER LEVEL (btoc)	PURGE RATE L/min)	YOLUME PURGED (L)	TEMP.	SPECIFIC CONDUCT. (mS/cm)	DO (mg/L)	рН	Turb (NTU)	ORP (mV)
9:12	13.32	0.2	0.5	15.18	0.3	3.54	5.39	10	163
9:15	13.54	0.2	0.6	15.32	0.285	4.64	5.32	10	176
9:18	13.58	0.2	0.6	15.41	0.272	4.62	5.29	10	180
9:21	13.64	0.2	0.6	15.41	0.262	4.61	5.27	10	185
9:24	13.70	0.2	0.6	15.49	0.256	4.54	5.25	10	188
9:27	13.78	0.2	0.6	15.42	0.253	4.54	5.26	10	190
9:30	13.84	0.2	0.6	15.53	0.253	4.45	5.25	10	192

Note: Condition of	of the well:	See STATIC WATER LEVEL FORM	
Field Personnel:	EC		

PROJECT: RVA	AP LOC	ATION: WINKLEPEC	K BURNING	GROUN	_ PROJECT	'NO.: _0	30174.0016.001
			FORMATIO				
WELL: WBGmw-0	009 Sampl	eID: FWGWBGmw-0090			ID:		
		itID:					
MATRIX: WG - G	round Water	SAMPLING METH	OD <u>: BP - Bla</u>	dder <u>Pum</u> p			MS/MSD: N
GRAB: <u>Y</u>	COMPOSITE	E: N	DATE: _	8/21/20	13 TI	ME: _	9:35
		FIELD READINGS					
		Turb (NTU):	10		Color:	(Clear
	-	ORP (mV):	192	(Odor:	Ŋ	Vone
рН: 5.26 Т	Temperature (°C)): 15.59 DO (m			ecific Conduc	tivity (m	S/cin):_0.252
		GENERAL INFO	ORMATION				
SUN/OVERCAST	Sunny	PERCIPITATION: N	WIND DII	RECTION	<u>S</u> Al	MBIEN'	Г ТЕМР (°F): <u>75</u>
SHIPPED VIA: Lal	b Pickup						
SHIPPED TO: Tes	stamerica						
SAMPLER: EC	Cmt:	and an individual section of the sec			· · · · · · · · · · · · · · · · · · ·		
CONTAINE	ER						
SIZE/TYPE	NUMBER	PRESERVATIVE	ANALYT	CAL MEI	НОР	ANALY	SIS
500ml/Poly	1	HNO3	6010/6020	77470	M	etals	
1L/Amber	2	4C	353.2/833	0	Pı	opellant	S
1L/Amber	1	4C	8330		E	крІо	
1L/Amber	2	4C	8270		S'	voc	

EQM MONITOR WELL PURGING FORM

PROJECT NAME: RVAAP		PROJECT N	UMBER: <u>030174.0</u>	016.001
LOCATION: WINKLEPECK BURNING GROUN	DATE:	8/21/2013	START TIME	E: <u>9:29</u>
WELL ID: WBGmw-018		INITIAL	WATER LEVEL:	17.33
WELL DEPTH:		SCRE	EN INTERVAL:	14.6 - 24.8
WELL DIAMETER 2 in.		PUMP II	NTAKE DEPTH:	22.8
PUMP/PURGING DEVICE: BP - BLADDER PUMP			-	
PUMP READINGS: Throttle: 50 Recharge: 10	Discharg	e: 5	OTAL PURGE VOI	. (L): <u>3.9</u>
COMMENT Clear Odor:None				

TIME	WATER LEVEL (btoc)	PURGE RATE L/min)	VOLUME PURGED (L)	TEMP.	SPECIFIC CONDUCT. (mS/cm)	DO (mg/L)	рН	Turb (NTU)	ORP (mV)
9:42	17.47	0.2	0.3	13.01	0.146	9.05	5.88	0	135
9:45	17.44	0.2	0.6	12.85	0.146	8.73	5.46	0	144
9:48	17.45	0.2	0.6	12.82	0.145	8.63	5.3	0	150
9:51	17.44	0.2	0.6	12.83	0.146	6,88	5.13	0	159
9:54	17.46	0.2	0.6	12.83	0.146	6.53	5.01	0	164
9:57	17.47	0.2	0.6	12.84	0.146	6.49	4.96	0	167
10:00	17.46	0.2	0.6	12.83	0.146	6.3	4.97	0	170

Note: Condition of the well: See STATIC WATER LEVEL FORM

Field Personnel: AD

		EQM FIELD 6		JI OILI		
PROJECT: RVA	AP LOC	CATION: WINKLEPE	CK BURNING GR	OUN PRO	JECT NO.: _(30174.0016.001
		SAMPLE II	NFORMATION			
WELL: WBGmw-	018 Samp	leID: FWGWBGmw-018	3-0328-GW/GF	DuplID: FW	GWBGmw-0	18-0339-GW/GF
	Spl	itID: FWGWBGmw-018	8-0335s-GW/GF I	RinseID:		
MATRIX: WG - G	round Water	_ SAMPLING METH	IOD <u>: BP - Bladder I</u>	Pump		MS/MSD: N
GRAB: <u>Y</u>	COMPOSITI	3: <u>N</u>	DATE: <u>8/2</u>	1/2013	TIME: _	10:03
		FIELD READINGS	/ OBSERVATION	S		
		Turb (NTU):	0	Color:	(Clear
		ORP (mV):	177	Odor:	<u> </u>	None
pH: <u>4.96</u> ′	Temperature (°C): <u>12.83</u> DO (r	ng/L): <u>6.3</u>	Specific Co	onductivity (m	S/cm):_0.146
		GENERAL INI	FORMATION			
SUN/OVERCAST	Sunny	PERCIPITATION: N	WIND DIRECT	ION: <u>NE</u>	AMBIEN'	Г ТЕМР (°F): <u>68</u>
SHIPPED VIA: La	ıb PU/FedEx					
SHIPPED TO: M	ultiple Labs					
SAMPLER: AD	Cmt:					
CONTAIN		PRESERVATIVE	A NAT VETCAT	METHOD		2010
SIZE/TYPE	NUMBER	PRESERVATIVE	ANALYTICAL	METHOD	ANALY	919
1L/Amber	3	4C	8330		Explo	
1L/Amber	6	4C	353.2/8330	353.2/8330		ts
500ml/Poly	3	HNO3	6010/6020/7470)	Metals	
1L/Amber	6	4C	8081		Pest	
		<u></u>				

8082

9012

8260

8270

1L/Amber

250ml/Poly

40ml/Vial

1L/Amber

6

3

9

6

4C

NaOH

HCI

4C

PCB

VOC

SVOC

Cyanide

EQM MONITOR WELL PURGING FORM

PROJECT NAME: RVAAP	PROJECT NUMBER: 030174.0016.001						
LOCATION: WINKLEPECK BURNING GROUN	DATE:	8/21/2013	START TIME	E: <u>8:44</u>			
WELL ID: WBGmw-019		INITIA	L WATER LEVEL:	16.87			
WELL DEPTH:		SCR	EEN INTERVAL:	40.4 - 50.5			
WELL DIAMETER 2 in.		PUMP	INTAKE DEPTH:	48.5			
PUMP/PURGING DEVICE: BP - BLADDER PUMP		_ 1	- FOTAL PURGE V OI				
PUMP READINGS: Throttle: 100 Recharge: 10	Discharg	ge: 5		- ()· <u></u>			
COMMENT Clear Odor None							

TIME	WATER LEVEL (btoc)	PURGE RATE L/min)	VOLUME PURGED (L)	TEMP.	SPECIFIC CONDUCT. (mS/cm)	DO (mg/L)	рН	Turb (NTU)	ORP (mV)
8:47	17.02	0.2	0.25	12.07	0.629	0.2	5.95	0	-62
8:50	16.90	0.2	0.6	11.84	0.625	0	5.99	0	-62
8:53	16.93	0.2	0.6	11.7	0.624	0	6	0	-65

Note: Condition of the well: See STATIC WATER LEVEL FORM

Field Personnel: AD

PROJECT: RVAAP LC	CATION: WINKLEPE	CK BURNING	GROUN PROJ	ECT NO.: <u>0</u> :	30174.0016.001
	SAMPLE IN	(FORMATIO	N		
WELL: WBGinw-019 Sam	pleID: FWGWBGmw-019	-0329-GW/GF	DuplID:		
S	plitID:		RinseID:		
MATRIX: WG - Ground Water		MS/MSD: N			
GRAB: Y COMPOSI	ΓΕ: N	DATE: _	8/21/2013	TIME: _	8:56
	FIELD READINGS	/ OBSERVAT	IONS		
	Turb (NTU):			Color: Clear	
	ORP (mV):	-64	Odor:	N	one
pH: 6 Temperature (°	C): 11.65 DO (n	ng/L): 0	g/L): 0 Specific Conductivity (mS/		
	GENERAL INF	ORMATION			
SUN/OVERCAST Sunny	PERCIPITATION: N	WIND DIF	RECTION: NE_	AMBIENT	TEMP (°F): <u>64</u>
SHIPPED VIA: Lab Pickup					
SHIPPED TO: Testamerica					
SAMPLER: AD Cmt:	and the second s				
CONTAINER		and the control of the dead of			

CONTAIN	ER	2222211		
SIZE/TYPE	NUMBER	PRESERVATIVE	ANALYTICAL METHOD	ANALYSIS
1L/Amber	1	4C	8330	Explo
250ml/Poly	1	NaOH	9012	Cyanide
1L/Amber	2	4C	353,2/8330	Propellants
40ml/Vial	3	HCI	8260	VOC
1L/Amber	2	4C	8082	PCB
1L/Amber	2	4C	8270	svoc
500ml/Poly	1	HNO3	6010/6020/7470	Metals
1L/Amber	2	4C	8081	Pest

EQM MONITOR WELL PURGING FORM

PROJECT NAME: RVAAP	PROJECT NUMBER: 030174.0016.001						
LOCATION: WINKLEPECK BURNING GROUN	DATE:	8/21/2013	START TIME	E: <u>10:00</u>			
WELL ID: WBGmw-020		INITIAL	WATER LEVEL:	12.5			
WELL DEPTH:		SCRE	EN INTERVAL:	33.7 - 43.8			
WELL DIAMETER 2 in.		PUMP IN	TAKE DEPTH:	41.8			
PUMP/PURGING DEVICE: BP - BLADDER PUMP PUMP READINGS: Throttle: 60 Recharge: 10							
COMMENT Clear Odor:None							

TIME	WATER LEVEL (btoc)	PURGE RATE L/min)	VOLUME PURGED (L)	TEMP.	SPECIFIC CONDUCT. (mS/cm)	DO (mg/L)	рН	Turb (NTU)	ORP (mV)
10:06	12.71	0.2	0.5	15.03	0.313	10.8	5.88	39.8	-78
10:09	12.72	0.2	0.6	14.85	0.311	9.14	5.98	21.9	-86
10:12	12.75	0.2	0.6	14.69	0.312	8.56	6.05	15.9	-89
10:15	12.77	0.2	0.6	13.97	0.316	8.58	6.07	10.4	-88
10:18	12.77	0.2	0.6	14	0.312	8.2	6.09	10	-89
10:21	12.80	0.2	0.6	13.95	0.312	8.18	6.1	10	-91
10:24	12.81	0.2	0.6	13.99	0.314	8.15	6.11	10	-92

Note: Condition of the well: See STATIC WATER LEVEL FORM Field Personnel: EC

PROJECT: RVAA	P LOC	CATION: WINKLEPEC	CK BURNING GR	ROUN PROJ	ECT NO.: 0	30174.0016.001
		SAMPLE IN	FORMATION			
WELL: WBGmw-02	20 Samp	leID: <u>FWGWBGmw-020</u> -	-0330-GW/GF	DuplID:		
		itID:				
MATRIX: WG - Gr	ound Water	SAMPLING METH	OD: BP - Bladder	Pump		MS/MSD: N
GRAB: Y	COMPOSITI	E: <u>N</u>	DATE:8/2	21/2013	TIME:	10:31
		FIELD READINGS	OBSERVATION	VS		
		Turb (NTU):	10	Color:	C	lear
		ORP (mV):	-94	Odor:	N	lone
pH: 6.12 To	emperature (°C): <u>13.95</u> DO (m			nductivity (m	S/cm): 0.314
		GENERAL INF	ORMATION			
SUN/OVERCAST S	Sunny	PERCIPITATION: N	WIND DIRECT	ΓΙΟΝ: <u>S</u>	AMBIENT	`TEMP (°F): <u>80</u>
SHIPPED VIA: <u>Lab</u>	Pickup					
SHIPPED TO: Test	tamerica					
SAMPLER: EC C	Cmt:					
CONTAINE			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			a mandam selem 1 de que en
SIZE/TYPE	NUMBER	PRESERVATIVE	ANALYTICAI	METHOD	ANALY	SIS
1L/Amber	2	4C	8270		svoc	
1L/Amber	2	4C	8081	1 2 2 3 1/2	Pest	
1L/Amber	2	4C	8082		PCB	-
1L/Amber	1	4C	8330		Explo	
1L/Amber	2	4C	353.2/8330		Propellant	S
250ml/Poly	1	NaOH	9012		Cyanide	
500ml/Poly	1	HNO3	6010/6020/747	' 0	Metals	
40ml/Vial	3	HCI	8260		voc	

EQM MONITOR WELL PURGING FORM

PROJECT NAME: <u>RVAAP</u>		PROJECT	NUMBER: 030174.0 0	016.001
LOCATION: WINKLEPECK BURNING GROUN	DATE:	8/21/2013	START TIME:	8:44
WELL ID: WBGmw-021		INITI	AL WATER LEVEL:	9.42
WELL DEPTH:		SCI	REEN INTERVAL:	33 - 43.1
WELL DIAMETER 2 in.		PUMP	INTAKE DEPTH:	41.1
PUMP/PURGING DEVICE: BP - BLADDER PUMP				
PUMP READINGS: Throttle: 110 Recharge: 10	Discharg	ge: 5	TOTAL PURGE VOL	(L): <u>4.5</u>
COMMENT Clear Odor:None				

COMMENT Clear Cool.Notice

тіме	WATER LEVEL (bloc)	PURGE RATE L/min)	VOLUME PURGED (L)	TEMP.	SPECIFIC CONDUCT. (mS/cm)	DO (mg/L)	рН	Turb (NTU)	ORP (mV)
8:50	9.44	0.1	0.2	12.6	0.593	1.06	6.01	229	24
8:55	9.45	0.1	0.5	12	0.588	0.2	6.19	110	-22
9:00	9.49	0.1	0.5	11.8	0.589	0.02	6.19	53	-40
9:05	9.48	0.1	0.5	11.8	0.592	0	6.3	33	-51
9:10	9.48	0.1	0.5	11.8	0.596	0	6.3	83.7	-59
9:15	9.46	0.1	0.5	11.9	0.595	0	6.32	51.7	-65

Note: Condition of the well: See STATIC WATER LEVEL FORM
Field Personnel: SAS

PROJECT: RVA	AP LOC	CATION: <u>WINKLEPE</u>	CK BURNING GR	ROUN PRO	JECT NO.: <u>0</u>	30174.0016.001
		SAMPLE I	NFORMATION			
WELL: WBGmw	-021 Samp	leID: FWGWBGmw-02	1-0331-GW/GF	DuplID:		
	Spl	litID:		RinseID:		
MATRIX: WG - C	Ground Water	_ SAMPLING METI	HOD: BP - Bladder	Pump		MS/MSD: N
GRAB: Y	COMPOSIT	E: <u>N</u>	DATE:8/	21/2013	TIME: _	9:24
	The second section of the sect	FIELD READINGS				
		Turb (NTU):	51.7	Color:	C	lear
		ORP (mV):	-65	Odor:	N	lone
pH: 6.32	Temperature (°C	DO (1	ng/L): <u>0</u>	Specific Co	nductivity (m	S/cm):_0.595
	The second of th	GENERAL INI	FORMATION			
SHIPPED VIA: <u>La</u> SHIPPED TO: <u>Ta</u> SAMPLER: <u>SAS</u>	estamerica					
CONTAIN		PRESERVATIVE	ANALYTICAL	. METHOD	ANALY	ere
SIZE/TYPE	NUMBER					313
500ml/Poly	1	HNO3	6010/6020/747	O	Metals	a meaning robin 2.
1L/Amber	2	4C	8081		Pest	
250ml/Poly	1	NaOH	9012	A control of the second	Cyanide	observed a service PA of Armine III
1L/Amber	2	4C	353.2/8330		Propellant	S
1L/Amber	2	4C -	8082		PCB	andreased Assessment and Assessment Section 2015 (1975)
1L/Amber	2	4C	8270		svoc	AAR AA Saada AA Aarin Saada Saad
40ml/Vial	3	HCI	8260		voc	
1L/Amber	1	4C	8330		Explo	

Daily QC Records

Date:			1	9-	Αι	Jg	
	S	X M	Т	W	Т	F	S

Weather Sun Clear Cast Rain Snow

DAILY QUALITY CONTROL REPORT

	COE Pro	ject Manager		Glen Beckh	ıam					х		l
	Project _	Ravenna Army	Ammunition F	Plant Ground	dwater Mo	nitoring	Temp	To 32	32-50	50-70 x	70-85	85 up
	Job No.		030174.0	0016.001			Wind	Still x	Moder x	High	Repor	rt No.
	Contract	GSA Contra No. Delivery Or	act Number G rder W912QR				Humidity	Dry	Moder x	Humid	081	913
ı	0.15.001.75											
	SUB-CONTRA	ACTORS ON SITE	::									
	.											
	Environmental EQUIPMENT	I Quality Managen ON SITE:	ient, Inc.		 							-
					- // \ -							
		eters, Five water on controllers		•	,	-		· (MS	A); Fr	ve bla	dder	
		ORMED (INCLUD			<u></u>							
	Arrive at Build	ing 1036, unload/l	oad and orgai	nize equipm	nent. Even	t water leve	el collecti	ons.				
	Purge and sar	nple work complet	ted at the well	s. Samples	were colle	ected at the	following	j loca				_
	FWGmw-(002 241)	2, 004, 015, 016),	EBGmw-131	, RQLmw-((006, 007, 0	008, 009, 0	10, 011),	and I	_L3m	w-(23	3, 239	∂ ,
	,											
	•	and QA split sam RQLmw-008 to b	•									
		field rinsate was o	-		pino/manix	c spine dup	iioaio alle	aiyoio	at till	JIUUU	i a toi y	

Project	Ravenna Army Ammunition Plant Groundwater Monitoring	Report No.	081913
Job No.	030174.0016.001	Date:	8/19/2013
QUALIT'	Y CONTROL ACTIVITIES (INCLUDING FIELD CALIBRATIONS)	·	
All field e	equipment was calibrated prior to mobilizing to the field. Water le	vel meter devic	es were checked for
correct fo	ootage. Water quality meters were calibrated with AutoCal Solution	n and standard	ds checks - certified
	re: DO checked okay, Conductivity - 4.49 mS/cm; Turbidity - 0 N	•	
_	detector calibrated with Zero Air Standard and 100 ppm Isobutyle on criteria.	ene. All field ed	quipment was within
Calibratic	in Chena.		
LIEALTI	AND SAFETY LEVELS AND ACTIVITIES:		
	rand safe it levels and activities: fing conducted prior to mobilizing to the field. All personnel to do	n modified Lev	el 4 PPF (i.e. steel-toed
	afety glasses, & nitrile gloves). First Aid kits were included in each		•
	eyewash station locations.		
	Im was equipped with a cellular phone. Personnel were instructed heat/cold stress. Personnel were also instructed to be alert for st		
_	d roaming deer/turkey.	orris, poisoriot	as plants, stinging insect,
PROBLE	EMS ENCOUNTERED/CORRECTIVE ACTION (S) TAKEN:		
N/A			
SPECIA	L NOTES:		
NI/A			
N/A TOMOR	ROWS EXPECTATIONS:		
	ions for tomorrow are to safely and correctly collect samples from	n a minimum of	9 wells and continue
Iwater lev	rel collections.		

Da	te:	_	2	0-	Αι	Jg	
			Х				
	S	Μ	Т	W	Т	F	S

Weather Sun Clear Cast Rain Snow

DAILY QUALITY CONTROL REPORT

	COE Pro	ject Manager	(Glen Beckha	am			х		х		
	Project _	Ravenna Army	Ammunition P	lant Ground	lwater Monito	ring	Temp	To 32	32-50	50-70 x	70-85 x	85 up
	Job No.		030174.0	016.001			Wind	Still	Moder x	High	Repor	rt No.
	_		act Number GS	S-10F-0293I	K		Humidity	Dry	Moder x	Humid	082	013
S	SUB-CONTRA	ACTORS ON SITE	<u>:</u>									
_		Quality Managen	nent, Inc.									
F	QUIPMENT	ON SITE:										
		eters, Five water o ociated controllers		•	•	-		r (MS	A); Fi	ve bla	dder	
_		ORMED (INCLUD			ie deep weii b	nauder 3	set up.					
,	rrive et Duildi	ing 1026 uplood/l	and and arear	izo oguinm	ant Cantinua	water	aval ava	nt oo	llootio	n		
C	ontinue purg	ing 1036, unload/le e and sample wor	k at the wells.	Samples w	ere collected	at the fo	llowing	location	ons:			
		3KGmw-010, DA2 1mw-(064,065,08	, ,	, .		•••	• , .					
,	, , ,	Fmw-(002, 004)	3, 000, 001), 2		211,	LLTOIII	, 000, L		(10	, 10	, , _ , _	-,
F	ield dunlicate	e and QA split sam	nles were coll	lected from	DΔ2mw-115	1112m	<i>N</i> ₌247 ar	nd SC	`Fmw	-002	Eytrs	a
٧	olume was co	ollected from LL12	2mw-245 and	SCFmw-002	2 to be design	ated for	matrix s	spike/				•
d	uplicate analy	ysis at the laborate	ory. Additiona	Ily, a field rir	nsate was col	lected b	y Team	# 2.				

Project	Ravenna Army Ammunition Plant Groundwater Monitoring	Report No.	082013
Job No.	030174.0016.001	Date:	8/20/2013
QUALIT	Y CONTROL ACTIVITIES (INCLUDING FIELD CALIBRATIONS):		
correct f values a Multigas	equipment was calibrated prior to mobilizing to the field. Water levicotage. Water quality meters were calibrated with AutoCal Solutioner: DO checked okay, Conductivity - 4.49 mS/cm; Turbidity - 0 N detector calibrated with Zero Air Standard and 100 ppm Isobutyle on criteria.	n and standard ΓU; pH - 4.0 an	ls checks - certified d 7.0 su.
H&S brid shoes, s aware of Each tea signs of ticks, an	H AND SAFETY LEVELS AND ACTIVITIES: efing conducted prior to mobilizing to the field. All personnel to do safety glasses, & nitrile gloves). First Aid kits were included in each feyewash station locations. In am was equipped with a cellular phone. Personnel were instructed heat/cold stress. Personnel were also instructed to be alert for stated roaming deer/turkey. EMS ENCOUNTERED/CORRECTIVE ACTION (S) TAKEN:	h vehicle, & pe	rsonnel were made quently and watch for
	-004 started but not enough water to finalize will continue tomorrow. L NOTES:	W.	
N/A TOMOR	ROWS EXPECTATIONS:		
Finalize	remaining wells, if possible complete the IDW sampling, and dem	ob.	

Da	te:		21-Aug							
	S	М	Т	X W	Т	F	S			

Weather Sun Clear Cast Rain Snow

DAILY QUALITY CONTROL REPORT

	COE Pro	ject Manager		Glen Beckh	nam			х		х		
	Project _	Ravenna Army	Ammunition F	Plant Groun	dwater Mo	nitoring	Temp	To 32	32-50	50-70 x	70-85 x	85 up
	Job No.		030174.0	0016.001			Wind	Still	Moder x	High	Repo	rt No.
	_		act Number G	S-10F-0293			Humidity	Dry	Moder x	Humid	082	113
Г		ACTORS ON SITE	<u>.</u>									
ľ	SUB-CONTRA	CTORS ON SITE	1.									
	Environmontal	Quality Managen	nont Inc									
_	EQUIPMENT	<u>-</u>	ient, mo.									
I,	Motor lovel m	otoro Fivo wotor (rusolitu mostoro	(Hariba HC	22/LIE2\\. O	na multigaa	dotooto	. / \ \ C	۸۱. ۲:	ماط میر	440"	
		eters, Five water of ociated controllers		,	,	-		(IVIO	A), FI	ve bia	uuei	
Ī	WORK PERF	ORMED (INCLUD	ING SAMPLI	NG):			•					
;	Continue purg Samples were NTAmw-119, \	ing 1036, unload/le and sample wor collected at the fo WBGmw-(006, 00 nati, and cleaned	k at the wells. ollowing locati 9, 018, 019, 0	Complete ons: FWG	DETmw-00 mw-(006, 0 DW sampl	04 which w	ere starte .L1mw-0	ed ye: 84, Ll	sterda _2mw	ıy. -(265,	,	
	Field duplicate	and QA split sam 009 and WBGmw	nples were col	llected from	ı WBGmw-						t the	
		lditionally, a field r					~r			, - ~	-	

Project	Ravenna Army Ammunition Plant Groundwater Monitoring	Report No.	082113
Job No.	030174.0016.001	Date:	8/21/2013
QUALIT	Y CONTROL ACTIVITIES (INCLUDING FIELD CALIBRATIONS):		
correct f values a Multigas	equipment was calibrated prior to mobilizing to the field. Water levicotage. Water quality meters were calibrated with AutoCal Solutionare: DO checked okay, Conductivity - 4.49 mS/cm; Turbidity - 0 NT detector calibrated with Zero Air Standard and 100 ppm Isobutyle on criteria.	n and standard ΓU; pH - 4.0 an	ls checks - certified d 7.0 su.
H&S bri- shoes, s aware o Each tea signs of ticks, ar	H AND SAFETY LEVELS AND ACTIVITIES: efing conducted prior to mobilizing to the field. All personnel to do safety glasses, & nitrile gloves). First Aid kits were included in each f eyewash station locations. am was equipped with a cellular phone. Personnel were instructed heat/cold stress. Personnel were also instructed to be alert for st and roaming deer/turkey. EMS ENCOUNTERED/CORRECTIVE ACTION (S) TAKEN:	h vehicle, & pe d to hydrate fre	rsonnel were made quently and watch for
N/A SPECIA	L NOTES:		
N/A TOMOR	RROWS EXPECTATIONS:		
N/A			

APPENDIX C

DATA VERIFICATION REPORTS/ LABORATORY DATA SHEETS

Site: Ravenna Army Ammunition Plant

Sampling Event: August 2013 Date: December 9, 2013

Sample Delivery Group: 240-28110 Revision: 1

Data Reviewer: Angye Dragotta /Environmental Quality Management, Inc. (EQM, Inc.)

QA/QC Summary

On August 19, 2013 the following samples were collected from groundwater-monitoring wells at Ravenna Army Ammunition Plant and analyzed as part of SDG 240-28110. Sample analysis was performed by Test America. Test America-North Canton performed all analyses with the exception of the analytical for methods 8330, M8330, TALSOPWS-WC-0050 and 6860. Methods 8330, M8330 and TALSOPWS-WC-0050 were analyzed by Test America, West Sacramento and method 6860 was analyzed by Test America-Denver.

,		0			81		0]	Meta	ıls ⁴
Sample ID	VOC by SW846 8260	SVOC 4 by SW846 8270	SVOC 1 and 2 by SW846 8270	SVOC 1 by SW846 8270	Pesticides by SW846 8081	PCBs/ SW846 8082	Explosives/Propellants by SW846 8330, Mod. 8330 and TALSOP WS-WC-0050	Cyanide SW846 9012	Perchlorate by SW846 6860	NO2/NO3, EPA 353.2	SW846 6010B	SW846 6020	Mercury by SW846 7470A
FWGEQUIPRINSE1-0340-GW	X	X			X	X	X	X	X		X	X	X
FWGFWGmw-004-0346-GW/GF				X	X		X	X			X	X	X
FWGFWGmw-015-0350-GW/GF				X			X		X		X	X	X
FWGFWGmw-016-0351-GW/GF				X			X		X		X	X	X
FWGLL3mw-238C-0359-GW/GF				X	X		X				X	X	X
FWGLL3mw-241C-0360-GW/GF				X	X		X				X	X	X
FWGRQLmw-006C-0368-GW/GF	X	X			X	X	X	X			X	X	X
FWGRQLmw-008C-0370-GW/GF	X	X			X	X	X	X			X	X	X
FWGRQLmw-009C-0371-GW/GF	X	X			X	X	X	X			X	X	X
FWGRQLmw-011C-0326-GW/GF	X	X			X	X	X	X	X		X	X	X
FWGRQLmw-DUP5-0377-GW/GF	X	X			X	X	X	X			X	X	X
FWGLL3mw-239C-0322-GF									X				
FWGFWGmw-002-0317-GF									X				
FWGFWGmw-DUP2-0337-GF									X				

Notes:

- 1) All metals and perchlorate samples with the exception of FWGEQUIPRINSE1-0340-GW were field filtered (GF).
- 2) FWGTEAM1-TRIP and FWGTEAM3-TRIP were collected and analyzed for VOC by EPA 8260B.
- 3) SVOC4= Full SVOC List and SVOC 1= Nitroaromatics and phthalates
- 4) EPA 6020 metals include aluminum, antimony, beryllium, cadmium, iron, sodium, thallium and zinc. EPA 6010B metals include arsenic, chromium, cobalt, lead, selenium, silver, vanadium, barium, calcium, copper, magnesium, manganese, nickel and potassium.

The data presented in this report were evaluated according to the Final Facility Wide Groundwater Monitoring Program, RVAAP-66 Facility Wide Groundwater Quality Assurance Project Plan (QAPP) Addendum for the Ravenna Army Ammunition Plant, Ravenna, OH, Environmental Quality Management, January, 2012. The following documents were used as needed to supplement the project documentation: The United States Department of Defense (DoD) Quality Services Manual (QSM) for Environmental Laboratories, Version 4.1, and the United States Army Corps of Engineers (USACE), Louisville District Quality Systems Manual Supplement (LS), EPA National Functional Guidelines (NFG) for Organic Data Review, EPA-540/R-08-01, June 2008, NFG for Inorganic Data Review, EPA-540/R-04-004, October 2004, Analytical Methods, and Laboratory Standard Operating Procedures. The QC criteria provided in the reference documents represent accuracy and precision performance goals for each analytical method. QC criteria reviewed for each method are listed below, along with any outliers.

240-28110-0 DVSR rev1 Page 1 of 9

Site: Ravenna Army Ammunition Plant

Sampling Event: August 2013 Date: December 9, 2013

Sample Delivery Group: 240-28110 Revision: 1

All analytical results have been verified against compliance requirements specified in the project QAPP, QSM, LS, associated analytical methods and/or SOPs, as appropriate, and reported by the laboratory as directed by the DoD QSM.

Per the DoD QSM, the laboratory data is reported as follows: Non detected results were reported at the LOD with a "U" flag. Detected results between the DL and LOQ were reported as estimated, qualified with a "J" flag.

LOD - An estimate of the minimum amount of a substance that an analytical process can reliably detect.

LOQ - The lowest concentration that produces a quantitative result within specified limits of precision and bias.

DL- The smallest analyte concentration that can be demonstrated to be different from zero or a blank concentration at the 99% level of confidence.

Checklists used in review of the data have been presented in Appendix 1. Outliers have been noted below and results requiring qualification, as a result of this verification process, have been summarized in Appendix 2.

The completeness objective for the project was 90%. The completeness objective was met for this SDG, at 99.3%. Limitations, if any, on the data are indicated with qualifiers detailed below.

VOAs - 8260B

The following QC criteria were reviewed and determined to be acceptable, except as noted below:

- Holding times, preservation, sample handling
- Tuning criteria
- Initial Calibration Criteria including SPCC and CCC compounds
- ICV/CCV criteria
- Internal standard area counts and retention times
- LOD and MRL verification criteria
- Method/Field/Trip blank Criteria
- Surrogate recoveries
- Field duplicate RPD criteria
- Laboratory Control Sample criteria
- Matrix Spike Recovery Criteria and RPD

MRL Recovery

The opening MRL analyzed 8/28/13 @ 0824 recovered above control limits of 70-130% for cis-1,3-dichloropropene at 145%. The closing MRL analyzed at 2119 recovered above control limits of 70-130% for chloroethane at 132% and methylene chloride at 160%. The methylene chloride result for sample FWGTEAM1-Trip was qualified, "J". No additional qualifications were required for cis-1,3-dichloropropene or chloroethane as there were no detected concentrations of these analytes reported for the bracketed field samples.

The opening MRL analyzed 8/31/13@ 0824 recovered above control limits of 70-130% for bromomethane at 157%, chloroethane at 139%, chloromethane at 149%, methylene chloride at 254% and vinyl chloride at 134%. The closing MRL analyzed at 1255 recovered above control limits of 70-130% for cis-1,3-dichloropropene at 135% and methylene chloride at 183%. No qualifications were required as there were no detected concentrations reported for the bracketed field sample, FWGRQLmw-011c-0326-GW.

CCV

The CCV analyzed 8/28/13 @ 1031 had a %D above control limits of 20% for acetone at 23.2% and 4-methyl-2-pentanone at 21.4%. The acetone results for samples FWGRQLmw-008c-0370-GW, FWGRQLmw-006c-0368-GW, FWGRQLmw-009c-0371-GW, FWGRQLmw-DUP5-0377-GW, FWGTEAM1-Trip, FWGTEAM3-Trip and

240-28110-0 DVSR rev1 Page 2 of 9

Site: Ravenna Army Ammunition Plant

Sampling Event: August 2013 Date: December 9, 2013

Sample Delivery Group: 240-28110 Revision: 1

FWGEQUIPRINSE1-0340-GW were qualified as estimated, "J". No qualifications were made for the 4-methyl-2-pentanone outlier as there were no detected 4-methyl-2-pentanone concentrations reported for the bracketed field samples.

The CCV analyzed 8/31/13 @ 0717 had a %D above control limits of 20% for methylene chloride at 20.5%, carbon tetrachloride at 21.2%, trans-1,3-dichloropropene at 21.6%. No qualifications were required as there were no detected concentrations reported for sample FWGRQLmw-011c-0326-GW.

Blanks

Methylene chloride was detected in the method blank from batch 240-99810 at $0.893 \mu g/L$. No qualifications were required as there were no detected concentrations of methylene chloride reported for the bracketed field sample, FWGRQLmw-011c-0326-GW.

Acetone was detected in FWGTEAM1-TRIP at $1.2\mu g/L$ and methylene chloride at $0.55\mu g/L$. FWGTeam3-Trip had acetone detected at $1.1\mu g/L$ and methylene chloride at $0.52\mu g/L$. FWGEQUIPRINSE1-0340-GW had acetone detected at $19\mu g/L$, carbon disulfide at $0.13\mu g/L$, toluene at $0.14\mu g/L$ and 2-butanone at $1.5\mu g/L$. The acetone results for samples FWGRQLmw-008c-0370-GW, FWGRQLmw-006c-0368-GW and FWGRQLmw-009c-0371-GW, FWGRQLmw-DUP5-0377-GW were qualified, "B", as the detected concentrations were <10x blank contamination. The carbon disulfide result for sample FWGRQLmw-006c-0368-GW was qualified, "B", as the detected concentration was <5x blank contamination. There were no detected 2-butanone or toluene results reported for the associated field samples, so no qualifications were made for the 2-butanone or toluene contamination.

Field Duplicate RPD

A field duplicate was analyzed on sample FWGRQLmw-009c-0371-GW. The field duplicate, FWGRQLmw-DUP5-0377-GW, collected on sample FWGRQLmw-009c-0371-GW had an RPD above control limits of 30% for acetone at 56%. The acetone result for sample FWGRQLmw-009c-0371-GW was qualified as estimated, "J".

SVOCs-8270C

The following QC criteria were reviewed and determined to be acceptable, except as noted below:

- Holding times, preservation, sample handling
- Tuning criteria
- Initial Calibration Criteria including SPCC and CCC compounds
- ICV/CCV criteria
- Internal standard area counts and retention times
- LOD and MRL verification criteria
- Method/Field blank Criteria
- Surrogate recoveries
- Field duplicate RPD criteria
- Laboratory Control Sample criteria
- Matrix Spike Recovery Criteria and RPD

CCV

The CCV analyzed 8/29/13 @0904 had 4-nitrophenol with a %D above control limits of 20% D at 21.2%. The CCV analyzed 8/30/13 had 4-nitrophenol with a %D above control limits of 20% D at 34.9% and 4-nitroaniline at 22.1%. No qualifications were made as there were no detected concentrations of 4-nitrophenol or 4-nitroaniline reported for the associated field samples.

Blanks

bis (2-Ethylhexyl)phthalate was detected in the method blank from batch 240-98336 at $0.593\mu g/L$. The bis (2-ethylhexyl) phthalate results for samples FWGFWGmw-004-0346-GW, FWGFWGmw-015-0350-GW, FWGFWGmw-016-0351-GW, FWGLL3mw-238c-0359-GW and FWGLL3mw-241c-0360-GW were qualified, "B".

240-28110-0 DVSR rev1 Page 3 of 9

Site: Ravenna Army Ammunition Plant

Sampling Event: August 2013 Date: December 9, 2013

Sample Delivery Group: 240-28110 Revision: 1

bis (2-Ethylhexyl) phthalate was detected at 0.38μg/L, diethylphthalate at 1.3μg/L and benzyl alcohol at 0.44μg/L in FWGEQUIPRINSE1-0340-GW. The bis(2-ethylhexyl)phthalate results for samples FWGRQLmw-011c-0326-GW, FWGRQLmw-009c-0371-GW and FWGRQLmw-DUP5-0377-GW were qualified, "B". No qualifications were made for the diethylphthalate or benzyl alcohol contamination as there were no detected 2-butanone or benzyl alcohol concentrations reported for these analytes in the associated field samples.

Matrix Spikes

- The matrix spike and spike duplicate recoveries were below control limits of 20-110 for 3,3'-dichlorobenzidine at 0% in the MS and MSD.
- The benzo (a) pyrene matrix spike and matrix spike duplicate recovered below control limits of 55-110% at 54% in both the MS and MSD.

The 3,3'-dichlorobenzidine result for sample FWGRQLmw-008c-0370-GW was qualified as unusable, "R", while the benzo(a) pyrene result for sample FWGRQLmw-008c-0370-GW was qualified as estimated, "UJ".

• The hexachlorocyclopentadiene MS/MSD RPD was above control limits 30% at 37%.

No qualifications were made for the hexachlorocyclopentadiene RPD outlier as there was no detected concentration of hexachlorocyclopentadiene reported for sample FWGRQLmw-008c-0370-GW.

Pesticides-8081A

The following QC criteria were reviewed and determined to be acceptable, except as noted below:

- Preservation, holding time and sample handling
- Initial Calibration criteria
- DDT and Endrin breakdown criteria
- Retention time criteria
- ICV criteria
- CCV Criteria
- Method/Field blank Criteria
- LCS Recoveries
- Field Duplicate Criteria
- LOD and MRL verification criteria
- Matrix Spike Recovery Criteria and RPD
- Surrogate Recoveries
- Second Column confirmation criteria

MRL Recovery

The opening MRL analyzed on 8/23/13 recovered above control limits of 70-130% at 165% on CLP-1 for 4,4'-DDD. No qualifications were required as there were no detected 4,4-DDD concentrations reported for the bracketed field samples.

The closing MRL analyzed on 8/23/13 recovered above control limits of 70-130 at 306% on CLP-1 for 4,4'-DDD and at 131% for methoxychlor. 4,4'-DDE recovered above limits of 70-130% on CLP-1 and CLP-2 at 169% and 138%, beta-BHC at 142% and 132% and delta-BHC at 157% and 171%. Detected concentrations of beta-BHC, 4,4'-DDE, delta-BHC were qualified as estimated, "J", for samples FWGRQLmw-008c-0370-GW, FWGLL3mw-238c-0359-GW, FWGLL3mw-241c-0360-GW, FWGFWGmw-004-0346-GW, FWGRQLmw-009c-0371-GW, FWGRQLmw-006c-0368-GW and FWGEOUIPRINSE1-0340-GW.

The opening MRL analyzed on 9/9/13 recovered below control limits of 70-130% at 4% on CLP-1 for 4,4'-DDE and at 62% for 4,4'-DDT and did not recover (0%) on CLP-1 and CLP-2 for 4,4'-DDD and endosulfan II. Delta-BHC recovered below control limits of 70-130% on CLP-1 and CLP-2 at 69% and 61%. No qualifications were required as only heptachlor epoxide was reported from this analysis.

240-28110-0 DVSR rev1 Page 4 of 9

Site: Ravenna Army Ammunition Plant

Sampling Event: August 2013 Date: December 9, 2013

Sample Delivery Group: 240-28110 Revision: 1

The closing MRL analyzed on 9/9/13 did not recover (0%) on CLP-1 and CLP-2 for 4,4'-DDD and above limits of 70-130% on CLP-2 at 163% for endosulfan II. No qualifications were required as only heptachlor epoxide was reported from this analysis.

CCV Outliers

The CCV analyzed 8/23/13 @ 2336 did not recover for delta-BHC. The delta-BHC results for samples FWGRQLmw-008C-0370-GW, FWGRQLmw-011C-0326-GW, FWGLL3mw-238C-0359-GW, FWGLL3mw-241C-0360-GW, FWGFWGmw-004-0346-GW, FWGRQLmw-009C-0371-GW, FWGRQLmw-DUP5-0377-GW, FWGRQLmw-006C-0368-GW and FWGEQUIPRINSE1-0340-GW were qualified as unusable," R".

The CCV analyzed 8/23/13 at 2336(CLP-1) had a %D above control limits of 20% for the following analytes; gamma- BHC at 23.7%, beta-BHC at 29.5%, heptachlor epoxide at 27.9%, gamma chlordane at 28.2%, alphachlordane at 23.5%, endosulfan I at 24.7%, 4,4'-DDE at 27.5%, dieldrin at 24%, endrin at 27.1%, 4,4'-DDD at 127.6%, endosulfan II at 20.6%, 4,4'-DDT at 28.7% and methoxychlor at 45.8%. The CCV analyzed 8/23/13 at 2336(CLP-2) had a %D above control limits of 20% for 4,4'-DDE at 46.3%. The 4,4'-DDE and beta-BHC result for sample FWGRQLmw-008c-0370-GW, the 4,4'-DDE result for FWGLL3mw-238c-0359-GW and the beta-BHC results for samples FWGRQLmw-006c-0368-GW and FWGEQUIPRINSE1-0340-GW were qualified as estimated, "J". No additional qualifications were required for the other outliers as there were no detected concentration reported for outlier target analytes.

The closing CCV analyzed 8/24/13 at 0219(CLP-1) had a %D above control limits of 20% for the following analytes; gamma- BHC at 28.6%, beta-BHC at 37%, delta-BHC at 23.3%, heptachlor at 28.8%, heptachlor epoxide at 34.3%, gamma chlordane at 34.6%, alpha-chlordane at 30.2%, endosulfan I at 32.3%, 4,4'-DDE at 35.7%, dieldrin at 32.2%, endrin at 35.1%, 4,4'-DDD at 137.1%, endosulfan II at 26.1%, 4,4'-DDT at 33.7%, endrin aldehyde at 20.5%, methoxychlor at 53.8% and endosulfan sulfate at 22.8%. The closing CCV analyzed on CLP-2 on 8/24/13 at 0219 had 4,4'-DDE above the 20%D criteria at 52.9%. No qualifications were required as there were no field samples bracketed by this CCV.

Blanks

FWGEQUIPRINSE1-0340-GW had beta-BHC detected at 0.018μg/L. The beta-BHC results for samples FWGRQLmw-006c-0368-GW and FWGRQLmw-008C-0370-GW were qualified, "B".

LCS Recovery

The 4,4'-DDD LCS recovered above control limits of 25-150% at 155%. No qualification was required as there were no detected concentrations of 4,4-DDD reported for the associated field samples.

Matrix Spike Recovery

The matrix spike analyzed on sample FWGRQLmw-008c-0370-GW recovered above control limits of 25-150% for 4,4'-DDD at 154%. No qualification was required as 4,4'-DDD was not detected in sample FWGRQLmw-008c-0370-GW.

Surrogate Recovery

The surrogate DCB did not recover in sample FWGLL3mw-238c-0359-GW when analyzed at a 50x dilution on 9/9/13. The heptachlor epoxide result for sample FWGLL3mw-238c-0359-GW was qualified as estimated, "UJ" as opposed to unusable because of the dilution. The original analysis, without dilution, of sample FWGLL3mw-238c-0359-GW had acceptable surrogate recoveries.

PCB-8082

The following QC criteria were reviewed and determined to be acceptable, except as noted below:

- Preservation, holding time and sample handling
- Initial Calibration criteria
- DDT and Endrin breakdown criteria
- Retention time criteria

240-28110-0 DVSR rev1 Page 5 of 9

Site: Ravenna Army Ammunition Plant

Sampling Event: August 2013 Date: December 9, 2013

Sample Delivery Group: 240-28110 Revision: 1

- ICV criteria
- CCV Criteria
- Method/Field blank Criteria
- LCS Recoveries
- Field Duplicate Criteria
- LOD and MRL verification criteria
- Matrix Spike Recovery Criteria and RPD
- Surrogate Recoveries
- Second Column confirmation criteria

Surrogate Recovery

The surrogate, DCB, recovered below control limits of 40-135% for sample FWGRQLmw-008c-0370-GW at 27%, FWGRQLmw-009c-0371-GW and FWGRQLmw-DUP5-0377-GW at 29% and FWGRQLmw-006c-0368-GW at 32%. The results for samples FWGRQLmw-008c-0370-GW, FWGRQLmw-009c-0371-GW, FWGRQLmw-DUP5-0377-GW and FWGRQLmw-006c-0368-GW were qualified as estimated, "UJ".

Metals - 6010B

The following QC criteria were reviewed and determined to be acceptable, except as noted below:

- Holding times, preservation, sample handling
- Initial Calibration criteria
- ICV and CCV criteria
- ICB /CCBs criteria
- Method/Field blank Criteria
- LOD and MRL verification criteria
- LCS percent recovery criteria
- Matrix Spike Recovery
- Lab and Field duplicate RPD criteria
- Post digestion spike and serial dilution results

Blanks

The ICB analyzed 9/9/13 @ 0749 had magnesium detected at $100\mu g/L$. No qualifications were required as the detected magnesium results for the associated field samples were greater than 5x blank contamination.

The CCBs analyzed 9/9/13 had magnesium detected from $101~\mu g/L$ to $102\mu g/L$. No qualifications were required as the detected magnesium results for the bracketed field samples were greater than 5x blank contamination.

Manganese was detected in the method blank at $2.75~\mu g/L$. The manganese results for samples FWGFWGmw-004-0346-GF, FWGLL3mw-238C-0359-GF and FWGLL3mw-241C-0360-GF were qualified, "B".

Lab Duplicate RPD

The lab duplicate analyzed on sample FWGRQLmw-008C-0370-GF had an RPD above control limits of 20% at 26% for nickel. No qualifications were made as the detected concentration was less than the LOQ.

Field Duplicate RPD

The field duplicate analyzed on FWGLL3mw-245-0255-GF had a duplicate RPD above control limits of 30% at 34% for vanadium. The vanadium result for sample FWGLL3mw-245-0255-GF was qualified as estimated, "J".

Metals - 6020

The following QC criteria were reviewed and determined to be acceptable, except as noted below:

- Holding times, preservation, sample handling
- Initial Calibration criteria including associated tunes
- ICV and CCV criteria

240-28110-0 DVSR rev1 Page 6 of 9

Site: Ravenna Army Ammunition Plant

Sampling Event: August 2013 Date: December 9, 2013

Sample Delivery Group: 240-28110 Revision: 1

- ICB /CCBs criteria
- Internal standards within 30-120% of the internal standard in the ICAL
- Method/Field blank Criteria
- LOD and MRL verification criteria
- LCS percent recovery criteria
- Matrix Spike Recovery
- Lab and Field Duplicate RPD Criteria
- Post digestion spike and serial dilution results

Blanks

FWGEQUIPRINSE1-0340-GW had sodium detected at 410 μg/L. The sodium results for samples FWGRQLmw-006c-0368-GF, FWGRQLmw-009c-0371-GF, FWGRQLmw-011c-0326-GF and FWGRQLmw-DUP5-0377-GF were qualified, "B".

The CCBs analyzed 9/9/13 had cadmium detected from $0.03\mu g/L$ to $0.067\mu g/L$, iron from $15.9\ \mu g/L$ to $47.1\mu g/L$ and sodium from $12.6\ \mu g/L$ to $25.8\ \mu g/L$. No qualifications were required as the detected cadmium, iron and sodium results for the bracketed field samples were greater than 5x blank contamination.

Mercury - 7470A

The following QC criteria were reviewed and determined to be acceptable, except as noted below:

- Holding times, preservation, sample handling
- Initial Calibration criteria
- ICV and CCV criteria
- ICB /CCBs criteria
- Method/Field blank Criteria
- LOD and MRL verification criteria
- LCS percent recovery criteria
- Matrix Spike Recovery
- Lab and Field duplicate RPD criteria

No QC outliers were noted.

Cyanide - 9012

The following QC criteria were reviewed and determined to be acceptable, except as noted below:

- Holding times, preservation, sample handling
- Initial Calibration criteria
- ICV and CCV criteria
- ICB /CCBs criteria
- Method/Field blank Criteria
- MRL and MDL verification criteria
- LCS percent recovery criteria
- MS percent recovery
- Matrix Duplicate RPD criteria
- Field duplicate RPD criteria

A matrix spike was not requested on this batch of samples. Matrix spike data was not provided by the laboratory or evaluated.

MRL Recovery

240-28110-0 DVSR rev1 Page 7 of 9

Site: Ravenna Army Ammunition Plant

Sampling Event: August 2013 Date: December 9, 2013

Sample Delivery Group: 240-28110 Revision: 1

No closing MRL check was analyzed bracketing samples FWGRQLmw-009C-0371-GW, FWGRQLmw-DUP5-0377-GW, FWGRQLmw-006C-0368-GW, and FWGEQUIPRINSE1-0340-GW. Since the opening MRL check recovered within control limits, the data was qualified estimated, "UJ" instead of unusable.

Explosives-8330

The following QC criteria were reviewed and determined to be acceptable, except as noted below:

- Holding times, preservation, sample handling
- Initial Calibration Criteria
- ICV and CCV criteria
- Retention time criteria
- LOD and MRL verification criteria
- Surrogate recovery criteria
- Equipment and method blanks free from contamination
- LCS/LCD Recovery and RPD Criteria

Confirmation Analysis

The confirmation column RPD was above control limits of 40% for 2,6- dinitrotoluene in sample FWGLL3mw-238C-0359-GW at 54% and nitrobenzene at 69.9%. The HMX result for sample FWGLL3mw-241C-0360-GW had a duplicate column confirmation RPD above control limits of 40% at 49.3%. No confirmation column data was provided for sample FWGRQLmw-008c-0370-GW. The 2,6-dintrotoluene result for FWGRQLmw-008c-0370-GW, the nitrobenzene and 2,6-dintrotoluene results for FWGLL3mw-238C-0359-GW and the HMX result for sample FWGLL3mw-241C-0360-GW were qualified as estimated, "J".

Matrix Spike Analysis

A matrix spike analysis was performed on sample FWGRQLmw-008C-0370-GW. The 2-nitrotoluene MS/MSD recovered below control limits of 45-135% at 43% and 40%. As the associated LCS recovered within limits, the 2-nitrotoluene result for FWGRQLmw-008c-370-GW was qualified as estimated, "UJ".

Nitroguanidine-8330M

The following OC criteria were reviewed and determined to be acceptable, except as noted below:

- Holding times, preservation, sample handling
- Initial Calibration criteria
- Retention time criteria
- LOD and MRL verification criteria
- ICV and CCV criteria
- The method blank and equipment blanks were free from contamination
- LCS/LCSD percent recoveries and RPD value criteria
- Matrix spike recovery criteria

No OC outliers were noted.

Nitrocellulose - WS-WC-0050

The following QC criteria were reviewed and determined to be acceptable, except as noted below:

- Holding times, preservation, sample handling
- Sample preparation criteria
- Initial Calibration criteria
- ICV and CCV criteria
- The method and equipment blanks were free from contamination
- LOD and MRL verification criteria
- ICB and CCBs were free from contamination
- LCS/LCSD percent recoveries and RPD value criteria
- MS/MSD percent recoveries

240-28110-0 DVSR rev1 Page 8 of 9

Site: Ravenna Army Ammunition Plant

Sampling Event: August 2013 **Date:** December 9, 2013

Sample Delivery Group: 240-28110 Revision: 1

No QC outliers were noted.

Perchlorate 6860

The following QC criteria were reviewed and determined to be acceptable, except as noted below:

- Holding times, preservation, sample handling
- Initial Calibration criteria
- ICV and CCV criteria
- ICB /CCBs criteria
- Method/Field blank Criteria
- MRL and MDL verification criteria
- LCS percent recovery criteria
- MS percent recovery
- Matrix Duplicate RPD criteria
- Field duplicate RPD criteria

Blanks

Perchlorate was detected at $0.0130\mu g/L$ in the CCB analyzed 9/6/13 at 1137, at $0.0122\mu g/L$ in the CCB analyzed 9/6/13 at 1847 and at $0.0117\mu g/L$ in the CCB analyzed 9/6/13 at 2303. The perchlorate result for sample FWGLL3mw-239c-0322-GF was qualified "U".

240-28110-0 DVSR rev1 Page 9 of 9

SAMPLE SUMMARY

Job Number: 240-28110-1

Client: Environmental Quality Mgt., Inc.

Lab Sample ID	Client Sample ID	Client Matrix	Date/Time Sampled	Date/Time Received
240-28110-1	FWGTEAM1-TRIP	Water	08/19/2013 1100	08/20/2013 0803
240-28110-2	FWGRQLmw-008C-0370-GW	Water	08/19/2013 1245	08/20/2013 0803
240-28110-2MS	FWGRQLmw-008C-0370-GW	Water	08/19/2013 1245	08/20/2013 0803
240-28110-2MSD	FWGRQLmw-008C-0370-GW	Water	08/19/2013 1245	08/20/2013 0803
240-28110-3	FWGRQLmw-008C-0370-GF	Water	08/19/2013 1245	08/20/2013 0803
240-28110-3MS	FWGRQLmw-008C-0370-GF	Water	08/19/2013 1245	08/20/2013 0803
240-28110-3DU	FWGRQLmw-008C-0370-GF	Water	08/19/2013 1245	08/20/2013 0803
240-28110-4	FWGRQLmw-011C-0326-GW	Water	08/19/2013 1455	08/20/2013 0803
240-28110-5	FWGRQLmw-011C-0326-GF	Water	08/19/2013 1455	08/20/2013 0803
240-28110-6	FWGFWGmw-016-0351-GW	Water	08/19/2013 1651	08/20/2013 0803
240-28110-7	FWGFWGmw-016-0351-GF	Water	08/19/2013 1651	08/20/2013 0803
240-28110-8	FWGFWGmw-015-0350-GW	Water	08/19/2013 1741	08/20/2013 0803
240-28110-9	FWGFWGmw-015-0350-GF	Water	08/19/2013 1741	08/20/2013 0803
240-28110-10	FWGLL3mw-239C-0322-GF	Water	08/19/2013 1252	08/20/2013 0803
240-28110-11	FWGLL3mw-238C-0359-GW	Water	08/19/2013 1332	08/20/2013 0803
240-28110-12	FWGLL3mw-238C-0359-GF	Water	08/19/2013 1332	08/20/2013 0803
240-28110-13	FWGLL3mw-241C-0360-GW	Water	08/19/2013 1428	08/20/2013 0803
240-28110-14	FWGLL3mw-241C-0360-GF	Water	08/19/2013 1428	08/20/2013 0803
240-28110-15	FWGFWGmw-002-0317-GF	Water	08/19/2013 1538	08/20/2013 0803
240-28110-16	FWGFWGmw-DUP2-0337-GF	Water	08/19/2013 1558	08/20/2013 0803
240-28110-17	FWGFWGmw-004-0346-GW	Water	08/19/2013 1708	08/20/2013 0803
240-28110-18	FWGFWGmw-004-0346-GF	Water	08/19/2013 1708	08/20/2013 0803
240-28110-19	FWGTEAM3-TRIP	Water	08/19/2013 1100	08/20/2013 0803
240-28110-20	FWGRQLmw-009C-0371-GW	Water	08/19/2013 1323	08/20/2013 0803
240-28110-21	FWGRQLmw-009C-0371-GF	Water	08/19/2013 1323	08/20/2013 0803
240-28110-22	FWGRQLmw-DUP5-0377-GW	Water	08/19/2013 1423	08/20/2013 0803
240-28110-23	FWGRQLmw-DUP5-0377-GF	Water	08/19/2013 1423	08/20/2013 0803
240-28110-24	FWGRQLmw-006C-0368-GW	Water	08/19/2013 1619	08/20/2013 0803
240-28110-25	FWGRQLmw-006C-0368-GF	Water	08/19/2013 1619	08/20/2013 0803
240-28110-26	FWGEQUIPRINSE1-0340-GW	Water	08/19/2013 1753	08/20/2013 0803

METHOD SUMMARY

Job Number: 240-28110-1

Client: Environmental Quality Mgt., Inc.

Description	Lab Location	Method	Preparation Method
Matrix: Water			
Volatile Organic Compounds (GC/MS)	TAL CAN	SW846 8260	B/DoD
Purge and Trap	TAL CAN		SW846 5030B
Semivolatile Organic Compounds (GC/MS)	TAL CAN	SW846 8270	C/DoD
Liquid-Liquid Extraction (Continuous)	TAL CAN		SW846 3520C
Organochlorine Pesticides (GC)	TAL CAN	SW846 8081	/DOD
Liquid-Liquid Extraction (Continuous)	TAL CAN		SW846 3520C
Polychlorinated Biphenyls (PCBs) by Gas Chromatography	TAL CAN	SW846 8082	/DOD
Liquid-Liquid Extraction (Continuous)	TAL CAN		SW846 3520C
Metals (ICP)	TAL CAN	SW846 6010	B/DOD
Preparation, Total Recoverable or Dissolved Metals	TAL CAN		SW846 3005A
Metals (ICP/MS)	TAL CAN	SW846 6020	/DOD
Preparation, Total Recoverable or Dissolved Metals	TAL CAN		SW846 3005A
Mercury (CVAA)	TAL CAN	SW846 7470	A/DOD
Preparation, Mercury	TAL CAN		SW846 7470A
Cyanide, Total and/or Amenable	TAL CAN	SW846 9012	A
Cyanide, Total and/or Amenable, Distillation	TAL CAN		SW846 9012A
Perchlorate by IC/MS or IC/MS/MS	TAL DEN	EPA 6860	
Nitroguanidine (HPLC)	TAL SAC	SW846 8330	Modified
Sample Filtration	TAL SAC		Filtration
Nitroaromatics and Nitramines	TAL SAC	SW846 8330	A
Solid-Phase Extraction (Explosives)	TAL SAC		SW846 8330-Prep
Nitrocellulose	TAL SAC	TAL-SAC WS	S-WC-0050
Nitrocellulose Sample Preparation (Hydrolysis)	TAL SAC		MCAWW 353 (NCell-Hyd)
Nitrocellulose Sample Preparation	TAL SAC		MCAWW 353.2 (NCell)

Lab References:

TAL CAN = TestAmerica Canton

TAL DEN = TestAmerica Denver

TAL SAC = TestAmerica Sacramento

Method References:

EPA = US Environmental Protection Agency

MCAWW = "Methods For Chemical Analysis Of Water And Wastes", EPA-600/4-79-020, March 1983 And Subsequent Revisions.

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

TAL-SAC = TestAmerica Laboratories, West Sacramento, Facility Standard Operating Procedure.

CASE NARRATIVE REVISED

Client: Environmental Quality Mgt., Inc.

Project: RVAAP66 (OH)

Report Number: 240-28110-1

With the exceptions noted as flags or footnotes, standard analytical protocols were followed in the analysis of the samples and no problems were encountered or anomalies observed. In addition all laboratory quality control samples were within established control limits, with any exceptions noted below. Each sample was analyzed to achieve the lowest possible reporting limit within the constraints of the method. In some cases, due to interference or analytes present at high concentrations, samples were diluted. For diluted samples, the reporting limits are adjusted relative to the dilution required.

The 353.2 Nitrocellulose, 8330 Nitroguanidine and 8330A Explosives analysis were performed at the TestAmerica Sacramento Laboratory. The 6860 Perchlorate analysis was performed at the TestAmerica Denver Laboratory.

TestAmerica Canton attests to the validity of the laboratory data generated by TestAmerica facilities reported herein. All analyses performed by TestAmerica facilities were done using established laboratory SOPs that incorporate QA/QC procedures described in the application methods. TestAmerica's operations groups have reviewed the data for compliance with the laboratory QA/QC plan, and data have been found to be compliant with laboratory protocols unless otherwise noted below.

The test results in this report meet all NELAP requirements for parameters for which accreditation is required or available. Any exceptions to NELAP requirements are noted in this report. Pursuant to NELAP, this report may not be reproduced, except in full, without the written approval of the laboratory.

Calculations are performed before rounding to avoid round-off errors in calculated results.

All holding times were met and proper preservation noted for the methods performed on these samples, unless otherwise detailed in the individual sections below.

All solid sample results are reported on an "as received" basis unless otherwise indicated by the presence of a % solids value in the method header.

REVISION 1: The 8082 PCB ICV analyzed on 8/28/13 on A2HP12 shows that it failed for 1248 (CLP-2) and 1254(CLP-1 and 2. The vials for these to ICVs were inadvertantly switched. The data had been correctly uploaded based on actual analysis and the ICVs recalculated. Both now meet acceptance criteria.

The 8330A confirmation data for sample FWGRQLmw-008C-0370-GW (240-28110-2) was omitted from the original data submission. This revised report should include the additional confirmation column data.

This laboratory report is confidential and is intended for the sole use of TestAmerica and its client.

RECEIPT

The samples were received on 08/20/2013; the samples arrived in good condition, properly preserved and on ice. The temperature of the coolers at receipt were 0.8° C, 0.8° C, 1.2° C, 1.2° C, 1.8° C, 2.6° C, 2.8° C, 3.2° C, 3.2° C, 3.2° C, 3.2° C, 3.2° C, 3.2° C and 5.0° C.

VOLATILE ORGANIC COMPOUNDS (GCMS)

Samples FWGTEAM1-TRIP (240-28110-1), FWGRQLmw-008C-0370-GW (240-28110-2), FWGRQLmw-011C-0326-GW (240-28110-4), FWGTEAM3-TRIP (240-28110-19), FWGRQLmw-009C-0371-GW (240-28110-20), FWGRQLmw-DUP5-0377-GW (240-28110-22), FWGRQLmw-006C-0368-GW (240-28110-24) and FWGEQUIPRINSE1-0340-GW (240-28110-26) were analyzed for volatile organic compounds (GCMS) in accordance with EPA SW-846 Method 8260B DoD. The samples were analyzed on 08/28/2013 and 08/31/2013.

Methylene Chloride was detected in method blank MB 240-99810/6 at a level that was above the method detection limit but below the reporting limit. The value should be considered an estimate, and has been flagged. If the associated sample reported a result above the MDL and/or RL, the result has been flagged. Refer to the QC report for details.

Chloroethane and Methylene Chloride failed the recovery criteria high for MRL 240-99353/29.

cis-1,3-Dichloropropene failed the recovery criteria high for MRL 240-99353/5.

cis-1,3-Dichloropropene and Methylene Chloride failed the recovery criteria high for MRL 240-99810/16.

Bromomethane, Chloroethane, Chloromethane, Methylene Chloride and Vinyl chloride failed the recovery criteria high for MRL 240-99810/5.

The continuing calibration verification (CCV) for Acetone, 4-Methyl-2-pentanone associated with batch 99353 recovered above the upper control limit. Two samples associated with this CCV had acetone present above the RL but are still being reported since it is a normal laboratory contaminant.

The continuing calibration verification (CCV) for Methylene Chloride, Carbon Tetrachloride, Dichlorobromomethane, trans-1,3-Dichloropropene associated with batch 99810 recovered above the upper control limit. The samples associated with this CCV were non-detects for the affected analytes; therefore, the data have been reported.

No other difficulties were encountered during the VOCs analysis. All other quality control parameters were within the acceptance limits.

SEMIVOLATILE ORGANIC COMPOUNDS (GCMS)

Samples FWGRQLmw-008C-0370-GW (240-28110-2), FWGRQLmw-011C-0326-GW (240-28110-4), FWGFWGmw-016-0351-GW (240-28110-6), FWGFWGmw-015-0350-GW (240-28110-8), FWGLL3mw-238C-0359-GW (240-28110-11), FWGLL3mw-241C-0360-GW (240-28110-13), FWGFWGmw-004-0346-GW (240-28110-17), FWGRQLmw-009C-0371-GW (240-28110-20), FWGRQLmw-DUP5-0377-GW (240-28110-22), FWGRQLmw-006C-0368-GW (240-28110-24) and FWGEQUIPRINSE1-0340-GW (240-28110-26) were analyzed for semivolatile organic compounds (GCMS) in accordance with EPA SW-846 Method 8270C. The samples were prepared on 08/21/2013 and analyzed on 08/29/2013 and 08/30/2013.

Surrogates are added during the extraction process prior to dilution. When the sample is diluted, surrogate recoveries are diluted out and no corrective action is required.

Bis(2-ethylhexyl) phthalate was detected in method blank MB 240-98336/14-A at a level that was above the method detection limit but below the reporting limit. The value should be considered an estimate, and has been flagged. If the associated sample reported a result above the MDL and/or RL, the result has been flagged. Refer to the QC report for details.

3,3'-Dichlorobenzidine and Benzo[a]pyrene failed the recovery criteria low for the MS and MSD of sample FWGRQLmw-008C-0370-GWMS/MSD (240-28110-2) in batch 240-99481. Hexachlorocyclopentadiene exceeded the RPD limit. Refer to the QC report for details.

The continuing calibration verification (CCV) for 4-nitrophenol and 4-nitroaniline associated with batch 99481 recovered above the upper control limit. The samples associated with this CCV, (LCS 240-98336/15-A), (MB 240-98336/14-A), (MRL 240-99481/21), (MRL 240-99481/4), FWGFWGmw-015-0350-GW (240-28110-8), FWGLL3mw-238C-0359-GW (240-28110-11), FWGLL3mw-241C-0360-GW (240-28110-13), FWGRQLmw-006C-0368-GW (240-28110-24), FWGRQLmw-008C-0370-GW (240-28110-2), FWGRQLmw-008C-0370-GW (240-28110-2 MSD), FWGRQLmw-009C-0371-GW (240-28110-20), FWGRQLmw-DUP5-0377-GW (240-28110-22), were non-detects for the affected analytes; therefore, the data have been reported.

The laboratory check sample (LCS) for prep batch 98336 was double spiked. Recoveries were adjusted accordingly.

The continuing calibration verifications (CCV) for 4-nitrophenol and 4-nitroaniline, associated with batch 99673, recovered above the upper control limit. The samples associated with this CCV, FWGEQUIPRINSE1-0340-GW (240-28110-26), FWGFWGmw-004-0346-GW (240-28110-17), FWGFWGmw-016-0351-GW (240-28110-6), FWGRQLmw-011C-0326-GW (240-28110-4), were non-detects for the affected analytes; therefore, the data have been reported.

No other difficulties were encountered during the SVOCs analysis. All other quality control parameters were within the acceptance limits.

NITROGUANIDINE (HPLC)

Samples FWGRQLmw-008C-0370-GW (240-28110-2), FWGRQLmw-011C-0326-GW (240-28110-4), FWGFWGmw-016-0351-GW (240-28110-6), FWGFWGmw-015-0350-GW (240-28110-8), FWGLL3mw-238C-0359-GW (240-28110-11), FWGLL3mw-241C-0360-GW (240-28110-13), FWGFWGmw-004-0346-GW (240-28110-17), FWGRQLmw-009C-0371-GW (240-28110-20), FWGRQLmw-DUP5-0377-GW (240-28110-22), FWGRQLmw-006C-0368-GW (240-28110-24) and FWGEQUIPRINSE1-0340-GW (240-28110-26) were analyzed for nitroguanidine (HPLC) in accordance with EPA SW-846 Method 8330_Ngu. The samples were prepared on 08/23/2013 and analyzed on 08/26/2013.

No difficulties were encountered during the explosives analysis. All quality control parameters were within the acceptance limits.

CHLORINATED PESTICIDES

Samples FWGRQLmw-008C-0370-GW (240-28110-2), FWGRQLmw-011C-0326-GW (240-28110-4), FWGLL3mw-238C-0359-GW (240-28110-11), FWGLL3mw-241C-0360-GW (240-28110-13), FWGFWGmw-004-0346-GW (240-28110-17), FWGRQLmw-009C-0371-GW (240-28110-20), FWGRQLmw-DUP5-0377-GW (240-28110-22), FWGRQLmw-006C-0368-GW (240-28110-24) and FWGEQUIPRINSE1-0340-GW (240-28110-26) were analyzed for chlorinated pesticides in accordance with EPA SW-846 Method 8081A DoD. The samples were prepared on 08/20/2013 and analyzed on 08/23/2013 and 09/09/2013.

4,4'-DDD failed the recovery criteria high for LCS 240-98186/15-A. Refer to the QC report for details.

4,4'-DDD failed the recovery criteria high for the MS of sample FWGRQLmw-008C-0370-GWMS (240-28110-2) in batch 240-98732.

Sample FWGLL3mw-238C-0359-GW (240-28110-11)[50X] required dilution prior to analysis due to the nature of the sample matrix. The reporting limits have been adjusted accordingly for Heptachlor Epoxide because of a co-eluting matrix peak in the retention time windows of the non-diluted extract.

The laboratory control sample (LCS) for batch 98186 recovered 4,4'-DDD above the LCS control limit but the result is within the marginal exceedance limit for the compound. The associated samples, FWGEQUIPRINSE1-0340-GW (240-28110-26), FWGFWGmw-004-0346-GW (240-28110-17), FWGLL3mw-238C-0359-GW (240-28110-11), FWGLL3mw-241C-0360-GW (240-28110-13), FWGRQLmw-006C-0368-GW (240-28110-24), FWGRQLmw-008C-0370-GW (240-28110-2), FWGRQLmw-011C-0326-GW (240-28110-4), FWGRQLmw-DUP5-0377-GW (240-28110-22) were non-detect for the affected analyte; therefore the data have been reported.

The peaks for 4,4'-DDD and Endosulfan II co-eluted on the conifirmation column for the initial calibration (ICAL) associated with batch 98732. The associated samples FWGEQUIPRINSE1-0340-GW (240-28110-26), FWGFWGmw-004-0346-GW (240-28110-17), FWGLL3mw-238C-0359-GW (240-28110-11), FWGLL3mw-241C-0360-GW (240-28110-13), FWGRQLmw-006C-0368-GW (240-28110-24), FWGRQLmw-008C-0370-GW (240-28110-2), FWGRQLmw-009C-0371-GW (240-28110-20), FWGRQLmw-011C-0326-GW (240-28110-4), FWGRQLmw-DUP5-0377-GW (240-28110-22) from this batch were non-detect for the affected analytes on the primary column: therefore the data have been reported.

The closing continuing calibration verification (CCV) associated with batch 98732 recovered above the upper control limit. The samples associated with this CCVFWGEQUIPRINSE1-0340-GW (240-28110-26), FWGFWGmw-004-0346-GW (240-28110-17), FWGLL3mw-238C-0359-GW (240-28110-11), FWGLL3mw-241C-0360-GW (240-28110-13), FWGRQLmw-006C-0368-GW (240-28110-24), FWGRQLmw-008C-0370-GW (240-28110-2), FWGRQLmw-009C-0371-GW (240-28110-20), FWGRQLmw-011C-0326-GW (240-28110-4), FWGRQLmw-DUP5-0377-GW (240-28110-22) were non-detects for the affected analytes; therefore the data have been reported.

The closing method reporting limit (MRL) associated with batch 98732 recovered beta-BHC, delta-BHC, and DDE above the upper control limits. The samples associated with this CCVFWGEQUIPRINSE1-0340-GW (240-28110-26), FWGFWGmw-004-0346-GW (240-28110-17), FWGLL3mw-238C-0359-GW (240-28110-11), FWGLL3mw-241C-0360-GW (240-28110-13), FWGRQLmw-006C-0368-GW (240-28110-24), FWGRQLmw-008C-0370-GW (240-28110-2), FWGRQLmw-009C-0371-GW (240-28110-20), FWGRQLmw-011C-0326-GW (240-28110-4), FWGRQLmw-DUP5-0377-GW (240-28110-22) were non-detects for the affected analytes; therefore the data have been reported.

No other difficulties were encountered during the pesticides analysis. All other quality control parameters were within the acceptance limits.

POLYCHLORINATED BIPHENYLS (PCBS)

Samples FWGRQLmw-008C-0370-GW (240-28110-2), FWGRQLmw-011C-0326-GW (240-28110-4), FWGRQLmw-009C-0371-GW (240-28110-20), FWGRQLmw-DUP5-0377-GW (240-28110-22), FWGRQLmw-006C-0368-GW (240-28110-24) and FWGEQUIPRINSE1-0340-GW (240-28110-26) were analyzed for polychlorinated biphenyls (PCBs) in accordance with EPA SW-846 Method 8082 DoD. The samples were prepared on 08/20/2013 and analyzed on 08/29/2013.

DCB Decachlorobiphenyl failed the surrogate recovery criteria low for FWGRQLmw-008C-0370-GW (240-28110-2), FWGRQLmw-009C-0371-GW (240-28110-20), FWGRQLmw-DUP5-0377-GW (240-28110-22), FWGRQLmw-006C-0368-GW (240-28110-24), FWGRQLmw-008C-0370-GWMS (240-28110-2MS), and FWGRQLmw-008C-0370-GWMSD (240-28110-2MSD).

Surrogate recovery for the following samples was outside control limits: FWGRQLmw-006C-0368-GW (240-28110-24), FWGRQLmw-008C-0370-GW (240-28110-2), FWGRQLmw-008C-0370-GW (240-28110-2 MS), FWGRQLmw-009C-0371-GW (240-28110-20), FWGRQLmw-DUP5-0377-GW (240-28110-22). Re-extraction and/or re-analysis was performed with concurring results. The original analysis has been reported.

No other difficulties were encountered during the PCBs analysis. All other quality control parameters were within the acceptance limits.

PERCHLORATE

Samples FWGRQLmw-011C-0326-GF (240-28110-5), FWGLL3mw-239C-0322-GF (240-28110-10), FWGFWGmw-002-0317-GF (240-28110-15), FWGFWGmw-DUP2-0337-GF (240-28110-16), FWGRQLmw-006C-0368-GF (240-28110-25) and FWGEQUIPRINSE1-0340-GW (240-28110-26) were analyzed for perchlorate in accordance with EPA SW-846 Method 6860. The samples were analyzed on 09/06/2013.

No difficulties were encountered during the perchlorate analysis. All quality control parameters were within the acceptance limits.

EXPLOSIVES

Samples FWGRQLmw-008C-0370-GW (240-28110-2), FWGRQLmw-011C-0326-GW (240-28110-4), FWGFWGmw-016-0351-GW (240-28110-6), FWGFWGmw-015-0350-GW (240-28110-8), FWGLL3mw-238C-0359-GW (240-28110-11), FWGLL3mw-241C-0360-GW (240-28110-13), FWGFWGmw-004-0346-GW (240-28110-17), FWGRQLmw-009C-0371-GW (240-28110-20), FWGRQLmw-DUP5-0377-GW (240-28110-22), FWGRQLmw-006C-0368-GW (240-28110-24) and FWGEQUIPRINSE1-0340-GW (240-28110-26) were analyzed for explosives in accordance with EPA SW-846 Method 8330A. The samples were prepared on 08/23/2013 and analyzed on 08/27/2013, 08/28/2013 and 08/29/2013.

- 3,4-Dinitrotoluene failed the surrogate recovery criteria high for FWGLL3mw-238C-0359-GW (240-28110-11) and FWGLL3mw-241C-0360-GW (240-28110-13).
- 1,3,5-Trinitrobenzene and 2-Nitrotoluene failed the recovery criteria low for the MS/MSD of sample FWGRQLmw-008C-0370-GWMS/MSD (240-28110-2) in batch 320-23978.

Sample FWGLL3mw-238C-0359-GW (240-28110-11)[5X] required dilution prior to analysis. The reporting limits have been adjusted accordingly.

No other difficulties were encountered during the explosives analysis. All other quality control parameters were within the acceptance limits.

TOTAL RECOVERABLE METALS (ICP)

Samples FWGRQLmw-008C-0370-GF (240-28110-3), FWGRQLmw-011C-0326-GF (240-28110-5), FWGFWGmw-016-0351-GF (240-28110-7), FWGFWGmw-015-0350-GF (240-28110-9), FWGLL3mw-238C-0359-GF (240-28110-12), FWGLL3mw-241C-0360-GF (240-28110-14), FWGFWGmw-004-0346-GF (240-28110-18), FWGRQLmw-009C-0371-GF (240-28110-21), FWGRQLmw-DUP5-0377-GF (240-28110-23), FWGRQLmw-006C-0368-GF (240-28110-25) and FWGEQUIPRINSE1-0340-GW (240-28110-26) were analyzed for total recoverable metals (ICP) in accordance with EPA SW-846 Method 6010B DoD. The samples were prepared on 08/21/2013 and analyzed on 09/09/2013.

ICB, CCB, and ICSA samples are evaluated using the lowest LOD and DL criteria in LIMS. Using this criteria, an individual element may occasionally be flagged as out of control. If the element has a higher LOD or DL, the data is evaluated to the higher limit and determined to be acceptable.

Manganese was detected in method blank MB 240-98385/1-A at a level that was above the method detection limit but below the reporting limit. The value should be considered an estimate, and has been flagged. If the associated sample reported a result above the MDL and/or RL, the result has been flagged.

Barium, Cobalt, Nickel and Potassium exceeded the RPD limit for the duplicate of sample FWGRQLmw-008C-0370-GFDU (240-28110-3). Refer to the QC report for details.

No other difficulties were encountered during the metals analysis. All other quality control parameters were within the acceptance limits.

TOTAL RECOVERABLE METALS (ICPMS)

Samples FWGRQLmw-008C-0370-GF (240-28110-3), FWGRQLmw-011C-0326-GF (240-28110-5), FWGFWGmw-016-0351-GF (240-28110-7), FWGFWGmw-015-0350-GF (240-28110-9), FWGLL3mw-238C-0359-GF (240-28110-12), FWGLL3mw-241C-0360-GF (240-28110-14), FWGFWGmw-004-0346-GF (240-28110-18), FWGRQLmw-009C-0371-GF (240-28110-21), FWGRQLmw-DUP5-0377-GF (240-28110-23), FWGRQLmw-006C-0368-GF (240-28110-25) and FWGEQUIPRINSE1-0340-GW (240-28110-26) were analyzed for total recoverable metals (ICPMS) in accordance with EPA SW-846 Method 6020 DoD. The samples were prepared on 08/21/2013 and analyzed on 09/09/2013.

ICB, CCB, and ICSA samples are evaluated using the lowest LOD and DL criteria in LIMS. Using this criteria, an individual element may occasionally be flagged as out of control. If the element has a higher LOD or DL, the data is evaluated to the higher limit and determined to be acceptable.

No difficulties were encountered during the metals analysis. All quality control parameters were within the acceptance limits.

TOTAL MERCURY

Samples FWGRQLmw-008C-0370-GF (240-28110-3), FWGRQLmw-011C-0326-GF (240-28110-5), FWGFWGmw-016-0351-GF (240-28110-7), FWGFWGmw-015-0350-GF (240-28110-9), FWGLL3mw-238C-0359-GF (240-28110-12), FWGLL3mw-241C-0360-GF (240-28110-14), FWGFWGmw-004-0346-GF (240-28110-18), FWGRQLmw-009C-0371-GF (240-28110-21), FWGRQLmw-DUP5-0377-GF (240-28110-23), FWGRQLmw-006C-0368-GF (240-28110-25) and FWGEQUIPRINSE1-0340-GW (240-28110-26) were analyzed for total mercury in accordance with EPA SW-846 Method 7470A. The samples were prepared on 08/21/2013 and analyzed on 08/22/2013.

No difficulties were encountered during the mercury analysis. All quality control parameters were within the acceptance limits.

NITROCELLULOSE

Samples FWGRQLmw-008C-0370-GW (240-28110-2), FWGRQLmw-011C-0326-GW (240-28110-4), FWGFWGmw-016-0351-GW (240-28110-6), FWGFWGmw-015-0350-GW (240-28110-8), FWGLL3mw-238C-0359-GW (240-28110-11), FWGLL3mw-241C-0360-GW (240-28110-13), FWGFWGmw-004-0346-GW (240-28110-17), FWGRQLmw-009C-0371-GW (240-28110-20), FWGRQLmw-DUP5-0377-GW (240-28110-22), FWGRQLmw-006C-0368-GW (240-28110-24) and FWGEQUIPRINSE1-0340-GW (240-28110-26) were analyzed for Nitrocellulose in accordance with EPA Method 353.2. The samples were prepared on 09/03/2013 and analyzed on 09/04/2013.

No difficulties were encountered during the Nitrocellulose analysis. All quality control parameters were within the acceptance limits.

TOTAL CYANIDE

Samples FWGRQLmw-008C-0370-GW (240-28110-2), FWGRQLmw-011C-0326-GW (240-28110-4), FWGFWGmw-004-0346-GW

(240-28110-17), FWGRQLmw-009C-0371-GW (240-28110-20), FWGRQLmw-DUP5-0377-GW (240-28110-22), FWGRQLmw-006C-0368-GW (240-28110-24) and FWGEQUIPRINSE1-0340-GW (240-28110-26) were analyzed for total cyanide in accordance with EPA SW-846 Method 9012A. The samples were prepared and analyzed on 08/22/2013 and 08/23/2013.

No difficulties were encountered during the cyanide analysis. All quality control parameters were within the acceptance limits.

Client: Environmental Quality Mgt., Inc.

Project/Site: RVAAP66 (OH)

TestAmerica Job ID: 240-28110-1

Lab Sample ID: 240-28110-1

Matrix: Water

Client Sample ID: FWGTEAM1-TRIP

Date Collected: 08/19/13 11:00 Date Received: 08/20/13 08:03

Analyte	Result	Qualifier	LOQ	LOD	DL	Unit D	Analyzed	Dil Fac
,1,1-Trichloroethane	0,25	U	1.0	0.25	0.22	ug/L	08/28/13 13:09	1
,1,2,2-Tetrachloroethane	0.25	U	1.0	0.25	0.18	ug/L	08/28/13 13:09	1
1,1,2-Trichloroethane	0.50	U	1.0	0.50	0.27	ug/L	08/28/13 13:09	1
I,1-Dichloroethane	0.25	U	1.0	0.25	0.15	ug/L	08/28/13 13:09	1
1,1-Dichloroethene	0.25	U	1.0	0.25	0.19	ug/L	08/28/13 13:09	1
1,2-Dichloroethane	0.25	U	1.0	0.25	0.22	ug/L	08/28/13 13:09	1
1,2-Dichloroethene, Total	0.25	U	2.0	0.25	0.17	ug/L	08/28/13 13:09	1
1,2-Dichloropropane	0.25	U	1.0	0.25	0.18	ug/L	08/28/13 13:09	1
2-Hexanone	0.50	U	10	0.50	0.41	ug/L	08/28/13 13:09	1
Bromochloromethane	0.50	U	1.0	0.50	0.29	ug/L	08/28/13 13:09	1
Acetone	1.2	J	10	1.1	1.1	ug/L	08/28/13 13:09	1
Benzene	0.25	U	1.0	0.25	0.13	ug/L	08/28/13 13:09	1
Bromoform	0.64	U	1.0	0.64	0.64	ug/L	08/28/13 13:09	1
Bromomethane	0.50	U	1.0	0.50	0.41	ug/L	08/28/13 13:09	1
Carbon disulfide	0.25	U	1.0	0.25	0.13	ug/L	08/28/13 13:09	1
Carbon tetrachloride	0.25	U	1.0	0.25	0.13	ug/L	08/28/13 13:09	1
Chlorobenzene	0.25	U	1.0	0.25	0.15	ug/L	08/28/13 13:09	1
Chloroethane	0.50	U	1.0	0.50	0.29	ug/L	08/28/13 13:09	1
Chloroform	0.25	U	1.0	0.25	0.16	ug/L	08/28/13 13:09	1
Chloromethane	0.50	U	1.0	0.50	0.30	ug/L	08/28/13 13:09	1
sis-1,2-Dichloroethene	0.25	U	1.0	0.25	0.17	ug/L	08/28/13 13:09	1
cis-1,3-Dichloropropene	0.25	U	1.0	0.25	0.14	ug/L	08/28/13 13:09	1
Bromodichloromethane	0.25	U	1.0	0.25	0.15	ug/L	08/28/13 13:09	1
Ethylbenzene	0.25	U	1.0	0.25	0.17	ug/L	08/28/13 13:09	1
1,2-Dibromoethane	0.25	U	1.0	0.25	0.24	ug/L	08/28/13 13:09	1
n-Xylene & p-Xylene	0.50	U	2.0	0.50	0.24	ug/L	08/28/13 13:09	- 1
2-Butanone (MEK)	0.57	U	10	0.57	0.57	ug/L	08/28/13 13:09	1
1-Methyl-2-pentanone (MIBK)	0.50	U	10	0.50	0.32	ug/L	08/28/13 13:09	1
Methylene Chloride	0.55	J	1.0	0.50	0.33	ug/L	08/28/13 13:09	1
o-Xylene	0.25	U	1.0	0.25	0.14	ug/L	08/28/13 13:09	1
Styrene	0.25	U	1.0	0.25	0.11	ug/L	08/28/13 13:09	- 1
Tetrachloroethene	0.50	U	1.0	0.50	0.29	ug/L	08/28/13 13:09	1
Toluene	0.25	U	1.0	0.25	0.13	ug/L	08/28/13 13:09	1
rans-1,2-Dichloroethene	0.25	U	1.0	0.25	0.19	ug/L	08/28/13 13:09	1
rans-1,3-Dichloropropene	0.25	U	1.0	0.25	0.19	ug/L	08/28/13 13:09	9
Frichloroethene	0.25	U	1.0	0.25	0.17	ug/L	08/28/13 13:09	1
/inyl chloride	0.25	U	1.0	0.25	0.22		08/28/13 13:09	1
Kylenes, Total	0.25	U	2.0	0.25	0.14	1.7	08/28/13 13:09	1
Dibromochloromethane	0.25	U	1.0	0.25	0.18	ug/L	08/28/13 13:09	1
Surrogate	%Recovery Qu	- Ce	imits			Prepared	Analyzed	Dil Fac

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	109		70 - 120		08/28/13 13:09	1
4-Bromofluorobenzene (Surr)	90		75 - 120		08/28/13 13:09	1
Toluene-d8 (Surr)	85		85 - 120		08/28/13 13:09	1
Dibromofluoromethane (Surr)	101		85 - 115		08/28/13 13:09	1

TestAmerica Job ID: 240-28110-1

Client Sample Results

Client: Environmental Quality Mgt., Inc.

Project/Site: RVAAP66 (OH)

Client Sample ID: FWGRQLmw-008C-0370-GW

Lab Sample ID: 240-28110-2 Date Collected: 08/19/13 12:45 **Matrix: Water**

Date Received: 08/20/13 08:03

Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
1,1,1-Trichloroethane	0.25	U	1.0	0.25	0.22	ug/L	_	08/28/13 15:01	1
1,1,2,2-Tetrachloroethane	0.25	U	1.0	0.25	0.18	ug/L		08/28/13 15:01	1
1,1,2-Trichloroethane	0.50	U	1.0	0.50	0.27	ug/L		08/28/13 15:01	1
1,1-Dichloroethane	0.25	U	1.0	0.25	0.15	ug/L		08/28/13 15:01	1
1,1-Dichloroethene	0.25	U	1.0	0.25	0.19	ug/L		08/28/13 15:01	1
1,2-Dichloroethane	0.25	U	1.0	0.25	0.22	ug/L		08/28/13 15:01	1
1,2-Dichloroethene, Total	0.25	U	2.0	0.25	0.17	ug/L		08/28/13 15:01	1
1,2-Dichloropropane	0.25	U	1.0	0.25	0.18	ug/L		08/28/13 15:01	1
2-Hexanone	0.50	U	10	0.50	0.41	ug/L		08/28/13 15:01	1
Bromochloromethane	0.50	U	1.0	0.50	0.29	ug/L		08/28/13 15:01	1
Acetone	2.3	J	10	1.1	1.1	ug/L		08/28/13 15:01	1
Benzene	0.25	U	1.0	0.25	0.13	ug/L		08/28/13 15:01	1
Bromoform	0.64	U	1.0	0.64	0.64	ug/L		08/28/13 15:01	1
Bromomethane	0.50	U	1.0	0.50	0.41	ug/L		08/28/13 15:01	1
Carbon disulfide	0.25	U	1.0	0.25	0.13	ug/L		08/28/13 15:01	1
Carbon tetrachloride	0.25	U	1.0	0.25	0.13	ug/L		08/28/13 15:01	1
Chlorobenzene	0.25	U	1.0	0.25	0.15	ug/L		08/28/13 15:01	1
Chloroethane	0.50	U	1.0	0.50	0.29	ug/L		08/28/13 15:01	1
Chloroform	0.25	U	1.0	0.25	0.16	ug/L		08/28/13 15:01	1
Chloromethane	0.50	U	1.0	0.50	0.30	ug/L		08/28/13 15:01	1
cis-1,2-Dichloroethene	0.25	U	1.0	0.25	0.17	ug/L		08/28/13 15:01	1
cis-1,3-Dichloropropene	0.25	U	1.0	0.25	0.14	ug/L		08/28/13 15:01	1
Bromodichloromethane	0.25	U	1.0	0.25	0.15	ug/L		08/28/13 15:01	1
Ethylbenzene	0.25	U	1.0	0.25	0.17	ug/L		08/28/13 15:01	1
1,2-Dibromoethane	0.25	U	1.0	0.25	0.24	ug/L		08/28/13 15:01	1
m-Xylene & p-Xylene	0.50	U	2.0	0.50	0.24	ug/L		08/28/13 15:01	1
2-Butanone (MEK)	0.57	U	10	0.57	0.57	ug/L		08/28/13 15:01	1
4-Methyl-2-pentanone (MIBK)	0.50	U	10	0.50	0.32	ug/L		08/28/13 15:01	1
Methylene Chloride	0.50	U	1.0	0.50	0.33	ug/L		08/28/13 15:01	1
o-Xylene	0.25	U	1.0	0.25	0.14	ug/L		08/28/13 15:01	1
Styrene	0.25	U	1.0	0.25	0.11	ug/L		08/28/13 15:01	1
Tetrachloroethene	0.50	U	1.0	0.50	0.29	ug/L		08/28/13 15:01	1
Toluene	0.25	U	1.0	0.25	0.13	ug/L		08/28/13 15:01	1
trans-1,2-Dichloroethene	0.25	U	1.0	0.25	0.19			08/28/13 15:01	1
trans-1,3-Dichloropropene	0.25	U	1.0	0.25	0.19	ug/L		08/28/13 15:01	1
Trichloroethene	0.25	U	1.0	0.25	0.17	ug/L		08/28/13 15:01	1
Vinyl chloride	0.25	U	1.0	0.25	0.22	.		08/28/13 15:01	1
Xylenes, Total	0.25	U	2.0	0.25	0.14	_		08/28/13 15:01	1
Dibromochloromethane	0.25		1.0	0.25	0.18	•		08/28/13 15:01	1

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	107		70 - 120		08/28/13 15:01	1
4-Bromofluorobenzene (Surr)	93		75 - 120		08/28/13 15:01	1
Toluene-d8 (Surr)	92		85 - 120		08/28/13 15:01	1
Dibromofluoromethane (Surr)	105		85 - 115		08/28/13 15:01	1

П		
1	Method: 8270C/DoD - Semivolatile	Organic Compounds (CC/MS)
п	Metriou. 02/00/000 - Serrivolatile	FOI GAILLE COLLIDOULIUS (GC/MS)

mothod: 02700/DOD Commodule Org	Juino Compoundo (Com	· · · ·					
Analyte	Result Qualifier	LOQ	LOD	DL Unit	D	Analyzed	Dil Fac
Acenaphthene	0.095 U	0.19	0.095	0.042 ug/L		08/29/13 13:21	1
Acenaphthylene	0.095 U	0.19	0.095	0.046 ug/L		08/29/13 13:21	1

TestAmerica Job ID: 240-28110-1

Client Sample Results

Client: Environmental Quality Mgt., Inc.

Project/Site: RVAAP66 (OH)

Client Sample ID: FWGRQLmw-008C-0370-GW

Lab Sample ID: 240-28110-2 Date Collected: 08/19/13 12:45 Matrix: Water

Date Received: 08/20/13 08:03

Analyte		Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
Anthracene	0.095	U	0.19	0.095	0.084	ug/L		08/29/13 13:21	1
Benzo[a]anthracene	0.095	U	0.19	0.095	0.028	ug/L		08/29/13 13:21	1
Benzo[a]pyrene	0.095	UJ	0.19	0.095	0.049	ug/L		08/29/13 13:21	1
Benzo[b]fluoranthene	0.095	U	0.19	0.095	0.038	ug/L		08/29/13 13:21	1
Benzo[g,h,i]perylene	0.095	U	0.19	0.095	0.044	ug/L		08/29/13 13:21	1
Benzoic acid	19	U	24	19	9.5	ug/L		08/29/13 13:21	•
Benzo[k]fluoranthene	0.095	U	0.19	0.095	0.043	ug/L		08/29/13 13:21	1
Benzyl alcohol	0.48	U	4.8	0.48	0.36	ug/L		08/29/13 13:21	1
Bis(2-chloroethoxy)methane	0.48	U	0.95	0.48	0.30	ug/L		08/29/13 13:21	•
Bis(2-chloroethyl)ether	0.095	U	0.95	0.095	0.095	ug/L		08/29/13 13:21	1
Bis(2-ethylhexyl) phthalate	0.48	U	1.9	0.48	0.21	ug/L		08/29/13 13:21	1
4-Bromophenyl phenyl ether	0.48	U	1.9	0.48	0.21	ug/L		08/29/13 13:21	•
Butyl benzyl phthalate	0.48	U	1.9	0.48	0.25	ug/L		08/29/13 13:21	,
Carbazole	0.48	U	0.95	0.48	0.27	ug/L		08/29/13 13:21	1
4-Chloroaniline	0.48	U	1.9	0.48	0.20	ug/L		08/29/13 13:21	1
4-Chloro-3-methylphenol	0.48	U	1.9	0.48	0.20	ug/L		08/29/13 13:21	
2-Chloronaphthalene	0.48	U	0.95	0.48	0.095	ug/L		08/29/13 13:21	,
2-Chlorophenol	0.48	U	0.95	0.48	0.28	ug/L		08/29/13 13:21	
4-Chlorophenyl phenyl ether	0.48	U	1.9	0.48	0.29	ug/L		08/29/13 13:21	
Chrysene	0.095	U	0.19	0.095	0.048	ug/L		08/29/13 13:21	
Dibenz(a,h)anthracene	0.095	U	0.19	0.095	0.042	ug/L		08/29/13 13:21	
Dibenzofuran	0.095	U	0.95	0.095	0.019	ug/L		08/29/13 13:21	
1,2-Dichlorobenzene	0.48	U	0.95	0.48	0.28	ug/L		08/29/13 13:21	
1,3-Dichlorobenzene	0.48	U	0.95	0.48	0.22	ug/L		08/29/13 13:21	
1,4-Dichlorobenzene	0.48	U	0.95	0.48	0.32	ug/L		08/29/13 13:21	
3,3'-Dichlorobenzidine	0.95	UJ	4.8	0.95	0.35	ug/L		08/29/13 13:21	
2,4-Dichlorophenol	0.48	U	1.9	0.48	0.18	ug/L		08/29/13 13:21	
Diethyl phthalate	0.95	U	1.9	0.95	0.57	ug/L		08/29/13 13:21	
2,4-Dimethylphenol	0.48	U	1.9	0.48		ug/L		08/29/13 13:21	· · · · · · · .
Dimethyl phthalate	0.48	U	1.9	0.48	0.28	ug/L		08/29/13 13:21	
Di-n-butyl phthalate	0.95	U	1.9	0.95	0.64	ug/L		08/29/13 13:21	,
4,6-Dinitro-2-methylphenol	3.8	U	4.8	3.8		ug/L		08/29/13 13:21	
2,4-Dinitrophenol	0.95	U	4.8	0.95		ug/L		08/29/13 13:21	
Di-n-octyl phthalate	0.48	U	1.9	0.48		ug/L		08/29/13 13:21	,
Fluoranthene	0.095	U	0.19	0.095	0.042			08/29/13 13:21	,
Fluorene	0.19		0.19	0.095	0.039	•		08/29/13 13:21	
Hexachlorobenzene	0.095	U	0.19	0.095	0.081			08/29/13 13:21	
Hexachlorobutadiene	0.48		0.95	0.48		ug/L		08/29/13 13:21	
Hexachlorocyclopentadiene	0.48		9.5	0.48		ug/L		08/29/13 13:21	
Hexachloroethane	0.48		0.95	0.48		ug/L		08/29/13 13:21	
Indeno[1,2,3-cd]pyrene	0.095		0.19	0.095	0.041			08/29/13 13:21	
Isophorone	0.48		0.95	0.48		ug/L		08/29/13 13:21	
2-Methylnaphthalene	0.095		0.19	0.095	0.086	-		08/29/13 13:21	
2-Methylphenol	0.48		0.95	0.48		ug/L		08/29/13 13:21	
3 & 4 Methylphenol	0.95		1.9	0.95		ug/L		08/29/13 13:21	
Naphthalene	0.095		0.19	0.95	0.060			08/29/13 13:21	
2-Nitroaniline	0.48		1.9	0.093		ug/L ug/L		08/29/13 13:21	
3-Nitroaniline	0.48			0.48					
4-Nitroaniline	0.48		1.9 1.9	0.48		ug/L ug/L		08/29/13 13:21 08/29/13 13:21	1

Client: Environmental Quality Mgt., Inc.

Project/Site: RVAAP66 (OH)

DCB Decachlorobiphenyl

Tetrachloro-m-xylene

Tetrachloro-m-xylene

Client Sample ID: FWGRQLmw-008C-0370-GW Lab Sample ID: 240-28110-2

Date Collected: 08/19/13 12:45 Matrix: Water

A 1-4-	latile Organic Compo	•		•	D.	U-4 B	A I d	D!! F
Analyte	0.48	Qualifier	_ <u>LOQ</u> _	LOD		Unit D	Analyzed	Dil Fa
2-Nitrophenol			1.9	0.48	0.27	ug/L	08/29/13 13:21	
4-Nitrophenol	3.8		4.8	3.8		ug/L	08/29/13 13:21	•
N-Nitrosodi-n-propylamine	0.48		0.95	0.48		ug/L	08/29/13 13:21	
N-Nitrosodiphenylamine	0.48		0.95	0.48		ug/L	08/29/13 13:21	•
2,2'-oxybis[1-chloropropane]	0.48		0.95	0.48	0.38	ug/L	08/29/13 13:21	
Pentachlorophenol	0.95		4.8	0.95	0.26	ug/L	08/29/13 13:21	
Phenanthrene	0.095		0.19	0.095	0.059	ug/L	08/29/13 13:21	
Phenol	0.95		0.95	0.95	0.57	ug/L	08/29/13 13:21	
Pyrene	0.095		0.19	0.095	0.040	ug/L	08/29/13 13:21	
1,2,4-Trichlorobenzene	0.48	U	0.95	0.48	0.27	ug/L	08/29/13 13:21	•
2,4,5-Trichlorophenol	0.48	U	4.8	0.48	0.29	ug/L	08/29/13 13:21	•
2,4,6-Trichlorophenol	0.48	U	4.8	0.48	0.23	ug/L	08/29/13 13:21	,
Surrogate	%Recovery Qua	alifier	Limits			Prepared	Analyzed	Dil Fa
2-Fluorobiphenyl (Surr)	64		50 - 110			08/21/13 09:37	08/29/13 13:21	
2-Fluorophenol (Surr)	60		20 - 110			08/21/13 09:37	08/29/13 13:21	1
Nitrobenzene-d5 (Surr)	61		40 - 110			08/21/13 09:37	08/29/13 13:21	
Phenol-d5 (Surr)	68		10 - 115			08/21/13 09:37	08/29/13 13:21	
Terphenyl-d14 (Surr)	77		50 - 135			08/21/13 09:37	08/29/13 13:21	
2,4,6-Tribromophenol (Surr)	90		40 - 125			08/21/13 09:37	08/29/13 13:21	1
•	· · · · · · · · · · · · · · · · · · ·	•	100	LOD	DI	Unit D	Analyzed	Dil Fac
•	· · · · · · · · · · · · · · · · · · ·	C) Qualifier	LOQ	LOD	DL	Unit D	Analyzed	Dil Fac
Analyte 4,4'-DDD	0.019	Qualifier U J Q	0.048	0.019	0.0091	ug/L —	08/23/13 20:33	
Analyte 4,4'-DDD 4,4'-DDE	0.019 0.038	Qualifier UJQ J	0.048	0.019 0.019	0.0091 0.0092	ug/L ug/L	08/23/13 20:33 08/23/13 20:33	
Analyte 4,4'-DDD 4,4'-DDE 4,4'-DDT	0.019 0.038 0.019	Qualifier UJQ J	0.048 0.048 0.048	0.019 0.019 0.019	0.0091 0.0092 0.015	ug/L ug/L ug/L	08/23/13 20:33 08/23/13 20:33 08/23/13 20:33	
Analyte 4,4'-DDD 4,4'-DDE 4,4'-DDT	0.019 0.038	Qualifier UJQ J	0.048 0.048 0.048 0.029	0.019 0.019 0.019 0.019	0.0091 0.0092 0.015 0.0078	ug/L ug/L ug/L ug/L	08/23/13 20:33 08/23/13 20:33	
Analyte 4,4'-DDD 4,4'-DDE 4,4'-DDT Aldrin	0.019 0.038 0.019	Qualifier UJQ J U	0.048 0.048 0.048	0.019 0.019 0.019 0.019 0.019	0.0091 0.0092 0.015 0.0078 0.0067	ug/L ug/L ug/L ug/L ug/L	08/23/13 20:33 08/23/13 20:33 08/23/13 20:33	
Analyte 4,4'-DDD 4,4'-DDE 4,4'-DDT Aldrin alpha-BHC	0.019 0.038 0.019 0.019	Qualifier UJQ J U U U	0.048 0.048 0.048 0.029	0.019 0.019 0.019 0.019	0.0091 0.0092 0.015 0.0078	ug/L ug/L ug/L ug/L ug/L	08/23/13 20:33 08/23/13 20:33 08/23/13 20:33 08/23/13 20:33	·
Analyte 4,4'-DDD 4,4'-DDE 4,4'-DDT Aldrin alpha-BHC alpha-Chlordane	0.019 0.038 0.019 0.019 0.019	Qualifier UJQ J U U U U U	0.048 0.048 0.048 0.029 0.029	0.019 0.019 0.019 0.019 0.019	0.0091 0.0092 0.015 0.0078 0.0067	ug/L ug/L ug/L ug/L ug/L ug/L	08/23/13 20:33 08/23/13 20:33 08/23/13 20:33 08/23/13 20:33 08/23/13 20:33	
Analyte 4,4'-DDD 4,4'-DDE 4,4'-DDT Aldrin alpha-BHC alpha-Chlordane beta-BHC	0.019 0.038 0.019 0.019 0.019 0.019	Qualifier UJQ J U U U U U	0.048 0.048 0.048 0.029 0.029 0.048	0.019 0.019 0.019 0.019 0.019 0.019	0.0091 0.0092 0.015 0.0078 0.0067 0.013	ug/L ug/L ug/L ug/L ug/L ug/L	08/23/13 20:33 08/23/13 20:33 08/23/13 20:33 08/23/13 20:33 08/23/13 20:33 08/23/13 20:33	
Analyte 4,4'-DDD 4,4'-DDE 4,4'-DDT Aldrin alpha-BHC alpha-Chlordane peta-BHC delta-BHC	0.019 0.038 0.019 0.019 0.019 0.019 0.019 0.0093	Qualifier UJQ J U U U U J	0.048 0.048 0.048 0.029 0.029 0.048	0.019 0.019 0.019 0.019 0.019 0.019	0.0091 0.0092 0.015 0.0078 0.0067 0.013	ug/L ug/L ug/L ug/L ug/L ug/L ug/L	08/23/13 20:33 08/23/13 20:33 08/23/13 20:33 08/23/13 20:33 08/23/13 20:33 08/23/13 20:33 08/23/13 20:33	
Analyte 4,4'-DDD 4,4'-DDE 4,4'-DDT Aldrin alpha-BHC alpha-Chlordane beta-BHC delta-BHC Dieldrin	0.019 0.038 0.019 0.019 0.019 0.019 0.019 0.019 0.0093 0.0041	Qualifier UJQ J U U U U U U U U U U U	0.048 0.048 0.029 0.029 0.048 0.048	0.019 0.019 0.019 0.019 0.019 0.019 0.019	0.0091 0.0092 0.015 0.0078 0.0067 0.013 0.0080 0.0083	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	08/23/13 20:33 08/23/13 20:33 08/23/13 20:33 08/23/13 20:33 08/23/13 20:33 08/23/13 20:33 08/23/13 20:33 08/23/13 20:33	
Analyte 4,4'-DDD 4,4'-DDE 4,4'-DDT Aldrin alpha-BHC alpha-Chlordane beta-BHC delta-BHC Dieldrin Endosulfan I	0.019 0.038 0.019 0.019 0.019 0.019 0.019 0.0093 0.0041 0.019	Qualifier UJQ J U U U U U U U U U U U U U U U U U	0.048 0.048 0.029 0.029 0.048 0.048 0.048 0.029	0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.019	0.0091 0.0092 0.015 0.0078 0.0067 0.013 0.0080 0.0083 0.0071	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	08/23/13 20:33 08/23/13 20:33 08/23/13 20:33 08/23/13 20:33 08/23/13 20:33 08/23/13 20:33 08/23/13 20:33 08/23/13 20:33 08/23/13 20:33	
Analyte 4,4'-DDD 4,4'-DDE 4,4'-DDT Aldrin alpha-BHC alpha-Chlordane beta-BHC delta-BHC Dieldrin Endosulfan I Endosulfan II	0.019 0.038 0.019 0.019 0.019 0.019 0.019 0.0093 0.041 0.019 0.019	Qualifier UJQ J U U U U U U U U U U U U U U U U U	0.048 0.048 0.048 0.029 0.029 0.048 0.048 0.048 0.029	0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.019	0.0091 0.0092 0.015 0.0078 0.0067 0.013 0.0080 0.0083 0.0071	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	08/23/13 20:33 08/23/13 20:33 08/23/13 20:33 08/23/13 20:33 08/23/13 20:33 08/23/13 20:33 08/23/13 20:33 08/23/13 20:33 08/23/13 20:33 08/23/13 20:33	
Analyte 4,4'-DDD 4,4'-DDE 4,4'-DDT Aldrin alpha-BHC alpha-Chlordane beta-BHC delta-BHC Dieldrin Endosulfan I Endosulfan sulfate	Result 0.019 0.038 0.019 0.019 0.019 0.019 0.0093 0.041 0.019 0.019 0.019	Qualifier UJQ J U U U U U U U U U U U U U U U U U	0.048 0.048 0.048 0.029 0.029 0.048 0.048 0.048 0.029 0.048	0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.019	0.0091 0.0092 0.015 0.0078 0.0067 0.013 0.0080 0.0083 0.0071 0.012	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	08/23/13 20:33 08/23/13 20:33	
Analyte 4,4'-DDD 4,4'-DDE 4,4'-DDT Aldrin alpha-BHC alpha-Chlordane beta-BHC delta-BHC Dieldrin Endosulfan I Endosulfan sulfate Endrin	Result 0.019 0.038 0.019 0.019 0.019 0.019 0.0093 0.041 0.019 0.019 0.019 0.019	Qualifier UJQ J U U U U U U U U U U U U U U U U U	0.048 0.048 0.048 0.029 0.029 0.048 0.048 0.048 0.048 0.048	0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.019	0.0091 0.0092 0.015 0.0078 0.0067 0.013 0.0080 0.0083 0.0071 0.012 0.011	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	08/23/13 20:33 08/23/13 20:33	
Analyte I,4'-DDD I,4'-DDE I,4'-DDT Aldrin IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	0.019 0.038 0.019 0.019 0.019 0.019 0.009 0.009 0.019 0.019 0.019 0.019 0.019 0.019	Qualifier U J Q J U U U U U U U U U U U U	0.048 0.048 0.029 0.029 0.048 0.048 0.048 0.029 0.048 0.048 0.048 0.048	0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.019	0.0091 0.0092 0.015 0.0078 0.0067 0.013 0.0080 0.0083 0.0071 0.012 0.011 0.010	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	08/23/13 20:33 08/23/13 20:33	
Analyte 4,4'-DDD 4,4'-DDE 4,4'-DDT Aldrin alpha-BHC alpha-Chlordane beta-BHC belda-BHC Dieldrin Endosulfan I Endosulfan sulfate Endrin Endrin aldehyde Endrin ketone	0.019 0.038 0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.019	Qualifier U J Q J U U U U U U U U U U U U	0.048 0.048 0.048 0.029 0.029 0.048 0.048 0.048 0.048 0.048 0.048 0.048	0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.019	0.0091 0.0092 0.015 0.0078 0.0067 0.013 0.0080 0.0083 0.0071 0.012 0.011 0.010	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	08/23/13 20:33 08/23/13 20:33	
Analyte 4,4'-DDD 4,4'-DDE 4,4'-DDT Aldrin alpha-BHC alpha-Chlordane beta-BHC beta-BHC Dieldrin Endosulfan I Endosulfan sulfate Endrin Endrin aldehyde Endrin ketone gamma-BHC (Lindane)	Result 0.019 0.038 0.019 0.019 0.019 0.019 0.0093 0.041 0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.019	Qualifier UJQ J U U U U U U U U U U U U U U U U U	0.048 0.048 0.029 0.029 0.048 0.048 0.048 0.048 0.048 0.048 0.048 0.048 0.048	0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.019	0.0091 0.0092 0.015 0.0078 0.0067 0.013 0.0080 0.0083 0.0071 0.012 0.011 0.010 0.010	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	08/23/13 20:33 08/23/13 20:33	
Analyte 4,4'-DDD 4,4'-DDE 4,4'-DDT Aldrin alpha-BHC alpha-Chlordane beta-BHC beldrin Endosulfan I Endosulfan II Endosulfan sulfate Endrin Endrin aldehyde Endrin ketone gamma-BHC (Lindane) gamma-Chlordane	Result 0.019 0.038 0.019 0.019 0.019 0.019 0.0093 0.041 0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.019	Qualifier UJQ J U U U U U U U U U U U U U U U U U	0.048 0.048 0.029 0.029 0.048 0.048 0.048 0.048 0.048 0.048 0.048 0.048 0.048 0.048	0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.019	0.0091 0.0092 0.015 0.0078 0.0067 0.013 0.0080 0.0083 0.0071 0.012 0.011 0.010 0.010 0.0074 0.0061	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	08/23/13 20:33 08/23/13 20:33	
Analyte 4,4'-DDD 4,4'-DDE 4,4'-DDT Aldrin alpha-BHC alpha-Chlordane beta-BHC Dieldrin Endosulfan I Endosulfan II Endosulfan sulfate Endrin Endrin aldehyde Endrin ketone gamma-BHC (Lindane) gamma-Chlordane	Result 0.019 0.038 0.019 0.019 0.019 0.019 0.0093 0.041 0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.019	Qualifier UJQ J U U U U U U U U U U U U U U U U U	0.048 0.048 0.029 0.029 0.048 0.048 0.048 0.048 0.048 0.048 0.048 0.048 0.048 0.048	0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.019	0.0091 0.0092 0.015 0.0078 0.0067 0.013 0.0080 0.0083 0.0071 0.012 0.011 0.010 0.010 0.0074 0.0061 0.0011	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	08/23/13 20:33 08/23/13 20:33	
Analyte 4,4'-DDD 4,4'-DDE 4,4'-DDT Aldrin alpha-BHC alpha-Chlordane beta-BHC delta-BHC Dieldrin Endosulfan I Endosulfan II Endosulfan sulfate Endrin Endrin aldehyde Endrin ketone gamma-BHC (Lindane) gamma-Chlordane Heptachlor epoxide	Result 0.019 0.038 0.019 0.019 0.019 0.019 0.0093 0.041 0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.019	Qualifier UJQ J U U U U U U U U U U U U U U U U U	0.048 0.048 0.048 0.029 0.029 0.048 0.048 0.048 0.048 0.048 0.048 0.048 0.048 0.048 0.048 0.048	0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.019	0.0091 0.0092 0.015 0.0078 0.0067 0.013 0.0080 0.0083 0.0071 0.012 0.011 0.010 0.010 0.0074 0.0061 0.0011 0.0076	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	08/23/13 20:33 08/23/13 20:33	
Analyte 4,4'-DDD 4,4'-DDE 4,4'-DDE 4,4'-DDT Aldrin alpha-BHC alpha-Chlordane beta-BHC delta-BHC Dieldrin Endosulfan I Endosulfan II Endosulfan sulfate Endrin Endrin aldehyde Endrin ketone gamma-BHC (Lindane) gamma-Chlordane Heptachlor Heptachlor epoxide Methoxychlor	Result 0.019 0.038 0.019 0.019 0.019 0.019 0.009 0.009 0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.019	Qualifier UJQ J U U U U U U U U U U U U U U U U U	0.048 0.048 0.048 0.029 0.029 0.048 0.048 0.048 0.048 0.048 0.048 0.048 0.048 0.048 0.048 0.048 0.048	0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.019	0.0091 0.0092 0.015 0.0078 0.0067 0.013 0.0080 0.0083 0.0071 0.012 0.011 0.010 0.010 0.0074 0.0061 0.0076 0.0068 0.030	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	08/23/13 20:33 08/23/13 20:33	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Method: 8081/DOD - Organoc Analyte 4,4'-DDD 4,4'-DDE 4,4'-DDE 4,4'-DDT Aldrin alpha-BHC alpha-Chlordane beta-BHC delta-BHC Dieldrin Endosulfan I Endosulfan II Endosulfan sulfate Endrin Endrin aldehyde Endrin ketone gamma-BHC (Lindane) gamma-Chlordane Heptachlor Heptachlor Heptachlor epoxide Methoxychlor Toxaphene Surrogate	0.019 0.038 0.019 0.019 0.019 0.019 0.009 0.009 0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.019	Qualifier UJQ J U U U U U U U U U U U U U U U U U	0.048 0.048 0.048 0.029 0.029 0.048 0.048 0.048 0.048 0.048 0.048 0.048 0.048 0.048 0.048 0.048 0.048 0.048 0.049 0.048 0.099 0.095	0.019 0.019	0.0091 0.0092 0.015 0.0078 0.0067 0.013 0.0080 0.0083 0.0071 0.012 0.011 0.010 0.010 0.0074 0.0061 0.0076 0.0068 0.030	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	08/23/13 20:33 08/23/13 20:33	Dil Fac

TestAmerica Canton

08/23/13 20:33

08/20/13 11:25

TestAmerica Job ID: 240-28110-1

30 - 135

25 - 140

25 - 140

38

63

TestAmerica Job ID: 240-28110-1

Client Sample Results

Client: Environmental Quality Mgt., Inc.

Project/Site: RVAAP66 (OH)

Client Sample ID: FWGRQLmw-008C-0370-GW

Lab Sample ID: 240-28110-2 Date Collected: 08/19/13 12:45 Matrix: Water

Date Received: 08/20/13 08:03

Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fa
Aroclor-1016	0.19	U	0.48	0.19	0.16	ug/L		08/29/13 00:53	
Aroclor-1221	0.19	U	0.48	0.19	0.12	ug/L		08/29/13 00:53	
Aroclor-1232	0.19	U	0.48	0.19	0.15	ug/L		08/29/13 00:53	
Aroclor-1242	0.38	U	0.48	0.38	0.21	ug/L		08/29/13 00:53	
Aroclor-1248	0.19	U	0.48	0.19	0.095	ug/L		08/29/13 00:53	
Aroclor-1254	0.19	U	0.48	0.19	0.15	ug/L		08/29/13 00:53	
Aroclor-1260	0.19	U	0.48	0.19	0.16	ug/L		08/29/13 00:53	
Surrogate	%Recovery Qu	ıalifier	Limits			Prepare	ed	Analyzed	Dil Fa
Tetrachloro-m-xylene	80		40 - 140			08/20/13 1	1:31	08/29/13 00:53	
Tetrachloro-m-xylene	82		40 - 140			08/20/13 1	1:31	08/29/13 00:53	
DCB Decachlorobiphenyl	27 Q		40 - 135			08/20/13 1	1:31	08/29/13 00:53	
DCB Decachlorobiphenyl	23 Q		40 - 135			08/20/13 1	1:31	08/29/13 00:53	
Method: 8330 Modified - Nitro	oguanidine (HPLC)								
Analyte	-	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fa
Nitroguanidine	6.0	U	20	6.0	2.4	ug/L		08/26/13 10:07	
Method: 8330A - Nitroaromat	ics and Nitramines								
Analyte		Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fa
1,3,5-Trinitrobenzene	0.051	U	0.15	0.051	0.032	ug/L		08/27/13 16:10	
1,3-Dinitrobenzene	0.10	U	0.15	0.10	0.051	_		08/27/13 16:10	
2,4,6-Trinitrotoluene	0.10	U	0.15	0.10	0.051	ug/L		08/27/13 16:10	
2,4-Dinitrotoluene	0.10	U	0.13	0.10	0.051	ug/L		08/27/13 16:10	
2,6-Dinitrotoluene	0.10	U	0.13	0.10	0.051	ug/L		08/28/13 13:57	
2-Amino-4,6-dinitrotoluene	0.10	U	0.15	0.10	0.015	ug/L		08/27/13 16:10	
2-Nitrotoluene	0.10	U	0.51	0.10	0.090	ug/L		08/27/13 16:10	
3-Nitrotoluene	0.10	U	0.51	0.10	0.059	ug/L		08/27/13 16:10	
4-Nitrotoluene	0.12	J	0.51	0.10	0.090	ug/L		08/27/13 16:10	
4-Amino-2,6-dinitrotoluene	0.10	U	0.15	0.10	0.051	ug/L		08/27/13 16:10	
HMX	0.051	U	0.15	0.051	0.037	ug/L		08/27/13 16:10	
RDX	0.051	U	0.15	0.051	0.037	ug/L		08/27/13 16:10	
Nitrobenzene	0.10	U	0.15	0.10	0.051	ug/L		08/27/13 16:10	
Tetryl	0.10	U	0.15	0.10	0.051	ug/L		08/27/13 16:10	
Nitroglycerin	0.51	U	0.67	0.51		ug/L		08/28/13 13:57	
PETN	0.51	U	0.67	0.51	0.31	ug/L		08/27/13 16:10	
Surrogate	%Recovery Qu	ıalifier	Limits			Prepare	ed	Analyzed	Dil Fa
3,4-Dinitrotoluene	93 M		79 - 111			08/23/13 0	8:00	08/27/13 16:10	
3,4-Dinitrotoluene	110		79 - 111			08/23/13 0	8:00	08/28/13 13:57	
General Chemistry									
Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fa
Cyanide, Total	0.010	U	0.010	0.010	0.0032	mg/L		08/22/13 14:03	

TestAmerica Job ID: 240-28110-1

09/09/13 11:49

09/09/13 11:49

09/09/13 11:49

Client Sample Results

Client: Environmental Quality Mgt., Inc.

Project/Site: RVAAP66 (OH)

Client Sample ID: FWGRQLmw-008C-0370-GF

Lab Sample ID: 240-28110-3 Date Collected: 08/19/13 12:45 **Matrix: Water**

Sodium

Thallium

Zinc

Date Received: 08/20/13 08:0	ა								
Method: 6010B/DOD - Metal Analyte	• •	able Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
Arsenic	38		10	10	3.3	ug/L		09/09/13 08:58	1
Chromium	4.0	U	7.0	4.0	1.4	ug/L		09/09/13 08:58	1
Cobalt	1.5	J	7.0	4.0	1.5	ug/L		09/09/13 08:58	1
Lead	5.0	U	10	5.0	1.7	ug/L		09/09/13 08:58	1
Selenium	10	U	15	10	4.0	ug/L		09/09/13 08:58	1
Silver	5.0	U	7.0	5.0	1.7	ug/L		09/09/13 08:58	1
Vanadium	4.0	U	7.0	4.0	1.3	ug/L		09/09/13 08:58	1
Barium	140	J	200	5.0	2.8	ug/L		09/09/13 08:58	1
Calcium	71000		5000	1000	630	ug/L		09/09/13 08:58	1
Copper	10	U	25	10	4.4	ug/L		09/09/13 08:58	1
Magnesium	71000		5000	300	120	ug/L		09/09/13 08:58	1
Manganese	660		15	5.0	1.8	ug/L		09/09/13 08:58	1
Nickel	2.9	J	40	5.0	2.2	ug/L		09/09/13 08:58	1
Potassium	4500	J	5000	900	300	ug/L		09/09/13 08:58	1
- Method: 6020/DOD - Metals	(ICP/MS) - Total Recov	verable							
Analyte		Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
Aluminum	60	U	60	60	20	ug/L		09/09/13 11:49	1
Antimony	1.0	U	2.0	1.0	0.33	ug/L		09/09/13 11:49	1
Beryllium	1.0	U	1.0	1.0	0.50	ug/L		09/09/13 11:49	1
Cadmium	1.0	U	2.0	1.0	0.40	ug/L		09/09/13 11:49	1
Iron	89000		150	100	44	ug/L		09/09/13 11:49	1

Method: 7470A/DOD - Mercury (CVAA)									
Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
Hg	0.20	U	0.20	0.20	0.12	ug/L		08/22/13 12:07	1

1000

2.0

50

400

1.5

50

160 ug/L

0.79 ug/L

27 ug/L

6600

1.2 J

50 U

Client: Environmental Quality Mgt., Inc.

Project/Site: RVAAP66 (OH)

TestAmerica Job ID: 240-28110-1

Lab Sample ID: 240-28110-4

Matrix: Water

Client Sample ID: FWGRQLmw-011C-0326-GW Date Collected: 08/19/13 14:55

Date Received: 08/20/13 08:03

Analyte		Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
1,1,1-Trichloroethane	0,25	U	1.0	0.25	0.22	ug/L		08/31/13 09:32	1
1,1,2,2-Tetrachloroethane	0.25	U	1.0	0.25	0.18	ug/L		08/31/13 09:32	1
1,1,2-Trichloroethane	0.50	U	1.0	0.50	0.27	ug/L		08/31/13 09:32	1
1,1-Dichloroethane	0.25	U	1.0	0.25	0.15	ug/L		08/31/13 09:32	1
1,1-Dichloroethene	0.25	U	1.0	0.25	0.19	ug/L		08/31/13 09:32	1
1,2-Dichloroethane	0.25	U	1.0	0.25	0.22	ug/L		08/31/13 09:32	1
1,2-Dichloroethene, Total	0.25	U	2.0	0.25	0.17	ug/L		08/31/13 09:32	1
1,2-Dichloropropane	0.25	U	1.0	0.25	0.18	ug/L		08/31/13 09:32	1
2-Hexanone	0.50	U	10	0.50	0.41	ug/L		08/31/13 09:32	1
Bromochloromethane	0.50	U	1.0	0.50	0.29	ug/L		08/31/13 09:32	1
Acetone	1.1	U	10	1.1	1.1	ug/L		08/31/13 09:32	1
Benzene	0.25	U	1.0	0.25	0.13	ug/L		08/31/13 09:32	1
Bromoform	0.64	U	1.0	0.64	0.64	ug/L		08/31/13 09:32	1
Bromomethane	0.50	U	1.0	0.50	0.41	ug/L		08/31/13 09:32	1
Carbon disulfide	0.25	U	1.0	0.25	0.13	ug/L		08/31/13 09:32	1
Carbon tetrachloride	0.25	U	1.0	0.25	0.13	ug/L		08/31/13 09:32	1
Chlorobenzene	0.25	U	1.0	0.25	0.15	ug/L		08/31/13 09:32	1
Chloroethane	0.50	U	1.0	0.50	0.29	ug/L		08/31/13 09:32	1
Chloroform	0.25	U	1.0	0.25	0.16	ug/L		08/31/13 09:32	1
Chloromethane	0.50	U	1.0	0.50	0.30	ug/L		08/31/13 09:32	1
cis-1,2-Dichloroethene	0.25	U	1.0	0.25	0.17	ug/L		08/31/13 09:32	1
cis-1,3-Dichloropropene	0.25	U	1.0	0.25	0.14	ug/L		08/31/13 09:32	1
Bromodichloromethane	0.25	U	1.0	0.25	0.15	ug/L		08/31/13 09:32	1
Ethylbenzene	0.25	U	1.0	0.25	0.17	ug/L		08/31/13 09:32	1
1,2-Dibromoethane	0.25	U	1.0	0.25	0.24	ug/L		08/31/13 09:32	1
m-Xylene & p-Xylene	0,50	U	2.0	0.50	0.24	ug/L		08/31/13 09:32	4
2-Butanone (MEK)	0.57	U	10	0.57	0.57	ug/L		08/31/13 09:32	1
4-Methyl-2-pentanone (MIBK)	0.50	U	10	0.50	0.32	ug/L		08/31/13 09:32	1
Methylene Chloride	0.50	U	1.0	0.50	0.33	ug/L		08/31/13 09:32	1
o-Xylene	0.25	U	1.0	0.25	0.14	ug/L		08/31/13 09:32	1
Styrene	0.25	U	1.0	0.25	0.11	ug/L		08/31/13 09:32	- 1
Tetrachloroethene	0.50	U	1.0	0.50	0.29	ug/L		08/31/13 09:32	1
Toluene	0.25	U	1.0	0.25	0:13	ug/L		08/31/13 09:32	1
trans-1,2-Dichloroethene	0.25	U	1.0	0.25	0.19	ug/L		08/31/13 09:32	1
trans-1,3-Dichloropropene	0.25	U	1.0	0.25	0.19	ug/L		08/31/13 09:32	1
Trichloroethene	0.25	U	1.0	0.25	0.17	ug/L		08/31/13 09:32	1
Vinyl chloride	0.25	U	1.0	0.25	0.22	ug/L		08/31/13 09:32	1
Xylenes, Total	0.25	U	2.0	0.25	0.14	ug/L		08/31/13 09:32	1
Dibromochloromethane	0.25	U	1.0	0.25	0.18	ug/L		08/31/13 09:32	1
Surrogate	%Recovery Q	ualifier	Limits			Prepa	ared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	110		70 - 120			-		08/31/13 09:32	1

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	110	70 - 120		08/31/13 09:32	1
4-Bromofluorobenzene (Surr)	90	75 - 120		08/31/13 09:32	1
Toluene-d8 (Surr)	90	85 - 120		08/31/13 09:32	1
Dibromofluoromethane (Surr)	99	85 - 115		08/31/13 09:32	1

Method: 8270C/DoD -	Semivolatile Organic	Compounds (GC/MS)
Method, 62/06/000 -	Semivolatile Ordanic	Compounds	GC/IVISI

Analyte	A CONTRACTOR OF THE PROPERTY O	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
Acenaphthene	0.095	U	0.19	0.095	0.042	ug/L		08/30/13 13:57	1
Acenaphthylene	0.095	U	0.19	0.095	0.046	ug/L		08/30/13 13:57	1

Client: Environmental Quality Mgt., Inc.

Project/Site: RVAAP66 (OH)

TestAmerica Job ID: 240-28110-1

Lab Sample ID: 240-28110-4

D Cample ID. 240-20110-4

Matrix: Water

Client Sample ID: FWGRQLmw-011C-0326-GW

Date Collected: 08/19/13 14:55 Date Received: 08/20/13 08:03

Method: 8270C/DoD - Semivolatile Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fa
Anthracene	0.095	U	0.19	0.095	0.084	ug/L		08/30/13 13:57	
Benzo[a]anthracene	0.095	U	0.19	0.095	0.028	ug/L		08/30/13 13:57	
Benzo[a]pyrene	0.095	U	0.19	0.095	0.049	ug/L		08/30/13 13:57	
Benzo[b]fluoranthene	0.095	U	0.19	0.095	0.038	ug/L		08/30/13 13:57	
Benzo[g,h,i]perylene	0.095	U	0.19	0.095	0.044	ug/L		08/30/13 13:57	
Benzoic acid	19	UM	24	19	9.5	ug/L		08/30/13 13:57	
Benzo[k]fluoranthene	0.095	U	0.19	0.095	0.043	ug/L		08/30/13 13:57	
Benzyl alcohol	0.48	U	4.8	0.48	0.36	ug/L		08/30/13 13:57	
Bis(2-chloroethoxy)methane	0.48	U	0.95	0.48	0.30	ug/L		08/30/13 13:57	- 2
Bis(2-chloroethyl)ether	0.095	U	0.95	0.095	0.095	ug/L		08/30/13 13:57	
Bis(2-ethylhexyl) phthalate	0.22	J	1.9	0.48	0.21	ug/L		08/30/13 13:57	-4
4-Bromophenyl phenyl ether	0.48	U	1.9	0.48	0.21	ug/L		08/30/13 13:57	9
Butyl benzyl phthalate	0.48	U	1.9	0.48	0.25	ug/L		08/30/13 13:57	19
Carbazole	0.48	U	0.95	0.48	0.27	ug/L		08/30/13 13:57	
4-Chloroaniline	0.48	U	1.9	0.48	0.20	ug/L		08/30/13 13:57	
4-Chloro-3-methylphenol	0.48	U	1.9	0.48	0.20	ug/L		08/30/13 13:57	
2-Chloronaphthalene	0.48	U	0.95	0.48	0.095	ug/L		08/30/13 13:57	
2-Chlorophenol	0.48	U	0.95	0.48	0.28	ug/L		08/30/13 13:57	
4-Chlorophenyl phenyl ether	0.48	U	1.9	0.48	0.29	ug/L		08/30/13 13:57	
Chrysene	0.095	U	0.19	0.095	0.048	ug/L		08/30/13 13:57	19
Dibenz(a,h)anthracene	0.095	U	0.19	0.095	0.042			08/30/13 13:57	
Dibenzofuran	0.095	U	0.95	0.095	0.019			08/30/13 13:57	
1,2-Dichlorobenzene	0.48	U	0.95	0.48		ug/L		08/30/13 13:57	
1,3-Dichlorobenzene	0.48	U	0.95	0.48		ug/L		08/30/13 13:57	
1,4-Dichlorobenzene	0.48	U	0.95	0.48		ug/L		08/30/13 13:57	
3,3'-Dichlorobenzidine	0.95		4.8	0.95	0.35	ug/L		08/30/13 13:57	
2,4-Dichlorophenol	0.48		1.9	0.48		ug/L		08/30/13 13:57	
Diethyl phthalate	0.95		1.9	0.95		ug/L		08/30/13 13:57	1.
2,4-Dimethylphenol	0.48		1.9	0.48		ug/L		08/30/13 13:57	3
Dimethyl phthalate	0.48		1.9	0.48	0.28	ug/L		08/30/13 13:57	
Di-n-butyl phthalate	0.95		1.9	0.95	0.64	ug/L		08/30/13 13:57	
4,6-Dinitro-2-methylphenol	3.8		4.8	3.8	2.3	ug/L		08/30/13 13:57	
2,4-Dinitrophenol	0.95		4.8	0.95	0.30	ug/L		08/30/13 13:57	- 0
Di-n-octyl phthalate	0.48		1.9	0.48		ug/L		08/30/13 13:57	
Fluoranthene	0.095		0.19	0.095	0.042			08/30/13 13:57	
Fluorene	0.095		0.19	0.095	0.039			08/30/13 13:57	
Hexachlorobenzene	0.095		0.19	0.095	0.081			08/30/13 13:57	
Hexachlorobutadiene	0.48		0.95	0.48		ug/L		08/30/13 13:57	
Hexachlorocyclopentadiene	0.48		9.5	0.48		ug/L		08/30/13 13:57	
Hexachloroethane	0.48		0.95	0.48		ug/L		08/30/13 13:57	
Indeno[1,2,3-cd]pyrene	0.095		0.19	0.095	0.041			08/30/13 13:57	
Isophorone	0.48		0.95	0.48		ug/L		08/30/13 13:57	
2-Methylnaphthalene	0.095		0.93	0.095	0.086	172		08/30/13 13:57	
2-Methylphenol	0.48		0.19	0.48		ug/L		08/30/13 13:57	
The second second second second	0.46		1.9	0.46					
3 & 4 Methylphenol	0.95		0.19	0.95		ug/L		08/30/13 13:57	
Naphthalene					0.060			08/30/13 13:57	
2-Nitroaniline	0.48		1.9	0.48		ug/L		08/30/13 13:57	
3-Nitroaniline 4-Nitroaniline	0.48		1.9	0.48		ug/L ug/L		08/30/13 13:57 08/30/13 13:57	

TestAmerica Canton

3

5

Ü

9

12

1.4

4 =

Client: Environmental Quality Mgt., Inc.

Project/Site: RVAAP66 (OH)

TestAmerica Job ID: 240-28110-1

Lab Sample ID: 240-28110-4

ab Gample 1D. 240-20110-4

Matrix: Water

Client Sample ID: FWGRQLmw-011C-0326-GW

Date Collected: 08/19/13 14:55 Date Received: 08/20/13 08:03

Method: 8270C/DoD - Semivo						TT G =		
Analyte	Result	Qualifier	LOQ	LOD	DL	Unit D	Analyzed	Dil Fac
2-Nitrophenol	0.48	U	1.9	0.48	0.27	ug/L	08/30/13 13:57	1
4-Nitrophenol	3.8	U	4.8	3.8	0.28	ug/L	08/30/13 13:57	1
N-Nitrosodi-n-propylamine	0.48	U	0.95	0.48	0.23	ug/L	08/30/13 13:57	1
N-Nitrosodiphenylamine	0.48	U	0.95	0.48	0.30	ug/L	08/30/13 13:57	1
2,2'-oxybis[1-chloropropane]	0.48	U	0.95	0.48	0.38	ug/L	08/30/13 13:57	1
Pentachlorophenol	0.95	U	4.8	0.95	0.26	ug/L	08/30/13 13:57	1
Phenanthrene	0.095	U	0.19	0.095	0.059	ug/L	08/30/13 13:57	1
Phenol	0.95	U	0.95	0.95	0.57	ug/L	08/30/13 13:57	1
Pyrene	0.095	U	0.19	0.095	0.040	ug/L	08/30/13 13:57	1
1,2,4-Trichlorobenzene	0.48	U	0.95	0.48	0.27	ug/L	08/30/13 13:57	1
2,4,5-Trichlorophenol	0.48	U	4.8	0.48	0.29	ug/L	08/30/13 13:57	- 1
2,4,6-Trichlorophenol	0.48	U	4.8	0.48	0.23	ug/L	08/30/13 13:57	1
Surrogate	%Recovery Qu	ualifier	Limits			Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl (Surr)	63		50 - 110			08/21/13 09:37	08/30/13 13:57	1
2-Fluorophenol (Surr)	59		20 - 110			08/21/13 09:37	08/30/13 13:57	1
Nitrobenzene-d5 (Surr)	62		40 - 110			08/21/13 09:37	08/30/13 13:57	1
Phenol-d5 (Surr)	70		10 - 115			08/21/13 09:37	08/30/13 13:57	1
Terphenyl-d14 (Surr)	84		50 - 135			08/21/13 09:37	08/30/13 13:57	1
2,4,6-Tribromophenol (Surr)	91		40 - 125			08/21/13 09:37	08/30/13 13:57	1

Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
4,4'-DDD	0.019	UQ	0.048	0.019	0.0091	ug/L		08/23/13.20:53	1
4,4'-DDE	0.019	U	0.048	0.019	0.0092	ug/L		08/23/13 20:53	1
4,4'-DDT	0.019	U	0.048	0.019	0.015	ug/L		08/23/13 20:53	1
Aldrin	0.019	U	0.029	0.019	0.0078	ug/L		08/23/13 20:53	1
alpha-BHC	0.019	U	0.029	0.019	0.0067	ug/L		08/23/13 20:53	1
alpha-Chlordane	0.019	U	0.048	0.019	0.013	ug/L		08/23/13 20:53	1
beta-BHC	0.019	U	0.048	0.019	0.0080	ug/L		08/23/13 20:53	1
delta-BHC	0.019	U	0.048	0.019	0.0083	ug/L		08/23/13 20:53	1
Dieldrin	0.019	U	0.029	0.019	0.0071	ug/L		08/23/13 20:53	1
Endosulfan I	0.019	U	0.048	0.019	0.012	ug/L		08/23/13 20:53	1
Endosulfan II	0.019	U	0.048	0.019	0.011	ug/L		08/23/13 20:53	1.
Endosulfan sulfate	0.019	U	0.048	0.019	0.010	ug/L		08/23/13 20:53	1
Endrin	0.019	U	0.048	0.019	0.010	ug/L		08/23/13 20:53	1
Endrin aldehyde	0.019	U	0.048	0.019	0.010	ug/L		08/23/13 20:53	1
Endrin ketone	0.019	U	0.048	0.019	0.0074	ug/L		08/23/13 20:53	1
gamma-BHC (Lindane)	0.019	U	0.048	0.019	0.0061	ug/L		08/23/13 20:53	9
gamma-Chlordane	0.019	U	0.048	0.019	0.011	ug/L		08/23/13 20:53	1
Heptachlor	0.019	U	0.029	0.019	0.0076	ug/L		08/23/13 20:53	1
Heptachlor epoxide	0.019	U	0.029	0.019	0.0068	ug/L		08/23/13 20:53	1
Methoxychlor	0.048	U	0.095	0.048	0.030	ug/L		08/23/13 20:53	1
Toxaphene	0.76	U	1.9	0.76	0.30	ug/L		08/23/13 20:53	1

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
DCB Decachlorobiphenyl	80		30 - 135	08/20/13 11:25	08/23/13 20:53	1
DCB Decachlorobiphenyl	93		30 - 135	08/20/13 11:25	08/23/13 20:53	7
Tetrachloro-m-xylene	71		25 - 140	08/20/13 11:25	08/23/13 20:53	7
Tetrachloro-m-xylene	81		25 - 140	08/20/13 11:25	08/23/13 20:53	1

TestAmerica Canton

Page 27 of 142

3

6

8

.

14

Client: Environmental Quality Mgt., Inc.

Client Sample ID: FWGRQLmw-011C-0326-GW

Project/Site: RVAAP66 (OH)

Date Collected: 08/19/13 14:55

Date Received: 08/20/13 08:03

TestAmerica Job ID: 240-28110-1

Lab Sample ID: 240-28110-4

Matrix: Water

Analyte	orinated Biphenyls (P Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fa
Aroclor-1016	0.19	U	0.48	0.19	0.16	ug/L		08/29/13 01:37	
Aroclor-1221	0.19	U	0.48	0.19	0.12	ug/L		08/29/13 01:37	
Aroclor-1232	0.19	U	0.48	0.19	0.15	ug/L		08/29/13 01:37	
Aroclor-1242	0.38	U	0.48	0.38	0.21	ug/L		08/29/13 01:37	
Aroclor-1248	0.19	U	0.48	0.19	0.095	ug/L		08/29/13 01:37	
Aroclor-1254	0.19	U	0.48	0.19	0.15	ug/L		08/29/13 01:37	
Aroclor-1260	0.19	U	0.48	0.19	0.16	ug/L		08/29/13 01:37	
Surrogate	%Recovery Qu	ıalifier	Limits			Prep	pared	Analyzed	Dil Fa
Tetrachloro-m-xylene	86		40 - 140			08/20/1	13 11:31	08/29/13 01:37	
Tetrachloro-m-xylene	89		40 - 140			08/20/1	13 11:31	08/29/13 01:37	
DCB Decachlorobiphenyl	75		40 _ 135			08/20/1	13 11:31	08/29/13 01:37	
DCB Decachlorobiphenyl	61		40 - 135			08/20/1	13 11:31	08/29/13 01:37	
Method: 8330 Modified - Nitro	-	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fa
may ic									
Nitroguanidine	6.0	U	20	6.0	2.4	ug/L		08/26/13 11:00	
Nitroguanidine		U	20	6.0	2.4	ug/L		08/26/13 11:00	
Nitroguanidine Method: 8330A - Nitroaromat	tics and Nitramines						D		Dil Fa
Nitroguanidine Method: 8330A - Nitroaromat Analyte	tics and Nitramines	Qualifier	20 LOQ 0.15	LOD	DL	Unit	D	08/26/13 11:00 Analyzed 08/27/13 18:21	Dil Fa
Nitroguanidine Method: 8330A - Nitroaromat Analyte 1,3,5-Trinitrobenzene	tics and Nitramines Result	Qualifier U	LOQ		DL 0.031	Unit ug/L	D	Analyzed	Dil Fa
Nitroguanidine Method: 8330A - Nitroaromat Analyte 1,3,5-Trinitrobenzene 1,3-Dinitrobenzene	tics and Nitramines Result 0.050	Qualifier U	LOQ 0.15	LOD 0.050	DL	Unit ug/L ug/L	D	Analyzed 08/27/13 18:21	Dil Fa
Nitroguanidine Method: 8330A - Nitroaromat Analyte 1,3,5-Trinitrobenzene 1,3-Dinitrobenzene 2,4,6-Trinitrotoluene	Result 0,050 0.10	Qualifier U U	LOQ 0.15 0.15	LOD 0.050 0.10	DL 0.031 0.050	Unit ug/L ug/L ug/L	D	Analyzed 08/27/13 18:21 08/27/13 18:21	Dil Fa
Nitroguanidine Method: 8330A - Nitroaromat Analyte 1,3,5-Trinitrobenzene 1,3-Dinitrobenzene 2,4,6-Trinitrotoluene 2,4-Dinitrotoluene	Result 0.050 0.10 0.10	Qualifier U U U	0.15 0.15 0.15	0.050 0.10 0.10	DL 0.031 0.050 0.050	Unit ug/L ug/L ug/L ug/L	D	Analyzed 08/27/13 18:21 08/27/13 18:21 08/27/13 18:21	Dil Fa
Method: 8330A - Nitroaromat Analyte 1,3,5-Trinitrobenzene 1,3-Dinitrobenzene 2,4,6-Trinitrotoluene 2,4-Dinitrotoluene 2,6-Dinitrotoluene	tics and Nitramines Result 0.050 0.10 0.10 0.10	Qualifier U U U U	0.15 0.15 0.15 0.15	0.050 0.10 0.10 0.10	0.031 0.050 0.050 0.050 0.050	Unit ug/L ug/L ug/L ug/L	D	Analyzed 08/27/13 18:21 08/27/13 18:21 08/27/13 18:21 08/27/13 18:21	Dil Fa
Method: 8330A - Nitroaromat Analyte 1,3,5-Trinitrobenzene 1,3-Dinitrobenzene 2,4,6-Trinitrotoluene 2,4-Dinitrotoluene 2,6-Dinitrotoluene 2-Amino-4,6-dinitrotoluene	tics and Nitramines Result 0,050 0.10 0.10 0.10 0.10 0.10	Qualifier U U U U U U	0.15 0.15 0.15 0.15 0.13	0.050 0.10 0.10 0.10 0.10	0.031 0.050 0.050 0.050 0.050 0.050	Unit ug/L ug/L ug/L ug/L ug/L ug/L	D	Analyzed 08/27/13 18:21 08/27/13 18:21 08/27/13 18:21 08/27/13 18:21 08/27/13 18:21	Dii F
Method: 8330A - Nitroaromat Analyte 1,3,5-Trinitrobenzene 1,3-Dinitrobenzene 2,4,6-Trinitrotoluene 2,4-Dinitrotoluene 2,6-Dinitrotoluene 2-Amino-4,6-dinitrotoluene 2-Nitrotoluene	Result 0,050 0.10 0.10 0.10 0.10 0.10 0.10 0.10	Qualifier U U U U U U U U	0.15 0.15 0.15 0.15 0.13 0.13	0.050 0.10 0.10 0.10 0.10 0.10	0.031 0.050 0.050 0.050 0.050	Unit ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	D	Analyzed 08/27/13 18:21 08/27/13 18:21 08/27/13 18:21 08/27/13 18:21 08/27/13 18:21 08/27/13 18:21	Dil F
Method: 8330A - Nitroaromat Analyte 1,3,5-Trinitrobenzene 1,3-Dinitrobenzene 2,4,6-Trinitrotoluene 2,4-Dinitrotoluene 2,6-Dinitrotoluene 2-Amino-4,6-dinitrotoluene 2-Nitrotoluene 3-Nitrotoluene	0.050 0.10 0.10 0.10 0.10 0.10 0.10 0.10	Qualifier U U U U U U U U U U	0.15 0.15 0.15 0.13 0.13 0.15 0.50	0.050 0.10 0.10 0.10 0.10 0.10 0.10	0.031 0.050 0.050 0.050 0.050 0.055 0.015	Unit ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	D	Analyzed 08/27/13 18:21 08/27/13 18:21 08/27/13 18:21 08/27/13 18:21 08/27/13 18:21 08/27/13 18:21 08/27/13 18:21	Dil F
Method: 8330A - Nitroaromate Analyte 1,3,5-Trinitrobenzene 1,3-Dinitrobenzene 2,4,6-Trinitrotoluene 2,4-Dinitrotoluene 2,6-Dinitrotoluene 2-Amino-4,6-dinitrotoluene 2-Nitrotoluene 3-Nitrotoluene 4-Nitrotoluene 4-Nitrotoluene 4-Nitrotoluene	0.050 0.10 0.10 0.10 0.10 0.10 0.10 0.10	Qualifier U U U U U U U U U U U U U U U	0.15 0.15 0.15 0.13 0.13 0.15 0.50	0.050 0.10 0.10 0.10 0.10 0.10 0.10 0.10	0.031 0.050 0.050 0.050 0.050 0.051 0.088 0.057	Unit ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	Q	Analyzed 08/27/13 18:21 08/27/13 18:21 08/27/13 18:21 08/27/13 18:21 08/27/13 18:21 08/27/13 18:21 08/27/13 18:21 08/27/13 18:21	Dil Fa
Method: 8330A - Nitroaromate Analyte 1,3,5-Trinitrobenzene 1,3-Dinitrobenzene 2,4,6-Trinitrotoluene 2,4-Dinitrotoluene 2-Amino-4,6-dinitrotoluene 2-Nitrotoluene 3-Nitrotoluene 4-Nitrotoluene 4-Amino-2,6-dinitrotoluene 4-Amino-2,6-dinitrotoluene	0.050 0.10 0.10 0.10 0.10 0.10 0.10 0.10	Qualifier U U U U U U U U U U U U U U U U U	0.15 0.15 0.15 0.13 0.13 0.15 0.50 0.50	0.050 0.10 0.10 0.10 0.10 0.10 0.10 0.10	0.031 0.050 0.050 0.050 0.050 0.050 0.015 0.088 0.057	Unit ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	D	Analyzed 08/27/13 18:21 08/27/13 18:21 08/27/13 18:21 08/27/13 18:21 08/27/13 18:21 08/27/13 18:21 08/27/13 18:21 08/27/13 18:21 08/27/13 18:21	Dil F
Method: 8330A - Nitroaromate Analyte 1,3,5-Trinitrobenzene 1,3-Dinitrobenzene 2,4,6-Trinitrotoluene 2,4-Dinitrotoluene 2-Amino-4,6-dinitrotoluene 2-Nitrotoluene 3-Nitrotoluene 1-Nitrotoluene 1-Amino-2,6-dinitrotoluene 1-Amino-2,6-dinitrotoluene 1-Amino-2,6-dinitrotoluene	Result 0.050 0.10 0.10 0.10 0.10 0.10 0.10 0.1	Qualifier U U U U U U U U U U U U U U U U U U U	0.15 0.15 0.15 0.13 0.13 0.15 0.50 0.50 0.50	0.050 0.10 0.10 0.10 0.10 0.10 0.10 0.10	0.031 0.050 0.050 0.050 0.050 0.015 0.088 0.057 0.088 0.050	Unit ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	D	Analyzed 08/27/13 18:21 08/27/13 18:21 08/27/13 18:21 08/27/13 18:21 08/27/13 18:21 08/27/13 18:21 08/27/13 18:21 08/27/13 18:21 08/27/13 18:21 08/27/13 18:21	Dii F
Method: 8330A - Nitroaromate Analyte 1,3,5-Trinitrobenzene 1,3-Dinitrobenzene 2,4,6-Trinitrotoluene 2,4-Dinitrotoluene 2,6-Dinitrotoluene 2-Amino-4,6-dinitrotoluene 3-Nitrotoluene 8-Nitrotoluene 4-Nitrotoluene 4-Amino-2,6-dinitrotoluene 4-Amino-2,6-dinitrotoluene 4-Mitrotoluene 4-Amino-2,6-dinitrotoluene 4-Mitrotoluene 4-Amino-2,6-dinitrotoluene 4-MX	0.050 0.10 0.10 0.10 0.10 0.10 0.10 0.10	Qualifier U U U U U U U U U U U U U	0.15 0.15 0.15 0.13 0.13 0.15 0.50 0.50 0.50 0.15	0.050 0.10 0.10 0.10 0.10 0.10 0.10 0.10	0.031 0.050 0.050 0.050 0.050 0.015 0.088 0.057 0.088 0.050	Unit ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	D	Analyzed 08/27/13 18:21 08/27/13 18:21 08/27/13 18:21 08/27/13 18:21 08/27/13 18:21 08/27/13 18:21 08/27/13 18:21 08/27/13 18:21 08/27/13 18:21 08/27/13 18:21 08/27/13 18:21	Dil F
Method: 8330A - Nitroaromat Analyte 1,3,5-Trinitrobenzene 1,3-Dinitrobenzene 2,4,6-Trinitrotoluene 2,4-Dinitrotoluene 2,2-Dinitrotoluene 2,2-Mino-4,6-dinitrotoluene 3-Nitrotoluene 4-Nitrotoluene 4-Nitrotoluene 4-Amino-2,6-dinitrotoluene HMX RDX Nitrobenzene	0.050 0.10 0.10 0.10 0.10 0.10 0.10 0.10	Qualifier U U U U U U U U U U U U U U U U U U U	LOQ 0.15 0.15 0.15 0.13 0.13 0.15 0.50 0.50 0.50 0.15 0.15	LOD 0.050 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.050 0.050	0.031 0.050 0.050 0.050 0.050 0.015 0.088 0.057 0.088 0.050 0.036 0.036	Unit ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	D	Analyzed 08/27/13 18:21 08/27/13 18:21 08/27/13 18:21 08/27/13 18:21 08/27/13 18:21 08/27/13 18:21 08/27/13 18:21 08/27/13 18:21 08/27/13 18:21 08/27/13 18:21 08/27/13 18:21 08/27/13 18:21	Dil Fa
- 17 A - 187	0.050 0.10 0.10 0.10 0.10 0.10 0.10 0.10	Qualifier U U U U U U U U U U U U U U U U U U	LOQ 0.15 0.15 0.15 0.13 0.13 0.15 0.50 0.50 0.50 0.15 0.15 0.15	LOD 0.050 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10	0.031 0.050 0.050 0.050 0.050 0.015 0.088 0.057 0.088 0.050 0.036 0.036	Unit ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	D	Analyzed 08/27/13 18:21 08/27/13 18:21 08/27/13 18:21 08/27/13 18:21 08/27/13 18:21 08/27/13 18:21 08/27/13 18:21 08/27/13 18:21 08/27/13 18:21 08/27/13 18:21 08/27/13 18:21 08/27/13 18:21 08/27/13 18:21 08/27/13 18:21	Dil F

General	Chemistry	

Surrogate

3,4-Dinitrotoluene

Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
Cyanide, Total	0.010	U	0.010	0.010	0.0032	mg/L		08/22/13 14:08	1
Nitrocellulose	1.0	U	2.0	1.0	0.48	mg/L		09/04/13 14:48	1

Limits

79 - 111

%Recovery Qualifier

91 M

TestAmerica Canton

Dil Fac

Analyzed

Prepared

08/23/13 08:00 08/27/13 18:21

Client: Environmental Quality Mgt., Inc.

Client Sample ID: FWGRQLmw-011C-0326-GF

Project/Site: RVAAP66 (OH)

Date Collected: 08/19/13 14:55

Hg

TestAmerica Job ID: 240-28110-1

Lab Sample ID: 240-28110-5

Matrix: Water

Method: 6860 - Perchlorate by IC/MS or IC/M Analyte		Qualifier	LOQ	LOD	DI	Unit	D	Analyzed	Dil Fac
Perchlorate	0.020		0.050	0.020	0.0088			09/06/13 15:00	1
reichlorate	0.020	0	0.030	0.020	0.0000	ug/L		09/00/13 13.00	
Method: 6010B/DOD - Metals (ICP) - Total Re	cove	rable							
Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
Arsenic	10	U	10	10	3.3	ug/L		09/09/13 09:28	
Chromium	4.0	U	7.0	4.0	1.4	ug/L		09/09/13 09:28	
Cobalt	25		7.0	4.0	1.5	ug/L		09/09/13 09:28	1
Lead	2.3	J	10	5.0	1.7	ug/L		09/09/13 09:28	9
Selenium	10	U	15	10	4.0	ug/L		09/09/13 09:28	1
Silver	5.0	U	7.0	5.0	1.7	ug/L		09/09/13 09:28	14
Vanadium	4.0	U	7.0	4.0	1.3	ug/L		09/09/13 09:28	- 1
Barium	21	J	200	5.0	2.8	ug/L		09/09/13 09:28	1
Calcium	26000		5000	1000	630	ug/L		09/09/13 09:28	19
Copper	10	U	25	10	4.4	ug/L		09/09/13 09:28	
Magnesium	11000		5000	300	120	ug/L		09/09/13 09:28	
Manganese	2300		15	5.0	1.8	ug/L		09/09/13 09:28	-
Nickel	61		40	5.0	2.2	ug/L		09/09/13 09:28	
Potassium	4300	J	5000	900	300	ug/L		09/09/13 09:28	*
Method: 6020/DOD - Metals (ICP/MS) - Total	Reco	/erable							
Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fa
Aluminum	2500		60	60	20	ug/L		09/09/13 12:41	
Antimony	1.0	U	2.0	1.0	0.33	ug/L		09/09/13 12:41	
Beryllium	1.0	U	1.0	1.0	0.50	ug/L		09/09/13 12:41	1.0
Cadmium	1.0	U	2.0	1.0	0.40	ug/L		09/09/13 12:41	
Iron	4700		150	100	44	ug/L		09/09/13 12:41	
Sodium	1800		1000	400	160	ug/L		09/09/13 12:41	
Thallium	1.7	J	2.0	1.5	0.79	ug/L		09/09/13 12:41	
Zinc	35	J	50	50	27	ug/L		09/09/13 12:41	
Method: 7470A/DOD - Mercury (CVAA)									
Analyte	Result	Qualifier	LOQ	LOD	DI	Unit	D	Analyzed	Dil Fa

0.20

0.20

0.20 U

08/22/13 12:17

0.12 ug/L

Client: Environmental Quality Mgt., Inc.

Client Sample ID: FWGFWGmw-016-0351-GW

Project/Site: RVAAP66 (OH)

TestAmerica Job ID: 240-28110-1

Lab Sample ID: 240-28110-6

Matrix: Water

Date Collected: 08/19/13 16:51 Date Received: 08/20/13 08:03

Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
Bis(2-ethylhexyl) phthalate	0.32	J	2.0	0.50	0.22	ug/L		08/30/13 14:22	
Butyl benzyl phthalate	0.50	U	2.0	0.50	0.26	ug/L		08/30/13 14:22	
Diethyl phthalate	1.0	U	2.0	1.0	0.60	ug/L		08/30/13 14:22	
Dimethyl phthalate	0.50	U	2.0	0.50	0.29	ug/L		08/30/13 14:22	
Di-n-butyl phthalate	1.0	U	2.0	1.0	0.67	ug/L		08/30/13 14:22	
Di-n-octyl phthalate	0.50	U	2.0	0.50	0.23	ug/L		08/30/13 14:22	
Surrogate	%Recovery Qu	ıalifier	Limits			Prep	pared	Analyzed	Dil Fa
2-Fluorobiphenyl (Surr)	66		50 - 110			08/21/1	13 09:37	08/30/13 14:22	
2-Fluorophenol (Surr)	67		20 - 110			08/21/1	13 09:37	08/30/13 14:22	
Nitrobenzene-d5 (Surr)	70		40 - 110			08/21/1	13 09:37	08/30/13 14:22	
Phenol-d5 (Surr)	72		10 - 115			08/21/1	13 09:37	08/30/13 14:22	
Terphenyl-d14 (Surr)	90		50 - 135				13 09:37	08/30/13 14:22	
2,4,6-Tribromophenol (Surr)	84		40 - 125				13 09:37	08/30/13 14:22	
Method: 8330 Modified - Nitrog	uanidine (HPI C)								
Analyte	The same of the sa	Qualifier	LOQ	LOD	DI	Unit	D	Analyzed	Dil Fa
Nitroguanidine	6.0		20	6.0		ug/L		08/26/13 11:18	Dirita
vio oguariume	0.0	· ·	20	0,0	2.4	ug/L		00/20/13 11:10	
Method: 8330A - Nitroaromatic	The state of the s								
Analyte	27.77	Qualifier	LOQ	LOD		Unit	D	Analyzed	Dil Fa
1,3,5-Trinitrobenzene	0.050	U	0.15	0.050	0.031	ug/L		08/27/13 19:05	
1,3-Dinitrobenzene	0.10	U	0.15	0.10	0.050	ug/L		08/27/13 19:05	
2,4,6-Trinitrotoluene	0.10	U	0.15	0.10	0.050	ug/L		08/27/13 19:05	
2,4-Dinitrotoluene	0.10	U	0.13	0.10	0.050	ug/L		08/27/13 19:05	
2,6-Dinitrotoluene	0.10	U	0.13	0.10	0.050	ug/L		08/27/13 19:05	
2-Amino-4,6-dinitrotoluene	0.10	U	0.15	0.10	0.015	ug/L		08/27/13 19:05	
2-Nitrotoluene	0.10	U	0.50	0.10	0.088	ug/L		08/27/13 19:05	
3-Nitrotoluene	0.10	U	0.50	0.10	0.057	ug/L		08/27/13 19:05	
4-Nitrotoluene	0.10	U	0.50	0.10	0.088	ug/L		08/27/13 19:05	
4-Amino-2,6-dinitrotoluene	0.10	U	0.15	0.10	0.050	ug/L		08/27/13 19:05	
HMX	0.050	U	0.15	0.050	0.036	ug/L		08/27/13 19:05	
RDX	0.050	U	0.15	0.050	0.036			08/27/13 19:05	
Nitrobenzene	0.10	U	0.15	0.10	0.050	ua/L		08/27/13 19:05	
Tetryl	0.10		0.15	0.10	0.050			08/27/13 19:05	
Nitroglycerin	0.50		0.65	0.50		ug/L		08/27/13 19:05	
PETN	0.50		0.65	0.50		ug/L		08/27/13 19:05	
Surrogate	%Recovery Qu	ıalifier	Limits			Pres	pared	Analyzed	Dil Fa
3,4-Dinitrotoluene	89		79 - 111				13 08:00	08/27/13 19:05	2
General Chemistry	2000		LOQ	0.22	٠.		12	4.573	
Analyte		Qualifier	100	LOD	DI.	Unit	D	Analyzed	Dil Fa

Client: Environmental Quality Mgt., Inc.

Project/Site: RVAAP66 (OH)

TestAmerica Job ID: 240-28110-1

Lab Sample ID: 240-28110-7

Matrix: Water

Client Sample	ID: FWGFWGmw-016-0351-GF	
---------------	--------------------------	--

Date Collected: 08/19/13 16:51 Date Received: 08/20/13 08:03

Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
Arsenic	4.3	J	10	10	3.3	ug/L		09/09/13 09:34	1
Chromium	4.0	U	7.0	4.0	1.4	ug/L		09/09/13 09:34	1
Cobalt	4.0	U	7.0	4.0	1.5	ug/L		09/09/13 09:34	1
Lead	5.0	U	10	5.0	1.7	ug/L		09/09/13 09:34	1
Selenium	10	U	15	10	4.0	ug/L		09/09/13 09:34	1
Silver	5.0	U	7.0	5.0	1.7	ug/L		09/09/13 09:34	1
Vanadium	4.0	U	7.0	4.0	1.3	ug/L		09/09/13 09:34	1
Barium	55	J	200	5.0	2.8	ug/L		09/09/13 09:34	1
Calcium	100000		5000	1000	630	ug/L		09/09/13 09:34	1
Copper	10	U	25	10	4.4	ug/L		09/09/13 09:34	1
Magnesium	28000		5000	300	120	ug/L		09/09/13 09:34	1
Manganese	210		15	5.0	1.8	ug/L		09/09/13 09:34	1
Nickel	5.0	U	40	5.0	2.2	ug/L		09/09/13 09:34	- 1
HOROI	.717								
Potassium	2100	J	5000	900	300	ug/L		09/09/13 09:34	1
Potassium Method: 6020/DOD - Metals (2100 ICP/MS) - Total Recov	verable							
Potassium	2100 (ICP/MS) - Total Recov Result	verable Qualifier	LOQ	LOD	DL	ug/L Unit	D	Analyzed	Dil Fac
Potassium Method: 6020/DOD - Metals (2100 ICP/MS) - Total Recov Result 27	verable Qualifier	LOQ 60		DL		D		
Potassium Method: 6020/DOD - Metals (Analyte	2100 (ICP/MS) - Total Recov Result	verable Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	
Potassium Method: 6020/DOD - Metals (Analyte Aluminum	2100 ICP/MS) - Total Recov Result 27	verable Qualifier J	LOQ 60	LOD 60	DL 20 0.33	Unit ug/L ug/L	D	Analyzed 09/09/13 12:49	
Potassium Method: 6020/DOD - Metals (Analyte Aluminum Antimony	2100 ICP/MS) - Total Recov Result 27 1.0	verable Qualifier J U	60 2.0	60 1.0	DL 20 0.33 0.50	Unit ug/L ug/L	D	Analyzed 09/09/13 12:49 09/09/13 12:49	
Potassium Method: 6020/DOD - Metals (Analyte Aluminum Antimony Beryllium	2100 (ICP/MS) - Total Recover Result 27 1.0	verable Qualifier J U	60 2.0 1.0	60 1.0 1.0	DL 20 0.33 0.50 0.40	Unit ug/L ug/L ug/L	D	Analyzed 09/09/13 12:49 09/09/13 12:49 09/09/13 12:49	
Potassium Method: 6020/DOD - Metals (Analyte Aluminum Antimony Beryllium Cadmium	2100 (ICP/MS) - Total Recover Result 27 1.0 1.0 1.0	verable Qualifier J U	60 2.0 1.0 2.0	60 1.0 1.0 1.0	DL 20 0.33 0.50 0.40 44	Unit ug/L ug/L ug/L ug/L	D	Analyzed 09/09/13 12:49 09/09/13 12:49 09/09/13 12:49 09/09/13 12:49	
Potassium Method: 6020/DOD - Metals (Analyte Aluminum Antimony Beryllium Cadmium	2100 (ICP/MS) - Total Recov Result 27 1.0 1.0 1.0 600	Verable Qualifier J U U	60 2.0 1.0 2.0 150	60 1.0 1.0 1.0	DL 20 0.33 0.50 0.40 44 160	Unit ug/L ug/L ug/L ug/L	D	Analyzed 09/09/13 12:49 09/09/13 12:49 09/09/13 12:49 09/09/13 12:49	
Potassium Method: 6020/DOD - Metals (Analyte Aluminum Antimony Beryllium Cadmium Iron Sodium	2100 (ICP/MS) - Total Recov Result 27 1.0 1.0 600 11000	Verable Qualifier J U U U	LOQ 60 2.0 1.0 2.0 150 1000	60 1.0 1.0 1.0 1.0 400	DL 20 0.33 0.50 0.40 44 160	Unit ug/L ug/L ug/L ug/L ug/L ug/L	D	Analyzed 09/09/13 12:49 09/09/13 12:49 09/09/13 12:49 09/09/13 12:49 09/09/13 12:49	
Potassium Method: 6020/DOD - Metals (Analyte Aluminum Antimony Beryllium Cadmium Iron Sodium Thallium	2100 (ICP/MS) - Total Recover Result 27 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	Verable Qualifier J U U U	LOQ 60 2.0 1.0 2.0 150 1000 2.0	60 1.0 1.0 1.0 100 400 1.5	DL 20 0.33 0.50 0.40 44 160 0.79 27	Unit ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	D	Analyzed 09/09/13 12:49 09/09/13 12:49 09/09/13 12:49 09/09/13 12:49 09/09/13 12:49 09/09/13 12:49	

Client: Environmental Quality Mgt., Inc.

Client Sample ID: FWGFWGmw-015-0350-GW

Project/Site: RVAAP66 (OH)

TestAmerica Job ID: 240-28110-1

Lab Sample ID: 240-28110-8

Matrix: Water

Date Collected: 08/19/13 17:41 Date Received: 08/20/13 08:03

Nitrocellulose

Method: 8270C/DoD - Semivo Analyte		Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fa
Bis(2-ethylhexyl) phthalate	0.45	J	1.9	0.48	0.21	ug/L		08/29/13 16:47	
Butyl benzyl phthalate	0.48	U	1.9	0.48	0.25	ug/L		08/29/13 16:47	
Diethyl phthalate	0.95	U	1.9	0.95	0.57	ug/L		08/29/13 16:47	19
Dimethyl phthalate	0.48	U	1.9	0.48	0.28	ug/L		08/29/13 16:47	19
Di-n-butyl phthalate	0.95	U	1.9	0.95	0.64	ug/L		08/29/13 16:47	
Di-n-octyl phthalate	0.48	U	1.9	0.48	0.22	ug/L		08/29/13 16:47	
Surrogate	%Recovery Qu	ualifier	Limits			Prep	ared	Analyzed	Dil Fa
2-Fluorobiphenyl (Surr)	63		50 - 110			08/21/1	3 09:37	08/29/13 16:47	
2-Fluorophenol (Surr)	59		20 - 110			08/21/1	3 09:37	08/29/13 16:47	
Nitrobenzene-d5 (Surr)	60		40 - 110			08/21/1	3 09:37	08/29/13 16:47	-
Phenol-d5 (Surr)	71		10 - 115			08/21/1	3 09:37	08/29/13 16:47	
Terphenyl-d14 (Surr)	85		50 - 135			08/21/1	3 09:37	08/29/13 16:47	
2,4,6-Tribromophenol (Surr)	93		40 - 125			08/21/1	3 09:37	08/29/13 16:47	
Method: 8330 Modified - Nitro	guanidine (HPLC)								
Analyte	Result	Qualifier	LOQ	LOD		Unit	D	Analyzed	Dil Fac
Nitroguanidine	6.0	U	20	6.0	2.4	ug/L		08/26/13 11:35	- 17
1,3,5-Trinitrobenzene	0.051		0.15	0.051	0.032	ug/L		08/27/13 19:48	-
Analyte 1.3.5-Trinitrohenzene		Qualifier	LOQ 0.15	LOD 0.051		Unit	D	Analyzed 08/27/13 19:48	Dil Fa
1,3-Dinitrobenzene	0.10	U	0.15	0.10	0.051	ug/L		08/27/13 19:48	- 1
2,4,6-Trinitrotoluene	0.10	U	0.15	0.10	0.051	ug/L		08/27/13 19:48	
2,4-Dinitrotoluene	0.10	U	0.13	0.10	0.051	ug/L		08/27/13 19:48	
2,6-Dinitrotoluene	0.10	U	0.13	0.10	0.051	ug/L		08/27/13 19:48	- 1
2-Amino-4,6-dinitrotoluene	0.10	U	0.15	0.10	0.015	ug/L		08/27/13 19:48	
2-Nitrotoluene	0.10	U	0.51	0.10	0.090	ug/L		08/27/13 19:48	7
3-Nitrotoluene	0.10	U	0.51	0.10	0.058	ug/L		08/27/13 19:48	9
4-Nitrotoluene	0.10	U	0.51	0.10	0.090	ug/L		08/27/13 19:48	
4-Amino-2,6-dinitrotoluene	0.10	U	0.15	0.10	0.051	ug/L		08/27/13 19:48	
HMX	0.051	U	0.15	0.051	0.037			08/27/13 19:48	
RDX	0.051	U	0.15	0.051	0.037	ug/L		08/27/13 19:48	
Nitrobenzene	0.10	U	0.15	0.10	0.051	ug/L		08/27/13 19:48	
Tetryl	0.10	U	0.15	0.10	0.051			08/27/13 19:48	-
Nitroglycerin	0.51	U	0.66	0.51	0.34	ug/L		08/27/13 19:48	
PETN	0.51	U	0.66	0.51		ug/L		08/27/13 19:48	
Surrogate	%Recovery Qu	ıalifier	Limits			Prep	ared	Analyzed	Dil Fa
L PRICE OF FORM	88		79 - 111			08/23/1	3 08:00	08/27/13 19:48	
Surrogate		ualifier							Di
Lanca de la casa de la	94								
3,4-Dinitrotoluene General Chemistry Analyte		Qualifier	LOQ	LOD	Di	Unit	D	Analyzed	Di

TestAmerica Canton

09/04/13 14:52

2.0

1.0

0.48 mg/L

1.0 U

Client: Environmental Quality Mgt., Inc.

Client Sample ID: FWGFWGmw-015-0350-GF

Project/Site: RVAAP66 (OH)

TestAmerica Job ID: 240-28110-1

Lab Sample ID: 240-28110-9

Matrix: Water

Date Collected: 08/19/13 17:41 Date Received: 08/20/13 08:03

Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
Arsenic	10	U	10	10	3.3	ug/L		09/09/13 09:40	1
Chromium	4.0	U	7.0	4.0	1.4	ug/L		09/09/13 09:40	1
Cobalt	2.9	J	7.0	4.0	1.5	ug/L		09/09/13 09:40	1
Lead	5.0	U	10	5.0	1.7	ug/L		09/09/13 09:40	1
Selenium	10	U	15	10	4.0	ug/L		09/09/13 09:40	1
Silver	5.0	U	7.0	5.0	1.7	ug/L		09/09/13 09:40	1
Vanadium	4.0	U	7.0	4.0	1.3	ug/L		09/09/13 09:40	1
Barium	14	J	200	5.0	2.8	ug/L		09/09/13 09:40	1
Calcium	340000		5000	1000	630	ug/L		09/09/13 09:40	1
Copper	10	U	25	10	4.4	ug/L		09/09/13 09:40	1
Magnesium	260000		5000	300	120	ug/L		09/09/13 09:40	1
Manganese	940		15	5.0	1.8	ug/L		09/09/13 09:40	1
Nickel	2.5	J	40	5.0	2.2	ug/L		09/09/13 09:40	- 1
Potassium	4000	J	5000	900	300	ug/L		09/09/13 09:40	1
Method: 6020/DOD - Metal:	s (ICP/MS) - Total Recov	/erable							
Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
Aluminum	60	U	60	60	20	ug/L		09/09/13 12:56	1
Antimony	1.0	U	2.0	1.0	0.33	ug/L		09/09/13 12:56	1
Beryllium	1.0	U	1.0	1.0	0.50	ug/L		09/09/13 12:56	1
Cadmium	1.0	U	2.0	1.0	0.40	ug/L		09/09/13 12:56	1
Iron	100	U	150	100	44	ug/L		09/09/13 12:56	1
Sodium	44000		1000	400	160	ug/L		09/09/13 12:56	1
Thallium	1.5	U	2.0	1.5	0.79	ug/L		09/09/13 12:56	1
Zinc	50	U	50	50	27	ug/L		09/09/13 12:56	1
Method: 7470A/DOD - Mero	cury (CVAA)								
Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
Hg	0.20	U	0.20	0.20	0.12	ug/L		08/22/13 12:22	1

Client: Environmental Quality Mgt., Inc.

Client Sample ID: FWGLL3mw-239C-0322-GF

Project/Site: RVAAP66 (OH)

TestAmerica Job ID: 240-28110-1

Lab Sample ID: 240-28110-10

Matrix: Water

Dil Fac

Date Collected: 08/19/13 12:52 Date Received: 08/20/13 08:03

 Method: 6860 - Perchlorate by IC/MS or IC/MS/MS

 Analyte
 Result
 Qualifier
 LOQ
 LOD
 DL
 Unit
 D
 Analyzed

 Perchlorate
 0.031
 J
 0.050
 0.020
 0.008
 ug/L
 09/06/13 15:28

Е

8

10

10

118

15

Client: Environmental Quality Mgt., Inc.

Client Sample ID: FWGLL3mw-238C-0359-GW

Project/Site: RVAAP66 (OH)

TestAmerica Job ID: 240-28110-1

Lab Sample ID: 240-28110-11

Matrix: Water

Date Collected: 08/19/13 13:32 Date Received: 08/20/13 08:03

Analyte	Result	Qualifier	LOQ	LOD	DL	Unit D	Analyzed	Dil Fac
Bis(2-ethylhexyl) phthalate	0.39	J	2.1	0.53	0.23	ug/L	08/29/13 14:38	1
Butyl benzyl phthalate	0.53	U	2.1	0.53	0.27	ug/L	08/29/13 14:38	1
Diethyl phthalate	1.1	U	2.1	1.1	0.63	ug/L	08/29/13 14:38	1
Dimethyl phthalate	0.53	U	2.1	0.53	0.31	ug/L	08/29/13 14:38	1
Di-n-butyl phthalate	1.1	U	2.1	1.1	0.71	ug/L	08/29/13 14:38	1
Di-n-octyl phthalate	0.53	U	2.1	0.53	0.24	ug/L	08/29/13 14:38	.1
Surrogate	%Recovery Qu	ıalifier	Limits			Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl (Surr)	61		50 - 110			08/21/13 09:37	08/29/13 14:38	1
2-Fluorophenol (Surr)	61		20 - 110			08/21/13 09:37	08/29/13 14:38	1
Nitrobenzene-d5 (Surr)	62		40 - 110			08/21/13 09:37	08/29/13 14:38	7
Phenol-d5 (Surr)	67		10 - 115			08/21/13 09:37	08/29/13 14:38	1
Terphenyl-d14 (Surr)	80		50 - 135			08/21/13 09:37	08/29/13 14:38	1
2,4,6-Tribromophenol (Surr)	85		40 - 125			08/21/13 09;37	08/29/13 14:38	1
Method: 8081/DOD - Organoci	nlorine Pesticides (G	SC)						
Analyte	And the second s	Qualifier	LOQ	LOD	DL	Unit D	Analyzed	Dil Fac

Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
4,4'-DDD	0.021	UQ	0.052	0.021	0.010	ug/L		08/23/13 21:14	1
4,4'-DDD	1.0	UQ	2.6	1.0	0.50	ug/L		09/09/13 20:21	50
4,4'-DDD	1.0	U	2.6	1.0	0.50	ug/L		09/09/13 20:21	50
4,4'-DDE	0.020	J	0.052	0.021	0.010	ug/L		08/23/13 21:14	1
4,4'-DDE	1.0	U	2.6	1.0	0.51	ug/L		09/09/13 20:21	50
4,4'-DDE	1.0	U	2.6	1.0	0.51	ug/L		09/09/13 20:21	.50
4,4'-DDT	0.021	U	0.052	0.021	0.017	ug/L		08/23/13 21:14	1
4,4'-DDT	1.0	U	2.6	1.0	0.83	ug/L		09/09/13 20:21	50
4,4'-DDT	1.0	U	2.6	1.0	0.83	ug/L		09/09/13 20:21	50
Aldrin	0.021	U	0.031	0.021	0.0085	ug/L		08/23/13 21:14	1
Aldrin	1.0	U	1.6	1.0	0.43	ug/L		09/09/13 20:21	50
Aldrin	1.0	U	1.6	1.0	0.43	ug/L		09/09/13 20:21	50
alpha-BHC	0.021	U	0.031	0.021	0.0073	ug/L		08/23/13 21:14	1
alpha-BHC	1.0	U	1.6	1.0	0.36	ug/L		09/09/13 20:21	50
alpha-BHC	1.0	U	1.6	1.0	0.36	ug/L		09/09/13 20:21	50
alpha-Chlordane	0.021	U	0.052	0.021	0.015	ug/L		08/23/13 21:14	1
alpha-Chlordane	1.0	U	2.6	1.0	0.73	ug/L		09/09/13 20:21	50
alpha-Chlordane	1.0	U	2.6	1.0	0.73	ug/L		09/09/13 20:21	50
beta-BHC	0.021	U	0.052	0.021	0.0088	ug/L		08/23/13 21:14	1
beta-BHC	1.0	U	2.6	1.0	0.44	ug/L		09/09/13 20:21	50
beta-BHC	1.0	U	2.6	1.0	0.44	ug/L		09/09/13 20:21	50
delta-BHC	0.021	U	0.052	0.021	0.0091	ug/L		08/23/13 21:14	- 1
delta-BHC	1.0	U	2.6	1.0	0.45	ug/L		09/09/13 20:21	50
delta-BHC	1.0	U	2.6	1.0	0.45	ug/L		09/09/13 20:21	50
Dieldrin	0.021	U	0.031	0.021	0.0078	ug/L		08/23/13 21:14	1
Dieldrin	1.0	U	1.6	1.0	0.39	ug/L		09/09/13 20:21	50
Dieldrin	1.0	U	1.6	1.0	0.39	ug/L		09/09/13 20:21	50
Endosulfan I	0.021	U	0.052	0.021	0.014	ug/L		08/23/13 21:14	1
Endosulfan I	1.0	U	2.6	1.0	0.68	ug/L		09/09/13 20:21	50
Endosulfan I	1.0	U	2.6	1.0	0.68	ug/L		09/09/13 20:21	50
Endosulfan II	0.021	U	0.052	0.021	0.013	ug/L		08/23/13 21:14	1
Endosulfan II	1.0	U	2.6	1.0	0.62	ug/L		09/09/13 20:21	50
Endosulfan II	1.0	U	2.6	1.0	0,62	ug/L		09/09/13 20:21	50

Client: Environmental Quality Mgt., Inc.

Client Sample ID: FWGLL3mw-238C-0359-GW

Project/Site: RVAAP66 (OH)

Date Collected: 08/19/13 13:32

Date Received: 08/20/13 08:03

Analyte

Analyte

Nitroguanidine

1,3-Dinitrobenzene

2,4-Dinitrotoluene

2,6-Dinitrotoluene

2-Amino-4,6-dinitrotoluene

Method: 8330A - Nitroaromatics and Nitramines

TestAmerica Job ID: 240-28110-1

Lab Sample ID: 240-28110-11

Matrix: Water

Analyte	Result	C) (Contil Qualifier	LOQ	LOD	DL	Unit D	Analyzed	Dil Fa
Endosulfan sulfate	0.021	U	0.052	0.021	0.011	ug/L	08/23/13 21:14	
Endosulfan sulfate	1.0	U	2.6	1.0	0.57	ug/L	09/09/13 20:21	5
Endosulfan sulfate	1.0	U	2.6	1.0	0.57	ug/L	09/09/13 20:21	5
Endrin	0.021	U	0.052	0.021	0.011	ug/L	08/23/13 21:14	
Endrin	1.0	U	2.6	1.0	0.57	ug/L	09/09/13 20:21	5
Endrin	1.0	U	2.6	1.0	0.57	ug/L	09/09/13 20:21	5
Endrin aldehyde	0.011	J	0.052	0.021	0.011	ug/L	08/23/13 21:14	
Endrin aldehyde	1.0	U	2.6	1.0	0.57	ug/L	09/09/13 20:21	5
Endrin aldehyde	1.0	U	2.6	1.0	0.57	ug/L	09/09/13 20:21	5
Endrin ketone	0.021	U	0.052	0.021	0.0081	ug/L	08/23/13 21:14	
Endrin ketone	1.0	U	2.6	1.0	0.41	ug/L	09/09/13 20:21	. 5
Endrin ketone	1.0	U	2.6	1.0	0.41	ug/L	09/09/13 20:21	5
gamma-BHC (Lindane)	0.021	U	0.052	0.021	0.0067	ug/L	08/23/13 21:14	
gamma-BHC (Lindane)	1.0	U	2.6	1.0	0.33	ug/L	09/09/13 20:21	5
gamma-BHC (Lindane)	1.0	U	2.6	1.0	0.33	ug/L	09/09/13 20:21	5
gamma-Chlordane	0.021	U	0.052	0.021	0.013	ug/L	08/23/13 21:14	
gamma-Chlordane	1.0	U	2.6	1.0	0.62	ug/L	09/09/13 20:21	
gamma-Chlordane	1.0	U	2.6	1.0	0.62	ug/L	09/09/13 20:21	
Heptachlor	0.021	U	0.031	0.021	0.0083	ug/L	08/23/13 21:14	
Heptachlor	1.0	U	1.6	1.0	0.42	ug/L	09/09/13 20:21	
Heptachlor	1.0	U	1.6	1.0	0.42	ug/L	09/09/13 20:21	5
Heptachlor epoxide	1.0	U	1.6	1.0	0.37	ug/L	09/09/13 20:21	
Heptachlor epoxide	1.0	U	1.6	1.0	0.37	ug/L	09/09/13 20:21	
Methoxychlor	0.052	U	0.10	0.052	0.033	ug/L	08/23/13 21:14	
Methoxychlor	2.6	U	5.2	2.6	1.7	ug/L	09/09/13 20:21	
Methoxychlor	2.6	U	5.2	2.6	1.7	ug/L	09/09/13 20:21	
Toxaphene	0.83	U	2.1	0.83	0.33	ug/L	08/23/13 21:14	
Toxaphene	42	U	100	42	17	ug/L	09/09/13 20:21	
Toxaphene	42	U	100	42	17	ug/L	09/09/13 20:21	5
Surrogate	%Recovery Qu	ıalifier	Limits			Prepared	Analyzed	Dil F
DCB Decachlorobiphenyl	37		30 - 135			08/20/13 11:25	08/23/13 21:14	
DCB Decachlorobiphenyl	41		30 - 135			08/20/13 11:25	08/23/13 21:14	
DCB Decachlorobiphenyl	0 Q		30 - 135			08/20/13 11:25	09/09/13 20:21	3
DCB Decachlorobiphenyl	0 Q		30 - 135			08/20/13 11:25	09/09/13 20:21	1
Tetrachloro-m-xylene	76		25 - 140			08/20/13 11:25	08/23/13 21:14	
Tetrachloro-m-xylene	85		25 - 140			08/20/13 11:25	08/23/13 21:14	
Tetrachloro-m-xylene	94		25 - 140			08/20/13 11:25	09/09/13 20:21	
Tetrachloro-m-xylene	114		25 - 140			08/20/13 11:25	09/09/13 20:21	

TestAmerica Canton

Analyzed

08/26/13 11:53

Analyzed

08/28/13 19:25

08/28/13 19:25

08/27/13 20:32

08/27/13 20:32

Dil Fac

Dil Fac

1

LOQ

LOQ

0.16

0.14

0.14

0.16

20

LOD

6.0

LOD

0.11

0.11

0.11

0.11

DL Unit

2.4 ug/L

DL Unit

0.053 ug/L

0.053 ug/L

0.053 ug/L

0.016 ug/L

Result Qualifier

Result Qualifier

0.11 U

0.11 U

19

0.52 J M

6.0 U

Client: Environmental Quality Mgt., Inc.

Project/Site: RVAAP66 (OH)

TestAmerica Job ID: 240-28110-1

Lab Sample ID: 240-28110-11

Matrix: Water

Client Sample ID: FWGLL3mw-238C-0359-GW

Date Collected: 08/19/13 13:32 Date Received: 08/20/13 08:03

Analyte	Result	Qualifier	1	LOQ	LOD	DL	Unit D	Analyzed	Dil Fac
2-Nitrotoluene	0.11	U		0.53	0.11	0.094	ug/L	08/27/13 20:32	1
3-Nitrotoluene	0.11	U	- 0	0.53	0.11	0.061	ug/L	08/27/13 20:32	1
4-Nitrotoluene	0.53	M	9	0.53	0.11	0.094	ug/L	08/27/13 20:32	1
HMX	2.2	J M	1,3	0.16	0.053	0.038	ug/L	08/27/13 20:32	1
RDX	7.2		- 5	0.16	0.053	0.038	ug/L	08/27/13 20:32	1
Nitrobenzene	0.17	J	1.0	0.16	0.11	0.053	ug/L	08/27/13 20:32	1
Tetryl	0.11	U	1.0	0.16	0.11	0.053	ug/L	08/27/13 20:32	1
Nitroglycerin	0.53	U	3	0.69	0.53	0.35	ug/L	08/27/13 20:32	1
PETN	0.53	U	- 0	0.69	0.53	0.32	ug/L	08/27/13 20:32	1
Surrogate	%Recovery Q	ualifier	Limits				Prepared	Analyzed	DII Fac
3,4-Dinitrotoluene	157 M	Q	79 - 111				08/23/13 08:00	08/27/13 20:32	1
3,4-Dinitrotoluene	102		79 - 111				08/23/13 08:00	08/28/13 19:25	1

Analyte	Rest	Ilt Qualifier	LC	OQ	LOD	DL	Unit) Analyzed	Dil Fac
1,3,5-Trinitrobenzene	3	0 D	0.0	.80	0.27	0.17	ug/L	08/28/13 16:47	5
2,4,6-Trînitrotoluene	17	9 D	0.8	.80	0.53	0.27	ug/L	08/28/13 16:47	5
4-Amino-2,6-dinitrotoluene	3	7 D	0.8	.80	0.53	0.27	ug/L	08/28/13 16:47	5
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
3.4-Dinitrotoluene	163	Q	79 - 111				08/23/13 08:00	08/28/13 16:47	5

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
3,4-Dinitrotoluene	163	Q	79 - 111	08/23/13 08:00	08/28/13 16:47	5
3,4-Dinitrotoluene	109		79 - 111	08/23/13 08:00	08/29/13 07:26	5

General Chemistry									
Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
Nitrocellulose	1.0	U	2.0	1.0	0.48	mg/L		09/04/13 15:02	1

Client: Environmental Quality Mgt., Inc.

Project/Site: RVAAP66 (OH)

TestAmerica Job ID: 240-28110-1

Lab Sample ID: 240-28110-12

Matrix: Water

Client Sample ID: FWGLL3mw-238C-0359-GF

Date Collected: 08/19/13 13:32 Date Received: 08/20/13 08:03

Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
Arsenic	10	U	10	10	3.3	ug/L		09/09/13 09:57	1
Chromium	4.0	U	7.0	4.0	1.4	ug/L		09/09/13 09:57	1
Cobalt	4.0	U	7.0	4.0	1.5	ug/L		09/09/13 09:57	1
Lead	5.0	U	10	5.0	1.7	ug/L		09/09/13 09:57	1
Selenium	10	U	15	10	4.0	ug/L		09/09/13 09:57	1
Silver	5.0	U	7.0	5.0	1.7	ug/L		09/09/13 09:57	1
Vanadium	4.0	U	7.0	4.0	1.3	ug/L		09/09/13 09:57	1
Barium	7.9	J	200	5.0	2.8	ug/L		09/09/13 09:57	1
Calcium	51000		5000	1000	630	ug/L		09/09/13 09:57	1
Copper	10	U	25	10	4.4	ug/L		09/09/13 09:57	1
Magnesium	5700		5000	300	120	ug/L		09/09/13 09:57	1
Manganese	2.6	J	15	5.0	1.8	ug/L		09/09/13 09:57	1
Nickel	5.0	U	40	5.0	2.2	ug/L		09/09/13 09:57	1
Potassium	2800	J	5000	900	300	ug/L		09/09/13 09:57	1
Method: 6020/DOD - Metals	(ICP/MS) - Total Recov	/erable							
Analyte	7	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
Aluminum	27	J	60	60	20	ug/L	= 7	09/09/13 13:19	1
Antimony	1.0	U	2.0	1.0	0.33	ug/L		09/09/13 13:19	1
Beryllium	1.0	U	1.0	1.0	0.50	ug/L		09/09/13 13:19	1
Cadmium	1.0	U	2.0	1.0	0.40	ug/L		09/09/13 13:19	1
Iron	100	U	150	100	44	ug/L		09/09/13 13:19	1
Sodium	3300		1000	400	160	ug/L		09/09/13 13:19	1
Thallium	1.5	U	2.0	1.5	0.79	ug/L		09/09/13 13:19	1
Zinc	50	100	50	50	27	ug/L		09/09/13 13:19	

Method: 7470A/DOD - Mercury (CVAA)									
Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
Hg	0.20	U	0.20	0.20	0.12	ug/L		08/22/13 12:24	1

Client: Environmental Quality Mgt., Inc.

Project/Site: RVAAP66 (OH)

TestAmerica Job ID: 240-28110-1

Lab Sample ID: 240-28110-13

Matrix: Water

Client Sample ID: FWGLL3mw-241C-0360-GW

Date Collected: 08/19/13 14:28

Nitroguanidine

Analyte	Result Qualifier	LOQ	LOD	DL	Unit D	Analyzed	Dil Fac
lis(2-ethylhexyl) phthalate	0.57 J	2.1	0.52	0.23	ug/L	08/29/13 15:04	1
utyl benzyl phthalate	0.52 U	2.1	0.52	0.27	ug/L	08/29/13 15:04	1
iethyl phthalate	1.0 U	2.1	1.0		ug/L	08/29/13 15:04	4
imethyl phthalate	0.52 U	2.1	0.52	0.30	ug/L	08/29/13 15:04	1
i-n-butyl phthalate	1.0 U	2.1	1.0	0.69	ug/L	08/29/13 15:04	1
i-n-octyl phthalate	0.52 U	2.1	0.52		ug/L	08/29/13 15:04	1
urrogate	%Recovery Qualifier	Limits			Prepared	Analyzed	Dil Fac
-Fluorobiphenyl (Surr)	64	50 - 110			08/21/13 09:37	08/29/13 15:04	1
Fluorophenol (Surr)	59	20 - 110			08/21/13 09:37	08/29/13 15:04	1
itrobenzene-d5 (Surr)	61	40 - 110			08/21/13 09:37	08/29/13 15:04	7
henol-d5 (Surr)	71	10 - 115			08/21/13 09:37	08/29/13 15:04	1
erphenyl-d14 (Surr)	85	50 - 135			08/21/13 09:37	08/29/13 15:04	1
4,6-Tribromophenol (Surr)	89	40 - 125			08/21/13 09;37	08/29/13 15:04	1
lethod: 8081/DOD - Organoci	hlorine Pesticides (GC)						
nalyte	Result Qualifier	LOQ	LOD	DL	Unit D	Analyzed	Dil Fac
4'-DDD	0.019 U Q	0.048	0.019	0.0092	ug/L	08/23/13 21:34	1
4'-DDE	0.019 U	0.048	0.019	0.0093	ug/L	08/23/13 21:34	1
4'-DDT	0.019 U	0.048	0.019	0.015	ug/L	08/23/13 21:34	1
drin	0.019 U	0.029	0.019	0.0079	ug/L	08/23/13 21:34	- 1
pha-BHC	0.019 U	0.029	0.019	0.0067	ug/L	08/23/13 21:34	1
pha-Chlordane	0.019 U	0.048	0.019	0.013	ug/L	08/23/13 21:34	1
eta-BHC	0.019 U	0.048	0.019	0.0081	ug/L	08/23/13 21:34	1
elta-BHC	0.038 J	0.048	0.019	0.0084	ug/L	08/23/13 21:34	1
ieldrin	0.019 U	0.029	0.019	0.0072	ug/L	08/23/13 21:34	1
ndosulfan I	0.019 U	0.048	0.019	0.013	ug/L	08/23/13 21:34	1
ndosulfan II	0.019 U	0.048	0.019	0.012	ug/L	08/23/13 21:34	1
ndosulfan sulfate	0.019 U	0.048	0.019	0.011	ug/L	08/23/13 21:34	1
ndrin	0.027 J	0.048	0.019	0.011	ug/L	08/23/13 21:34	1
ndrin aldehyde	0.019 U	0.048	0.019	0.011	ug/L	08/23/13 21:34	1
ndrin ketone	0.019 U	0.048	0.019	0.0075	ug/L	08/23/13 21:34	1
mma-BHC (Lindane)	0.019 U	0.048	0.019	0.0062	ug/L	08/23/13 21:34	1
amma-Chlordane	0.019 U	0.048	0.019	0.012	ug/L	08/23/13 21:34	1
eptachlor	0.019 U	0.029	0.019	0.0077	ug/L	08/23/13 21:34	1
eptachlor epoxide	0.019 U	0.029	0.019	0.0068	ug/L	08/23/13 21:34	1
ethoxychlor	0.048 U	0.096	0.048	0.031		08/23/13 21:34	1
oxaphene	0.77 U	1.9	0.77	0.31	ug/L	08/23/13 21:34	1
urrogate	%Recovery Qualifier	Limits			Prepared	Analyzed	Dil Fac
CB Decachlorobiphenyl	82	30 - 135			08/20/13 11:25	08/23/13 21:34	1
CB Decachlorobiphenyl	97	30 - 135			08/20/13 11:25	08/23/13 21:34	1
etrachloro-m-xylene	82	25 - 140			08/20/13 11:25	08/23/13 21:34	1
etrachloro-m-xylene	88	25 - 140			08/20/13 11:25	08/23/13 21:34	1
Method: 8330 Modified - Nitro	guanidine (HPLC)						
Analyte	Result Qualifie	LOQ	LOD		Unit D	Analyzed	Dil Fac

TestAmerica Canton

08/26/13 12:29

20

6.0

2.4 ug/L

6.0 U

3

E

,

14

Client: Environmental Quality Mgt., Inc.

Project/Site: RVAAP66 (OH)

TestAmerica Job ID: 240-28110-1

Lab Sample ID: 240-28110-13

Matrix: Water

Client Sample ID: FWGLL3mw-241C-0360-GW

Date Collected: 08/19/13 14:28 Date Received: 08/20/13 08:03

Method: 8330A - Nitroaromatics and Nitramines LOQ LOD Dil Fac Qualifier DL Unit D Analyzed 1,3,5-Trinitrobenzene 0.15 0.050 0.031 ug/L 08/27/13 22:00 4.3 0.10 U 0.15 0.10 1,3-Dinitrobenzene 0.050 ug/L 08/27/13 22:00 2,4,6-Trinitrotoluene 3.3 M 0.15 0.10 0.050 08/27/13 22:00 0.10 U 0.10 2,4-Dinitrotoluene 0.13 0.050 ug/L 08/28/13 20:31 0.083 J M 0.13 0.10 0.050 08/27/13 22:00 2,6-Dinitrotoluene 2-Amino-4,6-dinitrotoluene 0.15 0.10 0.015 2.9 M ug/L 08/27/13 22:00 2-Nitrotoluene 0.10 U 0.50 0.10 0.089 08/27/13 22:00 3-Nitrotoluene 0.10 U 0.50 0.10 0.057 08/27/13 22:00 ug/L 0.10 U 4-Nitrotoluene 0.50 0.10 0.089 08/28/13 20:31 4-Amino-2,6-dinitrotoluene 2.9 M 0.15 0.10 0.050 ug/L 08/27/13 22:00 0.050 0.036 ug/L 08/27/13 22:00 **HMX** 0.39 J M 0.15 0.050 0.036 08/27/13 22:00 RDX 0.98 M 0.15 ug/L Nitrobenzene 0.10 U 0.15 0.10 0.050 ug/L 08/27/13 22:00 Tetryl 0.10 U 0.15 0.10 0.050 ug/L 08/27/13 22:00 0.50 U 0.66 0.50 0.33 ug/L 08/27/13 22:00 Nitroglycerin PETN 0.50 U 0.66 0.50 0.30 ug/L 08/27/13 22:00 Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac 79 - 111 08/23/13 08:00 08/27/13 22:00 3,4-Dinitrotoluene 128 MQ 3,4-Dinitrotoluene 97 79 - 111 08/23/13 08:00 08/28/13 20:31

General	Chemistry
Control	Officialistry

General Chemistry								
Analyte	Result Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
Nitrocellulose	1.0 U	2.0	1.0	0.48	mg/L		09/04/13 15:04	1

Client: Environmental Quality Mgt., Inc.

Client Sample ID: FWGLL3mw-241C-0360-GF

Project/Site: RVAAP66 (OH)

TestAmerica Job ID: 240-28110-1

Lab Sample ID: 240-28110-14

Matrix: Water

Date Collected: 08/19/13 14:28 Date Received: 08/20/13 08:03

Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
Arsenic	10	Ü	10	10	3.3	ug/L		09/09/13 10:03	1
Chromium	4.0	U	7.0	4.0	1.4	ug/L		09/09/13 10:03	1
Cobalt	4.0	U	7.0	4.0	1.5	ug/L		09/09/13 10:03	1
Lead	5.0	U	10	5.0	1.7	ug/L		09/09/13 10:03	1
Selenium	10	U	15	10	4.0	ug/L		09/09/13 10:03	1
Silver	5.0	U	7.0	5.0	1.7	ug/L		09/09/13 10:03	1
Vanadium	4.0	U	7.0	4.0	1.3	ug/L		09/09/13 10:03	1
Barium	5.9	J	200	5.0	2.8	ug/L		09/09/13 10:03	1
Calcium	19000		5000	1000	630	ug/L		09/09/13 10:03	1
Copper	10	U	25	10	4.4	ug/L		09/09/13 10:03	1
Magnesium	6500		5000	300	120	ug/L		09/09/13 10:03	1
Manganese	3.0	J	15	5.0	1.8	ug/L		09/09/13 10:03	1
Nickel	2.2	J	40	5.0	2.2	ug/L		09/09/13 10:03	-01
Potassium	1000	J	5000	900	300	ug/L		09/09/13 10:03	1
			5000	900	300	ug/L		09/09/13 10:03	1
Potassium	ICP/MS) - Total Recov		5000 LOQ	900 LOD		ug/L Unit	D	09/09/13 10:03 Analyzed	
Potassium Method: 6020/DOD - Metals (I	ICP/MS) - Total Recov	verable Qualifier					D		Dil Fac
Potassium Method: 6020/DOD - Metals (I Analyte	ICP/MS) - Total Recov	verable Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	
Potassium Method: 6020/DOD - Metals (I Analyte Aluminum	ICP/MS) - Total Recovered Result	verable Qualifier U	LOQ 60	LOD 60	DL 20	Unit ug/L	D	Analyzed 09/09/13 13:26	
Potassium Method: 6020/DOD - Metals (I Analyte Aluminum Antimony	ICP/MS) - Total Recover Result 60 1.0	verable Qualifier U	60 2.0	60 1.0	DL 20 0.33	Unit ug/L ug/L ug/L	D	Analyzed 09/09/13 13:26 09/09/13 13:26	
Potassium Method: 6020/DOD - Metals (I Analyte Aluminum Antimony Beryllium	ICP/MS) - Total Recover Result 60 1.0	verable Qualifier U U U U	60 2.0 1.0	60 1.0 1.0	DL 20 0.33 0.50	Unit ug/L ug/L ug/L	D	Analyzed 09/09/13 13:26 09/09/13 13:26 09/09/13 13:26	
Potassium Method: 6020/DOD - Metals (I Analyte Aluminum Antimony Beryllium Cadmium	ICP/MS) - Total Recover Result 60 1.0 1.0	verable Qualifier U U U U	LOQ 60 2.0 1.0 2.0	60 1.0 1.0 1.0	20 0.33 0.50 0.40	Unit ug/L ug/L ug/L	D	Analyzed 09/09/13 13:26 09/09/13 13:26 09/09/13 13:26 09/09/13 13:26	
Potassium Method: 6020/DOD - Metals (I Analyte Aluminum Antimony Beryllium Cadmium	ICP/MS) - Total Recover Result 60 1.0 1.0 1.0 1.0	verable Qualifier U U U U	LOQ 60 2.0 1.0 2.0	60 1.0 1.0 1.0 1.0	DL 20 0.33 0.50 0.40 44	Unit ug/L ug/L ug/L ug/L ug/L	D	Analyzed 09/09/13 13:26 09/09/13 13:26 09/09/13 13:26 09/09/13 13:26	
Potassium Method: 6020/DOD - Metals (I Analyte Aluminum Antimony Beryllium Cadmium Iron Sodium	ICP/MS) - Total Recover Result 60 1.0 1.0 1.0 100 3400	verable Qualifier U U U U U	LOQ 60 2.0 1.0 2.0 150	60 1.0 1.0 1.0 1.0 400	DL 20 0.33 0.50 0.40 44 160	Unit ug/L ug/L ug/L ug/L ug/L ug/L ug/L	D	Analyzed 09/09/13 13:26 09/09/13 13:26 09/09/13 13:26 09/09/13 13:26 09/09/13 13:26	Dil Fa
Potassium Method: 6020/DOD - Metals (I Analyte Aluminum Antimony Beryllium Cadmium Iron Sodium Thallium	ICP/MS) - Total Recover Result 60 1.0 1.0 1.0 1.0 1.0 1.0 1.5 50	verable Qualifier U U U U U	LOQ 60 2.0 1.0 2.0 150 1000 2.0	LOD 60 1.0 1.0 1.0 100 400 1.5	DL 20 0.33 0.50 0.40 44 160 0.79	Unit ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	D	Analyzed 09/09/13 13:26 09/09/13 13:26 09/09/13 13:26 09/09/13 13:26 09/09/13 13:26 09/09/13 13:26	

Client: Environmental Quality Mgt., Inc.

Project/Site: RVAAP66 (OH)

TestAmerica Job ID: 240-28110-1

Lab Sample ID: 240-28110-15

Matrix: Water

Date Collected: 08/19/13 15:38 Date Received: 08/20/13 08:03

Method: 6860 - Perchlorate by IC/MS or IC/MS/MS

Client Sample ID: FWGFWGmw-002-0317-GF

Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
Perchlorate	0.020	Ü	0.050	0.020	0.0088	ug/L		09/06/13 15:57	1

Client: Environmental Quality Mgt., Inc.

Project/Site: RVAAP66 (OH)

TestAmerica Job ID: 240-28110-1

Lab Sample ID: 240-28110-16

Matrix: Water

Date Collected: 08/19/13 15:58 Date Received: 08/20/13 08:03

Method: 6860 - Perchlorate by IC/MS or IC/MS/MS

Client Sample ID: FWGFWGmw-DUP2-0337-GF

 Analyte
 Result
 Qualifier
 LOQ
 LOD
 DL
 Unit
 D
 Analyzed
 Dil Fac

 Perchlorate
 0.020
 U
 0.050
 0.020
 0.008
 ug/L
 09/06/13 16:25
 1

į,

8

-10

13

LL:

15

Client: Environmental Quality Mgt., Inc.

Client Sample ID: FWGFWGmw-004-0346-GW

Project/Site: RVAAP66 (OH)

TestAmerica Job ID: 240-28110-1

Lab Sample ID: 240-28110-17

Matrix: Water

Date Collected: 08/19/13 1	7:08
Date Received: 08/20/13 0	8:03

Method: 8270C/DoD - Semivo Analyte	the state of the s	Qualifier	LOQ	LOD	DL	Unit D	Analyzed	Dil Fac
Bis(2-ethylhexyl) phthalate	0.25	J	2.1	0.53	0.23	ug/L	08/30/13 13:31	
Butyl benzyl phthalate	0.53		2.1	0.53		ug/L	08/30/13 13:31	
Diethyl phthalate	1.1		2.1	1.1		ug/L	08/30/13 13:31	14
Dimethyl phthalate	0.53		2.1	0.53		ug/L	08/30/13 13:31	
Di-n-butyl phthalate	1.1		2.1	1.1		ug/L	08/30/13 13:31	-
Di-n-octyl phthalate	0.53		2.1	0.53		ug/L	08/30/13 13:31	
Surrogate	%Recovery Qu	ıalifier	Limits			Prepared	Analyzed	Dil Fa
2-Fluorobiphenyl (Surr)	56		50 - 110			08/21/13 09:37	08/30/13 13:31	
2-Fluorophenol (Surr)	52		20 - 110			08/21/13 09:37	08/30/13 13:31	
Nitrobenzene-d5 (Surr)	56		40 - 110			08/21/13 09:37	08/30/13 13:31	
Phenol-d5 (Surr)	59		10 - 115			08/21/13 09:37	08/30/13 13:31	
Terphenyl-d14 (Surr)	68		50 - 135			08/21/13 09:37	08/30/13 13:31	
2,4,6-Tribromophenol (Surr)	79		40 - 125			08/21/13 09:37	08/30/13 13:31	
Method: 8081/DOD - Organoo	chlorine Pesticides (G	SC)						
Analyte		Qualifier	LOQ	LOD	DL	Unit D	Analyzed	Dil Fa
4,4'-DDD	0.021	UQ	0.053	0.021	0.010	ug/L	08/23/13 21:54	- 1
4,4'-DDE	0.021	U	0.053	0.021	0.010	ug/L	08/23/13 21:54	
4,4'-DDT	0.021	U	0.053	0.021	0.017	ug/L	08/23/13 21:54	
Aldrin	0.021	U	0.032	0.021	0.0087	ug/L	08/23/13 21:54	
alpha-BHC	0.021	U	0.032	0.021	0.0074		08/23/13 21:54	
alpha-Chlordane	0.021	U	0.053	0.021	0.015	ug/L	08/23/13 21:54	
beta-BHC	0.021		0.053	0.021	0.0089		08/23/13 21:54	
delta-BHC	0.038		0.053	0.021	0.0093		08/23/13 21:54	
Dieldrin	0.021		0.032	0.021	0.0080	7.25	08/23/13 21:54	
Endosulfan I	0.021		0.053	0.021	0.014		08/23/13 21:54	
Endosulfan II	0.021		0.053	0.021	0.013		08/23/13 21:54	
Endosulfan sulfate	0.021		0.053	0.021	0.012		08/23/13 21:54	
Endrin	0.021		0.053	0.021	0.012		08/23/13 21:54	
Endrin aldehyde	0.021		0.053	0.021	0.012		08/23/13 21:54	
Endrin ketone	0.021		0.053	0.021	0.0083		08/23/13 21:54	
gamma-BHC (Lindane)	0.021		0.053	0.021	0.0068	Acres Addition	08/23/13 21:54	
gamma-Chlordane	0.021		0.053	0.021	0.013		08/23/13 21:54	
Heptachlor	0.021		0.032	0.021	0.0085		08/23/13 21:54	
Heptachlor epoxide	0.021		0.032	0.021	0.0076		08/23/13 21:54	
Methoxychlor	0.053		0.11	0.053	0.034		08/23/13 21:54	
Toxaphene	0.85		2.1	0.85		ug/L	08/23/13 21:54	
Surrogate	%Recovery Qu	ıalifier	Limits			Prepared	Analyzed	Dil Fa
DCB Decachlorobiphenyl	30	- Allines	30 - 135			08/20/13 11:25	08/23/13 21:54	
DCB Decachlorobiphenyl	33		30 - 135			08/20/13 11:25	08/23/13 21:54	
Tetrachloro-m-xylene	72		25 - 140			08/20/13 11:25	08/23/13 21:54	
Tetrachloro-m-xylene	77		25 - 140			08/20/13 11:25	08/23/13 21:54	
Method: 8330 Modified - Nitro	oquanidine (HPLC)							
Analyte	and the second s	Qualifier	LOQ	LOD	DL	Unit D	Analyzed	Dil Fa
Nitroguanidine	6.0	U	20	6.0	2.4	ug/L	08/26/13 12:46	

Client: Environmental Quality Mgt., Inc.

Project/Site: RVAAP66 (OH)

TestAmerica Job ID: 240-28110-1

Lab Sample ID: 240-28110-17

Matrix: Water

Client Sample ID: FWGFWGmw-004-0346-GW

Date Collected: 08/19/13 17:08 Date Received: 08/20/13 08:03

Analyte	Result	Qualifier	L	.00	LOD	DL	Unit D	Analyzed	Dil Fac
1,3,5-Trinitrobenzene	0.050	U	().15	0.050	0.031	ug/L	08/27/13 22:43	1
1,3-Dinitrobenzene	0.10	U	(0.15	0.10	0.050	ug/L	08/27/13 22:43	1
2,4,6-Trinitrotoluene	0.10	U	().15	0.10	0.050	ug/L	08/27/13 22:43	1
2,4-Dinitrotoluene	0.10	U	(0.13	0.10	0.050	ug/L	08/27/13 22:43	1
2,6-Dinitrotoluene	0.10	U	(0.13	0.10	0.050	ug/L	08/27/13 22:43	1
2-Amino-4,6-dinitrotoluene	0.10	U	(0.15	0.10	0.015	ug/L	08/27/13 22:43	1
2-Nitrotoluene	0.10	U	(0.50	0.10	0.089	ug/L	08/27/13 22:43	1
3-Nitrotoluene	0.10	U	(0.50	0.10	0.058	ug/L	08/27/13 22:43	1
4-Nitrotoluene	0.10	U	(0.50	0.10	0.089	ug/L	08/27/13 22:43	1
4-Amino-2,6-dinitrotoluene	0.10	U	(0.15	0.10	0.050	ug/L	08/27/13 22:43	1
HMX	0.050	U		0.15	0.050	0.036	ug/L	08/27/13 22:43	-1
RDX	0.050	U	().15	0.050	0.036	ug/L	08/27/13 22:43	1
Nitrobenzene	0.10	U	().15	0.10	0.050	ug/L	08/27/13 22:43	1
Tetryl	0.10	U	(0.15	0.10	0.050	ug/L	08/27/13 22:43	- 1
Nitroglycerin	0.50	U	(0.66	0.50	0.33	ug/L	08/27/13 22:43	1
PETN	0.50	U		0.66	0.50	0.30	ug/L	08/27/13 22:43	1
Surrogate	%Recovery Qu	alifier	Limits				Prepared	Analyzed	Dil Fac
3,4-Dinitrotoluene	90		79 - 111				08/23/13 08:00	08/27/13 22:43	1

General Chemistry Analyte	Result	Qualifier	Log	LOD	DL	Unit	D	Analyzed	Dil Fac
Cyanide, Total	0.010	U	0.010	0.010	0.0032	mg/L		08/22/13 14:08	1
Nitrocellulose	1.0	U	2.0	1.0	0.48	mg/L		09/04/13 15:06	1

Client: Environmental Quality Mgt., Inc.

Project/Site: RVAAP66 (OH)

TestAmerica Job ID: 240-28110-1

Lab Sample ID: 240-28110-18

Matrix: Water

Client Sample ID: FWGFWGmw-004-0346-GF Date Collected: 08/19/13 17:08

Date Received: 08/20/13 08:03

Hg

Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
Arsenic	10	U	10	10	3.3	ug/L		09/09/13 10:09	1
Chromium	4.0	U	7.0	4.0	1.4	ug/L		09/09/13 10:09	1
Cobalt	4.0	U	7.0	4.0	1.5	ug/L		09/09/13 10:09	1
Lead	5.0	U	10	5.0	1.7	ug/L		09/09/13 10:09	1
Selenium	10	U	15	10	4.0	ug/L		09/09/13 10:09	1
Silver	5.0	U	7.0	5.0	1.7	ug/L		09/09/13 10:09	1
Vanadium	4.0	U	7.0	4.0	1.3	ug/L		09/09/13 10:09	1
Barium	23	J	200	5.0	2.8	ug/L		09/09/13 10:09	1
Calcium	96000		5000	1000	630	ug/L		09/09/13 10:09	1
Copper	10	U	25	10	4.4	ug/L		09/09/13 10:09	1
Magnesium	47000		5000	300	120	ug/L		09/09/13 10:09	1
Manganese	2.4	J	15	5.0	1.8	ug/L		09/09/13 10:09	11
Nickel	5.0	U	40	5.0	2.2	ug/L		09/09/13 10:09	-1
Potassium	710	J	5000	900	300	ug/L		09/09/13 10:09	1
Method: 6020/DOD - Metals	(ICP/MS) - Total Recov	/erable							
Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
Aluminum	60	U	60	60	20	ug/L	= =	09/09/13 13:34	1
Antimony	1.0	U	2.0	1.0	0.33	ug/L		09/09/13 13:34	1
Beryllium	1.0	U	1.0	1.0	0.50	ug/L		09/09/13 13:34	1
Cadmium	1.0	U	2.0	1.0	0.40	ug/L		09/09/13 13:34	1
Iron	100	U	150	100	44	ug/L		09/09/13 13:34	1
Sodium	4700		1000	400	160	ug/L		09/09/13 13:34	1
Thallium	1.5	U	2.0	1.5	0.79	ug/L		09/09/13 13:34	1
Zinc	50	U	50	50	27	ug/L		09/09/13 13:34	1
Method: 7470A/DOD - Merci	ury (CVAA)								
Analyte		Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac

0.20

0.20

0.12 ug/L

0.20 U

TestAmerica Canton

08/22/13 12:32

Client: Environmental Quality Mgt., Inc.

Project/Site: RVAAP66 (OH)

Lab Sample ID: 240-28110-19

TestAmerica Job ID: 240-28110-1

Matrix: Water

Client Sample ID: FWGTEAM3-TRIP Date Collected: 08/19/13 11:00

Date Received: 08/20/13 08:03

Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fa
,1,1-Trichloroethane	0.25	U	1.0	0.25	0.22	ug/L		08/28/13 15:23	
,1,2,2-Tetrachloroethane	0.25	U	1.0	0.25	0.18	ug/L		08/28/13 15:23	-
,1,2-Trichloroethane	0.50	U	1.0	0.50	0.27	ug/L		08/28/13 15:23	
,1-Dichloroethane	0.25	U	1.0	0.25	0.15	ug/L		08/28/13 15:23	
,1-Dichloroethene	0.25	U	1.0	0.25	0.19	ug/L		08/28/13 15:23	
,2-Dichloroethane	0.25	U	1.0	0.25	0.22	ug/L		08/28/13 15:23	
,2-Dichloroethene, Total	0.25	U	2.0	0.25	0.17	ug/L		08/28/13 15:23	
,2-Dichloropropane	0.25	U	1.0	0.25	0.18	ug/L		08/28/13 15:23	
2-Hexanone	0.50	U	10	0.50	0.41	ug/L		08/28/13 15:23	
Bromochloromethane	0.50	U	1.0	0.50	0.29	ug/L		08/28/13 15:23	
Acetone	1.1	J	10	1.1	1.1	ug/L		08/28/13 15:23	
Benzene	0.25	U	1.0	0.25	0.13	ug/L		08/28/13 15:23	
Bromoform	0.64	U	1.0	0.64	0.64	ug/L		08/28/13 15:23	
Bromomethane	0.50	U	1.0	0.50	0.41	ug/L		08/28/13 15:23	
Carbon disulfide	0.25	U	1.0	0.25	0.13	ug/L		08/28/13 15:23	
Carbon tetrachloride	0.25	U	1.0	0.25	0.13	ug/L		08/28/13 15:23	
Chlorobenzene	0.25	U	1.0	0.25	0.15	ug/L		08/28/13 15:23	
Chloroethane	0.50	U	1.0	0.50	0.29	ug/L		08/28/13 15:23	
Chloroform	0.25	U	1.0	0.25	0.16	ug/L		08/28/13 15:23	
Chloromethane	0.50	U	1.0	0.50	0.30	ug/L		08/28/13 15:23	
is-1,2-Dichloroethene	0.25	U	1.0	0.25	0.17	ug/L		08/28/13 15:23	
is-1,3-Dichloropropene	0.25	U	1.0	0.25	0.14	ug/L		08/28/13 15:23	
Bromodichloromethane	0.25	U	1.0	0.25	0.15	ug/L		08/28/13 15:23	
Ethylbenzene	0.25	U	1.0	0.25	0.17	ug/L		08/28/13 15:23	
,2-Dibromoethane	0.25	Ü	1.0	0.25	0.24	ug/L		08/28/13 15:23	
n-Xylene & p-Xylene	0.50	U	2.0	0.50	0.24	ug/L		08/28/13 15:23	
2-Butanone (MEK)	0.57	U	10	0.57	0.57	ug/L		08/28/13 15:23	
-Methyl-2-pentanone (MIBK)	0.50	U	10	0.50	0.32	ug/L		08/28/13 15:23	
Methylene Chloride	0.52	J	1.0	0.50	0.33	ug/L		08/28/13 15:23	
-Xylene	0.25	U	1.0	0.25	0.14	ug/L		08/28/13 15:23	
Styrene	0.25	U	1.0	0.25	0.11	ug/L		08/28/13 15:23	
etrachloroethene	0.50	U	1.0	0.50	0.29	ug/L		08/28/13 15:23	
oluene	0.25	U	1.0	0.25	0.13	ug/L		08/28/13 15:23	
rans-1,2-Dichloroethene	0.25	U	1.0	0.25	0.19	ug/L		08/28/13 15:23	
rans-1,3-Dichloropropene	0.25	U	1.0	0.25		ug/L		08/28/13 15:23	
richloroethene	0.25	U	1.0	0.25		ug/L		08/28/13 15:23	
/inyl chloride	0.25	U	1.0	0.25	0.22	ug/L		08/28/13 15:23	
Kylenes, Total	0.25	U	2.0	0.25	0.14			08/28/13 15:23	
Dibromochloromethane	0.25	U	1.0	0.25	0.18			08/28/13 15:23	

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	111		70 - 120		08/28/13 15:23	1
4-Bromofluorobenzene (Surr)	93		75 - 120		08/28/13 15:23	1
Toluene-d8 (Surr)	89		85 - 120		08/28/13 15:23	1
Dibromofluoromethane (Surr)	103		85 - 115		08/28/13 15:23	1

TestAmerica Canton

Page 47 of 142

Client: Environmental Quality Mgt., Inc.

Project/Site: RVAAP66 (OH)

TestAmerica Job ID: 240-28110-1

Lab Sample ID: 240-28110-20

Matrix: Water

Client Sample ID: FWGRQLmw-009C-0371-GW Date Collected: 08/19/13 13:23

Date Received: 08/20/13 08:03

Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	2 Analyzed	Dil Fac
1,1,1-Trichloroethane	0.25	U	1.0	0.25	0.22	ug/L	08/28/13 15:45	1
1,1,2,2-Tetrachloroethane	0.25	U	1.0	0.25	0.18	ug/L	08/28/13 15:45	1
1,1,2-Trichloroethane	0.50	U	1.0	0.50	0.27	ug/L	08/28/13 15:45	1
1,1-Dichloroethane	0.25	U	1.0	0.25	0.15	ug/L	08/28/13 15:45	1
1,1-Dichloroethene	0.25	U	1.0	0.25	0.19	ug/L	08/28/13 15:45	1
1,2-Dichloroethane	0.25	U	1.0	0.25	0.22	ug/L	08/28/13 15:45	1
1,2-Dichloroethene, Total	0.25	U	2.0	0.25	0.17	ug/L	08/28/13 15:45	1
1,2-Dichloropropane	0.25	U	1.0	0.25	0.18	ug/L	08/28/13 15:45	1
2-Hexanone	0.50	U	10	0.50	0.41	ug/L	08/28/13 15:45	1
Bromochloromethane	0.50	U	1.0	0.50	0.29	ug/L	08/28/13 15:45	1
Acetone	3.2	J	10	1.1	1.1	ug/L	08/28/13 15:45	1
Benzene	0.25	U	1.0	0.25	0.13	ug/L	08/28/13 15:45	1
Bromoform	0.64	U	1.0	0.64	0.64	ug/L	08/28/13 15:45	1
Bromomethane	0.50	U	1.0	0.50	0.41	ug/L	08/28/13 15:45	1
Carbon disulfide	0.25	U	1.0	0.25	0.13	ug/L	08/28/13 15:45	1
Carbon tetrachloride	0.25	U	1.0	0.25	0.13	ug/L	08/28/13 15:45	1
Chlorobenzene	0.25	U	1.0	0.25	0.15	ug/L	08/28/13 15:45	1
Chloroethane	0.50	U	1.0	0.50	0.29	ug/L	08/28/13 15:45	1
Chloroform	0.25	U	1.0	0.25	0.16	ug/L	08/28/13 15:45	1
Chloromethane	0.50	U	1.0	0.50	0.30	ug/L	08/28/13 15:45	1
cis-1,2-Dichloroethene	0.25	U	1.0	0.25	0.17	ug/L	08/28/13 15:45	1
cis-1,3-Dichloropropene	0.25	U	1.0	0.25	0.14	ug/L	08/28/13 15:45	1
Bromodichloromethane	0.25	U	1.0	0.25	0.15	ug/L	08/28/13 15:45	1
Ethylbenzene	0.25	U	1.0	0.25	0.17	ug/L	08/28/13 15:45	1
1,2-Dibromoethane	0.25	Ū	1.0	0.25	0.24	ug/L	08/28/13 15:45	1
m-Xylene & p-Xylene	0.50	U	2.0	0.50	0.24	ug/L	08/28/13 15:45	4
2-Butanone (MEK)	0.57	U	10	0.57	0.57	ug/L	08/28/13 15:45	1
4-Methyl-2-pentanone (MIBK)	0.50	U	10	0.50	0.32	ug/L	08/28/13 15:45	1
Methylene Chloride	0.50	U	1.0	0.50	0.33	ug/L	08/28/13 15:45	1
o-Xylene	0.25	U	1.0	0.25	0.14	ug/L	08/28/13 15:45	1
Styrene	0.25	U	1.0	0.25	0.11	ug/L	08/28/13 15:45	- 1
Tetrachloroethene	0.50	U	1.0	0.50	0.29	ug/L	08/28/13 15:45	1
Toluene	0.25	U	1.0	0.25	0:13	ug/L	08/28/13 15:45	1
trans-1,2-Dichloroethene	0.25	U	1.0	0.25	0.19	ug/L	08/28/13 15:45	1
trans-1,3-Dichloropropene	0.25	U	1.0	0.25	0.19	ug/L	08/28/13 15:45	1
Trichloroethene	0.25	U	1.0	0.25	0.17		08/28/13 15:45	1
Vinyl chloride	0.25		1.0	0.25	0.22	ug/L	08/28/13 15:45	1
Xylenes, Total	0.25		2.0	0.25	0.14	ug/L	08/28/13 15:45	1
Dibromochloromethane	0,25		1.0	0.25	0.18	2.00	08/28/13 15:45	1
Surrogate	%Recovery Qu	ralifion I	imits			Prepared	Analyzed	Dil Fac

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	111	70 - 120		08/28/13 15:45	1
4-Bromofluorobenzene (Surr)	90	75 - 120		08/28/13 15:45	1
Toluene-d8 (Surr)	88	85 - 120		08/28/13 15:45	1
Dibromofluoromethane (Surr)	103	85 115		08/28/13 15:45	1

Method: 8270C/DoD -	Semivolatile Organi	c Compounds (GC/MS)
		1

Analyte		Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
Acenaphthene	0.095	U	0.19	0.095	0.042	ug/L		08/29/13 15:30	- 1
Acenaphthylene	0.095	U	0.19	0.095	0.046	ug/L		08/29/13 15:30	1

Client: Environmental Quality Mgt., Inc.

Project/Site: RVAAP66 (OH)

TestAmerica Job ID: 240-28110-1

Lab Sample ID: 240-28110-20

Matrix: Water

Client Sample ID: FWGRQLmw-009C-0371-GW

Date Collected: 08/19/13 13:23 Date Received: 08/20/13 08:03

nalyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil F
nthracene	0.095	U	0.19	0.095	0.084	ug/L		08/29/13 15:30	
enzo[a]anthracene	0.095	U	0.19	0.095	0.028	ug/L		08/29/13 15:30	
enzo[a]pyrene	0.095	U	0.19	0.095	0.049	ug/L		08/29/13 15:30	
enzo[b]fluoranthene	0.095	U	0.19	0.095	0.038	ug/L		08/29/13 15:30	
enzo[g,h,i]perylene	0.095	U	0.19	0.095	0.044	ug/L		08/29/13 15:30	
enzoic acid	19	U	24	19	9.5	ug/L		08/29/13 15:30	
enzo[k]fluoranthene	0.095	U	0.19	0.095	0.043	ug/L		08/29/13 15:30	
enzyl alcohol	0.48	U	4.8	0.48	0.36	ug/L		08/29/13 15:30	
s(2-chloroethoxy)methane	0.48	U	0.95	0.48	0.30	ug/L		08/29/13 15:30	
s(2-chloroethyl)ether	0.095	Ü	0.95	0.095	0.095	ug/L		08/29/13 15:30	
s(2-ethylhexyl) phthalate	0.37	J	1.9	0.48	0.21	ug/L		08/29/13 15:30	
Bromophenyl phenyl ether	0.48		1.9	0.48	0.21	ug/L		08/29/13 15:30	
ityl benzyl phthalate	0.48	U	1.9	0.48	0.25	ug/L		08/29/13 15:30	
arbazole	0.48		0.95	0.48	0.27	ug/L		08/29/13 15:30	
Chloroaniline	0.48		1.9	0.48	0.20	ug/L		08/29/13 15:30	
Chloro-3-methylphenol	0.48		1.9	0.48	0.20	ug/L		08/29/13 15:30	
Chloronaphthalene	0.48		0.95	0.48	0.095	ug/L		08/29/13 15:30	
Chlorophenol	0.48		0.95	0.48	0.28	ug/L		08/29/13 15:30	
Chlorophenyl phenyl ether	0.48		1.9	0.48	0.29	ug/L		08/29/13 15:30	
rysene	0.095		0.19	0.095	0.048			08/29/13 15:30	
penz(a,h)anthracene	0.095		0.19	0.095	0.042			08/29/13 15:30	
enz(a,n)anurracene enzofuran	0.095		0.19	0.095				08/29/13 15:30	
-Dichlorobenzene	0.48		0.95	0.48	0.019	ug/L		08/29/13 15:30	
	0.48		0.95					08/29/13 15:30	
-Dichlorobenzene				0.48		ug/L			
-Dichlorobenzene	0.48		0.95	0.48		ug/L		08/29/13 15:30	
'-Dichlorobenzidine	0.95		4.8	0.95	0.35	ug/L		08/29/13 15:30	
-Dichlorophenol	0.48		1.9	0.48	0.18	ug/L		08/29/13 15:30	
thyl phthalate	0.95		1.9	0.95		ug/L		08/29/13 15:30	
-Dimethylphenol	0.48		1.9	0.48		ug/L		08/29/13 15:30	
nethyl phthalate	0.48		1.9	0.48	0.28	ug/L		08/29/13 15:30	
n-butyl phthalate	0.95		1.9	0.95	0.64	ug/L		08/29/13 15:30	
-Dinitro-2-methylphenol	3.8		4.8	3.8	2.3	ug/L		08/29/13 15:30	
-Dinitrophenol	0.95		4.8	0.95	0.30	ug/L		08/29/13 15:30	
n-octyl phthalate	0.48	U	1.9	0.48	0.22	ug/L		08/29/13 15:30	
oranthene	0.095	U	0.19	0.095	0.042	ug/L		08/29/13 15:30	
orene	0.095	U	0.19	0.095	0.039	ug/L		08/29/13 15:30	
xachlorobenzene	0.095	U	0.19	0.095	0.081	ug/L		08/29/13 15:30	
xachlorobutadiene	0.48	U	0.95	0.48	0.26	ug/L		08/29/13 15:30	
xachlorocyclopentadiene	0.48	U	9.5	0.48	0.23	ug/L		08/29/13 15:30	
xachloroethane	0.48	U	0.95	0.48	0.18	ug/L		08/29/13 15:30	
eno[1,2,3-cd]pyrene	0.095	U	0.19	0.095	0.041	ug/L		08/29/13 15:30	
phorone	0.48	U	0.95	0.48	0.26	ug/L		08/29/13 15:30	
Methylnaphthalene	0.095	U	0.19	0.095	0.086	ug/L		08/29/13 15:30	
Methylphenol	0.48	U	0.95	0.48	0.16	ug/L		08/29/13 15;30	
4 Methylphenol	0.95	U	1.9	0.95	0.76	ug/L		08/29/13 15:30	
phthalene	0.095	U	0.19	0.095	0.060			08/29/13 15:30	
Vitroaniline	0.48		1.9	0.48		ug/L		08/29/13 15:30	
Vitroaniline	0.48		1.9	0.48		ug/L		08/29/13 15:30	
Vitroaniline	0.48		1.9	0.48		ug/L		08/29/13 15:30	

TestAmerica Canton

3

E

Ü

9

Ü

13

14

110

Client: Environmental Quality Mgt., Inc.

Project/Site: RVAAP66 (OH)

TestAmerica Job ID: 240-28110-1

Lab Sample ID: 240-28110-20

Matrix: Water

Client Sample ID: FWGRQL	mw-009C-0371-GW
--------------------------	-----------------

Date Collected: 08/19/13 13:23 Date Received: 08/20/13 08:03

Toxaphene

Analyte	Resu	lt Qualifier	LOQ	LOD	DL	Unit D	Analyzed	Dil Fac
2-Nitrophenol	0.4	8 U	1.9	0.48	0.27	ug/L	08/29/13 15:30	1
4-Nitrophenol	3.	8 U	4.8	3.8	0.28	ug/L	08/29/13 15:30	1
N-Nitrosodi-n-propylamine	0.4	8 U	0.95	0.48	0.23	ug/L	08/29/13 15:30	1
N-Nitrosodiphenylamine	0.4	8 U	0.95	0.48	0.30	ug/L	08/29/13 15:30	1
2,2'-oxybis[1-chloropropane]	0.4	8 U	0.95	0.48	0.38	ug/L	08/29/13 15:30	1.
Pentachlorophenol	0.9	5 U	4.8	0.95	0.26	ug/L	08/29/13 15:30	1
Phenanthrene	0.09	5 U	0.19	0.095	0.059	ug/L	08/29/13 15:30	1
Phenol	0.9	5 U	0.95	0.95	0.57	ug/L	08/29/13 15:30	1
Pyrene	0.09	5 U	0.19	0.095	0.040	ug/L	08/29/13 15:30	1
1,2,4-Trichlorobenzene	0.4	8 U	0.95	0.48	0.27	ug/L	08/29/13 15:30	1
2,4,5-Trichlorophenol	0.4	8 U	4.8	0.48	0.29	ug/L	08/29/13 15:30	1
2,4,6-Trichlorophenol	0.4	8 U	4.8	0.48	0.23	ug/L	08/29/13 15:30	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl (Surr)	73		50 - 110			08/21/13 09:37	08/29/13 15:30	1
2-Fluorophenol (Surr)	75.		20 - 110			08/21/13 09:37	08/29/13 15:30	1
Nitrobenzene-d5 (Surr)	75		40 - 110			08/21/13 09:37	08/29/13 15:30	1
Phenol-d5 (Surr)	80		10 - 115			08/21/13 09:37	08/29/13 15:30	1
Terphenyl-d14 (Surr)	81		50 - 135			08/21/13 09:37	08/29/13 15:30	1
2,4,6-Tribromophenol (Surr)	98		40 - 125			08/21/13 09:37	08/29/13 15:30	1

Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
4,4'-DDD	0.019	UQ	0.048	0.019	0.0091	ug/L		08/23/13 22:15	1
4,4'-DDE	0.019	U	0.048	0.019	0.0092	ug/L		08/23/13 22:15	-1
4,4'-DDT	0.019	U	0.048	0.019	0.015	ug/L		08/23/13 22:15	- 1
Aldrin	0.019	U	0.029	0.019	0.0078	ug/L		08/23/13 22:15	1
alpha-BHC	0.019	U	0.029	0.019	0.0067	ug/L		08/23/13 22:15	1
alpha-Chlordane	0.019	U	0.048	0.019	0.013	ug/L		08/23/13 22:15	1
beta-BHC	0.019	U	0.048	0.019	0.0080	ug/L		08/23/13 22:15	1
delta-BHC	0.019	J	0.048	0.019	0.0083	ug/L		08/23/13 22:15	1
Dieldrin	0.019	U	0.029	0.019	0.0071	ug/L		08/23/13 22:15	1
Endosulfan I	0.019	U	0.048	0.019	0.012	ug/L		08/23/13 22:15	1
Endosulfan II	0.019	U	0.048	0.019	0.011	ug/L		08/23/13 22:15	1
Endosulfan sulfate	0.019	U	0.048	0.019	0.010	ug/L		08/23/13 22:15	1
Endrin	0.019	U	0.048	0.019	0.010	ug/L		08/23/13 22:15	1
Endrin aldehyde	0.019	U	0.048	0.019	0.010	ug/L		08/23/13 22:15	1
Endrin ketone	0.019	U	0.048	0.019	0.0074	ug/L		08/23/13 22:15	1
gamma-BHC (Lindane)	0.019	U	0.048	0.019	0.0061	ug/L		08/23/13 22:15	9
gamma-Chlordane	0.019	U	0.048	0.019	0.011	ug/L		08/23/13 22:15	1
Heptachlor	0.019	U	0.029	0.019	0.0076	ug/L		08/23/13 22:15	1
Heptachlor epoxide	0.019	U	0.029	0.019	0.0068	ug/L		08/23/13 22:15	1
Methoxychlor	0.048	U	0.095	0.048	0.030	ug/L		08/23/13 22:15	- 1

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
DCB Decachlorobiphenyl	40		30 - 135	08/20/13 11:25	08/23/13 22:15	1
DCB Decachlorobiphenyl	44		30 - 135	08/20/13 11:25	08/23/13 22:15	1
Tetrachloro-m-xylene	79		25 - 140	08/20/13 11:25	08/23/13 22:15	1
Tetrachloro-m-xylene	86		25 - 140	08/20/13 11:25	08/23/13 22:15	1

0.30 ug/L

0.76 U

TestAmerica Canton

08/23/13 22:15

Page 50 of 142

Client: Environmental Quality Mgt., Inc.

Project/Site: RVAAP66 (OH)

TestAmerica Job ID: 240-28110-1

Lab Sample ID: 240-28110-20

Matrix: Water

Client Sample ID: FWGRQLmw-009C-0371-GW Date Collected: 08/19/13 13:23

Date Received: 08/20/13 08:03

Nitrocellulose

Arcolor-1016	Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
Noncincritication 1.0 1.	Aroclor-1016	0.19	U	0.48	0.19	0.16	ug/L		08/29/13 01:51	1
Control-1242	Aroclor-1221	0.19	U	0.48	0.19	0.12	ug/L		08/29/13 01:51	1
Analyzed 1,000	Aroclor-1232	0.19	U	0.48	0.19	0.15	ug/L		08/29/13 01:51	1
Analyzed 10.19 10.048 0.19 0.15 10.16 1	Aroclor-1242	0.38	U	0.48	0.38	0.21	ug/L		08/29/13 01:51	1
Comparison Com	roclor-1248	0.19	U	0.48	0.19	0.095	ug/L		08/29/13 01:51	1
Surgoste	Aroclor-1254	0.19	U	0.48	0.19	0.15	ug/L		08/29/13 01:51	1
Part	Aroclor-1260	0.19	U	0.48	0.19	0.16	ug/L		08/29/13 01:51	1
Second Comment Sec	Surrogate	%Recovery Qu	ualifier	Limits			Prep	pared	Analyzed	Dil Fac
Column C	Tetrachloro-m-xylene	81		40 - 140			08/20/1	13 11:31	08/29/13 01:51	1
Method: 8330 Modified - Nitroguanidine (HPLC) Inabyte Result Qualifier LOQ LOD DL Unit D Analyzed Method: 8330 A - Nitroaromatics and Nitramines Nanayte Result Qualifier LOQ LOD DL Unit D Analyzed Method: 8330 A - Nitroaromatics and Nitramines Nanayte Result Qualifier LOQ LOD DL Unit D Analyzed Method: 8330 A - Nitroaromatics and Nitramines Nanayte Result Qualifier LOQ LOD DL Unit D Analyzed Method: 8330 A - Nitroaromatics and Nitramines Nanayte Result Qualifier LOQ LOD DL Unit D Analyzed Method: 8330 A - Nitroaromatics and Nitramines Nanayte Result Qualifier LOQ LOD DL Unit D Analyzed Method: 8330 A - Nitroaromatics and Nitramines Nanayte Na	Tetrachloro-m-xylene	84		40 - 140			08/20/1	3 11:31	08/29/13 01:51	1
Method: 8330 Modified - Nitroguanidine (HPLC) Analyte Result 6.0 U 20 6.0 U 10 U	DCB Decachlorobiphenyl	29 Q		40 - 135			08/20/1	13 11:31	08/29/13 01:51	1
Analyte Result Qualifier LOQ LOD DL Unit D Analyzed Method: 8330A - Nitroaromatics and Nitramines Result Qualifier LOQ LOD DL Unit D Analyzed Analyte Result Qualifier LOQ LOD DL Unit D 08/27/13 23:27 1,3-5-Initroblenzene 0.10 U 0.15 0.10 0.051 ug/L 08/27/13 23:27 2,4-6-Trinitrobluene 0.10 U 0.15 0.10 0.051 ug/L 08/27/13 23:27 2,4-Dinitrotoluene 0.10 U 0.13 0.10 0.051 ug/L 08/27/13 23:27 2,4-Dinitrotoluene 0.10 U 0.13 0.10 0.051 ug/L 08/27/13 23:27 2,4-Dinitrotoluene 0.10 U 0.15 0.10 0.051 ug/L 08/27/13 23:27 2,4-Dinitrotoluene 0.10 U 0.51 0.10 0.051 ug/L 08/27/13 23:27	DCB Decachlorobiphenyl	23 Q		40 - 135			08/20/1	3 11:31	08/29/13 01:51	1
Analyte Result Qualifier LOQ LOD DL Unit D Analyzed Method: 8330A - Nitroaromatics and Nitramines Result Qualifier LOQ LOD DL Unit D Analyzed Analyte Result Qualifier LOQ LOD DL Unit D 08/27/13 23:27 1,3-5-Initroblenzene 0.10 U 0.15 0.10 0.051 ug/L 08/27/13 23:27 2,4-6-Trinitrobluene 0.10 U 0.15 0.10 0.051 ug/L 08/27/13 23:27 2,4-Dinitrotoluene 0.10 U 0.13 0.10 0.051 ug/L 08/27/13 23:27 2,4-Dinitrotoluene 0.10 U 0.13 0.10 0.051 ug/L 08/27/13 23:27 2,4-Dinitrotoluene 0.10 U 0.15 0.10 0.051 ug/L 08/27/13 23:27 2,4-Dinitrotoluene 0.10 U 0.51 0.10 0.051 ug/L 08/27/13 23:27	Method: 8330 Modified - Nitro	guanidine (HPLC)								
Method: 8330A - Nitroaromatics and Nitramines Result Nanlyte Qualifier LOQ LOD DL Unit D Analyzed 1,3-F-Trinitrobenzene 0.051 U 0.15 0.051 0.032 ug/L 08/27/13 23:27 2,4,6-Trinitrobluene 0.10 U 0.15 0.10 0.051 ug/L 08/27/13 23:27 2,4-G-Trinitrobluene 0.10 U 0.13 0.10 0.051 ug/L 08/27/13 23:27 2,4-G-Trinitrobluene 0.10 U 0.13 0.10 0.051 ug/L 08/27/13 23:27 2,4-Dinitrobluene 0.10 U 0.13 0.10 0.051 ug/L 08/27/13 23:27 2,4-Dinitrobluene 0.10 U 0.15 0.10 0.051 ug/L 08/27/13 23:27 2,4-Dinitrobluene 0.10 U 0.51 0.10 0.051 ug/L 08/27/13 23:27 2,4-Dinitrobluene 0.10 U 0.51 0.10 0.059 ug/L 08/27/13 23:27 4-Dinitrob			Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
Analyte Result Qualifier LOQ LOD DL Unit D Analyzed 1,3,5-Trinitrobenzene 0,051 U 0,15 0,051 0,032 ug/L 08/27/13 23:27 2,4,6-Trinitrobluene 0,10 U 0,15 0,10 0,051 ug/L 08/27/13 23:27 2,4-Dinitrobluene 0,10 U 0,13 0,10 0,051 ug/L 08/27/13 23:27 2,4-Dinitrobluene 0,10 U 0,13 0,10 0,051 ug/L 08/27/13 23:27 2,4-Dinitrobluene 0,10 U 0,13 0,10 0,051 ug/L 08/27/13 23:27 2,4-Mino-4,6-dinitrobluene 0,10 U 0,15 0,10 0,051 ug/L 08/27/13 23:27 2-Nitrobluene 0,10 U 0,51 0,10 0,090 ug/L 08/27/13 23:27 4-Amino-2,6-dinitrobluene 0,10 U 0,15 0,10 0,091 ug/L 08/27/13 23:27 HMX 0,051 U <td>Vitroguanidine</td> <td>6.0</td> <td>U</td> <td>20</td> <td>6.0</td> <td>2.4</td> <td>ug/L</td> <td></td> <td>08/26/13 13:04</td> <td>1</td>	Vitroguanidine	6.0	U	20	6.0	2.4	ug/L		08/26/13 13:04	1
3,5-Trinitrobenzene 0,051 U 0,15 0,051 0,032 ug/L 0,057/13 23:27 3,3-Dinitrobenzene 0,10 U 0,15 0,10 0,051 ug/L 0,057/13 23:27 4,6-Trinitrotoluene 0,10 U 0,15 0,10 0,051 ug/L 0,057/13 23:27 4,4-Dinitrotoluene 0,10 U 0,13 0,10 0,051 ug/L 0,057/13 23:27 4,4-Dinitrotoluene 0,10 U 0,13 0,10 0,051 ug/L 0,057/13 23:27 4,4-Dinitrotoluene 0,10 U 0,13 0,10 0,051 ug/L 0,057/13 23:27 4,4-Dinitrotoluene 0,10 U 0,13 0,10 0,051 ug/L 0,057/13 23:27 4,4-Dinitrotoluene 0,10 U 0,15 0,10 0,051 ug/L 0,057/13 23:27 4,4-Dinitrotoluene 0,10 U 0,15 0,10 0,051 ug/L 0,057/13 23:27 4,4-Dinitrotoluene 0,10 U 0,15 0,10 0,051 ug/L 0,057/13 23:27 4,4-Dinitrotoluene 0,10 U 0,15 0,10 0,051 ug/L 0,057/13 23:27 4,4-Dinitrotoluene 0,10 U 0,15 0,10 0,051 ug/L 0,057/13 23:27 4,4-Dinitrotoluene 0,10 U 0,15 0,10 0,051 ug/L 0,057/13 23:27 4,5-Dinitrotoluene 0,10 U 0,15 0,10 0,051 ug/L 0,057/13 23:27 4,5-Dinitrotoluene 0,10 U 0,15 0,10 0,051 ug/L 0,057/13 23:27 4,5-Dinitrotoluene 0,10 U 0,15 0,10 0,051 ug/L 0,057/13 23:27 4,5-Dinitrotoluene 0,10 U 0,15 0,10 0,051 ug/L 0,057/13 23:27 4,5-Dinitrotoluene 0,10 U 0,15 0,10 0,051 ug/L 0,057/13 23:27 4,5-Dinitrotoluene 0,51 U 0,67 0,51 0,31 ug/L 0,057/13 23:27 4,5-Dinitrotoluene 0,51 U 0,67 0,51 0,31 ug/L 0,057/13 23:27 4,5-Dinitrotoluene 0,51 U 0,67 0,51 0,31 ug/L 0,057/13 23:27 4,5-Dinitrotoluene 0,51 U 0,67 0,51 0,31 ug/L 0,057/13 23:27 4,5-Dinitrotoluene 0,51 U 0,67 0,51 0,31 ug/L 0,057/13 23:27 4,5-Dinitrotoluene 0,51 U 0,67 0,51 0,31 ug/L 0,057/13 23:27 4,5-Dinitrotoluene 0,50 U	Method: 8330A - Nitroaromatic	cs and Nitramines								
3-Dinitrobenzene 0.10 U 0.15 0.10 0.051 ug/L 08/27/13 23:27 4-A-Dinitrobluene 0.10 U 0.15 0.10 0.051 ug/L 08/27/13 23:27 4-A-Dinitrobluene 0.10 U 0.13 0.10 0.051 ug/L 08/27/13 23:27 4-A-Dinitrobluene 0.10 U 0.13 0.10 0.051 ug/L 08/27/13 23:27 4-A-Dinitrobluene 0.10 U 0.13 0.10 0.051 ug/L 08/27/13 23:27 4-A-Dinitrobluene 0.10 U 0.15 0.10 0.051 ug/L 08/27/13 23:27 4-A-Dinitrobluene 0.10 U 0.15 0.10 0.090 ug/L 08/27/13 23:27 4-A-Dinitrobluene 0.10 U 0.51 0.10 0.090 ug/L 08/27/13 23:27 4-A-Dinitrobluene 0.10 U 0.51 0.10 0.090 ug/L 08/27/13 23:27 4-A-Dinitrobluene 0.10 U 0.15 0.10 0.090 ug/L 08/27/13 23:27 4-A-Dinitrobluene 0.10 U 0.15 0.10 0.051 ug/L 08/27/13 23:27 4-Dinitrobluene 0.10 U 0.15 0.051 0.037 ug/L 08/27/13 23:27 4-Dinitrobluene 0.10 U 0.15 0.051 0.037 ug/L 08/27/13 23:27 4-Dinitrobluene 0.10 U 0.15 0.10 0.051 ug/L 08/27/13 23:27 4-Dinitrobluene 0.10 U 0.15 0.10 0.051 ug/L 08/27/13 23:27 4-Dinitrobluene 0.10 U 0.15 0.10 0.051 ug/L 08/27/13 23:27 4-Dinitrobluene 0.10 U 0.15 0.10 0.051 ug/L 08/27/13 23:27 4-Dinitrobluene 0.10 U 0.15 0.10 0.051 ug/L 08/27/13 23:27 4-Dinitrobluene 0.51 U 0.67 0.51 0.34 ug/L 08/27/13 23:27 4-Dinitrobluene 0.51 U 0.67 0.51 0.34 ug/L 08/27/13 23:27 4-Dinitrobluene 0.51 U 0.67 0.51 0.31 ug/L 08/27/13 23:27 4-Dinitrobluene 0.51 U 0.67 0.51 0.34 ug/L 08/27/13 23:27 4-Dinitrobluene 0.51 U 0.67 0.51 0.34 ug/L 08/27/13 23:27 4-Dinitrobluene 0.51 U 0.67 0.51 0.34 ug/L 08/27/13 23:27 4-Dinitrobluene 0.51 U 0.67 0.51 0.	Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
.4,6-Trinitrotoluene	,3,5-Trinitrobenzene	0.051	U	0.15	0.051	0.032	ug/L		08/27/13 23:27	1
2.4-Dinitrotoluene 0.10 U 0.13 0.10 0.051 ug/L 08/27/13 23:27 0.6-Dinitrotoluene 0.10 U 0.13 0.10 0.051 ug/L 08/27/13 23:27 0.6-Dinitrotoluene 0.10 U 0.15 0.10 0.051 ug/L 08/27/13 23:27 0.6-Dinitrotoluene 0.10 U 0.55 0.10 0.015 ug/L 08/27/13 23:27 0.6-Dinitrotoluene 0.10 U 0.55 0.10 0.009 ug/L 08/27/13 23:27 0.6-Dinitrotoluene 0.10 U 0.55 0.10 0.090 ug/L 08/27/13 23:27 0.6-Dinitrotoluene 0.10 U 0.55 0.10 0.090 ug/L 08/27/13 23:27 0.6-Dinitrotoluene 0.10 U 0.55 0.10 0.090 ug/L 08/27/13 23:27 0.6-Dinitrotoluene 0.10 U 0.55 0.10 0.090 ug/L 08/27/13 23:27 0.6-Dinitrotoluene 0.10 U 0.55 0.10 0.090 ug/L 08/27/13 23:27 0.6-Dinitrotoluene 0.10 U 0.55 0.10 0.091 ug/L 08/27/13 23:27 0.6-Dinitrotoluene 0.10 U 0.15 0.051 0.037 ug/L 08/27/13 23:27 0.6-Dinitrotoluene 0.10 U 0.15 0.051 0.037 ug/L 08/27/13 23:27 0.6-Dinitrotoluene 0.10 U 0.15 0.051 0.037 ug/L 08/27/13 23:27 0.6-Dinitrotoluene 0.10 U 0.15 0.15 0.051 0.037 ug/L 08/27/13 23:27 0.6-Dinitrotoluene 0.10 U 0.15 0.10 0.051 ug/L 08/27/13 23:27 0.6-Dinitrotoluene 0.10 U 0.15 0.10 0.051 ug/L 08/27/13 23:27 0.6-Dinitrotoluene 0.10 U 0.15 0.10 0.051 ug/L 08/27/13 23:27 0.6-Dinitrotoluene 0.5-Dinitrotoluene 0.5-Dinit	,3-Dinitrobenzene	0.10	U	0.15	0.10	0.051	ug/L		08/27/13 23:27	1
6.6-Dinitrotoluene 0.10 U 0.13 0.10 0.051 ug/L 08/27/13 23:27 0.4-Amino-4,6-dinitrotoluene 0.10 U 0.15 0.10 0.015 ug/L 08/27/13 23:27 0.4-Amino-4,6-dinitrotoluene 0.10 U 0.51 0.10 0.090 ug/L 08/27/13 23:27 0.4-Nitrotoluene 0.10 U 0.51 0.10 0.090 ug/L 08/27/13 23:27 0.4-Nitrotoluene 0.10 U 0.51 0.10 0.090 ug/L 08/27/13 23:27 0.4-Nitrotoluene 0.10 U 0.51 0.10 0.090 ug/L 08/27/13 23:27 0.4-Amino-2,6-dinitrotoluene 0.10 U 0.51 0.10 0.090 ug/L 08/27/13 23:27 0.4-Amino-2,6-dinitrotoluene 0.10 U 0.15 0.10 0.091 ug/L 08/27/13 23:27 0.4-MX 0.051 U 0.15 0.051 0.037 ug/L 08/27/13 23:27 0.4-MX 0.051 U 0.15 0.051 0.037 ug/L 08/27/13 23:27 0.4-Amino-2,6-dinitrotoluene 0.10 U 0.15 0.051 0.037 ug/L 08/27/13 23:27 0.4-MX 0.051 U 0.15 0.051 0.037 ug/L 08/27/13 23:27 0.4-MX 0.051 U 0.15 0.051 0.037 ug/L 08/27/13 23:27 0.4-MX 0.051 U 0.15 0.051 0.037 ug/L 08/27/13 23:27 0.4-MX 0.051 U 0.15 0.10 0.051 ug/L 08/27/13 23:27 0.4-MX 0.051 U 0.51 0.10 0.051 ug/L 08/27/13 23:27 0.4-MX 0.051 U 0.67 0.51 0.34 ug/L 08/27/13 23:27 0.4-MX 0.	2,4,6-Trinitrotoluene	0.10	U	0.15	0.10	0.051	ug/L		08/27/13 23:27	1
Part	2,4-Dinitrotoluene	0.10	U	0.13	0.10	0.051	ug/L		08/27/13 23:27	1
Partitrotoluene Data Dat	2,6-Dinitrotoluene	0.10	U	0.13	0.10	0.051	ug/L		08/27/13 23:27	1
S-Nitrotoluene 0.10 U 0.51 0.10 0.059 ug/L 08/27/13 23:27 -Nitrotoluene 0.10 U 0.51 0.10 0.090 ug/L 08/27/13 23:27 -Amino-2,6-dinitrotoluene 0.10 U 0.15 0.10 0.051 ug/L 08/27/13 23:27 -Amino-2,6-dinitrotoluene 0.10 U 0.15 0.10 0.051 ug/L 08/27/13 23:27 -Amino-2,6-dinitrotoluene 0.10 U 0.15 0.051 0.037 ug/L 08/27/13 23:27 -Amino-2,6-dinitrotoluene 0.10 U 0.15 0.051 0.037 ug/L 08/27/13 23:27 -Amino-2,6-dinitrotoluene 0.10 U 0.15 0.051 0.037 ug/L 08/27/13 23:27 -Amino-2,6-dinitrotoluene 0.10 U 0.15 0.051 0.037 ug/L 08/27/13 23:27 -Amino-2,6-dinitrotoluene 0.10 U 0.15 0.10 0.051 ug/L 08/27/13 23:27	2-Amino-4,6-dinitrotoluene	0.10	U	0.15	0.10	0.015	ug/L		08/27/13 23:27	1
Nitrotoluene	2-Nitrotoluene	0.10	U	0.51	0.10	0.090	ug/L		08/27/13 23:27	1
Amino-2,6-dinitrotoluene	3-Nitrotoluene	0.10	U	0.51	0.10	0.059	ug/L		08/27/13 23:27	1
MMX	l-Nitrotoluene	0.10	U	0.51	0.10	0.090	ug/L		08/27/13 23:27	1
RDX	l-Amino-2,6-dinitrotoluene	0.10	U	0.15	0.10	0.051	ug/L		08/27/13 23:27	1
Nitrobenzene	HMX	0.051	U	0.15	0.051	0.037	ug/L		08/27/13 23:27	1
Tetryl	RDX	0.051	U	0.15	0.051	0.037	ug/L		08/27/13 23:27	1
Nitroglycerin	Nitrobenzene	0.10	U	0.15	0.10	0.051	ug/L		08/27/13 23:27	1
DETN 0.51 U 0.67 0.51 U 0.87 0.51 U 0.87 0.31 Ug/L 0.877/13 23:27	Tetryl	0.10	U	0.15	0.10	0.051	ug/L		08/27/13 23:27	
Surrogate %Recovery Qualifier Limits Prepared Analyzed 3,4-Dinitrotoluene 89 79 - 111 08/23/13 08:00 08/27/13 23:27 General Chemistry Analyte Result Qualifier LOQ LOD DL Unit D Analyzed	Nitroglycerin	0.51	U	0.67	0.51	0.34	ug/L		08/27/13 23:27	. 1
3,4-Dinitrotoluene 89 79 ـ 111 08/23/13 08:00 08/27/13 23:27 General Chemistry Analyte Result Qualifier LOQ LOD DL Unit D Analyzed	PETN	0.51	U	0.67	0.51	0.31	ug/L		08/27/13 23:27	1
General Chemistry Analyte Result Qualifier LOQ LOD DL Unit D Analyzed	Surrogate	%Recovery Qu	ualifier	Limits			Prep	pared	Analyzed	Dil Fac
Analyte Result Qualifier LOQ LOD DL Unit D Analyzed	1,4-Dinitrotoluene	89		79 - 111			08/23/1	3 08:00	08/27/13 23:27	1
	General Chemistry									
Cyanide, Total 0.010 U 0.010 0.010 0.0032 mg/L 08/23/13 13:36	Analyte		Separate.		17.50			D	0.00	Dil Fac
	Cyanide, Total	0.010	U	0.010	0.010	0.0032	mg/L		08/23/13 13:36	1

TestAmerica Canton

09/04/13 15:08

2.0

1.0

0.48 mg/L

1.0 U

Client: Environmental Quality Mgt., Inc.

Project/Site: RVAAP66 (OH)

TestAmerica Job ID: 240-28110-1

Lab Sample ID: 240-28110-21

Matrix: Water

Client Sample ID: FWGRQLmw-009C-0371-GF

Date Collected: 08/19/13 13:23 Date Received: 08/20/13 08:03

Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
Arsenic	43		10	10	3.3	ug/L		09/09/13 10:15	1
Chromium	4.0	U	7.0	4.0	1.4	ug/L		09/09/13 10:15	1
Cobalt	6.0	J	7.0	4.0	1.5	ug/L		09/09/13 10:15	1
Lead	5.0	U	10	5.0	1.7	ug/L		09/09/13 10:15	1
Selenium	10	U	15	10	4.0	ug/L		09/09/13 10:15	1
Silver	5.0	U	7.0	5.0	1.7	ug/L		09/09/13 10:15	1
Vanadium	4.0	U	7.0	4.0	1.3	ug/L		09/09/13 10:15	1
Barium	53	J	200	5.0	2.8	ug/L		09/09/13 10:15	1
Calcium	30000		5000	1000	630	ug/L		09/09/13 10:15	1
Copper	10	U	25	10	4.4	ug/L		09/09/13 10:15	1
Magnesium	39000		5000	300	120	ug/L		09/09/13 10:15	1
Manganese	1500		15	5.0	1.8	ug/L		09/09/13 10:15	1
Nickel	6.8	J	40	5.0	2.2	ug/L		09/09/13 10:15	- 1
in white i									
Potassium	4200	J	5000	900	300	ug/L		09/09/13 10:15	1
Potassium Method: 6020/DOD - Metals (ICF	4200 P/MS) - Total Recov	verable							
Potassium Method: 6020/DOD - Metals (ICF Analyte	4200 P/MS) - Total Recov Result	verable Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
Potassium Method: 6020/DOD - Metals (ICF Analyte Aluminum	P/MS) - Total Recovered Result	verable Qualifier	LOQ 60	LOD 60	DL 20	Unit ug/L	D	Analyzed 09/09/13 13:41	
Potassium Method: 6020/DOD - Metals (ICF Analyte	P/MS) - Total Recover Result 60 1.0	verable Qualifier U	60 2.0	60 1.0	DL 20 0.33	Unit ug/L ug/L	D	Analyzed	
Potassium Method: 6020/DOD - Metals (ICF Analyte Aluminum Antimony Beryllium	P/MS) - Total Recover Result 60 1.0 1.0	verable Qualifier U U	60 2.0 1.0	60 1.0 1.0	DL 20 0.33 0.50	Unit ug/L ug/L ug/L	D	Analyzed 09/09/13 13:41 09/09/13 13:41 09/09/13 13:41	
Potassium Method: 6020/DOD - Metals (ICF Analyte Aluminum Antimony	P/MS) - Total Recover Result 60 1.0	verable Qualifier U U	60 2.0	60 1.0	DL 20 0.33	Unit ug/L ug/L ug/L	D	Analyzed 09/09/13 13:41 09/09/13 13:41	
Potassium Method: 6020/DOD - Metals (ICF Analyte Aluminum Antimony Beryllium	P/MS) - Total Recover Result 60 1.0 1.0	verable Qualifier U U	1.0 2.0 1.0 2.0 150	60 1.0 1.0 1.0	20 0.33 0.50 0.40	Unit ug/L ug/L ug/L	D	Analyzed 09/09/13 13:41 09/09/13 13:41 09/09/13 13:41	
Potassium Method: 6020/DOD - Metals (ICF Analyte Aluminum Antimony Beryllium Cadmium	P/MS) - Total Recov Result 60 1.0 1.0	verable Qualifier U U	60 2.0 1.0 2.0	60 1.0 1.0 1.0	DL 20 0.33 0.50 0.40 44	Unit ug/L ug/L ug/L ug/L	D	Analyzed 09/09/13 13:41 09/09/13 13:41 09/09/13 13:41	
Potassium Method: 6020/DOD - Metals (ICF Analyte Aluminum Antimony Beryllium Cadmium	P/MS) - Total Recov Result 60 1.0 1.0 1.0	verable Qualifier U U U	1.0 2.0 1.0 2.0 150	60 1.0 1.0 1.0	DL 20 0.33 0.50 0.40 44 160	Unit ug/L ug/L ug/L ug/L	D	Analyzed 09/09/13 13:41 09/09/13 13:41 09/09/13 13:41 09/09/13 13:41	
Potassium Method: 6020/DOD - Metals (ICF Analyte Aluminum Antimony Beryllium Cadmium Iron Sodium	P/MS) - Total Recover Result 60 1.0 1.0 1.0 13000 1700	Verable Qualifier U U U U	LOQ 60 2.0 1.0 2.0 150 1000	60 1.0 1.0 1.0 1.0 400	DL 20 0.33 0.50 0.40 44 160	Unit ug/L ug/L ug/L ug/L ug/L ug/L	D	Analyzed 09/09/13 13:41 09/09/13 13:41 09/09/13 13:41 09/09/13 13:41 09/09/13 13:41	Dil Fac
Potassium Method: 6020/DOD - Metals (ICF Analyte Aluminum Antimony Beryllium Cadmium Iron Sodium Thallium	4200 P/MS) - Total Recover Result 60 1.0 1.0 1.0 1.00 1.5 50	Verable Qualifier U U U U	LOQ 60 2.0 1.0 2.0 150 1000 2.0	60 1.0 1.0 1.0 1.0 400 1.5	DL 20 0.33 0.50 0.40 44 160 0.79	Unit ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	D	Analyzed 09/09/13 13:41 09/09/13 13:41 09/09/13 13:41 09/09/13 13:41 09/09/13 13:41 09/09/13 13:41	

Client: Environmental Quality Mgt., Inc.

Project/Site: RVAAP66 (OH)

TestAmerica Job ID: 240-28110-1

Lab Sample ID: 240-28110-22

Matrix: Water

Client Sample ID: FWGRQLmw-DUP5-0377-GW

Date Collected: 08/19/13 14:23 Date Received: 08/20/13 08:03

Analyte	Result	Qualifier	1	.oq	LOD	DL	Unit	D Analyzed	Dil Fa
1,1,1-Trichloroethane	0.25	U		1.0	0.25	0.22	ug/L	08/28/13 16:07	
1,1,2,2-Tetrachloroethane	0.25	U		1.0	0.25	0.18	ug/L	08/28/13 16:07	
1,1,2-Trichloroethane	0.50	U		1.0	0.50	0.27	ug/L	08/28/13 16:07	
1,1-Dichloroethane	0.25	U		1.0	0.25	0.15	ug/L	08/28/13 16:07	9
1,1-Dichloroethene	0.25	U		1.0	0.25	0.19	ug/L	08/28/13 16:07	
1,2-Dichloroethane	0.25	U		1.0	0.25	0.22	ug/L	08/28/13 16:07	
1,2-Dichloroethene, Total	0.25	U		2.0	0.25	0.17	ug/L	08/28/13 16:07	
1,2-Dichloropropane	0.25	U		1.0	0.25	0.18	ug/L	08/28/13 16:07	
2-Hexanone	0.50	U		10	0.50	0.41	ug/L	08/28/13 16:07	
Bromochloromethane	0.50	U		1.0	0.50	0.29	ug/L	08/28/13 16:07	1
Acetone	1.8	J		10	1.1	1.1	ug/L	08/28/13 16:07	
Benzene	0.25	U		1.0	0.25	0.13	ug/L	08/28/13 16:07	17
Bromoform	0.64	U		1.0	0.64	0.64	ug/L	08/28/13 16:07	-
Bromomethane	0.50	U		1.0	0.50	0.41	ug/L	08/28/13 16:07	-
Carbon disulfide	0.25	U		1.0	0.25	0.13	ug/L	08/28/13 16:07	
Carbon tetrachloride	0.25	U		1.0	0.25	0.13	ug/L	08/28/13 16:07	
Chlorobenzene	0.25	U		1.0	0.25	0.15	ug/L	08/28/13 16:07	
Chloroethane	0.50	U		1.0	0.50	0.29	ug/L	08/28/13 16:07	
Chloroform	0.25	U		1.0	0.25	0.16	ug/L	08/28/13 16:07	
Chloromethane	0.50	U		1.0	0.50	0.30	ug/L	08/28/13 16:07	
cis-1,2-Dichloroethene	0.25	U		1.0	0.25	0.17	ug/L	08/28/13 16:07	
cis-1,3-Dichloropropene	0.25	U		1.0	0.25	0.14	ug/L	08/28/13 16:07	
Bromodichloromethane	0.25	U		1.0	0.25	0.15	ug/L	08/28/13 16:07	
Ethylbenzene	0.25	U		1.0	0.25	0.17	ug/L	08/28/13 16:07	
1,2-Dibromoethane	0.25	U		1.0	0.25	0.24	ug/L	08/28/13 16:07	
n-Xylene & p-Xylene	0.50	U		2.0	0.50	0.24	ug/L	08/28/13 16:07	
2-Butanone (MEK)	0.57	U		10	0.57	0.57	ug/L	08/28/13 16:07	
4-Methyl-2-pentanone (MIBK)	0.50	U		10	0.50	0.32	ug/L	08/28/13 16:07	
Methylene Chloride	0.50	U		1.0	0.50	0.33	ug/L	08/28/13 16:07	
o-Xylene	0.25	U		1.0	0.25	0.14	ug/L	08/28/13 16:07	
Styrene	0.25	U		1.0	0.25	0.11	ug/L	08/28/13 16:07	
Tetrachloroethene	0.50	U		1.0	0.50	0.29	ug/L	08/28/13 16:07	
Toluene	0.25	U		1.0	0.25	0.13	ug/L	08/28/13 16:07	
rans-1,2-Dichloroethene	0.25	U		1.0	0.25	0.19	ug/L	08/28/13 16:07	
rans-1,3-Dichloropropene	0.25	U		1.0	0.25	0.19	ug/L	08/28/13 16:07	
Trichloroethene	0.25	U		1.0	0.25	0.17	ug/L	08/28/13 16:07	
Vinyl chloride	0.25	U		1.0	0.25		ug/L	08/28/13 16:07	
Xylenes, Total	0.25	U		2.0	0.25	0.14	ug/L	08/28/13 16:07	
Dibromochloromethane	0.25	U		1.0	0.25	0.18	ug/L	08/28/13 16:07	
Surrogate	%Recovery Qu	alifier	Limits				Prepared	Analyzed	Dil Fa
1,2-Dichloroethane-d4 (Surr)	112		70 - 120					08/28/13 16:07	
	7.2								

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	112	70 - 120		08/28/13 16:07	1
4-Bromofluorobenzene (Surr)	88	75 - 120		08/28/13 16:07	1
Toluene-d8 (Surr)	87	85 - 120		08/28/13 16:07	1
Dibromofluoromethane (Surr)	95	85 115		08/28/13 16:07	1

Method: 8270C/DoD - Semivola	tile Organic Compounds (GC/MS)	
Amalada	Describe Overliffen	

Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
Acenaphthene	0.095	U	0.19	0.095	0.042	ug/L		08/29/13 15:55	1
Acenaphthylene	0.095	U	0.19	0.095	0.046	ug/L		08/29/13 15:55	4

Client: Environmental Quality Mgt., Inc.

Project/Site: RVAAP66 (OH)

TestAmerica Job ID: 240-28110-1

Lab Sample ID: 240-28110-22

5 Gample 15. 240-20110-22

Matrix: Water

Client Sample ID: FWGRQLmw-DUP5-0377-GW

Date Collected: 08/19/13 14:23 Date Received: 08/20/13 08:03

ethod: 8270C/DoD - Semivolatile		Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil F
nthracene	0.095	-1334119	0.19	0.095	0.084		_ =	08/29/13 15:55	
enzo[a]anthracene	0.095		0.19	0.095	0.028			08/29/13 15:55	
enzo[a]pyrene	0.095		0.19	0.095	0.049			08/29/13 15:55	
enzo[b]fluoranthene	0.095		0.19	0.095	0.038			08/29/13 15:55	
enzo[g,h,i]perylene	0.095		0.19	0.095	0.044			08/29/13 15:55	
enzoic acid	19		24	19		ug/L		08/29/13 15:55	
enzo[k]fluoranthene	0.095		0.19	0.095	0.043	ug/L		08/29/13 15:55	
	0.48		4.8	0.48				08/29/13 15:55	
enzyl alcohol					0.36	ug/L			
s(2-chloroethoxy)methane	0.48		0.95	0.48	0.30	ug/L		08/29/13 15:55	
s(2-chloroethyl)ether	0.095		0.95	0.095	0.095	ug/L		08/29/13 15:55	
s(2-ethylhexyl) phthalate	0.32		1.9	0.48	0.21	ug/L		08/29/13 15:55	
Bromophenyl phenyl ether	0.48		1.9	0.48	0.21	ug/L		08/29/13 15:55	
ityl benzyl phthalate	0.48		1.9	0.48	0.25	ug/L		08/29/13 15:55	
rbazole	0.48		0.95	0.48	0.27	ug/L		08/29/13 15:55	
Chloroaniline	0.48		1.9	0.48	0.20	ug/L		08/29/13 15:55	
Chloro-3-methylphenol	0.48		1.9	0.48	0.20	ug/L		08/29/13 15:55	
Chloronaphthalene	0.48	U	0.95	0.48	0.095	ug/L		08/29/13 15:55	
Chlorophenol	0.48	U	0.95	0.48	0.28	ug/L		08/29/13 15:55	
Chlorophenyl phenyl ether	0.48	U	1.9	0.48	0.29	ug/L		08/29/13 15:55	
rysene	0.095	U	0.19	0.095	0.048	ug/L		08/29/13 15:55	
enz(a,h)anthracene	0.095	U	0.19	0.095	0.042	ug/L		08/29/13 15:55	
enzofuran	0.095	U	0.95	0.095	0.019	ug/L		08/29/13 15:55	
-Dichlorobenzene	0.48	U	0.95	0.48	0.28	ug/L		08/29/13 15:55	
-Dichlorobenzene	0.48	U	0.95	0.48	0.22	ug/L		08/29/13 15:55	
-Dichlorobenzene	0.48	U	0.95	0.48	0.32	ug/L		08/29/13 15:55	
-Dichlorobenzidine	0.95	U	4.8	0.95	0.35	ug/L		08/29/13 15:55	
-Dichlorophenol	0.48	U	1.9	0.48	0.18	ug/L		08/29/13 15:55	
thyl phthalate	0.95	U	1.9	0.95	0.57	ug/L		08/29/13 15:55	
-Dimethylphenol	0.48	U	1.9	0.48	0.24	ug/L		08/29/13 15:55	
nethyl phthalate	0.48	U	1.9	0.48	0.28	ug/L		08/29/13 15:55	
n-butyl phthalate	0.95	U	1.9	0.95	0.64	ug/L		08/29/13 15:55	
-Dinitro-2-methylphenol	3.8	U	4.8	3.8	2.3	ug/L		08/29/13 15:55	
-Dinitrophenol	0.95	U	4.8	0.95	0.30	ug/L		08/29/13 15:55	
n-octyl phthalate	0.48	U	1.9	0.48	0.22	ug/L		08/29/13 15:55	
oranthene	0.095	U	0.19	0.095	0.042			08/29/13 15:55	
orene	0.095		0.19	0.095	0.039			08/29/13 15:55	
xachlorobenzene	0.095		0.19	0.095	0.081			08/29/13 15:55	
cachlorobutadiene	0.48		0.95	0.48		ug/L		08/29/13 15:55	
kachlorocyclopentadiene	0.48		9.5	0.48		ug/L		08/29/13 15:55	
xachloroethane	0.48		0.95	0.48		ug/L		08/29/13 15:55	
eno[1,2,3-cd]pyrene	0.095		0.19	0.095	0.041			08/29/13 15:55	
phorone	0.48		0.19	0.093				08/29/13 15:55	
pnorone Methylnaphthalene	0.095			0.46		ug/L			
			0.19		0.086	7		08/29/13 15:55	
lethylphenol	0.48		0.95	0.48		ug/L		08/29/13 15:55	
4 Methylphenol	0.95		1.9	0.95		ug/L		08/29/13 15:55	
phthalene	0.095		0.19	0.095	0.060			08/29/13 15:55	
litroaniline	0.48		1.9	0.48		ug/L		08/29/13 15:55	
Vitroaniline Vitroaniline	0.48		1.9	0.48	0.27	ug/L		08/29/13 15:55	

Client: Environmental Quality Mgt., Inc.

Project/Site: RVAAP66 (OH)

TestAmerica Job ID: 240-28110-1

Lab Sample ID: 240-28110-22

Matrix: Water

Client Sample ID: FWGRQLmw-DUP5-0377-GW

Date Collected: 08/19/13 14:23 Date Received: 08/20/13 08:03

Analyte	Result	Qualifier	LOQ	LOD	DL	Unit D	Analyzed	Dil Fac
2-Nitrophenol	0.48	U	1.9	0.48	0.27	ug/L	08/29/13 15:55	1
4-Nitrophenol	3.8	U	4.8	3.8	0.28	ug/L	08/29/13 15:55	1
N-Nitrosodi-n-propylamine	0.48	U	0.95	0.48	0.23	ug/L	08/29/13 15:55	1
N-Nitrosodiphenylamine	0.48	U	0.95	0.48	0.30	ug/L	08/29/13 15:55	1
2,2'-oxybis[1-chloropropane]	0.48	U	0.95	0.48	0.38	ug/L	08/29/13 15:55	1
Pentachlorophenol	0.95	U	4.8	0.95	0.26	ug/L	08/29/13 15:55	1
Phenanthrene	0.095	U	0.19	0.095	0.059	ug/L	08/29/13 15:55	1
Phenol	0.95	U	0.95	0.95	0.57	ug/L	08/29/13 15:55	1
Pyrene	0.095	U	0.19	0.095	0.040	ug/L	08/29/13 15:55	1
1,2,4-Trichlorobenzene	0.48	U	0.95	0.48	0.27	ug/L	08/29/13 15:55	1
2,4,5-Trichlorophenol	0.48	U	4.8	0.48	0.29	ug/L	08/29/13 15:55	- 1
2,4,6-Trichlorophenol	0.48	U	4.8	0.48	0.23	ug/L	08/29/13 15:55	1
Surrogate	%Recovery Qu	alifier	Limits			Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl (Surr)	59		50 - 110			08/21/13 09:37	08/29/13 15:55	1
2-Fluorophenol (Surr)	56		20 - 110			08/21/13 09:37	08/29/13 15:55	1
Nitrobenzene-d5 (Surr)	59		40 - 110			08/21/13 09:37	08/29/13 15:55	1
Phenol-d5 (Surr)	63		10 - 115			08/21/13 09:37	08/29/13 15:55	1
Terphenyl-d14 (Surr)	89		50 - 135			08/21/13 09:37	08/29/13 15:55	1
2,4,6-Tribromophenol (Surr)	98		40 - 125			08/21/13 09:37	08/29/13 15:55	1

Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
4,4'-DDD	0.019	UQ	0.048	0.019	0.0091	ug/L		08/23/13.22:35	1
4,4'-DDE	0.019	U	0.048	0.019	0.0092	ug/L		08/23/13 22:35	1
4,4'-DDT	0.019	U	0.048	0.019	0.015	ug/L		08/23/13 22:35	- 1
Aldrin	0.019	U	0.029	0.019	0.0078	ug/L		08/23/13 22:35	1
alpha-BHC	0.019	U	0.029	0.019	0.0067	ug/L		08/23/13 22:35	1
alpha-Chlordane	0.019	U	0.048	0.019	0.013	ug/L		08/23/13 22:35	1
beta-BHC	0.019	U	0.048	0.019	0.0080	ug/L		08/23/13 22:35	1
delta-BHC	0.019	U	0.048	0.019	0.0083	ug/L		08/23/13 22:35	1
Dieldrin	0.019	U	0.029	0.019	0.0071	ug/L		08/23/13 22:35	1
Endosulfan I	0.019	U	0.048	0.019	0.012	ug/L		08/23/13 22:35	1
Endosulfan II	0.019	U	0.048	0.019	0.011	ug/L		08/23/13 22:35	1
Endosulfan sulfate	0.019	U	0.048	0.019	0.010	ug/L		08/23/13 22:35	1
Endrin	0.019	U	0.048	0.019	0.010	ug/L		08/23/13 22:35	1
Endrin aldehyde	0.019	U	0.048	0.019	0.010	ug/L		08/23/13 22:35	1
Endrin ketone	0.019	U	0.048	0.019	0.0074	ug/L		08/23/13 22:35	1
gamma-BHC (Lindane)	0.019	U	0.048	0.019	0.0061	ug/L		08/23/13 22:35	9
gamma-Chlordane	0.019	U	0.048	0.019	0.011	ug/L		08/23/13 22:35	1
Heptachlor	0.019	U	0.029	0.019	0.0076	ug/L		08/23/13 22:35	1
Heptachlor epoxide	0.019	U	0.029	0.019	0.0068	ug/L		08/23/13 22:35	1
Methoxychlor	0.048	U	0.095	0.048	0.030	ug/L		08/23/13 22:35	-1
Toxaphene	0.76	U	1.9	0.76	0.30	ug/L		08/23/13 22:35	1

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
DCB Decachlorobiphenyl	37		30 - 135	08/20/13 11:25	08/23/13 22:35	1
DCB Decachlorobiphenyl	38		30 - 135	08/20/13 11:25	08/23/13 22:35	1
Tetrachloro-m-xylene	76	M	25 - 140	08/20/13 11:25	08/23/13 22:35	1
Tetrachloro-m-xylene	81		25 - 140	08/20/13 11:25	08/23/13 22:35	1

TestAmerica Canton

Page 55 of 142

Client: Environmental Quality Mgt., Inc.

Project/Site: RVAAP66 (OH)

TestAmerica Job ID: 240-28110-1

Lab Sample ID: 240-28110-22

Matrix: Water

Client Sample ID: FWGRQLmw-DUP5-0377-GW

Date Collected: 08/19/13 14:23 Date Received: 08/20/13 08:03

Cyanide, Total

Nitrocellulose

Analyte	7,71,017	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
Aroclor-1016	0.19	U	0.48	0.19	0.16	ug/L		08/29/13 02:36	
Aroclor-1221	0.19	U	0.48	0.19	0.12	ug/L		08/29/13 02:36	
Aroclor-1232	0.19	U	0.48	0.19	0.15	ug/L		08/29/13 02:36	
Aroclor-1242	0.38	U	0.48	0.38	0.21	ug/L		08/29/13 02:36	
Aroclor-1248	0.19	U	0.48	0.19	0.095	ug/L		08/29/13 02:36	
Aroclor-1254	0.19	U	0.48	0.19	0.15	ug/L		08/29/13 02:36	
Aroclor-1260	0.19	U	0.48	0.19	0.16	ug/L		08/29/13 02;36	
Surrogate	%Recovery Qu	ualifier	Limits			Prep	ared	Analyzed	Dil Fa
Tetrachloro-m-xylene	79		40 - 140			08/20/1	3 11:31	08/29/13 02:36	
Tetrachloro-m-xylene	86		40 - 140			08/20/1	3 11:31	08/29/13 02:36	
DCB Decachlorobiphenyl	29 Q		40 - 135			08/20/1	3 11:31	08/29/13 02:36	
DCB Decachlorobiphenyl	29 Q		40 - 135			08/20/1	3 11:31	08/29/13 02:36	
Method: 8330 Modified - Nitrogu		Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fa
Analyte	6.0		20	6.0				08/26/13 13:22	DII Fac
Nitroguanidine	0.0	U	20	0.0	2.4	ug/L		00/20/13 13.22	
Method: 8330A - Nitroaromatics									
Analyte		Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fa
1,3,5-Trinitrobenzene	0.051		0.15	0.051	0.031	ug/L		08/28/13 00:10	
1,3-Dinitrobenzene	0.10		0.15	0.10	0.051	ug/L		08/28/13 00:10	
2,4,6-Trinitrotoluene	0.10		0.15	0.10	0.051	ug/L		08/28/13 00:10	
2,4-Dinitrotoluene	0.10	U	0.13	0.10	0.051	ug/L		08/28/13 00:10	
2,6-Dinitrotoluene	0.10	U	0.13	0.10	0.051	ug/L		08/28/13 00:10	
2-Amino-4,6-dinitrotoluene	0.10	U	0.15	0.10	0.015	ug/L		08/28/13 00:10	
2-Nitrotoluene	0.10	U	0.51	0.10	0.089	ug/L		08/28/13 00:10	
3-Nitrotoluene	0.10	U	0.51	0.10	0.058	ug/L		08/28/13 00:10	
4-Nitrotoluene	0.10	U	0.51	0.10	0.089	ug/L		08/28/13 00:10	
4-Amino-2,6-dinitrotoluene	0.10	U	0.15	0.10	0.051	ug/L		08/28/13 00:10	
HMX	0.051	U	0.15	0.051	0.037	ug/L		08/28/13 00:10	
RDX	0.051	U	0.15	0.051	0.037	ug/L		08/28/13 00:10	
Nitrobenzene	0.10	U	0.15	0.10	0.051	ug/L		08/28/13 00:10	
Tetryl	0.10	U	0.15	0.10	0.051	ug/L		08/28/13 00:10	
Nitroglycerin	0.51	U	0.66	0.51	0.34	ug/L		08/28/13 00:10	
PETN	0.51	U	0.66	0.51	0.30	ug/L		08/28/13 00:10	
Surrogate	%Recovery Qu	ualifier	Limits			Prep	ared	Analyzed	Dil Fa
3,4-Dinitrotoluene	89 M		79 - 111			08/23/1	3 08:00	08/28/13 00:10	
General Chemistry									
General Chemistry									

TestAmerica Canton

08/23/13 13:36

09/04/13 15:10

0.010

2.0

0.010

1.0

0.0032 mg/L

0.48 mg/L

0.010 U

1.0 U

Client: Environmental Quality Mgt., Inc.

Project/Site: RVAAP66 (OH)

TestAmerica Job ID: 240-28110-1

Lab Sample ID: 240-28110-23

Matrix: Water

Client Sample ID: FWGRQLmw-DUP5-0377-GF	
Date Collected: 08/19/13 14:23	

Date Received: 08/20/13 08:03

Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
Arsenic	39		10	10	3.3	ug/L		09/09/13 10:21	1
Chromium	4.0	U	7.0	4.0	1.4	ug/L		09/09/13 10:21	1
Cobalt	4.8	J	7.0	4.0	1.5	ug/L		09/09/13 10:21	1
Lead	5.0	U	10	5.0	1.7	ug/L		09/09/13 10:21	1
Selenium	10	U	15	10	4.0	ug/L		09/09/13 10:21	1
Silver	5.0	U	7.0	5.0	1.7	ug/L		09/09/13 10:21	1
Vanadium	4.0	U	7.0	4.0	1.3	ug/L		09/09/13 10:21	1
Barium	49	J	200	5.0	2.8	ug/L		09/09/13 10:21	1
Calcium	28000		5000	1000	630	ug/L		09/09/13 10:21	1
Copper	10	U	25	10	4.4	ug/L		09/09/13 10:21	1
Magnesium	36000		5000	300	120	ug/L		09/09/13 10:21	1
Manganese	1400		15	5.0	1.8	ug/L		09/09/13 10:21	1
Nickel	5.4	J	40	5.0	2.2	ug/L		09/09/13 10:21	- 1
Potassium	4000	J	5000	900	300	ug/L		09/09/13 10:21	1
			5000	900	300	ug/L		09/09/13 10:21	1
Potassium	ICP/MS) - Total Recov		5000 LOQ	900 LOD		ug/L Unit	D	09/09/13 10:21 Analyzed	Dil Fac
Potassium Method: 6020/DOD - Metals (I	ICP/MS) - Total Recov	verable Qualifier					D		
Potassium Method: 6020/DOD - Metals (I Analyte	ICP/MS) - Total Recov	verable Qualifier	LOQ	LOD	DL	Unit ug/L	D	Analyzed	
Potassium Method: 6020/DOD - Metals (I Analyte Aluminum	ICP/MS) - Total Recovered Result	verable Qualifier U	LOQ 60	LOD 60	DL 20	Unit ug/L	D	Analyzed 09/09/13 13:49	
Potassium Method: 6020/DOD - Metals (I Analyte Aluminum Antimony	ICP/MS) - Total Recover Result 60	verable Qualifier U U	60 2.0	60 1.0	DL 20 0.33	Unit ug/L ug/L ug/L	D	Analyzed 09/09/13 13:49 09/09/13 13:49	
Potassium Method: 6020/DOD - Metals (I Analyte Aluminum Antimony Beryllium	ICP/MS) - Total Recover Result 60 1.0	verable Qualifier U U	60 2.0 1.0	60 1.0 1.0	DL 20 0.33 0.50	Unit ug/L ug/L ug/L ug/L	D	Analyzed 09/09/13 13:49 09/09/13 13:49 09/09/13 13:49	
Potassium Method: 6020/DOD - Metals (I Analyte Aluminum Antimony Beryllium Cadmium	ICP/MS) - Total Recov Result 60 1.0 1.0	verable Qualifier U U	60 2.0 1.0 2.0	60 1.0 1.0 1.0	DL 20 0.33 0.50 0.40	Unit ug/L ug/L ug/L	D	Analyzed 09/09/13 13:49 09/09/13 13:49 09/09/13 13:49 09/09/13 13:49	
Potassium Method: 6020/DOD - Metals (I Analyte Aluminum Antimony Beryllium Cadmium	1CP/MS) - Total Recover Result 60 1.0 1.0 1.0 1.0	Verable Qualifier U U U U	60 2.0 1.0 2.0 150	60 1.0 1.0 1.0 1.0	DL 20 0.33 0.50 0.40 44	Unit ug/L ug/L ug/L ug/L ug/L	D	Analyzed 09/09/13 13:49 09/09/13 13:49 09/09/13 13:49 09/09/13 13:49	Dil Fac
Potassium Method: 6020/DOD - Metals (I Analyte Aluminum Antimony Beryllium Cadmium Iron Sodium	1CP/MS) - Total Recover Result 60 1.0 1.0 1.0 12000 1700	Verable Qualifier U U U U	LOQ 60 2.0 1.0 2.0 150 1000	60 1.0 1.0 1.0 1.0 400	DL 20 0.33 0.50 0.40 44 160	Unit ug/L ug/L ug/L ug/L ug/L ug/L	D	Analyzed 09/09/13 13:49 09/09/13 13:49 09/09/13 13:49 09/09/13 13:49 09/09/13 13:49	Dil Fac
Potassium Method: 6020/DOD - Metals (I Analyte Aluminum Antimony Beryllium Cadmium Iron Sodium Thallium	1CP/MS) - Total Recover Result 60 1.0 1.0 1.0 1.0 1.700 1.5 50	Verable Qualifier U U U U	LOQ 60 2.0 1.0 2.0 150 1000 2.0	60 1.0 1.0 1.0 1.0 400 1.5	DL 20 0.33 0.50 0.40 44 160 0.79	Unit ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	D	Analyzed 09/09/13 13:49 09/09/13 13:49 09/09/13 13:49 09/09/13 13:49 09/09/13 13:49 09/09/13 13:49	

Client: Environmental Quality Mgt., Inc.

Project/Site: RVAAP66 (OH)

TestAmerica Job ID: 240-28110-1

Lab Sample ID: 240-28110-24

Matrix: Water

Client Sample ID: FWGRQLmw-006C-0368-GW

Date Collected: 08/19/13 16:19 Date Received: 08/20/13 08:03

Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
1,1,1-Trichloroethane	0.25	U	1.0	0.25	0.22	ug/L		08/28/13 16:29	- 3
1,1,2,2-Tetrachloroethane	0.25	U	1.0	0.25	0.18	ug/L		08/28/13 16:29	
1,1,2-Trichloroethane	0.50	U	1.0	0.50	0.27	ug/L		08/28/13 16:29	14
1,1-Dichloroethane	0.25	U	1.0	0.25	0.15	ug/L		08/28/13 16:29	1
1,1-Dichloroethene	0.25	U	1.0	0.25	0.19	ug/L		08/28/13 16:29	1
1,2-Dichloroethane	0.25	U	1.0	0.25	0.22	ug/L		08/28/13 16:29	
1,2-Dichloroethene, Total	0.25	U	2.0	0.25	0.17	ug/L		08/28/13 16:29	1
1,2-Dichloropropane	0.25	U	1.0	0.25	0.18	ug/L		08/28/13 16:29	
2-Hexanone	0.50	U	10	0.50	0.41	ug/L		08/28/13 16:29	1
Bromochloromethane	0.50	U	1.0	0.50	0.29	ug/L		08/28/13 16:29	1
Acetone	3.4	J	10	1.1	1.1	ug/L		08/28/13 16:29	1
Benzene	0.25	U	1.0	0.25	0.13	ug/L		08/28/13 16:29	1
Bromoform	0.64	U	1.0	0.64	0.64	ug/L		08/28/13 16:29	- 1
Bromomethane	0.50	U	1.0	0.50	0.41	ug/L		08/28/13 16:29	
Carbon disulfide	0.16	J	1.0	0.25	0.13	ug/L		08/28/13 16:29	19
Carbon tetrachloride	0.25	U	1.0	0.25	0.13	ug/L		08/28/13 16:29	
Chlorobenzene	0.25	U	1.0	0.25	0.15	ug/L		08/28/13 16:29	
Chloroethane	0.50	U	1.0	0.50	0.29	ug/L		08/28/13 16:29	-
Chloroform	0.25	U	1.0	0.25	0.16	ug/L		08/28/13 16:29	
Chloromethane	0.50	U	1.0	0.50	0.30	ug/L		08/28/13 16:29	
cis-1,2-Dichloroethene	0.25	U	1.0	0.25	0.17	ug/L		08/28/13 16:29	
cís-1,3-Dichloropropene	0.25	U	1.0	0.25	0.14	ug/L		08/28/13 16:29	
Bromodichloromethane	0.25	U	1.0	0.25	0.15	ug/L		08/28/13 16:29	
Ethylbenzene	0.25	U	1.0	0.25	0.17	ug/L		08/28/13 16:29	
1,2-Dibromoethane	0.25	U	1.0	0.25	0.24	ug/L		08/28/13 16:29	
m-Xylene & p-Xylene	0.50	U	2.0	0.50	0.24	ug/L		08/28/13 16:29	
2-Butanone (MEK)	0.57	U	10	0.57	0.57	ug/L		08/28/13 16:29	
4-Methyl-2-pentanone (MIBK)	0.50	U	10	0.50	0.32	ug/L		08/28/13 16:29	
Methylene Chloride	0.50	U	1.0	0.50	0.33	ug/L		08/28/13 16:29	
o-Xylene	0.25	U	1.0	0.25	0.14	ug/L		08/28/13 16:29	
Styrene	0.25	U	1.0	0.25	0.11	ug/L		08/28/13 16:29	
Tetrachloroethene	0.50	U	1.0	0.50	0.29	ug/L		08/28/13 16:29	1
Toluene	0.25	U	1.0	0.25	0.13	ug/L		08/28/13 16:29	
trans-1,2-Dichloroethene	0.25	U	1.0	0.25	0.19	ug/L		08/28/13 16:29	
trans-1,3-Dichloropropene	0.25	U	1.0	0.25	0.19	ug/L		08/28/13 16:29	
Trichloroethene	0.25	U	1.0	0.25	0.17	ug/L		08/28/13 16:29	- 6
Vinyl chloride	0.25	U	1.0	0.25	0.22	ug/L		08/28/13 16:29	
Xylenes, Total	0.25	U	2.0	0.25	0.14	ug/L		08/28/13 16:29	- 1
Dibromochloromethane	0.25	U	1.0	0.25	0.18	ug/L		08/28/13 16:29	8

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	111	70 - 120		08/28/13 16:29	1
4-Bromofluorobenzene (Surr)	88	75 - 120		08/28/13 16:29	1.
Toluene-d8 (Surr)	87	85 - 120		08/28/13 16:29	1
Dibromofluoromethane (Surr)	100	85 - 115		08/28/13 16:29	7

Method: 8270C/DoD -	Semivolatile Organic	Compounds	(GC/MS)
Metriou. 02/00/DOD -	Semiyolatile Organic	Compounds	GC/IVIS)

Analyte	A CONTRACTOR OF THE PROPERTY O	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
Acenaphthene	0.096	U	0.19	0.096	0.043	ug/L		08/29/13 16:21	1
Acenaphthylene	0.096	U	0.19	0.096	0.046	ug/L		08/29/13 16:21	1

Client: Environmental Quality Mgt., Inc.

Project/Site: RVAAP66 (OH)

TestAmerica Job ID: 240-28110-1

Lab Sample ID: 240-28110-24

Matrix: Water

Client Sample ID: FWGRQLmw-006C-0368-GW

Date Collected: 08/19/13 16:19 Date Received: 08/20/13 08:03

Method: 8270C/DoD - Semivolatile Organic Compounds (GC/MS) (Continued) LOD Dil Fac Result Qualifier DL Unit D Analyzed 0.096 0.19 0.096 0.085 08/29/13 16:21 Anthracene ug/L 0.096 U 0.096 ug/L 0.19 0.028 08/29/13 16:21 Benzo[a]anthracene Benzo[a]pyrene 0.096 U 0.19 0.096 0.049 ug/L 08/29/13 16:21 Benzo[b]fluoranthene 0.096 U 0.19 0.096 0.038 ug/L 08/29/13 16:21 0.096 U 0.19 0.096 0.045 ug/L 08/29/13 16:21 1 Benzo[g,h,i]perylene 19 U 9.6 Benzoic acid 24 19 ug/L 08/29/13 16:21 Benzo[k]fluoranthene 0.096 U 0.19 0.096 0.043 ug/L 08/29/13 16:21 0.48 U 4.8 0.48 0.37 08/29/13 16:21 1 Benzyl alcohol ug/L Bis(2-chloroethoxy)methane 0.48 U 0.96 0.48 0.31 ug/L 08/29/13 16:21 Bis(2-chloroethyl)ether 0.096 U 0.96 0.096 0.096 ug/L 08/29/13 16:21 Bis(2-ethylhexyl) phthalate 0.51 J 1.9 0.48 0.21 ug/L 08/29/13 16:21 4-Bromophenyl phenyl ether 0.48 U 1.9 0.48 0.21 ug/L 08/29/13 16:21 1 0.48 U 0.25 Butyl benzyl phthalate 1.9 0.48 ug/L 08/29/13 16:21 1 Carbazole 0.48 U 0.96 0.48 0.27 ug/L 08/29/13 16:21 ug/L 0.48 11 0.48 4-Chloroaniline 1.9 0.20 08/29/13 16:21 4-Chloro-3-methylphenol 0.48 U 0.48 ug/L 08/29/13 16:21 1.9 0.20 2-Chloronaphthalene 0.48 U 0.48 0.96 0.096 ug/L 08/29/13 16:21 2-Chlorophenol 0.48 U 0.96 0.48 0.28 ug/L 08/29/13 16:21 4-Chlorophenyl phenyl ether 0.48 U 1.9 0.48 0.29 08/29/13 16:21 ug/L Chrysene 0.096 U 0.19 0.096 0.048 08/29/13 16:21 08/29/13 16:21 Dibenz(a,h)anthracene 0.096 U 0.19 0.096 0.043 ua/L 0.096 U Dibenzofuran 0.96 0.096 0.019 ug/L 08/29/13 16:21 1,2-Dichlorobenzene 0.48 U 0.96 0.48 0.28 ug/L 08/29/13 16:21 1 1,3-Dichlorobenzene 0.48 U 0.96 0.48 0.22 ug/L 08/29/13 16:21 1,4-Dichlorobenzene 0.48 U 0.96 0.48 0.33 ug/L 08/29/13 16:21 08/29/13 16:21 3,3'-Dichlorobenzidine 0.96 U 4.8 0.96 0.36 ug/L 0.48 U 0.48 2,4-Dichlorophenol 1.9 0.18 ug/L 08/29/13 16:21 Diethyl phthalate 0.96 U 19 0.96 0.58 ug/L 08/29/13 16:21 2,4-Dimethylphenol 0.48 U 1.9 0.48 0.24 ug/L 08/29/13 16:21 0.48 U 1.9 0.48 08/29/13 16:21 Dimethyl phthalate 0.28 ug/L Di-n-butyl phthalate 0.96 U 1.9 0.96 0.64 ug/L 08/29/13 16:21 4,6-Dinitro-2-methylphenol 3.8 U 4.8 3.8 2.3 ug/L 08/29/13 16:21 2,4-Dinitrophenol 0.96 U 4.8 0.96 0.31 ug/L 08/29/13 16:21 Di-n-octyl phthalate 0.48 U 1.9 0.48 0.22 ug/L 08/29/13 16:21 Fluoranthene 0.096 U 0.19 0.096 0.043 ug/L 08/29/13 16:21 0.096 U 0.19 0.096 0.039 ug/L 08/29/13 16:21 Fluorene 0.096 U 0.096 0.082 Hexachlorobenzene 0.19 ug/L 08/29/13 16:21 Hexachlorobutadiene 0.48 U 0.96 0.48 0.26 ug/L 08/29/13 16:21 Hexachlorocyclopentadiene 0 48 U 9.6 0.48 0.23 08/29/13 16:21 ug/L 0.48 U 0.96 0.48 Hexachloroethane 0.18 ug/L 08/29/13 16:21 ug/L 0.096 U 0.19 0.096 0.042 Indeno[1,2,3-cd]pyrene 08/29/13 16:21 Isophorone 0.48 U 0.96 0.48 0.26 ug/L 08/29/13 16:21 0.096 U 0.096 2-Methylnaphthalene 0.19 0.087 ug/L 08/29/13 16:21 2-Methylphenol 0.48 U 0.96 0.48 0.16 ug/L 08/29/13 16:21 3 & 4 Methylphenol 0.96 U 1.9 0.96 08/29/13 16:21 0.77 ug/L Naphthalene 0.096 U 0.19 0.096 0.060 ug/L 08/29/13 16:21 2-Nitroaniline 0.48 U 1,9 0.48 0.20 ug/L 08/29/13 16:21 0.48 U 1.9 0.48 3-Nitroaniline 0.27 ug/L 08/29/13 16:21 4-Nitroaniline 0.48 U 0.48 0.21 ug/L 08/29/13 16:21

TestAmerica Canton

8

Client: Environmental Quality Mgt., Inc.

Project/Site: RVAAP66 (OH)

TestAmerica Job ID: 240-28110-1

Lab Sample ID: 240-28110-24

08/21/13 09:37

08/21/13 09:37

08/21/13 09:37

Prepared

08/20/13 11:25

08/20/13 11:25

08/20/13 11:25

08/20/13 11:25

oumple 15. 240-20110-24

08/29/13 16:21

08/29/13 16:21

08/29/13 16:21

Matrix: Water

Client Sample ID: FWGRQLmw-006C-0368-GW

Date Collected: 08/19/13 16:19 Date Received: 08/20/13 08:03

Phenol-d5 (Surr)

Surrogate

DCB Decachlorobiphenyl

DCB Decachlorobiphenyl

Tetrachloro-m-xylene

Tetrachloro-m-xylene

Terphenyl-d14 (Surr)

2,4,6-Tribromophenol (Surr)

Method: 8270C/DoD - Semivo	latile Organic Comp	oounds (G	C/MS) (Con	itinued					
Analyte	Resul	t Qualifier	L	.00	LOD	DL	Unit D	Analyzed	Dil Fac
2-Nitrophenol	0.48	3 U		1.9	0.48	0.27	ug/L	08/29/13 16:21	1
4-Nitrophenol	3.8	3 U		4.8	3.8	0.28	ug/L	08/29/13 16:21	1
N-Nitrosodi-n-propylamine	0.48	3 U	(0.96	0.48	0.23	ug/L	08/29/13 16:21	1
N-Nitrosodiphenylamine	0.48	3 U	(0.96	0.48	0.30	ug/L	08/29/13 16:21	1
2,2'-oxybis[1-chloropropane]	0.48	3 U	(0.96	0.48	0.38	ug/L	08/29/13 16:21	1
Pentachlorophenol	0.96	S U		4.8	0.96	0.26	ug/L	08/29/13 16:21	1
Phenanthrene	0.096	5 U	(0.19	0.096	0.060	ug/L	08/29/13 16:21	1
Phenol	0.96	5 U	(0.96	0.96	0.58	ug/L	08/29/13 16:21	1
Pyrene	0.096	S U	(0.19	0.096	0.040	ug/L	08/29/13 16:21	1
1,2,4-Trichlorobenzene	0.48	3 U	(0.96	0.48	0.27	ug/L	08/29/13 16:21	1
2,4,5-Trichlorophenol	0.48	3 U		4.8	0.48	0.29	ug/L	08/29/13 16:21	1
2,4,6-Trichlorophenol	0.48	3 U		4.8	0.48	0.23	ug/L	08/29/13 16:21	1
Surrogate	%Recovery G	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl (Surr)	67		50 - 110				08/21/13 09:37	08/29/13 16:21	1
2-Fluorophenol (Surr)	65		20 - 110				08/21/13 09:37	08/29/13 16:21	1
Nitrobenzene-d5 (Surr)	66		40 - 110				08/21/13 09:37	08/29/13 16:21	1

10-115

50 - 135

40 - 125

72

90

91

%Recovery Qualifier

40

42

69

81

Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
4,4'-DDD	0.019	UQ	0.048	0.019	0.0091	ug/L		08/23/13 22:56	1
4,4'-DDE	0.019	U	0.048	0.019	0.0092	ug/L		08/23/13 22:56	1
4,4'-DDT	0.019	u	0.048	0.019	0.015	ug/L		08/23/13 22:56	- 1
Aldrin	0.019	U	0.029	0.019	0.0078	ug/L		08/23/13 22:56	1
alpha-BHC	0.019	U	0.029	0.019	0.0067	ug/L		08/23/13 22:56	1
alpha-Chlordane	0.019	U	0.048	0.019	0.013	ug/L		08/23/13 22:56	1
beta-BHC	0.013	J	0.048	0.019	0.0080	ug/L		08/23/13 22:56	1
delta-BHC	0.019	U	0.048	0.019	0.0083	ug/L		08/23/13 22:56	1
Dieldrin	0.019	U	0.029	0.019	0.0071	ug/L		08/23/13 22:56	1
Endosulfan I	0.019	U	0.048	0.019	0.012	ug/L		08/23/13 22:56	1
Endosulfan II	0.019	U	0.048	0.019	0.011	ug/L		08/23/13 22:56	. 1
Endosulfan sulfate	0.019	U	0.048	0.019	0.010	ug/L		08/23/13 22:56	1
Endrin	0.019	U	0.048	0.019	0.010	ug/L		08/23/13 22:56	1
Endrin aldehyde	0.019	U	0.048	0.019	0.010	ug/L		08/23/13 22:56	1
Endrin ketone	0.019	U	0.048	0.019	0.0074	ug/L		08/23/13 22:56	1
gamma-BHC (Lindane)	0.019	U	0.048	0.019	0.0061	ug/L		08/23/13 22:56	9
gamma-Chlordane	0.019	U	0.048	0.019	0.011	ug/L		08/23/13 22:56	1
Heptachlor	0.019	U	0.029	0.019	0.0076	ug/L		08/23/13 22:56	1
Heptachlor epoxide	0.019	U	0.029	0.019	0.0068	ug/L		08/23/13 22:56	1
Methoxychlor	0.048	U	0.095	0.048	0.030	ug/L		08/23/13 22:56	1
Toxaphene	0.76	U	1.9	0.76	0.30	ug/L		08/23/13 22:56	1

TestAmerica Canton

Analyzed

08/23/13 22:56

08/23/13 22:56

08/23/13 22:56

08/23/13 22:56

Limits

30 - 135

30 - 135

25 - 140

25 - 140

Dil Fac

3

5

ij

9

-11

13

14

4 =

Client: Environmental Quality Mgt., Inc.

Project/Site: RVAAP66 (OH)

TestAmerica Job ID: 240-28110-1

Lab Sample ID: 240-28110-24

Matrix: Water

Client Sample ID: FWGRQLmw-006C-0368-GW
D-4- Q-114- 1- 00/40/40 40-40

Date Collected: 08/19/13 16:19 Date Received: 08/20/13 08:03

Cyanide, Total

Nitrocellulose

Analyte		Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fa
Aroclar-1016	0.19	U	0.48	0.19	0.16	ug/L		08/29/13 02:50	
Aroclor-1221	0.19	U	0.48	0.19	0.12	ug/L		08/29/13 02:50	- 1
Aroclor-1232	0.19	U	0.48	0.19	0.15	ug/L		08/29/13 02:50	
Aroclor-1242	0.38	U	0.48	0.38	0.21	ug/L		08/29/13 02:50	
Aroclor-1248	0.19	U	0.48	0.19	0.095	ug/L		08/29/13 02:50	
Aroclor-1254	0.19	U	0.48	0.19	0.15	ug/L		08/29/13 02:50	
Aroclor-1260	0.19	u	0.48	0.19	0.16	ug/L		08/29/13 02:50	
Surrogate	%Recovery Qu	ualifier	Limits			Prep	ared	Analyzed	Dil Fa
Tetrachloro-m-xylene	80		40 _ 140			08/20/1	3 11:31	08/29/13 02:50	
Tetrachloro-m-xylene	87		40 - 140			08/20/1	3 11:31	08/29/13 02:50	
DCB Decachlorobiphenyl	32 Q		40 _ 135			08/20/1	3 11:31	08/29/13 02:50	
DCB Decachlorobiphenyl	29 Q		40 - 135			08/20/1	3 11:31	08/29/13 02:50	
Method: 8330 Modified - Nitrog	guanidine (HPLC)								
Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fa
Nitroguanidine	6.0	U	20	6.0	2.4	ug/L		08/26/13 13:39	
Method: 8330A - Nitroaromatic	cs and Nitramines								
Analyte		Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fa
,3,5-Trinitrobenzene	0.051	U	0.15	0.051	0.032	ug/L		08/28/13 00:54	
,3-Dinitrobenzene	0.10		0.15	0.10	0.051	ug/L		08/29/13 00:53	
2,4,6-Trinitrotoluene	0.10		0.15	0.10	0.051			08/28/13 00:54	
2,4-Dinitrotoluene	0.10	U	0.13	0.10	0.051	ug/L		08/28/13 00:54	
2,6-Dinitrotoluene	0.10	U	0.13	0.10	0.051	ug/L		08/28/13 00:54	
2-Amino-4,6-dinitrotoluene	0.10	U	0.15	0.10	0.015	ug/L		08/28/13 00:54	
2-Nitrotoluene	0.10	U	0.51	0.10	0.090	ug/L		08/28/13 00:54	
3-Nitrotoluene	0.10	U	0.51	0.10	0.058	ug/L		08/28/13 00:54	
1-Nitrotoluene	0.10	U	0.51	0.10	0.090	ug/L		08/28/13 00:54	
1-Amino-2,6-dinitrotoluene	0.10	U	0.15	0.10	0.051	ug/L		08/28/13 00:54	
HMX	0.051	U	0.15	0.051	0.037	ug/L		08/28/13 00:54	
RDX	0.051	U	0.15	0.051	0.037	ug/L		08/28/13 00:54	
litrobenzene	0.10	U	0.15	0.10	0.051	ug/L		08/28/13 00:54	
Гetryl	0.10	U	0.15	0.10	0.051	ug/L		08/29/13 00:53	
Nitroglycerin	0.51	U	0.66	0.51	0.34	ug/L		08/28/13 00:54	
PETN	0.51	U	0.66	0.51	0.31	ug/L		08/28/13 00:54	
Surrogate	%Recovery Qu	ualifier	Limits				ared	Analyzed	DII F
3,4-Dinitrotoluene	87 M		79 - 111			08/23/1	3 08:00	08/28/13 00:54	
3,4-Dinitrotoluene	94		79 - 111			08/23/1	3 08:00	08/29/13 00:53	
General Chemistry									
Analyte	Denuit	Qualifier	LOQ	LOD	DI	Unit	D	Analyzed	Dil Fa

08/23/13 13:31

09/04/13 15:12

0.010

2.0

0.010

1.0

0.0032 mg/L

0.48 mg/L

0.010 U

1.0 U

Client: Environmental Quality Mgt., Inc.

Project/Site: RVAAP66 (OH)

TestAmerica Job ID: 240-28110-1

Lab Sample ID: 240-28110-25

Matrix: Water

Client Sample ID: FWGRQLmw-006C-0368-GF

Date Collected: 08/19/13 16:19 Date Received: 08/20/13 08:03

Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
Perchlorate	0.020	U	0.050	0.020	0.0088	ug/L	-	09/06/13 19:16	-1
Method: 6010B/DOD - Metals (ICP)	- Total Recover	able							
Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
Arsenic	13		10	10	3.3	ug/L		09/09/13 10:27	
Chromium	4.0	U	7.0	4.0	1.4	ug/L		09/09/13 10:27	
Cobalt	9.2		7.0	4.0	1.5	ug/L		09/09/13 10:27	17
Lead	5.0	U	10	5.0	1.7	ug/L		09/09/13 10:27	-
Selenium	10	U	15	10	4.0	ug/L		09/09/13 10:27	
Silver	5.0	U	7.0	5.0	1.7	ug/L		09/09/13 10:27	19
Vanadium	4.0	U	7.0	4.0	1.3	ug/L		09/09/13 10:27	- 4
Barium	7.9	J	200	5.0	2.8	ug/L		09/09/13 10:27	19
Calcium	62000		5000	1000	630	ug/L		09/09/13 10:27	19
Copper	10	U	25	10	4.4	ug/L		09/09/13 10:27	
Magnesium	28000		5000	300	120	ug/L		09/09/13 10:27	
Manganese	6800		15	5.0	1.8	ug/L		09/09/13 10:27	- 1
Nickel	19	J	40	5.0	2.2	ug/L		09/09/13 10:27	
Potassium	1000	J	5000	900	300	ug/L		09/09/13 10:27	
Method: 6020/DOD - Metals (ICP/M	S) - Total Recov	verable							
Analyte		Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
Aluminum		U	60	60	20	ug/L		09/09/13 13:56	
Antimony	1.0	U	2.0	1.0	0.33	ug/L		09/09/13 13:56	1
Beryllium	1.0	U	1.0	1.0	0.50	ug/L		09/09/13 13:56	-
Cadmium	1.0	U	2.0	1.0	0.40	ug/L		09/09/13 13:56	
Iron	54000		150	100	44	ug/L		09/09/13 13:56	
Sodium	1500		1000	400	160	ug/L		09/09/13 13:56	
Thallium	1.5	U	2.0	1.5	0.79	ug/L		09/09/13 13:56	
Zinc	50		50	50	27	ug/L		09/09/13 13:56	
Mathadi 7470A/DOD Maraum /OV	0.01								
Method: 7470A/DOD - Mercury (CV	AA)								
Analyte	Regult	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac

Client: Environmental Quality Mgt., Inc.

Project/Site: RVAAP66 (OH)

TestAmerica Job ID: 240-28110-1

Lab Sample ID: 240-28110-26

Matrix: Water

Client Sample ID: FWGEQUIPRINSE1-0340-GW Date Collected: 08/19/13 17:53

Date Received: 08/20/13 08:03

Analyte	Result	Qualifier	L	.00	LOD	DL	Unit I	O Analyzed	Dil Fac
1,1,1-Trichloroethane	0.25	U		1.0	0.25	0.22	ug/L	08/28/13 16:52	- 1
1,1,2,2-Tetrachloroethane	0.25	U		1.0	0.25	0.18	ug/L	08/28/13 16:52	1
1,1,2-Trichloroethane	0.50	U		1.0	0.50	0.27	ug/L	08/28/13 16:52	1
1,1-Dichloroethane	0.25	U		1.0	0.25	0.15	ug/L	08/28/13 16:52	1
1,1-Dichloroethene	0.25	U		1.0	0.25	0.19	ug/L	08/28/13 16:52	1
1,2-Dichloroethane	0.25	U		1.0	0.25	0.22	ug/L	08/28/13 16:52	1
1,2-Dichloroethene, Total	0.25	U		2.0	0.25	0.17	ug/L	08/28/13 16:52	1
1,2-Dichloropropane	0.25	U		1.0	0.25	0.18	ug/L	08/28/13 16:52	1
2-Hexanone	0.50	U		10	0.50	0.41	ug/L	08/28/13 16:52	1
Bromochloromethane	0.50	U		1.0	0.50	0.29	ug/L	08/28/13 16:52	1
Acetone	19			10	1.1	1.1	ug/L	08/28/13 16:52	1
Benzene	0.25	U		1.0	0.25	0.13	ug/L	08/28/13 16:52	1
Bromoform	0.64	U		1.0	0.64	0.64	100	08/28/13 16:52	-1
Bromomethane	0.50	U		1.0	0.50	0.41		08/28/13 16:52	1
Carbon disulfide	0.13			1.0	0.25	0.13	ug/L	08/28/13 16:52	1
Carbon tetrachloride	0.25			1.0	0.25	0.13	ug/L	08/28/13 16:52	1
Chlorobenzene	0.25	U		1.0	0.25	0.15		08/28/13 16:52	1
Chloroethane	0.50	U		1.0	0.50	0.29	ug/L	08/28/13 16:52	1
Chloroform	0.25	U		1.0	0.25		ug/L	08/28/13 16:52	1
Chloromethane	0.50			1.0	0.50	0.30	ug/L	08/28/13 16:52	1
cis-1,2-Dichloroethene	0.25	U		1.0	0.25	0.17		08/28/13 16:52	1
cis-1,3-Dichloropropene	0.25			1.0	0.25	0.14	ug/L	08/28/13 16:52	1
Bromodichloromethane	0.25			1.0	0.25	0.15	ug/L	08/28/13 16:52	1
Ethylbenzene	0.25			1.0	0.25	0.17		08/28/13 16:52	1
1,2-Dibromoethane	0.25			1.0	0.25	0.24	ug/L	08/28/13 16:52	1
m-Xylene & p-Xylene	0.50			2.0	0.50	0.24	ug/L	08/28/13 16:52	-1
2-Butanone (MEK)	1.5			10	0.57	0.57	ug/L	08/28/13 16:52	1
4-Methyl-2-pentanone (MIBK)	0.50			10	0.50	0.32	ug/L	08/28/13 16:52	- 1
Methylene Chloride	0.50			1.0	0.50	0.33	ug/L	08/28/13 16:52	1
o-Xylene	0.25			1.0	0.25	0.14	ug/L	08/28/13 16:52	- 1
Styrene	0.25			1.0	0.25	0.11	ug/L	08/28/13 16:52	- 1
Tetrachloroethene	0.50			1.0	0.50	0.29	ug/L	08/28/13 16:52	1
Toluene	0.14			1.0	0.25	0.13	ug/L	08/28/13 16:52	- 1
trans-1,2-Dichloroethene	0.25			1.0	0.25	0.19	ug/L	08/28/13 16:52	1
rans-1,3-Dichloropropene	0.25			1.0	0.25	0.19		08/28/13 16:52	1
Trichloroethene	0.25			1.0	0.25	0.17		08/28/13 16:52	1
Vinyl chloride	0.25			1.0	0.25		ug/L	08/28/13 16:52	1
Xylenes, Total	0.25			2.0	0.25	0.14		08/28/13 16:52	-1
Dibromochloromethane	0,25			1.0	0.25	0.14		08/28/13 16:52	1
Surrogate	%Recovery Qu	alifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	109		70 - 120				35.00	08/28/13 16:52	1
4-Bromofluorobenzene (Surr)	88		75 - 120					08/28/13 16:52	1

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	109		70 - 120		08/28/13 16:52	1
4-Bromofluorobenzene (Surr)	88		75 - 120		08/28/13 16:52	1
Toluene-d8 (Surr)	88		85 - 120		08/28/13 16:52	1
Dibromofluoromethane (Surr)	101		85 - 115		08/28/13 16:52	1

Method: 8270C/DoD - Semivolatile	Organic Compounds (GC/MS)	C/MS)
A	D	

Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
Acenaphthene	0.095	U	0.19	0.095	0.042	ug/L		08/30/13 13:05	1
Acenaphthylene	0.095	U	0.19	0.095	0.046	ug/L		08/30/13 13:05	4

Client: Environmental Quality Mgt., Inc.

Project/Site: RVAAP66 (OH)

TestAmerica Job ID: 240-28110-1

Lab Sample ID: 240-28110-26

Matrix: Water

Client Sample	ID: FWGEQU	IPRINSE1-0340-GW
---------------	------------	------------------

Date Collected: 08/19/13 17:53 Date Received: 08/20/13 08:03

Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fa
Anthracene	0.095	U	0.19	0.095	0.084	ug/L		08/30/13 13:05	
Benzo[a]anthracene	0.095	U	0.19	0.095	0.028	ug/L		08/30/13 13:05	
Benzo[a]pyrene	0.095	U	0.19	0.095	0.049	ug/L		08/30/13 13:05	
Benzo[b]fluoranthene	0.095	U	0.19	0.095	0.038	ug/L		08/30/13 13:05	
Benzo[g,h,i]perylene	0.095	U	0.19	0.095	0.044	ug/L		08/30/13 13:05	
Benzoic acid	19	UM	24	19	9.5	ug/L		08/30/13 13:05	
Benzo[k]fluoranthene	0.095	U	0.19	0.095	0.043	ug/L		08/30/13 13:05	
Benzyl alcohol	0.44	J	4.8	0.48	0.36	ug/L		08/30/13 13:05	
Bis(2-chloroethoxy)methane	0.48	U	0.95	0.48	0.30	ug/L		08/30/13 13:05	
Bis(2-chloroethyl)ether	0.095	Ü	0.95	0.095	0.095	ug/L		08/30/13 13:05	
Bis(2-ethylhexyl) phthalate	0.38	J	1.9	0.48	0.21	ug/L		08/30/13 13:05	
4-Bromophenyl phenyl ether	0.48	U	1.9	0.48	0.21	ug/L		08/30/13 13:05	
Butyl benzyl phthalate	0.48	U	1.9	0.48	0.25	ug/L		08/30/13 13:05	
Carbazole	0.48	U	0.95	0.48	0.27	ug/L		08/30/13 13:05	
4-Chloroaniline	0.48	U	1.9	0.48	0.20	ug/L		08/30/13 13:05	
4-Chloro-3-methylphenol	0.48	U	1.9	0.48	0.20	ug/L		08/30/13 13:05	
2-Chloronaphthalene	0.48	U	0.95	0.48	0.095	ug/L		08/30/13 13:05	
2-Chlorophenol	0.48	U	0.95	0.48	0.28	ug/L		08/30/13 13:05	
4-Chlorophenyl phenyl ether	0.48	U	1.9	0.48	0.29	ug/L		08/30/13 13:05	
Chrysene	0.095	U	0.19	0.095	0.048	ug/L		08/30/13 13:05	
Dibenz(a,h)anthracene	0.095	U	0.19	0.095	0.042	ug/L		08/30/13 13:05	
Dibenzofuran	0.095	U	0.95	0.095	0.019			08/30/13 13:05	
1,2-Dichlorobenzene	0.48	U	0.95	0.48		ug/L		08/30/13 13:05	
1,3-Dichlorobenzene	0.48	U	0.95	0.48	0.22	ug/L		08/30/13 13:05	
1,4-Dichlorobenzene	0.48	U	0.95	0.48	0.32	ug/L		08/30/13 13:05	
3,3'-Dichlorobenzidine	0.95	U	4.8	0.95		ug/L		08/30/13 13:05	
2,4-Dichlorophenol	0.48	U	1.9	0.48	0.18	ug/L		08/30/13 13:05	
Diethyl phthalate	1.3	J	1.9	0.95	0.57	ug/L		08/30/13 13:05	
2,4-Dimethylphenol	0.48	U	1.9	0.48	0.24	ug/L		08/30/13 13:05	
Dimethyl phthalate	0.48	U	1.9	0.48	0.28	ug/L		08/30/13 13:05	
Di-n-butyl phthalate	0.95	U	1.9	0.95	0.64	ug/L		08/30/13 13:05	
4,6-Dinitro-2-methylphenol	3.8	U	4.8	3.8	2.3	ug/L		08/30/13 13:05	
2,4-Dinitrophenol	0.95	u	4.8	0.95	0.30			08/30/13 13:05	
Di-n-octyl phthalate	0.48	U	1.9	0.48	0.22	ug/L		08/30/13 13:05	
Fluoranthene	0.095	U	0.19	0.095	0.042	ug/L		08/30/13 13:05	
Fluorene	0.095	U	0.19	0.095	0.039			08/30/13 13:05	
Hexachlorobenzene	0.095		0.19	0.095	0.081			08/30/13 13:05	
Hexachlorobutadiene	0.48	U	0.95	0.48		ug/L		08/30/13 13:05	
Hexachlorocyclopentadiene	0.48	U	9.5	0.48		ug/L		08/30/13 13:05	
Hexachloroethane	0.48	U	0.95	0.48		ug/L		08/30/13 13:05	
Indeno[1,2,3-cd]pyrene	0.095	U	0.19	0.095	0.041			08/30/13 13:05	
Isophorone	0.48	U	0.95	0.48		ug/L		08/30/13 13:05	
2-Methylnaphthalene	0.095		0.19	0.095	0.086			08/30/13 13:05	
2-Methylphenol	0.48		0.95	0.48		ug/L		08/30/13 13:05	
3 & 4 Methylphenol	0.95		1.9	0.95		ug/L		08/30/13 13:05	
Naphthalene	0.095		0.19	0.095	0.060			08/30/13 13:05	
2-Nitroaniline	0.48		1.9	0.48		ug/L		08/30/13 13:05	
3-Nitroaniline	0.48		1.9	0.48		ug/L		08/30/13 13:05	
4-Nitroaniline	0.48		1.9	0.48		ug/L		08/30/13 13:05	

Client: Environmental Quality Mgt., Inc.

Project/Site: RVAAP66 (OH)

TestAmerica Job ID: 240-28110-1

Lab Sample ID: 240-28110-26

Matrix: Water

Client Sample ID: FWGEQUIPRINSE1-0340-GW

Date Collected: 08/19/13 17:53 Date Received: 08/20/13 08:03

Analyte	Result	Qualifier	LOG	1	OD	DL	Unit D	Analyzed	Dil Fac
2-Nitrophenol	0.48	U	1.9)	0.48	0.27	ug/L	08/30/13 13:05	1
4-Nitrophenol	3.8	U	4.8	3	3.8	0.28	ug/L	08/30/13 13:05	1
N-Nitrosodi-n-propylamine	0.48	U	0.95	5	0.48	0.23	ug/L	08/30/13 13:05	1
N-Nitrosodiphenylamine	0.48	U	0.95	5	0.48	0.30	ug/L	08/30/13 13:05	1
2,2'-oxybis[1-chloropropane]	0.48	U	0.95	5	0.48	0.38	ug/L	08/30/13 13:05	1
Pentachlorophenol	0.95	U	4.8	3	0.95	0.26	ug/L	08/30/13 13:05	1
Phenanthrene	0.095	U	0.19	0	095	0.059	ug/L	08/30/13 13:05	1
Phenol	0.95	U	0.95	5	0.95	0.57	ug/L	08/30/13 13:05	1
Pyrene	0.095	U	0.19	0	095	0.040	ug/L	08/30/13 13:05	1
1,2,4-Trichlorobenzene	0.48	U	0.95	5	0.48	0.27	ug/L	08/30/13 13:05	1
2,4,5-Trichlorophenol	0.48	U	4.8	3	0.48	0.29	ug/L	08/30/13 13:05	- 1
2,4,6-Trichlorophenol	0.48	U	4.8	3	0.48	0.23	ug/L	08/30/13 13:05	1
Surrogate	%Recovery Qu	ıalifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl (Surr)	51		50 - 110				08/21/13 09:37	08/30/13 13:05	1
2-Fluorophenol (Surr)	52		20 - 110				08/21/13 09:37	08/30/13 13:05	1
Nitrobenzene-d5 (Surr)	53		40 - 110				08/21/13 09:37	08/30/13 13:05	1
Phenol-d5 (Surr)	55		10 - 115				08/21/13 09:37	08/30/13 13:05	1
Terphenyl-d14 (Surr)	87		50 - 135				08/21/13 09:37	08/30/13 13:05	1
2,4,6-Tribromophenol (Surr)	71		40 - 125				08/21/13 09:37	08/30/13 13:05	1

Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
4,4'-DDD	0.019	UQ	0.048	0.019	0.0092	ug/L		08/23/13 23:16	1
4,4'-DDE	0.019	U	0.048	0.019	0.0093	ug/L		08/23/13 23:16	1
4,4'-DDT	0.019	U	0.048	0.019	0.015	ug/L		08/23/13 23:16	1
Aldrin	0.019	U	0.029	0.019	0.0079	ug/L		08/23/13 23:16	1
alpha-BHC	0.019	U	0.029	0.019	0.0067	ug/L		08/23/13 23:16	1
alpha-Chlordane	0.019	U	0.048	0.019	0.013	ug/L		08/23/13 23:16	1
beta-BHC	0.018	J	0.048	0.019	0.0081	ug/L		08/23/13 23:16	1
delta-BHC	0.019	U	0.048	0.019	0.0084	ug/L		08/23/13 23:16	1
Dieldrin	0.019	U	0.029	0.019	0.0072	ug/L		08/23/13 23:16	1
Endosulfan I	0.019	U	0.048	0.019	0.013	ug/L		08/23/13 23:16	1
Endosulfan II	0.019	U	0.048	0.019	0.012	ug/L		08/23/13 23:16	1
Endosulfan sulfate	0.019	U	0.048	0.019	0.011	ug/L		08/23/13 23:16	1
Endrin	0.019	U	0.048	0.019	0.011	ug/L		08/23/13 23:16	1
Endrin aldehyde	0.019	U	0.048	0.019	0.011	ug/L		08/23/13 23:16	1
Endrin ketone	0.019	U	0.048	0.019	0.0075	ug/L		08/23/13 23:16	1
gamma-BHC (Lindane)	0.019	U	0.048	0.019	0.0062	ug/L		08/23/13 23:16	9
gamma-Chlordane	0.019	U	0.048	0.019	0.012	ug/L		08/23/13 23:16	1
Heptachlor	0.019	U	0.029	0.019	0.0077	ug/L		08/23/13 23:16	1
Heptachlor epoxide	0.019	U	0.029	0.019	0.0068	ug/L		08/23/13 23:16	1
Methoxychlor	0.048	U	0.096	0.048	0.031	ug/L		08/23/13 23:16	1
Toxaphene	0.77	U	1.9	0.77	0.31	ug/L		08/23/13 23:16	1
S		. Dec.				-	cocat:	Assessment .	50.5

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	DII Fac
DCB Decachlorobiphenyl	71		30 - 135	08/20/13 11:25	08/23/13 23:16	1
DCB Decachlorobiphenyl	75	M	30 - 135	08/20/13 11:25	08/23/13 23:16	1
Tetrachloro-m-xylene	83		25 - 140	08/20/13 11:25	08/23/13 23:16	1
Tetrachloro-m-xylene	86		25 - 140	08/20/13 11:25	08/23/13 23:16	1

TestAmerica Canton

Page 65 of 142

9/18/2013

Client: Environmental Quality Mgt., Inc.

Client Sample ID: FWGEQUIPRINSE1-0340-GW

Project/Site: RVAAP66 (OH)

Date Collected: 08/19/13 17:53

Date Received: 08/20/13 08:03

3-Nitrotoluene

4-Nitrotoluene

Nitrobenzene

HMX

RDX

4-Amino-2,6-dinitrotoluene

TestAmerica Job ID: 240-28110-1

Lab Sample ID: 240-28110-26

Matrix: Water

Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
Aroclor-1016	0.19	U	0.48	0.19	0.16	ug/L		08/29/13 03:05	1
Aroclor-1221	0.19	U	0.48	0.19	0.13	ug/L		08/29/13 03:05	1
Aroclor-1232	0.19	U	0.48	0.19	0.15	ug/L		08/29/13 03:05	1
Aroclor-1242	0.38	U	0.48	0.38	0.21	ug/L		08/29/13 03:05	1
Aroclor-1248	0.19	U	0.48	0.19	0.096	ug/L		08/29/13 03:05	1
Aroclor-1254	0.19	U	0.48	0.19	0.15	ug/L		08/29/13 03:05	1
Aroclor-1260	0.19	U	0.48	0.19	0.16	ug/L		08/29/13 03:05	1
Surrogate	%Recovery Qu	ualifier	Limits			Prep	ared	Analyzed	Dil Fac
Tetrachloro-m-xylene	80		40 - 140			08/20/1	3 11:31	08/29/13 03:05	1
Tetrachloro-m-xylene	88		40 - 140			08/20/1	3 11:31	08/29/13 03:05	1
DCB Decachlorobiphenyl	54		40 _ 135			08/20/1	3 11:31	08/29/13 03:05	1
DCB Decachlorobiphenyl	43		40 - 135			08/20/1	3 11:31	08/29/13 03:05	1
Method: 8330 Modified - Nitro	oguanidine (HPLC)								
Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
Nitroguanidine	6.0	U	20	6.0	2.4	ug/L		08/26/13 13:57	1
Method: 8330A - Nitroaromat	ics and Nitramines								
Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
1,3,5-Trinitrobenzene	0,051	U	0.15	0.051	0.032	ug/L		08/29/13 03:04	1
1,3-Dinitrobenzene	0.10	U	0.15	0.10	0.051	ug/L		08/28/13 01:38	1
2,4,6-Trinitrotoluene	0.10	U	0.15	0.10	0.051	ug/L		08/28/13 01:38	1
	0.10	U	0.13	0.10	0.051	ug/L		08/28/13 01:38	1
2,4-Dinitrotoluene									
	0.10	U	0.13	0.10	0.051	ug/L		08/28/13 01:38	1
2,4-Dinitrotoluene 2,6-Dinitrotoluene 2-Amino-4,6-dinitrotoluene	0.10 0.10	930	0.13 0.15	0.10 0.10	0.051			08/28/13 01:38 08/28/13 01:38	1

Tetryl	0	.10 U	0.15	0.10	0.051	ug/L	08/28/13 01:38	3
Nitroglycerin	0	.51 U	0.67	0.51	0.34	ug/L	08/28/13 01:38	1
PETN	.0	.51 U	0.67	0.51	0.31		08/28/13 01:38	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
- 0 4 - (3 						The second secon		
3,4-Dinitrotoluene	90	M	79 - 111			08/23/13 08:00	08/28/13 01:38	1

0.51

0.51

0.15

0.15

0.15

0.15

0.10

0.10

0.10

0.051

0.051

0.10

0.10 U

0.10 U

0.10 U

0.051 U

0.051 U

0.10 U

0.059 ug/L

0.090 ug/L

0.051 ug/L

0.037 ug/L

0.037 ug/L

0.051 ug/L

Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
Perchlorate	0.020	U	0.050	0.020	0.0088	ug/L		09/06/13 19:44	1

Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
Arsenic	10	U	10	10	3.3	ug/L		09/09/13 10:33	1
Chromium	4.0	U	7.0	4.0	1.4	ug/L		09/09/13 10:33	1
Cobalt	4.0	U	7.0	4.0	1.5	ug/L		09/09/13 10:33	1
Lead	5.0	U	10	5.0	1.7	ug/L		09/09/13 10:33	1

TestAmerica Canton

08/28/13 01:38

08/28/13 01:38

08/28/13 01:38

08/29/13 03:04

08/28/13 01:38

08/29/13 03:04

Client: Environmental Quality Mgt., Inc.

Project/Site: RVAAP66 (OH)

TestAmerica Job ID: 240-28110-1

Lab Sample ID: 240-28110-26

Matrix: Water

Client Sample ID: FWGEQUIPRINSE1-0340-GW Date Collected: 08/19/13 17:53

Date Received: 08/20/13 08:03

General Chemistry

Analyte

Cyanide, Total

Nitrocellulose

Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
Selenium	10	U	15	10	4.0	ug/L		09/09/13 10:33	1
Silver	5.0	U	7.0	5.0	1.7	ug/L		09/09/13 10:33	1
Vanadium	4.0	U	7.0	4.0	1.3	ug/L		09/09/13 10:33	1
Barium	5.0	U	200	5.0	2.8	ug/L		09/09/13 10:33	1
Calcium	1000	U	5000	1000	630	ug/L		09/09/13 10:33	1
Copper	10	U	25	10	4.4	ug/L		09/09/13 10:33	1
Magnesium	300	U	5000	300	120	ug/L		09/09/13 10:33	1
Manganese	5.0	U	15	5.0	1.8	ug/L		09/09/13 10:33	1
Nickel	5.0	U	40	5.0	2.2	ug/L		09/09/13 10:33	1
0.1	900	11	5000	900	300	ug/L		09/09/13 10:33	1
Method: 6020/DOD - Metals (ICP/MS)) - Total Recov	erable							Dil Esc
			3000			ug/L			
Method: 6020/DOD - Metals (ICP/MS)) - Total Recov Result	erable Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
Method: 6020/DOD - Metals (ICP/MS) Analyte Aluminum) - Total Recov Result	rerable Qualifier	LOQ 60	LOD 60	DL 20	Unit ug/L	D	Analyzed 09/09/13 14:04	Dil Fac
Method: 6020/DOD - Metals (ICP/MS) Analyte Aluminum Antimony) - Total Recover Result 60	verable Qualifier U	60 2.0	60 1.0	DL 20 0.33	Unit ug/L ug/L	D	Analyzed 09/09/13 14:04 09/09/13 14:04	Dil Fac
Method: 6020/DOD - Metals (ICP/MS) Analyte Aluminum Antimony Beryllium) - Total Recov Result 60 1.0	rerable Qualifier U U	60 2.0 1.0	60 1.0 1.0	DL 20 0.33 0.50	Unit ug/L ug/L ug/L	D	Analyzed 09/09/13 14:04 09/09/13 14:04 09/09/13 14:04	Dil Fac
Method: 6020/DOD - Metals (ICP/MS) Analyte Aluminum Antimony Beryllium Cadmium) - Total Recover Result 60	rerable Qualifier U U U	60 2.0	60 1.0	20 0.33 0.50 0.40	Unit ug/L ug/L ug/L	D	Analyzed 09/09/13 14:04 09/09/13 14:04	Dil Fac 1 1 1 1
Method: 6020/DOD - Metals (ICP/MS) Analyte Aluminum Antimony Beryllium Cadmium) - Total Recover Result 60 1.0 1.0 1.0	rerable Qualifier U U U U U	60 2.0 1.0 2.0	60 1.0 1.0	20 0.33 0.50 0.40	Unit ug/L ug/L ug/L ug/L	D	Analyzed 09/09/13 14:04 09/09/13 14:04 09/09/13 14:04	Dil Fac 1 1 1 1 1 1
Method: 6020/DOD - Metals (ICP/MS) Analyte Aluminum Antimony Beryllium Cadmium Iron Sodium) - Total Recover Result 60 1.0 1.0 1.0 100	rerable Qualifier U U U U U U	60 2.0 1.0 2.0 150	60 1.0 1.0 1.0	DL 20 0.33 0.50 0.40 44 160	Unit ug/L ug/L ug/L ug/L	D	Analyzed 09/09/13 14:04 09/09/13 14:04 09/09/13 14:04 09/09/13 14:04	Dil Fac 1 1 1 1 1 1 1
Method: 6020/DOD - Metals (ICP/MS) Analyte Aluminum Antimony Beryllium Cadmium Iron Sodium Thallium) - Total Recover Result 60 1.0 1.0 1.0 100 410	verable Qualifier U U U U U U U U	LOQ 60 2.0 1.0 2.0 150 1000	60 1.0 1.0 1.0 1.0 400	DL 20 0.33 0.50 0.40 44 160	Unit ug/L ug/L ug/L ug/L ug/L ug/L ug/L	D	Analyzed 09/09/13 14:04 09/09/13 14:04 09/09/13 14:04 09/09/13 14:04 09/09/13 14:04	Dil Fac
Potassium Method: 6020/DOD - Metals (ICP/MS) Analyte Aluminum Antimony Beryllium Cadmium Iron Sodium Thallium Zinc	- Total Recover	verable Qualifier U U U U U U U U	LOQ 60 2.0 1.0 2.0 150 1000 2.0	LOD 60 1.0 1.0 1.0 100 400 1.5	DL 20 0.33 0.50 0.40 44 160 0.79	Unit ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	D	Analyzed 09/09/13 14:04 09/09/13 14:04 09/09/13 14:04 09/09/13 14:04 09/09/13 14:04 09/09/13 14:04	Dil Fac
Method: 6020/DOD - Metals (ICP/MS) Analyte Aluminum Antimony Beryllium Cadmium Iron Sodium Thallium) - Total Recover Result 60 1.0 1.0 1.0 1.0 1.0 1.5 50 MA)	verable Qualifier U U U U U U U U	LOQ 60 2.0 1.0 2.0 150 1000 2.0	LOD 60 1.0 1.0 1.0 100 400 1.5	DL 20 0.33 0.50 0.40 44 160 0.79 27	Unit ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	D	Analyzed 09/09/13 14:04 09/09/13 14:04 09/09/13 14:04 09/09/13 14:04 09/09/13 14:04 09/09/13 14:04	Dil Fac

LOQ

0.010

2.0

LOD

0.010

1.0

DL Unit

0:0032 mg/L

0.48 mg/L

Result Qualifier

0.010 U

1.0 U

TestAmerica Canton

Analyzed

08/23/13 13:36

09/04/13 15:14

Dil Fac

Shipping and Receiving Documents

TestAmerica Canton 4101 Shuffel Street, N. H.

Company:

Chain of Custody Record

Worth Canton, OH 44720 TestAmerica Laboratories, Inc. Phone: 330,497,9396 Fax: 330 ■ NPDES RCRA Other: Form No. CA-C-WI-002, Rev. 4.2, dated 04/02/2013 Site Contact: Srik Corbin Date: 8/19/13 Client Contact COC No: Project Manager: 1000 81913 Company Name: FOM Tel/Fax) 513 Lab Contact: MORK I OAh Carrier: (Oh DICKLIO COCs 1800 CArillon KIVC **Analysis Turnaround Time** Sampler: 03 SR 45240 City/State/Zip: (IMIDOCH) OH CALENDAR DAYS WORKING DAYS For Lab Use Only: Walk-in Client: 1500 TAT if different from Below 44 808 808 8258 Lab Sampling: 2 weeks Project Name: KVAAPUU (0H) 1 week Site: 30/74, 00/0, 001.10. Job / SDG No.: 2 days P O # 1 day Sample Type cooler 10# Sample Sample (C=Comp. Date Time Cont. Sample Identification Matrix Sample Specific Notes: G=Grab) 8/19/13 SR1 ENGTERM 1. Trip 11:00 msmsp H113, C119, SR1* 8/19/13 FNGROLMW-008C-7370-GW 8/19/13/12:45 本 BNGROLMW-008C-0370-GF H113, C119, SR1 FWGROLMW-011C-0326-GW 8/19/18/4:55 GW TDai EWGROLMW-OILC-03210-GF IDal B81 8/19/13/10:51 6W ENGFWGMW-016-0351-GW GW 8/19/13/10:51 ENGFWGMW-014-0351-GF 8/19/13/17:41 GW 8WGFWGMW-015-0350-GW FNGFWAMW-015-0350-GF 8/19/13 Preservation Used: 1= Ice. 2= HCf. 3= H2SO4: 4=HNO3: 5=NaOH; 6= Other Possible Hazard Identification: Sample Disposal (A fee may be assessed if samples are retained longer than 1 month) Are any samples from a listed EPA Hazardous Waste? Please List any EPA Waste Codes for the sample in the Comments Section if the lab is to dispose of the sample. Poison B Unknown Disposal by Lab Non-Hazard Return to Client ___ Archive for__ Flammable Special Instructions/QC Requirements & Comments: all metals, perchlorate samples are field filtered Cyanide & PCB Temps may not meet reallirements if samal rallection is close to iab dick up time Custody Seals Intact: Custody Seal No .: Date/Time: ち-19-13-1830 Company: IAL XX Company: Company: JAL-XCC 19-13-192 13 0700

Date/Time:

Company:

Received in Laboratory by

TestAmerica Canton 4101 Shuffel Street, M. W.

Chain of Custody Record

TestAmerica

THE LEADER IN ENVIRONMENTAL TESTING TestAmerica Laboratories, Inc.

||

Horth Canton, DH 44720 Phone: 330.497.9396 Fax: 330.497.0772															THE LEADER IN ENVIRONMENTAL TESTING TestAmerica Laboratories, Inc.
		ry Program:		_	R		Othe		ļ		~ /	()			No. CA-C-WI-002, Rev. 4.2, dated 04/02/2013
Client Contact	Project Mana	ger: J.M.II	ev					DRB11	٧	Date:		19/2	1013	_	COC No: CAL 031913
Company Name: EAM	Tel/Fax:	lysis Turnaround	Timo	Lai	b Co	ntact:	ţ٧.	LOEB	1	Carrier	r: * T T	,	1 1	_	Sampler: C, LEGRE
Address: 1800 CARIUON BLVID City/State/Zip: CINCINNATI OH 45240	CALENDAR		KING DAYS	-											For Lab Use Only:
Phone: 513 825 1500		lifferent from Below	27	7 1	2 5	2	9								Walk-in Client:
ax: 513 825 7495)SQ	2 weeks	، مرزاس	ΙźΙ	3/3	200	is B	1						0	Lab Sampling:
Project Name: RVAAV-66		1 week	W)	>		3 4	8	2						oracto	
Site: Ravenna OH		2 days	50°	e e	/ MS	13	25						2	15	Job / SDG No.:
- 0#		1 day Sample		-Isl	MS	56	37			1				14	
	Sample Sa	Туре		red	E S	3 8	9 3	180					3	7	Cooler 10#
Sample Identification		Time (C=Comp,	# of Matrix Cont		Per	4	ত্রতি	3						12	Sample Specific Notes:
2	31981	180													
FWGU3MW-299C-0322-GF	819/8/2		GW 1	V	72	\Box	\top				\Box			X	or 41
		332 G	GN 7	N	N	XX	XX								3424
FWG W3mw-238C-0369- GF		Ia	GW 1	У	N										4P2
#UG W3mw-241C-0360-GW	8/19/13 /4	128 G	GW 7	M	N	ХХ	XX								E115
906U3mw-241C-0360-6F	1 -	L G	GW 1	y	N								X		EIIS
ENGFUG MW-002-0317-GF	8/19/13/19	138 G	6W 1	Ÿ	N								ļ!	X	E115
13 PWG FWGMW-DUP2-0337 -GF	9/19/13 15		6W 1	-	M								1	X	£115
906 Flogmw-004-0346-GW	8/19/8/		GW 8	N	M)	X X	<u> </u>	X	i L			$\perp \perp$	l li	_	0450
FW6FW6 mw-004-0346-GF	1.	1 6	6W 1	14	14		\perp		-	ـــــــــــــــــــــــــــــــــــــ		$\perp \perp$	X	<u> </u>	0950
				$\perp \!\!\! \perp$	Щ		\perp		-			\perp		-	
			D-2001-101-101-00-00-00-00-00-00-00-00-00-0	2000000	3377 4	remidia yan tak	N 50 N 50 60	e i Grasi Passo alfaszha z	0.302-0.0000	1020-2011 F-57.3	e ocean	ASS 64 A 40 T	P200 CAL PATER SE	24 Sept. 150	AND AND THE SECOND CONTRACTOR OF THE SECOND CO
Preservation Used: 1= Ice, 2= HCl; 3= H2SO4; 4=HNO3; Possible Hazard Identification:	5=NaOH; 6= 0	Other	<u> </u>		San	nnle Di	snosa	I (Δ fee	may be	28868	sed if	sample	s are reta	inec	l longer than 1 month)
Are any samples from a listed EPA Hazardous Waste? Pleas	se List any EPA	Waste Codes for t	he sample in		Juin	,p.0 2.	оросс	(71.100				p			, , , , , , , , , , , , , , , , , , , ,
Comments Section if the lab is to dispose of the sample. Skin Irritant Flammable	Poison B	Unkno				Return			Solo	isposal by	/ Lab		Archive 1		Months
Special Instructions QC Requirements & Comments:	. 0 0 -	10	N	102	tal	5 9	nd	pero	hlo	rate	<u> </u>	are	field	1	filtered
Dee labilist for SVOC/ ph			, ,					-	1				ı		
Custody Seals Intact: Y Yes No	Custody Seal	No.:	Data/Fires		Doo	sheed b		r Temp. ((°C): Ob	os'd:	ICom	_ Corr'd pany:			Therm ID No.:
Relinquished by:	Company:		Date/Time: 8/19/13 /	9:30		eived	= //	£15	_		<u> </u>	12	-540	-	8-19-13-1030
Relinquished by:	Company:	250 8	Date/Time:		Reç	eived b	oy: C	- /	3			pany:			Date/Time: 8/20/13 0700
Relinquished by:	Company:		Date/Time:				n Labo	pratery by	<u> </u>	~~>	_	pany:			Date/Time:
								_	1				· i		

Page 3257 of 3263


Chain of Custody Record NOTH Canton TestAmerica

TestAmerica Laboratory location: ______ THE LEADER IN ENVIRONMENTAL TESTING

Client Contact	Regulat	ory program:	D	w L	NPD	ES	R	RCRA		Oth	er					#		т	estAmerica Laboratories.	Inc.
Company Name:	Client Project N	Ianager:	ller		Site Cont	tact:	Co	v.bi o			Lab	Contac	ii WK	10	eb				1000 No. AD 08 1913E	
Address: 1800 Cavillon Blud	Telephone:	-825-			Telephor						Tele	phone:				939	le		of 1 COCs	
City/State/Zip: Cancinnach Dhio 45340		oin De						ousPra	i <u>lo</u>						nalyse	, II	^			
513-825-7500			U		TA'	l' if different	73	ow							NA C		200			
Project Number:		ment/Carrier:	Þ		SUN)		2 weeks 1 week				OLX	276		Prox		7	Ì		
030174 0016.001.10.1	Shipping/Frack	ing No:					_	2 days 1 day		(etto)	03/60	مِّن إِ	30 3	300	3 6	30		5		
PO#		Sample Time	Air Aqueous Sediment	Other:	H2SO4	HCI	NaOH	ZnAc/ NaOH Unpres	Other:	llic es	10 'W'		\$100 8	100 to 200 to 20	17 15 15 15 15 15 15 15 15 15 15 15 15 15	comid	Medal	e Callorer	Sample Specific Notes Special Instructions	
Sample Identification FWGTeam3-TRIP	8 19 13	amilian ilganistik üherrikajainak resijai an	X 3 3 3	10		72	Z	SZ D		150	X		VIE	7 1	7 2		الح		114	
FWGEQUHW-009C-0871 GU		1323	1			3	i	9	/		Ϋ́			X X	X	V			114	
FUGRALMW-009C-0371-6F	-	1	X													1	X		114	
FUGROLHW-DUPT 0377-GI		1423	Ϋ́			3	-	C	7		X	X		<u>X</u> . X	(X	X			PPEP	
FWGROLMW-DUPS-0317-64		1	X		l l												L ,		1	
FroglaLMW-OUC-0368-GA	1	1619	$\hat{\gamma}$	-	'	3	1	10	9		X	X		$\langle \chi \rangle$		X	X		#/	
FugloLMW-0000-03686	-	V	Y	-		7	,	35					000		1		X		14015	
FWGERVIPR insel-0340-6W		1753	X			13	1	10			X	X	₹)	X 7	KY	(X	* X		190.5	acal's
									-		-						-	-		16/11/12
Possible Hazard Identification	<u> </u>	Deises P		I alm anna		le Disposa			assessed			retained	i longer Arch	than 1	month)	+		Months		_
Special Instructions of Requirements & Comments:	irritant [Poison B	the		NQe	<u> </u>									H				Coder 114	
temps may not meet	real	were	WP i	Fil	imp	le	Ct	Me	chi	M	15	a	SC	1	210	rb f	ick	иP)	
Kelinquished by:	EMP	1913 18	3 Date/Time	E	9~	1	Receiv	red by:			<u> </u>				mpany:	1- 4	<u>-{</u>		8.19-13-1	/ मेहने जिल्ला
Relinquished by:	Company:	~~~	Date/Time	-/3	- /	721	Receiv	ed in Lal	borzator	-B	···	ہہ	~		ompany:	74:			Date/Time:	200
Romingmoned by.	- Company							-							-,,-	<u></u>				

TestAmerica Canton Sample Receipt Form/Narrative Login #: 28 10 Canton Facility
Client EOM Site Name Ravenna Cooler unpacked by:
Cooler Received on 8/20/13 Opened on 8/20/13 Penny Burns
FedEx: 1st Grd Exp UPS FAS Stetson Client Drop Off TestAmerica Courier Other
TestAmerica Cooler # Foam Box Client Cooler Box Other 1-1 ples
Packing material used: Bubble Wrap Foam Plastic Bag None Other
COOLANT: (Werfee) Blue Ice Dry Ice Water None
1. Cooler temperature upon receipt
IR GUN# A (CF -1 °C) Observed Cooler Temp. °C Corrected Cooler Temp. °C
IR GUN# 4 (CF 0 °C) Observed Cooler Temp °C Corrected Cooler Temp °C See Multiple
IR GUN# 5 (CF +1 °C) Observed Cooler Temp °C Corrected Cooler Temp °C Cooler Form
IR GUN# 8 (CF -0 °C) Observed Cooler Temp. °C Corrected Cooler Temp. °C
2. Were custody seals on the outside of the cooler(s)? If Yes Quantity leach Yes No
-Were custody seals on the outside of the cooler(s) signed & dated? -Were custody seals on the bottle(s)? Yes No NA Yes No
 Shippers' packing slip attached to the cooler(s)? Did custody papers accompany the sample(s)? Yes No
5. Were the custody papers relinquished & signed in the appropriate place?
5. Word the distorty papers reiniquisited to signed in the appropriate place.
6. Did all bottles arrive in good condition (Unbroken)?
7. Could all bottle labels be reconciled with the COC? Yes No
8. Were correct bottle(s) used for the test(s) indicated?
9. Sufficient quantity received to perform indicated analyses?
10. Were sample(s) at the correct pH upon receipt? Yes No NA pH Strip Lot# HC376062
11. Were VOAs on the COC?
12. Were air bubbles >6 mm in any VOA vials? Yes NO NA
13. Was a trip blank present in the cooler(s)?
Contacted PM MJI Date 8/20/13 by TB via Verbal Voice Mail Other
Contacted PM MJL Date 8/20/13 by 73 via Verbal Voice Mail Other Concerning #14+ #16
Aomnies Arroceccediay.
14. CHAIN OF CUSTODY & SAMPLE DISCREPANCIES
FWGRQLMW-OOPC-0370-GW (MS/MSD)
only rec'd 1x250 ml CN bottle, 2x250ml CN bottles
not rect d
110 -1.22 3
·
15. SAMPLE CONDITION
Sample(s) were received after the recommended holding time had expired.
Sample(s) were received in a broken container.
Sample(s) were received with bubble >6 mm in diameter. (Notify PM)
16. SAMPLE PRESERVATION
Sample(s) FWGFW6MW-004-6346-GF were further preserved in the laboratory. Time preserved: 0830 Preservative(s) added/Lot number(s): 1/13620 (506m) (westal.s)
THIRD Propertient CO 0 20 Treservante(2) and entropy in Tribing 19 1 1 1 20 70 COCHITCHESTS 1 1

Cooler#	IR Gun#	Observed Temp °C	Login#: Corrected Temp °C	Coolant
5'R	4	0.8	0,8	ICE
H113	1	1, 2_	1,2	1
2119		2,8	2,8	
ID27.		5,0	5,0	
381		3,5_	3,2	
3		4,2	4.2	
412		3,2	3.2	
2115		2,6	2,6	
7450		5.8	0.8	
114		3.2	3,2	
PECP		1,2	1.2	
4- [3.2	3.2	
14015		1.8	1.8	
				70° 20° 11° 11° 11° 11° 11° 11° 11° 11° 11° 1
	5. April 10. paralleng a signap and a g a 1. g a 1. also annotate a g a g a g a g			
77774				
7.				
		1		

Project Number: 030174.0016

Sample Event: August 2013

Data Reviewer/Date: Angye Dragotta/December 9, 2013

SDG: 240-28110 Rev1 Analysis: SW846 8260B

Review Questions:	Yes	No	N/A	Comments	Qual/Criteria
1. Did Chain-of-Custody information agree with laboratory report?	X				
2. Were samples preserved properly and received in good condition?	X				QAPP Table 5-1,
3. Were holding times met?	X				QAPP Table 5-1, J/UJ/R
4. Were sample storage requirements met?	X				QAPP Table 5-1,
5. Were all QAPP addendum-specified target analytes reported?	X				QAPP Table 4-5
6. Was the GC/MS system tuned with bromofluorobenzene (BFB) during each 12 hour shift (prior to ICAL and Cal Ver.)?	X				QSM Table F-4
7. Calibration					
7a. Did the initial calibration curve consist of 5 concentration levels?	X			Instrument A3UX15–8/22/13	QSM Table F-4 R
7b. Did the Calibration Check Compounds (CCCs) (see Table 1 below) relative standard deviations (%RSD) ≤ 30%?	X				QSM Table F-4 R
7c. Were the minimum response factors (RFs) for the System Performance Check Compounds (SPCCs) (see Table 2 below) met?	X				QSM Table F-4
7d. Did target analytes with an average calibration type have an RSD <= 15%?	X				QSM Table F-4 15% <rsd< 20%="<br">J/UJ</rsd<>
7e. IF the RSD was >15% was a different calibration option used?	X				
7f. If a linear regression curve was used, was the correlation coefficient r>0.995?	X			A3UX15-Acetone and methylene chloride used a linear fit with r>0.995.	QSM Table F-4 R<0.99=-J/R
7g. If a non-linear regression was used, was the COD r≥0.99, with a minimum of 6 points for second order and 7 points for third order?			X		QSM Table F-4 R<0.99=-J/R
8. Was a LOD Level Verification performed quarterly for each reported analyte with detected results?	X				QSM Table F-4 and section D.1.2.1

Project Number: 030174.0016

Sample Event: August 2013

Data Reviewer/Date: Angye Dragotta/December 9, 2013

SDG: 240-28110 Rev1 Analysis: SW846 8260B

Review Questions:	Yes	No	N/A	Comments	Qual/Criteria
9. Was a MRL Level Verification run at the beginning and end of every daily sequence or every 12 hours?	X				
10. Were the QC/MRL recoveries 70-130%	X			The opening MRL analyzed 8/28/13 @ 1140 recovered above control limits of 70-130% for cis-1,3-dichloropropene at 145%. The closing MRL analyzed at 2119 recovered above control limits of 70-130% for chloroethane at 132% and methylene chloride at 160%. The methylene chloride result for sample FWGTEAM1-Trip was qualified, "J". No additional qualifications were required for cis-1,3-dichloropropene or chloroethane as there were no detected concentrations of these analytes reported for the bracketed field samples. The opening MRL analyzed 8/31/13@ 0824 recovered above control limits of 70-130% for bromomethane at 157%, chloroethane at 139%, chloromethane at 149%, methylene chloride at 254% and vinyl chloride at 134%. The closing MRL analyzed at 1255 recovered above control limits of 70-130% for cis-1,3-dichloropropene at 135% and methylene chloride at 183%. No qualifications were required as there were no detected concentrations reported for sample FWGRQLmw-011c-0326-GW.	Louisville Supplement to the DOD QSM
11. Was a second source verification (ICV) analyzed? Were results 80-120%?	X			A3UX15-8/22/13@ 2329	QSM Table F-4 J=<80% and >120%
12. Was a CCV run daily prior to analysis and every 12 hours of analysis time?	X			A3UX15-8/22/13@ 1031, 8/31/13 @ 0717	QSM Table F-4
12a. Were the average response factors (RFs) for the (SPCCs) (see Table 2 below) met?	X				QSM Table F-4
12b. Were all target analytes ≤ 20%D?	X			The CCV analyzed 8/28/13 @ 1031 had a %D above control limits of 20% for acetone at 23.2% and 4-methyl-2-pentanone at 21.4%. The acetone results for samples FWGRQLmw-008c-0370-GW, FWGRQLmw-006c-0368-GW, FWGRQLmw-009c-0371-GW, FWGRQLmw-DUP5-0377-GW, FWGTEAM1-Trip, FWGTEAM3-Trip and FWGEQUIPRINSE1-0340-GW were qualified as estimated, "J". No qualifications were made for the 4-methyl-2-pentanone outlier as there were no detected 4-methyl-2-pentanone concentrations reported for the bracketed field samples. The CCV analyzed 8/31/13 @ 0717 had a %D above control limits of 20% for methylene chloride at 20.5%, carbon tetrachloride at 21.2%, trans-1,3-dichloropropene at 21.6%. No qualifications were required as there were no detected concentrations reported for sample FWGRQLmw-011c-0326-GW.	QSM Table F-4 %D <20% = J/UJ

Project Number: 030174.0016

Sample Event: August 2013

Data Reviewer/Date: Angye Dragotta/December 9, 2013

SDG: 240-28110 Rev1 Analysis: SW846 8260B

Review Questions:	Yes	No	N/A	Comments	Qual/Criteria
13. Were the internal standards added to every sample?	X				QSM Table F-4
13a. Was the EICP area between -50% and +100% of the ICAL mid-point standard?	X				QSM Table F-4 R
13b. Were the retention times for all IS compounds within ±30 seconds from the RT of the mid-point standard in the ICAL?	X				QSM Table F-4 J/UJ
14. Were the retention times for target analytes within ±0.06 RRT units from the RT of the mid-point standard in the ICAL or the most recently updated RRT for all samples?	X				QSM Table F-4 J
15. Was a method blank prepared and analyzed with each batch?	X				QSM Table F-4
15a. Were target analytes detected in the method blank >1/2 the MRL >RL for common contaminants?	X			Checked by ADR. Methylene chloride was detected in the method blank from batch 240-99810 analyzed 8/31/13 at 0.893µg/L. No qualifications were required as there were no detected concentrations of methylene chloride reported for the bracketed field sample, FWGRQLmw-011c-0326-GW.	QSM Table F-4 <5/10X =B
16. Was a field blank (equipment and/or trip) collected and analyzed?	X				
16a. Were target analytes detected in the field blanks?	X			Checked by ADR. Acetone was detected in FWGTEAM1-TRIP at 1.2μg/L and methylene chloride at 0.55μg/L. FWGTeam3-Trip had acetone detected at 1.1μg/L and methylene chloride at 0.52μg/L. FWGEQUIPRINSE1-0340-GW had acetone detected at 19μg/L, carbon disulfide at 0.13μg/L, toluene at 0.14μg/L and 2-butanone at 1.5μg/L. The acetone results for samples FWGRQLmw-008c-0370-GW, FWGRQLmw-006c-0368-GW and FWGRQLmw-009c-0371-GW, FWGRQLmw-DUP5-0377-GW were qualified, "B", as the detected concentrations were <10x blank contamination. The carbon disulfide result for sample FWGRQLmw-006c-0368-GW was qualified, "B", as the detected concentration was <5x blank contamination. There were no detected 2-butanone or toluene results reported for the associated field samples, so no qualifications were made for the 2-butanone or toluene contamination.	QSM Table F-4 <5/10X =B
17. Was a LCS prepared and analyzed with each batch?	X				QSM Table F-4
17a. Were the LCS recoveries within limits specified in Table G-5 of the DoD QSM?	X			ADR checked section;	QSM Table F-4, Table G-5, J/UJ

Project Number: 030174.0016 Sample Event: August 2013

Data Reviewer/Date: Angye Dragotta/December 9, 2013

SDG: 240-28110 Rev1 Analysis: SW846 8260B

Review Questions:	Yes	No	N/A	Comments	Qual/Criteria
18. Was a MS/MSD prepared with each batch?	X			A matrix spike was performed on sample FWGRQLmw-008-0370-GW.	QSM Table F-4
18a. Were the MS/MSD recoveries within					QSM Table F-4,
limits specified in Table G-4 of the DoD QSM	X				Table G-5
with an RPD <30%?	A				J/UJ Parent sample
					only
19. Was a field duplicate analyzed?	X			A field duplicate was analyzed on sample FWGRQLmw-009c-0371-GW.	QSM Table F-4,
19a. Were the field duplicates RPDs within				Checked by ADR. The field duplicate, FWGRQLmw-DUP5-0377-GW, collected	QSM Table F-4,
<u>+</u> 30%?				on sample FWGRQLmw-009c-0371-GW had an RPD above control limits of	RPD > 30 = J
				30% for acetone at 56%. The acetone result for sample FWGRQLmw-009c-0371-	Parent sample only
	X			GW was qualified as estimated, "J".	
20. Were surrogate recoveries within control					QSM Tables F-4 &
limits specified in the DOD QSM?	X				G-3 >150%=J; 10%
	Λ				-50%=J/UJ;
					<10%=J/R
21. Were reported sample concentrations within calibration range?	X				

References:

DoD Quality Systems Manual (QSM), version 4.1, October 2010

Louisville DoD Quality Systems Manual Supplement (LS), Version 1 March 2007

Final Facility Wide Groundwater Monitoring Program, RVAAP-66 Facility Wide Groundwater Quality Assurance Project Plan (QAPP) Addendum for the Ravenna Army Ammunition Plant, Ravenna, OH, Environmental Quality Management, January 2012

Final Facility Wide Quality Assurance Project Plan for Environmental Investigations Groundwater for the Ravenna Army Ammunition Plant, Ravenna, OH, SAIC, February 2011

Additional Comments:

Table 1 - CCCs

Analyte 1,1-Dichloroethene Chloroform 1,2-Dichloropropane Toluene Ethylbenzene

Table 2- SPCCs

14010 2 51 005	
Analyte	Minimum RF
Chloromethane	0.10
1,1-Dichlorethane	0.10
Bromoform	0.10
Chlorobenzene	0.30
1,1,2,2-Tetrachloroethane	0.30

Project Number: 030174.0016

Sample Event: August 2013

Data Reviewer/Date: Angela Dragotta/ December 9, 2013

SDG: 240-28110-0 R1 Analysis: SW846 8270

Review Questions:	Yes	No	N/A	Comments	Qual/Criteria
1. Did Chain-of-Custody information agree with laboratory report?	X				
2. Were samples preserved properly and received in good condition?	X				QAPP Table 5-1,
3. Were holding times met?	X				QAPP Table 5-1, J/UJ/R
4. Were sample storage requirements met?	X				QAPP Table 5-1,
5. Were all QAPP-specified target analytes reported?	X				QAPP Table 4-6
6. Was the GC/MS system tuned each 12 hour shift (prior to ICAL and Cal Ver.)?	X				QSM Table F-4
7. Initial Calibration					
7a. Did the initial calibration curve consist of 5 concentration levels?	X			Instrument A4HP9–8/26/13	QSM Table F-4 R
7b. Did the Calibration Check Compounds (CCCs) (see Table 1 below) relative standard deviations (%RSD) ≤ 30%?	X				QSM Table F-4 R
7c. Were the minimum response factors (RFs) for the System Performance Check Compounds (SPCCs) (see Table 2 below) ≤0.050?	X				QSM Table F-4
7d. Were all other target analytes reported with an avg response have an RSD \leq 15%?	X				QSM Table F-4 15% <rsd< 20%="J/UJ</td"></rsd<>
7e. IF the RSD was >15% was a different calibration option used?	X				
7f. If a linear regression curve was used, was the correlation coefficient r>0.995?	X				QSM Table F-4 R<0.99=-J/R
7g. If a non-linear regression was used, was the COD r≥0.99, with a minimum of 6 points for second order and 7 points for third order?	X			A4HP9 (8/26/13) - Benzoic acid, 2,4-dinitrophenol and 4,6-dinitro-2-methylphenol used a linear fit.	QSM Table F-4 R<0.99=-J/R
8. Was a LOD Level Verification performed quarterly for each reported analyte?	X				QSM Table F-4 and section D.1.2.1
9 Was a breakdown check run at the beginning of every 12 hours with DDT degradation <20% and tailing factors of benzidine and pentachlorophenol <2?	X				QSM Table F-4 R

Project Number: 030174.0016

Sample Event: August 2013

Data Reviewer/Date: Angela Dragotta/ December 9, 2013

SDG: 240-28110-0 R1 Analysis: SW846 8270

Review Questions:	Yes	No	N/A	Comments	Qual/Criteria
10. Was a MRL Level Verification run at the				8/29/13 @ 0957 and 1712	Louisville Supplement to
beginning and end of every daily sequence or every	X			8/30/13 @ 0909 and 1838	the DOD QSM
12 hours with recoveries within 70-130%?				A ALTDO 0/07/12 \(\times 1700 \)	OCM T 11 F 4
11. Was a second source verification (ICV) analyzed? Were results 80-120%?	X			A4HP9 8/26/13 @ 1509,	QSM Table F-4 J=<80% and >120%
12. Was a CCV run daily prior to analysis and every 12 hours of analysis time?	X			A4HP9 8/29/13 @0904, 8/30/13 @0817	QSM Table F-4
12a. Were the average response factors (RFs) for the System Performance Check Compounds (SPCCs) \geq 0.050?	X				QSM Table F-4
12b. Were all target analytes ≤ 20%D?		X		The CCV analyzed 8/29/13 @0904 had 4-nitrophenol with a %D above control limits of 20% D at 21.2%. The CCV analyzed 8/30/13 had 4-nitrophenol with a %D above control limits of 20% D at 34.9% and 4-nitroaniline at 22.1%. No qualifications were made as there were no detected concentrations of 4-nitrophenol or 4-nitroaniline reported for the associated field samples.	QSM Table F-4 %D <20% = J/UJ
13. Were the internal standards added to every sample?	X				QSM Table F-4
13a. Was the EICP area between -50% and +100% of the ICAL mid-point standard?	X				QSM Table F-4 R
13b. Were the retention times for all IS compounds within ±30 seconds from the RT of the mid-point standard in the ICAL?	X				QSM Table F-4 J/UJ
14. Were the retention times for target analytes within ±0.06 RRT units from the RT of the midpoint standard in the ICAL or the most recently updated RRT for all samples?	X				QSM Table F-4 J
15. Was a method blank prepared and analyzed with each batch?	X				QSM Table F-4
15a. Were target analytes detected in the method blank >1/2 the MRL, >RL for common contaminants?	X			Checked by ADR. bis (2-Ethylhexyl)phthalate was detected in the method blank from batch 240-98336 at 0.593µg/L. The bis (2-ethylhexyl) phthalate results for samples FWGFWGmw-004-0346-GW, FWGFWGmw-015-0350-GW, FWGFWGmw-016-0351-GW, FWGLL3mw-238c-0359-GW and FWGLL3mw-241c-0360-GW were qualified, "B".	QSM Table F-4 <5/10X =B

Project Number: 030174.0016

Sample Event: August 2013

Data Reviewer/Date: Angela Dragotta/ December 9, 2013

SDG: 240-28110-0 R1 Analysis: SW846 8270

Review Questions:	Yes	No	N/A	Comments	Qual/Criteria
16. Was a field blank (equipment and/or trip) collected and analyzed?	X			FWGEQUIPRINSE1-0340-GW	
16a. Were target analytes detected in the field blank?	X			Checked by ADR. bis (2-Ethylhexyl) phthalate was detected at 0.38μg/L, diethylphthalate at 1.3μg/L and benzyl alcohol at 0.44μg/L in FWGEQUIPRINSE1-0340-GW. The bis(2-ethylhexyl)phthalate results for samples FWGRQLmw-011c-0326-GW, FWGRQLmw-006c-0368-GW, FWGRQLmw-009c-0371-GW and FWGRQLmw-DUP5-0377-GW were qualified, "B". No qualifications were made for the diethylphthalate or benzyl alcohol contamination as there were no detected 2-butanone or benzyl alcohol concentrations reported for these analytes in the associated field samples.	QSM Table F-4 <5/10X =B
17. Was a LCS prepared and analyzed with each batch?	X				QSM Table F-4
17a. Were the LCS recoveries within limits specified in Table G-6 of the DoD QSM?	X			ADR checked section;	QSM Table F-4, Table G-6 J/UJ
18. Was a MS/MSD prepared with each batch?	X			A matrix spike was performed on sample FWGRQLmw-008-0370-GW.	
18a. Were the MS/MSD recoveries within limits specified in Table G-6 of the DoD QSM with an RPD <30%?		X		The matrix spike and spike duplicate recoveries were below control limits of 20-110 for 3,3'-dichlorobenzidine at 0% in the MS and MSD. The benzo (a) pyrene matrix spike and matrix spike duplicate recovered below control limits of 55-110% at 54% in both the MS and MSD. The hexachlorocyclopentadiene MS/MSD RPD was above control limits 30% at 37% The 3,3'-dichlorobenzidine result for sample FWGRQLmw-008c-0370-GW was qualified as unusable, "R", while the benzo(a) pyrene result for sample FWGRQLmw-008c-0370-GW was qualified as estimated, "UJ". No qualifications were made for the hexachlorocyclopentadiene RPD outlier as there was no detected concentration of hexachlorocyclopentadiene reported for sample FWGRQLmw-008c-0370-GW.	QSM Table F-4, Table G-6 J/UJ Parent sample only
19. Was a field duplicate analyzed?	X			A field duplicate was analyzed on sample FWGRQLmw-009c-0371-GW.	
19a. Were the field duplicates RPDs within ±50%?	X			Checked by ADR.	QSM Table F-4, RPD >50=J Parent sample only

Project Number: 030174.0016 Sample Event: August 2013

Data Reviewer/Date: Angela Dragotta/ December 9, 2013

SDG: 240-28110-0 R1 **Analysis**: SW846 8270

Review Questions:	Yes	No	N/A	Comments	Qual/Criteria
20. Were surrogate recoveries within control limits					QSM Tables F-4 & G-3
specified in the DOD QSM?	X				>150%=J; 10% -
					50%=J/UJ; <10%=J/R
21. Were reported sample concentrations within calibration range?	X				

References:

- DoD Quality Systems Manual (QSM), version 4.1, October 2010
- Louisville DoD Quality Systems Manual Supplement (LS), Version 1 March 2007
- Final Facility Wide Groundwater Monitoring Program, RVAAP-66 Facility Wide Groundwater Quality Assurance Project Plan (QAPP) Addendum for the Ravenna Army Ammunition Plant, Ravenna, OH, Environmental Quality Management, January 2012
- Final Facility Wide Quality Assurance Project Plan for Environmental Investigations Groundwater for the Ravenna Army Ammunition Plant, Ravenna, OH, SAIC, February 2011

Additional Comments:

Table 1: CCCs (All analytes if CCCs not included in standard)

Base / Neutral Compounds	Acid Compounds
Acenaphthalene	4-Chloro-3-methylphenol
1,4-Dichlorobenzene	2,4-Dichlorophenol
Hexachlorobutadiene	2-Nitrophenol
N-Nitrosodiphehylamine	Phenol
Di-n-octylphthalate	Pentachlorophenol
Fluoroanthene	2,4,6-Trichlorophenol
Benzo(a)pyrene	

Table 2: SPCCs -

N-Nitroso-di-n-propylamine	0.050
Hexachlorocyclopentadiene	0.050
2,4-Dinitrophenol	0.050
4-Nitrophenol	0.050

Project Number: 030174.0016 Sample Event: August 2013

Data Reviewer/Date: Angela Dragotta/ September 20, 2013

SDG: 240-28110-0 R0 **Analysis**: SW846 8270

Review Questions:	Yes	No	N/A	Comments	Qual/Criteria
20. Were surrogate recoveries within control limits specified in the DOD QSM?	x				QSM Tables F-4 & G-3 >150%=J; 10% - 50%=J/UJ; <10%=J/R
21. Were reported sample concentrations within calibration range?	X				

References:

- DoD Quality Systems Manual (QSM), version 4.1, October 2010
- Louisville DoD Quality Systems Manual Supplement (LS), Version 1 March 2007
- Final Facility Wide Groundwater Monitoring Program, RVAAP-66 Facility Wide Groundwater Quality Assurance Project Plan (QAPP) Addendum for the Ravenna Army Ammunition Plant, Ravenna, OH, Environmental Quality Management, January 2012
- Final Facility Wide Quality Assurance Project Plan for Environmental Investigations Groundwater for the Ravenna Army Ammunition Plant, Ravenna, OH, SAIC, February 2011

Additional Comments:

Table 1: CCCs (All analytes if CCCs not included in standard)

Base / Neutral Compounds	Acid Compounds			
Acenaphthalene	4-Chloro-3-methylphenol			
1,4-Dichlorobenzene	2,4-Dichlorophenol			
Hexachlorobutadiene	2-Nitrophenol			
N-Nitrosodiphehylamine	Phenol			
Di-n-octylphthalate	Pentachlorophenol			
Fluoroanthene	2,4,6-Trichlorophenol			
Benzo(a)pyrene				

Table 2: SPCCs -

N-Nitroso-di-n-propylamine	0.050
Hexachlorocyclopentadiene	0.050
2,4-Dinitrophenol	0.050
2,4-Dinitrophenol 4-Nitrophenol	0.050

Project Number: 030174.0016 Sample Event: August 2013 Data Reviewer/Date: Angela Dragotta / September 20, 2013

SDG: 240-28110 R0 Analysis: SW846 8081A

Review Questions:	Yes	No	N/A	Comments	Qual/Criteria
Did Chain-of-Custody information agree with laboratory report?	X				
2. Were samples preserved properly and received in good condition?	X				QAPP Table 5-1, NELAC
3. Were holding times met?	X			Checked by ADR	QAPP Table 5-1 J/UJ/R
4. Were sample storage requirements met?	X				QAPP Table 5-1
5. Were all QAPP-specified target analytes reported?	X				QAPP Table 4-3
6. Was a DDT standard analyzed every 12 hours? Was the DDT %breakdown <15%?	X				QSM Table F-2 >15%=J/R
7. Was an endrin standard analyzed every 12 hours? Was the endrin %breakdown <15%?	X				QSM Table F-2 >15%=J/R
8. Initial Calibration					
8a. Does the initial calibration curve consist of 5 concentration levels?	x			Instrument A2HP9 8/23/13, 8/29/13	QSM Table F-2 R
8a. Were the %RSDs for each analyte \leq 20%? OR was the average %RSD \geq 20% with the $r^2 >$ 0.990?	х			CLP-1 (8/23/13) Delta-BHC, 4,4'-DDE and 4,4'-DDD used a linear fit. CLP-2 (8/23/13) Delta-BHC used a quadratic fit. The peaks for 4,4'-DDD and Endosulfan II co-eluted on the confirmation column. No qualification of the data was required as there were no detected concentrations of 4,4'-DDD and Endosulfan II reported for the associated field samples.	QSM Table F-2 RSD>20% or r<0.99=J/R
9. Was a LOD Level Verification performed once per quarter with all target analytes detected?	х				QSM Table F-2 R
10. Was a MRL Verification performed at the beginning and end of the sequence or every 12 hours with results within limits of 70-130%?	X			The opening MRL analyzed on 8/23/13 recovered above control limits of 70-130% at 165% on CLP-1 for 4,4'-DDD. No qualifications were required as there were no detected 4,4-DDD concentrations reported for the bracketed field samples. The closing MRL analyzed on 8/23/13 recovered above control limits of 70-130 at 306% on CLP-1 for 4,4'-DDD and at 131% for methoxychlor. 4,4'-DDE recovered above limits of 70-130% on CLP-1 and CLP-2 at 169% and 138%, beta-BHC at 142% and 132% and delta-BHC at 157% and 171%. Detected concentrations of beta-BHC, 4,4'-DDE, delta-BHC were qualified as estimated, "J", for samples FWGRQLmw-008c-0370-GW, FWGLL3mw-238c-0359-GW, FWGLL3mw-241c-0360-GW, FWGFWGmw-004-0346-GW, FWGRQLmw-009c-0371-GW, FWGRQLmw-006c-0368-GW and	QSM Table F-2, G- 14 >UL=J; <ll=j r<="" td="" uj=""></ll=j>

Project Number: 030174.0016 Sample Event: August 2013 Data Reviewer/Date: Angela Dragotta / September 20, 2013

SDG: 240-28110 R0 Analysis: SW846 8081A

Review Questions:	Yes	No	N/A	Comments	Qual/Criteria
				The opening MRL analyzed on 9/9/13 recovered below control limits of 70-130% at 4% on CLP-1 for 4,4'-DDE and at 62% for 4,4'-DDT and did not recover (0%) on CLP-and CLP-2 for 4,4'-DDD and endosulfan II. Delta-BHC recovered below control limits of 70-130% on CLP-1 and CLP-2 at 69% and 61%. No qualifications were required as only heptachlor epoxide was reported from this analysis. The closing MRL analyzed on 9/9/13 did not recover (0%) on CLP-and CLP-2 for 4,4'-DDD and above limits of 70-130% on CLP-2 at 163% for endosulfan II. No qualifications were required as only heptachlor epoxide was reported from this analysis.	
11. Was a second source (ICV) verification analyzed after the ICAL? Were results 80-120%?	Х			A2HP9 8/23/13 @ 1238, 1830 (tox), 8/29/13 @ 1829	QSM Table F-2 >120%=J;<80%=J/UJ
12. Was a CCV run every 12 hours or at the beginning and end of the analytical run with the %D for all target analytes ≤20%?	X			A2HP9 8/23/13 @, 1952, 2326 and 8/24/13@0219 and 8/24/13 0159 (tox), For the analytical sequence beginning on 8/23/13, Only FWGLL3mw-238c-0359-GW had 4,4-DDE reported from CLP-2, all other targets were reported from CLP-1 as there were no detected concentrations above the LOQ requiring confirmation. CCVs were only evaluated for targets/ columns with reported results. The CCV analyzed 8/23/13 @ 2336 did not recover for delta-BHC. The delta-BHC results for samples FWGRQLmw-008C-0370-GW, FWGRQLmw-011C-0326-GW, FWGLL3mw-238C-0359-GW, FWGLL3mw-241C-0360-GW, FWGFWGmw-004-0346-GW, FWGRQLmw-009C-0371-GW, FWGRQLmw-DUP5-0377-GW, FWGRQLmw-006C-0368-GW and FWGEQUIPRINSE1-0340-GW were qualified as unusable," R". The CCV analyzed 8/23/13 at 2336(CLP-1) had a %D above control limits of 20% for the following analytes; gamma- BHC at 23.7%, beta-BHC at 29.5%, heptachlor epoxide at 27.9%, gamma chlordane at 28.2%, alpha-chlordane at 23.5%, endosulfan I at 24.7%, 4,4'-DDE at 27.5%, dieldrin at 24%, endrin at 27.1%, 4,4'-DDD at 127.6%, endosulfan II at 20.6%, 4,4'-DDT at 28.7% and methoxychlor at 45.8%. The CCV analyzed 8/23/13 at 2336(CLP-2) had a %D above control limits of 20% for 4,4'-DDE at 46.3%. The 4,4'-DDE and beta-BHC result for sample FWGRQLmw-008c-0370-GW, the 4,4'-DDE result for FWGLL3mw-238c-0359-GW and the beta-BHC results for samples	QSM Table F-2 >120%=J; <80%=J/UJ

Project Number: 030174.0016 Sample Event: August 2013 Data Reviewer/Date: Angela Dragotta / September 20, 2013

SDG: 240-28110 R0 Analysis: SW846 8081A

Review Questions:	Yes	No	N/A	110 110 110 110 110 110 110 110 110 110	Qual/Criteria
				FWGRQLmw-006c-0368-GW and FWGEQUIPRINSE1-0340-GW were qualified as estimated, "J". No additional qualifications were required for the other outliers as there were no detected concentration reported for outlier target analytes. The closing CCV analyzed 8/24/13 at 0219(CLP-1) had a %D above control limits of 20% for the following analytes; gamma-BHC at 28.6%, beta-BHC at 37%, delta-BHC at 23.3%, heptachlor at 28.8%, heptachlor epoxide at 34.3%, gamma chlordane at 34.6%, alpha-chlordane at 30.2%, endosulfan I at 32.3%, 4,4'-DDE at 35.7%, dieldrin at 32.2%, endrin at 35.1%, 4,4'-DDD at 137.1%, endosulfan II at 26.1%, 4,4'-DDT at 33.7%, endrin aldehyde at 20.5%, methoxychlor at 53.8% and endosulfan sulfate at 22.8%. The closing CCV analyzed on CLP-2 on 8/24/13 at 0219 had 4,4'-DDE above the 20%D criteria at 52.9%. No qualifications were required as there were no field samples bracketed by this CCV. A2HP9 CCV analyzed 9/9/13 at 1819 and 21:22. Evaluated for heptachlor	
13. Was a method blank prepared and analyzed with each batch?	Х			epoxide only. CCVs recovered within control limits.	QSM Table F-2
14. Were target analytes detected> ½ the RL?		Х			QSM Table F-2 <5x=B
15. Was a field blank collected and analyzed?	Х		11	FWGEQUIPRINSE1-0340-GW	
16. Were target analytes detected in the field blank analyses >1/2 the MRL?	х			FWGEQUIPRINSE1-0340-GW had beta-BHC detected at 0.018μg/L. The beta-BHC results for samples FWGRQLmw-006c-0268-GW and FWGRQLmw-008C-0370-GW were qualified, "B".	QSM Table F-2 <5x=B
17. Was an LCS prepared and analyzed with each batch?	Х				QSM Table F-2
18. Were the LCS recoveries within limits specified in QSM Table G-14?		X		Checked by ADR. The 4,4'-DDD LCS recovered above control limits of 25-150% at 155%. No qualification was required as there were no detected concentrations of 4,4-DDD reported for the associated field samples.	QSM Table G-14 >UL=J; <ll=j r<="" td="" uj=""></ll=j>
19. Was a MS/MSD pair prepared with each batch?	X				QSM Table F-2
20. Was the MS/MSD parent a Ravenna sample?	X			A matrix spike analysis was performed on sample FWGRQLmw-008c-0370-GW.	

Project Number: 030174.0016 Sample Event: August 2013

Data Reviewer/Date: Angela Dragotta / September 20, 2013

SDG: 240-28110 R0 Analysis: SW846 8081A

Review Questions:	Yes	No	N/A	Comments	Qual/Criteria	
21. Were MS/MSD recoveries and RPD within limits specified in QSM Table G-14?		X		Checked by ADR. The matrix spike analyzed on sample FWGRQLmw-008c-0370-GW recovered above control limits of 25-150% for 4,4'-DDD at 154%. No qualification was required as 4,4'-DDD was not detected in sample FWGRQLmw-008c-0370-GW.	QSM Table F-2 Pj with >UL=J; <ll=j r<="" td="" uj=""></ll=j>	
22. Were surrogate recoveries as specified in QSM table G-3?		Х		The surrogate DCB did not recover in sample FWGLL3mw-238c-0359-GW when analyzed at a dilution on 9/9/13. The heptachlor epoxide result for sample FWGLL3mw-238c-0359-GW was qualified as estimated, "UJ" as opposed to unusable because of the dilution. The original analysis, without dilution, of sample FWGLL3mw-238c-0359-GW had acceptable surrogate recoveries.	QSM Table F-2 >LL=J; <ll=uj j="" r<="" td=""></ll=uj>	
23. Was a field duplicate analyzed? Were the RPDs <50%?	Х		12.	Checked by ADR. A field duplicate was collected and analyzed for sample FWGRQLmw-009c-0371-GW.	RPD >50=J parent sample only	
24. Were all positive results verified by a second column confirmation? Were the RPD's \leq 40?			Х	There were no detected concentrations greater than the LOQ, so no evaluation was made.	QSM Table F-2 >40 RPD=J	

References:

DoD Quality Systems Manual (QSM), version 4.1, October 2010

Louisville DoD Quality Systems Manual Supplement (LS), Version 1 March 2007

Final Facility Wide Groundwater Monitoring Program, RVAAP-66 Facility Wide Groundwater Quality Assurance Project Plan (QAPP) Addendum for the Ravenna Army Ammunition Plant, Ravenna, OH, Environmental Quality Management, January 2012

Final Facility Wide Quality Assurance Project Plan for Environmental Investigations Groundwater for the Ravenna Army Ammunition Plant, Ravenna, OH, SAIC, February 2011

Additional Comments:

Project Number: 030174.0016 Sample Event: August 2013

Data Reviewer/Date: Angela Dragotta/ September 25, 2013

SDG: 240-28110-1 R0 **Analysis**: SW846 8082

Review Questions:	Yes	No	N/A	Comments	Qual/Criteria
1. Did Chain-of-Custody information agree with laboratory report?	X		1000		
2. Were samples preserved properly and received in good condition?	X				QAPP Table 5-1
3. Were holding times met?	X				QAPP Table 5-1 J/UJ/R
4. Were sample storage requirements met?	X				QAPP Table 5-1
5. Were all QAPP-specified target analytes reported?	X				QAPP Table 4-3
6. Calibration					
6a. Does the initial calibration curve consist of 5 concentration levels of Aroclors 1016 and 1260?	X			Instrument A2HP12 8/27/13 Stds = 0.05, 0.1, 0.2, 0.5, 1.0, 2.0	QSM Table F-2 R
6b. Was the % RSD \leq 20%? or Were the $r^2s > 0.990$?	x				QSM Table F-2 RSD>20% or r<0.99= J/R
7. Was a LOD Verification performed once per quarter? Were all target analytes detected?	x				QSM Table F-2 R
8. Was an MRL Level Verification performed at the beginning and end of the sequence or every 12 hours? Were recoveries 70-130%?	x				LCG Table 3 >UCL=J; <lcl=j r;<="" td="" uj=""></lcl=j>
9. Was a second source (ICV) verification performed after the ICAL? Were the avg of all peaks for each aroclor 80-120%?	x			A2HP4 8/28/13	QSM Table F-2 >120%=J; <80%=J/ UJ/R
10. Were single standards of the other five Aroclors run to aid in pattern recognition and to determine a single point calibration factor?		x		All aroclors had a multi-point calibration.	Method 8082 Section 5.6,2
11. Was a CCV run every 12 hours?	X			8/28/13 @ 2340, 8/29/13@0221, 0334	QSM Table F-2
12. Was the % D \leq 20 % for each analyte?	x				QSM Table F-2 D>20%(neg)=J/R D>20% (pos) =J

Project Number: 030174.0016 Sample Event: August 2013

Data Reviewer/Date: Angela Dragotta/ September 25, 2013

SDG: 240-28110-1 R0 **Analysis**: SW846 8082

Review Questions:	Yes	No	N/A	Comments	Qual/Criteria
13. Was a method blank prepared and analyzed with each batch?	X			Section checked by ADR	QSM Table F-2
14. Were target analytes <1/2 the MRL?	X				QSM Table F-2 <5x = B
15. Was an equipment blank collected and analyzed?	X			FWGEQUIPRINSE1-0340-GW	
16. Were target analytes in the field blank analyses (equipment) <1/2 the MRL?	X			Section checked by ADR	QSM Table F-2 <5x = B
17. Was an LCS prepared and analyzed with each batch?	X				QSM Table F-2
18. Were the LCS recoveries within limits specified in LCG Appendix C?	x			Section checked by ADR	QSM Table F-2, Table G-16, >UL=J; <lcl%=j r="" td="" uj;<=""></lcl%=j>
19. Was a MS/MSD pair prepared with each batch?	X			A matrix spike analysis was performed on sample FWGRQLmw-008c-0370-GW	LCG Table 3
20. Was the MS/MSD parent a Ravenna sample?	X				
21. Were MS/MSD recoveries and RPD within limits specified in the DOD QSM Table G-16?	x				QSM Table F-2, Table G-16, >UL=J; <lcl%=j r="" td="" uj;<=""></lcl%=j>
22. Was the surrogate spiked into all samples?	X				
23. Were surrogate recoveries As specified in table G-3 of the DoD QSM?			Checked by ADR. As there were no detected target analyte concentrations reported in the associated field samples, only the primary column was evaluated. The surrogate, DCB, recovered below control limits of 40-135% for sample FWGRQLmw-008c-0370-GW at 27%, FWGRQLmw-009c-0371-GW and FWGRQLmw-DUP5-0377-GW at 29% and FWGRQLmw-006c-0368-GW at 32%. The results for samples FWGRQLmw-008c-0370-GW, FWGRQLmw-009c-0371-GW, FWGRQLmw-DUP5-0377-GW and FWGRQLmw-006c-0368-GW were qualified as estimated, "UJ".	QSM Table F-2, Table G-3 >UCL=J; <lcl=j r<="" td="" uj=""></lcl=j>	
24. Was a field duplicate analyzed? Were the RPDs <50%?	X			Checked by ADR. Field duplicates were collected and analyzed for sample FWGRQLmw-009c-0371-GW.	QSM Table F-2, RPD >50=J
25. Were all positive results verified by a second dissimilar column confirmation? Was the RPD ≤ 40?			x	No detected concentrations were reported for the reported field samples.	QSM Table F-2, RPD>40=J

Project Number: 030174.0016 Sample Event: August 2013

Data Reviewer/Date: Angela Dragotta/ September 25, 2013

SDG: 240-28110-1 R0 **Analysis**: SW846 8082

References:

DoD Quality Systems Manual (QSM), version 4.1, October 2010

Louisville DoD Quality Systems Manual Supplement (LS), Version 1 March 2007

Final Facility Wide Groundwater Monitoring Program, RVAAP-66 Facility Wide Groundwater Quality Assurance Project Plan (QAPP) Addendum for the Ravenna Army Ammunition Plant, Ravenna, OH, Environmental Quality Management, January 2012

Final Facility Wide Quality Assurance Project Plan for Environmental Investigations Groundwater for the Ravenna Army Ammunition Plant, Ravenna, OH, SAIC, February 2011

Project Number: 030174.0016 Sample Event: August 2013 Data Reviewer/Date: Angela Dragotta/ September 26, 2013

SDG: 240-28110-0 Analysis: SW846 9012

Review Questions:	Yes	No	N/A	Comments	QUAL/Criteria
1. Did Chain-of-Custody information agree with laboratory report?	X	1			
2. Were samples preserved properly and received in good condition?	X				QAPP Table 5-1, NELAC
3. Were holding times met?	X				QAPP Table 5-1 J/UJ/R
4. Were sample storage requirements met?	X				QAPP Table 5-1
5. Were all QAPP-specified target analytes reported?	X				QAPP Table 4-1
6. Does the initial calibration curve consist of at least 6 standards and one blank, with the correlation coefficient $R \ge 0.995$?	X				DoD QSM Table F-10 R
7. Were a high and low standard distilled and analyzed with results within \pm 15%?	X				DoD QSM Table F-10 R
8. Was an LOD Verification performed at least once per quarter with all target analytes detected?	X				LCG Table 10 R
9. Was a MRL Level Verification performed at the beginning and end of the daily sequence? Were results within 70-130%?		x		No closing MRL check was analyzed bracketing samples FWGRQLmw-009C-0371-GW, FWGRQLmw-DUP5-0377-GW, FWGRQLmw-006C-0368-GW, and FWGEQUIPRINSE1-0340-GW. Since the opening MRL check recovered within control limits, the data was qualified estimated, "UJ" instead of unusable.	LCG Table 10, LS >130%=J; 65-70%=J/UJ; <65%=J/R
10. Was a second source verification (ICV) analyzed after the ICAL and all analytes 85-115%?	x				DoD QSM Table F-10 >115%=J; 80-85%=J/UJ; <80%=J/R
11. Was a method blank prepared and analyzed with each batch?	X				DoD QSM Table F-10
12. Were target analytes detected in the method blank >1/2 the MRL?		X		Checked by ADR.	DoD QSM Table F-10 <5x=B
13. Was a field blank collected and analyzed?	X			FWGEQUIPRINSE1-0340-GW	
14. Were target analytes in the field blank analyses <1/2 the MRL?	X				DoD QSM Table F-10 <5x=B
15. Was a field duplicate analyzed? Were the RPDs ≤20%?	X			Checked by ADR.	>30% = J

Project Number: 030174.0016 Sample Event: August 2013

Data Reviewer/Date: Angela Dragotta/ September 26, 2013

SDG: 240-28110-0 Analysis: SW846 9012

Review Questions:	Yes	No	N/A	Comments	QUAL/Criteria
16. Was an LCS prepared and analyzed with each batch?	X				DoD QSM Table F-10
17. Were the LCS recoveries 80-118%?	x			Checked by ADR.	DoD QSM Table F-10 Lab Limits >118%=J; 50-79%=J/UJ; <50%=R
18. Was a MS and duplicate (sample or matrix) prepared once per every 10 samples?		X		A matrix spike was not requested on this batch of samples. Matrix spike data was not provided by the laboratory or evaluated.	DoD QSM Table F-10
19. Was the MS parent a Ravenna sample?			X		
20. Were matrix spike recoveries 42-140%?			X	Checked by ADR.	DoD QSM Table F-10 >140%=J; <42%=J/UJ/R

References:

DoD Quality Systems Manual (QSM), version 4.1, October 2010

Louisville DoD Quality Systems Manual Supplement (LS), Version 1 March 2007

Final Facility Wide Groundwater Monitoring Program, RVAAP-66 Facility Wide Groundwater Quality Assurance Project Plan (QAPP) Addendum for the Ravenna Army Ammunition Plant, Ravenna, OH, Environmental Quality Management, January 2012

Final Facility Wide Quality Assurance Project Plan for Environmental Investigations Groundwater for the Ravenna Army Ammunition Plant, Ravenna, OH, SAIC, February 2011

Additional Comments:

Project Number: 030174.0016 Sample Event: August 2013 Data Reviewer/Date: Angela Dragotta/ September 26, 2013

SDG: 240-28110-1 R1

Analysis: SW846 6010/6020/7470A

Review Questions:	Yes	No	N/A	Comments	Qual/Criteria
1. Did Chain-of-Custody information agree with laboratory report?	X				
2. Were samples preserved properly and received in good condition?	X				QAPP Table 5-1, NELAC
3. Were holding times met?	X				QAPP Table 5-1 J/UJ/R
4. Were sample storage requirements met?	X	į.			QAPP Table 5-1
5. Were all QAPP-specified target analytes reported?	X				QAPP Table 4-1
6. Was a LOD Verification performed once per quarter with all target analytes detected?	X				DoD QSM Table F-8
7. Tuning (ICP MS Only)					D D 001/
7a. Was a tune performed daily prior to calibration	X				DoD QSM Table F-8
7b. Mass Calibration <0.1 amu from true value	X	Ì			R
7c. Resolution <0.9 amu full width at 10 % peak height	X				
7d. RSD <%5 for a minimum of four replicate analyses	X				
8.Calibration	X				The same of the sa
8a. Was the ICAL performed daily with at least	X	Ì			DoD QSM Tables F-8 and F-7
1high standard and a blank for ICP & ICPMS	X				
5 standards and a blank for Hg	X				
8b. Was the correlation coefficient r≥0.995 for each Hg?	X				DoD QSM Tables F-8 and F-7 r<0.995=J/R
8c. Was the ICV (second source verification) analyzed after the ICAL with results 90-110% of the true value?	x				DoD QSM Tables F-8 and F-7
8d. Was the ICB analyzed after the ICV with detected results <1/2 the MRL?	x			ICP The ICB analyzed 9/9/13 @ 0749 had magnesium detected at 100μg/L. No qualifications were required as the detected magnesium results for the associated field samples were greater than 5x blank contamination.	DoD QSM Tables F-8 and F-7 < 5x = U

Project Number: 030174.0016 Sample Event: August 2013 Data Reviewer/Date: Angela Dragotta/ September 26, 2013

SDG: 240-28110-1 R1

Analysis: SW846 6010/6020/7470A

Review Questions:	Yes	No	N/A	Comments	Qual/Criteria
Sample Analysis					
9. Was a MRL Level Verification performed at the beginning of the daily sequence and end of the analytical sequence bracketing samples? Were results 70-130%?	х				LS to the DoD QSM DoD QSM Table G-18 >130%=J; 70-80%=J/UJ; <70%=J/UJ <65%=R, unless DL check with detected results
10. Were CCVs analyzed every 10 samples and at the end of the analytical sequence with results 90-110% of the true value?	X		Ja - 41		DoD QSM Tables F-8 and F-7 >110%=J, <85%=J/R 90-85%=J/UJ;
11. Were the CCBs run every 10 samples and at the end of the analytical sequence? Were results <1/2 the MRL?	х			ICP The CCBs analyzed 9/9/13 had magnesium detected from 101 μg/L to 102μg/L. No qualifications were required as the detected magnesium results for the bracketed field samples were greater than 5x blank contamination. ICPMS The CCBs analyzed 9/9/13 had cadmium detected from 0.03μg/L to 0.067μg/L, iron from 15.9 μg/L to 47.1μg/L and sodium from 12.6 μg/L to 25.8 μg/L. No qualifications were required as the detected cadmium, iron and sodium results for the bracketed field samples were greater than 5x blank contamination.	DoD QSM Tables F-8 and F-7 <5x = U
12. Was an Interelement Check Standard run at the beginning of the analytical sequence and every 12 hours with the ICS recovery within 80 to 120% of true value for each element of interest (ICP and ICPMS only)?	x				DoD QSM Tables F-8 and F-7 >120%=J; 50-79%=J/UJ; <50%=Pj/R
13. Was a method blank prepared and analyzed with each batch?	X				DoD QSM Tables F-8 and F-7
14. Were target analytes detected >1/2 the MRL in the method blank?	X			Checked by ADR. ICP- Manganese was detected in the method blank at 2.75 µg/L. The manganese results for samples FWGFWGmw-004-0346-GF, FWGLL3mw-238C-0359-GF and FWGLL3mw-241C-0360-GF were qualified, "B".	DoD QSM Tables F-8 and F-7 <5x = B

Project Number: 030174.0016 Sample Event: August 2013 Data Reviewer/Date: Angela Dragotta/ September 26, 2013

SDG: 240-28110-1 R1

Analysis: SW846 6010/6020/7470A

Review Questions:	Yes	No	N/A	Comments	Qual/Criteria
15. Was a field blank collected and analyzed?	X			FWGEQUIPRINSE1-0305-GW	
16. Were target analytes reported in the field blank analyses >1/2 the MRL?	X			ADR checked section. ICPMS- FWGEQUIPRINSE1-0340-GW had sodium detected at 410 µg/L. The sodium results for samples FWGRQLmw-006c-0368-GF, FWGRQLmw-009c-0371-GF, FWGRQLmw-011c-0326-GF and FWGRQLmw-DUP5-0377-GF were qualified, "B".	DoD QSM Tables F-8 and F-7
17. Was a LCS prepared and analyzed with each batch?	X				DoD QSM Tables F-8 and F-7
18. Were the LCS recoveries within limits specified in LCG Appendix C?	x		1=	Checked by ADR.	DoD QSM Tables G-18, F-8 and F-7 >120%=J; 70-79%=J/UJ; <70%=J/R
19. Was a matrix spike (MS) and lab duplicate sample prepared with each batch?	X				DoD QSM Tables F-8 and F-7
20. Was the MS and Lab Duplicate parent a Ravenna sample?	X			A matrix spike analysis was performed on sample FWGRQLmw-008C-0370-GF.	
21. Were the MS recoveries within 80-120%?	x				DoD QSM Tables G-18, F-8 and F-7, >120%=J; 70-79%=J/UJ; <70%=J/R All samples in batch
22. Was the lab sample duplicate RPD ≤ 20%?		X		ICP- The lab duplicate analyzed on sample FWGRQLmw-008C-0370-GF had an RPD above control limits of 20% at 26% for nickel. No qualifications were made as the detected concentration was less than the LOQ.	DoD QSM Tables F-8 and F-7 >20% = J All samples in batch
23. Was a serial dilution performed, with the five fold dilution within \pm 10% of the original result?	x				DoD QSM Tables F-8 and F-7 >20% = J All samples in batch
24. Was a Post Digestion Spike analyzed as needed? Were results within 75-125%?	X			Only results with the spike concentration <4x sample result were evaluated.	LCG Table 7 >125%=J; 30-75%=J/UJ; <30%-R

Project Number: 030174.0016

Sample Event: August 2013

Data Reviewer/Date: Angela Dragotta/December 9, 2013

SDG: 240-28110-1 R1 **Analysis**: SW846 8330 Explosives

Review Questions:	Yes	No	N/A	Comments	QUAL/Criteria
1. Did Chain-of-Custody information agree with laboratory report?	X				
2. Were samples preserved properly and received in good condition?	X				QAPP Table 5-1
3. Were holding times met?	X				QAPP Table 5-1 J/UJ/R
4. Were sample storage requirements met?	X				QAPP Table 5-1
5. Were all QAPP-specified target analytes reported?	X				QAPP Table 4-3
6. Was a LOD Verification analyzed once per quarter with all target analytes detected?	X				DoD QSM Table F-3 R
7.Calibration					
7a. Does the initial calibration curve consist of 5 concentration levels? (6 stds for quadratic curves)	X			LC10 7/24/13 LC12 8/14/13, 2-nitrotoluene coelutes with 4-nitrotoluene, LC12 not used as primary reporting column of 2-nitrotoluene and 4-nitrotoluene	
7b. Did all target analytes using avg response have an RSD \leq 15% ?	X				DoD QSM Table F-3 R
7c. If a linear regression curve was used, was the correlation coefficient r≥0.995? (0.990 for a quadratic curve).			X		
8. Was a second source verification (ICV) analyzed after the ICAL and all analytes 80-120%?	X			LC10 7/24/13 @1750 LC12 8/15/13 @ 0118	DoD QSM Table F-3 >120%=J; <80%= J/UJ;
Sample Analysis					
9. Was a CCV run at the beginning of the analytical sequence, every 10 samples and at the end of the analytical run with targets and surrogates recovering 80-120% of the true value?	X			LC10- 8/27/13 @1400, 2116, 8/28/13 @0432, 1604 LC12 8/29/13 @ 0158, 0832, 1503	DoD QSM Table F-3 J/UJ
10. Was a MRL Level verification run at the beginning and end of every daily? Was the %D < 30%?		X		LC10- 8/27/13 @1316, 8/28/13 @ 0516, 1352 LC12 8/27/13 @ 1712 , 8/29/13@ 0937	LCG Table 5 >30%=J
11. Was a method blank prepared and analyzed with each batch?	X				DoD QSM Table F-3
12. Were target analytes detected in the method blank <1/2 the MRL?				Checked by ADR.	DoD QSM Table F-3 $<5x = B$
13. Was a field blank collected and analyzed?	X _X			FWGEQUIPRINSE1-0340-GW	

Project Number: 030174.0016 Sample Event: August 2013

Data Reviewer/Date: Angela Dragotta/December 9, 2013

SDG: 240-28110-1 R1

Analysis: SW846 8330 Explosives

Review Questions:	Yes	No	N/A	Comments	QUAL/Criteria
14. Were target analytes detected in the field blank analyses > ½ the MRL?		X		Checked by ADR	DoD QSM Table F-3 <5x=B
15. Was a field duplicate analyzed? Were the RPDs ≤30%?	X				RPD >30=J
16. Were all positive results confirmed with a second column confirmation? Were the RPDs \le 40\%?		X		The confirmation column RPD was above control limits of 40% for 2,6-dinitrotoluene in sample FWGLL3mw-238C-0359-GW at 54% and nitrobenzene at 69.9%. The HMX result for sample FWGLL3mw-241C-0360-GW had a duplicate column confirmation RPD above control limits of 40% at 49.3%. No confirmation column data was provided for sample FWGRQLmw-008c-0370-GW. The 2,6-dintrotoluene result for FWGRQLmw-008c-0370-GW, the nitrobenzene and 2,6-dintrotoluene results for FWGLL3mw-238C-0359-GW and the HMX result for sample FWGLL3mw-241C-0360-GW were qualified as estimated, "J".	DoD QSM Table F-3 RPD>40%=J
17. Was an LCS prepared and analyzed with each batch?	X				DoD QSM Table F-3
18. Were the LCS recoveries within limits specified in table G-12 of the DoD QSM?	X			Checked by ADR.	DoD QSM Table F-3 <ul=j;30-ll=j uj;<br=""><30%=J/R</ul=j;30-ll=j>
19. Was a MS/MSD or MS and sample duplicate prepared with each batch?	X			A matrix spike analysis was performed on sample FWGRQLmw-008C-0370-GW.	DoD QSM Table F-3
20. Were MS/MSD recoveries within limits specified in table G-12 of the DoD QSM with an RPD ≤30%?	X			The matrix spike and spike duplicate recovery for 2-nitrotoluene recovered below control limits of 45-135% at 43% and 40%. As the associated LCS recovered within limits, the 2-nitrotoluene result for FWGRQLmw-008c-370-GW was qualified as estimated, "UJ".	DoD QSM Table F-3 Pj
21. Were surrogate recoveries within laboratory limits (79-111%)?	X				QSM Tables F-2 >UL=J; <ll =j="" td="" uj<=""></ll>

References: DoD Quality Systems Manual (QSM), version 4.1, October 2010

Louisville DoD Quality Systems Manual Supplement (LS), Version 1 March 2007

Final Facility Wide Groundwater Monitoring Program, RVAAP-66 Facility Wide Groundwater Quality Assurance Project Plan (QAPP) Addendum for the Ravenna Army Ammunition Plant, Ravenna, OH, Environmental Quality Management, January 2012

Final Facility Wide Quality Assurance Project Plan for Environmental Investigations Groundwater for the Ravenna Army Ammunition Plant, Ravenna, OH, SAIC,

February 2011

Project Number: 030174.0016

Sample Event: August 2013

Data Reviewer/Date: Angela Dragotta/September 26th, 2013

SDG: 240-28110-1 R0

Analysis: SW846 8330 Explosives

Review Questions:	Yes	No	N/A	Comments	QUAL/Criteria
14. Were target analytes detected in the field blank analyses > ½ the MRL?		X		Checked by ADR	DoD QSM Table F-3 <5x=B
15. Was a field duplicate analyzed? Were the RPDs ≤30%?	X				RPD >30=J
16. Were all positive results confirmed with a second column confirmation? Were the RPDs ≤ 40%?		х		The confirmation column RPD was above control limits of 40% for 2,6-dinitrotoluene in sample FWGLL3mw-238C-0359-GW at 54% and nitrobenzene at 69.9%. The HMX result for sample FWGLL3mw-241C-0360-GW had a duplicate column confirmation RPD above control limits of 40% at 49.3%. No confirmation column data was provided for sample FWGRQLmw-008c-0370-GW. The 2,6-dintrotoluene result for FWGRQLmw-008c-0370-GW , the nitrobenzene and 2,6-dintrotoluene results for FWGLL3mw-238C-0359-GW and the HMX result for sample FWGLL3mw-241C-0360-GW were qualified as estimated, "J".	DoD QSM Table F-3 RPD>40%=J
17. Was an LCS prepared and analyzed with each batch?	X				DoD QSM Table F-3
18. Were the LCS recoveries within limits specified in table G-12 of the DoD QSM?	X			Checked by ADR.	DoD QSM Table F-3 <ul=j;30-ll=j uj;<br=""><30%=J/R</ul=j;30-ll=j>
19.Was a MS/MSD or MS and sample duplicate prepared with each batch?	X			A matrix spike analysis was performed on sample FWGRQLmw-008C-0370-GW.	DoD QSM Table F-3
20. Were MS/MSD recoveries within limits specified in table G-12 of the DoD QSM with an RPD ≤30%?	X			The matrix spike and spike duplicate recovery for 1,3,5-trinitrobenzene was below control limits 65- 140% at -160% and -170%. The 2-nitrotoluene MS/MSD recovered below control limits of 45-135% at 43% and 40%. As the associated LCS recovered within limits, the 1,3,5-trinitrobenzene and 2-nitrotoluene results for FWGRQLmw-008c-370-GW were qualified as estimated, "UJ".	DoD QSM Table F-3 Pj
21. Were surrogate recoveries within laboratory limits (79-111%)?	x				QSM Tables F-2 >UL=J; <ll =j="" td="" uj<=""></ll>

References: DoD Quality Systems Manual (QSM), version 4.1, October 2010

Louisville DoD Quality Systems Manual Supplement (LS), Version 1 March 2007

Final Facility Wide Groundwater Monitoring Program, RVAAP-66 Facility Wide Groundwater Quality Assurance Project Plan (QAPP) Addendum for the Ravenna Army Ammunition Plant, Ravenna, OH, Environmental Quality Management, January 2012

Final Facility Wide Quality Assurance Project Plan for Environmental Investigations Groundwater for the Ravenna Army Ammunition Plant, Ravenna, OH, SAIC,

February 2011

Project Number: 030174.0016 Sample Event: August 2013 Data Reviewer/Date: Angela Dragotta/September 26, 2013

SDG: 240-28110-1

Analysis: SW846 8330M Nitroguanidine

Review Questions:	Yes	No	N/A	Comments	QUAL/Criteria
Did Chain-of-Custody information agree with laboratory report?	X				
2. Were samples preserved properly and received in good condition?	X				QAPP Table 5-1
3. Were holding times met?	X				QAPP Table 5-1 J/UJ/R
4. Were sample storage requirements met?	X				QAPP Table 5-1
5. Were all QAPP-specified target analytes reported?	X				QAPP Table 4-3
6. Was a LOD Verification analyzed once per quarter with all target analytes detected?	x	11 %			DoD QSM Table F-3 R
7. Calibration					
7a. Does the initial calibration curve consist of 5 concentration levels? (6 stds for quadratic curves)	X			PDA-1 8/20/13	
7b. Did all target analytes using avg response have an RSD \leq 15%?	x				
7c. If a linear regression curve was used, was the correlation coefficient r≥0.995? (0.990 for Quadratic curve).			X		DoD QSM Table F-3 R
7d. Did reanalysis of the low level standard after calibration, recover within 15%?	X				
8. Was a second source verification (ICV) analyzed after the ICAL and all analytes 80-120%?	x			8/20/13 @1843	DoD QSM Table F-3 >120%=J; <80%= J/UJ;
Sample Analysis					
9. Was a CCV run at the beginning of the analytical sequence, every 10 samples and at the end of the analytical run with targets and surrogates recovering 80-120% of the true value?	x			8/26/13 @ 0914, 1211, 1526	DoD QSM Table F-3 J/UJ
10. Was a MRL Level verification run at the beginning and end of every daily sequence or every 12 hours? Was the %D < 30%?	x				LCG Table 5 >30%=J
11. Was a method blank prepared and analyzed with each batch?	X				DoD QSM Table F-3

Project Number: 030174.0016 Sample Event: August 2013

Data Reviewer/Date: Angela Dragotta/September 26, 2013

SDG: 240-28110-1

Analysis: SW846 8330M Nitroguanidine

Review Questions:	Yes	No	N/A	Comments	QUAL/Criteria
12. Were target analytes detected in the method blank <1/2 the MRL?		X		Checked by ADR.	DoD QSM Table F-3 <5x = B
13. Was a field blank collected and analyzed?	X				
14. Were target analytes detected in the field blank analyses < ½ the MRL?		X		Checked by ADR.	DoD QSM Table F-3 <5x=B
15. Was a field duplicate analyzed? Were the RPDs ≤30%?	X				RPD >30=J
16. Were all positive results confirmed with a second column confirmation? Were the RPDs \leq 40%?			X	No detected concentrations were reported.	DoD QSM Table F-3 RPD>40%=J
17. Was an LCS prepared and analyzed with each batch?	X				DoD QSM Table F-3
18. Were the LCS recoveries within laboratory limits of 79%-119%?	x			Checked by ADR.	DoD QSM Table F-3 <ul=j; 30-LL=J/UJ; <30%=J/R</ul=j;
19. Was a MS/MSD or MS and sample duplicate prepared with each batch?	X				DoD QSM Table F-3
20. Were MS/MSD recoveries within laboratory limits of 40%-150% with an RPD ≤20%?	x				DoD QSM Table F-3 Pj

References:

DoD Quality Systems Manual (QSM), version 4.1, October 2010

Louisville DoD Quality Systems Manual Supplement (LS), Version 1 March 2007

Final Facility Wide Groundwater Monitoring Program, RVAAP-66 Facility Wide Groundwater Quality Assurance Project Plan (QAPP) Addendum for the Ravenna Army Ammunition Plant, Ravenna, OH, Environmental Quality Management, January 2012

Final Facility Wide Quality Assurance Project Plan for Environmental Investigations Groundwater for the Ravenna Army Ammunition Plant, Ravenna, OH, SAIC, February 2011

Additional Comments:

Project Number: 030174.0016 Sample Event: August 2013 Data Reviewer/Date: Angela Dragotta/ September 26, 2013

SDG: 240-28110-0

Analysis: TAL SOP WS-WC-0050

Review Questions:	Yes	No	N/A	Comments	Qualifier
1. Did Chain-of-Custody information agree with laboratory report?	X	17 - 11			
2. Were samples preserved properly and received in good condition?	X				QAPP Table 5-1, NELAC
3. Were holding times met?	X				QAPP Table 5-1 J/UJ/R
4. Were sample storage requirements met?	X				QAPP Table 5-1
5. Were all QAPP-specified target analytes reported?	X				QAPP Table 4-1
6. Does the initial calibration curve consist of 5 concentration levels with the low standard near but > MDL?	X				STL SOP Section 10.2 R
7. Was the correlation coefficient >0.995?	X				STL SOP Section 10.2
8. Was a MRL Level Verification run at the beginning and end of every daily sequence or every 12 hours? Was the %D <30%?	X				LCG Table 5 >30%=J
9. Was a second source verification (ICV) analyzed after the ICAL? Were all analytes 90-110%?	X				STL SOP Section 9.8, 10.3, LCG >110%=J; 90-85%=J/UJ; <85%=J/R
10. Was the ICB analyzed after the ICV with results <1/2 the MRL?	х				STL SOP Section 9.8, LCG, $< 5x = U$
11. Was a CCV run every 10 samples and at the end of the analytical run?	X				STL SOP Section 10.4
12. Was the ICV and CCV a mid-level standard from the initial calibration curve?	X				STL SOP Section 10.3.1
13. Were all CCV calibration analytes within 90-110%?	x				STL SOP Section 10.4, >110%=J; 85-90%=J/UJ; <85%=J/R
14. Was the ICB analyzed after the ICV with results <1/2 the MRL?	X				STL SOP Section 10.4, QSM, $< 5x = U$

Project Number: 030174.0016 Sample Event: August 2013

Data Reviewer/Date: Angela Dragotta/ September 26, 2013

SDG: 240-28110-0

Analysis: TAL SOP WS-WC-0050

Review Questions:	Yes	No	N/A	Comments	Qualifier
15. Was the Nitrocellulose assay available and/or analyzed to be within 10%?	X				STL SOP Section 7.14.1, R
16. Was a method blank prepared and analyzed with each batch?	X				
17. Were target analytes detected in the method blank <1/2 the MRL?		X		ADR checked section.	STL SOP Section 9.4, LCG, <5x=B
18. Was a field blank collected and analyzed?	X			FWGEQUIPRINSE1-0340-GW	
19. Were target analytes detected in the field blank analyses <1/2 the MRL?		X			<5x=B
20. Was a field duplicate analyzed? Were the RPDs ≤30%?	X			ADR checked section	QAPP Table 3-2 RPD > 30% = J
21. Was an LCS prepared and analyzed with each batch? Was the LCS recovery within lab's in-house limits% (26-144%)?	x				>UL%=J; 50-LL%=J/UJ; <50%=J/R
22. Was a MS/MSD pair prepared with each batch?	X				
23. Was the MS/MSD parent a Ravenna sample?	X			A matrix spike analysis was performed on sample FWGRQLmw-008C-0370-GW	
24. Were MS/MSD recoveries 26-144% and RPD ≤20?	x			ADR checked section.	Method EPA 353.2 Section 9.4.2 >UL%=J; <ll%=j uj;<br="">RPD>20%=J/UJ</ll%=j>

References:

STL SOP SAC-WC-0050 "Preparation and Analysis of Nitrocellulose in Aqueous and Soil/Sediment Samples by Colorimetric Autoanalyzer", Jan 2007, rev. 2.0

DoD Quality Systems Manual (QSM), version 4.1, October 2010

Louisville DoD Quality Systems Manual Supplement (LS), Version 1 March 2007

Final Facility Wide Groundwater Monitoring Program, RVAAP-66 Facility Wide Groundwater Quality Assurance Project Plan (QAPP) Addendum for the Ravenna Army Ammunition Plant, Ravenna, OH, Environmental Quality Management, January 2012

Final Facility Wide Quality Assurance Project Plan for Environmental Investigations Groundwater for the Ravenna Army Ammunition Plant, Ravenna, OH, SAIC, February 2011

Additional Comments:

Project Number: 030174.0016 **Sample Event:** August 2013

Data Reviewer/Date: Angye Dragotta/December 9, 2013

SDG: 240-28110-0, rev1

Analysis: SW846 6860/ Perchlorate

Yes	No	N/A	Comments	Qual/Criteria
v				
X				
				UJ/J/R
X				
X				
X				
X			LC_LCMS1 9/4/13	R
			Standards(ng/L): 20, 50, 100, 200, 500, 1000	
X				R < 0.995 = -J/R
X				LCG Table 1
				>120%=J;
				60-80%=J/UJ; <60%=J/R
X			9/4/13 @1850	R
X				R
X			09/06/2013 @ 1206, 1750, 2206	
X				%D > 15% = UJ/J
X				
X				>130%=J; 70-60%=J/UJ;
				<60%=J/R
X				
X				>120%=J; 50-79%=J/UJ;
11				<50%=Pj/R
X				2070 2 1710
1				
	1	1	Checked by ADR.	<5X =B
	X			
37		1	FWGEOUIPRINSE1-0340-GW	
X			- · · · · · · · · · · · · · · · · · · ·	
	X X X X X X X X	X X X X X X X X X X X X X X X X X X X	X X X X X X X X X X X X X X X X X X X	X

Project Number: 030174.0016 **Sample Event:** August 2013

Data Reviewer/Date: Angye Dragotta/December 9, 2013

SDG: 240-28110-0, rev1

Analysis: SW846 6860/ Perchlorate

Review Questions:	Yes	No	N/A	Comments	Qual/Criteria
21. Were target analytes detected in the field blank analyses >1/2 the MRL?		X		Checked by ADR.	<5X =B
22. Were target analytes detected in the ICB/CCB blank analyses >1/2 the MRL?	X			Perchlorate was detected at $0.0130\mu g/L$ in the CCB analyzed $9/6/13$ at 1137, at $0.0122~\mu g/L$ in the CCB analyzed $9/6/13$ at 1847 and at $0.0117~\mu g/L$ in the CCB analyzed $9/6/13$ at 2303. The perchlorate result for sample FWGLL3mw-239c-0322-GF was qualified "U".	<5X =U
23. Was a LCS prepared and analyzed with each batch, with recoveries within 85-115%?	X			Checked by ADR.	>115%=J; 50%-85%=J/UJ; <50%=J/R
24. Was a MS/MSD prepared with each batch?	X				
25. Were MS/MSD recoveries 75-125% and RPD values <20%?	X			A matrix spike was performed on sample FWGFWGmw-DUP2-0337-GF with acceptable results.	>125% = J 30% - 75% = J/UJ <30% = J/R
26. Was a Laboratory Reagent Blank (LRB) analyzed prior to calibration and after high concentration samples?			X		
27. Were target analytes detected in the LRB at >1/2 the MRL?					<5X = B
28. Was a MRL Verification run with every ICAL?	X				
29. Were the MRL recoveries 70-130%?	X				R
30. Were the internal standards added to every sample?	X				
31. Did the IS recover within 50% to 150% of the ICAL mid-point standard?	X				R
32. Was a field duplicate analyzed? Were the RPDs within ±30%?		X		No field duplicate was collected or analyzed.	RPD >30=J
33. Was the Isotope ratio between 101 and 85 monitored and fell between 2.3 and 3.08?	X				J/UJ
34. Were reported sample concentrations within calibration range?	X				

References:

DOD Perchlorate Handbook, March 2006; Section G "Selecting Analytical Methods and Services" Additional Comments:

Analytical Method	Field Sample ID	Matrix	Sample Type	Analyte	RL	Lab Result	Unc / Error	Overall Qualifier	Units	Reason Code
SDG: 240-2811	10-1									
6010B	FWGFWGmw-004-0346- GF	AQ	N							
				MANGANESE	5.0	2.4J		В	ug/L	
				POTASSIUM	900	710J		J	ug/L	RI
6010B	FWGFWGmw-015-0350- GF	AQ	N							
				COBALT	4.0	2.9J		J	ug/L	
				NICKEL	5.0	2.5J		J	ug/L	RI
6010B	FWGFWGmw-016-0351- GF	AQ	N							
				ARSENIC	10	4.3J		J	ug/L	RI
6010B	FWGLL3mw-238C-0359- GF	AQ	N							
				MANGANESE	5.0	2.6J		В	ug/L	Mb
	FWGLL3mw-241C-0360- GF	AQ	N							
				MANGANESE	5.0	3.0J		В	ug/L	Mb
				NICKEL	5.0	2.2J		J	ug/L	RI
6010B	FWGRQLmw-008C-0370- GF	AQ	N							
				COBALT	4.0	1.5J		J	ug/L	
				NICKEL	5.0	2.9J		J	ug/L	RI
6010B	FWGRQLmw-011C-0326- GF	AQ	N							
				LEAD	5.0	2.3J		J	ug/L	RI
6020	FWGFWGmw-016-0351- GF	AQ	N							
				ALUMINUM	60	27J		J	ug/L	RI
6020	FWGLL3mw-238C-0359- GF	AQ	N							
				ALUMINUM	60	27J		J	ug/L	RI
6020	FWGRQLmw-006C-0368- GF	AQ	N							
				SODIUM	400	1500		В	ug/L	Eb

Analytical Method	Field Sample ID	Matrix	Sample Type	Analyte	RL	Lab Result	Unc / Error	Overall Qualifier	Units	Reason Code
SDG: 240-2811	0-1									
6020	FWGRQLmw-008C-0370- GF	AQ	N							
				SODIUM	400	6600		В	ug/L	
				THALLIUM	1.5	1.2J		J	ug/L	RI
6020	FWGRQLmw-009C-0371- GF	AQ	N							
				SODIUM	400	1700		В	ug/L	Eb
6020	FWGRQLmw-011C-0326- GF	AQ	N							
				SODIUM	400	1800		В	ug/L	
				ZINC	50	35J		J	ug/L	RI
6020	FWGRQLmw-DUP5-0377- GF	AQ	FD							
				SODIUM	400	1700		В	ug/L	Eb
6860	FWGLL3mw-239C-0322- GF	AQ	N							
				PERCHLORATE	0.020	0.031J		U	ug/L	
8081A	FWGEQUIPRINSE1-0340- GW	AQ	EB							
				BETA-BHC	0.019	0.018J		J	ug/L	RI, Ccv, P
				DELTA-BHC	0.019	0.019U		R	ug/L	
8081A	FWGFWGmw-004-0346- GW	AQ	N							
				DELTA-BHC	0.021	0.038J		R	ug/L	ProfJudg
8081A	FWGLL3mw-238C-0359- GW	AQ	N							
				4,4'-DDE	0.021	0.020J		J	ug/L	RI, Ccv, P
				DELTA-BHC	0.021	0.021U		R	ug/L	
				ENDRIN ALDEHYDE	0.021	0.011J		J	ug/L	RI
				HEPTACHLOR EPOXIDE	1.0	1.0U		UJ	ug/L	Surr
8081A	FWGLL3mw-241C-0360- GW	AQ	N							
				DELTA-BHC	0.019	0.038J		R	ug/L	ProfJudg

Analytical Method	Field Sample ID	Matrix	Sample Type	Analyte	RL	Lab Result	Unc / Error	Overall Qualifier	Units	Reason Code
SDG: 240-281	10-1									
8081A	FWGRQLmw-006C-0368- GW	AQ	N							
				BETA-BHC	0.019	0.013J		JB	ug/L	Eb, Ccv, P
				DELTA-BHC	0.019	0.019U		R	ug/L	
8081A	FWGRQLmw-008C-0370- GW	AQ	N							
				4,4'-DDE	0.019	0.038J		J	ug/L	Ccv, ProfJ
				BETA-BHC	0.019	0.0093J		JB	ug/L	Eb, Ccv, P
				DELTA-BHC	0.019	0.041J		R	ug/L	ProfJudg
8081A	FWGRQLmw-009C-0371- GW	AQ	N							
				DELTA-BHC	0.019	0.019J		R	ug/L	ProfJudg
8081A	FWGRQLmw-011C-0326- GW	AQ	N							
				DELTA-BHC	0.019	0.019U		R	ug/L	
8081A	FWGRQLmw-DUP5-0377- GW	AQ	FD							
				DELTA-BHC	0.019	0.019U		R	ug/L	
8082	FWGRQLmw-006C-0368- GW	AQ	N							
				AROCLOR 1016	0.19	0.19U		UJ	ug/L	Surr
				AROCLOR 1221	0.19	0.19U		UJ	ug/L	Surr
				AROCLOR 1232	0.19	0.19U		UJ	ug/L	Surr
				AROCLOR 1242	0.38	0.38U		UJ	ug/L	Surr
				AROCLOR 1248	0.19	0.19U		UJ	ug/L	Surr
				AROCLOR 1254	0.19	0.19U		UJ	ug/L	Surr
				AROCLOR 1260	0.19	0.19U		UJ	ug/L	Surr

Analytical Method	Field Sample ID	Matrix	Sample Type	Analyte	RL	Lab Result	Unc / Error	Overall Qualifier	Units	Reasor Code
SDG: 240-281	10-1									
8082	FWGRQLmw-008C-0370- GW	AQ	N							
				AROCLOR 1016	0.19	0.19U		UJ	ug/L	Surr
				AROCLOR 1221	0.19	0.19U		UJ	ug/L	Surr
				AROCLOR 1232	0.19	0.19U		UJ	ug/L	Surr
				AROCLOR 1242	0.38	0.38U		UJ	ug/L	Surr
				AROCLOR 1248	0.19	0.19U		UJ	ug/L	Surr
				AROCLOR 1254	0.19	0.19U		UJ	ug/L	Surr
				AROCLOR 1260	0.19	0.19U		UJ	ug/L	Surr
8082	FWGRQLmw-009C-0371- GW	AQ	N							
				AROCLOR 1016	0.19	0.19U		UJ	ug/L	Surr
				AROCLOR 1221	0.19	0.19U		UJ	ug/L	Surr
				AROCLOR 1232	0.19	0.19U		UJ	ug/L	Surr
				AROCLOR 1242	0.38	0.38U		UJ	ug/L	Surr
				AROCLOR 1248	0.19	0.19U		UJ	ug/L	Surr
				AROCLOR 1254	0.19	0.19U		UJ	ug/L	Surr
				AROCLOR 1260	0.19	0.19U		UJ	ug/L	Surr
3082	FWGRQLmw-DUP5-0377- GW	AQ	FD							
				AROCLOR 1016	0.19	0.19U		UJ	ug/L	Surr
				AROCLOR 1221	0.19	0.19U		UJ	ug/L	Surr
				AROCLOR 1232	0.19	0.19U		UJ	ug/L	Surr
				AROCLOR 1242	0.38	0.38U		UJ	ug/L	Surr
				AROCLOR 1248	0.19	0.19U		UJ	ug/L	Surr
				AROCLOR 1254	0.19	0.19U		UJ	ug/L	Surr
				AROCLOR 1260	0.19	0.19U		UJ	ug/L	Surr
8260B	FWGEQUIPRINSE1-0340- GW	AQ	EB							
				ACETONE	1.1	19		J	ug/L	Ccv
				CARBON DISULFIDE	0.25	0.13J		J	ug/L	RI
				TOLUENE	0.25	0.14J		J	ug/L	RI

Analytical Method	Field Sample ID	Matrix	Sample Type	Analyte	RL	Lab Result	Unc / Error	Overall Qualifier	Units	Reason Code
SDG: 240-281	10-1									
8260B	FWGRQLmw-006C-0368- GW	AQ	N							
				ACETONE	1.1	3.4J		JB	ug/L	Tb, Eb, Cc
				CARBON DISULFIDE	0.25	0.16J		В	ug/L	Eb
8260B	FWGRQLmw-008C-0370- GW	AQ	N							
				ACETONE	1.1	2.3J		JB	ug/L	Tb, Eb, Cc
8260B	FWGRQLmw-009C-0371- GW	AQ	N							
				ACETONE	1.1	3.2J		JB	ug/L	Tb, Eb, Fd
8260B	FWGRQLmw-DUP5-0377- GW	AQ	FD							
				ACETONE	1.1	1.8J		JB	ug/L	Tb, Eb, Cc
8260B	FWGTEAM1-TRIP	AQ	TB							
				ACETONE	1.1	1.2J		J	ug/L	
				METHYLENE CHLORIDE	0.50	0.55J		J	ug/L	ProfJudg
8260B	FWGTEAM3-TRIP	AQ	ТВ	ACETONE	1.1	1.1J		J	ug/L	Ccv
8270C -SVOC1	FWGFWGmw-004-0346- GW	AQ	N							
				BIS(2-ETHYLHEXYL)PHTHALATE	0.53	0.25J		В	ug/L	Mb
8270C -SVOC1	FWGFWGmw-015-0350- GW	AQ	N							
				BIS(2-ETHYLHEXYL)PHTHALATE	0.48	0.45J		В	ug/L	Mb
8270C -SVOC1	FWGFWGmw-016-0351- GW	AQ	N							
				BIS(2-ETHYLHEXYL)PHTHALATE	0.50	0.32J		В	ug/L	Mb
8270C -SVOC1	FWGLL3mw-238C-0359- GW	AQ	N							
				BIS(2-ETHYLHEXYL)PHTHALATE	0.53	0.39J		В	ug/L	Mb
8270C -SVOC1	FWGLL3mw-241C-0360- GW	AQ	N							
				BIS(2-ETHYLHEXYL)PHTHALATE	0.52	0.57J		В	ug/L	Mb

Analytical Method	Field Sample ID	Matrix	Sample Type	Analyte	RL	Lab Result	Unc / Error	Overall Qualifier	Units	Reason Code
SDG: 240-2811	10-1									
8270C-SVOC4	FWGEQUIPRINSE1-0340- GW	AQ	EB							
				BENZYL ALCOHOL	0.48	0.44J		J	ug/L	RI
				BIS(2-ETHYLHEXYL)PHTHALATE	0.48	0.38J		J	ug/L	RI
8270C-SVOC4	FWGRQLmw-006C-0368- GW	AQ	N							
				BIS(2-ETHYLHEXYL)PHTHALATE	0.48	0.51J		В	ug/L	Eb
8270C-SVOC4	FWGRQLmw-008C-0370- GW	AQ	N							
				3,3'-DICHLOROBENZIDINE	0.95	0.95U J		R	ug/L	
				BENZO(A)PYRENE	0.095	0.095U J		UJ	ug/L	Ms
8270C-SVOC4	FWGRQLmw-009C-0371- GW	AQ	N							
				BIS(2-ETHYLHEXYL)PHTHALATE	0.48	0.37J		В	ug/L	Eb
8270C-SVOC4	FWGRQLmw-011C-0326- GW	AQ	N							
				BIS(2-ETHYLHEXYL)PHTHALATE	0.48	0.22J		В	ug/L	Eb
8270C-SVOC4	FWGRQLmw-DUP5-0377- GW	AQ	FD							
				BIS(2-ETHYLHEXYL)PHTHALATE	0.48	0.32J		В	ug/L	Eb
8330	FWGLL3mw-238C-0359- GW	AQ	N							
				2,6-DINITROTOLUENE	0.11	0.52J M		J	ug/L	ProfJudg
				NITROBENZENE	0.11	0.17J		J	ug/L	ProfJudg
8330	FWGLL3mw-241C-0360- GW	AQ	N							
				2,6-DINITROTOLUENE	0.10	0.083J M		J	ug/L	RI
				Octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX)	0.050	0.39J M		J	ug/L	ProfJudg
8330	FWGRQLmw-008C-0370- GW	AQ	N							
				2-NITROTOLUENE	0.10	0.10U		UJ	ug/L	Ms

Analytical Method	Field Sample ID	Matrix	Sample Type	Analyte	RL	Lab Result	Unc / Error	Overall Qualifier	Units	Reason Code
SDG: 240-281	10-1									
9012A	FWGEQUIPRINSE1-0340- GW	AQ	EB							
				CYANIDE	0.010	0.010U		UJ	mg/L	ProfJudg
9012A	FWGRQLmw-006C-0368- GW	AQ	N							
				CYANIDE	0.010	0.010U		UJ	mg/L	ProfJudg
9012A	FWGRQLmw-009C-0371- GW	AQ	N							
				CYANIDE	0.010	0.010U		UJ	mg/L	ProfJudg
9012A	FWGRQLmw-DUP5-0377- GW	AQ	FD							
				CYANIDE	0.010	0.010U		UJ	mg/L	ProfJudg

Lab Reporting Batch ID: 240-28110-1 Laboratory: TA CAN

EDD Filename: Prep240-28110-1 eQAPP Name: RVAAP 66-rev July 2012

Method: 6860 Matrix: AQ

Sample ID: FWGLL3mw-239C-0322-GF	Collected: 8/19/2013 12:52:00	Analysis Type: RES	Dilution: 1
Cumple 1511 WCLLOWN 2000 COLL CI	000000000000000000000000000000000000000	indigoto rypor res	Diracioni i

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
PERCHLORATE	0.031	J	0.0088	MDL	0.020	LOD	ug/L	U	Cb

Method Category: GENCHEM

Method: 9012A Matrix: AQ

Sample ID: FWGEQUIPRINSE1-0340-GW Collected: 8/19/2013 5:53:00 Analysis Type: RES/TOT Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
CYANIDE	0.010	U	0.0032	MDL	0.010	LOD	ma/L	UJ	ProfJuda

Sample ID: FWGRQLmw-006C-0368-GW Collected: 8/19/2013 4:19:00 Analysis Type: RES/TOT Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
CYANIDE	0.010	U	0.0032	MDL	0.010	LOD	mg/L	UJ	ProfJudg

Sample ID: FWGRQLmw-009C-0371-GW Collected: 8/19/2013 1:23:00 Analysis Type: RES/TOT Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
CYANIDE	0.010	U	0.0032	MDL	0.010	LOD	mg/L	UJ	ProfJudg

Sample ID: FWGRQLmw-DUP5-0377-GW Collected: 8/19/2013 2:23:00 Analysis Type: RES/TOT Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
CYANIDE	0.010	U	0.0032	MDL	0.010	LOD	mg/L	UJ	ProfJudg

Method Category: METALS

Method: 6010B Matrix: AQ

Sample ID: FWGFWGmw-004-0346-GF	Collected: 8/19/2013 5:08:00	Analysis Type: RES/TOT	Dilution: 1
---------------------------------	------------------------------	------------------------	-------------

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
MANGANESE	2.4	J	1.8	MDL	5.0	LOD	ug/L	U	Mb
POTASSIUM	710	J	300	MDL	900	LOD	ug/L	J	RI

^{*} denotes a non-reportable result

Lab Reporting Batch ID: 240-28110-1 Laboratory: TA CAN

EDD Filename: Prep240-28110-1 eQAPP Name: RVAAP 66-rev July 2012

EDD Fliellallie. Fle	p240-20110-1						AFF No	iiiie. ivv	AAF 00-	Tev July 20
Method Category:	METALS									
Method:	6010B			Má	atrix:	AQ				
Sample ID: FWGFWGmw	/-015-0350-GF	Collec	ted: 8/19/2	013 5:41:	00 <i>A</i>	nalysis T	ype: RES	утот		Dilution: 1
Analyte		Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
COBALT		2.9	J	1.5	MDL	4.0	LOD	ug/L	J	RI
NICKEL		2.5	J	2.2	MDL	5.0	LOD	ug/L	J	RI
Sample ID: FWGFWGmw	/-016-0351-GF	Collec	ted: 8/19/2	013 4:51:	00 <i>A</i>	nalysis T	ype: RES	ј/тот		Dilution: 1
Analyte		Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
ARSENIC		4.3	J	3.3	MDL	10	LOD	ug/L	J	RI
Sample ID: FWGLL3mw-	238C-0359-GF	Collec	ted: 8/19/2	013 1:32:	00 <i>A</i>	nalysis T	ype: RES	ј/тот		Dilution: 1
Analyte		Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
MANGANESE		2.6	J	1.8	MDL	5.0	LOD	ug/L	U	Mb
Sample ID: FWGLL3mw-	241C-0360-GF	Collec	ted: 8/19/2	013 2:28:	00 A	nalysis T	ype: RES	ј/ТОТ		Dilution: 1
Analyte		Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
MANGANESE		3.0	J	1.8	MDL	5.0	LOD	ug/L	U	Mb
NICKEL		2.2	J	2.2	MDL	5.0	LOD	ug/L	J	RI
Sample ID: FWGRQLmw	-008C-0370-GF	Collec	ted: 8/19/2	013 12:45	5:00 <i>A</i>	nalysis T	ype: RES	утот		Dilution: 1
Analyte		Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
COBALT		1.5	J	1.5	MDL	4.0	LOD	ug/L	J	RI
NICKEL		2.9	J	2.2	MDL	5.0	LOD	ug/L	J	RI
Sample ID: FWGRQLmw	-011C-0326-GF	Collec	ted: 8/19/2	013 2:55:	00 <i>A</i>	nalysis T	ype: RES	утот		Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
LEAD	2.3	J	1.7	MDL	5.0	LOD	ug/L	J	RI

Project Name and Number: 030174.0016.001.10.1 - RVAAP (66) OH

12/9/2013 1:53:07 PM ADR version 1.7.0.207 Page 2 of 11

^{*} denotes a non-reportable result

Lab Reporting Batch ID: 240-28110-1 Laboratory: TA CAN

EDD Filename: Prep240-28110-1 eQAPP Name: RVAAP 66-rev July 2012

LDD I liellallie. I lep240-20110-1					CG	AII 140	iiiic. itt	AAI 00-	lev July 2012
Method Category: METALS									
Method: 6020			Má	atrix:	AQ				
Sample ID: FWGFWGmw-016-0351-GF	Collec	ted: 8/19/2	013 4:51:	00 <i>A</i>	nalysis T	ype: RES	/ТОТ		Dilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
ALUMINUM	27	J	20	MDL	60	LOD	ug/L	J	RI
Sample ID: FWGLL3mw-238C-0359-GF	Collec	ted: 8/19/2	013 1:32:	00 <i>A</i>	nalysis T	ype: RES	/тот		Dilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
ALUMINUM	27	J	20	MDL	60	LOD	ug/L	J	RI
Sample ID: FWGRQLmw-006C-0368-GF	Collec	ted: 8/19/2	013 4:19:	00 <i>A</i>	nalysis T	ype: RES	/тот		Dilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
SODIUM	1500		160	MDL	400	LOD	ug/L	U	Eb
Sample ID: FWGRQLmw-008C-0370-GF	F Collected: 8/19/2013 12:45:00 Analysis Type: RES/TOT Dilution:						Dilution: 1		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
THALLIUM	1.2	J	0.79	MDL	1.5	LOD	ug/L	J	RI
Sample ID: FWGRQLmw-009C-0371-GF	Collec	ted: 8/19/2	013 1:23:	00 <i>A</i>	nalysis T	ype: RES	/TOT		Dilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
SODIUM	1700		160	MDL	400	LOD	ug/L	U	Eb
Sample ID: FWGRQLmw-011C-0326-GF	Collec	ted: 8/19/2	013 2:55:	00 <i>A</i>	nalysis T	ype: RES	/тот		Dilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
SODIUM	1800		160	MDL	400	LOD	ug/L	U	Eb
ZINC	35	J	27	MDL	50	LOD	ug/L	J	RI
Sample ID: FWGRQLmw-DUP5-0377-GF	Collec	ted: 8/19/2	013 2:23:	00 <i>A</i>	nalysis T	ype: RES	/тот		Dilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
SODIUM	1700		160	MDL	400	LOD	ug/L	U	Eb

Project Name and Number: 030174.0016.001.10.1 - RVAAP (66) OH

12/9/2013 1:53:07 PM ADR version 1.7.0.207 Page 3 of 11

^{*} denotes a non-reportable result

Lab Reporting Batch ID: 240-28110-1 Laboratory: TA CAN

EDD Filename: Prep240-28110-1 eQAPP Name: RVAAP 66-rev July 2012

method category. SVOA	Method	Category:	SVOA
-----------------------	--------	-----------	------

Method: 8081A Matrix: AQ

Sample ID: FWGEQUIPRINSE1-0340-GW	Collected: 8/19/2013 5:53:00	Analysis Type: RES-BASE/NEUTRAL Dilution: 1
Sample ID. I WOLQUIF KINGL 1-0340-0W	Conected. 0/ 13/2013 3.33.00	Allarysis Type. INEO-DAGE/NEOTINAL Dilution.

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
BETA-BHC	0.018	J	0.0081	MDL	0.019	LOD	ug/L	J	RI, ProfJudg, Ccv
DELTA-BHC	0.019	U	0.0084	MDL	0.019	LOD	ug/L	R	Ccv

Sample ID: FWGFWGmw-004-0346-GW Collected: 8/19/2013 5:08:00 Analysis Type: RES-BASE/NEUTRAL Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
DELTA-BHC	0.038	J	0.0093	MDL	0.021	LOD	ug/L	R	ProfJudg, Ccv

Sample ID: FWGLL3mw-238C-0359-GW Collected: 8/19/2013 1:32:00 Analysis Type: RE2-BASE/NEUTRAL Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
4,4'-DDE	0.020	J	0.010	MDL	0.021	LOD	ug/L	J	RI, ProfJudg, Ccv
DELTA-BHC	0.021	U	0.0091	MDL	0.021	LOD	ug/L	R	Ccv
ENDRIN ALDEHYDE	0.011	J	0.011	MDL	0.021	LOD	ug/L	J	RI

Sample ID: FWGLL3mw-238C-0359-GW Collected: 8/19/2013 1:32:00 Analysis Type: RES-BASE/NEUTRAL Dilution: 50

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
HEPTACHLOR EPOXIDE	1.0	U	0.37	MDL	1.0	LOD	ug/L	UJ	Surr

Sample ID: FWGLL3mw-241C-0360-GW Collected: 8/19/2013 2:28:00 Analysis Type: RES-BASE/NEUTRAL Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
DELTA-BHC	0.038	J	0.0084	MDL	0.019	LOD	ug/L	R	ProfJudg, Ccv

Sample ID: FWGRQLmw-006C-0368-GW Collected: 8/19/2013 4:19:00 Analysis Type: RES-BASE/NEUTRAL Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
вета-внс	0.013	J	0.0080	MDL	0.019	LOD	ug/L	UJ	Eb, ProfJudg, Ccv
DELTA-BHC	0.019	U	0.0083	MDL	0.019	LOD	ug/L	R	Ccv

Sample ID: FWGRQLmw-008C-0370-GW Collected: 8/19/2013 12:45:00 Analysis Type: RES-BASE/NEUTRAL Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
4,4'-DDE	0.038	J	0.0092	MDL	0.019	LOD	ug/L	J	ProfJudg, Ccv

^{*} denotes a non-reportable result

Lab Reporting Batch ID: 240-28110-1

EDD Filename: Prep240-28110-1 eQAPP Name: RVAAP 66-rev July 2012

Laboratory: TA CAN

Method Category: SVOA

Method: 8081A Matrix: AQ

Sample ID: FWGRQLmw-008C-0370-GW Collected: 8/19/2013 12:45:00 Analysis Type: RES-BASE/NEUTRAL Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
BETA-BHC	0.0093	J	0.0080	MDL	0.019	LOD	ug/L	UJ	Eb, ProfJudg, Ccv
DELTA-BHC	0.041	J	0.0083	MDL	0.019	LOD	ug/L	R	ProfJudg, Ccv

Sample ID: FWGRQLmw-009C-0371-GW Collected: 8/19/2013 1:23:00 Analysis Type: RES-BASE/NEUTRAL Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
DELTA-BHC	0.019	J	0.0083	MDL	0.019	LOD	ug/L	R	ProfJudg, Ccv

Sample ID: FWGRQLmw-011C-0326-GW Collected: 8/19/2013 2:55:00 Analysis Type: RES-BASE/NEUTRAL Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
DELTA-BHC	0.019	U	0.0083	MDL	0.019	LOD	ug/L	R	Ccv

Sample ID: FWGRQLmw-DUP5-0377-GW Collected: 8/19/2013 2:23:00 Analysis Type: RES-BASE/NEUTRAL Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
DELTA-BHC	0.019	U	0.0083	MDL	0.019	LOD	ug/L	R	Ccv

Matrix:

AQ

Method Category: SVOA

8082

Sample ID: FWGRQLmw-006C-0368-GW Collected: 8/19/2013 4:19:00 Analysis Type: RES-BASE/NEUTRAL Dilution: 1

							Thin year type in the second of the second o								
Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code							
0.19	U	0.16	MDL	0.19	LOD	ug/L	UJ	Surr							
0.19	U	0.12	MDL	0.19	LOD	ug/L	UJ	Surr							
0.19	U	0.15	MDL	0.19	LOD	ug/L	UJ	Surr							
0.38	U	0.21	MDL	0.38	LOD	ug/L	UJ	Surr							
0.19	U	0.095	MDL	0.19	LOD	ug/L	UJ	Surr							
0.19	U	0.15	MDL	0.19	LOD	ug/L	UJ	Surr							
0.19	U	0.16	MDL	0.19	LOD	ug/L	UJ	Surr							
	0.19 0.19 0.19 0.19 0.38 0.19 0.19	Result Qual 0.19 U 0.19 U 0.19 U 0.38 U 0.19 U 0.19 U	Result Qual DL 0.19 U 0.16 0.19 U 0.12 0.19 U 0.15 0.38 U 0.21 0.19 U 0.095 0.19 U 0.15	Result Qual DL Type 0.19 U 0.16 MDL 0.19 U 0.12 MDL 0.19 U 0.15 MDL 0.38 U 0.21 MDL 0.19 U 0.095 MDL 0.19 U 0.15 MDL	Result Qual DL Type RL 0.19 U 0.16 MDL 0.19 0.19 U 0.12 MDL 0.19 0.19 U 0.15 MDL 0.19 0.38 U 0.21 MDL 0.38 0.19 U 0.095 MDL 0.19 0.19 U 0.15 MDL 0.19	Result Qual DL Type RL Type 0.19 U 0.16 MDL 0.19 LOD 0.19 U 0.12 MDL 0.19 LOD 0.19 U 0.15 MDL 0.19 LOD 0.38 U 0.21 MDL 0.38 LOD 0.19 U 0.095 MDL 0.19 LOD 0.19 U 0.15 MDL 0.19 LOD	Result Qual DL Type RL Type Units 0.19 U 0.16 MDL 0.19 LOD ug/L 0.19 U 0.12 MDL 0.19 LOD ug/L 0.19 U 0.15 MDL 0.19 LOD ug/L 0.38 U 0.21 MDL 0.38 LOD ug/L 0.19 U 0.095 MDL 0.19 LOD ug/L 0.19 U 0.15 MDL 0.19 LOD ug/L	Lab Result Lab Qual DL Type RL Type RL Type RL Type Review Qual 0.19 U 0.16 MDL 0.19 LOD ug/L UJ 0.19 U 0.12 MDL 0.19 LOD ug/L UJ 0.19 U 0.15 MDL 0.19 LOD ug/L UJ 0.38 U 0.21 MDL 0.38 LOD ug/L UJ 0.19 U 0.095 MDL 0.19 LOD ug/L UJ 0.19 U 0.15 MDL 0.19 LOD ug/L UJ							

Method:

12/9/2013 1:53:07 PM ADR version 1.7.0.207 Page 5 of 11

^{*} denotes a non-reportable result

Lab Reporting Batch ID: 240-28110-1 Laboratory: TA CAN

EDD Filename: Prep240-28110-1 eQAPP Name: RVAAP 66-rev July 2012

Method Category: SVOA

Method: 8082 Matrix: AQ

Sample ID: FWGRQLmw-008C-0370-GW Collected: 8/19/2013 12:45:00 Analysis Type: RES-BASE/NEUTRAL Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
AROCLOR 1016	0.19	U	0.16	MDL	0.19	LOD	ug/L	UJ	Surr
AROCLOR 1221	0.19	U	0.12	MDL	0.19	LOD	ug/L	UJ	Surr
AROCLOR 1232	0.19	U	0.15	MDL	0.19	LOD	ug/L	UJ	Surr
AROCLOR 1242	0.38	U	0.21	MDL	0.38	LOD	ug/L	UJ	Surr
AROCLOR 1248	0.19	U	0.095	MDL	0.19	LOD	ug/L	UJ	Surr
AROCLOR 1254	0.19	U	0.15	MDL	0.19	LOD	ug/L	UJ	Surr
AROCLOR 1260	0.19	U	0.16	MDL	0.19	LOD	ug/L	UJ	Surr

Sample ID: FWGRQLmw-009C-0371-GW Collected: 8/19/2013 1:23:00 Analysis Type: RES-BASE/NEUTRAL Dilution: 1

· · · · · · · · · · · · · · · · · · ·									
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
AROCLOR 1016	0.19	U	0.16	MDL	0.19	LOD	ug/L	UJ	Surr
AROCLOR 1221	0.19	U	0.12	MDL	0.19	LOD	ug/L	UJ	Surr
AROCLOR 1232	0.19	U	0.15	MDL	0.19	LOD	ug/L	UJ	Surr
AROCLOR 1242	0.38	U	0.21	MDL	0.38	LOD	ug/L	UJ	Surr
AROCLOR 1248	0.19	U	0.095	MDL	0.19	LOD	ug/L	UJ	Surr
AROCLOR 1254	0.19	U	0.15	MDL	0.19	LOD	ug/L	UJ	Surr
AROCLOR 1260	0.19	U	0.16	MDL	0.19	LOD	ug/L	UJ	Surr

Sample ID: FWGRQLmw-DUP5-0377-GW Collected: 8/19/2013 2:23:00 Analysis Type: RES-BASE/NEUTRAL Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
AROCLOR 1016	0.19	U	0.16	MDL	0.19	LOD	ug/L	UJ	Surr
AROCLOR 1221	0.19	U	0.12	MDL	0.19	LOD	ug/L	UJ	Surr
AROCLOR 1232	0.19	U	0.15	MDL	0.19	LOD	ug/L	UJ	Surr
AROCLOR 1242	0.38	U	0.21	MDL	0.38	LOD	ug/L	UJ	Surr
AROCLOR 1248	0.19	U	0.095	MDL	0.19	LOD	ug/L	UJ	Surr
AROCLOR 1254	0.19	U	0.15	MDL	0.19	LOD	ug/L	UJ	Surr
AROCLOR 1260	0.19	U	0.16	MDL	0.19	LOD	ug/L	UJ	Surr

12/9/2013 1:53:07 PM ADR version 1.7.0.207 Page 6 of 11

^{*} denotes a non-reportable result

Lab Reporting Batch ID: 240-28110-1 Laboratory: TA CAN

EDD Filename: Prep240-28110-1 eQAPP Name: RVAAP 66-rev July 2012

Method Category: SVOA

Method: 8270C -SVOC1 Matrix: AQ

Sample ID: FWGFWGmw-004-0346-GW	Collected: 8/19/2013 5:08:00	Analysis Type: RES-BASE/NEUTRAL	Dilution: 1
Campic ID. I TICI TICIIIII COT COTO CII	00//00/00	Analysis Type: REG BAGE/REG TRAE	Dilution.

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
BIS(2-ETHYLHEXYL)PHTHALATE	0.25	J	0.23	MDL	0.53	LOD	ug/L	U	Mb

Sample ID: FWGFWGmw-015-0350-GW Collected: 8/19/2013 5:41:00 Analysis Type: RES-BASE/NEUTRAL Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
BIS(2-ETHYLHEXYL)PHTHALATE	0.45	J	0.21	MDL	0.48	LOD	ug/L	U	Mb

Sample ID: FWGFWGmw-016-0351-GW Collected: 8/19/2013 4:51:00 Analysis Type: RES-BASE/NEUTRAL Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
BIS(2-ETHYLHEXYL)PHTHALATE	0.32	J	0.22	MDL	0.50	LOD	ug/L	U	Mb

Sample ID: FWGLL3mw-238C-0359-GW Collected: 8/19/2013 1:32:00 Analysis Type: RES-BASE/NEUTRAL Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
BIS(2-ETHYLHEXYL)PHTHALATE	0.39	J	0.23	MDL	0.53	LOD	ug/L	U	Mb

Sample ID: FWGLL3mw-241C-0360-GW Collected: 8/19/2013 2:28:00 Analysis Type: RES-BASE/NEUTRAL Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
BIS(2-ETHYLHEXYL)PHTHALATE	0.57	J	0.23	MDL	0.52	LOD	ug/L	U	Mb

Method Category: SVOA

Method: 8270C-SVOC4 Matrix: AQ

Sample ID: FWGEQUIPRINSE1-0340-GW Collected: 8/19/2013 5:53:00 Analysis Type: RES-BASE/NEUTRAL Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
BENZYL ALCOHOL	0.44	J	0.36	MDL	0.48	LOD	ug/L	J	RI
BIS(2-ETHYLHEXYL)PHTHALATE	0.38	J	0.21	MDL	0.48	LOD	ug/L	J	RI

Sample ID: FWGRQLmw-006C-0368-GW Collected: 8/19/2013 4:19:00 Analysis Type: RES-BASE/NEUTRAL Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
BIS(2-ETHYLHEXYL)PHTHALATE	0.51	J	0.21	MDL	0.48	LOD	ug/L	U	Eb

^{*} denotes a non-reportable result

Lab Reporting Batch ID: 240-28110-1 Laboratory: TA CAN

EDD Filename: Prep240-28110-1 eQAPP Name: RVAAP 66-rev July 2012

Method Category: SVOA

Method: 8270C-SVOC4 Matrix: AQ

Sample ID: FWGRQLmw-008C-0370-GW	Collected: 8/19/2013 12:45:00	Analysis Type: RES-BASE/NEUTRAL Dil	lution: 1
----------------------------------	-------------------------------	-------------------------------------	-----------

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
3,3'-DICHLOROBENZIDINE	0.95	ΠΊ	0.35	MDL	0.95	LOD	ug/L	R	Ms, Ms
BENZO(A)PYRENE	0.095	UJ	0.049	MDL	0.095	LOD	ug/L	UJ	Ms

Sample ID: FWGRQLmw-009C-0371-GW Collected: 8/19/2013 1:23:00 Analysis Type: RES-BASE/NEUTRAL Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
BIS(2-ETHYLHEXYL)PHTHALATE	0.37	J	0.21	MDL	0.48	LOD	ug/L	U	Eb

Sample ID: FWGRQLmw-011C-0326-GW Collected: 8/19/2013 2:55:00 Analysis Type: RES-BASE/NEUTRAL Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
BIS(2-ETHYLHEXYL)PHTHALATE	0.22	J	0.21	MDL	0.48	LOD	ug/L	U	Eb

Sample ID: FWGRQLmw-DUP5-0377-GW Collected: 8/19/2013 2:23:00 Analysis Type: RES-BASE/NEUTRAL Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
BIS(2-ETHYLHEXYL)PHTHALATE	0.32	J	0.21	MDL	0.48	LOD	ug/L	U	Eb

Method Category: SVOA

Method: 8330 Matrix: AQ

Sample ID: FWGLL3mw-238C-0359-GW Collected: 8/19/2013 1:32:00 Analysis Type: RES-BASE/NEUTRAL Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
2,6-DINITROTOLUENE	0.52	J M	0.053	MDL	0.11	LOD	ug/L	J	ProfJudg
NITROBENZENE	0.17	J	0.053	MDL	0.11	LOD	ug/L	J	ProfJudg

Sample ID: FWGLL3mw-241C-0360-GW Collected: 8/19/2013 2:28:00 Analysis Type: RES-BASE/NEUTRAL Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
2,6-DINITROTOLUENE	0.083	J M	0.050	MDL	0.10	LOD	ug/L	J	RI
Octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX)	0.39	JM	0.036	MDL	0.050	LOD	ug/L	J	ProfJudg

^{*} denotes a non-reportable result

Lab Reporting Batch ID: 240-28110-1 Laboratory: TA CAN

EDD Filename: Prep240-28110-1 eQAPP Name: RVAAP 66-rev July 2012

Method	Category:	SVOA
--------	-----------	------

Method: 8330 Matrix: AQ

Sample ID: FWGRQLmw-008C-0370-GW	Collected: 8/19/2013 12:45:00	Analysis Type: RES	Dilution: 1
Sample ID: 1 WORQLINW-0000-0370-0W	Ourected. 0/13/2013 12.43.00	Analysis Type. ILLO	Dilution.

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
2-NITROTOLUENE	0.10	U	0.090	MDL	0.10	LOD	ug/L	UJ	Ms

Method Category: VOA

Method: 8260B Matrix: AQ

Sample ID: FWGEQUIPRINSE1-0340-GW	Collected: 8/19/2013 5:53:00	Analysis Type: RES	Dilution: 1
-----------------------------------	------------------------------	--------------------	-------------

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
ACETONE	19		1.1	MDL	1.1	LOD	ug/L	J	Ccv
CARBON DISULFIDE	0.13	J	0.13	MDL	0.25	LOD	ug/L	J	RI
TOLUENE	0.14	J	0.13	MDL	0.25	LOD	ug/L	J	RI

Sample ID: FWGRQLmw-006C-0368-GW Collected: 8/19/2013 4:19:00 Analysis Type: RES Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
ACETONE	3.4	J	1.1	MDL	1.1	LOD	ug/L	UJ	Eb, Tb, Ccv
CARBON DISULFIDE	0.16	J	0.13	MDL	0.25	LOD	ug/L	U	Eb

Sample ID: FWGRQLmw-008C-0370-GW Collected: 8/19/2013 12:45:00 Analysis Type: RES Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
ACETONE	2.3	J	1.1	MDL	1.1	LOD	ug/L	UJ	Eb, Tb, Ccv

Sample ID: FWGRQLmw-009C-0371-GW Collected: 8/19/2013 1:23:00 Analysis Type: RES Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
ACETONE	3.2	J	1.1	MDL	1.1	LOD	ug/L	ΟJ	Eb, Tb, Ccv, Fd

Sample ID: FWGRQLmw-DUP5-0377-GW Collected: 8/19/2013 2:23:00 Analysis Type: RES Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
ACETONE	1.8	J	1.1	MDL	1.1	LOD	ug/L	UJ	Eb, Tb, Ccv

12/9/2013 1:53:07 PM ADR version 1.7.0.207 Page 9 of 11

^{*} denotes a non-reportable result

Lab Reporting Batch ID: 240-28110-1 Laboratory: TA CAN

EDD Filename: Prep240-28110-1 eQAPP Name: RVAAP 66-rev July 2012

Method Category: VOA

Method: 8260B Matrix: AQ

Sample ID: FWGTEAM1-TRIP Collected: 8/19/2013 11:00:00 Analysis Type: RES Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
ACETONE	1.2	J	1.1	MDL	1.1	LOD	ug/L	J	Ccv
METHYLENE CHLORIDE	0.55	J	0.33	MDL	0.50	LOD	ug/L	J	ProfJudg

Sample ID: FWGTEAM3-TRIP Collected: 8/19/2013 11:00:00 Analysis Type: RES Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
ACETONE	1.1	J	1.1	MDL	1.1	LOD	ug/L	J	Ccv

Project Name and Number: 030174.0016.001.10.1 - RVAAP (66) OH

^{*} denotes a non-reportable result

Lab Reporting Batch ID: 240-28110-1 Laboratory: TA CAN

EDD Filename: Prep240-28110-1 eQAPP Name: RVAAP 66-rev July 2012

Reason Code Legend

Reason Code	Description
Cb	Calibration Blank Contamination
Ccv	Continuing Calibration Verification Percent Recovery Lower Estimation
Ccv	Continuing Calibration Verification Percent Recovery Lower Rejection
Ccv	Continuing Calibration Verification Percent Recovery Upper Estimation
Eb	Equipment Blank Contamination
Fd	Field Duplicate Precision
Lcs	Laboratory Control Spike Upper Estimation
Ld	Laboratory Duplicate Precision
Mb	Method Blank Contamination
Ms	Matrix Spike Lower Estimation
Ms	Matrix Spike Lower Rejection
Ms	Matrix Spike Precision
Ms	Matrix Spike Upper Estimation
ProfJudg	Professional Judgment
RI	Reporting Limit Trace Value
Surr	Surrogate/Tracer Recovery Lower Estimation
Surr	Surrogate/Tracer Recovery Upper Estimation
Tb	Trip Blank Contamination

12/9/2013 1:53:07 PM ADR version 1.7.0.207 Page 11 of 11

^{*} denotes a non-reportable result

Lab Reporting Batch ID: 240-28110-1 Laboratory: TA CAN

EDD Filename: Prep240-28110-1 eQAPP Name: RVAAP 66-rev July 2012

Reason Code Legend

Reason Code	Description
Cb	Calibration Blank Contamination
Ccv	Continuing Calibration Verification Percent Recovery Lower Estimation
Ccv	Continuing Calibration Verification Percent Recovery Lower Rejection
Ccv	Continuing Calibration Verification Percent Recovery Upper Estimation
Eb	Equipment Blank Contamination
Fd	Field Duplicate Precision
Lcs	Laboratory Control Spike Upper Estimation
Ld	Laboratory Duplicate Precision
Mb	Method Blank Contamination
Ms	Matrix Spike Lower Estimation
Ms	Matrix Spike Lower Rejection
Ms	Matrix Spike Precision
Ms	Matrix Spike Upper Estimation
ProfJudg	Professional Judgment
RI	Reporting Limit Trace Value
Surr	Surrogate/Tracer Recovery Lower Estimation
Surr	Surrogate/Tracer Recovery Upper Estimation
ТЬ	Trip Blank Contamination

10/14/2013 4:40:19 PM ADR version 1.7.0.207 Page 11 of 11

^{*} denotes a non-reportable result

Data Verification Summary

Site: Ravenna Army Ammunition Plant

Sampling Event: August 2013 **Date:** December 9, 2013

Sample Delivery Group: 240-28145 Revision: 1

Data Reviewer: Angye Dragotta /Environmental Quality Management, Inc. (EQM, Inc.)

QA/QC Summary

On August 19th and 20th, 2013 the following samples were collected from groundwater-monitoring wells at Ravenna Army Ammunition Plant and analyzed as part of SDG 240-28145. Sample analysis was performed by Test America. Test America-North Canton performed all analyses with the exception of the analytical for methods 8330, M8330, TALSOPWS-WC-0050 and 6860. Methods 8330, M8330 and TALSOPWS-WC-0050 were analyzed by Test America, West Sacramento and method 6860 was analyzed by Test America-Denver.

		0			81		6 0]	Meta	als ⁴
Sample ID	VOC by SW846 8260	SVOC 4 by SW846 8270	SVOC 1 and 2 by SW846 8270	SVOC 1 by SW846 8270	Pesticides by SW846 8081	PCBs/ SW846 8082	Explosives/Propellants by SW846 8330, Mod. 8330 and TALSOP WS-WC-0050	Cyanide SW846 9012	Perchlorate by SW846 6860	NO2/NO3, EPA 353.2	SW846 6010B	$SW846\ 6020$	Mercury by SW846 7470A
FWGLL12mw-187C-0363-GW/GF	X			X	X		X			X	X	X	X
FWGLL12mw-242C-0364- GW/GF	X			X	X		X			X	X	X	X
FWGLL12mw-247-0336-GW/GF	X			X	X		X			X	X	X	X
FWGLL12mw-DUP3-0338-GW/GF	X			X	X		X			X	X	X	X
FWGDETmw-002C-0315-GW/GF	X	X			X	X	X	X	X		X	X	X
FWGDA2mw-114-0312-GW/GF	X	X			X	X	X	X			X	X	X
FWGLL1mw-087C-0356-GW/GF				X	X		X				X	X	X
FWGSCFmw-002-0327-GW/GF				X	X		X				X	X	X
FWGSCFmw-004-0372-GW/GF				X	X		X				X	X	X
FWGSCFmw-DUP6-0378-GW/GF				X	X		X				X	X	X
FWGDA2mw-115-0313-GW/GF	X	X			X	X	X	X			X	X	X
FWGEQUIPRINSE2-0341-GW	X	X			X	X	X	X	X	X	X	X	X
FWGDA2mw-DUP1-0336-GW/GF		X					X				X	X	X
FWGLL12mw-245C-0365-GW/GF	X			X	X		X			X	X	X	X
FWGLL12mw-185C-0362-GW/GF										X	X	X	X
FWGLL3mw-244-0323-GW/GF				X	X		X				X	X	X
FWGDETmw-001C-0314-GW/GF	X	X			X	X	X	X	X		X	X	X
FWGDETmw-003C-0343-GW/GF	X	X			X	X	X	X	X		X	X	X
FWGBKGmw-010C-0311-GF									X				
FWGB12mw-013-0313-GW					X	X							
FWGFWGmw-011-0348-GW/GF				X			X				X	X	X
FWGFWGmw-012-0349-GW/GF				X			X				X	X	X
FWGLL10mw-003C-0361-GW/GF	X										X	X	X
FWGLL1mw-064C-0352-GW/GF				X	X		X				X	X	X
FWGRQLmw-007C-0369-GW/GF	X	X			X	X	X	X			X	X	X
FWGRQLmw-010C-0325-GW/GF	X	X			X	X	X	X			X	X	X
FWGEBGmw-131-0316-GW/GF	X	X			X	X	X	X			X	X	X

Notes:

1) All metals and perchlorate samples with the exception of FWGEQUIPRINSE2-0341-GW were field filtered (GF).

240-28145-0 DVSR rev1 Page 1 of 10

Site: Ravenna Army Ammunition Plant

Sampling Event: August 2013 Date: December 9, 2013

Sample Delivery Group: 240-28145 Revision: 1

2) FWGTEAM1-TRIP, FWGTEAM2-TRIP, FWGTEAM3-TRIP and FWGTEAM4-TRIP were collected on 8/20/13, and FWGTEAM4-TRIP was collected on 08/19/13. The trip blanks were analyzed for VOC by EPA 8260B.

- 3) SVOC4= Full SVOC List and SVOC 1= Nitroaromatics and phthalates
- 4) EPA 6020 metals include aluminum, antimony, beryllium, cadmium, iron, sodium, thallium and zinc. EPA 6010B metals include arsenic, chromium, cobalt, lead, selenium, silver, vanadium, barium, calcium, copper, magnesium, manganese, nickel and potassium.

The data presented in this report were evaluated according to the Final Facility Wide Groundwater Monitoring Program, RVAAP-66 Facility Wide Groundwater Quality Assurance Project Plan (QAPP) Addendum for the Ravenna Army Ammunition Plant, Ravenna, OH, Environmental Quality Management, January, 2012. The following documents were used as needed to supplement the project documentation: The United States Department of Defense (DoD) Quality Services Manual (QSM) for Environmental Laboratories, Version 4.1, and the United States Army Corps of Engineers (USACE), Louisville District Quality Systems Manual Supplement (LS), EPA National Functional Guidelines (NFG) for Organic Data Review, EPA-540/R-08-01, June 2008, NFG for Inorganic Data Review, EPA-540/R-04-004, October 2004, Analytical Methods, and Laboratory Standard Operating Procedures. The QC criteria provided in the reference documents represent accuracy and precision performance goals for each analytical method. QC criteria reviewed for each method are listed below, along with any outliers.

All analytical results have been verified against compliance requirements specified in the project QAPP, QSM, LS, associated analytical methods and/or SOPs, as appropriate, and reported by the laboratory as directed by the DoD QSM.

Per the DoD QSM, the laboratory data is reported as follows: Non detected results were reported at the LOD with a "U" flag. Detected results between the DL and LOQ were reported as estimated, qualified with a "J" flag.

- LOD An estimate of the minimum amount of a substance that an analytical process can reliably detect.
- LOQ The lowest concentration that produces a quantitative result within specified limits of precision and bias.
- DL- The smallest analyte concentration that can be demonstrated to be different from zero or a blank concentration at the 99% level of confidence.

Checklists used in review of the data have been presented in Appendix 1. Outliers have been noted below and results requiring qualification, as a result of this verification process, have been summarized in Appendix 2.

The completeness objective for the project was 90%. The completeness objective was met for this SDG, at 100%. Limitations, if any, on the data are indicated with qualifiers detailed below.

VOAs - 8260B

The following QC criteria were reviewed and determined to be acceptable, except as noted below:

- Holding times, preservation, sample handling
- Tuning criteria
- Initial Calibration Criteria including SPCC and CCC compounds
- ICV/CCV criteria
- Internal standard area counts and retention times
- LOD and MRL verification criteria
- Method/Field/Trip blank Criteria
- Surrogate recoveries
- Field duplicate RPD criteria
- Laboratory Control Sample criteria
- Matrix Spike Recovery Criteria and RPD

240-28145-0 DVSR rev1 Page 2 of 10

Site: Ravenna Army Ammunition Plant

Sampling Event: August 2013 Date: December 9, 2013

Sample Delivery Group: 240-28145 Revision: 1

MRL Recovery

The opening MRL analyzed 8/28/13 @ 1140 recovered above control limits of 70-130% for cis-1,3-dichloropropene at 145%. The closing MRL analyzed at 2119 recovered above control limits of 70-130% for chloroethane at 132% and methylene chloride at 160%. The methylene chloride result for sample FWGTEAM1-Trip was qualified, "J". No additional qualifications were required for cis-1,3-dichloropropene or chloroethane as there were no detected concentrations of these analytes reported for the bracketed field samples.

The opening MRL analyzed 8/29/13 @ 1836 recovered above control limits of 70-130% for toluene at 142% and trichloroethene at 143%. No qualifications were required as there were no detected toluene or trichloroethene concentrations reported for the bracketed field samples.

CCV

The CCV analyzed 8/28/13 @ 1031 had a %D above control limits of 20% for acetone at 23.2% and 4-methyl-2-pentanone at 21.4%. The acetone result for sample FWGEQUIPRINSE2-0341-GW was qualified as estimated, "J". No qualifications were made for the 4-methyl-2-pentanone outlier as there were no detected 4-methyl-2-pentanone concentrations reported for the bracketed field samples.

Blanks

Toluene was detected at 0.164µg/L in the method blank from batch 240-99628. No qualifications were required as there were no detected toluene concentrations reported for the associated field samples.

Methylene chloride was detected in FWGTEAM1-TRIP at 0.33μg/L, in FWGTEAM2-TRIP at 0.59μg/L, in FWGTEAM3-TRIP at 0.45μg/L, FWGTeam4-Trip (collected 8/19/13) at 0.61μg/L and FWGTeam4-Trip (collected 8/20/13) at 0.52μg/L. FWGEQUIPRINSE1-0340-GW had acetone detected at 19μg/L, carbon disulfide at 0.13μg/L, toluene at 0.14μg/L and 2-butanone at 1.5μg/L. FWGEQUIPRINSE2-0341-GW had acetone detected at 21μg/L, carbon disulfide at 1.3μg/L and 2-butanone at 1.1μg/L. The carbon disulfide result for sample FWGDA2mw-115-0313-GW were qualified, "B" as the detected concentrations were <5x blank contamination. The acetone results for samples FWGRQLmw-007c-0369-GW and FWGRQLmw-010c-0325-GW were qualified, "B" as the detected concentrations were <10x blank contamination. There were no detected 2-butanone or toluene results reported for the associated field samples, so no qualifications were made for the 2-butanone or toluene contamination

Matrix Spike Analysis

A matrix spike was not requested on a sample from this laboratory batch so no matrix spike information was provided or evaluated.

SVOCs-8270C

The following QC criteria were reviewed and determined to be acceptable, except as noted below:

- Holding times, preservation, sample handling
- Tuning criteria
- Initial Calibration Criteria including SPCC and CCC compounds
- ICV/CCV criteria
- Internal standard area counts and retention times
- LOD and MRL verification criteria
- Method/Field blank Criteria
- Surrogate recoveries
- Field duplicate RPD criteria
- Laboratory Control Sample criteria
- Matrix Spike Recovery Criteria and RPD

MRL Verification

The opening and closing MRL checks analyzed 8/31/13 recovered above control limits of 70-130% for 4-nitrophenol at 136% and 138%, respectively. No qualification of the data was required as there were no detected concentrations of 4-nitrophenol reported for the bracket field samples.

240-28145-0 DVSR rev1 Page 3 of 10

Date: December 9, 2013

Site: Ravenna Army Ammunition Plant Sampling Event: August 2013

Sample Delivery Group: 240-28145 Revision: 1

<u>CCV</u>

• The CCV analyzed 8/31/13 @1101 had 4-nitrophenol with a %D above control limits of 20% D at 26.6% and 4-nitroanailine above limits at 20.9%.

- The CCV analyzed 9/3/13 @0727 had 4-nitrophenol with a %D above control limits of 20% D at 31.7%.
- The CCV analyzed 9/4/13 @0808 had 4-nitrophenol with a %D above control limits of 20% D at 37.1% and 4-nitroanailine above limits at 24.2%.

No qualifications were made as there were no detected concentrations of 4-nitrophenol or 4-nitroaniline reported for the associated field samples.

Blanks

bis (2-Ethylhexyl)phthalate was detected in the method blank from batch 240-98943 at $0.376\mu g/L$ and at $0.601\mu g/L$ in the method blank from batch 240-984497. The bis (2-ethylhexyl) phthalate results for samples FWGFWGmw-012-0349-GW, FWGLL12mw-187-0363-GW, FWGLL12mw-242-0364-GW, FWGLL12mw-245c-0365-GW, FWGLL12mw-004-0352-GW, FWGLL12mw-004-0352-GW, FWGLL1mw-064c-0352-GW, FWGLL1mw-087c-0356-GW, FWGLL3mw-244-0323-GW, FWGSCFmw-002-0327-GW, FWGSCFmw-004-0372-GW and FWGSCFmw-DUP6-0378-GW were qualified, "B".

- bis (2-Ethylhexyl) phthalate was detected at $0.38\mu g/L$, diethylphthalate at $1.3\mu g/L$ and benzyl alcohol at $0.44\mu g/L$ in FWGEQUIPRINSE1-0340-GW.
- bis (2-Ethylhexyl) phthalate was detected at 0.53 μg/L, diethylphthalate at 1.4 μg/L, phenol at 0.61 μg/L and benzyl alcohol at 0.66 μg/L in FWGEOUIPRINSE2-0341-GW.

The bis (2-ethylhexyl) phthalate results for samples FWGDA2mw-114-0312-GW, FWGDA2mw-115-0313-GW, FWGDA2mw-DUP1-0336-GW, FWGDETmw-001c-0314-GW, FWGDETmw-002c-0315-GW, FWGDETmw-003c-0343-GW FWGFWGmw-012-0349-GW, FWGLL12mw-187-0363-GW, FWGLL12mw-242-0364-GW, FWGLL12mw-245c-0365-GW, FWGLL12mw-247-0336-GW, FWGLL12mw-DUP3-0338-GW, FWGLL1mw-064c-0352-GW, FWGLL1mw-087c-0356-GW, FWGLL3mw-244-0323-GW, FWGSCFmw-002-0327-GW, FWGSCFmw-004-0372-GW and FWGSCFmw-DUP6-0378-GW were qualified, "B". No qualifications were made for the diethylphthalate, phenol or benzyl alcohol contamination as there were no detected 2-butanone, phenol or benzyl alcohol concentrations reported for the associated field samples.

Pesticides-8081A

The following QC criteria were reviewed and determined to be acceptable, except as noted below:

- Preservation, holding time and sample handling
- Initial Calibration criteria
- DDT and Endrin breakdown criteria
- Retention time criteria
- ICV criteria
- CCV Criteria
- Method/Field blank Criteria
- LCS Recoveries
- Field Duplicate Criteria
- LOD and MRL verification criteria
- Matrix Spike Recovery Criteria and RPD
- Surrogate Recoveries
- Second Column confirmation criteria

MRL Recovery

- The MRL analyzed on 8/29/13@ 2251 recovered above control limits of 70-130% at 143% on CLP-2 for delta-BHC.
- The MRL analyzed on 8/30/13@ 0337 recovered above control limits of 70-130% at 149% on CLP-2 for delta-BHC.
- The closing MRL analyzed on 9/12/13 at 0209 recovered above control limits of 70-130 on CLP-1 and CLP-2 at 135% and 141% for 4,4'-DDE and at 131% and 135% for aldrin.

240-28145-0 DVSR rev1 Page 4 of 10

Site: Ravenna Army Ammunition Plant

Sampling Event: August 2013 Date: December 9, 2013

Sample Delivery Group: 240-28145 Revision: 1

No qualifications were required as there were no detected concentrations reported for delta-BHC, 4,4'-DDD or aldrin in the bracketed field samples.

CCV

The CCV analyzed 8/30/13 @ 0316 had a %D above control limits of 20% for endrin at 20.6% (CLP-1) and above limits for 4,4'-DDD at 23% and methoxychlor at 23.5% (CLP-2). No qualifications were required as there were no detected concentrations reported for the bracketed field samples.

The CCV analyzed 8/30/13 @ 1044 had a %D above control limits of 20% for gamma-BHC at 24.3%, beta-BHC at 21.9%, heptachlor epoxide at 22.7%, gamma-chlordane at 24.4%, dieldrin at 25.9%, endrin at 34.9%, 4,4'-DDD at 42.3%, endosulfan II at 31.4%, endosulfan sulfate at 26.4 % and endrin ketone at 25% (CLP-1). CLP-2 had a %D above control limits of 20% for gamma-BHC at 21.6%, heptachlor epoxide at 20.7%, gamma-chlordane at 23.2%, dieldrin at 23.9%, endrin at 36.5%, 4,4'-DDD at 36%, endosulfan II at 21.9%, endosulfan sulfate at 30.2 %, endrin ketone at 29% and methoxychlor at 20.8%. No qualifications were required as there were no detected concentrations reported for the bracketed field samples.

The CCV analyzed 8/30/13 @ 1155 had a %D above control limits of 20% for alpha-BHC at 22.4%, gamma-BHC at 30.9%, beta-BHC at 28.3%, delta-BHC at 22.5%, heptachlor epoxide at 27.3%, gamma-chlordane at 30.9, alpha-chlordane at 26.3%, 4,4'-DDE at 23.7%, dieldrin at 31.7%, endrin at 28.1%, 4,4'-DDD at 35.8%, endosulfan II at 27.3%, endosulfan sulfate at 24.3 % and endrin ketone at 24.2% (CLP-1). CLP-2 had a %D above control limits of 20% for gamma-chlordane at 21%, 4,4'-DDD at 22.6%, endosulfan sulfate at 21 % and endrin ketone at 20.9%. No qualifications were required as there were no detected concentrations reported for the bracketed field samples.

The CCV analyzed 9/12/13 @ 0006 had a %D above control limits of 20% for alpha-BHC at 46.8%, gamma-BHC at 29.7%, beta-BHC at 41.7%, delta-BHC at 38%, aldrin at 51.4%, heptachlor epoxide at 43.4%, gamma-chlordane at 37.2%, alpha-chlordane at 42%, endosulfan I at 25.6%, 4,4'-DDE at 53.1%, dieldrin at 38.3%, endrin at 30.4% and 4,4'-DDD at 25.7%, (CLP-1). CLP-2 had a %D above control limits of 20% for alpha-BHC at 56%, gamma-BHC at 36.9%, beta-BHC at 47.5%, delta-BHC at 45.5%, aldrin at 60.4%, heptachlor epoxide at 54.6%, gamma-chlordane at 41.9%, alpha-chlordane at 53%, endosulfan I at 32.8%, 4,4'-DDE at 60.9%, dieldrin at 45.8%, endrin at 36.9%, 4,4'-DDD at 36.1%, endosulfan II at 29.9% and endosulfan sulfate at 27%. The beta-BHC results for samples FWGSCFmw-002-0327-GW, FWGSCFmw-004-0372-GW, FWGSCFmw-DUP6-0378-GW, FWGDA2mw-115-0313-GW, FWGLL12mw-245c-0365-GW and FWGLL3mw-244-0323-GW and the endrin ketone result for sample FWGDETmw-001c-0314-GW were qualified as estimated, "J".

The CCV analyzed 9/12/13 @ 1531 had a %D above control limits of 20% for alpha-BHC at 24.3%, gamma-BHC at 21.4%, delta-BHC at 21.4%, heptachlor at 20.5%, aldrin at 26.9%, 4,4'-DDE at 26.3%, endrin at 23.5%, 4,4'-DDD at 21% and below limits for endrin ketone at 20.9%(CLP-1). CLP-2 had a %D above control limits of 20% for alpha-BHC at 29.2%, gamma-BHC at 26%, beta-BHC at 24.3%, delta-BHC at 26%, heptachlor at 23.6%, aldrin at 30.7%, heptachlor epoxide at 23.9%, gamma-chlordane at 22.4%, alpha-chlordane at 23.7%, endosulfan I at 21.1%, 4,4'-DDE at 30.6%, dieldrin at 23.5%, endrin at 27.6%, 4,4'-DDD at 26.1%, endosulfan II at 20.9%, 4,4'-DDT at 21.9%, methoxychlor at 23% and endosulfan sulfate at 21.1%. The beta-BHC result for sample FWGDETmw-003c-0343-GW was qualified as estimated, "J".

Blanks

FWGEQUIPRINSE1-0340-GW had beta-BHC detected at 0.018µg/L. No qualifications were required as there were no detected beta-BHC concentrations reported for the samples associated with FWGEQUIPRINSE1-0340-GW.

Matrix Spike Recovery

A matrix spike was not requested on a sample from this laboratory reporting batch, so data matrix spike data was provided or evaluated.

Surrogate Recovery

The surrogate DCB recovered below control limits of 30-135 in sample FWGLL12mw-247-0336-GW at 25% on CLP-1 and CLP-2. TCMX recovered above control limits of 25-140% in sample FWGSCFmw-002-0327-GW at

240-28145-0 DVSR rev1 Page 5 of 10

Site: Ravenna Army Ammunition Plant

Sampling Event: August 2013 Date: December 9, 2013

Sample Delivery Group: 240-28145 Revision: 1

194% (CLP-1), in sample FWGDA2mw-115-0313-GW at 181% (CLP-1) and in sample FWGDETmw-003c-0343-GW at 151% (CLP-2). The results for sample FWGLL12mw-247-0336-GW were qualified as estimated, "UJ". The beta-BHC- results for samples FWGSCFmw-002-0327-GW and FWGDA2mw-115-0313-GW were qualified as estimated, "J". No qualifications were required for FWGDETmw-003c-0343-GW, as there were no detected concentrations associated with the sample.

Field Duplicate RPD

A field duplicate was collected and analyzed for samples FWGLL12mw-247-0336-GW and FWGSCFmw-004-0372-GW. The field duplicate RPD was above control limits of 50% for the beta-BHC field duplicate RPD on sample FWGLL12mw-247-0336-GW at 200%. The beta-BHC result for sample FWGLL12mw-247-0336-GW was qualified as estimated, "J".

Second Column Confirmation

The second column confirmation analysis was above control limits of 40% for beta-BHC at 174% on sample FWGLL12mw-247-0336-GW. The beta-BHC result for sample FWGLL12mw-247-0336-GW was qualified as estimated, "J".

PCB-8082

The following QC criteria were reviewed and determined to be acceptable, except as noted below:

- Preservation, holding time and sample handling
- Initial Calibration criteria
- DDT and Endrin breakdown criteria
- Retention time criteria
- ICV criteria
- CCV Criteria
- Method/Field blank Criteria
- LCS Recoveries
- Field Duplicate Criteria
- LOD and MRL verification criteria
- Matrix Spike Recovery Criteria and RPD
- Surrogate Recoveries
- Second Column confirmation criteria

Holding Time

Samples FWGB12mw-013-0313-GW, FWGDETmw-001c-0314-GW, FWGDETmw-002c-0315-GW, FWGEQUIPRINSE2-0341-GW, FWGDA2mw-114-0312-GW, FWGDA2mw-115-0313-GW, FWGDETmw-003c-0343-GW, FWGEBGmw-131-0316-GW, FWGRQLmw-007c-0369-GW and FWGRQLmw-010c-0325-GW were reextracted outside of hold but within two times hold due to surrogate outliers in the initial extraction. All data was reported from the reextract and qualified as estimated, "UJ".

Matrix Spike Recovery

A matrix spike analysis was not designated with this group of samples, so no information was provided or evaluated. As there were no detected target analyte concentrations reported in the associated field samples, only the primary column was evaluated.

Surrogate Recovery

The surrogate, DCB, recovered below control limits of 40-135% for samples FWGB12mw-013-0313-GW at 33%, FWGDETmw-001c-0314-GW at 28%, FWGDETmw-002c-0315-GW at 37% and FWGEQUIPRINSE2-0341-GW at 31%. The results for samples FWGB12mw-013-0313-GW, FWGDETmw-001c-0314-GW, FWGDETmw-002c-0315-GW and FWGEQUIPRINSE2-0341-GW were qualified as estimated, "UJ".

240-28145-0 DVSR rev1 Page 6 of 10

Site: Ravenna Army Ammunition Plant

Sampling Event: August 2013 Date: December 9, 2013

Sample Delivery Group: 240-28145 Revision: 1

Metals - 6010B

The following QC criteria were reviewed and determined to be acceptable, except as noted below:

- Holding times, preservation, sample handling
- Initial Calibration criteria
- ICV and CCV criteria
- ICB /CCBs criteria
- Method/Field blank Criteria
- LOD and MRL verification criteria
- LCS percent recovery criteria
- Matrix Spike Recovery
- Lab and Field duplicate RPD criteria
- Post digestion spike and serial dilution results

Blanks

The ICB analyzed 9/9/13 @ 0749 had magnesium detected at $100\mu g/L$. No qualifications were required as the detected magnesium results for the associated field samples were greater than 5x blank contamination.

The CCBs analyzed 9/9/13 had magnesium detected from $101 \mu g/L$ to $105 \mu g/L$. No qualifications were required as the detected magnesium results for the bracketed field samples were greater than 5x blank contamination. Manganese was detected in the method blank at $2.75 \mu g/L$ (batch 240-98385) and at $6.26 \mu g/L$ (batch 240-98503). No qualifications were required as the detected manganese results were greater than 5x blank contamination.

Lab Duplicate RPD

The lab duplicate analyzed on FWGLL12mw-245C-0365-GF had an RPD above control limits of 20% at 30% for cobalt. No qualifications were made as the detected concentration was less than the LOQ.

Field Duplicate RPD

The field duplicate analyzed on sample FWGSCFmw-004-0372-GF was above control limits of 50% for barium at 63%, calcium at 53%, magnesium at 73%, and manganese at 164%. The barium, calcium, magnesium and manganese results for sample FWGSCFmw-004-0372-GF were qualified as estimated, "J".

Metals - 6020

The following QC criteria were reviewed and determined to be acceptable, except as noted below:

- Holding times, preservation, sample handling
- Initial Calibration criteria
- Internal standards within 30-120% of the internal standard in the ICAL
- ICV and CCV criteria
- ICB /CCBs criteria
- Method/Field blank Criteria
- LOD and MRL verification criteria
- LCS percent recovery criteria
- Matrix Spike Recovery
- Lab and Field Duplicate RPD Criteria
- Post digestion spike and serial dilution results

Blanks

The CCBs analyzed 9/9/13 had beryllium detected from $0.068\mu g/L$ to $0.103\mu g/L$, cadmium from $0.03\mu g/L$ to $0.252\mu g/L$, iron from 13.9 $\mu g/L$ to $47.1\mu g/L$, sodium from $6.45\mu g/L$ to $25.8\mu g/L$ and thallium at $0.0609\mu g/L$ (9/9/13 at 1311). No qualifications were required as the detected cadmium, iron and sodium results for the bracketed field samples were greater than 5x blank contamination.

240-28145-0 DVSR rev1 Page 7 of 10

Site: Ravenna Army Ammunition Plant

Sampling Event: August 2013 Date: December 9, 2013

Sample Delivery Group: 240-28145 Revision: 1

FWGEQUIPRINSE1-0340-GW had sodium detected at 410 μ g/L. No qualifications were required as the detected sodium results associated FWGEQUIPRINSE1-0340-GW with were greater than 5x blank contamination.

CCV

The beryllium CCV analyzed 9/9/13 at 1603 recovered above control limits of 90-110% at 112% and at 1902 with a recovery of 114%. No qualifications were made as there were no detected concentrations of beryllium reported for the bracketed field samples.

Field Duplicate RPD

The field duplicate analyzed on sample FWGLL12mw-247-0336-GF was above control limits of 50% for aluminum at 54%. The aluminum result for sample FWGLL12mw-247-0336-GF was qualified as estimated, "J".

The field duplicate analyzed on sample FWGSCFmw-004-0372-GF was above control limits of 50% for sodium at 67%. The sodium result for sample FWGSCFmw-004-0372-GF was qualified as estimated, "J".

Mercury - 7470A

The following QC criteria were reviewed and determined to be acceptable, except as noted below:

- Holding times, preservation, sample handling
- Initial Calibration criteria
- ICV and CCV criteria
- ICB /CCBs criteria
- Method/Field blank Criteria
- LOD and MRL verification criteria
- LCS percent recovery criteria
- Matrix Spike Recovery
- Lab and Field duplicate RPD criteria

No QC outliers were noted.

Cyanide - 9012

The following QC criteria were reviewed and determined to be acceptable, except as noted below:

- Holding times, preservation, sample handling
- Initial Calibration criteria
- ICV and CCV criteria
- ICB /CCBs criteria
- Method/Field blank Criteria
- MRL and MDL verification criteria
- LCS percent recovery criteria
- MS percent recovery
- Matrix Duplicate RPD criteria
- Field duplicate RPD criteria

MRL Recovery

No closing MRLs were analyzed. As the opening MRL checks recovered within limits, the cyanide results for samples FWGDETmw-002C-0315-GW, FWGDA2mw-114-0312-GW, FWGDA2mw-115-0313-GW, FWGEQUIPRINSE2-0341-GW, FWGDETmw-001C-0314-GW, FWGDETmw-003C-0343-GW, FWGRQLmw-007C-0369-GW, FWGRQLmw-010C-0325-GW and FWGEBGmw-131-0316-GW were qualified estimated, "J/UJ" as opposed to unusable.

240-28145-0 DVSR rev1 Page 8 of 10

Site: Ravenna Army Ammunition Plant

Sampling Event: August 2013 Date: December 9, 2013

Sample Delivery Group: 240-28145 Revision: 1

Explosives- 8330

The following QC criteria were reviewed and determined to be acceptable, except as noted below:

- Holding times, preservation, sample handling
- Initial Calibration Criteria
- ICV and CCV criteria
- Retention time criteria
- LOD and MRL verification criteria
- Surrogate recovery criteria
- Equipment and method blanks free from contamination
- LCS/LCD Recovery and RPD Criteria

Confirmation Analysis

1,3-dinitrobenzene and nitrobenzene were reported as detected for sample FWGSCFmw-002-0327-GW by the laboratory. Analysis on the second column did not confirm detection. The 1,3-dinitrobenzene and nitrobenzene results for sample FWGSCFmw-002-0327-GW were qualified, "U".

Surrogate Recovery

The surrogate 3,4-dinitrobenzene recovered above control limits of 79-111% for samples FWGFWGmw-012-0349-GW at 117% and FWGLL1mw-064c-0352-GW at 120%. No qualification of the data was required for the surrogate outliers as there were no detected target analyte concentrations reported for either sample, FWGFWGmw-012-0349-GW or FWGLL1mw-064c-0352-GW.

Nitroguanidine-8330M

The following QC criteria were reviewed and determined to be acceptable, except as noted below:

- Holding times, preservation, sample handling
- Initial Calibration criteria
- Retention time criteria
- LOD and MRL verification criteria
- ICV and CCV criteria
- The method blank and equipment blanks were free from contamination
- LCS/LCSD percent recoveries and RPD value criteria
- Matrix spike recovery criteria

No QC outliers were noted.

Nitrocellulose - WS-WC-0050

The following QC criteria were reviewed and determined to be acceptable, except as noted below:

- Holding times, preservation, sample handling
- Sample preparation criteria
- Initial Calibration criteria
- ICV and CCV criteria
- The method and equipment blanks were free from contamination
- LOD and MRL verification criteria
- ICB and CCBs were free from contamination
- LCS/LCSD percent recoveries and RPD value criteria
- MS/MSD percent recoveries

MRL Recovery

The MRL analyzed 9/11/13 at 1707 recovered above control limits of 70-130% at 136%. No qualifications were required as there were no detected nitrocellulose concentrations reported for the field samples bracketed by the outlier MRL.

240-28145-0 DVSR rev1 Page 9 of 10

Site: Ravenna Army Ammunition Plant

Sampling Event: August 2013 Date: December 9, 2013

Sample Delivery Group: 240-28145 Revision: 1

Matrix Spike Recovery and RPD

The matrix spike recoveries associated with sample FWGLL12mw-245C-0365-GW were within control limits, however the matrix spike/spike duplicate RPD was above control limits of 20% at 41%. The nitrocellulose results for samples FWGDETmw-001c-0314-GW, FWGDETmw-002c-0315-GW, FWGEQUIPRINSE2-0341-GW, FWGDA2mw-114-0312-GW, FWGDA2mw-115-0313-GW, FWGDETmw-003c-0343-GW, FWGFWGmw-011-0348-GW, FWGFWGmw-012-0349-GW, FWGLL12mw-187c-0363-GW, FWGLL12mw-242c-0364-GW, FWGLL12mw-245c-0365-GW, FWGLL12mw-247-0336-GW, FWGLL12mw-DUP3-0338-GW, FWGLL1mw-064c-0352-GW, FWGLL1mw-087c-0356-GW, FWGLL3mw-244-0323-GW, FWGSCFmw-002-0327-GW, FWGSCFmw-004-0372-GW and FWGSCFmw-DUP6-0378-GW were qualified as estimated, "J/UJ".

Perchlorate 6860

The following QC criteria were reviewed and determined to be acceptable, except as noted below:

- Holding times, preservation, sample handling
- Initial Calibration criteria
- ICV and CCV criteria
- ICB /CCBs criteria
- Method/Field blank Criteria
- MRL and LOD verification criteria
- LCS percent recovery criteria
- MS percent recovery
- Matrix Duplicate RPD criteria
- Field duplicate RPD criteria

Matrix Spike Recovery

A matrix spike analysis was not requested on samples from this batch, so no data was provided or evaluated.

Blanks

The CCB analyzed 9/6/13 @ 2303 had perchlorate detected at 0.0117μg/L. The perchlorate results for samples FWGBKGmw-010c-0311-GF and FWGRQLmw-010c-0325-GF were qualified, "U".

Nitrate Nitrite 353.2

The following QC criteria were reviewed and determined to be acceptable, except as noted below:

- Holding times, preservation, sample handling
- Initial Calibration criteria
- ICV and CCV criteria
- ICB /CCBs criteria
- Method/Field blank Criteria
- MRL and LOD verification criteria
- LCS percent recovery criteria
- MS percent recovery
- Matrix Duplicate RPD criteria
- Field duplicate RPD criteria

Blanks

The CCB analyzed 9/6/13 at 1712, had nitrate/nitrite detected at 0.004mg/L. No qualifications were made as there were no detected nitrate nitrite concentrations reported <5x blank contamination.

240-28145-0 DVSR rev1 Page 10 of 10

SAMPLE SUMMARY

Job Number: 240-28145-1

Client: Environmental Quality Mgt., Inc.

Lab Sample ID	Client Sample ID	Client Matrix	Date/Time Sampled	Date/Time Received	
240-28145-1	FWGTEAM1-TRIP	Water	08/20/2013 0800	08/21/2013 0700	
240-28145-2	FWGLL12mw-187C-0363-GW	Water	08/20/2013 0935	08/21/2013 0700	
240-28145-3	FWGLL12mw-187C-0363-GF	Water	08/20/2013 0935	08/21/2013 0700	
240-28145-4	FWGLL12mw-242C-0364-GW	Water	08/20/2013 1111	08/21/2013 0700	
240-28145-5	FWGLL12mw-242C-0364-GF	Water	08/20/2013 1111	08/21/2013 0700	
240-28145-6	FWGLL12mw-247-0336-GW	Water	08/20/2013 1301	08/21/2013 0700	
240-28145-7	FWGLL12mw-247-0336-GF	Water	08/20/2013 1301	08/21/2013 0700	
240-28145-8	FWGLL12mw-DUP3-0338-GW	Water	08/20/2013 1341	08/21/2013 0700	
240-28145-9	FWGLL12mw-DUP3-0338-GF	Water	08/20/2013 1341	08/21/2013 0700	
240-28145-10	FWGDETmw-002C-0315-GW	Water	08/20/2013 1511	08/21/2013 0700	
240-28145-11	FWGDETmw-002C-0315-GF	Water	08/20/2013 1511	08/21/2013 0700	
240-28145-12	FWGDA2mw-114-0312-GW	Water	08/20/2013 1705	08/21/2013 0700	
240-28145-13	FWGDA2mw-114-0312-GF	Water	08/20/2013 1705	08/21/2013 0700	
240-28145-14	FWGLL1mw-087C-0356-GW	Water	08/20/2013 0928	08/21/2013 0700	
240-28145-15	FWGLL1mw-087C-0356-GF	Water	08/20/2013 0928	08/21/2013 0700	
240-28145-16	FWGSCFmw-002-0327-GW	Water	08/20/2013 1208	08/21/2013 0700	
240-28145-17	FWGSCFmw-002-0327-GF	Water	08/20/2013 1208	08/21/2013 0700	
240-28145-18	FWGSCFmw-004-0372-GW	Water	08/20/2013 1048	08/21/2013 0700	
240-28145-19	FWGSCFmw-004-0372-GF	Water	08/20/2013 1048	08/21/2013 0700	
240-28145-20	FWGSCFmw-DUP6-0378-GW	Water	08/20/2013 1302	08/21/2013 0700	
240-28145-21	FWGSCFmw-DUP6-0378-GF	Water	08/20/2013 1302	08/21/2013 0700	
240-28145-22	FWGDA2mw-115-0313-GW	Water	08/20/2013 1458	08/21/2013 0700	
40-28145-23	FWGDA2mw-115-0313-GF	Water	08/20/2013 1458	08/21/2013 0700	
40-28145-24	FWGTEAM2-TRIP	Water	08/20/2013 0800	08/21/2013 0700	
40-28145-25	FWGEQUIPRINSE2-0341-GW	Water	08/20/2013 1342	08/21/2013 0700	
240-28145-26	FWGDA2mw-DUP1-0336-GW	Water	08/20/2013 1608	08/21/2013 0700	
240-28145-27	FWGDA2mw-DUP1-0336-GF	Water	08/20/2013 1608	08/21/2013 0700	
240-28145-28	FWGTEAM3-TRIP	Water	08/20/2013 0800	08/21/2013 0700	
40-28145-29	FWGLL12mw-245C-0365-GW	Water	08/20/2013 0956	08/21/2013 0700	
240-28145-29MS	FWGLL12mw-245C-0365-GW	Water	08/20/2013 0956	08/21/2013 0700	
240-28145-29MSD	FWGLL12mw-245C-0365-GW	Water	08/20/2013 0956	08/21/2013 0700	
240-28145-30	FWGLL12mw-245C-0365-GF	Water	08/20/2013 0956	08/21/2013 0700	
240-28145-30MS	FWGLL12mw-245C-0365-GF	Water	08/20/2013 0956	08/21/2013 0700	
240-28145-30DU	FWGLL12mw-245C-0365-GF	Water	08/20/2013 0956	08/21/2013 0700	
240-28145-31	FWGLL12mw-185C-0362-GW	Water	08/20/2013 1139	08/21/2013 0700	
240-28145-32	FWGLL12mw-185C-0362-GF	Water	08/20/2013 1139	08/21/2013 0700	
40-28145-33	FWGLL3mw-244-0323-GW	Water	08/20/2013 1229	08/21/2013 0700	
240-28145-34	FWGLL3mw-244-0323-GF	Water	08/20/2013 1229	08/21/2013 0700	
240-28145-35	FWGDETmw-001C-0314-GW	Water	08/20/2013 1456	08/21/2013 0700	
240-28145-36	FWGDETmw-001C-0314-GF	Water	08/20/2013 1456	08/21/2013 0700	
240-28145-37	FWGDETmw-003C-0343-GW	Water	08/20/2013 1619	08/21/2013 0700	
240-28145-38	FWGDETmw-003C-0343-GF	Water	08/20/2013 1619	08/21/2013 0700	
40-28145-39	FWGTEAM4-TRIP	Water	08/20/2013 0800	08/21/2013 0700	
240-28145-40	FWGBKGmw-010C-0311-GF	Water	08/20/2013 0934	08/21/2013 0700	
240-28145-41	FWGB12mw-013-0313-GW	Water	08/20/2013 1030	08/21/2013 0700	
240-28145-42	FWGFWGmw-011-0348-GW	Water	08/20/2013 1150	08/21/2013 0700	
40-28145-43	FWGFWGmw-011-0348-GF	Water	08/20/2013 1150	08/21/2013 0700	
240-28145-44	FWGFWGmw-012-0349-GW	Water	08/20/2013 1254	08/21/2013 0700	
240-28145-45	FWGFWGmw-012-0349-GF	Water	08/20/2013 1254	08/21/2013 0700	
240-28145-46	FWGLL10mw-003C-0361-GW	Water	08/20/2013 1430	08/21/2013 0700	
240-28145-47	FWGLL10mw-003C-0361-GF	Water	08/20/2013 1430	08/21/2013 0700	
240-28145-48	FWGLL1mw-064C-0352-GW	Water	08/20/2013 1604	08/21/2013 0700	

SAMPLE SUMMARY

Client: Environmental Quality Mgt., Inc. Job Number: 240-28145-1

Lab Sample ID	Client Sample ID	Client Matrix	Date/Time Sampled	Date/Time Received
240-28145-50	FWGTEAM4-TRIP	Water	08/19/2013 1100	08/21/2013 0700
240-28145-51	FWGRQLmw-007C-0369-GW	Water	08/19/2013 1324	08/21/2013 0700
240-28145-52	FWGRQLmw-007C-0369-GF	Water	08/19/2013 1324	08/21/2013 0700
240-28145-53	FWGRQLmw-010C-0325-GW	Water	08/19/2013 1534	08/21/2013 0700
240-28145-54	FWGRQLmw-010C-0325-GF	Water	08/19/2013 1534	08/21/2013 0700
240-28145-55	FWGEBGmw-131-0316-GW	Water	08/19/2013 1744	08/21/2013 0700
240-28145-56	FWGEBGmw-131-0316-GF	Water	08/19/2013 1744	08/21/2013 0700

METHOD SUMMARY

Job Number: 240-28145-1

Client: Environmental Quality Mgt., Inc.

Description	Lab Location	Method	Preparation Method
Matrix: Water			
/olatile Organic Compounds (GC/MS)	TAL CAN	SW846 8260	B/DoD
Purge and Trap	TAL CAN		SW846 5030B
Semivolatile Organic Compounds (GC/MS)	TAL CAN	SW846 8270	C/DoD
Liquid-Liquid Extraction (Continuous)	TAL CAN		SW846 3520C
Organochlorine Pesticides (GC)	TAL CAN	SW846 8081	/DOD
Liquid-Liquid Extraction (Continuous)	TAL CAN		SW846 3520C
Polychlorinated Biphenyls (PCBs) by Gas Chromatography	TAL CAN	SW846 8082/DOD	
Liquid-Liquid Extraction (Continuous)	TAL CAN		SW846 3520C
Metals (ICP)	TAL CAN	SW846 6010	B/DOD
Preparation, Total Recoverable or Dissolved Metals	TAL CAN		SW846 3005A
Metals (ICP/MS)	TAL CAN	SW846 6020	/DOD
Preparation, Total Recoverable or Dissolved Metals	TAL CAN		SW846 3005A
lercury (CVAA)	TAL CAN	SW846 7470	A/DOD
Preparation, Mercury	TAL CAN		SW846 7470A
Cyanide, Total and/or Amenable	TAL CAN	SW846 9012	A
Cyanide, Total and/or Amenable, Distillation	TAL CAN		SW846 9012A
Perchlorate by IC/MS or IC/MS/MS	TAL DEN	EPA 6860	
litroguanidine (HPLC)	TAL SAC	SW846 8330	Modified
Sample Filtration	TAL SAC		Filtration
Nitroaromatics and Nitramines	TAL SAC	SW846 8330	A
Solid-Phase Extraction (Explosives)	TAL SAC		SW846 8330-Prep
litrogen, Nitrate-Nitrite	TAL SAC	MCAWW 353	3.2
Vitrocellulose	TAL SAC	TAL-SAC WS	S-WC-0050
Nitrocellulose Sample Preparation (Hydrolysis)	TAL SAC		MCAWW 353 (NCell-Hyd)
Nitrocellulose Sample Preparation	TAL SAC		MCAWW 353.2 (NCell)

Lab References:

TAL CAN = TestAmerica Canton

TAL DEN = TestAmerica Denver

TAL SAC = TestAmerica Sacramento

Method References:

EPA = US Environmental Protection Agency

MCAWW = "Methods For Chemical Analysis Of Water And Wastes", EPA-600/4-79-020, March 1983 And Subsequent Revisions.

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

TAL-SAC = TestAmerica Laboratories, West Sacramento, Facility Standard Operating Procedure.

Client: Environmental Quality Mgt., Inc. Project/Site: RVAAP66 (OH)

Job ID: 240-28145-1

Laboratory: TestAmerica Canton

Narrative

CASE NARRATIVE Revised

Client: Environmental Quality Mgt., Inc.

Project: RVAAP66 (OH)

Report Number: 240-28145-1

With the exceptions noted as flags or footnotes, standard analytical protocols were followed in the analysis of the samples and no problems were encountered or anomalies observed. In addition all laboratory quality control samples were within established control limits, with any exceptions noted below. Each sample was analyzed to achieve the lowest possible reporting limit within the constraints of the method. In some cases, due to interference or analytes present at high concentrations, samples were diluted. For diluted samples, the reporting limits are adjusted relative to the dilution required.

The 353.2 Nitrate Nitrite as N, 353.2 Nitrocellulose, 8330 Nitroguanidine and 8330A Explosives analysis were performed at the TestAmerica Sacramento Laboratory. The 6860 Perchlorate analysis was performed at the TestAmerica Denver Laboratory.

Calculations are performed before rounding to avoid round-off errors in calculated results.

All holding times were met and proper preservation noted for the methods performed on these samples, unless otherwise detailed in the individual sections below.

TestAmerica utilizes USEPA approved methods and DOD QSM, where applicable, in all analytical work. The samples presented in this report were analyzed for the parameter(s) listed on the analytical methods summary page in accordance with the method(s) indicated. A summary of QC data for these analyses is included at the back of the report.

TestAmerica Canton attests to the validity of the laboratory data generated by TestAmerica facilities reported herein. All analyses performed by TestAmerica facilities were done using established laboratory SOPs that incorporate QA/QC procedures described in the applicable methods. TestAmerica's operations groups have reviewed the data for compliance with the laboratory QA/QC plan, and data have been found to be compliant with laboratory protocols unless otherwise noted below.

All solid sample results are reported on an "as received" basis unless otherwise indicated by the presence of a % solids value in the method header.

This laboratory report is confidential and is intended for the sole use of TestAmerica and its client.

All parameters for which TestAmerica North Canton has certification were evaluated to the limit of detection (LOD) and include qualified results where applicable. Parameters not certified under QSM, if any, were evaluated to the detection limit (DL) and include qualified results where applicable.

REVISION 1: Initial results for method 8330A for sample FWGSCFmw-002-0327-GW (240-28145-16) were incorrectly reported for Nitrobenzene and 1,3-Dinitrobenzene. Results reported were from the primary column, however, these results were not confirmed on the second column and should have been reported as ND.

The sample(s) that contain constituents flagged with U are undetected. The result associated with this flag is the limit of detection (LOD).

RECEIPT

The samples were received on 0.8/21/2013; the samples arrived in good condition, properly preserved and on ice. The temperature of the coolers at receipt were 0.8° C, 1.0° C, 1.4° C, 1.4° C, 1.6° C,

TestAmerica Canton 10/7/2013

Client: Environmental Quality Mgt., Inc. Project/Site: RVAAP66 (OH)

Job ID: 240-28145-1 (Continued)

Laboratory: TestAmerica Canton (Continued)

VOLATILE ORGANIC COMPOUNDS (GCMS)

Samples FWGTEAM1-TRIP (240-28145-1), FWGLL12mw-187C-0363-GW (240-28145-2), FWGLL12mw-242C-0364-GW (240-28145-4), FWGLL12mw-247-0336-GW (240-28145-6), FWGLL12mw-DUP3-0338-GW (240-28145-8), FWGDETmw-002C-0315-GW (240-28145-10), FWGDA2mw-114-0312-GW (240-28145-12), FWGDA2mw-115-0313-GW (240-28145-22), FWGTEAM2-TRIP (240-28145-24), FWGEQUIPRINSE2-0341-GW (240-28145-25), FWGTEAM3-TRIP (240-28145-28), FWGLL12mw-245C-0365-GW (240-28145-29), FWGDETmw-001C-0314-GW (240-28145-35), FWGDETmw-003C-0343-GW (240-28145-37), FWGTEAM4-TRIP (240-28145-39), FWGLL10mw-003C-0361-GW (240-28145-46), FWGTEAM4-TRIP (240-28145-50), FWGRQLmw-007C-0369-GW (240-28145-51), FWGRQLmw-010C-0325-GW (240-28145-53) and FWGEBGmw-131-0316-GW (240-28145-55) were analyzed for volatile organic compounds (GCMS) in accordance with EPA SW-846 Method 8260B DoD. The samples were analyzed on 08/28/2013 and 08/29/2013.

Toluene was detected in method blank MB 240-99628/5 at a level that was above the method detection limit but below the reporting limit. The value should be considered an estimate, and has been flagged. If the associated sample reported a result above the MDL and/or RL, the result has been flagged. Refer to the QC report for details.

Chloroethane and Methylene Chloride failed the recovery criteria high for MRL 240-99353/29. cis-1,3-Dichloropropene failed the recovery criteria high for MRL 240-99353/5. Toluene and Trichloroethene failed the recovery criteria high for MRL 240-99628/7. Refer to the QC report for details.

The continuing calibration verification (CCV) for Acetone, 4-Methyl-2-pentanone associated with batch 99353 recovered above the upper control limit. Two samples associated with this CCV had acetone present above the RL but are still being reported since it is a normal laboratory contaminant.

No other difficulties were encountered during the VOCs analysis. All other quality control parameters were within the acceptance limits.

SEMIVOLATILE ORGANIC COMPOUNDS (GCMS)

Samples FWGLL12mw-187C-0363-GW (240-28145-2), FWGLL12mw-242C-0364-GW (240-28145-4), FWGLL12mw-247-0336-GW (240-28145-6), FWGLL12mw-DUP3-0338-GW (240-28145-8), FWGDETmw-002C-0315-GW (240-28145-10), FWGDA2mw-114-0312-GW (240-28145-12), FWGLL1mw-087C-0356-GW (240-28145-14), FWGSCFmw-002-0327-GW (240-28145-16), FWGSCFmw-004-0372-GW (240-28145-18), FWGSCFmw-DUP6-0378-GW (240-28145-20), FWGDA2mw-115-0313-GW (240-28145-22), FWGEQUIPRINSE2-0341-GW (240-28145-25), FWGDA2mw-DUP1-0336-GW (240-28145-26), FWGLL12mw-245C-0365-GW (240-28145-29), FWGLL3mw-244-0323-GW (240-28145-33), FWGDETmw-001C-0314-GW (240-28145-35), FWGDETmw-003C-0343-GW (240-28145-37), FWGFWGmw-011-0348-GW (240-28145-42), FWGFWGmw-012-0349-GW (240-28145-44), FWGLL1mw-064C-0352-GW (240-28145-48), FWGRQLmw-007C-0369-GW (240-28145-51), FWGRQLmw-010C-0325-GW (240-28145-53) and FWGEBGmw-131-0316-GW (240-28145-55) were analyzed for semivolatile organic compounds (GCMS) in accordance with EPA SW-846 Method 8270C. The samples were prepared on 08/22/2013 and analyzed on 08/31/2013, 09/03/2013 and 09/04/2013.

Surrogates are added during the extraction process prior to dilution. When the sample is diluted, surrogate recoveries are diluted out and no corrective action is required.

Bis(2-ethylhexyl) phthalate was detected in method blanks MB 240-98493/23-A and MB 240-98497/11-A at levels that were above the method detection limit but below the reporting limit. The values should be considered estimates, and have been flagged. If the associated sample reported a result above the MDL and/or RL, the result has been flagged.

The continuing calibration verification (CCV) for 4-nitrophenol, associated with analytical batch 99858, recovered above the upper control limit. The samples associated with this CCV, FWGDA2mw-114-0312-GW (240-28145-12), FWGDA2mw-115-0313-GW (240-28145-22), FWGDA2mw-DUP1-0336-GW (240-28145-26), FWGDETmw-001C-0314-GW (240-28145-35), FWGDETmw-002C-0315-GW (240-28145-10), FWGEQUIPRINSE2-0341-GW (240-28145-25), were non-detects for the affected analyte; therefore, the data have been reported.

The continuing calibration verifications (CCV) for 4-nitrophenol and 4-nitroaniline, associated with analytical batch 100019, recovered above the upper control limit. The samples associated with this CCV were non-detects for the affected analytes; therefore, the data have been reported.

4

5

h

1

ū

Œ

Œ

Client: Environmental Quality Mgt., Inc. Project/Site: RVAAP66 (OH)

Job ID: 240-28145-1 (Continued)

Laboratory: TestAmerica Canton (Continued)

Insufficient sample volume was available to perform a matrix spike/matrix spike duplicate (MS/MSD) associated with batch 98497, 3520_Acid.

No other difficulties were encountered during the SVOCs analysis. All other quality control parameters were within the acceptance limits.

NITROGUANIDINE (HPLC)

Samples FWGLL12mw-187C-0363-GW (240-28145-2), FWGLL12mw-242C-0364-GW (240-28145-4), FWGLL12mw-247-0336-GW (240-28145-6), FWGLL12mw-DUP3-0338-GW (240-28145-8), FWGDETmw-002C-0315-GW (240-28145-10), FWGDA2mw-114-0312-GW (240-28145-12), FWGLL1mw-087C-0356-GW (240-28145-14), FWGSCFmw-002-0327-GW (240-28145-16), FWGSCFmw-004-0372-GW (240-28145-18), FWGSCFmw-DUP6-0378-GW (240-28145-20), FWGDA2mw-115-0313-GW (240-28145-22), FWGEQUIPRINSE2-0341-GW (240-28145-25), FWGDA2mw-DUP1-0336-GW (240-28145-26), FWGLL12mw-245C-0365-GW (240-28145-29), FWGLL3mw-244-0323-GW (240-28145-33), FWGDETmw-001C-0314-GW (240-28145-35), FWGDETmw-003C-0343-GW (240-28145-37), FWGFWGmw-011-0348-GW (240-28145-42), FWGFWGmw-012-0349-GW (240-28145-44), FWGLL1mw-064C-0352-GW (240-28145-48), FWGRQLmw-007C-0369-GW (240-28145-51), FWGRQLmw-010C-0325-GW (240-28145-53) and FWGEBGmw-131-0316-GW (240-28145-55) were analyzed for nitroguanidine (HPLC) in accordance with EPA SW-846 Method 8330_Ngu. The samples were prepared on 08/23/2013 and 08/26/2013 and analyzed on 08/26/2013, 08/29/2013 and 09/03/2013.

No difficulties were encountered during the explosives analysis. All quality control parameters were within the acceptance limits.

CHLORINATED PESTICIDES

Samples FWGLL12mw-187C-0363-GW (240-28145-2), FWGLL12mw-242C-0364-GW (240-28145-4), FWGLL12mw-247-0336-GW (240-28145-6), FWGLL12mw-DUP3-0338-GW (240-28145-8), FWGDETmw-002C-0315-GW (240-28145-10), FWGDA2mw-114-0312-GW (240-28145-12), FWGLL1mw-087C-0356-GW (240-28145-14), FWGSCFmw-002-0327-GW (240-28145-16), FWGSCFmw-004-0372-GW (240-28145-18), FWGSCFmw-DUP6-0378-GW (240-28145-20), FWGDA2mw-115-0313-GW (240-28145-22), FWGEQUIPRINSE2-0341-GW (240-28145-25), FWGLL12mw-245C-0365-GW (240-28145-29), FWGLL3mw-244-0323-GW (240-28145-33), FWGDETmw-001C-0314-GW (240-28145-35), FWGDETmw-003C-0343-GW (240-28145-37), FWGB12mw-013-0313-GW (240-28145-41), FWGLL1mw-064C-0352-GW (240-28145-48), FWGRQLmw-007C-0369-GW (240-28145-51), FWGRQLmw-010C-0325-GW (240-28145-53) and FWGEBGmw-131-0316-GW (240-28145-55) were analyzed for chlorinated pesticides in accordance with EPA SW-846 Method 8081A DoD. The samples were prepared on 08/22/2013 and 08/23/2013 and analyzed on 08/29/2013, 09/11/2013 and 09/12/2013.

DCB Decachlorobiphenyl failed the surrogate recovery criteria low for FWGLL12mw-247-0336-GW (240-28145-6).

Sample FWGLL12mw-DUP3-0338-GW (240-28145-8)[5X] required dilution prior to analysis. The reporting limits have been adjusted accordingly.

The closing continuing calibration verification (CCV) associated with batch 99596 recovered Endrin above the upper control limit on the primary column. Endrin met criteria on the confirmation colum and the samples associated with this CCVFWGLL1mw-064C-0352-GW (240-28145-48) were non-detects for the affected analyte; therefore the data have been reported.

The initial calibration verification (ICV) for Toxaphene for analytical batch 99596 was outside control criteria on the confirmation column. Since the ICV met criteria on the primary column, all Toxaphene data have been reported for the associated samplesFWGLL1mw-064C-0352-GW (240-28145-48).

The closing Toxaphene continuing calibration verification (CCV) for analytical batch 100879 recovered outside control limits on the confirmation column. Since this CCV met DoD criteria for Toxaphene on the primary column and the associated samplesFWGDA2mw-114-0312-GW (240-28145-12), FWGDA2mw-115-0313-GW (240-28145-22), FWGDETmw-001C-0314-GW (240-28145-35), FWGDETmw-002C-0315-GW (240-28145-10), FWGEBGmw-131-0316-GW (240-28145-55), FWGLU1PRINSE2-0341-GW (240-28145-25), FWGLL12mw-187C-0363-GW (240-28145-2), FWGLL12mw-242C-0364-GW (240-28145-4), FWGLL12mw-245C-0365-GW (240-28145-29), FWGLL12mw-247-0336-GW (240-28145-6), FWGLL12mw-DUP3-0338-GW (240-28145-8), FWGLL1mw-087C-0356-GW (240-28145-14), FWGLL3mw-244-0323-GW (240-28145-33), FWGRQLmw-007C-0369-GW (240-28145-51), FWGRQLmw-010C-0325-GW (240-28145-53), FWGSCFmw-002-0327-GW (240-28145-16), FWGSCFmw-004-0372-GW (240-28145-18), FWGSCFmw-DUP6-0378-GW (240-28145-20) were non-detect for the

E

9

ñ

ī

13

14

N6

Client: Environmental Quality Mgt., Inc. Project/Site: RVAAP66 (OH)

Job ID: 240-28145-1 (Continued)

Laboratory: TestAmerica Canton (Continued)

affected analyte, the data have been reported.

The closing method reporting limit (MRL) associated with batch 100879 recovered Aldrin and DDE above the upper control limits. The samples associated with this MRL FWGDA2mw-114-0312-GW (240-28145-12), FWGDA2mw-115-0313-GW (240-28145-22), FWGDETmw-001C-0314-GW (240-28145-35), FWGDETmw-002C-0315-GW (240-28145-10), FWGEBGmw-131-0316-GW (240-28145-55), FWGEQUIPRINSE2-0341-GW (240-28145-25), FWGLL12mw-187C-0363-GW (240-28145-2), FWGLL12mw-242C-0364-GW (240-28145-4), FWGLL12mw-245C-0365-GW (240-28145-29), FWGLL12mw-247-0336-GW (240-28145-6), FWGLL12mw-DUP3-0338-GW (240-28145-8), FWGLL1mw-087C-0356-GW (240-28145-14), FWGLL3mw-244-0323-GW (240-28145-33), FWGRQLmw-007C-0369-GW (240-28145-51), FWGRQLmw-010C-0325-GW (240-28145-53), FWGSCFmw-002-0327-GW (240-28145-16), FWGSCFmw-004-0372-GW (240-28145-18), FWGSCFmw-DUP6-0378-GW (240-28145-20)were non-detects for the affected analytes; therefor, the data have been reported.

The closing continuing calibration verification (CCV) associated with batch 100879 recovered above the upper control limits. The samples associated with this CCVFWGDA2mw-114-0312-GW (240-28145-12), FWGDA2mw-115-0313-GW (240-28145-22), FWGDETmw-001C-0314-GW (240-28145-35), FWGEQUIPRINSE2-0341-GW (240-28145-25), FWGLL12mw-245C-0365-GW (240-28145-29), FWGLL1mw-087C-0356-GW (240-28145-14), FWGLL3mw-244-0323-GW (240-28145-33), FWGSCFmw-002-0327-GW (240-28145-16), FWGSCFmw-004-0372-GW (240-28145-18), FWGSCFmw-DUP6-0378-GW (240-28145-20) were non-detects for the affected analytes; therefore the data have been reported.

Beta-BHC was reported from the confirmation column for the associated samples FWGDA2mw-115-0313-GW (240-28145-22), FWGDETmw-002C-0315-GW (240-28145-10), FWGLL12mw-245C-0365-GW (240-28145-29), FWGLL3mw-244-0323-GW (240-28145-33), FWGSCFmw-002-0327-GW (240-28145-16), FWGSCFmw-004-0372-GW (240-28145-18), FWGSCFmw-DUP6-0378-GW (240-28145-20) because of matrix interference on the primary column.

Endrin Ketone was reported from the confirmation column for the associated sample FWGDETmw-001C-0314-GW (240-28145-35) because of matrix interference on the primary column

Surrogate DCB failed criteria on both the primary and confirmation columns. Re-extraction and re-analysis was not performed because the sample was outside of double hold time. TCMX passed criteria demonstrating that the extraction for the associated sampleFWGLL12mw-247-0336-GW (240-28145-6) was in control.

The closing continuing calibration verification (CCV) associated with batch 101146 recovered above the upper control limits. The samples associated with this CCVFWGB12mw-013-0313-GW (240-28145-41), FWGDETmw-003C-0343-GW (240-28145-37), FWGLL12mw-DUP3-0338-GW (240-28145-8) were non-detects for the affected analytes; therefor, the data have been reported.

The following sample was diluted for Endrin Aldehyde due to the nature of the sample matrix: FWGLL12mw-DUP3-0338-GW (240-28145-8). Elevated reporting limits (RLs) are provided for the affected analyte.

Insufficient sample volume was available to perform a matrix spike/matrix spike duplicate (MS/MSD) associated with batch 98488, 3520C.

No other difficulties were encountered during the pesticides analysis. All other quality control parameters were within the acceptance limits.

POLYCHLORINATED BIPHENYLS (PCBS)

Samples FWGDETmw-002C-0315-GW (240-28145-10), FWGDA2mw-114-0312-GW (240-28145-12), FWGDA2mw-115-0313-GW (240-28145-22), FWGEQUIPRINSE2-0341-GW (240-28145-25), FWGDETmw-001C-0314-GW (240-28145-35), FWGDETmw-003C-0343-GW (240-28145-37), FWGB12mw-013-0313-GW (240-28145-41), FWGRQLmw-007C-0369-GW (240-28145-51), FWGRQLmw-010C-0325-GW (240-28145-53) and FWGEBGmw-131-0316-GW (240-28145-55) were analyzed for polychlorinated biphenyls (PCBs) in accordance with EPA SW-846 Method 8082 DoD. The samples were prepared on 08/30/2013 and analyzed on 09/04/2013.

DCB Decachlorobiphenyl failed the surrogate recovery criteria low for FWGDETmw-002C-0315-GW (240-28145-10), FWGEQUIPRINSE2-0341-GW (240-28145-25), FWGDETmw-001C-0314-GW (240-28145-35), and FWGB12mw-013-0313-GW (240-28145-41). Refer to the QC report for details.

4

C

i

410

14

15

Client: Environmental Quality Mgt., Inc. Project/Site: RVAAP66 (OH)

Job ID: 240-28145-1 (Continued)

Laboratory: TestAmerica Canton (Continued)

Surrogate recovery for the LCS associated with these samples was outside control limits: FWGB12mw-013-0313-GW (240-28145-41), FWGDA2mw-114-0312-GW (240-28145-12), FWGDA2mw-115-0313-GW (240-28145-22), FWGDETmw-001C-0314-GW (240-28145-35), FWGDETmw-002C-0315-GW (240-28145-10), FWGDETmw-003C-0343-GW (240-28145-37), FWGEBGmw-131-0316-GW (240-28145-55), FWGEQUIPRINSE2-0341-GW (240-28145-25), FWGRQLmw-007C-0369-GW (240-28145-51), FWGRQLmw-010C-0325-GW (240-28145-53). Re-extraction and/or re-analysis was performed outside of holding time with acceptable results. Only the re-extract data is reported.

Insufficient sample volume was available to perform a matrix spike/matrix spike duplicate (MS/MSD) associated with batch 98490, 3520C.

No other difficulties were encountered during the PCBs analysis. All other quality control parameters were within the acceptance limits.

PERCHLORATE

Samples FWGDETmw-002C-0315-GF (240-28145-11), FWGEQUIPRINSE2-0341-GW (240-28145-25), FWGDETmw-001C-0314-GF (240-28145-36), FWGBKGmw-010C-0311-GF (240-28145-40) and FWGRQLmw-010C-0325-GF (240-28145-54) were analyzed for perchlorate in accordance with EPA SW-846 Method 6860. The samples were analyzed on 09/07/2013.

No difficulties were encountered during the perchlorate analysis. All quality control parameters were within the acceptance limits.

EXPLOSIVES

Samples FWGLL12mw-187C-0363-GW (240-28145-2), FWGLL12mw-242C-0364-GW (240-28145-4), FWGLL12mw-247-0336-GW (240-28145-6), FWGLL12mw-DUP3-0338-GW (240-28145-8), FWGDETmw-002C-0315-GW (240-28145-10), FWGDA2mw-114-0312-GW (240-28145-12), FWGLL1mw-087C-0356-GW (240-28145-14), FWGSCFmw-002-0327-GW (240-28145-16), FWGSCFmw-004-0372-GW (240-28145-18), FWGSCFmw-DUP6-0378-GW (240-28145-20), FWGDA2mw-115-0313-GW (240-28145-22), FWGEQUIPRINSE2-0341-GW (240-28145-25), FWGDA2mw-DUP1-0336-GW (240-28145-26), FWGLL12mw-245C-0365-GW (240-28145-29), FWGLL3mw-244-0323-GW (240-28145-33), FWGDETmw-001C-0314-GW (240-28145-35), FWGDETmw-003C-0343-GW (240-28145-37), FWGFWGmw-011-0348-GW (240-28145-42), FWGFWGmw-012-0349-GW (240-28145-44), FWGLL1mw-064C-0352-GW (240-28145-48), FWGRQLmw-007C-0369-GW (240-28145-51), FWGRQLmw-010C-0325-GW (240-28145-53) and FWGEBGmw-131-0316-GW (240-28145-55) were analyzed for explosives in accordance with EPA SW-846 Method 8330A. The samples were prepared on 08/23/2013 and 08/26/2013 and analyzed on 08/28/2013, 08/29/2013, 08/30/2013, 08/31/2013 and 09/03/2013.

3,4-Dinitrotoluene failed the surrogate recovery criteria high for FWGSCFmw-004-0372-GW (240-28145-18), FWGDETmw-003C-0343-GW (240-28145-37), FWGFWGmw-012-0349-GW (240-28145-44) and FWGLL1mw-064C-0352-GW (240-28145-48). Refer to the QC report for details.

Due to malfuntion of solid phase extrator port #4 (Autotrace #2) FWGFWGmw-011-0348-GW (240-28145-42) sample was eluted using the Supelco Vacuum manifold.

Surrogate recoveries are high and outside control limits for the following sample(s): 240-28145-18, 240-28145-37, 240-28145-44, and 240-28145-48. The samples were ND. therefore, re-extraction and/or re-analysis was not performed.

No other difficulties were encountered during the explosives analysis. All other quality control parameters were within the acceptance limits.

TOTAL RECOVERABLE METALS (ICP)

Samples FWGLL12mw-187C-0363-GF (240-28145-3), FWGLL12mw-242C-0364-GF (240-28145-5), FWGLL12mw-247-0336-GF (240-28145-7), FWGLL12mw-DUP3-0338-GF (240-28145-9), FWGDETmw-002C-0315-GF (240-28145-11), FWGDA2mw-114-0312-GF (240-28145-13), FWGLL1mw-087C-0356-GF (240-28145-15), FWGSCFmw-002-0327-GF (240-28145-17), FWGSCFmw-004-0372-GF (240-28145-19), FWGSCFmw-DUP6-0378-GF (240-28145-21), FWGDA2mw-115-0313-GF (240-28145-23), FWGEQUIPRINSE2-0341-GW (240-28145-25), FWGDA2mw-DUP1-0336-GF (240-28145-27), FWGLL12mw-245C-0365-GF (240-28145-30), FWGLL12mw-185C-0362-GF (240-28145-32), FWGLL3mw-244-0323-GF (240-28145-34), FWGDETmw-001C-0314-GF (240-28145-36), FWGDETmw-003C-0343-GF (240-28145-38), FWGFWGmw-011-0348-GF (240-28145-43), FWGFWGmw-012-0349-GF (240-28145-45), FWGLL10mw-003C-0361-GF (240-28145-47), FWGLL1mw-064C-0352-GF (240-28145-49), FWGRQLmw-007C-0369-GF (240-28145-52), FWGRQLmw-010C-0325-GF (240-28145-54) and FWGEBGmw-131-0316-GF (240-28145-56) were analyzed for total recoverable metals (ICP) in accordance with EPA SW-846 Method 6010B DoD. The samples were

TestAmerica Canton 10/7/2013 Client: Environmental Quality Mgt., Inc. Project/Site: RVAAP66 (OH)

Job ID: 240-28145-1 (Continued)

Laboratory: TestAmerica Canton (Continued)

prepared on 08/21/2013 and 08/22/2013 and analyzed on 09/09/2013 and 09/10/2013.

ICB, CCB, and ICSA samples are evaluated using the lowest LOD and DL criteria in LIMS. Using this criteria, an individual element may occasionally be flagged as out of control. If the element has a higher LOD or DL, the data is evaluated to the higher limit and determined to be acceptable.

Manganese was detected in method blank MB 240-98385/1-A at a level that was above the method detection limit but below the reporting limit. The value should be considered an estimate, and has been flagged. If the associated sample reported a result above the MDL and/or RL, the result has been flagged.

Manganese was detected in method blank MB 240-98503/1-A at a level exceeding the reporting limit. If the associated sample reported a result above the MDL and/or RL, the result has been flagged. Refer to the QC report for details.

Barium, Cobalt, Nickel and Potassium exceeded the RPD limit for the duplicate of sample FWGLL12mw-245C-0365-GFDU (240-28145-30). Refer to the QC report for details.

Samples FWGLL12mw-187C-0363-GF (240-28145-3)[5X] and FWGLL12mw-185C-0362-GF (240-28145-32)[5X] required dilution prior to analysis. The reporting limits have been adjusted accordingly

No other difficulties were encountered during the metals analysis. All other quality control parameters were within the acceptance limits.

TOTAL RECOVERABLE METALS (ICPMS)

Samples FWGLL12mw-187C-0363-GF (240-28145-3), FWGLL12mw-242C-0364-GF (240-28145-5), FWGLL12mw-247-0336-GF (240-28145-7), FWGLL12mw-DUP3-0338-GF (240-28145-9), FWGDETmw-002C-0315-GF (240-28145-11), FWGDA2mw-114-0312-GF (240-28145-13), FWGLL1mw-087C-0356-GF (240-28145-15), FWGSCFmw-002-0327-GF (240-28145-17), FWGSCFmw-004-0372-GF (240-28145-19), FWGSCFmw-DUP6-0378-GF (240-28145-21), FWGDA2mw-115-0313-GF (240-28145-23), FWGEQUIPRINSE2-0341-GW (240-28145-25), FWGDA2mw-DUP1-0336-GF (240-28145-27), FWGLL12mw-245C-0365-GF (240-28145-30), FWGLL12mw-185C-0362-GF (240-28145-32), FWGLL3mw-244-0323-GF (240-28145-34), FWGDETmw-001C-0314-GF (240-28145-36), FWGDETmw-003C-0343-GF (240-28145-38), FWGFWGmw-011-0348-GF (240-28145-43), FWGFWGmw-012-0349-GF (240-28145-45), FWGLL10mw-003C-0361-GF (240-28145-47), FWGLL1mw-064C-0352-GF (240-28145-49), FWGRQLmw-007C-0369-GF (240-28145-52), FWGRQLmw-010C-0325-GF (240-28145-54) and FWGEBGmw-131-0316-GF (240-28145-56) were analyzed for total recoverable metals (ICPMS) in accordance with EPA SW-846 Method 6020 DoD. The samples were prepared on 08/21/2013 and 08/22/2013 and analyzed on 09/09/2013.

ICB, CCB, and ICSA samples are evaluated using the lowest LOD and DL criteria in LIMS. Using this criteria, an individual element may occasionally be flagged as out of control. If the element has a higher LOD or DL, the data is evaluated to the higher limit and determined to be acceptable.

The continuing calibration verification (CCV) for Beryllium associated with batch 98385 recovered above the upper control limit. The samples associated with this CCV were non-detects for the affected analytes; therefore, the data have been reported FWGDA2mw-114-0312-GF (240-28145-13), FWGDETmw-002C-0315-GF (240-28145-11), FWGLL12mw-DUP3-0338-GF (240-28145-9), FWGLL1mw-087C-0356-GF (240-28145-15), FWGSCFmw-002-0327-GF (240-28145-17), FWGSCFmw-004-0372-GF (240-28145-19).

The continuing calibration verification (CCV) for Beryllium associated with batch 98503 recovered above the upper control limit. The samples associated with this CCV were non-detects for the affected analytes; therefore, the data have been reported FWGDA2mw-115-0313-GF (240-28145-23), FWGDA2mw-DUP1-0336-GF (240-28145-27), FWGDETmw-001C-0314-GF (240-28145-36), FWGDETmw-003C-0343-GF (240-28145-38), FWGEBGmw-131-0316-GF (240-28145-56), FWGEQUIPRINSE2-0341-GW (240-28145-25), FWGFWGmw-011-0348-GF (240-28145-43), FWGFWGmw-012-0349-GF (240-28145-45), FWGLL10mw-003C-0361-GF (240-28145-47), FWGLL12mw-185C-0362-GF (240-28145-32), FWGLL12mw-245C-0365-GF (240-28145-30), FWGLL1mw-064C-0352-GF (240-28145-49), FWGLL3mw-244-0323-GF (240-28145-34), FWGRQLmw-007C-0369-GF (240-28145-52), FWGRQLmw-010C-0325-GF (240-28145-54), FWGSCFmw-DUP6-0378-GF (240-28145-21).

No other difficulties were encountered during the metals analysis. All other quality control parameters were within the acceptance limits.

Δ

4

5

V

9

O

13

15

Client: Environmental Quality Mgt., Inc. Project/Site: RVAAP66 (OH)

Job ID: 240-28145-1 (Continued)

Laboratory: TestAmerica Canton (Continued)

TOTAL MERCURY

Samples FWGLL12mw-187C-0363-GF (240-28145-3), FWGLL12mw-242C-0364-GF (240-28145-5), FWGLL12mw-247-0336-GF (240-28145-7), FWGLL12mw-DUP3-0338-GF (240-28145-9), FWGDETmw-002C-0315-GF (240-28145-11), FWGDA2mw-114-0312-GF (240-28145-13), FWGLL1mw-087C-0356-GF (240-28145-15), FWGSCFmw-002-0327-GF (240-28145-17), FWGSCFmw-004-0372-GF (240-28145-19), FWGSCFmw-DUP6-0378-GF (240-28145-21), FWGDA2mw-115-0313-GF (240-28145-23), FWGEQUIPRINSE2-0341-GW (240-28145-25), FWGDA2mw-DUP1-0336-GF (240-28145-27), FWGLL12mw-245C-0365-GF (240-28145-30), FWGLL12mw-185C-0362-GF (240-28145-32), FWGLL3mw-244-0323-GF (240-28145-34), FWGDETmw-001C-0314-GF (240-28145-36), FWGDETmw-003C-0343-GF (240-28145-38), FWGFWGmw-011-0348-GF (240-28145-43), FWGFWGmw-012-0349-GF (240-28145-45), FWGLL10mw-003C-0361-GF (240-28145-47), FWGLL1mw-064C-0352-GF (240-28145-49), FWGRQLmw-007C-0369-GF (240-28145-52), FWGRQLmw-010C-0325-GF (240-28145-54) and FWGEBGmw-131-0316-GF (240-28145-56) were analyzed for total mercury in accordance with EPA SW-846 Method 7470A. The samples were prepared on 08/22/2013 and 08/29/2013 and analyzed on 08/23/2013 and 09/04/2013.

No difficulties were encountered during the mercury analysis. All quality control parameters were within the acceptance limits.

NITRATE-NITRITE AS NITROGEN

Samples FWGLL12mw-187C-0363-GW (240-28145-2), FWGLL12mw-242C-0364-GW (240-28145-4), FWGLL12mw-247-0336-GW (240-28145-6), FWGLL12mw-DUP3-0338-GW (240-28145-8), FWGEQUIPRINSE2-0341-GW (240-28145-25), FWGLL12mw-245C-0365-GW (240-28145-29) and FWGLL12mw-185C-0362-GW (240-28145-31) were analyzed for nitrate-nitrite as nitrogen in accordance with EPA Method 353.2. The samples were analyzed on 09/06/2013.

Samples FWGLL12mw-187C-0363-GW (240-28145-2)[1000X] and FWGLL12mw-185C-0362-GW (240-28145-31)[100X] required dilution prior to analysis. The reporting limits have been adjusted accordingly.

No other difficulties were encountered during the nitrate-nitrite analysis. All quality control parameters were within the acceptance limits.

NITROCELLULOSE

Samples FWGLL12mw-187C-0363-GW (240-28145-2), FWGLL12mw-242C-0364-GW (240-28145-4), FWGLL12mw-247-0336-GW (240-28145-6), FWGLL12mw-DUP3-0338-GW (240-28145-8), FWGDETmw-002C-0315-GW (240-28145-10), FWGDA2mw-114-0312-GW (240-28145-12), FWGLL1mw-087C-0356-GW (240-28145-14), FWGSCFmw-002-0327-GW (240-28145-16), FWGSCFmw-004-0372-GW (240-28145-18), FWGSCFmw-DUP6-0378-GW (240-28145-20), FWGDA2mw-115-0313-GW (240-28145-22), FWGEQUIPRINSE2-0341-GW (240-28145-25), FWGDA2mw-DUP1-0336-GW (240-28145-26), FWGLL12mw-245C-0365-GW (240-28145-29), FWGLL3mw-244-0323-GW (240-28145-33), FWGDETmw-001C-0314-GW (240-28145-35), FWGDETmw-003C-0343-GW (240-28145-37), FWGFWGmw-011-0348-GW (240-28145-42), FWGFWGmw-012-0349-GW (240-28145-44), FWGLL1mw-064C-0352-GW (240-28145-48), FWGRQLmw-007C-0369-GW (240-28145-51), FWGRQLmw-010C-0325-GW (240-28145-53) and FWGEBGmw-131-0316-GW (240-28145-55) were analyzed for Nitrocellulose in accordance with EPA Method 353.2. The samples were prepared on 09/04/2013, 09/05/2013 and 09/11/2013 and analyzed on 09/05/2013 and 09/11/2013.

The bracketing MRL's in positions 25 and 47 in batch #25017 had recoveries that were slightly above the established control limits. However, because all samples within batch #25017 were non-detect at the reporting limit. There is no adverse impact on the data. All other QC requirements in batch #25017 -- including the laboratory control samples (LCS's), all continuing calibration verifications (CCV's), and continuing calibration blanks (CCB's) -- are within acceptable control limits.

No other difficulties were encountered during the Nitrocellulose analysis. All quality control parameters were within the acceptance limits.

TOTAL CYANIDE

Samples FWGDETmw-002C-0315-GW (240-28145-10), FWGDA2mw-114-0312-GW (240-28145-12), FWGDA2mw-115-0313-GW (240-28145-22), FWGEQUIPRINSE2-0341-GW (240-28145-25), FWGDETmw-001C-0314-GW (240-28145-35), FWGDETmw-003C-0343-GW (240-28145-37), FWGRQLmw-007C-0369-GW (240-28145-51), FWGRQLmw-010C-0325-GW (240-28145-53) and FWGEBGmw-131-0316-GW (240-28145-55) were analyzed for total cyanide in accordance with EPA SW-846 Method 9012A. The samples were prepared and analyzed on 08/23/2013 and 08/26/2013.

No difficulties were encountered during the cyanide analysis. All quality control parameters were within the acceptance limits.

4

34

5

u

ij

L

13

D.E.

Client: Environmental Quality Mgt., Inc.

Project/Site: RVAAP66 (OH)

TestAmerica Job ID: 240-28145-1

Lab Sample ID: 240-28145-1

Matrix: Water

Client Sample ID: FWGTEAM1-TRIP

Date Collected: 08/20/13 08:00 Date Received: 08/21/13 07:00

Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fa
1,1,1-Trichloroethane	0.25	U	1.0	0.25	0.22	ug/L		08/28/13 17:15	
1,1,2,2-Tetrachloroethane	0.25	U	1.0	0.25	0.18	ug/L		08/28/13 17:15	
1,1,2-Trichloroethane	0.50	U	1.0	0.50	0.27	ug/L		08/28/13 17:15	14
1,1-Dichloroethane	0.25	U	1.0	0.25	0.15	ug/L		08/28/13 17:15	1
1,1-Dichloroethene	0.25	U	1.0	0.25	0.19	ug/L		08/28/13 17:15	1
1,2-Dichloroethane	0.25	U	1.0	0.25	0.22	ug/L		08/28/13 17:15	
1,2-Dichloroethene, Total	0.25	U	2.0	0.25	0.17	ug/L		08/28/13 17:15	1
1,2-Dichloropropane	0.25	U	1.0	0.25	0.18	ug/L		08/28/13 17:15	- 1
2-Hexanone	0.50	U	10	0.50	0.41	ug/L		08/28/13 17:15	
Bromochloromethane	0.50	U	1.0	0.50	0.29	ug/L		08/28/13 17:15	-
Acetone	1.1	U	10	1.1	1.1	ug/L		08/28/13 17:15	
Benzene	0.25	U	1.0	0.25	0.13	ug/L		08/28/13 17:15	15
Bromoform	0.64	U	1.0	0.64	0.64	ug/L		08/28/13 17:15	12
Bromomethane	0.50	U	1.0	0.50	0.41	ug/L		08/28/13 17:15	
Carbon disulfide	0.25	U	1.0	0.25	0.13	ug/L		08/28/13 17:15	19
Carbon tetrachloride	0.25	U	1.0	0.25	0.13	ug/L		08/28/13 17:15	
Chlorobenzene	0.25	U	1.0	0.25	0.15	ug/L		08/28/13 17:15	
Chloroethane	0.50	U	1.0	0.50	0.29	ug/L		08/28/13 17:15	
Chloroform	0.25	U	1.0	0.25	0.16	ug/L		08/28/13 17:15	
Chloromethane	0.50	U	1.0	0.50	0.30	ug/L		08/28/13 17:15	
cis-1,2-Dichloroethene	0.25	U	1.0	0.25	0.17	ug/L		08/28/13 17:15	
cis-1,3-Dichloropropene	0.25	U	1.0	0.25	0.14	ug/L		08/28/13 17:15	
Bromodichloromethane	0.25	U	1.0	0.25	0.15	ug/L		08/28/13 17:15	9
Ethylbenzene	0.25	U	1.0	0.25	0.17	ug/L		08/28/13 17:15	1
1,2-Dibromoethane	0.25	U	1.0	0.25	0.24	ug/L		08/28/13 17:15	
m-Xylene & p-Xylene	0.50	U	2.0	0.50	0.24	ug/L		08/28/13 17:15	- 3
2-Butanone (MEK)	0.57	U	10	0.57	0.57	ug/L		08/28/13 17:15	
4-Methyl-2-pentanone (MIBK)	0.50	U	10	0.50	0.32	ug/L		08/28/13 17:15	1
Methylene Chloride	0.33	J	1.0	0.50	0.33	ug/L		08/28/13 17:15	- 0
o-Xylene	0.25	U	1.0	0.25	0.14	ug/L		08/28/13 17:15	- 7
Styrene	0.25	U	1.0	0.25	0.11	ug/L		08/28/13 17:15	
Tetrachloroethene	0.50	U	1.0	0.50	0.29	ug/L		08/28/13 17:15	1
Toluene	0.25	U	1.0	0.25	0.13	ug/L		08/28/13 17:15	- 9
trans-1,2-Dichloroethene	0.25	U	1.0	0.25	0.19	ug/L		08/28/13 17:15	
trans-1,3-Dichloropropene	0.25	U	1.0	0.25	0.19	ug/L		08/28/13 17:15	9
Trichloroethene	0.25	U	1.0	0.25	0.17	ug/L		08/28/13 17:15	9
Vinyl chloride	0.25	U	1.0	0.25	0.22	ug/L		08/28/13 17:15	
Xylenes, Total	0.25	U	2.0	0.25	0.14	ug/L		08/28/13 17:15	- 13
Dibromochloromethane	0.25	U	1.0	0.25	0.18	ug/L		08/28/13 17:15	

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	109		70 - 120		08/28/13 17:15	1
4-Bromofluorobenzene (Surr)	84		75 - 120		08/28/13 17:15	1
Toluene-d8 (Surr)	85		85 - 120		08/28/13 17:15	1
Dibromofluoromethane (Surr)	98		85 - 115		08/28/13 17:15	1

TestAmerica Canton

Page 28 of 235

10/7/2013

Client: Environmental Quality Mgt., Inc.

Client Sample ID: FWGLL12mw-187C-0363-GW

Project/Site: RVAAP66 (OH)

TestAmerica Job ID: 240-28145-1

Lab Sample ID: 240-28145-2

Matrix: Water

Date Collected: 08/20/13 09:35 Date Received: 08/21/13 07:00

Analyte		Qualifier	LOQ	LOD	DL	Unit C	Analyzed	Dil Fac
1,1,1-Trichloroethane	0.25	U	1.0	0.25	0.22	ug/L	08/28/13 17:37	1
1,1,2,2-Tetrachloroethane	0.25	U	1.0	0.25	0.18	ug/L	08/28/13 17:37	1
1,1,2-Trichloroethane	0.50	U	1.0	0.50	0.27	ug/L	08/28/13 17:37	1
1,1-Dichloroethane	0.25	U	1.0	0.25	0.15	ug/L	08/28/13 17:37	1
1,1-Dichloroethene	0.25	U	1.0	0.25	0.19	ug/L	08/28/13 17:37	1
1,2-Dichloroethane	0.25	U	1.0	0.25	0.22	ug/L	08/28/13 17:37	1
1,2-Dichloroethene, Total	0.25	U	2.0	0.25	0.17	ug/L	08/28/13 17:37	1
1,2-Dichloropropane	0.25	U	1.0	0.25	0.18	ug/L	08/28/13 17:37	1
2-Hexanone	0.50	U	10	0.50	0.41	ug/L	08/28/13 17:37	1
Bromochloromethane	0.50	U	1.0	0.50	0.29	ug/L	08/28/13 17:37	1
Acetone	1.1	U	10	1.1	1.1	ug/L	08/28/13 17:37	1
Benzene	0.25	U	1.0	0.25	0.13	ug/L	08/28/13 17:37	1
Bromoform	0.64	U	1.0	0.64	0.64	ug/L	08/28/13 17:37	1
Bromomethane	0.50	U	1.0	0.50	0.41	ug/L	08/28/13 17:37	1
Carbon disulfide	0.25	U	1.0	0.25	0.13	ug/L	08/28/13 17:37	1
Carbon tetrachloride	0.25	U	1.0	0.25	0.13	ug/L	08/28/13 17:37	1
Chlorobenzene	0.25	U	1.0	0.25	0.15	ug/L	08/28/13 17:37	1
Chloroethane	0.50	U	1.0	0.50	0.29	ug/L	08/28/13 17:37	1
Chloroform	0.25	U	1.0	0.25	0.16	ug/L	08/28/13 17:37	1
Chloromethane	0.50	U	1.0	0.50	0.30	ug/L	08/28/13 17:37	1
cis-1,2-Dichloroethene	0.25	U	1.0	0.25	0.17	ug/L	08/28/13 17:37	1
cis-1,3-Dichloropropene	0.25	U	1.0	0.25	0.14	ug/L	08/28/13 17:37	1
Bromodichloromethane	0.25	U	1.0	0.25	0.15	ug/L	08/28/13 17:37	1
Ethylbenzene	0.25	U	1.0	0.25	0.17	ug/L	08/28/13 17:37	1
1,2-Dibromoethane	0.25	U	1.0	0.25	0.24	ug/L	08/28/13 17:37	1
m-Xylene & p-Xylene	0.50	U	2.0	0.50	0.24	ug/L	08/28/13 17:37	4
2-Butanone (MEK)	0.57	U	10	0.57	0.57	ug/L	08/28/13 17:37	1
4-Methyl-2-pentanone (MIBK)	0.50	U	10	0.50	0.32	ug/L	08/28/13 17:37	1
Methylene Chloride	0.50	U	1.0	0.50	0.33	ug/L	08/28/13 17:37	1
o-Xylene	0.25	U	1.0	0.25	0.14	ug/L	08/28/13 17:37	1
Styrene	0.25	U	1.0	0.25	0.11	ug/L	08/28/13 17:37	- 1
Tetrachloroethene	0.50	U	1.0	0.50	0.29	ug/L	08/28/13 17:37	1
Toluene	0.25	U	1.0	0.25	0.13	ug/L	08/28/13 17:37	1
trans-1,2-Dichloroethene	0.25	U	1.0	0.25	0.19	ug/L	08/28/13 17:37	1
trans-1,3-Dichloropropene	0.25	U	1.0	0.25	0.19	ug/L	08/28/13 17:37	1
Trichloroethene	0.25	U	1.0	0.25	0.17	ug/L	08/28/13 17:37	1
Vinyl chloride	0.25	U	1.0	0.25	0.22	ug/L	08/28/13 17:37	1
Xylenes, Total	0.25	U	2.0	0.25	0.14	ug/L	08/28/13 17:37	1
Dibromochloromethane	0.25	U	1.0	0.25	0.18	ug/L	08/28/13 17:37	1
Surrogate	%Recovery Qu	ualifier L	imits			Prepared	Analyzed	Dil Fac

Surrogate	%Recovery Qualifie	r Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	107	70 - 120		08/28/13 17:37	1
4-Bromofluorobenzene (Surr)	88	75 - 120		08/28/13 17:37	1
Toluene-d8 (Surr)	87	85 - 120		08/28/13 17:37	1
Dibromofluoromethane (Surr)	101	85 115		08/28/13 17:37	4

Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
Bis(2-ethylhexyl) phthalate	0.65	J	1.9	0.48	0.21	ug/L		09/04/13 12:52	1
Butyl benzyl phthalate	0.48	U	1.9	0.48	0.25	ug/L		09/04/13 12:52	- 1

TestAmerica Canton

Page 29 of 235

Client: Environmental Quality Mgt., Inc.

Project/Site: RVAAP66 (OH)

TestAmerica Job ID: 240-28145-1

Lab Sample ID: 240-28145-2

Matrix: Water

Client Sample ID: FWGLL12mw-187C-03	63-GW
Date Collected: 08/20/13 09:35	

Date Received: 08/21/13 07:00

Method: 8270C/DoD - Semivola Analyte		Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
Diethyl phthalate	0.95	U	1.9	0.95	0.57	ug/L		09/04/13 12:52	1
Dimethyl phthalate	0.48	U	1.9	0.48	0.28	ug/L		09/04/13 12:52	1
Di-n-butyl phthalate	0.84	J	1.9	0.95	0.64	ug/L		09/04/13 12:52	1
Di-n-octyl phthalate	0.48	U	1.9	0.48	0.22	ug/L		09/04/13 12:52	1

Surrogate	%Recovery Q	Qualifier	Limits	Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl (Surr)	79		50 - 110	08/22/13 08:06	09/04/13 12:52	1
2-Fluorophenol (Surr)	75		20 - 110	08/22/13 08:06	09/04/13 12:52	1
Nitrobenzene-d5 (Surr)	86		40 - 110	08/22/13 08:06	09/04/13 12:52	1
Phenol-d5 (Surr)	83		10 - 115	08/22/13 08:06	09/04/13 12:52	1
Terphenyl-d14 (Surr)	105		50 - 135	08/22/13 08:06	09/04/13 12:52	1
2,4,6-Tribromophenol (Surr)	112		40 - 125	08/22/13 08:06	09/04/13 12:52	1

	Method:	8081/DOD	- Organochlorine	Pesticides (GC)	
--	---------	----------	------------------	-----------------	--

Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
4,4'-DDD	0.019	U	0.048	0.019	0.0091	ug/L		09/11/13 17:57	- 1
4,4'-DDE	0.019	U	0.048	0.019	0.0092	ug/L		09/11/13 17:57	1
4,4'-DDT	0.019	U	0.048	0.019	0.015	ug/L		09/11/13 17:57	1
Aldrin	0.019	U	0.029	0.019	0.0078	ug/L		09/11/13 17:57	1
alpha-BHC	0.019	U	0.029	0.019	0.0067	ug/L		09/11/13 17:57	1
alpha-Chlordane	0.019	U	0.048	0.019	0.013	ug/L		09/11/13 17:57	1
beta-BHC	0.019	U	0.048	0.019	0.0080	ug/L		09/11/13 17:57	1
delta-BHC	0.019	U	0.048	0.019	0.0083	ug/L		09/11/13 17:57	- 1
Dieldrin	0.019	U	0.029	0.019	0.0071	ug/L		09/11/13 17:57	1
Endosulfan I	0.019	U	0.048	0.019	0.012	ug/L		09/11/13 17:57	1
Endosulfan II	0.019	U	0.048	0.019	0.011	ug/L		09/11/13 17:57	1
Endosulfan sulfate	0.019	U	0.048	0.019	0.010	ug/L		09/11/13 17:57	1
Endrin	0.019	U	0.048	0.019	0.010	ug/L		09/11/13 17:57	1
Endrin aldehyde	0.019	U	0.048	0.019	0.010	ug/L		09/11/13 17:57	1
Endrin ketone	0.019	U	0.048	0.019	0.0074	ug/L		09/11/13 17:57	1
gamma-BHC (Lindane)	0.019	U	0.048	0.019	0.0061	ug/L		09/11/13 17:57	1
gamma-Chlordane	0.019	U	0.048	0.019	0.011	ug/L		09/11/13 17:57	1.
Heptachlor	0.019	U	0.029	0.019	0.0076	ug/L		09/11/13 17:57	1
Heptachlor epoxide	0.019	U	0.029	0.019	0.0068	ug/L		09/11/13 17:57	1
Methoxychlor	0.048	U	0.095	0.048	0.030	ug/L		09/11/13 17:57	1
Toxaphene	0.76	U	1.9	0.76	0.30	ug/L		09/11/13 17:57	1

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
DCB Decachlorobiphenyl	69		30 - 135	08/22/13 07:53	09/11/13 17:57	1
DCB Decachlorobiphenyl	89		30 - 135	08/22/13 07:53	09/11/13 17:57	1
Tetrachloro-m-xylene	71		25 - 140	08/22/13 07:53	09/11/13 17:57	1
Tetrachloro-m-xylene	88		25 - 140	08/22/13 07:53	09/11/13 17:57	1

Mathad	8330	Modified	Mitroguanidino	(HDI C)	

Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
Nitroguanidine	6.0	U	20	6.0	2.4	ug/L		09/03/13 15:28	1

Method:	8330A	- Nitroaromatics at	nd Nitramines

Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
1,3,5-Trinitrobenzene	0.053	U	0.16	0.053	0.033	ug/L		08/28/13 19:42	1
1,3-Dinitrobenzene	0.11	U	0.16	0.11	0,053	ug/L		08/28/13 19:42	3

TestAmerica Canton

Page 30 of 235

10/7/2013

Client: Environmental Quality Mgt., Inc.

Project/Site: RVAAP66 (OH)

TestAmerica Job ID: 240-28145-1

Lab Sample ID: 240-28145-2

Matrix: Water

Client Sample ID: FWGLL12mw-187C-0363-GW

Date Collected: 08/20/13 09:35 Date Received: 08/21/13 07:00

Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
2,4,6-Trinitrotoluene	0.11	U	0.16	0.11	0.053	ug/L		08/28/13 19:42	1
2,4-Dinitrotoluene	0.11	U	0.14	0.11	0.053	ug/L		08/28/13 19:42	1
2,6-Dinitrotoluene	0.11	U	0.14	0.11	0.053	ug/L		08/28/13 19:42	1
2-Amino-4,6-dinitrotoluene	0.11	U	0.16	0.11	0.016	ug/L		08/28/13 19:42	1
2-Nitrotoluene	0.11	U	0.53	0.11	0.093	ug/L		08/28/13 19:42	1
3-Nitrotoluene	0.11	U	0.53	0.11	0.060	ug/L		08/28/13 19:42	1
4-Nitrotoluene	0.11	U	0.53	0.11	0.093	ug/L		08/28/13 19:42	1
4-Amino-2,6-dinitrotoluene	0.11	U	0.16	0.11	0.053	ug/L		08/28/13 19:42	1
HMX	0.053	U	0.16	0.053	0.038	ug/L		08/28/13 19:42	1
RDX	0.053	U	0.16	0.053	0.038	ug/L		08/28/13 19:42	1
Nitrobenzene	0.11	U	0.16	0.11	0.053	ug/L		08/28/13 19:42	1
Tetryl	0.11	U	0.16	0.11	0.053	ug/L		08/28/13 19:42	1
Nitroglycerin	0.53	U	0.69	0.53	0.35	ug/L		08/28/13 19:42	1
PETN	0.53	U	0.69	0.53	0.32	ug/L		08/28/13 19:42	1
Surrogate	%Recovery Qu	ıalifier	Limits			Prep	ared	Analyzed	Dil Fac
3,4-Dinitrotoluene	97		79 - 111			08/26/1	3 09;34	08/28/13 19:42	1
General Chemistry									
Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
Nitrate Nitrite as N	1200	D	50	12	5.3	mg/L	_	09/06/13 16:42	1000
Nitrocellulose	1.1	J	2.0	1.0	0.48	mg/L		09/05/13 13:36	1

Client: Environmental Quality Mgt., Inc.

Project/Site: RVAAP66 (OH)

TestAmerica Job ID: 240-28145-1

Lab Sample ID: 240-28145-3

Matrix: Water

Client Sample ID: FWGLL12mw-187C-0363-GF	
Date Collected: 08/20/13 09:35	

Date Received: 08/21/13 07:00

Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
Arsenic	10	U	10	10	3.3	ug/L		09/09/13 10:39	1
Chromium	4.0	U	7.0	4.0	1.4	ug/L		09/09/13 10:39	1
Cobalt	9.9		7.0	4.0	1.5	ug/L		09/09/13 10:39	1
Lead	5.0	U	10	5.0	1.7	ug/L		09/09/13 10:39	1
Selenium	10	U	15	10	4.0	ug/L		09/09/13 10:39	1
Silver	5.0	U	7.0	5.0	1.7	ug/L		09/09/13 10:39	1
Vanadium	4.0	U	7.0	4.0	1.3	ug/L		09/09/13 10:39	1
Barium	280		200	5.0	2.8	ug/L		09/09/13 10:39	1
Calcium	990000	D	25000	5000	3200	ug/L		09/10/13 01:24	5
Copper	10	U	25	10	4.4	ug/L		09/09/13 10:39	1
Magnesium	300000		5000	300	120	ug/L		09/09/13 10:39	1
Manganese	2200		15	5.0	1.8	ug/L		09/09/13 10:39	1
Nickel	15	J	40	5.0	2.2	ug/L		09/09/13 10:39	-1
Potassium	54000		5000	900	300	ug/L		09/09/13 10:39	1
		verable	5000	900	300	ug/L		09/09/13 10:39	1
Potassium Method: 6020/DOD - Metals (IC	CP/MS) - Total Recov	erable Qualifier	5000 LOQ	900 LOD		ug/L Unit	D	09/09/13 10:39 Analyzed	Dil Fac
Potassium Method: 6020/DOD - Metals (IC Analyte	CP/MS) - Total Recov	Qualifier					D		
Potassium Method: 6020/DOD - Metals (IC Analyte Aluminum	CP/MS) - Total Recov	Qualifier U	LOQ	LOD	DL	Unit	D	Analyzed	
Potassium Method: 6020/DOD - Metals (IC Analyte Aluminum Antimony	CP/MS) - Total Recov Result	Qualifier U	LOQ 60	LOD 60	DL 20	Unit ug/L	D	Analyzed 09/09/13 14:11	
Potassium	CP/MS) - Total Recover Result 60 1.0	Qualifier U U	60 2.0	60 1.0	DL 20 0.33 0.50	Unit ug/L ug/L	D	Analyzed 09/09/13 14:11 09/09/13 14:11	
Potassium Method: 6020/DOD - Metals (ICAnalyte Aluminum Antimony Beryllium Cadmium	CP/MS) - Total Recover Result 60 1.0	Qualifier U U U U	60 2.0 1.0	60 1.0 1.0	DL 20 0.33 0.50	Unit ug/L ug/L ug/L	D	Analyzed 09/09/13 14:11 09/09/13 14:11	
Potassium Method: 6020/DOD - Metals (ICAnalyte Aluminum Antimony Beryllium Cadmium	CP/MS) - Total Recov Result 60 1.0 1.0	Qualifier U U U U	60 2.0 1.0 2.0	60 1.0 1.0 1.0	DL 20 0.33 0.50 0.40	Unit ug/L ug/L ug/L	D	Analyzed 09/09/13 14:11 09/09/13 14:11 09/09/13 14:11	
Potassium Method: 6020/DOD - Metals (ICAnalyte Aluminum Antimony Beryllium Cadmium Iron Sodium	CP/MS) - Total Recov Result 60 1.0 1.0 1.0	Qualifier U U U U U	60 2.0 1.0 2.0 150	LOD 60 1.0 1.0 1.0	DL 20 0.33 0.50 0.40 44 160	Unit ug/L ug/L ug/L ug/L ug/L	D	Analyzed 09/09/13 14:11 09/09/13 14:11 09/09/13 14:11 09/09/13 14:11	Dil Fac
Potassium Method: 6020/DOD - Metals (ICAnalyte Aluminum Antimony Beryllium Cadmium Iron Sodium Thallium	CP/MS) - Total Recov Result 60 1.0 1.0 1.0 100 33000	Qualifier U U U U U U	LOQ 60 2.0 1.0 2.0 150 1000	LOD 60 1.0 1.0 1.0 1.0 400	DL 20 0.33 0.50 0.40 44 160	Unit ug/L ug/L ug/L ug/L ug/L ug/L	D	Analyzed 09/09/13 14:11 09/09/13 14:11 09/09/13 14:11 09/09/13 14:11 09/09/13 14:11	Dil Fac
Potassium Method: 6020/DOD - Metals (IC Analyte Aluminum Antimony Beryllium	CP/MS) - Total Recov Result 60 1.0 1.0 1.0 33000 1.5 50	Qualifier U U U U U U	LOQ 60 2.0 1.0 2.0 150 1000 2.0	LOD 60 1.0 1.0 1.0 100 400 1.5	DL 20 0.33 0.50 0.40 44 160 0.79	Unit ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	D	Analyzed 09/09/13 14:11 09/09/13 14:11 09/09/13 14:11 09/09/13 14:11 09/09/13 14:11 09/09/13 14:11	

Client: Environmental Quality Mgt., Inc.

Project/Site: RVAAP66 (OH)

TestAmerica Job ID: 240-28145-1

Lab Sample ID: 240-28145-4

Matrix: Water

Client Sample ID: FWGLL12mw-242C-0364-GW

Date Collected: 08/20/13 11:11 Date Received: 08/21/13 07:00

Analyte	Result	Qualifier	LOQ	LOD	DL	Unit D	Analyzed	Dil Fac
1,1,1-Trichloroethane	0.25	U	1.0	0.25	0.22	ug/L	08/28/13 17:59	1
1,1,2,2-Tetrachloroethane	0.25	U	1.0	0.25	0.18	ug/L	08/28/13 17:59	1
1,1,2-Trichloroethane	0.50	U	1.0	0.50	0.27	ug/L	08/28/13 17:59	1
1,1-Dichloroethane	0.25	U	1.0	0.25	0.15	ug/L	08/28/13 17:59	1
1,1-Dichloroethene	0.25	U	1.0	0.25	0.19	ug/L	08/28/13 17:59	1
1,2-Dichloroethane	0.25	U	1.0	0.25	0.22	ug/L	08/28/13 17:59	1
1,2-Dichloroethene, Total	0.25	U	2.0	0.25	0.17	ug/L	08/28/13 17:59	1
1,2-Dichloropropane	0.25	U	1.0	0.25	0.18	ug/L	08/28/13 17:59	1
2-Hexanone	0.50	U	10	0.50	0.41	ug/L	08/28/13 17:59	1
Bromochloromethane	0.50	U	1.0	0.50	0.29	ug/L	08/28/13 17:59	1
Acetone	1.1	U	10	1.1	1.1	ug/L	08/28/13 17:59	1
Benzene	0.25	U	1.0	0.25	0.13	ug/L	08/28/13 17:59	1
Bromoform	0.64	U	1.0	0.64	0.64	ug/L	08/28/13 17:59	1
Bromomethane	0.50	U	1.0	0.50	0.41	ug/L	08/28/13 17:59	1
Carbon disulfide	0.25	U	1.0	0.25	0.13	ug/L	08/28/13 17:59	1
Carbon tetrachloride	0.25	U	1.0	0.25	0.13	ug/L	08/28/13 17:59	1
Chlorobenzene	0.25	U	1.0	0.25	0.15	ug/L	08/28/13 17:59	1
Chloroethane	0.50	U	1.0	0.50	0.29	ug/L	08/28/13 17:59	1
Chloroform	0.25	U	1.0	0.25	0.16	ug/L	08/28/13 17:59	1
Chloromethane	0.50	U	1.0	0.50	0.30	ug/L	08/28/13 17:59	1
cis-1,2-Dichloroethene	0.25	U	1.0	0.25	0.17	ug/L	08/28/13 17:59	1
cis-1,3-Dichloropropene	0.25	U	1.0	0.25	0.14	ug/L	08/28/13 17:59	1
Bromodichloromethane	0.25	U	1.0	0.25	0.15	ug/L	08/28/13 17:59	1
Ethylbenzene	0.25	U	1.0	0.25	0.17	ug/L	08/28/13 17:59	1
1,2-Dibromoethane	0.25	U	1.0	0.25	0.24	ug/L	08/28/13 17:59	1
m-Xylene & p-Xylene	0.50	U	2.0	0.50	0.24	ug/L	08/28/13 17:59	- 1
2-Butanone (MEK)	0.57	U	10	0.57	0.57	ug/L	08/28/13 17:59	1
4-Methyl-2-pentanone (MIBK)	0.50	U	10	0.50	0.32	ug/L	08/28/13 17:59	1
Methylene Chloride	0.50	U	1.0	0.50	0.33	ug/L	08/28/13 17:59	- 1
o-Xylene	0.25	U	1.0	0.25	0.14	ug/L	08/28/13 17:59	1
Styrene	0.25	U	1.0	0.25	0.11	ug/L	08/28/13 17:59	- 1
Tetrachloroethene	0.50	U	1.0	0.50	0.29	ug/L	08/28/13 17:59	1
Toluene	0.25	U	1.0	0.25	0.13	ug/L	08/28/13 17:59	1
trans-1,2-Dichloroethene	0.25	U	1.0	0.25	0.19	ug/L	08/28/13 17:59	1
trans-1,3-Dichloropropene	0.25	U	1.0	0.25	0.19	ug/L	08/28/13 17:59	1
Trichloroethene	0.25	U	1.0	0.25	0.17	ug/L	08/28/13 17:59	1
Vinyl chloride	0.25	U	1.0	0.25	0.22	ug/L	08/28/13 17:59	1
Xylenes, Total	0.25	U	2.0	0.25	0.14	ug/L	08/28/13 17:59	1
Dibromochloromethane	0.25	U	1.0	0.25	0.18	ug/L	08/28/13 17:59	1
Surrogate	%Recovery Qu	valifier i	imits			Prepared	Analyzed	Dil Fac

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	113		70 - 120		08/28/13 17:59	1
4-Bromofluorobenzene (Surr)	87		75 - 120		08/28/13 17:59	1.
Toluene-d8 (Surr)	86		85 - 120		08/28/13 17:59	1
Dibromofluoromethane (Surr)	101		85 - 115		08/28/13 17:59	1

Mothod: 927	OC/DoD	Semivolatile C	Trannic Col	mnounde /	CCIME
welliou. ozi	06/000 -	Semivolatile C	Jidanic Col	mpounds i	GC/WS

Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
Bis(2-ethylhexyl) phthalate	1.2	J	1.9	0.48	0.21	ug/L		09/04/13 13:17	1
Butyl benzyl phthalate	0.35	J	1.9	0.48	0.25	ug/L		09/04/13 13:17	1

Client: Environmental Quality Mgt., Inc.

Project/Site: RVAAP66 (OH)

TestAmerica Job ID: 240-28145-1

Lab Sample ID: 240-28145-4

Matrix: Water

Client Sample ID: FWGLL12mw-242C-0364-GW

Date Collected: 08/20/13 11:11 Date Received: 08/21/13 07:00

1,3-Dinitrobenzene

nalyte	Result	Qualifier	LOQ	LOD	DL	Unit D	Analyzed	Dil Fa
iethyl phthalate	0.95	U	1.9	0.95	0.57	ug/L	09/04/13 13:17	
imethyl phthalate	0.48	U	1.9	0.48	0.28	ug/L	09/04/13 13:17	
i-n-butyl phthalate	1.4	J	1.9	0.95	0.64	ug/L	09/04/13 13:17	
i-n-octyl phthalate	0.48	U	1.9	0.48	0.22	ug/L	09/04/13 13:17	
urrogate	%Recovery Qu	alifier	Limits			Prepared	Analyzed	Dil Fa
-Fluorobiphenyl (Surr)	74		50 - 110			08/22/13 08:06	09/04/13 13:17	
Fluorophenol (Surr)	77		20 - 110			08/22/13 08:06	09/04/13 13:17	
itrobenzene-d5 (Surr)	82		40 - 110			08/22/13 08:06	09/04/13 13:17	
henol-d5 (Surr)	84		10 - 115			08/22/13 08:06	09/04/13 13:17	
erphenyl-d14 (Surr)	87		50 - 135			08/22/13 08:06	09/04/13 13:17	
4,6-Tribromophenol (Surr)	96		40 - 125			08/22/13 08:06	09/04/13 13:17	
lethod: 8081/DOD - Organoc	hlorine Pesticides (G	iC)						
nalyte	Result	Qualifier	LOQ	LOD	DL	Unit D	Analyzed	Dil Fa
4'-DDD	0.019	U	0.048	0.019	0.0091	ug/L	09/11/13 18:18	
4'-DDE	0.019	U	0.048	0.019	0.0092	ug/L	09/11/13 18:18	
4'-DDT	0.019	U	0.048	0.019	0.015	ug/L	09/11/13 18:18	
drin	0.019	U	0.029	0.019	0.0078	ug/L	09/11/13 18:18	
pha-BHC	0.019	U	0.029	0.019	0.0067	ug/L	09/11/13 18:18	
oha-Chlordane	0.019	U	0.048	0.019	0.013	ug/L	09/11/13 18:18	
ta-BHC	0.019	U	0.048	0.019	0.0080	ug/L	09/11/13 18:18	
Ita-BHC	0.019	U	0.048	0.019	0.0083	ug/L	09/11/13 18:18	
eldrin	0.019	U	0.029	0.019	0.0071	ug/L	09/11/13 18:18	
ndosulfan I	0.019	U	0.048	0.019	0.012	ug/L	09/11/13 18:18	
ndosulfan II	0.019	U	0.048	0.019	0.011	ug/L	09/11/13 18:18	
ndosulfan sulfate	0.019	U	0.048	0.019	0.010	ug/L	09/11/13 18:18	
ndrin	0.019	U	0.048	0.019	0.010	ug/L	09/11/13 18:18	
ndrin aldehyde	0.019	U	0.048	0.019	0.010	ug/L	09/11/13 18:18	
ndrin ketone	0.019	U	0.048	0.019	0.0074	ug/L	09/11/13 18:18	
mma-BHC (Lindane)	0.019	U	0.048	0.019	0.0061	ug/L	09/11/13 18:18	
imma-Chlordane	0.019	U	0.048	0.019	0.011	ug/L	09/11/13 18:18	
eptachlor	0.019	U	0.029	0.019	0.0076	ug/L	09/11/13 18:18	
eptachlor epoxide	0.019	U	0.029	0.019	0.0068	ug/L	09/11/13 18:18	
ethoxychlor	0.048	U	0.095	0.048	0.030		09/11/13 18:18	
oxaphene	0.76	U	1.9	0.76		ug/L	09/11/13 18:18	
urrogate	%Recovery Qu	alifier	Limits			Prepared	Analyzed	Dil F
CB Decachlorobiphenyl	31		30 - 135			08/22/13 07:53	09/11/13 18:18	
CB Decachlorobiphenyl	38		30 - 135			08/22/13 07:53	09/11/13 18:18	
etrachloro-m-xylene	81		25 - 140			08/22/13 07:53	09/11/13 18:18	
trachloro-m-xylene	96		25 - 140			08/22/13 07:53	09/11/13 18:18	
ethod: 8330 Modified - Nitro	guanidine (HPLC)							
nalyte	Result	Qualifier	LOQ	LOD	DL	Unit D		Dil F
troguanidine	6.0	U	20	6.0	2.4	ug/L	08/29/13 13;46	
lethod: 8330A - Nitroaromati	ics and Nitramines							
nalyte		Qualifier	LOQ	LOD	DL	Unit D	Analyzed	DILF
3,5-Trinitrobenzene	0.053	U	0.16	0.053	0.033	ug/L	08/28/13 20:25	

TestAmerica Canton

08/28/13 20:25

0.16

0.11

0,053 ug/L

0.11 U

Client: Environmental Quality Mgt., Inc.

Project/Site: RVAAP66 (OH)

TestAmerica Job ID: 240-28145-1

Lab Sample ID: 240-28145-4

Matrix: Water

Client Sample ID: FWGLL12mw-242C-0364-GW

Date Collected: 08/20/13 11:11 Date Received: 08/21/13 07:00

Method: 8330A - Nitroaroma	tics and Nitramines (Continued)						
Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
2,4,6-Trinitrotoluene	0.11	U	0.16	0.11	0.053	ug/L		08/28/13 20:25	1
2,4-Dinitrotoluene	0.11	U	0.14	0.11	0.053	ug/L		08/28/13 20:25	1
2,6-Dinitrotoluene	0.11	U	0.14	0.11	0.053	ug/L		08/28/13 20:25	1
2-Amino-4,6-dinitrotoluene	0.11	U	0.16	0.11	0.016	ug/L		08/28/13 20:25	1
2-Nitrotoluene	0.11	U	0.53	0.11	0.093	ug/L		08/28/13 20:25	1
3-Nitrotoluene	0.11	U	0.53	0.11	0.060	ug/L		08/28/13 20:25	1
4-Nitrotoluene	0.11	U	0.53	0.11	0.093	ug/L		08/28/13 20:25	1
4-Amino-2,6-dinitrotoluene	0.11	U	0.16	0.11	0.053	ug/L		08/28/13 20:25	1
HMX	0.053	U	0.16	0.053	0.038	ug/L		08/28/13 20:25	1
RDX	0.053	U	0.16	0.053	0.038	ug/L		08/28/13 20:25	1
Nitrobenzene	0.11	U	0.16	0.11	0.053	ug/L		08/28/13 20:25	- 1
Tetryl	0.11	U	0.16	0.11	0.053	ug/L		08/28/13 20:25	1
Nitroglycerin	0.53	U	0.69	0.53	0.35	ug/L		08/28/13 20:25	1
PETN	0.53	U	0.69	0.53	0.32	ug/L		08/28/13 20:25	1
Surrogate	%Recovery Q	ualifier	Limits			Prep	pared	Analyzed	Dil Fac
3,4-Dinitrotoluene	94		79 - 111			08/26/1	3 09:34	08/28/13 20:25	1
General Chemistry									
Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
Nitrate Nitrite as N	0.024	J	0.050	0.012	0.0053	mg/L		09/06/13 16:44	1
Nitrocellulose	1.0	U	2.0	1.0	0.48	mg/L		09/05/13 13:38	1

Client: Environmental Quality Mgt., Inc.

Client Sample ID: FWGLL12mw-242C-0364-GF

Project/Site: RVAAP66 (OH)

TestAmerica Job ID: 240-28145-1

Matrix: Water

Lab	Sample	ID:	240-281	45-5
-----	--------	-----	---------	------

Date Collected: 08/20/13 11:11 Date Received: 08/21/13 07:00

Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
Arsenic	19		10	10	3.3	ug/L		09/09/13 10:45	1
Chromium	4.0	U	7.0	4.0	1.4	ug/L		09/09/13 10:45	1
Cobalt	4.0	U	7.0	4.0	1.5	ug/L		09/09/13 10:45	1
Lead	5.0	U	10	5.0	1.7	ug/L		09/09/13 10:45	1
Selenium	10	U	15	10	4.0	ug/L		09/09/13 10:45	1
Silver	5.0	U	7.0	5.0	1.7	ug/L		09/09/13 10:45	1
Vanadium	4.0	U	7.0	4.0	1.3	ug/L		09/09/13 10:45	1
Barium	26	J	200	5.0	2.8	ug/L		09/09/13 10:45	1
Calcium	71000		5000	1000	630	ug/L		09/09/13 10:45	1
Copper	10	U	25	10	4.4	ug/L		09/09/13 10:45	1
Magnesium	48000		5000	300	120	ug/L		09/09/13 10:45	1
Manganese	61		15	5.0	1.8	ug/L		09/09/13 10:45	1
Nickel	5.0	U	40	5.0	2.2	ug/L		09/09/13 10:45	1
						H		00/00/40 40 45	
Potassium	1900	J	5000	900	300	ug/L		09/09/13 10:45	1
Potassium Method: 6020/DOD - Metals (IO			5000	900	300	ug/L		09/09/13 10:45	1
	CP/MS) - Total Recov		5000 LOQ	900 LOD		Unit	D	09/09/13 10:45 Analyzed	Dil Fac
Method: 6020/DOD - Metals (IG	CP/MS) - Total Recov	verable Qualifier					D		
Method: 6020/DOD - Metals (IC Analyte	CP/MS) - Total Recov	verable Qualifier	LOQ	LOD	DL 20	Unit ug/L	D	Analyzed	
Method: 6020/DOD - Metals (IC Analyte Aluminum	CP/MS) - Total Recovered Result	verable Qualifier J	LOQ 60	LOD 60	DL 20	Unit ug/L ug/L	D	Analyzed 09/09/13 14:18	
Method: 6020/DOD - Metals (IO Analyte Aluminum Antimony	CP/MS) - Total Recover Result 50	verable Qualifier J U	60 2.0	60 1.0	DL 20 0.33 0.50	Unit ug/L ug/L	D	Analyzed 09/09/13 14:18 09/09/13 14:18	
Method: 6020/DOD - Metals (IO Analyte Aluminum Antimony Beryllium	CP/MS) - Total Recov Result 50 1.0	verable Qualifier J U	60 2.0 1.0	60 1.0	DL 20 0.33 0.50 0.40	Unit ug/L ug/L ug/L	D	Analyzed 09/09/13 14:18 09/09/13 14:18 09/09/13 14:18	
Method: 6020/DOD - Metals (IC Analyte Aluminum Antimony Beryllium Cadmium	CP/MS) - Total Recov Result 50 1.0 1.0	verable Qualifier J U	60 2.0 1.0 2.0	60 1.0 1.0 1.0	DL 20 0.33 0.50 0.40	Unit ug/L ug/L ug/L ug/L	D	Analyzed 09/09/13 14:18 09/09/13 14:18 09/09/13 14:18	
Method: 6020/DOD - Metals (IC Analyte Aluminum Antimony Beryllium Cadmium	CP/MS) - Total Recov Result 50 1.0 1.0 1.0 660	Verable Qualifier J U U U	60 2.0 1.0 2.0 150	60 1.0 1.0 1.0	DL 20 0.33 0.50 0.40	Unit ug/L ug/L ug/L ug/L	<u>D</u>	Analyzed 09/09/13 14:18 09/09/13 14:18 09/09/13 14:18 09/09/13 14:18	
Method: 6020/DOD - Metals (ICAnalyte Aluminum Antimony Beryllium Cadmium Iron Sodium	CP/MS) - Total Recov Result 50 1.0 1.0 660 39000	Verable Qualifier J U U U	LOQ 60 2.0 1.0 2.0 150 1000	LOD 60 1.0 1.0 1.0 100 400	DL 20 0.33 0.50 0.40 44 160	Unit ug/L ug/L ug/L ug/L ug/L ug/L	D	Analyzed 09/09/13 14:18 09/09/13 14:18 09/09/13 14:18 09/09/13 14:18 09/09/13 14:18	
Method: 6020/DOD - Metals (IOAnalyte Aluminum Antimony Beryllium Cadmium Iron Sodium Thallium	CP/MS) - Total Recover Result 50 1.0 1.0 1.0 660 39000 1.5 50	Verable Qualifier J U U U	LOQ 60 2.0 1.0 2.0 150 1000 2.0	60 1.0 1.0 1.0 100 400 1.5	DL 20 0.33 0.50 0.40 44 160 0.79	Unit ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	D	Analyzed 09/09/13 14:18 09/09/13 14:18 09/09/13 14:18 09/09/13 14:18 09/09/13 14:18 09/09/13 14:18	

Client: Environmental Quality Mgt., Inc.

Project/Site: RVAAP66 (OH)

TestAmerica Job ID: 240-28145-1

Lab Sample ID: 240-28145-6

Matrix: Water

Client Sample ID: FWGLL12mw-247-0336-GW Date Collected: 08/20/13 13:01

Date Received: 08/21/13 07:00

Analyte	Result	Qualifier		LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
1,1,1-Trichloroethane	0.25	Ü		1.0	0.25	0.22	ug/L		08/28/13 18:21	1
1,1,2,2-Tetrachloroethane	0.25	U		1.0	0.25	0.18	ug/L		08/28/13 18:21	1
1,1,2-Trichloroethane	0.50	U		1.0	0.50	0.27	ug/L		08/28/13 18:21	1
1,1-Dichloroethane	0.25	U		1.0	0.25	0.15	ug/L		08/28/13 18:21	1
1,1-Dichloroethene	0.25	U		1.0	0.25	0.19	ug/L		08/28/13 18:21	1
1,2-Dichloroethane	0.25	U		1.0	0.25	0.22	ug/L		08/28/13 18:21	1
1,2-Dichloroethene, Total	0.25	U		2.0	0.25	0.17	ug/L		08/28/13 18:21	1
1,2-Dichloropropane	0.25	U		1.0	0.25	0.18	ug/L		08/28/13 18:21	1
2-Hexanone	0.50	U		10	0.50	0.41	ug/L		08/28/13 18:21	1
Bromochloromethane	0.50	U		1.0	0.50	0.29	ug/L		08/28/13 18:21	1
Acetone	1.1	U		10	1.1	1.1	ug/L		08/28/13 18:21	1
Benzene	0.25	U		1.0	0.25	0.13	ug/L		08/28/13 18:21	1
Bromoform	0.64	U		1.0	0.64	0.64	ug/L		08/28/13 18:21	1
Bromomethane	0.50	U		1.0	0.50	0.41	ug/L		08/28/13 18:21	1
Carbon disulfide	0.25	U		1.0	0.25	0.13	ug/L		08/28/13 18:21	1
Carbon tetrachloride	0.25	U		1.0	0.25	0.13	ug/L		08/28/13 18:21	1
Chlorobenzene	0.25	U		1.0	0.25	0.15	ug/L		08/28/13 18:21	1
Chloroethane	0.50	U		1.0	0.50	0.29	ug/L		08/28/13 18:21	1
Chloroform	0.25	U		1.0	0.25	0.16	ug/L		08/28/13 18:21	1
Chloromethane	0.50	U		1.0	0.50	0.30	ug/L		08/28/13 18:21	1
cis-1,2-Dichloroethene	0.25	U		1.0	0.25	0.17	ug/L		08/28/13 18:21	1
cis-1,3-Dichloropropene	0.25	U		1.0	0.25	0.14	ug/L		08/28/13 18:21	1
Bromodichloromethane	0.25	U		1.0	0.25	0.15	ug/L		08/28/13 18:21	1
Ethylbenzene	0.25	U		1.0	0.25	0.17	ug/L		08/28/13 18:21	1
1,2-Dibromoethane	0.25	U		1.0	0.25	0.24	ug/L		08/28/13 18:21	1
m-Xylene & p-Xylene	0.50	U		2.0	0.50	0.24	ug/L		08/28/13 18:21	1
2-Butanone (MEK)	0.57	U		10	0.57	0.57	ug/L		08/28/13 18:21	1
4-Methyl-2-pentanone (MIBK)	0.50	U		10	0.50	0.32	ug/L		08/28/13 18:21	1
Methylene Chloride	0.50	U		1.0	0.50	0.33	ug/L		08/28/13 18:21	1
o-Xylene	0.25	U		1.0	0.25	0.14	ug/L		08/28/13 18:21	1
Styrene	0.25	U		1.0	0.25	0.11	ug/L		08/28/13 18:21	- 1
Tetrachloroethene	0.50	U		1.0	0.50	0.29	ug/L		08/28/13 18:21	1
Toluene	0.25	U		1.0	0.25	0.13	ug/L		08/28/13 18:21	1
trans-1,2-Dichloroethene	0.25	U		1.0	0.25	0.19	ug/L		08/28/13 18:21	1
trans-1,3-Dichloropropene	0.25	U		1.0	0.25	0.19	ug/L		08/28/13 18:21	1
Trichloroethene	0.25	U		1.0	0.25	0.17	ug/L		08/28/13 18:21	1
Vinyl chloride	0.25	U		1.0	0.25	0.22	ug/L		08/28/13 18:21	1
Xylenes, Total	0.25	U		2.0	0.25	0.14	ug/L		08/28/13 18:21	1
Dibromochloromethane	0,25	U		1.0	0.25	0.18	ug/L		08/28/13 18:21	1
Surrogate	%Recovery Q	ualifier	Limits				Prep	ared	Analyzed	Dil Fac
1.3 Dioblernethane d4 (Surr)	108		70 120	-			-		09/29/12 19:21	4

		William Co.		100 2 100	2.6.5
Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	108	70 - 120		08/28/13 18:21	1
4-Bromofluorobenzene (Surr)	90	75 - 120		08/28/13 18:21	7
Toluene-d8 (Surr)	88	85 - 120		08/28/13 18:21	1
Dibromofluoromethane (Surr)	101	85 - 115		08/28/13 18:21	1

Method: 8270C/DoD - Semivolatil	e Organic Compo	ounds (GC/M	5)						
Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
Bis(2-ethylhexyl) phthalate	0.55	J	1.9	0.48	0.21	ug/L		09/04/13 15:20	1
Butyl benzyl phthalate	0.48	U	1.9	0.48	0.25	ug/L		09/04/13 15:20	3

Client: Environmental Quality Mgt., Inc.

Project/Site: RVAAP66 (OH)

2,4,6-Tribromophenol (Surr)

TestAmerica Job ID: 240-28145-1

Lab Sample ID: 240-28145-6

09/04/13 15:20

08/22/13 08:06

Matrix: Water

Client Sample ID: FWGLL12mw-247-0336-GW

Date Collected: 08/20/13 13:01 Date Received: 08/21/13 07:00

Analyte	Result	Qualifier	L	OQ	LOD	DL	Unit I	Analyzed	Dil Fac
Diethyl phthalate	0.95	U		1.9	0.95	0.57	ug/L	09/04/13 15:20	1
Dimethyl phthalate	0.48	U		1.9	0.48	0.28	ug/L	09/04/13 15:20	1
Di-n-butyl phthalate	0.67	J		1.9	0.95	0.64	ug/L	09/04/13 15:20	1
Di-n-octyl phthalate	0.48	U		1.9	0.48	0.22	ug/L	09/04/13 15:20	1
Surrogate	%Recovery Qu	alifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl (Surr)	75		50 - 110				08/22/13 08:06	09/04/13 15:20	1
2-Fluorophenol (Surr)	80		20 - 110				08/22/13 08:06	09/04/13 15:20	1
Nitrobenzene-d5 (Surr)	84		40 - 110				08/22/13 08:06	09/04/13 15:20	1
Phenol-d5 (Surr)	86		10 - 115				08/22/13 08:06	09/04/13 15:20	1
moner de (dan)									

40 - 125

102

Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
4,4'-DDD	0.019	U	0.048	0.019	0.0091	ug/L	= -	09/11/13 18:38	1
4,4'-DDE	0.019	U	0.048	0.019	0.0092	ug/L		09/11/13 18:38	1
4,4'-DDT	0.019	U	0.048	0.019	0.015	ug/L		09/11/13 18:38	1
Aldrin	0.019	U	0.029	0.019	0.0078	ug/L		09/11/13 18:38	1
alpha-BHC	0.019	U	0.029	0.019	0.0067	ug/L		09/11/13 18:38	1
alpha-Chlordane	0.019	U	0.048	0.019	0.013	ug/L		09/11/13 18:38	1
beta-BHC	0.18		0.048	0.019	0.0080	ug/L		09/11/13 18:38	1
delta-BHC	0.019	U	0.048	0.019	0.0083	ug/L		09/11/13 18:38	- 1
Dieldrin	0.019	U	0.029	0.019	0.0071	ug/L		09/11/13 18:38	1
Endosulfan I	0.019	U	0.048	0.019	0.012	ug/L		09/11/13 18:38	1
Endosulfan II	0.019	U	0.048	0.019	0.011	ug/L		09/11/13 18:38	1
Endosulfan sulfate	0.019	U	0.048	0.019	0.010	ug/L		09/11/13 18:38	1
Endrin	0.019	U	0.048	0.019	0.010	ug/L		09/11/13 18:38	1
Endrin aldehyde	0.019	U	0.048	0.019	0.010	ug/L		09/11/13 18:38	1
Endrin ketone	0.019	U	0.048	0.019	0.0074	ug/L		09/11/13 18:38	1
gamma-BHC (Lindane)	0.019	U	0.048	0.019	0.0061	ug/L		09/11/13 18:38	1
gamma-Chlordane	0.019	U	0.048	0.019	0.011	ug/L		09/11/13 18:38	1
Heptachlor	0.019	U	0.029	0.019	0.0076	ug/L		09/11/13 18:38	1
Heptachlor epoxide	0.019	U	0.029	0.019	0.0068	ug/L		09/11/13 18:38	1
Methoxychlor	0.048	U	0.095	0.048	0.030	ug/L		09/11/13 18:38	1
Toxaphene	0.76	U	1.9	0.76	0.30	ug/L		09/11/13 18:38	1

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
DCB Decachlorobiphenyl	25	Q	30 - 135	08/22/13 07:53	09/11/13 18:38	1
DCB Decachlorobiphenyl	25	Q	30 - 135	08/22/13 07:53	09/11/13 18:38	1
Tetrachloro-m-xylene	64		25 - 140	08/22/13 07:53	09/11/13 18:38	1
Tetrachloro-m-xylene	73		25 - 140	08/22/13 07:53	09/11/13 18:38	1

Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
Nitroguanidine	6.0	U	20	6.0	2.4	ug/L		08/29/13 14:04	1

Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
1,3,5-Trinitrobenzene	0.054	U	0.16	0.054	0.033	ug/L		08/28/13 21:09	1
1,3-Dinitrobenzene	0.11	U	0.16	0.11	0,054	ug/L		08/28/13 21:09	1

TestAmerica Canton

Page 38 of 235

10/7/2013

3

5

9

Œ

14

15

Client: Environmental Quality Mgt., Inc.

Project/Site: RVAAP66 (OH)

TestAmerica Job ID: 240-28145-1

Lab Sample ID: 240-28145-6

Matrix: Water

Client Sample ID: FWGLL12mw-247-0336-GW

Date Collected: 08/20/13 13:01 Date Received: 08/21/13 07:00

Analyte	Result	Qualifier	LOQ	LOD	DL	Unit D	Analyzed	Dil Fac
2,4,6-Trinitrotoluene	0.11	U	0.16	0.11	0.054	ug/L	08/28/13 21:09	1
2,4-Dinitrotoluene	0.11	U	0.14	0.11	0.054	ug/L	08/28/13 21:09	1
2,6-Dinitrotoluene	0.11	U	0.14	0.11	0.054	ug/L	08/28/13 21:09	1
2-Amino-4,6-dinitrotoluene	0.11	U	0.16	0.11	0.016	ug/L	08/28/13 21:09	1
2-Nitrotoluene	0.11	U	0.54	0.11	0.095	ug/L	08/28/13 21:09	1
3-Nitrotoluene	0.11	U	0.54	0.11	0.061	ug/L	08/28/13 21:09	1
4-Nitrotoluene	0.11	U	0.54	0.11	0.095	ug/L	08/28/13 21:09	1
4-Amino-2,6-dinitrotoluene	0.11	U	0.16	0.11	0.054	ug/L	08/28/13 21:09	1
HMX	0.054	U	0.16	0.054	0.039	ug/L	08/28/13 21:09	1
RDX	0.054	Ü	0.16	0.054	0.039	ug/L	08/28/13 21:09	1
Nitrobenzene	0.11	U	0.16	0.11	0.054	ug/L	08/28/13 21:09	1
Tetryl	0.11	U	0.16	0.11	0.054	ug/L	08/28/13 21:09	1
Nitroglycerin	0.54	U	0.70	0.54	0.35	ug/L	08/28/13 21:09	1
PETN	0.54	U	0.70	0.54	0.32	ug/L	08/28/13 21:09	1
Surrogate	%Recovery Qu	ıalifier	Limits			Prepared	Analyzed	Dil Fac
3,4-Dinitrotoluene	92 M		79 - 111			08/26/13 09:34	08/28/13 21:09	1

General Chemistry									
Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
Nitrate Nitrite as N	0.024	J	0.050	0.012	0.0053	mg/L		09/06/13 16:46	1
Nitrocellulose	1.0	U	2.0	1.0	0.48	mg/L		09/05/13 13:40	- 1

Client: Environmental Quality Mgt., Inc.

Project/Site: RVAAP66 (OH)

TestAmerica Job ID: 240-28145-1

Lab Sample ID: 240-28145-7

Matrix: Water

Client Sample ID: FWGLL12mw-247-0336-GF	
Date Collected: 08/20/13 13:01	

Date Received: 08/21/13 07:00

Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
Arsenic	6.3	J	10	10	3.3	ug/L	= =	09/09/13 10:51	1
Chromium	4.0	U	7.0	4.0	1.4	ug/L		09/09/13 10:51	1
Cobalt	4.0	U	7.0	4.0	1.5	ug/L		09/09/13 10:51	1
Lead	5.0	U	10	5.0	1.7	ug/L		09/09/13 10:51	1
Selenium	10	U	15	10	4.0	ug/L		09/09/13 10:51	1
Silver	5.0	U	7.0	5.0	1.7	ug/L		09/09/13 10:51	1
Vanadium	4.0	U	7.0	4.0	1.3	ug/L		09/09/13 10:51	1
Barium	27	J	200	5.0	2.8	ug/L		09/09/13 10:51	1
Calcium	100000		5000	1000	630	ug/L		09/09/13 10:51	1
Copper	10	U	25	10	4.4	ug/L		09/09/13 10:51	1
Magnesium	54000		5000	300	120	ug/L		09/09/13 10:51	1
Manganese	280		15	5.0	1.8	ug/L		09/09/13 10:51	1
Nickel	5.0	U	40	5.0	2.2	ug/L		09/09/13 10:51	-1
Potassium	2700	J	5000	900	300	ug/L		09/09/13 10:51	1
Method: 6020/DOD - Metals (IC									
	Result	erable Qualifier	LOQ	LOD		Unit	D	Analyzed	Dil Fac
Analyte	Result	Qualifier	60	60	20	Unit ug/L	D	09/09/13 14:26	Dil Fac
Analyte Aluminum	Result	Qualifier					D		Dil Fac
Analyte Aluminum Antimony	Result	Qualifier	60	60	20 0.33	ug/L ug/L	D	09/09/13 14:26	Dil Fac
Analyte Aluminum Antimony Beryllium	Result 160 1.0	Qualifier U U	60 2.0	60 1.0	20 0.33 0.50	ug/L ug/L	D	09/09/13 14:26 09/09/13 14:26	Dil Fac 1 1 1 1
Analyte Aluminum Antimony Beryllium Cadmium	Result 160 1.0 1.0	Qualifier U U	60 2.0 1.0	60 1.0 1.0	20 0.33 0.50	ug/L ug/L ug/L	D	09/09/13 14:26 09/09/13 14:26 09/09/13 14:26	Dil Fac 1 1 1 1 1 1
Analyte Aluminum Antimony Beryllium Cadmium	Result 160 1.0 1.0 1.0	Qualifier U U	60 2.0 1.0 2.0	60 1.0 1.0 1.0	20 0.33 0.50 0.40	ug/L ug/L ug/L ug/L	D	09/09/13 14:26 09/09/13 14:26 09/09/13 14:26 09/09/13 14:26	Dil Fac 1 1 1 1 1 1 1 1 1
Analyte Aluminum Antimony Beryllium Cadmium Iron Sodium	Result 160 1.0 1.0 1.0 1.0 1.70	Qualifier U U U	60 2.0 1.0 2.0 150	1.0 1.0 1.0 1.0	20 0.33 0.50 0.40 44	ug/L ug/L ug/L ug/L ug/L	D	09/09/13 14:26 09/09/13 14:26 09/09/13 14:26 09/09/13 14:26 09/09/13 14:26	1 1 1 1
Analyte Aluminum Antimony Beryllium Cadmium Iron Sodium Thallium	Result 160 1.0 1.0 1.0 1.0 24000	Qualifier U U U U	60 2.0 1.0 2.0 150 1000	1.0 1.0 1.0 1.0 100 400	20 0.33 0.50 0.40 44 160	ug/L ug/L ug/L ug/L ug/L ug/L	D -	09/09/13 14:26 09/09/13 14:26 09/09/13 14:26 09/09/13 14:26 09/09/13 14:26 09/09/13 14:26	1 1 1 1 1 1 1
Method: 6020/DOD - Metals (ICAnalyte Aluminum Antimony Beryllium Cadmium Iron Sodium Thallium Zinc Method: 7470A/DOD - Mercury	Result 160 1.0 1.0 1.0 1.0 24000 1.5 50	Qualifier U U U U	50 2.0 1.0 2.0 150 1000 2.0	1.0 1.0 1.0 1.0 100 400 1.5	20 0.33 0.50 0.40 44 160 0.79	ug/L ug/L ug/L ug/L ug/L ug/L	D	09/09/13 14:26 09/09/13 14:26 09/09/13 14:26 09/09/13 14:26 09/09/13 14:26 09/09/13 14:26	1 1 1 1 1 1 1 1 1
Analyte Aluminum Antimony Beryllium Cadmium Iron Sodium Thallium Zinc	Result 160 1.0 1.0 1.0 1.0 24000 1.5 50	Qualifier U U U U	50 2.0 1.0 2.0 150 1000 2.0	1.0 1.0 1.0 1.0 100 400 1.5	20 0.33 0.50 0.40 44 160 0.79 27	ug/L ug/L ug/L ug/L ug/L ug/L	D	09/09/13 14:26 09/09/13 14:26 09/09/13 14:26 09/09/13 14:26 09/09/13 14:26 09/09/13 14:26	1 1 1 1 1 1 1 1 1

Client: Environmental Quality Mgt., Inc.

Project/Site: RVAAP66 (OH)

TestAmerica Job ID: 240-28145-1

Lab Sample ID: 240-28145-8

Matrix: Water

Client Sample ID: FWGLL12mw-DUP3-0338-GW Date Collected: 08/20/13 13:41

Date Received: 08/21/13 07:00

Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
1,1,1-Trichloroethane	0.25	U	1.0	0.25	0.22	ug/L		08/28/13 18:44	1
1,1,2,2-Tetrachloroethane	0.25	U	1.0	0.25	0.18	ug/L		08/28/13 18:44	1
1,1,2-Trichloroethane	0.50	U	1.0	0.50	0.27	ug/L		08/28/13 18:44	1
1,1-Dichloroethane	0.25	U	1.0	0.25	0.15	ug/L		08/28/13 18:44	1
1,1-Dichloroethene	0.25	U	1.0	0.25	0.19	ug/L		08/28/13 18:44	1
1,2-Dichloroethane	0.25	U	1.0	0.25	0.22	ug/L		08/28/13 18:44	1
1,2-Dichloroethene, Total	0.25	U	2.0	0.25	0.17	ug/L		08/28/13 18:44	1
1,2-Dichloropropane	0.25	U	1.0	0.25	0.18	ug/L		08/28/13 18:44	1
2-Hexanone	0.50	U	10	0.50	0.41	ug/L		08/28/13 18:44	1
Bromochloromethane	0.50	U	1.0	0.50	0.29	ug/L		08/28/13 18:44	1
Acetone	1.1	U	10	1.1	1.1	ug/L		08/28/13 18:44	1
Benzene	0.25	U	1.0	0.25	0.13	ug/L		08/28/13 18:44	1
Bromoform	0.64	U	1.0	0.64	0.64	ug/L		08/28/13 18:44	1
Bromomethane	0.50	U	1.0	0.50	0.41	ug/L		08/28/13 18:44	1
Carbon disulfide	0.25	U	1.0	0.25	0.13	ug/L		08/28/13 18:44	1
Carbon tetrachloride	0.25	U	1.0	0.25	0.13	ug/L		08/28/13 18:44	1
Chlorobenzene	0.25	U	1.0	0.25	0.15	ug/L		08/28/13 18:44	1
Chloroethane	0.50	U	1.0	0.50	0.29	ug/L		08/28/13 18:44	1
Chloroform	0.25	U	1.0	0.25	0.16	ug/L		08/28/13 18:44	1
Chloromethane	0.50	U	1.0	0.50	0.30	ug/L		08/28/13 18:44	1
cis-1,2-Dichloroethene	0.25	U	1.0	0.25	0.17	ug/L		08/28/13 18:44	1
cis-1,3-Dichloropropene	0.25	U	1.0	0.25	0.14	ug/L		08/28/13 18:44	1
Bromodichloromethane	0.25	U	1.0	0.25	0.15	ug/L		08/28/13 18:44	1
Ethylbenzene	0.25	U	1.0	0.25	0.17	ug/L		08/28/13 18:44	1
1,2-Dibromoethane	0.25	U	1.0	0.25	0.24	ug/L		08/28/13 18:44	1
m-Xylene & p-Xylene	0.50	U	2.0	0.50	0.24	ug/L		08/28/13 18:44	1
2-Butanone (MEK)	0.57	U	10	0.57	0.57	ug/L		08/28/13 18:44	1
4-Methyl-2-pentanone (MIBK)	0.50	U	10	0.50	0.32	ug/L		08/28/13 18:44	1
Methylene Chloride	0.50	Ü	1.0	0.50	0.33	ug/L		08/28/13 18:44	1
o-Xylene	0.25	U	1.0	0.25	0.14	ug/L		08/28/13 18:44	1
Styrene	0.25	U	1.0	0.25	0.11	ug/L		08/28/13 18:44	- 1
Tetrachloroethene	0.50	U	1.0	0.50	0.29	ug/L		08/28/13 18:44	1
Toluene	0.25	U	1.0	0.25	0.13	ug/L		08/28/13 18:44	1
trans-1,2-Dichloroethene	0.25		1.0	0.25	0.19	ug/L		08/28/13 18:44	1
trans-1,3-Dichloropropene	0.25		1.0	0.25	0.19	ug/L		08/28/13 18:44	1
Trichloroethene	0.25		1.0	0.25	0.17	ug/L		08/28/13 18:44	1
Vinyl chloride	0.25		1.0	0.25	0.22	ug/L		08/28/13 18:44	1
Xylenes, Total	0.25		2.0	0.25	0.14			08/28/13 18:44	-1
Dibromochloromethane	0,25		1.0	0.25		ug/L		08/28/13 18:44	1
Surrogate	%Recovery Qu	ualifier	Limits			Prepare	ed	Analyzed	Dil Fac

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	108		70 - 120		08/28/13 18:44	1
4-Bromofluorobenzene (Surr)	87		75 - 120		08/28/13 18:44	1
Toluene-d8 (Surr)	85		85 - 120		08/28/13 18:44	1
Dibromofluoromethane (Surr)	102		85 - 115		08/28/13 18:44	7

Method: 8270C/DoD - Semivolatil	e Organic Compo	ounds (GC/M	S)						
Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
Bis(2-ethylhexyl) phthalate	0.62	J	1.9	0.48	0.21	ug/L		09/04/13 15:44	1
Butyl henzyl phthalate	0.48	11	1.0	0.48	0.25	ne/l		09/04/13 15:44	- 4

Client: Environmental Quality Mgt., Inc.

Project/Site: RVAAP66 (OH)

TestAmerica Job ID: 240-28145-1

Lab Sample ID: 240-28145-8

Matrix: Water

Client Sample ID: FWGLL12mw-DUP3-0338-GW	
Date Collected: 08/20/13 13:41	

Date Received: 08/21/13 07:00

Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
Diethyl phthalate	0.95	U	1.9	0.95	0.57	ug/L		09/04/13 15:44	1
Dimethyl phthalate	0.48	U	1.9	0.48	0.28	ug/L		09/04/13 15:44	1
Di-n-butyl phthalate	0.70	J	1.9	0.95	0.64	ug/L		09/04/13 15:44	1
Di-n-octyl phthalate	0.48	U	1.9	0.48	0.22	ug/L		09/04/13 15:44	1

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl (Surr)	74		50 - 110	08/22/13 08:06	09/04/13 15:44	1
2-Fluorophenol (Surr)	74		20 - 110	08/22/13 08:06	09/04/13 15:44	1
Nitrobenzene-d5 (Surr)	78		40 - 110	08/22/13 08:06	09/04/13 15:44	1
Phenol-d5 (Surr)	78		10 - 115	08/22/13 08:06	09/04/13 15:44	1
Terphenyl-d14 (Surr)	92		50 - 135	08/22/13 08:06	09/04/13 15:44	1
2,4,6-Tribromophenol (Surr)	93		40 - 125	08/22/13 08:06	09/04/13 15:44	1

Method: 8081/DOD	- Organochlorine	Pesticides (GC)	1
------------------	------------------	-----------------	---

Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
4,4'-DDD	0.019	U	0.048	0.019	0.0092	ug/L		09/11/13 18:59	- 1
4,4'-DDE	0.019	U	0.048	0.019	0.0093	ug/L		09/11/13 18:59	1
4,4'-DDT	0.019	U	0.048	0.019	0.015	ug/L		09/11/13 18:59	1
Aldrin	0.019	U	0.029	0.019	0.0079	ug/L		09/11/13 18:59	1
alpha-BHC	0.019	U	0.029	0.019	0.0067	ug/L		09/11/13 18:59	1
alpha-Chlordane	0.019	U	0.048	0.019	0.013	ug/L		09/11/13 18:59	1
beta-BHC	0.019	U	0.048	0.019	0.0081	ug/L		09/11/13 18:59	1
delta-BHC	0.019	U	0.048	0.019	0.0084	ug/L		09/11/13 18:59	1
Dieldrin	0.019	U	0.029	0.019	0.0072	ug/L		09/11/13 18:59	1
Endosulfan I	0.019	U	0.048	0.019	0.013	ug/L		09/11/13 18:59	1
Endosulfan II	0.019	U	0.048	0.019	0.012	ug/L		09/11/13 18:59	1
Endosulfan sulfate	0.019	U	0.048	0.019	0.011	ug/L		09/11/13 18:59	1
Endrin	0.019	U	0.048	0.019	0.011	ug/L		09/11/13 18:59	1
Endrin aldehyde	0.096	U	0.24	0.096	0.053	ug/L		09/12/13 13:48	5
Endrin ketone	0.019	U	0.048	0.019	0.0075	ug/L		09/11/13 18:59	1
gamma-BHC (Lindane)	0.019	U	0.048	0.019	0.0062	ug/L		09/11/13 18:59	
gamma-Chlordane	0.019	U	0.048	0.019	0.012	ug/L		09/11/13 18:59	1
Heptachlor	0.019	U	0.029	0.019	0.0077	ug/L		09/11/13 18:59	1
Heptachlor epoxide	0.019	U	0.029	0.019	0.0068	ug/L		09/11/13 18:59	1
Methoxychlor	0.048	Ü	0.096	0.048	0.031	ug/L		09/11/13 18:59	1
Toxaphene	0.77	U	1.9	0.77	0.31	ug/L		09/11/13 18:59	1

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
DCB Decachlorobiphenyl	43		30 - 135	08/22/13 07:53	09/11/13 18:59	1
DCB Decachlorobiphenyl	53		30 - 135	08/22/13 07:53	09/11/13 18:59	1
DCB Decachlorobiphenyl	55		30 - 135	08/22/13 07:53	09/12/13 13:48	5
DCB Decachlorobiphenyl	54		30 - 135	08/22/13 07:53	09/12/13 13:48	5
Tetrachloro-m-xylene	76		25 - 140	08/22/13 07:53	09/11/13 18:59	1
Tetrachloro-m-xylene	87		25 - 140	08/22/13 07:53	09/11/13 18:59	1
Tetrachloro-m-xylene	89		25 _ 140	08/22/13 07:53	09/12/13 13:48	5
Tetrachloro-m-xylene	89		25 - 140	08/22/13 07:53	09/12/13 13:48	5

Method:	8330	Modified -	Nitroquanidine	(HPLC)

metrou. cood mounica ina ogu	Result Qualifier LOQ LOD DL Unit D Analyzed Dil Fac					
Analyte	Result Qualifier	LOQ	LOD	DL Unit	D Analyzed	Dil Fac
Nitroguanidine	6.0 U	20	6.0	2.4 ug/L	08/29/13 14:21	1

Client: Environmental Quality Mgt., Inc.

Project/Site: RVAAP66 (OH)

TestAmerica Job ID: 240-28145-1

Lab Sample ID: 240-28145-8

Matrix: Water

Client Sample ID: FWGLL12mw-DUP3-0338-GW

Date Collected: 08/20/13 13:41 Date Received: 08/21/13 07:00

Analyte	Result	Qualifier	LOQ	LOD	DL	Unit D	Analyzed	Dil Fac
1,3,5-Trinitrobenzene	0.053	U	0.16	0.053	0.033	ug/L	08/28/13 21:52	1
1,3-Dinitrobenzene	0.11	U	0.16	0.11	0.053	ug/L	08/28/13 21:52	1
2,4,6-Trinitrotoluene	0.11	U	0.16	0.11	0.053	ug/L	08/28/13 21:52	1
2,4-Dinitrotoluene	0.11	U	0.14	0.11	0.053	ug/L	08/28/13 21:52	1
2,6-Dinitrotoluene	0.11	U	0.14	0.11	0.053	ug/L	08/28/13 21:52	1.
2-Amino-4,6-dinitrotoluene	0.11	U	0.16	0.11	0.016	ug/L	08/28/13 21:52	1
2-Nitrotoluene	0.11	U	0.53	0.11	0.094	ug/L	08/28/13 21:52	1
3-Nitrotoluene	0.11	U	0.53	0.11	0.061	ug/L	08/28/13 21:52	1
4-Nitrotoluene	0.11	U	0.53	0.11	0.094	ug/L	08/28/13 21:52	1
4-Amino-2,6-dinitrotoluene	0.11	U	0.16	0.11	0.053	ug/L	08/28/13 21:52	1
HMX	0.053	U	0.16	0.053	0.038	ug/L	08/28/13 21:52	1
RDX	0.053	U	0.16	0.053	0.038	ug/L	08/28/13 21:52	1
Nitrobenzene	0.11	U	0.16	0.11	0.053	ug/L	08/28/13 21:52	1
Tetryl	0.11	U	0.16	0.11	0.053	ug/L	08/28/13 21:52	1
Nitroglycerin	0.53	U	0.69	0.53	0.35	ug/L	08/28/13 21:52	1
PETN	0.53	U	0.69	0.53	0.32	ug/L	08/28/13 21:52	1
Surrogate	%Recovery Qu	ualifier	Limits			Prepared	Analyzed	Dil Fac
3 4-Dinitrotoluene	88		79 - 111			08/26/13 09:34	08/28/13 21:52	1

General Chemistry Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
Nitrate Nitrite as N	0.011	J	0.050	0.012	0.0053	mg/L		09/06/13 16:48	1
Nitrocellulose	1.0	U	2.0	1.0	0.48	mg/L		09/05/13 13:42	1

Client: Environmental Quality Mgt., Inc.

Project/Site: RVAAP66 (OH)

TestAmerica Job ID: 240-28145-1

Lab Sample ID: 240-28145-9

Matrix: Water

Client Sample ID: FWGLL12mw-DUP3-0338-GF	Lab Sam
Date Collected: 08/20/13 13:41	

Date Received: 08/21/13 07:00

Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
Arsenic	7.7	J	10	10	3.3	ug/L		09/09/13 11:09	1
Chromium	4.0	U	7.0	4.0	1.4	ug/L		09/09/13 11:09	1
Cobalt	4.0	U	7.0	4.0	1.5	ug/L		09/09/13 11:09	1
Lead	5.0	U	10	5.0	1.7	ug/L		09/09/13 11:09	1
Selenium	10	U	15	10	4.0	ug/L		09/09/13 11:09	1
Silver	5.0	U	7.0	5.0	1.7	ug/L		09/09/13 11:09	1
Vanadium	4.0	U	7.0	4.0	1.3	ug/L		09/09/13 11:09	1
Barium	28	J	200	5.0	2.8	ug/L		09/09/13 11:09	1
Calcium	100000		5000	1000	630	ug/L		09/09/13 11:09	1
Copper	10	U	25	10	4.4	ug/L		09/09/13 11:09	1
Magnesium	55000		5000	300	120	ug/L		09/09/13 11:09	1
Manganese	280		15	5.0	1.8	ug/L		09/09/13 11:09	1
Nickel	5.0	U	40	5.0	2.2	ug/L		09/09/13 11:09	-1
		1.2			***				
Potassium	2700	J	5000	900	300	ug/L		09/09/13 11:09	1
Potassium Method: 6020/DOD - Metals (I			5000	900	300	ug/L		09/09/13 11:09	1
Method: 6020/DOD - Metals (I	ICP/MS) - Total Recov		LOQ	LOD	300 DL		D	09/09/13 11:09 Analyzed	Dil Fac
Method: 6020/DOD - Metals (I Analyte	ICP/MS) - Total Recov	verable					D		
Method: 6020/DOD - Metals (I Analyte Aluminum	ICP/MS) - Total Recov Result	verable Qualifier	LOQ	LOD	DL	Unit ug/L	D	Analyzed	
Method: 6020/DOD - Metals (I Analyte Aluminum Antimony	ICP/MS) - Total Recover Result 92	verable Qualifier	LOQ 60	LOD 60	DL 20	Unit ug/L ug/L	D	Analyzed 09/09/13 14:48	
Method: 6020/DOD - Metals (I Analyte Aluminum Antimony Beryllium	ICP/MS) - Total Recover Result 92	verable Qualifier U	60 2.0	60 1.0	DL 20 0.33 0.50	Unit ug/L ug/L	D	Analyzed 09/09/13 14:48 09/09/13 14:48	
Method: 6020/DOD - Metals (I Analyte Aluminum Antimony Beryllium Cadmium	ICP/MS) - Total Recover Result 92 1.0 1.0	verable Qualifier U	60 2.0 1.0	60 1.0 1.0	DL 20 0.33 0.50	Unit ug/L ug/L ug/L ug/L	D	Analyzed 09/09/13 14:48 09/09/13 14:48 09/09/13 14:48	
Method: 6020/DOD - Metals (I Analyte Aluminum Antimony Beryllium Cadmium	ICP/MS) - Total Recover Result 92 1.0 1.0 1.0	verable Qualifier U	60 2.0 1.0 2.0	60 1.0 1.0 1.0	DL 20 0.33 0.50 0.40	Unit ug/L ug/L ug/L ug/L	D	Analyzed 09/09/13 14:48 09/09/13 14:48 09/09/13 14:48	
Method: 6020/DOD - Metals (I Analyte Aluminum Antimony Beryllium Cadmium Iron Sodium	92 1.0 1.0 1.0	Verable Qualifier U U Q U	1.0 2.0 1.0 2.0 150	60 1.0 1.0 1.0	DL 20 0.33 0.50 0.40 44 160	Unit ug/L ug/L ug/L ug/L ug/L ug/L	<u>D</u>	Analyzed 09/09/13 14:48 09/09/13 14:48 09/09/13 14:48 09/09/13 14:48	Dil Fac
Method: 6020/DOD - Metals (I Analyte Aluminum Antimony Beryllium Cadmium Iron Sodium Thallium	Provided Recover Result 92 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	Verable Qualifier U U Q U	LOQ 60 2.0 1.0 2.0 150 1000	LOD 60 1.0 1.0 1.0 1.0 400	DL 20 0.33 0.50 0.40 44 160	Unit ug/L ug/L ug/L ug/L ug/L ug/L	D	Analyzed 09/09/13 14:48 09/09/13 14:48 09/09/13 14:48 09/09/13 14:48 09/09/13 14:48	Dil Fac
	92 1.0 1.0 1.0 24000 1.5	Verable Qualifier U U Q U	LOQ 60 2.0 1.0 2.0 150 1000 2.0	LOD 60 1.0 1.0 1.0 100 400 1.5	DL 20 0.33 0.50 0.40 44 160 0.79	Unit ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	D -	Analyzed 09/09/13 14:48 09/09/13 14:48 09/09/13 14:48 09/09/13 14:48 09/09/13 14:48 09/09/13 14:48	

Client: Environmental Quality Mgt., Inc.

Project/Site: RVAAP66 (OH)

TestAmerica Job ID: 240-28145-1

Lab Sample ID: 240-28145-10

Matrix: Water

Client Sample ID: FWGDETmw-002C-0315-GW

Date Collected: 08/20/13 15:11 Date Received: 08/21/13 07:00

Analyte	Result	Qualifier	LOQ	LOD	DL	Unit C	2 Analyzed	Dil Fac
1,1,1-Trichloroethane	0.25	U	1.0	0.25	0.22	ug/L	08/28/13 19:06	1
1,1,2,2-Tetrachloroethane	0.25	U	1.0	0.25	0.18	ug/L	08/28/13 19:06	1
1,1,2-Trichloroethane	0.50	U	1.0	0.50	0.27	ug/L	08/28/13 19:06	1
1,1-Dichloroethane	0.25	U	1.0	0.25	0.15	ug/L	08/28/13 19:06	1
1,1-Dichloroethene	0.25	U	1.0	0.25	0.19	ug/L	08/28/13 19:06	1
1,2-Dichloroethane	0.25	U	1.0	0.25	0.22	ug/L	08/28/13 19:06	1
1,2-Dichloroethene, Total	0.25	U	2.0	0.25	0.17	ug/L	08/28/13 19:06	1
1,2-Dichloropropane	0.25	U	1.0	0.25	0.18	ug/L	08/28/13 19:06	1
2-Hexanone	0.50	U	10	0.50	0.41	ug/L	08/28/13 19:06	1
Bromochloromethane	0.50	·U	1.0	0.50	0.29	ug/L	08/28/13 19:06	1
Acetone	1.1	U	10	1.1	1.1	ug/L	08/28/13 19:06	1
Benzene	0.25	U	1.0	0.25	0.13	ug/L	08/28/13 19:06	1
Bromoform	0.64	U	1.0	0.64	0.64	ug/L	08/28/13 19:06	-1
Bromomethane	0.50	U	1.0	0.50	0.41	ug/L	08/28/13 19:06	1
Carbon disulfide	0.25	U	1.0	0.25	0.13	ug/L	08/28/13 19:06	1
Carbon tetrachloride	0.25	U	1.0	0.25	0.13	ug/L	08/28/13 19:06	1
Chlorobenzene	0.25	U	1.0	0.25	0.15	ug/L	08/28/13 19:06	1
Chloroethane	0.50	U	1.0	0.50	0.29	ug/L	08/28/13 19:06	1
Chloroform	0.25	U	1.0	0.25	0.16	ug/L	08/28/13 19:06	1
Chloromethane	0.50	U	1.0	0.50	0.30	ug/L	08/28/13 19:06	1
cis-1,2-Dichloroethene	0.25	U	1.0	0.25	0.17	ug/L	08/28/13 19:06	1
cis-1,3-Dichloropropene	0.25	U	1.0	0.25	0.14	ug/L	08/28/13 19:06	1
Bromodichloromethane	0.25	U	1.0	0.25	0.15	ug/L	08/28/13 19:06	1
Ethylbenzene	0.25	U	1.0	0.25	0.17	ug/L	08/28/13 19:06	1
1,2-Dibromoethane	0.25	U	1.0	0.25	0.24	ug/L	08/28/13 19:06	1
m-Xylene & p-Xylene	0.50	U	2.0	0.50	0.24	ug/L	08/28/13 19:06	- 1
2-Butanone (MEK)	0.57	U	10	0.57	0.57	ug/L	08/28/13 19:06	1
4-Methyl-2-pentanone (MIBK)	0.50	U	10	0.50	0.32	ug/L	08/28/13 19:06	1
Methylene Chloride	0.50	U	1.0	0.50	0.33	ug/L	08/28/13 19:06	1
o-Xylene	0.25	U	1.0	0.25	0.14	ug/L	08/28/13 19:06	1
Styrene	0.25	U	1.0	0.25	0.11	ug/L	08/28/13 19:06	1
Tetrachloroethene	0.50	U	1.0	0.50	0.29	ug/L	08/28/13 19:06	1
Toluene	0.25	U	1.0	0.25	0.13	ug/L	08/28/13 19:06	3
trans-1,2-Dichloroethene	0.25	U	1.0	0.25	0.19	ug/L	08/28/13 19:06	1
trans-1,3-Dichloropropene	0.25	U	1.0	0.25	0.19	ug/L	08/28/13 19:06	1
Trichloroethene	0.25	U	1.0	0.25	0.17	ug/L	08/28/13 19:06	1
Vinyl chloride	0.25	U	1.0	0.25	0.22	ug/L	08/28/13 19:06	1
Xylenes, Total	0.25	U	2.0	0.25	0.14	ug/L	08/28/13 19:06	-1
Dibromochloromethane	0.25	U	1.0	0.25	0.18	ug/L	08/28/13 19:06	1
Surrogate	%Recovery Qu	ualifier L	imits			Prepared	Analyzed	Dil Fac

Surrogate	%Recovery Qua	alifier Limits	Prepared Analyz	ed Dil Fac
1,2-Dichloroethane-d4 (Surr)	114	70 - 120	08/28/13	19:06 1
4-Bromofluorobenzene (Surr)	89	75 - 120	08/28/13	19:06 1
Toluene-d8 (Surr)	87	85 - 120	08/28/13	19:06 1
Dibromofluoromethane (Surr)	103	85 115	08/28/13	19:06 1

Method: 8270C/DoD -	Semivolatile Organic	Compounds	(GC/MS)
MICHION. 02/00/DOD -	Schilly Glattic Graatiic	Compounds	CONVISI

Analyte	A CONTRACTOR OF THE PROPERTY O	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
Acenaphthene	0.095	U	0.19	0.095	0.042	ug/L		09/03/13 14:44	- 1
Acenaphthylene	0.095	U	0.19	0.095	0.046	ug/L		09/03/13 14:44	4

TestAmerica Canton

Page 45 of 235

Client: Environmental Quality Mgt., Inc.

Project/Site: RVAAP66 (OH)

TestAmerica Job ID: 240-28145-1

Lab Sample ID: 240-28145-10

Matrix: Water

8

Client Sample ID: FWGDETmw-002C-0315-GW

Date Collected: 08/20/13 15:11 Date Received: 08/21/13 07:00

Method: 8270C/DoD - Semivolatile Organic Compounds (GC/MS) (Continued) LOD Dil Fac Result Qualifier DL Unit D Analyzed 0.095 U 0.19 0.095 0.084 09/03/13 14:44 Anthracene ug/L 0.095 U 0.095 ug/L 0.19 0.028 09/03/13 14:44 1 Benzo[a]anthracene Benzo[a]pyrene 0.095 U 0.19 0.095 0.049 ug/L 09/03/13 14:44 Benzo[b]fluoranthene 0.095 U 0.19 0.095 0.038 ug/L 09/03/13 14:44 0.095 U 0.19 0.095 0.044 ug/L 09/03/13 14:44 1 Benzo[g,h,i]perylene 19 U Benzoic acid 24 19 9.5 ug/L 09/03/13 14:44 1 Benzo[k]fluoranthene 0.095 U 0.19 0.095 0.043 ug/L 09/03/13 14:44 0.48 U 4.8 0.48 0.36 09/03/13 14:44 1 Benzyl alcohol ug/L Bis(2-chloroethoxy)methane 0.48 U 0.95 0.48 0.30 ug/L 09/03/13 14:44 1 Bis(2-chloroethyl)ether 0.095 U 0.95 0.095 0.095 ug/L 09/03/13 14:44 Bis(2-ethylhexyl) phthalate 0.35 J 1.9 0.48 0.21 ug/L 09/03/13 14:44 4-Bromophenyl phenyl ether 0.48 U 1.9 0.48 0.21 ug/L 09/03/13 14:44 0.48 U Butyl benzyl phthalate 1.9 0.48 0.25 ua/L 09/03/13 14:44 1 Carbazole 0.48 U 0.95 0.48 0.27 ug/L 09/03/13 14:44 ug/L 0.48 11 0.48 4-Chloroaniline 1.9 0.20 09/03/13 14:44 4-Chloro-3-methylphenol 0.48 U 0.48 09/03/13 14:44 1.9 0.20 ug/L 2-Chloronaphthalene 0.48 U 0.95 0.48 0.095 ug/L 09/03/13 14:44 2-Chlorophenol 0.48 U 0.95 0.48 0.28 ug/L 09/03/13 14:44 4-Chlorophenyl phenyl ether 0.48 U 1.9 0.48 0.29 09/03/13 14:44 ug/L Chrysene 0.095 U 0.19 0.095 0.048 ug/L 09/03/13 14:44 Dibenz(a,h)anthracene 0.095 U 0.19 0.095 0.042 ua/L 09/03/13 14:44 0.095 U Dibenzofuran 0.95 0.095 0.019 ug/L 09/03/13 14:44 1,2-Dichlorobenzene 0.48 U 0.95 0.48 0.28 ug/L 09/03/13 14:44 1 1,3-Dichlorobenzene 0.48 U 0.95 0.48 0.22 ug/L 09/03/13 14:44 1,4-Dichlorobenzene 0.48 U 0.95 0.48 0.32 ug/L 09/03/13 14:44 3,3'-Dichlorobenzidine 0.95 U 4.8 0.95 0.35 09/03/13 14:44 ug/L 0.48 U 0.48 09/03/13 14:44 2,4-Dichlorophenol 1.9 0.18 ug/L Diethyl phthalate 0.95 U 0.95 19 0.57 ug/L 09/03/13 14:44 2,4-Dimethylphenol 0.48 U 1.9 0.48 0.24 ug/L 09/03/13 14:44 0.48 U 1.9 0.48 09/03/13 14:44 Dimethyl phthalate 0.28 ug/L Di-n-butyl phthalate 0.95 U 1.9 0.95 0.64 ug/L 09/03/13 14:44 4,6-Dinitro-2-methylphenol 3.8 U 4.8 3.8 2.3 ua/L 09/03/13 14:44 2,4-Dinitrophenol 0.95 U 4.8 0.95 0.30 ug/L 09/03/13 14:44 Di-n-octyl phthalate 0.48 U 1.9 0.48 0.22 ug/L 09/03/13 14:44 Fluoranthene 0.095 U 0.19 0.095 0.042 ug/L 09/03/13 14:44 0.095 U 0.19 0.095 0.039 ug/L 09/03/13 14:44 Fluorene 0.095 U 0.095 0.081 Hexachlorobenzene 0.19 ug/L 09/03/13 14:44 Hexachlorobutadiene 0.48 U 0.95 0.48 0.26 ug/L 09/03/13 14:44 Hexachlorocyclopentadiene 0 48 U 9.5 0.48 0.23 ug/L 09/03/13 14:44 0.48 U 0.95 0.48 Hexachloroethane 0.18 ug/L 09/03/13 14:44 ug/L 0.095 U 0.19 0.095 0.041 Indeno[1,2,3-cd]pyrene 09/03/13 14:44 1 0.26 Isophorone 0.48 U 0.95 0.48 ug/L 09/03/13 14:44 0.095 U 0.095 2-Methylnaphthalene 0.19 0.086 09/03/13 14:44 ug/L 2-Methylphenol 0.48 U 0.95 0.48 0.16 ug/L 09/03/13 14:44 3 & 4 Methylphenol 0.95 U 1.9 0.95 09/03/13 14:44 0.76 ug/L Naphthalene 0.095 U 0.19 0.095 0.060 ug/L 09/03/13 14:44 2-Nitroaniline 0.48 U 1,9 0.48 0.20 ug/L 09/03/13 14:44 0.48 U 1.9 0.48 09/03/13 14:44 3-Nitroaniline 0.27 ug/L 0.48 U 4-Nitroaniline 19 0.48 0.21 ug/L 09/03/13 14:44

Client: Environmental Quality Mgt., Inc.

Project/Site: RVAAP66 (OH)

TestAmerica Job ID: 240-28145-1

Lab Sample ID: 240-28145-10

Matrix: Water

Client Sample ID: FWGDETmw-002C-0315-GW

Date Collected: 08/20/13 15:11 Date Received: 08/21/13 07:00

Method: 8270C/DoD - Semivo	latile Organic Compo	ounds (GC	C/MS) (Continue	d)				
Analyte	Result	Qualifier	LOQ	LOD	DL	Unit D	Analyzed	Dil Fac
2-Nitrophenol	0.48	U	1.9	0.48	0.27	ug/L	09/03/13 14:44	1
4-Nitrophenol	3.8	U	4.8	3.8	0.28	ug/L	09/03/13 14:44	1
N-Nitrosodi-n-propylamine	0.48	U	0.95	0.48	0.23	ug/L	09/03/13 14:44	1
N-Nitrosodiphenylamine	0.48	U	0.95	0.48	0.30	ug/L	09/03/13 14:44	1
2,2'-oxybis[1-chloropropane]	0.48	U	0.95	0.48	0.38	ug/L	09/03/13 14:44	1
Pentachlorophenol	0.95	U	4.8	0.95	0.26	ug/L	09/03/13 14:44	1
Phenanthrene	0.095	U	0.19	0.095	0.059	ug/L	09/03/13 14:44	1
Phenol	0.95	U	0.95	0.95	0.57	ug/L	09/03/13 14:44	1
Pyrene	0.095	U	0.19	0.095	0.040	ug/L	09/03/13 14:44	1
1,2,4-Trichlorobenzene	0.48	U	0.95	0.48	0.27	ug/L	09/03/13 14:44	1
2,4,5-Trichlorophenol	0.48	U	4.8	0.48	0.29	ug/L	09/03/13 14:44	1
2,4,6-Trichlorophenol	0.48	U	4.8	0.48	0.23	ug/L	09/03/13 14:44	1
Surrogate	%Recovery Qu	ualifier	Limits			Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl (Surr)	62.		50 - 110			08/22/13 08:06	09/03/13 14:44	1
2-Fluorophenol (Surr)	62		20 - 110			08/22/13 08:06	09/03/13 14:44	1
Nitrobenzene-d5 (Surr)	68		40 - 110			08/22/13 08:06	09/03/13 14:44	1
Phenol-d5 (Surr)	68		10 - 115			08/22/13 08:06	09/03/13 14:44	1
Terphenyl-d14 (Surr)	76		50 - 135			08/22/13 08:06	09/03/13 14:44	1
2,4,6-Tribromophenol (Surr)	83		40 - 125			08/22/13 08:06	09/03/13 14:44	1

Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
4,4'-DDD	0.019	U	0.048	0.019	0.0092	ug/L		09/11/13 19:19	1
4,4'-DDE	0.019	U	0.048	0.019	0.0093	ug/L		09/11/13 19:19	1
4,4'-DDT	0.019	U	0.048	0.019	0.015	ug/L		09/11/13 19:19	1
Aldrin	0.019	U	0.029	0.019	0.0079	ug/L		09/11/13 19:19	1
alpha-BHC	0.019	U	0.029	0.019	0.0067	ug/L		09/11/13 19:19	1
alpha-Chlordane	0.019	U	0.048	0.019	0.013	ug/L		09/11/13 19:19	1
beta-BHC	0.011	JQ	0.048	0.019	0.0081	ug/L		09/11/13 19:19	1
delta-BHC	0.019	U	0.048	0.019	0.0084	ug/L		09/11/13 19:19	1
Dieldrin	0.019	U	0.029	0.019	0.0072	ug/L		09/11/13 19:19	1
Endosulfan I	0.019	U	0.048	0.019	0.013	ug/L		09/11/13 19:19	1
Endosulfan II	0.019	U	0.048	0.019	0.012	ug/L		09/11/13 19:19	1
Endosulfan sulfate	0.019	U	0.048	0.019	0.011	ug/L		09/11/13 19:19	1
Endrin	0.019	U	0.048	0.019	0.011	ug/L		09/11/13 19:19	1
Endrin aldehyde	0.019	U	0.048	0.019	0.011	ug/L		09/11/13 19:19	1
Endrin ketone	0.019	U	0.048	0.019	0.0075	ug/L		09/11/13 19:19	1
gamma-BHC (Lindane)	0.019	U	0.048	0.019	0.0062	ug/L		09/11/13 19:19	9
gamma-Chlordane	0.019	U	0.048	0.019	0.012	ug/L		09/11/13 19:19	1
Heptachlor	0.019	U	0.029	0.019	0.0077	ug/L		09/11/13 19:19	1
Heptachlor epoxide	0.019	U	0.029	0.019	0,0068	ug/L		09/11/13 19:19	1
Methoxychlor	0.048	U	0.096	0.048	0.031	ug/L		09/11/13 19:19	4
Toxaphene	0.77	U	1.9	0.77	0.31	ug/L		09/11/13 19:19	1
2	4.5	De				- Division and		Andrew !	- nu -

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
DCB Decachlorobiphenyl	61		30 - 135	08/22/13 07:53	09/11/13 19:19	1
DCB Decachlorobiphenyl	74		30 - 135	08/22/13 07:53	09/11/13 19:19	7
Tetrachloro-m-xylene	79		25 - 140	08/22/13 07:53	09/11/13 19:19	1
Tetrachloro-m-xylene	92		25 - 140	08/22/13 07:53	09/11/13 19:19	1

TestAmerica Canton

Page 47 of 235

10/7/2013

3

6

ŏ

. It

13

14

Client: Environmental Quality Mgt., Inc.

Client Sample ID: FWGDETmw-002C-0315-GW

Project/Site: RVAAP66 (OH)

Date Collected: 08/20/13 15:11

Date Received: 08/21/13 07:00

General Chemistry

Analyte

Cyanide, Total

Nitrocellulose

TestAmerica Job ID: 240-28145-1

Lab Sample ID: 240-28145-10

Campic 15. 240-20140-10

Matrix: Water

Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fa
Aroclor-1016	0.19	UHQ	0.48	0.19	0.16	ug/L		09/04/13 14:28	
Aroclor-1221	0.19	UH	0.48	0.19	0.12	ug/L		09/04/13 14:28	
Aroclor-1232	0.19	UH	0.48	0.19	0.15	ug/L		09/04/13 14:28	
Aroclor-1242	0.38	UH	0.48	0.38	0.21	ug/L		09/04/13 14:28	
Aroclor-1248	0.19	UH	0.48	0.19	0.095	ug/L		09/04/13 14:28	
Aroclor-1254	0.19	UH	0.48	0.19	0.15	ug/L		09/04/13 14:28	
Aroclor-1260	0.19	UHQ	0.48	0.19	0.16	ug/L		09/04/13 14:28	
Surrogate	%Recovery Q	ualifier	Limits			Prep	ared	Analyzed	Dil Fa
Tetrachloro-m-xylene	63		40 - 140			08/30/1	3 08:32	09/04/13 14:28	
Tetrachloro-m-xylene	70		40 - 140			08/30/1	3 08:32	09/04/13 14:28	
DCB Decachlorobiphenyl	37 Q		40 - 135			08/30/1	3 08:32	09/04/13 14:28	
DCB Decachlorobiphenyl	36 Q		40 - 135			08/30/1	3 08:32	09/04/13 14:28	
Method: 8330 Modified - Nitro	oguanidine (HPLC)								
Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fa
Nitroguanidine	6.0	U	20	6.0	2.4	ug/L		08/29/13 14:39	
Method: 8330A - Nitroaroma	tics and Nitramines								
Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fa
1,3,5-Trinitrobenzene	0.053	U	0.16	0.053	0.033	ug/L		08/30/13 18:39	
1,3-Dinitrobenzene	0.11	U	0.16	0.11	0.053	ug/L		08/28/13 22:36	
2,4,6-Trinitrotoluene	0.11	U	0.16	0.11	0.053	ug/L		08/28/13 22:36	
2,4-Dinitrotoluene	0.11	U	0.14	0.11	0.053	ug/L		08/28/13 22:36	
2,6-Dinitrotoluene	0.11	U	0.14	0.11	0.053	ug/L		08/28/13 22:36	
2-Amino-4,6-dinitrotoluene	0.11	U	0.16	0.11	0.016	ug/L		08/28/13 22:36	
2-Nitrotoluene	0.11	U	0.53	0.11	0.094	ug/L		08/28/13 22:36	
3-Nitrotoluene	0.11	U	0.53	0.11	0.061	ug/L		08/28/13 22:36	
4-Nitrotoluene	0.11	U	0.53	0.11	0.094	ug/L		08/28/13 22:36	
4-Amino-2,6-dinitrotoluene	0.11	U	0.16	0.11	0.053	ug/L		08/28/13 22:36	
HMX	0.053	U	0.16	0.053	0.038	ug/L		08/28/13 22:36	
RDX	0.053	U	0.16	0.053	0.038	ug/L		08/28/13 22:36	
Nitrobenzene	0.11	U	0.16	0.11	0.053	ug/L		08/28/13 22:36	
	0.11	U	0.16	0.11	0.053	ug/L		08/28/13 22:36	
Tetryl		UM	0.69	0.53	0.35	ug/L		08/28/13 22:36	
	0.53			0.50	0.32	ug/L		08/28/13 22:36	
Nitroglycerin	0.53	U	0.69	0.53	0.02	ugic		DOI LOTTO LLIGO	
Tetryl Nitroglycerin PETN Surrogate	43133		0.69	0.53	0.02	Prep	ared	Analyzed	Dil Fa
Nitroglycerin PETN	0.53			0.53	3.32				Dil Fa

TestAmerica Canton

Analyzed

08/23/13 13:25

09/05/13 13:44

Dil Fac

LOQ

0.010

2.0

LOD

0.010

1.0

DL Unit

0.48 mg/L

0.0032 mg/L

Result Qualifier

0.010 U

1.0 U

3

5

_

H

13

14

15

Client: Environmental Quality Mgt., Inc.

Client Sample ID: FWGDETmw-002C-0315-GF

Project/Site: RVAAP66 (OH)

Date Collected: 08/20/13 15:11

Analyte

Hg

TestAmerica Job ID: 240-28145-1

Lab Sample ID: 240-28145-11

Matrix: Water

Method: 6860 - Perchlorate by nalyte		Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fa
erchlorate	0.012		0.050	0.020	0.0088			09/07/13 00:56	
Anthod: 6040B/DOD Matala	(ICD) Total Passyon	abla							
Method: 6010B/DOD - Metals (Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fa
rsenic			10	10		ug/L	- 3	09/09/13 11:14	50.0
hromium	4.0	U	7.0	4.0		ug/L		09/09/13 11:14	
obalt	4.0	U	7.0	4.0		ug/L		09/09/13 11:14	
ead	5.0	U	10	5.0				09/09/13 11:14	
elenium	10	U	15	10	4.0			09/09/13 11:14	
ilver	5.0	U	7.0	5.0	1.7			09/09/13 11:14	
anadium	4.0	U	7.0	4.0		ug/L		09/09/13 11:14	
arium	37	J	200	5.0		ug/L		09/09/13 11:14	
alcium	89000		5000	1000		ug/L		09/09/13 11:14	
copper	10	U	25	10	4.4	ug/L		09/09/13 11:14	
lagnesium	32000		5000	300	120	ug/L		09/09/13 11:14	
langanese	56		15	5.0		ug/L		09/09/13 11:14	
lickel	5.0	U	40	5.0	2.2	ug/L		09/09/13 11:14	
otassium	3100	J	5000	900		ug/L		09/09/13 11:14	
Method: 6020/DOD - Metals (IC	P/MS) - Total Recov	verable							
nalyte		Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil F
luminum	60	U	60	60	20	ug/L		09/09/13 14:56	
ntimony	1.0	U	2.0	1.0	0.33	ug/L		09/09/13 14:56	
eryllium	1.0	UQ	1.0	1.0	0.50	ug/L		09/09/13 14:56	
admium	1.0	U	2.0	1.0		ug/L		09/09/13 14:56	
on	93	J	150	100		ug/L		09/09/13 14:56	
odium	17000		1000	400	160	ug/L		09/09/13 14:56	
odium	4.5	11	2.0	1.5	0.79	ug/L		09/09/13 14:56	
hallium	1.5	U	2.0						

LOQ

0.20

LOD

0.20

DL Unit

0.12 ug/L

Result Qualifier

0.20 U

TestAmerica Canton

Analyzed

09/04/13 15:22

Dil Fac

Client: Environmental Quality Mgt., Inc.

Project/Site: RVAAP66 (OH)

TestAmerica Job ID: 240-28145-1

Lab Sample ID: 240-28145-12

Matrix: Water

Client Sample ID: FWGDA2mw-114-0312-GW Date Collected: 08/20/13 17:05

Date Received: 08/21/13 07:00

Acenaphthylene

Analyte		Qualifier		LOQ	LOD	DL	Unit	D Analyzed	Dil Fac
1,1,1-Trichloroethane	0.25	U		1.0	0.25	0.22	ug/L	08/28/13 19:28	1
1,1,2,2-Tetrachloroethane	0.25	U		1.0	0.25	0.18	ug/L	08/28/13 19:28	1
1,1,2-Trichloroethane	0.50	U		1.0	0.50	0.27	ug/L	08/28/13 19:28	1
1,1-Dichloroethane	0.25	U		1.0	0.25	0.15	ug/L	08/28/13 19;28	1
1,1-Dichloroethene	0.25	U		1.0	0.25	0.19	ug/L	08/28/13 19:28	1
1,2-Dichloroethane	0.25	U		1.0	0.25	0.22	ug/L	08/28/13 19:28	1
1,2-Dichloroethene, Total	0.25	U		2.0	0.25	0.17	ug/L	08/28/13 19:28	1
1,2-Dichloropropane	0.25	U		1.0	0.25	0.18	ug/L	08/28/13 19:28	1
2-Hexanone	0.50	U		10	0.50	0.41	ug/L	08/28/13 19:28	1
Bromochloromethane	0.50	U		1.0	0.50	0.29	ug/L	08/28/13 19:28	1
Acetone	1.1	U		10	1.1	1.1	ug/L	08/28/13 19:28	1
Benzene	0.25	U		1.0	0.25	0.13	ug/L	08/28/13 19:28	1
Bromoform	0.64	U		1.0	0.64	0.64	ug/L	08/28/13 19:28	1
Bromomethane	0.50	U		1.0	0.50	0.41	ug/L	08/28/13 19:28	1
Carbon disulfide	0.25	U		1.0	0.25	0.13	ug/L	08/28/13 19:28	1
Carbon tetrachloride	0.25	U		1.0	0.25	0.13	ug/L	08/28/13 19:28	1
Chlorobenzene	0.25	U		1.0	0.25	0.15	ug/L	08/28/13 19:28	1
Chloroethane	0.50	U		1.0	0.50	0.29	ug/L	08/28/13 19:28	1
Chloroform	0.25	U		1.0	0.25	0.16	ug/L	08/28/13 19:28	1
Chloromethane	0.50	U		1.0	0.50	0.30	ug/L	08/28/13 19:28	1
cis-1,2-Dichloroethene	0.25	U		1.0	0.25	0.17	ug/L	08/28/13 19:28	1
cis-1,3-Dichloropropene	0.25	U		1.0	0.25	0.14	ug/L	08/28/13 19:28	1
Bromodichloromethane	0.25	U		1.0	0.25	0.15	ug/L	08/28/13 19:28	1
Ethylbenzene	0.25	U		1.0	0.25	0.17	ug/L	08/28/13 19:28	1
1,2-Dibromoethane	0.25	U		1.0	0.25	0.24	ug/L	08/28/13 19:28	1
m-Xylene & p-Xylene	0,50	U		2.0	0.50	0.24	ug/L	08/28/13 19:28	- 1
2-Butanone (MEK)	0.57	U		10	0.57	0.57	ug/L	08/28/13 19:28	1
4-Methyl-2-pentanone (MIBK)	0.50	U		10	0.50	0.32	ug/L	08/28/13 19:28	1
Methylene Chloride	0.50	U		1.0	0.50	0.33	ug/L	08/28/13 19:28	1
o-Xylene	0.25	U		1.0	0.25	0.14	ug/L	08/28/13 19:28	1
Styrene	0.25	U		1.0	0.25	0.11	ug/L	08/28/13 19:28	- 1
Tetrachloroethene	0.50	U		1.0	0.50	0.29	ug/L	08/28/13 19:28	1
Toluene	0.25	U		1.0	0.25	0.13	ug/L	08/28/13 19:28	- 1
trans-1,2-Dichloroethene	0.25	U		1.0	0.25	0.19	ug/L	08/28/13 19:28	1
trans-1,3-Dichloropropene	0.25	U		1.0	0.25	0.19	ug/L	08/28/13 19:28	1
Trichloroethene	0.25	U		1.0	0.25	0.17	ug/L	08/28/13 19:28	1
Vinyl chloride	0.25	U		1.0	0.25	0.22	ug/L	08/28/13 19:28	1
Xylenes, Total	0.25	U		2.0	0.25	0.14	ug/L	08/28/13 19:28	1
Dibromochloromethane	0.25	U		1.0	0.25	0.18	ug/L	08/28/13 19:28	1
Surrogate	%Recovery Qu	ualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	110		70 - 120					08/28/13 19:28	1

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	110		70 - 120		08/28/13 19:28	1
4-Bromofluorobenzene (Surr)	89		75 - 120		08/28/13 19:28	1
Toluene-d8 (Surr)	86		85 - 120		08/28/13 19:28	1
Dibromofluoromethane (Surr)	99		85 - 115		08/28/13 19:28	1

Method: 8270C/DoD - Semivo	olatile Organic Compo	ounds (GC/M	S)						
Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
Acenaphthene	0.095	U	0.19	0.095	0.042	ug/L		09/03/13 15:09	1

0.19

0.095

0.046 ug/L

0.095 U

TestAmerica Canton

09/03/13 15:09

Page 50 of 235

3

4

5

8

- 3

16

1.011

U.C.

Client: Environmental Quality Mgt., Inc.

Project/Site: RVAAP66 (OH)

TestAmerica Job ID: 240-28145-1

Lab Sample ID: 240-28145-12

Matrix: Water

Client Sample ID: FWGDA2mw-114-0312-GW

Date Collected: 08/20/13 17:05

Date Received: 08/21/13 07:00 Method: 8270C/DoD - Semivolatile Organic Compounds (GC/MS) (Continued) LOD Dil Fac Result Qualifier DL Unit D Analyzed 0.095 U 0.19 0.095 0.084 09/03/13 15:09 Anthracene ug/L 0.095 U 0.095 ug/L 0.19 0.028 09/03/13 15:09 1 Benzo[a]anthracene Benzo[a]pyrene 0.095 U 0.19 0.095 0.049 09/03/13 15:09 Benzo[b]fluoranthene 0.095 U 0.19 0.095 0.038 ug/L 09/03/13 15:09 0.095 U 0.19 0.095 0.044 ug/L 09/03/13 15:09 1 Benzo[g,h,i]perylene 19 U Benzoic acid 24 19 9.5 ug/L 09/03/13 15:09 Benzo[k]fluoranthene 0.095 U 0.19 0.095 0.043 ug/L 09/03/13 15:09 0.48 U 4.8 0.48 0.36 09/03/13 15:09 1 Benzyl alcohol ug/L Bis(2-chloroethoxy)methane 0.48 U 0.95 0.48 0.30 ug/L 09/03/13 15:09 Bis(2-chloroethyl)ether 0.095 U 0.95 0.095 0.095 ug/L 09/03/13 15:09 Bis(2-ethylhexyl) phthalate 0.35 J 1.9 0.48 0.21 ug/L 09/03/13 15:09 4-Bromophenyl phenyl ether 0.48 U 1.9 0.48 0.21 ug/L 09/03/13 15:09 0.48 U 09/03/13 15:09 Butyl benzyl phthalate 1.9 0.48 0.25 ug/L 1 Carbazole 0.48 U 0.95 0.48 0.27 ug/L 09/03/13 15:09 0.48 11 0.48 ug/L 4-Chloroaniline 1.9 0.20 09/03/13 15:09 4-Chloro-3-methylphenol 0.48 U 0.48 09/03/13 15:09 1.9 0.20 ug/L 2-Chloronaphthalene 0.48 U 0.95 0.48 0.095 ug/L 09/03/13 15:09 2-Chlorophenol 0.48 U 0.95 0.48 0.28 ug/L 09/03/13 15:09 4-Chlorophenyl phenyl ether 0.48 U 1.9 0.48 0.29 09/03/13 15:09 ug/L Chrysene 0.095 U 0.19 0.095 0.048 ug/L 09/03/13 15:09 Dibenz(a,h)anthracene 0.095 U 0.19 0.095 0.042 ua/L 09/03/13 15:09 0.095 U Dibenzofuran 0.95 0.095 0.019 ug/L 09/03/13 15:09 1,2-Dichlorobenzene 0.48 U 0.95 0.48 0.28 ug/L 09/03/13 15:09 1 1,3-Dichlorobenzene 0.48 U 0.95 0.48 0.22 ug/L 09/03/13 15:09 1,4-Dichlorobenzene 0.48 U 0.95 0.48 0.32 ug/L 09/03/13 15:09 3,3'-Dichlorobenzidine 0.95 U 4.8 0.95 0.35 09/03/13 15:09 ug/L 0.48 U 0.48 2,4-Dichlorophenol 1.9 0.18 ug/L 09/03/13 15:09 Diethyl phthalate 0.95 U 0.95 19 0.57 ug/L 09/03/13 15:09 2,4-Dimethylphenol 0.48 U 1.9 0.48 0.24 ug/L 09/03/13 15:09 0.48 U 1.9 0.48 09/03/13 15:09 Dimethyl phthalate 0.28 ug/L Di-n-butyl phthalate 0.95 U 1.9 0.95 0.64 ug/L 09/03/13 15:09 4,6-Dinitro-2-methylphenol 3.8 U 4.8 3.8 2.3 ua/L 09/03/13 15:09 2,4-Dinitrophenol 0.95 U 4.8 0.95 0.30 ug/L 09/03/13 15:09 Di-n-octyl phthalate 0.48 U 1.9 0.48 0.22 ug/L 09/03/13 15:09 Fluoranthene 0.095 U 0.19 0.095 0.042 ug/L 09/03/13 15:09 0.095 U 0.19 0.095 0.039 ug/L 09/03/13 15:09 Fluorene 0.095 U 0.095 Hexachlorobenzene 0.19 0.081 ug/L 09/03/13 15:09 Hexachlorobutadiene 0.48 U 0.95 0.48 0.26 ug/L 09/03/13 15:09 Hexachlorocyclopentadiene 0 48 U 9.5 0.48 0.23 ug/L 09/03/13 15:09 0.48 U 0.95 0.48 Hexachloroethane 0.18 ug/L 09/03/13 15:09 ug/L 0.095 U 0.19 0.095 0.041 Indeno[1,2,3-cd]pyrene 09/03/13 15:09 0.26 Isophorone 0.48 U 0.95 0.48 ug/L 09/03/13 15:09 0.095 U 0.095 2-Methylnaphthalene 0.19 0.086 09/03/13 15:09 ug/L 2-Methylphenol 0.48 U 0.95 0.48 0.16 ug/L 09/03/13 15:09 3 & 4 Methylphenol 0.95 U 1.9 0.95 09/03/13 15:09 0.76 ug/L Naphthalene 0.095 U 0.19 0.095 0.060 ug/L 09/03/13 15:09 2-Nitroaniline 0.48 U 1,9 0.48 0.20 ug/L 09/03/13 15:09 0.48 U 1.9 0.48 3-Nitroaniline 0.27 ug/L 09/03/13 15:09 0.48 U 4-Nitroaniline 19 0.48 0.21 ug/L 09/03/13 15:09

TestAmerica Canton

8

Client: Environmental Quality Mgt., Inc.

Project/Site: RVAAP66 (OH)

TestAmerica Job ID: 240-28145-1

Lab Sample ID: 240-28145-12

Matrix: Water

Client Sample ID: FWGDA2mw-114-0312-GW

Date Collected: 08/20/13 17:05 Date Received: 08/21/13 07:00

Analyte	Resu	lt Qualifier	LOQ	LOD	DL	Unit D	Analyzed	Dil Fac
2-Nitrophenol	0.4	8 U	1.9	0.48	0.27	ug/L	09/03/13 15:09	1
4-Nitrophenol	3.	8 U	4.8	3.8	0.28	ug/L	09/03/13 15:09	1
N-Nitrosodi-n-propylamine	0.4	8 U	0.95	0.48	0.23	ug/L	09/03/13 15:09	1
N-Nitrosodiphenylamine	0.4	8 U	0.95	0.48	0.30	ug/L	09/03/13 15:09	1
2,2'-oxybis[1-chloropropane]	0.4	8 U	0.95	0.48	0.38	ug/L	09/03/13 15:09	1
Pentachlorophenol	0.9	5 U	4.8	0.95	0.26	ug/L	09/03/13 15:09	1
Phenanthrene	0.09	5 U	0.19	0.095	0.059	ug/L	09/03/13 15:09	1
Phenol	0.9	5 U	0.95	0.95	0.57	ug/L	09/03/13 15:09	1
Pyrene	0.09	5 U	0.19	0.095	0.040	ug/L	09/03/13 15:09	1
1,2,4-Trichlorobenzene	0.4	8 U	0.95	0.48	0.27	ug/L	09/03/13 15:09	1
2,4,5-Trichlorophenol	0.4	8 U	4.8	0.48	0.29	ug/L	09/03/13 15:09	- 1
2,4,6-Trichlorophenol	0.4	8 U	4.8	0.48	0.23	ug/L	09/03/13 15:09	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl (Surr)	64		50 - 110			08/22/13 08:06	09/03/13 15:09	1
2-Fluorophenol (Surr)	68		20 - 110			08/22/13 08:06	09/03/13 15:09	1
Nitrobenzene-d5 (Surr)	70		40 - 110			08/22/13 08:06	09/03/13 15:09	1
Phenol-d5 (Surr)	72		10 - 115			08/22/13 08:06	09/03/13 15:09	1
Terphenyl-d14 (Surr)	79		50 - 135			08/22/13 08:06	09/03/13 15:09	1
2,4,6-Tribromophenol (Surr)	82		40 - 125			08/22/13 08:06	09/03/13 15:09	1

Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
4,4'-DDD	0.019	U	0.048	0.019	0.0091	ug/L		09/11/13 20:41	1
4,4'-DDE	0.019	U	0.048	0.019	0.0092	ug/L		09/11/13 20:41	1
4,4'-DDT	0.019	U	0.048	0.019	0.015	ug/L		09/11/13 20:41	- 1
Aldrin	0.019	U	0.029	0.019	0.0078	ug/L		09/11/13 20:41	1
alpha-BHC	0.019	U	0.029	0.019	0.0067	ug/L		09/11/13 20:41	1
alpha-Chlordane	0.019	U	0.048	0.019	0.013	ug/L		09/11/13 20:41	1
beta-BHC	0.019	U	0.048	0.019	0.0080	ug/L		09/11/13 20:41	1
delta-BHC	0.019	U	0.048	0.019	0.0083	ug/L		09/11/13 20:41	1
Dieldrin	0.019	U	0.029	0.019	0.0071	ug/L		09/11/13 20:41	1
Endosulfan I	0.019	U	0.048	0.019	0.012	ug/L		09/11/13 20:41	1
Endosulfan II	0.019	U	0.048	0.019	0.011	ug/L		09/11/13 20:41	1
Endosulfan sulfate	0.019	U	0.048	0.019	0.010	ug/L		09/11/13 20:41	1
Endrin	0.019	U	0.048	0.019	0.010	ug/L		09/11/13 20:41	1
Endrin aldehyde	0.019	U	0.048	0.019	0.010	ug/L		09/11/13 20:41	1
Endrin ketone	0.019	U	0.048	0.019	0.0074	ug/L		09/11/13 20:41	1
gamma-BHC (Lindane)	0.019	U	0.048	0.019	0.0061	ug/L		09/11/13 20:41	9
gamma-Chlordane	0.019	U	0.048	0.019	0.011	ug/L		09/11/13 20:41	1
Heptachlor	0.019	U	0.029	0.019	0.0076	ug/L		09/11/13 20:41	1
Heptachlor epoxide	0.019	U	0.029	0.019	0.0068	ug/L		09/11/13 20:41	1
Methoxychlor	0.048	U	0.095	0.048	0.030	ug/L		09/11/13 20:41	3
Toxaphene	0.76	U	1.9	0.76	0.30	ug/L		09/11/13 20:41	1
200	1 Table 1 Table 1	-5.00					1.3	6.4734	2.25

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
DCB Decachlorobiphenyl	50		30 - 135	08/22/13 07:53	09/11/13 20:41	1
DCB Decachlorobiphenyl	49		30 - 135	08/22/13 07:53	09/11/13 20:41	7
Tetrachloro-m-xylene	88		25 - 140	08/22/13 07:53	09/11/13 20:41	7
Tetrachloro-m-xylene	97		25 - 140	08/22/13 07:53	09/11/13 20:41	1

TestAmerica Canton

Page 52 of 235

10/7/2013

3

15

7

9

13

14

Client: Environmental Quality Mgt., Inc.

Project/Site: RVAAP66 (OH)

TestAmerica Job ID: 240-28145-1

Lab Sample ID: 240-28145-12

Odinpic 1D. 240-20140-12

Matrix: Water

Date	Collected:	08/20/13	17:05

Client Sample ID: FWGDA2mw-114-0312-GW

Date Received: 08/21/13 07:00

Cyanide, Total

Nitrocellulose

Analyte		Qualifier		LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
Aroclor-1016	0.19	UHQ		0.48	0.19	0.16	ug/L		09/04/13 14:43	1
Aroclor-1221	0.19	UH		0.48	0.19	0.12	ug/L		09/04/13 14:43	1
Aroclor-1232	0.19	UH		0.48	0.19	0.15	ug/L		09/04/13 14:43	1
Aroclor-1242	0.38	UH		0.48	0.38	0.21	ug/L		09/04/13 14:43	1
Aroclor-1248	0.19	UH		0.48	0.19	0.095	ug/L		09/04/13 14:43	1
Aroclor-1254	0.19	UH		0.48	0.19	0.15	ug/L		09/04/13 14:43	1
Aroclor-1260	0.19	UHQ		0.48	0.19	0.16	ug/L		09/04/13 14:43	1
Surrogate	%Recovery Qu	ualifier	Limits				Prep	pared	Analyzed	Dil Fac
Tetrachloro-m-xylene	69		40 - 140				08/30/1	3 08:32	09/04/13 14:43	1
Tetrachloro-m-xylene	77		40 - 140				08/30/1	3 08:32	09/04/13 14:43	1
DCB Decachlorobiphenyl	41		40 - 135				08/30/1	3 08:32	09/04/13 14:43	1
DCB Decachlorobiphenyl	41		40 - 135				08/30/1	3 08:32	09/04/13 14:43	1
Method: 8330 Modified - Nitro	oguanidine (HPLC)									
Analyte		Qualifier		LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
Nitroguanidine	6.0	U		20	6.0	2.4	ug/L		08/29/13 14:57	1
Method: 8330A - Nitroaromat	ics and Nitramines									
Analyte	Result	Qualifier		LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
1,3,5-Trinitrobenzene	0.053	U		0.16	0.053	0.033	ug/L		08/29/13 00:03	1
1,3-Dinitrobenzene	0.11	U		0.16	0.11	0.053	ug/L		08/29/13 00:03	1
2,4,6-Trinitrotoluene	0.11	U		0.16	0.11	0.053	ug/L		08/29/13 00:03	1
2,4-Dinitrotoluene	0.11	U		0.14	0.11	0.053	ug/L		08/29/13 00:03	9
2,6-Dinitrotoluene	0.11	U		0.14	0.11	0.053	ug/L		08/29/13 00:03	1
2-Amino-4,6-dinitrotoluene	0.11	U		0.16	0.11	0.016	ug/L		08/29/13 00:03	1
2-Nitrotoluene	0.11	U		0.53	0.11	0.093	ug/L		08/29/13 00:03	1
3-Nitrotoluene	0.11	U		0.53	0.11	0.060	ug/L		08/29/13 00:03	1
4-Nitrotoluene	0.11	U		0.53	0.11	0.093	ug/L		08/29/13 00:03	1
1-Amino-2,6-dinitrotoluene	0.11	U		0.16	0.11	0.053	ug/L		08/29/13 00:03	1
HMX	0.053	U		0.16	0.053	0.038	ug/L		08/29/13 00:03	1
RDX	0.053	U		0.16	0.053	0.038	ug/L		08/29/13 00:03	1
Nitrobenzene	0.11	U		0.16	0.11	0.053	ug/L		08/29/13 00:03	1
Tetryl	0.11	U		0.16	0.11	0.053	ug/L		08/29/13 00:03	- 9
Nitroglycerin	0.53	U		0.69	0.53	0.35	ug/L		08/29/13 00:03	1
PETN	0.53	U		0.69	0.53	0.32	ug/L		08/29/13 00:03	1
Surrogate	%Recovery Qu	ualifier	Limits				Prep	pared	Analyzed	Dil Fac
3,4-Dinitrotoluene	91		79 - 111				08/26/1	3 09:34	08/29/13 00:03	1
General Chemistry		Qualifier		LOQ	LOD		Unit	D	Analyzed	Dil Fac

TestAmerica Canton

08/23/13 13:25

09/05/13 13:46

0.010

2.0

0.010

1.0

0.0032 mg/L

0.48 mg/L

0.010 U

1.0 U

Client: Environmental Quality Mgt., Inc.

Client Sample ID: FWGDA2mw-114-0312-GF

Project/Site: RVAAP66 (OH)

Date Collected: 08/20/13 17:05 Date Received: 08/21/13 07:00

Hg

TestAmerica Job ID: 240-28145-1

Lab Sample ID: 240-28145-13

Matrix: Water	

Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
Arsenic	10	U	10	10	3.3	ug/L		09/09/13 11:20	1
Chromium	4.0	U	7.0	4.0	1.4	ug/L		09/09/13 11:20	1
Cobalt	4.0	U	7.0	4.0	1.5	ug/L		09/09/13 11:20	11
Lead	5.0	U	10	5.0	1.7	ug/L		09/09/13 11:20	2
Selenium	10	U	15	10	4.0	ug/L		09/09/13 11:20	
Silver	5.0	U	7.0	5.0	1.7	ug/L		09/09/13 11:20	
Vanadium	4.0	U	7.0	4.0	1.3	ug/L		09/09/13 11:20	1
Barium	30	J	200	5.0	2.8	ug/L		09/09/13 11:20	- 1
Calcium	110000		5000	1000	630	ug/L		09/09/13 11:20	
Copper	10	U	25	10	4.4	ug/L		09/09/13 11:20	
Magnesium	37000		5000	300	120	ug/L		09/09/13 11:20	
Manganese	82		15	5.0	1.8	ug/L		09/09/13 11:20	17
Nickel	5.0	U	40	5.0	2.2	ug/L		09/09/13 11:20	
Potassium	4100	J	5000	900	300	ug/L		09/09/13 11:20	1
Method: 6020/DOD - Metals (ICP/MS) - To	otal Recov	/erable							
Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fa
Aluminum	60	U	60	60	20	ug/L		09/09/13 15:03	
Antimony	1.0	U	2.0	1.0	0.33	ug/L		09/09/13 15:03	9
Beryllium	1.0	UQ	1.0	1.0	0.50	ug/L		09/09/13 15:03	1
Cadmium	1.0	U	2.0	1.0	0.40	ug/L		09/09/13 15:03	1
ron	920		150	100	44	ug/L		09/09/13 15:03	
Sodium	13000		1000	400	160	ug/L		09/09/13 15:03	
Thallium	1.5	U	2.0	1.5	0.79	ug/L		09/09/13 15:03	-
Zinc	50	U	50	50	27	ug/L		09/09/13 15:03	
Method: 7470A/DOD - Mercury (CVAA)									
Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fa

0.20

0.20

0.12 ug/L

0.20 U

TestAmerica Canton

09/04/13 15:23

Client: Environmental Quality Mgt., Inc.

Project/Site: RVAAP66 (OH)

TestAmerica Job ID: 240-28145-1

Lab Sample ID: 240-28145-14

Matrix: Water

Client Sample ID: FWGLL1mw-087C-0356-GW

Date Collected: 08/20/13 09:28 Date Received: 08/21/13 07:00

Analyte	Result	Qualifier	1	.oo	LOD	DL	Unit D	Analyzed	Dil Fac
Bis(2-ethylhexyl) phthalate	0.86	J		2.2	0.54	0.24	ug/L	09/04/13 16:34	1
Butyl benzyl phthalate	0.54	U		2.2	0.54	0.28	ug/L	09/04/13 16:34	1
Diethyl phthalate	1.1	U		2.2	1.1	0.65	ug/L	09/04/13 16:34	1
Dimethyl phthalate	0.54	U		2.2	0.54	0.32	ug/L	09/04/13 16:34	1
Di-n-butyl phthalate	0.84	J		2.2	1.1	0.73	ug/L	09/04/13 16:34	1
Di-n-octyl phthalate	0.54	U		2.2	0.54	0.25	ug/L	09/04/13 16:34	.1
Surrogate	%Recovery Qu	ualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl (Surr)	77		50 - 110				08/22/13 08:06	09/04/13 16:34	1

%Recovery (Qualifier	Limits	Prepared	Analyzed	Dil Fac
77		50 - 110	08/22/13 08:06	09/04/13 16:34	1
80		20 - 110	08/22/13 08:06	09/04/13 16:34	1
83		40 - 110	08/22/13 08:06	09/04/13 16:34	7
90		10 - 115	08/22/13 08:06	09/04/13 16:34	1
86		50 - 135	08/22/13 08:06	09/04/13 16:34	1
101		40 - 125	08/22/13 08:06	09/04/13 16:34	1
	77 80 83 90 86	77 80 83 90 86	77 50 - 110 80 20 - 110 83 40 - 110 90 10 - 115 86 50 - 135	77 50 - 110 08/22/13 08:06 80 20 - 110 08/22/13 08:06 83 40 - 110 08/22/13 08:06 90 10 - 115 08/22/13 08:06 86 50 - 135 08/22/13 08:06	77 50 - 110 08/22/13 08:06 09/04/13 16:34 80 20 - 110 08/22/13 08:06 09/04/13 16:34 83 40 - 110 08/22/13 08:06 09/04/13 16:34 90 10 - 115 08/22/13 08:06 09/04/13 16:34 86 50 - 135 08/22/13 08:06 09/04/13 16:34

Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
4,4'-DDD	0.021	U	0.052	0.021	0.0099	ug/L		09/11/13 21:02	1
4,4'-DDE	0.021	U	0.052	0.021	0.010	ug/L		09/11/13 21:02	1
4,4'-DDT	0.021	U	0.052	0.021	0.016	ug/L		09/11/13 21:02	1
Aldrin	0.021	U	0.031	0.021	0.0085	ug/L		09/11/13 21:02	- 1
alpha-BHC	0.021	u	0.031	0.021	0.0072	ug/L		09/11/13 21:02	- 1
alpha-Chlordane	0.021	U	0.052	0.021	0.014	ug/L		09/11/13 21:02	1
beta-BHC	0.021	U	0.052	0.021	0.0087	ug/L		09/11/13 21:02	1
delta-BHC	0.021	U	0.052	0.021	0.0090	ug/L		09/11/13 21:02	1
Dieldrin	0.021	U	0.031	0.021	0.0077	ug/L		09/11/13 21:02	1
Endosulfan I	0.021	U	0.052	0.021	0.013	ug/L		09/11/13 21:02	1
Endosulfan II	0.021	U	0.052	0.021	0.012	ug/L		09/11/13 21:02	1
Endosulfan sulfate	0.021	U	0.052	0.021	0.011	ug/L		09/11/13 21:02	1
Endrin	0.021	U	0.052	0.021	0.011	ug/L		09/11/13 21:02	1
Endrin aldehyde	0.021	U	0.052	0.021	0.011	ug/L		09/11/13 21:02	1
Endrin ketone	0.021	U	0.052	0.021	0.0080	ug/L		09/11/13 21:02	1
gamma-BHC (Lindane)	0.021	U	0.052	0.021	0.0066	ug/L		09/11/13 21:02	1
gamma-Chlordane	0.021	U	0.052	0.021	0.012	ug/L		09/11/13 21:02	1
Heptachlor	0.021	U	0.031	0.021	0.0082	ug/L		09/11/13 21:02	1
Heptachlor epoxide	0.021	U	0.031	0.021	0.0073	ug/L		09/11/13 21:02	1
Methoxychlor	0.052	U	0.10	0.052	0.033	ug/L		09/11/13 21:02	1
Toxaphene	0.82	U	2.1	0.82	0.33	ug/L		09/11/13 21:02	1

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
DCB Decachlorobiphenyl	51	30 - 135	08/22/13 07:53	09/11/13 21:02	1
DCB Decachlorobiphenyl	56	30 - 135	08/22/13 07:53	09/11/13 21:02	1
Tetrachloro-m-xylene	95	25 - 140	08/22/13 07:53	09/11/13 21:02	1
Tetrachloro-m-xylene	112	25 - 140	08/22/13 07:53	09/11/13 21:02	7

Method: 8330 Modified - Nitrogu	anidine (HPLC)							
Analyte	Result	Qualifier	LOQ	LOD	DL Unit	D	Analyzed	Dil Fac
Nitroguanidine	6.0	U	20	6.0	2,4 ug/L		08/29/13 15:15	1

TestAmerica Canton

Page 55 of 235

10/7/2013

3

Ĭ

Li M

13

14

N.

Client: Environmental Quality Mgt., Inc.

Project/Site: RVAAP66 (OH)

TestAmerica Job ID: 240-28145-1

Lab Sample ID: 240-28145-14

Matrix: Water

09/05/13 13:56

Client Sample ID: FWGLL1mw-087C-0356-GW

Date Collected: 08/20/13 09:28 Date Received: 08/21/13 07:00

Nitrocellulose

Analyte	Result	Qualifier	LOC	L LC	DD D	L Un	it D	Analyzed	Dil Fac
1,3,5-Trinitrobenzene	0.059	U	0.1	3 0.0	59 0.03	7 ug/	L	08/29/13 00:47	1
1,3-Dinitrobenzene	0.12	U	0.1	3 0.	12 0.05	9 ug/	L	08/29/13 00:47	1
2,4,6-Trinitrotoluene	0.12	U	0.1	3 0.	12 0.05	9 ug/	L.	08/29/13 00:47	1
2,4-Dinitrotoluene	0.12	U	0.1	5 0.	12 0.05	9 ug/	'L	08/29/13 00:47	1
2,6-Dinitrotoluene	0.12	U	0.1	5 0.	12 0.05	9 ug/	L	08/29/13 00:47	1
2-Amino-4,6-dinitrotoluene	0.12	U	0.1	3 0.	12 0.01	8 ug/	'L	08/29/13 00:47	1
2-Nitrotoluene	0.12	U	0.5	0.	12 0.1	0 ug/	'L	08/29/13 00:47	1
3-Nitrotoluene	0.12	U	0.5	0.	12 0.06	7 ug/	'L	08/29/13 00:47	1
4-Nitrotoluene	0.12	U	0.5	0.	12 0.1	0 ug/	'L	08/29/13 00:47	1
4-Amino-2,6-dinitrotoluene	0.12	U	0.1	3 0.	12 0.05	9 ug/	L	08/29/13 00:47	1
HMX	0.059	U	0.1	0.0	59 0.04	3 ug/	'L	08/29/13 00:47	1
RDX	0.059	U	0.1	3 0.0	59 0.04	3 ug/	L	08/29/13 00:47	1
Nitrobenzene	0.12	U	0.1	3 0.	12 0.05	9 ug/	L	08/29/13 00:47	1
Tetryl	0.12	U	0.1	3 0.	12 0.05	9 ug/	L	08/29/13 00:47	1
Nitroglycerin	0.59	U	0.7	7 0.	59 0.3	9 ug/	'L	08/29/13 00:47	1
PETN	0.59	U	0.7	7 0.	59 0.3	5 ug/	L	08/29/13 00:47	1
Surrogate	%Recovery Qu	ualifier	Limits				Prepared	Analyzed	Dil Fac
3,4-Dinitrotoluene	104		79 - 111				08/26/13 09:34	08/29/13 00:47	1
General Chemistry									
Analyte	Result	Qualifier	LOC	LC LC	D D	L Un	it D	Analyzed	Dil Fac

1.0

0.48 mg/L

1.0 U

Client: Environmental Quality Mgt., Inc.

Project/Site: RVAAP66 (OH)

TestAmerica Job ID: 240-28145-1

Lab Sample ID: 240-28145-15

Matrix: Water

Client Sample ID: FWGLL1mw-087C-0356-GF

Date Collected: 08/20/13 09:28 Date Received: 08/21/13 07:00

Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
Arsenic	10	U	10	10	3.3	ug/L		09/09/13 11:26	1
Chromium	4.0	U	7.0	4.0	1.4	ug/L		09/09/13 11:26	1
Cobalt	1.5	J	7.0	4.0	1.5	ug/L		09/09/13 11:26	1
Lead	5.0	U	10	5.0	1.7	ug/L		09/09/13 11:26	1
Selenium	10	U	15	10	4.0	ug/L		09/09/13 11:26	1
Silver	5.0	U	7.0	5.0	1.7	ug/L		09/09/13 11:26	1
Vanadium	4.0	U	7.0	4.0	1.3	ug/L		09/09/13 11:26	1
Barium	28	J	200	5.0	2.8	ug/L		09/09/13 11:26	1
Calcium	99000		5000	1000	630	ug/L		09/09/13 11:26	1
Copper	10	U	25	10	4.4	ug/L		09/09/13 11:26	1
Magnesium	29000		5000	300	120	ug/L		09/09/13 11:26	1
Manganese	200		15	5.0	1.8	ug/L		09/09/13 11:26	1
Nickel	5.0	U	40	5.0	2.2	ug/L		09/09/13 11:26	-1
Potassium	610	J	5000	900	300	ug/L		09/09/13 11:26	1
Potassium Method: 6020/DOD - Metals (ICP/MS	S) - Total Recov	verable	5000	900	300	ug/L		09/09/13 11:26	1
Method: 6020/DOD - Metals (ICP/MS	S) - Total Recov		5000 LOQ	900 LOD		ug/L Unit	D	09/09/13 11:26 Analyzed	Dil Fac
Method: 6020/DOD - Metals (ICP/MS Analyte	S) - Total Recov	verable Qualifier			DL		D		
Method: 6020/DOD - Metals (ICP/MS Analyte Aluminum	S) - Total Recov	verable Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	
	S) - Total Recover Result 60	verable Qualifier	LOQ 60	LOD 60	DL 20	Unit ug/L ug/L	D	Analyzed 09/09/13 15:11	
Method: 6020/DOD - Metals (ICP/MS Analyte Aluminum Antimony	S) - Total Recover Result 60	verable Qualifier U U	60 2.0	60 1.0	DL 20 0.33	Unit ug/L ug/L ug/L	D	Analyzed 09/09/13 15:11 09/09/13 15:11	
Method: 6020/DOD - Metals (ICP/MS Analyte Aluminum Antimony Beryllium	60 1.0	verable Qualifier U U U U U U U	60 2.0 1.0	60 1.0	20 0.33 0.50 0.40	Unit ug/L ug/L ug/L	D	Analyzed 09/09/13 15:11 09/09/13 15:11	
Method: 6020/DOD - Metals (ICP/MS Analyte Aluminum Antimony Beryllium Cadmium	60 1.0 1.0	verable Qualifier U U U U U U U	60 2.0 1.0 2.0	60 1.0 1.0 1.0	DL 20 0.33 0.50 0.40 44	Unit ug/L ug/L ug/L	D	Analyzed 09/09/13 15:11 09/09/13 15:11 09/09/13 15:11	
Method: 6020/DOD - Metals (ICP/MS Analyte Aluminum Antimony Beryllium Cadmium	60 1.0 1.0 1.0	verable Qualifier U U U Q U	60 2.0 1.0 2.0 150	60 1.0 1.0 1.0	DL 20 0.33 0.50 0.40 44 160	Unit ug/L ug/L ug/L ug/L	D	Analyzed 09/09/13 15:11 09/09/13 15:11 09/09/13 15:11 09/09/13 15:11	
Method: 6020/DOD - Metals (ICP/MS Analyte Aluminum Antimony Beryllium Cadmium Iron Sodium Thallium	60 1.0 1.0 1.0 8900	verable Qualifier U U U U U U U U U	LOQ 60 2.0 1.0 2.0 150 1000	60 1.0 1.0 1.0 1.0 400	DL 20 0.33 0.50 0.40 44 160	Unit ug/L ug/L ug/L ug/L ug/L ug/L	D -	Analyzed 09/09/13 15:11 09/09/13 15:11 09/09/13 15:11 09/09/13 15:11 09/09/13 15:11	Dil Fac
Method: 6020/DOD - Metals (ICP/MS Analyte Aluminum Antimony Beryllium Cadmium Iron Sodium	60 1.0 1.0 1.0 8900 1.5	verable Qualifier U U U U U U U U U	LOQ 60 2.0 1.0 2.0 150 1000 2.0	60 1.0 1.0 1.0 100 400 1.5	DL 20 0.33 0.50 0.40 44 160 0.79	Unit ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	D	Analyzed 09/09/13 15:11 09/09/13 15:11 09/09/13 15:11 09/09/13 15:11 09/09/13 15:11 09/09/13 15:11	

Client: Environmental Quality Mgt., Inc.

Project/Site: RVAAP66 (OH)

Date Collected: 08/20/13 12:08

TestAmerica Job ID: 240-28145-1

Lab Sample ID: 240-28145-16

Matrix: Water

Date Received: 08/21/13 07:00	
Face a consideration of the contract of	Law Intraca

Client Sample ID: FWGSCFmw-002-0327-GW

Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
Bis(2-ethylhexyl) phthalate	0.53	J	2.0	0.50	0.22	ug/L		09/04/13 16:09	1
Butyl benzyl phthalate	0.50	U	2.0	0.50	0.26	ug/L		09/04/13 16:09	1
Diethyl phthalate	0.99	U	2.0	0.99	0.59	ug/L		09/04/13 16:09	1
Dimethyl phthalate	0.50	U	2.0	0.50	0.29	ug/L		09/04/13 16:09	1
Di-n-butyl phthalate	0.99	U	2.0	0.99	0.66	ug/L		09/04/13 16:09	1
Di-n-octyl phthalate	0.50	U	2.0	0.50	0.23	ug/L		09/04/13 16:09	1

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl (Surr)	62		50 - 110	08/22/13 08:06	09/04/13 16:09	1
2-Fluorophenol (Surr)	57		20 - 110	08/22/13 08:06	09/04/13 16:09	1
Nitrobenzene-d5 (Surr)	65		40 - 110	08/22/13 08:06	09/04/13 16:09	7
Phenol-d5 (Surr)	62		10 - 115	08/22/13 08:06	09/04/13 16:09	1
Terphenyl-d14 (Surr)	90		50 - 135	08/22/13 08:06	09/04/13 16:09	1
2,4,6-Tribromophenol (Surr)	75		40 - 125	08/22/13 08:06	09/04/13 16:09	1

Method: 8081/DOD	- Organochlorine	Pesticides	(GC)
------------------	------------------	------------	------

Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
4,4'-DDD	0.019	U	0.048	0.019	0.0091	ug/L		09/11/13 21:22	1
4,4'-DDE	0.019	U	0.048	0.019	0.0092	ug/L		09/11/13 21:22	1
4,4'-DDT	0.019	U	0.048	0.019	0.015	ug/L		09/11/13 21:22	1
Aldrin	0.019	U	0.029	0.019	0.0078	ug/L		09/11/13 21:22	- 1
alpha-BHC	0.019	U	0.029	0.019	0.0067	ug/L		09/11/13 21:22	1
alpha-Chlordane	0.019	U	0.048	0.019	0.013	ug/L		09/11/13 21:22	1
beta-BHC	0.014	JQ	0.048	0.019	0.0080	ug/L		09/11/13 21:22	1
delta-BHC	0.019	U	0.048	0.019	0.0083	ug/L		09/11/13 21:22	1
Dieldrin	0.019	U	0.029	0.019	0.0071	ug/L		09/11/13 21:22	1
Endosulfan I	0.019	U	0.048	0.019	0.012	ug/L		09/11/13 21:22	1
Endosulfan II	0.019	U	0.048	0.019	0.011	ug/L		09/11/13 21:22	1
Endosulfan sulfate	0.019	U	0.048	0.019	0.010	ug/L		09/11/13 21:22	1
Endrin	0.019	U	0.048	0.019	0.010	ug/L		09/11/13 21:22	1
Endrin aldehyde	0.019	U	0.048	0.019	0.010	ug/L		09/11/13 21:22	1
Endrin ketone	0.019	U	0.048	0.019	0.0074	ug/L		09/11/13 21:22	1
gamma-BHC (Lindane)	0.019	U	0.048	0.019	0.0061	ug/L		09/11/13 21:22	1
gamma-Chlordane	0.019	U	0.048	0.019	0.011	ug/L		09/11/13 21:22	1
Heptachlor	0.019	U	0.029	0.019	0.0076	ug/L		09/11/13 21:22	1
Heptachlor epoxide	0.019	U	0.029	0.019	0.0068	ug/L		09/11/13 21:22	1
Methoxychlor	0.048	U	0.095	0.048	0.030	ug/L		09/11/13 21:22	1
Toxaphene	0.76	U	1.9	0.76	0.30	ug/L		09/11/13 21:22	1

Quit. (2)			4000000	War day	
Surrogate	%Recovery Quali	ifier Limits	Prepared	Analyzed	Dil Fac
DCB Decachlorobiphenyl	107	30 - 135	08/22/13 07:53	09/11/13 21:22	1
DCB Decachlorobiphenyl	118	30 - 135	08/22/13 07:53	09/11/13 21:22	1
Tetrachloro-m-xylene	194 MQ	25 _ 140	08/22/13 07:53	09/11/13 21:22	1
Tetrachloro-m-xylene	120	25 - 140	08/22/13 07:53	09/11/13 21:22	1

Method: 8330 Modified - Nitroguanidine (HPLC)

method, occo modified The	roguamante (in Lo)							
Analyte	Result	Qualifier	LOQ	LOD	DL Unit	D	Analyzed	Dil Fac
Nitroguanidine	6.0	U	20	6.0	2.4 ug/L		08/29/13 15:50	1

Client: Environmental Quality Mgt., Inc.

Project/Site: RVAAP66 (OH)

TestAmerica Job ID: 240-28145-1

09/05/13 13:58

Lab Sample ID: 240-28145-16

Matrix: Water

Client Sample ID: FWGSCFmw-002-0327-GW

Date Collected: 08/20/13 12:08

Date Received: 08/21/13 07:00

Nitrocellulose

Analyte	Result	Qualifier	LOQ	LOD	DL	Unit D	Analyzed	Dil Fac
1,3,5-Trinitrobenzene	0.057	U	0.17	0.057	0.035	ug/L	08/29/13 01:30	1
1,3-Dinitrobenzene	0.11	U	0.17	0.11	0.057	ug/L	08/30/13 19:44	1
2,4,6-Trinitrotoluene	0.11	U	0.17	0.11	0.057	ug/L	08/29/13 01:30	1
2,4-Dinitrotoluene	0.11	U	0.15	0.11	0.057	ug/L	08/29/13 01:30	1
2,6-Dinitrotoluene	0.11	U	0.15	0.11	0.057	ug/L	08/29/13 01:30	1
2-Amino-4,6-dinitrotoluene	0.11	U	0.17	0.11	0.017	ug/L	08/29/13 01:30	1
2-Nitrotoluene	0.11	U	0.57	0.11	0.099	ug/L	08/29/13 01:30	1
3-Nitrotoluene	0.11	U	0.57	0.11	0.064	ug/L	08/30/13 19:44	1
4-Nitrotoluene	0.11	U	0.57	0.11	0.099	ug/L	08/29/13 01:30	1
4-Amino-2,6-dinitrotoluene	0.11	U	0.17	0.11	0.057	ug/L	08/29/13 01:30	1
HMX	0.057	U	0.17	0.057	0.041	ug/L	08/29/13 01:30	1
RDX	0.057	U	0.17	0.057	0.041	ug/L	08/29/13 01:30	1
Nitrobenzene	0.11	U	0.17	0.11	0.057	ug/L	08/30/13 19:44	1
Tetryl	0.11	U	0.17	0.11	0.057	ug/L	08/29/13 01:30	1
Nitroglycerin	0.57	U	0.73	0.57	0.37	ug/L	08/29/13 01:30	1
PETN	0.57	U	0.73	0.57	0.34	ug/L	08/29/13 01:30	1
Surrogate	%Recovery Qu	ualifier	Limits			Prepared	Analyzed	Dil Fac
3,4-Dinitrotoluene	90		79 - 111			08/26/13 09:34	08/29/13 01:30	1
3,4-Dinitrotoluene	97		79 - 111			08/26/13 09:34	08/30/13 19:44	1
General Chemistry								
Analyte	Result	Qualifier	LOQ	LOD	DL	Unit. D	Analyzed	Dil Fac

2.0

1.0

0.48 mg/L

1.0 U

Client: Environmental Quality Mgt., Inc.

Method: 7470A/DOD - Mercury (CVAA)

Analyte

Hg

Project/Site: RVAAP66 (OH)

TestAmerica Job ID: 240-28145-1

Lab Sample ID: 240-28145-17

Matrix: Water

Client Sample ID: FWGSCFmw-002-0327-GF

Date Collected: 08/20/13 12:08 Date Received: 08/21/13 07:00

Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
Arsenic	15		10	10	3.3	ug/L		09/09/13 11:32	1
Chromium	4.0	U	7.0	4.0	1.4	ug/L		09/09/13 11:32	1
Cobalt	4.0	U	7.0	4.0	1.5	ug/L		09/09/13 11:32	11
Lead	5.0	U	10	5.0	1.7	ug/L		09/09/13 11:32	1
Selenium	10	U	15	10	4.0	ug/L		09/09/13 11:32	1
Silver	5.0	U	7.0	5.0	1.7	ug/L		09/09/13 11:32	1
Vanadium	4.0	U	7.0	4.0	1.3	ug/L		09/09/13 11:32	1
Barium	42	J	200	5.0	2.8	ug/L		09/09/13 11:32	- 1
Calcium	84000		5000	1000	630	ug/L		09/09/13 11:32	1
Copper	10	U	25	10	4.4	ug/L		09/09/13 11:32	1
Magnesium	27000		5000	300	120	ug/L		09/09/13 11:32	
Manganese	70		15	5.0	1.8	ug/L		09/09/13 11:32	11
Nickel	5.0	U	40	5.0	2.2	ug/L		09/09/13 11:32	-01
Potassium	2300	J	5000	900	300	ug/L		09/09/13 11:32	- 0
Method: 6020/DOD - Metal	,								
Analyte		Qualifier	LOQ	LOD		Unit	D	Analyzed	Dil Fac
Aluminum			60	60		ug/L		09/09/13 15:18	
Antimony	1.0	U	2.0	1.0	0.33	ug/L		09/09/13 15:18	1
Beryllium	1.0	UQ	1.0	1.0	0.50	ug/L		09/09/13 15:18	1
Cadmium	1.0	U	2.0	1.0	0.40	ug/L		09/09/13 15:18	
Iron	340		150	100	44	ug/L		09/09/13 15:18	
Sodium	22000		1000	400	160	ug/L		09/09/13 15:18	
Thallium	1.5	U	2.0	1.5	0.79	ug/L		09/09/13 15:18	
Zinc	50	100	50	50	27	ug/L		09/09/13 15:18	

LOQ

0.20

Result Qualifier

0.20 U

LOD

0.20

DL Unit

0.12 ug/L

TestAmerica Canton

Dil Fac

Analyzed

09/04/13 15:27

Client: Environmental Quality Mgt., Inc.

Project/Site: RVAAP66 (OH)

TestAmerica Job ID: 240-28145-1

Lab Sample ID: 240-28145-18

Matrix: Water

Client Sample ID: FWGSCFmw-004-0372-GW

Date Collected: 08/20/13 10:48 Date Received: 08/21/13 07:00

Endrin

Endrin aldehyde

gamma-BHC (Lindane)

gamma-Chlordane

Endrin ketone

Heptachlor

Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fa
Bis(2-ethylhexyl) phthalate	0.95	J	2.1	0.53	0.23	ug/L		09/04/13 16:58	
Butyl benzyl phthalate	0.53	U	2.1	0.53	0.28	ug/L		09/04/13 16:58	
Diethyl phthalate	1.1	U	2.1	1.1	0.64	ug/L		09/04/13 16:58	19
Dimethyl phthalate	0.53	U	2.1	0.53	0.31	ug/L		09/04/13 16:58	
Di-n-butyl phthalate	0.84	J	2.1	1.1	0.71	ug/L		09/04/13 16:58	
Di-n-octyl phthalate	0.53	U	2.1	0.53	0.24	ug/L		09/04/13 16:58	
Surrogate	%Recovery Qu	ıalifier	Limits			Prepa	ared	Analyzed	Dil Fa
2-Fluorobiphenyl (Surr)	66		50 - 110			08/22/13	3 08:06	09/04/13 16:58	
2-Fluorophenol (Surr)	65		20 - 110			08/22/13	3 08:06	09/04/13 16:58	
Nitrobenzene-d5 (Surr)	69		40 - 110			08/22/13	3 08:06	09/04/13 16:58	
Phenol-d5 (Surr)	70		10 - 115			08/22/13	3 08:06	09/04/13 16:58	
Terphenyl-d14 (Surr)	98		50 - 135			08/22/13	3 08:06	09/04/13 16:58	
elphenyi-u 14 (Sult)	30		50 - 135					2002 3. 00 10122	
(Surr) 2,4,6-Tribromophenol (Surr)	96		40 - 125			08/22/1:	3 08:06	09/04/13 16:58	
	96	SC)				08/22/1	3 08:06	09/04/13 16:58	
2,4,6-Tribromophenol (Surr) Method: 8081/DOD - Organoch	96 hlorine Pesticides (G Result	Qualifier		LOD	DL	08/22/13 Unit	3 08:06 D	09/04/13 16:58 Analyzed	Dil Fa
2,4,6-Tribromophenol (Surr) Method: 8081/DOD - Organock	96 hlorine Pesticides (G	Qualifier	40 - 125	LOD 0.020	DL 0.0094				Dil Fa
2,4,6-Tribromophenol (Surr) Method: 8081/DOD - Organoch Analyte 4,4'-DDD	96 hlorine Pesticides (G Result	Qualifier U	40 - 125 LOQ			Unit		Analyzed	Dil Fa
Method: 8081/DOD - Organoci Analyte 4,4'-DDD 4,4'-DDE	96 hlorine Pesticides (GResult 0.020	Qualifier U U	40 - 125 LOQ 0.049	0.020	0.0094	Unit ug/L ug/L		Analyzed 09/11/13 21:43	Dil Fa
Method: 8081/DOD - Organock Analyte 4.4'-DDD 4.4'-DDE 4.4'-DDT	hlorine Pesticides (Control Result 0.020 0.020	Qualifier U U U	40 - 125 LOQ 0.049 0.049	0.020 0.020	0.0094 0.0095	Unit ug/L ug/L ug/L		Analyzed 09/11/13 21:43 09/11/13 21:43	Dil Fa
Method: 8081/DOD - Organock Analyte 4.4'-DDD 4.4'-DDE 4.4'-DDT Aldrin	96 hlorine Pesticides (GResult 0.020 0.020 0.020	Qualifier U U U	LOQ 0.049 0.049 0.049	0.020 0.020 0.020	0.0094 0.0095 0.016	Unit ug/L ug/L ug/L ug/L		Analyzed 09/11/13 21:43 09/11/13 21:43 09/11/13 21:43	Dil Fa
### A.4.6-Tribromophenol (Surr) ### Method: 8081/DOD - Organock ### Arabota #### Arabota #### Arabota #### Arabota #### Arabota #### Arabota ###################################	96 hlorine Pesticides (C Result 0.020 0.020 0.020 0.020	Qualifier U U U U U	LOQ 0.049 0.049 0.049 0.049 0.029	0.020 0.020 0.020 0.020	0.0094 0.0095 0.016 0.0080	Unit ug/L ug/L ug/L ug/L		Analyzed 09/11/13 21:43 09/11/13 21:43 09/11/13 21:43 09/11/13 21:43	Dil Fa
A.4.6-Tribromophenol (Surr) Method: 8081/DOD - Organoch nalyte A'-DDD A'-DDE A'-DDT Ildrin Ipha-BHC Ipha-Chlordane	96 hlorine Pesticides (C Result 0.020 0.020 0.020 0.020 0.020	Qualifier U U U U U U U	LOQ 0.049 0.049 0.049 0.029 0.029	0.020 0.020 0.020 0.020 0.020	0.0094 0.0095 0.016 0.0080 0.0069	Unit ug/L ug/L ug/L ug/L ug/L ug/L ug/L		Analyzed 09/11/13 21:43 09/11/13 21:43 09/11/13 21:43 09/11/13 21:43	Dil Fa
### A.4.6-Tribromophenol (Surr) ### Method: 8081/DOD - Organoch ### Arabot #	96 hlorine Pesticides (C Result 0.020 0.020 0.020 0.020 0.020 0.020 0.020	Qualifier U U U U U U U U U U	LOQ 0.049 0.049 0.049 0.029 0.029 0.029	0.020 0.020 0.020 0.020 0.020 0.020	0.0094 0.0095 0.016 0.0080 0.0069 0.014	Unit ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L		Analyzed 09/11/13 21:43 09/11/13 21:43 09/11/13 21:43 09/11/13 21:43 09/11/13 21:43	Dil Fa
Method: 8081/DOD - Organock Analyte A4'-DDD A'-DDE A4'-DDT Adrin Alpha-BHC Alpha-Chlordane Beta-BHC Belta-BHC	96 hlorine Pesticides (C Result 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020	Qualifier U U U U U U U U U U U U U U U U U U U	LOQ 0.049 0.049 0.049 0.029 0.029 0.049 0.049	0.020 0.020 0.020 0.020 0.020 0.020 0.020	0.0094 0.0095 0.016 0.0080 0.0069 0.014 0.0082	Unit ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L		Analyzed 09/11/13 21:43 09/11/13 21:43 09/11/13 21:43 09/11/13 21:43 09/11/13 21:43 09/11/13 21:43	Dil Fa
Method: 8081/DOD - Organoci Analyte 4,4'-DDD 4,4'-DDT Aldrin alpha-BHC alpha-Chlordane beta-BHC delta-BHC Dieldrin	96 hlorine Pesticides (G Result 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020	Qualifier U U U U U U U U U U U U U U U U U U U	LOQ 0.049 0.049 0.049 0.029 0.029 0.049 0.049	0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020	0.0094 0.0095 0.016 0.0080 0.0069 0.014 0.0082 0.0085	Unit ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L		Analyzed 09/11/13 21:43 09/11/13 21:43 09/11/13 21:43 09/11/13 21:43 09/11/13 21:43 09/11/13 21:43 09/11/13 21:43	Dil Fa
2,4,6-Tribromophenol (Surr)	96 hlorine Pesticides (GResult 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020	Qualifier U U U U U U U U U U U U U U U U U U U	LOQ 0.049 0.049 0.049 0.029 0.029 0.049 0.049 0.049 0.029	0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020	0.0094 0.0095 0.016 0.0080 0.0069 0.014 0.0082 0.0085 0.0074	Unit ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L		Analyzed 09/11/13 21:43 09/11/13 21:43 09/11/13 21:43 09/11/13 21:43 09/11/13 21:43 09/11/13 21:43 09/11/13 21:43 09/11/13 21:43	Dil F

Heptachlor epoxide	0.0	20 U	0.029	0.020	0.0070	ug/L	09/11/13 21:43	1
Methoxychlor	0.0	149 U	0.098	0.049	0.031	ug/L	09/11/13 21:43	1
Toxaphene	0	.78 U	2.0	0.78	0.31	ug/L	09/11/13 21:43	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
DCB Decachlorobiphenyl	117		30 - 135			08/22/13 07:53	09/11/13 21:43	1
DCB Decachlorobiphenyl	119		30 - 135			08/22/13 07:53	09/11/13 21:43	1
Tetrachloro-m-xylene	101		25 - 140			08/22/13 07:53	09/11/13 21:43	1
Tetrachloro-m-xylene	112		25 - 140			08/22/13 07:53	09/11/13 21:43	1

0.049

0.049

0.049

0.049

0.049

0.029

0.020

0.020

0.020

0.020

0.020

0.020

0.011 ug/L

0.011 ug/L

0.0076 ug/L

0.0063 ug/L

0.012 ug/L

0.0078 ug/L

0.020 U

0.020 U

0.020 U

0.020 U

0.020 U

0.020 U

Method: 8330 Modified - Nitroguanidine (HPLC)

Analyte	Result	Qualifier	LOQ	LOD	DL Unit	D Analyzed	Dil Fac
Nitroguanidine	6.0	U	20	6.0	2,4 ug/L	08/29/13 16	:08

TestAmerica Canton

09/11/13 21:43

09/11/13 21:43

09/11/13 21:43

09/11/13 21:43

09/11/13 21:43

09/11/13 21:43

Client: Environmental Quality Mgt., Inc.

Project/Site: RVAAP66 (OH)

TestAmerica Job ID: 240-28145-1

Lab Sample ID: 240-28145-18

Matrix: Water

Client Sample ID: FWGSCFmw-004-0372-GW

Date Collected: 08/20/13 10:48 Date Received: 08/21/13 07:00

Method: 8330A - Nitroaromatics and Nitramines LOQ LOD DL Unit Dil Fac Analyte Result Qualifier D Analyzed 1,3,5-Trinitrobenzene 0.053 U 0.16 0.053 0.033 ug/L 08/29/13 02:14 0.11 U 1,3-Dinitrobenzene 0.16 0.11 0.053 ug/L 08/29/13 02:14 2,4,6-Trinitrotoluene 0.11 U 0.16 0.11 0.053 08/29/13 02:14 2,4-Dinitrotoluene 0.11 U 0.11 0.053 0.14 ug/L 08/29/13 02:14 2,6-Dinitrotoluene 0.11 U 0.14 0.11 0.053 08/29/13 02:14 0.016 2-Amino-4.6-dinitrotoluene 0.11 U 0.11 08/29/13 02:14 0.16 ug/L 2-Nitrotoluene 0.53 0.11 0.093 08/29/13 02:14 3-Nitrotoluene 0.11 U 0.53 0.11 0.061 08/29/13 02:14 ug/L 0.11 4-Nitrotoluene 0.11 U 0.53 0.093 08/30/13 20:50 4-Amino-2,6-dinitrotoluene 0.11 U 0.16 0.11 0.053 ug/L 08/29/13 02:14 HMX 0.053 U 0.053 0.038 ug/L 08/29/13 02:14 0.16 RDX 0.053 U 0.053 0.038 ug/L 08/29/13 02:14 0.16 Nitrobenzene 0.11 U 0.16 0.11 0.053 ug/L 08/29/13 02:14 Tetryl 0.11 U 0.16 0.11 0.053 ug/L 08/29/13 02:14 0.53 U 0.69 0.53 0.35 ug/L Nitroglycerin 08/29/13 02:14 PETN 0.53 U 0.69 0.53 0.32 ug/L 08/29/13 02:14 Limits Surrogate %Recovery Qualifier Prepared Analyzed Dil Fac 116 Q 79 - 111 08/26/13 09:34 08/29/13 02:14 3,4-Dinitrotoluene 79-111 3,4-Dinitrotoluene 59 08/26/13 09:34 08/30/13 20:50

General	Chemistry
---------	-----------

Ocheral Chemistry									
Analyte	Result Q	ualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
Nitrocellulose	1.0 U		2.0	1.0	0.48	mg/L		09/05/13 14:00	1

Client: Environmental Quality Mgt., Inc.

Client Sample ID: FWGSCFmw-004-0372-GF

Project/Site: RVAAP66 (OH)

TestAmerica Job ID: 240-28145-1

Lab Sample ID: 240-28145-19

Matrix: Water

Date Collected: 08/20/13 10:48 Date Received: 08/21/13 07:00

Arsenic Chromium	10	U	10	10	3.3	ug/L		09/09/13 11:38	1
Chromium				0.5	0.0	ugre		03/03/13 11.30	
	4.0	U	7.0	4.0	1.4	ug/L		09/09/13 11:38	1
Cobalt	4.0	U	7.0	4.0	1.5	ug/L		09/09/13 11:38	1
Lead	5.0	U	10	5.0	1.7	ug/L		09/09/13 11:38	1
Selenium	10	U	15	10	4.0	ug/L		09/09/13 11:38	1
Silver	5.0	U	7.0	5.0	1.7	ug/L		09/09/13 11:38	1
Vanadium	4.0	U	7.0	4.0	1.3	ug/L		09/09/13 11:38	1
Barium	83	J	200	5.0	2.8	ug/L		09/09/13 11:38	1
Calcium	150000		5000	1000	630	ug/L		09/09/13 11:38	1
Copper	10	U	25	10	4.4	ug/L		09/09/13 11:38	1
Magnesium	60000		5000	300	120	ug/L		09/09/13 11:38	1
Manganese	740		15	5.0	1.8	ug/L		09/09/13 11:38	1
Nickel	5.0	U	40	5.0	2.2	ug/L		09/09/13 11:38	- 1
Potassium	2700	J	5000	900	300	ug/L		09/09/13 11:38	1
Method: 6020/DOD - Metals (ICP/M	S) - Total Recov	/erable							
Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
Aluminum	60	U	60	60	20	ug/L		09/09/13 15:25	1
Antimony	1.0	U	2.0	1.0	0.33	ug/L		09/09/13 15:25	1
Beryllium	1.0	UQ	1.0	1.0	0.50	ug/L		09/09/13 15:25	1
Cadmium	1.0	U	2.0	1.0	0.40	ug/L		09/09/13 15:25	1
Iron	100	U	150	100	44	ug/L		09/09/13 15:25	. 1
Sodium	11000		1000	400	160	ug/L		09/09/13 15:25	- 1
Thallium	1.5	U	2.0	1.5	0.79	ug/L		09/09/13 15:25	1
Zinc	50	U	50	50	27	ug/L		09/09/13 15:25	1
Method: 7470A/DOD - Mercury (CV	AA)								

Client: Environmental Quality Mgt., Inc.

Project/Site: RVAAP66 (OH)

TestAmerica Job ID: 240-28145-1

Lab Sample ID: 240-28145-20

Matrix: Water

Client Sample ID: FWGSCFmw-DUP6-0378-GW Date Collected: 08/20/13 13:02

Nitroguanidine

Method: 8270C/DoD - Semivo	The state of the s							
Analyte		Qualifier	LOQ	LOD			D Analyzed	Dil Fac
Bis(2-ethylhexyl) phthalate	0.57		1.9	0.48	0.21	ug/L	09/04/13 17:23	- 1
Butyl benzyl phthalate	0.48		1.9	0.48	0.25	ug/L	09/04/13 17:23	
Diethyl phthalate	0.95		1.9	0.95	0.57	ug/L	09/04/13 17:23	4
Dimethyl phthalate	0.48		1.9	0.48	0.28	ug/L	09/04/13 17:23	1
Di-n-butyl phthalate	0.95	U	1.9	0.95	0.64	ug/L	09/04/13 17:23	
Di-n-octyl phthalate	0.48	U	1.9	0.48	0.22	ug/L	09/04/13 17:23	
Surrogate	%Recovery Qu	ıalifier	Limits			Prepared	Analyzed	Dil Fa
2-Fluorobiphenyl (Surr)	68		50 - 110			08/22/13 08:06	09/04/13 17:23	
2-Fluorophenol (Surr)	67		20 - 110			08/22/13 08:06	09/04/13 17:23	1
Nitrobenzene-d5 (Surr)	69		40 - 110			08/22/13 08:06	09/04/13 17:23	- 0
Phenol-d5 (Surr)	71		10 - 115			08/22/13 08:06	09/04/13 17:23	
Terphenyl-d14 (Surr)	97		50 - 135			08/22/13 08:06	09/04/13 17:23	
2,4,6-Tribromophenol (Surr)	83		40 - 125			08/22/13 08:06	09/04/13 17:23	
Method: 8081/DOD - Organoc	hlorine Pesticides (G	SC)						
Analyte		Qualifier	LOQ	LOD	DL	Unit	D Analyzed	Dil Fac
4,4'-DDD	0.020	U	0.051	0.020	0.0098	ug/L	09/11/13 22:03	- 0
4,4'-DDE	0.020	U	0.051	0.020	0.0099	ug/L	09/11/13 22:03	
4,4'-DDT	0.020	U	0.051	0.020	0.016	ug/L	09/11/13 22:03	
Aldrin	0.020	U	0.031	0.020	0.0084	ug/L	09/11/13 22:03	
alpha-BHC	0.020	U	0.031	0.020	0.0071	ug/L	09/11/13 22:03	- 1
alpha-Chlordane	0.020	U	0.051	0.020	0.014	ug/L	09/11/13 22:03	19
beta-BHC	0.013	JQ	0.051	0.020	0.0086	ug/L	09/11/13 22:03	14
delta-BHC	0.020	U	0.051	0.020	0.0089		09/11/13 22:03	1.
Dieldrin	0.020	U	0.031	0.020	0.0077	3 25	09/11/13 22:03	
Endosulfan I	0.020		0.051	0.020	0.013		09/11/13 22:03	
Endosulfan II	0.020		0.051	0.020	0.012		09/11/13 22:03	
Endosulfan sulfate	0.020		0.051	0.020	0.011		09/11/13 22:03	
Endrin	0.020		0.051	0.020	0.011		09/11/13 22:03	
Endrin aldehyde	0.020		0.051	0.020	0.011		09/11/13 22:03	
Endrin ketone	0.020		0.051	0.020	0.0080	3.5	09/11/13 22:03	
gamma-BHC (Lindane)	0.020		0.051	0.020	0.0065	ug/L	09/11/13 22:03	
gamma-Chlordane	0.020		0.051	0.020	0.012		09/11/13 22:03	
Heptachlor	0.020		0.031	0.020	0.0082		09/11/13 22:03	
Heptachlor epoxide	0.020		0.031	0.020	0.0082		09/11/13 22:03	
	0.020		0.10	0.020	0.0072		09/11/13 22:03	
Methoxychlor Toxaphene	0.82		2.0	0.051		ug/L ug/L	09/11/13 22:03	
Surrogate	%Recovery Qu	alifier	Limits			Propored	Analyzad	Dil Fa
DCB Decachlorobiphenyl	107	diller	30 ₋ 135			Prepared 08/22/13 07:53	Analyzed 09/11/13 22:03	DII Fa
DCB Decachlorobiphenyl	109		30 - 135			08/22/13 07:53		
Tetrachloro-m-xylene	101		25 - 140			08/22/13 07:53		
Tetrachloro-m-xylene	100		25 - 140			08/22/13 07:53	09/11/13 22:03	
Method: 8330 Modified - Nitro		and and a	0.13	9.55		Line I	La Landa	-23:1
Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D Analyzed	Dil Fa

TestAmerica Canton

08/29/13 16:26

20

6.0

2.4 ug/L

6.0 U

Client: Environmental Quality Mgt., Inc.

Project/Site: RVAAP66 (OH)

TestAmerica Job ID: 240-28145-1

Lab Sample ID: 240-28145-20

09/05/13 14:02

Matrix: Water

Client Sample ID: FWGSCFmw-DUP6-0378-GW

Date Collected: 08/20/13 13:02 Date Received: 08/21/13 07:00

Nitrocellulose

nalyte	Result	Qualifier	LOQ	LOD	DL	Unit D	Analyzed	Dil Fac
3,5-Trinitrobenzene	0.059	U	0.18	0.059	0.036	ug/L	08/29/13 02:58	1
3-Dinitrobenzene	0.12	UM	0.18	0.12	0.059	ug/L	08/29/13 02:58	1
4,6-Trinitrotoluene	0.12	U	0.18	0.12	0.059	ug/L	08/29/13 02:58	1
4-Dinitrotoluene	0.12	U	0.15	0.12	0.059	ug/L	08/29/13 02:58	1
6-Dinitrotoluene	0.12	U	0.15	0.12	0.059	ug/L	08/29/13 02:58	1
-Amino-4,6-dinitrotoluene	0.12	U	0.18	0.12	0.018	ug/L	08/29/13 02:58	1
Nitrotoluene	0.12	U	0.59	0.12	0.10	ug/L	08/29/13 02:58	1
Nitrotoluene	0.12	U	0.59	0.12	0.067	ug/L	08/29/13 02:58	9
Nitrotoluene	0.12	U	0.59	0.12	0.10	ug/L	08/29/13 02:58	1
-Amino-2,6-dinitrotoluene	0.12	U	0.18	0.12	0.059	ug/L	08/29/13 02:58	1
MX	0.059	U	0.18	0.059	0.042	ug/L	08/30/13 21:55	1
DX	0.059	U	0.18	0.059	0.042	ug/L	08/29/13 02:58	1
itrobenzene	0.12	U	0.18	0.12	0.059	ug/L	08/29/13 02:58	1
etryl	0.12	U	0.18	0.12	0.059	ug/L	08/30/13 21:55	1
itroglycerin	0.59	U	0.76	0.59	0.39	ug/L	08/29/13 02:58	1
ETN	0.59	U	0.76	0.59	0.35	ug/L	08/29/13 02:58	1
urrogate	%Recovery Qu	ualifier	Limits			Prepared	Analyzed	Dil Fac
4-Dinitrotoluene	111		79 - 111			08/26/13 09:34	08/29/13 02:58	1
4-Dinitrotoluene	66 Q		79 - 111			08/26/13 09:34	08/30/13 21:55	1

2.0

1.0

0.48 mg/L

1.0 U

Client: Environmental Quality Mgt., Inc.

Project/Site: RVAAP66 (OH)

TestAmerica Job ID: 240-28145-1

Lab Sample ID: 240-28145-21

Matrix: Water

Client Sample ID: FWGSCFmw-DUP6-0378-GF

Date Collected: 08/20/13 13:02 Date Received: 08/21/13 07:00

Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
Arsenic	15		10	10	3.3	ug/L		09/09/13 12:45	1
Chromium	4.0	U	7.0	4.0	1.4	ug/L		09/09/13 12:45	1
Cobalt	4.0	U	7.0	4.0	1.5	ug/L		09/09/13 12:45	1
Lead	5.0	U	10	5.0	1.7	ug/L		09/09/13 12:45	1
Selenium	10	U	15	10	4.0	ug/L		09/09/13 12:45	1
Silver	5.0	U	7.0	5.0	1.7	ug/L		09/09/13 12:45	1
Vanadium	4.0	U	7.0	4.0	1.3	ug/L		09/09/13 12:45	1
Barium	43	J	200	5.0	2.8	ug/L		09/09/13 12:45	1
Calcium	87000		5000	1000	630	ug/L		09/09/13 12:45	1
Copper	10	U	25	10	4.4	ug/L		09/09/13 12:45	1
Magnesium	28000		5000	300	120	ug/L		09/09/13 12:45	1
Manganese	73		15	5.0	1.8	ug/L		09/09/13 12:45	1
Nickel	5.0	U	40	5.0	2.2	ug/L		09/09/13 12:45	-1
					200			Charles To a Table	
Potassium	2400	J	5000	900	300	ug/L		09/09/13 12:45	1
Potassium			5000	900	300	ug/L		09/09/13 12:45	1
Method: 6020/DOD - Metals ((ICP/MS) - Total Recov	verable							
Method: 6020/DOD - Metals (Analyte	(ICP/MS) - Total Recov	verable Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
Method: 6020/DOD - Metals (Analyte Aluminum	(ICP/MS) - Total Recovered Result	verable Qualifier	LOQ 60	LOD 60	DL 20	Unit ug/L	D	Analyzed 09/09/13 16:40	
Method: 6020/DOD - Metals (Analyte Aluminum Antimony	(ICP/MS) - Total Recover Result 60 1.0	verable Qualifier U	60 2.0	60 1.0	DL 20 0.33	Unit ug/L ug/L	D	Analyzed 09/09/13 16:40 09/09/13 16:40	
Method: 6020/DOD - Metals (Analyte Aluminum Antimony Beryllium	(ICP/MS) - Total Recover Result 60 1.0	verable Qualifier U U U Q	60 2.0 1.0	60 1.0 1.0	DL 20 0.33 0.50	Unit ug/L ug/L ug/L	D	Analyzed 09/09/13 16:40 09/09/13 16:40 09/09/13 16:40	
Method: 6020/DOD - Metals (Analyte Aluminum Antimony Beryllium Cadmium	(ICP/MS) - Total Recover Result 60 1.0 1.0 1.0	verable Qualifier U U U Q	LOQ 60 2.0 1.0 2.0	60 1.0 1.0 1.0	DL 20 0.33 0.50 0.40	Unit ug/L ug/L ug/L ug/L	D	Analyzed 09/09/13 16:40 09/09/13 16:40 09/09/13 16:40 09/09/13 16:40	
Method: 6020/DOD - Metals (Analyte Aluminum Antimony Beryllium Cadmium	(ICP/MS) - Total Recover Result 60 1.0	verable Qualifier U U U Q	60 2.0 1.0 2.0 150	60 1.0 1.0 1.0	DL 20 0.33 0.50 0.40 44	Unit ug/L ug/L ug/L ug/L	D	Analyzed 09/09/13 16:40 09/09/13 16:40 09/09/13 16:40 09/09/13 16:40	
Method: 6020/DOD - Metals (Analyte Aluminum Antimony Beryllium Cadmium	(ICP/MS) - Total Recover Result 60 1.0 1.0 1.0	verable Qualifier U U U Q	LOQ 60 2.0 1.0 2.0 150 1000	60 1.0 1.0 1.0 1.0 400	DL 20 0.33 0.50 0.40 44	Unit ug/L ug/L ug/L ug/L	D	Analyzed 09/09/13 16:40 09/09/13 16:40 09/09/13 16:40 09/09/13 16:40	
Method: 6020/DOD - Metals (Analyte Aluminum Antimony Beryllium Cadmium Iron Sodium	(ICP/MS) - Total Recov Result 60 1.0 1.0 1.0 350	Verable Qualifier U U U Q U	60 2.0 1.0 2.0 150	60 1.0 1.0 1.0	DL 20 0.33 0.50 0.40 44	Unit ug/L ug/L ug/L ug/L	<u>D</u>	Analyzed 09/09/13 16:40 09/09/13 16:40 09/09/13 16:40 09/09/13 16:40	
Method: 6020/DOD - Metals (Analyte Aluminum Antimony Beryllium Cadmium Iron Sodium Thallium	(ICP/MS) - Total Recover Result 60 1.0 1.0 1.0 350 22000	Verable Qualifier U U U U U U J	LOQ 60 2.0 1.0 2.0 150 1000	60 1.0 1.0 1.0 1.0 400	DL 20 0.33 0.50 0.40 44	Unit ug/L ug/L ug/L ug/L ug/L ug/L	D	Analyzed 09/09/13 16:40 09/09/13 16:40 09/09/13 16:40 09/09/13 16:40 09/09/13 16:40	
Potassium Method: 6020/DOD - Metals (Analyte Aluminum Antimony Beryllium Cadmium Iron Sodium Thallium Zinc Method: 7470A/DOD - Mercu	(ICP/MS) - Total Recover Result 60 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.	Verable Qualifier U U U U U U J	LOQ 60 2.0 1.0 2.0 150 1000 2.0	LOD 60 1.0 1.0 1.0 100 400 1.5	DL 20 0.33 0.50 0.40 44 160 0.79	Unit ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	D	Analyzed 09/09/13 16:40 09/09/13 16:40 09/09/13 16:40 09/09/13 16:40 09/09/13 16:40 09/09/13 16:40	
Method: 6020/DOD - Metals (Analyte Aluminum Antimony Beryllium Cadmium Iron Sodium Thallium Zinc	(ICP/MS) - Total Recover Result 60 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.	Verable Qualifier U U U U U U J	LOQ 60 2.0 1.0 2.0 150 1000 2.0	LOD 60 1.0 1.0 1.0 100 400 1.5	DL 20 0.33 0.50 0.40 44 160 0.79	Unit ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	D	Analyzed 09/09/13 16:40 09/09/13 16:40 09/09/13 16:40 09/09/13 16:40 09/09/13 16:40 09/09/13 16:40	

TestAmerica Canton

Client: Environmental Quality Mgt., Inc.

TestAmerica Job ID: 240-28145-1 Project/Site: RVAAP66 (OH)

Lab Sample ID: 240-28145-22 Client Sample ID: FWGDA2mw-115-0313-GW

Date Collected: 08/20/13 14:58 Matrix: Water

Date Received: 08/21/13 07:00

Method: 8260B/DoD - Volatile Analyte		Qualifier	LOQ	LOD	DL	Unit	2 Analyzed	Dil Fac
1,1,1-Trichloroethane	0.25	U	1.0	0.25	0.22	ug/L	08/28/13 19:50	- 1
1,1,2,2-Tetrachloroethane	0.25	U	1.0	0.25	0.18	ug/L	08/28/13 19:50	1
1,1,2-Trichloroethane	0.50	U	1.0	0.50	0.27	ug/L	08/28/13 19:50	14
1,1-Dichloroethane	0.25	U	1.0	0.25	0.15	ug/L	08/28/13 19:50	1
1,1-Dichloroethene	0.25	U	1.0	0.25	0.19	ug/L	08/28/13 19:50	1
1,2-Dichloroethane	0.25	U	1.0	0.25	0.22	ug/L	08/28/13 19:50	1
1,2-Dichloroethene, Total	0.25	U	2.0	0.25	0.17	ug/L	08/28/13 19:50	1
1,2-Dichloropropane	0.25	U	1.0	0.25	0.18	ug/L	08/28/13 19:50	1
2-Hexanone	0.50	U	10	0.50	0.41	ug/L	08/28/13 19:50	1
Bromochloromethane	0.50	U	1.0	0.50	0.29	ug/L	08/28/13 19:50	1
Acetone	1.1	U	10	1.1	1.1	ug/L	08/28/13 19:50	1
Benzene	0.25	U	1.0	0.25	0.13	ug/L	08/28/13 19:50	1
Bromoform	0.64	U	1.0	0.64	0.64	ug/L	08/28/13 19:50	-1
Bromomethane	0.50	U	1.0	0.50	0.41	ug/L	08/28/13 19:50	1
Carbon disulfide	0.14	J	1.0	0.25	0.13	ug/L	08/28/13 19:50	11
Carbon tetrachloride	0.25	U	1.0	0.25	0.13	ug/L	08/28/13 19:50	1
Chlorobenzene	0.25	U	1.0	0.25	0.15	ug/L	08/28/13 19:50	1
Chloroethane	0.50	U	1.0	0.50	0.29	ug/L	08/28/13 19:50	1
Chloroform	0.25	U	1.0	0.25	0.16	ug/L	08/28/13 19:50	1
Chloromethane	0.50	U	1.0	0.50	0.30	ug/L	08/28/13 19:50	1
cis-1,2-Dichloroethene	0.25	u	1.0	0.25	0.17	ug/L	08/28/13 19:50	1
cis-1,3-Dichloropropene	0.25	U	1.0	0.25	0.14	ug/L	08/28/13 19:50	1
Bromodichloromethane	0.25	U	1.0	0.25	0.15	ug/L	08/28/13 19:50	9
Ethylbenzene	0.25	U	1.0	0.25	0.17	ug/L	08/28/13 19:50	1
1,2-Dibromoethane	0.25	U	1.0	0.25	0.24	ug/L	08/28/13 19:50	1
m-Xylene & p-Xylene	0.50	U	2.0	0.50	0.24	ug/L	08/28/13 19:50	न
2-Butanone (MEK)	0.57	U	10	0.57	0.57	ug/L	08/28/13 19:50	3
4-Methyl-2-pentanone (MIBK)	0.50	U	10	0.50	0.32	ug/L	08/28/13 19:50	- 1
Methylene Chloride	0.50	U	1.0	0.50	0.33	ug/L	08/28/13 19:50	11
o-Xylene	0.25	U	1.0	0.25	0.14	ug/L	08/28/13 19:50	1
Styrene	0.25	U	1.0	0.25	0.11	ug/L	08/28/13 19:50	1
Tetrachloroethene	0.50	U	1.0	0.50	0.29	ug/L	08/28/13 19:50	1
Toluene	0.25	U	1.0	0.25	0.13	ug/L	08/28/13 19:50	
trans-1,2-Dichloroethene	0.25	U	1.0	0.25	0.19	ug/L	08/28/13 19:50	1
trans-1,3-Dichloropropene	0.25	U	1.0	0.25	0.19	ug/L	08/28/13 19:50	1
Trichloroethene	0.25	U	1.0	0.25	0.17		08/28/13 19:50	- 1
Vinyl chloride	0.25	U	1.0	0.25		ug/L	08/28/13 19:50	1
Xylenes, Total	0.25	U	2.0	0.25		ug/L	08/28/13 19:50	- 1
Dibromochloromethane	0,25	U	1.0	0.25	0.18		08/28/13 19:50	1
Surrogate	%Recovery Qu	ialifier i	Limits			Prepared	Analyzed	Dil Fac

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	111		70 - 120		08/28/13 19:50	1
4-Bromofluorobenzene (Surr)	88		75 - 120		08/28/13 19:50	1
Toluene-d8 (Surr)	87		85 - 120		08/28/13 19:50	1
Dibromofluoromethane (Surr)	101		85 - 115		08/28/13 19:50	1

Method: 8270C/DoD -	Semivolatile Organic	Compounds	(GC/MS)
Metriou. 02/00/DOD -	Semiyolatile Organic	Compounds	(GC/IVIS)

Michiga, 02100/D0D - Ocility	olatile organie compe	Julius (OCHM	0)						
Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
Acenaphthene	0.095	U	0.19	0.095	0.042	ug/L		09/03/13 15:34	1
Acenaphthylene	0.095	U	0.19	0.095	0.046	ug/L		09/03/13 15:34	- 1

TestAmerica Canton

Page 67 of 235

Client: Environmental Quality Mgt., Inc.

Project/Site: RVAAP66 (OH)

TestAmerica Job ID: 240-28145-1

Lab Sample ID: 240-28145-22

Matrix: Water

Client Sample ID: FWGDA2mw-115-0313-GW

Date Collected: 08/20/13 14:58 Date Received: 08/21/13 07:00

Method: 8270C/DoD - Semivolatil Analyte		Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil F
Anthracene	0.095		0.19	0.095	0.084		_ =	09/03/13 15:34	
Benzo[a]anthracene	0.095		0.19	0.095	0.028			09/03/13 15:34	
enzo[a]pyrene	0.095		0.19	0.095	0.049			09/03/13 15:34	
enzo[b]fluoranthene	0.095		0.19	0.095				09/03/13 15:34	
enzo[g,h,i]perylene	0.095		0.19	0.095	0.044			09/03/13 15:34	
enzoic acid	19		24	19		ug/L		09/03/13 15:34	
enzo[k]fluoranthene	0.095		0.19	0.095	0.043	ug/L		09/03/13 15:34	
	0.48		4.8	0.48				09/03/13 15:34	
enzyl alcohol					0.36	ug/L			
s(2-chloroethoxy)methane	0.48		0.95	0.48	0.30	ug/L		09/03/13 15:34	
s(2-chloroethyl)ether	0.095		0.95	0.095	0.095	ug/L		09/03/13 15:34	
s(2-ethylhexyl) phthalate	0.56		1.9	0.48	0.21	ug/L		09/03/13 15:34	
Bromophenyl phenyl ether	0.48		1.9	0.48	0.21	ug/L		09/03/13 15:34	
utyl benzyl phthalate	0.48		1.9	0.48	0.25	ug/L		09/03/13 15:34	
arbazole	0.48		0.95	0.48	0.27	ug/L		09/03/13 15:34	
Chloroaniline	0.48		1.9	0.48	0.20	ug/L		09/03/13 15:34	
Chloro-3-methylphenol	0.48	U	1.9	0.48	0.20	ug/L		09/03/13 15:34	
Chloronaphthalene	0.48	U	0.95	0.48	0.095	ug/L		09/03/13 15:34	
Chlorophenol	0.48	U	0.95	0.48	0.28	ug/L		09/03/13 15:34	
Chlorophenyl phenyl ether	0.48	U	1.9	0.48	0.29	ug/L		09/03/13 15:34	
rysene	0.095	U	0.19	0.095	0.048	ug/L		09/03/13 15:34	
penz(a,h)anthracene	0.095	U	0.19	0.095	0.042	ug/L		09/03/13 15:34	
enzofuran	0.095	U	0.95	0.095	0.019	ug/L		09/03/13 15:34	
-Dichlorobenzene	0.48	U	0.95	0.48	0.28	ug/L		09/03/13 15:34	
-Dichlorobenzene	0.48	U	0.95	0.48	0.22	ug/L		09/03/13 15:34	
-Dichlorobenzene	0.48	U	0.95	0.48	0.32	ug/L		09/03/13 15:34	
'-Dichlorobenzidine	0.95	U	4.8	0.95	0.35	ug/L		09/03/13 15:34	
-Dichlorophenol	0.48	U	1.9	0.48	0.18	ug/L		09/03/13 15:34	
ethyl phthalate	0.95	U	1.9	0.95	0.57			09/03/13 15:34	
-Dimethylphenol	0.48	U	1.9	0.48		ug/L		09/03/13 15:34	
nethyl phthalate	0.48		1.9	0.48	0.28	ug/L		09/03/13 15:34	
n-butyl phthalate	0.64		1.9	0.95		ug/L		09/03/13 15:34	
-Dinitro-2-methylphenol	3.8		4.8	3.8		ug/L		09/03/13 15:34	
-Dinitrophenol	0.95		4.8	0.95	0.30	ug/L		09/03/13 15:34	
n-octyl phthalate	0.48		1.9	0.48	0.22	ug/L		09/03/13 15:34	
oranthene	0.095		0.19	0.095	0.042			09/03/13 15:34	
orene	0.095		0.19	0.095	0.039			09/03/13 15:34	
xachlorobenzene	0.095		0.19	0.095	0.039				
								09/03/13 15:34	
xachlorobutadiene	0.48		0.95	0.48		ug/L		09/03/13 15:34	
xachlorocyclopentadiene	0.48		9.5	0.48		ug/L		09/03/13 15:34	
xachloroethane	0.48		0.95	0.48		ug/L		09/03/13 15:34	
leno[1,2,3-cd]pyrene	0.095		0.19	0.095	0.041	10200		09/03/13 15:34	
phorone	0.48		0.95	0.48		ug/L		09/03/13 15:34	
Methylnaphthalene	0.095		0.19	0.095	0.086			09/03/13 15:34	
Methylphenol	0.48		0.95	0.48		ug/L		09/03/13 15:34	
4 Methylphenol	0.95		1.9	0.95	0.76	ug/L		09/03/13 15:34	
phthalene	0.095	U	0.19	0.095	0.060			09/03/13 15:34	
litroaniline	0.48	U	1.9	0.48	0.20	ug/L		09/03/13 15:34	
Nitroaniline	0.48	U	1.9	0.48	0.27	ug/L		09/03/13 15:34	
Nitroaniline	0.48	U	1.9	0.48	0.21	ug/L		09/03/13 15:34	

Client: Environmental Quality Mgt., Inc.

Project/Site: RVAAP66 (OH)

TestAmerica Job ID: 240-28145-1

Lab Sample ID: 240-28145-22

08/22/13 08:06

08/22/13 08:06

08/22/13 07:53

08/22/13 07:53

08/22/13 07:53

08/22/13 07:53

oumple 15. 240-20140-22

09/03/13 15:34

09/03/13 15:34

Matrix: Water

Client Sample ID: FWGDA2mw-115-0313-GW

Date Collected: 08/20/13 14:58 Date Received: 08/21/13 07:00

Terphenyl-d14 (Surr)

2,4,6-Tribromophenol (Surr)

DCB Decachlorobiphenyl

DCB Decachlorobiphenyl

Tetrachloro-m-xylene

Tetrachloro-m-xylene

Method: 8270C/DoD - Semivo	latile Organic Comp	ounds (G	C/MS) (Contin	ued)				
Analyte	Result	Qualifier	LOQ	LOD	DL	Unit D	Analyzed	Dil Fac
2-Nitrophenol	0.48	U	1.9	0.48	0.27	ug/L	09/03/13 15:34	1
4-Nitrophenol	3.8	U	4.8	3.8	0.28	ug/L	09/03/13 15:34	1
N-Nitrosodi-n-propylamine	0.48	U	0.95	0.48	0.23	ug/L	09/03/13 15:34	1
N-Nitrosodiphenylamine	0.48	U	0.95	0.48	0.30	ug/L	09/03/13 15:34	1
2,2'-oxybis[1-chloropropane]	0.48	U	0.95	0.48	0.38	ug/L	09/03/13 15:34	1
Pentachlorophenol	0.95	U	4.8	0.95	0.26	ug/L	09/03/13 15:34	1
Phenanthrene	0.095	U	0.19	0.095	0.059	ug/L	09/03/13 15:34	1
Phenol	0.95	U	0.95	0.95	0.57	ug/L	09/03/13 15:34	1
Pyrene	0.095	U	0.19	0.095	0.040	ug/L	09/03/13 15:34	1
1,2,4-Trichlorobenzene	0.48	U	0.95	0.48	0.27	ug/L	09/03/13 15:34	1
2,4,5-Trichlorophenol	0.48	U	4.8	0.48	0.29	ug/L	09/03/13 15:34	1
2,4,6-Trichlorophenol	0.48	U	4.8	0.48	0.23	ug/L	09/03/13 15:34	1
Surrogate	%Recovery Q	ualifier	Limits			Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl (Surr)	60		50 - 110			08/22/13 08:06	09/03/13 15:34	1
2-Fluorophenol (Surr)	64		20 - 110			08/22/13 08:06	09/03/13 15:34	1
Nitrobenzene-d5 (Surr)	66		40 - 110			08/22/13 08:06	09/03/13 15:34	1
Phenol-d5 (Surr)	71		10 - 115			08/22/13 08:06	09/03/13 15:34	1

50 - 135

40 - 125

80

80

111

137

110 M

181 Q

Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	2 Analyzed	Dil Fac
4,4'-DDD	0.020	U	0.049	0.020	0.0094	ug/L	09/11/13 22:24	1
4,4'-DDE	0.020	U	0.049	0.020	0.0095	ug/L	09/11/13 22:24	1
4,4'-DDT	0.020	U	0.049	0.020	0.016	ug/L	09/11/13 22;24	- 1
Aldrin	0.020	U	0.029	0.020	0.0080	ug/L	09/11/13 22:24	1
alpha-BHC	0.020	U	0.029	0.020	0.0069	ug/L	09/11/13 22:24	1
alpha-Chlordane	0.020	U	0.049	0.020	0.014	ug/L	09/11/13 22:24	1
beta-BHC	0.015	JQ	0.049	0.020	0.0082	ug/L	09/11/13 22:24	1
delta-BHC	0.020	U	0.049	0.020	0.0085	ug/L	09/11/13 22:24	1
Dieldrin	0.020	U	0.029	0.020	0.0074	ug/L	09/11/13 22:24	1
Endosulfan I	0.020	U	0.049	0.020	0.013	ug/L	09/11/13 22:24	1
Endosulfan II	0.020	U	0.049	0.020	0.012	ug/L	09/11/13 22:24	- 1
Endosulfan sulfate	0.020	U	0.049	0.020	0.011	ug/L	09/11/13 22:24	1
Endrin	0.020	U	0.049	0.020	0.011	ug/L	09/11/13 22:24	1
Endrin aldehyde	0.020	U	0.049	0.020	0.011	ug/L	09/11/13 22:24	1
Endrin ketone	0.020	U	0.049	0.020	0.0076	ug/L	09/11/13 22:24	1
gamma-BHC (Lindane)	0.020	U	0.049	0.020	0.0063	ug/L	09/11/13 22:24	9
gamma-Chlordane	0.020	U	0.049	0.020	0.012	ug/L	09/11/13 22:24	1
Heptachlor	0.020	U	0.029	0.020	0.0078	ug/L	09/11/13 22:24	1
Heptachlor epoxide	0.020	U	0.029	0.020	0,0070	ug/L	09/11/13 22:24	1
Methoxychlor	0.049	U	0.098	0.049	0.031	ug/L	09/11/13 22:24	1
Toxaphene	0.78	U	2.0	0.78	0.31	ug/L	09/11/13 22:24	1
Surrogate	%Recovery Qu	ıalifier	Limits			Prepared	Analyzed	Dil Fac

TestAmerica Canton

09/11/13 22:24

09/11/13 22:24

09/11/13 22:24

09/11/13 22:24

Page 69 of 235

30 - 135

30 - 135

25 - 140

25 - 140

10/7/2013

3

5

7/

9

13

14

H.

Client: Environmental Quality Mgt., Inc.

Project/Site: RVAAP66 (OH)

TestAmerica Job ID: 240-28145-1

Lab Sample ID: 240-28145-22

Matrix: Water

Client Sample ID: FWGDA2mw-115-0313-GW

Date Collected: 08/20/13 14:58 Date Received: 08/21/13 07:00

Analyte	Result	Qualifier	L	OQ	LOD	DL	Unit D	Analyzed	Dil Fac
Aroclor-1016	0.19	UHQ	0	.48	0.19	0.16	ug/L	09/04/13 14:57	1
Aroclor-1221	0.19	UH	0	.48	0.19	0.12	ug/L	09/04/13 14:57	1
Aroclor-1232	0.19	UH	0	.48	0.19	0.15	ug/L	09/04/13 14:57	1
Aroclor-1242	0.38	UH	0	.48	0.38	0.21	ug/L	09/04/13 14:57	1
Aroclor-1248	0.19	UH	0	.48	0.19	0.095	ug/L	09/04/13 14:57	1
Aroclor-1254	0.19	UH	0	.48	0.19	0.15	ug/L	09/04/13 14:57	1
Aroclor-1260	0.19	UHQ	0	.48	0.19	0.16	ug/L	09/04/13 14:57	1
Surrogate	%Recovery Qu	alifier	Limits				Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	61		40 - 140				08/30/13 08:32	09/04/13 14:57	1
Tetrachloro-m-xylene	74		40 - 140				08/30/13 08:32	09/04/13 14:57	1
DCB Decachlorobiphenyl	66		40 - 135				08/30/13 08:32	09/04/13 14:57	1
DCB Decachlorobiphenyl	62		40 - 135				08/30/13 08:32	09/04/13 14:57	1

Method: 8330 Modified - Nitro	guanidine (HPLC)								
Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
Nitroguanidine	6.0	U	20	6.0	2.4	ug/L		08/29/13 16:43	1
Method: 8330A - Nitroaromatic	s and Nitramines								
Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
1,3,5-Trinitrobenzene	0.055	U	0.17	0.055	0.034	ug/L		08/29/13 03:41	1
1,3-Dinitrobenzene	0.11	U	0.17	0.11	0.055	ug/L		08/29/13 03:41	1
2,4,6-Trinitrotoluene	0.11	U	0.17	0.11	0.055	ug/L		08/29/13 03:41	1
2 (2)	200	7.7	2.22						

Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
1,3,5-Trinitrobenzene	0.055	U	0.17	0.055	0.034	ug/L		08/29/13 03:41	1
1,3-Dinitrobenzene	0.11	U	0.17	0.11	0.055	ug/L		08/29/13 03:41	1
2,4,6-Trinitrotoluene	0.11	U	0.17	0.11	0.055	ug/L		08/29/13 03:41	1
2,4-Dinitrotoluene	0.11	U	0.14	0.11	0.055	ug/L		08/29/13 03:41	1
2,6-Dinitrotoluene	0.11	U	0.14	0.11	0.055	ug/L		08/29/13 03:41	1
2-Amino-4,6-dinitrotoluene	0.11	U	0.17	0.11	0.017	ug/L		08/29/13 03:41	1
2-Nitrotoluene	0.11	U	0.55	0.11	0.097	ug/L		08/29/13 03:41	1
3-Nitrotoluene	0.11	U	0.55	0.11	0.063	ug/L		08/29/13 03:41	1
4-Nitrotoluene	0.11	U	0.55	0.11	0.097	ug/L		08/29/13 03:41	1
4-Amino-2,6-dinitrotoluene	0.11	U	0.17	0.11	0.055	ug/L		08/29/13 03:41	1
HMX	0.055	U	0.17	0.055	0.040	ug/L		08/29/13 03:41	1
RDX	0.055	U	0.17	0.055	0.040	ug/L		08/29/13 03:41	1
Nitrobenzene	0.11	U	0.17	0.11	0.055	ug/L		08/30/13 23:01	1
Tetryl	0.11	U	0.17	0.11	0.055	ug/L		08/29/13 03:41	- 3
Nitroglycerin	0.55	U	0.72	0.55	0.36	ug/L		08/29/13 03:41	1
PETN	0.55	U	0.72	0.55	0.33	ug/L		08/29/13 03:41	1

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
3,4-Dinitrotoluene	92	79 - 111	08/26/13 09:34	08/29/13 03:41	1
3,4-Dinitrotoluene	100	79 - 111	08/26/13 09:34	08/30/13 23:01	1

General Chemistry Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
Cyanide, Total	0.010	U	0.010	0.010	0.0032	mg/L		08/23/13 13:25	1
Nitrocellulose	1.0	U	2.0	1.0	0.48	mg/L		09/05/13 14:04	1

Client: Environmental Quality Mgt., Inc.

Project/Site: RVAAP66 (OH)

TestAmerica Job ID: 240-28145-1

Lab Sample ID: 240-28145-23

Matrix: Water

Client Sample ID: FWGDA2mw-115-0313-GF

Date Collected: 08/20/13 14:58 Date Received: 08/21/13 07:00

Hg

Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
Arsenic	10	Ü	10	10	3.3	ug/L		09/09/13 12:51	- 1
Chromium	4.0	U	7.0	4.0	1.4	ug/L		09/09/13 12:51	1
Cobalt	4.0	U	7.0	4.0	1.5	ug/L		09/09/13 12:51	11
Lead	5.0	U	10	5.0	1.7	ug/L		09/09/13 12:51	
Selenium	10	U	15	10	4.0	ug/L		09/09/13 12:51	1
Silver	5.0	U	7.0	5.0	1.7	ug/L		09/09/13 12:51	1
Vanadium	4.0	U	7.0	4.0	1.3	ug/L		09/09/13 12:51	1
Barium	21	J	200	5.0	2.8	ug/L		09/09/13 12:51	
Calcium	100000		5000	1000	630	ug/L		09/09/13 12:51	
Copper	10	U	25	10	4.4	ug/L		09/09/13 12:51	1
Magnesium	29000		5000	300	120	ug/L		09/09/13 12:51	1
Manganese	110		15	5.0	1.8	ug/L		09/09/13 12:51	11
Nickel	5.0	U	40	5.0	2.2	ug/L		09/09/13 12:51	-31
Potassium	3400	J	5000	900	300	ug/L		09/09/13 12:51	
Method: 6020/DOD - Metals (ICP/MS) - To	otal Recov	/erable							
Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
Aluminum	60	U	60	60	20	ug/L	= =	09/09/13 16:47	7
Antimony	1.0	U	2.0	1.0	0.33	ug/L		09/09/13 16:47	9
Beryllium	1.0	UQ	1.0	1.0	0.50	ug/L		09/09/13 16:47	
Cadmium	1.0	U	2.0	1.0	0.40	ug/L		09/09/13 16:47	
Iron	720		150	100	44	ug/L		09/09/13 16:47	- 3
Sodium	12000		1000	400	160	ug/L		09/09/13 16:47	
Thallium	1.5	U	2.0	1.5	0.79	ug/L		09/09/13 16:47	
Zinc	50	U	50	50	27	ug/L		09/09/13 16:47	
Method: 7470A/DOD - Mercury (CVAA)									
Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fa

0.20

0.20

0.12 ug/L

0.20 U

TestAmerica Canton

08/23/13 14:04

Client: Environmental Quality Mgt., Inc.

TestAmerica Job ID: 240-28145-1 Project/Site: RVAAP66 (OH)

Client Sample ID: FWGTEAM2-TRIP

Lab Sample ID: 240-28145-24 Date Collected: 08/20/13 08:00

Matrix: Water Date Received: 08/21/13 07:00

Method: 8260B/DoD - Volatile Organic Compounds (GC/MS) Result Qualifier LOQ LOD DL Unit D Analyzed Dil Fac 0.25 U 0.25 1,1,1-Trichloroethane 1.0 0.22 ug/L 08/28/13 20:12 1.0 1,1,2,2-Tetrachloroethane 0.25 U 0.25 0.18 ug/L 08/28/13 20:12 1,1,2-Trichloroethane 0.50 1.0 0.50 0.27 ug/L 08/28/13 20:12 0.25 U 1,1-Dichloroethane 1.0 0.25 0.15 ug/L 08/28/13 20:12 1,1-Dichloroethene 0.25 U 1.0 0.25 0.19 ug/L 08/28/13 20:12 1.2-Dichloroethane 0.25 U 1.0 0.25 0.22 08/28/13 20:12 ug/L 1,2-Dichloroethene, Total 0.25 U 2.0 0.25 ug/L 08/28/13 20:12 0.25 U 0.25 ug/L 1,2-Dichloropropane 1.0 08/28/13 20:12 0.18 2-Hexanone 0.50 U 10 0.50 0.41 ug/L 08/28/13 20:12 Bromochloromethane 0.50 U 1.0 0.50 0.29 ug/L 08/28/13 20:12 Acetone 1.1 U 10 1.1 1.1 ug/L 08/28/13 20:12 Benzene 0.25 U 1.0 0.25 0.13 ug/L 08/28/13 20:12 0.64 U 0.64 ug/L Bromoform 1.0 0.64 08/28/13 20:12 Bromomethane 0.50 U 1.0 0.50 0.41 ug/L 08/28/13 20:12 Carbon disulfide 08/28/13 20:12 0.25 U 0.25 1.0 0.13 ug/L 0.25 Carbon tetrachloride 0.25 U 1.0 0.13 ug/L 08/28/13 20:12 Chlorobenzene 0.25 11 1.0 0.25 ug/L 08/28/13 20:12 0.15 Chloroethane 0.50 U 1.0 0.50 08/28/13 20:12 0.29 ug/L 0.25 U Chloroform 1.0 0.25 0.16 ug/L 08/28/13 20:12 Chloromethane 0.50 U 1.0 0.50 0.30 08/28/13 20:12 ug/L 0.25 cis-1,2-Dichloroethene 0.25 U 1.0 ug/L 08/28/13 20:12 0.17 cis-1,3-Dichloropropene 0.25 U 1.0 0.25 ug/L 08/28/13 20:12 0.25 U 1.0 0.25 0.15 08/28/13 20:12 Bromodichloromethane ug/L Ethylbenzene 0.25 U 1.0 0.25 0.17 ug/L 08/28/13 20:12 1,2-Dibromoethane 0.25 U 1.0 0.25 0.24 08/28/13 20:12 ua/L m-Xylene & p-Xylene 0.50 U 2.0 0.50 0.24 ug/L 08/28/13 20:12 2-Butanone (MEK) 0.57 U 10 0.57 0.57 ug/L 08/28/13 20:12 0.50 U 0.50 4-Methyl-2-pentanone (MIBK) 10 0.32 ug/L 08/28/13 20:12 1.0 0.50 08/28/13 20:12 Methylene Chloride 0.59 J 0.33 ug/L ug/L 0.25 U 1.0 0.25 o-Xylene 0.14 08/28/13 20:12 Styrene 0.25 U 1.0 0.25 0.11 ug/L 08/28/13 20:12 0.50 U 10 0.50 Tetrachloroethene 0.29 ug/L 08/28/13 20:12 0.25 U 1.0 0.25 0:13 ug/L 08/28/13 20:12 trans-1,2-Dichloroethene 0.25 U 1.0 0.25 0.19 ug/L 08/28/13 20:12 trans-1,3-Dichloropropene 0.25 U 1.0 0.25 0.19 ug/L 08/28/13 20:12 Trichloroethene 0.25 U 1.0 0.25 08/28/13 20:12 0.17 ug/L Vinyl chloride 0.25 U 1.0 0.25 0.22 ug/L 08/28/13 20:12 Xylenes, Total 0.25 U 2.0 0.25 0.14 ug/L 08/28/13 20:12 1 Dibromochloromethane 0.25 U 0.25 08/28/13 20:12 1.0 0.18 ug/L

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	108		70 - 120		08/28/13 20:12	1
4-Bromofluorobenzene (Surr)	89		75 - 120		08/28/13 20:12	1
Toluene-d8 (Surr)	87		85 - 120		08/28/13 20:12	1
Dibromofluoromethane (Surr)	103		85 - 115		08/28/13 20:12	1

Client: Environmental Quality Mgt., Inc.

Client Sample ID: FWGEQUIPRINSE2-0341-GW

Project/Site: RVAAP66 (OH)

TestAmerica Job ID: 240-28145-1

Lab Sample ID: 240-28145-25

Matrix: Water

Date Collected: 08/20/13 13:42 Date Received: 08/21/13 07:00

Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
1,1,1-Trichloroethane	0.25	Ü	1.0	0.25	0.22	ug/L		08/28/13 20:35	1
1,1,2,2-Tetrachloroethane	0.25	U	1.0	0.25	0.18	ug/L		08/28/13 20:35	1
1,1,2-Trichloroethane	0.50	U	1.0	0.50	0.27	ug/L		08/28/13 20:35	1
1,1-Dichloroethane	0.25	U	1.0	0.25	0.15	ug/L		08/28/13 20:35	1
1,1-Dichloroethene	0.25	U	1.0	0.25	0.19	ug/L		08/28/13 20:35	1
1,2-Dichloroethane	0.25	U	1.0	0.25	0.22	ug/L		08/28/13 20:35	. 1
1,2-Dichloroethene, Total	0.25	U	2.0	0.25	0.17	ug/L		08/28/13 20:35	1
1,2-Dichloropropane	0.25	U	1.0	0.25	0.18	ug/L		08/28/13 20:35	1
2-Hexanone	0.50	U	10	0.50	0.41	ug/L		08/28/13 20:35	1
Bromochloromethane	0.50	U	1.0	0.50	0.29	ug/L		08/28/13 20:35	1
Acetone	21		10	1.1	1.1	ug/L		08/28/13 20:35	1
Benzene	0.25	U	1.0	0.25	0.13	ug/L		08/28/13 20:35	1
Bromoform	0.64	U	1.0	0.64	0.64	ug/L		08/28/13 20:35	1
Bromomethane	0.50	U	1.0	0.50	0.41	ug/L		08/28/13 20:35	1
Carbon disulfide	1.3		1.0	0.25	0.13	ug/L		08/28/13 20:35	1
Carbon tetrachloride	0.25	U	1.0	0.25	0.13	ug/L		08/28/13 20:35	1
Chlorobenzene	0.25	U	1.0	0.25	0.15	ug/L		08/28/13 20:35	1
Chloroethane	0.50	U	1.0	0.50	0.29	ug/L		08/28/13 20:35	1
Chloroform	0.25	U	1.0	0.25	0.16	ug/L		08/28/13 20:35	1
Chloromethane	0.50	U	1.0	0.50	0.30	ug/L		08/28/13 20:35	1
cis-1,2-Dichloroethene	0.25	U	1.0	0.25	0.17	ug/L		08/28/13 20:35	1
cis-1,3-Dichloropropene	0.25	U	1.0	0.25	0.14	ug/L		08/28/13 20:35	1
Bromodichloromethane	0.25	U	1.0	0.25	0.15	ug/L		08/28/13 20:35	1
Ethylbenzene	0.25	U	1.0	0.25	0.17	ug/L		08/28/13 20:35	1
1,2-Dibromoethane	0.25	U	1.0	0.25	0.24	ug/L		08/28/13 20:35	1
m-Xylene & p-Xylene	0.50	U	2.0	0.50	0.24	ug/L		08/28/13 20:35	1
2-Butanone (MEK)	1.1	J	10	0.57	0.57	ug/L		08/28/13 20:35	1
4-Methyl-2-pentanone (MIBK)	0.50	U	10	0.50	0.32	ug/L		08/28/13 20:35	1
Methylene Chloride	0.50	U	1.0	0.50	0.33	ug/L		08/28/13 20:35	1
o-Xylene	0.25	U	1.0	0.25	0.14	ug/L		08/28/13 20:35	1
Styrene	0.25	U	1.0	0.25	0.11	ug/L		08/28/13 20:35	1
Tetrachloroethene	0.50	U	1.0	0.50	0.29	ug/L		08/28/13 20:35	1
Toluene	0.25	U	1.0	0.25	0.13	ug/L		08/28/13 20:35	
trans-1,2-Dichloroethene	0.25	U	1.0	0.25	0.19	ug/L		08/28/13 20:35	1
trans-1,3-Dichloropropene	0.25	U	1.0	0.25	0.19	ug/L		08/28/13 20:35	1
Trichloroethene	0.25	U	1.0	0.25	0.17	ug/L		08/28/13 20:35	1
Vinyl chloride	0.25	U	1.0	0.25	0.22	ug/L		08/28/13 20:35	1
Xylenes, Total	0.25	U	2.0	0.25	0.14	ug/L		08/28/13 20:35	-1
Dibromochloromethane	0.25	U	1.0	0.25	0.18			08/28/13 20:35	1
Surrogate	%Recovery Qu	alifier	Limits			Prepa	red	Analyzed	Dil Fac

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	115		70 - 120		08/28/13 20:35	1
4-Bromofluorobenzene (Surr)	88		75 - 120		08/28/13 20:35	1
Toluene-d8 (Surr)	87		85 - 120		08/28/13 20:35	1
Dibromofluoromethane (Surr)	103		85 - 115		08/28/13 20:35	7

Method: 8270C/DoD -	Semivolatile Organic Compounds (GC/MS)
A A . A	Description Constitution

Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
Acenaphthene	0.10	U	0.20	0.10	0.044	ug/L	_	09/03/13 15:59	1
Acenaphthylene	0.10	U	0.20	0.10	0.048	ug/L		09/03/13 15:59	- 1

TestAmerica Canton

Page 73 of 235

Client: Environmental Quality Mgt., Inc.

Project/Site: RVAAP66 (OH)

TestAmerica Job ID: 240-28145-1

Lab Sample ID: 240-28145-25

Matrix: Water

Client Sample ID: FWGEQUIPRINSE2-0341-GW

Date Collected: 08/20/13 13:42 Date Received: 08/21/13 07:00

Method: 8270C/DoD - Semivolatil Analyte		Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil F
Anthracene	0.10	U	0.20	0.10	0.088	ug/L		09/03/13 15:59	_
Benzo[a]anthracene	0.10	U	0.20	0.10	0.030			09/03/13 15:59	
Benzo[a]pyrene	0.10	U	0.20	0.10	0.051			09/03/13 15:59	
enzo[b]fluoranthene	0.10	U	0.20	0.10	0.039	ug/L		09/03/13 15:59	
enzo[g,h,i]perylene	0.10		0.20	0.10	0.046			09/03/13 15:59	
enzoic acid		UM	25	20	10	ug/L		09/03/13 15:59	
enzo[k]fluoranthene	0.10		0.20	0.10	0.045	ug/L		09/03/13 15:59	
enzyl alcohol	0.66		5.0	0.50	0.38	ug/L		09/03/13 15:59	
is(2-chloroethoxy)methane	0.50		1.0	0.50	0.32	ug/L		09/03/13 15:59	
iis(2-chloroethyl)ether	0.10		1.0	0.10	0.10	ug/L		09/03/13 15:59	
Bis(2-ethylhexyl) phthalate	0.53		2.0	0.50	0.22	ug/L		09/03/13 15:59	
-Bromophenyl phenyl ether	0.50		2.0	0.50	0.22	ug/L		09/03/13 15:59	
Butyl benzyl phthalate	0.50		2.0	0.50	0.26	ug/L		09/03/13 15:59	
Parbazole	0.50		1.0	0.50	0.28	ug/L		09/03/13 15:59	
-Chloroaniline	0.50		2.0	0.50	0.21	ug/L		09/03/13 15:59	
-Chloro-3-methylphenol	0.50		2.0	0.50	0.21	ug/L		09/03/13 15:59	
-Chloronaphthalene	0.50		1.0	0.50		ug/L		09/03/13 15:59	
-Chlorophenol	0.50		1.0	0.50	0.29	ug/L		09/03/13 15:59	
-Chlorophenyl phenyl ether	0.50		2.0	0.50	0.30	ug/L		09/03/13 15:59	
	0.10		0.20	0.10	0.050	ug/L		09/03/13 15:59	
hrysene	0.10		0.20	0.10	0.045			09/03/13 15:59	
ibenz(a,h)anthracene	0.10					ug/L			
ibenzofuran			1.0	0.10	0.020	ug/L		09/03/13 15:59	
2-Dichlorobenzene	0.50		1.0	0.50	0.29	ug/L		09/03/13 15:59	
3-Dichlorobenzene	0.50		1.0	0.50	0.23	ug/L		09/03/13 15:59	
,4-Dichlorobenzene	0.50		1.0	0.50	0.34	ug/L		09/03/13 15:59	
,3'-Dichlorobenzidine	1.0		5.0	1.0	0.37	ug/L		09/03/13 15:59	
,4-Dichlorophenol	0.50		2.0	0.50	0.19	ug/L		09/03/13 15:59	
hiethyl phthalate	1.4		2.0	1.0	0.60	ug/L		09/03/13 15:59	
,4-Dimethylphenol	0.50		2.0	0.50	0.25	ug/L		09/03/13 15:59	
imethyl phthalate	0.50		2.0	0.50	0.29	ug/L		09/03/13 15:59	
i-n-butyl phthalate	1.0		2.0	1.0	0.67	ug/L		09/03/13 15:59	
,6-Dinitro-2-methylphenol	4.0		5.0	4.0		ug/L		09/03/13 15:59	
.4-Dinitrophenol	1.0		5.0	1.0	0.32	ug/L		09/03/13 15:59	
i-n-octyl phthalate	0.50		2.0	0.50	0.23	ug/L		09/03/13 15:59	
luoranthene	0.10		0.20	0.10	0.045			09/03/13 15:59	
luorene	0.10		0.20	0.10	0.041			09/03/13 15:59	
lexachlorobenzene	0.10		0.20	0.10	0.085			09/03/13 15:59	
lexachlorobutadiene	0.50		1.0	0.50		ug/L		09/03/13 15:59	
lexachlorocyclopentadiene	0.50	U	10	0.50	0.24	ug/L		09/03/13 15:59	
lexachloroethane	0.50	U	1.0	0.50		ug/L		09/03/13 15:59	
ndeno[1,2,3-cd]pyrene	0.10	U	0.20	0.10	0.043	ug/L		09/03/13 15:59	
sophorone	0.50	U	1.0	0.50	0.27	ug/L		09/03/13 15:59	
-Methylnaphthalene	0.10	U	0.20	0.10	0.090	ug/L		09/03/13 15:59	
-Methylphenol	0.50	U	1.0	0.50	0.17	ug/L		09/03/13 15:59	
& 4 Methylphenol	1.0	U	2.0	1.0	0.80	ug/L		09/03/13 15:59	
laphthalene	0.10	U	0.20	0.10	0.063	ug/L		09/03/13 15:59	
-Nitroaniline	0.50	U	2.0	0.50	0.21	ug/L		09/03/13 15:59	
3-Nitroaniline	0.50	U	2.0	0.50	0.28	ug/L		09/03/13 15:59	
4-Nitroaniline	0.50	U	2.0	0.50		ug/L		09/03/13 15:59	

Client: Environmental Quality Mgt., Inc.

Project/Site: RVAAP66 (OH)

TestAmerica Job ID: 240-28145-1

Lab Sample ID: 240-28145-25

Matrix: Water

Client Sample ID: FWGEQUIPRINSE2-0341-GW Date Collected: 08/20/13 13:42

Date Received: 08/21/13 07:00

Analyte	Result	Qualifier	LOQ	LOD	DL	Unit D	Analyzed	Dil Fac
2-Nitrophenol	0.50	U	2.0	0.50	0.28	ug/L	09/03/13 15:59	1
4-Nitrophenol	4.0	U	5.0	4.0	0.29	ug/L	09/03/13 15:59	1
N-Nitrosodi-n-propylamine	0.50	U	1.0	0.50	0.24	ug/L	09/03/13 15:59	1
N-Nitrosodiphenylamine	0.50	U	1.0	0.50	0.31	ug/L	09/03/13 15:59	1
2,2'-oxybis[1-chloropropane]	0.50	U	1.0	0.50	0.40	ug/L	09/03/13 15:59	1
Pentachlorophenol	1.0	U	5.0	1.0	0.27	ug/L	09/03/13 15:59	1
Phenanthrene	0.10	U	0.20	0.10	0.062	ug/L	09/03/13 15:59	1
Phenol	0.61	J	1.0	1.0	0.60	ug/L	09/03/13 15:59	1
Pyrene	0.10	U	0.20	0.10	0.042	ug/L	09/03/13 15:59	1
1,2,4-Trichlorobenzene	0.50	U	1.0	0.50	0.28	ug/L	09/03/13 15:59	1
2,4,5-Trichlorophenol	0.50	U	5.0	0.50	0.30	ug/L	09/03/13 15:59	- 1
2,4,6-Trichlorophenol	0,50	U	5.0	0.50	0.24	ug/L	09/03/13 15:59	1
Surrogate	%Recovery Q	ualifier	Limits			Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl (Surr)	58		50 - 110			08/22/13 08:06	09/03/13 15:59	1
2-Fluorophenol (Surr)	59		20 - 110			08/22/13 08:06	09/03/13 15:59	1
Nitrobenzene-d5 (Surr)	63		40 - 110			08/22/13 08:06	09/03/13 15:59	1
Phenol-d5 (Surr)	64		10 - 115			08/22/13 08:06	09/03/13 15:59	1
Terphenyl-d14 (Surr)	81		50 - 135			08/22/13 08:06	09/03/13 15:59	1
2,4,6-Tribromophenol (Surr)	73		40 - 125			08/22/13 08:06	09/03/13 15:59	1

Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
4,4'-DDD	0.021	U	0.052	0.021	0.0099	ug/L		09/11/13 22:44	1
4,4'-DDE	0.021	U	0.052	0.021	0.010	ug/L		09/11/13 22:44	- 1
4,4'-DDT	0.021	U	0.052	0.021	0.016	ug/L		09/11/13 22:44	- 1
Aldrin	0.021	U	0.031	0.021	0.0085	ug/L		09/11/13 22:44	.1
alpha-BHC	0.021	U	0.031	0.021	0.0072	ug/L		09/11/13 22:44	1
alpha-Chlordane	0.021	U	0.052	0.021	0.014	ug/L		09/11/13 22:44	1
beta-BHC	0.021	U	0.052	0.021	0.0087	ug/L		09/11/13 22:44	1
delta-BHC	0.021	U	0.052	0.021	0.0090	ug/L		09/11/13 22:44	- 1
Dieldrin	0.021	UM	0.031	0.021	0.0077	ug/L		09/11/13 22:44	1
Endosulfan I	0.021	U	0.052	0.021	0.013	ug/L		09/11/13 22:44	1
Endosulfan II	0.021	U	0.052	0.021	0.012	ug/L		09/11/13 22:44	1
Endosulfan sulfate	0.021	U	0.052	0.021	0.011	ug/L		09/11/13 22:44	1
Endrin	0.021	U	0.052	0.021	0.011	ug/L		09/11/13 22:44	1
Endrin aldehyde	0.021	U	0.052	0.021	0.011	ug/L		09/11/13 22:44	1
Endrin ketone	0.021	U	0.052	0.021	0.0080	ug/L		09/11/13 22:44	1
gamma-BHC (Lindane)	0.021	U	0.052	0.021	0.0066	ug/L		09/11/13 22:44	9
gamma-Chlordane	0.021	U	0.052	0.021	0.012	ug/L		09/11/13 22:44	1
Heptachlor	0.021	U	0.031	0.021	0.0082	ug/L		09/11/13 22:44	1
Heptachlor epoxide	0.021	U	0.031	0.021	0,0073	ug/L		09/11/13 22:44	1
Methoxychlor	0.052	U	0.10	0.052	0.033	ug/L		09/11/13 22:44	1
Toxaphene	0.82	U	2.1	0.82	0.33	ug/L		09/11/13 22:44	1

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
DCB Decachlorobiphenyl	111		30 - 135	08/22/13 07:53	09/11/13 22:44	1
DCB Decachlorobiphenyl	115		30 - 135	08/22/13 07:53	09/11/13 22:44	1
Tetrachloro-m-xylene	103		25 - 140	08/22/13 07:53	09/11/13 22:44	1
Tetrachloro-m-xylene	109		25 - 140	08/22/13 07:53	09/11/13 22:44	1

TestAmerica Canton

Page 75 of 235

10/7/2013

Client: Environmental Quality Mgt., Inc.

Project/Site: RVAAP66 (OH)

TestAmerica Job ID: 240-28145-1

Lab Sample ID: 240-28145-25

Client Sample ID: FWGEQUIPRINSE2-0341-GW

Date Collected: 08/20/13 13:42 Matrix: Water Date Received: 08/21/13 07:00

Method: 8082/DOD - Polychlor Analyte		Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fa
Aroclor-1016	0.20	UHQ	0.51	0.20	0.17	ug/L		09/04/13 15:12	
Aroclor-1221	0.20	UH	0.51	0.20	0.13	ug/L		09/04/13 15:12	
Aroclor-1232	0.20	UH	0.51	0.20	0.16	ug/L		09/04/13 15:12	
Aroclor-1242	0.40	UH	0.51	0.40	0.22	ug/L		09/04/13 15:12	
Aroclor-1248	0.20	UH	0.51	0.20	0.10	ug/L		09/04/13 15:12	
Aroclor-1254	0.20	UH	0.51	0.20	0.16	ug/L		09/04/13 15:12	
Aroclor-1260	0.20	UHQ	0.51	0.20	0.17	ug/L		09/04/13 15:12	
Surrogate	%Recovery Qu	alifier	Limits			Prep	pared	Analyzed	Dil Fa
Tetrachloro-m-xylene	74		40 - 140			08/30/1	13 08:32	09/04/13 15:12	
Tetrachloro-m-xylene	78		40 - 140			08/30/1	13 08:32	09/04/13 15:12	
DCB Decachlorobiphenyl	31 Q		40 - 135			08/30/1	13 08:32	09/04/13 15:12	
DCB Decachlorobiphenyl	31 Q		40 - 135			08/30/1	13 08:32	09/04/13 15:12	
Method: 8330 Modified - Nitrog	guanidine (HPLC)								
Analyte	Result	Qualifier	LOQ	LOD		Unit	D	Analyzed	Dil Fa
Nitroguanidine	6.0	U	20	6.0	2.4	ug/L		08/29/13 17:01	
Method: 8330A - Nitroaromatic		4.00.00	V.16	1,21				151-4	2.10
Analyte		Qualifier	LOQ	LOD	DL	327	D	Analyzed	Dil Fa
1,3,5-Trinitrobenzene	0,056	U	0.17	0.056	0.035	ug/L		08/29/13 04:25	
1,3-Dinitrobenzene	0.11		0.17	0.11	0.056	ug/L		08/29/13 04:25	
2,4,6-Trinitrotoluene	0.11		0.17	0.11	0.056	ug/L		08/29/13 04:25	
2,4-Dinitrotoluene	0.11		0.15	0.11	0.056	ug/L		08/29/13 04:25	
2,6-Dinitrotoluene	0.11	U	0.15	0.11	0.056	ug/L		08/29/13 04:25	
2-Amino-4,6-dinitrotoluene	0.11		0.17	0.11	0.017	ug/L		08/29/13 04:25	
2-Nitrotoluene	0.11		0.56	0.11	0.099	ug/L		08/29/13 04:25	
3-Nitrotoluene	0.11	U	0.56	0.11	0.064	ug/L		08/29/13 04:25	
1-Nitrotoluene	0.11	U	0.56	0.11	0.099	ug/L		08/29/13 04:25	
4-Amino-2,6-dinitrotoluene	0.11	U	0.17	0.11	0.056	ug/L		08/29/13 04:25	
HMX	0.056	U	0.17	0.056	0.041	ug/L		08/29/13 04:25	
RDX	0.056	U	0.17	0.056	0.041	ug/L		08/29/13 04:25	
Nitrobenzene	0.11	U	0.17	0.11	0.056	ug/L		08/31/13 00:06	
Tetryl	0.11	U	0.17	0.11	0.056	ug/L		08/29/13 04:25	
Nitroglycerin	0.56	U	0.73	0.56	0.37	ug/L		08/29/13 04:25	
PETN	0.56	U	0.73	0.56	0.34	ug/L		08/29/13 04:25	
Surrogate	%Recovery Qu	ıalifier	Limits			Prep	pared	Analyzed	DII F
3,4-Dinitrotoluene	93		79 - 111			08/26/1	13 09:34	08/29/13 04:25	
3,4-Dinitrotoluene	196 Q		79 - 111			08/26/1	13 09:34	08/31/13 00:06	
Method: 6860 - Perchlorate by	IC/MS or IC/MS/MS								
Analyte		Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fa
Perchlorate	0.020	U	0.050	0.020	0.0088	ug/L		09/07/13 01:25	
Method: 6010B/DOD - Metals (ICP) - Total Recover	rable							
Analyte		Qualifier	LOQ	LOD		Unit	D	Analyzed	Dil Fa
Arsenic	10		10	10	3.3	ug/L		09/09/13 12:57	
Chromium	4.0	U	7.0	4.0	1.4	ug/L		09/09/13 12:57	
	4.0								

Client: Environmental Quality Mgt., Inc.

Project/Site: RVAAP66 (OH)

TestAmerica Job ID: 240-28145-1

Lab Sample ID: 240-28145-25

09/09/13 16:55

09/09/13 16:55

09/09/13 16:55

09/09/13 16:55

Matrix: Water

Client Sample ID: FWGEQUIPRINSE2-0341-GW

Date Collected: 08/20/13 13:42 Date Received: 08/21/13 07:00

Iron

Zinc

Sodium

Thallium

Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
Selenium	10	U	15	10	4.0	ug/L		09/09/13 12:57	1
Silver	5.0	U	7.0	5.0	1.7	ug/L		09/09/13 12:57	1
Vanadium	4.0	U	7.0	4.0	1.3	ug/L		09/09/13 12:57	1
Barium	5.0	U	200	5.0	2.8	ug/L		09/09/13 12:57	1
Calcium	1000	U	5000	1000	630	ug/L		09/09/13 12:57	1
Copper	10	U	25	10	4.4	ug/L		09/09/13 12:57	1
Magnesium	300	U	5000	300	120	ug/L		09/09/13 12:57	1
Manganese	5.0	U	15	5.0	1.8	ug/L		09/09/13 12:57	1
Nickel	5.0	U	40	5.0	2.2	ug/L		09/09/13 12:57	1
Potassium	900	U	5000	900	300	ug/L		09/09/13 12:57	1
Method: 6020/DOD - Metals (ICP/MS) - Total Recov	verable							
Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
Aluminum	60	U	60	60	20	ug/L		09/09/13 16:55	1
Antimony	1.0	U	2.0	1.0	0.33	ug/L		09/09/13 16:55	1
Beryllium	1.0	UQ	1.0	1.0	0.50	ug/L		09/09/13 16:55	1
Cadmium	1.0	U	2.0	1.0	0.40	ug/L		09/09/13 16:55	1

Method: 7470A/DOD - Mercury (CVAA) Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
Hg	0.20	Ū	0.20	0.20	0.12	ug/L		08/23/13 14:06	1
General Chemistry Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
Nitrate Nitrite as N	0.012	U	0.050	0.012	0.0053	mg/L		09/06/13 16:50	1
Cyanide, Total	0.010	U	0.010	0.010	0.0032	mg/L		08/26/13 14:03	1
Nitrocellulose	1.0	U	2.0	1.0	0.48	mg/L		09/05/13 14:06	1

150

1000

2.0

100

1.5

50

160 ug/L

0.79 ug/L

27 ug/L

100 U

1.5 U

50 U

Client: Environmental Quality Mgt., Inc.

Project/Site: RVAAP66 (OH)

TestAmerica Job ID: 240-28145-1

Lab Sample ID: 240-28145-26

Matrix: Water

Client Sample ID: FWGDA2mw-DUP1-0336-GW

Date Collected: 08/20/13 16:08 Date Received: 08/21/13 07:00

Method: 8270C/DoD - Semivola Analyte	and the second s	Qualifier	LOQ	LOD	DI	Unit	D	Analyzed	Dil Fa
Acenaphthene	0.11		0.21	0.11	0.047	ug/L	_ =	09/03/13 16:24	Dirita
Acenaphthylene	0.11		0.21	0.11	0.051	ug/L		09/03/13 16:24	
Anthracene	0.11		0.21	0.11	0.093	ug/L		09/03/13 16:24	
Benzo[a]anthracene	0.11		0.21	0.11	0.031	ug/L		09/03/13 16:24	
Benzo[a]pyrene	0.11		0.21	0.11	0.054	ug/L		09/03/13 16:24	
Benzo[b]fluoranthene	0.11		0.21	0.11	0.041	ug/L		09/03/13 16:24	
Benzo[g,h,i]perylene	0.11		0.21	0.11	0.049	ug/L		09/03/13 16:24	
Benzoic acid	21		26	21	11	ug/L		09/03/13 16:24	
Benzo[k]fluoranthene	0.11		0.21	0.11	0.047	300		09/03/13 16:24	
Benzyl alcohol	0.53		5.3	0.53	0.40	ug/L		09/03/13 16:24	
Bis(2-chloroethoxy)methane	0.53		1.1	0.53		ug/L		09/03/13 16:24	
Bis(2-chloroethyl)ether	0.11		1.1	0.11	0.11	ug/L		09/03/13 16:24	
	0.88		2.1	0.53	0.23	ug/L		09/03/13 16:24	
Bis(2-ethylhexyl) phthalate -Bromophenyl phenyl ether	0.53		2.1	0.53	0.23	ug/L		09/03/13 16:24	
Butyl benzyl phthalate	0.53		2.1	0.53	0.23			09/03/13 16:24	
Carbazole	0.53		1.1	0.53	0.29	ug/L		09/03/13 16:24	
-Chloroaniline	0.53		2.1	0.53		ug/L		09/03/13 16:24	
	0.53		2.1					09/03/13 16:24	
-Chloro-3-methylphenol				0.53	0.22				
-Chloronaphthalene	0.53		1.1	0.53	0.11	ug/L		09/03/13 16:24	
-Chlorophenol	0.53		1.1	0.53	0.31	ug/L		09/03/13 16:24	
Chlorophenyl phenyl ether	0.53		2.1	0.53		ug/L		09/03/13 16:24	
hrysene	0.11		0.21	0.11	0.053			09/03/13 16:24	
ibenz(a,h)anthracene	0.11		0.21	0.11	0.047	100		09/03/13 16:24	
ibenzofuran	0.11		1.1	0.11	0.021	ug/L		09/03/13 16:24	
,2-Dichlorobenzene	0.53		1.1	0.53	0.31	ug/L		09/03/13 16:24	
,3-Dichlorobenzene	0.53		1.1	0.53	0.24	ug/L		09/03/13 16:24	
4-Dichlorobenzene	0.53		1.1	0.53	0.36	ug/L		09/03/13 16:24	
,3'-Dichlorobenzidine	1.1		5.3	1.1	0.39	ug/L		09/03/13 16:24	
4-Dichlorophenol	0.53		2.1	0.53	0.20	ug/L		09/03/13 16:24	
iethyl phthalate	1.1		2.1	1.1	0.63	ug/L		09/03/13 16:24	
4-Dimethylphenol	0.53		2.1	0.53	0.26	ug/L		09/03/13 16:24	
imethyl phthalate	0.53	U	2.1	0.53	0.31	ug/L		09/03/13 16:24	
il-n-butyl phthalate	1.1	U	- 2.1	1.1	0.71	ug/L		09/03/13 16:24	
,6-Dinitro-2-methylphenol	4.2	U	5.3	4.2	2.5	ug/L		09/03/13 16:24	
4-Dinitrophenol	1.1	U	5.3	1.1	0.34	ug/L		09/03/13 16:24	
i-n-octyl phthalate	0.53	U	2.1	0.53	0.24	ug/L		09/03/13 16:24	
luoranthene	0.11	U	0.21	0.11	0.047	ug/L		09/03/13 16:24	
luorene	0.11	U	0.21	0.11	0.043	ug/L		09/03/13 16:24	
exachlorobenzene	0.11	U	0.21	0.11	0.090	ug/L		09/03/13 16:24	
exachlorobutadiene	0.53	U	1.1	0.53	0.28	ug/L		09/03/13 16:24	
exachlorocyclopentadiene	0.53	U	11	0.53	0.25	ug/L		09/03/13 16:24	
exachloroethane	0.53	U	1.1	0.53	0.20	ug/L		09/03/13 16:24	
deno[1,2,3-cd]pyrene	0.11	U	0.21	0.11	0.046	ug/L		09/03/13 16:24	
ophorone	0.53	U	1.1	0.53	0.28	ug/L		09/03/13 16:24	
-Methylnaphthalene	0.11	U	0.21	0.11	0.095	ug/L		09/03/13 16:24	
Methylphenol	0.53	U	1.1	0.53	0.18	ug/L		09/03/13 16:24	
& 4 Methylphenol	1.1		2.1	1.1		ug/L		09/03/13 16:24	
laphthalene	0.11		0.21	0.11	0.066			09/03/13 16:24	
-Nitroaniline	0.53		2.1	0.53		ug/L		09/03/13 16:24	

TestAmerica Canton

Page 78 of 235

Client: Environmental Quality Mgt., Inc.

Project/Site: RVAAP66 (OH)

TestAmerica Job ID: 240-28145-1

Lab Sample ID: 240-28145-26

08/22/13 08:06

09/03/13 16:24

ab Sample ID. 240-20143-20

Matrix: Water

Client Sample	ID: FWGDA2mw-D	OUP1-0336-GW

Date Collected: 08/20/13 16:08 Date Received: 08/21/13 07:00

2,4,6-Tribromophenol (Surr)

3,4-Dinitrotoluene

3,4-Dinitrotoluene

Analyte	Result	Qualifier	LOQ	LOD	DL	Unit D	Analyzed	Dil Fac
3-Nitroaniline	0.53	U	2.1	0.53	0.29	ug/L	09/03/13 16:24	1
4-Nitroaniline	0.53	U	2.1	0.53	0.23	ug/L	09/03/13 16:24	1
2-Nitrophenol	0.53	U	2.1	0.53	0.29	ug/L	09/03/13 16:24	1
4-Nitrophenol	4.2	U	5.3	4.2	0.31	ug/L	09/03/13 16:24	1
N-Nitrosodi-n-propylamine	0.53	U	1.1	0.53	0.25	ug/L	09/03/13 16:24	1
N-Nitrosodiphenylamine	0.53	U	1.1	0.53	0.33	ug/L	09/03/13 16:24	1
2,2'-oxybis[1-chloropropane]	0.53	U	1.1	0.53	0.42	ug/L	09/03/13 16:24	1
Pentachlorophenol	1.1	U	5.3	1.1	0.28	ug/L	09/03/13 16:24	1
Phenanthrene	0.11	U	0.21	0.11	0.065	ug/L	09/03/13 16:24	1
Phenol	1.1	U	1.1	1.1	0.63	ug/L	09/03/13 16:24	1
Pyrene	0.11	U	0.21	0.11	0.044	ug/L	09/03/13 16:24	1
1,2,4-Trichlorobenzene	0.53	U	1.1	0.53	0.29	ug/L	09/03/13 16:24	1
2,4,5-Trichlorophenol	0.53	U	5.3	0.53	0.32	ug/L	09/03/13 16:24	1
2,4,6-Trichlorophenol	0.53	U	5.3	0.53	0.25	ug/L	09/03/13 16:24	1
Surrogate	%Recovery Qu	ualifier	Limits			Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl (Surr)	63		50 - 110			08/22/13 08:06	09/03/13 16:24	1
2-Fluorophenol (Surr)	67		20 - 110			08/22/13 08:06	09/03/13 16:24	1
Nitrobenzene-d5 (Surr)	72		40 - 110			08/22/13 08:06	09/03/13 16:24	1
Phenol-d5 (Surr)	73		10 - 115			08/22/13 08:06	09/03/13 16:24	1
Terphenyl-d14 (Surr)	84		50 - 135			08/22/13 08:06	09/03/13 16:24	1

Method: 8330 Modified - Nitr	oguanidine (HPLC)								
Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
Nitroguanidine	6.0	U	20	6.0	2.4	ug/L		08/29/13 17:19	1

40 - 125

83

92

84

Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D Analyzed	Dil Fac
1,3,5-Trinitrobenzene	0.055	U	0.17	0.055	0.034	ug/L	09/03/13 15:03	1
1,3-Dinitrobenzene	0.11	U	0.17	0.11	0.055	ug/L	09/03/13 15:03	1
2,4,6-Trinitrotoluene	0.11	U	0.17	0.11	0.055	ug/L	09/03/13 15:03	1
2,4-Dinitrotoluene	0.11	U	0.14	0.11	0.055	ug/L	09/03/13 15:03	1
2,6-Dinitrotoluene	0.11	U	0.14	0.11	0.055	ug/L	09/03/13 15:03	1
2-Amino-4,6-dinitrotoluene	0.11	U	0.17	0.11	0.017	ug/L	09/03/13 15:03	1
2-Nitrotoluene	0.11	U	0.55	0.11	0.097	ug/L	09/03/13 15:03	1
3-Nitrotoluene	0.11	U	0.55	0.11	0.063	ug/L	09/03/13 15:03	1
4-Nitrotoluene	0.11	U	0.55	0.11	0.097	ug/L	09/03/13 15:03	1
4-Amino-2,6-dinitrotoluene	0.11	U	0.17	0.11	0.055	ug/L	09/03/13 15:03	-1
HMX	0.055	UM	0.17	0.055	0.040	ug/L	09/03/13 15:03	1
RDX	0.055	U	0.17	0.055	0.040	ug/L	09/03/13 15:03	. 1
Nitrobenzene	0.11	U	0.17	0.11	0.055	ug/L	08/31/13 01:12	1
Tetryl	0.11	U	0.17	0.11	0.055	ug/L	09/03/13 15:03	1
Nitroglycerin	0.55	U	0.72	0.55	0.37	ug/L	09/03/13 15:03	
PETN	0.55	U	0.72	0.55	0.33	ug/L	09/03/13 15:03	1
Surrogate	%Recovery Qu	alifier	Limits			Prepared	Analyzed	Dil Fac

TestAmerica Canton

09/03/13 15:03

08/26/13 09:34 08/31/13 01:12

08/26/13 09:34

Page 79 of 235

79 - 111

79 - 111

10/7/2013

3

E

8

-11

Ц

13

14

15

Client: Environmental Quality Mgt., Inc.

Project/Site: RVAAP66 (OH)

TestAmerica Job ID: 240-28145-1

Lab Sample ID: 240-28145-26

Matrix: Water

Client Sample ID: FWGDA2mw-DUP1-0336-GW Date Collected: 08/20/13 16:08

Date Received: 08/21/13 07:00

General Chemistry									
Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
Nitrocellulose	1.0	U	2.0	1.0	0.48	mg/L		09/05/13 14:08	1

Client: Environmental Quality Mgt., Inc.

Client Sample ID: FWGDA2mw-DUP1-0336-GF

Project/Site: RVAAP66 (OH)

TestAmerica Job ID: 240-28145-1

Lab Sample ID: 240-28145-27

Matrix: Water

Date Collected: 08/20/13 16:08 Date Received: 08/21/13 07:00

Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
Arsenic	10	U	10	10	3.3	ug/L		09/09/13 13:03	1
Chromium	4.0	U	7.0	4.0	1.4	ug/L		09/09/13 13:03	1
Cobalt	4.0	U	7.0	4.0	1.5	ug/L		09/09/13 13:03	1
Lead	5.0	U	10	5.0	1.7	ug/L		09/09/13 13:03	1
Selenium	10	U	15	10	4.0	ug/L		09/09/13 13:03	1
Silver	5.0	U	7.0	5.0	1.7	ug/L		09/09/13 13:03	1
Vanadium	4.0	U	7.0	4.0	1.3	ug/L		09/09/13 13:03	1
Barium	22	J	200	5.0	2.8	ug/L		09/09/13 13:03	1
Calcium	110000		5000	1000	630	ug/L		09/09/13 13:03	1
Copper	10	U	25	10	4.4	ug/L		09/09/13 13:03	1
Magnesium	30000		5000	300	120	ug/L		09/09/13 13:03	1
Manganese	110		15	5.0	1.8	ug/L		09/09/13 13:03	1
Nickel	5.0	U	40	5.0	2.2	ug/L		09/09/13 13:03	- 1
Potassium	3500	J	5000	900	300	ug/L		09/09/13 13:03	1
Method: 6020/DOD - Metals (ICP/I									
Analyte		Qualifier	LOQ	LOD		Unit	D	Analyzed	Dil Fac
Aluminum	60		60	60		ug/L		09/09/13 17:02	1
Antimony	1.0		2.0	1.0	0.33			09/09/13 17:02	1
Beryllium		UQ	1.0	1.0	0.50	-		09/09/13 17:02	1
Cadmium	1.0	U	2.0	1.0	0.40	ug/L		09/09/13 17:02	1
iron	740		150	100	44	ug/L		09/09/13 17:02	1
Sodium	12000		1000	400	160	ug/L		09/09/13 17:02	1
		14	2.0	1.5	0.79	ug/L		09/09/13 17:02	
Thallium	1.5	U	2.0	-				00/00/10 11:02	1
Thallium Zinc	1.5		50	50	27	ug/L		09/09/13 17:02	
	VAA)	U	50	50	27	ug/L			1
Zinc	VAA)	U Qualifier			27	ug/L Unit	D		Dil Fa

Client: Environmental Quality Mgt., Inc.

Project/Site: RVAAP66 (OH)

TestAmerica Job ID: 240-28145-1

Client Sample ID: FWGTEAM3-TRIP

Date Collected: 08/20/13 08:00 Date Received: 08/21/13 07:00

Surrogate

Toluene-d8 (Surr)

1,2-Dichloroethane-d4 (Surr)

4-Bromofluorobenzene (Surr)

Dibromofluoromethane (Surr)

Lab Sample ID: 240-28145-28

Matrix: Water

Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
1,1,1-Trichloroethane	0.25	U	1.0	0.25	0.22	ug/L	-	08/29/13 19:22	1
1,1,2,2-Tetrachloroethane	0.25	U	1.0	0.25	0.18	ug/L		08/29/13 19:22	1
1,1,2-Trichloroethane	0.50	U	1.0	0.50	0.27	ug/L		08/29/13 19:22	1
1,1-Dichloroethane	0.25	U	1.0	0.25	0.15	ug/L		08/29/13 19:22	1
1,1-Dichloroethene	0.25	U	1.0	0.25	0.19	ug/L		08/29/13 19:22	1
1,2-Dichloroethane	0.25	U	1.0	0.25	0.22	ug/L		08/29/13 19:22	1
1,2-Dichloroethene, Total	0.25	U	2.0	0.25	0.17	ug/L		08/29/13 19:22	1
1,2-Dichloropropane	0.25	U	1.0	0.25	0.18	ug/L		08/29/13 19:22	1
2-Hexanone	0.50	U	10	0.50	0.41	ug/L		08/29/13 19:22	1
Bromochloromethane	0.50	U	1.0	0.50	0.29	ug/L		08/29/13 19:22	1
Acetone	1.1	U	10	1,1	1.1	ug/L		08/29/13 19:22	1
Benzene	0.25	U	1.0	0.25	0.13	ug/L		08/29/13 19:22	1
Bromoform	0.64	U	1.0	0.64	0.64	ug/L		08/29/13 19:22	1
Bromomethane	0.50	U	1.0	0.50	0.41	ug/L		08/29/13 19:22	1
Carbon disulfide	0.25	U	1.0	0.25	0.13	ug/L		08/29/13 19:22	1
Carbon tetrachloride	0.25	U	1.0	0.25	0.13	ug/L		08/29/13 19:22	1
Chlorobenzene	0.25	U	1.0	0.25	0.15	ug/L		08/29/13 19:22	1
Chloroethane	0.50	U	1.0	0.50	0.29	ug/L		08/29/13 19:22	1
Chloroform	0.25	U	1.0	0.25	0.16	ug/L		08/29/13 19:22	1
Chloromethane	0.50	U	1.0	0.50	0.30	ug/L		08/29/13 19:22	1
cis-1,2-Dichloroethene	0.25	U	1.0	0.25	0.17	ug/L		08/29/13 19:22	1
cis-1,3-Dichloropropene	0.25	U	1.0	0.25	0.14	ug/L		08/29/13 19:22	1
Bromodichloromethane	0.25	U	1.0	0.25	0.15	ug/L		08/29/13 19:22	1
Ethylbenzene	0.25	U	1.0	0.25	0.17	ug/L		08/29/13 19:22	1
1,2-Dibromoethane	0.25	U	1.0	0.25	0.24	ug/L		08/29/13 19:22	1
m-Xylene & p-Xylene	0.50	U	2.0	0.50	0.24	ug/L		08/29/13 19:22	-1
2-Butanone (MEK)	0.57	U	10	0.57	0.57	ug/L		08/29/13 19:22	1
4-Methyl-2-pentanone (MIBK)	0.50	U	10	0.50	0.32	ug/L		08/29/13 19:22	1
Methylene Chloride	0.45	J	1.0	0.50	0.33	ug/L		08/29/13 19:22	1
o-Xylene	0.25	U	1.0	0.25	0.14	ug/L		08/29/13 19:22	1
Styrene	0.25	U	1.0	0.25	0.11	ug/L		08/29/13 19:22	- 1
Tetrachloroethene	0.50	U	1.0	0.50	0.29	ug/L		08/29/13 19:22	1
Toluene	0.25	U	1.0	0.25	0.13	ug/L		08/29/13 19:22	3
trans-1,2-Dichloroethene	0.25	U	1.0	0.25	0.19	ug/L		08/29/13 19:22	1
trans-1,3-Dichloropropene	0.25	U	1.0	0.25	0.19	ug/L		08/29/13 19:22	1
Trichloroethene	0.25	U	1.0	0.25	0.17	ug/L		08/29/13 19:22	1
Vinyl chloride	0.25	U	1.0	0.25	0.22	ug/L		08/29/13 19:22	1
Xylenes, Total	0.25	U	2.0	0.25	0.14	ug/L		08/29/13 19:22	1
Dibromochloromethane	0.25	U	1.0	0.25	0.18	ug/L		08/29/13 19:22	1

TestAmerica Canton

Analyzed

08/29/13 19:22

08/29/13 19:22

08/29/13 19:22

08/29/13 19:22

Dil Fac

Prepared

Limits

70 - 120

75 - 120

85 - 120

85 - 115

%Recovery Qualifier

98

91

95

90

2

4

3

0

Ó

13

14

N.

Client: Environmental Quality Mgt., Inc.

Project/Site: RVAAP66 (OH)

Date Received: 08/21/13 07:00

TestAmerica Job ID: 240-28145-1

Lab Sample ID: 240-28145-29

Matrix: Water

Date Collected: 08/20/13 09:56

Client Sample ID: FWGLL12mw-245C-0365-GW

Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
1,1,1-Trichloroethane	0.25	U	1.0	0.25	0.22	ug/L		08/29/13 19:45	1
1,1,2,2-Tetrachloroethane	0.25	U	1.0	0.25	0.18	ug/L		08/29/13 19:45	1
1,1,2-Trichloroethane	0.50	U	1.0	0.50	0.27	ug/L		08/29/13 19:45	1
1,1-Dichloroethane	0.25	U	1.0	0.25	0.15	ug/L		08/29/13 19:45	1
1,1-Dichloroethene	0.25	U	1.0	0.25	0.19	ug/L		08/29/13 19:45	1
1,2-Dichloroethane	0.25	U	1.0	0.25	0.22	ug/L		08/29/13 19:45	1
1,2-Dichloroethene, Total	0.25	U	2.0	0.25	0.17	ug/L		08/29/13 19:45	1
1,2-Dichloropropane	0.25	U	1.0	0.25	0.18	ug/L		08/29/13 19:45	1
2-Hexanone	0.50	U	10	0.50	0.41	ug/L		08/29/13 19:45	1
Bromochloromethane	0.50	U	1.0	0.50	0.29	ug/L		08/29/13 19:45	1
Acetone	1.1	U	10	1.1	1.1	ug/L		08/29/13 19:45	1
Benzene	0.25	U	1.0	0.25	0.13	ug/L		08/29/13 19:45	1
Bromoform	0.64	U	1.0	0.64	0.64	ug/L		08/29/13 19:45	1
Bromomethane	0.50	U	1.0	0.50	0.41	ug/L		08/29/13 19:45	1
Carbon disulfide	0.25	U	1.0	0.25	0.13	ug/L		08/29/13 19:45	1
Carbon tetrachloride	0.25	U	1.0	0.25	0.13	ug/L		08/29/13 19:45	1
Chlorobenzene	0.25	U	1.0	0.25	0.15	ug/L		08/29/13 19:45	1
Chloroethane	0.50	U	1.0	0.50	0.29	ug/L		08/29/13 19:45	1
Chloroform	0.25	U	1.0	0.25	0.16	ug/L		08/29/13 19:45	1
Chloromethane	0.50	U	1.0	0.50	0.30	ug/L		08/29/13 19:45	1
cis-1,2-Dichloroethene	0.25	U	1.0	0.25	0.17	ug/L		08/29/13 19:45	1
cis-1,3-Dichloropropene	0.25	U	1.0	0.25	0.14	ug/L		08/29/13 19:45	1
Bromodichloromethane	0.25	U	1.0	0.25	0.15	ug/L		08/29/13 19:45	1
Ethylbenzene	0.25	U	1.0	0.25	0.17	ug/L		08/29/13 19:45	1
1,2-Dibromoethane	0.25	U	1.0	0.25	0.24	ug/L		08/29/13 19:45	1
m-Xylene & p-Xylene	0.50	U	2.0	0.50	0.24	ug/L		08/29/13 19:45	1
2-Butanone (MEK)	0.57	U	10	0.57	0.57	ug/L		08/29/13 19:45	1
4-Methyl-2-pentanone (MIBK)	0.50	U	10	0.50	0.32	ug/L		08/29/13 19:45	1
Methylene Chloride	0.50	U	1.0	0.50	0.33	ug/L		08/29/13 19:45	- 1
o-Xylene	0.25	U	1.0	0.25	0.14	ug/L		08/29/13 19:45	1
Styrene	0.25	U	1.0	0.25	0.11	ug/L		08/29/13 19:45	1
Tetrachloroethene	0.50	U	1.0	0.50	0.29	ug/L		08/29/13 19:45	1
Toluene	0.25	U	1.0	0.25	0.13	ug/L		08/29/13 19:45	3
trans-1,2-Dichloroethene	0.25	U	1.0	0.25	0.19	ug/L		08/29/13 19:45	1
trans-1,3-Dichloropropene	0.25	U	1.0	0.25	0.19	ug/L		08/29/13 19:45	1
Trichloroethene	0.25	U	1.0	0.25	0.17	ug/L		08/29/13 19:45	1
Vinyl chloride	0.25	U	1.0	0.25	0.22	ug/L		08/29/13 19:45	1
Xylenes, Total	0.25	U	2.0	0.25	0.14	ug/L		08/29/13 19:45	1
Dibromochloromethane	0.25	U	1.0	0.25	0.18	ug/L		08/29/13 19:45	1

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	94		70 - 120		08/29/13 19:45	1
4-Bromofluorobenzene (Surr)	93		75 - 120		08/29/13 19:45	1
Toluene-d8 (Surr)	95		85 - 120		08/29/13 19:45	1
Dibromofluoromethane (Surr)	95		85 - 115		08/29/13 19:45	1

Method: 8270C/DoD - Se	mivolatile Organic Compounds (GC/MS)
Amalista	Descrit Constitue

Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
Bis(2-ethylhexyl) phthalate	0.68	J	1.9	0.48	0.21	ug/L		09/04/13 13:41	1
Butyl benzyl phthalate	0.48	U	1.9	0.48	0.25	ug/L		09/04/13 13:41	31

TestAmerica Canton

3

- 5

0

Ó

13

14

15

Client: Environmental Quality Mgt., Inc.

Project/Site: RVAAP66 (OH)

TestAmerica Job ID: 240-28145-1

Lab Sample ID: 240-28145-29

Matrix: Water

Client Sample ID: FWGLL12mw-245C-0365-GW

Date Collected: 08/20/13 09:56 Date Received: 08/21/13 07:00

Analyte	Result	Qualifier	LOQ	LOD	DL	Unit D	Analyzed	Dil Fac
Diethyl phthalate	0.95	U	1.9	0.95	0.57	ug/L	09/04/13 13:41	1
Dimethyl phthalate	0.48	U	1.9	0.48	0.28	ug/L	09/04/13 13:41	1
Di-n-butyl phthalate	0.95	U	1.9	0.95	0.64	ug/L	09/04/13 13:41	1
i-n-octyl phthalate	0.48	U	1.9	0.48	0.22	ug/L	09/04/13 13:41	.1
Surrogate	%Recovery Qu	alifier	Limits			Prepared	Analyzed	Dil Fac
-Fluorobiphenyl (Surr)	83		50 - 110			08/22/13 08:06	09/04/13 13:41	1
-Fluorophenol (Surr)	84		20 - 110			08/22/13 08:06	09/04/13 13:41	1
Vitrobenzene-d5 (Surr)	85		40 - 110			08/22/13 08:06	09/04/13 13:41	1
Phenol-d5 (Surr)	89		10 - 115			08/22/13 08:06	09/04/13 13:41	4
Terphenyl-d14 (Surr)	96		50 - 135			08/22/13 08:06	09/04/13 13:41	- 1
2,4,6-Tribromophenol (Surr)	91		40 - 125			08/22/13 08:06	09/04/13 13:41	7
Method: 8081/DOD - Organoc	hlorine Pesticides (C	GC)						
Analyte		Qualifier	LOQ	LOD	DL	Unit D	Analyzed	Dil Fac
1,4'-DDD	0.019	U	0.048	0.019	0.0091	ug/L	09/11/13 23:04	-
,4'-DDE	0.019	U	0.048	0.019	0.0092	ug/L	09/11/13 23:04	
,4'-DDT	0.019	U	0.048	0.019	0.015	ug/L	09/11/13 23:04	-
Aldrin	0.019	U	0.029	0.019	0.0078	ug/L	09/11/13 23:04	
alpha-BHC	0.019	U	0.029	0.019	0.0067	ug/L	09/11/13 23:04	19
alpha-Chlordane	0.019	U	0.048	0.019	0.013	ug/L	09/11/13 23:04	1
peta-BHC	0.011	JQ	0.048	0.019	0.0080	ug/L	09/11/13 23:04	- 1
delta-BHC	0.019	U	0.048	0.019	0.0083	ug/L	09/11/13 23:04	
Dieldrin	0.019	U	0.029	0.019	0.0071	ug/L	09/11/13 23:04	
Endosulfan I	0.019	U	0.048	0.019	0.012	ug/L	09/11/13 23:04	
Endosulfan II	0.019	U	0.048	0.019	0.011	ug/L	09/11/13 23:04	- 4
endosulfan sulfate	0.019	U	0.048	0.019	0.010	ug/L	09/11/13 23:04	9
Endrin	0.019	U	0.048	0.019	0.010	ug/L	09/11/13 23:04	
Endrin aldehyde	0.019	U	0.048	0.019	0.010	ug/L	09/11/13 23:04	9
Endrin ketone	0.019	U	0.048	0.019	0.0074	ug/L	09/11/13 23:04	
gamma-BHC (Lindane)	0.019	U	0.048	0.019	0.0061	ug/L	09/11/13 23:04	
gamma-Chlordane	0.019	U	0.048	0.019	0.011	ug/L	09/11/13 23:04	
Heptachlor	0.019	U	0.029	0.019	0.0076	ug/L	09/11/13 23:04	
leptachlor epoxide	0.019	U	0.029	0.019	0.0068	ug/L	09/11/13 23:04	
Methoxychlor	0.048	Ü	0.095	0.048	0.030	ug/L	09/11/13 23:04	
oxaphene	0.76	U	1.9	0.76	0.30	ug/L	09/11/13 23:04	
Surrogate	%Recovery Qu	ıalifier	Limits			Prepared	Analyzed	Dil Fa
DCB Decachlorobiphenyl	55		30 - 135			08/22/13 07:53	09/11/13 23:04	1
DCB Decachlorobiphenyl	56		30 - 135			08/22/13 07:53	09/11/13 23:04	1

Method: 8330 Modified	- Nitroguanidine	(HPLC)
-----------------------	------------------	--------

Tetrachloro-m-xylene

Tetrachloro-m-xylene

Analyte	Result Qualifier	LOQ	LOD	DL Unit	D	Analyzed	Dil Fac
Nitroguanidine	6.0 U	20	6.0	2.4 ug/L		08/29/13 17:37	1

25 - 140

25 - 140

100

114

Method:	8330A	- Nitroaromatics	and	Nitramines

Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
1,3,5-Trinitrobenzene	0.054	U	0.16	0.054	0.034	ug/L		08/29/13 05:52	1
1,3-Dinitrobenzene	0.11	U	0.16	0.11	0.054	ug/L		08/29/13 05:52	- 1

TestAmerica Canton

09/11/13 23:04

09/11/13 23:04

08/22/13 07:53

08/22/13 07:53

Client: Environmental Quality Mgt., Inc.

Project/Site: RVAAP66 (OH)

TestAmerica Job ID: 240-28145-1

Lab Sample ID: 240-28145-29

Matrix: Water

Client Sample ID: FWGLL12mw-245C-0365-GW

Date Collected: 08/20/13 09:56 Date Received: 08/21/13 07:00

Method: 8330A - Nitroaromat	ics and Nitramines (Continued							
Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
2,4,6-Trinitrotoluene	0.11	U	0.16	0.11	0.054	ug/L		08/29/13 05:52	1
2,4-Dinitrotoluene	0.11	U	0.14	0.11	0.054	ug/L		08/29/13 05:52	1
2,6-Dinitrotoluene	0.11	U	0.14	0.11	0.054	ug/L		08/29/13 05:52	1
2-Amino-4,6-dinitrotoluene	0.11	U	0.16	0.11	0.016	ug/L		08/29/13 05:52	1
2-Nitrotoluene	0.11	U	0.54	0.11	0.095	ug/L		08/29/13 05:52	1
3-Nitrotoluene	0.11	U	0.54	0.11	0.062	ug/L		08/29/13 05:52	1
4-Nitrotoluene	0.11	U	0.54	0.11	0.095	ug/L		08/29/13 05:52	1
4-Amino-2,6-dinitrotoluene	0.11	U	0.16	0.11	0.054	ug/L		08/29/13 05:52	1
HMX	0.054	U	0.16	0.054	0.039	ug/L		08/29/13 05:52	1
RDX	0.054	Ü	0.16	0.054	0.039	ug/L		08/29/13 05:52	1
Nitrobenzene	0.11	U	0.16	0.11	0.054	ug/L		08/29/13 05:52	1
Tetryl	0.11	U	0.16	0.11	0.054	ug/L		08/29/13 05:52	1
Nitroglycerin	0.54	U	0.70	0.54	0.36	ug/L		08/29/13 05:52	1
PETN	0.54	U	0.70	0.54	0.32	ug/L		08/29/13 05:52	1
Surrogate	%Recovery Q	ualifier	Limits			Prep	ared	Analyzed	Dil Fac
3,4-Dinitrotoluene	98		79 - 111			08/26/1	3 09:34	08/29/13 05:52	1
General Chemistry									
Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
Nitrate Nitrite as N	0.11	J	0.050	0.012	0.0053	mg/L	_	09/06/13 17:19	1
Nitrocellulose	1.0	U	2.0	1.0	0.48	ma/L		09/05/13 14:10	1

Client: Environmental Quality Mgt., Inc.

Client Sample ID: FWGLL12mw-245C-0365-GF

Project/Site: RVAAP66 (OH)

TestAmerica Job ID: 240-28145-1

Lab Sample ID: 240-28145-30

Matrix: Water

Date Collected: 08/20/13 09:56 Date Received: 08/21/13 07:00

Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
Arsenic	10	U	10	10	3.3	ug/L		09/09/13 12:04	1
Chromium	4.0	U	7.0	4.0	1.4	ug/L		09/09/13 12:04	1
Cobalt	1.6	J	7.0	4.0	1.5	ug/L		09/09/13 12:04	1
Lead	5.0	U	10	5.0	1.7	ug/L		09/09/13 12:04	1
Selenium	10	U	15	10	4.0	ug/L		09/09/13 12:04	1
Silver	5.0	U	7.0	5.0	1.7	ug/L		09/09/13 12:04	1
Vanadium	4.0	U	7.0	4.0	1.3	ug/L		09/09/13 12:04	1
Barium	28	J	200	5.0	2.8	ug/L		09/09/13 12:04	1
Calcium	160000		5000	1000	630	ug/L		09/09/13 12:04	1
Copper	10	U	25	10	4.4	ug/L		09/09/13 12:04	1
Magnesium	73000		5000	300	120	ug/L		09/09/13 12:04	1
Manganese	190		15	5.0	1.8	ug/L		09/09/13 12:04	1
Nickel	7.4	J	40	5.0	2.2	ug/L		09/09/13 12:04	-01
Potassium	3500	J	5000	900	300	ug/L		09/09/13 12:04	1
Method: 6020/DOD - Metals									
Analyte	1151	Qualifier	LOQ	LOD		Unit	D	Analyzed	Dil Fac
Aluminum	60		60	60	20	ug/L		09/09/13 15:48	1
Antimony	1.0	U	2.0	1.0	0.33	ug/L		09/09/13 15:48	1
Beryllium		UQ	1.0	1.0	0.50	ug/L		09/09/13 15:48	1
Cadmium	1.0	U	2.0	1.0	0.40	ug/L		09/09/13 15:48	1
iron	110	J	150	100	44	ug/L		09/09/13 15:48	1
Sodium	26000		1000	400	160	ug/L		09/09/13 15:48	1
Thallium	1.1	J	2.0	1.5	0.79	ug/L		09/09/13 15:48	1
Zinc	50	U	50	50	27	ug/L		09/09/13 15:48	1
Method: 7470A/DOD - Merc									
Analyte	0.11-1211	Qualifier	LOQ	LOD		Unit	D	Analyzed	Dil Fac
Hg	0.20	1)	0.20	0.20	0.12	ug/L		08/23/13 13:57	

Client: Environmental Quality Mgt., Inc.

Client Sample ID: FWGLL12mw-185C-0362-GW

Project/Site: RVAAP66 (OH)

TestAmerica Job ID: 240-28145-1

Lab Sample ID: 240-28145-31

Matrix: Water

Date Collected: 08/20/13 11:39 Date Received: 08/21/13 07:00

General Chemistry									
Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
Nitrate Nitrite as N	130	D	5.0	1.2	0.53	mg/L		09/06/13 17:06	100

Client: Environmental Quality Mgt., Inc.

Client Sample ID: FWGLL12mw-185C-0362-GF

Project/Site: RVAAP66 (OH)

Date Collected: 08/20/13 11:39

Date Received: 08/21/13 07:00

Sodium

Thallium

Zinc

TestAmerica Job ID: 240-28145-1

Lab Sample ID: 240-28145-32

09/09/13 17:10

09/09/13 17:10

09/09/13 17:10

1

Matrix: Water

Method: 6010B/DOD - Meta	The state of the s		1.00		-	0.0	-	4.77	
Analyte		Qualifier	LOQ	LOD		Unit	D	Analyzed	Dil Fac
Arsenic	10	U	10	10	3.3	ug/L		09/09/13 13:09	1
Chromium	4.0	U	7.0	4.0	1.4	ug/L		09/09/13 13:09	1
Cobalt	1.9	J	7.0	4.0	1.5	ug/L		09/09/13 13:09	1
Lead	5.0	U	10	5.0	1.7	ug/L		09/09/13 13:09	1
Selenium	10	U	15	10	4.0	ug/L		09/09/13 13:09	1
Silver	5.0	U	7.0	5.0	1.7	ug/L		09/09/13 13:09	1
Vanadium	4.0	U	7.0	4.0	1.3	ug/L		09/09/13 13:09	1
Barium	50	J	200	5.0	2.8	ug/L		09/09/13 13:09	1
Calcium	710000	D	25000	5000	3200	ug/L		09/10/13 09:20	5
Copper	10	U	25	10	4.4	ug/L		09/09/13 13:09	1
Magnesium	290000		5000	300	120	ug/L		09/09/13 13:09	1
Manganese	1700		15	5.0	1.8	ug/L		09/09/13 13:09	1
Nickel	6.6	J	40	5.0	2.2	ug/L		09/09/13 13:09	1
Potassium	9200		5000	900	300	ug/L		09/09/13 13:09	1
Method: 6020/DOD - Metals	s (ICP/MS) - Total Recov	/erable							
Analyte		Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
Aluminum	60	U	60	60	20	ug/L		09/09/13 17:10	1
Antimony	1.0	U	2.0	1.0	0.33	ug/L		09/09/13 17:10	1
Beryllium	1.0	UQ	1.0	1.0	0.50	ug/L		09/09/13 17:10	1
Cadmium	1.0	U	2.0	1.0	0.40	ug/L		09/09/13 17:10	1
Iron	100	U	150	100	44	ug/L		09/09/13 17:10	1

Method: 7470A/DOD - Mercury (CVAA) Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
Hg	0.20	U	0.20	0.20	0.12	ug/L		08/23/13 14:09	1

1000

2.0

50

400

1.5

160 ug/L

0.79 ug/L

27 ug/L

56000

1.5 U

50 U

Client: Environmental Quality Mgt., Inc.

Project/Site: RVAAP66 (OH)

TestAmerica Job ID: 240-28145-1

Lab Sample ID: 240-28145-33

Matrix: Water

Client Sample	ID: FWGLL3mw-244-0323-GW
---------------	--------------------------

Date Collected: 08/20/13 12:29

Nitroguanidine

Method: 8270C/DoD - Semivo								
Analyte		Qualifier	LOQ	LOD			D Analyzed	Dil Fac
Bis(2-ethylhexyl) phthalate	0.46		1.9	0.48	0.21	ug/L	09/04/13 17:47	- 1
Butyl benzyl phthalate	0.48		1.9	0.48	0.25	ug/L	09/04/13 17:47	1
Diethyl phthalate	0.95	U	1.9	0.95	0.57	ug/L	09/04/13 17:47	1
Dimethyl phthalate	0.48	U	1.9	0.48	0.28	ug/L	09/04/13 17:47	1
Di-n-butyl phthalate	0.69	J	1.9	0.95	0.64	ug/L	09/04/13 17:47	1
Di-n-octyl phthalate	0.48	U	1.9	0.48	0.22	ug/L	09/04/13 17;47	1
Surrogate	%Recovery Qu	ıalifier	Limits			Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl (Surr)	75		50 - 110			08/22/13 08:0	6 09/04/13 17:47	1
2-Fluorophenol (Surr)	75		20 - 110			08/22/13 08:0	6 09/04/13 17:47	1
Nitrobenzene-d5 (Surr)	80		40 - 110			08/22/13 08:0	6 09/04/13 17:47	7
Phenol-d5 (Surr)	80		10 - 115			08/22/13 08:0	6 09/04/13 17:47	1
Terphenyl-d14 (Surr)	100		50 - 135			08/22/13 08:0	6 09/04/13 17:47	1
2,4,6-Tribromophenol (Surr)	86		40 - 125			08/22/13 08:0	6 09/04/13 17:47	1
Method: 8081/DOD - Organoc	hlorine Pesticides (C	C)						
Analyte		Qualifier	LOQ	LOD	DL	Unit	D Analyzed	Dil Fac
4,4'-DDD	0.019	U	0.048	0.019	0.0091	ug/L	09/11/13 23:25	1
4,4'-DDE	0.019	UM	0.048	0.019	0.0092	ug/L	09/11/13 23:25	1
4,4'-DDT	0.019	U	0.048	0.019	0.015	ug/L	09/11/13 23:25	1
Aldrin	0.019	U	0.029	0.019	0.0078	ug/L	09/11/13 23:25	1
alpha-BHC	0.019	U	0.029	0.019	0.0067	ug/L	09/11/13 23:25	1
alpha-Chlordane	0.019	U	0.048	0.019	0.013	ug/L	09/11/13 23:25	1
beta-BHC	0.025	JQ	0.048	0.019	0.0080	ug/L	09/11/13 23:25	1
delta-BHC	0.019		0.048	0.019	0.0083	ug/L	09/11/13 23:25	1
Dieldrin	0.019		0.029	0.019	0.0071	ug/L	09/11/13 23:25	1
Endosulfan I	0.019		0.048	0.019	0.012	10000000	09/11/13 23:25	1
Endosulfan II	0.019		0.048	0.019	0.011		09/11/13 23:25	1
Endosulfan sulfate	0.019		0.048	0.019	0.010	ug/L	09/11/13 23:25	1
Endrin	0.019		0.048	0.019	0.010	ug/L	09/11/13 23:25	1
Endrin aldehyde	0.019		0.048	0.019	0.010	ug/L	09/11/13 23:25	1
Endrin ketone	0.019		0.048	0.019	0.0074	ug/L	09/11/13 23:25	1
gamma-BHC (Lindane)	0.019		0.048	0.019	0.0061	ug/L	09/11/13 23:25	1
gamma-Chlordane	0.019		0.048	0.019	0.0001	ug/L	09/11/13 23:25	1
gamma-Chlordane Heptachlor	0.019		0.029	0.019	0.0076	ug/L	09/11/13 23:25	1
A TOTAL OF THE SERVICE AND SER	0.019		0.029	0.019	0.0078		09/11/13 23:25	1
Heptachlor epoxide	0.019				0.030		09/11/13 23:25	
Methoxychlor Toxaphene	0.76		0.095 1.9	0.048		ug/L ug/L	09/11/13 23:25	1
Surrogato	%/Parauani G	valifier	Limita				Anchroad	D# 5
Surrogate DCB Decachlorobiphenyl	%Recovery Qu	lailler	30 _ 135			Prepared 08/22/13 07:5	Analyzed 3 09/11/13 23:25	Dil Fac
			30 - 135			08/22/13 07:5		
DCB Decachlorobiphenyl	125							7
Tetrachloro-m-xylene	110		25 - 140			08/22/13 07:5		7
Tetrachloro-m-xylene	126		25 - 140			08/22/13 07:5	3 09/11/13 23:25	7
Method: 8330 Modified - Nitro	The same of the sa							
Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D Analyzed	Dil Fac

TestAmerica Canton

08/29/13 18:30

20

6.0

6.0 U

Client: Environmental Quality Mgt., Inc.

Project/Site: RVAAP66 (OH)

Nitrocellulose

TestAmerica Job ID: 240-28145-1

Lab Sample ID: 240-28145-33

09/05/13 14:24

Matrix: Water

Client Sample ID: FWGLL3mw-244-0323-GW

Date Collected: 08/20/13 12:29 Date Received: 08/21/13 07:00

Analyte	Result	Qualifier	LOQ	LOD	DL	Unit D	Analyzed	Dil Fac
1,3,5-Trinitrobenzene	0.054	U	0.16	0.054	0.034	ug/L	08/29/13 08:47	1
1,3-Dinitrobenzene	0.11	U	0.16	0.11	0.054	ug/L	08/29/13 08:47	1
2,4,6-Trinitrotoluene	0.11	U	0.16	0.11	0.054	ug/L	08/29/13 08:47	1
2,4-Dinitrotoluene	0.11	U	0.14	0.11	0.054	ug/L	08/29/13 08:47	1
2,6-Dinitrotoluene	0.11	U	0.14	0.11	0.054	ug/L	08/29/13 08:47	1
2-Amino-4,6-dinitrotoluene	0.65		0.16	0.11	0.016	ug/L	08/29/13 08:47	1
2-Nitrotoluene	0.11	U	0.54	0.11	0.095	ug/L	08/29/13 08:47	1
3-Nitrotoluene	0.11	U	0.54	0.11	0.062	ug/L	08/29/13 08:47	1
4-Nitrotoluene	0.11	U	0.54	0.11	0.095	ug/L	08/29/13 08:47	1
4-Amino-2,6-dinitrotoluene	0.61		0.16	0.11	0.054	ug/L	08/29/13 08:47	1
HMX	0.066	JM	0.16	0.054	0.039	ug/L	08/29/13 08:47	1
RDX	0.34	M	0.16	0.054	0.039	ug/L	08/29/13 08:47	1
Nitrobenzene	0.11	U	0.16	0.11	0.054	ug/L	08/29/13 08:47	1
Tetryl	0.11	U	0.16	0.11	0.054	ug/L	08/29/13 08:47	1
Nitroglycerin	0.54	U	0.70	0.54	0.36	ug/L	08/29/13 08:47	1
PETN	0.54	U	0.70	0.54	0.32	ug/L	08/29/13 08:47	1
Surrogate	%Recovery Qu	ıalifier	Limits			Prepared	Analyzed	Dil Fac
3,4-Dinitrotoluene	98		79 - 111			08/26/13 09:34	08/29/13 08:47	1
General Chemistry								
Analyte	Result	Qualifier	LOQ	LOD	DL	Unit D	Analyzed	Dil Fac

1.0

0.48 mg/L

1.0 U

Client: Environmental Quality Mgt., Inc.

Project/Site: RVAAP66 (OH)

TestAmerica Job ID: 240-28145-1

Lab Sample ID: 240-28145-34

Matrix: Water

Client Sample ID: FWGLL3mw-244-0323-GF

Date Collected: 08/20/13 12:29 Date Received: 08/21/13 07:00

Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
Arsenic	10	U	10	10	3.3	ug/L		09/09/13 13:15	1
Chromium	4.0	U	7.0	4.0	1.4	ug/L		09/09/13 13:15	1
Cobalt	4.0	U	7.0	4.0	1.5	ug/L		09/09/13 13:15	1
Lead	5.0	U	10	5.0	1.7	ug/L		09/09/13 13:15	1
Selenium	10	U	15	10	4.0	ug/L		09/09/13 13:15	1
Silver	5.0	U	7.0	5.0	1.7	ug/L		09/09/13 13:15	1
Vanadium	4.0	U	7.0	4.0	1.3	ug/L		09/09/13 13:15	1
Barium	17	J	200	5.0	2.8	ug/L		09/09/13 13:15	1
Calcium	24000		5000	1000	630	ug/L		09/09/13 13:15	1
Copper	10	U	25	10	4.4	ug/L		09/09/13 13:15	1
Magnesium	8200		5000	300	120	ug/L		09/09/13 13:15	1
Manganese	5.0	U	15	5.0	1.8	ug/L		09/09/13 13:15	1
Nickel	5.0	U	40	5.0	2.2	ug/L		09/09/13 13:15	- 1
NONO	0.0	7							
Potassium	1300		5000	900		ug/L		09/09/13 13:15	1
Potassium Method: 6020/DOD - Metals (ICP/N	1300 (IS) - Total Recov	J verable	5000		300				
Potassium Method: 6020/DOD - Metals (ICP/N Analyte	1300 (IS) - Total Recoverselt	J /erable Qualifier	5000 LOQ	LOD	300 DL	Unit	D	Analyzed	
Potassium Method: 6020/DOD - Metals (ICP/N	1300 (IS) - Total Recov Result	yerable Qualifier	5000 LOQ 60	LOD 60	300 DL 20	Unit ug/L	D	Analyzed 09/09/13 17:17	
Potassium Method: 6020/DOD - Metals (ICP/N Analyte	1300 (IS) - Total Recov Result 60 0.35	Verable Qualifier U	5000 LOQ	LOD	300 DL 20 0.33	Unit ug/L ug/L	D	Analyzed	
Potassium Method: 6020/DOD - Metals (ICP/N Analyte Aluminum Antimony Beryllium	1300 (IS) - Total Recov Result 60 0.35 1.0	verable Qualifier U J U Q	5000 LOQ 60	LOD 60	300 DL 20 0.33 0.50	Unit ug/L ug/L ug/L	D	Analyzed 09/09/13 17:17	
Potassium Method: 6020/DOD - Metals (ICP/N Analyte Aluminum Antimony	1300 (IS) - Total Recover Result 60 0.35 1.0 1.0	yerable Qualifier U J U Q U	5000 LOQ 60 2.0	60 1.0	300 DL 20 0.33	Unit ug/L ug/L ug/L	D	Analyzed 09/09/13 17:17 09/09/13 17:17	
Potassium Method: 6020/DOD - Metals (ICP/N Analyte Aluminum Antimony Beryllium	1300 (IS) - Total Recov Result 60 0.35 1.0	yerable Qualifier U J U Q U	5000 LOQ 60 2.0 1.0	60 1.0 1.0	20 0.33 0.50 0.40	Unit ug/L ug/L ug/L	D	Analyzed 09/09/13 17:17 09/09/13 17:17	Dil Fac
Potassium Method: 6020/DOD - Metals (ICP/N Analyte Aluminum Antimony Beryllium Cadmium	1300 (IS) - Total Recover Result 60 0.35 1.0 1.0	yerable Qualifier U J U Q U	5000 LOQ 60 2.0 1.0 2.0	60 1.0 1.0 1.0	20 0.33 0.50 0.40	Unit ug/L ug/L ug/L ug/L	D	Analyzed 09/09/13 17:17 09/09/13 17:17 09/09/13 17:17	Dil Fac
Potassium Method: 6020/DOD - Metals (ICP/N Analyte Aluminum Antimony Beryllium Cadmium	1300 (IS) - Total Recover Result 60 0.35 1.0 1.0 100	yerable Qualifier U J U Q U	5000 LOQ 60 2.0 1.0 2.0 150	60 1.0 1.0 1.0	300 DL 20 0.33 0.50 0.40 44 160	Unit ug/L ug/L ug/L ug/L	<u>D</u>	Analyzed 09/09/13 17:17 09/09/13 17:17 09/09/13 17:17 09/09/13 17:17	Dil Fac
Potassium Method: 6020/DOD - Metals (ICP/N Analyte Aluminum Antimony Beryllium Cadmium Iron Sodium	1300 (IS) - Total Recover Result 60 0.35 1.0 1.0 100 4000	yerable Qualifier U J U Q U	5000 LOQ 60 2.0 1.0 2.0 150 1000	60 1.0 1.0 1.0 1.0 400	300 DL 20 0.33 0.50 0.40 44 160	Unit ug/L ug/L ug/L ug/L ug/L ug/L	<u>D</u>	Analyzed 09/09/13 17:17 09/09/13 17:17 09/09/13 17:17 09/09/13 17:17 09/09/13 17:17	Dil Fac
Potassium Method: 6020/DOD - Metals (ICP/N Analyte Aluminum Antimony Beryllium Cadmium Iron Sodium Thallium	1300 (IS) - Total Recover Result 60 0.35 1.0 1.0 4000 1.5 50	yerable Qualifier U J U Q U	5000 LOQ 60 2.0 1.0 2.0 150 1000 2.0	1.0 1.0 1.0 1.0 100 400 1.5	300 DL 20 0.33 0.50 0.40 44 160 0.79	Unit ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	D	Analyzed 09/09/13 17:17 09/09/13 17:17 09/09/13 17:17 09/09/13 17:17 09/09/13 17:17 09/09/13 17:17	Dil Fac

Client: Environmental Quality Mgt., Inc.

Project/Site: RVAAP66 (OH)

TestAmerica Job ID: 240-28145-1

Lab Sample ID: 240-28145-35

Matrix: Water

Date Collected: 08/20/13 14:56

Date Received: 08/21/13 07:00

Client Sample ID: FWGDETmw-001C-0314-GW

Analyte	Result	Qualifier	LOQ	LOD	DL	Unit I	2 Analyzed	Dil Fac
1,1,1-Trichloroethane	0.25	U	1.0	0.25	0.22	ug/L	08/29/13 20:09	1
1,1,2,2-Tetrachloroethane	0.25	U	1.0	0.25	0.18	ug/L	08/29/13 20:09	1
1,1,2-Trichloroethane	0.50	U	1.0	0.50	0.27	ug/L	08/29/13 20:09	1
1,1-Dichloroethane	0.25	U	1.0	0.25	0.15	ug/L	08/29/13 20:09	1
1,1-Dichloroethene	0.25	U	1.0	0.25	0.19	ug/L	08/29/13 20:09	1
1,2-Dichloroethane	0.25	U	1.0	0.25	0.22	ug/L	08/29/13 20:09	1
1,2-Dichloroethene, Total	0.25	U	2.0	0.25	0.17	ug/L	08/29/13 20:09	1
1,2-Dichloropropane	0.25	U	1.0	0.25	0.18	ug/L	08/29/13 20:09	1
2-Hexanone	0.50	U	10	0.50	0.41	ug/L	08/29/13 20:09	1
Bromochloromethane	0.50	U	1.0	0.50	0.29	ug/L	08/29/13 20:09	1
Acetone	1.1	U	10	1.1	1.1	ug/L	08/29/13 20:09	1
Benzene	0.25	U	1.0	0.25	0.13	ug/L	08/29/13 20:09	1
Bromoform	0.64	U	1.0	0.64	0.64	ug/L	08/29/13 20:09	1
Bromomethane	0.50	U	1.0	0.50	0.41	ug/L	08/29/13 20:09	1
Carbon disulfide	0.25	U	1.0	0.25	0.13	ug/L	08/29/13 20:09	1
Carbon tetrachloride	0.25	U	1.0	0.25	0.13	ug/L	08/29/13 20:09	1
Chlorobenzene	0.25	U	1.0	0.25	0.15	ug/L	08/29/13 20:09	1
Chloroethane	0.50	U	1.0	0.50	0.29	ug/L	08/29/13 20:09	1
Chloroform	0.25	U	1.0	0.25	0.16	ug/L	08/29/13 20:09	1
Chloromethane	0.50	U	1.0	0.50	0.30	ug/L	08/29/13 20:09	1
cis-1,2-Dichloroethene	0.25	u	1.0	0.25	0.17	ug/L	08/29/13 20:09	1
cis-1,3-Dichloropropene	0.25	U	1.0	0.25	0.14	ug/L	08/29/13 20:09	1
Bromodichloromethane	0.25	U	1.0	0.25	0.15	ug/L	08/29/13 20:09	9
Ethylbenzene	0.25	U	1.0	0.25	0.17	ug/L	08/29/13 20:09	11
1,2-Dibromoethane	0.25	Ū	1.0	0.25	0.24	ug/L	08/29/13 20:09	1
m-Xylene & p-Xylene	0.50	U	2.0	0.50	0.24	ug/L	08/29/13 20:09	- 3
2-Butanone (MEK)	0.57	U	10	0.57	0.57	ug/L	08/29/13 20:09	1
4-Methyl-2-pentanone (MIBK)	0.50	U	10	0.50	0.32	ug/L	08/29/13 20:09	
Methylene Chloride	0.50	U	1.0	0.50	0.33	ug/L	08/29/13 20:09	- 1
o-Xylene	0.25	U	1.0	0.25	0.14	ug/L	08/29/13 20:09	1
Styrene	0.25	U	1.0	0.25	0.11	ug/L	08/29/13 20:09	- 1
Tetrachloroethene	0.50	U	1.0	0.50	0.29	ug/L	08/29/13 20:09	1
Toluene	0.25	U	1.0	0.25	0.13	ug/L	08/29/13 20:09	- 1
trans-1,2-Dichloroethene	0.25	U	1.0	0.25	0.19	ug/L	08/29/13 20:09	
trans-1,3-Dichloropropene	0.25	U	1.0	0.25	0.19	ug/L	08/29/13 20:09	4
Trichloroethene	0.25	U	1.0	0.25	0.17	3.5	08/29/13 20:09	- 1
Vinyl chloride	0.25	U	1.0	0.25	0.22	ug/L	08/29/13 20:09	1
Xylenes, Total	0.25	U	2.0	0.25	0.14	ug/L	08/29/13 20:09	
Dibromochloromethane	0,25	U	1.0	0.25	0.18		08/29/13 20:09	1
Surrogate	%Recovery Qu	ialifier i	imits			Prepared	Analyzed	Dil Fa

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	93	70 - 120		08/29/13 20:09	1
4-Bromofluorobenzene (Surr)	93	75 - 120		08/29/13 20:09	1
Toluene-d8 (Surr)	92	85 - 120		08/29/13 20:09	1
Dibromofluoromethane (Surr)	95	85 115		08/29/13 20:09	4

Method: 8270C/DoD	- Semivolatile	Organic	Compo	ounds	(GC/MS)
A			m		

Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
Acenaphthene	0.10	U	0.20	0.10	0.045	ug/L		09/03/13 16:50	1
Acenaphthylene	0.10	U	0.20	0.10	0.049	ug/L		09/03/13 16:50	1

Client: Environmental Quality Mgt., Inc.

Project/Site: RVAAP66 (OH)

TestAmerica Job ID: 240-28145-1

Lab Sample ID: 240-28145-35

ab Sample 1D. 240-20145-55

Matrix: Water

Client Sample ID: FWGDETmw-001C-0314-GW

Date Collected: 08/20/13 14:56 Date Received: 08/21/13 07:00

Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fa
Anthracene	0.10	U	0.20	0.10	0.090	ug/L		09/03/13 16:50	
Benzo[a]anthracene	0.10	U	0.20	0.10	0.030	ug/L		09/03/13 16:50	
Benzo[a]pyrene	0.10	U	0.20	0.10	0.052	ug/L		09/03/13 16:50	
Benzo[b]fluoranthene	0.10	U	0.20	0.10	0.040	ug/L		09/03/13 16:50	
Benzo[g,h,i]perylene	0.10	U	0.20	0.10	0.047	ug/L		09/03/13 16:50	
Benzoic acid	20	u	26	20	10	ug/L		09/03/13 16:50	
Benzo[k]fluoranthene	0.10	U	0.20	0.10	0.046	ug/L		09/03/13 16:50	
Benzyl alcohol	0.51	U	5.1	0.51	0.39	ug/L		09/03/13 16:50	
Bis(2-chloroethoxy)methane	0.51	U	1.0	0.51	0.33	ug/L		09/03/13 16:50	
Bis(2-chloroethyl)ether	0.10	U	1.0	0.10	0.10	ug/L		09/03/13 16:50	
Bis(2-ethylhexyl) phthalate	3.4		2.0	0.51		ug/L		09/03/13 16:50	
4-Bromophenyl phenyl ether	0.51	U	2.0	0.51		ug/L		09/03/13 16:50	
Butyl benzyl phthalate	0.51	U	2.0	0.51		ug/L		09/03/13 16:50	
Carbazole	0.51	Ū	1.0	0.51	0.29	ug/L		09/03/13 16:50	
4-Chloroaniline	0.51	U	2.0	0.51	0.21			09/03/13 16:50	
4-Chloro-3-methylphenol	0.51	U	2.0	0.51		ug/L		09/03/13 16:50	
2-Chloronaphthalene	0.51		1.0	0.51		ug/L		09/03/13 16:50	
2-Chlorophenol	0.51		1.0	0.51	0.30			09/03/13 16:50	
4-Chlorophenyl phenyl ether	0.51		2.0	0.51	0.31			09/03/13 16:50	
Chrysene	0.10		0.20	0.10	0.051	ug/L		09/03/13 16:50	
Dibenz(a,h)anthracene	0.10		0.20	0.10	0.046	ug/L		09/03/13 16:50	
Dibenzofuran	0.10		1.0	0.10	0.020	ug/L		09/03/13 16:50	
1,2-Dichlorobenzene	0.51		1.0	0.51	0.30			09/03/13 16:50	
1,3-Dichlorobenzene	0.51		1.0	0.51		ug/L		09/03/13 16:50	
1,4-Dichlorobenzene	0.51		1.0	0.51		ug/L		09/03/13 16:50	
3,3'-Dichlorobenzidine	1.0		5.1	1.0		ug/L		09/03/13 16:50	
	0.51		2.0	0.51	0.19			09/03/13 16:50	
2,4-Dichlorophenol	1.0	U	2.0	1.0		ug/L		09/03/13 16:50	
Diethyl phthalate 2,4-Dimethylphenol	0.51		2.0	0.51	0.26	ug/L ug/L		09/03/13 16:50	
Dimethyl phthalate	0.51		2.0	0.51	0.30	ug/L		09/03/13 16:50	
Di-n-butyl phthalate	0.70 4.1	Ŋ	2.0	1.0	0.68			09/03/13 16:50	
4,6-Dinitro-2-methylphenol			5.1	4.1	2.4	ug/L		09/03/13 16:50	
2,4-Dinitrophenol	1.0		5.1	1.0	0.33	ug/L		09/03/13 16:50	
Di-n-octyl phthalate	0.51		2.0	0.51	0.23	ug/L		09/03/13 16:50	
Fluoranthene	0.10		0.20	0.10	0.046			09/03/13 16:50	
Fluorene	0.10		0.20	0.10	0.041	_= 7		09/03/13 16:50	
Hexachlorobenzene	0.10		0.20	0.10	0.087			09/03/13 16:50	
Hexachlorobutadiene	0.51		1.0	0.51		ug/L		09/03/13 16:50	
Hexachlorocyclopentadiene	0.51		10	0.51		ug/L		09/03/13 16:50	
Hexachloroethane	0.51		1.0	0.51		ug/L		09/03/13 16:50	
ndeno[1,2,3-cd]pyrene	0.10		0.20	0.10	0.044			09/03/13 16:50	
sophorone	0.51		1.0	0.51		ug/L		09/03/13 16:50	
2-Methylnaphthalene	0.10		0.20	0.10	0.092			09/03/13 16:50	
2-Methylphenol	0.51	U	1.0	0.51	0.17	ug/L		09/03/13 16:50	
3 & 4 Methylphenol	1.0		2.0	1.0	0.82	ug/L		09/03/13 16:50	
Naphthalene	0.10		0.20	0.10	0.064			09/03/13 16:50	
2-Nitroaniline	0.51		2.0	0.51	0.21	ug/L		09/03/13 16:50	
3-Nitroaniline	0.51	U	2.0	0.51	0.29	ug/L		09/03/13 16:50	
1-Nitroaniline	0.51	U	2.0	0.51	0.22	ug/L		09/03/13 16:50	

TestAmerica Canton

3

5

Ü

9

Ö

13

14

U:

Client: Environmental Quality Mgt., Inc.

Project/Site: RVAAP66 (OH)

TestAmerica Job ID: 240-28145-1

Lab Sample ID: 240-28145-35

D cample 15. 240-20140-00

Matrix: Water

Client Sample ID: FWGDETmw-001C-0314-GW

Date Collected: 08/20/13 14:56 Date Received: 08/21/13 07:00

Surrogate

DCB Decachlorobiphenyl

DCB Decachlorobiphenyl

Tetrachloro-m-xylene

Tetrachloro-m-xylene

Analyte	Result	Qualifier	LOQ	LOD	DL	Unit D	Analyzed	Dil Fac
2-Nitrophenol	0.51	U	2.0	0.51	0.29	ug/L	09/03/13 16:50	1
4-Nitrophenol	4.1	U	5.1	4.1	0.30	ug/L	09/03/13 16:50	1
N-Nitrosodi-n-propylamine	0.51	U	1.0	0.51	0.24	ug/L	09/03/13 16:50	1
N-Nitrosodiphenylamine	0.51	U	1.0	0.51	0.32	ug/L	09/03/13 16:50	1
2,2'-oxybis[1-chloropropane]	0.51	U	1.0	0.51	0.41	ug/L	09/03/13 16:50	1
Pentachlorophenol	1.0	U	5.1	1.0	0.28	ug/L	09/03/13 16:50	1
Phenanthrene	0.10	U	0.20	0.10	0.063	ug/L	09/03/13 16:50	1
Phenol	1.0	U	1.0	1.0	0.61	ug/L	09/03/13 16:50	1
Pyrene	0.10	U	0.20	0.10	0.043	ug/L	09/03/13 16:50	1
1,2,4-Trichlorobenzene	0.51	U	1.0	0.51	0.29	ug/L	09/03/13 16:50	1
2,4,5-Trichlorophenol	0.51	U	5.1	0.51	0.31	ug/L	09/03/13 16:50	1
2,4,6-Trichlorophenol	0.51	U	5.1	0.51	0.24	ug/L	09/03/13 16:50	1
Surrogate	%Recovery Qu	ıalifier	Limits			Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl (Surr)	61		50 - 110			08/22/13 08:06	09/03/13 16:50	1
2-Fluorophenol (Surr)	62		20 - 110			08/22/13 08:06	09/03/13 16:50	1
Nitrobenzene-d5 (Surr)	66		40 - 110			08/22/13 08:06	09/03/13 16:50	1
Phenol-d5 (Surr)	67		10 - 115			08/22/13 08:06	09/03/13 16:50	1
Terphenyl-d14 (Surr)	74		50 - 135			08/22/13 08:06	09/03/13 16:50	1
2,4,6-Tribromophenol (Surr)	76		40 - 125			08/22/13 08:06	09/03/13 16:50	1

Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
4,4'-DDD	0.019	U	0.048	0.019	0.0091	ug/L		09/11/13 23:45	1
4,4'-DDE	0.019	U	0.048	0.019	0.0092	ug/L		09/11/13 23:45	- 1
4,4'-DDT	0.019	U	0.048	0.019	0.015	ug/L		09/11/13 23:45	- 1
Aldrin	0.019	U	0.029	0.019	0.0078	ug/L		09/11/13 23:45	1
alpha-BHC	0.019	U	0.029	0.019	0.0067	ug/L		09/11/13 23:45	1
alpha-Chlordane	0.019	U	0.048	0.019	0.013	ug/L		09/11/13 23:45	1
beta-BHC	0.019	U	0.048	0.019	0.0080	ug/L		09/11/13 23:45	1
delta-BHC	0.019	U	0.048	0.019	0.0083	ug/L		09/11/13 23:45	- 1
Dieldrin	0.019	U	0.029	0.019	0.0071	ug/L		09/11/13 23:45	1
Endosulfan I	0.019	U	0.048	0.019	0.012	ug/L		09/11/13 23:45	1
Endosulfan II	0.019	U	0.048	0.019	0.011	ug/L		09/11/13 23:45	-1
Endosulfan sulfate	0.019	U	0.048	0.019	0.010	ug/L		09/11/13 23:45	1
Endrin	0.019	U	0.048	0.019	0.010	ug/L		09/11/13 23:45	1
Endrin aldehyde	0.019	U	0.048	0.019	0.010	ug/L		09/11/13 23:45	1
Endrin ketone	0.012	J	0.048	0.019	0.0074	ug/L		09/11/13 23:45	1
gamma-BHC (Lindane)	0.019	U	0.048	0.019	0.0061	ug/L		09/11/13 23:45	9
gamma-Chlordane	0.019	UM	0.048	0.019	0.011	ug/L		09/11/13 23:45	1
Heptachlor	0.019	U	0.029	0.019	0.0076	ug/L		09/11/13 23:45	1
Heptachlor epoxide	0.019	U	0.029	0.019	0,0068	ug/L		09/11/13 23:45	1
Methoxychlor	0.048	U	0.095	0.048	0.030	ug/L		09/11/13 23:45	1
Toxaphene	0.76	U	1.9	0.76	0.30	ug/L		09/11/13 23:45	1

TestAmerica Canton

Analyzed

09/11/13 23:45

09/11/13 23:45

09/11/13 23:45

09/11/13 23:45

Prepared

08/22/13 07:53

08/22/13 07:53

08/22/13 07:53

08/22/13 07:53

Page 94 of 235

Limits

30 - 135

30 - 135

25 - 140

25 - 140

%Recovery Qualifier

76

77

94

125

10/7/2013

Dil Fac

3

5

V

9

١.

14

...

Client: Environmental Quality Mgt., Inc.

Project/Site: RVAAP66 (OH)

TestAmerica Job ID: 240-28145-1

Lab Sample ID: 240-28145-35

oumple 15. 240-20140-00

Matrix: Water

Client Sample ID: FWGDETmw-001C-0314-GW

Date Collected: 08/20/13 14:56 Date Received: 08/21/13 07:00

Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
Aroclor-1016	0.19	UHQ	0.48	0.19	0.16	ug/L		09/04/13 15:26	1
Aroclor-1221	0.19	UH	0.48	0.19	0.12	ug/L		09/04/13 15:26	1
Aroclor-1232	0.19	UH	0.48	0.19	0.15	ug/L		09/04/13 15:26	1
Aroclor-1242	0.38	UH	0.48	0.38	0.21	ug/L		09/04/13 15:26	1
Aroclor-1248	0.19	UH	0.48	0.19	0.095	ug/L		09/04/13 15:26	1
Aroclor-1254	0.19	UH	0.48	0.19	0.15	ug/L		09/04/13 15:26	1
A 1260	0.40	11110	0.48	0.40	0.40	same III		00/04/40 45:00	

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	64	40 - 140	08/30/13 08:32	09/04/13 15:26	1
Tetrachloro-m-xylene	72	40 - 140	08/30/13 08:32	09/04/13 15:26	1
DCB Decachlorobiphenyl	28 Q	40 _ 135	08/30/13 08:32	09/04/13 15:26	1
DCB Decachlorobiphenyl	25 Q	40 - 135	08/30/13 08:32	09/04/13 15:26	1

Method: 8330 Modified - Nitrog	uanidine (HPLC)								
Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
Nitroguanidine	6.0	U	20	6.0	2.4	ug/L		08/29/13 19:05	1

Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
1,3,5-Trinitrobenzene	0,059	U	0.18	0.059	0.037	ug/L		08/29/13 09:30	1
1,3-Dinitrobenzene	0.12	U	0.18	0.12	0.059	ug/L		08/29/13 09:30	1
2,4,6-Trinitrotoluene	0.12	U	0.18	0.12	0.059	ug/L		08/29/13 09:30	1
2,4-Dinitrotoluene	0.12	U	0.15	0.12	0.059	ug/L		08/29/13 09:30	1
2,6-Dinitrotoluene	0.12	U	0.15	0.12	0.059	ug/L		08/29/13 09:30	1
2-Amino-4,6-dinitrotoluene	0.12	U	0.18	0.12	0.018	ug/L		08/29/13 09:30	1
2-Nitrotoluene	0.12	U	0.59	0.12	0.10	ug/L		08/29/13 09:30	1
3-Nitrotoluene	0.12	U	0.59	0.12	0.067	ug/L		08/29/13 09:30	1
4-Nitrotoluene	0.12	U	0.59	0.12	0.10	ug/L		08/29/13 09:30	1
4-Amino-2,6-dinitrotoluene	0.12	U	0.18	0.12	0.059	ug/L		08/29/13 09:30	1
HMX	0.059	U	0.18	0.059	0.043	ug/L		08/29/13 09:30	1
RDX	0.059	U	0.18	0.059	0.043	ug/L		08/29/13 09:30	1
Nitrobenzene	0.12	U	0.18	0.12	0.059	ug/L		08/29/13 09:30	1
Tetryl	0.12	U	0.18	0.12	0.059	ug/L		08/29/13 09:30	1
Nitroglycerin	0.59	U	0.77	0.59	0.39	ug/L		08/29/13 09:30	1
PETN	0.59	U	0.77	0.59	0.35	ug/L		08/29/13 09:30	1

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
3,4-Dinitrotoluene	91	79 - 111	08/26/13 09:34	08/29/13 09:30	1

General	Chemistry

Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
Cyanide, Total	0.010	U	0.010	0.010	0.0032	mg/L		08/26/13 14:03	1
Nitrocellulose	1.0	U	2.0	1.0	0.48	mg/L		09/05/13 14:26	1

TestAmerica Canton

3

5

ŏ

i

Ω

13

14

115

Client: Environmental Quality Mgt., Inc.

Client Sample ID: FWGDETmw-001C-0314-GF

Project/Site: RVAAP66 (OH)

Date Collected: 08/20/13 14:56

Date Received: 08/21/13 07:00

TestAmerica Job ID: 240-28145-1

Lab Sample ID: 240-28145-36

Matrix: Water

Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
Perchlorate	0.020	U	0.050	0.020	0.0088	ug/L		09/07/13 01:53	
Method: 6010B/DOD - Metals (ICP) -	Total Recover	able							
Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fa
Arsenic	26		10	10	3.3	ug/L		09/09/13 13:33	
Chromium	4.0	U	7.0	4.0	1.4	ug/L		09/09/13 13:33	
Cobalt	4.0	U	7.0	4.0	1.5	ug/L		09/09/13 13:33	
Lead	5.0	U	10	5.0	1.7	ug/L		09/09/13 13:33	
Selenium	10	U	15	10	4.0	ug/L		09/09/13 13:33	
Silver	5.0	U	7.0	5.0	1.7	ug/L		09/09/13 13:33	
Vanadium	4.0	U	7.0	4.0	1.3	ug/L		09/09/13 13:33	
Barium	22	J	200	5.0	2.8	ug/L		09/09/13 13:33	
Calcium	78000		5000	1000	630	ug/L		09/09/13 13:33	
Copper	10	U	25	10	4.4	ug/L		09/09/13 13:33	
Magnesium	32000		5000	300	120	ug/L		09/09/13 13:33	
Manganese	390		15	5.0	1.8	ug/L		09/09/13 13:33	
Nickel	5.0	U	40	5.0	2.2	ug/L		09/09/13 13:33	
Potassium	1900	J	5000	900	300	ug/L		09/09/13 13:33	
Method: 6020/DOD - Metals (ICP/MS)	- Total Recov	rerable							
Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fa
Aluminum	60	U	60	60	20	ug/L		09/09/13 17:25	
Antimony	1.0	U	2.0	1.0	0.33	ug/L		09/09/13 17:25	
Beryllium	1.0	UQ	1.0	1.0	0.50	ug/L		09/09/13 17:25	
	1.0	U	2.0	1.0	0.40	ug/L		09/09/13 17:25	
Cadmium	1.0					Ches II		09/09/13 17:25	
Cadmium Iron	900		150	100	44	ug/L		03/03/10 11.20	
			150 1000	100 400		ug/L ug/L		09/09/13 17:25	
ron Sodium	900	U			160				
ron Sodium Thallium	900 10000	U U	1000	400	160	ug/L		09/09/13 17:25	
Iron	900 10000 1.5 50		1000 2.0	400 1.5	160 0.79	ug/L ug/L		09/09/13 17:25 09/09/13 17:25	

Client: Environmental Quality Mgt., Inc.

Project/Site: RVAAP66 (OH)

TestAmerica Job ID: 240-28145-1

Lab Sample ID: 240-28145-37

Matrix: Water

Client Sample ID: FWGDETmw-003C-0343-GW

Date Collected: 08/20/13 16:19 Date Received: 08/21/13 07:00

Analyte	Result	Qualifier	LOQ	LOD	DL	Unit D	Analyzed	Dil Fac
1,1,1-Trichloroethane	0.25	U	1.0	0.25	0.22	ug/L	08/29/13 20:33	- 1
1,1,2,2-Tetrachloroethane	0.25	U	1.0	0.25	0.18	ug/L	08/29/13 20:33	1
1,1,2-Trichloroethane	0.50	U	1.0	0.50	0.27	ug/L	08/29/13 20:33	1
1,1-Dichloroethane	0.25	U	1.0	0.25	0.15	ug/L	08/29/13 20:33	1
1,1-Dichloroethene	0.25	U	1.0	0.25	0.19	ug/L	08/29/13 20:33	1
1,2-Dichloroethane	0.25	U	1.0	0.25	0.22	ug/L	08/29/13 20:33	1
1,2-Dichloroethene, Total	0.25	U	2.0	0.25	0.17	ug/L	08/29/13 20:33	1
1,2-Dichloropropane	0.25	U	1.0	0.25	0.18	ug/L	08/29/13 20:33	1
2-Hexanone	0.50	U	10	0.50	0.41	ug/L	08/29/13 20:33	1
Bromochloromethane	0.50	U	1.0	0.50	0.29	ug/L	08/29/13 20:33	1
Acetone	1.1	U	10	1.1	1.1	ug/L	08/29/13 20:33	1
Benzene	0.25	U	1.0	0.25	0.13	ug/L	08/29/13 20:33	1
Bromoform	0.64	U	1.0	0.64	0.64	ug/L	08/29/13 20:33	1
Bromomethane	0.50	U	1.0	0.50	0.41	ug/L	08/29/13 20:33	1
Carbon disulfide	0.25	U	1.0	0.25	0.13	ug/L	08/29/13 20:33	1
Carbon tetrachloride	0.25	U	1.0	0.25	0.13	ug/L	08/29/13 20:33	1
Chlorobenzene	0.25	U	1.0	0.25	0.15	ug/L	08/29/13 20:33	1
Chloroethane	0.50	U	1.0	0.50	0.29	ug/L	08/29/13 20:33	1
Chloroform	0.25	U	1.0	0.25	0.16	ug/L	08/29/13 20:33	1
Chloromethane	0.50	U	1.0	0.50	0.30	ug/L	08/29/13 20:33	1
cis-1,2-Dichloroethene	0.25	U	1.0	0.25	0.17	ug/L	08/29/13 20:33	1
cis-1,3-Dichloropropene	0.25	U	1.0	0.25	0.14	ug/L	08/29/13 20:33	1
Bromodichloromethane	0.25	U	1.0	0.25	0.15	ug/L	08/29/13 20:33	1
Ethylbenzene	0.25	U	1.0	0.25	0.17	ug/L	08/29/13 20:33	1
1,2-Dibromoethane	0.25	U	1.0	0.25	0.24	ug/L	08/29/13 20:33	1
m-Xylene & p-Xylene	0.50	U	2.0	0.50	0.24	ug/L	08/29/13 20:33	- 1
2-Butanone (MEK)	0.57	U	10	0.57	0.57	ug/L	08/29/13 20:33	1
4-Methyl-2-pentanone (MIBK)	0.50	U	10	0.50	0.32	ug/L	08/29/13 20:33	1
Methylene Chloride	0.50	U	1.0	0.50	0.33	ug/L	08/29/13 20:33	1
o-Xylene	0.25	U	1.0	0.25	0.14	ug/L	08/29/13 20:33	1
Styrene	0.25		1.0	0.25	0.11	ug/L	08/29/13 20:33	1
Tetrachloroethene	0.50	U	1.0	0.50	0.29	ug/L	08/29/13 20:33	1
Toluene	0.25	U	1.0	0.25	0.13	ug/L	08/29/13 20:33	- 1
trans-1,2-Dichloroethene	0.25	U	1.0	0.25	0.19	ug/L	08/29/13 20:33	1
trans-1,3-Dichloropropene	0.25		1.0	0.25	0.19	ug/L	08/29/13 20:33	1
Trichloroethene	0.25	U	1.0	0.25	0.17		08/29/13 20:33	1
Vinyl chloride	0.25		1.0	0.25	0.22	ug/L	08/29/13 20:33	1
Xylenes, Total	0.25		2.0	0.25		ug/L	08/29/13 20:33	1
Dibromochloromethane	0.25		1.0	0.25	0.18	ug/L	08/29/13 20:33	1

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	92		70 - 120		08/29/13 20:33	1
4-Bromofluorobenzene (Surr)	93		75 - 120		08/29/13 20:33	1
Toluene-d8 (Surr)	94		85 - 120		08/29/13 20:33	1
Dibromofluoromethane (Surr)	97		85 115		08/29/13 20:33	1

Method: 8270C/DoD -	Semivolatile Organic	Compounds	(GC/MS)
Metriou. 02/06/DOD -	Semivolatile Ordanic	Compounds	(GC/IVIS)

Analyte	A CONTRACTOR OF THE PROPERTY O	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
Acenaphthene	0.095	U	0.19	0.095	0.042	ug/L		09/04/13 11:14	1
Acenaphthylene	0.095	U	0.19	0.095	0.046	ug/L		09/04/13 11:14	1

Client: Environmental Quality Mgt., Inc.

Project/Site: RVAAP66 (OH)

TestAmerica Job ID: 240-28145-1

Lab Sample ID: 240-28145-37

Matrix: Water

Client Sample ID: FWGDETmw-003C-0343-GW

Date Collected: 08/20/13 16:19 Date Received: 08/21/13 07:00

lethod: 8270C/DoD - Semivolatil nalyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil F
nthracene	0.097	J	0.19	0.095	0.084	ug/L	_	09/04/13 11:14	
enzo[a]anthracene	0.15		0.19	0.095	0.028			09/04/13 11:14	
enzo[a]pyrene	0.12		0.19	0.095	0.049			09/04/13 11:14	
enzo[b]fluoranthene	0.12		0.19	0.095	0.038			09/04/13 11:14	
enzo[g,h,i]perylene	0.095		0.19	0.095	0.044			09/04/13 11:14	
enzoic acid	19		24	19		ug/L		09/04/13 11:14	
enzo[k]fluoranthene	0.13		0.19	0.095		ug/L		09/04/13 11:14	
enzyl alcohol	0.48		4.8	0.48	0.36	ug/L		09/04/13 11:14	
s(2-chloroethoxy)methane	0.48		0.95	0.48	0.30	ug/L		09/04/13 11:14	
s(2-chloroethyl)ether	0.095		0.95	0.095	0.095	ug/L		09/04/13 11:14	
is(2-ethylhexyl) phthalate	0.78		1.9	0.48	0.21	ug/L		09/04/13 11:14	
Bromophenyl phenyl ether	0.48		1.9	0.48	0.21	ug/L		09/04/13 11:14	
utyl benzyl phthalate	0.48		1.9	0.48	0.25	ug/L		09/04/13 11:14	
arbazole	0.48		0.95	0.48	0.27			09/04/13 11:14	
Chloroaniline	0.48		1.9	0.48	0.20	ug/L		09/04/13 11:14	
	0.48					ug/L		09/04/13 11:14	
Chloro-3-methylphenol	0.48		1.9 0.95	0.48	0.20	ug/L		09/04/13 11:14	
Chloronaphthalene					0.095	ug/L			
Chlorophenol	0.48		0.95	0.48		ug/L		09/04/13 11:14	
Chlorophenyl phenyl ether	0.48		1.9	0.48	0.29	ug/L		09/04/13 11:14	
nrysene	0.11		0.19	0.095		ug/L		09/04/13 11:14	
penz(a,h)anthracene	0.095		0.19	0.095				09/04/13 11:14	
penzofuran	0.095		0.95	0.095	0.019			09/04/13 11:14	
-Dichlorobenzene	0.48		0.95	0.48		ug/L		09/04/13 11:14	
Dichlorobenzene	0.48		0.95	0.48	0.22	ug/L		09/04/13 11:14	
-Dichlorobenzene	0.48		0.95	0.48	0.32	ug/L		09/04/13 11:14	
'-Dichlorobenzidine	0.95	U	4.8	0.95	0.35	ug/L		09/04/13 11:14	
-Dichlorophenol	0.48	U	1.9	0.48	0.18	ug/L		09/04/13 11:14	
thyl phthalate	0.95	U	1.9	0.95	0.57	ug/L		09/04/13 11:14	
-Dimethylphenol	0.48	U	1.9	0.48	0.24	ug/L		09/04/13 11:14	
nethyl phthalate	0.48	U	1.9	0.48	0.28	ug/L		09/04/13 11:14	
n-butyl phthalate	0.99	J	1.9	0.95	0.64	ug/L		09/04/13 11:14	
-Dinitro-2-methylphenol	3.8	U	4.8	3.8	2.3	ug/L		09/04/13 11:14	
-Dinitrophenol	0.95	U	4.8	0.95	0.30	ug/L		09/04/13 11:14	
n-octyl phthalate	0.48	U	1.9	0.48	0.22	ug/L		09/04/13 11:14	
oranthene	0.13	J	0.19	0.095	0.042	ug/L		09/04/13 11:14	
orene	0.095	U	0.19	0.095	0.039	ug/L		09/04/13 11:14	
xachlorobenzene	0.095	U	0.19	0.095	0.081	ug/L		09/04/13 11:14	
xachlorobutadiene	0.48	U	0.95	0.48	0.26	ug/L		09/04/13 11:14	
xachlorocyclopentadiene	0.48	U	9.5	0.48	0.23	ug/L		09/04/13 11:14	
xachloroethane	0.48	U	0.95	0.48	0.18	ug/L		09/04/13 11:14	
eno[1,2,3-cd]pyrene	0.095	U	0.19	0.095	0.041	ug/L		09/04/13 11:14	
phorone	0.48		0.95	0.48		ug/L		09/04/13 11:14	
Methylnaphthalene	0.095		0.19	0.095	0.086	75/		09/04/13 11:14	
Methylphenol	0.48		0.95	0.48		ug/L		09/04/13 11:14	
4 Methylphenol	0.95		1.9	0.95		ug/L		09/04/13 11:14	
phthalene	0.095		0.19	0.095	0.060			09/04/13 11:14	
Vitroaniline	0.48		1.9	0.48		ug/L		09/04/13 11:14	
Vitroaniline	0.48		1.9	0.48				09/04/13 11:14	
Vitroaniine	0.48		1.9	0.48		ug/L ug/L		09/04/13 11:14	

TestAmerica Canton

Page 98 of 235

Client: Environmental Quality Mgt., Inc.

Project/Site: RVAAP66 (OH)

TestAmerica Job ID: 240-28145-1

Lab Sample ID: 240-28145-37

Matrix: Water

Client Sample ID: FWGDETmw-003C-0343-GW

Date Collected: 08/20/13 16:19 Date Received: 08/21/13 07:00

Analyte	Result	Qualifier	LOQ	LOD	DL	Unit D	Analyzed	Dil Fac
2-Nitrophenol	0.48	U	1.9	0.48	0.27	ug/L	09/04/13 11:14	1
4-Nitrophenol	3.8	U	4.8	3.8	0.28	ug/L	09/04/13 11:14	1
N-Nitrosodi-n-propylamine	0.48	U	0.95	0.48	0.23	ug/L	09/04/13 11:14	1
N-Nitrosodiphenylamine	0.48	U	0.95	0.48	0.30	ug/L	09/04/13 11:14	1
2,2'-oxybis[1-chloropropane]	0.48	U	0.95	0.48	0.38	ug/L	09/04/13 11:14	1
Pentachlorophenol	0.95	U	4.8	0.95	0.26	ug/L	09/04/13 11:14	1
Phenanthrene	0.12	J	0.19	0.095	0.059	ug/L	09/04/13 11:14	1
Phenol	0.95	U	0.95	0.95	0.57	ug/L	09/04/13 11:14	1
Pyrene	0.13	J	0.19	0.095	0.040	ug/L	09/04/13 11:14	1
1,2,4-Trichlorobenzene	0.48	U	0.95	0.48	0.27	ug/L	09/04/13 11:14	1
2,4,5-Trichlorophenol	0.48	U	4.8	0.48	0.29	ug/L	09/04/13 11:14	1
2,4,6-Trichlorophenol	0.48	U	4.8	0.48	0.23	ug/L	09/04/13 11:14	1
Surrogate	%Recovery Qu	alifier	Limits			Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl (Surr)	76		50 - 110			08/22/13 08:06	09/04/13 11:14	1
2-Fluorophenol (Surr)	76		20 - 110			08/22/13 08:06	09/04/13 11:14	1
Nitrobenzene-d5 (Surr)	82		40 - 110			08/22/13 08:06	09/04/13 11:14	1
Phenol-d5 (Surr)	81		10 - 115			08/22/13 08:06	09/04/13 11:14	1
Terphenyl-d14 (Surr)	104		50 - 135			08/22/13 08:06	09/04/13 11:14	1
2,4,6-Tribromophenol (Surr)	96		40 - 125			08/22/13 08:06	09/04/13 11:14	1

Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
4,4'-DDD	0.019	U	0.048	0.019	0.0091	ug/L		09/12/13 14:09	1
4,4'-DDE	0.019	UM	0.048	0.019	0.0092	ug/L		09/12/13 14:09	1
4,4'-DDT	0.019	U	0.048	0.019	0.015	ug/L		09/12/13 14:09	1
Aldrin	0.019	U	0.029	0.019	0.0078	ug/L		09/12/13 14:09	1
alpha-BHC	0.019	U	0.029	0.019	0.0067	ug/L		09/12/13 14:09	1
alpha-Chlordane	0.019	U	0.048	0.019	0.013	ug/L		09/12/13 14:09	1
beta-BHC	0.015	J	0.048	0.019	0.0080	ug/L		09/12/13 14:09	1
delta-BHC	0.019	U	0.048	0.019	0.0083	ug/L		09/12/13 14:09	1
Dieldrin	0.019	U	0.029	0.019	0.0071	ug/L		09/12/13 14:09	1
Endosulfan I	0.019	U	0.048	0.019	0.012	ug/L		09/12/13 14:09	1
Endosulfan II	0.019	U	0.048	0.019	0.011	ug/L		09/12/13 14:09	1
Endosulfan sulfate	0.019	U	0.048	0.019	0.010	ug/L		09/12/13 14:09	1
Endrin	0.019	U	0.048	0.019	0.010	ug/L		09/12/13 14:09	1
Endrin aldehyde	0.019	U	0.048	0.019	0.010	ug/L		09/12/13 14:09	1
Endrin ketone	0.019	U	0.048	0.019	0.0074	ug/L		09/12/13 14:09	1
gamma-BHC (Lindane)	0.019	U	0.048	0.019	0.0061	ug/L		09/12/13 14:09	9
gamma-Chlordane	0.019	U	0.048	0.019	0.011	ug/L		09/12/13 14:09	1
Heptachlor	0.019	U	0.029	0.019	0.0076	ug/L		09/12/13 14:09	1
Heptachlor epoxide	0.019	U	0.029	0.019	0.0068	ug/L		09/12/13 14:09	1
Methoxychlor	0.048	U	0.095	0.048	0.030	ug/L		09/12/13 14:09	3
Toxaphene	0.76	U	1.9	0.76	0.30	ug/L		09/12/13 14:09	1

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
DCB Decachlorobiphenyl	91		30 - 135	08/22/13 07:53	09/12/13 14:09	1
DCB Decachlorobiphenyl	96		30 - 135	08/22/13 07:53	09/12/13 14:09	1
Tetrachloro-m-xylene	136	M	25 - 140	08/22/13 07:53	09/12/13 14:09	7
Tetrachloro-m-xylene	151	MQ	25 - 140	08/22/13 07:53	09/12/13 14:09	1

TestAmerica Canton

Page 99 of 235

10/7/2013

3

ĕ

9

R

-

١,

14

U-i

Client: Environmental Quality Mgt., Inc.

Project/Site: RVAAP66 (OH)

TestAmerica Job ID: 240-28145-1

Lab Sample ID: 240-28145-37

Matrix: Water

Date Collected: 08/20/13 16:19

Client Sample ID: FWGDETmw-003C-0343-GW

Date Received: 08/21/13 07:00

Nitrocellulose

Method: 8082/DOD - Polychlor Analyte		Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fa
Aroclor-1016	0.19	UHQ	0.48	0.19	0.16	ug/L		09/04/13 15:41	
Aroclor-1221	0.19	UH	0.48	0.19	0.12	ug/L		09/04/13 15:41	
Aroclor-1232	0.19	UH	0.48	0.19	0.15	ug/L		09/04/13 15:41	
Aroclor-1242	0.38	UH	0.48	0.38	0.21	ug/L		09/04/13 15:41	
Aroclor-1248	0.19	UH	0.48	0.19	0.095	ug/L		09/04/13 15:41	
Aroclor-1254	0.19	UH	0.48	0.19	0.15	ug/L		09/04/13 15:41	
Aroclor-1260	0.19	UHQ	0.48	0.19	0.16	ug/L		09/04/13 15:41	
Surrogate	%Recovery Qu	ıalifier	Limits			Prep	pared	Analyzed	Dil F
Tetrachloro-m-xylene	63		40 - 140			08/30/1	13 08:32	09/04/13 15:41	
Tetrachloro-m-xylene	71		40 - 140			08/30/1	13 08:32	09/04/13 15:41	
DCB Decachlorobiphenyl	51		40 _ 135			08/30/1	13 08:32	09/04/13 15:41	
OCB Decachlorobiphenyl	50		40 - 135			08/30/1	13 08:32	09/04/13 15:41	
Method: 8330 Modified - Nitro	guanidine (HPLC)								
Analyte		Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fa
litroguanidine	6.0	U	20	6.0	2.4	ug/L		08/29/13 19:23	
Method: 8330A - Nitroaromatic	cs and Nitramines								
nalyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil F
,3,5-Trinitrobenzene	0.053	U	0.16	0.053	0.033	ug/L		08/29/13 10:14	
,3-Dinitrobenzene	0.11	U	0.16	0.11	0.053	ug/L		08/29/13 10:14	
,4,6-Trinitrotoluene	0.11	U	0.16	0.11	0.053	ug/L		08/29/13 10:14	
4-Dinitrotoluene	0.11	U	0.14	0.11	0.053	ug/L		08/29/13 10:14	
,6-Dinitrotoluene	0.11	U	0.14	0.11	0.053	ug/L		08/29/13 10:14	
-Amino-4,6-dinitrotoluene	0.11	U	0.16	0.11	0.016	ug/L		08/29/13 10:14	
-Nitrotoluene	0.11	U	0.53	0.11	0.093	ug/L		08/29/13 10:14	
-Nitrotoluene	0.11	U	0.53	0.11	0.061	ug/L		08/29/13 10:14	
Nitrotoluene	0.11	U	0.53	0.11	0.093	ug/L		08/29/13 10:14	
-Amino-2,6-dinitrotoluene	0.11	U	0.16	0.11	0.053	ug/L		08/29/13 10:14	
MX	0.053	U	0.16	0.053	0.038	ug/L		08/29/13 10:14	
DX	0.053	U	0.16	0.053	0.038	ug/L		08/29/13 10:14	
itrobenzene	0.11	U	0.16	0.11	0.053	ug/L		08/29/13 10:14	
etryl	.0.11	U	0.16	0.11	0.053	ug/L		08/29/13 10:14	
litroglycerin	0.53	U	0.69	0.53	0.35	ug/L		08/29/13 10:14	
ETN	0.53	U	0.69	0.53	0.32	ug/L		08/29/13 10:14	
urrogate	%Recovery Qu	ıalifier	Limits			Prep	pared	Analyzed	Dil F
,4-Dinitrotoluene	116 Q		79 - 111			08/26/1	13 09:34	08/29/13 10:14	
General Chemistry									
Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil F
					0.0032				

09/05/13 14:28

2.0

1.0 U

1.0

0.48 mg/L

Client: Environmental Quality Mgt., Inc.

Client Sample ID: FWGDETmw-003C-0343-GF

Project/Site: RVAAP66 (OH)

TestAmerica Job ID: 240-28145-1

Lab Sample ID: 240-28145-38

Matrix: Water

Date Collected: 08/20/13 16:19 Date Received: 08/21/13 07:00

Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
Arsenic	12		10	10	3.3	ug/L		09/09/13 13:39	1
Chromium	4.0	U	7.0	4.0	1.4	ug/L		09/09/13 13:39	1
Cobalt	4.0	U	7.0	4.0	1.5	ug/L		09/09/13 13:39	1
Lead	5.0	U	10	5.0	1.7	ug/L		09/09/13 13:39	1
Selenium	10	U	15	10	4.0	ug/L		09/09/13 13:39	1
Silver	5.0	U	7.0	5.0	1.7	ug/L		09/09/13 13:39	1
Vanadium	4.0	U	7.0	4.0	1.3	ug/L		09/09/13 13:39	1
Barium	48	J	200	5.0	2.8	ug/L		09/09/13 13:39	1
Calcium	84000		5000	1000	630	ug/L		09/09/13 13:39	1
Copper	10	U	25	10	4.4	ug/L		09/09/13 13:39	1
Magnesium	30000		5000	300	120	ug/L		09/09/13 13:39	1
Manganese	250		15	5.0	1.8	ug/L		09/09/13 13:39	1
Nickel	5.0	U	40	5.0	2.2	ug/L		09/09/13 13:39	1
Potassium	1800	J	5000	900	300	ug/L		09/09/13 13:39	1
Method: 6020/DOD - Metals (ICP/MS) -	Total Recov	/erable							
Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
Aluminum	60	U	60	60	20	ug/L		09/09/13 17:47	1
Antimony	1.0	U	2.0	1.0	0.33	ug/L		09/09/13 17:47	1
Beryllium	1.0	UQ	1.0	1.0	0.50	ug/L		09/09/13 17:47	1
Cadmium	1.0	U	2.0	1.0	0.40	ug/L		09/09/13 17:47	1
iron	1400		150	100	44	ug/L		09/09/13 17:47	1
Sodium	11000		1000	400	160	ug/L		09/09/13 17:47	-1
Thallium	1.5	U	2.0	1.5	0.79	ug/L		09/09/13 17:47	1
Zinc	50	U	50	50	27	ug/L		09/09/13 17:47	1
Method: 7470A/DOD - Mercury (CVAA)									
Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
Hg	0.20	U	0.20	0.20	0.12	ug/L		08/23/13 14:17	1

Client: Environmental Quality Mgt., Inc.

Project/Site: RVAAP66 (OH)

TestAmerica Job ID: 240-28145-1

Lab Sample ID: 240-28145-39

Matrix: Water

Client Sample ID: FWGTEAM4-TRIP Date Collected: 08/20/13 08:00

Date Received: 08/21/13 07:00

1,2-Dichloroethane-d4 (Surr)

4-Bromofluorobenzene (Surr)

Dibromofluoromethane (Surr)

Toluene-d8 (Surr)

Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D Analyzed	Dil Fac
,1,1-Trichloroethane	0.25	U	1.0	0.25	0.22	ug/L	08/29/13 20:58	- 3
,1,2,2-Tetrachloroethane	0.25	U	1.0	0.25	0.18	ug/L	08/29/13 20:58	1
,1,2-Trichloroethane	0.50	U	1.0	0.50	0.27	ug/L	08/29/13 20:58	1
,1-Dichloroethane	0.25	U	1.0	0.25	0.15	ug/L	08/29/13 20:58	1
,1-Dichloroethene	0.25	U	1.0	0.25	0.19	ug/L	08/29/13 20:58	1
,2-Dichloroethane	0.25	U	1.0	0.25	0.22	ug/L	08/29/13 20:58	1
,2-Dichloroethene, Total	0.25	U	2.0	0.25	0.17	ug/L	08/29/13 20:58	1
,2-Dichloropropane	0.25	U	1.0	0.25	0.18	ug/L	08/29/13 20:58	- 1
2-Hexanone	0.50	U	10	0.50	0.41	ug/L	08/29/13 20:58	1
Bromochloromethane	0.50	U	1.0	0.50	0.29	ug/L	08/29/13 20:58	1
Acetone	1.1	U	10	1.1	1.1	ug/L	08/29/13 20:58	1
Benzene	0.25	U	1.0	0.25	0.13	ug/L	08/29/13 20:58	11
Bromoform	0.64	U	1.0	0.64	0.64	ug/L	08/29/13 20:58	11
Bromomethane	0.50	U	1.0	0.50	0.41	ug/L	08/29/13 20:58	1
Carbon disulfide	0.25	U	1.0	0.25	0.13	ug/L	08/29/13 20:58	11
Carbon tetrachloride	0.25	U	1.0	0.25	0.13		08/29/13 20:58	1
Chlorobenzene	0.25	U	1.0	0.25	0.15	ug/L	08/29/13 20:58	1
Chloroethane	0.50	U	1.0	0.50	0.29	ug/L	08/29/13 20:58	1
Chloroform	0.25	U	1.0	0.25	0.16		08/29/13 20:58	1
Chloromethane	0.50	U	1.0	0.50	0.30	ug/L	08/29/13 20:58	1
sis-1,2-Dichloroethene	0.25	U	1.0	0.25	0.17	ug/L	08/29/13 20:58	1
is-1,3-Dichloropropene	0.25	U	1.0	0.25	0.14	ug/L	08/29/13 20:58	1
Bromodichloromethane	0.25	U	1.0	0.25	0.15	ug/L	08/29/13 20:58	1
Ethylbenzene	0.25	U	1.0	0.25	0.17	10.00	08/29/13 20:58	1
,2-Dibromoethane	0.25	Ü	1.0	0.25	0.24		08/29/13 20:58	1
n-Xylene & p-Xylene	0.50	U	2.0	0.50	0.24		08/29/13 20:58	a
2-Butanone (MEK)	0.57	U	10	0.57	0.57	ug/L	08/29/13 20:58	9
-Methyl-2-pentanone (MIBK)	0.50	U	10	0.50	0.32	ug/L	08/29/13 20:58	1
Methylene Chloride	0.61	J	1.0	0.50	0.33		08/29/13 20:58	1
-Xylene	0.25	U	1.0	0.25	0.14	ug/L	08/29/13 20:58	1
Styrene		U	1.0	0.25	0.11	ug/L	08/29/13 20:58	1
Tetrachloroethene	0.50		1.0	0.50	0.29		08/29/13 20:58	1
oluene	0.25	U	1.0	0.25	0:13		08/29/13 20:58	
rans-1,2-Dichloroethene	0.25	U	1.0	0.25	0.19	ug/L	08/29/13 20:58	1
rans-1,3-Dichloropropene	0.25		1.0	0.25	0.19		08/29/13 20:58	1
richloroethene	0.25		1.0	0.25	0.17		08/29/13 20:58	- 1
/inyl chloride	0.25		1.0	0.25	0.22	ug/L	08/29/13 20:58	1
(ylenes, Total	0.25		2.0	0.25		ug/L	08/29/13 20:58	- 1
Dibromochloromethane	0.25		1.0	0.25	0.14		08/29/13 20:58	8
	0,20	-5	110	2,22		-0	20.00.10.00	

TestAmerica Canton

08/29/13 20:58

08/29/13 20:58

08/29/13 20:58

08/29/13 20:58

70 - 120

75 - 120

85 - 120

85 - 115

98

90

95

99

Client: Environmental Quality Mgt., Inc.

Project/Site: RVAAP66 (OH)

TestAmerica Job ID: 240-28145-1

Lab Sample ID: 240-28145-40

Matrix: Water

Date Collected: 08/20/13 09:34 Date Received: 08/21/13 07:00

Method: 6860 - Perchlorate by IC/MS or IC/MS/MS

Client Sample ID: FWGBKGmw-010C-0311-GF

Analyte	Result Quali	lifier LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
Perchlorate	0.018 J	0.050	0.020	0.0088	ug/L		09/07/13 02:21	1

Client: Environmental Quality Mgt., Inc.

Project/Site: RVAAP66 (OH)

TestAmerica Job ID: 240-28145-1

Lab Sample ID: 240-28145-41

09/12/13 14:29

Matrix: Water

Client Sample ID: FWGB12mw-013-0313-GW

Date Collected: 08/20/13 10:30 Date Received: 08/21/13 07:00

Toxaphene

Method: 8081/DOD - Organochlorine Pesticides (GC) Result Qualifier LOQ LOD DL Unit D Analyzed Dil Fac 4,4'-DDD 0.019 U 0.048 0.019 0.0091 ug/L 09/12/13 14:29 4,4'-DDE 0.019 U 0.048 0.019 0.0092 ug/L 09/12/13 14:29 4,4'-DDT 0.019 U 0.048 0.019 0.015 ug/L 09/12/13 14:29 Aldrin 0.019 U 0.029 0.019 0.0078 ug/L 09/12/13 14:29 alpha-BHC 0.019 U 0.029 0.019 0.0067 ug/L 09/12/13 14:29 alpha-Chlordane 0.019 U 0.048 0.019 0.013 ug/L 09/12/13 14:29 beta-BHC 0.019 U 0.048 0.019 0.0080 ug/L 09/12/13 14:29 delta-BHC 0.019 U 0.048 0.019 0.0083 ug/L 09/12/13 14:29 Dieldrin 0.019 U 0.029 0.019 0.0071 ug/L 09/12/13 14:29 Endosulfan I 0.019 U 0.048 0.019 0.012 ug/L 09/12/13 14:29 Endosulfan II 0.019 U 0.048 0.019 0.011 ug/L 09/12/13 14:29 Endosulfan sulfate 0.019 U 0.048 0.019 0.010 ug/L 09/12/13 14:29 0.019 U 0.048 0.019 0.010 ug/L Endrin 09/12/13 14:29 Endrin aldehyde 0.019 U 0.048 0.019 0.010 ug/L 09/12/13 14:29 0.019 U 0.048 0.019 0.0074 Endrin ketone ug/L 09/12/13 14:29 0.019 U gamma-BHC (Lindane) 0.048 0.019 0.0061 ug/L 09/12/13 14:29 gamma-Chlordane 0.019 U 0.048 0.019 0.011 ug/L 09/12/13 14:29 Heptachlor 0.019 U 0.029 0.019 0.0076 ug/L 09/12/13 14:29 0.019 U Heptachlor epoxide 0.029 0.019 0.0068 ug/L 09/12/13 14:29 Methoxychlor 0.048 U 0.095 0.048 0.030 09/12/13 14:29 ug/L

Surrogate	%Recovery G	Qualifier	Limits	Prepared	Analyzed	Dil Fac
DCB Decachlorobiphenyl	65		30 _ 135	08/22/13 07:53	09/12/13 14:29	1
DCB Decachlorobiphenyl	70		30 _ 135	08/22/13 07:53	09/12/13 14:29	1
Tetrachloro-m-xylene	83		25 - 140	08/22/13 07:53	09/12/13 14:29	1
Tetrachloro-m-xylene	88		25 - 140	08/22/13 07:53	09/12/13 14:29	1

1.9

0.76

0.30 ug/L

0.76 U

Method: 8082/DOD - Polychlorinated Biphenyls (PCBs) by Gas Chromatography Analyte Result Qualifier LOQ LOD DL Unit D Analyzed Dil Fac 09/04/13 15:56 Aroclor-1016 0.19 UHQ 0.48 0.19 0.16 ug/L Aroclor-1221 0.19 UH 0.48 0.19 0.12 ug/L 09/04/13 15:56 Aroclor-1232 0.19 UH 0.19 0.48 0.15 ug/L 09/04/13 15:56 Aroclor-1242 0.38 UH 0.48 0.38 0.21 ug/L 09/04/13 15:56 Aroclor-1248 0.19 UH 0.48 0.19 0.095 ug/L 09/04/13 15:56 Aroclor-1254 0.19 UH 0.48 0.19 09/04/13 15:56 0.15 ug/L Aroclor-1260 0.19 UHQ 0.48 0.19 0.16 09/04/13 15:56 ug/L

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	72		40 - 140	08/30/13 08:32	09/04/13 15:56	1
Tetrachloro-m-xylene	76		40 - 140	08/30/13 08:32	09/04/13 15:56	1
DCB Decachlorobiphenyl	33	Q	40 - 135	08/30/13 08:32	09/04/13 15:56	1
DCB Decachlorobiphenyl	30	Q	40 - 135	08/30/13 08:32	09/04/13 15:56	1

Client: Environmental Quality Mgt., Inc.

Project/Site: RVAAP66 (OH)

Date Collected: 08/20/13 11:50

Nitrocellulose

TestAmerica Job ID: 240-28145-1

Lab Sample ID: 240-28145-42

Danipic	 _ , ,		10 12	
	Ma	trix:	Water	

Date Received: 08/21/13 07:00	

Client Sample ID: FWGFWGmw-011-0348-GW

Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
Bis(2-ethylhexyl) phthalate	13		2.0	0.49	0.22	ug/L		08/31/13 17:23	- 3
Butyl benzyl phthalate	0.49	U	2.0	0.49	0.25	ug/L		08/31/13 17:23	
Diethyl phthalate	0.98	U	2.0	0.98	0.59	ug/L		08/31/13 17:23	1
Dimethyl phthalate	0.49	U	2.0	0.49	0.28	ug/L		08/31/13 17:23	1
Di-n-butyl phthalate	1.7	J	2.0	0.98	0.66	ug/L		08/31/13 17:23	3
Di-n-octyl phthalate	0.49	U	2.0	0.49	0.23	ug/L		08/31/13 17:23	1
Surrogate	%Recovery Qu	ıalifier	Limits			Prep	pared	Analyzed	Dil Fac
2-Fluorobiphenyl (Surr)	66		50 - 110			08/22/1	13 08:16	08/31/13 17:23	1
2-Fluorophenol (Surr)	70		20 - 110			08/22/1	13 08:16	08/31/13 17:23	1
Nitrobenzene-d5 (Surr)	72		40 - 110			08/22/1	13 08:16	08/31/13 17:23	7
Phenol-d5 (Surr)	74		10 - 115			08/22/1	13 08:16	08/31/13 17:23	1
Terphenyl-d14 (Surr)	84		50 - 135			08/22/1	13 08:16	08/31/13 17:23	1
2,4,6-Tribromophenol (Surr)	91		40 - 125			08/22/1	13 08:16	08/31/13 17:23	1
Method: 8330 Modified - Nitrogu	ianidine (HPLC)								
Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
Nitroguanidine	6.0	U	20	6.0	2.4	ug/L		08/29/13 19:41	1
Method: 8330A - Nitroaromatics	and Nitramines								
Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
1,3,5-Trinitrobenzene	0.053	U	0.16	0.053	0.033	ug/L		08/29/13 10:57	1
1,3-Dinitrobenzene	0.11	U	0.16	0.11	0.053	ug/L		08/29/13 10:57	- 1
2,4,6-Trinitrotoluene	0.11	U	0.16	0.11	0.053	ug/L		08/29/13 10:57	
2,4-Dinitrotoluene	0.11	U	0.14	0.11	0.053	ug/L		08/29/13 10:57	1
2,6-Dinitrotoluene	0.11	U	0.14	0.11	0.053	ug/L		08/29/13 10:57	1
2-Amino-4,6-dinitrotoluene	0.11	U	0.16	0.11	0.016	ug/L		08/29/13 10:57	
2-Nitrotoluene	0.11	U	0.53	0.11	0.094	ug/L		08/29/13 10:57	
3-Nitrotoluene	0.11	U	0.53	0.11	0.061	ug/L		08/29/13 10:57	
4-Nitrotoluene	0.11	U	0.53	0.11	0.094	ug/L		08/29/13 10:57	
1-Amino-2,6-dinitrotoluene	0.11	U	0.16	0.11	0.053	ug/L		08/29/13 10:57	
HMX	0.053	U	0.16	0.053	0.038	ug/L		08/29/13 10:57	1
RDX	0.053	U	0.16	0.053	0.038	ug/L		08/29/13 10:57	1
Nitrobenzene	0.11	U	0.16	0.11	0.053	ug/L		08/29/13 10:57	
Tetryl	0.11	U	0.16	0.11	0.053	ug/L		08/29/13 10:57	. 1
Nitroglycerin	0.53	U	0.69	0.53	0.35	ug/L		08/29/13 10:57	1
PETN	0.53	U	0.69	0.53	0.32	ug/L		08/29/13 10:57	1
Surrogate	%Recovery Qu	ıalifier	Limits			Prep	pared	Analyzed	Dil Fac
3,4-Dinitrotoluene	91		79 - 111			08/26/1	13 09:34	08/29/13 10:57	1

TestAmerica Canton

09/05/13 14:30

2.0

1.0

0.48 mg/L

1.0 U

Client: Environmental Quality Mgt., Inc.

Client Sample ID: FWGFWGmw-011-0348-GF

Project/Site: RVAAP66 (OH)

TestAmerica Job ID: 240-28145-1

Lab Sample ID: 240-28145-43

Matrix: Water

Date Collected: 08/20/13 11:50 Date Received: 08/21/13 07:00

Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
Arsenic	10	Ü	10	10	3.3	ug/L		09/09/13 13:45	1
Chromium	4.0	U	7.0	4.0	1.4	ug/L		09/09/13 13:45	1
Cobalt	4.0	U	7.0	4.0	1.5	ug/L		09/09/13 13:45	1
_ead	5.0	U	10	5.0	1.7	ug/L		09/09/13 13:45	1
Selenium	10	U	15	10	4.0	ug/L		09/09/13 13:45	1
Silver	5.0	U	7.0	5.0	1.7	ug/L		09/09/13 13:45	1
/anadium	4.0	U	7.0	4.0	1.3	ug/L		09/09/13 13:45	1
Barium	42	J	200	5.0	2.8	ug/L		09/09/13 13:45	1
Calcium	67000		5000	1000	630	ug/L		09/09/13 13:45	1
Copper	10	U	25	10	4.4	ug/L		09/09/13 13:45	1
Magnesium	14000		5000	300	120	ug/L		09/09/13 13:45	1
Manganese	270		15	5.0	1.8	ug/L		09/09/13 13:45	1
Nickel	5.0	U	40	5.0	2.2	ug/L		09/09/13 13:45	1
Potassium	840	J	5000	900	300	ug/L		09/09/13 13:45	1
Method: 6020/DOD - Metals ((ICP/MS) - Total Recov	verable						Amakanad	
Method: 6020/DOD - Metals (verable Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
		Qualifier	LOQ 60	LOD 60	DL 20	Unit ug/L	D	O9/09/13 17:55	Dil Fac
Analyte	Result	Qualifier U					<u>D</u>		Dil Fac
Analyte Aluminum	Result 60 1.0	Qualifier U	60	60	20	ug/L	D	09/09/13 17:55	Dil Fac
Analyte Aluminum Antimony	Result 60 1.0	Qualifier U U U Q	60 2.0	60 1.0	20 0.33	ug/L ug/L ug/L	D	09/09/13 17:55 09/09/13 17:55	Dil Fac 1 1 1
Analyte Aluminum Antimony Beryllium	Result 60 1.0 1.0	Qualifier U U U Q	60 2.0 1.0	60 1.0 1.0	20 0.33 0.50	ug/L ug/L ug/L ug/L	D	09/09/13 17:55 09/09/13 17:55 09/09/13 17:55	Dil Fac
Analyte Aluminum Antimony Beryllium Cadmium	Result 60 1.0 1.0 1.0	Qualifier U U U Q	60 2.0 1.0 2.0	60 1.0 1.0 1.0	20 0.33 0.50 0.40	ug/L ug/L ug/L ug/L	D	09/09/13 17:55 09/09/13 17:55 09/09/13 17:55 09/09/13 17:55	Dil Fac 1 1 1 1 1 1 1 1
Analyte Aluminum Antimony Beryllium Cadmium ron	Result 60 1.0 1.0 1.0 1.0	Qualifier U U U U Q U	60 2.0 1.0 2.0 150	60 1.0 1.0 1.0	20 0.33 0.50 0.40 44	ug/L ug/L ug/L ug/L ug/L	D	09/09/13 17:55 09/09/13 17:55 09/09/13 17:55 09/09/13 17:55 09/09/13 17:55	Dil Fac
Analyte Aluminum Antimony Beryllium Cadmium ron Sodium	Result 60 1.0 1.0 1.0 1.0 6300	Qualifier U U U U U U U	60 2.0 1.0 2.0 150 1000	60 1.0 1.0 1.0 1.0 100 400	20 0.33 0.50 0.40 44 160	ug/L ug/L ug/L ug/L ug/L ug/L	D	09/09/13 17:55 09/09/13 17:55 09/09/13 17:55 09/09/13 17:55 09/09/13 17:55 09/09/13 17:55	Dil Fac
Analyte Aluminum Antimony Beryllium Cadmium ron Sodium Challium	Result 60 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 500	Qualifier U U U U U U U	50 2.0 1.0 2.0 150 1000 2.0	1.0 1.0 1.0 1.0 100 400 1.5	20 0.33 0.50 0.40 44 160 0.79	ug/L ug/L ug/L ug/L ug/L ug/L	D	09/09/13 17:55 09/09/13 17:55 09/09/13 17:55 09/09/13 17:55 09/09/13 17:55 09/09/13 17:55	1 1 1 1 1 1 1 1
Analyte Aluminum Antimony Beryllium Cadmium Fron Sodium Fhallium	Result 60 1.0 1.0 1.0 1900 6300 1.5 50	Qualifier U U U U U U U	50 2.0 1.0 2.0 150 1000 2.0	1.0 1.0 1.0 1.0 100 400 1.5	20 0.33 0.50 0.40 44 160 0.79 27	ug/L ug/L ug/L ug/L ug/L ug/L	D	09/09/13 17:55 09/09/13 17:55 09/09/13 17:55 09/09/13 17:55 09/09/13 17:55 09/09/13 17:55	1 1 1 1 1 1 1 1

Client: Environmental Quality Mgt., Inc.

Project/Site: RVAAP66 (OH)

Date Received: 08/21/13 07:00

3,4-Dinitrotoluene

Analyte

Nitrocellulose

General Chemistry

TestAmerica Job ID: 240-28145-1

Lab Sample ID: 240-28145-44

Matrix: Water

Date Collected: 08/20/13 12:54

Client Sample ID: FWGFWGmw-012-0349-GW

Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
Bis(2-ethylhexyl) phthalate	0.74	J	1.9	0.48	0.21	ug/L		08/31/13 17:48	1
Butyl benzyl phthalate	0.48	U	1.9	0.48	0.25	ug/L		08/31/13 17:48	1
Diethyl phthalate	0.95	U	1.9	0.95	0.57	ug/L		08/31/13 17:48	1
Dimethyl phthalate	0.48	U	1.9	0.48	0.28	ug/L		08/31/13 17:48	1
Di-n-butyl phthalate	0.74	J	1.9	0.95	0.64	ug/L		08/31/13 17:48	1
Di-n-octyl phthalate	0.48	U	1.9	0.48	0.22	ug/L		08/31/13 17:48	
Surrogate	%Recovery Qu	ıalifier	Limits			Prep	pared	Analyzed	Dil Fac
2-Fluorobiphenyl (Surr)	66		50 - 110			08/22/	13 08:16	08/31/13 17:48	1
2-Fluorophenol (Surr)	69		20 - 110			08/22/	13 08:16	08/31/13 17:48	1
Nitrobenzene-d5 (Surr)	71		40 - 110			08/22/	13 08:16	08/31/13 17:48	9
Phenol-d5 (Surr)	75		10 - 115			08/22/	13 08:16	08/31/13 17:48	1
Terphenyl-d14 (Surr)	81		50 - 135			08/22/	13 08:16	08/31/13 17:48	7
2,4,6-Tribromophenol (Surr)	93		40 - 125			08/22/	13 08:16	08/31/13 17:48	4
Method: 8330 Modified - Nitro	guanidine (HPLC)								
Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
Nitroguanidine	6.0	U	20	6.0	2.4	ug/L		08/29/13 19:58	17
Method: 8330A - Nitroaromati	ics and Nitramines								
Method: 8330A - Nitroaromati	Result	Qualifier	LOQ	LOD		Unit	D	Analyzed	
Analyte 1,3,5-Trinitrobenzene	Result 0.053	Ü	0.16	0.053	0.033	ug/L	D	08/29/13 11:41	
Analyte 1,3,5-Trinitrobenzene 1,3-Dinitrobenzene	0.053 0.11	U	0.16 0.16	0.053 0.11	0.033 0.053	ug/L ug/L	D	08/29/13 11:41 08/29/13 11:41	
Analyte 1,3,5-Trinitrobenzene 1,3-Dinitrobenzene 2,4,6-Trinitrotoluene	0.053 0.11 0.11	U U U	0.16 0.16 0.16	0.053 0.11 0.11	0.033 0.053 0.053	ug/L ug/L ug/L	D	08/29/13 11:41 08/29/13 11:41 08/29/13 11:41	
Analyte 1,3,5-Trinitrobenzene 1,3-Dinitrobenzene 2,4,6-Trinitrotoluene 2,4-Dinitrotoluene	0.053 0.11 0.11 0.11	U U U	0.16 0.16 0.16 0.14	0.053 0.11 0.11 0.11	0.033 0.053 0.053 0.053	ug/L ug/L ug/L ug/L	D	08/29/13 11:41 08/29/13 11:41 08/29/13 11:41 08/29/13 11:41	
Analyte 1,3,5-Trinitrobenzene 1,3-Dinitrobenzene 2,4,6-Trinitrotoluene 2,4-Dinitrotoluene 2,6-Dinitrotoluene	Result 0.053 0.11 0.11 0.11 0.11	U U U U	0.16 0.16 0.16 0.14 0.14	0.053 0.11 0.11 0.11 0.11	0.033 0.053 0.053 0.053 0.053	ug/L ug/L ug/L ug/L ug/L	D	08/29/13 11:41 08/29/13 11:41 08/29/13 11:41 08/29/13 11:41 08/29/13 11:41	
Analyte 1,3,5-Trinitrobenzene 1,3-Dinitrobenzene 2,4,6-Trinitrotoluene 2,4-Dinitrotoluene 2,6-Dinitrotoluene 2-Amino-4,6-dinitrotoluene	Result 0.053 0.11 0.11 0.11 0.11 0.11	U U U U U	0.16 0.16 0.16 0.14 0.14	0.053 0.11 0.11 0.11 0.11	0.033 0.053 0.053 0.053 0.053 0.016	ug/L ug/L ug/L ug/L ug/L ug/L	D	08/29/13 11:41 08/29/13 11:41 08/29/13 11:41 08/29/13 11:41 08/29/13 11:41 08/29/13 11:41	
Analyte 1,3,5-Trinitrobenzene 1,3-Dinitrobenzene 2,4,6-Trinitrotoluene 2,4-Dinitrotoluene 2,6-Dinitrotoluene 2-Amino-4,6-dinitrotoluene 2-Nitrotoluene	Result 0.053 0.11 0.11 0.11 0.11 0.11 0.11	0 0 0 0 0 0	0.16 0.16 0.16 0.14 0.14 0.16 0.53	0.053 0.11 0.11 0.11 0.11 0.11 0.11	0.033 0.053 0.053 0.053 0.053 0.016 0.093	ug/L ug/L ug/L ug/L ug/L ug/L	D	08/29/13 11:41 08/29/13 11:41 08/29/13 11:41 08/29/13 11:41 08/29/13 11:41 08/29/13 11:41	
Analyte 1,3,5-Trinitrobenzene 1,3-Dinitrobenzene 2,4,6-Trinitrotoluene 2,4-Dinitrotoluene 2,6-Dinitrotoluene 2-Amino-4,6-dinitrotoluene 2-Nitrotoluene 3-Nitrotoluene	Result 0.053 0.11 0.11 0.11 0.11 0.11 0.11 0.11	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.16 0.16 0.16 0.14 0.14 0.16 0.53	0.053 0.11 0.11 0.11 0.11 0.11 0.11	0.033 0.053 0.053 0.053 0.053 0.016 0.093	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	D	08/29/13 11:41 08/29/13 11:41 08/29/13 11:41 08/29/13 11:41 08/29/13 11:41 08/29/13 11:41 08/29/13 11:41	
Analyte 1,3,5-Trinitrobenzene 1,3-Dinitrobenzene 2,4,6-Trinitrotoluene 2,4-Dinitrotoluene 2,6-Dinitrotoluene 2-Amino-4,6-dinitrotoluene 2-Nitrotoluene 3-Nitrotoluene 4-Nitrotoluene	Result 0.053 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.1		0.16 0.16 0.14 0.14 0.15 0.53 0.53	0.053 0.11 0.11 0.11 0.11 0.11 0.11 0.11	0.033 0.053 0.053 0.053 0.053 0.016 0.093 0.060	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	D	08/29/13 11:41 08/29/13 11:41 08/29/13 11:41 08/29/13 11:41 08/29/13 11:41 08/29/13 11:41 08/29/13 11:41 08/29/13 11:41	
Analyte 1,3,5-Trinitrobenzene 1,3-Dinitrobenzene 2,4,6-Trinitrotoluene 2,4-Dinitrotoluene 2,6-Dinitrotoluene 2-Amino-4,6-dinitrotoluene 3-Nitrotoluene 4-Nitrotoluene 4-Amino-2,6-dinitrotoluene	Result 0.053 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.1	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.16 0.16 0.16 0.14 0.14 0.16 0.53 0.53 0.53 0.16	0.053 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11	0.033 0.053 0.053 0.053 0.053 0.016 0.093 0.060 0.093	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	D	08/29/13 11:41 08/29/13 11:41 08/29/13 11:41 08/29/13 11:41 08/29/13 11:41 08/29/13 11:41 08/29/13 11:41 08/29/13 11:41 08/29/13 11:41	
Analyte 1,3,5-Trinitrobenzene 1,3-Dinitrobenzene 2,4,6-Trinitrotoluene 2,4-Dinitrotoluene 2,6-Dinitrotoluene 2-Amino-4,6-dinitrotoluene 2-Nitrotoluene 3-Nitrotoluene 4-Nitrotoluene 4-Amino-2,6-dinitrotoluene HMX	Result 0.053 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.1	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.16 0.16 0.16 0.14 0.14 0.16 0.53 0.53 0.53 0.16 0.16	0.053 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11	0.033 0.053 0.053 0.053 0.053 0.016 0.093 0.060 0.093 0.053	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	D	08/29/13 11:41 08/29/13 11:41	
Analyte 1,3,5-Trinitrobenzene 1,3-Dinitrobenzene 2,4,6-Trinitrotoluene 2,4-Dinitrotoluene 2,6-Dinitrotoluene 2-Amino-4,6-dinitrotoluene 2-Nitrotoluene 3-Nitrotoluene 4-Nitrotoluene 4-Amino-2,6-dinitrotoluene HMX RDX	Result 0.053 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.1	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.16 0.16 0.16 0.14 0.14 0.16 0.53 0.53 0.53 0.16 0.16	0.053 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.053 0.053	0.033 0.053 0.053 0.053 0.053 0.016 0.093 0.060 0.093 0.053 0.038	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	D	08/29/13 11:41 08/29/13 11:41	Dil Fa
Analyte 1,3,5-Trinitrobenzene 1,3-Dinitrobenzene 2,4,6-Trinitrotoluene 2,4-Dinitrotoluene 2,6-Dinitrotoluene 2-Amino-4,6-dinitrotoluene 2-Nitrotoluene 3-Nitrotoluene 4-Nitrotoluene 4-Amino-2,6-dinitrotoluene HMX RDX Nitrobenzene	Result 0.053 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.1		0.16 0.16 0.16 0.14 0.14 0.16 0.53 0.53 0.53 0.16 0.16 0.16	0.053 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.053 0.053 0.11	0.033 0.053 0.053 0.053 0.053 0.016 0.093 0.060 0.093 0.053 0.038	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	D	08/29/13 11:41 08/29/13 11:41	
Analyte 1,3,5-Trinitrobenzene 1,3-Dinitrobenzene 2,4,6-Trinitrotoluene 2,4-Dinitrotoluene 2,6-Dinitrotoluene 2-Amino-4,6-dinitrotoluene 3-Nitrotoluene 4-Nitrotoluene 4-Amino-2,6-dinitrotoluene HMX RDX Nitrobenzene Tetryl	Result 0.053 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.1		0.16 0.16 0.16 0.14 0.14 0.15 0.53 0.53 0.16 0.16 0.16 0.16	0.053 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.053 0.053 0.11 0.11	0.033 0.053 0.053 0.053 0.053 0.016 0.093 0.060 0.093 0.053 0.038 0.038	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	D	08/29/13 11:41 08/29/13 11:41	
Analyte 1,3,5-Trinitrobenzene 1,3-Dinitrobenzene 2,4,6-Trinitrotoluene 2,4-Dinitrotoluene 2,6-Dinitrotoluene 2-Amino-4,6-dinitrotoluene 2-Nitrotoluene 3-Nitrotoluene 4-Nitrotoluene 4-Mitrotoluene HMX RDX Nitrobenzene Tetryl Nitroglycerin	Result 0.053 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.1		0.16 0.16 0.16 0.14 0.14 0.16 0.53 0.53 0.53 0.16 0.16 0.16	0.053 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.053 0.053 0.11	0.033 0.053 0.053 0.053 0.053 0.016 0.093 0.060 0.093 0.053 0.038 0.038 0.053	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	D	08/29/13 11:41 08/29/13 11:41	
Analyte 1,3,5-Trinitrobenzene 1,3-Dinitrobenzene 2,4,6-Trinitrotoluene 2,4-Dinitrotoluene 2,6-Dinitrotoluene 2-Amino-4,6-dinitrotoluene 2-Nitrotoluene	Result 0.053 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.1		0.16 0.16 0.16 0.14 0.14 0.16 0.53 0.53 0.53 0.16 0.16 0.16 0.16 0.16	0.053 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.053 0.053 0.11 0.11 0.53	0.033 0.053 0.053 0.053 0.053 0.016 0.093 0.060 0.093 0.053 0.038 0.038 0.053	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	D	08/29/13 11:41 08/29/13 11:41	

TestAmerica Canton

08/29/13 11:41

Analyzed

09/05/13 14:32

08/26/13 09:34

0.48 mg/L

79 _ 111

LOQ

2.0

LOD

1.0

117 Q

Result Qualifier

1.0 U

Dil Fac

Client: Environmental Quality Mgt., Inc.

Project/Site: RVAAP66 (OH)

TestAmerica Job ID: 240-28145-1

Lab Sample ID: 240-28145-45

Matrix: Water

Client Sample ID: FWGFWGmw-012-0349-GF

Date Collected: 08/20/13 12:54

Date Received: 08/21/13 07:00

Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
Arsenic	10	Ü	10	10	3.3	ug/L		09/09/13 13:51	1
Chromium	4.0	U	7.0	4.0	1.4	ug/L		09/09/13 13:51	1
Cobalt	1.8	J	7.0	4.0	1.5	ug/L		09/09/13 13:51	1
ead	5.0	U	10	5.0	1.7	ug/L		09/09/13 13:51	1
Selenium	10	U	15	10	4.0	ug/L		09/09/13 13:51	1
Silver	5.0	U	7.0	5.0	1.7	ug/L		09/09/13 13:51	1
/anadium	4.0	U	7.0	4.0	1.3	ug/L		09/09/13 13:51	1
Barium	25	J	200	5.0	2.8	ug/L		09/09/13 13:51	1
Calcium	23000		5000	1000	630	ug/L		09/09/13 13:51	1
Copper	10	U	25	10	4.4	ug/L		09/09/13 13:51	1
Magnesium	5600		5000	300	120	ug/L		09/09/13 13:51	1
Manganese	110		15	5.0	1.8	ug/L		09/09/13 13:51	1
Nickel	2.4	J	40	5.0	2.2	ug/L		09/09/13 13:51	1
VICKEI									
Potassium	830		5000	900		ug/L		09/09/13 13:51	1
Potassium Method: 6020/DOD - Metals (IC	830 P/MS) - Total Recov	J verable	5000		300				
Potassium Method: 6020/DOD - Metals (IC Analyte	830 P/MS) - Total Recov Result	J verable Qualifier	5000 LOQ	LOD	300 DL	Unit	D	Analyzed	Dil Fac
Potassium Method: 6020/DOD - Metals (IC Analyte Aluminum	P/MS) - Total Recov Result	yerable Qualifier	5000 LOQ 60	LOD 60	300 DL 20	Unit ug/L	D	Analyzed 09/09/13 18:02	
Potassium Method: 6020/DOD - Metals (IC Analyte Aluminum	P/MS) - Total Recover Result 60 1.0	verable Qualifier U	5000 LOQ 60 2.0	60 1.0	300 DL 20 0.33	Unit ug/L ug/L	D	Analyzed	
Potassium Method: 6020/DOD - Metals (ICAnalyte Aluminum Antimony Beryllium	P/MS) - Total Recover Result 60 1.0	rerable Qualifier U U U Q	5000 LOQ 60 2.0 1.0	60 1.0 1.0	300 DL 20 0.33 0.50	Unit ug/L ug/L ug/L	D	Analyzed 09/09/13 18:02 09/09/13 18:02 09/09/13 18:02	
Potassium Method: 6020/DOD - Metals (IC Analyte Aluminum Antimony	P/MS) - Total Recover Result 60 1.0	rerable Qualifier U U U Q	5000 LOQ 60 2.0 1.0 2.0	60 1.0 1.0 1.0	20 0.33 0.50 0.40	Unit ug/L ug/L ug/L ug/L	D	Analyzed 09/09/13 18:02 09/09/13 18:02 09/09/13 18:02 09/09/13 18:02	
Potassium Method: 6020/DOD - Metals (ICAnalyte Aluminum Antimony Beryllium	P/MS) - Total Recover Result 60 1.0	rerable Qualifier U U U Q	5000 LOQ 60 2.0 1.0	60 1.0 1.0	300 DL 20 0.33 0.50 0.40 44	Unit ug/L ug/L ug/L ug/L	D	Analyzed 09/09/13 18:02 09/09/13 18:02 09/09/13 18:02	
Potassium Method: 6020/DOD - Metals (ICAnalyte Aluminum Antimony Beryllium Cadmium	P/MS) - Total Recov Result 60 1.0 1.0	rerable Qualifier U U U Q	5000 LOQ 60 2.0 1.0 2.0	60 1.0 1.0 1.0	300 DL 20 0.33 0.50 0.40 44	Unit ug/L ug/L ug/L ug/L	D	Analyzed 09/09/13 18:02 09/09/13 18:02 09/09/13 18:02 09/09/13 18:02	
Potassium Method: 6020/DOD - Metals (ICAnalyte Aluminum Antimony Beryllium Cadmium ron	P/MS) - Total Recov Result 60 1.0 1.0 2100	yerable Qualifier U U U Q U	5000 LOQ 60 2.0 1.0 2.0 150	60 1.0 1.0 1.0 1.0	300 DL 20 0.33 0.50 0.40 44 160	Unit ug/L ug/L ug/L ug/L ug/L ug/L	D	Analyzed 09/09/13 18:02 09/09/13 18:02 09/09/13 18:02 09/09/13 18:02	
Potassium Method: 6020/DOD - Metals (ICAnalyte Aluminum Antimony Beryllium Cadmium ron Sodium	P/MS) - Total Recover Result 60 1.0 1.0 2100 6700	rerable Qualifier U U U U U U	5000 LOQ 60 2.0 1.0 2.0 150 1000	60 1.0 1.0 1.0 1.0 400	300 DL 20 0.33 0.50 0.40 44 160	Unit ug/L ug/L ug/L ug/L ug/L ug/L	D	Analyzed 09/09/13 18:02 09/09/13 18:02 09/09/13 18:02 09/09/13 18:02 09/09/13 18:02	
Potassium Method: 6020/DOD - Metals (IC) Analyte Aluminum Antimony Beryllium Cadmium ron Sodium Challium	830 P/MS) - Total Recover Result 60 1.0 1.0 2100 6700 1.5 50	rerable Qualifier U U U U U U	5000 LOQ 60 2.0 1.0 2.0 150 1000 2.0	60 1.0 1.0 1.0 1.0 400 1.5	300 DL 20 0.33 0.50 0.40 44 160 0.79	Unit ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	D	Analyzed 09/09/13 18:02 09/09/13 18:02 09/09/13 18:02 09/09/13 18:02 09/09/13 18:02 09/09/13 18:02	

Client: Environmental Quality Mgt., Inc.

Project/Site: RVAAP66 (OH)

TestAmerica Job ID: 240-28145-1

Lab Sample ID: 240-28145-46

Matrix: Water

Date Collected: 08/20/13 14:30

Client Sample ID: FWGLL10mw-003C-0361-GW

Date Received: 08/21/13 07:00

Dibromofluoromethane (Surr)

Method: 8260B/DoD - Volatile Analyte	The second secon	Qualifier	-	oq	LOD	DL	Unit	D Analyzed	Dil Fac
1.1.1-Trichloroethane	0.25		-	1.0	0.25		ug/L	08/29/13 21:20	1
,1,2,2-Tetrachloroethane	0.25			1.0	0.25	0.18		08/29/13 21:20	1
1,1,2-Trichloroethane	0.50			1.0	0.50	0.27	ug/L	08/29/13 21:20	4
,1-Dichloroethane	0.25			1.0	0.25	0.15	ug/L	08/29/13 21:20	1
,1-Dichloroethene	0.25			1.0	0.25	0.19	ug/L	08/29/13 21:20	1
,2-Dichloroethane	0.25			1.0	0.25	0.22	ug/L	08/29/13 21:20	1
,2-Dichloroethene, Total	0.25			2.0	0.25	0.17		08/29/13 21:20	1
,2-Dichloropropane	0.25			1.0	0.25	0.18	ug/L	08/29/13 21:20	1
-Hexanone	0.50			10	0.50	0.41	ug/L	08/29/13 21:20	1
Bromochloromethane	0.50			1.0	0.50	0.29	ug/L	08/29/13 21:20	1
Acetone	1.1			10	1.1	1.1	ug/L	08/29/13 21:20	1
Senzene	0.25			1.0	0.25	0.13	ug/L	08/29/13 21:20	1
romoform	0.64			1.0	0.64	0.64	ug/L	08/29/13 21:20	-1
fromomethane	0.50			1.0	0.50	0.41	ug/L	08/29/13 21:20	1
Carbon disulfide	0.25			1.0	0.25	0.13	ug/L	08/29/13 21:20	1
arbon tetrachloride	4.2			1.0	0.25	0.13	ug/L	08/29/13 21:20	1
Chlorobenzene	0.25	U		1.0	0.25	0.15	ug/L	08/29/13 21:20	1
Chloroethane	0.50	U		1.0	0.50	0.29	ug/L	08/29/13 21:20	1
hloroform	0.56	j		1.0	0.25	0.16	ug/L	08/29/13 21:20	1
hloromethane	0.50			1.0	0.50	0.30	ug/L	08/29/13 21:20	1
is-1,2-Dichloroethene	0.25			1.0	0.25	0.17	ug/L	08/29/13 21:20	1
is-1,3-Dichloropropene	0.25			1.0	0.25	0.14	ug/L	08/29/13 21:20	1
Bromodichloromethane	0.25	U		1.0	0.25	0.15	ug/L	08/29/13 21:20	1
thylbenzene	0.25	U		1.0	0.25	0.17		08/29/13 21:20	1
,2-Dibromoethane	0.25	U		1.0	0.25	0.24	ug/L	08/29/13 21:20	1
n-Xylene & p-Xylene	0.50	U		2.0	0.50	0.24	ug/L	08/29/13 21:20	1
-Butanone (MEK)	0.57	U		10	0.57	0.57		08/29/13 21:20	1
-Methyl-2-pentanone (MIBK)	0.50			10	0.50	0.32	ug/L	08/29/13 21:20	1
lethylene Chloride	0.50	U		1.0	0.50	0.33		08/29/13 21:20	1
-Xylene	0.25	U		1.0	0.25	0.14	ug/L	08/29/13 21:20	1
tyrene	0.25	U		1.0	0.25	0.11	ug/L	08/29/13 21:20	1
etrachloroethene	0.50			1.0	0.50	0.29	ug/L	08/29/13 21:20	1
oluene	0.25	U		1.0	0.25	0.13	ug/L	08/29/13 21:20	1
rans-1,2-Dichloroethene	0.25	U		1.0	0.25	0.19	ug/L	08/29/13 21:20	1
ans-1,3-Dichloropropene	0.25	U		1.0	0.25	0.19	ug/L	08/29/13 21:20	1
richloroethene	0.25	U		1.0	0.25	0.17	ug/L	08/29/13 21:20	1
inyl chloride	0.25			1.0	0.25	0.22		08/29/13 21:20	1
ylenes, Total	0.25	U		2.0	0.25	0.14	ug/L	08/29/13 21:20	1
Dibromochloromethane	0.25	U		1.0	0.25	0.18	ug/L	08/29/13 21:20	1
Surrogate	%Recovery Qu	ualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	92		70 - 120					08/29/13 21:20	1
4-Bromofluorobenzene (Surr)	92		75 - 120					08/29/13 21:20	7.
Toluene-d8 (Surr)	94		85 - 120					08/29/13 21:20	1
ACTION CONTRACTOR OF THE PROPERTY OF THE PROPE			300000						

TestAmerica Canton

08/29/13 21:20

85 - 115

Client: Environmental Quality Mgt., Inc.

Client Sample ID: FWGLL10mw-003C-0361-GF

Project/Site: RVAAP66 (OH)

TestAmerica Job ID: 240-28145-1

Lab Sample ID: 240-28145-47

Matrix: Water

Date Collected: 08/20/13 14:30 Date Received: 08/21/13 07:00

Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
Arsenic	10	U	10	10	3.3	ug/L		09/09/13 13:57	1
Chromium	4.0	U	7.0	4.0	1.4	ug/L		09/09/13 13:57	1
Cobalt	4.0	U	7.0	4.0	1.5	ug/L		09/09/13 13:57	1
Lead	5.0	U	10	5.0	1.7	ug/L		09/09/13 13:57	1
Selenium	10	U	15	10	4.0	ug/L		09/09/13 13:57	1
Silver	5.0	U	7.0	5.0	1.7	ug/L		09/09/13 13:57	1
Vanadium	4.0	U	7.0	4.0	1.3	ug/L		09/09/13 13:57	1
Barium	5.0	U	200	5.0	2.8	ug/L		09/09/13 13:57	1
Calcium	56000		5000	1000	630	ug/L		09/09/13 13:57	1
Copper	10	U	25	10	4.4	ug/L		09/09/13 13:57	1
Magnesium	17000		5000	300	120	ug/L		09/09/13 13:57	1
Manganese	5.0	U	15	5.0	1.8	ug/L		09/09/13 13:57	11
Nickel	5.0	U	40	5.0	2.2	ug/L		09/09/13 13:57	- 1
Potassium	690	J	5000	900	300	ug/L		09/09/13 13:57	1
Potassium Method: 6020/DOD - Metals (IC			5000	900	300	ug/L		09/09/13 13:57	1
	P/MS) - Total Recov		5000 LOQ	900 LOD		ug/L Unit	D	09/09/13 13:57 Analyzed	
Method: 6020/DOD - Metals (IC	P/MS) - Total Recov	verable Qualifier					D		Dil Fac
Method: 6020/DOD - Metals (IC Analyte	P/MS) - Total Recov	verable Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	
Method: 6020/DOD - Metals (IC Analyte Aluminum	P/MS) - Total Recovered Result	verable Qualifier	LOQ 60	LOD 60	DL 20	Unit ug/L	D	Analyzed 09/09/13 18:10	
Method: 6020/DOD - Metals (IC Analyte Aluminum Antimony	P/MS) - Total Recover Result 60 1.0	verable Qualifier U U U Q	60 2.0	60 1.0	DL 20 0.33	Unit ug/L ug/L ug/L	D	Analyzed 09/09/13 18:10 09/09/13 18:10	
Method: 6020/DOD - Metals (IC Analyte Aluminum Antimony Beryllium	P/MS) - Total Recover Result 60 1.0 1.0	verable Qualifier U U U U U U U	60 2.0 1.0	60 1.0 1.0	DL 20 0.33 0.50	Unit ug/L ug/L ug/L	D	Analyzed 09/09/13 18:10 09/09/13 18:10 09/09/13 18:10	
Method: 6020/DOD - Metals (IC Analyte Aluminum Antimony Beryllium Cadmium	P/MS) - Total Recov Result 60 1.0 1.0	verable Qualifier U U U U U U U	60 2.0 1.0 2.0	60 1.0 1.0 1.0	20 0.33 0.50 0.40	Unit ug/L ug/L ug/L	D	Analyzed 09/09/13 18:10 09/09/13 18:10 09/09/13 18:10 09/09/13 18:10	
Method: 6020/DOD - Metals (IC Analyte Aluminum Antimony Beryllium Cadmium	P/MS) - Total Recov Result 60 1.0 1.0 1.0	Verable Qualifier U U U U U U U	60 2.0 1.0 2.0 150	60 1.0 1.0 1.0 1.0	DL 20 0.33 0.50 0.40 44	Unit ug/L ug/L ug/L ug/L ug/L	D	Analyzed 09/09/13 18:10 09/09/13 18:10 09/09/13 18:10 09/09/13 18:10	Dil Fac
Method: 6020/DOD - Metals (IC Analyte Aluminum Antimony Beryllium Cadmium Iron Sodium	P/MS) - Total Recov Result 60 1.0 1.0 1.0 100 8600	Verable Qualifier U U U Q U U U	LOQ 60 2.0 1.0 2.0 150 1000	60 1.0 1.0 1.0 1.0 400	DL 20 0.33 0.50 0.40 44 160	Unit ug/L ug/L ug/L ug/L ug/L ug/L	D	Analyzed 09/09/13 18:10 09/09/13 18:10 09/09/13 18:10 09/09/13 18:10 09/09/13 18:10	Dil Fac
Method: 6020/DOD - Metals (IC Analyte Aluminum Antimony Beryllium Cadmium Iron Sodium Thallium	P/MS) - Total Recover Result 60 1.0 1.0 1.0 1.0 1.0 1.5 50	Verable Qualifier U U U Q U U U	LOQ 60 2.0 1.0 2.0 150 1000 2.0	60 1.0 1.0 1.0 1.0 400 1.5	DL 20 0.33 0.50 0.40 44 160 0.79	Unit ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	D	Analyzed 09/09/13 18:10 09/09/13 18:10 09/09/13 18:10 09/09/13 18:10 09/09/13 18:10 09/09/13 18:10	

Client: Environmental Quality Mgt., Inc.

Client Sample ID: FWGLL1mw-064C-0352-GW

Project/Site: RVAAP66 (OH)

TestAmerica Job ID: 240-28145-1

Lab Sample ID: 240-28145-48

Matrix: Water

Date Collected: 08/20/13 16:04 Date Received: 08/21/13 07:00

Analyte	atile Organic Compo	Qualifier	LOQ	LOD	DI	Unit	D Analyzed	Dil Fac
Bis(2-ethylhexyl) phthalate	0.61		2.0	0.50	0.22	ug/L	08/31/13 18:13	1
Butyl benzyl phthalate	0.50		2.0	0.50	0.26	ug/L	08/31/13 18:13	1
Diethyl phthalate	0.99		2.0	0.99		ug/L	08/31/13 18:13	4
Dimethyl phthalate	0.50		2.0	0.50	0.29	ug/L	08/31/13 18:13	1
Di-n-butyl phthalate	0.91		2.0	0.99	0.66	ug/L	08/31/13 18:13	1
Di-n-octyl phthalate	0.50		2.0	0.50	0.23	-	08/31/13 18:13	1
Surrogate	%Recovery Qu	ıəlifier	Limits			Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl (Surr)	66	anner.	50 - 110			08/22/13 08::		1
2-Fluorophenol (Surr)	69		20 - 110			08/22/13 08:		1
Nitrobenzene-d5 (Surr)	71		40 - 110			08/22/13 08:		1
Phenol-d5 (Surr)	75		10 - 115			08/22/13 08:1		1
Terphenyl-d14 (Surr)	85		50 - 135			08/22/13 08:		1
2,4,6-Tribromophenol (Surr)	85		40 - 125			08/22/13 08:		1
		- 40						
Method: 8081/DOD - Organoci Analyte		Qualifier	LOQ	LOD	DL	Unit	D Analyzed	Dil Fac
I,4'-DDD	0.020		0.050	0.020	0.0095	ug/L	08/29/13 23:31	1
,4'-DDE	0.020		0.050	0.020		ug/L	08/29/13 23:31	1
4'-DDT	0.020		0.050	0.020	0.016	ug/L	08/29/13 23:31	1
ldrin	0.020		0.030	0.020	0.0081	ug/L	08/29/13 23:31	1
lpha-BHC	0.020		0.030	0.020	0.0069	ug/L	08/29/13 23:31	1
lpha-Chlordane	0.020		0.050	0.020	0.014		08/29/13 23:31	1
eta-BHC	0.020		0.050	0.020	0.0083		08/29/13 23:31	1
lelta-BHC	0.020		0.050	0.020	0.0086	ug/L	08/29/13 23:31	1
Dieldrin	0.020		0.030	0.020	0.0074	ug/L	08/29/13 23:31	1
Endosulfan I	0.020		0.050	0.020	0.013		08/29/13 23:31	1
Endosulfan II	0.020		0.050	0.020	0.013	7	08/29/13 23:31	1
Endosulfan sulfate	0.020		0.050	0.020	0.011	1.	08/29/13 23:31	1
Endrin	0.020		0.050	0.020	0.011		08/29/13 23:31	1
Endrin aldehyde	0.020		0.050	0.020	0.011		08/29/13 23:31	1
Endrin ketone	0.020		0.050	0.020	0.0077		08/29/13 23:31	1
amma-BHC (Lindane)	0.020		0.050	0.020			08/29/13 23:31	1
					0.0063	ug/L		1
amma-Chlordane	0.020		0.050	0.020	0.012		08/29/13 23:31	
leptachlor			0.030	0.020	0.0079	the Committee of the Co	08/29/13 23:31	1
deptachlor epoxide	0.020		0.030	0.020	0.0070		08/29/13 23:31	1
Methoxychlor Foxaphene	0.050		0.099	0.050	0.032		08/29/13 23:31 08/29/13 23:31	1
oxapitetto	0.75		2.0	0.70	0.02	ug/L	00/23/10 23.01	
Surrogate	%Recovery Qu	ıalifier	Limits			Prepared	Analyzed	Dil Fac
DCB Decachlorobiphenyl	56		30 _ 135			08/23/13 09:0		1
OCB Decachlorobiphenyl	54		30 - 135			08/23/13 09:0		1
Fetrachloro-m-xylene	68		25 - 140			08/23/13 09:0		7
Tetrachloro-m-xylene	68		25 - 140			08/23/13 09:0	00 08/29/13 23:31	7
Method: 8330 Modified - Nitro	guanidine (HPLC)							
Analyte		Qualifier	LOQ	LOD	DL	Unit	D Analyzed	Dil Fac
Nitroguanidine	6.0	11:	20	6.0	2.4	ug/L	08/29/13 20:16	1

Client: Environmental Quality Mgt., Inc.

Project/Site: RVAAP66 (OH)

TestAmerica Job ID: 240-28145-1

Lab Sample ID: 240-28145-48

Matrix: Water

Client Sample ID: FWGLL1mw-064C-0352-GW

Date Collected: 08/20/13 16:04 Date Received: 08/21/13 07:00

Analyte	Result	Qualifier	LOQ	LOD	DL	Unit D	Analyzed	Dil Fac
1,3,5-Trinitrobenzene	0.057	U	0.17	0.057	0.036	ug/L	08/29/13 12:25	1
1,3-Dinitrobenzene	0.11	U	0.17	0.11	0.057	ug/L	08/29/13 12:25	1
2,4,6-Trinitrotoluene	0.11	U	0.17	0.11	0.057	ug/L	08/29/13 12:25	1
2,4-Dinitrotoluene	0.11	U	0.15	0.11	0.057	ug/L	08/29/13 12:25	1
2,6-Dinitrotoluene	0.11	U	0.15	0.11	0.057	ug/L	08/29/13 12:25	1
2-Amino-4,6-dinitrotoluene	0.11	U	0.17	0.11	0.017	ug/L	08/29/13 12:25	1
2-Nitrotoluene	0.11	U	0.57	0.11	0.10	ug/L	08/29/13 12:25	1
3-Nitrotoluene	0.11	U	0.57	0.11	0.065	ug/L	08/29/13 12:25	1
4-Nitrotoluene	0.11	U	0.57	0.11	0.10	ug/L	08/29/13 12:25	1
4-Amino-2,6-dinitrotoluene	0.11	U	0.17	0.11	0.057	ug/L	08/29/13 12:25	1
HMX	0.057	U	0.17	0.057	0.041	ug/L	08/29/13 12:25	1
RDX	0.057	U	0.17	0.057	0.041	ug/L	08/29/13 12:25	1
Nitrobenzene	0.11	U	0.17	0.11	0.057	ug/L	08/29/13 12:25	1
Tetryl	0.11	U	0.17	0.11	0.057	ug/L	08/29/13 12:25	1
Nitroglycerin	0.57	UM	0.74	0.57	0.38	ug/L	08/29/13 12:25	1
PETN	0.57	U	0.74	0.57	0.34	ug/L	08/29/13 12:25	- 1
Surrogate	%Recovery Qu	ıalifier	Limits			Prepared	Analyzed	Dil Fac
3,4-Dinitrotoluene	120 M	Q	79 - 111			08/26/13 09:34	08/29/13 12:25	1

General Chemistry									
Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
Nitrocellulose	1.0	U	2.0	1.0	0.48	mg/L		09/05/13 14:34	1

Client: Environmental Quality Mgt., Inc.

Project/Site: RVAAP66 (OH)

TestAmerica Job ID: 240-28145-1

Lab Sample ID: 240-28145-49

Matrix: Water

Client Sample ID: FWGLL1mw-064C-0352-GF

Date Collected: 08/20/13 16:04 Date Received: 08/21/13 07:00

Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
Arsenic	10	Ü	10	10	3.3	ug/L		09/09/13 14:02	1
Chromium	4.0	U	7.0	4.0	1.4	ug/L		09/09/13 14:02	1
Cobalt	4.0	U	7.0	4.0	1.5	ug/L		09/09/13 14:02	1
Lead	5.0	U	10	5.0	1.7	ug/L		09/09/13 14:02	1
Selenium	10	U	15	10	4.0	ug/L		09/09/13 14:02	1
Silver	5.0	U	7.0	5.0	1.7	ug/L		09/09/13 14:02	1
Vanadium	4.0	U	7.0	4.0	1.3	ug/L		09/09/13 14:02	1
Barium	53	J	200	5.0	2.8	ug/L		09/09/13 14:02	1
Calcium	58000		5000	1000	630	ug/L		09/09/13 14:02	1
Copper	10	U	25	10	4.4	ug/L		09/09/13 14:02	1
Magnesium	10000		5000	300	120	ug/L		09/09/13 14:02	1
Manganese	130		15	5.0	1.8	ug/L		09/09/13 14:02	1
Nickel	5.0	U	40	5.0	2.2	ug/L		09/09/13 14:02	- 1
	1.710								
Potassium	740		5000	900	300	ug/L		09/09/13 14:02	1
	740	J		900	300	ug/L		09/09/13 14:02	1
Potassium	740 CP/MS) - Total Recov	J		900 LOD		ug/L Unit	D	09/09/13 14:02 Analyzed	Dil Fac
Potassium Method: 6020/DOD - Metals (IO	740 CP/MS) - Total Recov	J verable	5000				D		
Potassium Method: 6020/DOD - Metals (IC Analyte	740 CP/MS) - Total Recov Result	verable Qualifier	5000 LOQ	LOD	DL	Unit	D	Analyzed	
Potassium Method: 6020/DOD - Metals (IC Analyte Aluminum	740 CP/MS) - Total Recover Result 60 1.0	verable Qualifier	5000 LOQ 60	LOD 60	DL 20	Unit ug/L	D	Analyzed 09/09/13 18:17	
Potassium Method: 6020/DOD - Metals (IO Analyte Aluminum Antimony	740 CP/MS) - Total Recover Result 60 1.0	Verable Qualifier U U U Q	5000 LOQ 60 2.0	60 1.0	DL 20 0.33	Unit ug/L ug/L ug/L	D	Analyzed 09/09/13 18:17 09/09/13 18:17	
Potassium Method: 6020/DOD - Metals (IOAnalyte Aluminum Antimony Beryllium	740 CP/MS) - Total Recov Result 60 1.0	Verable Qualifier U U U Q	5000 LOQ 60 2.0 1.0	60 1.0	DL 20 0.33 0.50	Unit ug/L ug/L ug/L	D	Analyzed 09/09/13 18:17 09/09/13 18:17	
Potassium Method: 6020/DOD - Metals (ICAnalyte Aluminum Antimony Beryllium Cadmium	740 CP/MS) - Total Recov Result 60 1.0 1.0	Verable Qualifier U U U Q	5000 LOQ 60 2.0 1.0 2.0	60 1.0 1.0 1.0	DL 20 0.33 0.50 0.40	Unit ug/L ug/L ug/L	D	Analyzed 09/09/13 18:17 09/09/13 18:17 09/09/13 18:17	
Potassium Method: 6020/DOD - Metals (ICAnalyte Aluminum Antimony Beryllium Cadmium Iron	740 CP/MS) - Total Recov Result 60 1.0 1.0 1.0 580	verable Qualifier U U U U U U	5000 LOQ 60 2.0 1.0 2.0 150	60 1.0 1.0 1.0 1.0	DL 20 0.33 0.50 0.40 44	Unit ug/L ug/L ug/L ug/L ug/L	<u>D</u>	Analyzed 09/09/13 18:17 09/09/13 18:17 09/09/13 18:17 09/09/13 18:17	
Potassium Method: 6020/DOD - Metals (ICAnalyte Aluminum Antimony Beryllium Cadmium Iron Sodium	740 CP/MS) - Total Recov Result 60 1.0 1.0 1.0 580 5500	yerable Qualifier U U U U U U	5000 LOQ 60 2.0 1.0 2.0 150 1000	60 1.0 1.0 1.0 1.0 400	DL 20 0.33 0.50 0.40 44 160	Unit ug/L ug/L ug/L ug/L ug/L ug/L	D	Analyzed 09/09/13 18:17 09/09/13 18:17 09/09/13 18:17 09/09/13 18:17 09/09/13 18:17	Dil Fac
Potassium Method: 6020/DOD - Metals (ICAnalyte Aluminum Antimony Beryllium Cadmium Iron Sodium Thallium	740 CP/MS) - Total Recover Result 60 1.0 1.0 580 5500 1.5	yerable Qualifier U U U U U U	5000 LOQ 60 2.0 1.0 2.0 150 1000 2.0	60 1.0 1.0 1.0 1.0 400 1.5	DL 20 0.33 0.50 0.40 44 160 0.79	Unit ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	D	Analyzed 09/09/13 18:17 09/09/13 18:17 09/09/13 18:17 09/09/13 18:17 09/09/13 18:17 09/09/13 18:17	

Client: Environmental Quality Mgt., Inc.

Project/Site: RVAAP66 (OH)

TestAmerica Job ID: 240-28145-1

Lab Sample ID: 240-28145-50

Matrix: Water

Client Sample ID: FWGTEAM4-TRIP

Date Collected: 08/19/13 11:00 Date Received: 08/21/13 07:00

Method: 8260B/DoD - Volatile Organic Compounds (GC/MS) Result Qualifier LOQ LOD DL Unit D Analyzed Dil Fac 0.25 U 0.25 1,1,1-Trichloroethane 1.0 0.22 ug/L 08/29/13 21:45 1,1,2,2-Tetrachloroethane 0.25 U 1.0 0.25 0.18 ug/L 08/29/13 21:45 1,1,2-Trichloroethane 0.50 1.0 0.50 0.27 ug/L 08/29/13 21:45 0.25 U 1.0 1,1-Dichloroethane 0.25 0.15 ug/L 08/29/13 21:45 1,1-Dichloroethene 0.25 U 1.0 0.25 0.19 ug/L 08/29/13 21:45 1.2-Dichloroethane 0.25 U 1.0 0.25 0.22 08/29/13 21:45 ug/L 1,2-Dichloroethene, Total 0.25 U 2.0 0.25 ug/L 08/29/13 21:45 0.25 U 0.25 ug/L 1,2-Dichloropropane 1.0 08/29/13 21:45 1 0.18 2-Hexanone 0.50 U 10 0.50 0.41 ug/L 08/29/13 21:45 Bromochloromethane 0.50 U 1.0 0.50 0.29 ug/L 08/29/13 21:45 Acetone 1.1 U 10 1.1 1.1 ug/L 08/29/13 21:45 Benzene 0.25 U 1.0 0.25 0.13 ug/L 08/29/13 21:45 0.64 U 0.64 ug/L Bromoform 1.0 0.64 08/29/13 21:45 Bromomethane 0.50 U 1.0 0.50 0.41 ug/L 08/29/13 21:45 Carbon disulfide 0.25 U 0.25 1.0 0.13 ug/L 08/29/13 21:45 0.25 Carbon tetrachloride 0.25 U 1.0 0.13 ug/L 08/29/13 21:45 Chlorobenzene 0.25 11 1.0 0.25 ug/L 08/29/13 21:45 0.15 Chloroethane 0.50 U 1.0 0.50 08/29/13 21:45 0.29 ug/L 0.25 U Chloroform 1.0 0.25 0.16 ug/L 08/29/13 21:45 Chloromethane 0.50 U 1.0 0.50 0.30 08/29/13 21:45 ug/L 0.25 cis-1,2-Dichloroethene 0.25 U 1.0 ug/L 08/29/13 21:45 0.17 cis-1,3-Dichloropropene 0.25 U 1.0 0.25 ug/L 08/29/13 21:45 0.25 U 1.0 0.25 0.15 08/29/13 21:45 Bromodichloromethane ug/L Ethylbenzene 0.25 U 1.0 0.25 0.17 ug/L 08/29/13 21:45 1,2-Dibromoethane 0.25 U 1.0 0.25 0.24 08/29/13 21:45 ua/L m-Xylene & p-Xylene 0.50 U 2.0 0.50 0.24 ug/L 08/29/13 21:45 2-Butanone (MEK) 0.57 U 10 0.57 0.57 ug/L 08/29/13 21:45 0.50 U 0.50 4-Methyl-2-pentanone (MIBK) 10 0.32 ug/L 08/29/13 21:45 1.0 0.50 08/29/13 21:45 Methylene Chloride 0.52 J 0.33 ug/L 0.25 U 1.0 0.25 o-Xylene 0.14 ug/L 08/29/13 21:45 Styrene 0.25 U 1.0 0.25 0.11 ug/L 08/29/13 21:45 0.50 U 10 0.50 Tetrachloroethene 0.29 ug/L 08/29/13 21:45 0.25 U 1.0 0.25 0:13 ug/L 08/29/13 21:45 trans-1,2-Dichloroethene 0.25 U 1.0 0.25 0.19 ug/L 08/29/13 21:45 trans-1,3-Dichloropropene 0.25 U 1.0 0.25 0.19 ug/L 08/29/13 21:45 Trichloroethene 0.25 U 1.0 0.25 08/29/13 21:45 0.17 ug/L Vinyl chloride 0.25 U 1.0 0.25 0.22 ug/L 08/29/13 21:45 Xylenes, Total 0.25 U 2.0 0.25 0.14 ug/L 08/29/13 21:45 1 Dibromochloromethane 0.25 U 0.25 08/29/13 21:45 1.0 0.18 ug/L

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	94		70 - 120		08/29/13 21:45	1
4-Bromofluorobenzene (Surr)	88		75 - 120		08/29/13 21:45	1
Toluene-d8 (Surr)	92		85 - 120		08/29/13 21:45	1
Dibromofluoromethane (Surr)	92		85 - 115		08/29/13 21:45	1

Client: Environmental Quality Mgt., Inc.

Client Sample ID: FWGRQLmw-007C-0369-GW

Project/Site: RVAAP66 (OH)

TestAmerica Job ID: 240-28145-1

Lab Sample ID: 240-28145-51

Matrix: Water

Date Collected: 08/19/13 13:24 Date Received: 08/21/13 07:00

Analyte	120-2-07	Qualifier	LOQ	LOD	DL	Unit	D Analyzed	Dil Fac
1,1,1-Trichloroethane	0.25	U	1.0	0.25	0.22	ug/L	08/29/13 22:09	1
1,1,2,2-Tetrachloroethane	0.25	U	1.0	0.25	0.18	ug/L	08/29/13 22:09	1
1,1,2-Trichloroethane	0.50	U	1.0	0.50	0.27	ug/L	08/29/13 22:09	1
1,1-Dichloroethane	0.25	U	1.0	0.25	0.15	ug/L	08/29/13 22:09	1
1,1-Dichloroethene	0.25	U	1.0	0.25	0.19	ug/L	08/29/13 22:09	1
1,2-Dichloroethane	0.25	U	1.0	0.25	0.22	ug/L	08/29/13 22:09	1
1,2-Dichloroethene, Total	0.18	J	2.0	0.25	0.17	ug/L	08/29/13 22:09	1
1,2-Dichloropropane	0.25	U	1.0	0.25	0.18	ug/L	08/29/13 22:09	1
2-Hexanone	0.50	U	10	0.50	0.41	ug/L	08/29/13 22:09	1
Bromochloromethane	0.50	U	1.0	0.50	0.29	ug/L	08/29/13 22:09	1
Acetone	1.2	J	10	1.1	1.1	ug/L	08/29/13 22:09	1
Benzene	0.25	U	1.0	0.25	0.13	ug/L	08/29/13 22:09	1
Bromoform	0.64	U	1.0	0.64	0.64	ug/L	08/29/13 22:09	1
Bromomethane	0.50	U	1.0	0.50	0.41	ug/L	08/29/13 22:09	1
Carbon disulfide	0.25	U	1.0	0.25	0.13	ug/L	08/29/13 22:09	1
Carbon tetrachloride	0.25	U	1.0	0.25	0.13	ug/L	08/29/13 22:09	1
Chlorobenzene	0.25	U	1.0	0.25	0.15	ug/L	08/29/13 22:09	1
Chloroethane	0.50	U	1.0	0.50	0.29	ug/L	08/29/13 22:09	1
Chloroform	0.25	U	1.0	0.25	0.16	ug/L	08/29/13 22:09	1
Chloromethane	0.50	U	1.0	0.50	0.30	ug/L	08/29/13 22:09	1
cis-1,2-Dichloroethene	0.18	J	1.0	0.25	0.17	ug/L	08/29/13 22:09	1
cis-1,3-Dichloropropene	0.25	U	1.0	0.25	0.14	ug/L	08/29/13 22:09	1
Bromodichloromethane	0.25	U	1.0	0.25	0.15	ug/L	08/29/13 22:09	1
Ethylbenzene	0.25	U	1.0	0.25	0.17	ug/L	08/29/13 22:09	1
1,2-Dibromoethane	0.25	U	1.0	0.25	0.24	ug/L	08/29/13 22:09	1
m-Xylene & p-Xylene	0.50	U	2.0	0.50	0.24	ug/L	08/29/13 22:09	1
2-Butanone (MEK)	0.57	U	10	0.57	0.57	ug/L	08/29/13 22:09	1
4-Methyl-2-pentanone (MIBK)	0.50	U	10	0.50	0.32	ug/L	08/29/13 22:09	1
Methylene Chloride	0.50	U	1.0	0.50	0.33	ug/L	08/29/13 22:09	1
o-Xylene	0.25	U	1.0	0.25	0.14	ug/L	08/29/13 22:09	1
Styrene	0.25	U	1.0	0.25	0.11	ug/L	08/29/13 22:09	- 1
Tetrachloroethene	0.50	U	1.0	0.50	0.29	ug/L	08/29/13 22:09	1
Toluene	0.25	U	1.0	0.25	0.13	ug/L	08/29/13 22:09	1
trans-1,2-Dichloroethene	0.25	U	1.0	0.25	0.19	ug/L	08/29/13 22:09	1
trans-1,3-Dichloropropene	0.25	U	1.0	0.25	0.19	ug/L	08/29/13 22:09	1
Trichloroethene	0.25	U	1.0	0.25	0.17		08/29/13 22:09	1
Vinyl chloride	0.25	U	1.0	0.25	0.22	ug/L	08/29/13 22:09	1
Xylenes, Total	0.25	U	2.0	0.25	0.14		08/29/13 22:09	1
Dibromochloromethane	0.25	U	1.0	0.25	0.18	ug/L	08/29/13 22:09	1
Surrogate	%Recovery Qu	ualifier L	imits			Prepared	Analyzed	Dil Fac

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	94		70 - 120		08/29/13 22:09	1
4-Bromofluorobenzene (Surr)	83		75 - 120		08/29/13 22:09	1
Toluene-d8 (Surr)	96		85 - 120		08/29/13 22:09	1
Dibromofluoromethane (Surr)	91		85 - 115		08/29/13 22:09	1

Method: 8270C/DoD -	Semivolatile Organic	Compounds	(GC/MS)
Michiga, 02/00/000	Semily Glatific Organic	Compounds	(GC/IVIS)

Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
Acenaphthene	0.096	U	0.19	0.096	0.043	ug/L		09/04/13 11:38	1
Acenaphthylene	0.096	U	0.19	0.096	0.046	ug/L		09/04/13 11:38	31

Client: Environmental Quality Mgt., Inc.

Client Sample ID: FWGRQLmw-007C-0369-GW

Project/Site: RVAAP66 (OH)

TestAmerica Job ID: 240-28145-1

Lab Sample ID: 240-28145-51

Matrix: Water

Date Collected: 08/19/13 13:24 Date Received: 08/21/13 07:00

Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fa
Anthracene	0.096	U	0.19	0.096	0.085	ug/L		09/04/13 11:38	
Benzo[a]anthracene	0.096	U	0.19	0.096	0.028	ug/L		09/04/13 11:38	
Benzo[a]pyrene	0.096	U	0.19	0.096	0.049	ug/L		09/04/13 11:38	
Benzo[b]fluoranthene	0.096	U	0.19	0.096	0.038	ug/L		09/04/13 11:38	
Benzo[g,h,i]perylene	0.096	U	0.19	0.096	0.045	ug/L		09/04/13 11:38	
Benzoic acid	19	U	24	19	9.6	ug/L		09/04/13 11:38	
Benzo[k]fluoranthene	0.096	U	0.19	0.096	0.043	ug/L		09/04/13 11:38	
Benzyl alcohol	0.48	U	4.8	0.48	0.37	ug/L		09/04/13 11:38	
3is(2-chloroethoxy)methane	0.48	U	0.96	0.48	0.31	ug/L		09/04/13 11:38	
Bis(2-chloroethyl)ether	0.096	U	0.96	0.096	0.096	ug/L		09/04/13 11:38	
Bis(2-ethylhexyl) phthalate	0.46	J	1.9	0.48	0.21	ug/L		09/04/13 11:38	
-Bromophenyl phenyl ether	0.48	U	1.9	0.48	0.21	ug/L		09/04/13 11:38	
Butyl benzyl phthalate	0.48	U	1.9	0.48	0.25	ug/L		09/04/13 11:38	
Carbazole	0.48	U	0.96	0.48	0.27	ug/L		09/04/13 11:38	
1-Chloroaniline	0.48	U	1.9	0.48	0.20	ug/L		09/04/13 11:38	
1-Chloro-3-methylphenol	0.48	U	1.9	0.48	0.20	ug/L		09/04/13 11:38	
2-Chloronaphthalene	0.48	U	0.96	0.48	0.096	ug/L		09/04/13 11:38	
2-Chlorophenol	0.48	U	0.96	0.48	0.28	ug/L		09/04/13 11:38	
-Chlorophenyl phenyl ether	0.48	U	1.9	0.48	0.29	ug/L		09/04/13 11:38	
Chrysene	0.096	U	0.19	0.096	0.048	ug/L		09/04/13 11:38	
Dibenz(a,h)anthracene	0.096	U	0.19	0.096	0.043	ug/L		09/04/13 11:38	
Dibenzofuran	0.096	U	0.96	0.096	0.019	ug/L		09/04/13 11:38	
,2-Dichlorobenzene	0.48	U	0.96	0.48	0.28	ug/L		09/04/13 11:38	
,3-Dichlorobenzene	0.48	U	0.96	0.48	0.22	ug/L		09/04/13 11:38	
,4-Dichlorobenzene	0.48	U	0.96	0.48	0.33	ug/L		09/04/13 11:38	
,3'-Dichlorobenzidine	0.96	U	4.8	0.96		ug/L		09/04/13 11:38	
,4-Dichlorophenol	0.48	U	1.9	0.48	0.18	ug/L		09/04/13 11:38	
Diethyl phthalate	0.96	U	1.9	0.96		ug/L		09/04/13 11:38	
,4-Dimethylphenol	0.48	U	1.9	0.48		ug/L		09/04/13 11:38	
Dimethyl phthalate	0.48	U	1.9	0.48	0.28	ug/L		09/04/13 11:38	
Di-n-butyl phthalate	0.78	J	1.9	0.96	0.64	ug/L		09/04/13 11:38	
,6-Dinitro-2-methylphenol	3.8	U	4.8	3.8	2.3	ug/L		09/04/13 11:38	
4-Dinitrophenol	0.96	u	4.8	0.96		ug/L		09/04/13 11:38	
Di-n-octyl phthalate	0.48	U	1.9	0.48	0.22	ug/L		09/04/13 11:38	
fluoranthene	0.096	U	0.19	0.096	0.043	ug/L		09/04/13 11:38	
luorene	0.096	U	0.19	0.096	0.039			09/04/13 11:38	
Hexachlorobenzene	0.096		0.19	0.096	0.082			09/04/13 11:38	
Hexachlorobutadiene	0.48	U	0.96	0.48	0.26	ug/L		09/04/13 11:38	
dexachlorocyclopentadiene	0.48	U	9.6	0.48		ug/L		09/04/13 11:38	
lexachloroethane	0.48	U	0.96	0.48		ug/L		09/04/13 11:38	
ndeno[1,2,3-cd]pyrene	0.096	U	0.19	0.096	0.042			09/04/13 11:38	
sophorone	0.48	U	0.96	0.48	0.26	ug/L		09/04/13 11:38	
2-Methylnaphthalene	0.096		0.19	0.096	0.087	777		09/04/13 11:38	
2-Methylphenol	0.48		0.96	0.48		ug/L		09/04/13 11:38	
8 & 4 Methylphenol	0.96		1.9	0.96		ug/L		09/04/13 11:38	
Naphthalene	0.096		0.19	0.096	0.060			09/04/13 11:38	
-Nitroaniline	0.48		1.9	0.48		ug/L		09/04/13 11:38	
3-Nitroaniline	0.48		1.9	0.48		ug/L		09/04/13 11:38	
1-Nitroaniline	0.48		1.9	0.48		ug/L		09/04/13 11:38	

Client: Environmental Quality Mgt., Inc.

Project/Site: RVAAP66 (OH)

TestAmerica Job ID: 240-28145-1

Lab Sample ID: 240-28145-51

Matrix: Water

Client Sample ID: FWGRQLmw-007C-0369-GW Date Collected: 08/19/13 13:24

Date Received: 08/21/13 07:00

Analyte	Resu	lt Qualifier	LOQ	LOD	DL	Unit D	Analyzed	Dil Fac
2-Nitrophenol	0.4	8 U	1.9	0.48	0.27	ug/L	09/04/13 11:38	1
4-Nitrophenol	3.	8 U	4.8	3.8	0.28	ug/L	09/04/13 11:38	1
N-Nitrosodi-n-propylamine	0.4	8 U	0.96	0.48	0.23	ug/L	09/04/13 11:38	1
N-Nitrosodiphenylamine	0.4	8 U	0.96	0.48	0.30	ug/L	09/04/13 11:38	1
2,2'-oxybis[1-chloropropane]	0.4	8 U	0.96	0.48	0.38	ug/L	09/04/13 11:38	1
Pentachlorophenol	0.9	6 U	4.8	0.96	0.26	ug/L	09/04/13 11:38	1
Phenanthrene	0.09	6 U	0.19	0.096	0.060	ug/L	09/04/13 11:38	1
Phenol	0.9	6 U	0.96	0.96	0.58	ug/L	09/04/13 11:38	1
Pyrene	0.09	6 U	0.19	0.096	0.040	ug/L	09/04/13 11:38	1
1,2,4-Trichlorobenzene	0.4	8 U	0.96	0.48	0.27	ug/L	09/04/13 11:38	1
2,4,5-Trichlorophenol	0.4	8 U	4.8	0.48	0.29	ug/L	09/04/13 11:38	1
2,4,6-Trichlorophenol	0.4	8 U	4.8	0.48	0.23	ug/L	09/04/13 11:38	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl (Surr)	70		50 - 110			08/22/13 08:06	09/04/13 11:38	1
2-Fluorophenol (Surr)	65		20 - 110			08/22/13 08:06	09/04/13 11:38	1
Nitrobenzene-d5 (Surr)	75		40 - 110			08/22/13 08:06	09/04/13 11:38	1
Phenol-d5 (Surr)	71		10 - 115			08/22/13 08:06	09/04/13 11:38	1
Terphenyl-d14 (Surr)	92		50 - 135			08/22/13 08:06	09/04/13 11:38	1
2,4,6-Tribromophenol (Surr)	101		40 - 125			08/22/13 08:06	09/04/13 11:38	1

Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
4,4'-DDD	0.019	U	0.048	0.019	0.0091	ug/L		09/11/13 16:56	1
4,4'-DDE	0.019	U	0.048	0.019	0.0092	ug/L		09/11/13 16:56	- 1
4,4'-DDT	0.019	U	0.048	0.019	0.015	ug/L		09/11/13 16:56	- 1
Aldrin	0.019	U	0.029	0.019	0.0078	ug/L		09/11/13 16:56	1
alpha-BHC	0.019	U	0.029	0.019	0.0067	ug/L		09/11/13 16:56	1
alpha-Chlordane	0.019	U	0.048	0.019	0.013	ug/L		09/11/13 16:56	1
beta-BHC	0.019	U	0.048	0.019	0.0080	ug/L		09/11/13 16:56	1
delta-BHC	0.019	U	0.048	0.019	0.0083	ug/L		09/11/13 16:56	1
Dieldrin	0.019	U	0.029	0.019	0.0071	ug/L		09/11/13 16:56	1
Endosulfan I	0.019	U	0.048	0.019	0.012	ug/L		09/11/13 16:56	1
Endosulfan II	0.019	U	0.048	0.019	0.011	ug/L		09/11/13 16:56	-1
Endosulfan sulfate	0.019	U	0.048	0.019	0.010	ug/L		09/11/13 16:56	1
Endrin	0.019	U	0.048	0.019	0.010	ug/L		09/11/13 16:56	1
Endrin aldehyde	0.019	U	0.048	0.019	0.010	ug/L		09/11/13 16:56	1
Endrin ketone	0.019	U	0.048	0.019	0.0074	ug/L		09/11/13 16:56	1
gamma-BHC (Lindane)	0.019	U	0.048	0.019	0.0061	ug/L		09/11/13 16:56	9
gamma-Chlordane	0.019	U	0.048	0.019	0.011	ug/L		09/11/13 16:56	1
Heptachlor	0.019	U	0.029	0.019	0.0076	ug/L		09/11/13 16:56	1
Heptachlor epoxide	0.019	U	0.029	0.019	0,0068	ug/L		09/11/13 16:56	1
Methoxychlor	0.048	U	0.095	0.048	0.030	ug/L		09/11/13 16:56	3
Toxaphene	0.76	U	1.9	0.76	0.30	ug/L		09/11/13 16:56	1
20000	0.2220.000.00		272					2.4.332	52.627

%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
62		30 - 135	08/22/13 07:53	09/11/13 16:56	1
62	M	30 - 135	08/22/13 07:53	09/11/13 16:56	7
80		25 - 140	08/22/13 07:53	09/11/13 16:56	7
95		25 - 140	08/22/13 07:53	09/11/13 16:56	1
	62 62 80	133	62 30 - 135 62 M 30 - 135 80 25 - 140	62 30 - 135 08/22/13 07:53 62 M 30 - 135 08/22/13 07:53 80 25 - 140 08/22/13 07:53	62 30 - 135 08/22/13 07:53 09/11/13 16:56 62 M 30 - 135 08/22/13 07:53 09/11/13 16:56 80 25 - 140 08/22/13 07:53 09/11/13 16:56

TestAmerica Canton

Page 117 of 235

Client: Environmental Quality Mgt., Inc.

Project/Site: RVAAP66 (OH)

TestAmerica Job ID: 240-28145-1

Lab Sample ID: 240-28145-51

Matrix: Water

Client Sample ID: FWGRQLmw-007C-0369-GW

Date Collected: 08/19/13 13:24 Date Received: 08/21/13 07:00

Analyte	Rest	ılt Qualifier	LOQ	LOD	DL	Unit D	Analyzed	Dil Fac
Aroclor-1016	0.1	9 UHQ	0.48	0.19	0.16	ug/L	09/04/13 13:15	1
Aroclor-1221	0.1	19 U H	0.48	0.19	0.13	ug/L	09/04/13 13:15	1
Aroclor-1232	0.1	19 UH	0.48	0.19	0.15	ug/L	09/04/13 13:15	1
Aroclor-1242	0.3	88 UH	0.48	0.38	0.21	ug/L	09/04/13 13:15	1
Aroclor-1248	0.	19 UH	0.48	0.19	0.096	ug/L	09/04/13 13:15	1
Aroclor-1254	0.1	19 UH	0.48	0.19	0.15	ug/L	09/04/13 13:15	1
Aroclor-1260	0.1	19 UHQ	0.48	0.19	0.16	ug/L	09/04/13 13:15	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	68		40 - 140			08/30/13 08:32	09/04/13 13:15	1
Tetrachloro-m-xylene	76		40 - 140			08/30/13 08:32	09/04/13 13:15	1

intecovery duminer	Limito	ricparca	rinaryzeu	Dil I de
68	40 - 140	08/30/13 08:32	09/04/13 13:15	1
76	40 - 140	08/30/13 08:32	09/04/13 13:15	1
40	40 - 135	08/30/13 08:32	09/04/13 13:15	1
39 Q	40 - 135	08/30/13 08:32	09/04/13 13:15	1
39 Q	40 - 135	08/30/13 08:32	09/04/13 13:15	
	68 76 40	68 40 _ 140 76 40 _ 140 40 40 _ 135	68 40 - 140 08/30/13 08:32 76 40 - 140 08/30/13 08:32 40 40 - 135 08/30/13 08:32	68 40 - 140 08/30/13 08:32 09/04/13 13:15 76 40 - 140 08/30/13 08:32 09/04/13 13:15 40 40 - 135 08/30/13 08:32 09/04/13 13:15

Method: 8330 Modified - Nitrogua	inidine (HPLC)								
Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
Nitroguanidine	6.0	U	20	6.0	2.4	ug/L	_ =	08/26/13 14:50	1

Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
1,3,5-Trinitrobenzene	0.051	U	0.15	0.051	0.032	ug/L		08/28/13 17:31	1
1,3-Dinitrobenzene	0.10	U	0.15	0.10	0.051	ug/L		08/28/13 17:31	1
2,4,6-Trinitrotoluene	0.10	U	0.15	0.10	0.051	ug/L		08/28/13 17:31	1
2,4-Dinitrotoluene	0.10	U	0.13	0.10	0.051	ug/L		08/28/13 17:31	1
2,6-Dinitrotoluene	0.10	U	0.13	0.10	0.051	ug/L		08/28/13 17:31	1
2-Amino-4,6-dinitrotoluene	0.10	U	0.15	0.10	0.015	ug/L		08/28/13 17:31	1
2-Nitrotoluene	0.10	U	0.51	0.10	0.090	ug/L		08/28/13 17:31	1
3-Nitrotoluene	0.10	U	0.51	0.10	0.058	ug/L		08/28/13 17:31	1
4-Nitrotoluene	0.10	U	0.51	0.10	0.090	ug/L		08/28/13 17:31	1
4-Amino-2,6-dinitrotoluene	0.10	U	0.15	0.10	0.051	ug/L		08/28/13 17:31	1
HMX	0.051	U	0.15	0.051	0.037	ug/L		08/28/13 17:31	1
RDX	0.051	U	0.15	0.051	0.037	ug/L		08/28/13 17:31	1
Nitrobenzene	0.10	U	0.15	0.10	0.051	ug/L		08/28/13 17:31	1
Tetryl	0.10	U	0.15	0.10	0.051	ug/L		08/28/13 17:31	- 3
Nitroglycerin	0.51	U	0.66	0.51	0.34	ug/L		08/28/13 17:31	1
PETN	0.51	U	0.66	0.51	0.31	ug/L		08/28/13 17:31	1

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
3,4-Dinitrotoluene	89	79 - 111	08/23/13 12:56	08/28/13 17:31	1

General Chemistry Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
Cyanide, Total	0.0080	J	0.010	0.010	0.0032	mg/L		08/23/13 13:25	1
Nitrocellulose	1.0	U	2.0	1.0	0.48	mg/L		09/11/13 17:19	1

Client: Environmental Quality Mgt., Inc.

Project/Site: RVAAP66 (OH)

TestAmerica Job ID: 240-28145-1

Lab Sample ID: 240-28145-52

Matrix: Water

Client S	ample	D: FWGR	QLmw-007	C-0369-GF

Date Collected: 08/19/13 13:24 Date Received: 08/21/13 07:00

Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
Arsenic	55		10	10	3.3	ug/L		09/09/13 14:08	1
Chromium	4.0	U	7.0	4.0	1.4	ug/L		09/09/13 14:08	1
Cobalt	7.1		7.0	4.0	1.5	ug/L		09/09/13 14:08	1
_ead	5.0	U	10	5.0	1.7	ug/L		09/09/13 14:08	1
Selenium	10	U	15	10	4.0	ug/L		09/09/13 14:08	1
Silver	5.0	U	7.0	5.0	1.7	ug/L		09/09/13 14:08	1
/anadium	4.0	U	7.0	4.0	1.3	ug/L		09/09/13 14:08	1
Barium	53	J	200	5.0	2.8	ug/L		09/09/13 14:08	1
Calcium	110000		5000	1000	630	ug/L		09/09/13 14:08	1
Copper	10	U	25	10	4.4	ug/L		09/09/13 14:08	1
Magnesium	100000		5000	300	120	ug/L		09/09/13 14:08	1
Manganese	2100		15	5.0	1.8	ug/L		09/09/13 14:08	1
Nickel	14	J	40	5.0	2.2	ug/L		09/09/13 14:08	- 1
Honor									
Potassium	7400		5000	900		ug/L		09/09/13 14:08	1
Potassium Method: 6020/DOD - Metals (I	7400 ICP/MS) - Total Recov	verable	5000		300				
Potassium Method: 6020/DOD - Metals (I Analyte	7400 ICP/MS) - Total Recov Result	verable Qualifier	5000 LOQ	LOD	300 DL	Unit	D	Analyzed	1 Dil Fac
Potassium Method: 6020/DOD - Metals (I Analyte	7400 ICP/MS) - Total Recov Result	verable Qualifier	5000 LOQ 60	LOD 60	300 DL 20	Unit ug/L	D	Analyzed 09/09/13 18:25	
Potassium Method: 6020/DOD - Metals (I	7400 ICP/MS) - Total Recov Result	verable Qualifier	5000 LOQ	LOD	300 DL	Unit ug/L	D	Analyzed	
Potassium Method: 6020/DOD - Metals (I Analyte Aluminum	7400 ICP/MS) - Total Recov Result 60 1.0	verable Qualifier	5000 LOQ 60	LOD 60	300 DL 20 0.33	Unit ug/L	D	Analyzed 09/09/13 18:25	
Potassium Method: 6020/DOD - Metals (I Analyte Aluminum Antimony	7400 ICP/MS) - Total Recov Result 60 1.0	verable Qualifier U U U U Q	5000 LOQ 60 2.0	60 1.0	300 DL 20 0.33 0.50	Unit ug/L ug/L	D	Analyzed 09/09/13 18:25 09/09/13 18:25	
Potassium Method: 6020/DOD - Metals (I Analyte Aluminum Antimony Beryllium	7400 ICP/MS) - Total Recover Result 60 1.0	verable Qualifier U U U U Q	5000 LOQ 60 2.0 1.0	60 1.0 1.0	20 0.33 0.50 0.40	Unit ug/L ug/L ug/L	D	Analyzed 09/09/13 18:25 09/09/13 18:25 09/09/13 18:25	
Potassium Method: 6020/DOD - Metals (I Analyte Aluminum Antimony Beryllium Cadmium	7400 ICP/MS) - Total Recov Result 60 1.0 1.0	verable Qualifier U U U U Q	5000 LOQ 60 2.0 1.0 2.0	60 1.0 1.0 1.0	300 DL 20 0.33 0.50 0.40 44	Unit ug/L ug/L ug/L ug/L	D	Analyzed 09/09/13 18:25 09/09/13 18:25 09/09/13 18:25 09/09/13 18:25	
Potassium Method: 6020/DOD - Metals (I Analyte Aluminum Antimony Beryllium Cadmium ron Sodium	7400 ICP/MS) - Total Recov Result 60 1.0 1.0 1.0	verable Qualifier U U U Q	5000 LOQ 60 2.0 1.0 2.0 150	60 1.0 1.0 1.0 1.0	300 DL 20 0.33 0.50 0.40 44 160	Unit ug/L ug/L ug/L ug/L ug/L ug/L	<u>D</u>	Analyzed 09/09/13 18:25 09/09/13 18:25 09/09/13 18:25 09/09/13 18:25	
Potassium Method: 6020/DOD - Metals (I Analyte Aluminum Antimony Beryllium Cadmium	7400 ICP/MS) - Total Recover Result 60 1.0 1.0 1.0 13000 5200	Verable Qualifier U U U U U U U	5000 LOQ 60 2.0 1.0 2.0 150 1000	60 1.0 1.0 1.0 1.0 400	300 DL 20 0.33 0.50 0.40 44 160	Unit ug/L ug/L ug/L ug/L ug/L ug/L	D	Analyzed 09/09/13 18:25 09/09/13 18:25 09/09/13 18:25 09/09/13 18:25 09/09/13 18:25	
Potassium Method: 6020/DOD - Metals (I Analyte Aluminum Antimony Beryllium Cadmium Iron Sodium Challium	7400 ICP/MS) - Total Recover Result 60 1.0 1.0 1.0 1.0 1.00 5200 1.5	Verable Qualifier U U U U U U U	5000 LOQ 60 2.0 1.0 2.0 150 1000 2.0	1.0 1.0 1.0 1.0 100 400 1.5	300 DL 20 0.33 0.50 0.40 44 160 0.79	Unit ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	D	Analyzed 09/09/13 18:25 09/09/13 18:25 09/09/13 18:25 09/09/13 18:25 09/09/13 18:25 09/09/13 18:25	

Client: Environmental Quality Mgt., Inc.

Project/Site: RVAAP66 (OH)

Date Collected: 08/19/13 15:34

TestAmerica Job ID: 240-28145-1

Lab Sample ID: 240-28145-53

Matrix: Water

ate Received: 08/21/13 07:00

Client Sample ID: FWGRQLmw-010C-0325-GW

Method: 8260B/DoD - Volatile Organic Compounds (GC/MS) Result Qualifier LOQ LOD DL Unit D Analyzed Dil Fac 0.25 U 0.25 08/29/13 22:32 1,1,1-Trichloroethane 1.0 0.22 ug/L 1,1,2,2-Tetrachloroethane 0.25 U 1.0 0.25 0.18 ug/L 08/29/13 22:32 1,1,2-Trichloroethane 0.50 U 1.0 0.50 0.27 ug/L 08/29/13 22:32 0.25 U 0.25 1,1-Dichloroethane 1.0 0.15 ug/L 08/29/13 22:32 1,1-Dichloroethene 0.25 U 1.0 0.25 ug/L 08/29/13 22:32 1.2-Dichloroethane 0.25 U 1.0 0.25 0.22 08/29/13 22:32 ug/L 1,2-Dichloroethene, Total 0.25 U 2.0 0.25 0.17 ug/L 08/29/13 22:32 0.25 U 0.25 ug/L 1,2-Dichloropropane 1.0 0.18 08/29/13 22:32 1 2-Hexanone 0.50 U 10 0.50 0.41 ug/L 08/29/13 22:32 Bromochloromethane 0.50 U 1.0 0.50 0.29 ug/L 08/29/13 22:32 Acetone 2.5 J 10 1.1 1.1 ug/L 08/29/13 22:32 0.25 Benzene 0.25 U 1.0 0.13 ug/L 08/29/13 22:32 0.64 U 0.64 ug/L 08/29/13 22:32 Bromoform 1.0 0.64 Bromomethane 0.50 U 1.0 0.50 0.41 ug/L 08/29/13 22:32 Carbon disulfide 0.25 U 0.25 08/29/13 22:32 1.0 0.13 ug/L 0.25 U 0.25 Carbon tetrachloride 1.0 0.13 ug/L 08/29/13 22:32 Chlorobenzene 0.25 11 1.0 0.25 0.15 ug/L 08/29/13 22:32 Chloroethane 0.50 U 1.0 0.50 08/29/13 22:32 0.29 ug/L 0.25 U 08/29/13 22:32 Chloroform 10 0.25 0.16 ug/L Chloromethane 0.50 U 1.0 0.50 0.30 ug/L 08/29/13 22:32 cis-1,2-Dichloroethene 0.25 U 1.0 0.25 ug/L 08/29/13 22:32 0.17 cis-1,3-Dichloropropene 0.25 U 1.0 0.25 ug/L 08/29/13 22:32 0.25 U 1.0 0.25 0.15 08/29/13 22:32 Bromodichloromethane ug/L Ethylbenzene 0.25 U 1.0 0.25 0.17 ug/L 08/29/13 22:32 1,2-Dibromoethane 0.25 U 1.0 0.25 0.24 08/29/13 22:32 ua/L m-Xylene & p-Xylene 0.50 U 2.0 0.50 0.24 ug/L 08/29/13 22:32 2-Butanone (MEK) 0.57 U 10 0.57 0.57 ug/L 08/29/13 22:32 0.50 U 0.50 4-Methyl-2-pentanone (MIBK) 10 0.32 ug/L 08/29/13 22:32 Methylene Chloride 0.50 U 1.0 0.50 08/29/13 22:32 0.33 ug/L ug/L 0.25 U 1.0 0.25 o-Xylene 0.14 08/29/13 22:32 Styrene 0.25 U 1.0 0.25 0.11 ug/L 08/29/13 22:32 0.50 U 10 0.50 08/29/13 22:32 Tetrachloroethene 0.29 ug/L 0.25 U 1.0 0.25 0:13 ug/L 08/29/13 22:32 trans-1,2-Dichloroethene 0.25 U 1.0 0.25 0.19 ug/L 08/29/13 22:32 trans-1,3-Dichloropropene 0.25 U 1.0 0.25 0.19 ug/L 08/29/13 22:32 Trichloroethene 0.25 U 1.0 0.25 08/29/13 22:32 0.17 ug/L 0.25 U Vinyl chloride 1.0 0.25 0.22 ug/L 08/29/13 22:32 Xylenes, Total 0.25 U 2.0 0.25 0.14 ug/L 08/29/13 22:32 1 Dibromochloromethane 0.25 U 0.25 08/29/13 22:32 1.0 0.18 ug/L

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	95	70 - 120		08/29/13 22:32	1
4-Bromofluorobenzene (Surr)	87	75 - 120		08/29/13 22:32	7
Toluene-d8 (Surr)	96	85 - 120		08/29/13 22:32	1
Dibromofluoromethane (Surr)	97	85 - 115		08/29/13 22:32	1

Method: 8270C/DoD -	Semivolatile Organic	Compounds (C	CIMS
Method, 62/06/DOD -	Semivolatile Ordanic	Compounds it	3C/IVISI

Analyte		Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
Acenaphthene	0.096	U	0.19	0.096	0.043	ug/L		09/04/13 12:03	1
Acenaphthylene	0.096	U	0.19	0.096	0.046	ug/L		09/04/13 12:03	1

Client: Environmental Quality Mgt., Inc.

Project/Site: RVAAP66 (OH)

TestAmerica Job ID: 240-28145-1

Lab Sample ID: 240-28145-53

Lab Sample 1D. 240-26145-55

Matrix: Water

Client Sample ID: FWGRQLmw-010C-0325-GW

Date Collected: 08/19/13 15:34 Date Received: 08/21/13 07:00

Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fa
Anthracene	0.096	U	0.19	0.096	0.085	ug/L		09/04/13 12:03	
Benzo[a]anthracene	0.096	U	0.19	0.096	0.028	ug/L		09/04/13 12:03	
Benzo[a]pyrene	0.096	U	0.19	0.096	0.049	ug/L		09/04/13 12:03	
Benzo[b]fluoranthene	0.096	U	0.19	0.096	0.038	ug/L		09/04/13 12:03	
Benzo[g,h,i]perylene	0.096	U	0.19	0.096	0.045	ug/L		09/04/13 12:03	
Benzoic acid	19	U	24	19	9.6	ug/L		09/04/13 12:03	
Benzo[k]fluoranthene	0.096	U	0.19	0.096	0.043	ug/L		09/04/13 12:03	
Benzyl alcohol	0.48	U	4.8	0.48	0.37	ug/L		09/04/13 12:03	
Bis(2-chloroethoxy)methane	0.48	U	0.96	0.48	0.31	ug/L		09/04/13 12:03	
Bis(2-chloroethyl)ether	0.096	U	0.96	0.096	0.096	ug/L		09/04/13 12:03	
Bis(2-ethylhexyl) phthalate	0.63	J	1.9	0.48	0.21	ug/L		09/04/13 12:03	
-Bromophenyl phenyl ether	0.48	U	1.9	0.48	0.21	ug/L		09/04/13 12:03	
Butyl benzyl phthalate	0.48	U	1.9	0.48	0.25	ug/L		09/04/13 12:03	
Carbazole	0.48	U	0.96	0.48	0.27	ug/L		09/04/13 12:03	
-Chloroaniline	0.48	U	1.9	0.48	0.20	ug/L		09/04/13 12:03	
-Chloro-3-methylphenol	0.48	U	1.9	0.48	0.20	ug/L		09/04/13 12:03	
2-Chloronaphthalene	0.48	U	0.96	0.48	0.096	ug/L		09/04/13 12:03	
2-Chlorophenol	0.48	U	0.96	0.48	0.28	ug/L		09/04/13 12:03	
-Chlorophenyl phenyl ether	0.48	U	1.9	0.48	0.29	ug/L		09/04/13 12:03	
Chrysene	0.096	U	0.19	0.096	0.048	ug/L		09/04/13 12:03	
Dibenz(a,h)anthracene	0.096	U	0.19	0.096	0.043	ug/L		09/04/13 12:03	
Dibenzofuran	0.096	U	0.96	0.096	0.019	ug/L		09/04/13 12:03	
,2-Dichlorobenzene	0.48	U	0.96	0.48	0.28	ug/L		09/04/13 12:03	
,3-Dichlorobenzene	0.48	U	0.96	0.48	0.22	ug/L		09/04/13 12:03	
,4-Dichlorobenzene	0.48	U	0.96	0.48	0.33	ug/L		09/04/13 12:03	
3,3'-Dichlorobenzidine	0.96		4.8	0.96	0.36	ug/L		09/04/13 12:03	
2,4-Dichlorophenol	0.48		1.9	0.48	0.18	ug/L		09/04/13 12:03	
Diethyl phthalate	0.96		1.9	0.96	0.58	ug/L		09/04/13 12:03	
2,4-Dimethylphenol	0.48		1.9	0.48		ug/L		09/04/13 12:03	
Dimethyl phthalate	0.48		1.9	0.48	0.28	ug/L		09/04/13 12:03	
Di-n-butyl phthalate	1.0		1.9	0.96		ug/L		09/04/13 12:03	
,6-Dinitro-2-methylphenol	3.8		4.8	3.8		ug/L		09/04/13 12:03	
,4-Dinitrophenol	0.96		4.8	0.96	0.31	ug/L		09/04/13 12:03	
Di-n-octyl phthalate	0.48		1.9	0.48	0.22	ug/L		09/04/13 12:03	
Fluoranthene	0.096		0.19	0.096	0.043	100		09/04/13 12:03	
Fluorene	0.096		0.19	0.096	0.039			09/04/13 12:03	
Hexachlorobenzene	0.096		0.19	0.096	0.082			09/04/13 12:03	
dexachlorobutadiene	0.48		0.96	0.48		ug/L		09/04/13 12:03	
dexachlorocyclopentadiene	0.48		9.6	0.48		ug/L		09/04/13 12:03	
Hexachloroethane	0.48		0.96	0.48		ug/L		09/04/13 12:03	
ndeno[1,2,3-cd]pyrene	0.096		0.19	0.096	0.042			09/04/13 12:03	
	0.48					1.20			
Sophorone Methylpophthalone	0.48		0.96	0.48		ug/L		09/04/13 12:03 09/04/13 12:03	
2-Methylnaphthalene	0.096		0.19		0.087				
2-Methylphenol			0.96	0.48		ug/L		09/04/13 12:03	
8 & 4 Methylphenol	0.96		1.9	0.96		ug/L		09/04/13 12:03	
Naphthalene	0.096		0.19	0.096	0.060			09/04/13 12:03	
2-Nitroaniline 3-Nitroaniline	0.48		1.9	0.48		ug/L		09/04/13 12:03	
		A R R R	1.9	0.48	11.37	ug/L		09/04/13 12:03	

Client: Environmental Quality Mgt., Inc.

Project/Site: RVAAP66 (OH)

TestAmerica Job ID: 240-28145-1

Lab Sample ID: 240-28145-53

Matrix: Water

Client Sample ID: FWGRQLmw-010C-0325-GW Date Collected: 08/19/13 15:34

Date Received: 08/21/13 07:00

Analyte	Result	Qualifier	L	OQ	LOD	DL	Unit D	Analyzed	Dil Fac
2-Nitrophenol	0.48	U		1.9	0.48	0.27	ug/L	09/04/13 12:03	1
4-Nitrophenol	3.8	U	10	4.8	3.8	0.28	ug/L	09/04/13 12:03	1
N-Nitrosodi-n-propylamine	0.48	U	0	.96	0.48	0.23	ug/L	09/04/13 12:03	4
N-Nitrosodiphenylamine	0.48	U	0	.96	0.48	0.30	ug/L	09/04/13 12:03	1
2,2'-oxybis[1-chloropropane]	0.48	U	0	.96	0.48	0.38	ug/L	09/04/13 12:03	
Pentachlorophenol	0.96	U		4.8	0.96	0.26	ug/L	09/04/13 12:03	1
Phenanthrene	0.096	U	0	.19	0.096	0.060	ug/L	09/04/13 12:03	1
Phenol	0.96	U	0	.96	0.96	0.58	ug/L	09/04/13 12:03	9
Pyrene	0.096	U	0.	.19	0.096	0.040	ug/L	09/04/13 12:03	4
1,2,4-Trichlorobenzene	0.48	U	0	.96	0.48	0.27	ug/L	09/04/13 12:03	1
2,4,5-Trichlorophenol	0.48	U		4.8	0.48	0.29	ug/L	09/04/13 12:03	1
2,4,6-Trichlorophenol	0.48	U	16	4.8	0.48	0.23	ug/L	09/04/13 12:03	9
Surrogate	%Recovery Qu	alifier	Limits				Prepared	Analyzed	Dil Fa
2-Fluorobiphenyl (Surr)	75		50 - 110				08/22/13 08:06	09/04/13 12:03	- 1
2-Fluorophenol (Surr)	73		20 - 110				08/22/13 08:06	09/04/13 12:03	1
Nitrobenzene-d5 (Surr)	81		40 - 110				08/22/13 08:06	09/04/13 12:03	
Phenol-d5 (Surr)	78		10 - 115				08/22/13 08:06	09/04/13 12:03	3
Terphenyl-d14 (Surr)	99		50 - 135				08/22/13 08:06	09/04/13 12:03	
2,4,6-Tribromophenol (Surr)	101		40 - 125				08/22/13 08:06	09/04/13 12:03	4

Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
4,4'-DDD	0.019	U	0.048	0.019	0.0091	ug/L		09/11/13 17:16	1
4,4'-DDE	0.019	U	0.048	0.019	0.0092	ug/L		09/11/13 17:16	1
4,4'-DDT	0.019	U	0.048	0.019	0.015	ug/L		09/11/13 17:16	1
Aldrin	0.019	U	0.029	0.019	0.0078	ug/L		09/11/13 17:16	.1
alpha-BHC	0.019	U	0.029	0.019	0.0067	ug/L		09/11/13 17:16	1
alpha-Chlordane	0.019	U	0.048	0.019	0.013	ug/L		09/11/13 17:16	1
beta-BHC	0.019	U	0.048	0.019	0.0080	ug/L		09/11/13 17:16	1
delta-BHC	0.019	U	0.048	0.019	0.0083	ug/L		09/11/13 17:16	1
Dieldrin	0.019	U	0.029	0.019	0.0071	ug/L		09/11/13 17:16	1
Endosulfan I	0.019	U	0.048	0.019	0.012	ug/L		09/11/13 17:16	1
Endosulfan II	0.019	U	0.048	0.019	0.011	ug/L		09/11/13 17:16	- 1
Endosulfan sulfate	0.019	U	0.048	0.019	0.010	ug/L		09/11/13 17:16	1
Endrin	0.019	U	0.048	0.019	0.010	ug/L		09/11/13 17:16	1
Endrin aldehyde	0.019	U	0.048	0.019	0.010	ug/L		09/11/13 17:16	1
Endrin ketone	0.019	U	0.048	0.019	0.0074	ug/L		09/11/13 17:16	1
gamma-BHC (Lindane)	0.019	U	0.048	0.019	0.0061	ug/L		09/11/13 17:16	9
gamma-Chlordane	0.019	U	0.048	0.019	0.011	ug/L		09/11/13 17:16	1
Heptachlor	0.019	U	0.029	0.019	0.0076	ug/L		09/11/13 17:16	1
Heptachlor epoxide	0.019	U	0.029	0.019	0.0068	ug/L		09/11/13 17:16	1
Methoxychlor	0.048	U	0.095	0.048	0.030	ug/L		09/11/13 17:16	3
Toxaphene	0.76	U	1.9	0.76	0.30	ug/L		09/11/13 17:16	1

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
DCB Decachlorobiphenyl	82		30 - 135	08/22/13 07:53	09/11/13 17:16	1
DCB Decachlorobiphenyl	95		30 - 135	08/22/13 07:53	09/11/13 17:16	7
Tetrachloro-m-xylene	79		25 - 140	08/22/13 07:53	09/11/13 17:16	7
Tetrachloro-m-xylene	87		25 - 140	08/22/13 07:53	09/11/13 17:16	7

TestAmerica Canton

Page 122 of 235

Client: Environmental Quality Mgt., Inc.

Project/Site: RVAAP66 (OH)

TestAmerica Job ID: 240-28145-1

Lab Sample ID: 240-28145-53

ab Sample ID. 240-26145-55

Matrix: Water

Client Sample ID: FWGRQLmw-010C-03	25-GW
D . O	

Date Collected: 08/19/13 15:34 Date Received: 08/21/13 07:00

Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fa
Aroclor-1016	0.19	UHQ	0.48	0.19	0.16	ug/L		09/04/13 13:30	
Aroclor-1221	0.19	UH	0.48	0.19	0.12	ug/L		09/04/13 13:30	
Aroclor-1232	0.19	UH	0.48	0.19	0.15	ug/L		09/04/13 13:30	
Aroclor-1242	0.38	UH	0.48	0.38	0.21	ug/L		09/04/13 13:30	
Aroclor-1248	0.19	UH	0.48	0.19	0.095	ug/L		09/04/13 13:30	
Aroclor-1254	0.19	UH	0.48	0.19	0.15	ug/L		09/04/13 13:30	
Aroclor-1260	0.19	UHQ	0.48	0.19	0.16	ug/L		09/04/13 13:30	
Surrogate	%Recovery Qu	ıalifier	Limits			Prep	ared	Analyzed	Dil Fa
Tetrachloro-m-xylene	62		40 - 140			08/30/1	3 08:32	09/04/13 13:30	
etrachloro-m-xylene	70		40 - 140			08/30/1	3 08:32	09/04/13 13:30	
DCB Decachlorobiphenyl	63		40 - 135			08/30/1	3 08:32	09/04/13 13:30	
OCB Decachlorobiphenyl	60		40 - 135			08/30/1	3 08:32	09/04/13 13:30	
22 200401101000000101101101									
	oguanidine (HPLC)								
Method: 8330 Modified - Nitro		Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fa
Method: 8330 Modified - Nitro		3	LOQ 20	LOD 6.0		Unit ug/L	D	Analyzed 08/26/13 16:01	Dil Fa
Method: 8330 Modified - Nitro Analyte	Result 6.0	3				7.11.0	D		Dil Fa
Method: 8330 Modified - Nitro Analyte Nitroguanidine Method: 8330A - Nitroaromat	Result 6.0 ics and Nitramines	3				ug/L	D D		Dil Fa
Method: 8330 Modified - Nitro Analyte Vitroguanidine Method: 8330A - Nitroaromat Analyte	Result 6.0 ics and Nitramines	U Qualifier	20	6.0	2.4	ug/L		08/26/13 16:01	
Method: 8330 Modified - Nitro Analyte Nitroguanidine Method: 8330A - Nitroaromat Analyte 1,3,5-Trinitrobenzene	Result 6.0 cics and Nitramines Result	Qualifier U	20 LOQ	6.0 LOD	2.4 DL	ug/L Unit ug/L		08/26/13 16:01 Analyzed	
Method: 8330 Modified - Nitro Analyte Nitroguanidine Method: 8330A - Nitroaromat Analyte 1,3,5-Trinitrobenzene 1,3-Dinitrobenzene	Result 6.0 ics and Nitramines Result 0.051	Qualifier U	20 LOQ 0.15	6.0 LOD 0.051	2.4 DL 0.032	ug/L Unit ug/L		08/26/13 16:01 Analyzed 08/28/13 03:05	
Method: 8330 Modified - Nitro Analyte Method: 8330A - Nitroaromat Analyte ,3,5-Trinitrobenzene ,4,6-Trinitrotoluene	Result 6.0 ics and Nitramines Result 0.051 0.10	Qualifier U U	LOQ 0.15 0.15	6.0 LOD 0.051 0.10	DL 0.032 0.051	ug/L Unit ug/L ug/L ug/L		08/26/13 16:01 Analyzed 08/28/13 03:05 08/28/13 03:05	
Method: 8330 Modified - Nitro analyte Method: 8330A - Nitroaromat analyte ,3,5-Trinitrobenzene ,4,6-Trinitrotoluene ,4-Dinitrotoluene	Result 6.0 ics and Nitramines Result 0.051 0.10 0.10	Qualifier U U U	LOQ 0.15 0.15 0.15	6.0 LOD 0.051 0.10 0.10	DL 0.032 0.051	ug/L Unit ug/L ug/L ug/L		08/26/13 16:01 Analyzed 08/28/13 03:05 08/28/13 03:05 08/28/13 03:05	
Method: 8330 Modified - Nitro Analyte Method: 8330A - Nitroaromat Analyte ,3,5-Trinitrobenzene ,4-6-Trinitrotoluene ,4-Dinitrotoluene ,6-Dinitrotoluene	Result 6.0 cics and Nitramines Result 0.051 0.10 0.10 0.10	Qualifier U U U U U	LOQ 0.15 0.15 0.15 0.15	6.0 LOD 0.051 0.10 0.10 0.10	DL 0.032 0.051 0.051	Unit ug/L ug/L ug/L ug/L		08/26/13 16:01 Analyzed 08/28/13 03:05 08/28/13 03:05 08/28/13 03:05 08/28/13 03:05	
Method: 8330 Modified - Nitro Analyte Method: 8330A - Nitroaromate Analyte ,3,5-Trinitrobenzene ,3-Dinitrobenzene ,4,6-Trinitrotoluene ,4-Dinitrotoluene ,6-Dinitrotoluene -Amino-4,6-dinitrotoluene	Result 6.0 cics and Nitramines Result 0.051 0.10 0.10 0.10 0.10 0.10	Qualifier U U U U U U U	LOQ 0.15 0.15 0.15 0.13	6.0 LOD 0.051 0.10 0.10 0.10 0.10	DL 0.032 0.051 0.051 0.051 0.051	ug/L ug/L ug/L ug/L ug/L ug/L		08/26/13 16:01 Analyzed 08/28/13 03:05 08/28/13 03:05 08/28/13 03:05 08/28/13 03:05	
Method: 8330 Modified - Nitro Analyte Method: 8330A - Nitroaromate Analyte ,3,5-Trinitrobenzene ,4,6-Trinitrotoluene ,4-Dinitrotoluene ,6-Dinitrotoluene ,-Amino-4,6-dinitrotoluene ,-Nitrotoluene	Result 6.0 cics and Nitramines Result 0.051 0.10 0.10 0.10 0.10 0.10 0.10	Qualifier U U U U U U U U U U	20 LOQ 0.15 0.15 0.15 0.13 0.13	6.0 LOD 0.051 0.10 0.10 0.10 0.10 0.10	DL 0.032 0.051 0.051 0.051 0.051	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L		Analyzed 08/28/13 03:05 08/28/13 03:05 08/28/13 03:05 08/28/13 03:05 08/28/13 03:05 08/28/13 03:05	
Method: 8330 Modified - Nitro Analyte Nitroguanidine	Result 6.0 cics and Nitramines Result 0.051 0.10 0.10 0.10 0.10 0.10 0.10 0.1	Qualifier U U U U U U U U U U U U U U	20 LOQ 0.15 0.15 0.15 0.13 0.13 0.15 0.51	6.0 LOD 0.051 0.10 0.10 0.10 0.10 0.10 0.10	2.4 DL 0.032 0.051 0.051 0.051 0.015 0.090	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L		08/26/13 16:01 Analyzed 08/28/13 03:05 08/28/13 03:05 08/28/13 03:05 08/28/13 03:05 08/28/13 03:05 08/28/13 03:05	

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
3,4-Dinitrotoluene	90	79 - 111	08/23/13 12:56	08/28/13 03:05	1

0.15

0.15

0.15

0.15

0.66

0.66

0.051

0.051

0.10

0.10

0.51

0.51

0.037 ug/L

0.037 ug/L

0.051 ug/L

0.051 ug/L

0.34 ug/L

0.31 ug/L

0.051 UM

0.051 U

0.10 U

0.10 U

0.51 U

0.51 U

General Chemistry

HMX

RDX

Tetryl

PETN

Nitrobenzene

Nitroglycerin

Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
Cyanide, Total	0.010	U	0.010	0.010	0.0032	mg/L		08/23/13 13:25	1
Nitrocellulose	1.0	U	2.0	1.0	0.48	mg/L		09/05/13 15:02	1

TestAmerica Canton

08/28/13 03:05

08/28/13 03:05

08/28/13 03:05

08/28/13 03:05

08/28/13 03:05

08/28/13 03:05

Client: Environmental Quality Mgt., Inc.

Project/Site: RVAAP66 (OH)

TestAmerica Job ID: 240-28145-1

Lab Sample ID: 240-28145-54

Matrix: Water

Client	Sample	ID: FW	GRQLmw-0	010C-0325-GF

Date Collected: 08/19/13 15:34 Date Received: 08/21/13 07:00

Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
Perchlorate	0.018	J	0.050	0.020	0.0088	ug/L		09/07/13 02:50	-1
Method: 6010B/DOD - Metals (ICP) - To	tal Recover	able							
Analyte		Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
Arsenic	10	U	10	10	3.3	ug/L		09/09/13 14:14	
Chromium	4.0	U	7.0	4.0	1.4	ug/L		09/09/13 14:14	1
Cobalt	4.0	U	7.0	4.0	1.5	ug/L		09/09/13 14:14	1
Lead	5.0	U	10	5.0	1.7	ug/L		09/09/13 14:14	1
Selenium	10	U	15	10	4.0	ug/L		09/09/13 14:14	1
Silver	5.0	U	7.0	5.0	1.7	ug/L		09/09/13 14:14	1
Vanadium	4.0	U	7.0	4.0	1.3	ug/L		09/09/13 14:14	-1
Barium	5.0	U	200	5.0	2.8	ug/L		09/09/13 14:14	1
Calcium	76000		5000	1000	630	ug/L		09/09/13 14:14	1
Copper	10	Ü	25	10	4.4	ug/L		09/09/13 14:14	1
Magnesium	35000		5000	300	120	ug/L		09/09/13 14:14	1
Manganese	1300		15	5.0	1.8	ug/L		09/09/13 14:14	- 1
Nickel	5.4	J	40	5.0		ug/L		09/09/13 14:14	1
Potassium	2800	J	5000	900	300	ug/L		09/09/13 14:14	1
Method: 6020/DOD - Metals (ICP/MS) -	Total Recov	verable							
Analyte		Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
Aluminum	60	U	60	60	20	ug/L	_	09/09/13 18:32	-
Antimony	1.0	U	2.0	1.0	0.33	ug/L		09/09/13 18:32	1
Beryllium	1.0	UQ	1.0	1.0	0.50	ug/L		09/09/13 18:32	
Cadmium	1.0	U	2.0	1.0	0.40	ug/L		09/09/13 18:32	
Iron	100	U	150	100	44	ug/L		09/09/13 18:32	
Sodium	4000		1000	400	160	ug/L		09/09/13 18:32	
Thallium	1.5	U	2.0	1.5	0.79	ug/L		09/09/13 18:32	-
Zinc	50	U	50	50	27	ug/L		09/09/13 18:32	
Method: 7470A/DOD - Mercury (CVAA)									
Analyte		Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
railaryte									

Client: Environmental Quality Mgt., Inc.

Client Sample ID: FWGEBGmw-131-0316-GW

Project/Site: RVAAP66 (OH)

TestAmerica Job ID: 240-28145-1

Lab Sample ID: 240-28145-55

Matrix: Water

Date Collected: 08/19/13 17:44 Date Received: 08/21/13 07:00

Analyte		Qualifier	LOQ	LOD	DL	Unit D) Analyzed	Dil Fac
1,1,1-Trichloroethane	0.25	U	1.0	0.25	0.22	ug/L	08/29/13 22:56	1
1,1,2,2-Tetrachloroethane	0.25	U	1.0	0.25	0.18	ug/L	08/29/13 22:56	1
1,1,2-Trichloroethane	0.50	U	1.0	0.50	0.27	ug/L	08/29/13 22:56	1
1,1-Dichloroethane	0.25	U	1.0	0.25	0.15	ug/L	08/29/13 22:56	1
1,1-Dichloroethene	0.25	U	1.0	0.25	0.19	ug/L	08/29/13 22:56	1
1,2-Dichloroethane	0.25	U	1.0	0.25	0.22	ug/L	08/29/13 22:56	1
1,2-Dichloroethene, Total	0.25	U	2.0	0.25	0.17	ug/L	08/29/13 22:56	1
1,2-Dichloropropane	0.25	U	1.0	0.25	0.18	ug/L	08/29/13 22:56	1
2-Hexanone	0.50	U	10	0.50	0.41	ug/L	08/29/13 22:56	1
Bromochloromethane	0.50	U	1.0	0.50	0.29	ug/L	08/29/13 22;56	1
Acetone	1.1	U	10	1.1	1.1	ug/L	08/29/13 22:56	1
Benzene	0.25	U	1.0	0.25	0.13	ug/L	08/29/13 22:56	1
Bromoform	0.64	U	1.0	0.64	0.64	ug/L	08/29/13 22:56	1
Bromomethane	0.50	U	1.0	0.50	0.41	ug/L	08/29/13 22:56	1
Carbon disulfide	0.25	U	1.0	0.25	0.13	ug/L	08/29/13 22:56	1
Carbon tetrachloride	0.25	U	1.0	0.25	0.13	ug/L	08/29/13 22:56	1
Chlorobenzene	0.25	U	1.0	0.25	0.15	ug/L	08/29/13 22:56	1
Chloroethane	0.50	U	1.0	0.50	0.29	ug/L	08/29/13 22:56	1
Chloroform	0.25	U	1.0	0.25	0.16	ug/L	08/29/13 22:56	1
Chloromethane	0.50	U	1.0	0.50	0.30	ug/L	08/29/13 22:56	1
cis-1,2-Dichloroethene	0.25	U	1.0	0.25	0.17	ug/L	08/29/13 22:56	1
cis-1,3-Dichloropropene	0.25	U	1.0	0.25	0.14	ug/L	08/29/13 22:56	1
Bromodichloromethane	0.25	U	1.0	0.25	0.15	ug/L	08/29/13 22:56	1
Ethylbenzene	0.25	U	1.0	0.25	0.17	ug/L	08/29/13 22:56	1
1,2-Dibromoethane	0.25	U	1.0	0.25	0.24	ug/L	08/29/13 22:56	1
m-Xylene & p-Xylene	0.50	U	2.0	0.50	0.24	ug/L	08/29/13 22:56	1
2-Butanone (MEK)	0.57	U	10	0.57	0.57	ug/L	08/29/13 22:56	1
4-Methyl-2-pentanone (MIBK)	0.50	U	10	0.50	0.32	ug/L	08/29/13 22:56	1
Methylene Chloride	0.50	U	1.0	0.50	0.33	ug/L	08/29/13 22:56	1
o-Xylene	0.25	U	1.0	0.25	0.14	ug/L	08/29/13 22:56	1
Styrene	0.25	U	1.0	0.25	0.11	ug/L	08/29/13 22:56	1
Tetrachloroethene	0.50	U	1.0	0.50	0.29	ug/L	08/29/13 22:56	1
Toluene	0.25	U	1.0	0.25	0.13	ug/L	08/29/13 22:56	- 1
trans-1,2-Dichloroethene	0.25	U	1.0	0.25	0.19	ug/L	08/29/13 22:56	1
trans-1,3-Dichloropropene	0.25	U	1.0	0.25	0.19	ug/L	08/29/13 22:56	1
Trichloroethene	0.25	U	1.0	0.25	0.17		08/29/13 22:56	1
Vinyl chloride	0.25	U	1.0	0.25	0.22	ug/L	08/29/13 22:56	1
Xylenes, Total	0.25		2.0	0.25	0.14	ug/L	08/29/13 22:56	1
Dibromochloromethane	0,25		1.0	0.25		ug/L	08/29/13 22:56	1
Surrogate	%Recovery Qu	valifier I	imits			Prepared	Analyzed	Dil Fac

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	93		70 - 120		08/29/13 22:56	1
4-Bromofluorobenzene (Surr)	91		75 - 120		08/29/13 22:56	1
Toluene-d8 (Surr)	96		85 - 120		08/29/13 22:56	1
Dibromofluoromethane (Surr)	90		85 - 115		08/29/13 22:56	7

Method: 8270C/DoD -	Semivolatile Organ	ic Compounds (GC/MS)
Metriod. 02/00/DOD	Semivolatile Organ	ne compounds (demis)

motifod. SELECTED COMMY			0.74						
Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
Acenaphthene	0.095	U	0.19	0.095	0.042	ug/L		09/04/13 12:28	1
Acenaphthylene	0.095	U	0.19	0.095	0.046	ug/L		09/04/13 12:28	1

Client: Environmental Quality Mgt., Inc.

Project/Site: RVAAP66 (OH)

TestAmerica Job ID: 240-28145-1

Lab Sample ID: 240-28145-55

ab cample 1b. 240-20140-00

Matrix: Water

Client Sample ID: FWGEBGmw-131-0316-GW

Date Collected: 08/19/13 17:44 Date Received: 08/21/13 07:00

nalyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil F
nthracene	0.095	U	0.19	0.095	0.084	ug/L		09/04/13 12:28	
enzo[a]anthracene	0.095	U	0.19	0.095	0.028	ug/L		09/04/13 12:28	
enzo[a]pyrene	0.095	U	0.19	0.095	0.049	ug/L		09/04/13 12:28	
enzo[b]fluoranthene	0.095	U	0.19	0.095	0.038	ug/L		09/04/13 12:28	
enzo[g,h,i]perylene	0.095	U	0.19	0.095	0.044	ug/L		09/04/13 12:28	
enzoic acid	19	U	24	19	9.5	ug/L		09/04/13 12:28	
enzo[k]fluoranthene	0.095	U	0.19	0.095	0.043	ug/L		09/04/13 12:28	
enzyl alcohol	0.48	U	4.8	0.48	0.36	ug/L		09/04/13 12:28	
s(2-chloroethoxy)methane	0.48	U	0.95	0.48	0.30	ug/L		09/04/13 12:28	
s(2-chloroethyl)ether	0.095	Ü	0.95	0.095	0.095	ug/L		09/04/13 12:28	
s(2-ethylhexyl) phthalate	0.38	J	1.9	0.48	0.21	ug/L		09/04/13 12:28	
Bromophenyl phenyl ether	0.48	U	1.9	0.48	0.21	ug/L		09/04/13 12:28	
ityl benzyl phthalate	0.48	U	1.9	0.48	0.25	ug/L		09/04/13 12:28	
arbazole	0.48	U	0.95	0.48	0.27	ug/L		09/04/13 12:28	
Chloroaniline	0.48	U	1.9	0.48	0.20	ug/L		09/04/13 12:28	
Chloro-3-methylphenol	0.48	U	1.9	0.48	0.20	ug/L		09/04/13 12:28	
Chloronaphthalene	0.48	U	0.95	0.48	0.095	ug/L		09/04/13 12:28	
Chlorophenol	0.48		0.95	0.48	0.28	ug/L		09/04/13 12:28	
Chlorophenyl phenyl ether	0.48		1.9	0.48	0.29	ug/L		09/04/13 12:28	
nrysene	0.095		0.19	0.095	0.048			09/04/13 12:28	
penz(a,h)anthracene	0.095		0.19	0.095	0.042			09/04/13 12:28	
penzofuran	0.095		0.95	0.095	0.019			09/04/13 12:28	
2-Dichlorobenzene	0.48		0.95	0.48		ug/L		09/04/13 12:28	
3-Dichlorobenzene	0.48		0.95	0.48		ug/L		09/04/13 12:28	
4-Dichlorobenzene	0.48		0.95	0.48		ug/L		09/04/13 12:28	
3'-Dichlorobenzidine	0.95		4.8	0.95	0.35	ug/L		09/04/13 12:28	
-Dichlorophenol	0.48		1.9	0.48		ug/L		09/04/13 12:28	
	0.46		1.9	0.46		ug/L		09/04/13 12:28	
Pimothylphanal	0.48		1.9	0.48				09/04/13 12:28	
-Dimethylphenol	0.48		1.9	0.48	0.24	ug/L		09/04/13 12:28	
nethyl phthalate	0.46		1.9	0.46		ug/L		09/04/13 12:28	
n-butyl phthalate					0.64	ug/L		09/04/13 12:28	
6-Dinitro-2-methylphenol	3.8		4.8	3.8	2.3	ug/L			
-Dinitrophenol	0.95		4.8	0.95	0.30	ug/L		09/04/13 12:28	
n-octyl phthalate	0.48		1.9	0.48	0.22	ug/L		09/04/13 12:28	
oranthene	0.095		0.19	0.095	0.042			09/04/13 12:28	
orene	0.095		0.19	0.095	0.039			09/04/13 12:28	
xachlorobenzene	0.095		0.19	0.095	0.081			09/04/13 12:28	
xachlorobutadiene	0.48		0.95	0.48		ug/L		09/04/13 12:28	
xachlorocyclopentadiene	0.48		9.5	0.48		ug/L		09/04/13 12:28	
xachloroethane	0.48		0.95	0.48		ug/L		09/04/13 12:28	
eno[1,2,3-cd]pyrene	0.095		0.19	0.095	0.041	1.20		09/04/13 12:28	
phorone	0.48		0.95	0.48		ug/L		09/04/13 12:28	
Methylnaphthalene	0.095		0.19	0.095	0.086			09/04/13 12:28	
Methylphenol	0.48		0.95	0.48		ug/L		09/04/13 12:28	
4 Methylphenol	0.95		1.9	0.95	0.76	ug/L		09/04/13 12:28	
phthalene	0.095	U	0.19	0.095	0.060	ug/L		09/04/13 12:28	
litroaniline	0.48	U	1.9	0.48	0.20	ug/L		09/04/13 12:28	
Nitroaniline	0.48	U	1.9	0.48	0.27	ug/L		09/04/13 12:28	

TestAmerica Canton

3

45

7

i

13

14

U.S

Client: Environmental Quality Mgt., Inc.

Project/Site: RVAAP66 (OH)

TestAmerica Job ID: 240-28145-1

Lab Sample ID: 240-28145-55

Matrix: Water

Client Sample ID: FWGEBGmw-131-0316-GW Date Collected: 08/19/13 17:44

Date Received: 08/21/13 07:00

DCB Decachlorobiphenyl

DCB Decachlorobiphenyl

Tetrachloro-m-xylene

Tetrachloro-m-xylene

Analyte	Resi	ult Qualifier	LOQ	LOD	DL	Unit D	Analyzed	Dil Fac
2-Nitrophenol	0.4	18 U	1.9	0.48	0.27	ug/L	09/04/13 12:28	1
4-Nitrophenol	3	.8 U	4.8	3.8	0.28	ug/L	09/04/13 12:28	1
N-Nitrosodi-n-propylamine	0.	48 U	0.95	0.48	0.23	ug/L	09/04/13 12:28	1
N-Nitrosodiphenylamine	0.4	48 U	0.95	0.48	0.30	ug/L	09/04/13 12:28	1
2,2'-oxybis[1-chloropropane]	0.4	48 U	0.95	0.48	0.38	ug/L	09/04/13 12:28	1
Pentachlorophenol	0.	95 U	4.8	0.95	0.26	ug/L	09/04/13 12:28	1
Phenanthrene	0.0	95 U	0.19	0.095	0.059	ug/L	09/04/13 12:28	1
Phenol	0.	95 U	0.95	0.95	0.57	ug/L	09/04/13 12:28	1
Pyrene	0.0	95 U	0.19	0.095	0.040	ug/L	09/04/13 12:28	1
1,2,4-Trichlorobenzene	0.4	18 U	0.95	0.48	0.27	ug/L	09/04/13 12:28	1
2,4,5-Trichlorophenol	0.	18 U	4.8	0.48	0.29	ug/L	09/04/13 12:28	- 1
2,4,6-Trichlorophenol	0.4	48 U	4.8	0.48	0.23	ug/L	09/04/13 12:28	9
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl (Surr)	74		50 - 110			08/22/13 08:06	09/04/13 12:28	1
2-Fluorophenol (Surr)	74		20 - 110			08/22/13 08:06	09/04/13 12:28	1
Nitrobenzene-d5 (Surr)	78		40 - 110			08/22/13 08:06	09/04/13 12:28	1
Phenol-d5 (Surr)	81		10 - 115			08/22/13 08:06	09/04/13 12:28	1
Terphenyl-d14 (Surr)	93		50 - 135			08/22/13 08:06	09/04/13 12:28	1
2,4,6-Tribromophenol (Surr)	97		40 - 125			08/22/13 08:06	09/04/13 12:28	1

Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D Analyzed	Dil Fac
4,4'-DDD	0.019	U	0.048	0.019	0.0091	ug/L	09/11/13 17:37	1
4,4'-DDE	0.019	U	0.048	0.019	0.0092	ug/L	09/11/13 17:37	- 1
4,4'-DDT	0.019	U	0.048	0.019	0.015	ug/L	09/11/13 17:37	- 1
Aldrin	0.019	U	0.029	0.019	0.0078	ug/L	09/11/13 17:37	1
alpha-BHC	0.019	U	0.029	0.019	0.0067	ug/L	09/11/13 17:37	. 1
alpha-Chlordane	0.019	U	0.048	0.019	0.013	ug/L	09/11/13 17:37	1
beta-BHC	0.019	U	0.048	0.019	0.0080	ug/L	09/11/13 17:37	1
delta-BHC	0.019	U	0.048	0.019	0.0083	ug/L	09/11/13 17:37	1
Dieldrin	0.019	U	0.029	0.019	0.0071	ug/L	09/11/13 17:37	1
Endosulfan I	0.019	U	0.048	0.019	0.012	ug/L	09/11/13 17:37	1
Endosulfan II	0.019	U	0.048	0.019	0.011	ug/L	09/11/13 17:37	1
Endosulfan sulfate	0.019	U	0.048	0.019	0.010	ug/L	09/11/13 17:37	1
Endrin	0.019	U	0.048	0.019	0.010	ug/L	09/11/13 17:37	1
Endrin aldehyde	0.019	U	0.048	0.019	0.010	ug/L	09/11/13 17:37	1
Endrin ketone	0.019	U	0.048	0.019	0.0074	ug/L	09/11/13 17:37	1
gamma-BHC (Lindane)	0.019	U	0.048	0.019	0.0061	ug/L	09/11/13 17:37	9
gamma-Chlordane	0.019	U	0.048	0.019	0.011	ug/L	09/11/13 17:37	1
Heptachlor	0.019	U	0.029	0.019	0.0076	ug/L	09/11/13 17:37	1
Heptachlor epoxide	0.019	U	0.029	0.019	0.0068	ug/L	09/11/13 17:37	1
Methoxychlor	0.048	U	0.095	0.048	0.030	ug/L	09/11/13 17:37	3
Toxaphene	0.76	U	1.9	0.76	0.30	ug/L	09/11/13 17:37	1
Surrogate	%Recovery Qu	alifier	Limits			Prepared	Analyzed	Dil Fac

TestAmerica Canton

09/11/13 17:37

09/11/13 17:37

09/11/13 17:37

09/11/13 17:37

08/22/13 07:53

08/22/13 07:53

08/22/13 07:53

08/22/13 07:53

Page 127 of 235

30 - 135

30 - 135

25 - 140

25 - 140

57

70

76

84

3

.

6

ŏ

ī

40

14

or.

Client: Environmental Quality Mgt., Inc.

Project/Site: RVAAP66 (OH)

TestAmerica Job ID: 240-28145-1

Lab Sample ID: 240-28145-55

Matrix: Water

Client Sample ID: FWGEBGmw-131-0316-GW
D-4- 0-11-4-4-00/40/40 47-44

Date Collected: 08/19/13 17:44 Date Received: 08/21/13 07:00

Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fa
Aroclor-1016	0.19	UHQ	0.48	0.19	0.16	ug/L		09/04/13 14:14	
Aroclor-1221	0.19	UH	0.48	0.19	0.12	ug/L		09/04/13 14:14	
Aroclor-1232	0.19	UH	0.48	0.19	0.15	ug/L		09/04/13 14:14	
Aroclor-1242	0.38	UH	0.48	0.38	0.21	ug/L		09/04/13 14:14	
roclor-1248	0.19	UH	0.48	0.19	0.095	ug/L		09/04/13 14:14	
roclor-1254	0.19	UH	0.48	0.19	0.15	ug/L		09/04/13 14:14	
Aroclor-1260	0.19	UHQ	0.48	0.19	0.16	ug/L		09/04/13 14:14	
urrogate	%Recovery Qu	alifier	Limits			Prep	ared	Analyzed	Dil F
etrachloro-m-xylene	66		40 - 140			08/30/1	3 08:32	09/04/13 14:14	
etrachloro-m-xylene	74		40 - 140			08/30/1	3 08:32	09/04/13 14:14	
CB Decachlorobiphenyl	64		40 _ 135			08/30/1	3 08:32	09/04/13 14:14	
CB Decachlorobiphenyl	64		40 - 135			08/30/1	3 08:32	09/04/13 14:14	
and the second second second									
	oguanidine (HPLC)								
lethod: 8330 Modified - Nitro		Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil I
Method: 8330 Modified - Nitro		200	LOQ 20	LOD 6.0		Unit ug/L	D	Analyzed 08/26/13 16:19	Dil I
Method: 8330 Modified - Nitro analyte litroguanidine	Result 6.0	200				7.10.0	D		Dil F
Method: 8330 Modified - Nitro nalyte itroguanidine Method: 8330A - Nitroaromat	Result 6.0 ics and Nitramines	200			2.4	7.10.0	D		Dil I
lethod: 8330 Modified - Nitro nalyte itroguanidine lethod: 8330A - Nitroaromat nalyte	Result 6.0 ics and Nitramines	U Qualifier	20	6.0	2.4	ug/L		08/26/13 16:19	
lethod: 8330 Modified - Nitro nalyte itroguanidine lethod: 8330A - Nitroaromat nalyte 3,5-Trinitrobenzene	Result 6.0 ics and Nitramines Result	Qualifier U	20 LOQ	6.0 LOD	2.4 DL	ug/L Unit ug/L		08/26/13 16:19 Analyzed	
lethod: 8330 Modified - Nitro nalyte itroguanidine lethod: 8330A - Nitroaromat nalyte 3,5-Trinitrobenzene 3-Dinitrobenzene	Result 6.0 ics and Nitramines Result 0.051	Qualifier U	20 LOQ 0.15	6.0 LOD 0.051	2.4 DL 0.032	ug/L Unit ug/L		08/26/13 16:19 Analyzed 08/28/13 03:48	
lethod: 8330 Modified - Nitro nalyte itroguanidine lethod: 8330A - Nitroaromati nalyte 3,5-Trinitrobenzene 3-Dinitrobenzene 4,6-Trinitrotoluene	Result 6.0 ics and Nitramines Result 0.051 0.10	Qualifier U U	LOQ 0.15 0.15	6.0 LOD 0.051 0.10	DL 0.032 0.051	ug/L Unit ug/L ug/L ug/L		08/26/13 16:19 Analyzed 08/28/13 03:48 08/28/13 03:48	
lethod: 8330 Modified - Nitro nalyte itroguanidine lethod: 8330A - Nitroaromat nalyte 3,5-Trinitrobenzene 3-Dinitrobenzene 4,6-Trinitrotoluene 4-Dinitrotoluene	Result 6.0 ics and Nitramines Result 0.051 0.10 0.10	Qualifier U U U	20 LOQ 0.15 0.15 0.15	6.0 LOD 0.051 0.10 0.10	DL 0.032 0.051	ug/L ug/L ug/L ug/L ug/L		Analyzed 08/28/13 03:48 08/28/13 03:48 08/28/13 03:48	
lethod: 8330 Modified - Nitro nalyte itroguanidine lethod: 8330A - Nitroaromat nalyte 3,5-Trinitrobenzene 3-Dinitrobenzene 4,6-Trinitrotoluene 4-Dinitrotoluene 6-Dinitrotoluene	Result 6.0 ics and Nitramines Result 0.051 0.10 0.10 0.10	Qualifier U U U U U	20 LOQ 0.15 0.15 0.15 0.15	6.0 LOD 0.051 0.10 0.10 0.10	DL 0.032 0.051 0.051	ug/L ug/L ug/L ug/L ug/L		Analyzed 08/28/13 03:48 08/28/13 03:48 08/28/13 03:48 08/28/13 03:48	
lethod: 8330 Modified - Nitro nalyte itroguanidine lethod: 8330A - Nitroaromat nalyte 3,5-Trinitrobenzene 3-Dinitrobenzene 4,6-Trinitrotoluene 4-Dinitrotoluene 6-Dinitrotoluene Amino-4,6-dinitrotoluene	Result 6.0 ics and Nitramines Result 0.051 0.10 0.10 0.10 0.10	Qualifier U U U U U U U	20 LOQ 0.15 0.15 0.15 0.13	6.0 LOD 0.051 0.10 0.10 0.10 0.10	DL 0.032 0.051 0.051 0.051	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L		Analyzed 08/28/13 03:48 08/28/13 03:48 08/28/13 03:48 08/28/13 03:48 08/28/13 03:48	
Method: 8330 Modified - Nitro nalyte itroguanidine Method: 8330A - Nitroaromat nalyte 3,5-Trinitrobenzene 3-Dinitrobenzene 4,6-Trinitrotoluene 4-Dinitrotoluene 6-Dinitrotoluene -Amino-4,6-dinitrotoluene -Nitrotoluene	Result 6.0 ics and Nitramines Result 0.051 0.10 0.10 0.10 0.10 0.10 0.10	Qualifier U U U U U U U U U U	20 LOQ 0.15 0.15 0.15 0.13 0.13 0.13	6.0 LOD 0.051 0.10 0.10 0.10 0.10 0.10	DL 0.032 0.051 0.051 0.051 0.051	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L		Analyzed 08/28/13 03:48 08/28/13 03:48 08/28/13 03:48 08/28/13 03:48 08/28/13 03:48 08/28/13 03:48	
Method: 8330 Modified - Nitro Analyte Method: 8330A - Nitroaromat Analyte ,3,5-Trinitrobenzene ,4,6-Trinitrotoluene ,4-Dinitrotoluene ,6-Dinitrotoluene -Amino-4,6-dinitrotoluene -Nitrotoluene	Result 6.0 ics and Nitramines Result 0.051 0.10 0.10 0.10 0.10 0.10 0.10 0.1	Qualifier U U U U U U U U U U U U U U U U U U U	20 0.15 0.15 0.15 0.13 0.13 0.15	6.0 LOD 0.051 0.10 0.10 0.10 0.10 0.10 0.10	2.4 DL 0.032 0.051 0.051 0.051 0.015 0.090	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L		Analyzed 08/28/13 03:48 08/28/13 03:48 08/28/13 03:48 08/28/13 03:48 08/28/13 03:48 08/28/13 03:48 08/28/13 03:48	

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
3,4-Dinitrotoluene	87	79 - 111	08/23/13 12:56	08/28/13 03:48	1

0.15

0.15

0.15

0.15

0.67

0.67

0.051

0.051

0.10

0.10

0.51

0.51

0.037 ug/L

0.037 ug/L

0.051 ug/L

0.051 ug/L

0.34 ug/L

0.31 ug/L

0.051 UM

0.051 U

0.10 U

0.10 U

0.51 U

0.51 U

Canaral	Chemistry

HMX

RDX

Tetryl

PETN

Nitrobenzene

Nitroglycerin

Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
Cyanide, Total	0.010	U	0.010	0.010	0.0032	mg/L		08/23/13 13:25	1
Nitrocellulose	1.0	U	2.0	1.0	0.48	mg/L		09/05/13 15:04	1

TestAmerica Canton

08/28/13 03:48

08/28/13 03:48

08/28/13 03:48

08/28/13 03:48

08/28/13 03:48

08/28/13 03:48

Client: Environmental Quality Mgt., Inc.

Project/Site: RVAAP66 (OH)

TestAmerica Job ID: 240-28145-1

Lab Sample ID: 240-28145-56

Matrix: Water

Client Sample ID: FWGEBGmw-131-0316-GF Date Collected: 08/19/13 17:44

Date Received: 08/21/13 07:00

Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
Arsenic	10	U	10	10	3.3	ug/L		09/09/13 14:20	1
Chromium	4.0	U	7.0	4.0	1.4	ug/L		09/09/13 14:20	1
Cobalt	4.0	U	7.0	4.0	1.5	ug/L		09/09/13 14:20	1
Lead	5.0	U	10	5.0	1.7	ug/L		09/09/13 14:20	1
Selenium	10	U	15	10	4.0	ug/L		09/09/13 14:20	1
Silver	5.0	U	7.0	5.0	1.7	ug/L		09/09/13 14:20	1
Vanadium	4.0	U	7.0	4.0	1.3	ug/L		09/09/13 14:20	1
Barium	110	J	200	5.0	2.8	ug/L		09/09/13 14:20	1
Calcium	72000		5000	1000	630	ug/L		09/09/13 14:20	1
Copper	10	U	25	10	4.4	ug/L		09/09/13 14:20	1
Magnesium	29000		5000	300	120	ug/L		09/09/13 14:20	1
Manganese	150		15	5.0	1.8	ug/L		09/09/13 14:20	1
Nickel	5.0	U	40	5.0	2.2	ug/L		09/09/13 14:20	1
Potassium	1400	J	5000	900	300	ug/L		09/09/13 14:20	1
Method: 6020/DOD - Metals	,								
Analyte		Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
Aluminum	60		60	60	20	ug/L		09/09/13 18:39	1
Antimony	1.0	U	2.0	1.0	0.33	ug/L		09/09/13 18:39	1
Beryllium	1.0	UQ	1.0	1.0	0.50	ug/L		09/09/13 18:39	1
Cadmium	1.0	U	2.0	1.0	0.40	ug/L		09/09/13 18:39	1
iron	730		150	100	44	ug/L		09/09/13 18:39	1
Sodium	2900		1000	400	160	ug/L		09/09/13 18:39	-1
Thallium	1.5	U	2.0	1.5	0.79	ug/L		09/09/13 18:39	1
Zinc	50	U	50	50	27	ug/L		09/09/13 18:39	1
Method: 7470A/DOD - Mercu									
Analyte	0.1.7211	Qualifier	LOQ	LOD		Unit	D	Analyzed	Dil Fac
Hg	0.20	U	0.20	0.20	0.12	ug/L		08/23/13 14:27	1

Shipping and Receiving Documents

TestAmerica Canton

4101 Shuffel Street, N. H.

Horth Canton, BH 44720 Phone: 330.497.9396 Fax: 330.497.0772

of Custody Record

THE LEADER IN ENVIRONMENTAL TESTING

TestAmerica Laboratories, Inc.

					_ RCRA							,	Form No. CA-C-WI-002, Rev. 4.2, dated 04/02/2013
Client Contact	Project Manag	ger: John Y	nilier	Site (Conta	ct: Er	iκ (Cork	oin Di		8/20		COC No: 7×8202013
Company Name: Ç		3 825 7500		Lab (Conta	ct:M	rk	LOT	6 C	arrier: (ab P	ICKUP	of COCs
Address: 1800 Carillon Blvd	1 1	lysis Turnaround											Sampler:
City/State/Zip: Uncinnati OH 45040	CALENDAR		KING DAYS				a l	250	10	1 1	11		For Lab Use Only:
Phone:513 826 7500 Fax: 513 825 7495	TAT IF di	ifferent from Below 2 weeks	-i	Z			ď.	100	da				Walk-in Client: Lab Sampling:
Project Name: RVAAP (W (OH)	1 🗄	1 week		Z Z	1ĕ	d Sol	$\Im \mathcal{X}$	73/00/20	1004	1			Lab camping.
Site: 30174.0010,001.10.1		2 days	1	SD CS	331	जिल्ल जिल्ल	75			3			Job / SDG No.:
PO# · ·		1 day		Filtered Sample (Y/N	100			Z,	X4 8	3	1		
	×	Sample		n Sa		74	98			SLONE	7		17-11
	Sample Sa	ample Type	# of	rori	8	4	36	ď		10F	升丨		cooler ID#
Sample Identification			Matrix Cont.	E 8	M	nav	7	$Z\xi$		746			Sample Specific Notes:
FWGTEAM!-Trip		:00 G	GW	NN	X								1 2009
	8/25/13 9	:35 6	GW 11	NN	X)	X X	$\langle \times \rangle$	X					12009
BNGLLIamw-187C-0363-GF		:35 6	GW 1	NK			1						12009
PNGILIZMW-242C-DZIA-BW	8/20/13 11	CII G	SW 11	NN	(X)	$\langle \chi \rangle$	$\langle X \rangle$	X					170
ENGLUAMW-24aC-03LA-GF	8/20/13 11		GW 1	YN									176
FWGLUamw-247-0336-GW		:01 G	GW II	NN	X	XX)	$\langle X \rangle$	X.					1517
ENGLLI2MW-847-03310-6F	8/20/13/13	0) 6	GWI	NK	1								TSIT
ENGLLI2mw-DUP3-0338-GW	~ /		GWII	2	X)	X X	$\langle \! $	X					330
FWBILIAMW-DUP3-0338-GF	8/20/13/3	:41 G	GW 1	1 10					X				330
FWG DETMW-ODAC-0315-GW	8/20/13 15	:11 G	GW 13	2	X	$ X\rangle$	<x< td=""><td></td><td></td><td>$X\rangle$</td><td></td><td></td><td>STLI</td></x<>			$ X\rangle$			STLI
FINGDETMW-002C-0315-GF	8/20/13/15		ewa	2 7									STLI
FNG DA2mw-114-0312-6W	\$20/13 17	7-05 G	GW13	NN	X	$ X\rangle$	$\langle \chi $		X	X	X		ma3
Preservation Used: 1=lce, 2=HCl; 3=H2SO4, 4=HNO3;	5=NaOH; 6= C	Other							434				
Possible Hazard Identification: Are any samples from a listed EPA Hazardous Waste? Please	e List any EPA	Waste Codes for t	he sample in the		ample	Dispos	al (A	fee m	ay be as	sesse	d if sam	ples are retai	ned longer than 1 month)
Comments Section if the lab is to dispose of the sample.													
Non-Hazard Flammable Skin Irritant	Poison B	Unkno	wn		Re	turn to Clie	ent		Dispo	sal by La	b	Archive fo	or Months
Special Instructions/QC Requirements & Comments:		perchlora-	tes, meto	ilS,	ne	c Chi	(0)	Λ a	re -	field	d F	itered	
All VOAs in Cooler # 16	1009 Te	mos mau i	10+ meet	· re	20111	man	ent	3 i	(V)	lect	ed c		lab pickup time
Custody Seals Intact: Yes No	Custody Seal	No.:			1	Coole	er Ter	np (C): Obs'd	:	Co	rr'd:	Therm ID No.:
Relinquished by: MAMMI HUUNGUR Relinquished by:	Company:		Spate/Time:	Re	eceiye 1	d by:	10	5,=	_	-]0	ompany	LAC	Date/Time: 8-20-13-183
Relinquished by:	Company:		Date/Time: 8-20-13	Re	eceive	ed by:	Ť	/	_	C	ompany	:	Date/Time:
		-^°C			1/2	<u> </u>	2/	<u> </u>	un.	2	TA		8/21/13 0700
Relinquished by:	Company:		Date/Time:	Re	eceive	ed in Lag	orato	ry by:			company		Date/Time:

TestAmerica Canton

Chain of Custody Record

<u>TestAmerica</u>

THE LEADER IN ENVIRONMENTAL TESTING
TestAmerica Laboratories. Inc.

Horth Canton, OH 44720
Phone: 330.497.9396 Fax: 330.497.0772 | Beguleton/Program: | Day | Division | Day

Regulatory Program: DW NPDES RCRA Other: Form No. CA-C-WI-002, Rev. 4.2, dated 04/02/2013 Site Contact: Erik COC NO: SR8202013 Corbin Date: 20/13 Project Manager: John Miller Client Contact ah PICKUP of 🔾 COCs Tel/Fax: 5/38257500 Carrier: (Lab Contact MACK Company Name: SOM Sampler: 1800 Carillon Blvd **Analysis Turnaround Time** 8081 8081 For Lab Use Only: City/State/Zip: Cincinnotii OH 45240 CALENDAR DAYS WORKING DAYS Walk-in Client: Phone: 513 825 7500 TAT if different from Below 7495 Lab Sampling: 2 weeks Project Name: KVAAP(06 (0H) 1 week Job / SDG No.: 30174.0010.001.10. 2 days P O # 1 day Sample cooler ID# Type Sample Sample (C=Comp, Sample Specific Notes: Date Time Sample Identification G=Grab) Matrix Cont. 8/20/13 17:05 FW6DA2mw-114-0312-GF Gw UI U 8 reservation Used: 1= Ice, 2= HCI; 3= H2SO4; 4=HNO3; 5=NaOH; 6= Other Sample Disposal (A fee may be assessed if samples are retained longer than 1 month) Possible Hazard Identification: Are any samples from a listed EPA Hazardous Waste? Please List any EPA Waste Codes for the sample in the Comments Section if the lab is to dispose of the sample. Disposal by Lab Poison B Unknown Return to Client Flammable perchlorates, metals, hex chrom, are tield filtered Special Instructions/QC Requirements & Comments: Temps may not meet requirements if collected close to lab Dickup time Custody Seals Intact: Custody Seal No.: Yes No Received by: Relinquished by: Received by: Company: 79 0700 Company: Received in Laboratory by Relinguished by:

TestAmerica Laboratory location: Chain of Custody Record

TestAmerica
THE LEADER IN ENVIRONMENTAL TESTING

Client Contact	<u> </u>															Т	estAmerica Laboratories, Inc.
Company Name: EQM	Client Project !	^{Manager:} In Mill	er	Sit	te Contact:	. Co	rbin		L	ab Conta		Ь					043254
1800 CARILLON BUND	Telephone:			Te	lephone: 513 8				Т	S	30	Y	17	9	 39	6	$\frac{1}{P9.2} = \frac{2}{000473}$
CINCINNATI OH 45240	Email:	rbin@	egm.ca	n /		s Turna (in BUS	around Time						Analyse	s			For lab use only
Phone: 513 825 7500 FAX 7495	}				TAT if differ	rent from t	3 weeks			27.10			400	1	2		Walk-in client
Project Name: RVAPIGG	Method of Ship		9		<u> </u>		2 weeks 1 week		1.00	8	8330	B	1	2 0	9012	200	Lab sampling
Project Number: 30174.00(6.01,10.1	Shipping/Track	king No:	•		0		2 days 1 day	N/ N/	/Grab-	1 00	9	Mants	9	37	8	200	Cooler-
P O #			Matrix		7 1	T	reservatives		1 2 1	10000 A	EXPLO	3	PCB SWYL O'DA	3 2	Chavids 901	Sigh	Sample Specific Notes /
Sample Identification	Sample Date	Sample Time	Aducon: Sedimen Solld		HCI HCI	NaOH	ZaAc/ NaOH Uupres	Power and	Com	DO	2	9	\$ 6	3 3	9		Special Instructions:
FWGUIMW-08760356-6W	8/20/13	1928	X				7			22	. /	2					404
FWGWMW-0876-0356-6F	1	1	X		1											X	404
FW65CFmw-002-0327-GW	8/20/13	1208	X				7			22	. /	2					002
FWGSCFMW-002-0327-GF		4	У		1											1	002
FWGSCFMW-004-0372-6W	8/29/3	1048					7			22	1	2					pH12
PWGSOFNWOOT-6372-GF	1	1	L X		/	_										/	pH12
FUGSLFMW-DUPLO-0378-GW	8/29/13	1302					7		Í	2 2	/	2					001
FWGSCFMW-DUPLO-0378-GF		1	<u> </u>		/	1		.								/	00 /
FWG DAZMW-115-0313-6W	8/20/13	1458	X	_	3	1	9			2	1	2	22	23	1		.51
FWGDAZnw-115-03/3-6F Pessible Hazard Identification	<u>_</u>			\perp	Sample Disa	2001/ 4	fee may be asso	asad if d	1	- votain	ad long	w than 1	l month)			f	51
Non-Hazard Flammable Skir	Irritant [Poison B	Unk	nown	Retu			Dispos			Ar					_ Months	
Special Instructions/QC Requirements & Comments: Metals were field filtered									Δ	+1	int	k i	1 60	Da	. (21	
Relinquished by:	Company:	-	Date Time:	12013	18:00	Rece	ived by:	<u>_</u>	100	, C		0	1 CC	<u>ما يون</u> درسار ک	<u>~</u>	<u></u> 	Date/Time: 5/2013-183
Relinquished by:	Company	~~	Date Time:	13-	1940	Rece	ived by:		B.			-	ompany:	<u>.</u>			Date/Time: 8 24 13 070
Relinquished by:	Company:		Date/Time:				ived in Laborat	tory by:			2		Company:	T			Date/Time:

Chain of Custody Record

TAL-4142 (0408)		THE L	EADER IN ENVIRONMENTAL TESTING	
Client	Project Manager		Date Chain of Custody Number	
EQM	John Mill	er	X/W//3 000473	
Address	Telephone Number (Area Co	de)/Fax Number	Lab Number 1 191=043254	
1800 Carmer Blod	5138257500		330 497 9396 Page 2 of 2	<u></u>
Circuit of OH 45240	Site Contact E.Cerbin	Lab Contact	Analysis (Attach list if a prove space is needed)	
RVAAP 66 Ravenna Ohio	Carrier Waybill Number		Special Instructions of Reco	nns/
Contract/Purchase Order/Quote No. 30174.0016.01.10.1	Matrix	Containers & Preservatives	Special Instruction Conditions of Reco	
Sample I.D. No. and Description (Containers for each sample may be combined on one line)	Time 41t Vaneans	Unpress. HISSOA HINOS HCI NaOH ZnAc/ NaOH	Special Instruction Conditions of Reco	
FWGEOUTP Team 2-Trip 8/20/13	0800 X	2	2 -	SZ
FWGEQUIPRINSe2-034/6W 8/20/13	1342 X	1/3/	322222111 / 04	411
FWG DAZMW-DUPI-0336-6W 8/20/13	1608	5 Cal The	2 × × / 2 2	20
FWG DAZMW - DUPI-0336-GF 1	1			20
1 000		 		
				—
	-			
Rossible Hazard Identification	Comple Dianage			
Non-Hazard 🗌 Flammable 🗎 Skin Irritant 🗌 Poison B	Sample Disposal	nt Disposal By Lab	(A fee may be assessed if samples are retained Archive For Months longer than 1 month)	
Turn Around Time Required 24 Hours 48 Hours 7 Days 14 Days 21 Days	other Per SOW	QC Requirements (Specify	ld Dikred except EQUIPRINSE	
1. Relinguished By	Date Time	- Metals were he	Date Time	$\overline{}$
Gate Corlin to	8/20/13 1830	5 / TE /	10.50 8-2013 183	3
2. Relinquished By	Date Time 8-28-13 194	2. Received By	Date Time	
3. Relinquished By	Date Time	3. Received By	15 0700 Date Time	٠
. Homitquisted by	Jaie	O. Heceived by	Date Time	
Comments AN ON COUNTY CANABY - Stays w	with the Sempler PINK - Field Con			

TestA	merica Laboratory location:	n of Custody Record		TestAmerica
Client Contact	Regulatory program: DW	NPDES RCRA		The Leader IN EVVIRONMENTAL TESTING LOG L CLE 5 LOG 3 Test America Laboratories, Inc.
Company Name:	Client Project Manager: Sohn Willed	Site Contact: Evik Corvin	Lab Confact: May K Loeb Telephone:	COC NO: 480082013
1800 Cavillon Blyd	Telephone: 513-825-7500 Email:	Telephone:		
Unanuat, 0100 45240	Email: OCOVETIN DERM. COM	verlyd Puneround Han de Risaes	Analysis	
Phone: 513-825-7500 Project Name:	Method of Shinment/Carrier	TAT if different from below 3 weeks	770 770 770 770 770 770 770 770 770 770	
RIAAR (Q (O+1) Project Number:	Method of Shipment/Carrier: LAS FICE UP Shipping/Tracking No.	2 weeks 1 week 2 days		
Project Number: 030174-0016-001-10.1	NIX	2 days	28960 24 82 24 8281 34 8087 plosive / Caniele	22
Sample Identification	Sample Date Sample Time Value of Value	H2SO4 HNO3 HCI NaOH ZaAe/ NaOH Unpres Other:	SVICH & SVICH	Sample Specific Notes / Special Instructions:
FUGTERM3-TRIP	08 bils 0800 X	2	46 X	
FWGL12mw-245c-03105-6	0956 4	3 120 1	CX XX X X	
TUGUIZMUZ 2450-0365-GF	1 1 1 3 20 64 1	3	36 X	Withoute + Mekals only
FUGULTMW-1850-0362-GW		1 1		X 8
FUGULZMW-1850-0862-GF FUGULZMW-244-0323-GW		1 8 1	VE XXX	15-1
92643mo-244-0323-GF			16 A X	-B-
FUGDETMW-0010-0314-GIT	1450 X <	92 3 9	YGXX XXXX	Site
FWGDETMW-ODIC-0314GF	V 1456 X		19 X	X goto
Possible Hazard Identification Non-Hazard Flammable Skin	Liritant Poison B Unknown	Sample Disposal (A fee may be associed if s	tol Dyr I oh Archive For	Months
Special Instructions/OC Requirements & Comments:	Jemps W	lay not meet re	of f collected hear	r pickup time.
Metals & Dek. Fred	1 HOUCH		Company /	
Relingshed by	Company Date/Tinle:	3 (850) / C / /	ASC Company:	Date/Time:
Relinquished by:	Company: Date/Time:	3- /40 December 13- /40 Received in Laboratory by:	Birrs TA Company:	8 21 13 6 706 Date/Time:
		<u> </u>		TAL-0018 (1008)

#2208, TestAmerica Laboratories, Inc. All rights reserved.
TestAmerica & Design ™ are trademarks of TestAmerica Laboratories, Inc.

TestAmerica Canton TestAmerica Laboratory location: Test Americal Laboratories, In Sport Regulatory program: RCRA Other Client Contact <u>56036</u> Analysis Turnaround Time For lab use only (in BUS days) TAT if different from b Walk-in client Lab pickup Lab sampling 1 week Shipping/Tracking No: Job/SDG No: 2 days 1 day Matrix Containers & Preservatives Sample Specific Notes / H2SO4 Special Instructions: HCI Sample Date | SampleTime Sample Identification Page 576 of 45 ∞ Possible Hazard Identification Sample Disposal (A fee may be assessed if samples are retained longer than 1 month) ☐ Flammable Poison B Disposal By Lab Skin Irritant Return to Client Special Instructions/QC Requirements & Comments: 10500

Chain of Custody Record

Company:

Relinquished by:

Company:

TestAmerica Laboratory location: CANTON, OH

Chain of Custody Record

TestAmerica

THE LEADER IN ENVIRONMENTAL TESTING

Client Contact	Regulat	tory program:		□ DW	<u> </u>	□ NPD	ES		RCRA	,		Other							_			Toet	America Laboratories, Inc.
Company Name:	Client Project I	Manager:			15	Site Con	tact:					1	Lab (Contac	:					_			OC No.
EAM	JOHN	MILLER	2		l	ER	K	CO	RB	N			1	NK.	2	10	É8					ہے	## 082013
Address:	Telephone:				7	Felepho						1	Telep	hone:								\top	1 2
1800 CARILLON BLUD.	(513) 8	925-73	00		- 1	5AI	4E						1	330	,) .	49.	7-5	<i>33</i>	96	•		\vdash	of cocs
City/State/Zîp:	Email:						Abri M							-	_								
CINCINNATI, OH 45240	ECORB	IN EE	PM.C	o pe									L				Analy	rses					
Phone: (513) 825 - 7500						TA	T if differe		below	ks	5 CM (6 Kin)		60	8270	7	N	0,		2	200	$\overline{}$		
Project Name:	Method of Ship				\neg	PE	e [2 week	ks			826	8	1808	848Z	25.50	.	0/2	16.0	X		
RUAAR 66 (OH) Project Number:	LAB F.					50U			1 week	k	100		٧	"	8	2	1	W		1.0	0		
	Shipping/Track	cing No:				200			2 days									2	,	٠	3		
03474.0016.001.10.1	P/A		Al Control of the Control						1 day					N				1	12	w	2		
FO#								NG OF I						١,,			6	12	3	9	0		
		ļ	SIS	ti l	.	z .	, l	_	> =	ន [:		WC	Suo	2	3	à.	2	12	11	X		Sample Specific Notes /
Sample Identification	Sample Date	Sample Time	Air	Sedimen	Other	H2SO4	HCI HCI	NaOH	ZnAc/ NaOII	Unpres		g (S	12	53	6	6	1	0	v	1	6		Special Instructions:
FWGTEAM 4-TRIP	08/20/13	08:00	Χ				2			- maquali via		N 6	Χ			Lorano maria							A505
FW68K6 MW-010C-0311-6F	08/20/13	69:34	X							2		96						·			X		A505
FW6812mw-013-0313-601	08/20/13	10:30	X							4		116			X	X							A505
FW6 FW6 may - 011-0348-610	08/20/13	11:50	X							5		NB		X			X.	X					523
FWGFUL MW-011-0348-6F	08/20/13	11:50	X				/					96								X			SR3
FW6FW6 MW-012-0349-6W	08/24/13	12:54	X							5		106		X			×,	\times					FC1
FW6FW6MW-012-0349-6F	08 20 13	12:54	X			_/	/					6	Ž							X			EC1
FW61110 mw-003C-0361-6W	08/20/13		X				3					16	X	•								\perp	A505
FW61110 MW-003C-0361-6F	08/20/13		X					_		/		6								X		\perp	A505
FW6111mw-0640-0352-6W	08/20/13	16:04	X			·				7		N 6		X	X		/ -	X					E21
Possible Hazard Identification Non-Hazard Flammable Skin	Irritant [Poison B] Unl	known		le Dispo					samples sal By L			Ionger Arc			th)			Mont	ths	
Special Instructions/QC Requirements & Comments: ALL PIETALS, PERCHLORATE 11	AMPLES	ARE I	FIELD	O F.	1272	REI	2							/	924	U	Oĥ	<u>\$</u>	IN	C	poil	T.K	A505
TEMPS MAT NOT MEET RE	PUIRE										059	Te	e e	1B	P								
Relinquished by:	Company:		Date/	Time:	12013	18	e as p	Recei	ived by:	10	_		l L), c	~	-	Compa	41	-×	<u>(</u>		Da	\$ 2 0/3 / &3 C
Relinquished by:	Company:	L-XC	Date/	1ime: 2-d	-13-	/	H		ived by:	1	<u>~</u>	B	=	<u></u>		ľ	Compa	ıy:				Da	1/2i/13 0700
Relinquished by:	Company:		Date/	Time:				Rece	ived in	Labora	tocy fly	1					Compa	ıy:				Da	te/Time:

Chain of Custody Record

TestAmerica Laboratory location: CANTON, OH

TestAmerica
THE LEADER IN ENVIRONMENTAL TESTING

Client Contact	Regulat	tory program:		□ DW	N	PDES		RCI	RA.		Other .							Toot Amountage T	ahawata-i 7
Company Name:	Client Project N	Manager:		-	Site C	ontact:						Lab Cont	act:						aboratories, Inc
EAM	JOHN)	MILLER			121	PIK	201	RB1	W			MA	er .	LOEB	?			THE OF	8 2013
Address:	Telephone:				Telep	hone:						Telephon							2 cocs
1800 CARILLON BLUD.	(513)87	25-7500	,		54	ME						133	(d) 49	97-9	396	•		of_	COCs
City/State/Zip:	Email:																	100000	
CINCINNATI, OH 45240	ECORBI	NE EAN	. 401	4				gick 南原 阿姆斯斯	m) mor					Anal	yses				
Phone: (513) 825 - 7500 Project Name:					7	ΓΑΤ if di		om below				8			T				
Project Name:	Method of Ship				١,	2		_	eeks			19							
Project Number:		KNP			1	2		1 w				100							
Project Number: 030174 0016 001.10.1	Shipping/Track	ing No:			150	reV] 2 da	9 -			8)	
P O #				a and	dies.	2.55	Own		co terros.			W							
Sample Identification	Sample Date	Sample Time	suoenb	olid Other:	H2SO4	BINO3	IICI	NaOH ZnAc/	Unpres		ilis piltum.	METH						Special I	pecific Notes / Instructions:
			ALC: DATE: NAME OF PERSONS	2 2 0	+=	-	-	- -			100						_	2002	EK 10+
FW6LL 1mw-064c-0352-6F	08/20/13	16:04	X						/	1	6	X						E	21
		Ť																-	
			++		\bot	_	_		11				\bot	1_	_				
		-	+	+	-		-		+			_	+	+	+	++	-	-	
								_	_	1									
X-			\prod			_	-							11		1 1	\top	1	
			$\perp \perp$		1	\rightarrow	$ \bot $		\perp										
			1-1-	1					+										
			++-	+	1	+		-	+	\rightarrow	$\forall \forall$		++	+	-	++	-	 	
												_	\top					Ì	
			11						11						\neg				
			44		\perp	\rightarrow			$\perp \perp$			\perp	\perp		\searrow				
														1 1		+			
			++	++-	+	+	+	+	+			+	+ +	+	+	+	_	 	
		İ			1		1							1 1				İ	
Possible Hazard Identification Non-Hazard Flammable Skii	Yunitana	Deisen P		TI-I									ed longer ti		th)				
Special Instructions/OC Pagairements & Comments:		Poison B		Unknown		Re	turn to	CHent	1994 <u>2</u>	Disposa	in DA F8	U [Archi		0.		ivionth	2 1000	-
ALL METALS PERCHLORATE S.	AMPLES	ARE FIL	10	FILTE	REA								AL	L VOI	951	11 60	OLEK	A505	
							n	15	CL0.	5E	Ta	LAB	PI	KU	0 1	TIME	~ <u>. </u>		
Relinquished by:	Company:		Date/	Time: 120/2013	? /	8'00	Re	eceived l	y: √	1	Dr	<u> </u>		Compa	ay: 2 レッ	uc,	/	Date/Time:	13 18
Relinquished by: Relinquished by:	1 AL	-XC	Bate/	Time: 20~3	. /	740		eccived t	oy: Cnn		B	n	-2	Compa	лу: 7			Date/Time:	/13 07
Relinquished by:	Company:		Date/	lime:			R	eceived	in Labora	ory by:				Compa	ny:			Date/Time:	,,

Chain of Custody Record

TestAmerica

THE LEADER IN ENVIRONMENTAL TESTING

TestAmerica Laboratory location: CHNTON OH

Regulatory program: Other Client Contact TestAmerica Laboratories, Inc. 08 i9 13 Company Name: Client Project Manager: Site Contact: Lab Contact: ERIK CORBIN MARK LOEB ERM UDAIN MILLER ____ of ____ COCs (513) 825-75.00 (330) 497-9396 54116 1800 CARILLON BLUD CINCINNATI, OH 45240 we six the leading fitting ECORBINE EAM. COM Analyses TAT if different from below (513) 825-7500 3 weeks Method of Shipment/Carrier: 2 weeks RUAAP66 (OH) LAB PICKUP 1 week SOW Shipping/Tracking No: 2 days 030174.0016.001,10.1 NB 1 day Sample Specific Notes / NaOII INO3 Special Instructions: HC Sample Date | Sample Time | COOLER 10# Sample Identification 08/19/13 ,和手 FWG TERM 4-TRIP 11:00 3 08/19/13 13:24 15 FUIL RQL MON-007C-0369-6W FWGRAL MW-0076-0369-6F XXX X XXX 577 08/19/13 15:34 3 FW6KQL MOW-0104-0325-6W X 577 FW6R91 MW - 010 C-325-6F XXXXXX 9 08/19/13 17:44 3 FOUGEBUMW-131-0316-6W 1912 MIZ FW6EB6 MW-131-0316-6F Sample Disposal (A fee may be assessed if samples are retained longer than 1 month) Possible Hazard Identification Poison B Months Non-Hazard ☐ Flammable Skin Irritant ☐ Unknown Precisi instructions/QC requirements & Comments:

ALL METALS, PERCHLORATE SAMPLES ARE FIELD FILTERED. ALL NOA'S IN COOLER 15 TEMPS MAY NOT MEET, REQUIREMENTS IF SAMPLE COLLECTION IS CLOSE TO LAB PICKUP TIME Relinquished by:

| Company: | Date/Time: | OB/19/2013 18:00 | Received to 12/18 | Company: | Company: | OB/19/2013 18:00 | Received to 12/18 | Company: | Compa 8-20-13-1940 TH Received in Laboratory by: Relinquished by:

	i#: 28145
Canton Facility	Cooler unpacked by:
Client Eam Site Name	Coolei unpacked by.
Cooler Received on 8-20-13 Opened on 8-21-13	
FedEx: 1st Grd Exp UPS FAS Stetson Client Drop Off TestAmerica Courier	
Packing material used: Bubble Wrap Foam Plastic Bag None Other	
COOLANT: Wet Ice Blue Ice Dry Ice Water None	
Cooler temperature upon receipt	
IR GUN# A (CF -1 °C) Observed Cooler Temp °C Corrected Cooler Te	
IR GUN#4 (CF 0 °C) Observed Cooler Temp °C Corrected Cooler Te	
IR GUN#5 (CF +1 °C) Observed Cooler Temp °C Corrected Cooler Te	
IR GUN# 8 (CF -0 °C) Observed Cooler Temp. °C Corrected Cooler Te	
2. Were custody seals on the outside of the cooler(s)? If Yes Quantity 25	
,	No NA
	s ®
	No
4. Did custody papers accompany the sample(s)?	
5. Were the custody papers relinquished & signed in the appropriate place?	, No
C 751 111 (4) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	- N-
	3 No
	s No
	No No
9. Sufficient quantity received to perform indicated analyses?	NO NA pH Strip Lot# <u>HC376062</u>
10. Were sample(s) at the correct pH upon receipt?	NA PH Strip Lot# HC3/0002
\ \	D No
	(No NA No
13. Was a trip blank present in the cooler(s)?	y 1NO
Contacted PM Date by via Verbal N	Voice Mail Other
Concerning	
	G 1 / 11
14. CHAIN OF CUSTODY & SAMPLE DISCREPANCIES	Samples processed by:
	100/16
15. SAMPLE CONDITION	
Sample(s) were received after the recommended hold	ling time had expired.
* \ / 1	d in a broken container.
Sample(s) were received with bubble >6 mm	in diameter. (Notify PM)
16. SAMPLE PRESERVATION	
	orther preserved in the laboratory
Sample(s) 1×500 Lach (HMS) WW-115, MW-DOP! were full time preserved: 8:25 Preservative(s) added/Lot number(s): 1/13020	and proserved at the tabelatory.

Cooler#	Cooler Receipt Form IR Gun #	/Narrative Observed Temp °C	Login # : 2504 Corrected Temp °C	Coolant
150	8.	5.4	5.4	Ice
ราก	ſ	4.6	4.6	ſ
MIZ		5.5	5.5	•
A505		1.6	1.6	
563		2-9	2-9	
ECI		4.4	4.4	
E21		5.8	5.8	
12009		3.3	3.3	
176 TS17 330		3.8	3.8	
TSIT		1.0	1.0	
330		4.2	4.2	
STU		2-6	2.6	
M23		1.6	7.6 5.1	
A1		5.1		
TSZ		4-2	4-2	
8		3.6	3.6	
Stre S	alamana.	2.9	2.9	
404	. H	4.2	4.2	
002	ļ	1-4	1.4	
PHIZ		0.8	0.8	
001		4.6	4.6	
5 l 04/1	<u> </u>	4.8	4. 8 1. 4	
		1,4		
220		2.4	2.4	
T54	4	2.8	2.8	<u> </u>
14.54				- TOTAL CONTRACTOR OF THE CONT
				TO THE STATE OF TH

Project Number: 030174.0016

Sample Event: August 2013

Data Reviewer/Date: Angye Dragotta/December 9, 2013

SDG: 240-28145 Rev1 Analysis: SW846 8260B

Review Questions:	Yes	No	N/A	Comments	Qual/Criteria
1. Did Chain-of-Custody information agree with laboratory report?	X				
2. Were samples preserved properly and received in good condition?	X				QAPP Table 5-1,
3. Were holding times met?	X				QAPP Table 5-1, J/UJ/R
4. Were sample storage requirements met?	X				QAPP Table 5-1,
5. Were all QAPP addendum-specified target analytes reported?	X				QAPP Table 4-5
6. Was the GC/MS system tuned with bromofluorobenzene (BFB) during each 12 hour shift (prior to ICAL and Cal Ver.)?	X				QSM Table F-4
7. Calibration 7a. Did the initial calibration curve consist of 5 concentration levels?	X			Instrument A3UX15-8/22/13, A3UX9 8/28/13	QSM Table F-4 R
7b. Did the Calibration Check Compounds (CCCs) (see Table 1 below) relative standard deviations (%RSD) ≤ 30%?	X				QSM Table F-4 R
7c. Were the minimum response factors (RFs) for the System Performance Check Compounds (SPCCs) (see Table 2 below) met?	X				QSM Table F-4
7d. Did target analytes with an average calibration type have an RSD < 15%?	X				QSM Table F-4 15% <rsd< 20%="J/UJ</td"></rsd<>
7e. IF the RSD was >15% was a different calibration option used?	X				
7f. If a linear regression curve was used, was the correlation coefficient r>0.995?	X			A3UX15-Acetone and methylene chloride used a linear fit with r>0.995. A3UX9-Acetone, 2-butanone and methylene chloride used a linear fit with r>0.995.	QSM Table F-4 R<0.99=-J/R
7g. If a non-linear regression was used, was the COD r≥0.99, with a minimum of 6 points for second order and 7 points for third order?			X		QSM Table F-4 R<0.99=-J/R
8. Was a LOD Level Verification performed quarterly for each reported analyte with detected results?	X				QSM Table F-4 and section D.1.2.1

Project Number: 030174.0016

Sample Event: August 2013

Data Reviewer/Date: Angye Dragotta/December 9, 2013

SDG: 240-28145 Rev1 Analysis: SW846 8260B

Review Questions:	Yes	No	N/A	Comments	Qual/Criteria
9. Was a MRL Level Verification run at the beginning and end of every daily sequence or every 12 hours?	X				
10. Were the QC/MRL recoveries 70-130%	X			The opening MRL analyzed 8/28/13 @ 1140 recovered above control limits of 70-130% for cis-1,3-dichloropropene at 145%. The closing MRL analyzed at 2119 recovered above control limits of 70-130% for chloroethane at 132% and methylene chloride at 160%. The methylene chloride result for sample FWGTEAM1-Trip was qualified, "J". No additional qualifications were required for cis-1,3-dichloropropene or chloroethane as there were no detected concentrations of these analytes reported for the bracketed field samples. The opening MRL analyzed 8/29/13 @ 1836 recovered above control limits of 70-130% for toluene at 142% and trichloroethene at 143%. No qualifications were required as there were no detected toluene or trichloroethene concentrations reported for the bracketed field samples.	Louisville Supplement to the DOD QSM
11. Was a second source verification (ICV) analyzed? Were results 80-120%?	X			A3UX15-8/22/13@ 2329, A3UX9 8/28/13 @2034	QSM Table F-4 J=<80% and >120%
12. Was a CCV run daily prior to analysis and every 12 hours of analysis time?	X			A3UX15-8/22/13@ 1031,8/28/13 @1031 A3UX9 8/29/13 @1723	QSM Table F-4
12a. Were the average response factors (RFs) for the System Performance Check Compounds (SPCCs) (see Table 2 below) met?	X				QSM Table F-4
12b. Were all target analytes ≤ 20%D?	X			The CCV analyzed 8/28/13 @ 1031 had a %D above control limits of 20% for acetone at 23.2% and 4-methyl-2-pentanone at 21.4%. The acetone result for sample FWGEQUIPRINSE2-0341-GW was qualified as estimated, "J". No qualifications were made for the 4-methyl-2-pentanone outlier as there were no detected 4-methyl-2-pentanone concentrations reported for the bracketed field samples.	QSM Table F-4 %D <20% = J/UJ
13. Were the internal standards added to every sample?	X				QSM Table F-4
13a. Was the EICP area between -50% and +100% of the ICAL mid-point standard?	X				QSM Table F-4 R
13b. Were the retention times for all IS compounds within ±30 seconds from the RT of the mid-point standard in the ICAL?	X				QSM Table F-4 J/UJ

Project Number: 030174.0016

Sample Event: August 2013

Data Reviewer/Date: Angye Dragotta/December 9, 2013

SDG: 240-28145 Rev1 Analysis: SW846 8260B

Review Questions:	Yes	No	N/A	Comments	Qual/Criteria
14. Were the retention times for target analytes within ±0.06 RRT units from the RT of the midpoint standard in the ICAL or the most recently updated RRT for all samples?	X				QSM Table F-4 J
15. Was a method blank prepared and analyzed with each batch?	X				QSM Table F-4
15a. Were target analytes detected in the method blank >1/2 the MRL >RL for common contaminants?	X			Checked by ADR. Toluene was detected at 0.164µg/L in the method blank from batch 240-99628. No qualifications were required as there were no detected toluene concentrations reported for the associated field samples.	QSM Table F-4 <5/10X =B
16. Was a field blank (equipment and/or trip) collected and analyzed?	X				
16a. Were target analytes detected in the field blanks?	X			Checked by ADR. Methylene chloride was detected in FWGTEAM1-TRIP at 0.33µg/L, in FWGTEAM2-TRIP at 0.59µg/L, in FWGTEAM3-TRIP at 0.45µg/L, FWGTeam4-Trip (collected 8/19/13) at 0.61µg/L and FWGTeam4-Trip (collected 8/20/13) at 0.52µg/L. FWGEQUIPRINSE1-0340-GW had acetone detected at 19µg/L, carbon disulfide at 0.13µg/L, toluene at 0.14µg/L and 2-butanone at 1.5µg/L. FWGEQUIPRINSE2-0341-GW had acetone detected at 21µg/L, carbon disulfide at 1.3µg/L and 2-butanone at 1.1µg/L. The carbon disulfide result for sample FWGDA2mw-115-0313-GW were qualified, "B" as the detected concentrations were <5x blank contamination. The acetone results for samples FWGRQLmw-007c-0369-GW and FWGRQLmw-010c-0325-GW were qualified, "B" as the detected concentrations were <10x blank contamination. There were no detected 2-butanone or toluene results reported for the associated field samples, so no qualifications were made for the 2-butanone or toluene contamination.	QSM Table F-4 <5/10X =B
17. Was a LCS prepared and analyzed with each batch?	X				QSM Table F-4
17a. Were the LCS recoveries within limits specified in Table G-5 of the DoD QSM?	X			ADR checked section;	QSM Table F-4, Table G- 5, J/UJ
18. Was a MS/MSD prepared with each batch?			X	A matrix spike was not requested on a sample from this laboratory batch so no matrix spike information was provided or evaluated.	QSM Table F-4

Project Number: 030174.0016 **Sample Event:** August 2013

Data Reviewer/Date: Angye Dragotta/December 9, 2013

SDG: 240-28145 Rev1 **Analysis**: SW846 8260B

Review Questions:	Yes	No	N/A	Comments	Qual/Criteria
18a. Were the MS/MSD recoveries within limits					QSM Table F-4, Table G-
specified in Table G-4 of the DoD QSM with an			X		5
RPD <30%?					J/UJ Parent sample only
19. Was a field duplicate analyzed?	X			A field duplicate was collected and analyzed on sample FWGLL12mw-247-0336-GW.	QSM Table F-4,
19a. Were the field duplicates RPDs within				Checked by ADR.	QSM Table F-4,
<u>+</u> 30%?	X				RPD >30=J
					Parent sample only
20. Were surrogate recoveries within control					QSM Tables F-4 & G-3
limits specified in the DOD QSM?	X				>150%=J; 10% -
					50%=J/UJ; <10%=J/R
21. Were reported sample concentrations within calibration range?	X				

References:

DoD Quality Systems Manual (QSM), version 4.1, October 2010

Louisville DoD Quality Systems Manual Supplement (LS), Version 1 March 2007

Final Facility Wide Groundwater Monitoring Program, RVAAP-66 Facility Wide Groundwater Quality Assurance Project Plan (QAPP) Addendum for the Ravenna Army Ammunition Plant, Ravenna, OH, Environmental Quality Management, January 2012

Final Facility Wide Quality Assurance Project Plan for Environmental Investigations Groundwater for the Ravenna Army Ammunition Plant, Ravenna, OH, SAIC, February 2011

Additional Comments:

Table 1 - CCCs

Analyte

1,1-Dichloroethene
Chloroform

1,2-Dichloropropane
Toluene
Ethylbenzene
Vinyl chloride

Table 2- SPCCs

Analyte	Minimum RF
Chloromethane	0.10
1,1-Dichlorethane	0.10
Bromoform	0.10
Chlorobenzene	0.30
1,1,2,2-Tetrachloroethane	0.30

Project Number: 030174.0016 Sample Event: August 2013

Data Reviewer/Date: Angela Dragotta/ September 30, 2013

SDG: 240-28145-0 R0 Analysis: SW846 8270

Review Questions:	Yes	No	N/A	Comments	Qual/Criteria
1. Did Chain-of-Custody information agree with laboratory report?	X				
2. Were samples preserved properly and received in good condition?	X				QAPP Table 5-1,
3. Were holding times met?	X				QAPP Table 5-1, J/UJ/R
4. Were sample storage requirements met?	X				QAPP Table 5-1,
5. Were all QAPP-specified target analytes reported?	X				QAPP Table 4-6
6. Was the GC/MS system tuned each 12 hour shift (prior to ICAL and Cal Ver.)?	X				QSM Table F-4
7. Initial Calibration					
7a. Did the initial calibration curve consist of 5 concentration levels?	X			Instrument A4HP9-8/26/13	QSM Table F-4 R
7b. Did the Calibration Check Compounds (CCCs) (see Table 1 below) relative standard deviations (%RSD) ≤ 30%?	X				QSM Table F-4 R
7c. Were the minimum response factors (RFs) for the System Performance Check Compounds (SPCCs) (see Table 2 below) ≤0.050?	X				QSM Table F-4
7d. Were all other target analytes reported with an avg response have an RSD \leq 15%?	X				QSM Table F-4 15% <rsd< 20%="J/UJ</td"></rsd<>
7e. IF the RSD was >15% was a different calibration option used?	X				
7f. If a linear regression curve was used, was the correlation coefficient r>0.995?	X				QSM Table F-4 R<0.99=-J/R
7g. If a non-linear regression was used, was the COD r≥0.99, with a minimum of 6 points for second order and 7 points for third order?	X			A4HP9 (8/26/13) - Benzoic acid, 2,4-dinitrophenol and 4,6-dinitro-2-methylphenol used a linear fit.	QSM Table F-4 R<0.99=-J/R
8. Was a LOD Level Verification performed quarterly for each reported analyte?	X				QSM Table F-4 and section D.1.2.1
9 Was a breakdown check run at the beginning of every 12 hours with DDT degradation <20% and tailing factors of benzidine and pentachlorophenol <2?	X				QSM Table F-4 R

Project Number: 030174.0016 Sample Event: August 2013

Data Reviewer/Date: Angela Dragotta/ September 30, 2013

SDG: 240-28145-0 R0 Analysis: SW846 8270

Review Questions:	Yes	No	N/A	Comments	Qual/Criteria
10. Was a MRL Level Verification run at the beginning and end of every daily sequence or every 12 hours with recoveries within 70-130%?	X			8/31/13 @ 1155, 2044 The opening and closing MRL checks analyzed 8/31/13 recovered above control limits of 70-130% for 4-nitrophenol at 136% and 138%, respectively. No qualification of the data was required as there were no detected concentrations of 4-nitrophenol reported for the bracket field samples. 9/3/13 @ 0817, 1715 and 9/4/13 @0900, 1812	Louisville Supplement to the DOD QSM
11. Was a second source verification (ICV) analyzed? Were results 80-120%?	X			A4HP9 8/26/13 @ 1509,	QSM Table F-4 J=<80% and >120%
12. Was a CCV run daily prior to analysis and every 12 hours of analysis time?	X			A4HP9 8/31/13 @ 1101, 9/3/13 @ 0727 and 9/4/13 @0808	QSM Table F-4
12a. Were the average response factors (RFs) for the System Performance Check Compounds (SPCCs) ≥0.050?	X				QSM Table F-4
12b. Were all target analytes ≤ 20%D?		X		The CCV analyzed 8/31/13 @1101 had 4-nitrophenol with a %D above control limits of 20% D at 26.6% and 4-nitroanailine above limits at 20.9%. The CCV analyzed 9/3/13 @0727 had 4-nitrophenol with a %D above control limits of 20% D at 31.7%. The CCV analyzed 9/4/13 @0808 had 4-nitrophenol with a %D above control limits of 20% D at 37.1% and 4-nitroanailine above limits at 24.2%. No qualifications were made as there were no detected concentrations of 4-nitrophenol or 4-nitroaniline reported for the associated field samples.	QSM Table F-4 %D <20% = J/UJ
13. Were the internal standards added to every sample?	X				QSM Table F-4
13a. Was the EICP area between -50% and +100% of the ICAL mid-point standard?	X				QSM Table F-4 R
13b. Were the retention times for all IS compounds within ±30 seconds from the RT of the mid-point standard in the ICAL?	X				QSM Table F-4 J/UJ
14. Were the retention times for target analytes within ±0.06 RRT units from the RT of the midpoint standard in the ICAL or the most recently updated RRT for all samples?	X				QSM Table F-4 J

Project Number: 030174.0016 Sample Event: August 2013 Data Reviewer/Date: Angela Dragotta/ September 30, 2013

SDG: 240-28145-0 R0 Analysis: SW846 8270

Review Questions:	Yes	No	N/A	Comments	Qual/Criteria
15. Was a method blank prepared and analyzed with each batch?	X				QSM Table F-4
15a. Were target analytes detected in the method blank >1/2 the MRL, >RL for common contaminants?	х			Checked by ADR. bis (2-Ethylhexyl)phthalate was detected in the method blank from batch 240-98943 at 0.376μg/L and at 0.601μg/L in the method blank from batch 240-984497. The bis (2-ethylhexyl) phthalate results for samples FWGFWGmw-012-0349-GW, FWGLL12mw-187-0363-GW, FWGLL12mw-242-0364-GW, FWGLL12mw-245c-0365-GW, FWGLL12mw-247-0336-GW, FWGLL12mw-DUP3-0338-GW, FWGLL1mw-064c-0352-GW, FWGLL1mw-087c-0356-GW, FWGLL3mw-244-0323-GW, FWGSCFmw-002-0327-GW, FWGSCFmw-004-0372-GW and FWGSCFmw-DUP6-0378-GW were qualified, "B".	QSM Table F-4 <5/10X =B
16. Was a field blank (equipment and/or trip) collected and analyzed?	X			FWGEQUIPRINSE1-0340-GW, FWGEQUIPRINSE2-0341-GW	
16a. Were target analytes detected in the field blank?	X			Checked by ADR. bis (2-Ethylhexyl) phthalate was detected at 0.38µg/L, diethylphthalate at 1.3µg/L and benzyl alcohol at 0.44µg/L in FWGEQUIPRINSE1-0340-GW. bis (2-Ethylhexyl) phthalate was detected at 0.53µg/L, diethylphthalate at 1.4µg/L, phenol at 0.61µg/L and benzyl alcohol at 0.66µg/L in FWGEQUIPRINSE2-0341-GW. The bis (2-ethylhexyl) phthalate results for samples FWGDA2mw-114-0312-GW, FWGDA2mw-115-0313-GW, FWGDA2mw-DUP1-0336-GW, FWGDETmw-001c-0314-GW, FWGDETmw-002c-0315-GW, FWGDETmw-003c-0343-GW FWGFWGmw-012-0349-GW, FWGLL12mw-187-0363-GW, FWGLL12mw-247-0364-GW, FWGLL12mw-245c-0365-GW, FWGLL12mw-247-0336-GW, FWGLL12mw-DUP3-0338-GW, FWGLL1mw-064c-0352-GW, FWGLL1mw-087c-0356-GW, FWGLL3mw-244-0323-GW, FWGSCFmw-002-0327-GW, FWGSCFmw-004-0372-GW and FWGSCFmw-DUP6-0378-GW were qualified, "B". No qualifications were made for the diethylphthalate, phenol or benzyl alcohol contamination as there were no detected 2-butanone, phenol or benzyl alcohol concentrations reported for the associated field samples.	QSM Table F-4 <5/10X =B
17. Was a LCS prepared and analyzed with each batch?	X				QSM Table F-4

Project Number: 030174.0016 Sample Event: August 2013

Data Reviewer/Date: Angela Dragotta/ September 30, 2013

SDG: 240-28145-0 R0 **Analysis**: SW846 8270

Review Questions:	Yes	No	N/A	Comments	Qual/Criteria
17a. Were the LCS recoveries within limits specified in Table G-6 of the DoD QSM?	x			ADR checked section;	QSM Table F-4, Table G-6 J/UJ
18. Was a MS/MSD prepared with each batch?	X			A matrix spike was performed on sample FWGLL12mw-245C- 0365-GW	
18a. Were the MS/MSD recoveries within limits specified in Table G-6 of the DoD QSM with an RPD <30%?	х				QSM Table F-4, Table G- 6 J/UJ Parent sample only
19. Was a field duplicate analyzed?	X			A field duplicate was analyzed on sample FWGLL12mw-247-0336-GW, FWGSCFmw-004-0372-GW and FWGDA2mw-115-0313-GW.	
19a. Were the field duplicates RPDs within ±50%?	x			Checked by ADR.	QSM Table F-4, RPD >50=J Parent sample only detected above LOQ
20. Were surrogate recoveries within control limits specified in the DOD QSM?	x				QSM Tables F-4 & G-3 >150%=J; 10% - 50%=J/UJ; <10%=J/R
21. Were reported sample concentrations within calibration range?	X				

References:

- DoD Quality Systems Manual (QSM), version 4.1, October 2010
- Louisville DoD Quality Systems Manual Supplement (LS), Version 1 March 2007
- Final Facility Wide Groundwater Monitoring Program, RVAAP-66 Facility Wide Groundwater Quality Assurance Project Plan (QAPP) Addendum for the Ravenna Army Ammunition Plant, Ravenna, OH, Environmental Quality Management, January 2012
- Final Facility Wide Quality Assurance Project Plan for Environmental Investigations Groundwater for the Ravenna Army Ammunition Plant, Ravenna, OH, SAIC, February 2011

Additional Comments:

SDG: 240-28145-0 R0

Analysis: SW846 8270

Project Number: 030174.0016 Sample Event: August 2013

Data Reviewer/Date: Angela Dragotta/ September 30, 2013

Table 1: CCCs (All analytes if CCCs not included in standard)

Base / Neutral Compounds	Acid Compounds
Acenaphthalene	4-Chloro-3-methylphenol
1,4-Dichlorobenzene	2,4-Dichlorophenol
Hexachlorobutadiene	2-Nitrophenol
N-Nitrosodiphehylamine	Phenol
Di-n-octylphthalate	Pentachlorophenol
Fluoroanthene	2,4,6-Trichlorophenol
Benzo(a)pyrene	

Table 2: SPCCs -

N-Nitroso-di-n-propylamine	0.050
Hexachlorocyclopentadiene	0.050
2,4-Dinitrophenol	0.050
4-Nitrophenol	0.050

Project Number: 030174.0016 Sample Event: August 2013 Data Reviewer/Date: Angela Dragotta / October 1, 2013

SDG: 240-28145 R0 Analysis: SW846 8081A

Review Questions:	Yes	No	N/A	Comments	Qual/Criteria
1. Did Chain-of-Custody information agree with laboratory report?	X				
2. Were samples preserved properly and received in good condition?	X				QAPP Table 5-1, NELAC
3. Were holding times met?	X			Checked by ADR	QAPP Table 5-1 J/UJ/R
4. Were sample storage requirements met?	X				QAPP Table 5-1
5. Were all QAPP-specified target analytes reported?	X				QAPP Table 4-3
6. Was a DDT standard analyzed every 12 hours? Was the DDT %breakdown <15%?	X				QSM Table F-2 >15%=J/R
7. Was an endrin standard analyzed every 12 hours? Was the endrin %breakdown <15%?	X				QSM Table F-2 >15%=J/R
8. Initial Calibration					
8a. Does the initial calibration curve consist of 5 concentration levels?	X			Instrument A2HP3 8/29/13, 8/29/13(tox), A2HP9 9/11/13, 9/11/13 (tox)	QSM Table F-2 R
8a. Were the %RSDs for each analyte \leq 20%? OR was the average %RSD \geq 20% with the r^2 >0.990?	х			CLP-1 (8/23/13) Delta-BHC, 4,4'-DDE and 4,4'-DDD used a linear fit. CLP-2 (8/23/13) Delta-BHC used a quadratic fit. The peaks for 4,4'-DDD and Endosulfan II co-eluted on the confirmation column. No qualification of the data was required as there were no detected concentrations of 4,4'-DDD or Endosulfan II reported for the associated field samples.	QSM Table F-2 RSD>20% or r<0.99=J/R
9. Was a LOD Level Verification performed once per quarter with all target analytes detected?	x				QSM Table F-2 R
10. Was a MRL Verification performed at the beginning and end of the sequence or every 12 hours with results within limits of 70-130%?	X			 The MRL analyzed on 8/29/13@ 2251 recovered above control limits of 70-130% at 143% on CLP-2 for delta-BHC. The MRL analyzed on 8/30/13@ 0337 recovered above control limits of 70-130% at 149% on CLP-2 for delta-BHC. The closing MRL analyzed on 9/12/13 at 0209 recovered above control limits of 70-130 on CLP-1 and CLP-2 at 135% and 141% for 4,4'-DDE and at 131% and 135% for aldrin. No qualifications were required as there were no detected concentrations reported for delta-BHC, 4,4'-DDD or aldrin in the bracketed field samples. 	QSM Table F-2, G- 14 >UL=J; <ll=j r<="" td="" uj=""></ll=j>
11. Was a second source (ICV) verification analyzed after the ICAL? Were results 80-120%?	Х			A2HP3 8/23/13 @ 1238, 1830 (tox), 8/29/13 @ 1829, 9/11/13 @1351, 1554 (Tox)	QSM Table F-2 >120%=J;<80%=J/UJ

Project Number: 030174.0016 Sample Event: August 2013

Data Reviewer/Date: Angela Dragotta / October 1, 2013

SDG: 240-28145 R0 **Analysis**: SW846 8081A

Review Questions:	Yes	No N	N/A	Comments	Qual/Criteria
12. Was a CCV run every 12 hours or at the beginning and end of the analytical run with the %D for all target analytes ≤20%?			7/44	8/29/13 @2230, 8/30/13 @ 0235 (tox), 0316, 1044, 1134 (tox), 1155, and 9/11/13 @2021, 9/12/13 @ 0006, 128 (tox), 1034 (tox), 1054, 1510 (tox) The CCV analyzed 8/30/13 @ 0316 had a %D above control limits of 20% for endrin at 20.6% (CLP-1) and above limits for 4,4'-DDD at 23% and methoxychlor at 23.5% (CLP-2). No qualifications were required as there were no detected concentrations reported for the bracketed field samples. The CCV analyzed 8/30/13 @ 1044 had a %D above control limits of 20% for gamma-BHC at 24.3%, beta-BHC at 21.9%, heptachlor epoxide at 22.7%, gamma-chlordane at 24.4%, dieldrin at 25.9%, endrin at 34.9%, 4,4'-DDD at 42.3%, endosulfan II at 31.4%, endosulfan sulfate at 26.4 % and endrin ketone at 25% (CLP-1). CLP-2 had a %D above control limits of 20% for gamma-BHC at 21.6%, heptachlor epoxide at 20.7%, gamma-chlordane at 23.2%, dieldrin at 23.9%, endrin at 36.5%, 4,4'-DDD at 36%, endosulfan II at 21.9%, endosulfan sulfate at 30.2 %, endrin ketone at 29% and methoxychlor at 20.8%. No qualifications were required as there were no detected concentrations reported for the bracketed field samples. The CCV analyzed 8/30/13 @ 1155 had a %D above control limits of 20% for alpha-BHC at 22.4%, gamma-BHC at 30.9%, beta-BHC at 28.3%, delta-BHC at 22.5%, heptachlor epoxide at 27.3%, gamma-chlordane at 30.9, alpha-chlordane at 26.3%, 4,4'-DDD at 23.7%, cindosulfan sulfate at 24.5 % and endrin ketone at 22.5%, cindosulfan II at 27.3%, condosulfan sulfate at 24.5 % and endrin ketone at 21.9%, 4,4'-DDD at 22.6%, endosulfan sulfate at 21 % and endrin ketone at 21%, 4,4'-DDD at 22.6%, endosulfan sulfate at 21 % and endrin ketone at 20.9%. No qualifications were required as there were no detected concentrations reported for the bracketed field samples. The CCV analyzed 9/12/13 @ 0006 had a %D above control limits of 20% for alpha-BHC at 46.8%, gamma-BHC at 36.9%, beta-BHC at 47.7%, delta-BHC at 38%, aldrin at 51.4%, heptachlor epoxide at 43.4%, gamma-BHC at 36.9%, beta-BHC at 47.5%, delta-BHC at 45.5%, aldrin a	QSM Table F-2 >120%=J; <80%=J/UJ

Project Number: 030174.0016 Sample Event: August 2013 Data Reviewer/Date: Angela Dragotta / October 1, 2013

SDG: 240-28145 R0 Analysis: SW846 8081A

Review Questions:	Yes	No	N/A	Comments	Qual/Criteria
				endosulfan II at 29.9% and endosulfan sulfate at 27%. The beta-BHC results for samples FWGSCFmw-002-0327-GW, FWGSCFmw-004-0372-GW, FWGSCFmw-DUP6-0378-GW, FWGDA2mw-115-0313-GW, FWGLL12mw-245c-0365-GW and FWGLL3mw-244-0323-GW and the endrin ketone result for sample FWGDETmw-001c-0314-GW were qualified as estimated, "J". The CCV analyzed 9/12/13 @ 1531 had a %D above control limits of 20% for alpha-BHC at 24.3%, gamma-BHC at 21.4%, delta-BHC at 21.4%, heptachlor at 20.5%, aldrin at 26.9%, 4,4'-DDE at 26.3%, endrin at 23.5%, 4,4'-DDD at 21% and below limits for endrin ketone at 20.9%(CLP-1). CLP-2 had a %D above control limits of 20% for alpha-BHC at 29.2%, gamma-BHC at 26%, beta-BHC at 24.3%, delta-BHC at 26%, heptachlor at 23.6%, aldrin at 30.7%, heptachlor epoxide at 23.9%, gamma-chlordane at 22.4%, alpha-chlordane at 23.7%, endosulfan I at 21.1%, 4,4'-DDE at 30.6%, dieldrin at 23.5%, endrin at 27.6%, 4,4'-DDD at 26.1%, endosulfan II at 20.9%, 4,4'-DDT at 21.9%, methoxychlor at 23% and endosulfan sulfate at 21.1%. The beta-BHC result for sample FWGDETmw-003c-0343-GW was qualified as estimated, "J".	
13. Was a method blank prepared and analyzed with each batch?	Х			THOSE IN THE Qualities as estimated, V.	QSM Table F-2
14. Were target analytes detected> ½ the RL?		Х			QSM Table F-2 <5x=B
15. Was a field blank collected and analyzed?	X			FWGEQUIPRINSE1-0340-GW and FWGEQUIPRINSE2-0341-GW	
16. Were target analytes detected in the field blank analyses >1/2 the MRL?	x			FWGEQUIPRINSE1-0340-GW had beta-BHC detected at 0.018μg/L. No qualifications were required as there were no detected beta-BHC concentrations reported for the samples associated with FWGEQUIPRINSE1-0340-GW.	QSM Table F-2 <5x=B
17. Was an LCS prepared and analyzed with each batch?	X		7.77		QSM Table F-2
18. Were the LCS recoveries within limits specified in QSM Table G-14?	X			Checked by ADR	QSM Table G-14 >UL=J; <ll=j r<="" td="" uj=""></ll=j>
19. Was a MS/MSD pair prepared with each batch?	Х				QSM Table F-2
20. Was the MS/MSD parent a Ravenna sample?			Х	A matrix spike was not requested on a sample from this laboratory reporting batch, so data matrix spike data was provided or evaluated.	
21. Were MS/MSD recoveries and RPD within limits specified in QSM Table G-14?			х		QSM Table F-2 Pj with >UL=J; <ll=j r<="" td="" uj=""></ll=j>

Project Number: 030174.0016 Sample Event: August 2013

Data Reviewer/Date: Angela Dragotta / October 1, 2013

SDG: 240-28145 R0 Analysis: SW846 8081A

Review Questions:	Yes	No	N/A	Comments	Qual/Criteria
22. Were surrogate recoveries as specified in QSM table G-3?		Х		The surrogate DCB recovered below control limits of 30-135 in sample FWGLL12mw-247-0336-GW at 25% on CLP-1 and CLP-2. TCMX recovered above control limits of 25-140% in sample FWGSCFmw-002-0327-GW at 194% (CLP-1), in sample FWGDA2mw-115-0313-GW at 181% (CLP-1) and in sample FWGDETmw-003c-0343-GW at 151% (CLP-2). The results for sample FWGLL12mw-247-0336-GW were qualified as estimated, "UJ". The beta-BHC-results for samples FWGSCFmw-002-0327-GW and FWGDA2mw-115-0313-GW were qualified as estimated, "J". No qualifications were required for FWGDETmw-003c-0343-GW, as there were no detected concentrations associated with the sample.	QSM Table F-2 >LL=J; <ll=uj j="" r<="" td=""></ll=uj>
23. Was a field duplicate analyzed? Were the RPDs ≤50%?		X		Checked by ADR. A field duplicate was collected and analyzed for samples FWGLL12mw-247-0336-GW and FWGSCFmw-004-0372-GW. The field duplicate RPD was above control limits of 50% for the beta-BHC field duplicate RPD on sample FWGLL12mw-247-0336-GW at 200%. The beta-BHC result for sample FWGLL12mw-247-0336-GW was qualified as estimated, "J".	RPD >50=J parent sample only
24. Were all positive results verified by a second column confirmation? Were the RPD's ≤ 40?		X		The second column confirmation analysis was above control limits of 40% for beta-BHC at 174% on sample FWGLL12mw-247-0336-GW. The beta-BHC result for sample FWGLL12mw-247-0336-GW was qualified as estimated, "J".	QSM Table F-2 >40 RPD=J

References:

DoD Quality Systems Manual (QSM), version 4.1, October 2010

Louisville DoD Quality Systems Manual Supplement (LS), Version 1 March 2007

Final Facility Wide Groundwater Monitoring Program, RVAAP-66 Facility Wide Groundwater Quality Assurance Project Plan (QAPP) Addendum for the Ravenna Army Ammunition Plant, Ravenna, OH, Environmental Quality Management, January 2012

Final Facility Wide Quality Assurance Project Plan for Environmental Investigations Groundwater for the Ravenna Army Ammunition Plant, Ravenna, OH, SAIC, February 2011

Additional Comments:

Project Number: 030174.0016 Sample Event: August 2013

Data Reviewer/Date: Angela Dragotta/ October 1, 2013

SDG: 240-28145-0 **Analysis**: SW846 8082

Review Questions:	Yes	No	N/A	Comments	Qual/Criteria
1. Did Chain-of-Custody information agree with laboratory report?	X				
2. Were samples preserved properly and received in good condition?	X				QAPP Table 5-1
3. Were holding times met?	x			Samples FWGB12mw-013-0313-GW, FWGDETmw-001c-0314-GW, FWGDETmw-002c-0315-GW, FWGEQUIPRINSE2-0341-GW, FWGDA2mw-114-0312-GW, FWGDA2mw-115-0313-GW, FWGDETmw-003c-0343-GW, FWGEBGmw-131-0316-GW, FWGRQLmw-007c-0369-GW and FWGRQLmw-010c-0325-GW were reextracted outside of hold but within two times hold due to surrogate outliers in the initial extraction. All data was reported from the reextract and qualified as estimated, "UJ".	QAPP Table 5-1 J/UJ/R
4. Were sample storage requirements met?	X				QAPP Table 5-1
5. Were all QAPP-specified target analytes reported?	X				QAPP Table 4-3
6. Calibration					
6a. Does the initial calibration curve consist of 5 concentration levels of Aroclors 1016 and 1260?	X			Instrument A2HP12 8/27/13 Stds = 0.05, 0.1, 0.2, 0.5, 1.0, 2.0	QSM Table F-2 R
6b. Was the % RSD \leq 20%? or Were the $r^2s > 0.990$?	x				QSM Table F-2 RSD>20% or r<0.99= J/R
7. Was a LOD Verification performed once per quarter? Were all target analytes detected?	x				QSM Table F-2 R
8. Was an MRL Level Verification performed at the beginning and end of the sequence or every 12 hours? Were recoveries 70-130%?	x		1-1		LCG Table 3 >UCL=J; <lcl=j r;<="" td="" uj=""></lcl=j>
9. Was a second source (ICV) verification performed after the ICAL? Were the avg of all peaks for each aroclor 80-120%?		X		A2HP12 8/28/13	QSM Table F-2 >120%=J; <80%=J/ UJ/R
10. Were single standards of the other five Aroclors run to aid in pattern recognition and to determine a single point calibration factor?		x		All aroclors had a multi-point calibration.	Method 8082 Section 5.6.2

Project Number: 030174.0016 Sample Event: August 2013

Data Reviewer/Date: Angela Dragotta/ October 1, 2013

SDG: 240-28145-0 Analysis: SW846 8082

Review Questions:	Yes	No	N/A	Comments	Qual/Criteria
11. Was a CCV run every 12 hours?	X		1 - 2	9/4/13 @ 1119, 1359, 1625	QSM Table F-2
12. Was the % D \leq 20 % for each analyte?	x				QSM Table F-2 D>20%(neg)=J/R D>20% (pos) =J
13. Was a method blank prepared and analyzed with each batch?	X			Section checked by ADR	QSM Table F-2
14. Were target analytes <1/2 the MRL?	X				QSM Table F-2 <5x = B
15. Was an equipment blank collected and analyzed?	X			FWGEQUIPRINSE1-0340-GW and FWGEQUIPRINSE2-0341-GW	
16. Were target analytes in the field blank analyses (equipment) <1/2 the MRL?	X			Section checked by ADR	QSM Table F-2 $<5x = B$
17. Was an LCS prepared and analyzed with each batch?	X				QSM Table F-2
18. Were the LCS recoveries within limits specified in LCG Appendix C?	x			Section checked by ADR	QSM Table F-2, Table G-16, >UL=J; <lcl%=j r="" td="" uj;<=""></lcl%=j>
19. Was a MS/MSD pair prepared with each batch?			X	A matrix spike analysis was not designated with this group of samples, so no information was provided or evaluated.	LCG Table 3
20. Was the MS/MSD parent a Ravenna sample?			X		
21. Were MS/MSD recoveries and RPD within limits specified in the DOD QSM Table G-16?			X		QSM Table F-2, Table G-16, >UL=J; <lcl%=j r="" td="" uj;<=""></lcl%=j>
22. Was the surrogate spiked into all samples?	X	-			
23. Were surrogate recoveries As specified in table G-3 of the DoD QSM?		x		Checked by ADR. As there were no detected target analyte concentrations reported in the associated field samples, only the primary column was evaluated. The surrogate, DCB, recovered below control limits of 40-135% for samples FWGB12mw-013-0313-GW at 33%, FWGDETmw-001c-0314-GW at 28%, FWGDETmw-002c-0315-GW at 37% and FWGEQUIPRINSE2-0341-GW at 31%. The results for samples FWGB12mw-013-0313-GW, FWGDETmw-001c-0314-GW, FWGDETmw-002c-0315-GW and FWGEQUIPRINSE2-0341-GW were qualified as estimated, "UJ".	QSM Table F-2, Table G-3 >UCL=J; <lcl=j r<="" td="" uj=""></lcl=j>

Project Number: 030174.0016 Sample Event: August 2013

Data Reviewer/Date: Angela Dragotta/ October 1, 2013

SDG: 240-28145-0 **Analysis**: SW846 8082

Review Questions:	Yes	No	N/A	Comments	Qual/Criteria
24. Was a field duplicate analyzed? Were the RPDs <50%?	X			Checked by ADR.	QSM Table F-2, RPD >50=J
25. Were all positive results verified by a second dissimilar column confirmation? Was the RPD ≤ 40?	Ì		X	No detected concentrations were reported for the reported field samples.	QSM Table F-2, RPD>40=J

References:

DoD Quality Systems Manual (QSM), version 4.1, October 2010

Louisville DoD Quality Systems Manual Supplement (LS), Version 1 March 2007

Final Facility Wide Groundwater Monitoring Program, RVAAP-66 Facility Wide Groundwater Quality Assurance Project Plan (QAPP) Addendum for the Ravenna Army Ammunition Plant, Ravenna, OH, Environmental Quality Management, January 2012

Final Facility Wide Quality Assurance Project Plan for Environmental Investigations Groundwater for the Ravenna Army Ammunition Plant, Ravenna, OH, SAIC, February 2011

Project Number: 030174.0016 Sample Event: August 2013

Data Reviewer/Date: Angela Dragotta/ October 1, 2013

SDG: 240-28145-1 Analysis: SW846 9012

Review Questions:	Yes	No	N/A	Comments	QUAL/Criteria
Did Chain-of-Custody information agree with laboratory report?	X	1	Bath to the		
2. Were samples preserved properly and received in good condition?	X				QAPP Table 5-1, NELAC
3. Were holding times met?	X				QAPP Table 5-1 J/UJ/R
4. Were sample storage requirements met?	X				QAPP Table 5-1
5. Were all QAPP-specified target analytes reported?	X				QAPP Table 4-1
6. Does the initial calibration curve consist of at least 6 standards and one blank, with the correlation coefficient $R \ge 0.995$?	X				DoD QSM Table F-10 R
7. Were a high and low standard distilled and analyzed with results within $\pm 15\%$?	X				DoD QSM Table F-10 R
8. Was an LOD Verification performed at least once per quarter with all target analytes detected?	X				LCG Table 10 R
9. Was a MRL Level Verification performed at the beginning and end of the daily sequence? Were results within 70-130%?		x		No closing MRLs were analyzed. As the opening MRL checks recovered within limits, the cyanide results for samples FWGDETmw-002C-0315-GW, FWGDA2mw-114-0312-GW, FWGDA2mw-115-0313-GW, FWGEQUIPRINSE2-0341-GW, FWGDETmw-001C-0314-GW, FWGDETmw-003C-0343-GW, FWGRQLmw-007C-0369-GW, FWGRQLmw-010C-0325-GW and FWGEBGmw-131-0316-GW were qualified estimated, "J/UJ" as opposed to unusable.	LCG Table 10, LS >130%=J; 65-70%=J/UJ; <65%=J/R
10. Was a second source verification (ICV) analyzed after the ICAL and all analytes 85-115%?	X				DoD QSM Table F-10 >115%=J; 80-85%=J/UJ; <80%=J/R
11. Was a method blank prepared and analyzed with each batch?	X				DoD QSM Table F-10
12. Were target analytes detected in the method blank >1/2 the MRL?		X		Checked by ADR.	DoD QSM Table F-10 <5x=B
13. Was a field blank collected and analyzed?	X			FWGEQUIPRINSE1-0340-GW and FWGEQUIPRINSE2-0341-GW	
14. Were target analytes in the field blank analyses <1/2 the MRL?	X				DoD QSM Table F-10 <5x=B

Project Number: 030174.0016 Sample Event: August 2013

Data Reviewer/Date: Angela Dragotta/ October 1, 2013

SDG: 240-28145-1 Analysis: SW846 9012

Review Questions:	Yes	No	N/A	Comments	QUAL/Criteria
15. Was a field duplicate analyzed? Were the RPDs ≤20%?	X			Checked by ADR.	>30% = J
16. Was an LCS prepared and analyzed with each batch?	x				DoD QSM Table F-10
17. Were the LCS recoveries 80-118%?	X			Checked by ADR.	DoD QSM Table F-10 Lab Limits >118%=J; 50-79%=J/UJ; <50%=R
18. Was a MS and duplicate (sample or matrix) prepared once per every 10 samples?	X				DoD QSM Table F-10
19. Was the MS parent a Ravenna sample?	X			FWGRQLmw-007c-0369-GW	14
20. Were matrix spike recoveries 42-140%?	x			Checked by ADR.	DoD QSM Table F-10 >140%=J; <42%=J/UJ/R

References:

DoD Quality Systems Manual (QSM), version 4.1, October 2010

Louisville DoD Quality Systems Manual Supplement (LS), Version 1 March 2007

Final Facility Wide Groundwater Monitoring Program, RVAAP-66 Facility Wide Groundwater Quality Assurance Project Plan (QAPP) Addendum for the Ravenna Army Ammunition Plant, Ravenna, OH, Environmental Quality Management, January 2012

Final Facility Wide Quality Assurance Project Plan for Environmental Investigations Groundwater for the Ravenna Army Ammunition Plant, Ravenna, OH, SAIC, February 2011

Additional Comments:

Project Number: 030174.0016 Sample Event: August 2013 Data Reviewer/Date: Angela Dragotta/ October 1, 2013

SDG: 240-28145-1 R0

Analysis: SW846 6010/6020/7470A

Review Questions:	Yes	No	N/A	Comments	Qual/Criteria
1. Did Chain-of-Custody information agree with laboratory report?	X				
2. Were samples preserved properly and received in good condition?	X				QAPP Table 5-1, NELAC
3. Were holding times met?	X				QAPP Table 5-1 J/UJ/R
4. Were sample storage requirements met?	X				QAPP Table 5-1
5. Were all QAPP-specified target analytes reported?	X				QAPP Table 4-1
6. Was a LOD Verification performed once per quarter with all target analytes detected?	X				DoD QSM Table F-8
7. Tuning (ICP MS Only)					
7a. Was a tune performed daily prior to calibration	X				DoD QSM Table F-8
7b. Mass Calibration < 0.1 amu from true value	X				R
7c. Resolution <0.9 amu full width at 10 % peak height	X				
7d. RSD <%5 for a minimum of four replicate analyses	X				
8.Calibration					1
8a. Was the ICAL performed daily with at least					DoD QSM
One high standard and a blank for ICP & ICPMS	X				Tables F-8 and F-7
Five standards and a blank for Hg	X				
8b. Was the correlation coefficient $r \ge 0.995$ for each Hg?	x				DoD QSM Tables F-8 and F-7 r<0.995=J/R
8c. Was the ICV (second source verification) analyzed after the ICAL with results 90-110% of the true value?	X				DoD QSM Tables F-8 and F-7
8d. Was the ICB analyzed after the ICV with detected results <1/2 the MRL?	x			ICP The ICB analyzed 9/9/13 @ 0749 had magnesium detected at 100μg/L. No qualifications were required as the detected magnesium results for the associated field samples were greater than 5x blank contamination.	DoD QSM Tables F-8 and F-7 < 5x = U

Project Number: 030174.0016 Sample Event: August 2013 Data Reviewer/Date: Angela Dragotta/ October 1, 2013

SDG: 240-28145-1 R0

Analysis: SW846 6010/6020/7470A

Review Questions:	Yes	No	N/A	Comments	Qual/Criteria
Sample Analysis		-	1 22 2 2		
9. Was a MRL Level Verification performed at the beginning of the daily sequence and end of the analytical sequence bracketing samples? Were results 70-130%?	X				LS to the DoD QSM DoD QSM Table G-18 >130%=J; 70-80%=J/UJ; <70%=J/UJ <65%=R, unless DL check with detected results
10. Were CCVs analyzed every 10 samples and at the end of the analytical sequence with results 90-110% of the true value?		х		ICPMS The beryllium CCV analyzed 9/9/13 at 1603 recovered above control limits of 90-110% at 112% and at 1902 with a recovery of 114%. No qualifications were made as there were no detected concentrations of beryllium reported for the bracketed field samples.	DoD QSM Tables F-8 and F-7 >110%=J, <85%=J/R 90-85%=J/UJ;
11. Were the CCBs run every 10 samples and at the end of the analytical sequence? Were results <1/2 the MRL?	x			ICP The CCBs analyzed 9/9/13 had magnesium detected from 101 μg/L to 105μg/L. No qualifications were required as the detected magnesium results for the bracketed field samples were greater than 5x blank contamination. ICPMS The CCBs analyzed 9/9/13 had beryllium detected from 0.068μg/L to 0.103μg/L, cadmium from 0.03μg/L to 0.252μg/L, iron from 13.9 μg/L to 47.1μg/L, sodium from 6.45μg/L to 25.8μg/L and thallium at 0.0609μg/L (9/9/13 at 1311). No qualifications were required as the detected cadmium, iron and sodium results for the bracketed field samples were greater than 5x blank contamination.	DoD QSM Tables F-8 and F-7 <5x = U
12. Was an Interelement Check Standard run at the beginning of the analytical sequence and every 12 hours with the ICS recovery within 80 to 120% of true value for each element of interest (ICP and ICPMS only)?	x				DoD QSM Tables F-8 and F-7 >120%=J; 50-79%=J/UJ; <50%=Pj/R
13. Was a method blank prepared and analyzed with each batch?	X				DoD QSM Tables F-8 and F-7
14. Were target analytes detected >1/2 the MRL in the method blank?	x			Checked by ADR. ICP- Manganese was detected in the method blank at 2.75µg/L (batch 240-98385) and at 6.26µg/L(batch 240-98503). No qualifications were required as the detected manganese results were greater than 5x blank contamination.	DoD QSM Tables F-8 and F-7 <5x = B

Project Number: 030174.0016 Sample Event: August 2013 Data Reviewer/Date: Angela Dragotta/ October 1, 2013

SDG: 240-28145-1 R0

Analysis: SW846 6010/6020/7470A

Review Questions:	Yes	No	N/A	Comments	Qual/Criteria
15. Was a field blank collected and analyzed?	X			FWGEQUIPRINSE1-0340-GW and FWGEQUIPRINSE2-0341-GW	
16. Were target analytes reported in the field blank analyses >1/2 the MRL?	x			ADR checked section. ICPMS- FWGEQUIPRINSE1-0340-GW had sodium detected at 410 µg/L. No qualifications were required as the detected sodium results associated FWGEQUIPRINSE1-0340-GW with were greater than 5x blank contamination.	DoD QSM Tables F-8 and F-7
17. Was a LCS prepared and analyzed with each batch?	X				DoD QSM Tables F-8 and F-7
18. Were the LCS recoveries within limits specified in LCG Appendix C?	x			Checked by ADR.	DoD QSM Tables G-18, F-8 and F-7 >120%=J; 70-79%=J/UJ; <70%=J/R
19. Was a matrix spike (MS) and lab duplicate sample prepared with each batch?	x				DoD QSM Tables F-8 and F-7
20. Was the MS and Lab Duplicate parent a Ravenna sample?	X			A matrix spike analysis was performed on sample FWGLL12mw-245C-0365-GF.	
21. Were the MS recoveries within 80-120%?	x				DoD QSM Tables G-18, F-8 and F-7, >120%=J; 70-79%=J/UJ; <70%=J/R All samples in batch
22. Was the lab sample duplicate RPD \leq 20%?		x		ICP- The lab duplicate analyzed on FWGLL12mw-245C-0365-GF had an RPD above control limits of 20% at 30% for cobalt. No qualifications were made as the detected concentration was less than the LOQ.	DoD QSM Tables F-8 and F-7 >20% = J All samples in batch
23. Was a serial dilution performed, with the five fold dilution within \pm 10% of the original result?	x				DoD QSM Tables F-8 and F-7 >20% = J All samples in batch
24. Was a Post Digestion Spike analyzed as needed? Were results within 75-125%?	x				LCG Table 7 >125%=J; 30-75%=J/UJ; <30%=R

Project Number: 030174.0016 Sample Event: August 2013

Data Reviewer/Date: Angela Dragotta/ October 1, 2013

SDG: 240-28145-1 R0

Analysis: SW846 6010/6020/7470A

Review Questions:	Yes	No	N/A	Comments	Qual/Criteria
25. Was a field duplicate analyzed? Were the RPDs ≤50% for sample results detected above the LOQ?		x		Checked by ADR- ICP- The field duplicate analyzed on sample FWGSCFmw-004-0372-GF was above control limits of 50% for barium at 63%, calcium at 53%, magnesium at 73%, and manganese at 164%. The barium, calcium, magnesium and manganese results for sample FWGSCFmw-004-0372-GF were qualified as estimated, "J". ICPMS- The field duplicate analyzed on sample FWGLL12mw-247-0336-GF was above control limits of 50% for aluminum at 54%. The aluminum result for sample FWGLL12mw-247-0336-GF was qualified as estimated, "J". The field duplicate analyzed on sample FWGSCFmw-004-0372-GF was above control limits of 50% for sodium at 67%. The sodium result for sample FWGSCFmw-004-0372-GF was qualified as estimated, "J".	>30% = J parent sample Evaluate results above the LOQ only
26. Were internal standards added to all ICPMS samples with intensity within 30-120% of the intensity of the ICAL internal standard?	x				DoD QSM Table F-8 >120%=J/R <20%=J

References:

- DoD Quality Systems Manual (QSM), version 4.1, October 2010
- Louisville DoD Quality Systems Manual Supplement (LS), Version 1 March 2007
- Final Facility Wide Groundwater Monitoring Program, RVAAP-66 Facility Wide Groundwater Quality Assurance Project Plan (QAPP) Addendum for the Ravenna Army Ammunition Plant, Ravenna, OH, Environmental Quality Management, January 2012
- Final Facility Wide Quality Assurance Project Plan for Environmental Investigations Groundwater for the Ravenna Army Ammunition Plant, Ravenna, OH, SAIC, February 2011

Project Number: 030174.0016 Sample Event: August 2013 Data Reviewer/Date: Angela Dragotta/October 2, 2013

SDG: 240-28145-1 R0

Analysis: SW846 8330 Explosives

Review Questions:	Yes	No	N/A	Comments	QUAL/Criteria
Did Chain-of-Custody information agree with laboratory report?	X				
2. Were samples preserved properly and received in good condition?	X				QAPP Table 5-1
3. Were holding times met?	X				QAPP Table 5-1 J/UJ/R
4. Were sample storage requirements met?	X				QAPP Table 5-1
5. Were all QAPP-specified target analytes reported?	X				QAPP Table 4-3
6. Was a LOD Verification analyzed once per quarter with all target analytes detected?	X				DoD QSM Table F-3 R
7.Calibration					
7a. Does the initial calibration curve consist of 5 concentration levels? (6 stds for quadratic curves)	X			LC10 7/24/13 LC12 8/14/13, 2-nitrotoluene coelutes with 4-nitrotoluene, LC12 not used as primary reporting column of 2-nitrotoluene and 4-nitrotoluene	
7b. Did all target analytes using avg response have an RSD \leq 15% ?	X				DoD QSM Table F-3 R
7c. If a linear regression curve was used, was the correlation coefficient r≥0.995? (0.990 for a quadratic curve).			X		
8. Was a second source verification (ICV) analyzed after the ICAL and all analytes 80-120%?	X			LC10 7/24/13 @1750 LC12 8/15/13 @ 0118	DoD QSM Table F-3 >120%=J; <80%= J/UJ;
Sample Analysis					
9. Was a CCV run at the beginning of the analytical sequence, every 10 samples and at the end of the analytical run with targets and surrogates recovering 80-120% of the true value?	x			LC10- 8/27/13 @1400, 2116, 8/28/13 @0432, 1604, 2320, 8/29/13 @0719, 1308 9/3/13 @1253, 2009 LC12 8/28/13 @ 0407, 1503, 8/29/13 @ 0158, 0832, 1503, 8/30/13 @ 1628, 8/31/13 @ 0218, 1313	DoD QSM Table F-3 J/UJ
10. Was a MRL Level verification run at the beginning and end of every daily? Was the %D < 30%?		X		LC10- 8/27/13 @1316, 8/28/13 @ 0516, 1352, 1520, 8/29/13 @1852, 9/3/13 @1209,2347 LC12 8/27/13 @ 1712 , 8/29/13@ 0937 8/30/13 @1522, 8/31/13 @ 1419	LCG Table 5 >30%=J
11. Was a method blank prepared and analyzed with each batch?	X				DoD QSM Table F-3
12. Were target analytes detected in the method blank <1/2 the MRL?		X		Checked by ADR.	DoD QSM Table F-3 $<5x = B$
13. Was a field blank collected and analyzed?	X		-	FWGEQUIPRINSE1-0340-GW, FWGEQUIPRINSE2-0341-GW	

Project Number: 030174.0016 Sample Event: August 2013

Data Reviewer/Date: Angela Dragotta/October 2, 2013

SDG: 240-28145-1 R0

Analysis: SW846 8330 Explosives

Review Questions:	Yes	No	N/A	Comments	QUAL/Criteria
14. Were target analytes detected in the field blank analyses > ½ the MRL?		X		Checked by ADR	DoD QSM Table F-3 <5x=B
15. Was a field duplicate analyzed? Were the RPDs ≤30%?	X				RPD >30=J
16. Were all positive results confirmed with a second column confirmation? Were the RPDs ≤ 40%?		x		1,3-dinitrobenzene and nitrobenzene were reported as detected for sample FWGSCFmw-002-0327-GW by the laboratory. Analysis on the second column did not confirm detection. The 1,3-dinitrobenzene and nitrobenzene results for sample FWGSCFmw-002-0327-GW were qualified, "U".	DoD QSM Table F-3 RPD>40%=J
17. Was an LCS prepared and analyzed with each batch?	X				DoD QSM Table F-3
18. Were the LCS recoveries within limits specified in table G-12 of the DoD QSM?	x			Checked by ADR.	DoD QSM Table F-3 <ul=j;30-ll=j uj;<br=""><30%=J/R</ul=j;30-ll=j>
19. Was a MS/MSD or MS and sample duplicate prepared with each batch?	X			A matrix spike analysis was performed on sample FWGLL12mw-245C-0036-GW.	DoD QSM Table F-3
20. Were MS/MSD recoveries within limits specified in table G-12 of the DoD QSM with an RPD ≤30%?	X				DoD QSM Table F-3 Pj
21. Were surrogate recoveries within laboratory limits (79-111%)?	x			Checked by ADR. The surrogate 3,4-dinitrobenzene recovered above control limits of 79-111% for samples FWGFWGmw-012-0349-GW at 117% and FWGLL1mw-064c-0352-GW at 120%. No qualification of the data was required for the surrogate outliers as there were no detected target analyte concentrations reported for either sample, FWGFWGmw-012-0349-GW or FWGLL1mw-064c-0352-GW.	QSM Tables F-2 >UL=J; <ll =j="" td="" uj<=""></ll>

References: DoD Quality Systems Manual (QSM), version 4.1, October 2010

Louisville DoD Quality Systems Manual Supplement (LS), Version 1 March 2007

Final Facility Wide Groundwater Monitoring Program, RVAAP-66 Facility Wide Groundwater Quality Assurance Project Plan (QAPP) Addendum for the Ravenna Army Ammunition Plant, Ravenna, OH, Environmental Quality Management, January 2012

Final Facility Wide Quality Assurance Project Plan for Environmental Investigations Groundwater for the Ravenna Army Ammunition Plant, Ravenna, OH, SAIC, February 2011

Project Number: 030174.0016

Sample Event: August 2013

Data Reviewer/Date: Angela Dragotta/October 2, 2013

SDG: 240-28145-1

Analysis: SW846 8330M Nitroguanidine

Review Questions:	Yes	No	N/A	Comments	QUAL/Criteria
1. Did Chain-of-Custody information agree with laboratory report?	X	ilirii			
2. Were samples preserved properly and received in good condition?	X				QAPP Table 5-1
3. Were holding times met?	X				QAPP Table 5-1 J/UJ/R
4. Were sample storage requirements met?	X				QAPP Table 5-1
5. Were all QAPP-specified target analytes reported?	X				QAPP Table 4-3
6. Was a LOD Verification analyzed once per quarter with all target analytes detected?	X	11.50			DoD QSM Table F-3 R
7.Calibration				For the second	
7a. Does the initial calibration curve consist of 5 concentration levels? (6 stds for quadratic curves)	X			PDA-1 8/20/13	
7b. Did all target analytes using avg response have an RSD \leq 15%?	X	П			
7c. If a linear regression curve was used, was the correlation coefficient r≥0.995? (0.990 for Quadratic curve).			X		DoD QSM Table F-3 R
7d. Did reanalysis of the low level standard after calibration, recover within 15%?	X				
8. Was a second source verification (ICV) analyzed after the ICAL and all analytes 80-120%?	x			8/20/13 @1843	DoD QSM Table F-3 >120%=J; <80%= J/UJ;
Sample Analysis					
9. Was a CCV run at the beginning of the analytical sequence, every 10 samples and at the end of the analytical run with targets and surrogates recovering 80-120% of the true value?	x			8/26/13 @ 0914, 1211, 1526 8/29/13 @ 12235, 1532, 1848,2203	DoD QSM Table F-3 J/UJ
10. Was a MRL Level verification run at the beginning and end of every daily sequence or every 12 hours? Was the %D < 30%?	X				LCG Table 5 >30%=J
11. Was a method blank prepared and analyzed with each batch?	X				DoD QSM Table F-3

Project Number: 030174.0016 Sample Event: August 2013

Data Reviewer/Date: Angela Dragotta/October 2, 2013

SDG: 240-28145-1

Analysis: SW846 8330M Nitroguanidine

Review Questions:		No	N/A	Comments	QUAL/Criteria	
12. Were target analytes detected in the method blank <1/2 the MRL?		X		Checked by ADR.	DoD QSM Table F-3 $<5x = B$	
13. Was a field blank collected and analyzed?	X					
14. Were target analytes detected in the field blank analyses < ½ the MRL?		X		Checked by ADR.	DoD QSM Table F-3 <5x=B	
15. Was a field duplicate analyzed? Were the RPDs ≤30%?	X				RPD >30=J	
16. Were all positive results confirmed with a second column confirmation? Were the RPDs $\leq 40\%$?			X	No detected concentrations were reported.	DoD QSM Table F-3 RPD>40%=J	
17. Was an LCS prepared and analyzed with each batch?	X				DoD QSM Table F-3	
18. Were the LCS recoveries within laboratory limits of 79%-119%?	x			Checked by ADR.	DoD QSM Table F-3 <ul=j; 30-LL=J/UJ; <30%=J/R</ul=j; 	
19. Was a MS/MSD or MS and sample duplicate prepared with each batch?	X			FWGLL12mw-245C-0365-GW and FWGRQLmw-007C-0369-GW were the parent samples used for the matrix spike analyses	DoD QSM Table F-3	
20. Were MS/MSD recoveries within laboratory limits of 40%-150% with an RPD ≤20%?	X				DoD QSM Table F-3 Pj	

References:

DoD Quality Systems Manual (QSM), version 4.1, October 2010

Louisville DoD Quality Systems Manual Supplement (LS), Version 1 March 2007

Final Facility Wide Groundwater Monitoring Program, RVAAP-66 Facility Wide Groundwater Quality Assurance Project Plan (QAPP) Addendum for the Ravenna Army Ammunition Plant, Ravenna, OH, Environmental Quality Management, January 2012

Final Facility Wide Quality Assurance Project Plan for Environmental Investigations Groundwater for the Ravenna Army Ammunition Plant, Ravenna, OH, SAIC, February 2011

Additional Comments:

Project Number: 030174.0016 Sample Event: August 2013 Data Reviewer/Date: Angela Dragotta/ October 2, 2013

SDG: 240-28145-1

Analysis: TAL SOP WS-WC-0050

Review Questions:	Yes	No	N/A	Comments	Qualifier
Did Chain-of-Custody information agree with laboratory report?	X	1	Carr		
2. Were samples preserved properly and received in good condition?	X				QAPP Table 5-1, NELAC
3. Were holding times met?	X				QAPP Table 5-1 J/UJ/R
4. Were sample storage requirements met?	X				QAPP Table 5-1
5. Were all QAPP-specified target analytes reported?	X				QAPP Table 4-1
6. Does the initial calibration curve consist of 5 concentration levels with the low standard near but > DL?	X				STL SOP Section 10.2 R
7. Was the correlation coefficient >0.995?	X	1			STL SOP Section 10.2
8. Was a MRL Level Verification run at the beginning and end of every daily sequence or every 12 hours? Was the %D <30%?	X			The MRL analyzed 9/11/13 at 1707 recovered above control limits of 70-130% at 136%. No qualifications were required as there were no detected nitrocellulose concentrations reported for the field samples bracketed by the outlier MRL.	LCG Table 5 >30%=J
9. Was a second source verification (ICV) analyzed after the ICAL? Were all analytes 90-110%?	X				STL SOP Section 9.8, 10.3, LCG >110%=J; 90-85%=J/UJ; <85%=J/R
10. Was the ICB analyzed after the ICV with results <1/2 the MRL?	X				STL SOP Section 9.8, LCG ,< 5x = U
11. Was a CCV run every 10 samples and at the end of the analytical run?	X				STL SOP Section 10.4
12. Was the ICV and CCV a mid-level standard from the initial calibration curve?	X				STL SOP Section 10.3.1
13. Were all CCV calibration analytes within 90-110%?	X				STL SOP Section 10.4, >110%=J; 85-90%=J/UJ; <85%=J/R
14. Was the ICB analyzed after the ICV with results <1/2 the MRL?	X				STL SOP Section 10.4, QSM, $< 5x = U$
15. Was the Nitrocellulose assay available and/or analyzed to be within 10%?	X				STL SOP Section 7.14.1, R
16. Was a method blank prepared and analyzed with each batch?	X				

Project Number: 030174.0016 Sample Event: August 2013

Data Reviewer/Date: Angela Dragotta/ October 2, 2013

SDG: 240-28145-1

Analysis: TAL SOP WS-WC-0050

Review Questions:	Yes	No	N/A	Comments	Qualifier
17. Were target analytes detected in the method blank <1/2 the MRL?		X		ADR checked section.	STL SOP Section 9.4, LCG, $<5x=B$
18. Was a field blank collected and analyzed?	X			FWGEQUIPRINSE1-0340-GW, FWGEQUIPRINSE2- 0341-GW	
19. Were target analytes detected in the field blank analyses <1/2 the MRL?		X			<5x=B
20. Was a field duplicate analyzed? Were the RPDs ≤30%?	X			ADR checked section	QAPP Table 3-2 RPD > 30% = J
21. Was an LCS prepared and analyzed with each batch? Was the LCS recovery within lab's in-house limits% (26-144%)?	X				>UL%=J; <50%=J/R 50-LL%=J/UJ;
22. Was a MS/MSD pair prepared with each batch?	X				
23. Was the MS/MSD parent a Ravenna sample?	X			A matrix spike analysis was performed on sample FWGLL12mw-245C-0365-GW	
24. Were MS/MSD recoveries 26-144% and RPD ≤20?		X		ADR checked section. The matrix spike recoveries associated with sample FWGLL12mw-245C-0365-GW were within control limits, however the matrix spike/spike duplicate RPD was above control limits of 20% at 41%. The nitrocellulose results for samples FWGDETmw-001c-0314-GW, FWGDETmw-002c-0315-GW, FWGEQUIPRINSE2-0341-GW, FWGDA2mw-114-0312-GW, FWGDA2mw-115-0313-GW, FWGDETmw-003c-0343-GW, FWGFWGmw-011-0348-GW, FWGFWGmw-012-0349-GW, FWGLL12mw-187c-0363-GW, FWGLL12mw-242c-0364-GW, FWGLL12mw-245c-0365-GW, FWGLL12mw-247-0336-GW, FWGLL12mw-DUP3-0338-GW, FWGLL1mw-064c-0352-GW, FWGLL1mw-087c-0356-GW, FWGLL3mw-244-0323-GW, FWGSCFmw-002-0327-GW, FWGSCFmw-004-0372-GW and FWGSCFmw-DUP6-0378-GW were qualified as estimated, "J/UJ".	Method EPA 353.2 Section 9.4.2 >UL%=J; <ll%=j uj;<br="">RPD>20%=J/UJ</ll%=j>

References:

STL SOP SAC-WC-0050 "Preparation and Analysis of Nitrocellulose in Aqueous and Soil/Sediment Samples by Colorimetric Autoanalyzer", Jan 2007, rev. 2.0 DoD Quality Systems Manual (QSM), version 4.1, October 2010

Louisville DoD Quality Systems Manual Supplement (LS), Version 1 March 2007

Project Number: 030174.0016 Sample Event: August 2013

Data Reviewer/Date: Angela Dragotta/ October 2, 2013

SDG: 240-28145-1

Analysis: TAL SOP WS-WC-0050

Final Facility Wide Groundwater Monitoring Program, RVAAP-66 Facility Wide Groundwater Quality Assurance Project Plan (QAPP) Addendum for the Ravenna Army Ammunition Plant, Ravenna, OH, Environmental Quality Management, January 2012

Final Facility Wide Quality Assurance Project Plan for Environmental Investigations Groundwater for the Ravenna Army Ammunition Plant, Ravenna, OH, SAIC,

February 2011

Additional Comments:

Project Number: 030174.0016 Sample Event: August 2013 Data Reviewer/Date: Angye Dragotta/October 2, 2013

SDG: 240-28145-1

Analysis: SW846 6860/ Perchlorate

Review Questions:	Yes	No	N/A	Comments	Qual/Criteria
1. Did Chain-of-Custody information agree with laboratory report?	X				
2. Were samples preserved properly and received in good condition?	X				
3. Were holding times met (28 days)?	X				UJ/J/R
4. Were sample storage requirements met?	X		14		
5. Was the DOD specified PQLs of 0.5ug/L achieved?	X				
6. Were all QAPP-specified target analytes reported?	X				
7. Did the initial calibration curve consist of 5 concentration levels?	X			LC_LCMS1 9/4/13 Standards(ng/L): 20, 50, 100, 200, 500, 1000	R
8. Was the correlation coefficient r≥0.995?	X	0	10		R<0.995 =-J/R
9. Was a second source verification (SSCV) analyzed after the ICAL? Were results 90-110%?	Х				LCG Table 1 >120%=J; 60-80%=J/UJ; <60%=J/R
10. Was an ICV analyzed after the ICAL and daily before sample analysis?	X			9/4/13 @1850	R
11. Was the %Difference ≤ 15%?	X				R
12. Was a CCV analyzed after every 10 samples?	X			09/06/2013 @ 1206, 1750, 2206, 9/7/13 @0318	
13. Was the %Difference ≤ 15%?	X				%D > 15% = UJ/J
14. Was a Limit of Detection Verification LODV) analyzed before and after every batch?	X				
15. Was the LODV recovery within 70-130%?	X				>130%=J; <60%=J/R 70-60%=J/UJ;
16. Was an Interference Check Sample extracted and analyzed with every batch?	X				
17. Was the ICS recovery within 70 to 130%?	X				>120%=J; <50%=Pj/R 50-79%=J/UJ;
18. Was a method blank prepared and analyzed with each batch?	X				
19. Were target analytes detected in the method blank at >1/2 the MRL?		X		Checked by ADR.	<5X =B

Project Number: 030174.0016 Sample Event: August 2013 Data Reviewer/Date: Angye Dragotta/October 2, 2013

SDG: 240-28145-1

Analysis: SW846 6860/ Perchlorate

Review Questions:	Yes	No	N/A	Comments	Qual/Criteria
20. Was a field blank (equipment) collected and analyzed?	X			FWGEQUIPRINSE1-0340-GW, FWGEQUIPRINSE2-0341-GW	
21. Were target analytes detected in the field blank analyses >1/2 the MRL?		X		Checked by ADR.	<5X =B
22. Were target analytes detected in the calibration blank analyses >1/2 the MRL?	X			The CCB analyzed 9/6/13 @ 2303 had perchlorate detected at 0.0117μg/L. The detected bracketed perchlorate results, FWGBKGmw-010c-0311-GF and FWGRQLmw-010c-0325-GF were qualified, "U".	<5X =U
23. Was a LCS prepared and analyzed with each batch, with recoveries within 85-115%?	X			Checked by ADR.	>115%=J; 50%-85%=J/UJ; <50%=J/R
24. Was a MS/MSD prepared with each batch?			Х	A matrix spike analysis was not requested on samples from this batch, so no data was provided or evaluated.	
25. Were MS/MSD recoveries 75-125% and RPD values ≤20%?			Х		>125% = J 30% - 75% = J/UJ <30% = J/R
26. Was a Laboratory Reagent Blank (LRB) analyzed prior to calibration and after high concentration samples?	х				
27. Were target analytes detected in the LRB at >1/2 the MRL?		х			<5X =B
28. Was a MRL Verification run with every ICAL?	X				
29. Were the MRL recoveries 70-130%?	X				R
30. Were the internal standards added to every sample?	X				
31. Did the IS recover within 50% to 150% of the ICAL mid-point standard?	X				R
32. Was a field duplicate analyzed? Were the RPDs within ±30%?		Х		No field duplicate was collected or analyzed.	RPD >30=J
33. Was the Isotope ratio between 101 and 85 monitored and fell between 2.3 and 3.08?	X			1	J/UJ
34. Were reported sample concentrations within calibration range?	X				

References:

DOD Perchlorate Handbook, March 2006; Section G "Selecting Analytical Methods and Services" Additional Comments:

Project Number: 030174.0016

Sample Event: August 2013 Data Reviewer/Date: Angela Dragotta/October 2, 2013

SDG: 240-28145-1 Analysis: EPA 353.2

Review Questions:	Yes	No	N/A	Comments	Qual/Crtieria
1. Did Chain-of-Custody information agree with laboratory report?	X				
2. Were samples preserved properly and received in good condition?	Х				QAPP Table 5-1, NELAC
3. Were holding times met?	X				QAPP Table 5-1 J/UJ/R
4. Were sample storage requirements met?	X				QAPP Table 5-1
5. Were all QAPP-specified target analytes reported?	X				QAPP Table 4-1
6. Was the Linear Calibration Range verified using 3 standards and 1 blank?	X				Method EPA 353.2 Section 9.2.2, J
7. Were the calibration standards verified by preparation and analysis of a Quality Control Sample? Were results within 10% of the stated values?	X				Method EPA 353.2 Section 9.2.3 Pj
8. Was an Instrument Performance Check Solution (CCV) analyzed immediately following daily calibration, after every 10 th sample, and at the end of the analytical sequence?	Х				Method EPA 353.2 Section 9.3.4
9. Was the CCV a mid-level standard from the initial calibration curve, with recovery 90-110%?	х				Method EPA 353.2 Section 9.3.4 >110%=J; <85%=J/R 85-90%=J/UJ;
10. Was an MRL check standard analyzed at the beginning and end of each analytical run, with recoveries 70-130%	X				LCG >130%=J; <70%=J/UJ;
11. Was a method blank and calibration blanks prepared and analyzed with each batch?	х				Method EPA 353.2 Section 9.3.1, 9.3.4
12. Were target analytes detected in the method blank or calibration blank >1/2 the MRL?	x			ADR checked section; The CCB analyzed 9/6/13 at 1712, had nitrate/nitrite detected at 0.004mg/L. No qualifications were made as there were no detected nitrate nitrite concentrations reported <5x blank contamination.	<5x = B(method blank) U (calibration blank)
13. Was a field blank (trip or equipment) collected and analyzed?	х				

Project Number: 030174.0016 Sample Event: August 2013

Data Reviewer/Date: Angela Dragotta/October 2, 2013

SDG: 240-28145-1 **Analysis:** EPA 353.2

Review Questions:	Yes	No	N/A	Comments	Qual/Crtieria
14. Were target analytes detected in the field blank analyses (trip or equipment) >1/2 the MRL?		X		ADR checked section;	<5x=B
15. Was a field duplicate analyzed? Were the RPDs acceptable?	х				
16. Was an LCS prepared and analyzed with each batch? Was the LCS recovery within 90-110%?	X				Method EPA 353.2 Section 9.3.3 J/UJ; <50%= R
17. Was a MS/MSD pair prepared with each batch?	X				Method EPA 353.2 Section 9.4.1
18. Was the MS/MSD parent sample a Ravenna sample?	X			Sample FWGLL12mw-245c-0365-GW was the parent sample used for matrix spike analysis.	112
19. Were MS/MSD recoveries and RPD within acceptance criteria?	х			ADR checked section;	Method EPA 353.2 Section 9.4.2 Pj

References:

DoD Quality Systems Manual (QSM), version 4.1, October 2010

Louisville DoD Quality Systems Manual Supplement (LS), Version 1 March 2007

Final Facility Wide Groundwater Monitoring Program, RVAAP-66 Facility Wide Groundwater Quality Assurance Project Plan (QAPP) Addendum for the Ravenna Army Ammunition Plant, Ravenna, OH, Environmental Quality Management, January 2012

Final Facility Wide Quality Assurance Project Plan for Environmental Investigations Groundwater for the Ravenna Army Ammunition Plant, Ravenna, OH, SAIC, February 2011

Additional Comments:

Analytical	Method	Field Sample ID	Matrix	Sample Type	Analyte	RL	Lab Result	Unc / Error	Overall Qualifier	Units	Reason Code
SDG: 2	240-2814	5-1									
353.2		FWGLL12mw-DUP3-0338- GW	AQ	FD							
a state of the same of				dan da sara	Nitrate-Nitrite	0.012	0.011J		J	mg/L	RI
6010B		FWGFWGmw-011-0348- GF	AQ	N							
					POTASSIUM	900	840J		J	ug/L	RI
010B FWGFWGmw-012-0349- A GF	AQ	N				************					
					COBALT	4.0	1.8J		J	ug/L	
					NICKEL	5.0	2.4J		J	ug/L	RI
					POTASSIUM	900	830J		J	ug/L	RI
6010B		FWGLL10mw-003C-0361- GF	AQ	N		126	22.00				
					POTASSIUM	900	690J		J	ug/L	RI
6010B		FWGLL12mw-185C-0362- GF	AQ	N	000117		101		A.		
					COBALT	4.0	1.9J		J	ug/L	KI
6010B		FWGLL12mw-245C-0365- GF	AQ	N	00DALT		4.01				D.
ori-oron					COBALT	4.0	1.6J		J	ug/L	RI
6010B		FWGLL12mw-247-0336- GF	AQ	N	ADOSNIO	40	0.01				
					ARSENIC	10	6.3J		J	ug/L	RI
6010B		FWGLL12mw-DUP3-0338- GF	AQ	FD		38					
					ARSENIC	10	7.7J		J	ug/L	RI
6010B		FWGLL1mw-064C-0352- GF	AQ	N	0.2.02.7.		7.7				-
					POTASSIUM	900	740J		J	ug/L	RI
6010B		FWGLL1mw-087C-0356- GF	AQ	N							
					COBALT	4.0	1.5J		J	ug/L	RI
					POTASSIUM	900	610J		J	ug/L	RI

Analytical Method	Field Sample ID	Matrix	Sample Type	Analyte	RL	Lab Result	Unc / Error	Overall Qualifier	Units	Reason Code
SDG: 240-2814	15-1	ov. x				moorkoo."				
6010B	FWGSCFmw-004-0372- GF	AQ	N	***************************************	= =					
				BARIUM	5.0	83J		J	ug/L	Ld
				CALCIUM	1000	150000		J	ug/L	Ld
				MAGNESIUM	300	60000		J	ug/L	Ld
				MANGANESE	5.0	740		J	ug/L	Ld
6020	FWGDETmw-002C-0315- GF	AQ	N					***************************************		
				IRON	100	93J		J	ug/L	RI
6020	FWGLL12mw-242C-0364- GF	AQ	N			2.4	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			
		25.31.81.11.11.		ALUMINUM	60	50J		J	ug/L	RI
6020	FWGLL12mw-245C-0365- GF	AQ	N			-4047				
				THALLIUM	1.5	1.1J		J	ug/L	RI
6020 FWGL GF	FWGLL12mw-247-0336- GF	AQ	N		00	400				1.5
				ALUMINUM	60	160	hannin.	J	ug/L	Ld
6020	FWGLL3mw-244-0323-GF	AQ	N	ANTIMONY	1.0	0.35J		j	ug/L	RI
6020	FWGSCFmw-004-0372-	AQ	N				,	.,		
	GF			CODUM	400	11000				1.4
				SODIUM	400	11000		J	ug/L	LO
6020	FWGSCFmw-DUP6-0378- GF	AQ	FD		122	0.071			15.4	
				THALLIUM	1.5	0.97J	*******	J	ug/L	RI
6860	FWGBKGmw-010C-0311- GF	AQ	N	DEDOUG ODATE	0.000	0.0401				
				PERCHLORATE	0.020	0.018J		В	ug/L	IVID
6860	FWGDETmw-002C-0315- GF	AQ	N		2.112					
				PERCHLORATE	0.020	0.012J		J	ug/L	RI

Analytical Method	Field Sample ID	Matrix	Sample Type	Analyte	RL	Lab Result	Unc / Error	Overall Qualifier	Units	Reason Code
SDG: 240-2814	15-1									
6860	FWGRQLmw-010C-0325- GF	AQ	N							
			de Maria	PERCHLORATE	0.020	0.018J		В	ug/L	Mb
8081A	FWGDA2mw-115-0313- GW	AQ	N					************		
				BETA-BHC	0.020	0.015J Q		J	ug/L	Surr, RI, C
8081A	FWGDETmw-001C-0314- GW	AQ	N			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				
				ENDRIN KETONE	0.019	0.012J		J	ug/L	RI, Ccv
8081A	FWGDETmw-002C-0315- GW	AQ	N			*******	******	*******	*******	**********
				BETA-BHC	0.019	0.011J Q		J	ug/L	RI, Ccv
8081A	FWGDETmw-003C-0343- GW	AQ	N		******************		*********	**********		***********
				BETA-BHC	0.019	0.015J		J	ug/L	RI, Ccv
8081A	FWGLL12mw-245C-0365- GW	AQ	N							
				BETA-BHC	0.019	0.011J Q		J	ug/L	RI, Ccv

Analytic	al Method	Field Sample ID	Matrix	Sample Type	Analyte	RL	Lab Result	Unc / Error	Overall Qualifier	Units	Reason Code
SDG:	240-2814	5-1									
8081A	-,	FWGLL12mw-247-0336- GW	AQ	N					-144		************
					4,4'-DDD	0.019	0.019U		UJ	ug/L	Surr
					4,4'-DDE	0.019	0.019U		ÚJ	ug/L	Surr
					4,4'-DDT	0.019	0.019U		UJ	ug/L	Surr
					ALDRIN	0.019	0.019U		UJ	ug/L	Surr
					ALPHA-BHC	0.019	0.019U		UJ	ug/L	Surr
					ALPHA-CHLORDANE	0.019	0.019U		UJ	ug/L	Surr
					BETA-BHC	0.019	0.18		J	ug/L	Fd, Surr,
					DELTA-BHC	0.019	0.019U		UJ	ug/L	Surr
					DIELDRIN	0.019	0.019U		UJ	ug/L	Surr
					ENDOSULFAN I	0.019	0.019U		UJ	ug/L	Surr
					ENDOSULFAN II	0.019	0.019U		UJ	ug/L	Surr
				ENDOSULFAN SULFATE	0.019	0.019U		UJ	ug/L	Surr	
				ENDRIN	0.019	0.019U		UJ	ug/L	Surr	
					ENDRIN ALDEHYDE	0.019	0.019U		UJ	ug/L	Surr
					ENDRIN KETONE	0.019	0.019U		UJ	ug/L	Surr
					gamma-BHC (Lindane)	0.019	0.019U		UJ	ug/L	Surr
					GAMMA-CHLORDANE	0.019	0.019U		UJ	ug/L	Surr
					HEPTACHLOR	0.019	0.019U		UJ	ug/L	Surr
					HEPTACHLOR EPOXIDE	0.019	0.019U		UJ	ug/L	Surr
					METHOXYCHLOR	0.048	0.048U		UJ	ug/L	Surr
				FAB 23 E 63 F 64	TOXAPHENE	0.76	0.76U		UJ	ug/L	Surr
8081A		FWGLL3mw-244-0323- GW	AQ	N							
					BETA-BHC	0.019	0.025J Q		J	ug/L	Ccv
8081A		FWGSCFmw-002-0327- GW	AQ	N				*	**********	******	***********
					BETA-BHC	0.019	0.014J Q		J	ug/L	Surr, RI, (
8081A		FWGSCFmw-004-0372- GW	AQ	N					200000000000000000000000000000000000000	630000	
					BETA-BHC	0.020	0.0087J Q		J	ug/L	RI, Ccv

Analytical Method	Field Sample ID	Matrix	Sample Type	Analyte	RL	Lab Result	Unc / Error	Overall Qualifier	Units	Reason Code
SDG: 240-2814	15-1					1005.ct			v	
8081A	FWGSCFmw-DUP6-0378- GW	AQ	FD					***************************************		
				BETA-BHC	0.020	0.013J Q		J	ug/L	RI, Ccv
8082 FWGB12mw-013-0313 GW	FWGB12mw-013-0313- GW	AQ	N	***************************************				************		************
				AROCLOR 1016	0.19	0.19U H Q		UJ	ug/L	StoE, Sur
				AROCLOR 1221	0.19	0.19U H		UJ	ug/L	StoE, Sur
				AROCLOR 1232	0.19	0.19U H		UJ	ug/L	StoE, Sur
				AROCLOR 1242	0.38	0.38U H		UJ	ug/L	StoE, Sur
				AROCLOR 1248	0.19	0.19U H		UJ	ug/L	StoE, Sur
				AROCLOR 1254	0.19	0.19U H		UJ	ug/L	StoE, Sur
				AROCLOR 1260	0.19	0.19U H Q		UJ	ug/L	StoE, Sur
8082	FWGDA2mw-114-0312- GW	AQ	N							1_ _
				AROCLOR 1016	0.19	0.19U H Q		UJ	ug/L	StoE
				AROCLOR 1221	0.19	0.19U H		UJ	ug/L	StoE
				AROCLOR 1232	0.19	0.19U H		UJ	ug/L	StoE
				AROCLOR 1242	0.38	0.38U H		UJ	ug/L	StoE
				AROCLOR 1248	0.19	0.19U H		UJ	ug/L	StoE
				AROCLOR 1254	0.19	0.19U H		UJ	ug/L	StoE
				AROCLOR 1260	0.19	0.19U H Q		UJ	ug/L	StoE

Analytica	l Method	Field Sample ID	Matrix	Sample Type	Analyte	RL	Lab Result	Unc / Error	Overall Qualifier	Units	Reason Code
SDG:	240-2814	5-1									
8082		FWGDA2mw-115-0313- GW	AQ	N						********	******
					AROCLOR 1016	0.19	0.19U H Q		UJ	ug/L	StoE
					AROCLOR 1221	0.19	0.19U H		UJ	ug/L	StoE
					AROCLOR 1232	0.19	0.19U H		UJ	ug/L	StoE
					AROCLOR 1242	0.38	0.38U H		UJ	ug/L	StoE
					AROCLOR 1248	0.19	0.19U H		UJ	ug/L	StoE
					AROCLOR 1254	0.19	0.19U H		UJ	ug/L	StoE
ATT ATT	NO STATE OF THE PARTY.	ARRAN COMO FARA STATE			AROCLOR 1260	0.19	0.19U H Q		UJ	ug/L	StoE
8082	FWGDETmw-001C-0314- GW	AQ	N				101011101				
					AROCLOR 1016	0.19	0.19U H Q		UJ	ug/L	StoE, S
					AROCLOR 1221	0.19	0.19U H		UJ	ug/L	StoE, S
					AROCLOR 1232	0.19	0.19U H		UJ	ug/L	StoE, S
					AROCLOR 1242	0.38	0.38U H		UJ	ug/L	StoE, S
					AROCLOR 1248	0.19	0.19U H		UJ	ug/L	StoE, S
					AROCLOR 1254	0.19	0.19U H		UJ	ug/L	StoE, S
					AROCLOR 1260	0.19	0.19U H Q		UJ	ug/L	StoE, Si
8082		FWGDETmw-002C-0315- GW	AQ	N							
					AROCLOR 1016	0.19	0.19U H Q		UJ	ug/L	StoE, St
					AROCLOR 1221	0.19	0.19U H		UJ	ug/L	StoE, St
					AROCLOR 1232	0.19	0.19U H		UJ	ug/L	StoE, S
					AROCLOR 1242	0.38	0.38U H		UJ	ug/L	StoE, S
					AROCLOR 1248	0.19	0.19U H		UJ	ug/L	StoE, S
					AROCLOR 1254	0.19	0.19U H		UJ	ug/L	StoE, S
					AROCLOR 1260	0.19	0.19U H Q		UJ	ug/L	StoE, S

Analytica	I Method	Field Sample ID	Matrix	Sample Type	Analyte	RL	Lab Result	Unc / Error	Overall Qualifier	Units	Reason Code
SDG:	240-2814	5-1									
8082	***********	FWGDETmw-003C-0343- GW	AQ	N	·····	************					
					AROCLOR 1016	0.19	0.19U H Q		UJ	ug/L	StoE
					AROCLOR 1221	0.19	0.19U H		UJ	ug/L	StoE
					AROCLOR 1232	0.19	0.19U H		UJ	ug/L	StoE
					AROCLOR 1242	0.38	0.38U H		UJ	ug/L	StoE
					AROCLOR 1248	0.19	0.19U H		UJ	ug/L	StoE
					AROCLOR 1254	0.19	0.19U H		UJ	ug/L	StoE
					AROCLOR 1260	0.19	0.19U H Q		UJ	ug/L	StoE
8082	FWGEBGmw-131-0316- GW	AQ	N			200000000000000000000000000000000000000	***********			***************************************	
				AROCLOR 1016	0.19	0.19U H Q		UJ	ug/L	StoE	
					AROCLOR 1221	0.19	0.19U H		UJ	ug/L	StoE
					AROCLOR 1232	0.19	0.19U H		UJ	ug/L	StoE
					AROCLOR 1242	0.38	0.38U H		UJ	ug/L	StoE
					AROCLOR 1248	0.19	0.19U H		UJ	ug/L	StoE
					AROCLOR 1254	0.19	0.19U H		UJ	ug/L	StoE
				AROCLOR 1260	0.19	0.19U H Q		UJ	ug/L	StoE	
3082		FWGEQUIPRINSE2-0341- GW	AQ	EB							
					AROCLOR 1016	0.20	0.20U H Q		UJ	ug/L	StoE, St
					AROCLOR 1221	0.20	0.20U H		UJ	ug/L	StoE, St
					AROCLOR 1232	0.20	0.20U H		UJ	ug/L	StoE, S
				AROCLOR 1242	0.40	0.40U H		UJ	ug/L	StoE, S	
					AROCLOR 1248	0.20	0.20U H		UJ	ug/L	StoE, S
					AROCLOR 1254	0.20	0.20U H		UJ	ug/L	StoE, S
					AROCLOR 1260	0.20	0.20U H Q		UJ	ug/L	StoE, S

Analytical Method	Field Sample ID	Matrix	Sample Type	Analyte	RL	Lab Result	Unc / Error	Overall Qualifier	Units	Reasor Code
SDG: 240-2814	15-1							20000000		
8082	FWGRQLmw-007C-0369- GW	AQ	N			*******		*************		******
				AROCLOR 1016	0.19	0.19U H Q		UJ	ug/L	StoE
				AROCLOR 1221	0.19	0.19U H		UJ	ug/L	StoE
				AROCLOR 1232	0.19	0.19U H		UJ	ug/L	StoE
				AROCLOR 1242	0.38	0.38U H		UJ	ug/L	StoE
				AROCLOR 1248	0.19	0.19U H		UJ	ug/L	StoE
				AROCLOR 1254	0.19	0.19U H		UJ	ug/L	StoE
				AROCLOR 1260	0.19	0.19U H Q		UJ	ug/L	StoE
8082	FWGRQLmw-010C-0325- GW	AQ	N				**********			
				AROCLOR 1016	0.19	0.19U H Q		UJ	ug/L	StoE
				AROCLOR 1221	0.19	0.19U H		UJ	ug/L	StoE
				AROCLOR 1232	0.19	0.19U H		UJ	ug/L	StoE
				AROCLOR 1242	0.38	0.38U H		UJ	ug/L	StoE
				AROCLOR 1248	0.19	0.19U H		UJ	ug/L	StoE
				AROCLOR 1254	0.19	0.19U H		UJ	ug/L	StoE
				AROCLOR 1260	0.19	0.19U H Q		UJ	ug/L	StoE
8260B	FWGDA2mw-115-0313- GW	AQ	N					***********		
				CARBON DISULFIDE	0.25	0.14J		В	ug/L	Eb
8260B	FWGEQUIPRINSE2-0341- GW	AQ	EB		***************************************		1001517155	*************		
				ACETONE	1.1	21		J	ug/L	Ccv
8260B	FWGRQLmw-007C-0369- GW	AQ	N							
				1,2-DICHLOROETHENE (TOTAL)	0.25	0.18J		J	ug/L	RI
				ACETONE	1.1	1.2J		JB	ug/L	Eb, Ccv
				CIS-1,2-DICHLOROETHENE	0.25	0.18J		J	ug/L	RI

Analytical Method	Field Sample ID	Matrix	Sample Type	Analyte	RL	Lab Result	Unc / Error	Overall Qualifier	Units	Reason Code
SDG: 240-2814	5-1									
3260B	FWGRQLmw-010C-0325- GW	AQ	N	ACETONE	1.1	2.5J		JB	ug/L	Eb, Ccv
8260B	FWGTEAM1-TRIP	AQ	ТВ	METHYLENE CHLORIDE	0.50	0.33J		j	ug/L	RI, ProfJu
3260B	FWGTEAM3-TRIP	AQ	ТВ	METHYLENE CHLORIDE	0.50	0.45J		J	ug/L	RI
8270C -SVOC1	FWGFWGmw-012-0349- GW	AQ	N	BIS(2-ETHYLHEXYL)PHTHALATE DI-N-BUTYL PHTHALATE	0.48 0.95	0.74J 0.74J		B J	ug/L ug/L	Mb, Eb
8270C -SVOC1	FWGLL12mw-187C-0363- GW	AQ	N	BIS(2-ETHYLHEXYL)PHTHALATE DI-N-BUTYL PHTHALATE	0.48 0.95	0.65J 0.84J		B J	ug/L ug/L	Mb, Eb Rl
8270C -SVOC1	FWGLL12mw-242C-0364- GW	AQ	N	BIS(2-ETHYLHEXYL)PHTHALATE Butylbenzylphthalate	0.48 0.48	1.2J 0.35J		B J	ug/L ug/L	Mb, Eb
8270C -SVOC1	FWGLL12mw-245C-0365- GW	AQ	N	BIS(2-ETHYLHEXYL)PHTHALATE	0.48	0.68J		В	ug/L	Mb, Eb
8270C -SVOC1	FWGLL12mw-247-0336- GW	AQ	N	BIS(2-ETHYLHEXYL)PHTHALATE DI-N-BUTYL PHTHALATE	0.48 0.95	0.55J 0.67J		В	ug/L ug/L	Mb, Eb
8270C -SVOC1	FWGLL12mw-DUP3-0338- GW	AQ	FD	BIS(2-ETHYLHEXYL)PHTHALATE DI-N-BUTYL PHTHALATE	0.48 0.95	0.62J 0.70J		B J	ug/L ug/L	Mb, Eb Rl

Analytical Method	Field Sample ID	Matrix	Sample Type	Analyte	RL	Lab Result	Unc / Error	Overall Qualifier	Units	Reason Code
SDG: 240-2814	15-1									
8270C -SVOC1	FWGLL1mw-064C-0352- GW	AQ	N						*********	
				BIS(2-ETHYLHEXYL)PHTHALATE	0.50	0.61J		В	ug/L	Mb, Eb
				DI-N-BUTYL PHTHALATE	0.99	0.91J		J	ug/L	RI
8270C -SVOC1	FWGLL1mw-087C-0356- GW	AQ	N							
				BIS(2-ETHYLHEXYL)PHTHALATE	0.54	0.86J		В	ug/L	Mb, Eb
				DI-N-BUTYL PHTHALATE	1.1	0.84J		J	ug/L	RI
8270C -SVOC1	FWGLL3mw-244-0323- GW	AQ	N							
				BIS(2-ETHYLHEXYL)PHTHALATE	0.48	0.46J		В	ug/L	Mb, Eb
				DI-N-BUTYL PHTHALATE	0.95	0.69J		J	ug/L	RI
8270C -SVOC1	FWGSCFmw-002-0327- GW	AQ	N							
				BIS(2-ETHYLHEXYL)PHTHALATE	0.50	0.53J		В	ug/L	Mb, Eb
8270C -SVOC1	FWGSCFmw-004-0372- GW	AQ	N							
				BIS(2-ETHYLHEXYL)PHTHALATE	0.53	0.95J		В	ug/L	Mb, Eb
				DI-N-BUTYL PHTHALATE	1.1	0.84J		J	ug/L	RI
8270C -SVOC1	FWGSCFmw-DUP6-0378- GW	AQ	FD							
				BIS(2-ETHYLHEXYL)PHTHALATE	0.48	0.57J		В	ug/L	Mb, Eb
8270C-SVOC4	FWGDA2mw-114-0312- GW	AQ	N							
				BIS(2-ETHYLHEXYL)PHTHALATE	0.48	0.35J		В	ug/L	Eb
8270C-SVOC4	FWGDA2mw-115-0313- GW	AQ	N							
				BIS(2-ETHYLHEXYL)PHTHALATE	0.48	0.56J		В	ug/L	Eb
				DI-N-BUTYL PHTHALATE	0.95	0.64J		J	ug/L	RI
8270C-SVOC4	FWGDA2mw-DUP1-0336- GW	AQ	FD							
				BIS(2-ETHYLHEXYL)PHTHALATE	0.53	0.88J		В	ug/L	Eb

Analytical Method	Field Sample ID	Matrix	Sample Type	Analyte	RL	Lab Result	Unc / Error	Overall Qualifier	Units	Reason Code
SDG: 240-2814	5-1									
8270C-SVOC4	FWGDETmw-001C-0314- GW	AQ	N						********	
				BIS(2-ETHYLHEXYL)PHTHALATE	0.51	3.4		В	ug/L	Eb
				DI-N-BUTYL PHTHALATE	1.0	0.70J		J	ug/L	RI
8270C-SVOC4	FWGDETmw-002C-0315- GW	AQ	N							
				BIS(2-ETHYLHEXYL)PHTHALATE	0.48	0.35J		В	ug/L	Eb
8270C-SVOC4	FWGDETmw-003C-0343- GW	AQ	N	DIO(0 ETI)M HENNA) DITUM ATE	0.40	0.701				-
				BIS(2-ETHYLHEXYL)PHTHALATE	0.48	0.78J		В	ug/L	ED
8270C-SVOC4	FWGEBGmw-131-0316- GW	AQ	N							
	OVV			BIS(2-ETHYLHEXYL)PHTHALATE	0.48	0.38J		J	ug/L	RI
8270C-SVOC4	FWGEQUIPRINSE2-0341- GW	AQ	EB							
				PHENOL	1.0	0.61J		J	ug/L	RI
8270C-SVOC4	FWGRQLmw-007C-0369- GW	AQ	N				**********		**********	-9-4-00000000
				BIS(2-ETHYLHEXYL)PHTHALATE	0.48	0.46J		J	ug/L	RI
				DI-N-BUTYL PHTHALATE	0.96	0.78J		J	ug/L	RI
8330	FWGSCFmw-002-0327- GW	AQ	N							
				1,3-DINITROBENZENE	0.11	0.064J		UJ	ug/L	RI, ProfJu
				NITROBENZENE	0.11	2.6		U	ug/L	ProfJudg
9012A	FWGDA2mw-114-0312- GW	AQ	N							
	GVV			CYANIDE	0.010	0.010U		UJ	ma/L	ProfJudg
9012A	FWGDA2mw-115-0313-	AQ	N				20 2 20 20 20 20 20		3.4	
00120	GW	AG	14							
Acute de la contraction de la			0400000000	CYANIDE	0.010	0.010U	23422777777	UJ	mg/L	ProfJudg
9012A	FWGDETmw-002C-0315- GW	AQ	N							
				CYANIDE	0.010	0.010U		UJ	mg/L	ProfJudg

Overall Qualified Results

Analytical Method	Field Sample ID	Matrix	Sample Type	Analyte	RL	Lab Result	Unc / Error	Overall Qualifier	Units	Reason Code
SDG: 240-2814	5-1									
9012A	FWGEBGmw-131-0316- GW	AQ	N					*************		
			********	CYANIDE	0.010	0.010U	*******	UJ	mg/L	ProfJudg
9012A	FWGRQLmw-007C-0369- GW	AQ	N							
				CYANIDE	0.010	0.0080J		J	mg/L	RI
9012A	FWGRQLmw-010C-0325- GW	AQ	N	L. W. J. 2		C. D. Sees				
	,	سنتنس		CYANIDE	0.010	0.010U		UJ	mg/L	ProfJudg
WS-WC-0050	FWGDA2mw-114-0312- GW	AQ	N			0.00				
	***************************************		******	Nitrocellulose	1.0	1.0U		UJ	mg/L	Ms
WS-WC-0050	FWGDA2mw-115-0313- GW	AQ	N							
				Nitrocellulose	1.0	1.0U		UJ	mg/L	Ms
WS-WC-0050	FWGDA2mw-DUP1-0336- GW	AQ	FD	Laterature and the	- 53					
*****	***********************		******	Nitrocellulose	1.0	1.0U		UJ	mg/L	Ms
WS-WC-0050	FWGDETmw-001C-0314- GW	AQ	N	Transition 1		4.00		iii.		
				Nitrocellulose	1.0	1.0U		UJ	mg/L	Ms
WS-WC-0050	FWGDETmw-002C-0315- GW	AQ	N		40	4 014			0.00%	
				Nitrocellulose	1.0	1.0U		UJ	mg/L	MS
WS-WC-0050	FWGDETmw-003C-0343- GW	AQ	N	Na	1.4	5.20		77.	-00 4	
				Nitrocellulose	1.0	1.0U		UJ	mg/L	Ms
WS-WC-0050	FWGEQUIPRINSE2-0341- GW	AQ	EB	12						
				Nitrocellulose	1.0	1.0U	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	UJ	mg/L	Ms
WS-WC-0050	FWGFWGmw-011-0348- GW	AQ	N							
				Nitrocellulose	1.0	1.0U		UJ	mg/L	Ms

Overall Qualified Results

Analytical Method	Field Sample ID	Matrix	Sample Type		alyte	RL	Lab Result	Unc / Error	Overall Qualifier	Units	Reasor Code
SDG: 240-2814	5-1									· · · · · · · · · · · · · · · · · · ·	
WS-WC-0050	FWGFWGmw-012-0349- GW	AQ	N					*********			
			********	Nitrocellulose		1.0	1.0U	******	UJ	mg/L	Ms
WS-WC-0050	FWGLL12mw-187C-0363- GW	AQ	N								
				Nitrocellulose		1.0	1.1J		J	mg/L	Ms
WS-WC-0050	FWGLL12mw-242C-0364- GW	AQ	N	The state of			7				
				Nitrocellulose		1.0	1.0U		UJ	mg/L	Ms
WS-WC-0050	FWGLL12mw-245C-0365- GW	AQ	N	N/9		4.0	4.011				
			******	Nitrocellulose		1.0	1.0U		UJ	mg/L	MS
WS-WC-0050	FWGLL12mw-247-0336- GW	AQ	N	Nitropallylaga		1.0	1.011			/I	Ma
				Nitrocellulose		1.0	1.0U		UJ	mg/L	IVIS
WS-WC-0050	FWGLL12mw-DUP3-0338- GW	AQ	FD	Nitrocellulose		1.0	1.0U		UJ	mg/L	Me
WS-WC-0050	FWGLL1mw-064C-0352-	^^		14IIIOCEIIIIOSE			1.00			IIIg/L	1419
WS-WC-0050	GW	AQ	N								
				Nitrocellulose		1.0	1.0U		UJ	mg/L	Ms
WS-WC-0050	FWGLL1mw-087C-0356- GW	AQ	N			*********			• • • • • • • • • • • • • • • • • • • •	******	******
				Nitrocellulose		1.0	1.0U		UJ	mg/L	Ms
WS-WC-0050	FWGLL3mw-244-0323- GW	AQ	N								
			سلما	Nitrocellulose		1.0	1.0U		UJ	mg/L	Ms
WS-WC-0050	FWGSCFmw-002-0327- GW	AQ	N	3.22 - 1 3. 2. 2. 2.				2027512077	200 30000 0000		
				Nitrocellulose		1.0	1.0U		UJ	mg/L	Ms
WS-WC-0050	FWGSCFmw-004-0372- GW	AQ	N	Augustus I		2.5					
				Nitrocellulose		1.0	1.0U		UJ	mg/L	Ms

Overall Qualified Results

Analytical Method	Field Sample ID	Matrix	Sample Type	Analyte	RL	Lab Result	Unc / Error	Overall Qualifier	Units	Reason Code
SDG: 240-2814	15-1									
WS-WC-0050	FWGSCFmw-DUP6-0378- GW	AQ	FD		***************************************			************		*******
			N	trocellulose	1.0	1.0U		UJ	mg/L	Ms

Lab Reporting Batch ID: 240-28145-1 Laboratory: TA CAN

EDD Filename: Prep240-28145-1r eQAPP Name: RVAAP 66-rev July 2012

Mathad	Catagor	v: GENCHE	VA .
Meniou	Categor	y. GENCHE	VI

Method: 353.2 Matrix: AQ

Sample ID:FWGLL12mw-DUP3-0338-GW	Collec	ted: 8/20/	2013 1:41:	00 /	Analysis T	ype: RES	S/TOT		ilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
Nitrate-Nitrite	0.011	J	0.0053	MDL	0.012	LOD	mg/L	J	RI

Method Category:	GENCHEM	
Method:	6860	Matrix: AO

Sample ID: FWGBKGmw-010C-0311-GF	Collec	ted: 8/20/	2013 9:34:	00 A	Analysis T	ype: RES	6	D	ilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
PERCHLORATE	0.018	J	0.0088	MDL	0.020	LOD	ug/L	U	Mb

Sample ID: FWGDETmw-001C-0314-GF	Collec	ted: 8/20/	2013 2:56:	00 A	nalysis T	ype: RES	6	D	ilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
PERCHLORATE	0.020	U	0.0088	MDL	0.020	LOD	ua/L	UJ	ProfJuda

Sample ID:FWGDETmw-002C-0315-GF	Collec	ted: 8/20/:	2013 3:11:	00 A	nalysis T	ype: RES			ilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
PERCHI ORATE	0.012	1:-	0.0088	MDL	0.020	LOD	ua/l	1 1	RI

Sample ID:FWGRQLmw-010C-0325-GF	Collec	ted: 8/19/2	2013 3:34:	00 A	nalysis T	ype: RES	5		ilution: 1	
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
PERCHLORATE	0.018	J	0.0088	MDL	0.020	LOD	ug/L	U	Mb	

Method Category:	GENCHEM	
Method:	9012A	Matrix: AQ

Sample ID:FWGRQLmw-007C-0369-GW	Collec	Collected: 8/19/2013 1:24:00 Analysis I						Dilution: 1		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
CYANIDE	0.0080	J	0.0032	MDL	0.010	LOD	mg/L	J	RI	

^{*} denotes a non-reportable result

Lab Reporting Batch ID: 240-28145-1 Laboratory: TA CAN

EDD Filename: Prep240-28145-1r eQAPP Name: RVAAP 66-rev July 2012

Method Category: GENCHEM									
Method: WS-WC-0050			Má	itrix: A	AQ				
Sample ID:FWGDA2mw-114-0312-GW	Collec	ted: 8/20/2	013 5:05	:00 A	nalysis 1	ype: RES	утот		Dilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
Nitrocellulose	1.0	U	0.48	MDL	1.0	LOD	mg/L	UJ	Ms
Sample ID:FWGDA2mw-115-0313-GW	Collec	ted: 8/20/2	013 2:58	00 A	nalysis 1	ype: RES	/тот		Dilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
Nitrocellulose	1.0	U	0.48	MDL	1.0	LOD	mg/L	UJ	Ms
Sample ID:FWGDA2mw-DUP1-0336-GW	Collec	ted: 8/20/2	013 4:08	00 A	nalysis 1	ype: RES	/тот		Dilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
Nitrocellulose	1.0	U	0.48	MDL	1.0	LOD	mg/L	UJ	Ms
Sample ID:FWGDETmw-001C-0314-GW	Collec	ted: 8/20/2	013 2:56	:00 A	nalysis 1	ype: RES	/тот		Dilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
Nitrocellulose	1.0	U	0.48	MDL	1.0	LOD	mg/L	UJ	Ms
Sample ID:FWGDETmw-002C-0315-GW	Collec	ted: 8/20/2	013 3:11	:00 A	nalysis 1	ype: RES	утот		Dilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
Nitrocellulose	1.0	U	0.48	MDL	1.0	LOD	mg/L	UJ	Ms
Sample ID:FWGDETmw-003C-0343-GW	Collec	ted: 8/20/2	013 4:19	:00 A	nalysis 1	ype: RES	/тот		Dilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
Nitrocellulose	1.0	U	0.48	MDL	1.0	LOD	mg/L	UJ	Ms
Sample ID: FWGEQUIPRINSE2-0341-GW	Collec	ted: 8/20/2	013 1:42	00 A	nalysis 1	ype: RES	утот		Dilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
Nitrocellulose	1.0	U	0.48	MDL	1.0	LOD	mg/L	UJ	Ms
Sample ID:FWGFWGmw-011-0348-GW	Collec	ted: 8/20/2	013 11:5	0:00 A	nalysis 1	ype: RES	утот		Dilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
Nitrocellulose	1.0	U	0.48	MDL	1.0	LOD	mg/L	UJ	Ms

^{*} denotes a non-reportable result

Project Name and Number: 030174.0016.001.10.1 - RVAAP66 (OH)

10/2/2013 3:49:57 PM ADR version 1.7.0.207 Page 2 of 17

Lab Reporting Batch ID: 240-28145-1 Laboratory: TA CAN

EDD Filename: Prep240-28145-1r eQAPP Name: RVAAP 66-rev July 2012

Method Category: GENCHEM									
Method: WS-WC-0050			Má	itrix: /	AQ				
Sample ID:FWGFWGmw-012-0349-GW	Collec	ted: 8/20/2	013 12:5	4:00 A	nalysis 1	ype: RES	/тот		Dilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
Nitrocellulose	1.0	U	0.48	MDL	1.0	LOD	mg/L	UJ	Ms
Sample ID:FWGLL12mw-187C-0363-GW	Collec	ted: 8/20/2	013 9:35	:00 A	nalysis 1	ype: RES	утот	E	Dilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
Nitrocellulose	1.1	J	0.48	MDL	1.0	LOD	mg/L	J	Ms
Sample ID:FWGLL12mw-242C-0364-GW	Collec	ted: 8/20/2	013 11:1	1:00 A	nalysis 1	ype: RES	/тот		Dilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
Nitrocellulose	1.0	U	0.48	MDL	1.0	LOD	mg/L	UJ	Ms
Sample ID:FWGLL12mw-245C-0365-GW	Collec	ted: 8/20/2	013 9:56	00 A	nalysis 1	ype: RES	/тот	E	Dilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
Nitrocellulose	1.0	U	0.48	MDL	1.0	LOD	mg/L	UJ	Ms
Sample ID:FWGLL12mw-247-0336-GW	Collec	ted: 8/20/2	013 1:01	:00 A	nalysis 1	ype: RES	утот	E	Dilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
Nitrocellulose	1.0	U	0.48	MDL	1.0	LOD	mg/L	UJ	Ms
Sample ID:FWGLL12mw-DUP3-0338-GW	Collec	ted: 8/20/2	013 1:41	00 A	nalysis 1	ype: RES	/тот	E	Dilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
Nitrocellulose	1.0	U	0.48	MDL	1.0	LOD	mg/L	UJ	Ms
Sample ID:FWGLL1mw-064C-0352-GW	Collec	ted: 8/20/2	013 4:04	.00 A	nalysis 1	ype: RES	утот	E	Dilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
Nitrocellulose	1.0	U	0.48	MDL	1.0	LOD	mg/L	UJ	Ms
Sample ID:FWGLL1mw-087C-0356-GW	Collec	ted: 8/20/2	013 9:28	:00 A	nalysis 1	ype: RES	утот	E	Dilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
Nitrocellulose	1.0	U	0.48	MDL	1.0	LOD	mg/L	UJ	Ms

^{*} denotes a non-reportable result

Project Name and Number: 030174.0016.001.10.1 - RVAAP66 (OH)

10/2/2013 3:49:57 PM ADR version 1.7.0.207 Page 3 of 17

Lab Reporting Batch ID: 240-28145-1 Laboratory: TA CAN

EDD Filename: Prep240-28145-1r eQAPP Name: RVAAP 66-rev July 2012

										o, oa., _
Method Category:	GENCHEM									
Method:	WS-WC-0050			Má	atrix: A	AQ				
Sample ID:FWGLL3mw-	244-0323-GW	Collec	ted: 8/20/2	013 12:2	9:00 A	nalysis T	ype: RES	/тот	D	ilution: 1
Analyte		Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
Nitrocellulose		1.0	U	0.48	MDL	1.0	LOD	mg/L	UJ	Ms
Sample ID:FWGSCFmw	-002-0327-GW	Collec	ted: 8/20/2	013 12:0	8:00 A	nalysis 1	Type: RES	/тот	D	ilution: 1
Analyte		Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
Nitrocellulose		1.0	U	0.48	MDL	1.0	LOD	mg/L	UJ	Ms
Sample ID:FWGSCFmw	-004-0372-GW	Collec	ted: 8/20/2	013 10:4	8:00 A	nalysis 1	Type: RES	/тот	D	ilution: 1
Analyte		Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
Nitrocellulose		1.0	U	0.48	MDL	1.0	LOD	mg/L	UJ	Ms
Sample ID:FWGSCFmw	-DUP6-0378-GW	Collec	ted: 8/20/2	013 1:02	:00 A	nalysis 1	Type: RES	/тот	D	ilution: 1
Analyte		Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
Nitrocellulose		1.0	U	0.48	MDL	1.0	LOD	mg/L	UJ	Ms

Method Category:	METALS			
Method:	6010B	Matrix:	AQ	

Sample ID:FWGFWGmw-011-0348-GF	Collec	Collected: 8/20/2013 11:50:00				Type: RES	Dilution: 1		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
POTASSIUM	840	J	300	MDL	900	LOD	ug/L	J	RI

Sample ID:FWGFWGmw-012-0349-GF	Collec	4:00 A	nalysis 1	ype: RES	Dilution: 1				
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
COBALT	1.8	J	1.5	MDL	4.0	LOD	ug/L	J	RI
NICKEL	2.4	J	2.2	MDL	5.0	LOD	ug/L	J	RI
POTASSIUM	830	J	300	MDL	900	LOD	ug/L	J	RI

Project Name and Number: 030174.0016.001.10.1 - RVAAP66 (OH)

10/2/2013 3:49:57 PM ADR version 1.7.0.207 Page 4 of 17

^{*} denotes a non-reportable result

Lab Reporting Batch ID: 240-28145-1 Laboratory: TA CAN

EDD Filename: Prep240-28145-1r eQAPP Name: RVAAP 66-rev July 2012

Method Category: METALS	S								
Method: 6010B			Ma	atrix: I	AQ				
Sample ID:FWGLL10mw-003C-0361	-GF Collec	ted: 8/20/2	013 2:30	:00 A	nalysis	Type: RES	5/ТОТ		Dilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
POTASSIUM	690	J	300	MDL	900	LOD	ug/L	J	RI
Sample ID:FWGLL12mw-185C-0362	-GF Collec	ted: 8/20/2	013 11:3	9:00 A	nalysis	Type: RES	5/ТОТ	L	Dilution: 1
A <i>nalyt</i> e	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
COBALT	1.9	J	1.5	MDL	4.0	LOD	ug/L	J	RI
Sample ID:FWGLL12mw-245C-0365	-GF Collec	ted: 8/20/2	013 9:56	:00 A	nalysis	Type: RES	утот	ı	Dilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
COBALT	1.6	J	1.5	MDL	4.0	LOD	ug/L	J	RI
Sample ID:FWGLL12mw-247-0336-0	GF Collec	ted: 8/20/2	013 1:01	:00 A	nalysis	Type: RES	5/ТОТ	ı	Dilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
ARSENIC	6.3	J	3.3	MDL	10	LOD	ug/L	J	RI
Sample ID:FWGLL12mw-DUP3-0338	3-GF Collec	ted: 8/20/2	013 1:41	:00 A	nalysis	Type: RES	5/ТОТ	L	Dilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
ARSENIC	7.7	J	3.3	MDL	10	LOD	ug/L	J	RI
Sample ID:FWGLL1mw-064C-0352-0	GF Collec	ted: 8/20/2	013 4:04	:00 A	nalysis i	Type: RES	5/ТОТ	ı	Dilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
POTASSIUM	740	J	300	MDL	900	LOD	ug/L	J	RI
Sample ID: FWGLL1mw-087C-0356-0	GF Collec	ted: 8/20/2	013 9:28	:00 A	nalysis	Type: RES	в/тот		Dilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
COBALT	1.5	J	1.5	MDL	4.0	LOD	ug/L	J	RI
POTASSIUM	610	J	300	MDL	900	LOD	ug/L	J	RI
			_		_				

Project Name and Number: 030174.0016.001.10.1 - RVAAP66 (OH)

10/2/2013 3:49:57 PM ADR version 1.7.0.207 Page 5 of 17

^{*} denotes a non-reportable result

Lab Reporting Batch ID: 240-28145-1 Laboratory: TA CAN

EDD Filename: Prep240-28145-1r eQAPP Name: RVAAP 66-rev July 2012

Method Category:	METALS
------------------	--------

Method: 6010B Matrix: AQ

Sample ID:FWGSCFmw-004-0372-GF	Collec	8:00 A	nalysis T	ype: RES	Dilution: 1				
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
BARIUM	83	j	2.8	MDL	5.0	LOD	ug/L	J	Ld
CALCIUM	150000		630	MDL	1000	LOD	ug/L	J	Ld
MAGNESIUM	60000		120	MDL	300	LOD	ug/L	J	Ld
MANGANESE	740		1.8	INDL	5.U	LUD	ua/L	J	ra.

Method Category:	METALS		
Madhade	cooo	Madeline	40

Sample ID:FWGDETmw-002C-0315-GF	Collec	Collected: 8/20/2013 3:11:00				Type: RES	Dilution: 1		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
IRON	93	J	44	MDL	100	LOD	ug/L	J	RI

Sample ID:FWGLL12mw-242C-0364-GF	Collected: 8/20/2013 11:11:00	Analysis Type: RES/TOT	Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
ALUMINUM	50	J	20	MDL	60	LOD	ug/L	J	RI

Sample ID:FWGLL12mw-245C-0365-GF	Collected: 8/20/2013 9:56:00	Analysis Type: RES/TOT	Dilution: 1	
Outspic ID.1 WOLL IZINW-2430-0003-01	Conceted, 0/20/2013 3.30.00	Analysis Type. REDITOT	Dilution.	

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
THALLIUM	1.1	J	0.79	MDL	1.5	LOD	ug/L	J	RI

Sample ID:FWGLL12mw-247-0336-GF	Collected: 8/20/2013 1:01:00	Analysis Type: RES/TOT	Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
ALUMINUM	160		20	MDL	60	LOD	ug/L	J	Ld

Sample ID: FWGLL3mw-244-0323-GF Collected: 8/20/2013 12:29:00 Analysis Type: RES/TOT Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
ANTIMONY	0.35	J	0.33	MDL	1.0	LOD	ug/L	J	RI

Project Name and Number: 030174.0016.001.10.1 - RVAAP66 (OH)

10/2/2013 3:49:57 PM ADR version 1.7.0.207 Page 6 of 17

^{*} denotes a non-reportable result

Lab Reporting Batch ID: 240-28145-1 Laboratory: TA CAN

EDD Filename: Prep240-28145-1r eQAPP Name: RVAAP 66-rev July 2012

Method Category:	METALS									
Method:	6020			Má	atrix: A	AQ				
Sample ID:FWGSCFmw	-004-0372-GF	Collec	ted: 8/20/2	013 10:4	8:00 A	nalysis 1	ype: RES	/тот	D	ilution: 1
Analyte		Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
SODIUM		11000		160	MDL	400	LOD	ug/L	J	Ld
Sample ID:FWGSCFmw	-DUP6-0378-GF	Collec	ted: 8/20/2	013 1:02	:00 Ai	nalysis 1	ype: RES	тот	D	ilution: 1
Analyte		Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
THALLIUM		0.97	J	0.79	MDL	1.5	LOD	ug/L	J	RI

Method Category:	SVOA									
Method:	8081A			Ма	trix:	AQ				
Sample ID:FWGDA2m	w-115-0313-GW	Collec	ted: 8/20/2	2013 2:58:	00 A	nalysis T	ype: RES	BASE/N	EUTRAL L	Dilution: 1
Analyte		Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
ВЕТА-ВНС		0.015	JQ	0.0082	MDL	0.020	LOD	ug/L	J	RI, Ccv, Sur
Sample ID:FWGDETm	w-001C-0314-GW	Collec	ted: 8/20/2	2013 2:56:	00 A	nalysis T	ype: RES	BASE/N	EUTRAL L	Dilution: 1
Analyte		Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
ENDRIN KETONE		0.012	J	0.0074	MDL	0.019	LOD	ug/L	J	RI, Ccv
Sample ID: FWGDETm	w-002C-0315-GW	Collec	ted: 8/20/2	2013 3:11:	00 A	nalysis T	ype: RES	-BASE/N	EUTRAL L	Dilution: 1
Analyte		Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
BETA-BHC		0.011	JQ	0.0081	MDL	0.019	LOD	ug/L	J	RI, Ccv
Sample ID:FWGDETm	w-003C-0343-GW	Collec	ted: 8/20/2	2013 4:19:	00 A	nalysis T	ype: RES	B-BASE/N	EUTRAL I	Dilution: 1
Analyte		Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
BETA-BHC		0.015	J	0.0080	MDL	0.019	LOD	ug/L	J	RI, Ccv
Sample ID:FWGLL12m	nw-245C-0365-GW	Collec	ted: 8/20/2	2013 9:56:	00 A	nalysis T	ype: RES	B-BASE/N	EUTRAL L	Dilution: 1
		Lab	Lab		DI		RI		Data Review	Reason

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
ВЕТА-ВНС	0.011	JQ	0.0080	MDL	0.019	LOD	ug/L	J	RI, Ccv

^{*} denotes a non-reportable result

Project Name and Number: 030174.0016.001.10.1 - RVAAP66 (OH)

10/2/2013 3:49:57 PM ADR version 1.7.0.207 Page 7 of 17

Lab Reporting Batch ID: 240-28145-1 Laboratory: TA CAN

Collected: 8/20/2013 1:01:00

EDD Filename: Prep240-28145-1r eQAPP Name: RVAAP 66-rev July 2012

Analysis Type: RES-BASE/NEUTRAL Dilution: 1

Method Category: SVOA

Sample ID:FWGLL12mw-247-0336-GW

ENDOSULFAN I

ENDOSULFAN II

ENDRIN

TOXAPHENE

ENDOSULFAN SULFATE

Method: 8081A Matrix: AQ

0.019

0.019

0.019

0.019

0.76

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Review Qual	Reason Code
4,4'-DDD	0.019	U	0.0091	MDL	0.019	LOD	ug/L	UJ	Surr
4,4'-DDE	0.019	U	0.0092	MDL	0.019	LOD	ug/L	UJ	Surr
4,4'-DDT	0.019	U	0.015	MDL	0.019	LOD	ug/L	UJ	Surr
ALDRIN	0.019	U	0.0078	MDL	0.019	LOD	ug/L	UJ	Surr
ALPHA-BHC	0.019	U	0.0067	MDL	0.019	LOD	ug/L	UJ	Surr
ALPHA-CHLORDANE	0.019	U	0.013	MDL	0.019	LOD	ug/L	UJ	Surr
BETA-BHC	0.18		0.0080	MDL	0.019	LOD	ug/L	J	Surr, Ccv, Fd
DELTA-BHC	0.019	U	0.0083	MDL	0.019	LOD	ug/L	UJ	Surr
DIELDRIN	0.019	U	0.0071	MDL	0.019	LOD	ug/L	UJ	Surr

U

U

U

U

0.012

0.011

0.010

0.010

0.30

MDL

MDL

MDL

MDL

MDL

0.019

0.019

0.019

0.019

0.76

LOD

LOD

LOD

LOD

LOD

ug/L

ug/L

ug/L ug/L UJ

UJ

UJ

UJ

Surr

Surr

Surr

Surr

ENDRIN ALDEHYDE	0.019	U	0.010	MDL	0.019	LOD	ug/L	UJ	Surr
ENDRIN KETONE	0.019	U	0.0074	MDL	0.019	LOD	ug/L	UJ	Surr
gamma-BHC (Lindane)	0.019	U	0.0061	MDL	0.019	LOD	ug/L	UJ	Surr
GAMMA-CHLORDANE	0.019	U	0.011	MDL	0.019	LOD	ug/L	UJ	Surr
HEPTACHLOR	0.019	U	0.0076	MDL	0.019	LOD	ug/L	UJ	Surr
HEPTACHLOR EPOXIDE	0.019	U	0.0068	MDL	0.019	LOD	ug/L	UJ	Surr
METHOXYCHLOR	0.048	U	0.030	MDL	0.048	LOD	ug/L	UJ	Surr

Sample ID:FWGLL3mw-244-0323-GW Collected: 8/20/2013 12:29:00 Analysis Type: RES-BASE/NEUTRAL Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
BETA-BHC	0.025	JQ	0.0080	MDL	0.019	LOD	ug/L	J	Ccv

Sample ID:FWGSCFmw-002-0327-GW Collected: 8/20/2013 12:08:00 Analysis Type: RES-BASE/NEUTRAL Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
BETA-BHC	0.014	JQ	0.0080	MDL	0.019	LOD	ug/L	J	RI, Ccv, Surr

^{*} denotes a non-reportable result

Lab Reporting Batch ID: 240-28145-1

EDD Filename: Prep240-28145-1r eQAPP Name: RVAAP 66-rev July 2012

Laboratory: TA CAN

Method Category: SVOA

Method: 8081A Matrix: AQ

Sample ID:FWGSCFmw-004-0372-GW Collected: 8/20/2013 10:48:00 Analysis Type: RES-BASE/NEUTRAL Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
BETA-BHC	0.0087	JQ	0.0082	MDL	0.020	LOD	ug/L	J	RI, Ccv

Sample ID:FWGSCFmw-DUP6-0378-GW Collected: 8/20/2013 1:02:00 Analysis Type: RES-BASE/NEUTRAL Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
BETA-BHC	0.013	JQ	0.0086	MDL	0.020	LOD	ug/L	J	RI, Ccv

Method Category: SVOA

Method: 8082 Matrix: AQ

Sample ID:FWGB12mw-013-0313-GW Collected: 8/20/2013 10:30:00 Analysis Type: RES-BASE/NEUTRAL Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
AROCLOR 1016	0.19	UHQ	0.16	MDL	0.19	LOD	ug/L	UJ	Surr, StoE
AROCLOR 1221	0.19	UH	0.12	MDL	0.19	LOD	ug/L	UJ	Surr. StoE
AROCLOR 1232	0.19	UH	0.15	MDL	0.19	LOD	ug/L	UJ	Surr, StoE
AROCLOR 1242	0.38	UH	0.21	MDL	0.38	LOD	ug/L	UJ	Surr, StoE
AROCLOR 1248	0.19	UH	0.095	MDL	0.19	LOD	ug/L	UJ	Surr, StoE
AROCLOR 1254	0.19	UH	0.15	MDL	0.19	LOD	ug/L	UJ	Surr, StoE
AROCLOR 1260	0.19	UHQ	0.16	MDL	0.19	LOD	ug/L	UJ	Surr, StoE

Sample ID:FWGDA2mw-114-0312-GW Collected: 8/20/2013 5:05:00 Analysis Type: RES-BASE/NEUTRAL Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
AROCLOR 1016	0.19	UHQ	0.16	MDL	0.19	LOD	ug/L	UJ	StoE
AROCLOR 1221	0.19	UH	0.12	MDL	0.19	LOD	ug/L	UJ	StoE
AROCLOR 1232	0.19	UH	0.15	MDL	0.19	LOD	ug/L	UJ	StoE
AROCLOR 1242	0.38	UH	0.21	MDL	0.38	LOD	ug/L	UJ	StoE
AROCLOR 1248	0.19	UH	0.095	MDL	0.19	LOD	ug/L	UJ	StoE
AROCLOR 1254	0.19	UH	0.15	MDL	0.19	LOD	ug/L	UJ	StoE
AROCLOR 1260	0.19	UHQ	0.16	MDL	0.19	LOD	ug/L	UJ	StoE

10/2/2013 3:49:57 PM ADR version 1.7.0.207 Page 9 of 17

^{*} denotes a non-reportable result

Lab Reporting Batch ID: 240-28145-1 Laboratory: TA CAN

EDD Filename: Prep240-28145-1r eQAPP Name: RVAAP 66-rev July 2012

Method Category: SVOA

Method: 8082 Matrix: AQ

Sample ID:FWGDA2mw-115-0313-GW	Collected: 8/20/2013 2:58:00	Analysis Type: RES-BASE/NEUTRAL I	Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
AROCLOR 1016	0.19	ина	0.16	MDL	0.19	LOD	ug/L	UJ	StoE
AROCLOR 1221	0.19	UH	0.12	MDL	0.19	LOD	ug/L	UJ	StoE
AROCLOR 1232	0.19	UH	0.15	MDL	0.19	LOD	ug/L	UJ	StoE
AROCLOR 1242	0.38	υн	0.21	MDL	0.38	LOD	ug/L	UJ	StoE
AROCLOR 1248	0.19	UH	0.095	MDL	0.19	LOD	ug/L	UJ	StoE
AROCLOR 1254	0.19	UH	0.15	MDL	0.19	LOD	ug/L	UJ	StoE
AROCLOR 1260	0.19	UHQ	0.16	MDL	0.19	LOD	ug/L	UJ	StoE

Sample ID: FWGDETmw-001C-0314-GW Collected: 8/20/2013 2:56:00 Analysis Type: RES-BASE/NEUTRAL Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
AROCLOR 1016	0.19	UHQ	0.16	MDL	0.19	LOD	ug/L	UJ	Surr, StoE
AROCLOR 1221	0.19	UH	0.12	MDL	0.19	LOD	ug/L	ÚJ	Surr, StoE
AROCLOR 1232	0.19	UH	0.15	MDL	0.19	LOD	ug/L	UJ	Surr, StoE
AROCLOR 1242	0.38	UH	0.21	MDL	0.38	LOD	ug/L	UJ	Surr. StoE
AROCLOR 1248	0.19	UH	0.095	MDL	0.19	LOD	ug/L	UJ	Surr, StoE
AROCLOR 1254	0.19	UH	0.15	MDL	0.19	LOD	ug/L	UJ	Surr, StoE
AROCLOR 1260	0.19	UHQ	0.16	MDL	0.19	LOD	ug/L	UJ	Surr, StoE

Sample ID:FWGDETmw-002C-0315-GW Collected: 8/20/2013 3:11:00 Analysis Type: RES-BASE/NEUTRAL Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
AROCLOR 1016	0.19	UHQ	0.16	MDL	0.19	LOD	ug/L	UJ	Surr, StoE
AROCLOR 1221	0.19	UH	0.12	MDL	0.19	LOD	ug/L	UJ	Surr, StoE
AROCLOR 1232	0.19	UH	0.15	MDL	0.19	LOD	ug/L	UJ	Surr, StoE
AROCLOR 1242	0.38	UH	0.21	MDL	0.38	LOD	ug/L	UJ	Surr, StoE
AROCLOR 1248	0.19	UH	0.095	MDL	0.19	LOD	ug/L	UJ	Surr, StoE
AROCLOR 1254	0.19	UH	0.15	MDL	0.19	LOD	ug/L	UJ	Surr, StoE
AROCLOR 1260	0.19	UHQ	0.16	MDL	0.19	LOD	ug/L	UJ	Surr, StoE

Sample ID:FWGDETmw-003C-0343-GW Collected: 8/20/2013 4:19:00 Analysis Type: RES-BASE/NEUTRAL Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
AROCLOR 1016	0.19	UHQ	0.16	MDL	0.19	LOD	ug/L	UJ	StoE
AROCLOR 1221	0.19	UH	0.12	MDL	0.19	LOD	ug/L	UJ	StoE

^{*} denotes a non-reportable result

10/2/2013 3:49:57 PM ADR version 1.7.0.207 Page 10 of 17

Lab Reporting Batch ID: 240-28145-1 Laboratory: TA CAN

EDD Filename: Prep240-28145-1r eQAPP Name: RVAAP 66-rev July 2012

Method Category: SVOA

Method: 8082 Matrix: AQ

Sample ID:FWGDETmw-003C-0343-GW	Collected: 8/20/2013 4:19:00	Analysis Type: RES-BASE/NEUTRAL	Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
AROCLOR 1232	0.19	UH	0.15	MDL	0.19	LOD	ug/L	UJ	StoE
AROCLOR 1242	0.38	UH	0.21	MDL	0.38	LOD	ug/L	UJ	StoE
AROCLOR 1248	0.19	UH	0.095	MDL	0.19	LOD	ug/L	UJ	StoE
AROCLOR 1254	0.19	UH	0.15	MDL	0.19	LOD	ug/L	UJ	StoE
AROCLOR 1260	0.19	UHQ	0.16	MDL	0.19	LOD	ug/L	UJ	StoE

Sample ID:FWGEBGmw-131-0316-GW Collected: 8/19/2013 5:44:00 Analysis Type: RES-BASE/NEUTRAL Dilution: 1

AROCLOR 1016 0.19 U H Q 0.16 ME AROCLOR 1221 0.19 U H 0.12 ME	pe RL	Туре	Units	Review Qual	Reason Code
AROCLOR 1221 0.19 U.H. 0.12 MC	DL 0.19	LOD	ug/L	UJ	StoE
0.10	DL 0.19	LOD	ug/L	UJ	StoE
AROCLOR 1232 0.19 U H 0.15 ME	DL 0.19	LOD	ug/L	UJ	StoE
AROCLOR 1242 0.38 U H 0.21 ME	DL 0.38	LOD	ug/L	UJ	StoE
AROCLOR 1248 0.19 U H 0.095 ME	DL 0.19	LOD	ug/L	UJ	StoE
AROCLOR 1254 0.19 U H 0.15 ME	DL 0.19	LOD	ug/L	UJ	StoE
AROCLOR 1260 0.19 U H Q 0.16 ME	DL 0.19	LOD	ug/L	UJ	StoE

Sample ID: FWGEQUIPRINSE2-0341-GW Collected: 8/20/2013 1:42:00 Analysis Type: RES-BASE/NEUTRAL Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
AROCLOR 1016	0.20	UHQ	0.17	MDL	0.20	LOD	ug/L	UJ	Surr, StoE
AROCLOR 1221	0.20	UH	0.13	MDL	0.20	LOD	ug/L	UJ	Surr, StoE
AROCLOR 1232	0.20	UH	0.16	MDL	0.20	LOD	ug/L	UJ	Surr, StoE
AROCLOR 1242	0.40	UH	0.22	MDL	0.40	LOD	ug/L	UJ	Surr, StoE
AROCLOR 1248	0.20	UH	0.10	MDL	0.20	LOD	ug/L	UJ	Surr, StoE
AROCLOR 1254	0.20	UH	0.16	MDL	0.20	LOD	ug/L	UJ	Surr, StoE
AROCLOR 1260	0.20	UHQ	0.17	MDL	0.20	LOD	ug/L	UJ	Surr, StoE

Sample ID: FWGRQLmw-007C-0369-GW Collected: 8/19/2013 1:24:00 Analysis Type: RES-BASE/NEUTRAL Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
AROCLOR 1016	0.19	UHQ	0.16	MDL	0.19	LOD	ug/L	UJ	StoE
AROCLOR 1221	0.19	UH	0.13	MDL	0.19	LOD	ug/L	UJ	StoE
AROCLOR 1232	0.19	UH	0.15	MDL	0.19	LOD	ug/L	UJ	StoE
AROCLOR 1242	0.38	UH	0.21	MDL	0.38	LOD	ug/L	UJ	StoE

^{*} denotes a non-reportable result

Project Name and Number: 030174.0016.001.10.1 - RVAAP66 (OH)

10/2/2013 3:49:57 PM ADR version 1.7.0.207 Page 11 of 17

Lab Reporting Batch ID: 240-28145-1

EDD Filename: Prep240-28145-1r eQAPP Name: RVAAP 66-rev July 2012

Laboratory: TA CAN

Method Category: SVOA

Method: 8082 Matrix: AQ

Sample ID:FWGRQLmw-007C-0369-GW Collected: 8/19/2013 1:24:00 Analysis Type: RES-BASE/NEUTRAL Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
AROCLOR 1248	0.19	UH	0.096	MDL	0.19	LOD	ug/L	UJ	StoE
AROCLOR 1254	0.19	UH	0.15	MDL	0.19	LOD	ug/L	UJ	StoE
AROCLOR 1260	0.19	UHQ	0.16	MDL	0.19	LOD	ug/L	UJ	StoE

Sample ID:FWGRQLmw-010C-0325-GW Collected: 8/19/2013 3:34:00 Analysis Type: RES-BASE/NEUTRAL Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
AROCLOR 1016	0.19	UHQ	0.16	MDL	0.19	LOD	ug/L	UJ	StoE
AROCLOR 1221	0.19	UH	0.12	MDL	0.19	LOD	ug/L	UJ	StoE
AROCLOR 1232	0.19	UH	0.15	MDL	0.19	LOD	ug/L	UJ	StoE
AROCLOR 1242	0.38	UH	0.21	MDL	0.38	LOD	ug/L	UJ	StoE
AROCLOR 1248	0.19	UH	0.095	MDL	0.19	LOD	ug/L	UJ	StoE
AROCLOR 1254	0.19	UH	0.15	MDL	0.19	LOD	ug/L	UJ	StoE
AROCLOR 1260	0.19	UHQ	0.16	MDL	0.19	LOD	ug/L	UJ	StoE

Method Category: SVOA

Method: 8270C -SVOC1 Matrix: AQ

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
BIS(2-ETHYLHEXYL)PHTHALATE	0.74	J	0.21	MDL	0.48	LOD	ug/L	U	Mb, Eb
DI-N-BUTYL PHTHALATE	0.74	J	0.64	MDL	0.95	LOD	ug/L	J	RI

Sample ID:FWGLL12mw-187C-0363-GW Collected: 8/20/2013 9:35:00 Analysis Type: RES-BASE/NEUTRAL Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
BIS(2-ETHYLHEXYL)PHTHALATE	0.65	J	0.21	MDL	0.48	LOD	ug/L	U	Mb, Eb
DI-N-BUTYL PHTHALATE	0.84	J	0.64	MDL	0.95	LOD	ug/L	J	RI

Sample ID:FWGLL12mw-242C-0364-GW Collected: 8/20/2013 11:11:00 Analysis Type: RES-BASE/NEUTRAL Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
BIS(2-ETHYLHEXYL)PHTHALATE	1.2	J	0.21	MDL	0.48	LOD	ug/L	U	Mb, Eb
Butylbenzylphthalate	0.35	J	0.25	MDL	0.48	LOD	ug/L	J	RI

^{*} denotes a non-reportable result

Project Name and Number: 030174.0016.001.10.1 - RVAAP66 (OH)

10/2/2013 3:49:57 PM ADR version 1.7.0.207 Page 12 of 17

Lab Reporting Batch ID: 240-28145-1 Laboratory: TA CAN

EDD Filename: Prep240-28145-1r eQAPP Name: RVAAP 66-rev July 2012

Method	Category:	SVOA	
Meditod	Category.	SVOA	

Method: 8270C -SVOC1 Matrix: AQ

Sample ID:FWGLL12mw-245C-0365-GW	Collected: 8/20/2013 9:56:00	Analysis Type: RES-BASE/NEUTRAL	Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
BIS(2-ETHYLHEXYL)PHTHALATE	0.68	J	0.21	MDL	0.48	LOD	ug/L	U	Mb, Eb

Sample ID:FWGLL12mw-247-0336-GW Collected: 8/20/2013 1:01:00 Analysis Type: RES-BASE/NEUTRAL Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
BIS(2-ETHYLHEXYL)PHTHALATE	0.55	J	0.21	MDL	0.48	LOD	ug/L	U	Mb, Eb
DI-N-BUTYL PHTHALATE	0.67	J	0.64	MDL	0.95	LOD	ug/L	J	RI

Sample ID:FWGLL12mw-DUP3-0338-GW Collected: 8/20/2013 1:41:00 Analysis Type: RES-BASE/NEUTRAL Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
BIS(2-ETHYLHEXYL)PHTHALATE	0.62	J	0.21	MDL	0.48	LOD	ug/L	U	Mb, Eb
DI-N-BUTYL PHTHALATE	0.70	J	0.64	MDL	0.95	LOD	ug/L	J	RI

Sample ID:FWGLL1mw-064C-0352-GW Collected: 8/20/2013 4:04:00 Analysis Type: RES-BASE/NEUTRAL Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
BIS(2-ETHYLHEXYL)PHTHALATE	0.61	J	0.22	MDL	0.50	LOD	ug/L	U	Mb, Eb
DI-N-BUTYL PHTHALATE	0.91	J	0.66	MDL	0.99	LOD	ug/L	J	RI

Sample ID: FWGLL1mw-087C-0356-GW Collected: 8/20/2013 9:28:00 Analysis Type: RES-BASE/NEUTRAL Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
BIS(2-ETHYLHEXYL)PHTHALATE	0.86	J	0.24	MDL	0.54	LOD	ug/L	U	Mb, Eb
DI-N-BUTYL PHTHALATE	0.84	J	0.73	MDL	1.1	LOD	ug/L	J	RI

Sample ID: FWGLL3mw-244-0323-GW Collected: 8/20/2013 12:29:00 Analysis Type: RES-BASE/NEUTRAL Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
BIS(2-ETHYLHEXYL)PHTHALATE	0.46	J	0.21	MDL	0.48	LOD	ug/L	U	Mb, Eb
DI-N-BUTYL PHTHALATE	0.69	J	0.64	MDL	0.95	LOD	ug/L	J	RI

Sample ID: FWGSCFmw-002-0327-GW Collected: 8/20/2013 12:08:00 Analysis Type: RES-BASE/NEUTRAL Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
BIS(2-ETHYLHEXYL)PHTHALATE	0.53	J	0.22	MDL	0.50	LOD	ug/L	U	Mb, Eb

^{*} denotes a non-reportable result

10/2/2013 3:49:57 PM ADR version 1.7.0.207 Page 13 of 17

Lab Reporting Batch ID: 240-28145-1 Laboratory: TA CAN

EDD Filename: Prep240-28145-1r eQAPP Name: RVAAP 66-rev July 2012

Method Category: SVOA

Method: 8270C -SVOC1 Matrix: AQ

Sample ID:FWGSCFmw-004-0372-GW	Collected: 8/20/2013 10:48:00	Analysis Type: RES-BASE/NEUTRAL Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
BIS(2-ETHYLHEXYL)PHTHALATE	0.95	J	0.23	MDL	0.53	LOD	ug/L	U	Mb, Eb
DI-N-BUTYL PHTHALATE	0.84	J	0.71	MDL	1.1	LOD	ug/L	J	RI

Sample ID:FWGSCFmw-DUP6-0378-GW Collected: 8/20/2013 1:02:00 Analysis Type: RES-BASE/NEUTRAL Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
BIS(2-ETHYLHEXYL)PHTHALATE	0.57	J	0.21	MDL	0.48	LOD	ug/L	U	Mb, Eb

Method Category: SVOA

Method: 8270C-SVOC4 Matrix: AQ

Sample ID:FWGDA2mw-114-0312-GW	Collected: 8/20/2013 5:05:00	Analysis Type: RES-BASE/NEUTRAL Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
BIS(2-ETHYLHEXYL)PHTHALATE	0.35	J	0.21	MDL	0.48	LOD	ug/L	U	Eb

Sample ID:FWGDA2mw-115-0313-GW Collected: 8/20/2013 2:58:00 Analysis Type: RES-BASE/NEUTRAL Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
BIS(2-ETHYLHEXYL)PHTHALATE	0.56	j	0.21	MDL	0.48	LOD	ug/L	U	Eb
DI-N-BUTYL PHTHALATE	0.64	J	0.64	MDL	0.95	LOD	ug/L	J	RI

Sample ID: FWGDA2mw-DUP1-0336-GW Collected: 8/20/2013 4:08:00 Analysis Type: RES-BASE/NEUTRAL Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
BIS(2-ETHYLHEXYL)PHTHALATE	0.88	J	0.23	MDL	0.53	LOD	ug/L	U	Eb

Sample ID:FWGDETmw-001C-0314-GW Collected: 8/20/2013 2:56:00 Analysis Type: RES-BASE/NEUTRAL Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
BIS(2-ETHYLHEXYL)PHTHALATE	3.4		0.22	MDL	0.51	LOD	ug/L	U	Eb
DI-N-BUTYL PHTHALATE	0.70	J	0.68	MDL	1.0	LOD	ug/L	J	RI

10/2/2013 3:49:57 PM ADR version 1.7.0.207 Page 14 of 17

^{*} denotes a non-reportable result

Lab Reporting Batch ID: 240-28145-1 Laboratory: TA CAN

EDD Filename: Prep240-28145-1r eQAPP Name: RVAAP 66-rev July 2012

И	eth	od (Cate	egor	v:	sv	OA

Method: 8270C-SVOC4 Matrix: AQ

Sample ID:FWGDETmw-002C-0315-GW	Collected: 8/20/2013 3:11:00	Analysis Type: RES-BASE/NEUTRAL	Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
BIS(2-ETHYLHEXYL)PHTHALATE	0.35	J	0.21	MDL	0.48	LOD	ug/L	U	Eb

Sample ID:FWGDETmw-003C-0343-GW Collected: 8/20/2013 4:19:00 Analysis Type: RES-BASE/NEUTRAL Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
BIS(2-ETHYLHEXYL)PHTHALATE	0.78	J	0.21	MDL	0.48	LOD	ug/L	U	Eb

Sample ID: FWGEBGmw-131-0316-GW Collected: 8/19/2013 5:44:00 Analysis Type: RES-BASE/NEUTRAL Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
BIS(2-ETHYLHEXYL)PHTHALATE	0.38	J	0.21	MDL	0.48	LOD	ug/L	J	RI

Sample ID:FWGEQUIPRINSE2-0341-GW Collected: 8/20/2013 1:42:00 Analysis Type: RES-ACID Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
PHENOL	0.61	J	0.60	MDL	1.0	LOD	ug/L	J	RI

Sample ID:FWGRQLmw-007C-0369-GW Collected: 8/19/2013 1:24:00 Analysis Type: RES-BASE/NEUTRAL Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
BIS(2-ETHYLHEXYL)PHTHALATE	0.46	J	0.21	MDL	0.48	LOD	ug/L	J	RI
DI-N-BUTYL PHTHALATE	0.78	J	0.64	MDL	0.96	LOD	ug/L	J	RI

Method Category: SVOA

Method: 8330 Matrix: AQ

Sample ID:FWGSCFmw-002-0327-GW Collected: 8/20/2013 12:08:00 Analysis Type: RES-BASE/NEUTRAL Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,3-DINITROBENZENE	0.064	J	0.057	MDL	0.11	LOD	ug/L	UJ	RI, ProfJudg
NITROBENZENE	2.6		0.057	MDL	0.11	LOD	ug/L	U	ProfJudg

Project Name and Number: 030174.0016.001.10.1 - RVAAP66 (OH)

10/2/2013 3:49:57 PM ADR version 1.7.0.207 Page 15 of 17

^{*} denotes a non-reportable result

Lab Reporting Batch ID: 240-28145-1 Laboratory: TA CAN

EDD Filename: Prep240-28145-1r eQAPP Name: RVAAP 66-rev July 2012

VOA									
8260B			Má	itrix:	AQ				
-115-0313-GW	Collec	ted: 8/20/2	013 2:58	:00 A	nalysis 1	ype: RES		L	Dilution: 1
	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
	0.14	J	0.13	MDL	0.25	LOD	ug/L	U	Eb
INSE2-0341-GW	Collec	ted: 8/20/2	013 1:42	00 A	nalysis 1	ype: RES		L	Dilution: 1
	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
	21		1.1	MDL	1.1	LOD	ug/L	J	Ccv
-007C-0369-GW	Collec	ted: 8/19/2	013 1:24	00 A	nalysis 1	ype: RES	- 1	L	Dilution: 1
	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
(TOTAL)	0.18	J	0.17	MDL	0.25	LOD	ug/L	J	RI
	1.2	J	1.1	MDL	1.1	LOD	ug/L	UJ	Ccv, Eb
ENE	0.18	J	0.17	MDL	0.25	LOD	ug/L	J	RI
-010C-0325-GW	Collec	ted: 8/19/2	013 3:34	00 A	nalysis T	ype: RES		L	Dilution: 1
	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
	2.5	J	1.1	MDL	1.1	LOD	ug/L	UJ	Ccv, Eb
TRIP	Collec	ted: 8/20/2	013 8:00	00 A	nalysis 1	ype: RES		L	Dilution: 1
	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
	0.33	J	0.33	MDL	0.50	LOD	ug/L	J	RI, ProfJudg
TRIP	Collec	ted: 8/20/2	013 8:00	00 A	nalysis T	ype: RES		L	Dilution: 1
	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
		Second Collect	### Collected: 8/20/2 Lab	Lab	Collected: 8/20/2013 2:58:00 A	Second S	Second Collected: 8/20/2013 2:58:00 Analysis Type: RES	Second Collected: 8/20/2013 2:58:00 Analysis Type: RES	Natrix: AQ

Project Name and Number: 030174.0016.001.10.1 - RVAAP66 (OH)

ADR version 1.7.0.207 10/2/2013 3:49:57 PM Page 16 of 17

^{*} denotes a non-reportable result

Lab Reporting Batch ID: 240-28145-1 Laboratory: TA CAN

EDD Filename: Prep240-28145-1r eQAPP Name: RVAAP 66-rev July 2012

Reason Code Legend

Reason Code	Description	
Ccv	Continuing Calibration Verification Percent Difference Upper Estimation	
Eb	Equipment Blank Contamination	
Fd	Field Duplicate Precision	
Ld	Laboratory Duplicate Precision	
Mb	Method Blank Contamination	
Ms	Matrix Spike Precision	
ProfJudg	Professional Judgment	
RI	Reporting Limit Trace Value	
StoE	Sampling to Extraction Estimation	
Surr	Surrogate/Tracer Recovery Lower Estimation	
Surr	Surrogate/Tracer Recovery Upper Estimation	

10/2/2013 3:49:57 PM ADR version 1.7.0.207 Page 17 of 17

^{*} denotes a non-reportable result

Site: Ravenna Army Ammunition Plant

Sampling Event: August 2013 Date: December 9, 2013

Sample Delivery Group: 240-28186 Revision: 0

Data Reviewer: Angye Dragotta /Environmental Quality Management, Inc. (EQM, Inc.)

QA/QC Summary

On August 20th and 21st, 2013 the following samples were collected from groundwater-monitoring wells at Ravenna Army Ammunition Plant and analyzed as part of SDG 240-28186. Sample analysis was performed by Test America. Test America-North Canton performed all analyses with the exception of the analytical for methods 8330, M8330, TALSOPWS-WC-0050 and 6860. Methods 8330, M8330 and TALSOPWS-WC-0050 were analyzed by Test America, West Sacramento and method 6860 was analyzed by Test America-Denver.

		0			81		60 0]	Meta	als ⁴
Sample ID	VOC by SW846 8260	SVOC 4 by SW846 8270	SVOC 1 and 3 by SW846 8270	SVOC 1 by SW846 8270	Pesticides by SW846 8081	PCBs/ SW846 8082	Explosives/Propellants by SW846 8330, Mod. 8330 and TALSOP WS-WC-0050	Cyanide SW846 9012	Perchlorate by SW846 6860	NO2/NO3, EPA 353.2	SW846 6010B	SW846 6020	Mercury by SW846 7470A
FWGWBGmw-009C-0374-GW/GF				X			X				X	X	X
FWGWBGmw-020-0330-GW/GF	X	X			X	X	X	X			X	X	X
FWGLL2mw-265C-0321-GW/GF	X			X			X				X	X	X
FWGLL2mw-059C-0357-GW/GF	X			X			X				X	X	X
FWGLL1mw-084C-0355-GW/GF				X	X		X				X	X	X
FWGLL1mw-083C-0354-GW/GF				X	X		X				X	X	X
FWGDETmw-004C-0344-GW/GF	X	X			X	X	X	X			X	X	X
FWGNTAmw-119-0367-GW/GF	X		X				X				X	X	X
FWGFWGmw-006-0318-GW	X												
FWGFBQmw-174C-0345-GW/GF				X	X		X				X	X	X
FWGWBGmw-019-0329-GW/GF	X	X			X	X	X	X			X	X	X
FWGWBGmw-018-0328-GW/GF	X	X			X	X	X	X			X	X	X
FWGWBGmw-Dup4-0339-GW/GF	X	X			X	X	X	X			X	X	X
FWGLL2mw-267C-0358-GW/GF				X			X				X	X	X
FWGLL1mw-086-0320-GW/GF				X	X		X				X	X	X
FWGLL1mw-065C-0353-GW/GF				X	X		X				X	X	X
FWGWBGmw-021-0331-GW/GF	X	X			X	X	X	X			X	X	X
FWGWBGmw-006C-0373-GW/GF				X			X				X	X	X
FWGFWGmw-009-0319-GW/GF	X	X			X	X	X	X	X		X	X	X
FWGFWGmw-007-0347-GW/GF				X			X				X	X	X
FWGEQUIPRINSE3-0342-GW/GF	X	X			X	X	X	X	X		X	X	X

Notes:

- 1) All metals and perchlorate samples with the exception of FWGEQUIPRINSE3-0342-GW were field filtered (GF).
- 2) FWGTEAM1-TRIP, FWGTEAM2-TRIP082013, FWGTEAM3-TRIP, FWGTEAM4-TRIP were collected and analyzed for VOC by EPA 8260B.
- 3) SVOC4= Full SVOC List. SVOC 1&3= Nitroaromatics, phthalates and PAH. SVOC 1= Nitroaromatics and phthalates.
- 4) EPA 6020 metals include aluminum, antimony, beryllium, cadmium, iron, sodium, thallium and zinc. EPA 6010B metals include arsenic, chromium, cobalt, lead, selenium, silver, vanadium, barium, calcium, copper, magnesium, manganese, nickel and potassium.

240-28186-1 DVSR Page 1 of 9

Site: Ravenna Army Ammunition Plant

Sampling Event: August 2013 Date: December 9, 2013

Sample Delivery Group: 240-28186 Revision: 0

The data presented in this report were evaluated according to the *Final Facility Wide Groundwater Monitoring Program, RVAAP-66 Facility Wide Groundwater Quality Assurance Project Plan (QAPP) Addendum for the Ravenna Army Ammunition Plant, Ravenna, OH, Environmental Quality Management, January, 2012.* The following documents were used as needed to supplement the project documentation: The United States Department of Defense (DoD) Quality Services Manual (QSM) for Environmental Laboratories, Version 4.1, and the United States Army Corps of Engineers (USACE), Louisville District Quality Systems Manual Supplement (LS), *EPA National Functional Guidelines (NFG) for Organic Data Review, EPA-540/R-08-01, June 2008, NFG for Inorganic Data Review, EPA-540/R-04-004, October 2004*, Analytical Methods, and Laboratory Standard Operating Procedures. The QC criteria provided in the reference documents represent accuracy and precision performance goals for each analytical method. QC criteria reviewed for each method are listed below, along with any outliers.

All analytical results have been verified against compliance requirements specified in the project QAPP, QSM, LS, associated analytical methods and/or SOPs, as appropriate, and reported by the laboratory as directed by the DoD QSM.

Per the DoD QSM, the laboratory data is reported as follows: Non detected results were reported at the LOD with a "U" flag. Detected results between the DL and LOQ were reported as estimated, qualified with a "J" flag.

LOD - An estimate of the minimum amount of a substance that an analytical process can reliably detect.

LOQ - The lowest concentration that produces a quantitative result within specified limits of precision and bias.

DL- The smallest analyte concentration that can be demonstrated to be different from zero or a blank concentration at the 99% level of confidence.

Checklists used in review of the data have been presented in Appendix 1. Outliers have been noted below and results requiring qualification, as a result of this verification process, have been summarized in Appendix 2.

The completeness objective for the project was 90%. The completeness objective was met for this SDG, at 100%. Limitations, if any, on the data are indicated with qualifiers detailed below.

VOAs - 8260B

The following QC criteria were reviewed and determined to be acceptable, except as noted below:

- Holding times, preservation, sample handling
- Tuning criteria
- Initial Calibration Criteria including SPCC and CCC compounds
- ICV/CCV criteria
- Internal standard area counts and retention times
- LOD and MRL verification criteria
- Method/Field/Trip blank Criteria
- Surrogate recoveries
- Field duplicate RPD criteria
- Laboratory Control Sample criteria
- Matrix Spike Recovery Criteria and RPD

MRL Recovery

The opening MRL analyzed 8/31/13 @ 0824 recovered above control limits of 70-130% for bromomethane at 157%, chloroethane at 139%, chloromethane at 149%, methylene chloride at 254% and vinyl chloride at 143%. The closing MRL analyzed 8/31/13 @ 1255 recovered above control limits of 70-130% for cis-1,3-dichloropropene at 135% and methylene chloride at 183%. The methylene chloride results for samples FWGTeam4-Trip and FWGEQUIPRINSE3-0342-GW were qualified as estimated, "J". No additional qualifications were made for the

240-28186-1 DVSR Page 2 of 9

Site: Ravenna Army Ammunition Plant

Sampling Event: August 2013 Date: December 9, 2013

Sample Delivery Group: 240-28186 Revision: 0

other MRL outliers, as there were no detected bromomethane, chloroethane, chloromethane, cis-1,3-dichloropropene or vinyl chloride concentrations reported for the bracketed field samples.

The opening MRL analyzed 8/29/13 @ 1836 recovered above control limits of 70-130% for toluene at 142% and trichloroethene at 143%. No qualifications were required as there were no detected toluene or trichloroethene concentrations reported for the bracketed field samples.

CCV

The CCV analyzed 8/31/13 @ 0717 had a %D above control limits of 20% for methylene chloride at 20.5%, carbon tetrachloride at 21.2% and trans-1,3-dichloropropene at 21.6%. %. The methylene chloride results for samples FWGTeam4-Trip and FWGEQUIPRINSE3-0342-GW were qualified as estimated, "J". No qualifications were made for the carbon tetrachloride or trans-1,3-dichloropropene outliers as there were no detected carbon tetrachloride or trans-1,3-dichloropropene concentrations reported for the bracketed field samples.

Blanks

Toluene was detected at $0.164\mu g/L$ in the method blank from batch 240-99628 and methylene chloride was detected in the method blank from batch 240-99810 at $0.893\mu g/L$. The methylene chloride results for samples FWGEQUIPRINSE3-0342-GW and FWGTEAM4-TRIP were qualified, "B". No qualifications were required for the toluene contamination as there were no detected toluene concentrations reported for the associated field samples.

Methylene chloride was detected in FWGTEAM1-TRIP at 0.47μg/L, in FWGTEAM2-TRIP at 0.69μg/L and in FWGTEAM3-TRIP at 0.77μg/L. FWGTeam4-Trip had acetone detected at 1.4μg/L and methylene chloride at 0.85μg/L. FWGEQUIPRINSE3-0342-GW had acetone detected at 9.9μg/L, chloroform at 0.52μg/L, 2-butanone at 1.7μg/L, toluene at 0.18μg/L and methylene chloride at 0.81μg/L. The methylene chloride results for samples FWGEQUIPRINSE3-0342-GW and the acetone results for samples FWGFWGmw-009-0319-GW, FWGLL2mw-059C-0357-GW and FWGWBGmw-DUP4-0339-GW were qualified, "B" as the detected concentrations were <10x blank contamination. There were no detected 2-butanone, chloroform or toluene results reported for the associated field samples, so no qualifications were made for the 2-butanone, chloroform or toluene contamination.

Field Duplicate RPD

A field duplicate was collected and analyzed on sample FWGWBGmw-018-0328-GW. The field duplicate RPD was above control limits for acetone at 200%, no qualification was made as acetone was not detected in the parent sample, FWGWBGmw-018-0328-GW.

SVOCs-8270C

The following QC criteria were reviewed and determined to be acceptable, except as noted below:

- Holding times, preservation, sample handling
- Tuning criteria
- Initial Calibration Criteria including SPCC and CCC compounds
- ICV/CCV criteria
- Internal standard area counts and retention times
- LOD and MRL verification criteria
- Method/Field blank Criteria
- Surrogate recoveries
- Field duplicate RPD criteria
- Laboratory Control Sample criteria
- Matrix Spike Recovery Criteria and RPD

MRL Verification

The closing MRL check analyzed 9/7/13 recovered below control limits of 70-130% for 2,4-nitrophenol at 58%. An check standard was analyzed with detected results, so the 2,4-dinitrophenol results for samples FWGFWGmw-009-0319-GW, FWGDETmw-004C-0344-GW, FWGWBGmw-021-0331-GW, FWGEOUIPRINSE3-0342-GW,

240-28186-1 DVSR Page 3 of 9

Site: Ravenna Army Ammunition Plant

Sampling Event: August 2013 Date: December 9, 2013

Sample Delivery Group: 240-28186 Revision: 0

FWGWBGmw-018-0328-GW, FWGWBGmw-DUP4-0328-GW, FWGWBGmw-020-0330-GW and FWGWBGmw-019-0329-GW were qualified as estimated, "UJ".

ICV/CCV

The ICV analyzed 9/5/13 @ 1936 had 2,4-dimethylphenol with a %D above control limits of 20% at 25.4%. No qualifications were made as there were no detected concentrations of 2,4-dimethylphenol reported for the associated field samples.

The CCV analyzed 8/30/13 @1101 had 4-nitroaniline with a %D above control limits of 20% D at 22.1% No qualifications were made as there were no detected concentrations of 4-nitroaniline reported for the associated field samples.

Blanks

bis (2-Ethylhexyl)phthalate was detected in the method blank from batch 240-98675 at 0.425μg/L and di-n-butyl phthalate at 0.720μg/L. bis (2-Ethylhexyl)phthalate was detected in the method blank from batch 240-98883 at 0. 25μg/L. The bis (2-ethylhexyl) phthalate and di-n-butyl phthalate results for samples FWGLL1mw-084C-0355-GW, FWGLL1mw-083C-0354-GW, FWGFBQmw-174C-0345-GW, FWGLL1mw-086-0320-GW, FWGLL2mw-267C-0358-GW, FWGDETmw-004C-0344-GW, FWGWBGmw-006C-0373-GW, FWGWBGmw-009C-0374-GW, FWGLL1mw-065C-0353-GW, FWGWBGmw-021-0331-GW, FWGEQUIPRINSE3-0342-GW, FWGWBGmw-DUP4-0328-GW, FWGLL2mw-265c-0321-GW, FWGLL2mw-059c-0357-GW, FWGWBGmw-020-0330-GW, FWGNTAmw-119-0367-GW and FWGWBGmw-019-0329-GW were qualified, "B". The bis (2-ethylhexyl) phthalate results for samples FWGFWGmw-009-0319-GW, FWGWBGmw-018-0328-GW, FWGLL1mw-065C-0353-GW, FWGWBGmw-006C-0373-GW and FWGFWGmw-007-0347-GW were qualified, "B".

bis (2-Ethylhexyl)phthalate was detected at 0.41μg/L and di-n-butyl phthalate at 1μg/L in sample FWGEQUIPRINSE3-0342-GW. The bis (2-ethylhexyl) phthalate and di-n-butyl phthalate results for samples FWGLL1mw-084C-0355-GW, FWGLL1mw-083C-0354-GW, FWGFBQmw-174C-0345-GW, FWGLL1mw-086-0320-GW, FWGLL2mw-267C-0358-GW, FWGDETmw-004C-0344-GW, FWGWBGmw-006C-0373-GW, FWGWBGmw-009C-0374-GW, FWGLL1mw-065C-0353-GW, FWGWBGmw-021-0331-GW, FWGWBGmw-DUP4-0328-GW, FWGLL2mw-265c-0321-GW, FWGLL2mw-059c-0357-GW, FWGWBGmw-020-0330-GW, FWGNTAmw-119-0367-GW and FWGWBGmw-019-0329-GW were qualified, "B". The bis (2-ethylhexyl) phthalate results for samples FWGFWGmw-009-0319-GW, FWGWBGmw-018-0328-GW, FWGLL1mw-065C-0353-GW, FWGWBGmw-006C-0373-GW and FWGFWGmw-007-0347-GW were qualified, "B".

Field Duplicate RPD

The field duplicate analyzed on sample FWGWBGmw-018-0328-GW had an RPD above control limits of 50% for bis (2-ethylhexyl) phthalate at 82% and di-n-butyl phthalate at 200%. No qualification was made for the di-n-butyl phthalate RPD outlier as the parent sample result was no detected above the LOQ. However; the bis (2-ethylhexyl) phthalate result for sample FWGWBGmw-018-0328-GW was qualified as estimated, "J".

Matrix Spike Recovery

A matrix spike was performed on sample FWGFWGmw-009-0319-GW. The benzo (a) pyrene matrix spike recovered below control limits of 55-110% at 53%. The benzo (a) pyrene result for sample FWGFWGmw-009-0319-GW was qualified as estimated, "UJ"

Pesticides- 8081A

The following QC criteria were reviewed and determined to be acceptable, except as noted below:

- Preservation, holding time and sample handling
- Initial Calibration criteria
- DDT and Endrin breakdown criteria
- Retention time criteria
- ICV criteria
- CCV Criteria

240-28186-1 DVSR Page 4 of 9

Site: Ravenna Army Ammunition Plant

Sampling Event: August 2013 Date: December 9, 2013
Sample Delivery Group: 240-28186 Revision: 0

- Method/Field blank Criteria
- LCS Recoveries
- Field Duplicate Criteria
- LOD and MRL verification criteria
- Matrix Spike Recovery Criteria and RPD
- Surrogate Recoveries
- Second Column confirmation criteria

MRL Recovery

- The MRL analyzed on 8/29/13@ 2251 recovered above control limits of 70-130% at 143% on CLP-2 for delta-BHC.
- The MRL analyzed on 8/30/13@ 0337 recovered above control limits of 70-130% at 149% on CLP-2 for delta-BHC.
- The MRL analyzed on 8/30/13@ 1254 recovered above control limits of 70-130% at 139% on CLP-2 for delta-BHC
- The MRL analyzed on 9/10/13@ 1711 recovered above control limits of 70-130% at 233% on CLP-2 for 4,4'-DDD and at 139% for methoxychlor.
- The MRL analyzed on 9/10/13@ 2015 recovered above control limits of 70-130% at 260% on CLP-2 for 4,4'-DDD and at 161% for methoxychlor.

No qualifications were required as there were no detected concentrations reported for delta-BHC, 4,4'-DDD or aldrin in the bracketed field samples from CLP-2.

ICV/CCV

The ICV analyzed 8/29/13 at 1825 had a %D above control limits of 20% for methoxychlor at 22% on CLP-1. No qualification was required as there were no detected concentrations of methoxychlor reported for the associated field samples.

The ICV analyzed 8/29/13 at 2028 had a %D below control limits of 20% for toxaphene at -26% on CLP-2. The ICV analyzed 9/10/13 at 1448 had a %D of -30.8% for toxaphene on CLP-2. No toxaphene qualifications were required as CLP-2 was used for confirmation only and there were no detected concentrations of toxaphene reported for the associated field samples from the primary column.

The CCV analyzed 8/30/13 @ 0316 had a %D above control limits of 20% for endrin at 20.6% (CLP-1) and above limits for 4,4'-DDD at 23% and methoxychlor at 23.5% (CLP-2). No qualifications were required as there were no detected concentrations reported for the bracketed field samples.

The CCV analyzed 8/30/13 @ 0316 (CLP-2) had a %D above control limits of 20% for 4,4'-DDD at 23% and for methoxychlor at 23.%. No qualifications were required as there were no detected concentrations reported for the bracketed field samples and CLP-2 was used for confirmation only.

The CCV analyzed 8/30/13 @ 1044 (CLP-1) had a %D above control limits of 20% for gamma-BHC at 24.3%, beta-BHC at 21.9%, heptachlor epoxide at 22.7%, gamma-chlordane at 24.4%, dieldrin at 25.9%, endrin at 34.9%, 4,4'-DDD at 42.3%, endosulfan II at 31.4%, endosulfan sulfate at 26.4 % and endrin ketone at 25% (CLP-1). CLP-2 had a %D above control limits of 20% for gamma-BHC at 21.6%, heptachlor epoxide at 20.7%, gamma-chlordane at 23.2%, dieldrin at 23.9%, endrin at 36.5%, 4,4'-DDD at 36%, endosulfan II at 21.9%, endosulfan sulfate at 30.2 %, endrin ketone at 29% and methoxychlor at 20.8%. No qualifications were required as there were no detected concentrations reported for the bracketed field samples.

The CCV analyzed 8/30/13 @ 1155 had a %D above control limits of 20% for alpha-BHC at 22.4%, gamma-BHC at 30.9%, beta-BHC at 28.3%, delta-BHC at 22.5%, heptachlor epoxide at 27.3%, gamma-chlordane at 30.9, alpha-chlordane at 26.3%, 4,4'-DDE at 23.7%, dieldrin at 31.7%, endrin at 28.1%, 4,4'-DDD at 35.8%, endosulfan II at 27.3%, endosulfan sulfate at 24.3 % and endrin ketone at 24.2% (CLP-1). CLP-2 had a %D above control limits of

240-28186-1 DVSR Page 5 of 9

Site: Ravenna Army Ammunition Plant

Sampling Event: August 2013 Date: December 9, 2013

Sample Delivery Group: 240-28186 Revision: 0

20% for gamma-chlordane at 21%, 4,4'-DDD at 22.6%, endosulfan sulfate at 21 % and endrin ketone at 20.9%. No qualifications were required as there were no detected concentrations reported for the bracketed field samples.

The CCV analyzed 9/10/13 @ 1955 had a %D above control limits of 20% for 4,4'-DDD at 25.7% (CLP-1). CLP-2 had a %D above control limits for 4,4'-DDD at 31.6% and methoxychlor at 26.6% (CLP-2). No qualifications were required as there were no detected concentrations reported for the bracketed field samples.

The CCV analyzed 9/12/13 @ 1531 had a %D above control limits of 20% for alpha-BHC at 24.3%, gamma-BHC at 21.4%, delta-BHC at 21.4%, heptachlor at 20.5%, aldrin at 26.9%, 4,4'-DDE at 26.3%, endrin at 23.5%, 4,4'-DDD at 21% and below limits for endrin ketone at 20.9%(CLP-1). CLP-2 had a %D above control limits of 20% for alpha-BHC at 29.2%, gamma-BHC at 26%, beta-BHC at 24.3%, delta-BHC at 26%, heptachlor at 23.6%, aldrin at 30.7%, heptachlor epoxide at 23.9%, gamma-chlordane at 22.4%, alpha-chlordane at 23.7%, endosulfan I at 21.1%, 4,4'-DDE at 30.6%, dieldrin at 23.5%, endrin at 27.6%, 4,4'-DDD at 26.1%, endosulfan II at 20.9%, 4,4'-DDT at 21.9%, methoxychlor at 23% and endosulfan sulfate at 21.1%. No qualifications were required as FWGWBGmw-019-0329 had no detected concentrations reported for the outlier target analytes on CLP-1 and CLP-2 was used for confirmation only.

Surrogate Recovery

The surrogate DCB recovered below control limits of 30-135 in sample FWGFBQmw-174C-0345-GW at 23% and at 27% for sample FWGLL1mw-086-0320-GW on CLP-2. TCMX recovered above control limits of 25-140% in sample FWGLL1mw-086-0320-GW at 1813% (CLP-1). The results for sample FWGLL1mw-086-0320-GW were qualified as estimated, "UJ".

Matrix Spike Recovery

The matrix spike recovery for toxaphene was below control limits of 70-130% in the MS at 61%. The toxaphene result for sample FWGFWGmw-009-0319-GW was qualified as estimated, "UJ".

PCB-8082

The following QC criteria were reviewed and determined to be acceptable, except as noted below:

- Preservation, holding time and sample handling
- Initial Calibration criteria
- DDT and Endrin breakdown criteria
- Retention time criteria
- ICV criteria
- CCV Criteria
- Method/Field blank Criteria
- LCS Recoveries
- Field Duplicate Criteria
- LOD and MRL verification criteria
- Matrix Spike Recovery Criteria and RPD
- Surrogate Recoveries
- Second Column confirmation criteria

No QC outliers were noted.

Metals - 6010B

The following QC criteria were reviewed and determined to be acceptable, except as noted below:

- Holding times, preservation, sample handling
- Initial Calibration criteria
- ICV and CCV criteria
- ICB /CCBs criteria
- Method/Field blank Criteria
- LOD and MRL verification criteria
- LCS percent recovery criteria
- Matrix Spike Recovery

240-28186-1 DVSR Page 6 of 9

Site: Ravenna Army Ammunition Plant

Sampling Event: August 2013 Date: December 9, 2013

Sample Delivery Group: 240-28186 Revision: 0

• Lab and Field Duplicate RPD Criteria

• Post digestion spike and serial dilution results

Blanks

The ICB analyzed 9/9/13 @ 0749 had magnesium detected at $100\mu g/L$. No qualifications were required as the detected magnesium results for the associated field samples were greater than 5x blank contamination.

The CCBs analyzed 9/9/13 had magnesium detected from $101 \mu g/L$ to $104 \mu g/L$. No qualifications were required as the detected magnesium results for the bracketed field samples were greater than 5x blank contamination.

Manganese was detected in the method blank from batch 240-98698 at $2.16\mu g/L$. The manganese result for sample FWGDETmw-004c-0344-GF was qualified, "B" as the detected results was < 5x blank contamination.

Metals - 6020

The following QC criteria were reviewed and determined to be acceptable, except as noted below:

- Holding times, preservation, sample handling
- Initial Calibration criteria
- Internal standards within 30-120% of the internal standard in the ICAL
- ICV and CCV criteria
- ICB /CCBs criteria
- Method/Field blank Criteria
- LOD and MRL verification criteria
- LCS percent recovery criteria
- Matrix Spike Recovery
- Lab and Field Duplicate RPD Criteria
- Post digestion spike and serial dilution results

CCV

The beryllium CCVs analyzed 9/9/13 from 1902-2246 recovered above control limits of 90-110% at 114% (1902), 117% (2031),116% (2116) and at 121% (2246). No qualifications were required as there were no detected beryllium concentrations reported for the bracketed field samples.

Blanks

The CCBs analyzed 9/9/13 had beryllium detected from $0.061\mu g/L$ to $0.103\mu g/L$, cadmium from $0.043\mu g/L$ to $0.252\mu g/L$, iron from 12.7 $\mu g/L$ to $16.4\mu g/L$, sodium from $6.45\mu g/L$ to $17.1\mu g/L$ and thallium at $0.0609\mu g/L$ (9/9/13 at 1311). The iron result for sample FWGLL1mw-084c-0355-GF was qualified, "U". No additional qualifications were required as the detected cadmium and sodium results for the bracketed field samples were greater than 5x blank contamination.

Aluminum was detected in the method blank from batch 240-98698 at $107\mu g/L$. The aluminum result for sample FWGWBGmw-009c-0374-GF was qualified, "B" as the detected aluminum result was < 5x blank contamination.

LCS Recovery

Beryllium recovered above control limits of 80-120% in the LCS from batch 240-98698 at 124%. No qualification was made to the associated data as there were no detected beryllium concentrations reported for the associated field samples.

Mercury - 7470A

The following QC criteria were reviewed and determined to be acceptable, except as noted below:

- Holding times, preservation, sample handling
- Initial Calibration criteria
- ICV and CCV criteria

240-28186-1 DVSR Page 7 of 9

Site: Ravenna Army Ammunition Plant

Sampling Event: August 2013 Date: December 9, 2013

Sample Delivery Group: 240-28186 Revision: 0

- ICB /CCBs criteria
- Method/Field blank Criteria
- LOD and MRL verification criteria
- LCS percent recovery criteria
- Matrix Spike Recovery
- Lab and Field duplicate RPD criteria

No OC outliers were noted.

Cyanide - 9012

The following QC criteria were reviewed and determined to be acceptable, except as noted below:

- Holding times, preservation, sample handling
- Initial Calibration criteria
- ICV and CCV criteria
- ICB /CCBs criteria
- Method/Field blank Criteria
- MRL and MDL verification criteria
- LCS percent recovery criteria
- MS percent recovery
- Matrix Duplicate RPD criteria
- Field duplicate RPD criteria

MRL Recovery

No closing MRL check was analyzed on 8/23/13 or 8/26/13. Opening MRL checks recovered within control limits. The cyanide results for samples FWGFWGmw-009c-0319-GW, FWGDETmw-004c-0344-GW, FWGWBGmw-019-0329-GW, FWGWBGmw-018-0328-GW, FWGWBGmw-DUP4-0339-GW, FWGWBGmw-020-0330-GW, FWGWBGmw-021-0331-GW and FWGEOUIPRINSE3-0342-GW were qualified as estimated. "J/UJ".

No additional outliers were noted.

Explosives-8330

The following QC criteria were reviewed and determined to be acceptable, except as noted below:

- Holding times, preservation, sample handling
- Initial Calibration Criteria
- ICV and CCV criteria
- Retention time criteria
- LOD and MRL verification criteria
- Surrogate recovery criteria
- Equipment and method blanks free from contamination
- LCS/LCD Recovery and RPD Criteria

MRL Recovery

The MRL analyzed 9/9/13 @ 1151 recovered above control limits of 70-130% for 3-nitrotoluene at 139% and RDX at 141%. The MRL analyzed 9/10/13 at 2037 recovered above control limits of 70-130% for 3-nitrotoluene at 132%, RDX at 140%, 2,4-dintrotoluene at 132% and 4-amino-2,6-dinitrotoluene at 134%. No qualifications were made as LC12 was used only as a confirmation column for these target analytes.

Confirmation Analysis

The second column confirmation analysis for sample FWGLL2mw-059c-0357-GW had an RPD above control limits of 40% for 1,3,5-trinitrobenze at 101%. The 1,3,5-trinitrobenze result for sample FWGLL2mw-059c-0357-GW was qualified as estimated, "J".

240-28186-1 DVSR Page 8 of 9

Site: Ravenna Army Ammunition Plant

Sampling Event: August 2013 Date: December 9, 2013

Sample Delivery Group: 240-28186 Revision: 0

The second column confirmation analysis for sample FWGLL1mw-084c-0355-GW had an RPD above control limits of 40% for HMX at 80%. The HMX result for sample FWGLL1mw-084c-0355-GW was qualified as estimated, "J".

Surrogate Recovery

The surrogate 3,4-dinitrobenzene recovered above control limits of 79-111% for samples FWGLL1mw-083c-0354-GW at 162% and FWGLL1mw-084c-0355-GW at 432%. The detected results for samples, FWGLL1mw-083c-0354-GW or FWGLL1mw-084c-0355-GW were qualified as estimated, "J".

Nitroguanidine-8330M

The following QC criteria were reviewed and determined to be acceptable, except as noted below:

- Holding times, preservation, sample handling
- Initial Calibration criteria
- Retention time criteria
- LOD and MRL verification criteria
- ICV and CCV criteria
- The method blank and equipment blanks were free from contamination
- LCS/LCSD percent recoveries and RPD value criteria
- Matrix spike recovery criteria

No OC outliers were noted.

Nitrocellulose - WS-WC-0050

The following QC criteria were reviewed and determined to be acceptable, except as noted below:

- Holding times, preservation, sample handling
- Sample preparation criteria
- Initial Calibration criteria
- ICV and CCV criteria
- The method and equipment blanks were free from contamination
- LOD and MRL verification criteria
- ICB and CCBs were free from contamination
- LCS/LCSD percent recoveries and RPD value criteria
- MS/MSD percent recoveries

No QC outliers were noted.

Perchlorate 6860

The following QC criteria were reviewed and determined to be acceptable, except as noted below:

- Holding times, preservation, sample handling
- Initial Calibration criteria
- ICV and CCV criteria
- ICB /CCBs criteria
- Method/Field blank Criteria
- MRL and LOD verification criteria
- LCS percent recovery criteria
- MS percent recovery
- Matrix Duplicate RPD criteria
- Field duplicate RPD criteria

No QC outliers were noted.

240-28186-1 DVSR Page 9 of 9

Sample Summary

TestAmerica Job ID: 240-28186-1

Client: Environmental Quality Mgt., Inc. Project/Site: RVAAP66 (OH)

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
240-28186-1	FWGWBGmw-009C-0374-GW	Water	08/21/13 09:35	08/22/13 07:00
240-28186-2	FWGWBGmw-009C-0374-GF	Water	08/21/13 09:35	08/22/13 07:00
240-28186-3	FWGWBGmw-020-0330-GW	Water	08/21/13 10:31	08/22/13 07:00
240-28186-4	FWGWBGmw-020-0330-GF	Water	08/21/13 10:31	08/22/13 07:00
240-28186-5	FWGLL2mw-265C-0321-GW	Water	08/21/13 11:55	08/22/13 07:00
240-28186-6	FWGLL2mw-265C-0321-GF	Water	08/21/13 11:55	08/22/13 07:00
240-28186-7	FWGLL2mw-059C-0357-GW	Water	08/21/13 12:51	08/22/13 07:00
240-28186-8	FWGLL2mw-059C-0357-GF	Water	08/21/13 12:51	08/22/13 07:00
240-28186-9	FWGTeam1-Trip	WQ	08/21/13 08:00	08/22/13 07:00
240-28186-10	FWGLL1mw-084C-0355-GW	Water	08/21/13 14:05	08/22/13 07:00
240-28186-11	FWGLL1mw-084C-0355-GF	Water	08/21/13 14:05	08/22/13 07:00
240-28186-12	FWGLL1mw-083C-0354-GW	Water	08/21/13 15:15	08/22/13 07:00
240-28186-13	FWGLL1mw-083C-0354-GF	Water	08/21/13 15:15	08/22/13 07:00
240-28186-14	FWGTeam2-Trip082013	WQ	08/20/13 17:08	08/22/13 07:00
240-28186-15	FWGDETmw-004C-0344-GW	Water	08/20/13 17:10	08/22/13 07:00
240-28186-16	FWGDETmw-004C-0344-GF	Water	08/20/13 17:10	08/22/13 07:00
240-28186-17	FWGNTAmw-119-0367-GW	Water	08/21/13 09:22	08/22/13 07:00
240-28186-18	FWGNTAmw-119-0367-GF	Water	08/21/13 09:22	08/22/13 07:00
240-28186-19	FWGFWGmw-006-0318-GW	Water	08/21/13 10:48	08/22/13 07:00
240-28186-20	FWGFBQmw-174C-0345-GW	Water	08/21/13 11:38	08/22/13 07:00
240-28186-21	FWGFBQmw-174C-0345-GF	Water	08/21/13 11:38	08/22/13 07:00
240-28186-22	FWGTeam3-TRIP	WQ	08/21/13 08:00	08/22/13 07:00
240-28186-23	FWGWBGmw-019-0329-GW	Water	08/21/13 08:56	08/22/13 07:00
240-28186-24	FWGWBGmw-019-0329-GF	Water	08/21/13 08:56	08/22/13 07:00
240-28186-25	FWGWBGmw-018-0328-GW	Water	08/21/13 10:03	08/22/13 07:00
240-28186-26	FWGWBGmw-018-0328-GF	Water	08/21/13 10:03	08/22/13 07:00
240-28186-27	FWGWBGmw-Dup4-0339-GW	Water	08/21/13 11:03	08/22/13 07:00
240-28186-28	FWGWBGmw-Dup4-0339-GF	Water	08/21/13 11:03	08/22/13 07:00
240-28186-29	FWGLL2mw-267C-0358-GW	Water	08/21/13 12:18	08/22/13 07:00
240-28186-30	FWGLL2mw-267C-0358-GF	Water	08/21/13 12:18	08/22/13 07:00
240-28186-31	FWGLL1mw-086-0320-GW	Water	08/21/13 13:33	08/22/13 07:00
240-28186-32	FWGLL1mw-086-0320-GF	Water	08/21/13 13:33	08/22/13 07:00
240-28186-33	FWGLL1mw-065C-0353-GW	Water	08/21/13 14:43	08/22/13 07:00
240-28186-34	FWGLL1mw-065C-0353-GF	Water	08/21/13 14:43	08/22/13 07:00
240-28186-35	FWGTEAM4-TRIP	WQ	08/21/13 08:00	08/22/13 07:00
240-28186-36	FWGWBGmw-021-0331-GW	Water	08/21/13 09:24	08/22/13 07:00
240-28186-37	FWGWBGmw-021-0331-GF	Water	08/21/13 09:24	08/22/13 07:00
240-28186-38	FWGWBGmw-006C-0373-GW	Water	08/21/13 10:40	08/22/13 07:00
240-28186-39	FWGWBGmw-006C-0373-GF	Water	08/21/13 10:40	08/22/13 07:00
240-28186-40	FWGFWGmw-009-0319-GW	Water	08/21/13 12:20	08/22/13 07:00
240-28186-41	FWGFWGmw-009-0319-GF	Water	08/21/13 12:20	08/22/13 07:00
240-28186-42	FWGFWGmw-007-0347-GW	Water	08/21/13 15:04	08/22/13 07:00
240-28186-43	FWGFWGmw-007-0347-GF	Water	08/21/13 15:04	08/22/13 07:00
	FWGEQUIPRINSE3-0342-GW	WQ	08/21/13 15:34	08/22/13 07:00

TestAmerica Canton

Method Summary

Client: Environmental Quality Mgt., Inc. Project/Site: RVAAP66 (OH)

TestAmerica Job ID: 240-28186-1

Method	Method Description	Protocol	Laboratory
8260B/DoD	Volatile Organic Compounds (GC/MS)	SW846	TAL CAN
3270C/DoD	Semivolatile Organic Compounds (GC/MS)	SW846	TAL CAN
3081/DOD	Organochlorine Pesticides (GC)	SW846	TAL CAN
3082/DOD	Polychlorinated Biphenyls (PCBs) by Gas Chromatography	SW846	TAL CAN
330 Modified	Nitroguanidine (HPLC)	SW846	TAL SAC
330A	Nitroaromatics and Nitramines	SW846	TAL SAC
860	Perchlorate by IC/MS or IC/MS/MS	EPA	TAL DEN
010B/DOD	Metals (ICP)	SW846	TAL CAN
020/DOD	Metals (ICP/MS)	SW846	TAL CAN
470A/DOD	Mercury (CVAA)	SW846	TAL CAN
012A	Cyanide, Total and/or Amenable	SW846	TAL CAN
VS-WC-0050	Nitrocellulose	TAL-SAC	TAL SAC

Protocol References:

EPA = US Environmental Protection Agency

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

TAL-SAC = TestAmerica Laboratories, West Sacramento, Facility Standard Operating Procedure.

Laboratory References:

TAL CAN = TestAmerica Canton, 4101 Shuffel Street NW, North Canton, OH 44720, TEL (330)497-9396

TAL DEN = TestAmerica Denver, 4955 Yarrow Street, Arvada, CO 80002, TEL (303)736-0100

TAL SAC = TestAmerica Sacramento, 880 Riverside Parkway, West Sacramento, CA 95605, TEL (916)373-5600

E

Ŀ

H

5

U

_

_

. 10

14

11-5

TestAmerica Job ID: 240-28186-1

Client: Environmental Quality Mgt., Inc. Project/Site: RVAAP66 (OH)

Job ID: 240-28186-1

Laboratory: TestAmerica Canton

Narrative

CASE NARRATIVE

Client: Environmental Quality Mgt., Inc.

Project: RVAAP66 (OH)

Report Number: 240-28186-1

With the exceptions noted as flags or footnotes, standard analytical protocols were followed in the analysis of the samples and no problems were encountered or anomalies observed. In addition all laboratory quality control samples were within established control limits, with any exceptions noted below. Each sample was analyzed to achieve the lowest possible reporting limit within the constraints of the method. In some cases, due to interference or analytes present at high concentrations, samples were diluted. For diluted samples, the reporting limits are adjusted relative to the dilution required.

Calculations are performed before rounding to avoid round-off errors in calculated results.

All holding times were met and proper preservation noted for the methods performed on these samples, unless otherwise detailed in the individual sections below.

TestAmerica utilizes USEPA approved methods and DOD QSM, where applicable, in all analytical work. The samples presented in this report were analyzed for the parameter(s) listed on the analytical methods summary page in accordance with the method(s) indicated. A summary of QC data for these analyses is included at the back of the report.

The 353.2 Nitrocellulose, the 8330_NGu Nitroguanadine, and the 8330A Explosives analyses were performed at the TestAmerica Sacramento laboratory. The 6860 Perchlorate analysis was performed at the TestAmerica Denver laboratory.

TestAmerica Canton attests to the validity of the laboratory data generated by TestAmerica facilities reported herein. All analyses performed by TestAmerica facilities were done using established laboratory SOPs that incorporate QA/QC procedures described in the applicable methods. TestAmerica's operations groups have reviewed the data for compliance with the laboratory QA/QC plan, and data have been found to be compliant with laboratory protocols unless otherwise noted below.

All solid sample results are reported on an "as received" basis unless otherwise indicated by the presence of a % solids value in the method header.

This laboratory report is confidential and is intended for the sole use of TestAmerica and its client.

All parameters for which TestAmerica North Canton has certification were evaluated to the limit of detection (LOD) and include qualified results where applicable. Parameters not certified under QSM, if any, were evaluated to the detection limit (DL) and include qualified results where applicable.

The sample(s) that contain constituents flagged with U are undetected. The result associated with this flag is the limit of detection (LOD).

The samples were received on 08/22/2013; the samples arrived in good condition, properly preserved and on ice. The temperatures of the coolers at receipt were 0.4, 0.8, 1.2, 1.3, 1.4, 2.2, 2.4, 2.8, 3.1, 3.4, 3.6, 3.8, 4.2, 4.8 and 6.0 C.

VOLATILE ORGANIC COMPOUNDS (GCMS)

Samples FWGWBGmw-020-0330-GW (240-28186-3), FWGLL2mw-265C-0321-GW (240-28186-5), FWGLL2mw-059C-0357-GW (240-28186-7), FWGTeam1-Trip (240-28186-9), FWGTeam2-Trip082013 (240-28186-14), FWGDETmw-004C-0344-GW (240-28186-15), FWGNTAmw-119-0367-GW (240-28186-17), FWGFWGmw-006-0318-GW (240-28186-19), FWGTeam3-TRIP (240-28186-22), FWGWBGmw-019-0329-GW (240-28186-23), FWGWBGmw-018-0328-GW (240-28186-25), FWGWBGmw-Dup4-0339-GW

> TestAmerica Canton 9/24/2013

Client: Environmental Quality Mgt., Inc. Project/Site: RVAAP66 (OH)

Job ID: 240-28186-1 (Continued)

Laboratory: TestAmerica Canton (Continued)

(240-28186-27), FWGTEAM4-TRIP (240-28186-35), FWGWBGmw-021-0331-GW (240-28186-36), FWGFWGmw-009-0319-GW (240-28186-40) and FWGEQUIPRINSE3-0342-GW (240-28186-44) were analyzed for volatile organic compounds (GCMS) in accordance with EPA SW-846 Method 8260B DoD. The samples were analyzed on 08/29/2013, 08/30/2013 and 08/31/2013.

Toluene was detected in method blank MB 240-99628/5 at a level that was above the method detection limit but below the reporting limit. The value should be considered an estimate, and has been flagged. If the associated sample reported a result above the MDL and/or RL, the result has been flagged.

Methylene Chloride was detected in method blank MB 240-99810/6 at a level that was above the method detection limit but below the reporting limit. The value should be considered an estimate, and has been flagged. If the associated sample reported a result above the MDL and/or RL, the result has been flagged.

Toluene and Trichloroethene failed the recovery criteria high for MRL 240-99628/7.

cis-1,3-Dichloropropene and Methylene Chloride failed the recovery criteria high for MRL 240-99810/16.

Bromomethane, Chloroethane, Chloromethane, Methylene Chloride and Vinyl chloride failed the recovery criteria high for MRL 240-99810/5.

The continuing calibration verification (CCV) for Methylene Chloride, Carbon Tetrachloride, Dichlorobromomethane, trans-1,3-Dichloropropene associated with batch 99810 recovered above the upper control limit. The samples associated with this CCV were non-detects for the affected analytes; therefore, the data have been reported.

No other difficulties were encountered during the VOCs analysis. All other quality control parameters were within the acceptance limits.

SEMIVOLATILE ORGANIC COMPOUNDS (GCMS)

Samples FWGWBGmw-009C-0374-GW (240-28186-1), FWGWBGmw-020-0330-GW (240-28186-3), FWGLL2mw-265C-0321-GW (240-28186-5), FWGLL2mw-059C-0357-GW (240-28186-7), FWGLL1mw-084C-0355-GW (240-28186-10), FWGLL1mw-083C-0354-GW (240-28186-12), FWGDETmw-004C-0344-GW (240-28186-15), FWGNTAmw-119-0367-GW (240-28186-17), FWGFBQmw-174C-0345-GW (240-28186-20), FWGWBGmw-019-0329-GW (240-28186-23), FWGWBGmw-018-0328-GW (240-28186-25), FWGWBGmw-Dup4-0339-GW (240-28186-27), FWGLL2mw-267C-0358-GW (240-28186-29), FWGLL1mw-086-0320-GW (240-28186-31), FWGLL1mw-065C-0353-GW (240-28186-33), FWGWBGmw-021-0331-GW (240-28186-36), FWGWBGmw-006C-0373-GW (240-28186-38), FWGFWGmw-009-0319-GW (240-28186-40), FWGFWGmw-007-0347-GW (240-28186-42) and FWGEQUIPRINSE3-0342-GW (240-28186-44) were analyzed for semivolatile organic compounds (GCMS) in accordance with EPA SW-846 Method 8270C. The samples were prepared on 08/23/2013 and 08/26/2013 and analyzed on 08/30/2013 and 09/06/2013.

Surrogates are added during the extraction process prior to dilution. When the sample is diluted, surrogate recoveries are diluted out and no corrective action is required.

Bis(2-ethylhexyl) phthalate and Di-n-butyl phthalate were detected in method blank MB 240-98675/23-A at levels that were above the method detection limit but below the reporting limit. The values should be considered estimates, and have been flagged. If the associated sample reported a result above the MDL and/or RL, the result has been flagged.

Bis(2-ethylhexyl) phthalate was detected in method blank MB 240-98883/21-A at a level that was above the method detection limit but below the reporting limit. The value should be considered an estimate, and has been flagged. If the associated sample reported a result above the MDL and/or RL, the result has been flagged.

2-Fluorobiphenyl (Surr) failed the surrogate recovery criteria low for MB 240-98883/21-A. Refer to the QC report for details.

Benzo[a]pyrene failed the recovery criteria low for the MS of sample FWGFWGmw-009-0319-GWMS (240-28186-40) in batch 240-100453.

The continuing calibration verifications (CCV) for 4-nitrophenol and 4-nitroaniline, associated with batch 99673, recovered above the upper control limit. The samples associated with this CCV, FWGFWGmw-007-0347-GW (240-28186-42), FWGWBGmw-020-0330-GW (240-28186-3), were non-detects for the affected analytes; therefore, the data have been reported.

4

5

b

1

9

Ī

13

14

Иė

TestAmerica Job ID: 240-28186-1

Client: Environmental Quality Mgt., Inc. Project/Site: RVAAP66 (OH)

Job ID: 240-28186-1 (Continued)

Laboratory: TestAmerica Canton (Continued)

The method blank associated for prep batch 98883, associated with sample FWGFWGmw-007-0347-GW (240-28186-42),had one BN surrogate recovery below acceptance criteria. Due to insufficient sample corrective action could not be initiated. The results have been reported.

No other difficulties were encountered during the SVOCs analysis. All other quality control parameters were within the acceptance limits.

NITROGUANIDINE (HPLC)

Samples FWGWBGmw-009C-0374-GW (240-28186-1), FWGWBGmw-020-0330-GW (240-28186-3), FWGLL2mw-265C-0321-GW (240-28186-5), FWGLL2mw-059C-0357-GW (240-28186-7), FWGLL1mw-084C-0355-GW (240-28186-10), FWGLL1mw-083C-0354-GW (240-28186-12), FWGDETmw-004C-0344-GW (240-28186-15), FWGNTAmw-119-0367-GW (240-28186-17), FWGFBQmw-174C-0345-GW (240-28186-20), FWGWBGmw-019-0329-GW (240-28186-23), FWGWBGmw-018-0328-GW (240-28186-25), FWGWBGmw-Dup4-0339-GW (240-28186-27), FWGLL2mw-267C-0358-GW (240-28186-29), FWGLL1mw-086-0320-GW (240-28186-31), FWGLL1mw-065C-0353-GW (240-28186-33), FWGWBGmw-021-0331-GW (240-28186-36), FWGWBGmw-006C-0373-GW (240-28186-38), FWGFWGmw-009-0319-GW (240-28186-40), FWGFWGmw-007-0347-GW (240-28186-42) and FWGEQUIPRINSE3-0342-GW (240-28186-44) were analyzed for nitroguanidine (HPLC) in accordance with EPA SW-846 Method 8330_Ngu. The samples were prepared and analyzed on 08/27/2013.

No difficulties were encountered during the explosives analysis. All quality control parameters were within the acceptance limits.

CHLORINATED PESTICIDES

Samples FWGWBGmw-020-0330-GW (240-28186-3), FWGLL1mw-084C-0355-GW (240-28186-10), FWGLL1mw-083C-0354-GW (240-28186-12), FWGDETmw-004C-0344-GW (240-28186-15), FWGFBQmw-174C-0345-GW (240-28186-20), FWGWBGmw-019-0329-GW (240-28186-23), FWGWBGmw-018-0328-GW (240-28186-25), FWGWBGmw-Dup4-0339-GW (240-28186-27), FWGLL1mw-086-0320-GW (240-28186-31), FWGLL1mw-065C-0353-GW (240-28186-33), FWGWBGmw-021-0331-GW (240-28186-36), FWGFWGmw-009-0319-GW (240-28186-40) and FWGEQUIPRINSE3-0342-GW (240-28186-44) were analyzed for chlorinated pesticides in accordance with EPA SW-846 Method 8081A DoD. The samples were prepared on 08/23/2013 and analyzed on 08/29/2013, 08/30/2013, 09/10/2013 and 09/12/2013.

Tetrachloro-m-xylene failed the surrogate recovery criteria high for FWGLL1mw-086-0320-GW (240-28186-31). Refer to the QC report for details.

The closing continuing calibration verification (CCV) associated with batch 99596 recovered Endrin above the upper control limit on the primary column. Endrin met criteria on the confirmation colum and the samples associated with this CCVFWGDETmw-004C-0344-GW (240-28186-15), FWGFBQmw-174C-0345-GW (240-28186-20), FWGLL1mw-083C-0354-GW (240-28186-12), FWGLL1mw-084C-0355-GW (240-28186-10), FWGWBGmw-020-0330-GW (240-28186-3), FWGWBGmw-Dup4-0339-GW (240-28186-27) were non-detects for the affected analyte; therefore the data have been reported.

The opening continuing calibration verification (CCV) associated with batch 99596 recovered Endrin above the upper control limit on the primary column. Endrin met criteria on the confirmation colum and the samples associated with this CCVFWGEQUIPRINSE3-0342-GW (240-28186-44), FWGFWGmw-009-0319-GW (240-28186-40), FWGLL1mw-065C-0353-GW (240-28186-33), FWGLL1mw-086-0320-GW (240-28186-31), FWGWBGmw-021-0331-GW (240-28186-36) were non-detects for the affected analyte; therefore the data have been reported.

The closing continuing calibration verification (CCV) associated with batch 99596 recovered beta-BHC, Heptachlor Epoxide, Lindane, gamma-Chlordane, Endrin Ketone, Dieldrin, Endosulfan Sulfate, Endosulfan II , Endrin, and DDD above upper control limits. The samples associated with this CCV FWGEQUIPRINSE3-0342-GW (240-28186-44), FWGFWGmw-009-0319-GW (240-28186-40), FWGLL1mw-065C-0353-GW (240-28186-33), FWGLL1mw-086-0320-GW (240-28186-31), FWGWBGmw-021-0331-GW (240-28186-36)were non-detects for the affected analytes; therefore, the data have been reported.

The initial calibration verification (ICV) for Toxaphene for analytical batch 99596 was outside control criteria on the confirmation column. Since the ICV met criteria on the primary column, all Toxaphene data have been reported for the associated samplesFWGDETmw-004C-0344-GW (240-28186-15), FWGEQUIPRINSE3-0342-GW (240-28186-44), FWGFBQmw-174C-0345-GW (240-28186-20), FWGFWGmw-009-0319-GW (240-28186-40), FWGLL1mw-065C-0353-GW (240-28186-33), FWGLL1mw-083C-0354-GW (240-28186-12), FWGLL1mw-084C-0355-GW (240-28186-10), FWGLL1mw-086-0320-GW (240-28186-31),

4

5

i

į,

11

L

Œ

TestAmerica Job ID: 240-28186-1

Client: Environmental Quality Mgt., Inc. Project/Site: RVAAP66 (OH)

Job ID: 240-28186-1 (Continued)

Laboratory: TestAmerica Canton (Continued)

FWGWBGmw-020-0330-GW (240-28186-3), FWGWBGmw-021-0331-GW (240-28186-36), FWGWBGmw-Dup4-0339-GW (240-28186-27).

The initial Toxaphene calibration verification (ICV) for analytical batch 100782 was outside control criteria for the confirmation column.. Since the ICV met criteria for the primary column and the associated sampleFWGWBGmw-018-0328-GW (240-28186-25) was non-detect for the affected analyte, the data have been reported.

The opening and closing. Method Reporting Limit (MRLs) associated with batch 100782 recovered DDD and Methoxychlor above the upper control limits on the confirmation column. Since the MRL on the primary column passed all criteria and the sample associated with these MRLsFWGWBGmw-018-0328-GW (240-28186-25)s was non-detect for the affected analytes; the data have been reported.

The closing continuing calibration verification (CCV) associated with batch 100782 recovered above the upper control limit for DDD.. The sample associated with this CCFWGWBGmw-018-0328-GW (240-28186-25)V was non-detect for the affected analyte; therefore, the data have been reported.

The closing continuing calibration verification (CCV) associated with batch 101146 recovered above the upper control limits. The samples associated with this CCVFWGWBGmw-019-0329-GW (240-28186-23) were non-detects for the affected analytes; therefor, the data have been reported.

No other difficulties were encountered during the pesticides analysis. All other quality control parameters were within the acceptance limits.

POLYCHLORINATED BIPHENYLS (PCBS)

Samples FWGWBGmw-020-0330-GW (240-28186-3), FWGDETmw-004C-0344-GW (240-28186-15), FWGWBGmw-019-0329-GW (240-28186-23), FWGWBGmw-018-0328-GW (240-28186-25), FWGWBGmw-Dup4-0339-GW (240-28186-27), FWGWBGmw-021-0331-GW (240-28186-36), FWGFWGmw-009-0319-GW (240-28186-40) and FWGEQUIPRINSE3-0342-GW (240-28186-44) were analyzed for polychlorinated biphenyls (PCBs) in accordance with EPA SW-846 Method 8082 DoD. The samples were prepared on 08/23/2013 and analyzed on 08/28/2013 and 08/29/2013.

No difficulties were encountered during the PCBs analysis. All quality control parameters were within the acceptance limits.

PERCHLORATE

Samples FWGFWGmw-009-0319-GF (240-28186-41) and FWGEQUIPRINSE3-0342-GW (240-28186-44) were analyzed for perchlorate in accordance with EPA SW-846 Method 6860. The samples were analyzed on 09/11/2013.

No difficulties were encountered during the perchlorate analysis. All quality control parameters were within the acceptance limits.

EXPLOSIVES

Samples FWGWBGmw-009C-0374-GW (240-28186-1), FWGWBGmw-020-0330-GW (240-28186-3), FWGLL2mw-265C-0321-GW (240-28186-5), FWGLL2mw-059C-0357-GW (240-28186-7), FWGLL1mw-084C-0355-GW (240-28186-10), FWGLL1mw-083C-0354-GW (240-28186-12), FWGDETmw-004C-0344-GW (240-28186-15), FWGNTAmw-119-0367-GW (240-28186-17), FWGFBQmw-174C-0345-GW (240-28186-20), FWGWBGmw-019-0329-GW (240-28186-23), FWGWBGmw-018-0328-GW (240-28186-25), FWGWBGmw-Dup4-0339-GW (240-28186-27), FWGLL2mw-267C-0358-GW (240-28186-29), FWGLL1mw-086-0320-GW (240-28186-31), FWGLL1mw-065C-0353-GW (240-28186-33), FWGWBGmw-021-0331-GW (240-28186-36), FWGWBGmw-006C-0373-GW (240-28186-38), FWGFWGmw-009-0319-GW (240-28186-40), FWGFWGmw-007-0347-GW (240-28186-42) and FWGEQUIPRINSE3-0342-GW (240-28186-44) were analyzed for explosives in accordance with EPA SW-846 Method 8330A. The samples were prepared on 08/27/2013 and analyzed on 08/30/2013, 08/31/2013, 09/03/2013, 09/09/2013, 09/10/2013 and 09/13/2013.

3,4-Dinitrotoluene failed the surrogate recovery criteria high for FWGLL1mw-084C-0355-GW (240-28186-10), FWGLL1mw-083C-0354-GW (240-28186-12), and FWGFBQmw-174C-0345-GW (240-28186-20).

Samples FWGLL1mw-084C-0355-GW (240-28186-10)[3X], FWGLL1mw-083C-0354-GW (240-28186-12)[2X] and FWGFBQmw-174C-0345-GW (240-28186-20)[2X] required dilution prior to analysis. The reporting limits have been adjusted accordingly.

Due malfunction of the port #2 at Auto trace #2 during the loaded process we lost 130 ml.FWGDETmw-004C-0344-GW (240-28186-15)

TestAmerica Canton 9/24/2013

TestAmerica Job ID: 240-28186-1

Client: Environmental Quality Mgt., Inc. Project/Site: RVAAP66 (OH)

Job ID: 240-28186-1 (Continued)

Laboratory: TestAmerica Canton (Continued)

We re-run the sample using a secondary initial weighted.

The continuing calibration verification at the reporting limit (CCVL) for analytical batch 24684 exceeded control criteria for m-Nitrotoluene, RDX, 4-Amino-2,6-Dinitrotoluene, and. The corrective action for this deficiency is an analysis of a standard at approximately 2x the MDL. The acceptance criterion for the 2x MDL standard is detection of the compound. As the compounds were detected, the data have been qualified and reported.

Surrogate recovery for the following sample(s) 240-28186-10,12 was outside control limit. Evidence of matrix interference is present; therefore, re-extraction and/or re-analysis was not performed.

No other difficulties were encountered during the explosives analysis. All other quality control parameters were within the acceptance limits

TOTAL RECOVERABLE METALS (ICP)

Samples FWGWBGmw-009C-0374-GF (240-28186-2), FWGWBGmw-020-0330-GF (240-28186-4), FWGLL2mw-265C-0321-GF (240-28186-6), FWGLL2mw-059C-0357-GF (240-28186-8), FWGLL1mw-084C-0355-GF (240-28186-11), FWGLL1mw-083C-0354-GF (240-28186-13), FWGDETmw-004C-0344-GF (240-28186-16), FWGNTAmw-119-0367-GF (240-28186-18), FWGFBQmw-174C-0345-GF (240-28186-21), FWGWBGmw-019-0329-GF (240-28186-24), FWGWBGmw-018-0328-GF (240-28186-26), FWGWBGmw-Dup4-0339-GF (240-28186-28), FWGLL2mw-267C-0358-GF (240-28186-30), FWGLL1mw-086-0320-GF (240-28186-32), FWGLL1mw-065C-0353-GF (240-28186-34), FWGWBGmw-021-0331-GF (240-28186-37), FWGWBGmw-006C-0373-GF (240-28186-39), FWGFWGmw-009-0319-GF (240-28186-41), FWGFWGmw-007-0347-GF (240-28186-43) and FWGEQUIPRINSE3-0342-GW (240-28186-44) were analyzed for total recoverable metals (ICP) in accordance with EPA SW-846 Method 6010B DoD. The samples were prepared on 08/23/2013 and analyzed on 09/09/2013.

ICB, CCB, and ICSA samples are evaluated using the lowest LOD and DL criteria in LIMS. Using this criteria, an individual element may occasionally be flagged as out of control. If the element has a higher LOD or DL, the data is evaluated to the higher limit and determined to be acceptable.

Manganese was detected in method blank MB 240-98698/1-A at a level that was above the method detection limit but below the reporting limit. The value should be considered an estimate, and has been flagged. If the associated sample reported a result above the MDL and/or RL, the result has been flagged. Refer to the QC report for details.

Arsenic, Barium and Potassium exceeded the RPD limit for the duplicate of sample FWGFWGmw-009-0319-GFDU (240-28186-41). Refer to the QC report for details.

No other difficulties were encountered during the metals analysis. All other quality control parameters were within the acceptance limits.

TOTAL RECOVERABLE METALS (ICPMS)

Samples FWGWBGmw-009C-0374-GF (240-28186-2), FWGWBGmw-020-0330-GF (240-28186-4), FWGLL2mw-265C-0321-GF (240-28186-6), FWGLL2mw-059C-0357-GF (240-28186-8), FWGLL1mw-084C-0355-GF (240-28186-11), FWGLL1mw-083C-0354-GF (240-28186-13), FWGDETmw-004C-0344-GF (240-28186-16), FWGNTAmw-119-0367-GF (240-28186-18), FWGFBQmw-174C-0345-GF (240-28186-21), FWGWBGmw-019-0329-GF (240-28186-24), FWGWBGmw-018-0328-GF (240-28186-26), FWGWBGmw-Dup4-0339-GF (240-28186-28), FWGLL2mw-267C-0358-GF (240-28186-30), FWGLL1mw-086-0320-GF (240-28186-32), FWGLL1mw-065C-0353-GF (240-28186-34), FWGWBGmw-021-0331-GF (240-28186-37), FWGWBGmw-006C-0373-GF (240-28186-39), FWGFWGmw-009-0319-GF (240-28186-41), FWGFWGmw-007-0347-GF (240-28186-43) and FWGEQUIPRINSE3-0342-GW (240-28186-44) were analyzed for total recoverable metals (ICPMS) in accordance with EPA SW-846 Method 6020 DoD. The samples were prepared on 08/23/2013 and 09/10/2013 and analyzed on 09/09/2013 and 09/11/2013.

ICB, CCB, and ICSA samples are evaluated using the lowest LOD and DL criteria in LIMS. Using this criteria, an individual element may occasionally be flagged as out of control. If the element has a higher LOD or DL, the data is evaluated to the higher limit and determined to be acceptable.

Aluminum was detected in method blank MB 240-98698/1-A at a level that was above the method detection limit but below the reporting limit. The value should be considered an estimate, and has been flagged. If the associated sample reported a result above the MDL and/or RL, the result has been flagged. Refer to the QC report for details.

Λ

4

C

ī

4

ŕ

14

П

TestAmerica Job ID: 240-28186-1

Client: Environmental Quality Mgt., Inc. Project/Site: RVAAP66 (OH)

Job ID: 240-28186-1 (Continued)

Laboratory: TestAmerica Canton (Continued)

Beryllium failed the recovery criteria high for LCS 240-98698/3-A. Refer to the QC report for details.

The continuing calibration verification (CCV) and Laboratory Control Sample (LCS) for Beryllium associated with batch 98698 recovered above the upper control limit. The samples associated with this CCV/LCS were non-detects for the affected analytes; therefore, the data have been reported.FWGDETmw-004C-0344-GF (240-28186-16), FWGEQUIPRINSE3-0342-GW (240-28186-44), FWGFBQmw-174C-0345-GF (240-28186-21), FWGFWGmw-007-0347-GF (240-28186-43), FWGFWGmw-009-0319-GF (240-28186-41), FWGLL1mw-065C-0353-GF (240-28186-34), FWGLL1mw-083C-0354-GF (240-28186-13), FWGLL1mw-084C-0355-GF (240-28186-11), FWGLL1mw-086-0320-GF (240-28186-32), FWGLL2mw-059C-0357-GF (240-28186-8), FWGLL2mw-265C-0321-GF (240-28186-6), FWGLL2mw-267C-0358-GF (240-28186-30), FWGNTAmw-119-0367-GF (240-28186-18), FWGWBGmw-006C-0373-GF (240-28186-39), FWGWBGmw-009C-0374-GF (240-28186-2), FWGWBGmw-018-0328-GF (240-28186-26), FWGWBGmw-019-0329-GF (240-28186-24), FWGWBGmw-020-0330-GF (240-28186-4), FWGWBGmw-021-0331-GF (240-28186-37), FWGWBGmw-Dup4-0339-GF (240-28186-28)

No other difficulties were encountered during the metals analysis. All other quality control parameters were within the acceptance limits.

TOTAL MERCURY

Samples FWGWBGmw-009C-0374-GF (240-28186-2), FWGWBGmw-020-0330-GF (240-28186-4), FWGLL2mw-265C-0321-GF (240-28186-6), FWGLL2mw-059C-0357-GF (240-28186-8), FWGLL1mw-084C-0355-GF (240-28186-11), FWGLL1mw-083C-0354-GF (240-28186-13), FWGDETmw-004C-0344-GF (240-28186-16), FWGNTAmw-119-0367-GF (240-28186-18), FWGFBQmw-174C-0345-GF (240-28186-21), FWGWBGmw-019-0329-GF (240-28186-24), FWGWBGmw-018-0328-GF (240-28186-26), FWGWBGmw-Dup4-0339-GF (240-28186-28), FWGLL2mw-267C-0358-GF (240-28186-30), FWGLL1mw-086-0320-GF (240-28186-32), FWGLL1mw-065C-0353-GF (240-28186-34), FWGWBGmw-021-0331-GF (240-28186-37), FWGWBGmw-006C-0373-GF (240-28186-39), FWGFWGmw-009-0319-GF (240-28186-41), FWGFWGmw-007-0347-GF (240-28186-43) and FWGEQUIPRINSE3-0342-GW (240-28186-44) were analyzed for total mercury in accordance with EPA SW-846 Method 7470A. The samples were prepared on 08/23/2013 and analyzed on 08/27/2013.

No difficulties were encountered during the mercury analysis. All quality control parameters were within the acceptance limits.

NITROCELLULOSE

Samples FWGWBGmw-009C-0374-GW (240-28186-1), FWGWBGmw-020-0330-GW (240-28186-3), FWGLL2mw-265C-0321-GW (240-28186-5), FWGLL2mw-059C-0357-GW (240-28186-7), FWGLL1mw-084C-0355-GW (240-28186-10), FWGLL1mw-083C-0354-GW (240-28186-12), FWGDETmw-004C-0344-GW (240-28186-15), FWGNTAmw-119-0367-GW (240-28186-17), FWGFBQmw-174C-0345-GW (240-28186-20), FWGWBGmw-019-0329-GW (240-28186-23), FWGWBGmw-018-0328-GW (240-28186-25), FWGWBGmw-Dup4-0339-GW (240-28186-27), FWGLL2mw-267C-0358-GW (240-28186-29), FWGLL1mw-086-0320-GW (240-28186-31), FWGLL1mw-065C-0353-GW (240-28186-33), FWGWBGmw-021-0331-GW (240-28186-36), FWGWBGmw-006C-0373-GW (240-28186-38), FWGFWGmw-009-0319-GW (240-28186-40), FWGFWGmw-007-0347-GW (240-28186-42) and FWGEQUIPRINSE3-0342-GW (240-28186-44) were analyzed for Nitrocellulose in accordance with EPA Method 353.2. The samples were prepared on 09/10/2013 and analyzed on 09/11/2013,

The bracketing MRL's in positions 25 and 47 in batch #25017 had recoveries that were slightly above the established control limits. However, because all samples within batch #25017 were non-detect at the reporting limit, there is no adverse impact on the data. All other QC requirements in batch #25017 -- including the laboratory control samples (LCS's), all continuing calibration verifications (CCV's), and continuing calibration blanks (CCB's) -- are within acceptable control limits.

No difficulties were encountered during the Nitrocellulose analysis. All quality control parameters were within the acceptance limits,

TOTAL CYANIDE

Samples FWGWBGmw-020-0330-GW (240-28186-3), FWGDETmw-004C-0344-GW (240-28186-15), FWGWBGmw-019-0329-GW (240-28186-23), FWGWBGmw-018-0328-GW (240-28186-25), FWGWBGmw-Dup4-0339-GW (240-28186-27), FWGWBGmw-021-0331-GW (240-28186-36), FWGFWGmw-009-0319-GW (240-28186-40) and FWGEQUIPRINSE3-0342-GW (240-28186-44) were analyzed for total cyanide in accordance with EPA SW-846 Method 9012A. The samples were prepared and analyzed on 08/23/2013 and 08/26/2013.

No difficulties were encountered during the cyanide analysis. All quality control parameters were within the acceptance limits.

1

9

u

1

ū

13

114

115

Client: Environmental Quality Mgt., Inc.

Project/Site: RVAAP66 (OH)

TestAmerica Job ID: 240-28186-1

Lab Sample ID: 240-28186-1

08/23/13 09:12 09/06/13 19:30

08/23/13 09:12 09/06/13 19:30

08/23/13 09:12 09/06/13 19:30

Matrix: Water

Client Sample ID: FWGWBGmw-009C-0374-GW
Data Callested: 00/24/42 00:25

Date Collected: 08/21/13 09:35 Date Received: 08/22/13 07:00

Phenol-d5 (Surr)

Terphenyl-d14 (Surr)

2,4,6-Tribromophenol (Surr)

Analyte	Result	Qualifier		LOQ	LOD	DL	Unit D	Analyzed	Dil Fac
Bis(2-ethylhexyl) phthalate	0.64	J		1.9	0.48	0.21	ug/L	09/06/13 19:30	1
Butyl benzyl phthalate	0.48	U		1.9	0.48	0.25	ug/L	09/06/13 19:30	1
Diethyl phthalate	0.95	U		1.9	0.95	0.57	ug/L	09/06/13 19:30	1
Dimethyl phthalate	0.48	U		1.9	0.48	0.28	ug/L	09/06/13 19:30	1
Di-n-butyl phthalate	0.75	J		1.9	0.95	0.64	ug/L	09/06/13 19:30	1
Di-n-octyl phthalate	0.48	U		1.9	0.48	0.22	ug/L	09/06/13 19:30	1
Surrogate	%Recovery Q	ualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl (Surr)	81		50 - 110				08/23/13 09:12	09/06/13 19:30	1
2-Fluorophenol (Surr)	81		20 - 110				08/23/13 09:12	09/06/13 19:30	1
Nitrobenzene-d5 (Surr)	83		40 - 110				08/23/13 09:12	09/06/13 19:30	7

Method: 8330 Modified - Nitrogu	anidine (HPLC)								
Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
Nitroguanidine	6.0	U	20	6.0	2.4	ug/L		08/27/13 14:32	1

10 - 115

50 - 135

40 - 125

87

112

98

Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
1,3,5-Trinitrobenzene	0.051	Ü	0.15	0.051	0.031	ug/L		09/03/13 17:14	1
1,3-Dinitrobenzene	0.10	U	0.15	0.10	0.051	ug/L		09/03/13 17:14	1
2,4,6-Trinitrotoluene	0.10	U	0.15	0.10	0.051	ug/L		09/03/13 17:14	1
2,4-Dinitrotoluene	0.10	U	0.13	0.10	0.051	ug/L		09/03/13 17:14	1
2,6-Dinitrotoluene	0.10	U	0.13	0.10	0.051	ug/L		09/03/13 17:14	1
2-Amino-4,6-dinitrotoluene	0.10	U	0.15	0.10	0.015	ug/L		09/03/13 17:14	1
2-Nitrotoluene	0.10	.u	0.51	0.10	0.089	ug/L		09/03/13 17:14	1
3-Nitrotoluene	0.10	U	0.51	0.10	0.058	ug/L		09/03/13 17:14	1
4-Nitrotoluene	0.10	U	0.51	0.10	0.089	ug/L		09/03/13 17:14	1
4-Amino-2,6-dinitrotoluene	0.10	U	0.15	0.10	0.051	ug/L		09/03/13 17:14	1
нмх	1.2	M	0.15	0.051	0.037	ug/L		09/03/13 17:14	1
RDX	3.5		0.15	0.051	0.037	ug/L		09/03/13 17:14	1
Nitrobenzene	0.10	U	0.15	0.10	0.051	ug/L		09/03/13 17:14	1
Tetryl	0.10	U	0.15	0.10	0.051	ug/L		09/03/13 17:14	1
Nitroglycerin	0.51	U	0.66	0.51	0.34	ug/L		09/03/13 17:14	1
PETN	0.51	U	0.66	0.51	0.30	ug/L		09/03/13 17:14	1

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
3,4-Dinitrotoluene	88	M	79 - 111	08/27/13 07:26	09/03/13 17:14	1
3,4-Dinitrotoluene	98		79 - 111	08/27/13 07:26	09/09/13 15:08	1

General Chemistry Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
Nitrocellulose	1.0	U	2.0	1.0	0.48	mg/L		09/11/13 16:07	1

Client: Environmental Quality Mgt., Inc.

Project/Site: RVAAP66 (OH)

TestAmerica Job ID: 240-28186-1

Lab Sample ID: 240-28186-2

Matrix: Water

Client Sample ID: FWGWBGmw-009C-0374-GF	
Date Collected: 08/21/13 09:35	

Date Received: 08/22/13 07:00

Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
Arsenic	10	U	10	10	3.3	ug/L		09/09/13 15:26	1
Chromium	4.0	U	7.0	4.0	1.4	ug/L		09/09/13 15:26	1
Cobalt	4.0	U	7.0	4.0	1.5	ug/L		09/09/13 15:26	1
Lead	5.0	U	10	5.0	1.7	ug/L		09/09/13 15:26	1
Selenium	10	U	15	10	4.0	ug/L		09/09/13 15:26	1
Silver	5.0	U	7.0	5.0	1.7	ug/L		09/09/13 15:26	1
Vanadium	4.0	U	7.0	4.0	1.3	ug/L		09/09/13 15:26	1
Barium	8.3	J	200	5.0	2.8	ug/L		09/09/13 15:26	1
Calcium	29000		5000	1000	630	ug/L		09/09/13 15:26	1
Copper	10	U	25	10	4.4	ug/L		09/09/13 15:26	1
Magnesium	8900		5000	300	120	ug/L		09/09/13 15:26	1
Manganese	17		15	5.0	1.8	ug/L		09/09/13 15:26	1
Nickel	5.0	U	40	5.0	2.2	ug/L		09/09/13 15:26	- 1
Potassium	370	J	5000	900	300	ug/L		09/09/13 15:26	1
Method: 6020/DOD - Metals	(ICP/MS) - Total Recov	verable							
Method: 6020/DOD - Metals Analyte	(ICP/MS) - Total Recov	/erable Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
Method: 6020/DOD - Metals Analyte Aluminum	(ICP/MS) - Total Recoversult	/erable Qualifier J B	LOQ 60	LOD 60	DL 20	Unit ug/L	D	Analyzed 09/09/13 19:54	
Method: 6020/DOD - Metals Analyte Aluminum Antimony	(ICP/MS) - Total Recover Result 23	verable Qualifier J B U	60 2.0	60 1.0	DL 20 0.33	Unit ug/L ug/L	<u>D</u>	Analyzed 09/09/13 19:54 09/09/13 19:54	
Method: 6020/DOD - Metals Analyte Aluminum Antimony Beryllium	(ICP/MS) - Total Recover Result 23 1.0 1.0	/erable Qualifier J B U	60 2.0 1.0	60 1.0 1.0	DL 20 0.33 0.50	Unit ug/L ug/L ug/L	D	Analyzed 09/09/13 19:54 09/09/13 19:54 09/09/13 19:54	
Method: 6020/DOD - Metals Analyte Aluminum Antimony Beryllium Cadmium	(ICP/MS) - Total Recov Result 23 1.0 1.0	Verable Qualifier J B U U Q U	60 2.0 1.0 2.0	60 1.0 1.0 1.0	DL 20 0.33 0.50 0.40	Unit ug/L ug/L ug/L	D	Analyzed 09/09/13 19:54 09/09/13 19:54 09/09/13 19:54 09/09/13 19:54	
Method: 6020/DOD - Metals Analyte Aluminum Antimony Beryllium Cadmium	(ICP/MS) - Total Recover Result 23 1.0 1.0 1.0 1.0 100	Verable Qualifier J B U U Q U	60 2.0 1.0 2.0 150	60 1.0 1.0 1.0	DL 20 0.33 0.50 0.40 44	Unit ug/L ug/L ug/L ug/L ug/L	D	Analyzed 09/09/13 19:54 09/09/13 19:54 09/09/13 19:54 09/09/13 19:54	
Method: 6020/DOD - Metals Analyte Aluminum Antimony Beryllium Cadmium Iron Sodium	(ICP/MS) - Total Recover Result 23 1.0 1.0 1.0 1.0 100 3500	Verable Qualifier JB U UQ U	LOQ 60 2.0 1.0 2.0 150 1000	1.0 1.0 1.0 1.0 1.0 400	DL 20 0.33 0.50 0.40 44 160	Unit ug/L ug/L ug/L ug/L ug/L ug/L	D	Analyzed 09/09/13 19:54 09/09/13 19:54 09/09/13 19:54 09/09/13 19:54 09/09/13 19:54	
Method: 6020/DOD - Metals Analyte Aluminum Antimony Beryllium Cadmium Iron Sodium Thallium	(ICP/MS) - Total Recover Result 23 1.0 1.0 1.0 1.0 1.00 1.00 1.00 1.00 1.	Verable Qualifier JB U UQ U U	LOQ 60 2.0 1.0 2.0 150 1000 2.0	LOD 60 1.0 1.0 1.0 100 400 1.5	DL 20 0.33 0.50 0.40 44 160 0.79	Unit ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	D	Analyzed 09/09/13 19:54 09/09/13 19:54 09/09/13 19:54 09/09/13 19:54 09/09/13 19:54 09/09/13 19:54	
Method: 6020/DOD - Metals Analyte Aluminum Antimony Beryllium Cadmium Iron Sodium Thallium	(ICP/MS) - Total Recover Result 23 1.0 1.0 1.0 1.0 100 3500	Verable Qualifier JB U UQ U U	LOQ 60 2.0 1.0 2.0 150 1000	1.0 1.0 1.0 1.0 1.0 400	DL 20 0.33 0.50 0.40 44 160	Unit ug/L ug/L ug/L ug/L ug/L ug/L	<u>D</u>	Analyzed 09/09/13 19:54 09/09/13 19:54 09/09/13 19:54 09/09/13 19:54 09/09/13 19:54	Dil Fac
Method: 6020/DOD - Metals Analyte Aluminum Antimony Beryllium Cadmium	(ICP/MS) - Total Recover Result 23 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	Verable Qualifier JB U UQ U U	LOQ 60 2.0 1.0 2.0 150 1000 2.0	LOD 60 1.0 1.0 1.0 100 400 1.5	DL 20 0.33 0.50 0.40 44 160 0.79 27	Unit ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	D	Analyzed 09/09/13 19:54 09/09/13 19:54 09/09/13 19:54 09/09/13 19:54 09/09/13 19:54 09/09/13 19:54	

Client: Environmental Quality Mgt., Inc.

Project/Site: RVAAP66 (OH)

TestAmerica Job ID: 240-28186-1

Lab Sample ID: 240-28186-3

Matrix: Water

Client Sample ID: FWGWBGmw-020-0330-GW

Date Collected: 08/21/13 10:31 Date Received: 08/22/13 07:00

Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
1,1,1-Trichloroethane	0.25	U	1.0	0.25	0.22	ug/L		08/29/13 23:20	- 3
1,1,2,2-Tetrachloroethane	0.25	U	1.0	0.25	0.18	ug/L		08/29/13 23:20	1
1,1,2-Trichloroethane	0.50	U	1.0	0.50	0.27	ug/L		08/29/13 23:20	1
1,1-Dichloroethane	0.25	U	1.0	0.25	0.15	ug/L		08/29/13 23:20	1
1,1-Dichloroethene	0.25	U	1.0	0.25	0.19	ug/L		08/29/13 23:20	1
1,2-Dichloroethane	0.25	U	1.0	0.25	0.22	ug/L		08/29/13 23:20	1
1,2-Dichloroethene, Total	0.25	U	2.0	0.25	0.17	ug/L		08/29/13 23:20	1
1,2-Dichloropropane	0.25	U	1.0	0.25	0.18	ug/L		08/29/13 23:20	1
2-Hexanone	0.50	U	10	0.50	0.41	ug/L		08/29/13 23:20	1
Bromochloromethane	0.50	U	1.0	0.50	0.29	ug/L		08/29/13 23:20	1
Acetone	1.1	U	10	1.1	1.1	ug/L		08/29/13 23:20	1
Benzene	0.25	U	1.0	0.25	0.13	ug/L		08/29/13 23:20	1
Bromoform	0.64	U	1.0	0.64	0.64	ug/L		08/29/13 23:20	1
Bromomethane	0.50	U	1.0	0.50	0.41	ug/L		08/29/13 23:20	1
Carbon disulfide	0.25	U	1.0	0.25	0.13	ug/L		08/29/13 23:20	1
Carbon tetrachloride	0.25	U	1.0	0.25	0.13	ug/L		08/29/13 23:20	1
Chlorobenzene	0.25	U	1.0	0.25	0.15	ug/L		08/29/13 23:20	1
Chloroethane	0.50	U	1.0	0.50	0.29	ug/L		08/29/13 23:20	1
Chloroform	0.25	U	1.0	0.25	0.16	ug/L		08/29/13 23:20	1
Chloromethane	0.50	U	1.0	0.50	0.30	ug/L		08/29/13 23:20	1
cis-1,2-Dichloroethene	0.25	U	1.0	0.25	0.17	ug/L		08/29/13 23:20	1
cis-1,3-Dichloropropene	0.25	U	1.0	0.25	0.14	ug/L		08/29/13 23:20	1
Bromodichloromethane	0.25	U	1.0	0.25	0.15	ug/L		08/29/13 23:20	1
Ethylbenzene	0.25	U	1.0	0.25	0.17	ug/L		08/29/13 23:20	1
1,2-Dibromoethane	0.25	U	1.0	0.25	0.24	ug/L		08/29/13 23:20	1
m-Xylene & p-Xylene	0.50	U	2.0	0.50	0.24	ug/L		08/29/13 23:20	- 1
2-Butanone (MEK)	0.57	U	10	0.57	0.57	ug/L		08/29/13 23:20	1
4-Methyl-2-pentanone (MIBK)	0.50		10	0.50	0.32	ug/L		08/29/13 23:20	1
Methylene Chloride	0.50	U	1.0	0.50	0.33	ug/L		08/29/13 23:20	1
o-Xylene	0.25	U	1.0	0.25	0.14	ug/L		08/29/13 23:20	1
Styrene	0.25	U	1.0	0.25	0.11	ug/L		08/29/13 23:20	1
Tetrachloroethene	0.50	U	1.0	0.50	0.29	ug/L		08/29/13 23:20	1
Toluene	0.25	U	1.0	0.25	0:13	ug/L		08/29/13 23:20	- 1
trans-1,2-Dichloroethene	0.25	U	1.0	0.25	0.19	ug/L		08/29/13 23:20	1
trans-1,3-Dichloropropene	0.25		1.0	0.25	0.19	ug/L		08/29/13 23:20	1
Trichloroethene	0.25		1.0	0.25	0.17	ug/L		08/29/13 23:20	1
Vinyl chloride	0.25		1.0	0.25	0.22	ug/L		08/29/13 23:20	1
Xylenes, Total	0.25		2.0	0.25	0.14			08/29/13 23:20	1
Dibromochloromethane	0.25		1.0	0.25	0.18	ug/L		08/29/13 23:20	1

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	97		70 - 120		08/29/13 23:20	1
4-Bromofluorobenzene (Surr)	89		75 - 120		08/29/13 23:20	7.
Toluene-d8 (Surr)	95		85 - 120		08/29/13 23:20	1
Dibromofluoromethane (Surr)	92		85 - 115		08/29/13 23:20	7

Method: 8270C/DoD	Semivolatile Organic	Compounds	(CC/MS)
Metriou. 02/06/DOD -	Semivolatile Ordanic	Compounds	(GC/IVIS)

Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
Acenaphthene	0.098	U	0.20	0.098	0.043	ug/L	_	09/06/13 22:46	1
Acenaphthylene	0.098	U	0.20	0.098	0.047	ug/L		09/06/13 22:46	31

TestAmerica Canton

3

5

Ū

9

13

14

U.S

Client: Environmental Quality Mgt., Inc.

Project/Site: RVAAP66 (OH)

Date Received: 08/22/13 07:00

3-Nitroaniline

4-Nitroaniline

TestAmerica Job ID: 240-28186-1

Lab Sample ID: 240-28186-3

Matrix: Water

Client Sample ID: FWGWBGmw-020-0330-GW Date Collected: 08/21/13 10:31

Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
Anthracene	0.098	U	0.20	0.098	0.086	ug/L		09/06/13 22:46	1
Benzo[a]anthracene	0.098	U	0.20	0.098	0.029	ug/L		09/06/13 22:46	1
Benzo[a]pyrene	0.098	U	0.20	0.098	0.050	ug/L		09/06/13 22:46	1
Benzo[b]fluoranthene	0.098	U	0.20	0.098	0.039	ug/L		09/06/13 22:46	1
Benzo[g,h,i]perylene	0.098	U	0.20	0.098	0.045	ug/L		09/06/13 22:46	1
Benzoic acid	20	U	25	20	9.8	ug/L		09/06/13 22:46	1
Benzo[k]fluoranthene	0.098	U	0.20	0.098	0.044	ug/L		09/06/13 22:46	. 1
Benzyl alcohol	0.49	U	4.9	0.49	0.37	ug/L		09/06/13 22:46	9
Bis(2-chloroethoxy)methane	0.49	U	0.98	0.49	0.31	ug/L		09/06/13 22:46	1
Bis(2-chloroethyl)ether	0.098	U	0.98	0.098	0.098	ug/L		09/06/13 22:46	1
Bis(2-ethylhexyl) phthalate	0.54	J	2.0	0.49	0.22	ug/L		09/06/13 22:46	-1
4-Bromophenyl phenyl ether	0.49	U	2.0	0.49	0.22	ug/L		09/06/13 22:46	1
Butyl benzyl phthalate	0.49	U	2.0	0.49	0.25	ug/L		09/06/13 22:46	1
Carbazole	0.49	U	0.98	0.49	0.27	ug/L		09/06/13 22:46	1
4-Chloroaniline	0.49	U	2.0	0.49	0.21	ug/L		09/06/13 22:46	1
4-Chloro-3-methylphenol	0.49	U	2.0	0.49	0.21	ug/L		09/06/13 22:46	
2-Chloronaphthalene	0.49	U	0.98	0.49	0.098	ug/L		09/06/13 22:46	1
2-Chlorophenol	0.49	U	0.98	0.49	0.28	ug/L		09/06/13 22:46	1
4-Chlorophenyl phenyl ether	0.49	U	2.0	0.49	0.29	ug/L		09/06/13 22:46	1
Chrysene	0.098	U	0.20	0.098	0.049	ug/L		09/06/13 22:46	1
Dibenz(a,h)anthracene	0.098	Ü	0.20	0.098	0.044			09/06/13 22:46	1
Dibenzofuran	0.098		0.98	0.098	0.020	7.5		09/06/13 22:46	-
1,2-Dichlorobenzene	0.49	U	0.98	0.49		ug/L		09/06/13 22:46	
1,3-Dichlorobenzene	0.49		0.98	0.49	0.23			09/06/13 22:46	
1,4-Dichlorobenzene	0.49	U	0.98	0.49	0.33			09/06/13 22:46	
3,3'-Dichlorobenzidine	0.98		4.9	0.98	0.36			09/06/13 22:46	-
2,4-Dichlorophenol	0.49		2.0	0.49	0.19	ug/L		09/06/13 22:46	
Diethyl phthalate	0.98		2.0	0.98	0.59	ug/L		09/06/13 22:46	-
2,4-Dimethylphenol	0.49		2.0	0.49	0.25	ug/L		09/06/13 22:46	-
Dimethyl phthalate	0.49		2.0	0.49	0.28	ug/L		09/06/13 22:46	
Di-n-butyl phthalate	0.76		2.0	0.98	0.66	ug/L		09/06/13 22:46	
4,6-Dinitro-2-methylphenol	3.9	U	4.9	3.9	2.4			09/06/13 22:46	
2,4-Dinitrophenol	0.98		4.9	0.98	0.31			09/06/13 22:46	
Di-n-octyl phthalate	0.49		2.0	0.49	0.23	ug/L		09/06/13 22:46	- 4
Fluoranthene	0.098		0.20	0.098	0.044			09/06/13 22:46	
Fluorene	0.098		0.20	0.098	0.040	-		09/06/13 22:46	
Hexachlorobenzene	0.098		0.20	0.098	0.084			09/06/13 22:46	4
Hexachlorobutadiene	0.49		0.98	0.49		ug/L		09/06/13 22:46	
Hexachlorocyclopentadiene	0.49		9.8	0.49		ug/L		09/06/13 22:46	9
Hexachloroethane	0.49		0.98	0.49		ug/L		09/06/13 22:46	
Indeno[1,2,3-cd]pyrene	0.098		0.20	0.098	0.042			09/06/13 22:46	
	0.49							09/06/13 22:46	
Sophorone Mothylapahthalana	0.49		0.98	0.49	0.089	ug/L			
2-Methylphopol	0.098		0.20	0.098				09/06/13 22:46	
2-Methylphenol			0.98	0.49		ug/L		09/06/13 22:46	
3 & 4 Methylphenol	0.98		2.0	0.98		ug/L		09/06/13 22:46	1
Naphthalene	0.098		0.20	0.098	0.061			09/06/13 22:46	- 5
2-Nitroaniline	0.49	U	2.0	0.49	0.21	ug/L		09/06/13 22:46	

TestAmerica Canton

09/06/13 22:46

09/06/13 22:46

2.0

2.0

0.49

0.49

0.27 ug/L

0.22 ug/L

0.49 U

0.49 U

Client: Environmental Quality Mgt., Inc.

Project/Site: RVAAP66 (OH)

TestAmerica Job ID: 240-28186-1

Lab Sample ID: 240-28186-3

Matrix: Water

Client Sample ID: FWGWBGmw-020-0330-GW

Date Collected: 08/21/13 10:31 Date Received: 08/22/13 07:00

Analyte	Result	Qualifier		LOQ	LOD	DL	Unit D	Analyzed	Dil Fac
2-Nitrophenol	0.49	U		2.0	0.49	0.27	ug/L	09/06/13 22:46	1
4-Nitrophenol	3.9	U		4.9	3.9	0.28	ug/L	09/06/13 22:46	1
N-Nitrosodi-n-propylamine	0.49	U		0.98	0.49	0.24	ug/L	09/06/13 22:46	1
N-Nitrosodiphenylamine	0.49	U		0.98	0.49	0.30	ug/L	09/06/13 22:46	1
2,2'-oxybis[1-chloropropane]	0.49	U		0.98	0.49	0.39	ug/L	09/06/13 22:46	1
Pentachlorophenol	0.98	U		4.9	0.98	0.26	ug/L	09/06/13 22:46	1
Phenanthrene	0.098	U		0.20	0.098	0.061	ug/L	09/06/13 22:46	1
Phenol	0.98	U		0.98	0.98	0.59	ug/L	09/06/13 22:46	1
Pyrene	0.098	U		0.20	0.098	0.041	ug/L	09/06/13 22:46	1
1,2,4-Trichlorobenzene	0.49	U		0.98	0.49	0.27	ug/L	09/06/13 22:46	1
2,4,5-Trichlorophenol	0.49	U		4.9	0.49	0.29	ug/L	09/06/13 22:46	1
2,4,6-Trichlorophenol	0.49	U		4.9	0.49	0.24	ug/L	09/06/13 22:46	1
Surrogate	%Recovery Qu	alifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl (Surr)	88		50 - 110				08/23/13 09:12	09/06/13 22:46	1
2-Fluorophenol (Surr)	93		20 - 110				08/23/13 09:12	09/06/13 22:46	1
Nitrobenzene-d5 (Surr)	92		40 - 110				08/23/13 09:12	09/06/13 22:46	1
Phenol-d5 (Surr)	97		10 - 115				08/23/13 09:12	09/06/13 22:46	1
Terphenyl-d14 (Surr)	122		50 - 135				08/23/13 09:12	09/06/13 22:46	1
2,4,6-Tribromophenol (Surr)	95		40 - 125				08/23/13 09:12	09/06/13 22:46	1

Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
1,4'-DDD	0.019	U	0.048	0.019	0.0091	ug/L		08/29/13 23:52	1
1,4'-DDE	0.019	U	0.048	0.019	0.0092	ug/L		08/29/13 23:52	1
4,4'-DDT	0.019	U	0.048	0.019	0.015	ug/L		08/29/13 23:52	- 1
Aldrin	0.019	U	0.029	0.019	0.0078	ug/L		08/29/13 23:52	1
alpha-BHC	0.019	U	0.029	0.019	0.0067	ug/L		08/29/13 23:52	1
alpha-Chlordane	0.019	U	0.048	0.019	0.013	ug/L		08/29/13 23:52	1
beta-BHC	0.019	U	0.048	0.019	0.0080	ug/L		08/29/13 23:52	1
delta-BHC	0.019	U	0.048	0.019	0.0083	ug/L		08/29/13 23:52	1
Dieldrin	0.019	U	0.029	0.019	0.0071	ug/L		08/29/13 23:52	1
Endosulfan I	0.019	U	0.048	0.019	0.012	ug/L		08/29/13 23:52	1
Endosulfan II	0.019	U	0.048	0.019	0.011	ug/L		08/29/13 23:52	1
Endosulfan sulfate	0.019	U	0.048	0.019	0.010	ug/L		08/29/13 23:52	1
Endrin	0.019	U	0.048	0.019	0.010	ug/L		08/29/13 23:52	1
Endrin aldehyde	0.019	U	0.048	0.019	0.010	ug/L		08/29/13 23:52	1
Endrin ketone	0.019	U	0.048	0.019	0.0074	ug/L		08/29/13 23:52	1
gamma-BHC (Lindane)	0.019	U	0.048	0.019	0.0061	ug/L		08/29/13 23:52	9
gamma-Chlordane	0.019	U	0.048	0.019	0.011	ug/L		08/29/13 23:52	1
Heptachlor	0.019	U	0.029	0.019	0.0076	ug/L		08/29/13 23:52	1
Heptachlor epoxide	0.019	U	0.029	0.019	0.0068	ug/L		08/29/13 23:52	1
Methoxychlor	0.048	U	0.095	0.048	0.030	ug/L		08/29/13 23:52	.1
Toxaphene	0.76	U	1.9	0.76	0.30	ug/L		08/29/13 23:52	1

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
DCB Decachlorobiphenyl	51		30 - 135	08/23/13 09:00	08/29/13 23:52	1
DCB Decachlorobiphenyl	50		30 - 135	08/23/13 09:00	08/29/13 23:52	7
Tetrachloro-m-xylene	69		25 - 140	08/23/13 09:00	08/29/13 23:52	7
Tetrachloro-m-xylene	70		25 - 140	08/23/13 09:00	08/29/13 23:52	1

TestAmerica Canton

Page 28 of 196

Client: Environmental Quality Mgt., Inc.

Project/Site: RVAAP66 (OH)

TestAmerica Job ID: 240-28186-1

Lab Sample ID: 240-28186-3

Matrix: Water

Client Sample ID: FWGWBGmw-020-0330-GW

Date Collected: 08/21/13 10:31 Date Received: 08/22/13 07:00

Analyte

Cyanide, Total

Nitrocellulose

Method: 8082/DOD - Polychk Analyte		Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fa
Aroclor-1016	0.19	U	0.48	0.19	0.16	ug/L		08/28/13 21:43	
Aroclor-1221	0.19	U	0.48	0.19	0.12	ug/L		08/28/13 21:43	
Aroclor-1232	0.19	U	0.48	0.19	0.15	ug/L		08/28/13 21:43	
Aroclor-1242	0.38	U	0.48	0.38	0.21	ug/L		08/28/13 21:43	
Aroclor-1248	0.19	U	0.48	0.19	0.095	ug/L		08/28/13 21:43	
Aroclor-1254	0.19	U	0.48	0.19	0.15	ug/L		08/28/13 21:43	
Aroclor-1260	0.19	U	0.48	0.19	0.16	ug/L		08/28/13 21:43	
Surrogate	%Recovery Qu	ıalifier	Limits			Prepared		Analyzed	Dil Fa
Tetrachloro-m-xylene	69		40 - 140			08/23/13 09:	07	08/28/13 21:43	
Tetrachloro-m-xylene	74		40 - 140			08/23/13 09:	07	08/28/13 21:43	
DCB Decachlorobiphenyl	41		40 - 135			08/23/13 09:	07	08/28/13 21:43	
DCB Decachlorobiphenyl	30 Q		40 - 135			08/23/13 09:	07	08/28/13 21:43	
Method: 8330 Modified - Nitro	oguanidine (HPLC)								
Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fa
Vitroguanidine	6.0	U	20	6.0	2.4	ug/L		08/27/13 14:49	
Method: 8330A - Nitroaromat	tics and Nitramines								
Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fa
1,3,5-Trinitrobenzene	0.051	U	0.15	0.051	0.032	ug/L		09/03/13 17:58	
1,3-Dinitrobenzene	0.10	U	0.15	0.10	0.051	ug/L		09/03/13 17:58	
2,4,6-Trinitrotoluene	0.10	U	0.15	0.10	0.051	ug/L		09/03/13 17:58	
2,4-Dinitrotoluene	0.10	U	0.13	0.10	0.051	ug/L		09/03/13 17:58	
2,6-Dinitrotoluene	0.10	U	0.13	0.10	0.051	ug/L		09/03/13 17:58	
2-Amino-4,6-dinitrotoluene	0.10	U	0.15	0.10	0.015	ug/L		09/03/13 17:58	
2-Nitrotoluene	0.10	U	0.51	0.10	0.090	ug/L		09/03/13 17:58	
3-Nitrotoluene	0.10	U	0.51	0.10	0.059	ug/L		09/03/13 17:58	
1-Nitrotoluene	0.10	U	0.51	0.10	0.090	ug/L		09/03/13 17:58	
1-Amino-2,6-dinitrotoluene	0.10	U	0.15	0.10	0.051	ug/L		09/03/13 17:58	
HMX	0.051	U	0.15	0.051	0.037			09/03/13 17:58	
RDX	0.051	U	0.15	0.051	0.037			09/03/13 17:58	
Nitrobenzene	0.10	U	0.15	0.10	0.051	ug/L		09/03/13 17:58	
Γetryl	0.10	U	0.15	0.10	0.051	ug/L		09/03/13 17:58	
Vitroglycerin	0.51	U	0.67	0.51	0.34	ug/L		09/03/13 17:58	
PETN	0.51	U	0.67	0.51		ug/L		09/03/13 17:58	
Surrogate	%Recovery Qu	ıalifier	Limits			Prepared		Analyzed	Dil Fa
3,4-Dinitrotoluene	86		79 - 111			08/27/13 07:	26	09/03/13 17:58	
General Chemistry									
Service and Service and		and the second		1.00		4.47.54	10	Experience man	-

TestAmerica Canton

Analyzed

08/23/13 13:31

09/11/13 16:09

Dil Fac

LOQ

0.010

2.0

LOD

0.010

1.0

DL Unit

0.0032 mg/L

0.48 mg/L

Result Qualifier

0.010 U

1.0 U

Client: Environmental Quality Mgt., Inc.

Project/Site: RVAAP66 (OH)

TestAmerica Job ID: 240-28186-1

Lab Sample ID: 240-28186-4

Matrix: Water

Client Sample ID: FWGWBGmw-020-0330-GF

Date Collected: 08/21/13 10:31 Date Received: 08/22/13 07:00

Method: 6010B/DOD - Metals (ICP) - Total Recoverable LOQ Result Qualifier LOD DL Unit D Dil Fac Analyzed Arsenic 10 U 10 10 3.3 09/09/13 15:32 ug/L 4.0 U 7.0 4.0 1.4 ug/L Chromium 09/09/13 15:32 Cobalt 4.0 U 7.0 4.0 1.5 ug/L 09/09/13 15:32 5.0 5.0 U 10 ug/L Lead 1.7 09/09/13 15:32 Selenium 10 U 15 10 ug/L 09/09/13 15:32 Silver 5.0 U 7.0 5.0 1.7 ug/L 09/09/13 15:32 Vanadium 4.0 U 7.0 4.0 1.3 ug/L 09/09/13 15:32 200 5.0 09/09/13 15:32 2.8 ug/L Barium 17 J 5000 1000 Calcium 31000 630 09/09/13 15:32 Copper 10 U 25 10 4.4 ug/L 09/09/13 15:32 5000 300 09/09/13 15:32 Magnesium 11000 120 ug/L 15 5.0 09/09/13 15:32 Manganese 330 1.8 ug/L 40 5.0 2.2 ug/L 09/09/13 15:32 Nickel 3.6 J 5000 900 09/09/13 15:32 590 J 300 ug/L Potassium

Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
Aluminum	60	U	60	60	20	ug/L	= 1	09/09/13 20:02	1
Antimony	1.0	U	2.0	1.0	0.33	ug/L		09/09/13 20:02	1
Beryllium	1.0	UQ	1.0	1.0	0.50	ug/L		09/09/13 20:02	1
Cadmium	1.0	U	2.0	1.0	0.40	ug/L		09/09/13 20:02	1
Iron	4000		150	100	44	ug/L		09/09/13 20:02	1
Sodium	4000		1000	400	160	ug/L		09/09/13 20:02	1
Thallium	1.5	U	2.0	1.5	0.79	ug/L		09/09/13 20:02	1
Zinc	50	U	50	50	27	ug/L		09/09/13 20:02	1

Method: 7470A/DOD - Mercury (CVAA)									
Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
Hg	0.20	U	0.20	0.20	0.12	ug/L		08/27/13 16:48	1

Client: Environmental Quality Mgt., Inc.

Project/Site: RVAAP66 (OH)

TestAmerica Job ID: 240-28186-1

Lab Sample ID: 240-28186-5

Matrix: Water

Date Collected: 08/21/13 11:55

Client Sample ID: FWGLL2mw-265C-0321-GW

Date Received: 08/22/13 07:00

Analyte	Result	Qualifier	1	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
1,1,1-Trichloroethane	0.25	U		1.0	0.25	0.22	ug/L		08/29/13 23:44	1
1,1,2,2-Tetrachloroethane	0.25	U		1.0	0.25	0.18	ug/L		08/29/13 23:44	1
1,1,2-Trichloroethane	0.50	U		1.0	0.50	0.27	ug/L		08/29/13 23:44	1
1,1-Dichloroethane	0.25	U		1.0	0.25	0.15	ug/L		08/29/13 23:44	1
1,1-Dichloroethene	0.25	U		1.0	0.25	0.19	ug/L		08/29/13 23:44	1
1,2-Dichloroethane	0.25	U		1.0	0.25	0.22	ug/L		08/29/13 23:44	1
1,2-Dichloroethene, Total	0.25	U		2.0	0.25	0.17	ug/L		08/29/13 23:44	1
1,2-Dichloropropane	0.25	U		1.0	0.25	0.18	ug/L		08/29/13 23:44	1
2-Hexanone	0.50	U		10	0.50	0.41	ug/L		08/29/13 23:44	1
Bromochloromethane	0.50	U		1.0	0.50	0.29	ug/L		08/29/13 23:44	1
Acetone	1.1	U		10	1.1	1.1	ug/L		08/29/13 23:44	1
Benzene	0.25	U		1.0	0.25	0.13	ug/L		08/29/13 23:44	1
Bromoform	0.64	U		1.0	0.64	0.64	ug/L		08/29/13 23:44	1
Bromomethane	0.50	U		1.0	0.50	0.41	ug/L		08/29/13 23:44	1
Carbon disulfide	0.25	U		1.0	0.25	0.13	ug/L		08/29/13 23:44	1
Carbon tetrachloride	0.25	U		1.0	0.25	0.13	ug/L		08/29/13 23:44	1
Chlorobenzene	0.25	U		1.0	0.25	0.15	ug/L		08/29/13 23:44	1
Chloroethane	0.50	U		1.0	0.50	0.29	ug/L		08/29/13 23:44	1
Chloroform	0.25	U		1.0	0.25	0.16	ug/L		08/29/13 23:44	1
Chloromethane	0.50	U		1.0	0.50	0.30	ug/L		08/29/13 23:44	1
cis-1,2-Dichloroethene	0.25	U		1.0	0.25	0.17	ug/L		08/29/13 23:44	1
cis-1,3-Dichloropropene	0.25	U		1.0	0.25	0.14	ug/L		08/29/13 23:44	1
Bromodichloromethane	0.25	U		1.0	0.25	0.15	ug/L		08/29/13 23:44	1
Ethylbenzene	0.25	U		1.0	0.25	0.17	ug/L		08/29/13 23:44	1
1,2-Dibromoethane	0.25	U		1.0	0.25	0.24	ug/L		08/29/13 23:44	1
m-Xylene & p-Xylene	0.50	U		2.0	0.50	0.24	ug/L		08/29/13 23:44	1
2-Butanone (MEK)	0.57	U		10	0.57	0.57	ug/L		08/29/13 23:44	1
4-Methyl-2-pentanone (MIBK)	0.50	U		10	0.50	0.32	ug/L		08/29/13 23:44	1
Methylene Chloride	0.50	U		1.0	0.50	0.33	ug/L		08/29/13 23:44	1
o-Xylene	0.25	U		1.0	0.25	0.14	ug/L		08/29/13 23:44	1
Styrene	0.25	U		1.0	0.25	0.11	ug/L		08/29/13 23:44	1
Tetrachloroethene	0.50	U		1.0	0.50	0.29	ug/L		08/29/13 23:44	1
Toluene	0.25	U		1.0	0.25	0.13	ug/L		08/29/13 23:44	1
trans-1,2-Dichloroethene	0.25	U		1.0	0.25	0.19	ug/L		08/29/13 23:44	1
trans-1,3-Dichloropropene	0.25	U		1.0	0.25	0.19	ug/L		08/29/13 23:44	1
Trichloroethene	0.25	U		1.0	0.25	0.17	ug/L		08/29/13 23:44	1
Vinyl chloride	0.25	U		1.0	0.25	0.22	ug/L		08/29/13 23:44	1
Xylenes, Total	0.25	U		2.0	0.25	0.14	100		08/29/13 23:44	-1
Dibromochloromethane	0.25	U		1.0	0.25	0.18	ug/L		08/29/13 23:44	1
Surrogate	%Recovery Qu	ualifier	Limits				Prepa	red	Analyzed	Dil Fac
1.2 Dichlornothano da (Surr)	02		70 120				-		08/20/12 22:44	4

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	92		70 - 120		08/29/13 23:44	1
4-Bromofluorobenzene (Surr)	88		75 - 120		08/29/13 23:44	1
Toluene-d8 (Surr)	93		85 - 120		08/29/13 23:44	1
Dibromofluoromethane (Surr)	91		85 - 115		08/29/13 23:44	7

Method: 8270C/DoD -	Semivolatile Organic	Compounds (GC/MS)	
MICHIOU. 02/00/DOD -	Sellify Ofathe Of gaine	Compounds (Comis)	

Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
Bis(2-ethylhexyl) phthalate	1.5	J	1.9	0.49	0.21	ug/L		09/06/13 21:57	1
Butyl benzyl phthalate	0.49	U	1.9	0.49	0.25	ug/L		09/06/13 21:57	- 1

Client: Environmental Quality Mgt., Inc.

Client Sample ID: FWGLL2mw-265C-0321-GW

Project/Site: RVAAP66 (OH)

TestAmerica Job ID: 240-28186-1

Lab Sample ID: 240-28186-5

Matrix: Water

Date Collected: 08/21/13 11:55 Date Received: 08/22/13 07:00

Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
Diethyl phthalate	0.97	U	1.9	0.97	0.58	ug/L		09/06/13 21:57	1
Dimethyl phthalate	0.49	U	1.9	0.49	0.28	ug/L		09/06/13 21:57	1
Di-n-butyl phthalate	1.4	J	1.9	0.97	0.65	ug/L		09/06/13 21:57	1
Di-n-octyl phthalate	0.49	U	1.9	0.49	0.22	ug/L		09/06/13 21:57	1

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl (Surr)	83		50 - 110	08/23/13 09:12	09/06/13 21:57	1
2-Fluorophenol (Surr)	83		20 - 110	08/23/13 09:12	09/06/13 21:57	1
Nitrobenzene-d5 (Surr)	84		40 - 110	08/23/13 09:12	09/06/13 21:57	1
Phenol-d5 (Surr)	86		10 - 115	08/23/13 09:12	09/06/13 21:57	1
Terphenyl-d14 (Surr)	108		50 - 135	08/23/13 09:12	09/06/13 21:57	1
2,4,6-Tribromophenol (Surr)	94		40 - 125	08/23/13 09:12	09/06/13 21:57	1

Method: 8330 Modified - Niti	roguanidine (HPLC)								
Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
Nitroguanidine	6.0	U	20	6.0	2.4	ug/L		08/27/13 15:07	1

Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
1,3,5-Trinitrobenzene	0.051	U	0.15	0.051	0.032	ug/L		09/03/13 18:41	1
1,3-Dinitrobenzene	0.10	U	0.15	0.10	0.051	ug/L		09/03/13 18:41	1
2,4,6-Trinitrotoluene	0.10	U	0.15	0.10	0.051	ug/L		09/03/13 18:41	1
2,4-Dinitrotoluene	0.10	U	0.13	0.10	0.051	ug/L		09/03/13 18:41	1
2,6-Dinitrotoluene	0.10	U	0.13	0.10	0.051	ug/L		09/03/13 18:41	1
2-Amino-4,6-dinitrotoluene	0.10	U	0.15	0.10	0.015	ug/L		09/03/13 18:41	1
2-Nitrotoluene	0.10	U	0.51	0.10	0.090	ug/L		09/03/13 18:41	1
3-Nitrotoluene	0.10	U	0.51	0.10	0.058	ug/L		09/03/13 18:41	1
4-Nitrotoluene	0.10	U	0.51	0.10	0.090	ug/L		09/03/13 18:41	1
4-Amino-2,6-dinitrotoluene	0.10	U	0.15	0.10	0.051	ug/L		09/03/13 18:41	1
HMX	0.051	U	0.15	0.051	0.037	ug/L		09/09/13 17:19	1
RDX	0.051	U	0.15	0.051	0.037	ug/L		09/03/13 18:41	1
Nitrobenzene	0.10	U	0.15	0.10	0.051	ug/L		09/03/13 18:41	1
Tetryl	0.10	U	0.15	0.10	0.051	ug/L		09/03/13 18:41	1
Nitroglycerin	0.51	U	0.66	0.51	0.34	ug/L		09/03/13 18:41	1
PETN	0.51	U	0.66	0.51	0.31	ug/L		09/03/13 18:41	1

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
3,4-Dinitrotoluene	90	79 - 111	08/27/13 07:26	09/03/13 18:41	1
3,4-Dinitrotoluene	96	79 - 111	08/27/13 07:26	09/09/13 17:19	1

General Chemistry									
Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
Nitrocellulose	1.0	11	2.0	1.0	0.48	ma/l		09/11/13 16:11	1

Client: Environmental Quality Mgt., Inc.

Project/Site: RVAAP66 (OH)

TestAmerica Job ID: 240-28186-1

Lab Sample ID: 240-28186-6

Matrix: Water

Client Sample ID: FWGLL2mw-265C-0321-GF Date Collected: 08/21/13 11:55

Date Received: 08/22/13 07:00

Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
Arsenic	10	U	10	10	3.3	ug/L		09/09/13 15:38	1
Chromium	4.0	U	7.0	4.0	1.4	ug/L		09/09/13 15:38	1
Cobalt	4.8	J	7.0	4.0	1.5	ug/L		09/09/13 15:38	1
Lead	5.0	U	10	5.0	1.7	ug/L		09/09/13 15:38	1
Selenium	10	U	15	10	4.0	ug/L		09/09/13 15:38	1
Silver	5.0	U	7.0	5.0	1.7	ug/L		09/09/13 15:38	1
Vanadium	4.0	U	7.0	4.0	1.3	ug/L		09/09/13 15:38	1
Barium	11	J	200	5.0	2.8	ug/L		09/09/13 15:38	1
Calcium	81000		5000	1000	630	ug/L		09/09/13 15:38	1
Copper	10	U	25	10	4.4	ug/L		09/09/13 15:38	1
Magnesium	24000		5000	300	120	ug/L		09/09/13 15:38	1
Manganese	540		15	5.0	1.8	ug/L		09/09/13 15:38	1
Nickel	12	J	40	5.0	2.2	ug/L		09/09/13 15:38	-1
Potassium	710	J	5000	900	300	ug/L		09/09/13 15:38	1
Method: 6020/DOD - Metals (IO	CP/MS) - Total Recov	verable							
Analyte		Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
		Qualifier	LOQ 60	LOD 60	DL 20	Unit ug/L	D	Analyzed 09/09/13 20:09	Dil Fac
Aluminum	Result	Qualifier U				7.11.51	D	and the second s	Dil Fac
Aluminum Antimony	Result 60 1.0	Qualifier U	60	60	20	ug/L ug/L	D	09/09/13 20:09	Dil Fac
Aluminum Antimony Beryllium	Result 60 1.0	Qualifier U U U Q	60 2.0	60 1.0	20 0.33	ug/L ug/L ug/L	D	09/09/13 20:09 09/09/13 20:09	Dil Fac 1 1 1
Aluminum Antimony Beryllium Cadmium	Result 60 1.0 1.0	Qualifier U U U Q	60 2.0 1.0	60 1.0 1.0	20 0.33 0.50 0.40	ug/L ug/L ug/L	D	09/09/13 20:09 09/09/13 20:09 09/09/13 20:09	Dil Fac 1 1 1 1 1 1 1
Aluminum Antimony Beryllium Cadmium Iron	Result 60 1.0 1.0	Qualifier U U U Q	60 2.0 1.0 2.0	60 1.0 1.0 1.0	20 0.33 0.50 0.40	ug/L ug/L ug/L ug/L	<u>D</u>	09/09/13 20:09 09/09/13 20:09 09/09/13 20:09 09/09/13 20:09	Dil Fac 1 1 1 1 1 1 1 1
Aluminum Antimony Beryllium Cadmium Iron Sodium	Result 60 1.0 1.0 1.0 2900	Qualifier U U U U Q	60 2.0 1.0 2.0 150	60 1.0 1.0 1.0	20 0.33 0.50 0.40 44	ug/L ug/L ug/L ug/L ug/L	D	09/09/13 20:09 09/09/13 20:09 09/09/13 20:09 09/09/13 20:09 09/09/13 20:09	Dil Fac 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Aluminum Antimony Beryllium Cadmium Iron Sodium Thallium	Result 60 1.0 1.0 1.0 2900 12000	Qualifier U U U U U U U	60 2.0 1.0 2.0 150 1000	1.0 1.0 1.0 1.0 100 400	20 0.33 0.50 0.40 44 160	ug/L ug/L ug/L ug/L ug/L ug/L	D	09/09/13 20:09 09/09/13 20:09 09/09/13 20:09 09/09/13 20:09 09/09/13 20:09 09/09/13 20:09	Dil Fac
Analyte Aluminum Antimony Beryllium Cadmium Iron Sodium Thallium Zinc Method: 7470A/DOD - Mercury	Result 60 1.0 1.0 1.0 2900 12000 1.5 50	Qualifier U U U U U U U	50 2.0 1.0 2.0 150 1000 2.0	1.0 1.0 1.0 1.0 100 400 1.5	20 0.33 0.50 0.40 44 160 0.79	ug/L ug/L ug/L ug/L ug/L ug/L	<u>D</u>	09/09/13 20:09 09/09/13 20:09 09/09/13 20:09 09/09/13 20:09 09/09/13 20:09 09/09/13 20:09	Dil Fac 1 1 1 1 1 1 1 1 1 1 1 1 1
Aluminum Antimony Beryllium Cadmium Iron Sodium Thallium	Result 60 1.0 1.0 2900 12000 1.5 50	Qualifier U U U U U U U	50 2.0 1.0 2.0 150 1000 2.0	1.0 1.0 1.0 1.0 100 400 1.5	20 0.33 0.50 0.40 44 160 0.79	ug/L ug/L ug/L ug/L ug/L ug/L ug/L		09/09/13 20:09 09/09/13 20:09 09/09/13 20:09 09/09/13 20:09 09/09/13 20:09 09/09/13 20:09	Dil Fac 1 1 1 1 1 1 1 1 1 1 Dil Fac

TestAmerica Canton

Client: Environmental Quality Mgt., Inc.

Project/Site: RVAAP66 (OH)

TestAmerica Job ID: 240-28186-1

Lab Sample ID: 240-28186-7

Matrix: Water

Client Sample ID: FWGLL2mw-059C-0357-GW

Date Collected: 08/21/13 12:51 Date Received: 08/22/13 07:00

Analyte		Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
1,1,1-Trichloroethane	0.25	U	1.0	0.25	0.22	ug/L		08/30/13 00:09	1
1,1,2,2-Tetrachloroethane	0.25	U	1.0	0.25	0.18	ug/L		08/30/13 00:09	1
1,1,2-Trichloroethane	0.50	U	1.0	0.50	0.27	ug/L		08/30/13 00:09	1
1,1-Dichloroethane	0.25	U	1.0	0.25	0.15	ug/L		08/30/13 00:09	1
1,1-Dichloroethene	0.25	U	1.0	0.25	0.19	ug/L		08/30/13 00:09	1
1,2-Dichloroethane	0.25	U	1.0	0.25	0.22	ug/L		08/30/13 00:09	1
1,2-Dichloroethene, Total	0.25	U	2.0	0.25	0.17	ug/L		08/30/13 00:09	1
1,2-Dichloropropane	0.25	U	1.0	0.25	0.18	ug/L		08/30/13 00:09	. 1
2-Hexanone	0.50	U	10	0.50	0.41	ug/L		08/30/13 00:09	1
Bromochloromethane	0.50	U	1.0	0.50	0.29	ug/L		08/30/13 00:09	1
Acetone	1.4	J	10	1.1	1.1	ug/L		08/30/13 00:09	1
Benzene	0.25	U	1.0	0.25	0.13	ug/L		08/30/13 00:09	1
Bromoform	0.64	U	1.0	0.64	0.64	ug/L		08/30/13 00:09	1
Bromomethane	0.50	U	1.0	0.50	0.41	ug/L		08/30/13 00:09	1
Carbon disulfide	0.25	U	1.0	0.25	0.13	ug/L		08/30/13 00:09	1
Carbon tetrachloride	0.25	U	1.0	0.25	0.13	ug/L		08/30/13 00:09	1
Chlorobenzene	0.25	U	1.0	0.25	0.15	ug/L		08/30/13 00:09	1
Chloroethane	0.50	U	1.0	0.50	0.29	ug/L		08/30/13 00:09	1
Chloroform	0.25	U	1.0	0.25	0.16	ug/L		08/30/13 00:09	1
Chloromethane	0.50	U	1.0	0.50	0.30	ug/L		08/30/13 00:09	1
cis-1,2-Dichloroethene	0.25	U	1.0	0.25	0.17	ug/L		08/30/13 00:09	1
cis-1,3-Dichloropropene	0.25	U	1.0	0.25	0.14	ug/L		08/30/13 00:09	1
Bromodichloromethane	0.25	U	1.0	0.25	0.15	ug/L		08/30/13 00:09	. 1
Ethylbenzene	0.25	U	1.0	0.25	0.17	ug/L		08/30/13 00:09	1
1,2-Dibromoethane	0.25	U	1.0	0.25	0.24	ug/L		08/30/13 00:09	1
m-Xylene & p-Xylene	0.50	U	2.0	0.50	0.24	ug/L		08/30/13 00:09	- 1
2-Butanone (MEK)	0.57	U	10	0.57	0.57	ug/L		08/30/13 00:09	1
4-Methyl-2-pentanone (MIBK)	0.50	U	10	0.50	0.32	ug/L		08/30/13 00:09	1
Methylene Chloride	0.50	U	1.0	0.50	0.33	ug/L		08/30/13 00:09	1
o-Xylene	0.25	U	1.0	0.25	0.14	ug/L		08/30/13 00:09	1
Styrene	0.25	U	1.0	0.25	0.11	ug/L		08/30/13 00:09	1
Tetrachloroethene	0.50	U	1.0	0.50	0.29	ug/L		08/30/13 00:09	1
Toluene	0.25	U	1.0	0.25	0.13	ug/L		08/30/13 00:09	
trans-1,2-Dichloroethene	0.25	U	1.0	0.25	0.19	ug/L		08/30/13 00:09	1
trans-1,3-Dichloropropene	0.25	U	1.0	0.25	0.19	ug/L		08/30/13 00:09	1
Trichloroethene	0.25	U	1.0	0.25	0.17	ug/L		08/30/13 00:09	1
Vinyl chloride	0.25	U	1.0	0.25	0.22	ug/L		08/30/13 00:09	1
Xylenes, Total	0.25	U	2.0	0.25	0.14	100		08/30/13 00:09	1
Dibromochloromethane	0.25	U	1.0	0.25	0.18	ua/L		08/30/13 00:09	1

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	92		70 - 120		08/30/13 00:09	1
4-Bromofluorobenzene (Surr)	90		75 - 120		08/30/13 00:09	1
Toluene-d8 (Surr)	93		85 - 120		08/30/13 00:09	1
Dibromofluoromethane (Surr)	98		85 - 115		08/30/13 00:09	7

Method: 8270C/DoD - Semivolatil	e Organic Comp	ounds (GC/M	S)					
Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Anal
Ris(2-athylhavyl) phthalate	1.4	1	2.0	0.50	0.22	na/L		09/06/1

alyzed Dil Fac 09/06/13 22:22 0.50 U 09/06/13 22:22 Butyl benzyl phthalate 2.0 0.50 0.26 ug/L

Client: Environmental Quality Mgt., Inc.

Project/Site: RVAAP66 (OH)

TestAmerica Job ID: 240-28186-1

Lab Sample ID: 240-28186-7

Matrix: Water

Client Sample ID: FWGLL2mw-059C-0357-GW

Date Collected: 08/21/13 12:51 Date Received: 08/22/13 07:00

Nitrocellulose

Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fa
Diethyl phthalate	0.99	U	2.0	0.99	0.59	ug/L		09/06/13 22:22	- 1
Dimethyl phthalate	0.50	U	2.0	0.50	0.29	ug/L		09/06/13 22:22	
Di-n-butyl phthalate	1.5	J	2.0	0.99	0.66	ug/L		09/06/13 22:22	
Di-n-octyl phthalate	0.50	U	2.0	0.50	0.23	ug/L		09/06/13 22:22	
Surrogate	%Recovery Qu	ualifier	Limits			Prepare	d	Analyzed	Dil Fa
2-Fluorobiphenyl (Surr)	82		50 - 110			08/23/13 0	9:12	09/06/13 22:22	
2-Fluorophenol (Surr)	90		20 - 110			08/23/13 0	9:12	09/06/13 22:22	
Nitrobenzene-d5 (Surr)	87		40 - 110			08/23/13 0	9:12	09/06/13 22:22	
Phenol-d5 (Surr)	93		10 - 115			08/23/13 09	9:12	09/06/13 22:22	
Terphenyl-d14 (Surr)	113		50 - 135			08/23/13 09	9:12	09/06/13 22:22	
2,4,6-Tribromophenol (Surr)	99		40 - 125			08/23/13 09	9:12	09/06/13 22:22	
Method: 8330 Modified - Nitrogu	ianidine (HPLC)								
Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fa
Nitroguanidine	6.0	U	20	6.0	2.4	ug/L		08/27/13 15:25	
Method: 8330A - Nitroaromatics	and Nitramines								
Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fa
1,3,5-Trinitrobenzene	0.28		0.15	0.050	0.031	ug/L		09/03/13 19:25	
1,3-Dinitrobenzene	0.10	U	0.15	0.10	0.050	ug/L		09/03/13 19:25	
2,4,6-Trinitrotoluene	0.10	U	0.15	0.10	0.050	ug/L		09/03/13 19:25	
2,4-Dinitrotoluene	0.21	M	0.13	0.10	0.050	ug/L		09/03/13 19:25	
2,6-Dinitrotoluene	0.10	U	0.13	0.10	0.050	ug/L		09/03/13 19:25	
2-Amino-4,6-dinitrotoluene	0.22		0.15	0.10	0.015	ug/L		09/03/13 19:25	
2-Nitrotoluene	0.10	U	0.50	0.10	0.089	ug/L		09/03/13 19:25	
3-Nitrotoluene	0.10	U	0.50	0.10	0.057	ug/L		09/03/13 19:25	
1-Nitrotoluene	0.10	U	0.50	0.10	0.089	ug/L		09/03/13 19:25	
1-Amino-2,6-dinitrotoluene	0.38	M	0.15	0.10	0.050	ug/L		09/03/13 19:25	
HMX	0.050	U	0.15	0.050	0.036	ug/L		09/09/13 18:24	
RDX	0.050	U	0.15	0.050	0.036	ug/L		09/09/13 18:24	
Nitrobenzene	0.10	U	0.15	0.10	0.050	ug/L		09/03/13 19:25	
Tetryl	0.10	U	0.15	0.10	0.050	ug/L		09/03/13 19:25	
Vitroglycerin	0.50	U	0.66	0.50	0.33	ug/L		09/03/13 19:25	
PETN	0.50	U	0.66	0.50	0.30	ug/L		09/03/13 19:25	
Surrogate	%Recovery Qu	ualifier	Limits			Prepare	d	Analyzed	Dil F
3,4-Dinitrotoluene	82		79 - 111			08/27/13 0	7:26	09/03/13 19:25	
3,4-Dinitrotoluene	96		79 - 111			08/27/13 0	7:26	09/09/13 18:24	
General Chemistry									

TestAmerica Canton

09/11/13 16:13

2.0

1.0

0.48 mg/L

1.0 U

Client: Environmental Quality Mgt., Inc.

Project/Site: RVAAP66 (OH)

TestAmerica Job ID: 240-28186-1

Lab Sample ID: 240-28186-8

Matrix: Water

Client Sample ID: FWGLL2mw-059C-0357-GF Date Collected: 08/21/13 12:51

Date Received: 08/22/13 07:00

Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
Arsenic	7.3	J	10	10	3.3	ug/L		09/09/13 15:56	1
Chromium	4.0	U	7.0	4.0	1.4	ug/L		09/09/13 15:56	1
Cobalt	14		7.0	4.0	1.5	ug/L		09/09/13 15:56	1
Lead	5.0	U	10	5.0	1.7	ug/L		09/09/13 15:56	1
Selenium	10	U	15	10	4.0	ug/L		09/09/13 15:56	1
Silver	5.0	U	7.0	5.0	1.7	ug/L		09/09/13 15:56	1
Vanadium	4.0	U	7.0	4.0	1.3	ug/L		09/09/13 15:56	1
Barium	62	J	200	5.0	2.8	ug/L		09/09/13 15:56	1
Calcium	29000		5000	1000	630	ug/L		09/09/13 15:56	1
Copper	10	U	25	10	4.4	ug/L		09/09/13 15:56	1
Magnesium	11000		5000	300	120	ug/L		09/09/13 15:56	1
Manganese	970		15	5.0	1.8	ug/L		09/09/13 15:56	1
Nickel	8.1	J	40	5.0	2.2	ug/L		09/09/13 15:56	1
Potassium	860	J	5000	900	300	ug/L		09/09/13 15:56	1
	200		7.53537						
Method: 6020/DOD - Metals (ICP/MS)									
	- Total Recov		LOQ	LOD		Unit	D	Analyzed	Dil Fac
Method: 6020/DOD - Metals (ICP/MS) Analyte	- Total Recov	verable		LOD 60			D	Analyzed 09/09/13 20:16	Dil Fac
Method: 6020/DOD - Metals (ICP/MS)	- Total Recov Result	verable Qualifier	LOQ		DL	Unit	D	and the second second second second	Dil Fac
Method: 6020/DOD - Metals (ICP/MS) Analyte Aluminum Antimony	- Total Recover Result 60	verable Qualifier	LOQ 60	60	DL 20 0.33	Unit ug/L	D	09/09/13 20:16	Dil Fac
Method: 6020/DOD - Metals (ICP/MS) Analyte Aluminum	- Total Recover Result 60	verable Qualifier U U U Q	60 2.0	60 1.0	DL 20 0.33	Unit ug/L ug/L ug/L	D	09/09/13 20:16 09/09/13 20:16	Dil Fac
Method: 6020/DOD - Metals (ICP/MS) Analyte Aluminum Antimony Beryllium	- Total Recov Result 60 1.0	verable Qualifier U U U Q	60 2.0 1.0	60 1.0 1.0	DL 20 0.33 0.50	Unit ug/L ug/L ug/L	D	09/09/13 20:16 09/09/13 20:16 09/09/13 20:16	Dil Fac
Method: 6020/DOD - Metals (ICP/MS) Analyte Aluminum Antimony Beryllium Cadmium	- Total Recover Result 60 1.0 1.0 1.0	verable Qualifier U U U Q	60 2.0 1.0 2.0	60 1.0 1.0 1.0	DL 20 0.33 0.50 0.40	Unit ug/L ug/L ug/L	D	09/09/13 20:16 09/09/13 20:16 09/09/13 20:16 09/09/13 20:16	Dil Fac
Method: 6020/DOD - Metals (ICP/MS) Analyte Aluminum Antimony Beryllium Cadmium Iron Sodium	- Total Recover Result 60 1.0 1.0 1.0 5300	Verable Qualifier U U U U U U U	60 2.0 1.0 2.0 150	1.0 1.0 1.0 1.0	DL 20 0.33 0.50 0.40	Unit ug/L ug/L ug/L ug/L ug/L	D	09/09/13 20:16 09/09/13 20:16 09/09/13 20:16 09/09/13 20:16 09/09/13 20:16	Dil Fac
Method: 6020/DOD - Metals (ICP/MS) Analyte Aluminum Antimony Beryllium Cadmium Iron	- Total Recov Result 60 1.0 1.0 5300 4400	Verable Qualifier U U U U U U U U	LOQ 60 2.0 1.0 2.0 150 1000	1.0 1.0 1.0 1.0 100 400	DL 20 0.33 0.50 0.40 44	Unit ug/L ug/L ug/L ug/L ug/L ug/L	D	09/09/13 20:16 09/09/13 20:16 09/09/13 20:16 09/09/13 20:16 09/09/13 20:16 09/09/13 20:16	1 1 1
Method: 6020/DOD - Metals (ICP/MS) Analyte Aluminum Antimony Beryllium Cadmium Iron Sodium Thallium	- Total Recov Result 60 1.0 1.0 5300 4400 1.5	Verable Qualifier U U U U U U U U	LOQ 60 2.0 1.0 2.0 150 1000 2.0	1.0 1.0 1.0 1.0 100 400 1.5	DL 20 0.33 0.50 0.40 44 160 0.79	Unit ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	D	09/09/13 20:16 09/09/13 20:16 09/09/13 20:16 09/09/13 20:16 09/09/13 20:16 09/09/13 20:16 09/09/13 20:16	1 1 1 1 1 1 1

Client: Environmental Quality Mgt., Inc.

Project/Site: RVAAP66 (OH)

TestAmerica Job ID: 240-28186-1

Lab Sample ID: 240-28186-9

Matrix: WQ

Client Sample ID: FWGTeam1-Trip
Date Collected: 08/21/13 08:00

Date Received: 08/22/13 07:00

Toluene-d8 (Surr)

Dibromofluoromethane (Surr)

Analyte	Result	Qualifier	1	_OQ	LOD	DL	Unit I	Analyzed	Dil Fac
1,1,1-Trichloroethane	0.25	U		1.0	0.25	0.22	ug/L	08/30/13 00:33	1
1,1,2,2-Tetrachloroethane	0.25	U		1.0	0.25	0.18	ug/L	08/30/13 00:33	1
1,1,2-Trichloroethane	0.50	U		1.0	0.50	0.27	ug/L	08/30/13 00:33	1
1,1-Dichloroethane	0.25	U		1.0	0.25	0.15	ug/L	08/30/13 00:33	1
1,1-Dichloroethene	0.25	U		1.0	0.25	0.19	ug/L	08/30/13 00:33	1
1,2-Dichloroethane	0.25	U		1.0	0.25	0.22	ug/L	08/30/13 00:33	1
1,2-Dichloroethene, Total	0.25	U		2.0	0.25	0.17	ug/L	08/30/13 00:33	1
1,2-Dichloropropane	0.25	U		1.0	0.25	0.18	ug/L	08/30/13 00:33	1
2-Hexanone	0.50	U		10	0.50	0.41	ug/L	08/30/13 00:33	1
Bromochloromethane	0.50	U		1.0	0.50	0.29	ug/L	08/30/13 00:33	1
Acetone	1.1	U		10	1.1	1.1	ug/L	08/30/13 00:33	1
Benzene	0.25	U		1.0	0.25	0.13	ug/L	08/30/13 00:33	1
Bromoform	0.64	U		1.0	0.64	0.64	ug/L	08/30/13 00:33	1
Bromomethane	0.50	U		1.0	0.50	0.41	ug/L	08/30/13 00:33	1
Carbon disulfide	0.25	U		1.0	0.25	0.13	ug/L	08/30/13 00:33	1
Carbon tetrachloride	0.25	U		1.0	0.25	0.13	ug/L	08/30/13 00:33	1
Chlorobenzene	0.25	U		1.0	0.25	0.15	ug/L	08/30/13 00:33	1
Chloroethane	0.50	U		1.0	0.50	0.29	ug/L	08/30/13 00:33	1
Chloroform	0.25	U		1.0	0.25	0.16	ug/L	08/30/13 00:33	1
Chloromethane	0.50	U		1.0	0.50	0.30	ug/L	08/30/13 00:33	1
cis-1,2-Dichloroethene	0.25	U		1.0	0.25	0.17	ug/L	08/30/13 00:33	1
cis-1,3-Dichloropropene	0.25	U		1.0	0.25	0.14	ug/L	08/30/13 00:33	1
Bromodichloromethane	0.25	U		1.0	0.25	0.15	ug/L	08/30/13 00:33	1
Ethylbenzene	0.25	U		1.0	0.25	0.17	ug/L	08/30/13 00:33	1
1,2-Dibromoethane	0.25	U		1.0	0.25	0.24	ug/L	08/30/13 00:33	1
m-Xylene & p-Xylene	0.50	U		2.0	0.50	0.24	ug/L	08/30/13 00:33	1
2-Butanone (MEK)	0.57	U		10	0.57	0.57	ug/L	08/30/13 00:33	1
4-Methyl-2-pentanone (MIBK)	0.50	U		10	0.50	0.32	ug/L	08/30/13 00:33	1
Methylene Chloride	0.47	J		1.0	0.50	0.33	ug/L	08/30/13 00:33	1
o-Xylene	0.25	U		1.0	0.25	0.14	ug/L	08/30/13 00:33	1
Styrene	0.25	U		1.0	0.25	0.11	ug/L	08/30/13 00:33	- 1
Tetrachloroethene	0.50	U		1.0	0.50	0.29	ug/L	08/30/13 00:33	1
Toluene	0.25	U		1.0	0.25	0.13	ug/L	08/30/13 00:33	3
trans-1,2-Dichloroethene	0.25	U		1.0	0.25	0.19	ug/L	08/30/13 00:33	1
trans-1,3-Dichloropropene	0.25	U		1.0	0.25	0.19	ug/L	08/30/13 00:33	1
Trichloroethene	0.25	U		1.0	0.25	0.17	ug/L	08/30/13 00:33	1
Vinyl chloride	0.25	U		1.0	0.25	0.22	ug/L	08/30/13 00:33	1
Xylenes, Total	0.25	U		2.0	0.25		ug/L	08/30/13 00:33	1
Dibromochloromethane	0.25	U		1.0	0.25	0.18	ug/L	08/30/13 00:33	1
Surrogate	%Recovery Qu	ualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	95		70 - 120					08/30/13 00:33	1
4-Bromofluorobenzene (Surr)	90		75 - 120					08/30/13 00:33	1

TestAmerica Canton

08/30/13 00:33

08/30/13 00:33

85 - 120

85 - 115

95

95

Client: Environmental Quality Mgt., Inc.

Project/Site: RVAAP66 (OH)

Nitroguanidine

TestAmerica Job ID: 240-28186-1

Lab Sample ID: 240-28186-10

Matrix: Water

Date Collected: 08/21/13 14:05

Client Sample ID: FWGLL1mw-084C-0355-GW

Analyte	le Organic Compounds Result Qualit	ier LOQ	LOD	DI	Unit D	Analyzed	Dil Fac
is(2-ethylhexyl) phthalate	1.8 J	2.0	0.49	0.22	ug/L	09/06/13 16:38	1
utyl benzyl phthalate	0.49 U	2.0	0.49	0.25	ug/L	09/06/13 16:38	1
iethyl phthalate	0.98 U	2.0	0.98	0.59	ug/L	09/06/13 16:38	1
imethyl phthalate	0.49 U	2.0	0.49	0.28	ug/L	09/06/13 16:38	1
i-n-butyl phthalate	1.1 J	2.0	0.98	0.66	ug/L	09/06/13 16:38	1
i-n-octyl phthalate	0.49 U	2.0	0.49	0.23	ug/L	09/06/13 16:38	1
urrogate	%Recovery Qualifier	Limits			Prepared	Analyzed	Dil Fac
Fluorobiphenyl (Surr)	79	50 - 110			08/23/13 09:12	09/06/13 16:38	1
Fluorophenol (Surr)	85	20 - 110			08/23/13 09:12	09/06/13 16:38	1
itrobenzene-d5 (Surr)	82	40 - 110			08/23/13 09:12	09/06/13 16:38	7
henol-d5 (Surr)	88	10 - 115			08/23/13 09:12	09/06/13 16:38	1
erphenyl-d14 (Surr)	110	50 - 135			08/23/13 09:12	09/06/13 16:38	1
4,6-Tribromophenol (Surr)	93	40 - 125			08/23/13 09:12	09/06/13 16;38	1
lethod: 8081/DOD - Organochlo	rine Pesticides (GC)						
nalyte	Result Qualit	ier LOQ	LOD	DL	Unit D	Analyzed	Dil Fac
4'-DDD	0.020 U	0.049	0.020	0.0094	ug/L	08/30/13 00:12	1
4'-DDE	0.020 U	0.049	0.020	0.0095	ug/L	08/30/13 00:12	1
4'-DDT	0.020 U	0.049	0.020	0.016	ug/L	08/30/13 00:12	1
drin	0.020 U	0.029	0.020	0.0080	ug/L	08/30/13 00:12	- 1
pha-BHC	0.020 U	0.029	0.020	0.0069	ug/L	08/30/13 00:12	1
pha-Chlordane	0.020 U	0.049	0.020	0.014	ug/L	08/30/13 00:12	1
eta-BHC	0.069 J M	0.049	0.020	0.0082	ug/L	08/30/13 00:12	1
elta-BHC	0.020 U	0.049	0.020	0.0085	ug/L	08/30/13 00:12	1
eldrin	0.020 U	0.029	0.020	0.0074	ug/L	08/30/13 00:12	1
ndosulfan I	0.020 U	0.049	0.020	0.013	ug/L	08/30/13 00:12	1
ndosulfan II	0.020 U	0.049	0.020	0.012	ug/L	08/30/13 00:12	1
ndosulfan sulfate	0.020 U	0.049	0.020	0.011	ug/L	08/30/13 00:12	1
ndrin	0.020 U	0.049	0.020	0.011	ug/L	08/30/13 00:12	1
ndrin aldehyde	0.020 U	0.049	0.020	0.011	ug/L	08/30/13 00:12	1
ndrin ketone	0.020 U	0.049	0.020	0.0076	ug/L	08/30/13 00:12	1
mma-BHC (Lindane)	0.020 U	0.049	0.020	0.0063	ug/L	08/30/13 00:12	1
mma-Chlordane	0.020 U	0.049	0.020	0.012	ug/L	08/30/13 00:12	1
eptachlor	0.020 U	0.029	0.020	0.0078	ug/L	08/30/13 00:12	1
eptachlor epoxide	0.020 U	0.029	0.020	0.0070	ug/L	08/30/13 00:12	1
ethoxychlor	0.049 U	0.098	0.049	0.031		08/30/13 00:12	1
oxaphene	0.78 U	2.0	0.78	0.31	ug/L	08/30/13 00:12	1
urrogate	%Recovery Qualifier	Limits			Prepared	Analyzed	Dil Fac
CB Decachlorobiphenyl	76	30 - 135			08/23/13 09:00	08/30/13 00:12	1
CB Decachlorobiphenyl	70	30 - 135			08/23/13 09:00	08/30/13 00:12	1
etrachloro-m-xylene	97	25 - 140			08/23/13 09:00	08/30/13 00:12	1
etrachloro-m-xylene	69	25 - 140			08/23/13 09:00	08/30/13 00:12	1
	and the same of th						
Method: 8330 Modified - Nitrogua	anidine (HPLC)						

TestAmerica Canton

08/27/13 15:43

20

6.0

2.4 ug/L

6.0 U

3

5

ì

Œ

14

15

Client: Environmental Quality Mgt., Inc.

Project/Site: RVAAP66 (OH)

TestAmerica Job ID: 240-28186-1

Lab Sample ID: 240-28186-10

Matrix: Water

Client Sample ID: FWGLL1mw-084C-0355-GW

Date Collected: 08/21/13 14:05 Date Received: 08/22/13 07:00

Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D Analyzed	Dil Fac
1,3,5-Trinitrobenzene	2.4		0.16	0.052	0.032	ug/L	08/30/13 18:59	1
1,3-Dinitrobenzene	0.35		0.16	0.10	0.052	ug/L	08/30/13 18:59	1
2,4,6-Trinitrotoluene	12		0.16	0.10	0.052	ug/L	08/30/13 18:59	1
2,4-Dinitrotoluene	1.4		0.13	0.10	0.052	ug/L	08/30/13 18:59	1
2,6-Dinitrotoluene	0.95		0.13	0.10	0.052	ug/L	08/30/13 18:59	1
2-Amino-4,6-dinitrotoluene	13		0.16	0.10	0.016	ug/L	08/30/13 18:59	1
2-Nitrotoluene	0.10	U	0.52	0.10	0.091	ug/L	09/09/13 20:35	1
3-Nitrotoluene	0.10	U	0.52	0.10	0.059	ug/L	09/09/13 20:35	1
4-Nitrotoluene	0.10	U	0.52	0.10	0.091	ug/L	09/09/13 20:35	1
HMX	0.97		0.16	0.052	0.037	ug/L	08/30/13 18:59	1
RDX	2.1		0.16	0.052	0.037	ug/L	08/30/13 18:59	1
Nitrobenzene	0.10	U	0.16	0.10	0.052	ug/L	08/30/13 18:59	1
Tetryl	0.10	U	0.16	0.10	0.052	ug/L	08/30/13 18:59	1
Nitroglycerin	0.52	U	0.67	0.52	0.34	ug/L	08/30/13 18:59	1
PETN	0.52	U	0.67	0.52	0.31	ug/L	08/30/13 18:59	1
Surrogate	%Recovery Qu	ualifier I	imits			Prepared	Analyzed	Dil Fac

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
3,4-Dinitrotoluene	432	Q	79 - 111	08/27/13 07:26	08/30/13 18:59	1
3,4-Dinitrotoluene	93		79 - 111	08/27/13 07:26	09/09/13 20:35	1

Analyte	Res	ult Qualifier	LOQ	LOD	DL	Unit I	Analyzed	Dil Fac
4-Amino-2,6-dinitrotoluene	1	36	0.47	0.31	0.16	ug/L	09/03/13 20:52	3
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
3,4-Dinitrotoluene	435	Q	79 - 111			08/27/13 07:26	09/03/13 20:52	3
3.4-Dinitrotoluene	92		79 - 111			08/27/13 07:26	09/09/13 19:30	3

General Chemistry Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
Nitrocellulose	1.0	U	2.0	1.0	0.48	mg/L		09/11/13 16:15	1

Client: Environmental Quality Mgt., Inc.

Project/Site: RVAAP66 (OH)

TestAmerica Job ID: 240-28186-1

Lab Sample ID: 240-28186-11

Matrix: Water

Client Sample ID: FWGLL1mw-084C-0355-GF

Date Collected: 08/21/13 14:05 Date Received: 08/22/13 07:00

Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
Arsenic	10	Ü	10	10	3.3	ug/L		09/09/13 16:02	1
Chromium	4.0	U	7.0	4.0	1.4	ug/L		09/09/13 16:02	1
Cobalt	9.0		7.0	4.0	1.5	ug/L		09/09/13 16:02	1
ead	5.0	U	10	5.0	1.7	ug/L		09/09/13 16:02	1
Selenium	4.9	J	15	10	4.0	ug/L		09/09/13 16:02	1
Silver	5.0	U	7.0	5.0	1.7	ug/L		09/09/13 16:02	1
/anadium	4.0	U	7.0	4.0	1.3	ug/L		09/09/13 16:02	1
Barium	18	J	200	5.0	2.8	ug/L		09/09/13 16:02	1
Calcium	65000		5000	1000	630	ug/L		09/09/13 16:02	1
Copper	9.1	J	25	10	4.4	ug/L		09/09/13 16:02	1
Magnesium	3100	J	5000	300	120	ug/L		09/09/13 16:02	1
Manganese	67		15	5.0	1.8	ug/L		09/09/13 16:02	1
Nickel	18		40	5.0	2.2	ug/L		09/09/13 16:02	-1
VICKEI	10	J	40	5.0	2.2	ugre		00/00/10 10.02	
Potassium	3600		5000	900		ug/L		09/09/13 16:02	1
Potassium Method: 6020/DOD - Metals (ICP	3600 P/MS) - Total Recov	J verable	5000	900	300	ug/L		09/09/13 16:02	
Potassium	3600 P/MS) - Total Recov Result	J verable Qualifier	5000 LOQ	900 LOD	300 DL	ug/L Unit	D	09/09/13 16:02 Analyzed	1 Dil Fac
Potassium Method: 6020/DOD - Metals (ICP Analyte Aluminum	3600 P/MS) - Total Recov Result 1300	yerable Qualifier B	5000 LOQ 60	900 LOD 60	300 DL 20	ug/L Unit ug/L	D	09/09/13 16:02 Analyzed 09/09/13 20:24	
Potassium Method: 6020/DOD - Metals (ICP	3600 P/MS) - Total Recover Result 1300 1.0	verable Qualifier B	5000 LOQ 60 2.0	900 LOD 60 1.0	300 DL 20 0.33	ug/L Unit	D	09/09/13 16:02 Analyzed 09/09/13 20:24 09/09/13 20:24	
Potassium Method: 6020/DOD - Metals (ICP Analyte Aluminum	3600 P/MS) - Total Recover Result 1300 1.0	yerable Qualifier B	5000 LOQ 60 2.0 1.0	900 LOD 60 1.0	300 DL 20 0.33 0.50	ug/L Unit ug/L ug/L ug/L	D	O9/09/13 16:02 Analyzed 09/09/13 20:24 09/09/13 20:24 09/09/13 20:24	
Potassium Method: 6020/DOD - Metals (ICP Analyte Aluminum Antimony	3600 P/MS) - Total Recover Result 1300 1.0	verable Qualifier B U	5000 LOQ 60 2.0	900 LOD 60 1.0	300 DL 20 0.33	ug/L Unit ug/L ug/L ug/L	D	09/09/13 16:02 Analyzed 09/09/13 20:24 09/09/13 20:24	
Potassium Method: 6020/DOD - Metals (ICP Analyte Aluminum Antimony Beryllium	3600 P/MS) - Total Recov Result 1300 1.0	yerable Qualifier B U U Q	5000 LOQ 60 2.0 1.0	900 LOD 60 1.0	300 DL 20 0.33 0.50	ug/L Unit ug/L ug/L ug/L	D	O9/09/13 16:02 Analyzed 09/09/13 20:24 09/09/13 20:24 09/09/13 20:24	
Potassium Method: 6020/DOD - Metals (ICP Analyte Aluminum Antimony Beryllium Cadmium	3600 P/MS) - Total Recov Result 1300 1.0 1.0	yerable Qualifier B U U Q	5000 LOQ 60 2.0 1.0 2.0	900 LOD 60 1.0 1.0 1.0	20 0.33 0.50 0.40	ug/L ug/L ug/L ug/L ug/L	D -	Analyzed 09/09/13 20:24 09/09/13 20:24 09/09/13 20:24 09/09/13 20:24	
Potassium Method: 6020/DOD - Metals (ICP Analyte Aluminum Antimony Beryllium Cadmium ron	3600 P/MS) - Total Recov Result 1300 1.0 1.4 50	rerable Qualifier B U U Q J	5000 LOQ 60 2.0 1.0 2.0 150	900 60 1.0 1.0 1.0	300 DL 20 0.33 0.50 0.40 44 160	ug/L ug/L ug/L ug/L ug/L ug/L	D	Analyzed 09/09/13 20:24 09/09/13 20:24 09/09/13 20:24 09/09/13 20:24 09/09/13 20:24	Dil Fac 1 1 1 1 1 1
Potassium Method: 6020/DOD - Metals (ICP Analyte Aluminum Antimony Beryllium Cadmium ron Sodium Challium	3600 P/MS) - Total Recover Result 1300 1.0 1.4 50 5700	rerable Qualifier B U U Q J	5000 LOQ 60 2.0 1.0 2.0 150 1000	900 60 1.0 1.0 1.0 100 400	300 DL 20 0.33 0.50 0.40 44 160	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	D	Analyzed 09/09/13 20:24 09/09/13 20:24 09/09/13 20:24 09/09/13 20:24 09/09/13 20:24 09/09/13 20:24	Dil Fac
Potassium Method: 6020/DOD - Metals (ICP Analyte Aluminum Antimony Beryllium Cadmium ron Sodium	3600 P/MS) - Total Recover Result 1300 1.0 1.4 50 5700 1.5 58	rerable Qualifier B U U Q J	5000 LOQ 60 2.0 1.0 2.0 150 1000 2.0	900 60 1.0 1.0 1.0 100 400 1.5	300 DL 20 0.33 0.50 0.40 44 160 0.79 27	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	<u>D</u>	Analyzed 09/09/13 20:24 09/09/13 20:24 09/09/13 20:24 09/09/13 20:24 09/09/13 20:24 09/09/13 20:24 09/09/13 20:24	Dil Fac 1 1 1 1 1 1 1 1 1 1 1 1

Client: Environmental Quality Mgt., Inc.

Project/Site: RVAAP66 (OH)

TestAmerica Job ID: 240-28186-1

Lab Sample ID: 240-28186-12

D Sample 1D. 240-20100-12

Matrix: Water

Client Sample	ID: FWGLI	L1mw-083C-0354-GW	
---------------	-----------	-------------------	--

Date Collected: 08/21/13 15:15 Date Received: 08/22/13 07:00

Nitroguanidine

Method: 8270C/DoD - Semivo Analyte		ounds (GO	C/MS)	LOD	DI	Unit	D	Analyzed	Dil Fac
	1.1		1.9	0.48	0.21	ug/L		09/06/13 17:03	Dii Fac
Bis(2-ethylhexyl) phthalate Butyl benzyl phthalate	0.48		1.9	0.48	0.25				4
	0.95					ug/L		09/06/13 17:03	
Diethyl phthalate			1.9	0.95	0.57	a towards		09/06/13 17:03	
Dimethyl phthalate	0.48		1.9	0.48	0.28	ug/L		09/06/13 17:03	1
Di-n-butyl phthalate	1.6		1.9	0.95	0.64	ug/L		09/06/13 17:03	1
Di-n-octyl phthalate	0.48	U	1.9	0.48	0.22	ug/L		09/06/13 17:03	
Surrogate	%Recovery Qu	ıalifier	Limits			Prep	pared	Analyzed	Dil Fa
2-Fluorobiphenyl (Surr)	82		50 - 110			08/23/	13 09:12	09/06/13 17:03	1
2-Fluorophenol (Surr)	85		20 - 110			08/23/	13 09:12	09/06/13 17:03	1
Nitrobenzene-d5 (Surr)	85		40 - 110			08/23/	13 09:12	09/06/13 17:03	9
Phenol-d5 (Surr)	88		10 - 115			08/23/	13 09:12	09/06/13 17:03	
Terphenyl-d14 (Surr)	111		50 - 135			08/23/	13 09:12	09/06/13 17:03	
2,4,6-Tribromophenol (Surr)	98		40 - 125			08/23/	13 09:12	09/06/13 17:03	4
		-60							
Method: 8081/DOD - Organoc Analyte		Qualifier	LOQ	LOD	DI	Unit	D	Analyzed	Dil Fac
4,4'-DDD	0.019		0.048	0.019	0.0091			08/30/13 00:33	51114
4.4'-DDE	0.019		0.048	0.019	0.0092			08/30/13 00:33	
4,4'-DDT	0.019		0.048	0.019	0.015			08/30/13 00:33	
Aldrin	0.019		0.029	0.019	0.0078			08/30/13 00:33	
alpha-BHC	0.019		0.029	0.019	0.0067			08/30/13 00:33	
alpha-Chlordane	0.019		0.048	0.019	0.013			08/30/13 00:33	
beta-BHC	0.019		0.048	0.019	0.0080			08/30/13 00:33	
delta-BHC	0.019		0.048	0.019	0.0083			08/30/13 00:33	
Dieldrin	0.019		0.029	0.019		1 20		08/30/13 00:33	
Endosulfan I					0.0071	ug/L			
	0.019		0.048	0.019	0.012			08/30/13 00:33	
Endosulfan II Endosulfan sulfate	0.014		0.048	0.019	0.011			08/30/13 00:33	
	0.019		0.048	0.019	0.010			08/30/13 00:33	
Endrin	0.019		0.048	0.019	0.010			08/30/13 00:33	
Endrin aldehyde	0.019		0.048	0.019	0.010			08/30/13 00:33	
Endrin ketone	0.019		0.048	0.019	0.0074			08/30/13 00:33	
gamma-BHC (Lindane)	0.019		0.048	0.019	0.0061			08/30/13 00:33	
gamma-Chlordane	0.019		0.048	0.019	0.011			08/30/13 00:33	
Heptachlor	0.019		0.029	0.019	0.0076			08/30/13 00:33	
Heptachlor epoxide	0.019		0.029	0.019	0.0068			08/30/13 00:33	1
Methoxychlor	0.048		0.095	0.048	0.030			08/30/13 00:33	1
Toxaphene	0.76	U	1.9	0.76	0.30	ug/L		08/30/13 00:33	
Surrogate	%Recovery Qu	ıalifier	Limits			Prep	pared	Analyzed	Dil Fa
DCB Decachlorobiphenyl	85		30 - 135			08/23/	13 09:00	08/30/13 00:33	1
DCB Decachlorobiphenyl	84		30 - 135			08/23/	13 09:00	08/30/13 00:33	3
Tetrachloro-m-xylene	93		25 - 140			08/23/	13 09:00	08/30/13 00:33	
Tetrachloro-m-xylene	76		25 - 140			08/23/	13 09:00	08/30/13 00:33	19
Method: 8330 Modified - Nitro	The state of the s								
Analyte	Result	Qualifier	LOO	LOD	DL	Unit	D	Analyzed	Dil Fa

TestAmerica Canton

08/27/13 16:00

20

6.0

2.4 ug/L

6.0 U

3

_

13

14

U.S

Client: Environmental Quality Mgt., Inc.

Project/Site: RVAAP66 (OH)

TestAmerica Job ID: 240-28186-1

Lab Sample ID: 240-28186-12

Matrix: Water

Client Sample ID: FWGLL1mw-083C-0354-GW

Date Collected: 08/21/13 15:15 Date Received: 08/22/13 07:00

Nitrocellulose

Analyte	Result	Qualifier	LOQ	LOD	DL	Unit D	Analyzed	Dil Fac
1,3,5-Trinitrobenzene	6.5		0.15	0.051	0.032	ug/L	08/30/13 19:43	1
1,3-Dinitrobenzene	0.28		0.15	0.10	0.051	ug/L	08/30/13 19:43	1
2,4,6-Trinitrotoluene	4.5		0.15	0.10	0.051	ug/L	08/30/13 19:43	1
2,4-Dinitrotoluene	2.9		0.13	0.10	0.051	ug/L	08/30/13 19:43	1
2,6-Dinitrotoluene	1.5		0.13	0.10	0.051	ug/L	08/30/13 19:43	1
2-Amino-4,6-dinitrotoluene	14		0.15	0.10	0.015	ug/L	08/30/13 19:43	1
2-Nitrotoluene	0.10	U	0.51	0.10	0.091	ug/L	08/30/13 19:43	1
3-Nitrotoluene	0.10	U	0.51	0.10	0.059	ug/L	08/30/13 19:43	1
4-Nitrotoluene	0.10	U	0.51	0.10	0.091	ug/L	08/30/13 19:43	1
HMX	0.051	U	0.15	0.051	0.037	ug/L	09/10/13 00:58	1
RDX	0.051	U	0.15	0.051	0.037	ug/L	09/10/13 00:58	-1
Nitrobenzene	0.10	U	0.15	0.10	0.051	ug/L	08/30/13 19:43	1
Tetryl	0.10	U	0.15	0.10	0.051	ug/L	08/30/13 19:43	1
Nitroglycerin	0.51	U	0.67	0.51	0.34	ug/L	08/30/13 19:43	- 1
PETN	0.51	U	0.67	0.51	0.31	ug/L	08/30/13 19:43	1
Surrogate	%Recovery Qu	ıalifier	Limits			Prepared	Analyzed	Dil Fac
3,4-Dinitrotoluene	162 Q		79 - 111			08/27/13 07:26	08/30/13 19:43	1
3,4-Dinitrotoluene	99		79 - 111			08/27/13 07:26	09/10/13 00:58	1
Method: 8330A - Nitroaromatic	cs and Nitramines -	DL						
Analyte	Result	Qualifier	LOQ	LOD	DL	Unit D	Analyzed	Dil Fac
4-Amino-2,6-dinitrotoluene	28		0.31	0.21	0.10	ug/L	09/03/13 21:36	2
Surrogate	%Recovery Qu	ıalifier	Limits			Prepared	Analyzed	Dil Fac
3,4-Dinitrotoluene	150 Q		79 - 111			08/27/13 07:26	09/03/13 21:36	2
3,4-Dinitrotoluene	99		79 - 111			08/27/13 07:26	09/09/13 23;52	2
General Chemistry								
Analyte	Result	Qualifier	LOQ	LOD	DL	Unit D	Analyzed	Dil Fac

2.0

1.0

0.48 mg/L

1.0 U

TestAmerica Canton

09/11/13 16:17

Client: Environmental Quality Mgt., Inc.

Project/Site: RVAAP66 (OH)

Lab Sample ID: 240-28186-13

TestAmerica Job ID: 240-28186-1

Matrix: Water

Client Sample ID: FWGLL1mw-083C-0354-GF

Date Collected: 08/21/13 15:15 Date Received: 08/22/13 07:00

Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
Arsenic	10	U	10	10	3.3	ug/L		09/09/13 16:08	1
Chromium	4.0	U	7.0	4.0	1.4	ug/L		09/09/13 16:08	1
Cobalt	7.1		7.0	4.0	1.5	ug/L		09/09/13 16:08	1
Lead	5.0	U	10	5.0	1.7	ug/L		09/09/13 16:08	1
Selenium	10	U	15	10	4.0	ug/L		09/09/13 16:08	1
Silver	5.0	U	7.0	5.0	1.7	ug/L		09/09/13 16:08	1
Vanadium	4.0	U	7.0	4.0	1.3	ug/L		09/09/13 16:08	1
Barium	17	J	200	5.0	2.8	ug/L		09/09/13 16:08	1
Calcium	26000		5000	1000	630	ug/L		09/09/13 16:08	1
Copper	10	U	25	10	4.4	ug/L		09/09/13 16:08	1
Magnesium	5400		5000	300	120	ug/L		09/09/13 16:08	1
Manganese	410		15	5.0	1.8	ug/L		09/09/13 16:08	1
Nickel	27	J	40	5.0	2.2	ug/L		09/09/13 16:08	- 1
Potassium	2800	J	5000	900	300	ug/L		09/09/13 16:08	1
	The second land of the second		5000	900	300	ug/L		09/09/13 16:08	1
Potassium	(ICP/MS) - Total Recov		5000 LOQ	900 LOD		ug/L Unit	D	09/09/13 16:08 Analyzed	Dil Fac
Potassium Method: 6020/DOD - Metals ((ICP/MS) - Total Recov	/erable			DL		D		
Potassium Method: 6020/DOD - Metals (Analyte	(ICP/MS) - Total Recov	/erable Qualifier	LOQ	LOD	DL	Unit ug/L	D	Analyzed	
Potassium Method: 6020/DOD - Metals (Analyte Aluminum	(ICP/MS) - Total Recovered Result	verable Qualifier	LOQ 60	LOD 60	DL 20 0.33 0.50	Unit ug/L ug/L ug/L	D	Analyzed 09/11/13 09:32	
Potassium Method: 6020/DOD - Metals (Analyte Aluminum Antimony	(ICP/MS) - Total Recover Result 640	verable Qualifier U U Q	60 2.0	60 1.0	DL 20 0.33	Unit ug/L ug/L ug/L	D	Analyzed 09/11/13 09:32 09/09/13 21:31	
Potassium Method: 6020/DOD - Metals (Analyte Aluminum Antimony Beryllium	(ICP/MS) - Total Recov Result 640 1.0	verable Qualifier U U Q	60 2.0 1.0	60 1.0 1.0	DL 20 0.33 0.50 0.40	Unit ug/L ug/L ug/L ug/L	D	Analyzed 09/11/13 09:32 09/09/13 21:31 09/09/13 21:31	
Potassium Method: 6020/DOD - Metals (Analyte Aluminum Antimony Beryllium Cadmium	(ICP/MS) - Total Recover Result 640 1.0 1.0 0.51	verable Qualifier U U Q	60 2.0 1.0 2.0	60 1.0 1.0 1.0	DL 20 0.33 0.50 0.40	Unit ug/L ug/L ug/L	D	Analyzed 09/11/13 09:32 09/09/13 21:31 09/09/13 21:31	
Potassium Method: 6020/DOD - Metals (Analyte Aluminum Antimony Beryllium Cadmium	(ICP/MS) - Total Recov Result 640 1.0 1.0 0.51	Verable Qualifier U U Q J	60 2.0 1.0 2.0 150	60 1.0 1.0 1.0	DL 20 0.33 0.50 0.40 44 160	Unit ug/L ug/L ug/L ug/L ug/L	D	Analyzed 09/11/13 09:32 09/09/13 21:31 09/09/13 21:31 09/09/13 21:31	Dil Fac
Potassium Method: 6020/DOD - Metals (Analyte Aluminum Antimony Beryllium Cadmium Iron Sodium	(ICP/MS) - Total Recov Result 640 1.0 1.0 0.51 100 7800	Verable Qualifier U U Q J U	LOQ 60 2.0 1.0 2.0 150 1000	LOD 60 1.0 1.0 1.0 100 400	DL 20 0.33 0.50 0.40 44 160 0.79	Unit ug/L ug/L ug/L ug/L ug/L ug/L	D -	Analyzed 09/11/13 09:32 09/09/13 21:31 09/09/13 21:31 09/09/13 21:31 09/09/13 21:31	Dil Fac
Potassium Method: 6020/DOD - Metals (Analyte Aluminum Antimony Beryllium Cadmium Iron Sodium Thallium	(ICP/MS) - Total Recover Result 640 1.0 1.0 1.0 1.0 7800 1.5 39	Verable Qualifier U U Q J U	LOQ 60 2.0 1.0 2.0 150 1000 2.0	60 1.0 1.0 1.0 100 400 1.5	DL 20 0.33 0.50 0.40 44 160 0.79	Unit ug/L ug/L ug/L ug/L ug/L ug/L ug/L	D	Analyzed 09/11/13 09:32 09/09/13 21:31 09/09/13 21:31 09/09/13 21:31 09/09/13 21:31 09/09/13 21:31	

Client: Environmental Quality Mgt., Inc.

Project/Site: RVAAP66 (OH)

TestAmerica Job ID: 240-28186-1

Lab Sample ID: 240-28186-14

Matrix: WQ

Client Sample ID: FWGTeam2-Trip082013

Date Collected: 08/20/13 17:08 Date Received: 08/22/13 07:00

Tetrachloroethene

Trichloroethene

Vinyl chloride

Xylenes, Total

trans-1,2-Dichloroethene

trans-1,3-Dichloropropene

Dibromochloromethane

Method: 8260B/DoD - Volatile Organic Compounds (GC/MS) Result Qualifier LOQ LOD DL Unit D Analyzed Dil Fac 0.25 U 0.25 1,1,1-Trichloroethane 1.0 0.22 ug/L 08/30/13 00:57 1,1,2,2-Tetrachloroethane 0.25 U 1.0 0.25 0.18 ug/L 08/30/13 00:57 1,1,2-Trichloroethane 0.50 1.0 0.50 0.27 ug/L 08/30/13 00:57 0.25 U 1.0 1,1-Dichloroethane 0.25 0.15 ug/L 08/30/13 00:57 1,1-Dichloroethene 0.25 U 1.0 0.25 0.19 ug/L 08/30/13 00:57 1.2-Dichloroethane 0.25 U 1.0 0.25 0.22 08/30/13 00:57 ug/L 1,2-Dichloroethene, Total 0.25 U 2.0 0.25 0.17 ug/L 08/30/13 00:57 0.25 U 0.25 1,2-Dichloropropane 1.0 08/30/13 00:57 0.18 ug/L 2-Hexanone 0.50 U 10 0.50 0.41 ug/L 08/30/13 00:57 Bromochloromethane 0.50 U 1.0 0.50 0.29 ug/L 08/30/13 00:57 Acetone 1.1 U 10 1.1 1.1 ug/L 08/30/13 00:57 Benzene 0.25 U 1.0 0.25 0.13 ug/L 08/30/13 00:57 0.64 U 0.64 ug/L Bromoform 1.0 0.64 08/30/13 00:57 Bromomethane 0.50 U 1.0 0.50 0.41 ug/L 08/30/13 00:57 Carbon disulfide 0.25 U 0.25 1.0 0.13 ug/L 08/30/13 00:57 0.25 Carbon tetrachloride 0.25 U 1.0 0.13 ug/L 08/30/13 00:57 Chlorobenzene 0.25 11 1.0 0.25 ug/L 08/30/13 00:57 0.15 Chloroethane 0.50 U 1.0 0.50 08/30/13 00:57 0.29 ug/L 0.25 U Chloroform 10 0.25 0.16 ug/L 08/30/13 00:57 Chloromethane 0.50 U 1.0 0.50 0.30 08/30/13 00:57 ug/L 0.25 cis-1,2-Dichloroethene 0.25 U 1.0 ug/L 08/30/13 00:57 0.17 cis-1,3-Dichloropropene 0.25 U 1.0 0.25 ug/L 08/30/13 00:57 0.25 U 1.0 0.25 0.15 08/30/13 00:57 Bromodichloromethane ug/L Ethylbenzene 0.25 U 1.0 0.25 0.17 ug/L 08/30/13 00:57 1,2-Dibromoethane 0.25 U 1.0 0.25 0.24 08/30/13 00:57 ua/L m-Xylene & p-Xylene 0.50 U 2.0 0.50 0.24 ug/L 08/30/13 00:57 2-Butanone (MEK) 0.57 U 10 0.57 0.57 ug/L 08/30/13 00:57 0.50 U 0.50 4-Methyl-2-pentanone (MIBK) 10 0.32 ug/L 08/30/13 00:57 1.0 0.50 08/30/13 00:57 Methylene Chloride 0.69 0.33 ug/L ug/L 0.25 U 1.0 0.25 o-Xylene 0.14 08/30/13 00:57 Styrene 0.25 U 1.0 0.25 0.11 ug/L 08/30/13 00:57

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	96		70 - 120		08/30/13 00:57	1
4-Bromofluorobenzene (Surr)	86		75 - 120		08/30/13 00:57	7
Toluene-d8 (Surr)	95		85 - 120		08/30/13 00:57	1
Dibromofluoromethane (Surr)	88		85 - 115		08/30/13 00:57	1

10

1.0

1.0

1.0

1.0

1.0

2.0

1.0

0.50

0.25

0.25

0.25

0.25

0.25

0.25

0.25

0.29 ug/L

0:13 ug/L

0.19 ug/L

0.19 ug/L

0.17 ug/L

0.22 ug/L

0.14 ug/L

0.18 ug/L

0.50 U

0.25 U

0.25 U

0.25 U

0.25 U

0.25 U

0.25 U

0.25 U

TestAmerica Canton

08/30/13 00:57

08/30/13 00:57

08/30/13 00:57

08/30/13 00:57

08/30/13 00:57

08/30/13 00:57

08/30/13 00:57

08/30/13 00:57

1

Client: Environmental Quality Mgt., Inc.

Project/Site: RVAAP66 (OH)

TestAmerica Job ID: 240-28186-1

Lab Sample ID: 240-28186-15

Matrix: Water

Client Sample ID: FWGDETmw-004C-0344-GW

Date Collected: 08/20/13 17:10 Date Received: 08/22/13 07:00

Method: 8260B/DoD - Volatile Analyte	The second secon	Qualifier	9	LOQ	LOD	DL	Unit I	O Analyzed	Dil Fac
1,1,1-Trichloroethane	0.25	U		1.0	0.25	0.22	ug/L	08/30/13 01:21	1
1,1,2,2-Tetrachloroethane	0.25	U		1.0	0.25	0.18	ug/L	08/30/13 01:21	1
1,1,2-Trichloroethane	0.50	U		1.0	0.50	0.27	ug/L	08/30/13 01:21	1
1,1-Dichloroethane	0.25	U		1.0	0.25	0.15	ug/L	08/30/13 01:21	1
1,1-Dichloroethene	0.25	U		1.0	0.25	0.19	ug/L	08/30/13 01:21	1
1,2-Dichloroethane	0.25	U		1.0	0.25	0.22	ug/L	08/30/13 01:21	1
1,2-Dichloroethene, Total	0.25	U		2.0	0.25	0.17	ug/L	08/30/13 01:21	1
1,2-Dichloropropane	0.25	U		1.0	0.25	0.18	ug/L	08/30/13 01:21	1
2-Hexanone	0.50	U		10	0.50	0.41	ug/L	08/30/13 01:21	1
Bromochloromethane	0.50	U		1.0	0.50	0.29	ug/L	08/30/13 01:21	1
Acetone	1.1	U		10	1.1	1.1	ug/L	08/30/13 01:21	1
Benzene	0.25	U		1.0	0.25	0.13	ug/L	08/30/13 01:21	1
Bromoform	0.64	U		1.0	0.64	0.64	ug/L	08/30/13 01:21	1
Bromomethane	0.50	U		1.0	0.50	0.41	ug/L	08/30/13 01:21	1
Carbon disulfide	0.25	U		1.0	0.25	0.13	ug/L	08/30/13 01:21	1
Carbon tetrachloride	0.25	U		1.0	0.25	0.13	ug/L	08/30/13 01:21	1
Chlorobenzene	0.25	U		1.0	0.25	0.15	ug/L	08/30/13 01:21	1
Chloroethane	0.50	U		1.0	0.50	0.29	ug/L	08/30/13 01:21	1
Chloroform	0.25	U		1.0	0.25	0.16	ug/L	08/30/13 01:21	1
Chloromethane	0.50	U		1.0	0.50	0.30	ug/L	08/30/13 01:21	1
cis-1,2-Dichloroethene	0.25	U		1.0	0.25	0.17	ug/L	08/30/13 01:21	1
cis-1,3-Dichloropropene	0.25	U		1.0	0.25	0.14	ug/L	08/30/13 01:21	1
Bromodichloromethane	0.25	U		1.0	0.25	0.15	ug/L	08/30/13 01:21	1
Ethylbenzene	0.25	U		1.0	0.25	0.17	ug/L	08/30/13 01:21	1
1,2-Dibromoethane	0.25	Ü		1.0	0.25	0.24	ug/L	08/30/13 01:21	1
m-Xylene & p-Xylene	0.50	U		2.0	0.50	0.24	ug/L	08/30/13 01:21	1
2-Butanone (MEK)	0.57	U		10	0.57	0.57	ug/L	08/30/13 01:21	1
4-Methyl-2-pentanone (MIBK)	0.50	U		10	0.50	0.32	ug/L	08/30/13 01:21	1
Methylene Chloride	0.50	U		1.0	0.50	0.33	ug/L	08/30/13 01:21	1
o-Xylene	0.25	U		1.0	0.25	0.14	ug/L	08/30/13 01:21	1
Styrene	0.25	U		1.0	0.25	0.11	ug/L	08/30/13 01:21	1
Tetrachloroethene	0.50	U		1.0	0.50	0.29	ug/L	08/30/13 01:21	1
Toluene	0.25	U		1.0	0.25	0.13	ug/L	08/30/13 01:21	1
trans-1,2-Dichloroethene	0.25	U		1.0	0.25	0.19	ug/L	08/30/13 01:21	1
trans-1,3-Dichloropropene	0.25	U		1.0	0.25	0.19	ug/L	08/30/13 01:21	1
Trichloroethene	0.25	U		1.0	0.25	0.17	ug/L	08/30/13 01:21	1
Vinyl chloride	0.25	U		1.0	0.25	0.22	ug/L	08/30/13 01:21	1
Xylenes, Total	0.25	U		2.0	0.25	0.14	ug/L	08/30/13 01:21	-1
Dibromochloromethane	0.25	U		1.0	0.25	0.18	ug/L	08/30/13 01:21	1
Surrogate	%Recovery Qu	alifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	93		70 - 120					08/30/13 01:21	1
f December 10 cm	0.7		75 400					00/00/40 04:04	

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	93		70 - 120		08/30/13 01:21	1
4-Bromofluorobenzene (Surr)	87		75 - 120		08/30/13 01:21	1
Toluene-d8 (Surr)	93		85 - 120		08/30/13 01:21	1
Dibromofluoromethane (Surr)	97		85 - 115		08/30/13 01:21	1

Method: 8270C/DoD - Semivolatile	Organic Compounds (GC/MS)	/MS)
A	D (1 D 175	

Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
Acenaphthene	0.099	U	0.20	0.099	0.044	ug/L		09/06/13 18:41	1
Acenaphthylene	0.099	U	0.20	0.099	0.048	ug/L		09/06/13 18:41	- 1

TestAmerica Canton

Page 45 of 196

9/24/2013

3

4

Ē

ŏ

i

13

14

H-

Client: Environmental Quality Mgt., Inc.

Project/Site: RVAAP66 (OH)

TestAmerica Job ID: 240-28186-1

Lab Sample ID: 240-28186-15

Client Sample ID: FWGDETmw-004C-0344-GW

Date Collected: 08/20/13 17:10 Date Received: 08/22/13 07:00 Matrix: Water

Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil F
Anthracene	0.099	U	0.20	0.099	0.087	ug/L		09/06/13 18:41	
Benzo[a]anthracene	0.099	U	0.20	0.099	0.029	ug/L		09/06/13 18:41	
Benzo[a]pyrene	0.099	U	0.20	0.099	0.051	ug/L		09/06/13 18:41	
Benzo[b]fluoranthene	0.099	U	0.20	0.099	0.039	ug/L		09/06/13 18:41	
Benzo[g,h,i]perylene	0.099	U	0.20	0.099	0.046	ug/L		09/06/13 18:41	
Benzoic acid	20	U	25	20	9.9	ug/L		09/06/13 18:41	
Benzo[k]fluoranthene	0.099	U	0.20	0.099	0.044	ug/L		09/06/13 18:41	
Benzyl alcohol	0.50	U	5.0	0.50	0.38	ug/L		09/06/13 18:41	
Bis(2-chloroethoxy)methane	0.50	U	0.99	0.50	0.32	ug/L		09/06/13 18:41	
Bis(2-chloroethyl)ether	0.099	U	0.99	0.099	0.099	ug/L		09/06/13 18:41	
Bis(2-ethylhexyl) phthalate	1.4	J	2.0	0.50	0.22	ug/L		09/06/13 18:41	
-Bromophenyl phenyl ether	0.50	U	2.0	0.50	0.22	ug/L		09/06/13 18:41	
Butyl benzyl phthalate	0.50	U	2.0	0.50	0.26	ug/L		09/06/13 18:41	
Carbazole	0.50	U	0.99	0.50	0.28	ug/L		09/06/13 18:41	
-Chloroaniline	0.50	U	2.0	0.50	0.21	ug/L		09/06/13 18:41	
-Chloro-3-methylphenol	0.50	U	2.0	0.50	0.21	ug/L		09/06/13 18:41	
2-Chloronaphthalene	0.50	U	0.99	0.50	0.099	ug/L		09/06/13 18:41	
2-Chlorophenol	0.50	U	0.99	0.50	0.29	ug/L		09/06/13 18:41	
-Chlorophenyl phenyl ether	0.50	U	2.0	0.50	0.30	ug/L		09/06/13 18:41	
Chrysene	0.099	U	0.20	0.099	0.050	ug/L		09/06/13 18:41	
Dibenz(a,h)anthracene	0.099	U	0.20	0.099	0.044	ug/L		09/06/13 18:41	
Dibenzofuran	0.099		0.99	0.099	0.020	ug/L		09/06/13 18:41	
,2-Dichlorobenzene	0.50		0.99	0.50	0.29	ug/L		09/06/13 18:41	
,3-Dichlorobenzene	0.50		0.99	0.50	0.23	ug/L		09/06/13 18:41	
,4-Dichlorobenzene	0.50		0.99	0.50	0.34	ug/L		09/06/13 18:41	
3,3'-Dichlorobenzidine	0.99		5.0	0.99	0.37	ug/L		09/06/13 18:41	
2,4-Dichlorophenol	0.50		2.0	0.50	0.19	ug/L		09/06/13 18:41	
Diethyl phthalate	0.99		2.0	0.99	0.59	ug/L		09/06/13 18:41	
2,4-Dimethylphenol	0.50		2.0	0.50		ug/L		09/06/13 18:41	
Dimethyl phthalate	0.50		2.0	0.50	0.29	ug/L		09/06/13 18:41	
Di-n-butyl phthalate	0.85		2.0	0.99		ug/L		09/06/13 18:41	
I,6-Dinitro-2-methylphenol	4.0		5.0	4.0		ug/L		09/06/13 18:41	
2,4-Dinitrophenol	0.99		5.0	0.99		ug/L		09/06/13 18:41	
Di-n-octyl phthalate	0.50		2.0	0.50	0.23	ug/L		09/06/13 18:41	
Fluoranthene	0.099		0.20	0.099	0.044			09/06/13 18:41	
Fluorene	0.099							09/06/13 18:41	
Hexachlorobenzene	0.099		0.20	0.099	0.040			09/06/13 18:41	
Hexachlorobutadiene	0.50		0.20	0.50	0.084	ug/L		09/06/13 18:41	
Hexachlorocyclopentadiene	0.50		9.9					09/06/13 18:41	
				0.50		ug/L			
dexachloroethane	0.50		0.99	0.50	0.19	ug/L		09/06/13 18:41 09/06/13 18:41	
ndeno[1,2,3-cd]pyrene						3.20			
sophorone	0.50		0.99	0.50		ug/L		09/06/13 18:41	
-Methylnaphthalene	0.099		0.20	0.099	0.090	7		09/06/13 18:41	
2-Methylphenol	0.50		0.99	0.50		ug/L		09/06/13 18:41	
3 & 4 Methylphenol	0.99		2.0	0.99		ug/L		09/06/13 18:41	
Naphthalene	0.099		0.20	0.099	0.062			09/06/13 18:41	
2-Nitroaniline	0.50		2.0	0.50		ug/L		09/06/13 18:41	
3-Nitroaniline 4-Nitroaniline	0.50		2.0	0.50		ug/L ug/L		09/06/13 18:41 09/06/13 18:41	

TestAmerica Canton

3

5

7

0

13

14

U.S.

Client: Environmental Quality Mgt., Inc.

Project/Site: RVAAP66 (OH)

TestAmerica Job ID: 240-28186-1

Lab Sample ID: 240-28186-15

Matrix: Water

Client Sample ID: FWGDETmw-004C-0344-GW

Date Collected: 08/20/13 17:10 Date Received: 08/22/13 07:00

Analyte	Result	Qualifier	LOQ	LOD	DL	Unit D	Analyzed	Dil Fac
2-Nitrophenol	0.50	U	2.0	0.50	0.28	ug/L	09/06/13 18:41	1
4-Nitrophenol	4.0	U	5.0	4.0	0.29	ug/L	09/06/13 18:41	1
N-Nitrosodi-n-propylamine	0.50	U	0.99	0.50	0.24	ug/L	09/06/13 18:41	1
N-Nitrosodiphenylamine	0.50	U	0.99	0.50	0.31	ug/L	09/06/13 18:41	1
2,2'-oxybis[1-chloropropane]	0.50	U	0.99	0.50	0.40	ug/L	09/06/13 18:41	1
Pentachlorophenol	0.99	U	5.0	0.99	0.27	ug/L	09/06/13 18:41	1
Phenanthrene	0.099	U	0.20	0.099	0.061	ug/L	09/06/13 18:41	1
Phenol	0.99	U	0.99	0.99	0.59	ug/L	09/06/13 18:41	1
Pyrene	0.099	U	0.20	0.099	0.042	ug/L	09/06/13 18:41	1
1,2,4-Trichlorobenzene	0.50	U	0.99	0.50	0.28	ug/L	09/06/13 18:41	1
2,4,5-Trichlorophenol	0.50	U	5.0	0.50	0.30	ug/L	09/06/13 18:41	1
2,4,6-Trichlorophenol	0.50	U	5.0	0.50	0.24	ug/L	09/06/13 18:41	1
Surrogate	%Recovery Qu	alifier	Limits			Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl (Surr)	81		50 - 110			08/23/13 09:12	09/06/13 18:41	1
2-Fluorophenol (Surr)	85		20 - 110			08/23/13 09:12	09/06/13 18:41	1
Nitrobenzene-d5 (Surr)	84		40 - 110			08/23/13 09:12	09/06/13 18:41	1
Phenol-d5 (Surr)	88		10 - 115			08/23/13 09:12	09/06/13 18:41	1
Terphenyl-d14 (Surr)	111		50 - 135			08/23/13 09:12	09/06/13 18:41	1
2,4,6-Tribromophenol (Surr)	87		40 - 125			08/23/13 09:12	09/06/13 18:41	1

Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
4,4'-DDD	0.020	U	0.051	0.020	0.0097	ug/L		08/30/13 00:53	1
4,4'-DDE	0.020	U	0.051	0.020	0.0098	ug/L		08/30/13 00:53	- 1
4,4'-DDT	0.020	U	0.051	0.020	0.016	ug/L		08/30/13 00:53	1
Aldrin	0.020	U	0.030	0.020	0.0083	ug/L		08/30/13 00:53	1
alpha-BHC	0.020	U	0.030	0.020	0.0071	ug/L		08/30/13 00:53	1
alpha-Chlordane	0.020	U	0.051	0.020	0.014	ug/L		08/30/13 00:53	1
oeta-BHC	0.020	U	0.051	0.020	0.0085	ug/L		08/30/13 00:53	1
delta-BHC	0.020	U	0.051	0.020	0.0088	ug/L		08/30/13 00:53	1
Dieldrin	0.020	U	0.030	0.020	0.0076	ug/L		08/30/13 00:53	1
Endosulfan I	0.020	U	0.051	0.020	0.013	ug/L		08/30/13 00:53	1
Endosulfan II	0.020	U	0.051	0.020	0.012	ug/L		08/30/13 00:53	. 1
Endosulfan sulfate	0.020	U	0.051	0.020	0.011	ug/L		08/30/13 00:53	1
Endrin	0.020	U	0.051	0.020	0.011	ug/L		08/30/13 00:53	1
Endrin aldehyde	0.020	U	0.051	0.020	0.011	ug/L		08/30/13 00:53	1
Endrin ketone	0.020	U	0.051	0.020	0.0079	ug/L		08/30/13 00:53	1
gamma-BHC (Lindane)	0.020	U	0.051	0.020	0.0065	ug/L		08/30/13 00:53	9
gamma-Chlordane	0.020	U	0.051	0.020	0.012	ug/L		08/30/13 00:53	1
Heptachlor	0.020	U	0.030	0.020	0.0081	ug/L		08/30/13 00:53	. 1
Heptachlor epoxide	0.020	U	0.030	0.020	0.0072	ug/L		08/30/13 00:53	1
Methoxychlor	0.051	U	0.10	0.051	0.032	ug/L		08/30/13 00:53	-1
Toxaphene	0.81	U	2.0	0.81	0.32	ug/L		08/30/13 00:53	1

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
DCB Decachlorobiphenyl	63		30 - 135	08/23/13 09:00	08/30/13 00:53	1
DCB Decachlorobiphenyl	59		30 - 135	08/23/13 09:00	08/30/13 00:53	1
Tetrachloro-m-xylene	70		25 - 140	08/23/13 09:00	08/30/13 00:53	7
Tetrachloro-m-xylene	77		25 - 140	08/23/13 09:00	08/30/13 00:53	7.

TestAmerica Canton

Page 47 of 196

9/24/2013

3

5

77

9

13

14

ll:

Client: Environmental Quality Mgt., Inc.

Client Sample ID: FWGDETmw-004C-0344-GW

Project/Site: RVAAP66 (OH)

Date Collected: 08/20/13 17:10

Date Received: 08/22/13 07:00

TestAmerica Job ID: 240-28186-1

Lab Sample ID: 240-28186-15

D Sample 1D. 240-20100-15

Matrix: Water

Analyte	Result	Qualifier	LOQ	LOD	DL	Unit D	Analyzed	Dil Fac
Aroclor-1016	0.20	U	0.51	0.20	0.17	ug/L	08/28/13 21:57	1
Aroclor-1221	0.20	U	0.51	0.20	0.13	ug/L	08/28/13 21:57	1
Aroclor-1232	0.20	U	0.51	0.20	0.16	ug/L	08/28/13 21:57	1
Aroclor-1242	0.40	U	0.51	0.40	0.22	ug/L	08/28/13 21:57	1
Aroclor-1248	0.20	U	0.51	0.20	0.10	ug/L	08/28/13 21:57	1
Aroclor-1254	0.20	U	0.51	0.20	0.16	ug/L	08/28/13 21:57	1
Aroclor-1260	0.20	U	0.51	0.20	0.17	ug/L	08/28/13 21:57	1
Surrogate	%Recovery Qu	ıalifier	Limits			Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	63		40 - 140			08/23/13 09:07	08/28/13 21:57	1

Surrogate	%Recovery Qua	alifier Limits	Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	63	40 - 140	08/23/13 09:07	08/28/13 21:57	1
Tetrachloro-m-xylene	67	40 - 140	08/23/13 09:07	08/28/13 21:57	1
DCB Decachlorobiphenyl	47	40 - 135	08/23/13 09:07	08/28/13 21:57	1
DCB Decachlorobiphenyl	41	40 - 135	08/23/13 09:07	08/28/13 21:57	1

Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
Nitroguanidine	6.0	U	20	6.0	2.4	ug/L		08/27/13 16:36	1

Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
1,3,5-Trinitrobenzene	0,058	U	0.17	0.058	0.036	ug/L		09/10/13 02:03	1
1,3-Dinitrobenzene	0.12	U	0.17	0.12	0.058	ug/L		09/10/13 02:03	1
2,4,6-Trinitrotoluene	0.12	U	0.17	0.12	0.058	ug/L		09/10/13 02:03	1
2,4-Dinitrotoluene	0.12	U	0.15	0.12	0.058	ug/L		09/10/13 02:03	1
2,6-Dinitrotoluene	0.12	U	0.15	0.12	0.058	ug/L		09/10/13 02:03	1
2-Amino-4,6-dinitrotoluene	0.12	U	0.17	0.12	0.017	ug/L		09/10/13 02:03	1
2-Nitrotoluene	0.12	UM	0.58	0.12	0.10	ug/L		09/10/13 02:03	1
3-Nitrotoluene	0.12	U	0.58	0.12	0.066	ug/L		09/10/13 02:03	1
4-Nitrotoluene	0.12	UM	0.58	0.12	0.10	ug/L		09/10/13 02:03	1
4-Amino-2,6-dinitrotoluene	0.12	UM	0.17	0.12	0.058	ug/L		09/10/13 02:03	- 1
HMX	3.5		0.17	0.058	0.042	ug/L		09/10/13 02:03	1
RDX	2.3		0.17	0.058	0.042	ug/L		09/10/13 02:03	1
Nitrobenzene	0.12	U	0.17	0.12	0.058	ug/L		09/13/13 17:20	1
Tetryl	0.12	U	0.17	0.12	0.058	ug/L		09/10/13 02:03	- 1
Nitroglycerin	0.58	U	0.76	0.58	0.38	ug/L		09/10/13 02:03	1
PETN	0.58	U	0.76	0.58	0.35	ug/L		09/10/13 02:03	1

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
3,4-Dinitrotoluene	116	Q	79 - 111	08/27/13 07:26	09/10/13 02:03	1
3,4-Dinitrotoluene	79	M	79 - 111	08/27/13 07:26	09/13/13 17:20	1

General Chemistry Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
Cyanide, Total	0.010	U	0.010	0.010	0.0032	mg/L		08/26/13 13:58	1
Nitrocellulose	1.0	U	2.0	1.0	0.48	mg/L		09/11/13 16:19	1

TestAmerica Canton

3

ď

Ē

8

П

12

14

15

Client: Environmental Quality Mgt., Inc.

Project/Site: RVAAP66 (OH)

TestAmerica Job ID: 240-28186-1

Lab Sample ID: 240-28186-16

Matrix: Water

Client Sample ID: FWGDETmw-004C-0344-GF

Date Collected: 08/20/13 17:10 Date Received: 08/22/13 07:00

Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
Arsenic	10	U	10	10	3.3	ug/L		09/09/13 16:14	1
Chromium	4.0	U	7.0	4.0	1.4	ug/L		09/09/13 16:14	1
Cobalt	4.0	U	7.0	4.0	1.5	ug/L		09/09/13 16:14	1
Lead	5.0	U	10	5.0	1.7	ug/L		09/09/13 16:14	1
Selenium	10	U	15	10	4.0	ug/L		09/09/13 16:14	1
Silver	5.0	U	7.0	5.0	1.7	ug/L		09/09/13 16:14	1
Vanadium	4.0	U	7.0	4.0	1.3	ug/L		09/09/13 16:14	1
Barium	80	J	200	5.0	2.8	ug/L		09/09/13 16:14	1
Calcium	160000		5000	1000	630	ug/L		09/09/13 16:14	1
Copper	10	U	25	10	4.4	ug/L		09/09/13 16:14	1
Magnesium	31000		5000	300	120	ug/L		09/09/13 16:14	1
Manganese	5.7	J	15	5.0	1.8	ug/L		09/09/13 16:14	1
Nickel	5.0	U	40	5.0	2.2	ug/L		09/09/13 16:14	1
Potassium	1700	J	5000	900	300	ug/L		09/09/13 16:14	1
Method: 6020/DOD - Metals	(ICP/MS) - Total Recov	/erable							
Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
Aluminum	60	U	60	60	20	ug/L	= 7	09/09/13 21:38	1
Antimony	0.38	J	2.0	1.0	0.33	ug/L		09/09/13 21:38	1
Beryllium	1.0	UQ	1.0	1.0	0.50	ug/L		09/09/13 21:38	1
Cadmium	1.0	U	2.0	1.0	0.40	ug/L		09/09/13 21:38	1
Iron	100	U	150	100	44	ug/L		09/09/13 21:38	- 1
Sodium	2900		1000	400	160	ug/L		09/09/13 21:38	1
Thallium	1.5	U	2.0	1.5	0.79	ug/L		09/09/13 21:38	1
Zinc	50	U	50	50	27	ug/L		09/09/13 21:38	- 1

Method: 7470A/DOD - Mercury (CVAA)									
Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
Hg	0.20	U	0.20	0.20	0.12	ug/L		08/27/13 17:00	1

Client: Environmental Quality Mgt., Inc.

Client Sample ID: FWGNTAmw-119-0367-GW

Project/Site: RVAAP66 (OH)

TestAmerica Job ID: 240-28186-1

Lab Sample ID: 240-28186-17

Matrix: Water

Date Collected: 08/21/13 09:22 Date Received: 08/22/13 07:00

Analyte		Qualifier	LOQ	LOD	DL	Unit D	Analyzed	Dil Fac
1,1,1-Trichloroethane	0.25	U	1.0	0.25	0.22	ug/L	08/30/13 01:45	1
1,1,2,2-Tetrachloroethane	0.25	U	1.0	0.25	0.18	ug/L	08/30/13 01:45	1
1,1,2-Trichloroethane	0.50	U	1.0	0.50	0.27	ug/L	08/30/13 01:45	1
1,1-Dichloroethane	0.25	U	1.0	0.25	0.15	ug/L	08/30/13 01:45	1
1,1-Dichloroethene	0.25	U	1.0	0.25	0.19	ug/L	08/30/13 01:45	1
1,2-Dichloroethane	0.25	U	1.0	0.25	0.22	ug/L	08/30/13 01:45	1
1,2-Dichloroethene, Total	0.25	U	2.0	0.25	0.17	ug/L	08/30/13 01:45	1
1,2-Dichloropropane	0.25	U	1.0	0.25	0.18	ug/L	08/30/13 01:45	1
2-Hexanone	0.50	U	10	0.50	0.41	ug/L	08/30/13 01:45	1
Bromochloromethane	0.50	U	1.0	0.50	0.29	ug/L	08/30/13 01:45	1
Acetone	1.1	U	10	1.1	1.1	ug/L	08/30/13 01:45	1
Benzene	0.25	U	1.0	0.25	0.13	ug/L	08/30/13 01:45	1
Bromoform	0.64	U	1.0	0.64	0.64	ug/L	08/30/13 01:45	-1
Bromomethane	0.50	U	1.0	0.50	0.41	ug/L	08/30/13 01:45	1
Carbon disulfide	0.25	J	1.0	0.25	0.13	ug/L	08/30/13 01:45	1
Carbon tetrachloride	0.25	U	1.0	0.25	0.13	ug/L	08/30/13 01:45	1
Chlorobenzene	0.25	U	1.0	0.25	0.15	ug/L	08/30/13 01:45	1
Chloroethane	0.50	U	1.0	0.50	0.29	ug/L	08/30/13 01:45	1
Chloroform	0.25	U	1.0	0.25	0.16	ug/L	08/30/13 01:45	1
Chloromethane	0.50	U	1.0	0.50	0.30	ug/L	08/30/13 01:45	1
cis-1,2-Dichloroethene	0.25	U	1.0	0.25	0.17	ug/L	08/30/13 01:45	1
cis-1,3-Dichloropropene	0.25	U	1.0	0.25	0.14	ug/L	08/30/13 01:45	1
Bromodichloromethane	0.25	U	1.0	0.25	0.15	ug/L	08/30/13 01:45	1
Ethylbenzene	0.25	U	1.0	0.25	0.17	ug/L	08/30/13 01:45	1
1,2-Dibromoethane	0.25	U	1.0	0.25	0.24	ug/L	08/30/13 01:45	1
m-Xylene & p-Xylene	0.50	U	2.0	0.50	0.24	ug/L	08/30/13 01:45	d
2-Butanone (MEK)	0.57	U	10	0.57	0.57	ug/L	08/30/13 01:45	1
4-Methyl-2-pentanone (MIBK)	0.50	U	10	0.50	0.32	ug/L	08/30/13 01:45	1
Methylene Chloride	0.50	U	1.0	0.50	0.33	ug/L	08/30/13 01:45	1
o-Xylene	0.25	U	1.0	0.25	0.14	ug/L	08/30/13 01:45	1
Styrene	0.25	U	1.0	0.25	0.11	ug/L	08/30/13 01:45	1
Tetrachloroethene	0.50	U	1.0	0.50	0.29	ug/L	08/30/13 01:45	1
Toluene	0.25	U	1.0	0.25	0.13	ug/L	08/30/13 01:45	- 1
trans-1,2-Dichloroethene	0.25	U	1.0	0.25	0.19	ug/L	08/30/13 01:45	1
trans-1,3-Dichloropropene	0.25	U	1.0	0.25	0.19	ug/L	08/30/13 01:45	1
Trichloroethene	0.25	U	1.0	0.25	0.17	ug/L	08/30/13 01:45	1
Vinyl chloride	0.25	U	1.0	0.25	0.22	ug/L	08/30/13 01:45	1
Xylenes, Total	0.25		2.0	0.25	0.14	ug/L	08/30/13 01:45	1
Dibromochloromethane	0,25		1.0	0.25		ug/L	08/30/13 01:45	1
Surrogate	%Recovery Qu	valifier I	imits			Prepared	Analyzed	Dil Fac

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	98		70 - 120	08	8/30/13 01:45	1
4-Bromofluorobenzene (Surr)	88		75 - 120	08	8/30/13 01:45	1
Toluene-d8 (Surr)	93		85 - 120	08	8/30/13 01:45	1
Dibromofluoromethane (Surr)	98		85 - 115	.08	8/30/13 01:45	1

Method: 8270C/DoD - Semiy	olatile Organic Compo	ounds (GC/M	S)						
Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
Acenaphthene	0.099	U	0.20	0.099	0.044	ug/L		09/06/13 23:11	1
Acenaphthylene	0.099	U	0.20	0.099	0.048	ug/L		09/06/13 23:11	- 1

TestAmerica Canton

Page 50 of 196

Client: Environmental Quality Mgt., Inc.

Client Sample ID: FWGNTAmw-119-0367-GW

Project/Site: RVAAP66 (OH)

2,4,6-Trinitrotoluene

2,4-Dinitrotoluene

2,6-Dinitrotoluene

2-Nitrotoluene

3-Nitrotoluene

4-Nitrotoluene

HMX

RDX

2-Amino-4,6-dinitrotoluene

4-Amino-2,6-dinitrotoluene

TestAmerica Job ID: 240-28186-1

Lab Sample ID: 240-28186-17

Matrix: Water

Date Collected: 08/21/13 09:22 Date Received: 08/22/13 07:00

Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fa
Anthracene	0.099	U	0.20	0.099	0.087	ug/L		09/06/13 23:11	-
Benzo[a]anthracene	0.099	U	0.20	0.099	0.029	ug/L		09/06/13 23:11	
Benzo[a]pyrene	0.099	U	0.20	0.099	0.051	ug/L		09/06/13 23:11	
Benzo[b]fluoranthene	0.099	U	0.20	0.099	0.039	ug/L		09/06/13 23:11	
Benzo[g,h,i]perylene	0.099	U	0.20	0.099	0.046	ug/L		09/06/13 23:11	
Benzo[k]fluoranthene	0.099	U	0.20	0.099	0.044	ug/L		09/06/13 23:11	
Bis(2-ethylhexyl) phthalate	0.42	J	2.0	0.50	0.22	ug/L		09/06/13 23:11	
Butyl benzyl phthalate	0.50	U	2.0	0.50	0.26	ug/L		09/06/13 23:11	
Chrysene	0.099	U	0.20	0.099	0.050	ug/L		09/06/13 23:11	
Dibenz(a,h)anthracene	0.099	U	0.20	0.099	0.044	ug/L		09/06/13 23:11	
Diethyl phthalate	0.99	U	2.0	0.99	0.59	ug/L		09/06/13 23:11	-
Dimethyl phthalate	0.50	U	2.0	0.50	0.29	ug/L		09/06/13 23:11	. 9
Di-n-butyl phthalate	0.72	J	2.0	0.99	0.66	ug/L		09/06/13 23:11	19
2,4-Dinitrotoluene	0.50	U	5.0	0.50	0.25	ug/L		09/06/13 23:11	
2,6-Dinitrotoluene	0.50	U	5.0	0.50	0.79	ug/L		09/06/13 23:11	
Di-n-octyl phthalate	0.50	U	2.0	0.50	0.23	ug/L		09/06/13 23:11	
Fluoranthene	0.099	U	0.20	0.099	0.044	ug/L		09/06/13 23:11	
Fluorene	0.099	U	0.20	0.099	0.040	ug/L		09/06/13 23:11	
Indeno[1,2,3-cd]pyrene	0.099	U	0.20	0.099	0.043	ug/L		09/06/13 23:11	
Naphthalene	0.11	J	0.20	0.099	0.062	ug/L		09/06/13 23:11	
Nitrobenzene	0.099	U	0.99	0.099	0.040	ug/L		09/06/13 23:11	
Phenanthrene	0.099	U	0.20	0.099	0.061	ug/L		09/06/13 23:11	
Pyrene	0.099	U	0.20	0.099	0.042	ug/L		09/06/13 23:11	
Surrogate	%Recovery Qu	ualifier	Limits			Prep	pared	Analyzed	Dil Fa
2-Fluorobiphenyl (Surr)	81		50 - 110			08/23/	13 09:12	09/06/13 23:11	
2-Fluorophenol (Surr)	84		20 - 110			08/23/	13 09:12	09/06/13 23:11	
Nitrobenzene-d5 (Surr)	85		40 - 110			08/23/	13 09:12	09/06/13 23:11	
Phenol-d5 (Surr)	86		10 - 115			08/23/	13 09:12	09/06/13 23:11	
Terphenyl-d14 (Surr)	96		50 - 135			08/23/	13 09:12	09/06/13 23:11	
2,4,6-Tribromophenol (Surr)	84		40 - 125			08/23/	13 09:12	09/06/13 23:11	
Method: 8330 Modified - Nitro	quanidine (HPLC)								
Analyte		Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fa
Nitroguanidine	6.0	U	20	6.0	2.4	ug/L		08/27/13 16:53	
Method: 8330A - Nitroaromati	cs and Nitramines								
Analyte		Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fa
1,3,5-Trinitrobenzene	0.051	U	0.15	0.051	0.032	ug/L		08/30/13 21:10	
		U	0.15	0.10	0.051	7.5		08/30/13 21:10	

TestAmerica Canton

08/30/13 21:10

08/30/13 21:10

08/30/13 21:10

08/30/13 21:10

08/30/13 21:10

08/30/13 21:10

08/30/13 21:10

08/30/13 21:10

08/30/13 21:10

08/30/13 21:10

0.15

0.13

0.13

0.15

0.51

0.51

0.51

0.15

0.15

0.15

0.10

0.10

0.10

0.10

0.10

0.10

0.10

0.10

0.051

0.051

0.051 ug/L

0.051 ug/L

0.051 ug/L

0.015 ug/L

0.090 ug/L

0.058 ug/L

0.090 ug/L

0.051 ug/L

0.037 ug/L

0.037 ug/L

0.10 U

0.10 U

0.10 U

0.10 U

0.10 U

0.10 U

0.10 U

0.10 U

0.051 U

0.051 U

3

ě

,

-11

12

14

. -

Client: Environmental Quality Mgt., Inc.

Project/Site: RVAAP66 (OH)

TestAmerica Job ID: 240-28186-1

Lab Sample ID: 240-28186-17

Outhpie 15. 240-20100-17

Matrix: Water

Cilen	t Sa	mpie	ID: FV	GNI	Amw-11	9-0367-GW
			The second	4.0		

Date Collected: 08/21/13 09:22

Date Received: 08/22/13 07:00

Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
Nitrobenzene	0.10	U	0.15	0.10	0.051	ug/L		08/30/13 21:10	1
Tetryl	0.10	U	0.15	0.10	0.051	ug/L		08/30/13 21:10	1
Nitroglycerin	0.51	U	0.67	0.51	0.34	ug/L		08/30/13 21:10	1
PETN	0.51	U	0.67	0.51	0.31	ug/L		08/30/13 21:10	1
Surrogate	%Recovery Qu	ıalifier	Limits			Prepare	ed	Analyzed	Dil Fac
3,4-Dinitrotoluene	92		79 - 111			08/27/13	7:26	08/30/13 21:10	1
General Chemistry									
Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
Nitrocellulose	1.8	- 1	2.0	1.0	0.48	mg/L		09/11/13 16:21	1

TestAmerica Canton

3

E

6

8

.

4 4

12

13

ī

Client: Environmental Quality Mgt., Inc.

Project/Site: RVAAP66 (OH)

TestAmerica Job ID: 240-28186-1

Lab Sample ID: 240-28186-18

Matrix: Water

Client Sample ID: FWGNTAmw-119-0367-GF

Date Collected: 08/21/13 09:22 Date Received: 08/22/13 07:00

Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
Arsenic	10	U	10	10	3.3	ug/L	-	09/09/13 16:20	1
Chromium	4.0	U	7.0	4.0	1.4	ug/L		09/09/13 16:20	1
Cobalt	4.0	U	7.0	4.0	1.5	ug/L		09/09/13 16:20	1
Lead	5.0	U	10	5.0	1.7	ug/L		09/09/13 16:20	1
Selenium	10	U	15	10	4.0	ug/L		09/09/13 16:20	1
Silver	5.0	U	7.0	5.0	1.7	ug/L		09/09/13 16:20	1
Vanadium	4.0	U	7.0	4.0	1.3	ug/L		09/09/13 16:20	1
Barium	86	J	200	5.0	2.8	ug/L		09/09/13 16:20	1
Calcium	83000		5000	1000	630	ug/L		09/09/13 16:20	1
Copper	10	U	25	10	4.4	ug/L		09/09/13 16:20	1
Magnesium	22000		5000	300	120	ug/L		09/09/13 16:20	1
Manganese	340		15	5.0	1.8	ug/L		09/09/13 16:20	1
Nickel	5.0	U	40	5.0	2.2	ug/L		09/09/13 16:20	- 1
Potassium	1300	J	5000	900	300	ug/L		09/09/13 16:20	1
Method: 6020/DOD - Metals (ICP	/MS) - Total Recov	verable							1
Method: 6020/DOD - Metals (ICP Analyte	//MS) - Total Recov	verable Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
Method: 6020/DOD - Metals (ICP Analyte Aluminum	P/MS) - Total Recovered Result	verable Qualifier	LOQ 60	LOD 60	DL 20	Unit ug/L	D	Analyzed 09/09/13 21:46	Dil Fac
Method: 6020/DOD - Metals (ICP Analyte	P/MS) - Total Recover Result 60 1.0	verable Qualifier U	60 2.0	60 1.0	DL 20 0.33	Unit	D	Analyzed	Dil Fac
Method: 6020/DOD - Metals (ICP Analyte Aluminum Antimony Beryllium	P/MS) - Total Recover Result 60 1.0	verable Qualifier U U	60 2.0 1.0	60 1.0 1.0	DL 20 0.33 0.50	Unit ug/L ug/L ug/L	D	Analyzed 09/09/13 21:46 09/09/13 21:46 09/09/13 21:46	Dil Fac
Method: 6020/DOD - Metals (ICP Analyte Aluminum Antimony	P/MS) - Total Recover Result 60 1.0	verable Qualifier U U	60 2.0	60 1.0	DL 20 0.33	Unit ug/L ug/L ug/L	D	Analyzed 09/09/13 21:46 09/09/13 21:46	Dil Fac
Method: 6020/DOD - Metals (ICP Analyte Aluminum Antimony Beryllium	P/MS) - Total Recover Result 60 1.0	verable Qualifier U U	60 2.0 1.0 2.0 150	60 1.0 1.0 1.0	DL 20 0.33 0.50	Unit ug/L ug/L ug/L	D	Analyzed 09/09/13 21:46 09/09/13 21:46 09/09/13 21:46	Dil Fac
Method: 6020/DOD - Metals (ICP Analyte Aluminum Antimony Beryllium Cadmium	P/MS) - Total Recover Result 60 1.0 1.0 1.0	verable Qualifier U U	60 2.0 1.0 2.0	60 1.0 1.0 1.0	DL 20 0.33 0.50 0.40	Unit ug/L ug/L ug/L	D	Analyzed 09/09/13 21:46 09/09/13 21:46 09/09/13 21:46 09/09/13 21:46	Dil Fac
Method: 6020/DOD - Metals (ICP Analyte Aluminum Antimony Beryllium Cadmium	P/MS) - Total Recover Result 60 1.0 1.0 1.0 1500	verable Qualifier U U U Q U	60 2.0 1.0 2.0 150	60 1.0 1.0 1.0	DL 20 0.33 0.50 0.40 44	Unit ug/L ug/L ug/L ug/L ug/L	D	Analyzed 09/09/13 21:46 09/09/13 21:46 09/09/13 21:46 09/09/13 21:46	1 1 1 1
Method: 6020/DOD - Metals (ICP Analyte Aluminum Antimony Beryllium Cadmium Iron Sodium	P/MS) - Total Recover Result 60 1.0 1.0 1.0 1500 7200	verable Qualifier U U U U U U U	LOQ 60 2.0 1.0 2.0 150 1000	60 1.0 1.0 1.0 1.0 400	DL 20 0.33 0.50 0.40 44 160	Unit ug/L ug/L ug/L ug/L ug/L ug/L ug/L	D -	Analyzed 09/09/13 21:46 09/09/13 21:46 09/09/13 21:46 09/09/13 21:46 09/09/13 21:46	1 1 1 1 1 1 1
Method: 6020/DOD - Metals (ICP Analyte Aluminum Antimony Beryllium Cadmium Iron Sodium Thallium	P/MS) - Total Recover Result 60 1.0 1.0 1.0 1.0 1.500 7200 1.5 50	verable Qualifier U U U U U U U	LOQ 60 2.0 1.0 2.0 150 1000 2.0	60 1.0 1.0 1.0 1.0 400 1.5	DL 20 0.33 0.50 0.40 44 160 0.79	Unit ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	D	Analyzed 09/09/13 21:46 09/09/13 21:46 09/09/13 21:46 09/09/13 21:46 09/09/13 21:46 09/09/13 21:46	1 1 1 1 1 1 1 1

Client: Environmental Quality Mgt., Inc.

Project/Site: RVAAP66 (OH)

TestAmerica Job ID: 240-28186-1

Lab Sample ID: 240-28186-19

Matrix: Water

Client Sample ID: FWGFWGmw-006-0318-GW

Date Collected: 08/21/13 10:48 Date Received: 08/22/13 07:00

Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
1,1,1-Trichloroethane	0.25	U	1.0	0.25	0.22	ug/L		08/30/13 02:09	
1,1,2,2-Tetrachloroethane	0.25	U	1.0	0.25	0.18	ug/L		08/30/13 02:09	
1,1,2-Trichloroethane	0.50	U	1.0	0.50	0.27	ug/L		08/30/13 02:09	
1,1-Dichloroethane	0.25	U	1.0	0.25	0.15	ug/L		08/30/13 02:09	19
1,1-Dichloroethene	0.25	U	1.0	0.25	0.19	ug/L		08/30/13 02:09	
1,2-Dichloroethane	0.25	U	1.0	0.25	0.22	ug/L		08/30/13 02:09	
1,2-Dichloroethene, Total	0.25	U	2.0	0.25	0.17	ug/L		08/30/13 02:09	
1,2-Dichloropropane	0.25	U	1.0	0.25	0.18	ug/L		08/30/13 02:09	
2-Hexanone	0.50	U	10	0.50	0.41	ug/L		08/30/13 02:09	
Bromochloromethane	0.50	U	1.0	0.50	0.29	ug/L		08/30/13 02:09	
Acetone	1.1	U	10	1.1	1.1	ug/L		08/30/13 02:09	
Benzene	0.25	U	1.0	0.25	0.13	ug/L		08/30/13 02:09	
Bromoform	0.64	U	1.0	0.64	0.64	ug/L		08/30/13 02:09	
Bromomethane	0.50	U	1.0	0.50	0.41	ug/L		08/30/13 02:09	
Carbon disulfide	0.25	U	1.0	0.25	0.13	ug/L		08/30/13 02:09	
Carbon tetrachloride	0.25	U	1.0	0.25	0.13	ug/L		08/30/13 02:09	
Chlorobenzene	0.25	U	1.0	0.25	0.15	ug/L		08/30/13 02:09	
Chloroethane	0.50	U	1.0	0.50	0.29	ug/L		08/30/13 02:09	
Chloroform	0.25	U	1.0	0.25	0.16	ug/L		08/30/13 02:09	
Chloromethane	0.50	U	1.0	0.50	0.30	ug/L		08/30/13 02:09	
cis-1,2-Dichloroethene	0.25	U	1.0	0.25	0.17	ug/L		08/30/13 02:09	
cis-1,3-Dichloropropene	0.25	U	1.0	0.25	0.14	ug/L		08/30/13 02:09	
Bromodichloromethane	0.25	U	1.0	0.25	0.15	ug/L		08/30/13 02:09	
Ethylbenzene	0.25	U	1.0	0.25	0.17	ug/L		08/30/13 02:09	
1,2-Dibromoethane	0.25	U	1.0	0.25	0.24	ug/L		08/30/13 02:09	
m-Xylene & p-Xylene	0.50	U	2.0	0.50	0.24	ug/L		08/30/13 02:09	
2-Butanone (MEK)	0.57	U	10	0.57	0.57	ug/L		08/30/13 02:09	
4-Methyl-2-pentanone (MIBK)	0.50	U	10	0.50	0.32	ug/L		08/30/13 02:09	
Methylene Chloride	0.50	U	1.0	0.50	0.33	ug/L		08/30/13 02:09	
o-Xylene	0.25	U	1.0	0.25	0.14	ug/L		08/30/13 02:09	
Styrene	0.25	U	1.0	0.25	0.11	ug/L		08/30/13 02:09	
Tetrachloroethene	0.50	U	1.0	0.50	0.29	ug/L		08/30/13 02:09	
Toluene	0.25	U	1.0	0.25	0.13	ug/L		08/30/13 02:09	
rans-1,2-Dichloroethene	0.25	U	1.0	0.25	0.19	ug/L		08/30/13 02:09	
trans-1,3-Dichloropropene	0.25	U	1.0	0.25	0.19	ug/L		08/30/13 02:09	
Trichloroethene	0.25	U	1.0	0.25	0.17	ug/L		08/30/13 02:09	
Vinyl chloride	0.25	U	1.0	0.25	0.22	ug/L		08/30/13 02:09	
Xylenes, Total	0.25	U	2.0	0.25	0.14	ug/L		08/30/13 02:09	
Dibromochloromethane	0.25	U	1.0	0.25	0.18	ug/L		08/30/13 02:09	

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	91		70 - 120		08/30/13 02:09	1
4-Bromofluorobenzene (Surr)	90		75 - 120		08/30/13 02:09	1
Toluene-d8 (Surr)	95		85 - 120		08/30/13 02:09	1
Dibromofluoromethane (Surr)	94		85 - 115		08/30/13 02:09	1

TestAmerica Canton

Page 54 of 196

Client: Environmental Quality Mgt., Inc.

Client Sample ID: FWGFBQmw-174C-0345-GW

Project/Site: RVAAP66 (OH)

TestAmerica Job ID: 240-28186-1

Lab Sample ID: 240-28186-20

ib Sample ID. 240-26 166-20

Matrix: Water

Date Collected: 08/21/13 11:38 Date Received: 08/22/13 07:00

Analyte	latile Organic Compo Result	Qualifier	LOQ	LOD	DL	Unit	D Analyzed	Dil F
Bis(2-ethylhexyl) phthalate	0.82		2.0	0.51	0.22	ug/L	09/06/13 17:27	
Butyl benzyl phthalate	0.51		2.0	0.51	0.27		09/06/13 17:27	
Diethyl phthalate	1.0		2.0	1.0	0.61	ug/L	09/06/13 17:27	
Dimethyl phthalate	0.51		2.0	0.51	0.30	ug/L	09/06/13 17:27	
Di-n-butyl phthalate	1.1		2.0	1.0	0.68	ug/L	09/06/13 17:27	
Di-n-octyl phthalate	0.51		2.0	0.51		ug/L	09/06/13 17:27	
Surrogate	%Recovery Qu	ualifier	Limits			Prepared	Analyzed	Dil F
2-Fluorobiphenyl (Surr)	79		50 - 110			08/23/13 09:	12 09/06/13 17:27	
2-Fluorophenol (Surr)	81		20 - 110			08/23/13 09:	12 09/06/13 17:27	
Nitrobenzene-d5 (Surr)	80		40 - 110			08/23/13 09:	12 09/06/13 17:27	
Phenol-d5 (Surr)	86		10 - 115			08/23/13 09:	12 09/06/13 17:27	
Terphenyl-d14 (Surr)	108		50 - 135			08/23/13 09:	12 09/06/13 17:27	
2,4,6-Tribromophenol (Surr)	96		40 - 125			08/23/13 09:	12 09/06/13 17:27	
Method: 8081/DOD - Organoc	hlorine Pesticides (C	SC)						
Analyte		Qualifier	LOQ	LOD	DL	Unit	D Analyzed	Dil F
1,4'-DDD	0.020	U	0.051	0.020	0.0098	ug/L	08/30/13 01:13	
4,4'-DDE	0.020	U	0.051	0.020	0.0099	ug/L	08/30/13 01:13	
,4'-DDT	0.020	U	0.051	0.020	0.016	ug/L	08/30/13 01:13	
Aldrin	0.020	U	0.031	0.020	0.0084	ug/L	08/30/13 01:13	
alpha-BHC	0.020	U	0.031	0.020	0.0071	ug/L	08/30/13 01:13	
alpha-Chlordane	0.020	U	0.051	0.020	0.014	ug/L	08/30/13 01:13	
peta-BHC	0.020	U	0.051	0.020	0.0086	ug/L	08/30/13 01:13	
delta-BHC	0.019	J	0.051	0.020	0.0089	ug/L	08/30/13 01:13	
Dieldrin	0.020	U	0.031	0.020	0.0077	ug/L	08/30/13 01:13	
Endosulfan I	0.020	U	0.051	0.020	0.013		08/30/13 01:13	
Endosulfan II	0.020	U	0.051	0.020	0.012		08/30/13 01:13	
Endosulfan sulfate	0.020	U	0.051	0.020	0.011		08/30/13 01:13	
Endrin	0.020	U	0.051	0.020	0.011	ug/L	08/30/13 01:13	
Endrin aldehyde	0.020	U	0.051	0.020	0.011		08/30/13 01:13	
Endrin ketone	0.020		0.051	0.020	0.0080		08/30/13 01:13	
gamma-BHC (Lindane)	0.020		0.051	0.020	0.0065	400	08/30/13 01:13	
gamma-Chlordane	0.037		0.051	0.020	0.012		08/30/13 01:13	
Heptachlor	0.020		0.031	0.020	0.0082		08/30/13 01:13	
Heptachlor epoxide	0.020		0.031	0.020	0.0072		08/30/13 01:13	
Methoxychlor	0.051		0.10	0.051	0.033		08/30/13 01:13	
Гохарhene	0.82		2.0	0.82		ug/L	08/30/13 01:13	
Surrogate	%Recovery Qu	ualifier	Limits			Prepared	Analyzed	Dil F
OCB Decachlorobiphenyl	31		30 _ 135			08/23/13 09:	00 08/30/13 01:13	
DCB Decachlorobiphenyl	23 M	Q	30 - 135			08/23/13 09:	00 08/30/13 01:13	
Tetrachloro-m-xylene	72		25 - 140			08/23/13 09:	00 08/30/13 01:13	
Tetrachloro-m-xylene	73		25 - 140			08/23/13 09:	00 08/30/13 01:13	
Method: 8330 Modified - Nitro	guanidine (HPLC)							

TestAmerica Canton

3

40

14

15

Client: Environmental Quality Mgt., Inc.

Project/Site: RVAAP66 (OH)

TestAmerica Job ID: 240-28186-1

Lab Sample ID: 240-28186-20

Matrix: Water

Client Sample ID: FWGFBQmw-174C-0345-GW

Date Collected: 08/21/13 11:38 Date Received: 08/22/13 07:00

Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
1,3,5-Trinitrobenzene	0.051	U	0.15	0.051	0.031	ug/L		08/30/13 21:53	1
1,3-Dinitrobenzene	0.10	U	0.15	0.10	0.051	ug/L		08/30/13 21:53	1
2,4,6-Trinitrotoluene	18		0.15	0.10	0.051	ug/L		08/30/13 21:53	1
2,4-Dinitrotoluene	0.45		0.13	0.10	0.051	ug/L		08/30/13 21:53	1
2,6-Dinitrotoluene	0.10	U	0.13	0.10	0.051	ug/L		08/30/13 21:53	1.
2-Amino-4,6-dinitrotoluene	16		0.15	0.10	0.015	ug/L		08/30/13 21:53	1
2-Nitrotoluene	0.10	U	0.51	0.10	0.089	ug/L		09/10/13 04:14	1
3-Nitrotoluene	0.10	U	0.51	0.10	0.058	ug/L		08/30/13 21:53	1
4-Nitrotoluene	0.10	U	0.51	0.10	0.089	ug/L		09/10/13 04:14	1
HMX	0.051	U	0.15	0.051	0.037	ug/L		09/10/13 04:14	1
RDX	0.31	M	0.15	0.051	0.037	ug/L		08/30/13 21:53	1
Nitrobenzene	0.10	U	0.15	0.10	0.051	ug/L		08/30/13 21:53	1
Tetryl	0.10	U	0.15	0.10	0.051	ug/L		08/30/13 21:53	1
Nitroglycerin	0.51	U	0.66	0.51	0.34	ug/L		08/30/13 21:53	1
PETN	0.51	U	0.66	0.51	0.30	ug/L		08/30/13 21:53	1
Surrogate	%Recovery Qu	%Recovery Qualifier				Prep	ared	Analyzed	Dil Fac
3,4-Dinitrotoluene	117 M	Q	79 - 111			08/27/1	3 07:26	08/30/13 21:53	1
3,4-Dinitrotoluene	97	97				08/27/1	3 07:26	09/10/13 04:14	1
Method: 8330A - Nitroaromatic	cs and Nitramines -	DL							
Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
4-Amino-2,6-dinitrotoluene	26	M	0.30	0.20	0.10	ug/L		09/13/13 18:04	2
Surrogate	%Recovery Qu	ıalifier	Limits			Prep	ared	Analyzed	Dil Fac
3,4-Dinitrotoluene	96		79 - 111			08/27/1	3 07:26	09/10/13 03:09	2
3,4-Dinitrotoluene	112 M	Q	79 - 111			08/27/1	3 07:26	09/13/13 18:04	2
General Chemistry									
Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac

Client: Environmental Quality Mgt., Inc.

Project/Site: RVAAP66 (OH)

TestAmerica Job ID: 240-28186-1

Lab Sample ID: 240-28186-21

Matrix: Water

Client Sample ID: FWGFBQmw-174C-0345-GF

Date Collected: 08/21/13 11:38 Date Received: 08/22/13 07:00

Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
Arsenic	10	Ü	10	10	3.3	ug/L		09/09/13 16:26	1
Chromium	4.0	U	7.0	4.0	1.4	ug/L		09/09/13 16:26	1
Cobalt	4.0	U	7.0	4.0	1.5	ug/L		09/09/13 16:26	1
Lead	5.0	U	10	5.0	1.7	ug/L		09/09/13 16:26	1
Selenium	10	U	15	10	4.0	ug/L		09/09/13 16:26	1
Silver	5.0	U	7.0	5.0	1.7	ug/L		09/09/13 16:26	1
Vanadium	4.0	U	7.0	4.0	1.3	ug/L		09/09/13 16:26	1
Barium	14	J	200	5.0	2.8	ug/L		09/09/13 16:26	1
Calcium	5700		5000	1000	630	ug/L		09/09/13 16:26	1
Copper	10	U	25	10	4.4	ug/L		09/09/13 16:26	1
Magnesium	2000	J	5000	300	120	ug/L		09/09/13 16:26	1
Manganese	16		15	5.0	1.8	ug/L		09/09/13 16:26	1
Nickel	5.8	J	40	5.0	2.2	ug/L		09/09/13 16:26	- 1
Potassium	1000	J	5000	900	300	ug/L		09/09/13 16:26	1
Method: 6020/DOD - Metals									
Analyte	Result	Qualifier							
			LOQ	LOD	DL	7.41-0	D	Analyzed	Dil Fac
Aluminum	60	U	60	60	20	ug/L	D	09/09/13 21:53	Dil Fac
	60 1.0	U U	60 2.0	60 1.0	20 0.33	ug/L ug/L	D	09/09/13 21:53 09/09/13 21:53	Dil Fac
Antimony	60 1.0 1.0	U U U Q	60	60	20 0.33 0.50	ug/L ug/L ug/L	D	09/09/13 21:53	Dil Fac
Antimony Beryllium	60 1.0 1.0 1.0	U U U Q U	60 2.0 1.0 2.0	60 1.0 1.0 1.0	20 0.33 0.50 0.40	ug/L ug/L ug/L	D	09/09/13 21:53 09/09/13 21:53 09/09/13 21:53 09/09/13 21:53	1 1 1 1 1
Antimony Beryllium Cadmium	60 1.0 1.0	U U U Q U	60 2.0 1.0	60 1.0 1.0	20 0.33 0.50	ug/L ug/L ug/L	D	09/09/13 21:53 09/09/13 21:53 09/09/13 21:53 09/09/13 21:53 09/09/13 21:53	Dil Fac
Antimony Beryllium Cadmium Iron	60 1.0 1.0 1.0 100 810	J U U U U	60 2.0 1.0 2.0	60 1.0 1.0 1.0	20 0.33 0.50 0.40	ug/L ug/L ug/L ug/L	D	09/09/13 21:53 09/09/13 21:53 09/09/13 21:53 09/09/13 21:53	Dil Fac
Antimony Beryllium Cadmium Iron Sodium	60 1.0 1.0 1.0	J U U U U	60 2.0 1.0 2.0 150	1.0 1.0 1.0 1.0	20 0.33 0.50 0.40 44	ug/L ug/L ug/L ug/L ug/L	D	09/09/13 21:53 09/09/13 21:53 09/09/13 21:53 09/09/13 21:53 09/09/13 21:53	1 1 1 1 1 1 1 1
Antimony Beryllium Cadmium Iron Sodium Thallium	60 1.0 1.0 1.0 100 810	7 0 0 0 Q	2.0 1.0 2.0 150 1000	1.0 1.0 1.0 1.0 100 400	20 0.33 0.50 0.40 44 160	ug/L ug/L ug/L ug/L ug/L ug/L	D	09/09/13 21:53 09/09/13 21:53 09/09/13 21:53 09/09/13 21:53 09/09/13 21:53	1 1 1 1 1
Aluminum Antimony Beryllium Cadmium Iron Sodium Thallium Zinc Method: 7470A/DOD - Merci	60 1.0 1.0 1.0 100 810 1.5	7 0 0 0 Q	50 2.0 1.0 2.0 150 1000 2.0	1.0 1.0 1.0 1.0 100 400 1.5	20 0.33 0.50 0.40 44 160 0.79	ug/L ug/L ug/L ug/L ug/L ug/L	D	09/09/13 21:53 09/09/13 21:53 09/09/13 21:53 09/09/13 21:53 09/09/13 21:53 09/09/13 21:53	Dil Fac
Antimony Beryllium Cadmium Iron Sodium Thallium Zinc Method: 7470A/DOD - Merci	60 1.0 1.0 1.0 100 810 1.5 50	7 0 0 0 Q	50 2.0 1.0 2.0 150 1000 2.0	1.0 1.0 1.0 1.0 100 400 1.5	20 0.33 0.50 0.40 44 160 0.79 27	ug/L ug/L ug/L ug/L ug/L ug/L	D	09/09/13 21:53 09/09/13 21:53 09/09/13 21:53 09/09/13 21:53 09/09/13 21:53 09/09/13 21:53	
Antimony Beryllium Cadmium Iron Sodium Thallium Zinc	60 1.0 1.0 1.0 100 810 1.5 50	U U U Q U U U U U U	50 2.0 1.0 2.0 150 1000 2.0 50	1.0 1.0 1.0 1.0 100 400 1.5 50	20 0.33 0.50 0.40 44 160 0.79 27	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L		09/09/13 21:53 09/09/13 21:53 09/09/13 21:53 09/09/13 21:53 09/09/13 21:53 09/09/13 21:53 09/09/13 21:53	1 1 1 1 1

Client: Environmental Quality Mgt., Inc.

Client Sample ID: FWGTeam3-TRIP

Project/Site: RVAAP66 (OH)

TestAmerica Job ID: 240-28186-1

Lab Sample ID: 240-28186-22

Matrix: WQ

Date Collected: 08/21/13 08:00
Date Received: 08/22/13 07:00

Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D Analyzed	Dil Fac
,1,1-Trichloroethane	0.25	U	1.0	0.25	0.22	ug/L	08/30/13 02:33	
1,1,2,2-Tetrachloroethane	0.25	U	1.0	0.25	0.18	ug/L	08/30/13 02:33	
,1,2-Trichloroethane	0.50	U	1.0	0.50	0.27	ug/L	08/30/13 02:33	9
,1-Dichloroethane	0.25	U	1.0	0.25	0.15	ug/L	08/30/13 02:33	1
1,1-Dichloroethene	0.25	U	1.0	0.25	0.19	ug/L	08/30/13 02:33	1
,2-Dichloroethane	0.25	U	1.0	0.25	0.22	ug/L	08/30/13 02:33	1
1,2-Dichloroethene, Total	0.25	U	2.0	0.25	0.17	ug/L	08/30/13 02:33	1
I,2-Dichloropropane	0.25	U	1.0	0.25	0.18	ug/L	08/30/13 02:33	1
2-Hexanone	0.50	U	10	0.50	0.41	ug/L	08/30/13 02:33	1
3romochloromethane	0.50	U	1.0	0.50	0.29	ug/L	08/30/13 02:33	1
Acetone	1.1	U	10	1.1	1.1	ug/L	08/30/13 02:33	1
Benzene	0.25	U	1.0	0.25	0.13	ug/L	08/30/13 02:33	1
Bromoform	0.64	U	1.0	0.64	0.64	ug/L	08/30/13 02:33	1
Bromomethane	0.50	U	1.0	0.50	0.41	ug/L	08/30/13 02:33	1
Carbon disulfide	0.25	U	1.0	0.25	0.13		08/30/13 02:33	1
Carbon tetrachloride	0.25	U	1.0	0.25	0.13	ug/L	08/30/13 02:33	1
Chlorobenzene	0.25	U	1.0	0.25	0.15	ug/L	08/30/13 02:33	1
Chloroethane	0.50	U	1.0	0.50	0.29	ug/L	08/30/13 02:33	1
Chloroform	0.25	U	1.0	0.25	0.16		08/30/13 02:33	1
Chloromethane	0.50	U	1.0	0.50	0.30	ug/L	08/30/13 02:33	1
sis-1,2-Dichloroethene	0.25	U	1.0	0.25	0.17		08/30/13 02:33	1
is-1,3-Dichloropropene	0.25	U	1.0	0.25		ug/L	08/30/13 02:33	1
Bromodichloromethane	0.25	U	1.0	0.25		ug/L	08/30/13 02:33	9
Ethylbenzene	0.25	U	1.0	0.25	0.17	ug/L	08/30/13 02:33	1
1,2-Dibromoethane	0.25	Ū	1.0	0.25	0.24	ug/L	08/30/13 02:33	1
m-Xylene & p-Xylene	0.50	U	2.0	0.50	0.24	ug/L	08/30/13 02:33	- 1
2-Butanone (MEK)	0.57	U	10	0.57	0.57	ug/L	08/30/13 02:33	1
1-Methyl-2-pentanone (MIBK)	0.50	U	10	0.50	0.32		08/30/13 02:33	1
Methylene Chloride	0.77	J	1.0	0.50	0.33		08/30/13 02:33	1
-Xylene	0.25	U	1.0	0.25	0.14	ug/L	08/30/13 02:33	1
Styrene	0.25	U	1.0	0.25	0.11	ug/L	08/30/13 02:33	- 1
Tetrachloroethene	0.50		1.0	0.50		1 20 0	08/30/13 02:33	1
Foluene	0.25	U	1.0	0.25	0.13	ug/L	08/30/13 02:33	- 1
rans-1,2-Dichloroethene	0.25	U	1.0	0.25	0.19	ug/L	08/30/13 02:33	1
rans-1,3-Dichloropropene	0.25		1.0	0.25	0.19		08/30/13 02:33	4
Trichloroethene	0.25		1.0	0.25	0.17		08/30/13 02:33	-
/inyl chloride	0.25		1.0	0.25	0.22		08/30/13 02:33	1
(ylenes, Total			2.0	0.25	0.14	ug/L	08/30/13 02:33	-1
Dibromochloromethane	0,25		1.0	0.25	0.14		08/30/13 02:33	4
2.70.4		44				72.77	1	245
Surrogate	%Recovery Qu	ialifier L	imits			Prepared	Analyzed	Dil Fac

1,2-Dichloroethane-d4 (Surr)	93	70 - 120	08/30/13 02:33	1
4-Bromofluorobenzene (Surr)	86	75 - 120	08/30/13 02:33	7
Toluene-d8 (Surr)	91	85 - 120	08/30/13 02:33	1
Dibromofluoromethane (Surr)	94	85 - 115	08/30/13 02:33	1
and the second s				

Client: Environmental Quality Mgt., Inc.

Project/Site: RVAAP66 (OH)

TestAmerica Job ID: 240-28186-1

Lab Sample ID: 240-28186-23

Matrix: Water

:56			
-----	--	--	--

Client Sample ID: FWGWBGmw-019-0329-GW

Date Received: 08/22/13 07:00

Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D Analyzed	Dil Fac
1,1,1-Trichloroethane	0.25	U	1.0	0.25	0.22	ug/L	08/30/13 02:57	- 1
1,1,2,2-Tetrachloroethane	0.25	U	1.0	0.25	0.18	ug/L	08/30/13 02:57	
1,1,2-Trichloroethane	0.50	U	1.0	0.50	0.27	ug/L	08/30/13 02:57	14
1,1-Dichloroethane	0.25	U	1.0	0.25	0.15	ug/L	08/30/13 02:57	1
1,1-Dichloroethene	0.25	U	1.0	0.25	0.19	ug/L	08/30/13 02:57	1
1,2-Dichloroethane	0.25	U	1.0	0.25	0.22	ug/L	08/30/13 02:57	
1,2-Dichloroethene, Total	0.25	U	2.0	0.25	0.17	ug/L	08/30/13 02:57	
1,2-Dichloropropane	0.25	U	1.0	0.25	0.18	ug/L	08/30/13 02:57	
2-Hexanone	0.50	U	10	0.50	0.41	ug/L	08/30/13 02:57	
Bromochloromethane	0.50	U	1.0	0.50	0.29	ug/L	08/30/13 02:57	
Acetone	1.1	U	10	1.1	1.1	ug/L	08/30/13 02:57	1
Benzene	0.25	U	1.0	0.25	0.13	ug/L	08/30/13 02:57	11
Bromoform	0.64	U	1.0	0.64	0.64	ug/L	08/30/13 02:57	27
Bromomethane	0.50	U	1.0	0.50	0.41	ug/L	08/30/13 02:57	17
Carbon disulfide	0.25	U	1.0	0.25	0.13	ug/L	08/30/13 02:57	- 9
Carbon tetrachloride	0.25	U	1.0	0.25	0.13	ug/L	08/30/13 02:57	
Chlorobenzene	0.25	U	1.0	0.25	0.15	ug/L	08/30/13 02:57	
Chloroethane	0.50	U	1.0	0.50	0.29	ug/L	08/30/13 02:57	
Chloroform	0.25	U	1.0	0.25	0.16	ug/L	08/30/13 02:57	
Chloromethane	0.50	U	1.0	0.50	0.30	ug/L	08/30/13 02:57	
cis-1,2-Dichloroethene	0.25	U	1.0	0.25	0.17	ug/L	08/30/13 02:57	
cis-1,3-Dichloropropene	0.25	U	1.0	0.25	0.14		08/30/13 02:57	
Bromodichloromethane	0.25	U	1.0	0.25	0.15		08/30/13 02:57	
Ethylbenzene	0.25	U	1.0	0.25	0.17	ug/L	08/30/13 02:57	
1,2-Dibromoethane	0.25	Ū	1.0	0.25	0.24	ug/L	08/30/13 02:57	
m-Xylene & p-Xylene	0,50	U	2.0	0.50	0.24	ug/L	08/30/13 02:57	
2-Butanone (MEK)	0.57	U	10	0.57	0.57	1.7	08/30/13 02:57	
4-Methyl-2-pentanone (MIBK)	0.50	U	10	0.50	0.32	ug/L	08/30/13 02:57	
Methylene Chloride	0.50	U	1.0	0.50	0.33	ug/L	08/30/13 02:57	
o-Xylene	0.25	U	1.0	0.25	0.14		08/30/13 02:57	-
Styrene	0.25	U	1.0	0.25	0.11		08/30/13 02:57	
Tetrachloroethene	0.50		1.0	0.50			08/30/13 02:57	
Toluene	0.25		1.0	0.25			08/30/13 02:57	
trans-1,2-Dichloroethene	0.25		1.0	0.25			08/30/13 02:57	
trans-1,3-Dichloropropene	0.25		1.0	0.25			08/30/13 02:57	
Trichloroethene	0.25		1.0	0.25		ug/L	08/30/13 02:57	
/inyl chloride	0.25		1.0			ug/L	08/30/13 02:57	
Xylenes, Total	0.25		2.0			ug/L	08/30/13 02:57	
Dibromochloromethane	0,25		1.0			ug/L	08/30/13 02:57	
Surrogato	%Recovery Q	valifion	Limite			Prepared	Angligad	DUE
Surrogate		aanner	Limits			rrepared	Analyzed	Dil Fa
1,2-Dichloroethane-d4 (Surr)	98		70 - 120				08/30/13 02:57	
4-Bromofluorobenzene (Surr)	88		75 - 120				08/30/13 02:57	
Toluene-d8 (Surr)	95		85 - 120				08/30/13 02:57	

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	98	70 - 120		08/30/13 02:57	1
4-Bromofluorobenzene (Surr)	88	75 - 120		08/30/13 02:57	1
Toluene-d8 (Surr)	95	85 - 120		08/30/13 02:57	1
Dibromofluoromethane (Surr)	95	85 115		08/30/13 02:57	4

Method: 8270C/DoD -	Semivolatile Organic	Compounds	(GC/MS)
Michiga, 02/00/000	Schilly Glattic Graatiic	Compounds	COMMO

Analyte	A CONTRACTOR OF THE PROPERTY O	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
Acenaphthene	0.095	U	0.19	0.095	0.042	ug/L		09/06/13 23:36	1
Acenaphthylene	0.095	U	0.19	0.095	0.046	ug/L		09/06/13 23:36	1

Client: Environmental Quality Mgt., Inc.

Project/Site: RVAAP66 (OH)

TestAmerica Job ID: 240-28186-1

Lab Sample ID: 240-28186-23

Matrix: Water

Client Sample ID: FWGWBGmw-019-0329-GW

Date Collected: 08/21/13 08:56 Date Received: 08/22/13 07:00

nalyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil F
nthracene	0.095	U	0.19	0.095	0.084	ug/L		09/06/13 23:36	
enzo[a]anthracene	0.095	U	0.19	0.095	0.028	ug/L		09/06/13 23:36	
enzo[a]pyrene	0.095	U	0.19	0.095	0.049	ug/L		09/06/13 23:36	
enzo[b]fluoranthene	0.095	U	0.19	0.095	0.038	ug/L		09/06/13 23:36	
enzo[g,h,i]perylene	0.095	U	0.19	0.095	0.044	ug/L		09/06/13 23:36	
enzoic acid	19	U	24	19	9.5	ug/L		09/06/13 23:36	
enzo[k]fluoranthene	0.095	u	0.19	0.095	0.043			09/06/13 23:36	
enzyl alcohol	0.48	U	4.8	0.48	0.36	ug/L		09/06/13 23:36	
s(2-chloroethoxy)methane	0.48	U	0.95	0.48	0.30	ug/L		09/06/13 23:36	
s(2-chloroethyl)ether	0.095		0.95	0.095	0.095	-		09/06/13 23:36	
s(2-ethylhexyl) phthalate			1.9	0.48	0.21			09/06/13 23:36	
Bromophenyl phenyl ether		U	1.9	0.48	0.21	ug/L		09/06/13 23:36	
utyl benzyl phthalate	0.48		1.9	0.48	0.25	ug/L		09/06/13 23:36	
arbazole	0.48		0.95	0.48	0.27	ug/L		09/06/13 23:36	
Chloroaniline	0.48	Ü	1.9	0.48	0.20	ug/L		09/06/13 23:36	
Chloro-3-methylphenol	0.48		1.9	0.48	0.20	ug/L		09/06/13 23:36	
Chloronaphthalene	0.48		0.95	0.48	0.095	ug/L		09/06/13 23:36	
Chlorophenol		U	0.95	0.48	0.28	ug/L		09/06/13 23:36	
Chlorophenyl phenyl ether	0.48		1.9	0.48	0.29	ug/L		09/06/13 23:36	
nrysene	0.095		0.19	0.095				09/06/13 23:36	
benz(a,h)anthracene	12,000	15.			0.048			09/06/13 23:36	
	0.095		0.19	0.095	0.042				
benzofuran			0.95	0.095	0.019			09/06/13 23:36	
2-Dichlorobenzene	0.48		0.95	0.48		ug/L		09/06/13 23:36	
3-Dichlorobenzene	0.48		0.95	0.48		ug/L		09/06/13 23:36	
4-Dichlorobenzene	0.48		0.95	0.48		ug/L		09/06/13 23:36	
3'-Dichlorobenzidine	0.95		4.8	0.95		ug/L		09/06/13 23:36	
4-Dichlorophenol	0.48		1.9	0.48	0.18			09/06/13 23:36	
ethyl phthalate	0.95		1.9	0.95	0.57			09/06/13 23:36	
4-Dimethylphenol	0.48		1.9	0.48	0.24			09/06/13 23:36	
methyl phthalate	0.48		1.9	0.48	0.28	ug/L		09/06/13 23:36	
-n-butyl phthalate	0.84		1.9	0.95	0.64	ug/L		09/06/13 23:36	
6-Dinitro-2-methylphenol	3.8		4.8	3.8	2.3	ug/L		09/06/13 23:36	
4-Dinitrophenol	0.95		4.8	0.95	0.30	ug/L		09/06/13 23:36	
-n-octyl phthalate	0.48	U	1.9	0.48	0.22	ug/L		09/06/13 23:36	
uoranthene	0.095	U	0.19	0.095	0.042	ug/L		09/06/13 23:36	
uorene	0.095	U	0.19	0.095	0.039	ug/L		09/06/13 23:36	
exachlorobenzene	0.095	U	0.19	0.095	0.081	ug/L		09/06/13 23:36	
exachlorobutadiene	0.48	U	0.95	0.48	0.26	ug/L		09/06/13 23:36	
exachlorocyclopentadiene	0.48	U	9.5	0.48	0.23	ug/L		09/06/13 23:36	
exachloroethane	0.48	U	0.95	0.48	0.18	ug/L		09/06/13 23:36	
deno[1,2,3-cd]pyrene	0.095	U	0.19	0.095	0.041	ug/L		09/06/13 23:36	
ophorone	0.48	U	0.95	0.48	0.26	ug/L		09/06/13 23:36	
Methylnaphthalene	0.095	U	0.19	0.095	0.086	ug/L		09/06/13 23:36	
Methylphenol	0.48	U	0.95	0.48	0.16	ug/L		09/06/13 23:36	
& 4 Methylphenol	0.95	U	1.9	0.95	0.76	ug/L		09/06/13 23:36	
aphthalene	0.095	U	0.19	0.095	0.060	ug/L		09/06/13 23:36	
Nitroaniline	0.48	U	1.9	0.48	0.20	ug/L		09/06/13 23:36	
Nitroaniline	0.48	U	1.9	0.48		ug/L		09/06/13 23:36	
Nitroaniline	0.48		1.9	0.48		ug/L		09/06/13 23:36	

Client: Environmental Quality Mgt., Inc.

Project/Site: RVAAP66 (OH)

TestAmerica Job ID: 240-28186-1

Lab Sample ID: 240-28186-23

Matrix: Water

Client Sample ID: FWGWBGmw-019-0329-GW

Date Collected: 08/21/13 08:56 Date Received: 08/22/13 07:00

Analyte	Result	Qualifier	LOQ	LOD	DL	Unit D	Analyzed	Dil Fac
2-Nitrophenol	0.48	U	1.9	0.48	0.27	ug/L	09/06/13 23:36	1
4-Nitrophenol	3.8	U	4.8	3.8	0.28	ug/L	09/06/13 23:36	1
N-Nitrosodi-n-propylamine	0.48	U	0.95	0.48	0.23	ug/L	09/06/13 23:36	1
N-Nitrosodiphenylamine	0.48	U	0.95	0.48	0.30	ug/L	09/06/13 23:36	1
2,2'-oxybis[1-chloropropane]	0.48	U	0.95	0.48	0.38	ug/L	09/06/13 23:36	1
Pentachlorophenol	0.95	U	4.8	0.95	0.26	ug/L	09/06/13 23:36	1
Phenanthrene	0.095	U	0.19	0.095	0.059	ug/L	09/06/13 23:36	1
Phenol	0.95	U	0.95	0.95	0.57	ug/L	09/06/13 23:36	1
Pyrene	0.095	U	0.19	0.095	0.040	ug/L	09/06/13 23:36	1
1,2,4-Trichlorobenzene	0.48	U	0.95	0.48	0.27	ug/L	09/06/13 23:36	1
2,4,5-Trichlorophenol	0.48	U	4.8	0.48	0.29	ug/L	09/06/13 23:36	- 1
2,4,6-Trichlorophenol	0.48	U	4.8	0.48	0.23	ug/L	09/06/13 23:36	1
Surrogate	%Recovery Qu	ualifier	Limits			Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl (Surr)	82		50 - 110			08/23/13 09:12	09/06/13 23:36	1
2-Fluorophenol (Surr)	88		20 - 110			08/23/13 09:12	09/06/13 23:36	1
Nitrobenzene-d5 (Surr)	87		40 - 110			08/23/13 09:12	09/06/13 23:36	1
Phenol-d5 (Surr)	88		10 - 115			08/23/13 09:12	09/06/13 23:36	1
Terphenyl-d14 (Surr)	109		50 - 135			08/23/13 09:12	09/06/13 23:36	1
2,4,6-Tribromophenol (Surr)	83		40 - 125			08/23/13 09:12	09/06/13 23:36	1

Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
4,4'-DDD	0.019	U	0.048	0.019	0.0091	ug/L		09/12/13 14:50	1
4,4'-DDE	0.019	U	0.048	0.019	0.0092	ug/L		09/12/13 14:50	1
4,4'-DDT	0.019	U	0.048	0.019	0.015	ug/L		09/12/13 14:50	1
Aldrin	0.019	U	0.029	0.019	0.0078	ug/L		09/12/13 14:50	1
alpha-BHC	0.019	U	0.029	0.019	0.0067	ug/L		09/12/13 14:50	1
alpha-Chlordane	0.019	U	0.048	0.019	0.013	ug/L		09/12/13 14:50	1
beta-BHC	0.011	J	0.048	0.019	0.0080	ug/L		09/12/13 14:50	1
delta-BHC	0.019	U	0.048	0.019	0.0083	ug/L		09/12/13 14:50	1
Dieldrin	0.019	U	0.029	0.019	0.0071	ug/L		09/12/13 14:50	1
Endosulfan I	0.019	U	0.048	0.019	0.012	ug/L		09/12/13 14:50	1
Endosulfan II	0.019	U	0.048	0.019	0.011	ug/L		09/12/13 14:50	1
Endosulfan sulfate	0.019	U	0.048	0.019	0.010	ug/L		09/12/13 14:50	1
Endrin	0.019	U	0.048	0.019	0.010	ug/L		09/12/13 14:50	1
Endrin aldehyde	0.019	U	0.048	0.019	0.010	ug/L		09/12/13 14:50	1
Endrin ketone	0.019	U	0.048	0.019	0.0074	ug/L		09/12/13 14:50	1
gamma-BHC (Lindane)	0.019	U	0.048	0.019	0.0061	ug/L		09/12/13 14:50	9
gamma-Chlordane	0.019	U	0.048	0.019	0.011	ug/L		09/12/13 14:50	1
Heptachlor	0.019	U	0.029	0.019	0.0076	ug/L		09/12/13 14:50	1
Heptachlor epoxide	0.019	U	0.029	0.019	0.0068	ug/L		09/12/13 14:50	1
Methoxychlor	0.048	U	0.095	0.048	0.030	ug/L		09/12/13 14:50	4
Toxaphene	0.76	U	1.9	0.76	0.30	ug/L		09/12/13 14:50	1
8	4.5	fre-	F 40.74			-	court.	Andrew !	50 F

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
DCB Decachlorobiphenyl	96		30 - 135	08/23/13 09:00	09/12/13 14:50	1
DCB Decachlorobiphenyl	98		30 - 135	08/23/13 09:00	09/12/13 14:50	7
Tetrachloro-m-xylene	111		25 - 140	08/23/13 09:00	09/12/13 14:50	7
Tetrachloro-m-xylene	122		25 - 140	08/23/13 09:00	09/12/13 14:50	1

TestAmerica Canton

Page 61 of 196

9/24/2013

Client: Environmental Quality Mgt., Inc.

Project/Site: RVAAP66 (OH)

TestAmerica Job ID: 240-28186-1

Lab Sample ID: 240-28186-23

D Gample 1D. 240-20100-20

Matrix: Water

Ciler	π	San	ipie	ID:	г	۷V	GV	AR	Gm	W-U	19-03	29-GW	
				- 1									

Date Collected: 08/21/13 08:56 Date Received: 08/22/13 07:00

Analyte	Result	Qualifier	LOQ	LOD	DL	Unit D	Analyzed	Dil Fac
Aroclor-1016	0.19	U	0.48	0.19	0.16	ug/L	08/28/13 22:12	1
Aroclor-1221	0.19	U	0.48	0.19	0.12	ug/L	08/28/13 22:12	1
Aroclor-1232	0.19	U	0.48	0.19	0.15	ug/L	08/28/13 22:12	1
Aroclor-1242	0.38	U	0.48	0.38	0.21	ug/L	08/28/13 22:12	1
Aroclor-1248	0.19	U	0.48	0.19	0.095	ug/L	08/28/13 22:12	1
Aroclor-1254	0.19	U	0.48	0.19	0.15	ug/L	08/28/13 22:12	1
Aroclor-1260	0.19	U	0.48	0.19	0.16	ug/L	08/28/13 22:12	1
Surrogate	%Recovery Q	ualifier	Limits			Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	68		40 - 140			08/23/13 09:07	08/28/13 22:12	1
Tetrachloro-m-xylene	73		40 - 140			08/23/13 09:07	08/28/13 22:12	4
DCB Decachlorobiphenyl	56		40 - 135			08/23/13 09:07	08/28/13 22:12	1
DCB Decachlorobiphenyl	46		40 - 135			08/23/13 09:07	08/28/13 22:12	1

Method: 8330 Modified - Niti	roguanidine (HPLC)								
Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
Nitroguanidina	6.0	Tr-	20	6.0	2.4	H		09/27/12 17:20	-1

Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D Analyzed	Dil Fac
1,3,5-Trinitrobenzene	0.051	U	0.15	0.051	0.031	ug/L	08/30/13 22:37	1
1,3-Dinitrobenzene	0.10	U	0.15	0.10	0.051	ug/L	08/30/13 22:37	1
2,4,6-Trinitrotoluene	0.10	U	0.15	0.10	0.051	ug/L	08/30/13 22:37	1
2,4-Dinitrotoluene	0.10	U	0.13	0.10	0.051	ug/L	08/30/13 22:37	1
2,6-Dinitrotoluene	0.10	U	0.13	0.10	0.051	ug/L	08/30/13 22:37	1
2-Amino-4,6-dinitrotoluene	0.10	U	0.15	0.10	0.015	ug/L	08/30/13 22:37	1
2-Nitrotoluene	0.10	U	0.51	0.10	0.089	ug/L	08/30/13 22:37	1
3-Nitrotoluene	0.10	U	0.51	0.10	0.058	ug/L	08/30/13 22:37	1
4-Nitrotoluene	0.10	U	0.51	0.10	0.089	ug/L	08/30/13 22:37	1
4-Amino-2,6-dinitrotoluene	0.10	U	0.15	0.10	0.051	ug/L	08/30/13 22:37	1
HMX	0.051	U	0.15	0.051	0.036	ug/L	08/30/13 22:37	1
RDX	0.051	U	0.15	0.051	0.036	ug/L	08/30/13 22:37	1
Nitrobenzene	0.10	U	0.15	0.10	0.051	ug/L	08/30/13 22:37	1
Tetryl	0.10	U	0.15	0.10	0.051	ug/L	08/30/13 22:37	- 1
Nitroglycerin	0.51	U	0.66	0.51	0.33	ug/L	08/30/13 22:37	1
PETN	0.51	U	0.66	0.51	0.30	ug/L	08/30/13 22:37	1
0	V.D	re t	1				Name of the last	D# F

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
3,4-Dinitrotoluene	93	79 - 111	08/27/13 07:26	08/30/13 22:37	1

General Chemistry Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
Cyanide, Total	0.010	U	0,010	0.010	0.0032	mg/L	_	08/26/13 13:58	1
Nitrocellulose	1.0	U	2.0	1.0	0.48	mg/L		09/11/13 16:33	1

Client: Environmental Quality Mgt., Inc.

Method: 7470A/DOD - Mercury (CVAA)

Analyte

Hg

Project/Site: RVAAP66 (OH)

TestAmerica Job ID: 240-28186-1

Lab Sample ID: 240-28186-24

Matrix: Water

Client Sample ID: FWGWBGmw-019-0329-GF

Date Collected: 08/21/13 08:56 Date Received: 08/22/13 07:00

Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
Arsenic	10	U	10	10	3.3	ug/L		09/09/13 16:32	1
Chromium	4.0	U	7.0	4.0	1.4	ug/L		09/09/13 16:32	1
Cobalt	4.0	U	7.0	4.0	1.5	ug/L		09/09/13 16:32	1
Lead	5.0	U	10	5.0	1.7	ug/L		09/09/13 16:32	1
Selenium	10	U	15	10	4.0	ug/L		09/09/13 16:32	1
Silver	5.0	U	7.0	5.0	1.7	ug/L		09/09/13 16:32	1
Vanadium	4.0	U	7.0	4.0	1.3	ug/L		09/09/13 16:32	1
Barium	62	J	200	5.0	2.8	ug/L		09/09/13 16:32	1
Calcium	77000		5000	1000	630	ug/L		09/09/13 16:32	1
Copper	10	U	25	10	4.4	ug/L		09/09/13 16:32	1
Magnesium	22000		5000	300	120	ug/L		09/09/13 16:32	1
Manganese	250		15	5.0	1.8	ug/L		09/09/13 16:32	1
Nickel	5.0	U	40	5.0	2.2	ug/L		09/09/13 16:32	1
Potassium	1800	J	5000	900	300	ug/L		09/09/13 16:32	1
Method: 6020/DOD - Metals	s (ICP/MS) - Total Recov	verable							
Analyte		Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
Aluminum	60	U	60	60	20	ug/L		09/09/13 22:01	1
Antimony	1.0	U	2.0	1.0	0.33	ug/L		09/09/13 22:01	1
Beryllium	1.0	UQ	1.0	1.0	0.50	ug/L		09/09/13 22:01	1
Cadmium	1.0	U	2.0	1.0	0.40	ug/L		09/09/13 22:01	1
Iron	430		150	100	44	ug/L		09/09/13 22:01	1
Sodium	8300		1000	400	160	ug/L		09/09/13 22:01	1
Thallium	1.5	U	2.0	1.5	0.79	ug/L		09/09/13 22:01	1
Zinc	50	U	50	50	27	ug/L		09/09/13 22:01	1

LOQ

0.20

LOD

0.20

DL Unit

0.12 ug/L

Result Qualifier

0.20 U

TestAmerica Canton

Analyzed

08/27/13 17:08

Dil Fac

Client: Environmental Quality Mgt., Inc.

Project/Site: RVAAP66 (OH)

TestAmerica Job ID: 240-28186-1

Lab Sample ID: 240-28186-25

Matrix: Water

Client Sample ID: FWGWBGmw-018-0328-GW Date Collected: 08/21/13 10:03

Date Received: 08/22/13 07:00

Analyte

Acenaphthene

Acenaphthylene

Method: 8270C/DoD - Semivolatile Organic Compounds (GC/MS)

Result Qualifier

0.095 U

0.095 U

Analyte	Result	Qualifier	1	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fa
1,1,1-Trichloroethane	0.25	U		1.0	0.25	0.22	ug/L		08/31/13 09:55	
1,1,2,2-Tetrachloroethane	0.25	U		1.0	0.25	0.18	ug/L		08/31/13 09:55	-
1,1,2-Trichloroethane	0.50	U		1.0	0.50	0.27	ug/L		08/31/13 09:55	
1,1-Dichloroethane	0.25	U		1.0	0.25	0.15	ug/L		08/31/13 09:55	
1,1-Dichloroethene	0.25	U		1.0	0.25	0.19	ug/L		08/31/13 09:55	
1,2-Dichloroethane	0.25	U		1.0	0.25	0.22	ug/L		08/31/13 09:55	
1,2-Dichloroethene, Total	0.25	U		2.0	0.25	0.17	ug/L		08/31/13 09:55	
1,2-Dichloropropane	0.25	U		1.0	0.25	0.18	ug/L		08/31/13 09:55	
2-Hexanone	0.50	U		10	0.50	0.41	350		08/31/13 09:55	
Bromochloromethane	0.50	U		1.0	0.50	0.29	ug/L		08/31/13 09:55	
Acetone	1.1			10	1.1	1.1	ug/L		08/31/13 09:55	
Benzene	0.25	U		1.0	0.25	0.13			08/31/13 09:55	
Bromoform	0.64			1.0	0.64	0.64	ug/L		08/31/13 09:55	
Bromomethane	0.50			1.0	0.50	0.41	ug/L		08/31/13 09:55	
Carbon disulfide	0.25			1.0	0.25	0.13	ug/L		08/31/13 09:55	
Carbon tetrachloride	0.25			1.0	0.25	0.13	ug/L		08/31/13 09:55	
Chlorobenzene	0.25			1.0	0.25	0.15	ug/L		08/31/13 09:55	
Chloroethane	0.50			1.0	0.50	0.29	ug/L		08/31/13 09:55	
Chloroform	0.25			1.0	0.25	0.16	ug/L		08/31/13 09:55	
Chloromethane	0.50			1.0	0.50	0.30	ug/L		08/31/13 09:55	
cis-1,2-Dichloroethene	0.25			1.0	0.25	0.17	ug/L		08/31/13 09:55	
cis-1,3-Dichloropropene	0.25			1.0	0.25	0.14	ug/L		08/31/13 09:55	
Bromodichloromethane	0.25			1.0	0.25	0.15	ug/L		08/31/13 09:55	
Ethylbenzene	0.25			1.0	0.25	0.17	ug/L		08/31/13 09:55	
1,2-Dibromoethane	0.25			1.0	0.25	0.24	ug/L		08/31/13 09:55	
n-Xylene & p-Xylene	0.50			2.0	0.50	0.24	ug/L		08/31/13 09:55	
2-Butanone (MEK)	0.57			10	0.57	0.57	ug/L		08/31/13 09:55	
4-Methyl-2-pentanone (MIBK)	0.50			10	0.50	0.32	ug/L		08/31/13 09:55	
Methylene Chloride	0.50	U		1.0	0.50	0.33	ug/L		08/31/13 09:55	
o-Xylene	0.25			1.0	0.25	0.14	ug/L		08/31/13 09:55	
Styrene	0.25			1.0	0.25	0.11	ug/L		08/31/13 09:55	
Tetrachloroethene	0.50			1.0	0.50	0.29	ug/L		08/31/13 09:55	
Foluene	0.25			1.0	0.25	0:13	ug/L		08/31/13 09:55	
rans-1,2-Dichloroethene	0.25			1.0	0.25	0.19	ug/L		08/31/13 09:55	
rans-1,3-Dichloropropene	0.25			1.0	0.25	0.19	ug/L		08/31/13 09:55	
Trichloroethene	0.25			1.0	0.25		ug/L		08/31/13 09:55	
√inyl chloride	0.25			1.0	0.25		ug/L		08/31/13 09:55	
Kylenes, Total	0.25			2.0	0.25		ug/L		08/31/13 09:55	
Dibromochloromethane	0,25			1.0	0.25		ug/L		08/31/13 09:55	
Surrogate	%Recovery Qu	alifier	Limits				Prep	pared	Analyzed	Dil Fa
1,2-Dichloroethane-d4 (Surr)	112		70 - 120						08/31/13 09:55	
4-Bromofluorobenzene (Surr)	83		75 - 120						08/31/13 09:55	
Toluene-d8 (Surr)	89		85 - 120						08/31/13 09:55	
Dibromofluoromethane (Surr)	102		85 - 115						08/31/13 09:55	

TestAmerica Canton

Dil Fac

Analyzed

09/06/13 21:08

09/06/13 21:08

LOQ

0.19

0.19

LOD

0.095

0.095

DL Unit

0.042 ug/L

0.046 ug/L

Client: Environmental Quality Mgt., Inc.

Project/Site: RVAAP66 (OH)

TestAmerica Job ID: 240-28186-1

Lab Sample ID: 240-28186-25

Matrix: Water

Client Sample ID: FWGWBGmw-018-0328-GW

Date Collected: 08/21/13 10:03 Date Received: 08/22/13 07:00

Ambraceme 0.985 U 0.19 0.095 0.084 gg/L 0906/13/2108 Benzo(a)phirhraceme 0.985 U 0.19 0.095 0.028 ug/L 0906/13/2108 Benzo(a)phirhraceme 0.985 U 0.19 0.095 0.039 ug/L 0906/13/2108 Benzo(a)phirhraceme 0.095 U 0.19 0.095 0.039 ug/L 0906/13/2108 Benzo(a)phirprime 0.095 U 0.19 0.095 0.039 ug/L 0906/13/2108 Benzo(a)phirprime 0.095 U 0.19 0.095 0.039 ug/L 0906/13/2108 Benzo(a)phirprime 0.095 U 0.19 0.095 0.034 ug/L 0906/13/2108 Benzo(a)phirprime 0.095 U 0.19 0.095 0.034 ug/L 0906/13/2108 Benzo(a)phirprime 0.095 U 0.19 0.095 0.034 ug/L 0906/13/2108 Benzo(a)phirprime 0.095 U 0.19 0.095 0.034 ug/L 0906/13/2108 Benzo(a)phirprime 0.095 U 0.19 0.095 0.034 ug/L 0906/13/2108 Benzo(a)phirprime 0.048 U 0.95 0.48 0.30 ug/L 0906/13/2108 Bis/Q-chlorocethyl/jether 0.085 U 0.95 0.095 ug/L 0906/13/2108 Bis/Q-chlorocethyl/jether 0.085 U 0.95 0.095 ug/L 0906/13/2108 Bis/Q-chlorocethyl/jether 0.085 U 0.95 0.095 ug/L 0906/13/2108 Bis/Q-chlorocethyl/jether 0.048 U 1.9 0.48 0.21 ug/L 0906/13/2108 U	Anthracene	Method: 8270C/DoD - Semivolatil Analyte		Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fa
Benzoglajnymane	Benzoglajprome 0.095 U 0.19 0.095 0.028 agl. 0906/121-08 Benzoglajprome 0.095 U 0.19 0.095 0.049 ugl. 0906/121-08 Benzoglajprome 0.095 U 0.19 0.095 0.039 ugl. 0906/121-08 Benzoglajprome 0.095 U 0.19 0.095 0.039 ugl. 0906/121-08 Benzoglajprome 0.095 U 0.19 0.095 0.044 ugl. 0906/121-08 Benzoglajprome 0.095 U 0.19 0.095 0.044 ugl. 0906/121-08 Benzoglajprome 0.095 U 0.19 0.095 0.043 ugl. 0906/121-08 Benzoglajprome 0.095 U 0.19 0.095 0.043 ugl. 0906/121-08 Benzoglajprome 0.095 U 0.19 0.095 0.043 ugl. 0906/121-08 Belz-2-chroreshorymethane 0.48 U 0.95 0.48 0.30 ugl. 0906/121-08 Belz-2-chroreshylyether 0.095 U 0.95 0.085 0.095 ugl. 0906/121-08 Belz-2-chroreshylyether 0.095 U 0.95 0.085 0.095 ugl. 0906/121-08 Belz-2-chroreshylyether 0.095 U 0.95 0.085 0.095 ugl. 0906/121-08 Belz-2-chroreshylyether 0.095 U 0.95 0.086 0.095 ugl. 0906/121-08 Belz-2-chroreshylyether 0.48 U 0.95 0.48 0.21 ugl. 0906/121-08 Carbazzole 0.48 U 0.95 0.48 0.21 ugl. 0906/121-08 Carbazzole 0.48 U 0.95 0.48 0.27 ugl. 0906/121-08 Carbazzole 0.48 U 0.95 0.48 0.20 ugl. 0906/121-08 Carbazzole 0.48 U 0.95 0.48 0.20 ugl. 0906/121-08 Carbazzole 0.48 U 0.95 0.48 0.20 ugl. 0906/121-08 Carbazzole 0.48 U 0.95 0.48 0.20 ugl. 0906/121-08 Carbazzole 0.48 U 0.95 0.48 0.20 ugl. 0906/121-08 Carbazzole 0.48 U 0.95 0.48 0.20 ugl. 0906/121-08 Carbazzole 0.48 U 0.95 0.48 0.20 ugl. 0906/121-08 Carbazzole 0.48 U 0.95 0.48 0.20 ugl. 0906/121-08 Carbazzole 0.48 U 0.95 0.48 0.20 ugl. 0906/121-08 Carbazzole 0.48 U 0.95 0.48 0.22 ugl. 0906/121-08 Carbazzole 0.48 U 0.95 0.48 0.22 ugl. 0906/121-08 Carbazzole 0.48 U 0.95 0.48 0.22 ugl. 0906/121-08 Carbazzole 0.48 U 0.95 0.48 0.22 ugl. 0906/121-08 Carbazzole 0.48 U 0.95 0.48 0.22 ugl. 0906/121-08 Carbazzole 0.48 U 0.95 0.48 0.22 ugl. 0906/121-08 Carbazzole 0.48 U 0.95 0.48 0.22 ugl. 0906/121-08 Carbazzole 0.48 U 0.95 0.48 0.22 ugl. 0906/121-08 Carbazzole 0.48 U 0.95 0.48 0.22 ugl. 0906/121-08 Carbazzole 0.48 U 0.95 0.48 0.22 ugl. 0906/121-08 Carbazzole 0.48 U 0.95 0.48 0.22 ugl. 0906/121-08 Carb		0.095	U	0.19		0.084	ug/L	_		
Benzo Despress D	Benzo Eliphyreme	Benzo[a]anthracene	0.095	U	0.19		0.028			09/06/13 21:08	
Serce Disputarementer	Remze(philiperophene		0.095	U						09/06/13 21:08	
Renze (g.h.) peytene	Remze(g) h, i)pervlene										
enzoic acid 19 U 24 19 0.5 vg/L 0906/13/21-08 enzoic/life/carchimene 0.095 U 0.19 0.095 0.043 vg/L 0906/13/21-08 enzoic/life/carchimene 0.48 U 4.8 0.48 0.36 vg/L 0906/13/21-08 eig/2-chioroethoxy/methane 0.48 U 0.95 0.48 0.30 vg/L 0906/13/21-08 eig/2-chioroethoxy/methane 0.48 U 0.95 0.48 0.30 vg/L 0906/13/21-08 eig/2-chioroethoxy/methane 0.31 J 1.9 0.48 0.21 vg/L 0906/13/21-08 eig/2-chioroethoxy/methane 0.31 J 1.9 0.48 0.21 vg/L 0906/13/21-08 eig/2-chioroethoxy/methane 0.31 J 1.9 0.48 0.21 vg/L 0906/13/21-08 eig/2-chioroethoxy/methane 0.48 U 1.9 0.48 0.21 vg/L 0906/13/21-08 eig/2-chioroethoxy/methane 0.48 U 1.9 0.48 0.22 vg/L 0906/13/21-08 eig/2-chioroethoxy/methane 0.48 U 1.9 0.48 0.20 vg/L 0906/13/21-08 eig/2-chioroethoxy/methane 0.48 U 1.9 0.48 0.20 vg/L 0906/13/21-08 eig/2-chioroethoxy/methane 0.48 U 0.95 0.48 0.20 vg/L 0906/13/21-08 eig/2-chioroethoxy/methane 0.48 U 0.95 0.48 0.05 vg/L 0906/13/21-08 eig/2-chioroethoxy/methane 0.48 U 0.95 0.48 0.05 vg/L 0906/13/21-08 eig/2-chioroethoxy/methane 0.48 U 0.95 0.48 0.05 vg/L 0906/13/21-08 eig/2-chioroethoxy/methane 0.095 U 0.95 0.48 0.22 vg/L 0906/13/21-08 eig/2-chioroethoxy/methane 0.095 U 0.19 0.095 0.048 vg/L 0906/13/21-08 eig/2-chioroethoxy/methane 0.095 U 0.19 0.095 0.048 vg/L 0906/13/21-08 eig/2-chioroethoxy/methane 0.095 U 0.19 0.095 0.048 vg/L 0906/13/21-08 eig/2-chioroethoxy/methane 0.095 U 0.19 0.095 0.048 vg/L 0906/13/21-08 eig/2-chioroethoxy/methane 0.095 U 0.19 0.095 0.048 vg/L 0906/13/21-08 eig/2-chioroethoxy/methane 0.095 U 0.19 0.095 0.049 vg/L 0906/13/21-08 eig/2-chioroethoxy/methane 0.095 U 0.19 0.095 0.049 vg/L 0906/13/21-08 eig/2-chioroethoxy/methane 0.095 U 0.19 0.095 0.049 vg/L 0906/13/21-08 eig/2-chioroethoxy/methane 0.095 U 0.19 0.095 0.049 vg/L 0906/13/21-08 eig/2-chioroethoxy/methane 0.095 U 0.19 0.095 0.049 vg/L 0906/13/21-08 eig/2-chioroethoxy/methane 0.095 U 0.19 0.095 0.049 vg/L 0906/13/21-08 eig/2-chioroethoxy/methane 0.095 U 0.19 0.095 0.049 vg/L 0906/13/21-08 eig/2-chioroethoxy/methane 0.095 U 0.19 0.095 0.049 vg/L 0906/13/21-08 e	enzeoli acid 19 U 24 19 9.5 ug/L 0906/13 21-08 enzeoli/filte/aranthene 0.095 U 0.19 0.095 0.043 ug/L 0906/13 21-08 enzeoli/filte/aranthene 0.085 U 4.8 0.48 0.36 ug/L 0906/13 21-08 eiig2-entroenthoxylwethane 0.48 U 0.95 0.48 0.30 ug/L 0906/13 21-08 eiig2-entroenthylybether 0.095 U 0.95 0.095 0.095 ug/L 0906/13 21-08 eiig2-entry/hexyl) phthalate 0.31 J 1.9 0.48 0.21 ug/L 0906/13 21-08 elis(2-ethylhexyl) phthalate 0.31 J 1.9 0.48 0.21 ug/L 0906/13 21-08 elis(2-ethylhexyl) phthalate 0.48 U 1.9 0.48 0.21 ug/L 0906/13 21-08 elis(2-ethylhexyl) phthalate 0.48 U 1.9 0.48 0.21 ug/L 0906/13 21-08 elis(2-ethylhexyl) phthalate 0.48 U 1.9 0.48 0.27 ug/L 0906/13 21-08 elis(2-ethylhexyl) phthalate 0.48 U 1.9 0.48 0.25 ug/L 0906/13 21-08 elis(2-ethylhexyl) phthalate 0.48 U 1.9 0.48 0.25 ug/L 0906/13 21-08 elis(2-ethylhexyl) phthalate 0.48 U 1.9 0.48 0.20 ug/L 0906/13 21-08 elis(2-ethylhexyl) phthalate 0.48 U 1.9 0.48 0.20 ug/L 0906/13 21-08 elis(2-ethylhexyl) phthalate 0.48 U 0.95 0.48 0.20 ug/L 0906/13 21-08 elis(2-ethylhexyl) phthalate 0.48 U 0.95 0.48 0.28 ug/L 0906/13 21-08 eliberuzionian 0.095 U 0.19 0.095 0.042 ug/L 0906/13 21-08 eliberuzionian 0.095 U 0.19 0.095 0.042 ug/L 0906/13 21-08 eliberuzionian 0.095 U 0.19 0.095 0.042 ug/L 0906/13 21-08 eliberuzionian 0.095 U 0.19 0.095 0.043 ug/L 0906/13 21-08 eliberuzionian 0.095 U 0.19 0.095 0.043 ug/L 0906/13 21-08 eliberuzionian 0.095 U 0.19 0.095 0.044 ug/L 0906/13 21-08 eliberuzionian 0.095 U 0.19 0.095 0.095 0.094 ug/L 0906/13 21-08 eliberuzionian 0.095 U 0.19 0.095 0.095 0.094 ug/L 0906/13 21-08 eliberuzionian 0.095 U 0.19 0.095 0.095 0.094 ug/L 0906/13 21-08 eliberuzionian 0.095 U 0.19 0.095 0.094 ug/L 0906/13 21-08 eliberuzionian 0.095 U 0.19 0.095 0.094 ug/L 0906/13 21-08 eliberuzionian 0.095 U 0.19 0.095 0.094 ug/L 0906/13 21-08 eliberuzionian 0.095 U 0.19 0.095 0.094 ug/L 0906/13 21-08 eliberuzionian 0.096 U 0.19 0.095 0.094 ug/L 0906/13 21-08 elib										
enzey(k) uoranthene	enzeykjllucranthene 0.095 U 0.19 0.095 0.043 ug/L 0906/13 21:08 enzyk alchoh 1 0.48 U 4.8 0.48 0.36 ug/L 0906/13 21:08 enzyk alchoh 1 0.48 U 0.95 0.48 0.30 ug/L 0906/13 21:08 isig2-chlorophrophymehrane 0.48 U 0.95 0.095 0.095 ug/L 0906/13 21:08 isig2-chlorophymehrane 0.31 J 1.9 0.48 0.21 ug/L 0906/13 21:08 enzyk phrhalate 0.31 J 1.9 0.48 0.21 ug/L 0906/13 21:08 enzyk phrhalate 0.48 U 1.9 0.48 0.21 ug/L 0906/13 21:08 0.095 ug/L 0906/13 21:08 0										
Renzy alcohol 0.48 U	Renzyl alcohol										
isig2-chloroethoxy)methane 0.48 U 0.95 0.48 0.30 ug/L 0906/13 21:08 isig2-chloroethy)ether 0.055 U 0.95 0.095 ug/L 0906/13 21:08 isig2-chloroethy)phthalate 0.31 J 1.9 0.48 0.21 ug/L 0906/13 21:08 isig2-chloroethy)phthalate 0.48 U 1.9 0.48 0.21 ug/L 0906/13 21:08 ug/L 0906/13 21:	isig2-chloroethycymethane										
Insert Control Phylichem Control Contr	Second Company Compa										
Sigle-ethylhexyl) phthalate	Insert I							-			
Promophenyl phenyl ether	Promophenyl phenyl ether 0.48 U 1.9 0.48 0.21 Ug/L 0.906/13 21.08 0.91 0.										
utyl benzyl phthalate 0.48 U 1.9 0.48 0.25 ug/L 0960f13 21:08 sarbazole 0.48 U 0.95 0.48 0.27 ug/L 0960f13 21:08 C-Chlorona-Illine 0.48 U 1.9 0.48 0.20 ug/L 0906113 21:08 C-Chlorophenol 0.48 U 0.95 0.48 0.020 ug/L 0906113 21:08 C-Chlorophenol 0.48 U 0.95 0.48 0.029 ug/L 0906113 21:08 C-Chlorophenol 0.48 U 0.95 0.48 0.29 ug/L 0906113 21:08 C-Chlorophenol 0.48 U 0.95 0.48 0.29 ug/L 090613 21:08 C-Chlorophenol 0.48 U 0.95 0.042 ug/L 090613 21:08 Bibary Call 0.95 0.05 0.042 ug/L 090613 21:08 Bibary Call 0 0.95 0.48 0.22 ug/L 090613 21:08 B	utyl benzyl phthalate 0.48 U 1.9 0.48 0.25 ug/L 09/06/13 21:08 arbazole 0.48 U 0.95 0.48 0.27 ug/L 09/06/13 21:08 C-Chlorora-Imethylphenol 0.48 U 1.9 0.48 0.20 ug/L 09/06/13 21:08 C-Chloropathylphenol 0.48 U 0.95 0.48 0.20 ug/L 09/06/13 21:08 C-Chlorophenol 0.48 U 0.95 0.48 0.29 ug/L 09/06/13 21:08 C-Chlorophenyl phenyl ether 0.48 U 0.95 0.48 0.29 ug/L 09/06/13 21:08 C-Chlorophenyl phenyl ether 0.48 U 0.19 0.095 0.048 ug/L 09/06/13 21:08 Debrace 0.095 U 0.19 0.095 0.048 ug/L 09/06/13 21:08 Bebrace 0.095 U 0.19 0.095 0.048 ug/L 09/06/13 21:08 Bibricorable 0.085 U 0.95 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>										
Arbazole 0.48 U 0.95 0.48 0.27 ug/L 09/06/13 21:08 0.20 log/L 09/06/13	Anabazole										
Chioroaniline	Chioroaniline										
Chioro-3-methylphenol 0.48 U 0.95 0.48 0.20 ug/L 0.9106/13 21:08 Chioro-phthalene 0.48 U 0.95 0.48 0.95 ug/L 0.9106/13 21:08 Chiorophenol 0.48 U 0.95 0.48 0.28 ug/L 0.9106/13 21:08 Chiorophenol 0.48 U 0.95 0.48 0.28 ug/L 0.9106/13 21:08 Chiorophenyl phenyl ether 0.48 U 0.19 0.95 0.48 ug/L 0.9106/13 21:08 0.1006/13 21:08 0.	Chloron-3-methylphenol 0.48 U 0.95 0.48 0.20 ug/L 09/06/13 21:08										
Chlorophenol 0.48 U 0.95 0.48 0.95 0.97 0.	Chlorophenol							12.0			
Chlorophenol 0.48 U 0.95 0.48 0.28 ug/L 0.906/13 21.08 Chlorophenyl phenyl ether 0.48 U 1.9 0.48 0.29 ug/L 0.906/13 21.08 chlorophenyl phenyl ether 0.48 U 1.9 0.48 0.29 ug/L 0.906/13 21.08 chlorenzene 0.095 U 0.19 0.095 0.042 ug/L 0.906/13 21.08 chlorenzene 0.095 U 0.95 0.095 0.019 ug/L 0.906/13 21.08 chlorophenyl phenyl ether 0.095 U 0.95 0.48 ug/L 0.906/13 21.08 chlorophenyl ether 0.48 U 0.95 0.48 0.28 ug/L 0.906/13 21.08 chlorophenzene 0.48 U 0.95 0.48 0.22 ug/L 0.906/13 21.08 chlorophenzene 0.48 U 0.95 0.48 0.22 ug/L 0.906/13 21.08 chlorophenzene 0.48 U 0.95 0.48 0.32 ug/L 0.906/13 21.08 chlorophenzene 0.48 U 0.95 0.48 0.32 ug/L 0.906/13 21.08 chlorophenzene 0.48 U 0.95 0.48 0.32 ug/L 0.906/13 21.08 chlorophenzene 0.48 U 0.95 0.48 0.32 ug/L 0.906/13 21.08 chlorophenzene 0.48 U 0.95 0.48 0.18 ug/L 0.906/13 21.08 chlorophenol 0.48 U 0.99 0.95 0.57 ug/L 0.906/13 21.08 chlorophenol 0.48 U 0.99 0.48 0.24 ug/L 0.906/13 21.08 chlorophenol 0.48 U 0.99 0.48 0.24 ug/L 0.906/13 21.08 chlorophenol 0.48 U 0.99 0.48 0.24 ug/L 0.906/13 21.08 chlorophenol 0.48 U 0.99 0.48 0.24 ug/L 0.906/13 21.08 chlorophenol 0.95 U 0.99 0.48 0.24 ug/L 0.906/13 21.08 chlorophenol 0.95 U 0.99 0.95 0.64 ug/L 0.906/13 21.08 chlorophenol 0.95 U 0.99 0.95 0.64 ug/L 0.906/13 21.08 chlorophenol 0.95 U 0.99 0.95 0.64 ug/L 0.906/13 21.08 chlorophenol 0.95 U 0.99 0.99 0.99 ug/L 0.906/13 21.08 chlorophenol 0.95 U 0.99 0.99 0.99 ug/L 0.906/13 21.08 chlorophenol 0.95 U 0.99 0.99 0.99 ug/L 0.906/13 21.08 chlorophenol 0.95 U 0.99 0.99 0.99 ug/L 0.906/13 21.08 chlorophenol 0.48 U 0.95 0.48 0.26 ug/L 0.906/13 21.08 c	Chlorophenol Q.48 U Q.95 Q.48 Q.28 Ug/L Q.9106/13.21:0.8 Chlorophenyl phenyl ether Q.48 U Q.19 Q.48 Q.29 Ug/L Q.9106/13.21:0.8 Chlorophenyl phenyl ether Q.48 U Q.19 Q.95 Q.048 Ug/L Q.9106/13.21:0.8 Chlorophenyl phenyl ether Q.95 U Q.19 Q.95 Q.048 Ug/L Q.9106/13.21:0.8 Chlorophenyl phenyl ether Q.95 U Q.19 Q.95 Q.042 Ug/L Q.9106/13.21:0.8 Chlorophenyl ether Q.95 U Q.95 Q.95 Q.019 Ug/L Q.9106/13.21:0.8 Q.20 Ug/L Q.20 Q	A Commence of the Control of the Con						(P) - p)			
Chlorophenyl phenyl ether 0.48 U 1.9 0.48 0.29 ug/L 0.906/13 21.08 0.005 0.048 ug/L 0.906/13 21.08 0.005 0.048 ug/L 0.906/13 21.08 0.005 0.045 ug/L 0.906/13 21.08 0.005 0	Chlorophenyl phenyl ether 0.48 U 0.99 0.48 0.29 ug/L 0.906/13 21:08 0.005 0.005 0.006 0.005 0.006 0.005 0.006							7			
hibenzel, alpanthracene 0.095 U 0.19 0.095 0.048 ug/L 09/06/13 21:08 bibenzel, alpanthracene 0.095 U 0.99 0.095 0.042 ug/L 09/06/13 21:08 bibenzelouran 0.095 U 0.995 0.095 0.019 ug/L 09/06/13 21:08 bibenzelouran 0.095 U 0.995 0.095 0.019 ug/L 09/06/13 21:08 13-20 bibenzene 0.48 U 0.95 0.48 0.28 ug/L 09/06/13 21:08 0.30 bibenzene 0.48 U 0.95 0.48 0.22 ug/L 09/06/13 21:08 0.30 bibenzene 0.48 U 0.95 0.48 0.22 ug/L 09/06/13 21:08 0.30 bibenzene 0.48 U 0.95 0.48 0.22 ug/L 09/06/13 21:08 0.30 bibenzene 0.48 U 0.95 0.48 0.32 ug/L 09/06/13 21:08 0.30 bibenzene 0.48 U 0.95 0.48 0.35 ug/L 09/06/13 21:08 0.30 bibenzene 0.48 U 1.9 0.48 0.48 ug/L 09/06/13 21:08 0.30 bibenzene 0.48 U 1.9 0.48 0.48 ug/L 09/06/13 21:08 0.30 bibenzene 0.30 U 1.9 0.48 0.48 ug/L 09/06/13 21:08 0.30 bibenzene 0.30 U 1.9 0.48 0.24 ug/L 09/06/13 21:08 0.30 bibenzene 0.30 U 1.9 0.48 0.24 ug/L 09/06/13 21:08 0.30 bibenzene 0.30 U 1.9 0.48 0.24 ug/L 09/06/13 21:08 0.30 bibenzene 0.30 U 1.9 0.48 0.24 ug/L 09/06/13 21:08 0.30 bibenzene 0.30 U 1.9 0.35 0.30 ug/L 09/06/13 21:08 0.30 bibenzene 0.30 U 1.9 0.35 0.30 ug/L 09/06/13 21:08 0.30 bibenzene 0.30 U 1.9 0.35 0.30 ug/L 09/06/13 21:08 0.30 bibenzene 0.30 U 1.9 0.35 0.30 ug/L 09/06/13 21:08 0.30 bibenzene 0.30 U 1.9 0.35 0.30 ug/L 09/06/13 21:08 0.30 bibenzene 0.30 U 1.9 0.35 0.30 ug/L 09/06/13 21:08 0.30 bibenzene 0.30 U 1.9 0.35 0.30 ug/L 09/06/13 21:08 0.30 bibenzene 0.30 U 1.9 0.35 0.30 ug/L 09/06/13 21:08 0.30 bibenzene 0.30 U 1.9 0.35 0.48 0.20 ug/L 09/06/13 21:08 0.30 bibenzene 0.30 U 1.9 0.35 0.48 0.20 ug/L 09/06/13 21:08 0.30 bibenzene 0.30 U 1.9 0.35 0.48 0.20 ug/L 09/06/13 21:08 0.30 bibenzene 0.30 U 1.9 0.35 0.48 0.20 ug/L 09/06/13 21:08 0.30 bibenzene 0.30 U 1.9 0.35 0.48 0.26 ug/L 09/06/13 21:08 0.30 bibenzene 0.30 U 1.9 0.35 0.48 0.26 ug/L 09/06/13 21:08 0.30 bibenzene 0.30 U 1.9 0.35 0.48 0.26 ug/L 09/06/13 21:08 0.30 bibenzene 0.30 U 1.9 0.35 0.48 0.26 ug/L 09/06/13 21:08 0.30 bibenzene 0.30 U 1.9 0.35 0.48 0.26 ug/L 09/06/13 21:08 0.30 bibenzene 0.30 U 1.9 0.35 0.48 0.26 ug/L 09/06/13 2	hiberzéa, hanthracene 0.095 U 0.19 0.095 0.048 ug/L 09/06/13 21:08 hiberzéa, hanthracene 0.095 U 0.19 0.095 0.042 ug/L 09/06/13 21:08 hiberzéaluran 0.095 U 0.95 0.095 0.042 ug/L 09/06/13 21:08 hiberzéaluran 0.095 U 0.95 0.095 0.019 ug/L 09/06/13 21:08 diberzéaluran 0.095 U 0.95 0.48 0.28 ug/L 09/06/13 21:08 diberzéaluran 0.095 U 0.95 0.48 0.28 ug/L 09/06/13 21:08 diberzéaluran 0.095 U 0.95 0.48 0.22 ug/L 09/06/13 21:08 diberzéaluran 0.095 U 0.95 0.48 0.22 ug/L 09/06/13 21:08 diberzéaluran 0.095 U 0.95 0.48 0.32 ug/L 09/06/13 21:08 diberzéaluran 0.095 U 0.95 0.48 0.32 ug/L 09/06/13 21:08 diberzéaluran 0.095 U 1.9 0.48 0.18 ug/L 09/06/13 21:08 diberzéaluran 0.095 U 1.9 0.95 0.57 ug/L 09/06/13 21:08 diberzéaluran 0.095 U 1.9 0.95 0.57 ug/L 09/06/13 21:08 diberzéaluran 0.095 U 1.9 0.48 0.24 ug/L 09/06/13 21:08 diberzéaluran 0.095 U 1.9 0.48 0.24 ug/L 09/06/13 21:08 diberzéaluran 0.095 U 1.9 0.95 0.64 ug/L 09/06/13 21:08 diberzéaluran 0.095 U 1.9 0.95 0.64 ug/L 09/06/13 21:08 diberzéaluran 0.095 U 1.9 0.95 0.64 ug/L 09/06/13 21:08 diberzéaluran 0.095 U 1.9 0.995 0.64 ug/L 09/06/13 21:08 diberzéaluran 0.095 U 0.19 0.095 0.030 ug/L 09/06/13 21:08 diberzéaluran 0.095 U 0.19 0.095 0.042 ug/L 09/06/13 21:08 diberzéaluran 0.095 U 0.19 0.095 0.042 ug/L 09/06/13 21:08 diberzéaluran 0.095 U 0.19 0.095 0.042 ug/L 09/06/13 21:08 diberzéaluran 0.095 U 0.19 0.095 0.042 ug/L 09/06/13 21:08 diberzéaluran 0.095 U 0.19 0.095 0.042 ug/L 09/06/13 21:08 diberzéaluran 0.095 U 0.19 0.095 0.044 ug/L 09/06/13 21:08 diberzéaluran 0.095 U 0.19 0.095 0.044 ug/L 09/06/13 21:08 diberzéaluran 0.095 U 0.19 0.095 0.044 ug/L 09/06/13 21:08 diberzéaluran 0.095 U 0.19 0.095 0.044 ug/L 09/06/13 21:08 diberzéaluran 0.095 U 0.19 0.095 0.044 ug/L 09/06/13 21:08 diberzéaluran 0.095 U 0.19 0.095 0.048 0.040 ug/L 09/06/13 21:08 diberzéaluran 0.095 U 0.19 0.095 0.048 0.06 ug/L 09/06/13 21:08 diberzéaluran 0.095 U 0.19 0.095 0.048 0.06 ug/L 09/06/13 21:08 diberzéaluran 0.095 U 0.19 0.095 0.048 0.06 ug/L 09/06/13 21:08 diberzéaluran 0.095 U 0.19 0.095 0.048 0.										
Department Dep	Benzofuran 0.095 U 0.95 0.095 0.019 ug/L 0.906/13 21.08 0.2016/norbenzene 0.48 U 0.95 0.48 0.28 ug/L 0.906/13 21.08 0.2016/norbenzene 0.48 U 0.95 0.48 0.22 ug/L 0.906/13 21.08 0.2016/norbenzene 0.48 U 0.95 0.48 0.32 ug/L 0.906/13 21.08 0.3016/norbenzene 0.48 U 0.95 0.48 0.32 ug/L 0.906/13 21.08 0.3016/norbenzidine 0.95 U 0.48 0.95 0.35 ug/L 0.906/13 21.08 0.3016/norbenzidine 0.95 U 0.48 0.95 0.35 ug/L 0.906/13 21.08 0.3016/norbenzidine 0.95 U 0.906/13 21.08	Minimum and the second									
2-Dichlorobenzene 0.48 U 0.95 0.48 0.28 ug/L 09/06/13 21:08 3-Dichlorobenzene 0.48 U 0.95 0.48 0.22 ug/L 09/06/13 21:08 4-Dichlorobenzene 0.48 U 0.95 0.48 0.22 ug/L 09/06/13 21:08 4-Dichlorobenzene 0.48 U 0.95 0.48 0.32 ug/L 09/06/13 21:08 4-Dichlorobenzidine 0.95 U 4.8 0.95 0.35 ug/L 09/06/13 21:08 4-Dichlorobenzidine 0.95 U 1.9 0.48 0.18 ug/L 09/06/13 21:08 iethyl phthalate 0.95 U 1.9 0.95 0.57 ug/L 09/06/13 21:08 iethyl phthalate 0.95 U 1.9 0.95 0.57 ug/L 09/06/13 21:08 iethyl phthalate 0.48 U 1.9 0.48 0.24 ug/L 09/06/13 21:08 iethyl phthalate 0.48 U 1.9 0.48 0.24 ug/L 09/06/13 21:08 iethyl phthalate 0.48 U 1.9 0.48 0.24 ug/L 09/06/13 21:08 iethyl phthalate 0.48 U 1.9 0.48 0.28 ug/L 09/06/13 21:08 iethyl phthalate 0.48 U 1.9 0.95 0.64 ug/L 09/06/13 21:08 iethyl phthalate 0.95 U 1.9 0.95 0.64 ug/L 09/06/13 21:08 iethyl phthalate 0.95 U 1.9 0.95 0.64 ug/L 09/06/13 21:08 iethyl phthalate 0.95 U 1.9 0.95 0.64 ug/L 09/06/13 21:08 iethyl phthalate 0.95 U 1.9 0.95 0.64 ug/L 09/06/13 21:08 iethyl phthalate 0.95 U 0.19 0.95 0.04 ug/L 09/06/13 21:08 iethyl phthalate 0.48 U 1.9 0.48 0.22 ug/L 09/06/13 21:08 iethyl phthalate 0.48 U 1.9 0.95 0.04 ug/L 09/06/13 21:08 iethyl phthalate 0.48 U 0.95 0.04 ug/L 09/06/13 21:08 iethyl phthalate 0.48 U 0.95 0.04 ug/L 09/06/13 21:08 iethyl phthalate 0.48 U 0.95 0.04 ug/L 09/06/13 21:08 iethyl phthalate 0.48 U 0.95 0.04 ug/L 09/06/13 21:08 iethyl phthalate 0.48 U 0.95 0.04 ug/L 09/06/13 21:08 iethyl phthalate 0.095 U 0.19 0.095 0.06 ug/L 09/06/13 21:08 iethyl phthalate 0.095 U 0.19 0.095 0.06 ug/L 09/06/13 21:08 iethyl phthalate 0.095 U 0.19 0.095 0.06 ug/L 09/06/13 21:08 iethyl phthalate 0.095 U 0.19 0.095 0.06 ug/L 09/06/13 21:08 iethyl phthalate 0.095 U 0.19 0.095 0.06 ug/L 09/06/13 21:08 iethyl phthalate 0.095 U 0.19 0.095 0.06 ug/L 09/06/13 21:08 iethyl phthalate 0.095 U 0.19 0.095 0.06 ug/L 09/06/13 21:08 iethyl phthalate 0.095 U 0.19 0.095 0.06 ug/L 09/06/13 21:08 iethyl phthalate 0.095 U 0.19 0.095 0.06 ug/L 09/06/13 21:08 iethyl phthalate 0.095 U 0.19 0.095 0.06 ug/L 09/06/	2-Dichlorobenzene 0.48 U 0.95 0.48 0.28 ug/L 09/06/13 21:08 3-Dichlorobenzene 0.48 U 0.95 0.48 0.22 ug/L 09/06/13 21:08 4-Dichlorobenzene 0.48 U 0.95 0.48 0.32 ug/L 09/06/13 21:08 4-Dichlorobenzidine 0.95 U 4.8 0.95 0.35 ug/L 09/06/13 21:08 4-Dichlorobenzidine 0.95 U 1.9 0.48 0.18 ug/L 09/06/13 21:08 4-Dichlorophenol 0.48 U 1.9 0.48 0.18 ug/L 09/06/13 21:08 4-Dichlorophenol 0.48 U 1.9 0.48 0.24 ug/L 09/06/13 21:08 4-Dimethylphenol 0.48 U 1.9 0.48 0.24 ug/L 09/06/13 21:08 4-Dimethylphenol 0.48 U 1.9 0.48 0.28 ug/L 09/06/13 21:08 4-Dimethylphenol 0.48 U 1.9 0.48 0.28 ug/L 09/06/13 21:08 4-Dimethylphenol 0.48 U 1.9 0.95 0.64 ug/L 09/06/13 21:08 4-Dimethylphenol 0.95 U 1.9 0.95 0.64 ug/L 09/06/13 21:08 4-Dimethylphenol 0.95 U 1.9 0.95 0.64 ug/L 09/06/13 21:08 4-Dimethylphenol 0.95 U 1.9 0.95 0.64 ug/L 09/06/13 21:08 4-Dimethylphenol 0.95 U 1.9 0.95 0.64 ug/L 09/06/13 21:08 4-Dimethylphenol 0.95 U 1.9 0.95 0.64 ug/L 09/06/13 21:08 4-Dimethylphenol 0.95 U 1.9 0.95 0.64 ug/L 09/06/13 21:08 4-Dimethylphenol 0.95 U 1.9 0.95 0.64 ug/L 09/06/13 21:08 4-Dimethylphenol 0.95 U 1.9 0.95 0.30 ug/L 09/06/13 21:08 4-Dimethylphenol 0.95 U 0.19 0.95 0.30 ug/L 09/06/13 21:08 4-Dimethylphenol 0.95 U 0.19 0.95 0.042 ug/L 09/06/13 21:08 4-Dimethylphenol 0.95 U 0.19 0.95 0.042 ug/L 09/06/13 21:08 4-Dimethylphenol 0.95 U 0.19 0.95 0.081 ug/L 09/06/13 21:08 4-Dimethylphenol 0.95 U 0.19 0.95 0.081 ug/L 09/06/13 21:08 4-Dimethylphenol 0.95 U 0.19 0.95 0.081 ug/L 09/06/13 21:08 4-Dimethylphenol 0.95 U 0.19 0.95 0.081 ug/L 09/06/13 21:08 4-Dimethylphenol 0.95 U 0.19 0.95 0.081 ug/L 09/06/13 21:08 4-Dimethylphenol 0.95 U 0.19 0.95 0.081 ug/L 09/06/13 21:08 4-Dimethylphenol 0.95 U 0.19 0.95 0.081 ug/L 09/06/13 21:08 4-Dimethylphenol 0.95 U 0.19 0.95 0.081 ug/L 09/06/13 21:08 4-Dimethylphenol 0.95 U 0.19 0.95 0.081 ug/L 09/06/13 21:08 4-Dimethylphenol 0.95 U 0.19 0.95 0.081 ug/L 09/06/13 21:08 4-Dimethylphenol 0.95 U 0.19 0.95 0.081 ug/L 09/06/13 21:08 4-Dimethylphenol 0.95 U 0.19 0.95 0.081 ug/L 09/06/13 21:08 4-Dimethylphenol 0.95 U 0.95 0.08										
3-Dichlorobenzene 0.48 U 0.95 0.48 0.22 ug/L 0.906/13 21:08	3-Dichlorobenzene 0.48 U 0.95 0.48 0.22 Ug/L 0.906/13 21:08										
4-Dichlorobenzene 0.48 U 0.95 0.48 0.32 ug/L 09/06/13 21:08 3'-Dichlorobenzidine 0.95 U 4.8 0.95 0.35 ug/L 09/06/13 21:08 4-Dichlorophenol 0.48 U 1.9 0.48 0.18 ug/L 09/06/13 21:08 4-Dichlorophenol 0.48 U 1.9 0.48 0.18 ug/L 09/06/13 21:08 iethyl phthalate 0.95 U 1.9 0.95 0.57 ug/L 09/06/13 21:08 iethyl phthalate 0.95 U 1.9 0.95 0.57 ug/L 09/06/13 21:08 iethyl phthalate 0.48 U 1.9 0.48 0.24 ug/L 09/06/13 21:08 imethyl phthalate 0.95 U 1.9 0.48 0.24 ug/L 09/06/13 21:08 imethyl phthalate 0.95 U 1.9 0.95 0.64 ug/L 09/06/13 21:08 imethyl phthalate 0.95 U 1.9 0.95 0.64 ug/L 09/06/13 21:08 imethyl phthalate 0.95 U 1.9 0.95 0.64 ug/L 09/06/13 21:08 imethyl phthalate 0.95 U 1.9 0.95 0.64 ug/L 09/06/13 21:08 imethyl phthalate 0.95 U 1.9 0.95 0.04 ug/L 09/06/13 21:08 imethyl phthalate 0.95 U 1.9 0.95 0.30 ug/L 09/06/13 21:08 imethyl phthalate 0.95 U 1.9 0.95 0.30 ug/L 09/06/13 21:08 imethyl phthalate 0.95 U 0.19 0.095 0.30 ug/L 09/06/13 21:08 imethyl phthalate 0.95 U 0.19 0.095 0.042 ug/L 09/06/13 21:08 imethyl phthalate 0.095 U 0.19 0.095 0.042 ug/L 09/06/13 21:08 imethyl phthalate 0.095 U 0.19 0.095 0.041 ug/L 09/06/13 21:08 imethyl phthalate 0.095 U 0.19 0.095 0.041 ug/L 09/06/13 21:08 imethyl phthalate 0.095 U 0.19 0.095 0.041 ug/L 09/06/13 21:08 imethyl phthalate 0.095 U 0.19 0.095 0.041 ug/L 09/06/13 21:08 imethyl phthalate 0.095 U 0.19 0.095 0.041 ug/L 09/06/13 21:08 imethyl phthalate 0.095 U 0.19 0.095 0.041 ug/L 09/06/13 21:08 imethyl phthalate 0.095 U 0.19 0.095 0.041 ug/L 09/06/13 21:08 imethyl phthalate 0.095 U 0.19 0.095 0.041 ug/L 09/06/13 21:08 imethyl phthalate 0.095 U 0.19 0.095 0.041 ug/L 09/06/13 21:08 imethyl phthalate 0.095 U 0.19 0.095 0.041 ug/L 09/06/13 21:08 imethyl phthalate 0.095 U 0.19 0.095 0.048 0.061 ug/L 09/06/13 21:08 imethyl phthalate 0.095 U 0.19 0.095 0.048 0.061 ug/L 09/06/13 21:08 imethyl phthalate 0.095 U 0.19 0.095 0.048 0.061 ug/L 09/06/13 21:08 imethyl phthalate 0.095 U 0.19 0.095 0.060 ug/L 09/06/13 21:08 imethyl phthalate 0.095 U 0.19 0.095 0.060 ug/L 09/06/13 21:08 imethyl phtha	4-Dichlorobenzene 0.48 U 0.95 0.48 0.32 ug/L 09/06/13 21:08 3'-Dichlorobenzidine 0.95 U 4.8 0.95 0.35 ug/L 09/06/13 21:08 4-Dichlorophenol 0.48 U 1.9 0.48 0.18 ug/L 09/06/13 21:08 4-Dichlorophenol 0.48 U 1.9 0.48 0.18 ug/L 09/06/13 21:08 1eithyl phthalate 0.95 U 1.9 0.48 0.24 ug/L 09/06/13 21:08 4-Dimethyl phthalate 0.95 U 1.9 0.48 0.24 ug/L 09/06/13 21:08 1-Dutyl phthalate 0.48 U 1.9 0.48 0.24 ug/L 09/06/13 21:08 1-Dutyl phthalate 0.95 U 1.9 0.95 0.67 ug/L 09/06/13 21:08 1-Dutyl phthalate 0.95 U 1.9 0.95 0.64 ug/L 09/06/13 21:08 1-Dutyl phthalate 0.95 U 1.9 0.95 0.64 ug/L 09/06/13 21:08 1-Dutyl phthalate 0.95 U 1.9 0.95 0.64 ug/L 09/06/13 21:08 1-Dutyl phthalate 0.95 U 1.9 0.95 0.04 ug/L 09/06/13 21:08 1-Dutyl phthalate 0.95 U 1.9 0.48 0.22 ug/L 09/06/13 21:08 1-Dutyl phthalate 0.48 U 1.9 0.48 0.22 ug/L 09/06/13 21:08 1-Dutyl phthalate 0.95 U 0.19 0.95 0.042 ug/L 09/06/13 21:08 1-Dutyl phthalate 0.95 U 0.19 0.95 0.042 ug/L 09/06/13 21:08 1-Dutyl phthalate 0.95 U 0.19 0.095 0.042 ug/L 09/06/13 21:08 1-Dutyl phthalate 0.95 U 0.19 0.095 0.042 ug/L 09/06/13 21:08 1-Dutyl phthalate 0.95 U 0.19 0.095 0.042 ug/L 09/06/13 21:08 1-Dutyl phthalate 0.95 U 0.19 0.095 0.042 ug/L 09/06/13 21:08 1-Dutyl phthalate 0.95 U 0.19 0.095 0.041 ug/L 09/06/13 21:08 1-Dutyl phthalate 0.95 U 0.99 0.095 0.081 ug/L 09/06/13 21:08 1-Dutyl phthalate 0.95 U 0.99 0.095 0.081 ug/L 09/06/13 21:08 1-Dutyl phthalate 0.095 U 0.19 0.095 0.081 ug/L 09/06/13 21:08 1-Dutyl phthalate 0.095 U 0.19 0.095 0.081 ug/L 09/06/13 21:08 1-Dutyl phthalate 0.095 U 0.19 0.095 0.081 ug/L 09/06/13 21:08 1-Dutyl phthalate 0.095 U 0.19 0.095 0.081 ug/L 09/06/13 21:08 1-Dutyl phthalate 0.095 U 0.19 0.095 0.081 ug/L 09/06/13 21:08 1-Dutyl phthalate 0.095 U 0.19 0.095 0.081 ug/L 09/06/13 21:08 1-Dutyl phthalate 0.095 U 0.19 0.095 0.086 ug/L 09/06/13 21:08 1-Dutyl phthalate 0.095 U 0.19 0.095 0.086 ug/L 09/06/13 21:08 1-Dutyl phthalate 0.095 U 0.19 0.095 0.080 ug/L 09/06/13 21:08 1-Dutyl phthalate 0.095 U 0.19 0.095 0.080 ug/L 09/06/13 21:08 1-Dutyl phthalate 0.095 U 0.										
3-Dichlorobenzidine 0.95 U 4.8 0.95 0.35 ug/L 09/06/13 21:08 4-Dichlorophenol 0.48 U 1.9 0.48 0.18 ug/L 09/06/13 21:08 iethyl phthalate 0.95 U 1.9 0.95 0.57 ug/L 09/06/13 21:08 4-Dimethyl phthalate 0.95 U 1.9 0.95 0.57 ug/L 09/06/13 21:08 iethyl phthalate 0.48 U 1.9 0.48 0.24 ug/L 09/06/13 21:08 iethyl phthalate 0.48 U 1.9 0.48 0.24 ug/L 09/06/13 21:08 iethyl phthalate 0.48 U 1.9 0.48 0.24 ug/L 09/06/13 21:08 iethyl phthalate 0.48 U 1.9 0.95 0.64 ug/L 09/06/13 21:08 iethyl phthalate 0.95 U 1.9 0.95 0.64 ug/L 09/06/13 21:08 iethyl phthalate 0.95 U 1.9 0.95 0.64 ug/L 09/06/13 21:08 iethyl phthalate 0.95 U 1.9 0.95 0.64 ug/L 09/06/13 21:08 iethyl phthalate 0.95 U 1.9 0.95 0.30 ug/L 09/06/13 21:08 iethyl phthalate 0.95 U 1.9 0.95 0.48 0.22 ug/L 09/06/13 21:08 iethyl phthalate 0.085 U 0.19 0.095 0.042 ug/L 09/06/13 21:08 iethyl phthalate 0.095 U 0.19 0.095 0.081 ug/L 09/06/13 21:08 iethyl phthalate 0.095 U 0.19 0.095 0.081 ug/L 09/06/13 21:08 iethyl phthalate 0.085 U 0.19 0.095 0.081 ug/L 09/06/13 21:08 iethyl phthalate 0.085 U 0.19 0.095 0.081 ug/L 09/06/13 21:08 iethyl phthalate 0.085 U 0.19 0.095 0.081 ug/L 09/06/13 21:08 iethyl phthalate 0.085 U 0.95 0.48 0.26 ug/L 09/06/13 21:08 iethyl phthalate 0.085 U 0.95 0.48 0.26 ug/L 09/06/13 21:08 iethyl phthalate 0.085 U 0.95 0.48 0.26 ug/L 09/06/13 21:08 iethyl phthalate 0.095 U 0.19 0.095 0.086 ug/L 09/06/13 21:08 iethyl phthalate 0.095 U 0.19 0.095 0.086 ug/L 09/06/13 21:08 iethyl phthalate 0.095 U 0.19 0.095 0.086 ug/L 09/06/13 21:08 iethyl phthalate 0.095 U 0.19 0.095 0.086 ug/L 09/06/13 21:08 iethyl phthalate 0.095 U 0.19 0.095 0.086 ug/L 09/06/13 21:08 iethyl phthalate 0.095 U 0.19 0.095 0.086 ug/L 09/06/13 21:08 iethyl phthalate 0.095 U 0.19 0.095 0.086 ug/L 09/06/13 21:08 iethyl phthalate 0.095 U 0.19 0.095 0.086 ug/L 09/06/13 21:08 iethyl phthalate 0.095 U 0.19 0.095 0.086 ug/L 09/06/13 21:08 iethyl phthalate 0.095 U 0.19 0.095 0.086 ug/L 09/06/13 21:08 iethyl phthalate 0.095 U 0.19 0.095 0.086 ug/L 09/06/13 21:08 iethyl phthalate 0.095 U 0.19 0.095 0.086 ug/L	3-Dichlorobenzidine 0.95 U 4.8 0.95 0.35 ug/L 09/06/13 21:08 4-Dichlorophenol 0.48 U 1.9 0.48 0.18 ug/L 09/06/13 21:08 teithyl phthalate 0.95 U 1.9 0.95 0.57 ug/L 09/06/13 21:08 teithyl phthalate 0.95 U 1.9 0.95 0.57 ug/L 09/06/13 21:08 teithyl phthalate 0.48 U 1.9 0.48 0.24 ug/L 09/06/13 21:08 teithyl phthalate 0.95 U 1.9 0.48 0.24 ug/L 09/06/13 21:08 teithyl phthalate 0.95 U 1.9 0.48 0.28 ug/L 09/06/13 21:08 teithyl phthalate 0.95 U 1.9 0.95 0.64 ug/L 09/06/13 21:08 teithyl phthalate 0.95 U 1.9 0.95 0.64 ug/L 09/06/13 21:08 de-Dinitro-2-methyl phthalate 0.95 U 1.9 0.95 0.64 ug/L 09/06/13 21:08 de-Dinitro-2-methyl phthalate 0.95 U 1.9 0.95 0.04 ug/L 09/06/13 21:08 de-Dinitro-2-methyl phthalate 0.95 U 1.9 0.48 0.22 ug/L 09/06/13 21:08 de-Dinitro-2-methyl phthalate 0.48 U 1.9 0.48 0.22 ug/L 09/06/13 21:08 de-Dinitro-2-methyl phthalate 0.48 U 1.9 0.48 0.22 ug/L 09/06/13 21:08 devachlorobenzene 0.095 U 0.19 0.095 0.042 ug/L 09/06/13 21:08 devachlorobenzene 0.095 U 0.19 0.095 0.030 ug/L 09/06/13 21:08 devachlorobenzene 0.095 U 0.19 0.095 0.030 ug/L 09/06/13 21:08 devachlorobenzene 0.095 U 0.19 0.095 0.081 ug/L 09/06/13 21:08 devachlorobenzene 0.48 U 0.95 0.48 0.26 ug/L 09/06/13 21:08 devachlorobenzene 0.48 U 0.95 0.48 0.26 ug/L 09/06/13 21:08 devachlorobenzene 0.48 U 0.95 0.48 0.26 ug/L 09/06/13 21:08 devachlorobenzene 0.48 U 0.95 0.48 0.26 ug/L 09/06/13 21:08 devachlorobenzene 0.48 U 0.95 0.48 0.18 ug/L 09/06/13 21:08 devachlorobenzene 0.48 U 0.95 0.48 0.18 ug/L 09/06/13 21:08 devachlorobenzene 0.48 U 0.95 0.48 0.18 ug/L 09/06/13 21:08 devachlorobenzene 0.095 U 0.19 0.095 0.041 ug/L 09/06/13 21:08 devachlorobenzene 0.095 U 0.19 0.095 0.041 ug/L 09/06/13 21:08 devachlorobenzene 0.095 U 0.19 0.095 0.041 ug/L 09/06/13 21:08 devachlorobenzene 0.095 U 0.19 0.095 0.041 ug/L 09/06/13 21:08 devachlorobenzene 0.095 U 0.19 0.095 0.048 0.16 ug/L 09/06/13 21:08 devachlorobenzene 0.095 U 0.19 0.095 0.060 ug/L 09/06/13 21:08 devachlorobenzene 0.095 U 0.19 0.095 0.060 ug/L 09/06/13 21:08 devachlorobenzene 0.095 U 0.19 0.095 0.06										
4-Dichlorophenol 0.48 U 1.9 0.48 0.18 ug/L 09/06/13 21:08 ieithyl phthalate 0.95 U 1.9 0.95 0.57 ug/L 09/06/13 21:08 ieithyl phthalate 0.48 U 1.9 0.48 0.24 ug/L 09/06/13 21:08 imethyl phthalate 0.48 U 1.9 0.48 0.24 ug/L 09/06/13 21:08 imethyl phthalate 0.48 U 1.9 0.48 0.28 ug/L 09/06/13 21:08 imethyl phthalate 0.95 U 1.9 0.48 0.28 ug/L 09/06/13 21:08 imethyl phthalate 0.95 U 1.9 0.48 0.28 ug/L 09/06/13 21:08 imethyl phthalate 0.95 U 1.9 0.95 0.64 ug/L 09/06/13 21:08 imethyl phthalate 0.95 U 1.9 0.95 0.64 ug/L 09/06/13 21:08 imethyl phthalate 0.95 U 1.9 0.95 0.30 ug/L 09/06/13 21:08 imethyl phthalate 0.95 U 1.9 0.48 0.22 ug/L 09/06/13 21:08 imethyl phthalate 0.95 U 1.9 0.48 0.22 ug/L 09/06/13 21:08 imethyl phthalate 0.48 U 1.9 0.48 0.22 ug/L 09/06/13 21:08 imethyl phthalate 0.48 U 1.9 0.95 0.042 ug/L 09/06/13 21:08 imethyl phthalate 0.95 U 0.19 0.095 0.042 ug/L 09/06/13 21:08 imethyl phthalate 0.95 U 0.19 0.095 0.039 ug/L 09/06/13 21:08 imethyl phthalate 0.095 U 0.19 0.095 0.081 ug/L 09/06/13 21:08 imethyl phthalate 0.095 U 0.19 0.095 0.081 ug/L 09/06/13 21:08 imethyl phthalate 0.048 U 0.95 0.48 0.26 ug/L 09/06/13 21:08 imethyl phthalate 0.048 U 0.95 0.48 0.26 ug/L 09/06/13 21:08 imethyl phthalate 0.095 U 0.19 0.095 0.041 ug/L 09/06/13 21:08 imethyl phthalate 0.095 U 0.19 0.095 0.041 ug/L 09/06/13 21:08 imethyl phthalate 0.095 U 0.19 0.095 0.041 ug/L 09/06/13 21:08 imethyl phthalate 0.095 U 0.19 0.095 0.041 ug/L 09/06/13 21:08 imethyl phthalate 0.095 U 0.19 0.095 0.086 ug/L 09/06/13 21:08 imethyl phthalate 0.095 U 0.19 0.095 0.086 ug/L 09/06/13 21:08 imethyl phthalate 0.095 U 0.19 0.095 0.086 ug/L 09/06/13 21:08 imethyl phthalate 0.095 U 0.19 0.095 0.086 ug/L 09/06/13 21:08 imethyl phthalate 0.095 U 0.19 0.095 0.086 ug/L 09/06/13 21:08 imethyl phthalate 0.095 U 0.19 0.095 0.086 ug/L 09/06/13 21:08 imethyl phthalate 0.095 U 0.19 0.095 0.086 ug/L 09/06/13 21:08 imethyl phthalate 0.095 U 0.19 0.095 0.086 ug/L 09/06/13 21:08 imethyl phthalate 0.095 U 0.19 0.095 0.086 ug/L 09/06/13 21:08 imethyl phthalate 0.095 U 0.1	4-Dichlorophenol 0.48 U 1.9 0.48 0.18 ug/L 09/06/13 21:08 ieithyl phthalate 0.95 U 1.9 0.95 0.57 ug/L 09/06/13 21:08 ieithyl phthalate 0.95 U 1.9 0.95 0.57 ug/L 09/06/13 21:08 ieithyl phthalate 0.48 U 1.9 0.48 0.24 ug/L 09/06/13 21:08 imethyl phthalate 0.48 U 1.9 0.48 0.24 ug/L 09/06/13 21:08 imethyl phthalate 0.95 U 1.9 0.95 0.64 ug/L 09/06/13 21:08 imethyl phthalate 0.95 U 1.9 0.95 0.64 ug/L 09/06/13 21:08 imethyl phthalate 0.95 U 1.9 0.95 0.64 ug/L 09/06/13 21:08 imethyl phthalate 0.95 U 1.9 0.95 0.64 ug/L 09/06/13 21:08 imethyl phthalate 0.95 U 1.9 0.95 0.30 ug/L 09/06/13 21:08 imethyl phthalate 0.95 U 1.9 0.48 0.22 ug/L 09/06/13 21:08 imethyl phthalate 0.95 U 1.9 0.48 0.22 ug/L 09/06/13 21:08 imethyl phthalate 0.48 U 1.9 0.95 0.042 ug/L 09/06/13 21:08 imethyl phthalate 0.095 U 0.19 0.095 0.039 ug/L 09/06/13 21:08 imethyl phthalate 0.095 U 0.19 0.095 0.039 ug/L 09/06/13 21:08 imethyl phthalate 0.095 U 0.19 0.095 0.039 ug/L 09/06/13 21:08 imethyl phthalate 0.095 U 0.19 0.095 0.039 ug/L 09/06/13 21:08 imethyl phthalate 0.095 U 0.19 0.095 0.039 ug/L 09/06/13 21:08 imethyl phthalate 0.095 U 0.19 0.095 0.039 ug/L 09/06/13 21:08 imethyl phthalate 0.048 U 0.95 0.48 0.26 ug/L 09/06/13 21:08 imethyl phthalate 0.048 U 0.95 0.48 0.26 ug/L 09/06/13 21:08 imethyl phthalate 0.095 U 0.19 0.095 0.041 ug/L 09/06/13 21:08 imethyl phthalate 0.095 U 0.19 0.095 0.041 ug/L 09/06/13 21:08 imethyl phthalate 0.095 U 0.19 0.095 0.041 ug/L 09/06/13 21:08 imethyl phthalate 0.095 U 0.19 0.095 0.041 ug/L 09/06/13 21:08 imethyl phthalate 0.095 U 0.19 0.095 0.048 0.26 ug/L 09/06/13 21:08 imethyl phthalate 0.095 U 0.19 0.095 0.041 ug/L 09/06/13 21:08 imethyl phthalate 0.095 U 0.19 0.095 0.048 0.26 ug/L 09/06/13 21:08 imethyl phthalate 0.095 U 0.19 0.095 0.048 0.26 ug/L 09/06/13 21:08 imethyl phthalate 0.095 U 0.19 0.095 0.048 0.26 ug/L 09/06/13 21:08 imethyl phthalate 0.095 U 0.19 0.095 0.060 ug/L 09/06/13 21:08 imethyl phthalate 0.095 U 0.19 0.095 0.060 ug/L 09/06/13 21:08 imethyl phthalate 0.095 U 0.19 0.095 0.060 ug/L 09/06/13 21:08 ime										
tethyl phthalate	Sethyl phthalate										
4-Dimethylphenol 0.48 U 1.9 0.48 0.24 ug/L 09/06/13 21:08 imethyl phthalate 0.48 U 1.9 0.48 0.28 ug/L 09/06/13 21:08 imethyl phthalate 0.95 U 1.9 0.95 0.64 ug/L 09/06/13 21:08 imethyl phthalate 0.95 U 1.9 0.95 0.64 ug/L 09/06/13 21:08 0.00 ug/L 0	4-Dimethylphenol 0.48 U 1.9 0.48 0.24 ug/L 09/06/13 21:08 imethyl phthalate 0.48 U 1.9 0.48 0.28 ug/L 09/06/13 21:08 imethyl phthalate 0.95 U 1.9 0.95 0.64 ug/L 09/06/13 21:08 imethyl phthalate 0.95 U 1.9 0.95 0.64 ug/L 09/06/13 21:08 imethyl phthalate 0.95 U 1.9 0.95 0.64 ug/L 09/06/13 21:08 imethyl phthalate 0.95 U 1.9 0.95 0.64 ug/L 09/06/13 21:08 imethyl phthalate 0.95 U 1.9 0.95 0.30 ug/L 09/06/13 21:08 imethyl phthalate 0.95 U 1.9 0.48 0.95 0.30 ug/L 09/06/13 21:08 imethyl phthalate 0.95 U 0.19 0.95 0.042 ug/L 09/06/13 21:08 imethyl phthalate 0.095 U 0.19 0.95 0.042 ug/L 09/06/13 21:08 imethyl phthalate 0.095 U 0.19 0.095 0.042 ug/L 09/06/13 21:08 imethyl phthalate 0.095 U 0.19 0.095 0.042 ug/L 09/06/13 21:08 imethyl phthalate 0.095 U 0.19 0.095 0.042 ug/L 09/06/13 21:08 imethyl phthalate 0.095 U 0.19 0.095 0.041 ug/L 09/06/13 21:08 imethyl phthalate 0.095 U 0.95 0.048 0.26 ug/L 09/06/13 21:08 imethyl phthalate 0.095 U 0.95 0.48 0.26 ug/L 09/06/13 21:08 imethyl phthalate 0.095 U 0.95 0.48 0.26 ug/L 09/06/13 21:08 imethyl phthalate 0.095 U 0.99 0.095 0.041 ug/L 09/06/13 21:08 imethyl phthalate 0.095 U 0.99 0.095 0.041 ug/L 09/06/13 21:08 imethyl phthalate 0.095 U 0.99 0.095 0.041 ug/L 09/06/13 21:08 imethyl phthalate 0.095 U 0.99 0.095 0.041 ug/L 09/06/13 21:08 imethyl phthalate 0.095 U 0.99 0.095 0.048 0.16 ug/L 09/06/13 21:08 imethyl phthalate 0.095 U 0.99 0.095 0.048 0.16 ug/L 09/06/13 21:08 imethyl phthalate 0.095 U 0.99 0.095 0.048 0.16 ug/L 09/06/13 21:08 imethyl phthalate 0.095 U 0.99 0.095 0.086 ug/L 09/06/13 21:08 imethyl phthalate 0.095 U 0.99 0.095 0.086 ug/L 09/06/13 21:08 imethyl phthalate 0.095 U 0.99 0.095 0.086 ug/L 09/06/13 21:08 imethyl phthalate 0.095 U 0.99 0.095 0.086 ug/L 09/06/13 21:08 imethyl phthalate 0.095 U 0.99 0.095 0.086 ug/L 09/06/13 21:08 imethyl phthalate 0.095 U 0.99 0.095 0.086 ug/L 09/06/13 21:08 imethyl phthalate 0.095 U 0.99 0.095 0.086 ug/L 09/06/13 21:08 imethyl phthalate 0.095 U 0.99 0.095 0.086 ug/L 09/06/13 21:08 imethyl phthalate 0.095 U 0.99 0.095 0.086 ug/L 09/										
imethyl phthalate 0.48 U 1.9 0.48 0.28 ug/L 09/06/13 21:08 i-n-butyl phthalate 0.95 U 1.9 0.95 0.64 ug/L 09/06/13 21:08 i6-Dinitro-2-methylphenol 3.8 U 4.8 3.8 2.3 ug/L 09/06/13 21:08 A-Dinitrophenol 0.95 U 4.8 0.95 0.30 ug/L 09/06/13 21:08 i-n-octyl phthalate 0.48 U 1.9 0.48 0.22 ug/L 09/06/13 21:08 i-n-octyl phthalate 0.48 U 1.9 0.48 0.22 ug/L 09/06/13 21:08 i-n-octyl phthalate 0.48 U 1.9 0.48 0.22 ug/L 09/06/13 21:08 i-n-octyl phthalate 0.48 U 1.9 0.48 0.22 ug/L 09/06/13 21:08 iucranthene 0.095 U 0.19 0.095 0.081 ug/L 09/06/13 21:08 iucranthene 0.095 U 0.19	simethyl phthalate 0.48 U 1.9 0.48 0.28 ug/L 0.9/6/13 21:08 i-n-butyl phthalate 0.95 U 1.9 0.95 0.64 ug/L 0.9/6/13 21:08 i6-Dinitro-2-methylphenol 3.8 U 4.8 3.8 2.3 ug/L 0.9/06/13 21:08 4-Dinitrophenol 0.95 U 4.8 0.95 0.30 ug/L 0.9/06/13 21:08 i-n-octyl phthalate 0.48 U 1.9 0.48 0.22 ug/L 0.9/06/13 21:08 luoranthene 0.095 U 0.19 0.095 0.042 ug/L 0.9/06/13 21:08 luorene 0.095 U 0.19 0.095 0.039 ug/L 0.9/06/13 21:08 exachlorobutadiene 0.48 U 0.95 0.48 0.26 ug/L 0.9/06/13 21:08 exachlorobutadiene 0.48 U 0.95 0.48 0.26 ug/L 0.9/06/13 21:08 exachlorobutadiene 0.48 U 0.95	AND THE STREET, IN									
1.9 1.0 1.9 1.0	1.9							2 22			
6.6-Dinitro-2-methylphenol 3.8 U 4.8 3.8 2.3 ug/L 09/06/13 21:08 6.4-Dinitrophenol 0.95 U 4.8 0.95 0.30 ug/L 09/06/13 21:08 6.4-Dinitrophenol 0.95 U 4.8 0.95 0.30 ug/L 09/06/13 21:08 6.4-Dinitro-cryl phthalate 0.48 U 1.9 0.48 0.22 ug/L 09/06/13 21:08 6.4-Local phthalate 0.095 U 0.19 0.095 0.042 ug/L 09/06/13 21:08 6.4-Local phthalate 0.095 U 0.19 0.095 0.039 ug/L 09/06/13 21:08 6.4-Local phthalate 0.095 U 0.19 0.095 0.081 ug/L 09/06/13 21:08 6.4-Local phthalate 0.48 U 0.95 0.48 0.26 ug/L 09/06/13 21:08 6.4-Local phthalate 0.48 U 0.95 0.48 0.18 ug/L 09/06/13 21:08 6.4-Local phthalate 0.095 U 0.19 0.095 0.48 0.14 ug/L 09/06/13 21:08	6.6-Dinitro-2-methylphenol 3.8 U 4.8 3.8 2.3 ug/L 09/06/13 21:08 6.4-Dinitrophenol 0.95 U 4.8 0.95 0.30 ug/L 09/06/13 21:08 6.1-n-octyl phthalate 0.48 U 1.9 0.48 0.22 ug/L 09/06/13 21:08 1.1-n-octyl phthalate 0.095 U 0.19 0.095 0.042 ug/L 09/06/13 21:08 1.1-n-octyl phthalate 0.095 U 0.19 0.095 0.042 ug/L 09/06/13 21:08 1.1-n-octyl phthalate 0.095 U 0.19 0.095 0.042 ug/L 09/06/13 21:08 1.1-n-octyl phthalate 0.095 U 0.19 0.095 0.081 ug/L 09/06/13 21:08 1.1-n-octyl phthalate 0.095 U 0.19 0.095 0.081 ug/L 09/06/13 21:08 1.1-n-octyl phthalate 0.048 U 0.95 0.48 0.26 ug/L 09/06/13 21:08 1.2-n-octyl phthalate 0.							(5)			
A-Dinitrophenol 0.95 U 4.8 0.95 0.30 ug/L 09/06/13.21:08 0:1-n-octyl phthalate 0.48 U 1.9 0.48 0.22 ug/L 09/06/13.21:08 0:1-n-octyl phthalate 0.095 U 0.19 0.095 0.042 ug/L 09/06/13.21:08 0:1-n-octyl phthalate 0.095 U 0.19 0.095 0.039 ug/L 09/06/13.21:08 0:1-n-octyl phthalate 0.095 U 0.19 0.095 0.039 ug/L 09/06/13.21:08 0:1-n-octyl phthalate 0.095 U 0.19 0.095 0.039 ug/L 09/06/13.21:08 0:1-n-octyl phthalate 0.095 U 0.19 0.095 0.039 ug/L 09/06/13.21:08 0:1-n-octyl phthalate 0.095 U 0.19 0.095 0.081 ug/L 09/06/13.21:08 0:1-n-octyl phthalate 0.048 U 0.95 0.48 0.26 ug/L 09/06/13.21:08 0:1-n-octyl phthalate 0.095 U 0.95 0.48 0.23 ug/L 09/06/13.21:08 0:1-n-octyl phthalate 0.095 U 0.19 0.095 0.041 ug/L 09/06/13.21:08 0:1-n-octyl phthalate 0.095 U 0.19 0.095 0.041 ug/L 09/06/13.21:08 0:1-n-octyl phthalate 0.095 U 0.19 0.095 0.086 ug/L 09/06/13.21:08 0:1-n-octyl phthalate 0.095 U 0.19 0.095 0.086 ug/L 09/06/13.21:08 0:1-n-octyl phthalate 0.095 U 0.95 0.48 0.16 ug/L 09/06/13.21:08 0:1-n-octyl phthalate 0.095 U 0.95 0.086 ug/L 09/06/13.21:08 0:1-n-octyl phthalate 0.095 U 0.99 0.095 0.086 ug/L 09/06/13.21:08 0:1-n-octyl phthalate 0.095 U 0.99 0.095 0.086 ug/L 09/06/13.21:08 0:1-n-octyl phthalate 0.095 U 0.19 0.095 0.086 ug/L 09/06/13.21:08 0:1-n-octyl phthalate 0.095 U 0.19 0.095 0.086 ug/L 09/06/13.21:08 0:1-n-octyl phthalate 0.095 U 0.19 0.095 0.086 ug/L 09/06/13.21:08 0:1-n-octyl phthalate 0.095 U 0.19 0.095 0.086 ug/L 09/06/13.21:08 0:1-n-octyl phthalate 0.095 U 0.19 0.095 0.086 ug/L 09/06/13.21:08 0:1-n-octyl phthalate 0.095 U 0.19 0.095 0.086 ug/L 09/06/13.21:08 0:1-n-octyl phthalate 0.095 U 0.19 0.095 0.086 ug/L 09/06/13.21:08 0:1-n-octyl phthalate 0.095 U 0.19 0.095 0.086 ug/L 09/06/13.21:08 0:1-n-octyl phthalate 0.095 U 0.19 0.095 0.086 ug/L 09/06/13.21:08 0:1-n-octyl phthalate 0.095 U 0.19 0.095 0.086 ug/L 09/06/13.21:08 0:1-n-octyl phthalate 0.095 U 0.19 0.095 0.086 ug/L 09/06/13.21:08 0:1-n-octyl phthalate 0.095 U 0.19 0.095 0.086 ug/L 09/06/13.21:08 0:1-n-octyl phthalate 0.095 U 0.19 0.095 0.086 ug/L 09/06/13.2	4.4-Dinitrophenol 0.95 U 4.8 0.95 0.30 ug/L 09/06/13 21:08 bi-n-octyl phthalate 0.48 U 1.9 0.48 0.22 ug/L 09/06/13 21:08 duoranthene 0.095 U 0.19 0.095 0.042 ug/L 09/06/13 21:08 duorene 0.095 U 0.19 0.095 0.081 ug/L 09/06/13 21:08 dexachlorobenzene 0.095 U 0.19 0.095 0.081 ug/L 09/06/13 21:08 dexachlorobutadiene 0.48 U 0.95 0.48 0.26 ug/L 09/06/13 21:08 dexachlorocyclopentadiene 0.48 U 0.95 0.48 0.26 ug/L 09/06/13 21:08 dexachlorochhane 0.48 U 0.95 0.48 0.18 ug/L 09/06/13 21:08 dexachlorochhane 0.48 U 0.95 0.48 0.18 ug/L 09/06/13 21:08 dexachlorochhane 0.48 U 0.95 0.48 0.18 ug/L 09/06/13 21:08 dexachlorochhane										
1.9	1.9 0.48 0.22 ug/L 0.9/06/13 21:08										
Iluoranthene 0.095 U 0.19 0.095 0.042 ug/L 09/06/13 21:08 Iluorene 0.095 U 0.19 0.095 0.039 ug/L 09/06/13 21:08 Ilexachlorobenzene 0.095 U 0.19 0.095 0.081 ug/L 09/06/13 21:08 Ilexachlorobutadiene 0.48 U 0.95 0.48 0.26 ug/L 09/06/13 21:08 Ilexachlorocyclopentadiene 0.48 U 9.5 0.48 0.23 ug/L 09/06/13 21:08 Ilexachlorocethane 0.48 U 0.95 0.48 0.18 ug/L 09/06/13 21:08 Ilexachlorocethane 0.048 U 0.95 0.48 0.18 ug/L 09/06/13 21:08 Ilexachlorocethane 0.048 U 0.95 0.48 0.18 ug/L 09/06/13 21:08 Ilexachlorocethane 0.095 U 0.19 0.095 0.041 ug/L 09/06/13 21:08 Ilexachlorocethane 0.095 U	Note										
Lorene	Lorene							and the second			
lexachlorobenzene 0.095 U 0.19 0.095 0.081 ug/L 09/06/13 21:08 lexachlorobutadiene 0.48 U 0.95 0.48 0.26 ug/L 09/06/13 21:08 lexachlorocyclopentadiene 0.48 U 9.5 0.48 0.23 ug/L 09/06/13 21:08 lexachloroethane 0.48 U 0.95 0.48 0.18 ug/L 09/06/13 21:08 lexachloroethane 0.095 U 0.19 0.095 0.041 ug/L 09/06/13 21:08 lexachloroethane 0.095 U 0.19 0.095 0.041 ug/L 09/06/13 21:08 lexachloroethane 0.095 U 0.19 0.095 0.041 ug/L 09/06/13 21:08 lexachloroethane 0.095 U 0.19 0.095 0.041 ug/L 09/06/13 21:08 lexachloroethane 0.095 U 0.19 0.095 0.086 ug/L 09/06/13 21:08 lexachloroethane 0.095 U	lexachlorobenzene 0.095 U 0.19 0.095 0.081 ug/L 09/06/13 21:08 lexachlorobutadiene 0.48 U 0.95 0.48 0.26 ug/L 09/06/13 21:08 lexachlorocyclopentadiene 0.48 U 9.5 0.48 0.23 ug/L 09/06/13 21:08 lexachloroethane 0.48 U 0.95 0.48 0.18 ug/L 09/06/13 21:08 lexachloroethane 0.095 U 0.19 0.095 0.041 ug/L 09/06/13 21:08 lexachloroethane 0.095 U 0.19 0.095 0.041 ug/L 09/06/13 21:08 lexachloroethane 0.095 U 0.19 0.095 0.041 ug/L 09/06/13 21:08 lexachloroethane 0.095 U 0.19 0.095 0.041 ug/L 09/06/13 21:08 lexachloroethane 0.095 U 0.19 0.095 0.086 ug/L 09/06/13 21:08 lexachloroethane 0.095 U										
lexachlorobutadiene 0.48 U 0.95 D.48 0.26 ug/L 09/06/13 21:08 lexachlorocyclopentadiene 0.48 U 9.5 D.48 D.23 ug/L 09/06/13 21:08 lexachloroethane 0.48 U 0.95 D.48 D.95 D.48 D.18 ug/L 09/06/13 21:08 ideno[1,2,3-cd]pyrene 0.095 U 0.19 D.095 D.48 D.26 ug/L 09/06/13 21:08 sophorone 0.48 U 0.95 D.48 D.95 D.48 D.26 ug/L 09/06/13 21:08 -Methylnaphthalene 0.095 U 0.19 D.095 D.48 D.16 ug/L 09/06/13 21:08 -Methylphenol 0.48 U 0.95 D.48 D.16 ug/L 09/06/13 21:08 & 4 Methylphenol 0.95 U 1.9 D.95 D.48 D.76 ug/L 09/06/13 21:08 laphthalene 0.095 U 0.19 D.95 D.06 ug/L 09/06/13 21:08 -Nitroaniline 0.48 U 1.9 D.48 D.20 ug/L 09/06/13 21:08	lexachlorobutadiene 0.48 U 0.95 0.48 0.26 ug/L 09/06/13 21:08 lexachlorocyclopentadiene 0.48 U 9.5 0.48 0.23 ug/L 09/06/13 21:08 lexachlorocethane 0.48 U 0.95 0.48 0.18 ug/L 09/06/13 21:08 ideno[1,2,3-cd]pyrene 0.095 U 0.19 0.095 0.041 ug/L 09/06/13 21:08 sophorone 0.48 U 0.95 0.48 0.26 ug/L 09/06/13 21:08 -Methylnaphthalene 0.095 U 0.19 0.095 0.086 ug/L 09/06/13 21:08 -Methylphenol 0.48 U 0.95 0.48 0.16 ug/L 09/06/13 21:08 -8 4 Methylphenol 0.95 U 1.9 0.95 0.76 ug/L 09/06/13 21:08 -Nitroaniline 0.48 U 1.9 0.48 0.20 ug/L 09/06/13 21:08 -Nitroaniline 0.48 U 1.9										
lexachlorocyclopentadiene 0.48 U 9.5 0.48 U 0.23 ug/L 09/06/13 21:08 lexachloroethane 0.48 U 0.95 0.48 U 0.95 0.48 U 0.95 0.48 U 0.95 0.041 ug/L 09/06/13 21:08 09/06/13 21:08 0.095 0.041 ug/L 09/06/13 21:08 0.095 0.095 0.048 U 0.26 ug/L 09/06/13 21:08 0.095 0.095 0.086 ug/L 09/06/13 21:08 0.095 0.095 0.086 ug/L 09/06/13 21:08 0.095 0.095 0.086 ug/L 09/06/13 21:08 0.095 0.0	lexachlorocyclopentadiene 0.48 U 9.5 0.48 0.23 ug/L 09/06/13 21:08 lexachloroethane 0.48 U 0.95 0.48 0.18 ug/L 09/06/13 21:08 lexachloroethane 0.095 U 0.19 0.095 0.041 ug/L 09/06/13 21:08 lexachloroethane 0.095 U 0.19 0.095 0.041 ug/L 09/06/13 21:08 lexachloroethane 0.095 U 0.19 0.095 0.041 ug/L 09/06/13 21:08 sophorone 0.48 U 0.95 0.48 0.26 ug/L 09/06/13 21:08 -Methylnaphthalene 0.095 U 0.19 0.095 0.086 ug/L 09/06/13 21:08 & 4 Methylphenol 0.95 U 1.9 0.95 0.76 ug/L 09/06/13 21:08 & 4 Methylphenol 0.95 U 0.19 0.095 0.060 ug/L 09/06/13 21:08 -Nitroaniline 0.48 U 1.9										
dexachloroethane 0.48 U 0.95 O.48 O.18 ug/L 0.906/13 21:08 ug/L 0.90	dexachloroethane 0.48 U 0.95 0.48 0.18 ug/L 09/06/13 21:08 indeno[1,2,3-cd]pyrene 0.095 U 0.19 0.095 0.041 ug/L 09/06/13 21:08 sophorone 0.48 U 0.95 0.48 0.26 ug/L 09/06/13 21:08 -Methylnaphthalene 0.095 U 0.19 0.095 0.086 ug/L 09/06/13 21:08 -Methylphenol 0.48 U 0.95 0.48 0.16 ug/L 09/06/13 21:08 & 4 Methylphenol 0.95 U 1.9 0.95 0.76 ug/L 09/06/13 21:08 laphthalene 0.095 U 0.19 0.095 0.060 ug/L 09/06/13 21:08 -Nitroaniline 0.48 U 1.9 0.48 0.20 ug/L 09/06/13 21:08							-			
Addeno[1,2,3-cd]pyrene 0.095 U 0.19 0.095 0.041 ug/L 09/06/13 21:08 sophorone 0.48 U 0.95 0.48 0.26 ug/L 09/06/13 21:08 -Methylnaphthalene 0.095 U 0.19 0.095 0.086 ug/L 09/06/13 21:08 -Methylphenol 0.48 U 0.95 0.48 0.16 ug/L 09/06/13 21:08 & 4 Methylphenol 0.95 U 1.9 0.95 0.76 ug/L 09/06/13 21:08 laphthalene 0.095 U 0.19 0.095 0.060 ug/L 09/06/13 21:08 -Nitroaniline 0.48 U 1.9 0.48 0.20 ug/L 09/06/13 21:08	Addeno[1,2,3-cd]pyrene 0.095 U 0.19 0.095 0.041 ug/L 09/06/13 21:08 sophorone 0.48 U 0.95 0.48 0.26 ug/L 09/06/13 21:08 -Methylnaphthalene 0.095 U 0.19 0.095 0.086 ug/L 09/06/13 21:08 -Methylphenol 0.48 U 0.95 0.48 0.16 ug/L 09/06/13 21:08 & 4 Methylphenol 0.95 U 1.9 0.95 0.76 ug/L 09/06/13 21:08 laphthalene 0.095 U 0.19 0.095 0.060 ug/L 09/06/13 21:08 -Nitroaniline 0.48 U 1.9 0.48 0.20 ug/L 09/06/13 21:08 -Nitroaniline 0.48 U 1.9 0.48 0.27 ug/L 09/06/13 21:08							-			
sophorone 0.48 U 0.95 0.48 0.26 ug/L 09/06/13 21:08 -Methylnaphthalene 0.095 U 0.19 0.095 0.086 ug/L 09/06/13 21:08 -Methylphenol 0.48 U 0.95 0.48 0.16 ug/L 09/06/13 21:08 & 4 Methylphenol 0.95 U 1.9 0.95 0.76 ug/L 09/06/13 21:08 laphthalene 0.095 U 0.19 0.095 0.060 ug/L 09/06/13 21:08 -Nitroaniline 0.48 U 1.9 0.48 0.20 ug/L 09/06/13 21:08	sophorone 0.48 U 0.95 0.48 0.26 ug/L 09/06/13 21:08 -Methylnaphthalene 0.095 U 0.19 0.095 0.086 ug/L 09/06/13 21:08 -Methylphenol 0.48 U 0.95 0.48 0.16 ug/L 09/06/13 21:08 44 Methylphenol 0.95 U 1.9 0.95 0.76 ug/L 09/06/13 21:08 Iaphthalene 0.095 U 0.19 0.095 0.060 ug/L 09/06/13 21:08 -Nitroaniline 0.48 U 1.9 0.48 0.20 ug/L 09/06/13 21:08 -Nitroaniline 0.48 U 1.9 0.48 0.27 ug/L 09/06/13 21:08							-			
Methylnaphthalene 0.095 U 0.19 0.095 0.086 ug/L 09/06/13 21:08 Methylphenol 0.48 U 0.95 0.48 0.16 ug/L 09/06/13 21:08 & 4 Methylphenol 0.95 U 1.9 0.95 0.76 ug/L 09/06/13 21:08 aphthalene 0.095 U 0.19 0.095 0.060 ug/L 09/06/13 21:08 Nitroaniline 0.48 U 1.9 0.48 0.20 ug/L 09/06/13 21:08	Methylnaphthalene 0.095 U 0.19 0.095 0.086 ug/L 09/06/13 21:08 Methylphenol 0.48 U 0.95 0.48 0.16 ug/L 09/06/13 21:08 & 4 Methylphenol 0.95 U 1.9 0.95 0.76 ug/L 09/06/13 21:08 aphthalene 0.095 U 0.19 0.095 0.060 ug/L 09/06/13 21:08 -Nitroaniline 0.48 U 1.9 0.48 0.20 ug/L 09/06/13 21:08 Nitroaniline 0.48 U 1.9 0.48 0.27 ug/L 09/06/13 21:08										
Methylphenol 0.48 U 0.95 0.48 0.16 ug/L 09/06/13 21:08 & 4 Methylphenol 0.95 U 1.9 0.95 0.76 ug/L 09/06/13 21:08 aphthalene 0.095 U 0.19 0.095 0.060 ug/L 09/06/13 21:08 -Nitroaniline 0.48 U 1.9 0.48 0.20 ug/L 09/06/13 21:08	-Methylphenol 0.48 U 0.95 D.48 0.16 ug/L 09/06/13 21:08 & 4 Methylphenol 0.95 U 1.9 D.95 D.76 ug/L 09/06/13 21:08 aphthalene 0.095 U 0.19 D.095 D.060 ug/L 09/06/13 21:08 -Nitroaniline 0.48 U 1.9 D.48 D.20 ug/L 09/06/13 21:08 -Nitroaniline 0.48 U 1.9 D.48 D.27 ug/L 09/06/13 21:08							7			
& 4 Methylphenol 0.95 U 1.9 0.95 0.76 ug/L 09/06/13 21:08 laphthalene 0.095 U 0.19 0.095 0.060 ug/L 09/06/13 21:08 -Nitroaniline 0.48 U 1.9 0.48 0.20 ug/L 09/06/13 21:08	& 4 Methylphenol 0.95 U 1.9 0.95 0.76 ug/L 09/06/13 21:08 laphthalene 0.095 U 0.19 0.095 0.060 ug/L 09/06/13 21:08 -Nitroaniline 0.48 U 1.9 0.48 0.20 ug/L 09/06/13 21:08 -Nitroaniline 0.48 U 1.9 0.48 0.27 ug/L 09/06/13 21:08							-			
laphthalene 0.095 U 0.19 0.095 0.060 ug/L 09/06/13 21:08 -Nitroaniline 0.48 U 1.9 0.48 0.20 ug/L 09/06/13 21:08	Iaphthalene 0.095 U 0.19 0.095 0.095 0.060 ug/L 09/06/13 21:08 -Nitroaniline 0.48 U 1.9 0.48 0.20 ug/L 09/06/13 21:08 -Nitroaniline 0.48 U 1.9 0.48 0.27 ug/L 09/06/13 21:08										
Nitroaniline 0.48 U 1,9 0.48 0,20 ug/L 09/06/13 21:08	Nitroaniline 0.48 U 1.9 0.48 0.20 ug/L 09/06/13 21:08 Nitroaniline 0.48 U 1.9 0.48 0.27 ug/L 09/06/13 21:08	& 4 Methylphenol									
	Nitroaniline 0.48 U 1.9 0.48 0.27 ug/L 09/06/13 21:08										
-Nitroaniline 0.48 U 1.9 0.48 0.27 ug/L 09/06/13 21:08		-Nitroaniline			1.9	0.48	0.20	ug/L		09/06/13 21:08	
	Nitroppiline 0.48 II 1.0 0.48 0.21 upil 0.0/05/13.24-09	-Nitroaniline	0.48	U	1.9	0.48	0.27	ug/L		09/06/13 21:08	

TestAmerica Canton

3

5

Ü

9

Ö

13

14

<u>U:</u>

Client: Environmental Quality Mgt., Inc.

Project/Site: RVAAP66 (OH)

TestAmerica Job ID: 240-28186-1

Lab Sample ID: 240-28186-25

D Gample 1D. 240-20100-25

Matrix: Water

Client Sample ID: FWGWBGmw-018-0328-GW

Date Collected: 08/21/13 10:03 Date Received: 08/22/13 07:00

Analyte	Result	Qualifier		LOQ	LOD	DL	Unit D	Analyzed	Dil Fac
2-Nitrophenol	0.48	U		1.9	0.48	0.27	ug/L	09/06/13 21:08	1
4-Nitrophenol	3.8	U		4.8	3.8	0.28	ug/L	09/06/13 21:08	1
N-Nitrosodi-n-propylamine	0.48	U		0.95	0.48	0.23	ug/L	09/06/13 21:08	1
N-Nitrosodiphenylamine	0.48	U		0.95	0.48	0.30	ug/L	09/06/13 21:08	1
2,2'-oxybis[1-chloropropane]	0.48	U		0.95	0.48	0.38	ug/L	09/06/13 21:08	1
Pentachlorophenol	0.95	U		4.8	0.95	0.26	ug/L	09/06/13 21:08	1
Phenanthrene	0.095	U		0.19	0.095	0.059	ug/L	09/06/13 21:08	1
Phenol	0.95	U		0.95	0.95	0.57	ug/L	09/06/13 21:08	1
Pyrene	0.095	U		0.19	0.095	0.040	ug/L	09/06/13 21:08	1
1,2,4-Trichlorobenzene	0.48	U		0.95	0.48	0.27	ug/L	09/06/13 21:08	1
2,4,5-Trichlorophenol	0.48	U		4.8	0.48	0.29	ug/L	09/06/13 21:08	1
2,4,6-Trichlorophenol	0.48	U		4.8	0.48	0.23	ug/L	09/06/13 21:08	1
Surrogate	%Recovery Qu	ıalifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl (Surr)	84		50 - 110				08/23/13 09:12	09/06/13 21:08	1
2-Fluorophenol (Surr)	71		20 - 110				08/23/13 09:12	09/06/13 21:08	1
Nitrobenzene-d5 (Surr)	86		40 - 110				08/23/13 09:12	09/06/13 21:08	1
Phenol-d5 (Surr)	73		10 - 115				08/23/13 09:12	09/06/13 21:08	1
Terphenyl-d14 (Surr)	113		50 - 135				08/23/13 09:12	09/06/13 21:08	1
2,4,6-Tribromophenol (Surr)	87		40 - 125				08/23/13 09:12	09/06/13 21:08	1

Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
4,4'-DDD	0.019	U	0.048	0.019	0.0091	ug/L		09/10/13 18:54	1
4,4'-DDE	0.019	U	0.048	0.019	0.0092	ug/L		09/10/13 18:54	- 1
4,4'-DDT	0.019	U	0.048	0.019	0.015	ug/L		09/10/13 18:54	- 1
Aldrin	0.019	U	0.029	0.019	0.0078	ug/L		09/10/13 18:54	1
alpha-BHC	0.019	U	0.029	0.019	0.0067	ug/L		09/10/13 18:54	1
alpha-Chlordane	0.019	U	0.048	0.019	0.013	ug/L		09/10/13 18:54	1
beta-BHC	0.019	U	0.048	0.019	0.0080	ug/L		09/10/13 18:54	1
delta-BHC	0.019	U	0.048	0.019	0.0083	ug/L		09/10/13 18:54	- 1
Dieldrin	0.019	U	0.029	0.019	0.0071	ug/L		09/10/13 18:54	1
Endosulfan I	0.019	U	0.048	0.019	0.012	ug/L		09/10/13 18:54	1
Endosulfan II	0.019	U	0.048	0.019	0.011	ug/L		09/10/13 18:54	- 1
Endosulfan sulfate	0.019	U	0.048	0.019	0.010	ug/L		09/10/13 18:54	1
Endrin	0.019	U	0.048	0.019	0.010	ug/L		09/10/13 18:54	1
Endrin aldehyde	0.019	U	0.048	0.019	0.010	ug/L		09/10/13 18:54	1
Endrin ketone	0.019	U	0.048	0.019	0.0074	ug/L		09/10/13 18:54	1
gamma-BHC (Lindane)	0.019	U	0.048	0.019	0.0061	ug/L		09/10/13 18:54	9
gamma-Chlordane	0.019	U	0.048	0.019	0.011	ug/L		09/10/13 18:54	1
Heptachlor	0.019	U	0.029	0.019	0.0076	ug/L		09/10/13 18:54	1
Heptachlor epoxide	0.019	U	0.029	0.019	0.0068	ug/L		09/10/13 18:54	1
Methoxychlor	0.048	U	0.095	0.048	0.030	ug/L		09/10/13 18:54	. 1
Toxaphene	0.76	U	1.9	0.76	0.30	ug/L		09/10/13 18:54	1

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
DCB Decachlorobiphenyl	73		30 - 135	08/23/13 09:00	09/10/13 18:54	1
DCB Decachlorobiphenyl	80		30 - 135	08/23/13 09:00	09/10/13 18:54	7
Tetrachloro-m-xylene	85		25 - 140	08/23/13 09:00	09/10/13 18:54	7
Tetrachloro-m-xylene	84		25 - 140	08/23/13 09:00	09/10/13 18:54	7.

TestAmerica Canton

Page 66 of 196

3

E

7

.

-11

13

14

1

Client: Environmental Quality Mgt., Inc.

Project/Site: RVAAP66 (OH)

TestAmerica Job ID: 240-28186-1

Lab Sample ID: 240-28186-25

Matrix: Water

Client Sample ID: FWGWBGmw-018-0328-GW Date Collected: 08/21/13 10:03

Date Received: 08/22/13 07:00

	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
Aroclor-1016	0.19	U	0.48	0.19	0.16	ug/L		08/28/13 22:27	1
Aroclor-1221	0.19	U	0.48	0.19	0.12	ug/L		08/28/13 22:27	- 1
Aroclor-1232	0.19	U	0.48	0.19	0.15	ug/L		08/28/13 22:27	1
Aroclor-1242	0.38	U	0.48	0.38	0.21	ug/L		08/28/13 22:27	- 1
Aroclor-1248	0.19	U	0.48	0.19	0.095	ug/L		08/28/13 22:27	1
Aroclor-1254	0.19	U	0.48	0.19	0.15	ug/L		08/28/13 22:27	1
Aroclor-1260	0.19	U	0.48	0.19	0.16	ug/L		08/28/13 22:27	1
Surrogate	%Recovery Qu	ıalifier	Limits			Prepai	red	Analyzed	Dil Fac
Tetrachloro-m-xylene	77		40 - 140			08/23/13	09:07	08/28/13 22:27	1
Tetrachloro-m-xylene	81		40 - 140			08/23/13	09:07	08/28/13 22:27	- 4
DCB Decachlorobiphenyl	79		40 - 135			08/23/13	09:07	08/28/13 22:27	1
DCB Decachlorobiphenyl	64		40 - 135			08/23/13	09:07	08/28/13 22:27	1
Method: 8330 Modified - Nitro	oguanidine (HPLC)								
Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
Nitroguanidine	6.0	U	20	6.0	2.4	ug/L		08/27/13 17:47	
Method: 8330A - Nitroaromat		Qualifier	LOQ	LOD	DI	Unit	D	Analyzed	Dil Fac
1,3,5-Trinitrobenzene	0.051		0.15	0.051	0.032	ug/L	_ =	08/30/13 23:21	Dira
,3-Dinitrobenzene	0.10		0.15	0.10	0.051	ug/L		08/30/13 23:21	
2,4,6-Trinitrotoluene	0.10		0.15	0.10	0.051	ug/L		08/30/13 23:21	
2,4-Dinitrotoluene	0.10		0.13	0.10	0.051	ug/L		08/30/13 23:21	
, 4-Dillia otolderie			0.10	0.10	0.001	ug/L		00/00/10 20.21	
6-Dinitrotoluene	0.10	11	0.13	0.10	0.051	ua/L		08/30/13 23:21	-
	0.10		0.13	0.10	0.051	ug/L		08/30/13 23:21	
2-Amino-4,6-dinitrotoluene	0.10	U	0.15	0.10	0.015	ug/L		08/30/13 23:21	
2-Amino-4,6-dinitrotoluene 2-Nitrotoluene	0.10 0.10	U	0.15 0.51	0.10 0.10	0.015 0.090	ug/L ug/L		08/30/13 23:21 08/30/13 23:21	
2-Amino-4,6-dinitrotoluene 2-Nitrotoluene 3-Nitrotoluene	0.10 0.10 0.10	U U U	0.15 0.51 0.51	0.10 0.10 0.10	0.015 0.090 0.058	ug/L ug/L ug/L		08/30/13 23:21 08/30/13 23:21 08/30/13 23:21	
2-Amino-4,6-dinitrotoluene 2-Nitrotoluene 3-Nitrotoluene 4-Nitrotoluene	0.10 0.10 0.10 0.10	U U U	0.15 0.51 0.51 0.51	0.10 0.10 0.10 0.10	0.015 0.090 0.058 0.090	ug/L ug/L ug/L ug/L		08/30/13 23:21 08/30/13 23:21 08/30/13 23:21 08/30/13 23:21	
2-Amino-4,6-dinitrotoluene 2-Nitrotoluene 8-Nitrotoluene 1-Nitrotoluene 1-Amino-2,6-dinitrotoluene	0.10 0.10 0.10 0.10 0.10	U U U U	0.15 0.51 0.51 0.51 0.15	0.10 0.10 0.10 0.10 0.10	0.015 0.090 0.058 0.090 0.051	ug/L ug/L ug/L ug/L ug/L		08/30/13 23:21 08/30/13 23:21 08/30/13 23:21 08/30/13 23:21 08/30/13 23:21	
2-Amino-4,6-dinitrotoluene 2-Nitrotoluene 3-Nitrotoluene 1-Nitrotoluene 1-Amino-2,6-dinitrotoluene 1-MX	0.10 0.10 0.10 0.10 0.10	7 M 0 0 0	0.15 0.51 0.51 0.51 0.15	0.10 0.10 0.10 0.10 0.10 0.051	0.015 0.090 0.058 0.090 0.051 0.037	ug/L ug/L ug/L ug/L ug/L		08/30/13 23:21 08/30/13 23:21 08/30/13 23:21 08/30/13 23:21 08/30/13 23:21 08/30/13 23:21	
2-Amino-4,6-dinitrotoluene 2-Nitrotoluene 3-Nitrotoluene 3-Nitrotoluene 3-Amino-2,6-dinitrotoluene 3-MX RDX	0.10 0.10 0.10 0.10 0.10 0.14 0.35	J W O O O O O O O O O O O O O O O O O O O	0.15 0.51 0.51 0.51 0.15 0.15	0.10 0.10 0.10 0.10 0.10 0.051	0.015 0.090 0.058 0.090 0.051 0.037	ug/L ug/L ug/L ug/L ug/L ug/L		08/30/13 23:21 08/30/13 23:21 08/30/13 23:21 08/30/13 23:21 08/30/13 23:21 08/30/13 23:21 08/30/13 23:21	7
2-Amino-4,6-dinitrotoluene 2-Nitrotoluene 3-Nitrotoluene 4-Nitrotoluene 4-Amino-2,6-dinitrotoluene 4-MX RDX Nitrobenzene	0.10 0.10 0.10 0.10 0.10 0.14 0.35	м Э м о о	0.15 0.51 0.51 0.51 0.15 0.15 0.15	0.10 0.10 0.10 0.10 0.10 0.051 0.051	0.015 0.090 0.058 0.090 0.051 0.037 0.037	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L		08/30/13 23:21 08/30/13 23:21 08/30/13 23:21 08/30/13 23:21 08/30/13 23:21 08/30/13 23:21 08/30/13 23:21 08/30/13 23:21	
2-Amino-4,6-dinitrotoluene 2-Nitrotoluene 3-Nitrotoluene 4-Nitrotoluene 4-Amino-2,6-dinitrotoluene HMX RDX Nitrobenzene	0.10 0.10 0.10 0.10 0.14 0.35 0.10	0 7 M 0 0 0	0.15 0.51 0.51 0.51 0.15 0.15 0.15 0.15	0.10 0.10 0.10 0.10 0.10 0.051 0.051 0.10	0.015 0.090 0.058 0.090 0.051 0.037 0.037 0.051	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L		08/30/13 23:21 08/30/13 23:21 08/30/13 23:21 08/30/13 23:21 08/30/13 23:21 08/30/13 23:21 08/30/13 23:21 08/30/13 23:21 08/30/13 23:21	
2-Amino-4,6-dinitrotoluene 2-Nitrotoluene 3-Nitrotoluene 4-Nitrotoluene 4-Amino-2,6-dinitrotoluene 4-MX RDX Nitrobenzene Fetryl Nitroglycerin	0.10 0.10 0.10 0.10 0.10 0.14 0.35	0 0 0 0 0	0.15 0.51 0.51 0.51 0.15 0.15 0.15	0.10 0.10 0.10 0.10 0.10 0.051 0.051	0.015 0.090 0.058 0.090 0.051 0.037 0.051 0.051 0.34	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L		08/30/13 23:21 08/30/13 23:21 08/30/13 23:21 08/30/13 23:21 08/30/13 23:21 08/30/13 23:21 08/30/13 23:21 08/30/13 23:21	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
2-Amino-4,6-dinitrotoluene 2-Nitrotoluene 3-Nitrotoluene 3-Nitrotoluene 4-Amino-2,6-dinitrotoluene 4-MX RDX Nitrobenzene Fetryl Nitroglycerin	0.10 0.10 0.10 0.10 0.10 0.14 0.35 0.10 0.10 0.51	7 M M O O O O O O O O O O O O O O O O O	0.15 0.51 0.51 0.51 0.15 0.15 0.15 0.15 0.15 0.66	0.10 0.10 0.10 0.10 0.10 0.051 0.051 0.10 0.10 0.51	0.015 0.090 0.058 0.090 0.051 0.037 0.051 0.051 0.34	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	red	08/30/13 23:21 08/30/13 23:21	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
2-Amino-4,6-dinitrotoluene 2-Nitrotoluene 3-Nitrotoluene 4-Nitrotoluene 4-Amino-2,6-dinitrotoluene 4-MX RDX Nitrobenzene Fetryl Nitroglycerin PETN	0.10 0.10 0.10 0.10 0.14 0.35 0.10 0.10 0.51 0.51	7 M M O O O O O O O O O O O O O O O O O	0.15 0.51 0.51 0.51 0.15 0.15 0.15 0.15 0.15 0.66 0.66	0.10 0.10 0.10 0.10 0.10 0.051 0.051 0.10 0.10 0.51	0.015 0.090 0.058 0.090 0.051 0.037 0.051 0.051 0.34	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L		08/30/13 23:21 08/30/13 23:21	Dil Fa
2-Amino-4,6-dinitrotoluene 2-Nitrotoluene 3-Nitrotoluene 4-Nitrotoluene 4-Amino-2,6-dinitrotoluene HMX RDX Nitrobenzene Tetryl Nitroglycerin PETN Surrogate 3,4-Dinitrotoluene	0.10 0.10 0.10 0.10 0.10 0.14 0.35 0.10 0.10 0.51	7 M M O O O O O O O O O O O O O O O O O	0.15 0.51 0.51 0.51 0.15 0.15 0.15 0.15 0.15 0.66	0.10 0.10 0.10 0.10 0.10 0.051 0.051 0.10 0.10 0.51	0.015 0.090 0.058 0.090 0.051 0.037 0.051 0.051 0.34	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	07:26	08/30/13 23:21 08/30/13 23:21	Dil Fa
2-Amino-4,6-dinitrotoluene 2-Nitrotoluene 3-Nitrotoluene 4-Nitrotoluene 4-Amino-2,6-dinitrotoluene HMX RDX Nitrobenzene Tetryl Nitroglycerin PETN Surrogate 3,4-Dinitrotoluene 3,4-Dinitrotoluene	0.10 0.10 0.10 0.10 0.14 0.35 0.10 0.10 0.51 0.51	7 M M O O O O O O O O O O O O O O O O O	0.15 0.51 0.51 0.51 0.15 0.15 0.15 0.15 0.66 0.66	0.10 0.10 0.10 0.10 0.10 0.051 0.051 0.10 0.10 0.51	0.015 0.090 0.058 0.090 0.051 0.037 0.051 0.051 0.34	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	07:26	08/30/13 23:21 08/30/13 23:21	
2-Amino-4,6-dinitrotoluene 2-Nitrotoluene 3-Nitrotoluene 4-Nitrotoluene 4-Amino-2,6-dinitrotoluene HMX RDX Nitrobenzene Tetryl Nitroglycerin PETN Surrogate 3,4-Dinitrotoluene 3,4-Dinitrotoluene General Chemistry	0.10 0.10 0.10 0.10 0.10 0.14 0.35 0.10 0.10 0.51 0.51 %Recovery Quarter 96 93	U U U U J M M U U U	0.15 0.51 0.51 0.15 0.15 0.15 0.15 0.15 0.66 0.66	0.10 0.10 0.10 0.10 0.10 0.051 0.051 0.10 0.51 0.51	0.015 0.090 0.058 0.090 0.051 0.037 0.051 0.051 0.34 0.31	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	07:26 07:26	08/30/13 23:21 08/30/13 23:21 Analyzed 08/30/13 23:21 09/10/13 05:20	Dil Fa
2,6-Dinitrotoluene 2-Amino-4,6-dinitrotoluene 2-Nitrotoluene 3-Nitrotoluene 4-Nitrotoluene 4-Amino-2,6-dinitrotoluene HMX RDX Nitrobenzene Tetryl Nitroglycerin PETN Surrogate 3,4-Dinitrotoluene 3,4-Dinitrotoluene General Chemistry Analyte Cyanide, Total	0.10 0.10 0.10 0.10 0.10 0.14 0.35 0.10 0.10 0.51 0.51 %Recovery Quarter 96 93	U U U U J M M U U U U U U U U U U U U U U U U U U	0.15 0.51 0.51 0.51 0.15 0.15 0.15 0.15 0.66 0.66	0.10 0.10 0.10 0.10 0.10 0.051 0.051 0.10 0.10 0.51	0.015 0.090 0.058 0.090 0.051 0.037 0.051 0.051 0.34 0.31	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	07:26	08/30/13 23:21 08/30/13 23:21	Dil Fa

Client: Environmental Quality Mgt., Inc.

Project/Site: RVAAP66 (OH)

TestAmerica Job ID: 240-28186-1

Lab Sample ID: 240-28186-26

Matrix: Water

Client Sample ID: FWGWBGmw-018-0328-GF

Date Collected: 08/21/13 10:03 Date Received: 08/22/13 07:00

Chromium 4.0 U 7.0 4.0 1.4 ug/L 09/09/13 16:38 Cobalt 4.0 U 7.0 4.0 1.5 ug/L 09/09/13 16:38 Lead 5.0 U 10 5.0 1.7 ug/L 09/09/13 16:38 Selenium 10 U 7.0 5.0 1.7 ug/L 09/09/13 16:38 Silver 5.0 U 7.0 5.0 1.7 ug/L 09/09/13 16:38 Vanadium 4.0 U 7.0 4.0 1.3 ug/L 09/09/13 16:38 Barium 20 J 200 5.0 2.8 ug/L 09/09/13 16:38 Copper 10 U 25 10 4.4 ug/L 09/09/13 16:38 Magnesium 3400 J 5000 300 120 ug/L 09/09/13 16:38 Mackel 5.0 U 40 5.0 1.8 ug/L 09/09/13 16:38 Potassium	Dil Fac	Analyzed	D	Unit	DL	LOD	LOQ	Qualifie	Result	Analyte
Cobalt 4.0 U 7.0 4.0 1.5 Ug/L 09/09/13 16:38 Lead 5.0 U 10 5.0 1.7 Ug/L 09/09/13 16:38 Selenium 10 U 15 10 4.0 Ug/L 09/09/13 16:38 Silver 5.0 U 7.0 5.0 1.7 Ug/L 09/09/13 16:38 Vanadium 4.0 U 7.0 4.0 1.3 ug/L 09/09/13 16:38 Barium 20 J 200 5.0 2.8 Ug/L 09/09/13 16:38 Calcium 15000 5000 1000 630 Ug/L 09/09/13 16:38 Copper 10 U 25 10 4.4 Ug/L 09/09/13 16:38 Magnesium 3400 J 5000 300 120 ug/L 09/09/13 16:38 Nickel 5.0 U 40 5.0 1.8 ug/L 09/09/13 16:38 Potassium 1100	1	09/09/13 16:38		ug/L	3.3	10	10	U	10	Arsenic
Lead	1	09/09/13 16:38		ug/L	1.4	4.0	7.0	U	4.0	Chromium
Selenium 10 U 15 10 4.0 ug/L 09/09/13 16:38 Silver 5.0 U 7.0 5.0 1.7 ug/L 09/09/13 16:38 Vanadium 4.0 U 7.0 4.0 1.3 ug/L 09/09/13 16:38 Barium 20 J 200 5.0 2.8 ug/L 09/09/13 16:38 Calcium 15000 5000 1000 630 ug/L 09/09/13 16:38 Copper 10 U 25 10 4.4 ug/L 09/09/13 16:38 Magnesium 3400 J 5000 300 120 ug/L 09/09/13 16:38 Magnesium 3400 J 5000 300 120 ug/L 09/09/13 16:38 Magnesium 3400 J 5000 300 120 ug/L 09/09/13 16:38 Method: 6020/DOD - Metals (ICP/MS) - Total Recoverable Result Qualifier LOQ LOD DL Unit D <th< td=""><td>1</td><td>09/09/13 16:38</td><td></td><td>ug/L</td><td>1.5</td><td>4.0</td><td>7.0</td><td>U</td><td>4.0</td><td>Cobalt</td></th<>	1	09/09/13 16:38		ug/L	1.5	4.0	7.0	U	4.0	Cobalt
Silver	1	09/09/13 16:38		ug/L	1.7	5.0	10	U	5.0	Lead
Vanadium 4.0 U 7.0 4.0 1.3 ug/L 09/09/13 16:38 Barium 20 J 200 5.0 2.8 ug/L 09/09/13 16:38 Calcium 15000 5000 1000 630 ug/L 09/09/13 16:38 Copper 10 U 25 10 4.4 ug/L 09/09/13 16:38 Magnesium 3400 J 5000 300 120 ug/L 09/09/13 16:38 Nickel 5.0 U 40 5.0 1.8 ug/L 09/09/13 16:38 Potassium 1100 J 5000 900 300 ug/L 09/09/13 16:38 Method: 6020/DOD - Metals (ICP/MS) - Total Recoverable Company 100 40 5.0 2.2 ug/L 09/09/13 16:38 Method: 6020/DOD - Metals (ICP/MS) - Total Recoverable LOQ LOD DL Unit D Analyzed Aluminum 60 0 0 0 0 0 0 <	1	09/09/13 16:38		ug/L	4.0	10	15	U	10	Selenium
Barium 20 J 200 5.0 2.8 ug/L 09/09/13 16:38 Calcium 15000 5000 1000 630 ug/L 09/09/13 16:38 Copper 10 U 25 10 4.4 ug/L 09/09/13 16:38 Magnesium 3400 J 5000 300 120 ug/L 09/09/13 16:38 Manganese 5.0 U 15 5.0 1.8 ug/L 09/09/13 16:38 Nickel 5.0 U 40 5.0 2.2 ug/L 09/09/13 16:38 Potassium 1100 J 5000 900 300 ug/L 09/09/13 16:38 Method: 6020/DOD - Metals (ICP/MS) - Total Recoverable Calcium Calcium LOQ LOD DL Unit D Analyzed Aluminum 60 U 60 60 20 ug/L 09/09/13 22:08 Beryllium 1.0 U 2.0 1.0 0.0 0.0 0.0	1	09/09/13 16:38		ug/L	1.7	5.0	7.0	U	5.0	Silver
Calcium 15000 5000 1000 630 ug/L 09/09/13 16;38 Copper 10 U 25 10 4.4 ug/L 09/09/13 16;38 Magnesium 3400 J 5000 300 120 ug/L 09/09/13 16;38 Manganese 5.0 U 40 5.0 1.8 ug/L 09/09/13 16;38 Nickel 5.0 U 40 5.0 2.2 ug/L 09/09/13 16;38 Potassium 1100 J 5000 900 300 ug/L 09/09/13 16;38 Method: 6020/DOD - Metals (ICP/MS) - Total Recoverable Result Qualifier LOQ LOD DL Unit D Analyzed Aluminum 60 U 60 60 20 ug/L 09/09/13 22;08 Antimony 1.0 U 2.0 1.0 0.50 ug/L 09/09/13 22;08 Beryllium 1.0 U 2.0 1.0 0.50 ug/L 09/0	1	09/09/13 16:38		ug/L	1.3	4.0	7.0	U	4.0	Vanadium
Copper 10 U 25 10 4.4 ug/L 09/09/13 16:38 Magnesium 3400 J 5000 300 120 ug/L 09/09/13 16:38 Manganese 5.0 U 15 5.0 1.8 ug/L 09/09/13 16:38 Nickel 5.0 U 40 5.0 2.2 ug/L 09/09/13 16:38 Potassium 1100 J 5000 900 300 ug/L 09/09/13 16:38 Method: 6020/DOD - Metals (ICP/MS) - Total Recoverable Analyte Result Qualifier LOQ LOD DL Unit D Analyzed Aluminum 60 U 60 60 20 ug/L 09/09/13 22:08 Antimony 1.0 U 2.0 1.0 0.33 ug/L 09/09/13 22:08 Beryllium 1.0 U 2.0 1.0 0.40 ug/L 09/09/13 22:08 Cadmium 1.0 U 2.0 <td>1</td> <td>09/09/13 16:38</td> <td></td> <td>ug/L</td> <td>2.8</td> <td>5.0</td> <td>200</td> <td>J</td> <td>20</td> <td>Barium</td>	1	09/09/13 16:38		ug/L	2.8	5.0	200	J	20	Barium
Magnesium 3400 J 5000 300 120 ug/L 09/09/13 16:38 Manganese 5.0 U 15 5.0 1.8 ug/L 09/09/13 16:38 Nickel 5.0 U 40 5.0 2.2 ug/L 09/09/13 16:38 Potassium 1100 J 5000 900 300 ug/L 09/09/13 16:38 Method: 6020/DOD - Metals (ICP/MS) - Total Recoverable Analyte LOQ LOD DL Unit D Analyzed Aluminum 60 U 60 60 20 ug/L 09/09/13 22:08 Antimony 1.0 U 2.0 1.0 0.33 ug/L 09/09/13 22:08 Beryllium 1.0 U Q 1.0 1.0 0.50 ug/L 09/09/13 22:08 Cadmium 1.0 U D 2.0 1.0 0.40 ug/L 09/09/13 22:08 Iron 100 U 150 100 44 ug/L 09/09/13 22:08 Sodium 1800 1000 400 400 160 ug/L 09/09/13 22:08 Thallium 1.5 U 2.0 1.5 0.79 ug/L 09/09/13 22:08 Zinc 50 U 50 50 27 ug/L 09/09/13 22:08	1	09/09/13 16:38		ug/L	630	1000	5000		15000	Calcium
Manganese 5.0 U 15 5.0 1.8 ug/L 09/09/13 16:38 Nickel 5.0 U 40 5.0 2.2 ug/L 09/09/13 16:38 Potassium 1100 J 5000 900 300 ug/L 09/09/13 16:38 Method: 6020/DOD - Metals (ICP/MS) - Total Recoverable Analyte Result Qualifier LOQ LOD DL Unit D Analyzed Aluminum 60 U 60 60 20 ug/L 09/09/13 22:08 Antimony 1.0 U 2.0 1.0 0.33 ug/L 09/09/13 22:08 Beryllium 1.0 U 2.0 1.0 0.50 ug/L 09/09/13 22:08 Cadmium 1.0 U 2.0 1.0 0.40 ug/L 09/09/13 22:08 Sodium 1800 1000 400 160 ug/L 09/09/13 22:08 Thallium 1.5 U 2.0 1	1	09/09/13 16:38		ug/L	4.4	10	25	U	10	Copper
Nickel 5.0 U 40 5.0 2.2 ug/L 09/09/13 16:38 Potassium 1100 J 5000 900 300 ug/L 09/09/13 16:38 Method: 6020/DOD - Metals (ICP/MS) - Total Recoverable Result Result Qualifier LOQ LOD DL Unit D Analyzed Analyte Result Qualifier LOQ LOD DL Unit D Analyzed Aluminum 60 U 60 60 20 ug/L 09/09/13 22:08 Antimony 1.0 U 2.0 1.0 0.33 ug/L 09/09/13 22:08 Beryllium 1.0 U 2.0 1.0 0.50 ug/L 09/09/13 22:08 Cadmium 1.0 U 2.0 1.0 0.40 ug/L 09/09/13 22:08 Sodium 1800 100 40 160 ug/L 09/09/13 22:08 Thallium 1.5 U 2.0 1.5 0.79 ug/L <td< td=""><td>1</td><td>09/09/13 16:38</td><td></td><td>ug/L</td><td>120</td><td>300</td><td>5000</td><td>J</td><td>3400</td><td>Magnesium</td></td<>	1	09/09/13 16:38		ug/L	120	300	5000	J	3400	Magnesium
Method: 6020/DOD - Metals (ICP/MS) - Total Recoverable LOQ LOD DL Unit D Analyzed Aluminum 60 U 60 60 20 ug/L 09/09/13 22:08 Antimony 1.0 U 2.0 1.0 0.33 ug/L 09/09/13 22:08 Beryllium 1.0 U 2.0 1.0 0.50 ug/L 09/09/13 22:08 Cadmium 1.0 U 2.0 1.0 0.40 ug/L 09/09/13 22:08 Iron 100 U 150 100 44 ug/L 09/09/13 22:08 Sodium 1800 1000 400 160 ug/L 09/09/13 22:08 Thallium 1.5 U 2.0 1.5 0.79 ug/L 09/09/13 22:08 Method: 7470A/DOD - Mercury (CVAA) 50 U 50 50 27 ug/L 09/09/13 22:08	1	09/09/13 16:38		ug/L	1.8	5.0	15	U	5.0	Manganese
Method: 6020/DOD - Metals (ICP/MS) - Total Recoverable Analyte Result Qualifier LOQ LOD DL Unit D Analyzed Aluminum 60 U 60 60 20 ug/L 09/09/13 22:08 Antimony 1.0 U 2.0 1.0 0.33 ug/L 09/09/13 22:08 Beryllium 1.0 U 1.0 1.0 0.50 ug/L 09/09/13 22:08 Cadmium 1.0 U 2.0 1.0 0.40 ug/L 09/09/13 22:08 Iron 100 U 150 100 44 ug/L 09/09/13 22:08 Sodium 1800 1000 400 160 ug/L 09/09/13 22:08 Thallium 1.5 U 2.0 1.5 0.79 ug/L 09/09/13 22:08 Method: 7470A/DOD - Mercury (CVAA) 50 50 50 27 ug/L 09/09/13 22:08	1	09/09/13 16:38		ug/L	2.2	5.0	40	U	5.0	Nickel
Analyte Result Qualifier LOQ LOD DL Unit D Analyzed Aluminum 60 U 60 60 20 ug/L 09/09/13 22:08 Antimony 1.0 U 2.0 1.0 0.33 ug/L 09/09/13 22:08 Beryllium 1.0 U Q 1.0 1.0 0.50 ug/L 09/09/13 22:08 Cadmium 1.0 U 2.0 1.0 0.40 ug/L 09/09/13 22:08 Iron 100 U 150 100 44 ug/L 09/09/13 22:08 Sodium 1800 1000 400 160 ug/L 09/09/13 22:08 Thallium 1.5 U 2.0 1.5 0.79 ug/L 09/09/13 22:08 Method: 7470A/DOD - Mercury (CVAA) 50 U 50 50 27 ug/L 09/09/13 22:08	1	09/09/13 16:38		ug/L	300	900	5000	J	1100	Potassium
Aluminum 60 U 60 Bo 60 U 60 C 60 Ug/L 09/09/13 22:08 Antimony 1.0 U 2.0 1.0 0.33 ug/L 09/09/13 22:08 Beryllium 1.0 U 2.0 1.0 0.50 ug/L 09/09/13 22:08 Cadmium 1.0 U 2.0 1.0 0.40 ug/L 09/09/13 22:08 Iron 100 U 150 100 44 ug/L 09/09/13 22:08 Sodium 1800 1000 400 160 ug/L 09/09/13 22:08 Thallium 1.5 U 2.0 1.5 0.79 ug/L 09/09/13 22:08 Method: 7470A/DOD - Mercury (CVAA)								erable	is (ICP/MS) - Total Recov	Method: 6020/DOD - Metal
Antimony 1.0 U 2.0 1.0 0.33 ug/L 09/09/13 22:08 Beryllium 1.0 U Q 1.0 1.0 0.50 ug/L 09/09/13 22:08 Cadmium 1.0 U 2.0 1.0 0.40 ug/L 09/09/13 22:08 Iron 100 U 150 100 44 ug/L 09/09/13 22:08 Sodium 1800 1000 400 160 ug/L 09/09/13 22:08 Thallium 1.5 U 2.0 1.5 0.79 ug/L 09/09/13 22:08 Method: 7470A/DOD - Mercury (CVAA)	Dil Fac	Analyzed	D	Unit	DL	LOD	LOQ	Qualifie	Result	Analyte
Beryllium 1.0 U Q 1.0 1.0 0.50 ug/L 09/09/13 22:08 Cadmium 1.0 U 2.0 1.0 0.40 ug/L 09/09/13 22:08 Iron 100 U 150 100 44 ug/L 09/09/13 22:08 Sodium 1800 1000 400 160 ug/L 09/09/13 22:08 Thallium 1.5 U 2.0 1.5 0.79 ug/L 09/09/13 22:08 Method: 7470A/DOD - Mercury (CVAA)	1	09/09/13 22:08		ug/L	20	60	60	U	60	Aluminum
Cadmium 1.0 U 2.0 1.0 0.40 ug/L 09/09/13 22:08 Iron 100 U 150 100 44 ug/L 09/09/13 22:08 Sodium 1800 1000 400 160 ug/L 09/09/13 22:08 Thallium 1.5 U 2.0 1.5 0.79 ug/L 09/09/13 22:08 Zinc 50 U 50 50 27 ug/L 09/09/13 22:08 Method: 7470A/DOD - Mercury (CVAA)	1	09/09/13 22:08		ug/L	0.33	1.0	2.0	U	1.0	Antimony
Iron 100 U 150 100 44 ug/L 09/09/13 22:08 Sodium 1800 1000 400 160 ug/L 09/09/13 22:08 Thallium 1.5 U 2.0 1.5 0.79 ug/L 09/09/13 22:08 Zinc 50 U 50 50 27 ug/L 09/09/13 22:08 Method: 7470A/DOD - Mercury (CVAA)	1	09/09/13 22:08		ug/L	0.50	1.0	1.0	UQ	1.0	Beryllium
Sodium 1800 1000 400 160 ug/L 09/09/13 22:08 Thallium 1.5 U 2.0 1.5 0.79 ug/L 09/09/13 22:08 Zinc 50 U 50 50 27 ug/L 09/09/13 22:08 Method: 7470A/DOD - Mercury (CVAA)	1	09/09/13 22:08		ug/L	0.40	1.0	2.0	U	1.0	Cadmium
Thallium 1.5 U 2.0 1.5 0.79 ug/L 09/09/13 22:08 Zinc 50 U 50 50 27 ug/L 09/09/13 22:08 Method: 7470A/DOD - Mercury (CVAA)	1	09/09/13 22:08		ug/L	44	100	150	U	100	Iron
Zinc 50 U 50 50 27 ug/L 09/09/13 22:08 Method: 7470A/DOD - Mercury (CVAA)	- 1	09/09/13 22:08		ug/L	160	400	1000		1800	Sodium
Method: 7470A/DOD - Mercury (CVAA)				ug/L	0.79	1.5	2.0	U	1.5	Thallium
	1	09/09/13 22:08					En	U	50	Zinc
Analyte Posult Qualifier 100 100 Di Unit D Analyced	1			ug/L	27	50	50			- India
Analyze Result qualifier LOQ LOD OL Unit D Analyzed	1			ug/L	27	50	50			

Client: Environmental Quality Mgt., Inc.

Project/Site: RVAAP66 (OH)

TestAmerica Job ID: 240-28186-1

Lab Sample ID: 240-28186-27

Matrix: Water

Client Sample ID: FWGWBGmw-Dup4-0339-GW

Date Collected: 08/21/13 11:03 Date Received: 08/22/13 07:00

Analyte	Result	Qualifier	L	OQ	LOD	DL	Unit	D	Analyzed	Dil Fac
1,1,1-Trichloroethane	0.25	U		1.0	0.25	0.22	ug/L		08/31/13 10:18	1
1,1,2,2-Tetrachloroethane	0.25	U		1.0	0.25	0.18	ug/L		08/31/13 10:18	1
1,1,2-Trichloroethane	0.50	U		1.0	0.50	0.27	ug/L		08/31/13 10:18	1
1,1-Dichloroethane	0.25	U		1.0	0.25	0.15	ug/L		08/31/13 10:18	1
1,1-Dichloroethene	0.25	U		1.0	0.25	0.19	ug/L		08/31/13 10:18	1
1,2-Dichloroethane	0.25	U		1.0	0.25	0.22	ug/L		08/31/13 10:18	1
1,2-Dichloroethene, Total	0.25	U		2.0	0.25	0.17	ug/L		08/31/13 10:18	1
1,2-Dichloropropane	0.25	U		1.0	0.25	0.18	ug/L		08/31/13 10:18	1
2-Hexanone	0.50	U		10	0.50	0.41	ug/L		08/31/13 10:18	1
Bromochloromethane	0.50	U		1.0	0.50	0.29	ug/L		08/31/13 10:18	1
Acetone	1.7	J		10	1.1	1.1	ug/L		08/31/13 10:18	1
Benzene	0.25	U		1.0	0.25	0.13	ug/L		08/31/13 10:18	1
Bromoform	0.64	U		1.0	0.64	0.64	ug/L		08/31/13 10:18	1
Bromomethane	0.50	U		1.0	0.50	0.41	ug/L		08/31/13 10:18	1
Carbon disulfide	0.25	U		1.0	0.25	0.13	ug/L		08/31/13 10:18	1
Carbon tetrachloride	0.25	U		1.0	0.25	0.13	ug/L		08/31/13 10:18	1
Chlorobenzene	0.25	U		1.0	0.25	0.15	ug/L		08/31/13 10:18	1
Chloroethane	0.50	U		1.0	0.50	0.29	ug/L		08/31/13 10:18	1
Chloroform	0.25	U		1.0	0.25	0.16	ug/L		08/31/13 10:18	1
Chloromethane	0.50	U		1.0	0.50	0.30	ug/L		08/31/13 10:18	1
cis-1,2-Dichloroethene	0.25	U		1.0	0.25	0.17	ug/L		08/31/13 10:18	1
cis-1,3-Dichloropropene	0.25	U		1.0	0.25	0.14	ug/L		08/31/13 10:18	1
Bromodichloromethane	0.25	U		1.0	0.25	0.15	ug/L		08/31/13 10:18	1
Ethylbenzene	0.25	U		1.0	0.25	0.17	ug/L		08/31/13 10:18	1
1,2-Dibromoethane	0.25	U		1.0	0.25	0.24	ug/L		08/31/13 10:18	1
m-Xylene & p-Xylene	0.50	U		2.0	0.50	0.24	ug/L		08/31/13 10:18	d
2-Butanone (MEK)	0.57	Ü		10	0.57	0.57	ug/L		08/31/13 10:18	1
4-Methyl-2-pentanone (MIBK)	0.50	U		10	0.50	0.32	ug/L		08/31/13 10:18	1
Methylene Chloride	0.50	U		1.0	0.50	0.33	ug/L		08/31/13 10:18	1
o-Xylene	0.25	U		1.0	0.25	0.14	ug/L		08/31/13 10:18	1
Styrene	0.25	U		1.0	0.25	0.11	ug/L		08/31/13 10:18	1
Tetrachloroethene	0.50	U		1.0	0.50	0.29	ug/L		08/31/13 10:18	1
Toluene	0.25	U		1.0	0.25	0.13	ug/L		08/31/13 10:18	1
trans-1,2-Dichloroethene	0.25	U		1.0	0.25	0.19	ug/L		08/31/13 10:18	1
trans-1,3-Dichloropropene	0.25	U		1.0	0.25	0.19	ug/L		08/31/13 10:18	1
Trichloroethene	0.25	U		1.0	0.25	0.17	ug/L		08/31/13 10:18	1
Vinyl chloride	0.25	U		1.0	0.25	0.22	ug/L		08/31/13 10:18	1
Xylenes, Total	0.25	U		2.0	0.25	0.14	ug/L		08/31/13 10:18	-1
Dibromochloromethane	0,25	U		1.0	0.25	0.18			08/31/13 10:18	1
Surrogate	%Recovery Qu	alifier	Limits				Prepare	d	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	113		70 - 120						08/31/13 10:18	1

Surrogate	%Recovery Qualifier	Limits	Prepared Analyze	d Dil Fac
1,2-Dichloroethane-d4 (Surr)	113	70 - 120	08/31/13 10):18 1
4-Bromofluorobenzene (Surr)	84	75 - 120	08/31/13 10):18 1
Toluene-d8 (Surr)	88	85 - 120	08/31/13 10):18 1
Dibromoflyoromethane (Surr)	103	85 115	08/31/13 1/	1-18 1

Method: 8270C/DoD -	Semivolatile Organic	Compounds	(GC/MS)
Michiga, of Locinon	ocimivolatile organie	Compounds	COMMO

Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
Acenaphthene	0.095	U	0.19	0.095	0.042	ug/L		09/06/13 21:33	1
Acenaphthylene	0.095	U	0.19	0.095	0.046	ug/L		09/06/13 21:33	1

TestAmerica Canton

Page 69 of 196

9/24/2013

Client: Environmental Quality Mgt., Inc.

Project/Site: RVAAP66 (OH)

TestAmerica Job ID: 240-28186-1

Lab Sample ID: 240-28186-27

ab Sample 1D. 240-20100-21

Matrix: Water

Client Sample ID: FWGWBGmw-Dup4-0339-GW

Date Collected: 08/21/13 11:03 Date Received: 08/22/13 07:00

Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fa
Anthracene	0.095	U	0.19	0.095	0.084	ug/L		09/06/13 21:33	
Benzo[a]anthracene	0.095	U	0.19	0.095	0.028	ug/L		09/06/13 21:33	
Benzo[a]pyrene	0.095	U	0.19	0.095	0.049	ug/L		09/06/13 21:33	
Benzo[b]fluoranthene	0.095	U	0.19	0.095	0.038	ug/L		09/06/13 21:33	
Benzo[g,h,i]perylene	0.095	U	0.19	0.095	0.044	ug/L		09/06/13 21:33	
Benzoic acid	19	U	24	19	9.5	ug/L		09/06/13 21:33	
Benzo[k]fluoranthene	0.095	u	0.19	0.095	0.043	ug/L		09/06/13 21:33	
Benzyl alcohol	0.48	U	4.8	0.48	0.36	ug/L		09/06/13 21:33	
Bis(2-chloroethoxy)methane	0.48	U	0.95	0.48	0.30	ug/L		09/06/13 21:33	
Bis(2-chloroethyl)ether	0.095	U	0.95	0.095	0.095	ug/L		09/06/13 21:33	
Bis(2-ethylhexyl) phthalate	0.74	J	1.9	0.48	0.21	ug/L		09/06/13 21:33	
-Bromophenyl phenyl ether	0.48	U	1.9	0.48	0.21	ug/L		09/06/13 21:33	
Butyl benzyl phthalate	0.48	U	1.9	0.48	0.25	ug/L		09/06/13 21:33	
Carbazole	0.48	U	0.95	0.48	0.27	ug/L		09/06/13 21:33	
-Chloroaniline	0.48	U	1.9	0.48	0.20	ug/L		09/06/13 21:33	
-Chloro-3-methylphenol	0.48		1.9	0.48	0.20	ug/L		09/06/13 21:33	
2-Chloronaphthalene	0.48		0.95	0.48	0.095	ug/L		09/06/13 21:33	
2-Chlorophenol	0.48		0.95	0.48	0.28	ug/L		09/06/13 21:33	
-Chlorophenyl phenyl ether	0.48		1.9	0.48	0.29	ug/L		09/06/13 21:33	
Chrysene	0.095		0.19	0.095	0.048			09/06/13 21:33	
Dibenz(a,h)anthracene	0.095		0.19	0.095	0.042			09/06/13 21:33	
Dibenzofuran	0.095		0.95	0.095	0.019			09/06/13 21:33	
,2-Dichlorobenzene	0.48		0.95	0.48		ug/L		09/06/13 21:33	
,3-Dichlorobenzene	0.48		0.95	0.48		ug/L		09/06/13 21:33	
,4-Dichlorobenzene	0.48		0.95	0.48		ug/L		09/06/13 21:33	
3,3'-Dichlorobenzidine	0.95		4.8	0.95		ug/L		09/06/13 21:33	
2,4-Dichlorophenol	0.48		1.9	0.48		ug/L		09/06/13 21:33	
Diethyl phthalate	0.95		1.9	0.95	0.18			09/06/13 21:33	
2,4-Dimethylphenol	0.48		1.9	0.48	0.24			09/06/13 21:33	
Dimethyl phthalate	0.48		1.9	0.48	0.24	ug/L		09/06/13 21:33	
	1.5	J	1.9	0.46	0.64	ug/L		09/06/13 21:33	
Di-n-butyl phthalate	3.8		4.8	3.8	2.3			09/06/13 21:33	
,6-Dinitro-2-methylphenol	0.95			0.95		ug/L			
2,4-Dinitrophenol	0.93	U	4.8		0.30	ug/L		09/06/13 21:33	
Di-n-octyl phthalate			1.9	0.48	0.22	ug/L		09/06/13 21:33	
fluoranthene	0.095		0.19	0.095	0.042			09/06/13 21:33	
fluorene	0.095		0.19	0.095	0.039			09/06/13 21:33	
Hexachlorobenzene	0.095		0.19	0.095	0.081			09/06/13 21:33	
lexachlorobutadiene	0.48		0.95	0.48		ug/L		09/06/13 21:33	
dexachlorocyclopentadiene	0.48		9.5	0.48		ug/L		09/06/13 21:33	
Hexachloroethane	0.48		0.95	0.48		ug/L		09/06/13 21:33	
ndeno[1,2,3-cd]pyrene	0.095		0.19	0.095	0.041			09/06/13 21:33	
sophorone	0.48		0.95	0.48		ug/L		09/06/13 21:33	
2-Methylnaphthalene	0.095		0.19	0.095	0.086			09/06/13 21:33	
2-Methylphenol	0.48		0.95	0.48		ug/L		09/06/13 21:33	
8 & 4 Methylphenol	0.95		1.9	0.95		ug/L		09/06/13 21:33	
Naphthalene	0.095		0.19	0.095	0.060			09/06/13 21:33	
2-Nitroaniline	0.48		1.9	0.48		ug/L		09/06/13 21:33	
3-Nitroaniline	0.48	U	1.9	0.48	0.27	ug/L		09/06/13 21:33	

Client: Environmental Quality Mgt., Inc.

Project/Site: RVAAP66 (OH)

TestAmerica Job ID: 240-28186-1

Lab Sample ID: 240-28186-27

Matrix: Water

Client Sample ID: FWGWBGmw-Dup4-0339-GW

Date Collected: 08/21/13 11:03 Date Received: 08/22/13 07:00

DCB Decachlorobiphenyl

DCB Decachlorobiphenyl

Tetrachloro-m-xylene

Tetrachloro-m-xylene

Analyte	Result	Qualifier	LOQ	LO	D DL	Unit D	Analyzed	Dil Fac
2-Nitrophenol	0.48	U	1.9	0.4	8 0.27	ug/L	09/06/13 21:33	1
4-Nitrophenol	3.8	U	4.8	. 3	8 0.28	ug/L	09/06/13 21:33	1
N-Nitrosodi-n-propylamine	0.48	U	0.95	0.4	8 0.23	ug/L	09/06/13 21:33	1
N-Nitrosodiphenylamine	0.48	U	0.95	0.4	8 0.30	ug/L	09/06/13 21:33	1
2,2'-oxybis[1-chloropropane]	0.48	U	0.95	0.4	8 0.38	ug/L	09/06/13 21:33	1
Pentachlorophenol	0.95	U	4.8	0.9	5 0.26	ug/L	09/06/13 21:33	1
Phenanthrene	0.095	U	0.19	0.09	5 0.059	ug/L	09/06/13 21:33	1
Phenol	0.95	U	0.95	0.9	5 0.57	ug/L	09/06/13 21:33	1
Pyrene	0.095	U	0.19	0.09	5 0.040	ug/L	09/06/13 21:33	1
1,2,4-Trichlorobenzene	0.48	U	0.95	0.4	8 0.27	ug/L	09/06/13 21:33	1
2,4,5-Trichlorophenol	0.48	U	4.8	0.4	8 0.29	ug/L	09/06/13 21:33	- 1
2,4,6-Trichlorophenol	0.48	U	4.8	0.4	8 0.23	ug/L	09/06/13 21:33	1
Surrogate	%Recovery Qu	ualifier	Limits			Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl (Surr)	64		50 - 110			08/23/13 09:12	09/06/13 21:33	1
2-Fluorophenol (Surr)	66		20 - 110			08/23/13 09:12	09/06/13 21:33	1
Nitrobenzene-d5 (Surr)	67		40 - 110			08/23/13 09:12	09/06/13 21:33	1
Phenol-d5 (Surr)	69		10 - 115			08/23/13 09:12	09/06/13 21:33	1
Terphenyl-d14 (Surr)	88		50 - 135			08/23/13 09:12	09/06/13 21:33	1
2,4,6-Tribromophenol (Surr)	66		40 - 125			08/23/13 09:12	09/06/13 21:33	1

Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D Analyzed	Dil Fac
4,4'-DDD	0.019	U	0.048	0.019	0.0091	ug/L	08/30/13 02:15	1
4,4'-DDE	0.019	U	0.048	0.019	0.0092	ug/L	08/30/13 02:15	1
4,4'-DDT	0.019	U	0.048	0.019	0.015	ug/L	08/30/13 02:15	- 1
Aldrin	0.019	U	0.029	0.019	0.0078	ug/L	08/30/13 02:15	. 1
alpha-BHC	0.019	U	0.029	0.019	0.0067	ug/L	08/30/13 02:15	1
alpha-Chlordane	0.019	U	0.048	0.019	0.013	ug/L	08/30/13 02:15	1
beta-BHC	0.019	U	0.048	0.019	0.0080	ug/L	08/30/13 02:15	1
delta-BHC	0.019	U	0.048	0.019	0.0083	ug/L	08/30/13 02:15	1
Dieldrin	0.019	U	0.029	0.019	0.0071	ug/L	08/30/13 02:15	1
Endosulfan I	0.019	U	0.048	0.019	0.012	ug/L	08/30/13 02:15	1
Endosulfan II	0.019	U	0.048	0.019	0.011	ug/L	08/30/13 02:15	1
Endosulfan sulfate	0.019	U	0.048	0.019	0.010	ug/L	08/30/13 02:15	1
Endrin	0.019	U	0.048	0.019	0.010	ug/L	08/30/13 02:15	1
Endrin aldehyde	0.019	U	0.048	0.019	0.010	ug/L	08/30/13 02:15	1
Endrin ketone	0.019	U	0.048	0.019	0.0074	ug/L	08/30/13 02:15	1
gamma-BHC (Lindane)	0.019	U	0.048	0.019	0.0061	ug/L	08/30/13 02:15	9
gamma-Chlordane	0.019	U	0.048	0.019	0.011	ug/L	08/30/13 02:15	1
Heptachlor	0.019	U	0.029	0.019	0.0076	ug/L	08/30/13 02:15	1
Heptachlor epoxide	0.019	U	0.029	0.019	0.0068	ug/L	08/30/13 02:15	1
Methoxychlor	0.048	U	0.095	0.048	0.030	ug/L	08/30/13 02:15	1
Toxaphene	0.76	U	1.9	0.76	0.30	ug/L	08/30/13 02:15	1
Surrogate	%Recovery Qu	ıalifier	Limits			Prepared	Analyzed	Dil Fac

TestAmerica Canton

08/30/13 02:15

08/30/13 02:15

08/30/13 02:15

08/30/13 02:15

08/23/13 09:00

08/23/13 09:00

08/23/13 09:00

08/23/13 09:00

Page 71 of 196

30 - 135

30 - 135

25 - 140

25 - 140

62

70

79

82

9/24/2013

3

5

.

9

ŀ

14

1

Client: Environmental Quality Mgt., Inc.

Client Sample ID: FWGWBGmw-Dup4-0339-GW

Project/Site: RVAAP66 (OH)

Date Collected: 08/21/13 11:03

Date Received: 08/22/13 07:00

4-Amino-2,6-dinitrotoluene

HMX

RDX

Tetryl

Nitrobenzene

Nitroglycerin

TestAmerica Job ID: 240-28186-1

Lab Sample ID: 240-28186-27

Sample ID. 240-20100-21

Matrix: Water

Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
Aroclar-1016	0.19	U	0.48	0.19	0.16	ug/L		08/28/13 22:42	1
Aroclor-1221	0.19	U	0.48	0.19	0.12	ug/L		08/28/13 22:42	1
Aroclor-1232	0.19	U	0.48	0.19	0.15	ug/L		08/28/13 22:42	1
Aroclor-1242	0.38	U	0.48	0.38	0.21	ug/L		08/28/13 22:42	1
Aroclor-1248	0.19	U	0.48	0.19	0.095	ug/L		08/28/13 22:42	1
Aroclor-1254	0.19	U	0.48	0.19	0.15	ug/L		08/28/13 22:42	1
Aroclor-1260	0.19	U	0.48	0.19	0.16	ug/L		08/28/13 22:42	1
Surrogate	%Recovery Qu	alifier	Limits			Prepare	ed	Analyzed	Dil Fac
Tetrachloro-m-xylene	73		40 - 140			08/23/13	9:07	08/28/13 22:42	1
Tetrachloro-m-xylene	79		40 - 140			08/23/13 (9:07	08/28/13 22:42	1
DCB Decachlorobiphenyl	55		40 - 135			08/23/13 (9:07	08/28/13 22:42	1
DCB Decachlorobiphenyl	48		40 - 135			08/23/13	9:07	08/28/13 22:42	1
			40 - 135			08/23/13	9:07	08/28/13 22:42	1
DCB Decachlorobiphenyl Method: 8330 Modified - Nitro Analyte	oguanidine (HPLC)	Qualifier	40 ₋ 135	LOD	DL	08/23/13 (Unit	09:07 D	08/28/13 22:42 Analyzed	Dil Fac
Method: 8330 Modified - Nitro	oguanidine (HPLC)	3,000,000		LOD 6.0					Dil Fac
Method: 8330 Modified - Nitro Analyte	oguanidine (HPLC) Result 6.0	3,000,000	LOQ			Unit		Analyzed	Dil Fac
Method: 8330 Modified - Nitro Analyte Nitroguanidine	oguanidine (HPLC) Result 6.0 tics and Nitramines	3,000,000	LOQ		2.4	Unit		Analyzed	1
Method: 8330 Modified - Nitro Analyte Nitroguanidine Method: 8330A - Nitroaromat	oguanidine (HPLC) Result 6.0 tics and Nitramines	U Qualifier	LOQ 20	6.0	2.4	Unit ug/L	D	Analyzed 08/27/13 18:04	1
Method: 8330 Modified - Nitro Analyte Nitroguanidine Method: 8330A - Nitroaromat Analyte	oguanidine (HPLC) Result 6.0 tics and Nitramines Result 0.051	U Qualifier	LOQ 20	6.0 LOD	2.4 DL	Unit ug/L Unit ug/L	D	Analyzed 08/27/13 18:04 Analyzed	1
Method: 8330 Modified - Nitro Analyte Nitroguanidine Method: 8330A - Nitroaromat Analyte 1,3,5-Trinitrobenzene	oguanidine (HPLC) Result 6.0 tics and Nitramines Result 0.051	Qualifier U	LOQ 20 LOQ 0.15	6.0 LOD 0.051	2.4 DL 0.032	Unit ug/L Unit ug/L ug/L	D	Analyzed 08/27/13 18:04 Analyzed 08/31/13 00:04	1
Method: 8330 Modified - Nitro Analyte Nitroguanidine Method: 8330A - Nitroaromat Analyte 1,3,5-Trinitrobenzene 1,3-Dinitrobenzene	oguanidine (HPLC) Result 6.0 tics and Nitramines Result 0.051 0.10	Qualifier U U	LOQ 20 LOQ 0.15 0.15	6.0 LOD 0.051 0.10	DL 0.032 0.051	Unit ug/L Unit ug/L ug/L ug/L	D	Analyzed 08/27/13 18:04 Analyzed 08/31/13 00:04 08/31/13 00:04	1
Method: 8330 Modified - Nitro Analyte Nitroguanidine Method: 8330A - Nitroaromat Analyte 1,3,5-Trinitrobenzene 1,3-Dinitrobenzene 2,4,6-Trinitrotoluene	tics and Nitramines Result 0.051 0.10 0.10 0.10	Qualifier U U	LOQ 20 LOQ 0.15 0.15 0.15	6.0 LOD 0.051 0.10 0.10	DL 0.032 0.051	Unit ug/L Unit ug/L ug/L ug/L	D	Analyzed 08/27/13 18:04 Analyzed 08/31/13 00:04 08/31/13 00:04 08/31/13 00:04	1
Method: 8330 Modified - Nitro Analyte Nitroguanidine Method: 8330A - Nitroaromat Analyte 1,3,5-Trinitrobenzene 1,3-Dinitrobenzene 2,4,6-Trinitrotoluene 2,4-Dinitrotoluene	tics and Nitramines Result 0.051 0.10 0.10 0.10	Qualifier U U U U U	LOQ 20 LOQ 0.15 0.15 0.15 0.15	6.0 LOD 0.051 0.10 0.10 0.10	DL 0.032 0.051 0.051	Unit ug/L Unit ug/L ug/L ug/L ug/L ug/L	D	Analyzed 08/27/13 18:04 Analyzed 08/31/13 00:04 08/31/13 00:04 08/31/13 00:04 08/31/13 00:04	1
Method: 8330 Modified - Nitro Analyte Nitroguanidine Method: 8330A - Nitroaromat Analyte 1,3,5-Trinitrobenzene 1,3-Dinitrobenzene 2,4,6-Trinitrotoluene 2,6-Dinitrotoluene	eics and Nitramines Result 0.051 0.10 0.10 0.10 0.10 0.10	Qualifier U U U U U U	LOQ 20 LOQ 0.15 0.15 0.15 0.13	6.0 LOD 0.051 0.10 0.10 0.10 0.10	DL 0.032 0.051 0.051 0.051	Unit ug/L Unit ug/L ug/L ug/L ug/L ug/L	D	Analyzed 08/27/13 18:04 Analyzed 08/31/13 00:04 08/31/13 00:04 08/31/13 00:04 08/31/13 00:04 08/31/13 00:04	Dil Fac 1 Dil Fac 1 1 1 1 1 1 1 1
Method: 8330 Modified - Nitro Analyte Nitroguanidine Method: 8330A - Nitroaromate Analyte 1,3,5-Trinitrobenzene 1,3-Dinitrobenzene 2,4,6-Trinitrotoluene 2,6-Dinitrotoluene 2-Amino-4,6-dinitrotoluene	tics and Nitramines Result 0.051 0.10 0.10 0.10 0.10 0.10 0.10	Qualifier U U U U U U U U U	LOQ 20 0.15 0.15 0.15 0.13 0.13	6.0 LOD 0.051 0.10 0.10 0.10 0.10 0.10	DL 0.032 0.051 0.051 0.051 0.051 0.015	Unit ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	D	Analyzed 08/27/13 18:04 Analyzed 08/31/13 00:04 08/31/13 00:04 08/31/13 00:04 08/31/13 00:04 08/31/13 00:04 08/31/13 00:04	Dil Fac

PETN	0.51 U	0.67	0.51	0.31 ug/L	08/31/13 00:04	1
Surrogate	%Recovery Qualifier	Limits		Prepared	Analyzed	Dil Fac
3,4-Dinitrotoluene	94	79 - 111		08/27/13 07:26	08/31/13 00:04	1
3 4-Dinitrotoluene	96	70 111		08/27/13 07:26	09/10/13 06:25	1

0.15

0.15

0.15

0.15

0.15

0.67

0.10

0.051

0.051

0.10

0.10

0.51

0.051 ug/L

0.037 ug/L

0.037 ug/L

0.051 ug/L

0.051 ug/L

0.34 ug/L

0.10 U

0.13 J M

0.36 M

0.10 U

0.10 U

0.51 U

General Chemistry Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
Cyanide, Total	0.010	U	0.010	0.010	0.0032	mg/L		08/26/13 14:03	1
Nitrocellulose	1.0	U	2.0	1.0	0.48	mg/L		09/11/13 16:37	1

TestAmerica Canton

08/31/13 00:04

08/31/13 00:04

08/31/13 00:04

08/31/13 00:04

08/31/13 00:04

08/31/13 00:04

Client: Environmental Quality Mgt., Inc.

Project/Site: RVAAP66 (OH)

TestAmerica Job ID: 240-28186-1

Lab Sample ID: 240-28186-28

Matrix: Water

Client Sample ID: FWGWBGmw-Dup4-0339-GF

Date Collected: 08/21/13 11:03 Date Received: 08/22/13 07:00

Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
Arsenic	10	Ü	10	10	3.3	ug/L		09/09/13 16:44	1
Chromium	4.0	U	7.0	4.0	1.4	ug/L		09/09/13 16:44	1
Cobalt	4.0	U	7.0	4.0	1.5	ug/L		09/09/13 16:44	1
Lead	5.0	U	10	5.0	1.7	ug/L		09/09/13 16:44	1
Selenium	10	U	15	10	4.0	ug/L		09/09/13 16:44	1
Silver	5.0	U	7.0	5.0	1.7	ug/L		09/09/13 16:44	1
Vanadium	4.0	U	7.0	4.0	1.3	ug/L		09/09/13 16:44	1
Barium	20	J	200	5.0	2.8	ug/L		09/09/13 16:44	1
Calcium	15000		5000	1000	630	ug/L		09/09/13 16:44	1
Copper	10	U	25	10	4.4	ug/L		09/09/13 16:44	1
Magnesium	3400	J	5000	300	120	ug/L		09/09/13 16:44	1
Manganese	5.0	U	15	5.0	1.8	ug/L		09/09/13 16:44	1
Nickel	5.0	U	40	5.0	2.2	ug/L		09/09/13 16:44	- 1
Market Aug									
Potassium	1100		5000	900	300	ug/L		09/09/13 16:44	1
Potassium Method: 6020/DOD - Metals (ICP	/MS) - Total Recov	J verable	5000	900	300	ug/L		09/09/13 16:44	1
	/MS) - Total Recov	J	5000 LOQ	900 LOD		ug/L Unit	D	09/09/13 16:44 Analyzed	Dil Fac
Method: 6020/DOD - Metals (ICP	/MS) - Total Recov	J verable Qualifier					D		
Method: 6020/DOD - Metals (ICP Analyte	/MS) - Total Recov	yerable Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	
Method: 6020/DOD - Metals (ICP Analyte Aluminum	/MS) - Total Recov Result 60 1.0	yerable Qualifier	LOQ 60	LOD 60	DL 20	Unit ug/L	D	Analyzed 09/09/13 22:16	
Method: 6020/DOD - Metals (ICP Analyte Aluminum Antimony	/MS) - Total Recov Result 60 1.0	yerable Qualifier U U U Q	60 2.0	60 1.0	DL 20 0.33	Unit ug/L ug/L ug/L	D	Analyzed 09/09/13 22:16 09/09/13 22:16	
Method: 6020/DOD - Metals (ICP Analyte Aluminum Antimony Beryllium	/MS) - Total Recov Result 60 1.0	yerable Qualifier U U U U U U	60 2.0 1.0	60 1.0 1.0	DL 20 0.33 0.50	Unit ug/L ug/L ug/L	D	Analyzed 09/09/13 22:16 09/09/13 22:16 09/09/13 22:16	
Method: 6020/DOD - Metals (ICP Analyte Aluminum Antimony Beryllium Cadmium	/MS) - Total Recov Result 60 1.0 1.0	yerable Qualifier U U U U U U	60 2.0 1.0 2.0	60 1.0 1.0 1.0	20 0.33 0.50 0.40	Unit ug/L ug/L ug/L	D	Analyzed 09/09/13 22:16 09/09/13 22:16 09/09/13 22:16 09/09/13 22:16	
Method: 6020/DOD - Metals (ICP Analyte Aluminum Antimony Beryllium Cadmium	/MS) - Total Recov Result 60 1.0 1.0 1.0	yerable Qualifier U U Q U Q	60 2.0 1.0 2.0	60 1.0 1.0 1.0	DL 20 0.33 0.50 0.40 44	Unit ug/L ug/L ug/L ug/L ug/L	<u>D</u>	Analyzed 09/09/13 22:16 09/09/13 22:16 09/09/13 22:16 09/09/13 22:16	Dil Fac
Method: 6020/DOD - Metals (ICP Analyte Aluminum Antimony Beryllium Cadmium Iron Sodium	/MS) - Total Recov Result 60 1.0 1.0 1.0 100 1800	rerable Qualifier U U U U U U	LOQ 60 2.0 1.0 2.0 150 1000	60 1.0 1.0 1.0 1.0 400	DL 20 0.33 0.50 0.40 44 160	Unit ug/L ug/L ug/L ug/L ug/L ug/L ug/L	D	Analyzed 09/09/13 22:16 09/09/13 22:16 09/09/13 22:16 09/09/13 22:16 09/09/13 22:16	Dil Fac
Method: 6020/DOD - Metals (ICP Analyte Aluminum Antimony Beryllium Cadmium Iron Sodium Thallium	/MS) - Total Recov Result 60 1.0 1.0 1.0 1800 1.5	rerable Qualifier U U U U U U	LOQ 60 2.0 1.0 2.0 150 1000 2.0	60 1.0 1.0 1.0 100 400 1.5	DL 20 0.33 0.50 0.40 44 160 0.79	Unit ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	D	Analyzed 09/09/13 22:16 09/09/13 22:16 09/09/13 22:16 09/09/13 22:16 09/09/13 22:16 09/09/13 22:16	Dil Fac

Client: Environmental Quality Mgt., Inc.

Client Sample ID: FWGLL2mw-267C-0358-GW

Project/Site: RVAAP66 (OH)

TestAmerica Job ID: 240-28186-1

Lab Sample ID: 240-28186-29

Matrix: Water

Date Collected: 08/21/13 12:18 Date Received: 08/22/13 07:00

Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
Bis(2-ethylhexyl) phthalate	0.62	J	1.9	0.48	0.21	ug/L	-	09/06/13 18:16	1
Butyl benzyl phthalate	0.48	U	1.9	0.48	0.25	ug/L		09/06/13 18:16	1
Diethyl phthalate	0.95	U	1.9	0.95	0.57	ug/L		09/06/13 18:16	1
Dimethyl phthalate	0.48	U	1.9	0.48	0.28	ug/L		09/06/13 18:16	1
Di-n-butyl phthalate	0.81	J	1.9	0.95	0.64	ug/L		09/06/13 18:16	1
Di-n-octyl phthalate	0.48		1.9	0.48	0.22			09/06/13 18:16	1
Surrogate	%Recovery Qu	ualifier	Limits			Prepa	red	Analyzed	Dil Fac
2-Fluorobiphenyl (Surr)	79		50 - 110			08/23/13	09:12	09/06/13 18:16	1
2-Fluorophenol (Surr)	84		20 - 110			08/23/13	09:12	09/06/13 18:16	1
Nitrobenzene-d5 (Surr)	85		40 - 110			08/23/13	09:12	09/06/13 18:16	7
Phenol-d5 (Surr)	87		10 - 115			08/23/13	09:12	09/06/13 18:16	1
Terphenyl-d14 (Surr)	63		50 - 135			08/23/13		09/06/13 18:16	1
2,4,6-Tribromophenol (Surr)	91		40 - 125			08/23/13		09/06/13 18:16	1
Method: 8330 Modified - Nitro	guanidine (HPI C)								
Analyte	The state of the s	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
Nitroguanidine	6.0	California and an analysis an analysis and an analysis and an analysis and an analysis and an	20	6.0	2.4	57.70	_ =	08/27/13 18:22	1
tti ogda, namo	0.0		20	0.0	2.,	ugit		00/2///0 10:22	
Method: 8330A - Nitroaromatic	cs and Nitramines								
Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
1,3,5-Trinitrobenzene	0.051	U	0.15	0.051	0.031	ug/L		08/31/13 00:48	1
1,3-Dinitrobenzene	0.10	UM	0.15	0.10	0.051	ug/L		09/10/13 07:31	1
2,4,6-Trinitrotoluene	0.54	M	0.15	0.10	0.051	ug/L		08/31/13 00:48	1
2,4-Dinitrotoluene	0.30	M	0.13	0.10	0.051	ug/L		08/31/13 00:48	1
2,6-Dinitrotoluene	0.10	U	0.13	0.10	0.051	ug/L		08/31/13 00:48	1
2-Amino-4,6-dinitrotoluene	1.8		0.15	0.10	0.015	ug/L		08/31/13 00:48	- 1
2-Nitrotoluene	0.10	U	0.51	0.10	0.089	ug/L		08/31/13 00:48	1
3-Nitrotoluene	0.10	U	0.51	0.10	0.058	ug/L		08/31/13 00:48	1
1-Nitrotoluene	0.10	U	0.51	0.10	0.089	ug/L		08/31/13 00:48	1
4-Amino-2,6-dinitrotoluene	1.7	M	0.15	0.10	0.051	ug/L		08/31/13 00:48	1
HMX	0.051		0.15	0.051	0.036	ug/L		09/10/13 07:31	1
RDX	1.5	M	0.15	0.051	0.036	ug/L		08/31/13 00:48	1
Nitrobenzene	0.10		0.15	0.10	0.051	ug/L		08/31/13 00:48	1
Tetryl	0.10	U	0.15	0.10	0.051	ug/L		08/31/13 00:48	1
Nitroglycerin	0.51		0.66	0.51		ug/L		08/31/13 00:48	1
PETN	0.51	U	0.66	0.51		ug/L		08/31/13 00:48	1
Surrogate	%Recovery Qu	ualifier	Limits			Prepa	red	Analyzed	Dil Fac
3,4-Dinitrotoluene	91 M		79 - 111			08/27/13		08/31/13 00:48	1
3,4-Dinitrotoluene	102		79 - 111			08/27/13		09/10/13 07:31	1
General Chemistry									
Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
Nitrocellulose	1.0		2.0	1.0		mg/L		09/11/13 16:39	1

Client: Environmental Quality Mgt., Inc.

Client Sample ID: FWGLL2mw-267C-0358-GF

Project/Site: RVAAP66 (OH)

TestAmerica Job ID: 240-28186-1

Lab Sample ID: 240-28186-30

Matrix: Water

Date Collected: 08/21/13 12:18 Date Received: 08/22/13 07:00

Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
Arsenic	10	U	10	10	3.3	ug/L		09/09/13 16:50	1
Chromium	4.0	U	7.0	4.0	1.4	ug/L		09/09/13 16:50	1
Cobalt	4.0	U	7.0	4.0	1.5	ug/L		09/09/13 16:50	1
Lead	5.0	U	10	5.0	1.7	ug/L		09/09/13 16:50	1
Selenium	10	U	15	10	4.0	ug/L		09/09/13 16:50	1
Silver	5.0	U	7.0	5.0	1.7	ug/L		09/09/13 16:50	1
Vanadium	4.0	U	7.0	4.0	1.3	ug/L		09/09/13 16:50	1
Barium	11	J	200	5.0	2.8	ug/L		09/09/13 16:50	1
Calcium	32000		5000	1000	630	ug/L		09/09/13 16:50	1
Copper	10	U	25	10	4.4	ug/L		09/09/13 16:50	1
Magnesium	17000		5000	300	120	ug/L		09/09/13 16:50	1
Manganese	490		15	5.0	1.8	ug/L		09/09/13 16:50	1
Nickel	3.7	J	40	5.0	2.2	ug/L		09/09/13 16:50	1
Potassium	670	J	5000	900	300	ug/L		09/09/13 16:50	1
Method: 6020/DOD - Metals (ICP/MS) -	Total Recov	/erable							
Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
Aluminum	60	U	60	60	20	ug/L		09/09/13 22:23	1
Antimony	1.0	U	2.0	1.0	0.33	ug/L		09/09/13 22:23	1
Beryllium	1.0	UQ	1.0	1.0	0.50	ug/L		09/09/13 22:23	1
Cadmium	1.0	U	2.0	1.0	0.40	ug/L		09/09/13 22:23	1
Iron	360		150	100	44	ug/L		09/09/13 22:23	1
Sodium	19000		1000	400	160	ug/L		09/09/13 22:23	- 1
Thallium	1.5	U	2.0	1.5	0.79	ug/L		09/09/13 22:23	1
	50	U	50	50	27	ug/L		09/09/13 22:23	1
Zinc									
^{Zinc} Method: 7470A/DOD - Mercury (CVAA)									
		Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac

Client: Environmental Quality Mgt., Inc.

Project/Site: RVAAP66 (OH)

Date Collected: 08/21/13 13:33

TestAmerica Job ID: 240-28186-1

Lab Sample ID: 240-28186-31

Matrix: Water

Date Received: 08/22/13 07:00		
_	 17.0	None

Client Sample ID: FWGLL1mw-086-0320-GW

Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
Bis(2-ethylhexyl) phthalate	1.2	J	1.9	0.48	0.21	ug/L		09/06/13 17:52	1
Butyl benzyl phthalate	0.48	U	1.9	0.48	0.25	ug/L		09/06/13 17:52	1
Diethyl phthalate	0.95	U	1.9	0.95	0.57	ug/L		09/06/13 17:52	1
Dimethyl phthalate	0.48	U	1.9	0.48	0.28	ug/L		09/06/13 17:52	1
Di-n-butyl phthalate	0.86	J	1.9	0.95	0.64	ug/L		09/06/13 17:52	1
Di-n-octyl phthalate	0.48	U	1.9	0.48	0.22	ug/L		09/06/13 17:52	1

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl (Surr)	80		50 - 110	08/23/13 09:12	09/06/13 17:52	1
2-Fluorophenol (Surr)	85		20 - 110	08/23/13 09:12	09/06/13 17:52	1
Nitrobenzene-d5 (Surr)	84		40 - 110	08/23/13 09:12	09/06/13 17:52	7
Phenol-d5 (Surr)	90		10 - 115	08/23/13 09:12	09/06/13 17:52	1
Terphenyl-d14 (Surr)	102		50 - 135	08/23/13 09:12	09/06/13 17:52	1
2,4,6-Tribromophenol (Surr)	102		40 - 125	08/23/13 09:12	09/06/13 17:52	1

Method: 8081/DOD - Organochlorine Pesticides (GC)

Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
4,4'-DDD	0.019	U	0.048	0.019	0.0091	ug/L		08/30/13 10:03	1
4,4'-DDE	0.019	U	0.048	0.019	0.0092	ug/L		08/30/13 10:03	1
4,4'-DDT	0.019	U	0.048	0.019	0.015	ug/L		08/30/13 10:03	1
Aldrin	0.019	U	0.029	0.019	0.0078	ug/L		08/30/13 10:03	- 1
alpha-BHC	0.019	U	0.029	0.019	0.0067	ug/L		08/30/13 10:03	1
alpha-Chlordane	0.019	U	0.048	0.019	0.013	ug/L		08/30/13 10:03	1
beta-BHC	0.019	U	0.048	0.019	0.0080	ug/L		08/30/13 10:03	1
delta-BHC	0.019	U	0.048	0.019	0.0083	ug/L		08/30/13 10:03	1
Dieldrin	0.019	U	0.029	0.019	0.0071	ug/L		08/30/13 10:03	1
Endosulfan I	0.019	U	0.048	0.019	0.012	ug/L		08/30/13 10:03	1
Endosulfan II	0.019	U	0.048	0.019	0.011	ug/L		08/30/13 10:03	1
Endosulfan sulfate	0.019	U	0.048	0.019	0.010	ug/L		08/30/13 10:03	1
Endrin	0.019	U	0.048	0.019	0.010	ug/L		08/30/13 10:03	1
Endrin aldehyde	0.019	U	0.048	0.019	0.010	ug/L		08/30/13 10:03	1
Endrin ketone	0.019	U	0.048	0.019	0.0074	ug/L		08/30/13 10:03	1
gamma-BHC (Lindane)	0.019	U	0.048	0.019	0.0061	ug/L		08/30/13 10:03	1
gamma-Chlordane	0.019	U	0.048	0.019	0.011	ug/L		08/30/13 10:03	1
Heptachlor	0.019	U	0.029	0.019	0.0076	ug/L		08/30/13 10:03	1
Heptachlor epoxide	0.019	U	0.029	0.019	0.0068	ug/L		08/30/13 10:03	1
Methoxychlor	0.048	U	0.095	0.048	0.030	ug/L		08/30/13 10:03	1
Toxaphene	0.76	U	1.9	0.76	0.30	ug/L		08/30/13 10:03	.1

Surrogate	%Recovery Qualifie	er Limits	Prepared	Analyzed	Dil Fac
DCB Decachlorobiphenyl	30	30 - 135	08/23/13 09:00	08/30/13 10:03	1
DCB Decachlorobiphenyl	27 Q	30 - 135	08/23/13 09:00	08/30/13 10:03	1
Tetrachloro-m-xylene	1813 Q	25 - 140	08/23/13 09:00	08/30/13 10:03	1
Tetrachloro-m-xylene	79	25 - 140	08/23/13 09:00	08/30/13 10:03	7

Welliou, 6550 Woullieu - Mili	oguaniume (HPLC)							
Analyte	Result	Qualifier	LOQ	LOD	DL Unit	D	Analyzed	Dil Fac
Nitroguanidine	6.0	U	20	6.0	2.4 ug/L		08/27/13 18:40	1

Client: Environmental Quality Mgt., Inc.

Project/Site: RVAAP66 (OH)

TestAmerica Job ID: 240-28186-1

Lab Sample ID: 240-28186-31

Matrix: Water

Client Sample ID: FWGLL1mw-086-0320-GW

Date Collected: 08/21/13 13:33 Date Received: 08/22/13 07:00

General Chemistry

Analyte

Nitrocellulose

Analyte	Result	Qualifier	LC	Q	LOD	DL	Unit D	Analyzed	Dil Fac
1,3,5-Trinitrobenzene	0.051	U	0.	15	0.051	0.032	ug/L	08/31/13 01:32	1
1,3-Dinitrobenzene	0.10	U	0.	15	0.10	0.051	ug/L	09/10/13 08:36	1
2,4,6-Trinitrotoluene	0.10	U	0.	15	0.10	0.051	ug/L	08/31/13 01:32	1
2,4-Dinitrotoluene	0.10	U	0.	13	0.10	0.051	ug/L	08/31/13 01:32	1
2,6-Dinitrotoluene	0.10	U	0.	13	0.10	0.051	ug/L	08/31/13 01:32	1
2-Amino-4,6-dinitrotoluene	0.10	U	0.	15	0.10	0.015	ug/L	08/31/13 01:32	1
2-Nitrotoluene	0.10	U	0.	51	0.10	0.090	ug/L	08/31/13 01:32	1
3-Nitrotoluene	0.10	U	0.	51	0.10	0.058	ug/L	09/10/13 08:36	1
4-Nitrotoluene	0.10	U	0.	51	0.10	0.090	ug/L	08/31/13 01:32	1
4-Amino-2,6-dinitrotoluene	0.10	U	0.	15	0.10	0.051	ug/L	08/31/13 01:32	1
HMX	0.051	U	0.	15	0.051	0.037	ug/L	09/10/13 08:36	1
RDX	0.051	U	0.	15	0.051	0.037	ug/L	08/31/13 01:32	1
Nitrobenzene	0.10	U	0.	15	0.10	0.051	ug/L	08/31/13 01:32	1
Tetryl	0.10	U	0.	15	0.10	0.051	ug/L	08/31/13 01:32	1
Nitroglycerin	0.51	U	0.	66	0.51	0.34	ug/L	08/31/13 01:32	1
PETN	0.51	U	0.	66	0.51	0.31	ug/L	08/31/13 01:32	1
Surrogate	%Recovery Qu	ualifier	Limits				Prepared	Analyzed	Dil Fac
3,4-Dinitrotoluene	92 M		79 - 111				08/27/13 07:26	08/31/13 01:32	1
3,4-Dinitrotoluene	100		79 - 111				08/27/13 07:26	09/10/13 08:36	1

LOQ

2.0

LOD

1.0

0.48 mg/L

Result Qualifier

1.0 U

Dil Fac 09/11/13 16:41

Analyzed

Client: Environmental Quality Mgt., Inc.

Project/Site: RVAAP66 (OH)

TestAmerica Job ID: 240-28186-1

Lab Sample ID: 240-28186-32

Matrix: Water

Client Sample ID: FWGLL1mw-086-0320-GF Date Collected: 08/21/13 13:33

Date Received: 08/22/13 07:00

Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
Arsenic	3.7	J	10	10	3.3	ug/L		09/09/13 17:08	1
Chromium	4.0	U	7.0	4.0	1.4	ug/L		09/09/13 17:08	1
Cobalt	4.0	U	7.0	4.0	1.5	ug/L		09/09/13 17:08	1
Lead	5.0	U	10	5.0	1.7	ug/L		09/09/13 17:08	1
Selenium	10	U	15	10	4.0	ug/L		09/09/13 17:08	1
Silver	5.0	U	7.0	5.0	1.7	ug/L		09/09/13 17:08	1
Vanadium	4.0	U	7.0	4.0	1.3	ug/L		09/09/13 17:08	1
Barium	39	J	200	5.0	2.8	ug/L		09/09/13 17:08	1
Calcium	47000		5000	1000	630	ug/L		09/09/13 17:08	1
Copper	10	U	25	10	4.4	ug/L		09/09/13 17:08	1
Magnesium	20000		5000	300	120	ug/L		09/09/13 17:08	1
Manganese	310		15	5.0	1.8	ug/L		09/09/13 17:08	1
Nickel	5.0	U	40	5.0	2.2	ug/L		09/09/13 17:08	1
Potassium	19000		5000	900	300	ug/L		09/09/13 17:08	1
Method: 6020/DOD - Metals	7.								
Analyte		Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
Aluminum	60	U	60	60	20	ug/L		09/09/13 22:31	1
Antimony	1.0	U	2.0	1.0	0.33	ug/L		09/09/13 22:31	1
Beryllium	1.0	UQ	1.0	1.0	0.50	ug/L		09/09/13 22:31	1
Cadmium	1.0	U	2.0	1.0	0.40	ug/L		09/09/13 22:31	1
Iron	600		150	100	44	ug/L		09/09/13 22:31	1
Sodium	16000		1000	400	160	ug/L		09/09/13 22:31	1
Thallium	1.5	U	2.0	1.5	0.79	ug/L		09/09/13 22:31	1
Zinc	50	U	50	50	27	ug/L		09/09/13 22:31	1
Method: 7470A/DOD - Merc									
Analyte	0.12-7271	Qualifier	LOQ	LOD		Unit	D	Analyzed	Dil Fac
Hg	0.20	U	0.20	0.20	0.12	ug/L		08/27/13 17:15	1

Client: Environmental Quality Mgt., Inc.

Client Sample ID: FWGLL1mw-065C-0353-GW

Project/Site: RVAAP66 (OH)

Nitroguanidine

TestAmerica Job ID: 240-28186-1

Lab Sample ID: 240-28186-33

Matrix: Water

Date Collected: 08/21/13 14:43 Date Received: 08/22/13 07:00

Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D Analyzed	Dil Fac
Bis(2-ethylhexyl) phthalate	0.50	J	1.9	0.49	0.21	ug/L	09/06/13 19:55	1
Butyl benzyl phthalate	0.49	U	1.9	0.49	0.25	ug/L	09/06/13 19:55	1
Diethyl phthalate	0.97	U	1.9	0.97	0.58	ug/L	09/06/13 19:55	11
Dimethyl phthalate	0.49	U	1.9	0.49	0.28	ug/L	09/06/13 19:55	1
Di-n-butyl phthalate	0.97	U	1.9	0.97	0.65	ug/L	09/06/13 19:55	- 1
Di-n-octyl phthalate	0.49	U	1.9	0.49	0.22	ug/L	09/06/13 19:55	
Surrogate	%Recovery Qu	ıalifier	Limits			Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl (Surr)	77		50 - 110			08/23/13 09:1	2 09/06/13 19:55	1
2-Fluorophenol (Surr)	73		20 - 110			08/23/13 09:1	2 09/06/13 19:55	1
litrobenzene-d5 (Surr)	81		40 - 110			08/23/13 09:1	2 09/06/13 19:55	1.0
Phenol-d5 (Surr)	75		10 - 115			08/23/13 09:1	2 09/06/13 19:55	
Terphenyl-d14 (Surr)	105		50 - 135			08/23/13 09:1	2 09/06/13 19:55	1
2,4,6-Tribromophenol (Surr)	72		40 - 125			08/23/13 09:1	2 09/06/13 19:55	1
Method: 8081/DOD - Organoch	Iorine Pesticides (C	SC)						
Analyte		Qualifier	LOQ	LOD	DL	Unit	D Analyzed	Dil Fac
,4'-DDD	0.020	U	0.049	0.020	0.0094	ug/L	08/30/13 07:20	- 1
4'-DDE	0.020	U	0.049	0.020	0.0095	ug/L	08/30/13 07:20	
4'-DDT	0.020	U	0.049	0.020	0.016	ug/L	08/30/13 07:20	
ldrin	0,020	U	0.029	0.020	0.0080	ug/L	08/30/13 07:20	
pha-BHC	0.020	U	0.029	0.020	0.0069	ug/L	08/30/13 07:20	
lpha-Chlordane	0.020	U	0.049	0.020	0.014	ug/L	08/30/13 07:20	
eta-BHC	0.020	U	0.049	0.020	0.0082	ug/L	08/30/13 07:20	19
elta-BHC	0.020	U	0.049	0.020	0.0085	ug/L	08/30/13 07:20	19
Dieldrin	0.020	U	0.029	0.020	0.0074	ug/L	08/30/13 07:20	
indosulfan I	0.020	U	0.049	0.020	0.013	ug/L	08/30/13 07:20	
indosulfan II	0.020	U	0.049	0.020	0.012	ug/L	08/30/13 07:20	-
indosulfan sulfate	0.020	U	0.049	0.020	0.011	ug/L	08/30/13 07:20	
indrin	0.020	U	0.049	0.020	0.011	ug/L	08/30/13 07:20	
Endrin aldehyde	0.020	U	0.049	0.020	0.011	ug/L	08/30/13 07:20	9
ndrin ketone	0.020	U	0.049	0.020	0.0076	ug/L	08/30/13 07:20	
amma-BHC (Lindane)	0.020	U	0.049	0.020	0.0063	ug/L	08/30/13 07:20	
amma-Chlordane	0.020	U	0.049	0.020	0.012		08/30/13 07:20	
leptachlor	0.020	U	0.029	0.020	0.0078		08/30/13 07:20	
leptachlor epoxide	0.020		0.029	0.020	0.0070		08/30/13 07:20	
Methoxychlor	0.049		0.098	0.049	0.031		08/30/13 07:20	
oxaphene	0.78	U	2.0	0.78		ug/L	08/30/13 07:20	3
urrogate	%Recovery Qu	ıalifier	Limits			Prepared	Analyzed	Dil Fa
CB Decachlorobiphenyl	55		30 - 135			08/23/13 09:0	0 08/30/13 07:20	
CB Decachlorobiphenyl	52		30 - 135			08/23/13 09:0	0 08/30/13 07:20	
etrachloro-m-xylene	78		25 - 140			08/23/13 09:0	0 08/30/13 07:20	
etrachloro-m-xylene	79		25 - 140			08/23/13 09:0	0 08/30/13 07:20	
Method: 8330 Modified - Nitrog	Colorado Da Cara							

TestAmerica Canton

08/27/13 18:58

20

6.0

2.4 ug/L

6.0 U

3

5

ū

,

Ü

13

114

II O

Client: Environmental Quality Mgt., Inc.

Project/Site: RVAAP66 (OH)

TestAmerica Job ID: 240-28186-1

Lab Sample ID: 240-28186-33

09/11/13 16:43

Matrix: Water

Client Sample ID: FWGLL1mw-065C-0353-GW

Date Collected: 08/21/13 14:43 Date Received: 08/22/13 07:00

Nitrocellulose

Analyte	Result	Qualifier	LOQ	LOD	DL	Unit D	Analyzed	Dil Fac
1,3,5-Trinitrobenzene	0.051	U	0.15	0.051	0.032	ug/L	08/31/13 02:59	1
1,3-Dinitrobenzene	0.10	U	0.15	0.10	0.051	ug/L	08/31/13 02:59	1
2,4,6-Trinitrotoluene	0.10	U	0.15	0.10	0.051	ug/L	08/31/13 02:59	1
2,4-Dinitrotoluene	0.10	U	0.13	0.10	0.051	ug/L	08/31/13 02:59	1
2,6-Dinitrotoluene	0.10	U	0.13	0.10	0.051	ug/L	08/31/13 02:59	1
2-Amino-4,6-dinitrotoluene	0.10	U	0.15	0.10	0.015	ug/L	08/31/13 02:59	1
2-Nitrotoluene	0.10	U	0.51	0.10	0.090	ug/L	08/31/13 02:59	1
3-Nitrotoluene	0.10	U	0.51	0.10	0.058	ug/L	08/31/13 02:59	1
4-Nitrotoluene	0.10	U	0.51	0.10	0.090	ug/L	08/31/13 02:59	1
4-Amino-2,6-dinitrotoluene	0.10	U	0.15	0.10	0.051	ug/L	08/31/13 02:59	1
HMX	0.051	U	0.15	0.051	0.037	ug/L	08/31/13 02:59	1
RDX	0.051	U	0.15	0.051	0.037	ug/L	08/31/13 02:59	1
Nitrobenzene	0.10	U	0.15	0.10	0.051	ug/L	08/31/13 02:59	1
Tetryl	0.10	U	0.15	0.10	0.051	ug/L	08/31/13 02:59	1
Nitroglycerin	0.51	U	0.66	0.51	0.34	ug/L	08/31/13 02:59	1
PETN	0.51	U	0.66	0.51	0.31	ug/L	08/31/13 02:59	1
Surrogate	%Recovery Qu	ualifier	Limits			Prepared	Analyzed	Dil Fac
3,4-Dinitrotoluene	90		79 - 111			08/27/13 07:26	08/31/13 02:59	1
General Chemistry								
Analyte	Result	Qualifier	LOQ	LOD	DL	Unit D	Analyzed	Dil Fac

1.0

1.0 U

TestAmerica Canton

3

5

F

0

-10

12

T:

Client: Environmental Quality Mgt., Inc.

Client Sample ID: FWGLL1mw-065C-0353-GF

Project/Site: RVAAP66 (OH)

TestAmerica Job ID: 240-28186-1

Lab Sample ID: 240-28186-34

Matrix: Water

Date	Collected: 08/21/13 14:43	
Date	Received: 08/22/13 07:00	

Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
Arsenic	10	U	10	10	3.3	ug/L		09/09/13 17:14	1
Chromium	4.0	U	7.0	4.0	1.4	ug/L		09/09/13 17:14	1
Cobalt	4.0	U	7.0	4.0	1.5	ug/L		09/09/13 17:14	1
ead	5.0	U	10	5.0	1.7	ug/L		09/09/13 17:14	1
Selenium	10	U	15	10	4.0	ug/L		09/09/13 17:14	1
Silver	5.0	U	7.0	5.0	1.7	ug/L		09/09/13 17:14	1
/anadium	4.0	U	7.0	4.0	1.3	ug/L		09/09/13 17:14	1
Barium	50	J	200	5.0	2.8	ug/L		09/09/13 17:14	1
Calcium	75000		5000	1000	630	ug/L		09/09/13 17:14	1
Copper	10	U	25	10	4.4	ug/L		09/09/13 17:14	1
Magnesium	19000		5000	300	120	ug/L		09/09/13 17:14	1
Manganese	200		15	5.0	1.8	ug/L		09/09/13 17:14	1
lickel	5.0	U	40	5.0	2.2	ug/L		09/09/13 17:14	1
Potassium	1000	J	5000	900	300	ug/L		09/09/13 17:14	1
Method: 6020/DOD - Metals									
Analyte		Qualifier	LOQ	LOD		Unit	D	Analyzed	Dil Fac
Muminum			60	60		ug/L		09/09/13 22:38	1
Antimony	1.0	U	2.0	1.0	0.33	ug/L		09/09/13 22:38	1
Beryllium	1.0	UQ	1.0	1.0		-		09/09/13 22:38	1
Cadmium	1.0	U	2.0	1.0	0.40	ug/L		09/09/13 22:38	1
ron	170		150	100	44	ug/L		09/09/13 22:38	1
Sodium	12000		1000	400	160	ug/L		09/09/13 22:38	-1
Thallium Thallium	1.5	U	2.0	1.5	0.79	ug/L		09/09/13 22:38	1
Zinc	50	U	50	50	27	ug/L		09/09/13 22:38	1
Method: 7470A/DOD - Mercu	iry (CVAA)								
Analyte	0.12-72-71	Qualifier	LOQ	LOD	DL	347	D	Analyzed	Dil Fac
dg .	0.20	173	0.20	0.20	0.12	ug/L		08/27/13 17:17	4

Client: Environmental Quality Mgt., Inc.

Project/Site: RVAAP66 (OH)

TestAmerica Job ID: 240-28186-1

Lab Sample ID: 240-28186-35

Matrix: WQ

Client Sample ID: FWGTEAM4-TRIP

Date Collected: 08/21/13 08:00 Date Received: 08/22/13 07:00

Method: 8260B/DoD - Volatile Organic Compounds (GC/MS) Result Qualifier LOQ LOD DL Unit D Analyzed Dil Fac 0.25 U 0.25 1,1,1-Trichloroethane 1.0 0.22 ug/L 08/31/13 10:40 1,1,2,2-Tetrachloroethane 0.25 U 1.0 0.25 0.18 ug/L 08/31/13 10:40 1,1,2-Trichloroethane 0.50 1.0 0.50 0.27 ug/L 08/31/13 10:40 0.25 U 1,1-Dichloroethane 1.0 0.25 0.15 ug/L 08/31/13 10:40 1,1-Dichloroethene 0.25 U 1.0 0.25 ug/L 08/31/13 10:40 1.2-Dichloroethane 0.25 U 1.0 0.25 0.22 08/31/13 10:40 ug/L 1,2-Dichloroethene, Total 0.25 U 2.0 0.25 0.17 ug/L 08/31/13 10:40 0.25 U 0.25 1,2-Dichloropropane 1.0 0.18 ug/L 08/31/13 10:40 1 2-Hexanone 0.50 U 10 0.50 0.41 ug/L 08/31/13 10:40 Bromochloromethane 0.50 U 1.0 0.50 0.29 ug/L 08/31/13 10:40 Acetone 1.4 J 10 1.1 1.1 ug/L 08/31/13 10:40 Benzene 0.25 U 1.0 0.25 0.13 ug/L 08/31/13 10:40 0.64 U 0.64 ug/L Bromoform 1.0 0.64 08/31/13 10:40 Bromomethane 0.50 U 1.0 0.50 0.41 ug/L 08/31/13 10:40 Carbon disulfide 1.0 0.25 U 0.25 0.13 ug/L 08/31/13 10:40 0.25 Carbon tetrachloride 0.25 U 1.0 0.13 ug/L 08/31/13 10:40 Chlorobenzene 0.25 11 1.0 0.25 ug/L 08/31/13 10:40 0.15 Chloroethane 0.50 U 1.0 0.50 08/31/13 10:40 0.29 ug/L 0.25 U Chloroform 10 0.25 0.16 ug/L 08/31/13 10:40 Chloromethane 0.50 U 1.0 0.50 0.30 08/31/13 10:40 ug/L 1.0 0.25 cis-1,2-Dichloroethene 0.25 U ug/L 08/31/13 10:40 0.17 cis-1,3-Dichloropropene 0.25 U 1.0 0.25 ug/L 08/31/13 10:40 0.25 U 1.0 0.25 0.15 08/31/13 10:40 Bromodichloromethane ug/L Ethylbenzene 0.25 U 1.0 0.25 0.17 ug/L 08/31/13 10:40 1,2-Dibromoethane 0.25 U 1.0 0.25 0.24 08/31/13 10:40 ua/L m-Xylene & p-Xylene 0.50 U 2.0 0.50 0.24 ug/L 08/31/13 10:40 2-Butanone (MEK) 0.57 U 10 0.57 0.57 ug/L 08/31/13 10:40 0.50 U 0.50 4-Methyl-2-pentanone (MIBK) 10 0.32 ug/L 08/31/13 10:40 1.0 0.50 08/31/13 10:40 Methylene Chloride 0.85 JB 0.33 ug/L ug/L 0.25 U 1.0 0.25 o-Xylene 0.14 08/31/13 10:40 Styrene 0.25 U 1.0 0.25 0.11 ug/L 08/31/13 10:40 0.50 U 10 0.50 Tetrachloroethene 0.29 ug/L 08/31/13 10:40 0.25 U 1.0 0.25 0:13 ug/L 08/31/13 10:40 trans-1,2-Dichloroethene 0.25 U 1.0 0.25 0.19 ug/L 08/31/13 10:40 trans-1,3-Dichloropropene 0.25 U 1.0 0.25 0.19 ug/L 08/31/13 10:40 Trichloroethene 0.25 U 1.0 0.25 08/31/13 10:40 0.17 ug/L Vinyl chloride 0.25 U 1.0 0.25 0.22 ug/L 08/31/13 10:40 Xylenes, Total 0.25 U 2.0 0.25 0.14 ug/L 08/31/13 10:40 1 Dibromochloromethane 0.25 U 0.25 1.0 0.18 ug/L 08/31/13 10:40

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	112		70 - 120		08/31/13 10:40	1
4-Bromofluorobenzene (Surr)	86		75 - 120		08/31/13 10:40	7
Toluene-d8 (Surr)	88		85 - 120		08/31/13 10:40	1
Dibromofluoromethane (Surr)	99		85 - 115		08/31/13 10:40	1

Client: Environmental Quality Mgt., Inc.

Project/Site: RVAAP66 (OH)

Date Collected: 08/21/13 09:24

TestAmerica Job ID: 240-28186-1

Lab Sample ID: 240-28186-36

Matrix: Water

Date Received: 08/22/13 07:00

Client Sample ID: FWGWBGmw-021-0331-GW

Method: 8260B/DoD - Volatile Analyte		Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
1,1,1-Trichloroethane	0.25	Ü	1.0	0.25	0.22	ug/L		08/31/13 11:03	1
1,1,2,2-Tetrachloroethane	0.25	U	1.0	0.25	0.18	ug/L		08/31/13 11:03	1
1,1,2-Trichloroethane	0.50	U	1.0	0.50	0.27	ug/L		08/31/13 11:03	1
1,1-Dichloroethane	0.25	U	1.0	0.25	0.15	ug/L		08/31/13 11:03	1
1,1-Dichloroethene	0.25	U	1.0	0.25	0.19	ug/L		08/31/13 11:03	1
1,2-Dichloroethane	0.25	U	1.0	0.25	0.22	ug/L		08/31/13 11:03	1
1,2-Dichloroethene, Total	0.25	U	2.0	0.25	0.17	ug/L		08/31/13 11:03	1
1,2-Dichloropropane	0.25	Ü	1.0	0.25	0.18	ug/L		08/31/13 11:03	1
2-Hexanone	0.50	U	10	0.50	0.41	ug/L		08/31/13 11:03	1
Bromochloromethane	0.50	U	1.0	0.50	0.29	ug/L		08/31/13 11:03	1
Acetone	1.1	U	10	1.1	1.1	ug/L		08/31/13 11:03	1
Benzene	0.25	U	1.0	0.25	0.13	ug/L		08/31/13 11:03	1
Bromoform	0.64	U	1.0	0.64	0.64	ug/L		08/31/13 11:03	1
Bromomethane	0.50	U	1.0	0.50	0.41	ug/L		08/31/13 11:03	1
Carbon disulfide	0.25	U	1.0	0.25	0.13	ug/L		08/31/13 11:03	1
Carbon tetrachloride	0.25	U	1.0	0.25	0.13	ug/L		08/31/13 11:03	1
Chlorobenzene	0.25	U	1.0	0.25	0.15	ug/L		08/31/13 11:03	1
Chloroethane	0.50	U	1.0	0.50	0.29	ug/L		08/31/13 11:03	1
Chloroform	0.25	U	1.0	0.25	0.16	ug/L		08/31/13 11:03	1
Chloromethane	0.50	U	1.0	0.50	0.30	ug/L		08/31/13 11:03	1
cis-1,2-Dichloroethene	0.25	U	1.0	0.25	0.17	ug/L		08/31/13 11:03	1
cis-1,3-Dichloropropene	0.25	U	1.0	0.25	0.14	ug/L		08/31/13 11:03	1
Bromodichloromethane	0.25	U	1.0	0.25	0.15	ug/L		08/31/13 11:03	1
Ethylbenzene	0.25	U	1.0	0.25	0.17	ug/L		08/31/13 11:03	1
1,2-Dibromoethane	0.25	U	1.0	0.25	0.24	ug/L		08/31/13 11:03	1
m-Xylene & p-Xylene	0.50	U	2.0	0.50	0.24	ug/L		08/31/13 11:03	1
2-Butanone (MEK)	0.57	U	10	0.57	0.57	ug/L		08/31/13 11:03	1
4-Methyl-2-pentanone (MIBK)	0.50	U	10	0.50	0.32	ug/L		08/31/13 11:03	1
Methylene Chloride	0.50	U	1.0	0.50	0.33	ug/L		08/31/13 11:03	1
o-Xylene	0.25	U	1.0	0.25	0.14	ug/L		08/31/13 11:03	1
Styrene	0.25	U	1.0	0.25	0.11	ug/L		08/31/13 11:03	1
Tetrachloroethene	0.50	U	1.0	0.50	0.29	ug/L		08/31/13 11:03	1
Toluene	0.25	U	1.0	0.25	0.13	ug/L		08/31/13 11:03	1
trans-1,2-Dichloroethene	0.25	U	1.0	0.25	0.19	ug/L		08/31/13 11:03	1
trans-1,3-Dichloropropene	0.25	U	1.0	0.25	0.19	ug/L		08/31/13 11:03	1
Trichloroethene	0.25	U	1.0	0.25	0.17	ug/L		08/31/13 11:03	1
Vinyl chloride	0.25	U	1.0	0.25	0.22	ug/L		08/31/13 11:03	1
Xylenes, Total	0.25	U	2.0	0.25	0.14	ug/L		08/31/13 11:03	-1
Dibromochloromethane	0,25	U	1.0	0.25	0.18	ug/L		08/31/13 11:03	1
Surrogate	%Recovery Qu	alifier	Limits			Prepa	red	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	109		70 - 120			-		08/31/13 11:03	1

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	109		70 - 120		08/31/13 11:03	1
4-Bromofluorobenzene (Surr)	86		75 - 120		08/31/13 11:03	1
Toluene-d8 (Surr)	86		85 - 120		08/31/13 11:03	1
Dibromofluoromethane (Surr)	101		85 - 115		08/31/13 11:03	1

Method: 8270C/DoD - Semiy	olatile Organic Compo	ounds (GC/M	3)						
Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
Acenaphthene	0.095	U	0.19	0.095	0.042	ug/L	_	09/06/13 20:19	1
Acananhthulana	0.005	1.1	0.40	0.005	0.046	riw II		00/06/12 20:10	4

TestAmerica Canton

Page 83 of 196

9/24/2013

Client: Environmental Quality Mgt., Inc.

Project/Site: RVAAP66 (OH)

TestAmerica Job ID: 240-28186-1

Lab Sample ID: 240-28186-36

Matrix: Water

Client Sample	ID: FWGWB0	Gmw-021-0331-GW
---------------	------------	-----------------

Date Collected: 08/21/13 09:24 Date Received: 08/22/13 07:00

Method: 8270C/DoD - Semivolatile Analyte		Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fa
Anthracene	0.095		0.19	0.095	0.084		_ =	09/06/13 20:19	
Benzo[a]anthracene	0.095		0.19	0.095	0.028	ug/L		09/06/13 20:19	
Benzo[a]pyrene	0.095		0.19	0.095	0.049	ug/L		09/06/13 20:19	
Benzo[b]fluoranthene	0.095	101	0.19	0.095	0.038	ug/L		09/06/13 20:19	
Benzo[g,h,i]perylene	0.095		0.19	0.095	0.044	ug/L		09/06/13 20:19	
Benzoic acid		U	24	19		ug/L		09/06/13 20:19	
Benzo[k]fluoranthene	0.095		0.19	0.095	0.043			09/06/13 20:19	
Benzyl alcohol	0.48		4.8	0.48	0.36	ug/L		09/06/13 20:19	
Bis(2-chloroethoxy)methane	0.48		0.95	0.48	0.30			09/06/13 20:19	
Bis(2-chloroethyl)ether	0.095		0.95	0.095	0.095	-		09/06/13 20:19	
	0.65		1.9	0.48	0.093			09/06/13 20:19	
Bis(2-ethylhexyl) phthalate 4-Bromophenyl phenyl ether	0.48		1.9	0.48	0.21			09/06/13 20:19	
	0.48		1.9	0.48	0.25	ug/L		09/06/13 20:19	
Butyl benzyl phthalate						ug/L			
Carbazole	0.48		0.95	0.48	0.27	ug/L		09/06/13 20:19	
4-Chloro 3 methylphonol	0.48		1.9	0.48	0.20	ug/L		09/06/13 20:19	
4-Chloro-3-methylphenol	0.48		1.9	0.48	0.20	ug/L		09/06/13 20:19	
2-Chlorophonal	0.48		0.95	0.48	0.095	ug/L		09/06/13 20:19	
2-Chlorophenol	1,70,171		0.95	0.48	0.28	ug/L		09/06/13 20:19	
4-Chlorophenyl phenyl ether		U	1.9	0.48	0.29	ug/L		09/06/13 20:19	
Chrysene		U	0.19	0.095	0.048	ug/L		09/06/13 20:19	
Dibenz(a,h)anthracene	0.095		0.19	0.095	0.042			09/06/13 20:19	
Dibenzofuran	0.095		0.95	0.095	0.019			09/06/13 20:19	
1,2-Dichlorobenzene		U	0.95	0.48		ug/L		09/06/13 20:19	
1,3-Dichlorobenzene	0.48		0.95	0.48		ug/L		09/06/13 20:19	
1,4-Dichlorobenzene	0.48		0.95	0.48		ug/L		09/06/13 20:19	
3,3'-Dichlorobenzidine	0.95		4.8	0.95	0.35	ug/L		09/06/13 20:19	
2,4-Dichlorophenol	0.48		1.9	0.48	0.18			09/06/13 20:19	
Diethyl phthalate	0.95		1.9	0.95		ug/L		09/06/13 20:19	
2,4-Dimethylphenol	0.48		1.9	0.48		ug/L		09/06/13 20:19	
Dimethyl phthalate	0.48	U	1.9	0.48	0.28	ug/L		09/06/13 20:19	
Di-n-butyl phthalate	0.68		1.9	0.95	0.64	ug/L		09/06/13 20:19	
4,6-Dinitro-2-methylphenol	3.8	U	4.8	3.8	2.3			09/06/13 20:19	
2,4-Dinitrophenol	0.95	U	4.8	0.95	0.30	ug/L		09/06/13 20:19	
Di-n-octyl phthalate	0.48	U	1.9	0.48	0.22			09/06/13 20:19	
Fluoranthene	0.095		0.19	0.095	0.042	ug/L		09/06/13 20:19	
Fluorene	0.095	U	0.19	0.095	0.039	ug/L		09/06/13 20:19	
Hexachlorobenzene	0.095	U	0.19	0.095	0.081	ug/L		09/06/13 20:19	
Hexachlorobutadiene	0.48	U	0.95	0.48	0.26	ug/L		09/06/13 20:19	
Hexachlorocyclopentadiene	0.48	U	9.5	0.48	0.23	ug/L		09/06/13 20:19	
Hexachloroethane	0.48	U	0.95	0.48	0.18	ug/L		09/06/13 20:19	
Indeno[1,2,3-cd]pyrene	0.095	U	0.19	0.095	0.041	ug/L		09/06/13 20:19	
Isophorone	0.48	U	0.95	0.48	0.26	ug/L		09/06/13 20:19	
2-Methylnaphthalene	0.095	U	0.19	0.095	0.086	ug/L		09/06/13 20:19	
2-Methylphenol	0.48	U	0.95	0.48	0.16	ug/L		09/06/13 20:19	
3 & 4 Methylphenol	0.95	U	1.9	0.95	0.76	ug/L		09/06/13 20:19	
Naphthalene	0.095	U	0.19	0.095	0.060	ug/L		09/06/13 20:19	
2-Nitroaniline	0.48	U	1.9	0.48	0.20	ug/L		09/06/13 20:19	
3-Nitroaniline	0.48	U	1.9	0.48	0.27	ug/L		09/06/13 20:19	
4-Nitroaniline	0.48	U	1.9	0.48		ug/L		09/06/13 20:19	

Client: Environmental Quality Mgt., Inc.

Project/Site: RVAAP66 (OH)

TestAmerica Job ID: 240-28186-1

Lab Sample ID: 240-28186-36

Matrix: Water

Client Sample ID: FWGWBGmw-021-0331-GW

Date Collected: 08/21/13 09:24 Date Received: 08/22/13 07:00

DCB Decachlorobiphenyl

DCB Decachlorobiphenyl

Tetrachloro-m-xylene

Tetrachloro-m-xylene

Method: 8270C/DoD - Semivo	latile Organic Comp	ounds (GC	C/MS) (Continue	d)				
Analyte	Result	Qualifier	LOQ	LOD	DL	Unit D	Analyzed	Dil Fac
2-Nitrophenol	0.48	U	1.9	0.48	0.27	ug/L	09/06/13 20:19	1
4-Nitrophenol	3.8	U	4.8	3.8	0.28	ug/L	09/06/13 20:19	1
N-Nitrosodi-n-propylamine	0.48	U	0.95	0.48	0.23	ug/L	09/06/13 20:19	1
N-Nitrosodiphenylamine	0.48	U	0.95	0.48	0.30	ug/L	09/06/13 20:19	1
2,2'-oxybis[1-chloropropane]	0.48	U	0.95	0.48	0.38	ug/L	09/06/13 20:19	1
Pentachlorophenol	0.95	U	4.8	0.95	0.26	ug/L	09/06/13 20:19	1
Phenanthrene	0.095	U	0.19	0.095	0.059	ug/L	09/06/13 20:19	1
Phenol	0.95	U	0.95	0.95	0.57	ug/L	09/06/13 20:19	1
Pyrene	0.095	U	0.19	0.095	0.040	ug/L	09/06/13 20:19	1
1,2,4-Trichlorobenzene	0.48	U	0.95	0.48	0.27	ug/L	09/06/13 20:19	1
2,4,5-Trichlorophenol	0.48	U	4.8	0.48	0.29	ug/L	09/06/13 20:19	- 1
2,4,6-Trichlorophenol	0.48	U	4.8	0.48	0.23	ug/L	09/06/13 20:19	1
Surrogate	%Recovery Qu	ualifier	Limits			Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl (Surr)	76		50 - 110			08/23/13 09:12	09/06/13 20:19	1
2-Fluorophenol (Surr)	77		20 - 110			08/23/13 09:12	09/06/13 20:19	1
Nitrobenzene-d5 (Surr)	79		40 - 110			08/23/13 09:12	09/06/13 20:19	1
Phenol-d5 (Surr)	78		10 - 115			08/23/13 09:12	09/06/13 20:19	1
Terphenyl-d14 (Surr)	107		50 - 135			08/23/13 09:12	09/06/13 20:19	1
2,4,6-Tribromophenol (Surr)	81		40 - 125			08/23/13 09:12	09/06/13 20:19	1

Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D Analyzed	Dil Fac
4,4'-DDD	0.019	U	0.048	0.019	0.0091	ug/L	08/30/13 07:40	1
4,4'-DDE	0.019	U	0.048	0.019	0.0092	ug/L	08/30/13 07:40	1
4,4'-DDT	0.019	U	0.048	0.019	0.015	ug/L	08/30/13 07:40	- 1
Aldrin	0.019	U	0.029	0.019	0.0078	ug/L	08/30/13 07:40	1
alpha-BHC	0.019	U	0.029	0.019	0.0067	ug/L	08/30/13 07:40	1
alpha-Chlordane	0.019	U	0.048	0.019	0.013	ug/L	08/30/13 07:40	1
beta-BHC	0.019	U	0.048	0.019	0.0080	ug/L	08/30/13 07:40	1
delta-BHC	0.019	U	0.048	0.019	0.0083	ug/L	08/30/13 07:40	1
Dieldrin	0.019	U	0.029	0.019	0.0071	ug/L	08/30/13 07:40	1
Endosulfan I	0.019	U	0.048	0.019	0.012	ug/L	08/30/13 07:40	1
Endosulfan II	0.019	U	0.048	0.019	0.011	ug/L	08/30/13 07:40	- 1
Endosulfan sulfate	0.019	U	0.048	0.019	0.010	ug/L	08/30/13 07:40	1
Endrin	0.019	U	0.048	0.019	0.010	ug/L	08/30/13 07:40	1
Endrin aldehyde	0.019	U	0.048	0.019	0.010	ug/L	08/30/13 07:40	1
Endrin ketone	0.019	U	0.048	0.019	0.0074	ug/L	08/30/13 07:40	1
gamma-BHC (Lindane)	0.019	U	0.048	0.019	0.0061	ug/L	08/30/13 07:40	9
gamma-Chlordane	0.019	U	0.048	0.019	0.011	ug/L	08/30/13 07:40	1
Heptachlor	0.019	U	0.029	0.019	0.0076	ug/L	08/30/13 07:40	1
Heptachlor epoxide	0.019	U	0.029	0.019	0,0068	ug/L	08/30/13 07:40	1
Methoxychlor	0.048	U	0.095	0.048	0.030	ug/L	08/30/13 07:40	1
Toxaphene	0.76	U	1.9	0.76	0.30	ug/L	08/30/13 07:40	1
Surrogate	%Recovery Qu	ıalifier	Limits			Prepared	Analyzed	Dil Fac

TestAmerica Canton

08/30/13 07:40

08/30/13 07:40

08/30/13 07:40

08/30/13 07:40

08/23/13 09:00

08/23/13 09:00

08/23/13 09:00

08/23/13 09:00

Page 85 of 196

30 - 135

30 - 135

25 - 140

25 - 140

56

56

67

68

9/24/2013

3

0

13

14

U:

Client: Environmental Quality Mgt., Inc.

Project/Site: RVAAP66 (OH)

TestAmerica Job ID: 240-28186-1

Lab Sample ID: 240-28186-36

Matrix: Water

Client Sample ID: FWGWBGmw-021-0331-GW

Date Collected: 08/21/13 09:24 Date Received: 08/22/13 07:00

Analyte	ated Biphenyls (P Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fa
Aroclor-1016	0.19	U	0.48	0.19	0.16	ug/L		08/28/13 22:56	
Aroclor-1221	0.19	U	0.48	0.19	0.12	ug/L		08/28/13 22:56	
Aroclor-1232	0.19	U	0.48	0.19	0.15	ug/L		08/28/13 22:56	
Aroclor-1242	0.38	U	0.48	0.38	0.21	ug/L		08/28/13 22:56	
Aroclor-1248	0.19	U	0.48	0.19	0.095	ug/L		08/28/13 22:56	
Aroclor-1254	0.19	U	0.48	0.19	0.15	ug/L		08/28/13 22:56	
Aroclor-1260	0.19	U	0.48	0.19	0.16	ug/L		08/28/13 22:56	
Surrogate	%Recovery Qu	ıalifier	Limits			Prep	pared	Analyzed	Dil Fa
Tetrachloro-m-xylene	68		40 - 140			08/23/1	13 09:07	08/28/13 22:56	
Tetrachloro-m-xylene	74		40 - 140			08/23/1	13 09:07	08/28/13 22:56	
DCB Decachlorobiphenyl	49		40 - 135			08/23/1	13 09:07	08/28/13 22:56	
DCB Decachlorobiphenyl	42		40 - 135			08/23/1	13 09:07	08/28/13 22:56	
Method: 8330 Modified - Nitrogua	anidine (HPLC)								
Analyte		Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fa
Nitroguanidine	6.0	U	20	6.0	2.4	ug/L		08/27/13 19:15	
Method: 8330A - Nitroaromatics	and Nitramines								
Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fa
1,3,5-Trinitrobenzene	0,050	U	0.15	0.050	0.031	ug/L		08/31/13 03:43	
1,3-Dinitrobenzene	0.10	U	0.15	0.10	0.050	ug/L		08/31/13 03:43	
2,4,6-Trinitrotoluene	0.10	U	0.15	0.10	0.050	ug/L		08/31/13 03:43	
2,4-Dinitrotoluene	0.10	U	0.13	0.10	0.050	ug/L		08/31/13 03:43	
2,6-Dinitrotoluene	0.10	U	0.13	0.10	0.050	ug/L		08/31/13 03:43	
2-Amino-4,6-dinitrotoluene	0.10	U	0.15	0.10	0.015	ug/L		08/31/13 03:43	
2-Nitrotoluene	0.10	U	0.50	0.10	0.089	ug/L		08/31/13 03:43	
3-Nitrotoluene	0.10	U	0.50	0.10	0.058	ug/L		08/31/13 03:43	
4-Nitrotoluene	0.10	U	0.50	0.10	0.089	ug/L		08/31/13 03:43	
	0.10	U	0.15	0.10	0.050	ug/L		08/31/13 03:43	
4-Amino-2,6-dinitrotoluene		11.	0.15	0.050	0.036	ug/L		08/31/13 03:43	
	0.050	U							
HMX	0.050 0.050		0.15	0.050	0.036	ug/L		08/31/13 03:43	
HMX RDX		U	0.15 0.15	0.050 0.10	0.036 0.050			08/31/13 03:43 08/31/13 03:43	
4-Amino-2,6-dinitrotoluene HMX RDX Nitrobenzene Tetryl	0.050	U				ug/L			
HMX RDX Nitrobenzene Tetryl	0.050 0.10	U U U	0.15	0.10	0.050	ug/L		08/31/13 03:43	
HMX RDX Nitrobenzene	0.050 0.10 0.10	U U U	0.15 0.15	0.10 0.10	0.050 0.050 0.33	ug/L ug/L		08/31/13 03:43 08/31/13 03:43	

General	Chem	istry

3,4-Dinitrotoluene

Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
Cyanide, Total	0.010	U	0.010	0.010	0.0032	mg/L		08/26/13 14:03	1
Nitrocellulose	1.0	U	2.0	1.0	0.48	mg/L		09/11/13 16:45	1

79 - 111

TestAmerica Canton

08/27/13 07:26 08/31/13 03:43

Client: Environmental Quality Mgt., Inc.

Client Sample ID: FWGWBGmw-021-0331-GF

Project/Site: RVAAP66 (OH)

TestAmerica Job ID: 240-28186-1

Lab Sample ID: 240-28186-37

Matrix: Water

Date Collected: 08/21/13 09:24 Date Received: 08/22/13 07:00

Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
Arsenic	6.5	J	10	10	3.3	ug/L		09/09/13 17:20	1
Chromium	4.0	U	7.0	4.0	1.4	ug/L		09/09/13 17:20	1
Cobalt	4.0	U	7.0	4.0	1.5	ug/L		09/09/13 17:20	1
Lead	5.0	U	10	5.0	1.7	ug/L		09/09/13 17:20	1
Selenium	10	U	15	10	4.0	ug/L		09/09/13 17:20	1
Silver	5.0	U	7.0	5.0	1.7	ug/L		09/09/13 17:20	1
Vanadium	4.0	U	7.0	4.0	1.3	ug/L		09/09/13 17:20	1
Barium	62	J	200	5.0	2.8	ug/L		09/09/13 17:20	1
Calcium	74000		5000	1000	630	ug/L		09/09/13 17:20	1
Copper	10	U	25	10	4.4	ug/L		09/09/13 17:20	1
Magnesium	19000		5000	300	120	ug/L		09/09/13 17:20	1
Manganese	240		15	5.0	1.8	ug/L		09/09/13 17:20	1
Nickel	5.0	U	40	5.0	2.2	ug/L		09/09/13 17:20	1
Potassium	1200	J	5000	900	300	ug/L		09/09/13 17:20	1
Method: 6020/DOD - Metals (ICP/MS)									
Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
Aluminum	60	U	60	60	20	ug/L		09/09/13 23:01	1
Antimony	1.0	U	2.0	1.0	0.33	ug/L		09/09/13 23:01	1
Beryllium	1.0	UQ	1.0	1.0	0.50	ug/L		09/09/13 23:01	1
Cadmium	1.0	U	2.0	1.0	0.40	ug/L		09/09/13 23:01	1
Iron	570		150	100	44	ug/L		09/09/13 23:01	1
Sodium	5100		1000	400	160	ug/L		09/09/13 23:01	1
Thallium	1.5	U	2.0	1.5	0.79	ug/L		09/09/13 23:01	1
Zinc	50	U	50	50	27	ug/L		09/09/13 23:01	1
Method: 7470A/DOD - Mercury (CVA/									
Analyte	0.01-7270	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
Hg	0.20	D	0.20	0.20	0.12	ug/L		08/27/13 17:18	1

Client: Environmental Quality Mgt., Inc.

Project/Site: RVAAP66 (OH)

TestAmerica Job ID: 240-28186-1

Lab Sample ID: 240-28186-38

Matrix: Water

Client Sample ID: FWGWBGmw-006C-0373-GW

Date Collected: 08/21/13 10:40 Date Received: 08/22/13 07:00

Nitrocellulose

Method: 8270C/DoD - Semivol ^{Analyte}		Qualifier	LOQ	LOD	DI	Unit	D	Analyzed	Dil Fac
Bis(2-ethylhexyl) phthalate	0.74		1.9	0.49	0.21	ug/L		09/06/13 19:05	1
Butyl benzyl phthalate	0.49		1.9	0.49	0.25	ug/L		09/06/13 19:05	1
Diethyl phthalate	0,97		1.9	0.97	0.58			09/06/13 19:05	1
Dimethyl phthalate	0.49	U	1.9	0.49	0.28			09/06/13 19:05	1
Di-n-butyl phthalate	0.97	U	1.9	0.97	0.65	ug/L		09/06/13 19:05	1
Di-n-octyl phthalate	0.49	U	1.9	0.49	0.22	ug/L		09/06/13 19:05	1
Surrogate	%Recovery Q	ualifier	Limits			Prepare	ed	Analyzed	Dil Fac
2-Fluorobiphenyl (Surr)	64		50 - 110			08/23/13 (09:12	09/06/13 19:05	1
2-Fluorophenol (Surr)	58		20 - 110			08/23/13 (09:12	09/06/13 19:05	1
Nitrobenzene-d5 (Surr)	66		40 - 110			08/23/13 (9:12	09/06/13 19:05	9
Phenol-d5 (Surr)	61		10 - 115			08/23/13 (09:12	09/06/13 19:05	1
Terphenyl-d14 (Surr)	96		50 - 135			08/23/13 (09:12	09/06/13 19:05	1
2,4,6-Tribromophenol (Surr)	65		40 - 125			08/23/13 (09:12	09/06/13 19:05	1
Method: 8330 Modified - Nitro	The same of the sa								
Analyte	.,,,,,,,,	Qualifier	LOQ	LOD		Unit	D	Analyzed	Dil Fac
Vitroguanidine	6.0	U	20	6.0	2.4	ug/L		08/27/13 19:51	
Method: 8330A - Nitroaromatic	cs and Nitramines								
Analyte		Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
,3,5-Trinitrobenzene	0.051		0.15	0.051	0.032			08/31/13 04:26	
,3-Dinitrobenzene	0.10		0.15	0.10	0.051	ug/L		08/31/13 04:26	- 1
2,4,6-Trinitrotoluene	0.10		0.15	0.10	0.051	ug/L		08/31/13 04:26	
2,4-Dinitrotoluene	0.10		0.13	0.10	0.051			08/31/13 04:26	
2,6-Dinitrotoluene	0.10		0.13	0.10	0.051	ug/L		08/31/13 04:26	
2-Amino-4,6-dinitrotoluene	0.10		0.15	0.10	0.015			08/31/13 04:26	
2-Nitrotoluene	0.10		0.51	0.10	0.090	ug/L		08/31/13 04:26	
3-Nitrotoluene	0.10		0.51	0.10	0.059	ug/L		08/31/13 04:26	
I-Nitrotoluene	0.10		0.51	0.10	0.090	ug/L		08/31/13 04:26	
-Amino-2,6-dinitrotoluene	0.10	U	0.15	0.10	0.051	ug/L		08/31/13 04:26	
HMX	5.6		0.15	0.051	0.037	ug/L		08/31/13 04:26	
RDX	15		0.15	0.051	0.037			08/31/13 04:26	
Vitrobenzene	0.10		0.15	0.10	0.051			08/31/13 04:26	
Tetryl	0.10		0.15	0.10	0.051			08/31/13 04:26	
Nitroglycerin	0.51		0.67	0.51		ug/L		08/31/13 04:26	
PETN	0.51	U	0.67	0.51	0.31	ug/L		08/31/13 04:26	
Surrogate	%Recovery Q	ualifier	Limits			Prepare	ed	Analyzed	Dil Fa
3,4-Dinitrotoluene	92		79 - 111			08/27/13 (7:26	08/31/13 04:26	
3,4-Dinitrotoluene	123 Q		79 - 111			08/27/13 (77:26	09/10/13 09:42	
General Chemistry									
Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fa

TestAmerica Canton

09/11/13 16:47

2.0

1.0

0.48 mg/L

1.0 U

Client: Environmental Quality Mgt., Inc.

Project/Site: RVAAP66 (OH)

TestAmerica Job ID: 240-28186-1

Lab Sample ID: 240-28186-39

Matrix: Water

Client Sample ID: FWGWBGmw-006C-0373-GF

Date Collected: 08/21/13 10:40 Date Received: 08/22/13 07:00

	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
Arsenic	10	Ü	10	10	3.3	ug/L		09/09/13 17:26	
Chromium	4.0	U	7.0	4.0	1.4	ug/L		09/09/13 17:26	1
Cobalt	4.0	U	7.0	4.0	1.5	ug/L		09/09/13 17:26	19
Lead	5.0	U	10	5.0	1.7	ug/L		09/09/13 17:26	1
Selenium	10	U	15	10	4.0	ug/L		09/09/13 17:26	1
Silver	5.0	U	7.0	5.0	1.7	ug/L		09/09/13 17:26	
Vanadium	4.0	U	7.0	4.0	1.3	ug/L		09/09/13 17:26	1
Barium	23	J	200	5.0	2.8	ug/L		09/09/13 17:26	1
Calcium	71000		5000	1000	630	ug/L		09/09/13 17:26	1
Copper	10	U	25	10	4.4	ug/L		09/09/13 17:26	1
Magnesium	24000		5000	300	120	ug/L		09/09/13 17:26	1
Manganese	65		15	5.0	1.8	ug/L		09/09/13 17:26	11
Nickel	5.0	U	40	5.0	2.2	ug/L		09/09/13 17:26	-01
Potassium	820	J	5000	900	300	ug/L		09/09/13 17:26	1
Method: 6020/DOD - Metals (ICP/M	IS) - Total Recov	verable							
Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
Aluminum	60	U	60	60	20	ug/L		09/09/13 23:08	
Antimony	1.0	U	2.0	1.0	0.33	ug/L		09/09/13 23:08	9
Beryllium	1.0	UQ	1.0	1.0	0.50	ug/L		09/09/13 23:08	1
Cadmium	1.0	U	2.0	1.0	0.40	ug/L		09/09/13 23:08	1
Iron	100	U	150	100	44	ug/L		09/09/13 23:08	3
Sodium	6300		1000	400	160	ug/L		09/09/13 23:08	1
	1.5	U	2.0	1.5	0.79	ug/L		09/09/13 23:08	
Thallium		100	50	50	27	ug/L		09/09/13 23:08	
Thallium Zinc	50	U	50			2.5			
		U	30						

Client: Environmental Quality Mgt., Inc.

Project/Site: RVAAP66 (OH)

TestAmerica Job ID: 240-28186-1

Lab Sample ID: 240-28186-40

Matrix: Water

Client Sample ID: FWGFWGmw-009-0319-GW

Date Collected: 08/21/13 12:20 Date Received: 08/22/13 07:00

Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
1,1,1-Trichloroethane	0.25	U	1.0	0.25	0.22	ug/L		08/31/13 11:25	- 1
1,1,2,2-Tetrachloroethane	0.25	U	1.0	0.25	0.18	ug/L		08/31/13 11:25	1
1,1,2-Trichloroethane	0.50	U	1.0	0.50	0.27	ug/L		08/31/13 11:25	1
1,1-Dichloroethane	0.25	U	1.0	0.25	0.15	ug/L		08/31/13 11;25	1
1,1-Dichloroethene	0.25	U	1.0	0.25	0.19	ug/L		08/31/13 11:25	1
1,2-Dichloroethane	0.25	U	1.0	0.25	0.22	ug/L		08/31/13 11:25	1
1,2-Dichloroethene, Total	0.25	U	2.0	0.25	0.17	ug/L		08/31/13 11:25	1
1,2-Dichloropropane	0.25	U	1.0	0.25	0.18	ug/L		08/31/13 11:25	1
2-Hexanone	0.50	U	10	0.50	0.41	ug/L		08/31/13 11:25	1
Bromochloromethane	0.50	U	1.0	0.50	0.29	ug/L		08/31/13 11:25	1
Acetone	1.2	J	10	1.1	1.1	ug/L		08/31/13 11:25	1
Benzene	0.25	U	1.0	0.25	0.13	ug/L		08/31/13 11:25	1
Bromoform	0.64	U	1.0	0.64	0.64	ug/L		08/31/13 11:25	1
Bromomethane	0.50	U	1.0	0.50	0.41	ug/L		08/31/13 11:25	1
Carbon disulfide	0.25	U	1.0	0.25	0.13	ug/L		08/31/13 11:25	1
Carbon tetrachloride	0.25	U	1.0	0.25	0.13	ug/L		08/31/13 11:25	1
Chlorobenzene	0.25	U	1.0	0.25	0.15	ug/L		08/31/13 11:25	1
Chloroethane	0.50	U	1.0	0.50	0.29	ug/L		08/31/13 11:25	1
Chloroform	0.25	U	1.0	0.25		ug/L		08/31/13 11:25	1
Chloromethane	0.50	U	1.0	0.50	0.30	ug/L		08/31/13 11:25	1
cis-1,2-Dichloroethene	0.25	u	1.0	0.25	0.17	ug/L		08/31/13 11:25	1
sis-1,3-Dichloropropene	0.25	u	1.0	0.25		ug/L		08/31/13 11:25	1
Bromodichloromethane	0.25	U	1.0	0.25	0.15			08/31/13 11:25	9
Ethylbenzene	0.25	U	1.0	0.25	0.17	ug/L		08/31/13 11:25	1
1,2-Dibromoethane	0.25	Ū	1.0	0.25	0.24	ug/L		08/31/13 11:25	1
m-Xylene & p-Xylene	0.50	U	2.0	0.50	0.24	ug/L		08/31/13 11:25	4
2-Butanone (MEK)	0.57	U	10	0.57	0.57	ug/L		08/31/13 11:25	1
4-Methyl-2-pentanone (MIBK)	0.50	U	10	0.50	0.32			08/31/13 11:25	1
Methylene Chloride	0.50	U	1.0	0.50	0.33	ug/L		08/31/13 11:25	1
o-Xylene	0.25	U	1.0	0.25		ug/L		08/31/13 11:25	1
Styrene	0.25	U	1.0	0.25	0.11	ug/L		08/31/13 11:25	1
Tetrachloroethene	0.50	U	1.0	0.50	0.29	ug/L		08/31/13 11:25	1
Toluene	0.25	U	1.0	0.25	0.13			08/31/13 11:25	3
trans-1,2-Dichloroethene	0.25	U	1.0	0.25		ug/L		08/31/13 11:25	1
rans-1,3-Dichloropropene	0.25		1.0	0.25	0.19			08/31/13 11:25	1
Trichloroethene	0.25		1.0	0.25		ug/L		08/31/13 11:25	1
Vinyl chloride	0.25		1.0	0.25	0.22			08/31/13 11:25	1
Xylenes, Total	0.25		2.0	0.25		ug/L		08/31/13 11:25	1
Dibromochloromethane	0,25		1.0	0.25	0.18			08/31/13 11:25	1
On the state of th	07.77	Francis 7	According to the control of the cont				was the track	A contractor of the	Sec. 11.

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	109	70 - 120		08/31/13 11:25	1
4-Bromofluorobenzene (Surr)	85	75 - 120		08/31/13 11:25	7.
Toluene-d8 (Surr)	88	85 - 120		08/31/13 11:25	1
Dibromofluoromethane (Surr)	100	85 115		08/31/13 11:25	1

Method: 8270C/DoD -	Samiyalatila Organic	Compounds (CC/MS)
Method, 62/00/DOD -	Semivolatile Ordanic	Compounds (GC/WS)

Analyte		Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
Acenaphthene	0.097	U	0.19	0.097	0.043	ug/L		09/06/13 15:25	- 1
Acenaphthylene	0.097	U	0.19	0.097	0,047	ug/L		09/06/13 15:25	1

TestAmerica Canton

Page 90 of 196

9/24/2013

3

5

8

J

11

Client: Environmental Quality Mgt., Inc.

Project/Site: RVAAP66 (OH)

TestAmerica Job ID: 240-28186-1

Lab Sample ID: 240-28186-40

Matrix: Water

Client S	Sample	ID:	FWGFV	VGmw-0	09-0319-GW
----------	--------	-----	--------------	--------	------------

Date Collected: 08/21/13 12:20 Date Received: 08/22/13 07:00

Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fa
Anthracene	0.097	U	0.19	0.097	0.085	ug/L		09/06/13 15:25	
Benzo[a]anthracene	0.097	U	0.19	0.097	0.029	ug/L		09/06/13 15:25	
Benzo[a]pyrene	0.097	UJ	0.19	0.097	0.050	ug/L		09/06/13 15:25	
Benzo[b]fluoranthene	0.097	U	0.19	0.097	0.038	ug/L		09/06/13 15:25	
Benzo[g,h,i]perylene	0.097	U	0.19	0.097	0.045	ug/L		09/06/13 15:25	
Benzoic acid	19	U	24	19	9.7	ug/L		09/06/13 15:25	
Benzo[k]fluoranthene	0.097	U	0.19	0.097	0.043	ug/L		09/06/13 15:25	
Benzyl alcohol	0.49	U	4.9	0.49	0.37	ug/L		09/06/13 15:25	
Bis(2-chloroethoxy)methane	0.49	U	0.97	0.49	0.31	ug/L		09/06/13 15:25	
Bis(2-chloroethyl)ether	0.097	U	0.97	0.097	0.097	ug/L		09/06/13 15:25	
Bis(2-ethylhexyl) phthalate	0.34	J	1.9	0.49	0.21	ug/L		09/06/13 15:25	
4-Bromophenyl phenyl ether	0.49	U	1.9	0.49	0.21	ug/L		09/06/13 15:25	
Butyl benzyl phthalate	0.49	U	1.9	0.49	0.25	ug/L		09/06/13 15:25	
Carbazole	0.49	U	0.97	0.49	0.27	ug/L		09/06/13 15:25	
4-Chloroaniline	0.49	U	1.9	0.49	0.20	ug/L		09/06/13 15:25	
4-Chloro-3-methylphenol	0.49	U	1.9	0.49	0.20	ug/L		09/06/13 15:25	
2-Chloronaphthalene	0.49	U	0.97	0.49	0.097	ug/L		09/06/13 15:25	
2-Chlorophenol	0.49	U	0.97	0.49	0.28	ug/L		09/06/13 15:25	
4-Chlorophenyl phenyl ether	0.49	U	1.9	0.49	0.29	ug/L		09/06/13 15:25	
Chrysene	0.097	U	0.19	0.097	0.049	ug/L		09/06/13 15:25	
Dibenz(a,h)anthracene	0.097	U	0.19	0.097	0.043	ug/L		09/06/13 15:25	
Dibenzofuran	0.097	U	0.97	0.097	0.019	ug/L		09/06/13 15:25	
1,2-Dichlorobenzene	0.49	U	0.97	0.49	0.28	ug/L		09/06/13 15:25	
1,3-Dichlorobenzene	0.49	U	0.97	0.49	0.22	ug/L		09/06/13 15:25	
1,4-Dichlorobenzene	0.49	U	0.97	0.49	0.33	ug/L		09/06/13 15:25	
3,3'-Dichlorobenzidine	0.97	U	4.9	0.97	0.36	ug/L		09/06/13 15:25	
2,4-Dichlorophenol	0.49	U	1.9	0.49	0.18	ug/L		09/06/13 15:25	
Diethyl phthalate	0.97	U	1.9	0.97	0.58	ug/L		09/06/13 15:25	
2,4-Dimethylphenol	0.49	U	1.9	0.49		ug/L		09/06/13 15:25	
Dimethyl phthalate	0.49	U	1.9	0.49	0.28	ug/L		09/06/13 15:25	
Di-n-butyl phthalate	0.97	U	1.9	0.97		ug/L		09/06/13 15:25	
4,6-Dinitro-2-methylphenol	3.9		4.9	3.9		ug/L		09/06/13 15:25	
2,4-Dinitrophenol	0.97		4.9	0.97		ug/L		09/06/13 15:25	
Di-n-octyl phthalate	0.49		1.9	0.49	0.22	ug/L		09/06/13 15:25	
Fluoranthene	0.097		0.19	0.097	0.043	and the second		09/06/13 15:25	
Fluorene	0.097		0.19	0.097	0.039			09/06/13 15:25	
Hexachlorobenzene	0.097		0.19	0.097	0.083			09/06/13 15:25	
Hexachlorobutadiene	0.49		0.97	0.49		ug/L		09/06/13 15:25	
Hexachlorocyclopentadiene	0.49		9.7	0.49		ug/L		09/06/13 15:25	
Hexachloroethane	0.49		0.97	0.49		ug/L		09/06/13 15:25	
ndeno[1,2,3-cd]pyrene	0.097		0.19	0.097	0.042			09/06/13 15:25	
sophorone	0.49		0.97	0.49		ug/L		09/06/13 15:25	
2-Methylnaphthalene	0.097		0.19	0.097	0.088	200		09/06/13 15:25	
2-Methylphenol	0.49		0.97	0.49		ug/L		09/06/13 15:25	
3 & 4 Methylphenol	0.97		1.9	0.97		ug/L		09/06/13 15:25	
Naphthalene	0.097		0.19	0.097	0.061			09/06/13 15:25	
2-Nitroaniline	0.49		1.9	0.49		ug/L		09/06/13 15:25	
3-Nitroaniline	0.49		1.9	0.49		ug/L		09/06/13 15:25	
o i ili odilili lo	0.49	-	1.5	4.40	0.27	- All		03/00/13 13.23	

Client: Environmental Quality Mgt., Inc.

Project/Site: RVAAP66 (OH)

TestAmerica Job ID: 240-28186-1

Lab Sample ID: 240-28186-40

Matrix: Water

Client Sample ID: FWGFWGmw-009-0319-GW

Date Collected: 08/21/13 12:20 Date Received: 08/22/13 07:00

DCB Decachlorobiphenyl

DCB Decachlorobiphenyl

Tetrachloro-m-xylene

Tetrachloro-m-xylene

Analyte	Resu	lt Qualifier	LC	OQ	LOD	DL	Unit D	Analyzed	Dil Fac
2-Nitrophenol	0.4	9 U		1.9	0.49	0.27	ug/L	09/06/13 15:25	14
4-Nitrophenol	3	9 U		4.9	3.9	0.28	ug/L	09/06/13 15:25	1
N-Nitrosodi-n-propylamine	0.4	9 U	0.	.97	0.49	0.23	ug/L	09/06/13 15:25	1
N-Nitrosodiphenylamine	0.4	9 U	0.	.97	0.49	0.30	ug/L	09/06/13 15:25	- 1
2,2'-oxybis[1-chloropropane]	0.4	9 U	0.	.97	0.49	0.39	ug/L	09/06/13 15:25	1
Pentachlorophenol	0.9	7 U	4	4.9	0.97	0.26	ug/L	09/06/13 15:25	1
Phenanthrene	0.09	7 U	0.	.19	0.097	0.060	ug/L	09/06/13 15:25	1
Phenol	0.9	7 U	0.	.97	0.97	0.58	ug/L	09/06/13 15:25	1
Pyrene	0.09	7 U	0.	.19	0.097	0.041	ug/L	09/06/13 15:25	1
1,2,4-Trichlorobenzene	0.4	9 U	0.	.97	0.49	0.27	ug/L	09/06/13 15:25	1
2,4,5-Trichlorophenol	0.4	9 U	4	4.9	0.49	0.29	ug/L	09/06/13 15:25	- 1
2,4,6-Trichlorophenol	0.4	9 U	14	4.9	0.49	0.23	ug/L	09/06/13 15:25	9
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl (Surr)	79		50 - 110				08/23/13 09:12	09/06/13 15:25	1
2-Fluorophenol (Surr)	81		20 - 110				08/23/13 09:12	09/06/13 15:25	1
Nitrobenzene-d5 (Surr)	80		40 - 110				08/23/13 09:12	09/06/13 15:25	1
Phenol-d5 (Surr)	85		10 - 115				08/23/13 09:12	09/06/13 15:25	1
Terphenyl-d14 (Surr)	106		50 - 135				08/23/13 09:12	09/06/13 15:25	1
2,4,6-Tribromophenol (Surr)	81		40 - 125				08/23/13 09:12	09/06/13 15:25	1

Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D Analyzed	Dil Fac
4,4'-DDD	0.020	U	0.049	0.020	0.0094	ug/L	08/30/13 08:01	1
4,4'-DDE	0.020	Ü	0.049	0.020	0.0095	ug/L	08/30/13 08:01	1
4,4'-DDT	0.020	U	0.049	0.020	0.016	ug/L	08/30/13 08:01	- 1
Aldrin	0.020	U	0.029	0.020	0.0080	ug/L	08/30/13 08:01	1
alpha-BHC	0.020	U	0.029	0.020	0.0069	ug/L	08/30/13 08:01	1
alpha-Chlordane	0.020	U	0.049	0.020	0.014	ug/L	08/30/13 08:01	1
beta-BHC	0.020	U	0.049	0.020	0.0082	ug/L	08/30/13 08:01	1
delta-BHC	0.020	U	0.049	0.020	0.0085	ug/L	08/30/13 08:01	1
Dieldrin	0.020	U	0.029	0.020	0.0074	ug/L	08/30/13 08:01	1
Endosulfan I	0.020	U	0.049	0.020	0.013	ug/L	08/30/13 08:01	1
Endosulfan II	0.020	U	0.049	0.020	0.012	ug/L	08/30/13 08:01	1
Endosulfan sulfate	0.020	U	0.049	0.020	0.011	ug/L	08/30/13 08:01	1
Endrin	0.020	U	0.049	0.020	0.011	ug/L	08/30/13 08:01	1
Endrin aldehyde	0.020	U	0.049	0.020	0.011	ug/L	08/30/13 08:01	1
Endrin ketone	0.020	U	0.049	0.020	0.0076	ug/L	08/30/13 08:01	1
gamma-BHC (Lindane)	0.020	U	0.049	0.020	0.0063	ug/L	08/30/13 08:01	9
gamma-Chlordane	0.020	U	0.049	0.020	0.012	ug/L	08/30/13 08:01	1
Heptachlor	0.020	U	0.029	0.020	0.0078	ug/L	08/30/13 08:01	1
Heptachlor epoxide	0.020	U	0.029	0.020	0.0070	ug/L	08/30/13 08:01	1
Methoxychlor	0.049	U	0.098	0.049	0.031	ug/L	08/30/13 08:01	1
Toxaphene	0.78	U	2.0	0.78	0.31	ug/L	08/30/13 08:01	1
Surrogate	%Recovery Qu	ıalifier	Limits			Prepared	Analyzed	Dil Fac

TestAmerica Canton

08/30/13 08:01

08/30/13 08:01

08/30/13 08:01

08/30/13 08:01

08/23/13 09:00

08/23/13 09:00

08/23/13 09:00

08/23/13 09:00

Page 92 of 196

30 - 135

30 - 135

25 - 140

25 - 140

65

64

72

74

3

6

ŏ

-/1

13

14

Client: Environmental Quality Mgt., Inc.

Project/Site: RVAAP66 (OH)

TestAmerica Job ID: 240-28186-1

Lab Sample ID: 240-28186-40

Matrix: Water

Date Collected: 08/21/13 12:20

Client Sample ID: FWGFWGmw-009-0319-GW

Date Received: 08/22/13 07:00

Nitrocellulose

Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
Aroclor-1016	0.20	U	0.49	0.20	0.17	ug/L		08/28/13 23:54	1
Aroclor-1221	0.20	U	0.49	0.20	0.13	ug/L		08/28/13 23:54	1
Aroclor-1232	0.20	U	0.49	0.20	0.16	ug/L		08/28/13 23:54	1
Aroclor-1242	0.39	U	0.49	0.39	0.22	ug/L		08/28/13 23:54	1
roclor-1248	0.20	U	0.49	0.20	0.098	ug/L		08/28/13 23:54	1
Aroclor-1254	0.20	U	0.49	0.20	0.16	ug/L		08/28/13 23:54	1
roclor-1260	0.20	U	0.49	0.20	0.17	ug/L		08/28/13 23:54	1
currogate	%Recovery Qualifier		Limits			Prep	pared	Analyzed	Dil Fac
etrachloro-m-xylene	74	74				08/23/13 09:07		08/28/13 23:54	1
Tetrachloro-m-xylene	81	81				08/23/1	13 09:07	08/28/13 23:54	1
DCB Decachlorobiphenyl	57		40 - 135			08/23/1	13 09:07	08/28/13 23:54	1
OCB Decachlorobiphenyl	56		40 - 135			08/23/13 09:07		08/28/13 23:54	1
Method: 8330 Modified - Nitro	guanidine (HPLC)								
Analyte		Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
Nitroguanidine	6.0	U	20	6.0	2.4	ug/L		08/27/13 20:09	1
Method: 8330A - Nitroaromatic	cs and Nitramines								
Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
,3,5-Trinitrobenzene	0,050	U	0.15	0.050	0.031	ug/L		08/31/13 05:10	1
,3-Dinitrobenzene	0.10	U	0.15	0.10	0.050	ug/L		08/31/13 05:10	1
2,4,6-Trinitrotoluene	0.10	U	0.15	0.10	0.050	ug/L		08/31/13 05:10	1
2,4-Dinitrotoluene	0.10	U	0.13	0.10	0.050	ug/L		08/31/13 05:10	9
2,6-Dinitrotoluene	0.10	U	0.13	0.10	0.050	ug/L		08/31/13 05:10	1
2-Amino-4,6-dinitrotoluene	0.10	U	0.15	0.10	0.015	ug/L		08/31/13 05:10	1
2-Nitrotoluene	0.10	U	0.50	0.10	0.089	ug/L		08/31/13 05:10	1
3-Nitrotoluene	0.10	U	0.50	0.10	0.057	ug/L		08/31/13 05:10	1
-Nitrotoluene	0.10	U	0.50	0.10	0.089	ug/L		08/31/13 05:10	1
-Amino-2,6-dinitrotoluene	0.10	U	0.15	0.10	0.050	ug/L		08/31/13 05:10	1
HMX	0.050	U	0.15	0.050	0.036	ug/L		08/31/13 05:10	1
RDX	0.050	U	0.15	0.050	0.036	ug/L		08/31/13 05:10	1
litrobenzene	0.10	U	0.15	0.10	0.050	ug/L		08/31/13 05:10	1
etryl	0.10	U	0.15	0.10	0.050	ug/L		08/31/13 05:10	3
Nitroglycerin	0.50	U	0.65	0.50	0.33	ug/L		08/31/13 05:10	. 1
PETN	0.50	U	0.65	0.50	0.30	ug/L		08/31/13 05:10	1
Surrogate	%Recovery Qualifier		Limits				pared	Analyzed	Dil Fac
3,4-Dinitrotoluene	90		79 - 111			08/27/1	13 07:26	08/31/13 05:10	1
General Chemistry									
Analyte	Result	2.55::::::	LOQ	LOD		Unit	D	Analyzed	Dil Fac
Cyanide, Total	0.010	U	0.010	0.010	0.0032	mg/L		08/26/13 13:58	1

TestAmerica Canton

09/11/13 16:49

2.0

1.0

0.48 mg/L

1.0 U

Client: Environmental Quality Mgt., Inc.

Project/Site: RVAAP66 (OH)

TestAmerica Job ID: 240-28186-1

Lab Sample ID: 240-28186-41

Matrix: Water

Client Sample ID: FWGFWGmw-009-0319-GF

Date Collected: 08/21/13 12:20 Date Received: 08/22/13 07:00

nalyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fa
erchlorate	0.020	Ü	0.050	0.020	0.0088	ug/L		09/11/13 21:29	
Method: 6010B/DOD - Metals	(ICP) - Total Recover	able							
nalyte	the state of the s	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fa
rsenic	9.8	J	10	10	3.3	ug/L		09/09/13 14:56	
chromium	4.0	U	7.0	4.0	1.4	ug/L		09/09/13 14:56	
Cobalt	4.0	U	7.0	4.0	1.5	ug/L		09/09/13 14:56	
ead	5.0	U	10	5.0	1.7	ug/L		09/09/13 14:56	
elenium	10	U	15	10	4.0	ug/L		09/09/13 14:56	
ilver	5.0	U	7.0	5.0	1.7	ug/L		09/09/13 14:56	
anadium anadium	4.0	U	7.0	4.0	1.3	ug/L		09/09/13 14:56	
arium	56	J	200	5.0	2.8	ug/L		09/09/13 14:56	
alcium	89000		5000	1000	630	ug/L		09/09/13 14:56	
opper	10	U	25	10	4.4	ug/L		09/09/13 14:56	
lagnesium	24000		5000	300	120	ug/L		09/09/13 14:56	
langanese	180		15	5.0	1.8	ug/L		09/09/13 14:56	
lickel	5.0	U	40	5.0	2.2	ug/L		09/09/13 14:56	
otassium	1200	J	5000	900	300	ug/L		09/09/13 14:56	
Method: 6020/DOD - Metals	(ICP/MS) - Total Recov	verable							
nalyte		Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fa
		U	60	60	20	ug/L		09/09/13 19:17	
luminum	60	0	bu	00					
luminum Intimony	1.0		2.0	1.0	0.33	ug/L		09/09/13 19:17	
	1.0				0.33	ug/L ug/L		09/09/13 19:17 09/09/13 19:17	
ntimony	1.0	U U Q	2.0	1.0	0.33	ug/L			
eryllium	1.0 1.0	U U Q	2.0 1.0	1.0 1.0	0.33 0.50 0.40	ug/L		09/09/13 19:17	
ntimony eryllium admium on	1.0 1.0 1.0	U U Q	2.0 1.0 2.0	1.0 1.0 1.0	0.33 0.50 0.40	ug/L ug/L		09/09/13 19:17 09/09/13 19:17	
ntimony eryllium admium on odium	1.0 1.0 1.0 910	U U Q U	2.0 1.0 2.0 150	1.0 1.0 1.0 100	0.33 0.50 0.40 44 160	ug/L ug/L ug/L		09/09/13 19:17 09/09/13 19:17 09/09/13 19:17	
eryllium eadmium con eodium hallium	1.0 1.0 1.0 910 8500	U U Q U	2.0 1.0 2.0 150 1000	1.0 1.0 1.0 100 400	0.33 0.50 0.40 44 160	ug/L ug/L ug/L ug/L		09/09/13 19:17 09/09/13 19:17 09/09/13 19:17 09/09/13 19:17	
antimony seryllium sadmium	1.0 1.0 1.0 910 8500 1.5	U U Q U	2.0 1.0 2.0 150 1000 2.0	1.0 1.0 1.0 100 400 1.5	0.33 0.50 0.40 44 160 0.79	ug/L ug/L ug/L ug/L ug/L		09/09/13 19:17 09/09/13 19:17 09/09/13 19:17 09/09/13 19:17 09/09/13 19:17	

Client: Environmental Quality Mgt., Inc.

Client Sample ID: FWGFWGmw-007-0347-GW

Project/Site: RVAAP66 (OH)

TestAmerica Job ID: 240-28186-1

Lab Sample ID: 240-28186-42

Matrix: Water

Date Collected: 08/21/13 15:04 Date Received: 08/22/13 07:00

Method: 8270C/DoD - Semivol Analyte		Qualifier	LOQ	LOD	DL	Unit D	Analyzed	Dil Fac
Bis(2-ethylhexyl) phthalate	0.48	J	1.9	0.48	0.21	ug/L	08/30/13 15:14	- 1
Butyl benzyl phthalate	0.48	U	1.9	0.48	0.25	ug/L	08/30/13 15:14	1
Diethyl phthalate	0.95	U	1.9	0.95	0.57	ug/L	08/30/13 15:14	1
Dimethyl phthalate	0.48	U	1.9	0.48	0.28	ug/L	08/30/13 15:14	1
Di-n-butyl phthalate	0.95	U	1.9	0.95	0.64	ug/L	08/30/13 15:14	1
Di-n-octyl phthalate	0.48	U	1.9	0.48	0.22	ug/L	08/30/13 15:14	. 1
Surrogate	%Recovery Qu	ualifier	Limits			Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl (Surr)	65		50 - 110			08/26/13 08:43	08/30/13 15:14	1
2-Fluorophenol (Surr)	68		20 - 110			08/26/13 08:43	08/30/13 15:14	1
Nitrobenzene-d5 (Surr)	69		40 - 110			08/26/13 08:43	08/30/13 15:14	7
Phenol-d5 (Surr)	72		10 - 115			08/26/13 08:43	08/30/13 15:14	1
Ferphenyl-d14 (Surr)	85		50 - 135			08/26/13 08:43	08/30/13 15:14	1
2,4,6-Tribromophenol (Surr)	81		40 - 125			08/26/13 08:43	08/30/13 15:14	1
Method: 8330 Modified - Nitro	guanidine (HPLC)							
Analyte	Result	Qualifier	LOQ	LOD	DL	Unit D	Analyzed	Dil Fac
litroguanidine	6.0	U	20	6.0	2.4	ug/L	08/27/13 21:02	1
Method: 8330A - Nitroaromatio	cs and Nitramines							
Analyte	Result	Qualifier	LOQ	LOD	DL	Unit D	Analyzed	Dil Fac
,3,5-Trinitrobenzene	0.051	U	0.15	0.051	0.032	ug/L	08/31/13 07:21	1
,3-Dinitrobenzene	0.10	U	0.15	0.10	0.051	ug/L	08/31/13 07:21	1
2,4,6-Trinitrotoluene	0.10	U	0.15	0.10	0.051	ug/L	08/31/13 07:21	1
2,4-Dinitrotoluene	0.10	U	0.13	0.10	0.051	ug/L	08/31/13 07:21	1
2,6-Dinitrotoluene	0.10	U	0.13	0.10	0.051	ug/L	08/31/13 07:21	1
2-Amino-4,6-dinitrotoluene	0.10	U	0.15	0.10	0.015	ug/L	08/31/13 07:21	1
2-Nitrotoluene	0.10	·U	0.51	0.10	0.090	ug/L	08/31/13 07:21	1
3-Nitrotoluene	0.10	U	0.51	0.10	0.058	ug/L	08/31/13 07:21	1
-Nitrotoluene	0.10	U	0.51	0.10	0.090	ug/L	08/31/13 07:21	1
-Amino-2,6-dinitrotoluene	0.10	U	0.15	0.10	0.051	ug/L	08/31/13 07:21	1
HMX	0.051	U	0.15	0.051	0.037	ug/L	08/31/13 07:21	1
RDX	0.051	U	0.15	0.051	0.037	ug/L	08/31/13 07:21	1
litrobenzene	0.10	U	0.15	0.10	0.051	ug/L	08/31/13 07:21	1
etryl	0.10	U	0.15	0.10	0.051	ug/L	08/31/13 07:21	1
Nitroglycerin	0.51	U	0.66	0.51	0.34	ug/L	08/31/13 07:21	1
PETN	0.51	U	0.66	0.51	0.31	ug/L	08/31/13 07:21	1
Surrogate	%Recovery Qu	ualifier	Limits			Prepared	Analyzed	Dil Fac
3,4-Dinitrotoluene	94		79 - 111			08/27/13 07:26	08/31/13 07:21	1
General Chemistry								
Analyte	Result	Qualifier	LOQ	LOD	DL	Unit D	Analyzed	Dil Fac
Nitrocellulose	1.0	U	2.0	1.0	0.48	mg/L	09/11/13 17:03	1

TestAmerica Canton

3

- 5

i

Ü

13

(14

110

Client: Environmental Quality Mgt., Inc.

Project/Site: RVAAP66 (OH)

TestAmerica Job ID: 240-28186-1

Lab Sample ID: 240-28186-43

Matrix: Water

Client Sample ID: FWGFWGmw-007-0347-GF Date Collected: 08/21/13 15:04

Date Received: 08/22/13 07:00

Aluminum 60 U 60 60 20 ug/L 09/09/13 23:16 Antimony 1.0 U 2.0 1.0 0.33 ug/L 09/09/13 23:16 Beryllium 1.0 U Q 1.0 1.0 0.50 ug/L 09/09/13 23:16 Cadmium 1.0 U 2.0 1.0 0.40 ug/L 09/09/13 23:16 Iron 100 U 150 100 44 ug/L 09/09/13 23:16 Sodium 7000 1000 400 160 ug/L 09/09/13 23:16 Thallium 1.5 U 2.0 1.5 0.79 ug/L 09/09/13 23:16 Method: 7470A/DOD - Mercury (CVAA)	Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
Cobalt	Arsenic	10	U	10	10	3.3	ug/L		09/09/13 17:32	1
Lead	Chromium	1.4	J	7.0	4.0	1.4	ug/L		09/09/13 17:32	1
Selenium	Cobalt	4.0	U	7.0	4.0	1.5	ug/L		09/09/13 17:32	1
Silver	Lead	5.0	U	10	5.0	1.7	ug/L		09/09/13 17:32	1
Vanadium 4.0 U 7.0 4.0 1.3 ug/L 09/09/13 17:32 Barium 18 J 200 5.0 2.8 ug/L 09/09/13 17:32 Calcium 100000 5000 1000 630 ug/L 09/09/13 17:32 Copper 10 U 25 10 4.4 ug/L 09/09/13 17:32 Magnesium 52000 5000 300 120 ug/L 09/09/13 17:32 Manganese 47 15 5.0 1.8 ug/L 09/09/13 17:32 Nickel 2.3 J 40 5.0 2.2 ug/L 09/09/13 17:32 Potassium 1800 J 5000 900 300 ug/L 09/09/13 17:32 Method: 6020/DOD - Metals (ICP/MS) - Total Recoverable Result Qualifier LOQ LOD DL Unit D Analyzed Aluminum 60 60 20 ug/L 09/09/13 23:16 09/09/13 23:16 Ber	Selenium	10	U	15	10	4.0	ug/L		09/09/13 17:32	1
Barium	Silver	5.0	U	7.0	5.0	1.7	ug/L		09/09/13 17:32	1
Calcium 100000 5000 1000 630 ug/L 09/09/13 17:32 Copper 10 U 25 10 4.4 ug/L 09/09/13 17:32 Magnesium 52000 5000 300 120 ug/L 09/09/13 17:32 Manganese 47 15 5.0 1.8 ug/L 09/09/13 17:32 Nickel 2.3 J 40 5.0 2.2 ug/L 09/09/13 17:32 Potassium 1800 J 5000 900 300 ug/L 09/09/13 17:32 Method: 6020/DOD - Metals (ICP/MS) - Total Recoverable Committee Committee </td <td>Vanadium</td> <td>4.0</td> <td>U</td> <td>7.0</td> <td>4.0</td> <td>1.3</td> <td>ug/L</td> <td></td> <td>09/09/13 17:32</td> <td>1</td>	Vanadium	4.0	U	7.0	4.0	1.3	ug/L		09/09/13 17:32	1
Copper	Barium	18	J	200	5.0	2.8	ug/L		09/09/13 17:32	1
Magnesium 52000 5000 300 120 ug/L 09/09/13 17:32 Manganese 47 15 5.0 1.8 ug/L 09/09/13 17:32 Nickel 2.3 J 40 5.0 2.2 ug/L 09/09/13 17:32 Method: 6020/DOD - Metals (ICP/MS) - Total Recoverable Result Qualifier LOQ LOD DL Unit D Analyzed Aluminum 60 U 60 60 20 ug/L 09/09/13 23:16 Antimony 1.0 U 2.0 1.0 0.33 ug/L 09/09/13 23:16 Beryllium 1.0 U 2.0 1.0 0.50 ug/L 09/09/13 23:16 Cadmium 1.0 U 2.0 1.0 0.40 ug/L 09/09/13 23:16 Iron 100 U 150 100 44 ug/L 09/09/13 23:16 Sodium 7000 1000 400 160 ug/L 09/09/13 23:16 Thallium	Calcium	100000		5000	1000	630	ug/L		09/09/13 17:32	1
Manganese 47 15 5.0 1.8 ug/L 09/09/13 17:32 Nickel 2.3 J 40 5.0 2.2 ug/L 09/09/13 17:32 Potassium 1800 J 5000 900 300 ug/L 09/09/13 17:32 Method: 6020/DOD - Metals (ICP/MS) - Total Recoverable Analyte Result Qualifier LOQ LOD DL Unit D Analyzed Aluminum 60 U 60 60 20 ug/L 09/09/13 23:16 Antimony 1.0 U 2.0 1.0 0.33 ug/L 09/09/13 23:16 Beryllium 1.0 U Q 1.0 1.0 0.50 ug/L 09/09/13 23:16 Cadmium 1.0 U 2.0 1.0 0.40 ug/L 09/09/13 23:16 Iron 100 U 150 100 44 ug/L 09/09/13 23:16 Sodium 7000 1000 400 160 ug/L 09/09/13 23:16 Thallium 1.5 U 2.0 1.5 0.79 ug/L 09/09/13 23:16 Zinc 50 U 50 50 27 ug/L 09/09/13 23:16	Copper	10	U	25	10	4.4	ug/L		09/09/13 17:32	1
Nickel 2.3 J 40 5.0 2.2 ug/L 09/09/13 17:32	Magnesium	52000		5000	300	120	ug/L		09/09/13 17:32	1
Nethod: 6020/DOD - Metals (ICP/MS) - Total Recoverable Result Qualifier LOQ LOD DL Unit D Analyzed	Manganese	47		15	5.0	1.8	ug/L		09/09/13 17:32	1
Method: 6020/DOD - Metals (ICP/MS) - Total Recoverable Analyte Result Qualifier LOQ LOD DL Unit D Analyzed Aluminum 60 U 60 60 20 ug/L 09/09/13 23:16 Antimony 1.0 U 2.0 1.0 0.33 ug/L 09/09/13 23:16 Beryllium 1.0 U 1.0 1.0 0.50 ug/L 09/09/13 23:16 Cadmium 1.0 U 2.0 1.0 0.40 ug/L 09/09/13 23:16 Iron 100 U 150 100 44 ug/L 09/09/13 23:16 Sodium 7000 1000 400 160 ug/L 09/09/13 23:16 Thallium 1.5 U 2.0 1.5 0.79 ug/L 09/09/13 23:16 Zinc 50 U 50 50 27 ug/L 09/09/13 23:16	Nickel	2.3	J	40	5.0	2.2	ug/L		09/09/13 17:32	- 1
Analyte Result Qualifier LOQ LOD DL Unit D Analyzed Aluminum 60 U 60 60 20 ug/L 09/09/13 23:16 Antimony 1.0 U 2.0 1.0 0.33 ug/L 09/09/13 23:16 Beryllium 1.0 U 1.0 1.0 0.50 ug/L 09/09/13 23:16 Cadmium 1.0 U 2.0 1.0 0.40 ug/L 09/09/13 23:16 Iron 100 U 150 100 44 ug/L 09/09/13 23:16 Sodium 7000 1000 400 160 ug/L 09/09/13 23:16 Thallium 1.5 U 2.0 1.5 0.79 ug/L 09/09/13 23:16 Method: 7470A/DOD - Mercury (CVAA) 50 50 27 ug/L 09/09/13 23:16	Potassium	1800	J	5000	900	300	ug/L		09/09/13 17:32	1
Aluminum 60 U 60 E0 60 U 60 E0 20 ug/L 09/09/13 23:16 Antimony 1.0 U 2.0 1.0 0.33 ug/L 09/09/13 23:16 Beryllium 1.0 U 2.0 1.0 0.50 ug/L 09/09/13 23:16 Cadmium 1.0 U 2.0 1.0 0.40 ug/L 09/09/13 23:16 Iron 100 U 150 100 44 ug/L 09/09/13 23:16 Sodium 7000 1000 400 160 ug/L 09/09/13 23:16 Thallium 1.5 U 2.0 1.5 0.79 ug/L 09/09/13 23:16 Method: 7470A/DOD - Mercury (CVAA)	Method: 6020/DOD - Metals (ICI									
Antimony 1.0 U 2.0 1.0 0.33 ug/L 09/09/13 23:16 Beryllium 1.0 U Q 1.0 1.0 0.50 ug/L 09/09/13 23:16 Cadmium 1.0 U 2.0 1.0 0.40 ug/L 09/09/13 23:16 Iron 100 U 150 100 44 ug/L 09/09/13 23:16 Sodium 7000 1000 400 160 ug/L 09/09/13 23:16 Thallium 1.5 U 2.0 1.5 0.79 ug/L 09/09/13 23:16 Method: 7470A/DOD - Mercury (CVAA)	Analyte			LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
Beryllium 1.0 U Q 1.0 1.0 0.50 ug/L 09/09/13 23:16 Cadmium 1.0 U 2.0 1.0 0.40 ug/L 09/09/13 23:16 Iron 100 U 150 100 44 ug/L 09/09/13 23:16 Sodium 7000 1000 400 160 ug/L 09/09/13 23:16 Thallium 1.5 U 2.0 1.5 0.79 ug/L 09/09/13 23:16 Zinc 50 U 50 50 27 ug/L 09/09/13 23:16 Method: 7470A/DOD - Mercury (CVAA)	Aluminum	60	U	60	60	20	ug/L		09/09/13 23:16	1
Cadmium 1.0 U 2.0 1.0 U 0.40 ug/L 09/09/13 23:16 Iron 100 U 150 100 44 ug/L 09/09/13 23:16 Sodium 7000 1000 400 160 ug/L 09/09/13 23:16 Thallium 1.5 U 2.0 1.5 0.79 ug/L 09/09/13 23:16 Zinc 50 U 50 50 27 ug/L 09/09/13 23:16 Method: 7470A/DOD - Mercury (CVAA)	Antimony	1.0	U	2.0	1.0	0.33	ug/L		09/09/13 23:16	1
Iron 100 U 150 100 44 ug/L 09/09/13 23:16 Sodium 7000 1000 400 160 ug/L 09/09/13 23:16 Thallium 1.5 U 2.0 1.5 0.79 ug/L 09/09/13 23:16 Zinc 50 U 50 50 27 ug/L 09/09/13 23:16 Method: 7470A/DOD - Mercury (CVAA)	Beryllium	1.0	UQ	1.0	1.0	0.50	ug/L		09/09/13 23:16	1
Sodium 7000 1000 400 160 ug/L 09/09/13 23:16 Thallium 1.5 U 2.0 1.5 0.79 ug/L 09/09/13 23:16 Zinc 50 U 50 50 27 ug/L 09/09/13 23:16 Method: 7470A/DOD - Mercury (CVAA)	O - A - A - A - A - A - A - A - A - A -	1.0	U	2.0	1.0	0.40	ug/L		09/09/13 23:16	
Thallium 1.5 U 2.0 1.5 0.79 ug/L 09/09/13 23:16 Zinc 50 U 50 50 27 ug/L 09/09/13 23:16 Method: 7470A/DOD - Mercury (CVAA)	Cadmium									1
Zinc 50 U 50 50 27 ug/L 09/09/13 23:16 Method: 7470A/DOD - Mercury (CVAA)			U	150	100	44	ug/L		09/09/13 23:16	1
Method: 7470A/DOD - Mercury (CVAA)	Iron	100	U							1 1
	Iron Sodium	100 7000		1000	400	160	ug/L		09/09/13 23:16	1 1 1
Analyte Result Qualifier LOQ LOD DL Unit D Analyzed	lron Sodium Thallium	100 7000 1.5	U	1000 2.0	400 1.5	160 0.79	ug/L ug/L		09/09/13 23:16 09/09/13 23:16	1
the state of the s	Iron Sodium Thallium Zinc	7000 1.5 50	U	1000 2.0	400 1.5	160 0.79	ug/L ug/L		09/09/13 23:16 09/09/13 23:16	

Client: Environmental Quality Mgt., Inc.

Project/Site: RVAAP66 (OH)

TestAmerica Job ID: 240-28186-1

Lab Sample ID: 240-28186-44

Matrix: WQ

Client Sample ID: FWGEQUIPRINSE3-0342-GW Date Collected: 08/21/13 15:34

Date Received: 08/22/13 07:00

Analyte	Result	Qualifier	1	.00	LOD	DL	Unit	D Analyzed	Dil Fac
1,1,1-Trichloroethane	0.25	U		1.0	0.25	0.22	ug/L	08/31/13 12:33	1
1,1,2,2-Tetrachloroethane	0.25	U		1.0	0.25	0.18	ug/L	08/31/13 12:33	1
1,1,2-Trichloroethane	0.50	U		1.0	0.50	0.27	ug/L	08/31/13 12:33	1
1,1-Dichloroethane	0.25	U		1.0	0.25	0.15	ug/L	08/31/13 12:33	1
1,1-Dichloroethene	0.25	U		1.0	0.25	0.19	ug/L	08/31/13 12:33	1
1,2-Dichloroethane	0.25	U		1.0	0.25	0.22	ug/L	08/31/13 12:33	1
1,2-Dichloroethene, Total	0.25	U		2.0	0.25	0.17	ug/L	08/31/13 12:33	1
1,2-Dichloropropane	0.25	U		1.0	0.25	0.18	ug/L	08/31/13 12:33	1
2-Hexanone	0.50	U		10	0.50	0.41	ug/L	08/31/13 12:33	1
Bromochloromethane	0.50	U		1.0	0.50	0.29	ug/L	08/31/13 12:33	1
Acetone	9.9	J		10	1.1	1.1	ug/L	08/31/13 12:33	1
Benzene	0.25	U		1.0	0.25	0.13	ug/L	08/31/13 12:33	1
Bromoform	0.64	U		1.0	0.64	0.64	ug/L	08/31/13 12:33	1
Bromomethane	0.50	U		1.0	0.50	0.41	ug/L	08/31/13 12:33	1
Carbon disulfide	0.25	U		1.0	0.25	0.13	ug/L	08/31/13 12:33	1
Carbon tetrachloride	0.25	U		1.0	0.25	0.13	ug/L	08/31/13 12:33	1
Chlorobenzene	0.25	U		1.0	0.25	0.15	ug/L	08/31/13 12:33	1
Chloroethane	0.50	U		1.0	0.50	0.29	ug/L	08/31/13 12:33	1
Chloroform	0.52	J		1.0	0.25	0.16	ug/L	08/31/13 12:33	1
Chloromethane	0.50	U		1.0	0.50	0.30	ug/L	08/31/13 12:33	1
cis-1,2-Dichloroethene	0.25	U		1.0	0.25	0.17	ug/L	08/31/13 12:33	1
cis-1,3-Dichloropropene	0.25	U		1.0	0.25	0.14	ug/L	08/31/13 12:33	1
Bromodichloromethane	0.25	U		1.0	0.25	0.15	ug/L	08/31/13 12:33	1
Ethylbenzene	0.25	U		1.0	0.25	0.17	ug/L	08/31/13 12:33	1
1,2-Dibromoethane	0.25	U		1.0	0.25	0.24	ug/L	08/31/13 12:33	1
m-Xylene & p-Xylene	0.50	U		2.0	0.50	0.24	ug/L	08/31/13 12:33	- 1
2-Butanone (MEK)	1.7	J		10	0.57	0.57	ug/L	08/31/13 12:33	1
4-Methyl-2-pentanone (MIBK)	0.50			10	0.50	0.32	ug/L	08/31/13 12:33	1
Methylene Chloride	0.81	JB		1.0	0.50	0.33	ug/L	08/31/13 12:33	1
o-Xylene	0.25	U		1.0	0.25	0.14	ug/L	08/31/13 12:33	1
Styrene	0.25	U		1.0	0.25	0.11	ug/L	08/31/13 12:33	1
Tetrachloroethene	0.50	U		1.0	0.50	0.29	ug/L	08/31/13 12:33	1
Toluene	0.18	J		1.0	0.25	0:13	ug/L	08/31/13 12:33	1
trans-1,2-Dichloroethene	0.25			1.0	0.25	0.19	ug/L	08/31/13 12:33	1
trans-1,3-Dichloropropene	0.25			1.0	0.25	0.19		08/31/13 12:33	1
Trichloroethene	0.25			1.0	0.25	0.17		08/31/13 12:33	1
Vinyl chloride	0.25			1.0	0.25	0.22		08/31/13 12:33	1
Xylenes, Total	0.25			2.0	0.25	0.14		08/31/13 12:33	-1
Dibromochloromethane	0,25			1.0	0.25	0.18		08/31/13 12:33	1
Surrogate	%Recovery Qu	valifier	Limits				Prepared	d Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	115		70 - 120					08/31/13 12:33	1
4-Bromofluorobenzene (Surr)	88		75 - 120					08/31/13 12:33	1

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	115	70 - 120		08/31/13 12:33	1
4-Bromofluorobenzene (Surr)	88	75 - 120		08/31/13 12:33	1
Toluene-d8 (Surr)	92	85 - 120		08/31/13 12:33	1
Dibromofluoromethane (Surr)	102	85 115		08/31/13 12:33	4

Method: 8270C/Dol	O - Semivolatile Organic Compounds (GC/MS)
Amalida	D

Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
Acenaphthene	0.096	U	0.19	0.096	0.043	ug/L		09/06/13 20:44	1
Acenaphthylene	0.096	U	0.19	0.096	0.046	ug/L		09/06/13 20:44	4

Client: Environmental Quality Mgt., Inc.

Project/Site: RVAAP66 (OH)

TestAmerica Job ID: 240-28186-1

Lab Sample ID: 240-28186-44

Matrix: WQ

Client Sample ID: FWGEQUIPRINSE3-0342-GW

Date Collected: 08/21/13 15:34 Date Received: 08/22/13 07:00

nalyte	atile Organic Compo	Qualifier	LOQ	LOD	DI	Unit	D	Analyzed	Dil F
nthracene	0.096		0.19	0.096		ug/L		09/06/13 20:44	
enzo[a]anthracene	0.096		0.19	0.096	0.028	1000		09/06/13 20:44	
enzo[a]pyrene	0.096	U	0.19	0.096	0.049			09/06/13 20:44	
enzo[b]fluoranthene	0,096		0.19	0.096	0.038			09/06/13 20:44	
enzo[g,h,i]perylene	0.096		0.19	0.096	0.045			09/06/13 20:44	
enzoic acid	19		24	19		ug/L		09/06/13 20:44	
enzo[k]fluoranthene	0.096		0.19	0.096		ug/L		09/06/13 20:44	
enzyl alcohol	0.48		4.8	0.48	0.37	ug/L		09/06/13 20:44	
is(2-chloroethoxy)methane	0.48		0.96	0.48	0.31	ug/L		09/06/13 20:44	
s(2-chloroethyl)ether	0.096		0.96	0.096	0.096	ug/L		09/06/13 20:44	
is(2-ethylhexyl) phthalate	0.41		1.9	0.48	0.21	ug/L		09/06/13 20:44	
Bromophenyl phenyl ether	0.48		1.9	0.48	0.21	ug/L		09/06/13 20:44	
utyl benzyl phthalate	0.48		1.9	0.48	0.25	ug/L		09/06/13 20:44	
arbazole	0.48		0.96	0.48	0.27	ug/L		09/06/13 20:44	
Chloroaniline	0.48		1.9	0.48	0.20	ug/L		09/06/13 20:44	
Chloro-3-methylphenol	0.48		1.9	0.48		ug/L		09/06/13 20:44	
Chloronaphthalene	0.48		0.96	0.48	0.096			09/06/13 20:44	
	0.48		0.96	0.48		1		09/06/13 20:44	
Chlorophenol	0.48		1.9	0.48		ug/L		09/06/13 20:44	
Chlorophenyl phenyl ether						ug/L			
rysene	0.096		0.19	0.096	0.048			09/06/13 20:44	
penz(a,h)anthracene	0.096		0.19	0.096	0.043			09/06/13 20:44	
penzofuran	0.096		0.96	0.096	0.019			09/06/13 20:44	
2-Dichlorobenzene	0.48		0.96	0.48		ug/L		09/06/13 20:44	
3-Dichlorobenzene	0.48		0.96	0.48		ug/L		09/06/13 20:44	
-Dichlorobenzene	0.48		0.96	0.48		ug/L		09/06/13 20:44	
'-Dichlorobenzidine	0.96		4.8	0.96	0.36	ug/L		09/06/13 20:44	
-Dichlorophenol	0.48		1.9	0.48	0.18	ug/L		09/06/13 20:44	
thyl phthalate	0.96		1.9	0.96	0.58	ug/L		09/06/13 20:44	
-Dimethylphenol	0.48		1.9	0.48		ug/L		09/06/13 20:44	
nethyl phthalate	0.48		1.9	0.48	0.28	ug/L		09/06/13 20:44	
n-butyl phthalate	1.0		1.9	0.96		ug/L		09/06/13 20:44	
-Dinitro-2-methylphenol	3.8		4.8	3.8	2.3	ug/L		09/06/13 20:44	
-Dinitrophenol	0.96		4.8	0.96	0.31	ug/L		09/06/13 20:44	
n-octyl phthalate	0.48		1.9	0.48		ug/L		09/06/13 20:44	
oranthene	0.096	U	0.19	0.096	0.043	ug/L		09/06/13 20:44	
orene	0.096	U	0.19	0.096	0.039	ug/L		09/06/13 20:44	
xachlorobenzene	0.096	U	0.19	0.096	0.082	ug/L		09/06/13 20:44	
xachlorobutadiene	0.48	U	0.96	0.48	0.26	ug/L		09/06/13 20:44	
xachlorocyclopentadiene	0.48	U	9.6	0.48	0.23	ug/L		09/06/13 20:44	
xachloroethane	0.48	U	0.96	0.48	0.18	ug/L		09/06/13 20:44	
eno[1,2,3-cd]pyrene	0.096	U	0.19	0.096	0.042	ug/L		09/06/13 20:44	
phorone	0.48	U	0.96	0.48	0.26	ug/L		09/06/13 20:44	
Methylnaphthalene	0.096	U	0.19	0.096	0.087	ug/L		09/06/13 20:44	
Methylphenol	0.48	U	0.96	0.48	0.16	ug/L		09/06/13 20:44	
4 Methylphenol	0.96	U	1.9	0.96	0.77	ug/L		09/06/13 20:44	
phthalene	0.096	U	0.19	0.096	0.060	ug/L		09/06/13 20:44	
Vitroaniline	0.48	U	1.9	0.48	0.20	ug/L		09/06/13 20:44	
Nitroaniline	0.48	U	1.9	0.48		ug/L		09/06/13 20:44	
Nitroaniline	0.48	U	1.9	0.48	0.21	ug/L		09/06/13 20:44	

Client: Environmental Quality Mgt., Inc.

Client Sample ID: FWGEQUIPRINSE3-0342-GW

Project/Site: RVAAP66 (OH)

TestAmerica Job ID: 240-28186-1

Lab Sample ID: 240-28186-44

Matrix: WQ

Date Collected: 08/21/13 15:34 Date Received: 08/22/13 07:00

Analyte	Result	Qualifier	LOQ	LOD	DL	Unit D	Analyzed	Dil Fac
2-Nitrophenol	0.48	U	1.9	0.48	0.27	ug/L	09/06/13 20:44	1
4-Nitrophenol	3.8	U	4.8	3.8	0.28	ug/L	09/06/13 20:44	1
N-Nitrosodi-n-propylamine	0.48	U	0.96	0.48	0.23	ug/L	09/06/13 20:44	1
N-Nitrosodiphenylamine	0.48	U	0.96	0.48	0.30	ug/L	09/06/13 20:44	1
2,2'-oxybis[1-chloropropane]	0.48	U	0.96	0.48	0.38	ug/L	09/06/13 20:44	1
Pentachlorophenol	0.96	U	4.8	0.96	0.26	ug/L	09/06/13 20:44	1
Phenanthrene	0.096	U	0.19	0.096	0.060	ug/L	09/06/13 20:44	1
Phenol	0.96	U	0.96	0.96	0.58	ug/L	09/06/13 20:44	1
Pyrene	0.096	U	0.19	0.096	0.040	ug/L	09/06/13 20:44	1
1,2,4-Trichlorobenzene	0.48	U	0.96	0.48	0.27	ug/L	09/06/13 20:44	1
2,4,5-Trichlorophenol	0.48	U	4.8	0.48	0.29	ug/L	09/06/13 20:44	- 1
2,4,6-Trichlorophenol	0.48	U	4.8	0.48	0.23	ug/L	09/06/13 20:44	1
Surrogate	%Recovery Qu	alifier	Limits			Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl (Surr)	89		50 - 110			08/23/13 09:12	09/06/13 20:44	1
2-Fluorophenol (Surr)	95		20 - 110			08/23/13 09:12	09/06/13 20:44	1
Nitrobenzene-d5 (Surr)	93		40 - 110			08/23/13 09:12	09/06/13 20:44	1
Phenol-d5 (Surr)	99		10 - 115			08/23/13 09:12	09/06/13 20:44	1
Terphenyl-d14 (Surr)	124		50 - 135			08/23/13 09:12	09/06/13 20:44	1
2,4,6-Tribromophenol (Surr)	90		40 - 125			08/23/13 09:12	09/06/13 20:44	1

Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
4,4'-DDD	0.020	U	0.050	0.020	0.0096	ug/L		08/30/13 09:43	1
4,4'-DDE	0.020	U	0.050	0.020	0.0097	ug/L		08/30/13 09:43	1
4,4'-DDT	0.020	U	0.050	0.020	0.016	ug/L		08/30/13 09:43	- 1
Aldrin	0.020	U	0.030	0.020	0.0082	ug/L		08/30/13 09:43	1
alpha-BHC	0.020	U	0.030	0.020	0.0070	ug/L		08/30/13 09:43	1
alpha-Chlordane	0.020	U	0.050	0.020	0.014	ug/L		08/30/13 09:43	1
beta-BHC	0.020	U	0.050	0.020	0.0084	ug/L		08/30/13 09:43	1
delta-BHC	0.020	U	0.050	0.020	0.0087	ug/L		08/30/13 09:43	1
Dieldrin	0.020	U	0.030	0.020	0.0075	ug/L		08/30/13 09:43	1
Endosulfan I	0.020	U	0.050	0.020	0.013	ug/L		08/30/13 09:43	1
Endosulfan II	0.020	U	0.050	0.020	0.012	ug/L		08/30/13 09:43	- 1
Endosulfan sulfate	0.020	U	0.050	0.020	0.011	ug/L		08/30/13 09:43	1
Endrin	0.020	U	0.050	0.020	0.011	ug/L		08/30/13 09:43	1
Endrin aldehyde	0.020	U	0.050	0.020	0.011	ug/L		08/30/13 09:43	1
Endrin ketone	0.020	U	0.050	0.020	0.0078	ug/L		08/30/13 09:43	1
gamma-BHC (Lindane)	0.020	U	0.050	0.020	0.0064	ug/L		08/30/13 09:43	9
gamma-Chlordane	0.020	U	0.050	0.020	0.012	ug/L		08/30/13 09:43	1
Heptachlor	0.020	U	0.030	0.020	0.0080	ug/L		08/30/13 09:43	1
Heptachlor epoxide	0.020	U	0.030	0.020	0.0071	ug/L		08/30/13 09:43	1
Methoxychlor	0.050	U	0.10	0.050	0.032	ug/L		08/30/13 09:43	.1
Toxaphene	0.80	U	2.0	0.80	0.32	ug/L		08/30/13 09:43	1
2000		-5.00	and the second					10.1.2.3.3.2.2.3	

Surrogate	%Recovery Q	Qualifier	Limits	Prepared	Analyzed	Dil Fac
DCB Decachlorobiphenyl	69		30 - 135	08/23/13 09:00	08/30/13 09:43	1
DCB Decachlorobiphenyl	68		30 - 135	08/23/13 09:00	08/30/13 09:43	7
Tetrachloro-m-xylene	72		25 - 140	08/23/13 09:00	08/30/13 09:43	7
Tetrachloro-m-xylene	73		25 - 140	08/23/13 09:00	08/30/13 09:43	1

TestAmerica Canton

Page 99 of 196

9/24/2013

Client: Environmental Quality Mgt., Inc.

Project/Site: RVAAP66 (OH)

TestAmerica Job ID: 240-28186-1

Lab Sample ID: 240-28186-44

Client Sample ID: FWGEQUIPRINSE3-0342-GW Date Collected: 08/21/13 15:34 Matrix: WQ

Date Received: 08/22/13 07:00

Analyte		Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
Aroclor-1016	0.20	U	0.50	0.20	0.17	ug/L		08/29/13 00:39	1
Aroclor-1221	0.20	U	0.50	0.20	0.13	ug/L		08/29/13 00:39	1
Aroclor-1232	0.20	U	0.50	0.20	0.16	ug/L		08/29/13 00:39	1
Aroclor-1242	0.40	U	0.50	0.40	0.22	ug/L		08/29/13 00:39	- 1
Aroclor-1248	0.20	U	0.50	0.20	0.10	ug/L		08/29/13 00:39	. 1
Aroclor-1254	0.20	U	0.50	0.20	0.16	ug/L		08/29/13 00:39	
Aroclor-1260	0.20	U	0.50	0.20	0.17	ug/L		08/29/13 00:39	1
Surrogate	%Recovery Qu	ualifier	Limits			Prep	pared	Analyzed	Dil Fa
Tetrachloro-m-xylene	72		40 - 140			08/23/1	3 09:07	08/29/13 00:39	
Tetrachloro-m-xylene	77		40 - 140			08/23/1	3 09:07	08/29/13 00:39	
OCB Decachlorobiphenyl	55		40 - 135			08/23/1	3 09:07	08/29/13 00:39	
OCB Decachlorobiphenyl	48		40 - 135			08/23/1	3 09:07	08/29/13 00:39	
Method: 8330 Modified - Nitro	oquanidine (HPLC)								
Analyte		Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
Nitroguanidine	6.0	U	20	6.0	2.4	ug/L		08/27/13 21:20	3
Method: 8330A - Nitroaromat	ics and Nitramines								
Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fa
,3,5-Trinitrobenzene	0,052	U	0.16	0.052	0.032	ug/L		08/31/13 08:04	
,3-Dinitrobenzene	0.10	U	0.16	0.10	0.052	ug/L		08/31/13 08:04	
,4,6-Trinitrotoluene	0.10	U	0.16	0.10	0.052	ug/L		09/10/13 11:53	
,4-Dinitrotoluene	0.10	U	0.13	0.10	0.052	ug/L		08/31/13 08:04	
2,6-Dinitrotoluene	0.10	U	0.13	0.10	0.052	ug/L		08/31/13 08:04	
2-Amino-4,6-dinitrotoluene	0.10	U	0.16	0.10	0.016	ug/L		08/31/13 08:04	
2-Nitrotoluene	0.10	U	0.52	0.10	0.091	ug/L		08/31/13 08:04	
3-Nitrotoluene	0.10	U	0.52	0.10	0.059	ug/L		08/31/13 08:04	
I-Nitrotoluene	0.10	U	0.52	0.10	0.091	ug/L		08/31/13 08:04	
-Amino-2,6-dinitrotoluene	0.10	U	0.16	0.10	0.052	ug/L		08/31/13 08:04	
HMX	0.052	U	0.16	0.052	0.037	ug/L		08/31/13 08:04	
RDX	0.052	U	0.16	0.052	0.037			08/31/13 08:04	
Vitrobenzene	0.10	Ü	0.16	0.10	0.052			09/10/13 11:53	
Tetryl	0.10	U.	0.16	0.10	0.052			08/31/13 08:04	
Nitroglycerin	0.52		0.67	0.52		ug/L		08/31/13 08:04	
PETN	0.52		0.67	0.52		ug/L		08/31/13 08:04	
Surrogate	%Recovery Qu	ualifier	Limits			Prep	pared	Analyzed	Dil Fa
8,4-Dinitrotoluene	96		79 - 111			08/27/1	3 07:26	08/31/13 08:04	
3,4-Dinitrotoluene	104		79 - 111			08/27/1	3 07:26	09/10/13 11:53	
Method: 6860 - Perchlorate b	v IC/MS or IC/MS/MS								
Analyte		Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fa
Perchlorate	0.020	U	0.050	0.020	0.0088	ug/L		09/11/13 22:54	
Method: 6010B/DOD - Metals	(ICP) - Total Recover	rable							
analyte		Qualifier	LOQ	LOD		Unit	D	Analyzed	Dil Fa
Arsenic	10		10	10	3.3	ug/L		09/09/13 17:38	
Chromium	4.0	U	7.0	4.0	1.4	ug/L		09/09/13 17:38	
Cobalt	4.0	U	7.0	4.0	1.5	ug/L		09/09/13 17:38	
ead	5.0	11	10	5.0	4.7	ug/L		09/09/13 17:38	

Client: Environmental Quality Mgt., Inc.

Client Sample ID: FWGEQUIPRINSE3-0342-GW

Project/Site: RVAAP66 (OH)

Date Collected: 08/21/13 15:34

Date Received: 08/22/13 07:00

Thallium

Zinc

TestAmerica Job ID: 240-28186-1

Lab Sample ID: 240-28186-44

09/09/13 23:23

09/09/13 23:23

Matrix: WQ

Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
Selenium	10	U	15	10	4.0	ug/L		09/09/13 17:38	1
Silver	5.0	U	7.0	5.0	1.7	ug/L		09/09/13 17:38	1
/anadium	4.0	U	7.0	4.0	1.3	ug/L		09/09/13 17:38	1
3arium -	5.0	U	200	5.0	2.8	ug/L		09/09/13 17:38	1
Calcium	1000	U	5000	1000	630	ug/L		09/09/13 17:38	1
Copper	10	U	25	10	4.4	ug/L		09/09/13 17:38	1
Magnesium	300	U	5000	300	120	ug/L		09/09/13 17:38	1
Manganese	5.0	U	15	5.0	1.8	ug/L		09/09/13 17:38	1
Nickel	5.0	U	40	5.0	2.2	ug/L		09/09/13 17:38	1
Potassium	900	U	5000	900	300	ug/L		09/09/13 17:38	1
Method: 6020/DOD - Metal	s (ICP/MS) - Total Recov	erable							
Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
Aluminum	60	U	60	60	20	ug/L		09/09/13 23:23	1
Antimony	1.0	U	2.0	1.0	0.33	ug/L		09/09/13 23:23	1
Beryllium	1.0	UQ	1.0	1.0	0.50	ug/L		09/09/13 23:23	1
Cadmium	1.0	U	2.0	1.0	0.40	ug/L		09/09/13 23:23	1
ron	100	U	150	100	44	ug/L		09/09/13 23:23	1

Method: 7470A/DOD - Mercury (CVAA) Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
Hg	0.20	U	0.20	0.20	0.12	ug/L		08/27/13 17:27	1

2.0

50

1.5

50

0.79 ug/L

27 ug/L

1.5 U

50 U

General Chemistry Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
Cyanide, Total	0.010	U	0.010	0.010	0.0032	mg/L		08/26/13 14:03	1
Nitrocellulose	1.0	u	2.0	1.0	0.48	mg/L		09/11/13 17:05	1

TestAmerica Canton 4101 Shuffel Street, N. W.

Horth Canton, DN 44720

Chain of Custody Record

THE LEADER IN ENVIRONMENTAL TESTING TestAmerica Laboratories, Inc.

Phone: 330.497.9396 Fax: 330.497.0772 Regulatory Program: DW NPDES RCRA Form No. CA-C-WI-002, Rev. 4.2, dated 04/02/2013 COC No: SRIAIAOIS Project Manager: Inho Site Contact: Frik (Dr Win Date: 8/21/13 Client Contact Lab Contact: MCK 1 1146 Carrier: LOSDICKUD of CA COCs Tel/Fax: 513 8257500 Company Name: 7(0) Address: 18 00 Carillon DIVO Analysis Turnaround Time Sampler: 8308 1808 1808 827 City/State/Zip: (mignat, OH 45040 CALENDAR DAYS WORKING DAYS For Lab Use Only: Phone: 513 805 7500 Walk-in Client: TAT if different from Balow Perform MS / MSD (Y / N) Lab Sampling: 513 905 7495 2 weeks Sample (YIN) Project Name: KV (IAP (00 (0.41) 1 week Site: 30174.001.001.10.1 Job / SDG No.: 2 days PO# 1 day Sample (Wher I)# Type Sample Sample (C=Comp. Sample Identification G=Grab) Matrix Cont. Sample Specific Notes: ENGWEG mw-009C-0374-AW 8/21/13 9:35 5 FWAWBGMW-009C-0374-GF8/21/13 9:35 GNA FWGWBGMW-020-0330 GIN 8/21/210-3 BUBWBG MW-020-0330-GF 8/21/13/10:31 BAGWBGANW- SE YAVIS NG LL2mw-265C-0321-GW 8/2 /13 11:55 NNX GW 8/21/13/11:55 GW GW BW 12V1312:51 Gu NN 471/13 8:00 GW GW Preservation Used: 1= Ice: 2= HCl: 3= H2SO4: 4=HNO3: 5=NaOH: 6= Other Possible Hazard Identification: Sample Disposal (A fee may be assessed if samples are retained longer than 1 month) Are any samples from a listed EPA Hazardous Waste? Please List any EPA Waste Codes for the sample in the Comments Section if the lab is to dispose of the sample. Non-Hazard Skin Irritant Poison B Unknown Disposal by Lab Archive for Flammable Return to Client Special Instructions/QC Requirements & Comments: All metals, perchlorate samples are field filtered Temps may not meet requirements if collected close to lab pickup time Cooler Temp. (°C): Obs'd: Therm ID No. Custody/Seals Intact Custody Seal No.: Received by: Date/Time: Relinquished by Company: Company: 8-2113-1800 IAL =NEC 6 Dello EQM 8/21/13 1200 Relinquished by: Received by Company: Date/Time: Company: Date/Time: 8-21-13 195C 8/20/13 0700 TA 111-11 Relinquished by: Company: Date/Time: Received in Laboratory by: Company: Date/Time

TestAmerica Canton 4101 Shuffel Street, M. U.

Chain of Custody Record

Worth Canton, IIH 44720

TestAmerica Laboratories, Inc. Phone: 330.497.9396 Fax: 330.497.0772 Regulatory Program: DW DNPDES RCRA Form No. CA-C-WI-002, Rev. 4.2, dated 04/02/2013 COC No: 928212013 Erik (orloin Date: 8/21/13 Project Manager; Inho Millet Client Contact Site Contact: Carrier: (OBPICKINO Lab Contact: WIKLOOD Company Name: 5000 Tel/Fax: 513 825 7500 Address: 1800 (arillon Blvd **Analysis Turnaround Time** Sampler: city/State/Zip: Cincinnouti 0th 45240 CALENDAR DAYS WORKING DAYS For Lab Use Only: Phone: 8 513 825 7500 Fax: 513 825 7495 Walk-in Client: TAT if different from Below Lab Sampling: 2 weeks Project Name: KVAADUU (0+1) 1 week Site: 30174,0010.001 П Job / SDG No .: 2 days PO# 1 day Sample cooler 10# Type Sample Sample # of Sample Identification Time G=Grab) Matrix Cont. Sample Specific Notes: 8/21/13 15:15 FWG LLIMW-083C-0354-GW GW 8/13/15/15 FNG 1.1 IMW-083C-0354-GF GW Preservation Used: T= Ice. 2= HCI; 3= H2SO4; 4=HNO3: 5=NaOH: 6= Other Sample Disposal (A fee may be assessed if samples are retained longer than 1 month) Possible Hazard Identification: Are any samples from a listed EPA Hazardous Waste? Please List any EPA Waste Codes for the sample in the Comments Section if the lab is to dispose of the sample. Disposal by Lab Archive for Non-Hazard Poison B Unknown Return to Client Flammable Special Instructions/QC Requirements & Comments: Temps may not meet requirements in collected close to All metals, perchloroutes samples are field filtered lab Pickup time Cooler Temp. (C): Obs'd: Corr'd: Therm ID No.: Custody Seals Intact: Custody Seal No .: Date/Time: 190; Relinquished by: Company: Company: EQN 111-160 Date/Time: Received by. Company: Relinquished by: Company: a'en 21-13-1900 142-24 TA Date/Time: Received in Laboratory by: Relinquished by: Company: Company:

cooler # 0450

Chain of Custody Record

TestAmerica

THE LEADER IN ENVIRONMENTAL TESTING

	TAL-4142 (0408)			Dustas	4 4 4 4 4										1				Lo	lasta	1			1	Toka	in at Cuntarks	Mumban	
	Ellent EDMA			Projec	T Mag	ager)	ni	n	il	u									4	3/	120) -2	21/	13	Crian	0004	75	
	Address 800 Carllen Blud			2	one I	Vumbe	er (Are	a Coo	te)/Fa	x Nur									4	かん	lumb	49	7-	939k		/	_ of/	/
	grand Os File 20	US Z	140	Site C	ontac	t .	SIN		Lab	Cent	tact	100	b						nalys ore sp				st if					
	Project Name and Location (State)	lw	- 10	Carrie	r/Way	bilLAVI	umber		_						Col	to	f				mits	L	1			Special	Instru	ctions/
	Contract/Purchase Order/Quote No.					M	latrix	0		F		ainei ervai	rs & tives		82	001	200	78	8	2	achi	S.M.	Julo	2		Conditio		
	Sample I.D. No. and Description (Containers for each sample may be combined on one line)	D	ate	Time	Air	Aqueous	Sed.		Unpres	H2SO4	HNOS	HC!	NaOH Zada	NaOH	Š	B	SK	0	Ø,	B	70	3	3	B				
	FWG Team 2 - Trip 082013	8/2	0/13	1708		X									2													ADI
	FUG DETAWS - 004C-0344-GW		113	1710		X			6			3	1		3		i	1	t.	İ	2	j		1-1	P	minum	iol.	12
Р	PLOGDETING-004C-6244-6F		1	1	4	V				£	1						h						Î		1	7.		12
Page		8/21	113	0922		y			5			3			3	2	Ī			İ	2							A07
187	FUGNTAME- 119-0367-GF	, 0		1		×					1												1					AD7
of 196	FWG ANGINU -006-0318-6W	8 21	13	1048		0			F			3			3													A07
96	AUGFBONN-114C-0345-GW	8121	13	1138		×			7									2		1	2			2				185
	PWGPB0nw-174C-0345-6F	-	L	1		D		1			1												İ					185
													-															
							- Dian										1											
	Possible Hazard Identification Non-Hazard Flammable Skin Irritant	☐ Pois	on B	☐ Unknow			e Dispo turn To		nt]	100	ispo.	sal By	y Lab	. [Arch	nive F	For _			Mon	oths			nay be as han 1 mo		if samples are	retaine	ď
	Tum Around Time Required ☐ 24 Hours ☐ 48 Hours ☐ 7 Days ☐ 14 Days	ays [] 21 Da	vs XIO	Re	K	DU	J		QC	Regu	irem.	ents	Speci	(1)	w		A	D=	Z								1
	1. Relinquished By			Date 3/2		10	Time			1. A	ecei	red B		11	B	20		_							Da	te \$ \$ 2 1 - 1 3	Time	800
	2. Relinquished By	-		Date 8	-		Time			2. R		red B	ay aa	_	R										Da Q/	22/13	Time	700
9/24/2013	3. Relinquished By			Date			Time	-		3. FI	ecei	red B	Dy 1	3	9		~	2							Da	to 13	Time	
2013	Comments Mi sinchila like) de	0.1	Iba. I	n																						1	
	DISTRIBUTION: WHITE - Returned to Client with Report;	CANAR	Stays	with the San	nple;	PINK	- Field	d Cop	v															_				

TestAmerica Chain of Custody Record Canton TestAmerica Laboratory location: Regulatory program: RCRA Client Contact TestAmerica Laboratories, Inc. ompany Name: lient Project Manager: John Miller E Corbin 56008 M. Loeb 513-825-7500 arillon Blval incinvert Dhio 45240 Analysis Turnaround Time For lab use only Analyses (in BES days). Walk-in client Lab pickup Method of Shipment/Carrier: 2 weeks Lab sampling 1 week Job/SDG No: Shipping/Tracking No: 2 days PO# Matrix Sample Specific Notes / Special Instructions HC Sample Date Sample Identification SampleTime 08/21/13 OSOD SOI Page 188 of 196 0 085% 501 501 FUGWBGMW-018-0328-GW 1003 9 3 1003 3 103 Possible Hazard Identification Sample Disposal (A fee may be assessed if samples are retained longer than 1 month) Return to Client Disposal By Lab

©2008 TestAmerics Laboratories, Inc. All rights reserved TestAmerica & Design. The fractionaries of TestAmerica Laboratories, Inc.

8/24/2013

Relinquished by:

TAL 0018-1 (04/10)

130700

2113-1950

deceived by:

Company:

COMPANY:

TestAmerica TestAmerica Laboratory location: PCIC = 51e OS TestAmerica Laboratories, Inc. DW NPDES Regulatory program: Client Contact Lab Contacts Wax Lock Company Name: 56009 EVIK Corbin Carillon Blud Analysis Turnaround Time OMIO For lab use only Analyses (in BUS days) Walk-in client Lab pickup 2 weeks Lab sampling I week Job/SDG No: Shipping/Tracking 2 days 4.0016400.10. Matrix Sample Specific Notes / 112504 HN03 Special Instructions: HC Sample Identification Sample Date SampleTime Page 189 of 196 Possible Hazard Identification Sample Disposal (A fee may be assessed if samples are retained longer than 1 month)

Return to Client Disposal By Lab Archive For Months Poison B Non-Hazard Unknown Company: 9/24/2013 1950 146-41 13 0700 8-21-13-TA Received in Laborator by: Date/Time: Company: Relinquished by: Company:

Chain of Custody Record

62008 TestAmenca Laboratorias, Inc., AE rights reserved lestAmenca & Design. ™ are trademants of TestAmenca Laboratories, Inc.

TAL 0018-1 (04/10)

TestAmerica Canton

Chain of Custody Record

TestAmerica

Horth Canton, DH 44728

The Leader in Environmental Testing
Phone: 330, 497, 9396 Fax: 330, 497, 9772

TestAmerica Laboratories, Inc.

Regulatory Program: DW NPDES RCRA Other: Form No. CA-C-WI-002, Rev. 4.2, dated 04/02/2013 Client Contact Site Contact: ERIK CORBIN COC No: RDR 082113 Project Manager: VOHN MILLER Date: 08-21-13 Carrier: Lab Pitkul Company Name: Early Tel/Fax: SAME Lab Contact: MARK LOEB COCs Address: 1800 CARILLON BLUD. Analysis Turnaround Time Sampler: S CALENDAR DAYS City/State/Zip: CINCINNATI, OH. 45240 WORKING DAYS For Lab Use Only: Phone: (5/3) 825 - 7500 Walk-in Client: TAT if different from Below Fax: (513) 825 - 7495 Lab Sampling: Z weeks Project Name: RUBAP66 (OH) 1 week Site: 030174.0016.001.10.1 SOW Job / SDG No .: 2 days PO# 1 day Sample Type COOLER 10# Sample Sample (C=Comp. Date Time Sample Identification G=Grab) Matrix Sample Specific Notes: FWGTEAM 4-TRIP 08-21-13 08:00 13 N 2 6 x 6 x 6 x 6 x 5 x 13 6 AR 13 FW6 WB6 MW-021-0331-6W 08-21-13 09:24 13 6 AR 08-21-13 09:24 FW6W86MW-021-0331-6F 5 08-21-13 10:40 AR E115 FW6W86 MW-006C-0373-6W FW6WB6MW-006C-0373-6F 08-21-13 10:40 E 115 Y 226 366 366 35 08-21-13 12:20 MSMSP 5-0222 EC9 465 FW6 FW6 MW-009-0319-6W AR MSMSD 6-6222, Ecq. 465 FW6FW6MW-009-0319-6F 08-21-13 12:20 08-21-8 15:04 FORG FORG MUN-007-0347-6W CIII FW6FW6MW-007-0347-6F 08-21-13 15:04 CIII FUSEQUIPLINES - 0342-GW 58 EILIR 1534 412 Preservation Used: 1= ice, 2= HCl; 3= H2SO4; 4=HNO3; 5=NaOH; 6= Other LIPPRES Possible Hazard Identification: Sample Disposal (A fee may be assessed if samples are retained longer than 1 month) Are any samples from a listed EPA Hazardous Waste? Please List any EPA Waste Codes for the sample in the Comments Section if the lab is to dispose of the sample. Non-Hazard Skin Irritant Poison B Unknown Return to Client Disposal by Lab Archive for Months Flammable Special Instructions/QC Requirements & Comments: ALL METALS, PERCHLORATE JAMPLES ARE FIELD FICTERED ALL UDA'S INCORER 13 TEMPS MAY NOT MEET REQUIREMENTS IF SAMPLE COLLECTION IS CLOSE TO LAB PICKUP TIME Custody Seals Intact: Custody Seal No .: Cooler Temp (C): Obs'd: Corr'd: Therm ID No .: Relinquished by: Date/Time: 7.86d Company: Date/Time: Received by Company: IAI-XP 08/21/13 18:00 ERM 8-21-13 1950 Relinquished by Received by: Company: Company: 50,50 142-4C TA Date/Time: Received in Lasoratory by: Relinquished by: Company: Company:

TestAmerica Canton Sample Receipt Forn Canton Facility	n/Narrative	Login#: 28/86
Client ZOM	Site Name RVAAP	Cooler unpacked by:
Cooler Received on 8 22 13	Opened on 8/22/13	Terry Brenn
	Client Drop Off PestAmerica C	Ouriep Other
TestAmerica Cooler# Foam F		ther Multiple
Packing material used: Bubble Wrap		ther
COOLANT: (Wet Ice) Blue Ice		
1. Cooler temperature upon receipt		
IR GUN# A (CF -1 °C) Observed Co		
RGUN#40 (CF 0°C) Observed Co		ooler Temp°C
IR GUN#5 (CF +1 °C) Observed Co		ooler Temp°C Cooler Form
IR GUN# 8 (CF -0 °C) Observed Co		ooler Temp°C
2. Were custody seals on the outside of the co		
-Were custody seals on the outside of the	cooler(s) signed & dated?	Yes (No)
-Were custody seals on the bottle(s)?	(-)2	
3. Shippers' packing slip attached to the coole		Yes No
 Did custody papers accompany the sample Were the custody papers relinquished & si 		Y65) No
5. Were the custody papers remiquished & si	gned in the appropriate place.	8037140
6. Did all bottles arrive in good condition (Ui	hbroken)?	(Yes) No
7. Could all bottle labels be reconciled with t		Yes No
8. Were correct bottle(s) used for the test(s) i		Yes No
9. Sufficient quantity received to perform inc		Yes No
10. Were sample(s) at the correct pH upon rec	eipt?	Yes No NA pH Strip Lot# HC376062
11. Were VOAs on the COC?		Yes No
12. Were air bubbles >6 mm in any VOA vials	3?	Yes (No) NA
13. Was a trip blank present in the cooler(s)?		Yes No
	1,2,	The Man of
Contacted PM MTL Date 8 23	2 13 by TB via	Verbal Voice Mail Other
Concerning 4-14		A STATE OF THE STA
14. CHAIN OF CUSTODY & SAMPLE DI	SCREPANCIES	Samples processed by:
	1 > 1	T5+LH
FWSTEAM3-TRIP	(2×40) VOC to	254
not X'ed on COC-	will log for Ve	J C
	Q	
18100000		
	, , , , , , , , , , , , , , , , , , , ,	
15. SAMPLE CONDITION		ded testains along tood surriund
Sample(s)	were received after the recommen	received in a broken container.
Sample(s)		:>6 mm in diameter. (Notify PM)
Sample(s)	were received with bubble	o o min in diameter. (Notify Fivi)
16. SAMPLE PRESERVATION		
Sample(s)		were further preserved in the laboratory.
Time preserved: Preservative(s	addad/I at asymbose(a).	

C:\Users\livengoodc\AppData\Local\Microsoft\Windows\Temporary Internet Files\OLKD16\WI-NC-099-031813 Cooler Receipt
Form_page 2 - Multiple Coolers.doc
Revision 3, 3/18/13 rls

Project Number: 030174.0016

Sample Event: August 2013

Data Reviewer/Date: Angye Dragotta/December 9, 2013

Review Questions:	Yes	No	N/A	Comments	Qual/Criteria
1. Did Chain-of-Custody information agree with laboratory report?	X				
2. Were samples preserved properly and received in good condition?	X				QAPP Table 5-1,
3. Were holding times met?	X				QAPP Table 5-1, J/UJ/R
4. Were sample storage requirements met?	X				QAPP Table 5-1,
5. Were all QAPP addendum-specified target analytes reported?	X				QAPP Table 4-5
6. Was the GC/MS system tuned with bromofluorobenzene (BFB) during each 12 hour shift (prior to ICAL and Cal Ver.)?	X				QSM Table F-4
7. Calibration					
7a. Did the initial calibration curve consist of 5 concentration levels?	X			Instrument A3UX15–8/22/13, A3UX9 8/28/13	QSM Table F-4 R
7b. Did the Calibration Check Compounds (CCCs) (see Table 1 below) relative standard deviations (%RSD) ≤ 30%?	X				QSM Table F-4 R
7c. Were the minimum response factors (RFs) for the System Performance Check Compounds (SPCCs) (see Table 2 below) met?	X				QSM Table F-4
7d. Did target analytes with an average calibration type have an RSD < 15%?	X				QSM Table F-4 15% <rsd< 20%="J/UJ</td"></rsd<>
7e. IF the RSD was >15% was a different calibration option used?	X				
7f. If a linear regression curve was used, was the correlation coefficient r>0.995?	X			A3UX15-Acetone and methylene chloride used a linear fit with r>0.995. A3UX9-Acetone, 2-butanone and methylene chloride used a linear fit with r>0.995.	QSM Table F-4 R<0.99=-J/R

Project Number: 030174.0016

Sample Event: August 2013

Data Reviewer/Date: Angye Dragotta/December 9, 2013

Review Questions:	Yes	No	N/A	Comments	Qual/Criteria
7g. If a non-linear regression was used, was the COD r≥0.99, with a minimum of 6 points for second order and 7 points for third order?			X		QSM Table F-4 R<0.99=-J/R
8. Was a LOD Level Verification performed quarterly for each reported analyte with detected results?	X				QSM Table F-4 and section D.1.2.1
9. Was a MRL Level Verification run at the beginning and end of every daily sequence or every 12 hours?	X				
10. Were the QC/MRL recoveries 70-130%	X			The opening MRL analyzed 8/31/13 @ 0824 recovered above control limits of 70-130% for bromomethane at 157%, chloroethane at 139%, chloromethane at 149%, methylene chloride at 254% and vinyl chloride at 143%. The closing MRL analyzed 8/31/13 @ 1255 recovered above control limits of 70-130% for cis-1,3-dichloropropene at 135% and methylene chloride at 183%. The methylene chloride results for samples FWGTeam4-Trip and FWGEQUIPRINSE3-0342-GW were qualified as estimated, "J". No additional qualifications were made for the other MRL outliers, as there were no detected bromomethane, chloroethane, chloromethane, cis-1,3-dichloropropene or vinyl chloride concentrations reported for the bracketed field samples. The opening MRL analyzed 8/29/13 @ 1836 recovered above control limits of 70-130% for toluene at 142% and trichloroethene at 143%. No qualifications were required as there were no detected toluene or trichloroethene concentrations reported for the bracketed field samples.	Louisville Supplement to the DOD QSM
11. Was a second source verification (ICV) analyzed? Were results 80-120%?	X			A3UX15-8/22/13@ 2329, A3UX9 8/28/13 @2034	QSM Table F-4 J=<80% and >120%
12. Was a CCV run daily prior to analysis and every 12 hours of analysis time?	X			A3UX15–8/31/13@ 0717 A3UX9 8/29/13 @1723	QSM Table F-4

Project Number: 030174.0016

Sample Event: August 2013

Data Reviewer/Date: Angye Dragotta/December 9, 2013

Review Questions:	Yes	No	N/A	Comments	Qual/Criteria
12a. Were the average response factors (RFs) for the System Performance Check Compounds (SPCCs) (see Table 2 below) met?	X				QSM Table F-4
12b. Were all target analytes ≤ 20%D?	X			The CCV analyzed 8/31/13 @ 0717 had a %D above control limits of 20% for methylene chloride at 20.5%, carbon tetrachloride at 21.2% and trans-1,3-dichloropropene at 21.6%. %. The methylene chloride results for samples FWGTeam4-Trip and FWGEQUIPRINSE3-0342-GW were qualified as estimated, "J". No qualifications were made for the carbon tetrachloride or trans-1,3-dichloropropene outliers as there were no detected carbon tetrachloride or trans-1,3-dichloropropene concentrations reported for the bracketed field samples.	QSM Table F-4 %D <20% = J/UJ
13. Were the internal standards added to every sample?	X				QSM Table F-4
13a. Was the EICP area between -50% and +100% of the ICAL mid-point standard?	X				QSM Table F-4 R
13b. Were the retention times for all IS compounds within ±30 seconds from the RT of the mid-point standard in the ICAL?	X				QSM Table F-4 J/UJ
14. Were the retention times for target analytes within ±0.06 RRT units from the RT of the midpoint standard in the ICAL or the most recently updated RRT for all samples?	X				QSM Table F-4 J
15. Was a method blank prepared and analyzed with each batch?	X				QSM Table F-4
15a. Were target analytes detected in the method blank >1/2 the MRL >RL for common contaminants?	X			Checked by ADR. Toluene was detected at 0.164µg/L in the method blank from batch 240-99628 and methylene chloride was detected in the method blank from batch 240-99810 at 0.893µg/L. The methylene chloride results for samples FWGEQUIPRINSE3-0342-GW and FWGTEAM4-TRIP were qualified, "B". No qualifications were required for the toluene contamination as there were no detected toluene concentrations reported for the associated field samples.	QSM Table F-4 <5/10X =B
16. Was a field blank (equipment and/or trip) collected and analyzed?	X				

Project Number: 030174.0016

Sample Event: August 2013

Data Reviewer/Date: Angye Dragotta/December 9, 2013

Review Questions:	Yes	No	N/A	Comments	Qual/Criteria
16a. Were target analytes detected in the field blanks?	X			Checked by ADR. Methylene chloride was detected in FWGTEAM1-TRIP at 0.47μg/L, in FWGTEAM2-TRIP at 0.69μg/L and in FWGTEAM3-TRIP at 0.77μg/L. FWGTeam4-Trip had acetone detected at 1.4μg/L and methylene chloride at 0.85μg/L. FWGEQUIPRINSE3-0342-GW had acetone detected at 9.9μg/L, chloroform at 0.52μg/L, 2-butanone at 1.7μg/L, toluene at 0.18μg/L and methylene chloride at 0.81μg/L. The methylene chloride results for samples FWGEQUIPRINSE3-0342-GW and the acetone results for samples FWGFWGmw-009-0319-GW, FWGLL2mw-059C-0357-GW and FWGWBGmw-DUP4-0339-GW were qualified, "B" as the detected concentrations were <10x blank contamination. There were no detected 2-butanone, chloroform or toluene results reported for the associated field samples, so no qualifications were made for the -butanone, chloroform or toluene contamination.	QSM Table F-4 <5/10X =B
17. Was a LCS prepared and analyzed with each batch?	X				QSM Table F-4
17a. Were the LCS recoveries within limits specified in Table G-5 of the DoD QSM?	X			ADR checked section;	QSM Table F-4, Table G- 5, J/UJ
18. Was a MS/MSD prepared with each batch?	X			FWGFWGmw-009-0319-GW	QSM Table F-4
18a. Were the MS/MSD recoveries within limits specified in Table G-4 of the DoD QSM with an RPD <30%?	X			ADR checked section;	QSM Table F-4, Table G- 5 J/UJ Parent sample only
19. Was a field duplicate analyzed?	X			A field duplicate was collected and analyzed on sample FWGWBGmw-018-0328-GW.	QSM Table F-4,
19a. Were the field duplicates RPDs within ±30%?	X			Checked by ADR. The field duplicate RPD was above control limits for acetone at 200%, no qualification was made as acetone was not detected in the parent sample, FWGWBGmw-018-0328-GW.	QSM Table F-4, RPD >30=J Parent sample only
20. Were surrogate recoveries within control limits specified in the DOD QSM?	X				QSM Tables F-4 & G-3 >150%=J; 10% - 50%=J/UJ; <10%=J/R
21. Were reported sample concentrations within calibration range?	X				

Project Number: 030174.0016 Sample Event: August 2013

Data Reviewer/Date: Angye Dragotta/December 9, 2013

SDG: 240-28186 Rev1 **Analysis**: SW846 8260B

References:

DoD Quality Systems Manual (QSM), version 4.1, October 2010

Louisville DoD Quality Systems Manual Supplement (LS), Version 1 March 2007

Final Facility Wide Groundwater Monitoring Program, RVAAP-66 Facility Wide Groundwater Quality Assurance Project Plan (QAPP) Addendum for the Ravenna Army Ammunition Plant, Ravenna, OH, Environmental Quality Management, January 2012

Final Facility Wide Quality Assurance Project Plan for Environmental Investigations Groundwater for the Ravenna Army Ammunition Plant, Ravenna, OH, SAIC, February 2011

Additional Comments:

Table 1 - CCCs

Analyte

1,1-Dichloroethene
Chloroform

1,2-Dichloropropane
Toluene
Ethylbenzene
Vinyl chloride

Table 2- SPCCs

Analyte	Minimum RF
Chloromethane	0.10
1,1-Dichlorethane	0.10
Bromoform	0.10
Chlorobenzene	0.30
1,1,2,2-Tetrachloroethane	0.30

Project Number: 030174.0016 Sample Event: August 2013

Data Reviewer/Date: Angela Dragotta/ October 3, 2013

SDG: 240-28186-1 R0 **Analysis**: SW846 8270

Review Questions:	Yes	No	N/A	Comments	Qual/Criteria
Did Chain-of-Custody information agree with laboratory report?	X				
2. Were samples preserved properly and received in good condition?	X				QAPP Table 5-1,
3. Were holding times met?	X				QAPP Table 5-1, J/UJ/R
4. Were sample storage requirements met?	X				QAPP Table 5-1,
5. Were all QAPP-specified target analytes reported?	X				QAPP Table 4-6
6. Was the GC/MS system tuned each 12 hour shift (prior to ICAL and Cal Ver.)?	X				QSM Table F-4
7. Initial Calibration					
7a. Did the initial calibration curve consist of 5 concentration levels?	X			Instrument A4HP9-8/26/13, A4HP7-9/5/13	QSM Table F-4 R
7b. Did the Calibration Check Compounds (CCCs) (see Table 1 below) relative standard deviations (%RSD) ≤ 30%?	x				QSM Table F-4 R
7c. Were the minimum response factors (RFs) for the System Performance Check Compounds (SPCCs) (see Table 2 below) <0.050?	x				QSM Table F-4
7d. Were all other target analytes reported with an avg response have an RSD \leq 15%?	x				QSM Table F-4 15% <rsd< 20%<br="">= J/UJ</rsd<>
7e. IF the RSD was >15% was a different calibration option used?	X				
7f. If a linear regression curve was used, was the correlation coefficient r>0.995?	X				QSM Table F-4 R<0.99=-J/R
7g. If a non-linear regression was used, was the COD r≥0.99, with a minimum of 6 points for second order and 7 points for third order?	x			A4HP9 (8/26/13) - Benzoic acid, 2,4-dinitrophenol and 4,6-dinitro-2-methylphenol used a linear fit. A4HP7(9/5/13) - 1,3-dinitrobenze, 2,4-dinitrophenol, 4,6-dinitro-2-methylphenol, pentachlorophenol and di-n-octylphthalate used a linear fit.	QSM Table F-4 R<0.99=-J/R
8. Was a LOD Level Verification performed quarterly for each reported analyte?	x				QSM Table F-4 and section D.1.2.1

Project Number: 030174.0016 Sample Event: August 2013 Data Reviewer/Date: Angela Dragotta/ October 3, 2013

SDG: 240-28186-1 R0 Analysis: SW846 8270

Review Questions:	Yes	No	N/A	Comments	Qual/Criteria
9 Was a breakdown check run at the beginning of every 12 hours with DDT degradation <20% and tailing factors of benzidine and pentachlorophenol <2?	x				QSM Table F-4 R
10. Was a MRL Level Verification run at the beginning and end of every daily sequence or every 12 hours with recoveries within 70-130%?	X			A4HP9 8/30/13@0909,1838 and A4HP7 9/6/13@1411, 9/7/13@ 0000 The closing MRL check analyzed 9/7/13 recovered below control limits of 70-130% for 2,4-nitrophenol at 58%. An check standard was analyzed with detected results, so the 2,4-dinitrophenol results for samples FWGFWGmw-009-0319-GW, FWGDETmw-004C-0344-GW, FWGWBGmw-021-0331-GW, FWGEQUIPRINSE3-0342-GW, FWGWBGmw-018-0328-GW, FWGWBGmw-DUP4-0328-GW, FWGWBGmw-020-0330-GW and FWGWBGmw-019-0329-GW were qualified as estimated, "UJ".	Louisville Supplement to the DOD QSM
11. Was a second source verification (ICV) analyzed? Were results 80-120%?	x			A4HP9 8/26/13 @ 1509, A4HP7 9/5/13 @ 1936 The ICV analyzed 9/5/13 @ 1936 had 2,4-dimethylphenol with a %D above control limits of 20% at 25.4%. No qualifications were made as there were no detected concentrations of 2,4-dimethylphenol reported for the associated field samples.	QSM Table F-4 J=<80% and >120%
12. Was a CCV run daily prior to analysis and every 12 hours of analysis time?	X			A4HP9 8/30/13 @0817 and A4HP7 9/6/13 @1345	QSM Table F-4
12a. Were the average response factors (RFs) for the System Performance Check Compounds (SPCCs) ≥0.050?	x				QSM Table F-4
12b. Were all target analytes ≤ 20%D?		x		The CCV analyzed 8/30/13 @1101 had 4-nitroaniline with a %D above control limits of 20% D at 22.1% No qualifications were made as there were no detected concentrations of 4-nitroaniline reported for the associated field samples.	QSM Table F-4 %D <20% = J/UJ
13. Were the internal standards added to every sample?	X				QSM Table F-4
13a. Was the EICP area between -50% and +100% of the ICAL mid-point standard?	X				QSM Table F-4 R
13b. Were the retention times for all IS compounds within ±30 seconds from the RT of the mid-point standard in the ICAL?	x				QSM Table F-4 J/UJ
14. Were the retention times for target analytes within ±0.06 RRT units from the RT of the mid-point standard in the ICAL or the most recently updated	X				QSM Table F-4 J

Project Number: 030174.0016 Sample Event: August 2013

Data Reviewer/Date: Angela Dragotta/ October 3, 2013

SDG: 240-28186-1 R0 Analysis: SW846 8270

Review Questions:	Yes	No	N/A	Comments	Qual/Criteria
RRT for all samples?					4 1
15. Was a method blank prepared and analyzed with each batch?	X				QSM Table F-4
15a. Were target analytes detected in the method blank >1/2 the MRL, >RL for common contaminants?	X			Checked by ADR. bis (2-Ethylhexyl)phthalate was detected in the method blank from batch 240-98675 at 0.425μg/L and di-n-butyl phthalate at 0.720μg/L. bis (2-Ethylhexyl)phthalate was detected in the method blank from batch 240-98883 at 0. 25μg/L. The bis (2-ethylhexyl) phthalate and di-n-butyl phthalate results for samples FWGLL1mw-084C-0355-GW, FWGLL1mw-083C-0354-GW, FWGFBQmw-174C-0345-GW, FWGLL1mw-086-0320-GW, FWGLL2mw-267C-0358-GW, FWGDETmw-004C-0344-GW, FWGWBGmw-006C-0373-GW, FWGWBGmw-009C-0374-GW, FWGLL1mw-065C-0353-GW, FWGWBGmw-021-0331-GW, FWGEQUIPRINSE3-0342-GW, FWGWBGmw-DUP4-0328-GW, FWGLL2mw-265c-0321-GW, FWGLL2mw-059c-0357-GW, FWGWBGmw-020-0330-GW, FWGNTAmw-119-0367-GW and FWGWBGmw-019-0329-GW were qualified, "B". The bis (2-ethylhexyl) phthalate results for samples FWGFWGmw-009-0319-GW, FWGWBGmw-018-0328-GW, FWGLL1mw-065C-0353-GW, FWGWBGmw-006C-0373-GW and FWGFWGmw-007-0347-GW were qualified, "B"	QSM Table F-4 <5/10X =B
16. Was a field blank (equipment and/or trip) collected and analyzed?	X			FWGEQUIPRINSE3-0342-GW	
16a. Were target analytes detected in the field blank?	x			Checked by ADR. bis (2-Ethylhexyl)phthalate was detected at 0.41µg/L and di-n-butyl phthalate at 1µg/L in sample FWGEQUIPRINSE3-0342-GW. The bis (2-ethylhexyl) phthalate and di-n-butyl phthalate results for samples FWGLL1mw-084C-0355-GW, FWGLL1mw-083C-0354-GW, FWGFBQmw-174C-0345-GW, FWGLL1mw-086-0320-GW, FWGLL2mw-267C-0358-GW, FWGDETmw-004C-0344-GW, FWGWBGmw-006C-0373-GW, FWGWBGmw-009C-0374-GW, FWGWBGmw-005C-0353-GW, FWGWBGmw-021-0331-GW, FWGWBGmw-DUP4-0328-GW, FWGLL2mw-265c-0321-GW, FWGWBGmw-019-0329-GW, FWGNTAmw-119-0367-GW and FWGWBGmw-019-0329-GW were qualified, "B". The bis (2-ethylhexyl) phthalate results for samples FWGFWGmw-009-0319-GW, FWGWBGmw-018-0328-GW, FWGLL1mw-065C-0353-GW, FWGWBGmw-006C-0373-GW and FWGFWGmw-007-0347-GW were qualified, "B"	QSM Table F-4 <5/10X =B

Project Number: 030174.0016 Sample Event: August 2013

Data Reviewer/Date: Angela Dragotta/ October 3, 2013

SDG: 240-28186-1 R0 Analysis: SW846 8270

Review Questions:	Yes	No	N/A	Comments	Qual/Criteria
17. Was a LCS prepared and analyzed with each batch?	X				QSM Table F-4
17a. Were the LCS recoveries within limits specified in Table G-6 of the DoD QSM?	X			ADR checked section;	QSM Table F-4, Table G-6 J/UJ
18. Was a MS/MSD prepared with each batch?	X			A matrix spike was performed on sample FWGFWGmw-009-0319-GW.	
18a. Were the MS/MSD recoveries within limits specified in Table G-6 of the DoD QSM with an RPD <30%?		X		The benzo(a) pyrene matrix spike recovered below control limits of 55-110% at 53%. The benzo(a) pyrene result for sample FWGFWGmw-009-0319-GW was qualified as estimated, "UJ"	QSM Table F-4, Table G-6 J/UJ Parent sample only
19. Was a field duplicate analyzed?	X			A field duplicate was analyzed on sample FWGWBGmw-018-0328-GW	
19a. Were the field duplicates RPDs within ±50%?	x			Checked by ADR. The field duplicate analyzed on sample FWGWBGmw-018-0328-GW had an RPD above control limits of 50% for bis (2-ethylhexyl) phthalate at 82% and di-n-butyl phthalate at 200%. No qualification was made for the di-n-butyl phthalate RPD outlier as the parent sample result was no detected above the LOQ. However; the bis (2-ethylhexyl) phthalate result for sample FWGWBGmw-018-0328-GW was qualified as estimated, "J".	QSM Table F-4, RPD >50=J Parent sample only detected above LOQ
20. Were surrogate recoveries within control limits specified in the DOD QSM?	x				QSM Tables F-4 & G-3 >150%=J; 10% -50%=J/UJ; <10%=J/R
21. Were reported sample concentrations within calibration range?	X				

References:

- DoD Quality Systems Manual (QSM), version 4.1, October 2010
- Louisville DoD Quality Systems Manual Supplement (LS), Version 1 March 2007
- Final Facility Wide Groundwater Monitoring Program, RVAAP-66 Facility Wide Groundwater Quality Assurance Project Plan (QAPP) Addendum for the Ravenna Army Ammunition Plant, Ravenna, OH, Environmental Quality Management, January 2012
- Final Facility Wide Quality Assurance Project Plan for Environmental Investigations Groundwater for the Ravenna Army Ammunition Plant, Ravenna, OH, SAIC, February 2011

Additional Comments:

Project Number: 030174.0016 Sample Event: August 2013

Data Reviewer/Date: Angela Dragotta/ October 3, 2013

SDG: 240-28186-1 R0 Analysis: SW846 8270

Table 1: CCCs (All analytes if CCCs not included in standard)

Base / Neutral Compounds	Acid Compounds
Acenaphthalene	4-Chloro-3-methylphenol
1,4-Dichlorobenzene	2,4-Dichlorophenol
Hexachlorobutadiene	2-Nitrophenol
N-Nitrosodiphehylamine	Phenol
Di-n-octylphthalate	Pentachlorophenol
Fluoroanthene	2,4,6-Trichlorophenol
Benzo(a)pyrene	

Table 2: SPCCs -

N-Nitroso-di-n-propylamine	0.050
Hexachlorocyclopentadiene	0.050
2,4-Dinitrophenol	0.050
4-Nitrophenol	0.050

Project Number: 030174.0016 Sample Event: August 2013

Data Reviewer/Date: Angela Dragotta / October 3, 2013

SDG: 240-28186-1 R0 Analysis: SW846 8081A

Review Questions:	Yes	No	N/A	Comments	Qual/Criteria
Did Chain-of-Custody information agree with laboratory report?	х	7			
2. Were samples preserved properly and received in good condition?	Х				QAPP Table 5-1, NELAC
3. Were holding times met?	X				QAPP Table 5-1 J/UJ/R
4. Were sample storage requirements met?	X				QAPP Table 5-1
5. Were all QAPP-specified target analytes reported?	Х				QAPP Table 4-3
6. Was a DDT standard analyzed every 12 hours? Was the DDT %breakdown <15%?	Х		i tang		QSM Table F-2 >15%=J/R
7. Was an endrin standard analyzed every 12 hours? Was the endrin %breakdown <15%?	X				QSM Table F-2 >15%=J/R
8. Initial Calibration					
8a. Does the initial calibration curve consist of 5 concentration levels?	х		Ш	Instrument A2HP3 8/29/13, 9/10/13 A2HP9 9/11/13,	QSM Table F-2 R
8a. Were the %RSDs for each analyte \leq 20%? OR was the average %RSD \geq 20% with the r^2 >0.990?	х			CLP-2 (8/29/13) Delta-BHC used a linear fit. CLP-2 (9/10/13) 4,4'-DDD used a quadratic fit.	QSM Table F-2 RSD>20% or r<0.99=J/R
9. Was a LOD Level Verification performed once per quarter with all target analytes detected?	Х				QSM Table F-2 R
10. Was a MRL Verification performed at the beginning and end of the sequence or every 12 hours with results within limits of 70-130%?	X			 The MRL analyzed on 8/29/13@ 2251 recovered above control limits of 70-130% at 143% on CLP-2 for delta-BHC. The MRL analyzed on 8/30/13@ 0337 recovered above control limits of 70-130% at 149% on CLP-2 for delta-BHC. The MRL analyzed on 8/30/13@ 1254 recovered above control limits of 70-130% at 139% on CLP-2 for delta-BHC. The MRL analyzed on 9/10/13@ 1711 recovered above control limits of 70-130% at 233% on CLP-2 for 4,4'-DDD and at 139% for methoxychlor. The MRL analyzed on 9/10/13@ 2015 recovered above control limits of 70-130% at 260% on CLP-2 for 4,4'-DDD and at 161% for methoxychlor. No qualifications were required as there were no detected concentrations reported for delta-BHC, 4,4'-DDD or aldrin in the bracketed field samples from CLP-2. 	QSM Table F-2, G- 14 >UL=J; <ll=j r<="" td="" uj=""></ll=j>

Project Number: 030174.0016 Sample Event: August 2013 Data Reviewer/Date: Angela Dragotta / October 3, 2013

SDG: 240-28186-1 R0 Analysis: SW846 8081A

Review Questions:	Yes	No	N/A	Comments	Qual/Criteria
11. Was a second source (ICV) verification analyzed after the ICAL? Were results 80-120%?		X		8/29/13 @ 1825, 2028, 9/10/13 @ 1213, 1448 (tox), 9/11/13 @1351, 1554(tox) The ICV analyzed 8/29/13 at 1825 had a %D above control limits of 20% for methoxychlor at 22% on CLP-1. No qualification was required as there were no detected concentrations of methoxychlor reported for the associated field samples. The ICV analyzed 8/29/13 at 2028 had a %D below control limits of 20% for toxaphene at -26% on CLP-2. The ICV analyzed 9/10/13 at 1448 had a %D of -30.8% for toxaphene on CLP-2. No toxaphene qualifications were required as CLP-2 used for confirmation only and there were no detected concentrations of toxaphene reported for the associated field samples from the primary column.	QSM Table F-2 >120%=J;<80%=J/UJ
12. Was a CCV run every 12 hours or at the beginning and end of the analytical run with the %D for all target analytes ≤20%?	X			A2HP3 8/29/13 @2230, 8/30/13 @ 0235 (tox), 0316, 1044, 1134 (tox), 1155, 9/10/13 @ 1914(tox), 1955 and 9/12/13 @ 1034 (tox), 1054, 1510 (tox), 1531 The CCV analyzed 8/30/13 @ 0316 (CLP-1) had a %D above control limits of 20% for endrin at 20.6% No qualifications were required as there were no detected endrin concentrations reported for the bracketed field samples. The CCV analyzed 8/30/13 @ 0316 (CLP-2) had a %D above control limits of 20% for 4,4'-DDD at 23% and for methoxychlor at 23.%. No qualifications were required as there were no detected concentrations reported for the bracketed field samples and CLP-2 was used for confirmation only. The CCV analyzed 8/30/13 @ 1044 (CLP-1) had a %D above control limits of 20% for gamma-BHC at 24.3%, beta-BHC at 21.9%, heptachlor epoxide at 22.7%, gamma-chlordane at 24.4%, dieldrin at 25.9%, endrin at 34.9%, 4,4'-DDD at 42.3%, endosulfan II at 31.4%, endosulfan sulfate at 26.4 % and endrin ketone at 25% (CLP-1). CLP-2 had a %D above control limits of 20% for gamma-BHC at 21.6%, heptachlor epoxide at 20.7%, gamma-chlordane at 23.2%, dieldrin at 23.9%, endrin at 36.5%, 4,4'-DDD at 36%, endosulfan II at 21.9%, endosulfan sulfate at 30.2 %, endrin ketone at 29% and methoxychlor at 20.8%. No qualifications were required as there were no detected concentrations reported for the bracketed field samples.	QSM Table F-2 >120%=J; <80%=J/UJ

Project Number: 030174.0016 Sample Event: August 2013

Data Reviewer/Date: Angela Dragotta / October 3, 2013

SDG: 240-28186-1 R0 Analysis: SW846 8081A

Review Questions:	Yes	No	N/A	Comments	Qual/Criteria
				The CCV analyzed 8/30/13 @ 1155 had a %D above control limits of 20% for alpha-BHC at 22.4%, gamma-BHC at 30.9%, beta-BHC at 28.3%, delta-BHC at 22.5%, heptachlor epoxide at 27.3%, gamma-chlordane at 30.9, alpha-chlordane at 26.3%, 4,4'-DDE at 23.7%, dieldrin at 31.7%, endrin at 28.1%, 4,4'-DDD at 35.8%, endosulfan II at 27.3%, endosulfan sulfate at 24.3 % and endrin ketone at 24.2% (CLP-1). CLP-2 had a %D above control limits of 20% for gamma-chlordane at 21%, 4,4'-DDD at 22.6%, endosulfan sulfate at 21 % and endrin ketone at 20.9%. No qualifications were required as there were no detected concentrations reported for the bracketed field samples. The CCV analyzed 9/10/13 @ 1955 had a %D above control limits of 20% for 4,4'-DDD at 25.7% (CLP-1). CLP-2 had a %D above control limits for 4,4'-DDD at 31.6% and methoxychlor at 26.6% (CLP-2). No qualifications were required as there were no detected concentrations reported for the bracketed field samples. The CCV analyzed 9/12/13 @ 1531 had a %D above control limits of 20% for alpha-BHC at 24.3%, gamma-BHC at 21.4%, delta-BHC at 21.4%, heptachlor at 20.5%, aldrin at 26.9%, 4,4'-DDE at 26.3%, endrin at 23.5%, 4,4'-DDD at 21% and below limits for endrin ketone at 20.9%(CLP-1). CLP-2 had a %D above control limits of 20% for alpha-BHC at 24.3%, delta-BHC at 29.2%, gamma-BHC at 26%, beta-BHC at 24.3%, delta-BHC at 26%, heptachlor at 23.6%, aldrin at 30.7%, heptachlor cpoxide at 23.9%, gamma-chlordane at 22.4%, alpha-chlordane at 23.7%, endosulfan I at 21.1%, 4,4'-DDE at 30.6%, dieldrin at 23.5%, endrin at 27.6%, 4,4'-DDD at 26.1%, endosulfan II at 20.9%, 4,4'-DDT at 21.9%, methoxychlor at 23% and endosulfan sulfate at 21.1%. No qualifications were required as FWGWBGmw-019-0329 had no detected concentrations reported for the outlier target analytes on CLP-1 and CLP-2 was used for confirmation only.	
13. Was a method blank prepared and analyzed with each batch?	X				QSM Table F-2
14. Were target analytes detected> ½ the RL?		X			QSM Table F-2 <5x=B
15. Was a field blank collected and analyzed?	X		= 6 1	FWGEQUIPRINSE3-0342-GW	
16. Were target analytes detected in the field blank analyses >1/2 the MRL?		Х			QSM Table F-2 <5x=B

Project Number: 030174.0016 Sample Event: August 2013

Data Reviewer/Date: Angela Dragotta / October 3, 2013

SDG: 240-28186-1 R0 Analysis: SW846 8081A

Review Questions:	Yes	No	N/A	Comments	Qual/Criteria
17. Was an LCS prepared and analyzed with each batch?	X				QSM Table F-2
18. Were the LCS recoveries within limits specified in QSM Table G-14?	X			Checked by ADR	QSM Table G-14 >UL=J; <ll=j r<="" td="" uj=""></ll=j>
19. Was a MS/MSD pair prepared with each batch?	X				QSM Table F-2
20. Was the MS/MSD parent a Ravenna sample?	X			FWGFWGmw-009-0319-GW	
21. Were MS/MSD recoveries and RPD within limits specified in QSM Table G-14?		х		The matrix spike recovery for toxaphene was below control limits of 70-130% in the MS at 61%. The toxaphene result for sample FWGFWGmw-009-0319-GW was qualified as estimated, "UJ".	QSM Table F-2 Pj with >UL=J; <ll=j r<="" td="" uj=""></ll=j>
22. Were surrogate recoveries as specified in QSM table G-3?		X		The surrogate DCB recovered below control limits of 30-135 in sample FWGFBQmw-174C-0345-GW at 23% and at 27% for sample FWGLL1mw-086-0320-GW on CLP-2. TCMX recovered above control limits of 25-140% in sample FWGLL1mw-086-0320-GW at 1813% (CLP-1). The results for sample FWGLL1mw-086-0320-GW were qualified as estimated, "UJ".	QSM Table F-2 >LL=J; <ll=uj j="" r<="" td=""></ll=uj>
23. Was a field duplicate analyzed? Were the RPDs ≤50%?	X			Checked by ADR.	RPD >50-J parent sample only
24. Were all positive results verified by a second column confirmation? Were the RPD's ≤ 40?			Х	No detected concentrations were reported above the LOQ in any of the field samples, so no confirmation was required.	QSM Table F-2 >40 RPD=J

References:

DoD Quality Systems Manual (QSM), version 4.1, October 2010

Louisville DoD Quality Systems Manual Supplement (LS), Version 1 March 2007

Final Facility Wide Groundwater Monitoring Program, RVAAP-66 Facility Wide Groundwater Quality Assurance Project Plan (QAPP) Addendum for the Ravenna Army Ammunition Plant, Ravenna, OH, Environmental Quality Management, January 2012

Final Facility Wide Quality Assurance Project Plan for Environmental Investigations Groundwater for the Ravenna Army Ammunition Plant, Ravenna, OH, SAIC, February 2011

Additional Comments:

Project Number: 030174.0016 Sample Event: August 2013

Data Reviewer/Date: Angela Dragotta/ October 4, 2013

SDG: 240-28186-1 **Analysis**: SW846 8082

Review Questions:	Yes	No	N/A	Comments	Qual/Criteria
1. Did Chain-of-Custody information agree with laboratory report?	X		1500000		
2. Were samples preserved properly and received in good condition?	X	Tin Lef			QAPP Table 5-1
3. Were holding times met?	X				QAPP Table 5-1 J/UJ/R
4. Were sample storage requirements met?	X		ويقيا		QAPP Table 5-1
5. Were all QAPP-specified target analytes reported?	X				QAPP Table 4-3
6. Calibration				Rouge Server Server	
6a. Does the initial calibration curve consist of 5 concentration levels of Aroclors 1016 and 1260?	x			Instrument A2HP12 8/27/13 Stds = 0.05, 0.1, 0.2, 0.5, 1.0, 2.0	QSM Table F-2 R
6b. Was the % RSD \leq 20%? or Were the r^2s >0.990?	X				QSM Table F-2 RSD>20% or r<0.99= J/R
7. Was a LOD Verification performed once per quarter? Were all target analytes detected?	x				QSM Table F-2 R
8. Was an MRL Level Verification performed at the beginning and end of the sequence or every 12 hours? Were recoveries 70-130%?	x				LCG Table 3 >UCL=J; <lcl=j r;<="" td="" uj=""></lcl=j>
9. Was a second source (ICV) verification performed after the ICAL? Were the avg of all peaks for each aroclor 80-120%?		x		8/28/13	QSM Table F-2 >120%=J; <80%=J/ UJ/R
10. Were single standards of the other five Aroclors run to aid in pattern recognition and to determine a single point calibration factor?		x		All aroclors had a multi-point calibration.	Method 8082 Section 5.6.2
11. Was a CCV run every 12 hours?	X			8/28/13 @ 1804, 2100, 2340, 8/29/13 @0221	QSM Table F-2
12. Was the % D \leq 20 % for each analyte?	X				QSM Table F-2 D>20%(neg)=J/R D>20% (pos) =J
13. Was a method blank prepared and analyzed with each batch?	X			Section checked by ADR	QSM Table F-2

Project Number: 030174.0016 Sample Event: August 2013

Data Reviewer/Date: Angela Dragotta/ October 4, 2013

SDG: 240-28186-1 **Analysis**: SW846 8082

Review Questions:	Yes	No	N/A	Comments	Qual/Criteria
14. Were target analytes <1/2 the MRL?	X				QSM Table F-2 <5x = B
15. Was an equipment blank collected and analyzed?	X			FWGEQUIPRINSE3-0342-GW	
16. Were target analytes in the field blank analyses (equipment) <1/2 the MRL?	X			Section checked by ADR	QSM Table F-2 <5x = B
17. Was an LCS prepared and analyzed with each batch?	X				QSM Table F-2
18. Were the LCS recoveries within limits specified in LCG Appendix C?	x			Section checked by ADR	QSM Table F-2, Table G- 16, >UL=J; <lcl%=j r="" td="" uj;<=""></lcl%=j>
19. Was a MS/MSD pair prepared with each batch?	X				LCG Table 3
20. Was the MS/MSD parent a Ravenna sample?	X			FWGFWGmw-009-0319-GW	
21. Were MS/MSD recoveries and RPD within limits specified in the DOD QSM Table G-16?	X			Checked by ADR	QSM Table F-2, Table G- 16, >UL=J; <lcl%=j r="" td="" uj;<=""></lcl%=j>
22. Was the surrogate spiked into all samples?	X				
23. Were surrogate recoveries As specified in table G-3 of the DoD QSM?	X			Checked by ADR.	QSM Table F-2, Table G-3 >UCL=J; <lcl=j r<="" td="" uj=""></lcl=j>
24. Was a field duplicate analyzed? Were the RPDs <50%?	X	Ē		Checked by ADR.	QSM Table F-2, RPD >50=J
25. Were all positive results verified by a second dissimilar column confirmation? Was the RPD ≤ 40?			x	No detected concentrations were reported for the reported field samples.	QSM Table F-2, RPD>40=J

References:

DoD Quality Systems Manual (QSM), version 4.1, October 2010

Louisville DoD Quality Systems Manual Supplement (LS), Version 1 March 2007

Final Facility Wide Groundwater Monitoring Program, RVAAP-66 Facility Wide Groundwater Quality Assurance Project Plan (QAPP) Addendum for the Ravenna Army Ammunition Plant, Ravenna, OH, Environmental Quality Management, January 2012

Final Facility Wide Quality Assurance Project Plan for Environmental Investigations Groundwater for the Ravenna Army Ammunition Plant, Ravenna, OH, SAIC, February 2011

Project Number: 030174.0016 Sample Event: August 2013 Data Reviewer/Date: Angela Dragotta/ October 4, 2013

SDG: 240-28186-1 Analysis: SW846 9012

Review Questions:	Yes	No	N/A	Comments	QUAL/Criteria
Did Chain-of-Custody information agree with laboratory report?	X	1			
2. Were samples preserved properly and received in good condition?	X				QAPP Table 5-1, NELAC
3. Were holding times met?	X				QAPP Table 5-1 J/UJ/R
4. Were sample storage requirements met?	X				QAPP Table 5-1
5. Were all QAPP-specified target analytes reported?	X				QAPP Table 4-1
6. Does the initial calibration curve consist of at least 6 standards and one blank, with the correlation coefficient $R \ge 0.995$?	X				DoD QSM Table F-10 R
7. Were a high and low standard distilled and analyzed with results within \pm 15%?	X				DoD QSM Table F-10 R
8. Was an LOD Verification performed at least once per quarter with all target analytes detected?	X				LCG Table 10 R
9. Was a MRL Level Verification performed at the beginning and end of the daily sequence? Were results within 70-130%?		x		No closing MRL check was analyzed on 8/23/13 or 8/26/13. Opening MRL checks recovered within control limits. The cyanide results for samples FWGFWGmw-009c-0319-GW, FWGDETmw-004c-0344-GW, FWGWBGmw-019-0329-GW, FWGWBGmw-018-0328-GW, FWGWBGmw-DUP4-0339-GW, FWGWBGmw-020-0330-GW, FWGWBGmw-021-0331-GW and FWGEQUIPRINSE3-0342-GW were qualified as estimated, "J/UJ"	LCG Table 10, LS >130%=J; 65-70%=J/UJ; <65%=J/R
10. Was a second source verification (ICV) analyzed after the ICAL and all analytes 85-115%?	X				DoD QSM Table F-10 >115%=J; 80-85%=J/UJ; <80%=J/R
11. Was a method blank prepared and analyzed with each batch?	X				DoD QSM Table F-10
12. Were target analytes detected in the method blank >1/2 the MRL?		X		Checked by ADR.	DoD QSM Table F-10 <5x=B
13. Was a field blank collected and analyzed?	X			FWGEQUIPRINSE3-0342-GW	
14. Were target analytes in the field blank analyses <1/2 the MRL?	X				DoD QSM Table F-10 <5x=B
15. Was a field duplicate analyzed? Were the RPDs ≤20%?	X			Checked by ADR.	>30% = J

Project Number: 030174.0016 Sample Event: August 2013

Data Reviewer/Date: Angela Dragotta/ October 4, 2013

SDG: 240-28186-1 Analysis: SW846 9012

Review Questions:	Yes	No	N/A	Comments	QUAL/Criteria
16. Was an LCS prepared and analyzed with each batch?	X				DoD QSM Table F-10
17. Were the LCS recoveries 80-118%?	x			Checked by ADR.	DoD QSM Table F-10 Lab Limits >118%=J; 50-79%=J/UJ; <50%=R
18. Was a MS and duplicate (sample or matrix) prepared once per every 10 samples?	X	Ŀχ			DoD QSM Table F-10
19. Was the MS parent a Ravenna sample?	x			FWGFWGmw-009c-0319-GW, FWGWBGmw-020-0330-GW and FWGEQUIPRINSE3-0342-GW	
20. Were matrix spike recoveries 42-140%?	X			Checked by ADR.	DoD QSM Table F-10 >140%=J; <42%=J/UJ/R

References:

DoD Quality Systems Manual (QSM), version 4.1, October 2010

Louisville DoD Quality Systems Manual Supplement (LS), Version 1 March 2007

Final Facility Wide Groundwater Monitoring Program, RVAAP-66 Facility Wide Groundwater Quality Assurance Project Plan (QAPP) Addendum for the Ravenna Army Ammunition Plant, Ravenna, OH, Environmental Quality Management, January 2012

Final Facility Wide Quality Assurance Project Plan for Environmental Investigations Groundwater for the Ravenna Army Ammunition Plant, Ravenna, OH, SAIC, February 2011

Additional Comments:

Project Number: 030174.0016 Sample Event: August 2013 Data Reviewer/Date: Angela Dragotta/ October 4, 2013

SDG: 240-28186-1 R0

Analysis: SW846 6010/6020/7470A

Review Questions:	Yes	No	N/A	Comments	Qual/Criteria
Did Chain-of-Custody information agree with laboratory report?	X				
2. Were samples preserved properly and received in good condition?	X				QAPP Table 5-1, NELAC
3. Were holding times met?	X				QAPP Table 5-1 J/UJ/R
4. Were sample storage requirements met?	X				QAPP Table 5-1
5. Were all QAPP-specified target analytes reported?	X				QAPP Table 4-1
6. Was a LOD Verification performed once per quarter with all target analytes detected?	X				DoD QSM Table F-8
7. Tuning (ICP MS Only) 7a. Was a tune performed daily prior to calibration	X				DoD QSM Table F-8 R
7b. Mass Calibration < 0.1 amu from true value	X				
7c. Resolution <0.9 amu full width at 10 % peak height	X				
7d. RSD <%5 for a minimum of four replicate analyses	X				
8.Calibration					La constant
8a. Was the ICAL performed daily with at least					DoD QSM
One high standard and a blank for ICP & ICPMS	X				Tables F-8 and F-7
Five standards and a blank for Hg	X				
8b. Was the correlation coefficient r≥0.995 for each Hg?	x				DoD QSM Tables F-8 and F-7 r<0.995=J/R
8c. Was the ICV (second source verification) analyzed after the ICAL with results 90-110% of the true value?	x				DoD QSM Tables F-8 and F-7
8d. Was the ICB analyzed after the ICV with detected results <1/2 the MRL?	x			ICP The ICB analyzed 9/9/13 @ 0749 had magnesium detected at 100μg/L. No qualifications were required as the detected magnesium results for the associated field samples were greater than 5x blank contamination.	DoD QSM Tables F-8 and F-7 < 5x = U

Project Number: 030174.0016 Sample Event: August 2013 Data Reviewer/Date: Angela Dragotta/ October 4, 2013

SDG: 240-28186-1 R0

Analysis: SW846 6010/6020/7470A

Review Questions:	Yes	No	N/A	Comments	Qual/Criteria
Sample Analysis			1 212 3		
9. Was a MRL Level Verification performed at the beginning of the daily sequence and end of the analytical sequence bracketing samples? Were results 70-130%?	х				LS to the DoD QSM DoD QSM Table G-18 >130%=J; 70-80%=J/UJ; <70%=J/UJ <65%=R, unless DL check with detected results
10. Were CCVs analyzed every 10 samples and at the end of the analytical sequence with results 90-110% of the true value?		Х		ICPMS The beryllium CCVs analyzed 9/9/13 from 1902-2246 recovered above control limits of 90-110% at 114% (1902), 117% (2031), 116% (2116) and at 121% (2246). No qualifications were required as there were no detected beryllium concentrations reported for the bracketed field samples.	DoD QSM Tables F-8 and F-7 >110%=J, <85%=J/R 90-85%=J/UJ;
11. Were the CCBs run every 10 samples and at the end of the analytical sequence? Were results <1/2 the MRL?	X			ICP The CCBs analyzed 9/9/13 had magnesium detected from 101 μg/L to 104μg/L. No qualifications were required as the detected magnesium results for the bracketed field samples were greater than 5x blank contamination. ICPMS-The CCBs analyzed 9/9/13 had beryllium detected from 0.061μg/L to 0.103μg/L, cadmium from 0.043μg/L to 0.252μg/L, iron from 12.7 μg/L to 16.4μg/L, sodium from 6.45μg/L to 17.1μg/L and thallium at 0.0609μg/L (9/9/13 at 1311). The iron result for sample FWGLL1mw-084c-0355-GF was qualified, "U". No additional qualifications were required as the detected cadmium and sodium results for the bracketed field samples were greater than 5x blank contamination.	DoD QSM Tables F-8 and F-7 <5x = U
12. Was an Interelement Check Standard run at the beginning of the analytical sequence and every 12 hours with the ICS recovery within 80 to 120% of true value for each element of interest (ICP and ICPMS only)?	x				DoD QSM Tables F-8 and F-7 >120%=J; 50-79%=J/UJ; <50%=Pj/R
13. Was a method blank prepared and analyzed with each batch?	X				DoD QSM Tables F-8 and F-7
14. Were target analytes detected >1/2 the MRL in the method blank?	x			Checked by ADR. ICP- Manganese was detected in the method blank from batch 240-98698 at $2.16\mu g/L$. The manganese result for sample FWGDETmw-004c-0344-GF was qualified, "B" as the detected results was < 5x blank contamination. ICPMS- Aluminum was detected in the method blank from batch 240-98698 at $107\mu g/L$. The aluminum result for sample FWGWBGmw-009c-0374-GF was qualified, "B" as the detected aluminum result was < 5x blank contamination.	DoD QSM Tables F-8 and F-7 <5x = B
15. Was a field blank collected and analyzed?	X			FWGEQUIPRINSE3-0342-GW	

Project Number: 030174.0016 Sample Event: August 2013 Data Reviewer/Date: Angela Dragotta/ October 4, 2013

SDG: 240-28186-1 R0

Analysis: SW846 6010/6020/7470A

Review Questions:	Yes	No	N/A	Comments	Qual/Criteria
16. Were target analytes reported in the field blank analyses >1/2 the MRL?		X		ADR checked section.	DoD QSM Tables F-8 and F-7
17. Was a LCS prepared and analyzed with each batch?	X				DoD QSM Tables F-8 and F-7
18. Were the LCS recoveries within limits specified in LCG Appendix C?		x		Checked by ADR. <u>ICPMS</u> -Beryllium recovered above control limits of 80-120% in the LCS from batch 240-98698 at 124%. No qualification was made to the associated data as there were no detected beryllium concentrations reported for the associated field samples.	DoD QSM Tables G-18, F-8 and F-7 >120%=J; 70-79%=J/UJ; <70%=J/R
19. Was a matrix spike (MS) and lab duplicate sample prepared with each batch?	X				DoD QSM Tables F-8 and F-7
20. Was the MS and Lab Duplicate parent a Ravenna sample?	X			A matrix spike analysis was performed on sample FWGFWGmw-009-0319-GF.	
21. Were the MS recoveries within 80-120%?	X				DoD QSM Tables G-18, F-8 and F-7, >120%=J; 70-79%=J/UJ; <70%=J/R All samples in batch
22. Was the lab sample duplicate RPD \leq 20%?	X				DoD QSM Tables F-8 and F-7 >20% = J All samples in batch
23. Was a serial dilution performed, with the five fold dilution within \pm 10% of the original result?	x				DoD QSM Tables F-8 and F-7 >20% = J All samples in batch
24. Was a Post Digestion Spike analyzed as needed? Were results within 75-125%?	x	111			LCG Table 7 >125%=J; 30-75%=J/UJ; <30%=R
25. Was a field duplicate analyzed? Were the RPDs ≤50% for sample results detected above the LOQ?				Checked by ADR-	>30% = J parent sample Evaluate results above the LOQ only

Project Number: 030174.0016 Sample Event: August 2013

Data Reviewer/Date: Angela Dragotta/ October 4, 2013

SDG: 240-28186-1 R0

Analysis: SW846 6010/6020/7470A

Review Questions:	Yes	No	N/A	Comments	Qual/Criteria
26. Were internal standards added to all	100				DoD QSM
ICPMS samples with intensity within 30-120%	v				Table F-8
of the intensity of the ICAL internal standard?	A				>120%=J/R
					<20%=J

References:

- DoD Quality Systems Manual (QSM), version 4.1, October 2010
- Louisville DoD Quality Systems Manual Supplement (LS), Version 1 March 2007
- Final Facility Wide Groundwater Monitoring Program, RVAAP-66 Facility Wide Groundwater Quality Assurance Project Plan (QAPP) Addendum for the Ravenna Army Ammunition Plant, Ravenna, OH, Environmental Quality Management, January 2012
- Final Facility Wide Quality Assurance Project Plan for Environmental Investigations Groundwater for the Ravenna Army Ammunition Plant, Ravenna, OH, SAIC, February 2011

Project Number: 030174.0016 Sample Event: August 2013

Data Reviewer/Date: Angela Dragotta/October 4, 2013

SDG: 240-28186-1 R0

Analysis: SW846 8330 Explosives

Review Questions:	Yes	No	N/A	Comments	QUAL/Criteria
Did Chain-of-Custody information agree with laboratory report?	X				
2. Were samples preserved properly and received in good condition?	X				QAPP Table 5-1
3. Were holding times met?	X				QAPP Table 5-1 J/UJ/R
4. Were sample storage requirements met?	X				QAPP Table 5-1
5. Were all QAPP-specified target analytes reported?	X				QAPP Table 4-3
6. Was a LOD Verification analyzed once per quarter with all target analytes detected?	X				DoD QSM Table F-3 R
7.Calibration					
7a. Does the initial calibration curve consist of 5 concentration levels? (6 stds for quadratic curves)	X			LC10 7/24/13 LC12 8/14/13, 2-nitrotoluene coelutes with 4-nitrotoluene, LC12 not used as primary reporting column of 2-nitrotoluene and 4-nitrotoluene	
7b. Did all target analytes using avg response have an RSD \leq 15% ?	X				DoD QSM Table F-3 R
7c. If a linear regression curve was used, was the correlation coefficient r≥0.995? (0.990 for a quadratic curve).			X		
8. Was a second source verification (ICV) analyzed after the ICAL and all analytes 80-120%?	X			LC10 7/24/13 @1750 LC12 8/15/13 @ 0118	DoD QSM Table F-3 >120%=J; <80%= J/UJ;
Sample Analysis					
9. Was a CCV run at the beginning of the analytical sequence, every 10 samples and at the end of the analytical run with targets and surrogates recovering 80-120% of the true value?	x			LC10- 8/30/13 @ 1016, 8/31/13 @ 0215, 0848, 9/3/13 @ 1253, 2009, 2303, 9/13/13 @ 1637, 1847 LC12 9/9/13 @ 1257, 2246 9/10/13 @ 1047, 1942	DoD QSM Table F-3 J/UJ
10. Was a MRL Level verification run at the beginning and end of every daily? Was the %D < 30%?		x	E	LC10- 8/30/13 @ 1816, 8/31/13 @ 0932, 9/3/13 @ 1209, 2347 9/13/13 @ 1553,1931 LC12 9/9/13 @ 1151, 9/10/13 @ 2037	LCG Table 5 >30%=J
11. Was a method blank prepared and analyzed with each batch?	X				DoD QSM Table F-3
12. Were target analytes detected in the method blank <1/2 the MRL?		X		Checked by ADR.	DoD QSM Table F-3 <5x = B
13. Was a field blank collected and analyzed?	X	1 - 1		FWGEQUIPRINSE3-0342-GW	
14. Were target analytes detected in the field blank analyses > ½ the MRL?		X		Checked by ADR	DoD QSM Table F-3 <5x=B

Project Number: 030174.0016 Sample Event: August 2013

Data Reviewer/Date: Angela Dragotta/October 4, 2013

SDG: 240-28186-1 R0

Analysis: SW846 8330 Explosives

Review Questions:	Yes	No	N/A	Comments	QUAL/Criteria
15. Was a field duplicate analyzed? Were the RPDs ≤30%?	X				RPD >30=J
16. Were all positive results confirmed with a second column confirmation? Were the RPDs ≤ 40%?		x	DoD QSM Table F-3 RPD>40%=J		
17. Was an LCS prepared and analyzed with each batch?	X				DoD QSM Table F-3
18. Were the LCS recoveries within limits specified in table G-12 of the DoD QSM?	x			Checked by ADR.	DoD QSM Table F-3 <ul=j;30-ll=j uj;<br=""><30%=J/R</ul=j;30-ll=j>
19.Was a MS/MSD or MS and sample duplicate prepared with each batch?	X			A matrix spike analysis was performed on sample FWGFWGmw-009-0319-GW.	DoD QSM Table F-3
20. Were MS/MSD recoveries within limits specified in table G-12 of the DoD QSM with an RPD ≤30%?	X				DoD QSM Table F-3 Pj
21. Were surrogate recoveries within laboratory limits (79-111%)?		x		Checked by ADR. The surrogate 3,4-dinitrobenzene recovered above control limits of 79-111% for samples FWGLL1mw-083c-0354-GW at 162% and FWGLL1mw-084c-0355-GW at 432%. The detected results for samples, FWGLL1mw-083c-0354-GW or FWGLL1mw-084c-0355-GW were qualified as estimated, "J".	QSM Tables F-2 >UL=J; <ll =j="" td="" uj<=""></ll>

References: DoD Quality Systems Manual (QSM), version 4.1, October 2010

Louisville DoD Quality Systems Manual Supplement (LS), Version 1 March 2007

Final Facility Wide Groundwater Monitoring Program, RVAAP-66 Facility Wide Groundwater Quality Assurance Project Plan (QAPP) Addendum for the Ravenna Army Ammunition Plant, Ravenna, OH, Environmental Quality Management, January 2012

Final Facility Wide Quality Assurance Project Plan for Environmental Investigations Groundwater for the Ravenna Army Ammunition Plant, Ravenna, OH, SAIC, February 2011

Project Number: 030174.0016

Sample Event: August 2013

Data Reviewer/Date: Angela Dragotta/October 4, 2013

SDG: 240-28186-1

Analysis: SW846 8330M Nitroguanidine

Review Questions:	Yes	No	N/A	Comments	QUAL/Criteria
1. Did Chain-of-Custody information agree with laboratory report?	X	1971			
2. Were samples preserved properly and received in good condition?	X				QAPP Table 5-1
3. Were holding times met?	X				QAPP Table 5-1 J/UJ/R
4. Were sample storage requirements met?	X				QAPP Table 5-1
5. Were all QAPP-specified target analytes reported?	X				QAPP Table 4-3
6. Was a LOD Verification analyzed once per quarter with all target analytes detected?	X				DoD QSM Table F-3 R
7.Calibration				Face and the second sec	
7a. Does the initial calibration curve consist of 5 concentration levels? (6 stds for quadratic curves)	X			PDA-1 8/20/13	
7b. Did all target analytes using avg response have an RSD \leq 15%?	X				1000000000
7c. If a linear regression curve was used, was the correlation coefficient r≥0.995? (0.990 for Quadratic curve).			X		DoD QSM Table F-3
7d. Did reanalysis of the low level standard after calibration, recover within 15%?	X				
8. Was a second source verification (ICV) analyzed after the ICAL and all analytes 80-120%?	x			8/20/13 @1843	DoD QSM Table F-3 >120%=J; <80%= J/UJ;
Sample Analysis					
9. Was a CCV run at the beginning of the analytical sequence, every 10 samples and at the end of the analytical run with targets and surrogates recovering 80-120% of the true value?	x			8/27/13 @ 1321, 1618, 1933, 2137	DoD QSM Table F-3 J/UJ
10. Was a MRL Level verification run at the beginning and end of every daily sequence or every 12 hours? Was the %D < 30%?	X				LCG Table 5 >30%=J
11. Was a method blank prepared and analyzed with each batch?	X				DoD QSM Table F-3

Project Number: 030174.0016 Sample Event: August 2013

Data Reviewer/Date: Angela Dragotta/October 4, 2013

SDG: 240-28186-1

Analysis: SW846 8330M Nitroguanidine

Review Questions:		No	N/A	Comments	QUAL/Criteria
12. Were target analytes detected in the method blank <1/2 the MRL?		X		Checked by ADR.	DoD QSM Table F-3 <5x = B
13. Was a field blank collected and analyzed?	X				
14. Were target analytes detected in the field blank analyses < ½ the MRL?		X		Checked by ADR.	DoD QSM Table F-3 <5x=B
15. Was a field duplicate analyzed? Were the RPDs ≤30%?	X				RPD >30=J
16. Were all positive results confirmed with a second column confirmation? Were the RPDs \leq 40%?			X	No detected concentrations were reported.	DoD QSM Table F-3 RPD>40%=J
17. Was an LCS prepared and analyzed with each batch?	X				DoD QSM Table F-3
18. Were the LCS recoveries within laboratory limits of 79%-119%?	x			Checked by ADR.	DoD QSM Table F-3 <ul=j; 30-LL=J/UJ; <30%=J/R</ul=j;
19. Was a MS/MSD or MS and sample duplicate prepared with each batch?	X			FWGFWGmw-009-0319-GW was the parent sample used for the matrix spike analyses	DoD QSM Table F-3
20. Were MS/MSD recoveries within laboratory limits of 40%-150% with an RPD ≤20%?	X				DoD QSM Table F-3 Pj

References:

DoD Quality Systems Manual (QSM), version 4.1, October 2010

Louisville DoD Quality Systems Manual Supplement (LS), Version 1 March 2007

Final Facility Wide Groundwater Monitoring Program, RVAAP-66 Facility Wide Groundwater Quality Assurance Project Plan (QAPP) Addendum for the Ravenna Army Ammunition Plant, Ravenna, OH, Environmental Quality Management, January 2012

Final Facility Wide Quality Assurance Project Plan for Environmental Investigations Groundwater for the Ravenna Army Ammunition Plant, Ravenna, OH, SAIC, February 2011

Additional Comments:

Project Number: 030174.0016 Sample Event: August 2013 Data Reviewer/Date: Angela Dragotta/ October 4, 2013

SDG: 240-28186-1

Analysis: TAL SOP WS-WC-0050

Review Questions:	Yes	No	N/A	Comments	Qualifier
Did Chain-of-Custody information agree with laboratory report?	X		Name Toler		
2. Were samples preserved properly and received in good condition?	X				QAPP Table 5-1, NELAC
3. Were holding times met?	X				QAPP Table 5-1 J/UJ/R
4. Were sample storage requirements met?	X				QAPP Table 5-1
5. Were all QAPP-specified target analytes reported?	X				QAPP Table 4-1
6. Does the initial calibration curve consist of 5 concentration levels with the low standard near but > DL?	X				STL SOP Section 10.2 R
7. Was the correlation coefficient >0.995?	X				STL SOP Section 10,2
8. Was a MRL Level Verification run at the beginning and end of every daily sequence or every 12 hours? Was the %D <30%?	X				LCG Table 5 >30%=J
9. Was a second source verification (ICV) analyzed after the ICAL? Were all analytes 90-110%?	X				STL SOP Section 9.8, 10.3, LCG>110%=J; 90-85%=J/UJ; <85%=J/R
10. Was the ICB analyzed after the ICV with results <1/2 the MRL?	X				STL SOP Section 9.8, LCG , $< 5x = U$
11. Was a CCV run every 10 samples and at the end of the analytical run?	X				STL SOP Section 10.4
12. Was the ICV and CCV a mid-level standard from the initial calibration curve?	X				STL SOP Section 10.3.1
13. Were all CCV calibration analytes within 90-110%?	X				STL SOP Section 10.4, >110%=J; 85-90%=J/UJ; <85%=J/R
14. Was the ICB analyzed after the ICV with results <1/2 the MRL?	X				STL SOP Section 10.4, QSM, $< 5x = U$
15. Was the Nitrocellulose assay available and/or analyzed to be within 10%?	X				STL SOP Section 7.14.1, R
16. Was a method blank prepared and analyzed with each batch?	X	ų —		Control of the Contro	
17. Were target analytes detected in the method blank <1/2 the MRL?		X		ADR checked section.	STL SOP Section 9.4, LCG, <5x=B

Project Number: 030174.0016 Sample Event: August 2013

Data Reviewer/Date: Angela Dragotta/ October 4, 2013

SDG: 240-28186-1

Analysis: TAL SOP WS-WC-0050

Review Questions:	Yes	No	N/A	Comments	Qualifier
18. Was a field blank collected and analyzed?	X				
19. Were target analytes detected in the field blank analyses <1/2 the MRL?		X			<5x=B
20. Was a field duplicate analyzed? Were the RPDs ≤30%?	X			ADR checked section	QAPP Table 3-2 RPD > 30% = J
21. Was an LCS prepared and analyzed with each batch? Was the LCS recovery within lab's in-house limits% (26-144%)?	X				>UL%=J; <50%=J/R 50-LL%=J/UJ;
22. Was a MS/MSD pair prepared with each batch?	X				
23. Was the MS/MSD parent a Ravenna sample?	X				
24. Were MS/MSD recoveries 26-144% and RPD ≤20?	X			ADR checked section.	Method EPA 353.2 Section 9.4.2 >UL%=J; <ll%=j uj;<br="">RPD>20%=J/UJ</ll%=j>

References:

STL SOP SAC-WC-0050 "Preparation and Analysis of Nitrocellulose in Aqueous and Soil/Sediment Samples by Colorimetric Autoanalyzer", Jan 2007, rev. 2.0 DoD Quality Systems Manual (QSM), version 4.1, October 2010

Louisville DoD Quality Systems Manual Supplement (LS), Version 1 March 2007

Final Facility Wide Groundwater Monitoring Program, RVAAP-66 Facility Wide Groundwater Quality Assurance Project Plan (QAPP) Addendum for the Ravenna Army Ammunition Plant, Ravenna, OH, Environmental Quality Management, January 2012

Final Facility Wide Quality Assurance Project Plan for Environmental Investigations Groundwater for the Ravenna Army Ammunition Plant, Ravenna, OH, SAIC, February 2011

Additional Comments:

Project Number: 030174.0016 Sample Event: August 2013 Data Reviewer/Date: Angye Dragotta/October 4, 2013

SDG: 240-28186-1

Analysis: SW846 6860/ Perchlorate

Review Questions:	Yes	No	N/A	Comments	Qual/Criteria
1. Did Chain-of-Custody information agree with laboratory report?	X				
2. Were samples preserved properly and received in good condition?	X				
3. Were holding times met (28 days)?	X				UJ/J/R
4. Were sample storage requirements met?	X		1		
5. Was the DOD specified PQLs of 0.5ug/L achieved?	X				
6. Were all QAPP-specified target analytes reported?	X				
7. Did the initial calibration curve consist of 5 concentration levels?	X			LC_LCMS1 9/11/13 Standards(ng/L): 20, 50, 100, 200, 500, 1000	R
8. Was the correlation coefficient r≥0.995?	X	0 ==	0		R < 0.995 = -J/R
9. Was a second source verification (SSCV) analyzed after the ICAL? Were results 90-110%?	Х				LCG Table 1 >120%=J; 60-80%=J/UJ; <60%=J/R
10. Was an ICV analyzed after the ICAL and daily before sample analysis?	X			9/11/13 @1907	R
11. Was the %Difference ≤ 15%?	X				R
12. Was a CCV analyzed after every 10 samples?	X			09/11/2013 @ 2322	
13. Was the %Difference ≤ 15%?	X				%D > 15% = UJ/J
14. Was a Limit of Detection Verification LODV) analyzed before and after every batch?	X				
15. Was the LODV recovery within 70-130%?	X				>130%=J; <60%=J/R 70-60%=J/UJ;
16. Was an Interference Check Sample extracted and analyzed with every batch?	X				
17. Was the ICS recovery within 70 to 130%?	X				>120%=J; <50%=Pj/R 50-79%=J/UJ;
18. Was a method blank prepared and analyzed with each batch?	X				
19. Were target analytes detected in the method blank at >1/2 the MRL?		X		Checked by ADR.	<5X =B

Project Number: 030174.0016 Sample Event: August 2013 Data Reviewer/Date: Angye Dragotta/October 4, 2013

SDG: 240-28186-1

Analysis: SW846 6860/ Perchlorate

Review Questions:	Yes	No	N/A	Comments	Qual/Criteria
20. Was a field blank (equipment) collected and analyzed?	X			FWGEQUIPRINSE3-0342-GW	
21. Were target analytes detected in the field blank analyses >1/2 the MRL?		X		Checked by ADR.	<5X =B
22. Were target analytes detected in the calibration blank analyses >1/2 the MRL?		X			<5X =U
23. Was a LCS prepared and analyzed with each batch, with recoveries within 85-115%?	X			Checked by ADR.	>115%=J; 50%-85%=J/UJ; <50%=J/R
24. Was a MS/MSD prepared with each batch?	X			FWGFWGmw-009-0319-GF	
25. Were MS/MSD recoveries 75-125% and RPD values ≤20%?	X				>125% = J 30% - 75% = J/UJ <30% = J/R
26. Was a Laboratory Reagent Blank (LRB) analyzed prior to calibration and after high concentration samples?	X				
27. Were target analytes detected in the LRB at >1/2 the MRL?		X			<5X =B
28. Was a MRL Verification run with every ICAL?	X				
29. Were the MRL recoveries 70-130%?	X				R
30. Were the internal standards added to every sample?	X				
31. Did the IS recover within 50% to150% of the ICAL mid-point standard?	X				R
32. Was a field duplicate analyzed? Were the RPDs within ±30%?		Х	1 7	No field duplicate was collected or analyzed.	RPD >30=J
33. Was the Isotope ratio between 101 and 85 monitored and fell between 2.3 and 3.08?	X				J/UJ
34. Were reported sample concentrations within calibration range?	X				

References:

DOD Perchlorate Handbook, March 2006; Section G "Selecting Analytical Methods and Services"

Additional Comments:

Analytical Method	Field Sample ID	Matrix	Sample Type	Analyte	RL	Lab Result	Unc / Error	Overall Qualifier	Units	Reason Code
SDG: 240-2818	36-1									
6010B	FWGDETmw-004C-0344- GF	AQ	N							
				MANGANESE	5.0	5.7J		В	ug/L	Mb
6010B	FWGFWGmw-007-0347- GF	AQ	N					************		
				CHROMIUM	4.0	1.4J		J	ug/L	RI
				NICKEL	5.0	2.3J	.000000	J	ug/L	RI
6010B	FWGFWGmw-009-0319- GF	AQ	N							
		30 EV		ARSENIC	10	9.8J		J	ug/L	RI
6010B	FWGLL1mw-084C-0355- GF	AQ	N					.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	.,	
				COPPER	10	9.1J		J	ug/L	RI
				SELENIUM	10	4.9J		J	ug/L	RI
6010B	FWGLL1mw-086-0320-GF	AQ	N	ARSENIC	10	3.7J		J	ug/L	RI
6010B	FWGLL2mw-059C-0357- GF	AQ	N							
				ARSENIC	10	7.3J		J	ug/L	RI
				POTASSIUM	900	860J		J	ug/L	RI
6010B	FWGLL2mw-265C-0321- GF	AQ	N					************		
				POTASSIUM	900	710J		J	ug/L	RI
6010B	FWGLL2mw-267C-0358- GF	AQ	N							
				NICKEL	5.0	3.7J		J	ug/L	RI
				POTASSIUM	900	670J		J	ug/L	RI
6010B	FWGWBGmw-006C-0373- GF	AQ	N		***********************			************		**********
				POTASSIUM	900	820J		J	ug/L	RI
6010B	FWGWBGmw-009C-0374- GF	AQ	N							
				POTASSIUM	900	370J		J	ug/L	RI

Analytical Method	Field Sample ID	Matrix	Sample Type	Analyte	RL	Lab Result	Unc / Error	Overall Qualifier	Units	Reasor Code
SDG: 240-2818	86-1									
6010B	FWGWBGmw-020-0330- GF	AQ	N		***************************************					
				NICKEL	5.0	3.6J		J	ug/L	RI
				POTASSIUM	900	590J		J	ug/L	RI
6010B	FWGWBGmw-021-0331- GF	AQ	N	45 43 43						
		vacourus		ARSENIC	10	6.5J		J	ug/L	RI
6020	FWGDETmw-004C-0344- GF	AQ	N	* ******			17232371733			
				ANTIMONY	1.0	0.38J	بالاستنان	J	ug/L	RI
6020	FWGFWGmw-009-0319- GF	AQ	N				***************************************			
				ALUMINUM	60	60U		В	ug/L	
6020	FWGLL1mw-083C-0354- GF	AQ	N							
				CADMIUM	1.0	0.51J		J	ug/L	RI
				ZINC	50	39J		J	ug/L	RI
6020	FWGLL1mw-084C-0355- GF	AQ	N							
				IRON	100	50J		U	ug/L	Cb
6020	FWGWBGmw-009C-0374- GF	AQ	N							
				ALUMINUM	60	23J B		U	ug/L	Mb
			223030303	THALLIUM	1.5	1.0J		J	ug/L	RI
B081A	FWGFBQmw-174C-0345- GW	AQ	N							
				DELTA-BHC	0.020	0.019J		J	ug/L	RI
8081A	FWGFWGmw-009-0319- GW	AQ	N	ALCO TO						
			0400000000	TOXAPHENE	0.78	0.78U		UJ	ug/L	Ms
3081A	FWGLL1mw-083C-0354- GW	AQ	N							
				ENDOSULFAN II	0.019	0.014J		J	ug/L	RI

Analytical Me	hod Field Sample ID	Matrix	Sample Type	Analyte	RL	Lab Result	Unc / Error	Overall Qualifier	Units	Reason Code
SDG: 240	-28186-1									
8081A	FWGWBGmw-019-0329- GW	AQ	N							
				BETA-BHC	0.019	0.011J		J	ug/L	RI
8260B	FWGEQUIPRINSE3-0342- GW	AQ	EB							
				ACETONE	1.1	9.9J		В	ug/L	Tb
				METHYLENE CHLORIDE	0.50	0.81J B		JB	ug/L	Mb, Tb, Co
				TOLUENE	0.25	0.18J		J	ug/L	RI
8260B	FWGFWGmw-009-0319- GW	AQ	N							
				ACETONE	1.1	1.2J		В	ug/L	Tb, Eb
8260B	FWGLL2mw-059C-0357- GW	AQ	N				***********	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
				ACETONE	1.1	1.4J		В	ug/L	Eb
8260B	FWGTeam1-Trip	AQ	ТВ	METHYLENE CHLORIDE	0.50	0.47J		J	ug/L	RI, Ccv
8260B	FWGTeam2-Trip082013	AQ	ТВ	METHYLENE CHLORIDE	0.50	0.69J		J	ug/L	Ccv
8260B	FWGTeam3-TRIP	AQ	ТВ	METHYLENE CHLORIDE	0.50	0.77J		J	ug/L	Ccv
8260B	FWGTEAM4-TRIP	AQ	ТВ	METHYLENE CHLORIDE	0.50	0.85J B		JB	ug/L	Mb, Ccv, F
8260B	FWGWBGmw-Dup4-0339- GW	AQ	FD		*********	*********	*********			**********
				ACETONE	1.1	1.7J		В	ug/L	Eb
8270C - SVOC	1&3 FWGNTAmw-119-0367- GW	AQ	N				*********		*********	
				BIS(2-ETHYLHEXYL)PHTHALATE	0.50	0.42J		В	ug/L	Mb, Eb
				DI-N-BUTYL PHTHALATE	0.99	0.72J		В	ug/L	Mb, Eb

Analytical Method	Field Sample ID	Matrix	Sample Type	Analyte	RL	Lab Result	Unc / Error	Overall Qualifier	Units	Reason Code
SDG: 240-2818	86-1									
8270C -SVOC1	FWGFBQmw-174C-0345- GW	AQ	N						********	******
	2.77			BIS(2-ETHYLHEXYL)PHTHALATE	0.51	0.82J		В	ug/L	Mb, Eb
				DI-N-BUTYL PHTHALATE	1.0	1.1J		В	ug/L	Mb, Eb
8270C -SVOC1	FWGFWGmw-007-0347- GW	AQ	N							
				BIS(2-ETHYLHEXYL)PHTHALATE	0.48	0.48J		В	ug/L	Mb, Eb
8270C -SVOC1	FWGLL1mw-065C-0353- GW	AQ	N		2.02	2.25				
				BIS(2-ETHYLHEXYL)PHTHALATE	0.49	0.50J		В	ug/L	Mb
8270C -SVOC1	FWGLL1mw-083C-0354- GW	AQ	N							
				BIS(2-ETHYLHEXYL)PHTHALATE	0.48	1.1J		В	ug/L	Mb, Eb
				DI-N-BUTYL PHTHALATE	0.95	1.6J		В	ug/L	Mb, Eb
8270C -SVOC1	FWGLL1mw-084C-0355- GW	AQ	N							
				BIS(2-ETHYLHEXYL)PHTHALATE	0.49	1.8J		В	ug/L	Mb, Eb
				DI-N-BUTYL PHTHALATE	0.98	1.1J	Aman	В	ug/L	Mb, Eb
8270C -SVOC1	FWGLL1mw-086-0320- GW	AQ	N							
				BIS(2-ETHYLHEXYL)PHTHALATE	0.48	1.2J		В	ug/L	Mb, Eb
				DI-N-BUTYL PHTHALATE	0.95	0.86J	Innanor	В	ug/L	Mb, Eb
8270C -SVOC1	FWGLL2mw-059C-0357- GW	AQ	N							
				BIS(2-ETHYLHEXYL)PHTHALATE	0.50	1.4J		В	ug/L	Mb, Eb
		352321250		DI-N-BUTYL PHTHALATE	0.99	1.5J		В	ug/L	Mb, Eb
8270C -SVOC1	FWGLL2mw-265C-0321- GW	AQ	N							
				BIS(2-ETHYLHEXYL)PHTHALATE	0.49	1.5J		В	ug/L	Mb, Eb
~~~				DI-N-BUTYL PHTHALATE	0.97	1.4J		В	ug/L	Mb, Eb
8270C -SVOC1	FWGLL2mw-267C-0358- GW	AQ	N							
				BIS(2-ETHYLHEXYL)PHTHALATE	0.48	0.62J		В	ug/L	Mb, Eb
				DI-N-BUTYL PHTHALATE	0.95	0.81J		В	ug/L	Mb, Eb

Gmw-006C-0373- Gmw-009C-0374- mw-004C-0344-	AQ AQ AQ	N N	BIS(2-ETHYLHEXYL)PHTHALATE BIS(2-ETHYLHEXYL)PHTHALATE DI-N-BUTYL PHTHALATE  2,4-DINITROPHENOL BIS(2-ETHYLHEXYL)PHTHALATE DI-N-BUTYL PHTHALATE	0.49 0.48 0.95 0.99 0.50 0.99	0.74J 0.64J 0.75J 0.99U 1.4J 0.85J		B B UJ B B	ug/L ug/L ug/L ug/L ug/L	Mb Mb Mb ProfJudg Mb, Eb Mb, Eb
Gmw-009C-0374- mw-004C-0344-	AQ	N	BIS(2-ETHYLHEXYL)PHTHALATE DI-N-BUTYL PHTHALATE  2,4-DINITROPHENOL BIS(2-ETHYLHEXYL)PHTHALATE	0.48 0.95 0.99 0.50	0.64J 0.75J 0.99U 1.4J		B B UJ B	ug/L ug/L ug/L ug/L	Mb Mb ProfJudg Mb, Eb
mw-004C-0344-	AQ	N	BIS(2-ETHYLHEXYL)PHTHALATE DI-N-BUTYL PHTHALATE  2,4-DINITROPHENOL BIS(2-ETHYLHEXYL)PHTHALATE	0.48 0.95 0.99 0.50	0.64J 0.75J 0.99U 1.4J		B B UJ B	ug/L ug/L ug/L ug/L	Mb Mb ProfJudg Mb, Eb
mw-004C-0344-	AQ	N	2,4-DINITROPHENOL BIS(2-ETHYLHEXYL)PHTHALATE	0.95 0.99 0.50	0.75J 0.99U 1.4J		B UJ B	ug/L ug/L ug/L	Mb ProfJudg Mb, Eb
			2,4-DINITROPHENOL BIS(2-ETHYLHEXYL)PHTHALATE	0.95 0.99 0.50	0.75J 0.99U 1.4J		B UJ B	ug/L ug/L ug/L	Mb ProfJudg Mb, Eb
			2,4-DINITROPHENOL BIS(2-ETHYLHEXYL)PHTHALATE	0.99 0.50	0.99U 1.4J		UJ B	ug/L ug/L ug/L	ProfJudg Mb, Eb
			BIS(2-ETHYLHEXYL)PHTHALATE	0.50	1.4J		В	ug/L	Mb, Eb
IIPRINSE3-0342-	AQ	EB	BIS(2-ETHYLHEXYL)PHTHALATE	0.50	1.4J	52525325232	В	ug/L	Mb, Eb
IIPRINSE3-0342-	AQ	EB			10.00	nese ne ne ne			W17 12 0
JIPRINSE3-0342-	AQ	EB	DI-N-BUTYL PHTHALATE	0.99	0.85J	515252515151	В	ug/L	Mb Fb
JIPRINSE3-0342-	AQ	EB							HID, LD
			2,4-DINITROPHENOL	0.96	0.96U		UJ	ug/L	ProfJudg
			BIS(2-ETHYLHEXYL)PHTHALATE	0.48	0.41J		В	ug/L	Mb
			DI-N-BUTYL PHTHALATE	0.96	1.0J		В	ug/L	Mb
Gmw-009-0319-	AQ	N							
			2,4-DINITROPHENOL	0.97	0.97U		UJ	ug/L	ProfJudg
			BENZO(A)PYRENE	0.097	0.097U J		UJ	ug/L	Ms
			BIS(2-ETHYLHEXYL)PHTHALATE	0.49	0.34J		В	ug/L	Mb, Eb
Gmw-018-0328-	AQ	N							
			2,4-DINITROPHENOL	0.95	0.95U		UJ	ug/L	ProfJudg
	********		BIS(2-ETHYLHEXYL)PHTHALATE	0.48	0.31J		JB	ug/L	Mb, Eb, Fo
Gmw-019-0329-	AQ	N							
			2,4-DINITROPHENOL	0.95	0.95U		UJ	ug/L	ProfJudg
			BIS(2-ETHYLHEXYL)PHTHALATE	0.48	0.49J		В	ug/L	Mb, Eb
			DI-N-BUTYL PHTHALATE	0.95	0.84J		В	ug/L	Mb, Eb
	Gmw-019-0329-	Gmw-019-0329- AQ	Gmw-019-0329- AQ N	BIS(2-ETHYLHEXYL)PHTHALATE  Gmw-019-0329- AQ N  2,4-DINITROPHENOL  BIS(2-ETHYLHEXYL)PHTHALATE	BIS(2-ETHYLHEXYL)PHTHALATE 0.48  Gmw-019-0329- AQ N  2,4-DINITROPHENOL 0.95  BIS(2-ETHYLHEXYL)PHTHALATE 0.48	BIS(2-ETHYLHEXYL)PHTHALATE 0.48 0.31J  Gmw-019-0329- AQ N  2,4-DINITROPHENOL 0.95 0.95U  BIS(2-ETHYLHEXYL)PHTHALATE 0.48 0.49J	BIS(2-ETHYLHEXYL)PHTHALATE 0.48 0.31J  Gmw-019-0329- AQ N  2,4-DINITROPHENOL 0.95 0.95U  BIS(2-ETHYLHEXYL)PHTHALATE 0.48 0.49J	BIS(2-ETHYLHEXYL)PHTHALATE 0.48 0.31J JB  Gmw-019-0329- AQ N  2,4-DINITROPHENOL 0.95 0.95U UJ  BIS(2-ETHYLHEXYL)PHTHALATE 0.48 0.49J B	BIS(2-ETHYLHEXYL)PHTHALATE 0.48 0.31J JB ug/L  Gmw-019-0329- AQ N  2,4-DINITROPHENOL 0.95 0.95U UJ ug/L  BIS(2-ETHYLHEXYL)PHTHALATE 0.48 0.49J B ug/L

Analytical Method	Field Sample ID	Matrix	Sample Type	Analyte	RL	Lab Result	Unc / Error	Overall Qualifier	Units	Reason Code
SDG: 240-2818	36-1									
8270C-SVOC4	FWGWBGmw-020-0330- GW	AQ	N					***************************************		
				2,4-DINITROPHENOL	0.98	0.98U		UJ	ug/L	ProfJudg
				BIS(2-ETHYLHEXYL)PHTHALATE	0.49	0.54J		В	ug/L	Mb, Eb
				DI-N-BUTYL PHTHALATE	0.98	0.76J		В	ug/L	Mb, Eb
8270C-SVOC4	FWGWBGmw-021-0331- GW	AQ	N			***************************************		.,		
				2,4-DINITROPHENOL	0.95	0.95U		UJ	ug/L	ProfJudg
				BIS(2-ETHYLHEXYL)PHTHALATE	0.48	0.65J		В	ug/L	Mb, Eb
				DI-N-BUTYL PHTHALATE	0.95	0.68J		В	ug/L	Mb, Eb
8270C-SVOC4	FWGWBGmw-Dup4-0339- GW	AQ	FD					,		
				2,4-DINITROPHENOL	0.95	0.95U		UJ	ug/L	ProfJudg
				BIS(2-ETHYLHEXYL)PHTHALATE	0.48	0.74J		В	ug/L	Mb, Eb
				DI-N-BUTYL PHTHALATE	0.95	1.5J		В	ug/L	Mb, Eb
8330	FWGLL1mw-083C-0354- GW	AQ	N							
				1,3,5-TRINITROBENZENE	0.051	6.5		J	ug/L	Surr
				1,3-DINITROBENZENE	0.10	0.28		J	ug/L	Surr
				2,4,6-TRINITROTOLUENE	0.10	4.5		J	ug/L	Surr
				2,4-DINITROTOLUENE	0.10	2.9		J	ug/L	Surr
				2,6-DINITROTOLUENE	0.10	1.5		J	ug/L	Surr
				2-AMINO-4,6-DINITROTOLUENE	0.10	14		J	ug/L	Surr

Analytical Method	Field Sample ID	Matrix	Sample Type	Analyte	RL	Lab Result	Unc / Error	Overall Qualifier	Units	Reason Code
SDG: 240-2818	6-1					ncotect			vacuory:	
8330	FWGLL1mw-084C-0355- GW	AQ	N					***************************************	********	*******
				1,3,5-TRINITROBENZENE	0.052	2.4		J	ug/L	Surr
				1,3-DINITROBENZENE	0.10	0.35		J	ug/L	Surr
				2,4,6-TRINITROTOLUENE	0.10	12		J	ug/L	Surr
				2,4-DINITROTOLUENE	0.10	1.4		J	ug/L	Surr
				2,6-DINITROTOLUENE	0.10	0.95		J	ug/L	Surr
				2-AMINO-4,6-DINITROTOLUENE	0.10	13		J	ug/L	Surr
				Hexahydro-1,3,5-Trinitro-1,3,5-Triazine (RDX)	0.052	2.1		J	ug/L	Surr
				Octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX)	0.052	0.97		J	ug/L	Surr, Prof.
8330	FWGLL2mw-059C-0357- GW	AQ	N							
				1,3,5-TRINITROBENZENE	0.050	0.28		J	ug/L	ProfJudg
9012A	FWGDETmw-004C-0344- GW	AQ	N		5452	-Colon	*******			
				CYANIDE	0.010	0.010U		UJ	mg/L	ProfJudg
9012A	FWGEQUIPRINSE3-0342- GW	AQ	EB	CYANIDE	0.010	0.010U		UJ	mg/L	ProfJudg
9012A	FWGFWGmw-009-0319-	AQ	N		*******		*******	**********		
				CYANIDE	0.010	0.010U		UJ	mg/L	ProfJudg
9012A	FWGWBGmw-018-0328- GW	AQ	N							
				CYANIDE	0.010	0.010U		UJ	mg/L	ProfJudg
9012A	FWGWBGmw-019-0329- GW	AQ	N					***********		***********
				CYANIDE	0.010	0.010U		UJ	mg/L	ProfJudg
9012A	FWGWBGmw-020-0330- GW	AQ	N				**********	***************************************		
				CYANIDE	0.010	0.010U		UJ	mg/L	ProfJudg

Analytical Method	Field Sample ID	Matrix	Sample Type	Ana	alyte	RL	Lab Result	Unc / Error	Overall Qualifier	Units	Reason Code
SDG: 240-2818	36-1										
9012A	FWGWBGmw-021-0331- GW	AQ	N		***************						
				CYANIDE		0.010	0.010U		UJ	mg/L	ProfJudg
9012A	FWGWBGmw-Dup4-0339- GW	AQ	FD		***********				**************		
				CYANIDE		0.010	0.010U		UJ	mg/L	ProfJudg

Lab Reporting Batch ID: 240-28186-1 Laboratory: TA CAN

EDD Filename: Prep240-28186-1 eQAPP Name: RVAAP 66-rev July 2012

Method Category: GENCHEM									
Method: 9012A			Ma	trix:	AQ				
Sample ID:FWGDETmw-004C-0344-GW	Collec	ted: 8/20/2	2013 5:10:	00 A	nalysis T	ype: RES	утот		Dilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
CYANIDE	0.010	U	0.0032	MDL	0.010	LOD	mg/L	UJ	ProfJudg
Sample ID: FWGEQUIPRINSE3-0342-GW	Collec	ted: 8/21/2	2013 3:34:	00 A	nalysis T	ype: RES	утот		Dilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
CYANIDE	0.010	U	0.0032	MDL	0.010	LOD	mg/L	UJ	ProfJudg
Sample ID:FWGFWGmw-009-0319-GW	Collec	ted: 8/21/2	2013 12:20	):00 A	nalysis T	ype: RES	утот		Dilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
CYANIDE	0.010	U	0.0032	MDL	0.010	LOD	mg/L	UJ	ProfJudg
Sample ID:FWGWBGmw-018-0328-GW	Collec	ted: 8/21/2	2013 10:03	3:00 A	nalysis T	ype: RES	утот	1	Dilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
CYANIDE	0.010	U	0.0032	MDL	0.010	LOD	mg/L	UJ	ProfJudg
Sample ID:FWGWBGmw-019-0329-GW	Collec	ted: 8/21/2	2013 8:56:	00 A	nalysis T	ype: RES	утот		Dilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
CYANIDE	0.010	U	0.0032	MDL	0.010	LOD	mg/L	UJ	ProfJudg
Sample ID:FWGWBGmw-020-0330-GW	Collec	ted: 8/21/2	2013 10:31	:00 A	nalysis T	ype: RES	утот		Dilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
CYANIDE	0.010	U	0.0032	MDL	0.010	LOD	mg/L	UJ	ProfJudg
Sample ID: FWGWBGmw-021-0331-GW	Collec	ted: 8/21/2	2013 9:24:	00 A	nalysis T	ype: RES	утот		Dilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
CYANIDE	0.010	U	0.0032	MDL	0.010	LOD	mg/L	UJ	ProfJudg
Sample ID:FWGWBGmw-Dup4-0339-GW	Collec	ted: 8/21/2	2013 11:03	3:00 A	nalysis T	ype: RES	утот		Dilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason
CYANIDE	0.010	U	0.0032	MDL	0.010	LOD	mg/L	UJ	ProfJudg

^{*} denotes a non-reportable result

Project Name and Number: 30174.0016.001.10.1 - RVAAP66 (OH)

10/7/2013 8:21:29 AM ADR version 1.7.0.207 Page 1 of 11

Lab Reporting Batch ID: 240-28186-1 Laboratory: TA CAN

EDD Filename: Prep240-28186-1 eQAPP Name: RVAAP 66-rev July 2012

Method Category: GENCHEM

Method: 9012A Matrix: AQ

Method Category: METALS

Method: 6010B Matrix: AQ

Sample ID: FWGDETmw-004C-0344-GF	Collec	ted: 8/20/2	013 5:10	:00 🗚	nalysis	Type: RES	утот	D	ilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
MANGANESE	5.7	J	1.8	MDL	5.0	LOD	ua/L	U	Mb

Sample ID:FWGFWGmw-007-0347-GF	Collec	ted: 8/21/2	013 3:04	:00 A	nalysis	Type: RES	7101	Dilution: 1		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
CHROMIUM	1.4	J	1.4	MDL	4.0	LOD	ug/L	J	RI	
NICKEL	2.3	J	2.2	MDL	5.0	LOD	ug/L	J	RI	

Sample ID: FWGFWGmw-009-0319-GF	Collec	ted: 8/21/2	013 12:2	0:00 A	nalysis	Type: RES	S/TOT	D	ilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
ARSENIC	9.8	J	3.3	MDL	10	LOD	ug/L	J	RI

Sample ID:FWGLL1mw-084C-0355-GF	Collec	ted: 8/21/2	013 2:05	:00 A	nalysis 1	Type: RES	/TOT	D	ilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
COPPER	9.1	J	4.4	MDL	10	LOD	ug/L	J	RI
SELENIUM	4.9	J	4.0	MDL	10	LOD	ug/L	J	RI

Sample ID: FWGLL1mw-086-0320-GF	Collec	Collected: 8/21/2013 1:33:00					Analysis Type: RES/TOT			
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
ARSENIC	3.7	J	3.3	MDL	10	LOD	ug/L	J	RI	

Sample ID:FWGLL2mw-059C-0357-GF	Collec	Collected: 8/21/2013 12:51:00					Analysis Type: RES/TOT			
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
ARSENIC	7.3	J	3.3	MDL	10	LOD	ug/L	J	RI	
POTASSIUM	860	J	300	MDL	900	LOD	ug/L	J	RI	

10/7/2013 8:21:29 AM ADR version 1.7.0.207 Page 2 of 11

^{*} denotes a non-reportable result

Lab Reporting Batch ID: 240-28186-1 Laboratory: TA CAN

EDD Filename: Prep240-28186-1 eQAPP Name: RVAAP 66-rev July 2012

EDD Filename: Prep240-28186-1					eC	DAPP Na	me: RV	/AAP 66-r	ev July 2
Method Category: METALS									
Method: 6010B			Má	atrix:	AQ				
Sample ID:FWGLL2mw-265C-0321-GF	Collec	ted: 8/21/2	013 11:5	5:00 A	nalysis 1	ype: RES	/тот	D	ilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
POTASSIUM	710	J	300	MDL	900	LOD	ug/L	J	RI
Sample ID: FWGLL2mw-267C-0358-GF	Collec	ted: 8/21/2	013 12:1	8:00 A	nalysis 1	ype: RES	/тот	D	ilution: 1
A <i>nalyt</i> e	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
NICKEL	3.7	J	2.2	MDL	5.0	LOD	ug/L	J	RI
POTASSIUM	670	J	300	MDL	900	LOD	ug/L	J	RI
Sample ID:FWGWBGmw-006C-0373-GF	Collec	ted: 8/21/2	013 10:4	0:00 A	nalysis 1	ype: RES	/тот	D	ilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
POTASSIUM	820	J	300	MDL	900	LOD	ug/L	J	RI
Sample ID:FWGWBGmw-009C-0374-GF	Collec	ted: 8/21/2	013 9:35	:00 A	nalysis 1	ype: RES	/тот	D	ilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
POTASSIUM	370	J	300	MDL	900	LOD	ug/L	J	RI
Sample ID:FWGWBGmw-020-0330-GF	Collec	ted: 8/21/2	013 10:3	1:00 A	nalysis 1	ype: RES	/тот	D	ilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
NICKEL	3.6	J	2.2	MDL	5.0	LOD	ug/L	J	RI
POTASSIUM	590	J	300	MDL	900	LOD	ug/L	J	RI
Sample ID:FWGWBGmw-021-0331-GF	Collec	ted: 8/21/2	013 9:24	:00 A	nalysis 1	ype: RES	/тот	D	ilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code

ARSENIC

Project Name and Number: 30174.0016.001.10.1 - RVAAP66 (OH)

10/7/2013 8:21:29 AM ADR version 1.7.0.207 Page 3 of 11

3.3

MDL

LOD

ug/L

RI

6.5

^{*} denotes a non-reportable result

Lab Reporting Batch ID: 240-28186-1 Laboratory: TA CAN

EDD Filename: Prep240-28186-1 eQAPP Name: RVAAP 66-rev July 2012

Method	Category:	METALS
Menion	Category.	METALS

Method: 6020 Matrix: AQ

Sample ID:FWGDETmw-004C-0344-GF	Collec	ted: 8/20/2	013 5:10	:00	nalysis	Type: RES	Dilution: 1		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
ANTIMONY	0.38	J	0.33	MDL	1.0	LOD	ug/L	J	RI

Sample ID:FWGLL1mw-083C-0354-GF Collected: 8/21/2013 3:15:00 Analysis Type: RES/TOT Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
CADMIUM	0.51	J	0.40	MDL	1.0	LOD	ug/L	J	RI
ZINC	39	J	27	MDL	50	LOD	ug/L	J	RI

Sample ID:FWGLL1mw-084C-0355-GF Collected: 8/21/2013 2:05:00 Analysis Type: RES/TOT Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
IRON	50	J	44	MDL	100	LOD	ug/L	U	Cb

Sample ID:FWGWBGmw-009C-0374-GF Collected: 8/21/2013 9:35:00 Analysis Type: RES/TOT Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
ALUMINUM	23	JB	20	MDL	60	LOD	ug/L	U	Mb
THALLIUM	1.0	J	0.79	MDL	1.5	LOD	ug/L	J	RI

Method Category: SVOA

Method: 8081A Matrix: AQ

Sample ID:FWGFBQmw-174C-0345-GW Collected: 8/21/2013 11:38:00 Analysis Type: RES-BASE/NEUTRAL Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
DELTA-BHC	0.019	J	0.0089	MDL	0.020	LOD	ug/L	J	RI

Sample ID: FWGFWGmw-009-0319-GW Collected: 8/21/2013 12:20:00 Analysis Type: RES-BASE/NEUTRAL Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
TOXAPHENE	0.78	U	0.31	MDL	0.78	LOD	ug/L	UJ	Ms

* denotes a non-reportable result

Project Name and Number: 30174.0016.001.10.1 - RVAAP66 (OH)

10/7/2013 8:21:29 AM ADR version 1.7.0.207 Page 4 of 11

Lab Reporting Batch ID: 240-28186-1 Laboratory: TA CAN

EDD Filename: Prep240-28186-1 eQAPP Name: RVAAP 66-rev July 2012

Method Category: SVOA

Method: 8081A Matrix: AQ

Sample ID:FWGLL1mw-083C-0354-GW Collected: 8/21/2013 3:15:00 Analysis Type: RES-BASE/NEUTRAL Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
ENDOSULFAN II	0.014	J	0.011	MDL	0.019	LOD	ug/L	J	RI

Sample ID:FWGWBGmw-019-0329-GW Collected: 8/21/2013 8:56:00 Analysis Type: RES-BASE/NEUTRAL Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
BETA-BHC	0.011	J	0.0080	MDL	0.019	LOD	ug/L	J	RI

Method Category: SVOA

Method: 8270C - SVOC 1&3 Matrix: AQ

Sample ID:FWGNTAmw-119-0367-GW Collected: 8/21/2013 9:22:00 Analysis Type: RES-BASE/NEUTRAL Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
BIS(2-ETHYLHEXYL)PHTHALATE	0.42	J	0.22	MDL	0.50	LOD	ug/L	U	Mb, Eb
DI-N-BUTYL PHTHALATE	0.72	J	0.66	MDL	0.99	LOD	ug/L	U	Mb, Eb

Method Category: SVOA

Method: 8270C -SVOC1 Matrix: AQ

Sample ID:FWGFBQmw-174C-0345-GW Collected: 8/21/2013 11:38:00 Analysis Type: RES-BASE/NEUTRAL Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
BIS(2-ETHYLHEXYL)PHTHALATE	0.82	J	0.22	MDL	0.51	LOD	ug/L	U	Mb, Eb
DI-N-BUTYL PHTHALATE	1.1	J	0.68	MDL	1.0	LOD	ug/L	U	Mb, Eb

Sample ID: FWGFWGmw-007-0347-GW Collected: 8/21/2013 3:04:00 Analysis Type: RES-BASE/NEUTRAL Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
BIS(2-ETHYLHEXYL)PHTHALATE	0.48	J	0.21	MDL	0.48	LOD	ug/L	U	Mb, Eb

Sample ID: FWGLL1mw-065C-0353-GW Collected: 8/21/2013 2:43:00 Analysis Type: RES-BASE/NEUTRAL Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
BIS(2-ETHYLHEXYL)PHTHALATE	0.50	J	0.21	MDL	0.49	LOD	ug/L	U	Mb

^{*} denotes a non-reportable result

Lab Reporting Batch ID: 240-28186-1 Laboratory: TA CAN

EDD Filename: Prep240-28186-1 eQAPP Name: RVAAP 66-rev July 2012

	Catego	SVO	

Method: 8270C -SVOC1 Matrix: AQ

Sample ID:FWGLL1mw-083C-0354-GW	Collected: 8/21/2013 3:15:00	Analysis Type: RES-BASE/NEUTRAL	Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
BIS(2-ETHYLHEXYL)PHTHALATE	1,1	J	0.21	MDL	0.48	LOD	ug/L	U	Mb, Eb
DI-N-BUTYL PHTHALATE	1.6	J	0.64	MDL	0.95	LOD	ug/L	U	Mb, Eb

### Sample ID: FWGLL1mw-084C-0355-GW Collected: 8/21/2013 2:05:00 Analysis Type: RES-BASE/NEUTRAL Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
BIS(2-ETHYLHEXYL)PHTHALATE	1.8	J	0.22	MDL	0.49	LOD	ug/L	U	Mb, Eb
DI-N-BUTYL PHTHALATE	1.1	J	0.66	MDL	0.98	LOD	ug/L	U	Mb, Eb

#### Sample ID: FWGLL1mw-086-0320-GW Collected: 8/21/2013 1:33:00 Analysis Type: RES-BASE/NEUTRAL Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
BIS(2-ETHYLHEXYL)PHTHALATE	1.2	J	0.21	MDL	0.48	LOD	ug/L	U	Mb, Eb
DI-N-BUTYL PHTHALATE	0.86	J	0.64	MDL	0.95	LOD	ug/L	U	Mb, Eb

#### Sample ID:FWGLL2mw-059C-0357-GW Collected: 8/21/2013 12:51:00 Analysis Type: RES-BASE/NEUTRAL Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
BIS(2-ETHYLHEXYL)PHTHALATE	1.4	J	0.22	MDL	0.50	LOD	ug/L	U	Mb, Eb
DI-N-BUTYL PHTHALATE	1.5	J	0.66	MDL	0.99	LOD	ug/L	U	Mb, Eb

### Sample ID: FWGLL2mw-265C-0321-GW Collected: 8/21/2013 11:55:00 Analysis Type: RES-BASE/NEUTRAL Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
BIS(2-ETHYLHEXYL)PHTHALATE	1.5	J	0.21	MDL	0.49	LOD	ug/L	U	Mb, Eb
DI-N-BUTYL PHTHALATE	1.4	J	0.65	MDL	0.97	LOD	ug/L	U	Mb, Eb

#### Sample ID:FWGLL2mw-267C-0358-GW Collected: 8/21/2013 12:18:00 Analysis Type: RES-BASE/NEUTRAL Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
BIS(2-ETHYLHEXYL)PHTHALATE	0.62	J	0.21	MDL	0.48	LOD	ug/L	U	Mb, Eb
DI-N-BUTYL PHTHALATE	0.81	J	0.64	MDL	0.95	LOD	ug/L	U	Mb, Eb

10/7/2013 8:21:29 AM ADR version 1.7.0.207 Page 6 of 11

^{*} denotes a non-reportable result

Lab Reporting Batch ID: 240-28186-1 Laboratory: TA CAN

EDD Filename: Prep240-28186-1 eQAPP Name: RVAAP 66-rev July 2012

Method Category: SVOA

Method: 8270C -SVOC1 Matrix: AQ

Sample ID:FWGWBGmw-006C-0373-GW	Collected: 8/21/2013 10:40:00	Analysis Type: RES-BASE/NEUTRAL Dilution:
Sumple ID:1 WOWDOINW-0000-0373-0W	Concetted: 0/2 1/2013 10:40:00	Analysis Type: NEO-BACEMED THAE Blidde

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
BIS(2-ETHYLHEXYL)PHTHALATE	0.74	J	0.21	MDL	0.49	LOD	ug/L	U	Mb

Sample ID:FWGWBGmw-009C-0374-GW Collected: 8/21/2013 9:35:00 Analysis Type: RES-BASE/NEUTRAL Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
BIS(2-ETHYLHEXYL)PHTHALATE	0.64	J	0.21	MDL	0.48	LOD	ug/L	U	Mb
DI-N-BUTYL PHTHALATE	0.75	J	0.64	MDL	0.95	LOD	ug/L	U	Mb

Method Category: SVOA

Method: 8270C-SVOC4 Matrix: AQ

Sample ID:FWGDETmw-004C-0344-GW	Collec	ted: 8/20/2	013 5:10	:00 /	nalysis 7	ype: RES	Dilution: 1		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
2.4-DINITROPHENOL	0.99	U	0.32	MDL	0.99	LOD	ug/L	UJ	ProfJudg
BIS(2-ETHYLHEXYL)PHTHALATE	1.4	J	0.22	MDL	0.50	LOD	ug/L	U	Eb, Mb
DI-N-BUTYL PHTHALATE	0.85	J	0.66	MDL	0.99	LOD	ug/L	U	Eb, Mb

Sample ID:FWGEQUIPRINSE3-0342-GW Collected: 8/21/2013 3:34:00 Analysis Type: RES-ACID Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
2,4-DINITROPHENOL	0.96	U	0.31	MDL	0.96	LOD	ug/L	UJ	ProfJudg
BIS(2-ETHYLHEXYL)PHTHALATE	0.41	J	0.21	MDL	0.48	LOD	ug/L	U	Mb
DI-N-BUTYL PHTHALATE	1.0	J	0.64	MDL	0.96	LOD	ug/L	U	Mb

Sample ID: FWGFWGmw-009-0319-GW Collected: 8/21/2013 12:20:00 Analysis Type: RES-ACID Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
2,4-DINITROPHENOL	0.97	U	0.31	MDL	0.97	LOD	ug/L	UJ	ProfJudg
BENZO(A)PYRENE	0.097	UJ	0.050	MDL	0.097	LOD	ug/L	UJ	Ms
BIS(2-ETHYLHEXYL)PHTHALATE	0.34	J	0.21	MDL	0.49	LOD	ug/L	U	Eb, Mb

10/7/2013 8:21:29 AM ADR version 1.7.0.207 Page 7 of 11

^{*} denotes a non-reportable result

Lab Reporting Batch ID: 240-28186-1 Laboratory: TA CAN

EDD Filename: Prep240-28186-1 eQAPP Name: RVAAP 66-rev July 2012

thoc			OA

Method: 8270C-SVOC4 Matrix: AQ

Sample ID:FWGWBGmw-018-0328-GW	Collec	Collected: 8/21/2013 10:03:00				ype: RES	Dilution: 1		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
2,4-DINITROPHENOL	0.95	U	0.30	MDL	0.95	LOD	ug/L	UJ	ProfJudg
BIS(2-ETHYLHEXYL)PHTHALATE	0.31	J	0.21	MDL	0.48	LOD	ua/L	UJ	Eb. Mb. Fd

Sample ID: FWGWBGmw-019-0329-GW	Collected: 8/21/2013 8:56:00	Analysis Type: RES-ACID	Dilution: 1
Sample ID. FVVGVVDGIIIW-013-0323-GVV	Collected, 6/2 1/2013 6.30.00	Allalysis Type, RES-ACID	Dilution.

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
2,4-DINITROPHENOL	0.95	U	0.30	MDL	0.95	LOD	ug/L	UJ	ProfJudg
BIS(2-ETHYLHEXYL)PHTHALATE	0.49	J	0.21	MDL	0.48	LOD	ug/L	U	Eb, Mb
DI-N-BUTYL PHTHALATE	0.84	J	0.64	MDL	0.95	LOD	ug/L	U	Eb, Mb

Sample ID: FWGWBGmw-020-0330-GW Collected: 8/21/2013 10:31:00 Analysis Type: RES-ACID Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
2,4-DINITROPHENOL	0.98	U	0.31	MDL	0.98	LOD	ug/L	UJ	ProfJudg
BIS(2-ETHYLHEXYL)PHTHALATE	0.54	J	0.22	MDL	0.49	LOD	ug/L	U	Eb, Mb
DI-N-BUTYL PHTHALATE	0.76	J	0.66	MDL	0.98	LOD	ug/L	U	Eb, Mb

Sample ID: FWGWBGmw-021-0331-GW Collected: 8/21/2013 9:24:00 Analysis Type: RES-ACID Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
2,4-DINITROPHENOL	0.95	U	0.30	MDL	0.95	LOD	ug/L	UJ	ProfJudg
BIS(2-ETHYLHEXYL)PHTHALATE	0.65	J	0.21	MDL	0.48	LOD	ug/L	U	Eb, Mb
DI-N-BUTYL PHTHALATE	0.68	J	0.64	MDL	0.95	LOD	ug/L	U	Eb, Mb

Sample ID:FWGWBGmw-Dup4-0339-GW Collected: 8/21/2013 11:03:00 Analysis Type: RES-ACID Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
2,4-DINITROPHENOL	0.95	U	0.30	MDL	0.95	LOD	ug/L	UJ	ProfJudg
BIS(2-ETHYLHEXYL)PHTHALATE	0.74	J	0.21	MDL	0.48	LOD	ug/L	U	Eb, Mb
DI-N-BUTYL PHTHALATE	1.5	J	0.64	MDL	0.95	LOD	ug/L	U	Eb, Mb

10/7/2013 8:21:29 AM ADR version 1.7.0.207 Page 8 of 11

^{*} denotes a non-reportable result

Lab Reporting Batch ID: 240-28186-1

Laboratory: TA CAN

EDD Filename: Prep240-28186-1 eQAPP Name: RVAAP 66-rev July 2012

Method Category: SVOA

Method: 8330 Matrix: AQ

Sample ID:FWGLL1mw-083C-0354-GW Collected: 8/21/2013 3:15:00 Analysis Type: RES-BASE/NEUTRAL Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,3,5-TRINITROBENZENE	6.5		0.032	MDL	0.051	LOD	ug/L	J	Surr
1,3-DINITROBENZENE	0.28		0.051	MDL	0.10	LOD	ug/L	J	Surr
2,4,6-TRINITROTOLUENE	4.5		0.051	MDL	0.10	LOD	ug/L	J	Surr
2,4-DINITROTOLUENE	2.9		0.051	MDL	0.10	LOD	ug/L	J	Surr
2,6-DINITROTOLUENE	1.5		0.051	MDL	0.10	LOD	ug/L	J	Surr
2-AMINO-4,6-DINITROTOLUENE	14		0.015	MDL	0.10	LOD	ug/L	J	Surr

Sample ID:FWGLL1mw-084C-0355-GW Collected: 8/21/2013 2:05:00 Analysis Type: RES-BASE/NEUTRAL Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,3,5-TRINITROBENZENE	2.4		0.032	MDL	0.052	LOD	ug/L	J	Surr
1,3-DINITROBENZENE	0.35		0.052	MDL	0.10	LOD	ug/L	J	Surr
2,4,6-TRINITROTOLUENE	12		0.052	MDL	0.10	LOD	ug/L	J	Surr
2,4-DINITROTOLUENE	1.4		0.052	MDL	0.10	LOD	ug/L	J	Surr
2.6-DINITROTOLUENE	0.95		0.052	MDL	0.10	LOD	ug/L	J	Surr
2-AMINO-4,6-DINITROTOLUENE	13		0.016	MDL	0.10	LOD	ug/L	J	Surr
Hexahydro-1,3,5-Trinitro-1,3,5-Triazine (RDX)	2.1		0.037	MDL	0.052	LOD	ug/L	J	Surr
Octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX)	0.97		0.037	MDL	0.052	LOD	ug/L	J	Surr, ProfJud

Sample ID: FWGLL2mw-059C-0357-GW Collected: 8/21/2013 12:51:00 Analysis Type: RES-BASE/NEUTRAL Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,3,5-TRINITROBENZENE	0.28		0.031	MDL	0.050	LOD	ug/L	J	ProfJudg

Method Category: VOA

Method: 8260B Matrix: AQ

Sample ID:FWGEQUIPRINSE3-0342-GW Collected: 8/21/2013 3:34:00 Analysis Type: RES Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
ACETONE	9.9	J	1.1	MDL	1.1	LOD	ug/L	U	Tb
METHYLENE CHLORIDE	0.81	JВ	0.33	MDL	0.50	LOD	ug/L	UJ	Mb, Tb, ProfJudg, Ccv
TOLUENE	0.18	J	0.13	MDL	0.25	LOD	ug/L	J	RI

^{*} denotes a non-reportable result

Project Name and Number: 30174.0016.001.10.1 - RVAAP66 (OH)

10/7/2013 8:21:29 AM ADR version 1.7.0.207 Page 9 of 11

Lab Reporting Batch ID: 240-28186-1 Laboratory: TA CAN

EDD Filename: Prep240-28186-1 eQAPP Name: RVAAP 66-rev July 2012

Method Category:	VOA											
Method:	8260B			Má	atrix:	AQ						
Sample ID:FWGFWGmw-0	009-0319-GW	Collec	Collected: 8/21/2013 12:20:00 Analysis Type: RES									
Analyte		Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code		
ACETONE		1.2	J	1.1	MDL	1.1	LOD	ug/L	U	Eb, Tb		
Sample ID:FWGLL2mw-05	59C-0357-GW	Collec	ted: 8/21/2	013 12:5	1:00 A	nalysis 1	ype: RES			Dilution: 1		
A <i>nalyt</i> e		Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code		
ACETONE		1.4	J	1.1	MDL	1.1	LOD	ug/L	U	Eb		
Sample ID:FWGTeam1-Tri	ip	Collec	ted: 8/21/2	013 8:00	00 A	nalysis 1	ype: RES			Dilution: 1		
Analyte		Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code		
METHYLENE CHLORIDE		0.47	J	0.33	MDL	0.50	LOD	ug/L	J	RI, Ccv		
Sample ID:FWGTeam2-Tri	ip082013	Collec	ted: 8/20/2	013 5:08	00 A	nalysis 1	ype: RES		1	Dilution: 1		
Analyte		Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code		
METHYLENE CHLORIDE		0.69	J	0.33	MDL	0.50	LOD	ug/L	J	Ccv		
Sample ID:FWGTeam3-TR	RIP	Collec	ted: 8/21/2	013 8:00	00 A	nalysis 1	ype: RES		1	Dilution: 1		
Analyte		Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code		
METHYLENE CHLORIDE		0.77	J	0.33	MDL	0.50	LOD	ug/L	J	Ccv		
Sample ID:FWGTEAM4-TF	RIP	Collec	ted: 8/21/2	013 8:00	:00 A	nalysis T	ype: RES		1	Dilution: 1		
Analyte		Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code		
METHYLENE CHLORIDE		0.85	JB	0.33	MDL	0.50	LOD	ug/L	UJ	Mb, ProfJudg Ccv		
Sample ID:FWGWBGmw-l	Dup4-0339-GW	Collec	ted: 8/21/2	013 11:0	3:00 A	nalysis 1	ype: RES		- 1	Dilution: 1		
Analyte		Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code		
ACETONE		1.7	J	1.1	MDL	1.1	LOD	ug/L	U	Eb		

Project Name and Number: 30174.0016.001.10.1 - RVAAP66 (OH)

10/7/2013 8:21:29 AM ADR version 1.7.0.207 Page 10 of 11

^{*} denotes a non-reportable result

Lab Reporting Batch ID: 240-28186-1 Laboratory: TA CAN

EDD Filename: Prep240-28186-1 eQAPP Name: RVAAP 66-rev July 2012

### Reason Code Legend

Reason Code	Description
Cb	Calibration Blank Contamination
Ccv	Continuing Calibration Verification Percent Recovery Upper Estimation
Eb	Equipment Blank Contamination
Fd	Field Duplicate Precision
Lcs	Laboratory Control Spike Upper Estimation
Mb	Method Blank Contamination
Ms	Matrix Spike Lower Estimation
ProfJudg	Professional Judgment
RI	Reporting Limit Trace Value
Surr	Surrogate/Tracer Recovery Lower Estimation
Surr	Surrogate/Tracer Recovery Upper Estimation
Tb	Trip Blank Contamination

10/7/2013 8:21:29 AM ADR version 1.7.0.207 Page 11 of 11

^{*} denotes a non-reportable result

#### **Data Verification Summary**

Site: Ravenna Army Ammunition Plant

Sampling Event: August 2013 Date: October 2, 2013

Workorder: R1306055 Revision: 0

Data Reviewer: Angye Dragotta /Environmental Quality Management, Inc. (EQM, Inc.)

### QA/QC Summary

On August 20, 2013 the following samples were collected from groundwater-monitoring wells at Ravenna Army Ammunition Plant and analyzed as part of work order R1306055. The hexavalent chromium analysis was performed by ALS Laboratories (formerly Columbia Analytical Services), Rochester, New York by method EPA 218.6.

FWGLL3mw-244-0323-GF FWGLL12mw-DUP3-0338-GF FWGLL12mw-247-0366-GF

FWGSCFmw-002-0327-GF FWGEQUIPRinse2-0341-GW

The data presented in this report were evaluated according to the Final Facility Wide Groundwater Monitoring Program, RVAAP-66 Facility Wide Groundwater Quality Assurance Project Plan (QAPP) Addendum for the Ravenna Army Ammunition Plant, Ravenna, OH, Environmental Quality Management, January, 2012. The following documents were used as needed to supplement the project documentation: The United States Department of Defense (DoD) Quality Services Manual (QSM) for Environmental Laboratories, Version 4.1, and the United States Army Corps of Engineers (USACE), Louisville District Quality Systems Manual Supplement (LS), EPA National Functional Guidelines (NFG) for Organic Data Review, EPA-540/R-08-01, June 2008, NFG for Inorganic Data Review, EPA-540/R-04-004, October 2004, Analytical Methods, and Laboratory Standard Operating Procedures. The QC criteria provided in the reference documents represent accuracy and precision performance goals for each analytical method. QC criteria reviewed for each method are listed below, along with any outliers.

All analytical results have been verified against compliance requirements specified in the project QAPP, QSM, LS, associated analytical methods and/or SOPs, as appropriate, and reported by the laboratory as directed by the DoD QSM.

Checklists used in review of the data have been presented in Appendix 1. Outliers have been noted below and results requiring qualification, as a result of this verification process, have been summarized in Appendix 2.

The completeness objective for the project was 90%. The completeness objective was met for this SDG, 100%. Limitations, if any, on the data are indicated with qualifiers detailed below.

### Hexavalent Chromium - 218.6

The following QC criteria were reviewed and determined to be acceptable, except as noted below:

- Holding times, preservation, sample handling
- Initial Calibration Criteria including SPCC and CCC compounds
- ICV/CCV criteria
- Retention times
- MRL verification criteria
- · Method and Field blank Criteria
- · Field duplicate RPD criteria
- Laboratory Control Sample criteria
- · Matrix Spike Recovery Criteria and RPD

#### Matrix Spike Analysis

The matrix spike and spike duplicate analyzed on sample FWGSCFmw-002-0327-GF recovered above laboratory control limits of 90-110% at 111% for the matrix spike and at 114% for the matrix spike duplicate. The hexavalent chromium results for samples FWGLL3mw-244-0323-GF and FWGEQUIPRINSE2-0341-GW were qualified as estimated, "J".

### Blanks

### **Data Verification Summary**

Site: Ravenna Army Ammunition Plant

Sampling Event: August 2013 Date: October 2, 2013

Workorder: R1306055 Revision: 0

Hexavalent chromium was detected in FWGEQUIPRinse2-0341-GW at  $0.043\mu g/L$ . No qualification of the data was required as the detected hexavalent chromium concentrations were greater than 5x blank contamination.

### ALS ASP/CLP Batching Form/Login Sheet

Yes

Yes

Client Proj #: 30174.0016.001.10.01

Batch Complete:

Date Revised:

Submission: R1306055

Diskette Requested:

Date Due: 9/4/13

Client: E

Environmental Quality Managemen Date: 10/14/13

Protocol: MCAWW

Client Rep: JJAEGER

Custody Seal: Present/Absent:

Shipping No.:

Project: RVAAP-66

Shipping No.:

Chain of Custody: Present/Absent:

SDG #: FWGLL3mw-244-0323-GF

CAS Job #	S Job # Client/EPA ID Matrix Requested Par		Requested Parameters	Date Sampled	Date Received	pH (Solids)	% Solids	Remarks Sample Condition
R1306055-001	FWGLL3mw-244-0323-GF	Water	218.6 LL	8/20/13	8/21/13			
R1306055-002	FWGLL12mw-247-0366-GF	Water	218.6 LL	8/20/13	8/21/13			
R1306055-003QC	FWGSCFmw-002-0327-GF	Water	218.6 LL	8/20/13	8/21/13			
R1306055-004	FWGLL12mw-DUP3-0338-GF	Water	218.6 LL	8/20/13	8/21/13			
R1306055-005	FWGEQUIPRinse2-0341-GW	Water	218.6 LL	8/20/13	8/21/13	- 1		

Folder Comments: Need MRL check & ADR.net checker, DoD report



# **SDG NARRATIVE**

ALS Environmental - Rochester, NY 1565 Jefferson Rd, Bldg. 300, Suite 360, Rochester, NY 14623 Phone (585) 288-5380 Fax (585) 288-8475 www.alsglobal.com

#### CASE NARRATIVE

Client:

EQM

Service Request:

R1306055

Project:

RVAAP - 66

Project Number:

.....

Sample Matrix:

Water

Date Received:

08/21/13

All analyses were performed consistent with the quality assurance program of ALS Environmental. This report contains analytical results for samples designated for Tier IV deliverables. When appropriate to the method, method blank and LCS results have been reported with each analytical test.

### Sample Receipt

Samples were collected on 08/20/13 and received at ALS on 08/21/13 at a cooler temperature of 2.1 C in good condition except as noted on the cooler receipt and preservation check form. The samples were stored in a refrigerator at 1 - 6 °C upon receipt at the laboratory. All Dissolved parameters were filtered in the field except as noted on the chain of custody.

### Inorganic Analysis

Samples were analyzed for Hexavalent Chromium by method 218.6 Low Level.

All initial and continuing calibration criteria were acceptable.

Site specific QC was performed on FWGSCFmw-002-0327-GF as requested. All Matrix Spike/Matrix Spike Duplicate (MS/MSD) recoveries were outside limits and have been flagged with an "*". All Laboratory Control Sample (LCS) recoveries and RPD's were acceptable.

The Method Blanks associated with these analyses were free of contamination.

No other analytical or QC problems were encountered.

I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the details conditioned above. Release of the data contained in this data package has been authorized by the Laboratory Manager or his designee, as verified by the following signature.

Analytical Report

Client:

**Environmental Quality Management** RVAAP-66/30174.0016.001.10.01

Project: Sample Matrix:

Water

Service Request: R1306055 Date Collected: 8/20/13 1229

Date Received: 8/21/13

Sample Name:

FWGLL3mw-244-0323-GF

Lab Code:

R1306055-001

Basis: NA

Analyte Name	Method	Result Q	Units	MRL	MDL	Dilution Factor		Date Analyzed	Note
Chromium, Hexavalent, Dissolved	218.6 LL	0.361	μg/L	0.020	0.010	1	NA	9/17/13 16:44	

Analytical Report

Client: Project: Environmental Quality Management RVAAP-66/30174.0016.001.10.01

Sample Matrix:

Water

Service Request: R1306055 Date Collected: 8/20/13 1301 Date Received: 8/21/13

Sample Name:

FWGLL12mw-247-0366-GF

Lab Code:

R1306055-002

Basis: NA

Analyte Name	Method	Result Q	Units	MRL	MDL	Dilution Factor		Date Analyzed	Note
Chromium, Hexavalent, Dissolved	218.6 LL	0.020 U	μg/L	0.020	0.010	1	NA	9/17/13 16:52	

Analytical Report

Client: Project: **Environmental Quality Management** RVAAP-66/30174.0016.001.10.01

Sample Matrix:

Water

Service Request: R1306055 Date Collected: 8/20/13 1208

Date Received: 8/21/13

Sample Name:

FWGSCFmw-002-0327-GF

Lab Code:

R1306055-003

Basis: NA

Analyte Name	Method	Result Q	Units	MRL	MDL	Dilution Factor		Date Analyzed	Note
Chromium, Hexavalent, Dissolved	218.6 LL	0.020 U	μg/L	0.020	0.010	1	NA	9/17/13 17:00	

Analytical Report

Client:

Environmental Quality Management

Project:

RVAAP-66/30174.0016.001.10.01

Sample Matrix: Sample Name: Water

FWGLL12mw-DUP3-0338-GF

Lab Code:

R1306055-004

Service Request: R1306055

Date Collected: 8/20/13 1341

Date Received: 8/21/13

Basis: NA

						Dilution	n Date	Date	
Analyte Name	Method	Result Q	Units	MRL	MDL	Factor	Extracted	Analyzed	Note
Chromium, Hexavalent, Dissolved	218.6 LL	0.020 U	μg/L	0.020	0.010	1	NA	9/17/13 17:09	

Analytical Report

Client:

Environmental Quality Management

Project:

RVAAP-66/30174.0016.001.10.01

Sample Matrix:

Water

FWGEQUIPRinse2-0341-GW

Sample Name: Lab Code:

R1306055-005

Service Request: R1306055

**Date Collected:** 8/20/13 1342

Date Received: 8/21/13

Basis: NA

Analyte Name	Method	Result Q	Units	MRL	MDL	Dilution Factor		Date Analyzed	Note
Chromium, Hexavalent, Dissolved	218.6 LL	0.043	μg/L	0.020	0.010	1	NA	9/17/13 17:17	

<b>A</b>	
A	
ALS Environmental	

(	ALS Environmental	HAIN OF  Jefferson Roa	CUSTO d, Building 30	DY/LA ED E2/ 50, Suite 36	BORA C E 0 · Roche	TO XP ester,	RY AI RES NY 14623	VAL 3 +1	YSI 585 28	S R 62 8 53	1EQ 780 +1	# 585	ST 288	FOI 8475 (1	RM ax)	PAGE	07 	32 	.5 _of	Ĺ	
	RVAAPloLo	Project Nu	174.00/	6.001	10,0	1		Α	NALYSI	S REC	QUEST	ED (In	clude	Method	Numbe	er and (	Contair	ner Pr	eservati	ve)	
	Project MANDER	Report CC					SERVATIVE							2	0	T	T				
	Company/Address	America	4-0			RS	/	7	7	-/	$\overline{}$	7	7			/ /		/	//	7	Preservative Key 0. NONE 1. HCL
	1000 ARILLON BU	VD				NTAINE	/					/ _E			' /					/	2. HNO ₃ 3. H ₂ SO ₄ 4. NaOH
	CINCINNATI O	# 4524	<del>1</del> 0			NUMBER OF CONTAINERS			/ &/		/ /	METALS, DISSO.	TIS BOOK			/ /	/ /	/ ,	/ /	,	5. Zn. Acetate 6. MeOH 7. NaHSO ₄
	513742X1256	adro	igotta@	eam.co	m	MBER	10 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8		PESTICIOES   80   80   80   80   80   80   80   8	8/	\$ 3.8 5 \\ \( \o \)	\$ 5.00 P		7	/ /					{	8 Others Sol
(	Sampler's Signitude		Rinked Name	Lea		Š	\? <u>`</u> \$\$\\$	<i>ૄૄ૾ૢ૽/હેંૄ</i>		12,8	Est W	Cst to		<u> </u>	$\bot$		_	_	/ AI		REMARKS/ ATE DESCRIPTION
	CLIENT SAMPLE ID	FOR OFFICE USE ONLY LAB ID	DATE SAME	TIME	MATRIX	Ĺ.								$\perp$			ļ				
	FUGU3mw-244-0323-GF		8/20/3	130	GW	-		_	$\sqcup$		_		X	-	$\perp$	_	<u> </u>				
ı	PUBLIZMUS-247-0366-GF PUBSCFMUS-002-0827-GF		8/2013	1208	GW GW	+		+	$\vdash$	$\dashv$			Št	-		+			MSI	ısr	<u> </u>
	HUBULIZMU-DUP3-0338-6H		8 2018	134	GW	)							X								
	PWGEOUPRINX 2-034-64	}	8/20/13	1342	GN	1						`	×	+	_	-		ļ	No	FI	LTERED
	.:	<del></del>				_		+								+-	-	-	<del> </del>		· · · · · · · · · · · · · · · · · · ·
l																					
								-			1										
I					-	_		┼				4	8	20/	10	-	ļ .	_	-	—	
ł	SPECIAL INSTRUCTIONS/COMMENTS		[				<del>                                     </del>	URNAR	OUND F	REQUI	REMEN	TS.	T.	REPORT	REQUI	BEMEN	TS	+	- INV	DICE II	NFORMATION
	SHORT HO						_		H (SURCH					I. Results							
	SHUR I THE						_		y2 c	•	_3 day		ı —	II. Results			edl	PO	#		
1			_						tav	•	אם גב	/	l	III. Results			-	BILI	L 10:		
1	TIED EUTE	WELL ON	cont R	in In	٠.		ı		IWY	VV			ì	Summarle	S						

FIEUS PIU	DC-5 exapt to		REQUESTED REPORT DATE	IV. Data Validation Report with Raw Da	ıta
See QAPP				R1	306055 5
STATE WHERE SAMPLES WERE CO	DLLECTED OHO			EQUILIE TES RYAAP-	
RELINQUISHED BY	RECEIVED BY	RELINQUISHED BY	RECEIVED BY	RELINQUISHED	
	<b>/</b>				rac trans this period aftic being actor experiences
	Signature	Signature	Signature	Signature	Signature
WAYNE UN INDUOTED	Printed Name FED EXP	Printed Name	Partited Name	Printed Name	Printed Name
Firm	Firm	Firm	Firm ALS	Firm	Firm .
Date/Time 19 19013	Date/Time	Date/Time	Date/Times 21 13 0720	Date/Time	Date/Time



# Cooler Receipt and Preservation Check Form

Project	Client		Far	1	Fo	lder Number_	८१३- ८	055	_·						
Cooler	received or	<u>_</u> &	21	by:_ JES	COUR	IER: ALS	UPS	PEDEX	VELOC	ITY CLIENT					
1. 2. 3.	Were custo	dy p	apers	on outside of coo properly filled of in good condition	out (ink,	- ,			NO NO NO						
				alinity, or Sulfide	•	,	bubbles	? YES	NO	N/A					
		_		ks present?	7114 7 0 01	Piniionii ali	0400103	MES	NO	حت					
			-	s originate?				ALS/RO	E, CLI	ENT _					
				eceived as:		lk Jar Enco	ore '	TerraCore	Lab503	5set NA					
8.	Temperatu	re of	coole	er(s) upon receip	t: <u> </u>										
				ithin 0° - 6° C?:	<b>(Y</b> )			Y N	ΥN	Y N					
	If No, Exp	lain	Belo	w Date/Time	Temper	atures Taken:		5/21/13	080						
	Thermome	ter II	D: 17	GUN#3 / IR G	GUN#4	Reading Fr	rom: Te	mp Blank	/ Samp	le Bottle					
				e packing/ice co	ndition	&Client Ap	proval t	o Run Sam							
1	mples held		_		ROST		<u> </u>	1 8 21	_ at <i>O</i>	809					
5035 samples placed in storage location , by on at															
RC Seco	Re Secondary Review NUS 5/24/13														
Cooler Breakdown: Date: 8121/13 Time: 1750 by: 8w															
1.	Were all bo	ttle l	abels	complete (i.e. ar	nalysis,	preservation,	etc.)?	YES	NO						
				nd tags agree wi		• • •			NO						
				ers used for the t					NO	_					
	•			ttes / Tubes Intac	ct Ca	anisters Press	urized	Tedlar®	Bags Inf	flated N/A					
	any discre	oanci	es:	T - 4 D i 1	I E	[ a	Vol.	Lot Added	Final	V A11					
pН	Reagent	YES	МО	Lot Received	Exp	Sample ID	Added	Lot Added	pH	Yes = All samples OK					
≥12	NaOH														
\$2	HNO ₃		Ĺ						<u> </u>	No =					
≤2.	H ₂ SO ₄				1					Samples were					
<4	NaHSO₄				<u> </u>					preserved at					
Residual	For TCN			If present, contact	PM to					lab as listed					
Chlorine (-)	Phenol and 522		l i	add ascorbic acid Or sodium sulfite	(522)					DM OV 4					
				Or sourcem surfice	(322)	*Not to be te	sted before	re analysis – p	H	PM OK to Adjust:					
	Na ₂ S ₂ O ₃	- 1	- 1												
	Na ₂ S ₂ O ₃ Zn Aceta	-	-		1			VOAs or Ger	Chem						
	Na ₂ S ₂ O ₃ Zn Aceta HCl	*	-			tested and red on a separate			Chem						
Rottle lot	Zn Aceta HCl	*	+ + la	Sel					Chem	· · · · · · · · · · · · · · · · · · ·					



# Ravenna, OH Data Review Checklist

Project Number: 030174.0016 Sample Event: August 2013 Data Reviewer/Date: Angye Dragotta/October 2, 2013

SDG: R1306055 Analysis: EPA 218.6

Review Questions:	Yes	No	N/A	Comments	QUAL/Criteria
Did Chain-of-Custody information agree with laboratory report?	1	-			
2. Were samples preserved properly and received in good condition?	1				pH verified to be with 9.3-9.7 with 24 hours of sampling, 4°C
3. Were holding times met?	1				J/UJ/R
4. Were sample storage requirements met?	1				
5. Does the initial calibration curve consist of at least 3 standards and one blank?	1				
6. Was a MRL Level Verification performed at the beginning of every daily sequence? Were results within 70-130%?	~				>130%=J; 65-70%=J/UJ; <65%=J/R
7. Was the ICB analyzed after the ICV with results <1/2 the MRL?	1				< 5x = U
8. Was a CCV run at the beginning and end of the analytical sequence?	1				
9. Were the CCV results 95-105%?	1				>110%=J; <90%=J/UJ;
10. Was a method blank prepared and analyzed with each batch?	1				
11. Were target analytes detected in the method blank?		1		Checked by ADR.	LCG Table 10 <5x=B
12. Was a field blank collected and analyzed?	1	H		Hexavalent chromium was detected in FWGEQUIPRinse2-0341-GW at 0.043µg/L. No qualification of the data was required as the detected hexavalent chromium concentrations were greater than 5x blank contamination.	
13. Were target analytes in the field blank analyses <1/2 the MRL?	1				<5x=B
14. Was a field duplicate analyzed? Were the RPDs ≤30%?	1	jiii		Checked by ADR.	>30% = J
15. Was an LCS prepared and analyzed with each batch?	1				
16. Were the LCS recoveries within lab limits%?	1			Checked by ADR.	>UL=J; <ll=j td="" uj;<=""></ll=j>

## Ravenna, OH Data Review Checklist

Project Number: 030174.0016 Sample Event: August 2013

Data Reviewer/Date: Angye Dragotta/October 2, 2013

SDG: R1306055 Analysis: EPA 218.6

Review Questions:	Yes	No	N/A	Comments	QUAL/Criteria
17. Was a MS prepared once per every 10 samples?	1				LCG Table 10
18. Was the MS parent a Ravenna sample?	1			7	
19. Were MS/MSD recoveries within lab limits%?		-		The matrix spike and spike duplicate analyzed on sample FWGSCFmw-002-0327-GF recovered above laboratory control limits of 90-110% at 111% for the matrix spike and at 114% for the matrix spike duplicate. The hexavalent chromium results for samples FWGLL3mw-244-0323-GF and FWGEQUIPRINSE2-0341-GW were qualified as estimated, "J".	>UL=J; <ll=j td="" uj;<=""></ll=j>
20. Were reported sample concentrations within calibration range?	1				

References:

DoD Quality Systems Manual (QSM), version 4.1, October 2010

Louisville DoD Quality Systems Manual Supplement (LS), Version 1 March 2007

Final Facility Wide Groundwater Monitoring Program, RVAAP-66 Facility Wide Groundwater Quality Assurance Project Plan (QAPP) Addendum for the Ravenna Army Ammunition Plant, Ravenna, OH, Environmental Quality Management, January 2012

Final Facility Wide Quality Assurance Project Plan for Environmental Investigations Groundwater for the Ravenna Army Ammunition Plant, Ravenna, OH, SAIC, February 2011

Additional Comments:



# **Overall Qualified Results**

Analytical Method	Field Sample ID	Matrix	Sample Type	Analyte	RL	Lab Result	Unc / Error	Overall Qualifier	Units	Reason Code
SDG: R130605	5									
218.6	FWGEQUIPRinse2-0341- GW	AQ	EB		*************			************		
				Hexavalent Chromium	0.020	0.043		J	ug/L	Ms
218.6	FWGLL3mw-244-0323-GF	AQ	N				********	*********		
				Hexavalent Chromium	0.020	0.361		J	ug/L	Ms

# **Data Qualifier Summary**

Lab Reporting Batch ID: R1306055 Laboratory: CAS_R

EDD Filename: PrepR1306055 eQAPP Name: RVAAP Cr6+ rev1

Method Category: METALS

Method: 218.6 Matrix: AQ

Sample ID: FWGEQUIPRinse2-0341-GW Collected: 8/20/2013 1:42:00 Analysis Type: RES/DIS Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
HEXAVALENT CHROMIUM	0.043		0.010	MDL	0.020	PQL	ug/L	J	Ms

Sample ID: FWGLL3mw-244-0323-GF Collected: 8/20/2013 12:29:00 Analysis Type: RES/DIS Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
HEXAVALENT CHROMIUM	0.361		0.010	MDL	0.020	PQL	ug/L	J	Ms

10/11/2013 4:22:07 PM ADR version 1.7.0.207 Page 1 of 2

^{*} denotes a non-reportable result

# **Data Qualifier Summary**

Lab Reporting Batch ID: R1306055

EDD Filename: PrepR1306055

Laboratory: CAS_R

eQAPP Name: RVAAP Cr6+ rev1

# Reason Code Legend

Reason Code	Description	
Ms	Matrix Spike Upper Estimation	

# APPENDIX D

# INVESTIGATION-DERIVED WASTE CHARACTERIZATION AND DISPOSAL PLAN



John R. Kasich, Governor Mary Taylor, Lt. Governor Scott J. Nally, Director

November 21, 2013

Mr. Brett Merkel Army National Guard Directorate ARNGD-ILE Clean Up 111 South George Mason Drive Arlington, VA 22203 CERTIFIED MAIL 7012 3050 0001 8838 1267

AND

Mr. Mark Patterson Installation Manager Ravenna Army Ammunition Plant 8451 State Route 5 Ravenna, OH 44266 CERTIFIED MAIL 7012 3050 0001 8838 5075

RE: RAVENNA ARMY AMMUNITION PLANT, PORTAGE/TRUMBULL COUNTIES, APPROVAL, INVESTIGATION DERIVED WASTE CHARACTERIZATION AND DISPOSAL PLAN, FWGWMP, DATED NOVEMBER 7, 2013, OHIO EPA ID # 267-000859-036

Dear Mr. Patterson:

The Ohio Environmental Protection Agency (Ohio EPA) has received and reviewed the "Investigation Derived Waste Characterization and Disposal Plan (IDW) for the August 2013 Sampling Event" associated with the Facility-Wide Groundwater Monitoring Program. The Plan is for waste generated during the ground water sampling event of August 2013 at the Ravenna Army Ammunition Plan (RVAAP), Ravenna, Ohio. The waste included three 55 gallon drums of purge water and decontamination waters associated with the event. This document was received at Ohio EPA, Northeast District Office (NEDO), Division of Environmental Response and Revitalization (DERR) on November 15, 2013, and the cover letter is dated November 7, 2013. The document was prepared for the U.S. Army Corps of Engineers - Louisville District by Environmental Quality Management, Inc. (EQM) under Contract No. W912QR-11-F-0266.





Date:

MR. BRETT MERKEL, ARMY NATIONAL GUARD MR. MARK PATTERSON, RAVENNA ARMY AMMUNITION PLANT NOVEMBER 21, 2013 PAGE 2

The report is approved and Ohio EPA concurs that the IDW (3 drums of waste water), generated August 2013, may be disposed of as non-hazardous and sent offsite to a permitted water treatment facility.

If you have any questions, please call me at (330) 963-1292.

Sincerely,

Kevin M. Palombo

**Environmental Specialist** 

Kunnful.

Division of Environmental Response and Revitalization

KP/nvr

cc: Katie Tait, OHARNG RTLS

Kevin Sedlak, ARNG-RVAAP

Cullen Grasty, USACE

ec: Nancy Zikmanis, Ohio EPA, NEDO, DERR

Rod Beals, Ohio EPA, NEDO, DERR Justin Burke, Ohio EPA, CO, DERR

	* RE CERTIFICATION REQUES
VEXOR Technology, Inc. 955 West Smith Road Medius, Ohio 44256 Phone: 330-721-9773 FAX: 330-721-9438 MATERIAL CHAR	Approval# 1345 Sample # Sales Rep Date Submitted 8 W/V
BPA ID# OHD 077772895  www.vexortechnology.com	E-mail: Vexorohio@aol.com
Generator RAVGNNA ARMY AMMVNITIONS FLAAIT Site Address BUSI TO ISTO G City PAVENNA State DL ZIP 44266 Phone BOSB T3(2 Fax BOSB 3031 BPA ID# HIS 20020 T36 SIC Code Technical Conject TOHN MULCIZ — EXPL Title PLATEST MANNER - mail jmiller Degru Lord	Bill To Name MERGIO ENVIRONMENTILL SYDS. Site Address 1021 ST. ENGIN AVE. City KENT State Off ZIP HAND Phone Market From Sacretary Business Contact Offices ARCHARL Title File MANGEER comail Darchacking emerglo-environmental com
MATERIAL DE	SCRIPTION
Name and Description of Material: MONTOKING WELL FURGE Process Generating Material: GLOUNOWHEEL FROM NELLS Proper DOT shipping name: NON DOT RESOLATED MAYE Method of Shipment: Bulk & Drum Tote Cubic Yd Box Estimated Annuel Volumo: Cubic Yards Tons Gallons Frequency: One Time Only Daily Weekly Monto	U.S. HPA Hazardous Waste;Yes X_No  SCIPC.  Other/Explain:
Special Handling Instructions: NA.	Davida
Preferred Disposal Method: Landfill Waste to Energy	Recoyoling Officer
a) Physical State: Solid Semi-solid Powder Liquid b) Reactivity: Water reactive Acid Reactive Alkaline Reactive c) Flash Point, F: <72. >72-100 >100-140 >140-200 d) S. G./Donsity 1,0 a) pH: <22 >2-6 >6-9 f) Odor: None Mild Strong: Describe: b) Total Organic Halogen (TOX) 0 ppm >1000 ppm* If this mate OH., please complete the "USBD OH." ADDENDUM and attach to this profil f) PCB Content: 0 ppm 1-49 ppm* equal to or > 50 ppm *	Phases  cOxidizerAutosetting \( \sum_{\text{none}} \)  0 > 200 \( \sum_{\text{NA}} \)  >9 < 12,5NA
MATERIAL COMPOSITION: List all components, add up to 100%.  Constituent Range % (wt-yol)  Min Max  COUNDALTER  A combined total should equal 100%  Above is based on: Generator Knowledge Analytical Data MSDS  Please attach analysis, TCLP information and appropriate MSDS sheets  SAMPLE SUBMITTED WITH THIS PROPILE; Yes No.	Bvaluated by: HYMG  Approved — Treatment: WW  Rejected — Reason:  Data Completed: O8   G        Prico: /Unit  Approved By: Date: 8   6
GENERATOR C	ERTIFICATION  To the series and accurate description of the material being offered for disposal.

I hereby cartify that to the best of my knowledge and belief, the information contained herein is a true and accurate description of the material being office disposal. Samples of this material submitted to VEXOR are representative of the material described in this profile. I further certify that by utilizing this profile, neither myself nor any other employee of the company will deliver for treatment, processing or recycling or attempt to deliver for same any material that is classified as toxic waste, hazardous waste, medical or inflectious waste or any other material that his facility is prohibited from accepting by law.

On the company will deliver for treatment, processing or recycling or attempt to deliver for same any material that is classified as toxic waste, hazardous waste, medical or inflectious waste or any other material that his facility is prohibited from accepting by law.

Authorized Representative Name (Printed & Mark Patterson

Authorized Representative Signatura Marke Patter

Company & U.S. Army Ravenna Army Marker Dail 8/3/11

Ammo. Plant

2/04

#### **DRAFT**

# FACILITY-WIDE GROUNDWATER MONITORING PROGRAM RVAAPP-66 FACILITY-WIDE GROUNDWATER

# INVESTIGATION-DERIVED WASTE CHARACTERIZATION AND DISPOSAL PLAN AUGUST 2013 SAMPLING EVENT REPORT

# RAVENNA ARMY AMMUNITION PLANT, RAVENNA, OHIO

**November 13, 2013** 

GSA Contract Number GS-10F-0293K Delivery Order W912QR-11-F-0266

# Prepared for:

U.S. Army Corps of Engineers 600 Martin Luther King Jr. Place Louisville, Kentucky 40202

Prepared by:

Environmental Quality Management, Inc. 1800 Carillon Boulevard Cincinnati, Ohio 45240

1		TABLE OF CONTENTS
2		
3	Tabl	e of Contentsi
4	Acro	onymsii
5	1.0	Introduction
6	2.0	Operational History and Waste Generation
7	3.0	Management of Environmental Media
8	4.0	Discussion of Analytical Results4
9	5.0	Recommendations for Disposal5
10		5.1 Purge Water5
11		5.2 Decontamination Fluids6
12		5.3 Summary of Disposal Recommendations6
13	6.0	References
14		
15		
16		TABLES
17		
18	2-1	IDW Inventory of Drums
19	5-1	Detected Analytical Results When Compared to USEPA Regulatory
20		Characteristic Levels (40 CFR 261.20 - 24)
21	5-2	Summary of Drum Containers, TCLP Criteria, and Disposal
22		Recommendations6
23		
24		
25		APPENDICES
26		
27	A	Investigation-Derived Waste Analytical Report
28		

1		
2		ACRONYMS
3		
4	AOC	Area of Concern
5	B12	Building 1200
6	BKG	Background Well
7	CBL	C Block Quarry
8	CBP	Central Burn Pits
9	EBG	Erie Burning Grounds
10	EQM	Environmental Quality Management, Inc.
11	EPA	Environmental Protection Agency
12	$^{\mathrm{o}}\mathrm{F}$	Degrees Fahrenheit
13	FWGWMPP	Facility-Wide Groundwater Monitoring Program Plan
14	FWSAP	Facility-Wide Sampling and Analysis Plan
15	gal	Gallon
16	IDW	Investigation-derived Waste
17	mg/L	Milligram per Liter
18	NTA	NACA Test Area
19	ODA2	Open Demolition Area #2
20	RCRA	Resource Conservation and Recovery Act
21	RQL	Ramsdell Quarry Landfill
22	RVAAP	Ravenna Army Ammunition Plant
23	SAP	Sampling and Analysis Plan
24	SCF	Sharon Conglomerate Formation
25	SVOC	Semi-volatile Organic Compounds
26	TCLP	Toxicity Characteristic Leaching Procedure
27	USACE	United States Army Corps of Engineers
28	VOC	Volatile Organic Compounds
29	WBG	Winklepeck Burning Grounds

1	1.0 INTRODUCTION
2	Instantiantian anticitian and anticitian and anticitian the February W. 1. Communication
3	Investigative activities were conducted during the Facility-Wide Groundwater
4	Monitoring Program sampling events in August 2013 at the Ravenna Army Ammunition
5	Plant (RVAAP), Ravenna, Ohio, resulting in the generation of investigation-derived
6	wastes (IDW) comprising purge water and equipment decontamination wastewater. The
7	IDW purge water was generated in the course of field activities at each well. The IDW
8	decontamination waters were generated from the cleaning and decontamination of non-
9	dedicated equipment used to sample the wells. The purpose of this report is to
10	characterize and classify the IDW for proper disposal. The report includes:
11	
12	<ul> <li>A summary of the IDW generated and its origin.</li> </ul>
13	<ul> <li>A review of the analytical results used for waste characterization.</li> </ul>
14	• Classification of the IDW per the Facility Wide Sampling and Analysis Plan
15	(FWSAP).
16	<ul> <li>Recommendations for disposal.</li> </ul>
17	
18	This document follows guidance established by the United States Army Corps of
19	Engineers (USACE) and the Ohio Environmental Protection Agency (EPA) regarding
20	IDW disposition at RVAAP.
21	•
22	

#### 2.0 OPERATIONAL HISTORY AND WASTE GENERATION

Information regarding the operational history and suspected contaminants for the Facility-Wide Groundwater Monitoring Program Plan (FWGWMPP) is presented in Section 1.2 of the *Final Part 1 - Sampling and Analysis Plan Addendum for the Facility-Wide Groundwater Monitoring Program Plan at the Ravenna Army Ammunition Plant, Ravenna, Ohio* (SAP Addendum; Portage, 2004). Section 4.6 of the SAP Addendum describes procedures used for sampling and managing IDW at RVAAP.

Water (purged groundwater and decontamination water) IDW was generated during the August 2013 sampling event (53 wells). The purge water collected from the sampled areas of concern (AOCs) was stored in drums labeled for purge water disposal. Purge water was generated in accordance with the FWSAP, Section 5.4.4.2 (SAIC, 2011) under the micropurging criteria. Decontamination water was generated from the washing, rinsing, and decontamination procedures used for all non-dedicated sampling equipment. The decontamination water was stored in a drum separate from the purge water. These decontamination procedures are described in Section 5.4.8 of the FWSAP.

The drum container label, type and size of the drum container used, estimated volume per drum, and the source of purge wastewater or decontamination fluid is presented in Table 2-1.

Table 2-1. IDW Inventory of Drums

Drum	Drum Type		Estimated	Location/
Label	& Size	Contents	Volume	Source
EQM 2013-4	55-gal Steel	Decontamination/Rinse Water	~35 gallons	Equipment Rinse/ Decontamination
EQM 2013-5	55-gal Steel	Purge Water	~55 gallons	Load Lines 1, 2, 3, 10, and 12, EBG, ODA2, B12, NTA, RQL, WBG, BKG, SCF, and FWG wells
EQM 2013-6	55-gal Steel	Purge Water	~55 gallons	Load Lines 1, 2, 3, 10, and 12, EBG, ODA2, B12, NTA, RQL, WBG, BKG, SCF, and FWG wells

 EBG = Erie Burning Grounds ODA2 = Open Demolition Area 2 WBG = Winklepeck Burning Grounds

B12 = Building 1200

 $RQL = Ramsdell \ Quarry \ Landfill$ 

NTA = NACA Test Area

FWG = New Facility-Wide Groundwater wells SCF = Sharon Conglomerate Formation

1 2 3	3.0 MANAGEMENT OF ENVIRONMENTAL MEDIA
4	All environmental media were managed in a manner that minimized potential risk to
5	human health and the environment. Investigation-derived waste was handled as
6	nonhazardous material pending waste characterization and classification based on
7	analytical results. The FWSAP and the Sampling and Analysis Plan (SAP) Addendum
8	describe approved procedures used for containerizing and handling IDW.
9	
10	All purged groundwater IDW generated from each micropurging event was placed into a
11	55-gal drum as previously agreed upon by RVAAP, USACE, and Ohio EPA. The purge
12	water was transferred daily from each well location after sampling via closed-top 5-gal
13	buckets to the appropriately labeled 55-gal drum located and staged on a wooden pallet
14	inside Building 1036.

1	4.0 DISCUSSION OF ANALYTICAL RESULTS
2	
3	As described in Section 8.4 of the FWSAP (IDW Characterization and Classification for
4	Disposal), all IDW were characterized for disposal by taking composite samples collected
5	from each of the segregated waste streams. There were only two segregated waste
6	streams during this sampling event that required characterization: one for the generated
7 8	purge water and one for the decontamination wastewater. A composite sample was taken of each waste stream using a disposable bailer until a total of approximately
9	4 liters was withdrawn in equal amounts from all drums of that particular waste stream.
10	Each waste stream composite sample was submitted to TestAmerica Laboratories in
11	North Canton, Ohio, for full toxicity characteristic leaching procedure (TCLP) analysis in
12	accordance with the FWSAP using the following methods:
13	
14	<ul> <li>TCLP mercury by EPA Method SW-846 1311/7470A.</li> </ul>
15	• TCLP metals (silver, arsenic, barium, cadmium, chromium, lead, and selenium)
16	by EPA Method SW-846 1311/6010B.
17 18	<ul> <li>TCLP semivolatile organic compounds (SVOCs) by EPA Method SW-846 1311/8270C.</li> </ul>
19	• TCLP volatile organic compounds (VOCs) by EPA Method SW-846 1311/8260B.
20	TCLP pesticides by EPA Method SW-846 1311/8081A
21	TCLP herbicides by EPA Method SW-846 1311/8151A
22	<ul> <li>Total cyanide by EPA Method SW-846 9012A</li> </ul>
23	<ul> <li>Sulfide by EPA Method SW-846 9034</li> </ul>
24	<ul> <li>Flashpoint by EPA Method SW-846 1010</li> </ul>
25	pH by EPA Method SW-846 9040B
26	
27	A trip blank was submitted with the samples and analyzed for VOCs. The IDW
28	analytical results are presented in Appendix A.

# 5.0 RECOMMENDATIONS FOR DISPOSAL

Table 8-1 in the FWSAP presents the maximum concentrations of contaminants for the toxicity characteristic for hazardous wastes as per 40 CFR 261.24. Analytical results for the IDW generated during the 2013 groundwater sampling event were compared against these criteria to determine whether the waste streams generated were potentially hazardous or non-hazardous.

## 5.1 Purge Water

During micro-purging of the monitoring wells, liquid IDW was generated and sampled. The analytical results for the purged groundwater were compared to the regulatory levels from Table 8-1 in the FWSAP. The regulatory criteria for Resource Conservation and Recovery Act (RCRA) hazardous waste determinations were not exceeded. Table 5-1 presents the detected results compared to the regulatory characteristics for hazardous wastes as per 40 CFR 261.24.

EQM recommends that the drums containing purged groundwater be classified as non-hazardous and be sent offsite for disposal to a permitted water treatment facility in accordance with Section 8.0 of the FWSAP.

Table 5-1. Detected Analytical Results When Compared to USEPA Regulatory Characteristic Levels (40 CFR 261.20 - 24)

Sample ID	Detected Contaminant	Detected Result (mg/L)	Regulatory Level ¹ (mg/L)	Above Regulatory Yes/No
	Barium	0.045 J B	100	No
FWG-IDW- MWPURGEAUG2013	Flashpoint	>180°F	<140°F	No
WWFURGEAUG2013	pH ²	7.68	<2 or >12.5	No
	Arsenic	0.0036 J	5.0	No
	Barium	0.020 J B	100	No
FWG-IDW-	Chromium	0.039 J	5.0	No
MWDECONAUG2013	Lead	0.0056 J	5.0	No
WWDECON/1002013	Flashpoint	>180°F	<140°F	No
	pH ²	9.25	<2 or >12.5	No
TRIP BLANK (totals analysis)	No Detections	NA	NA	NA

^{1 =} USEPA Regulatory Characteristic Levels (40 CFR 261.20 through 24).

^{2 =} pH measured in Standard Units (S.U.).

J =estimated result. Result is less than reporting limit.

B = blank contamination.

NA = not applicable.

#### **5.2** Decontamination Fluids

A composite sample was collected of the decontamination fluids generated during cleaning of non-dedicated sampling equipment. The analytical results indicated that all analytes were below TCLP threshold values. Therefore, the decontamination wastewater should be classified as non-hazardous and sent offsite to a permitted water treatment facility for disposal in accordance with Section 8.0 of the FWSAP.

# 5.3 Summary of Disposal Recommendations

It is recommended that all drums be classified as contaminated but non-hazardous. They should be sent offsite to a permitted water treatment facility for disposal. The TCLP test results for both composite samples show that no chemical was detected at hazardous waste levels. Table 5-2 presents a summary of each drum and the recommended disposal options for the waste streams.

Table 5-2. Summary of Drum Containers, TCLP/Characteristic Waste Criteria, and Disposal Recommendations

#### = 15 <b>P</b> 0.5## 114 0.5### 114 0.5###						
Drum Container		TCLP	Disposal			
Label	Media	Criteria	Recommendation			
EQM 2013-4	Water	Maximum concentration of contaminants NOT exceeded	Offsite disposal as non- hazardous waste			
EQM 2013-5	Water	Maximum concentration of contaminants NOT exceeded	Offsite disposal as non- hazardous waste			
EQM 2013-6	Water	Maximum concentration of contaminants	Offsite disposal as non-			

1	6.0 REFERENCES
2	
3	Science Applications International Corporation (SAIC). February 24, 2011. Final
4	Facility-Wide Sampling and Analysis Plan for Environmental Investigations, Ravenna
5	Army Ammunition Plant, Ravenna, Ohio.
6	
7	Portage Environmental. 2004. RVAAP Facility Wide Groundwater Monitoring Program
8	Plan.

1	
2	
3	
4	
5	
6	
7	
8	
9	
10	APPENDIX A
11	
12	INVESTIGATION-DERIVED WASTE
13	ANALYTICAL REPORT
14	

# **TestAmerica**

THE LEADER IN ENVIRONMENTAL TESTING

Client Project/Site: RVAAP 66 (OH) - IDW

Attn: Mr. Erik Corbin

Authorized for release by: 8/30/2013 5:15:20 PM

Mark Loeb, Project Manager II mark.loeb@testamericainc.com

··············· Links

Review your project results through Total:Access

Have a Question?



Visit us at: www.testamericainc.com This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Client: Environmental Quality Mgt., Inc. Project/Site: RVAAP 66 (OH) - IDW

# **Table of Contents**

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
	4
Method Summary	7
Sample Summary	8
	9
	10
	15
	18
	26
	30
Certification Summary	32
Chain of Custody	33



















# **Definitions/Glossary**

Client: Environmental Quality Mgt., Inc. Project/Site: RVAAP 66 (OH) - IDW

TestAmerica Job ID: 240-28199-1

#### Qualifiers

#### GC/MS VOA

Qualifier Qualifier Description

U Indicates the analyte was analyzed for but not detected.

#### GC/MS Semi VOA

Qualifier	•
-----------	---

**Qualifier Description** 

U Indicates the analyte was analyzed for but not detected.

#### GC Semi VOA

Qt	ıal	if	ie

#### **Qualifier Description**

TI ...

Indicates the analyte was analyzed for but not detected.

X Surrogate is outside control limits

Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

#### **Metals**

#### Qualifier

#### **Qualifier Description**

J Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

B Compound was found in the blank and sample.

U Indicates the analyte was analyzed for but not detected.

#### **General Chemistry**

# Qualifier

#### **Qualifier Description**

U Indicates the analyte was analyzed for but not detected.

#### Glossary

Abbrev	iation

These commonly used abbreviations may or may not be present in this report.

Listed under the "D" column to designate that the result is reported on a dry weight basis

%R Percent Recovery

CNF Contains no Free Liquid

DER Duplicate error ratio (normalized absolute difference)

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision level concentration
MDA Minimum detectable activity
EDL Estimated Detection Limit

MDC Minimum detectable concentration

MDL Method Detection Limit
ML Minimum Level (Dioxin)

NC Not Calculated

ND Not detected at the reporting limit (or MDL or EDL if shown)

PQL Practical Quantitation Limit

QC Quality Control
RER Relative error ratio

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin)
TEQ Toxicity Equivalent Quotient (Dioxin)

TestAmerica Canton

#### **Case Narrative**

Client: Environmental Quality Mgt., Inc. Project/Site: RVAAP 66 (OH) - IDW

TestAmerica Job ID: 240-28199-1

Job ID: 240-28199-1

Laboratory: TestAmerica Canton

Narrative

#### CASE NARRATIVE

Client: Environmental Quality Mgt., Inc.

Project: RVAAP 66 (OH) - IDW

Report Number: 240-28199-1

With the exceptions noted as flags or footnotes, standard analytical protocols were followed in the analysis of the samples and no problems were encountered or anomalies observed. In addition all laboratory quality control samples were within established control limits, with any exceptions noted below. Each sample was analyzed to achieve the lowest possible reporting limit within the constraints of the method. In some cases, due to interference or analytes present at high concentrations, samples were diluted. For diluted samples, the reporting limits are adjusted relative to the dilution required.

TestAmerica Canton attests to the validity of the laboratory data generated by TestAmerica facilities reported herein. All analyses performed by TestAmerica facilities were done using established laboratory SOPs that incorporate QA/QC procedures described in the application methods. TestAmerica's operations groups have reviewed the data for compliance with the laboratory QA/QC plan, and data have been found to be compliant with laboratory protocols unless otherwise noted below.

The test results in this report meet all NELAP requirements for parameters for which accreditation is required or available. Any exceptions to NELAP requirements are noted in this report. Pursuant to NELAP, this report may not be reproduced, except in full, without the written approval of the laboratory.

Calculations are performed before rounding to avoid round-off errors in calculated results.

All holding times were met and proper preservation noted for the methods performed on these samples, unless otherwise detailed in the individual sections below.

All solid sample results are reported on an "as received" basis unless otherwise indicated by the presence of a % solids value in the method header.

This laboratory report is confidential and is intended for the sole use of TestAmerica and its client.

#### RECEIPT

The samples were received on 08/22/2013, the samples arrived in good condition, properly preserved and on ice. The temperatures of the coolers at receipt were 5.8 and 6.0 C.

#### TCLP VOLATILE ORGANIC COMPOUNDS (GCMS)

Samples FWG-IDW-MWDECONAUG2013 (240-28199-2) and FWG-IDW-MWPURGEAUG2013 (240-28199-3) were analyzed for TCLP volatile organic compounds (GCMS) in accordance with EPA SW-846 Methods 1311/8260B. The samples were leached on 08/22/2013 and analyzed on 08/28/2013.

Sample FWG-IDW-MWDECONAUG2013 (240-28199-2)[2X] required dilution prior to analysis. The reporting limits have been adjusted accordingly.

The following volatiles sample(s) was diluted due to foaming at the time of purging during the original sample analysis: FWG-IDW-MWDECONAUG2013. Elevated reporting limits (RLs) are provided.

No other difficulties were encountered during the VOCs analysis. All quality control parameters were within the acceptance limits.

#### **VOLATILE ORGANIC COMPOUNDS (GCMS)**

Δĺ

5

#### **Case Narrative**

Client: Environmental Quality Mgt., Inc. Project/Site: RVAAP 66 (OH) - IDW

TestAmerica Job ID: 240-28199-1

#### Job ID: 240-28199-1 (Continued)

#### Laboratory: TestAmerica Canton (Continued)

Sample FWG-IDW-MWTB-AUG2013 (240-28199-1) was analyzed for volatile organic compounds (GCMS) in accordance with EPA SW-846 Method 8260B. The samples were analyzed on 08/29/2013.

No difficulties were encountered during the VOCs analysis. All quality control parameters were within the acceptance limits.

#### TCLP SEMIVOLATILE ORGANIC COMPOUNDS (GCMS)

Samples FWG-IDW-MWDECONAUG2013 (240-28199-2) and FWG-IDW-MWPURGEAUG2013 (240-28199-3) were analyzed for TCLP semivolatile organic compounds (GCMS) in accordance with EPA SW-846 Methods 1311/8270C. The samples were leached on 08/22/2013, prepared on 08/23/2013 and analyzed on 08/28/2013.

Surrogates are added during the extraction process prior to dilution. When the sample is diluted, surrogate recoveries are diluted out and no corrective action is required.

Internal standard responses for Perylene-d12 was outside of acceptance limits for the following sample(s): FWG-IDW-MWDECONAUG2013. The sample(s) shows evidence of matrix interference.

No other difficulties were encountered during the SVOCs analysis. All quality control parameters were within the acceptance limits.

#### TCLP CHLORINATED PESTICIDES

Samples FWG-IDW-MWDECONAUG2013 (240-28199-2) and FWG-IDW-MWPURGEAUG2013 (240-28199-3) were analyzed for TCLP chlorinated pesticides in accordance with EPA SW-846 Methods 1311/8081A. The samples were leached on 08/22/2013, prepared on 08/23/2013 and analyzed on 08/27/2013.

DCB Decachiorobiphenyl failed the surrogate recovery criteria low for FWG-IDW-MWDECONAUG2013 (240-28199-2) and FWG-IDW-MWDECONAUG2013MS (240-28199-2MS).

The grand mean exception, as outlined in EPA Method 8000B, was applied to the opening and closing continuing calibration verification (CCV) standards associated with batch 99059. This rule states that when one or more compounds in the CCV fail to meet acceptance criteria, the initial calibration (ICAL) may be used for quantitation if the average %D (the grand mean) of all the compounds in the CCV is less than or equal to 15%D. The samples associated with these CCVs FWG-IDW-MWDECONAUG2013, FWG-IDW-MWPURGEAUG2013were non-detect for the affected analytes; therefore the data have been reported.

The opening and closing Technical Chlordane continuing calibration verifications (CCV) associated with batch 99059 recovered above the upper control limits. The samples associated with these CCVsFWG-IDW-MWDECONAUG2013, FWG-IDW-MWPURGEAUG2013 were non-detects for the affected analyte; therefore the data have been reported.

Two surrogates are used for this analysis. The laboratory's SOP allows one of these surrogates to be outside acceptance criteria without performing re-extraction/re-analysis. The following sample contained an allowable number of surrogate compounds outside limits: FWG-IDW-MWDECONAUG2013. These results have been reported and qualified.

No other difficulties were encountered during the pesticides analysis. All other quality control parameters were within the acceptance limits.

#### TCLP CHLORINATED HERBICIDES

Samples FWG-IDW-MWDECONAUG2013 (240-28199-2) and FWG-IDW-MWPURGEAUG2013 (240-28199-3) were analyzed for TCLP chlorinated herbicides in accordance with EPA SW-846 Methods 1311/8151A. The samples were leached on 08/22/2013, prepared on 08/26/2013 and analyzed on 08/27/2013.

Surrogates are added during the extraction process prior to dilution. When the sample dilution is 5X or greater, surrogate recoveries are diluted out and no corrective action is required.

No difficulties were encountered during the herbicides analysis. All quality control parameters were within the acceptance limits.

#### TCLP METALS (ICP)

Samples FWG-IDW-MWDECONAUG2013 (240-28199-2) and FWG-IDW-MWPURGEAUG2013 (240-28199-3) were analyzed for TCLP























#### **Case Narrative**

Client: Environmental Quality Mgt., Inc. Project/Site: RVAAP 66 (OH) - IDW TestAmerica Job ID: 240-28199-1

# Job ID: 240-28199-1 (Continued)

#### Laboratory: TestAmerica Canton (Continued)

metals (ICP) in accordance with EPA SW-846 Methods 1311/6010B. The samples were leached on 08/22/2013, prepared on 08/23/2013 and analyzed on 08/26/2013.

Barium was detected in method blanks LB 240-98607/1-D and MB 240-98699/2-A at levels that were above the method detection limit but below the reporting limit. The values should be considered estimates, and have been flagged. If the associated sample reported a result above the MDL and/or RL, the result has been flagged. Refer to the QC report for details.

No other difficulties were encountered during the metals analysis. All other quality control parameters were within the acceptance limits.

#### **TCLP MERCURY**

Samples FWG-IDW-MWDECONAUG2013 (240-28199-2) and FWG-IDW-MWPURGEAUG2013 (240-28199-3) were analyzed for TCLP mercury in accordance with EPA SW-846 Methods 1311/7470A. The samples were leached on 08/22/2013, prepared on 08/23/2013 and analyzed on 08/27/2013.

No difficulties were encountered during the mercury analysis. All quality control parameters were within the acceptance limits.

#### **FLASHPOINT**

Samples FWG-IDW-MWDECONAUG2013 (240-28199-2) and FWG-IDW-MWPURGEAUG2013 (240-28199-3) were analyzed for flashpoint in accordance with EPA SW-846 Method 1010. The samples were analyzed on 08/26/2013.

No difficulties were encountered during the flashpoint analysis. All quality control parameters were within the acceptance limits.

#### **TOTAL CYANIDE**

Samples FWG-IDW-MWDECONAUG2013 (240-28199-2) and FWG-IDW-MWPURGEAUG2013 (240-28199-3) were analyzed for total cyanide in accordance with EPA SW-846 Method 9012A. The samples were prepared and analyzed on 08/23/2013 and 08/26/2013.

No difficulties were encountered during the cyanide analysis. All quality control parameters were within the acceptance limits.

#### SULFIDE

Samples FWG-IDW-MWDECONAUG2013 (240-28199-2) and FWG-IDW-MWPURGEAUG2013 (240-28199-3) were analyzed for sulfide in accordance with EPA SW-846 Method 9034. The samples were prepared and analyzed on 08/26/2013.

No difficulties were encountered during the sulfide analysis. All quality control parameters were within the acceptance limits.

#### PH

Samples FWG-IDW-MWDECONAUG2013 (240-28199-2) and FWG-IDW-MWPURGEAUG2013 (240-28199-3) were analyzed for pH in accordance with EPA SW-846 Method 9040B. The samples were analyzed on 08/22/2013.

No difficulties were encountered during the pH analysis. All quality control parameters were within the acceptance limits.



















# **Method Summary**

Client: Environmental Quality Mgt., Inc. Project/Site: RVAAP 66 (OH) - IDW

TestAmerica Job ID: 240-28199-1

Viethod	Method Description	Protocol	Laboratory
3260B	Volatile Organic Compounds (GC/MS)	SW846	TAL CAN
3270C	Semivolatile Organic Compounds (GC/MS)	SW846	TAL CAN
3081A	Organochlorine Pesticides (GC)	SW846	TAL CAN
B151A	Herbicides (GC)	SW846	TAL CAN
8010B	Metals (ICP)	SW846	TAL CAN
470A	Mercury (CVAA)	SW846	TAL CAN
010	Ignitability, Pensky-Martens Closed-Cup Method	SW846	TAL CAN
012A	Cyanide, Total and/or Amenable	SW846	TAL CAN
9034	Sulfide, Acid soluble and Insoluble (Titrimetric)	SW846	TAL CAN
9040B	 рН	SW846	TAL CAN

#### Protocol References:

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

#### Laboratory References:

TAL CAN = TestAmerica Canton, 4101 Shuffel Street NW, North Canton, OH 44720, TEL (330)497-9396

TestAmerica Canton

## Sample Summary

Client: Environmental Quality Mgt., Inc. Project/Site: RVAAP 66 (OH) - IDW

TestAmerica Job ID: 240-28199-1

	<u> </u>			
Lab Sample ID	Client Sample ID	Matrix	Collected	Received
240-28199-1	FWG-IDW-MWTB-AUG2013	WQ	08/21/13 16:00	08/22/13 07:00
240-28199-2	FWG-IDW-MWDECONAUG2013	Water	08/21/13 16:20	08/22/13 07:00
240-28199-3	FWG-IDW-MWPURGEAUG2013	Water	08/21/13 16:50	08/22/13 07:00























#### **Detection Summary**

Client: Environmental Quality Mgt., Inc. Project/Site: RVAAP 66 (OH) - IDW

TestAmerica Job ID: 240-28199-1

#### Client Sample ID: FWG-IDW-MWTB-AUG2013

Lab Sample ID: 240-28199-1

No Detections.

Lab	Sample	ID:	240-28199	-2

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Arsenic	0.0036	J	0.50	0.0032	mg/L	1	_	6010B	TCLP
Barium	0.020	J₿	10	0.00067	mg/L	1	-	6010B	TCLP
Chromium	0.039	J	0.50	0.0022	mg/L	1	-	6010B	TCLP
Lead	0,0056	J	0.50	0.0019	mg/L	1		6010B	TCLP
Flashpoint	>180		1.00	1.00	Degrees F	1		1010	Total/NA
рН	9.25		0.100	0.100	SU	1		9040B	Total/NA

Client Sample ID: FWG-IDW-MWPURGEAUG2013

#### Lab Sample ID: 240-28199-3

[	Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	Đ	Method	Prep Type
	Barium	0.045	JB	10	0,00067	mg/L	1		6010B	TCLP
	Flashpoint	>180		1.00	1.00	Degrees F	1		1010	Total/NA
	pΗ	7.68		0.100	0,100	SU	1		9040B	Total/NA

This Detection Summary does not include radiochemical test results.

TestAmerica Canton

8/30/2013

Page 9 of 36

Client: Environmental Quality Mgt., Inc. Project/Site: RVAAP 66 (OH) - IDW

TestAmerica Job ID: 240-28199-1

Client Sample ID: FWG-IDW-MWTB-AUG2013

Date Collected: 08/21/13 16:00 Date Received: 08/22/13 07:00 Lab Sample ID: 240-28199-1

Matrix: WQ

		DI	8801	l lait		Dronarad	Analyzed	Dil Fac
Result	Quantier	RL				Fiehaica	<u> </u>	
1.0	U	1.0	0.19	ug/L			08/29/13 17:25	. 1
1.0	U	1.0	0.22	ug/L			08/29/13 17:25	1
1.0	U	1.0	0.13	ug/L			08/29/13 17:25	1
1.0	υ	1.0	0.13	ug/L			08/29/13 17:25	1
1,0	U	1.0	0.15	ug/L			08/29/13 17:25	1
1.0	U	1.0	0.16	ug/L			08/29/13 17:25	1
10	Ü	10	0,57	ug/L			08/29/13 17:25	1
1.0	U	1.0	0.29	ug/L			08/29/13 17:25	1
1.0	U	1.0	0.17	ug/L			08/29/13 17:25	1
1.0	U	1.0	0.22	ug/L			08/29/13 17:25	1
	Result 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	nic Compounds (GC/MS)  Result Qualifier  1.0 U  1.0 U  1.0 U  1.0 U  1.0 U  1.0 U  1.0 U  1.0 U  1.0 U  1.0 U  1.0 U  1.0 U  1.0 U  1.0 U	Result         Qualifier         RL           1.0         U         1.0           1.0         U         1.0	Result         Qualifier         RL         MDL           1.0         U         1.0         0.19           1.0         U         1.0         0.22           1.0         U         1.0         0.13           1.0         U         1.0         0.15           1.0         U         1.0         0.16           10         U         10         0.57           1.0         U         1.0         0.29           1.0         U         1.0         0.17	Result         Qualifier         RL         MDL         Unit           1.0         U         1.0         0.19         ug/L           1.0         U         1.0         0.22         ug/L           1.0         U         1.0         0.13         ug/L           1.0         U         1.0         0.15         ug/L           1.0         U         1.0         0.16         ug/L           1.0         U         1.0         0.57         ug/L           1.0         U         1.0         0.29         ug/L           1.0         U         1.0         0.17         ug/L	Result         Qualifier         RL         MDL         Unit         D           1.0         U         1.0         0.19         ug/L           1.0         U         1.0         0.22         ug/L           1.0         U         1.0         0.13         ug/L           1.0         U         1.0         0.15         ug/L           1.0         U         1.0         0.16         ug/L           10         U         1.0         0.57         ug/L           1.0         U         1.0         0.29         ug/L           1.0         U         1.0         0.17         ug/L	Result         Qualifier         RL         MDL         Unit         D         Prepared           1.0         U         1.0         0.19         ug/L           1.0         U         1.0         0.22         ug/L           1.0         U         1.0         0.13         ug/L           1.0         U         1.0         0.15         ug/L           1.0         U         1.0         0.16         ug/L           1.0         U         1.0         0.57         ug/L           1.0         U         1.0         0.29         ug/L           1.0         U         1.0         0.17         ug/L	1.0       U       1.0       0.19       ug/L       08/29/13 17:25         1.0       U       1.0       0.22       ug/L       08/29/13 17:25         1.0       U       1.0       0.13       ug/L       08/29/13 17:25         1.0       U       1.0       0.13       ug/L       08/29/13 17:25         1.0       U       1.0       0.15       ug/L       08/29/13 17:25         1.0       U       1.0       0.16       ug/L       08/29/13 17:25         1.0       U       1.0       0.57       ug/L       08/29/13 17:25         1.0       U       1.0       0.29       ug/L       08/29/13 17:25         1.0       U       1.0       0.17       ug/L       08/29/13 17:25

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	111		63 - 129		08/29/13 17:25	1
4-Bromofluorobenzene (Surr)	78		66 - 117		08/29/13 17:25	1
Toluene-d8 (Surr)	83		74 - 115		08/29/13 17:25	1
Dibromofluoromethane (Surr)	104		75 - 121		08/29/13 17:25	1

Client: Environmental Quality Mgt., Inc. Project/Site: RVAAP 66 (OH) - IDW

TestAmerica Job ID: 240-28199-1

Client Sample ID: FWG-IDW-MWDECONAUG2013

Date Collected: 08/21/13 16:20 Date Received: 08/22/13 07:00 Lab Sample ID: 240-28199-2

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethene	0.050	U	0.050	0.019	mg/L			08/28/13 23:05	. 2
1,2-Dichloroethane	0,050	U	0.050	0.022	mg/L			08/28/13 23:05	2
2-Butanone (MEK)	0.50	U	0.50	0.057	mg/L			08/28/13 23:05	2
Benzene	0,050	Ü	0.050	0.013	mg/L			08/28/13 23:05	2
Carbon tetrachloride	0.050	U	0.050	0.013	mg/L			08/28/13 23:05	2
Chlorobenzene	0.050	U	0.050	0.015	mg/L			08/28/13 23:05	2
Chloroform	0.050	U	0.050	0.016	mg/L			08/28/13 23:05	2
Tetrachloroethene	0.050	U	0.050	0.029	mg/l.			08/28/13 23:05	2
Trichloroethene	0.050	U	0.050	0.017	mg/L			08/28/13 23:05	2
Vinyl chloride	0,050	U	0.050	0.022	mg/L			08/28/13 23:05	2
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	104		80 - 121					08/28/13 23:05	2
4-Bromofluorobenzene (Surr)	95		70 - 124					08/28/13 23:05	2
Toluene-d8 (Surr)	97		90 - 115					08/28/13 23:05	2
Dibromofluoromethane (Surr)	96		84 - 128					08/28/13 23:05	2

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,4-Dichlorobenzene	0,0040	U	0.0040	0,00034	mg/L		08/23/13 11:30	08/28/13 17:33	1
2,4,5-Trichlorophenol	0.020	U	0.020	0.00030	mg/L		08/23/13 11:30	08/28/13 17:33	1
2,4,6-Trichlorophenol	0.020	U	0.020	0.00024	mg/L		08/23/13 11:30	08/28/13 17:33	1
2,4-Dinitrotoluene	0.020	U	0.020	0,00025	mg/L		08/23/13 11:30	08/28/13 17:33	1
Hexachlorobenzene	0.020	U	0,020	0.000085	mg/L		08/23/13 11:30	08/28/13 17:33	1
Hexachlorobutadiene	0,020	U	0.020	0.00027	mg/L		08/23/13 11:30	08/28/13 17:33	1
Hexachloroethane	0.020	U	0.020	0.00019	mg/L		08/23/13 11:30	08/28/13 17:33	1
3 & 4 Methylphenol	0,040	U	0.040	0.00080	mg/L		08/23/13 11:30	08/28/13 17:33	1
2-Methylphenol	0.0040	U	0.0040	0.00017	mg/L		08/23/13 11:30	08/28/13 17:33	1
Nitrobenzene	0.0040	Ü	0,0040	0.000040	mg/L		08/23/13 11:30	08/28/13 17:33	1
Pentachlorophenol	0.040	U	0.040	0.00027	mg/L		08/23/13 11:30	08/28/13 17:33	1
Pyridine	0.020	υ	0,020	0.00035	mg/L		08/23/13 11:30	08/28/13 17:33	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl (Surr)	59		27 - 110				08/23/13 11:30	08/28/13 17:33	1
2-Fluorophenol (Surr)	10		10 - 110				08/23/13 11:30	08/28/13 17:33	1
2,4,6-Tribromophenol (Surr)	53		15 - 110				08/23/13 11:30	08/28/13 17:33	1
Nitrobenzene-d5 (Surr)	59		27 - 110				08/23/13 11:30	08/28/13 17:33	1
Phenol-d5 (Surr)	27		20 110				08/23/13 11:30	08/28/13 17:33	1
Terphenyl-d14 (Surr)	86		38 - 110				08/23/13 11:30	08/28/13 17:33	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chlordane (technical)	0.0050	Ü	0,0050	0.000079	mg/L		08/23/13 11:47	08/27/13 09:49	1
Endrin	0.00050	U	0.00050	0.000026	mg/L		08/23/13 11:47	08/27/13 09:49	1
Heptachlor	0,00050	U	0.00050	0.000019	mg/L		08/23/13 11:47	08/27/13 09:49	1
Heptachlor epoxide	0.00050	Ü	0.00050	0.000017	mg/L		08/23/13 11:47	08/27/13 09:49	1
gamma-BHC (Lindane)	0.00050	Ų	0.00050	0.000015	mg/L		08/23/13 11:47	08/27/13 09:49	1
Methoxychlor	0.0010	U	0.0010	0.000077	mg/L		08/23/13 11:47	08/27/13 09:49	1
Toxaphene	0.020	U	0,020	0.00077	mg/L		08/23/13 11:47	08/27/13 09:49	1

Client: Environmental Quality Mgt., Inc. Project/Site: RVAAP 66 (OH) - IDW

TestAmerica Job ID: 240-28199-1

Client Sample ID: FWG-IDW-MWDECONAUG2013 Lab Sample

Date Collected: 08/21/13 16:20 Date Received: 08/22/13 07:00 Lab Sample ID: 240-28199-2

Matrix: Water

Surrogate	%Recovery 6	Qualifier	Limíts	Prepared	Analyzed	Dil Fa	C
Tetrachloro-m-xylene	80		46 - 122	08/23/13 11:47	08/27/13 09:49		ī
Tetrachloro-m-xylene	89		46 - 122	08/23/13 11:47	08/27/13 09:49		1
DCB Decachlorobiphenyl	18 >	<	34 _ 141	08/23/13 11:47	08/27/13 09:49		1
DCB Decachlorobiphenyl	20 >	Κ	34 - 141	08/23/13 11:47	08/27/13 09:49		1

Method: 8151A - Herbicides   Analyte	• •	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
2,4-D	0.0020	U	0.0020	0.00021	mg/L		08/26/13 12:37	08/27/13 16:04	1
Silvex (2,4,5-TP)	0.00050	U	0.00050	0.00010	mg/L		08/26/13 12:37	08/27/13 16:04	. 1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
			07 //0				00/00/40 40:07	00/02/40 40:04	

our, oguic	,	<b>W</b> 11411101	2			
2,4-Dichlorophenylacetic acid	61		37 - 116	08/26/13 12:37	08/27/13 16:04	1
2,4-Dichlorophenylacetic acid	78		37 - 116	08/26/13 12:37	08/27/13 16:04	1
Method: 6010B - Metals (ICP) - TCI	_P					

Analyte	Result	Qualifier	RL	MDL	Unit	Ð	Prepared	Analyzed	Dil Fac
Arsenic	0.0036	J	0.50	0.0032	mg/L		08/23/13 10:17	08/26/13 18:14	1
Barium	0.020	JB	10	0,00067	mg/L		08/23/13 10:17	08/26/13 18:14	1
Cadmium	0.10	U	0.10	0.00066	mg/L		08/23/13 10:17	08/26/13 18:14	1
Chromium	0.039	J	0.50	0,0022	mg/L		08/23/13 10:17	08/26/13 18:14	1
Lead	0.0056	J	0.50	0.0019	mg/L		08/23/13 10:17	08/26/13 18:14	1
Selenium	0.25	U	0.25	0.0041	mg/L		08/23/13 10:17	08/26/13 18:14	1
Silver	0.50	U	0.50	0,0022	mg/L		08/23/13 10:17	08/26/13 18:14	1

Method: 7470A - Mercury (CVAA) - TCLI	•								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	0.0020	U	0,0020	0.00012	mg/L	 _	08/23/13 14:55	08/27/13 14:19	1

General Chemistry Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Flashpoint	>180		1.00	1.00	Degrees F			08/26/13 07:14	1
Cyanide, Total	0.010	υ	0.010	0.0032	mg/L		08/23/13 10:11	08/23/13 13:31	1
Sulfide	3.0	U	3.0	0.94	mg/L		08/26/13 08;18	08/26/13 08:18	1
рН	9.25		0.100	0.100	SU			08/22/13 16:12	1

Client: Environmental Quality Mgt., Inc. Project/Site: RVAAP 66 (OH) - IDW

TestAmerica Job ID: 240-28199-1

Lab Sample ID: 240-28199-3

Matrix: Water

#### Client Sample ID: FWG-IDW-MWPURGEAUG2013

Date Collected: 08/21/13 16:50 Date Received: 08/22/13 07:00

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethene	0.025	U	0.025	0.0095	mg/L			08/28/13 23:29	1
1,2-Dichloroethane	0.025	U	0.025	0,011	mg/L			08/28/13 23:29	1
2-Butanone (MEK)	0.25	U	0,25	0.029	mg/L			08/28/13 23:29	1
Benzene	0.025	Ü	0.025	0.0065	mg/L			08/28/13 23:29	1
Carbon tetrachloride	0.025	υ	0.025	0.0065	mg/L			08/28/13 23:29	1
Chlorobenzene	0.025	υ	0.025	0.0075	mg/L			08/28/13 23:29	1
Chloroform	0.025	Ü	0.025	0.0080	mg/L			08/28/13 23:29	1
Tetrachloroethene	0.025	U	0.025	0,015	mg/L			08/28/13 23:29	1
Trichloroethene	0,025	U	0.025	0.0085	mg/L			08/28/13 23:29	1
Vinvl chloride	0.025	U	0.025	0.011	mg/L			08/28/13 23:29	1

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac	c
1,2-Dichloroethane-d4 (Surr)	106		80 - 121		08/28/13 23:29	1	ī
4-Bromofluorobenzene (Surr)	94		70 - 124		08/28/13 23:29	1	1
Toluene-d8 (Surr)	100		90 - 115		08/28/13 23:29	1	1
Dibromofluoromethane (Surr)	99		84 - 128		08/28/13 23:29		1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,4-Dichlorobenzene	0.0040	U	0.0040	0,00034	mg/L		08/23/13 11:30	08/28/13 17:55	1
2,4,5-Trichlorophenol	0.020	U	0.020	0,00030	mg/L		08/23/13 11:30	08/28/13 17:55	1
2,4,6-Trichlorophenol	0.020	U	0.020	0.00024	mg/L		08/23/13 11:30	08/28/13 17:55	1
2,4-Dinitrotoluene	0.020	Ŭ	0.020	0.00025	mg/L		08/23/13 11:30	08/28/13 17:55	1
Hexachlorobenzene	0.020	U	0,020	0.000085	mg/L		08/23/13 11:30	08/28/13 17:55	1
Hexachlorobutadiene	0.020	U	0.020	0.00027	mg/L		08/23/13 11:30	08/28/13 17:55	1
Hexachloroethane	0.020	υ	0.020	0.00019	mg/L		08/23/13 11:30	08/28/13 17:55	1
3 & 4 Methylphenol	0.040	U	0.040	0.00080	mg/L		08/23/13 11:30	08/28/13 17:55	1
2-Methylphenol	0,0040	U	0.0040	0.00017	mg/L		08/23/13 11:30	08/28/13 17:55	1
Nitrobenzene	0,0040	Ū	0,0040	0.000040	mg/L		08/23/13 11:30	08/28/13 17:55	1
Pentachlorophenol	0.040	U	0.040	0.00027	mg/L		08/23/13 11:30	08/28/13 17:55	1
Pyridine	0,020	U	0,020	0.00035	mg/L		08/23/13 11:30	08/28/13 17:55	1

Surrogate	%Recovery Qua	alifier Limits	Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl (Surr)	65	27 - 110	08/23/13 11:30	08/28/13 17:55	1
2-Fluorophenol (Surr)	29	10 - 110	08/23/13 11:30	08/28/13 17:55	1
2,4,6-Tribromophenol (Surr)	60	15 - 110	08/23/13 11:30	08/28/13 17:55	1
Nitrobenzene-d5 (Surr)	67	27 - 110	08/23/13 11:30	08/28/13 17:55	1
Phenol-d5 (Surr)	56	20 - 110	08/23/13 11:30	08/28/13 17:55	1
Terphenyl-d14 (Surr)	93	38 ₋ 110	08/23/13 11:30	08/28/13 17:55	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chlordane (technical)	0.0050	U	0.0050	0.000079	mg/L		08/23/13 11:47	08/27/13 10:30	1
Endrin	0.00050	U	0.00050	0.000026	mg/L		08/23/13 11:47	08/27/13 10:30	1
Heptachlor	0.00050	U	0.00050	0.000019	mg/L		08/23/13 11:47	08/27/13 10:30	1
Heptachlor epoxide	0.00050	Ü	0.00050	0.000017	mg/L		08/23/13 11:47	08/27/13 10:30	1
gamma-BHC (Lindane)	0.00050	U	0.00050	0.000015	mg/L		08/23/13 11:47	08/27/13 10:30	1
Methoxychlor	0.0010	υ	0.0010	0.000077	mg/L		08/23/13 11:47	08/27/13 10:30	1
Toxaphene	0,020	υ	0,020	0.00077	mg/L		08/23/13 11:47	08/27/13 10:30	1

Client: Environmental Quality Mgt., Inc. Project/Site: RVAAP 66 (OH) - IDW TestAmerica Job ID: 240-28199-1

Client Sample ID: FWG-IDW-MWPURGEAUG2013

Date Collected: 08/21/13 16:50 Date Received: 08/22/13 07:00 Lab Sample ID: 240-28199-3

Matrix: Water

Surrogate	%Recovery Q	Qualifier	Limits	Prep	ared	Analyzed	Dil Fa	ac
Tetrachloro-m-xylene	75		46 - 122	08/23/1	3 11:47	08/27/13 10:30		7
Tetrachloro-m-xylene	83		46 _ 122	08/23/1	3 11:47	08/27/13 10:30		1
DCB Decachlorobiphenyl	94		34 - 141	08/23/1	3 11:47	08/27/13 10:30		1
DCB Decachlorobiphenyl	99		34 - 141	08/23/1	3 11.47	08/27/13 10:30		1

Method: 8151A - Herbicides (C Analyte	•	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
2,4-D	0,0020	U	0,0020	0,00021	mg/L		08/26/13 12:37	08/27/13 16:27	1
Silvex (2,4,5-TP)	0.00050	U	0.00050	0.00010	mg/L		08/26/13 12:37	08/27/13 16:27	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2,4-Dichlorophenylacetic acid	78		37 - 116				08/26/13 12:37	08/27/13 16:27	1
2.4-Dichlorophenylacetic acid	76		37 - 116				08/26/13 12:37	08/27/13 16:27	1

Method: 6010B - Metals (Id Analyte	•	Qualifier	₽L	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	0.50	Ū	0.50	0,0032	mg/L		08/23/13 10:17	08/26/13 18:26	1
Barium	0.045	JB	10	0.00067	mg/L		08/23/13 10:17	08/26/13 18:26	1
Cadmium	0.10	U	0.10	0,00066	mg/L		08/23/13 10:17	08/26/13 18:26	1
Chromium	0.50	U	0.50	0.0022	mg/L		08/23/13 10:17	08/26/13 18:26	1
Lead	0.50	U	0.50	0.0019	mg/L		08/23/13 10:17	08/26/13 18:26	1
Selenium	0.25	U	0.25	0.0041	mg/L		08/23/13 10:17	08/26/13 18:26	1
Silver	0.50	U	0.50	0.0022	mg/L		08/23/13 10:17	08/26/13 18:26	1

Method: 7470A - Mercury (CVA)	A) - TCLP								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	0.0020	U	0.0020	0.00012	mg/L		08/23/13 14:55	08/27/13 14:20	1
General Chemistry									

General Chemistry Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Flashpoint	>180		1.00	1.00	Degrees F			08/26/13 07:45	1
Cyanide, Total	0.010	บ	0.010	0.0032	mg/L		08/26/13 10:55	08/26/13 14:09	1
Sulfide	3.0	U	3.0	0.94	mg/L		08/26/13 08:18	08/26/13 08:18	1
рН	7.68		0.100	0.100	SU			08/22/13 16:13	1

Client: Environmental Quality Mgt., Inc. Project/Site: RVAAP 66 (OH) - IDW

TestAmerica Job ID: 240-28199-1

Method: 8260B - Volatile Organic Compounds (GC/MS)

Prep Type: Total/NA Matrix: Water

				Percent Sui	rogate Reco	overy (Acceptance Limits)
		12DCE	BFB	TOL	DBFM	•
Lab Sample ID	Client Sample ID	(63-129)	(66-117)	(74-115)	(75-121)	
LCS 240-99545/4	Lab Control Sample	98	99	94	100	
MB 240-99545/6	Method Blank	116	87	93	111	•

12DCE = 1,2-Dichloroethane-d4 (Surr)

BFB = 4-Bromofluorobenzene (Surr)

TOL = Toluene-d8 (Surr)

DBFM = Dibromofluoromethane (Surr)

Method: 8260B - Volatile Organic Compounds (GC/MS)

Prep Type: Total/NA Matrix: Water

				Percent Su	rogate Reco	overy (Acceptance Limits	i)	
		12DCE	BFB	TOL	DBFM			
 Lab Sample ID	Client Sample ID	(80-121)	(70-124)	(90-115)	(84-128)		·	
LCS 240-99416/6	Lab Control Sample	107	102	99	100			

Surrogate Legend

12DCE = 1,2-Dichloroethane-d4 (Surr)

BFB = 4-Bromofluorobenzene (Surr)

TOL = Toluene-d8 (Surr)

DBFM = Dibromofluoromethane (Surr)

Method: 8260B - Volatile Organic Compounds (GC/MS)

Matrix: Water Prep Type: TCLP

		Percent Surrogate Recovery (Acceptance Limits)							
		12DCE	BFB	TOL	DBFM				
Lab Sample ID	Client Sample ID	(80-121)	(70-124)	(90-115)	(84-128)				
240-28199-2	FWG-IDW-MWDECONAUG2013	104	95	97	96				
240-28199-3	FWG-IDW-MWPURGEAUG2013	106	94	100	. 99				
LB 240-98604/1-A MB	Method Blank	104	101	101	100				

Surrogate Legend

12DCE = 1,2-Dichloroethane-d4 (Surr)

BFB = 4-Bromofluorobenzene (Surr)

TOL = Toluene-d8 (Sum)

DBFM = Dibromofluoromethane (Surr)

Method: 8260B - Volatile Organic Compounds (GC/MS)

Prep Type: Total/NA Matrix: WQ

	•			Percent Su	rrogate Recov	rery (Acceptance Limits)
		12DCE	BFB	TOL	DBFM	
Lab Sample ID	Client Sample ID	(63-129)	(66-117)	(74-115)	(75-121)	
240-28199-1	FWG-IDW-MWTB-AUG2013	111	78	83	104	
						and the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second o

Page 15 of 36

Surrogate Legend

12DCE = 1,2-Dichloroethane-d4 (Surr)

BFB = 4-Bromofluorobenzene (Surr)

TOL ≈ Toluene-d8 (Surr)











Client: Environmental Quality Mgt., Inc. Project/Site: RVAAP 66 (OH) - IDW

DBFM = Dibromofluoromethane (Surr)

#### Method: 8270C - Semivolatile Organic Compounds (GC/MS)

Matrix: Water

Prep Type: Total/NA

<b></b>				Percent Sur	rrogate Recov	ery (Accepta	ance Limits)
		FBP	2FP	TBP	NBZ	PHL	TPH
Lab Sample ID	Client Sample ID	(27-110)	(10-110)	(15-110)	(27-110)	(20-110)	(38-110)
LCS 240-98719/11-A	Lab Control Sample	60	12	50	65	41	86
MB 240-98719/10-A	Method Blank	64	35	48	68	59	91

Surrogate Legend

FBP = 2-Fluorobiphenyl (Surr)

2FP = 2-Fluorophenol (Surr)

TBP = 2,4,6-Tribromophenoi (Surr)

NBZ = Nitrobenzene-d5 (Surr)

PHL = Phenol-d5 (Surr)

TPH = Terphenyl-d14 (Surr)

#### Method: 8270C - Semivolatile Organic Compounds (GC/MS)

Matrix: Water

Prep Type: TCLP

_				Percent Sur	rrogate Reco	very (Accept	ance Limits)
		FBP	2FP	TBP	NBZ	PHL	TPH
Lab Sample ID	Client Sample ID	(27-110)	(10-110)	(15-110)	(27-110)	(20-110)	(38-110)
240-28199-2	FWG-IDW-MWDECONAUG2013	59	10	53	59	27	86
240-28199-3	FWG-IDW-MWPURGEAUG2013	65	29	60	67	56	93

Surrogate Legend

FBP = 2-Fluorobiphenyl (Surr)

2FP = 2-Fluorophenol (Surr)

TBP = 2,4,6-Tribromophenol (Surr)

NBZ = Nitrobenzene-d5 (Surr)

PHL = Phenol-d5 (Surr)

TPH = Terphenyl-d14 (Surr)

DCB = DCB Decachlorobiphenyl

#### Method: 8081A - Organochlorine Pesticides (GC)

B.S 4	18/-4
Matrix:	water

Prep Type: Total/NA

				Percent Sur	rogate Recovery (A	Acceptance Limits)	
		TCX1	TCX2	DCB1	DCB2		
Lab Sample ID	Client Sample ID	(46-122)	(46-122)	(34-141)	(34-141)		
LCS 240-98727/5-A	Lab Control Sample	75	79	98	107		
MB 240-98727/4-A	Method Blank	60	63	83	89	9	:
Surrogate Legend							

#### Method: 8081A - Organochlorine Pesticides (GC)

Matrix: Water

Prep Type: TCLP

				Percent Sur	rogate Recov	very (Acceptance Limits)	
		TCX1	TCX2	DCB1	DCB2	84. 3	;
Lab Sample ID	Client Sample ID	(46-122)	(46-122)	(34-141)	(34-141)		
240-28199-2	FWG-IDW-MWDECONAUG2013	80	89	18 X	20 X		
240-28199-2 MS	FWG-IDW-MWDECONAUG2013	69	77	23 X	27 X	(*) -	ı

#### **Surrogate Summary**

Client: Environmental Quality Mgt., Inc. Project/Site: RVAAP 66 (OH) - IDW

TestAmerica Job ID: 240-28199-1

Method: 8081A - Organochlorine Pesticides (GC) (Continued)

Matrix: Water Prep Type: TCLP

(40,400) (40,	CX2 DCB1 DCB2
Lab Sample ID Client Sample ID (46-122) (46-	-122) (34-141) (34-141)
	33 94 99
Surrogate Legend	

Method: 8151A - Herbicides (GC)

DCB = DCB Decachlorobiphenyl

Matrix: Water Prep Type: Total/NA

•	•			Percent Surrogate Recovery (Acceptance Limits)
		DCPA1	DCPA2	
Lab Sample ID	Client Sample ID	(37-116)	(37-116)	
LCS 240-98962/5-A	Lab Control Sample	60	79	
MB 240-98962/4-A	Method Blank	63	75	
Surrogate Legend				
DCPA = 2,4-Dichlorophe	enylacetic acid			

Method: 8151A - Herbicides (GC)

Matrix: Water Prep Type: TCLP

_			Percent Surrogate Recovery (Acceptance Limits)							
		DCPA1	DCPA2							
Lab Sample ID	Client Sample ID	(37-116)	(37-116)							
240-28199-2	FWG-IDW-MWDECONAUG2013	61	78	···						
240-28199-3	FWG-IDW-MWPURGEAUG2013	78	76							
240-28199-3 MS	FWG-IDW-MWPURGEAUG2013	74	84	·						
Surrogate Legend										

DCPA = 2,4-Dichlorophenylacetic acid

Client: Environmental Quality Mgt., Inc. Project/Site: RVAAP 66 (OH) - IDW

TestAmerica Job ID: 240-28199-1

#### Method: 8260B - Volatile Organic Compounds (GC/MS)

Lab Sample ID: LCS 240-99416/6

Matrix: Water

Analysis Batch: 99416

Client Sample ID:	Lab Control Sample
	Prep Type: Total/NA

Alialysis Datell. 55410	Spike	108	LCS				%Rec.	
Analyte	Added		Qualifier	Unit	D	%Rec	Limits	-
1,1-Dichloroethene	1.00	1.02		mg/L		102	71 - 133	
1,2-Dichloroethane	1,00	1.05		mg/L		105	81 - 114	
Benzene	1.00	0.965		mg/L		97	84 - 120	
2-Butanone (MEK)	2,00	2.20		mg/L		110	49 _ 120	,
Carbon tetrachloride	1.00	1.01		mg/L		101	54 - 122	
Chlorobenzene	1.00	0.931		mg/L		93	86 - 111	
Chloroform	1.00	1.01		mg/L		101	87 - 123	
Tetrachloroethene	1.00	0.996		mg/L		100	79 - 134	
Trichloroethene	1.00	0.969		mg/L		97	78 - 130	
Vinyl chloride	1.00	0.960		mg/L		96	56 - 111	

LCS LCS

-	Surrogate	%Recovery	Qualifier	Limits
	1,2-Dichloroethane-d4 (Surr)	107		80 - 121
	4-Bromofluorobenzene (Surr)	102		70 - 124
	Taluene-d8 (Surr)	99		90 - 116
	Dibromofluoromethane (Surr)	100		84 - 128

Lab Sample ID: MB 240-99545/6

Matrix: Water

Analysis Batch: 99545

Client Sample ID: Method Blank	-
Pron Type: Total/NA	

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethene	1.0	U	1.0	0.19	ug/L			08/29/13 14:23	1
1,2-Dichloroethane	1.0	υ	1.0	0.22	ug/L			08/29/13 14:23	1
Benzene	1.0	U	1.0	0.13	ug/L			08/29/13 14:23	1
2-Butanone (MEK)	10	Ū	10	0,57	ug/L			08/29/13 14:23	1
Carbon tetrachloride	1.0	U	1.0	0.13	ug/L			08/29/13 14:23	1
Chlorobenzene	1.0	U	1.0	0,15	ug/L			08/29/13 14:23	1
Chloroform	1.0	U	1.0	0.16	ug/L			08/29/13 14:23	1
Tetrachloroethene	1.0	U ·	1.0	0.29	ug/L			. 08/29/13 14:23	1
Trichloroethene	1.0	υ	1.0	0.17	ug/L			08/29/13 14:23	1
Vinyl chloride	1,0	U	1.0	0.22	ug/L			08/29/13 14:23	1

	IND	MD				
Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	116		63 - 129		08/29/13 14:23	1
4-Bromofluorobenzene (Surr)	87		66 _ 117	:	08/29/13 14:23	1
Toluene-d8 (Surr)	93		74 - 115	:	08/29/13 14:23	1
Dibromofluoromethane (Surr)	111		75 - 121		08/29/13 14:23	1

Lab Sample ID: LCS 240-99545/4

Matrix: Water							Prep Type: Total/NA
Analysis Batch: 99545							in the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second se
	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
1,1-Dichloroethene	10.0	9.55		ug/L		95	78 - 131
1,2-Dichloroethane	10.0	11.0		ug/L		110	71 - 127
Benzene	10.0	9.71		ug/L		97	⁶ 83 ₋ 112

TestAmerica Canton

Client Sample ID: Lab Control Sample

Client: Environmental Quality Mgt., Inc. Project/Site: RVAAP 66 (OH) - IDW

Lab Sample ID: LCS 240-99545/4

TestAmerica Job ID: 240-28199-1

Client Sample ID: Lab Control Sample

53 - 127

Client Sample ID: Method Blank

Prep Type: TCLP

#### Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Prep Type: Total/NA Matrix: Water Analysis Batch: 99545 Spike LCS LCS %Rec. Limits Result Qualifier Unit %Rec Added Analyte 94 60 . 126 18.9 ug/L 20.0 2-Butanone (MEK) 66 - 128 10.0 10.2 ug/L 102 Carbon tetrachloride 9.80 ug/L 98 85 _ 110 10.0 Chlorobenzene 79 - 117 10.2 102 ug/L Chloroform 10.0 103 79 _ 114 10.0 10.3 ug/L Tetrachloroethene ug/L 76 _ 117 10.0 9.84 Trichloroethene

10.0

7.33

ug/L

LCS LCS Qualifier Surrogate %Recovery Limits 98 63 - 129 1,2-Dichloroethane-d4 (Surr) 99 66 - 117 4-Bromofluorobenzene (Surr) 74 - 115 94 Toluene-d8 (Surr) 100 75 - 121 Dibromofluoromethane (Surr)

Lab Sample ID: LB 240-98604/1-A MB

Matrix: Water Analysis Ratch: 99416

Vinyi chloride

Analysis Datch: 99410									
	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	Ð	Prepared	Analyzed	Dil Fac
1,1-Dichloroethene	0.025	Ū	0.025	0.0095	mg/L			08/28/13 16:40	1
1,2-Dichloroethane	0.025	U	0,025	0.011	mg/L			08/28/13 16:40	1
Benzene	0.025	U	0.025	0.0065	mg/L			08/28/13 16:40	1
2-Butanone (MEK)	0.25	. U	0.25	0.029	mg/L			08/28/13 16:40	1
Carbon tetrachloride	0.025	U	0.025	0.0065	mg/L			08/28/13 16:40	1
Chlorobenzene	0,025	U	0.025	0.0075	mg/L			08/28/13 16:40	1
Chloroform	0.025		0.025	0.0080	mg/L	,		08/28/13 16:40	1
Tetrachloroethene	0.025	U	0.025	0.015	mg/L			08/28/13 16:40	1
Trichloroethene	0.025	U	0.025	0.0085	mg/L			08/28/13 16:40	1
Vinyl chloride	0.025	ີ ປ	0.025	0.011	mg/L			08/28/13 16:40	1

	MB MB '				
Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	104	80 - 121		08/28/13 16:40	1
4-Bromofluorobenzene (Surr)	101	70 - 124	•	08/28/13 16:40	1
Toluene-d8 (Surr)	101	90 - 115		08/28/13 16:40	1
Dibromofluoromethane (Surr)	100	84 - 128		08/28/13 16:40	1

#### Method: 8270C - Semivolatile Organic Compounds (GC/MS)

Lab Sample ID: MB 240-98719/10-A Matrix: Water Analysis Batch: 99066							Client Sa	mple ID: Metho Prep Type: 1 Prep Batcl	otal/NA
	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,4-Dichlorobenzene	0.0040	Ū	0.0040	0.00034	mg/L		08/23/13 11:30	08/27/13 16:11	1
2,4,5-Trichlorophenol	0.020	U	0,020	0.00030	mg/L		08/23/13 11:30	08/27/13 16:11	1
2,4,6-Trichlorophenol	0.020	U	0.020	0.00024	mg/L		08/23/13 11:30	08/27/13 16:11	. 1
2,4-Dinitrotoluene	0.020	Ü	0.020	0.00025	mg/L		08/23/13 11:30	08/27/13 16:11	1

Client: Environmental Quality Mgt., Inc. Project/Site: RVAAP 66 (OH) - IDW

TestAmerica Job ID: 240-28199-1

## Method: 8270C - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: MB 240-98719/10-A
Matrix: Water
Analysis Batch: 99066

Client Sample ID: Method Blank

Prep Type: Total/NA Prep Batch: 98719

	MB	MB							
Analyte	Result	Qualifier	RL.	MDL	Unit	D	Prepared	Analyzed	DII Fac
Hexachiorobenzene	0.020	Ū	0.020	0.000085	mg/L		08/23/13 11:30	08/27/13 16:11	1
Hexachlorobutadiene	0,020	U	0,020	0.00027	mg/L		08/23/13 11:30	08/27/13 16:11	1
Hexachloroethane	0.020	Ü	0.020	0.00019	mg/L		08/23/13 11:30	08/27/13 16:11	1
3 & 4 Methylphenol	0,040	υ	0.040	0.00080	mg/L		08/23/13 11:30	08/27/13 16:11	1
2-Methylphenol	0.0040	U	0.0040	0.00017	mg/L		08/23/13 11:30	08/27/13 16:11	1
Nitrobenzene	0,0040	Ū	0.0040	0.000040	mg/L		08/23/13 11:30	08/27/13 16:11	1
Pentachlorophenol	0.040	U	0.040	0.00027	mg/L		08/23/13 11:30	08/27/13 16:11	1
Pyridine	0.020	U	0.020	0,00035	mg/L		08/23/13 11:30	08/27/13 16:11	1

ł	rysidate	*	_		<del>-</del>			
-	•	МВ	MB					
	Surrogate	%Recovery	Qualifier	Limits		Prepared	Analyzed	Dil Fac
	2-Fluorobiphenyl (Surr)	64		27 - 110		08/23/13 11:30	08/27/13 16:11	1
	2-Fluorophenol (Surr)	35		10 - 110		08/23/13 11:30	08/27/13 16:11	1
	2,4,6-Tribromophenol (Surr)	48		15 _ 110		08/23/13 11:30	08/27/13 16:11	1
-	Nitrobenzene-d5 (Surr)	68		27 - 110		08/23/13 11:30	08/27/13 16:11	1
	Phenol-d5 (Surr)	59		20 - 110		08/23/13 11:30	08/27/13 16:11	1
	Terphenyl-d14 (Surr)	91		38 _ 110		08/23/13 11:30	08/27/13 16:11	1
	16thustiki-014 (0011)	- ·						

Lab Sample ID: LCS 240-98719/11-A

Matrix: Water

Client Sample	D:	Lab Control Sample
		Pron Type: Total/NA

Prep Type: Total/NA Prep Batch: 98719

Analysis Batch: 99066							i ich na	11011. 307 10
Analysis Datom sover	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,4-Dichlorobenzene	0.0800	0.0436		mg/L		55	16 - 110	
2,4,5-Trichlorophenoi	0.0800	0.0397		mg/L		50	35 - 110	
2,4,6-Trichlorophenol	0.0800	0.0371		mg/L	-	46	36 _ 110	
2,4-Dinitrotoluene	0.0800	0.0495		mg/L		62	49 - 110	
Hexachlorobenzene	0.0800	0.0514		mg/L		64	44 - 110	
Hexachlorobutadiene	0.0800	0.0409		mg/L		51	35 - 110	
Hexachloroethane	0.0800	0.0415		mg/L		52	34 - 110	
3 & 4 Methylphenol	0.0800	0.0443		mg/L		55	38 - 110	
2-Methylphenol	0.0800	0.0446		mg/L		56	36 - 114	
Nitrobenzene	0.0800	0.0509		mg/L		64	43 _ 110	
Pentachlorophenol	0.160	0.0851		mg/L		53	10 - 122	
Pyridine	0.0800	0.0434		mg/L		54	34 - 110	
•								

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
2-Fluorobiphenyl (Surr)	60		27 - 110
2-Fluorophenol (Surr)	12		10 - 110
2,4,6-Tribromophenol (Surr)	50		15 110
Nitrobenzene-d5 (Surr)	65		27 - 110
Phenol-d5 (Surr)	41		20 - 110
Terphenyl-d14 (Surr)	86		38 _ 110

Client: Environmental Quality Mgt., Inc. Project/Site: RVAAP 66 (OH) - IDW

TestAmerica Job ID: 240-28199-1

#### Method: 8081A - Organochlorine Pesticides (GC)

Lab Sample ID: MB 240-98727/4-A

Matrix: Water

Analysis Batch: 99059 👕

Client Sample ID: Method Blank Prep Type: Total/NA

Prep Batch: 98727

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chlordane (technical)	0.0050	U	0.0050	0.000079	mg/L		08/23/13 11:47	08/27/13 10:50	1
Endrin	0.00050	υ	0,00050	0.000026	mg/L		08/23/13 11:47	08/27/13 10:50	1
Heptachlor	0.00050	U	0.00050	0.000019	mg/L		08/23/13 11:47	08/27/13 10:50	1
Heptachlor epoxide	0.00050	Ü	0.00050	0.000017	mg/L		08/23/13 11:47	08/27/13 10:50	1
gamma-BHC (Lindane)	0.00050	U	0.00050	0.000015	mg/L		08/23/13 11:47	08/27/13 10:50	1
Methoxychior	0.0010	U	0.0010	0.000077	mg/L		08/23/13 11:47	08/27/13 10:50	1
Toxaphene	0.020	U	0.020	0,00077	mg/L		08/23/13 11:47	08/27/13 10:50	1

мв мв Prepared Analyzed %Recovery Qualifier Limits Surrogate 08/23/13 11:47 46 - 122 08/27/13 10:50 Tetrachloro-m-xylene 60 08/23/13 11:47 08/27/13 10:50 46 - 122 Tetrachloro-m-xylene 63 83 34 - 141 08/23/13 11:47 08/27/13 10:50 DCB Decachlorobiphenyl 08/23/13 11:47 08/27/13 10:50 DCB Decachlorobiphenyl 89 34 - 141

Lab Sample ID: LCS 240-98727/5-A

Matrix: Water

Analysis Batch: 99059

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Prep Batch: 98727

ł		Spike	LCS	LCS				%Rec.	
	Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
	Endrin	0.00200	0.00219	J	mg/L		110	59 _ 136	
-	Heptachlor	0.00200	0.00183	J	mg/L		92	63 - 123	
	Heptachlor epoxide	0,00200	0.00234	J	mg/L		117	59 - 141	
	gamma-BHC (Lindane)	0.00200	0.00187	J	mg/L		93	59 _ 137	
	Methoxychlor	0,00400	0.00425	J	mg/L		106	42 - 141	
1									

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
Tetrachloro-m-xylene	75		46 - 122
Tetrachloro-m-xylene	79		46 - 122
DCB Decachlorobiphenyl	98		34 - 141
DCB Decachlorobiphenyl	107		34 - 141

Lab Sample ID: 240-28199-2 MS

Matrix: Water

Analysis Batch: 99059

Client Sample	ID: FW	G-IDW-M\	WDECON/	AUG2013
---------------	--------	----------	---------	---------

Prep Type: TCLP

Prep Batch: 98727

Spike MS MS Sample Sample Result Qualifier Added Result Qualifier %Rec Limits Analyte Unit 50 - 150 0.00050 U 0.00218 J 109 Endrin 0,00200 mg/L Heptachlor 0.00050 U 0.00200 0.00179 J mg/L 90 50 . 150 110 50 _ 150 0.00050 U 0.00200 0.00220 J mg/L. Heptachlor epoxide 0,00174 J 50.150 0.00050 U mg/L 87 gamma-BHC (Lindane) 0.00200 50 - 150 Methoxychlor 0.0010 U 0.00400 0.00441 J mg/L 110

	MS	MS	
Surrogate	%Recovery	Qualifier	Limits
Tetrachloro-m-xylene	69		46 - 122
Tetrachloro-m-xylene	77		46 - 122
DCB Decachlorobiphenyl	23	X	34 - 141
DCB Decachlorobiphenyl		X	34 - 141

Client: Environmental Quality Mgt., Inc. Project/Site: RVAAP 66 (OH) - IDW

TestAmerica Job ID: 240-28199-1

Method: 8151A - Herbicides (GC)

Lab Sample ID: MB 240-98962/4-A

Matrix: Water

Analysis Batch: 99141

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 98962

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
2,4-D	0.0020	U	0.0020	0.00021	mg/L		08/26/13 12:37	08/27/13 17:15	1
Silvex (2,4,5-TP)	0.00050	U	0.00050	0.00010	mg/L		08/26/13 12:37	08/27/13 17:15	1
	MB	MB							
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2,4-Dichlorophenylacetic acid	63		37 - 116				08/26/13 12:37	08/27/13 17:15	

37 - 116

Lab Sample ID: LCS 240-98962/5-A

Matrix: Water

Analysis Batch: 99141

2,4-Dichlorophenylacetic acid

Client Sample ID: Lab Control Sample

08/27/13 17:15

08/26/13 12:37

Prep Type: Total/NA

Prep Batch: 98962

			Spike	LCS	LCS				%Rec.	
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits	
2,4-D			0.0200	0.0178		mg/L		89	35 _ 136	
Silvex (2,4,5-TP)			0.00500	0.00369		mg/L		74	46 - 112	
	LCS	LCS								
Surrogate	%Recovery	Qualifier	Limits							
2,4-Dichlorophenylacetic acid	60		37 - 116							
2,4-Dichlorophenylacetic acid	79		37 - 116							

Lab Sample ID: 240-28199-3 MS

Matrix: Water

Analysis Batch: 99141

Client Sample ID: FWG-IDW-MWPURGEAUG2013

Prep Type: TCLP

Prep Batch: 98962

MS MS Sample Sample Spike Result Qualifier Added Result Qualifier %Rec Limits Analyte Unit 0.0200 2,4-D 0.0020 U 0.0172 mg/L 86 54 - 114 Silvex (2,4,5-TP) 0,00050 U 0.00500 0.00417 mg/L 83 52 _ 124

MS MS

0.25 U

0.50 U

MR MR

75

Surrogate %Recovery Qualifier Limits 2,4-Dichlorophenylacetic acid 74 37 - 116 2,4-Dichlorophenylacetic acid 84 37 - 116

Method: 6010B - Metals (ICP)

Lab Sample ID: MB 240-98699/2-A

Matrix: Water

Selenium

Silver

Analysis Batch: 99017

Client Sample ID: Method Blank

08/26/13 17:11

08/26/13 17:11

08/23/13 10:17

Prep Type: Total/NA

Prep Batch: 98699

MR MR Analyte Result Qualifier RL MDL Unit Prepared Analyzed Dil Fac Arsenic 0.50 U 0.50 0.0032 mg/L 08/23/13 10:17 08/26/13 17:11 Barium 0.000881 J 10 0.00067 mg/L 08/23/13 10:17 08/26/13 17:11 Cadmium 0.10 U 0.10 0.00066 mg/L 08/23/13 10:17 08/26/13 17:11 Chromium 0.50 u 0.50 0.0022 mg/L 08/23/13 10:17 08/26/13 17:11 08/23/13 10:17 Lead 0.50 U 0.50 0.0019 mg/L 08/26/13 17:11 08/23/13 10:17

0.25

0.50

0.0041 mg/L

0,0022 mg/L

Client: Environmental Quality Mgt., Inc. Project/Site: RVAAP 66 (OH) - IDW

TestAmerica Job ID: 240-28199-1

Method: 6010B - Metals (ICP) (Continued)

Lab Sample ID: LCS 240-98699/3-A Client Sample ID: Lab Control Sample Matrix: Water Prep Type: Total/NA

Analysis Batch: 99017 Prep Batch: 98699

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Arsenic	2.00	2.16		mg/L		108	50 - 150	
Barium	2.00	1.95	J	mg/L		98	50 - 150	
Cadmium	0.0500	0,0511	J	mg/L		102	50 _ 150	
Chromium	0.200	0.206	J	mg/L		103	50 _ 150	
Lead	0.500	0.466	J	mg/L		93	50 - 150	
Selenium	2.00	2.15		mg/L		108	50 - 150	
Silver	0,0500	0,0544		mg/L		109	50 - 150	

Lab Sample ID: LB 240-98607/1-D LB Client Sample ID: Method Blank Prep Type: TCLP

Matrix: Water

Analysis Batch: 99017 Prep Batch: 98699

Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
0.50	U	0.50	0.0032	mg/L		08/23/13 10:17	08/26/13 17:07	1
0.00165	J	10	0.00067	mg/L		08/23/13 10:17	08/26/13 17:07	1
0.10	U	0.10	0.00066	mg/L		08/23/13 10:17	08/26/13 17:07	1
0.50	U	0.50	0.0022	mg/L		08/23/13 10:17	08/26/13 17:07	1
0.50	U	0.50	0.0019	mg/L		08/23/13 10:17	08/26/13 17:07	1
0.25	U	0.25	0.0041	mg/L		08/23/13 10:17	08/26/13 17:07	1
0.50	U	0.50	0.0022	mg/L		08/23/13 10:17	08/26/13 17:07	1
	0.50 0.00165 0.10 0.50 0.50	Result Qualifier  0.50 U  0.00165 J  0.10 U  0.50 U  0.50 U  0.50 U  0.50 U	0.50 U 0.50 0.00165 J 10 0.10 U 0.10 0.50 U 0.50 0.50 U 0.50 0.50 U 0.50 0.25 U 0.25	0.50         U         0.50         0.0032           0.00165         J         10         0.00067           0.10         U         0.10         0.00066           0.50         U         0.50         0.0022           0.50         U         0.50         0.0019           0.25         U         0.25         0.0041	0.50         U         0.50         0.0032         mg/L           0.00165         J         10         0.00067         mg/L           0.10         U         0.10         0.00066         mg/L           0.50         U         0.50         0.0022         mg/L           0.50         U         0.50         0.0019         mg/L           0.25         U         0.25         0.0041         mg/L	0.50 U 0.50 0.0032 mg/L 0.00165 J 10 0.00067 mg/L 0.10 U 0.10 0.00066 mg/L 0.50 U 0.50 0.0022 mg/L 0.50 U 0.50 0.0019 mg/L 0.25 U 0.25 0.0041 mg/L	0.50         U         0.50         0.0032         mg/L         08/23/13 10:17           0.00165         J         10         0.00067         mg/L         08/23/13 10:17           0.10         U         0.10         0.00066         mg/L         08/23/13 10:17           0.50         U         0.50         0.0022         mg/L         08/23/13 10:17           0.50         U         0.50         0.0019         mg/L         08/23/13 10:17           0.25         U         0.25         0.0041         mg/L         08/23/13 10:17	0.50         U         0.50         0.0032         mg/L         08/23/13 10:17         08/26/13 17:07           0.00165         J         10         0.00067         mg/L         08/23/13 10:17         08/26/13 17:07           0.10         U         0.10         0.00066         mg/L         08/23/13 10:17         08/26/13 17:07           0.50         U         0.50         0.0022         mg/L         08/23/13 10:17         08/26/13 17:07           0.50         U         0.50         0.0019         mg/L         08/23/13 10:17         08/26/13 17:07           0.25         U         0.25         0.0041         mg/L         08/23/13 10:17         08/26/13 17:07

Method: 7470A - Mercury (CVAA)

Lab Sample ID: MB 240-98702/2-A Client Sample ID: Method Blank Matrix: Water Prep Type: Total/NA

Analysis Batch: 99183

MR MR

Analyte Result Qualifier MDL Unit Prepared Analyzed Dil Fac

0.0020 U 0.0020 0,00012 mg/L 08/23/13 14:55 08/27/13 14:00 Mercury

Lab Sample ID: LCS 240-98702/3-A Client Sample ID: Lab Control Sample Matrix: Water Prep Type: Total/NA Analysis Batch: 99183 Prep Batch: 98702 Spike LCS LCS

Analyte Added Result Qualifier Unit %Rec Limits Mercury 0.00500 0.00489 mg/L 50 - 150

Lab Sample ID: LB 240-98607/1-E LB Client Sample ID: Method Blank

Matrix: Water Prep Type: TCLP Analysis Batch: 99183 Prep Batch: 98702

LB LB Analyte Result Qualifier RL MDL Unit Prepared Analyzed Dil Fac

0.0020 U Mercury 0.0020 0,00012 mg/L 08/23/13 14:55 08/27/13 13:59

TestAmerica Canton

Prep Batch: 98702

Client: Environmental Quality Mgt., Inc. Project/Site: RVAAP 66 (OH) - IDW

Analyte

Cyanide, Total

TestAmerica Job ID: 240-28199-1

Lab Sample ID: LCS 240-98968/1 Matrix: Water								С	lient	Sample	ID: Lab Contro Prep Type:	_
Analysis Batch: 98968											i ich iype.	TOTAL/NA
Analysis Batch. 90900			Spike		LCS	LCS					%Rec.	
Analyte			Added			Qualifier	Unit		D	%Rec	Limits	
Flashpoint			81.0		83.00		Degree	s F	-	102	97 - 103	
lethod: 9012A - Cyanide, Total and	d/or A	menable						·	· · · · · · · · · · · · · · · · · · ·	-nr-a-nnn-a-mr		
Lab Sample ID: MB 240-98696/1-A										Client Sa	ample ID: Meth	od Blank
Matrix: Water											Prep Type:	Total/NA
Analysis Batch: 98763											Prep Bato	
•	MB	MB									•	
Analyte	Result	Qualifier		RL		MDL Unit		D	Pi	repared	Analyzed	Dil Fac
Cyanide, Total	0.010	U		0.010	0.	0032 mg/L		_	08/2	3/13 10:11	08/23/13 13:25	
Lab Sample ID: LCS 240-98696/2-A								С	lient	Sample	ID: Lab Contro	l Sample
Matrix: Water											Prep Type:	Total/N/
Analysis Batch: 98763											Prep Bato	h: 9869
•			Spike		LCS	LCS					%Rec.	
Analyte			Added		Result	Qualifier	Unit		D	%Rec	Limits	
Cyanide, Total			0.0519		0.0542		mg/L		_	104	69 - 118	
1 0								_	lians	Cample	ID: Lab Contro	l Cample
Lab Sample ID: MRL 240-98763/6 MRL								·	IIGIIE	Sample		_
Matrix: Water											Prep Type:	iotai/iv
Analysis Batch: 98763			Spike		WEI	MRL					%Rec.	
Analyta			Added			Qualifier	Unit		D	%Rec	Limits	
Analyte Cyanide, Total			0.0100		0.0114	Quanner	mg/L			114	70 ₋ 130	
Cyanide, Total			0.0100		0.0114		mgr			124	70 - 130	
Lab Sample ID: MB 240-98921/1-A										Client Sa	ample ID: Meth	od Blani
Matrix: Water											Prep Type:	Total/N/
Analysis Batch: 98996											Prep Bato	h: 9892
	MB	MB										
Analyte	Result	Qualifier		RL		MDL Unit		D	P	repared	Analyzed	Dil Fa
Cyanide, Total	0.010	U +		0.010	0.	.0032 mg/l	-	_	08/2	6/13 10:55	08/26/13 13:58	-
Lab Sample ID: LCS 240-98921/2-A								С	lient	Sample	ID: Lab Contro	l Sampl
Matrix: Water											Prep Type:	Total/N/
Analysis Batch: 98996			C+:l/a		1.00	LCS					Prep Bato %Rec.	
Analysis			Spike			Qualifier	Unit		Đ	%Rec	Limits	
Analyte Cyanide, Total			<b>Added</b> 0.0519		0.0510		mg/L		٠ –	98	69 - 118	
: Lab Sample ID: MRL 240-98996/10 MRL								C	lient	Samnle	ID: Lab Contro	l Samel
Matrix: Water								•		. Junipis	Prep Type:	_
Analysis Batch: 98996											i tep type.	

TestAmerica Canton

%Rec.

Limits

70 - 130

%Rec

Spike Added

0.0100

MRL MRL

0.0106

Result Qualifier

Unit

mg/L

Client: Environmental Quality Mgt., Inc. Project/Site: RVAAP 66 (OH) - IDW

TestAmerica Job ID: 240-28199-1

Client Sample ID: Method Blank

Method: 9034 - Sulfide,	Acid soluble and	Insoluble (Titrimetric)
-------------------------	------------------	-------------------------

Matrix: Water

Analysis Batch: 98961

MB	MB
Result	Qualifie
3.0	U

3.0

8.26

6.34

MDL Unit 0.94 mg/L

Prepared 08/26/13 08:18

08/26/13 08:18

Prep Type: Total/NA

Prep Type: Total/NA

Prep Type: Total/NA

Prep Batch: 98870

Prep Batch: 98870

Dil Fac

Lab Sample ID: LCS 240-98870/2-A

Matrix: Water

Analyte

Sulfide

Analysis Batch: 98961

Analyte Sulfide

Spike Added

LCS LCS Result Qualifier 7.86

Unit mg/L

70 - 130

Client Sample ID: Lab Control Sample

%Rec.

Method: 9040B - pH

Lab Sample ID: LCS 240-98527/2

Matrix: Water

pН

Analysis Batch: 98527

Analyte

Spike Added

LCS LCS Result Qualifier

6.380

Unit SU

%Rec

%Rec. Limits 97 - 103

Client Sample ID: Lab Control Sample

Client: Environmental Quality Mgt., Inc. Project/Site: RVAAP 66 (OH) - IDW

TestAmerica Job ID: 240-28199-1

GC/MS	VO.	A
-------	-----	---

Leach	Batch:	98604
-------	--------	-------

	Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
	240-28199-2	FWG-IDW-MWDECONAUG2013	TCLP	Water	1311	
	240-28199-3	FWG-IDW-MWPURGEAUG2013	TCLP	Water	1311	
-	LB 240-98604/1-A MB	Method Blank	TCLP	Water	1311	

#### Analysis Batch: 99416

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
240-28199-2	FWG-IDW-MWDECONAUG2013	TCLP	Water	8260B	98604
240-28199-3	FWG-IDW-MWPURGEAUG2013	TCLP	Water	8260B	98604
LB 240-98604/1-A MB	Method Blank	TCLP	Water	8260B	98604
LCS 240-99416/6	Lab Control Sample	Total/NA	Water	8260B	

#### Analysis Batch: 99545

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
240-28199-1	FWG-IDW-MWTB-AUG2013	Total/NA	WQ	8260B	
LCS 240-99545/4	Lab Control Sample	Total/NA	Water	8260B	
MB 240-99545/6	Method Blank	Total/NA	Water	8260B	

#### GC/MS Semi VOA

#### Leach Batch: 98607

-	Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
	240-28199-2	FWG-IDW-MWDECONAUG2013	TCLP	Water	1311	
	240-28199-3	FWG-IDW-MWPURGEAUG2013	TCLP	Water	1311	

#### Prep Batch: 98719

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
240-28199-2	FWG-IDW-MWDECONAUG2013	TCLP	Water	3520C	98607
240-28199-3	FWG-IDW-MWPURGEAUG2013	TCLP	Water	3520C	98607
LCS 240-98719/11-A	Lab Control Sample	Total/NA	Water	3520C	
MB 240-98719/10-A	Method Blank	Total/NA	Water	3520C	

#### Analysis Batch: 99066

Lab Sample ID	Client Sample ID	÷	Prep Type	Matrix	Method	Prep Batch
 LCS 240-98719/11-A	Lab Control Sample		Total/NA	Water	8270C	98719
MB 240-98719/10-A	Method Blank		Total/NA	Water	8270C	98719

#### Analysis Batch: 99297

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
240-28199-2	FWG-IDW-MWDECONAUG2013	TCLP	Water	8270C	98719
240-28199-3	FWG-IDW-MWPURGEAUG2013	TCLP	Water	8270C	98719

#### GC Semi VOA

#### Leach Batch: 98607

<u></u>					
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
240-28199-2	FWG-IDW-MWDECONAUG2013	TCLP	Water	1311	
240-28199-2 MS	FWG-IDW-MWDECONAUG2013	TCLP	Water	1311	
240-28199-3	FWG-IDW-MWPURGEAUG2013	TCLP	Water	1311	
240-28199-3 MS	FWG-IDW-MWPURGEAUG2013	TCLP	Water	1311	

Client: Environmental Quality Mgt., Inc. Project/Site: RVAAP 66 (OH) - IDW

TestAmerica Job ID: 240-28199-1

#### GC Semi VOA (Continued)

Prep	Batch:	98727
------	--------	-------

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
240-28199-2	FWG-IDW-MWDECONAUG2013	TCLP	Water	3520C	98607
240-28199-2 MS	FWG-IDW-MWDECONAUG2013	TCLP	Water	3520C	98607
240-28199-3	FWG-IDW-MWPURGEAUG2013	TCLP	Water	3520C	98607
LCS 240-98727/5-A	Lab Control Sample	Total/NA	Water	3520C	
MB 240-98727/4-A	Method Blank	Total/NA	Water	3520C	

#### Prep Batch: 98962

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
240-28199-2	FWG-IDW-MWDECONAUG2013	TCLP	Water	8151A	98607
240-28199-3	FWG-IDW-MWPURGEAUG2013	TCLP	Water	8151A	98607
240-28199-3 MS	FWG-IDW-MWPURGEAUG2013	TCLP	Water	8151A	98607
LCS 240-98962/5-A	Lab Control Sample	Total/NA	Water	8151A	***********
MB 240-98962/4-A	Method Blank	Total/NA	Water	8151A	

#### Analysis Batch: 99059

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
240-28199-2	FWG-IDW-MWDECONAUG2013	TCLP	Water	8081A	98727
240-28199-2 MS	FWG-IDW-MWDECONAUG2013	TCLP	Water	8081A	98727
240-28199-3	FWG-IDW-MWPURGEAUG2013	TCLP	Water	8081A	98727
LCS 240-98727/5-A	Lab Control Sample	Total/NA	Water	8081A	98727
MB 240-98727/4-A	Method Blank	Total/NA	Water	8081A	98727

#### Analysis Batch: 99141

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
240-28199-2	FWG-IDW-MWDECONAUG2013	TCLP	Water	8151A	98962
240-28199-3	FWG-IDW-MWPURGEAUG2013	TCLP	Water	8151A	98962
240-28199-3 MS	FWG-IDW-MWPURGEAUG2013	TCLP	Water	8151A	98962
LCS 240-98962/5-A	Lab Control Sample	Total/NA	Water	8151A	98962
MB 240-98962/4-A	Method Blank	Total/NA	Water	8151A	98962

#### Metals

#### Leach Batch: 98607

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
240-28199-2	FWG-IDW-MWDECONAUG2013	TCLP	Water	1311	
240-28199-3	FWG-IDW-MWPURGEAUG2013	TCLP	Water	1311	
LB 240-98607/1-D LB	Method Blank	TCLP	Water	1311	
LB 240-98607/1-E LB	Method Blank	TCLP	Water	1311	

#### Prep Batch: 98699

_					
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
240-28199-2	FWG-IDW-MWDECONAUG2013	TCLP	Water	3010A	98607
240-28199-3	FWG-IDW-MWPURGEAUG2013	TCLP	Water	3010A	98607
LB 240-98607/1-D LB	Method Blank	TCLP	Water	3010A	98607
LCS 240-98699/3-A	Lab Control Sample	Total/NA	Water	3010A	
MB 240-98699/2-A	Method Blank	Total/NA	Water	3010A	
Prep Batch: 98702					
Fieh Darcii: 30/02					

1	<del></del>					
	Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
	240-28199-2	FWG-IDW-MWDECONAUG2013	TCLP	Water	7470A	98607

Client: Environmental Quality Mgt., Inc. Project/Site: RVAAP 66 (OH) - IDW

TestAmerica Job ID: 240-28199-1

Metals (	Contin	ued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
240-28199-3	FWG-IDW-MWPURGEAUG2013	TCLP	Water	7470A	98607
LB 240-98607/1-E LB	Method Blank	TCLP	Water	7470A	98607
LCS 240-98702/3-A	Lab Control Sample	Total/NA	Water	7470A	
MB 240-98702/2-A	Method Blank	Total/NA	Water	7470A	

#### Analysis Batch: 99017

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
240-28199-2	FWG-IDW-MWDECONAUG2013	TCLP	Water	6010B	98699
240-28199-3	FWG-IDW-MWPURGEAUG2013	TCLP	Water	6010B	98699
LB 240-98607/1-D LB	Method Blank	TCLP	Water	6010B	98699
LCS 240-98699/3-A	Lab Control Sample	Total/NA	Water	6010B	98699
MB 240-98699/2-A	Method Blank	Total/NA	Water	6010B	98699

#### Analysis Batch: 99183

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
240-28199-2	FWG-IDW-MWDECONAUG2013	TCLP	Water	7470A	98702
240-28199-3	FWG-IDW-MWPURGEAUG2013	TCLP	Water	7470A	98702
LB 240-98607/1-E LB	Method Blank	TCLP	Water	7470A	98702
LCS 240-98702/3-A	Lab Control Sample	Total/NA	Water	7470A	98702
MB 240-98702/2-A	Method Blank	Total/NA	Water	7470A	98702

#### **General Chemistry**

#### Analysis Batch: 98527

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
240-28199-2	FWG-IDW-MWDECONAUG2013	Totai/NA	Water	9040B	
240-28199-3	FWG-IDW-MWPURGEAUG2013	Total/NA	Water	90408	
LCS 240-98527/2	Lab Control Sample	Totai/NA	Water	90408	

#### Prep Batch: 98696

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
240-28199-2	FWG-IDW-MWDECONAUG2013	Total/NA	Water	9012A	
LCS 240-98696/2-A	Lab Control Sample .	Total/NA	Water	9012A	
MB 240-98696/1-A	Method Blank	Total/NA	Water	9012A	

#### Analysis Batch: 98763

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
240-28199-2	FWG-IDW-MWDECONAUG2013	Total/NA	Water	9012A	98696
LCS 240-98696/2-A	Lab Control Sample	Total/NA	Water	9012A	98696
MB 240-98696/1-A	Method Blank	Total/NA	Water	9012A	98696
MRL 240-98763/6 MRL	Lab Control Sample	Total/NA	Water	9012A	

#### Prep Batch: 98870

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
240-28199-2	FWG-IDW-MWDECONAUG2013	Total/NA	Water	9030B	
240-28199-3	FWG-IDW-MWPURGEAUG2013	Total/NA	Water	9030B	
LCS 240-98870/2-A	Lab Control Sample	Total/NA	Water	9030B	
MB 240-98870/1-A	Method Blank	Total/NA	Water	9030B	

Client: Environmental Quality Mgt., Inc. Project/Site: RVAAP 66 (OH) - IDW

TestAmerica Job ID: 240-28199-1

#### **General Chemistry (Continued)**

	Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
	240-28199-3	FWG-IDW-MWPURGEAUG2013	Total/NA	Water	9012A	
ł	LCS 240-98921/2-A	Łab Control Sample	Total/NA	Water	9012A	
	MB 240-98921/1-A	Method Blank	Total/NA	Water	9012A	

#### Analysis Batch: 98961

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
240-28199-2	FWG-IDW-MWDECONAUG2013	Total/NA	Water	9034	98870
240-28199-3	FWG-IDW-MWPURGEAUG2013	Total/NA	Water	9034	98870
LCS 240-98870/2-A	Lab Control Sample	Total/NA	Water	9034	98870
MB 240-98870/1-A	Method Blank	Total/NA	Water	9034	98870

#### Analysis Batch: 98968

	Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
1	240-28199-2	FWG-IDW-MWDECONAUG2013	Total/NA	Water	1010	
1	240-28199-3	FWG-IDW-MWPURGEAUG2013	Total/NA	Water	1010	
	LCS 240-98968/1	Lab Control Sample	Totai/NA	Water	1010	888

#### Analysis Batch: 98996

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
240-28199-3	FWG-IDW-MWPURGEAUG2013	Total/NA	Water	9012A	98921
LCS 240-98921/2-A	Lab Control Sample	Total/NA	Water	9012A	98921
MB 240-98921/1-A	Method Blank	Total/NA	Water	9012A	98921
MRL 240-98996/10 MRL	Lab Control Sample	Total/NA	Water	9012A	

#### Lab Chronicle

Client: Environmental Quality Mgt., Inc. Project/Site: RVAAP 66 (OH) - IDW

TestAmerica Job ID: 240-28199-1

Lab Sample ID: 240-28199-1

Matrix: WQ

Client Sample ID: FWG-IDW-MWTB-AUG2013

Date Collected: 08/21/13 16:00 Date Received: 08/22/13 07:00

		Batch	Batch		Dilution	Batch	Prepared		
l	Ргер Туре	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
L	Total/NA	Analysis	8260B		1	99545	08/29/13 17:25	LRW	TAL CAN

Client Sample ID: FWG-IDW-MWDECONAUG2013

Date Collected: 08/21/13 16:20

Date Received: 08/22/13 07:00

Lab	Sample	ID:	240-28199-2
-----	--------	-----	-------------

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
TCLP	Leach	1311			98604	08/22/13 15:40	DRJ	TAL CAN
TCLP	Analysis	8260B		2	99416	08/28/13 23:05	TJL1	TAL CAN
TCLP	Leach	1311			98607	08/22/13 15:40	DRJ	TAL CAN
TCLP	Prep	3520C			98719	08/23/13 11:30	AKC	TAL CAN
TCLP	Analysis	8270C		1	99297	08/28/13 17:33	TMH	TAL CAN
TCLP	Analysis	8081A		1	99059	08/27/13 09:49	CVD	TAL CAN
TCLP	Leach	1311			98607	08/22/13 15:40	DRJ	TAL CAN
TCLP	Prep	3520C			98727	08/23/13 11:47	AKC	TAL CAN
TCLP	Prep	8151A			98962	08/26/13 12:37	AKC	TAL CAN
TCLP	Analysis	8151A		1	99141	08/27/13 16:04	DEB	TAL CAN
TCLP	Leach	1311			98607	08/22/13 15:40	DRJ	TAL CAN
TCLP	Leach	1311			98607	08/22/13 15:40	DRJ	TAL CAN
TCLP	Prep	3010A			98699	08/23/13 10:17	DEE	TAL CAN
TCLP	Analysis	6010B		1	99017	08/26/13 18:14	RKT	TAL CAN
TCLP	Leach	1311			98607	08/22/13 15:40	DRJ	TAL CAN
TCLP	Ргер	7470A			98702	08/23/13 14:55	DEE	TAL CAN
TCLP	Analysis	7470A		1	99183	08/27/13 14:19	ADS	TAL CAN
Total/NA	Analysis	9040B		1	98527	08/22/13 16:12	AMM2	TAL CAN
Total/NA	Prep	9012A			98696	08/23/13 10:11	AMM2	TAL CAN
Total/NA	Analysis	9012A		1	98763	08/23/13 13;31	AMM2	TAL CAN
Total/NA	Prep	9030B	E		98870	08/26/13 08:18	BLW	TAL CAN
Total/NA	Analysis	9034		1	98961	08/26/13 08:18	BLW	TAL CAN
Total/NA	Analysis	1010		1	98968	08/26/13 07:14	TPH	TAL CAN

Client Sample ID: FWG-IDW-MWPURGEAUG2013

Date Collected: 08/21/13 16:50

Date Received: 08/22/13 07:00

_ab	Samp	ie เก:	240-28	199-3
-----	------	--------	--------	-------

Matrix: Water

r									
	Batch	Batch		Dilution	Batch	Prepared		ž. ed	į
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab	
TCLP	Leach	1311			98604	08/22/13 15:40	DRJ	TAL CAN	-
TCLP	Analysis	8260B		1	99416	08/28/13 23:29	TJL1	TAL CAN	
TCLP	Leach	1311			98607	08/22/13 15:40	DRJ	TAL CAN	
TCLP	Prep	3520C			98719	08/23/13 11:30	AKC	TAL CAN	ř
TCLP	Analysis	8270C		1	99297	08/28/13 17:55	TMH	TAL CAN	
TCLP	Analysis	8081A		1	99059	08/27/13 10:30	CVD	TAL CAN	
TCLP	Leach	1311			98607	08/22/13 15:40	DRJ	TAL CAN	

#### **Lab Chronicle**

Client: Environmental Quality Mgt., Inc. Project/Site: RVAAP 66 (OH) - IDW

TestAmerica Job ID: 240-28199-1

Lab Sample ID: 240-28199-3

Matrix: Water

#### Client Sample ID: FWG-IDW-MWPURGEAUG2013

Date Collected: 08/21/13 16:50 Date Received: 08/22/13 07:00

	Batch	Batch		Dilution	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
TCLP	Prep	3520C			98727	08/23/13 11:47	AKC	TAL CAN
TCLP	Leach	1311			98607	08/22/13 15:40	DRJ	TAL CAN
TCLP	Ргер	8151A			98962	08/26/13 12:37	AKC	TAL CAN
TCLP	Analysis	8151A		1	99141	08/27/13 16:27	DEB	TAL CAN
TCLP	Leach	1311			98607	08/22/13 15:40	DRJ	TAL CAN
TCLP	Prep	3010A			98699	08/23/13 10:17	DEE	TAL CAN
TCLP	Analysis	6010B		1	99017	08/26/13 18:26	RKT	TAL CAN
TCLP	Leach	1311			98607	08/22/13 15:40	DRJ	TAL CAN
TCLP	Prep	7470A			98702	08/23/13 14:55	DEE	TAL CAN
TCLP	Analysis	7470A		1	99183	08/27/13 14:20	ADS	TAL CAN
Total/NA	Analysis	9040B		1	98527	08/22/13 16:13	AMM2	TAL CAN
Total/NA	Prep	9030B			98870	08/26/13 08:18	BLW	TAL CAN
Total/NA	Analysis	9034		1	98961	08/26/13 08:18	BLW	TAL CAN
Total/NA	Analysis	1010		1	98968	08/26/13 07:45	TPH	TAL CAN
Total/NA	Prep	9012A			98921	08/26/13 10:55	NJE	TAL CAN
Total/NA	Analysis	9012A		1	98996	08/26/13 14:09	NJE	TAL CAN

#### Laboratory References:

TAL CAN = TestAmerica Canton, 4101 Shuffel Street NW, North Canton, OH 44720, TEL (330)497-9396

#### **Certification Summary**

Client: Environmental Quality Mgt., Inc. Project/Site: RVAAP 66 (OH) - IDW

TestAmerica Job ID: 240-28199-1

#### Laboratory: TestAmerica Canton

All certifications held by this laboratory are listed. Not all certifications are applicable to this report.

Authority	Program	EPA Region	Certification ID	Expiration Date	
California	NELAP	9	01144CA	06-30-14	
Connecticut	State Program	1	PH-0590	12-31-13	
Florida	NELAP	4	E87225	06-30-14	
Georgia	State Program	4	N/A	06-30-14	
Illinois	NELAP	5	200004	07-31-13 *	
Kansas	NELAP	7	E-10336	01-31-14	
Kentucky	State Program	4	58	06-30-14	
L-A-B	DoD ELAP		L2315	07-18-16	
Minnesota	NELAP	5	039-999-348	12-31-13	
Nevada	State Program	9	OH-000482008A	07-31-14	
New Jersey	NELAP	2	OH001	06-30-14	
New York	NELAP	2	10975	04-01-14	
Ohio VAP	State Program	5	CL0024	01-19-14	
Pennsylvania	NELAP	3	68-00340	08-31-13 *	
Texas	NELAP	6		08-31-13	
USDA	Federal		P330-11-00328	08-26-14	
Virginia	NELAP	3	460175	09-14-13	
Washington	State Program	10	C971	01-12-14	
Wisconsin	State Program	5	999518190	08-31-13	

^{*} Expired certification is currently pending renewal and is considered valid.

## TestAmerica Canton

4101 Shuffel Street, B. W.

## **Chain of Custody Record**

**TestAmerica** 

THE LEADER IN ENVIRONMENTAL TESTING TestAmerica Laboratories, Inc.

North Canton, 6H 44720
Phone: 330.497.9396 Fax: 330.497.0772 Regulatory Program: DW NPDES RCRA Other

72020 350.437.3536 FBX 550.437.077£	Regulatory Pr	rogram:	] Wd	(PDES	RC	RA [	Other	r:	ļ					Form	n No. CA-C-WI-002, Rev. 4.2, dated 04/02/2013
Client Contact	Project Manager:	TOLA	Mille	/(Si	ite Cor	ntact:			. :	Date:	81	211			COC NOX-400/52/13
Company Name: ZAM	Tel/Fax: 53-			Lá	ab Cor	ntact:	n.l	يص	20	Carri	er: 2	$\mathcal{Q}\mathcal{b}$	YICK	Up	
Address: (87) (TWill on HIVO)	Analysis	Turnaround	Time					0	27:						Sampler:
City/State/Zip: / tripnote ONS45240	CALENDAR DAYS	wo	RKING DAYS		11			1	1		1				For Lab Use Only:
Phone: 5 13 - 425 - 75 00	TAT if different	from Below			Ξ			T.	<b>9</b> .			- 1			Walk-in Client:
Fax:		2 weeks	me	TO Z				14	H			-			Lab Sampling:
Project Name: WHHT (VO (OF		1 week		W >		1, 6	1 1	B.	ZI.ZI						
Site:		2 days	(	<u>^^   ៊</u>	MSD		3 ]	130	710			-			Job / SDG No.:
PO#		1 day		Sample	MS/	18		Ġ		-	1 1				
		Sample		Š	2 3	14	422	1	2			-			
,	Sample Sample	Type (C≔Comp,		∮of b	įξį	5/2/	Z) (J	H	923						COUBLID
Sample Identification	Date Time	G=Grab)		ont 🗄	<u>8</u>		7	<u>`</u>	14						Sample Specific Notes:
FIRE-IDW MWTB-PUB 293	8/2/13 16W	)	Water.	2 1	1 0	200	, 7	-7	- 7	W					31/0
			1		4774	424					-	+		+	
FUET- IDW-MWDECONAUG2013		Comp	Wester	1 4		56	27	7							310
FIRE TOWN MINTERFAISONS	8/2/13/1/32	COMO	1/6	7 IV	/{{}	157	カカ	7	7						<i>H113</i>
Turp woo not orena war	171000	1.21.19		<del>/  '</del>	1	1-1-	~	-	<del> ;*</del>					$\top$	
										-	_			_	
	'														
						11	1-1								
			<del>  </del>		4-1-		11						<del>   </del> -		
													<u> </u>		
P (AMAINE AND AMAIN AND AMAIN AND AMAIN AND AMAIN AND AMAIN AND AMAIN AND AMAIN AND AMAIN AND AMAIN AND AMAIN AND AMAIN AND AMAIN AND AMAIN AND AMAIN AND AMAIN AND AMAIN AND AMAIN AND AMAIN AND AMAIN AND AMAIN AND AMAIN AND AMAIN AND AMAIN AND AMAIN AND AMAIN AND AMAIN AND AMAIN AND AMAIN AND AMAIN AND AMAIN AND AMAIN AND AMAIN AND AMAIN AND AMAIN AND AMAIN AND AMAIN AND AMAIN AND AMAIN AND AMAIN AND AMAIN AND AMAIN AND AMAIN AND AMAIN AND AMAIN AND AMAIN AND AMAIN AND AMAIN AND AMAIN AND AMAIN AND AMAIN AND AMAIN AND AMAIN AND AMAIN AND AMAIN AND AMAIN AND AMAIN AND AMAIN AND AMAIN AND AMAIN AND AMAIN AND AMAIN AND AMAIN AND AMAIN AND AMAIN AND AMAIN AND AMAIN AND AMAIN AND AMAIN AND AMAIN AND AMAIN AND AMAIN AND AMAIN AND AMAIN AND AMAIN AND AMAIN AND AMAIN AND AMAIN AND AMAIN AND AMAIN AND AMAIN AND AMAIN AND AMAIN AND AMAIN AND AMAIN AND AMAIN AND AMAIN AND AMAIN AND AMAIN AND AMAIN AND AMAIN AND AMAIN AND AMAIN AND AMAIN AND AMAIN AND AMAIN AND AMAIN AND AMAIN AND AMAIN AND AMAIN AND AMAIN AND AMAIN AND AMAIN AND AMAIN AND AMAIN AND AMAIN AND AMAIN AND AMAIN AND AMAIN AND AMAIN AND AMAIN AND AMAIN AND AMAIN AND AMAIN AND AMAIN AND AMAIN AND AMAIN AND AMAIN AND AMAIN AND AMAIN AND AMAIN AND AMAIN AND AMAIN AND AMAIN AND AMAIN AND AMAIN AND AMAIN AND AMAIN AND AMAIN AND AMAIN AND AMAIN AND AMAIN AND AMAIN AND AMAIN AND AMAIN AND AMAIN AND AMAIN AND AMAIN AND AMAIN AND AMAIN AND AMAIN AND AMAIN AND AMAIN AND AMAIN AND AMAIN AND AMAIN AND AMAIN AND AMAIN AND AMAIN AND AMAIN AND AMAIN AND AMAIN AND AMAIN AND AMAIN AND AMAIN AND AMAIN AND AMAIN AND AMAIN AND AMAIN AND AMAIN AND AMAIN AND AMAIN AND AMAIN AND AMAIN AND AMAIN AND AMAIN AND AMAIN AND AMAIN AND AMAIN AND AMAIN AND AMAIN AND AMAIN AND AMAIN AND AMAIN AND AMAIN AND AMAIN AND AMAIN AND AMAIN AND AMAIN AND AMAIN AND AMAIN AND AMAIN AND AMAIN AND AMAIN AND AMAIN AND AMAIN AND AMAIN AND AMAIN AND AMAIN AND AMAIN AND AMAIN AND AMAIN AND AMAIN AND AMAIN AND AMAIN AND AMAIN AND AMAIN AND AMAIN AND AMAIN AND AMAIN AND AMAIN AND AMAIN AND AMAIN AND AMAIN AND AM									1						
240-28199 Chain of Custody			<u> </u>			_	$\dashv$	+					1	<del> </del>	
· · · · · · · · · · · · · · · · · · ·									1						
				-	╁┼				i i		+-+		+-+-+	+	
									li l						
				]					1: 1			İ			·
Preservation Used Sale Ice (2-Hel-3-H2SO4 (4-HNO3)	5=NaOH: 6=Other	Andrease	i a	a exs	i din est	4 35 23	S SA				201332	2 94 ×44		N AND	
Possible Hazard Identification:	A CONTRACT OF STREET OF STREET OF STREET	Val		C 1 10 12 10 12	Sam	ple Dis	posal	(Af	ee may	be asse	ssed if	samp	les are re	tainec	l longer than 1 month)
Are any samples from a listed EPA Hazardous Waste? Pleas	e List any EPA Was	te Codes for	the sample	in the											
Comments Section if the lab is to dispose of the sample.	<u></u>	<del>- (</del>			┩_	_			- i.	_/\			_		
☐ Non-Hazard ☐ Flammable ☐ Skin Irritant	Poison B	* Unkn	own			Return t	o Client	t	<u>\</u>	Disposal I	•		Archîve		Months
Special Instructions/QC Requirements & Comments:	UP INC	bottle	e tor	- <i>E</i>	νX	-1	กน้	)_	m;	PUR	SEI	MB	2013	in	CODEU 316.
<b>'</b>	1	00111	Jo!	ŧ	باسر	المتعمد	v	•	مين در ا	,		, , , , , ,			10,00
Custody Seals Intact: ☐ Yes ☐ No	Custody Seal No.:					С	ooler	Tem	p. (°C):	Obs'd:		Corr			Therm ID No.:
Relinquished by:	Company:		Date/Time	المسائح	Rece	ived by	K	- /	1:1		Соп	пралу:	و عسرس		Date/Time:
mintrale /	ED SILIB	,	1/8	00					156	>			ا بسرر	<u>C</u>	821-13-1800
Relinquished by:	Company:	•	Date/Time	در:﴿	Rece	ived by	-		\ <u></u>		Con	трапу:			Date/Time:
W Orchan	TALTY	)	×	750		1er		2	<u> </u>		-	1 3	<del>4</del>		8/22/13 0700
Relinquished by:	Company:		Date/Time	<b>)</b> :	Rece	ived in	Laber	atøry	ph:i		Con	ърапу:			Dáte/Time:
þ Č			1		1				i						[

TestAmerica Canton Facili		le Receipt Form/	Narrative	, Lōg	gin#: <u>2819</u>	9
Client EQ	11		Site Name RVA	IAP	Cooler unpack	ed byy
Cooler Received	d on $8-2$	1-13	Opened on $\sqrt{-2}$	. 12	Lance	7/ //
FedEx: 1 st Gro				2/2	Other	//
TestAmerica C	ooler# A//	# 12 8 22	Client Gooter	TestAmerica Courier Box Other		-1
			oam Plastic Bag	None Other		
COO	LANT: We	Ice Blue Ice	Dry Ice Water	<del></del>		-
	perature upon					
IR GUN#	4 (CF 0°	<ul><li>C) Observed Coole</li><li>C) Observed Coole</li></ul>	r Temp°C	Corrected Cooler Corrected Cooler	Temp°C	See Multiple
		C) Observed Coole	r Temp°C			Cooler Form
IR GUN#	•	C) Observed Coole		Corrected Cooler		
	-		er(s)? If Yes C		es No	
	•		oler(s) signed & date		es No NA	
	tody seals on the	• •	10		(es (No)	
		ched to the cooler(	•		es No	
		npany the sample(s)			es No	
5. Were the c	ustody papers	eimquisnea & sign	ed in the appropriate	place?	(es) No	
	_	ood condition (Unb	•	<u>§</u>	es No	
		reconciled with the			No No	
		d for the test(s) ind		>	es No	
		ed to perform indica		Ø	es No	
		rect pH upon recei <u>r</u>	ot?	<u> </u>	es No NA pH Si	trip Lot# <u>HC376062</u>
11. Were VOA	As on the COC	•		Y	res No	
12. Were air b	ubbles >6 mm	in any VOA vials?		Y.	es No (NA	
13. Was a trip	blank present i	n the cooler(s)?			res No	
	· <del></del>	Date	by	via Verbal	Voice Mail Other	
Concerning						
14. CHAIN O	F CUSTODY	& SAMPLE DISC	CREPANCIES		Samples pro	ocessed by:
			·			
*****						
			<del>.</del>			
,						
15. SAMPLE	CONDITION					
Sample(s)			_were received after	r the recommended ho		
Sample(s)					ved in a broken conta	
Sample(s)			were receiv	ed with bubble >6 m	m in diameter. (Noti	fy PM)
16. SAMPLE	PRESERVAT	TION			,	
Sample(s)					further preserved in	the laboratory.
Time preserved	<u></u>	Preservative(s) a	dded/Lot number(s)			

Cooler#	IR Gun#	Observed Temp °C	Login#; 28/9 Corrected Temp °C	Coolant
311	8		6.0	100
31( 4113	1	6,0	5.8	1_
77-1:				
				Page 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 a
<del>, , , , , , , , , , , , , , , , , , , </del>				
				· · ·
* ·				· · · · · · · · · · · · · · · · · · ·
				——————————————————————————————————————
			· · · · · · · · · · · · · · · · · · ·	
A				Approximate with the court of the court of the court of the court of the court of the court of the court of the court of the court of the court of the court of the court of the court of the court of the court of the court of the court of the court of the court of the court of the court of the court of the court of the court of the court of the court of the court of the court of the court of the court of the court of the court of the court of the court of the court of the court of the court of the court of the court of the court of the court of the court of the court of the court of the court of the court of the court of the court of the court of the court of the court of the court of the court of the court of the court of the court of the court of the court of the court of the court of the court of the court of the court of the court of the court of the court of the court of the court of the court of the court of the court of the court of the court of the court of the court of the court of the court of the court of the court of the court of the court of the court of the court of the court of the court of the court of the court of the court of the court of the court of the court of the court of the court of the court of the court of the court of the court of the court of the court of the court of the court of the court of the court of the court of the court of the court of the court of the court of the court of the court of the court of the court of the court of the court of the court of the court of the court of the court of the court of the court of the court of the court of the court of the court of the court of the court of the court of the court of the court of the court of the court of the court of the court of the court of the court of the court of the court of the court of the court of the court of the court of the court of the court of the court of the court of the court of the court of the court of the court of the court of the court of the court of the court of the court of the court of the court of t
·				
				<u></u>

C:\Users\livengoodc\AppData\Local\Microsoft\Windows\Temporary Internet Files\OLKD16\Wi-NC-099-031813 Cooler Receipt
Form_page 2 - Multiple Coolers.doc
Revision 3, 3/18/13 rls

8	2	2	12	Ô	۱	3

## Login Container Summary Report

240-28199

Temperature readings:		\		·····	<del></del>
<u>Client Sample ID</u>	<u>Lab ID</u>	Container Type	Container pH	Preservative Added (mls)	Lot#
FWG-IDW-MWDECONAUG2013	240-28199-B-2	Plastic 250ml - with Sodium	>12		
FWG-IDW-MWDECONAUG2013	240-28199-C-2	Plastic 500ml - with Zn Acetate and	>9		***************************************
FWG-IDW-MWPURGEAUG2013	240-28199-B-3	Plastic 250ml - with Sodium	>12		
FWG-IDW-MWPURGEAUG2013	240-28199-C-3	Plastic 500ml - with Zn Acetate and	>9		

14

RVAAP	Facilit	v-Wide	Ground	lwater	Monitorin	g Prog	ram Aus	oust 201	3 Samr	ling	Event	Report

#### **APPENDIX E**

REPORTING LIMITS THAT CURRENTLY
DO NOT MEET THE RVAAP QAPP PROJECT ACTION REQUIRMENTS, MCLS,
AND/OR RSL

		_
<b>\</b> /	^	<b>^</b> -

CAS No.	Analyte Name	Units	MDL	LOD ¹	RL	PAR ²	MCL	RSL
79-34-5	1,1,2,2-Tetrachloroethane	μg/L	0.18	0.25	1	1	NS	0.066
79-00-5	1,1,2-Trichloroethane	μg/L	0.27	0.5	1	1	5	0.24
106-93-4	1,2-Dibromoethane	μg/L	0.24	0.25	1	1	NS	0.0065
107-06-2	1,2-Dichloroethane		0.22	0.25	1	1	5	0.15
75-27-4	Bromodichloromethane	μg/L	0.15	0.25	1	1	NS	0.12
124-48-1	Dibromochloromethane	μg/L	0.18	0.25	1	1	NS	0.15
75-01-4	Vinyl chloride	μg/L	0.22	0.25	1	1	2	0.015
SVOCS					-			
CAS No.	Analyte Name	Units	MDL	LOD ¹	RL	PAR ²	MCL	RSL
91-94-1	3,3'-Dichlorobenzidine	μg/L	0.37	1	5	5	NS	0.11
534-52-1	4,6-Dinitro-2-methylphenol	μg/L	2.4	4	5	25	NS	1.2
56-55-3	Benzo(a)anthracene	μg/L	0.03	0.1	0.2	0.2	NS	0.029
50-32-8	Benzo(a)pyrene	μg/L	0.051	0.1	0.2	0.2	0.2	0.0029
205-99-2	Benzo(b)fluoranthene	μg/L	0.039	0.1	0.2	0.2	NS	0.029
111-44-4	bis(2-Chloroethyl)ether	μg/L	0.1	0.1	1	1	NS	0.012
117-81-7	bis(2-Ethylhexyl)phthalate	μg/L	0.22	0.5	2	10	6	0.071
53-70-3	Dibenzo(a,h)anthracene	μg/L	0.45	0.1	0.2	50	NS	0.0029
118-74-1	Hexachlorobenzene	μg/L	0.085	0.1	0.2	10	1	0.042
87-68-3	Hexachlorobutadiene	μg/L	0.27	0.5	1	10	NS	0.26
193-39-5	Indeno(1,2,3-cd)pyrene	μg/L	0.043	0.1	0.2	0.2	NS	0.029
621-64-7	N-Nitroso-di-n-propylamine	μg/L	0.24	0.5	1	10	NS	0.0093
87-86-5	Pentachlorophenol	μg/L	0.27	1	5	5	1	0.17
Pesticides								
CAS No.	Analyte Name	Units	MDL	LOD ¹	RL	PAR ²	MCL	RSL
309-00-2	Aldrin	μg/L	0.0082	0.02	0.03	0.03	NS	0.0002
319-84-6	alpha-BHC	μg/L	0.007	0.02	0.03	0.03	NS	0.0062
60-57-1	Dieldrin	μg/L	0.0075	0.02	0.03	0.03	NS	0.0015
76-44-8	Heptachlor	μg/L	0.008	0.02	0.03	0.03	0.4	0.0018
1024-57-3	Heptachlor epoxide	μg/L	0.0071	0.02	0.03	0.03	0.2	0.0033
8001-35-2	Toxaphene	μg/L	0.32	0.8	2	2	3	0.013
PCB								
CAS No.	Analyte Name	Units	MDL	LOD ¹	RL	PAR ²	MCL	RSL
11104-28-2	PCB- 1221	μg/L	0.13	0.2	0.5	0.2	0.5	0.0043
11141-16-5	PCB- 1232	μg/L	0.16	0.2	0.5	0.2	0.5	0.0043
53469-21-9	PCB- 1242	μg/L	0.22	0.4	0.5	0.4	0.5	0.034
12672-29-6	PCB- 1248	μg/L	0.1	0.2	0.5	0.2	0.5	0.034
11097-69-1	PCB- 1254	μg/L	0.16	0.2	0.5	0.2	0.5	0.034
11096-82-5	PCB- 1260	μg/L	0.17	0.2	0.5	0.2	0.5	0.034
Explosives								
CAS No.	Analyte Name	Units	MDL	LOD ¹	RL	PAR ²	MCL	RSL
606-20-2	2,6-Dinitrotoluene	μg/L	0.05	0.1	0.13	0.1	NS	0.042
Inorganics								
CAS No.	Analyte Name	Units	MDL	LOD ¹	RL	PAR ²	MCL	RSL
7440-38-2	Arsenic	μg/L	3.3	10	10	5	10	0.045
7440-70-2	Calcium	μg/L	630	1000	1000	100	NS	NS
7440-66-6	Zinc	μg/L	27	50	50	100	NS	4700
7440-28-0	Thallium	μg/L	0.79	1.5	2	10	2	0.16
57-12-5	Cyanide	mg/L	0.01	0.01	0.0032	0.01	0.2	0.0014
Notos:	1- I OD- The smallest amount or co							0.00 T

Notes:

¹⁻ LOD= The smallest amount or concentration of a substance that must be present in a sample in order to be detected at a high level of confidence (99%). At the LOD, the false negative rate is 1%.

²⁻ Project Action Requirements from table 4 of the Facility Wide QAPP

RVAAP Facility-Wide Groundwater Monitoring Program August 2013 Sampling Event Repo	RVAAP	P Facility-Wide	Groundwater	· Monitoring	Program A	lugust 2013	Sampling	Event	Renoi
------------------------------------------------------------------------------------	-------	-----------------	-------------	--------------	-----------	-------------	----------	-------	-------

# APPENDIX F CORRESPONDENCE AND COMMENTS/RESPONSES

#### NATIONAL GUARD BUREAU



111 SOUTH GEORGE MASON DRIVE ARLINGTON VA 22204-1373

February 21, 2014

Ohio Environmental Protection Agency DERR-NEDO Attn: Kevin Palombo, Environmental Specialist 2110 East Aurora Road Twinsburg, OH 44087-1924

Subject:

Ravenna Army Ammunition Plant (RVAAP) Restoration Program

Portage/Trumbull Counties, RVAAP-66 Facility-Wide Groundwater

Ohio EPA ID # 267-000859-036

Dear Mr. Palombo:

The Army is submitting this letter of correspondence in support of the Facility-Wide Groundwater Monitoring Program (FWGWMP) for the Ravenna Army Ammunition Plant (RVAAP), Ravenna, Ohio. This correspondence was prepared by the US Army Corps of Engineers (USACE) - Louisville District, with the assistance of Environmental Quality Management, Inc. (EQM) under Contract No. W912QR-11-F-0266.

This letter provides responses to the Ohio EPA's review comments regarding the "FWGWMP Draft Facility-Wide Groundwater Annual Report for 2013, dated December 11, 2013, and Draft Report on the August 2013 Sampling Event, dated December 19, 2013." Ohio EPA's letter was submitted February 4, 2014, and received by the Army on February 6, 2014. The Army requests Ohio EPA's review and concurrence with the Army's response to comments.

#### **Response to Comments**

The Army understands the Ohio EPA's review comments may be applicable to both of the Army's subject documents. The following paragraphs present Ohio EPA's review comments, which are then followed by the Army's responses:

- 1. Ohio EPA Comment: The version of RSLs used in the report needs to be clarified. Ground water sampling results were compared to Ohio EPA and U.S. EPA Regional Screening Levels (RSLs) for tap water. The RSLs were most recently updated in November 2013. The report does not state what version of the RSLs was utilized. This clarification needs to be added.
  - **Army Response:** The Army used the revised November 2013 RSLs for the comparison. A footnote has been added to Tables 4-2 and 4-3 to this effect. Additionally, the tables in the August 2013 report will also have this footnote added.
- 2. Ohio EPA Comment: MCL and RSL for cyanide need to be correctly cited. The text of the report incorrectly states (page viii): "...there is no MCL for cyanide." However, Tables 4-2 and 4-3 correctly listed the MCL for cyanide, which is 0.2 mg/L. Also, pages 48, 50, and 59 of Table 4-2 incorrectly indicate that the tap water RSL for cyanide is 0 mg/L. The current tap water RSL for cyanide, 0.0014 mg/L, is correctly listed in Table 4-3. The text on page viii needs to be

Subject: Army responses to Ohio EPA's review comments regarding the "FWGWMP Draft Facility-Wide Groundwater Annual Report for 2013, dated December 11, 2013, and Draft Report on the August 2013 Sampling Event, dated December 19, 2013." Ravenna Army Ammunition Plant Restoration Program, Portage/Trumbull Counties, RVAAP-66 Facility-Wide Groundwater, Ohio EPA ID # 267-000859-036

changed to indicate that there is a MCL for cyanide, and pages 48, 49, and 59 of Table 4-2 needs to list the correct RSL for cyanide. These discrepancies need to be corrected.

Army Response: The text on page viii will be revised as follows "cyanide exceeded the RSL but not the MCL in three wells." Pages 48, 49, and 59 of Table 4-2 have been corrected with the correct RSL values.

3. Ohio EPA Comment: The rate, extent, and concentration of chemicals of potential concern (COPCs) in the vicinity of LL3mw-244 need to be determined. Well LL3mw-244, screened in the Upper Sharon Aquifer, is located in the vicinity of Load Line 3, approximately 40 feet north and hydraulically upgradient of the southern boundary fence line. The concentration of hexavalent chromium in LL3mw-244 during the October 2012 and January and August 2013 sampling events consistently exceeded the RSL for that compound. Page 106 of the report indicates that well LL3mw-244 has consistently contained explosive constituents at low levels (below RSLs). Further, page 106 states:

Based on this information the extent of explosives in ground water has not been defined south-southwest of LL3mw-244.

COPCs may be migrating in the Upper Sharon Aquifer off the facility's property, and to the south-southwest.

Further, it is our understanding that new wells PW-1, PW-2, and PW-3, located near the eastern and southeastern property lines, were installed in December 2013. At this writing, data from these new wells were not available.

The rate, extent, and concentration of hexavalent chromium and explosive constituents in the vicinity of that portion of the southern facility boundary line near Load Line 3 need to be determined. Hopefully, the installation of the additional monitoring wells will provide this information.

Army Response: The Ohio EPA is correct. The Army installed new wells near the eastern and southeastern property lines down-gradient of Load Lines 1-3 in December 2013. This included a new RI well (LL3mw-246) installed hydraulically down-gradient of well LL3mw-244. The new RI well was sampled in January 2014 and the results are currently pending. Until the groundwater laboratory results are received and evaluated, no other statements can be made regarding potential off-RVAAP impacts in this area of the site.

4. Ohio EPA Comment: The concentration of hexavalent chromium in LL3mw-244 needs to be accurately and consistently described throughout the report. The report (Table 4-2, page 55) indicates that the concentrations of hexavalent chromium exceeded its respective RSL during the October 2012 and January and August 2013 sampling events. Confusingly, page 85-86 of the report indicates that the only constituent that exceeded the MCL or RSL in LL3mw-244 during the reporting period was beta-BHC. Page 85 through 86 of the report need to be revised to

Subject: Army responses to Ohio EPA's review comments regarding the "FWGWMP Draft Facility-Wide Groundwater Annual Report for 2013, dated December 11, 2013, and Draft Report on the August 2013 Sampling Event, dated December 19, 2013." Ravenna Army Ammunition Plant Restoration Program, Portage/Trumbull Counties, RVAAP-66 Facility-Wide Groundwater, Ohio EPA ID # 267-000859-036

indicate that the concentrations of hexavalent chromium in LL3mw-244 consistently exceeded the RSL during the reporting period. This issue needs to be addressed.

**Army Response:** The following bullet will be added to page 86 of the 2013 Annual report:

- Hexavalent chromium exceeded the RSL during the October 2012, January 2013, and August 2013 sampling events. There is no MCL for hexavalent chromium. The hexavalent chromium concentrations ranged from 0.143 to 0.361 µg/L during the three sampling events; all three detections were qualified as estimated values.
- 5. Ohio EPA Comment: There is a concern with the high pH value in FWGmw-002. According to the report, the measured pH value of greater than 9 in FWGmw-002 may be indicative that the well has been impacted. The report ambiguously states (page 39):

EQM will monitor the pH in the future, if it is part of the FWGMP network.

The facility needs to determine whether there is a pH impact in FWGmw-002, or if the elevated pH value represents a short term anomaly/variation in ground water quality, or is due to sampling and/or equipment error. This issue needs to be addressed.

Army Response: Well FWGmw-002 is located on the north side of RVAAP and is up-gradient of former operations at the site. This well was sampled in October 2012 and January 2013. Based on the constituent concentrations identified in well FWGmw-002 during these two sampling events, there is no residual contamination present that would account for the higher pH response. This well is not currently included in the semiannual monitoring events; however EQM will monitor the pH level in this well during the next two sampling events to determine whether this is a trend, short term anomaly/variation in groundwater quality, or simply due to sampling/equipment error.

6. Ohio EPA Comment: The apparent sharp decrease in the number of BEHP detections above the RSL and/or MCL in 2013 compared to the 2012 reporting period needs to be explained. According to the FWGWMP Annual Report for 2013, BEHP was identified at concentrations above the compound's MCL and RSL in only two wells (FWGmw-010 and FWGmw-011) for one sampling event each during the 2013 reporting period. Whereas, according to the previously reviewed FWGWMP Annual Report for 2012, BEHP was identified at concentrations above the compound's MCL and/or RSL in 65 monitoring wells for at least one sample event during the 2012 reporting period.

It is not clear why there has been an apparently large decline in the frequency at which BEHP is detected above the RSL and/or MCL during the reporting period. This issue needs to be evaluated and explained.

Army Response: The FWGWMP Annual Report for 2012 included the quarterly reports for October 2011, January 2012, April 2012, and July 2012. The RSLs updated in April 2012 were used for comparison in the 2012 Annual Report. In April 2012, the RSL for BEHP was 0.071

Subject: Army responses to Ohio EPA's review comments regarding the "FWGWMP Draft Facility-Wide Groundwater Annual Report for 2013, dated December 11, 2013, and Draft Report on the August 2013 Sampling Event, dated December 19, 2013." Ravenna Army Ammunition Plant Restoration Program, Portage/Trumbull Counties, RVAAP-66 Facility-Wide Groundwater, Ohio EPA ID # 267-000859-036

 $\mu$ g/L. Beginning in November 2012, the RSL for BEHP was revised to 4.8  $\mu$ g/L; this value remained unchanged during the May 2013 and November 2013 updates. [Historically, the Region IX Preliminary Remediation Goal (PRG) for BEHP was also 4.8  $\mu$ g/L.] A preliminary review of the 2012 annual data (i.e., data from October 2011 and January, April, and October 2012) shows only four occurrences in which BEHP exceeds the current RSL of 4.8  $\mu$ g/L.

#### Statement

Ohio EPA Statement: The quality of potentiometric maps has improved. The quality of the potentiometric maps submitted has improved and represent a more realistic interpretation of ground water flow compared to previous such submissions.

**Army Response:** Acknowledged. The Army appreciates the Ohio EPA's assistance in improving the quality of the potentiometric maps.

Please contact the undersigned at (703) 601-7785 or <u>brett.a.merkel.civ@mail.mil</u> if there are issues or concerns with this submission.

Smooth Nevel

Brett A. Merkel

RVAAP Restoration Program Manager Army National Guard Directorate

cc: Nancy Zikmanis, Ohio EPA, DERR-NEDO Rod Beals, Ohio EPA, DERR-NEDO Justin Burke, Ohio EPA
Kevin Sedlak, ARNG, Camp Ravenna
Katie Tait, OHARNG Camp Ravenna
Glen Beckham, USACE Louisville
Nat Peters, USACE Louisville
Eric Cheng, USACE Louisville
Gail Harris, Vista Sciences



John R. Kasich, Governor Mary Taylor, Lt. Governor Craig W. Butler, Interim Director

February 4, 2014

Mr. Brett Merkel Army National Guard Directorate ARNGD-ILE Clean Up 111 South George Mason Drive Arlington, VA 22203

RE: RAVENNA ARMY AMMUNITION PLANT, PORTAGE/TRUMBULL COUNTIES, COMMENT LETTER RE: FWGWMP DRAFT FACILITY-WIDE GROUND WATER ANNUAL REPORT FOR 2013, DATED DECEMBER 11, 2013 AND DRAFT REPORT ON THE AUGUST 2013 SAMPLING EVENT, DATED DECEMBER 19, 2013, OHIO EPA ID # 267-000859-036

Dear Mr. Merkel:


The Ohio Environmental Protection Agency (Ohio EPA) has received and reviewed the "Draft Facility-Wide Groundwater Monitoring Program (FWGWMP) RVAAP-66 Facility-Wide Ground Water Annual Report for 2013 at the Ravenna Army Ammunition Plant (RVAAP), Ravenna, Ohio." This document was received at Ohio EPA's Northeast District Office (NEDO), Division of Environmental Response and Revitalization (DERR), on December 12, 2013 and is dated December 11, 2013. Ohio EPA also received the "FWGWMP RVAAP-66 Facility-Wide Groundwater Report on the August 2013 Sampling Event," at NEDO on December 20 and is dated December 19, 2013. Both documents were prepared for the U.S. Army Corps of Engineers (USACE) - Louisville District, by Environmental Quality Management, Inc. (EQM), under Contract No. GS-10F-0293K.

The Annual Report summarizes the results of the ground water sampling events conducted October 15-17, 2012; January 21-25, 2013; and August 19-21, 2013. Note: Beginning in January, 2013, sampling frequency was changed from quarterly to semiannual (scheduled to occur in January and July). To date, all 281 FWGWMP wells at the facility have been sampled at least four quarters.

It is noted that the data package for the August 2013 Sampling Event was received by this office after the Annual Report, which included the August 2013 data. In the future,







MR. BRETT MERKEL ARMY NATIONAL GUARD DIRECTORATE FEBRUARY 4, 2014 PAGE 2

all data packages for the year should be received by this office before the Annual Report is submitted.

Comments on the document, based on Ohio EPA review, are provided below. These comments may also be applicable to the August 2013 Sampling Event data package and should be addressed in both reports. Please provide responses to the enclosed comments in accordance with the Directors Findings and Orders.

#### COMMENTS

- **#1.** The version of RSLs used in the report needs to be clarified. Ground water sampling results were compared to Ohio EPA and U.S. EPA regional Screening Levels (RSLs) for tap water. The RSLs were most recently updated in November 2013. The report does not state what version of the RSLs was utilized. This clarification needs to be added.
- **#2. MCL** and RSL for cyanide need to be correctly cited. The text of the report incorrectly states (page viii): "... there is no MCL for cyanide". However, Tables 4-2 and 4-3 correctly listed the MCL for cyanide, which is 0.2 mg/L. Also, pages 48, 50, and 59 of Table 4-2 incorrectly indicate that the tap water RSL for cyanide is 0 mg/L. The current tap water RSL for cyanide, 0.0014 mg/L, is correctly listed in Table 4-3. The text on page viii needs to be changed to indicate that there is a MCL for cyanide, and pages 48, 49, and 59 of Table 4-2 needs to list the correct RSL for cyanide. These discrepancies need to be corrected.
- #3. The rate, extent, and concentration of chemicals of potential concern (COPCs) in the vicinity of LL3mw-244 need to be determined. Well LL3mw-244, screened in the Upper Sharon Aquifer, is located in the vicinity of Load Line 3, approximately 40 feet north and hydraulically upgradient of the southern boundary fence line. The concentration of hexavalent chromium in LL3mw-244, during the October 2012, January and August 2013 sampling events, consistently exceeded the RSL for that compound. Page 106 of the report indicates that well LL3mw-244 has consistently contained explosive constituents at low levels (below RSLs). Further, page 106 of the report states:

Based on this information the extent of explosives in ground water has not been defined south-southwest of LL3mw-244.

COPCs may be migrating in the Upper Sharon Aquifer off the facility's property, and to the south-southwest.

MR. BRETT MERKEL ARMY NATIONAL GUARD DIRECTORATE FEBRUARY 4, 2014 PAGE 3

Further, it is our understanding that new wells PW-1, PW-2 and PW-3, located near the eastern and southeastern property lines were, installed in December, 2013. At this writing, data from these new wells were not available.

The rate, extent, and concentration of hexavalent chromium and explosive constituents in the vicinity of that portion of the southern facility boundary line near Load Line 3 need to be determined. Hopefully, the installation of the additional monitoring wells will provide this information.

- #4. The concentration of hexavalent chromium in LL3mw-244 needs to be accurately and consistently described throughout the report. The report (Table 4-2, page 55) indicates that the concentrations of hexavalent chromium exceeded its respective RSL during the October 2012, January and August 2013 sampling events. Confusingly, page 85-86 of the report indicates that the only constituent that exceeded either a MCL or RSL in LL3mw-244 during the reporting period was beta-BHC. Page 85 through 86 of the report need to be revised to indicate that the concentrations of hexavalent chromium in LL3mw-244 consistently exceeded the RSL during the reporting period. This issue needs to be addressed.
- **#5.** There is a concern with the high pH value in FWGmw-002. According to the report, the measured pH value of greater than 9 in FWGmw-002 may be indicative that the well has been impacted. The report ambiguously states (page 39):

EQM will monitor the pH in the future, if it is part of the FWGWMP network.

The facility needs to determine whether there is a pH impact in FWGmw-002, or if the elevated pH value represents a short term anomaly/variation in ground water quality, or is due to sampling and/or equipment error. This issue needs to be addressed.

#6. The apparent sharp decrease in the number of BEHP detections above the RSL and/or MCL in 2013 compared to the 2012 reporting period needs to be explained. According to the FWGWMP Annual Report for 2013, BEHP was identified at concentrations above the compound's MCL and RSL in only two wells (FWGmw-010 and FWGmw-011) for one sampling event each during the 2013 reporting period. Whereas, according to the previously reviewed the FWGWMP Annual Report for 2012, BEHP was identified at concentrations above the compound's MCL and/or RSL in 65 monitoring wells for at least one sample event during the 2012 reporting period.

MR. BRETT MERKEL ARMY NATIONAL GUARD DIRECTORATE FEBRUARY 4, 2014 PAGE 4

It is not clear why there has been an apparently large decline in the frequency at which BEHP is detected above the RSL and/or MCL during the reporting period. This issue needs to be evaluated and explained.

#### Statement

The quality of potentiometric maps has improved. The quality of the potentiometric maps submitted has improved and represent a more realistic interpretation of ground water flow compared to previous such submissions.

Pursuant to the CERCLA process, the property owner usually can provide the expected land uses to assist in ensuring that the investigation addresses all receptors for both current and future land uses. Be advised that due to land use uncertainty, Ohio EPA may require additional work in the future, to address data gaps. It is incumbent upon the Army to finalize land use at Camp Ravenna as soon as possible, otherwise additional work and schedule slippage may result.

This document was reviewed by personnel from Ohio EPA, DERR. Ohio EPA has determined that additional information is necessary to approve the document. If you have any questions, please call me at (330) 963-1292.

Sincerely,

Kevin M. Palombo

**Environmental Specialist** 

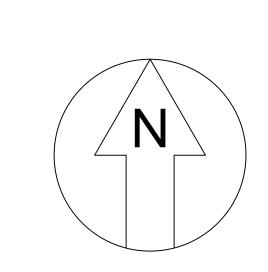
Division of Environmental Response and Revitalization

KP/nvr

cc: Katie Tait, OHARNG, Camp Ravenna Kevin Sedlak, ARNG, Camp Ravenna Glen Beckham, USACE, Louisville

Mark Nichter, USACE

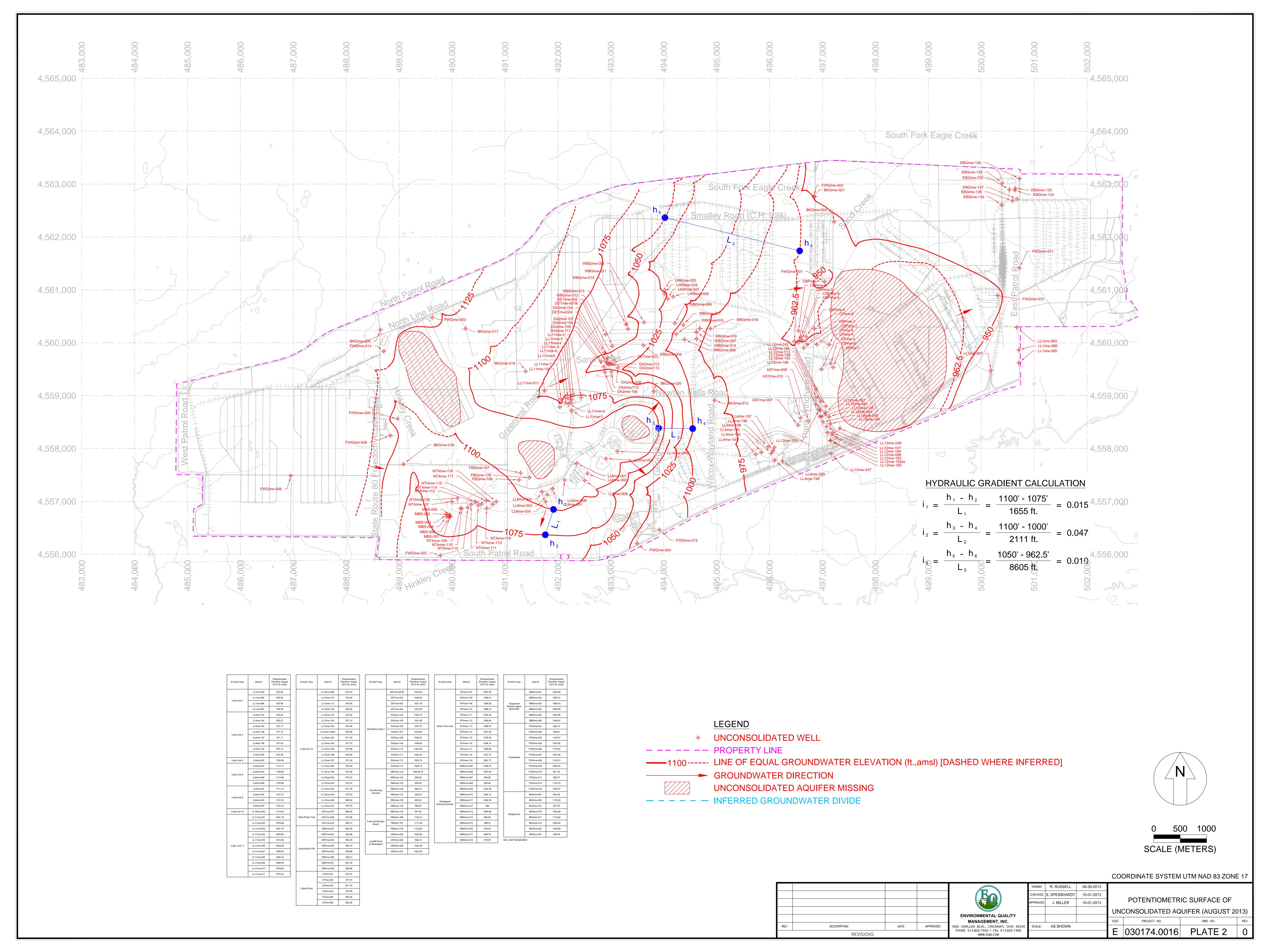
Kenn Pero

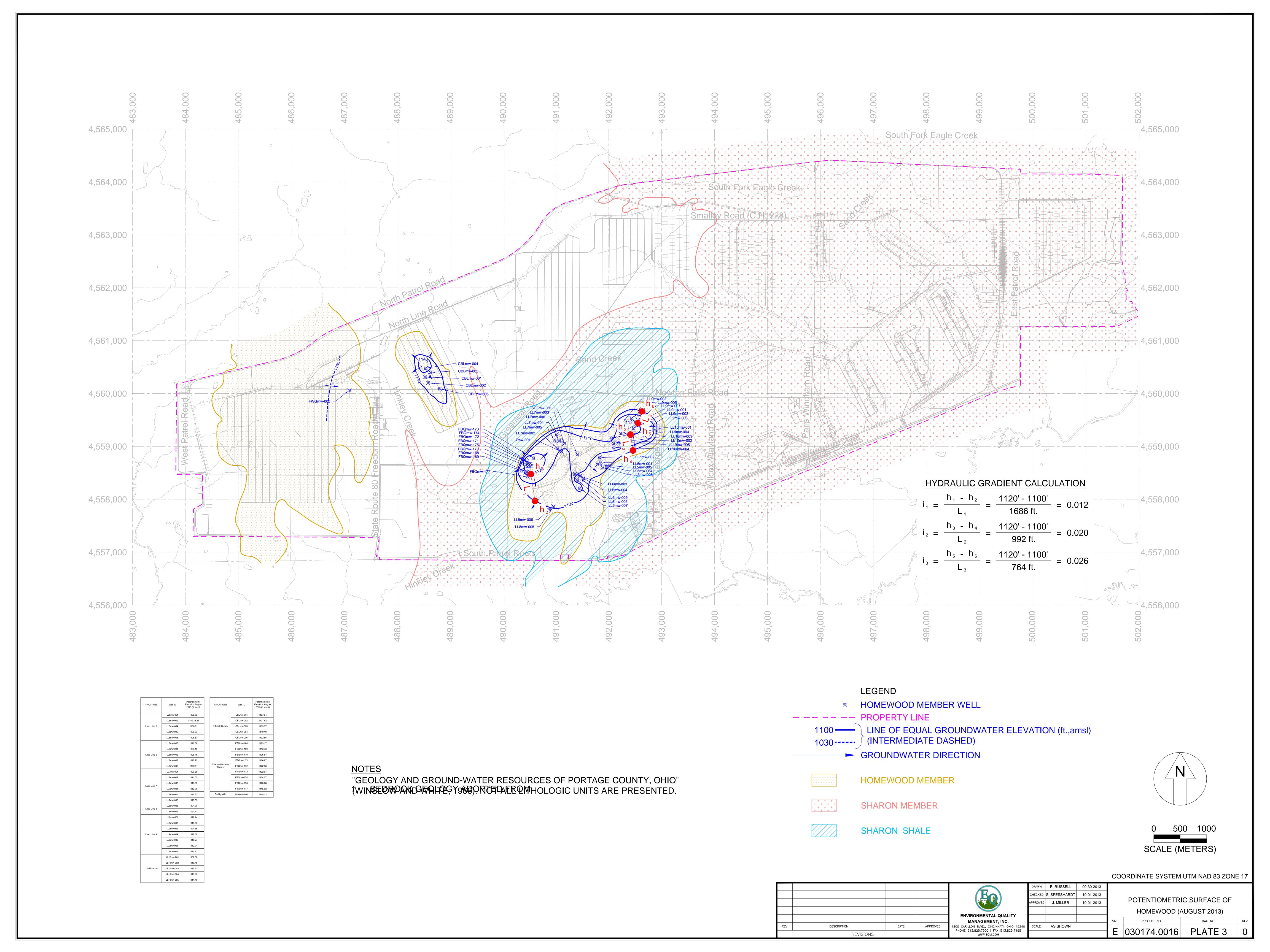

Rebecca Haney/Gail Harris, Vista Sciences

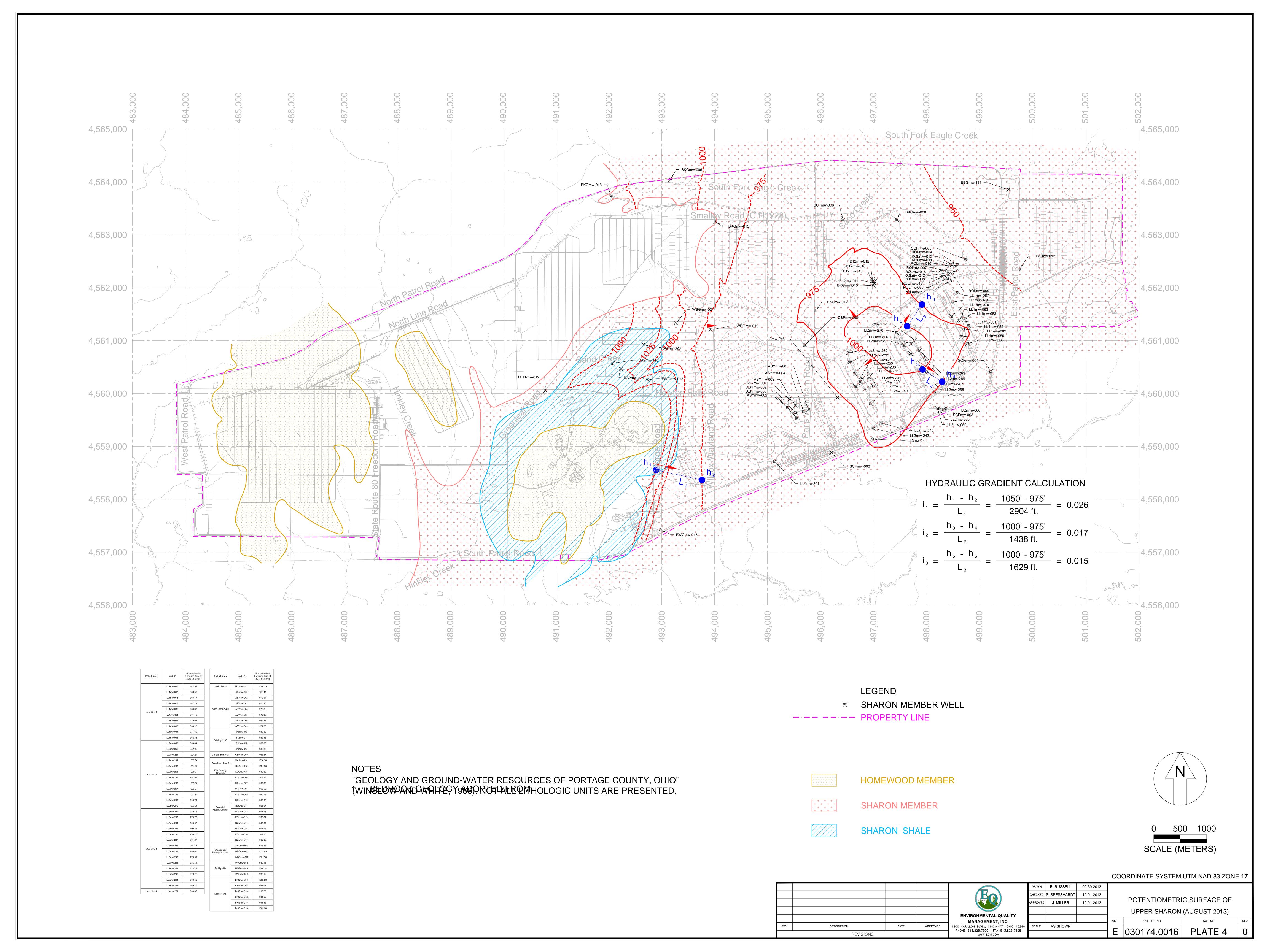
ec: Nancy Zikmanis, Ohio EPA, NEDO, DERR Justin Burke, Ohio EPA, CO, DERR Al Muller, Ohio EPA NEDO, DDAGW Rod Beals, Ohio EPA, NEDO, DERR

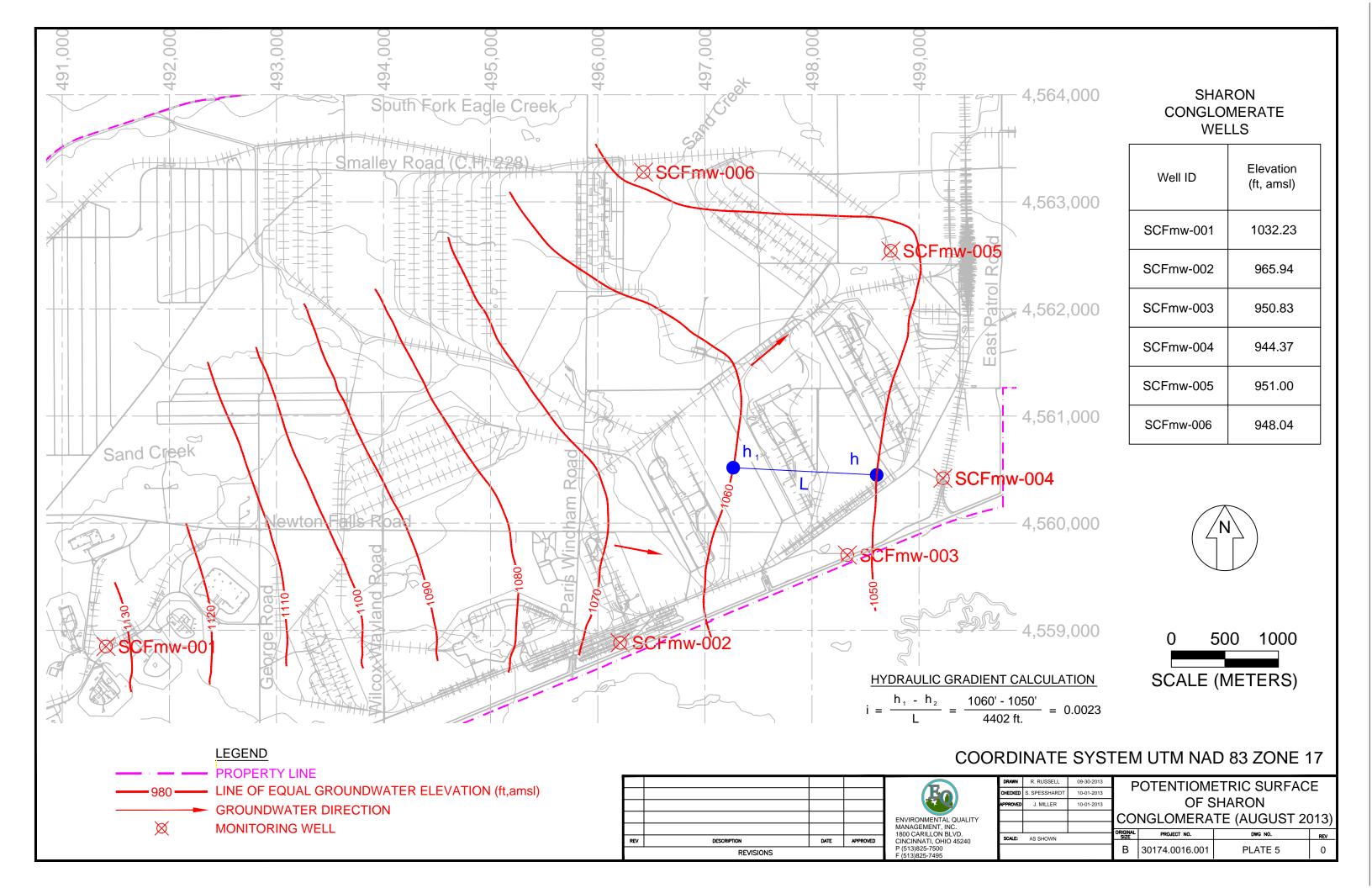


## **LEGEND**


- **SHARON MEMBER WELL**
- UNCONSOLIDATED WELL
- + HOMEWOOD MEMBER WELL
- ----- PROPERTY LINE





0 500 1000 SCALE (METERS)


COORDINATE SYSTEM UTM NAD 83 ZONE 17

					DRAWN CHECKED APPROVED	R. RUSSELL S. SPESSHARDT J. MILLER	09-30-2013 10-01-2013 10-01-2013		MONITORII AT R\		
				MANAGEMENT, INC.				SIZE	PROJECT NO.	DWG NO.	REV
REV	DESCRIPTION DATE APPROVED  REVISIONS		APPROVED	1800 CARILLON BLVD., CINCINNATI, OHIO 45240 - PHONE 513.825.7500   FAX 513.825.7495	SCALE:	AS SHOWN	S SHOWN		030174.0016	PLATE 1	0







